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The quality of an underwater image is degraded due to thetsféé light scattering in
water, which are resolution loss and contrast loss. Carltossis the main degradation
problem in underwater images which is caused by the effegpti€al back-scatter.

A method is proposed to improve the contrast of an underwatege by mitigating
the effect of optical back-scatter after image acquisitiime proposed method is based
on the inverse model of an underwater image model, whichlidatad experimentally
in this work. It suggests that the recovered image can ber@utdy subtracting the
intensity value due to the effect of optical back-scattenfithe degraded image pixel
and then scaling the remaining by a factor due to the effegpti€al extinction.

Three filters are proposed to estimate for optical backiecat a degraded image.
Among these three filters, the performance of BS-CostFuter i$ the best. The
physical model of the optical extinction indicates that tygical extinction can be
calculated by knowing the level of optical back-scatter.

Results from simulations with synthetic images and expeni® with real con-
strained images in monochrome indicate that the maximuncalgiack-scatter esti-
mation error is less thaf’%. The proposed algorithm can significantly improve the
contrast of a monochrome underwater image. Results of celowlations with syn-
thetic colour images and experiments with real constranodour images indicate that
the proposed method is applicable to colour images withurdidelity. However, for
colour images in wide spectral bands, such as RGB, the cofdhe improved images
is similar to the colour of that of the reference images. Wet,improved images are
darker than the reference images in terms of intensity. Hukng:ss of the improved
images is because of the effect of noise on the level of esbmarrors.
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Chapter 1
Introduction

The capability to produce high quality underwater imagedeismanded in many ar-
eas, such as mine detection (Rao, Mukherjee, Gupta, Ray &&PP009), inspection
of underwater power, telecommunication cables and pipsel(iNarimani, Nazem &
Loueipour 2009, Foresti 2001), research in marine biolddghins & Hwang 2010,
Ahlen & Sundgren 2003, Cronin, Shashar, Caldwell, Marsdleroske & Chiou

2003) archaeology (Arnott, Dix, Best & Gregory 2005, KahagoRoyal 2001) and

mapping (Botelho, Jr & Leivas 2008, Xu & Negahdaripour 1999)

In water medium, the visibility is often poor, and as a rethdtquality of images is
limited. When light travels in water it interacts not onlytivivater molecules but also
with any suspended particles and sometimes air bubblesei@s, Seron, Munoz &
Anson 2008), causing optical scattering and absorptiohth&ke effects contribute to
severe image degradation in form of resolution loss, cehtess and colour changes
(Hou 2009).

Figure 1.1 shows two underwater images from two differecalmns. Figure
1.1(a) and (b) are kindly provided by Racal Research (noweBhResearch) in UK,
and the ADMA oil company in Abu Dhabi respectively. It canallg be seen that the
quality of both images is poor.

Underwater imaging is often done by using a remotely opdragéhicle (ROV),
particularly when inspecting underwater pipelines andeasabA light source, which
provides the required illumination, and a camera are bothntesl on the ROV. A
schematic for general underwater imaging is shown in Figu2e The total light in-
tensity that enters the camera lens and forms the image ssithef three components,
L1, L2 andL3. L1 is the reflected light from the scene and contains the usefage
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(b)

Figure 1.1: Sample underwater images provided by the a)lRa&s@arch (now Thales
Research) in UK, b) ADMA oil company in Abu Dhabi.
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Light Source

Camera

Figure 1.2: Underwater Image Geometh is the reflected light from the sceng2
is the forward scattered light, with anggtelative to the propagation direction3 is
the optical back-scatter. R is the optical path distance.

content.L2 is reflected light from the scene that is scattered beforehieg the cam-
era lens. This is known as forward scattered light and giismto the effect of image
blur. L3 is the optical back-scatter, which is the light scatteredhials the camera lens
by particles between the camera and the scéi3eadds extra lightness to the image
and causes contrast loss.

Among the problems of contrast loss, resolution loss andurothanges in an
underwater image, the contrast loss and resolution losthareffects which degrade
the apparent visibility and are most important. Therefooeimprove the visibility
of an underwater image, the main degradation effect shcailehitigated. Schechner
& Karpel (2005) suggest that contrast loss is the significkagradation effect in an
underwater image in visible wavelength. However, this se&mbe an assumption
and no experimental evidence is presented. The main degma@d#fect is investigated
experimentally in this work and the experimental result$ stiow that contrast loss is
the main problem.

Several methods are available to overcome the effect ofa&siribss. These meth-
ods can be categorised in to two approaches, physics-basedom physics-based.
The methods in non physics-based approach process the nsagg no informa-
tion about the physical formation of the image. Examplesuie unsharp masking
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(Gonzalez & Woods 2008) and histogram equalisation (Kinm & Hwang 2001). It
is explained that contrast loss is because of optical soagteOptical scattering de-
pends on several parameters, such as illumination, wayislgethe optical distance and
the water type (which means the size and distribution ofsnded particles in water).
In general the effect of contrast loss is non-stationargssthe image (Schechner &
Karpel 2005). Existing enhancement methods are based oasthamption that the
noise is spatially invariant. Therefore, they provide dirtyited contrast improvement
(Treibitz & Schechner 2006).

In the physics-based approach, a physical model of an intagenater medium,
which is presented in Equation (1.1), explored to mitigatetast loss.

I=S+B, (1.1)

wherel is the degraded image ands the attenuated signal from the scene &rdthe
signal from suspended particles. The contrast of an underwaage can be improved
by a subtraction of optical back-scatter from the degradeabie,/ — B. This can be
achieved either by eliminating the optical back-scatt@ngispecial imaging hardware
or by arithmetic processing of the image after acquisiatiBramples of the former
include polarization (Schechner & Karpel 2005) and sigradirg (Tan, Seet, Sluzek
& He 2005), which can signicantly mitigate the effect of aast loss and improve
the image visibility. However, the use of such hardwaresddaschniques introduces
extra cost and restricts applicability. Less attention @sn given to the arithmetic
approach, which is the subject of this thesis.

1.1 Aims and Objectives

In this work, it is shown that contrast loss is the main probieith underwater images.
A forward model of an underwater image is given, which isdaed in this work. A
new physics-based method is proposed, based on the invexds of an underwater
image, to improve the apparent visibility of an underwateage by mitigating the ef-
fect of optical back-scatter. The proposed method is agbplécto underwater images
with only contrast loss problem. The method does not reqnsespecial equipment,
and the images can be taken by any digital camera. This métkiolves using sta-
tistical properties of the image to estimate the opticakkbszatter. It is shown by
experimental results that the method can significantly owpithe image contrast, and
also can be applied to both monochrome and colour imagescwithur fidelity.
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1.2 Outline of the Thesis

This thesis contains nine chapters, including this intobide. Below is the structure
of each chapter.

Chapter 2 Literature Review This chapter presents a review of the existing work
relevant to the aims of this study. First, optical scatgiisexplained as well
as more details on the image formation process. Next, dummeage contrast
enhancement methods, such as histogram modification, ynstasking, polar-
ization, signal gating and Oakley-Bu cost function are ax@d. Then, an ex-
planation is given about recursive Gaussian filter and taessital distribution
of natural image texture. Finally, is a brief review on calgsagience concepts.
This includes an explanation of the human vision system,esocotour spaces,
colour temperature and colour difference.

Chapter 3 Experimental Methodology In this chapter, the design and the prepa-
rations of test images are described.

Chapter 4 Degradations in Underwater ImagesThis chapter, the impact of con-
trast loss and resolution loss are compared in a practicmwater situation.
It is shown experimentally that contrast loss is the domimigradation effect
when compared with resolution loss.

Chapter 5 Underwater Image Model This chapter presents the mathematical for-
ward model of a degraded underwater image and supportireyiexgnts to val-
idate the proposed model.

Chapter 6  Mitigation of Contrast Loss in Underwater Images In this chapter, a
new method is proposed based on the inverse of an underweaigeimodel. It
is shown that to improve the contrast of an underwater imagegstimate for
the level of optical back-scatter is required. Three déferoptical back-scatter
filters are explained to estimate the level of optical backter in a degraded
underwater image without using any information about thesptal properties
of the scene.

Chapter 7 Simulations This chapter explores the performance of three optical-back
scatter filters using Monte-Carlo simulations with synithenhderwater images
and under different statistical assumptions. The accund85-CostFunc filter
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for processing monochrome and colour images are examingduCfidelity is
investigated for the improved colour images by the propasethod.

Chapter 8 Experimental Results This chapter evaluates the performance of the
proposed method using real constrained and non-consiramgerwater images.
The accuracy and consistency of the estimated optical beatter parameter is
evaluated for monochrome constrained images. Colour tydisliinvestigated
for the processed constrained colour images in both narrmwade spectral
bands. Examples of the improved images are presented.

Chapter 9  Conclusions and Future Works Conclusions from the simulations and
experimental results are drawn and the possible future svamd suggested.



Chapter 2
Literature Review

This chapter is structured as follow. Section 2.1 reviewskeound on the underwater
imaging environment, with reference to optical scatteend underwater image geom-
etry. A review of existing contrast enhancement methodsasiged in Section 2.2.
Some other techniques that are used in throughout this werkegiewed in Section
2.3. These include the statistical distribution of an imtegeure, recursive Gaussian
filter and the fundamental concepts in colour science.

2.1 Underwater Imaging

To understand why underwater images are degraded, thegatogaof light in a water
medium is studied. First, light scattering and extinctioa explained followed by
an explanation of underwater image geometry. A physicalehotithe three basis
intensity components of underwater image are describecne iahetail.

2.1.1 Scattering

Optical scattering happens when a light beam interacts avjplarticle. The level of
optical scattering varies for different sizes of particl@he pattern of the scattering
depends on the ratio of particle size to the light wavelengény small particles, such
as molecules in the atmosphere, tend to scatter isotrbpicehis type of scattering
can be explained by Rayleigh theory (McCartney 1976). Wherstze of particle is
larger than the wavelength of visible light, the scattegadgtern is more complex and
is concentrated in the forward direction. The Mie theorydedito describe scattering
by such particles (McCartney 1976). Figure 2.1 shows theepabf scattering for

27
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different sizes of particle.

Figure 2.1: Scattering pattern for different sizes of gdet. (a) size: smaller than one
tenth of the wavelength of light. (b) size: approximatelydaurth the wavelength of
light. (c) size: larger than the wavelength of light.

Optical Forward Scatter

Light scattered in the same direction as the source lighh@swk as optical forward
scatter. When the patrticle diameter is larger than theestadt wavelength, the pattern
of scattering usually shows some peaks at other anglese Hrilgle is small, then the
phenomenon is known as small angle forward scattered natitee (Kopeika, I.Dror
& Sadot 1998).

Optical Back-scatter

The light scattered back toward the light source from sudeérparticles, which are
between the camera and the object, is known as optical ltkes or back-scattered
light.
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2.1.2 Extinction

The term extinction means the loss of intensity during pgapian through a turbid
medium. Two different mechanisms contribute to extingtadssorption and scattering
(Kokhanovsky 2008, McCartney 1976).

2.1.3 Underwater Image Geometry

The underwater image geometry is shown in Figure LRis the reflected light from
the scene.L2 is the forward scattered light, with angékelative to the propagation
direction. L3 is the optical back-scatter. These components are dedanbeetail
below.

Direct Component (L1)

The direct component is the direct reflected light from thengcreaching the camera
lens. This carries the scene information with attenuatios t extinction. Equation
(2.1) presents the physical model of the direct componeritd&ner & Karpel 2004).

A)\(SL’,y) = COJ)\@:uy) exp (_BA(SCJ/)R)’ (21)

where(, is the illumination radiance) is the light wavelength/,(x,y) is the scene
reflectanceR is the distance of optical path, and(x, y) is the extinction coefficient
(3,) at pixel position(z, y), in which 3, has the form

By = B+ B3 (2.2)
— Dra®Qy + B, (2.3)

whereD is the particles concentrations the particle radiusys* is the Mie scatter-
ing factor and3§® is the absorption coefficient.

Forward-scatter Component (L2)

The forward-scatter component represents the light sedtttorward over a small

range of angles relative to the propagation direction. Tnevdrd-scatter component
originates from the same scene point as the direct compolnginénters the imaging
device at a different angle and causes the same object pdiet detected at different
adjacent image points separated by a distancas shown in Figure 2.2. This effect
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is known as the adjacency effect (Kopeika 1998). The digtioin of angles can be
estimated by using the Fraunhofer diffraction equationaaingle slit (Freeman &

Hull 2003) by

A

Omaz = = 2.4
max d? ( )

whered is the particle diameter anklis the light wavelength as defined before. Yura

R

A
Y

Figure 2.2: The amount of image point misplacement due wdoi-scatter light is
Yi.

(1971) and Ishimaru (1978) suggest that forward-scatterpoment is the cause for
resolution loss (image blur), when the angl@is< 6,,,,. < 1°.

An approximate value of forward-scatter componént, (z, y), can be found (Yu
& Liu 2007, Jaffe 1990) by

FS\(z,y) = Ax(x,y) * g, (2.5)

whereg is the point-spread function (PSF) of water and * denotescthre/olution
operation. There are several models suggested for the foumderwater PSF (Yu &
Liu 2007, Voss 1991). For example, Jaffe (1990) suggesteditdel

g = (e7M — e PRyl (= KAy (2.6)

where K > 0 andn are empirical constants and related to water properties,san
is the extinction coeeficient. Theis limited ton < 3. F~!is the inverse Fourier
transform, and is the spatial frequency of image plane (It seemis the polar spatial
frequency, as the author has not mentioned the horizontertical component ab).
As Equation (2.6) shows,comprises of two parts. The first pagt;’? — e 5%, causes
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attenuation and depends @ n and3. The second part,~ %% is a low pass filter
and introduces the spatial blur and dependsoand K. This implies for a specific
0., the amount of image blur (misplacement}d)) depends omR. As R increases
the amount of misplacemerlt;, increases as well. Thugjs the cause of two effects,
attenuation and image blur, and as a result forward-saadteponent is a blurred and
attenuated version of the direct component (Schechner &&&005).

Back-scatter Component, L3

Optical back-scatter does not originate from the scene,dses not contain any scene
information. It is the scattered light from particles beémethe camera and scene.
Optical back-scatter adds extra illumination to the imagensity. This extra intensity
causes a reduction in image contrast. The optical backes@mponent is the main
contribution to contrast loss. A physical model of backisracomponent is presented
in Equation (2.7)

BS\(z,y) = Co(1 — exp (=fx(z, y) R)). (2.7)

It can be seen from Equations (2.3) and (2.7), that backesceadbmponent depends
on the parameters of the optical depth, density and padizée Varying any of these
parameters causes the amount of optical back-scatter tgeheesulting a change in
the image contrast.

2.2 Image Enhancement Methods

The process of improving a degraded image to visibly lookebes$ called image en-
hancement (Petrou & Bosdogianni 1999). It is explained thae to the effect of opti-

cal back-scatter, the images in a scattering medium havedovast. By improving the

Image contrast, it is expected to increase the visibility discern more detail. There
are different definitions for measuring image contrast. @tbe common definitions
for image contrast;, is the Michelson formula (Peli 1990)

1 — I
_ lmaz min 28
‘ Imax + Imin’ ( )

wherel,,., and,,;, are for the maximum and minimum image intensity values re-
spectively.
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There are different techniques to improve the contrast ahreage. These tech-
niques can be classified in to two approaches, hardware hasiatbn-hardware based
approach.

2.2.1 Hardware Based Approach

Hardware based approach requires special equipment, oo examples include
polarisation and range-gated.

Range-gated

Range-gated or time-gated is one of the hardware methodgt@ve the image qual-
ity and visibility in turbid conditions (Caimi, Kocak, Ddkgsh & Watson 2010, Tan,
Sluzek, L. & Jiang 2007, Liu, Chen & Xia 1994). In range-gatedierwater imaging
system the camera is adjacent to the light source, whileritderwater target is behind
the scattering medium (Tan et al. 2005). The operation ojeagated system is to
select the reflected light from the object that arrives atddwmera, and to block the
optical back-scatter light (Li, Wang, Bai, Jin, Huang & DiR2g09).

Range-gated system includes a broad-beam pulse as thagitiom source, a high
speed gated camera and a synchronization gate duratiok(uitet al. 2009). Tan
et al. (2005) presented a sample plot of the timing of rargedyimaging in their
work. The authorised copy of the plot is shown in Figure 2.3.

A range-gating process starts when the laser sends a puiséh@nobject. As
the light travels the camera gate is closed. Thus, the beaattesed light will not be
captured. The fast electronic shutter of the gated cametianes delayed and only
opens for a very short period of time. When the laser pulsegmstto the camera after
hitting the object, the camera gate opens. In this case ameKa is exposed only to
the reflected light from the object. Once the laser pulse &s,dlie camera gate closes
again. The opening or closing of the camera gate is basedeopribr information
about the object location (Tan et al. 2007).

Speckle noise is the main problem in these images. The énegrfe between the
reflected light waves back from a rough surface causes tleklgpaoise. For the non-
coherent light this speckle pattern can not be detectedreador the coherent light
the speckle pattern is detectable. As the laser beams by loigherent, the speckle
noise is evident in these images. Recent range-gated systpraved to suppress
speckle noise (Li et al. 2009), and also use high sampliregyathich allow for 3-D
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Figure 2.3: The authorised copy of the timing plot of rang¢ed imaging system from
(C.S. Tan& He 2005). Reflected Image Temporal Profile (RITP) in time dogfar
clear water condition with attenuation coefficient, c=@r2gabsorption coefficient, a=
0:04/m 1. Front RITP, 2. Middle RITP, 3. Tail RITP.

image reconstruction (Caimi et al. 2010).

Polarisation

Light has three properties, intensity, wavelength, anépgdtion. The human vision
system and some animals can detect polarisation and usemamy different ways
such as enhancing visibility (Yemelyanov, Lin, Pugh, Jr. 8gBeta 2006). Natural
light is initially unpolarised, but light reaching to a caraeften has biased polarisa-
tion due to scattering and reflection (Lin, Yemelyanov, JrE&gheta 2004). Light
polarisation conveys different information of the scen@ (&t al. 2004). Inspired by
animal polarisation vision, a polarisation imaging tecjug@ has been developed. To
collect light polarisation data, polarisation-sensiiveging and sensing systems are
required (Lin et al. 2004).

Preliminary studies showed that back-scatter light caredeced by polarisation
(Lewis, Jordan & Roberts 1999, Treibitz & Schechner 2006)m8 studies assum
the reflected light from the object is significantly poladsather than the back-scatter
(Tyo, Rowe, Jr. & Engheta 1996) and in some other studiesah&ary is assumed
(Treibitz & Schechner 2009). Also, in some studies actiltamination, a polarised
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light source, is used (Treibitz & Schechner 2006), wheraasther study passive il-
lumination, ambient light, is used for imaging (Chang, télt, Hopcraft, Jakeman,
Jordan & Walker 2003). Polarisation difference imaging (Piethod process the
intensity of two images obtained at two orthogonal poldiuse (Lin et al. 2004, Tyo
et al. 1996). Schechner & Karpel (2005) introduced a methbithvis based on the
physical model of visibility degradations to recover urvdater images using raw im-
ages through different states of polarising filter. In thisthod visibility can be re-
stored significantly, but remains some noise due to pixdiadeon distant objects. A
technigue is developed to reduce the noise (Schechner &Aehr2007). This method
is developed to capture images faster, and as a result mayld&aestimate a rough
3D scene structure (Treibitz & Schechner 2009).

2.2.2 Non-hardware Based Approach

In non-hardware based approach, no special imaging equipsieequired and only
digital image processing tools are used. Two common examptdude histogram
equalisation and unsharp masking.

Histogram Equalisation

Histogram equalisation (HE) is the most common enhancemetihod because of
its simplicity and effectiveness (Kim et al. 2001). The @iem of HE is to redis-
tribute the probabilities of gray levels occurrences inhsaevay that the histogram of
the output image to be close to the uniform distribution (@dbo & Jaarsma 1980).
Histogram equalisation does not consider the content ainage, only the gray level
distribution.

Different HE methods have been developed (Levman, Alire&akkhan 2003).
These methods can be generally classified in to two categgtiebal and local (Alparslan
& Ince 1980, Abdullah-Al-Wadud, Kabir, Dewan & Chae 2007)olkal HE processes
the histogram of the whole image. Although it is effectivat ki has important lim-
itation (Kim et al. 2001). Global HE stretches the contragtrahe whole image,
and sometimes this causes loss of information in dark regfgbdullah-Al-Wadud
et al. 2007). To overcome this limitation, a local HE techui@gleveloped (Alparslan
& Ince 1980, Kim et al. 2001, Zhu, Chan & Lam 1999). Local HEsiasmall window
that slides sequentially through every pixel of the imagely®locks of the image that
fall in this window are processed for HE and the gray level piag is done for the
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centre pixel of that window (Abdullah-Al-Wadud et al. 200Epcal HE is more pow-
erful, but requires more computation. Local HE sometimesea over enhancement
in some parts of the image, and also increases the image (Adseallah-Al-Wadud
et al. 2007). Some methods have been developed to speed aprtipaitation, such
as partially overlapped HE (POSHE) and block based binofifteding HE (BBFHE)
(Lamberti, Montrucchio & Sanna 2004).

