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The quality of an underwater image is degraded due to the effects of light scattering in

water, which are resolution loss and contrast loss. Contrast loss is the main degradation

problem in underwater images which is caused by the effect ofoptical back-scatter.

A method is proposed to improve the contrast of an underwaterimage by mitigating

the effect of optical back-scatter after image acquisition. The proposed method is based

on the inverse model of an underwater image model, which is validated experimentally

in this work. It suggests that the recovered image can be obtained by subtracting the

intensity value due to the effect of optical back-scatter from the degraded image pixel

and then scaling the remaining by a factor due to the effect ofoptical extinction.

Three filters are proposed to estimate for optical back-scatter in a degraded image.

Among these three filters, the performance of BS-CostFunc filter is the best. The

physical model of the optical extinction indicates that theoptical extinction can be

calculated by knowing the level of optical back-scatter.

Results from simulations with synthetic images and experiments with real con-

strained images in monochrome indicate that the maximum optical back-scatter esti-

mation error is less than5%. The proposed algorithm can significantly improve the

contrast of a monochrome underwater image. Results of colour simulations with syn-

thetic colour images and experiments with real constrainedcolour images indicate that

the proposed method is applicable to colour images with colour fidelity. However, for

colour images in wide spectral bands, such as RGB, the colourof the improved images

is similar to the colour of that of the reference images. Yet,the improved images are

darker than the reference images in terms of intensity. The darkness of the improved

images is because of the effect of noise on the level of estimation errors.
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Chapter 1

Introduction

The capability to produce high quality underwater images isdemanded in many ar-

eas, such as mine detection (Rao, Mukherjee, Gupta, Ray & Phoha 2009), inspection

of underwater power, telecommunication cables and pipelines (Narimani, Nazem &

Loueipour 2009, Foresti 2001), research in marine biology (Dahms & Hwang 2010,

Ahlen & Sundgren 2003, Cronin, Shashar, Caldwell, Marshal,Cheroske & Chiou

2003) archaeology (Arnott, Dix, Best & Gregory 2005, Kahanov & Royal 2001) and

mapping (Botelho, Jr & Leivas 2008, Xu & Negahdaripour 1999).

In water medium, the visibility is often poor, and as a resultthe quality of images is

limited. When light travels in water it interacts not only with water molecules but also

with any suspended particles and sometimes air bubbles (Gutierrez, Seron, Munoz &

Anson 2008), causing optical scattering and absorption. All these effects contribute to

severe image degradation in form of resolution loss, contrast loss and colour changes

(Hou 2009).

Figure 1.1 shows two underwater images from two different locations. Figure

1.1(a) and (b) are kindly provided by Racal Research (now Thales Research) in UK,

and the ADMA oil company in Abu Dhabi respectively. It can clearly be seen that the

quality of both images is poor.

Underwater imaging is often done by using a remotely operated vehicle (ROV),

particularly when inspecting underwater pipelines and cables. A light source, which

provides the required illumination, and a camera are both mounted on the ROV. A

schematic for general underwater imaging is shown in Figure1.2. The total light in-

tensity that enters the camera lens and forms the image is thesum of three components,

L1, L2 andL3. L1 is the reflected light from the scene and contains the useful image

21
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Figure 1.1: Sample underwater images provided by the a) Racal Research (now Thales
Research) in UK, b) ADMA oil company in Abu Dhabi.
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Figure 1.2: Underwater Image Geometry.L1 is the reflected light from the scene.L2
is the forward scattered light, with angelθ relative to the propagation direction.L3 is
the optical back-scatter. R is the optical path distance.

content.L2 is reflected light from the scene that is scattered before reaching the cam-

era lens. This is known as forward scattered light and given rise to the effect of image

blur. L3 is the optical back-scatter, which is the light scattered towards the camera lens

by particles between the camera and the scene.L3 adds extra lightness to the image

and causes contrast loss.

Among the problems of contrast loss, resolution loss and colour changes in an

underwater image, the contrast loss and resolution loss arethe effects which degrade

the apparent visibility and are most important. Therefore,to improve the visibility

of an underwater image, the main degradation effect should be mitigated. Schechner

& Karpel (2005) suggest that contrast loss is the significantdegradation effect in an

underwater image in visible wavelength. However, this seems to be an assumption

and no experimental evidence is presented. The main degradation effect is investigated

experimentally in this work and the experimental results will show that contrast loss is

the main problem.

Several methods are available to overcome the effect of contrast loss. These meth-

ods can be categorised in to two approaches, physics-based and non physics-based.

The methods in non physics-based approach process the imageusing no informa-

tion about the physical formation of the image. Examples include unsharp masking
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(Gonzalez & Woods 2008) and histogram equalisation (Kim, Kim & Hwang 2001). It

is explained that contrast loss is because of optical scattering. Optical scattering de-

pends on several parameters, such as illumination, wavelength, the optical distance and

the water type (which means the size and distribution of suspended particles in water).

In general the effect of contrast loss is non-stationary across the image (Schechner &

Karpel 2005). Existing enhancement methods are based on theassumption that the

noise is spatially invariant. Therefore, they provide onlylimited contrast improvement

(Treibitz & Schechner 2006).

In the physics-based approach, a physical model of an image in a water medium,

which is presented in Equation (1.1), explored to mitigate contrast loss.

I = S + B, (1.1)

whereI is the degraded image andS is the attenuated signal from the scene andB is the

signal from suspended particles. The contrast of an underwater image can be improved

by a subtraction of optical back-scatter from the degraded image,I − B. This can be

achieved either by eliminating the optical back-scatter using special imaging hardware

or by arithmetic processing of the image after acquisiation. Examples of the former

include polarization (Schechner & Karpel 2005) and signal gating (Tan, Seet, Sluzek

& He 2005), which can signicantly mitigate the effect of contrast loss and improve

the image visibility. However, the use of such hardware-based techniques introduces

extra cost and restricts applicability. Less attention hasbeen given to the arithmetic

approach, which is the subject of this thesis.

1.1 Aims and Objectives

In this work, it is shown that contrast loss is the main problem with underwater images.

A forward model of an underwater image is given, which is validated in this work. A

new physics-based method is proposed, based on the inverse model of an underwater

image, to improve the apparent visibility of an underwater image by mitigating the ef-

fect of optical back-scatter. The proposed method is applicable to underwater images

with only contrast loss problem. The method does not requireany special equipment,

and the images can be taken by any digital camera. This methodinvolves using sta-

tistical properties of the image to estimate the optical back-scatter. It is shown by

experimental results that the method can significantly improve the image contrast, and

also can be applied to both monochrome and colour images withcolour fidelity.
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1.2 Outline of the Thesis

This thesis contains nine chapters, including this introduction. Below is the structure

of each chapter.

Chapter 2 Literature Review This chapter presents a review of the existing work

relevant to the aims of this study. First, optical scattering is explained as well

as more details on the image formation process. Next, current image contrast

enhancement methods, such as histogram modification, unsharp masking, polar-

ization, signal gating and Oakley-Bu cost function are explained. Then, an ex-

planation is given about recursive Gaussian filter and the statistical distribution

of natural image texture. Finally, is a brief review on colour science concepts.

This includes an explanation of the human vision system, some colour spaces,

colour temperature and colour difference.

Chapter 3 Experimental Methodology In this chapter, the design and the prepa-

rations of test images are described.

Chapter 4 Degradations in Underwater ImagesThis chapter, the impact of con-

trast loss and resolution loss are compared in a practical underwater situation.

It is shown experimentally that contrast loss is the dominant degradation effect

when compared with resolution loss.

Chapter 5 Underwater Image Model This chapter presents the mathematical for-

ward model of a degraded underwater image and supporting experiments to val-

idate the proposed model.

Chapter 6 Mitigation of Contrast Loss in Underwater Images In this chapter, a

new method is proposed based on the inverse of an underwater image model. It

is shown that to improve the contrast of an underwater image,an estimate for

the level of optical back-scatter is required. Three different optical back-scatter

filters are explained to estimate the level of optical back-scatter in a degraded

underwater image without using any information about the physical properties

of the scene.

Chapter 7 Simulations This chapter explores the performance of three optical back-

scatter filters using Monte-Carlo simulations with synthetic underwater images

and under different statistical assumptions. The accuracyof BS-CostFunc filter
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for processing monochrome and colour images are examined. Colour fidelity is

investigated for the improved colour images by the proposedmethod.

Chapter 8 Experimental Results This chapter evaluates the performance of the

proposed method using real constrained and non-constrained underwater images.

The accuracy and consistency of the estimated optical back-scatter parameter is

evaluated for monochrome constrained images. Colour fidelity is investigated

for the processed constrained colour images in both narrow and wide spectral

bands. Examples of the improved images are presented.

Chapter 9 Conclusions and Future Works Conclusions from the simulations and

experimental results are drawn and the possible future works are suggested.



Chapter 2

Literature Review

This chapter is structured as follow. Section 2.1 reviews background on the underwater

imaging environment, with reference to optical scatteringand underwater image geom-

etry. A review of existing contrast enhancement methods is provided in Section 2.2.

Some other techniques that are used in throughout this work are reviewed in Section

2.3. These include the statistical distribution of an imagetexture, recursive Gaussian

filter and the fundamental concepts in colour science.

2.1 Underwater Imaging

To understand why underwater images are degraded, the propagation of light in a water

medium is studied. First, light scattering and extinction are explained followed by

an explanation of underwater image geometry. A physical model of the three basis

intensity components of underwater image are described in more detail.

2.1.1 Scattering

Optical scattering happens when a light beam interacts witha particle. The level of

optical scattering varies for different sizes of particles. The pattern of the scattering

depends on the ratio of particle size to the light wavelength. Very small particles, such

as molecules in the atmosphere, tend to scatter isotropically. This type of scattering

can be explained by Rayleigh theory (McCartney 1976). When the size of particle is

larger than the wavelength of visible light, the scatteringpattern is more complex and

is concentrated in the forward direction. The Mie theory is used to describe scattering

by such particles (McCartney 1976). Figure 2.1 shows the pattern of scattering for
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different sizes of particle.

Figure 2.1: Scattering pattern for different sizes of particles. (a) size: smaller than one
tenth of the wavelength of light. (b) size: approximately one fourth the wavelength of
light. (c) size: larger than the wavelength of light.

Optical Forward Scatter

Light scattered in the same direction as the source light is known as optical forward

scatter. When the particle diameter is larger than the scattering wavelength, the pattern

of scattering usually shows some peaks at other angles. If the angle is small, then the

phenomenon is known as small angle forward scattered in literature (Kopeika, I.Dror

& Sadot 1998).

Optical Back-scatter

The light scattered back toward the light source from suspended particles, which are

between the camera and the object, is known as optical back-scatter or back-scattered

light.
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2.1.2 Extinction

The term extinction means the loss of intensity during propagation through a turbid

medium. Two different mechanisms contribute to extinction, absorption and scattering

(Kokhanovsky 2008, McCartney 1976).

2.1.3 Underwater Image Geometry

The underwater image geometry is shown in Figure 1.2.L1 is the reflected light from

the scene.L2 is the forward scattered light, with angelθ relative to the propagation

direction. L3 is the optical back-scatter. These components are described in detail

below.

Direct Component (L1)

The direct component is the direct reflected light from the scene reaching the camera

lens. This carries the scene information with attenuation due to extinction. Equation

(2.1) presents the physical model of the direct component (Schechner & Karpel 2004).

Aλ(x, y) = C0Jλ(x, y) exp (−βλ(x, y)R), (2.1)

whereC0 is the illumination radiance,λ is the light wavelength,Jλ(x, y) is the scene

reflectance,R is the distance of optical path, andβλ(x, y) is the extinction coefficient

(βλ) at pixel position(x, y), in whichβλ has the form

βλ = βsca
λ + βabs

λ , (2.2)

= Dπa2Qsca
λ + βabs

λ , (2.3)

whereD is the particles concentration,a is the particle radius,Qsca
λ is the Mie scatter-

ing factor andβabs
λ is the absorption coefficient.

Forward-scatter Component (L2)

The forward-scatter component represents the light scattered forward over a small

range of angles relative to the propagation direction. The forward-scatter component

originates from the same scene point as the direct component, but enters the imaging

device at a different angle and causes the same object point to be detected at different

adjacent image points separated by a distanceY1 as shown in Figure 2.2. This effect
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is known as the adjacency effect (Kopeika 1998). The distribution of angles can be

estimated by using the Fraunhofer diffraction equation fora single slit (Freeman &

Hull 2003) by

θmax =
λ

d
, (2.4)

whered is the particle diameter andλ is the light wavelength as defined before. Yura

Figure 2.2: The amount of image point misplacement due to forward-scatter light is
Y1.

(1971) and Ishimaru (1978) suggest that forward-scatter component is the cause for

resolution loss (image blur), when the angle is0o < θmax ≤ 1o.

An approximate value of forward-scatter component,FSλ(x, y), can be found (Yu

& Liu 2007, Jaffe 1990) by

FSλ(x, y) = Aλ(x, y) ∗ g, (2.5)

whereg is the point-spread function (PSF) of water and * denotes theconvolution

operation. There are several models suggested for the form of underwater PSF (Yu &

Liu 2007, Voss 1991). For example, Jaffe (1990) suggested the model

g = (e−ηR − e−βR)F−1(e−KRω), (2.6)

whereK > 0 andη are empirical constants and related to water properties, and β

is the extinction coeeficient. Theη is limited to η ≤ β. F−1 is the inverse Fourier

transform, andω is the spatial frequency of image plane (It seemsω is the polar spatial

frequency, as the author has not mentioned the horizontal orvertical component ofω).

As Equation (2.6) shows,g comprises of two parts. The first part,e−ηR − e−βR, causes
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attenuation and depends onR, η andβ. The second part,e−KRω, is a low pass filter

and introduces the spatial blur and depends onR andK. This implies for a specific

θmax the amount of image blur (misplacement ofY1) depends onR. As R increases

the amount of misplacement,Y1, increases as well. Thus,g is the cause of two effects,

attenuation and image blur, and as a result forward-scattercomponent is a blurred and

attenuated version of the direct component (Schechner & Karpel 2005).

Back-scatter Component, L3

Optical back-scatter does not originate from the scene, so it does not contain any scene

information. It is the scattered light from particles between the camera and scene.

Optical back-scatter adds extra illumination to the image intensity. This extra intensity

causes a reduction in image contrast. The optical back-scatter component is the main

contribution to contrast loss. A physical model of back-scatter component is presented

in Equation (2.7)

BSλ(x, y) = C0(1 − exp (−βλ(x, y)R)). (2.7)

It can be seen from Equations (2.3) and (2.7), that back-scatter component depends

on the parameters of the optical depth, density and particlesize. Varying any of these

parameters causes the amount of optical back-scatter to change, resulting a change in

the image contrast.

2.2 Image Enhancement Methods

The process of improving a degraded image to visibly look better is called image en-

hancement (Petrou & Bosdogianni 1999). It is explained that, due to the effect of opti-

cal back-scatter, the images in a scattering medium have lowcontast. By improving the

image contrast, it is expected to increase the visibility and discern more detail. There

are different definitions for measuring image contrast. Oneof the common definitions

for image contrast,c, is the Michelson formula (Peli 1990)

c =
Imax − Imin

Imax + Imin
, (2.8)

whereImax andImin are for the maximum and minimum image intensity values re-

spectively.
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There are different techniques to improve the contrast of animage. These tech-

niques can be classified in to two approaches, hardware basedand non-hardware based

approach.

2.2.1 Hardware Based Approach

Hardware based approach requires special equipment, two common examples include

polarisation and range-gated.

Range-gated

Range-gated or time-gated is one of the hardware methods to improve the image qual-

ity and visibility in turbid conditions (Caimi, Kocak, Dalgleish & Watson 2010, Tan,

Sluzek, L. & Jiang 2007, Liu, Chen & Xia 1994). In range-gatedunderwater imaging

system the camera is adjacent to the light source, while the underwater target is behind

the scattering medium (Tan et al. 2005). The operation of range-gated system is to

select the reflected light from the object that arrives at thecamera, and to block the

optical back-scatter light (Li, Wang, Bai, Jin, Huang & Ding2009).

Range-gated system includes a broad-beam pulse as the illumination source, a high

speed gated camera and a synchronization gate duration control (Li et al. 2009). Tan

et al. (2005) presented a sample plot of the timing of range-gated imaging in their

work. The authorised copy of the plot is shown in Figure 2.3.

A range-gating process starts when the laser sends a pulse onto the object. As

the light travels the camera gate is closed. Thus, the back-scattered light will not be

captured. The fast electronic shutter of the gated camera istime delayed and only

opens for a very short period of time. When the laser pulse returns to the camera after

hitting the object, the camera gate opens. In this case, the camera is exposed only to

the reflected light from the object. Once the laser pulse is over, the camera gate closes

again. The opening or closing of the camera gate is based on the prior information

about the object location (Tan et al. 2007).

Speckle noise is the main problem in these images. The interference between the

reflected light waves back from a rough surface causes the speckle noise. For the non-

coherent light this speckle pattern can not be detected, whereas for the coherent light

the speckle pattern is detectable. As the laser beams are highly coherent, the speckle

noise is evident in these images. Recent range-gated systemimproved to suppress

speckle noise (Li et al. 2009), and also use high sampling rates, which allow for 3-D
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Figure 2.3: The authorised copy of the timing plot of range-gated imaging system from
(C.S. Tan& He 2005). Reflected Image Temporal Profile (RITP) in time domain, for
clear water condition with attenuation coefficient, c=0.26/m; absorption coefficient, a=
0:04/m 1. Front RITP, 2. Middle RITP, 3. Tail RITP.

image reconstruction (Caimi et al. 2010).

Polarisation

Light has three properties, intensity, wavelength, and polarisation. The human vision

system and some animals can detect polarisation and use it inmany different ways

such as enhancing visibility (Yemelyanov, Lin, Pugh, Jr. & Engheta 2006). Natural

light is initially unpolarised, but light reaching to a camera often has biased polarisa-

tion due to scattering and reflection (Lin, Yemelyanov, Jr. &Engheta 2004). Light

polarisation conveys different information of the scene (Lin et al. 2004). Inspired by

animal polarisation vision, a polarisation imaging technique has been developed. To

collect light polarisation data, polarisation-sensitiveimaging and sensing systems are

required (Lin et al. 2004).

Preliminary studies showed that back-scatter light can be reduced by polarisation

(Lewis, Jordan & Roberts 1999, Treibitz & Schechner 2006). Some studies assum

the reflected light from the object is significantly polarised rather than the back-scatter

(Tyo, Rowe, Jr. & Engheta 1996) and in some other studies the contrary is assumed

(Treibitz & Schechner 2009). Also, in some studies active illumination, a polarised
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light source, is used (Treibitz & Schechner 2006), whereas in other study passive il-

lumination, ambient light, is used for imaging (Chang, Flitton, Hopcraft, Jakeman,

Jordan & Walker 2003). Polarisation difference imaging (PDI) method process the

intensity of two images obtained at two orthogonal polarisations (Lin et al. 2004, Tyo

et al. 1996). Schechner & Karpel (2005) introduced a method which is based on the

physical model of visibility degradations to recover underwater images using raw im-

ages through different states of polarising filter. In this method visibility can be re-

stored significantly, but remains some noise due to pixels falling on distant objects. A

technique is developed to reduce the noise (Schechner & Averbuch 2007). This method

is developed to capture images faster, and as a result may be able to estimate a rough

3D scene structure (Treibitz & Schechner 2009).

2.2.2 Non-hardware Based Approach

In non-hardware based approach, no special imaging equipment is required and only

digital image processing tools are used. Two common examples include histogram

equalisation and unsharp masking.

Histogram Equalisation

Histogram equalisation (HE) is the most common enhancementmethod because of

its simplicity and effectiveness (Kim et al. 2001). The operation of HE is to redis-

tribute the probabilities of gray levels occurrences in such a way that the histogram of

the output image to be close to the uniform distribution (Colombo & Jaarsma 1980).

Histogram equalisation does not consider the content of an image, only the gray level

distribution.

Different HE methods have been developed (Levman, Alirezaei & Khan 2003).

These methods can be generally classified in to two categories, global and local (Alparslan

& Ince 1980, Abdullah-Al-Wadud, Kabir, Dewan & Chae 2007). Global HE processes

the histogram of the whole image. Although it is effective, but it has important lim-

itation (Kim et al. 2001). Global HE stretches the contrast over the whole image,

and sometimes this causes loss of information in dark regions (Abdullah-Al-Wadud

et al. 2007). To overcome this limitation, a local HE technique developed (Alparslan

& Ince 1980, Kim et al. 2001, Zhu, Chan & Lam 1999). Local HE uses a small window

that slides sequentially through every pixel of the image. Only blocks of the image that

fall in this window are processed for HE and the gray level mapping is done for the
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centre pixel of that window (Abdullah-Al-Wadud et al. 2007). Local HE is more pow-

erful, but requires more computation. Local HE sometimes causes over enhancement

in some parts of the image, and also increases the image noise(Abdullah-Al-Wadud

et al. 2007). Some methods have been developed to speed up thecomputation, such

as partially overlapped HE (POSHE) and block based binomialfiltering HE (BBFHE)

(Lamberti, Montrucchio & Sanna 2004).

HE is designed for monochrome (single channel) images. Extending HE to color

images is not straightforward (Weeks, Sartor & Myler 1999, Forrest 2005). The sim-

plest method is to apply HE to each colour channel, R, G and B separately. However,

this doesn’t take into account the correlations between channels, and as a result causes

colour changes (Buzuloiu, Ciuc, Rangayyan & Vertan 2001). The other method is to

convert the colour space to hue, saturation, intensity (HSI) colour space and apply HE

to intensity and saturation, leaving the hue unchanged (Duan & Qiu 2004, Buzuloiu

et al. 2001). Recent methods have been developed to extend HEto images with any

number of dimensions (Kim & Yang 2006, Forrest 2005).

Unsharp Masking

Unsharp masking (UM) is the other common image enhancement method (Levi &

Mossel 1976, Gasparini, Corchs & Schettini 2007, Ferrari, Flores & Garcia-Torales

2010, Lee, Kim, Park, Suryanto & Ko 2008). In this method the image is improved by

emphasizing the high frequency components in the image (Jain 1989, Badamchizadeh

& Aghagolzadeh 2004, Gonzalez & Woods 2008).

The UM method is derived from an earlier photographic technique and involves

subtracting the blurred version of an image from the image itself (Gonzalez & Woods

2008). This is equivalent to adding a scaled high-pass filtered version of the image

to itself (Tao, Lin, Bao, Dong & Clapworthy 2009) as shown in Equation (2.9). The

high pass filtering is usually done with a Laplacian operator(Sivaswamy, Salcic &

Ling 2001) .

y(m, n) = x(m, n) + λ̂z(m, n), (2.9)

wherex(m, n) is the original image,̂λ is a constant, greater than zero, that changes

the grade of sharpness as desired andz(m, n) is the high-pass filtered version of the

original image.
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Although this method is easy to implement, it is very sensitive to noise and also

causes digitizing effects and blocking artifacts (Gasparini et al. 2007). Different meth-

ods of UM have been introduced to mitigate these problems. Non-linear filters, such

as polynomial (Gasparini et al. 2007) and quadratic filters (Sivaswamy et al. 2001) are

used instead of the high pass filter in the UM algorithm (Badamchizadeh & Aghagolzadeh

2004). Adaptive UM uses a variable factorλ̂ and the value of this factor is controlled

by neighborhood pixel values (Polesel, Ramponi & Mathews 2000). In the adap-

tive method, the low contrast details are more enhanced thanthe high contrast details

(Badamchizadeh & Aghagolzadeh 2004). Unsharp masking tends to introduce colour

distortion, when applied to colour images (Cheikh & Gabbouj2000). Lee et al. (2008)

introduce a method to sharpen the image appearance without distorting the colour and

amplifying the noise.

