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The advent of structural equation modeling (SEM) with latent variables has
changed the nature of research in international marketing and management.
Researchers acknowledge the possibilities of distinguishing between
measurement and structural models and explicitly taking measurement
error into account. As Gefen, Straub, and Boudreau (2000, p. 6) point out,
‘‘SEM has become de rigueur in validating instruments and testing linkages
between constructs.’’ They furthermore distinguish between two families of
SEM techniques: covariance-based techniques, as represented by LISREL,
and variance-based techniques, of which partial least squares (PLS) path
modeling is the most prominent representative.

PLS has been used by a growing number of researchers from various
disciplines such as strategic management (e.g., Hulland, 1999), management
information systems (e.g., Dibbern, Goles, Hirschheim, & Jayatilaka, 2004),
e-business (e.g., Pavlou & Chai, 2002), organizational behavior (e.g.,
Higgins, Duxbury, & Irving, 1992), marketing (e.g., Reinartz, Krafft, &
Hoyer, 2004), and consumer behavior (e.g., Fornell & Robinson, 1983).
Since 1987, for instance, more than 20 studies using PLS have been
published in five top-tier marketing journals (Eggert, 2007) – the majority in
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the last six years. PLS is the method of choice for success factor studies in
marketing (Albers, 2009) and for estimating the various national customer
satisfaction index models (e.g., Fornell, 1992). The PLS methodology has
also achieved an increasingly popular role in empirical research in
international marketing, which may represent an appreciation of distinctive
methodological features of PLS. As of March 2008, more than 30 articles on
international marketing using PLS were published in double-blind reviewed
journals. However, these publications show a rather large variability in the
way how PLS is applied and how its outcomes are reported. In many
instances, the rationale for choosing PLS among a possible set of alternative
analytical techniques is not made explicit.

Although several articles offer guidance for the use of covariance-based
structural equation modeling (CBSEM) in international marketing (e.g.,
Steenkamp & Baumgartner, 1998; Malhotra, 2001; Iacobucci, Grisaffe,
Duhachek, & Marcati, 2003), there are no similar subject-specific guidelines
for the use of PLS. While there are general recommendations for the use of
PLS (e.g., Hulland, 1999), the specific requirements and typical research
problems of international marketing have not been addressed yet. Our main
aims are to shed light on PLS path modeling as an SEM technique, to reveal
the strengths and weaknesses of PLS in general, and to deliver guidelines for
its use in international marketing in particular.
1. APPLICATIONS OF PLS PATH MODELING

IN INTERNATIONAL MARKETING

In order to determine the status quo of PLS path modeling in international
marketing research, we conducted an exhaustive literature review. An
evaluation of double-blind reviewed journals through important academic
publishing databases (e.g., ABI/Inform, Elsevier ScienceDirect, Emerald
Insight, Google Scholar, PsycINFO, Swetswise) revealed that more than
30 academic articles in the domain of international marketing (in a broad
sense) used PLS path modeling as means of statistical analysis. We assessed
what the main motivation for the use of PLS was in respect of each article.
Moreover, we checked for applications of PLS in combination with one or
more additional methods, and whether the main reason for conducting any
additional method(s) was mentioned.

Table 1 lists all the identified academic articles that use PLS as a method
of analysis in the context of international marketing. Green and Ryans



Table 1. Studies Using PLS Path Modeling in International Marketing Research.

Study Motivation for Using PLS Path Modeling Additional Analysis Reason for

Additional Analysis

Acedo and Jones (2007, JWB) ‘‘The PLS technique is justified where theory is insufficiently grounded

and the variables or measures do not conform to a rigorously

specified measurement model, or fit a certain distribution’’ (p. 242)

t-test Group comparison

Ainuddin, Beamish, Hulland,

and Rouse (2007, JWB)

‘‘Use of PLS is especially suited to exploratory studies such as this,

where the measures [ . . . ] are new and the relationships [ . . . ] have not

been previously tested’’ (p. 56)

N/A N/A

Alpert, Kamins, Sakano,

Onzo, and Graham

(2001, IMR)

‘‘Formative indicators can only be analyzed using partial least squares

(PLS), and not by using the more common structural equation

technique of LISREL’’ (p. 177–178)

Multiple regression

and Chow test

Group comparison

Birkinshaw, Morrison, and

Hulland (1995, SMJ)

‘‘PLS is most appropriate when sample sizes are small, when

assumptions of multivariate normality and interval scaled data

cannot be made, and when the researcher is primarily concerned with

prediction of the dependent variable’’ (pp. 646–647)

Multiple regression Analysis of subgroups

Calantone, Graham, and

Mintu-Wimsatt

(1998, IJRM)

‘‘The PLS parameter estimates better reveal the strength and direction

(i.e., positive vs. negative) of the relationships among variables

compared to correlation coefficients’’ (p. 28), ‘‘PLS avoids

parameters estimation biases common in regression analysis’’ (p. 28)

LISREL Path significances

Festge and Schwaiger

(2007, AIM)

‘‘The researcher’s focus is placed on the explanation of an endogenous

construct’’ (p. 192)

Logistic regression Verify model for

binary variables

Gerpott and Jakopin

(2005, SBR)

Not explicitly mentioned N/A N/A

Graham, Mintu, and Rodgers

(1994, Mgmt.Sc.)

‘‘Parameters can be estimated independent of sample size’’ (p. 79),

‘‘PLS avoids parameter estimation biases inherent in regression

analysis’’ (p. 80), ‘‘PLS provides the most flexibility regarding

measurement of the constructs’’ (p. 80)

LISREL In order to test path

significances

Green and Ryans (1990, JPIM) ‘‘Given that the purpose of this study is to predict [ . . . ], PLS has thus

been chosen as the structural equation modeling approach’’ (p. 53),

‘‘[PLS] is more robust with small sample sizes’’ (p. 53), ‘‘the data do

not have to be multivariate normal because of the fixed point

estimation’’ (p. 53)

N/A N/A

Holzmüller and Stöttinger

(1996, JIM)

Not explicitly mentioned N/A N/A
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Table 1. (Continued )

Study Motivation for Using PLS Path Modeling Additional Analysis Reason for

Additional Analysis

Holzmüller and Kasper

(1991, MIR)

‘‘Fewer restrictive assumptions,’’ ‘‘ratio between sample size and the

number of parameters to be estimated,’’ ‘‘exploratory intention’’

(p. 58)

N/A N/A

Inkpen and Birkenshaw

(1994, IBR)

‘‘All relationships are modeled simultaneously, eliminating concerns

about multicollinearity’’ (p. 208)

N/A N/A

Johansson and Yip

(1994, SMJ)

‘‘Less stringent assumptions about the randomness of the sample and

the normality of the distribution of variables’’ (p. 587), ‘‘smaller

sample sizes, as each causal subsystem sequence of paths is estimated

separately’’ (p. 587)

N/A N/A

Johnson, Herrmann, and

Gustafsson (2002, JEP)

Not explicitly mentioned N/A N/A

Julien and Ramangalahy

(2003, ETP)

‘‘PLS is known to be particularly advantageous in the initial

development and assessment phase of theory building,’’ ‘‘the PLS

method is [ . . . ] more robust since its does not require either a large

sample or normally distributed data’’ (p. 233)

N/A N/A

Lee, Yang, and Graham

(2006, JIBS)

‘‘PLS [ . . . ] is more appropriate for the exploratory nature of [a] study,’’

‘‘[PLS] allows for formative indicators [ . . . ] and dichotomous

constructs’’ (p. 632)

t-test and ANOVA Group comparison

Lee (2001, JBR) ‘‘PLS [ . . . ] can accommodate a small sample size’’ (p. 153) Confirmatory factor

analysis

Examine

unidimensionality

Lee (2000, EJM) ‘‘PLS avoids many of the restrictive assumptions imposed by other

causal models that involve latent variables such as LISREL’’, ‘‘PLS

provides measurement assessment’’, ‘‘A jack-knife procedure [ . . . ]

generates an approximate t-statistic. This overcomes the

disadvantage of the lack of formal significance tests for parameters

resulting from non-parametric methods’’, ‘‘PLS enables the explicit

estimation of the multiple item construct, which affords a

comparison of [groups] at the construct level’’ (p. 196)

t-test and ANOVA Group comparison

Mahmood, Bagchi, and Ford

(2004, IJEC)

‘‘The PLS technique imposes minimal demand on measurement scales,

sample sizes, and residual distributions. [It] is often used to test and

validate exploratory models’’ (p. 20)

AMOS Fit statistics
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Mintu-Wimsatt and Graham

(2004, JAMS)

‘‘PLS is a more rigorous approach [ . . . ] compared to correlation and

regression analyses’’ (p. 351), ‘‘PLS [ . . . ] avoids small sample size

problems,’’ ‘‘PLS minimizes biases associated with [ . . . ]

dichotomous and ordinal measures’’ (p. 352)

N/A N/A

Money (2004, JBR) In order to validate regression results N/A N/A

Money and Graham

(1999, JIBS)

N/A LISREL Regression &

Chow Test

Path significances

group comparison

Nakamura, Shaver, and Yeung

(1996, IJIO)

Not explicitly mentioned N/A N/A

Nijssen and Douglas

(2008, JIM)

‘‘PLS can deal effectively with formative scales, is distribution free, and

is a powerful instrument for analyzing small samples’’ (p. 95)

