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Abstract

Artificial neural networks have shown great potential and have attracted much

research interest. One problem faced when simulating such networks is speed.

As the number of neurons increases, the time to simulate and train a network

increases dramatically. This makes it difficult to simulate and train a large-scale

network system without the support of a high-performance computer system.

The solution we present is a “real” parallel system – using a parallel machine to

simulate neural networks which are intrinsically parallel applications.

SpiNNaker is a scalable massively-parallel computing system under develop-

ment with the aim of building a general-purpose platform for the parallel sim-

ulation of large-scale neural systems. This research investigates how to model

large-scale neural networks efficiently on such a parallel machine. While provid-

ing increased overall computational power, a parallel architecture introduces a

new problem – the increased communication reduces the speedup gains. Mod-

eling schemes, which take into account communication, processing, and storage

requirements, are investigated to solve this problem. Since modeling schemes

are application-dependent, two different types of neural network are examined

– spiking neural networks with spike-time dependent plasticity, and the parallel

distributed processing model with the backpropagation learning rule. Different

modeling schemes are developed and evaluated for the two types of neural net-

work. The research shows the feasibility of the approach as well as the perfor-

mance of SpiNNaker as a general-purpose platform for the simulation of neural

networks. The linear scalability shown in this architecture provides a path to the

further development of parallel solutions for the simulation of extremely large-

scale neural networks.
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Chapter 1

Introduction

1.1 Background

Biological neural networks such as the human brain have shown a great capability

in tasks such as face recognition, speech processing and logic reasoning which

cannot be handled efficiently by conventional computers. Although it is still not

yet clear how the brain works, the great potential of neural systems has aroused

enthusiasm of many scientists since the last century. Based on knowledge about

neural systems acquired to date, a variety of neuronal models have been developed

to mimic neuron behaviors.

Nevertheless, what makes the biological neural system so special is the large

number of neurons and the high level of interactions among them. The special

functionality of a neural system is a result of interaction among all neurons in

each certain region. A human being has billions of neurons and may lose about

20 percent of them during a lifetime while maintaining similar functionality. In

addition to looking for more accurate neuronal models, neuroscientists also focus

on the their inter-connections and topology. Many neural network models have

been developed, for instance, the multilayer perceptron [Ros58], Hopfield neural

networks [Hop82], Kohonen self-organizing networks [Koh95]; each of these mod-

els comprises a number of inter-connected neurons/units. Larger neural networks

based on these models are being created to simulate more complex behaviors.

Some phenomena of interest only emerge when running a long simulation using

a large-scale neural network [IE08].

The operation speed of a biological neural network is almost independent of

its scale. It is always operating in “real-time” irrespective of how big the systems
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is. This is not the case with artificial neural networks however; when the scale of

the artificial neural network increases, the simulation speed drops, and the perfor-

mance varies from one solution to another. Even with the most computationally

efficient neuronal model, the performance of the neural network is still not com-

parable to its biological alternative. One second of activity of the neural network

can take minutes or hours of simulation on a computer depending on the scale of

the network and the processing power of the machine. The situation is even worse

when training such a neural network system using learning algorithms; the time

required increases dramatically with the number of neurons. This limitation has

been one of the bottlenecks of research in the field of artificial neural networks

since its very beginning [MP69].

Many methods investigated to speed up simulation basically go in two direc-

tions:

1. Developing more computationally efficient neuronal models and training

rules. This has been explored mostly by psychologists; the approach is

a trade-off between simulation performance and precision. The Hodgkin-

Huxley model introduced in 1952 [HH52], is probably the best known model

for neurons. It is biologically plausible, yet the most sophisticated and com-

putationally expensive model. It takes about 1200 floating-point operations

to simulate 1ms of activity [Izh04]. The simplest model – the integrate-

and-fire model – takes less time to compute (5 floating-point operations

per 1ms), but it is less precise and can reproduce fewer firing patterns than

the Hodgkin-Huxley model. This indicates that neuronal dynamics involves

trade-off between speed and accuracy.

2. Using more computationally powerful hardware. Computer scientists usu-

ally follow this path. A lot of hardware architectures, from FPGAs to the

IBM Blue Gene supercomputer, have been investigated both theoretically

and experimentally to support the simulation of neural networks.

General-purpose supercomputer systems such as Blue Gene or Beowulf clus-

ters are extremely computationally powerful and also easier to program than

dedicated hardwired devices such as FPGAs. However, firstly, their standard

communication systems are usually not efficient enough to meet the high com-

munication demands of neural networks; and secondly, their large physical size

and power consumption make them almost impossible to use in embedded neural
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network applications such as robots. On the other hand, dedicated hardware such

as FPGAs and VLSI implementations lack scalability and flexibility. Different

applications have variable network sizes. For example, some simple applications

such as a control system requires fewer neurons while others such as brain simu-

lation require a larger population of neurons and more connections. Thus linear

scalability can help to maintain constant simulation speed by expanding the size

of the hardware when the scale of the neural network increases. As computa-

tional neuroscience is still developing, the best neuronal model has not yet been

discovered. Different models, connection patterns and learning rules are inves-

tigated. Therefore, the neuromorphic hardware needs to be reconfigurable and

general-purpose to support different neural applications. In this context, what is

expected is dedicated neuromorphic hardware which is not hardwired and offers

programmability in order to support a variety of neural network applications.

Such a system should be efficient in computation and communication, yet low

power, compact and scalable.

Neural networks (both biological and artificial) are naturally parallel. Neurons

in such a system operate concurrently. Information is stored in a distributed way

among synaptic connections. Most traditional computer systems are sequential.

This fundamental difference in the structure is one of the most important reasons

why it is so inefficient to simulate neural networks on traditional computers. This

problem is not only with the speed but also with the memory requirements. As

computer science research moves in the direction of multi-core systems, parallel

architectures have become a very hot research topic. Our solution is to produce

a “real” parallel system, that uses a parallel machine to simulate parallel neural

networks.

1.2 Motivation

The SpiNNaker project is motivated by this background. The aim of the SpiN-

Naker project is to provide a scalable, massively-parallel, computing system as a

general-purpose platform for the parallel simulation of large-scale neural systems.

The specification of SpiNNaker is an attempt to capture the possible features

that ideal parallel machines should have for neural network simulation, as dis-

cussed above. Each SpiNNaker chip is a chip multiprocessor (CMP) containing
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up to 20 ARM968 processors and other components such as a router, communica-

tion controllers, etc. There are two different types of memory system associated

with each chip, and each processor has an internal RAM block called the tight-

couple memory (TCM) which is fast but small, and a block of external SDRAM

which is large in capacity but much slower. The TCMs provide instant access

to application code and variables, while the SDRAM stores large data sets with

comparatively low access rates, for example, the synaptic connectivity data. Each

SpiNNaker chip also has 6 self-timed external links by which multiple chips can

be linked together to expand the scale of the system and a multicast mechanism

is provided for efficient one to many communications. Small chip area and low

power consumption are also taken into account in the design.

This thesis focuses on the software design for the SpiNNaker system. There

are many neural simulators, such as Brian [GB09], NEURON [NEU] and PCSIM

[PNS09] that run on desktop computers to make neural simulation straightfor-

ward to users. With a dedicated parallel machine such as SpiNNaker, software

support is necessary to enable users to run previous experiments on the SpiN-

Naker system as easily and efficiently as on a desktop computer. To develop

such software, the most important problem to be solved is to map large-scale

neural networks efficiently onto SpiNNaker. Parallel machines are much more

complex in terms of their structure than their sequential alternatives and it is

not straightforward to map an application onto such hardware. Workloads and

information have to be distributed across multiple processors, and different types

of neural networks, different distribution approaches may be required. To achieve

high performance, the design of the software and its modeling algorithms must

emphasize efficiency.

1.3 Research aims

In this thesis, we aim to investigate the development of modeling algorithms to

run neural networks efficiently on SpiNNaker. Three aspects of the modeling:

communication, computation and storage have been taken into account.

• Communication. The parallel architecture provides more computational

power, but also increases the number of exchanges of internal information.

Processors need to send partial results or outputs to other processors where

information is needed to carry out the computation of the next step. In a
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sequential system, the information is normally locally available, while in a

parallel system, the information is distributed across different processors.

In this thesis, a number of approaches are used to reduce the communication

overheads. For spiking neural networks, we keep synapses information in

the memory of the postsynaptic processors, and use event-address mapping

to locate the synaptic block. When presynaptic neurons fire, they just

send identical information to all the postsynaptic neurons; this is handled

very efficiently by the multicast mechanism. For multi-layer perceptron

networks, we developed a pipelined checkerboarding partitioning scheme to

reduce the communication overheads by overlapping the computation and

communication.

• Computation. To speed up the computation, assembly code is used for all

critical processing. Fixed-point arithmetic is used during the implementa-

tion, and a dual-scaling factor scheme is developed to reduce the loss of

precision.

• Storage. The methods used to store the information are developed. Neu-

ronal and synaptic information are distributed to different processors or

chips. The data structure is organized very carefully and a compressed

storage scheme is used to save space.

In addition, other features such as scalability and power-efficiency are also

taken into consideration during the investigation.

Being general-purpose neuromorphic hardware, SpiNNaker is designed to sup-

port multiple types of neural network. In addition to implementing the spiking

neural networks that SpiNNaker is mostly focused towards, the modeling of an-

other very different type of neural network is also investigated, the multilayer

perceptron (MLP). These two different types of neural network require different

modeling schemes. In the spiking neural network case, real-time performance for

large-scale networks is required. In the MLP case, as there is no explicit con-

cept of time, optimum performance is pursued and the efficiency of the modeling

scheme is analyzed semi-experimentally.

This thesis describes investigations into an approach to building low-level

software support for top-level neural network applications. By implementing a

prototype software system and running a very simple neural network application,

the design flow of developing software for SpiNNaker is learned, which leads to
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the proposal of a layered software model to minimizes the differences between

running a neural network on SpiNNaker and running it on simulators based on

desktop computers. The research not only focuses on solving the problems faced

during the implementation, but also discovers many potential issues leading to

further studies.

1.4 Contributions

In this thesis, two different modeling schemes and several sub-models are devel-

oped and evaluated for two types of neural network respectively.

• Modeling schemes are developed for simulating spiking neural networks with

spike-time dependent plasticity (STDP), including: a dual-scaling factor

scheme for fixed-point arithmetic, event-address mapping, an event-driven

scheduler, route planning, neural data to SpiNNaker data conversion and a

deferred model for implementing STDP. The work also involves the prac-

tical implementation, verification and evaluation of these schemes. The

software built on SpiNNaker for modeling spiking neural network is tested,

and the outputs match the results from Matlab simulations. The function-

ality is further verified by successful running of a practical neural network

application (the Doughnut Hunter) on the physical SpiNNaker Test Chip.

• A novel pipelined checkerboarding scheme is developed for modeling multi-

layer perceptron networks with the backpropagation rule. The performance

is estimated for both fully- and partially-connected networks, and is com-

pared with the performance on a single PC simulation.

Though the modeling schemes are application-specific, common principles can

still be found which minimize communication, optimize processing and maintain

efficient storage. The difficulties found during this research are mostly common

problems faced when developing other parallel solutions, hence solutions provided

can be generalized.

The research shows the feasibility as well as the performance of simulating

neural networks on the SpiNNaker parallel machine. Equally important, the

research illustrates many unsolved problems involved in the parallel modeling and

initializes discussions about these issues. The work in this thesis provides a path
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to the further development of parallel solutions for the simulation of extremely

large-scale neural networks.

1.5 Thesis overview

The rest of the thesis is organized as follows:

1. Chapter 2 gives a brief introduction to the modeling theory of spiking neural

networks.

2. Chapter 3 reviews the current engineering solutions for simulating large-

scale neural networks, and introduces the SpiNNaker system we developed.

3. Chapter 4 presents the approaches for building a neural system for the

Izhikevich model on a single ARM968 processor. This includes the ap-

proaches for modeling neuronal dynamics, neural representations, synaptic

delays and system scheduling. The system is tested by running a small

network, and the performance is evaluated.

4. Chapter 5 extends the previous single processor system to a multi-chip

system. A four-chip SpiNNaker model based on the SoC Designer is im-

plemented and tested. The Doughnut Hunter application is tested on a

physical SpiNNaker Test Chip.

5. Chapter 6 implements the spike-timing-dependent plasticity (STDP) rule

on SpiNNaker.

6. Chapter 7 investigates the feasibility and performance of modeling multi-

layer perceptron networks on SpiNNaker.

7. Chapter 8 concludes the thesis.
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Chapter 2

Neural network modeling

2.1 Overview

Computer programming, poetry and music composition, or even the Mass-Energy

equation, are all products of the brain which is highly developed after millions of

years of evolution. Now the brain is trying to mimic itself – to build an artificial

version with same functionality. This looks more like a philosophy question –

whether a creature can reproduce itself. Despite whatever answer a philosopher

will give to this question, scientists are heading towards this objective and trying

to find the answer themselves. Research into neural biology has been carried out

for centuries. Although there are lots of mysteries remaining in this area, a lot

of knowledge and understanding of the brain and biological neural networks have

been developed.

Biological neuroscientists have discovered the electrochemical processes of neu-

rons in the brain, their connectivity patterns and so on. This knowledge is used

by computational neuroscientists to build artificial models. Mathematical ap-

proaches are used to create a variety of models that describe brain activities. In

addition to the neuronal dynamic models, there are also modeling theories about

neural coding, connectivity, and learning. This chapter gives a brief overview of

the biological research as well as computational modeling of neural networks.
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(a) An image taken from a typical
PET acquisition by Jens Langner
[Lan03].

(b) Division of brain function, by Leslie
Laurien.

Figure 2.1: The brain

2.2 Biological neural networks

2.2.1 Research methodology

Since the last century, people have been seeking to understand the brain using a

variety of approaches. The first approach was anatomical using stains and micro-

scopes. With this technology neuroanatomists have been successful in revealing

neural structures and connectivity.

Later electrophysiology methods were introduced which allowed scientists to

observe the electrical activity of neurons. The two general approaches used are

intracellular and extracellular recordings. As the names indicate, the intracellular

technique is used to record electrical signals from the interior of a neuron with

the help of glass electrodes. Tissues from brains of animal bodies are used for this

research; this is invasive and could damage the tissue. The extracellular technique

is used for capturing the electrical signals outside the cellular body, such as the

action potential (spike) in the axon or synaptic connections. Compared to the

intracellular technique, the extracellular technique is less invasive, thus can be

used in living animals or even in humans.

More advanced techniques, such as Magnetic Resonance Imaging (MRI), Elec-

troencephalography (EEG), Voltage-Sensitive dyes (VSDs), Positron Emission

Tomography (PET) and Intrinsic Optical Imaging (IOI), are now in use for re-

search. These techniques allow the observation of both functional processes and
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the internal structure of the brain in two or three dimensional images with less

impact on the objects which are being observed. The new techniques have helped

to investigate phenomena previously unobserved, and hence moved neuroscience

research to a new level. Figure 2.1(a) shows a picture taken using the PET

technique.

2.2.2 The brain and cortex

So what has been discovered by these observations? Although exactly how the

brain works remains a mystery, neuroscientists have uncovered many interesting

phenomena as well as brain structures. Basically, the most important three parts

in the brain are: the brainstem, cerebellum, and cerebrum with both the left

and right cerebral hemispheres [AC81, Ecc73, NMW92]. The brainstem is the

lowest part of the brain and is connected to the spinal cord, which provides the

main motor and sensory innervations to the face and neck. The cerebellum is

the structure located behind the brain stem, responsible for the integration of

sensory perception, coordination and motor control. The cerebral hemispheres of

the cerebrum are the largest part of the brain, with an outer layer of the cerebral

cortex and an inner layer of the white matter. The cortex, about two millimeters

thick with a total surface area of about 1.5 square-meters, is the source of most

of the high-level functions of the mind, and hence is the focus of most research

in neuroscience.

Functions in the cortex are virtually distributed in several specific regions, as

shown in Figure 2.1(b). For instance, the motor cortex, comprised of several sub-

regions, is responsible for planning and controlling muscle movements, while the

main responsibility of the primary visual cortex is to process visual information

about static and moving objects as well as pattern recognition. The frontal lobes

respond to inputs from the other regions of the brain and are mainly responsible

for making decisions and judgments.

2.2.3 Neurons

What is in the cortex that makes it versatile and so powerful? The answer was

found quite a long time ago. The investigation of the microscopic structure of

the brain started very early in around 1900 [Caj02], when scientists found that

the key components in the cortex are neuron cells and their inter-connections.
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(a) Neurons and connections found in
neuronal morphologies of cerebral cortex.
From http://brainmaps.org

(b) A single neuron drawn by Ramon y Ca-
jal [Caj02]

Figure 2.2: Neuronal structure

Figure 2.2(a) shows a very small portion of the cortex comprising several neurons

and connections. There are about 100 billion (1011) neurons in total in the brain.

They are connected with each other according to rules which we still do not yet

fully understand. Each individual neuron is physically much like other cells in

our body. However, it has its own unique character, which is essential to the

functioning of the nervous system. More specifically, a neuron cell is different in

that it has interaction with other neurons by receiving or sending electrical pulses

(spikes).

A neuron comprises three parts: the dendrites, the soma (the cell body) and

the axon, as shown in Figure 2.2(b).

• The dendrites are short, branching fibres extending from the soma. They

collect input electrical pulses from pre-synaptic neurons via synapses and

transmit them to the soma. The dendritic branching of a neuron is change-

able in the development of the nervous system, either growing or retracting,

which we call “plasticity”. The dendrites are the input devices of a neuron.

• The soma, containing the nucleus and other common cell tissues, is a key

component of a neuron, whose size ranges from 0.005 mm to 0.1 mm,

depending on its type. The soma is the place where the electrochemical

progress occurs and electrical pulses are generated. It is the a central pro-

cessing unit of a neuron.
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• The axon is the output device of a neuron, which sends electrical pulses

from the soma to other neurons. It is longer and thicker than the dendrites.

Synapses may appear partway along an axon as it extends but most of them

appear as terminals at the ends of axonal branches.

There are several different types of neuron, ranging both in size and shape.

Different types of cortical neurons can generate different types of firing patterns

which can be distinguished by several classes and sub-classes [CG90], [GBC99],

[NASV+03].

2.2.4 Synapses

(a) (b)

Figure 2.3: The connection and synapse.

The synapse is the junction between an axon terminal of the pre-synaptic

neuron and the dendrite of the post-synaptic neuron (shown in Figure 2.3(a)).

The human brain is estimated to contain more than 1015 synapses, and on average,

each neuron is connected to about 10,000 other neurons through synapses (The

actual number varies greatly, depending on the type of the neuron).

The detail of a synapse is shown in Figure 2.3(b). The electrochemical process

involved in its operation is complicated; when an electrical pulse arrives at the

axon terminal, neurotransmitters stored in synaptic vesicles are activated and in-

formation is transmitted across the synaptic cleft to receptors at the post-synaptic

dendrites. The receptors are then activated by the neurotransmitters, which re-

sults in the activation of certain ion channels. There are a number of different

neurotransmitters and neuroreceptors, resulting in different types of synapses.
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The two most common types of synapses are excitatory and inhibitory. The exci-

tatory synapses have neuroreceptors with sodium channels [Hil01]. An incoming

positive ion causes a depolarization on the postsynaptic membrane potential mak-

ing an action potential more likely. The inhibitory synapse has neuroreceptors

with chloride channels. The incoming negative ions cause a hyperpolarization

on the postsynaptic membrane potential making an action potential less likely.

The complicated electrochemical processes can be studied quantitatively using

conductance-based equations.

Synapses are adaptive. The neural system learns using certain rules which

alter the strengths of connections, and by growing new or deleting existing con-

nections between neurons. Plasticity plays an important role in the development

of the neural system, and it is one of the key ways in which a biological system

differs from our engineered computing systems.