HE is designed for monochrome (single channel) images. ngxtg HE to color
images is not straightforward (Weeks, Sartor & Myler 1998rr&st 2005). The sim-
plest method is to apply HE to each colour channel, R, G andoBragely. However,
this doesn't take into account the correlations betweenméla, and as a result causes
colour changes (Buzuloiu, Ciuc, Rangayyan & Vertan 200he dther method is to
convert the colour space to hue, saturation, intensity ld&bur space and apply HE
to intensity and saturation, leaving the hue unchanged r{l3u®iu 2004, Buzuloiu
et al. 2001). Recent methods have been developed to exterid iHitages with any
number of dimensions (Kim & Yang 2006, Forrest 2005).

Unsharp Masking

Unsharp masking (UM) is the other common image enhancemettiad (Levi &
Mossel 1976, Gasparini, Corchs & Schettini 2007, Ferrdords & Garcia-Torales
2010, Lee, Kim, Park, Suryanto & Ko 2008). In this method thage is improved by
emphasizing the high frequency components in the image (889, Badamchizadeh
& Aghagolzadeh 2004, Gonzalez & Woods 2008).

The UM method is derived from an earlier photographic teghaiand involves
subtracting the blurred version of an image from the imag@fifGonzalez & Woods
2008). This is equivalent to adding a scaled high-passéditefersion of the image
to itself (Tao, Lin, Bao, Dong & Clapworthy 2009) as shown iguation (2.9). The
high pass filtering is usually done with a Laplacian operé&8vaswamy, Salcic &
Ling 2001) .

~

y(m,n) = x(m,n) + Az(m,n), (2.9)

wherex(m, n) is the original image,\ is a constant, greater than zero, that changes
the grade of sharpness as desired apd, n) is the high-pass filtered version of the
original image.
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Although this method is easy to implement, it is very semsito noise and also
causes digitizing effects and blocking artifacts (Gaspat al. 2007). Different meth-
ods of UM have been introduced to mitigate these problems-Idear filters, such
as polynomial (Gasparini et al. 2007) and quadratic filt8rggswamy et al. 2001) are
used instead of the high pass filter in the UM algorithm (Baclaimadeh & Aghagolzadeh
2004). Adaptive UM uses a variable factoand the value of this factor is controlled
by neighborhood pixel values (Polesel, Ramponi & Mathew8020 In the adap-
tive method, the low contrast details are more enhancedth®high contrast details
(Badamchizadeh & Aghagolzadeh 2004). Unsharp maskingtenithtroduce colour
distortion, when applied to colour images (Cheikh & Gabt{0). Lee et al. (2008)
introduce a method to sharpen the image appearance witlsboittothg the colour and
amplifying the noise.

Simple Contrast Loss (Oakley and Bu Cost Function)

Oakley and Bu (Oakley & Bu 2007) introduce a statistical mdthsing the standard
deviation of the normalised brightness of an image to detexipresence of optical
back-scatter in a degraded image. Itis assumed that tHeofexe optical back-scatter
is constant throughout the image. This algorithm is basefihoimg the minimum of
a global cost function (Oakley & Bu 2007).

The proposed algorithm for optical back-scatter estinmagdo find the minimum
value of a cost function that is a scaled version of the stahdaviation of the nor-
malised intensity.

The key feature of this method is that it does not require agyrgentation as it
uses a global statistic rather than the sample standardtaevof small blocks.

The enhanced version of an image has the form:

I =m(I—-b), (2.10)

where! is the degraded image|s an estimate of the optical back-scatter contributed
part of the image] is the modified image and: is the scaling parameter. The esti-
mated value of optical back-scatter has been shown

argmin{S(b)}, (2.11)
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where
1o I, —1I .
S(b) =5 > ;’ — Z)QGM{(IP —b)?:p=1,2,.. P} (2.12)
p

p is the pixel position P is the total number of pixeld, is the degraded imagé,is
the smooth version of the image, which is calculated by seerGuassian filter with
o filter parameter, and is the value of optical back-scatte€V/{-} denotes the
geometric mean which may be computed from

GM{z, :p=1,2,..,P} = (.Tl.fCQ....pr)%. (2.13)

From Equations (2.12) and (2.13)(b) can be written as:

S(b) = %Z (%) exp (% ;m(fp - b)2>. (2.14)

p=1
2.2.3 Comparison of Enhancement Methods

Contrast loss spatially varies for underwater images. T®hisecause active illumi-
nation, i.e. a light source, is normally used for underwateaging, since natural
illumination is often not sufficient. The active light soartluminates the scene in a
nonuniform way. The part in the direction of the light souisevell illuminated and

the other areas are less illuminated. This causes a nomemdistribution of optical

back-scatter. The other cause of spatial variation in eghts that in an image, the ob-
jects at a greater distance from the camera have more cologashan closer objects.

Unsharp masking and histogram equalisation are both #igateariant and as
a result can apply limited correction in such cases. Alses¢hmethods generally
introduce some noise in the enhanced image. The sample $fragereal underwater
situation are processed by POSHE and BBFHE methaxid presented in Figure 2.4.
It can be seen that small details, as well as noise, are ohanerd.

The simple contrast loss method is designed for compeimstheeffect of optical
back-scatter for images in air. The printed by permissiana of the processed
image with simple contrast losss shown in Figure 2.5 (a). In the simple contrast
model it is assumed that the level of optical back-scatteorsstant across the image

1The images are kindly processed by Dr. Fabrizio Lamberti Wi original code.
2The image is processed by Dr. Hong Bu.
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Degraded Image POSHE BBFHE

Figure 2.4: From left to right, each row contains the sampke d@egraded underwater
image, the printed by permission sample of processed intage©SHE and BBFHE
methods.

(a) (b)

Figure 2.5: The printed by permission sample of a) the degftachage (right side)
and improved image (left side) by simple contrast loss nekthpthe degraded image
(left side) and improved image (right side) by polarisatioethod.
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pixels. This assumption can not be used for images in wateguse of the difference
of imaging situation between underwater and air medium.ilfimaination for images
in air is the diffused light from the sun, which has an invatidistribution. Also, the
optical depth in air is more than images in water. It is in ateradf kilometer in air,
whereas in water is in a matter of meter. Moreover, the stadgt@atterns in water is
different with air, because the size of scattering paiale bigger than the particles in
air. As a result simple contrast loss is not a suitable metbioonproving underwater
images.

Range-gated and polarisation methods are both spatialigntaand can signifi-
cantly improve underwater images. However, these methegisine special equip-
ments for imaging. The printed by permission sample of tlegssed image by po-
larisation, which is published in (Schechner & Karpel 2Q@&lpresented in Figure 2.5

(b).

2.3 Other Technical Background

2.3.1 Recursive Gaussian Filter

Gaussian filters are widely used in different areas of imagegssing and computer
vision (Farneback & Westin 2006, S. Tan & Johnston 2003, @miginy & Pons 2002,
Johnson 2003). Recursive approximation of Gaussian filjesias first introduced by
Deriche (1992) and can be performed in the spatial domaih {lan Vliet & Verbeek
1998, Zhou 2004). The recursive Gaussian filter is fast. Tmepuitation complexity
of a recursive Gaussian filter with order N, is 2N (L.J. vaneVi& Verbeek 1998),
and the computation complexity is independent of the sizh@®fspatial constant;.
The recursive filter has two steps, forward and backwardsemo (Young & van Vliet
1995). The input datayy,, is first filtered in the forward direction. The output of this
result,wy,), is then filtered as in the backward directiont(,,. The forward recursive
equation is defined by:

biwpp—1] + bawpn—g) + b3wp,—3)
b )

(2.15)

Wiy = Bin[n} +

The backward recursive filter is defined by:

byouty, boouty, bsouty,
oty = Buwyy + 10U [p41] + 201;)[ +2] + b3oul| +3) (2.16)
0
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The coefficienty, by, by, b3 and B are defined by:

by = 1.57825+ 2.44413¢ + 1.4281¢° + 0.422205¢°, (2.17)
by = 2.4441q+ 2.8561¢> + 1.26661¢°, (2.18)
by = —(1.428¢* +1.26661¢%), (2.19)
bs = 0.422205¢°. (2.20)
B = 1—b; —by—bs. (2.21)

_ J0.987110 if o > 2.5, (2.22)

3.97156 — 4.14554+/1 — 0.268910 otherwise.

2.3.2 Statistical Distribution of Image Texture

There are different distributions used to generate imagares® such as the Uniform,
Gaussian, Poisson, Log-normal and Beta distributions. Héisson distribution is
discrete, whereas the Gaussian, Log-normal and Beta atengous. However, the
Uniform distribution can be either continuous or discrete.

The Poisson and Log-normal distributions have been usedags models in (Pal
& Pal 1991, Y. Zimmer & Akselrod 2000). Both the Poisson arglltbg-normal distri-
butions are positively skew&dThey have a long tail on the right side of the histogram,
because the variable is free to vary from O#too (Balakrishnan & Nevzorov 2003).
The main parameter for the Poisson distribution is the edgoerumber of occurrences
(x) and for the Log-normal distribution are the meat &nd standard deviations )
Figures 2.6(a) and (b) present a sample of the Log-normaten@oisson distributions
respectively.

The continuous uniform distribution is always used as aresfee to a clear en-
hanced image (Kim & Yang 2006). The Uniform distribution Haw kurtosi$ as
shown in Figure 2.6(c).

The Gaussian distribution is common and simple and is ofs&d in image syn-
thesis (Oakley & Bu 2007, K.V. Mardia & Goitia 2006). The maiarameters are
the mean /) and the standard deviations)( The probability density function of the

3Image texture means the distribution of grey values in thagien

4Skewness is a measure of the asymmetry of the probabilitylaliion. The distribution is said to
be positively skewed, when the mass of the distribution isceatrated on the left and the right tail is
longer.

SKurtosis is a measure of whether the data are peaked or #ditesto a normal distribution. A data
set with high kurtosis tend to have a distinct peak near themaad have heavy tails.
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Gaussian distribution is bell shaped, with a peak at the rvahre. The variable in
a Gaussian distribution can vary betweenc and+oo. A sample of the Gaussian
distribution is presented in Figure 2.6(d).

The Beta distribution is constrained to be within the rajigel] and has two main
positive parametera ., and Bg.... The Beta distribution has a great diversity of
shapes with different parameters values (Ghahramani 2888hown in Figure 2.6(e).
It can be seen that ferg.;, and(s.s, both less than one, the distribution has a U shape.
For ag.., and(g., both greater than one, the graph has a single hump.

In a natural image, the quantised intensity value of pixglsantinuous (Weiss
& Freeman 2007) and is constrained in the intergal 255] or [0, 1]. The mean
intensity value of the image is low. The image histogram hess/ia tails, high kurtosis
and is positively skewed (Attewell & Baddeley 2007, Srieast, Lee, Simoncelli &
Zhu 2003).

The probability density function (pdf) of the Gaussian,93on and Log-normal
are not constrained, but they can be truncated to the ringg. This leads to in-
accuracy in the model. Therefore, the Gaussian, Poissoh@gaormal are not the
perfect match for image texture. The uniform distributismot a good choice either,
because it has low kurtosis (Attewell & Baddeley 2007), ehhtural images have
high kurtosis (Attewell & Baddeley 2007). In recent studig$ras been shown that
the distribution of reflectance within a range of real tegtisr not Gaussian (Attewell
& Baddeley 2007, Weiss & Freeman 2007, Srivastava et al. @03 the textures are
better described by Beta distributions (Attewell & Badge2€07).

In this study the Beta distribution is chosen to represeatéxture of each image
block. To generate a natural texture with a Beta distrilnytiois required to define the
value ofag., and(g.:, parameters carefully in order the pdf matches the character
sation of the natural texture.

2.4 Colour

2.4.1 Human Visual System (HVS)

Colour can be defined as an attribute of visual sensatiorghf bn the human eye
(Chou & Liu 2008). The perception of surface colour depenalshe interaction of
light source, non emitting object and the human visual sggteairchild 2005). Light
from a light source with a specific power spectrum illumisaige object and is then



CHAPTER 2. LITERATURE REVIEW 42

= =3
mml g=15
- 0=0.5

PDF(x)

(a)
2 | % |
o L |
) ()]
o o
a X b
(c)
— =2, f=5
2% —- a=2, p=2
u_ 4
| === g=1, =3
[
mmn 0 =5, B:‘I
— = 6:0,5

Figure 2.6: Probability Distribution Function of a) the L.agrmal distribution with
zero mean and different values @) the Poisson distribution with two different pa-
rameters value of c) the Uniform distribution d) the Gaussian distributioritwzero
mean and two different values of e) the Beta distribution with different values of

Q Beta &ﬁBeta .
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reflected back with a specific spectral power depending oolbfect reflection prop-

erties toward the eye. In the eye, the light is focused by egs bn the retina, which
has a layer of photoreceptor cells. The light stimulatedqrieaeptor cells with differ-

ent spectral sensitivities. There are four types of phatptors, one type of rod and
three types of cones. Three types of cones are known as thea8dM cones, which

are short, medium and long wavelength sensitive respéctihen there is a well-lit

condition, the cones are highly active and rods are ina¢kiMakawa & Parks 2005).

The neural responses from these three types of cones aranzaribgether and are
sent to brain for further processing. Thus, the colour garoa of each point from an

object is associated with the responses of the three cones.

2.4.2 Colorimetry

Since the development of a variety of colour devices suclolasicmonitors, scanners,
printers, digital cameras and copiers, accurate coloupdetion is demanded (Lee,
Ahn & Kim 2000).

The perception of colour is a psychophysical phenomenothesoolour should be
measured in such a way that the results associate with thal\@ensation of a normal
human. The science and technology of quantifying colouethas the human colour
perception is called as colorimetry (Hirakawa & Parks 200%)e basis of colorimetry
is the trichromatic theory, which states that three comptsare sufficient to specify
a colour and not the detailed distribution of light energyoas the visible spectrum
(Krauskopf 2001). The trichromatic theory was developeigeit was known that
the human vision has three receptors to sense colour.

A colour space specifies a colour by a set of coordinates,hndnie mostly three
dimensional, but four dimensional colour spaces are alsd (s Hu, bing Deng &
shan Zou 2010). A review of the colour spaces that are retduahis study is given
below.

2.4.3 CIE Colour Spaces

CIE is the abbreviation for "The Commission InternationdéelEclairage”, which is
the primary organisation responsible for standardisatiorolour metrics and termi-
nology (Sharma & Trussell 1997). The CIE has defined a systatrctassifies colour
according to the HVS (human visual system). The core of tHe €llour spaces is
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CIEXYZ, which was created in 1931. In CIEXYZ the trichron@atheory is mathe-
matically formulated to give tristimulus values (or thremuwdinates) of X, Y and Z for
specifying a colour(', (Kang 2006). The CIE tristimulus specification or CIEXYZ is
based on additive colour mixture, which can be presented by

C\=X+Y+7Z (2.23)

where X, Y and Z are defined as

X:k/RMﬁQnQMA (2.24)
Y:k/RQﬁMwQMA (2.25)
7 — /RQWMﬁMM& (2.26)
A
100
szRQﬁMﬁme (2.27)

S(A) is for the illumination power spectrunR()\) is the object spectrum, which can
be from the reflectance, transmittance or radiance (Kang)2d®e scalar k, which is

defined by Equation (2.27), is a normalising constant, wigarsually chosen to give

a value of 100 for Yz()), y(A) andz(\) are the colour matching functions, CMF’s.
CMF’s are a series of functions related to the spectral Semigis of three cones and

are established and presented in CIE publicatfons

Metamerism

The representation of colour from the high dimensional spetto three dimensional

space results in loss of information (Lee et al. 2000). Tioeeg two different materials

can have identical tristimulus values, while having déietrreflectance functions. This
is known as metamerism in the literature (Nimeroff & Yurowe$9 Foster, Amano,

Nascimento & Foster 2006).

Chromaticity

The quality of a color regardless of its intensity is expeeksis terms of the chromatic-
ity coordinates (Ohno 2000). The most common chromatiaiyrdinates ist, v, z,

Shttp://www.cie.co.at/main/freepubs.html



CHAPTER 2. LITERATURE REVIEW 45

which are defined by

X

T WAve2) (2.28)
Y
Z

X2 (2.30)

The plot ofy versusr is commonly used for presenting the chromaticity diagram.

Correlated Colour Temperature

The colour of a light source is measured and expressed byothelated colour tem-
perature (CCT) (Wyszecki & Stiles 1982, Ohno 2000) in the ohKelvin (K). The
concept of colour temperature is not related to the tempesatf the viewed object. It
is derived from the relationship between the temperatuegtddck body, an imaginary
perfect emitter, and the appeared colour of that illumir{edl@rnandez-Andres, Jr. &
Romero 1999).

As well as colour matching functions, colourimetric illumants are standardized
by the CIE (Sharma & Trussell 1997). The CIE illuminants D6l 50 are two
daylights illuminants corresponding to CCT of 6500 K and ®80respectively. The
CIE illuminant A represents the CCT of 2856 K and closely agpnates the spectra
of incandescent lamps (Ohno 2000).

CIELAB

CIELAB is another colour space that the CIE has developee tasied for the specifi-
cation of colour difference (Fairchild 2005) and (Pointé02). CIELAB is perceptu-

ally uniform, which means that equal changes in the trislimwalues correspond to
equal changes of about the same visual perception (Sharmas&dll 1997). CIELAB

has three coordinatek}, a*, b*, which are the lightness, approximate redness-greenness,
and approximate yellowness-blueness respectively (#&r2005). L*, o* andb* can

be found by transformations from CIEXYZ with tristimuluslvas X, Y and Z as

L= 116f(;) 16, (2.31)
" = 500/ ()~ 5] 232)
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. Y 7z
b = 200[f(7n) — f(z_n”’ (2.33)
where
3 if +> 0.008856,

7.787t + £ otherwise.

X, Y, andZ, are the tristimulus values of the reference white point.

Colour Difference

Colour difference is expressed A7, and is measured in CIELAB as the Euclidean
distance between their coordinates (Pointer 2002, Ohn0)2Q(d-,, can be presented

by

AE, = /(AL + Aa* + Ab2). (2.34)

The human visual system (HVS) has limited sensitivity incdiginating small dif-
ferences in colour. The threshold that the human visiongpeually distinguish the
difference is known as JND, just noticeable difference, sndround 2.3 (Chou &
Liu 2008, Stokes, Fairchild & Berns 1992).

2.4.4 RGB and sRGB Colour Spaces

The RGB colour space is an additive model, where colour isiipd in terms of three

primary colours, red (R), green (G) and blue (B) associatesaazelengths of 700,
546.1 and 435.8 nm (Sharma & Trussell 1997). The RGB coloacesjs used in dif-

ferent colour industries such as computer, television, @rdera (Yu & Chen 2006,
Chaves-Gonzalez, Vega-Rodrigueza, Gomez-Pulidoa & ®arlebrez 2010). Basi-
cally, each imaging device has its own RGB colour space dépgron the spectral
sensitivity of its colour sensors (Haeghen, Naeyaert, lleewa& Philips 2000). This

means that the RGB colour space is device dependent.

The international standard sSRGB colour space is first pregh@sth respect to the
response of a reference CRT display by Hewlett-Packard aicdobbft (Anderson,
Motta, Chandrasekar & Stokes 1996). The aim of SRGB is tcodymre and share an
accurate colour over different imaging devices and intgf®paulding & Holm 2002).
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2.4.5 Multispectral Imaging

The colour of an object is strongly dependent on its specgfdctance. Colour com-
parison in the RGB domain is not suitable for a precise coinatching, as the RGB
colour space has some limitations (Hardeberg, Schmitt &t&r2002). An example
is device metamerism (Cheung, Westland, Li, Hardeberg &@br2005). Multispec-
tral imaging is a solution for an accurate colour compari§tmaguchi, Haneishi
& Ohyama 2008). Recent improvements in commercial mulaBpéimaging sys-
tems make it possible to use multispectral images in seapgications. For example
multispectral imaging is applied in colour matching for aadustry (Wagner 2007),
underwater studies (Zawada 2003), detecting early brunskesits (EIMasry, Wanga,
Vigneaultc, Qiaoa & ElSayed 2008), dermatology treatmBobde, Noordmans, Ver-
daasdonk & Sigurdsson 2006) and the water industry (Gove@ietty & Bulcock
2007).