N/A N/A

O’Cass and Fenech (2003,

EJM)

‘‘[PLS] circumvent[s] the necessity for the multivariate normal

assumption’’ (p. 377)

N/A N/A

Pavlou and Chai (2002, JECR) ‘‘PLS allows [ . . . ] a simultaneous analysis of both whether the

hypothesized relationships at the theoretical level are empirically

acceptable, and also how well the measures relate to each construct,’’

‘‘[t]he ability to include multiple measures for each construct,’’ ‘‘the

nature of [ . . . ] measures,’’ ‘‘the small sample size’’ (p. 246)

N/A N/A

Pullman, Granzin, and Olsen

(1997, IBR)

‘‘The objective of PLS is explanation of the relationships and prediction

of the criterion variables of the model’’ (p. 221)

N/A N/A

Pinto, Rodrı́guez Escudero,

and Gutı́errez Cillán

(2008, IMM)

‘‘Avoiding any distributional assumption of the observed variables’’

(p. 160), ‘‘the sample size required in PLS is much smaller’’ (p. 160),

‘‘PLS can handle both types of measurement models, reflective and

formative’’ (p. 160)

N/A N/A

Singh, Fassott, Chao, and

Hoffmann (2006a, IMR)

‘‘PLS [ . . . ] uses distribution-free assumptions, [ . . . ] especially when

independence of observations is not stipulated’’ (p. 89)

N/A N/A

Singh, Fassott, Zhao, and

Boughton (2006b, JCB)

Not explicitly mentioned N/A N/A

Stöttinger and Holzmüller

(2001, MIR)

Not explicitly mentioned N/A N/A

Tsang (2002, SMJ) ‘‘PLS is particularly suitable for data analysis during the early stage of

theory development where the theoretical model and its measures are

not well formed’’ (p. 841)

t-test Group comparison

Venaik, Midgley, and

Devinney (2005, JIBS)

‘‘At an early stage of development [ . . . ] the regression based approach

of PLS is considered more appropriate than covariance-based

methods such as LISREL,’’ applicable when a multivariate normal

distribution can not be assured, small sample size in combination

with a complex model including second-order constructs, formative

indicators (p. 665)

N/A N/A
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(1990) published the first study using PLS in international marketing.
Although there were several articles in the 1990s, the popularity of PLS
seems to have largely increased in the new millennium. Journals that
published PLS applications in the international marketing domain are
(journal abbreviation and number of studies in parentheses):

� Advances in International Marketing (AIM; 1)
� Entrepreneurship Theory and Practice (ETP; 1)
� European Journal of Marketing (EJM; 2)
� Industrial Marketing Management (IMM; 1)
� International Business Review (IBR; 2)
� International Journal of Electronic Commerce (IJEC; 1)
� International Journal of Industrial Organization (IJIO; 1)
� International Journal of Research in Marketing (IJRM; 1)
� International Marketing Review (IMR; 2)
� Journal of Business Research (JBR; 2)
� Journal of Consumer Behaviour (JCR; 1)
� Journal of Economic Psychology (JEP; 1)
� Journal of Electronic Commerce Research (JECR; 1)
� Journal of International Business Studies (JIBS; 3)
� Journal of International Marketing (JIM; 2)
� Journal of Product Innovation Management (JPIM; 1)
� Journal of the Academy of Marketing Science (JAMS; 1)
� Journal of World Business (JWB; 2)
� Management International Review (MIR; 2)
� Management Science (Mgmt.Sc.; 1)
� Schmalenbach Business Review (SBR; 1)
� Strategic Management Journal (SMJ; 3)

Our first analysis of these 33 studies provides some evidence of the
increasing popularity of PLS path modeling within the research community.
The analysis also points to the authors’ motivation for the use of this
particular statistical method. Many researchers argue that the goal of their
studies is in line with particular strengths of PLS path modeling. The most
important motivations are exploration and prediction, as PLS path
modeling is recommended in an early stage of theoretical development in
order to test and validate exploratory models. Another powerful feature of
PLS path modeling is that it is suitable for prediction-oriented research.
Thereby, the methodology assists researchers who focus on the explanation
of endogenous constructs. The characteristics of PLS path modeling, which
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researchers regard as relevant for their studies on international marketing,
can be summarized as follows:

� PLS delivers latent variable scores, i.e. proxies of the constructs, which are
measured by one or several indicators (manifest variables).
� PLS path modeling avoids small sample size problems and can therefore
be applied in some situations when other methods cannot.
� PLS path modeling can estimate very complex models with many latent
and manifest variables.
� PLS path modeling has less stringent assumptions about the distribution
of variables and error terms.
� PLS can handle both reflective and formative measurement models.

However, there are several arguments regarding the characteristics
of PLS path modeling that should be treated with caution: PLS path
modeling does not have less stringent assumptions about the representa-
tiveness of the sample. Sometimes, PLS path modeling is implicitly
presumed to be the only method that can cope with formative indicators
(cf. Chin, 1998); however, LISREL also has this ability (cf. Jarvis,
MacKenzie, & Podsakoff, 2003). Although comparisons of methods provide
some evidence of PLS’ favorable behavior in light of multicollinearity
(cf. Gustafsson & Johnson, 2004), PLS does not resist multicollinearity.
Since PLS determines measurement models (in Mode B) as well as structural
models by means of multiple regressions, PLS estimates can be subject to
multicollinearity problems, too.

Our review furthermore discloses that some studies use PLS path
modeling in combination with other analysis techniques such as t-tests,
ANOVA, and CBSEM. Yet, these methods are not always a suitable choice.
If, for instance, PLS was selected because of its distribution-free character, it
would be inconsequent to introduce distributional assumptions in another
analysis such as t-test or ANOVA, or to rely on criteria derived from
CBSEM’s chi-square statistic. This finding provides evidence that either
PLS path modeling lacks important features, which makes the use of
additional analyses necessary, or that researchers are not aware of the
respective extensions of PLS path modeling. In particular, the findings
underpin the strong need for a PLS-based approach to multigroup analysis
(MGA) in international marketing in order to compare model parameters
across groups such as countries or cultures.

The remainder of this chapter is organized as follows: In the following
Section 2, we describe the working principle of PLS path modeling and
discuss the characteristics of PLS in detail in order to assist research of
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international marketing to distinguish between facts and fiction about PLS
path modeling. Section 3 addresses the assessment of PLS path modeling
results, which represents a key area of concern when applying the
methodology. Five issues are covered: Sections 3.1 and 3.2 provide an
overview of the use of PLS path modeling for the assessment of reflective
and formative measurement models, respectively. Section 3.3 presents the
available criteria for evaluating the structural model. Section 3.4 presents
and discusses the use of bootstrapping for determining confidence intervals
and the significance of PLS path modeling estimates. As a courtesy to
international marketing’s need to compare model parameters across
countries, Section 3.5 proposes a new PLS-based approach for group
comparisons based on bootstrapping. Finally, Section 4 sums up the key
findings and draws conclusions.
2. PLS PATH MODELING

PLS is a family of alternating least squares algorithms, or ‘‘prescriptions,’’
which extend principal component and canonical correlation analysis. The
method was designed by Wold (1974, 1982, 1985) for the analysis of high
dimensional data in a low-structure environment and has undergone various
extensions and modifications. This chapter builds on Wold’s (1982) basic
algorithmic design and some extensions developed by Lohmöller (1989).
2.1. The Nature of PLS Path Models

PLS path models are formally defined by two sets of linear equations: the
inner model and the outer model. The inner model specifies the relationships
between unobserved or latent variables, whereas the outer model specifies
the relationships between a latent variable and its observed or manifest
variables. The various literatures do not always employ the same
terminology. For instance, publications addressing CBSEM (e.g., Rigdon,
1998) often refer to structural models and measurement models or
(observed) indicator variables; whereas those focusing on PLS path
modeling (e.g., Lohmöller, 1989) use the terms inner model and outer
model or manifest variables for similar elements of the causal model. Fig. 1
depicts an example of a PLS path model.

In order to simplify the notation of the model and in line with conventional
descriptions of PLS, we assume that latent and manifest variables are
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Fig. 1. Example of a PLS Path Model.
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standardized so that the location parameters can be discarded in the
following equations. The inner model for relationships between latent
variables can be written as:

x ¼ Bxþ z (1)

where x is the vector of latent variables, B denotes the matrix of coefficients
of their relationships, and z represents the inner model residuals. The basic
PLS design assumes a recursive inner model that is subject to predictor
specification. Thus, the inner model constitutes a causal chain system (i.e.
with uncorrelated residuals and without correlations between the residual
term of a certain endogenous latent variable and its explanatory latent
variables). Predictor specification reduces Eq. (1) to:

ðxjxÞ ¼ Bx (2)

PLS path modeling includes two different kinds of outer models: reflective
(Mode A) and formative (Mode B) measurement models. The selection of a
certain outer mode is subject to theoretical reasoning (Diamantopoulos &
Winklhofer, 2001).

