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Abstract

Mammals are able to rapidly produce red blood cells in response to stress. The molecular pathways used in this process are
important in understanding responses to anaemia in multiple biological settings. Here we characterise the novel gene
Claudin 13 (Cldn13), a member of the Claudin family of tight junction proteins using RNA expression, microarray and
phylogenetic analysis. We present evidence that Cldn13 appears to be co-ordinately regulated as part of a stress induced
erythropoiesis pathway and is a mouse-specific gene mainly expressed in tissues associated with haematopoietic function.
CLDN13 phylogenetically groups with its genomic neighbour CLDN4, a conserved tight junction protein with a putative role
in epithelial to mesenchymal transition, suggesting a recent duplication event. Mechanisms of mammalian stress
erythropoiesis are of importance in anaemic responses and expression microarray analyses demonstrate that Cldn13 is the
most abundant Claudin in spleen from mice infected with Trypanosoma congolense. In mice prone to anaemia (C57BL/6), its
expression is reduced compared to strains which display a less severe anaemic response (A/J and BALB/c) and is
differentially regulated in spleen during disease progression. Genes clustering with Cldn13 on microarrays are key regulators
of erythropoiesis (Tal1, Trim10, E2f2), erythrocyte membrane proteins (Rhd and Gypa), associated with red cell volume
(Tmcc2) and indirectly associated with erythropoietic pathways (Cdca8, Cdkn2d, Cenpk). Relationships between genes
appearing co-ordinately regulated with Cldn13 post-infection suggest new insights into the molecular regulation and
pathways involved in stress induced erythropoiesis and suggest a novel, previously unreported role for claudins in correct
cell polarisation and protein partitioning prior to erythroblast enucleation.

Citation: Thompson PD, Tipney H, Brass A, Noyes H, Kemp S, et al. (2010) Claudin 13, a Member of the Claudin Family Regulated in Mouse Stress Induced
Erythropoiesis. PLoS ONE 5(9): e12667. doi:10.1371/journal.pone.0012667

Editor: Laurent Rénia, BMSI-A*STAR, Singapore

Received June 22, 2010; Accepted August 15, 2010; Published September 10, 2010

Copyright: � 2010 Thompson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the Wellcome Trust (grant nos. GR1061183, WT066764MF, GR066764MA). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: m.tassabehji@manchester.ac.uk

. These authors contributed equally to this work.

Introduction

The Claudins are a family of more than 23 small (20–27 kDa)

tetraspan transmembrane proteins[1] which, alongside occludin,

are the major components of tight junction (TJ) filaments in

epithelial and endothelial cells. Tight junctions act as a primary

barrier to the diffusion of solutes through the intercellular space

and also have an important role in creating a boundary between

the apical and the basolateral plasma membrane domains,

allowing the specialized functions of each surface to be maintained

[2]. As well as paracellular ion transport, TJs play a role in

recruiting various cytoskeletal and signalling molecules at their

cytoplasmic surface. TJ proteins therefore, play critical roles in

cellular proliferation and neoplastic pathways by linking extracel-

lular proteins to intracellular signalling pathways and the

cytoskeleton [3,4,5]. Intracellularly, Claudins are connected with

several TJ-associated proteins, including TJP1, 2 and 3 (ZO-1,2,3),

INADL (PATJ) and MPDZ (MUPP1) [6], via a C-terminal PDZ-

binding motif. MPDZ is an interacting partner of the receptor

(KIT) for the haemopoietic cytokine stem cell factor, KITL (SCF)

[7]. The activity of members of the Claudin family (Claudins 1, 2,

3, 4 and 7) is influenced by the transcription factors SNAI1 and 2

[8,9,10], which are key regulators of epithelial mesenchymal

transition, and various kinases including protein kinase A (PKA)

and protein kinase C (PKC) [11]. In the case of Claudins 1 and 2,

their regulation by SNAI1 is downstream of TGFb signalling

mediated by the PI3K and MEK pathways [9].

Stress induced erythropoiesis is a process invoked under

conditions of anaemia and requires significant proliferation of

progenitor cells before terminal differentiation processes are

invoked. In adult mammals the usual site of erythropoiesis is bone

marrow, however, under conditions of anaemic stress (e.g. caused

by acute bleeding or parasitic infection) the spleen can become a

major site of red blood cell (RBC) production. This is observed as

increased numbers of erythropoietic islands, the functional units of

erythropoiesis, comprising a central macrophage surrounded by

erythrocytic cells at various stages of maturation. In addition, in

adult mice (but not humans) a significant proportion of extra-
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medullary erythropoiesis normally occurs in spleen [12]. The

master regulator of erythropoietic activity is erythropoietin (EPO)

which is transcriptionally controlled by hypoxia-inducible factor-

1alpha (HIF1A) [13,14]. Reduced tissue oxygen levels, as observed

in anaemia, induce upregulation of EPO by HIF1A and a

subsequent rise in RBC production. Under conditions of stress this

system is modulated by other factors including bone morphoge-

netic protein-4 (BMP4) and KITL (SCF) which are essential for

responsiveness of erythroid progenitors to EPO signalling [14].

Phosphatidylinositol 3-kinase (PI3K) enzymes regulate key signal

transduction pathways controlling cell processes implicated in

carcinogenesis and PI3K signalling downstream of both EPO and

KITL, is thought to co-ordinate stress induced erythropoietic

expansion [15,16].

Trypanosoma congolense is a tsetse fly-transmitted intravascular

protozoan parasite causing severe, acute or chronic disease

(trypanosomosis) in mammals including cattle and other livestock

and consequently affects development and economic growth in

sub-Saharan Africa. In cattle, consistent features of trypanosomo-

sis are anaemia and sporadic episodes of fever. Infected animals

exhibit leukopenia, weight loss and enlargement of some organs

(spleen and liver). Chronic infection is characterised by appetite

loss, lethargy and emaciation and often death due to congestive

heart failure[17]. In rats, infection with T. congolense initially causes

an increase in medullary erythropoiesis and a reduction in the

myeloid: erythroid cell ratio. Subsequently erythropoiesis declines,

while granulopoiesis, megakaryopoiesis, plasma cell production

and erythrophagocytosis increase [18].

It is hoped that understanding of trypanotolerance, as seen in

some indigenous breeds of cattle, will advance disease control.

