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a b s t r a c t

In acute brain damage (e.g., stroke), patients can be left with specific deficits while other domains are
unaffected, consistent with the classical ‘modular’ view of cortical organization. On this view, relearning of
impaired function is limited because the remaining brain regions, tuned to other domains, have minimal
capacity to assimilate an alternative activity. A clear paradox arises in low-grade glioma where an even
greater amount of cortex may be affected and resected without impairment. Using a neurocomputational
model we account for the modular nature of normal function as well as the contrasting types of brain
insult through the interaction of three computational principles: patterns of connectivity; experience-
dependent plasticity; and the time course of damage. This work provides support for a neo-Lashleyan
view of cortical organization.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A critical aim of behavioural neurology, neuropsychology
and now cognitive neuroscience is to understand how various
behaviours are based on the function of different brain regions.
Extending back to the work of the nineteenth century neurolo-
gists, scientists have attempted to relate impaired performance,
sometimes reflecting specific behavioural dissociations, to the
area of underlying brain damage. Often three simplifying assump-
tions are made in this process: (a) modularity—that complex
behaviours are made up from cognitively separable processing
steps which can be independently impaired by brain damage;
(b) transparency—that a patient’s impaired performance directly
reflects the area of brain damage; and (c) subtractivity—following
from the assumption of modularity, that the patient’s impaired per-
formance reflects the simple, independent subtraction of a specific
function from the normal system (i.e., without resultant changes
in brain anatomy or function). When reviewing the neurologi-
cal and neuroscience literature, however, an apparent paradox
arises; some types of neurological damage and neuroscience data
align closely with this classical “modular” view while others point
to a more complex relationship between brain and behaviour,
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in which a considerable degree of neuroplasticity plays a key
role.

There is certainly no lack of evidence for relatively strict
structure–function correspondences in the human brain. For exam-
ple, averaging across individual subjects for group analysis of
neuroimaging data implicitly relies on such correspondences (Price
& Friston, 2002). Indeed, most human behaviours exhibit repro-
ducible loci of activation in response to stimuli of a given class. Thus
speech perception typically activates a bilateral network centred
around primary auditory cortex, visual processing reliably engages
a well-defined bilateral network of occipital and temporal areas,
and motor tasks predictably activate cortex in keeping with the
layout of the ‘homunculus’ represented in M1 (Rao et al., 1995).
This tight relationship between function and structure is then rein-
forced when neurological and neuroimaging data are combined;
brain damage or transcranial magnetic stimulation to these areas
often leads to relatively well-circumscribed deficits/effects related
to that area’s function in the typical, undamaged case.

While the modular view has proved extremely valuable for neu-
rological, neuropsychological and neuroscientific theory, the past
three decades have witnessed demonstrations of lifelong neural
plasticity far beyond what might have been imagined based on
the classical view alone. Animal studies have exhibited a startling
degree of equipotentiality in the early stages of development as
well as the continuing ability in adult animals to restructure cor-
tical maps in response to neural degradation (Bao, Chang, Davis,
Gobeske, & Merzenich, 2003). In humans, altered cortical represen-
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tations have been demonstrated in response to training on a new
motor task, pitch discrimination and identification of novel visual
objects (Bosnyak, Eaton, & Roberts, 2004; Draganski et al., 2004;
Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999).

But if the brain is so plastic, why is the prognosis for stroke
patients so poor? Very recently, a series of papers by Duffau and his
colleagues on the behavioural sequelae of low-grade glioma (LGG)
has provided new insights into this apparent paradox (Desmurget,
Bonnetblanc, & Duffau, 2007; Duffau, 2005, 2006). These tumours
gradually destroy large swathes of cortex (including documented
cases in Broca’s area, supplementary motor cortex, and the tem-
poral lobe) over the course of years without inducing significant
behavioural impairment. In most cases, within a few months of
tumour resection the patient returns to a normal socioprofessional
life. Compare this to stroke, in which comparatively smaller lesions
often lead to irreversible deficits even after a long period of lim-
ited, partial recovery. While the different time course between the
two types of lesions provides a clue to the root causes of these
contrasting outcomes, a complete account requires an elucidation
of the underlying neurocomputational mechanisms. We propose
here three key factors that determine the success of relearning after
brain insult:

(1) The age at which damage occurs. While the commonsense notion
that ‘earlier is better’ does not always hold true, especially in the
case of congenital deficits affecting neural development gener-
ally, it is nonetheless clear that outcomes are often better when
damage is sustained earlier in development. Studies of children
who have undergone hemispherectomy to control intractable
epilepsy represent perhaps the most extreme example of this
capability. While this surgery and the seizures that precede and
sometimes follow it often result in significant cognitive impair-
ment, a number of studies have demonstrated surprisingly
high language function in these patients. Liegeois, Connelly,
Baldeweg, and Vargha-Khadem (2008) reported on language
performance in a cohort of 30 hemispherectomy patients and
found that patients whose surgery involved the right hemi-
sphere and whose damage occurred postnatally had verbal IQs
in the low normal range. Another large-scale study assessed
postsurgical spoken language outcomes in 43 hemispherec-
tomy patients and found highly varying outcomes including
many patients with complete mature grammars (Curtiss, de
Bode, & Mathern, 2001). Muller et al. (1999) directly compared
groups with early and late left hemisphere lesions and found
PET evidence for increased cortical reorganization in those par-
ticipants who suffered damage before the age of five. Such cases
provide a stark contrast to the outcomes observed after signif-
icant damage to the brain in adults.