The reflective mode has causal relationships from the latent variable to
the manifest variables in its block. Thus, each manifest variable in a certain
measurement model is assumed to be generated as a linear function of its
latent variables and the residual e:

Xx ¼ Lxxþ �x (3)
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where L represents the loading (pattern) coefficients. The outer relationships
are also subject to predictor specification – implying that there are no
correlations between the outer residuals and the latent variable of the same
block – that reduces Eq. (3) to:

ðXxjxÞ ¼ Lxx (4)

The formative mode of a measurement model has causal relationships
from the manifest variables to the latent variable. For those blocks, the
linear relationships are given as follows:

x ¼ PxXx þ �x (5)

In the formative mode, predictor specification is also in effect, reducing
Eq. (5) to:

ðxjXxÞ ¼ PxXx (6)

Moreover, it is important to see that the terms ‘‘formative’’ and
‘‘reflective,’’ as well as the connotation which is associated with the
classification of ‘‘causal’’ and ‘‘effect,’’ point at a difference between the
characterization of the latent variable measurement models’ mode.
Although a latent variable was originally considered an exact linear
combination of its indicators for formative indicator specifications, a causal
indicator specification – the original term for these indicators – may be more
general in that it holds both in the case of an exact linear combination, as
well as when the indicators do not completely determine the latent variable
(Bollen, 1989). In this chapter, we consistently use the terms ‘‘formative’’
and ‘‘reflective’’ measurement models – in the way they are described, for
example, by Jarvis et al. (2003). It must be noted, though, that while we use
the terms ‘‘reflective’’ and ‘‘formative’’ constructs to refer to latent variables
that are measured with reflective or formative indicators, ‘‘strictly speaking,
it is the (observable) measures (i.e. the indicators) that are being modeled as
reflective or formative and not the (unobservable) constructs as such’’
(Diamantopoulos, 2006, p. 15). The following section introduces the
basic PLS algorithm, which starts with the data matrix of manifest variables
and successively computes the latent variable scores and all unknown
relationships.
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2.2. The PLS Path Modeling Algorithm

The PLS algorithm is essentially a sequence of regressions in terms of weight
vectors. The weight vectors obtained at convergence satisfy fixed point
equations (see Dijkstra, 2009, for a general analysis of such equations and
ensuing convergence issues). The basic PLS algorithm, as suggested by
Lohmöller (1989), includes the following three stages:

Stage 1: Iterative estimation of latent variable scores, consisting of a four-step
iterative procedure that is repeated until convergence is obtained:

(1) outer approximation of the latent variable scores,
(2) estimation of the inner weights,
(3) inner approximation of the latent variable scores, and
(4) estimation of the outer weights.

Stage 2: Estimation of outer weights/loading and path coefficients.
Stage 3: Estimation of location parameters.

We draw on Tenenhaus, Esposito Vinzi, Chatelin, and Lauro’s (2005)
description of the first stage of the PLS path modeling algorithm:

Step 1: Outer approximation of the latent variable scores. Outer proxies of the

latent variables, x̂
outer

n , are calculated as linear combinations of their respective
indicators. These outer proxies are standardized; i.e. they have a mean of 0
and a standard deviation of 1. The weights of the linear combinations result
from step 4 of the previous iteration. When the algorithm is initialized, and
no weights are available yet, any arbitrary nontrivial linear combination of
indicators can serve as an outer proxy of a latent variable.
Step 2: Estimation of the inner weights. Inner weights are calculated for each
latent variable in order to reflect how strongly the other latent variables are
connected to it. There are three schemes available for determining the inner
weights. Wold (1982) originally proposed the centroid scheme. Later,
Lohmöller (1989) developed the factor weighting and path weighting
schemes. The centroid scheme uses the sign of the correlations between a
latent variable – or, more precisely, the outer proxy – and its adjacent latent
variables; the factor weighting scheme uses the correlations. The path
weighting scheme pays tribute to the arrow orientations in the path
model. The weights of those latent variables that explain the focal latent
variable are set to the regression coefficients stemming from a regression of
the focal latent variable (regressant) on its latent repressor variables. The
weights of those latent variables, which are explained by the focal latent
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variable, are determined in a similar manner as in the factor weighting
scheme. Regardless of the weighting scheme, a weight of zero is assigned to
all nonadjacent latent variables.
Step 3: Inner approximation of the latent variable scores. Inner proxies of

the latent variables, x̂
inner

n , are calculated as linear combinations of the outer
proxies of their respective adjacent latent variables, using the afore-
determined inner weights.
Step 4: Estimation of the outer weights. The outer weights are calculated
either as the covariances between the inner proxy of each latent variable and
its indicators (in Mode A, reflective), or as the regression weights resulting
from the ordinary least squares regression of the inner proxy of each latent
variable on its indicators (in Mode B, formative).

These four steps are repeated until the change in outer weights between
two iterations drops below a predefined limit. The algorithm terminates after
step 1, delivering latent variable scores for all latent variables. Loadings and
inner regression coefficients are then calculated in a straightforward way,
given the constructed indices and using Eqs. (4) and (5). In order to
determine the path coefficients, for each endogenous latent variable a
(multiple) linear regression is conducted.
2.3. Methodological Characteristics

Methodological literature on PLS path modeling or publications on causal
modeling applications that utilize the PLS path modeling approach usually
refer to certain advantageous features of this technique (e.g., Fornell &
Bookstein, 1982; Jöreskog & Wold, 1982; Dijkstra, 1983; Lohmöller, 1989;
SchneeweiX, 1991; Falk & Miller, 1992). The popularity of PLS path
modeling among scientists and practitioners is rooted in four genuine
characteristics: First, instead of solely drawing on the common reflective
mode, the PLS path modeling algorithm allows the unrestricted computa-
tion of cause–effect relationship models that employ both reflective and
formative measurement models (Diamantopoulos & Winklhofer, 2001).
Second, PLS can be used to estimate path models when sample sizes are
small (Chin & Newsted, 1999). Third, PLS path models can be very complex
(i.e. consist of many latent and manifest variables) without leading to
estimation problems (Wold, 1985). PLS path modeling is methodologically
advantageous to CBSEM whenever improper or nonconvergent results are
likely to occur (i.e. Heywood cases; see Krijnen, Dijkstra, & Gill, 1998).
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Furthermore, with more complex models, the number of latent and manifest
variables may be high in relation to the number of observations. Fourth,
PLS path modeling can be used when distributions are highly skewed
(Bagozzi, 1994), or the independence of observations is not assured,
because, as Fornell (1982, p. 443) has argued, ‘‘there are no distributional
requirements.’’ All four characteristics are discussed in detail.
2.3.1. Reflective and Formative Measurement Models
Structural equation models usually involve latent variables with multiple
indicators. The measurement model or outer model specifies the relationship
between indicators and latent variables. The direction of path relationships
per measurement model and, thus, the causality between the latent variable
and its indicators are either described by a reflective or a formative mode.
The reflective measurement model has its roots in classical test theory and
psychometrics (Nunnally & Bernstein, 1994). Each indicator represents an
error-afflicted measurement of the latent variable. The direction of causality
is from the construct to the indicators; thus, observed measures are assumed
to reflect variation in the latent variable. In other words, changes in the
construct are expected to be manifested in changes in all of its indicators.
Fig. 2 provides an example of a reflective measurement model.

In some situations, for instance in the early stages of model development,
it is appropriate to determine causality from the measures to the construct,
rather than vice versa (Blalock, 1971). This kind of situation represents a
formative measurement model, which is adequate when a construct is
defined as a combination of its indicators. A typical example would be
marketing mix elements that are determined by a combination of variables
(Fornell, 1982) and, hence, have to be modeled as a (typically linear)
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Fig. 2. Example of a Reflective Measurement Model.
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combination of its indicators plus a disturbance term (Diamantopoulos,
2006). Consequently, the latent variable is defined as a weighted score across
all representative indicator variables, with each variable embodying an
independent dimension in its own right. An increase in the value of one
indicator translates into a higher score for the composite variable, regardless
of the value of the other indicators. The formative measurement model
exhausts the entire domain of the index, meaning that the indicators
collectively represent all the relevant dimensions or independent underpinnings
of the latent variable. One implication of this direction of causality is that
omitting one indicator could omit a unique part of the formative measurement
model and change the meaning of the variable (Diamantopoulos &
Winklhofer, 2001). Fig. 3 presents an example of a formative measurement
model.

Although the inclusion of formative measures in CBSEM has been well
documented (e.g., Jöreskog & Goldberger, 1975; MacCallum & Browne,
1993; Jöreskog & Sörbom, 1996), analysts usually encounter identification
problems. As a sort of ad-hoc remedy, formative indicators could be
modeled in CBSEM by re-specifying the formative indicators as exogenous
latent variables with single indicators, fixed unit loadings, and a fixed
measurement error (Williams, Edwards, & Vandenberg, 2003). In contrast,
similar problems do not arise in PLS path modeling. The PLS path
modeling algorithm – as it is presented in Section 2.2 – is equally well suited
for SEM with reflective and/or formative measurement models. The only
problematic issue, however, is connected to manifest variables’ critical level
of multicollinearity in formative measurement models.