2.3 Mathematical neural modeling

2.3.1 Neuron electrophysiology

Neuronal activity is a result of ionic movement around the membrane of the cell

body. There are basically four types of ions involved: sodium (Na+), potassium

(K+), calcium (Ca2+), and chloride (Cl−). Their concentrations are different

inside and outside of a cell, and their movements are driven by electrochemical

gradients, see Figure 2.4.

There are two types of electrochemical gradient: concentration and electric

potential gradients. These two forces drive ions in opposite directions, towards

either the inside or the outside of the cell. When the ionic concentration and the

electric potential gradient are equal and opposite, they counterbalance each other,

and as a result, an equilibrium point is achieved and the net cross-membrane

current is zero. The value of the equilibrium potential, which varies for the

different ionic species, is given by the Nernst equation [Hil01]. The equilibrium

potential is thus the electric potential caused by the concentration difference.

The cell membrane separates the interior of the cell from the extracellular

space, and ions can flow through protein channels in the membrane according

to their electrochemical gradients. The electric potential difference between the

inside and outside of the membrane is called the membrane potential. Assuming
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Figure 2.4: Diffusion of K+ ions down the concentration gradient though the
membrane.

the membrane potential is V , the equilibrium potential (Nernst potential) of K+

is EK and the net K+ current is IK (µA/cm2), we have:

IK = gK(V − EK) (2.1)

where the positive parameter gK is the K+ conductance. As indicated in Equation

2.1, K+ ions are driven by the difference between the membrane potential V and

the equilibrium potential EK ; the same equation also applies to other ions.

The electrical properties of membranes can be represented by the equivalent

circuits shown in Figure 2.5. According to Kirchhoff’s law, we have:

I = C
.

V +INa + ICa + IK + ICl (2.2)

or in the standard dynamical system form:

C
.

V = I − INa − ICa − IK − ICl (2.3)

where I is the total current; C is the membrane capacitance (C ≈ 1.0µF/cm2),

and
.

V = dV/dt is the derivative of the voltage variable V with respect to time

t. If there are no additional current sources such as synaptic current or current

injections via an electrode, then I = 0.
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Figure 2.5: Equivalent circuit representation of cell membrane by Izhikevich
[Izh07].

2.3.2 The Hodgkin-Huxley model

Hodgkin and Huxley performed a series of experiments on the giant axon of the

squid and succeeded in measuring ion currents and described their dynamics by

a set of nonlinear differential equations [HH52]. This is one of the most impor-

tant qualitative models in computational neuroscience. Three types of current

are taken into consideration [Izh07]: The K+ current with four activation gates

(resulting in the term n4), the Na+ current with three activation gates and one

inactivation gate (resulting in the term m3h), and the Cl− Ohmic leak current

(note that most neurons in the central nervous system have additional currents).

The complete Hodgkin-Huxley equations are:

C
.

V = I − gKn4(V − Ek)− gNam3h(V − ENa)− gL(V − EL)
.
n = αn(V )(1− n)− βn(V )n
.
m = αm(V )(1−m)− βm(V )m
.

h = αh(V )(1− h)− βh(V )h

(2.4)
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where
αn(V ) = 0.01 10−V

exp( 10−V
10

)−1

βn(V ) = 0.125 exp(−V
80

)

αm(V ) = 0.1 25−V
exp( 25−V

10
)−1

βm(V ) = 4 exp(−V
18

)

αh(V ) = 0.07 exp(−V
20

)

βh(V ) = 1
exp( 30−V

10
)+1

(2.5)

The three variables n, m, and h are activation gates (or gating variables) for

K+ , Na+, and Cl−, respectively [GK02], [Izh07]. The gK , gNa, and gL are the

conductance variables. The membrane capacitance is C = 1.0µF/cm2 and the

applied current is I = 0µA/cm2. The parameters that Hodgkin and Huxley

used were based on a voltage scale that was shifted by approximately 65 mV ,

making the resting potential zero for convenience. The shifted Nernst equilibrium

potentials are:

Ek = 12mv, ENa = 120mv, EL = 10.6mv (2.6)

and the typical values of the conductances are:

gK = 36mS/cm2, gNa = 120mS/cm2, gL = 0.3mS/cm2 (2.7)

Now we look into the dynamics the Hodgkin-Huxley model to see how an

activation potential (spike) is generated. When the membrane potential V equals

its rest value Vrest (0mV in the Hodgkin-Huxley model and about -65mV in

reality). All types of currents balance each other and the rest state is stable.

Dynamics

When a small pulse of current I is applied as shown in Figure 2.6(b), the mem-

brane potential V rises. This causes the variable m to be increased, hence increas-

ing the conductance of the sodium (Na+) channels. The influx of positive sodium

currents to the cell body then pushes the membrane potential even higher. The

effect of the input current I is thus amplified significantly, causing rapid increase

of V . If the membrane potential is not big enough to generate a spike, only a pos-

itive perturbation of the membrane potential (a small depolarization) is produced

as shown in Figure 2.6(a). This small depolarization is immediately pulled back
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Figure 2.6: Action potential generation in the Hodgkin-Huxley model [Izh07].

to the resting value by a small net current. If the amplitude of input current I is

much larger, a spike is generated. The sodium conductance is shut off due to the

effect of h, when the membrane potential is high. The outflow of potassium (K+)

currents then pulls down the membrane potential V . In this case, the ongoing

outflow of K+ currents causes V to go below its rest value Vreset, which is called

the after-hyperpolarization progress. This is followed by an absolute refractory

period, which prevents the system from producing another spike, because the Na+

currents are still depressed and take time to recover. After a long relative refrac-

tory period, the membrane potential V goes back to its rest value and the system

reaches a new stable state. Generally speaking, the duration of a spike is about

1 ms and the amplitude is about 100 mv (based on a rest value of 0 mv). More

detailed analysis of the model dynamics can be found elsewhere in [GK02, Izh07].

2.3.3 The Integrate-and-fire model

The detailed high-dimensional Hodgkin-Huxley model is biological plausible, but

is complex to analyze and difficult to implement in hardware. As a result, sim-

plified models are desired. As a first step, the objective is to reduce the four-

dimensional Hodgkin-Huxley model to a two-dimensional model.

The key idea of the reduction is to eliminate two of the four variables in the



CHAPTER 2. NEURAL NETWORK MODELING 36

Hodgkin-Huxley model. This is based on two qualitative observations [GK02].

Firstly, in the Hodgkin-Huxley model, the time scale of the dynamics of the

activation gate m is much faster than others variables n, h, and V . As a result,

m can be treated as an instantaneous variable and can therefore be replaced by its

steady-state value m0; this is called a quasi steady-state approximation. Secondly,

the n and h in the Hodgkin-Huxley model can be replaced by a single effective

variable, since their time scales are roughly the same [GK02]. Based on these

assumptions, several two-dimensional models have been proposed, such as the

Morris-Lecar model and the FitzHugh-Nagumo model.

These models are conductance-based models, in which the variables and pa-

rameters have well-defined biological meanings, and can be measured experimen-

tally. However, the conductance-based models are still complex to analyze. The

simple phenomenal models, on the other hand, are not biological meaningful, but

address most key properties of neurons and are less computationally intensive.

The three key properties of a neuron that a phenomenological model usually

addresses are:

• The ability to generate spikes when the membrane potential crosses a well-

defined threshold.

• A reset value to initialize the membrane potential after firing.

• A certain refractory period to depress the neuron from generating another

spike immediately.

Phenomenal models, which capture these features, are easier to implement

and analyze, hence they are more popular in computational neuroscience. Among

them, the leaky integrate-and-fire (LIF) model [Ste67, Tuc88] as well as its gener-

alized versions (such as the nonlinear integrate-and fire model) are probably the

best know spiking neuronal models. A schematic diagram of the LIF model is

shown in Figure 2.7. It is an integrate-and-fire model with a “leak” term added

to the membrane potential to solve the memory problem. The basic circuit of

the LIF model is comprised of a capacitor C in parallel with a resistor R driven

by a current I. Based on the circuit, we have:

I =
V

R
+ C

dV

dt
(2.8)

If we introduce a time constant τm = RC of the “leaky integrator”, we get a
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Figure 2.7: The schematic diagram of the leaky integrate-and-fire model by Ger-
stner [GK02].

standard form of the LIF model:

τm
dV

dt
= −V +RI (2.9)

where V is the membrane potential and τm is the membrane time constant. In

this model, if the membrane potential V reaches the threshold value Vthresh, the

neuron fires and then V is reset to a certain value Vreset. In the general version

the LIF model also incorporates an absolute refractory period tabs. If the neuron

fired at time t, we stop the neuron dynamics for a period of tabs and start the

dynamics again at time t+ tabs with V = Vreset. The LIF model is simple enough

to implement and easy to analyze. However, it has a severe drawback - it is too

simple to reproduce the versatile firing patterns of real neurons [Izh04].

2.3.4 The Izhikevich model

Another important phenomenal model is the Izhikevich model [Izh03]. This uses

the bifurcation theory to reduce the high-dimensional conductance-based model

to a two dimensional system with a fast membrane potential variable v and a

slow membrane recovery variable u [Izh07]. The Izhikevich model is based on a
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pair of coupled differential equations:

.
v = 0.04v2 + 5v + 140− u+ I
.
u = a(bv − u)

if v ≥ 30mV, then v = c, u = u+ d
(2.10)

where
.
v = dv/dt, t is time in ms, I is the synaptic current (in mV), v represents

the membrane potential (in mV). u represents a membrane recovery variable (also

in mV), which reflects the negative effects on the membrane potential caused by

some factors such as the active of K+ and the inactive of Na+ ionic current. a, b,

c , and d are adjustable parameters:

• a is the time scale of the recovery variable u. Smaller values results in slower

recovery. A typical value is a = 0.02.

• b is the sensitivity of the recovery variable u to the membrane potential v.

Greater values couple v and u more strongly. A typical value is b = 0.2.

• c is the after-spike reset value of the membrane potential v. A typical value

is c = −65 mV.

• d is the after-spike offset of the recovery variable u. A typical value is d = 2.

It should be noted that the threshold value of this model is typically between -70

mV and -50 mV and is dynamic. In this model, when the membrane potential v

exceeds the threshold value, the neuron spikes with a 30 mV apex of membrane

potential v. The membrane potential v is limited to 30 mV. If the membrane

potential v goes above the limitation, it is firstly reset to 30 mV. Then the

membrane potential v and the recovery variable u are both reset according to

equation 2.10.

There are two important features that make this model ideal for the real-time

simulation of a large-scale network. Firstly, the Izhikevich model is computa-

tionally simple compared to the Hodgkin-Huxley model in that it takes only 13

floating-point operations to simulate 1 ms of modeling (with 1 ms resolution),

but can reproduce firing patterns of all known types of cortical neuron. In com-

parison, the Hodgkin-Huxley model takes 1200 floating-point operations for 1 ms

of modeling. Secondly, one of the most important advantages of the Izhikevich
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model over the leaky integrate-and-fire model is that the former is capable of

reproducing rich firing patterns. With the choice of neuron parameters a, b, c,

and d, the Izhikevich model can generate all six known classes of firing pattern

[Izh04].

2.3.5 Non-spiking neural models

The Hodgkin-Huxley, leaky integrate-and-fire and Izhikevich models are all spik-

ing neural models. The output of a spiking model is a series of spikes called a spike

train. The amplitude of spikes is not important. What really carries information

is the time when a spike is generated. In addition to spiking neuronal models,

there are also non-spiking neuronal models, which do not emphasize the impor-

tance of timing. These models adopt a continuous non-linear transfer function

(usually a sigmoid function) to convey the input activation value to a real-valued

output usually ranging from 0 to 1 depending on the strength of the activation

value. An example of a non-spiking neural model is the well-known multi-layer

perceptron network, but there are also simpler non-spiking neural models such

as the Mcculloch-Pitts neuron model [MP43] which gives only a binary output

of either 0 or 1 to indicate whether the neuron is active or inactive. Unlike the

pulse a spiking neural model generated when a neuron fires, the output from a

Mcculloch-Pitts neuron model is more like a step signal which switches between

“on” and “off” states.

The non-spiking neural models have been well-studied and widely used as a

traditional neural model. The outputs are seen as firing rates. It is widely agreed

that spiking neural models are more biologically realistic than non-spiking neural

models. Spiking models can easily be encoded as rate-based models, while non-

spiking models, obviously, are unable to capture timing features. As a result,

more research is now directed towards spiking models.

2.3.6 Neural coding

The question directly following the discussion of spiking and non-spiking neural

models, is how information is actually coded in the brain or nervous system?

This is fundamentally important for neural modeling, but as yet it is still not

fully answered.

The most explored coding scheme is rate coding which measures the mean
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firing rate of neurons based on a temporal average. It is not surprising that rate

coding has been used so frequently, as it is easy to measure experimentally. How-

ever, rate coding is criticized because it neglects the timing information contained

in the spike trains. Evidence for the importance of spike time is the very fast

human response (about 400 ms [TFM96]) from receiving visual inputs to giving

reaction outputs. The whole response procedure relies on several processing steps

in the nervous system. The time for this reaction is not enough for the statistical

results of firing rate, which rely on estimating temporal averages, to emerge. This

discovery indicates that rate coding is not the only way information is coded in

the brain.

Meanwhile, other research reveals that precise timing does play an important

role in neuronal activities [BRSW91, Sin95, Les95]. These works point towards

the so-called spike coding scheme which takes into consideration the precise timing

of spikes. Rank-order codes, for example, use the order of firing of the neurons for

information processing. They have been successfully used to recover images from

sensory inputs. Another example is the synchrony behavior – the phenomenon

that several neurons fire synchronously in timing-locked patterns. It has been

observed experimentally [Sin95, KS92, GKES89] and implemented on computa-

tional neural models [GFvH94, RS97, Izh06]. A group of synchronously firing

neurons with a specific temporal relationship may indicate a certain stimulus

condition. Another group with a different temporal relationship may indicate a

different stimulus condition. In this way, the input information can be encoded.

2.3.7 Connectivity patterns

The versatile functionalities of the brain are direct consequences of its circuitry,

and how neurons are connected is a crucial issue of neural modeling. The connec-

tivity issue is also closely related to the neural coding problem. Information is

coded and propagated within the neural network through structural links such as

synapses and fiber pathways. Accurate brain modeling requires not only the neu-

ronal dynamics but also a comprehensive map of structural connection patterns

in the human brain – the connectome [STK05].

Anatomically, the grey matter areas of the brain, comprising nerve cells, are

connected and communicate through action potentials by axons. Axons are

grouped into bundles and located in the white matter of the brain. The total

length of axons decays with age. Males have a total axon length of 176,000 km
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Figure 2.8: Dorsal and lateral views of the brain connectivity backbone from
[HCG+08].

at the age of 20 and 97,200 km at the age of 80 [MNTP03]. The structure of

the connections is very complicated: different regions of the cortex have different

types of connection pattern; each region has a number of afferent inputs from

other cortical regions and in return delivers a large number of output projections.

The large scale and complexity of the networks make it extremely difficult for

researchers to understand their organization.

Brain activity is measured using technologies such as functional magnetic reso-

nance imaging (fMRI) and diffusion spectrum imaging (DSI). Quite a lot of knowl-

edge about neural connectivity has been learned through experiments. Basically,

there are several elemental connectivity patterns which recur frequently through-

out the brain. These include convergent, divergent, reciprocal, local inhibitory,

and topographic connections [TM07]. The anatomical connectivity information

of several mammal species has been extensively explored [ST02]; this includes

cortico-cortical and cortico-thalamic systems of the rat [BY00], cat [SBY95], and

primate [FE91]. There is also much research exploring the topology of connec-

tivity patterns of the human brain (see Figure 2.8) [AB07, HCG+08]. Based

on connectivity patterns discovered in anatomy, several mathematical models of

connectivity have been built [STE00, You92, BDM04, GW89].

The knowledge of neural connectivity has already been used to create large-

scale neural network models. Izhikevich built large-scale neural network computer

models to simulate brain activities [IE08, IGE04]. Statistical data from anatom-

ical studies have been used to create neuronal connection models. Of course,

simplification is required to capture only the important features of the connec-

tivity patterns, due to the high complexity of the anatomical data.



CHAPTER 2. NEURAL NETWORK MODELING 42

2.3.8 Axonal delay

Axonal delays, also referred to as synaptic delays, result from the conduction time

required for a spike to travel from a pre-synaptic neuron to a post-synaptic neuron.

The neural system operates at a very low speed, on the scale of milliseconds. Each

axon conveys tens to hundreds of spikes per second.

Depending on the type and location of the neurons, the speed of spike prop-

agations along axons varies a lot. For mammalian motor neurons, the speed is

10-120 m/s, while for sensory neurons it is about 5-25 m/s. As a result, axon

conduction delays in the mammalian cortex vary from 0.1 ms to about 44 ms

[Swa88, Swa85, Izh06].

Axonal delays are involved in the spacio-temporal coding of the nervous sys-

tem. For instance, there is evidence to show that the afferent axon delays of

the owl’s cochlear nuclei account for inter-aural time differences in the nucleus

laminaris which is an important cue for sound localization [CK88]. Computa-

tional neuroscientists proved that the axonal delay plays an important role in

the synchronization of networks of coupled cortical oscillators [CEVB97] or in

polychronization behavior [Izh06].

2.3.9 Synaptic plasticity

One of the key features of biological neural networks is the ability to adjust itself

to adapt to different environments or to improve itself to solve more complex

tasks. This kind of behavior is usually referred to as learning.

Biological experiments have shown that both the efficacy of an individual

synapse and the number of synapses in the brain change over time. In computa-

tional neuroscience, plasticity is modelled mainly by adjusting synaptic weights.

In neuroscience, long-term plasticity found in slices of the hippocampus is an

important mechanism for learning and for memories that last for a long time. It

comprises long-term potentiation (LTP) and long-term depression (LTD). LTP is

a persistent enhancement of synaptic weight following the synchronous firings of

a pair of pre- and post-synaptic neurons [Mor03], while LTD is the long-lasting

weakening of a synaptic weight.

The procedure used to adjust weights is called a learning rule. There are a lot

of different learning rules. Correlation-based rules in the class of “Hebbian learn-

ing” are the most popular for spiking neural networks. Hebbian theory is a basic
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mechanism for synaptic plasticity, with the property that synaptic changes are

controlled by the timing correlations of pre- and postsynaptic activities. Hebbian

theory [Heb49] states that:

• “When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A’s efficiency, as one of the cells

firing B, is increased.”

Though this theory was proposed on purely theoretical grounds, its correctness

has been demonstrated regularly in experimental studies. Based on this rule, a

class of learning rules has been developed to address the two questions of this

rule: when are two neurons considered as being active together; and what is the

amount of modification?

Spike-timing-dependent plasticity (STDP) is such a rule which quantifies both

the timing and the amount of weight modification. STDP comprises two learning

windows - LTP and LTD. If the pre-synaptic spike precedes the post-synaptic

spike, the result is LTP. If the spike order is reversed, the result is LTD. The

detailed description of STDP and its implementation on SpiNNaker will be dis-

cussed later in Chapter 6.



Chapter 3

Parallel engineering solutions

3.1 Overview

Some of the basic concepts involved in both biological and computational neuro-

science have been reviewed in the last chapter. Here we move on to the area of

neural systems engineering and address the question of how the brain or large-

scale neural networks can be simulated very efficiently. The digital computer and

the brain are both information processing systems, but differ greatly from each

other in their flexibility, determinism, precision, fault-tolerance and so on. The

differences arise from the fundamental variance in their materials and structure,

which result in a great difference in behaviors. However, if all of the electro-

chemical processes and behaviors of the brain can be described mathematically,

there should be no reason why the digital computer cannot be used to reproduce

brain function. Based on the limited understanding of biological systems and

the mathematical models developed so far, we are able to create artificial neural

networks running on digital computers.