Multispectral images are a set of digital bands capturecarsl narrow spec-
tral bands. Therefore, multispectral images provide tflecance spectra of a scene
for each image pixel (Valero, Nieves, Nascimento, Amano &tep2007). There
are several techniques that are used to capture multigpeuiges. For example a
monochrome camera with a rotating filter, or a liquid crystalable filter (Yamaguchi
et al. 2008). The tristimulus values of X, Y and Z from a set aifitispectral images
can be calculated using equations (2.24) - (2.26) (Wes#aRg¢amonti 2004).



Chapter 3
Experimental Methodology

Several test images are required for different experimémtaughout the thesis. In
this chapter, the design of these test images and their @atepaare described. Two
different types of test images are used, non-constrainé@anstrained test images as
explained in following.

3.1 Non-constrained Test Images

Non-constrained test images are extracted from real urederwideo streams, which
are kindly provided by the Racal Research (now Thales Relsgar UK, and the
ADMA company in Abu Dhabi. The rate of image generation is2irfes/sec and the
images are saved in BMP format. The dimensions of the imagé4&6 x 703 x 3) and
(433 x 601 x 3) for the Thales Research and the ADMA company respectiveig T
images are gamma encoded. Before processing the imagesraerted to double-
precision in MATLAB and the gamma encoding is reversed bsimgieach pixel value
to the power of 2.2.

3.2 Constrained Test Images

Constrained test images are captured in a controlled uraderwnvironment in the
laboratory. A water tank experiment is designed to providemirolled underwater
environment, which resembles a realistic underwater saThe main objective of
water tank experiment is to design the imaging system in sualay that different
scenes can be captured, while keeping the level of opticek-beatter unchanged.
Optical back-scatter varies with several parameters ssiciptical depth, wavelength,

48



CHAPTER 3. EXPERIMENTAL METHODOLOGY 49

size and density of scattering particles in water (McCarth@76). In the water tank
experiment all these parameters are fixed in order to havastat level of scattering
during the imaging.

3.2.1 Water Tank Experimental Setup

Figure 3.1 shows water tank apparatus. A rectangular watdrrhade ofrmm thick
glass with size).76m x 0.38m x 0.39m is chosen to represent the underwater envi-
ronment. The size of water tank is limited by practical coaists. The tank holds
approximately 100 litres of water. Tap water is used to fidl thater tank at temper-
ature of20° with approximate refractive index of 1.33. The tap waterespnts the
clear water condition. Turbid water is prepared by addirgtecng particles to the
tap water in order to represent scattering situation. Tfractve index is assumed to
be unchanged when adding scattering particles, as thetiggdandex is subject only
to a very small variation (Bogucki, Domaradzki, Stramski &iéveld 1998).

76cm

Figure 3.1: The schematic design of water tank experiment.

The scattering particles are chosen to represent marirtegsog particles. The
scattering in deep water is dominated by particles in theersiagel —20m (McCartney
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1976, Sullivan, Twardowski, Donaghay & Freeman 2005, R&g)&tramski, Wright
& Wozniak 2008). The concentration of marine particles esrilepending on dif-
ferent parameters such as depth, geographical status asahs¢gSheldon, Prakash &
Sutcliffe 1972, Ahn & Grant 2007). In a previous study (Ji&@®4), emulsion paint
was used as a source of scattering particles. Emulsion {gamtvater-based paint,
mainly Titanium Dioxide (TiO2), and is used for paintingenor or exterior surfaces.
The shape of the particles are spherical or near spheritialdaameter ranging from
0.2um to 2.5um (Jiang 2004). The volume density of TiIO24i25g/cm?.

A translation stage is designed to represent a ROV, thashmidth the camera and
light source in a specific angle and height relative to theewttnk, while translating
both camera and light source backward and forward in knoesstDifferent scenes
from water tank can be captured while keeping the opticdi panhstant. Different
designs are available for the moving part of the translasiage such as gear, lead
screw and step motor. All of these methods can provide ateesraooth movements,
but with various levels of complication and cost. The leagwds the simplest design
with low cost and minimum number of parts and is chosen hene.tianslation stage
with lead screw is made of different parts, a lead screw witlraing handle, a screw
nut, a pair of base rods, a translation board, camera antddagrce arm and a wall
clamp. To design the lead screw, the thread size is requliteel thread size is chosen
as2mm. This allows the capture of more than 100 continuous imagesthe water
tank length. The lead screw is attached with a screw nut taobtiee horizontal base
rods. A turning handle is attached to the other end of the $eaelv, to turn the lead
screw and move the translation board linearly. The traiosidioard is made of PVC
(Polyvinyl chloride) and has dimensions of &ffcm x 30cm in order to have enough
space for both types of camera bases and the light sourcél@eriranslation board is
held with four guider, made of PTFE (Polytetrafluoroethgleron the base horizontal
rods. The horizontal rods are made of steel and are of lerxgdm. The size is chosen
considering the length of the water tarité{mn) plus the length of the translation bar
(30cm) plus some extra spaceé4m). The horizontal rods are attached to the wall
with a wall clamp on one side and a pair of vertical base rod#herother side. The
vertical base rods are made of steel with height@fn. The height is chosen to be
about half of the height of a person. The light source armtaehed to the translation
board, and a threaded hole is provided on the translatiomoarder to fit the camera
bases (both of the cameras have the same threaded).

A halogen lamp is used as the light source. The lamp is 75 240y and made by
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General Electric (GE) company. Water plants, gravel andaluéion (optical) target
are used as scene content. There are different standacdldptgets available such as
the NBS chart and the USAF chart, which are shown in Figurd@Band (b). NBS

||||| 1 O I- = |I25 USAF 1951 1X EDMUND
=i lZ 2 ]
E :no |:||‘20 s— "I . ||||||_1
|||||uL i — 3= "I _nll : III=4
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2 I s S0 msh

(a) (b) (c)

Figure 3.2: Resolution charts. a) The NBS chart b) The USA&tat) A general
resolution chart with low frequency bars.

stands for the National Bureau Standards. The patternsfdnaek bars on a white
background. The bars and spaces are of equal width. Theishaihted on glossy
photographic paper. The spatial frequency range is fromyc@/mm to 18 cycle/mm.
Each pattern is made up of two orthogonal groups of five perb#irs. The number
written next to each pattern is the corresponding spagaifency in cycle/mm. USAF
stands for the United States of America Air Force. USAF cisgstoduced by Edmund
Optics company This chart is similar to the NBS chart, but each pattern idenzp
of three bars and contains a much wider range of spatial émzjes. This chart is
usually produced on either photographic film or on a thin infdta (e.g. Chrome),
but both are placed on a glass substrate. Unlike the NBS,¢hamiumber next to each
set of bars in the USAF chart is not a direct measure of theadgegquency. Also,
an optical target can be made by printing parallel black ahdeabars of different
frequencies. In this experiment, an optical target chartwhich is shown in Figure
3.2(c), is produced on high quality glossy paper in ordet ithean be used in water.
This optical target chart bar has several parallel barswétspatial frequencies than
is available in the NBS and the USAF charts.

Different cameras are used in the water tank experimentgtucatest images in
RGB and multispectral formats. As the size of water tankmstéd in the laboratory,
the camera is placed out of water to keep the water undisiuwiieen moving the

www.edmundoptics.com
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camera. The procedure for capturing RGB and multispe@saitages are explained
as below.

3.2.2 RGB Test Images

A RGB charged coupled device (CCD) camera, the Canon Powef090 IS, is
used to capture RGB test images. The camera specificatioailalale in Appendix
A. Figure 3.3 shows the experimental arrangement to cajr@® test images. The

Figure 3.3: The experimental arrangement to capture RGBirtexges. 1) Canon
PowerShot Pro90 IS camera. 2) Halogen lamp 3) Water tankafisTation stage.

angle of camera and halogen lamp are set;te= 32° and 3, = 35° respectively (;
andg; are labeled in Figure 3.1), is slightly more tharg; in order to prevent heating
of the camera. The optical path between the camera lens armbttom of water tank
IS 49.75¢m, of which 15.3c¢m is in air and34.45¢m is in water. The camera manual
focus is set to betweeh5mandlm and the shutter speed is set automatically by the
camera. The spatial distance between the camera locatipnagturing two adjacent
images imm.

Different levels of turbid water are made by adding difféar@mounts of emulsion
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paint to water, which are described in Table 3.1. Two imagesaptured for all water
turbidity levels,Sy-Ss.

Image Series | Sy 51 S» S5 Sy S;
Water Turbidity
(gr/100litres)

0O 01 02 03 04 05

Table 3.1: Different levels of water turbidity for RGB testages.

3.2.3 Multispectral Test Images

In multispectral images, the wavelength can be assumedardrisr each monochrome
image in narrow spectral band with central wavelengtirherefore, by using multi-
spectral images the parameter wavelength is kept constahyperspectral imaging
system is used to record multispectral test images. Althaugqultispectral camera
would be sufficient for this experiment, but a hyperspeateahera is chosen instead
as it was practically available.

Hyperspectral imaging system consists of a hyperspectnaleca, and a filter.
The hyperspectral camera is Hamamatsu ORCA-ER C4742-8G&hich is a B/W
CCD digital camera. The filter is a fast tunable liquid-caydilter, Varispec, model
VIS-10, Cambridge Researdh Instrumentation, Inc., Massachusets, which consists
of optics module and electronics controller module. Thaosptnodule is mounted
in front of the camera and the electronics controller mogutvides the interface to
the host computer. The wavelengths of the light it transargselectronically control-
lable, providing rapid, vibrationless selection of any edangth in the visible (VIS)
and near-infrared (NIR) tuning ranges. The filter can be ®di0nm or 20nm spec-
tral bandwidth. Figures 3.4(a) and (b) shows the hypersplezdamera and the optics
module of the filter, which is mounted in front of the camegrspectively. Details of
the hyperspectral camera specifications are given in Appehd Figure 3.4 shows
the experimental arrangement to capture multispectrairtesyes. The angle of mul-
tispectral camera and halogen lamp are setlto= 42° and 32 = 45° respectively.
The optical path between the camera lens and the bottom ef waatk is122.08¢cm,
of which 77cm is in air andd5cm is in water. The camera aperture and focus are set to
4.0 and 1.15 respectively.
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Figure 3.4: The experimental arrangement for capturingtispéctral images. 1-a)
Hyperspectral Camera, 1-b) VariSpec optics, 2) Halogemp|&nWater tank, 4) Trans-
lation stage, 5) Host computer, 6) The electronics corratiodule.
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Four series of multispectral test images are captured fardifit water conditions
at20° water temperature, as described in Table 3.2. Each sem¢sics 10 continuous
monochrome images in sizé024 x 1344) at visible spectrum [400nm 720nm] over a
narrow spectral band of bandwidth 10nm. The bandwidth ohdi@rovides sufficient
accuracy for most colour spectra (Sharma & Trussell 1991g Jpatial distance be-
tween two camera locations for capturing two adjacent irmag@dmm. Also a dark
image is captured, when the camera is covered completelybigch cloth at visible
spectrum [400nm 720nm] in a narrow spectral band of bandwi®nhm to estimate
for the dark current noise and at respective wavelengths.

Before processing multispectral images, the dark curreigenis subtracted from
the image to remove any biased which is due to the dark cunm@sé (Zawada 2003).
Then, the images are converted from 12 bits to 8 bits.

Image Series | T, 7% T, T
Water Turbidity
(gr/100litres)

0 03 0.7 0.9

Table 3.2: Different levels of water turbidity for captugimultispectral test images.



Chapter 4
Degradations in Underwater Images

Previously, it has been shown that optical scattering cawisderwater images to be de-
graded in terms of both overall contrast and spatial resmiuContrast loss is mainly
due to the effect of optical back-scattér;, and resolution loss is mainly due to the
effect of optical forward-scattef,; as explained in Section 2.1.3. In order to improve
a degraded underwater image, the main degradation effesttbaunitigated. Now, the
question is which of these two effects, contrast loss orluéism loss, has the biggest
degradation effect in an underwater image? To answer thestoun, the impact of
contrast loss and resolution loss should be compared inpréotical underwater sit-
uation.

This chapter is structured as follows. Section 4.1 illussahe impact of., and
L3 on image degradation. In Section 4.2 an experiment is cdaduo characterise
the effect ofL; and L3 in practical underwater conditions. It is shown experinaént
that contrast loss is the dominant degradation effect coalt@ resolution loss.

4.1 The Impact of L, and L3 in Image Degradation

According to the image geometry shown in Figure 1.2, thensitg of an underwa-
ter image pixel is composed from three componenhts,L, and L3, which are direct
(Ax(z,y)), forward-scatter £S5, (x, y)) and back-scatterHS,(z, y)) components re-
spectively. Hence, an underwater imagey,(x,y), at a spatial pixel positiofz, y)

and a specific wavelength can be presented as shown in Equation (4.1) (Trucco &
Olmos-Antillon 2006, Yu & Liu 2007).

]m)\(x,y) :A)\(x,y)JrFS)\(x,y)+BS,\(:E,y) (4.1)
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It was explained in Chapter 2 that contains the image information, while,
andL; individually degrade image quality in forms of resoluti@s$ and contrast loss
respectively. A target bar chart in a non scattering coadie.g. air medium) and its
corresponding line plot are shown in Figure 4.1. This bartcisaused to show the
form of each component in a scattering medium.

250

I I | % 180

Distance

(a) (b)

Intensity

Figure 4.1: (a) A target bar chart in a non scattering medi(bjThe line plot of the
target bar chart.

A degraded image structure for the bar chart is shown in Eigu2. In this fig-
ure, it is shown how each component, L, and L3, contributes to form a degraded
image. In this example the values bf, L, and L3, are calculated utilising Equations
(2.1), (2.5) - (2.7) using parameters based on typical ¢mmdi. A Gaussian filter
with standard deviation relative tbis used to model the effect of image blur tbs
(Figure 4.2(d)). The line-plot of the intensity of a degrdd®age is shown in Figure
4.2(e). This is the combination of the three componehis/, andLs. Line plots of
the intensity of components,, L, and L3 are individually shown in Figures 4.2(a),
(b) and (d) respectively. Figure 4.2(c) shows only the eftécontrast loss, which is
the combination of.; and L;. Comparing Figures 4.2(c) and (d), it can be seen that
the two degradation effects, contrast loss and resolutiss, lare different. In contrast
loss the spatial fluctuations caused by the bar chart paiterolearly visible, and just
the absolute intensity is increased. However, with regmiubss, the transitions are
smoothed with respect to the original bar chart image.

The dominant degradation effect depends on the relativigibation of each com-
ponent. Two different situations, high,, giving mostly resolution loss, and high,
giving mostly contrast loss, are illustrated in Figuregd) &and (b) respectively. Sit-
uations with mostly resolution loss would arise when theesldg scattering particles
and a short optical depth. Conversely situations with ngasihtrast loss would arise
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Figure 4.2: The structure of a degraded underwater imagee vahies of optical dis-

tance and extinction coefficient afe= 1m andg = 0.5m~!. (@) Direct component,
L;. (b) Back-scatter componenty. (c) The combination of direct and back-scatter

components. (d) Forward-scatter componéat, () The combination of three com-
ponents, which represents the degraded underwater inregplbt.
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Figure 4.3: The line plot of original image (dotted line) ateé line plots of two
degraded images (solid line) with two different degradagéfects (a) Resolution loss
(b) Contrast loss.

when there are small scattering particles and long optiepitd

4.2 Experimental Characterisation

The aim of this section is to compare experimentally theot$fef contrast loss and
resolution loss in real underwater conditions in order td fimich of these two effects
causes the most significant degradation effect. It is nasiptesto measure these two
effects separately in real situations. Therefore, an exy@et is designed to provide
a controlled underwater environment in order to have thétestiag condition simi-
lar to a real underwater environment such as seawater, acdha laboratory. The
experimental setup is as explained in Section 3.2.2.

Contrast loss strongly depends on the prodiRtas explained by Equation (2.7).
To reconstruct the same level of contrast loss, the prgélRen this experiment should
be the same as the value/R in real condition.

The optical depth in this experiment is shorter than thaéal maging conditions.
It is around 35cm in this experiment, while in real underwatgaging it is at least 2
meters. Therefore, a higher value®fs used to compensate for the shorter range of
R. Higherj can be easily achieved by having higher particles concgoisa(density)
as shown in Equation (2.3).

As explained in Section 2.1.3, resolution loss (image kiepends on the amount
of misplacement, and the misplacement depends on therstg#gle 9,,...., and op-
tical depth, R. Assume, that misplacement Y1 is caused bydhttering particles with
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scattering angle af1 and in distance of R1. For a shorter distance of R2, <(R2),
the scattering anglé2, should be widerd2 > 61) in order to have same amount of
misplacement, and as a result same level of image blur. Tdteesing angld,,,.. has
inverse relation with particle diameter in a specific wakgth as shown in Equation
(2.4). Hence, for a widet,,,.., a smaller scattering particle diameter is required.

In this experiment the optical depth in scattering medium@isut 35cm, which is
at least ten times shorter than the optical path in real tsttaaTherefore, particle size
and density are selected at least ten times smaller andes higher in density than
in the real situation respectively. The scattering pasch seawater and ocean are in
sizelum—20um (McCartney 1976), as a result the particles in this expanisighould
be selected in size range @fl um — 2pm. Emulsion paint (EP) is used as scattering
particles in this experiment. Emulsion paint particlesevaesed as scattering particles
in previous studies (McNeil, Hanuska & French 2001, Jian@gl@s well.

The density of particles varies in different seas and oce¥osa (1971) gives an
estimated value of = 0.1m~! for seawater ah=480nm. If R ~ 4m, an estimated
value of the productR in real condition and in 480nm would be 0.4.

To provide different particles density in this experimetitferent values ofiR are
used by adding different amounts of particles weight to waltable 3.1 presents dif-
ferent densities of emulsion paint particles that are usqatdvide different levels of
turbidity, Sy — S5, in this experiment. The estimated valuei®t for S5 is calculated as
SR~ 0.49 atS;s. This is found by usingt = 1.4132(m~!) at 0.5 gr/100litres of emul-
sion paint at green colour channel from previous work (Ji2a®@4) and considering
R=35cm. The value ofR in real turbid water igR = 0.4. Therefore, the maximum
value of R ~ 0.49 atS; in this experiment is higher thafiR = 0.4 in real turbid
water condition. An optical target, shown in Figure 4.4, $&d to measure the con-

HHi

Figure 4.4: Experimental optical target.

trast and spatial resolution in different conditions. Cast is calculated by Equation
(2.8). Image spatial resolution quantifies how close lireeslze resolved in an image.
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The image resolution can be measured using the modulatasfar function (MTF)
measured using an optical target. The MTF at each line p#ir specific frequency
can be calculated by

MTF; = L % 100, (4.2)
! C
ref

wherec; is the contrast of a line pair at a specific frequericandc,. is the contrast

of the lowest frequency line pair. The resolution of dififgrenages can be compared
by the value of the bandwidths estimated from the MTF chare ffequency in which
the MTF chart reaches ﬂ% is the image bandwidth (100 is the maximum value at the
MTF chart an% is for when the power gets t@%).

4.2.1 Results and Conclusion

Six images are captured from optical target at six water tmms, S, to S5. The
first image is taken in clear water conditios},, and the rest of the images are taken
in low to high level of water turbidityS; to Ss5. Images corresponding to the middle

so|l Il H HEERLIN
si|] I B HE Nl

52

s TS W W
s DRSS
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Figure 4.5: Sample images from the target bar at differetém@onditions.S, is for
clear water and; - S5 are for low to high water turbidity respectively.

part of the optical target, as defined by the red dashed lifkggure 4.4, are shown in
Figure 4.5 for different water conditions. It can be seen #sathe water turbidity is
increasing, the image quality is decreasing.
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The image contrast is calculated for different levels obtdimvater by using Equa-
tion (2.8). The image bandwidths at different levels of wabebidity are found from
the correspondence MTF charts, which are presented ind-iyé(a). Figure 4.6(b)
presents the contrast and bandwidth with respect to diffdesels of water turbidity
by the solid line and the dashed line respectively. The intagérast starts to decrease
from S; and becomes very low &k;. For example the image contrast&tis around
10% of the image contrast in clear waték,. The plot of bandwidth shows that the im-
age resolution does not change significantlgaand.S,. The image bandwidth starts
to decrease fromy;, where the bandwidth drops to nea2ly?s of the bandwidth of5,.
Comparing the plots of contrast and bandwidth, it can be Hestrthe contrast loss is
evident for all levels of water turbidity, whereas the resioin loss can not be detected
for S; and S;. Therefore, for low level of water turbidity the dominantgdadation
effect is contrast loss. For higher levels §5) both contrast loss and resolution loss
are evident. However, by the time the resolution loss isiBagmt, the image contrast
is already less thah0%. In this situation, even if the image could be compensated
for the effect of resolution loss, the image quality stilm@ns poor due to very low
contrast.

