In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

The Justificatory Structure of OWL Ontologies

Bail, Samantha Patricia

[Thesis]. Manchester, UK: The University of Manchester; 2013.

Access to files

Abstract

The Web Ontology Language OWL is based on the highly expressive description logic SROIQ, which allows OWL ontology users to employ out-of-the-box reasoners to compute information that is not only explicitly asserted, but entailed by the ontology. Explanation facilities for entailments of OWL ontologies form an essential part of ontology development tools, as they support users in detecting and repairing errors in potentially large and highly complex ontologies, thus helping to ensure ontology quality. Justifications, minimal subsets of an ontology that are sufficient for an entailment to hold, are currently the prevalent form of explanation in OWL ontology development tools. They have been found to significantly reduce the time and effort required to debug erroneous entailments. A large number of entailments, however, have not only one but many justifications, which can make it considerably more challenging for a user to find a suitable repair for the entailment.In this thesis, we investigate the relationships between multiple justifications for both single and multiple entailments, with the goal of exploiting this justificatory structure in order to devise new coping strategies for multiple justifications. We describe various aspects of the justificatory structure of OWL ontologies, such as shared axiom cores and structural similarities. We introduce a model for measuring user effort in the debugging process and propose debugging strategies that exploit the justificatory structure in order to reduce user effort. Finally, an analysis of a large corpus of ontologies from the biomedical domain reveals that OWL ontologies used in practice frequently exhibit a rich justificatory structure.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Computer Science
Publication date:
Location:
Manchester, UK
Total pages:
215
Abstract:
The Web Ontology Language OWL is based on the highly expressive description logic SROIQ, which allows OWL ontology users to employ out-of-the-box reasoners to compute information that is not only explicitly asserted, but entailed by the ontology. Explanation facilities for entailments of OWL ontologies form an essential part of ontology development tools, as they support users in detecting and repairing errors in potentially large and highly complex ontologies, thus helping to ensure ontology quality. Justifications, minimal subsets of an ontology that are sufficient for an entailment to hold, are currently the prevalent form of explanation in OWL ontology development tools. They have been found to significantly reduce the time and effort required to debug erroneous entailments. A large number of entailments, however, have not only one but many justifications, which can make it considerably more challenging for a user to find a suitable repair for the entailment.In this thesis, we investigate the relationships between multiple justifications for both single and multiple entailments, with the goal of exploiting this justificatory structure in order to devise new coping strategies for multiple justifications. We describe various aspects of the justificatory structure of OWL ontologies, such as shared axiom cores and structural similarities. We introduce a model for measuring user effort in the debugging process and propose debugging strategies that exploit the justificatory structure in order to reduce user effort. Finally, an analysis of a large corpus of ontologies from the biomedical domain reveals that OWL ontologies used in practice frequently exhibit a rich justificatory structure.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:204943
Created by:
Bail, Samantha
Created:
15th August, 2013, 10:34:48
Last modified by:
Bail, Samantha
Last modified:
18th November, 2014, 19:44:31

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.