In this chapter, we firstly look into general issues related in neural engineer-

ing. A literature review of current implementations of neural networks is then

presented, and a critical assessment is attempted. Parallelism is emphasized as

a key feature of an implementation of a neural network. Some issues involved

in parallel implementations are addressed, especially the trade-off between com-

munication and processing, which requires finely-developed modeling algorithms.

At the end of this chapter, we present our solution for dedicated parallel neuro-

morphic hardware - SpiNNaker.

44
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3.2 Simulation clues: processing, communica-

tion and storage

From the modeling point of view, the structure of a biological system indicates

that modeling work should focus on the three aspects of computation: the pro-

cessing, communication and storage of information.

3.2.1 Processing

As the key components of biological neural systems, neurons exhibit a variety

of dynamical features. Mathematical neuronal dynamic models, such as that of

Hodgkin-Huxley model, have been built to mimic neuronal behavior. Processing

is required to simulate these models.

In this aspect, the continuous time involved in the mathematical model needs

to be replaced by discrete time steps. The biological neural process is quite slow

in electronic terms; computational neuroscientists usually use 1 ms resolution

for the modeling. In terms of precision, 32-bit floating-point arithmetic is most

commonly used on the Intel x86 architecture. Sometimes 16-bit fixed-point arith-

metic is also used because of hardware limitations or in order to achieve better

performance.

The processing work varies according to which dynamical model is chosen.

For spiking neural models, outputs are usually a series of timed pulses indicating

the firing of the neurons. For non-spiking neural models, outputs are real-valued

numbers without timing information. In the case of modeling large-scale systems,

the importance of efficiency usually outweighs the need for high precision. Some

simplified mathematical models have been built based on the phenomenal behav-

iors of neurons., and as long as they capture the key features of the neuronal

dynamics, precision may be a secondary issue. On the other hand, for precise

neural models, precision outweighs performance, and detailed conductance-based

mathematical models are usually preferred.

3.2.2 Communication

The great processing power of biological neural systems arises from their efficient

high connectivity and the resulting interactions between the neurons. Information

is passed through the propagation of spikes from one neuron to another, this
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communication process is another problem faced when modeling neural networks.

Although an individual electronic link is much faster than a neural fiber, the

population of links in the electronic system is much lower than in the biological

system, which results in a low overall connectivity. From the modeling point of

view, the problem of communication is usually more severe than the problem of

processing.

3.2.3 Storage

There is no single place in the biological system where information is stored. The

information is kept in different tissues or through their interconnections. Memory

is a result of the intrinsic properties of the ions and molecules in the nerve cell.

Storage behavior has to be abstracted during modeling, and information explicitly

maintained in our system includes:

• Constants and variables used for neuronal dynamical models.

• Synaptic weights representing the efficacy of connections.

• History records required for synaptic plasticity.

Of course, depending on the implementation, more information may be re-

quired to be stored in the memory, for instance the axonal delays. The largest

information requirement is for the synaptic weights, due to the extremely large

population of connections. In a sequential system with a single processing node,

the storage is simple in that all information has to go into the system memory.

In a parallel system with multiple processing nodes however, optimization is re-

quired to fit in all information and to avoid inefficiency if information is kept

remote from the processing nodes. A common solution in the parallel case is to

distribute the information so that each component is placed where it is locally

available to the appropriate processing node.

3.3 Current engineering solutions

Attempts have been made to build artificial neural systems since the last century,

and systems have been built based on platforms ranging from generic desktop

computers to neuromorphic hardware [FT07].
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3.3.1 Analogue systems

An analogue based approach to the design of a system is obviously possible,

because of the existence of electronic circuits with functionality very similar to

the neural circuit [Mea89]. An analogue circuit is much cheaper and demands

less power than a digital circuit in implementing some functions such as mul-

tiplication. For large-scale network simulation, the area of the circuit should

be small. Hence, the simple Integrate and Fire (IF) model is the most pop-

ular model to be implemented on analogue VLSI [Ind03, GHS09, SJ95, IF07].

Typically, an IF neuron costs about 20 transistors. To achieve better precision,

detailed conductance-based models such as the Hodgkin-Huxley model have also

been implemented in analogue circuits [SD99, MD91]. The implementation of

Izhikevich model in analogue circuits can be found in [WD07].

However, the drawback of an analogue system is that it lacks flexibility; as

a kind of hardwired system, it is difficult to adjust parameters or to change the

dynamical model. For the time being, a general-purpose neural platform is prefer-

able because of the experimental nature of the neural modeling. This requirement

for general-purpose flexibility makes the analogue implementation less interesting

at present. Furthermore, the inflexibility of an analogue implementation poten-

tially increases the cost of the system, because the implementation is dedicated

only to a specific model.

3.3.2 Software-based systems

Software neural simulators based on desktop computers or clusters are the most

conventional facilities used for neural network modeling. Standard software ap-

proaches include: NEURON [NEU], GENESIS [GEN], Brian [Bri, GB09, GB08],

and so on. With the low level support provided by software, users can easily build

a neural model and run it on most conventional computers, using a friendly user

interface providing access to information such as synaptic weights and neuron

states. Such systems are also flexible, allowing the user to choose from different

dynamical models and network configurations. They are usually written in the C

or Python programming languages and came with detailed documentation. Most

are extensible – users can define their own models and add to the tool library.

These software systems are ideal for rapidly developing new models, testing

new algorithms and teaching computational neuroscience. However, they are not
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built for the efficient simulation of large-scale neural networks, and more efficient

hardware solutions are sill sought.

3.3.3 Supercomputer-based systems

To overcome the performance limitations of software-based systems, some re-

searchers simulate neural models using supercomputers instead of conventional

desktop computers.

In this category, the Blue Brain project is probably the best-known. It was

founded in 2005 by Henry Markram at the Brain and Mind Institute at EPFL in

Switzerland [Mar06], with the aim of creating a digital 3D replica of the mam-

malian brain detailed down to the molecular level. This system is built on the

IBM Blue Gene/L architecture with a 4-rack machine; it comprises 4,096 nodes

or 8,192 700 MHz PowerPC CPUs in total, delivering a peak performance of 22.4

TFLOPS. A new MPI version of NEURON is used as the simulation software.

The Blue Brain project emphasizes biological accuracy, hence the detailed com-

partmental neuron model - the Hodgkin-Huxley model, is chosen for the neuron

dynamics.

The first goal of the Blue Brain project was to recreate the neocortical column

(NCC) at the cellular level. The NCC, a group of neurons with similar properties,

is known as a basic structure of the brain, repeated millions of times across the

neocortex. Each NCC has a cylindrical shape 0.5 mm wide and 2 mm high,

containing about 10,000 inter-connected neurons. In the Blue Brain project,

neuron types and their connection patterns are carefully tuned based on data

collected from neuron morphological research. This phase of the project is now

coming to a close, and it is now heading in two directions: achieving molecular

level resolution and increasing the scale of the system towards modeling the whole

brain.

In another example of the use of powerful computing resources [IE08], a model

of the mammalian thalamo-cortical system, with one million neurons and almost

half a billion synapses, is simulated on a Beowulf cluster with 60 processors each

running at 3GHz. One second of biological activity of the neural network takes

one minute to simulate.

Supercomputer-based systems are powerful and flexible, and hence are ideal

for large-scale neural network simulation, providing means for neuroscientists
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to verify hypotheses with complex biologically-realistic models. It also vali-

dates the testing in a large and sophisticated environment of neuronal dynamic

models and connectivity topologies that have been developed. The downside of

supercomputer-based systems is obvious: their huge size makes it impossible for

them to be applied in size-sensitive applications, for instance robots.

3.3.4 FPGA-based systems

The Field Programmable Gate Array (FPGA) is a platform used frequently for

customized hardware neural simulation [PGG+05, HK04, MMG+07]. The advan-

tages of using an FPGA-based system are that it is quick and easy to test the

hardware implementation of a prototype neural network circuit. The reconfigu-

ration ability that an FPGA provides is ideal for exploring neural modeling on

hardware. The disadvantage of FPGA implementation comes from its inefficiency,

in terms of both area and power consumption, when modeling synaptic connec-

tivity and in handling inter-neuron communications. As a result, an FPGA-based

system is suitable for building and testing prototype systems and investigating

the modeling algorithms, but it is not suitable for large-scale systems simulation.

The situation of an FPGA-based system is similar to that of a computer-based

software system discussed in Section 3.3.2. Both are easy to use and are recon-

figurable at the cost of efficiency.

3.3.5 Other solutions

Many other neuromorphic solutions have also been attempted. The Neurogrid

project in Stanford University aims to produce a brain-like computer, using hy-

brid analog-digital VLSI technology, to model one million neurons and six billion

synaptic connections [LMAB06, MASB07]. Neuronal activities (with two subcel-

lular compartments per neuron) are computed in analog chips, each consists of

a 2-D array of circuits. Communications are performed by a digital system, pro-

viding reconfigurability to softwire synaptic representations, using address-event

representation (AER).

Graphics Processing Units (GPUs), a programmable and high performance

computing platform, are also used for simulating large-scale spiking neural net-

works [NDK+09]. A single GPU (NVIDIA GTX-280 with 1GB of memory) sim-

ulation has been demonstrated to model 100K Izhikevich neurons with 50 million
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synaptic connections, firing at an average rate of 7 Hz.

Technical University of Berlin has attempted a series of hardware systems

in their long-lasting related projects: BIONIC, NESPINN, MASPINN, SP2INN

and SPINN Emulation Engine (SEE) [HGG+05, SMJK98, SS98] – a number of

different architecture and techniques have been investigated in modeling spiking

neural networks ranging from tens of to a million neurons.

3.4 Parallelism

As can be seen from Section 3.3, there are many existing engineering solutions,

each with advantages and disadvantages; each design is a trade-off between re-

configuration ability, size, energy and efficiency. Due to the experimental nature

of the neural modeling caused by the “unknowns” in neuroscience, there is no

“one-size-fits-all” solution in the short term. The choice of solution relies on the

requirements of the user.

Though the solutions differ a lot from each other, they have been developed

based on solving the three problems mentioned in Section 2.3.9: processing, com-

munication and storage. Efficiency is achieved by accelerating the processing,

using faster or more processing units. The performance of a single processing

unit is limited by present technology. Even using the fastest available processing

unit, the performance is still far from satisfying the demands of simulating the

brain - an extremely computationally intensive task.

The most popular hardware architecture in computational neuroscience is the

parallel machine. The IBM Blue Gene is a good example of a parallel system pro-

viding a massive computational power with extensibility. Parallelism is also the

nature of biological neural networks. Biological systems are slow in comparison

with modern computers which operate at several GHz. The massive popula-

tion of neurons, high density of connectivity, and high frequency of interactions

compensate however for their individual slowness.

The parallel implementation approach captures the nature of the biological

system. It seems more promising than a sequential system. Before making such

an assertion, however, a fundamental side-effect of the parallel realization must

be addressed - the communication overhead. Problems of communication and

workload allocation have accompanied parallel architecture since the concept of

parallelism was born in the last century.
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In the context of spiking neural network simulation, the situation is how-

ever somewhat simplified, here each individual neuron is a self-contained unit,

interacting with other neurons through simple pulse-like spikes. Hence neurons

can easily be decoupled and mapped onto different processing units, making the

workload allocation task much easier than distributing generic software appli-

cations. However, investigation of modeling approaches will still be required to

address issues such as storage, locality of communication, and optimization of

performance.

In the case of non-spiking neural networks – the multilayer perceptron (MLP)

network for example – efficient modeling algorithm is even more essential because

neurons communicate by real-valued numbers, making the communication pat-

tern more complex. In an MLP network, a well-defined modeling algorithm is

therefore required.

Communication in spiking neural network models has its own characteristic as

the information that needs to be transmitted is when and which neuron has fired.

Furthermore, information is conveyed in a high fan-out (one-to-many) pattern.

The same packet may be sent to several receivers through a multicast-like system.

Generic parallel platforms, such as Blue Gene or the Beowulf cluster, usually use

a standard communication mechanisms – for example the MPI – which is not

customized for the purpose of neural network simulation. The communication

system is so essential in terms of the performance of a neural network simulation

that it indeed warrants special design and construction.

3.5 SpiNNaker

3.5.1 Why SpiNNaker?

Based on the present status of neural modeling research, a dedicated general-

purpose system that is not only designed for a particular neural model, but is also

capable of delivering high efficiency, is much favored. Efficiency improvements

should be provided without sacrificing too much flexibility. A flexible and efficient

design should have a relatively long life-time and better reusability.
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Efficiency and flexibility

Universal programmable processing units are good candidates for providing cen-

tral processing power in such a system. By using these processing units, switching

between different neuronal dynamical models is just a programming issue. Com-

pared to hardwired implementations, parameter adjustments will also be much

easier. A bespoke high-performance communication system is also desirable to

handle information exchange between neurons. Such a communication system

should provide a powerful multicast capability to match the high fan-out com-

munication of neural networks. The communication system should not only be

efficient, but also be reconfigurable to accommodate variable neural connections.

A distributed memory system is also required for storing information. Each pro-

cessing unit needs to access memory blocks to get neuronal information and store

updated neuronal states. The number of neuron parameters and variables is

small compared to the amount of synapse information, but they require instant

and frequent accessing. The number of synaptic weights is larger, but they are

accessed at a comparatively low frequency. As a result, a combination of a small

fast memory and a large slow memory can be used for tackling different scenarios.

Scalability

Neural networks not only differ in their dynamical models and conductivities,

but also in terms of scale. Scalability is consequently another feature that has

to be taken into consider while designing a neural chip. An initial system can be

built and tested based on a very small machine. When the functionality of the

system has been proved, the machine then can be expanded to simulate larger-

scale systems. One way to achieve scalability is to build a system by connecting

replicated nodes where each node is self-contained and fully functional. In this

approach, an arbitrary scale of system can be built just by incorporating the

required population of nodes.

Power efficiency and fault-tolerance

Biological neural systems are known to be power-efficient and fault-tolerant.

These are properties that are pursued in computer science. Neuromorphic hard-

ware inspired by biological systems is expected to explore power-efficiency and

fault-tolerance of the biology, in addition to modeling the functionality.
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Power-efficiency can be achieved in both hardware and software. For instance,

in terms of the hardware, low-power processors can be chosen as the processing

units; in terms of software, an event-driven mechanism can be used so that a

processor is woken up by an event, otherwise, remaining in a low-power sleep

mode.

Fault-tolerance can be achieved by the use of redundancy and information

distribution. Redundancy guarantees that there are spare resources to take over

from faulty units. The nature of information distribution in neural networks

results in no individual neuron or connection being critical. Losing a small number

of neurons or connections does not affect the functionality of the system.

3.5.2 The SpiNNaker chip

SpiNNaker overview

The SpiNNaker project aims to create general-purpose neuromorphic hardware

to meet the challenges of processing, communication, storage, scalability, power-

efficiency (as estimated in [PFT+07], each SpiNNaker chip consume 250 mW to

500 mW in 130-nm process technology) and fault-tolerance. It is an EPSRC (En-

gineering and Physical Sciences Research Council) funded project involving the

Advanced Processor Technologies Group at the University of Manchester and the

School of Electronics and Computer Science at the University of Southampton, in

collaboration with industrial partners ARM Limited and Silistix Limited, using

state-of-the-art technologies and tools.

SpiNNaker is mostly focused on simulating large-scale spiking neural networks

in real-time. But it has been shown able to simulate traditional models such as

the multilayer perceptron.

A block diagram of the SpiNNaker chip is shown in Figure 3.1.

Processing subsystem

Each SpiNNaker chip will contain up to 20 (in the full chip) identical ARM968

processing subsystems (processors) each running at 200MHz (denoted as Proc0,

Proc1, ..., ProcN in the Figure 3.1). One of the processors on each chip will be

selected as the Monitor Processor and thereafter performs system management

tasks. Each of the other processors is called a Fascicle Processor and is responsible

for modeling a fascicle (group) of neurons with associated inputs and outputs.
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Figure 3.1: The SpiNNaker chip organization

The selection of the Monitor Processor is competitive, making sure a healthy

processor is always selected [Kha09].

The detailed organization of a processing subsystem is illustrated in Figure 3.2

where an ARM968 processor provides the basic processing power. Each processor

is able to simulate up to about 1,000 Izhikevich neurons in real-time. The pro-

cessor is directly connected to two memory blocks called the Instruction Tightly

Coupled Memory (ITCM) and the Data Tightly Coupled Memory (DTCM), re-

spectively. The TCMs are small but extremely fast (running at processor clock

speed), ideal for storing frequently accessed instructions or data. The ITCM

is 32kB starting from address 0x00000000 and is for storing instructions. The

DTCM is 64kB starting from address 0x00400000 and is for storing data, espe-

cially neural data such as neuron variables and parameters.

Other components connected to the ARM968 module through the local Ad-

vanced High performance Bus (AHB), includes a Communication Controller, a

Timer, a Vector Interrupt Controller, and a DMA Controller. The processor com-

municates with other processors and chips through the Communication Network

On-chip (Comms. NoC) via the Communication Controller which either sends to

or receives packets from the Comms. NoC.
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Figure 3.2: The ARM968 subsystem

Access to all other on-chip resources on the System NoC is via the DMA

Controller which is mainly used for reading (when a packet arrives) or writing

(when updating synaptic information during learning) neural synaptic informa-

tion stored in the external SDRAM. The DMA Controller can also be used in a

‘Bridge’ mode, enabling direct read and write access to components outside the

processing subsystem.

Router

There is one router on each chip used for routing input and output packets, en-

abling on- and off-chip communication. At the heart of the router is an associative

multicast router subsystem, which is able to handle the high fan-out multicast

neural event packets efficiently. There are 1024 programmable associative mul-

ticast (MC) routing entries on the full chip. Each entry contains a key value, a

mask and an output vector. The routing rule is detailed in equation 3.1.

Output =

output vector key == routing key ANDmask

default routing key 6= routing key ANDmask.
(3.1)
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When a packet arrives, the routing key encoded in the packet is compared

with the key in each entry of the MC table, after being ANDed with the mask. If

it matches, the packet is sent to the ports contained in the output vector of this

entry, otherwise, the packet is sent across the router by default routing, normally

via the port opposite the input. The routing operation is performed using parallel

associative memory for matching efficiency.

In addition to the multicast mechanism, the router can also be used for routing

point-to-point packets using a look-up table, for nearest-neighbor routing using a

simple algorithmic process, or for emergency routing in the case when an output

link is blocked for some reason.

Comms. NoC

At both the input and output of the router, there is a Comms. NoC which carries

input and output neural event packets from/to different processors and the inter-

chip links. The Arbiter in the input Comms. NoC merges arriving packets into a

single serial stream, making sure that packets are presented at the router one by

one. In the output Comms. NoC, 6 links from the router send packets directly

off the chip . Other links go directly to the Comms. controllers on the same chip.

The Comms. NoC operation is based on address-event signaling with a self-

timed packet-switched fabric [FTB06], which decouples the different clock do-

mains of the processors, and hence makes scalability possible. In more detail,

inter-chip communication goes through 8-wire inter-chip links using a self-timed

2-of-7 non-return-to-zero (NRZ) code [BPF03]. At the input-end, the input pro-

tocol converters translate the off-chip 2-of-7 NRZ codes to the on-chip CHAIN

codes, and at the output-end, output protocol converters perform the inverse

translation.

System NoC

The System NoC is responsible for connecting processors to the off-chip SDRAM

as well as to a variety of on-chip components, such as the System RAM, the

System ROM, and the System Controller. The System NoC is generated by the

Silistix CHAINworks tool.
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SDRAM

Each SpiNNaker chip is associated with a 1GB off-chip SDRAM device via the

ARM PL340 SDRAM Controller, providing significant storage space for storing

neural synaptic connection information. Each synaptic entry is 4 bytes, including

a synaptic delay (the axon delay), a post-synaptic neuron id, and a real-valued

synaptic weight. Each neuron receives a number of inputs, hence the storage of the

synaptic connection information for each processor requires significant memory

space beyond the capacity of the DTCM. The synaptic information is therefore

stored in the off-chip SDRAM and retrieved by a DMA operation when a neural

event packet arrives.

