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Abstract
The study of gene expression is a major focus in biological

research and is recognised to be critical for our understanding of

physiological and pathophysiological processes. Methods to

study gene expression range from in vitro biochemical assays

through cultured cells and tissue biopsies towhole organisms. In

the early stages of project development, considerations about

which model system to use should be addressed and may

influence future experimental procedures. The aim of this

review is to briefly describe advantages and disadvantages of the

existing techniques available to studyeukaryote gene expression
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in vitro, including the mechanism of transgene integration

(transient or stable), the different transgenesis systems available,

including plasmids, viruses and targeted integration and

knockin approaches, and paying particular attention to

expression systems such as bacterial artificial chromosomes

and episomal vectors that offer a number of advantages and are

increasing in popularity. We also discuss novel approaches that

combine some of the above techniques, generating increasingly

complex but physiologically accurate expression systems.
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Gene expression

Gene expression and function is regulated at a number of

levels: 1) from an initial stimulus or signal (which can be either

intracellular or extracellular, leading to activation of a

signalling pathway); 2) alterations in the chromatin architec-

ture of the DNA and the promoter sequences; 3) transcription

and mRNA production (splicing, transport, stability and

degradation); and 4) translation and the formation of the

protein product (which may be subjected to post-translational

modification). This review will focus on the ectopic

expression systems that are currently available to utilise

transgenesis and to study the regulation of gene transcription.
Endogenous versus ectopic gene expression

Specific RNA production by cells has long been held as a direct

indicator of gene expression. Techniques such as northern

blotting (Alwine et al. 1977) and RNAse protection assays

(Sambrook et al. 1989) can be used to assay RNA levels within a

population of cells, and nuclear run-on assays (Gariglio et al.

1981, Brown et al. 1984) have been used to measure

transcription initiation. Later, reverse transcription (transcrip-

tase)-PCR (RT-PCR), and more quantitative variants (real-

time PCR and quantitative PCR) have been developed to
analyse RNA expression. Each of these techniques relies on

endogenous gene expression within the cell, and has their own

advantages and disadvantages. However, commonly no suitable

cell line exists that expresses the gene-of-interest. Further-

more, these assays measure gene expression by extracting RNA

from a population of cells, thus averaging gene expression

across an entire population. Single-cell analysis using sophis-

ticated microscopy has revealed startling heterogeneity of gene

transcription between cells even within clonal populations

(Takasuka et al. 1998, Ashall et al. 2009, Eldar & Elowitz 2010).

Analysis of gene expression at the single-cell level using

microscopy requires the addition of an appropriate marker

protein or dye to gene expression vectors in order to visualise

these effects. This is most commonly assessed using reporter

systems that can be ectopically expressed in the cell.

At the beginning of any project, critical decisions should be

made to define the methodological approaches to be pursued.

Considerations should include

† The cell line(s) to be used.

† The reporter gene(s) to be used (colourimetric enzymes,

luminescent enzymes, fluorescent proteins, etc.).

† Whether an increase in the copy number of a gene may

lead to aberrant effects (e.g. gene overexpression,

perturbation of feedback mechanisms, etc.).
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† What kind of delivery system would be most appropriate

(plasmid, viral, episomal, stably integrated or transient

expression).

These above considerations are not mutually exclusive and

can often overlap. In this review, we shall identify the

individual problems and advantages inherent to a range of

experimental approaches used to analyse transgenesis and

ectopic gene expression.
Choosing a suitable cell model system

The choice of cell line(s) should be determined early in any

project, initially by analysing expression of the gene-

of-interest in a number of relevant cell lines. For many

genes, particularly endocrine genes that tend to be tissue- and

cell-specific in their expression pattern, it is common to fail to

identify a cell type suitable for gene expression analyses. For

example, many endocrine genes are specifically restricted in

expression to the pituitary, but their study is hampered by the

absence of human pituitary-derived cell lines, and primary

tissues rarely become available due to a lack of pituitary

surgical intervention.

In the absence of human-derived cell lines for a specific

investigation several alternative approaches to study gene

regulation have been used. These include transient expression

of specific transcription factors in HeLa cells (Bodner & Karin

1987), use of human cell lines isolated from different tissue

origin that unusually expresses gene-of-interest (Gellersen et al.

1995) or the use of cells derived from the appropriate tissue, but

from an alternative species, such as rodents (Ben-Jonathan et al.

2008). However, these approaches are not without potential

criticism. It is difficult to account for cell-specific effects either

lost or gained by using cells of different origins. Regulation of a

specific gene may differ from species to species. For example,

prolactin, which is expressed chiefly in pituitary lactotroph

cells, has extensive differences in gene organisation and

hormone function between humans and rodents (Gerlo et al.

2006, Ben-Jonathan et al. 2008, Bernichtein et al. 2010). In

these circumstances, ectopic expression of human gene–

promoter constructs in rat pituitary cells is a common approach

for assessing the regulation of the human prolactin gene (e.g.

Adamson et al. 2008, Semprini et al. 2009).

Additionally, cell lines have inconsistencies and limitations

when compared with primary tissue. For example, many

rodent pituitary cell lines lack functional dopamine receptors,

and as a consequence are unable to respond to one of the most

important in vivo pituitary regulatory signals. Although a

lengthy and time-consuming process, it is possible to

remedy this issue by generating stable cell lines expressing

physiological levels of the two dopamine receptor variants

resulting in a more physiologically relevant model system

(An et al. 2003).

Often, compromises need to be made when selecting an

appropriate cell line. Cell lines differ according to a number of

characteristics including their growth and proliferation rates,
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whether they are adherent, easily transfected or transduced

and whether aberrant gene expression or chromosomal

aneuploidy occurs. Single-cell time-lapse microscopy experi-

ments are far easier to analyse if cells remain relatively static.