Inbred strains of laboratory mice are used as a model system to

study susceptibility to T. congolense infection: C57BL/6 mice are

relatively tolerant but develop a severe anaemic response, whereas

BALB/c and A/J strains, although regarded as susceptible (exhibit

higher levels of parasitemia and early death), have relatively mild

and transient anaemia [19]. Similarities between the anaemic

responses of C57BL/6 mice and cattle to trypanosome infection

have led to the use of this strain to identify pathways important for

this feature of the disease [18,19] and resulted in the hypothesis

that reduced haematopoietic potential may be responsible for its

relatively increased susceptibility to anaemia [20]. Importantly, the

capacity to control anemia is thought to be the most significant

factor contributing to trypanotolerance of cattle [21] and

differences in erythropoietic potential have been suggested as

contributing to susceptibility to the disease [22].

Here we report the characterization of a member of the Claudin

family, Claudin 13 (Cldn13). Functionally, we have evidence from

expression patterns and microarray data that Cldn13 may play a

role in a stress erythropoietic response to T. congolense induced

anaemia. Our data implicate Cldn13 and other previously

unassociated genes in an erythropoietic pathway constitutively

downregulated in mice prone to anaemia, thus providing potential

new insights into the molecular regulation of erythropoiesis. It is

probable that Cldn13 is a mouse specific gene that arose as a result

of a local gene duplication event.

Results

Claudin13 sequence structure and properties
Our search for novel genes on mouse chromosome 5G2,

syntenic to the Williams-Beuren Syndrome (WBS) region on

human chromosome 7q11.23 [23], led to the identification of

Cldn13. Screening an in-house mouse embryo cDNA library with

segments from a BAC clone (gi: AC079938) identified a new gene,

Cldn13 (submitted to Genbank in 2002 gi: AF516681) with a

PMP22_Claudin motif. Cldn13 spans a genomic region of 1277 bp

and is located 29579 bp centromeric to Cldn4 (Fig. 1). The cDNA

sequence is 1066 bp in length, and consists of two coding exons

(825 bp and 241 bp; Table S1) encoding a protein of 211 amino

acid residues with a predicted molecular weight of 23504 kDa and

theoretical pI of 5.54 (Fig. 2). CLDN13 is predicted to contain four

transmembrane domains, a conserved feature of the Claudin

family (IPR004031, PF0082), and has two extracellular loops

(residues 30–80 and 140–165). A conserved Claudin signature

([GN]-L-W-x(2)-C-x(7,9)-[STDENQH]-C, PDOC01045) is locat-

ed between the first and second transmembrane regions (residues

48–63) (Fig. 2). Other predicted amino acid motifs are detailed in

Table S2.

Cldn13 is a murinae specific gene
Cldn13 sequences were not identified in any additional species,

including humans, suggesting that Cldn13 may be specific to Mus

Figure 1. Comparison between transcript maps of mouse chromosome 5G2 containing Cldn13 and syntenic regions of rat
chromosome 12 and human chromosome 7q11.23 (part of the WBS region). Full length Cldn13 (AF516681) is only present in mouse. The
predicted rat ‘Cldn4-like’ transcript (XP_001066865) is only present in rat. *Rat Cldn13-like and mouse Cldn4-like are genomic sequences and there is
no evidence that they are transcribed.
doi:10.1371/journal.pone.0012667.g001
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musculus and possibly other closely related rodents. In Rattus

norvegicus, a 225 bp sequence with 78% sequence identity to the 39

UTR of Cldn13 was identified on chromosome 12 (AC091616). The

overlapping genomic clone (AC091752) contains the rat Cldn4 gene

indicating that this is the region syntenic to the mouse chromosome

5 region containing Cldn3, Cldn4 and Cldn13. There does not appear

to be a full-length rat Cldn13 ortholog since we failed to identify any

sequences sharing significant identity to the first exon, suggesting

that regardless of any earlier functional role, it has degenerated into

a non-functional remnant in the modern rat (Fig. 1).

In addition, a predicted ‘Cldn4-like’ sequence was detected in rat

(XP_001066865) which maps between Cldn4 and the degenerate

Figure 2. Mus musculus Cldn13 sequence. Cldn13 start (ATG, 198 bp), stop (TGA, 831 bp) codons, and poly-adenylation signal (aataaa, 1045 bp)
are in bold. The four transmembrane regions are boxed (amino acid residues 9–21, 81–101, 119–139, 166–186). The Claudin signature (amino acid
residues 48–63) is in bold and underlined and putative signal peptide (amino acid residues 1–31) is highlighted in grey. Predicted extracellular,
transmembrane and intracellular domain residues are shown in red, black and blue respectively.
doi:10.1371/journal.pone.0012667.g002
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Cldn13-like sequence on rat chromosome 12 and shares sequence

similarity with a mouse ‘Cldn4-like’ genomic sequence between

Cldns4 and 13 on mouse chromosome 5G2 (Accession number

AC079938) (Fig. 1; Figs S1 and S2). There is no transcript

evidence for these genomic sequences (mouse Cldn4-like and rat

Cldn13-like) indicating that they are unlikely to be transcribed.

Cldn13 is expressed predominantly in tissues associated
with haematopoiesis

Northern blot analysis with a Cldn13 specific probe identified a

single mRNA transcript (.1 kb) in adult mouse thymus, femur

and spleen; no bands were observed in brain, kidney, lung or liver

(Fig. 3). RT-PCR analysis confirmed Cldn13 was present in adult

mouse thymus, femur, spleen, ribs, skull, and muscle with barely

detectable expression in brain and intestine. In newborns

expression was detected in kidney, liver, lung, ribs, skull and spine

(Table 1). During mouse development, Cldn13 is expressed in

embryos at stages 10.5, 11.5, 13.5 and 15 dpc but not at 9.5 or

17 dpc (Table 1). A more limited analysis of the expression

patterns of Cldn3 and Cldn4 (which lie close to Cldn13 on mouse

chromosome 5) showed different profiles. Both were detected in

adult spleen, bladder, intestine, lung, kidney and teeth, and in lung

and skin of newborn mice. Cldn3 is also expressed in adult liver,

muscle and ribs and newborn liver and ribs and Cldn4 in adult eyes

and tongue (Table 1).

The expression of Cldn13 in haematopoietic tissues is further

emphasised by publicly available data (BioGPS portal http://

biogps.gnf.org/#goto = genereport&id = 57255) from a global

mouse gene expression analysis in 91 tissues including .20

haemopoietic cell lineages. Importantly, these data demonstrate

exceptionally strong expression in mega-erythrocyte progenitor

cells, bone marrow and bone [24].