(2) The time course of the damage. The differences observed in LGG
and stroke provide strong evidence for the central role of this
factor in determining the end result of neural reorganization. In
the case of LGG, the damage takes place continuously but slowly
over years (the typical increase in diameter is 4 mm/year),
allowing other neural regions to assume the role previously
filled by the deteriorating cortex. In stroke, the core dam-
age is nearly instantaneous, penumbra function is lost over a
matter of days and the compensatory action of other cortical
regions is often insufficient to support normal processing. We
hypothesize that the ability of infiltrated cortex to guide the
development of new cortical networks that assume responsi-
bility for the deteriorating function allows for the surprisingly
positive outcomes observed in LGG. In the case of stroke, this
may not be possible, as the knowledge that was encoded in
the damaged cortex rapidly becomes inaccessible to other
cortical regions. In the case of slowly progressing damage, how-
ever, the decaying cortex can maintain representations close

enough to those of the normal state to guide restructuring
successfully.

(3) The pattern of connectivity of the damaged cortex. A third key
principle is that the brain is not fully interconnected but that
neighbouring neurons are connected with a high probabil-
ity via intracortical connections, whereas distant neurons are
connected more sparsely via white matter intercortical con-
nections (as indicated by histological studies: Young, Scannell,
& Burns, 1995). We hypothesize that this partial and region-
ally specific pattern of white matter connectivity, in concert
with the pattern of connectivity exhibited by primary sensory
cortices, plays a central role in the establishment of modular-
ity in the adult human brain. That is, in typically developed
individuals some basic regional specification necessarily fol-
lows from the fact that initial cortical processing of visual input
relies on the thalamocortical afferents from the lateral genicu-
late nucleus to primary visual cortex (V1) in the occipital lobe,
while auditory input first arrives at Heschl’s gyrus in the tem-
poral lobe. Unsurprisingly, then, auditory association areas are
found in the superior temporal gyrus lateral to A1, visual associ-
ation areas in occipital regions surrounding V1, and audiovisual
processing (e.g., reading) in areas close to the junction of the
occipital and temporal lobes.

To explore the neurocomputational basis of modular organi-
zation in the normal mature brain and the contrasting effects of
different types of brain damage, we trained a series of parallel
distributed processing (PDP) neural network models that embod-
ied and tested these three neurocomputational principles. Many
computational models simulate acquisition of a single behaviour
(e.g., reading aloud, naming, etc.). In order to demonstrate mod-
ularity and subsequent behavioural dissociations after damage,
however, the models used in this study were trained to perform
two different quasi-regular mapping tasks. We then compared the
differential effects of acute or gradually incremental damage. To
test this notion, we implemented full intra-connectivity within two
half ‘subnetworks’ (a computational analogy to different two dif-
ferent brain regions) but only partial inter-connectivity between
them. Having confirmed this hypothesis in the trained model, we
then damaged one subnetwork in two different ways. In the LGG
simulation, the weights were slowly reduced to zero through addi-
tion of a decay term. In the stroke simulation, these same weights
were destroyed instantaneously. Based on the principle that infor-
mation encoded in the brain is continually updated through
generalized learning/plasticity in response to continued life experi-
ences, the damaged simulations were re-exposed to their learning
environment to allow for experience-dependent plasticity-related
recovery (Welbourne & Lambon Ralph, 2005, 2007). The time
course and endpoints of recovery in both simulations closely
reflected those observed in stroke and tumour patients.

2. Experiment 1

2.1. Method

The architecture used in these simulations consisted of two parallel three-layer
feedforward networks, with 125 hidden units and 50 units in the input and output
groups, as depicted in Fig. 1. Pilot simulations established that this number of hidden
units within a single “subnetwork” was sufficient for learning both computational
tasks (if trained from scratch on both tasks). As a consequence we knew for certain
that the damaged models had sufficient computational resources to accommodate
both activities. However, as we will go on to demonstrate, changes in the learning
principle parameters (age of damage and speed of damage) altered the ability of this
“fully resourced” model to recover function. Following the differential connectivity
between neighbouring vs. long-distance neurons (see Section 1), groups of units
within each subnetwork were fully connected while sparse cross-connections (each
unit was connected to approximately 30% of the units in the downstream layer)
linked into and out of the other subnetwork’s hidden layer. Each subnetwork was
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Fig. 1. The architecture of the neurocomputational model. The neurocomputational
model was trained to perform two unrelated tasks simultaneously. Task 1 consisted
of a series of binary patterns presented to input layer 1 and the model was trained to
produce the corresponding pattern on output layer 1, via all intermediate (hidden)
units. Likewise task 2 required the correct pattern to be produced on output layer
2 given the pattern on input layer 2, via the hidden units. No direct constraint was
placed on the hidden units in terms of which task they could participate in. The
only difference built into the model was the connectivity pattern. Input, hidden
and output layers 1 were fully connected. The same was true for input, hidden and
output layers 2. There were, in addition, sparser (30%) connections between input
layer 1 to hidden layer 2 to output layer 1, and input layer 2 to hidden layer to
output layer 2. All connections were initiated with small random values and then
these were adjusted using the backpropagation learning algorithm so that the model
was able to perform both tasks without error. Once trained, two different kinds of
damage to hidden layer 1 were compared: acute (instantaneous) removal of the
connections to and from the layer vs. a gradual reduction (decay) of the strength
of these same connections to zero. Hidden layer 2 and its connectivity were not
damaged. In order to allow for experience-dependent plasticity-related changes,
the learning algorithm continued to be applied after both types of damage.