Thus, on occasions the cell line selected may not necessarily

be the most physiologically relevant and the compromises that

are made need to be acknowledged.
Reporter genes

Studies of mammalian gene expression have relied heavily on

the use of reporter genes that encode a measurable exogenous

protein product that can give a quantitative index of the level

of gene activation gene when linked to a given promoter. The

library of reporter genes available has significantly expanded

over the years, and includes enzymes such as b-galactosidase,

which generate a colourimetric product or chloramphenicol

acetyl transferase, which catalyses the synthesis of radio-

labelled (and latterly fluorescent) product, to enzymes such as

luciferase that catalyses the production of light from the

substrate luciferin to give a measure of gene activation

(Frawley et al. 1994, White et al. 1995). Luciferase can be used

to analyse the induction of gene expression across a

population of cells by assaying the whole cell lysate, and

also to dynamically analyse gene expression in a single cell

through microscopy, measuring the photon output from a

single cell (Harper et al. 2010).

Also available are fluorescent proteins such as green

fluorescent protein, originally derived from bioluminescent

marine species (Tsien 1998, Shaner et al. 2007). Fluorescent

proteins have revolutionised not only gene expression studies

but, through fusion to the coding sequence of the gene-

of-interest, have enabled visualisation of the behaviour of the

protein within the cell over time (Rafalska-Metcalf & Janicki

2007, Spiller et al. 2010).

Currently, a multitude of vectors that express differently

coloured fluorescent proteins are available; most are altered

version of the natural DNA sequence (e.g. cherry, tomato;

Chudakov et al. 2010). Fluorescent proteins display different

properties, including variable brightness, ability to form

monomers or multimers, photo-switching, photo-activation,

photo-conversion, and pH and temperature sensitivity

(Giepmans et al. 2006, Chudakov et al. 2010). Further

modifications such as addition of PEST or CL-1 sequences

(Rogers et al. 1986) shorten intracellular half-lives of

fluorescent proteins to allow gene expression to be monitored

more accurately. Increasing our understanding of dynamic and

stochastic gene expression requires the facility to monitor rapid

changes in the transcriptional rate of the gene-of-interest

(Raser & O’Shea 2004). Accurate quantitative data for reporter

gene synthesis and degradation is essential in order to

incorporate mathematical modelling and systems biology

approaches into studies (Finkenstädt et al. 2008). Thus, reporter

gene development is an ongoing process and is important to

ensure that reporter molecules can be selected and tailored to

meet the requirements of specific gene expression studies.
www.endocrinology-journals.org



Novel approaches to in vitro transgenesis . A D ADAMSON and others 195
Driving gene expression

Many studies designed to investigate protein behaviour within

a cell utilise expression vectors with gene transcription driven

by constitutively active promoters with a broad range of

activity in most cells, such as the viral cytomegalovirus, Rous

sarcoma virus and Simian virus 40 (SV40) promoters. The

constitutive transcription from these promoters is by way of a

concatenation of numerous different response elements and is

suitable wherever the constant production of protein within a

cell is necessary. However, these promoters do not express the

protein appropriately with regard to the onset of transcription,

induction by hormones or drugs and regulation by other

factors that may constitute feedback loops. Furthermore,

when some genes are expressed at incorrect levels it can lead to

aberrant activation or repression of other genes. The use of the

relevant promoter of the gene-of-interest greatly enhances the

suitability of data generated. Promoter-mediated regulation is

highly specific to each individual gene and can often involve

multiple transcription factor binding sites found in a multitude

of different locations relative to transcription start site.

Transcription factor binding sites tend to be primarily within

the proximal region of the gene for most 5 0 sequences, but

enhancers and locus control regions can be many kilobases

away, in both upstream and downstream and even intronic

sequences (Carroll et al. 2005, West & Fraser 2005). An

in-depth knowledge of promoter structure can greatly

influence the choice of expression system; this will be

discussed in further detail later in this review.
Gene delivery: mechanism of transgenesis

Before analysis of protein or gene expression can be analysed,

the molecular ectopic expression systems must first be

introduced to the cell. This can be achieved through a

variety of biological, chemical or physical techniques

including, for example, viral transduction, cationic lipid

delivery or electroporation (Kim & Eberwine 2010) but is

ultimately determined by the cellular model system(s) chosen.

Many different expression systems are available, but all can be

loosely categorised as either purified circular bacterial DNA

structures (i.e. plasmids, episomal vectors and larger structures

such as cosmids and bacterial artificial chromosomes (BACs);

see later) or viral vectors.

Plasmids, small circular bacterial DNA structures, are

perhaps the most commonly used ectopic expression system.

They are easy to purify from bacterial cultures by alkaline lysis,

and can be readily modified through well-characterised

molecular cloning techniques. Plasmids can be introduced

into cells using chemical transfection (including a wide variety

of specialist compounds that differ markedly in efficiency,

cell-type specificity and cost) and/or physical transfection

through direct manipulation of the cells (e.g. electroporation

and microinjection among other techniques). BACs are

similar in many ways to other bacterial vectors in their
www.endocrinology-journals.org
propagation and purification and have several advantages

when compared with plasmids, but modification and

transfection are more challenging than using plasmids

(see later).

Viral transduction approaches exploit the natural ability of

viruses to deliver genetic material into infected cells. A

number of viral-based vectors are commonly used to

ectopically express reporter constructs, including adenovirus

(AV), adeno-associated virus (AAV), herpes simplex virus

(HSV) and retroviruses (principally lentiviruses (LV)). Each

viral vector has a number of advantages and disadvantages and

this has been reviewed extensively elsewhere (Verma &

Weitzman 2005, Osten et al. 2007, Howarth et al. 2010). In this

review, we present a brief summary of the general properties of

viral transduction and summarise the characteristics and

properties of commonly used viral vectors (Table 1).

