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a b s t r a c t

As one of most important aspects of condition-based maintenance (CBM), failure prognosis has attracted
an increasing attention with the growing demand for higher operational efficiency and safety in indus-
trial systems. Currently there are no effective methods which can predict a hidden failure of a system
real-time when there exist influences from the changes of environmental factors and there is no such
an accurate mathematical model for the system prognosis due to its intrinsic complexity and operating
in potentially uncertain environment. Therefore, this paper focuses on developing a new hidden Markov
model (HMM) based method which can deal with the problem. Although an accurate model between
environmental factors and a failure process is difficult to obtain, some expert knowledge can be collected
and represented by a belief rule base (BRB) which is an expert system in fact. As such, combining the
HMM with the BRB, a new prognosis model is proposed to predict the hidden failure real-time even when
there are influences from the changes of environmental factors. In the proposed model, the HMM is used
to capture the relationships between the hidden failure and monitored observations of a system. The BRB
is used to model the relationships between the environmental factors and the transition probabilities
among the hidden states of the system including the hidden failure, which is the main contribution of
this paper. Moreover, a recursive algorithm for online updating the prognosis model is developed. An
experimental case study is examined to demonstrate the implementation and potential applications of
the proposed real-time failure prognosis method.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

With a growing demand for higher operational efficiency and safety in industry, failure prognosis, as one of the most important aspects
in condition-based maintenance (CBM), has attracted considerable attention world-wide in the past three decades (Lu and Saeks, 1979;
Jardin et al., 2006; Wang and Christer, 2000; Wang, 2002; Wang and Zhang, 2005; Dong and He, 2007).

The failure to be studied in this paper is often not observable directly (hidden), but it can be indirectly observed by some observable
variables. For example, wear is a generic term for describing the deterioration of maintained plant. In most plant systems, wear is not di-
rectly observable, and can only be assessed via other measured condition information data such as metal concentrations or oil debris
(Wang, 2007a). In this paper, the definition of failure is: if the probability of failure exceeds a limit, the system is considered to be in a failed
state.

To predict the hidden failure, several failure prognosis methods such as filter based, qualitative knowledge based and hidden Markov
model (HMM) based methods have been proposed (Bunks and McCarthy, 2000; Chen and Trivedi, 2005; Chen et al., 2005; Zhou et al., 2006;
Wang, 2007a,b).

If the mathematical model or the statistical model of a system is known, the filter based methods including Kalman predictor (Yang and
Liu, 1999; Yang, 2003), strong tracking predictor (Chen and Zhou, 2001), fuzzy Kalman predictor (Zhou et al., 2008) and particle predictor
(Chen et al., 2005), can predict the hidden failure by estimating system states or parameters. If any qualitative knowledge about a system is
known, the qualitative knowledge based methods, such as an expert system based method (Angeli and Chatzinikolaou, 2002) and Petri net
based method (Yang and Liu, 1998), can also predict the failure. If the monitored observations are available, the HMM based methods can
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be used to predict the hidden failure by estimating the parameters of the HMM (Baruah and Chinnam, 2003; Zhang et al., 2005; Dong and
He, 2007; Wang, 2007a,b).

There are at least two reasons why a HMM can predict failures. Firstly, a HMM is capable of characterizing a doubly embedded stochas-
tic process with an underlying unobservable (hidden) stochastic process that can be linked to another set of stochastic processes. Thus, the
failure can be treated as a hidden process and can be observed through system outputs. Secondly, there have been many publications on
how to estimate the parameters of a HMM, which provide the required theoretical foundation (Rabiner, 1989; Ying et al., 2000; Lee et al.,
2004; Zhang et al., 2005; Li et al., 2007).

But there are some shortcomings inherent to the above failure prognosis methods. The filter based methods can estimate the hidden
failure represented by the system states or parameters. Unfortunately, they are not applicable to the cases where the mathematical models
or the statistical models of complex systems are difficult to obtain. Although the qualitative knowledge based methods do not need the
mathematical models, they may lead to combinatorial explosion and inaccurate prediction if systems are complex.

In addition to the above, there exist at least two problems in the current offline trained HMM based methods. Firstly, the failure prog-
nosis model is trained offline (Zhang et al., 2005; Dong and He, 2007). This means that once the model is trained using historical data (Dong
and He, 2007), the model parameters are fixed. However, it is possible in practice that new failure processes with different characteristics
from the historical ones may occur and the trained model cannot reflect the new failure processes accurately. Therefore, the offline trained
HMM are not applicable in those cases. Secondly, the offline training processes are often time consuming (Zhang et al., 2005; Dong and He,
2007), which is disadvantageous when real-time prognosis is required.

In order to solve the above two problems and meet the urgent need for developing approaches for fast and precise prognosis required by
the next generation of diagnostic and prognostic systems (Jardin et al., 2006), online updating methods of HMM for real-time failure prog-
nosis have been studied (Lin and Makis, 2002; Wang and Christer, 2000; Wang, 2007a,b). However, environmental factors are not consid-
ered in the above HMM based offline and online algorithms.

Environmental factors may play an important role in a failure process. For example, in a power system, a failure process may be affected
by windy and stormy weather (Tanrioven et al., 2004). Some systems may fail to operate properly when noise, dusts, and vibration pro-
gressively develop. In order to reflect the relationships between environmental factors and a failure, a certain and accurate model is used by
Wang and Hussin (2009). However, due to possible uncertain and nonlinear relationships between environmental factors and a failure pro-
cess, an accurate model could be difficult to establish. What is available to us normally is expert knowledge usually in qualitative form and
partial historical information about these relationships. Then the question is how the qualitative knowledge and the quantitative informa-
tion can be used to improve the accuracy of failure prognosis. We propose to adopt the belief rule base (BRB) methodology developed re-
cently by Yang et al. (2006, 2007) for the following reason.

The BRB methodology is described as being capable of capturing the relationships between system inputs and outputs that could be
discrete or continuous, complete or incomplete, linear or nonlinear, non-smooth, or their mixture (Yang et al., 2006, 2007). It can also pro-
cess incomplete or vague information. Some offline optimization models and recursive algorithms for training the BRB parameters have
been proposed (Yang et al., 2007; Xu et al., 2007; Zhou et al., 2009). Moreover, a sequential learning algorithm for updating the BRB struc-
ture and parameters at the same time has also been developed (Zhou et al., 2010).

By combining the capabilities of the HMM and the BRB methodology, a new prognosis model, named as HMM–BRB based model, is pro-
posed here to predict the hidden failure real-time, even under the influences from changes of environmental factors. The HMM is used to
capture the relationships between the hidden failure and the monitored observations, and the BRB is to represent the relationships be-
tween the environmental factors and the transition probabilities among the hidden states of the system including the hidden failure. Based
on expert knowledge, the use of the BRB to model the relationships between the environmental factors and failure process is the main con-
tribution of this paper.

This paper is organized as follows. In Section 2, the problem of real-time failure prognosis is formulated and defined. In Section 3, a
HMM–BRB based algorithm is proposed to predict the hidden failure real-time under the influences from changes of environmental factors.
An experimental case study is presented to verify the proposed algorithm in Section 4. The paper is concluded in Section 5.

2. Problem formulation

In this section, the notations that will be used in this paper are given firstly. Then the problem formulation of real-time failure prognosis
is presented. Finally, a new model composed of hidden Markov model (HMM) and belief rule base (BRB), named as HMM–BRB based model,
is constructed to represent a real world system under the influences from changes of environmental factors.