Simple Contrast Loss (Oakley and Bu Cost Function)

Oakley and Bu (Oakley & Bu 2007) introduce a statistical method using the standard

deviation of the normalised brightness of an image to detectthe presence of optical

back-scatter in a degraded image. It is assumed that the level of the optical back-scatter

is constant throughout the image. This algorithm is based onfinding the minimum of

a global cost function (Oakley & Bu 2007).

The proposed algorithm for optical back-scatter estimation is to find the minimum

value of a cost function that is a scaled version of the standard deviation of the nor-

malised intensity.

The key feature of this method is that it does not require any segmentation as it

uses a global statistic rather than the sample standard deviation of small blocks.

The enhanced version of an image has the form:

Î = m(I − b), (2.10)

whereI is the degraded image,b is an estimate of the optical back-scatter contributed

part of the image,̂I is the modified image andm is the scaling parameter. The esti-

mated value of optical back-scatter has been shown

argmin{S(b)}, (2.11)
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where

S(b) =
1

P

P
∑

p=1

(
Ip − Īp

Īp − b
)2GM{(Īp − b)2 : p = 1, 2, ..., P}. (2.12)

p is the pixel position,P is the total number of pixels,I is the degraded image,̄I is

the smooth version of the image, which is calculated by recursive Guassian filter with

σcf filter parameter, andb is the value of optical back-scatter.GM{·} denotes the

geometric mean which may be computed from

GM{xp : p = 1, 2, ..., P} = (x1x2...xP )
1

P . (2.13)

From Equations (2.12) and (2.13),S(b) can be written as:

S(b) =
1

P

P
∑

p=1

(

Ip − Īp

Īp − b

)2

exp

(

1

P

P
∑

p=1

ln(Īp − b)2

)

. (2.14)

2.2.3 Comparison of Enhancement Methods

Contrast loss spatially varies for underwater images. Thisis because active illumi-

nation, i.e. a light source, is normally used for underwaterimaging, since natural

illumination is often not sufficient. The active light source illuminates the scene in a

nonuniform way. The part in the direction of the light sourceis well illuminated and

the other areas are less illuminated. This causes a nonuniform distribution of optical

back-scatter. The other cause of spatial variation in contrast is that in an image, the ob-

jects at a greater distance from the camera have more contrast loss than closer objects.

Unsharp masking and histogram equalisation are both spatially invariant and as

a result can apply limited correction in such cases. Also, these methods generally

introduce some noise in the enhanced image. The sample images from real underwater

situation are processed by POSHE and BBFHE methods1 and presented in Figure 2.4.

It can be seen that small details, as well as noise, are over enhanced.

The simple contrast loss method is designed for compensating the effect of optical

back-scatter for images in air. The printed by permission sample of the processed

image with simple contrast loss2 is shown in Figure 2.5 (a). In the simple contrast

model it is assumed that the level of optical back-scatter isconstant across the image

1The images are kindly processed by Dr. Fabrizio Lamberti with his original code.
2The image is processed by Dr. Hong Bu.
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Figure 2.4: From left to right, each row contains the sample of a degraded underwater
image, the printed by permission sample of processed imagesby POSHE and BBFHE
methods.

Figure 2.5: The printed by permission sample of a) the degraded image (right side)
and improved image (left side) by simple contrast loss method. b) the degraded image
(left side) and improved image (right side) by polarisationmethod.
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pixels. This assumption can not be used for images in water, because of the difference

of imaging situation between underwater and air medium. Theillumination for images

in air is the diffused light from the sun, which has an invariant distribution. Also, the

optical depth in air is more than images in water. It is in a matter of kilometer in air,

whereas in water is in a matter of meter. Moreover, the scattering patterns in water is

different with air, because the size of scattering particles are bigger than the particles in

air. As a result simple contrast loss is not a suitable methodfor improving underwater

images.

Range-gated and polarisation methods are both spatially variant and can signifi-

cantly improve underwater images. However, these methods require special equip-

ments for imaging. The printed by permission sample of the processed image by po-

larisation, which is published in (Schechner & Karpel 2004), is presented in Figure 2.5

(b).

2.3 Other Technical Background

2.3.1 Recursive Gaussian Filter

Gaussian filters are widely used in different areas of image processing and computer

vision (Farnebäck & Westin 2006, S. Tan & Johnston 2003, D. Demigny & Pons 2002,

Johnson 2003). Recursive approximation of Gaussian filtering was first introduced by

Deriche (1992) and can be performed in the spatial domain (L.J. van Vliet & Verbeek

1998, Zhou 2004). The recursive Gaussian filter is fast. The computation complexity

of a recursive Gaussian filter with order N, is 2N (L.J. van Vliet & Verbeek 1998),

and the computation complexity is independent of the size ofthe spatial constant,σ.

The recursive filter has two steps, forward and backward recursion (Young & van Vliet

1995). The input data,in[n], is first filtered in the forward direction. The output of this

result,w[n], is then filtered as in the backward direction,out[n]. The forward recursive

equation is defined by:

w[n] = Bin[n] +
b1w[n−1] + b2w[n−2] + b3w[n−3]

b0
. (2.15)

The backward recursive filter is defined by:

out[n] = Bw[n] +
b1out[n+1] + b2out[n+2] + b3out[n+3]

b0

. (2.16)
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The coefficientb0, b1, b2, b3 andB are defined by:

b0 = 1.57825 + 2.44413q + 1.4281q2 + 0.422205q3, (2.17)

b1 = 2.4441q + 2.8561q2 + 1.26661q3, (2.18)

b2 = −(1.428q2 + 1.26661q3), (2.19)

b3 = 0.422205q3. (2.20)

B = 1 − b1 − b2 − b3. (2.21)

q =







0.98711σ if σ ≥ 2.5,

3.97156 − 4.14554
√

1 − 0.26891σ otherwise.
(2.22)

2.3.2 Statistical Distribution of Image Texture

There are different distributions used to generate image textures3 such as the Uniform,

Gaussian, Poisson, Log-normal and Beta distributions. ThePoisson distribution is

discrete, whereas the Gaussian, Log-normal and Beta are continuous. However, the

Uniform distribution can be either continuous or discrete.

The Poisson and Log-normal distributions have been used as image models in (Pal

& Pal 1991, Y. Zimmer & Akselrod 2000). Both the Poisson and the Log-normal distri-

butions are positively skewed4. They have a long tail on the right side of the histogram,

because the variable is free to vary from 0 to+∞ (Balakrishnan & Nevzorov 2003).

The main parameter for the Poisson distribution is the expected number of occurrences

(κ) and for the Log-normal distribution are the mean (µ) and standard deviations (σ).

Figures 2.6(a) and (b) present a sample of the Log-normal andthe Poisson distributions

respectively.

The continuous uniform distribution is always used as a reference to a clear en-

hanced image (Kim & Yang 2006). The Uniform distribution haslow kurtosis5 as

shown in Figure 2.6(c).

The Gaussian distribution is common and simple and is often used in image syn-

thesis (Oakley & Bu 2007, K.V. Mardia & Goitı́a 2006). The main parameters are

the mean (µ) and the standard deviations (σ). The probability density function of the

3Image texture means the distribution of grey values in the image.
4Skewness is a measure of the asymmetry of the probability distribution. The distribution is said to

be positively skewed, when the mass of the distribution is concentrated on the left and the right tail is
longer.

5Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. A data
set with high kurtosis tend to have a distinct peak near the mean and have heavy tails.
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Gaussian distribution is bell shaped, with a peak at the meanvalue. The variable in

a Gaussian distribution can vary between−∞ and+∞. A sample of the Gaussian

distribution is presented in Figure 2.6(d).

The Beta distribution is constrained to be within the range[0, 1] and has two main

positive parametersαBeta andβBeta. The Beta distribution has a great diversity of

shapes with different parameters values (Ghahramani 2000), as shown in Figure 2.6(e).

It can be seen that forαBeta andβBeta both less than one, the distribution has a U shape.

ForαBeta andβBeta both greater than one, the graph has a single hump.

In a natural image, the quantised intensity value of pixels is continuous (Weiss

& Freeman 2007) and is constrained in the interval[0, 255] or [0, 1]. The mean

intensity value of the image is low. The image histogram has heavy tails, high kurtosis

and is positively skewed (Attewell & Baddeley 2007, Srivastava, Lee, Simoncelli &

Zhu 2003).

The probability density function (pdf) of the Gaussian, Poisson and Log-normal

are not constrained, but they can be truncated to the range[0, 1]. This leads to in-

accuracy in the model. Therefore, the Gaussian, Poisson andLog-normal are not the

perfect match for image texture. The uniform distribution is not a good choice either,

because it has low kurtosis (Attewell & Baddeley 2007), while natural images have

high kurtosis (Attewell & Baddeley 2007). In recent studies, it has been shown that

the distribution of reflectance within a range of real texture is not Gaussian (Attewell

& Baddeley 2007, Weiss & Freeman 2007, Srivastava et al. 2003) and the textures are

better described by Beta distributions (Attewell & Baddeley 2007).

In this study the Beta distribution is chosen to represent the texture of each image

block. To generate a natural texture with a Beta distribution, it is required to define the

value ofαBeta andβBeta parameters carefully in order the pdf matches the characteri-

sation of the natural texture.

2.4 Colour

2.4.1 Human Visual System (HVS)

Colour can be defined as an attribute of visual sensation of light on the human eye

(Chou & Liu 2008). The perception of surface colour depends on the interaction of

light source, non emitting object and the human visual system (Fairchild 2005). Light

from a light source with a specific power spectrum illuminates the object and is then
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Figure 2.6: Probability Distribution Function of a) the Log-normal distribution with
zero mean and different values ofσ b) the Poisson distribution with two different pa-
rameters value ofκ c) the Uniform distribution d) the Gaussian distribution with zero
mean and two different values ofσ e) the Beta distribution with different values of
αBeta&βBeta.
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reflected back with a specific spectral power depending on theobject reflection prop-

erties toward the eye. In the eye, the light is focused by eye lens on the retina, which

has a layer of photoreceptor cells. The light stimulates photoreceptor cells with differ-

ent spectral sensitivities. There are four types of photoreceptors, one type of rod and

three types of cones. Three types of cones are known as the S, Mand L cones, which

are short, medium and long wavelength sensitive respectively. When there is a well-lit

condition, the cones are highly active and rods are inactive(Hirakawa & Parks 2005).

The neural responses from these three types of cones are combined together and are

sent to brain for further processing. Thus, the colour perception of each point from an

object is associated with the responses of the three cones.

2.4.2 Colorimetry

Since the development of a variety of colour devices such as colour monitors, scanners,

printers, digital cameras and copiers, accurate colour reproduction is demanded (Lee,

Ahn & Kim 2000).

The perception of colour is a psychophysical phenomenon, sothe colour should be

measured in such a way that the results associate with the visual sensation of a normal

human. The science and technology of quantifying colour based on the human colour

perception is called as colorimetry (Hirakawa & Parks 2005). The basis of colorimetry

is the trichromatic theory, which states that three components are sufficient to specify

a colour and not the detailed distribution of light energy across the visible spectrum

(Krauskopf 2001). The trichromatic theory was developed before it was known that

the human vision has three receptors to sense colour.

A colour space specifies a colour by a set of coordinates, which are mostly three

dimensional, but four dimensional colour spaces are also used (li Hu, bing Deng &

shan Zou 2010). A review of the colour spaces that are relevant to this study is given

below.

2.4.3 CIE Colour Spaces

CIE is the abbreviation for ”The Commission Internationalede lEclairage”, which is

the primary organisation responsible for standardisationof colour metrics and termi-

nology (Sharma & Trussell 1997). The CIE has defined a system that classifies colour

according to the HVS (human visual system). The core of the CIE colour spaces is
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CIEXYZ, which was created in 1931. In CIEXYZ the trichromatic theory is mathe-

matically formulated to give tristimulus values (or three coordinates) of X, Y and Z for

specifying a colour,Cλ (Kang 2006). The CIE tristimulus specification or CIEXYZ is

based on additive colour mixture, which can be presented by

Cλ = X + Y + Z, (2.23)

where X, Y and Z are defined as

X = k

∫

λ

R(λ)S(λ)x̄(λ)dλ, (2.24)

Y = k

∫

λ

R(λ)S(λ)ȳ(λ)dλ, (2.25)

Z = k

∫

λ

R(λ)S(λ)z̄(λ)dλ, (2.26)

k =
100

∫

λ
R(λ)S(λ)ȳ(λ)dλ

. (2.27)

S(λ) is for the illumination power spectrum,R(λ) is the object spectrum, which can

be from the reflectance, transmittance or radiance (Kang 2006). The scalar k, which is

defined by Equation (2.27), is a normalising constant, whichis usually chosen to give

a value of 100 for Y.̄x(λ), ȳ(λ) and z̄(λ) are the colour matching functions, CMF’s.

CMF’s are a series of functions related to the spectral sensitivities of three cones and

are established and presented in CIE publications6.

Metamerism

The representation of colour from the high dimensional spectrum to three dimensional

space results in loss of information (Lee et al. 2000). Therefore, two different materials

can have identical tristimulus values, while having different reflectance functions. This

is known as metamerism in the literature (Nimeroff & Yurow 1965, Foster, Amano,

Nascimento & Foster 2006).

Chromaticity

The quality of a color regardless of its intensity is expressed in terms of the chromatic-

ity coordinates (Ohno 2000). The most common chromaticity coordinates isx, y, z,

6http://www.cie.co.at/main/freepubs.html
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which are defined by

x =
X

(X + Y + Z)
, (2.28)

y =
Y

(X + Y + Z)
, (2.29)

z =
Z

(X + Y + Z)
. (2.30)

The plot ofy versusx is commonly used for presenting the chromaticity diagram.

Correlated Colour Temperature

The colour of a light source is measured and expressed by the correlated colour tem-

perature (CCT) (Wyszecki & Stiles 1982, Ohno 2000) in the unit of Kelvin (K). The

concept of colour temperature is not related to the temperature of the viewed object. It

is derived from the relationship between the temperature ofa black body, an imaginary

perfect emitter, and the appeared colour of that illuminant(Hernandez-Andres, Jr. &

Romero 1999).

As well as colour matching functions, colourimetric illuminants are standardized

by the CIE (Sharma & Trussell 1997). The CIE illuminants D65 and D50 are two

daylights illuminants corresponding to CCT of 6500 K and 5000 K respectively. The

CIE illuminant A represents the CCT of 2856 K and closely approximates the spectra

of incandescent lamps (Ohno 2000).

CIELAB

CIELAB is another colour space that the CIE has developed to be used for the specifi-

cation of colour difference (Fairchild 2005) and (Pointer 2002). CIELAB is perceptu-

ally uniform, which means that equal changes in the tristimulus values correspond to

equal changes of about the same visual perception (Sharma & Trussell 1997). CIELAB

has three coordinates,L∗, a∗, b∗, which are the lightness, approximate redness-greenness,

and approximate yellowness-blueness respectively (Fairchild 2005).L∗, a∗ andb∗ can

be found by transformations from CIEXYZ with tristimulus values X, Y and Z as

L∗ = 116f(
Y

Yn
) − 16, (2.31)

a∗ = 500[f(
X

Xn
) − f(

Y

Yn
)], (2.32)
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b∗ = 200[f(
Y

Yn

) − f(
Z

Zn

)], (2.33)

where

f(t) =







t
1

3 if t > 0.008856,

7.787t + 16
116

otherwise.

Xn, Yn andZn are the tristimulus values of the reference white point.

Colour Difference

Colour difference is expressed as∆Eab and is measured in CIELAB as the Euclidean

distance between their coordinates (Pointer 2002, Ohno 2000). ∆Eab can be presented

by

∆Eab =
√

(∆L∗2 + ∆a∗2 + ∆b∗2). (2.34)

The human visual system (HVS) has limited sensitivity in discriminating small dif-

ferences in colour. The threshold that the human vision perceptually distinguish the

difference is known as JND, just noticeable difference, andis around 2.3 (Chou &

Liu 2008, Stokes, Fairchild & Berns 1992).

2.4.4 RGB and sRGB Colour Spaces

The RGB colour space is an additive model, where colour is specified in terms of three

primary colours, red (R), green (G) and blue (B) associated at wavelengths of 700,

546.1 and 435.8 nm (Sharma & Trussell 1997). The RGB colour space is used in dif-

ferent colour industries such as computer, television, andcamera (Yu & Chen 2006,

Chaves-Gonzalez, Vega-Rodrigueza, Gomez-Pulidoa & Sanchez-Perez 2010). Basi-

cally, each imaging device has its own RGB colour space depending on the spectral

sensitivity of its colour sensors (Haeghen, Naeyaert, Lemahieu & Philips 2000). This

means that the RGB colour space is device dependent.

The international standard sRGB colour space is first proposed with respect to the

response of a reference CRT display by Hewlett-Packard and Microsoft (Anderson,

Motta, Chandrasekar & Stokes 1996). The aim of sRGB is to reproduce and share an

accurate colour over different imaging devices and internet (Spaulding & Holm 2002).
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2.4.5 Multispectral Imaging

The colour of an object is strongly dependent on its spectralreflectance. Colour com-

parison in the RGB domain is not suitable for a precise colourmatching, as the RGB

colour space has some limitations (Hardeberg, Schmitt & Brette 2002). An example

is device metamerism (Cheung, Westland, Li, Hardeberg & Connah 2005). Multispec-

tral imaging is a solution for an accurate colour comparison(Yamaguchi, Haneishi

& Ohyama 2008). Recent improvements in commercial multispectral imaging sys-

tems make it possible to use multispectral images in severalapplications. For example

multispectral imaging is applied in colour matching for carindustry (Wagner 2007),

underwater studies (Zawada 2003), detecting early bruisesin fruits (ElMasry, Wanga,

Vigneaultc, Qiaoa & ElSayed 2008), dermatology treatment (Roode, Noordmans, Ver-

daasdonk & Sigurdsson 2006) and the water industry (Govender, Chetty & Bulcock

2007).

Multispectral images are a set of digital bands captured at several narrow spec-

tral bands. Therefore, multispectral images provide the reflectance spectra of a scene

for each image pixel (Valero, Nieves, Nascimento, Amano & Foster 2007). There

are several techniques that are used to capture multispectral images. For example a

monochrome camera with a rotating filter, or a liquid crystaltunable filter (Yamaguchi

et al. 2008). The tristimulus values of X, Y and Z from a set of multispectral images

can be calculated using equations (2.24) - (2.26) (Westland& Ripamonti 2004).
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Experimental Methodology

Several test images are required for different experimentsthroughout the thesis. In

this chapter, the design of these test images and their preparation are described. Two

different types of test images are used, non-constrained and constrained test images as

explained in following.

3.1 Non-constrained Test Images

Non-constrained test images are extracted from real underwater video streams, which

are kindly provided by the Racal Research (now Thales Research) in UK, and the

ADMA company in Abu Dhabi. The rate of image generation is 25 frames/sec and the

images are saved in BMP format. The dimensions of the images are(466×703×3) and

(433 × 601 × 3) for the Thales Research and the ADMA company respectively. The

images are gamma encoded. Before processing the images are converted to double-

precision in MATLAB and the gamma encoding is reversed by raising each pixel value

to the power of 2.2.

3.2 Constrained Test Images

Constrained test images are captured in a controlled underwater environment in the

laboratory. A water tank experiment is designed to provide acontrolled underwater

environment, which resembles a realistic underwater situation. The main objective of

water tank experiment is to design the imaging system in sucha way that different

scenes can be captured, while keeping the level of optical back-scatter unchanged.

Optical back-scatter varies with several parameters such as optical depth, wavelength,

48
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size and density of scattering particles in water (McCartney 1976). In the water tank

experiment all these parameters are fixed in order to have a constant level of scattering

during the imaging.

3.2.1 Water Tank Experimental Setup

Figure 3.1 shows water tank apparatus. A rectangular water tank made of7mm thick

glass with size0.76m × 0.38m × 0.39m is chosen to represent the underwater envi-

ronment. The size of water tank is limited by practical constraints. The tank holds

approximately 100 litres of water. Tap water is used to fill the water tank at temper-

ature of20o with approximate refractive index of 1.33. The tap water represents the

clear water condition. Turbid water is prepared by adding scattering particles to the

tap water in order to represent scattering situation. The refractive index is assumed to

be unchanged when adding scattering particles, as the refractive index is subject only

to a very small variation (Bogucki, Domaradzki, Stramski & Zaneveld 1998).

Figure 3.1: The schematic design of water tank experiment.

The scattering particles are chosen to represent marine scattering particles. The

scattering in deep water is dominated by particles in the size range1−20µm (McCartney
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1976, Sullivan, Twardowski, Donaghay & Freeman 2005, Reynolds, Stramski, Wright

& Wozniak 2008). The concentration of marine particles varies depending on dif-

ferent parameters such as depth, geographical status and season (Sheldon, Prakash &

Sutcliffe 1972, Ahn & Grant 2007). In a previous study (Jiang2004), emulsion paint

was used as a source of scattering particles. Emulsion paintis a water-based paint,

mainly Titanium Dioxide (TiO2), and is used for painting interior or exterior surfaces.

The shape of the particles are spherical or near spherical with diameter ranging from

0.2µm to 2.5µm (Jiang 2004). The volume density of TiO2 is4.25g/cm3.

A translation stage is designed to represent a ROV, that holds both the camera and

light source in a specific angle and height relative to the water tank, while translating

both camera and light source backward and forward in known steps. Different scenes

from water tank can be captured while keeping the optical path constant. Different

designs are available for the moving part of the translationstage such as gear, lead

screw and step motor. All of these methods can provide accurate smooth movements,

but with various levels of complication and cost. The lead screw is the simplest design

with low cost and minimum number of parts and is chosen here. The translation stage

with lead screw is made of different parts, a lead screw with aturning handle, a screw

nut, a pair of base rods, a translation board, camera and light source arm and a wall

clamp. To design the lead screw, the thread size is required.The thread size is chosen

as2mm. This allows the capture of more than 100 continuous images over the water

tank length. The lead screw is attached with a screw nut to oneof the horizontal base

rods. A turning handle is attached to the other end of the leadscrew, to turn the lead

screw and move the translation board linearly. The translation board is made of PVC

(Polyvinyl chloride) and has dimensions of of30cm × 30cm in order to have enough

space for both types of camera bases and the light source arm.The translation board is

held with four guider, made of PTFE (Polytetrafluoroethylene), on the base horizontal

rods. The horizontal rods are made of steel and are of length120cm. The size is chosen

considering the length of the water tank (76cm) plus the length of the translation bar

(30cm) plus some extra space (14cm). The horizontal rods are attached to the wall

with a wall clamp on one side and a pair of vertical base rods onthe other side. The

vertical base rods are made of steel with height of85cm. The height is chosen to be

about half of the height of a person. The light source arm is attached to the translation

board, and a threaded hole is provided on the translation board in order to fit the camera

bases (both of the cameras have the same threaded).

A halogen lamp is used as the light source. The lamp is 75 watt,240V and made by
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General Electric (GE) company. Water plants, gravel and a resolution (optical) target

are used as scene content. There are different standard optical targets available such as

the NBS chart and the USAF chart, which are shown in Figures 3.2(a) and (b). NBS

Figure 3.2: Resolution charts. a) The NBS chart b) The USAF chart c) A general
resolution chart with low frequency bars.

stands for the National Bureau Standards. The patterns are of black bars on a white

background. The bars and spaces are of equal width. The chartis printed on glossy

photographic paper. The spatial frequency range is from 1.0cycle/mm to 18 cycle/mm.