3.5.3 The SpiNNaker system
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2. System architecture

SpiNNaker is designed to form (with its associated SDRAM chip) a node of a massively parallel
system. The system architecture is illustrated below:

2.1 Routing
The nodes are arranged in a hexagonal mesh with bidirectional links to 6 neighbours. The system
supports multicast packets (to carry neural event information, routed by the associative Multicast
Router), point-to-point packets (to carry system management and control information, routed
algorithmically) and nearest-neighbour packets (to support boot-time flood-fill and chip debug).

Emergency routing
In the event of a link failing or congesting, traffic that would normally use that link is redirected in
hardware around two adjacent links that form a triangle with the failed link. This “emergency
routing” is intended to be temporary, and the operating system will identify a more permanent
resolution of the problem. The local Monitor Processor is informed of all uses of emergency
routing.

Deadlock avoidance
The communications system has potential deadlock scenarios because of the possibility of circular
dependencies between links. The policy used here to prevent deadlocks occurring is:

• no Router can ever be prevented from issuing its output.
The mechanisms used to ensure this are the following:

• outputs have sufficient buffering and capacity detection so that the Router knows whether or not
an output has the capacity to accept a packet;
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Figure 3.3: The SpiNNaker system

A SpiNNaker system can be created by connecting a number of SpiNNaker

chips through a two dimensional toroidal triangular mesh. Each SpiNNaker chip

has 6 external links and thereby is able to connect to 6 neighbors as shown in

Figure 3.3(a). A three dimensional view of the SpiNNaker system is provided

in Figure 3.3(b) where a Host Computer is attached to the SpiNNaker system

via an Ethernet link. The host computer is used for a variety of management

and debugging purposes, for instance, sending the code image file and receiving

output information. The SpiNNaker system is scalable. An arbitrary number of

chips can be used to build a system.



Chapter 4

Spiking neural network on

SpiNNaker

4.1 Overview

In this chapter, the algorithm developed for modeling spiking neural networks

on SpiNNaker is described. The main focus is on how to model the Izhikevich

model on the ARM968 processor of SpiNNaker, using 16-bit fixed-point arith-

metic; how to model the neural representations using the Event-address mapping

(EAM); the design of the event-driven scheduler. Finally a single processor simu-

lation is run to verify the correctness of the functionality and evaluate the system

performance. The work has been published in [JFW08]. Other issues involved

in neural modeling on SpiNNaker, such as the neuron-processor allocation, the

setup of the routing tables, application downloading, and so on, will be described

in later chapters.

4.2 The choice of neuronal dynamical model

SpiNNaker has been developed to be a generic neural simulation platform. It

ought to support multiple neuronal dynamical models. The neuronal dynamical

models describe the neuron behavior in response to input stimuli and the pro-

cess of producing output spikes. The model itself is usually independent from

other parts of the neural network, for instance the connectivity, coding scheme

and learning. Since neurons are only simulated on processors, it decouples the

58
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implementation of neuronal dynamical model from the implementation of the net-

work. This allows us to switch easily between different neuronal models without

changing the modeling scheme.

For this system, the Izhikevich model is chosen as an example. As previously

introduced in section 2.3.4, the Izhikevich model has a good balance between

complexity and accuracy. It is able to reproduce a diversity of neural firing

patterns while not sacrificing too much performance. The Izhikevich model has

been shown to be suitable for modeling a realistic large-scale neural network

system [IE08]. The implementation of LIF model on SpiNNaker can be found in

[RGJF10].

4.3 Modeling the Izhikevich model

In a real-time simulation with 1 ms resolution, neuron states need to be updated

once every 1 ms, which involves modifying neuron variables according to the in-

put current (stimulus) I. The input current I is the summed amplitude of all

pre-synaptic injections and changes every 1 ms. The generation of input cur-

rent I will be explained in section 4.5. Neuron variables in the Izhikevich model

include the membrane potential variable v and the membrane recovery variable

u. The Izhikevich equations are the rule for updating the neuron variables, and

have been implemented in the Supercomputer [IE08], FPGA [RCF+05], VLSI

[CKWR09], and CUDA (Compute Unified Device Architecture) Graphics Pro-

cessors [NDK+09].

Here we present the approach to efficient implementation of the Izhikevich

equations on an ARM968 processor as shown in Figure 4.1. Floating-point num-

bers are used in the original Izhikevich equation. However, they are converted to

16-bit fixed-point numbers for two reasons:

1. The ARM968 processor does not provide hardware support for floating-

point operations.

2. For the sake of performance.

Not only 16-bit fixed-point arithmetic is used here, but through all the work

described in this thesis to achieve better performance and save storage space. In

this implementation, all neuron information, including neuron state, variables,

and the stimulus array, are kept in the DTCM for efficient accessing.
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Neuron data structure:

struct neuron

{

struct neuronState

{

signed short v; 

signed short u;

signed short a;

signed short b;

signed short c;

signed short d;

}nuroState; 

signed short   bin[16]

};

Neuron states

Neuron parameters

Stimulus

Izhikevich Model:

v’ = 0.04v2+5v+140+I−u ...(1)

u’ = a(bv−u) …………...(2)

If v >=30; v=c, u=u+d
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Figure 4.1: Neuron processing

4.3.1 Choice of scaling factors – generic optimization

A review of the original Izhikevich equation:

.
v = 0.04v2 + 5v + 140− u+ I
.
u = a(bv − u)

if v ≥ 30mV, then v = c, u = u+ d

(4.1)

To approximate the floating-point arithmetic using fixed-point arithmetic, scaling

factors must be applied. The choice of scaling factors is essential in converting

floating-point arithmetic to fixed-point arithmetic. A new dual-scaling factor

scheme is presented to reduce the precision lost during the conversion. This is a

generic optimization and can be used by other platforms.

To choose a proper scaling factor, the ranges of the variables and parameters

relevant to the conversion must firstly be investigated. We run the Matlab file

provided by Izhikevich in [Izh03], and did statistic analysis on the value range of

the membrane potential v. According to experimental results, v is in the range

of -80 to 380, where 380 is the value before reset (It is reset to 30 immediately

after it reaches about 380 and then reset to a pre-defined constant c). A 16-bit

half-word can represent a signed integer number in the range -32768 to 32768.

Hence we get

−32768 ≤ vp ≤ 32767 (−80 ≤ v ≤ 380) (4.2)

where, p is the scaling factor. According to equation 4.2, we have p ≤ 86.

In this case, only p as power of 2 is considered so that p can be implemented
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simply by shifting. Since a larger p leads to a better precision (see experimental

results below), p = 64 is chosen. If any p larger than 64 is selected, the membrane

potential variable v is in a danger of overflow during processing.

ARM968 is a 32-bit processor; this allows expansion of some operations from

16 to 32-bit during processing to gain better numerical precision without losing

performance, while keeping variables in the data structure in 16-bit format. In

this way, a larger p can be applied to produce better precision without increas-

ing computation time and storage space. Although the value of the membrane

potential variable v is always in the range -80 to 380 during processing, the final

value of v held in the data structure should be in the range -80 to 30. So we have

−32768 ≤ vp ≤ 32767 (−80 ≤ v ≤ 30) (4.3)

According to equation 4.3, p = 256 is the largest value we can use.

So far, only the variable which has the largest numerical value has been con-

sidered . Some parameters in equation 4.1 with very small floating-point values

also need to be considered, since they may cause a loss of precision if the value of

the scaling factor is too small. There are two parameters a, b, and one constant

0.04 that need to be examined in equation 4.1. a and b range roughly from 0.02 to

0.1 and from 0.2 to 0.25, respectively, when modeling different types of neurons.

The scaling factor p = 256 is probably just large enough for these values.

To improve performance, some changes to the presentation of equation 4.1 are

required. Parameters a and b are integrated into one parameter ab, in the range

0.004 to 0.025, which results in poor precision when the equations are converted

to fixed-point arithmetic using the scaling factor p = 256.

The solution here is to use two scaling factors, p1 and p2, with a small and

large value, respectively. The smaller scaling factor p1 is applied to parameters,

variables and constants with values greater than 0.5 and the larger scaling factor

p2 is applied to those with values less than 0.5. p2 = 65536 is selected because

it is both large and efficient enough to implement using multiply-accumulate

operations. Thus we get:

p1 = 256, p2 = 65536 (4.4)
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4.3.2 Equation transformation – ARM specific optimiza-

tion

This optimization is only specific to ARM processors. To increase the processing

speed, a few changes are made to the presentation of equation 4.1, based on two

principles:

• Pre-compute as much as possible.

• Reduce the number of operations as much as possible.

Continuous-time differential equations 4.1 can be implemented in discrete-time

by the following equations:

v = v + τ(0.04v2 + 5v + 140 + I − u)

u = u+ τa(bv − u)
(4.5)

where τ is the value of the time step used to control the numerical precision of the

discrete-time equation. We use τ = 1 in this implementation for 1 ms resolution.

In the ARMv5TE architecture, there is a signed multiply-accumulate instruction

SMLAWB which does the operation “32bit = 32bit x 16bit + 32bit”1 in one

instruction. In the instruction “SMLAWB”, “B” indicates use of the bottom half

of the 32-bit register (bits [15:0]). Using this instruction, any operation with the

form (ax · b)/x + c can be implemented in one CPU cycle in ARM968, when

x = 216 and b is a 16-bit value.

To use the “SMLAWB” instruction, equation 4.5 is transformed to the follow-

ing equations:

v = v(0.04v + 6) + 140 + I − u

u = −au+ u+ abv
(4.6)

If the scaling factors p1 and p2 are applied, the implementation of equation 4.6

becomes:

vp1 = {vp1[(0.04p2 · vp1)/p2 + 6p1]}/p1 + 140p1 + Ip1 − up1
up1 = [(−ap2) · up1]/p2 + up1 + [(abp2) · vp1]/p2

(4.7)

Meanwhile, a new data structure for the Izhikevich neurons is created:

1The SMLAWB instruction multiplies a 32-bit value by a 16-bit value and then adds another
32-bit value, the result is kept in a 32-bit register
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struct NeuronState

{

signed short Param_v; // vp1

signed short Param_u; // up1

signed short Param_a; // abp2

signed short Param_b; // -ap2

signed short Param_c; // cp1

signed short Param_d; // dp1

}NeuronStates;

In this data structure, scaling factors p1 and p2 have been applied to the variables

to convert them into fixed-point numbers. Some operations are pre-computed

such as a · b, and stored as a new variable. This re-defined the parameters of

Izhikevich neurons, for example, neuron parameters a and b are replaced by ab

and −a, respectively. Constants 6p1 and 140p1 in equation 4.7 are also pre-

computed. In ARM assembly code, when p2 = 216, one iteration of Izhikevich

equations 4.7 consists of the following steps:

1. A = (0.04p2 · vp1)/p2 + 6p1, one “SMLAWB” operation.

2. A = A << (16− log2 p1), one shift operation.

3. A = {A · vp1}/p1 + 140p1, one “SMLAW” operation.

4. A = A+ Ip1, one “ADD” operation.

5. vp1 = A− up1, one “SUB” operation.

6. A = [(−ap2) · up1]/p2 + up1, one “SMLATT” operation, which is a signed

multiply-accumulate operation “32bit = 16bit x 16bit + 32bit”, “T” indi-

cated use of the top half of the register (bits [31:16]).

7. A = A >> log2 p2, one shift operation.

8. up1 = A+ [(abp2) · vp1]/p2, one “SMLAWB” operation.

where A represents the partial result of a step. In step 1, vp1 is stored in the

bottom 16 bits of a register. When the “SMLAWB” instruction is obeyed, it

multiplies 0.04p2 (32 bits) with vp1 (16 bits) in the bottom 16 bits of a register,

and only the top 32 bits of the multiplication result are preserved. If p2 =
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216, the division operation /p2 can be done automatically as the bottom 16 bits

are discarded during the multiplication. The result is finally added with 6p1.

However, in step 3, p1 6= 216 , so a shift operation is required in step 2 to obtain

alignment. In step 6, −ap2 and −up1 are kept in the top 16 bits of two different

registers. The computational result of step 6 is in the most significant 16 bits; as

a result, a shift operation is required in step 7.

As a result, one iteration of Izhikevich equations takes 6 fixed-point mathe-

matical operations plus 2 shift operations, which is more efficient than the original

implementation which takes 13 floating-point operations [Izh04]. In a practical

implementation, the whole subroutine for Izhikevich equations computation can

be performed by as few as about 20 instructions if the neuron does not fire. If the

neuron fires, it takes about 10 more instructions (depends on the implementation)

to reset the value and send a spike event.

4.3.3 Precision – fixed-point v.s. floating-point arithmetic

Spike counting

Different choices of scaling factors p1 and p2 lead to different levels of precision in

comparing with the original floating-point implementation. Table 4.1 illustrates

a comparison of the number of spikes generated in a certain period of time by

different combinations of p1 and p2. Results generated from floating-point imple-

mentations of equation 4.5 with τ = 1 are also given in Table 4.1 as benchmarks.

The top sub-table in Table 4.1 comprises results from “tonic spiking”, while the

bottom sub-table comprises results from “tonic bursting”. As we can see, larger

scaling parameters lead to better precision. Results from the simulation with

p1 = 256, p2 = 65536, which we have chosen, are very close to the floating-point

implementation benchmarks.

The proposed approach meets the requirement to reproduce all firing patterns

of the original equation. Table 4.2 shows a comparison of the spike counts of four

chosen patterns generated in a certain period of time by the 16-bit fixed-point

arithmetic and the floating-point arithmetic. Other patterns (not illustrated in

the Table) can also be modeled by this implementation with good precision.

According to the results shown in Table 4.2, the numbers of spikes generated

by the fixed-point simulation are exactly the same as those generated by the

floating-point simulation in 1,000 ms.



CHAPTER 4. SPIKING NEURAL NETWORK ON SPINNAKER 65

Table 4.1: Tonic spiking and bursting spike counts

Tonic Spiking.
Simulated for 20000 ms, 1ms resolution

a = 0.02, b = 0.2c = −65, d = 6;
v(0) = −70, u(0) = 0.2v(0), I = 14 after 0 ms

Number of spikes (floating-point): 642

P2
Number of spikes, 16-bit fixed-point
P1 = 64 P1 = 256 P1 = 8192

256 449 437 482
2048 542 542 566
8192 596 620 611
65536 631 654 651

Tonic Bursting.
Simulated for 5000 ms, 1ms resolution

a = 0.02, b = 0.2c = −50, d = 2; threshold = 3;
v(0) = −70, u(0) = 0.2v(0), I = 15 after 22 ms

Number of spikes (floating-point): 502

P2
Number of spikes, 16-bit fixed-point
P1 = 64 P1 = 256 P1 = 8192

256 364 375 393
2048 424 443 454
8192 449 444 495
65536 462 501 502

The table shows a comparison of the number of spikes generated in a certain
period of time by different choices of p1 and p2 in fixed-point arithmetic sim-
ulation. Results from the floating-point arithmetic implementation are also
given as benchmarks. Results in the top sub-table are from a tonic spik-
ing pattern while results in the bottom sub-table are from a tonic bursting
pattern.
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Table 4.2: Different spiking pattern spike counts

Simulated for 1000 ms, 1ms resolution
P1 = 256, P2 = 65536

Spikes TS TB RS IIS
Fixed-Point 34 102 1 6

Floating-Point 34 102 1 6

This table shows a comparison of the number of spikes generated in a certain
period of time by the fixed-point arithmetic simulation with the number of
spikes generated by floating-point arithmetic simulation. Results from 4 dif-
ferent firing patterns are listed. TS stands for tonic spiking, TB stands for
tonic bursting, RS stands for rebound spiking and IIS stands for inhibition
induced spiking.

Input demands

In addition to the number of spikes, the level of precision is also evaluated by other

schemes. However, in some cases, the precision is not ideal. Table 4.3 shows the

input current required to reproduce the pattern of rebound spiking with different

choices of scaling factors. The result from the floating-point simulation is given

as the benchmark. If p1 = 256, p2 = 65536 is chosen, the rebound spike can only

be reproduced when the input current I = −50; in the floating-point arithmetic

simulation, the required input current I is -21. If p1 = 8192, p2 = 65536 or even

larger values are chosen, then the result is comparable to the result from the

floating-point simulation. However, this is not achievable in 16-bit fixed-point

arithmetic.

According to the results, although floating-point to fixed-point conversion

does have drawbacks in respect of precision, generally it is still able to reproduce

rich firing patterns.

Matlab simulation

The fixed-point arithmetic is also compared to the floating-point arithmetic by

running Matlab simulations with a random 1,000-neuron network. Neuron spike

timings from the floating-point (using the same Matlab code provided in [Izh03])

and fixed-point arithmetic Matlab simulation (using the code provided in [Izh03],

but converting floating-point to fixed-point arithmetic using dual-scaling factor

scheme) are shown in Figure 4.2(a) and Figure 4.2(c), respectively. The two re-

sults are similar, taking into consideration that the network is randomly (with
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Table 4.3: Input current required for generating rebound spikes

Rebound Spike. Simulated for 200 ms, 1ms resolution
a = 0.03, b = 0.25, c = −60, d = 4;

v(0) = −64, u(0) = 0.2v(0), I lasts for 5 ms
Floating-point: I = −21

P2
I required in 16-bit fixed-point

P1 = 64 P1 = 256 P1 = 8192 P1 = 65536
32768 -48 -50 -50 -50
65536 -49 -50 -23 -23

The input current I required to reproduce the rebound spiking with differ-
ent choices of scaling factors. The result from the floating-point arithmetic
simulation is given as the benchmark.

(a) Spike raster from floating-point arithmetic
simulation
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(b) Typical spiking activity of an excitatory
neuron (floating-point)

(c) Spike raster from fixed-point arithmetic
simulation
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(d) Typical spiking activity of an excitatory
neuron (fixed-point)

Figure 4.2: A comparison between floating-point and fixed-point arithmetic im-
plementation from the Matlab simulation.
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certain restrictions) generated each time when the simulation starts. The activi-

ties of an excitatory neuron in the two simulation are shown in Figure 4.2(b) and

Figure 4.2(d).

4.3.4 Processing speed

The code is developed using the RealView Development Suite (RVDS) which

provides an integrated development environment (IDE) for embedded system

applications running on the ARM family of processors [Ltdb]. RVDS consists of

a series of tools which enable users to write, build and debug the applications,

either on target hardware or on software simulators.

The code is run on a virtual environment based on the RealView ARMulator

Instruction Set Simulator (RVISS) supplied with RVDS. RVISS simulates the

instruction sets and architecture of ARM processors together with a memory

system and peripherals, useful for software development and for benchmarking

ARM architecture targeted software.

The performance of the 16-bit fixed-point arithmetic implementation, using

the dual-scaling factor scheme, is evaluated based on a virtual system with a 200

MHz ARM968 core, a 100 MHz AHB bus, a 32 KB ITCM, a 64 KB DTCM and

a 100 MHz SDRAM, in RVISS 1.4.

If neuron data structures are stored in the DTCM and the input current I

is reset to a constant number after the update, 1 ms simulation of processing of

equation 4.7 (i.e. updating the states of one neuron in one millisecond), takes 240

nanoseconds (ns). If I is reset to a random number (to mimic input noise), then

it takes 330 ns. When the data structures is stored in the SDRAM and input

current I is reset to a constant value, the processing takes 660 ns.

4.4 Modeling spikes and synapses

The SpiNNaker chip has efficient on-chip and inter-chip connections and a mul-

ticast mechanism for high-performance communication. Each fascicle processor

in the system models a bunch of neurons. Neurons communicate with each other

through connections. To map neural networks onto SpiNNaker, the key problem

that needs to be solved is to distribute processing workloads while keeping com-

munication overheads low. This is a very common issue in the parallel computing

domain.
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In this section, a event-address mapping (EAM) scheme is proposed as a

method for synaptic weight storage. The EAM scheme sets up a relationship

between the spike event and the address of synaptic weights in the memory. As

a result, the associated synaptic weights can easily be found from the incoming

spike event.