2.1. Notations

The notations that will be used in this paper are listed as follows:

S key parameter that can reflect the running condition of the system;
t discrete-time index;
N number of hidden state in the HMM;
s1; . . . ; sN N hidden states of the HMM;
yðtÞ monitored observation of the system at time instant t;
Probð�j�Þ conditional probability;

pðtÞ ¼ p1ðtÞ; . . . ;pNðtÞ½ �T probability vector of the hidden states at time instant t;

Q ¼ ½Q1; . . . ;QW �T parameter vector of the HMM–BRB based model;

kðtÞ ¼ ki;jðtÞ
� �

N�N
transition probability matrix between the N hidden states at time instant t;
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biðtÞ probability of observing yðtÞ when SðtÞ ¼ si;

bðtÞ ¼ b1ðtÞ; . . . ; bNðtÞ½ �T vector composed of b1ðtÞ; . . . ; bNðtÞ;
li expectation of the hidden state si ði ¼ 1; . . . ;NÞ;
r variance of the hidden state si ði ¼ 1; . . . ;NÞ;
Dt forecasting step;
XðtÞ all the available information about the system up to time instant t;
Pth pre-set threshold of failure;
u1; . . . ; uM antecedent attributes of the BRB_i, i.e., environmental factors;

uðtÞ ¼ u1ðtÞ; . . . ;uMðtÞ½ �T vector composed of u1ðtÞ; . . . ;uMðtÞ at time instant t;

Ak
m

referential value of the mth antecedent attribute in the kth rule;

Am ¼ fAm;jm
; jm ¼ 1; . . . ; Jmg a set of referential values for the mth antecedent attribute;

hi
k

relative weight of the kth rule in the BRB_i;
�di

1;
�di

2; . . . ; �di
M

relative weights of M antecedent attributes used in the kth rule;
Di;j action which represents transition from hidden state si to hidden state sj;

bi
j;k

belief degree assessed to the jth consequent Di;j in the kth rule of the BRB_i;

L rule number of the BRB_i;
Vi parameter vector of the BRB_i;
f ð�j�Þ conditional probability density;
W dimension of the parameter vector Q;
H constraint set composed of constraints that the vector Q should satisfy;Q

Hf�g projection onto constraint set H;
feðtÞg a sequence of step sizes at time instant t;
CðQ ðtÞÞ derivative with respect to the parameter vector Q at time instant t;
zdðtÞ partial derivative of pðtÞ with respect to QdðtÞ;
Eð�Þ expectation of a random variable;
UðsiÞ utility of the evaluation grade si.

2.2. Problem formulation of real-time failure prognosis

Problem formulation of real-time failure prognosis is described as follows:
(1) Assume that there is a key parameter S that can reflect the running condition of a system. Furthermore, it is assumed that the system

will progressively develop into an actual failure after it deviates from the normal running state, i.e., the system is in a defective stage but
still working during this stage (Wang, 2007a). If S exceeds a pre-set threshold, the system is failed. Because the system failure may be
caused by the fact that a component of the system is failed or some components are failed at the same time, the change process of S from
normal to failure state can be considered as the system failure process, or simply system failure. It is noted that in some special cases, S
denotes some parameters such as wear and drift, and can reflect the failure process directly. In some other cases, it can be the parameters
that can reflect the failure process indirectly. For example, the temperature of a reactor can reflect the running condition of the reactor
indirectly.

(2) Assume that the state S follows a finite-state, discrete-time, first-order Markov chain. Consequently, SðtÞ is one of a finite number N
of states s1; . . . ; sN at time instant t, i.e., SðtÞ 2 fs1; . . . ; sNg. Moreover, in many cases it is impossible to observe SðtÞ such as the case of engine
wear unless stripped down, but it can be indirectly estimated by the monitored observation yðtÞ.

(3) Let pðtÞ ¼ ½p1ðtÞ; . . . ;pNðtÞ�T be the probability vector of the hidden states at time instant t and Probð�j�Þ denote the conditional prob-
ability. piðtÞ ði ¼ 1; . . . ;NÞ is written as:

piðtÞ ¼ ProbðSðtÞ ¼ sijyð0Þ; . . . ; yðt � 1Þ;Q Þ and
XN

i¼1

piðtÞ ¼ 1 ð1Þ

where Q is the unknown parameter vector of the HMM–BRB based model.
(4) Let kðtÞ ¼ ½ki;jðtÞ�N�N denote the transition probability matrix between the states of the Markov chain at time instant t, that is

ki;jðtÞ ¼ ProbðSðt þ 1Þ ¼ sjjSðtÞ ¼ si;Q Þ and
XN

j¼1

ki;jðtÞ ¼ 1; i ¼ 1; . . . ;N ð2Þ

Eq. (2) can be considered as the system equation in the dynamic system.
(5) Assume bðtÞ ¼ ½b1ðtÞ; . . . ; bNðtÞ�T and it follows that

biðtÞ ¼ ProbðyðtÞjSðtÞ ¼ si;Q Þ; i ¼ 1; . . . ;N ð3Þ

where biðtÞ denotes the probability of observing yðtÞ when SðtÞ ¼ si.
Eq. (3) can be considered as the observation equation in the dynamic system.
In this paper, the monitored observation y which is obtained by a sensor is continuous and random, so it is advantageous to use the

HMM with continuous observation densities (Dong and He, 2007). It is assumed that y obeys the following Gaussian distribution:
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biðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

2pr
p exp �ðyðtÞ � liÞ

2

r

( )
ð4Þ

where li and r are expectation and variance in the state si ði ¼ 1; . . . ;NÞ, respectively. These two parameters, which are included in the
parameter vector Q, are unknown and need to be further estimated. It is noted that the normal distribution is chosen as an example in this
paper and surely other distributions can also be used, but the final judgment will be based on the goodness of fit testing which is beyond the
scope of this paper.

(6) Suppose a hidden state si ði 2 f1; . . . ;NgÞ denotes ‘Failure’ state of a system. Thus, the objective of real-time failure prognosis is to
determine whether the following Eq. (5) is satisfied.

if ProbfSðt þ DtÞ 2 sijXðtÞgP Pth; then system is Failure ð5Þ

where ProbfSðt þ DtÞ 2 sijXðtÞg is the probability to ‘Failure’ after Dt steps. XðtÞ denotes all the available information about the system up to
time instant t. Pth is a pre-set threshold and 0 6 Pth 6 1.

One of the key elements of this paper is to calculate ProbfSðt þ DtÞ 2 sijXðtÞg using the available information, which provides a basis for
real-time failure prognosis. Here the information mainly refers to the newly monitored observation.

As mentioned in Section 1, the failure process may be influenced by the environmental factors in engineering. In this paper, a new
HMM–BRB based model will be presented to capture the relationships among the environmental factors, the failure process and the mon-
itored observation.

2.3. The new HMM–BRB based model

Assume that the transition probability from one hidden state to itself or another, as shown in Eq. (2), may vary with the changes of envi-
ronmental factors. In other words, the transition probability may be influenced by the environmental factors. In the example of a contin-
uous stirred tank reactor as discussed in Section 4, the change of the temperature may lead to an increase or decrease of the transition
probability from normal state to abnormal one, i.e., the failure process may be accelerated or decelerated. It is assumed that due to the
complexity of a system, the relationships between the environmental factors and the failure process cannot be established accurately. It
is noted, however, some rules can be extracted from human expert to reflect the qualitative relationships between these factors and
the transition probabilities according to historic information and the analysis of the running patterns of the system. Moreover, these rules
can be extended to belief rules as proposed by Yang et al. (2006). A collection of belief rules constructs a belief rule base (BRB) which is an
expert system in fact (Yang et al., 2006). Compared with the traditional IF–THEN rule, a BRB can capture the dynamics of a system (Yang
et al., 2006; Xu et al., 2007). Moreover, the offline and online learning algorithms for training the parameters of the BRB were developed to
improve the forecasting ability of the BRB systems (Yang et al., 2007; Xu et al., 2007; Zhou et al., 2009).

