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A Näıve Bayes Ensembles 142

B Test Errors for Ensembles of 50 ADE 158

4



C Test Errors for Single ADEs and Ensembles of ADE 163

Bibliography 168

Word Count: 54,295

5



Abstract

We study diversity in classifier ensembles from a broader perspective than the 0/1

loss function, the main reason being that the bias-variance decomposition of the

0/1 loss function is not unique, and therefore the relationship between ensemble

accuracy and diversity is still unclear. In the parallel field of regression ensembles,

where the loss function of interest is the mean squared error, this decomposition

not only exists, but it has been shown that diversity can be managed via the

Negative Correlation (NC) framework. In the field of probabilistic modelling the

expected value of the negative log-likelihood loss function is given by its con-

ditional entropy; this result suggests that interaction information might provide

some insight into the trade off between accuracy and diversity. Our objective is

to improve our understanding of classifier diversity by focusing on two different

loss functions – the mean squared error and the negative log-likelihood.

In a study of mean squared error functions, we reformulate the Tumer &

Ghosh model for the classification error as a regression problem, and we show how

the NC learning framework can be deployed to manage diversity in classification

problems. In an empirical study of classifiers that minimise the negative log-

likelihood loss function, we discuss model diversity as opposed to error diversity

in ensembles of Näıve Bayes classifiers. We observe that diversity in low-variance

classifiers has to be structurally inferred. We apply interaction information to

the problem of monitoring diversity in classifier ensembles. We present empirical

evidence that interaction information can capture the trade-off between accuracy

and diversity, and that diversity occurs at different levels of interactions between

base classifiers. We use interaction information properties to build ensembles of

structurally diverse averaged Augmented Näıve Bayes classifiers. Our empirical

study shows that this novel ensemble approach is computationally more efficient

than an accuracy based approach and at the same time it does not negatively

affect the ensemble classification performance.
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Notation

General Notation

p dimensionality of the input space, number of features

c dimensionality of the output space, number of classes

N dimensionality of a dataset, number of samples

M dimensionality of an ensemble, number of classifiers

| · | number of elements of a set, as in |DU |

Probabilistic Notation

X input random variable in a p-dimensional space Rp

Y class label random variable

x input vector in a p-dimensional space Rp, realization of X

y class label, realization of Y

X set of N input vectors X = {x1, . . . ,xN}
Y set of N class labels Y = {y1, . . . , yN}
D dataset D = {X ,Y} = {(xi, yi)} for i = 1, . . . , N

DL labelled Dataset DL = {XL,YL} = {(xi, yi)} for i = 1, . . . , |DL|
DU unlabelled Dataset DU = XU = {xj} for j = 1, . . . , |DU |
p(·) probability density function

p̂(·) estimate of a probability density function from data

p′(·) first derivative of a probability density function p(·)
E[·] expectation of a random variable Z, as in E[Z]

L log-likelihood function

Decision Theoretic Notation

H space of possible hypotheses

f, g, h classifiers or models or hypotheses

h1, . . . , hz hypotheses in the search space H
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h∗ optimal hypothesis

f 1, . . . , fM base classifiers of an ensemble

L(Φ, τ) loss function, as the loss of predicting τ when the state of nature is Φ

I(α, β) indicator function, taking value 1 if α = β, and 0 otherwise

F combination rule

ε(x) noise associated with the input x

ŷ classifier estimate of the class label y

ŷens ensemble estimate of the class label y

fmi (x) output of the m−th classifier for the i−th class label

f ens
i (x) ensemble output for the i−th class label

f̄i(x) output of a linearly combined ensemble for the i−th class label

Ω set of class labels {ω1, . . . , ωc}
ωk k-th class label, ωk ∈ Ω

f ens(x) output of an ensemble of estimators

f̄(x) output of an ensemble of linearly combined estimators

fm(x) output of the m−th estimator of an ensemble

d target value, scalar d ∈ R

Probabilistic Models

θ set of model parameters θ = {θ1, . . . , θq}
µ mean vector

σ2 covariance

Σ covariance Matrix

I identity Matrix

α vector of parameters for the Dirichlet distribution, α ∈ R+

π vector of parameters for the multinomial distribution,
∑

i πi = 1

N (µ,Σ) normal distribution with mean µ and covariance matrix Σ

Mult(π) multinomial distribution with parameters π

Dir(α) Dirichlet distribution with parameters α

W(W,ν) Wishart distribution with parameters W and ν

Mutual Information

A, . . . , Z random variables

{A, . . . , Z} set of random variables
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H(·) entropy of a random variable, as in H(A)

H(·|·) conditional entropy, as in H(A|B)

I(·; ·) mutual information of a pair of random variables, as in I(A;B)

I(·; ·|·) conditional mutual information, as in I(A;B|C)

KL(p‖q) Kullback-Leibler divergence of two probability distributions p and q

I({·}) interaction information of a set of random variables, as in I({A,B,C})
I({·}|·) conditional interaction information, as in I({A,B,C}|D)
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Chapter 1

Introduction

Everyday life is a continual flow of decisions that are to be taken. Whether that

is to plan our day or whether to buy a new pair of socks, we are all constantly

called on to make decisions. It is common sense to ask for other people’s opin-

ions whenever the cost of a decision is high, as in where to invest our savings, or

whenever our understanding of a problem is weak, as in whether to treat a recur-

rent headache or not. This idea, which was formalised in early studies of political

science concerned with the conditions under which a committee can make better

decisions than a single person [98], has nowadays become the foundation of demo-

cracy and it has been widely applied to many work, social and research areas.

This thesis is concerned with the development of committees of learning machines

which can take autonomous decisions, and therefore finds in the Machine Learn-

ing community its target audience. Interestingly, whereas most everyday tasks

can be solved easily, the advent of a computing era has opened up the possibility

to solve complex tasks which go beyond human knowledge.

In this chapter we introduce the general problem of building machines that

can learn from examples and we point out the motivations for our work in this

research area. We illustrate the research questions which we are going to address

in the remaining chapters of this thesis and we conclude with an outline of this

thesis.

1.1 Learning from Examples

Machine learning is the discipline concerned with the development of learning

algorithms, that is, machines able to teach themselves from examples how to solve
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a task in an automated way [47, 25]. These learners are basically algorithms which

can learn some knowledge about a problem from a finite set of examples of the

problem itself, and that are able to generalise their behaviour to new examples.

This thesis focuses on a specific class of decision problems, that is classification

problems, where we want to label an object according to a predefined set of class

labels. The class of algorithms which learn from examples how to classify unseen

objects are known as classifiers.

An important point to make here is that classifiers cannot correctly classify

every object, but will incur in a classification error [43, 25]. One possible reason

for that is that a classifier learns to classify new objects from a finite set of train-

ing examples which may or may not represent in full the classification problem.

Therefore, a classifier might be missing out important examples that would make

the knowledge of the problem more accurate. Another reason is that the set of

training examples might be affected by noise, and therefore a classifier might

be biased towards a wrong representation of the problem. A third reason is the

so called Bayes error, the minimum error that a classifier can make due to the

overlapping nature of the classification problem. We will discuss Bayes error in

more detail in Section 2.4.3. A final reason for the classification error is given

by the fact that there exist no algorithm that is suited to solve all classification

problems. On the other hand, there exists many classification algorithms that are

suited to solve different classification problems. The difficult process of selecting

the most accurate algorithm to solve a specific problem might therefore affect

the classification performance, as the selected classifier might actually model the

problem in a wrong way.

A classifier is therefore characterised by its ability to generalise its knowledge

to unseen objects. The 0/1 loss function is one possible measure of this general-

isation ability, as this function is a measure of the cost we incur when we classify

an object, and in particularly, when we make a mistake about the real class label

of an object. A way to choose a classification algorithm is to test different types

of classifiers on the problem at hand and to select the one that makes fewer mis-

takes on new objects. However, the problem of estimating the real generalisation

ability of a classifier is quite challenging as, for instance, this estimation might be

affected by several factors, as for instance the finite number of examples [43, 25].
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An alternative to this selection approach is given by ensemble learning. En-

semble learning combines strengths and weaknesses of accurate and different clas-

sifiers to solve the same classification problem [21]. Intuitively, in order to make

the most of this cooperative approach, base classifiers should be different or,

more precisely, diverse, that is, they should be expert on different examples. In

this way, ensemble learning can combine and deploy the expertise of different

classifiers to increase the generalisation ability of the learning algorithm [57].

1.2 The Challenge of Understanding Classifier

Diversity

Studies have shown that ensemble learning can outperform the single classifier

approach [37, 26, 39]. The rationale behind this methodology is that by combining

different and accurate models, we may improve the ensemble decision over each

single classifier decision, that is, we may make fewer errors.

The notion of diversity between base classifiers seems to play a key role in

the success of ensemble learning techniques [56]. Intuitively classifiers are diverse

if they make different errors. It seems therefore natural to try to understand

the reduction of ensemble errors in terms of reductions of the ensemble 0/1 loss

function, and quantify the balance between accuracy and diversity in terms of

the same loss. However, the link between ensemble accuracy and diversity is not

so apparent, the main reason being that there is no unique way to express the 0/1

loss function in terms of the accuracy (or bias) and the variability (or variance)

of a classifier [48, 10, 52, 22, 86, 53, 82]. Nevertheless, the Tumer & Ghosh

model for the analysis of the classification error was the first framework to link

the ensemble classification error with the correlation (or existing dependencies)

between base classifiers [86]. This framework suggests that base classifiers should

have low bias and high variance for an ensemble to outperform the single classifier

[34].

Despite these attempts, to date there is still no agreement on how to measure,

define or even manage diversity for classifier ensembles [57]. This lack of a unifying

approach differs from the parallel field of regression ensembles, where diversity is a

well known problem, and where the NC learning framework, which is based on the

mean squared error loss function rather than the 0/1 loss function, has been shown

to manage diversity [15]. Understanding what diversity is, and how it affects
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the ensemble performance through the trade-off between ensemble accuracy and

diversity is a matter of primary importance, as it would provide us with a better

understanding of the conditions under which an ensemble succeeds over a single

classifier approach and overall might result in building more accurate ensembles.

1.3 Thesis Aims and Objectives

1.3.1 Thesis Questions

This thesis studies diversity in classifier ensembles from a broader perspective

than error diversity, and has the main objective of improving the general under-

standing of classifier diversity. Although the idea of combining diverse classifiers

is widely acknowledged in the Ensemble Learning community, the link between

ensemble accuracy and diversity is still unclear, the main reason being that there

is no unique way to decompose the 0/1 loss in terms of the bias and variance

of a classifier [48]. Therefore, the main research question this thesis addresses is

“Can we use a loss function other than the 0/1 loss to understand and manage

diversity in classifier ensembles?”

An interesting result in classifier ensembles is given by the Tumer & Ghosh

model for the classification error [86]. This framework was the first work to link

the ensemble classification error with the correlation between base classifiers.

Another interesting result is given by the the Negative Correlation (NC) learning

framework for regressor ensembles [15]. Here, the loss function of interest is

the mean square error rather than the 0/1 loss function. The NC framework,

which has its foundations on the bias-variance-covariance decomposition of the

mean squared error, can directly manage diversity in ensembles of regressors [15].

Following the main research question of this thesis, the first research question we

address in this thesis is “Can we deploy NC learning in the context of the Tumer

& Ghosh framework so that we can manage diversity in classification problems?”

This question is of great importance, as the final aim of understanding diversity

is to improve the ensemble performance, and yet to date there are no algorithms

that can actually manage diversity between base classifiers (Chapter 2).

In the machine learning community, diversity has always been associated with

the notion of error diversity. Intuitively, base classifiers are diverse if they mis-

classify different objects, that is they make different errors. Since error diversity
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is an immediate consequence of model diversity, the second research question we

address in this thesis is “Is it possible to generate diverse classifiers by looking

at model diversity rather than error diversity?” Parametric probabilistic models,

that is, models that minimise the negative log-likelihood loss function rather than

the 0/1 loss function, are particularly suited to this purpose, as they explicitly

select the model bias of a classifier. In these models, diversity can occur at two

different levels: it can be parametric or structural. More specifically, we address

this research question: address is therefore “Is parametric diversity sufficient to

build accurate and diverse stable classifiers?” This question is important for two

reasons. The first reason is that similarly to the mean squared error, negative

log-likelihood loss functions can be used to understand classifier diversity. The

second reason is that this question would clarify whether it is possible to generate

diverse and stable (i.e. low variance) classifiers with ensemble techniques such

as Bagging or Random Subspaces, as opposed to the idea that these techniques

require unstable classifiers to succeed [10]. This would confirm the evidence that

the stability of base classifiers depends on several aspects, such as for instance

the size of the training set [77, 78, 1], and that traditional ensemble techniques

can be successfully applied to Näıve Bayes classifiers [28, 83] (Chapter 4).

A third research question this thesis addresses is “What kind of measure could

we use to understand diversity?” To date, there is no formal definition or measure

of diversity for classifier ensembles. Mutual information [75] is a proxy to classi-

fication accuracy which is maximised when minimising the negative log-likelihood

loss function. Interaction information [64], which extends mutual information to

deal with more than two random variables, quantifies the existing interactions

between random variables (Chapter 3). Our specific research question is then

“Can we use interaction information to understand diversity between base classi-

fiers?” If the answer to this question is positive, this would clarify that diversity

occurs at different levels of interactions between random variables, and therefore

pairwise and non-pairwise interactions contribute to the diversity of an ensemble

(Chapter 5).

Since interaction information quantifies the interaction between random vari-

ables and that these interactions can be thought of as model dependencies between

random variables, our final research question is “Can we use interaction inform-

ation to generate accurate and structurally diverse base classifiers in a sensible

way?” This question is of primary importance, as it would address the problem
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of how to choose structurally diverse models in such a way that the ensemble

classification accuracy is not negatively affected, and it would also indicate that

interaction information can be used as a way to generate accurate and diverse

classifiers (Chapter 6).

1.3.2 Contributions of the Thesis

This thesis proposes novel viewpoints on classification diversity. In particular,

we show how different loss functions such as the mean squared error and the

negative-log likelihood can be used to understand and manage diversity in clas-

sifier ensembles. Our contributions can be summarised as follows:

• We reformulate the Tumer & Ghosh model for the analysis of the classific-

ation error into a regression model that minimises the mean squared error

loss function. We deploy the Negative Correlation framework in this context

and we show that our novel algorithm can manage diversity in classification

problems for ensembles of neural networks (Chapter 2).

• We study model diversity in ensembles of Näıve Bayes classifiers for the

ensemble techniques of Bagging and Random Subspaces. Whereas Bag-

ging generates parametric diversity between Näıve Bayes models, Random

Subspaces introduce a certain level of structural diversity between Näıve

Bayes models, as in the latter case base classifiers share the same model

dependencies but are trained on different features. Our study shows that

parametric diversity is not sufficient when combining stable classifiers such

as Näıve Bayes models. In fact, in this case base classifiers are accurate

but not diverse. Conversely, feature diversity introduced by Random Sub-

spaces generates base classifiers which are diverse but not accurate enough

to make the ensemble outperform the single classifier approach. We con-

clude that for stable classifiers, such as Näıve Bayes models, diversity has

to be structurally inferred (Chapter 4).

• We show that the success of Bagging with stable classifiers such as Näıve

Bayes classifiers depends on the size of the training set and on the model

specifications. This is in line with results found for other stable classifiers

[78, 1] (Chapter 4).
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• We discuss empirical work showing that interaction information can capture

the trade off between ensemble accuracy and diversity (Chapter 5).

• We present empirical evidence that diversity occurs at different levels of in-

teractions between base classifiers, and therefore higher order interactions

between base classifiers cannot be discarded. As a result, Bayesian Net-

works can only approximately model interactions between base classifiers

(Chapter 5).

• We present empirical evidence that the sign of interaction information meas-

ured between features is a good proxy for classification accuracy of augmen-

ted Bayesian Networks and averaged Bayesian Networks, and that therefore

it can be used to choose the structure of an augmented Bayesian network

(Chapter 6).

• We propose a novel ensemble technique, irsADE, which exploits interaction

information properties to generate accurate and structurally diverse aver-

aged Bayesian networks. We present an empirical comparison of irsADE

with another ensemble method which measures the accuracy of base classi-

fiers, rather than interaction information. We show that irsADE does not

negatively affect the ensemble accuracy but on the contrary is at least an

order of magnitude faster than the accuracy based method (Chapter 6).

1.4 Thesis Outline

In Chapter 2 we introduce the research context for this thesis investigation, that

is, ensemble learning for classification. We illustrate the importance and the

difficulty of defining and measuring diversity, and we describe the Tumer & Ghosh

framework, the first work to show a relationship between the ensemble accuracy

and the correlation between classifiers [85]. We describe our novel contribution to

the problem of diversity by showing how the Tumer & Ghosh framework can be

reformulated as a regression problem, and how the NC learning framework [15]

can be extended to manage diversity in a classification context [101]. We conclude

this chapter by noticing how these existing frameworks explain the ensemble

performance in terms of error loss functions, and by making the observation that

the negative log-likelihood loss function is another possible candidate to improve

our understanding of ensemble diversity.
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In Chapter 3 we introduce probabilistic models, that is, learning models that

directly minimise the negative log-likelihood loss function rather than error loss

functions. As such, Bayesian networks are graphical models that represent stat-

istical dependencies between random variables of a probability distribution [68],

and are an object of investigation throughout this thesis. We introduce mutual

information as a natural way to quantify statistical dependencies between random

variables [75], and we point out that the main limitation of mutual information

is that it can only measure dependencies between pairs of random variables. On

the contrary, interaction information [64] can be used to understand interactions

between any number of random variables. This makes interaction information a

suitable candidate for understanding relationships between base classifiers.

In Chapter 4 we embark on an empirical study of diversity for ensembles of

Näıve Bayes classifiers [100]. Our results show that our Bagging implementation

can only generate parametric diversity between base classifiers, and that this

level of diversity is not sufficient to generate stable diverse classifiers. On the

contrary, Random Subspaces can generate models with the same structure on

different subsets of the feature space, and this level of feature diversity is able to

generate diverse but not sufficiently accurate classifiers. This analysis suggests

that structural diversity could lead to the design of accurate and diverse ensembles

of Bayesian Networks.

In Chapter 5 we show empirically that interaction information can be used to

understand the trade off between accuracy and diversity of an ensemble. In par-

ticular, we find that diversity happens at different levels of interactions between

base classifiers. Diversity is only approximately a pairwise measure, since higher

order interactions also occur. An indirect consequence of this is that Bayesian

Networks, which only model pairwise interactions, can only approximately model

the existing interactions between base classifiers.

In Chapter 6 we show that interaction information can be used to build struc-

turally diverse ensembles. We propose irsADE, an ensemble method that makes

use of certain properties of interaction information to generate fast and accur-

ate averaged Bayesian Networks ensembles. We compare our method with an

analogous accuracy based method that selects base classifiers according to their

classification accuracy. Our results show that the use of the prior knowledge

provided by interaction information does not adversely affect the classification

accuracy but on the contrary it reduces the computational time by at least an
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order of magnitude.

In Chapter 7 we summarise our main contributions towards understanding

base classifier diversity from an interaction information perspective, and we dis-

cuss future developments.

1.5 Publications Resulting from the Thesis

Part of the work presented in this thesis has been published in a number of papers:

[101] Manuela Zanda, Gavin Brown, Giorgio Fumera, and Fabio Roli.

“Ensemble Learning in Linearly Combined Classifiers via Negative Cor-

relation”, Seventh International Workshop on Multiple Classifier Systems.

Prague, Czech Republic, May 2007.

[100] Manuela Zanda and Gavin Brown.

“A Study of Semi-supervised Generative Ensembles”, Eighth International

Workshop on Multiple Classifier Systems. Reykjavik, Iceland, June 2009.



Chapter 2

Traditional Viewpoints on

Ensemble Diversity

In the previous chapter we introduced the general notion of a classifier, and we

pointed out how its performance on a given task depends on its ability to gen-

eralise to unseen examples. The difficulty of assessing the generalisation ability

of classifiers led us to introduce classifier ensembles, an approach that is based

on combining many diverse classifiers rather than selecting the classifier with the

best generalisation ability from a pool of candidate classifiers.

In this chapter we formally define these concepts, we focus on traditional

viewpoints on diversity in classifier ensembles, an we propose a novel perspective

to ensemble diversity. In Section 2.1 we formally define classifiers as algorithms

which learn how to assign class labels to unseen objects by making the least num-

ber of mistakes. In Section 2.2 we discuss the difficulty of selecting the classifier

with the best generalisation ability. As an alternative learning approach, in Sec-

tion 2.3 we introduce classifier ensembles, which can solve the same classification

task by combining the decisions of different and accurate base classifiers. One of

the key concepts here is that base classifiers should be diverse, i.e. they should

produce different outputs for the same input. In Section 2.4 we discuss the concept

of diversity from a traditional viewpoint. Despite the empirical support from the

literature, there is still little understanding of how to use or even quantify this

diversity. Following this discussion in Section 2.5 we propose a novel perspective

to ensemble diversity, in which we show that diversity can be managed. As we

will see, the challenge of measuring diversity to build more accurate ensembles is

linked to the form of the loss function, and it is far from being solved.
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2.1 Classifiers and Loss Functions

Classification is the area of machine learning concerned with the problem of as-

signing class labels to unseen objects. An object is usually known as a pattern,

and it is represented by a feature vector x ∈ Rp and by its class label y ∈ Y .

In general terms a classifier f can be thought of as a mapping from the feature

space X to the space of possible class labels Ω = {ω1, . . . , ωc}:

f : Rp −→ Ω , (2.1)

such that given an unseen pattern x, the classifier returns an estimate for its class

label ŷ = f(x).

This thesis takes a statistical approach to classification by assuming that

data patterns are independent and identically-distributed (i.i.d.) from the joint

probability distribution p(X, Y ) of the feature random variable X and of the

class label random variable Y . While X can be either continuous or discrete, the

class random variable Y is always discrete, and can take values from the finite

set Ω = {ω1, . . . , ωc}. A pattern sample is completely defined by a pair (x, y),

where x ∈ Rp is its feature vector and y is its class label. Each pair represents

an instance i.i.d. from the joint probability distribution p(X, Y ).

A classifier can be seen as a two-step algorithm. In the training phase a

classifier learns estimates of the true class posterior distributions. In the testing

phase, a classifier uses these estimates of the true class posterior probabilities to

predict the class labels of new unseen objects.

2.1.1 Training Phase: Learning From Examples

In the training phase a classifier learns an estimate of the class posterior distribu-

tion p(Y |X) from a finite set of training data D. The way classifiers learn from

data depends strongly on the type of data available for training. In fact, we can

distinguish between three different learning scenarios:

Supervised Scenario The training data is a finite set of |DL| labelled pattern

samples D = {X ,Y} = {(xi, yi)} for i = 1, . . . , |DL|, which are assumed to

be i.i.d. according to the joint probability distribution p(X, Y ).

Semi-supervised Scenario The training data is made of a finite set of |DL|
labelled patternsDL = {X L,YL} = {(xi, yi)} for i = 1, . . . , |DL| and a finite
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set of |DU | unlabelled data patterns DU = X U = {xj} for j = 1, . . . , |DU |.
It is quite often the case that the number of the unlabelled patterns is much

bigger than the number of labelled patterns: |DU | � |DL|. In the semi-

supervised case labelled patterns can be seen as i.i.d. samples from the joint

probability distribution p(X, Y ), whereas unlabelled patterns can be seen

as i.i.d. samples from the input probability distribution p(X).

Unsupervised Scenario The training data is a finite set of |DU | unlabelled

patterns x ∈ X, DU = X U = {xi} for i = 1, . . . , |DU |. Each sample is

assumed to be i.i.d. from the probability distribution p(X).

The partial or total availability of training labels affects the learning process

to such an extent that learning algorithms have been specifically designed to

deal with each of these case scenarios. In fact, it is often the case that missing

labels not only makes the learning algorithm more complex but it also affects its

classification performance [18].

Different classifiers are based on different learning paradigms and implement

different algorithms. Neural networks, decision trees, Näıve Bayes and nearest

neighbours are but a few examples of classifiers, and they are all based on different

learning approaches. Despite this great variety of learning algorithms1, every

single classifier aims at solving the same problem, that is, to classify new objects.

2.1.2 Testing Phase: Classifying New Examples

In the testing phase a classifier can apply Bayesian decision theory to predict the

class label of any unseen pattern x [25]. Bayesian decision theory is a statistical

approach to classification which assign an unseen pattern to the class with highest

posterior probability. For instance, if during its training phase a classifier has

learnt some estimates of the class posterior distributions p(Y = ω1|X), . . . , p(Y =

ωC |X), according to Bayesian decision theory a classifier will choose the class label

ŷ = ωj with highest posterior probability, that is for any j 6= i, i = 1 . . . c:

ŷ = ωj ⇔ P (Y = ωj|X = x) > P (Y = ωi|X = x) . (2.2)

In this way a classifier will minimise the classification error that is inevitably asso-

ciated with the action of making any decision. In fact, even if the estimates of the

1The reader might refer to [25, 6, 43] for an extensive description of the state of the art of
classifiers.
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class posterior probabilities would perfectly match the true posterior probability

distributions, the decision step would still incur an inevitable classification error

known as Bayes error, which is an immediate consequence of taking a probabil-

istic approach in the decision process [25]. This point, which is discussed more in

detail in Subsection 2.4.3, suggests that an important aspect of all classification

problems is to assess the classification performance of different classifiers in order

to choose the classifier that performs best on the task at hand.

2.1.3 Classifier Evaluation

A classifier is usually characterised by its generalisation ability, that is, its ca-

pacity to generalise its decisions to new data [43]. Intuitively, we would like to

build a classifier that is able to classify unseen data correctly, but since we can

only learn an estimate of the true class posterior distributions, any classifier will

make mistakes, or classification errors.

Loss Functions

A loss function is a way to measure the loss a classifier incurs when it classifies a

pattern. More generally, a loss function L(Φ, τ) measures the loss of performance

associated with a specific action, and which is caused by the mismatch between

the true state of nature Φ and its estimate τ [3]. Some of the most used loss

functions in Machine Learning are:

0/1 Loss This function quantifies the loss we incur when we classify a pattern.

Specifically, given a pattern x whose true class label is y, the loss of a

classifier f which predicts its class label as ŷ = f(x) is 1 if the classifier

classifies the pattern incorrectly (i.e., ŷ 6= y), and is 0 otherwise:

L(y, ŷ) = I(y 6= ŷ) . (2.3)

Squared Error Loss This function quantifies the estimation loss we make by

approximating a continuous target d associated with an input x with its

estimate f(x)

L(d, f(x)) = (d− f(x))2 . (2.4)

The error function that is minimised in neural networks is an example of

squared loss function.
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Negative Log-likelihood This function measures the loss we incur when we

learn an estimate p̂(y|x) of the true class posterior distribution p(y|x) from

the training data D = {X ,Y}:

−L = L(p(Y |X), p̂(Y |X)) = − log p̂(Y |X) . (2.5)

Probabilistic models such as Näıve Bayes or Mixture Models can learn their

model parameters by minimising the negative log-likelihood loss function.