A similar scheme termed address-event representation has been used in [Mah92]

and [Siv91], where each pre-synaptic neuron in a system is given an unique ad-

dress, which will be broadcast along a bus to all post-synaptic neurons when the

neuron fires. A problem with the address-event representation is the potential of

causing a timing error, when broadcasting two events with closed timing through

the same bus, in which case either one event must be dropped or they must be

serialized [FT07].

The EAM scheme proposed for SpiNNaker uses the asynchronous arbitration

to provide scalability and to serialize the events with low timing error [Boa00].

A new multicast routing mechanism with internal lookup tables is developed for

the event-address communication. The EAM scheme also employs two memory

systems (DTCM and SDRAM) for efficient storing synaptic connections, and uses

DMA operations to transfer data. The EAM scheme is explained in detail below.

4.4.1 Propagation of spikes

There is a high density of one-to-many (high fan-out) transmissions of packets

due to the high connectivity of neural networks. This pattern of traffic leads to

inefficient communication on conventional parallel hardware.

The heart of the communication system of the SpiNNaker chip is the Mul-

ticast Router mechanism. Using this mechanism, one-to-many communication

with identical packets is efficient. In a neural network, each connection is asso-

ciated with a synaptic weight which indicates the strength of the effect that the

pre-synaptic neuron has on the post-synaptic neuron. In the EAM scheme we

proposed, synaptic weights are kept at the post-synaptic end, hence, no synaptic

weight information needs to be carried in a spike event. When a neuron fires, a

number of identical packets are sent to post-synaptic neurons, this can be han-

dled by the multicast mechanism efficiently. Thus the EAM scheme helps reduce

the communication workload.

Each spike is represented by a spike event packet which contains only the ID

information of the neuron that fired. The ID information, also called a routing key,
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Figure 4.3: The routing key
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Figure 4.4: Synaptic weight storage. Synaptic weights are organized in a hier-
archical structure. Each Bank comprises a number of Groups and each Group
again comprises a number of Blocks.

is a combination of an 8-bit x- and an 8-bit y-coordinates of the chip ID, a 4-bit

processor ID and 10-bit neuron ID (as shown in Figure 4.3). Other configurations

can also be used, since this is purely software-defined. The packet propagates

through a series of multicast routers according to the pre-loaded routing table in

each router, and finally arrives at the destination fascicles (processors). Detailed

information regarding the routing key and the routing algorithm of SpiNNaker

can be found elsewhere [KLP+08, RJG+10].

4.4.2 Event-address mapping scheme

The event-address mapping (EAM) scheme is designed to find the right Synaptic

Block in the SDRAM associated to the received routing key.
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Memory organization

The SDRAM used for synaptic weight storage has the hierarchical structure as

shown in Figure 4.4:

1. Synaptic Banks. The memory comprises a number of Banks, labeled “Wgt

for LocFasc” in Figure 4.4. A Bank is associated with one of the processors

on the chip, which is allocated a memory space in the SDRAM for storing

the synaptic weights of all connections to a post-synaptic fascicle processor.

2. Synaptic Groups. Each Bank of memory comprises a number of Groups,

labeled “Wgt for SrcFasc” in Figure 4.4. Each Group contains the synaptic

weights of all connections from neurons on a source fascicle (processor) to

neurons on this local fascicle processor.

3. Synaptic Blocks. Each Group comprises a number of Blocks, labeled “Wgt

for SrcNero” in Figure 4.4. Each Block contains the synaptic weights for

all connections from one pre-synaptic neuron (on the corresponding source

fascicle) to post-synaptic neurons on this fascicle. This is a one-to-many

connection scenario: one neuron on the source fascicle connects to many

neurons on the local fascicle.

Figure 4.5 shows an example of synaptic weight storage in the SDRAM. There

are two pre-synaptic processors (fascicles) and two post-synaptic processors (fas-

cicles). The two pre-synaptic processors can be on the same chip or on different

chips, while the two post-synaptic processors are on a same chip. Each processor

is modeling several neurons denoted by grey circles. The synaptic weights are

indexed from W1 to W8. The right part of the figure shows the synaptic weight

organization in the SDRAM. In this example, each Block has a fixed size of 2

(Each pre-synaptic neuron is connected to two post-synaptic neurons). Note that

in each Group, the size of a Block is fixed, if the number of connections is smaller

than the size of the Block, the Block will be padded with zeroes.

The lookup table

When a post-synaptic neuron receives a spike event packet, this indicates that

one of its pre-synaptic neurons has fired. The post-synaptic neuron must then

find the weight associated with this input; this involves a search in the off-chip

SDRAM of the post-synaptic processor. The EAM scheme is designed to locate
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Figure 4.5: An example of synaptic weight storage. Each circle denotes a neu-
ron. Synaptic weights are indexed by W1, W2, . . . , W8. Synaptic weights are
organized in a hierarchical structure.

the associated weights for the received inputs using a lookup table for indexing

Synaptic Blocks. There are four elements in each entry of the lookup table: a

source fascicle address, a MASK, an address pointer to the SDRAM, and a pointer

to the next entry:

struct SFascicle

{

int SFascAddr; //address to match

int SFascMask; //bits to ignore

int *SFascPtr; //Sdram address of fascicle start

struct SFascicle *NextSFasc; //go here if >

}

Entries in the lookup table occupy contiguous memory locations, as shown in

Figure 4.6(a), organized as a binary tree as shown in Figure 4.6(b).

Finding the synaptic Block

The routing key of the packet is initially combined with the MASK bits, which

are set to 0xfffffc00 to mask off the neuron bits (bit [9:0]) of the routing key. The

processor performs a binary tree search for a match between the fascicle ID in

the routing key and the source fascicle address in the lookup table: if the fascicle
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(b) The corresponding bi-
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Figure 4.6: The lookup table
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Figure 4.7: Finding the synaptic Block. The lookup table on the fascicle contains
a list of source fascicle IDs each of which points to a base address of memory in
the SDRAM. When a routing key arrives at the fascicle, the fascicle searches its
lookup table based on the fascicle ID of the routing key. If a match is found, the
base address to which the fascicle ID points (the Group address) will be fetched.
The neuron ID in the routing key is then added to the base address to produce
the synaptic Block starting address 0x100290. In this figure, the block size is
12 Words (48 bytes). The 12 words following the address 0x100290 are then
transferred to the DTCM by a DMA operation.

ID in the routing key is larger than the fascicle address in the entry, it branches

to the next entry pointed to by the “NextSFasc”. If it is smaller, it goes to the

next entry in the following memory location. If a match is found, the value of

“SFascPtr” will be read. This is the start address of the Synaptic Group in the

SDRAM associated with this input.

Figure 4.7 illustrates this scheme. An input packet arrives with a source

fascicle address “X” and a neuron ID “1” at the post-synaptic processor, indi-

cating that neuron “1” in source fascicle “X” has fired. The processor receives

the packet and interrogates the lookup table in the DTCM for an entry matching

the fascicle ID “X”, and the start address 0x100260 of the Synaptic Group is
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fetched. The Group start address is then increased by an offset address 0x30

(Hex(1*12*4)) to produce the Synaptic Block start address 0x100290. The block

size is fixed to a constant “BlkSiz”, 12 in this case. The BlkSize represents the

number of post-synaptic receptors per input, and the 12 words following address

0x100290 contain the Synaptic Block required. The SDRAM is slow compared

to the DTCM. So a DMA operation is used to transfer the Synaptic Block to a

buffer in the DTCM and prepare for the next operation – “updating the input

current”. Each 32-bit word of a Synaptic Block contains a Synaptic Word for

one synaptic connection, containing a 16-bit weight (bit[15:0]), an 11-bit post-

synaptic neuron ID (bit[26:11]), and a 4-bit synaptic (axonal) delay (bit[31:28]),

as shown in Figure 4.8.

Synaptic delay

The synaptic delay (axonal delay) is the latency between a pair of connections.

Biologically, a spike generated by a pre-synaptic neuron takes time measured

in milliseconds to arrive at a post-synaptic neuron. In an electronic system,

the communication delay is variable depending on the distance and the network

workloads, which is uncertain. Electronic delays, however, the ranges are in

nanoseconds or microseconds, and are much smaller than delays in the biological

system. Hence the electronic delay can be ignored, and the arrival time of a

packet can be taken as the firing time of a neuron.

As discussed in Section 2.3.8, however, delays play an important role in neural

modeling. Hence it is necessary to put delays back into the system, but using

another approach, to enforce an agreement between biological and electronic time.

The four most significant bits are used in a Synaptic Word to represent the delay

of the connection. These four bits allow us to simulate a delay up to 15 ms 2 with

1 ms resolution. The electronic packet arrival time must be increased by a delay

value to generate the real “biological” arrival time of a spike, before applying the

20 ms delay is not biologically realistic, and it cannot be guaranteed by our model. As a
result, the actual delay ranges from 1 to 15 ms
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Figure 4.9: The input array. A spike arrives with a delay of 2 ms, so the Synaptic
Weight is added to the position “DelayPtr + 2” in the array.

“update” process.

4.5 Updating the input current

Weights in the Synaptic Block transferred to the DTCM will be loaded into an

16 elements circular input array to implement the synaptic delay of 0 ms – 15

ms discussed in section 4.4.2. The 16 elements with time 0 ms to 15 ms (as

shown in Figure 4.9), each is a 16-bit half-word integer number, representing

the amplitude of all inputs applied to this neuron at a certain time. A pointer

denoted as “DelayPtr” points to the element at the current time (0 ms) in the

array. In the real-time simulation, the “DelayPtr” moves forward one element

per 1 ms with wraparound after 15 ms. The elements following the “DelayPtr”

represent a future time of 1 ms, 2 ms, ...., 15 ms in order.

During the updating of the input array, the 4-bit delay in the Synaptic Word

is fetched and used to determine to which element the weight will be updated

into. In Figure 4.9, for instance, the delay in the Synaptic Word is 2 ms, so the

16-bit weight included in the Synaptic Word needs to be added into element No.

2.

The weight updating is reconfigurable and is performed according to the type
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Sleep
mode

New input processing
--1st priority

FIQ

Updating the input 
array --2nd priority 

Updating neuron states 
--3rd priority

1ms Timer
3rd prio.

IRQ

Incoming Packet
1st prio.

Events INT Task ISR

DMA done
2nd prio.

IRQ

Figure 4.10: The scheduler for the event driven model. The processor normally
stays in sleep mode to save power. When an event occurs, the processor wakes
up and processes a certain task.

of synapse. In current system, a simple linear accumulation is used for weight

updating, the same synapse model as used in most current neural network models.

There are “BlkSiz” iterations of the weight updating to traverse all Synaptic

Words in the Synaptic Block.

Elements in the input array are used for updating neuron states as previously

discussed in section 4.3. In each 1 ms, the element pointed to by “DelayPtr” is

fetched and its value is assigned to the variable I in equation 4.1.

4.6 System scheduling

The three tasks involved in modeling neural networks on SpiNNaker have been

discussed. An event-driven model is proposed to schedule this multi-task system.

As shown in Figure 4.10, the processor is normally in sleep mode to minimize

power consumption, and it is woken up by one of the three event signals. Each

signal corresponds to a different task:

1. “Updating neuron states”. Neuron states are updated every 1 ms, with

associated input current “I”, according to the Izhikevich equations. This is

driven by a 1 ms Timer signal as discussed in section 4.3. This task is the
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least urgent and set to the third (lowest) priority.

2. “Updating the input array”. The input array is updated when the Synaptic

Block has been transferred by a DMA operation from SDRAM to DTCM.

It is driven by the DMA operation done signal as discussed in section 4.5.

This task is set to the second priority for a quick response to the DMA done

signal and to clear the DMA buffer as soon as possible for the next DMA

transfer.

3. “New input processing”. The synaptic weights are fetched by DMA when

a spike event packet arrives at the processor. This is driven by the packet

arriving signal as discussed in section 4.4. This task has the first (highest)

priority to make sure the packet is withdrawn from the communication

controller as soon as possible to avoid congestion. A Fast Interrupt Request
3 (FIQ) is used for this task to reduce the latency of interrupt response.

To achieve real-time performance, all tasks should complete within one mil-

lisecond, so the workloads need to be adjusted to fit this requirement. If a proces-

sor cannot meet the real-time requirement, the workload of this processor needs

to be reduced by reducing the number of either the neurons or the connections.

4.7 Simulation results on a single-processor sys-

tem

The behavior of one fascicle processor is simulated based on the proposed model

described in Section 4.3.4. As there is only one processor in the model, neurons

on the same fascicle are wired together, without off-chip connections. Spikes

propagate via a buffer instead of via the actual communication system. Neuron

parameters are set in accordance with those used in [Izh03] to generate compara-

ble results. The processor models 1,000 randomly connected neurons with about

10% connectivity.

Figure 4.11 shows firing patterns of an excitatory and an inhibitory neuron

during one second simulation. For each type of neuron, the three curves from top

to bottom are the membrane potential v, the membrane recovery variable u, and

3FIQ and IRQ are two different types of interrupt mechanism provided by the ARM archi-
tecture.
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the input current I. The simulation verifies the functional correctness of modeling

Izhikevich neuronal dynamics and neural representations on SpiNNaker.

4.7.1 Processing speed

The performance of the three tasks is evaluated:

1. “Updating neuron states”. As already shown in Section 4.3.4, this takes

240 ns to update the state of one neuron.

2. “Updating the input array”. This takes 280 ns in total to process an in-

coming packet and to start a DMA operation.

3. “New input processing”. This takes 110 ns to process one Synaptic Word

(4 bytes) and update the input array.

As a result, the processing time can be estimated by 240 ns/Neuron + 280 ns/In-

put + 110 ns/Connection. Where, in a certain period of time, Neuron is the

number of neurons which have to be updated, Input is the number of incoming

packets, Connection is the number of connections to be updated. According to

this result, the performance of the system analytically can be estimated. Assum-

ing:

• Neurons fires at F Hz.

• Each fascicle contains N neurons.

• Each fascicle receives inputs from Cnf neurons.

• Each input connects to Cnn neurons within that fascicle (so Cnn = BlkSize).

• T (ns) is the required processing time for 1 ms simulation

we get

1. N neurons need to be updated per millisecond.

2. FCnf/1000 inputs arrive per millisecond.

3. FCnfCnn/1000 connections need to be updated per millisecond.
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(a) Membrane potential v of an excitatory neuron (b) Membrane potential v of an inhibitory neuron

(c) Membrane recovery variable u of an excitatory
neuron

(d) Membrane recovery variable u of an inhibitory
neuron

(e) Input current I of an excitatory neuron (f) Input current I of an inhibitory neuron

Figure 4.11: Results from a single-processor simulation.
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For each fascicle, we get

T = 240N + 0.28FCnf + 0.11FCnfCnn (4.8)

According to Equation 4.8, the processing time T increases with N , F , Cnf , and

Cnn. Since each connection occupies 4 bytes, the SDRAM bandwidth requirement

is 4FCnfCnn Bytes/s for each processor and 80FCnfCnn for the whole chip. In a

typical case of Cnf = 1, 000, Cnn = 1, 000, and F = 10Hz the SDRAM bandwidth

requirement is 800 MB/s, which is less than 1GB/s SDRAM bandwidth provided.

In the single processor simulation, a 1000-neuron network with each neuron

connects to 100 others (around 10% connectivity) is configured. So Cnf = 1000,

and Cnn = 100. Neurons are allowed to fire at a maximum of 67 Hz. If the net-

work is configured to 1000 neurons with only 100 neurons pre-synaptic neurons,

each connects to 1,000 post-synaptic neurons (the same 10% overall connectivity).

Then Cnf = 100, and Cnn = 1000. Neurons are allowed to fire at a maximum of

about 69 Hz. Thus different connectivity patterns with the same overall connec-

tivity result in different performance. In a more severe case, if Cnf = 1000, and

Cnn = 1000 (a fully connected network), it only allows a firing rate of up to 6.9

Hz.

4.7.2 Data memory requirement

DTCM usage

The data structure of a neuron is:

struct neuron

{

struct neuronState

{

signed short param_v; //variable

signed short param_u; //variable

signed short param_a; //parameter

signed short param_b; //parameter

signed short param_c; //parameter

signed short param_d; //parameter

}nuroState;
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signed short bin[16]; //input current array

};

The requirement of the DTCM is show below:

1. Neuron data structures. Each neuron data structure occupies 44 bytes of

memory. As shown above, each structure includes two 16-bit variables, four

16-bit parameters, and an input array with 16 16-bit elements. N neurons

take 44N bytes of the DTCM in total. In a typical case of N = 1, 000, it

uses 44 KB memory.

2. Lookup table. Each entry in the lookup table takes 16 bytes of memory. The

total memory usage depends on the number of entries, which is determined

by the number of pre-synaptic fascicles (source facicles). Let the number of

source fascicles in the lookup table be e; this then requires 16e bytes.

3. DMA buffer. The size of DMA buffer is implementation dependent. Each

block of DMA needs to be 4*BlkSize bytes (4Cnn bytes). We use only two

DMA buffers in the implementation. This takes 8Cnn bytes in total. In a

typical case of Cnn = 1, 000, it uses 8 KB memory.

SDRAM requirement

There are CnfCnn connections from pre-synaptic neurons per fascicle. Each con-

nection takes 4 bytes. So 4CnfCnn bytes are required in total. Each SDRAM is

shared by 20 fascicles; therefore each SpiNNaker chip requires 80CnfCnn bytes if

all 20 processors are used as fascicle processors (in fact one processor will be used

as the Monitor Processor). In a typical case of Cnn = 1, 000 and Cnn = 1, 000, it

uses 80MB of SDRAM.

4.7.3 Communication analysis

From a single chip point of view, the packets go through the router include input

packets, output packets, and bypass packets:

Input packets Each packet is 32 bits, and there are 20 processors per chip.

The throughput for input packets is 640FCnf bit/s. For F = 10Hz and

Cnf = 1000, the throughput is 6.4 Mbit/s.
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Figure 4.12: The flow chart of the input processing.

Output packets The throughput for output packets is 640FN . For F = 10Hz

and N = 1000, the throughput is 6.4 Mbit/s.

Bypass packets The analysis of bypass packets throughput is complicated. It

relies on the connectivity of the whole neural system. So we don’t carry out

an analysis here.

4.8 Optimization

4.8.1 Input processing optimization

The scheduler can be optimized by splitting the three events into four, with an

additional software interrupt event. Since the communication controller needs to

be cleared as quickly as possible to avoid congestion, the “New input processing”



CHAPTER 4. SPIKING NEURAL NETWORK ON SPINNAKER 84

task is obviously too large to fit this requirement. The “New input processing”

task can be divided into two tasks:

1. The first task is still performed by the FIQ interrupt service routine (as

shown on the left side of Figure 4.12). This task is only responsible for re-

ceiving the packet from the communication controller and triggering (when

the DMA is free) the fourth event – the software interrupt event.

2. The second task is performed by the software interrupt service routine

(ISR), as shown on the right side of Figure 4.12. In the Software ISR,

a packet is retrieved from the communication buffer and is then processed

to start the DMA operation. The priority of the Software interrupt is set

lower than the DMA done interrupt. Although interrupt nesting is allowed,

the Software interrupt will not be responded to before the DMA done ISR

completes.

The flow chart in the middle of Figure 4.12 shows the process of the “Updating

the input array” task performed by the DMA done ISR. The DMA buffer with

the newly copied Synaptic Block is first located. The communication buffer is

then checked to decide whether to trigger another software interrupt (when the

comms. buffer is not empty) or to set the DMA flag free (when the comms. buffer

is empty). Finally, the Synaptic Block is updated to the input array. Two DMA

buffers are used in the system; each with a size of BlkSiz ∗ 4 bytes, adequate

to accommodate one Synaptic Block. The Synaptic Block is fetched from the

SDRAM to the two DMA buffers in turn.