Phylogenetic analysis
As Cldn13 appears to be mouse specific, we explored its

phylogenetic relationship with other Claudin family members.

Eighty-nine sequences were collected (Table S3) and a robust

phylogenetic tree generated using neighbor joining, bootstrapping,

maximum likelihood and parsimonious methodologies (Fig. 4).

Many regions of the consensus tree topology are well supported by

all these methods. There is strong support for the pairings of

CLDN 6 and 9, and CLDN 11 and 12, as well as for the groupings

of CLDN 1, 7 and 19, CLDN 8, 17 and 22, and CLDN 3 and 23.

The Mus musculus CLDN4 and CLDN13 clade is only strongly

supported by maximum likelihood, however all statistical methods

applied consistently reproduced this grouping, albeit with a

reduced level of support (data not shown).

From this data we suggest that mammalian members of the

Claudin protein family are orthologous, sharing a common

ancestor prior to the human/mouse split. This is also true for

many fish Claudins. Danio rerio is interesting because it appears to

have followed two different routes during Claudin family

development and, in addition to the orthologs it shares with other

chordates, it possesses a group of paralogous alphabetically named

Claudins [25]. This fish specific expansion was generated through

gene duplication and development within the Danio rerio genome

[25]. As expected, the Ciona intestinalis sequences behaved as

outliers.

Of the 32 known members of the Claudin gene family only

CLDN 5, 7, 10–12 and 19 appear to have orthologs in each of

Figure 3. Expression of Cldn13 mRNA in adult mouse tissues.
Adult mouse tissue Northern blot showing the tissue specific
distribution of Cldn13 expression (upper panel) with b-actin as a
loading control (lower panel).
doi:10.1371/journal.pone.0012667.g003

Table 1. RT-PCR expression analysis of Claudins on mouse
chromosome 5G.

Tissue Cldn13 Cldn4 Cldn3

Adult

Bladder 2 + +

Brain +/2 2 2

Eyes 2 + 2

Femur + 2 2

Kidney 2 + +

Heart 2 2 2

Intestine +/2 + +

Liver 2 2 +

Lung 2 + +

Muscle + 2 +

Ribs + 2 +/2

Skull + 2 2

Spleen + + +

Teeth 2 + +

Testis 2 NT NT

Thymus + 2 2

Tongue 2 + 2

Newborn

Brain 2 2 2

Eyes 2 2 2

Heart 2 2 2

Kidney + 2 2

Liver + 2 +

Lungs + + +

Ribs + 2 +/2

Skin 2 + +

Skull + 2 2

Spine + NT NT

Embryo

9.5 dpc 2 NT NT

10.5 dpc + NT NT

11.5 dpc + NT NT

13.5 dpc + NT NT

15 dpc + NT NT

17 dpc (whole) 2 NT NT

(+ = strong expression; +/2 = weak expression; 2 = not expressed; NT = not
tested). All samples tested positive for the control gene, b-actin (data not
shown).
doi:10.1371/journal.pone.0012667.t001
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H. sapiens, M. musculus, T. rubripes and D. rerio. CLDN 25–33 are

specific to T. rubripes. With the exception of CLDN13, mice and

humans share the same complement of Claudins (Table 2). A

Takifugu rubripes Claudin gene has been named Cldn13 (AY554386)

[25], however, this sequence fails to group with murine CLDN13

in our trees. It also displays minimal shared sequence similarity

when compared to Mus musculus CLDN13 (Fig. S3) and reciprocal

BLAST searches fail to identify a relationship between these

sequences indicating that it is not a true ortholog.

Claudin family expression in response to T. congolense
infection in mice

As Cldn13 appears to be preferentially expressed in tissues

associated with haematopoiesis/immunity (bone, spleen and

thymus) we analysed microarray data derived from mice exposed

to the pathogenic protozoan T. congolense to determine whether

Cldn13 levels were affected. In spleen, Cldn13 is the most abundant

of the twenty Claudins analysed. Log2 relative expression levels of

Cldn13 averaged across all three strains prior to infection are 9.12

(absolute value 770), compared to 7.41 (absolute value 170) of

Cldn5 (p = 0.0009), the second most abundant Claudin in spleen

(Fig. 5A).

To explore early changes initiated in response to infection,

Cldn13 expression levels were recorded in spleens of A/J, BALB/c

and C57BL/6 (anaemia prone) mice, across five time points (days

0, 3, 7, 9, and 17 post infection) (Fig. 5B). Prior to infection Cldn13

is 2.4–3.3 fold less abundant (p#0.03) in C57BL/6 than in A/J

and BALB/c (strains in which anaemia is transient). Cldn13 levels

remain significantly lower (2.8 fold; p#0.02) at days 3 and 7 in

C57BL/6 compared to BALB/c. C57BL/6 Cldn13 expression is

also reduced (1.4 and 3.0 fold at days 3 and 7, respectively)

compared to AJ mice, however the difference only reaches

significance at day 7 (p = 7.261025). At later stages of infection

(days 9 and 17), although expression in C57BL/6 still appears

lower (1.2–1.9 fold), the strain differences do not reach significance

(p$0.08).

Of the other 19 Claudins, the largest strain specific differences

observed were in Cldn5, which demonstrated 1.5–1.6 fold higher

expression in AJ mice on day 7 (p = 0.04), and 1.5–1.6 fold higher

expression in both AJ and BALB/c relative to C57BL/6 mice on

day 9 (p = 0.01) (Fig. 5B). Levels of Cldn4, which is phylogenetically

related to Cldn13, were similar between all strains with marginal

but significant differences only noted between BALB/c and

C57BL/6 prior to infection, and between AJ and C57BL/6 on day

17 (1.3 fold higher in C57BL/6; p#0.02, at both time points)

(Fig. 5C). Differences in expression of other Claudins were

marginal (Figs S4 and S5). Notably, only Cldn13 demonstrated

consistently reduced expression in the anaemia prone C57BL/6

mice relative to the other strains.

