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Summary

Objective: The aim of this paper is to present a novel fuzzy classification framework
for the automatic extraction of fuzzy rules from labeled numerical data, for the
development of efficient medical diagnosis systems.
Methods and materials: The proposed methodology focuses on the accuracy and
interpretability of the generated knowledge that is produced by an iterative, flexible
and meaningful input partitioning mechanism. The generated hierarchical fuzzy rule
structure is composed by linguistic; multiple consequent fuzzy rules that considerably
affect the model comprehensibility.
Results and conclusion: The performance of the proposed method is tested on three
medical pattern classification problems and the obtained results are compared
against other existing methods. It is shown that the proposed variable input partition-
ing leads to a flexible decision making framework and fairly accurate results with a
small number of rules and a simple, fast and robust training process.
# 2009 Elsevier B.V. All rights reserved.
1. Introduction

Over the last decades, there have been numerous
implementations of computer systems in medicine
[1]. Despite the increasing scientific evolution of
both information technology and medicine, the
inherent uncertainty of the latter makes the fusion
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of these technologies a rather difficult task. The
main sources of this natural imprecision are due to
the insufficient understanding of biological mechan-
isms and their interactions, and the ambiguity of
medical results and measurements. Furthermore,
many diseases appear in multiple stages, in combi-
nation with other similar disorders and with differ-
ent symptoms of variable extension and sequence.
Therefore, it would be essential and very beneficial
to ensure fast, accurate and meaningful diagnosis
for a number of widespread and fatal diseases. That
would additionally improve the effectiveness of
medical treatment as well as the speed and accu-
rved.
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racy of the remedy reaction, affecting the recovery
and life expectancy of the patient and the opera-
tional efficiency of the medical units.

If we additionally consider the increasingly grow-
ing amount of various collected medical data, we
can easily appreciate the necessity of its categor-
ization and the expediency of such a classification
framework.

The natural evolution of various diseases, the
obscure nature of medical data and the intrinsic
ambiguity of medical problems require a consistent
framework that can handle uncertainty by allowing
variable and multiple class memberships and facil-
itating approximate reasoning. This inevitably
makes the fuzzy logic (FL) a valuable tool for depict-
ing medical concepts by treating them as fuzzy sets
[2]. In addition, the FL and the utilization of linguis-
tic/fuzzy variables provide a rigorous framework for
verbal representation of numerical concepts that
can be then embedded in meaningful fuzzy rules.
Such rules can be easily comprehended, verified,
tuned and possibly expanded by medical experts,
and used for the development of classification sys-
tems that can be very valuable in the process of
medical diagnosis.

Each fuzzy variable is composed of a set of mem-
bership functions that determine the degree of
fitness of numerical examples to each particular
fuzzy set. This way, the FL can represent variable
degrees of an illness and symptoms viamultiple class
memberships and provide an approximate but verb-
ally consistent and accurate inference process.

Two main factors are proved to be critical for the
success of any medical diagnosis process, based on
fuzzy reasoning:

1. A fast and accurate input partitioning method
that attempts to find the soft class boundaries by
automatically processing a series of representa-
tive examples.

2. A verbally interpretable knowledge representa-
tion framework that allows the verification and
integration of the generated rules.

In this paper we treat the medical diagnosis as a
pattern classification problem and try to match
symptoms against diseases by learning from medical
data. Thus we can classify potential patients
according to numerical values of their symptoms
and their degrees of membership in various classes,
which are represented as fuzzy sets.

The proposed classification methodology initially
identifies fuzzy boundaries of the classes by proces-
sing a set of labeled data. Exploring the character-
istics of the identified boundaries, membership
functions for each class are automatically produced
and corresponding fuzzy rules are obtained. When
new patterns need to be classified, their numerical
attributes are tested against generated knowledge
in order to match the symptoms with a rule’s ante-
cedent. When that happens, the appropriate rule is
executed to identify the most appropriate class.

The paper is structured as follows. In the next
section some related methods and technologies are
shortly presented. The proposed fuzzy classification
method is described in Section 3. Section 4 presents
some numerical results of the proposed method
against three different medical datasets, followed
by the conclusions in Section 5.

2. Related technologies

One of the earliest attempts to formalize medical
diagnosis applications was based on a pattern clas-
sification approach to identify the decision bound-
aries of various diseases from data [3]. Expert
systems [4,5] were introduced soon after with
MYCIN [6], a medical knowledge based system that
was using certainty factors to express uncertainty.

The FL was applied in medical systems [7], almost
20 years after its introduction by Zadeh [8], but has
recently given birth to various interesting imple-
mentations [9,10]. Most of them employ fuzzy clus-
tering algorithms [11] or connectionist neuro-fuzzy
methodologies [12] to separate the input space and
automatically extract fuzzy rules directly from
data. However, those methods have a number of
critical disadvantages. Clustering algorithms do not
use class labels but usually a gain/loss objective
function, yielding sometimes suboptimum results
that are sometimes vulnerable to parameters initi-
alization [13,14]. On the other hand, neural learning
is usually slow, order dependent and incomprehen-
sible, since the extracted knowledge is represented
in terms of numerical weights.

Genetic algorithms (GA) and genetic program-
ming emerged four decades ago but have been
recently proven to be fairly successful and popular
[15,16]. The GA mimic the process of natural evolu-
tion, using the survival of the fittest and natural
selection principles for tackling classification/opti-
mization problems. Most of GA perform exhaustive
search iterations on a population of candidate
results and select a competitive set each time. They
attempt to obtain an optimum result by swapping
parts, selectively mutating chromosomes that
encode the solution and evaluate candidate combi-
nations against a fitness function. This procedure
has been proved to be effective, as it is used in
natural evolution and is extensively used in fuzzy-
genetic applications, however it is usually slow due
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to its exhaustive character and is very sensitive to
various parameters.

Finally, a number of fusion methodologies have
also been recently developed, combining some of
the above-mentioned technologies. The most pop-
ular attempt is probably NEFCLASS neuro-fuzzy clas-
sification model [17], a three layer feed-forward
neural architecture similar to the fuzzy perceptron
[18]. Several similar combinatorial attempts have
been proposed over the last decade including neuro-
fuzzy systems [19], evolutionary-fuzzy [20] and
lastly, neuro-genetic-fuzzy classification frame-
works [21].