There are N hidden states in the Markov chain and a BRB is used to model the relationships between the environmental factors and the
transition probabilities from a hidden state si ði ¼ 1; . . . ;NÞ to all hidden states s1; . . . ; sN , so a total of N belief rule bases will be used. The kth
belief rule in the ith BRB (named as BRB_i) can be constructed as follows (Yang et al., 2006):

Ri;k : If u1 is Ak
1 ^ u2 is Ak

2 � � � ^ uM is Ak
M; Then Di;1;b

i
1;k

� �
; . . . ; ðDi;N ;b

i
N;kÞ

n o
With a rule weight hi

k and attribute weight di
1;k; d

i
2;k; . . . ; di

M;k

ð6Þ

where u1;u2; . . . ;uM denote the antecedent attributes in the kth rule of the BRB_i and can be seen as the environmental factors.
Ak

mðm ¼ 1; . . . ;M; k ¼ 1; . . . ; LÞ is the referential value of the mth antecedent attribute in the kth rule of the BRB_i and Ak
m 2 Am.

Am ¼ fAm;jm ; jm ¼ 1; . . . ; Jmg is a set of referential values for the mth antecedent attribute and Jm is the number of the referential values.
hi

k ð2 Rþ; k ¼ 1; . . . ; LÞ is the relative weight of the kth rule of the BRB_i, and di
1;k; d

i
2;k; . . . ; di

M;k are the relative weights of Mantecedent attri-
butes used in the kth rule of the BRB_i. bi

j;k ði ¼ 1; . . . ;N; j ¼ 1; . . . ;NÞ is the belief degree in the kth rule assessed to Di;j which denotes the jth
consequent of the BRB_i. Note that ‘‘^” is a logical connective to represent the ‘‘AND” relationship. In addition, assume
di

m ¼ di
m;k and �di

m ¼ di
m=maxm¼1;...;Mfdi

mg.
The parameters of the BRB i ði ¼ 1; . . . ;NÞ should satisfy the following constraints:

0 6 hi
k 6 1; 0 6 �di

m 6 1; 0 6 bi
j;k 6 1;

XN

j¼1

bi
j;k ¼ 1; k ¼ 1; . . . ; L; m ¼ 1; . . . ;M; j ¼ 1; . . . ;N ð7Þ

Let Vi denote a vector composed of the above parameters in the BRB_i. Vi is written as

Vi ¼ hi
1; . . . ; hi

L;
�di

1; . . . ; �di
M; b

i
1;1; . . . ; bi

N;L

h iT
ð8Þ

In the BRB_i, Di;jði ¼ 1; . . . ;N; j ¼ 1; . . . ;NÞ is an action (Yang et al., 2006) which represents transition from hidden state si to hidden state sj.
Due to the fact that a belief distribution is a generalized probability (Yang et al., 2006), bi

j;k which is the belief degree to Di;j can be treated as
the transition probability from si to sj. The BRB_i is used to capture the relationships between the environmental factors u1ðtÞ; . . . ;uMðtÞ and
the transition probabilities ki;1ðtÞ; . . . ; ki;NðtÞ from si ði ¼ 1; . . . ;NÞ to s1; . . . ; sN . The mapping function reflected by the BRB_i is represented as:

OiðuðtÞÞ ¼ Di;j; ki;jðtÞ
� �

; i ¼ 1; . . . ;N; j ¼ 1; . . . ;N
	 


ð9Þ

where OiðuðtÞÞ denotes the output of the BRB_i and uðtÞ ¼ ½u1ðtÞ; . . . ;uMðtÞ�T . The function Oið�Þ denotes the evidential reasoning (ER) ap-
proach which is used as the inference tool of the BRB. The details of the algorithm to calculate ki;jðtÞwill be given in Section 3.1 and Appendix
A.
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(7) As a result of above description, the new HMM–BRB based model is shown in Fig. 1, where u1ðtÞ; . . . ; uMðtÞ denote the inputs and ŷðtÞ
represents the output generated by the HMM–BRB based model. Let Q denote the parameter vector of the HMM–BRB based model and can
be written as:

Q ¼ VT
1; . . . ;VT

N ;l
T ;r

h iT
ð10Þ

where Vi is given in Eq. (8) and denotes the parameter vector of the BRB_i. l ¼ ½l1; . . . ;lN�
T , and the expectation li ði ¼ 1; . . . ;NÞ and the

variance r are given in Eq. (4).
Due to the capability of the BRB methodology (Yang et al., 2006), the inputs of the HMM–BRB based model, i.e., the environmental fac-

tors, u1ðtÞ; . . . ;uMðtÞ, could be either quantitative or qualitative information with various types of uncertainties, such as vagueness and
incompleteness. This ensures that different factors affecting the failure prognosis results can be considered.

The initial values of parameters in the HMM–BRB based model may not be accurate. Therefore, it is necessary to update them using
available information.

3. The HMM–BRB based real-time failure prognosis

In this section, a new HMM–BRB based real-time failure prognosis algorithm will be developed. The proposed recursive algorithm con-
sists of two aspects: (i) recursive algorithm for online updating the HMM–BRB based model, and (ii) real-time failure prognosis.

3.1. Recursive algorithm for online updating the HMM–BRB based model

In this subsection, according to the maximum likelihood (ML) algorithm, a recursive algorithm is proposed to online update the HMM–
BRB based model using the available input and output information.

Let f ðyðnÞjQ Þ denote the conditional probability density function (pdf) of the monitored observation y at time instant n. Suppose that
yð1Þ; . . . ; yðtÞ are independent, so there is

f ðyð1Þ; . . . ; yðtÞjQ Þ ¼
Yt

n¼1

f ðyðnÞjyð1Þ; . . . ; yðn� 1Þ;Q Þ ð11Þ

where Q as given in Eq. (10) is the unknown parameter vector of the HMM–BRB based model.
Then the log-likelihood function in Eq. (11) can be constructed as follows:

Ltþ1ðQ Þ ¼
1

t þ 1

Xt

n¼1

log f ðyðnÞjyð1Þ; . . . ; yðn� 1Þ;Q Þ ð12Þ

According to the recursive algorithm for updating the HMM parameters (LeGland and Mevel, 1997), the following recursive algorithm for
estimating the parameter vector Q is obtained when the log-likelihood function is maximized.

Q ðt þ 1Þ ¼
Y

H

Q ðtÞ þ eðtÞCðQ ðtÞÞf g ð13Þ

where H is a constraint set composed of the equality and inequality constraints that Q should satisfy, and
Q

Hf�g denotes the projection onto
H. feðtÞg is a sequence of step sizes and satisfies eðtÞP 0; limt!1eðtÞ ¼ 0 and

P1
t¼1eðtÞ ¼ 1. In addition, CðQ ðtÞÞ denotes the derivative with

respect to the vector Q at time instant t and is written as:

CðQ ðtÞÞ ¼ @ log f ðyðtÞjyð1Þ; . . . ; yðt � 1Þ;Q Þ
@Q

����
Q¼Q ðtÞ

ð14Þ

In the recursive algorithm as given in Eq. (13), the main task is to determine the derivative CðQ ðtÞÞ. The calculation methods of CðQ ðtÞÞ will
be given in detail in the following contents and Appendix A.

According to Eqs. (1) and (3) and Bayes theorem, in Eq. (14) there is

f ðyðtÞjQ Þ ¼ bðtÞTpðtÞ ð15Þ

Let Q ¼ ½Q1; . . . ;QW �T and W denote the dimension of Q. According to Eq. (10), there are W ¼ Z þ N þ 1 and Z ¼ N � ðLþM þ L� NÞ. Thus,
the left side of Eq. (14) can be written as:

CðQ ðtÞÞ ¼ CðQ1ðtÞÞ; . . . ;CðQ WðtÞÞ½ �T ð16Þ

Fig. 1. The HMM–BRB based model.
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In Eq. (16), CðQdðtÞÞ ðd ¼ 1; . . . ;WÞ needs to be determined. Substituting Eq. (15) into Eq. (14), CðQdðtÞÞ can be calculated by

CðQ dðtÞÞ ¼
bðtÞT zdðtÞ
bðtÞTpðtÞ

þ @bðtÞT

@Q dðtÞ
pðtÞ

bðtÞTpðtÞ
ð17Þ

where zdðtÞ denotes the partial derivative of pðtÞ with respect to QdðtÞ and it is given by

zdðtÞ ¼
opðtÞ
oQ dðtÞ

ð18Þ

In Eqs. (17) and (18), the probability vector of the hidden states pðtÞ, the partial derivatives obðtÞT=oQdðtÞ and zdðtÞ are needed. Their calcu-
lations are given in Appendix A.