trained simultaneously on one of two independent tasks so that we could compare
performance on each of them both at the end of initial training (to test for emergent
modularity in the normal “adult” model) and at different points post damage (in the
case of simulated stroke) or during damage (in the case of simulated LGG). The two
tasks were designed to be independent – i.e., the patterns used in one task did not
relate in any systematic way to the patterns used for the other task – thus removing
the possibility of direct “cross-talk” of the two tasks that would then complicate
the interpretation of the model in each of its phases. Specifically, the input sets for
each task were comprised of separate groups of 100 random 50-bit input vectors.
The targets for these inputs were created by randomly flipping approximately 30%
of these bits; thus each input → target mapping consisted of a more predictable
part (the cases where, say a 1 on input unit 39 corresponded to a 1 on output unit
39) and a less predictable part (a case where a 1 on input 39 corresponded to a
0 on output 39). Note that these targets remained fixed throughout training—bits
were not flipped on a per-trial basis. On each trial one of the 100 input patterns for
subnetwork 1 was presented to input layer 1 and at the same time one of the input
patterns for subnetwork 2 was applied to input layer 2. All possible combinations of

input patterns were presented, yielding 1002 = 10,000 training patterns. The model
was trained to produce the correct output for each pattern set on the two output
layers.

The simulations were generated and trained using the LENS neural network
simulator (v2.63 from http://tedlab.mit.edu/∼dr/Lens/) with the following parame-
ters. All simulations used online learning (i.e., weight changes were made after each
trial), logistic activation and backpropagation of cross-entropy error, with a learn-
ing rate of 0.01. To simulate age-related decrease in neural plasticity, models were
trained with a linearly increasing ‘entrenchment factor’, instantiated as the inverse
of a logistic cost function (the logit function) on both the output layers of the form:

Cost = (ln(oj) − ln(1 − oj)) × Cs

ln(Cp)
(1)

where oj refers to the output of unit j, Cs (cost strength) is a constant that controls
the magnitude of the cost function, and Cp (cost peak) is the output value that incurs
the largest resistance (in this case, the middle of the logistic output function, 0.5).
This value is then added to the weight change for the given trial. At the beginning
of training the cost strength was set to 0, and increased to 4.0 at the end of train-
ing. The effect of this entrenchment factor is to favour weight changes that lead to
binary outputs, independent of the target value. This continual increase in the cost
strength provides a preference for maintenance of stored knowledge over signif-
icant change in the model’s internal representations: see Section 6 and Appendix
for further details. Performance on each trial was scored as the percentage of units
whose activation was on the correct side of 0.5 for each target; this score was then
averaged across the 10,000 patterns. After 200,000 trials, error had reached the
minimum asymptote and training was concluded.

Simulation of stroke was performed by complete and simultaneous removal of
one hidden layer—while this is a severe manipulation, we wished to observe model
behaviour at the extremes of damage (the effects of partial damage are explored
in Section 5, below). Following this intervention, the model was re-exposed to the
training environment for 2 million trials, which allowed recovery to reach asymptote
(mimicking the partial recovery shown by some stroke patients after damage). It
should be noted that we included a simulated “recovery” phase that was much longer
than the original developmental phase. We did this in order to provide the stroke
simulation with an unfettered opportunity to recovery and to reach an asymptote
(i.e., extend the recovery to an extreme position beyond the life expectancy of a
human). This allowed us to test whether the two simulations would demonstrate
a substantial difference not only during recovery but also at asymptote. In real life,
the time post damage would represent a reduced duration on the recovery curve—at
which point, as we will report below, there is an even greater difference between
the two types of simulation than at asymptote.

In contrast to the acute and simultaneous damage of stroke, the tumour simula-
tion involved the imposition of a high level of weight decay to all the links entering
and exiting one hidden layer, with the learning rate of these links set to 0. The
effect of this alternative form of damage is that the value of each weight is grad-
ually reduced to zero rather than being forced to zero instantaneously (as in the
stroke simulation). Thus, although the end point of each form of damage is the same
(deletion of the weight values that code knowledge/information in this kind of neu-
ral network model), the critical difference is the time over which this end point is
reached. It should be noted that these two forms of damage were applied to exactly
the same model, with the same “adult”-level of entrenchment. Therefore, if any dif-
ferences emerged from the two kinds of damage then these must reflect the form
of damage rather than any other uncontrolled parameter.