These three loss functions provide us with different ways to measure the loss

we incur when we try to estimate the ground truth. Whereas the first two loss

functions are aimed at minimising the estimation error, the latter is aimed at

minimising the loss we incur in estimating the true model distribution. However,

it is worth pointing out that the mean squared error loss function can be derived

from the negative log likelihood under the assumption that the estimation error

is Gaussian distributed [5].

The negative log-likelihood loss function follows the Maximum Likelihood

principle of choosing the model that most likely fits the data. In fact, minimising

the negative log-likelihood of a model is equivalent to maximising the likelihood

of a model given the data at hand. The reason why the negative log-likelihood

can be viewed as a loss function is that minimising the negative log-likelihood

also minimises the Kullback-Leibler (KL) divergence between the true probability

distribution p(y|x) that generated the data and the estimate p̂(y|x) of this true

distribution:

KL(p‖p̂) =

∫∫
X,Y

p(Y |X) log
p(Y |X)

p̂(Y |X)
dXdY . (2.6)

The KL divergence is a non commutative measure of how two probability distri-

butions are close to each other. In fact, the KL divergence between p and p̂ is 0 if

and only if p and p̂ are exactly the same probability distribution, and is non-zero

otherwise. The expected value of the negative log-likelihood in Equation (2.5),

that is

E[−L] =

∫∫
X,Y

p(Y |X) log p̂(Y |X)dXdY , (2.7)
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can be related to the KL divergence between the true probability distribution

and its estimate by rewriting Equation (2.6) as:

KL(p‖p̂) =

∫∫
X,Y

p(Y |X) log p(Y |X)dXdY −
∫∫

X,Y

p(Y |X)p̂(Y |X)dXdY ,

(2.8)

and by noticing that the second term of Equation (2.8) corresponds to the ex-

pected value of the negative log-likelihood as in Equation (2.7). Since the first

term in Equation (2.8) is fixed and depends on the true class posterior distribu-

tion, it is easy to conclude that by minimising the expected value of the negative

log-likelihood, we are also minimising the KL divergence between the true class

posterior distribution and the estimate of the class posterior distribution.

Training and Test Error

The training error of a classifier is defined as the average loss of a classifier over

a set of training patterns D = {(xi, yi) for i = 1, . . . , N}:

err =
1

N

N∑
i=1

L(yi, ŷi) . (2.9)

The error in Equation (2.9) cannot be used as a measure of generalisation perform-

ance, as the training error decreases as we increase the complexity of a classifier.

In such cases where the complexity depends on the size of the training set, as

we increase the number of training samples the training error of a classifier will

asymptotically converge to zero. Conversely, the same classifier will lose its gen-

eralisation ability to classify unseen patterns, and the error on unseen data will

increase. It is therefore of primal importance to evaluate the performance of a

classifier on an independent test set [43].

The test error is the generalisation error of a classifier that has been trained

on a training set D, and that is it defined as the expected value of the classification

error measured over a test set which is independent from the training set:

ErrD = E[L(Φ, τ)|D] . (2.10)

The quantity defined in Equation (2.10) is hard to estimate, as it requires the
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calculation of a conditional expectation [43]. In practice we measure the classi-

fication error as the expected test error over every possible random variable:

Err = E[L(Φ, τ)] = E[ErrD] . (2.11)

This quantity, which from now onwards we will simply refer to as test error

or generalisation error, is actually the expectation of the test error over every

possible random variable involved, and therefore it averages over every source of

randomness in both the training data and the classifier, and it is calculated as

the 0/1 loss function over the test set, as done in Equation (2.9) for the training

data.

2.2 Model Selection

The goal of classification is to make use of the prior knowledge of a problem

to learn the best estimate of the true class posterior distribution p(Y |X). The

process of choosing the most appropriate classifier model from a set of possible

candidates given this prior knowledge of the problem is known as model selection.

However, in order to provide an estimate of the true class posterior distribu-

tion, every classification algorithm has to make assumptions about this distribu-

tion, with the result that the classifier performance will strongly depend on the

correctness of such assumptions. Whenever these assumptions are wrong, a model

mismatch is said to occur, as the model estimated from the training data does

not match the true model that generated the data.

At an abstract level any learning algorithm can be thought of as a search

in the space H of representable hypotheses, as shown in Figure 2.1. In this

representation a point or hypothesis h ∈ H corresponds to a specific instance of

the model that can be generated by varying the algorithm parameters. The aim

of classification is to define H such that the true model g belongs to this space

and the learning algorithm is able to find the optimal approximation h∗ to g.

Therefore, a model mismatch can happen for two main reasons:

• The true model g does not belong to the space of learnable hypotheses H,

that is, there is a structural mismatch between the true model g and any

model h ∈ H that can be achieved via the learning algorithm.

• The true model g belongs to the space of learnable hypotheses H but the
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Figure 2.1: An ensemble of different models can explore a larger space of possible
hypotheses by approximating the true hypothesis with a combination of wrong
ones [21].

learning algorithm is not able to find the optimal estimate h∗ ∈ H of the

true model g.

Model selection is concerned with the process of estimating the performance of

different classifiers in order to choose the model which is closest to the true model,

and has therefore the best generalisation ability. If enough data is available, a

validation set separate from the training set can be used to assess each model

performance and choose the most accurate one. However, this is hardly ever

the case, and many theoretical and empirical criteria have been formulated to

quantify and adjust the match between the estimated model and the true model

[43]. These methods use the prior knowledge of the problem (such as training

data, prior information, prior distributions or cost functions) to select the optimal

model [25].

2.3 Ensemble Learning

Ensemble learning tries to overcome the model mismatch limitations associated

with the single model selection approach by replacing the single classifier with a

combination of accurate and different models. The idea behind this framework

is borrowed from early studies of political science [98], and can be summarised

as follows: under certain assumptions a committee of expert classifiers can make

better classification decisions than a single classifier. The following section motiv-

ates ensemble learning from a model selection viewpoint and provides an overview

of the main concepts.
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2.3.1 Motivation

Following the analogy proposed in Subsection 2.2 of thinking of a learning al-

gorithm as a search in the space of possible hypotheses H, ensemble learning can

be thought of as a complex learning algorithm that can reach several points in

the space at once, and that combines the models associated with these points to

find a better estimate of the true function g.

Ensemble learning can be seen as an alternative approach to the problem of

model selection. In a seminal paper [21], Dietterich identifies three main pitfalls

of single model selection, and three different ways an ensemble learning approach

could avoid them:

Statistical Problem The size of the training data is not large enough to select

the optimal model on a validation set. Therefore, the learning algorithm

might identify more than one point in the search space H showing optimal

identical accuracies on the validation data. According to the no free lunch

theorem [92, 91], without any other a priori knowledge of the problem there

is no reason to choose one over another.

In an ensemble approach models showing identical accuracy can be combined

together. Therefore, the risk of choosing the wrong classifier can be reduced.

Computational Problem Under the assumption that the size of the training

data is large enough for the learning algorithm to converge to one single

point, the landscape of the space of possible hypotheses H might be such

that the algorithm might converge to a local optimum rather than explor-

ing the full space of possible hypotheses and finding the global optimum

solution.

In an ensemble approach it would be possible to start the learning algorithm from

different points in the search space. Moreover, a combination of these models

might be able to escape from local optima.

Representational Problem Due to the limited amount of training samples,

the true model might not belong to the space of searchable hypotheses. In

fact, although the learning algorithm might be able to learn the true model,

the finite amount of training data might reduce the actual search space and

hence exclude the true model from the same search space.
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In an ensemble approach it might be the case that a weighted combination of

different models h1, . . . , hM in the space of possible hypotheses H could lead to

a better approximation of the true model g, even if this model does not belong

to H. This situation is illustrated in Figure 2.1.

2.3.2 Main Concepts

Ensemble learning is a learning approach where multiple classifiers are involved

in solving a classification problem. This approach is very general and can be

achieved in many different ways. For instance, a problem can be tackled in a

cooperative or in a modular way such that base classifiers can either solve the full

problem or disjoint parts of the same problem. Base classifiers can be arranged

into parallel, serial or hybrid topologies. The combination rule can either be a

fusion rule, where all the base classifiers contribute to the final ensemble decision,

or a selection rule, where only a subset of the base classifier contributes to the

final ensemble decision.

In this thesis we focus on parallel architectures, where base classifiers work

in parallel on the same task, and on fusion combination rules, where all the base

classifier outputs are combined in a cooperative way to solve the same problem.

This ensemble scenario is depicted in Figure 2.2. As shown in this figure, the

ensemble design can be split into (a) the design of the base classifiers and (b) the

design of the combination rule. The reader might refer to [57] for a more detailed

discussion of alternative ensemble architectures.

Base Classifiers

If base classifiers were all identical, there would be no need to build an ensemble

out of them, as the ensemble decision would be exactly the same as each single

base classifier. The key question of base classifier design is: How do we generate

different base classifiers from a given training set?

With reference to this problem of generating different classifiers, a relevant

type of classifiers is that of unstable classifiers. Breiman informally defines a

classifier to be “unstable” when small perturbations in the training set or in the

construction of the classifier can cause large changes in the classifier predictions

[8, 9, 10]. More formally, unstable classifiers are classifiers characterised by high

variance. Neural networks and decision trees are good examples of unstable
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fMf 1 f 2

x

F(·)

ŷens

Figure 2.2: A parallel ensemble architecture. Given an unseen pattern x to
the base classifiers f 1, . . . , fM , their outputs are combined according to some
functional F to get the final ensemble decision ŷens.

classifiers, whereas support vector machines and k-nearest neighbours are clear

examples of stable classifiers. To give a simple example of unstable classifier, two

identical neural networks trained on two slightly different training sets might give

different predictions on the same unseen pattern. Similarly, two neural networks

that only differ by the way their weights have been initialised and that have been

trained on the same training set might give different predictions on the same

unseen pattern.

There are two main ways of creating different classifiers: we can either train

the same classifier algorithm on different training sets, or we can train different

classifier algorithms on the same training set.

The first option, which is usually referred as Perturb & Combine approach [10],

is the foundation of the most successful ensemble techniques, such as Bagging,

Adaboost and Random Subspace Methods [9, 31, 45]. These techniques have been

efficiently applied to unstable classifiers to build ensembles of weak (i.e. better

than random guessing) classifiers [10]. One possible sampling strategy is to sample

(with or without replacement) over the training patterns, so that base classifiers

are trained on a slightly different replica of the whole training set — as in Bagging

(uniform sampling), and Adaboost (non-uniform sampling). Another possible
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sampling strategy to sample from joint or disjoint subsets of the feature space, so

that base classifiers is trained on overlapping or disjoint subsets of the training

set — as in Random Subspace Methods.

The second option can be achieved by changing the parameters of each base

classifier or even combining different types of classifiers. For instance, we could

combine neural networks with different number of hidden nodes or different star-

ing weights, or more radically combine neural networks with decision trees. This

approach, which would enforce model diversity, would probably reduce the correl-

ation between the classifier bias (which, as we will see, is a condition that should

be avoided) [86], but at the same time would make unclear what kind of gain or

decision boundaries might arise from them.

Combination rules

Many combination rules have been studied for the purpose of ensemble learning

[80, 81, 51, 26]. The choice of the combination rule is strongly affected by the level

of information provided by the outputs of base classifiers [93]. In this thesis we are

concerned with classifiers that provide two different levels of output information,

that is (a) base classifiers that directly estimate the class label of an unseen

pattern — such as support vector machines, and (b) base classifiers that provide

estimates for the class posterior probabilities of an unseen pattern — such as

linear discriminant classifiers. In the first case a classifier ensemble provides a set

of possible label candidates (one for each classifier member) to the combination

rule. Simple majority vote and weighted majority vote are but two examples of

rules that combine crisp label outputs. In the second case the output of base

classifiers not only provide a classifier decision (that according to Bayes’ rule is

the class with the highest probability) but it also provides a level of confidence

of the classifier in making a decision. Simple mean, weighted mean and product

rule are examples of combination rules that can take real valued outputs.

We now extend the notation introduced in Section 2.1 to classifier ensembles.

We recall the supervised classification scenario, where a pattern is denoted by a

pair (x, y), in which x is a feature vector x ∈ Rp and y can assume one out of c

class labels ω1, . . . , ωc. We denote a set of M classifiers with f 1, . . . , fM . Given

an unseen pattern x, a base classifier fm returns a c−dimensional output vector

[fm1 (x), . . . , fmc (x)], where the single value fmi (x) represents the support of the

m−th classifier for the i−th class, for i = 1, . . . , c.



34 Traditional Viewpoints on Ensemble Diversity

Combining Votes. If base classifiers directly estimate class labels, the output

vector [fm1 (x), . . . , fmc (x))] of the m−th classifier is a vector of zeros and ones,

where

fmi (x) =

1 if fm predicts class ωi,

0 otherwise.
(2.12)

The majority vote rule decides for the class ωk from Ω = {ω1, . . . , ωc} that gen-

erates the highest consensus among all base classifiers:

f ens
k (x) = arg max

k

M∑
i=1

f ik(x). (2.13)

In this case each base classifier decision equally contributes to the final ensemble

decision. On the contrary, a weighted majority rule can be used to increase the

decision power of classifiers that make more accurate predictions. This can be

done by associating each base classifier f i with a weight wi. The higher the

weight, the stronger the classifier prediction will affect the ensemble decision.

The weighted majority voting rule decides for the class label ωk with highest

weighted support f ens
k (x), defined as

f ens
k (x) = arg max

k

M∑
i=1

wif
i
k(x) . (2.14)

Although in theory weighted majority can be more accurate than simple majority,

it has the downside that its performance relies on the actual weights. That is, a

bad choice of weights might give lower accuracy than simple majority [57].

Combining real valued outputs. Continuous base classifier outputs can be

thought of as the evidence a classifier assigns to classes after having observed a

data point [71], or simply as estimates of the class posterior probabilities [46].

The simple mean rule calculates the overall support f ens
i (x) of the ensemble

for each class ωi as the mean average of each j−th base classifier support for that

class:

f ens
i (x) =

1

M

M∑
j=1

f ji (x) . (2.15)

The product rule calculates the overall support f ens
i (x) of the ensemble for each
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class ωi as the product of the support of each j−th base classifier:

f ens
i (x) =

M∏
j=1

f ji (x) . (2.16)

According to Bayesian decision theory, the ensemble decides for the class ŷ with

highest support:

ŷ =
c

max
i=1

f ens
i (x) . (2.17)

Classifiers have been combined mainly by averaging or by majority vote. Al-

though experimental results [41, 79] have shown that linear methods outperform

other existing rules, these two combination rules lack any intuitive support. Nev-

ertheless, a general framework has shown that under the assumption of base

classifiers trained on statistically independent feature subsets, the product rule

can be derived from Bayes’ theorem [51]. Moreover, the simple average rule as

well as other linear combination rules can be derived from the product rule by

imposing more restrictive assumptions on the closed form of the class posterior

distributions. Experimental results have shown that if base classifiers are trained

on independent feature spaces, the product rule will be more accurate than the

simple mean [80]. However, if base classifiers are not trained on independent

feature spaces, the simple mean, which is the combination rule derived under

the most unrealistic assumption, outperforms the product rule since the simple

mean is less sensitive to estimation errors than the product rule [81]. The same

results show that the choice of the combination rule has to take into account the

accuracy of the single base classifiers, as well as the nature of the classification

problem such as number of classes or whether it is possible or not to split the

subspace into statistically independent feature subsets.

2.4 Diversity in Ensemble Learning

If experimental results have often shown that ensemble learning can outperform

the single classifier approach [37, 26, 39], the understanding of the conditions

under which an ensemble outperforms a single classifier is still an open question.

In line of principle base classifiers should be specialised on different subsets of

the classification problem, so that by focusing on different parts of the problem,

they can cooperate to achieve better generalisation performance than each single
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base classifier. The notion of classifier diversity seems therefore to play a key role

in ensemble learning. Intuitively diverse classifiers should perform differently if

tested on the same data patterns. However, how to measure, define, and possibly

control diversity are still matters of ongoing research [57].

Despite the lack of a formal definition of diversity, the research community

has put a lot of effort on heuristically incorporating diversity into the ensemble

learning process. Diversity measures have been more explicitly used to monitor

the base classifiers [70] and to prune the base components of an ensemble [63,

20, 38, 72]. Resampling techniques have been used to inject randomness into

the design of base classifiers. As such, one way to create diverse classifiers is to

provide the same inputs to different base classifiers. Random Subspaces is a clear

example of this approach [45]. Another alternative would be to provide different

inputs to the same base classifiers. This is the approach taken in Bagging and

Adaboost [9, 31].

2.4.1 Understanding Diversity

In the ensemble community it is well known that base classifiers should be accurate

and diverse. Diversity alone has been shown not to be beneficial to the ensemble

performance, but there is often a trade-off between the ensemble accuracy and

diversity, so that base classifiers should be at the same time accurate and diverse.

In fact, diversity cannot be increased without negatively affecting the ensemble

accuracy [40, 63]. Moreover, studies have shown that there exists “good” and

“bad” diversity [42, 14].

Quantifying diversity among the base components of an ensemble is a matter

of great importance, because it would (a) improve the understanding of how single

components interact to reduce the ensemble error, and (b) point out practical

guidelines for the design of ensembles with improved performance. With reference

to the latter point, the knowledge about the base classifier diversity could be used

in the design of the individual classifiers as well as in the choice of the combination

rule.

There have been many attempts to define a relationship between the ensemble

accuracy and the level of diversity among base components, but none has com-

pletely succeeded so far [58, 76]. Nevertheless, on a large scale (i.e. when diversity

is forced to span the whole range of possible values), it has been shown that when

base classifiers show similar levels of accuracy, a non linear relationship between
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the ensemble accuracy and the base classifier diversity [56] exists. However, it is

often the case that base classifiers generated with standard ensemble techniques

show small diversity variation. Motivated by this evidence, we now discuss some

theoretical results.

2.4.2 “Diversity of Diversity”

Most of the work done towards the understanding of the concept of diversity and

towards an analysis of the numerous measures proposed in the literature can be

found in Kuncheva’s papers. To date, there is no strict definition of diversity, nor

is there common agreement on how to measure it. As Kuncheva clearly stated in

one of her papers, we are still in a “diversity of diversity” stage [56].

In the attempt to find a measure of diversity which could link diversity to

the ensemble accuracy, Kuncheva has analysed ten diversity measures for binary

classifier outputs2, of which four are pairwise measures and six are non-pairwise

measures [58]. Unlike non-pairwise measures, pairwise diversity measures involve

the outputs of only two classifiers at a time. The overall diversity is the average

of all possible pairwise measures. An example of pairwise measure is Yule’s Q

statistics [99]. Results have shown that the Q statistics is sensitive to small

disagreement between classifiers but not to the accuracy of base classifiers [58],

properties which are well suited for the detection of diversity in base classifiers.

Furthermore, it has been shown that there exists a relationship between the

pairwise Q statistics and the upper and lower limits of the accuracy achievable

by majority voting [59]. It has to be pointed out that none of the diversity

measures in [58] relate to loss functions.

We now focus on the Tumer & Ghosh model [85, 86], a framework which

focuses on another pairwise diversity measure, that is the correlation between

base classifiers.

2.4.3 The Tumer & Ghosh Framework

The Tumer & Ghosh framework [85, 86] is the first work to show that correlations

between continuous classifier outputs have a quantifiable effect on the ensemble

training error. This framework studies the effect of combining base classifiers

on the distribution of the decision boundaries between two different classes, and

2That is, when classifiers output whether they are making a correct or incorrect prediction.
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Figure 2.3: The estimates of the true class posterior distributions shift the ideal
decision boundary x∗ by b = xb− x∗. The classification error is partly due to the
irreducible Bayes error (light-grey area) and partly to the added error (dark-grey
area).

shows how a linear combination of base classifiers might reduce the training error

through a reduction of the overall error variance of the ensemble.

The classification error of any base classifier has its lower bound in the so

called Bayes error, an irreducible quantity that depends on whether the true class

posterior distributions overlap. For any pattern falling in these overlapping areas,

Bayes’ rule will always decide for the class with highest posterior probability, so

that a classifier able to learn the true posterior distributions will incur the Bayes

error, which is given by the area underneath these curves [25]. As such, the Bayes

error is a measure of the best performance attainable by a classifier. However,

this quantity is hard to estimate in practice, as it requires knowledge of the true

probability distribution p(X, Y ) which generated the data. Since any classifier

can only learn an estimate of the true class posterior distributions, a classifier

will incur an added error as well as the Bayes error, as shown in Figure 2.3.

Tumer & Ghosh analyse the effects of estimating the class posterior distri-

butions on the added error around a hypothetical decision boundary between

two classes3. In particular they study the classification error of a single classifier

and the classification error of a linearly combined ensemble of classifiers for the

case where the estimates of the class posterior distributions produce a shift of

3The Tumer & Ghosh framework also applies to multi-class problems, as according to Bayes’
rule, decision boundaries are usually dominated by the two classes with highest class posterior
probabilities [85]
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the decision boundary between the true class posterior distributions. This situ-

ation is shown in Figure 2.3, where we represent a hypothetical decision boundary

between the two classes ωi and ωj. From this picture it is easy to notice that

when the classifier chooses the class scoring the highest posterior probability es-

timate, non-optimal decisions are taken for patterns x where the decision made

according to the posterior estimates disagrees with the decision made according

to the true posterior distribution, i.e. arg maxk fk(x) 6= arg maxk p(ωk|x), and

that this disagreement introduces a further added error (dark-grey area) to the

optimal Bayes error (light-grey area). The added error is just a portion of the

overall classification error evaluated around the decision boundary x∗.

This framework4 is based on the assumption that for a given pattern x and

for any given class ωk, where k = 1, . . . , c, a classifier provides an estimate fk(x)

of the true posterior distribution p(ωk|x) in the form:

fk(x) = p(ωk|x) + εk(x) . (2.18)

The difference between the value of the true posterior distribution and its estimate

at the point x is quantified by the error term εk(x). Tumer & Ghosh show that

under the further assumptions that (a) the classifier estimates of the true posterior

distributions produce a shift xb of the ideal decision boundary x∗ and (b) the true

posterior distributions are monotonic around the ideal decision boundary x∗, the

added error E for a single classifier is proportional to the square of the boundary

shift b = xb − x∗

E =
p(x∗)t

2
b2 (2.19)

and that the shift itself can be expressed as a function of the estimation errors

εi(xb) and εj(xb):

b =
εi (xb)− εj (xb)

t
, (2.20)

where t denotes the difference between the first order derivatives of the class

posteriors at the optimal boundary x∗: t = p′(ωj|x∗)−p′(ωi|x∗). They prove that

the expected added error Eadd = E{E} for a single classifier can be decomposed

4For clarity of exposition we discuss this framework for a one-dimensional feature space. It
is worth pointing out that this framework extends to the multi-dimensional case [84].
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in terms of the bias βb and the variance σ2
b of this shift b:

Eadd =
p(x∗)t

2

(
β2
b + σ2

b

)
, (2.21)

where bias and variance are defined as βb =
βi−βj
t

and σ2
b =

σ2
i +σ2

j

t2
.

This analysis is further extended to a linear combination of M classifiers

f 1, . . . , fM , such that the ensemble estimate for a given class ωk is given by

f̄k(x) =
1

M

M∑
m=1

fmk (x) = p(ωk|x) + ε̄k(x) , (2.22)

where the average error ε̄k(x) denotes the linear combination of the single base

classifier errors εmk (x) and is defined as ε̄k(x) = 1
M

∑M
i=1 ε

m
k (x). In a similar way

to the expression of the added error for a single classifier in Equation (2.19), the

added error of a linearly combined ensemble can be expressed in terms of the

averaged shift b̄ =
ε̄i(xb)−ε̄j(xb)

t
as

E =
p(x∗)t

2
b̄2 (2.23)

Tumer & Ghosh show that the expected added error Ēadd = E{E} for an ensemble

of linearly combined classifiers can be written as the sum of two separate terms,

one accounting for the bias βb̄, and one accounting for the variance σ2
b̄ of the

shift b̄ of the linearly combined ensemble:

Eadd =
p(x∗)t

2

(
β2
b̄ + σ2

b̄

)
, (2.24)

and that these two terms can be expressed in terms of the single base classifiers

bias and variance. In particular, the ensemble error bias βb̄ is the average of the

single base classifier bias terms βmb :

βb̄ =
1

M

M∑
i=1

βbm . (2.25)

Under the assumption that the estimation errors of different classifiers on different

classes are uncorrelated, i.e. for εmi and εnj , and i 6= j, the ensemble error variance

σ2
b̄

decomposes into a term involving the variance of single base classifiers σ2
bm =
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(σm
i )2+(σm

j )2

t2
and into another term which involves pairwise correlations ρmni and

ρmnj between base classifiers5 for the two classes ωi and ωj:

σ2
b̄ =

1

M2

M∑
i=1

σ2
bm +

1

t2
1

M2

M∑
m=1

∑
n 6=m

(ρmni σmi σ
n
i + ρmnj σmj σ

n
j ) . (2.26)

Overall, Equation (2.24) shows that the expected added error of a linearly

combined ensemble depends on the bias and correlation between base classifi-

ers. More specifically, Equation (2.25) shows that the bias component of the

ensemble may not be reduced with respect to the base classifier bias components,

nonetheless, it is guaranteed not to be larger than the largest base classifier bias.

If base classifiers are unbiased (i.e., βmb = 0 for any m = 1, . . . ,M) but correl-

ated, and each classifier has identical variance (σmk )2 = σ2, Equation (2.26) can

be rewritten as

σ2
b̄ =

1 + (M − 1)δij
M

σ2
b (2.27)

where δij = 1
2

1
M(M−1)

∑M
m=1

∑
n6=m(ρmni + ρmnj ). The quantity

1+(M−1)δij
M

in Equa-

tion (2.27) is less or equal than 1. Therefore, the variance of the ensemble is

reduced with respect to the variance of the single classifiers by a factor which

depends on the correlations between base classifiers. This result, which has been

extended to linearly and weighted averaged ensembles of unbiased and negatively

correlated classifiers with non identical variances in [34], as well as different de-

cision boundaries in [4], is very important, as it shows that linearly combined

ensembles of unbiased and negatively correlated base classifiers can reduce the

variance of the estimation error.