4.8.2 An alternative scheduler

To accommodate the new input processing approach described above, an alter-

native scheduler is designed with two main changes, as shown in Figure 4.13:

1. The software interrupt event and its ISR are included in the new scheduler.

2. The Timer ISR is simplified to assign values to several global variables:

systemTimeStamp (indicating the number of millisecond that have passed)

is increased by 1; DelayPtr (referred in section 4.5) is increased by 1; new-

TimeFlag is set to indicate that the system is moving into a new millisecond.

The “updating neuron states” task is performed in the main loop instead
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Sleep

Get a packet
Put into buffer

Trigger SoftwareINT

FIQ

IRQ

Update input array

Updating neuron states
{
restart;
newTimeFlag=0;
for(id=0;id<total;id++)
{
updateState();
if(newTimeFlag==1)
lostRealTime()
goto restart;    

}
}

DMA done
--3rd prio.

1ms Timer
--2nd prio.

IRQ

Incoming Packet
--1st prio.

TaskISR

systemTimeStamp++
DelayPtr++

newTimeFlag=1

Event INT

IRQ

Search lookup table
Start DMA

Software INT
--4th prio.

Main Loop

Wakeup  by Event

newTimeFlag==1?

yes

No

Figure 4.13: An alternative scheduler.

of an ISR. If all neuron state updating has completed, the processor goes to

sleep. The sleep mode is interrupted if any event occurs. After executing

the corresponding ISR, the processor checks the newTimeFlag status. If the

newTimeFlag is set, which indicates a new Timer INT has been generated,

“updating neuron states” needs to be performed for the new millisecond.

Otherwise, the processor just goes back to sleep mode. In the “updating

neuron states” task, firstly, the newTimeFlag is reset. Then the neuron

states are updated in a loop, one neuron at a time. If newTimeFlag is

detected as set during the updating, the updating will be interrupted com-

pulsorily to skip the remaining neurons. The processor then branches to

the beginning of the task to start a new iteration.

Both the schedulers have been implemented and tested to shown that they are

able to produce exactly the same results in the real-time simulation.
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4.9 A discussion of real-time

SpiNNaker aims to simulate spiking neural networks in real-time with 1ms res-

olution. As a result, all the tasks must complete before the deadline – a new

millisecond Timer Interrupt. Our assumption is the system should not be fully

loaded to avoid losing real-time performance. This can be achieved by tuning the

number of neurons or connections simulated on each processor.

In the first scheduler proposed as shown in Figure 4.10, the Timer event is

set to the lowest priority, and the task “updating neuron states” is executed in

the Timer ISR. In this case, a new Timer event will not be responded to until

all the tasks are finished. The pro is that it ensures accuracy – the states of all

neurons will be updated, and all the inputs will be processed before moving on to

the next millisecond. The con is that it results in a poor real-time performance –

the response to the Timer event may be delayed. This is a kind of soft real-time

system 4.

But how can we know if a processor loses real-time performance? In this case,

the Timer Interrupt signal is cleared at the beginning of the ISR. By checking the

Timer Interrupt request bit just before exiting the ISR, it is possible to identify

whether the response to the Timer has been delayed – if the Timer Interrupt

request bit has been set, the response is delayed; otherwise it has not. The delayed

response to the Timer causes a disorder of the system timing, but it needs further

study to establish how this will affect the functionality of the neural network.

In the second scheduler we proposed as shown in Figure 4.13, a hard real-time
5 scheme is used. In this scheduler, the Timer INT is set to the second priority

(or even to the first priority); and the “updating neuron states” task is executed

in the main loop instead of the Timer ISR, to keep the Timer ISR slim. This

ensures that the Timer Interrupt request is responded to as soon as possible to

guarantee the correctness of system timing. But, if an Timer Interrupt comes

before the completion of all tasks, the processor is forced to move on to the new

millisecond with the remaining tasks discarded. This leads to poor precision.

The type of the neural network is used to decide whether to use a soft real-

time system or a hard real-time system. If the timing is more essential than the

4The completion of an operation after its deadline in a soft real-time system can be tolerated,
but causes decreased service quality

5The completion of an operation after its deadline in a hard real-time system is considered
useless, and may ultimately cause a critical failure of the complete system.
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accuracy of the network, hard real-time is preferred. Otherwise, a soft real-time

system offers a better precision.

The second scheduler provides better potential for improvement by using some

algorithms to deal with the un-handled tasks. For instance:

1. Instead of simply clearing the packets in the communication buffer, they

can be pushed into a history buffer associated with an old time stamp, and

continue to be processed during the new millisecond with deferred timing.

2. Instead of skipping un-updated neurons, they can be updated with a re-

duced time resolution of 2 ms (so only 1 update is performed every 2ms),

or with some simplified dynamics.



Chapter 5

Multi-processor simulation

5.1 Overview

In Chapter 4, the algorithm for modeling spiking neural networks on SpiNNaker

was described. A single-processor simulation with results was presented to verify

the system. In the single-processor simulation, the routing table and the lookup

tables were very simple and therefore were setup manually. The neuron data and

their synapses were generated randomly on-line. As a result, no external data file

is required to start the simulation.

In this chapter, the technique involved in running a multi-processor or multi-

chip simulation will be investigated. The question here is, for a given neural

network, how to convert the neuronal data and its connection net-list into data

sets, and to distribute them onto the SpiNNaker chips. The problem includes

a series of sub-issues, such as neuron-processor allocation, synapse distribution,

routing planning and routing table generation; these questions are investigated

in this chapter. Mapping software called InitLoad is developed to help solve

this problem more easily. The InitLoad software is not the final solution to

these issues however, since there are, no doubt, many other possible solutions.

But the development of this prototype software has lead to a better understand-

ing of the issues involved. The simulation results from the four-chip SpiNNaker

model, shown later in this chapter, match the results from fixed-point Matlab

simulation perfectly, which is a strong evidence to prove the correctness of both

approaches and implementations developed for spiking neural network modeling

on SpiNNaker. The system is further verified by running a practical neural net-

work application – Doughnut Hunter, on the real SpiNNaker Test Chip. The

88
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Option 0:
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（InitLoad）
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Neural network applications

Figure 5.1: Loading neural networks onto a SpiNNaker chip.

investigation and discoveries finally lead to a discussion of the general software

model for SpiNNaker at the end of this chapter. The work has been published in

[JGP+10].

5.2 Converting neural networks into SpiNNaker

format

A neural network is usually described by the neurons and their connections. This

information needs to be downloaded and distributed to the processors and chips

in SpiNNaker, before the simulation can start. As shown in Figure 5.1, processes

of the specification of the neural network is required into a format suitable for

loading into a SpiNNaker system, which can be achieved by mapping software

called InitLoad.
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[System]
xChips=2
yChips = 2
numProcPerChip = 3
numExiNuro = 46
numInhNuro = 18
nuroPerFasc =
nuroLastFasc =
exiResetI = 
inhResetI = 
endTime = 
sizeWgtBlk = 2

[System]
xChips=2
yChips = 2
numProcPerChip = 3
numExiNuro = 46
numInhNuro = 18
nuroPerFasc =
nuroLastFasc =
exiResetI = 
inhResetI= 
endTime = 
sizeWgtBlk = 2

[neuron]
exi_v = -65 
exi_a = 0.02 
exi_b = 0.2    
exi_c = -65       
exi_cr = 15.0   
……

predefspiNNaker.ini randspiNNaker.ini

Figure 5.2: The system description files for the random mode and the pre-defined
mode.

[neurons]
ID 0: -65, 0, 0.1, 0.2, -65, 0, 0
ID 1: -65, 0, 0.1, 0.2, -65, 0, 0
ID 2: -65, 0, 0.1, 0.2, -65, 0, 0
ID 3: -65, 0, 0.1, 0.2, -65, 0, 0
ID 4: -65, 0, 0.1, 0.2, -65, 0, 0
ID 5: -65, 0, 0.1, 0.2, -65, 0, 0
ID 6: -65, 0, 0.1, 0.2, -65, 0, 0

[connections]
ID 1:

: 2, 10, 2
: 4, 10, 3

ID 2:
: 1, 10, 2
: 4, 10, 3

ID 3:
: 1, 10, 2

ID 4:
: 6, -2, 2

ID 5:
: 3, -1, 2

ID 6:
: 5, -1, 2

Neurons.txt
Format:

Neuron ID: v, u, a, b, c, d, I 

Connections.txt
Format:
Pre-synaptic neuron ID:

: post-synaptic neuron ID, weight, delay

Figure 5.3: The neural network description files and their format.
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5.2.1 Neural network description files

Three files are used to describe a system: “SpiNNaker.ini”, “Neurons. txt”, and

“Connections.txt”. The SpiNNaker.ini file describes a SpiNNaker system, and the

basic information of the neural network. The random and pre-defined modes use

different SpiNNaker.ini files, as shown in Figure 5.2, but have the same System

part. In the System part, some basic system information is included as follows:

xChips The number of chips in the SpiNNaker system within x dimension.

yChips The number of chips within y dimension.

numProcPerChip The number of processors per chip.

numExiNuro The number of excitatory neurons in the neural network.

numInhNuro The number of inhibitory neurons.

nuroPerFasc Neurons allocated to each fascicle (processor).

nuroLastFasc Neurons allocated to the last fascicle (processor).

exiResetI The reset value of excitatory input current I after update.

inhResetI The reset value of inhibitory input current I after update.

endTime The simulation time in milliseconds.

sizeWgtBlk The size of the Synaptic Block.

The SpiNNaker.ini for the random mode has an additional part called Neuron.

This information is used to control the random generation of Izhikevich neurons.

The formats of Neurons.txt and Connections.txt are shown in Figure 5.3. The

parameters are set for the Izhikevich neurons.

The description file used here is simple. However, they can easily be extended

by using some standard format such as XML for compatibility. Additional infor-

mation can also be included, if necessary, to describe a more complicated system.

Different types of neuronal models, for example the LIF model, will need different

formats, because of different neuronal parameters.
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SpiNNaker.ini
Neurons. txt 
Connections.txt

Random 
Network

Pre-defined 
Network

InitNuroData()
{

SpiNNaker.ini-> struct SpinnNetwork  
Neurons. txt -> struct neuron
Connections.txt -> struct connection

}

CalculateNuroPerProcessor()

allocNuroToProc()
{
struct neuron -> DTCM files (dtcm_x_y_proc_n.dat)

}

AllocConnections()
{
struct connection -> SDRAM files (sdram_x_y.dat)
generate lookuptable (lktbl_x_y_proc_n.dat)

}

generateConfigFile()
{
struct SpinnNetwork -> conf (spiNNakerConf.dat)

}

generateRoutingTable()
{
MC routing table (spin_x_y_mcTableInput.txt)

}

Finish

Figure 5.4: The InitLoad flow chart

5.2.2 Mapping flow

InitLoad receives inputs from the neural network description, and generates a set

of data files according to the modeling scheme introduced in Chapter 4. These

files include a set of neuron data files, a set of synaptic weight files, a set of lookup

table files, and a set of routing table files.

Neuron data There is one neuron data file per processor, containing the vari-

ables and parameters of the neurons allocated to the specific processor.

These files are stored in the DTCM of the processor. Each file is named

as “dtcm x y proc n.dat”, where x denotes the x-coordinate of the chip, y

denotes the y-coordinate, and n denotes the processor ID.

Synaptic weights There is one synaptic weight file per chip, containing the

connection (synapse) information allocated to the specific chip. These files

are stored in the SDRAM of the chip. Each file is named as “sdram x y.dat”.

Lookup table There is one lookup table file per processor, containing the lookup

table used for the event-address mapping (EAM). These files are stored in

the DTCM. Each is named as “lktbl x y proc n.dat”.
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Routing table There is one routing table per chip, containing the routing in-

formation for multi-cast packets. These files are stored in the router of the

chip. Each is named as “spin x y mcTableInput.txt”.

Figure 5.4 shows the basic InitLoad flow chart. Two options for neural net-

works: a random and a pre-defined mode are available. In the random mode,

a random neural network will be generated for quick testing purposes. In the

pre-defined mode, a user defined neural network can be loaded for testing real

applications. Both have three files to describe the system which are loaded into

the structures by the InitNuroData() function. The neurons are then allocated to

the processors by the CalculateNuroPerProcessor() function which does a linear

neuron-processor mapping. According to the number of neurons and their IDs in

each processor, the software produces the output files.

5.2.3 Connection data structures

The data structures used to store Connections.txt are shown in Figure 5.5. There

are two data structures involved: Csize[PreID] and Conn[PreID][n]. Where the

PreID is the ID of the pre-synaptic neuron. Each element in the Csize array

denotes the number of post-synaptic neurons. Each element in the 2D array

Conn has the following structure:

struct connection

{

short postid;

signed short weight;

short delay;

};

where postid is the ID of the post-synaptic processor, weight is the Synaptic

Weight of the connection, and delay is the synaptic delay.

The proposed structure shown in Figure 5.5 is not efficient in terms of memory

usage. Differences in the number of post-synaptic neurons result in zero elements

in the structure. To solve this problem, an alternative compressed data structure

can be used, as shown in Figure 5.6. The compressed storage eliminates the zero

elements and only stores a connection when it actually exists. The Csize in the

compressed storage is used to denote the start of each pre-synaptic neuron in the

Conn array.
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PostID = 4
Weight = 10
Delay = 2

PostID = 5
Weight = 10
Delay = 2

Conn[PreID][n]Csize[PreID]

3

0

4

2

ID 0:
: 4, 10, 2
: 5, 10, 2

ID 1: 
: 0, 10, 2
: 2, 10, 2
: 3, 10, 2
: 6, 10, 2

ID 2:
: 1, 10, 2
: 3, 10, 2
: 4, 10, 2

0

PostID = 0
Weight = 10
Delay = 2

PostID = 2
Weight = 10
Delay = 2

PostID = 3
Weight = 10 
Delay = 2

PostID = 6
Weight = 10 
Delay = 2

PostID = 1
Weight = 10
Delay = 2

PostID = 3
Weight = 10
Delay = 2

PostID = 4
Weight = 10 
Delay = 2

0
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PostID = 4
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Figure 5.5: The data structure used to load connections.
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Figure 5.6: An alternative compressed data structure used to load connections.
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Figure 5.7: Chip indexing.

Chip IDs

The way chip IDs are allocated at present is shown in Figure 5.7. The chip at-

tached to the Host PC is denoted as (0,0). SpiNNaker chips have wrap-around

connections. As a result, it is always possible to take the host chip as the ori-

gin, and the rest of the chips sit in the first quadrant (I). Thus the rest of the

chips can be indexed accordingly using their (x, y) coordinates. A table of the

corresponding sequential ID is also shown at the right side of Figure 5.7.

Linear mapping

A linear mapping algorithm (more discussion about the neuron-processor map-

ping can be find in Section 5.6.1) is used that neurons are uniformly allocated to

processors in order:

SpiNN.nuroPerFasc = SpiNN.numNuro/(numfasc-1)

SpiNN.nuroLastFasc = SpiNN.numNuro%(numfasc-1)

The last processor keeps the remaining neurons. In Figure 5.8, the direction of the

connections are from x-coordinate (pre-synaptic) to y-coordinate (post-synaptic),

and each processor simulates n neurons using a linear mapping scheme (Proc 0:

0–n, Proc 1: n–2n, . . . , Proc 5: 5n–6n). As synaptic weights are stored in the



CHAPTER 5. MULTI-PROCESSOR SIMULATION 96

Processor 1

Processor 0

Processor 2

Processor 3

Processor 4

Processor 5

n 2n 3n 4n 5n 6n

n

2n

3n

4n

5n

6n

Pre-synaptic 
neurons

Post-synaptic 
neurons Synaptic 

weights

Figure 5.8: The partitions of the weight matrix in the linear mapping algorithm,
and their mappings onto the processors.

receiving (post-synaptic) end, the synaptic weight matrix is partitioned through

the y-coordinate. The partitions are mapped onto the processors in order with

the linear mapping scheme shown in Figure 5.8.

Load balance and synchronization problems

Because the clock domain of each chip is decoupled and each chip is expected to

run in real-time, the SpiNNaker system doesn’t have a synchronization problem

when modeling spiking neural networks. However, this requires a uniform distri-

bution of workloads to guarantee that even the heaviest loaded processor meets

the real-time requirement. Otherwise, either the correctness of the timing will be

destroyed or the precision will be reduced, as previously discussed in Section 4.9.

5.2.4 Synapse allocation

Synapses (connections) are kept in the SDRAM. They need to be distributed to

every chip according to the linear mapping, before simulation can start. The

AllocConnections() function in InitLoad is designed to handle this task. In the

AllocConnections() function, connections stored in the data structure Conn as

shown in Figure 5.5 are gone though and distributed to different locations.
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Loop1.x_chip < Total xchips

Loop1

Loop2. y_chip < Total ychips

Loop2

Loop4. xchip < Total xchips

Loop4

Generate one synaptic Bank

Loop5. ychip < Total ychips

Loop5

Loop6. proc < Processors per chip

Loop6

Loop7. nuro< Neurons per proc

Loop7

Generate one synaptic Group

Loop3. processor < Processors per chip

Loop3

Generate one SDRAM file for a chip

Generate one synaptic Block

Loop8. i < Csize[nuro] per proc

Loop8

Generate a synaptic Word

if the postsynaptic neuron 
(conn[nuro][Csize[nuro]].postID ) 
is in this processor, then put 
the connection into this block

Set an entry for lookup table

Figure 5.9: The flow of the AllocConnections() function.
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There are eight nested loops in total for this task, as shown in Figure 5.9. This

Figure is closely related to and can be better understood with reference Figure

4.5. In Loop1 and Loop2, the program generates an SDRAM file containing

synapses information for every chip. In Loop3, a Synaptic Bank containing the

input synapses received by this processor, is generated within each SDRAM file

for each processor on a chip. In Loop4, Loop5, and Loop6, these synapses are

checked and the pre-synaptic chips and processors are identified. Within each

Synaptic Bank, a Synaptic Group is created, containing all synapses transmitted

by the pre-synaptic processor. For each Synaptic Group, an entry is setup in

the lookup table at the same time. Then in Loop7, the pre-synaptic neurons

are identified. This creates a Synaptic Block for all synapses from the same pre-

synaptic neuron. Finally, in Loop8, a Synaptic Word is created for each of the

synapses.

5.2.5 Routing table generation

Routing tables are generated by the generateRoutingTable() function, according

to the neuron connections, as shown in Figure 5.10. The routing is planned based

on the order of the pre-synaptic neurons. For each pre-synaptic neuron, we get its

fan-out connections. All the post-synaptic neurons are checked and the fascicle

processors where these post-synaptic neurons are located will be identified. The

IDs and the total number of these post-synaptic processors, will then be passed

to the setupMcRoutingTbl() functions.

The setupMcRoutingTbl() function is responsible for generating routing tables

for all synapses from one pre-synaptic neuron. It first calculates the location of

the source fascicle where the pre-synaptic neuron is located, and stores it in the

Pre data structure. Both Pre and Post data structures have following form:

struct coordinate

{

int x; //xchip

int y; //ychip

int fasc; //fasc id

int nuro; //neuron id

};

Based on the location of the source fascicle, the “mckey” of an entry in the
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Loop1 preNuro < Total neurons

Loop1

Loop2 i < num

Loop2

plan routes for a fan-out connection

post = whichFasc(destFasc[i])
findMcRouting(pre, post)

preNuro
postNuro
num = number of destFasc

setupMcRoutingTbl(preNuro, destFasc[], num):

Work out the ID and the number of 
destFasc[] where postNuros located

compressMcRoutingTbl()

pre = whichFasc(preNuro)

produce mckey

writeMcRoutingTblRaw

Figure 5.10: The flow of the generateRoutingTable() function.
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routing table can be generated. The post-synaptic (destination) processors are

then traversed, and their locations will be found. The findMcRouting() function

will be used for planning the routing from the source fascicle to the destination

fascicle. The routing information will be written to the raw multi-cast routing

table.