Cldn13 expression also varied significantly post-infection over

time (Fig. 5B). In A/J mice, Cldn13 showed the largest, most

significant changes in expression over the course of the

experiment, with levels decreasing to 2.8 fold relative to those of

uninfected mice at day 3 (p = 0.001) then increasing 3.6 fold

between days 3 and 17 (p = 0.0009) to reach levels marginally

higher (1.3 fold) than in uninfected mice at day 17. Expression in

BALB/c and C57BL/6 mice reached a minimum (2.0 and 2.2 fold

decreased respectively) at day 7 followed by recovery to pre-

infection levels by day 17 in BALB/c and a substantial rise of

Cldn13 to above pre-infection levels (2.2 fold at day 17 versus day

0) in C57BL/6. However, this final increase was not significant

(p = 0.19) and levels remained lower than those in AJ and BALB/c

strains.

Figure 4. Neighbour Joining phylogenetic tree representing the Claudin protein family. The topology has been tested using bootstrap
replicates (black numerals) and parsimony (brown numerals) (only scores .75% have been included). Agreement with maximum likelihood topology
is indicated by an asterix (*). Species: Ciona intestinalis (red), teleost fish (Tetraodon nigroviridis and Danio rerio) (blue), and mammals (Homo sapiens
and Mus musculus) (green). Mus musculus Claudin13 is highlighted in bold green font (full names and accession numbers of the abbreviations used
are detailed in Table S5).
doi:10.1371/journal.pone.0012667.g004

Table 2. Species distribution of Claudins.

Claudin H. sapiens M. musculus D. rerio T. rubripes

1 * * -- *

2 * * -- *

3 * * -- *

4 * * -- --

5 * * * *

6 * * -- *

7 * * * *

8 * * -- *

9 * * -- --

10 * * * *

11 * * * *

12 * * * *

13 -- * -- * (#)

14 * * -- *

15 * * -- *

16 * * -- --

17 * * -- --

18 * * -- *

19 * * * *

20 * * -- *

21 -- -- -- --

22 * * -- --

23 * * -- *

24 -- -- -- --

25 -- -- -- *

26 -- -- -- *

27 -- -- -- *

28 -- -- -- *

29 -- -- -- *

30 -- -- -- *

31 -- -- -- *

32 -- -- -- *

33 -- -- -- *

Distribution of members of the Claudin protein family across four species. Each
row represents a single member of the Claudin family; (*) Claudin present; (--)
Claudin absent. # T.rubripes Cldn13 is unlikely to be a true homologue of the
mouse gene (see results and Figure S3). Alphabetically named Claudins have
been excluded as they are the result of a Danio rerio specific expansion [25].
doi:10.1371/journal.pone.0012667.t002
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Figure 5. Expression of Claudin genes in mouse spleen in response to T. congolense infection. Data is expressed as mean Log2 intensity
(6) standard error. A. Bar chart showing expression profiles of Claudin genes present on Affymetrix mouse microarrays prior to infection. Cldn13 is
the most abundant and levels of this transcript are depressed in C57BL/6 prior to infection. B–D Expression profile of Cldn13, Cldn5 and Cldn4 in
microarray analysis over the course of T. congolense infection in three different strains (A/J – open circles, solid line; BALB/c – closed squares, dotted
line; C57BL/6 – crosses, dashed line).
doi:10.1371/journal.pone.0012667.g005

Claudin 13

PLoS ONE | www.plosone.org 7 September 2010 | Volume 5 | Issue 9 | e12667



Of the other Claudins assayed, Cldn5 also demonstrated

significant changes in transcription levels over the course of

infection in all three strains with initial decreases of between 1.6

and 2.7 fold (between days 0 and 7; p#0.009). However, in

contrast to Cldn13, Cldn5 expression remained low (1.4 to 2.1 fold

decreased at day 17 compared to day 0, p#0.03) throughout the

experiment (Fig. 5C). Changes in levels of the other Claudins did

not follow a discernable pattern and were either minimal (#1.5

fold change) or insignificant (p$0.05) (Figs S4 and S5).

To summarise, in contrast to the expression of other Claudins,

levels of Cldn13 are lower in anaemia prone C57BL/6 mice

compared to other strains prior to, and throughout infection.

During the early stages of infection, expression of Cldn13 decreases

in all three strains, followed by subsequent increases to at or above

levels seen in uninfected mice. These data suggest that Cldn13 may

be the major Claudin in mouse spleen and is likely to have

functional significance in this tissue.

Genes clustering with Cldn13 in T. congolense infected
mice share a common theme of erythropoiesis

To ascertain potential pathways in which Cldn13 may

participate, ten genes displaying expression patterns most similar

to Cldn13 (distance metric; computed using Pearson correlation

[26]) were identified. Of these, nine were notable for their shared

links to erythropoiesis (Table 3; Fig S6); three are key regulators of

erythropoiesis (Tal1, Trim10, E2f2) [27,28,29,30] and two are

erythrocyte specific membrane proteins (Gypa, Rhd) [31,32,33].

Tmcc2 is the homologue of human TMMCC2 which has recently

been strongly associated with mean corpuscular volume (MCV,

red blood cell volume), a measure of anaemia, in a genome wide

association study [34]. Cdca8, Cenpk and Cdkn2d have more indirect

associations with erythropoietic pathways. Cdca8 (Borealin) and

CenpK (centromere protein K; Solt1 - Sox6 leucine zipper binding

protein) are thought to be involved in mitotic chromosome

segregation. Cdca8 encodes a member of the centromeric

chromosomal passenger complex (CPC) required for correct

alignment and segregation of chromosomes [35]. The CPC

consists of four proteins; CDCA8, BIRC5 (Survivin), INCENP

and AURKB (Aurora kinase B). BIRC5 has recently been shown

to be essential for proper haematopoietic development of erythro-

myeloid precursors, being particularly crucial in erythroid

differentiation [36]. In other systems, BIRC5 regulation of clonal

expansion has been demonstrated to be downstream of PI3K and

Akt signaling [37] and CDCA8 and BIRC5 undergo co-

coordinated transcriptional repression in response to inactivation

of CDK4 [38].

CenpK has been proposed as the homolog of the Schizosacchar-

omyces pombe protein Sim4 and, in common with the CPC, is

thought to localize to centromeric kinetochores and be involved in

chromosome segregation [39]. CENPK was originally identified as

physically associated with the transcription factor SOX6 [40]

which has a critical role in erythropoiesis [41,42]. Cdkn2d (cyclin-

dependent kinase inhibitor 2D; p19Ink4d) is a member of the Ink4,

‘Inhibitor of cyclin dependant kinase (CDK) 4’ family of repressors

Table 3. Genes with expression profiles clustering most closely with Cldn13 across two separate microarray datasets.