If base classifiers are unbiased and uncorrelated (i.e. ρmnk = 0 for any class

k = 1, . . . , c and for any pair m,n of classifiers, with m,n = 1, . . . ,M and m 6= n),

and they have the same variance (σmk )2 = σ2 the expected added error for the

linearly combined ensemble reduces to a single variance term

Eadd = K
1

M
σ2
b . (2.28)

K is a multiplicative constant K = p(x∗)t
2

which does not dependent on the

5We adopt Pearson’s correlation as our definition for correlation. The correlation ρ between
two random variables X and Y is then defined as the ratio of the covariance between the
two random variables over the product of the standard deviation of the random variables:

ρX,Y = cov(X,Y )
σXσY

.
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base classifier estimation errors. By inspecting Equation (2.28) it is easy to

conclude that the expected added error is inversely proportional to the number

of base classifiers in the ensemble, and that a linear combination of unbiased and

uncorrelated classifiers can outperform a single classifier because it reduces the

variance of the estimation error by a factor which depends on the size of the

ensemble.

If base classifiers are biased but uncorrelated, the bias component in Equa-

tion (2.24) has a negative effect on the expected ensemble error, as a result, the

overall ensemble error reduction is less than 1
M

.

The Tumer & Ghosh framework provides some guidelines on how base classi-

fiers in an ensemble should be for the ensemble to outperform a single classifier

approach. Ideally base classifiers should be unbiased and uncorrelated, as in this

case the ensemble would benefit from the maximum estimation error reduction, as

in Equation (2.28). However, this is hardly ever the case, as in practice it is very

difficult to generate uncorrelated classifiers, the main reason being that classifiers

are usually trained on different replicas of the same training set. Therefore, the

Tumer & Ghosh analysis suggests that in practice base classifiers should have low

bias and large variance, as a linear combination rule could reduce the ensemble

estimation error by reducing the variance of base classifiers.

2.4.4 Diversity in Regression Problems

A parallel field to classifier ensembles is that of regression ensembles ; that is, en-

sembles of estimators that solve a regression problem. In regression quantifying

diversity among component individuals of an ensemble is a well-defined problem.

It is interesting to point out that the loss function of interest in regression is not

the 0/1 loss function as in the Tumer & Ghosh model, but instead the mean

squared error (MSE). A central result here is the bias-variance-covariance de-

composition of the mean squared error. This decomposition of the MSE shows

that the performance of the ensemble is critically dependent on the three-way

balance between bias, variance, and covariance; the latter accounting for correla-

tions between estimators. This trade-off is the analog of the oft-cited “diversity”

in the classifier ensemble literature.

Geman et al. [36] demonstrate that for regression problems the MSE can be
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broken into separate components, namely the bias and the variance of the error:

E
{

(f(x)− d)2} = (E {f(x)} − d)2 + E
{

(f(x)− E {f(x)})2} (2.29)

where f denotes the estimator, d denotes the target, and the expected value is

calculated with respect to all possible training sets.

Ueda and Nakano [87] extend this concept to a linearly combined regression

ensemble (i.e. where the estimator is f̄(x) = 1
M

∑M
m=1 f(x)m), providing the

bias-variance-covariance decomposition of the MSE.

Krogh and Vedelsby developed the Ambiguity decomposition, another import-

ant decomposition for the MSE [55]. They prove that at a single data point x

the MSE can be broken into an accuracy and an “ambiguity” term:

(
f̄(x)− d

)2
=

1

M

M∑
m=1

(fm(x)− d)2 − 1

M

M∑
m=1

(
fm(x)− f̄(x)

)2
. (2.30)

The first term is an index of the accuracy of the individuals, while the second

one characterises diversity among individuals, being a measure of how individual

output estimates differ from the ensemble output estimate for this single data

point.

Brown et al. [15] show that the expected value of the Ambiguity decom-

position corresponds to the bias-variance-covariance decomposition, and that in

regression there exists a common term which quantifies the accuracy-diversity

trade-off. Diversity cannot be maximised without affecting the accuracy of the

individual components, and the oft-cited “diversity dilemma” is in fact a three-

way balance between bias, variance, and covariance. Moreover, Brown [11] shows

that the bias-variance-covariance (diversity) trade-off can be explicitly managed

by Negative Correlation (NC) [62], a learning algorithm that introduces a penalty

term in the error function of a classifier. In his formulation the NC algorithm uses

the Ambiguity decomposition as it tries to minimise a “diversity-encouraging” er-

ror function [15]:

ediv =
1

M

M∑
m=1

1

2
(fm(x)− d)2 − γ 1

M

M∑
m=1

1

2

(
fm(x)− f̄(x)

)2
. (2.31)

It is easy to notice that, except for linear scaling factors, the last term in Equa-

tion (2.31) is equal to the ambiguity term in Equation (2.30).
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2.5 A Novel Regression Perspective on Classi-

fier diversity

The equivalence between the Ambiguity decomposition and the bias-variance-

covariance decomposition [11] and its immediate application to regression en-

sembles via the NC learning algorithm [15] represent a well-grounded theoretical

basis for the understanding of regression ensembles in terms of the trade off

between accuracy and diversity.

In this section we propose a novel interpretation of the Tumer & Ghosh model

by reformulating it as a regression problem. More precisely, we show that this

framework can be interpreted in light of the Negative correlation framework, and

that this result can be used to manage diversity for classification problems.

In the original Tumer & Ghosh model the random variable of interest is the

boundary shift b = x∗−xb. In fact, as shown in Figure 2.3, which for convenience

has been reproduced here in Figure 2.4, as b decreases towards 0, the added error

(dark grey area) decreases. When no boundary shift occurs there is no added

error and the estimates of the class posterior distributions equal the true class

posterior distributions.

Another key point of the Tumer & Ghosh model, is that although it analyses

the bias and variance of the boundary shift b, this model differs from other bias-

variance decompositions for classification problems, such as in [52], as it treats

the error as a regression random variable [86].

The connection between the bias-variance-covariance and the Tumer & Ghosh

model is not immediately apparent; the main question is: what are the corres-

ponding “estimator” and “target” variables in this framework? In order to an-

swer this question, we can first observe that the shaded area in Figure 2.4 has

approximately the shape of a triangle. The area S of a triangle is given by

S = 1
2

(base×height). Secondly, we observe that by substituting Equation (2.20)

into Equation (2.19), Equation (2.19) can be rewritten as:

E = p (x∗)
1

2
[εi(x)− εj(x)]

εi(x)− εj(x)

t
. (2.32)

If we do not take into account the multiplicative constant p(x∗), it is easy to

see that the added error is the area of a pseudo-triangle of base (εi(x) − εj(x))

and height b =
εi(x)−εj(x)

t
. The classifier estimate for the k-th class posterior



2.5 A Novel Regression Perspective on Classifier diversity 45

x * x b

P ( ω | x )i
P ( ω j | x )

ε i jε−

−xx b*

fj(x)
fi(x)

x

height

ba
se

Figure 2.4: The added error has approximately the shape of a triangle.

probability can be written as fk(x) = p(ωk|x) + εk(x), from which we derive the

estimation error for the k-th class posterior as:

εk(x) = fk(x)− p(ωk|x) . (2.33)

Given Equation (2.33), we can express the base εi(x) − εj(x) of the triangle as

the difference between two different quantities, the first one being the difference

between estimates and the second one being the difference between the true class

posterior probabilities:

εi(x)− εj(x) = [fi(x)− fj(x)]− [p(ωi|x)− p(ωj|x)] . (2.34)

By looking at the picture in Figure 2.4 the base of the triangle is not only pro-

portional to b (it is t times b) but is also a more meaningful random variable. In

fact the error, which is proportional to b2, is equal to 0 whenever b is equal to 0.

At the optimal boundary, that is where there is no shift and b = 0, the base of

the triangle is equal to 0 as well:

[fi(x)− fj(x)]− [p(ωi|x)− p(ωj|x)] = 0 . (2.35)

In other words, the estimation error drops to 0 when the difference between the

two probability estimates equals the difference between the true posterior prob-

abilities.Therefore, The Tumer & Ghosh model can be interpreted as a regression

problem by simply considering the base instead of the height of the pseudo-triangle.
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Table 2.1: Some key aspects of the original Tumer & Ghosh (T&G) model are
compared with our new interpretation in a regression context. All measures are
point-wise but the input variable x has been omitted for simplicity.

T & G Model Novel Interpretation

Random Variable b = 1
t

(fij − dij) fij
Target 0 dij
Bias βb = 1

t
(βi − βj) βij = tβb + dij

Variance σ2
b = 1

t2

(
σ2
i + σ2

j

)
σ2
ij = t2σ2

b

The difference between the class posterior estimates fij(x) = [fi(x) − fj(x)] can

be thought of as the estimator, whereas the difference between the true class

posterior probabilities can be thought of as the target dij = [p(ωi|x)−p(ωj|x)] of

our new regression problem. The aim of this regression problem is to make the

estimator fij as close as possible to the new target dij, for any point x ∈ R. This

change of random variables, which makes it possible to point out a valid estimator

function and a target, improves the understanding of the Tumer & Ghosh model

in the sense that it not only allows the models to be redefined from another per-

spective, but it proposes a new interpretation of the bias variance decomposition,

as shown in Table 2.1.

2.5.1 Optimising Diversity by NC Learning

We now describe how the NC learning framework can be applied to the regression

formulation of the Tumer & Ghosh model via an algorithm that minimises the

added error and increase the overall accuracy of a linearly combined classifier en-

semble [101]. The NC algorithm works iteratively by performing a single weight

update for each neural network in the ensemble, according to Equation (2.31),

proceeding in a pattern-by-pattern updating scheme. The error function in Equa-

tion (2.31) allows us to train a linearly combined ensemble of estimators in par-

allel, rather than training each network independently, by putting6 γ = 0. In

a number of benchmark studies [11, 15] it was found that a γ value less than 1

showed significant improvements in both convergence speed and generalisation

ability. It is easy to notice that, except for linear scaling factors, the last term is

equal to the Ambiguity term from Equation (2.30). Given this, we now show how

this algorithm can be extended to work on linearly combined classifier ensembles

6Equation (2.31) is equal to an independent MSE function for each network when γ = 0.
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by exploiting the theoretical framework described earlier.

Let us assume we are given an ensemble of M classifiers combined by simple

averaging, and that we are given a two class problem, where the two classes are

respectively ωi and ωj. The ensemble class posterior probability estimate f̄i(x)

for class ωi is:

f̄i(x) =
1

M

M∑
m=1

fmi (x) , (2.36)

whereas the difference f̄ij(x) = f̄i(x)− f̄j(x) between the ensemble class posterior

probability estimates for classes ωi and ωj is:

f̄ij(x) =
1

M

M∑
m=1

(
fmi (x)− fmj (x)

)
. (2.37)

Following the Ambiguity decomposition in Equation (2.30) proposed by Krogh

and Vedelsby for the MSE [55], we define the Ambiguity decomposition for the

Tumer & Ghosh model for a given data point x as:

[
f̄ij(x)− dij(x)

]2
=

1

M

M∑
m=1

[
fmij (x)− dij(x)

]2 − 1

M

M∑
m=1

[
fmij (x)− f̄ij(x)

]2
. (2.38)

If we now apply the NC learning framework to Equation (2.38) we get the de-

composition7 Eij(x) =
(
f̄ij(x)− dij(x)

)2
as:

Eij =
(
f̄ij − dij

)2
=

1

M

M∑
m=1

(
fmij − dij

)2 − γ
{ 1

M

M∑
m=1

(
fmij − f̄ij

)2
}
, (2.39)

where γ is a scaling factor that lets us vary the covariance component on Eij.

If we adopt a gradient descent procedure to minimise Equation (2.39), it follows

that given two classes ωi and ωj the partial derivative for the m-th classifier and

the i-th class is

∂Eij

∂fmi
=

2

M

(
fmij − dij

)
− 2

M
γ
(
fmij − f̄ij

)
. (2.40)

In a real multi-class problem it is unknown which pair of classes will contribute

to the added error around any point of the feature space. In this case, we have

to take into account every possible pair of classes i, j such that j 6= i and i, j =

7For clarity of exposition we omit the dependence of the class posterior estimates and the
target from x, and we simply write fmi (x) = fmi and dij(x) = dij for any value of i, j,m.
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1, . . . , c:

ETOT =
c∑
i=1

∑
j>i

[
1

M

M∑
m=1

(
fmij − dij

)2

]
−γ

c∑
i=1

∑
j>i

[
1

M

M∑
m=1

(
fmij − f̄ij

)2

]
. (2.41)

The partial derivative of the overall error with respect to the class ωi and the

estimator function fm is

∂ETOT

∂fmi
=

2

M

c∑
j=1
j 6=i

(
fmij − dij

)
− γ
[ 2

M

c∑
j=1
j 6=i

(
fmij − f̄ij

) ]
. (2.42)

Equation (2.42) simplifies to Equation (2.40) for a two class problem, and

minimises the true added error for the two largest classes involved around a

decision boundary. Equations (2.39) and (2.41) can be used for training a simple

averaged ensemble of neural networks in parallel, like Equation (2.31) does in

regression problems as an alternative to the standard independent training with

the error function 1
2

∑M
m=1 (fm − d)2.

2.5.2 Experimental Results

We apply this new NC learning algorithm on three real classification problems:

Phoneme (two class problem), Wine (three class problem) and Heart Disease (two

class problem). For a more detailed description of these datasets the reader can

refer to [101].

In order to apply NC learning to classification problems, we implemented two

different multilayer perceptron (MLP) algorithms that differ by the error function

they minimise in their back-propagation training phase. The first MLP algorithm

minimises the standard MSE error [5], whereas the second MLP algorithm min-

imises the error in Equations (2.39) or (2.41) as discussed in 2.5.1, depending on

the number of classes of the problem at hand. From an ensemble perspective,

the first algorithm trains a system of M MLPs independently from each other as

in 1
2

∑M
m=1 (fm − d)2, whereas the second algorithm trains all the MLPs simul-

taneously in order to minimise the overall ensemble error as in Equations (2.39)

or (2.41). Both these algorithms are such that every MLP is trained with a learn-

ing rate of η = 0.1. The weights of every MLP are initialised randomly between

−0.5 and 0.5. The activation function of each node is the Sigmoid function. We
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Table 2.2: Mean (and 95% confidence intervals) improvement of ensembles of
MLPs trained with the NC algorithm over ensembles of MLPs trained independ-
ently training. The number of epoch is fixed to 1000 epochs for low complexity
ensembles (H = 3) and to 5000 epochs for high complexity ensembles (H = 10).
Note that the best gains are made with large ensembles of relatively simple net-
works.

Dataset M= 3, H= 3 M= 10, H= 3 M= 3,H= 10 M= 10, H= 10
Phoneme 2.0 (0.7) 3.8 (0.4) −0.6 (1.1) 0.4 (0.3)
Wine 20.5 (2.1) 16.2 (1.4) 1.4 (0.5) 0.9 (0.1)
Heart 1.7 (0.1) 3.4 (0.5) 2.7 (0.4) 3.0 (0.2)

refer to the complexity of a base classifier as the number of hidden nodes H, as

every MLP share the same network configuration. As a means to compare the

effects of NC learning to a standard independently trained ensemble of MLPs,

we decided not to use any regularisation criterion (such as a momentum) or not

to adopt any stopping criterion. Instead, we fixed the number of epochs of each

MLP to a predefined number. These choices are motivated by the aim of the ex-

periment, that is to capture the improvement in classification performance which

is solely due to NC learning.

In order to understand the relationship between the number M of MLPs in

the ensemble and the complexity of each base classifier, we test four different pos-

sible combinations of small/large ensembles made of low/high complexity MLPs,

where we consider 3 and 10 to be respectively a suitable value for small/low and

for large/high. Ten runs of the algorithm have been compared with the perform-

ance of a single classifier and with an identical ensemble8 of individuals trained

independently. Our experimental results show that every ensemble technique

shows better performances than a single MLP. Table 2.2 summarises our results

on different datasets—the largest improvement of NC over independent training

is overall observed for a large ensemble of relatively simple MLPs, whereas the

lowest improvement is overall observed for a small ensemble of complex MLPs.

In particular for Phoneme dataset the largest improvement (3.8%) is measured

for a large ensemble of relatively simple MLPs, whereas the lowest improvement

(−0.6%) is measured for small ensembles of relatively complex MLPs. This result

seem to agree with the Tumer & Ghosh framework, where the best improvement

of a linearly combined ensemble happens for low-bias and high-variance classifiers.

8That is an ensemble of same size and same complexity.
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Figure 2.5: Phoneme test error for an ensemble with relatively simple MLPs (each
has 3 hidden nodes). On the left is an ensemble of size M = 3 (optimum γ∗ = 1).
On the right is a larger ensemble of size M = 10 (optimum γ∗ = 0.8). The larger
ensemble clearly faster convergence.
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Figure 2.6: Phoneme test error for an ensemble with relatively complex MLPs
(each has 10 hidden nodes). On the left is an ensemble of size M = 3 (optimum
γ∗ = 0.3). On the right is a larger ensemble of size M = 10 (optimum γ∗ = 0.8).
The NC technique shows no significant improvement over independent training
with such complex networks.

Figure 2.5 shows the results obtained on the Phoneme dataset for ensembles

of simple MLPs, whereas Figure 2.6 illustrates results obtained for ensembles

of complex MLPs. These figures show the performance on the test set of the

ensembles of base classifiers trained independently as well as the performance of

the NC learning ensemble for the special case γ = 0 and the optimum value9

γ = γ∗. If we compare the results obtained with γ = 0 and the optimum value

of γ = γ∗, it is easy to observe that the ensemble with optimum γ = γ∗ always

improve over the ensemble with γ = 0.

Our experimental results seem to point out that the NC learning algorithm

9That is, the γ which gives the best classification performance of the ensemble.
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applied to the novel interpretation of the Tumer & Ghosh framework can be be-

neficial for the ensemble performance, and behaves similarly to the NC algorithm

on regression problems [11]. Its success supports the original Tumer & Ghosh

idea of decreasing correlations among classifiers as a tool for increasing the en-

semble accuracy, also illustrating that this “diversity” can be engineered by an

appropriate technique, in this case, the Negative Correlation Learning framework.

Furthermore, these observations are consistent with the commonly held idea in

the field that ensemble benefits are best levied from a large ensemble of relatively

simple classifiers.

However, it has to be pointed out that this experimental study is a simple

proof of concept that ensemble diversity can be managed, and that therefore some

limitations are associated with this experimental analysis. This study should be

extended to more datasets, and some form of regularisation should be introduced.

More importantly, this algorithm minimises the mean squared error function and

therefore makes the implicit assumption of Gaussian distributed noise on the

posterior probability estimates, whereas in classification problems it is usual to

assume binomial/multinomial noise, leading to the cross-entropy error function.

2.6 A Loss Function Perspective

Diversity seems to play a key role in the success of ensemble learning. A common

aspect to all the efforts that have been made from the research community towards

the understanding of diversity is that diversity is always quantified in terms of

classification error. In fact, it is commonly acknowledged that the inability of

base classifiers to make correct decisions should be spread on different patterns

in order to make the most of an ensemble approach.

Since diversity is quantified in terms of different errors, it is closely connected

to the particular loss function which is used to measure the loss in classification

performance.

The 0/1 loss function, which measures the loss of predicting the wrong class

label, is the quantity we usually want to minimise in a classification problem.

However, the integral involved in calculating the probability of mislabelling the

data can be solved only for special closed forms of the data probability distribu-

tion. Moreover, the bias-variance decomposition of the 0/1 loss function, which

would provide us with a relationship between ensemble accuracy and diversity, is
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not unique [48, 10, 52, 22, 53, 82].

The mean squared error is the quantity to be minimised in regression prob-

lems. It has been shown that the mean squared error of a single estimator can

be decomposed in terms of two components, the bias and the variance [36]. This

result has been extended to ensembles of regressors [87]. Moreover it has been

shown that the expected error of the Ambiguity decomposition [55] decomposes

into bias, variance and covariance [15] of the mean squared error.

Our novel contribution [101] shows that the Tumer & Ghosh model can be

reformulated as a regression problem and that therefore it minimises the mean

squared error loss function. It also shows that diversity can be successfully man-

aged in classification problems. However, this model makes assumptions of Gaus-

sian noise on the class posterior probability estimates, whereas in a classification

problem the noise should follow a multinomial distribution.

The negative log-likelihood is a loss function that instead of minimising the

classification error, it aims at maximising the match between our model estimate

and the true model that originated the data. Probabilistic models, which nat-

urally minimise the negative log-likelihood, will be our object of study for the

remaining chapters of this thesis.

2.7 Chapter Summary

In this chapter we described the research context for this thesis investigation, that

is, ensemble learning for classification. We illustrated the difficulties of defining

and measuring diversity and we discussed the Tumer & Ghosh framework, the first

work to show a relationship between the ensemble accuracy and the correlation

between classifiers [85]. We described our novel contribution to the problem of

diversity by showing how the Tumer & Ghosh framework can be reformulated as

a regression problem, and how the NC learning framework [15] can be extended

to manage diversity in a classification context [101].

We concluded this chapter by noticing how all these frameworks explain the

ensemble performance in terms of error loss functions, and how the negative

log-likelihood loss function might be another possible candidate to understand

ensemble diversity. In the following chapter we focus on probabilistic classifiers,

that is, models which minimise the negative log-likelihood rather than than the

0/1 loss function, and we introduce Information Theory, a framework that can



2.7 Chapter Summary 53

be used to understand these probabilistic models in terms of their statistical

dependencies. As we will see, some Information Theory concepts are strictly

related to the negative log-likelihood loss function, and might provide some insight

into classifier diversity.



Chapter 3

Probabilistic Classifiers and

Information Theory

In Chapter 2 we discussed the difficulties of measuring and explicitly managing

diversity in classifier ensembles, and we pointed out how different theoretical

frameworks explain the trade-off between accuracy and diversity in terms of de-

compositions of different loss functions such as the 0/1 loss or the mean squared

error. In this chapter we introduce a novel probabilistic approach to the problem

of understanding ensemble diversity by focussing on negative log-likelihood loss

functions rather than traditional error loss functions.

In Section 3.1 we discuss a log-likelihood (or probabilistic) approach to classi-

fication, whereas in Section 3.2 we introduce probabilistic models, that is, learning

algorithms that minimise the negative log-likelihood. We then focus our attention

on Bayesian networks, a special class of probabilistic models which learn interac-

tions between random variables (Section 3.3). In Section 3.4 we introduce mutual

information as a way to quantify these interactions. We point out how mutual

information can only quantify pairwise relationships between random variables

and therefore it cannot take into account more than two base classifiers at a time.

In Section 3.5 we introduce interaction information, a natural extension of mutual

information to the multivariate case.

3.1 A Log-Likelihood Approach

The main goal of classification is to find the optimal estimate of the class posterior

distribution p(Y |X) rather than the full joint probability distribution p(X, Y )
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that is assumed to have generated the data. Nevertheless, if the joint probabil-

ity distribution and the marginal probability distribution p(X) are known, it is

possible to estimate the class posterior probability via Bayes’ rule:

p(Y |X) =
p(X|Y )p(Y )

p(X)
. (3.1)

Equation (3.1) tells us that there are two ways of learning a classification problem,

as there are two main ways of learning the class posterior distribution p(Y |X) [19,

73, 65]. The first one is to take a discriminative approach by directly modelling

the class posterior distribution p(Y |X). In practical terms, this corresponds

to modelling our problem as decision boundaries between class regions. Typical

examples of discriminative models are neural networks and decision trees. Usually

these decision boundaries are learnt by minimising some error loss function, such

as the 0/1 loss or the mean squared error. The second one consists of taking

a generative approach by making explicit assumptions about the form of the

class conditional distribution p(X|Y ) and the class prior p(Y ), and learn the

posterior distribution via Bayes’ rule. Therefore, generative models learn the

data distribution rather than decision regions. An example of generative models

is Näıve Bayes, which is a probabilistic model based on the assumption that all the

features are conditionally independent given the class. In a generative approach

the loss associated with classification is quantified in terms of the estimates of the

posterior probability distributions rather than classification errors [43].

3.2 Parametric Probabilistic Models

We now focus on parametric probabilistic models, that is models where the form

of the probability distribution p(X, Y,θ) is assumed to be known and therefore

completely governed by its set of parameters θ. In fact, once the model para-

meters have been estimated, the probability distribution is completely known.

For example if the data is assumed to be continuous and normally distributed,

the joint probability distribution of the data for each class variable is a Gaussian

distribution N (µ,Σ) and the learning phase consists of estimating the mean µ

and the covariance matrix Σ for each value of the class label Y .

An interesting aspect of generative modelling is the possibility of explicitly

expressing the way random variables factorise through repeated applications of
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the product rule of probability. For instance a generative model p(X, Y,θ) can be

expressed as the product of two probability terms, namely the class conditional

probability p(X|Y,θ) and the class prior probability p(Y,θ), which can itself be

expressed as the product p(Y |θ)p(θ):

p(X, Y,θ) = p(X|Y,θ)p(Y |θ)p(θ) . (3.2)

The way a probabilistic generative model factorises can be graphically repres-

ented by Bayesian Networks. Bayesian Networks are probabilistic models that

can be used to learn existing dependencies between the random variables of a

probabilistic model [69].

The problem of learning a parametric probabilistic model given the prior

knowledge of the problem and the training data consists of learning the paramet-

ers that most likely fit the training data. The initial knowledge about the model

parameters is captured by the prior distribution p(θ). Bayes’ theorem can be

used to update the uncertainty associated with a set of model parameters after

having observed the training data D = {X ,Y}:

p(θ|X ,Y) =
p(X ,Y|θ)p(θ)

p(X ,Y)
. (3.3)

The denominator of Equation (3.3) is a normalisation constant that does not

depend on the model parameter, and can be estimated by integrating the joint

probability distribution p(X ,Y , θ) over all possible values of the random variable

θ:

p(X ,Y) =

∫
p(X ,Y|θ)p(θ)dθ . (3.4)

The latter consideration implies that the problem of finding an estimate for

the model parameters consists of finding an estimate of the posterior distribution

of the parameters p(θ|X ,Y), which is proportional to the the product of the prior

distribution p(θ) and the likelihood function p(X ,Y|θ):

p(θ|X ,Y) ∝ p(X ,Y|θ)p(θ). (3.5)

It is interesting to note that the likelihood function p(X ,Y|θ) plays a key role in

the estimation of the parameter posterior probability.

The algorithms for parameter estimation can be classified into three main
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estimation approaches of increasing complexity [6]:

Maximum Likelihood (ML). In this frequentistic approach the parameters of

a model are fixed but have unknown values. Since they are not random

variables, the estimation of the posterior distribution is simply proportional

to the likelihood function p(X ,Y|θ). The ML approach aims to find the

set of parameters θML that maximise the probability of the data given the

parameters:

θML = arg max
θ

p(X ,Y|θ) . (3.6)

This corresponds to finding the unbiased estimators of the parameters. For

example if our generative model is normally distributed N (µ,Σ), the mean

µ and the variance Σ correspond to the sample mean and the sample cov-

ariance of the training data [25].