The recursive algorithm in Eq. (13) is indeed a projection algorithm. That is, when the newly estimated parameter vector Q ðt þ 1Þ is
obtained at time instant ðt þ 1Þ, a projection is operated to ensure Q ðt þ 1Þ to be located in the constraint set H. In this paper, H is composed
of the constraints as given in Eq. (7). The projection algorithm for dealing with the constraints has been proposed by Zhou et al. (2009).

Compared with other methods such as probability based methods (Cagno et al., 2000; Davis et al., 2007), the BRB has an important char-
acteristic to allow the direct expert intervention (Yang et al., 2007). In other words, experts can use the judgmental information to extrap-
olate the machine learnt rules to cover ranges which are not covered in historical data, so that the constructed BRB may capture all possible
running patterns which can reflect the relationships between the environmental factors and the transition probabilities among the hidden
states. This is helpful to improve the learning ability of the proposed recursive algorithm. In addition, as the probability transition matrix is
constructed using the BRB, the task of parameter estimation is significantly reduced compared with using the ML algorithm for the esti-
mation in a conventional HMM (Rabiner, 1989; Wang, 2007b).

3.2. Real-time failure prognosis

After the parameter vector, Q ðtÞ, is estimated at time instant t, the probability vector of the hidden states pðtÞ, the expectation lðtÞ and
the transition probability matrix kðtÞ can be determined. Let Dt denote the forecasting step. Thus, according to the characteristics of the
Markov chain, the predicted expectation value of the hidden variable S after Dt steps can be calculated by

EðSðt þ DtÞÞ ¼ kðtÞDtpðtÞ
h iT

lðtÞ ð19Þ

where Eð�Þ denotes the expectation.
In our study, suppose N ¼ 2 in the HMM–BRB based model, i.e., SðtÞ 2 fs1; s2g, where the hidden states s1 and s2 denote ‘Normal’ and

‘Failure’, respectively. Moreover, s1 and s2 can be treated as two evaluation grades which can be related to the utilities according to the
rules provided by the decisions maker (Yang, 2001). Let UðsiÞ ði ¼ 1;2Þ be the utility of the evaluation grade si. The predicted probability
to ‘Failure’ can be determined by

ProbfSðt þ DtÞ 2 s2jXðtÞg ¼
EðSðtþDtÞÞ�Uðs1Þ

Uðs2Þ�Uðs1Þ
; if Uðs1Þ < EðSðt þ DtÞÞ < Uðs2Þ

Uðs1Þ�EðSðtþDtÞÞ
Uðs1Þ�Uðs2Þ

; if Uðs2Þ < EðSðt þ DtÞÞ < Uðs1Þ

8<: ð20Þ

Once the probability in Eq. (20) is calculated and the threshold Pth is given, whether the system is running at a normal or failure state after Dt
steps can be determined by using Eq. (5).

Remark 1. According to Eqs. (19) and (20), if Dt is not pre-set, then the time to reach the failure state, i.e., the remaining useful life (RUL),
can be calculated when let ProbfSðt þ DtÞ 2 s2jXðtÞg ¼ 1.

3.3. A procedure for real-time failure prognosis

As a result of the discussion in the previous subsection, the procedure of the new HMM–BRB based recursive algorithm for real-time
failure prognosis may be summarized as follows:

Step 1. Let t ¼ 0. Assign initial values to the parameter vectors of the N belief rule bases V1ðtÞ; . . . ;VNðtÞ and the parameters of the HMM
pðtÞ; zdðtÞ; lðtÞ; rðtÞ. The parameters in ViðtÞ ði ¼ 1; . . . ;NÞ satisfy the constraints as given in Eq. (7). According to Eqs. (1) and (18),
there are

PN
i¼1piðtÞ ¼ 1 and zdðtÞ ¼ 0N, where 0N denotes a column vector whose elements are all 0 and the dimension of 0N is N. From

Eq. (10), Q ðtÞ is obtained.
Step 2. Since the input uðtÞ and the monitored observation yðtÞ are available, Eq. (4) and Eq. (A.2) of Appendix A are used to determine the prob-

ability bðtÞ and obðtÞT=oQ ðtÞ, respectively. Then CdðQ ðtÞÞ ðd ¼ 1; . . . ;WÞ can be calculated by substituting
bðtÞ; pðtÞ; zdðtÞ and obðtÞT=oQ ðtÞ into Eq. (17). According to Eq. (16), CðQ ðtÞÞ is obtained. Finally, Q ðt þ 1Þ can be determined using
Eq. (13) and CðQ ðtÞÞ.

Step 3. According to V1ðtÞ; . . . ;VNðtÞ, the transition matrix of the HMM kðtÞ can be calculated by the ER approach using Eqs. A.7, A.8, A.9. More-
over, oBðtÞ=oQ ðtÞ and okðtÞ=oQ ðtÞ are determined by Eqs. (A.6) and (A.10), respectively. Then zdðt þ 1Þ can be obtained by substituting
kðtÞ; oBðtÞ=oQ ðtÞ and okðtÞ=oQ ðtÞ into Eqs. A.3, A.4, A.5. pðt þ 1Þ is estimated using Eq. (A.1).

Step 4. After the input uðt þ 1Þ and the monitored observation yðt þ 1Þ are available, let t ¼ t þ 1 and go to Step 2. Otherwise, go to Step 5.
Step 5. After the forecasting step Dt and the threshold Pth are given, Eqs. (19) and (20) can be used to predict the probability to the state ‘Failure’.

Then Eq. (5) is used to determine whether the system is failure after Dt steps.

Remark 2. In the proposed recursive algorithm as given in Eq. (13), the observations are assumed to be independent. However, in engi-
neering, they may not be independent and the other likelihood function should be adopted (Wang and Christer, 2000). Therefore, it is nec-
essary to study a more general recursive algorithm for estimating the parameters of the HMM–BRB based model in future.
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Remark 3. The nature of the proposed recursive algorithm is: The model parameters within a HMM–BRB based model are first updated,
and then update the prediction using the updated HMM–BRB based model, which may produce over-fitting. In order to solve this problem,
it is necessary to choose the appropriately initial parameters of the HMM–BRB based model. On the other hand, more conditioned obser-
vations are needed to train the HMM–BRB based model. Thus, the model parameters can converge to an optimal point and the updated
model can give the accurate prediction.

4. An experimental case study

In this section, a continuous stirred tank reactor (CSTR) (Zhou and Frank, 1998) is used to demonstrate the implementation and validity
of the proposed HMM–BRB based real-time failure prognosis method.

In our experimental case study, the CSTR model is used to generate simulated data. Then assume that the CSTR model is unknown and
only the simulated data are used to predict the hidden failure of the CSTR by the proposed HMM–BRB based prognosis algorithm. The CSTR
model is presented firstly.

4.1. Simulation model of continuous stirred tank reactor

A discrete-time CSTR model with one input and two outputs is described as

xðt þ 1Þ ¼ xðtÞ þ dt � gðxðtÞ; tðtÞÞ þwðtÞ
yðt þ 1Þ ¼ diagf1;1:01gxðt þ 1Þ þ vðt þ 1Þ

�
ð21Þ

where t P 0 is the discrete-time index. diagf�; . . . ; �g denotes a diagonal matrix. x, t and y are the state, the input and the output with appro-
priate dimensions, respectively. w and v are the process noise and the measurement noise, respectively. The nonlinear system function g is
written as:

gðxðtÞ; tðtÞÞ ¼
q
V ðCAf � x1ðtÞÞ � k0#ðtÞx1ðtÞ
q
V ðTf � x2ðtÞÞ þ �DH

qCp
k0#ðtÞx1ðtÞ þ UA

VqCp
ðtðtÞ � x2ðtÞÞ

" #
ð22Þ

where we have #ðtÞ ¼ expð�E=ðRx2ðtÞÞÞ; x ¼ ½x1; x2� ¼ ½CA; Tr�T ; tðtÞ ¼ Tc and y ¼ ½y1; y2�
T . The states x1 and x2 denote the reactant concentra-

tion and the reactor temperature, respectively. The input t denotes the temperature of the cooling water in the jacket. The parameters are
shown in Table 1.