Standard molecular cloning techniques are first used to

generate a gene-of-interest-containing vector in vitro in

suitable viral construct(s) containing genetic information

critical for the formation of the virus. Next, after the infection

of a host cell, facilitating replication of the viral genome within

the host cell environment, and formation and propagation of

new virions, the cells are lysed or the virus-containing

supernatant is removed, centrifuged and added to the target

cell line to infect and transduce the target cells. The viral titre

or yield obtained from the host cell differs according to the

virus used and some viruses, such as AAV, often require helper

virus expression to increase the titre. Thus, preparation for

performing transgenesis is lengthier and more labour intensive

compared with using a simple bacterial vector construct.

Furthermore, viruses vary in their ability to infect different

cell types, but usually target both dividing and non-dividing

cells (Pfeifer 2004). Viruses often have limited cloning

capacity (4–7 kb), with the exception of HSV, which can

hold very large (O100 kb) DNA inserts (Cuchet et al. 2007).

One key advantage of using viruses (with the exception of

AVs; see Table 1) is the relative ease of generating cells with an

integrated transgene without the need for selection markers

and clonal selection strategies.
Gene delivery for gene transcription analysis: transient or
stable expression

Transgenes can be either transiently expressed for a period of

hours to days or stably integrated into the target cell genome

through appropriate transformation techniques and/or the

use of selection markers. Stable integration of transgenes can

be a time consuming and laborious process, requiring weeks

to months to generate suitable clonal cell populations

depending on the transgenesis method used, whereas transient

expression can yield data in a relatively short time frame (for a

comparison of the different transgenesis methods and their

transient and stable effects see Fig. 1).

Many authors have reported discrepancies between

these expression systems. For example, the MMTV promoter,

a sequence extensively used in transcriptional studies, varies
Journal of Endocrinology (2011) 208, 193–206
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greatly in activation by different transcription factors depend-

ing on transient or stable transfection (Archer et al. 1992, 1994).

This was shown to be due to the incorrect nucleosome

positioning of the DNA transiently transfected into cells

(Hebbar & Archer 2008). It has been demonstrated that

transiently transfected DNA often fails to efficiently form

the appropriate chromatin structure and, in some cases,

regulation of these transgenes may not accurately represent

the in vivo behaviour of the promoter-of-interest. Some

strategies exist to circumvent this issue by use of cell lines

expressing SV40 Tantigen and integrating the SV40 origin of

replication into the vector. Using this approach, plasmid DNA

is assembled into nucleosomes that mimic the endogenous

gene, and the resulting mini-chromosomes are more accu-

rately replicated and transcribed by the cellular machinery

(Xu & Cook 2008). However, there are likely to be multiple

copies of the transgene, which may not faithfully reproduce

expression profiles.

Additionally, transient transfection efficiency also can differ

extensively between experiments. A common practice is to

co-transfect control reporter plasmids, to help determine the

level of transfection between samples, although some authors

report that regulation of these vectors themselves may lead to

systematic error in the experimental data (Huszar et al. 2001).

Furthermore, Ishikawa et al. (2004) have reported that

co-transfected plasmids have the potential to form con-

catamers, through non-homologous end-joining ligation,

leading to further problems in interpretation of the results.

Despite the problems associated with transient transfection,

the technique remains a quick and simple method for analysis

of gene transcription, particularly when screening a number

of promoter–reporter constructs (such as in promoter deletion

and mutagenesis assays). While stable cell lines are more likely

to reflect the true nature of molecular interactions in gene

regulation, especially with regard to chromatin and transcrip-

tion dynamics, the generation of stable cell lines is time

consuming and laborious and clones need to be well

characterised. Furthermore, clones may suffer from ‘site of

integration effects’ and copy number abnormalities (see

below), and it may be advisable to experiment with a number

of different clones, or a mixed population of clones, to ensure

the activation of the target promoter is consistent throughout,

but overall stable clones do provide a more consistent and

well-characterised cell model system.
Increasing gene copy number

The introduction of reporter transgene(s) usually results (with

the exception of gene knockins; see later) in altered gene copy

number within a cell, the effects of which are understudied

and, therefore, poorly understood. The most thorough analysis

of how increasing the gene copy number affects expression

in vitro has come from studies in yeast (Guan et al. 2007, Presser

et al. 2008) andDrosophila (Sabl & Henikoff 1996). With regard

to mammalian gene expression, transcriptomic data suggest

that the number of transcripts from a gene roughly increases
www.endocrinology-journals.org



Stable

Transient

Plasmids Adenovirus Bacterial
artificial

chromosomes

Episomal
vectors

Knockin/
targeted

integration

N/A

Usually lack
replication
machinery

Lentivirus (LV)/
adeno associated virus (AAV)/

herpes simplex virus (HSV)

Transduction usually
results in long term,
stable expression

LV - integration

AAV and HSV -
non-integrating

Figure 1 Transient versus stable transfection. Multiple methods for achieving transgenesis are shown. Column 1 – plasmids. Multiple copies
found transiently, and multiple integration sites upon stable transfection. Column 2 – lentivirus (LV), adeno-associated virus (AAV) and
herpes simplex virus (HSV). Transduction is long term and not of a transient nature. LV integrates with several copies; AAV and HSV are both
non-integrative. Column 3 – adenovirus. Virus usually lacks replication ability, thus only transient transduction, at multiple copies, is
achieved. Column 4 – bacterial artificial chromosomes (BACs). Transient expression results in low copy number within the nucleus, stable
expression is integrative at a low copy number also. Column 5 – episomal vectors. Transient expression of several copies, vector associates
with chromosome and nuclear matrix. For stable expression, the vector continues to associate with the chromosomal regions and nuclear
matrix but does not integrate. Column 6 – gene knockin or targeted integration. These are stable only approaches and involve targeting
either the endogenous gene locus or a predetermined locus.