Maximum A Posteriori (MAP). In this approach parameters are treated as

random variables governed by appropriate prior distributions, as in Equa-

tion (3.5). As for ML, the optimal parameter values are point estimates

of the parameter set θ = θ′, and the integral at the denominator of Equa-

tion (3.4) is simply a multiplicative constant. If these priors are chosen

to be conjugate of the class conditionals, the posterior distribution of the

parameters p(θ|X ,Y) will have the same functional form as the parameter

priors. Conjugate priors are chosen according to the form of the class con-

ditional and to the specific set of unknown parameters. For example, if we

model a Gaussian distribution p(X ,Y|θ), then the prior over the mean is

a Gaussian distribution N (µ0,Σ0), the prior over the covariance matrix Σ

is a Wishart distribution W(W,ν), and the prior over each class prior is a

Dirichlet distribution Dir(α). The advantage of adding prior distributions

for the parameters is that they introduce some form of regularisation, and

therefore favour simpler models to more complicated ones [6].

Pure Bayesian Learning. As in the MAP approach, parameters are random vari-

ables, but their optimal values are not point estimates. This approach aims

at solving the estimation problem of Equation (3.4) via sampling methods

such as Markov Chain Monte Carlo or via approximation techniques such

as variational inference or expectation propagation [6].
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One of the strengths of generative models is their inherent ability to handle la-

belled and unlabelled data. This can be shown by simply rewriting Equation (3.2)

for labelled and unlabelled data as:

p(D) = p(X L,YL,X U , θ)

= p(X L,YL|θ)p(X U |θ)p(θ)

= p(X L|YL,θ)p(YL|θ)p(X U |θ)p(θ) ,

(3.7)

and by taking the logarithm of the likelihood p(D|θ) = p(YL|θ)p(X U |θ) in Equa-

tion (3.7):

log p(D|θ) =

|DL|∑
i=1

log p(xi|yi,θ)p(yi|θ) +

|DU |∑
j=1

log
( c∑
k=1

p(xj|yk,θ)p(yk|θ)
)
. (3.8)

The log-likelihood in Equation (3.8) is made of two distinct terms, the first one

accounting for the labelled data only and the second one accounting for the

unlabelled data only.

This property of generative models to naturally handle labelled and unla-

belled data is of great importance, as many real problems nowadays require large

quantities of labelled data to design supervised classifiers with high accuracy, and

at the same time are characterised by the difficulty and cost of collecting such

data. A possible answer to this dilemma would be to consider semi-supervised

algorithms, that is, techniques which are able to learn from a small amount of

labelled data together with a large amount of unlabelled data [102].

3.3 Bayesian Networks

We now focus our attention on Bayesian networks, a class of probabilistic models

that provide us with a way to graphically represent existing dependencies between

random variables of a joint probability distribution [69].

More specifically Bayesian networks are directed acyclic graphs G = (N,E)

where N denotes the set of nodes in the graph and E represents the set of edges

between the nodes in the graph. Each node Ni ∈ N corresponds to a random

variable Xi and each edge Ei ∈ E represents a dependency between two random

variables. A set of S random variables X = {X1, . . . ,XS} can be represented

as a Bayesian Network if its joint probability distribution p(X) factorises into a
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product of probabilities

p(X) =
S∏
i=1

p (Xi|pa(Xi)) , (3.9)

where pa(Xi) is the set of parent variables of Xi, that is the conditioning random

variables.

From a Bayesian network perspective the problem of learning a probabilistic

generative model from data can be seen as a search in the space of possible

networks that can be generated by adding or removing arcs between random

variables. In general, this search for the network configuration that best fits the

training data is done by maximising a fitness criterion. One of the most applied

criteria is Minimum Description Length, a principle based on mutual information

that selects the model encoding the shortest description of the data. However,

the problem of learning unrestricted Bayesian networks from data is not only in-

tractable [16], but heuristic methods are extremely computationally demanding.

As a result, research has mainly focussed on restricted network topologies. As

such, Näıve Bayes classifiers are an example of simple Bayesian network that des-

pite requiring unrealistic assumptions, have been shown to compete with decision

trees or neural networks [60, 24, 67].

3.3.1 Näıve Bayes Classifiers

Näıve Bayes classifiers are probabilistic generative models of the joint probability

distribution p(X, Y ) that make the assumption that features X are statistically

independent from each other given the class label Y [33, 25]. This assumption im-

plies that the joint probability distribution factorises as p(X, Y ) = p(X|Y )p(Y),

where the class conditional distribution factorises into the product of each class

conditional

p(X|Y ) =

p∏
i=1

p(Xi|Y ) . (3.10)

Figure 3.1 illustrates the Bayesian network associated with a Näıve Bayes

classifier with 3 features X1, X2, X3 and a class label Y . This graphical model

clearly visualises the assumption of statistical independence of each feature given

the class label Y : the directed arc between Y and every feature denotes that each

feature depends on the actual observation of Y , and the absence of arcs between
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X1 X2 X3

Y

Figure 3.1: Näıve Bayes network. The feature random variables X1, X2 and X3

depend on the class random variable Y but they are statistically independent
from each other given the class Y.

features denotes that features are independent from each other given that the

class label has been observed.

Example 1: Learning Discrete Näıve Bayes

In the case scenario of discrete features, each class conditional p(X|Y ) along

with the class priors p(Y) are modelled by multinomial distributions. One way

to estimate these distributions is by frequency counts.

For instance, let us consider a two class problem in a multi-dimensional input

space, where each feature Xi can assume K different values from 1 to K, and the

class Y can only take the two values ω1 and ω2. We are given N pattern samples,

of which N1 patterns belong to class ω1 and N2 patterns belong to class ω2. The

prior probability of a pattern to belong to class ω1, i.e. p(Y = ω1), is estimated as

the fraction of data which is labelled as class ω1: p(Y = ω1) = N1

N
. Similarly the

prior probability of a pattern to belong to class ω2 is estimated as the fraction of

the data which belongs to class ω2: p(Y = ω2) = N2

N
. We estimate the probability

of a particular feature Xi to take the value k conditioned on the class label to

take the value ωj in the same way. For instance, the probability of a pattern that

belongs to class ω1 and has feature X1 equal to k is calculated as:

p(X1 = k|Y = ω1) =
#of patterns where (X2 = k and Y = ω1)

Total # patterns where (X2 = k)
. (3.11)

Once these probabilities have been calculated, Bayes’ rule can be used to determ-

ine the class posterior probabilities of an unknown pattern and predict the class

with maximum posterior probability.
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Example 2: Learning Gaussian Näıve Bayes The Näıve assumption can

be applied to continuous classification problems. For instance, a Gaussian Näıve

Bayes is a probabilistic model where we assume each class conditional distri-

bution to be a normal distribution. More explicitly, we make the assumption

that each feature Xf , for f = 1, . . . , p is statistically independent from each

other given the class, and that each class conditional distribution is Gaussian:

p(Xf |Yk, θ) = Nf (µk, σ2
k) for any class k = ω1, . . . , ωc. The class prior is modelled

by a Multinomial distribution Mult(π), where π are the distribution parameters

constrained to
∑

k πk = 1. In this case, the joint distribution of the model can

be written as

p(X, Yk) =

p∏
f=1

Nf (µk,Σk)Mult(πk)p(µk,Σk, πk) (3.12)

for any class for k = ω1 . . . ωc.

3.3.2 Augmented Näıve Bayes

As their name suggests, Näıve Bayes classifiers are based on a very simplistic as-

sumption; that features do not depend on each other. This is quite an unrealistic

assumption that hardly ever occurs in real problems, because features measure

different aspects of the same problem and the chances of an existing relationship

between them are quite high.

Nevertheless, experimental results have often shown that these classifiers can

often compete with classifiers which make less restrictive assumptions, such as

decision trees or neural networks [60, 24]. The success of this simple but effective

classifier has led researchers to try to understand the reasons why this classifier

succeeds [23], and more importantly, to investigate whether relaxing the näıve

assumption of Equation (3.10) might further increase classification accuracy [54,

74, 67, 33].

The assumptions of a Näıve Bayes model can be relaxed by adding depend-

encies between feature variables [49, 50]. An example of these Augmented Näıve

Bayes classifiers is shown in Figure 3.2.

Augmented Näıve Bayes classifiers fall into the category of Bayesian networks

where all the features contribute to the estimate of the class posterior distri-

bution. Among these, we distinguish two main approaches to the problem of
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X1 X2 X3

Y

Figure 3.2: Augmented Näıve Bayes network. The feature random variables
X1, X2 and X3 depend on the class random variable Y . In addition, feature X1

statistically depends on feature X2.

learning a Bayesian Network – distribution-based approaches and classification-

based approaches. The former approach has the main objective of providing an

estimate for the class posterior distribution, whereas the latter approach has the

simpler main objective of finding the model with highest classification accuracy.

Tree Augmented Näıve Bayes (TAN) are restricted Bayesian networks where

every feature random variable depends on the class label random variable and is

eventually allowed to depend on one other feature random variable. It has been

shown that a distribution-based learning approach can learn the optimal structure

of this type of networks in polynomial time [33, 32]. The alternative classification-

based approach SuperParent (SP-TAN) performs a faster hill-climbing search over

possible dependencies between features [49, 50]. The class label is the parent of

all the features, whereas the feature that affects the other feature is renamed as

super-parent. Experimental results [49, 50] show that this algorithm is faster and

provides better classification results than distribution based algorithms.

Further restrictions to the networks structure are carried out in [89] with

Super-Parent One-Dependency Estimators (SPODE), that is, augmented Näıve

Bayes where each feature depends only on one common feature, namely the

super-parent. The model search problem here is addressed by proposing Av-

eraged One-Dependency Estimators (AODE), an ensemble technique where the

ensemble model is the average of all possible AODEs trained on more than 30

training samples. One Dependency Estimators (ODE) are based on less restrict-

ive assumptions than simple Näıve Bayes classifiers, but at the same time allow-

ing at most one dependency between features guarantees better estimates of the

class conditional probabilities. The issue of performing model selection rather
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than model averaging on SPODEs has been further investigated in [94, 95, 96].

Recently Generalised Additive Models have been used to learn networks with

higher-order dependencies between features [61].

3.4 Entropy and Mutual Information

Information theory was originally developed by Shannon to describe limits on the

performance achievable by a transmission of information over a noisy channel [75].

The two key concepts in Information theory are entropy and mutual information.

The entropy of a random variable can be thought of as a measure of the

uncertainty associated with the probability distribution of the random variable

itself [17]. More specifically, for a discrete random variable X that can take |X|
possible values X = xi for i = 1, . . . , |X|, the entropy H(X) is defined as1:

H(X) = −
|X|∑
i=1

p(xi) log p(xi) . (3.13)

The base of the logarithm is arbitrary and defines the unity of measure of the

entropy. If the logarithm is to base 2, the entropy is measured in bits, whereas if

the logarithm is to natural base e, the entropy is measured in nats. For the rest

of this thesis we assume to deal with logarithms to base e.

As an example, let us consider the case where X is a binary variable that

can assume the two values x1 and x2. In this case Equation (3.13) reduces to

H(X) = −p(x1) log p(x1)−p(x2) log p(x2). If X has exactly the same probability

of taking any two values, i.e. p(x1) = p(x2) = 0.5, the entropy is H(X) = 0.69

nats. On the other hand, if one value is more likely than the other one, as in

p(x1) = 0.8 and p(x2) = 0.2 the entropy is H(X) = 0.35 nats. If instead p(x1) = 1

and p(x2) = 0 the entropy is H(X) = 0 nats. From these three cases we can easily

see that the entropy is at its maximum when we are totally uncertain about the

outcome of the random variable, as in the first case where the random variable

has exactly the same probability of taking one of the two values. On the contrary

the entropy is zero when we are totally certain about the outcome of the random

variable, as in the third case.

The entropy of a random variable is always non negative, that is H(X) ≥ 0,

1For clarity of exposition we simplify our notation by denoting with xi the fact that a random
variable X takes its i−th value X = xi, for i = 1, . . . , |X|.
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and it has its upper bound in the logarithm of the size of the alphabet2 of the

random variable H(X) ≤ log|X|. It is interesting to point out that the entropy

of a random variable can be interpreted as the expected value of the negative

logarithm of the probability distribution p(X)

H(X) = EX
{

log
1

p(X)

}
= EX {− log p(X)} . (3.14)

Another important concept is the conditional entropy of a random variable X

conditioned on another random variable Y :

H(Y |X) = −
|X|∑
i=1

p(xi)

|Y |∑
j=1

p(yj|xi) log p(yj|xi) (3.15)

that is a measure of the uncertainty left in Y once the random variable X has

been observed, and which corresponds to the expected negative logarithm of the

probability mass function p(Y|X):

H(Y |X) = EX,Y {− log p(Y|X)} . (3.16)

Entropy has many properties, some of which are worth pointing out:

• The joint entropy of X and Y can be decomposed into the sum of the

entropy H(X) and the conditional entropy H(Y |X): H(X, Y ) = H(X) +

H(Y |X). Alternatively, it is possible to swap X and Y , so that the altern-

ative decomposition is also true: H(X, Y ) = H(Y ) + H(X|Y ).

• The entropy of two random variables X and Y conditioned on a third

random variable Z can be written as H(X, Y |Z) = H(X|Z) + H(Y |X,Z).

• The joint entropy can be generalised to more than two random variables,

for which the following chain rule holds:

H(X1, . . . , XM) =
M∑
i=1

H(Xi|Xi−1, . . . , X1) . (3.17)

Mutual information quantifies the information shared between two random

variables [17]. For two discrete random variables X and Y it can be defined as

2The alphabet of a discrete random variable is the set of possible values it can take.
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the difference between the entropy of Y and the conditional entropy of Y given

the other random variable X:

I(X; Y) = H(Y )− H(Y |X) , (3.18)

and it can be thought of as the reduction in the uncertainty of the random variable

Y due to the observation of another random variable X. The extension of mutual

information to continuous random variables is out of the scope of this thesis; the

reader might refer to [17] for a more detailed discussion.

Mutual information is a commutative pairwise operator, that is the order of

the arguments is not important I(X;Y ) = I(Y ;X). Since mutual information

can be defined in terms of entropy measures, there are several equivalent ways of

expressing mutual information in term of entropies:

I(X;Y ) = H(Y )− H(Y |X)

= H(X)− H(X|Y )

= H(Y ) + H(X)− H(X, Y ) .

(3.19)

It is easy to show that the mutual information between two random variables

X and Y corresponds to the KL divergence between the joint probability distri-

bution p(X, Y ) and the product of the marginal probability distributions p(X)

and p(Y ) [17]:

I(X;Y ) =
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log
p(x, y)

p(x)p(y)

= KL (p(X, Y ) ‖ p(X)p(Y )) .

(3.20)

This latter expression tells us that mutual information measures how much the

joint probability distribution p(X, Y ) differs from the product of the marginals

p(X)p(Y ). Since the joint probability distribution of two statistically random

variables is the product of the marginal distributions, if the two random variables

are statistically independent, by inspecting Equation (3.20) it is easy to conclude

that the mutual information of two statistically independent random variables

is always zero. If two random variables are statistically dependent, then their

mutual information will be a non-negative quantity I(X;Y ) ≥ 0, measuring how

dependent X and Y are on each other.
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The conditional mutual information of two random variables X1 and X2 being

conditioned on another random variable Y is defined as:

I(X1;X2|Y ) = H(X1|Y )− H(X1|X2Y )

=
∑
y∈Y

p(y)
∑
x1∈X1

∑
x2∈X2

p(x1, x2|y) log
p(x1, x2|y)

p(x1|y)p(x2|y)
,

(3.21)

and it is a measure of the shared information between X1 and X2 once we have

observed the random variable Y .

3.4.1 Why Use Mutual Information?

Although mutual information was originally developed in telecommunications for

the problem of transmitting information through a noisy channel, some analogies

can be drawn between a noisy channel and a classifier. The input data x can

be seen as the signal encoding a message (the true class y) that a sender wants

to communicate to a receiver. A classifier can be thought of as the transmission

channel which decodes x through the mapping ŷ = f(x). The message decoded

by the classifier can be different than the original one: ŷ 6= y. The inability

of a classifier to perfectly decode the signal x is measured through the classifier

generalisation error and is due to the classifier being a mere estimate of the class

posterior distribution. The generalisation error can be thought of as the channel

noise, and the physical signal loss associated with signal transmission.

Studies [29, 44] have shown that information theory can be used to define an

upper and a lower bound to the Bayes’ error p(f(X) 6= Y ) of any classifier f :

H(Y )− I(X;Y )− 1

log(|Y |) ≤ p(f(X) 6= Y ) ≤ 1

2
H(Y |X) . (3.22)

The left hand inequality in Equation (3.22), which is known as Fano’s inequality

[29], shows that Bayes’ error is minimised by increasing the mutual information

shared between X and Y , the other quantities being merely constants which do

not depend on the performance of the classifier. The right hand inequality in

Equation (3.22), which is known as the Hellman-Raviv inequality [44], states

that Bayes’ error is always lower than or equal to half the conditional entropy

H(Y |X). Figure 3.3 illustrate the relationship between the conditional entropy

H(Y |X) and Bayes’ error for a two class problem. For any value of the conditional
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Figure 3.3: Boundaries on Bayes’ error. The lower bound (red continuous line) is
given by Fano’s inequality, whereas the upper bound (dashed blue line) is given
by Hellman-Raviv’s inequality [29, 44].

entropy H(Y |X), Bayes’ error will lie between the two curves.

The best case scenario is when the conditional entropy is zero: since there is no

uncertainty left in Y once X has been observed, the classifier will make no errors.

The worst case scenario from this bound perspective is when the conditional

entropy is equal to 1
2
, since in this case the Bayes’ error range is the largest. If we

recall that mutual information can be written down as I(X;Y ) = H(Y )−H(Y |X),

we can notice that as the conditional entropy decreases, the mutual information

of X and Y increases and Bayes’ error decreases. These results show that mutual

information can be used as a proxy to Bayes’ error, and therefore it provides some

indications about the best performance achievable by any classifier.

Another important consideration in support of mutual information can be

given in terms of log-likelihoods. The negative log-likelihood of the class posterior

distribution for a set of N data points (xi, yi) can be written as:

−L =− 1

N
log

N∏
i=1

p(yi|xi)

− 1

N

N∑
i=1

log p(yi|xi)
(3.23)
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In the limit of infinite data limN →∞, Equation (3.23) turns out to be:

lim
N→∞

− 1

N

N∑
i=1

log p(yi|xi) = H(Y |X). (3.24)

The negative log-likelihood converges to the conditional entropy of the class ran-

dom variable Y given the input random variable X. In other words, as we dis-

cussed for the properties of the conditional entropy, the conditional entropy of Y

conditioned on X corresponds to the expectation over X and Y of the negative

log-likelihood of the class posterior distribution p(Y |X):

H(Y |X) = EX,Y {− log p(Y|X)} (3.25)

Since the conditional entropy is equal to the mutual information of X and Y

minus the entropy of Y , that is, I(X;Y ) = H(Y ) − H(Y |X), it is easy to see

that if we minimise the negative log-likelihood we are actually minimising the

conditional entropy of Y given X and therefore we are maximising the mutual

information associated with the classifier.

3.4.2 Limitations of Mutual Information

Mutual information is a measure of how two random variables interact with each

other. In Subsection 3.4.1 we discussed how these two random variables can

be thought of as the input and the output random variables in a classification

problem, and how mutual information can be used to provide bounds to the

best performance achievable by a classifier. The existing relationship between

accuracy and mutual information can be taken even further by noticing that

maximising the negative log-likelihood of a model corresponds to maximising the

mutual information associated with the same classification model.

However, mutual information can only measure pairwise interactions, and

therefore it can only handle two random variables at a time. This is quite

a limiting requirement, as machine learning applications usually involve multi-

dimensional random variables.

For instance, let us consider the feature selection problem, which is a typical

application of machine learning where we want to find the subset of features pro-

ducing the classifier with highest classification accuracy. We are given p feature

random variables X1, . . . , Xp, and a class random variable Y , and we want to find
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the subset of features X1:s which maximise the mutual information of the joint

random variable X1:s and the class label Y I(X1:s;Y ), as this would improve

classification accuracy accordingly. This calculation requires the estimate of a

high-dimensional probability distribution p(X1:s, Y ) which is hard to estimate in

practice, as it would require a very large amount of data.

In the ideal case of being able to provide a good estimate of this mutual

information, we would only be able to learn something about the information

shared between the class label Y and the joint set of random variables as a

whole. The mutual information I(X1:s;Y ) does not tell us anything about the

relationships between single feature random variables, or between each feature

and the class label.

If we now shift our attention to ensemble learning, where we deal with not

one but many classifiers, and where we are interested in the interactions between

more than two base classifiers, it is easy to notice that mutual information does

not seem naturally suited to the purpose of analysing relationships between base

classifiers for ensembles of more than two base classifiers.

3.5 Interaction Information

Mutual information cannot explain interactions in problems where more than two

random variables are involved. This restriction has led researchers to the devel-

opment of extensions of mutual information to handle more than two random

variables and therefore to deal with multivariate probability distributions. As

such, interaction information was proposed by McGill in 1954 [64]. Other mul-

tivariate mutual informations have been proposed [88, 97], but they are outside

of the scope of this thesis.

Since interaction information is an extension of mutual information to more

than two random variables, these two information theoretic measures share only

some properties. One of the main differences between the two is the arity of the

operation they perform. In fact, As we discussed earlier, mutual information is

a binary operator I(·; ·) that can take only two arguments or random variables.

On the other hand, interaction information is a unary operator I(·), that is, it

takes only one argument. Another interesting difference is that whereas mutual

information is always non negative, interaction information can be either a neg-

ative or positive quantity. We now formally define interaction information, and
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then discuss its properties.

3.5.1 Definition

Interaction information is a unary operator that allows as its argument a set of

random variables, which we denote with {·, . . . , ·}. For instance, I({X1, X2, X3})
denotes the interaction information between three random variables X1, X2 and

X3.

This multivariate mutual information can be defined recursively from mutual

information in the following way. The interaction information shared between two

random variables is equivalent to the mutual information between the two random

variables. The interaction information shared between three random variables X1,

X2, X3 is defined as the difference between the conditional interaction information

of X1 and X2 given X3 and the interaction information of X1 and X2:

I({X1, X2, X3}) = I({X1, X2}|X3)− I({X1, X2}) , (3.26)

where the first term is the conditional interaction information between X1 and

X2 given X3 being observed, and the second terms is the interaction information

of the random variables X1 and X2. These two interaction terms contain sets

of two random variables each, and therefore they are simply defined as mutual

information terms:

I({X1, X2, X3}) = I(X1;X3|X2)− I(X1;X3). (3.27)

Although in his studies McGill explicitly defined interaction information for

sets of up to 4 random variables, Equation (3.26) can be recursively extended to

a set of M random variables X1 . . . , XM as the difference between the conditional

interaction information of the first M − 1 random variables given the M -th one

and the interaction information of the first M − 1 random variables:

I({X1, . . . , XM}) = I({X1, . . . , XM−1)|XM} − I({X1, . . . , XM−1}) (3.28)

3.5.2 The Three Random Variables Case

For the special case of three random variables, the interaction information defined

in Equation (3.26), which we repeat here, simplifies to the difference of mutual
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information terms:

I({X1, X2, X3}) = I(X1;X3|X2)− I(X1;X3). (3.29)

This result shows that a three-wise interaction between three random variables

simplifies to pairwise interactions between the same random variables. Since

mutual information is a measure of mutual dependency between two random

variables, for the case of three random variables we are able to relate interac-

tion information to the statistical dependencies associated with these random

variables.

Bayesian Networks represent the suitable candidates for studying pairwise de-

pendencies. Without this reduction to pairwise terms, Bayesian Networks would

not be able to capture higher order interactions between random variables. Given

three random variables, there are only three possible dependency scenarios that

do occur in a Bayesian Network:

• Fork configuration (as in Figure 3.4), where two random variables are con-

ditioned on the third one.

• Chain configuration (as in Figure 3.5), where each variable is dependent on

its predecessor.
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• Collider configuration (as in Figure 3.6), where one random variable de-

pends on the other two.

Among these configurations, we distinguish between Markov chains (such as

forks and chains) and non Markov chains3 (such as colliders). An interesting

result here is that the interaction information of a Markov chain is always non

positive [17]. Therefore, the sign of interaction information provides an indication

of the inter-dependencies between random variables.

3.5.3 Properties

Since interaction information has been recursively derived from mutual inform-

ation, it shares only some of its original properties. For instance, interaction

information preserves the mutual information property of being permutation in-

variant to the random variables. As a result, there are different ways of expressing

the interaction information between random variables. On the other hand, a dis-

tinctive feature of interaction information is that its value does not restrict to non

negative values, but it depends on the existing statistical dependencies between

random variables. We discuss these two properties in detail for the special case

of three random variables.

Interaction Information can be negative

The interaction information I({X1, X2, X3}) between three random variables X1,

X2 and X3 is defined as the difference between the conditional mutual information

of any two random variables given the third one, and the mutual information

between the same two random variables, as given in Equation (3.27). Since it is

the difference between two positive quantities, it can either assume positive or

negative values.

A corollary to the data process inequality states that if X1, X3, X2 form a

Markov chain in that order, then the mutual information of X1 and X3 con-

ditioned on X2 is lower or equal to the mutual information of X1 and X3:

I(X1;X3|X2) ≤ I(X1;X3). This quantity is actually the interaction informa-

tion as measured in Equation (3.27). Therefore, this corollary implies that the

interaction information of a Markov chain is always non positive [17]. The same

3Three random variablesX,Y, Z form a Markov chain in that order if and only if p(X,Y, Z) =
p(X|Y )p(Z|Y )p(Y ), that is if and only if X and Z are conditionally independent given Y [17].
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corollary also implies that if the interaction information is always positive, then

X1, X2, X3 do not form a Markov chain (i.e. they form a collider chain).

We conclude that for a Bayesian Network of three random variables, the sign

of interaction information is a consequence of the actual statistical dependencies

between random variables. The positivity of interaction information is an indica-

tion of a non Markov chain network, whereas Markov chains lead to non positive

interaction information.

This is an interesting result, as interaction information could be used in model

selection techniques to decide which model is more likely to fit the data. As we

have already explained in previous chapters, the general problem of probabilistic

generative model selection is of great importance, as the choice of the underlying

model strongly affects classification performance.

Permutation Invariance

Like mutual information, interaction information has the drawback of being per-

mutation invariant with respect to the random variables in the set. For M random

variables, there are M ways of calculating interaction information that are not

distinguishable from one another.

We explain this property for three random variables X1, X2, and X3. In this

case, there are three different ways of conditioning two of these random variables

on the third one, and for the permutation invariance property, there are three

possible indistinguishable ways to calculate interaction information:

I({X1, X2, X3}) = I(X1;X3|X2)− I(X1;X3)

= I(X1;X2|X3)− I(X1;X2)

= I(X2;X3|X1)− I(X2;X3)

This property implies that although the sign of interaction information can tell

us if the three random variables do form or do not form a Markov chain, it cannot

tell us which is the conditioning random variable.