Each pattern is made up of two orthogonal groups of five parallel bars. The number

written next to each pattern is the corresponding spatial frequency in cycle/mm. USAF

stands for the United States of America Air Force. USAF chartis produced by Edmund

Optics company1. This chart is similar to the NBS chart, but each pattern is made up

of three bars and contains a much wider range of spatial frequencies. This chart is

usually produced on either photographic film or on a thin metal film (e.g. Chrome),

but both are placed on a glass substrate. Unlike the NBS chart, the number next to each

set of bars in the USAF chart is not a direct measure of the spatial frequency. Also,

an optical target can be made by printing parallel black and white bars of different

frequencies. In this experiment, an optical target chart bar, which is shown in Figure

3.2(c), is produced on high quality glossy paper in order that it can be used in water.

This optical target chart bar has several parallel bars of lower spatial frequencies than

is available in the NBS and the USAF charts.

Different cameras are used in the water tank experiment to capture test images in

RGB and multispectral formats. As the size of water tank is limited in the laboratory,

the camera is placed out of water to keep the water undisturbed when moving the

1www.edmundoptics.com
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camera. The procedure for capturing RGB and multispectral test images are explained

as below.

3.2.2 RGB Test Images

A RGB charged coupled device (CCD) camera, the Canon PowerShot Pro90 IS, is

used to capture RGB test images. The camera specification is available in Appendix

A. Figure 3.3 shows the experimental arrangement to captureRGB test images. The

Figure 3.3: The experimental arrangement to capture RGB test images. 1) Canon
PowerShot Pro90 IS camera. 2) Halogen lamp 3) Water tank 4) Translation stage.

angle of camera and halogen lamp are set toβ1 = 32o andβ2 = 35o respectively (β1

andβ2 are labeled in Figure 3.1).β2 is slightly more thanβ1 in order to prevent heating

of the camera. The optical path between the camera lens and the bottom of water tank

is 49.75cm, of which 15.3cm is in air and34.45cm is in water. The camera manual

focus is set to between0.5mand1m and the shutter speed is set automatically by the

camera. The spatial distance between the camera locations for capturing two adjacent

images is2mm.

Different levels of turbid water are made by adding different amounts of emulsion
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paint to water, which are described in Table 3.1. Two images are captured for all water

turbidity levels,S0-S5.

Image Series S0 S1 S2 S3 S4 S5

Water Turbidity
0 0.1 0.2 0.3 0.4 0.5

(gr/100litres)

Table 3.1: Different levels of water turbidity for RGB test images.

3.2.3 Multispectral Test Images

In multispectral images, the wavelength can be assumed constant for each monochrome

image in narrow spectral band with central wavelengthλ. Therefore, by using multi-

spectral images the parameter wavelength is kept constant.A hyperspectral imaging

system is used to record multispectral test images. Although a multispectral camera

would be sufficient for this experiment, but a hyperspectralcamera is chosen instead

as it was practically available.

Hyperspectral imaging system consists of a hyperspectral camera, and a filter.

The hyperspectral camera is Hamamatsu ORCA-ER C4742-80-12AG, which is a B/W

CCD digital camera. The filter is a fast tunable liquid-crystal filter, Varispec, model

VIS-10, Cambridge Research& Instrumentation, Inc., Massachusets, which consists

of optics module and electronics controller module. The optics module is mounted

in front of the camera and the electronics controller moduleprovides the interface to

the host computer. The wavelengths of the light it transmitsare electronically control-

lable, providing rapid, vibrationless selection of any wavelength in the visible (VIS)

and near-infrared (NIR) tuning ranges. The filter can be set to 10nm or 20nm spec-

tral bandwidth. Figures 3.4(a) and (b) shows the hyperspectral camera and the optics

module of the filter, which is mounted in front of the camera, respectively. Details of

the hyperspectral camera specifications are given in Appendix A. Figure 3.4 shows

the experimental arrangement to capture multispectral test images. The angle of mul-

tispectral camera and halogen lamp are set toβ1 = 42o andβ2 = 45o respectively.

The optical path between the camera lens and the bottom of water tank is122.08cm,

of which77cm is in air and45cm is in water. The camera aperture and focus are set to

4.0 and 1.15 respectively.
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Figure 3.4: The experimental arrangement for capturing multispectral images. 1-a)
Hyperspectral Camera, 1-b) VariSpec optics, 2) Halogen lamp, 3) Water tank, 4) Trans-
lation stage, 5) Host computer, 6) The electronics controller module.
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Four series of multispectral test images are captured in different water conditions

at20o water temperature, as described in Table 3.2. Each series contains 10 continuous

monochrome images in size(1024× 1344) at visible spectrum [400nm 720nm] over a

narrow spectral band of bandwidth 10nm. The bandwidth of 10nm provides sufficient

accuracy for most colour spectra (Sharma & Trussell 1997). The spatial distance be-

tween two camera locations for capturing two adjacent images is 4mm. Also a dark

image is captured, when the camera is covered completely by ablack cloth at visible

spectrum [400nm 720nm] in a narrow spectral band of bandwidth 10nm to estimate

for the dark current noise and at respective wavelengths.

Before processing multispectral images, the dark current noise is subtracted from

the image to remove any biased which is due to the dark currentnoise (Zawada 2003).

Then, the images are converted from 12 bits to 8 bits.

Image Series T0 T1 T2 T3

Water Turbidity
0 0.3 0.7 0.9

(gr/100litres)

Table 3.2: Different levels of water turbidity for capturing multispectral test images.



Chapter 4

Degradations in Underwater Images

Previously, it has been shown that optical scattering causes underwater images to be de-

graded in terms of both overall contrast and spatial resolution. Contrast loss is mainly

due to the effect of optical back-scatter,L3, and resolution loss is mainly due to the

effect of optical forward-scatter,L2 as explained in Section 2.1.3. In order to improve

a degraded underwater image, the main degradation effect must be mitigated. Now, the

question is which of these two effects, contrast loss or resolution loss, has the biggest

degradation effect in an underwater image? To answer this question, the impact of

contrast loss and resolution loss should be compared in a thepractical underwater sit-

uation.

This chapter is structured as follows. Section 4.1 illustrates the impact ofL2 and

L3 on image degradation. In Section 4.2 an experiment is conducted to characterise

the effect ofL2 andL3 in practical underwater conditions. It is shown experimentally

that contrast loss is the dominant degradation effect compared to resolution loss.

4.1 The Impact ofL2 and L3 in Image Degradation

According to the image geometry shown in Figure 1.2, the intensity of an underwa-

ter image pixel is composed from three components,L1, L2 andL3, which are direct

(Aλ(x, y)), forward-scatter (FSλ(x, y)) and back-scatter (BSλ(x, y)) components re-

spectively. Hence, an underwater image,Imλ(x, y), at a spatial pixel position(x, y)

and a specific wavelengthλ can be presented as shown in Equation (4.1) (Trucco &

Olmos-Antillon 2006, Yu & Liu 2007).

Imλ(x, y) = Aλ(x, y) + FSλ(x, y) + BSλ(x, y). (4.1)

56
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It was explained in Chapter 2 thatL1 contains the image information, whileL2

andL3 individually degrade image quality in forms of resolution loss and contrast loss

respectively. A target bar chart in a non scattering condition (e.g. air medium) and its

corresponding line plot are shown in Figure 4.1. This bar chart is used to show the

form of each component in a scattering medium.

Figure 4.1: (a) A target bar chart in a non scattering medium.(b) The line plot of the
target bar chart.

A degraded image structure for the bar chart is shown in Figure 4.2. In this fig-

ure, it is shown how each component,L1, L2 andL3, contributes to form a degraded

image. In this example the values ofL1, L2 andL3, are calculated utilising Equations

(2.1), (2.5) - (2.7) using parameters based on typical conditions. A Gaussian filter

with standard deviation relative toθ is used to model the effect of image blur forL2

(Figure 4.2(d)). The line-plot of the intensity of a degraded image is shown in Figure

4.2(e). This is the combination of the three components,L1, L2 andL3. Line plots of

the intensity of componentsL1, L2 andL3 are individually shown in Figures 4.2(a),

(b) and (d) respectively. Figure 4.2(c) shows only the effect of contrast loss, which is

the combination ofL1 andL3. Comparing Figures 4.2(c) and (d), it can be seen that

the two degradation effects, contrast loss and resolution loss, are different. In contrast

loss the spatial fluctuations caused by the bar chart patternare clearly visible, and just

the absolute intensity is increased. However, with resolution loss, the transitions are

smoothed with respect to the original bar chart image.

The dominant degradation effect depends on the relative contribution of each com-

ponent. Two different situations, highL2, giving mostly resolution loss, and highL3,

giving mostly contrast loss, are illustrated in Figures 4.3(a) and (b) respectively. Sit-

uations with mostly resolution loss would arise when there are big scattering particles

and a short optical depth. Conversely situations with mostly contrast loss would arise
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Figure 4.2: The structure of a degraded underwater image. The values of optical dis-
tance and extinction coefficient areR = 1m andβ = 0.5m−1. (a) Direct component,
L1. (b) Back-scatter component,L3. (c) The combination of direct and back-scatter
components. (d) Forward-scatter component,L2. (e) The combination of three com-
ponents, which represents the degraded underwater image line plot.
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Figure 4.3: The line plot of original image (dotted line) andthe line plots of two
degraded images (solid line) with two different degradation effects (a) Resolution loss
(b) Contrast loss.

when there are small scattering particles and long optical depth.

4.2 Experimental Characterisation

The aim of this section is to compare experimentally the effects of contrast loss and

resolution loss in real underwater conditions in order to find which of these two effects

causes the most significant degradation effect. It is not possible to measure these two

effects separately in real situations. Therefore, an experiment is designed to provide

a controlled underwater environment in order to have the scattering condition simi-

lar to a real underwater environment such as seawater, oceanin the laboratory. The

experimental setup is as explained in Section 3.2.2.

Contrast loss strongly depends on the productβR as explained by Equation (2.7).

To reconstruct the same level of contrast loss, the productβR in this experiment should

be the same as the value ofβR in real condition.

The optical depth in this experiment is shorter than that in real imaging conditions.

It is around 35cm in this experiment, while in real underwater imaging it is at least 2

meters. Therefore, a higher value ofβ is used to compensate for the shorter range of

R. Higherβ can be easily achieved by having higher particles concentrations (density)

as shown in Equation (2.3).

As explained in Section 2.1.3, resolution loss (image blur)depends on the amount

of misplacement, and the misplacement depends on the scattering angle,θmax, and op-

tical depth, R. Assume, that misplacement Y1 is caused by thescattering particles with
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scattering angle ofθ1 and in distance of R1. For a shorter distance of R2, (R2<R1),

the scattering angle,θ2, should be wider (θ2 > θ1) in order to have same amount of

misplacement, and as a result same level of image blur. The scattering angleθmax has

inverse relation with particle diameter in a specific wavelength as shown in Equation

(2.4). Hence, for a widerθmax, a smaller scattering particle diameter is required.

In this experiment the optical depth in scattering medium isabout 35cm, which is

at least ten times shorter than the optical path in real situation. Therefore, particle size

and density are selected at least ten times smaller and ten times higher in density than

in the real situation respectively. The scattering particles in seawater and ocean are in

size1µm−20µm (McCartney 1976), as a result the particles in this experiments should

be selected in size range of0.1µm − 2µm. Emulsion paint (EP) is used as scattering

particles in this experiment. Emulsion paint particles were used as scattering particles

in previous studies (McNeil, Hanuska & French 2001, Jiang 2004) as well.

The density of particles varies in different seas and oceans. Yura (1971) gives an

estimated value ofβ = 0.1m−1 for seawater atλ=480nm. IfR ≃ 4m, an estimated

value of the productβR in real condition and in 480nm would be 0.4.

To provide different particles density in this experiment,different values ofβR are

used by adding different amounts of particles weight to water. Table 3.1 presents dif-

ferent densities of emulsion paint particles that are used to provide different levels of

turbidity,S0−S5, in this experiment. The estimated value ofβR for S5 is calculated as

βR≈ 0.49 atS5. This is found by usingβ = 1.4132(m−1) at 0.5 gr/100litres of emul-

sion paint at green colour channel from previous work (Jiang2004) and considering

R=35cm. The value ofβR in real turbid water isβR = 0.4. Therefore, the maximum

value ofβR ≈ 0.49 atS5 in this experiment is higher thanβR = 0.4 in real turbid

water condition. An optical target, shown in Figure 4.4, is used to measure the con-

Figure 4.4: Experimental optical target.

trast and spatial resolution in different conditions. Contrast is calculated by Equation

(2.8). Image spatial resolution quantifies how close lines can be resolved in an image.
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The image resolution can be measured using the modulation transfer function (MTF)

measured using an optical target. The MTF at each line pair with specific frequencyf

can be calculated by

MTFf =
cf

cref
× 100, (4.2)

wherecf is the contrast of a line pair at a specific frequencyf , andcref is the contrast

of the lowest frequency line pair. The resolution of different images can be compared

by the value of the bandwidths estimated from the MTF chart. The frequency in which

the MTF chart reaches to100√
2

is the image bandwidth (100 is the maximum value at the

MTF chart and 1√
2

is for when the power gets to50%).

4.2.1 Results and Conclusion

Six images are captured from optical target at six water conditions, S0 to S5. The

first image is taken in clear water condition,S0, and the rest of the images are taken

in low to high level of water turbidity,S1 to S5. Images corresponding to the middle

Figure 4.5: Sample images from the target bar at different water conditions.S0 is for
clear water andS1- S5 are for low to high water turbidity respectively.

part of the optical target, as defined by the red dashed line inFigure 4.4, are shown in

Figure 4.5 for different water conditions. It can be seen that as the water turbidity is

increasing, the image quality is decreasing.
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The image contrast is calculated for different levels of turbid water by using Equa-

tion (2.8). The image bandwidths at different levels of water turbidity are found from

the correspondence MTF charts, which are presented in Figure 4.6(a). Figure 4.6(b)

presents the contrast and bandwidth with respect to different levels of water turbidity

by the solid line and the dashed line respectively. The imagecontrast starts to decrease

from S1 and becomes very low atS5. For example the image contrast atS3 is around

10% of the image contrast in clear water,S0. The plot of bandwidth shows that the im-

age resolution does not change significantly atS1 andS2. The image bandwidth starts

to decrease fromS3, where the bandwidth drops to nearly20% of the bandwidth ofS0.

Comparing the plots of contrast and bandwidth, it can be seenthat the contrast loss is

evident for all levels of water turbidity, whereas the resolution loss can not be detected

for S1 andS2. Therefore, for low level of water turbidity the dominant degradation

effect is contrast loss. For higher levels (> S3) both contrast loss and resolution loss

are evident. However, by the time the resolution loss is significant, the image contrast

is already less than10%. In this situation, even if the image could be compensated

for the effect of resolution loss, the image quality still remains poor due to very low

contrast.

In summary the results show that of the two degradation effects, contrast loss and

resolution loss, the contrast loss is the main problem in underwater images. As a result,

the quality of an underwater image should be improved by compensating the effect of

contrast loss.
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Figure 4.6: (a) The MTF charts for different levels of turbidwater. (b) The plot of
contrast and bandwidth with respect to the turbidity level.



Chapter 5

Underwater Image Model

The model of a degraded underwater image is given by Equation(1.1). In this chapter

the validity of the image model is investigated experimentally. This chapter is struc-

tured as follows. Section 5.1 is the explanation of the forward model of an underwater

image. In Section 5.2, it is shown that image recovery is possible using an inversion

procedure. Section 5.3 is concerned with the design of the water tank experiment. It

includes the experimental design, error analysis and experimental procedures, as well

as experimental results.

5.1 Forward Model of Image Formation

The formation of an image in a turbid medium, which only has contrast loss problem,

is reviewed in this section. In a scattering medium, the intensity of a degraded image at

pixel spatial position(x, y) and at particular wavelength (λ) is denoted byImλ(x, y).

This can be represented as the sum of two components, the actual image contribution

from the object,Aλ(x, y), and the optical back-scatter,Bλ(x, y) (Tan & Oakley 2001).

Imλ(x, y) = Aλ(x, y) + Bλ(x, y). (5.1)

In diffuse light conditionsAλ(x, y) andBλ(x, y) can be calculated from

Aλ(x, y) = C0Rλ(x, y) exp (−βλ(x, y)R), (5.2)

Bλ(x, y) = C0(1 − exp (−βλ(x, y)R)), (5.3)
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whereC0 is the illumination radiance,Rλ(x, y) is the scene reflectance function,βλ(x, y)

is the extinction coefficient andR is the distance from the camera to the object (Tan &

Oakley 2001).

The Taylor series expansion ofexp(x) can be written

exp(x) ≈ 1 + x +
x2

2!
+ ... +

xn

n!
. (5.4)

When0 < x ≪ 1, thenexp(x) ≈ 1 + x.

In moderate scattering conditions0 < βλ(x, y)R < 1, the approximations of equations

(5.2) and (5.3) are

Aλ(x, y) = C0Rλ(x, y)(1 − βλ(x, y)R), (5.5)

and

Bλ(x, y) = C0(1 − (1 − βλ(x, y)R)), (5.6)

= C0βλ(x, y)R. (5.7)

Combining Equations (5.5) and (5.7),Imλ(x, y) can be written as

Imλ(x, y) = C0Rλ(x, y)(1 − βλ(x, y)R) + C0βλ(x, y)R, (5.8)

= C0

(

βλ(x, y)R + (1 − βλ(x, y)R)Rλ(x, y)
)

. (5.9)

When an image is captured by camera, the camera introduces a scaling factor. There-

fore, the image from the camera,Iλ(x, y), has the form

Iλ(x, y) = ζImλ(x, y), (5.10)

whereζ is a scaling constant introduced by the camera. Combining Equations (5.9)

and (5.10),Iλ(x, y) can be written as

Iλ(x, y) = ζC0

(

βλ(x, y)R + (1 − βλ(x, y)R)Rλ(x, y)
)

. (5.11)

To simplify this expression the first term on the left hand side in Equation (5.11),

ζC0βλ(x, y)R, is written asbλ(x, y) and the scaling component,ζC0(1 − βλ(x, y)R),
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is written asaλ(x, y). Equation (5.11) then becomes

Iλ(x, y) = bλ(x, y) + aλ(x, y)Rλ(x, y), (5.12)

wherebλ(x, y) is a parameter representing optical back-scatter andaλ(x, y) is a pa-

rameter representing the combined effects of camera gain, illumination and extinction.

Equation (5.12) represents the simplified forward model of an image in a scattering

medium.

5.2 Image Recovery (Inversion Model)

Recovery of the estimated value of the content of an image pixel, Îλ(x, y), can be

achieved by rearranging Equation (5.12) to give

Îλ(x, y) =
Iλ(x, y) − bλ(x, y)

aλ(x, y)
. (5.13)

5.3 Water Tank Experiment

Before starting the experimental design and procedure, an explanation is given about

the Fixed Path image vector and the regression method.

5.3.1 Fixed Path

In some imaging situations the optical path remains approximately constant and only

the scene reflection varies. For example, assuming a flat seabed, when an underwater

camera is mounted on a Remotely Controlled Vehicle (ROV) andtranslated over the

sea bed at a constant height and angle. This situation is illustrated in Figure 5.1. It can

be seen that for each camera location, the angle and height ofcamera remain constant

at β1 andh1 respectively. Therefore, for each image pixel position theoptical path

remains constant in different camera locations. The optical path for image pixelp(x, y)

at different imaging locations, (1), (2),..,(n), isd1. In this special case it is possible to

obtain a vector of intensity values for each image pixel coordinates that correspond

to different camera locations. This vector will be referredto as a fixed path intensity

vector. Figure 5.2 represents the image pixel coordinates for a sample of a fixed path

intensity vector,V (p(x, y, 1), p(x, y, 2), ..., p(x, y, n)). This imaging situation may be

simulated in a laboratory environment by using a water tank.
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Figure 5.1: The camera position is fixed at angle ofβ1 and height ofh1 for capturing
images from different locations of seabed. The optical pathremains constant atd1
while the seabed pattern is changing for different camera locations.

Figure 5.2: The schematic form of an image pixel coordinatesfor a sample of Fixed
Path Vector,v(p(x, y, 1), p(x, y, 2), ..., p(x, y, n)).
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5.3.2 Regression Method

Assume that there are two fixed path vectors available, wherethe first one,Vi, is for

the scene intensity of a constant scattering medium and the second one,Vf , is for

the intensity of the corresponding scene from a non scattering medium. According to

Equation (5.12), the regression line (best fitting line) of the plot ofVi versusVf has the

slope and Y-intercept ofaλ(x, y) andbλ(x, y) respectively.

Therefore, the estimated values ofaλ(x, y) andbλ(x, y) at any point(x, y) can be

obtained from this regression line without having any information about the physical

properties of the scene. This estimation method is referredto as the Regression method

in this work. The certainty of the regression estimation canbe found by calculating the

prediction error (σ2
PE) (Gilchrist 1984):

σ2
PE =

e2

(n − 2)
, (5.14)

wheren is the number of samples ande is the difference between the actual and pre-

dicted value:

e = Iλ(x, y) − Îλ(x, y). (5.15)

To investigate the linear forward model of an underwater image, two Fixed Path

vectors,Vi andVf , taken from real underwater images, are required. The imaging sit-

uation for the Fixed Path vector requires a controlled underwater environment. There-

fore, a water tank experiment is designed to capture underwater images for the Fixed

Path vector analysis.

5.3.3 Experimental Design

The main objective of water tank experiment is to design the imaging system in such

a way that different scenes can be captured, while keeping the level of optical back-

scatter unchanged. It is explained in Chapter 4 that opticalback-scatter varies with

several parameters such as optical depth, wavelength, sizeand density of scattering

particles in water. In the design of water tank experiment itis important to keep all

these parameters unchanged, in order to have a constant optical back-scatter during the

imaging.

The experimental arrangement for multispectral images, isdescribed in Section

3.2.3. The intensity value of one pixel in a specific position, (x, y), from various im-

ages of turbid water can provide the vector informationVi(x, y). We also need the
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information of the scene reflectance for corresponding clear image pixels to give the

vectorVf(x, y). This can be done either by taking pictures of the same cameraloca-

tions from water tank with no water, or water tank filled with tap water only (clear

water condition). The latter is chosen, because the opticalpath for a specific camera

location changes when the water tank is empty. The change in optical path causes a

path difference of about15.55cm (equivalent here to 1920 pixels) in scene x-y posi-

tion, which leads to significant image registration error. Moreover, the refractive in-

dex is subject only to a very small variation when adding scattering particles to water

(Bogucki et al. 1998). The refractive index is assumed to be unchanged when adding

scattering particles.

5.3.4 Experimental Errors

Although the experiment is designed in such a way to record the pixels intensity values

accurately, there are some unavoidable errors in the imaging system which cause vari-

ations in measured pixel intensity. Therefore, the underwater image model of Equation

(5.12) can be written as

Iλ(x, y) = bλ(x, y) + aλ(x, y)Fλ(x, y) + err, (5.16)

whereerr is the total experimental error. There are two main sources of error in this

experiment, camera noise,Ncamera, and image registration error,NImReg.

err = Ncamera + NImReg. (5.17)

Camera Noise

A CCD (charge-coupled device) digital camera converts the photons coming to camera

sensors to electrons and then to bits (Liu, Szeliski, Kang, Zitnick & Freeman 2008).