All the previous mentioned methodologies have
their own practical advantages and weaknesses that
depend upon the implementation tools, strategy
and operational criteria. In contrast, a fairly con-
temporary methodology named cooperative rules
methodology [22], attempts to discuss and focuses
on the interpretability and accuracy of the gener-
ated knowledge and provides a valid framework to
handle it. By using a series of variable fuzzy grid
partitions the model produces several fuzzy rules
that describe the same input space in a variable
granularity. By using a selected set of rules, this
feature provides the flexibility to both effectively
represent the generated knowledge and achieve a
highly accurate classification performance.

Despite the interpretability and the originality of
the above approach, it has a considerable disadvan-
tage. It produces an excessive number of fuzzy rules
and requires an additional simulated annealing [23]
algorithm that attempts to identify the rule set with
the best combined accuracy. These two operational
attributes seriously affect its speed and complexity
and the size of the rule base when handling multi-
dimensional data.

The methodology proposed in this paper is focus-
ing on an alternative manner of modeling the inter-
pretability-accuracy trade off by a more meaningful
and simple input space partitioning that generates
additional rules only to accurately describe specific
overlapping regions.

3. Fuzzy rule-based classification

According to the proposed method, the pattern
classes are represented by a possibly overlapping
set of n-dimensional hyperboxes (rectangular repre-
sentations of n-dimensional hyper-cubes). The
values of their boundaries are used for generating
membership functions and the corresponding fuzzy
rules. In contrast to the above-mentioned technol-
ogies, the proposed approach allows for overlapping
of partitions corresponding to different classes and
does not require any optimization component. The
classification conflict that occurs is effectively
resolved by regarding the overlapping region as a
separate fuzzy hyperbox and possibly re-dividing it,
to appropriately assign a class to the corresponding
testing data-patterns.

The initial phase of the proposed method is
based on a novel approach to the generation of
hyperboxes using relational algebra operations and
the fuzzy set theory for their mapping to appro-
priate fuzzy rules. All hyperboxes are completely
defined by the minimum and maximum values of
the input data of each class and for all the input
dimensions. The combinations of these min—max
points delineate the membership functions and the
equivalent fuzzy sets for each class. The Mamdani
type of fuzzy rules produced are both linguistically
comprehensible and accurate and can be used to
classify similar disease patterns. This is achieved
by loading similar medical examples, computing
the membership values for each existing fuzzy set
and finally assigning the pattern to the class with
the largest membership.

3.1. Input partitioning

Let us consider a set of training input—output data

pairs ½ðxð1Þ1 ; x
ð1Þ
2 ; . . . ; x

ð1Þ
m ; yð1ÞÞ; ðxð2Þ1 ; x

ð2Þ
2 ; . . . ; x

ð2Þ
m ;

yð2ÞÞ; . . . ; ðxðNÞ1 ; xðNÞ2 ; . . . ; xðNÞm ; yðNÞÞ�, where xð jÞk is
the k-th attribute of the input vector x for the j-
th data pair, j = 1, 2, . . ., N, and y is a classification
label, which can be considered as an output vari-
able. We assume that there is a discrete set of n
distinct classes Yi, i = 1, 2, . . ., n, and the classifica-
tion label of each data pair belongs to one of those
classes. Our aim is to produce a set of fuzzy classi-
fication rules from the given training input—output
data pairs.

Considering the set of all input vectors Xi that
produce an output in class Yi, we can obtain a single
hyperbox Ai for the i-th class, which is defined by the
minimum ik and maximum Vik values of all x 2 Xi for
the k-th dimension:

Ai ¼ fx2 Xijik � xk � Vik; k ¼ 1; 2; . . . ;mg: (1)

Generally, each hyperbox Ai may contain data
from other classes as well and therefore, it may
overlap with hyperboxes, corresponding to different
classes. If two hyperboxes Ai and Aj overlap, their
intersection Ai j ¼ Ai \Aj forms a new hyperbox Aij,
which may or may not contain data from both
classes. It is even possible that the intersection
hyperbox contains no data at all.

Similarly, we can form overlapping hyperboxes
between more than two classes. For example, an
overlapping hyperbox between three classes is
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Figure 1 The automatic process of hyperbox generation and repartitioning of the overlapping area.
denoted by Aijk, Ai jk ¼ Ai \Aj \Ak. For brevity, we
are not going to discuss overlapping between more
than two class hyperboxes, but the proposed
approach could be easily extended to such cases.

Provided that there exists overlapping hyper-
boxes, a recursive algorithm is applied for further
partitioning of the input space. It analyses the
overall partitioning, obtained from the previous
iteration and repartitions the overlapping sections.
Each overlapping hyperbox Al

i j, obtained during the
l-th iteration, could be further partitioned into two
new hyperboxes from both classes Alþ1

i and Alþ1
j ,

such that Alþ1
i �ðAl

i \Al
jÞ;Alþ1

j �ðAl
i \Al

jÞ, if some
conditional criteria are not satisfied.

An example of the iterative partitioning process
is shown in Fig. 1.

As a result, for each i-th classification class Yi,
i = 1, 2, . . ., n, a hierarchy of nested hyperboxes
A0
i ;A

1
i ;A

2
i ; . . . ;AL

i , is generated iteratively, where L
denotes the depth of the repartitioning process and
number of iterations–—see Fig. 2. The hierarchy
represents the particular input pattern space in a
granular fashion, so that each next level represents
more detailed partitioning.
Figure 2 The iterative partitioning fashion of the over-
lapping region.
The partitioning of any overlapping area is based
on some conditional criteria, which determine the
partition granularity and the overall number of
iterations.

The first criterion examines the density of the
input data in the overlapping area Al

i j, related to the
overall number of data in Aij. The relative density
Rl
i j is given by

Rl
i j ¼

DðAl
i \Al

jÞ
DðA1

i [A1
jÞ
;

where the operator D(.) denotes the number of
input patterns in the specified area.

A value of Rl
i j close to zero indicates that the

amount of data in Al
i j is very small, related to all

data in A1
i [A1

j and therefore no further partitioning
is required. The stopping condition is defined by a
threshold value Th1, which is set by the decision
maker. If Rl

i j>Th1, an additional grouping of the
intersection will be triggered, if Rl

i j<Th1, the par-
titioning of Al

i j is terminated.
When the partitioning process finalises, another

criterion is applied to assign appropriate weights to
the rules that correspond to the intersection. This
criterion examines the population of the intersec-
tion area in terms of the different classes:

Sli j ¼
jDiðAl

i \Al
jÞ � DjðAl

i \Al
jÞj

DðAl
i \Al

jÞ
;

where Di(.) and Dj(.) are the numbers of input
patterns from class i and j in the overlapping area.