As an example, if we measure the interaction information of three random

variables to be positive, then it follows that the three variables form a collider

configuration, but the sign does not specify which one is being conditioned on

the other two. This property is a direct consequence of the inability of mutual

information to capture the direction of the dependency. In model terms, there
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are three possible collider configurations that might correspond to a positive

interaction information.

3.5.4 Relationship with Mutual Information

In a recent paper Brown [13] shows that given a set of M random variables S =

{X1, . . . , XM} and another random variable Y , the mutual information I(X1:M ;Y )

of a (M + 1) dimensional distribution p(X1, . . . , XM , Y ) can be expressed as a

combination of interaction information terms:

I(X1:M ;Y ) =
∑
T⊆S

I({T ∪ Y }) |T | ≥ 1 , (3.30)

where the sum is over all possible subsets T of S. Equation (3.30) demonstrates

that the mutual information between a joint random variable X1:M and another

random variable Y decomposes into a finite number of interaction terms. As an

example, for a joint random variable X1:3 and Y , Equation (3.30) can be written

as the sum of all possible first order interaction information terms, second order

interaction information terms and third order interaction information terms:

I(X1:3;Y ) = I({X1, Y }) + I({X2, Y }) + I({X3, Y })
+ I({X1, X2, Y }) + I({X1, X3, Y }) + I({X2, X3, Y })
+ I({X1, X2, X3, Y }) .

(3.31)

The decomposition in Equation (3.30) can be used to study different orders

of interactions (first, second, third, M -th order) between any set of random vari-

ables. However, it has to be pointed out that the higher the order of interactions,

the more data is needed to provide good estimates of these interaction terms.

Brown relates the decomposition in Equation (3.30) to the trade-off between

accuracy and diversity of an ensemble of base classifiers [12]. He rewrites the

mutual information between a set of base classifier outputs X1, . . . , XM and the

true class label Y as

I(X1:M , Y ) =
M∑
i=1

I(Xi;Y ) −
∑
X⊆S

|X|=2,...,M

I({X}) +
∑
X⊆S

|X|=2,...,M

I(X|Y ) . (3.32)
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Equation (3.32) breaks up into three separate summations of different mutual in-

formation quantities. The first term is the sum of the mutual information of each

classifier with the class label. As we discussed in Subsection 3.4.1 mutual inform-

ation is a proxy to classification accuracy and therefore this first summation can

be interpreted as the relevancy of each base classifier to the true class label, as it

indicates how relevant each base classifier is to the true class label, independently

from the other classifiers. The second term is a subtractive sum over all possible

interactions information terms I({X}) and it can be thought of as a term which

accounts for all the possible interactions between base classifier outputs, from

pairwise interactions I({Xi, Xj}) to M -wise interactions I({X1, . . . , XM}). This

term can be interpreted as the redundancy between base classifier outputs, and

since it subtracts the amount of information shared between base classifiers, it

can be thought of as a measure of diversity between base classifier outputs. The

last term is the sum over all possible class conditional interaction information

terms I({X|Y }). In line with the previous term, this can be thought of as con-

ditional redundancy, but differently from redundancy it is an additive term. The

conditional redundancy does not have a matching quantity in the accuracy/di-

versity trade-off described in Section 2.4. Overall we can refer to the sum of

these two terms as diversity in an information theoretic sense. Equation (3.32)

shows that in order to get a set of base classifiers with high mutual information,

each base classifier should have high relevancy, low redundancy and high pairwise

redundancy. This decomposition shows once more that there exists a trade-off

between accuracy and diversity. Furthermore, this interpretation of the trade-off

between accuracy and diversity in terms of interaction information between base

classifier outputs seems to indicate that interactions occur at multiple levels of

interactions between classifiers, and goes beyond the traditional pairwise analysis

in terms of bias, variance and covariance.

3.6 Chapter Summary

In this chapter we introduced probabilistic models, that is, learning models that

directly minimise the negative log-likelihood loss function rather than the 0/1

loss functions. As such, Bayesian networks are probabilistic graphical models

that represent statistical dependencies between random variables of a probabil-

ity distribution [68], and are going to be object of investigation throughout this
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thesis. We introduce mutual information as a natural way to quantify statistical

dependencies between random variables [75], and we point out that the main lim-

itation of mutual information is that it can only measure dependencies between

pairs of random variables. On the contrary, interaction information [64] can be

used to understand interactions between any number of random variables. This

makes interaction information a suitable candidate for understanding relation-

ships between base classifiers.

We have now introduced the background which is necessary for the under-

standing of our thesis contributions. In the next chapter we propose an empirical

investigation of traditional ensemble techniques applied to Näıve Bayes classifiers.

Our objective is to understand what type of diversity is required by low variance

probabilistic models to succeed in ensemble approaches. In Chapter 5, we embark

on an empirical investigation of whether interaction information can be used to

understand the trade-off between ensemble accuracy and diversity. Finally, in

Chapter 6, we apply interaction information properties to build ensembles of

averaged Bayesian networks in a more efficient way.



Chapter 4

Diversity in Näıve Bayes

Ensembles

In Chapter 2 we discussed the link between ensemble methods and the bias-

variance decompositions of the classification error [86]. According to the Tumer &

Ghosh framework, base classifiers should have low bias and high variance, as linear

combiners mainly reduce the variance of the ensemble classification error [34]. In

Chapter 3 we shifted our attention to Bayesian networks, that is, models which

minimise negative log-likelihood loss functions rather than error loss functions.

In this chapter we study model diversity as opposed to error diversity. Since

error diversity is an immediate consequence of model diversity, our goal is to

understand whether it is possible to generate diverse classifiers by looking at

model diversity rather than error diversity. Parametric probabilistic models are

particularly suited to this purpose, as they explicitly select the model bias. In

fact, diversity in probabilistic models can occur at two different levels: it can be

parametric or it can also be structural. The question we try to address in this

chapter is the following one: is parametric diversity sufficient to build accurate

and diverse ensembles of Näıve Bayes classifiers? This research question is of

great importance, as Näıve Bayes are classifiers characterised by high bias and low

variance, and therefore they do not seem suited to be combined in an ensemble

approach.

To this purpose we study Bagging and Random subspaces [9, 45], two ensemble

techniques which are known to mainly reduce the variance of the classification

error [10, 35]. Our experimental results show that parametric diversity is not suf-

ficient to generate accurate and diverse ensembles, but on the contrary structural
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diversity has a positive effect on the ensemble performance.

4.1 A Diversity Categorisation

In this thesis we analyse classifier diversity from different perspectives. It is well

acknowledged that base classifiers are diverse if they make different errors. But

what is classifier diversity?

A classifier is an algorithm that assigns class labels to unseen objects, or

patterns. In order to perform this task a classifier first learns estimates of the

true class posterior distributions from the training data. It then applies Bayes’

rule to choose the class which scored the highest class posterior distribution es-

timate on the unseen pattern. This decision will also draw decision boundaries

within regions of the feature space. In fact, each region will be associated with

the class with highest probability estimate in the same region [25]. Within this

dual probabilistic/decision boundary perspective, it makes sense to think of di-

verse classifiers as classifiers that have learnt different estimates of the true class

posterior distributions, and hence different decision boundaries between feature

regions.

If two classifiers have learnt relatively different estimates of the class posterior

probabilities, they might classify the same pattern with different class labels, and

therefore, these classifiers might classify different patterns correctly or incorrectly.

In this thesis we refer to this diversity in taking classification decisions as error or

output diversity or more generally, diversity. Error diversity is the actual result

of two classifiers modelling our problem in two different ways.

Generally speaking, two classifiers are diverse if their estimates of the class

posterior distributions are diverse. Many different learning algorithms have been

developed for the purpose of solving classification problems [25], such as neural

networks, decision trees, support vector machines or Näıve Bayes classifiers. As

we discussed in Section 3.1, there are two main ways that a classifier can learn how

to assign class labels to objects. It can either take a discriminative approach and

directly estimate the class posterior distributions/decision regions from data, such

as with neural networks and support vector machines, or it can take a generative

approach, by solving the more general problem of learning an estimate of the true

probability distribution p(X, Y ) that generated the data and use Bayes’ rule to

learn estimates of the class posterior distributions, such as in Bayesian Networks.
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The type of learning algorithm strongly affect our perception of what is a clas-

sifier, and how classifiers can be diverse. As an example, in non-parametric models

such as k-nearest neighbours we perceive that two models are diverse if they draw

different decision boundaries between feature regions. In semi-parametric models

such as neural networks, we perceive that two models are diverse if for instance

the model parameters are different. In other words, in addition to draw different

boundaries between feature regions, we perceive that the final weights of these

networks are different.

In this chapter we are concerned with the third category of parametric models,

and in particular with parametric probabilistic classifiers. We acknowledge that

two parametric probabilistic models might differ for three main different reasons.

The first—and more general reason, is that two parametric probabilistic mod-

els might not share the same dependencies between shared random variables. For

instance, a model with three features X1, X2 and X3 might make the assump-

tion that all three features are statistically independent from each other, that is

p(X1, X2, X3) = p(X1)p(X2)p(X3), whereas another model with the same three

features X1, X2 and X3 might make the assumption that X1 is statistically de-

pendent on X2 and X3, that is p(X1, X2, X3) = p(X1|X2, X3)p(X2, X3). As a

result, the estimates of the class posterior distributions will take different prob-

ability forms for the two models. In this case we say that classifiers are structur-

ally diverse, as models have different structural dependencies between the same

random variables.

The second reason is that two parametric models might share the same ran-

dom variable dependencies, but the actual random variables in the models are

different. For instance, a classifier might decide to model the problem at hand

with three features X1, X2 and X3, and make the assumption that all three

features are statistically independent from each other, that is p(X1, X2, X3) =

p(X1)p(X2)p(X3), whereas another classifier might decide to model the same

problem with three different features X3, X4 and X5, and make the assumption

that all these three features are statistically independent from each other, that

is p(X3, X4, X5) = p(X3)p(X4)p(X5). As a result, the estimates of the class pos-

terior distributions will take the same probability form in the two cases, but the

random variables of interest will be different. In this case we say that classifiers

are feature-diverse, as they share the same model structure on different features.
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The third reason is that two parametric models might share the same depend-

encies and the same features, but the parameters of each model might be different

point estimates. For instance one model might have learnt a Gaussian distribu-

tion with mean µ = 1 and identity covariance matrix as an estimate for the

class posterior distributions, whereas another model might have learnt a Gaus-

sian probability distribution with µ = 2 and identity covariance matrix for the

class posterior distributions. In this case we say that models are parametrically

diverse. This situation might arise when models are trained on different datasets,

or when their parameters are initialised in a different way, or with different values.

Therefore, in parametric probabilistic models we can clearly identify three

types or levels of model diversity, that is structure, feature and parametric di-

versity. These levels of diversity usually combine together, as for instance models

might have different features and different statistical dependencies.

To date there is no unique way to measure diversity in classifier ensembles,

not only because a bias-variance-covariance decomposition of the classification

error is not unique [48], but also because the source of diversity can be extensive,

even within the same family of learning algorithms. Since there is no acknow-

ledged way of measuring diversity, in this thesis we look at qualitative ways of

recognising that two or more classifiers are diverse. To the purpose of provid-

ing a better understanding of the concept of model diversity, in this chapter we

investigate whether different types of model diversity in parametric models can

generate diverse classifiers. In order to understand what type of model diversity

can generate error diversity in ensembles of parametric probabilistic models, we

compare the performance of different classifier ensembles with the performance

of a single classifier approach, and we consider any improvement of the ensemble

generalisation error as we increase the number of base classifiers in the ensemble

as a way to recognise classifier diversity.

4.2 Why Combine Probabilistic Models?

In Chapter 2 we discussed traditional viewpoints on ensemble diversity. One of

the possible explanations for the success of ensemble techniques is based on the

bias-variance decomposition of the classification error. Within this context, the

Tumer & Ghosh framework shows that the performance of a linearly combined

ensemble depends on the correlation between base classifiers [86]. This framework
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for the analysis of the classification error suggests that we should linearly combine

classifiers with low bias and high variance if we want to reduce the variance of the

classification error [34]. Another possible explanation for the success of ensemble

techniques is given in terms of search through the space of models that can be

learnt within an ensemble. In a seminal paper [21] Dietterich suggests that an

ensemble approach might extend the space of learnable models H and achieve a

better estimate of the true model than the single classifier approach.

These two motivations anticipate that diversity between base classifiers is fun-

damental for the success of ensemble techniques, as there is no gain in combining

identical classifiers. However, these two viewpoints are implicitly concerned with

two different types of diversity: whereas the Tumer & Ghosh framework focuses

on error diversity, Dietterich’s interpretation is more general and encompasses

model diversity. Nevertheless, it is easy to infer that if base classifiers are differ-

ent models, they make different errors.

In this chapter we study the first type of diversity, that is model diversity.

To this aim, we focus on parametric probabilistic models, that is models that

minimise negative log-likelihood loss functions rather than error loss functions.

In particular we want to address Näıve Bayes classifiers, as these models have

shown to be able to compete with unstable classifiers such as decision trees [33].

At the same time, Näıve Bayes are stable classifiers, that is, they are characterised

by low variance, and as such, they do not seem to meet the requirements of

ensemble learning techniques. Nevertheless, studies have shown that the stability

of classifiers depends on various factors such as the size of the training set or the

inability of the model to solve the classification problem [78, 1, 77]. Moreover,

results have shown that AdaBoost can reduce the bias of Näıve Bayes ensembles

[28], and that Random Subspace methods can be modified to produce successful

ensembles of Näıve Bayes classifiers [83].

The rationale for focussing on this type of classifier is that these models have

the natural advantage of explicitly selecting the model bias, and therefore define

the boundaries of the hypothesis space H. If this space is large enough to con-

tain enough diverse models, it might be possible to combine them and achieve

better performance than the single classifier. Therefore, probabilistic models can

be used to understand the conditions under which classifier ensembles succeed in

outperforming single classifier approaches. The crucial question here is how do we

generate different models which are intrinsically stable? Probabilistic parametric
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models can either be parametrically different, that is, they model the same de-

pendencies between the same random variables, but they are fitted with different

parameter values, or they can be also be structurally different, that is, they model

different dependencies on the same/different random variables.

We study these two degrees of diversity by investigating two different ensemble

methods, Bagging and Random Subspaces [9, 45]. These two methods re-sample

the training data in two different ways. In fact, both these methods train each

base classifier on different replicas of the training set, but while Bagging samples

over the patterns keeping the feature space unchanged, Random Subspace keeps

the patterns unchanged and samples over the feature space. Our anticipation is

that these two methods may affect model diversity in two different ways.

4.3 Methodology

We evaluate the generalisation error of the single classifier and the generalisation

error of each ensemble technique according to a 5×2−fold cross-validation. Each

generalisation error e is measured as mean ē and 95% confidence interval over 5

repetitions of a 2-fold cross-validation. In particular the 95% confidence interval

is calculated by assuming that the statistic of interest is the proportion of error

e, and that this statistic follows a binomial distribution. Given a population

of size N , the 95% confidence interval for the generalisation error e is given by

e± zc
√
ē(1−ē)
N

, with critical value zc equal to 1.96 [7].

We now describe the classifier model, the ensemble techniques and the datasets

that have been evaluated in these experiments.

4.3.1 Classifier Model

For our analysis we take a Maximum A Posteriori (MAP) learning approach in

which our parametric model is represented by a joint probability distribution

p(X, Y,θ) = p(X|Y,θ)p(Y |θ)p(θ), where θ is the set of model parameters, and

p(θ) is the prior distribution over the set of model parameters. We choose con-

jugate priors to preserve the form of the parameter posterior distribution p(θ)

in the class posterior distribution p(θ|X, Y ). This model can learn from both

labelled and unlabelled data as described in Section 3.2.

The base model we choose for this analysis is a Gaussian Näıve Bayes classifier,
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i.e. a Näıve Bayes classifier with normally distributed continuous features and

covariance matrix p(X|Y ) = N (µ,Σ). The Näıve assumption restricts the cov-

ariance matrix to be diagonal. For simplicity we assume a uni-variate covariance

matrix, i.e. we adopt the identity matrix as the covariance matrix Σ = I. Since

the covariance matrix is fixed, the only unknown parameter of the class condi-

tional distribution is the mean µ: p(X|Y ) = N (µ). The class prior distribution is

a multinomial distribution p(Y |π) = Mult(π). The requirement of conjugate pri-

ors corresponds to assuming a normal distribution for the mean p(µ|µ0) = N (µ0)

and a Dirichlet distribution for the class prior p(π|α) = Dir(α). The joint model

can be written as:

p(X, Y,θ) = N (µ)Mult(π)N (µ0)Dir(α), (4.1)

and the class posterior distribution p(Y |X,θ) is then derived by applying Bayes

rule to Equation (4.1).

A preliminary set of experiments showed that the best way to initialise the

mean hyper parameter µ0 is to learn it from labelled data. The class prior

hyper parameter α has been set to the fixed value α = 10 for each class label.

Preliminary experiments also identified scaled conjugate gradient descent as the

most efficient way to learn the model parameters.

4.3.2 Ensemble Learning Approaches

We develop two different variants of Bagging: the first one – BaggingL, generates

replicas of the training data by sampling with replacement from labelled data

only; the second one – BaggingLU, generates replicas of the training data by

sampling with replacement from labelled and unlabelled data.

We develop a Random Subspace Method that trains each base classifier on

randomly selected feature subsets of the original feature subset. Each subset

contains half of the original features1 [45]. Each feature subset is sampled without

replacement from the original feature set. As a consequence, different subsets

might not be disjoint, and share a certain number of features.

We combine our base models according to the simple mean combination rule,

as a linear combination of Gaussian Näıve Bayes models is still a Gaussian Näıve

Bayes model. We compare Bagging and RSM with a single classifier trained on

1rounded to the nearest integer to systematically deal with odd feature numbers.
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the original training set.

4.3.3 Dataset Description

We test our model on three different datasets. Ringnorm and Uniringnorm are

artificial datasets, whereas Feltwell is a real dataset:

Uniringnorm Artificial dataset that represents a 2 class problem with 20 fea-

tures and 10000 patterns which have been generated from two uni-variate

normal distributions. This dataset is a model match for our classifier model,

as data belonging to class 1 has been generated from a uni-variate normal

distribution N (µ1,Σ1), with zero mean µ1 = [0, . . . , 0] and identity co-

variance matrix Σ1 = I and data from class 2 has been generated from a

uni-variate normal distributionN (µ2, I), with mean µ2 = [a, a, ..., a], where

a = 2√
20

and identity covariance matrix Σ2 = I.

Ringnorm Artificial dataset that implements Breiman’s Ringnorm example [10].

This is a 2 class problem with 20 features and 7400 patterns which have

been generated from two multivariate normal distributions. This dataset

represents a model mismatch problem for our classifier model, as one of the

two classes has not been generated from a uni-variate normal distribution

N (µ, I). In fact, whereas data from class 2 has been generated from a

normal distribution N (µ2,Σ2) with mean µ2 = [a, a, ..., a], with a = 2√
20

and identity covariance matrix Σ2 = I, data from class 1 has been generated

by a normal distribution N (µ1,Σ1) with zero mean µ1 = [0, . . . , 0] and

covariance matrix equal to four times the identity matrix Σ1 = 4 I.

Feltwell This real dataset has been generated by selecting 5124 patterns from

Feltwell, a collection of multi-sensor remote-sensing images of an agricul-

tural area near the village of Feltwell (UK). This dataset represents a 5 class

problem with 15 features. In this case the true probability distribution that

originated the data is not known.

4.3.4 Research Question

In this chapter we investigate how ensemble diversity is affected by two different

factors, that is the correctness of the model assumptions and the size of the

labelled training set. We further extend our investigation into ensemble diversity
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to a semi-supervised case scenario, where the training set consists of labelled

as well as unlabelled data. Our main research question is: What kind of model

diversity is sufficient to generate error diversity in ensembles of low variance

classifiers such as Näıve Bayes classifiers? and under which conditions can this

be observed?

4.4 Results

We now present the results obtained comparing ensembles of Näıve Bayes clas-

sifiers with a single Näıve Bayes classifier, and discuss the limitations of our

experimental study.

4.4.1 Bagging

Bagging is an ensemble method that trains base classifiers on datasets generated

by sampling with replacement from the original training set of a given problem.

From a model diversity perspective, this ensemble technique can only generate

parametric diversity between parametric probabilistic classifiers, assuming that

we are not varying the model parameters, as in this case the randomness comes

solely from the training data. For instance, parametric probabilistic models such

as a Näıve Bayes classifiers will simply learn two different sets of model parameters

if trained on two different replicas of the original training set. In fact, these Näıve

Bayes classifiers will share the same model assumptions, but will learn different

point estimates for their mean vector.

In this subsection we investigate Bagging ensembles of Näıve Bayes classifiers

in an attempt to answer the following question: Is parametric diversity sufficient

to generate diverse stable classifiers?

Figure 4.1 compares the test error of a BaggingL ensemble of 10 classifiers

with the test error of a single classifier on Uniringnorm dataset as the size of the

training set increases from 10 to 200 labelled patterns in the case scenario of a

model match between the true model that generated the data and our classifiers.

As we would expected, this figure shows that the main effect of increasing the

amount of training data is to reduce the test error of the ensemble and the test

error of the single classifier. This figure also shows that when the true model

g belongs to space of searchable hypotheses H and very little training data is

available, the ensemble approach shows a lower test error than the single classifier.
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Figure 4.1: Uniringnorm dataset (model match), supervised learning – Test error
(mean and 95% confidence interval) of BaggingL (blue line) and test error (mean
and 95% confidence interval) of the single model (red dashed line) as we increase
the amount of training data. Bagging outperforms the single classifier approach
only when the training set is relatively small.
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(a) 30 training patterns
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(b) 180 training patterns

Figure 4.2: Uniringnorm dataset (model match), supervised learning – Test error
(mean and 95% confidence interval) of the BaggingL ensemble (blue continuous
line) and test error (mean and 95% confidence interval) of the single classifier
(red dashed line) as we increase the amount of base classifiers in the ensemble for
a training set of 30 patterns (left) and 180 patterns (right). When the training
set is small (left) the ensemble outperforms the single classifier approach, as
the ensemble error decreases as we increase the number of components in the
ensemble.
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In this case scenario combining models with the right bias is more effective than

a single model approach, as the ensemble method may explore a larger portion

of the search space and therefore learn a closer approximation (i.e. closer point

estimates of the parameters) to the true model that generated the data. However,

as we increase the size of the training set, the single classifier shows comparable

performance to the ensemble.

To understand this behaviour we look at how the ensemble size affects the

test error when the training set is relatively small (i.e. 30 training patterns) and

when the training set is larger (i.e. 180 training patterns). Figure 4.2a shows that

with only 30 training patterns the ensemble test error decreases as we increase

the number of base classifiers and eventually outperforms the single classifier.

On the contrary, Figure 4.2b shows that with 180 training patterns the ensemble

error does not improve as we increase the number of classifiers in the ensemble.

The impact of the ensemble size on the ensemble error is illustrated for various

amount of training data in Figure A.1. As we increase the amount of training

data base classifiers become more accurate. However, this improvement in ac-

curacy corresponds to a reduction in variance, which cancels out the diversity

generated by the ensemble approach, as shown in Figure 4.2b: base classifiers

show similar accuracies to the single classifier but no diversity, as the confidence

intervals are quite small and averaging does not provide any improvement over

a single base classifier. In other words, for a model match problem under our

experimental conditions Bagging Näıve Bayes is only beneficial when the training

set is relatively small. From a model diversity perspective, parametric diversity

is beneficial only when base classifiers are unstable, that is when they are trained

on small training sets.

In this case scenario base classifiers are unbiased, because they match the

true model that generated the data, but they are correlated, as they are trained

on replicas of the same training set. If we think in terms of the bias-variance-

covariance decomposition of the classification error, Bagging seems to reduce the

variance of classifiers trained on very small training sets. However, as the number

of training data points increases, base classifiers become more stable and therefore

the ensemble approach does not improve over the single classifier approach. This

is in line with results obtained for linear discriminants [78], which show how

certain types of linear discriminant classifiers are unstable when the training set

is relatively small.
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We now ask ourselves the further question: What happens when we introduce

some form of model mismatch between the base classifiers and the true probability

distribution that generated the data?

Figure 4.3 compares the test error of a BaggingL ensemble of 10 classifiers with

the test error of a single classifier on Ringnorm dataset as the size of the training

set increases from 10 to 200 labelled patterns in the case scenario of a model

mismatch between the true model that generated the data and our classifiers.

The ensemble approach is outperformed by the single classifier approach for small

amounts of training data. As the size of the training data grows larger, the two

methods converge to the same solution.

The impact of the ensemble size on the ensemble error is illustrated in Figure

4.4 for training sets of 30 and 180 patterns, and for various amount of training

data in Figure A.3. As it is easy to inspect, increasing the number of base

classifiers has no effect on the ensemble test error.

Similar results have been found for Feltwell, whose graphs are shown in Fig-

ures 4.5, 4.6 and A.5. In this case scenario base classifiers and single classifier are

both biased. In particular, they are biased in the same way, since their mismatch

with the true model is identically chosen. The only difference between the single

and the base classifiers is in the training data they are provided. In fact, whereas

the single classifier is provided with a 5× 2-fold cross-validation repetition of the

original training set, the base classifiers are provided with a dataset sampled at

random with replacement from the repetition of the original training set. Since

the probability of a pattern of not being selected from a training set of N pat-

terns is p = (1 − 1
N

), therefore if N is large, the number of distinct patterns

sampled will be approximately 63.2% of the patterns provided to the single clas-

sifier [27, 9]. Since Näıve Bayes classifiers update their probability distributions

from distinct patterns, it follows that the reason why the single classifier out-

performs the ensemble is because the former is given a larger number of distinct

patterns. Moreover, base classifiers are correlated.