Gene *Array Accession Number Name/Alias Erythrocytic Function/Association

Tal1 1 NM_011527 T-cell acute lymphocytic leukaemia 1, Scl Transcription factor necessary for erythropoiesis [30]

Trim10 1,2 NM_011280 Tripartite motif protein 10, Heff1 Regulator of erythropoiesis [28]

E2f2 1 BG967674 E2F transcription factor 2 Forms a complex with GATA1 and retinoblastoma protein (RB1),
encourages terminal erythroid differentiation [29]

Gypa 1,2 M26385 Glycophorin A Erythrocytic membrane protein; downstream of TAL1 [31]

Rhd 1,2 AF069311 Rh blood group, D antigen Erythrocytic membrane protein [90]

Tmcc2 1 AK004359 Transmembrane and coiled-coil domains 2 Human TMCC2 has been associated (GWAS) with red cell
volume[34]

Cdkn2d 1 BC013898 Cyclin-dependent kinase inhibitor 2D, INK4D,
p19Ink4d

Downstream target of KLF2, a transcription factor regulating
erythropoiesis [91]

CenpK 1 NM_021790 Centromere protein K, Solt Associated with SOX6, a key transcriptional regulator of
erythropoiesis [41]

Cdca8 1 AV307110 Cell division cycle associated 8, Borealin Associated with BIRC5 (Survivin), important for erythropoiesis [36]

Cdr2 1 NM_007672 Cerebellar degeneration-related 2, Yo None reported.

Tspo2 2 NM_027292 Translocator protein 2 Involved in cholesterol distribution during erythropoiesis [92]

Rhag 2 NP_035399 Rhesus blood group-associated A glycoprotein Erythrocytic membrane protein with a role in ammonia and
methylammonia transport [93]

Icam4 2 NM_023892 Intercellular adhesion molecule 4 Glycoprotein expressed on red blood cells and erythroid precursor
cells [94]

Unknown 2 AK020489 Unknown None reported

Kel 2 NM_032540 Kell blood group Erythrocyte glycoprotein [95]

Hemgn 2 Hemogen Promotes myeloid progenitor cells expansion downstream of
HoxB4 [96]

Add2 2 NM_013458 Adducin 2 (beta) Actin-binding protein of the erythrocyte junctional complex
involved in maintenance of erythrocyte shape and membrane
stability [97]

*Array1: from spleens of mice at different stages of trypanosome infection;*Array 2: from 91 different mouse tissues/cell lines including various haemopoietic cell
lineages [24,46].

doi:10.1371/journal.pone.0012667.t003
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which prevent inappropriate progression into the cell cycle [43].

There is evidence that CDKN2D contributes to differentiation of

a model system of transformed erythroid precursors, murine

erythroleukaemia (MEL) cells, by inhibition of CDK6 [44].

All nine genes act in pathways known to be downstream of

either EPO, BMP4 or KITL, suggesting that a possible role in the

stress response to anaemia induced by T. congolense infection. The

remaining clustered gene is Cdr2 (cerebellar degeneration-related 2

or Yo), a protein which has recently been shown to be important

for mitotic spindle formation and proliferation of dividing cells

[45] providing a putative link with CenpK and Cdca8.

To provide external validation for this cluster analysis, genes

with similar expression patterns to Cldn13 were identified in a

separate publicly available array experiment [46]. The ten genes

most closely correlated (co-efficient .0.98), included three red

blood cell associated genes (Trim10, Gypa and Rhd), also identified

in our T. congolense arrays, and a further six with known

associations to either erythrocyte-specific processes (Tspo2, Rhag,

Icam4, Kel, Add2) or myeloid progenitor cell proliferation (Hemgn)

(see Table 3. and references therein). The remaining clustered

transcript (Accession No: AK020489) has no known function and

little homology to known genes.

Differences in Haemoglobin levels between mouse
strains are consistent with a reduced erythropoietic
response to infection in C57BL/6

Levels of haemoglobin were assayed in blood samples from mice

before and during infection with T. congolense. Relative concentra-

tions of haemoglobin during the course of infection fell steeply in

all three mouse strains in the initial stages of trypanosome

infection. However, after day 9 and day 17 respectively,

haemoglobin concentrations began to recover in BALB/c and

A/J strains, whereas in C57BL/6 mice they continued to decline

throughout the experiment (Fig. 6). Haemoglobin titres were lower

in C57BL/6 from day 7 post infection and thereafter. The

difference was significant on days 13 and 20–35 (p,0.001) (Fig. 6).

AJ mice demonstrate haemoglobin levels intermediate to those

observed in Balb/c and C57BL/6 and had significantly lower

titres than Balb/c at the final two timepoints.

These results, alongside the reduced transcription of Cldn13 and

clustered erythropoietic gene, are all consistent with a reduced

stress erythropoietic response in C57BL/6 in comparison with the

other inbred strains. Levels of Cldn13 and clustered genes

associated with erythropoiesis also demonstrate a parallel decrease

alongside haemoglobin levels in the initial stages of infection in all

strains and begin to recover, suggesting nascent splenic erythro-

poiesis, prior to the recovery of haemoglobin levels in AJ and

BALB/c. The failure of haemoglobin levels to recover in C57BL/

6 and the subsequent chronic anaemia observed [20] may be

reflected in the inflated expression of erythropoietic genes at later

stages of infection as the organism attempts, unsuccessfully, to

restore sufficient RBC capacity.

Discussion

Phylogenetic profiling is useful for inferring functional and

evolutionary relationships and previous work has positioned

Cldn13 in a clade with Cldn2, 14 and 20 [25], paired it with

Cldn23 (ORF5, BAB26222) [47], or failed to place it at all due to

its inconsistent positioning within the tree [48]. In contrast, our

phylogenetic data, generated from the consensus of four methods,

highlights a relationship between Mus musculus Cldn13 and Cldn4/

CLDN4. Cldn4 has been implicated in a variety of processes as

diverse as osmotic response in the kidney [49] and blastocyst

formation [50] and CLDN4 has been shown to be both up and

downregulated in various malignancies (reviewed in [51]). Mouse

Cldn4 is downregulated in EMT in response to SNAI1 [10] and

expression of CLDN4 decreases the potential of pancreatic cancer

cells to metastasize downstream of both MEK and PI3K [52].