The ratio Sli j takes values between zero (when Al
i j

is equally populated with data from both classes),
and one (when the overlapping area does not con-
tain data from one of the two classes). The second
criterion manages the type of the weights of the
weighted rules. When Sli j<Th2, which means that
the overlapping area is equally populated, distance-
based weights are used. Otherwise, when the inter-
section is dominantly populated by one class,
Sli j>Th2, density weights that favour that class
are used in the rules consequents. The value of
the threshold parameter Th2 seriously influences
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Figure 3 The activity diagram of the feature partitioning process using the two threshold values.
the classification accuracy, and it should be appro-
priately chosen by the user.

The iterative partitioning process can also be
formally depicted in the activity diagram, shown
in Fig. 3.

The final result of the recursive partitioning
approach is the generation of two different types
of regions in the input feature space: regions, con-
taining data from one single class only, and regions
with relatively small amount of data of different
classes. The regions of mixed data are identified in
the list of ‘completed’ partitions and are generally
obtained during the last iterations of the partition-
ing process.

3.2. Fuzzy rules generation

For each hyperbox Al
i, containing data from a single

class Yi only, we can introduce a fuzzy rule of the
type:

IF x is in Al
i THEN y is in Yi (2)

If the hyperbox Al
i overlaps with A

l
j, the fuzzy rule

for the i-th class takes the form:

IF x is in Al
i and x is not in Al

i j THEN y is in Yi

(3)

For each ‘completed’ overlapping hyperbox Al
i j

an additional rule is generated, which has a double-
consequent part, as the hyperbox might contain
data from two classes. It is possible, however, for
the hyperbox to contain data from one class only,
then Sli j ¼ 1. Generally, the amount of data in any
‘completed’ overlapping hyperbox is very small,
compared to the single class hyperboxes Al
i, l = 0,

l, . . ., L, which is ensured by the relative density
criterion and the stopping condition Rl

i j<Th1.
Therefore, without a significant lost of accuracy,
we can introduce additional weights, representing
the relative densities of the data of each class in the
corresponding hyperbox. The linguistic form of that
rule is

IF x is in Al
i j THEN y is in Yi when wi>w j;

OR y is in Y j when wi<w j; (4)

where wi and w j are the weights of the conse-
quents, calculated by

wi ¼
DiðAl

i jÞ
DðAl

i jÞ
; w j ¼

DjðAl
i jÞ

DðAl
i jÞ

:

In practice, in the inference process, in the case
where wi>w j, the rule that results to Yi will be
triggered, or else when wi<w j, the rule that pro-
duces Yj will be fired instead. That effectively
means that both rules of type (3) will be generated
for both classes but only one of them will be fired
depending to the result of wi<w j, the values of
which were obtained from the training process.

When the density indexes of both classes DiðAl
i jÞ

and DjðAl
i jÞ are equal, wi ¼ w j, distance-based

weights are calculated. According to that, an input
vector in the intersection region is classified to the
‘nearest’ class by simply comparing its Euclidean
distances di and dj from the classes-centers (cen-
troids) Ci and Cj. The centroids are calculated as
arithmetic means for each k-th dimension, over all
the points of the cluster. For example, if the inter-
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section hyperbox contains N points from the class Yi,
xð pÞ ¼ ðxð pÞ1 ; xð pÞ2 ; . . . ; xð pÞm Þ, p = 1, 2, . . ., N, then the
centroid of the i-th cluster is defined by

Ci ¼ ðxci1 ; x
ci
2 ; . . . ; xcimÞ; xcik

¼
xð1Þk þ xð2Þk þ � � � þ xðNÞk

N
; k ¼ 1; 2; . . . ;m:

Consequently, the rule corresponding to the
intersection region takes the form:

IF x is in Al
i j THEN y is in Yi when d j> di

OR y is in Y j when di> d j; (5)

where the Euclidean distances from the vector x to
the centroids are calculated as:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � xCi

1 Þ
2 þ ðx2 � xCi

2 Þ
2 þ � � � þ ðxm � xCi

m Þ
2
;

q

d j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x

Cj

1 Þ
2
þ ðx2 � x

Cj

2 Þ
2
þ � � � þ ðxm � x

Cj
m Þ

2
:

r

The coexistence of single and double-consequent
fuzzy rules was first proposed by Nozaki et al. [24]
resulting in two separate knowledge bases, that can
be combined during the inference process. Cordon
and Herrera [21] have also used an analogous rule
structure in order to improve the accuracy and
interpretability of the fuzzy model. Here we use
the similar type of rules but instead of using evolu-
tionary criteria for selecting the appropriate rule, a
fractional variable is introduced to control the gen-
eration of additional rules and assign an appropriate
consequent. The ability to choose from the two
classes provides the necessary flexibility for the
classification process to effectively handle the over-
lapping parts of the hyperbox classes.

As a result, these indexes simply represent the
dominance of each class in the common region and
determine which of the two consequents will be
assigned to the rule. Weighted fuzzy rules have
been extensively used in the past [25] to guaran-
tee the execution of the appropriate rule and a
similar concept have been applied in the proposed
method.

For the reasoning process, a rule with dual con-
sequents is equivalent to 2 additional rules with
single consequents. For example, the rule (4) is
substituted by the following two rules:

IF x is in Al
i j AND wi>w j THEN y is in yi;

IF x is in Al
i j AND wi<w j THEN y is in Y j:

(6)

3.3. Fuzzy inference process

In pattern classification, the degree of member-
ship of a ‘new’ input pattern x for rules given
by (2) and (3), depends on the relative position
of the input’s coordinates regarding the
generated partitions. Hence, we can naturally
assume that the degree of membership of an
input to a specific class is equal to one if it lies
inside the classes’ hyperbox and decreases as it
moves away from its boundaries. The fuzzy bound-
aries of each hyperbox can be represented gra-
phically as a ‘generalization area’, whose contour
surface is parallel to the hyperbox. All inputs
within the generalization area partially belong
to the corresponding hyperbox and therefore their
degree of membership is less than 1 but greater
than 0. That kind of fuzzy boundaries can be
represented mathematically by trapezoid mem-
bership functions, as they can represent a full
membership by their upper base and the linearly
decreasing degree of membership with their
sloped sides.

For a class partition Al
i, which does not

intersect with another class partition, the mem-
bership function is described by the following
equation:

ml
iðxkÞ ¼ minf½1�maxð0;minð1; gkð

l
ik�xkÞÞÞ�;

½1�maxð0;minð1; gkðxk � Vl
ikÞÞÞ�g (7)

where gk is the sensitivity parameter for the k-th
input component xk.

