In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Efficient numerical evaluation of the scattering of acoustic waves by arrays of cylinders and bodies of revolution of arbitrary cross section

Andrew, Victoria

[Thesis]. Manchester, UK: The University of Manchester; 2015.

Access to files

Abstract

Wave scattering from periodic arrays is ubiquitous in applied mathematics, and has received a great deal of attention over the past century, not least due to the physical significance of understanding the reflection and transmission of plane waves from such arrays in the contexts of electromagnetic waves, acoustics, water waves and elasticity. The aim of the thesis is to develop an accurate and efficient numerical method to solve for the reflection and transmission of an acoustic plane wave from arrays of arbitrary shaped obstacles that have an axis of symmetry aligned in a direction perpendicular to the array. We are particularly interested in the difficult case when the characteristic length scale of the scatterers, and the periodic spacing of the array are of the same order of magnitude as the wavelength of the incident wave.It is shown that the boundary value problem for the infinite array can be reduced to an integral equation over a central representative cell containing a single scatterer, which can then be solved using the boundary element method. Particular attention is paid to the convergence of the resulting periodic Green's function. Using established methods to calculate the reflection and transmission coefficients, we develop a new method to increase the rate of convergence of the periodic Green's function in both two and three dimensions.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Mathematical Sciences
Publication date:
Location:
Manchester, UK
Total pages:
220
Abstract:
Wave scattering from periodic arrays is ubiquitous in applied mathematics, and has received a great deal of attention over the past century, not least due to the physical significance of understanding the reflection and transmission of plane waves from such arrays in the contexts of electromagnetic waves, acoustics, water waves and elasticity. The aim of the thesis is to develop an accurate and efficient numerical method to solve for the reflection and transmission of an acoustic plane wave from arrays of arbitrary shaped obstacles that have an axis of symmetry aligned in a direction perpendicular to the array. We are particularly interested in the difficult case when the characteristic length scale of the scatterers, and the periodic spacing of the array are of the same order of magnitude as the wavelength of the incident wave.It is shown that the boundary value problem for the infinite array can be reduced to an integral equation over a central representative cell containing a single scatterer, which can then be solved using the boundary element method. Particular attention is paid to the convergence of the resulting periodic Green's function. Using established methods to calculate the reflection and transmission coefficients, we develop a new method to increase the rate of convergence of the periodic Green's function in both two and three dimensions.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:260436
Created by:
Andrew, Victoria
Created:
3rd March, 2015, 20:00:18
Last modified by:
Andrew, Victoria
Last modified:
9th September, 2016, 13:00:22

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.