3. Results

3.1. Emergent modularity in the adult brain

After training, the network (depicted in Fig. 1) performed the
two separate tasks with 100% accuracy. In neurocomputational
models of this type (which most commonly have full connectiv-
ity), the information (weight values) to complete multiple tasks
would be spread across the entire network in a completely homoge-
nous fashion. As noted in Section 1, our working hypothesis was
that modular processing would follow from restricting connec-
tivity. The functioning of units within such models is shaped by
the tasks/inputs/outputs that they are connected to. With full
connectivity, the units are equipotential. In contrast, restricted
connectivity results in increasing specialization (Plaut, 2002). This
hypothesis was tested by severing the sparser cross-connections
connecting the two subnetworks. Despite the fact that this is
equivalent to the removal of ∼25% of the model’s representational
capacity (as measured by number of links), this intervention had
no effect on the performance of either subnetwork (performance
remained at 100% for both tasks). An analysis of the strength of acti-
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Fig. 2. Comparison of summed net input to the undamaged hidden layer 2 before training, after training (normal development) and after slow weight decay to hidden layer
1 (low-grade glioma). This series of nine bubblegrams depicts the strength of input into each unit within the undamaged hidden layer 2 at different time points. In the top
row, the total input from the more sparsely connected input layer 1 is shown. The middle row shows the total input from the fully connected input layer 2. The bottom
row shows the difference between the total input from each input layer and thus reflects the dominant input. Prior to any training (left column) the units in hidden layer 2
have small inputs from both input layers 1 (panel a) and 2 (panel b). Due to the relative sparsity of the connection from input layer 1, the magnitude of the input from input
layer 1 is smaller and thus layer 2 is slightly more dominant (panel c). The emergence of the quasi-modular behaviour of the model after training is shown in the middle
column. Specifically, the magnitude of input from layer 1 drops (compare panels a and d) to minimal values while the input from layer 2 grows (compare panels b and e).
As a result, the functioning of hidden layer 2 is almost completely dominated by input layer 2 (panel f)—i.e., it becomes a quasi-modular system for task 2. The system is
only quasi-modular, however, because under the right circumstances – in this case slow weight decay of the connected to hidden layer 1 – the function of hidden layer 2 can
change (right column). Around half of the units remain dominated by input from input layer 2 (panel h) and, if anything, the magnitude of the input actually increases in
order to maintain performance on task 2 with only half the number of contributing units. Quite strikingly, the other half (those with the greatest connectivity to input layer
1) completely change their functioning in favour of input layer 1 (panel g). When taken together (panel h) it becomes clear that both task 1 and task 2 are supported by the
functioning of the units of hidden layer 2, with around half relatively dedicated to each task.

vation from each input layer to the hidden layer also confirmed the
same modular functioning (see Fig. 2). Thus, following the pattern
of connectivity, each subnetwork had become relatively specialized
for one task—i.e., modular, despite the fact that the “latent” cross-
connections allowed for the possibility of a mixed contribution to
both tasks from each subnetwork. The next step was to test the
response of this modularized network to acute (stroke) vs. slowly
progressive (LGG) simulated damage.

3.2. Stroke simulation

Stroke was simulated through the complete and instantaneous
deletion of the hidden layer in one subnetwork, rendering all links
entering and exiting that layer non-functional. Immediately fol-
lowing this lesion, activations on the output layer of the damaged
subnetwork were effectively random and unrelated to the input
pattern—i.e., like many patients, immediately after their stroke,
performance on the affected task was at floor level. After the
experience-dependent recovery period, the stroke models’ perfor-
mance increased to 69.7% (Fig. 3), which mimics the partial recovery

demonstrated by many patients (to variable degrees) in the first few
months following their stroke (Wade, Hewer, David, & Enderby,
1986; Welbourne & Lambon Ralph, 2005, 2007). Importantly, as
observed in stroke, the initial post-lesion recovery was followed
by a chronic phase in which little or no additional relearning took
place; the performance curve for stroke in Fig. 3 reaches asymp-
tote at 70%, and remains there even when the model is run for an
additional 10 million trials. At no point did performance on the
unaffected task fall below 100% – that is to say, following expecta-
tions from a quasi-modular system, the model – like stroke patients
– demonstrated a neuropsychological dissociation between the two
tasks as well as partial recovery of the affected domain.

3.3. LGG simulation

In order to capture the slow, gradual infiltration of LGG
(Mandonnet et al., 2003), weight decay was added to all links enter-
ing and exiting one hidden layer, causing a gradual reduction in
the influence of this hidden layer on the output of the lesioned
subnetwork. The result of this gradual damage was quite unlike
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Fig. 3. Relative performance of the stroke and tumour simulations on task 1. Performance of the model on the affected task (task 1) is plotted against the number of post-lesion
training trials. There was no effect on the undamaged task 2, so this is not plotted (see text). Accuracy is measured in terms of the proportion of units with the correct target
value. Thus 50% correct corresponds to chance level performance. Simulations of acute stroke produced a catastrophic loss of function in the immediate phase followed by
partial recovery. Simulated LGG only led to minimal reduction in accuracy on task 1. The arrow at 1.4 M trials denotes that, at this point in the tumour model, the entire
hidden layer 1 could be removed with no effect on task 1.

the instantaneous stroke simulation: despite considerable, cumu-
lative damage to this subnetwork, performance on the associated
task only dropped by a minimal amount (accuracy never fell below
93%). This relative preservation of task performance (which had
been decimated in the stroke model) did not come at the cost of
poor function on the second task as the accuracy on this activity
remained at 100% throughout the manipulation. As noted in Sec-
tion 1, the potential neural plasticity of adult patients has been
strikingly demonstrated through the fact that in LGG large swathes
of eloquent tissue can be removed without causing an impairment
(Desmurget et al., 2007). The same was true in this LGG simula-
tion: after 1.4 million trials (as shown in Fig. 3), the affected hidden
layer could be completely removed without performance falling
below 90%, demonstrating that the unlesioned hidden layer was
now mediating both tasks successfully.