In summary the results show that of the two degradation &ffeontrast loss and
resolution loss, the contrast loss is the main problem ireamdter images. As a result,
the quality of an underwater image should be improved by @rsating the effect of
contrast loss.
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Figure 4.6: (a) The MTF charts for different levels of turlwvdter. (b) The plot of
contrast and bandwidth with respect to the turbidity level.



Chapter 5
Underwater Image Model

The model of a degraded underwater image is given by Equéti@h In this chapter

the validity of the image model is investigated experimiyta his chapter is struc-

tured as follows. Section 5.1 is the explanation of the fedvaodel of an underwater
image. In Section 5.2, it is shown that image recovery is iptessising an inversion

procedure. Section 5.3 is concerned with the design of thentank experiment. It

includes the experimental design, error analysis and expetal procedures, as well
as experimental results.

5.1 Forward Model of Image Formation

The formation of an image in a turbid medium, which only hastast loss problem,
is reviewed in this section. In a scattering medium, thensity of a degraded image at
pixel spatial positior{z, y) and at particular wavelength\Y is denoted byim,(z, y).
This can be represented as the sum of two components, thed anage contribution
from the object A, (x,y), and the optical back-scattds, (z, y) (Tan & Oakley 2001).

]m)\(x,y) :A)\("an)+B)\($7y) (51)
In diffuse light conditions4, (z, y) and B, (z, y) can be calculated from
A)\(x,y) = COR)\(xvy) eXp(—ﬁ)\(l‘,y)R), (52)

By(z,y) = Co(1 — exp (=0 (,y)R)), (5.3)

64
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where( is the illumination radianceR, (x, y) is the scene reflectance functioh{z, y)

Is the extinction coefficient angt is the distance from the camera to the object (Tan &
Oakley 2001).

The Taylor series expansion efp(z) can be written

2 "

T (5.4)
n'

exp(x) =1+ x+ o

When0 < = < 1, thenexp(z) =~ 1 + z.
In moderate scattering conditiofs< 5, (x,y) R < 1, the approximations of equations
(5.2) and (5.3) are

Ax(w,y) = CoRx (7, y)(1 = Bi(z,y) R), (5.5)

and
By(z,y) = Co(1—(1-Bi(z,y)R)), (5.6)
= Cofbr(z,y)R. (5.7)

Combining Equations (5.5) and (5.7)n,(x, y) can be written as

[m)\(x7 y) = COR)\<377 y)(l - ﬁA(x7 y>R) + COB)\<377 y)R7 (58)
= Co(Br(z,y)R+ (1 = Ba(z,y)R)Ra(z,y)). (5.9)

When an image is captured by camera, the camera introducadiagsfactor. There-
fore, the image from the camerB(x, y), has the form

L(z,y) = (Ima(z,y), (5.10)

where( is a scaling constant introduced by the camera. Combiningtans (5.9)
and (5.10)/,(z, y) can be written as

I)\(l‘, y) = CCO(ﬁA(xa y)R + (1 - ﬁ)\(x7 y)R)R)\(I‘, y)) (511)

To simplify this expression the first term on the left handesid Equation (5.11),
CCoBr(z,y) R, is written ash, (x, y) and the scaling componet_s(1 — Gy (x, y)R),
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is written asa, (x, y). Equation (5.11) then becomes

I(z,y) = ba(x,y) + ax(z,y)Rr(z,y), (5.12)

whereb, (z,y) is a parameter representing optical back-scatteraaiid, y) is a pa-

rameter representing the combined effects of camera djamjmnation and extinction.
Equation (5.12) represents the simplified forward modelrofraage in a scattering
medium.

5.2 Image Recovery (Inversion Model)

Recovery of the estimated value of the content of an imagel,pfx(x, y), can be
achieved by rearranging Equation (5.12) to give

o) - o) te

. (5.13)

5.3 Water Tank Experiment

Before starting the experimental design and procedurexplamation is given about
the Fixed Path image vector and the regression method.

5.3.1 Fixed Path

In some imaging situations the optical path remains apprately constant and only
the scene reflection varies. For example, assuming a flaedealhen an underwater
camera is mounted on a Remotely Controlled Vehicle (ROV)taauaslated over the
sea bed at a constant height and angle. This situation straited in Figure 5.1. It can
be seen that for each camera location, the angle and heightradra remain constant
at 51 andhl1 respectively. Therefore, for each image pixel positiondpécal path
remains constant in different camera locations. The olgtiath for image pixeb(z, y)

at different imaging locations, (1), (2),..,(n),d$. In this special case it is possible to
obtain a vector of intensity values for each image pixel dowtes that correspond
to different camera locations. This vector will be refertedas a fixed path intensity
vector. Figure 5.2 represents the image pixel coordinatea ample of a fixed path
intensity vectorV (p(z, y, 1), p(x,y, 2), ..., p(z, y,n)). This imaging situation may be
simulated in a laboratory environment by using a water tank.
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p(x,y,1) p(x,y,2) p(x,y,n)

Figure 5.1: The camera position is fixed at anglegofand height of.1 for capturing
images from different locations of seabed. The optical pathains constant atl
while the seabed pattern is changing for different camarations.
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Figure 5.2: The schematic form of an image pixel coordinédes sample of Fixed
Path Vectorp(p(z,y, 1), p(z,y,2), ..., p(x,y,n)).
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5.3.2 Regression Method

Assume that there are two fixed path vectors available, wiherdirst one,V;, is for
the scene intensity of a constant scattering medium andebens one)\y, is for
the intensity of the corresponding scene from a non scatjeniedium. According to
Equation (5.12), the regression line (best fitting line)ef plot ofV; versus/; has the
slope and Y-intercept of, (x, y) andb,(z, y) respectively.

Therefore, the estimated valuesaqf(x, y) andb,(x,y) at any point(z, y) can be
obtained from this regression line without having any infation about the physical
properties of the scene. This estimation method is reféaad the Regression method
in this work. The certainty of the regression estimationlsamound by calculating the
prediction error §% ;) (Gilchrist 1984):

The = | , (5.14)

wheren is the number of samples amds the difference between the actual and pre-
dicted value:

e:[)\(ZC,y) —[A)\(ZC,y). (515)

To investigate the linear forward model of an underwatergeyawo Fixed Path
vectors,V; andV}, taken from real underwater images, are required. The ingegjt-
uation for the Fixed Path vector requires a controlled undeer environment. There-
fore, a water tank experiment is designed to capture underwaages for the Fixed
Path vector analysis.

5.3.3 Experimental Design

The main objective of water tank experiment is to design thaging system in such
a way that different scenes can be captured, while keepmdgtrel of optical back-
scatter unchanged. It is explained in Chapter 4 that opliaak-scatter varies with
several parameters such as optical depth, wavelengthasz@ensity of scattering
particles in water. In the design of water tank experimer itnportant to keep all
these parameters unchanged, in order to have a constardldyatck-scatter during the
imaging.

The experimental arrangement for multispectral imageslescribed in Section
3.2.3. The intensity value of one pixel in a specific positian y), from various im-
ages of turbid water can provide the vector informatigf,y). We also need the
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information of the scene reflectance for correspondingrataage pixels to give the
vectorVy(z,y). This can be done either by taking pictures of the same caloesa
tions from water tank with no water, or water tank filled witiptwater only (clear
water condition). The latter is chosen, because the optiaid for a specific camera
location changes when the water tank is empty. The changpticab path causes a
path difference of about5.55¢m (equivalent here to 1920 pixels) in scene x-y posi-
tion, which leads to significant image registration erroror®bver, the refractive in-
dex is subject only to a very small variation when addingteciiy particles to water
(Bogucki et al. 1998). The refractive index is assumed torEhanged when adding
scattering particles.

5.3.4 Experimental Errors

Although the experiment is designed in such a way to recagikels intensity values
accurately, there are some unavoidable errors in the irgayistem which cause vari-
ations in measured pixel intensity. Therefore, the undemienage model of Equation
(5.12) can be written as

I(z,y) = ba(z,y) + ax(z,y)FA(z,y) + err, (5.16)

whereerr is the total experimental error. There are two main sourtesror in this
experiment, camera NoiS¥ ., .rq, and image registration erra¥,, ze,-

err = Negmera + NimReg- (5.17)

Camera Noise

A CCD (charge-coupled device) digital camera converts tieégns coming to camera
sensors to electrons and then to bits (Liu, Szeliski, Kanick & Freeman 2008).

Noise can be introduced during each of these steps of atiquisind conversion. A

general model of CCD camera nois¥ ,,,..-«, Can be given by

Neamera = Np +FPN+NR+NS+NQ7 (518)

whereNp, is for the dark current noiséy PN is for the fixed pattern noiséyy is for
the read out noiseYs is for the shot noise and, is for the quantization noise (Healey
& Kondepudy 1994).
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Dark current noise occurs due to current leakage in each gixbee CCD sensor
and is constant over time. Fixed pattern noise is the nomumify of the dark current
noise in pixel geometry arising in sensor fabrication. Deawkrent noise and fixed
pattern noise can be corrected by subtracting the dark ifiragethe captured image
(Lukas, Fredrich & Goljan 2006). The dark image is obtaingd#pturing an image
when the camera lens is fully blocked (no light reaches tosraraensors).

Readout noise is added to the signal when reading out chadjlested by the
pixel (Reibel, Jung, Bouhifd, Cunin & Draman 2003) and hasi€s&an distribution
(Withagen, Groen & Schutte 2007).

Shot noise arises because the number of photons reach toecaemsors at a spe-
cific time are different, even when the time-averaged intgmsidentical. The distri-
bution of photons in a specific time follows the Poisson stion (Irie, McKinnon,
Unsworth & Woodhead 2008). In the Poisson distribution, mvtie number of counts
is high, the variance is equal to meaf,= u.

Quantization noise is introduced by the analog-to-digitatversion (ADC) and
has a uniform distribution (Withagen et al. 2007).

Camera noise has zero mean £ 0) and is represented by the root square of
variance,oy,,,....- However, to calculate the sum of different sources of ndise
values are added in variance (Reibel et al. 2003). The edloul of the total camera
noisesy, s presented in Equation (5.19).

2

Ncanw'r'a

2 2 2 2 2 i i i
whereoy, . ofpy, O, Oy, @ndoy,, are for dark current noise, fixed pattern noise,
readout noise, shot noise and quantization noise respctiv

Image Registration Error

Image registration error is a common problem when two imagescaptured from
the same scene at different times (Robinson & Milanfar 208#)erent viewpoints
or with different sensors (Zitova & Flusser 2003). Imagestgtion problem can be
during registration process or geometric registratiorcess (Moller & Posch 2008).
The error due to the registration process depends on the €6$brs fabrication.
The error due to the geometric registration process existguse of the accuracy level
in translation steps. As the image resolution is high, evearg small inaccuracy in
translation steps may cause the pixel to be misregisteregurd=5.3 illustrates the
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Figure 5.3: The pixel X(p) in (a) is misregistered to X(p+m)(b). The registration
error isr pixel position.

effect of image registration error. Pix&l(p) in image(a) is miregistered in imagé)
by r distance and has the new spatial positi&itp + 7).

In this experiment, the geometric registration is the maimrse of the image reg-
istration error. The question is how much variation is idtroed to the pixel intensity
due to the misregistration efspatial distance. A statistical tool is utilized to analyse
the image pixels and measure for the amount of pixel intymaiﬁation,a}?%eg. This can
be calculated by the expected value of the square differehtiee intensity between
the two pixels, X (p) and X (p + r), as presented in Equation (5.20).

Oheg = E[(X(p) = X(p+1))°]. (5.20)
Equation (5.20) can be expanded as

O-??eg = E[(X(p)_X(p+r))2]7
2+ X(p+r)? —2X(p)X(p+ 7)),
+

p) p
)’] + E[X (p+r)*] = 2E[X (p)X (p + 1)].

BIX(
E[X(p

As X is a stationary imagéey[ X (p)?] = E[X (p + r)?]. Therefore,

Oheg = 2(E[X(p)?] — EIX(p)X(p+1))). (5.21)

The value ofa?%eg is calculated for different values of varying from 0 to 100, for
the sample image in clear water condition. The plot of thaltesre shown in Figure
5.4. It can be seen thaf;, , = 0 for » = 0, and then as increases, image registration
error, oz,,, increases as well. In fact this shows thatrascreases, the product of
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E[X(p)X(p+ r)] decreases, because there is less correlation betweencipéxels.
When the image contrast for a specific value-a$ getting lower, the difference
between pixel values decreases, which means the valig(&f(p) — X (p + r))?] is
getting lower. Assumg& (p) is the value of pixel irp position in a clear condition and
Y (p) is the pixel value for the same pixel positignin a general scattering condition,
then
Y(p) = a1 X(p) + b, (5.22)

wherea; is the scaling factor due to extinction (loss of contrast) anis the offset
value due to scattering. Therefore,

1
X(p) = a—l(Y(p) —b1). (5.23)
X (p) of Equation (5.23) for pixel positiong,andp + r, can be substituted in Equation

(5.20):

Theg(X) = E[(X(p) — X(p+7))7,

Therefore,
a;eg(y) = c’%geg(){), (5.24)

where( is the coefficient due to slope of the line, which represenésextinction
and as a consequence the degradation of contrast. Herealtleeof coefficient’ is
chosen to be the proportion of image contrast in clegrgnd scattering conditiore{
), ¢ = 2 for simplicity.

In this experiment the translation stage is designed tcskaséa the camera with
accurate steps, but still it introduces around 5 pixelsstegfion errot. The variance
due to 5 pixels misregistration & 5) in clear water condition (high contrast) is found
from the plot ofo%,, versusr in Figure 5.4, in whichv, (7 = 5) = 120. This value

1Each full turn §60°) of the turning handle translates the camera about 2mm hasiddrresponds
to the length of 20 pixels. The personal error of turning thadie is assumed to be a quarter of the
turning area®®”" = 90°, and this corresponds & = 5 pixels.
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Figure 5.4: The plot ofr}%zeg versusr in clear water condition for sample image (first
camera position) a00nm.

is expected to be lower for turbid water conditiof},, = ¢* x 120.

Calculations of Experimental Errors

In this experiment the amount of different sources of cameiae are as follow. The
multispectral images are corrected for the dark currentfexed pattern noise by de-
ducing the dark image from the main multispectral imagesoAthe value for read out
nois€ and quantization noidere very low and are negligible. Therefore, two domi-
nant sources of noise, shot noise and image registrati@e naie used to calculate for
the total experimental errogyr.

err = /o, + 20p, (5.25)

The value of shot noise isy; = V18000 (cctrons), @S Shown in camera specification
in Table A.2. The conversion betweefectrons andcounts(nbits) units is

(electrons)

counts(nbits) = =

2.2 _ Q2
UNR - 8electrons

303, = 0.006

= 0.01counts
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where camera gain is

cameragain = w, n: is the number of bits.

Heren = 8, and the value of full well capacity 53000 ccctrons) (Table A.2). As a
result the value of camera gainlig% = 70.31. The converted value of shot noise in

counts(8bits) unitisoy, = =200 = 1.9. The value oferr in clear water condition

(¢ = 1) can be calculated by substituting the valuespf ando 7, in Equation(5.25):

err = «/012\754“7?«2697
err = 1/(1.9?) + 120,

err = 11.12.

5.3.5 Experimental Procedure

Four series of images are captured using the Hamamatsu aateifferent levels of
water turbidity, Ty - 75, at20° water temperature. Each series contains 10 continuous
monochrome images in a narrow spectral band of bandwittii.

5.3.6 Results and Discussions

The sample of captured images in clear and turbid water dondiare shown in Figure
5.5.

A sample pixel position is selected in spatial positior{®f4, 350). The intensity
value of this pixel varies as the camera position changegur€i5.6 shows how the
value of this pixel changes from the first image, which is te&gefirst camera position,
to the last image.

The parameterd((x, y) anda,(x,y)) in Equation (5.12) are estimated by the re-
gression method for the sample pixel position{®f4, 350) at 600nm and for medium
level of turbidity, 7>. Figure 5.7 shows the scatter plot and the regression lirié of
versusV; for the pixel position of(244, 350) at 600nm for medium level of turbid
water. It can be seen that some of the data points are disparsend the regression
line, which is due to the effect of the expected experimesrair.

The amount of dispersion is calculated for the pixel positip44,350) and is
oaispersion = 4.45. The expected experimental error for different levels ofewéurbid-
ity at 600nm is calculated and presented in Table 5.1. It can be seerhaixpected
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(c) (d)

Figure 5.5: Sample of captured image®4d x 1344) in 600nm wavelength at
first camera position in a) Clear water condition b) Low lewélturbid water, T}
(0.3gr/100litres) c) Medium level of turbid watefl; (0.7¢gr/100litres) d) High level
of turbid water, T3 (0.9gr /100litres).
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Figure 5.6: A block o#40 x 40 (226 : 266, 330 : 370) of neighboring pixels of pixel
position(244, 350) is selected and shown for all 10 images. The content of th@kam
image pixel in position 0f244, 350) in main image (18, 20) in sample image block)
is shown for different camera locations.
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experimental error fof 2 water turbidity at600 is errs, (600nm) = 4.62. By compar-
ing the values oérrr, (600nm) ando4;spersion , it can be concluded that the amount of
dispersion for pixel positioi244, 350) at 600nm and forT2 water turbidity is within
the expected experimental error.

cr, erry, cr, errr, cr, erry,

550nm | 0.7411 8.3374] 0.3230 4.0160 0.2583 3.4085
600nm | 0.8182 9.1621) 0.3846 4.62174 0.2740 3.5521
650nm | 0.7839 8.7946| 0.3603 4.3805| 0.3283 4.0675
700nm | 0.7491 8.4233 0.3833 4.6084| 0.3321 4.1045

Table 5.1: The calculated value for the expected experiahentor and-’ coefficient
at different wavelengths and different level of water tdrty.

The values ofugonm (244, 350) = 0.1857 and bgoonm (244, 350) = 156.9 can be
found from the slope and Y-intercept of the regression Iespectively. The values
of agoonm (244, 350), beoonm (244, 350) anderrs, (600nm) are substituted in Equation
(5.16). Thereforelspo,m (244, 350) equation can be written as

Ts00mm (244, 350) = 156.9 + 0.1857 X Foonm (244, 350) = 4.62. (5.26)

The prediction error of the estimated values is calculagiigEquation (5.14)%, =
4.98%. The intensity variation o4.98 in range of[0 255] shows1.9% deviation from
the actual value, which means the method can predict thenedeas value witl98.1%
4 accuracy a600nm.

The results so far showed that underwater image model i@ f@lione pixel posi-
tion, (244, 350), at600nm and for medium level of turbid water.

Next, the validity of the underwater image model is investiggl for all image pixel
positions at the same conditions by calculating the amaigispersion. It is expected
that the amount of dispersion for all pixel positions be dlbe expected experimental
error, erry, (600nm). Figure 5.8 shows the dispersion value for all image pixali{po
tions for medium level of water turbidity &)0nm. The median value of dispersion
for all pixel positions is calculated and 3s35. It can be seen that this value is within
the range of the predicted dispersion vakiey, (600nm) = 4.62. Therefore, it can be
seen that underwater image modeb@inm and in medium level of turbid water is not

4100 x £ =1.9%,100% — 1.9% = 98.1%
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Figure 5.7: The plot o¥/; versusV;. V; is the Fixed Path vector in turbid water con-
dition andV/; is the Fixed Path vector in clear water condition. The edihaalue of
extinction and optical back-scatter are ab@uB57 and156.9 respectively. The black
solid line is for the regression line and the two red dasheeslin position of-4.62
from the regression line are defining the estimation interva
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only valid for one pixel position, but also it is valid for af the image pixel positions.
However, for few pixel positions the dispersion value ish@gthan expected experi-
mental error. This happens when the statistical solutide ta estimate accurately, as
an example, when the value of data pointgjare close to each other. To calculate for

Figure 5.8: Dispersion value for all pixel positions6abnm, and for medium water
turbidity, 75. The median dispersion for all pixel positions is 3.85 angl élkpected
experimental error is 4.62.

the prediction error among all pixel positions, first thedacdon error for each image
pixel position is calculated, then the median value of treglftion error is calculated,
0% 5(T2)600nm = 4.3% This is1.7% deviation in intensity range g6 255] from actual
value, which show$8.3% accuracy.

Furthermore, the validity of underwater image model is stigated for different
levels of water turbidity, lowT'1) and high {"3), and also for different wavelengths.
The camera spectral response and the camera filter traaso@tvary with respect to
wavelength. Also, the image contrast is changing for deffiervater turbidity. All these
contribute to variations in the camera noise and regisinagiror, and so to variation in
the total expected error. The value of total expected egror, at different conditions
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are calculated and presented at Table 5.1. Figure 5.9 shewsdts of dispersion for
all pixel positions for two different levels of water turligl 77 and73, at600nm. The
expected experimental error for two different levels of evaturbidity at600nm can
be found at Table 5.%;yr7, (600nm) = 9.16 anderr,(600nm) = 3.55. The median
value of dispersion for all image pixel positions fbt and L3 level of water turbidity
are10.19 and2.28 respectively. It can be seen that these values are withiratige of
the expected experimental error for different levels ofevatirbidity.