When the raw routing tables have been generated, the compressMcRout-

ingTbl() function will be called to compress the routing tables.

Routing table compression

The raw routing table simply stores one route for each pre-synaptic neuron (one

mckey), making the routing table large. In practice, most packets from neurons

in the same pre-synaptic fascicle will be sent through the same routes. In this

case, the MASK of the entry can be set properly to compress the routing table

and reduce the number of entries. For example, in the following routing table:

mckey mask route

0b100 -1 64

0b101 -1 64

0b110 -1 64

0b111 -1 64

The four entries can be replaced by the following single entry:

mckey mask route

0b100 0xfffffffc 64

In the kernel of the compressMcRoutingTable() function is a third-party Logic

Minimization Software – Espresso. Espresso was developed to help design large

digital logic, particularly logic with Boolean functions that have more than 4

inputs or with multiple Boolean functions. It takes as input a two-level repre-

sentation of a two-valued (or multiple-valued) Boolean function, and produces a

minimal equivalent representation. The compressMcRoutingTable function uses

an external call to Espresso to fulfill the task of compressing the routing table.

Route planning

The findMcRouting() function is used to plan the routing. There are a vari-

ety of possible algorithms for route planning on SpiNNaker. The one used for
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Figure 5.11: Routing planning

route planning in this system is shown in Figure 5.11. Assuming that a packet

is transmitted by a neuron in chip (0,0), if the destination is in the first quad-

rant (I) or the third quadrant (III), the packet will firstly be sent in the diagonal

direction. When it reaches the chip with the same x-coordinate or y-coordinate

as the destination chip, it will then moves towards the destination following the

x-/y-coordinate vertically/horizontally. If the destination is in the second quad-

rant (II) or fourth quadrant (IV), the packet firstly moves horizontally following

the x-coordinate. When it reaches the chip with the same x-coordinate as the

destination chip, it will then moves vertically towards the destination following

the y-coordinate.

The route planning algorithm we used is simple and straightforward. It guar-

antees to find a very short path from one neuron to another. However, there

are many possible routes between each pair of neurons. As a result, this is def-

initely not the only algorithm. If a more advanced route planning algorithm is

developed, it can easily be integrated into the InitLoad software by replacing the

existing findMcRouting() function.
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Figure 5.12: SpiNNaker chip components in SoC Designer

5.3 The multi-chip SoC Designer platform

Since the physical SpiNNaker hardware is not available at the time of this re-

search, a virtual environment, SoC Designer, is used as the simulation platform.

SoC Designer, provided by the Carbon Design Systems company (formerly main-

tained by ARM Ltd.), is a complete solution for the development, execution, and

analysis of virtual system platforms. It offers an environment for easy modeling

and fast simulation of integrated systems-on-chip with multiple cores, peripher-

als and memories using C++ (based on the SystemC language). The cycle-based

scheduler and the transaction-based component interfaces enable high simula-

tion speed while retaining full accuracy [Ltda]. Compared to the previously used

RVISS model, the SoC Designer model is more accurate in terms of both the

architecture and timing. The SpiNNaker model on SoC Designer was developed

by M.M. Khan in the SpiNNaker group [KPJ+09], a four chip model is shown in

Figure 5.13. The components of a SpiNNaker chip in SoC Designer are shown in

Figure 5.12.
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Figure 5.13: A four chip model in SoC Designer

5.4 Simulation results

5.4.1 Initialization

There are two processors (the same number of processors as in the SpiNNaker test

chip), a Fascicle and a Monitor Processor, in each chip of the four-chip model. The

Fascicle and the Monitor Processor load the same code at startup, as shown in

Figure 5.14, each processor then performs a series of initialization processes. The

Fascicle Processor mainly loads its private data set, while the Monitor Processor

loads public data, such as synaptic weights and routing tables, which is shared

by all the Fascicle Processors (if there are more than one Fascicle Processors) on

the same chip.

The timer on the Fascicle Processor is started after all other initialization

processes (in both Fascicle and Monitor processors) complete, since the timer in-

terrupt triggers the neuron state update, which requires all the data to be loaded.

To avoid conflict, a handshake procedure is introduced. When the Fascicle Pro-

cessor finishes initialization, it sends a request to the Monitor Processor to check

whether the initialization process on the Monitor processor is finished. When
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Figure 5.14: The fascicle and monitor processors during initialization.

an acknowledgement from the Monitor Processor is received, the timer will be

started. The Monitor Processor functions is very simple in this test. Users are

able to develop more comprehensive applications for the Monitor Processor if

necessary.

5.4.2 Downloading and dumping

The application code and neural data need to be downloaded to SpiNNaker chips

to start the simulation. The semihosting functions provides by SoC designer allow

user to access files on the hard disk of the Host PC directly, making the code and

data downloading easy. To dump simulation results (spike raster, single neuron

activity, and so on) is is also easy during the simulation. The output data is

written to files on the Host PC and plotted in the Matlab.

5.4.3 A 60-neuron network test

Due to the limited speed of running the SoC Designer on a desktop computer,

the system is initially tested by a small scale neural networks with a total of 60

random Izhikevich neurons. The ratio of excitatory neurons to inhibitory neurons

is 4:1 – 48 excitatory neurons and 12 inhibitory neurons. Each excitatory neuron
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Figure 5.15: A four chip simulation running on the SoC Designer simulator

is randomly connected to 15 neurons, and each inhibitory neuron connects to 15

excitatory neurons, with a random delay of 0–15 ms. Among these neurons, 4

excitatory neurons and 1 inhibitory neuron are chosen as biased neurons, each

receives a constant input current with an amplitude of 20 mV. The neural network

data is converted by the InitLoad software with the “pre-defined network” option

and downloaded to SpiNNaker chips with 15 neurons per fascicle processor.

Spike raster

Figure 5.15 shows the neural network being simulated in the SoC Designer Sim-

ulator. Neuron states will be dumped to files on the hard disk of the host PC,

using semihosting functions. The simulation runs for 1,000 ms.

In Figure 5.16, spike raster results generated from three different simulations

are listed: Matlab simulation with floating-point arithmetic1 (Figure 5.16(a)),

Matlab simulation with fixed-point arithmetic (Figure5.16(b)), and SpiNNaker

simulation on SoC Designer (Figure 5.16(c)).

In Figure 5.16(c) neurons below the red line (at neuron ID 48) are excitatory

and ones above the red line are inhibitory. The red lines at the bottom indicate the

1The Matlab code used in the rest of the thesis, is largely based on the code provided in
[Izh06]
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(a) Spike raster of the 60-neuron simulation on Matlab using
floating-point arithmetic.
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(b) Spike raster of the 60-neuron simulation on Matlab using
fixed-point arithmetic.
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(c) Spike raster of the 60-neuron simulation on SpiNNaker.

Figure 5.16: Spike raster generated from 60-neuron network simulations within
1,000 ms.
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(a) States of neuron 0 (excitatory)
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(b) States of neuron 3 (biased excitatory)
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(c) States of neuron 50 (inhibitory)
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(d) States of neuron 54 (biased inhibitory)

Figure 5.17: Neuron states and input currents from SpiNNaker simulation

neuron firing rates at specific times. The biased neurons chosen are ID 3, 27, 36,

37 and 54. These neurons keep firing at all times and thereby trigger other neurons

to fire (burst). There are fewer inhibitory neurons than excitatory neurons, but

they are tuned to have higher firing rates. Since inhibitory neurons connect only

to excitatory neurons, their firings shut down the bursting periodically.

Each of the three Figures in 5.16 clearly shows five bursts within the simulation

time, corresponding to a rhythmic activity with a frequency of 5 Hz. There are

reasonable differences between Figure 5.16(a) and Figure 5.16(b), caused by the

differences between floating-point and fixed-point arithmetics. The spike timing

in Figure 5.16(b) and Figure 5.16(c) is exactly identical – a strong demonstration

of the functional correctness of the SpiNNaker model.

Single neuron activity

Figure 5.17 shows the membrane potential (red) and input current (blue) of

several neurons from the SpiNNaker simulation. Here sub-figure 5.17(a) shows a

normal excitatory neuron (ID 0) without biased input. It receives both excitatory

and inhibitory inputs. Sub-figure 5.17(b) shows a biased excitatory neuron (ID
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3) with a base input current of 20. It receives both excitatory and inhibitory

inputs. Neuron 3 fires much more frequently than neuron 0 because of the biased

input. Subfigure 5.17(c) shows a normal inhibitory neuron (ID 50) without biased

input, which receives only excitatory inputs. Subfigure 5.17(d) shows a biased

inhibitory neuron (ID 54) with a base input current of 20, which receives only

excitatory inputs. As a result, neuron 54 fires more frequently than neuron 50. It

is obvious that in this test inhibitory neurons fire more than excitatory neurons.

5.4.4 A 4000-neuron network test

Another test involves a simulation of a 4,000-neuron network (1,000 neurons per

fascicle) with an excitatory-inhibitory ratio at 4:1. Each neuron is randomly con-

nected to 26 other neurons. 72 excitatory and 18 inhibitory neurons are randomly

chosen as biased neurons, each receiving a constant input stimulus of 20 mV.

The simulation results are compared between the floating-point arithmetic Mat-

lab simulation (Figure 5.18(a)), fixed-point arithmetic Matlab simulation (Figure

5.18(b)), and 4-chip SoC Designer based SpiNNaker simulation (Figure 5.18(c)).

The spike timings in the floating-point and fixed-point arithmetic Matlab sim-

ulations are different, however, they show the same rhythm of 4Hz. The 4-chip

SpiNNaker simulation matches the fixed-point arithmetic Matlab simulation. Fig-

ure 5.19(a) shows the activity of an excitatory neuron (ID 0) and Figure 5.19(b)

shows the activity of an inhibitory neuron (ID 3200), produced in the SpiNNaker

simulation.

This test shows that the scale of the system can easily be increased when

necessary. Each processor in a SpiNNaker chip is capable of modeling 1,000

neurons, indicating that to model a human brain with 100 billion (1011) neurons,

it will require 5 million full SpiNNaker chips with 20 processors per chip and

consume 2.3 MW to 3.6 MW (based on power estimation provided in [PFT+07]).

5.5 A practical application

5.5.1 The Doughnut Hunter application

The Doughnut Hunter application was originally developed by Arash Ahmadi at

Southampton and was ported onto SpiNNaker for testing. The model requires two

application components: a server on the Host PC and a client on the SpiNNaker



CHAPTER 5. MULTI-PROCESSOR SIMULATION 109

(a) 4000-neuron floating-point Matlab simulation.

(b) 4000-neuron fixed-point arithmetic Matlab simulation.

(c) 4000-neuron SpiNNaker simulation.

Figure 5.18: Spike raster of 4000 neurons on SpiNNaker.
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(a) States of neuron 0 (excitatory)
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(b) States of neuron 3200 (inhibitory)

Figure 5.19: Single neuron activity of 4000-neuron simulation on SpiNNaker.
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Figure 5.20: The Doughnut Hunter model by Arash Ahmadi and Francesco
Galluppi.
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Figure 5.21: The platform for the Doughnut Hunter application.
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as shown in Figure 5.212:

1. The server runs a GUI application modeling the environment with a dough-

nut and a hunter. The doughnut appears at a random location on the screen,

and the hunter moves on the screen to chase the doughnut and eat it. The

server detects the location of the doughnut and the vision of the hunter at

a certain frequency. These signals will be converted and sent to the client

as input stimuli.

2. The client runs the neural network of the hunter. It receives inputs from

the server, and propagates them to the motor neurons via a simple neural

network (as shown in Figure 5.20). The motor signal will be sent back

to the server and used to control the hunter movement. The connection

between the server and client is via the Ethernet interface [Kha09].

Several colleagues who involved in this work were: Francesco Galluppi, Cameron

Patterson, Mukaram Khan, and Xin Jin. Francesco Galluppi created and tuned

the neural network model, Cameron Patterson and Mukaram Khan built the

Ethernet connection between the Host PC and the SpiNNaker chip, and Xin Jin

provided software support for SpiNNaker to run the model.

Originally, the LIF model was used as the neuronal dynamics of the Hunter’s

neural network and it was replaced by the Izhikevich model in this test. There

are 51 Fast Spiking Izhikevich Neurons in the network. Their connections are

shown in Figure 5.20. The details of the network are listed below:

1. Neurons are sorted into three layers: 33 in the visual layer, 12 in the brain

layer, and 6 in the motion layer.

2. The delay is set to 1 millisecond between each pair of neighboring layers.

3. The connection weights are well tuned without plasticity.

4. Neurons 34 and 35 trigger the search pattern.

5.5.2 Simulation results

The simulation runs on the SoC Designer model and Figure 5.22 shows the envi-

ronment displayed on the Host PC during the simulation. This shows a 3-D view

2Only one fascicle processor is used in this test
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Figure 5.22: The Doughnut Hunter GUI during simulation.

Figure 5.23: Neuron firing timing in the Doughnut Hunter simulation.
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Figure 5.24: The test chip diagram.

of the doughnut, the movement and the vision of the hunter. The neuron activi-

ties are shown in Figure 5.23 where the corresponding activity and vision of the

hunter are shown in yellow squares. Although the neural network used is small,

the successful simulation of the Doughnut Hunter application is a verification of

the SpiNNaker system.

5.5.3 The Doughnut Hunter on a physical SpiNNaker chip

The Doughnut Hunter model was also tested on the physical hardware – the

SpiNNaker Test Chip (as shown in Figure 5.24). The Test Chip was released

in December 2009. There are two processors on each chip. Figure 5.25 shows a

SpiNNaker Test Chip plugged in to the PCB. A debug board is attached to the

GPIO port of the PCB to provide the serial port connection to the Host PC.

The development environment for the Test Chip, including bootup process, pro-

gramme downloading, and so on, was created by Steve Temple in the SpiNNaker

group. The process to run the Test Chip is shown in Figure 5.26:

1. An alternative boot programme (Bootup2) is downloaded from the Host

PC to the serial ROM.
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Figure 5.25: A photo of the SpiNNaker Test Chip on the PCB.
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Figure 5.26: The bootup process of the Test Chip.
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2. The processor boots from the Boot ROM (Bootup1).

3. The Bootup1 code copies Bootup2 code from the serial ROM to the System

RAM.

4. The processor branches to the System RAM, and starts executing Bootup2

code.

5. The Bootup2 code enables the serial port, and allows the Host PC to down-

load the application code to the ITCM.

6. The Host PC downloads neural data files to the SDRAM.

7. The processor branches to the ITCM, and starts executing the application

code.

During the Doughnut Hunter test, the neural data files are downloaded to the

SDRAM, and the neural code previously developed for the SoC Designer model is

downloaded to the ITCM. When the neural code starts executing, the processor

reads data files from the SDRAM, and configures the routing table, the lookup

table, and DTCM accordingly. The communication between the client (the SpiN-

Naker chip) and the server (the Host PC) goes through the Ethernet connection.

The simulation runs successfully in real-time performance.

5.6 Discussion

5.6.1 Neuron-processor mapping

The allocation of neurons to processors is an essential problem which affects

the efficiency of both the communication and the synaptic weight storage. A

simple linear neuron-processor mapping scheme is used in this implementation, as

presented in Section 5.2.3. This problem, however, deserves further investigation.

In principle, locality issues have to be taken into consideration to allocate

relatively highly-connected nearby neurons onto the same or nearby processors

as much as possible. Figure 5.27 shows an example of an ideal neuron-processor

mapping. Neurons in neighboring processors have a high density of connection,

while the ones in remote processors have a low density of connections.

There are three aspects that need to be taken into consideration for the

neuron-processor mapping:
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Figure 5.27: An ideal neuron-processor mapping.

• Chip index. SpiNNaker chip IDs are purely software defined. The physical

distance information needs to be included in the index for a well-defined

mapping model. Each SpiNNaker chip contains up to 20 processors. The

index of processors in the same chip does not matter since it takes the same

time for them to communication to other chips.

• Neuron index. Neuron IDs are usually allocated randomly when a neural

network is built, ignoring their “distances”. Here the “distance” denotes the

biological distance – how far a pair of neurons are apart from each other.

A long axonal delay usually implies a long distance. For a well-defined

neuron-processor mapping model, the “connectivity” and “distance” need

to be considered when neurons are indexed.

• Building relations between the chip IDs and the neuron IDs. The principle

is that neurons nearby (at a short distance) or with high connectivity need

to be mapped on to the same or neighboring SpiNNaker chips.

The development of the neuron-processor mapping model for spiking neural net-

works relies on knowledge of a variety of spiking neural networks, and a well-

defined mathematic model of mapping.
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5.6.2 Code and data downloading

On a physical SpiNNaker machine, the downloading process will become a major

issue involved in the Boot-up Process [Kha09]. One difficulty is caused by the

limited bandwidth between the SpiNNaker system and the Host PC, as Chip (0,0)

is the only chip connected to the Host PC via Ethernet. Other chips will rely

on their neighboring chips to receive data. To address this problem, a flood-fill

mechanism is proposed where during the inter-chip flood-fill process, each chip

sends one 32-bit word at a time by Nearest Neighbor packets to its 6 neighboring

chips. The receiving chips then forward the data to their neighbors, so in this

way, the data is propagated to all the chips in the system.

The application code is identical for every chip and processor, and therefore

can be handled efficiently by the flood-fill mechanism. The neural data, on the

other hand, is different for each chip or processor. The size of the data also

increases when the system is scaled up. For a small system the flood-fill mecha-

nism is capable to download neural data produced by the InitLoad software. For

a large system, however, the huge amount of neural data results in an inefficient

process. An alternative on-line data generation scheme is therefore required to

send only statistical information of a neural network by the flood-fill mechanism.

Each processor generates the real neural data as well as routing tables on-line

according to the statistical information. This involves another potential research

topic requiring a number of related issues to be solved, including how to produce

the statistical information for a given neural network, how to modify routing

tables dynamically, how to generate the synaptic weights for the event-address

mapping scheme, and so on.

5.6.3 Simulation results dumping

It is probably not feasible to dump the state of every neuron from the human

brain. Usually, the state of a single neuron is not of direct interest, but the global

output (for example the human language or behaviors) of the brain is of concern.

If neuronal behaviors in a certain brain region are of interest during neuronal

study, they can be observed using techniques such as glass electrodes, MRI or

PET.

The SpiNNaker system is quite like the human brain in this respect. It is

difficult to observe the activity of all neurons in the system because of the limited
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Figure 5.28: The software architecture for SpiNNaker

bandwidth between the Host PC and the SpiNNaker connection and the huge

data flow. Users are still allowed to view the states of certain number of neurons

in a certain time span however. One possible way to do this is for a user to send

an observation request from the Host PC, which will be passed to the destination

chips via the Host Chip (0,0). When the request is received by the Monitor

Processor on the destination chip, it gathers the required information from local

Fascicle Processors, and transmits the information to the Host PC, again via the

Host Chip.

5.6.4 Software architecture for SpiNNaker

A good system requires not only high performance hardware but also an easy-

to-use software system. Target users of the SpiNNaker system may not have

sufficient time or skill to program such a complicated system. It will be more

efficient to provide a system which is ready to use, without requiring the neural

model to be changed.

Based on previous study, a software model is proposed as shown in Figure

5.28. the neural network model lies at the top-level where it is parsed by a generic



CHAPTER 5. MULTI-PROCESSOR SIMULATION 120

API, PyNN for instance, which is a simulator-independent language for the neural

network model. The generic API supports a variety of neural simulators such as

NEURON, Brain, PCSIM, NEST, and SpiNNaker. This allows a user to write

code for a model once, and run it on different models.