Researchers should carefully decide whether a measurement model shall
be formative or reflective. Measurement model misspecification is an often
observed phenomenon. According to Jarvis et al. (2003), 28% of top-level
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marketing articles use misspecified measurement models in SEM applica-
tions. A substantial number of latent variables in these studies were
inappropriately specified by treating formative measurement models as if
they were reflective. Misspecification of measurement models can bias
inner model parameter estimation and lead to incorrect assessments of
relationships (Jarvis et al., 2003). The decision to use either formative or
reflective indicators for a construct should be based on the nature of the
causal relationship between the indicators and the latent variables in
the measurement model (Bollen, 1989). The most suitable approach to
avoid misspecification of measurement models in SEM is to consider the
conceptual discussion of the differences between formative and reflective
measurement models by, e.g., Howell, Breivik, and Wilcox (2000a, 2007b);
Bagozzi (2007); Bollen (2007); Bollen and Lennox (1991); Diamantopoulos
and Winklhofer (2001); Edwards and Bagozzi (2000), as well as the
C-OAR-SE procedure (Rossiter, 2002) and the design rules for determining
the specific type of measurement model put forward by Jarvis et al. (2003).
Notwithstanding this theoretic foundation, there are only a few endeavors
in the academic business literature that stress statistical techniques for
the assessment of formative measurement models in PLS path models.
For instance, Bollen and Ting’s (1993) confirmatory tetrad analysis (CTA)
results are used in SEM (e.g., Bollen & Ting, 2000) to assess whether
manifest variables in the measurement model are independent determinants
of a latent variable rather than its reflections in an effect indicator scale.
Gudergan, Ringle, Wende, and Will (2008) show that PLS path modeling
assumptions are consistent with the CTA procedure and, thereby, provide a
more rigorous foundation for evaluating whether or not empirical data
support a reflective indicator specification rather than a formative indicator
specification.
2.3.2. Sample Size
The sample size argument has its roots in the considerable obstacles faced
when conducting CBSEM with small samples. A substantial number of
simulation studies on CBSEM compare alternative discrepancy functions
and their estimation bias, accuracy, and robustness with respect to sample
size. Boomsma and Hoogland (2001), for example, conclude that there are
nonconvergence problems and improper CBSEM solutions in small
samples (e.g., 200 or fewer cases). These authors provide evidence that
CBSEM – depending on the selected discrepancy function and the model
complexity – requires several hundred or even thousands of observations.
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In contrast, the sample size can be considerably smaller in PLS path
modeling. For example, ‘‘there can be more variables than observations and
there may be a small amount of data that are missing completely at
random’’ (Tenenhaus et al., 2005, p. 202). Wold (1989) illustrates the low
sample size requirement by analyzing a path model based on a data set
consisting of 10 observations and 27 manifest variables. A rule of thumb for
robust PLS path modeling estimations suggests that the sample size be equal
to the larger of the following (Barclay, Higgins, & Thompson, 1995): (1) ten
times the number of indicators of the scale with the largest number of
formative indicators, or (2) ten times the largest number of structural paths
directed at a particular construct in the inner path model. Chin and Newsted
(1999) present a Monte Carlo simulation study on PLS with small samples.
They find that the PLS path modeling approach can provide information
about the appropriateness of indicators at sample size as low as 20. This
study confirms the consistency at large on loading estimates with increased
numbers of observations and numbers of manifest variables per measure-
ment model.

As a result of these peculiarities, researchers and practitioners use PLS
path modeling, instead of CBSEM, when the sample size is relatively low.
However, this persistent belief in publications and research that support the
claim that PLS is more efficient at small sample size is inadvertently
misleading the research community as it asks for accuracy instead of
statistical power. Goodhue, Lewis, and Thompson (2006, p. 9) argue that
statistical significance is a primary consideration and accuracy a secondary
one: ‘‘without statistical significance, accuracy contributes no scientific
knowledge.’’ Their findings suggest that PLS does not have an advantage in
terms of detecting statistical significance in small sample sizes. Furthermore,
Goodhue et al. (2006) find no evidence that PLS with bootstrapping
provides more statistical power than CBSEM with small sample sizes. The
generally accepted ten times rule of thumb for the minimum sample size in
PLS analyses can lead to unacceptably low levels of statistical power. It is
only in the case of a strong effect size (and high reliability) that rule of
thumb may lead to acceptable power. However, the authors provide strong
evidence that the ten-times-rule does not take into account effect size,
reliability, the number of indicators, or other factors which are known to
affect power. Thus, the recommendations on acceptable PLS sample size
might be misleading.

The choice of an appropriate sample size depends on more than the
magnitude of the relationship or the desired level of power. It is evident that
‘‘a researcher must consider the distributional characteristics of the data,
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potential missing data, the psychometric properties of the variables
examined, and the magnitude of the relationships considered before
deciding on an appropriate sample size to use or to ensure that a sufficient
sample size is actually available to study the phenomena of interest’’
(Marcoulides & Saunders, 2006, p. VI). Marcoulides and Saunders offer
other warnings that clearly echo those presented in the CBSEM literature.
For instance, SchneeweiX (2001) addresses the magnitude of standard errors
in PLS path modeling estimators resulting from not using enough
observations (consistency) and indicators for each latent variable (consist-
ency at large). This research provides closed form equations to determine
the magnitude of finite item bias relative to the number of indicators used in
a model. SchneeweiX (2001, p. 310) indicates that item bias is generally small
when reflective measurement models involve many indicators, ‘‘each with a
sizable loading and an error which is small and uncorrelated (or only slightly
correlated) with other error variables.’’

Goodhue et al. (2006) stress that even though PLS path modeling seems
to have no special abilities at small sample size, its performance, in terms of
statistical power, is equal to other techniques for normally distributed data.
In their view, PLS path modeling is still a convenient and powerful
technique that is appropriate for many research situations such as complex
research models with sample sizes that would be too small for CBSEM
techniques. They therefore note that ‘‘[u]nfortunately PLS does not provide
researchers with a magic bullet for achieving adequate statistical power at
small sample sizes’’ (Goodhue et al., 2006, p. 10). In a similar vain,
Marcoulides and Saunders (2006, p. VIII) state that ‘‘PLS is not a silver
bullet to be used with samples of any size!’’ Thus, researchers must ensure
that the sample size is large enough to support the conclusions – the PLS-
related rule of thumb might work well in some instances, but in others it
might fail miserably.

2.3.3. Model Complexity
Some CBSEM discrepancy functions (e.g., GFI and AGFI) decline as model
complexity increases (i.e. more observed variables or more constructs), and
they may be inappropriate for more complex models (Anderson & Gerbing,
1984). For example, Boomsma and Hoogland (2001) experimentally varied
the model complexity (number of estimated parameters) and the number of
degrees of freedom and found that the more parameters to be estimated, the
more nonconvergence and improper solutions will occur, or – from an
information point of view – the larger the estimation requirements, the more
information is needed. However, sample size has a primary effect: With



JÖRG HENSELER ET AL.294
increasing numbers of observations, there is a decreasing occurrence of
nonconvergence and improper solutions. According to these authors’
simulation study results, if the sample size and the factor loadings are about
the same, more complications are expected regarding nonconvergence and
improper solutions as model complexity increases: ‘‘It was shown that
answers to these questions are conditional on data and model characteristics
alike. In practice, however, applied researchers often do not know the data
and the model characteristics before data collection and analysis. In new
areas of applied research, especially when measurement instruments are in a
developing stage, little is known about distributional characteristics of
observed variables. Also, in phases of model exploration there are
uncertainties about the complexity of the ‘‘final models,’’ about the number
of reliable indicators and the size of factor loadings. It is evident that with
better measurements and stronger theoretical foundations of model
structures, it becomes much easier to make proper decisions on the choice
of estimators and the planning of sample size’’ (Boomsma & Hoogland, 2001,
p. 22). This quote stresses the complementary character of PLS in respect of
CBSEM in theory testing, especially with respect to the issues of model
complexity when the model building proceeds from simple to more complex
models. PLS is considered better suited to explain complex relationships
(Fornell, 1982; Fornell, Lorange, & Roos, 1990). Wold (1985, pp. 589–590)
has therefore stated that ‘‘PLS comes to the fore in larger models, when the
importance shifts from individual variables and parameters to packages of
variables and aggregate parameters. [...] In large, complex models with latent
variables PLS is virtually without competition.’’ Moreover, the PLS
algorithm allows for a considerable increase in model complexity and, hence,
a noticeable reduction in the distance between subject matter analysis and
statistical technique in domains with continuous access to reliable data.

2.3.4. On the Robustness of Parameter Estimates
Although several authors argue that the PLS path modeling approach offers
certain advantages when compared to covariance-based methods (Chin,
1998; Fornell, 1982), others provide notes of caution on the subject of this
discussion (Marcoulides & Saunders, 2006). However, literature on the
formal comparison of CBSEM and PLS is rare (cf. Dijkstra, 1983;
McDonald, 1996). Only few simulation studies analyze the parameter
estimations of both methodologies, thereby uncovering certain peculiarities
regarding their behavior in applications. Researchers and practitioners
require this information when selecting an appropriate means for estimating
a particular SEM with their collected data.
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A primary Monte Carlo simulation study by Vilares, Almeida, and
Coelho (2009) analyzes the effects of two assumptions on the performance
of CBSEM and PLS: the symmetry of the distribution and the reflective
modeling of the indicators. These authors compare both methods’
performance when these assumptions hold and when they are violated; for
instance, when the distribution of the observations is skewed and some
indicators follow a formative scheme. In their base model (reflective model
with symmetric data), the quality of the two estimation methods is very
similar, especially for the estimation of outer loadings. The Vilares et al.
(2009) study sustains the phenomenon of outer loading overestimation by
PLS and more conservative outcomes for inner path model relationships,
whereas the Maximum Likelihood (ML) method shows exactly the opposite
tendency, with overestimation of the path coefficients and a general
underestimation of the indicator loadings. However, when a formative
latent variable is introduced, the PLS method demonstrates higher
robustness compared to CBSEM. The same kind of finding holds with
skewed data results. Accordingly, the authors conclude that in case of
skewed data, PLS estimates are better than ML estimates, in terms of both
bias and precision. The ML estimators seem to be more sensitive to the
various potential deficiencies in the data and model specification.

