In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Beam Dynamics Studies of the ISOLDE Post-accelerator for the High Intensity and Energy Upgrade

Fraser, Matthew Alexander

[Thesis]. Manchester, UK: The University of Manchester; 2012.

Access to files

Abstract

The High Intensity and Energy (HIE) project represents a major upgrade of the ISOLDE (On-Line Isotope Mass Separator) nuclear facility at CERN with a mandate to significantly increase the energy, intensity and quality of the radioactive nuclear beams provided to the European nuclear physics community for research at the forefront of topics such as nuclear structure physics and nuclear astrophysics. The HIE-ISOLDE project focuses on the upgrade of the existing Radioactive ion beam EXperiment (REX) post-accelerator with the addition of a 40 MV superconducting linac comprising 32 niobium sputter-coated copper quarter-wave cavities operating at 101.28 MHz and at an accelerating gradient close to 6 MV/m. The energy of post-accelerated radioactive nuclear beams will be increased from the present ceiling of 3 MeV/u to over 10 MeV/u, with full variability in energy, and will permit, amongst others, Coulomb interaction and few-nucleon transfer reactions to be carried out on the full inventory of radionuclides available at ISOLDE. In this thesis the beam dynamics of the superconducting linac is studied with a focus on identifying and mitigating the sources of beam emittance dilution. Highlights include the suppression of a parametric resonance, compensation of the beam-steering effect intrinsic to quarter-wave cavities and a study of the energy change in the cavities well below their geometric velocity using second-order transit-time factors. The studies lead to the specification and tolerances for the linac components. An extensive investigation of REX was also carried out involving rf and beam measurements that facilitated the benchmarking of the beam dynamics codes that were used to design the matching sections and ensure the compatibility of the upgrade. In addition, a solid-state diagnostics system was developed as a tool to aid the quick and eventually automated tuning of the large number of cavities that will accompany the upgrade.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Physics (42 month)
Publication date:
Location:
Manchester, UK
Total pages:
297
Abstract:
The High Intensity and Energy (HIE) project represents a major upgrade of the ISOLDE (On-Line Isotope Mass Separator) nuclear facility at CERN with a mandate to significantly increase the energy, intensity and quality of the radioactive nuclear beams provided to the European nuclear physics community for research at the forefront of topics such as nuclear structure physics and nuclear astrophysics. The HIE-ISOLDE project focuses on the upgrade of the existing Radioactive ion beam EXperiment (REX) post-accelerator with the addition of a 40 MV superconducting linac comprising 32 niobium sputter-coated copper quarter-wave cavities operating at 101.28 MHz and at an accelerating gradient close to 6 MV/m. The energy of post-accelerated radioactive nuclear beams will be increased from the present ceiling of 3 MeV/u to over 10 MeV/u, with full variability in energy, and will permit, amongst others, Coulomb interaction and few-nucleon transfer reactions to be carried out on the full inventory of radionuclides available at ISOLDE. In this thesis the beam dynamics of the superconducting linac is studied with a focus on identifying and mitigating the sources of beam emittance dilution. Highlights include the suppression of a parametric resonance, compensation of the beam-steering effect intrinsic to quarter-wave cavities and a study of the energy change in the cavities well below their geometric velocity using second-order transit-time factors. The studies lead to the specification and tolerances for the linac components. An extensive investigation of REX was also carried out involving rf and beam measurements that facilitated the benchmarking of the beam dynamics codes that were used to design the matching sections and ensure the compatibility of the upgrade. In addition, a solid-state diagnostics system was developed as a tool to aid the quick and eventually automated tuning of the large number of cavities that will accompany the upgrade.
Thesis main supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:155665
Created by:
Fraser, Matthew
Created:
11th February, 2012, 13:57:18
Last modified by:
Fraser, Matthew
Last modified:
16th March, 2012, 11:44:32

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.