In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Model-based understanding of facial expressions

Sauer, Patrick Martin

[Thesis]. Manchester, UK: The University of Manchester; 2013.

Access to files

Abstract

In this thesis we present novel methods for constructing and fitting 2d models of shape and appearance which are used for analysing human faces. The first contribution builds on previous work on discriminative fitting strategies for active appearance models (AAMs) in which regression models are trained to predict the location of shapes based on texture samples. In particular, we investigate non-parametric regression methods including random forests and Gaussian processes which are used together with gradient-like features for shape model fitting. We then develop two training algorithms which combine such models into sequences, and systematically compare their performance to existing linear generative AAM algorithms. Inspired by the performance of the Gaussian process-based regression methods, we investigate a group of non-linear latent variable models known as Gaussian process latent variable models (GPLVM). We discuss how such models may be used to develop a generative active appearance model algorithm whose texture model component is non-linear, and show how this leads to lower-dimensional models which are capable of generating more natural-looking images of faces when compared to equivalent linear models. We conclude by describing a novel supervised non-linear latent variable model based on Gaussian processes which we apply to the problem of recognising emotions from facial expressions.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Medicine (Population Health)
Publication date:
Location:
Manchester, UK
Total pages:
136
Abstract:
In this thesis we present novel methods for constructing and fitting 2d models of shape and appearance which are used for analysing human faces. The first contribution builds on previous work on discriminative fitting strategies for active appearance models (AAMs) in which regression models are trained to predict the location of shapes based on texture samples. In particular, we investigate non-parametric regression methods including random forests and Gaussian processes which are used together with gradient-like features for shape model fitting. We then develop two training algorithms which combine such models into sequences, and systematically compare their performance to existing linear generative AAM algorithms. Inspired by the performance of the Gaussian process-based regression methods, we investigate a group of non-linear latent variable models known as Gaussian process latent variable models (GPLVM). We discuss how such models may be used to develop a generative active appearance model algorithm whose texture model component is non-linear, and show how this leads to lower-dimensional models which are capable of generating more natural-looking images of faces when compared to equivalent linear models. We conclude by describing a novel supervised non-linear latent variable model based on Gaussian processes which we apply to the problem of recognising emotions from facial expressions.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Thesis advisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:207633
Created by:
Sauer, Patrick
Created:
16th September, 2013, 11:40:12
Last modified by:
Sauer, Patrick
Last modified:
14th November, 2013, 14:21:13

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.