In Eqs. (21) and (22), we choose the sampling interval as dt ¼ 0:2 min. wðtÞ is Gaussian noise with covariance matrix
diagf0:0052;0:52g and vðt þ 1Þ is Gaussian noise with covariance matrix diagf0:0042;0:42g. The initial states are chosen as x1ð0Þ ¼
0:22 mol=L and x2ð0Þ ¼ 447 K.

Let xd
1 denote the setting point of the reactant concentration and suppose xd

1 ¼ 0:2 in this paper. Then the control objective of the CSTR
system is to track xd

1. For simplicity, we use a PID controller here. Let Kp ¼ 100; Ti ¼ 0:4; Td ¼ 0:1 and tð0Þ ¼ 419. The controller is in a
recursive form as

tðtÞ ¼ tðt � 1Þ þ s0eðtÞ � s1eðt � 1Þ þ s2eðt � 2Þ ð23Þ

eðtÞ ¼ x̂1ðtjtÞ � xd
1 ð24Þ

s0 ¼ Kp 1þ dt
Ti
þ Td

dt


 �
; s1 ¼ Kp 1þ 2Td

dt


 �
; s2 ¼

KpTd

dt
ð25Þ

Under normal operations, the reactant concentration CA is automatically controlled at the setting point and the reactor temperature Tr is kept
in the given range. In this case, the energy released by reaction is partially absorbed by the jacket where the temperature of cooling water Tc

is adjusted by the proposed PID controller. Assume that if Tr exceeds the pre-set threshold, a failure occurs in the CSTR.
Assume that due to contamination of the reactant or the leak of the reactor, the reactor volume V will decrease. Furthermore, assume

that V changes as follows:

VðtÞ ¼ 100� 0:05�t ð26Þ

It is assumed that as more production for the CSTR is needed, the fed-in flow rate of the reactant q should be increased. Moreover, assume
that due to increase of the ambient temperature, the initial temperature of the reactant Tf also increases. The need of production and ambient
temperature are chosen as the environmental factors in this experimental study. It can be observed that the changes of environmental factors
can be reflected by q and Tf . Furthermore, it is assumed that before the reactant is fed to the reactor, q and Tf change as follows:

qðtÞ ¼
100; t < 200
100þ ðt � 200Þ�0:2; t P 200

�
; and Tf ðtÞ ¼

400; t < 250
400þ ðt � 250Þ�0:1; t P 250

�
ð27Þ

Fig. 2 shows the change process of q and Tf . According to Eqs. (21)–(27), Fig. 3 gives the simulated observations of the reactor temperature,
where the solid line denotes the simulated observation when only the failure as given in Eq. (26) exists, and the dotted line denotes the sim-

Table 1
The parameters of CSTR.

q = 100 L/min E/R = 5360 K CAf ¼ 1 mol=L UA = 11,950 J/(min K) q ¼ 1 kg=L k0 ¼ expð13:4Þ=min

Tf ¼ 400 K �DH ¼ 17835:821 J=mol V = 100 L Cp ¼ 0:239 J=ðg KÞ Tc ¼ 419 K
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ulated observation when the failure and influences from the changes of environmental factors exist at the same time. From Fig. 3, it can be
obviously seen that the simulated observation influenced by the changes of environmental factors exceeds the failure threshold more quickly
than that when the environmental factors do not change. Therefore, it is necessary to consider the environmental factors when the failure is
predicted.

Using the simulation model of CSTR, a set of 500 data are generated. Based on the data as given in Figs. 2 and 3, the objective of this
experimental case study is to use the environmental factors as the input and the simulated observation of Tr as the output, i.e., the mon-
itored observation, to verify the proposed HMM–BRB based model and real-time failure prognosis algorithm.

4.2. Construction of the HMM–BRB based model for the CSTR system

In our simulation study, it is assumed that the mathematical models such as Eqs. (21)–(27) to describe the physical behavior of the CSTR
are unknown, so we cannot use them to predict the hidden failure. On the other hand, the qualitative knowledge based methods cannot be
used either to predict the failure accurately. In order to use the HMM–BRB based model to simulate the CSTR system, the environmental
factors, the hidden failure process and the monitored observation in the HMM–BRB based model may be chosen as follows:

(1) According to our knowledge and analysis, the reactor temperature Tr can reflect the running condition of the CSTR if the reactant
concentration needs to be controlled at the setting point when the reactor volume V decreases. Besides from the failure as described
in Eq. (26), the other failures, such as failure of the cooling jacket, failure of the PID controller and so on, all will lead to increase or
decrease of Tr . Moreover, these failures may occur simultaneously. So Tr can be chosen as the key parameter to reflect the running
condition of the CSTR. However, due to noise contamination and sensor drift as shown in Eq. (21), Tr cannot be observed directly, but
can be indirectly reflected by y2 that denotes the simulated observation with influences from changes of environmental factors.
Therefore, we choose Tr and y2 as the hidden failure process and the monitored observation, respectively.

(2) As mentioned in Section 4.1, the fed-in flow rate q and the initial temperature Tf of the reactant are treated as two characteristic
parameters to reflect the environmental factors.

In the proposed model, it is important to determine the initial belief rules of the BRB system. The detailed method to determine the
initial belief rules will be given in the next subsection.
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Fig. 2. The change processes of environmental factors.
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4.3. Determination of the initial belief rules in the BRB system

When a BRB is constructed, two steps are usually included. Firstly, a basic structure of the BRB is determined. In other words, the
antecedent attributes and consequent and their referential values should be chosen. Secondly, based on the analysis of running pat-
terns and some available information such as expert knowledge and historical data, the initial parameters of the BRB need be
determined.

4.3.1. Determination of the basic structure of the BRB
Since q and Tf are the inputs of HMM–BRB based model, they are chosen as the antecedent attributes of the BRB. Tr is chosen as the

hidden variable of the HMM. The transition probabilities between the hidden states are treated as the consequents of the BRB.
In order to construct the BRB, some referential points should be assigned to the above variables. For q, three referential points are used

and they are small (S), medium (M) and large (L). For Tf , two referential points are used and they are low (L) and high (H). In other words,
there are

Ak
1 2 fS;M; Lg; and Ak

2 2 fL;Hg ð28Þ

For the hidden variable Tr , two hidden states s1 and s2 are used to denote the evaluation degrade ‘Normal’ and ‘Failure’, respectively. There-
fore, for the consequent of ithBRB, two referential points are used: transition action from si to sj (denoted as Di;jÞ, where i ¼ 1;2 and j ¼ 1;2.
Let Di ¼ ½Di;1;Di;2�T , where Di ði ¼ 1;2Þ denotes the consequent vector of the ithBRB.

The referential points of q and Tf are in linguistic terms and need to be quantified in order to use the data as shown in Figs. 2 and 3. The
quantified results as listed in Tables 2 and 3 need roughly cover the corresponding attribute value range. It is noted that the referential
point Di;jði ¼ 1;2; j ¼ 1;2Þ denotes an action and need not be quantified here.

From the referential points of the variables, two belief rule bases, named as BRB_1 and BRB_2, are constructed using the belief rule con-
cept. The kth belief rule in the BRB_i (i = 1,2) is written as:

Ri;k : If q is Ak
1 ^ Tf is Ak

2; Then Di;1;b
i
1;k

� �
; Di;2; b

i
2;k

� �n o
With a rule weight hi

k and attribute weight di
1;k; d

i
2;k

ð29Þ

where Ak
1 and Ak

2ðk ¼ 1; . . . ;6Þ are the referential values as defined in Tables 2 and 3. The BRB_i is used to capture the relationships between
antecedent attributes and transition actions Di;1 and Di;2.