Claudins evolutionarily associated with human CLDN3 and 4 on

chromosome 7 appear to have undergone duplication. The

presence of a predicted ‘Cldn4-like’ sequence in rat (between Cldn4

and the degenerative Cldn13-like sequence on rat chromosome 12)

but with no transcript evidence, suggests a gene duplication prior

to mouse/rat speciation events.

In support of our hypothesis that Cldn13 is involved in

erythropoiesis, a recent report identified it as one of a number

of genes whose expression is significantly higher in erythroid cells

[53]. Further evidence comes from microarray analysis of a D. rerio

mutant model of haematopoiesis, cloche, which identified Cldng

(topologically groups with M. musculus CLDN13/CLDN4 in our

analysis) as differentially expressed between mutant and wild type

zebrafish and predominantly found in erythroid cell lineages [54].

Haemopoietic cells are not generally thought to connect via

intercellular junctions such as tight junctions although in a rare form

of human acquired dyserythropoiesis, erythroblastic synartesis,

Figure 6. Haemoglobin levels in mouse strains during T.
congolense infection. Relative haemoglobin titres, measured as OD
at 540 nm with standard errors, in C57BL/6 (circles, full line), A/J
(triangles, broken line) and BALB/c (squares, dotted line) after infection
with T. congolense, and uninfected C57BL/6 mice (open circles, broken
line). Each point is an average of triplicate samples taken from ten mice.
The C57BL/6 values that were significantly lower than the A/J and BALB/
c values are indicated by an asterisk (difference in value larger than
twice the Standard Error of Difference). The last two haemoglobin
values for A/J mice (indicated by asterisk) were significantly lower than
the BALB/c values.
doi:10.1371/journal.pone.0012667.g006
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septate-like membrane junctions (invertebrate septate junctions

are thought to be analogous to TJs) and invaginations between

erythroblasts which are tightly linked together have been observed

[55]. This abnormality is responsible for ineffective erythropoiesis in

patients leading to severe anaemia with reticulocytopenia. Cell-cell

contacts do, however, occur within erythroblastic islands (erythro-

cyte-erythrocyte and erythrocyte-macrophage) and are important

for successful erythropoiesis [56]. Erythrocyte-macrophage protein

(EMP), intercellular adhesion molecule-4 (ICAM4, highlighted by

our cluster analysis) and integrins a4b1 and av participate in these

interactions and it is possible that CLDN13 may also contribute in

some way.

The erythrocyte specific membrane proteins GYPA and RHD,

also encoded by genes clustering with Cldn13, form part of a

macromolecular erythrocyte membrane structure incorporating

the Band-3 complex [57]. Given the known association of TJ

complex components (albeit in non-erythroid cells) with the

erythrocyte cytoskeletal component protein EPB4.1 (4.1R) [4], a

protein involved in erythropoietic mitosis through interaction with

the Band-3 complex [58,59], it is possible that CLDN13 and other

TJ components also function in this system.

The role of EPB4.1 in the regulation of mitotic chromosome

segregation in erythroid cells [60] also suggests a link between this

protein and Cdca8, Cenpk and Cdr2 clustered with Cldn13 in our

microarray data. The clustered gene Trim10 is an important

regulator of erythropoiesis downstream of the key transcriptional

regulator of haematopoiesis RUNX1 (AML1, core binding factorb)

[28] and determines production of an alternatively spliced isoform

of EPB4.1 which is indicative of erythrocytic maturation [61].

Recent work suggests integration of the RUNX1/TAL1 haemato-

poietic pathways via the Smad family of transcriptional regulators

downstream of BMP4 [62] which, in conjunction with KITL, is a

pivotal mediator of hypoxia-induced stress erythropoiesis in mouse

spleen [14,63]. Another of the genes clustered with Cldn13, E2f2,

has been shown to form a complex with RB1, a key player in the

regulation of the G1-to-S-phase transition of the cell cycle [64] and

GATA1, encouraging terminal erythroid differentiation by shutting

down cell proliferation [29]. Although several of the clustered genes

are established erythrocyte-associated genes (Tal1, Trim10, E2f2,

Gypa, Rhd) the involvement of others (Cdkn2d, Cdca8, Cenpk, Cdr2,

Cldn13) has not been proven. However, our data, along with

evidence of association between Cdkn2d, Cdca8 and Cenpk with

factors essential in erythrocyte maturation strongly suggest a role for

these genes in this process. Figure 7 provides a hypothetical view of

how the genes identified through cluster analysis with Cldn13 in T.

congolense infected mice, may interact in developing erythroid cells.

One of the final steps in red blood cell maturation is

enucleation. Chromatin becomes condensed and the nucleus

migrates to one pole of the erythroblast before separating

surrounded by plasma membrane and a small rim of cytoplasm

[65,66]. Thus the process could be regarded as an asymmetric

form of mitosis. Many membrane proteins, including GYPA are

preferentially located in the membrane of the mature reticulocyte

rather than the extruded nucleus [67]. Given the role of Claudins

in defining domains within the plasma membrane as part of TJs,

and the involvement of the proteins we have identified as co-

regulated during stress erythropoiesis in cell cycle checkpoint

regulation and/or mitotic chromosome segregation, we suggest a

potential new role for Claudins in correct cell polarisation and

protein partitioning prior to erythroblast enucleation. However,

further functional work is required to test this hypothesis.

The pattern of Cldn13 regulation observed over the course of T.

congolense infection is consistent with a stress induced erythropoietic

response to parasite induced anaemia. We speculate that the

downregulation of CLDN13 at the early stages of the stress

erythropoietic response may influence the transition to a

proliferating phenotype among splenic RBC pre-cursors. It is

possible that this is mediated through reduced contacts with

supportive stromal cells undergoing EMT as observed in fetal liver

[68]. The recovery of Cldn13 levels in later stages of infection may

indicate populations of erythrocytic cells undergoing terminal

differentiation, including enucleation, preceding the recovery from

anaemia observed in strains A/J and BALB/c. The fact that

expression of Cldn13 and clustered genes are constitutively lower in

C57BL/6 mice than in A/J or BALB/c mice is consistent with

them representing a snapshot of an erythropoietic pathway

permanently depressed in this anaemia prone strain. Further,

levels of expression of these genes in C57BL/6 mice fail to reach

those seen in A/J or BALB/c mice, consistent with the previous

suggestion of a suppressed stress erythropoietic response contrib-

uting to the chronic anaemia observed in this strain [20].