Fig. 4 shows graphically the generalization area
of a class partition Al

i, which does not intersect with
another one, the corresponding trapezoidal mem-
bership function and its parameters. For each input
vector that lies inside the hyperbox Al

i, all its com-
ponents satisfy xk the inequalities l

ik< xk<Vl
ik,

k = 1, . . ., m and have degrees of membership
ml

iðxkÞ equal to one. When the input vector is out-
side the class hyperbox Al

i, but near its borders, the
degree of membership of some components xk
(or for all of them) is positive, but less than one,
0<ml

iðxkÞ< 1. Such input vectors satisfy the
double-side inequality l

ik � 1=gk< xk<Vl
ik þ 1=gk,

and therefore belong to the generalization region
around the class hyperbox. And finally, if
there is at least one component xk such that
l
ik � 1=gk� xk�Vl

ik þ 1=gk, the corresponding
degree of membership is ml

iðxkÞ ¼ 0 and the input
vector is outside the generalized region.

By varying the value of gk we can achieve reason-
able tuning of the membership functions, since we
can expand or contract the generalization region
around the crisp class hyperbox.

When the hyperbox Al
i overlaps with Al

j, the
membership functions for each area Al

i, we intro-
duce a similar but non-symmetrical membership
function of the type:
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Figure 4 Class boundaries and a membership function of a two-dimensional hyperbox.
ml
iðxkÞ ¼ minf½1�maxð0;minð1; gkðlik�xkÞÞÞ�;
½1�maxð0;minð1; ð1=ðVl

ik þ 1=gk�l
jkÞÞðxk � Vl

ikÞÞÞ�g
(8)

Fig. 5 illustrates a case with two overlapping
hyperboxes, and their non-symmetrical membership
functions, defined by (8).
Figure 5 Class boundaries and membership
For each class hyperbox Al
i with a membership

function given by (7), a rule Rl
i of the type (2) is

generated. For the overlapping case, shown in
Fig. 5, two new rules of the type (3) Rl

i and Rl
j

are generated. In order to define the degree of
membership dRl

i
ðxÞ of each rule Rl

i, we use the min
operator. The rule degree of membership is calcu-
lated by taking the minimum of the membership
functions of two overlapping hyperboxes.
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values of the fuzzy value rule antecedent for a
given input:

dRl
i
ðxÞ ¼ minfml

iðxkÞg
k¼1;2;...;m

: (9)

The min operator ensures a rule degree of mem-
bership equal to one for all input vectors that fully
belong to the corresponding class hyperbox. Other-
wise, for input vectors which are not completely in
the class hyperbox or are in the intersection area Al

i j
(if it exists), the rule degree of membership x is less
than one. When the input vector partially belongs to
two different classes, the corresponding rule
degrees of membership dRl

i
ðxÞ and dRl

j
ðxÞ for both

rules are different. The degrees of membership of
the rules in this case depend also on the values of
the sensitivity parameters gk.

Compared to other classification approaches,
there is no need to compute a combined output
of the rules. In the proposed classification applica-
tion the rules do not cooperate since we obtain
iteratively one cluster for each class. Hence there
is no need for an aggregation function.

Finally, at the conceptual level, the algorithm
generates two single consequent rules for
Al
i : ðAl

i \Al
jÞ and Al

j : ðAl
i \Al

jÞ, and a weighted dou-
ble-consequent of type (4) for the intersection
ðAl

i \Al
jÞ. In practice, two rules are generated by

each grouping iteration. For a testing example that
belongs to the intersection, one of the two single-
consequent rules of the type (6) will be executed,
depending on the values of wi and w j that are
calculated during the training process. As a dou-
ble-consequent rule is equivalent to two single-
consequent rules [26], by checking their weights
the inference algorithm decides which rule to exe-
cute.

4. Application and performance
evaluation

The performance of the algorithm is measured
against three main criteria: the classification accu-
racy, the operational simplicity and the expressive-
ness of the generated model.

By accuracy we mean the classification perfor-
mance not only to a constrained artificial environ-
ment but also to real world applications. That is
mainly due to the fact that the alignment of the
training patterns may be considerably different
from the arrangement of the testing in real world
data and hence yielding a considerable error. In
addition to that, we should consider the intrinsic
obscurity of medical data and the numerous exter-
nal factors that influence the criticality of the
disease, which cannot always be equally depicted
in the available data or be consistently modeled. To
achieve an effective measure and present the accu-
racy of our approach, a series of tests with various
training/testing configurations have been prepared.
That effectively means that the system should be
able to successfully infer on real world cases that
may deviate from the training patterns, in a con-
sistent and meaningful way. As a result, the general-
ization ability and the interpretability of the
generated model are strongly related to the
overall system accuracy and thus should be mutually
studied.

Naturally, the model simplicity is usually dispro-
portionate to the accuracy since the simpler the
model, the fewer the number of rules; and hence
less accurate the description of the feature space
which usually result in lower accuracy levels. The
model simplicity, represented by the number of
generated rules and model parameters, is yet
another important characteristic since compli-
cated, black-box models are difficult to handle
and tune.

By expressiveness or interpretability we describe
two main attributes. Firstly, we want to express the
ability of the system to generalize on real world
cases, thus being able to classify patterns that
possibly lie outside the generated training bound-
aries. This is guaranteed by the selected member-
ship functions that extend the crisp class boundaries
with a fuzzy region of gradually decreasing member-
ship allowing to meaningfully handle remote exam-
ples. Secondly, we express the interpretability of
the generated knowledge both in terms of rule
format, using rules that can be linguistically
expressed and comprehended, and in terms of rule
base structure, allowing the use of more detailed
rules when data allows it. This is achieved by intro-
ducing the two repartitioning threshold values that
iteratively group any intersection when the relevant
data allows, which is controlled by the decision
maker.

A vital aspect of the accuracy limitations of
classification algorithms regards the efficiency and
requirements of the training and testing process and
the configuration of the equivalent datasets. In
order to objectively and effectively measure the
accuracy of the proposed method, two different
training/testing configurations composed by a series
of individual tests were developed for each dataset
and for the two best sensitivity parameter values.
These values were chosen after a series of indepen-
dent experiments and are different for each dataset
depending on the size of the hyperbox classes and
their demand for expansion. In the first configura-
tion, the training dataset is composed of a minimum
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set of selected boundary values and the testing by
the rest of the data. This way, we can achieve
maximum accuracy with minimum training require-
ments. The second configuration is composed by ten
individual tests, five tests for each best value of gk,
where the training and the testing dataset are
randomly selected1 and approximately equal in size.
This configuration was chosen in order to achieve
neutral training process and resemble random, real
world circumstances where the testing data have no
relation to the training ones, also demonstrated in
[19,27].