The research by Vilares et al. (2009) analyzes formative measurement
models in that it draws on reflective loadings results, thus depicting a
situation of measurement model misspecification (Jarvis et al., 2003).
Another Monte Carlo simulation study by Ringle, Wilson, and Götz (2007)
compares the performance of CBSEM and PLS for formative exogenous
latent variables in a causal model. Both methodologies provide estimates for
the simulated sets of data that are very close to the population parameters
when averaged. Although CBSEM estimates in the formative measurement
and the structural model significantly decrease in accuracy and robustness in
respect of nonnormal data, the performance of reflective measurement
models’ estimations is not seriously affected by these changed data
characteristics. Ringle et al. (2007) reveal similar results for PLS path
modeling, but the decline in accuracy and robustness is considerably lower
compared to CBSEM. On the basis of these findings, we can conclude that
in the normal data scenario, CBSEM provides accurate and robust
parameter estimates that are equal or superior in comparison to PLS
estimates, no matter what measurement models are used. However, if the
premises for the application of CBSEM are violated, such as regarding the
required minimum number of observations for robust model estimations or
the multivariate normality assumption for some CBSEM discrepancy
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functions, the PLS approach offers robust approximations. It must be noted
though that, in general, PLS parameter estimates are less than optimal
regarding bias and consistency. The estimates will be asymptotically correct
under the condition of consistency at large, i.e. both a large sample size and
large numbers of indicators per latent variable (Jöreskog & Wold, 1982).
2.3.5. Choice between the Covariance- and Variance-Based SEM Method
Even though Wold (1974) developed the fixed-point estimation procedure for
causal modeling as an alternative to CBSEM, the covariance-fitting-based
SEM procedures (e.g., ML, GLS, ULS) and the variance-based PLS
approach are complementary rather than competitive. According to Jöreskog
(1982, p. 270) ‘‘ML is theory-oriented, and emphasizes the transition from
exploratory to confirmatory analysis. PLS is primarily intended for causal-
predictive analysis in situations of high complexity but low theoretical
information.’’ The philosophical distinction between these approaches is
whether to use CBSEM for theory testing and development, or PLS path
modeling for predictive applications. As visualized in Fig. 4, in causal
modeling situations where prior theory is strong and further testing and
development is the goal, CBSEM is the most appropriate statistical
methodology. Yet, due to the indeterminacy of factor score estimations,
there is a loss of predictive accuracy. This occurrence, of course, is not of
concern in theory testing where structural relationships (i.e. parameter
estimation) between concepts is of primary concern. Moreover, hypothesis
building and the assessment of CBSEM results through global goodness-of-fit
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criteria further emphasizes the theory-testing, rather than theory-building,
character of this methodology (Anderson & Gerbing, 1988).

In research settings with predictive scope, weak theory, and no need for
an understanding of underlying relationships, artificial neural networks
(ANN) may be useful. This approach creates artificial neurons and their
interrelations in the hidden layer that connects the input and output data, in
order, for example, to improve predictivity without necessarily creating a
model of theoretical meaning. Yet, Hsu, Chen, and Hsieh (2006) find that
their ANN-based SEM technique is similar to PLS path modeling.

Using the iterative estimation technique as described in Section 3.2, the
PLS path modeling approach calculates latent variable scores as exact linear
combinations of the observed measures. Thereby, the approach avoids the
indeterminacy problem and provides an exact definition of component
scores (Fornell, 1982). The PLS approach is adequate for causal modeling
applications whose purpose is prediction and/or theory building. Although
PLS path modeling can be used for theory confirmation, it assumes that all
measured variance is useful for explanation in applications (e.g., Sarkar,
Echambadi, Cavusgil, & Aulakh, 2001) and indicates the causal relation-
ships with significant effect. Thus, parameter estimates are obtained based
on the ability to minimize the residual variances of dependent variables
(both latent and observed variables). An assessment of these PLS estimation
outcomes – for example, by standard errors that are obtained through
bootstrapping (see Section 3.4) – builds on the evaluation of partial path
model structures. PLS’ lack of a global optimization function and
consequently measures of global goodness of model fit definitely limits the
use of PLS for theory testing.

A researcher must arrive at a decision on the causal model analysis with
latent variables in order to select an appropriate statistical technique.
Instead of using the model to explain the covariation among all indicators,
which is the objective of CBSEM, PLS path modeling maximizes the
explained variance of all dependent variables and, thus, supports prediction-
oriented goals. Although the CBSEM and PLS path modeling methodol-
ogies differ from a statistical point of view, PLS estimates may represent
good proxies of the CBSEM results. If CBSEM premises are violated, such
as distributional assumptions, minimum sample size, or maximum model
complexity, and related methodological matters arise, such as Heywood
cases, an inability to converge to a solution, parameters that are outside
reasonable limits, and large standard errors regarding parameter estimates
(Rindskopf, 1984), PLS path modeling may represent a reasonable
methodological alternative for theory testing.
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3. EVALUATION OF PLS PATH MODEL RESULTS

PLS path modeling does not provide any global goodness-of-fit criterion.
As a consequence, Chin (1998) has put forward a catalog of criteria
to assess partial model structures. A systematic application of these criteria
is a two-step process, encompassing (1) the assessment of the outer model
and (2) the assessment of the inner model. Fig. 5 depicts this two-step
process.

At the beginning of the two step process, model assessment focuses on the
measurement models. A systematic evaluation of PLS estimates reveals the
measurement reliability and validity according to certain criteria that are
associated with formative and reflective outer model. It only makes sense to
evaluate the inner path model estimates when the calculated latent variable
scores show evidence of sufficient reliability and validity.
3.1. Assessing Reflective Measurement Models

Reflective measurement models should be assessed with regard to their
reliability and validity. Usually, the first criterion which is checked is
internal consistency reliability. The traditional criterion for internal
consistency is Cronbach’s a (Cronbach, 1951), which provides an estimate
for the reliability based on the indicator intercorrelations. While Cronbach’s
Outer model 
assessment

• Reliability and validity of reflective constructs
• Validity of formative constructs

Inner model 
assessment

• Variance explanation of endogenous constructs
• Effect sizes
• Predictive relevance

Fig. 5. A Two-Step Process of PLS Path Model Assessment.
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a assumes that all indicators are equally reliable, PLS prioritizes indicators
according to their reliability, resulting in a more reliable composite.
As Cronbach’s a tends to provide a severe underestimation of the internal
consistency reliability of latent variables in PLS path models, it is
more appropriate to apply a different measure, the composite reliability
rc (Werts, Linn, & Jöreskog, 1974). The composite reliability takes into
account that indicators have different loadings, and can be interpreted in
the same way as Cronbach’s a. No matter which particular reliability
coefficient is used, an internal consistency reliability value above 0.7 in early
stages of research and values above 0.8 or 0.9 in more advanced stages of
research are regarded as satisfactory (Nunnally & Bernstein, 1994), whereas
a value below 0.6 indicates a lack of reliability.

As the reliability of indicators varies, the reliability of each indicator
should be assessed. Researchers postulate that a latent variable should
explain a substantial part of each indicator’s variance (usually at least 50%).
Accordingly, the absolute correlations between a construct and each of its
manifest variables (i.e. the absolute standardized outer loadings) should be
higher than 0.7 (�

ffiffiffiffiffiffiffi
0:5
p

). Moreover, some psychometrists (e.g., Churchill,
1979) recommend eliminating reflective indicators from measurement
models if their outer standardized loadings are smaller than 0.4. Taking
into account PLS’ characteristic of consistency at large, one should be
careful when eliminating indicators. Only if an indicator’s reliability is low
and eliminating this indicator goes along with a substantial increase of
composite reliability, it makes sense to discard this indicator.

For the assessment of validity, two validity subtypes are usually examined:
the convergent validity and the discriminant validity. Convergent validity
signifies that a set of indicators represents one and the same underlying
construct, which can be demonstrated through their unidimensionality.
Fornell and Larcker (1981) suggest using the average variance extracted
(AVE) as a criterion of convergent validity. An AVE value of at least 0.5
indicates sufficient convergent validity, meaning that a latent variable is able
to explain more than half of the variance of its indicators on average
(e.g., Götz, Liehr-Gobbers, & Krafft, 2009). Discriminant validity is a rather
complementary concept: Two conceptually different concepts should exhibit
sufficient difference (i.e. the joint set of indicators is expected not to be
unidimensional). In PLS path modeling, two measures of discriminant
validity have been put forward: The Fornell–Larcker criterion and the cross-
loadings. The Fornell–Larcker criterion (Fornell & Larcker, 1981) postulates
that a latent variable shares more variance with its assigned indicators than
with any other latent variable. In statistical terms, the AVE of each latent



Table 2. Assessing Reflective Measurement Models.

Criterion Description

Composite reliability

(rc)
rc ¼ ð

P
liÞ2=½ð

P
liÞ2 þ

P
Varð�iÞ�, where li is the outer

(component) loading to an indicator, and Varð�iÞ ¼ 1� l2i in

case of standardized indicators. The composite reliability is a

measure of internal consistency and must not be lower than 0.6.