Given the expression pattern of Cldn13 in most haemopoietically

active tissues (thymus, bone marrow and fetal liver) we do not

exclude the possibility that it may also function in the generation of

other blood cell lineages. Indeed, Claudin positive cells have been

observed at the margins of distinct structures within the medulla of

the thymus known as Hassall’s corpuscles (HCs)[69] which are

thought to function in production of immunosuppressive regula-

tory T cells. It remains unclear whether thymic Cldn expressing

cells have functional TJs, although these structures were not

detected between Cldn expressing cells in mouse [70].

In agreement with our RT-PCR expression data, expression of

Cldn13 has previously been reported in mouse intestine [71,72]

and in neonatal but not adult kidney [73]. There has also been a

report of Cldn13 expression in mouse bladder [74], however, we

did not find evidence for this in our experiments, which may be

due to differences in assay sensitivity as publicly available micro-

array data [24] demonstrate minimal expression in this organ. It is

also interesting to note decreased expression of Cldn5 during T.

congolense infection in all three inbred strains. Rat CLDN5 has been

observed as part of atypical TJs within the splenic sinus

endothelium, a structure associated with removal of senescent

RBCs [75]. Given the almost complete identity of the protein

sequence of mouse CLDN5 with that of rat (only two amino acids

of 218 differ) we speculate that mouse CLDN5 may also function

in these structures. Reduction in levels of Cldn5 transcript in the

spleens of all three inbred strains may be demonstrative of

disrupted splenic architecture in the face of the massive

haemophagocytosis in this organ in response to infection and/or

the transformation of the spleen to erythropoietic function.

In conclusion, our data provides evidence of a role for Cldn13,

and three other genes with no previous link to erythropoietic

function (Cdca8, Cenpk and Cdr2), in a known stress response

pathway with specific relevance in resistance to trypanosome

infection and potential importance in many other contexts

including acute anaemia and erythroleukaemia. Protein sequence

analyses indicate that Cldn13 is a member of the Claudin family

and as such may well contribute to TJ formation. However, Cldn

13 is an unusual gene; its distribution is apparently limited to the

murinae, and belongs to a clade encompassing recently duplicat-

ing genes evolutionarily linked to human CLDN3 and CLDN4. The

most parsimonious explanation for the absence of CLDN13 in

humans, and all other species surveyed, is a gene duplication event

specific to the murinae which lead to the evolution of a functional

Cldn13 gene in Mus musculus, but appears to have been lost in Rattus

norvegicus leaving only the degenerate sequence we identified. Since

Cldn13 appears to be mouse specific, we speculate that other

members of the Claudin family (possibly CLDN4) may be involved
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in erythropoiesis in other mammals and, given the widespread use

of animal models to predict biological functions in humans, it will

be important to clarify if this is the case.

Methods

Ethics Statement
Animals were housed at the International Livestock Research

Institute (ILRI), Nairobi, Kenya. Mice used were 5–8 weeks of

age. Animals received food and water ad libitum. All experimental

procedures were approved by the Institutional Animal Care and

Use Committee (IACUC, Licence No. 2004.7) at ILRI.

RNA isolation
RNA was isolated from mouse tissues for northern blots and

RT-PCR by extraction with total RNA isolation reagent (ABgene)

according to manufacturer’s instructions. mRNA was purified

from total RNA using the Nucleotrap kit (ABgene) according to

manufacturer’s instructions. For microarray analysis, RNA was

prepared from mouse liver and spleen using Trizol Reagent

(Invitrogen) as described previously [76].

PCR and RT-PCR
cDNA was prepared from 2 mg total RNA (pre-treated with

DNaseI) using the ReverseIT 1st strand synthesis kit (ABgene).

PCR was carried out using the ReddyMix PCR system (ABgene)

according to manufacturer’s instructions. PCR primers are

detailed in Table S4.

Mouse Tissue Northern Blots
mRNA from each tissue (1 mg) was added to 4 ml RNA loading

buffer without ethidium bromide (Sigma) and heated to 65uC for

10 min before loading on a 1% MOPS Formaldehyde gel

(electrophoresis for ,3 h at 5–6 mA/cm). 3 ml RNA markers

(Sigma), in 2 ml ethidium bromide (75 mg/ml), were used on each

gel. Gels were blotted overnight in 206SSPE. Hybridization was

in ‘Rapid-Hyb’ (Clontech) using P32 labelled PCR probes

(Random Primers Labelling System GibcoBRL). The filters were

washed at 60uC (0.2XSSC+0.1%SDS) and exposed to X-ray film

at 270uC. Cldn13 probe was generated by PCR amplification of a

588 bp fragment from mouse genomic DNA (Table S4); this

region is outside the Claudin domain to avoid cross-hybridisation

with other Claudin genes.

Figure 7. Predicted model of co-regulated gene behaviour in response to T. congolense mediated anaemic stress. Diagram represents
an erythroblast cell during mitotic replication under conditions of stress. Proteins encoded by genes clustering with Cldn13 in microarray data are in
red. KITL and its receptor KIT signal through PI3K [15] and regulate BIRC5 (Survivin) and CDCA8 (Borealin) expression through interaction with
MAD2L1 (MAD2) [36,84,85]. PI3K/AKt phosphorylate and activate GATA1 [86] which physically interacts with retinoblastoma (RB1) and E2F2 [29]. PI3K
has been shown to be upstream of Claudin family members [9], potentially linking this pathway with CLDN13 (broken arrow). Claudin family
members have been shown to physically interact with MPDZ (MUPP1) [87] (a binding partner of KIT) and TJP1 (ZO-1), a TJ component which interacts
with EPB4.1 (4.1R) [4] (a key cytoskeletal component linking mitotic microtubules to the plasma membrane Band-3 complex [59]). Under hypoxic
conditions BMP4 signals through SMAD proteins (including SMAD5) [62,63,88] a cascade regulating the transcription factors TAL1, GATA1, ELKF (not
shown) and RUNX1 [62,88]. Downstream targets of these factors include TRIM10 (HERF1) [28], RHD and GYPA [31,89]. Progression through the cell
cycle may be controlled by regulation of CDK4/6 by CDKN2D [43]. Artwork by www.wishpress.com.
doi:10.1371/journal.pone.0012667.g007
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Sequence collection and Phylogenetic analysis
A total of 121 Homo sapiens, Mus musculus, Danio rerio and Takifugu

rubripes full length Claudin sequences were retrieved from GenBank

(http://www.ncbi.nlm.nih.gov). This sequence set was supplement-

ed with Ciona intestinalis sequence (obtained by searching with

sequence ci134049, (http://genome.jgi-psf.org/Cioin2/Cioin2.

home.html)). To simplify the phylogenetic analysis, a single

representation of each entity was used and only the longest isoforms

selected. This yielded a dataset totalling 89 sequences (Table S3).