Novel approaches to in vitro transgenesis . A D ADAMSON and others 197
in proportion to gene copy number (Zhang & Oliver 2007).

It is therefore possible that ectopic transgenesis approaches that

result in increased gene copy number within the cell may

perturb the biological system. It is relevant to mention that

some studies adopting a mathematical approach have

suggested that increased gene dose can be compensated for

through proportional effects on feedback loops (Mileyko &

Weitz 2010). Based on the above observations it is likely that

the effect of copy number is gene and system specific. Thus,

the effect of increasing transgene copy number remains an

unknown quantity in most systems and needs to be acknowl-

edged as different ectopic expression systems vary in the

number of transgene copies they introduce to the cell. It

should also be noted that due to epigenetic silencing of

non-mammalian DNA (see ‘Integration effects’ and Fig. 2B)

that the effective copy number of a clone may reduce over time

with increasing generation number ( Jenke et al. 2004,

Mutskov & Felsenfeld 2004; Table 2).
Integration effects

The site(s) within the genome at which an integrated reporter

gene resides can have a profound influence on gene expression,

either of the transgene itself or surrounding genomic regions.

Integration of a transgene into dense, inactive heterochromatin

regions can result in unstable position effect variation, resulting

in little or no transgene expression (Fig. 2A; Dillon &

Festenstein 2002). It is also possible that gradual silencing of the

transgene can occur over time as heterochromatin can spread

into the majority of integrated genes, especially when the
www.endocrinology-journals.org
exogenous DNA contains bacterial DNA sequences (Fig. 2B;

Jenke et al. 2004, Mutskov & Felsenfeld 2004). Integration of

exogenous DNA may also disrupt important endogenous

sequences including genes and regulatory elements, leading to

unanticipated changes in the cell phenotype (insertional

mutagenesis; Fig. 2C).

Integration within the ‘range’ of endogenous enhancers/

promoters may lead to overexpression of the transgene

(Fig. 2D). Given that enhancers and locus control regions can

influence genes found several kilobases away this ‘range’ is

potentially quite large. The site of integration can be critical

for correct control of gene expression and there are a number

of different methods to limit these effects, including the

addition of insulator elements to flank the transgene and its

promoter (Fig. 3A, upper panel; Bell et al. 2001). Insulator

elements are natural genetic sequences that establish

independent domains of transcriptional activity within the

eukaryotic genome and have distinct roles in establishing gene

expression; acting as barrier elements to prevent the spread of

heterochromatin and blocking enhancer–promoter

interactions (Fig. 3A, lower panel; Kuhn & Geyer 2003,

Recillas-Targa et al. 2004). Thus, while insulators would not

protect against insertional mutagenesis that may lead to

aberrant gene expression of non-transgenes (Fig. 2C),

flanking transgene with insulators confers position indepen-

dence, allowing self-regulation, appropriate chromatin

organisation and prevents transgene silencing by the spread

of heterochromatin. Insulators have proved highly effective

both in vitro (Anastassiadis et al. 2002, Qu et al. 2004) and also

when used in vivo in the development of gene therapy

approaches (Gallagher et al. 2009).
Journal of Endocrinology (2011) 208, 193–206
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Targeted integration

Integration of transgenes into pre-determined endogenous

genomic loci, and subsequent selection by an appropriate

marker, known as recombinase-mediated cassette exchange

(RMCE; Schlake & Bode 1994), is a method for generating

stable cell lines and limiting site of integration effects

(Fig. 3B). In this approach, a pool of stable cell lines is

created that have recombinase target sites (including Flp

recombination target (FRT), locus of X-over P1 (LoxP), and

more recently phiC31 integrase sites; Oumard et al. 2006),

integrated into the genome along with a selection marker.

Screening of these founder clones can then identify the

genomic position of these recombinase sites, and suitable

clones can be selected and expanded. Criteria for clones

include integration of a single copy, in a genomic locus of

high transcriptional potential and a lack of insertional

mutagenesis (Qiao et al. 2009). These clones can then be

subjected to transfection with an expression vector carrying

the gene-of-interest, and a complementary recombinase site.

Transient expression of the relevant recombinase facilitates

integration of the gene-of-interest into the pre-determined

genomic loci (Thomas et al. 2004). This process can be

engineered so as not to leave a selection marker or extensive

prokaryotic DNA, reducing the likelihood of epigenetic

silencing (Oumard et al. 2006).
Journal of Endocrinology (2011) 208, 193–206
A drawback to this approach is the random integration of

the initial recombinase target site and clone screening, which

may be time consuming and subject to chance. Once a suitable

line is identified, however, it allows great flexibility and rapid

and efficient generation of copy number-controlled stable cell

lines in the future, especially useful if a number of constructs

are to be screened (e.g. mutagenesis and promoter length

studies). There are many easy-to-use commercially available

kits for this process, as well as pre-generated recombinase

target site cell lines, negating the first, lengthy step.

RMCE has numerous forms, each with their own

advantages and disadvantages and varying levels of complexity

(e.g. FRT site variants allowing for RMCE multiplexing;

Bode et al. 1992, Turan et al. 2010) and has been expertly

reviewed elsewhere (Oumard et al. 2006, Wirth et al. 2007).