Noise can be introduced during each of these steps of acquisition and conversion. A

general model of CCD camera noise ,Ncamera, can be given by

Ncamera = ND + FPN + NR + NS + NQ, (5.18)

whereND is for the dark current noise,FPN is for the fixed pattern noise,NR is for

the read out noise,NS is for the shot noise andNQ is for the quantization noise (Healey

& Kondepudy 1994).
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Dark current noise occurs due to current leakage in each pixel of the CCD sensor

and is constant over time. Fixed pattern noise is the non uniformity of the dark current

noise in pixel geometry arising in sensor fabrication. Darkcurrent noise and fixed

pattern noise can be corrected by subtracting the dark imagefrom the captured image

(Lukas, Fredrich & Goljan 2006). The dark image is obtained by capturing an image

when the camera lens is fully blocked (no light reaches to camera sensors).

Readout noise is added to the signal when reading out chargescollected by the

pixel (Reibel, Jung, Bouhifd, Cunin & Draman 2003) and has Gaussian distribution

(Withagen, Groen & Schutte 2007).

Shot noise arises because the number of photons reach to camera sensors at a spe-

cific time are different, even when the time-averaged intensity is identical. The distri-

bution of photons in a specific time follows the Poisson distribution (Irie, McKinnon,

Unsworth & Woodhead 2008). In the Poisson distribution, when the number of counts

is high, the variance is equal to mean,σ2 = µ.

Quantization noise is introduced by the analog-to-digitalconversion (ADC) and

has a uniform distribution (Withagen et al. 2007).

Camera noise has zero mean (µ = 0) and is represented by the root square of

variance,σNcamera
. However, to calculate the sum of different sources of noise, the

values are added in variance (Reibel et al. 2003). The calculation of the total camera

noiseσ2
Ncamera

is presented in Equation (5.19).

σ2
Ncamera

= σ2
ND

+ σ2
FPN + σ2

NR
+ σ2

NS
+ σ2

NQ
, (5.19)

whereσ2
ND

, σ2
FPN , σ2

NR
, σ2

NS
andσ2

NQ
are for dark current noise, fixed pattern noise,

readout noise, shot noise and quantization noise respectively.

Image Registration Error

Image registration error is a common problem when two imagesare captured from

the same scene at different times (Robinson & Milanfar 2004), different viewpoints

or with different sensors (Zitova & Flusser 2003). Image registration problem can be

during registration process or geometric registration process (Moller & Posch 2008).

The error due to the registration process depends on the CCD sensors fabrication.

The error due to the geometric registration process exists,because of the accuracy level

in translation steps. As the image resolution is high, even avery small inaccuracy in

translation steps may cause the pixel to be misregistered. Figure 5.3 illustrates the
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Figure 5.3: The pixel X(p) in (a) is misregistered to X(p+r) in (b). The registration
error isr pixel position.

effect of image registration error. PixelX(p) in image(a) is miregistered in image(b)

by r distance and has the new spatial position,X(p + r).

In this experiment, the geometric registration is the main source of the image reg-

istration error. The question is how much variation is introduced to the pixel intensity

due to the misregistration ofr spatial distance. A statistical tool is utilized to analyse

the image pixels and measure for the amount of pixel intensity variation,σ2
Reg. This can

be calculated by the expected value of the square differenceof the intensity between

the two pixels,X(p) andX(p + r), as presented in Equation (5.20).

σ2
Reg = E[(X(p) − X(p + r))2]. (5.20)

Equation (5.20) can be expanded as

σ2
Reg = E[(X(p) − X(p + r))2],

= E[X(p)2 + X(p + r)2 − 2X(p)X(p + r)],

= E[X(p)2] + E[X(p + r)2] − 2E[X(p)X(p + r)].

As X is a stationary image,E[X(p)2] = E[X(p + r)2]. Therefore,

σ2
Reg = 2(E[X(p)2] − E[X(p)X(p + r)]). (5.21)

The value ofσ2
Reg is calculated for different values ofr, varying from 0 to 100, for

the sample image in clear water condition. The plot of the results are shown in Figure

5.4. It can be seen thatσ2
Reg = 0 for r = 0, and then asr increases, image registration

error, σ2
Reg, increases as well. In fact this shows that asr increases, the product of
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E[X(p)X(p + r)] decreases, because there is less correlation between the two pixels.

When the image contrast for a specific value ofr is getting lower, the difference

between pixel values decreases, which means the value ofE[(X(p) − X(p + r))2] is

getting lower. AssumeX(p) is the value of pixel inp position in a clear condition and

Y (p) is the pixel value for the same pixel position,p, in a general scattering condition,

then

Y (p) = a1X(p) + b1, (5.22)

wherea1 is the scaling factor due to extinction (loss of contrast) and b1 is the offset

value due to scattering. Therefore,

X(p) =
1

a1
(Y (p) − b1). (5.23)

X(p) of Equation (5.23) for pixel positions,p andp+r, can be substituted in Equation

(5.20):

σ2
Reg(X) = E[(X(p) − X(p + r))2],

= E[(
1

a1

(Y (p) − b1 − (Y (p + r) − b1)))
2],

=
1

a2
1

E[(Y (p) − Y (p + r))2],

=
1

a2
1

σ2
Reg(Y ).

Therefore,

σ2
Reg(Y ) = c′2σ2

Reg(X), (5.24)

wherec′ is the coefficient due to slope of the line, which represents the extinction

and as a consequence the degradation of contrast. Here, the value of coefficientc′ is

chosen to be the proportion of image contrast in clear (c1) and scattering condition (c2

), c′ = c2
c1

for simplicity.

In this experiment the translation stage is designed to translate the camera with

accurate steps, but still it introduces around 5 pixels registration error1. The variance

due to 5 pixels misregistration (r = 5) in clear water condition (high contrast) is found

from the plot ofσ2
Reg versusr in Figure 5.4, in whichσ2

Reg(r = 5) = 120. This value

1Each full turn (360o) of the turning handle translates the camera about 2mm, and this corresponds
to the length of 20 pixels. The personal error of turning the handle is assumed to be a quarter of the
turning area360

o

4
= 90o, and this corresponds to20

4
= 5 pixels.
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Figure 5.4: The plot ofσ2
Reg versusr in clear water condition for sample image (first

camera position) at600nm.

is expected to be lower for turbid water condition,σ2
Reg = c′2 × 120.

Calculations of Experimental Errors

In this experiment the amount of different sources of cameranoise are as follow. The

multispectral images are corrected for the dark current andfixed pattern noise by de-

ducing the dark image from the main multispectral images. Also, the value for read out

noise2 and quantization noise3 are very low and are negligible. Therefore, two domi-

nant sources of noise, shot noise and image registration noise, are used to calculate for

the total experimental error,err.

err =
√

σ2
NS

+ c′2σ2
Reg. (5.25)

The value of shot noise isσNS
=

√
18000(electrons), as shown in camera specification

in Table A.2. The conversion betweenelectrons andcounts(nbits) units is

counts(nbits) = (electrons)
camera gain

,

2σ2

NR
= 82

electrons = 0.01counts
3σ2

NQ
= 0.006
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where camera gain is

cameragain = Full well capacity
2n , n: is the number of bits.

Heren = 8, and the value of full well capacity is18000(electrons) (Table A.2). As a

result the value of camera gain is18000
(28)

= 70.31. The converted value of shot noise in

counts(8bits) unit is σNS
=

√
18000
70.31

= 1.9. The value oferr in clear water condition

(c′ = 1) can be calculated by substituting the values ofσ2
NS

andσ2
Reg in Equation(5.25):

err =
√

σ2
NS

+ σ2
Reg,

err =
√

(1.92) + 120,

err = 11.12.

5.3.5 Experimental Procedure

Four series of images are captured using the Hamamatsu camera at different levels of

water turbidity,T0 - T2, at20o water temperature. Each series contains 10 continuous

monochrome images in a narrow spectral band of bandwidth10nm.

5.3.6 Results and Discussions

The sample of captured images in clear and turbid water conditions are shown in Figure

5.5.

A sample pixel position is selected in spatial position of(244, 350). The intensity

value of this pixel varies as the camera position changes. Figure 5.6 shows how the

value of this pixel changes from the first image, which is taken at first camera position,

to the last image.

The parameters (bλ(x, y) andaλ(x, y)) in Equation (5.12) are estimated by the re-

gression method for the sample pixel position of(244, 350) at600nm and for medium

level of turbidity,T2. Figure 5.7 shows the scatter plot and the regression line ofVi

versusVf for the pixel position of(244, 350) at 600nm for medium level of turbid

water. It can be seen that some of the data points are dispersed around the regression

line, which is due to the effect of the expected experimentalerror.

The amount of dispersion is calculated for the pixel position (244, 350) and is

σdispersion = 4.45. The expected experimental error for different levels of water turbid-

ity at 600nm is calculated and presented in Table 5.1. It can be seen that the expected
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Figure 5.5: Sample of captured images (1024 × 1344) in 600nm wavelength at
first camera position in a) Clear water condition b) Low levelof turbid water,T1

(0.3gr/100litres) c) Medium level of turbid water,T2 (0.7gr/100litres) d) High level
of turbid water,T3 (0.9gr/100litres).
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Figure 5.6: A block of40 × 40 (226 : 266, 330 : 370) of neighboring pixels of pixel
position(244, 350) is selected and shown for all 10 images. The content of the sample
image pixel in position of(244, 350) in main image ((18, 20) in sample image block)
is shown for different camera locations.
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experimental error forT2 water turbidity at600 is errT2
(600nm) = 4.62. By compar-

ing the values oferrT2
(600nm) andσdispersion , it can be concluded that the amount of

dispersion for pixel position(244, 350) at 600nm and forT2 water turbidity is within

the expected experimental error.

c′T1
errT1

c′T2
errT2

c′T3
errT3

550nm 0.7411 8.3374 0.3230 4.0160 0.2583 3.4085

600nm 0.8182 9.1621 0.3846 4.6217 0.2740 3.5521

650nm 0.7839 8.7946 0.3603 4.3805 0.3283 4.0675

700nm 0.7491 8.4233 0.3833 4.6084 0.3321 4.1045

Table 5.1: The calculated value for the expected experimental error andc′ coefficient
at different wavelengths and different level of water turbidity.

The values ofa600nm(244, 350) = 0.1857 andb600nm(244, 350) = 156.9 can be

found from the slope and Y-intercept of the regression line respectively. The values

of a600nm(244, 350), b600nm(244, 350) anderrT2
(600nm) are substituted in Equation

(5.16). Therefore,I600nm(244, 350) equation can be written as

I600nm(244, 350) = 156.9 + 0.1857 × F600nm(244, 350) ± 4.62. (5.26)

The prediction error of the estimated values is calculated using Equation (5.14),σ2
PE =

4.982. The intensity variation of4.98 in range of[0 255] shows1.9% deviation from

the actual value, which means the method can predict the parameters value with98.1%
4 accuracy at600nm.

The results so far showed that underwater image model is valid for one pixel posi-

tion, (244, 350), at600nm and for medium level of turbid water.

Next, the validity of the underwater image model is investigated for all image pixel

positions at the same conditions by calculating the amount of dispersion. It is expected

that the amount of dispersion for all pixel positions be about the expected experimental

error,errT2
(600nm). Figure 5.8 shows the dispersion value for all image pixel posi-

tions for medium level of water turbidity at600nm. The median value of dispersion

for all pixel positions is calculated and is3.85. It can be seen that this value is within

the range of the predicted dispersion value,errT2
(600nm) = 4.62. Therefore, it can be

seen that underwater image model at600nm and in medium level of turbid water is not

4100 × 4.98
255

= 1.9%, 100%− 1.9% = 98.1%
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Figure 5.7: The plot ofVi versusVf . Vi is the Fixed Path vector in turbid water con-
dition andVf is the Fixed Path vector in clear water condition. The estimated value of
extinction and optical back-scatter are about0.1857 and156.9 respectively. The black
solid line is for the regression line and the two red dashed lines in position of±4.62
from the regression line are defining the estimation intervals.
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only valid for one pixel position, but also it is valid for allof the image pixel positions.

However, for few pixel positions the dispersion value is higher than expected experi-

mental error. This happens when the statistical solution fails to estimate accurately, as

an example, when the value of data points atVi are close to each other. To calculate for

Figure 5.8: Dispersion value for all pixel positions at600nm, and for medium water
turbidity, T2. The median dispersion for all pixel positions is 3.85 and the expected
experimental error is 4.62.

the prediction error among all pixel positions, first the prediction error for each image

pixel position is calculated, then the median value of the prediction error is calculated,

σ2
PE(T2)600nm = 4.32. This is1.7% deviation in intensity range of[0 255] from actual

value, which shows98.3% accuracy.

Furthermore, the validity of underwater image model is investigated for different

levels of water turbidity, low (T1) and high (T3), and also for different wavelengths.

The camera spectral response and the camera filter transmittance vary with respect to

wavelength. Also, the image contrast is changing for different water turbidity. All these

contribute to variations in the camera noise and registration error, and so to variation in

the total expected error. The value of total expected error,err, at different conditions
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are calculated and presented at Table 5.1. Figure 5.9 shows the plots of dispersion for

all pixel positions for two different levels of water turbidity, T1 andT3, at600nm. The

expected experimental error for two different levels of water turbidity at600nm can

be found at Table 5.1,errT1
(600nm) = 9.16 anderrT3

(600nm) = 3.55. The median

value of dispersion for all image pixel positions forL1 andL3 level of water turbidity

are10.19 and2.28 respectively. It can be seen that these values are within therange of

the expected experimental error for different levels of water turbidity.

The median value of prediction error of the estimated valuesfor two different levels

of turbid water,T1 andT3, and at600nm are calculated,σ2
PE(T1)600nm = 11.452 and

σ2
PE(T3)600nm = 2.542. These values represent4.5% and0.9% prediction error forT1

andT3 at600nm respectively.

Figures 5.10 and 5.11 show the plots of dispersion for all pixel positions for medium

level of water turbidity,T2, and at550nm and650nm, 700nm respectively. The ex-

pected experimental error for three different wavelengthsfor L2 level of water tur-

bidity can be found at Table 5.1,errT2
(550nm) = 4.01, errT2

(650nm) = 4.38 and

errT2
(700nm) = 4.6. The median value of dispersion for all image pixel positions

for T2 level of water turbidity and at550nm and650nm, 700nm are3.39, 4.21 and

4.62 respectively. It can be seen that these values are within therange of expected

experimental error.

The median value of prediction error of the estimated valuesfor T2 level of water

turbidity at550nm, 650nm, 700nm are calculated,σ2
PE(T2)550nm = 3.792, σ2

PE(T2)650nm =

4.72 andσ2
PE(T2)700nm = 5.172. These values represent1.48%, 1.84% and2.02% pre-

diction error forT2 at550nm, 650nm, 700nm respectively.

It can be seen from the results that the dispersion is within the range of expected

error, and remains consistent over variation of water turbidity and wavelength. The

prediction error is calculated in each condition and is lessthan5%. Therefore, the

validation of the proposed underwater image model (Equation (5.12)) is confirmed

with at least95% accuracy and Equation (5.13) can be used in the proposed underwater

image enhancement method.
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Figure 5.9: Dispersion value for all pixel positions at600nm for a) Low level of turbid
water, T1. The median dispersion for all pixel positions is 10.19 and the expected
experimental error is 9.16. b) High level of turbid water,T3. The median dispersion
for all pixel positions is 2.28 and the expected experimental error is 3.55.
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Figure 5.10: Dispersion value for all pixel positions at550nm for medium level of
turbid water,T2. The median dispersion for all pixel positions is 3.39 and the expected
experimental error is 4.01.
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Figure 5.11: Dispersion value for all pixel positions for medium level of turbid water,
T2, at a)650nm.The median dispersion for all pixel positions is 4.21 and the expected
experimental error is 4.38. b)700nm. The median dispersion for all pixel positions is
4.62 and the expected experimental error is 4.60.



Chapter 6

Mitigation of Contrast Loss in

Underwater Images

In this chapter a new physics-based approach is proposed to improve the quality of

an underwater image by mitigating the contrast loss. The contrast loss in underwater

images is due to the effect of optical back-scatter.

The proposed method is based on Equation (5.13), by which thecontrast loss can be

mitigated by subtracting optical back-scatter,bλ(x, y), from the degraded underwater

image and then multiplying the image by a scaling parameter,1
aλ(x,y)

. The key issue

is how to estimatebλ(x, y). The aim of this chapter is to propose different methods

to address this issue for monochrome underwater images. Theproposed methods use

statistical techniques and digital image processing toolsand do not require a prior

physical information about the scene. The operation of subtraction is in fact a kind

of filtering. Hence, the methods for estimatingbλ(x, y) in this work are called back-

scatter filters (BS filters). For the purpose of simplifying the notation, the abbreviation

form of bλ(x, y) andaλ(x, y), which are respectivelybλ, aλ, are used in this section.

This chapter is structured as follows. Section 6.1 explainsthe estimation ofbλ.

This includes the model of optical back-scatter variation throughout a degraded image.

Also, the proposed BS filters are explained. Section 6.1.2 explains the method for

estimating the value ofaλ.

84
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6.1 Estimation ofbλ and aλ

Several studies have been done to estimatebλ in a turbid medium. Oakley & Satherley

(1998) propose an estimation method to recover degraded images in adverse atmo-

spheric conditions. This involves analysis of the pixel intensity as a function of range.

Schechner & Karpel (2005) propose a method for estimatingbλ in underwater images.

This involves analysis of images taken with different orientations of polarising filter.

Both of these methods require additional physical information about the scene.

Oakley & Bu (2007) propose a new statistical method, based onthe minimisation of

a cost function, to estimate for the level ofbλ in the degraded image, without using any

physical information of the scene. However, in this workbλ is assumed to be spatially

constant for images in air. This assumption is not valid for underwater images, as the

optical back-scatter is spatially variant (Schechner & Karpel 2004).

In this work, three BS filters are proposed. Each filter provides an estimate of

bλ by using statistical solutions and digital image processing tools, without using any

physical information about the scene. The proposed BS filters are denoted here by

BS-MinPix, BS-Hist and BS-CostFunc filter. The BS-MinPix filter estimatesbλ in one

pixel position (x, y) only and does not require the shape of optical back-scatter variation

in a degraded image. The BS-Hist and BS-CostFunc filters estimate the function ofbλ

for the whole image. First, the model of the optical back-scatter and extinction spatial

distribution of image is explained. Then, the various BS filters are explained.

6.1.1 Optical Back-scatter Model

The spatial distribution of optical back-scatter is unknown. The physical model of

the optical back-scatter, which is presented in Equation (2.7), suggests that optical

back-scatter follows the scene illumination spatial distribution and is independent of

the scene content. The spatial distribution of scene illumination depends on the light

source, which is used to provide the required illumination in underwater imaging. The

part of the scene that is directly in front of the beam, is illuminated more and the

surroundings are less illuminated. This produces a hump at the part with high illumi-

nation.

Figure 6.1(a) shows an image from an underwater scene that isilluminated by a

searchlight in clear water. The middle part of the image, which is in the direction of

the searchlight, is well illuminated, but the sides are darker. The line-plot of one of

the middle lines (line 400) of the image is plotted and presented in Figure 6.1(b) by
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Figure 6.1: a) A sample of underwater image in clear water condition, where the scene
is illuminated by a search light. b) The line-plot of row=400of the original image
(dashed line) and the line-plot of row=400 of the filtered image by a low pass filter.

a dashed line. This profile can be regarded as the sum of two spatial distributions.

A high frequency, which is due to variation in the scene content, is superimposed on

a low frequency, which is due to the illumination profile. Thelow frequency can be

extracted from the image by applying a low pass (averaging) filter (LPF) to the image,

either in time or space. The solid line in Figure 6.1(b) presents the line plot of the

filtered image by a LPF. It can be seen that the plot has a shape that is similar to a

truncated raised cosine function.

The general model of a degraded underwater image, which is given in Equation

(5.11), is reproduced here. A lowpass filter with kernel function g is applied. The

resulting image can be written as

Iλ(x, y) ∗ g =
(

ζC0[βλ(x, y)R + (1 − βλ(x, y)R)Rλ(x, y)]
)

∗ g, (6.1)

Īλ = (ζC0βλR) ∗ g + [ζC0(1 − βλR)Rλ] ∗ g. (6.2)

For the purpose of simplifying the notation, the abbreviated form of Iλ(x, y), βλ(x, y)

andRλ(x, y), which are respectivelyIλ, βλ andRλ, are used in this part. The sym-

bol ∗ denotes the two dimensional convolution operation. The lowpass filter gives

a smoothed version of the image. Hence, in this workĪλ is used instead of the term
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Iλ ∗ g. It is explained in Section 5.1 thatζ is a constant value. If it is assumed that the

range R is constant for all pixel positions, thenβλR is a constant value for same water

turbidity, and as a result Equation (6.2) can be written as

Īλ = ζβλR(C0 ∗ g) + ζ(1 − βλR)[(C0Rλ) ∗ g]. (6.3)

C0 ∗ g ≃ C0. The reflectance factor,Rλ, for the scene content is assumed to be a sta-

tionary random field with mean̄Rλ. (C0Rλ)∗g ≃ C0R̄λ becauseC0 is the illumination

radiance and has low spatial frequency (LSP).Rλ has high spatial frequency and after

convolving with g, isR̄λ, which is a nearly constant value. As a result Equation (6.3)

can be written as

Īλ = ζ [βλR + (1 − βλR)R̄λ)]C0. (6.4)

The termζ [βλR+(1−βλR)R̄λ)] is a constant value, and for simplicity it can be written

asγ1.

γ1 = ζ [βλR + (1 − βλR)R̄λ). (6.5)

Therefore, Equation (6.4) can be simplified to

Īλ = γ1C0. (6.6)

The general model of back-scatter light, which is given in Equation (5.7), is reproduced

here considering the camera gain,ζ and after applying a lowpass filter with kernel

function g as

bλ(x, y) ∗ g = (ζC0βλ(x, y)R) ∗ g. (6.7)

For the purpose of simplifying the notation, the abbreviation form of bλ(x, y), which

is bλ, is used.

ConsideringζβλR as a constant value, which is simplified toγ2, then

bλ ∗ g = ζβλR(C0 ∗ g). (6.8)

bλ ∗ g is approximately the same asbλ, sincebλ comprises only low spatial frequency

components.

bλ = γ2C0. (6.9)
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Comparing equations (6.6) and (6.9) suggests that

C0 =
bλ

γ2
=

Īλ

γ1
. (6.10)

Therefore, the spatial distribution of optical back-scatter can be written as

bλ =
γ2

γ1

Īλ = γĪλ. (6.11)

An illustration is given in Figure 6.2 to show the scale difference between the

spatial distribution of optical back-scatter and illumination. Figure 6.2(a) presents a

sample underwater image in size of1024 × 1344. The sample image is chosen from

T3 test images in 600nm. Figure 6.2(b) presents the line-plotsof row=500 for original

image with a dash-dotted line, the smoothed image with a dashed line, and finally the

estimated level of optical back-scatter, which is found by the regression method with a

solid line. It can be seen that the optical back-scatter has the same spatial distribution

as image illumination, but with a different scale factor. Figure 6.2(b) presents the

comparison betweenbλ(x, y, γ) andĪλ(x, y) for only one image row. The comparison

for all of the image rows is done by plotting with a contour plot. Figures 6.2(c) and (d)

present the contour plots ofbλ(x, y, γ) andĪλ(x, y) for all image rows respectively.

