In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

String Algebras in Representation Theory

Laking, Rosanna Davison

[Thesis]. Manchester, UK: The University of Manchester; 2016.

Access to files

Abstract

The work in this thesis is concerned with three subclasses of the string algebras: domestic string algebras, gentle algebras and derived-discrete algebras (of non-Dynkin type). The various questions we answer are linked by the theme of the Krull-Gabriel dimension of categories of functors.We calculate the Cantor-Bendixson rank of the Ziegler spectrum of the category of modules over a domestic string algebra. Since there is no superdecomposable module over a domestic string algebra, this is also the value of the Krull-Gabriel dimension of the category of finitely presented functors from the category of finitely presented modules to the category of abelian groups. We also give a description of a basis for the spaces of homomorphisms between pairs of indecomposable complexes in the bounded derived category of a gentle algebra. We then use this basis to describe the Hom-hammocks involving (possibly infinite) string objects in the homotopy category of complexes of projective modules over a derived-discrete algebra. Using this description, we prove that the Krull-Gabriel dimension of the category of coherent functors from a derived-discrete algebra (of non-Dynkin type) is equal to 2. Since the Krull-Gabriel dimension is finite, it is equal to the Cantor-Bendixson rank of the Ziegler spectrum of the homotopy category and we use this to identify the points of the Ziegler spectrum. In particular, we prove that the indecomposable pure-injective complexes in the homotopy category are exactly the string complexes.Finally, we prove that every indecomposable complex in the homotopy category is pure-injective, and hence is a string complex.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Mathematical Sciences
Publication date:
Location:
Manchester, UK
Total pages:
171
Abstract:
The work in this thesis is concerned with three subclasses of the string algebras: domestic string algebras, gentle algebras and derived-discrete algebras (of non-Dynkin type). The various questions we answer are linked by the theme of the Krull-Gabriel dimension of categories of functors.We calculate the Cantor-Bendixson rank of the Ziegler spectrum of the category of modules over a domestic string algebra. Since there is no superdecomposable module over a domestic string algebra, this is also the value of the Krull-Gabriel dimension of the category of finitely presented functors from the category of finitely presented modules to the category of abelian groups. We also give a description of a basis for the spaces of homomorphisms between pairs of indecomposable complexes in the bounded derived category of a gentle algebra. We then use this basis to describe the Hom-hammocks involving (possibly infinite) string objects in the homotopy category of complexes of projective modules over a derived-discrete algebra. Using this description, we prove that the Krull-Gabriel dimension of the category of coherent functors from a derived-discrete algebra (of non-Dynkin type) is equal to 2. Since the Krull-Gabriel dimension is finite, it is equal to the Cantor-Bendixson rank of the Ziegler spectrum of the homotopy category and we use this to identify the points of the Ziegler spectrum. In particular, we prove that the indecomposable pure-injective complexes in the homotopy category are exactly the string complexes.Finally, we prove that every indecomposable complex in the homotopy category is pure-injective, and hence is a string complex.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:303023
Created by:
Laking, Rosanna
Created:
12th August, 2016, 22:36:14
Last modified by:
Laking, Rosanna
Last modified:
7th September, 2016, 12:08:37

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.