These methods provide high flexibility in experimental

approach, but may require extensive molecular engineering

contributing to generation time of the cellular model

system, and concessions on the background cell line may

have to be made.
Gene ‘knockin’

A gene ‘knockin’ can be specifically targeted to the

endogenous gene locus to homologously recombine in
www.endocrinology-journals.org



Ta
b
le

2
C

o
m

p
ar

is
o
n

o
f

va
ri

o
u
s

ec
to

p
ic

ex
p
re

ss
io

n
sy

st
em

s

Ec
to
p
ic

ex
p
re
ss
io
n

sy
st
em

C
o
n
st
ru
ct

ge
n
er
at
io
n
ti
m
e

C
o
n
st
ru
ct

ge
n
er
at
io
n

d
if
fi
cu

lt
y

Tr
an

sf
ec
ti
o
n

ef
fi
ci
en

cy

P
ro
m
o
te
r

fo
r
ge
n
e

ex
p
re
ss
io
n

Tr
an

sc
ri
p
t

C
o
p
y
n
u
m
b
er

St
ab

le
ce

ll

ge
n
er
at
io
n

G
en

o
m
ic

in
se
rt
io
n
si
te

In
te
gr
at
io
n

ef
fe
ct
s

Ta
rg
et

ce
ll

li
n
e
ch

o
ic
e

P
la

sm
id

s
Sh

o
rt

(w
ee

ks
)

Lo
w

H
ig

h
Sh

o
rt

(m
ax

w
5

kb
)

D
ir

ec
t

fr
o
m

cD
N

A
a

H
ig

h
W

ee
ks

-m
o
n
th

s
N

o
t

p
re

d
ic

ta
b
le

H
ig

h
es

t

li
ke

li
h
o
o
d

P
ra

ct
ic

al
ly

u
n
li

m
it

ed

V
ir

al
ap

p
ro

ac
h

b
Sh

o
rt

–m
ed

iu
m

(w
ee

ks
–m

o
n
th

s)

M
ed

iu
m

U
su

al
ly

h
ig

h
Sh

o
rt

(m
ax

w
5

kb
),

ex
ce

p
t

H
SV

(O
3
0

kb
)

D
ir

ec
t

fr
o
m

cD
N

A
a

ex
ce

p
t

H
SV

V
ar

ia
b
le

W
ee

ks
–m

o
n
th

s
Se

e
Ta

b
le

1
Se

e
Ta

b
le

1
Se

e
Ta

b
le

1

B
A

C
s

M
ed

iu
m

–l
o
n
g

(w
ee

ks
–m

o
n
th

s)

M
ed

iu
m

–h
ig

h
Lo

w
La

rg
e

ge
n
o
m

ic

re
gi

o
n

(1
0
0
–3

0
0

kb
)

Fu
ll

Lo
w

M
o
n
th

sc
N

o
t

p
re

d
ic

ta
b
le

Lo
w

ri
sk

P
ra

ct
ic

al
ly

u
n
li

m
it

ed
d

Ep
is

o
m

al

co
n
st

ru
ct

s

Sh
o
rt

(w
ee

ks
)

Lo
w

–m
ed

iu
m

H
ig

h
Sh

o
rt

(m
ax

w
5

kb
)e

D
ir

ec
t

fr
o
m

cD
N

A
a
,e

H
ig

h
e

W
ee

ks
–m

o
n
th

s

b
u
t

h
ig

h

ef
fi
ci

en
cy

N
o

in
se

rt
io

n

in
ge

n
o
m

e

N
o
n
e

P
ra

ct
ic

al
ly

u
n
li

m
it

ed

Ta
rg

et
ed

in
te

gr
at

io
n

V
ar

ia
b
le

f
V

ar
ia

b
le

f
H

ig
h

Sh
o
rt

(m
ax

w
5

kb
)g

D
ir

ec
t

fr
o
m

cD
N

A
a
,g

C
o
n
tr

o
ll

ed

an
d

lo
w

R
ap

id
af

te
r

su
it

ab
le

fo
u
n
d
er

cl
o
n
e

id
en

ti
fi
ed

P
re

-d
et

er
m

in
ed

in
fo

u
n
d
er

cl
o
n
ee

M
in

im
is

ed
Li

m
it

ed

G
en

e
kn

o
ck

in
M

ed
iu

m
(O

1

co
n
st

ru
ct

m
ay

b
e

re
q
u
ir

ed
)

H
ig

h
(c

o
m

p
le

x

ta
rg

et
in

g

sy
st

em
s

re
q
u
ir

ed
)

N
/A

,
b
u
t

h
o
m

o
lo

-

go
u
s

re
co

m
b
i-

n
at

io
n

h
ig

h
ly

d
ep

en
d
en

t
o
n

ce
ll

li
n
e

Fu
ll

en
d
o
ge

n
o
u
s

re
gu

la
to

ry

se
q
u
en

ce
s

Fu
ll

Eq
u
iv

al
en

t
to

en
d
o
ge

n
o
u
s

Si
n
gl

e
al

le
le

:

m
o
n
th

s;
b
o
th

al
le

le
s:

m
o
n
th

–y
ea

rs

P
re

-d
et

er
m

in
ed

N
o
n
e

Ex
tr

em
el

y

li
m

it
ed

a
Ex

ce
p
t

fo
r

n
at

u
ra

ll
y

sh
o
rt

ge
n
es

,
sm

al
l

en
o
u
gh

fo
r

th
e

en
ti

re
se

q
u
en

ce
w

it
h

in
tr

o
n
s,

ex
o
n
s

an
d

U
T
R

s
to

fi
t

in
to

sm
al

le
r

co
n
st

ru
ct

s.
b
G

en
er

al
p
ro

p
er

ti
es

o
f

vi
ru

se
s

d
es

cr
ib

ed
,

m
o
re

d
et

ai
l

fo
u
n
d

in
Ta

b
le

1
.

c
Fu

rt
h
er

m
o
d
ifi

ca
ti

o
n
s

o
f

th
e

co
n
st

ru
ct

,
su

ch
as

re
tr

o
fi
tt

in
g

se
le

ct
io

n
m

ar
ke

rs
,

m
ay

b
e

n
ec

es
sa

ry
,

in
cr

ea
si

n
g

ti
m

e
re

q
u
ir

ed
.

d
B

A
C

tr
an

sf
ec

ti
o
n

is
le

ss
ef

fi
ci

en
t

th
an

tr
an

sf
ec

ti
o
n

o
f

sm
al

le
r

co
n
st

ru
ct

s.
e
Se

e
‘C

o
m

b
in

in
g

ap
p
ro

ac
h
es

’.
f C

an
b
e

ve
ry

si
m

p
le

(e
.g

.
u
si

n
g

co
m

m
er

ci
al

sy
st

em
)

o
r

ve
ry

co
m

p
le

x
d
ep

en
d
in

g
o
n

p
ro

je
ct

.
g
To

o
u
r

kn
o
w

le
d
ge

ta
rg

et
ed

in
se

rt
io

n
o
f

la
rg

e
co

n
st

ru
ct

s
h
as

n
o
t

b
ee

n
at

te
m

p
te

d
.