Ideally, in a confined real world scenario, the
training dataset should be carefully selected so as
to include the data-points with the minimum and
maximum values for all the dimensions and hierar-
chies. This is because these specific values will order
the geometrical characteristics of the generated
class boundaries that are also used for the rule
description. In fact, a dataset containing only these
polar values will be optimum for training purposes.

Finally, the training and testing requirements in
terms of execution time provide a useful indication
of the speed and simplicity of the method that are
increasingly vital for processing large and multi-
dimensional datasets and are consequently added
in the results.

In all cases, training was performed with a single
pass through the dataset, for two different sensi-
tivity parameter values and with appropriate
threshold values for Rl

i j and Sli j that vary according
to the data under consideration. The sensitivity
parameter of a fuzzy membership function controls
the slope of the trapezoid sides and hence the
expansion of its lower base and the generalization
region around the cluster, while the re-grouping
threshold parameter Th1–—the number of grouping
iterations and rules. The value of the parameter Th2
is fixed to 1/8, a relatively small value, which means
that distance-based weights will be calculated only
when the intersected class densities are almost
equal. This way we might avoid the further compu-
tational load occurred by the calculation of multiple
and multidimensional Euclidean distances.

4.1. Results presentation

In order to thoroughly test the functional character-
istics of the algorithm, three different datasets with
increasing dimensionality were considered. These
are Wisconsin Breast Cancer, Pima Indian Diabetes
1 The training/testing datasets were compiled by consecutive
selection of examples every 10, 20, 30, 40 and 50 observations.
E.g. training data for Wisconsin: [1—10], [21—30], . . ., [681—683],
leaving the rest [11-20], [31—40], . . ., [671—680] for testing.
and Bupa Liver data composed by nine, eight and six
dimensions respectively, obtained from the UCI
repository of machine learning databases [28].
The number of dimensions and pattern classes is
highly important, since it considerably affects the
complexity and computational efficiency of the
classification process.

4.1.1. Wisconsin Breast Cancer Dataset
The Wisconsin Breast Cancer Dataset was compiled
by Medical College of Wisconsin and has been widely
used to test the functionality of many classification
and rule extraction methods. It is composed by nine
numerical attributes, describing nine different
blood ingredients2 and two different output classes,
describing the nature of the cancer, either malign or
benign. The original dataset is composed of 699
observations of which 16 were deliberately
excluded due to incomplete descriptions of all nine
dimensions. From the remaining 683 patterns, 444
belong to the benign class, 239 to the malign class
while 252 belong to the intersection of the two
classes. It is consequently a fairly dimensional data-
set where the two classes coincide considerably.

Three iterations were performed during the
training process to adequately describe the feature
space, resulting in a rather dense partitioning and a
set of six fuzzy rules. The number of iterations and
rules can be manually controlled by setting suitable
threshold values for Rl

i j, Th1 = 1/10 for both config-
urations of Wisconsin data.

Initially, we obtained the best values of the
sensitivity parameter gk, by varying it in a wide
range of values, and selecting the two best values
of this parameter. Then, as it was mentioned before,
we carried out two tests for configuration 1, one for
each best value of gk, and 10 tests of configuration 2,
five for each best gk. In the first arrangement 50
boundary observations were chosen for the training
and the rest for testing. The first configuration was
implemented to analyze the optimum performance
of the algorithm in a confined environment, where
the decision maker has full control and awareness of
both the training and testing data. In the second
experimental arrangement, the arbitrary choice of
the training and testing data provides us with a good
indication of how the system would operate in a real
world situation where the range of the testing data
is unexpected. This is another example where the
generalization capabilities of the methodology are
2 These are: Clump Thickness (UC), Uniformity of Cell Size (UC),
Uniformity of Cell Shape (UC), Marginal Adhesion (MA), Single
Epithelial Cell Size (SE), Bare Nuclei (BN), Bland Chromatin (BC),
Normal Nucleoli (NN), Mitoses (Mit.) ranging from 1 to 10 and
Class: (0 for benign, 1 for malignant).
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Table 1 Experimental results and parameters of configuration 1 for breast cancer data.

Experiment Sensitivity
parameter

Number of
iterations

Tr./test. data Error/accuracy Number
of rules

1 gk = 3 1 50/633 103/633–—83.7% 2
1 gk = 3 2 50/633 32/633–—94.93% 4
1 gk = 3 3 50/633 12/633–—98.2% 6
2 gk = 4 1 50/633 75/633–—88.1% 2
2 gk = 4 2 50/633 39/633–—93.8% 4
2 gk = 4 3 50/633 17/633–—97.3% 6

Table 2 Experimental results and parameters of configuration 2 for breast cancer data.

Experiment Sensitivity
parameter

Number of
iterations

Tr./test. data Error/accuracy Max number
of rules

1 gk = 3 3 340/343 12/343–—96.5% 6
2 gk = 3 3 340/343 13/343–—96.2% 6
3 gk = 3 3 330/353 12/353–—96.2% 6
4 gk = 3 3 320/363 14/363–—96.2% 6
5 gk = 3 3 300/383 15/383–—95.9% 6
6 gk = 4 3 340/343 13/343–—96.2% 6
7 gk = 4 3 340/343 13/343–—96.2% 6
8 gk = 4 3 330/353 14/353–—96.1% 6
9 gk = 4 3 320/363 15/363–—95.9% 6

10 gk = 4 3 300/383 17/383–—95.4% 6
highly important and also considerably affect the
classification accuracy.

The operational performance for the two best
values of gk is shown in Table 1.

As we can clearly observe from Table 1, with
broader generalization boundaries, Vl

jk � ð1=gkÞ,
we can get slightly improved accuracy when differ-
ent testing data is considered. That obviously hap-
pens because the expansion of the fuzzy boundaries
of the class improves its inclusion capabilities,
which is crucial when the crisp margins are not
optimal. As it was also expected, the accuracy level
increases, following the rising number of groupings
and rules that attempt to describe the conflicting
intersection in a more descriptive manner. Ten
further experiments have been performed for the
second configuration, five for each value of gk, but
with different and randomly selected datasets, as
can be seen in Table 2.