4.3.2. Qualitative Analysis of running patterns of the CSTR
In this subsection, according to expert knowledge and some basic principles such as mass balance, energy balance and thermody-

namic law, the running patterns of the CSTR, i.e., the qualitative relationships among the fed-in flow rate q, the initial temperature of
reactant Tf and the reactor temperature Tr will be analyzed, which provides a basis to determine the initial belief rules.

First of all, when the control is not considered in the CSTR, according to expert knowledge and the basic principles, it has been concluded
that (1) if the reactant concentration is high, this means that not much reaction has occurred, so little energy has been released by reaction
and Tr will not be much different than the feed and jacket temperatures; (2) if the reactant concentration is low, more energy will have
been released and Tr will be higher (Rensselaer Polytechnic Institute, 1999).

Similar to the above, the following four cases can be obtained when the PID controller is used.

Case 1. If q is large, then the reactant in the reactor will increase, which leads to the increase of the energy released by reaction. Thus, Tr

will be high. Otherwise, Tr will be low.
Case 2. If Tf is high, then Tr will be high due to the fact that the reactor temperature Tr is the same as the reactant temperature. Other-
wise, Tr will be low.
Case 3. If q is small and Tf is low, then Tr will be low according to Case 1 and Case 2. If q is large and Tf is high, then Tr will be high.
Case 4. If q is small and Tf is high, or q is large and Tf is low, then it is difficult to decide whether Tr is low or high. But it can be deter-
mined by experts or examining the historical data.

In this paper, it is assumed that if Tr exceeds the normal range, the failure process starts. Moreover, if Tr increases and is more than the
pre-set threshold, a failure occurs in the CSTR. Thus, if Tr is high, the transition probability from hidden state ‘Normal’ to ‘Failure’ is large.
Otherwise, it is small.

Table 2
The referential points of q.

Linguistic terms S M L

Numerical values (L/min) 95 110 120

Table 3
The referential points of Tf .

Linguistic terms L H

Numerical values (K) 395 430
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4.3.3. Determination of the initial belief rules
The initial belief rules can be established in the four ways (Xu et al., 2007): (1) Extracting belief rules from expert knowledge; (2)

extracting belief rules by examining historical data; (3) using the previous rule bases for failure prognosis of the CSTR if available; and
(4) random rules without any pre-knowledge.

For a complex system, prior knowledge may be not perfect, which leads to the construction of an incomplete or even inappropriate ini-
tial BRB structure. Also, too many rules in an initial BRB may lead to over-fitting, whilst too few rules may result in under-fitting. In order to
solve this problem, a realistic method was proposed to adjust the structure and parameters of a BRB (Zhou et al., 2010). If the initial BRB is
complete, the parameters in the BRB can be trained using the proposed offline and online learning algorithms (Yang et al., 2007; Zhou et al.,
2009).

In our case, there are no previous belief rule bases to start with. Belief rules are extracted by examining the data and using the above
qualitative analysis of the running patterns of the CSTR, and are used as the starting point for the proposed learning algorithm.

The initial belief degrees of BRB_1 and BRB_2 as listed in Tables 4 and 5 are given by an expert. For example, if q is L and Tf is H, the
expert judges that the transition action from the state ‘Normal’ to ‘Failure’ must occur, so the expert assess that the belief degree to D1;1 is 0
and the belief degree to D1;2 is 1 according to the running patterns as described in Case 3 of sub Section 4.3.2, where D1;1 and D1;2 denote the
transition action from ‘Normal’ to ‘Normal’ and the transition from ‘Normal’ to ‘Failure’, respectively. Thus a belief rule is obtained in the
second row of Table 4. Similarly, if q is S and Tf is L, according to the running patterns as described in Case 3, the expert assess that the
belief degree to D1;1 is 1 and the belief degree to D1;2 is 0, which shows that the system is in the normal state. Thus a belief rule is obtained
in the last row of Table 4. For the other belief rules in Table 4, the initial belief degrees cannot be determined according to the running
patterns as described in Case 4 of sub Section 4.3.2, but, in terms of the referential values of the antecedent and consequent attributes, they
can be determined by examining the historical data and expert knowledge. Here these initial belief rules are assigned by the researchers as
a result of observing the data as given in Figs. 2 and 3.

Similarly, we can obtain the initial belief rules as given in Table 5 for BRB_2. The initial belief rules in Tables 4 and 5 may be qualitatively
correct, i.e., the reactor temperature varies with the fed-in flow rate and initial temperature of the reactant in the right trend. However, the
initial belief degrees may not be accurate. Therefore, it is necessary to update them using the monitored observation.

4.4. Updating of HMM–BRB model and real-time failure prognosis

In order to predict the hidden failure real-time, the data in Fig. 2 and the simulated observations with influences from the changes of
environmental factors (i.e., the values represented by the solid line in Fig. 3) are used to online update the initially constructed HMM–BRB
based model, and then predict the probability of Tr to the hidden state ‘Failure’. The process of real-time failure prognosis is implemented
using MATLAB.

4.4.1. Set initial parameters of the HMM–BRB based model
The initial belief degrees of BRB_1 and BRB_2 have been listed in Tables 4 and 5. In addition, hi

k and di
j;k are assumed to be 1, where

i ¼ 1;2; j ¼ 1;2 and k ¼ 1; . . . ;6. Suppose Uðs1Þ ¼ 442 K and Uðs2Þ ¼ 471 K denote the utilities of the two evaluation grades ‘Normal’ and
‘Failure’, respectively. These two utilities can be determined by experts according to the change range of the reactor temperature. Further-
more, assume that the initial probability vector is pð0Þ ¼ ½0:2;0:8�T , the threshold Pth ¼ 0:65, and the prediction step Dt ¼ 5. Thus, an initial
HMM–BRB based model is constructed.

4.4.2. Update and test the HMM–BRB based model
After the input values ½qðtÞ; Tf ðtÞ� are transformed and represented in terms of the referential values defined in Tables 2 and 3, the pro-

posed recursive algorithm as given in Eq. (13) is used to update the initially constructed HMM–BRB based model. The detailed transfor-
mation processes were developed and discussed by Yang (2001). For example, if qð1Þ ¼ 100, then using the referential values of this
attribute as given in Table 2, it is equivalently transformed to qð1Þ ¼ fðS;0:67Þ; ðM;0:33Þg because 100 ¼ S� 0:67þM� 0:33. The belief

Table 4
Initial belief rules of BRB_1.

Rule number q and Tf Transition action distribution fD1;1;D1;2g from S1

1 L and H fðD1;1;0Þ; ðD1;2;1Þg
2 L and L fðD1;1;0:4Þ; ðD1;2;0:6Þg
3 M and H fðD1;1;0:2Þ; ðD1;2;0:8Þg
4 M and L fðD1;1;0:6Þ; ðD1;2;0:4Þg
5 S and H fðD1;1;0:7Þ; ðD1;2;0:3Þg
6 S and L fðD1;1;1Þ; ðD1;2;0Þg

Table 5
Initial belief rules of BRB_2.

Rule number q and Tf Transition action distribution fD2;1;D2;2g from S2

1 L and H fðD2;1;0:2Þ; ðD2;2;0:8Þg
2 L and L fðD2;1;0:1Þ; ðD2;2;0:9Þg
3 M and H fðD2;1;0:1Þ; ðD2;2;0:9Þg
4 M and L fðD2;1;0:05Þ; ðD2;2;0:95Þg
5 S and H fðD2;1;0:2Þ; ðD2;2;0:8Þg
6 S and L fðD2;1;0:2Þ; ðD2;2;0:8Þg
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degree 0.67 is the matching degree of the input qð1Þ ¼ 100 to the referential value S ¼ 95. Because the referential value L is used in Rule 5
and Rule 6 in Table 4, ak

1;1ð1Þ in Eq. (A.7) is 0.67 for k ¼ 5;6. Similarly, ak
1;2ð1Þ ¼ 0:33 for k ¼ 3;4.