Novel approaches to in vitro transgenesis . A D ADAMSON and others 199

www.endocrinology-journals.org Journal of Endocrinology (2011) 208, 193–206



Enhancer Insulator

A

ED

M
e

M
e

C

Or

Knockin reporter gene

Knockin fusion protein reporter

Enhancer Insulator S/MAR

>25 kb >25 kb

B

Integration of recombinase
target site (e.g. FRT) into
determined genomic loci

Recombinase mediated
cassette exchange

Figure 3 Methods to minimise site of integration effects. Black lines/boxes/arrows represent endogenous DNA, red lines/boxes/arrows
represent transgene DNA. (A) Flanking transgene DNA with insulator sequences. If the transgene integrates within the range of endogenous
transcriptional regulatory elements, insulators can block their effects (upper panel). Insulators can also halt the spread of heterochromatic and
gene silencing (lower panel). (B) Targeted integration. Following determination of recombinase target integration site, the gene-of-interest can
be specifically targeted to a favourable locus. (C) Knockin. Owing to the targeting of the endogenous gene locus no site of the integration
effects will be observed, either when a reporter is knocked in to replace the endogenous gene (upper panel), or when a fusion protein knockin
is created (lower panel). (D) Use of large constructs. The extended flanking sequences found in BACs leave the transgene itself out of range of
enhancers and insulators. (E) Use of episomal vectors. Episomal vectors associate with the nuclear matrix close to the chromatin through the
scaffold/matrix attachment region (S/MAR) but do not integrate.

A D ADAMSON and others . Novel approaches to in vitro transgenesis200
the reporter construct of choice, either as direct readout of

promoter activity (by replacing the gene itself with a reporter

gene; e.g. Ishikawa et al. 2006) or combined with the

endogenous gene as a fusion reporter (e.g. De Lorenzi et al.

2009). The advantage of this approach is the targeting of

endogenous genes, resulting in no variation in gene copy

number or site of integration effects, as well as the expression

of the full gene (introns, exons, untranslated region), which

contribute to gene regulation. This approach is commonly

used in embryonic stem (ES) cells for the generation of

knockin/reporter animals and in Saccharomyces cerevisiae in

which the high homologous recombination rate in yeast has

been exploited to generate epitope tags on a number of yeast

genes and proteins (Gavin et al. 2006). Gene knockin

approaches have also been applied to somatic human cell

lines for in vitro gene analysis (Hendrickson 2008, Kim et al.

2008). However, homologous recombination in mammalian

cells is a highly inefficient process (Yáñez & Porter 1999) and,

in particular, human somatic cell lines have been shown to

display an intrinsically low rate of homologous recombination

(Sedivy et al. 1999, Hendrickson 2008). Lengthy homology

arms (at least 2–3 kb) are necessary to increase recombination

efficiency resulting in complex molecular construction.
Journal of Endocrinology (2011) 208, 193–206
Developments increasing the efficacy of this approach in

somatic cells have proved invaluable. It has been shown that

the delivery method of the recombination cassette DNA is

critical. Hirata & Russell (2000) used a recombinant AAV

approach that greatly increased recombination efficiency

when compared with transfected plasmids (Topaloglu et al.

2005, Rago et al. 2007). However, again the cell model system

was essential, as there was a huge variation in the efficiency

of transfection and recombination between the cell types

(Rago et al. 2007).

Furthermore, in addition to modifying the endogenous

locus, the exogenous DNA can be randomly integrated at

multiple, non-targeted sites, leading to both site of integration

effects and an increase in transgene copy number. Sophis-

ticated molecular approaches that increase targeting efficiency

have been developed, including promoter traps where the

transgene recombination cassette contains not only the

desired modification and a selection marker flanked with

loxP sites (or other suitable recombinase target) but also a

splice acceptor immediately upstream of an internal ribosome

entry site antibiotic-resistance gene (Topaloglu et al. 2005,

Rago et al. 2007). The splice acceptor initiates transcription of

the selection marker driven by the endogenous promoter of
www.endocrinology-journals.org
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the gene, thus selection marker expression only occurs when

correct DNA integration is achieved. The marker can then be

removed through transient expression of the necessary

recombinase (the proximity of a constitutive promoter-driven

marker gene expression could conceivably have indirect

effects on the regulation of the endogenous gene; Hasegawa &

Nakatsuji 2002). However, it is important to note that the

endogenous target gene must be basally expressed at a

sufficient level in order to drive selection marker expression,

potentially limiting the usefulness of this approach for some

genes and cell types.

Creating knockin somatic cell lines is a lengthy procedure,

requiring generation of complex targeting cassettes, followed

by delivery of the cassette via a suitable method to a limited

number of cell lines at low efficiency. Following this, stable

clones need to be selected and carefully characterised.