It is obvious that the amount of fuzzy rules we
finally obtain only depends on the number of classes
and generated groupings, and consecutively on the
number of the hierarchies produced by the re-clus-
tering mechanism.

We can additionally compare the accuracy differ-
entiation between the two configurations and assess
the importance of the training process. The hyper-
boxes corresponding to the boundary values for each
dimension that can be selected during the training
process are very inclusive and hence produce opti-
mum classification results. On the contrary, when
the hyperboxes are generated randomly, they can-
not embrace every possible example of that class
and hence rely on the generalization area around
the crisp hyperbox.

Four fuzzy rules were produced by the first two
iterations, which are shown in Table 3.

In the case where a third iteration is triggered,
another two additional and more specific rules are
produced, which describe the same pattern space in
a more finely granulated manner, see Table 4.

As it can be observed, we have named the
membership functions in a consecutive manner
from low to high. The intermediate membership
functions, which refer to an intersection region,
are identified by the ‘med’ label, combined with
the label of the neighbouring functions, indicating
the level of the hierarchy by equivalent linguistic
components.

The schematic and numerical representation of
the generated membership functions for all nine
input features and for the first two hierarchies used
in rule R1, R2, R3.1 and R3.2 can be seen in Fig. 6.

The membership functions for the nested hier-
archies are generated in the same manner and
within the intersection but for simplicity and leg-
ibility reasons their numerical and linguistic values
have not been added.
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 4.1.2. Pima Indian Diabetes Dataset

The particular data is composed of 768 patterns of
nine numerical attributes and is a selected part of a
larger data set held by the National Institutes of
Diabetes and Digestive and Kidney Diseases, USA.
The values of these medical attributes come from
Pima-Indian women potential patients, 21 years old
or more living near Phoenix, Arizona, USA. The class
variable takes the values ‘0’ or ‘1’, indicating a
negative and positive test for diabetes, respec-
tively. Their other eight clinical features are:

1. Number of times pregnant
2. Plasma glucose concentration a 2 h in an oral

glucose tolerance test
3. Diastolic blood pressure (mmHg)
4. Triceps skin fold thickness (mm)
5. Two hour serum insulin (mU/ml)
6. Body mass index
7. Diabetes pedigree function
8. Age (years)

As done before, two main training/testing con-
figurations were implemented, composed of 2 and
10 tests respectively, to accommodate both values
for parameters gk, and threshold values. In parti-
cular, the value of the sensitivity parameter gk had
to be decreased to 1/3 and 1/2, to expand the fuzzy
boundaries of the classes following equivalently
increased crisp values of the boundaries. For
Th1 = 1/10, three grouping iterations have been
triggered, the results of which are shown in Table 5.

As was mentioned regarding the previous data-
set, the accuracy inevitably rises when we consider
additional groupings of intersections and the
equivalent fuzzy rules. In addition, when the value
of gk declines, more examples are correctly classi-
fied due to the expansion of the generalization area.

For the second random configuration, an addi-
tional fourth iteration was triggered to obtain suffi-
cient classification accuracy by setting Th1 value
equal to 1/15. Table 6 illustrates the functional
characteristics of the second training—testing
arrangement by using four grouping iterations.

Allowing for up to four grouping iterations, we
managed to obtain an adequate set of hierarchical
rules and obtain highly accurate and comparative
results of 92.26% accuracy as an average of the 10
individual runs. On Table 7 we have appended the
fuzzy values for each feature that define the mem-
bership to the equivalent fuzzy set and compose the
classification rules.

The additional linguistic label of rule R3.3.3.1
and R3.3.3.2 corresponds to the additional grouping
iteration. The values of the linguistic terms denote
the range of numerical values with ‘medium’ refer-
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Table 4 The two additional rules generated by the third iteration for the breast cancer data.

Rule no. CP UC UC MA SECS BN BC NN Mit. Class

R3.3.1 Low—
med—
med

Low—
med—
med

Low—
med—
med

Low—
med—
med

Low—
med—
med

Low—
med—
med

Low—
med—
med

Low—
med—
med

Low—
med—
med

Benign

R3.3.2 Med—
med—
high

Med—
med—
high

Med—
med—
high

Med—
high—
high

Med—
med—
high

Med—
med—
high

Med—
med—
high

Med—
med—
high

Med—
med—
high

Malign
ring to the intersection, and the number of terms
represent the overlapping hierarchy.

4.1.3. Bupa Liver Dataset
Our third example, BUPA Liver Disorders Dataset was
created by BUPA Medical Research Ltd. and donated
to the Irvine collection by Richard Forsyth. Each
record in the dataset is composed by readings sup-
plied by a single male individual.

Composed of 345 instances, each of six numer-
ical, continuous attributes:

1. MCV: mean corpuscular volume
2. AlkPh: alkaline phosphotase
3. AlAm: alamine aminotransferase
4. AsAm: aspartate aminotransferase
5. GamGT: gamma-glutamyl transpeptidase
6. Drno: number of half-pint alcoholic beverages or

equivalent units drunk per day.
Figure 6 The generated membership functions for nine feat
Wisconsin data.
An additional attribute is normally used to specify
the class that equivalently describes the criticality
or existence of the liver malfunction. The first five
attributes are results from blood tests and are
thought to be factors sensitive to liver disorders
influenced by excessive alcohol usage, while the
sixth is an indication of daily alcohol consumption.

In that particular dataset, the overlapping is
rather extended and the setting Th1 = 1/6 resulted
to four clustering iterations that adequately
grouped our training data. That equivalently results
to four rule hierarchies and twelve fuzzy classifica-
tion rules that are configured in a nested structure.
As in the previous example, the value of the sensi-
tivity parameter gk was set to 1/3 and 1/2 as the
numerical values of diabetes and liver data are of
the same range.

In the first training and testing configuration, the
testing data set was composed of 300 patterns,
ures and two hierarchies of the first configuration for the
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Table 5 Experimental results and parameters of configuration 1 for the diabetes data.

Experiment Sensitivity
parameter

Number of
iterations

Tr./test.
data

Error/accuracy Number
of rules

1 gk = 1/3 1 68/700 139/700–—81.2% 2
1 gk = 1/3 2 68/700 79/700–—89.7% 4
1 gk = 1/3 3 68/700 45/700–—93.6% 6
2 gk = 1/2 1 68/700 143/700–—80.5% 2
2 gk = 1/2 2 68/700 82/700–—89.3% 4
2 gk = 1/2 3 68/700 47/700–—93.2% 6

Table 6 Experimental results and parameters of configuration 2 for the diabetes data.