Two updated belief rule bases are listed in Tables 6 and 7, respectively. The estimated value bT rðtÞ of the reactor temperature TrðtÞ is
calculated as follows:bT rðtÞ ¼ ½kðtÞpðtÞ�TlðtÞ ð30Þ

where the transition probability kðtÞ, the probability vector of the hidden states pðtÞ and the expectation lðtÞ can be determined after the
estimated parameter vector Q ðtÞ is obtained.

Similarly, the estimated values of TrðtÞ generated by the initial HMM–BRB based model can also be determined using Eq. (30). As shown
in Fig. 4, the estimation generated by the initial HMM–BRB based model cannot match the simulated value generated by the first equation
of Eq. (21). However, the updated HMM–BRB model can closely replicate the relationships between q, Tf and Tr . Thus, it can be concluded
that using the proposed recursive algorithm and the available information, the updated HMM–BRB based model can simulate the CSTR
system well.

4.4.3. Generate the simulated probability to the state ‘Failure’
Similar to Eq. (20), the simulated probability of Tr to the state ‘Failure’ can be calculated by

ProbfTrðtÞ 2 s2g ¼
TrðtÞ�Uðs1Þ
Uðs2Þ�Uðs1Þ

; if Uðs1Þ < TrðtÞ < Uðs2Þ
Uðs1Þ�TrðtÞ
Uðs1Þ�Uðs2Þ

; if Uðs2Þ < TrðtÞ < Uðs1Þ

8<: ð31Þ

where TrðtÞ is generated by the first equation of Eq. (21).

4.4.4. Predict the failure
After the HMM–BRB based model is updated each time when a simulated observation is available, Eq. (20) is used to predict the failure

after Dt steps. The real-time predicted result is given in Fig. 5. From Fig. 5, it is shown that compared with the initial BRB-HMM based

Table 6
Updated belief rules of BRB_1.

Rule number q and Tf Transition action distribution fD1;1;D1;2g from S1

1 L and H fðD1;1;0Þ; ðD1;2;1Þg
2 L and L fðD1;1;0:4Þ; ðD1;2;0:6Þg
3 M and H fðD1;1;0:6131Þ; ðD1;2;0:3869Þg
4 M and L fðD1;1;0:9994Þ; ðD1;2;0:0006Þg
5 S and H fðD1;1;0:9993Þ; ðD1;2;0:0007Þg
6 S and L fðD1;1;0:9998Þ; ðD1;2;0:0002Þg

Table 7
Updated belief rules of BRB_2.

Rule number q and Tf Transition action distribution fD2;1;D2;2g from S2

1 L and H fðD2;1;0:3848Þ; ðD2;2;0:6152Þg
2 L and L fðD2;1;0:0010Þ; ðD2;2;0:9990Þg
3 M and H fðD2;1;0:5700Þ; ðD2;2;0:4300Þg
4 M and L fðD2;1;0:2220Þ; ðD2;2;0:7780Þg
5 S and H fðD2;1;0:0010Þ; ðD2;2;0:9990Þg
6 S and L fðD2;1;0:0010Þ; ðD2;2;0:9990Þg
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Fig. 4. The simulated value of the reactor temperature and the estimations generated by the initial and updated HMM–BRB based models.
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model, the predicted probability to ‘Failure’ generated by the updated HMM–BRB based model can fit the simulated value more accurately
for the same antecedent attributes.

The failure prognosis results are given in Fig. 6 in a time scale in terms of sample interval. In Fig. 6, the solid line denotes the simulated
probability to ‘Failure’. The dotted line denotes the real-time failure prognosis result after considering influences from changes of environ-
mental factors.

In this simulation, the inputs are continuous and quantitative. It is noted, however, the inputs can also be qualitative, discrete and sym-
bolic information such as expert judgments.

In order to demonstrate that it is necessary to consider the influences from the changes of environmental factors in failure prognosis,
another simulation is carried out.

Assume that the fed-in flow rate and the initial temperature of the reactant are constant in the HMM–BRB based prognosis algorithm. In
other words, though the environmental factors are also considered, it is assumed that the change process of the environmental factors as
given in Fig. 2 is unknown due to some reasons. In fact, the environmental factors do change. Therefore, the outputs of the HMM–BRB based
model are the simulated observations with influences from the changes of environmental factors (i.e., the values represented by the solid
line in Fig. 3).

The assumed constant values of the two factors are qðtÞ ¼ 100 and Tf ðtÞ ¼ 400 while their simulated values are shown in Fig. 2. Then
the initial HMM–BRB based model as constructed in Section 4.4.1 is updated using the above two constant factors as the inputs and the
values represented by the solid line in Fig. 3 as the outputs. Finally, Eq. (19) is used to predict the failure and the real-time prognosis result
is given by the dash-dotted line in Fig. 6.

Fig. 6 shows that the dotted line is more close to the solid line generated by Eq. (31) than the dash-dotted line. It can be concluded that
the proposed HMM–BRB based algorithm can predict the CSTR failure more accurately when influences from the changes of environmental
factors are considered.

4.4.5. Comparative study with the classical HMM based failure prognosis algorithm
As mentioned in Section 1, the classical HMM based algorithm can also be used to predict the hidden failure (Baruah and Chinnam,

2003; Zhang et al., 2005). In order to demonstrate the validity of the proposed HMM–BRB based failure prognosis algorithm further, the
following comparative study between the proposed algorithm and the classical HMM based failure prognosis algorithm is carried out.
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Here the HMM with continuous observation density which includes two hidden states is chosen for failure prognosis of the CSTR. It is
also assumed that the monitored observation y obeys the Gaussian distribution as given in Eq. (3). Note that in the HMM based algorithm,
only the simulated observations with influences from the changes of environmental factors (i.e., the values represented by the solid line in
Fig. 3) are used. In other words, though the environmental factors do exist, they cannot be considered in the HMM based algorithm. The
parameters of the initial HMM model are set as follows:

The two hidden states s1 and s2 also denote ‘Normal’ and ‘Failure’, respectively. Different from the initial HMM–BRB based model, the
initial transition probability matrix between the hidden states need to be given directly in the HMM based algorithm. Here it is assumed

to be kð0Þ ¼ 0:5 0:5
0:5 0:5

� �
. The other parameters which include the initial probability vector of the hidden states pð0Þ, the utility of ‘Normal’

Uðs1Þ, the utility of ‘Failure’ Uðs2Þ, the threshold Pth and prediction step Dt are set same to Section 4.4.1.
Then using the values represented by the solid line in Fig. 3 as the outputs of the HMM, the recursive algorithm proposed by LeGland

and Mevel (1997) is directly adopted to update the initial HMM. Based on the updated HMM, the failure can also be predicted by using Eqs.
(19) and (20). The real-time failure prognosis result is given by the dashed line in Fig. 6.

Fig. 6 shows that among the dotted, dash-dotted and dashed lines, the dashed line generated by the HMM based algorithm is farthest to
the solid one. It is demonstrated that the proposed HMM–BRB based algorithm can predict the failure more accurately than the classical
HMM based algorithm.

5. Conclusions

In this paper, based on hidden Markov model (HMM) and belief rule base (BRB) methodology, a new HMM–BRB model is firstly pro-
posed to represent a real world system under the influences from changes of environmental factors. Then a recursive algorithm for online
updating the HMM–BRB based model is developed on the basis of the recursive algorithms for estimating the parameters of the HMM and
the BRB (LeGland and Mevel, 1997; Zhou et al., 2009). Finally, a new HMM–BRB based method for real-time hidden failure prognosis is
proposed for condition-based maintenance (CBM) of complex systems. These construct the main contributions of this paper. An experi-
mental case study is examined to demonstrate implementation and potential applications of the proposed real-time failure prognosis
method.