The median value of prediction error of the estimated valoetsvo different levels
of turbid water,7; and73, and at600nm are calculateds? . (T1)g00nm = 11.45% and
0% 2(T3)s00nm = 2.54%. These values represent% and0.9% prediction error fofT;
andT3; at600nm respectively.

Figures 5.10 and 5.11 show the plots of dispersion for a#lprsitions for medium
level of water turbidity,75, and at550nm and650nm, 700nm respectively. The ex-
pected experimental error for three different wavelengtinsZ.2 level of water tur-
bidity can be found at Table 5.&yrz, (550nm) = 4.01, errr, (650nm) = 4.38 and
err,(700nm) = 4.6. The median value of dispersion for all image pixel posgion
for T2 level of water turbidity and ai50nm and650nm, 700nm are3.39, 4.21 and
4.62 respectively. It can be seen that these values are withimathge of expected
experimental error.

The median value of prediction error of the estimated valoe§;, level of water
turbidity at550nm, 650nm, 700nm are calculateds? 5 (72)s50nm = 3.79%, 0% £(T2)650nm =
4.7% ando? (T2) 700nm = 5.172. These values represent8%, 1.84% and2.02% pre-
diction error forT, at550nm, 650nm, 700nm respectively.

It can be seen from the results that the dispersion is withérréange of expected
error, and remains consistent over variation of water tlitpiand wavelength. The
prediction error is calculated in each condition and is ks 5%. Therefore, the
validation of the proposed underwater image model (Eqoaftol2)) is confirmed
with at leas®5% accuracy and Equation (5.13) can be used in the proposedwatee
image enhancement method.
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Figure 5.9: Dispersion value for all pixel positionga0nm for a) Low level of turbid
water, 7;. The median dispersion for all pixel positions is 10.19 amel ¢xpected
experimental error is 9.16. b) High level of turbid waték, The median dispersion
for all pixel positions is 2.28 and the expected experimesrtar is 3.55.
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Figure 5.10: Dispersion value for all pixel positions5atnm for medium level of
turbid water,75. The median dispersion for all pixel positions is 3.39 areldkpected
experimental error is 4.01.
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Figure 5.11: Dispersion value for all pixel positions foranem level of turbid water,
T5, at a)650nm.The median dispersion for all pixel positions is 4.21 arelékpected
experimental error is 4.38. BP0nm. The median dispersion for all pixel positions is
4.62 and the expected experimental error is 4.60.



Chapter 6

Mitigation of Contrast Loss In
Underwater Images

In this chapter a new physics-based approach is proposedpimve the quality of
an underwater image by mitigating the contrast loss. Thérasnloss in underwater
images is due to the effect of optical back-scatter.

The proposed method is based on Equation (5.13), by whiatothteast loss can be
mitigated by subtracting optical back-scatterz, y), from the degraded underwater
image and then multiplying the image by a scaling param%. The key issue
is how to estimaté, (z,y). The aim of this chapter is to propose different methods
to address this issue for monochrome underwater imagesprbp@sed methods use
statistical techniques and digital image processing taal$ do not require a prior
physical information about the scene. The operation ofragbon is in fact a kind
of filtering. Hence, the methods for estimatitydz, y) in this work are called back-
scatter filters (BS filters). For the purpose of simplifyihg hotation, the abbreviation
form of by (z, y) anda,(x, y), which are respectively,, a,, are used in this section.

This chapter is structured as follows. Section 6.1 explémesestimation ob,.
This includes the model of optical back-scatter variatltootighout a degraded image.
Also, the proposed BS filters are explained. Section 6.1fa&s the method for
estimating the value af),.

84
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6.1 Estimation ofb, and a,

Several studies have been done to estirigie a turbid medium. Oakley & Satherley
(1998) propose an estimation method to recover degradegesniaa adverse atmo-
spheric conditions. This involves analysis of the pixeémdity as a function of range.
Schechner & Karpel (2005) propose a method for estimaitjng underwater images.
This involves analysis of images taken with different otétions of polarising filter.
Both of these methods require additional physical inforame&about the scene.

Oakley & Bu (2007) propose a new statistical method, basdéddeminimisation of
a cost function, to estimate for the leveligfin the degraded image, without using any
physical information of the scene. However, in this wbgks assumed to be spatially
constant for images in air. This assumption is not valid federwater images, as the
optical back-scatter is spatially variant (Schechner &i€a2004).

In this work, three BS filters are proposed. Each filter presién estimate of
b, by using statistical solutions and digital image procegsools, without using any
physical information about the scene. The proposed BSdikee denoted here by
BS-MinPix, BS-Hist and BS-CostFunc filter. The BS-MinPixdi estimates, in one
pixel position (x, y) only and does not require the shape @itapback-scatter variation
in a degraded image. The BS-Hist and BS-CostFunc filtersiastithe function ob,
for the whole image. First, the model of the optical backitetand extinction spatial
distribution of image is explained. Then, the various B®fdtare explained.

6.1.1 Optical Back-scatter Model

The spatial distribution of optical back-scatter is unknowl'he physical model of
the optical back-scatter, which is presented in Equatiof)(Zuggests that optical
back-scatter follows the scene illumination spatial disttion and is independent of
the scene content. The spatial distribution of scene ithation depends on the light
source, which is used to provide the required illuminatronmnderwater imaging. The
part of the scene that is directly in front of the beam, isnilinated more and the
surroundings are less illuminated. This produces a humipegpart with high illumi-
nation.

Figure 6.1(a) shows an image from an underwater scene thiainsnated by a
searchlight in clear water. The middle part of the image,cwhs$ in the direction of
the searchlight, is well illuminated, but the sides are darkhe line-plot of one of
the middle lines (line 400) of the image is plotted and presgin Figure 6.1(b) by
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Figure 6.1: a) A sample of underwater image in clear wateditmm, where the scene
is illuminated by a search light. b) The line-plot of row=460the original image
(dashed line) and the line-plot of row=400 of the filtered ga®y a low pass filter.

a dashed line. This profile can be regarded as the sum of twalsgsstributions.

A high frequency, which is due to variation in the scene cohtis superimposed on
a low frequency, which is due to the illumination profile. Tl frequency can be
extracted from the image by applying a low pass (averagittg) {LPF) to the image,
either in time or space. The solid line in Figure 6.1(b) pnsehe line plot of the
filtered image by a LPF. It can be seen that the plot has a slhapéstsimilar to a
truncated raised cosine function.

The general model of a degraded underwater image, whiclvéngn Equation

(5.11), is reproduced here. A lowpass filter with kernel fiort g is applied. The
resulting image can be written as

[)\<SL’,y) *g = (CCO[B)\('Tv y)R + (1 - ﬁ)\(ﬂf, y)R)R)\<SL’,y)]) *9, (61)
I = (CCBR) g+ [CColl — BR)Ry + . 6.2)

For the purpose of simplifying the notation, the abbreddtem of I, (x, ), 5x(x, y)
and R, (z,y), which are respectively,, 5, and R, are used in this part. The sym-
bol « denotes the two dimensional convolution operation. The pass filter gives
a smoothed version of the image. Hence, in this whrks used instead of the term
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I, * g. Itis explained in Section 5.1 thatis a constant value. If it is assumed that the
range R is constant for all pixel positions, theqR is a constant value for same water
turbidity, and as a result Equation (6.2) can be written as

I = (BrR(Co + g) + (1 — BAR)[(CoRn) * g].- (6.3)

Co x g ~ Cy. The reflectance factoR,, for the scene content is assumed to be a sta-
tionary random field with meaR,. (CyR))*g ~ Cy R, becaus&, is the illumination
radiance and has low spatial frequency (LSR).has high spatial frequency and after
convolving with g, isR,, which is a nearly constant value. As a result Equation (6.3)
can be written as

Iy = ([BR + (1 = BR)R))|Co. (6.4)

The term([3\R+(1— 3, R) R))] is a constant value, and for simplicity it can be written
aS’yl.

Therefore, Equation (6.4) can be simplified to
I = 1Co. (6.6)

The general model of back-scatter light, which is given in&apn (5.7), is reproduced
here considering the camera gainand after applying a lowpass filter with kernel
function g as

ba(z,y) * g = (CCofx(z,y)R) * g. (6.7)

For the purpose of simplifying the notation, the abbrewiatiorm ofb,(z, ), which
is by, Is used.
Considering; 5, R as a constant value, which is simplifiedtg then

by % g = COR(Co * g). (6.8)

by x g IS approximately the same &g, sinceb, comprises only low spatial frequency
components.
by = 72Co. (6.9)



CHAPTER 6. MITIGATION OF CONTRAST LOSS 88

Comparing equations (6.6) and (6.9) suggests that

by I
Cp=2 =22 (6.10)
Y2 N
Therefore, the spatial distribution of optical back-seatan be written as
b)\ = EI_)\ = ’}/I_)\. (611)
2!

An illustration is given in Figure 6.2 to show the scale difflece between the
spatial distribution of optical back-scatter and illuntioa. Figure 6.2(a) presents a
sample underwater image in sizel®R4 x 1344. The sample image is chosen from
T5 test images in 600nm. Figure 6.2(b) presents the line-platsw=500 for original
image with a dash-dotted line, the smoothed image with aethkhe, and finally the
estimated level of optical back-scatter, which is foundh®yegression method with a
solid line. It can be seen that the optical back-scatter iasame spatial distribution
as image illumination, but with a different scale factor.guiiie 6.2(b) presents the
comparison betweel (z, y, v) and I, (z, y) for only one image row. The comparison
for all of the image rows is done by plotting with a contourtpleigures 6.2(c) and (d)
present the contour plots 6f(z, y, v) andI,(z, y) for allimage rows respectively.

6.1.2 Extinction Model

The definition ofa,, which is given in Equation (5.2), is reproduced here casrand)
the camera gain, and after applying a lowpass filter with kernel function g as

ax* g = (CCo(1 = BrAR)R)) * g. (6.12)

ay * g IS approximately the same as, sincea, comprises low spatial frequency
components. The approximations®f x g andCj * g are as explained earlier.

ax = (¢ — (BrR)RACo. (6.13)

On the other hand by rearranging Equation (6/5)can be written as

= 1 — CONR

Ry = BN (6.14)
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Figure 6.2: a) The sample image in sizel624 x 1344 from from 73 test images in
600nm. b) The line-plots of row=500 fdi with a dash-dotted linel,, with a dashed
line, andb, with a solid line. ¢) The contour plot of the estimated ogtlwzck-scatter.

d) The contour plot of the smoothed image.



CHAPTER 6. MITIGATION OF CONTRAST LOSS 90

By substituting Equation (6.14) in Equation (6.13),can be written as

or = Gol¢ — R L= 615

By substitutingy, and% instead of{ 5, R andC|, respectively, then

o = (¢ =72 —12)(n)
S (N O I (6.10)
_ T (6.17)
71
= 17 (6.18)
M

Considering Equation (6.11), then
(l)\zl—’)/jkzl—bk. (619)

Equations (6.11) and (6.19) show that to estintatanda,, the smoothed version of
the image and a constant parametare required. The smoothed version of the image
is obtained using a recursive Gaussian filter with standewdation of a relatively large
value ofop (Mortazavi & Oakley 2007, Oakley & Bu 2007) is the only unknown
parameter. Therefore, by findingthe optical back-scatter and extinction distribution
function are known. The aim of the BS-Hist and BS-CostFunerslis to findy.

6.1.3 BS-MinPix Filter

Assume that there are several images with different imagteots. Suppose at lest one
pixel in spatial position of z, y) from these images falls on a dark object. Therefore,
the pixel value isR,(z, y) ~ 0. According to Equation (5.12), whef, (x, y) ~ 0 the
value of this dark image pixel in a turbid medium should repre the level of optical
back-scatter,(z,y). An example of this can be found in practice, when underwater
images are captured from different scenes by a camera wiked &éingle and height
on a ROV system in the same turbid water environment.

On this basis a rank filter is used to take the minimum pixel@dtom a set of
degraded sample pixels of the same level of optical backescaThese sample of
pixels can be from one pixel position at different imageshvaame level of optical
back-scatter. Therefore, in this methoeg), images, where.,,,, > 1, with same level
of optical scattering and different scene content are requi
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6.1.4 BS-Hist Filter

This method is similar to histogram modification. It is expkd in Section 5.3.4 that
when an image is captured by a CCD camera, camera noise id dddeg the process
of acquisition and conversion. Therefore, the image piregdsesent both the reflected
light from the scene and the added camera noise. The pixgtsalf image content in
a turbid medium are mostly high due to the extra value addeddge content because
of the effect of optical back-scatter. Therefore, the lgston of a degraded image is
mostly concentrated at the right part in visible range. Buteal imaging condition
the image histogram has an additional small area at low pedeles, which is due to
the effect of camera noise. In BS-Hist filter the idea is to ifyothe output image
histogram in such a way to keep that part of the image histoghae to camera noise
out of visible range.

The algorithm used in the BS-Hist filter is to calculate thieiganf~ (from Equation
6.11) by keeping ;3% of the histogram of , (, v) from Equation (5.13) out of visible
range [0 255].

6.1.5 BS-CostFunc Filter

Oakley & Bu (2007) introduced a new statistical method, @@u cost function,

to detect a constant level of optical back-scatter in a degtamage, which is taken
in adverse atmosphere conditions such as fog or haze. Imvthils the algorithm is

extended to be used for a variable distribution of opticalkkscatter. The extended
algorithm is found by substituting Equation (6.11), instedb in Equation (2.14) as
shown below

f
=35 Z (Icfp (p))) . exp < Zln (I (p vf,\(p))2>, (6.20)

(p) — vIn(p

wherep represents each image pixel in spatial positioriaofy). It is shown mathe-
matically in Appendix B that the extended cost function hasiaimum value aty.
Therefore, the value of can be estimated by Equation (6.20).

Note that there are two types of the smoothed images in Equédi20), in which
both of them are smoothed by recursive Gaussian filter with dvfferent filter pa-
rameters. Oakley & Bu (2007) have shown that the performaf@®st function is
more accurate, when a small filter parametgy, is used forfif. I, is used to extract
the illumination variation from the image, and as a resutithage should be highly
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smoothed in order to have no image content. Therefore, a fdtgr parametes g is
required for/,.



Chapter 7
Simulations

In this chapter, the performances of the algorithm of BSrfltere explored using
Monte-Carlo simulation with synthetic underwater imagdse efficiency of the algo-
rithms in terms of accuracy and reliability is determined.

This chapter is structured as follows. In Section 7.1, théhoa for synthesis
synthetic underwater images in monochrome and colour ifagqu. Section 7.2
evaluates the performances of BS filters under differenissitaal assumptions. The
results of improving degraded monochrome synthetic imagesy BS-CostFunc, as
well as examples of the improved monochrome images arermiszseSection 7.3 is
concerned with the amount of colour difference introducethé improved images by
processing synthetic colour images, both in narrow and wpeetral bands, with the
proposed method.

7.1 Synthetic Underwater Image

Synthetic underwater images are simulated based on the ofateunderwater image
given by Equation (5.12). A synthetic degraded underwatege in a specific central
wavelength of\, I, (1)), can be presented by

Lsyn(AN) = gy (N) Imsyn (N) + bsyn(N), (7.1)

where Img,,()) is the synthetic underwater image in clear water conditiQ,(\)
is the scaling factor due to the optical extinction ang,(\) is the synthetic optical
back-scatter function in a specific wavelength.

From the study of several real continuous underwater imggestazavi 2006), it

93
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is found that the spatial distribution of light intensitynche simulated by a positive
truncated cosine function. In this work, it is assumed thatdpatial variation is in one
direction, only across image rows. Image content is formethfdifferent surfaces,
where the appearance of each surface is a function of illatiwin and reflectance
(I. Motoyoshi & Adelson 2007). A synthetic clear underwateage is represented by

Iy = Loyn Ssyn(N) cos(6), - <0< g (7.2)
wherefsyn represents the reflected light from the scene contept()) is the illumi-
nation power spectrum anrds(¢) is the spatial distribution of the light intensity across
an image row.

7.1.1 Formation of Image Content fsyn)

In this work, itis assumed that image content is constitérma more than one surface.
A check board pattern is used to represent different susfacth different textures
in a synthetic image. This pattern is simple and is used ivipus work (Oakley &
Bu 2007) to generate synthetic images. Therefore, imagent)ﬁsyn(/\), is composed
from M x N blocks, where each block is in size x n and can have a different mean
value with respect to the other blocks. To make each imagekldorresponds to a
natural image texture, it is required to find a statisticatribution that matches the
distribution of a natural texture. The Beta distributiori®sen for this purpose, since
the distribution of reflectance within a range of real tegtuare better described by the
Beta distributions as explained in Section 2.3.2.

To generate a natural texture with a Beta distribution, rtasessary to define the
value ofa g, and(p., parameters carefully in order that the pdf matches thateof th
natural texture.

Setting the Beta Distribution Parameters

Attewell & Baddeley (2007) study natural texture distriboats and estimate parameters
values of the Beta distribution,z.;, andSgs.:., for four different types of environment,
Woodland, Beach, Urban and Interior. The result of theirknsrpresented in Table
7.1.1. It can be seen that the mean intensity has a relatowlyalue and the values
of age, @and Gpe, are greater than one for all of the environments. The data fro
Attewell & Baddeley (2007) is limited to just four types oktare. Thus, the textures
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Environment| agea  Opeta | Mean (wg) STD(op)

Woodland | 1.91 22.6 0.08 0.06
Beach 2.04 7.57 0.21 0.13
Urban 1.35 10.72 0.11 0.11
Interior 1.29 2.3 0.36 0.22

Table 7.1: Estimated values of Beta distribution paransdiased on Attewell & Bad-
deley (2007) study for four different types of environmeMémodland, Beach, Urban
and Interior.
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Figure 7.1: a) The plot ofiz and ag.,, b) The plot ofug and Bp.:., for natural
textures data from Attewell & Baddeley (2007) data.

are limited to have four values of mean intensity, whereaange of different mean
intensities is required to find a comprehensive texture mode

The extended model of Attewell & Baddeley (2007) data, wisghresented below,
can be used to synthesise various natural textures. Toraoh#te extended model of
Attewell & Baddeley (2007) data, the relationships of mgas,with Beta parameters,
ageta&BBeta, are investigated. Figure 7.1 shows the plotsdgr,, and Gz, Versus
mean (i) for Attewell & Baddeley (2007) data. Th&z..,/1s plot shows a mono-
tonic relationship, whereas thes.,, /s does not. The linear regression line of the
Bpeta/ 5 Plotis found and plotted as a dashed line in Figure 7.1(bjs Tine has the
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form
ﬁBeta = _59:uB + 227 (73)

which by rearranging can be written as

- 22 — ﬁBeta

= 7.4
UB 59 (7.4)

The range of validiz.;, for the natural texture i$z.,, > 1. Because, fofige, > 1

the distribution has a hump, which is common in natural teeduAs a result, the range
of upis 0 < up < 0.36 (0.36 = £51). Equation (7.5) is used as an extended model
of Attewell & Baddeley (2007) data.

BBeta = —59up + 22, 0 < up < 0.36. (7.5)

The mean intensity of each image bloglg, is calculated from a uniform distribution
within a rangd0.01, 0.36] unless stated. The upper range is limited to 0.36, because of
the limitation of 3., > 1. The lower range is chosen arbitragyz( > 0). The value

of Bgera CaN be simply estimated from Equation (7.5) for differenemealues. The
value ofa ., Can be calculated by using the relationship betweewthg anda g,
parameters in the Beta distribution (Ghahramani 2000)ckis given by Equation

(7.6).
,uBﬁBeta
O Beta = .
1 —pp

(7.6)

7.1.2 Synthetic Optical Back-scatter

The spatial distribution of an optical back-scatter fuoictiollows the spatial distri-
bution of light variation across the image as explained iatiSa 6.1.1. The optical
back-scatter functiorb,,,, (), can be simulated by

boyn(N) = s €08(0) Sbyyn(N), _7” <0< g (7.7)
wherey, is the parameter used to set the level of synthetic opticdd-saatter intensity,
cos(6) is as defined before arfth,,,, (\) is the optical back-scatter spectrum.

Figure 7.2 presents an example of the spatial distributiosyathetic light and
synthetic optical back-scatter function of one row for acsfpewavelength. The values
are set toS;,, () = 1, Sbsy,(A) = 1, 7, = 0.8 and the intensity variation function is

cos(Z% — I), wherew is for the size of an image row.
1.5w 3
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Figure 7.2: a) A sample pattern of intensity variation asras image row generated

by cos({%= — %), wherew is for the width of an image row. In this example= 350.

b) A sample of synthetic optical back-scatter functiap, = 0.8 cos({5> — %).