Experiment Sensitivity
parameter

Number of
iterations

Tr./test. data Error/accuracy Max number
of rules

1 gk = 1/3 4 380/388 31/388–—92.1% 8
2 gk = 1/3 4 380/388 28/388–—92.8% 8
3 gk = 1/3 4 378/390 30/390–—92.1% 8
4 gk = 1/3 4 360/408 29/408–—92.9% 8
5 gk = 1/3 4 350/418 31/418–—92.6% 8
6 gk = 1/2 4 380/388 35/388–—91.08% 8
7 gk = 1/2 4 380/388 29/388–—92.5% 8
8 gk = 1/2 4 378/390 31/390–—92.1% 8
9 gk = 1/2 4 360/408 31/408–—92.5% 8

10 gk = 1/2 4 350/418 34/418–—91.9% 8
while the training by 45 selected examples that
contained the boundary values for each class and
hence providing an optimal separation arrange-
ment. This is depicted in Table 8.

In the second configuration, we carried out 10
separate tests with five different randomly selected
training/testing data and for both selected values of
parameter gk, the results of which can be viewed in
Table 7 The eight rules generated by all four iterations fo

Rule no./feature NP PGC DBP TSFT

R1 High High Low High
R2 Low Low High Low
R3.1 Med—

high
Med—
high

Med—
high

Med—
low

R3.2 Med—
low

Med—
low

Med—
low

Med—
high

R3.3.1 Med—
med—
high

Med—
med—
low

Med—
med—
high

Med—
med
low

R3.3.2 Med—
med—
low

Med—
med—
high

Med—
med—
low

Med—
med
high

R3.3.3.1 Med—
med—
med—
high

Med—
med—
med—
high

Med—
med—
med—
high

Med—
med
med
high

R3.3.3.2 Med—
med—
med—
low

Med—
med—
med—
low

Med—
med—
med—
low

Med—
med
med
low
Table 9. As expected, the arbitrary configuration
achieved lower classification accuracy of 89.9%, as
an average of the ten tests, for the same level of
grouping due to the randomly selected class bound-
aries.

Table 10 shows the eight fuzzy rules produced by
all four grouping iterations. As expected, the rules
have the same, meaningful structure as in the pre-
r the diabetes data.

2HSI BMI DPF Age Class

High High High Low 1
Low Low Low High 0
Med—
high

Med—
high

Med—
high

Med—
low

1

Med—
low

Med—
low

Med—
low

Med—
high

0

—
Med—
med—
high

Med—
med—
high

Med—
med—
high

Med—
med—
low

1

—
Med—
med—
low

Med—
med—
low

Med—
med—
low

Med—
med—
high

0

—
—

Med—
med—
med—
high

Med—
med—
med—
high

Med—
med—
med—
high

Med—
med—
med—
high

1

—
—

Med—
med—
med—
low

Med—
med—
med—
low

Med—
med—
med—
low

Med—
med—
med—
low

0
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Table 8 Experimental results and parameters of configuration 1 for the liver data.

Experiment Sensitivity parameter Number of iterations Tr./test. data Error/accuracy Number of rules

1 gk = 1/3 1 45/300 71/300–—76.4% 3
1 gk = 1/3 2 45/300 59/300–—80.4% 6
1 gk = 1/3 3 45/300 51/300–—83% 9
1 gk = 1/3 4 45/300 22/300–—92.7% 12
2 gk = 1/2 1 45/300 76/300–—75.7% 3
2 gk = 1/2 2 45/300 61/300–—79.7% 6
2 gk = 1/2 3 45/300 52/300–—82.7% 9
2 gk = 1/2 4 45/300 29/300–—90.4% 12

Table 9 Experimental results and parameters of configuration 2 for the liver data.

Experiment Sensitivity
parameter

Number of
iterations

Tr./test. data Error/accuracy Max number
of rules

1 gk = 1/3 4 170/175 17/175–—90.3% 12
2 gk = 1/3 4 160/185 18/185–—90.3% 12
3 gk = 1/3 4 150/195 20/195–—89.8% 12
4 gk = 1/3 4 160/185 18/185–—90.3% 12
5 gk = 1/3 4 150/195 19/195–—90.3% 12
6 gk = 1/2 4 170/175 18/175–—89.7% 12
7 gk = 1/2 4 160/185 19/185–—89.7% 12
8 gk = 1/2 4 150/195 21/195–—89.3% 12
9 gk = 1/2 4 160/185 18/185–—90.3% 12

10 gk = 1/2 4 150/195 20/195–—89.7% 12
vious case, which allows differentiating the rules
from each other according to the hierarchy they
belong to.

4.2. Comparative analysis

The proposed algorithm creates membership func-
tions for all fuzzy features, in contrast with some
feature elimination approaches [20], and a variable
number of rules for every dataset. Its functionality
for the Wisconsin data is compared against a number
of eminent classification methods, ranging from
neuro-fuzzy approaches, Nauck and Kruse [17]
and Wang and Lee [27], to evolutionary, Chang
and Lilly [20], and alternative methodologies, like
that of Abonyi and Szeifert [29], based on decision
trees initialization. The comparison results are
shown in Table 11.

Regarding the results obtained from the second
configuration; the proposed method is outper-
formed by some other methods with respect to its
accuracy. The accuracy, however, can be increased
after careful selection of the training data. The
main advantage of the proposed methodology is
the simplicity of its training process and the com-
prehensibility of the extracted rules. The average
speed of the training, 114 ms, and testing process,
1343 ms, indicate another positive operational
characteristic that cannot be used for comparison
since similar figures are rare in literature. All the
tests were performed on a Pentium 3 machine with
512 MB RAM.

The proposed method is compared against some
other popular and diverse methods using the dia-
betes data–—see Table 12.

From this table we can observe that the proposed
method has the best accuracy, compared to other
methods. The additional iteration that was trig-
gered for the second experimental configuration
resulted in an additional computational load for
the training process of 146 ms, while not affecting
the testing, that lasted approximately 1360 ms.

Finally, the processing of the liver lasted 1269 ms,
97 ms for the training and 1172 ms for the testing
process. Some additional comparative results and
characteristics can be observed in Table 13.

We can easily observe that the obtained classifi-
cation results are fairly comparable to the rest of
the modern classification methods without any need
for parameter tuning or initialization of a member-
ship function, or the use of an additional fuzzy
clustering component. Moreover, the proposed clas-
sification algorithm attempts to achieve fairly good
classification accuracy without any optimization
component. This can be explained as a result of
the iterative minimization of the overlying area that
is normally responsible for the classification con-
flict. With a very fast, non-order-dependent learn-
ing process, it only requires three parameters and
can rapidly generate a reasonable set of rules, the
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Table 10 The eight rules generated by all four grouping iterations for the liver data.