Indicator reliability Absolute standardized outer (component) loadings should be

higher than 0.7.

Average variance

extracted (AVE)
AVE ¼ ð

P
l2i Þ=½

P
l2i þ

P
Varð�iÞ�, where li is the component

loading to an indicator and Varð�iÞ ¼ 1� l2i in case of

standardized indicators. The average variance extracted should

be higher than 0.5.

Fornell–Larcker

criterion

In order to ensure discriminant validity, the AVE of each latent

variable should be higher than the squared correlations with all

other latent variables. Thereby, each latent variable shares more

variance with its own block of indicators than with another

latent variable representing a different block of indicators.

Cross-loadings Cross-loadings offer another check for discriminant validity. If an

indicator has a higher correlation with another latent variable

than with its respective latent variable, the appropriateness of

the model should be reconsidered.
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variable should be greater than the latent variable’s highest squared
correlation with any other latent variable. The second criterion of
discriminant validity is usually a bit more liberal: The loading of each
indicator is expected to be greater than all of its cross-loadings (Chin, 1998;
Götz et al., 2009). Although the Fornell–Larcker criterion assesses
discriminant validity on the construct level, the cross-loadings allow this
kind of evaluation on the indicator level.

In summary, a reliable and valid reflective measurement of latent
variables should meet all the criteria as listed in Table 2. If this is not the
case, the researcher may want to exclude single indicators from a specific
measurement model and eventually revise the path model.
3.2. Assessing Formative Measurement Models

Bollen (1989) and Bagozzi (1994) emphasize that traditional validity
assessments and classical test theory do not apply to manifest variables
that are used in formative measurement models and that the concepts of
reliability (i.e. internal consistency) and construct validity (i.e. convergent
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and discriminant validity) are not meaningful when a formative mode is
employed. It is the assumption of error-free measures that renders the
question of indicator reliability irrelevant. Diamantopoulos (2006, p. 11)
concludes in respect of formative measurement that ‘‘reliability becomes an
irrelevant criterion for assessing measurement quality.’’ The less important
reliability becomes, the more pivotal it is to secure validity. A first
examination of the validity of formative indicators should use theoretic
rationale and expert opinion (Rossiter, 2002). A second assessment of the
validity of formative constructs should consist of statistical analyses on two
levels: the construct level and the indicator level.

At the construct level, the question arises as to whether the formative
index indeed carries the intended meaning. A first check could be the
nomological validity: Does the formative index behave within a net of
hypotheses as expected? Those relationships between the formative index
and other constructs in the path model that are sufficiently referred to in
prior research should be strong and significant. Moreover, researchers
should be concerned about the construct’s error-term n, which represents the
part of the construct that is not captured by any indicator. In order to
estimate the size of this error, one can assess the external validity by means
of regressing the formative index on a reflective measure of the same
construct. The variance of the error n can be determined as follows:

VarðnÞ ¼ 1�
g2

relðxÞ
(7)

Here, x stands for the reflective measure of the focal construct and g for
the correlation between the formative and the reflective measure of the same
construct, which is equal to the standardized regression coefficient. The
ratio of the equation includes a correction of the imperfect reliability of the
reflective measure. The external validity can finally be calculated as
1� Var nð Þ. The current literature does not provide any recommendations
for thresholds of external validity. We suggest a value of 0.8 as a minimum
for external validity, which would mean that the formative index carries
about 80% of the intended meaning. However, researchers should always
take into account the particularities of their research fields and eventually
ask for a higher external validity.

At the indicator level, the question arises as to whether each indicator
indeed delivers a contribution to the formative index by carrying the
intended meaning. Besides face and content validity, which can both be
assessed a priori, some statistical evaluations can be conducted a posteriori.
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There are two cases in which researchers should critically examine whether a
particular indicator should enter into the index or not. An indicator can be
irrelevant for the construction of the formative index because it either does
not have a significant impact on the formative index, or because it exhibits
high multicollinearity, which could mean that the indicator’s information is
redundant. In order to check for the first case, the significance of the
estimated indicator weights can be determined by means of bootstrapping
(cf. Davison & Hinkley, 2003; Chin, 1998; Tenenhaus et al., 2005, and see
Section 3.4). In order to check for the second case, researchers should
assess the degree of multicollinearity among the formative indicators
(Diamantopoulos & Winklhofer, 2001; Cassel, Hackl, & Westlund, 2000,
Grewal, Cote, & Baumgartner, 2004), for instance, by calculating the
variance inflation factor (VIF) or the tolerance values. A rule of thumb
from econometrics states that VIFs greater than 10 reveal a critical level
of multicollinearity. However, any VIF substantially greater than 1 indicates
multicollinearity and should alert researchers to the typical problems of
multicollinearity.

The different steps and criteria for assessing the validity of formative
indices are summarized in Table 3. A final note of caution: formative
indicators should never be discarded simply on the basis of statistical
outcomes. Such actions may substantially change the content of the
formative index (Jarvis et al., 2003). Thus, the researcher should keep both
significant and insignificant formative indicators in the measurement model
as long as this is conceptually justified. Usually, PLS structural model
Table 3. Assessing Formative Measurement Models.

Criterion Description

Nomological validity The relationships between the formative index and other

constructs in the path model, which are sufficiently well

known through prior research, should be strong and

significant.

External validity The formative index should explain a big part of the variance of

an alternative reflective measure of the focal construct.

Significance of weights Estimated weights of formative measurement models should be

significant.

Multicollinearity Manifest variables in a formative block should be tested for

multicollinearity. The variance inflation factor (VIF) can be

used for such tests. As a rule of thumb, a VIF greater than ten

indicates the presence of harmful collinearity. However, any

VIF substantially greater than one indicates multicollinearity.
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estimates hardly alter after performing an elimination of insignificant or
highly collinear formative indicators, providing further support for the
decision to retain such indicators in the PLS path model. In the case of
multicollinearity, indicator weight estimates can be distorted. This fact
requires researchers to be particularly cautious when interpreting indicator
weights as a sign of indicator importance.

3.3. Assessing the Structural Model

Reliable and valid outer model estimations permit an evaluation of the inner
path model estimates. Table 4 provides an overview of the typical criteria.
The essential criterion for this assessment is the coefficient of determination
(R2) of the endogenous latent variables. Chin (1998) describes R2 values of
0.67, 0.33, and 0.19 in PLS path models as substantial, moderate, and weak,
respectively. If certain inner path model structures explain a endogenous
latent variable by only a few (e.g., one or two) exogenous latent variables,
‘‘moderate’’ R2 may be acceptable. However, if the endogenous latent
variable relies on several exogenous latent variables, the R2 value should
exhibit at least a substantial level. Lower results, on the contrary, cast
Table 4. Assessing Structural Models.

Criterion Description

R2 of endogenous

latent variables

R2 values of 0.67, 0.33, or 0.19 for endogenous latent variables in the

inner path model are described as substantial, moderate, or weak by

Chin (1998, p. 323).

Estimates for path

coefficients

The estimated values for path relationships in the structural model

should be evaluated in terms of sign, magnitude, and significance

(the latter via bootstrapping).

Effect size f 2 f 2 ¼ ðR2
included � R2

excludedÞ=ð1� R2
includedÞ; values of 0.02, 0.15, and 0.35

can be viewed as a gauge for whether a predictor latent variable has

a weak, medium, or large effect at the structural level.

Prediction relevance

(Q2 and q2)

The Q2 is calculated based on the blindfolding procedure:

Q2 ¼ 1� ð
P

DSSEDÞ=ð
P

DSSODÞ. D is the omission distance, SSE is

the sum of squares of prediction errors, and SSO is the sum of

squares of observations. Q2-values above zero give evidence that the

observed values are well reconstructed and that the model has

predictive relevance (Q2-values below zero indicate a lack of

predictive relevance). In correspondence to f 2, the relative impact of

the structural model on the observed measures for latent dependent

variables can be assessed: q2 ¼ ðQ2
included �Q2

excludedÞ=ð1�Q2
includedÞ.
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doubts regarding the theoretical underpinnings and demonstrate that the
model is incapable to explain the endogenous latent variable(s).

The individual path coefficients of the PLS structural model can be
interpreted as standardized beta coefficients of ordinary least squares
regressions. Structural paths, whose sign is in keeping with a priori
postulated algebraic signs, provide a partial empirical validation of the
theoretically assumed relationships between latent variables. Paths that
possess an algebraic sign contrary to expectations do not support the a
priori formed hypotheses. In order to determine the confidence intervals of
the path coefficients and statistical inference, resampling techniques such as
bootstrapping should be used (cf. Tenenhaus et al., 2005, and see Section
3.4). Another important evaluation of direct and indirect relationships of
the predecessor of a certain endogenous latent variable involves the analysis
of mediating (Helm, Eggert, & Garnefeld, 2009) and moderating effects
(Henseler & Fassott, 2009). Researchers and practitioners using PLS path
modeling should first assess their hypothesized path model of direct effects
and then conduct additional analyses involving mediating and moderating
effects to learn, for instance, more about possible spurious effects or
suppressor effects.