However, the lack of copy number alterations and the site

of integration effects (Figs 1 and 3C) result in an excellent

model system for in vitro molecular tagging gene expression

analysis (Kim et al. 2008).
Large constructs

Another approach to minimise site of integration effects is to

use large constructs such as yeast, bacterial or P1 artificial

chromosomes (YACs, BACs and PACs respectively). YACs

were originally developed for cloning large genomic

fragments into yeast cells and BACs and PACs were developed

for cloning large genomic fragments into Escherichia coli. YACs

can contain huge, megabase-sized DNA inserts (compared to

100–350 kb inserts of BACs and PACs) but YAC DNA is

notoriously difficult to purify. YACs exist in multiple copies

in bacteria that cause chimaerism, and random recombination

events occur frequently (Copeland et al. 2001). YAC

manipulation by recombination is an even lengthier process

than that with BACs/PACs; thus, YACs are not as popular a

model system as their bacterial counterparts for transgene

vector construction.

BACs can be considered large plasmids, propagated in

bacteria and consisting of a small amount of bacterial DNA

derived from the single copy F-plasmid (Shizuya et al. 1992)

containing prokaryotic genes essential for replication,

partition and selection, and a large genomic fragment of

mammalian DNA (100–350 kb). These vectors were a useful

tool in the genome-sequencing projects (Lander et al. 2001,

Venter et al. 2001) and as a result most regions of the human

genome (as well as genomes of several other species) are

available as BACs. With the development of homologous

recombination systems in E. coli (Copeland et al. 2001), BACs

can be genetically engineered to express reporter genes, or to

place a transgene under the control of inducible or

conditional promoters making them an increasingly popular

method of gene expression in the mammalian cells. The sheer

size of BAC DNA vectors helps to minimise the site of

integration effects (Fig. 3D).
www.endocrinology-journals.org
In addition to minimising the integration effects, BACs

have a number of other advantages. Often, proximal upstream

promoter elements are used to drive gene expression and

small constructs such as plasmids and viruses may have up to

5 kb of DNA immediately flanking the gene-of-interest to

drive reporter gene expression. However, transcriptional

regulatory mechanisms are highly gene specific and proximal-

flanking DNA is often insufficient to drive transgene

expression (e.g. human GH; Palmiter & Brinster 1986), or

at least does not reflect the full promoter behaviour for gene

activation (Semprini et al. 2009). In such cases, the use of

larger constructs has shown the necessity of surrounding

genomic sequences, containing enhancers and locus control

regions, resulting in a more accurate representation of in vivo

gene expression (e.g. Townes et al. 1985, Jones et al. 1995).

Using a larger construct that contains a sizeable fragment of

the human genome surrounding the gene-of-interest will

therefore increase the probability that any such regulatory

elements are included. Moreover, bioinformatic programmes

are increasing in sophistication and regulatory regions such as

enhancers and locus control regions can be predicted from the

genomic sequence. This process can either be based on the

identification of predicted or probable binding sites for

specific transcription factors, or alternatively through the

analysis of conserved non-coding DNA sequences (Sakabe &

Nobrega 2010). Combining bioinformatic approaches with

the selection of BAC clones allows the inclusion or exclusion

of potential regulatory sequences.

In recent years, there has been increasing interest of the role

of RNA in gene regulation, including RNA splicing and gene

regulation by microRNAs (Jackson & Standart 2007). As

BACs are essentially a fragment of the human genome they

will contain the full gene structure, including untranslated

regions, exons and introns, alternative promoters and splice

sites and microRNA coding sequences. This should result in

full mRNA processing and splicing when transcribed, and will

also include any microRNA targets sites within the mRNA

sequence and produce the full complement of protein

isoforms once translated. Thus, genes expressed from BACs

mirror endogenous gene expression far more accurately.

Despite their size, it is still possible to transiently express

BACs in mammalian cell lines, though the efficiency of

transfection tends to be lower than for smaller plasmids

(Magin-Lachmann et al. 2004) but they are introduced into

cells at a lower copy number (Sparwasser & Eberl 2007).

BAC recombineering technology includes different selec-

tion strategies that can minimise any disruption to genomic

sequences within the BAC. Some methods can cause minimal

alterations to a BAC sequence and leave a post-recombination

scar, usually comprising recombinase target site such as FRT

or loxP. Other methods use selection/counter selection,

which results in a seamless alteration of the BAC, allowing for

accurate manipulation without altering neighbouring

sequences (e.g. the GalK system described by Warming

et al. (2005)). This is important in the generation of

fusion protein, expressing BACs where the reading frame of
Journal of Endocrinology (2011) 208, 193–206
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the insertion is critical. A fusion protein might not behave

naturally; therefore, transient transfection of the BAC

construct should be performed initially to confirm expression

of the gene-of-interest and the correct behaviour of the

protein before undertaking the time-consuming step of stable

clone generation. It is also advisable to perform initial studies

with plasmid vectors that express the same (or very similar)

fusion proteins before embarking on BAC construction.

There are a number of disadvantages associated with using

BACs: i) a construct consisting of a large genomic fragment is

likely to contain non-related genes that may lead to indirect,

non-specific gene expression and potentially undesirable

phenotypes; ii) the generation and screening of recombinant

BAC constructs can take considerably more time than that of

plasmids or other gene expression vectors; iii) large DNA

constructs require special handling as they are more

susceptible to degradation and shearing; and iv) recombina-

tion systems may suffer random recombination events, for

instance the problems associated with cryptic LoxP sites

resulting in random Cre-mediated recombination (Semprini

et al. 2007). Moreover, BACs that contain repeating

homologous sequences are prone to intramolecular

rearrangements, not only reducing the efficiency of recombi-

nation but also, in some selection/counter-selection

approaches there are a high number of false-positive clones,

increasing the time spent screening (Narayanan 2008).