4. Discussion

As well as providing a critical “engineering” test for theoret-
ical assumptions, neurocomputational models also allow us to
explore the underlying mechanisms that lead to these key clini-
cal/behavioural outcomes. Specifically the LGG simulations prompt
the question: are all units in the unlesioned hidden layer con-
tributing equally to both tasks or has this layer become subdivided
into more or less independent groups of units? The answer is
emphatically the latter. Fig. 2 depicts the summed input from Input
2 → Hidden 2 and Input 1 → Hidden 2 before and after the decay
regime. As can clearly be seen, approximately 50% of the units in the
unlesioned hidden layer (Hidden 2) become unresponsive to activ-
ity in the input layer (Input 2) that was originally the sole driver for
their performance prior to damage; instead, they are dominated by
inputs from the lesioned subnetwork. Intriguingly, then, despite
the fact that these “latent” cross-connections provided no useful
input to either task (and could be lesioned without any effect) prior
to damage—they are the driver to the plasticity-related changes in
the model following damage.

Finally, it is not clear to what degree the specific parameter
settings used in these networks are responsible for the fit to the
data. Thus, we ran two sets of simulations exploring the interaction
between two of our central computational principles; specifically
the degree of entrenchment (analogous to age at lesion onset) and
severity of the lesion. In the case of stroke, the severity of the
lesion was parameterized as the number of hidden units deleted
from the affected layer, while in the tumour simulations variabil-
ity in severity was instantiated in the strength of the weight decay
parameter.

5. Experiment 2

5.1. Methods

While most of the simulation parameters remained the same in these simula-
tions, we varied entrenchment strength and lesion severity, under the hypothesis
that these two factors would enter into a trading relationship, such that lower
entrenchment (“younger” models) would lead to greater neural resilience. In the
stroke simulation, the severity of the lesion was varied from 50 to 100% of the units
in the affected hidden layer, in increments of 10%. The entrenchment varied from a
cost strength of 2.25 to 5.25 in increments of 0.5. For the tumour simulations, the
decay parameter varied between 0.0000001 and 0.000012475, in equal increments;
the entrenchment manipulation was the same as in the stroke simulations.

5.2. Results

As can be seen in Fig. 4, the parametric manipulation of
entrenchment and lesion severity yielded the predicted spread in
post-lesion recovery. Specifically, a lower degree of entrenchment
allowed for recovery from even the most severe of lesions, while
high entrenchment led to significant deficits even in comparatively
milder lesions. This was true both in the case of stroke, in which a
percentage of the hidden units in one layer were lesioned, as well
as in the progressive decay/tumour simulations, in which the rel-
evant manipulation was the speed with which connections were
reduced to 0, corresponding to behavioural outcomes observed in
low- vs. high-grade tumour (Thiel et al., 2006).
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Fig. 4. Parametric variation of acute damage severity (simulated stroke) vs. speed of decay (simulated tumour) at different levels of cost strength (entrenchment/age). Top
panel: Parametric manipulation of lesion extent and entrenchment. Each line in graph corresponds to a percentage of hidden units removed in simulated stroke (50–100%).
Bottom panel: Manipulation of speed of decay (corresponding to low- vs. high-grade tumours) and entrenchment. Each line in graph corresponds to a value of weight decay.

6. General discussion

In this paper we have introduced a neurocomputational frame-
work that provides new insight into the contrasting recovery
profiles observed in acute vs. slow-growing lesions—and thus
provides a potential solution to the paradox of modularity vs.
equipotentiality in the adult brain. Although the neurocomputa-
tional model was based on a network of equipotential units and
connections, the initial phase of development resulted in a mod-
ular organization with two emergent subnetworks specialized for
two behavioural tasks. As would be expected from patients with
stroke, when one of these subnetworks was damaged acutely then
a behavioural dissociation resulted (task 1 impaired, task 2 unaf-
fected), after a period of only partial recovery. Strikingly, a very
different pattern emerged in the simulation of LGG. Slow decay of
the links within the same subnetwork led to minimal performance
decline, as reported in the patient literature (Duffau, 2005, 2006).
Furthermore, at the end of the decay regime, the entire affected hid-
den layer could be removed with no effect on performance—which
closely matches the lack of major impairment from LGG resection.