Albers (2009) proposes a new paradigm for success factor studies in
marketing. The significance of highly plausible direct inner path model
relationships is no longer of interest to researchers and practitioners.
Rather, the sum of the direct effect and all indirect effects of a particular
latent variable on another (the total effect) should be the subject of
evaluation for further interpretation. This new paradigm copes with a
frequent observation in PLS path modeling that the standardized inner path
model coefficients decline with an increased number of indirect relation-
ships, especially when mediating latent variables have a suppressor effect on
the direct path. Consequently, considerable direct relationships may become
insignificant after including additional indirect relationships. In such
instances, the total effect should remain at a relatively constant, sizeable
level and thus provide more reasonable grounds for conclusions on the inner
path model relationships.

For each effect in the path model, one can evaluate the effect size by
means of Cohen’s (1988) f 2. The effect size f 2 is calculated as the increase in
R2 relative to the proportion of variance of the endogenous latent variable
that remains unexplained. According to Cohen (1988), f 2 values of 0.02,
0.15, and 0.35 signify small, medium, and large effects, respectively.

Another assessment of the structural model involves the model’s
capability to predict. The predominant measure of predictive relevance is
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Stone-Geisser’s Q2 (Stone, 1974; Geisser, 1975), which can be measured
using blindfolding procedures (Tenenhaus et al., 2005). The Stone–Geisser
criterion postulates that the model must be able to provide a prediction of
the endogenous latent variable’s indicators. The technique represents a
synthesis of function fitting and cross-validation. As Chin (1998) points
out, ‘‘the prediction of observables or potential observables is of much
greater relevance than the estimator of what are often artificial
construct-parameters’’ (p. 320). Wold (1982) argues that the sample reuse
technique – especially the blindfolding procedure to obtain the cross-
validated redundancy (instead of the cross-validated communality) – fits the
PLS path modeling approach like ‘‘hand in glove.’’

The blindfolding procedure is only applied to endogenous latent variables
that have a reflective measurement model operationalization. If this value
for a certain endogenous latent variable is larger than zero, its explanatory
variables provide predictive relevance. In analogy to the effect-size f 2

evaluation, the relative impact of the predictive relevance can be assessed by
means of the measure q2: values of 0.02, 0.15, and 0.35 reveal a small,
medium, or large predictive relevance of a certain latent variable, thus
explaining the endogenous latent variable under evaluation.
3.4. Bootstrapping

The nonparametric bootstrap (Davison & Hinkley, 2003; Efron &
Tibshirani, 1993) procedure can be used in PLS path modeling to provide
confidence intervals for all parameter estimates, building the basis for
statistical inference. In general, the bootstrap technique provides an estimate
of the shape, spread, and bias of the sampling distribution of a specific
statistic. Bootstrapping treats the observed sample as if it represents the
population. The procedure creates a large, pre-specified number of
bootstrap samples (e.g., 5,000). Each bootstrap sample should have the
same number of cases as the original sample. Bootstrap samples are created
by randomly drawing cases with replacement from the original sample.

PLS estimates the path model for each bootstrap sample. The obtained
path model coefficients form a bootstrap distribution, which can be viewed
as an approximation of the sampling distribution. The bootstrapping
analysis allows for the statistical testing of the hypothesis H0 : w ¼ 0 (w can
be any parameter estimated by PLS) against the alternative hypothesis H1 :
wa 0 at mþ n� 2 degrees of freedom (where m is the number of PLS
estimates for w in the original sample, which is 1; n is the number of
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bootstrap estimates for w, e.g., 5,000). The PLS results for all bootstrap
samples provide the mean value and standard error for each path model
coefficient. This information permits a student’s t-test to be performed for
the significance of path model relationships. Chin (1998) proposes using the
following test statistic for PLS:

temp ¼
w

seðwÞ
(8)

whereby temp represents the empirical t-value, w the original PLS estimate of
a certain path coefficient, and seðwÞ its bootstrapping standard error. The
student’s t-distribution table provides the critical t-value at given a-levels
and the respective number of degrees of freedom.

Instead of just reporting the significance of a parameter, it would be more
valuable to report the confidence interval. If a confidence interval for an
estimated path coefficient w does not include zero, the hypothesis that w
equals zero is rejected. Testing with confidence intervals is advantageous, as
it provides more information about the estimate of w. Shaffer (1995, p. 575)
remarks that ‘‘if the hypothesis is not rejected, the power of the procedure
can be gauged by the width of the interval.’’

In order to determine the confidence interval of a model parameter, say
a path coefficient, one has to recognize that the bootstrapping procedure
generates a distribution T of w. However, significance testing needs to
account for the distribution of T under H0, which is the null distribution
of T. This distribution is essential for performing the test since it provides
the basis for determining the p-value. If the null distribution is unknown, the
asymptotic normality of the test statistic is commonly assumed. Although
nonparametric alternatives can be obtained through bootstrapping, this
approach overlooks the possibility that the data could be generated under
the alternative hypothesis H1 : ya y0.

This problem can be addressed by examining the statistical correspon-
dence between tests of significance and confidence intervals when the null
hypothesis concerns a particular parameter value (Gudergan et al., 2008).
Bootstrapping confidence intervals are well established (Efron & Tibshirani,
1993; Davison & Hinkley, 2003). If the bootstrap estimates of bias and
variance are denoted by bB and vB, then the corresponding approximate
1� a (two-tailed) confidence interval is:

t� bB � v
1=2
B z1�a=2 (9)

where bB ¼ �wB � w, the difference of the mean value of w for all bootstraps
and the original PLS estimation of that path coefficient. A null hypothesis
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H0 : w ¼ 0 is accepted (or rejected) at a given level a, if the corresponding
ð1� aÞ confidence interval includes (or does not include) the parameter
value y0. The bias-corrected bootstrap confidence interval in Eq. (9)
provides a basis to account for the aforementioned problem and, thus, can
be used as an appropriate means to test the significance of PLS-estimated
path coefficients (Gudergan et al., 2008).

In PLS path modeling, the latent variable scores may have different signs
if, for examples, estimation A uses an alternative outer weights initialization
of the algorithm (say, þLV1) compared with estimation B (in this case,
�LV2). Still, the absolute LV-values of both estimations usually represent
equivalent solutions, i.e. þLV1j j ¼ �LV2j j (for a discussion on this sign
indeterminacy of PLS see Wold, 1985). This sign indeterminacy of PLS
latent variable scores may also result in arbitrary sign changes during the
bootstrap path model estimations. Such occurrence of sign changes ‘‘pull’’
the mean value of bootstrapping results (e.g., for parameter w) toward zero
and, thereby, bias the bootstrap standard error upward. Arbitrary sign
changes systematically reduce the value of temp and, thus, the possibility of
the rejection of H0 at a given a level. The standard error of estimates
increases dramatically without any real meaning if the sign changes are not
properly taken into account (Tenenhaus et al., 2005). Rather than not
treating sign changes in the bootstrapping results, we suggest using the
individual sign change option. The working principle is as follows: If a PLS
path coefficient estimation for a bootstrap subsample shows a different sign
compared with the original path model estimation, the procedure reverses
the sign of that path coefficient in the bootstrapping subsample. Thus, the
signs in the outer and inner models of each resample are made consistent
with the signs in the original sample in order to avoid these sign-change-
related problems.
3.5. Group Comparisons and Other Advances in PLS Analyses

A threat to the validity of SEM results may lie in the heterogeneity of
observations. The level of observed or unobserved heterogeneity can lead to
spurious or suppressor effects, and generally to misinterpretations. Typically,
researchers in international marketing are well aware of the heterogeneity of
observations; that is, different population parameters are likely for different
subpopulations such as countries or cultures. Although cross-cultural or
cross-national differences are related to observed heterogeneity, there can
also be unobserved heterogeneity, which cannot be attributed to any



JÖRG HENSELER ET AL.308
predetermined variable. Similar to ignoring observed heterogeneity due to
countries or cultures, unobserved heterogeneity represents a serious problem
in respect of interpreting PLS results (Ringle, 2006).

Our review of PLS path modeling applications in international marketing
gives a mixed picture regarding the examination of heterogeneity. Although a
significant number of studies take observed heterogeneity into account by
means of multigroup comparisons, none of the studies accounts for
unobserved heterogeneity. However, there are several PLS-based approaches
to detect unobserved heterogeneity. Analytical techniques such as finite
mixture partial least squares (FIMIX-PLS; Hahn, Johnson, Herrmann, &
Huber, 2002; Ringle, Sarstedt, & Mooi, 2009a; Ringle, Wende, & Will,
2009b) or the recently developed PLS typological alternatives (e.g., Esposito
Vinzi, Ringle, Squillacciotti, & Trinchera, 2007; Ringle & Schlittgen, 2007)
are becoming mandatory for evaluating PLS path modeling results. Using
these techniques, researchers can either confirm that their results are not
distorted by unobserved heterogeneity or identify thus far neglected variables
that describe the uncovered data segments.

As soon as conceptual deliberations or methods such as FIMIX-PLS
suggest different models for different subgroups, PLS-based multigroup
analysis (MGA) should be conducted. In MGA, a population parameter b is
hypothesized to differ for two subpopulations: bð1Þa bð2Þ. Referring to PLS
path modeling, researchers would for instance ask whether one could conclude
differences in population parameters from the differences in path coefficients.