In summary, BACs have numerous advantages over

conventional plasmids in that they insulate the gene from

the site of integration effects, allow effective chromatinisation

of the promoter DNA and include distal regulatory regions

within the construct. Expression driven by the genomic

region in which the gene is located results in accurate

transcription regulation and promoter activity and promoter

feedback. However, given their size, the technical difficulties

in handling them properly and the potential for non-related

gene expression, careful consideration of the investment in

both time and resources for using BACs as a gene expression

model system must be addressed.
Episomal gene expression systems

Integration effects can be avoided altogether through use of

extra-chromosomal/episomal vectors designed to replicate

independently of the genome (Fig. 3E). These systems fall

into three categories: mammalian/human artificial chromo-

somes (MACs/HACs), viral episomal expression systems and

vector-based episomal expression systems (Lufino et al. 2008).

MACs/HACs are chromosomal-derived vector systems,

which replicate autonomously, segregate into daughter cells

and are maintained at a low copy number (Conese et al. 2004,

2007). However, construction of these vectors is very difficult

due to their large size and the time-consuming recombination

techniques required, thus limiting the use of MACs and

HACs as ectopic expression systems.

Many episomal systems are derived from viral sequences, a

variety of which have been manipulated. The most successful
Journal of Endocrinology (2011) 208, 193–206
among these has been the HSV-derived constructs, which are

well retained through generations and have a relatively large

insert capacity (Lufino et al. 2008).

The original EPI vector (pEPI-1) was constructed by

Piechaczek et al. (1999) and contains chromosomal scaffold/

matrix attachment region isolated from the human

b-interferon gene cluster (Bode et al. 1992). This region

interacts with major nuclear matrix proteins (Jenke et al. 2002)

and this is thought to enable co-replication with chromosomal

DNA. The vectors are mitotically stable and exist at a copy

number of around 5 to 15 copies per cell (depending on the

stage of the cell cycle; Stehle et al. 2003), which is probably

relatively low when compared with transiently transfected

plasmids but compared to stably integrated plasmid vectors

will not have aberrant site of integration effects on the host.

Stable transfection with EPI vectors is often highly efficient,

compared to the integration of conventional plasmid vectors.

EPI vectors have also been shown to remain in cells in the

absence of selection for several hundred generations

(Piechaczek et al. 1999, Baiker et al. 2000) probably because

there is no chance of heterochromatin spread.
Combining approaches for transgenesis

In recent years, attempts have been made to combine different

techniques to minimise and negate some of the disadvantages,

while exploiting the various advantages.

Targeted integration utilising AAV

As discussed, one of the major drawbacks of targeted

integration is the random integration of recombinase target

sites when generating ‘founder’ cell lines prior to integration

of the gene-of-interest. DeKelver et al. (2010) have utilised

the natural ability of AAV to target and integrate in a specific

genomic locus on chromosome 19 (commonly referred to as

AAVS1 locus; McCarty et al. 2004). Although integration at

this site disrupts the PPP1R12C gene, this does not alter

cellular phenotype (Smith et al. 2008, Hockemeyer et al.

2009) nor has any pathophysiological effect from AAV

infection been observed. DeKelver et al. (2010) thus report

this particularly well-characterised genomic region to be a

transgene ‘safe harbour’, as no phenotypic effect has been

observed by its disruption, yet the region is transcriptionally

active. The authors exploited this natural AAV integration site

to generate somatic cell lines with easily targetable

recombinase sites at this locus. Founder line integration site

is therefore consistent across cell types, thus reducing the time

and effort necessary for cell line screening and characterisation

prior to targeted integration of the gene-of-interest.

Using BACs for targeted ‘knockin’

Creating knockin and knockout cell lines is a lengthy and

challenging process. One of the key components of the

development is the generation of the homologous
www.endocrinology-journals.org
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recombination cassette, usually several kilobases in length.

Recently, Song et al. (2010) exploited the coverage of the

human genome by BACs to generate a recombination cassette

with extended homology arms for the creation of p53

knockout human ES cells. This BAC-based targeting

approach had several advantages, such as the introduction of

large DNA sequences, leading to a high efficiency of

homologous recombination in various genetic backgrounds.

This technique avoided the more complex and technically

difficult cloning strategies by using BAC recombineering

technology to generate the recombination cassette (Song et al.

2010). One reported drawback of this BAC-based targeting

approach was the difficulty in confirming that the homolo-

gous recombination event had occurred. It should also be

noted that ES cells are more amenable to such an approach

compared to somatic cell lines. Thus, generating a recombi-

nant BAC in vitro can improve targeted integration and

recombination in in vitro cell cultures.
Episomal BAC expression

When producing cell lines for study, the uncontrolled

integration of BACs into genomic DNA could lead to (albeit

minimised) the site of integration effects, the BAC might be

truncated unpredictably and the low transfection efficiency of

BACs makes generating stable cell lines challenging.

Utilising BAC technology in combination with episomal

sequences might be an effective way to stably introduce

BAC constructs into the mammalian cells. Episomal

constructs replicate autonomously within the cell and do

not integrate in the genome, in addition to being relatively

simple to use for generating stable cell lines. Lufino et al.

(2007) were able to fuse the pEPI vector (Stehle et al. 2003)

with both HSV viral sequences and a BAC to express the

low-density lipoprotein (LDL) receptor in a cell line that

was deficient in this gene. Subsequent viral infection of this

construct resulted in LDL receptor-expressing cells, with the

construct maintained at a low copy number (w2) in most

cells for many generations. Thus, the combination of these

two strategies led to exploitation of the major advantages of

both systems and reduced the impact of the respective

disadvantages for both techniques. Furthermore, the

presence of HSV sequences within the EPI-BAC allows

viral transduction of the construct, circumventing the

problematic issues with BAC transfection. This also negates

the need for special BAC DNA handling in the laboratory,

and results in increased efficiency for delivery of DNA to

target cells.
Conclusions

The study of gene expression is an ever expanding field of

research, with a variety of technologies and approaches

available. Important decisions are required when selecting a

model system for analysis in any given project. All approaches
www.endocrinology-journals.org
discussed have their advantages and limitations, but methods

are constantly evolving and adapting, expanding the options

available to researchers.
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