6.1.2 Extinction Model

The definition ofaλ, which is given in Equation (5.2), is reproduced here considering

the camera gain,ζ and after applying a lowpass filter with kernel function g as

aλ ∗ g = (ζC0(1 − βλR)Rλ) ∗ g. (6.12)

aλ ∗ g is approximately the same asaλ, sinceaλ comprises low spatial frequency

components. The approximations ofRλ ∗ g andC0 ∗ g are as explained earlier.

aλ = (ζ − ζβλR)R̄λC0. (6.13)

On the other hand by rearranging Equation (6.5),R̄λ can be written as

R̄λ =
γ1 − ζβλR

ζ(1 − βλR)
. (6.14)
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Figure 6.2: a) The sample image in size of1024 × 1344 from from T3 test images in
600nm. b) The line-plots of row=500 forIλ with a dash-dotted line,̄Iλ with a dashed
line, andbλ with a solid line. c) The contour plot of the estimated optical back-scatter.
d) The contour plot of the smoothed image.
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By substituting Equation (6.14) in Equation (6.13),aλ can be written as

aλ = C0(ζ − ζβλR)
γ1 − ζβλR

ζ − ζβλR
. (6.15)

By substitutingγ2 and Īλ

γ1

instead ofζβλR andC0 respectively, then

aλ =
(ζ − γ2)(γ1 − γ2)(Īλ)

(ζ − γ2)(γ1)
, (6.16)

=
γ1 − γ2

γ1
Īλ, (6.17)

= 1 − γ2

γ1
Īλ. (6.18)

Considering Equation (6.11), then

aλ = 1 − γĪλ = 1 − bλ. (6.19)

Equations (6.11) and (6.19) show that to estimatebλ andaλ, the smoothed version of

the image and a constant parameter,γ are required. The smoothed version of the image

is obtained using a recursive Gaussian filter with standard deviation of a relatively large

value ofσB (Mortazavi & Oakley 2007, Oakley & Bu 2007).γ is the only unknown

parameter. Therefore, by findingγ the optical back-scatter and extinction distribution

function are known. The aim of the BS-Hist and BS-CostFunc filters is to findγ.

6.1.3 BS-MinPix Filter

Assume that there are several images with different image contents. Suppose at lest one

pixel in spatial position of(x, y) from these images falls on a dark object. Therefore,

the pixel value isRλ(x, y) ≈ 0. According to Equation (5.12), whenRλ(x, y) ≈ 0 the

value of this dark image pixel in a turbid medium should represent the level of optical

back-scatter,bλ(x, y). An example of this can be found in practice, when underwater

images are captured from different scenes by a camera with a fixed angle and height

on a ROV system in the same turbid water environment.

On this basis a rank filter is used to take the minimum pixel value from a set of

degraded sample pixels of the same level of optical back-scatter. These sample of

pixels can be from one pixel position at different images with same level of optical

back-scatter. Therefore, in this methodnmp images, wherenmp > 1, with same level

of optical scattering and different scene content are required.
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6.1.4 BS-Hist Filter

This method is similar to histogram modification. It is explained in Section 5.3.4 that

when an image is captured by a CCD camera, camera noise is added during the process

of acquisition and conversion. Therefore, the image pixelsrepresent both the reflected

light from the scene and the added camera noise. The pixel values of image content in

a turbid medium are mostly high due to the extra value added toimage content because

of the effect of optical back-scatter. Therefore, the histogram of a degraded image is

mostly concentrated at the right part in visible range. But,in real imaging condition

the image histogram has an additional small area at low pixelvalues, which is due to

the effect of camera noise. In BS-Hist filter the idea is to modify the output image

histogram in such a way to keep that part of the image histogram due to camera noise

out of visible range.

The algorithm used in the BS-Hist filter is to calculate the value ofγ (from Equation

6.11) by keepingnHB% of the histogram of̂Iλ(x, y) from Equation (5.13) out of visible

range [0 255].

6.1.5 BS-CostFunc Filter

Oakley & Bu (2007) introduced a new statistical method, Oakley-Bu cost function,

to detect a constant level of optical back-scatter in a degraded image, which is taken

in adverse atmosphere conditions such as fog or haze. In thiswork, the algorithm is

extended to be used for a variable distribution of optical back-scatter. The extended

algorithm is found by substituting Equation (6.11), instead of b in Equation (2.14) as

shown below

Sλ(γ) =
1

P

P
∑

p=1

(

Iλ(p) − Īcf
λ (p)

Īcf
λ (p) − γĪλ(p)

)2

. exp

(

1

P

P
∑

p=1

ln(Īcf
λ (p) − γĪλ(p))2

)

, (6.20)

wherep represents each image pixel in spatial position of(x, y). It is shown mathe-

matically in Appendix B that the extended cost function has aminimum value atγ.

Therefore, the value ofγ can be estimated by Equation (6.20).

Note that there are two types of the smoothed images in Equation (6.20), in which

both of them are smoothed by recursive Gaussian filter with two different filter pa-

rameters. Oakley & Bu (2007) have shown that the performanceof cost function is

more accurate, when a small filter parameter,σcf , is used forĪcf
λ . Īλ is used to extract

the illumination variation from the image, and as a result the image should be highly
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smoothed in order to have no image content. Therefore, a large filter parameterσB is

required forĪλ.



Chapter 7

Simulations

In this chapter, the performances of the algorithm of BS filters are explored using

Monte-Carlo simulation with synthetic underwater images.The efficiency of the algo-

rithms in terms of accuracy and reliability is determined.

This chapter is structured as follows. In Section 7.1, the method for synthesis

synthetic underwater images in monochrome and colour is explained. Section 7.2

evaluates the performances of BS filters under different statistical assumptions. The

results of improving degraded monochrome synthetic imagesusing BS-CostFunc, as

well as examples of the improved monochrome images are presented. Section 7.3 is

concerned with the amount of colour difference introduced to the improved images by

processing synthetic colour images, both in narrow and widespectral bands, with the

proposed method.

7.1 Synthetic Underwater Image

Synthetic underwater images are simulated based on the model of an underwater image

given by Equation (5.12). A synthetic degraded underwater image in a specific central

wavelength ofλ, Isyn(λ), can be presented by

Isyn(λ) = asyn(λ)Imsyn(λ) + bsyn(λ), (7.1)

whereImsyn(λ) is the synthetic underwater image in clear water condition,asyn(λ)

is the scaling factor due to the optical extinction andbsyn(λ) is the synthetic optical

back-scatter function in a specific wavelength.

From the study of several real continuous underwater images(Mortazavi 2006), it

93
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is found that the spatial distribution of light intensity can be simulated by a positive

truncated cosine function. In this work, it is assumed that the spatial variation is in one

direction, only across image rows. Image content is formed from different surfaces,

where the appearance of each surface is a function of illumination and reflectance

(I. Motoyoshi & Adelson 2007). A synthetic clear underwaterimage is represented by

Imsyn = Îsyn Ssyn(λ) cos(θ),
−π

2
< θ <

π

2
(7.2)

whereÎsyn represents the reflected light from the scene content,Ssyn(λ) is the illumi-

nation power spectrum andcos(θ) is the spatial distribution of the light intensity across

an image row.

7.1.1 Formation of Image Content (̂Isyn)

In this work, it is assumed that image content is constitutedfrom more than one surface.

A check board pattern is used to represent different surfaces with different textures

in a synthetic image. This pattern is simple and is used in previous work (Oakley &

Bu 2007) to generate synthetic images. Therefore, image content,Îsyn(λ), is composed

from M ×N blocks, where each block is in sizem× n and can have a different mean

value with respect to the other blocks. To make each image block corresponds to a

natural image texture, it is required to find a statistical distribution that matches the

distribution of a natural texture. The Beta distribution ischosen for this purpose, since

the distribution of reflectance within a range of real textures are better described by the

Beta distributions as explained in Section 2.3.2.

To generate a natural texture with a Beta distribution, it isnecessary to define the

value ofαBeta andβBeta parameters carefully in order that the pdf matches that of the

natural texture.

Setting the Beta Distribution Parameters

Attewell & Baddeley (2007) study natural texture distributions and estimate parameters

values of the Beta distribution,αBeta andβBeta, for four different types of environment,

Woodland, Beach, Urban and Interior. The result of their work is presented in Table

7.1.1. It can be seen that the mean intensity has a relativelylow value and the values

of αBeta andβBeta are greater than one for all of the environments. The data from

Attewell & Baddeley (2007) is limited to just four types of texture. Thus, the textures
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Environment αBeta βBeta Mean (µB) STD(σB)

Woodland 1.91 22.6 0.08 0.06
Beach 2.04 7.57 0.21 0.13
Urban 1.35 10.72 0.11 0.11
Interior 1.29 2.3 0.36 0.22

Table 7.1: Estimated values of Beta distribution parameters based on Attewell & Bad-
deley (2007) study for four different types of environments, Woodland, Beach, Urban
and Interior.

Figure 7.1: a) The plot ofµB and αBeta, b) The plot ofµB and βBeta, for natural
textures data from Attewell & Baddeley (2007) data.

are limited to have four values of mean intensity, whereas a range of different mean

intensities is required to find a comprehensive texture model.

The extended model of Attewell & Baddeley (2007) data, whichis presented below,

can be used to synthesise various natural textures. To construct the extended model of

Attewell & Baddeley (2007) data, the relationships of mean,µB, with Beta parameters,

αBeta&βBeta, are investigated. Figure 7.1 shows the plots forαBeta andβBeta versus

mean (µB) for Attewell & Baddeley (2007) data. TheβBeta/µB plot shows a mono-

tonic relationship, whereas theαBeta/µB does not. The linear regression line of the

βBeta/µB plot is found and plotted as a dashed line in Figure 7.1(b). This line has the
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form

βBeta = −59µB + 22, (7.3)

which by rearranging can be written as

µB =
22 − βBeta

59
. (7.4)

The range of validβBeta for the natural texture isβBeta > 1. Because, forβBeta > 1

the distribution has a hump, which is common in natural textures. As a result, the range

of µB is 0 < µB < 0.36 (0.36 = 22−1
59

). Equation (7.5) is used as an extended model

of Attewell & Baddeley (2007) data.

βBeta = −59µB + 22, 0 < µB < 0.36. (7.5)

The mean intensity of each image block,µB, is calculated from a uniform distribution

within a range[0.01, 0.36] unless stated. The upper range is limited to 0.36, because of

the limitation ofβBeta > 1. The lower range is chosen arbitrary (µB > 0). The value

of βBeta can be simply estimated from Equation (7.5) for different mean values. The

value ofαBeta can be calculated by using the relationship between theβBeta andαBeta

parameters in the Beta distribution (Ghahramani 2000), which is given by Equation

(7.6).

αBeta =
µBβBeta

1 − µB
. (7.6)

7.1.2 Synthetic Optical Back-scatter

The spatial distribution of an optical back-scatter function follows the spatial distri-

bution of light variation across the image as explained in Section 6.1.1. The optical

back-scatter function,bsyn(λ), can be simulated by

bsyn(λ) = γs cos(θ) Sbsyn(λ),
−π

2
< θ <

π

2
(7.7)

whereγs is the parameter used to set the level of synthetic optical back-scatter intensity,

cos(θ) is as defined before andSbsyn(λ) is the optical back-scatter spectrum.

Figure 7.2 presents an example of the spatial distribution of synthetic light and

synthetic optical back-scatter function of one row for a specific wavelength. The values

are set toSsyn(λ) = 1, Sbsyn(λ) = 1, γs = 0.8 and the intensity variation function is

cos( πx
1.5w

− π
3
), wherew is for the size of an image row.
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Figure 7.2: a) A sample pattern of intensity variation across an image row generated
by cos( πx

1.5w
− π

3
), wherew is for the width of an image row. In this examplew = 350.

b) A sample of synthetic optical back-scatter function,bsyn = 0.8 cos( πx
1.5w

− π
3
).

7.1.3 Synthetic Underwater Image

By substituting Equations (7.2) and (7.7) in Equation (7.1), Isyn(λ) can be written as

Isyn(λ) = [Îsyn(λ) Ssyn(λ) + γs Sbsyn(λ)] cos(θ),
−π

2
< θ <

π

2
(7.8)

Figure 7.3 illustrates the formation of a sample synthetic underwater monochrome

image. As explained in Section 5.3.4, in a real imaging situation there are always

some noise contributions added to image during image acquisition. This added noise

contributes to a variation in pixel intensities. To have an accurate model of image, noise

is also added to generate the synthetic image as presented inEquation (7.9). Camera

noise can be generally simulated by a Gaussian distributionwith zero meanµn = 0

and standard deviation ofσn (Petrou & Bosdogianni 1999).

Isyn(λ) = [Îsyn(λ) Ssyn(λ) + γs Sbsyn(λ)] cos(θ) + noise.
−π

2
< θ <

π

2
(7.9)

7.2 Monochrome Simulations

Monochrome images are used to explore the performance of theBS filters algorithm

for optical back-scatter estimation using Monte-Carlo simulation under different statis-

tical assumptions. Numerous synthetic monchrome images similar to the image shown

in Figure 7.3(e) are generated. The spatial distribution oflight variation is assumed to
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Figure 7.3: The formation of a synthetic monochrome underwater image. a) Synthetic
image texture consisted of several blocks. The pixels intensity of each image block
follow Beta distribution. b) The line plot of the light intensity variation. c) Synthetic
underwater image in clear water condition under direct illumination, where its pattern
is shown in (b). d) The line plot of the intensity of optical back-scatter variation. e)
Synthetic degraded underwater image.
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be known,cos(θ), for all simulations unless it is stated. For monochrome images,λ is

invariant as a resultSsyn(λ) andSbsyn(λ) are set to 1 unless it is stated.

7.2.1 Performance Evaluation

The performances of the BS filter algorithms are evaluated asfollowing. The estima-

tion error in each pixel position, p, is defined as the difference between the real value

of optical back-scatter,b, and the estimated value of optical back-scatter,b̂

Ep = bp − b̂p. (7.10)

Absolute estimation error,Ei, across all image pixels is calculated by

Ei =

√

√

√

√

1

P

P
∑

p=1

(bp − b̂p)2, (7.11)

where P is the total number of image pixels. Sometimes, it is required to keep the sign

of the estimation error to know whether it is underestimated, positive value ofEi, or

overestimated, which is negative value ofEi. For this reasonE ′
i is defined to calculate

for the signed estimation error as

E ′
i =

1

P

P
∑

p=1

Ep. (7.12)

The mean estimation errors, absolute (Eave) and signed (E ′
ave) values, for N images are

calculated as presented in Equations (7.13) and (7.14).

Eave =
1

N

N
∑

i=1

Ei, (7.13)

E ′
ave =

1

N

N
∑

i=1

E ′
i. (7.14)

The standard deviation of the absolute estimation error,Estd, is

Estd =

√

√

√

√

1

N − 1

N
∑

i=1

(Ei − Eave)2. (7.15)
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The performances of the smoothing filter to obtain light spatial variation is eval-

uated by finding the difference between the smooth version ofthe image,̄Iλ, and the

synthetic light spatial distribution (cos(θ)) as shown in Equation (7.16). Note that

cos(θ) varies horizontally and the spatial variation is similar for all image rows. P, p, i

and N are similar as defined before.

Ed
p = cos(θp) − Īp. (7.16)

The difference for image (i) is

Ed
i =

√

√

√

√

1

P

P
∑

p=1

(Ed
p )2, (7.17)

and the average difference across N images is

Ed
ave =

1

N

N
∑

i=1

Ed
i . (7.18)

7.2.2 Procedures and Results

BS-MinPix Filter Parameter

It is explained in Section 6.1.3 that BS-MinPix filter requiresnmp sample pixels of

one spatial position (x,y) fromnmp number of images to estimate the level of optical

back-scatter in that pixel position. The question is what isthe best value fornmp? If

nmp is low, then a dark pixel might not present among the sample pixels and this causes

estimation error. On the other hand, ifnmp is high, then the level of optical back-scatter

in sample images might change throughout imaging in real condition and again this is

another cause of error. Therefore, it is required to know theoptimum value ofnmp. A

test is done using synthetic degraded images to investigatethe optimum value ofnmp.

100 series synthetic degraded images in size of (8 × 40, 7 × 40) are generated,

where each series consisted ofnmp number of images.nmp is varied from 1 to 50

andσn = 0. The synthetic optical back-scatter function isbsyn = 100cos( πx
3w

− π
6
)

in intensity range of[0 255]. Figures 7.4(a) and (b) present the plots ofEave/nmp

andEstd/nmp respectively. It can be seen that asnmp increases, the values ofEave

andEstd decrease. This means the performance of BS-MinPix filter gets better with

higher values ofnmp. This is expected, because when number of sample pixels are
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high, there is more chance for a dark pixel to be appeared, so the estimation error is

lower. Note that this is when the level of optical back-scatter at each pixel position

remains unchanged for all sample images. As explained, in real condition the level of

optical scattering in each image pixel might change. If it isassumed that the optical

scattering condition is constant for capturing 1 second of avideo sequence, and the

images are extracted with rate of 25 frames per second, thennmp = 25 can be taken as

the maximum range ofnmp. From theEave/nmp plot it can be seen that the expected

error fornmp = 25 is 0.9%1, which is very low.

BS-Hist Filter Parameter

In Section 6.1.4, the level of optical back-scatter is estimated using BS-Hist filter by

keepingnHB% of the output image histogram out of visible range. The part of the

histogram, which is kept out of visible range should be set according to the level of

added noise. If the value ofnHB% is not appropriate with the level of noise, the BS-

Hist filter has higher rate of error. In this part, the performance of BS-Hist filter is

evaluated experimentally by varying the value ofnHB% for images with added noise.

100 images are generated in size of (8 × 40, 7 × 40) and with added noise of

σn = 2 in intensity range of 255. The synthetic optical back-scatter function is

bsyn = 100cos( πx
3w

− π
6
). nHB% is varied from0.2% to 10% in steps of0.5%.

Figures 7.4(c) and (d) present the plots ofEave/nHB% andEstd/nHB% respectively.

It can be seen thatEave shows the minimum value fornHB% = 0.7%, which is the value

associated to the added noise (2
255

100 = 0.7). It can be seen for the regions lower or

higher than 0.7,Eave rises. The plot ofEstd/nHB% shows low variation in estimation

results (Estd < 1.3).

BS-CostFunc Filter Parameter

As mentioned in Section 6.1.5,Īcf
λ is the local average intensity of a pixel in an image.

In practice,Īcf
λ is estimated using a recursive Gaussian filter with standarddeviation of

σcf . The general form of a Gaussian filter is defined in Section 2.3.1. For a Gaussian

filter, σcf is closely related to the size of effective filtering area. Ifσcf is too small,

the random fluctuation in the pixel intensity cannot be smoothed out. This introduces

errors into the estimation ofγ from Equation (6.11). On the other hand, ifσcf is too

large, the pixels used for averaging are likely to be from more than one region, and the

1Eave(nmp = 25) = 2.4, in which the expected error is2.4/255× 100 = 0.9%.
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Figure 7.4: a) The plot ofEave/nmp, b) The plot ofEstd/nmp, c) The plot of
Eave/nHB%, d) The plot ofEstd/nHB% e) The plot ofEave/σcf f) The plot of
Estd/σcf .
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filtering output no longer reveals the mean intensity of a particular region. Again this

causes error inγ estimation and degrades the accuracy of BS-CostFunc filter.

In this part, a test is done to investigate the performance ofBS-CostFunc filter by

varyingσcf . 100 synthetic degraded images in size of (8×40, 7×40) with µmin = 0.03

andσn = 0 are generated. The value ofσcf is varied from 1 to 10 in steps of 0.5. The

synthetic optical back-scatter function isbsyn = 100cos( πx
3w

− π
6
). Figures 7.4(e) and

(f) presents the plots ofEave/σcf andEstd/σcf . It can be seen that for1.5 < σcf < 5

bothEave andEstd are having low values. Asσcf is getting more than 5, both the plots

of Eave andEstd increase, showing higher estimation errors. This confirms that there is

a limitation on selecting the filter scale,σcf .

Region Scale and Quantity

In Section 7.1.1, it is explained that the synthetic images consist several blocks, in

which each block represents one surface. The region scale represents the size of each

image block, measured by the number of pixels and is denoted by m × n. Region

quantity represents the number of blocks in an image and denoted byM ×N . In a real

image, there are usually a large number of regions with different scales.

The performance of BS-MinPix filter depends on the intensityvalue of individual

pixels. Also, the performance of BS-Hist filter depends on the global image histogram.

Therefore, the scale and regions quantity do not effect on the performance of these two

filters.

In the Oakley & Bu (2007) study, the region scale is large enough to correctly

reveal the statistical distribution of the pixel intensityin each region. This implies

that the accuracy of estimation depends on region scale. In this section, the effects

of region scale and region quantity on the algorithm performance of BS-CostFunc

filter is examined. Several series of synthetic images are generated, in which each

series consists of 100 synthetic images with different combinations of region scale

and region quantity. The parameters are set asµmin = 0.03, σcf = 2, σn = 0, and

bsyn = 100cos( πx
3w

− π
6
) with w = N ×n according to different combinations of region

scale and region quantity.

Figures 7.5(a) and (b) present the plots ofEave/(M × N) andEstd/(M × N) for

different ranges of region scales. The plots show as region quantity (M ×N) increases

Eave andEstd decrease for all region scales. The plot ofEave/(M×N) presents thatEave

is higher for smaller region scales across all region quantities. The plot ofEstd/(M ×
N) shows that the variation ofEstd is nearly similar for all region scales across all
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Figure 7.5: a) The plot ofEave/(M × N) for different region scales ofm × n for BS-
CostFunc filter, b) The plot ofEstd/(M ×N) for different region scales ofm× n for
BS-CostFunc filter, c) The plot ofE ′

ave/(M ×N) for different region scales ofm× n
for BS-CostFunc filter, d) The plot ofEave/σn for BS-CostFunc, BS-MinPix and BS-
Hist filters, e) The plot ofEstd/σn BS-CostFunc, BS-MinPix and BS-Hist filters, f)
The plot ofE ′

ave/σn for BS-CostFunc filter.
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region quantities. Figure 7.5(c) presents the plot ofE ′
ave/(M ×N) for different ranges

of region scales. It can be seen that the estimation error is negative for all combinations

of (M × N) and region scales, which means all the estimated values of optical back-

scatter are overestimated. As a summary, the plots suggest to have at least 12 regions

with region size greater than 100 pixels.

Camera Noise

Synthetic images that are used in simulations so far, representing the scene reflectance

and illumination. In real imaging situation there are always some sources of noise

added to image as explained in Section 5.3.4. This added noise contributes to some

variation in pixel intensities. It is important to know how added noise affects the per-

formance of each BS filter. In this part, the performance of BSfilters are evaluated

under different levels of noise. 6 series of 100 synthetic images are generated, in which

each series corresponds to a level of noise,σn. The level ofσn varies in the range of

[0 12.5] in steps of 2.5. The images are in size (8×40, 7×40), with parameters setting

to µmin = 0.03, nmp = 10, nHB% = 2.5%, σcf = 2 andbsyn = 100cos( πx
3w

− π
6
).

Figures 7.5(d) and (e) present the plots ofEave/σn andEstd/σn. From the plot

of Eave/σn, it can be seen that the performance of BS-MinPix falls more with added

noise with respect to the other BS filters for all noise levels. The performance of BS-

CostFunc and BS-Hist filters are similar for very low level ofnoise (σn ≤ 2.5). But

for higher level of noise,σn > 2.5, the estimation error of BS-Hist filter dramatically

increases, while the performance of BS-CostFunc is unchanged with respect to low

noise level. Also, the plot ofEstd/σn shows that the error variation is very low (< 1.2)

for all BS filters.

The results suggest that among the three BS filters, the performance of BS-CostFunc

filter is the best in real imaging condition, where there is always some added noise.

Figure 7.5(f) presents the plot ofE ′
ave/σn. It can be seen that for noise levels less than

9, σn < 9, the estimated optical back-scatter values are overestimated and for higher

noise levels, ,σn > 9, they are underestimated.