There are several features in the proposed failure prognosis method. First of all, the proposed method can predict the hidden failure
without exact mathematical models of systems. Secondly, the inputs of a HMM–BRB based model, i.e., the environmental factors, can
be either quantitative or qualitative. This is inherited from the BRB methodology (Yang et al., 2006). This ensures that different factors
affecting the failure prognosis results can be considered. This feature is also the main contribution of this paper. Finally, once new infor-
mation becomes available, the proposed method can predict the hidden failure real-time without waiting for all information to be pro-
vided, which can greatly save time and be of great practical significance. The above features allow the new real-time failure prognosis
algorithm to be applied widely in engineering.

Although the effectiveness of the proposed algorithm has been demonstrated by an experimental case study, its validity and capability
in dealing with more practical and complicated problems need to be further tested. Moreover, the hidden states of the HMM can also rep-
resent other performance indices of complex systems such as reliability and safety. Therefore, it is possible to use the proposed HMM–BRB
based model to solve reliability prediction and safety analysis of the systems. Those need to be studied in future research.
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Appendix A

In Eqs. (17) and (18), the probability vector of the hidden states pðtÞ, the partial derivatives obðtÞT=oQ dðtÞ and zdðtÞ are needed and can
be determined as follows.

(1) pðtÞ is calculated using the recursive algorithm given by LeGland and Mevel (1997).

pðt þ 1Þ ¼ kðtÞT BðtÞpðtÞ
ðbðtÞTpðtÞÞ

ðA:1Þ

where BðtÞ ¼ diagfb1ðtÞ; . . . ; bNðtÞg.
(2) According to bðtÞ ¼ ½b1ðtÞ; . . . ; bNðtÞ�T , Eq. (4) and Eq. (10), obðtÞT=oQ dðtÞ is determined by

obðtÞT

oQ dðtÞ
¼

0N ; d ¼ 1; . . . ; Z

eiðtÞ; i ¼ 1; . . . ;N; d ¼ Z þ i

qðtÞ; d ¼ Z þ N þ 1

8><>: ðA:2Þ

where eiðtÞ is a column vector whose dimension is N. The ith element eiðtÞ of eiðtÞ is not zero and the others are all zero. eiðtÞ ði ¼ 1; . . . ;NÞ
denotes the derivative of biðtÞ with respect to li. qðtÞ ¼ ½q1ðtÞ; . . . ;qNðtÞ�

T and qjðtÞ ðj ¼ 1; . . . ;NÞ denotes the derivative of bjðtÞ with respect
to r. The analytical formations of eiðtÞ and qjðtÞ can be obtained according to Eq. (4).
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(3) Substituting Eq. (A.1) into Eq. (18), we have

zdðt þ 1Þ ¼ opðt þ 1Þ
oQdðt þ 1Þ ¼ NðtÞzdðtÞ þ eNdðtÞ; d ¼ 1; . . . ;W ðA:3Þ

where NðtÞ and eNdðtÞ are the following partial derivatives of pðt þ 1Þ with respect to Qdðt þ 1Þ.

NðtÞ ¼ kðtÞT I� BðtÞpðtÞ1T
N

bðtÞTpðtÞ

" #
BðtÞ

bðtÞTpðtÞ
ðA:4Þ

eNdðtÞ ¼ kðtÞT I� BðtÞpðtÞ1T
N

bðtÞTpðtÞ

" #
@BðtÞ
@Q dðtÞ

pðtÞ
bðtÞTpðtÞ

þ @kðtÞ
@Q dðtÞ

BðtÞpðtÞ
bðtÞTpðtÞ

ðA:5Þ

In Eqs. (A.4) and (A.5), the probability transition matrix kðtÞ, the partial derivatives oBðtÞ=oQdðtÞ and okðtÞ=oQdðtÞ can be determined as
follows.

(i) Let 0N�N denote N � N matrix with each entry is 0. From Eqs. (A.1), oBðtÞ=oQ dðtÞ satisfies

oBðtÞ
oQdðtÞ

¼

0N�N; d ¼ 1; . . . ; Z

diag 0; . . . ;0;|fflfflfflfflffl{zfflfflfflfflffl}
j�1

ej;0; . . . ;0|fflfflfflffl{zfflfflfflffl}
N�j

8><>:
9>=>;; j ¼ 1; . . . ;N; d ¼ Z þ j

diag q1ðtÞ; . . . ;qNðtÞf g: d ¼ Z þ N þ 1

8>>>>>><>>>>>>:
ðA:6Þ

(ii) From Eqs. (A.4) and (A.5), kðtÞ ¼ ½ki;jðtÞ�N�N and okðtÞ=oQdðtÞ are needed. As shown in Eq. (9), the transition probabilities,
ki;1ðtÞ; . . . ; ki;NðtÞ, are generated by the BRB_i using the evidential reasoning (ER) approach which is denoted as Oi, so the transition matrix
kðtÞ is generated by a total of N belief rule bases. The ER approach, which was proposed by Yang and Sen (1994), Yang et al. (2006) and Yang
and Xu (2002) based on Dempster–Shafer theory of evidence (Dempster, 1968; Shafer, 1976), decision theory (Huang and Yong, 1981) and
fuzzy set theory (Zadeh, 1965), mainly includes two steps.

In the first step, when the inputs u1ðtÞ; . . . ;uMðtÞ are available, the activation weight xi
kðtÞ of the kth belief rule in the BRB_i is:

xi
kðtÞ ¼

hi
k

QM
m¼1

ak
mðtÞ

� ��di
m

PL
l¼1

hi
l

QM
m¼1

al
mðtÞ

� ��di
m

and �di
m ¼

dm

max
m¼1;...;M

fdmg
ðA:7Þ

where ak
mðtÞðm ¼ 1; . . . ;M; k ¼ 1; . . . ; LÞ, which is called the individual matching degree, is the belief degree of the input umðtÞ to the referen-

tial value Ak
m in the kth rule of the BRB_i. Depending on the nature of an antecedent attribute and data available such as a qualitative attribute

using linguistic values, ak
mðtÞ could be generated using various ways. A scheme for handling various types of input information has been sum-

marized by Yang (2001) and Yang et al. (2006, 2007). An example for transforming the quantitative information will be given in Section 4.4.
In the second step, according to the ER analytical algorithm (Wang et al., 2006), ki;jðtÞ in Eq. (9) can be determined as:

ki;jðtÞ ¼
niðtÞ �

QL
k¼1 xi

kðtÞb
i
j;k þ 1�xi

kðtÞ
PN

s¼1b
i
s;k

� �
�
QL

k¼1 1�xi
kðtÞ
PN

i¼1b
i
s;k

� �h i
1� niðtÞ �

QL
k¼1ð1�xi

kðtÞÞ
h i ðA:8Þ

niðtÞ ¼
XN

j¼1

YL

k¼1

xi
kðtÞb

i
j;k þ 1�xi

kðtÞ
XN

s¼1

bi
s;k

 !
� ðN � 1Þ

YL

k¼1

1�xi
kðtÞ

XN

s¼1

bi
s;k

 !" #�1

ðA:9Þ

(iii) There is okðtÞ=oQdðtÞ ¼ ½oki;jðtÞ=oQ dðtÞ�N�N and oki;jðtÞ=oQ dðtÞ is calculated by

@ki;jðtÞ
@Q dðtÞ

¼

@ki;jðtÞ
@hi

sðtÞ
; d ¼ g1 þ s; i ¼ 1; . . . ;N; s ¼ 1; . . . ;N

@ki;jðtÞ
@�di

mðtÞ
; d ¼ g1 þ Lþm; i ¼ 1; . . . ;N; m ¼ 1; . . . ;M

@ki;jðtÞ
@bi

z;pðtÞ
; d ¼ g1 þ LþM þ ðp� 1Þ � N þ z;p ¼ 1; . . . ; L; z ¼ 1; . . . ;N

0; d ¼ others

8>>>>>><>>>>>>:
ðA:10Þ

where d ¼ 1; . . . ;W; j ¼ 1; . . . ;N and g1 ¼ ði� 1Þ � ðLþM þ L� NÞ. Let oki;jðtÞ=oQdðtÞ denote the value of oki;j=oQd at time instant t. The de-
tailed algorithm to determine oki;j=oQd was given by Zhou et al. (2009).
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