Claudin amino acid sequences were aligned using ClustalX [77]

(http://bips.u-strasbg.fr/fr/Documentation/ClustalX/). Gap-con-

taining sites were removed from the alignment and Maximum

Likelihood trees were inferred using ProML from the PHYLIP

package (http://evolution.genetics.washington.edu/phylip.html)

[78]. The JTT model of amino acid substitutions was used with

global rearrangement and correction for rate heterogeneity (a
obtained from TREE-PUZZLE (http://www.tree-puzzle.de/) [79].

Neighbour joining bootstrap replicates and Bayesian inference

methods were used to test tree topology using PHYLIP (Neighbour,

ProtDist, SeqBoot) and Mr Bayes (http://mrbayes.csit.fsu.edu/)

[80] respectively. PHYLIP was also used to determine the

parsimonious topology (seqBoot, protparse, consense).

Mouse model of African trypanosomiasis
T. congolense infection of mice is an established and valuable

model of anaemia and is appropriate to use for investigating the

association between gene expression and anaemia [17,20]. Clone

IL 1180 [81] was grown in sub-lethally irradiated Sprague–

Dawley rats, and trypanosomes were isolated from infected rat

blood by anion exchange column [82]. Mice were infected by

intraperitoneal injection (16104 parasites in 200 ml of phosphate-

buffered saline (pH 8.0) containing 1.5% glucose).

Microarray hybridization and cluster analysis
Affymetrix Mouse 430 2.0 microarrays (http://www.affymetrix.

com) were used to determine expression of genes in each of A/J,

BALB/c and C57BL/6 mice. For each strain RNA was prepared

from spleens of thirty mice. The samples were then mixed into five

pools of five samples for each strain. This pooling strategy is

predicted to give the same power to detect differential expression

as fifteen individual samples hybridised separately [83]. Chips

were initially assessed using DChip criteria to screen for outlier

and normalised by RMA. The data are available through

ArrayExpress (Accession No; E-MEXP-1190). P values for

differences in gene expression (by time or strain) were calculated

using the Student’s T-test. Genes with expression patterns most

closely matching those of Cldn13 during infection were identified

using a distance metric (Maxd software suite [26]).

Haemoglobin Measurement
Samples of 2 ml of blood were collected from the tail and diluted

in 150 ml of distilled water in 96 well plates. After 30 minutes at

room temperature, the plate was centrifuged (600 x g, 10 min),

100 ml of supernatant transferred to a new plate and the relative

haemoglobin concentrations measured by spectrophotometrical

determination of optical density at 540 nm in an ELISA plate

reader (Multiscan MCC/340, Titertek Instruments, Huntsville,

AL, USA). Measurements were carried out in triplicate. The data

were analysed by ANOVA (analysis of variance) using strain, time

and their interaction. Subsequently mice were euthanised to allow

tissue collection for microarrays, therefore observed changes in

haemoglobin levels were not due to repeated sampling. All mice

were euthanised after day 35 of the experiment.

Supporting Information

Figure S1 ClustalW alignment of rat predicted CLDN4-like

protein sequence with rat CLDN4, mouse CLDN4 and 13, and

human CLDN4. Rat sequence XP_001066865 is unlikely to be an

ortholog of mouse Claudin 13 as it shares more sequence similarity

with mouse, rat and human Claudin 4.

Found at: doi:10.1371/journal.pone.0012667.s001 (0.71 MB TIF)

Figure S2 tBLASTx alignments using Rat Cldn4-like protein

sequence as the query. A genomic sequence with a high degree of

similarity to rat ‘Cldn4-like’ is located on mouse chromosome 5

between Wbscr27 and Cldn13.

Found at: doi:10.1371/journal.pone.0012667.s002 (0.28 MB TIF)

Figure S3 Putative Fugu Claudin 13. A. ClustalX alignments

highlighting the relatively weak alignment of between mouse

Claudin 13 (AY554386) and Fugu Claudin 13 (AF516681). B.

Contrasting strong alignments between mouse Claudin 3

(NP_034032) and Fugu Claudin 3 (AAT64047). Combined with

phylogenetic evidence this indicates that the suggested Fugu

Claudin 13 is unlikely to be the true ortholog of mouse Claudin 13.

Found at: doi:10.1371/journal.pone.0012667.s003 (0.53 MB TIF)

Figure S4 Data is expressed as mean Log2 intensity (6 standard

error. Expression profiles of Claudins 1–3 and 6–11 in microarray

analysis over the course of T. congolense infection in three different

strains (A/J - open circles, solid line; BALB/c - closed squares,

dotted line; C57BL/6 - crosses, dashed line).

Found at: doi:10.1371/journal.pone.0012667.s004 (0.34 MB TIF)

Figure S5 Data is expressed as mean Log2 intensity (6 standard

error. Expression profiles of Claudins 12, 14–16, 18, 19, 22 and 23

in microarray analysis over the course of T. congolense infection in

three different strains (A/J - open circles, solid line; BALB/c -

closed squares, dotted line; C57BL/6 - crosses, dashed line).

Found at: doi:10.1371/journal.pone.0012667.s005 (0.22 MB TIF)

Figure S6 Data is expressed as mean Log2 intensity (6)

standard error. A–I: Expression profiles of nine of the ten genes

with expression patterns correlating most closely to those of Cldn13

in microarray analysis of T. congolense infection in three different

strains (A/J - open circles, solid line; BALB/c - closed squares,

dotted line; C57BL/6 - crosses, dashed line). All of these are either

known to function in erythropoiesis or have more indirect

associations with erythropoietic pathways.

Found at: doi:10.1371/journal.pone.0012667.s006 (0.43 MB TIF)

Table S1

Found at: doi:10.1371/journal.pone.0012667.s007 (0.03 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0012667.s008 (0.03 MB

DOC)

Table S3

Found at: doi:10.1371/journal.pone.0012667.s009 (0.12 MB

DOC)

Table S4

Found at: doi:10.1371/journal.pone.0012667.s010 (0.03 MB

DOC)
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