Minimum of µB

It is explained in Section 7.1.1 that the mean value,µB, is required to generate each

image block. The mean is restricted within a range0 < µB < 0.36. The minimum

range ofµB, µB(min), is not defined to a specific value. The value ofµB(min) is

important on the performances of BS filters, because it determines the level of dark
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pixels. In this part a test is done to investigate the performances of BS filters by varying

µB(min).

20 series of 100 synthetic degraded images in size of (8 × 40, 7 × 40) and with

σn = 0 are generated, in which each series corresponds to a different µB(min). The

value ofµB(min) vary in range of [0.001 0.1] in steps of 0.005. The synthetic optical

back-scatter function isbsyn = 100cos( πx
3w

− π
6
). Figures 7.6(a) and (b) present the

plots ofEave/µB(min) andEstd/µB(min) for three BS filters.

It can be seen, asµB(min) increases, the value ofEave increases for all BS filters.

The increment rate is higher in BS-CostFunc filter and is lower in BS-Hist. Also, it can

be seen that whenµB(min) < 0.01, BS-CostFunc shows lower error in comparison

with two other BS filters. From the plot ofEstd/µB(min), it can be seen thatEstd

for BS-Hist is less steady with respect to BS-CostFunc and BS-MinPix filters. Figure

7.6(c) presents the plot ofE ′
ave/µB(min). It can be seen that for all values ofµB(min)

the estimated optical back-scatter values are overestimated.

Optical Back-scatter Level and Spatial Distribution

In Section 7.1.1, it is explained that the spatial distribution of the light source can be

simulated by a positive truncated cosine function, as shownin Equation (7.7). The

hump part of the cosine function represents the direction ofthe light source. When the

direction of light source varies, the spatial distributionof light varies, and as a result

the spatial distribution of the optical back-scatter varies. Therefore, it is expected

that different light spatial distributions have a similar effect on the performance of

the BS-CostFunc filter. Also, the level of optical back-scatter changes due to several

parameters as discussed in Section 2.1.3. It is important toknow how BS-CostFunc

filter performs with different levels of optical back-scatter.

Different light spatial distributions can be synthesized by varyingθ (−π
2

< θ < π
2
)

in cosine function of Equation (7.7), and different levels of optical back-scatter can be

simulated by varying the value ofγs of Equation (7.7). In this section, the performance

of BS-CostFunc algorithm is investigated for different values ofθ andγs.

Several series of 100 synthetic degraded images in size (8×40, 7×40) are generated

with µmin = 0.03, σcf = 2 andσn = 0, where each series is a different combination

of γs andθ. The value ofγs is varied from 10 to 200. Four differentθ are used, which

represent for different light spatial distribution as shown in Figure 7.7(a). Figures 7.7

(b) and (c) present the plots ofEave/γs andEstd/γs for four different values ofθ. It can

be seen that the trend of the plots are similar for different values ofθ. This indicates that
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Figure 7.6: a) The plot ofEave/µB(min) for BS-CostFunc, BS-MinPix and BS-Hist
filters. b) The plot ofEstd/µB(min) for BS-CostFunc, BS-MinPix and BS-Hist filters.
c) The plot ofE ′

ave/µB(min) for BS-CostFunc.
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Figure 7.7: a) Different synthetic light variation patterns using differentθ. w is the size
of an image row and x is the row pixel index. b) The plot ofEave/γs using BS-CostFunc
filter for differentθ, c) The plot ofEstd/γs using BS-CostFunc filter for differentθ.
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the performance of BS-CostFunc filter is independent of the light spatial distribution

(or the direction of light source). The plots also show that the expected error is nearly

similar for low and medium level of optical back-scatter, but for a very high level of

optical back-scatter (highγs) the estimation error,Eave, increases.

Illumination Intensity

When the intensity of light source is low, it means that thereis less light interacting

with the scattering particles and this results in less optical back-scatter. Therefore, it

is expected that the estimation error should be lower for lower light intensity. This is

important, because the light intensity typically varies with wavelength. The parameter

Ssyn(λ) in Equation (7.2), represents for the synthetic light intensity spectra. So far

Ssyn(λ) was set to 1. In this section, the performance of BS-CostFuncfilter is evaluated

for different light intensity by varying the value ofSsyn(λ).

100 synthetic images are generated for different values ofSsyn(λ), which varies

in the range[0.05 1] in steps of 0.02. The images are in size of (8 × 40, 7 × 40)

and the noise level is set toσn = 2. The synthetic optical back-scatter function is

bsyn = 100Sbsyn(λ)cos( πx
3w

− π
6
), where the synthetic optical back-scatter spectrum

is assumed to follow the light spectrumSbsyn(λ) = Ssyn(λ). Figure 7.8(a) presents

the plot ofE ′
ave versus intensity. It can be seen that the optical back-scatter values are

overestimated, and also as intensity increases, the estimation error,E ′
ave, increases as

well.

Filter Parameter σB

According to the proposed back-scatter model (Equation (6.11)), the accuracy ofbλ

not only depends on the value ofγ parameter, but depends on the smoothed version

of the image,Īλ. It is explained in Section 6.1 that̄Iλ can be obtained by applying

a recursive Gaussian filter with standard deviation ofσB. The size ofσB should be

selected according to the image size. In this simulation, the spatial distribution of light

varies horizontally across the image row. Thus, the size of image row is considered.̄Iλ

should be smoothed in such a way that removes all the fluctuations due to the image

content, while keeping the light spatial variation.

A simulation is done to investigate the amount of differencebetween the synthetic

light variation and the model of̄Iλ by varying the amount ofσB. Two series of 100

images are generated, with size of(400×1050) and(400×1400). The function of light

spatial variation iscos( πx
3w

− π
6
). The value ofσB

W
is varied from 0.07 to 0.25 in steps
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Figure 7.8: a) The plot ofE ′
aveversus intensity, b) The plot ofEd

ave versusσB

W
for two

image widths, W=1050 and W=1400 pixels.

of 0.02. Īλ is normalized to be in the range[0 1], the same range as synthetic optical

back-scatter function. The difference between the synthetic light spatial distribution

andĪλ is calculated for 100 images in both series. Figure 7.8(b) presents the plot of the

mean difference,Ed
ave, versusσB

W
. It can be seen when0.1 < σB

W
< 0.15 the difference

shows the lowest value. For higher and lower values ofσB

W
the difference rises. For

example for image widths of W=1050,σB can be selected in range of[105 158] to give

the best fit with light variation. This confirms that the size of σB should be selected

with respect to the image size. Also, it can be concluded thatthe the model of light

variation,Īλ, introduces an error of3% in the estimation.

7.3 Colour Simulations

Colour images may be represented by multispectral images inthe visible range of

400nm - 720nm. To enhance a degraded colour underwater image, the effect of optical

back-scatter in each spectral band should be compensated. One of the main require-

ments when processing a colour image is that the spectral variation remains unchanged.

The aim of simulations in this section is to investigate how much colour difference is

caused by the BS-CostFunc filter. First, the generation of a synthetic colour image and
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the performance evaluations are explained. Then the simulations are presented.

7.3.1 Synthetic Colour Image Generation

A synthetic colour image is generated in form of multispectral images with 33 narrow

spectral bands of 10nm and in visible range of 400nm to 720nm.Equation (7.9) is

used to generate the image intensity of each band. Note that the intensity information

in adjacent bands is correlated in natural images. If an independent image is generated

for each spectral band, the correlation between bands wouldbe zero. For that reason,

one image intensity distribution is generated and used for every 4 adjacent bands. The

parameters set as following for all of the simulations unless it is stated. The images are

of size(8 × 40, 7 × 40, 33), with µB(min) = 0.03. The synthetic optical back-scatter

function isbsyn = 100cos( πx
3w

− π
6
). The valuesSsyn(λ) andSbsyn(λ) are taken from

the empirical values for the illumination of the halogen lamp and in medium level of

water turbidity with emulsion paint particles respectively.

Multispectral images are corrected for the dark current noise as explained in Sec-

tion 3.2.3. The main noise remaining in multispectral images is the shot noise. The em-

pirical value of shot noise for the maximum intensity level for the Hamamatsu ORCA-

ER hyperspectral camera is calculated in Section 5.3.4 asσn ≈ 2 and this value is used

for colour simulations. As the light intensity varies spectrally, the value of shot noise

for different wavelengths varies as well. The noise spectrum is synthesized by

σn(λ) = σnSsyn(λ). (7.19)

7.3.2 Performance Evaluation

The performance of the proposed method to improve the contrast of a colour image

is evaluated by calculating the mean estimation error,E ′
ave, and the amount of colour

difference (CD) introduced to the improved image pixel. Themean estimation error,

E ′
ave, is similar as defined by Equation (7.14). To calculate the CD, the images should

be inL∗a∗b∗ colour space, and a white reference is used. The calculations of mapping

the multispectral images to XYZ colour space, and converting XYZ to L∗a∗b∗ or sRGB

and vice versa, and the CD are done using Westland & Ripamonti(2004) algorithms.

The CIEA64 is used as the white reference, because the correlated colour temperature

of a 100 W halogen lamp is 3000 K, which is very close to the CCT of an incandescent

120W light bulb (CCT = 2860 K), which is for the CIEA64 (Westland & Ripamonti
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2004).

To evaluate the colour difference in an image, the mean colour difference,CDm,

for all image pixels is calculated from

CDm =
1

P

P
∑

p=1

CDp, (7.20)

where p and P are similar as defined before.

7.3.3 Simulation 1

The aim of this simulation is to show that a degraded colour image, either in narrow

spectral bands or in wide spectral bands, can be improved by compensating for the

effect of optical back-scatter with colour fidelity if the level of optical back-scatter is

known for each spectral band.

This is first shown mathematically as follows, and then experimentally by Simu-

lation 1. SupposeRd(λ), Rc(λ) andRbs(λ) are the reflected light from the scene in

murky condition, the reflected light from the scene in clear condition and the reflected

light from the particles in turbid water respectively. It isexplained in Section 3.2.3,

that the level of optical back-scatter in narrow bands can beassumed constant at each

pixel position. Here,a andRbs(λ) is assumed to be spectrally invariant at each pixel

position.

Rd(λ) = aRc(λ) + Rbs(λ), (7.21)

Equations (2.24) - (2.26) are used to map the images from 33 to3 spectral bands.

Therefore,Xd is

Xd =

∫ λ

0

Rd(λ)S(λ)x̄(λ), (7.22)

wherex̄(λ) andS(λ) are similar as defined in Section 2.4.3.Xd can be written by

substituting Equation (7.21) instead ofRd(λ)

Xd =

∫ λ

0

(aRc(λ) + Rbs(λ))S(λ)x̄(λ)dλ, (7.23)

Xd =

∫ λ

0

(aRc(λ)S(λ)x̄(λ) + Rbs(λ)S(λ)x̄(λ))dλ, (7.24)

Xd =

∫ λ

0

aRc(λ)S(λ)x̄(λ)dλ +

∫ λ

0

Rbs(λ)S(λ)x̄(λ)dλ. (7.25)
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∫ λ

0
aRc(λ)S(λ)x̄(λ) and

∫ λ

0
Rbs(λ)S(λ)x̄(λ) are the mapped clear image,Xc, and op-

tical back-scatter,Xbs, in XYZ colour space respectively. Therefore,Xd can be written

as

Xd = Xc + Xbs. (7.26)

By rearranging Equation (7.26),Xc can be found as

Xc = Xd − Xbs. (7.27)

This also can be extended forYd andZd as

Yc = Yd − Ybs. (7.28)

Zc = Zd − Zbs. (7.29)

Equations (7.27) - (7.29) confirm that the result of compensating a degraded image

with wide spectral band with known values ofXbs, Ybs andZbs is similar to the results

of compensating a degraded image with narrow spectral bandswith known value of

Rbs(λ).

Figure 7.9: The plot of mean colour difference,CDm, for 100 images between Set I&
Set II (dash-dotted line), and Set I and the clear reference image (solid line).
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Simulation 1 confirms this experimentally. Two series of 100synthetic colour im-

ages, which are the degraded and the correspondence clear reference, are generated

with 33 narrow spectral bands. The degraded images are compensated for the effect

of optical back-scatter using known synthetic back-scatter in two different ways. The

first way is to process the images in narrow spectral bands. The image in each spectral

band is compensated for the effect of known optical back-scatter in the correspon-

dence band. The output images of this series is called Set I. The second way is to

map the degraded images and the known optical back-scatter to XYZ colour space,

and then compensating each of the X, Y and Z bands for the effect of optical back-

scatter. The output images of this series is called Set II. The clear reference images

and the improved images in Set 1 are mapped to XYZ. For comparison the images are

converted toL∗a∗b∗ colour space and the colour difference between Set I and clear

reference image, and Set I and Set II are calculated and presented in Figure 7.9 by the

solid line and the dash-dotted line respectively. It can be seen that the mean colour

difference,CDm, between Set I and the clear reference is around 0.3 for all 100 test

images, which is below the JND value of 2.3. TheCDm between Set I and Set II is

near zero,CDm = 5 × e−14, for all 100 images. This means that the colour infor-

mation in Set I matches with that in Set II. The results confirmthat the a degraded

underwater colour image can be improved with colour fidelityif the level of optical

back-scatter is known. Moreover, the results show that processing degraded colour

images in wide spectral bands does not introduce any colour difference with respect to

processing images with narrow spectral bands.

Sample of synthetic images converted to sRGB in clear, degraded and improved

image in Set I and Set II are presented in Figure 7.13(a) - (d) respectively.

7.3.4 Simulation 2

The aim of this simulation is to investigate the amount of colour difference due to the

optical back-scatter estimation error in colour images with narrow spectral bands.

It is shown in monochrome simulations (Section 7.2), that the level of optical back-

scatter can be estimated by BS-CostFunc filter, but with someestimation error. Also,

the plot of Figure 7.8(a) shows that the estimation error varies by light intensity. The

light intensity varies spectrally and as a result, the estimation error is spectrally variant

due to the noise effects.

The estimation error spectra can be found from the intensityin each spectral band

(light source power spectrum) and the corresponding level of estimation error from
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Figure 7.10: The plots of a) the halogen lamp power spectrum,b) the estimation error
spectra.

Figure 7.8(a). The plot of the power spectrum of the halogen lamp and the estimation

error spectra are presented in Figures 7.10 (a) and (b) respectively.

The estimation error causes variation in the pixel value of each band, and as a

result causes a change in the pixel spectrum. The change in pixel spectrum results in

a change in colour. The question is how much colour difference is introduced to the

output image due to the estimation error? Also, human visionsystem has limitation in

recognising small colour differences as explained in Section 2.4.3, so it is important to

know that whether the colour difference due to the estimation error can be sensed by

the human vision system.

The expected colour difference due to the estimation error in each band is esti-

mated. For each spectral band, the estimation error is addedto a sample of synthetic

clear image. The original image and the image with added estimation error are then

mapped from 33 bands to 3 bands in form of XYZ and then converted toL∗a∗b∗. The

amount of colour difference between these two images is calculated asCDm = 1.6. To

confirm this, the amount of colour difference due to the BS-CostFunc filter estimation

error in each band is investigated experimentally in Simulation 2.

Two series of 100 synthetic colour images, the same as in Simulation 1, are used.

The optical back-scatter in each narrow spectral band is estimated by BS-CostFunc

with σcf = 3. The degraded images in each spectral band are compensated for the

effect of optical back-scatter. This set of images is calledSet III. A sample synthetic

image in Set III, which is converted to sRGB, is presented in Figure 7.13(e). The
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Figure 7.11: The plot of mean colour difference,CDm, for 100 images between Set
III and the clear reference image (dash-dotted line), and Set IV and the clear reference
image (solid line).
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improved images with their correspondence clear referenceimages are mapped to 3

bands in form of XYZ and converted toL∗a∗b∗ colour space. The mean colour dif-

ference,CDm, between the original image and Set III are calculated for 100 images

and presented in Figure 7.11 with dash-dotted line. It can beseen that for 100 images,

the value ofCDm is constantly less than JND value of 2.3 for all 100 images. This

confirms that the amount of colour difference due to the errorof BS-CostFunc filter is

less than the eye sensitivity threshold .

7.3.5 Simulation 3

The aim of this simulation is to investigate the amount of estimation error for colour

images with wide spectral bands.

In real life images are generally captured in form of RGB, which has 3 highly

correlated spectral bands. In this part, we would like to know how BS-CostFunc algo-

rithm performs with images in wide spectral bands, such as RGB. BS-CostFunc uses

the extended Oakley-Bu cost function. The basis of Oakley-Bu cost function is that the

relation between the standard deviation and mean of image regions/surfaces can reveal

the level of extra lightness due to optical back-scatter in adegraded image.

To show this, two sample monochrome synthetic clear and degraded underwater

images at 600nm from test images that used in Simulation 1 areused. The term local

is used here to refer for each image block or region.

The synthetic images have check-board pattern, in which each block represents

for each image region. The standard deviation of each image block (stdb) is plotted

versus the correspondence mean (mb) of that block for clear and degraded condition

and presented in Figure 7.12(a) with red circle and blue square marks respectively.

It can be seen that the first part of both plots are linear. The expansion of the plot

intercepts withmb axis around zero for the image in clear water condition, whereas

for the degraded image the plot is shifted in local mean axis toward 100, which is

the level of synthetic optical back-scatter. Assume an image,Im3, is consisted of two

uncorrelated imagesIm1 andIm2, with local mean ofmb1 andmb2, and local standard

deviation ofstdb1 = c′mb1 andstdb2 = c′mb2, wherec′ is a constant value. The mean

is a linear operation, so the local mean ofIm3 can be found by

mb3 =
mb1 + mb2

2
. (7.30)
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Figure 7.12: The plot of local standard deviation (stdb) versus local mean (mb) for
a) synthetic images in clear and turbid water conditions, b)two degraded synthetic
images in turbid water condition at 600nm.Im1 is one single image andIm3 is from
the combination of two degraded images,Im1 andIm2 at 600nm.
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The standard deviation is not a linear operation and forIm3 can be found by

stdb3 =

√

std2
b1 + std2

b2 + 2cov(b1, b2)

2
. (7.31)

As Im1 andIm2 are uncorrelated,cov(b1, b2) = 0, andstdb3 can be written as

stdb3 =

√

std2
b1 + std2

b2

2
, (7.32)

stdb3 =

√

(c′mb1)2 + (c′mb2)2

2
, (7.33)

stdb3 = c′
√

m2
b1 + m2

b2

2
. (7.34)

From Equation (7.30),m2
b3 can be written as

m2
b3 =

m2
b1 + m2

b2 + 2mb1mb2

4
. (7.35)

By rearranging Equation (7.35)

m2
b1 + m2

b2 = 4m2
b3 − 2mb1mb2. (7.36)

By substituting Equation (7.36) in Equation (7.34)

stdb3 = c′
√

2m2
b3 − mb1mb2. (7.37)

Equation (7.37) shows that the amount of difference is related tomb1 andmb2. As a re-

sult the local standard deviation and mean of the combined image are not proportional.

stdb3 6∝ mb3. (7.38)

To show the relation ofstdb3 andmb3, two synthetic degraded images,Im1 andIm2,

at 600nm with same level of optical back-scatter are used. The plots of local standard

deviation versus local mean forIm1 andIm3 (Im3 = Im1 + Im2) are plotted and

presented in Figure 7.12(b) by blue square and magenta circle markers respectively.

It can be seen that forIm1, the expansion of the plot intercepts at 100, whereas for

Im3 the expansion of the plot intercepts with some difference from 100. This shows

that the result of localstdb3 versusmb3 plot is less useful when analysing the level of

optical back-scatter.
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Colour images in wide spectral bands, such as XYZ and RGB, canbe assumed to

be the sum of several images of narrow spectral bands. The cost function algorithm is

based on the relation between the standard deviation and mean of each image region.

Also, it is shown in Equation (7.38) that the standard deviation of the combined image

regions is not proportional to the mean. The amount of difference is approximately

related to the local mean of the narrow spectral band images (mb1mb2). If the local

mean values are low, the amount of difference is lower and causes less error in the

performance of cost function algorithm. But, if the local means have high values, then

the difference becomes high and causes more error.

Therefore, when processing colour images with wide spectral bands, the cost func-

tion algorithm operates with extra estimation error, in which the amount of error relates

to the local mean of narrow band images. If the local mean is low, the amount of error

is lower as well.

Simulation 3 is done to investigate how much colour difference is introduced to

this extra estimation error. Two series of 100 synthetic colour images, same images

as used for Simulation 1, are used in this simulation. Each image is mapped to XYZ

colour space. Then, the level of optical back-scatter in each band is estimated and used

to compensate for the effect of optical back-scatter. This set of images are called as

Set IV. The clear reference and Set IV images are converted toL∗a∗b∗ colour space

andCDm between these two images are calculated and plotted in Figure 7.11 with

solid line. The colour difference isCDm ≈ 4, which is is higher than the level of

eye sensitivity threshold, JND. A sample of synthetic imagein Set IV is converted to

sRGB and presented in Figure 7.13(f). It can be seen that the processed image is darker,

which is because of the level of noise. The image colour is visually similar to the clear

reference image, even if the colour difference is in a range that can be detected by eye.

In other word, no colour shift is visually obvious. The reason for colour difference

above JND is that, the colour difference is calculated by∆Eab, which considers the

difference between both lightness (L∗ in L∗a∗b∗ colour space) and colour (a∗, b∗ in

L∗a∗b∗ colour space). When the image is darker, even there is no difference in colour,

still it affects on the value of colour difference. This shows that the method can be

successfully applied to colour images in wide spectral bands as well.
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Figure 7.13: A sample of synthetic image converted to sRGB ina) clear water, b)
turbid water, and improved images in c) Set I, d) Set II, e) SetIII, f) Set IV.



Chapter 8

Experimental Results

8.1 Introduction

In this chapter the performance of the proposed algorithm istested with real con-

strained and non-constrained images. The performance evaluations are defined by

equations (7.10) - (7.13) in the simulation section in Chapter 7.

This chapter is structured as follows. Section 8.2 presentsthe results of processing

monochrome constrained test images. Each monochrome imageis of a narrow spectral

band of bandwidth 10 nm. The estimation of the back-scatter parameter (γ) at different

levels of water turbidity is investigated. The accuracy in estimating optical back-scatter

for monochrome images with narrow spectral bands is evaluated. Some examples of

improved monochrome images are presented. The consistencyof the estimated back-

scatter parameter (γ) across a series of continuous images is investigated at different

wavelengths. The quality of the output image, when the imageprocessed by the pro-

posed algorithm, is compared with the output image, when theimage is processed by

the known contrast enhancement method, local histogram equalisation. Section 8.3

presents the results of processing constrained colour images in both narrow and wide

spectral bands. The amount of colour difference introduceddue to the proposed al-

gorithm is evaluated for colour images with wide spectral bands. Some examples of

improved images are presented. In Section 8.4, the algorithm is used to process non-

constrained images. The consistency ofγ is investigated in different colour channels.

Samples of improved images with the corresponding degradedimages are presented.

122
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Figure 8.1: The plot ofγ versus image index, for three water turbidity levels,T0, T1

andT2.

8.2 Monochrome Images

In this section, the accuracy of optical back-scatter estimation and the consistency of

the back-scatter parameter (γ) are investigated for monochrome images.

8.2.1 Accuracy

In this part, it is shown that the proposed BS-CostFunc filtercan accurately detect the

level of optical back-scatter. There is always some level ofoptical back-scatter even

for images in clear water condition. Therefore, it is expected that when the proposed

algorithm is applied to a clear underwater image, it detectsthis low level of optical

back-scatter. Also, when the level of water turbidity is higher, a higher level of back-

scatter is expected.

