In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

    Computational analysis of transposable element target site preferences in Drosophila melanogaster

    Linheiro, Raquel

    [Thesis]. Manchester, UK: The University of Manchester; 2011.

    Access to files

    Abstract

    Transposable elements (TEs) are mobile DNA sequences that are a source of mutations and can target specific sites in host genome. Understanding the molecular mechanisms of TE target site preferences is a fundamental challenge in functional and evolutionary genomics. Here we used accurately mapped TE insertions in the Drosophila melanogaster genome, from large-scale gene disruption and resequencing projects, to better understand TE insertion site mechanisms. First we test predictions of the palindromic target site model for DNA transposon insertion using artificially generated P-element insertions. We provide evidence that the P-element targets a 14 bp palindromic motif that can be identified at the primary sequence level that differs significantly from random base composition in the D. melanogaster genome. This sequence also predicts local spacing, hotspots and strand orientation of P-element insertions. Next, we combine artificial P-element insertions with data from genome- wide studies on sequence properties of promoter regions, in an attempt to decode the genomic factors associated with P-element promoter targeting. Our results indicate that the P-element insertions are affected by nucleosome positioning and the presence of chromatin marks made by the Polycomb and trithorax protein groups. We provide the first genome-wide study which shows that core promoter architecture and chromatin structure impact P-element target preferences shedding light on the nuclear processes that influence its pattern of TE insertions across the D. melanogaster genome. In an effort to understand the natural insertion preferences of a wide range of TEs, we then used genome resequencing data to identify insertions sites not present in the reference strain. We found that both Illumina and 454 sequencing platforms showed consistent results in terms of target site duplication (TSD) and target site motif (TSM) discovery. We found that TSMs typically extend the TSD and are palindromic for both DNA and LTR elements with a variable center that depends on the length of the TSD. Additionally, we found that TEs from the same subclass present similar TSDs and TSMs. Finally, by correlating results on P-element insertion sites from natural strains with gene disruption experiments, we show that there is an overlap in target site preferences between artificial and natural insertion events and that P-element targeting of promoter regions of genes is a natural characteristic of this element that is influenced by the same features has the artificially generated insertions. Together, the results presented in this thesis provide important new findings about the target preferences of TEs in one of the best-studied and most important model organisms, and provide a platform for understanding target site preferences of TEs in other species using genomic data.

    Additional content not available electronically

    CD-ROM containing supplementary tables and figures submitted in the pocket inside back cover of print version of thesis.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Doctor of Philosophy
    Degree programme:
    PhD Biomolecular Science
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    142
    Abstract:
    Transposable elements (TEs) are mobile DNA sequences that are a source of mutations and can target specific sites in host genome. Understanding the molecular mechanisms of TE target site preferences is a fundamental challenge in functional and evolutionary genomics. Here we used accurately mapped TE insertions in the Drosophila melanogaster genome, from large-scale gene disruption and resequencing projects, to better understand TE insertion site mechanisms. First we test predictions of the palindromic target site model for DNA transposon insertion using artificially generated P-element insertions. We provide evidence that the P-element targets a 14 bp palindromic motif that can be identified at the primary sequence level that differs significantly from random base composition in the D. melanogaster genome. This sequence also predicts local spacing, hotspots and strand orientation of P-element insertions. Next, we combine artificial P-element insertions with data from genome- wide studies on sequence properties of promoter regions, in an attempt to decode the genomic factors associated with P-element promoter targeting. Our results indicate that the P-element insertions are affected by nucleosome positioning and the presence of chromatin marks made by the Polycomb and trithorax protein groups. We provide the first genome-wide study which shows that core promoter architecture and chromatin structure impact P-element target preferences shedding light on the nuclear processes that influence its pattern of TE insertions across the D. melanogaster genome. In an effort to understand the natural insertion preferences of a wide range of TEs, we then used genome resequencing data to identify insertions sites not present in the reference strain. We found that both Illumina and 454 sequencing platforms showed consistent results in terms of target site duplication (TSD) and target site motif (TSM) discovery. We found that TSMs typically extend the TSD and are palindromic for both DNA and LTR elements with a variable center that depends on the length of the TSD. Additionally, we found that TEs from the same subclass present similar TSDs and TSMs. Finally, by correlating results on P-element insertion sites from natural strains with gene disruption experiments, we show that there is an overlap in target site preferences between artificial and natural insertion events and that P-element targeting of promoter regions of genes is a natural characteristic of this element that is influenced by the same features has the artificially generated insertions. Together, the results presented in this thesis provide important new findings about the target preferences of TEs in one of the best-studied and most important model organisms, and provide a platform for understanding target site preferences of TEs in other species using genomic data.
    Additional digital content not deposited electronically:
    CD-ROM containing supplementary tables and figures submitted in the pocket inside back cover of print version of thesis.
    Thesis main supervisor(s):
    Thesis advisor(s):
    Language:
    en

    Institutional metadata

    University researcher(s):
    Academic department(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:124767
    Created by:
    Linheiro, Raquel
    Created:
    21st June, 2011, 16:21:42
    Last modified by:
    Linheiro, Raquel
    Last modified:
    2nd September, 2015, 12:45:02

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.