In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

MANAGING A REAL-TIME MASSIVELY-PARALLEL NEURAL ARCHITECTURE

Patterson, James Cameron

[Thesis]. Manchester, UK: The University of Manchester; 2012.

Access to files

Abstract

A human brain has billions of processing elements operating simultaneously; the only practical way to model this computationally is with a massively-parallel computer. A computer on such a significant scale requires hundreds of thousands of interconnected processing elements, a complex environment which requires many levels of monitoring, management and control. Management begins from the moment power is applied and continues whilst the application software loads, executes, and the results are downloaded. This is the story of the research and development of a framework of scalable management tools that support SpiNNaker, a novel computing architecture designed to model spiking neural networks of biologically-significant sizes. This management framework provides solutions from the most fundamental set of power-on self-tests, through to complex, real-time monitoring of the health of the hardware and the software during simulation. The framework devised uses standard tools where appropriate, covering hardware up / down events and capacity information, through to bespoke software developed to provide real-time insight to neural network software operation across multiple levels of abstraction. With this layered management approach, users (or automated agents) have access to results dynamically and are able to make informed decisions on required actions in real-time.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Computer Science
Publication date:
Location:
Manchester, UK
Total pages:
232
Abstract:
A human brain has billions of processing elements operating simultaneously; the only practical way to model this computationally is with a massively-parallel computer. A computer on such a significant scale requires hundreds of thousands of interconnected processing elements, a complex environment which requires many levels of monitoring, management and control. Management begins from the moment power is applied and continues whilst the application software loads, executes, and the results are downloaded. This is the story of the research and development of a framework of scalable management tools that support SpiNNaker, a novel computing architecture designed to model spiking neural networks of biologically-significant sizes. This management framework provides solutions from the most fundamental set of power-on self-tests, through to complex, real-time monitoring of the health of the hardware and the software during simulation. The framework devised uses standard tools where appropriate, covering hardware up / down events and capacity information, through to bespoke software developed to provide real-time insight to neural network software operation across multiple levels of abstraction. With this layered management approach, users (or automated agents) have access to results dynamically and are able to make informed decisions on required actions in real-time.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:166301
Created by:
Patterson, James
Created:
9th August, 2012, 09:07:16
Last modified by:
Patterson, James
Last modified:
7th January, 2014, 22:24:44

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.