Our results show that when base classifiers are biased and correlated, and no

source of diversity is within the model, parametric diversity is not sufficient to

generate accurate and diverse classifiers, as the ensemble is always outperformed

by the single classifier. In particular, the model bias seems to cancel out the

improvement that could be gained from a small training set size. We conclude

that under these experimental conditions parametric diversity is not sufficient to
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Figure 4.3: Ringnorm (model mismatch), supervised learning – Test error (mean
and 95% confidence interval) of BaggingL (blue line) and test error (mean and
95% confidence interval) of the single model approach (red dashed line) as we in-
crease the amount of training data from 10 to 200 patterns. The ensemble slightly
outperforms the single classifier approach for increasing amounts of labelled data,
but it does not learn a better hypothesis estimate than the single classifier.
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(a) 30 training patterns
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(b) 180 training patterns

Figure 4.4: Ringnorm (model mismatch), supervised learning – Test error (mean
and 95% confidence interval) of BaggingL (blue continuous line) and test error
(mean and 95% confidence interval) of the single classifier (red dashed line) as
we increase the amount of base classifiers in the ensemble for a training set of 30
patterns (left) and 180 patterns (right).
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Figure 4.5: Feltwell supervised learning – Test error (mean and 95% confidence
interval) of BaggingL (blue line) and test error (mean and 95% confidence inter-
val) of the single model (red dashed line) as we increase the amount of training
data from 10 to 200 patterns. BaggingL shows similar performances to the single
classifier approach.
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Figure 4.6: Feltwell, supervised learning – Test Error (mean and 95% confidence
interval) of BaggingL test error (blue continuous line) and test error (mean and
95% confidence interval) of the single model approach (red dashed line) as we in-
crease the amount of base classifiers from 1 to 10 for a training set of 180 patterns.
The ensemble asymptotically reaches the base classifier performances as the num-
ber of base classifiers increases. This shows that the ensemble performance does
not depend on the ensemble size.
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generate enough diversity between stable classifiers, as the model stability reduces

as we increase the size of the training set. Moreover, the model bias affects the

ensemble performance. It has however to be pointed out that standard boot-

strapping techniques such as Bagging require also a larger source of randomness

from the training data in order to outperform the single classifier approach. Usu-

ally these bootstrap replicates (as well as the single classifier training set) are

obtained from a random subset of the original training set (usually 75%). This

way different repetitions of the validation procedure will share less samples, and

eventually base classifiers will be less correlated.

4.4.2 Random Subspaces

The Random Subspace ensemble Method (RSM) generates diverse classifiers by

training base classifiers on random subspaces of the original feature space. This

ensemble technique introduces a form of feature model diversity, as it builds mod-

els with the same structure on different feature random variables.

Figure 4.7 compares the test error of a RSM ensemble of 10 Näıve Bayes

classifiers with the test error of a single classifier on Uniringnorm dataset as the

size of the training set increases from 10 to 200 labelled patterns. It has to

be pointed out that whereas the former base classifiers have been trained on a

random subset (50%) of the feature space, the latter has been trained on the

whole feature space. This figure shows that although the single test error and

the ensemble test error decrease as we increase the size of the training data, the

ensemble is always outperformed by the single classifier.

Figure 4.8 illustrates how the ensemble size affects the test error when base

classifiers are trained on dataset of 180 patterns. This figure shows that base

classifiers are much less accurate than the single classifier, as the first base clas-

sifier is 25% inaccurate on the test error, whereas the single classifier is at least

7% more accurate than the first base classifier. In this case the ensemble error

decreases with the number of averaged base classifiers, although it never reaches

the performance of the single classifier. This behaviour can be observed for dif-

ferent amounts of training data in Figure A.2. This result seem to indicate that

RSM cannot outperform the base classifier approach because base classifiers are

diverse but not accurate enough to improve over the single classifier. It is worth

pointing out that for a training set of 180 patterns Bagging shows the opposite

behaviour (Figure 4.2b), as it generates accurate but not diverse classifiers. One
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Figure 4.7: Uniringnorm (model match), supervised learning – Test Error (mean
and 95% confidence interval) of RSM (blue line) and test error (mean and 95%
confidence interval) of the single classifier (red dashed line) for increasing size of
the training data. The RSM never outperforms the single classifier approach.
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Figure 4.8: Uniringnorm (model match), supervised learning – Test error (mean
and 95% confidence interval) of RSM (blue continuous line) and test error (mean
and 95% confidence interval) of the single model approach (red dashed line) as
we increase the amount of base classifiers from 1 to 10 for a training set of
180 patterns. The ensemble asymptotically reaches the performance of the single
classifier as the number of base classifiers increases. This shows that the ensemble
performance is positively affected by the ensemble size.
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of the possible reason for this behaviour is that by generating base classifiers

from random subspaces of the feature set, we are actually introducing a model

mismatch between the base classifiers and the true model which generated the data.

Therefore, the test error of base classifiers will be higher than the test error of a

single model. In fact the latter matches the true model as it can learn from the

whole feature set.

In this case scenario the single base classifier is unbiased, whereas the base

classifiers are biased since they are trained on random subsets of the feature

set and therefore learn different sub-models. Moreover these base classifiers are

correlated as they are trained on overlapping feature subsets sampled from the

same training set. Nevertheless, Figure 4.8 shows an interesting fact: it is possible

to reduce the ensemble test error by combining low variance base classifiers. In

other words, feature diversity seems to produce diverse base classifiers, although

their high bias does not allow them to outperform the single classifier approach.

We now ask ourselves the further question: what happens when we introduce

some form of model mismatch between the base classifiers and the true probability

that generated the data?

Figure 4.9 compares the test error of RSM with the test error of the single

model approach in Ringnorm dataset, for increasing amounts of training data.

The Figure shows that overall, introducing some form of model mismatch between

the single and base classifiers results in the ensemble method performing similarly

to the single classifier for any amount of training data.

A comparison between RSM (Figure 4.9) and Bagging (Figure 4.3), shows

that RSM is more accurate than Bagging on the model mismatch problem. This

result seems to indicate that RSM, which introduces some extra form of model

mismatch between base classifiers, is more successful than Bagging which on the

contrary does not introduce any further model mismatch. This behaviour can

be explained by looking at the effects of the ensemble size on RSM classification

error. If we look at the ensemble test error as we increase the number of base

classifiers (as depicted in Figure 4.10 for a training set of 180 labelled patterns),

it is easy to conclude that the RSM error decreases as we increase the number

of base classifiers, despite base classifiers showing low variance and a higher bias

than the single classifier. This is true for various amounts of training data, as

illustrated in Figure A.4. A further comparison between Figure 4.10 and Figure

4.4b seems to indicate that the RSM base classifiers are more diverse than the
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Figure 4.9: Ringnorm (model mismatch), supervised learning – Test error (mean
and 95% confidence interval) of RSM (blue line) and test error (mean and 95%
confidence interval) of the single model approach (red dashed line) for increas-
ing size of the training data. The RSM never outperforms the single classifier
approach.
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Figure 4.10: Ringnorm (model mismatch), supervised learning – RSM test error
(blue continuous line) and single model approach test error (red dashed line)
as we increase the amount of base classifiers from 1 to 10 for a training set of
180 patterns. The ensemble asymptotically reaches the performance of a single
classifier as the number of base classifiers increases. This shows that the ensemble
performance is positively affected by from the ensemble size.
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Bagging base classifiers. In fact, whereas Bagging base classifiers show similar

levels of generalisation error, a linear combination of these base classifiers do not

seem to improve the generalisation error of the ensemble as the number of clas-

sifiers increases from 1 to 10. On the other hand, the generalisation error of a

linear combination of the RSM base classifiers is positively affected by the size of

the ensemble, as the ensemble generalisation error decreases as we increase the

number of classifiers from 1 to 10. This result confirms the general idea that a

model mismatch between base classifiers is beneficial to the ensemble perform-

ance. It also shows an interesting aspect of low variance classifiers: that diversity

between low-variance base classifiers lies within the structure of the model, and

not within the training data. Similar results have been found for Feltwell, the real

dataset of which the true distribution is not known. These results are shown in

Figures 4.11, 4.12 and A.6.

In the model mismatch case scenario base classifiers and single classifier are

both biased. In particular, they are biased in a different way, as the single classifier

models the whole feature space, whereas the base classifiers model only subsets

of the feature space. Moreover, base classifiers are correlated. Our results seem

to indicate that when base classifiers are biased and correlated, feature diversity

can generate diverse, but not sufficiently accurate stable classifiers. This diversity

becomes more and more evident as we increase the mismatch between the true

model and the base models. However, RSM never outperforms the single classifier

approach. A possible reason for that could be that the random selection of

features might negatively affect the negative log-likelihood parameter estimation.

In fact, it might be the case that the randomly selected features might not be

relevant to the estimate of the class posterior distribution, whereas certain feature

combinations might be more effective. In other words, a more informative way

of selecting random subsets of features might be beneficial to the aim of building

accurate classifiers.

We conclude that feature diversity can generate enough diversity between stable

classifiers, but base classifiers are not sufficiently accurate to improve over the

single classifier approach. Nevertheless, our experimental results point out that

further diversity, in the form of dependency structure rather than feature struc-

ture might increase diversity among base classifiers.

We now look at another factor that might affect classifier diversity, i.e. the

large availability of unlabelled training data.
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Figure 4.11: Feltwell supervised learning – Test error (mean and 95% confidence
interval) of RSM (blue line) and test error (mean and 95% confidence interval)
of the single model approach (red dashed line) for increasing size of the training
data. The RSM shows similar accuracy to the single classifier approach.
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Figure 4.12: Feltwell, supervised learning – Test error (mean and 95% confidence
interval) of RSM (blue continuous line) and test error (mean and 95% confidence
interval) of the single model approach (red dashed line) as we increase the amount
of base classifiers from 1 to 10 for a training set of 180 patterns. The ensemble
asymptotically reaches the performance of the single classifier as the number of
base classifiers increases. This shows that the ensemble performance is positively
affected by the ensemble size.
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4.4.3 Does Unlabelled Data Help?

As we pointed out in Section 3.2, probabilistic models (such as Näıve Bayes

classifiers) can naturally learn from labelled and unlabelled data. The question

we want to investigate here is: Can unlabelled data improve diversity in ensembles

of stable classifiers?

Parametric Diversity?

Figures 4.13, 4.14 and 4.15 study the effect of unlabelled data on parametric

diversity, and more precisely on Bagging ensembles for the three different case

scenarios of a model match, a model mismatch and a real dataset. The respective

graphs that show the effects of the ensemble size on the classification accuracy

are shown in Figures A.7, A.8, A.10, A.11 A.13, A.14 for different amounts of

training data.

Figure 4.13 compares the test error of a Bagging ensemble to the test error of

a single classifier on Uniringnorm (model match) when models are trained on a

fixed amount of unlabelled data for increasing amounts of labelled data. This fig-

ure shows that Bagging labelled data (Figure 4.13a) shows identical performance

to Bagging from labelled and unlabelled data (Figure 4.13b). Since classifiers are

unbiased, adding unlabelled data to the training set has the effect of increasing

the accuracy of base and single classifier models. However, it has also the effect

of reducing the variance of these classifiers, and therefore there is no gain in av-

eraging identical classifiers, as shown in Figure A.7 and A.8 for different amounts

of training data.

Figure 4.14 compares the test error of a Bagging ensemble to the test error

of a single classifier on Ringnorm (model mismatch) when models are trained

on a fixed amount of unlabelled data for increasing amounts of labelled data.

This figure shows that adding unlabelled data worsens both the single and the

ensemble performance, and therefore adding unlabelled data has a negative effect

on biased classifiers, whereas it has a positive effect if the model are unbiased.

These results seem to confirm the idea that unlabelled data can be harmful when

the model assumptions are wrong [66, 18]. This effect is even more evident if

we sample with replacement from both labelled and unlabelled data, as in this

case the bias of the ensemble test error is slightly worse than the test error of

the single classifier (Figure 4.14b). If we look at the ensemble performance as we

increase the number of base classifiers (Figures A.10 and A.11) we conclude that
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Figure 4.13: Uniringnorm (model match), semi-supervised learning – Test Error
(mean and 95% confidence interval). On the left [right]: BaggingL (labelled data
only) [BaggingLU (labelled and unlabelled data)] (blue line) and single classifier
(red dashed line) for increasing size of the labelled training data.
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(b) BaggingLU

Figure 4.14: Ringnorm (model mismatch), semi-supervised learning – Test Error
(mean and 95% confidence interval). On the left [right]: BaggingL (labelled data
only) [BaggingLU (labelled and unlabelled data)] (blue line) and single classifier
(red dashed line) for increasing size of the labelled training data.
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(b) BaggingLU

Figure 4.15: Feltwell, semi-supervised learning – Test Error (mean and 95% con-
fidence interval). On the left [right]: BaggingL (labelled data only) [BaggingLU
(labelled and unlabelled data)] (blue line) and single classifier (red dashed line)
for increasing size of the labelled training data.
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Bagging does not generate error diverse Näıve base classifiers when the model

assumptions are wrong.

Finally Figure 4.15 illustrates the Bagging results for Feltwell. Again, if we

look at how the ensemble size affects the ensemble error (Figures A.13 and A.14)

it follows that in ensemble techniques such as bagging, which can only produce

parametric diversity, unlabelled data seem to adversely affect ensemble diversity.

Feature Diversity?

Figures 4.16, 4.17 and 4.18 study the effect of unlabelled data on feature diversity,

and more precisely on RSM ensembles for the three different case scenarios of a

model match, a model mismatch and a real dataset. The respective graphs which

show the effects of the size of the ensemble on the classification accuracy are

shown in Figures A.9, A.12 and A.15, for different amounts of training data.

Figure 4.16 compares the test error of a RSM ensemble to the test error of

a single classifier on Uniringnorm (model match) when models are trained on a

fixed amount of unlabelled data for increasing amounts of labelled data. This

graph shows that even if we add unlabelled data, there still exists a negative bias

between the single classifier and the base classifier models. Figure A.9 shows how

even with unlabelled data, base classifiers are less accurate than a single classifier,

yet diversity is maintained between base classifiers.

Figure 4.17 compares the test error of a RSM ensemble to the test error

of a single classifier on Ringnorm (model mismatch) when models are trained

on a fixed amount of unlabelled data for increasing amounts of labelled data.

This graph shows that as we increase the amount of training data both the

ensemble and the single model approach test error decrease accordingly. For

every amount of labelled training data, the test error of the RSM ensemble is

higher than the test error of the single classifier and than the test error of any

Bagging ensemble. This result is in contrast with the analogous result obtained for

the supervised case scenario, where the RSM technique outperforms the Bagging

technique. Since the supervised and the semi-supervised problems differ only

on the training data, we conclude that unlabelled data effectively harms the

ensemble performances, other than the single classifier. Figure A.12 illustrates

the test error of the RSM ensemble with the test error of the single classifier

as we increase the size of the ensemble from 1 to 10 classifiers. If we compare

Figure A.12 with Figure A.10, we observe that the base classifiers of the RSM
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Figure 4.16: Uniringnorm (model match), semi-supervised learning – Test Error
(mean and 95% confidence interval) of the RSM (blue line) and of the single
classifier approach (red dashed line) for increasing size of the labelled training
data.
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Figure 4.17: Ringnorm (model mismatch), semi-supervised learning – Test Error
(mean and 95% confidence interval) of the RSM (blue line) and of the single
classifier approach (red dashed line) for increasing size of the labelled training
data.
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Figure 4.18: Feltwell, semi-supervised learning – Test Error (mean and 95% con-
fidence interval) of the RSM (blue line) and of the single classifier approach (red
dashed line) for increasing size of the labelled training data.
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ensemble are less accurate than the base classifiers of the BaggingL ensemble, but

unlike in the supervised scenario in Figure 4.10 the RSM base classifiers do not

seem diverse, as the test error of the ensemble does not decrease as we increase

the amount of base components. The RSM ensemble method combines simpler

models than the BaggingL ensemble method since it trains each base classifier on

random subspaces of the feature space. However the mismatch introduced by the

RSM technique is not enough to build diverse classifiers from both labelled and

unlabelled data. In fact, the variance of base models decreases with the size of

the training data. This result is in line with the ideas that unlabelled data can

harm the classification performances, and that increasing the amount of training

data acts as a variance reducing factor between classifier models.

Figure 4.18 compares the test error of a RSM ensemble to the test error of

a single classifier on Feltwell (real dataset) when models are trained on a fixed

amount of unlabelled data for increasing amounts of labelled data. In this case,

where the model mismatch is not known, the test error of the RSM ensemble is

very similar to the test error of the single classifier. Figure A.15 illustrates the

test error of the RSM ensemble with the test error of the single classifier as we

increase the size of the ensemble from 1 to 10 classifiers. The model mismatch is

such that base classifiers always show some level of diversity.

We conclude that ensemble techniques such as RSM, which can produce some

level of structural diversity, are adversely affected by unlabelled data in a way that

the accuracy of the model is reduced, but not the diversity.

4.5 Discussion

In this chapter we study in detail how different levels of model diversity affect

error diversity in low variance classifiers such as Näıve Bayes classifiers. To this

aim, we generate artificial datasets representing respectively a model match and

a model mismatch case scenario and we use two different ensemble learning tech-

niques to explicitly focus on the effects of parametric and feature diversity on the

generalisation performance of the ensemble.

Our experimental results, which are summarised in Table 4.1, seem to indic-

ate that models which are simply characterised by parametric diversity (such as

in our Bagging implementations) do not seem to be enough diverse to generate

error diversity between base classifiers. This result can be explained by the fact
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Table 4.1: Summary of the effects of different types of model diversity on error
diversity for low-variance classifiers in model match and model mismatch super-
vised case scenarios.

Diversity Type Model Match Model Mismatch

Parametric

Classifiers are diverse for
small datasets only, where
the ensemble error de-
creases with the number of
base classifiers and eventu-
ally outperform the single
classifier. As we increase
the size of the training
set, base classifiers become
more stable and therefore
less diverse. Parametric
diversity alone does not
seem to generate diverse
classifiers.

Classifiers are not diverse,
as the ensemble error does
not decrease as we increase
the number of base clas-
sifiers. The model mis-
match seems to negatively
affect the overall diversity
of the base classifiers for
any amount of training
data. Parametric diversity
alone does not seem to gen-
erate diverse classifiers.

Feature

The ensemble never outper-
forms the single classifier
approach, but the ensemble
error decreases as we in-
crease the number of base
classifiers. The (feature)
structural model mismatch
seems to preserve diversity
between base classifiers.

The ensemble never out-
performs the single classi-
fier approach, but the en-
semble error decreases as
we increase the number of
base classifiers. The struc-
tural model mismatch does
not negatively affect the en-
semble diversity.

that Näıve Bayes classifiers are low variance classifiers, and they therefore show

some unstable behaviour only when base classifiers are trained on relatively small

datasets. This behaviour is only evident when there is a model match between

the classifier and the true model that generated the data. As soon as any form of

model mismatch is introduced, the ensemble will tend to have the same general-

isation ability as the single classifier, and the advantage of the ensemble method

over the single classifier approach is cancelled out by the model mismatch. It has

to be pointed out that the bootstrapping technique that we used in our experi-

ments might have been improved, as for instance by bootstrapping on a random

subset of the training set rather than the full dataset. However, the aim of the

experiment was simply to assess whether under certain reproducible conditions
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parametric diversity was sufficient to build error diverse classifiers.

On the other hand, building classifiers from random subsets of the feature

space (as in RSM) has shown to be much more likely to generate error diverse

base classifiers. More importantly, a certain level of model mismatch between base

classifiers and the underlying distribution does not seem to negatively affect the

ensemble generalisation error. It has been observed that despite base classifiers

being low variance classifiers, the ensemble error decreases as we increase the

number of base classifiers. Nevertheless, base classifiers which are trained on

random subsets of the feature space have a higher bias (and therefore a larger

generalisation error) than a single classifier trained on the full feature space, and

although a linear combination of these models seems to reduce the generalisation

error of the ensemble, the linear combination does not seem to make the classifier

ensemble outperform the single classifier.

The effect of adding unlabelled data has the major effect of reducing the

variance of base classifiers, as well as introducing some extra model bias which

is due to the model mismatch. As a consequence, unlabelled data has the major

drawback of reducing the ensemble diversity.

Overall, our experimental results for low variance classifiers such as Näıve

Bayes classifiers seem to point out towards the direction of structural diversity,

such as feature diversity, but more importantly, towards diversity of model de-

pendencies.

4.6 Chapter Summary

In this chapter we embarked on an empirical study of diversity for ensembles of

Näıve Bayes classifiers [100] in an attempt to study model diversity rather than

error diversity.

The question we empirically tried to address in this chapter is the following

one: Is parametric diversity sufficient to build accurate and diverse ensembles of

Näıve Bayes classifiers? To this aim we investigated Bagging, a technique which

builds ensembles of parametrically diverse Näıve Bayes classifiers and Random

Subspaces, a technique which builds ensembles of Näıve Bayes classifiers on dif-

ferent subsets of the feature space. The latter method generates models which

are feature diverse as it builds base models with the same dependency struc-

ture on different feature subsets. Our experimental results show that parametric
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diversity as generated with our Bagging techniques is not sufficient to generate

error diversity, as Bagging tends to generate accurate but stable classifiers. On

the other hand, Random Subspaces generates error diverse but not sufficiently

accurate classifiers to outperform the single classifier approach.

Our major conclusion is that ensembles of low variance classifiers such as

Näıve Bayes classifiers benefit most from a combination of structurally diverse

stable models rather than parametrically diverse stable models. Our empirical

investigation seems to point out that diversity has to lie in the structure of stable

classifiers. A key question here is “How do we choose diverse model structure in

a sensible way?” We address this question in Chapter 6, where we show that

interaction information can be used to build structurally diverse ensembles.



Chapter 5

An Interaction Information

Perspective on Ensemble

Learning

In Chapter 3 we introduced interaction information as a framework to under-

stand the trade-off between ensemble accuracy and diversity in terms of interac-

tions (correlations) between base classifier outputs [12]. Moreover, we proposed

Bayesian networks as the natural candidate for graphically representing pairwise

dependencies between the random variables of a joint probability distribution

[32].

In this chapter we propose an empirical investigation of the following hypo-

theses: Is interaction information a good measure of the trade-off between the

ensemble accuracy and the base classifier diversity?, and if so, Can we model an

ensemble as a Bayesian Network? Since Bayesian networks can only model pair-

wise interactions, this question can also be rephrased as: Is diversity a pairwise

measure, that is, can we discard higher order interactions? To answer these ques-

tions, we expand the mutual information of the joint outputs of the base classifi-

ers and the true class label into all possible interaction terms, and we investigate

these interaction terms for increasing values of the base classifier accuracy and

for increasing values of the ensemble accuracy when base classifiers are combined

via majority vote. We anticipate that our experimental results support the idea

that higher order terms cannot be discarded, and therefore, it is not possible to

model an ensemble with a Bayesian Network.
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5.1 Modelling Ensembles via Bayesian Networks

Since different classifiers would give different outputs if provided with the same

inputs, we can think of the outputs of base classifiers as random variables which

are the result of some transformation of the input random variables.

We now make the assumption that we can abstract classifiers in terms of

their outputs, that is, we can represent a classifier f solely in term of its output

random variable X. In this chapter we adopt the random variable X for base

classifier outputs to highlight the distinction between the estimates X of the true

class random variable, and the true class random variable Y . For an ensemble

of M base classifiers, we would have M random variables X1, . . . , XM and the

true class label random variable Y . We now take this idea one level up, and we

conjecture that the base classifier outputs X1, . . . , XM form a Bayesian network

with the true class label Y .

There are two main reasons we would like to model an ensemble with a

Bayesian network. First of all, this conjecture would imply that pairwise depend-

encies are able to model relationships between base classifiers, and that higher

order interactions, which are hard to estimate in practice, can be reasonably

discarded. Secondly it would be possible to apply a whole range of learning

methods based on mutual information to select the base classifiers showing the

most informative outputs with the true class. For instance, we could apply fea-

ture selection algorithms such as Markov Blanket discovery algorithms to identify

the optimal subset of base classifiers from their outputs.

We now use the decomposition of the mutual information of a joint set of ran-

dom variables in terms of multivariate information terms to investigate whether it

is possible to abstract an ensemble in terms of a Bayesian network, and whether

the same decomposition can be used to monitor the trade off between the en-

semble accuracy and diversity.

5.2 Monitoring Ensembles via Interaction In-

formation

Despite the notion of diversity being far from being completely understood [76,

58], an empirical investigation has shown that by forcing diversity between base

classifiers with identical accuracy there exists a relationship between the ensemble
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accuracy and the base classifier diversity [56].

In this chapter we study the relationship between the ensemble accuracy and

the base classifier diversity from an information theoretic perspective, that is, by

analysing the mutual information of the joint set of base classifier outputs and

the true class label in terms of interaction information terms between the same

random variables.

In particular, we consider ensembles of three base classifiers. We recall from

Section 3.5 that the mutual information between the joint distribution of three

base classifier output random variables X1, X2 and X3 and the true class label Y

can be decomposed into the sum of three levels of interactions:

I(X1:3;Y ) =
3∑
i=1

I(Xi;Y ) +
3∑
i=1

∑
j 6=i

I(Xi, Xj, Y }) + I({X1, X2, X3, Y }) . (5.1)

The first term of Equation (5.1) encapsulates the relevancy of each base classifier

output to the true class label, and is a measure of each single base classifier

accuracy. The second term, which sums up the second order interactions between

pairs of base classifiers and the true class, measures the pairwise interactions

between base classifier outputs. This second order interaction term can be written

as the difference between two mutual information quantities, that is the second

order redundancy and the second order conditional redundancy, as:

3∑
i=1

∑
j 6=i

I({Xi, Xj, Y }) =
3∑
i=1

∑
j 6=i

I(Xi;Xj|Y )−
3∑
i=1

∑
j 6=i

I(Xi;Xj) . (5.2)

The first term in the right hand of Equation (5.2) is a measure of how two classifier

outputs are correlated given that we have observed the true class labels, whereas

the second one is a measure of how two classifier outputs are correlated. Whereas

the first order interaction is a measure of performance of individual classifiers,

this second order interaction, as in Equation 5.2, can be thought of as a measure

of the “two-way diversity”.

The third term of Equation (5.1) accounts for the interactions between all

the three base classifiers and the true class label. Similarly to the second order

interaction, this term can be thought of as a measure of the “three-way diversity”

of the ensemble. As we pointed out in the previous section, if we make the

assumption that an ensemble can be modelled by a Bayesian network, we also
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make the implicit assumption that third order interactions can be discarded.

Therefore, if third order interactions have a significant effect on monitoring the

interaction information of a joint set of random variables, it follows that ensembles

can only be approximately modelled by Bayesian networks, and that mutual

information cannot completely explain the ensemble behaviour.

5.3 An Empirical Study

We now empirically investigate the relationship between ensemble accuracy and

base classifier diversity in terms of interaction information for the case of en-

sembles with three base classifiers with similar accuracies and combined according

to majority vote.

The choice of the number of classifiers and the combination rule are the same

as in an example that can be found in Kuncheva’s book [57, Chapter 4.2.2 and

10.3.1] concerning the study of the limits of the majority vote ensemble accur-

acy and the study of a relationship between ensemble accuracy and base classifier

diversity. However, this choice is also suitable for our study of interaction inform-

ation, as by restricting the number of base classifiers to three, the decomposition

stops at the third order interaction term and therefore there is no need for higher

order interactions, which are hard to estimate in practice. The majority vote is a

combination rule that can be associated with missing information as, in order to

make a correct ensemble prediction, only M
2

+ 1 classifiers out of M have to be

correct. The information in the remaining classifiers remains unused. Therefore,

it might be the case that interaction information might be useful when dealing

with this case of missing information [12].