The primary approach for group comparisons is a t-test, as described by
Keil et al. (2000). These authors suggest using the standard errors obtained
from bootstrapping as the input for a parametric test. After having exposed
the subsamples to separate bootstrap analyses and having made parametric
assumptions about the distributions of the parameter standard errors, one
can calculate the following statistic for the difference in paths between
groups (Keil et al., 2000):

t ¼
bð1Þ � bð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnð1Þ � 1Þ2

nð1Þ þ nð2Þ � 2
seðbð1ÞÞ2 þ

ðnð2Þ � 1Þ2

nð1Þ þ nð2Þ � 2
seðbð2ÞÞ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nð1Þ
þ

1

nð2Þ

r (10)

This statistic is asymptotically t-distributed with nð1Þ þ nð2Þ � 2 degrees of
freedom. The subsample-specific path coefficients are denoted as b, the sizes
of the subsamples as n, and the path coefficient standard errors as resulting
from bootstrapping as se.
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Chin and Dibbern (2009) cast doubt on whether this approach of
multigroup comparison with its inherent distributional assumptions fits to
PLS path modeling, which is generally regarded as being distribution-free.
In line with these doubts, we present an alternative approach to PLS-based
group comparisons that does not rely on distributional assumptions, as
initially proposed by Henseler (2007). The working principle of the novel
PLS-MGA approach is as follows: First, the subsamples to be compared
are exposed to separate bootstrap analyses, and the bootstrap outcomes
serve as a basis for the hypothesis tests of group differences. Instead of
relying on distributional assumptions, the new approach evaluates the
observed distribution of the bootstrap outcomes. Given two subsamples
with parameter estimates (e.g., a path coefficient), bð1Þ and bð2Þ, the condi-
tional probability Pðbð1Þ4bð2Þjbð1Þ � bð2ÞÞ has to be determined. Here, bð1Þ

and bð2Þ represent the true population parameters of population 1 and 2.
A researcher would like to be sure that P is below a specified a-level before
concluding that bð1Þ is greater than bð2Þ.

If researchers know the parameter estimates of two subsamples from
bootstrapping, they can easily verify how probable a difference in
parameters between two subpopulations is and hence test their hypothesis
with the following equation:

Pðbð1Þ4bð2Þjbð1Þ � bð2ÞÞ ¼ 1�
X
8j;i

Y 2 �b
ð1Þ
� b
ð1Þ
j � 2 �b

ð2Þ
þ b
ð2Þ
i

� �
J2

(11)

In this equation, J denotes the number of bootstrap samples, b
ð1Þ
j and b

ð2Þ
i

the bootstrap parameter estimates, �b
ð1Þ

and �b
ð2Þ

the means of the focal
parameters over the bootstrap samples, and Y the unit step function, which
has a value of 1 if its argument exceeds 0, otherwise 0. The superscript in
parentheses marks the respective group. This equation states that J2 (i.e. all
possible) comparisons of bootstrap parameters have to be made. In fact, this
approach can be seen as a Mann–Whitney–Wilcoxon test (Wilcoxon, 1947;
Mann & Whitney, 1947) applied to the bootstrap-values corrected for the
original parameter values.

PLS-MGA does not require any distributional assumptions and is simple
to apply by using the bootstrap outputs that are generated by the prevailing
PLS implementations such as SmartPLS (Ringle, Wende, & Will, 2005). The
way of determining the probability whether a population parameter differs
across two sub-populations is unique to this new approach. Researchers can
easily conduct the final calculations with available spreadsheet software such
as MS Excel (a sample spreadsheet can be obtained from the first author).
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Besides the aforementioned methodological advances for addressing the
requirement to capture unobserved heterogeneity, recent developments in
the evaluation of PLS path modeling results focus on the problem of
measurement model misspecification. Bucic and Gudergan (2004) use a PLS
application to demonstrate the significant consequences of misspecification
for path model estimates. The seven criteria that have been put forward
by Jarvis et al. (2003) permit an a priori examination of the outer mode.
In addition, a confirmatory tetrad measurement model analysis of PLS
(CTA-PLS; Gudergan et al., 2008) provides a statistical test to evaluate the
outer measurement model a posteriori.

Statistical support is there for specifying not only the measurement model
but also the structural model. Research by Marcoulides (2003) and Wilson,
Callaghan, Ringle, and Henseler (2007) addresses the inner path model
specification search to uncover superior structures and more appropriate
inner relationship directions.

Additional advances on the subject of evaluating path modeling results
involve the development of global goodness-of-fit criteria. The PLS
goodness-of-fit proposal by Tenenhaus et al. (2005) is the geometric mean
of the average communalities (outer measurement model) and the average
R2 of endogenous latent variables, and is normed between 0 and 1, where a
higher value represents better path model estimations. However, while this
criterion has only been applied in few applications (e.g., Esposito Vinzi
et al., 2007) and has not been systematically analyzed in simulation studies,
it is restricted to reflective outer models and may be subject to systematic
improvement by means of path model modifications/manipulations. Future
developments in this line of research may combine PLS and ML CBSEM
global goodness-of-fit criteria. This procedure is well established in CBSEM
for the asymptotic distribution-free estimators (ADF), which—like PLS—
does not follow distributional assumptions that allow the global goodness-
of-fit to be computed. Consequently, researchers and practitioners should
note the substantial link between CBSEM and PLS path modeling for which
the literature has called over the last decades.
4. SUMMARY AND CONCLUSION

In international marketing research, both CBSEM and PLS provide a
powerful framework for estimating causal models with latent variables
and systems of simultaneous equations with measurement errors. CBSEM
and PLS path modeling constitute two complementary, yet distinctive,
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statistical techniques for estimating parameters of conceptual models.
A critical review of the PLS application in international marketing reveals
that this methodology has increased in popularity, especially for multigroup
analyses of PLS results for different nations. Our paper illustrates the
PLS path modeling methodology and typical criteria for the assessment
of results. Moreover, we introduce several advances in evaluating PLS
model estimations, such as a novel approach for multigroup comparison
(PLS-MGA).

PLS is based on least squares estimation with the primary objective being
to maximize the explanation of variance in a structural equation model’s
dependent constructs. Jöreskog and Wold (1982, p. 270) suggest that ‘‘PLS
is primarily intended for causal-predictive analysis in situations of high
complexity but low theoretical information’’. In contrast, the primary
measures used in CBSEM are overall goodness-of-fit measures that assess
how well the hypothesized model fits the observed data. The model
estimation is theory-oriented and emphasizes the confirmatory, rather than
the exploratory, analysis. Consequently, in international marketing
research, CBSEM should be used either to empirically confirm a system
of hypotheses that underlie a causal model or to test and compare results for
alternative theoretically established causal models. The prediction-oriented
PLS method, on the contrary, does not require strong theory and can be
used as a theory-building method (Gefen et al., 2000). PLS offers excellent
capabilities for work with small samples and formative measurement, as the
methodology is sufficient for most success factor (cause indicator) analyses
in international marketing research. Moreover, complementary analytical
techniques such as FIMIX-PLS for uncovering unobserved heterogeneity or
multigroup PLS analysis may provide further differentiated path modeling
results that allow for more precise interpretation. The review of PLS studies
in international marketing reveals that few studies conduct multigroup
analyses to identify differences in path coefficients across subgroups. No
study has addressed the potentially serious problems of ignoring unobserved
heterogeneity (Ringle, 2006). Owing to the severity of the consequences of
neglecting unobserved heterogeneity, such additional analyses should
become a standard means of evaluating PLS path modeling results,
especially in international marketing research.

A final concern refers to the choice of SEM method. There may be
situations in which CBSEM is preferable, in other situations PLS may be
preferable. Moreover, there may be situations where using CBSEM is
desirable but unobtainable, for example, due to violations in some key
CBSEM assumptions (e.g., regarding sample size, distribution, and model
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identification); in such cases, PLS may provide a realistic alternative to
CBSEM. Some authors also critically point out that both CBSEM and PLS
follow the classical test theory paradigm, while especially for international
marketing applications alternative methodologies following the probabil-
istic test theory may be advisable (Ewing, Salzberger, & Sinkovics, 2005).
All in all, the findings of our paper are deemed to help researchers in
international marketing to adopt a more holistic perspective and to make
informed decisions about the SEM method based on the nature and key
objectives of their study.
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JÖRG HENSELER ET AL.316
Iacobucci, D., Grisaffe, D., Duhachek, A., & Marcati, A. (2003). FAC-SEM: A methodology

for modeling factorial structural equations models, applied to cross-cultural and cross-

industry drivers of customer evaluations. Journal of Service Research, 6(1), 3–23.

Inkpen, A. C., & Birkenshaw, J. (1994). International joint ventures and performance: An

interorganizational perspective. International Business Review, 3(3), 201–217.

Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct

indicators and measurement model misspecification in marketing and consumer

research. Journal of Consumer Research, 30(2), 199–218.

Johansson, J. K., & Yip, G. S. (1994). Exploiting globalization potential: U.S. and Japanese

strategies. Strategic Management Journal, 15(8), 579–601.

Johnson, M. D., Herrmann, A., & Gustafsson, A. (2002). Comparing customer satisfaction

across industries and countries. Journal of Economic Psychology, 23(6), 749–769.
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Ringle, C. M., Wilson, B., & Götz, O. (2007). A Monte Carlo robustness study on formative

measurement model specification in CBSEM and PLS. In: H. Martens, T. Næs &

M. Martens (Eds), PLS’07 international symposium on PLS and related methods –

Causalities explored by indirect observation (pp. 108–111). Norway: Matforsk, Ås.
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