In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

    An investigation into the proteins responsible for the translational inhibition seen in the yeast Saccharomyces cerevisiae following fusel alcohol exposure

    Keenan, Jemma

    [Thesis]. Manchester, UK: The University of Manchester; 2013.

    Access to files

    Abstract

    Fusel alcohols signal nitrogen scarcity to elicit a range of responses in the yeast Saccharomyces cerevisiae. These alcohols activate pseudohyphal growth and cause rapid inhibition of translation initiation. Previous work from our lab has highlighted that the translation initiation factor eIF2B is a target for this regulation. eIF2B is the guanine nucleotide exchange factor required for recycling eIF2•GDP to eIF2•GTP. The GTP bound form of eIF2 can interact with the Methionyl initiator tRNA to form the ternary complex. Fusel alcohols target eIF2B leading to reduced ternary complex; however the mechanism by which alcohols cause this effect is currently unknown. This study aims to characterize the effects of fusel alcohols on eIF2B and identify post-translational modifications, which may be responsible for translation inhibition.Following purification of eIF2B, a number of novel phosphorylation sites have been identified using mass spectrometry. In particular, phosphorylated serine has been identified at position 131 within yeast eIF2Bδ. Phosphoantibody analysis suggests that the phosphorylation status of this residue differs following fusel alcohol treatment. Mutagenesis experiments are consistent with phosphorylation of this residue being essential for the translational inhibition seen following fusel alcohol exposure. Therefore, phosphorylation of this residue may prime eIF2B for regulation and provide a switch to sensitize the process of translation to particular conditions.

    Keyword(s)

    Phosphorylation; eIF2B

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Doctor of Philosophy
    Degree programme:
    PhD Biochemistry
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    154
    Abstract:
    Fusel alcohols signal nitrogen scarcity to elicit a range of responses in the yeast Saccharomyces cerevisiae. These alcohols activate pseudohyphal growth and cause rapid inhibition of translation initiation. Previous work from our lab has highlighted that the translation initiation factor eIF2B is a target for this regulation. eIF2B is the guanine nucleotide exchange factor required for recycling eIF2•GDP to eIF2•GTP. The GTP bound form of eIF2 can interact with the Methionyl initiator tRNA to form the ternary complex. Fusel alcohols target eIF2B leading to reduced ternary complex; however the mechanism by which alcohols cause this effect is currently unknown. This study aims to characterize the effects of fusel alcohols on eIF2B and identify post-translational modifications, which may be responsible for translation inhibition.Following purification of eIF2B, a number of novel phosphorylation sites have been identified using mass spectrometry. In particular, phosphorylated serine has been identified at position 131 within yeast eIF2Bδ. Phosphoantibody analysis suggests that the phosphorylation status of this residue differs following fusel alcohol treatment. Mutagenesis experiments are consistent with phosphorylation of this residue being essential for the translational inhibition seen following fusel alcohol exposure. Therefore, phosphorylation of this residue may prime eIF2B for regulation and provide a switch to sensitize the process of translation to particular conditions.
    Keyword(s):
    Thesis main supervisor(s):
    Thesis co-supervisor(s):
    Thesis advisor(s):
    Language:
    en

    Institutional metadata

    University researcher(s):
    Academic department(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:205866
    Created by:
    Keenan, Jemma
    Created:
    29th August, 2013, 12:53:57
    Last modified by:
    Keenan, Jemma
    Last modified:
    16th October, 2015, 10:39:06

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.