7.1.3 Synthetic Underwater Image

By substituting Equations (7.2) and (7.7) in Equation (7I1),()\) can be written as

A

Lyn(N) = [Layn(A) Suyn(A) + s Sbeyn(N)] cos(0), ; <0< g (7.8)

Figure 7.3 illustrates the formation of a sample synthetidarwater monochrome
image. As explained in Section 5.3.4, in a real imaging sibuathere are always
some noise contributions added to image during image atiquisThis added noise
contributes to a variation in pixel intensities. To have ecLaate model of image, noise
is also added to generate the synthetic image as presenigphation (7.9). Camera
noise can be generally simulated by a Gaussian distribumtiinzero mearnu,, = 0
and standard deviation of, (Petrou & Bosdogianni 1999).

Liyn(N) = [Tiyn(N) Seyn(A) + Vs Sbeyn(N)] cos(6) + noise. ‘7” <0< g (7.9)

7.2 Monochrome Simulations

Monochrome images are used to explore the performance d3hidters algorithm

for optical back-scatter estimation using Monte-Carlowdation under different statis-
tical assumptions. Numerous synthetic monchrome imagatasito the image shown
in Figure 7.3(e) are generated. The spatial distributioiigbt variation is assumed to
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Figure 7.3: The formation of a synthetic monochrome undemanage. a) Synthetic
image texture consisted of several blocks. The pixels sitgf each image block
follow Beta distribution. b) The line plot of the light inteity variation. c¢) Synthetic
underwater image in clear water condition under directiiliation, where its pattern
is shown in (b). d) The line plot of the intensity of opticaldkescatter variation. e)

Synthetic degraded underwater image.
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be knownos(0), for all simulations unless it is stated. For monochromegesa\ is
invariant as a resul,,,,(\) andSb,,,,(\) are setto 1 unless it is stated.

7.2.1 Performance Evaluation

The performances of the BS filter algorithms are evaluatddlksving. The estima-
tion error in each pixel position, p, is defined as the diffieebetween the real value
of optical back-scatteb, and the estimated value of optical back-scatter,

&, = b, —b,. (7.10)

&= |53, —b2 (7.11)

p=1

where P is the total number of image pixels. Sometimes, @gsiired to keep the sign
of the estimation error to know whether it is underestimapesitive value of;, or
overestimated, which is negative valueff For this reasow; is defined to calculate
for the signed estimation error as

1
E=3) &, (7.12)

The mean estimation errors, absolufg () and signedq’

ave

calculated as presented in Equations (7.13) and (7.14).

) values, for N images are

1
- Yg 7.1
gcwe N izlgz; ( 3)
1 N
g(we - N ;E’.@ (714)

The standard deviation of the absolute estimation eftgr, is

1 N

gstd = ﬁ Zzl(gz — Sm)e)l (715)
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The performances of the smoothing filter to obtain light spatariation is eval-
uated by finding the difference between the smooth versigheofmage,/,, and the
synthetic light spatial distributionc¢s(6)) as shown in Equation (7.16). Note that
cos(f) varies horizontally and the spatial variation is similar &t image rows. P, p, i
and N are similar as defined before.

E4 = cos(0,) — I, (7.16)

P

The difference for image (i) is

£l (7.17)
and the average difference across N images is
1 N
d __ d
Eave = Z £ (7.18)

7.2.2 Procedures and Results
BS-MinPix Filter Parameter

It is explained in Section 6.1.3 that BS-MinPix filter recgsn,,, sample pixels of
one spatial position (x,y) from,,, number of images to estimate the level of optical
back-scatter in that pixel position. The question is whahéesbest value for,,,,? If
nmp 1S low, then a dark pixel might not present among the samplegand this causes
estimation error. On the other handgif,, is high, then the level of optical back-scatter
in sample images might change throughout imaging in realliton and again this is
another cause of error. Therefore, it is required to knowogitenum value ofr,,,,,. A
test is done using synthetic degraded images to investigatptimum value of.,,,,,.
100 series synthetic degraded images in sizeS8ot @0,7 x 40) are generated,
where each series consistedrgf, number of imagesn,,, is varied from 1 to 50
ando, = 0. The synthetic optical back-scatter functionbig, = 100cos(3; — %)
in intensity range of0 255]. Figures 7.4(a) and (b) present the plots&pf. /nm,
and Esq/nmy respectively. It can be seen thatag, increases, the values 6f,.
and &, decrease. This means the performance of BS-MinPix filtes getter with

higher values of:,,,. This is expected, because when number of sample pixels are
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high, there is more chance for a dark pixel to be appearediesedtimation error is
lower. Note that this is when the level of optical back-sma#tt each pixel position
remains unchanged for all sample images. As explainedaircandition the level of
optical scattering in each image pixel might change. If dassumed that the optical
scattering condition is constant for capturing 1 second widao sequence, and the
images are extracted with rate of 25 frames per secondyithgr- 25 can be taken as
the maximum range ot,,,. From the&,,./n., plot it can be seen that the expected
error forn,,, = 25is 0.9%?, which is very low.

BS-Hist Filter Parameter

In Section 6.1.4, the level of optical back-scatter is eated using BS-Hist filter by
keepingn; 3% of the output image histogram out of visible range. The pathe
histogram, which is kept out of visible range should be sebating to the level of
added noise. If the value ofy 5% is not appropriate with the level of noise, the BS-
Hist filter has higher rate of error. In this part, the perfarmoe of BS-Hist filter is
evaluated experimentally by varying the valuewgfz % for images with added noise.

100 images are generated in size 8fX 40,7 x 40) and with added noise of
o, = 2 in intensity range of 255. The synthetic optical back-sraftinction is
bsyn = 100cos(5s — %). nyp% is varied from0.2% to 10% in steps of).5%.

Figures 7.4(c) and (d) present the plot€of. /n 5% and€,q/n s % respectively.
It can be seen tha&t,,. shows the minimum value for; 5% = 0.7%, which is the value
associated to the added noi§§5—(100 = 0.7). It can be seen for the regions lower or
higher than 0.7£,,. rises. The plot of,,;/nu 5% shows low variation in estimation
results €., < 1.3).

BS-CostFunc Filter Parameter

As mentioned in Section 6.1.5§f is the local average intensity of a pixel in an image.
In practice,l;’ is estimated using a recursive Gaussian filter with standewihtion of
o.s. The general form of a Gaussian filter is defined in Sectioril2 Bor a Gaussian
filter, o.; is closely related to the size of effective filtering areas/f is too small,
the random fluctuation in the pixel intensity cannot be siedtout. This introduces
errors into the estimation of from Equation (6.11). On the other handgif; is too
large, the pixels used for averaging are likely to be fromartban one region, and the

1€0ve(nmyp = 25) = 2.4, in which the expected error &54/255 x 100 = 0.9%.



CHAPTER 7. SIMULATIONS

20
151 ‘
g
= 101
w
5 \/\/
0 H : i i
0 2 4 6 8 10
Ocf
(e)

Figure 7.4: a) The plot oF,,./nmp,

Save/nHB%, d) The plOt Of(‘:std/nHB%

gstd/acf-

102

€std

30 40 50
mp

(b)

€std

g7
(d)
40
% 20+
w
10+
0 p—————— i
0 2 4 6 8 10
Ocf
(f)

b) The plot of£s4/nmp,  €) The plot of
e) The plot of&,,./o.; f) The plot of



CHAPTER 7. SIMULATIONS 103

filtering output no longer reveals the mean intensity of dipalar region. Again this
causes error iy estimation and degrades the accuracy of BS-CostFunc filter.

In this part, a test is done to investigate the performandSCostFunc filter by
varyingo.s. 100 synthetic degraded images in sizeSof ¢0, 7 x 40) with z,,;,, = 0.03
ando,, = 0 are generated. The value af; is varied from 1 to 10 in steps of 0.5. The
synthetic optical back-scatter functiontig,, = 100cos(3=> — 7). Figures 7.4(e) and
(f) presents the plots &,,./o.; and&q/0.s. It can be seen that fdrs < o.5 < 5
both&,,. and&,,, are having low values. As,; is getting more than 5, both the plots
of £,.,. and&,;, increase, showing higher estimation errors. This confilmasthere is

a limitation on selecting the filter scale,;.

Region Scale and Quantity

In Section 7.1.1, it is explained that the synthetic imagassist several blocks, in
which each block represents one surface. The region sqalesents the size of each
image block, measured by the number of pixels and is denogted Ix n. Region
quantity represents the number of blocks in an image andtdémy M/ x N. In areal
image, there are usually a large number of regions withdiffescales.

The performance of BS-MinPix filter depends on the intengitiyie of individual
pixels. Also, the performance of BS-Hist filter depends anglobal image histogram.
Therefore, the scale and regions quantity do not effect epénformance of these two
filters.

In the Oakley & Bu (2007) study, the region scale is large ghoto correctly
reveal the statistical distribution of the pixel intensityeach region. This implies
that the accuracy of estimation depends on region scalehigrsection, the effects
of region scale and region quantity on the algorithm pertoroe of BS-CostFunc
filter is examined. Several series of synthetic images anergéed, in which each
series consists of 100 synthetic images with different doatibns of region scale
and region quantity. The parameters are set,as = 0.03, oy = 2, 0, = 0, and
beyn = 100cos(3+ — %) with w = N x n according to different combinations of region
scale and region quantity.

Figures 7.5(a) and (b) present the plots£gf. /(M x N) and&yq/(M x N) for
different ranges of region scales. The plots show as regiantify (M x N) increases
Ewve ANAE,y decrease for all region scales. The plo€gf. /(M x N) presents thaf,,.
is higher for smaller region scales across all region qtiastiThe plot o,/ (M x
N) shows that the variation &f,;,; is nearly similar for all region scales across all
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Figure 7.5: a) The plot of,... /(M x N) for different region scales of. x n for BS-
CostFunc filter, b) The plot of,.;/(M x N) for different region scales of. x n for
BS-CostFunc filter, c¢) The plotaf,, . /(M x N) for different region scales ofi x n
for BS-CostFunc filter, d) The plot &,,. /o, for BS-CostFunc, BS-MinPix and BS-
Hist filters, e) The plot o€/, BS-CostFunc, BS-MinPix and BS-Hist filters, f)
The plot of&., . /o, for BS-CostFunc filter.
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region quantities. Figure 7.5(c) presents the pldat'gf /(M x N) for different ranges
of region scales. It can be seen that the estimation err@gative for all combinations
of (M x N) and region scales, which means all the estimated valuestichbpack-
scatter are overestimated. As a summary, the plots suggbat/é at least 12 regions
with region size greater than 100 pixels.

Camera Noise

Synthetic images that are used in simulations so far, repteg) the scene reflectance
and illumination. In real imaging situation there are alwapme sources of noise
added to image as explained in Section 5.3.4. This addee@ w©oistributes to some
variation in pixel intensities. It is important to know howded noise affects the per-
formance of each BS filter. In this part, the performance offil8&s are evaluated
under different levels of noise. 6 series of 100 synthetages are generated, in which
each series corresponds to a level of noise, The level ofo,, varies in the range of
[0 12.5] in steps of 2.5. The images are in sige<(40, 7 x 40), with parameters setting
1O fimin = 0.03, Ny = 10, np% = 2.5%, 0.5 = 2 andbs,,, = 100cos(3 — &)

Figures 7.5(d) and (e) present the plots&pf. /o, and Eyq/0,. From the plot
of E..e/0n, it can be seen that the performance of BS-MinPix falls moite added
noise with respect to the other BS filters for all noise levélse performance of BS-
CostFunc and BS-Hist filters are similar for very low levelngfise ¢,, < 2.5). But
for higher level of noiseg,, > 2.5, the estimation error of BS-Hist filter dramatically
increases, while the performance of BS-CostFunc is unadmgth respect to low
noise level. Also, the plot of,,,;/o,, shows that the error variation is very low (1.2)
for all BS filters.

The results suggest that among the three BS filters, therpeaface of BS-CostFunc
filter is the best in real imaging condition, where there i8aals some added noise.
Figure 7.5(f) presents the plot 6f,. /o, . It can be seen that for noise levels less than
9,0, < 9, the estimated optical back-scatter values are overestihveand for higher
noise levels, ¢,, > 9, they are underestimated.

Minimum of up

It is explained in Section 7.1.1 that the mean valug, is required to generate each
image block. The mean is restricted within a rafige. 1z < 0.36. The minimum
range ofug, pp(min), is not defined to a specific value. The valueugf(min) is
important on the performances of BS filters, because it oetas the level of dark
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pixels. In this part a test is done to investigate the peréoroes of BS filters by varying
pp(min).

20 series of 100 synthetic degraded images in size& of {0, 7 x 40) and with
o, = 0 are generated, in which each series corresponds to a differg¢min). The
value ofug(min) vary in range of [0.001 0.1] in steps of 0.005. The synthapitoal
back-scatter function is,,, = 100cos(3> — ). Figures 7.6(a) and (b) present the
plots of £,e /i (min) andEqqy/ np(min) for three BS filters.

It can be seen, gsg(min) increases, the value éf,,. increases for all BS filters.
The increment rate is higher in BS-CostFunc filter and is lkaw®&S-Hist. Also, it can
be seen that whepgz(min) < 0.01, BS-CostFunc shows lower error in comparison
with two other BS filters. From the plot &,/ s(min), it can be seen tha,
for BS-Hist is less steady with respect to BS-CostFunc andvB8ix filters. Figure
7.6(c) presents the plot éf,./uz(min). It can be seen that for all valuesof (min)
the estimated optical back-scatter values are overegtdnat

Optical Back-scatter Level and Spatial Distribution

In Section 7.1.1, it is explained that the spatial distiifuiof the light source can be
simulated by a positive truncated cosine function, as shiomlquation (7.7). The
hump part of the cosine function represents the directiaghefight source. When the
direction of light source varies, the spatial distributmfrlight varies, and as a result
the spatial distribution of the optical back-scatter varielherefore, it is expected
that different light spatial distributions have a simildfeet on the performance of
the BS-CostFunc filter. Also, the level of optical back-ssathanges due to several
parameters as discussed in Section 2.1.3. It is importaknday how BS-CostFunc
filter performs with different levels of optical back-seatt

Different light spatial distributions can be synthesizgd/aryingd (5- < 0 < 7)
in cosine function of Equation (7.7), and different level®ptical back-scatter can be
simulated by varying the value of of Equation (7.7). In this section, the performance
of BS-CostFunc algorithm is investigated for differentues of¢ and~,.

Several series of 100 synthetic degraded images in&iz&((, 7 x 40) are generated
with z,,;, = 0.03, 0.y = 2 ando,, = 0, where each series is a different combination
of v, andd. The value ofy, is varied from 10 to 200. Four differefitare used, which
represent for different light spatial distribution as stmow Figure 7.7(a). Figures 7.7
(b) and (c) present the plots &f,./~s and&, /7, for four different values of. It can
be seen that the trend of the plots are similar for differahies of). This indicates that
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the performance of BS-CostFunc filter is independent of ithte kpatial distribution
(or the direction of light source). The plots also show thatéxpected error is nearly
similar for low and medium level of optical back-scattert far a very high level of
optical back-scatter (high,) the estimation errog,,., increases.

[llumination Intensity

When the intensity of light source is low, it means that therkess light interacting
with the scattering particles and this results in less aptiack-scatter. Therefore, it
is expected that the estimation error should be lower foeldight intensity. This is
important, because the light intensity typically varieshwivavelength. The parameter
Ssyn(A) In Equation (7.2), represents for the synthetic light istgnspectra. So far
Ssyn(A) was setto 1. In this section, the performance of BS-CostFiliecis evaluated
for different light intensity by varying the value 6f,,,,()).

100 synthetic images are generated for different valueS,pfi\), which varies
in the range[0.05 1] in steps of 0.02. The images are in size ®f 40,7 x 40)
and the noise level is set t9, = 2. The synthetic optical back-scatter function is
beyn = 100Sbg,,(A)cos(3- — %), where the synthetic optical back-scatter spectrum
is assumed to follow the light spectrufib,,, (A\) = S,,.(A). Figure 7.8(a) presents
the plot of£! . versus intensity. It can be seen that the optical backeycedtues are

ave
overestimated, and also as intensity increases, the egtnrearor,£/ , increases as

ave’

well.

Filter Parameter o

According to the proposed back-scatter model (Equatiohl}®. the accuracy af,
not only depends on the value gfparameter, but depends on the smoothed version
of the image,/,. It is explained in Section 6.1 thd} can be obtained by applying
a recursive Gaussian filter with standard deviatiow gf The size ofsz should be
selected according to the image size. In this simulatiansghatial distribution of light
varies horizontally across the image row. Thus, the sizenafjie row is considered,
should be smoothed in such a way that removes all the fluongstiue to the image
content, while keeping the light spatial variation.

A simulation is done to investigate the amount of differebe&veen the synthetic
light variation and the model of, by varying the amount ofz. Two series of 100
images are generated, with sizg 660 x 1050) and(400 x 1400). The function of light
spatial variation is-os(z- — £). The value off2 is varied from 0.07 to 0.25 in steps
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Figure 7.8: a) The plot of’ _versus intensity, b) The plot & versussZ for two

of 0.02. I, is normalized to be in the range 1], the same range as synthetic optical
back-scatter function. The difference between the syiuttight spatial distribution
andI, is calculated for 100 images in both series. Figure 7.8@3qmts the plot of the
mean differenceg?,., versus?Z. It can be seen wheil < %2 < 0.15 the difference
shows the lowest value. For higher and lower value§/othe difference rises. For
example for image widths of W=105685 can be selected in range[ad5 158] to give
the best fit with light variation. This confirms that the siZesg should be selected
with respect to the image size. Also, it can be concludedtttethe model of light

variation,,, introduces an error of% in the estimation.

7.3 Colour Simulations

Colour images may be represented by multispectral imagéseirvisible range of
400nm - 720nm. To enhance a degraded colour underwater jrinageffect of optical
back-scatter in each spectral band should be compensatedof@he main require-
ments when processing a colour image is that the spectiatieerremains unchanged.
The aim of simulations in this section is to investigate houcimcolour difference is
caused by the BS-CostFunc filter. First, the generation ghthstic colour image and
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the performance evaluations are explained. Then the siiongare presented.

7.3.1 Synthetic Colour Image Generation

A synthetic colour image is generated in form of multispalatnages with 33 narrow
spectral bands of 10nm and in visible range of 400nm to 720Bnuation (7.9) is
used to generate the image intensity of each band. Notehhattensity information
in adjacent bands is correlated in natural images. If angeddent image is generated
for each spectral band, the correlation between bands veeuiro. For that reason,
one image intensity distribution is generated and usedvienyed adjacent bands. The
parameters set as following for all of the simulations usiies stated. The images are
of size(8 x 40,7 x 40, 33), with ug(min) = 0.03. The synthetic optical back-scatter
function isb,,,, = 100cos(5- — %). The valuesS,,, (\) andSb,,,(A) are taken from
the empirical values for the illumination of the halogen faemd in medium level of
water turbidity with emulsion paint particles respectywel

Multispectral images are corrected for the dark currens@ais explained in Sec-
tion 3.2.3. The main noise remaining in multispectral insigehe shot noise. The em-
pirical value of shot noise for the maximum intensity lewal the Hamamatsu ORCA-
ER hyperspectral camera is calculated in Section 5.34 as$ 2 and this value is used
for colour simulations. As the light intensity varies spatly, the value of shot noise
for different wavelengths varies as well. The noise spectisynthesized by

Un()‘) = Unssyn(/\)' (719)

7.3.2 Performance Evaluation

The performance of the proposed method to improve the csindfaa colour image
is evaluated by calculating the mean estimation e&fy,, and the amount of colour
difference (CD) introduced to the improved image pixel. Tingan estimation error,
&l .+ IS similar as defined by Equation (7.14). To calculate the BB images should
be in L*a*b* colour space, and a white reference is used. The calcutatiomapping

the multispectral images to XYZ colour space, and convgXWZ to L*a*b* or SRGB

and vice versa, and the CD are done using Westland & Ripar(@0i4) algorithms.
The CIE Ag, is used as the white reference, because the correlated tefoperature
of a 100 W halogen lamp is 3000 K, which is very close to the C€Indancandescent

120W light bulb (CCT = 2860 K), which is for the CIBg, (Westland & Ripamonti
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2004).
To evaluate the colour difference in an image, the mean caldierence,C'D,,,
for all image pixels is calculated from

P
1
CDy = > CD,, (7.20)
p=1
where p and P are similar as defined before.