Rule no./feature MCV AlkPh AlAm AsAm Gam GT DrNo Class

R1 High Low Low Low Low High Normal
R2 Low High High High High Low Critical
R3.1 Med—

high
Med—
high

Low—
med

Low—
med

Low—
med

Low—
med

Normal

R3.2 Low—
med

Low—
med

Med—
high

Med—
high

Med—
high

Med—
high

Critical

R3.3.1 Med—
med—
high

Med—
med—
high

Med—
med—
high

Med—
med—
high

Med—
med—
high

Med—
med—
high

Normal

R3.3.2 Low—
med—
med

Low—
med—
med

Low—
med—
med—

Low—
low—
med

Low—
low—
med

Low—
med—
med

Critical

R3.3.3.1 Med—
med—
med—
high

Med—
med—
med—
high

Med—
med—
med—
low

Med—
med—
med—
low

Med—
med—
med—
high

Med—
med—
med—
low

Normal

R3.3.3.2 Med—
med—
med—
low

Med—
med—
med—
low

Med—
med—
med—
high

Med—
med—
med—
high

Med—
med—
med—
low

Med—
med—
med—
high

Critical

Table 11 The comparative results for the breast cancer data.

Technique Accuracy Tr./test.
dataset size

No. of rules/
features

Comments

SANFIS, Wang
and Lee [27]

96.3—97.47% 342/341
patterns

2 rules/
9 features

Improved results after optimization

VISIT, Chang
and Lilly [20]

96.5% 400/283 patterns 3 rules/
2 features

Needs initialization of memb. functions,
100 learning iterations needed

NEFCLASS, Nauck
and Kruse [17]

95.06% All observations/
all observations

4 rules/
9 features

Long training, more than 10 conditions,
and rule pruning

Abonyi and
Szeifert [29]

95.57% 342/341 ids 2 rules/
9 features

Needs parameter initialization and three
to four conditions

Proposed method 96.08%
(avg. conf. 2)

(300—340)/
(343—383)
patterns

6 rules/
9 features

Fast training, 114 ms, no initialized
knowledge, thee parameters

Table 12 Comparative results for the diabetes data.

Technique Accuracy Tr./test. dataset size Number of rules/
features

Comments

ART-MAP [30] 66—81% 576/212 patterns N.A./8 features Order-dependent learning, plurality
voting and vigilance param.

PROAFTN [31] 71.3—76% N.A. N.A./8 features Params. Initialization, weights and
discrimination thresholds

BZ/IZ-Value
Meas. [32]

75.03—85.3% N.A. N.A./8 features GA, incremental learning, 17 params.
discriminant functions

GF-SVM [33] 70—76% Five different
shuffles,
popul.
size = 100,
30 generations

N.A./8 features G.A. feature transformation,
kernel function optimization

Proposed method 92.26% (350—380)/
(388—418)

8 rules/8 features Fast, no initialized knowledge,
three param.
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Table 13 Comparative results for the liver data.

Technique Accuracy Tr./test. dataset size Number rules/
features

Comments

FBP-NN [34] 79.5% N.A. N.A./8 features GA net. Param., fuzzy back
propagation, 10 params.

BZ/IZ-Value
Meas. [32]

69.5—84.06% N.A. N.A./8 features GA, incremental learning, 17 params.
discriminant functions

GF-SVM [33] 61—76% Five different shuffles,
popul. size = 100,
30 generations

N.A./8 features G.A. feature transform., kernel
function optimization

NF-BSP [35] 79.7% 122/123 randomly
selected

55—98 rules/
8 features

Gradient descent method,
two params.

Proposed method 89.9% (150—170)/(175—195)
randomly selected

8 rules/8 features Fast, no initialized knowledge,
three param.
number and format of which can be implicitly con-
trolled by the user.

The linguistic expressiveness and flexibility of the
proposed approach composes its main advantage
over other methods that may use a ‘black box’,
neural topology to formulate the rules in terms of
incomprehensible weights or require complicated
optimization components to refine their knowledge.
As a result, it achieves a meaningful, simple, trans-
parent and fast learning process that is necessary for
a critical medical decision.

5. Conclusions

The current paper presents a detailed methodology
for the generation of fuzzy classifiers that can learn
fromnumerical labeledmedical data inameaningful,
iterative and consistent manner. The power of the
proposed method lies on its simple partitioning pro-
cess that does not need any initial knowledge. The
method does not use any optimization component or
any other time consuming learning strategy, such as
back propagation and expansion/contraction pro-
cess, but produces relatively accurate classification
results. In addition, the hierarchical structure of the
generated rule base greatly enhances the interpret-
ability and flexibility of the model.

The flexibility of the iterative fuzzy grouping
methodology makes it ideal for the categorization
of critical medical cases where real world accuracy
is elusive and the interpretation and integration of
medical knowledge is necessary. Offering a mean-
ingful input partitioning, the proposed method can
be also regarded as a consistent, data driven accu-
racy-interpretability framework that enables the
decision maker to choose between a small set of
general rules and a larger set of more accurate
rules, for the same area. That particular character-
istic would be essential for the diagnosis and ben-
eficial an experienced medical decision maker.
In addition, due to the very simple learning pro-
cess that avoids the lengthy connectionist weight
learning and the blind search genetic programming
methodology, our approach has a considerably
shorter learning phase. That learning period is nor-
mally, strongly dependent on the number of addi-
tional grouping iterations but rarely lasts more than
a second when processing 300—400 training exam-
ples. Finally, the learning process always converges
even when the overlapping area is equally popu-
lated, due to the alternative distance-based criter-
ion, increasing the robustness of the system.

Trying to always resolve the classification conflict
by generating numerous partitions or developing
complicated cluster boundaries, it could not always
guarantee improved classification performance
[36]. This is simply because in a real world scenario,
the distribution of the testing data is usually slightly
different from the testing ones. Additionally, devel-
oping complicated boundaries for achieving higher
accuracy may have a considerable effect on the
computational complexity and generalization power
of the approach. In the current document, we focus
on adequately handling the intersections and pos-
sibly producing denser partitioning when the data
and the decision maker indicate so. In the real
world, datasets usually overlap to some extent
and that is what the proposed method attempts
to illustrate and handle in a consistent and mean-
ingful manner.
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