Optical back-scatter is estimated for 10 degraded images inclear (T0), medium

(T1) and high (T2) levels of water turbidity. The parameters are set toσcf = 4 and

σB = 180. The estimatedγ is plotted for 10 images and is presented in Figure 8.1. It

can be seen from the plot that the value of estimatedγ is different for each level and is

associated with the level of water turbidity.

The estimated value of optical back-scatter,bλ, is used to calculate the parameter,
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aλ. The estimated values ofbλ andaλ are used to improve the images in series ofT0,

T1 andT2. The improved images are found by subtractingbλ from the degraded image

and then scaling the remainder by1
aλ

.

A selection of improved images is presented in Figure 8.2. Itcan be seen that

the improved images fromT0 andT1 (Figures 8.2(a) and (b) at column (ii)) are simi-

lar. The improved images show the scene content without any scattering effect. This

confirms that the algorithm can detect the level of optical back-scatter and correct the

image appropriately. The lower part of the improved image fromT1 looks darker. This

is because, a shadow appears in images from seriesT1 (due to a reflection from the

translation stage during capturing images in seriesT1).

Although the effect of optical back-scatter is mitigated inthe processed image from

T2 (Figure 8.2(c)), yet the quality of the processed image is lower with respect to the

quality of the improved images fromT0 and T1. Resolution loss is evident in the

processed image. The turbidity level inT2 is in the high range of water turbidity (0.7

gr/100 litres) such that the image has both contrast loss andresolution loss problems. It

is shown in Chapter 3, that for water turbidity more than 0.3 gr/100 litres both contrast

loss and resolution loss are evident. Therefore, the imagesin T2 can not be further

improved by the proposed method.

Next, optical back-scatter is estimated for 10 monochrome images at different visi-

ble wavelengths, 400 nm - 720 nm, with parameters set toσcf = 4 andσB = 180. The

value ofE ′
ave (Equation (7.14)) for 10 test images at each spectral band iscalculated.

Note, the real value of optical back-scatter,b, is required for calculatingE ′
ave. The re-

gression method is used to calculate the value ofb at different wavelengths, using the

degraded image and the improved clear image as the reference.

Figure 8.3(a) presents the plot ofE ′
ave versus wavelength. It can be seen for short

wavelengths,λ < 470nm, the estimation error is negative, which means that the es-

timation value is over estimated, whereas for longer wavelengths,λ > 470nm, the

estimation error is positive, which means it is under estimated. This is because, the

level of noise in each monochrome image changes at differentwavelengths. In sim-

ulations, it is shown in the plot of Figure 7.5(c) that when the level of noise varies,

the estimation error changes. The value of estimation erroris in accordance with the

results from simulations.

Figure 8.4 presents a sample of the improved images togetherwith the correspond-

ing images in clear water (T0), the improved of clear water, and the turbid water con-

ditions (T1) at different wavelengths (550 nm and 700 nm). It can be seen that the
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Figure 8.2: The selection of i) original images, and ii) improved images at 600 nm
for different levels of water turbidity, a)T0, b) T1 and c)T2.
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Figure 8.3: a) The plot ofE ′
ave versus wavelength (λ). b) The surf plot ofγ versus

image index at different spectral bands.
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proposed method significantly enhances the contrast of the degraded monochrome im-

age.

8.2.2 Consistency

For a series of continuous images, when the level of water turbidity, the optical depth,

the illumination and the wavelength remain unchanged, it isexpected that the value of

optical back-scatter remains unchanged over continuous images.

The position of the light source and the water turbidity are kept constant during the

capture of 10 test images in seriesT1. As a result, the level of optical back-scatter at

each narrow spectral band is expected to be consistent over the 10 test images. This is

investigated experimentally. Since the position of light source is consistent, the shape

of Ī is similar for all of the images. Hence, to have a constant level of optical back-

scatter, the value of estimatedγ should be consistent over continuous images.

The value of estimatedγ from the previous experiment (Section 8.2.1) is plotted

versus image index at each wavelength and presented in Figure 8.3(b). It can be seen

that the value ofγ is consistent within 10 test images at each spectral band. However,

the estimatedγ at image 1 is slightly higher (< 10% difference with respect to theγ

value at image 2 - image 10). This can be because when image 1 was captured the EP

particles have not been settled properly in water tank, where as at the time of imaging

for image 2 and after, the particles were settled and provided a constant level of optical

scattering.

8.2.3 Quality

In this section the quality of the enhanced image by the proposed algorithm and also

local histogram equalisation are compared visually. Figure 8.5(ii), (iii) present the

selection of processed images by the proposed method using BS-CostFunc filter and

by local histogram equalisation with 120 kernel size respectively for different levels of

turbid water,T0, b) T1, c) T2. It can be seen that the quality of the enhanced images

with the proposed method is superior to the local histogram equalisation method. The

processed images with local histogram equalisation have noise and look grainy.
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Figure 8.4: The selection of images in a) turbid water (T1), b) improved fromT1,
c) improved fromT0, d) clear water (T0) at i) 550 nm, ii) 700 nm.
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Figure 8.5: The selection of images in i) original images, ii) processed with the pro-
posed method using BS-CostFunc filter, iii) processed with local histogram equalisa-
tion with 120 kernel size, for different levels of turbid water a)T0, b) T1, c) T2.
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8.3 Colour Constrained Images

In this section, the results of experiments with colour images are presented. The colour

fidelity of the improved images using the proposed algorithmis investigated experi-

mentally for real constrained colour images. Experiments are done on colour images

with both narrow and wide spectral bands. 10 test images fromT0 andT1 for clear and

turbid water respectively are used for these experiments. The processed image in clear

water condition is used as the reference image. The first experiments uses images with

10 nm bandwidth.

8.3.1 Experiment 1- Colour Images in Narrow Spectral Bands

The degraded colour image fromT1 is improved by compensating the effect of optical

back-scatter in each spectral band. The parameters are set to σcf = 4 andσB = 180.

For each colour image, the value ofbλ is estimated for the monochrome image (Iλ)

of that specific band with central wavelength,λ. Then the value ofaλ is calculated

using Equation (6.19). Each monochrome image is improved bysubtractingbλ from

Iλ and then rescaling the remaining by1
aλ

.

The multispectral degraded images (T1), the improved images fromT1, the refer-

ence images (improved fromT0), and the clear water images (T0) are mapped to XYZ

colour space, and then converted to sRGB to be visually presented. Figures 8.6(a) -

(d) show a selection of colour degraded images fromT1, the improved image fromT1,

the reference image (improved fromT0), and the image fromT0 respectively for two

different scenes (image 1 and image 10).

It can be seen that the low level of optical back-scatter is removed from the image

in clear water condition. The colour of the improved images from the turbid water

(Figure 8.6(b)) is similar to that of the reference images (Figure 8.6(c)). This result is

in accordance with the simulation results in Section 7.3.4.

8.3.2 Experiment 2- Colour Images in Wide Spectral Bands

In the second experiment, the performance of the proposed algorithm, when improving

colour images in wide spectral bands is investigated. Thereare two main sources of

estimation error, when processing in wide spectral bands with respect to processing in

narrow spectral bands, which are the extra estimation errorintroduced by BS-CostFunc

filter for wide spectral bands, and the difference of the level of noise between wide
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Figure 8.6: The selection of colour images from two different scenes, i) image 1, ii)
image 10 for a) the degraded image fromT1, b) the improved image with narrow
spectral bands fromT1, c) the reference image (improved with narrow spectral bands
from T0), d) the image from the clear water condition (T0).
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Figure 8.7: The plot of colour difference between the improved colour image in wide
bands formT1 and the reference image (the improved fromT0) for 10 images.

bands and narrow bands.

In simulations, the plot ofE ′
ave versusσn in Figure 7.5(c), shows that when the level

of noise is low, the estimation error is higher and is overestimated. For medium level of

noise, the estimation error decreases to lower value. The level of noise in wide spectral

bands is lower, with respect to the narrow spectral bands, because during the mapping

process, the noise value is nearly averaged over the narrow bands of that specific wide

band. Therefore, it is expected that the level of estimationerror should be higher and

also should be overestimated for wide spectral bands. The subtraction of a higher value

from the degraded image pixels, causes the pixel intensity of the improved image have

lower values and as a result the image are expected to look darker. The improved

synthetic image in wide spectral band, presented in Figure 7.13(f), also shows that the

processed image in wide spectral bands is darker with respect to the processed image

in narrow spectral bands (Figure 7.13(e)).

The multispectral images are first mapped to XYZ and then converted to sRGB

colour space. The degraded images are improved by processing in each colour channel,

red (R), green (G) and blue (B). The parameters are set toσcf = 6 andσB = 180. The

process of improving images in each colour channel is as explained for narrow spectral

bands in Experiment 1.
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Figures 8.8(a) - (d) present a selection of images from the degraded imageT1, the

improved image in narrow spectral bands, the improved imagein wide spectral bands,

and the reference image (the processed images from clear water condition in narrow

bands) respectively for image 1 and image 10. It can be seen that the improved image

in wide bands are darker than that of the narrow bands, while the colour is the same

for both images.

The numerical colour difference is found between the improved image fromT1

in wide spectral bands and the reference image (the improvedfrom T0), which are

converted toL∗a∗b∗ colour space.

The mean colour difference,CDm, (Equation (7.20)) is calculated for 10 test colour

images. Figure 8.7 presents the plot of the mean colour difference,CDm, versus image

index for 10 colour images. The plot shows that theCDm value is higher than the

eye sensitivity threshold (JND=2.3). This colour difference can be because of the

difference in intensity level between two images, as the calculation of colour difference

considers the lightness difference as well.

8.4 Colour Non-constrained Images

In this section, the proposed algorithm is tested with non-constrained colour images,

which are captured in real underwater condition. The imagesare captured at two dif-

ferent locations, in UK and Abu Dhabi as explained in Section3.1. Since the reference

image in clear water condition is not available for non-constrained images, as a result

the accuracy of the optical back-scatter estimation can notbe assessed directly. There-

fore, the evaluation of the proposed algorithm is done by investigating the consistency

of the estimatedγ value in each spectral band. The parameters are set toσcf = 3,

σB = 90 andσcf = 3, σB = 80 for processing images from the Thales Research and

the ADMA company respectively.

The value ofγ is estimated for each colour channel (R, G, B) for 100 continuous

test images at two different water locations. Figures 8.9(a) and (b) present the plots ofγ

versus image index for each colour channel for images from the ADMA and the Thales

Research companies respectively. From Figure 8.9(a) (ADMA), it can be seen that the

level of optical back-scatter changes from image 1 to image 100. The plots ofγ versus

image index for different channels show that the red channelhas higher fluctuations

with respect to the green and the blue channels. Yet, the trend of increasingγ with

image index in red channel is consistent with the trends in the green and blue channels.
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Figure 8.8: The selection of colour images from two different scenes, i) image 1, ii)
image 10 for a) the degraded image fromT1, b) the improved image in narrow
spectral bands fromT1, c) the improved image in wide spectral bands fromT1 d)
the reference image (improved with narrow spectral bands fromT0).
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From Figure 8.9(b) (Thales Research), it can be seen that thelevel of optical back-

scatter also from image 1 varies to image 100. The plots ofγ versus image index for

all colour channels show similar levels of fluctuations.

Sample of degraded images are also enhanced by Photoshop, one of the popular

commercial image enhancement programme. The histogram of the degraded image is

first shifted in such a way that to keep2% of the image histogram less than zero, in

non-visible part, in order to compensate the effect of camera noise. Then the contrast

enhancement option is applied to images. Figures 8.10, 8.11present the sample of

the degraded, the improved images by the proposed algorithmusing BS-CostFunc fil-

ter and the improved images by Photoshop from the ADMA and theThales Research

companies respectively.It can be seen that the processed images by the proposed al-

gorithm are significantly improved in terms of perceived visibility and more detail is

visible. The processed images by Photoshop have limited contrast improvement, and

the images are still low contrast.

The sample of 24 continuous image pairs, the degraded and improved images by

the proposed method, are presented in Figures 8.12 - 8.15 from one second of the

ADMA and the Thales Research companies video frames. Figures 8.12, 8.13 presents

images 1 to 12 and 13 to 24 of the ADMA company. Figures 8.14, 8.15 presents

images 1 to 12 and 13 to 24 of the Thales Research company. It can be seen that

the improvement process is consistent over continuous images, and the quality of the

improved images remains consistent for both samples from the ADMA and the Thales

Research companies.
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Figure 8.9: The plot ofγ versus image index for 100 images provided by a) the ADMA
company, b) the Thales Research company
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Figure 8.10: The sample of images from the ADMA oil company a)Original degraded
image, b) Improved image by the proposed algorithm with BS-CostFunc filter, c) Im-
proved image by Photoshop. First,2% of the image histogram is shifted to be less than
zero to compensate for the noise effects. Then, the image contrast is enhanced.
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Figure 8.11: The sample of images from the Thales Research company a) Original
degraded image, b) Improved image by the proposed algorithm, c) Improved image
by Photoshop. First,2% of the image histogram is shifted to be less than zero to
compensate for the noise effects. Then, the image contrast is enhanced.
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Figure 8.12: The sample of continuous images from the ADMA oil company video
sequence. a) Image 1-6, b) Image 7-12.
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Figure 8.13: The sample of continuous images from the ADMA oil company video
sequence. a) Image 13-18, b) Image 19-24.
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Figure 8.14: The sample of continuous images from the ThalesResearch company
video sequence. a) Image 1-6, b) Image 7-12.
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Figure 8.15: The sample of continuous images from the ThalesResearch company
video sequence. a) Image 13-18, b) Image 19-24.



Chapter 9

Conclusions and Future Works

The aim of this thesis is to improve the quality of an underwater image. Conclusions

from the results of this work and the suggestions for future work are discussed below.

9.1 Conclusions

Resolution loss and contrast loss are two of main types of degradation in underwa-

ter images. There are due to the effects of small angle forward-scattered light and

back-scattered light respectively. Although both of theseproblems degrade the image

quality, the problem of contrast loss is less difficult to mitigate than that of resolution

loss. The magnitudes of these two problems vary according todistance and water tur-

bidity. Figure 9.1 presents a chart describing the effects of distance and turbidity from

the experimental results of Chapter 4. The two parameters represent a two dimensional

space which is divided by the dotted line atβ = 0.059m−1. Above the dotted line, the

region A1 corresponds to parameter values for which both resolution loss and contrast

loss are significant. Bellow the dotted line, the regions A2& A3 correspond to param-

eter values for which only contrast loss is significant. The image contrast in the region

A2 is higher than5%, whereas the image contrast in the region A3 is very low, lessthan

5%. As the image contrast in the region A3 is very low, practically the image contrast

enhancement is not useful for improving the images. In practice, contrast enhancement

can be used to improve the images within the region A2. It can be concluded that in

certain imaging situations the image can be improved by compensating the effect of

contrast loss.

In this work, an image processing method is proposed to improve the image quality.

The proposed method is applicable to underwater images, which are taken in water

143
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Figure 9.1: The chart is describing the effects of distance (R) and turbidity (β). The
region A1 corresponds to parameter values for which both resolution loss and contrast
loss are significant. The regions A2 corresponds to parameter values for which only
contrast loss is significant and the image contrast is> 5% (Image enhancement is
applicable). The region A3 corresponds to parameter valuesfor which only contrast
loss is significant, but the image contrast is very low< 5%.
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conditions with parameters in the region A2. The basis of theproposed enhancement

method is to remove the effect of optical back-scatter from the degraded images, since

optical back-scatter is the main cause of contrast loss.

A forward model for a degraded underwater image is given by Equation (5.12). In

this model, the relation between the pixel values of a degraded image in turbid water

with the corresponding value in clear water condition is a straight line. The underwater

image model is validated experimentally for different water conditions, such as differ-

ent levels of water turbidity and different light wavelengths. The inverse of underwater

image model, suggests that the contrast of the degraded image can be improved by

subtracting the intensity value of optical back-scatter from the degraded image in each

pixel position, and rescaling the remaining using the extinction parameter. Thus, the

inverse model is the basis of the proposed enhancement method.

In this work, three different filters are used to estimate thelevel of optical back-

scatter in a degraded image. Two of the methods, BS-Hist and BS-CostFunc filters,

use the model of optical back-scatter given by Equation (6.11). The performance of

these filters are examined and compared using Monte-Carlo simulations with synthetic

underwater images in clear and turbid water under differentstatistical assumptions and

filter parameters. The results of the simulations with monochrome images indicate

that the performance of the BS-CostFunc filter is superior tothat of the BS-MinPix

and BS-Hist filters. Therefore, the BS-CostFunc filter is selected to estimate the level

of optical back-scatter.

The accuracy of optical back-scatter estimation in monochrome images is exam-

ined by simulations with synthetic underwater images. The simulation results showed

that the maximum total estimation error for estimating optical back-scatter is less than

5%. The errors are theγ estimation error, which is around1% (maximum 5 inten-

sity level) and the estimation error of finding the optical back-scatter spatial variation

(Īλ), which is around3%. In addition, it is shown that when the level of light source

intensity is lower, the level of optical back-scatter is lower, and as a consequence the

estimation error is lower.

From experimental results with real monochrome underwaterimages, it is con-

cluded that

• there is no perfectly clear reference for underwater images. Even for clear water

conditions, there is some level of optical back-scatter.

• the amount of correction in the proposed method depends on the level of degra-

dation. It is shown that for clear water, the correction is very low, whereas for
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high level of degradation, the correction is high.

• the method does not require any information about the physical properties of the

scene, and also does not require any special equipment for image acquisition.

It only requires an image intensity, which can be obtained byany commercial

digital camera. Therefore, this method is generally applicable.

• the proposed method can significantly improve the contrast of a degraded monochrome

underwater image without introducing either further noiseor over enhancement.

• the level of estimated optical back-scatter is consistent for continuous images

with same level of optical back-scatter. It is shown in non-constrained images,

that even when the level of optical back-scatter over continuous images is not

constant, the estimated level of optical back-scatter varied over the continuous

images. This indicates that the method is applicable to video streams as well as

one image.

• the computational cost of the proposed method is mainly due to the Oakley-Bu

cost function to estimate the parameterγ and the smoothing filter to find the

spatial variation of the light intensity. In previous study, it is shown the com-

putational cost of Oakley-Bu cost function is low. Also, therecursive Gaussian

filter is used as the smoothing filter and this is fast. So, it can be concluded that

the computational cost of the proposed method is low. Therefore, the proposed

method is applicable to real time imaging applications.

It is shown mathematically and confirmed by simulations withsynthetic colour

images that when the accurate level of optical back-scatteris known, it is possible

to recover colour of a degraded underwater image, either in form of multispectral or

RGB. This result suggests that underwater image improvement for colour images is

possible with colour fidelity.

The result of improving multispectral images, synthetic and real images, by the

proposed method indicates that the colour difference between the recovered image and

the reference image is below the eye sensitivity threshold,which is JND=2.3. From

this result, it can be concluded that it is possible to recover the spectrum of a degraded

multispectral underwater image.

Comparing the improved images in RGB and multispectral images with reference

images, it can be seen both images are darker. For multispectral it is hardly noticeable,

whereas for RGB images it is evident. It is shown mathematically that the performance
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of BS-CostFunc filter for RGB images, introduces noticeableestimation error. Thus,

the amount of darkness is related to the amount of estimationerror. The result of

simulation shows that the amount of estimation error variesby the level of image noise.

As the level of noise increases the error decreases. Multispectral images have higher

level of noise with respect to RGB images, which causes having lower error. As a

result, it can be concluded that the amount of darkness depends on the level of image

noise.

9.2 Suggestions for Future Work

The suggestions for possible future works are:

• The algorithm of the proposed method is written in MATLAB. The algorithm

should be written in another programming language, such as C, in order that the

algorithm can be used commercially. For example, the systemcould be an extra

option for processing underwater images in digital cameras, or an enhancement

option for image editing software.

• The method can be extended to recover spectral information for hyperspectral

images, which also cover ultraviolet and infrared wavelengths.

• It is shown that the performance of BS-CostFunc filter in RGB images intro-

duces noticeable estimation error. Further statistical study should be done to

find out the expected value of the estimation error due to the performance of

BS-CostFunc filter with RGB images, and also whether the estimation error is

underestimated or overestimated. Moreover, by knowing theexpected error in

bλ, the amount of error for scaling factor,aλ, can also be investigated.

• The calculated colour difference (∆Eab) between the improved image and refer-

ence image is above the eye sensitivity threshold (JND) for RGB images. This

suggests there is colour difference. However, the improvedimages are only

darker and have similar colour with respect to reference image. This contra-

diction might be because the value of∆Eab includes the difference in lightness

(L∗) as well as the difference in chroma (a∗, b∗). Further work should be done to

compare only the chroma independent on the lightness, in both images with an-

other colour measuring tool. A possible suggestion would beto plot the values
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of b∗ versusa∗ in L∗a∗b∗ colour space for two reference and processed image

pixels.

• Further work can be done to extend the algorithm in order thatthe effect of dark-

ness is corrected in improved image. Possible suggestion isto apply histogram

modification to place the image histogram in visible range.

• The method can be extended to real time image processing. However, processing

images in real time is not straight forward. In real time application each image is

improved independently. For a series of adjacent images, even a small difference

in estimated value ofγ can result the variation in the intensity or colour of the

improved image pixels, which causes further noise in form ofimage flickering.

The possible solution to correct the effect of flickering is to smooth the variation

of γ value over adjacent images. For this, a time filter can be usedafter BS-

CostFunc filter.