7.3.3 Simulation 1

The aim of this simulation is to show that a degraded colowage) either in narrow
spectral bands or in wide spectral bands, can be improvedimpensating for the
effect of optical back-scatter with colour fidelity if thevid of optical back-scatter is
known for each spectral band.

This is first shown mathematically as follows, and then expentally by Simu-
lation 1. Suppos&;()\), R.(\) and R,s(\) are the reflected light from the scene in
murky condition, the reflected light from the scene in cleardition and the reflected
light from the particles in turbid water respectively. Itagplained in Section 3.2.3,
that the level of optical back-scatter in narrow bands caadseimed constant at each
pixel position. Hereg and R,;(\) is assumed to be spectrally invariant at each pixel
position.

Rq(A) = aRc(A) + Ris(N), (7.21)

Equations (2.24) - (2.26) are used to map the images from 3dgpectral bands.
Therefore X, is

Xy = /0 R\ S(NZ(N), (7.22)

wherez(A) and S(\) are similar as defined in Section 2.4.X, can be written by
substituting Equation (7.21) instead Bf(\)

Xq = /)\(CLRC()\)+Rbs(>\))5()\)i’()\)d)\, (7.23)
X, = /0 (aRNSONE(A) + Res(\)SOV)E(N))dA, (7.24)

A A
X, = / aR.(\)SNT(\)dA + / Rys(N)S(\)Z(N)dA. (7.25)
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fOA aR.(N)S(N\)Z(N) andfoA Rys(N)S(N)Z()) are the mapped clear imagkg,, and op-
tical back-scatterX,,, in XYZ colour space respectively. Therefor€,; can be written
as

Xg= X, + Xps. (7.26)

By rearranging Equation (7.26X. can be found as

X, = X4 — Xps. (7.27)
This also can be extended fgy andZ,; as

Ye=Ys— Y (7.28)

Z.= Zq— Tps. (7.29)

Equations (7.27) - (7.29) confirm that the result of compengaa degraded image
with wide spectral band with known values &f,, Y;, andZ,, is similar to the results
of compensating a degraded image with narrow spectral baitdsknown value of
Rps(N).

Set | & Clear Ref s Set | & Set || wimimimi JND CTTIT]
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Figure 7.9: The plot of mean colour differenceD,,,, for 100 images between Setl
Set Il (dash-dotted line), and Set | and the clear referamegeé (solid line).
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Simulation 1 confirms this experimentally. Two series of $§0thetic colour im-
ages, which are the degraded and the correspondence dier@nce, are generated
with 33 narrow spectral bands. The degraded images are cwaiael for the effect
of optical back-scatter using known synthetic back-scattéwvo different ways. The
first way is to process the images in narrow spectral bandsinihge in each spectral
band is compensated for the effect of known optical backiescan the correspon-
dence band. The output images of this series is called Sdtd.s€cond way is to
map the degraded images and the known optical back-scatdYZ colour space,
and then compensating each of the X, Y and Z bands for theteffaaptical back-
scatter. The output images of this series is called Set & dlbar reference images
and the improved images in Set 1 are mapped to XYZ. For cosyrathe images are
converted toL*a*b* colour space and the colour difference between Set | and clea
reference image, and Set | and Set Il are calculated andrgessm Figure 7.9 by the
solid line and the dash-dotted line respectively. It candmnshat the mean colour
difference,C' D,,,, between Set | and the clear reference is around 0.3 for alkd$t
images, which is below the JND value of 2.3. Thé®,, between Set | and Set Il is
near zero(CD,, = 5 x e 4, for all 100 images. This means that the colour infor-
mation in Set | matches with that in Set Il. The results confihat the a degraded
underwater colour image can be improved with colour fiddfitye level of optical
back-scatter is known. Moreover, the results show thatgesiog degraded colour
images in wide spectral bands does not introduce any coltiarehce with respect to
processing images with narrow spectral bands.

Sample of synthetic images converted to SRGB in clear, degrand improved
image in Set | and Set Il are presented in Figure 7.13(a) -e&hectively.

7.3.4 Simulation 2

The aim of this simulation is to investigate the amount obooldifference due to the
optical back-scatter estimation error in colour imagesweérrow spectral bands.

It is shown in monochrome simulations (Section 7.2), thaiével of optical back-
scatter can be estimated by BS-CostFunc filter, but with sestienation error. Also,
the plot of Figure 7.8(a) shows that the estimation erroregdoy light intensity. The
light intensity varies spectrally and as a result, the esiiom error is spectrally variant
due to the noise effects.

The estimation error spectra can be found from the intemsigach spectral band
(light source power spectrum) and the corresponding levelsbmation error from
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Figure 7.10: The plots of a) the halogen lamp power spectrtie estimation error
spectra.

Figure 7.8(a). The plot of the power spectrum of the halogempl and the estimation
error spectra are presented in Figures 7.10 (a) and (b)cesgly.

The estimation error causes variation in the pixel valueawheband, and as a
result causes a change in the pixel spectrum. The changgehgpectrum results in
a change in colour. The question is how much colour diffeeesdntroduced to the
output image due to the estimation error? Also, human visystem has limitation in
recognising small colour differences as explained in $ai4.3, so it is important to
know that whether the colour difference due to the estimagiwor can be sensed by
the human vision system.

The expected colour difference due to the estimation erraaich band is esti-
mated. For each spectral band, the estimation error is ad@dample of synthetic
clear image. The original image and the image with addedhasion error are then
mapped from 33 bands to 3 bands in form of XYZ and then congdad *a*b*. The
amount of colour difference between these two images isizkd as”' D,, = 1.6. To
confirm this, the amount of colour difference due to the BSt€onc filter estimation
error in each band is investigated experimentally in Sitnorhe2.

Two series of 100 synthetic colour images, the same as inl&iion 1, are used.
The optical back-scatter in each narrow spectral band ismattd by BS-CostFunc
with 0.y = 3. The degraded images in each spectral band are compeneatbe f
effect of optical back-scatter. This set of images is caBetllll. A sample synthetic
image in Set Ill, which is converted to sRGB, is presentedigufe 7.13(e). The
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Figure 7.11: The plot of mean colour differen¢eD,,,, for 100 images between Set
[Il and the clear reference image (dash-dotted line), atnd\Gand the clear reference
image (solid line).
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improved images with their correspondence clear refereanages are mapped to 3
bands in form of XYZ and converted tb*a*b* colour space. The mean colour dif-
ference,C'D,,, between the original image and Set Il are calculated fdr ib@ages
and presented in Figure 7.11 with dash-dotted line. It caselea that for 100 images,
the value ofC'D,, is constantly less than JND value of 2.3 for all 100 imagesis Th
confirms that the amount of colour difference due to the esf@®S-CostFunc filter is
less than the eye sensitivity threshold .

7.3.5 Simulation 3

The aim of this simulation is to investigate the amount oineation error for colour
images with wide spectral bands.

In real life images are generally captured in form of RGB, athhas 3 highly
correlated spectral bands. In this part, we would like tovkhow BS-CostFunc algo-
rithm performs with images in wide spectral bands, such aB.RE5-CostFunc uses
the extended Oakley-Bu cost function. The basis of Oakleydst function is that the
relation between the standard deviation and mean of imagen®/'surfaces can reveal
the level of extra lightness due to optical back-scatterdiegraded image.

To show this, two sample monochrome synthetic clear andadiegr underwater
images at 600nm from test images that used in Simulation Lised. The term local
is used here to refer for each image block or region.

The synthetic images have check-board pattern, in which e&xck represents
for each image region. The standard deviation of each imémk Igstd,) is plotted
versus the correspondence mean)(of that block for clear and degraded condition
and presented in Figure 7.12(a) with red circle and bluersguarks respectively.

It can be seen that the first part of both plots are linear. Kpamsion of the plot
intercepts withm,, axis around zero for the image in clear water condition, wasr
for the degraded image the plot is shifted in local mean augatd 100, which is
the level of synthetic optical back-scatter. Assume an emags, is consisted of two
uncorrelated imageBn,; and/m,, with local mean ofn,; andm,;, and local standard
deviation ofstd,; = ¢/my; andstdye = 'mys, wherec' is a constant value. The mean
is a linear operation, so the local mean/ai; can be found by

Mp1 + M2

5 (7.30)

mp3 =
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e Clear Water = Turbid Water
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Figure 7.12: The plot of local standard deviationd,) versus local meannf,) for
a) synthetic images in clear and turbid water conditionswu) degraded synthetic
images in turbid water condition at 600nthm; is one single image anbn; is from
the combination of two degraded imagés;; and/m, at 600nm.
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The standard deviation is not a linear operation and feg can be found by

. (7.31)

std?, + std?, + 2cov(bl, b2)
Stdbg = B

As I'm; andIm, are uncorrelatedpv(bl,62) = 0, andstd,; can be written as

td? td?
stdyy = \/Sbl;#, (7.32)

/ 2 / 2
Stdb3 — \/(C mbl) ; (C me) ’ (733)

2 2
stdys = c’\/w. (7.34)

From Equation (7.30)y2, can be written as

2 2
2 My + Mpy + 2mp1Mmpg

Mz = 1 (7.35)
By rearranging Equation (7.35)
mi, +miy = 4mly — 2myimps. (7.36)
By substituting Equation (7.36) in Equation (7.34)
stdys = c’\/2m§3 — Mp1Mpa. (7.37)

Equation (7.37) shows that the amount of difference isedl&bm,; andm,,. As are-
sult the local standard deviation and mean of the combinegéare not proportional.

Stdbg Qé mep3. (738)

To show the relation oftd,; andm,s, two synthetic degraded imagdsy; andIm.,

at 600nm with same level of optical back-scatter are used.pldts of local standard
deviation versus local mean fdm, and Ims (Ims = Im; + Ims) are plotted and
presented in Figure 7.12(b) by blue square and magenta ciratkers respectively.

It can be seen that fafm,, the expansion of the plot intercepts at 100, whereas for
I'ms the expansion of the plot intercepts with some differenoenfd00. This shows
that the result of locadtd,; versusm,s plot is less useful when analysing the level of
optical back-scatter.
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Colour images in wide spectral bands, such as XYZ and RGBbeassumed to
be the sum of several images of narrow spectral bands. Théurasion algorithm is
based on the relation between the standard deviation and afesch image region.
Also, it is shown in Equation (7.38) that the standard demmabf the combined image
regions is not proportional to the mean. The amount of difiee is approximately
related to the local mean of the narrow spectral band imaggsi(,.). If the local
mean values are low, the amount of difference is lower andesaiess error in the
performance of cost function algorithm. But, if the localane have high values, then
the difference becomes high and causes more error.

Therefore, when processing colour images with wide spdzarads, the cost func-
tion algorithm operates with extra estimation error, inetithe amount of error relates
to the local mean of narrow band images. If the local meanwstlte amount of error
is lower as well.

Simulation 3 is done to investigate how much colour diffeesis introduced to
this extra estimation error. Two series of 100 synthetiogbimages, same images
as used for Simulation 1, are used in this simulation. Eacdgars mapped to XYZ
colour space. Then, the level of optical back-scatter i é@nd is estimated and used
to compensate for the effect of optical back-scatter. Taiso§images are called as
Set IV. The clear reference and Set IV images are convertéddth* colour space
andCD,, between these two images are calculated and plotted ind=igal with
solid line. The colour difference i€'D,, ~ 4, which is is higher than the level of
eye sensitivity threshold, JND. A sample of synthetic imag8et IV is converted to
SRGB and presented in Figure 7.13(f). It can be seen thattitepsed image is darker,
which is because of the level of noise. The image colour isalig similar to the clear
reference image, even if the colour difference is in a rahgedan be detected by eye.
In other word, no colour shift is visually obvious. The reador colour difference
above JND is that, the colour difference is calculated¥,,, which considers the
difference between both lightness*(in L*a*b* colour space) and colour?, b* in
L*a*b* colour space). When the image is darker, even there is nerélif€e in colour,
still it affects on the value of colour difference. This sl®that the method can be
successfully applied to colour images in wide spectral basiwell.
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(a) (b)
(c) (d)
(e) (f)

Figure 7.13: A sample of synthetic image converted to sSRGB)inlear water, b)
turbid water, and improved imagesinc) Setl, d) Setll, e)IBetf) Set IV.




Chapter 8

Experimental Results

8.1 Introduction

In this chapter the performance of the proposed algorithnessed with real con-
strained and non-constrained images. The performanceati@ais are defined by
equations (7.10) - (7.13) in the simulation section in Chajt

This chapter is structured as follows. Section 8.2 predéetgesults of processing
monochrome constrained testimages. Each monochrome isxafy@ narrow spectral
band of bandwidth 10 nm. The estimation of the back-scattarpeter4) at different
levels of water turbidity is investigated. The accuracystiraeating optical back-scatter
for monochrome images with narrow spectral bands is evadgdome examples of
improved monochrome images are presented. The consistétioy estimated back-
scatter parametery] across a series of continuous images is investigated fatefiit
wavelengths. The quality of the output image, when the inpageessed by the pro-
posed algorithm, is compared with the output image, whenntiage is processed by
the known contrast enhancement method, local histograralisgtion. Section 8.3
presents the results of processing constrained colouramigboth narrow and wide
spectral bands. The amount of colour difference introduhezito the proposed al-
gorithm is evaluated for colour images with wide spectraidsa Some examples of
improved images are presented. In Section 8.4, the algoiglused to process non-
constrained images. The consistencyya$ investigated in different colour channels.
Samples of improved images with the corresponding degrexages are presented.

122
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Figure 8.1: The plot ofy versus image index, for three water turbidity levdlg, T}
andTs.

8.2 Monochrome Images

In this section, the accuracy of optical back-scatter estion and the consistency of
the back-scatter parametei) @re investigated for monochrome images.

8.2.1 Accuracy

In this part, it is shown that the proposed BS-CostFunc fidger accurately detect the
level of optical back-scatter. There is always some levapaifcal back-scatter even
for images in clear water condition. Therefore, it is expddhat when the proposed
algorithm is applied to a clear underwater image, it detdutslow level of optical
back-scatter. Also, when the level of water turbidity istieg a higher level of back-
scatter is expected.

Optical back-scatter is estimated for 10 degraded imagetear (/;), medium
(11) and high (%) levels of water turbidity. The parameters are settp = 4 and
op = 180. The estimated is plotted for 10 images and is presented in Figure 8.1. It
can be seen from the plot that the value of estimateddifferent for each level and is
associated with the level of water turbidity.

The estimated value of optical back-scatter,is used to calculate the parameter,
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ay. The estimated values 6f anda, are used to improve the images in serie§gf
T, andT,. The improved images are found by subtractindrom the degraded image
and then scaling the remainder %

A selection of improved images is presented in Figure 8.2cait be seen that
the improved images frorh, and7; (Figures 8.2(a) and (b) at column (ii)) are simi-
lar. The improved images show the scene content without eaiyesing effect. This
confirms that the algorithm can detect the level of opticakbscatter and correct the
image appropriately. The lower part of the improved imagei; looks darker. This
is because, a shadow appears in images from séri¢due to a reflection from the
translation stage during capturing images in sefigs

Although the effect of optical back-scatter is mitigatethia processed image from
T, (Figure 8.2(c)), yet the quality of the processed imagewselowith respect to the
quality of the improved images frorfi, and 7;. Resolution loss is evident in the
processed image. The turbidity levella is in the high range of water turbidity (0.7
gr/100 litres) such that the image has both contrast lossemwdution loss problems. It
is shown in Chapter 3, that for water turbidity more than 0/2@p litres both contrast
loss and resolution loss are evident. Therefore, the imag&s can not be further
improved by the proposed method.

Next, optical back-scatter is estimated for 10 monochromaggies at different visi-
ble wavelengths, 400 nm - 720 nm, with parameters setjte-= 4 andoz = 180. The
value of£!, . (Equation (7.14)) for 10 test images at each spectral baodlésilated.
Note, the real value of optical back-scatteris required for calculating.,.. The re-
gression method is used to calculate the value aifdifferent wavelengths, using the
degraded image and the improved clear image as the reference

Figure 8.3(a) presents the plot &f,, versus wavelength. It can be seen for short
wavelengths) < 470nm, the estimation error is negative, which means that the es-
timation value is over estimated, whereas for longer wangdles, A > 470nm, the
estimation error is positive, which means it is under estaaa This is because, the
level of noise in each monochrome image changes at diffevanélengths. In sim-
ulations, it is shown in the plot of Figure 7.5(c) that whee thvel of noise varies,
the estimation error changes. The value of estimation &rior accordance with the
results from simulations.

Figure 8.4 presents a sample of the improved images togettiethe correspond-
ing images in clear wateff{), the improved of clear water, and the turbid water con-
ditions (I7) at different wavelengths (550 nm and 700 nm). It can be skanthe
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(b)

(i) (i)

Figure 8.2: The selection of i) original images, and ii) iloyped images at 600 nm
for different levels of water turbidity, &),, b)7; and c)Ts.
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Figure 8.3: a) The plot of!, . versus wavelength\]. b) The surf plot ofy versus
image index at different spectral bands.
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proposed method significantly enhances the contrast ofdageaded monochrome im-
age.

8.2.2 Consistency

For a series of continuous images, when the level of waterdity, the optical depth,
the illumination and the wavelength remain unchanged gkjgected that the value of
optical back-scatter remains unchanged over continuoagesh

The position of the light source and the water turbidity agpticonstant during the
capture of 10 test images in seriBs As a result, the level of optical back-scatter at
each narrow spectral band is expected to be consistenttwéfttest images. This is
investigated experimentally. Since the position of lightiise is consistent, the shape
of I is similar for all of the images. Hence, to have a constargllef optical back-
scatter, the value of estimatedshould be consistent over continuous images.

The value of estimated from the previous experiment (Section 8.2.1) is plotted
versus image index at each wavelength and presented ineF8gBifb). It can be seen
that the value ofy is consistent within 10 test images at each spectral bandeier,
the estimated at image 1 is slightly higher<( 10% difference with respect to the
value at image 2 - image 10). This can be because when imags ¢aptured the EP
particles have not been settled properly in water tank, /asrat the time of imaging
for image 2 and after, the particles were settled and proMédeonstant level of optical
scattering.

8.2.3 Quality

In this section the quality of the enhanced image by the megalgorithm and also
local histogram equalisation are compared visually. FEg8u5(ii), (iii) present the
selection of processed images by the proposed method usrgddtFunc filter and

by local histogram equalisation with 120 kernel size respely for different levels of
turbid water, T}, b) 71, ¢) T5. It can be seen that the quality of the enhanced images
with the proposed method is superior to the local histogrquaksation method. The
processed images with local histogram equalisation hase @md look grainy.
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(b)

(i) (ii)

Figure 8.4: The selection of images in a) turbid watgén( b) improved fromT?,
c) improved fromly, d) clear water{p) at i) 550 nm, ii) 700 nm.
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(if)

Figure 8.5: The selection of images in i) original imagesprocessed with the pro-
posed method using BS-CostFunc filter, iii) processed vadall histogram equalisa-
tion with 120 kernel size, for different levels of turbid wat) 1y, b) 17, ¢) Ts.
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8.3 Colour Constrained Images

In this section, the results of experiments with colour ieggre presented. The colour
fidelity of the improved images using the proposed algorithnmvestigated experi-
mentally for real constrained colour images. Experimergsd@ne on colour images
with both narrow and wide spectral bands. 10 test images fipamd7; for clear and
turbid water respectively are used for these experimerits.pfocessed image in clear
water condition is used as the reference image. The firstignpets uses images with
10 nm bandwidth.

8.3.1 Experiment 1- Colour Images in Narrow Spectral Bands

The degraded colour image frdf is improved by compensating the effect of optical
back-scatter in each spectral band. The parameters aesegtt 4 andop = 180.

For each colour image, the valueigfis estimated for the monochrome imagdg)(
of that specific band with central wavelength, Then the value ofi,, is calculated
using Equation (6.19). Each monochrome image is improvesuyracting, from
I, and then rescaling the remaining %y

The multispectral degraded imagés ), the improved images fror;, the refer-
ence images (improved froff}), and the clear water images,j are mapped to XYZ
colour space, and then converted to SRGB to be visually ptede Figures 8.6(a) -
(d) show a selection of colour degraded images fiigrthe improved image frori;,
the reference image (improved frofy), and the image frori respectively for two
different scenes (image 1 and image 10).

It can be seen that the low level of optical back-scatternsoneed from the image
in clear water condition. The colour of the improved imagesT the turbid water
(Figure 8.6(b)) is similar to that of the reference imageg\ffe 8.6(c)). This result is
in accordance with the simulation results in Section 7.3.4.

