In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    A genome scale census of virulence factors in the major mould pathogen of human lungs, Aspergillus fumigatus

    Van Rhijn, Norman

    [Thesis]. Manchester, UK: The University of Manchester; 2019.

    Access to files

    Abstract

    It is estimated that over 150 million individuals suffer from serious fungal infections, resulting in 1.5 million deaths a year. Aspergillus fumigatus is a filamentous saprophytic fungus. However, in hosts with an altered immune system it can cause a variety of diseases. The most serious is invasive aspergillosis, which is estimated to cause over 200,000 life-threatening infections annually with high mortality rates. Fungal diseases are increasing due to the expansion of the immunocompromised cohorts of patients. The current antifungal arsenal is limited and paired with severe sides effects. Additionally, antifungal resistance is on the rise. To develop new antifungals, a mechanistic understanding of A. fumigatus pathogenicity is required. This thesis will address current methodologies available to phenotype large collections of mutants for fitness, infection-related stresses and invasion and will identify transcription factors required for these processes by utilising the genome-wide transcription factor knockout library. Gene expression is tightly regulated at the transcriptional level. This project outlines the importance of transcription factors in azole resistance as a pilot phenotype screening and explores the regulatory mechanism of the multi-drug resistant negative cofactor transcription factors, NctA and NctB. These key regulators control many processes, including ergosterol biosynthesis, a direct target of the azoles. Additionally, the transcription factor knockout library is screened under infection-related stresses, for detachment and cytotoxicity of epithelial cells. This first in field screening identifies previous uncharacterised transcription factors and explores new phenotypes for previous characterised transcription factors. Furthermore, regulators required for environmental adaptation are a distinct set from ones required for epithelial invasion. This provides the first evidence for the accidental pathogen hypothesis. Lastly, the genome editing technique CRISPR-Cas9 is explored to allow marker-free transformation in A. fumigatus. This technique can be used for gene replacement and epitope tagging without the need of labour- and time-intensive construct generation. Furthermore, marker-free transformation will reduce the chance of off-target effects.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Doctor of Philosophy
    Degree programme:
    BBSRC DTP - PhD 4yr (IIRM)
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    242
    Abstract:
    It is estimated that over 150 million individuals suffer from serious fungal infections, resulting in 1.5 million deaths a year. Aspergillus fumigatus is a filamentous saprophytic fungus. However, in hosts with an altered immune system it can cause a variety of diseases. The most serious is invasive aspergillosis, which is estimated to cause over 200,000 life-threatening infections annually with high mortality rates. Fungal diseases are increasing due to the expansion of the immunocompromised cohorts of patients. The current antifungal arsenal is limited and paired with severe sides effects. Additionally, antifungal resistance is on the rise. To develop new antifungals, a mechanistic understanding of A. fumigatus pathogenicity is required. This thesis will address current methodologies available to phenotype large collections of mutants for fitness, infection-related stresses and invasion and will identify transcription factors required for these processes by utilising the genome-wide transcription factor knockout library. Gene expression is tightly regulated at the transcriptional level. This project outlines the importance of transcription factors in azole resistance as a pilot phenotype screening and explores the regulatory mechanism of the multi-drug resistant negative cofactor transcription factors, NctA and NctB. These key regulators control many processes, including ergosterol biosynthesis, a direct target of the azoles. Additionally, the transcription factor knockout library is screened under infection-related stresses, for detachment and cytotoxicity of epithelial cells. This first in field screening identifies previous uncharacterised transcription factors and explores new phenotypes for previous characterised transcription factors. Furthermore, regulators required for environmental adaptation are a distinct set from ones required for epithelial invasion. This provides the first evidence for the accidental pathogen hypothesis. Lastly, the genome editing technique CRISPR-Cas9 is explored to allow marker-free transformation in A. fumigatus. This technique can be used for gene replacement and epitope tagging without the need of labour- and time-intensive construct generation. Furthermore, marker-free transformation will reduce the chance of off-target effects.
    Thesis main supervisor(s):
    Thesis co-supervisor(s):
    Language:
    en

    Institutional metadata

    University researcher(s):
    Academic department(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:322852
    Created by:
    Van Rhijn, Norman
    Created:
    16th December, 2019, 16:12:48
    Last modified by:
    Van Rhijn, Norman
    Last modified:
    4th January, 2021, 11:34:02

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.