5.3.1 Experimental Settings

We test 500, 000 ensembles of three base classifiers on 10 patterns. Base classifier

outputs are combined via majority vote. We artificially generate ensembles of

base classifiers with identical accuracy, ranging from ensembles of 50% accurate

base classifiers to ensembles of 90% accurate base classifiers. In order to gener-

ate a representative sample of different output vectors from where to calculate

interaction information, we restrict the number of patterns to 10 data points. In

fact, to the extent of measuring interaction information terms, the actual value

and order of the 10 outputs matter, as we are measuring interaction informations
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between ordered output vectors. However, it has to be pointed out that such

a small number of data points adversely affects the reliability of the interaction

information estimates.

The ensemble accuracy of base classifiers with identical accuracy combined

according to majority vote has upper and lower bounds which depend on the

number of classifiers and on the accuracy of the base classifiers [59]. In particular

the ensemble accuracy of three base classifiers which are 50% accurate ranges

between 25% and 75%, whereas the ensemble accuracy of three base classifiers

which are 90% accurate ranges from 85% to 100%. With only 10 data points the

ensemble accuracy can only range from 30% to 100% with 10% intervals, as with

only 10 test patterns it is not possible to generate a continuous space of possible

accuracies but only multiples of 10%.

5.3.2 Results

We study first, second and third order interactions for (a) increasing values of

base classifier accuracy and (b) for increasing values of ensemble accuracy. It has

to be pointed out that Equation (5.1) decomposes the mutual information of the

joint set of base classifier outputs in terms of interaction information between

the same outputs, that is, it actually does not take into account the combination

rule. This implies that by relating these quantities to the ensemble accuracy we

are actually making the assumption that the application of the majority vote rule

does not affect the results.

Figure 5.1 shows the first order interaction information (relevancy), second

order interaction information and third order interaction information terms of

ensembles of three base classifiers as we increase the base classifier accuracy from

50% to 90%. The bar chart shows the mean and the standard deviation val-

ues over 100, 000 ensembles. The relevancy of the base classifiers increase as we

increase the accuracy of base classifiers, since the relevancy is the sum of the

mutual information between each base classifier output and the class label, and

since mutual information has been shown to be a proxy to classification accuracy

[29, 44]. The relevancy shows a small standard deviation. On the other hand, the

second order interaction term decreases considerably as we increase the accuracy

of the base classifiers, going from being positive when base classifiers are like ran-

dom guess or slightly better than random guess (that is, weak classifiers), to being

negative for very accurate base classifiers. The third order interaction seems to be
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Figure 5.1: First, second and third order interaction terms (mean and standard
deviation) for three base classifiers as the base classifier accuracy increases from
50% to 90%
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Figure 5.2: Second order redundancy and second order conditional redundancy
(mean and standard deviation) for three base classifiers as the base classifier
accuracy increases from 50% to 90%
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negligible and close to zero for nearly all the accuracy values but the 90% accurate

base classifiers. However the standard deviation overlaps among classifiers with

different accuracies, and therefore no conclusions can be drawn. Figure 5.2 shows

the second order interaction between base classifiers in more detail, by separating

the second order redundancy from the second order conditional redundancy as

described in Equation (5.2). The redundancy term increases (in absolute value)

as we increase the accuracy of the base classifiers, showing that more accurate

base classifiers are less diverse, whereas the conditional redundancy, which is a

measure of how likely pairs of base classifiers are given the class, decreases. This

behaviour makes sense if we recall from Section 3.5 that interaction information

can be used as a way to explain the trade off between accuracy and diversity.

We now focus on the relationship between the ensemble accuracy and the

interaction terms of Equation (5.1). Figure 5.3 shows the first order interaction

information (relevancy), second order interaction information and third order

interaction information terms of three base classifiers ordered according to the

accuracy of the ensemble they generate when combined according to majority

vote. The bars are ordered for increasing values of the ensemble accuracy, varying

from 30% to 100% accurate ensembles. The relevancy of the base classifiers

increases with the accuracy of the ensemble, whereas the mean of the second

order interaction term seems to be constant for ensembles which are accurate up

to 70%, but it then decreases and become negative for very accurate ensembles.

If we observe the third order interaction, we notice that the mean of this term is

actually non-zero, although the standard deviations are very high. If we focus on

the second order redundancy and conditional redundancy as shown in Figure 5.4,

we find that this graph shows a similar behaviour to Figure 5.2, if we restrict our

attention to the same range of accuracy. The higher variability shown in Figures

5.3 and 5.4 is due to the fact that the number of sets of base classifiers contributing

to each bar in these figure is variable, whereas it was constant in the bar charts

of interaction information in terms of the base classifier accuracies. In particular

the distribution of the ensemble accuracies for each base classifier accuracy is

normally distributed around the base classifier accuracy, making it more difficult

to generate ensembles whose accuracy is near to the accuracy bounds of majority

vote.
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Figure 5.3: Relevancy, second order interaction information and third order in-
teraction information as (mean and standard deviation) for an ensemble of three
base classifiers combined via majority vote, as the ensemble accuracy increases
from 30% to 100%
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Figure 5.4: Second order redundancy and second order conditional redundancy
(mean and standard deviation) for an ensemble of three base classifiers combined
via majority vote, as the ensemble accuracy increases from 30% to 100%
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Our experimental results seem to point out that first and second order in-

teractions show that interaction information can be used to monitor the trade-

off between accuracy and diversity of an ensemble of three base classifiers with

identical accuracy. Moreover, they also show that non-pairwise, i.e. higher order

interactions, are significant and cannot be discarded, as they contribute towards

the way base classifiers interact. This result seems to confirm that diversity plays

a role at different levels in ensembles, and seems to indicate that Bayesian net-

works, models that only assume pairwise interactions between random variables,

can only approximately model the existing relationships between more than two

base classifiers.

5.4 Chapter Summary

In this chapter we proposed an experimental analysis of the decomposition of the

joint distribution of the ensemble base classifier outputs in terms of all possible

levels of interactions between the base classifiers. Despite their limitations, our

experimental results seemed to point out how first and second order interactions

between three base classifier outputs can be used to monitor the trade-off between

accuracy and diversity when base classifiers show similar accuracy. Moreover,

they also highlighted that that non-pairwise interactions cannot be discarded in

the understanding of ensemble diversity. This implies that Bayesian networks can

only approximately model the existing interactions between base classifiers, and

that Bayesian network learning algorithms such as Markov Blanket discovery

algorithms or Bayesian network interpretations of combination rules can only

approximately model ensemble learning approaches. In fact, diversity seem to

play a role at different levels in classifier ensembles. In the next chapter we make

use of interaction information to build classifier ensembles.



Chapter 6

Interaction Information for

Ensemble Model Selection

In this chapter we empirically investigate two interaction information properties

– sign and permutation invariance, and we show how these properties can be used

to build ensembles in a more efficient way. More specifically, we try to address

two main research questions: Can we make use of the interaction information

sign and permutation invariance to build more efficient classifiers? and, How

can we make use of these classifiers in an ensemble framework?

To this aim, we first focus our attention on two structurally different classes

of Bayesian Networks, that is, fork augmented Näıve Bayes classifiers and collider

augmented Näıve Bayes classifiers, and we empirically investigate whether (a) the

sign of interaction information is a good predictor of the most accurate model

and (b) whether this prediction is preserved by averaging over all possible models

within the same model class.

We then propose a novel ensemble method which combines averaged augmen-

ted Näıve Bayes classifiers from random subsets of the feature space which have

been chosen according to the sign of the interaction information shared between

the feature subset. We study the impact of this ensemble method on the overall

ensemble accuracy and on the training time by comparing this method with the

corresponding accuracy based ensemble approach. Our experimental results show

that not only do both methods exhibit a comparable generalisation performance,

but that our method is computationally more efficient.
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6.1 Single Model Selection

In Section 3.5.3 we studied the relationship between the Markov property of a

set of three random variables and the sign of the interaction information shared

between the same set of random variables. In this section we propose a possible

application of this property to the problem of model selection for classification.

We restrict our analysis to augmented Näıve Bayes models for two main reas-

ons. The first one is that Näıve Bayes models are particularly suited for classi-

fication problems, as every feature is statistically dependent on the class label,

and therefore every feature contributes to the estimation of the class posterior

distribution. The second one is that augmenting a Näıve model with extra de-

pendencies might be a more realistic assumption than considering every feature to

be statistically independent from each other. Since Näıve Bayes has been shown

to compete with classifiers requiring less restrictive assumptions, such as decision

trees, relaxing the näıve assumption might have a positive effect on classification

accuracy [32].

More specifically we study two different augmented Näıve Bayes classifiers

with only three features. The first model class makes the assumption that the

features are connected into a fork structure (which is a Markov chain), whereas

the second model class makes the assumption that the features are connected into

a collider structure (which is a non Markov chain). For clarity of exposition we

respectively refer to these networks as fork Augmented Näıve Bayes (forkANB)

and collider Augmented Näıve Bayes (colliderANB). The probabilistic graphical

models associated with these models are shown in Figure 6.1. These are two out of

three possible augmented Näıve Bayes models that can be generated by assuming

that the features factorise into one of the three dependency scenarios described in

Section 3.5.3. Since interaction information does not let us distinguish between

the two different types of Markov chain (i.e. fork and chain), we opt out for the

fork configuration at this model has been widely used in augmented Näıve Bayes

studies [89, 94, 95, 96]. For three feature random variables X1, X2, X3, there are

three ways of permuting features in a fork configuration, as well as three ways of

permuting features in a collider configuration. If we restrict our space of possible

models H to be the union of all possible forkANBs and all possible colliderANBs,

the size of learnable models is |H| = 6.

As we discussed in Chapter 3 probabilistic modelling is primarily concerned

with learning the true model that generated the data at hand. If the right model
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Figure 6.1: Two different ways of augmenting a Näıve Bayes classifier by assuming
a fork (left) or a collider (right) dependency structure for the feature set X1, X2

and X3. In the fork case the features form a Markov chain, whereas in the collider
case, features do not form a Markov chain.

was known, this knowledge would have a positive effect on the generalisation

ability of the model itself. However, the true model is usually not know in prac-

tice, and therefore the problem of learning a model from data relies strongly on

the model assumptions that are made. In this chapter we want to take advant-

age of interaction information properties to exploit the prior knowledge in the

the data to choose between two classes of classifier models. However, whereas

the sign of interaction information can provide some insight into the depend-

ency structure between random variables, the permutation invariance property

information does not let us distinguish permutation invariant models within the

same models class. For instance, if the interaction information measured between

three random variables is positive, it follows that the random variables form a

collider configuration, but it is not known which variable is conditioned on the

other two. In other words, interaction information can only distinguish between

Markov and non Markov chains, as the permutation invariance property does not

let us distinguish between three inter-variable configurations.

It follows that the sign of interaction information is only partially informat-

ive in the context of model selection, as it cannot distinguish between models

belonging to the same class. In this chapter we avoid this permutation problem

by averaging over all possible permutation models within the same class. This

approach has been successfully applied in [89].
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6.1.1 Methodology

We carry out two preliminary studies to understand (a) to what extent the sign

of interaction information is effectively associated with the class containing the

most accurate model, and (b) whether this association can be extended to the

averaged model from each model class, so that we can avoid the permutation

invariance problem.

Relationship Between Accuracy and Interaction Information

We perform a first experiment to verify to what extent the most accurate model

is within the model class predicted by the sign of interaction information.

To this aim, we make the hypothesis that if the interaction information meas-

ured on the training data is strictly positive, then this denotes that the features

form a collider structure and therefore the colliderANB model class has to be

preferred to the forkANB model class. As a direct consequence, there must exist

at least one colliderANB classifier whose training error err
(C)
i where i ∈ 1, . . . , 3

is lower or at least equal to the training error of any other forkANB err
(F)
j for

any j = 1, . . . , 3. If the sign of interaction information is a reliable predictor

of the model class, the same result would apply to the generalisation error of

those models: the same colliderANB model should have a better generalisation

performance than any other forkANB model. We formalise this research question

in the following hypothesis:

Hypothesis 6.1.1. If the interaction information shared between three feature

variables X1,X2,X3 is strictly positive (I{X1,X2,X3}) > 0 then there must exist

at least one i-th colliderANB model where i ∈ 1, . . . , 3 whose generalisation error

e
(C)
i is lower than or equal to any other j-th forkANB model error e

(F)
j :

e
(C)
i ≤ e

(F)
j ∀j = 1, . . . , 3.

If the interaction information shared between the features is non positive

(I{X1,X2,X3}) ≤ 0, then this situation would account for a Markov chain rela-

tionship between the feature random variables. Since for three random variables

there are two distinct Markov chains – i.e. fork and chain configuration, the

sign of interaction information does not let us distinguish between the two model
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classes forkANB and chainANB. Therefore, we opt to study only forkANB models

and measure the association between a non positive interaction information and a

forkANB outperforming any colliderANB according to the following hypothesis:

Hypothesis 6.1.2. If the interaction information shared between three feature

variables X1,X2,X3 is non positive (I{X1,X2,X3}) ≤ 0 then there must exist at

least one i-th forkANB model where i ∈ 1, . . . , 3 whose generalisation error e
(F)
i

is lower than or equal to any other j-th colliderANB model error e
(C)
j :

e
(F)
i ≤ e

(C)
j ∀j = 1, . . . , 3.

Extension to Averaged Models

We perform a second experiment to investigate whether the sign of interaction in-

formation applies to averaged ANB models obtained by averaging over all possible

models within the same model class. This extension would avoid the permutation

invariance problem associated with interaction information, as we would simply

compare two averaged models rather than two sets of three possible models in

search of the most accurate model. In other words, assuming that interaction in-

formation provides us with some indication about inter variable dependencies but

cannot distinguish between all possible variable permutations within the selected

configuration, we try to answer this question: is the interaction information sign

prediction robust averaging over all possible model configurations? This question

corresponds to investigating the following two hypotheses:

Hypothesis 6.1.3. If the interaction information shared between three feature

variables X1,X2,X3 is strictly positive (I{X1,X2,X3}) > 0 then the averaged col-

liderANB model whose generalisation error e(AC) is lower than or equal to the

averaged forkANB model error e(AF):

e(AC) ≤ e(AF).

Similarly, for non positive interaction information:
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Hypothesis 6.1.4. If the interaction information shared between three feature

variables X1,X2,X3 is non positive (I{X1,X2,X3}) ≤ 0 then the averaged fork-

ANB model whose generalisation error e(AF) is lower than or equal to the averaged

colliderANB model error e(AC):

e(AF) ≤ e(AC).

6.1.2 Experimental Results

We test Hypotheses 6.1.1 to 6.1.4 on 7 datasets taken from the UCI repository [2].

Table 6.1 illustrates some information about these datasets. Continuous datasets

(segment, glass, magic4, hypothyroid and sickeuthyroid) have been discredited

with a Weka [90] implementation of Fayyad multi-discretization algorithm [30].

Table 6.1: UCI Datasets Statistics – Mean and Max respectively denote the mean
averaged attribute value and the maximum value that features can take.

Dataset # Features # Patterns # Classes Mean Max
Congress 16 435 2 3 3
Glass 9 214 6 2.4 4
Magic4 10 19019 2 7.9 13
Segment 19 2310 7 9 15
Mushroom 21 8124 2 5.5 12
Hypothyroid 29 3772 4 2.6 7
Sickeuthyroid 29 3772 2 2.3 5

For every dataset but Glass and Magic4 we randomly select 500 subsets of

3 features from the set of possible features. In the case of Glass and Magic4,

where there are respectively only 84 and 120 ways of selecting 3 features among

all possible ones, we sample all possible subsets of 3 features.

For every selected feature subset we train and test all possible forkANB and

all possible colliderANB, as well as the averaged forkANB model and the averaged

colliderANB model that can be generated from these subsets according to a 5×2-

fold cross-validation.
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Single Model Analysis

Table 6.2 shows the mean and standard deviation percentage of the number of

subsets where Hypothesis 6.1.1 is verified on the test set. We count for how

many feature sets showing positive interaction there exists a colliderANB whose

generalisation accuracy is higher or at least equal to any other forkANB.

Table 6.2: Percentage (mean and standard deviation) of sub-
sets showing positive interaction information where colliderANB
classifiers show lower generalisation error than any forkANB clas-
sifier.

Dataset colliderANB
Congress 63.74 [7.03]
Glass 69.16 [10.34]
Hypothyroid 94.56 [1.28]
Magic4 19.01 [6.45]
Mushroom 77.07 [2.03]
Segment 29.85 [4.31]
Sickeuthyroid 97.84 [0.92]

It is interesting to point out that despite interaction information being a

quantity measured on the training set, it is able to predict the model with highest

generalisation ability on 5 out of 7 datasets. In fact, for each dataset but Magic4

and Segment, the number of occurrences of Hypothesis 6.1.1 is higher than 50%

of cases. If we analyse the two cases where positive interaction information fails

to predict the most accurate model class, we notice that Magic4 and Segment

are quite different case scenarios. The total number of possible configurations for

the Magic4 dataset is 120. Of these, interaction information is strictly positive

only in the 19.75% of cases (over 10 runs: 237/1200 cases), and non negative

for the remaining 80.25% of feature subspaces. The total number of possible

configurations for Segment dataset is 500. Of these, interaction information is

strictly positive only in the 46.84% of cases (over 10 runs: 2342/5000 cases), and

non negative for the remaining 53.16% of feature subspaces.

Table 6.3 shows the mean and standard deviation percentage of the number

of subsets where Hypothesis 6.1.2 is verified on the test set. For each subset

of the feature space showing non positive interaction information, we quantify

how many times there exists a forkANB classifier whose generalisation accuracy

is higher or at least equal to any other colliderANB classifier. The experimental
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Table 6.3: Percentage (mean and standard deviation) of sub-
sets showing non positive interaction information where forkANB
classifiers show lower generalisation error than any colliderANB
classifier.

Dataset forkANB
Congress 71.50 [6.35]
Glass 93.85 [2.68]
Hypothyroid 95.83 [1.10]
Magic4 79.33 [5.39]
Mushroom 79.11 [1.13]
Segment 90.58 [1.68]
Sickeuthyroid 96.89 [1.74]

results illustrated in Table 6.3 show that for every dataset, a non positive interac-

tion information is associated with a forkANB classifier being the most accurate

classifier on the test set.

Interaction information shows a higher prediction rate on the training set

rather than on the test set. This can be explained by interaction information

being a quantity estimated on the training data; therefore, its generalisation to

the test set, which is based on the idea that both training and test are generated

from the same data distribution can only be approximately correct. In general

a positive value of interaction information is associated with a percentage of col-

liderANB classifiers outperforming forkANB classifiers on the training set which

is higher than 50%. The only exception is given by Segment dataset, where a

positive value of interaction information predicts a colliderANB only in 41.1% of

cases on the training set. This percentage further reduces to 29.85% on the test

set. On the other hand, in the Magic4 dataset this percentage drops from being

76.79 on the training set to 19.01% on the test set. This implies that the reason

why interaction information does not act as a good model prediction on these

two datasets is different. For Segment it seems that interaction information does

not perform well on both training and test set, whereas for Magic4 it is simply a

case of test set performance.

Table 6.4 illustrates the decrease in the prediction performance of interaction

information measured by the difference ∆ between the percentage of subsets

scored in the training and test set, for both positive (∆POS) and non positive

(∆NEG) interaction information. It is interesting to note that for non positive

interaction information subsets, the only datasets where we observe an increase in
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Table 6.4: ∆ = Train% − Test%

Dataset ∆POS ∆NEG

Congress 26.23 16.99
Glass 1.34 1.59
Hypothyroid 1.48 2.02
Magic4 57.78 −31.56
Mushroom 1.28 0.93
Segment 11.25 −0.93
Sickeuthyroid 1.48 2.32

percentage performance on the test set are Segment, which sees an increase from

89.65% to 90.58% and Magic4, which sees an increase from from 47.77 to 79.33%.

These two datasets also show a significant prediction performance reduction for

positive interaction information subsets. This result might be an indication that

Segment and Magic4 datasets cannot be modelled by fork or collider augmented

Näıve Bayes classifiers.

Averaged Model Analysis

We now consider classifiers that are obtained by averaging all possible models

belonging to the same class, that is, models that are obtained by averaging over

colliderANB classifiers or forkANB classifiers. Since our models are probabilistic

and given an input x, they output the class posterior probabilities p(Y |X) for

Y = 1, . . . , ωc, by averaging over possible models, we actually average over class

posterior probability outputs. In summary, we compare an averaged colliderANB

classifier with an averaged forkANB classifier, rather than comparing a set of

three colliderANB classifiers with a set of forkANB classifiers.

Table 6.5 shows the mean and standard deviation percentage of the number

of subsets where Hypothesis 6.1.3 is verified on a test set. For each feature subset

showing positive interaction, we quantify how often an averaged colliderANB

shows better generalisation accuracy than an averaged forkANB.

Table 6.6 summarises the mean and standard deviation percentage of the

number of subsets where Hypothesis 6.1.4 is verified on the test set. For each

feature subset showing non positive interaction we quantify how often an aver-

aged forkANB classifier shows better generalisation accuracy than an averaged

colliderANB classifier. Our experimental results show that the averaged models

show a similar trend to the single model analysis. We conclude that the sign of
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Table 6.5: Percentage (mean and standard deviation) of subsets
showing positive interaction information where averaged collid-
erANB classifiers show lower generalisation error than averaged
forkANB classifiers.

Dataset averaged colliderANB
Congress 62.65 [5.74]
Glass 75.30 [11.56]
Hypothyroid 95.62 [0.92]
Magic4 16.04 [6.64]
Mushroom 73.43 [2.73]
Segment 36.73 [3.69]
Sickeuthyroid 97.21 [0.48]

Table 6.6: Percentage (mean and standard deviation) of sub-
sets showing non positive interaction information where averaged
forkANB classifiers show lower generalisation error than averaged
colliderANB classifiers.

Dataset averaged forkANB
congress 72.54 [7.45]
glass 93.87 [2.74]
hypothyroid 95.40 [1.46]
magic4 81.52 [5.98]
mushroom 78.67 [1.68]
segment 90.39 [3.68]
sickeuthyroid 97.06 [1.01]
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interaction information can be used to choose not only between model classes, but

also that its prediction ability can be used to approximate the spaces of possible

models with the averaged models.

6.1.3 Discussion.

Our experimental results show that the sign of interaction information can be

used not only to identify the model class with higher generalisation ability, but

that the same result applies to the averaged models built from the same model

classes. Nevertheless, results also show that is is not always possible to predict

the model that best fits the data. In fact, Hypotheses 6.1.1 and 6.1.2 for the

single ANB classifiers, as well as 6.1.3 and 6.1.4 for the averaged ANB classifiers,

have been verified only up to a certain percentage. This can be explained by

several factors.

First of all, this preliminary study is an attempt to understand whether the

sign of interaction information measured between features provides some indic-

ation about the structure of a whole augmented Näıve Bayesian model. Hypo-

theses 6.1.1 and 6.1.2 do not take into consideration the fact that features are

also dependent on the class label, and that therefore the interaction information

of an augmented Näıve Bayes takes into account the class label Y , as well as the

features X1, X2, X3:

I({X1, X2, X3, Y }) = I({X1, X2, X3}|Y )− I({X1, X2, X3}) . (6.1)

On the contrary, our analysis takes into account only a portion of Equation 6.1,

that is I({X1, X2, X3}), and makes the assumption that the conditional interac-

tion information I({X1, X2, X3}|Y ) is negligible. It would be interesting to verify

whether this implicit approximation is true, since experimental results seem to

support our hypotheses.

Secondly, we are making the assumption that our data can be modelled by

one of our models, either a colliderANB or a forkANB, whereas in practice, it

might be the case that the data cannot be modelled by either of them, and that

we are incurring a model mismatch in both cases.

Finally, Hypotheses 6.1.1 to 6.1.4 make the implicit assumption that we are

given a non limited amount of data to estimate the model parameters as well

as the interaction information, whereas in practice, we can only deal with finite
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datasets of which we do not know the underlying distribution.

All these assumptions must be taken into account when discussing our exper-

imental results, but overall we can conclude that there is some empirical evidence

towards the utility of interaction information to predict the most accurate model

class. In the next section, we make use of this property in building effective

ensembles of averaged Bayesian networks.

6.2 A Novel Ensemble Approach

In Section 6.1 we studied ways of incorporating the prior knowledge provided by

interaction information into augmented Näıve Bayes models of only three features.

This restriction to three features makes the properties of interaction information

of no practical use for single classifier approaches, as in real classification prob-

lems the number of features is usually larger. Nevertheless, this disadvantage can

be turned into an advantage if paired with an ensemble learning approach like

the Random Subspace method [45]. As we discussed in Chapter 4, RSM seeks

diversity between base classifiers by training different classifiers on different ran-

dom subsets of the feature space, the only requirement being to use weak base

classifiers. Usually all base classifiers belong to the same model family, such as

decision trees or neural networks, but as we have pointed out in Chapter 4, simple

Bayesian networks such as näıve Bayes are stable classifiers, hence the need for

combining hybrid, that is structurally diverse, Bayesian networks.

In this section we address the second research question of how can we make use

of classifiers based on interaction information properties to build more efficient

ensemble methods? To this aim, we propose irsADE, a novel ensemble method

which effectively uses interaction information properties to build base classifi-

ers. The acronym irsADE stands for interaction information random subspace

Averaged Dependency Estimators. This approach combines hybrid base clas-

sifier models on random feature subsets of size three. Each base classifier is an

averaged Bayesian network as described in Section 6.1, and depending on the sign

of the interaction information measured between the feature subset, it can either

be an averaged forkANB or an averaged colliderANB. Algorithm 1 describes the

pseudo code for irsADE.

To quantify the effect of using interaction information on the ensemble per-

formances, we compare irsADE with an accuracy based ensemble approach, where
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Algorithm 1 Ensemble Method irsADE

Split dataset D into TR (train), TS (test)
for i = 1 : T do

Randomly pick 3 features Si = {X1, X2, X3}
if I(Si) > 0 then

Build all possible colliderADE models from TR(Si)
else

Build all possible forkADE models from TR(Si)
end if
Build averaged ADE model f i from selected models

end for
Combine averaged models f ens = F(f i, . . . , fT)
Test the ensemble f ens on TS

the model class for a specific random subset is selected by training both averaged

Bayesian network models and choosing the most accurate one on the training

set, rather than using the sign of interaction information to decide which model

to train. Similarly to irsADE, we name this approach rsADE , as for random

subspace Averaged Dependency Estimators. Algorithm 2 illustrates how base

classifiers are trained accordingly to rsADE. Ensemble methods irsADE and

Algorithm 2 Ensemble Method rsADE

Split dataset D into TR (train), TS (test)
for i = 1 : T do

Randomly pick 3 features Si = {X1, X2, X3}
Build all possible colliderANB models from TR(Si)
Build all possible forkANB models from TR(Si)
Choose the most accurate averaged model f i on TR(Si)

end for
Combine averaged models f ens = F(f i, . . . , fT)
Test the ensemble f ens on TS

rsADE are aimed at generating structurally diverse base classifiers. The main

difference between these two methods is that the first one uses the sign of inter-

action information to exploit some prior knowledge about the data, whereas the

second one is a decision directed method that relies only on the training accuracy

of base classifiers.
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6.2.1 Experimental Settings

We combine base classifiers generated via irsADE and rsADE according to simple

mean rule, although base classifiers could be combined according to any combin-

ation rule. The size of the ensemble varies with the size of the training set, as we

decide to train a number of base classifiers equal to the number of features. Ap-

pendix B shows the ensemble performance of irsADE and rsADE for ensembles

of 50 base classifiers.

