In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

A robust k − ε − View the MathML source/k elliptic blending turbulence model applied to near-wall, separated and buoyant flows

Billard, F. Laurence D

International Journal of Heat and Fluid Flow. 2012;33(1):45-58.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Full-text is available externally using the following links:

Abstract

This paper first reconsiders evolution over 20 years of the k − ε − View the MathML source − f strand of eddy-viscosity models, developed since Durbin’s (1991) original proposal for a near-wall eddy viscosity model based on the physics of the full Reynolds stress transport models, but retaining only the wall-normal fluctuating velocity variance, View the MathML source, and its source, f, the redistribution by pressure fluctuations. Added to the classical k − ε (turbulent kinetic energy and dissipation) model, this resulted in three transport equations f or k, epsilon and View the MathML source, and one elliptic equation for f, which accurately reproduced the parabolic decay of View the MathML source/k down to the solid wall without introducing wall-distance or low-Reynolds number related damping functions in the eddy viscosity and k − ε equations. However, most View the MathML source − f variants have suffered from numerical stiffness making them unpractical for industrial or unsteady RANS applications, while the one version available in major commercial codes tends to lead to degraded and sometimes unrealistic solutions. After considering the rationale behind a dozen variants and asymptotic behaviour of the variables in a number of zones (balance of terms in the channel flow viscous sublayer, logarithmic layer, and wake region, homogenous flows and high Reynolds number limits), a new robust version is proposed, which is applied to a number of cases involving flow separation and heat transfer. This k − ε type of model with View the MathML source/k anisotropy blends high Reynolds number and near-wall forms using two dimensionless parameters: the wall-normal anisotropy View the MathML source/k and a dimensionless parameter alpha resulting from an elliptic equation to blend the homogeneous and near-wall limiting expressions of f. The review of variants and asymptotic cases has also led to modifications of the epsilon equation: the second derivative of mean velocity is reintroduced as an extra sink term to retard turbulence growth in the transition layer (i.e. embracing the E term of the Jones and Launder (1972)k − ε model), the homogeneous part of epsilon is now adopted as main transported variable (as it is less sensitive to the Reynolds number effects), and the excessive growth of the turbulent length-scale in the absence of production is corrected (leading to a better distinction between log layer and wake region of a channel flow). For each modification numerical stability implications are carefully considered and, after implementation in an industrial finite-volume code, the final model proved to be significantly more robust than any of the previous variants.

Keyword(s)

RANS Turbulence modelling review Channel flow buffer layer Logarithmic and defect layer Near-wall effects Heat transfer Unstructured finite volume method

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Publication form:
Collaborator(s):
Published date:
Language:
eng
ISSN:
Publisher:
Volume:
33
Issue:
1
Start page:
45
End page:
58
Digital Object Identifier:
10.1016/j.ijheatfluidflow.2011.11.003
Related website(s):
  • Related website http://www.sciencedirect.com/science/article/pii/S0142727X11001512
Access state:
Active

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:151091
Created by:
Laurence, Dominique
Created:
15th January, 2012, 12:50:46
Last modified by:
Clayton, Leanda
Last modified:
26th October, 2015, 12:29:58

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.