Appendix A

Camera Specifications

A.1 Canon PowerShot Pro90 IS
Max resolution 1856 × 1392

Lower resolutions 1024 × 768, 640 × 480

Image ratio w:h 4 : 3

CCD pixels 3.34 megapixels (2.6 effective)

CCD size 1/1.8”(0.556”)

CCD colour filter array C - Y - G - M

ISO rating Auto (50-100), ISO 50, 100, 200, 400

Lens Canon F2.8 - F3.5 Image Stabilised, 13 elements in 10 groups

Lens thread 58 mm

Zoom wide 37 mm

Zoom tele 370 mm (10 x)

Digital zoom Yes, 2 x or 4 x

Auto Focus Continuous AF (Silent focus mechanism)

Manual Focus Yes (approx. 40 focus positions)

Normal focus range Wide: 10 cm - Infinity

Tele: 1 m - Infinity

White balance override Auto, Five presets, Custom white balance

Min shutter 8 sec (Shutter Priority or Manual)

Max shutter for help 1/1000 sec

Flash Internal, automatic pop-up

Flash range (ISO 100) Wide: 70 cm - 4.2 m

Tele: 1 m - 3.4 m

External Flash Yes, Hot-Shoe: Canon Speedlite 220EX, 380EX, 420EX and 550EX
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Flash modes Auto, Red-eye reduction auto, Red-eye reduction on, On and Off

Exposure modes Auto, Creative (Program AE, Aperture Priority, Shutter Priority, Manual)

, Pan-Focus, Portrait, Landscape, Night scene, B&W, StitchAssist, Movie

Metering Center-weighted, Spot

Aperture priority Wide: F2.8, F3.2, F3.5, F4.0, F4.5, F5.0, F5.6, F6.3, F7.1, F8.0

Tele: F3.5, F4.0, F4.5, F5.0, F5.6, F6.3, F7.1, F8.0

Shutter priority Yes, 1/1000, 1/800, 1/640, 1/500, 1/400, 1/320, 1/250, 1/200, 1/160,

1/125, 1/100, 1/80, 1/60, 1/50, 1/40, 1/30, 1/25, 1/20, 1/15,

1/13, 1/10, 1/8, 1/6, 1/5, 1/4, 0.3, 0.4, 0.5, 0.6, 0.8, 1,

1.3, 1.6, 2, 2.5, 3.2, 4, 5, 6, 8

Full manual Yes (any combination of above apertures & shutter speeds apart

from 1/1000 sec only F4.0 - F8.0)

Noise reduction All the time (always enabled)

AE Lock Yes

Exposure adjustment -2EV to +2EV in 1/3EV steps

Bracketing Yes, 3 images @ 0.3, 0.7, 1.0, 1.3, 1.7 or 2.0 EV steps

Movie clips 320 x 240, 15 fps, 30 seconds, including audio

Audio clips Yes, WAV file format

Tripod mount Yes

Self-timer Yes, 10s delay

Video out Yes, switchable NTSC / PAL

Storage types Compact Flash Type I & II

Storage included 16 MB Compact Flash Type I card

Uncompressed format Yes, RAW (Canon proprietary)

Compressed format JPEG (EXIF)

Quality Levels RAW, JPEG: Super Fine, Fine, Normal

Viewfinder TTL Electronic View Finder (with dioptre correction)

LCD 1.8” TFT Flip-out and tilt

Playback zoom Yes, 2.5x to 5.0x

Operating system Proprietary

TWAIN acquire (Required for RAW format) PC Windows 95/98 (including SE)

/ Me / NT 4.0 (Service Pack 3 or higher) / 2000, Mac OS 8.1 or higher

Video Out PAL / NTSC (selectable) - including audio

Connectivity USB, RS232C (optional cable)

Battery Yes, supplied Canon BP-511 Li-Ion rechargeable

Battery charger Yes, supplied AC adapter / charger

Weight (exc. batteries) 680 g (1.5 lb)

Dimensions 125 x 85 x 130 mm, (4.9” x 3.3” x 5.1”)
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A.2 Hamamatsu ORCA-ER
Imaging device Progressive scan interline CCD with micro-lens

Effective no. of pixels 1344(H) × 1024(V )

Cell size 6.45m × 6.45m (square format)

Effective area 8.67mm × 6.60mm(2/3-inch format)

Pixel clock rate 14.75MHz/pixel

Frame rate 8.3 Hz

2 × 2 binning 16.4 Hz

4 × 4 binning 29.0 Hz

8 × 8 binning 45.3 Hz

Readout noise (r.m.s.) 8 electrons

Full well capacity 18,000 electrons

Dynamic range* 2250 :1

Cooling method Peltier cooling with hermetic vacuum sealing

Cooling temperature - 20 C at 20 C ambient temperature

Dark current 0.1 electron/pixel/sec

A/D converter 12 bit

Output signal (digital output) RS-422A 12-bit parallel output

External control RS-232C (full remote for all camera functions)

Sub array** yes

External trigger yes

Contrast enhancement Analog Gain (10 times max.) and Offset functions

Power consumption 70 VA

Ambient storage temperature -10 to +50 C

Ambient operating temperature 0 to +40 C

Ambient operating/storage humidity 70%max. (no condensation)
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Oakley & Bu cost function with

variable offset

The optical back-scatter function (7.7) is substituted with bλ in Equation (2.14) with

Sbsyn(λ) = 1:

S(κ) =
1

P

P
∑

j=1

(
Ij − Īj

Īj − κ cos(θ)
)2. exp

1

P

P
∑

j=1

ln(Īj − κ cos(θ))2. (B.1)

In recent study, (Bu 2007), it is proved that the first derivative of S(b) has minimum

value whenb = c.
d(S)

d(b)
|b=c= 0. (B.2)

For parametric offset, again we are looking for the value of offset function which makes

the cost function minimum. The first derivative of theS(κ) by using the chain rule is

given by:
d(S)

d(κ)
=

d(S)

d(b)

d(b)

d(κ)
. (B.3)

From Equation (7.7):
d(b)

d(κ)
= cos(θ). (B.4)

Substituting Equation (B.4) in Equation (B.3) gives:

d(S)

d(κ)
=

d(S)

d(b)
cos(θ). (B.5)
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d(S)
d(κ)

is zero when eitherd(S)
d(b)

= 0 or cos(θ) = 0. The range ofθ is defined in Equation

(7.7) and as a resultcos(θ) never has zero value. Therefore,d(S)
d(b)

= 0 which shows the

function can have a minimum value at the offset value.
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Farnebäck, G. & Westin, C.-F. (2006), ‘Improving deriche-style recursive gaussian

filters’, Journal of Mathematical Imaging and Vision26(3), 293–299.

Ferrari, J. A., Flores, J. L. & Garcia-Torales, G. (2010), ‘Edge enhancement by unsharp

masking using liquid-crystal displays’,Journal of Modern Optics57(10), 866–

871.

Foresti, G. (2001), ‘Visual inspection of sea bottom structures by an autonomous un-

derwater vehicle’,IEEE Trans. Syst.Man and Cyberpart B 31, 691–705.

Forrest, A. (2005), ‘Colour histogram equalisation of multichannel images’,IEE Pro-

ceeding Vision, Image and Signal Processing152(6), 677–686.



BIBLIOGRAPHY 157

Foster, D. H., Amano, K., Nascimento, S. M. C. & Foster, M. J. (2006), ‘Frequency

of metamerism in natural scenes’,Journal of the Optical Society of America A:

Optics and Image Science, and Vision23(10), 2359–2372.

Freeman, M. H. & Hull, C. (2003),Optics, 11th edn, Butterworth Heinemann.

Gasparini, F., Corchs, S. & Schettini, R. (2007), ‘Low-quality image enhancement

using visual attention’,Optical Engineering46(4), 040502(1)–(3).

Ghahramani, S. (2000),Fundamentals of Probability, 2nd edn, Pearson-Prentice Hall.

Gilchrist, W. (1984),Statistical Modelling, Wiley.

Gonzalez, R. C. & Woods, R. E. (2008),Digital Image Processing, 3 edn, Pearson,

Prentice Hall, USA.

Govender, M., Chetty, K. & Bulcock, H. (2007), ‘A review of hyperspectral remote

sensing and its application in vegetation and water resource studies’,Water SA

33(2), 145–151.

Gutierrez, D., Seron, F. J., Munoz, A. & Anson, O. (2008), ‘Visualizing underwater

ocean optics’,Computer Graphics Forum27(2), 547–556.

Haeghen, Y. V., Naeyaert, J. M. A. D., Lemahieu, I. & Philips,W. (2000), ‘An imaging

system with calibrated color image acquisition for use in dermatology’, IEEE

Trans on Medical Imaging19(7), 722–730.

Hardeberg, J. Y., Schmitt, F. J. M. & Brette, H. (2002), ‘Multispectral color image

capture using a liquid crystal tunable filter’,Optical Engineering41(10), 2532–

2548.

Healey, G. E. & Kondepudy, R. (1994), ‘Radiometric ccd camera calibration and noise

estimation’, IEEE Transactions on Pattern Analysis and Machine Intelligence

16(3), 267–76.

Hernandez-Andres, J., Jr., R. L. L. & Romero, J. (1999), ‘Calculating correlated color

temperatures across the entire gamut of daylight and skylight chromaticities’,

APPLIED OPTICS38(27), 5703–5709.

Hirakawa, K. & Parks, T. (2005), Chromatic adaptation and white-balance problem,in

‘ICIP 2005’, Vol. 3, IEEE, pp. III – 984–7.



BIBLIOGRAPHY 158

Hou, W. (2009), ‘A simple underwater imaging model’,Optics Letters34(17), 2688–

2690.

I. Motoyoshi, Sh. Nishida, L. S. & Adelson, E. H. (2007), ‘Image statistics and the

perception of surface qualities’,Nature447, 206–209.

Irie, K., McKinnon, A., Unsworth, K. & Woodhead, I. (2008), ‘A model for measure-

ment of noise in ccd digital-video cameras’,Measurement Science & Technology

19(4), 045207.

Ishimaru, A. (1978), ‘Limitation on image resolution imposed by a random medium’,

Applied Optics17(3), 348–352.

Jaffe, J. S. (1990), ‘Computer modeling and the design of optimal underwater imaging

systems’,IEEE Journal of Oceanic Engineering15(2), 101–110.

Jain, A. K. (1989),Fundamentals of Digital Image Processing, Prentice-Hall.

Jiang, D. (2004), Digital image enhancement, Mphil, Electrical and Electronics Eng.

Johnson, M. (2003), Real time pipeline profile extraction using recursive filtering and

circle location,in ‘Proc. Int. Conf. on Image Processing’, Vol. 2.

Kahanov, Y. & Royal, J. (2001), ‘Analysis of hull remains of the dor d vessel, tantura

lagoon, israeel’,Int. J. Nautical Archeology(30), 257–265.

Kang, H. R. (2006),Computational Colour Technology, SPIE.

Kim, J., Kim, L. & Hwang, S. (2001), ‘An advanced contrast enhancement using par-

tially overlapped sub-block histogram equalization’,IEEE, Trans. on Circuits

and Systems for Video Technology11(4), 475–484.

Kim, T. & Yang, H. (2006), ‘Colour histogram equalisation via least-squares fit-

ting of isotropic gaussian mixture to uniform distribution’, Electronics Letters

42(8), 452–4.

Kokhanovsky, D. A. A. (2008),Aerosol Optics-Light Absorption and Scattering by

Particles in the Atmosphere, Springer.

Kopeika, N. S. (1998), Causes of blur in imaging through the atmospherere: a system

engineering approach to imaging, Vol. 3433, Proc. of SPIE - The International

Society for Optical Engineering, pp. 320–331.



BIBLIOGRAPHY 159

Kopeika, N. S., I.Dror & Sadot, D. (1998), ‘Causes of atmospheric blur - comment on

atmospheric scattering effect on spatial resolution of imaging systems’,Optical

Society of America-Optics and Image Science, and Vision15(12), 3097–3106.

Krauskopf, J. (2001), A journey in color space,in ‘Color Research & Application’,

Vol. 26, 15th Meeting of the International Color Vision Society, pp. S2–11.

K.V. Mardia, J. A. & Goitı́a, A. (2006), ‘Synthesis of image deformation strategies’,

Science Direct-Image and Vision Computing24(1), 1–12.

Lamberti, F., Montrucchio, B. & Sanna, A. (2004), Bbfhe: Block-based binomial fil-

tering histogram equalization,in ‘Trans on information science and applications’,

Vol. 6, WSEAS, Venice.

Lee, E. H., Ahn, S. C. & Kim, J. H. (2000), Colour reproductionbased on spectral

reflectance,in ‘Color Imaging: Device-Independent Color, Color Hardcopy, and

Graphic Arts V’, Vol. 3963, SPIE, pp. 101–108.

Lee, K.-W., Kim, Y.-S., Park, S.-H., Suryanto & Ko, S.-J. (2008), ‘Effective color

distortion and noise reduction for unsharp masking in lcd’,IEEE Transactions on

Consumer Electronics54(3), 1473–7.

Levi, L. & Mossel, M. (1976), On perfect image correction by unsharp masking,in

‘Applications of Holography and Optical Data Processing, Israel’, pp. 73–83.

Levman, J., Alirezaei, J. & Khan, G. (2003), Perfectly flat histogram equalization,in

‘Signal Processing and Pattern Recognition and Applications’, IASTED, Rhodes

Greece, pp. 38–40.

Lewis, G. D., Jordan, D. L. & Roberts, P. J. (1999), ‘Backscattering target detection in a

turbid medium by polarization discrimination’,APPLIED OPTICS38(18), 3937–

3944.

Li, H., Wang, X., Bai, T., Jin, W., Huang, Y. & Ding, K. (2009),‘Speckle noise sup-

pression of range gated underwater imaging system’,Proc. of the SPIE - The Int.

Society for Optical Engineering7443, 74432A1–8.

li Hu, J., bing Deng, J. & shan Zou, S. (2010), ‘A novel algorithm for color space

conversion model from cmyk to lab’,Journal of Multimedia5(2), 159–166.



BIBLIOGRAPHY 160

Lin, S.-S., Yemelyanov, K. M., Jr., E. N. P. & Engheta, N. (2004), Polarization en-

hanced visual surveillance techniques,in ‘Proceedings of the 2004 IEEE Interna-

tional Conference on Networking Sensing& Control’, IEEE, Taiwan, pp. 216–

221.

Liu, C., Szeliski, R., Kang, S. B., Zitnick, C. L. & Freeman, W. T. (2008), ‘Auto-

matic estimation and removal of noise from single image’,IEEE Trans. on Pat-

tern Analysis and Machine Intelligence30(2), 299–314.

Liu, S., Chen, Y. & Xia, Y. (1994), ‘Viewing method for improving underwater visi-

bility by reduction of back-scatter’,Applied Optics33(26), 6213–18.

L.J. van Vliet, I. Y. & Verbeek, P. W. (1998), Recursive gaussian derivative filters,in

‘Proc. of the 14th Int. Conf. on Pattern Recognition’, IEEE,Computer Society

Press, Brisbane-Australia, pp. 509–514.

Lukas, J., Fredrich, J. & Goljan, M. (2006), ‘Digital cameraidentification from sen-

sor pattern noise’,IEEE Transactions on Information Forensics and Security

1(2), 205–214.

McCartney, E. J. (1976),Optics of the atmosphere scattering by molecules and parti-

cles, Wiley.

McNeil, L. E., Hanuska, A. R. & French, R. H. (2001), ‘Orientation dependence in

near-field scattering from tio2 particles’,Applied Optics40(22), 3726–36.

Moller, B. & Posch, S. (2008), ‘An integrated analysis concept for errors in image

registration’,Pattern Recognition and Image Analysis18(2), 201–206.

Mortazavi, H. (2006), Underwater image enhancement, Mphil, Electrical and Elec-

tronics Eng.

Mortazavi, H. & Oakley, J. (2007), ‘Underwater image enhancement by backscatter

compensation’,ICMSAO2007 Conf..

Narimani, M., Nazem, S. & Loueipour, M. (2009), Robotics vision-based system for

an underwater pipeline and cable tracker,in ‘OCEANS 2009’, IEEE, p. 6.

Nimeroff, I. & Yurow, J. (1965), ‘Degree of metamerism’,Journal of the Optical So-

ciety of America55(2), 185–190.



BIBLIOGRAPHY 161

Oakley, J. & Bu, H. (2007), ‘Correction of simple contrast loss in colour images’,

IEEE, Trans. on Image Processing16(2), 511–522.

Oakley, J. & Satherley, B. L. (1998), ‘Improving image quality in poor visibility con-

ditions using a physical model for contrast degradation’,IEEE, Trans. on Image

Processing7(2), 167–179.

Ohno, Y. (2000), Cie fundamental for colour measurements,in ‘IS&T NIP16’, Van-

couver, pp. 16–20.

Pal, N. & Pal, S. (1991), ‘Image model, poisson distributionand object extraction’,Int.

Journal of Pattern Recognition and Artificial Intelligence5(3), 459–83.

Peli, E. (1990), ‘Contrast in complex images’,Journal of Optical Society of America

7(10), 2032–2040.

Petrou, M. & Bosdogianni, P. (1999),Image Processing The Foundamentals, Wiley.

Pointer, M. R. (2002), Cie: vision, color, and imaging,in ‘9th Congress of the Interna-

tional Colour Association’, Vol. 4421, SPIE, pp. 547–9.

Polesel, A., Ramponi, G. & Mathews, J. (2000), ‘Image enhancement via adaptive

unsharp masking’,IEEE Trans. on Image Processing9(3), 505–510.

Rao, C., Mukherjee, K., Gupta, S., Ray, A. & Phoha, S. (2009),Underwater mine

detection using symbolic pattern analysis of sidescan sonar images,in ‘ACC-09’,

2009American Control Conference, pp. 5416–21.

Reibel, Y., Jung, M., Bouhifd, M., Cunin, B. & Draman, C. (2003), ‘Ccd or cmos

camera noise characterisation’,The European Physical Journal Applied Physics

1(21), 75–80.

Reynolds, R. A., Stramski, D., Wright, V. M. & Wozniak, S. B. (2008), Particle size

distribution of coastal waters measured with an in situ laser diffractometer,in

‘20th Conference on Ocean Optics’, Ocean Optics XIX Conference.

Robinson, D. & Milanfar, P. (2004), ‘Fundamental performance limits in image regis-

tration’, IEEE, Transactions on Image Processing13(9), 1185–1199.

Roode, R. D., Noordmans, H. J., Verdaasdonk, R. M. & Sigurdsson, V. (2006),

‘Multispectral system evaluates treatments in dermatology’, Laser Focus World

42(4), 102–104.



BIBLIOGRAPHY 162

S. Tan, J. & Johnston, A. (2003), ‘Performance of three recursive algorithms for fast

space-variant gaussian filtering’,Real Time Imaging9(3), 215–228.

Schechner, Y. & Karpel, N. (2005), ‘Recovery of underwater visibility and structure

by polarization analysis’,IEEE J. of Oceanic Eng.30(3), 570–587.

Schechner, Y. Y. & Averbuch, Y. (2007), ‘Regularized image recovery in scattering

media’,IEEE Trans. on Pattern Analysis and Machine Intelligence29(9), 1655–

1660.

Schechner, Y. Y. & Karpel, N. (2004), Clear underwater vision, in ‘CVPR 04’, Vol. 1,

Proc. of the 2004 IEEE Computer Soc. Conf. on Computer Visionand Pattern

Recognition, pp. 536–43.

Sharma, G. & Trussell, H. J. (1997), ‘Digital color imaging’, IEEE Transaction of

Image Processing6(7), 901–932.

Sheldon, R., Prakash, A. & Sutcliffe, W. (1972), ‘The size distribution of particles in

the ocean’,Limnology and Oceanography17(3), 327–340.

Sivaswamy, J., Salcic, Z. & Ling, K. L. (2001), ‘A real-time implementation of non-

linear unsharp masking with fplds’,Real Time Imaging7, 195–202.

Spaulding, K. & Holm, J. (2002), Color encodings: srgb and beyond, in ‘Image Pro-

cessing, Image Quality, Image Capture, Systems Conference’, Society for Imag-

ing Science and Technology, pp. 167–171.

Srivastava, A., Lee, A., Simoncelli, E. & Zhu, S.-C. (2003),‘On advances in statistical

modeling of natural images’,J. of Mathematical Imaging and Vision18(1), 17–

33.

Stokes, M., Fairchild, M. & Berns, R. S. (1992), ‘Precision required for digital color

reproduction’,ACM Transactions on Graphics11(4), 406–422.

Sullivan, J., Twardowski, M. S., Donaghay, P. & Freeman, S. A. (2005), ‘Use of op-

tical scattering to discriminate particle types in coastalwaters’,Applied Optics

44(9), 1667–1680.

Tan, C. S., Sluzek, A., L., G. S. G. & Jiang, T. Y. (2007), Rangegated imaging system

for underwater robotic vehicle,in ‘OCEANS 2006’, 16th IEEE Int. Symp. on the

Applications of Ferroelectrics, pp. 1–6.



BIBLIOGRAPHY 163

Tan, C., Seet, G., Sluzek, A. & He, D. M. (2005), ‘A novel application of range-gated

underwater laser imaging system (ulis) in near traget turbid medium’,Optics and

Laser in Eng.43, 995–1009.

Tan, K. & Oakley, J. (2001), ‘Physics based approach to colorimage enhancement in

poor visibility conditions’,J. Optical Society of America18(10), 2460–2467.

Tao, Y., Lin, H., Bao, H., Dong, F. & Clapworthy, G. (2009), ‘Feature enhancement by

volumetric unsharp masking’,Visual Computer25(5-7), 581–588.

Treibitz, T. & Schechner, Y. Y. (2006), Instant 3descatter,in ‘CVPR 2006’, Vol. 2,

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion, New York, United States, pp. 1861–1868.

Treibitz, T. & Schechner, Y. Y. (2009), ‘Active polarization descattering’,IEEE Trans.

on Pattern Analysis and Machine Intelligence31(3), 385 – 399.

Trucco, E. & Olmos-Antillon, A. T. (2006), ‘Self-tuning underwater image restora-

tion’, IEEE JOURNAL OF OCEANIC ENGINEERING31(2), 511–519.

Tyo, J. S., Rowe, M. P., Jr., E. N. P. & Engheta, N. (1996), ‘Target detection in op-

tically scattering media by polarization-difference imaging’, APPLIED OPTICS

35(11), 1855–1870.

Valero, E. M., Nieves, J. L., Nascimento, S. M. C., Amano, K. &Foster, D. H. (2007),

‘Recovering spectral data from natural scenes with an rgb digital camera and

colored filters’,Color research and application32(5), 352.

Voss, K. J. (1991), ‘Simple empirical model of the oceanic point spread function’,

Optics30(18), 2647–2651.

Wagner, S. (2007), ‘Match makers’,Engineer293(7718), 33.

Weeks, A. R., Sartor, L. J. & Myler, H. R. (1999), Histogram specification of 24-

bit color images in the color difference (c-y) color space,in ‘Nonlinear Image

Processing’, Vol. 3646, SPIE, San Jose, pp. 319–329.

Weiss, Y. & Freeman, W. T. (2007), What makes a good model of natural images?,in

‘IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion’, IEEE-CVPR’07.



BIBLIOGRAPHY 164

Westland, S. & Ripamonti, C. (2004),Computational Colour Science Using MATLAB,

Wiley.

Withagen, P. J., Groen, F. C. A. & Schutte, K. (2007), ‘Ccd color camera charac-

terization for image measurements’,IEEE Transaction on Instrumentation and

Measurement56(1), 199–203.

Wyszecki, G. & Stiles, W. (1982),Color Science: Concepts and Methods, Quantitative

Data and Formulae, 2nd edn, John Wiley.

Xu, X. & Negahdaripour, S. (1999), ‘Automatic optical station keeping and navigation

of an rov: sea trial experiment’,Proc. Oceans1, 71–76.

Y. Zimmer, R. T. & Akselrod, S. (2000), A lognormal approximation for the gray level

statistics in ultrasound images,in ‘Proc. of the 22nd Annual Int. Conf. of the

IEEE’, Vol. 4, IEEE, pp. 2656–61.

Yamaguchi, M., Haneishi, H. & Ohyama, N. (2008), ‘Beyond red-green-blue (rgb):

Spectrum-based color imaging technology’,Imaging Science and Technology

52(1), 1–15.

Yemelyanov, K. M., Lin, S.-S., Pugh, E. N., Jr. & Engheta, N. (2006), ‘Adaptive algo-

rithms for two-channel polarization sensing under variouspolarization statistics

with nonuniform distributions’,Applied Optics45(22), 5504–5520.

Young, I. & van Vliet, L. (1995), ‘Recursive implementationof the gaussian filter’,

Signal Processing44, 139–151.

Yu, C.-H. & Chen, S.-Y. (2006), ‘Universal colour quantisation for different colour

spaces’,IEE, Proc. Image Signal Process153(4), 445–455.

Yu, Y. & Liu, F. (2007), ‘System of remote-operated-vehicle-based underwater blurred

image restoration’,Optical Engineering46(11).

Yura, H. T. (1971), ‘Small-angle scattering of light by ocean water’, Applied Optics

10(1), 114–118.

Zawada, D. G. (2003), ‘Image processing of underwater multispectral imagery’,IEEE,

Journal of Oceanic Engineering28(4), 583–594.



BIBLIOGRAPHY 165

Zhou, Q. (2004), Illumination Compensation, PhD thesis, Electrical and Electronic,

UMIST, Manchester, UK.

Zhu, H., Chan, F. H. Y. & Lam, F. K. (1999), ‘Image contrast enhancement by con-

strained local histogram equalization’,Computer Vision and Image Understand-

ing 73(2), 281–290.

Zitova, B. & Flusser, J. (2003), ‘Image registration methods: A survey’, Image and

Vision Computing21(11), 977–1000.