There are other important differences in the neural pathology
associated with stroke vs. that observed in LGG. The abrupt loss of
blood flow to regions of cortex that occurs in both ischemic and
hemorrhagic stroke occasions relatively rapid neuronal death. In

contrast, the slow development of LGG (which to a first approx-
imation can be thought of as a pathological overproduction of
well-differentiated glial cells) initially spares neuronal tissue. In
fact, evidence from fMRI and direct electrical stimulation indicates
that essential function can persist within the tumour for years;
it is on this basis that a multi-stage surgical approach to these
lesions has recently been proposed (Gil Robles, Gatignol, Lehericy,
& Duffau, 2008). In both cases, however, the end result is loss of
a significant amount of cortical tissue with very contrasting neu-
ropsychological outcomes.

Our neurocomputational model highlights three key principles:
patterns of connectivity; entrenchment of knowledge; and the time
course of damage. While many computational models have uti-
lized full connectivity, this is neurally implausible because full
connectivity in the brain would require an unfeasibly large cra-
nium (on the order of a sphere with radius 10 km: Nelson & Bower,
1990). Previous simulations have demonstrated that reduced con-
nectivity shifts the functioning of units away from equipotentiality
towards a form of graded quasi-modularity (Plaut, 2002). In the
present neurocomputational model, a relatively strong form of
quasi-modularity emerged by reducing cross-subnetwork con-
nectivity. This suggests that neural systems do not need to be
directly or even genetically pre-programmed for quasi-modularity
of function to emerge but instead reflected their pattern of con-
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nectivity. In line with this notion, when connectivity is surgically
re-engineered then the functioning of the newly connected cortical
regions reflect the characteristics of the new domain and not the
old (Sur, Garraghty, & Roe, 1988).

The approach to lesion-induced impairment and post-lesion
plasticity in this model differs importantly from most previous
modelling work. Typically, the majority of computational studies
of impaired performance have simulated patient data by training a
model to optimal performance and then damaging it and/or adding
noise. The present study takes a somewhat different approach and,
in doing so, builds upon a small set of previous investigations.
Hinton and Sejnowski (1986) were probably the first to explore
the impact of retraining after lesions to a computational model of
reading. Marchman (1993) explored the impact of retraining after
damage at different time points during development in a model
of past tense verb processing. Plaut (1996) used a model of deep
dyslexia (mapping orthography to phonology via semantic rep-
resentations) and, like Hinton and Sejnowski, demonstrated that
simulated recovery/therapy was faster than original development.
Additionally, Plaut showed that the retraining outcome was better
if non-prototypical concepts were used in the retraining set. Finally,
more recently simulations have shown that the combination of
damage and partial recovery can produce neuropsychological dis-
sociations in the absence of in-built modularity. This is because
plasticity-related recovery can alter the relative contributions of
the remaining computational resources to maximise overall per-
formance, a process that sometimes benefits some but not all items
(Welbourne & Lambon Ralph, 2005). The present simulations build
on these previous computational explorations and, perhaps most
importantly, show how three key computational principals influ-
ence the degree and form of recovery/plasticity exhibited by such
models (see below).

A key aspect of the original learning in this model and the
subsequent recovery is experience-dependent plasticity. Develop-
ment and adult learning in this type of neurocomputational model
reflects continued exposure to a learning environment. This has
been used extensively to simulate various aspects of normal and
abnormal development in children (Munakata & McClelland, 2003).
Classically, development is sometimes viewed as a form of learn-
ing fuel which is present in childhood but is gradually used up
as we reach adulthood, at which point further large-scale restruc-
turing is impossible. These neurocomputational models and other
neuroscientific research (see below) suggest that a better anal-
ogy might be a chemical reaction: many chemical reactions do not
really “finish” but rather slow down and stop when equilibrium
is reached. However, they can be reactivated by a change in the
chemical environment that disturbs this equilibrium. These com-
putational models, and perhaps the brain, can be considered in
a similar fashion: learning reflects a process by which a balance
is found between the behavioural challenges of the environment
with the computational resources and connectivity at hand. The
apparent stability or even rigidity of the adult system represents
the equilibrium point. When this is disturbed by brain damage, the
remaining resources (including latent connectivity) will no longer
be optimized for performance and thus a new equilibrium is found
through plasticity-related changes.

The most critical aspect of the present neurocomputational
model is the time-course of damage. Only partial, plasticity-related
recovery followed after acute damage, yet full-blown, effective
function can be maintained by gradual damage. This reflects an
interaction between the speed of damage and the entrenchment
of knowledge (the bias to maintain existing knowledge struc-
tures captured by the cost function applied to the model’s output
units—see Section 2.1). When the model is damaged acutely on
a large scale (to simulate stroke), the knowledge structure of the
model is decimated. This means that there is a large disparity

between target behaviour and actual performance. As a conse-
quence, while plasticity-related changes can reduce this disparity
(and simultaneously maintain performance on the unaffected task)
it can never do so optimally. Although large-scale performance
differences are also present in the developing undamaged model,
effective development proceeds because both tasks are at the same
stage. Slow damage is much less demanding on plasticity-related
changes because after each small episode of damage only small
scale adjustments are required to maintain optimal performance on
both tasks. Over time, these gradual adjustments lead to an effective
reorganization of the remaining undamaged network.