8.3.2 Experiment 2- Colour Images in Wide Spectral Bands

In the second experiment, the performance of the propogedtéim, when improving

colour images in wide spectral bands is investigated. Thezdwo main sources of
estimation error, when processing in wide spectral bantsespect to processing in
narrow spectral bands, which are the extra estimation ermamduced by BS-CostFunc
filter for wide spectral bands, and the difference of the ll@ienoise between wide
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Figure 8.6: The selection of colour images from two différerenes, i) image 1, ii)
image 10 for a)the degraded image fr@im b) the improved image with narrow
spectral bands frori;, c) the reference image (improved with narrow spectral band

fromTy), d)the image from the clear water conditiafy).
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Figure 8.7: The plot of colour difference between the impiebeolour image in wide
bands fornil; and the reference image (the improved frég for 10 images.

bands and narrow bands.

In simulations, the plot of’,. versuss,, in Figure 7.5(c), shows that when the level
of noise is low, the estimation error is higher and is ovemestied. For medium level of
noise, the estimation error decreases to lower value. Meéd€noise in wide spectral
bands is lower, with respect to the narrow spectral bandasiuse during the mapping
process, the noise value is nearly averaged over the naaodshof that specific wide
band. Therefore, it is expected that the level of estimatiwar should be higher and
also should be overestimated for wide spectral bands. Titesstion of a higher value
from the degraded image pixels, causes the pixel intensttyeamproved image have
lower values and as a result the image are expected to lo&erdamhe improved
synthetic image in wide spectral band, presented in Figuré(fj, also shows that the
processed image in wide spectral bands is darker with respéte processed image
in narrow spectral bands (Figure 7.13(e)).

The multispectral images are first mapped to XYZ and then eded to SRGB
colour space. The degraded images are improved by progessach colour channel,
red (R), green (G) and blue (B). The parameters are sef;te- 6 andog = 180. The
process of improving images in each colour channel is aséxgd for narrow spectral
bands in Experiment 1.
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Figures 8.8(a) - (d) present a selection of images from theadied imagd, the
improved image in narrow spectral bands, the improved inmagede spectral bands,
and the reference image (the processed images from clear eaidition in narrow
bands) respectively for image 1 and image 10. It can be segthi improved image
in wide bands are darker than that of the narrow bands, widecolour is the same
for both images.

The numerical colour difference is found between the impdoimage from7;
in wide spectral bands and the reference image (the imprbeed 7;), which are
converted ta.*a*b* colour space.

The mean colour differencé€;D,,,, (Equation (7.20)) is calculated for 10 test colour
images. Figure 8.7 presents the plot of the mean colourdrite,C D,,, versus image
index for 10 colour images. The plot shows that th®,, value is higher than the
eye sensitivity threshold (JND=2.3). This colour diffecencan be because of the
difference in intensity level between two images, as theutation of colour difference
considers the lightness difference as well.

8.4 Colour Non-constrained Images

In this section, the proposed algorithm is tested with nonstrained colour images,
which are captured in real underwater condition. The imagesaptured at two dif-
ferent locations, in UK and Abu Dhabi as explained in Sec8dn Since the reference
image in clear water condition is not available for non-¢caieed images, as a result
the accuracy of the optical back-scatter estimation cam@aissessed directly. There-
fore, the evaluation of the proposed algorithm is done bgstigating the consistency
of the estimated, value in each spectral band. The parameters are set;te- 3,
op = 90 ando.; = 3, o = 80 for processing images from the Thales Research and
the ADMA company respectively.

The value ofy is estimated for each colour channel (R, G, B) for 100 cormtirsu
testimages at two different water locations. Figures 8 &{d (b) present the plots of
versus image index for each colour channel forimages freiDMA and the Thales
Research companies respectively. From Figure 8.9(a) (ARMAan be seen that the
level of optical back-scatter changes from image 1 to im&ge The plots ofy versus
image index for different channels show that the red chahaslhigher fluctuations
with respect to the green and the blue channels. Yet, the wéincreasingy with
image index in red channel is consistent with the trendsergtieen and blue channels.
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(i)
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Figure 8.8: The selection of colour images from two différerenes, i) image 1, i)
image 10 for a) the degraded image frdm b) the improved image in narrow
spectral bands frorii;, c) the improved image in wide spectral bands frém d)
the reference image (improved with narrow spectral baraia ).

S
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From Figure 8.9(b) (Thales Research), it can be seen thévbkof optical back-
scatter also from image 1 varies to image 100. The plots\adrsus image index for
all colour channels show similar levels of fluctuations.

Sample of degraded images are also enhanced by Photoslepf tre popular
commercial image enhancement programme. The histograhe afdgraded image is
first shifted in such a way that to ke€fi; of the image histogram less than zero, in
non-visible part, in order to compensate the effect of cameise. Then the contrast
enhancement option is applied to images. Figures 8.10, @ddent the sample of
the degraded, the improved images by the proposed algousiimg BS-CostFunc fil-
ter and the improved images by Photoshop from the ADMA and'ttedes Research
companies respectively.lt can be seen that the processegesrby the proposed al-
gorithm are significantly improved in terms of perceivedhiigy and more detail is
visible. The processed images by Photoshop have limitettasinmprovement, and
the images are still low contrast.

The sample of 24 continuous image pairs, the degraded anwwegh images by
the proposed method, are presented in Figures 8.12 - 8. dree second of the
ADMA and the Thales Research companies video frames. Bguie?, 8.13 presents
images 1 to 12 and 13 to 24 of the ADMA company. Figures 8.1%5 @resents
images 1 to 12 and 13 to 24 of the Thales Research companyn beaeen that
the improvement process is consistent over continuouseas)and the quality of the
improved images remains consistent for both samples fre/ADPIMA and the Thales
Research companies.



CHAPTER 8. EXPERIMENTAL RESULTS 136

R— G--I B—

02 :
0 1 i i
0 25 50 75 100
Image Index
(a)
1 T T
17 . | O—— . S—— S, N— ]

i R .......................... ............................................... 4
O i i i
0 25 50 75 100
Image Index
(b)

Figure 8.9: The plot of versus image index for 100 images provided by a) the ADMA
company, b) the Thales Research company
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(b)

Figure 8.10: The sample of images from the ADMA oil compan@ayinal degraded
image, b) Improved image by the proposed algorithm with BStEunc filter, c) Im-
proved image by Photoshop. Firg) of the image histogram is shifted to be less than
zero to compensate for the noise effects. Then, the imageasbis enhanced.
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Figure 8.11: The sample of images from the Thales Researntipaay a) Original
degraded image, b) Improved image by the proposed algagrithimproved image

by Photoshop. First2% of the image histogram is shifted to be less than zero to
compensate for the noise effects. Then, the image consrashianced.
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Figure 8.12: The sample of continuous images from the ADMIAcompany video
sequence. a) Image 1-6, b) Image 7-12.

(b)
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(a) (b)

Figure 8.13: The sample of continuous images from the ADMIAcompany video
sequence. a) Image 13-18, b) Image 19-24.
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Figure 8.14: The sample of continuous images from the ThHakssearch company
video sequence. a) Image 1-6, b) Image 7-12.
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(a)

Figure 8.15: The sample of continuous images from the ThR&search company
video sequence. a) Image 13-18, b) Image 19-24.



Chapter 9
Conclusions and Future Works

The aim of this thesis is to improve the quality of an undeevanhage. Conclusions
from the results of this work and the suggestions for futuogkvare discussed below.

9.1 Conclusions

Resolution loss and contrast loss are two of main types ofadiegion in underwa-
ter images. There are due to the effects of small angle fakseattered light and
back-scattered light respectively. Although both of theseblems degrade the image
quality, the problem of contrast loss is less difficult toigate than that of resolution
loss. The magnitudes of these two problems vary accordidgstance and water tur-
bidity. Figure 9.1 presents a chart describing the effettBstance and turbidity from
the experimental results of Chapter 4. The two parametpresent a two dimensional
space which is divided by the dotted linedat= 0.059m~!. Above the dotted line, the
region Al corresponds to parameter values for which botbluéen loss and contrast
loss are significant. Bellow the dotted line, the regionstAA3 correspond to param-
eter values for which only contrast loss is significant. Thage contrast in the region
A2 is higher tharb%, whereas the image contrast in the region A3 is very low,tless
5%. As the image contrast in the region A3 is very low, practictiie image contrast
enhancement is not useful for improving the images. In practontrast enhancement
can be used to improve the images within the region A2. It candncluded that in
certain imaging situations the image can be improved by ensating the effect of
contrast loss.

In this work, an image processing method is proposed to iugattte image quality.
The proposed method is applicable to underwater imageshwdre taken in water
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Figure 9.1: The chart is describing the effects of distafeand turbidity (3). The
region Al corresponds to parameter values for which botbluéen loss and contrast
loss are significant. The regions A2 corresponds to paramabees for which only
contrast loss is significant and the image contrast i§% (Image enhancement is
applicable). The region A3 corresponds to parameter vdlreshich only contrast
loss is significant, but the image contrast is very lavi%.
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conditions with parameters in the region A2. The basis ofpttogposed enhancement
method is to remove the effect of optical back-scatter froendegraded images, since
optical back-scatter is the main cause of contrast loss.

A forward model for a degraded underwater image is given hyaign (5.12). In
this model, the relation between the pixel values of a demgtachage in turbid water
with the corresponding value in clear water condition igaight line. The underwater
image model is validated experimentally for different watenditions, such as differ-
ent levels of water turbidity and different light wavelehgt The inverse of underwater
image model, suggests that the contrast of the degradeckiceygbe improved by
subtracting the intensity value of optical back-scattenfithe degraded image in each
pixel position, and rescaling the remaining using the etiim parameter. Thus, the
inverse model is the basis of the proposed enhancement chetho

In this work, three different filters are used to estimateldwel of optical back-
scatter in a degraded image. Two of the methods, BS-Hist &€ &stFunc filters,
use the model of optical back-scatter given by Equationl(6.The performance of
these filters are examined and compared using Monte-Canladaiions with synthetic
underwater images in clear and turbid water under diffestatistical assumptions and
filter parameters. The results of the simulations with mbmome images indicate
that the performance of the BS-CostFunc filter is superiadh&d of the BS-MinPix
and BS-Hist filters. Therefore, the BS-CostFunc filter igsedd to estimate the level
of optical back-scatter.

The accuracy of optical back-scatter estimation in monmtia images is exam-
ined by simulations with synthetic underwater images. Tinmiktion results showed
that the maximum total estimation error for estimating cgidtback-scatter is less than
5%. The errors are the estimation error, which is arounds (maximum 5 inten-
sity level) and the estimation error of finding the opticatk&catter spatial variation
(1), which is around%. In addition, it is shown that when the level of light source
intensity is lower, the level of optical back-scatter is Bypwand as a consequence the
estimation error is lower.

From experimental results with real monochrome underwiatages, it is con-
cluded that

e there is no perfectly clear reference for underwater imagesn for clear water
conditions, there is some level of optical back-scatter.

e the amount of correction in the proposed method dependseolevk| of degra-
dation. It is shown that for clear water, the correction isyMew, whereas for
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high level of degradation, the correction is high.

¢ the method does not require any information about the phlproperties of the
scene, and also does not require any special equipment &geiracquisition.
It only requires an image intensity, which can be obtaineainy commercial
digital camera. Therefore, this method is generally ajpplie.

¢ the proposed method can significantly improve the contfastiegraded monochrome
underwater image without introducing either further n@sever enhancement.

¢ the level of estimated optical back-scatter is consistentbntinuous images
with same level of optical back-scatter. It is shown in nomstrained images,
that even when the level of optical back-scatter over cootis images is not
constant, the estimated level of optical back-scatteredaover the continuous
images. This indicates that the method is applicable toovedeeams as well as
one image.

¢ the computational cost of the proposed method is mainly dulee Oakley-Bu
cost function to estimate the parameteand the smoothing filter to find the
spatial variation of the light intensity. In previous studyis shown the com-
putational cost of Oakley-Bu cost function is low. Also, tleeursive Gaussian
filter is used as the smoothing filter and this is fast. So,ntleaconcluded that
the computational cost of the proposed method is low. Thesethe proposed
method is applicable to real time imaging applications.

It is shown mathematically and confirmed by simulations vagimthetic colour
images that when the accurate level of optical back-scatknown, it is possible
to recover colour of a degraded underwater image, eithesrim of multispectral or
RGB. This result suggests that underwater image improvefoercolour images is
possible with colour fidelity.

The result of improving multispectral images, synthetid aeal images, by the
proposed method indicates that the colour difference ltwlee recovered image and
the reference image is below the eye sensitivity threshekdch is IND=2.3. From
this result, it can be concluded that it is possible to rective spectrum of a degraded
multispectral underwater image.

Comparing the improved images in RGB and multispectral esagith reference
images, it can be seen both images are darker. For multrapeés hardly noticeable,
whereas for RGB images it is evident. It is shown mathemigtitaat the performance
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of BS-CostFunc filter for RGB images, introduces noticeasgmation error. Thus,
the amount of darkness is related to the amount of estima&timr. The result of

simulation shows that the amount of estimation error vdnethe level of image noise.
As the level of noise increases the error decreases. Mettisgd images have higher
level of noise with respect to RGB images, which causes lga\awer error. As a

result, it can be concluded that the amount of darkness dispamthe level of image
noise.

9.2 Suggestions for Future Work

The suggestions for possible future works are:

e The algorithm of the proposed method is written in MATLAB. & hlgorithm
should be written in another programming language, such asd@der that the
algorithm can be used commercially. For example, the systanid be an extra
option for processing underwater images in digital cameyaan enhancement
option for image editing software.

e The method can be extended to recover spectral informatiohyfperspectral
images, which also cover ultraviolet and infrared wavelksg

e It is shown that the performance of BS-CostFunc filter in R@&Bges intro-
duces noticeable estimation error. Further statistiaadysshould be done to
find out the expected value of the estimation error due to #réopnance of
BS-CostFunc filter with RGB images, and also whether theregion error is
underestimated or overestimated. Moreover, by knowingeipected error in
by, the amount of error for scaling factar,, can also be investigated.

e The calculated colour differencé&,;) between the improved image and refer-
ence image is above the eye sensitivity threshold (JND) féBRmages. This
suggests there is colour difference. However, the improweahes are only
darker and have similar colour with respect to referenceganarhis contra-
diction might be because the valuedf’,, includes the difference in lightness
(L*) as well as the difference in chromd ( v*). Further work should be done to
compare only the chroma independent on the lightness, mibwges with an-
other colour measuring tool. A possible suggestion woultbl@ot the values
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of b* versusa™® in L*a*b* colour space for two reference and processed image
pixels.

e Further work can be done to extend the algorithm in orderttieagffect of dark-
ness is corrected in improved image. Possible suggestionaiply histogram
modification to place the image histogram in visible range.

e The method can be extended to real time image processingeWoyprocessing
images in real time is not straight forward. In real time &gilon each image is
improved independently. For a series of adjacent images, @gmall difference
in estimated value of can result the variation in the intensity or colour of the
improved image pixels, which causes further noise in forrm@fge flickering.
The possible solution to correct the effect of flickeringasimooth the variation
of v value over adjacent images. For this, a time filter can be afied BS-
CostFunc filter.



Appendix A

Camera Specifications

A.1 Canon PowerShot Pro90 IS

Max resolution

Lower resolutions
Image ratio w:h

CCD pixels

CCD size

CCD colour filter array
ISO rating

Lens

Lens thread

Zoom wide

Zoom tele

Digital zoom

Auto Focus

Manual Focus

Normal focus range
Tele:

White balance override
Min shutter
Max shutter
Flash

Flash range
Tele:

External Flash

1856 x 1392

1024 x 768,640 x 480

4:3

3.34 megapixels (2.6 effective)
1/1.87(0.556”)

C-Y-G-M

Auto (50-100), ISO 50, 100, 200, 400
Canon F2.8 - F3.5 Image Stabilised, 13 elements in 10 groups
58 mm

37 mm

370 mm (10 x)

Yes, 2 xor4x

Continuous AF (Silent focus mechanism)
Yes (approx. 40 focus positions)

Wide: 10 cm - Infinity

1 m - Infinity

Auto, Five presets, Custom white balance
8 sec (Shutter Priority or Manual)

for help 1/1000 sec

Internal, automatic pop-up

(ISO 100) Wide: 70cm -4.2m
Im-34m

Yes, Hot-Shoe: Canon Speedlite 220EX, 380EX, 420EX and B50E
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Flash modes
Exposure modes

Auto, Red-eye reduction auto, Red-eye reduction on, On dhd O
Auto, Creative (Program AE, Aperture Priority, Shutterdfity, Manual)
, Pan-Focus, Portrait, Landscape, Night scene, B&W, SA&dist, Movie

Metering
Aperture priority

Shutter priority

Full manual

Noise reduction

AE Lock

Exposure adjustment
Bracketing

Movie clips

Audio clips

Tripod mount
Self-timer

Video out

Storage types
Storage included
Uncompressed format|
Compressed format
Quality Levels
Viewfinder

LCD

Playback zoom
Operating system
TWAIN acquire

Video Out
Connectivity

Battery

Battery charger
Weight (exc. batteries)
Dimensions

Center-weighted, Spot

Wide: F2.8, F3.2, F3.5, F4.0, F4.5, F5.0, F5.6, F6.3, FBIQ F
Tele: F3.5, F4.0, F4.5, F5.0, F5.6, F6.3, F7.1, F8.0

Yes, 1/1000, 1/800, 1/640, 1/500, 1/400, 1/320, 1/250,0,/20160,
1/125, 1/100, 1/80, 1/60, 1/50, 1/40, 1/30, 1/25, 1/20, 1/15
1/13, 1/10, 1/8, 1/6, 1/5, 1/4,0.3,0.4, 0.5, 0.6, 0.8, 1,
13,1.6,2,25,3.2,4,5,6,8

Yes (any combination of above apertures & shutter speeds apa
from 1/1000 sec only F4.0 - F8.0)

All the time (always enabled)

Yes

-2EV to +2EV in 1/3EV steps

Yes, 3images @ 0.3,0.7,1.0, 1.3, 1.7 or 2.0 EV steps

320 x 240, 15 fps, 30 seconds, including audio

Yes, WAV file format

Yes

Yes, 10s delay

Yes, switchable NTSC / PAL

Compact Flash Type | & Il

16 MB Compact Flash Type | card

Yes, RAW (Canon proprietary)

JPEG (EXIF)

RAW, JPEG: Super Fine, Fine, Normal

TTL Electronic View Finder (with dioptre correction)

1.8” TFT Flip-out and tilt

Yes, 2.5x to 5.0x

Proprietary

(Required for RAW format) PC Windows 95/98 (including SE)

/ Me / NT 4.0 (Service Pack 3 or higher) / 2000, Mac OS 8.1 or &igh

PAL / NTSC (selectable) - including audio

USB, RS232C (optional cable)

Yes, supplied Canon BP-511 Li-lon rechargeable
Yes, supplied AC adapter / charger

680 g (1.51b)

125 x 85 x 130 mm, (4.9"x 3.3"x5.1")
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A.2 Hamamatsu ORCA-ER

Imaging device Progressive scan interline CCD with micro-lens
Effective no. of pixels 1344(H) x 1024(V)

Cell size 6.45m x 6.45m (square format)

Effective area 8.67mm x 6.60mm/(2/3-inch format)

Pixel clock rate 14.75MHz/pixel

Frame rate 8.3 Hz

2 X 2 binning 16.4 Hz
4 x 4 binning 29.0 Hz
8 x 8 binning 45.3 Hz

Readout noise (r.m.s.) 8 electrons

Full well capacity 18,000 electrons

Dynamic range* 2250:1

Cooling method Peltier cooling with hermetic vacuum sealing
Cooling temperature - 20 C at 20 C ambient temperature

Dark current 0.1 electron/pixel/sec

A/D converter 12 bit

Output signal (digital output) RS-422A 12-bit parallel output

External control RS-232C (full remote for all camera functions)
Sub array** yes

External trigger yes

Contrast enhancement Analog Gain (10 times max.) and Offset functions
Power consumption 70 VA

Ambient storage temperature -10to +50 C

Ambient operating temperature Oto+40C

Ambient operating/storage humidity 70%max. (no condensation)




Appendix B

Oakley & Bu cost function with
variable offset

The optical back-scatter function (7.7) is substitutechwjt in Equation (2.14) with
Sbgyn(N) = 1:

S(k) = ! Z (_IJ;I])2 exp % Z In(I; — r cos(6))>. (B.1)

In recent study, (Bu 2007), it is proved that the first demxeabf S(b) has minimum
value wherb = c.

aes) , _

For parametric offset, again we are looking for the valueffsied function which makes
the cost function minimum. The first derivative of ti¢€x) by using the chain rule is
given by:

= . B.3
) (B.3)

From Equation (7.7):
d(v) = cos(0). (B.4)

d(S) _ d(S5)

d(k) — d(b)

cos(0). (B.5)
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91 is zero when eithefizd = 0 or cos(6) = 0. The range of is defined in Equation

(7.7) and as a resutbs(f) never has zero value. Therefo%’—; = 0 which shows the
function can have a minimum value at the offset value.
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