Methods irsADE and rsADE are tested according a 5×2-fold cross-validation

on 7 different datasets which have already been described in Table 6.1. Table 6.7

illustrates the number of possible subsets of size 3 that can be generated for each

dataset.

Table 6.7: Number of distinct feature subsets of size 3.

Dataset Feature Subsets
glass 84
magic4 120
congress 560
segment 969
mushroom 1330
hypothyroid 3654
sickeuthyroid 3654

For each dataset but Glass and Magic4, each base model is trained on a dif-

ferent random subset of the feature space for every repetition of the experiments.

Since Glass and Magic4 have a small number of features, and hence a small num-

ber of possible distinct subsets that can be generated, the base classifiers are

trained on different random subsets of the feature space, but these subsets are

identically repeated for each run of the 5 × 2-fold cross-validation. The reason

we do not choose to apply this variant to the remaining datasets is due to the

fact that Bayesian networks are low-variance classifiers, and by always using the

same random subsets on each different run of the 5× 2-fold cross-validation, we

would train a base model on the same feature subspace of slightly different rep-

licas of the training data. Overall models will be very similar on different runs

and therefore this procedure might lead to too optimistic confidence intervals.

We now show the experimental results obtained by comparing irsADE with

rsADE in terms of generalisation error and training time.
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Figure 6.2: Mushroom dataset: irsADE vs rsADE – Test Error (mean and 95%
confidence interval)

6.2.2 Generalisation Error

We now compare the generalisation ability of irsADE and rsADE. As expected,

the ensemble techniques have a positive effect on the generalisation ability of some

datasets, showing that there is no universal learning technique which is able to

discriminate any classification problem.

Figures 6.2 and 6.3 respectively compare the generalisation error of irsADE

and rsADE on Mushroom and Segment datasets as we increase the number of

base classifiers. Figure 6.2 shows that the ensemble generalisation error decreases

from 16% to 4% as we increase the number of classifiers in the ensemble. The

ensemble methods irsADE and rsADE show similar classification performance for

any size of the ensemble. Figure 6.3 shows a similar trend to Figure 6.2 for the

Segment dataset. Overall the generalisation error decreases by more than 15%

and both ensemble techniques show identical performance. Figures B.5 and B.4

in Appendix B illustrate how increasing the number of base classifiers up to 50%

does not produce any change in the two ensemble method mutual behavior, as

in both figures the classification error reaches a plateau from ensembles of 20

onwards although the classification mean error seems to be slightly improved.

It is interesting to compare the base classifier generalisation ability with the

ensemble generalisation ability as we increase the number of classifiers. Figures
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Figure 6.3: Segment dataset: irsADE vs rsADE – Test Error (mean and 95%
confidence interval)

C.4 and C.5 in Appendix C show on the same graph the ensemble error for

increasing numbers of base classifiers and each single base classifier error before

being combined in the irsADE ensemble. For Mushroom and Segment datasets

the ensembles succeed in reducing the generalisation error because they combine

diverse base classifiers, since base classifiers show different levels of accuracy and

must therefore be diverse. We conclude that when base classifiers are diverse,

not only do both irsADE and rsADE ensemble techniques succeed in reducing

the overall classification accuracy, but also that the sign of interaction information

can be used as a base classifier model selection criterion, as it does not negatively

affect the ensemble performance.

Figures 6.4, 6.5 and 6.6 are three cases where irsADE and rsADE do not

succeed in reducing the generalisation error. Increasing the number of classifiers

in the ensemble does not alter the ensemble performance, as shown in Figures B.2,

B.3 and B.1. It is interesting to note that this occurs for Glass and Magic4, which

are very different in sample size (the first one has only 107 training patterns,

whereas the second one has 9509 training patterns) but both have a small of

number of features (respectively 9 and 10). On the other hand Congress has a

larger number of features (16) and a small number of training patterns (217). The

reason why these ensemble methods do not succeed might be because the base
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Figure 6.4: Glass dataset: irsADE vs rsADE – Test Error (mean and 95% con-
fidence interval)
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Figure 6.5: Magic4 dataset: irsADE vs rsADE – Test Error (mean and 95%
confidence interval)
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Figure 6.6: Congress dataset: irsADE vs rsADE – Test Error (mean and 95%
confidence interval)

classifiers are not diverse from each other, as shown in Figures C.2 and C.3 and

C.1: from these graphs it is easy to observe that the base classifiers show similar

classification errors which are comparable to the irsADE ensemble error as we

increase the number of classifiers in the ensemble. This behavior (which is less

pronounced for Magic4) indicates that the base classifiers are not diverse from

each other. However, both irsADE and rsADE show comparable generalisation

error, which confirms how the sign of interaction information can be used as a

proxy to classification accuracy.

Figures 6.7 and 6.8 compare the generalisation ability of irsADE and rsADE

on Sickeuthyroid and Hypothyroid as we increase the number of base classifiers.

For both datasets these ensemble approaches negatively affect the classification

performance, as the generalisation error increases as we increase the number of

classifiers.

Sickeuthyroid and Hypothyroid, are respectively the 2 class and 4 class version

of the same classification problem. These datasets are particularly unbalanced.

In Sickeuthyroid 93.9% of the data is of class 1 and only 6.1% is of class 2. Sim-

ilarly, in Hypothyroid the data belongs to one out of 4 classes according to these

percentages: 5.1%, 92.3%, 2.5%, and 0.1%. Moreover, only 40% of the 3772 pat-

terns are distinguishable from each other. It is worth observing that the ensemble
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Figure 6.7: Sickeuthyroid dataset: irsADE vs rsADE – Test Error (mean and
95% confidence interval)
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Figure 6.8: Hypothyroid dataset: irsADE vs rsADE – Test Error (mean and 95%
confidence interval)
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does not to improve over the single classifier as base classifiers make errors which

are not statistically different from each other and the ensemble combination does

not improve over the single accuracies, as shown in Appendix C in Figures C.6

and C.7. Moreover, it is interesting to point out that on average about 92% of

test patterns are classified as class 1, which is in line with the data prior dis-

tribution. By analyzing the sensitivity and the specificity of base classifiers and

the sensitivity and the specificity of the ensemble as we increase the number of

classifiers we find out that the averaged sensitivity of base classifiers is about 97%

and their average specificity is 9%. More accurate classifiers show higher levels

of specificity as well as high levels of sensitivity. Regarding the irsADE ensemble

behavior, the first base classifier shows similar values of sensitivity and specificity,

but the simple mean rule improves the sensitivity of the ensemble up to 100%,

and reduces the ensemble specificity to 0%.

6.2.3 Training Time

We now compare the ensemble approaches irsADE and rsADE in terms of training

time. As we have already pointed out, irsADE make use of interaction information

to select the model class for each base classifier. On the other hand, the accuracy

based method rsADE builds an averaged model for each model class, and then

picks the most accurate one on the training set. It is easy to see that the first

one has to build only one averaged model, whereas the second one has to build

two different models and then test them on the training set to decide which one

is the most accurate.

Tables 6.8 shows the average training speed and standard deviation of each

method over the 5 × 2-fold cross-validation experiment. The last column shows

the ratio between the averaged rsADE training speed and the averaged irsADE

training speed, that is, the speed improvement of irsADE with respect to rsADE.

To compare our results on different datasets, we fixed the ensemble size to 50

classifiers for each dataset. These results clearly show that an interaction in-

formation ensemble based approach can noticeably improve the ensemble speed

performance. As shown in Table 6.1 and in Table 6.8, different datasets are

characterised by different speed improvements.

The main reason why the computational cost varies so greatly among different

datasets is due to the choice of using probabilistic models as our base models.

Training a probabilistic model consists of learning the form of its probability
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Table 6.8: Average training seconds (mean and standard devi-
ation) required to train an ensemble of 50 classifiers. The last
column is the ratio between rsADE and irsADE training times.

Dataset rsADE irsADE Improvement
congress 17.3 [0.0] 1.0 [0.0] 17.0
glass 10.3 [0.0] 1.3 [0.0] 7.7
magic4 790.3 [0.5] 40.3 [0.9] 19.6
mushroom 309.7 [3.6] 10.0 [1.6] 30.9
idaimage 89.6 [0.0] 4.4 [0.3] 20.5
segment 201.2 [13.7] 40.8 [8.2] 4.9
sickeuthyroid 134.7 [0.1] 1.4 [0.1] 98.0
hypothyroid 138.1 [0.4] 2.7 [0.3] 51.0

distribution. In our case all the random variables are discrete, and this implies

that we have to learn the way a probability distribution factorises for any possible

value of each random variable in the model. The learning process is strongly

affected by number of training patterns and the alphabet of the training set,

that is the number of classes and feature attribute values. As an example, if we

want to learn a conditional probability distribution p(X|Y ), where Y can take

two different values and X can take up to 15 values, this will require to learn

2× 15 = 30 estimates, one for each class conditional distribution. If Y can take

two different values and X can take up to 3 values, this will require to learn

2× 3 = 6 estimates, one for each class conditional distribution.

In addition to the dataset statistics, the structure of colliderANBs and fork-

ANBs have a strong effect on the computational time. These two models learn

different forms of the probability distributions. The main difference between the

two is that whereas in forkANB models each random variable depends on at most

one other random variable, in the collider ANB one random variable depends on

all the remaining random variables. Whereas in the former case, we only calcu-

late the probability of features conditioned on at most one random variable, in

the latter we have to calculate probabilities of features being conditioned on all

the remaining random variables, for any possible value in the alphabet of every

random variable. To reuse the previous example, if X1 can take 15 values, X2 can

take 3 values and X3 can take 4 values, in a fork structure such that X3 depends

on X2 and Y as in p(X3|X2, Y ) we will have to calculate 4 × 3 × 2 = 24 estim-

ates, one for each class conditional distribution. On the other hand, in a collider

structure such that X3 depends on X2, X1 and Y as in p(X3|X2, X1, Y ) we will
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have to calculate 4 × 3 × 15 × 2 = 360 estimates, one for each class conditional

distribution.

Finally, whereas irsADE chooses only one of the two averaged models, rsADE

estimates both averaged models. To summarise, irsADE does not simply reduce

the computational time by a half with respect to the rsADE, as the computational

time will be affected by the sign of the interaction information as well as the size

of the alphabet of the features.

The dataset showing the least improvement from irsADE is Segment, which

is a 7 class problem whose feature alphabet size can be up to 15. We tested

irsADE and rsADE on Idaimage, which is another representation with 2 classes

and maximum alphabet of 5, irsADE is 5 times faster than in segment. This can

be explained by pointing out how the number of classes has more of an effect

than the number of features, as the feature size varies between the features (and

the subspaces), whereas the number of classes remains unchanged for all the

base classifiers. This shows that changing the alphabet of the random variables,

combined with the sign of interaction information, can have a huge effect on the

computational improvement of irsADE over rsADE.

An important case is that one of Sickeuthyroid and Hypothyroid, that are the

two and four class version of the same problem. Interestingly the range of the

attribute size does not varies much between the two, as the mean attribute value

for the two is respectively 2.3 and 2.6. In this case the irsADE improvement in

Sickeuthyroid is nearly twice as the irsADE improvement in Hypothyroid, showing

that the actual size of the alphabet has an important effect on the improvement

of irsADE over rsADE.

We conclude that for averaged augmented Näıve Bayes classifiers such as

averaged colliderANB and averaged forkANB, interaction information based en-

sembles are much more computationally efficient than accuracy based methods.

6.3 Chapter Summary

This chapter tried to address two main research questions, that is, Can we use

interaction information properties to build base classifiers? and if so, is there a

way to make use of these findings in ensemble learning? In Section 6.1 we empir-

ically investigated the first question by using the sign of interaction information

to predict the class with the most accurate classifier from two different classes
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of Bayesian networks, that is colliderANB and forkANB. We then investigated

whether this prediction was robust to averaging over all models belonging to

these classes. Despite the many assumptions and the limitations due to the data

availability, we showed that the sign of interaction information could be used to

predict the most accurate averaged model from two different model classes.

We then proposed in Section 6.2 a practical application of these properties

to random subspace ensemble learning techniques. We develop irsmADE, an en-

semble technique which combines hybrid averaged Bayesian networks by looking

at the sign of interaction information measures on the base classifier feature sub-

set. Our results show that interaction information provide us with some a priori

knowledge which can be used to choose hybrid base models in a more efficient

way than an accuracy based approach. In particular we show that not only does

the information theoretic approach irsADE not negatively affect the generalisa-

tion ability of the ensemble, but it is also computationally more efficient than the

accuracy based counterpart ensemble method. Moreover our results contribute

towards answering the question of how we can generate structurally diverse base

classifiers in a sensible way, as we have developed a methodology that can cre-

ate structurally diverse base classifiers which can improve the overall ensemble

accuracy.



Chapter 7

Conclusions and Future Work

The primary research question which this thesis has answered is “Can we use

a loss function other than the 0/1 loss to understand and manage diversity in

classifier ensembles?” This question is of primary importance, as the link between

ensemble accuracy and diversity is still unclear, the main reason being that there

is no unique way to decompose the 0/1 loss in terms of the bias and variance of

a classifier, as there is for the mean squared error [48].

7.1 Research Contributions

In order to answer our main research question, we focused on understanding

classification diversity through two different loss functions, that is, the mean

squared error and the negative log-likelihood. In Subsection 7.1.1 we summarise

our findings about whether it is possible to manage classifier diversity through the

mean squared error loss function. From Subsection 7.1.2 to Subsection 7.1.4 we

summarise our findings about what we have understood about classifier diversity

in this thesis with a special emphasis on model diversity and information theory.

7.1.1 Towards Managing Diversity in Classifier Ensembles

One of the main objectives of studying classifier diversity is to develop ensemble

techniques which can directly manage the trade-off between accuracy and di-

versity. In Chapter 2 we linked the Tumer & Ghosh model for the classification

error with the NC learning framework for regression problems, and we answered

the question “Can we deploy NC learning in the context of the Tumer & Ghosh
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framework so that we can manage diversity in classification problems?” To an-

swer this question, we observed that unlike othe bias-variance analysis of the 0/1

loss, the Tumer & Ghosh model treats the classification error as a regression ran-

dom variable. This observation enabled us to reformulate the Tumer & Ghosh

model into a regression model. As a result, we developed an algorithm which can

effectively manage diversity for classifier ensembles [101]. This algorithm trains

the ensemble base classifiers simultaneously while trying to minimise the overall

ensemble error.

7.1.2 Towards Understanding Classifier Model Diversity

In an effort to understand diversity, in Chapter 4 we embarked on an empirical

investigation of model diversity as opposed to error diversity. Since error diversity

is an immediate consequence of model diversity, our research question here was:

“is it possible to generate diverse classifiers by looking at model diversity rather

than error diversity?” We identified parametric probabilistic models as our ob-

ject of investigation, as they can explicitly select the model bias. In these models,

diversity can occur at two different levels: it can be parametric or it can also be

structural. Therefore, the specific question we tried to address in this chapter

was: “is parametric diversity sufficient to build accurate and diverse ensembles

of Näıve Bayes classifiers?” Our experimental results showed that Bagging gen-

erates parametric diversity between Näıve Bayes models, whereas Random Sub-

spaces introduced a certain level of structural diversity as base classifiers have

the same model dependencies but are trained on different features. We found

that parametric diversity is not sufficient when combining stable classifiers such

as Näıve Bayes models. In fact, bagging base classifiers are accurate but not

diverse. Conversely feature structure diversity introduced by random subspaces

generates base classifiers which are diverse but not accurate enough to make the

ensemble outperform the single classifier approach. Our results seemed to point

towards the idea that diversity in stable classifiers has to be structurally inferred

[100].

As a secondary result, we also found that the success of Bagging with stable

classifiers such as Näıve Bayes classifiers depends on the training size and on the

model specifications (Chapter 4). This is in line with results found for other

stable classifiers [78, 1].
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7.1.3 Towards Monitoring Diversity

As we discussed in Subsection 3.4.1, the expected value of the negative log-

likelihood of the class posterior probability with respect to all the random vari-

ables corresponds to the conditional entropy for the same probability distribution.

This link might indicate that interaction information, which is a multivariate ex-

tension of mutual information, could be used to understand classifier diversity. In

Chapter 5 we addressed the question: “Can we use interaction information to un-

derstand diversity between base classifiers?” Our empirical investigation showed

that interaction information is able to capture the trade off between ensemble ac-

curacy and diversity. We presented empirical evidence that diversity occurs at

different levels of interactions between base classifiers, and therefore higher or-

der interactions between base classifiers cannot be discarded. As a consequence,

Bayesian Networks can only approximately monitor interactions between base

classifiers.

7.1.4 Towards Building Structurally Diverse Ensembles

In Chapter 6 we attempted to answer the question “Can we use interaction in-

formation to generate more efficient ensembles?” We first presented empirical

evidence that the sign of interaction information measured between features is a

good proxy for classification accuracy of augmented Näıve Bayes classifiers and

averaged augmented Näıve Bayes classifiers, and that therefore it can be used to

choose the structure of an augmented Bayesian network. We then proposed a

novel interaction information based ensemble technique, irsADE, which exploits

interaction information properties to generate accurate and structurally diverse

averaged augmented Näıve Bayes classifiers. We presented an empirical compar-

ison of irsADE with another ensemble method which measures accuracy rather

than interaction information. We show that irsADE does not negatively affect the

ensemble accuracy but on the contrary is at least an order of magnitude faster

than the accuracy based ensemble method.
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7.2 Future Work

7.2.1 Extension of Interaction Information Properties

In Chapter 6 we empirically investigated how interaction information properties

which hold for three random variables, can be used to predict the accuracy of

base classifiers, and that these properties can be exploited to generate more ef-

ficient ensembles. A very interesting research direction in this sense, would be

to investigate whether these properties can be generalised to classifiers of more

than three features. There are two reasons for addressing this limitation of in-

teraction information properties to three random variables. The first one is that

by increasing the number of features, we would increase the number of possible

models that could be generated. The second one is that the accuracy of Bayesian

networks improves with the number of features in the model.

One way to investigate this, would be to provide some heuristic procedure to

increase the size of the feature subsets. For instance, we could build classifiers

with more than three features, but only allow statistical dependencies between

three of these features. Alternatively, we could use mutual information to rank the

features and allow inter-dependencies between only the three most informative

ones. Another way would be to investigate whether similar properties can be

inferred for more than three random variables from the decomposition of the

mutual information of the joint set of random variables in all possible interaction

information terms, as in Equation (3.30), or at least in the special case that only

three random variables in the feature set interact with each other.

7.2.2 Using Interaction Information to Prune Ensembles

Whereas in Chapter 5 we discussed how interaction information can be used to

monitor ensemble diversity between classifier outputs, in Chapter 6 we applied

interaction information to generate accurate and structurally diverse base classifi-

ers. Another attractive research direction that could be addressed via interaction

information, would be to learn more complex Bayesian networks (for instance via

hill climbing search, or Minimum Description Length) and investigate whether

interaction information can be used to select accurate and diverse base classifiers,

that is, classifiers showing lower bias than augmented Näıve Bayes classifiers. In

other words, it would be interesting to study whether interaction information can
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be used to prune the ensemble. An interesting result of feature selection that

could be applied here is that most of the heuristic methods for feature ranking

can be derived from the decomposition of the interaction information if this is

truncated to the second order interactions [13]. In a similar way, we could for

instance apply interaction information to rank ensemble members according to

different levels of interactions between classifiers.



Appendix A

Näıve Bayes Ensembles
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Figure A.1: Uniringnorm dataset (model match problem), supervised learning
– Test error (mean and 95% confidence interval) of BaggingL (blue continuous
line) and test error (mean and 95% confidence interval) of the single classifier (red
dashed line) as we increase the size of the ensemble, and for different amounts of
labelled training data (20 to 200 patterns).
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Figure A.2: Uniringnorm dataset (model match problem), supervised learning –
Test error (mean and 95% confidence interval) of RSM (blue continuous line) and
test error (mean and 95% confidence interval) of the single classifier (red dashed
line) as we increase the size of the ensemble, and for different amounts of labelled
training data (20 to 200 patterns).
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Figure A.3: Ringnorm dataset (model mismatch problem), supervised learning
– Test error (mean and 95% confidence interval) of BaggingL (blue continuous
line) and test error (mean and 95% confidence interval) of the single classifier (red
dashed line) as we increase the size of the ensemble, and for different amounts of
labelled training data (20 to 200 patterns).
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Figure A.4: Ringnorm dataset (model mismatch problem), supervised learning –
Test error (mean and 95% confidence interval) of RSM (blue continuous line) and
test error (mean and 95% confidence interval) of the single classifier (red dashed
line) as we increase the size of the ensemble, and for different amounts of labelled
training data (20 to 200 patterns).
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Figure A.5: Feltwell dataset, supervised learning – Test error (mean and 95%
confidence interval) of BaggingL (blue continuous line) and test error (mean and
95% confidence interval) of the single classifier (red dashed line) as we increase
the size of the ensemble, and for different amounts of labelled training data (20
to 200 patterns).
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Figure A.6: Feltwell dataset, supervised learning – Test error (mean and 95%
confidence interval) of RSM (blue continuous line) and test error (mean and 95%
confidence interval) of the single classifier (red dashed line) as we increase the
size of the ensemble, and for different amounts of labelled training data (20 to
200 patterns).
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Figure A.7: Uniringnorm dataset (model match problem), semi supervised learn-
ing – Test error (mean and 95% confidence interval) of BaggingL (blue continuous
line) and test error (mean and 95% confidence interval) of the single classifier (red
dashed line) as we increase the size of the ensemble, and for different amounts of
labelled training data (20 to 200 patterns).
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Figure A.8: Uniringnorm dataset (model match problem), semi supervised learn-
ing – Test error (mean and 95% confidence interval) of BaggingLU (blue continu-
ous line) and test error (mean and 95% confidence interval) of the single classifier
(red dashed line) as we increase the size of the ensemble, and for different amounts
of labelled training data (20 to 200 patterns).
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Figure A.9: Uniringnorm dataset (model match problem), semi supervised learn-
ing – Test error (mean and 95% confidence interval) of RSM (blue continuous
line) and test error (mean and 95% confidence interval) of the single classifier (red
dashed line) as we increase the size of the ensemble, and for different amounts of
labelled training data (20 to 200 patterns).
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Figure A.10: Ringnorm dataset (Model mismatch problem) – Semi supervised
Learning, BaggingL ensemble (blue continuous line) and single classifier (red
dashed line) classification versus the size of the ensemble for increasing values
of labelled data (20 to 200 patterns)
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Figure A.11: Ringnorm dataset (Model mismatch problem) – Semi supervised
Learning, BaggingLU ensemble (blue continuous line) and single classifier (red
dashed line) classification versus the size of the ensemble for increasing values of
labelled data (20 to 200 patterns)
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Figure A.12: Ringnorm dataset (Model mismatch problem) – Semi supervised
Learning, RSM ensemble (blue continuous line) and single classifier (red dashed
line) classification versus the size of the ensemble for increasing values of labelled
data (20 to 200 patterns)
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Figure A.13: Feltwell dataset, semi supervised learning – Test error (mean and
95% confidence interval) of BaggingL (blue continuous line) and test error (mean
and 95% confidence interval) of the single classifier (red dashed line) as we increase
the size of the ensemble, and for different amounts of labelled training data (20
to 200 patterns).
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Figure A.14: Feltwell dataset, semi supervised learning – Test error (mean and
95% confidence interval) of BaggingLU (blue continuous line) and test error (mean
and 95% confidence interval) of the single classifier (red dashed line) as we increase
the size of the ensemble, and for different amounts of labelled training data (20
to 200 patterns).
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Figure A.15: Feltwell dataset, semi supervised learning – Test error (mean and
95% confidence interval) of RSM (blue continuous line) and test error (mean and
95% confidence interval) of the single classifier (red dashed line) as we increase
the size of the ensemble, and for different amounts of labelled training data (20
to 200 patterns).



Appendix B

Test Errors for Ensembles of 50

ADE



159

5 10 15 20 25 30 35 40 45 50
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Ensemble Size

Te
st

 E
rr

or

 

 
rsADE
irsADE

Figure B.1: Congress dataset: rsmADE vs irsmADE –50 classifiers– Test Error
(mean and 95% confidence interval)
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Figure B.2: Glass dataset: rsmADE vs irsmADE –50 classifiers– Test Error (mean
and 95% confidence interval)
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Figure B.3: Magic4dataset: rsmADE vs irsmADE –50 classifiers– Test Error
(mean and 95% confidence interval)

5 10 15 20 25 30 35 40 45 50
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Ensemble Size

Te
st

 E
rr

or

 

 
rsADE
irsADE

Figure B.4: Mushroom dataset: rsmADE vs irsmADE –50 classifiers– Test Error
(mean and 95% confidence interval)
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Figure B.5: Segment dataset: rsmADE vs irsmADE –50 classifiers– Test Error
(mean and 95% confidence interval)
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Figure B.6: Sickeuthyroid dataset: rsmADE vs irsmADE –50 classifiers– Test
Error (mean and 95% confidence interval)
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Figure B.7: Hypothyroid dataset: rsmADE vs irsmADE –50 classifiers– Test
Error (mean and 95% confidence interval)
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Figure C.1: Congress dataset: single ADE vs irsmADE –Test Error mean and
95% confidence interval
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Figure C.2: Glass dataset: single ADE vs irsmADE –Test Error mean and 95%
confidence interval



165

0 2 4 6 8 10 12
0.2

0.22

0.24

0.26

0.28

0.3

0.32

Ensemble Size

C
la

ss
ifi

ca
tio

n 
E

rr
or

 

 

single ADE
ensemble irsADE

Figure C.3: Magic4dataset: single ADE vs irsmADE –Test Error mean and 95%
confidence interval
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Figure C.4: Mushroom dataset: single ADE vs irsmADE –Test Error mean and
95% confidence interval
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Figure C.5: Segment dataset: single ADE vs irsmADE –Test Error mean and
95% confidence interval
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Figure C.6: Sickeuthyroid dataset: single ADE vs irsmADE –Test Error mean
and 95% confidence interval
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Figure C.7: Hypothyroid dataset: single ADE vs irsmADE –Test Error mean and
95% confidence interval
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