These principles of adult neural plasticity are reified in the
effects of the age-related entrenchment factor on relearning fol-
lowing damage to the model. From a computational standpoint,
the entrenchment factor provides an important and novel way to
simulate impairment within a PDP framework beyond the simple
limitation of resources. As described above, simulation of perma-
nent neural damage in single network frameworks requires the
removal of enough units or connections that the model is math-
ematically incapable of performing a given task—equivalent to an
assertion that the lack of recovery in stroke results from a lack of
resources. However, the contrasting recovery profiles explored in
this paper suggest that this cannot be the whole explanation. If
correct, then there must be some additional computational mech-
anism which limits the potential recovery in the stroke case, but
not in the LGG case. We believe that our entrenchment factor is a
good candidate for this role.

Beyond these practical computational considerations, the
entrenchment factor instantiates what we view as a basic tradeoff
between the high adaptability characteristic of (and essential for)
successful neural development and the representational rigidity of
the adult state evinced, for example, by the typical inability of adults
to acquire fluency in a second language. Early in the development
of the model, when the strength of the function is low, the effect
of entrenchment is very low. As its strength increases, it makes
wholesale functional changes much less likely than they would
be if the brain maintained a constant level of plasticity through-
out life. The developing system needs to be highly receptive to
the statistical structure of the environment in order to structure
itself in accordance with outside demands. However, it is opti-
mal for this receptivity/plasticity to gradually reduce in favour
of increasing stability in the adult state, since the environment
does not typically change in a large-scale fashion throughout the
lifespan.

The effects of entrenchment can be understood through the
contrast of two types of learning in the adult state. For instance,
adult native Japanese speakers display a remarkable inability to
discriminate the English phonemes /r/ and /l/, even after extensive
training on this distinction (Bradlow, Akahane-Yamada, Pisoni, &
Tohkura, 1999). In this situation, the phonemic distinction requires
a restructuring of the existing representations in an intact system.
Such phenomena are easily accounted for in terms of native lan-
guage attractors rendering a rather large acoustic difference less
perceptible for these subjects at the phonemic level—this can be
viewed as an entrenchment effect. In cases where the attractors
are insufficiently deep or powerful, as is the case early in devel-
opment or when the new phoneme does not fall between two
existing attractors, learning is typically successful. The second type
of learning involves reestablishment of representations destroyed
by lesion; for example, in the case of extensive damage to the
left IFG. Here, interference from existing representations cannot
explain the lack of recovery because these representations were
supported by the damaged cortex and thus this knowledge is lost
in patients. In this situation, therefore, relearning must occur de
novo. However, the many reports of chronic aphasia in the litera-
ture, as well as the results of our simulations, suggest that the adult
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brain does not successfully accomplish this relearning in the face of
acute insult but does so if the damage is gradual and extended over
time.

Anatomically, this difference is reflected in patterns of reorgani-
zation observed in stroke and tumour. In stroke, successful recovery
is typically mediated by perilesional tissue while activations in
areas not associated with the function premorbidly often reflect
incomplete recovery. Thus, in the case of stroke-induced nonfluent
aphasia, successful recovery is associated with compensatory activ-
ity in the left temporal lobe. Activity in the contralateral IFG (which
is not typically activated during language processing in healthy
right handed subjects) is thought to result from a loss of transcalos-
sal inhibition and has been claimed to be unrelated to recovery or
even to be maladaptive (see Price and Crinion, 2005 for a review).
In contrast, successful language reorganization in LGG patients
involves a number of atypical structures and pathways. Thiel et al.
(2001) imaged 61 left hemisphere tumour patients while perform-
ing a verb-generation task. While controls mainly activated typical
left hemisphere language pathways, tumour patients recruited a
number of areas not normally observed in language tasks. In both
the ipsilesional and contralesional hemispheres, activations were
consistently detected in atypical frontal areas. Additionally, Thiel
et al. (2005) induced transient language disturbance after rTMS
to right IFG in five left-handed, left hemisphere tumour patients,
thus confirming a shift of essential language function to the con-
tralateral hemisphere quite unlike the pattern observed in stroke
aphasia. These studies also support the key principle of time-
course-of-damage in our neurocomputational model: Thiel et al.
(2006) demonstrated that this large-scale reorganization does not
follow in case of fast tumour.

Further evidence for experience-dependent plasticity can be
found in other parts of the neuroscience literature: for exam-
ple, Dancause et al. (2005) observed the establishment of novel
connections in squirrel monkey motor cortex following experimen-
tally induced ischemic infarct in M1. Additionally, Bridge, Thomas,
Jbabdi, and Cowey (2008) described findings from diffusion-
weighted imaging in the ‘blindsight’ subject GY. While both GY
and controls exhibit an ipsilateral connection from LGN to MT+/V5,
an additional contralateral pathway was demonstrated in GY, sug-
gesting a change in connectivity as a result of this lesion. The
sometimes negative impact of knowledge entrenchment likewise
has correlates in basic neuroscience: in a series of highly influen-
tial studies Knudsen and his colleagues have studied the ability of
barn owls to adjust to new mappings between visual and auditory
input induced by prism-shift goggles (Brainard & Knudsen, 1998;
Linkenhoker & Knudsen, 2002). While juvenile barn owls accom-
modate rather large disparities in this mapping, adult barn owls
do not adapt to such large shifts. However, very much like the
slow-paced adjustments of the LGG simulation, Linkenhoker and
Knudsen (2002) demonstrated that adult barn owls could in fact
achieve re-mappings almost as extreme when the owls were fit-
ted with prisms which progressively shifted visual input by a few
degrees at a time.

Taken together, these results suggest a middle ground between a
strictly modular view of the brain and the Lashleyan ideal of cortical
equipotentiality. While it is likely that we have yet to observe the
full extent of adult neural plasticity, we hope here to have identified
a small set of computational principles that provide a framework
for understanding the sequelae of brain lesion. Neural architecture
is shaped by a combination of its current pattern of connectivity,
the statistical structure of the environment and plasticity-related
changes that continue throughout the lifespan. It is only through
a full understanding of these neurocomputational principles that
effective interventions and therapies will be achieved for patients
with neurological damage. This study is intended as a first step in
that important journey.

Acknowledgement

This work was supported by a grant from the Gatsby Foundation
(GAT2831).

Appendix

While the results presented in this paper suggest that the effects
of knowledge entrenchment are effectively simulated through use
of the logistic cost function, the question remains as to why. That is,
what difference between the two models allows the LGG model to
maintain a high level of performance while the stroke model, with
the same architecture and resources, does not. An answer to this
question lies in the dynamics of the entrenchment factor, and how
it interacts with the errors induced by the lesion.

To better understand this interaction, we must first examine
how PDP networks learn in the typical (undamaged) case, focusing
the factors that govern how weights entering the output layer are
changed on the basis of mismatch between their target (t) and their
actual output (o). On each trial, a pattern is applied to the units of
the input layer—these values are known as ‘clamps’ and represent
the output of the input units. Each unit in the following (hidden)
layer receives a weighted sum of these clamps (its ‘input’), equal
to:

i(j) =
∑

wji × oi

for all sending units i, where wji is the weight to unit j from unit i,
and oi is the output of the sending unit. To calculate the output of
this unit, the input is passed through the activation (or ‘squashing’)
function, in this case the logistic activation function, to yield the
output:

oi = 1
1 + e−i(j)

Thus, in cases of large positive input the output will be very close
to 1, while in the case of strong negative input the output will be
close to 0. The activations of the output units are calculated in the
same way, as a weighted sum of the outputs of the hidden units.
For illustrative purposes, let us assume that the target value for
some output unit j is 1.0, while the actual output on this trial is 0.7.
According to the delta rule, we change the weight entering j from
some hidden unit i according to

�w(ji) = � × (tj − oj) × oi

where � is a constant called the learning rate, in our example 0.01.
Thus, for our hypothetical unit, the weight wji will be changed by
0.01 × 0.3 × oi, and this weight change will ensure that the next
time this training pattern is presented the output of this unit will
be closer to the target, all other things being equal.

This is the manner in which the models in this paper were
trained up until the simulation of a lesion. In the case of the LGG
simulation, on each trial every weight going into and out of the
affected hidden layer was multiplied by a small decay factor (in
Experiment 1, 1.0 × 10−6), and the absolute value of this product
was subtracted from the weight. The effect of this is, on average,
to create a small amount of error on the next presentation of the
same pattern. For instance, if the target for a given output unit is
1.0, the actual output after decay will likely be lower than this, as an
example let us say the output is 0.8. While this is still correct, in the
sense of being on the right side of 0.5, it also yields an error signal
because it does not exactly match the target. However, due to the
addition of the entrenchment factor, the effect of this error signal
on the weight change is no longer straightforward. As stated in the
main text, entrenchment is instantiated as a logistic cost function,
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whose inverse is:

Cost = (ln(oj) − ln(1 − oj)) × Cs

ln(Cp)

Since the cost peak remains constant at 0.5, we can ignore its
effect and focus on the remaining terms. Clearly, (ln(oj) − ln(1 − oj)),
where oj represents the activation of the output unit, reaches
extreme values in cases where the output is close to 1 or 0. This
value is then multiplied by the cost strength (a constant scaling
factor), and this product is added to the term (tj − oj).

Since the learning rate on the affected links of our LGG simula-
tion is set to 0, we need only focus on the sparse cross-connections.
Because the error in the LGG case is typically a small deflection
away from the target, the contributions from the error signal (tj − oj)
and the entrenchment factor are in the same direction, and thus
both serve to reduce the error on future presentations of a given
trial. However, in the case of acute damage such as stroke, the
errors are often of large magnitude, and in this case the entrench-
ment factor can overwhelm the error signal. For instance, in a case
where a stroke leads to an output of 0.2 on a unit whose target
is 1.0, the error signal will encourage a weight change that would
lead to a larger output on the next trial (i.e., closer to 1), while
the entrenchment factor will favour a weight change that leads to
an output of 0. Depending on the cost strength (which increases
throughout the ‘development’) phase on the model, the resultant
weight change will either be adaptive (in the case of low cost
strength) or maladaptive (in the case of high cost strength). In both
cases, the outcome represents the effects of the tradeoff between
high neural plasticity and entrenchment of stored knowledge
structures.
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