The Host PC provides mid-layer support to the generic API obtaining output

information from the generic API, and converting the information to the format

which can be loaded by the SpiNNaker system. The Host PC is also responsible

for providing debugging facilities and GUI support to help users monitor system

behavior. The SpiNNaker system lies at the bottom layer, shown in the blue

square. From the top down, the SpiNNaker system comprises a neural API layer,

a hardware driver layer, a bootup process, and hardware. The neural API layer

includes libraries used to maintain the neural network model on SpiNNaker, such

as updating neuron states, processing spike events, modeling synaptic plasticities

and so on. The neural API layer requires low level support from hardware drivers.

The bootup process is responsible for booting the system, checking the status of

components, downloading application codes and so on.

By using this or similar software architecture, the hardware details of the

SpiNNaker system can be hidden in a black box for end users, which makes it

easier for users to run their code on a SpiNNaker system and to observe the

results. Of course, there is much work required to fulfill this objective. The

work presented so far mainly concerns the mapping software development, and

the neural API implementation. Aspects of the hardware drivers and the bootup

process development were also involved. The work made up a minimum system

for testing and verifying the SpiNNaker system.



Chapter 6

Synaptic plasticity on SpiNNaker

6.1 Overview

Synaptic plasticity is one of the most important features of a neural network, and

many different plasticity mechanisms have been developed since the last century

to mimic the biological process of learning. Hebbian theory is one mechanism that

has been widely accepted and spike-timing-dependent plasticity (STDP) based

on Hebbian theory has received much attention in recent years.

In this chapter, the approach to developing STDP rule on SpiNNaker will be

demonstrated. The STDP rule modifies synaptic weights according to the differ-

ence between pre- and post-synaptic spike timing. Normally, STDP is triggered

whenever a pre-synaptic spike arrives, or a post-synaptic neuron fires. The dif-

ficulty in implementing this scheme on SpiNNaker’s event-driven model is that

when a post-synaptic neuron fires, relevant synaptic weights are still located in

the external memory. A Synaptic Block will show up in the local memory only

when a pre-synaptic spike arrives. This problem is solved by applying a novel

pre-synaptic sensitive scheme with an associated deferred event-driven model.

The pre-sensitive scheme only triggers the STDP when a pre-synaptic spike ar-

rives, and hence reduces the processing and the memory bandwidth requirements.

The methods shown in this chapter validate the practicality of universal on-chip

learning, and illustrate ways to translate theoretical learning rules into actual

implementations. The work has been published in [JRG+09] and [JRG+10].

121
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Figure 6.1: The STDP modification function. Parameter used: τ+ = τ− = 20ms,
A+ = 0.1, and A− = 0.12.

6.2 Spike-timing-dependent plasticity

The learning rule implemented on SpiNNaker is the well-known spike-timing-

dependent plasticity (STDP) [SMA00, ZTH+98, BP98, Izh06, SA01], where the

amount of weight modification is decided by the function shown below:

F (∆t) =

A+e
∆t
τ+ ∆t < 0,

−A−e
−∆t
τ− ∆t ≥ 0.

(6.1)

Where ∆t is the time difference between the pre- and post-synaptic spike

timing (∆t = Tpre − Tpost , being Tpre the pre-synaptic spike time stamp and

Tpost the post-synaptic spike time stamp), A+ and A− are the maximum synaptic

modifications, and τ+ and τ− are the time windows determining the range of spike

interval over which the STDP occurs. If the pre-synaptic spike arrives before the

post-synaptic neuron fires (i.e. ∆t < 0), it causes long-term potentiation (LTP)

and the synaptic weight is strengthened according to A+e
∆t
τ+ . If the pre-synaptic

spike arrives after the post-synaptic neuron fires (i.e. ∆t ≥ 0), it causes long-term

depression (LTD) and the synaptic weight is weakened according to A−e
−∆t
τ− . The

corresponding function curve is shown in Figure 6.1 with parameters τ+ = τ− =
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Figure 6.3: The pre-sensitive scheme. STDP is triggered only when a pre-synaptic
neurons fires (a spike arrives).

20ms, A+ = 0.1, and A− = 0.12. More about the choice of STDP parameters can

be found elsewhere [SMA00]. The value of A− is usually larger than the value

of A+, so that the depression is stronger than the potentiation to ensure that

the weights of uncorrelated pre- and post-synaptic connections go slowly to zero,

while the weights of strongly correlated connections are strengthened.

6.3 Methodology

6.3.1 The pre-post-sensitive scheme

In most desktop computer simulations, the implementation of STDP is quite

straightforward. Because all synaptic weights are locally accessible, the STDP

can be triggered whenever a spike is received or a neuron fires. In this approach,

calculating ∆t is simply a matter of comparing the history records of spike tim-

ings. This corresponds to examining the past spike history (at least within the

STDP sensitivity window), as shown in Figure 6.2 where pre-synaptic spikes are

shown in blue and post-synaptic spikes are shown in red. We call the STDP

triggered by the receiving spike as a pre-synaptic STDP, since it is caused by a

pre-synaptic spike; and the STDP triggered by a neuron firing hence as a post-

synaptic STDP, since it is caused by a post-synaptic spike. The pre-synaptic
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STDP causes LTD which depresses the connection, whereas the post-synaptic

STDP causes LTP which potentiates the connection. The scheme used by most

desktop computer simulations is termed a pre-post-sensitive scheme, since both

pre-synaptic and post-synaptic STDPs are involved.

Problems on SpiNNaker

As described previously, SpiNNaker uses a distributed memory system where each

chip is associated with one SDRAM shared by 20 processors, and each processor

has a fast internal DTCM. The Event Address Mapping (EAM) scheme stores

synaptic weights in the SDRAM, and are transmitted to the DTCM by a DMA

operation only when a spike arrives. This memory organization guarantees a

good balance between the memory space and accessing speed.

Two problems arises however if STDP is implemented using the conventional

pre-post-sensitive scheme:

1. The required synaptic weights are NOT in the DTCM when a local neuron

fires which disables post-synaptic STDP. It is inefficient to use a second

DMA operation to move synaptic weights from the SDRAM to the DTCM

when a neuron fires, as it will double the memory bandwidth requirement.

2. Since the synapse block is a neuron-associative memory array, it can only be

indexed either by the pre- or post-synaptic neuron. If synapses are stored

in pre-synaptic order, the pre-synaptic STDP will be very efficient while

the post-synaptic STDP will be inefficient, and vice versa - because one or

the other lookup would require a scattered traverse of discontiguous areas

of the synaptic block.

As a result, an alternative scheme is required for STDP implementation on SpiN-

Naker.

6.3.2 The pre-sensitive scheme

We propose a new scheme for STDP implementation on SpiNNaker – a the pre-

sensitive scheme as shown in Figure 6.3. The pre-sensitive scheme triggers both

pre-synaptic STDP (LTD, left headed arrow) and post-synaptic STDP (LTP,

right headed arrow), when a pre-synaptic spike arrives. This ensures the synaptic

weights are always in the internal DTCM when STDP is triggered, and makes
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accessing individual synapses possible by efficient iteration through the array

elements when the synapse block is in pre-synaptic order.

The difficulties

The implementation of the pre-sensitive scheme is not, however, as easy as the

pre-post-sensitive scheme; two difficulties are involved:

1. This scheme requires the examination of not only the past spike history

records, but also of future records. Naturally, future spike timing informa-

tion is not available at the time the pre-synaptic spike arrives since it has

not yet happened.

2. SpiNNaker supports a range of synaptic delays from 0 ms to 15 ms for

each connection [JFW08] to compensate for the time differences between

electronic and neural timings. The spike arrives at the electronic time rather

than the neural time, while the effect of the input is deferred until its neural

timing due to the delay. The STDP should be started at the neural time.

6.3.3 The deferred event-driven model

Both of the above difficulties can be overcome by deferring the STDP operation

by introducing another model termed deferred event-driven (DED) model. In the

DED model, no STDP is triggered immediately on receiving a pre-synaptic spike.

Instead, the spike timing is recorded as a time stamp and STDP is triggered after

waiting a certain amount of time (the current time plus the maximum delay and

the time window). The DED model ensures that information on future spike

timings is obtained.

Timing records

STDP requires information on both pre-synaptic and post-synaptic spike timings.

A pre-synaptic time stamp at 2 ms resolution 1 is kept in the SDRAM along with

each synapse block as shown in Figure 6.4 (the global ID of the pre-synaptic neu-

ron is added in front of the time stamp for debugging purposes), and is updated

when pre-synaptic spikes arrive. The time stamp comprises two parts, a coarse

1The resolution is a tradeoff between the precision and performance. 2 ms is less accurate
than 1 ms, but it is much more efficient.
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and a fine time. The coarse time is a 32-bit digital value representing the last

time the neuron fired. The fine time is a bit-mapped field of 24 bits (bit [31:8])

representing spike history in the last 48 ms. The coarse time always points to the

least significant bit of the fine time (bit 8). As a result, the least significant bit

(bit 8) of the fine time is always set.

Figure 6.5 shows how time history is represented by the time stamps. Assum-

ing the coarse time is a ms, bit 8 in the fine time represents the last spike arriving

at a ms. Each higher bit represents a spike arrival time which is 2 ms earlier. In

Figure 6.5 for instance, it is able to calculate that the pre-synaptic spikes arrive

at a, (a− 4) and (a− 44) ms respectively.

Post-synaptic time stamps reside in local DTCM (Figure 6.6) and have a

similar format to pre-synaptic time stamps except that they are 64 bits long (bit

[63:0], representing 128ms), allowing longer history records.

Updating timing records

A pre-synaptic time stamp is updated when a packet is received. During the

update, firstly, the coarse time is subtracted from the new time to produce a

time difference tdif , as shown in Figure 6.7. The time difference is divided by the

time resolution, to get the number of bits to be shifted (2ms in this case, so the

shift is by tdif/2 bits). Then the fine bit is shifted left by tdif/2 bits. If any “1” is

shifted out of the most significant bit, STDP will be triggered. Bit 32 represents

the pre-synaptic spike time which triggers STDP.

The updating of the post-synaptic time stamp is similar to that for the pre-

synaptic, except:

1. The post-synaptic time stamp is updated when a neuron fires.

2. The update of the post-synaptic time stamp will NOT trigger STDP.

6.3.4 The STDP process

If STDP is triggered by a “1” going to bit 32 in the pre-synaptic fine time, its

post-synaptic connections in the Synaptic Block are firstly traversed word by

word. For each Synaptic Word (one connection), the pre-synaptic spike time (the

time of bit 32) is added to the synaptic delay to convert the electronic timing to

the neural timing T ; the processor then calculates the LTD [T − τ−, T ] and the
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Figure 6.8: STDP implementation flow chart.

LTP [T, T + τ+] windows. If any bit in the post-synaptic time stamp is set within

the LTD or LTP window, the synaptic weight is either weakened or strengthened

according to the STDP rule.

The post-synaptic time stamp can be retrieved from the DTCM as determined

by the neuron ID in the Synaptic Word. The processor then scans the post-

synaptic time stamp looking for any “1” located within the learning window, and

updates the weight accordingly.

6.3.5 Implementation

The flow chart of the STDP implementation is shown in Figure 6.8 which com-

prises three nested loops in the programme to handle a new spike and to do

STDP. Each of the three loops may run through several iterations:
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• Loop1: Update the pre-synaptic time stamp. This loops tdif/2 times. If

there are n “1”s shifted to bit 32, the STDP will be triggered n times.

• Loop2: Traverse the post-synaptic connections. This loops m = Blksize

times, the number of words in a Synaptic Block, i.e. the number of post-

synaptic connections in this fascicle from the pre-synaptic neuron that fired.

• Loop3: Scan the post-synaptic time stamp. This loops x = (T1−T0)/2 times

(T0 and T1 will be explained later), and each time 1 bit will be detected. If

there are y bits found within the time window, the weight updating will be

executed y times.

The computational complexity of the bit-detection in Loop3 is o(nmx) and the

computational complexity of weight updating in Loop3 is O(nmy). As a result

the shifting and the weight updating in Loop3 needs to be as efficient as possible.

Process 1 - the time window

Process 1 in flow chart 6.8 is responsible for calculating the time window, in this

implementation a dynamic window, from T0 to T1, which differs from the window

defined in the STDP rule by τ− and τ+. Three restrictions are applied when

calculating the time window (shown in Figure 6.9):

1. The time window must be in the range of [τ−, τ+].

2. There are history records in the post-synaptic time stamp in the time win-

dow. In Figure 6.9, the time window becomes [T0, T + τ+].

3. The left window and the right window are the same length. In Figure 6.9,

the time window becomes [T0, T1], as T − T0 = T1 − T = a.
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Process 2 - the time word

The post-synaptic fine time stamp field is 64 bits and a 64-bit shifting operation

in ARM takes 8-9 CPU cycles, while a 32-bit one takes only 1. The meaningful

bits of the fine time stamp are those within the time window [T0, T1], which is

smaller than 32 bits if τ− = τ+ ≤ 32ms. These bits are referred to as the “time

word”, which represents the bits of the post-synaptic fine time stamp within the

time window [T0, T1], after bit-time conversion. If any of the bits is set in the

“time word”, the weight needs to be updated accordingly.

Bit detection

There are two bit detection operations in the STDP implementation. The “LSLS”

instruction provided by the ARM instruction set is efficient in detecting if there

is any “1” moved into the carry bits (bit 32), and allows the processor to do a

conditional branch. To use the “LSLS” instruction, bits [31:8] (instead of bit

[23:0]) of a word is used for the pre-synaptic fine time stamp.

Lookup table

Since the parameters of the STDP are determined before the simulation starts,

the ∆w can be pre-computed based on different values of ∆t and loaded into a

lookup table. When the ∆t is obtained, ∆w can easily be fetched from the lookup

table. Compared to the real-time computation of ∆w, using a lookup table is

obviously more efficient.

Performance

The processor time usage for each step of processing is shown in Figure 6.8 where

process 1 and 2 in Loop 2 are the most time consuming operations. The calcula-

tion of ∆w in Loop 3 takes only 140 ns, with the help of a lookup table.

6.4 Simulation results

6.4.1 10-second 60-neuron test

A 60-neuron network is simulated on the four-chip SpiNNaker SOC Designer

model. The network is largely based on the code published in [Izh06] (but in a
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Figure 6.10: STDP results.
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(a) Synapse of neuron 6 to 6 (weaken) within 400 – 900 ms.
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Figure 6.11: Weight modification caused by the correlation of the pre and post
spike times.
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smaller scale), which was also used to test the consistency of our results. There

are 48 Regular Spiking excitatory neurons a = 0.02, b = 0.2, c = −65, d = 8 and

12 Fast Spiking inhibitory neurons a = 0.1, b = 0.2, c = −65, d = 2. Each neuron

connects randomly to 40 neurons (self-connections are possible) with random 1-15

ms delays; inhibitory neurons only connect to excitatory neurons. Initial weights

are 8 and -4 for excitatory and inhibitory connections respectively. Parameters

τ+ = τ− = 32ms, A+ = A− = 0.1 are used for STDP. Inhibitory connections

are not plastic [BP98]. Following learning the weights of excitatory neurons are

clipped to [0, 20] (in accordance with [Izh06]). There are 6 excitatory and 1

inhibitory input neurons, receiving constant input current I = 20 to maintain a

high firing rate. Weights are updated in real-time (every 1 ms).

The simulation is run for 10 sec (biological time) and Figure 6.10(a) shows

the spike raster, Figure 6.10(b) shows the spike train of neuron ID 0, and Figure

6.10(c) shows the evolution of synaptic weights of connections from pre-synaptic

neuron ID 6 (an input neuron). At the beginning of the simulation input neurons

fire synchronously, exciting the network which exhibits high-amplitude synchro-

nized rhythmic activity around 5 to 6 Hz. As synaptic connections evolve accord-

ing to STDP, uncorrelated synapses are depressed while correlated synapses are

potentiated. Since the network is small and the firing rate is low, most synapses

will be depressed, leading to a lower firing rate. The synaptic weight going rapidly

to zero is the self-connection of neuron ID 6: since each pre-synaptic spike arrives

shortly after the post-synaptic spike the synapse is quickly depressed.

Detailed modifications of the self-connection weight (the blue curve) is shown

in Figure 6.11(a) along with pre- (red vertical lines) and post-synaptic timing

(blue vertical lines), from 400 ms to 900 ms. Modification is triggered by pre-

synaptic spikes. The weight curve between two pre-synaptic spikes is firstly de-

pressed because of the LTD window and then potentiated because of the LTP

window. The detailed modification of the strengthened synapse (from neuron 6

to 26) from 0 ms to 4000 ms is shown in Figure 6.11(b).

6.4.2 30-second 76-neuron test

The system is also tested by a 30-second simulation of a 76-neuron network (60

excitatory and 16 inhibitory neurons) with each excitatory neuron randomly con-

nects to 10 other neurons and each inhibitory neurons randomly connects to 10

excitatory neurons. A random 10 neurons receive a constant biased input of 20
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(a) Simulation with STDP disabled during the 1st second.
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(b) Simulation with STDP enabled during the 1st second.

2.9 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99
x 104

0

10

20

30

40

50

60

70

Raster Plot from SpiNNaker with STDP

N
eu

ro
n 

ID

Time (ms)

(c) Simulation with STDP enabled during the 30th second.

Figure 6.12: Comparison between the simulation with and without STDP on
SpiNNaker during 1st second and 30th second.



CHAPTER 6. SYNAPTIC PLASTICITY ON SPINNAKER 135

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

Raster Plot in Matlab with STDP 30 second

N
eu

ro
n 

ID

Time (ms)

Figure 6.13: The STDP result from the Matlab simulation (fixed-point) with
parameters: τ+ = τ− = 15ms, A+ = 0.1, and A− = 0.12.
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(a) Neuron 1 during the 1st second.
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(b) Neuron 1 during the 30th second.

Figure 6.14: The behavior of an individual neuron (ID 1) during the 1st second
and the 30th second.
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Figure 6.15: Weight distribution at the end of the simulation. Weights for exci-
tatory neurons are clipped to [0, 20]

mV. A comparison between a simulation without STDP (Figure 6.12(a)) and with

STDP (Figure 6.12(b)) after the first 1,000 ms, is shown. The simulation with

STDP shows a more synchronized firing pattern than the simulation without.

The result from the 30th second is shown in Figure 6.12(c), and the corre-

sponding Matlab (fixed-point) results2 is shown in Figure 6.13. The firing pattern

during the 30th second shows a more obviously synchronized behavior. Figure

6.14(a) shows the behavior of neuron ID 1 during the 1st second. Figure 6.14(b)

shows the behavior of neuron ID 1 during the 30th second.

The weight distribution at the end of the simulation can be observed in Fig-

ure 6.15: most of the excitatory weights are slightly de/potentiated around their

initial value of 10. Some connections are potentiated up to their maximum (20)

because they are systematically reinforced, due to converging delays. For ex-

ample we found a group of 7 neurons strongly interconnected at the end of the

simulation. Examining their connections and delays (as shown in Figure 6.16 two

circuits with converging delays could be found: the first one starts from neuron

57 and propagates through neuron 8, 47 and 43, ending at neuron 19; the second

one starts from neuron 55 exciting neuron 57, propagates through neurons 47 and

19 and ends at neuron 42. All the weights are strongly potentiated, near or up

to their maximum at the end.

2The Matlab simulation is based on the code provided in [Izh06]. The STDP parameter
setting is slight different: τ+ = τ− = 15ms, A+ = 0.1, and A− = 0.12; weights are updated
every 1 second instead of 1 millisecond.
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Figure 6.16: Group of neurons with converging delays. It is possible to track
down two circuits with converging delay (neurons 55, 57, 47, 19 ending at neuron
42 and neuron 57, 47, 43 and 8 ending at neuron 19.
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Figure 6.17: Relationship between the firing rate and the timing records length.

6.5 Discussion

6.5.1 Firing rates and the length of timing records

The length of the time stamp affects both the performance and precision of the

STDP rule. Longer history records yield better precision at the cost of sig-

nificantly increased computation time. The optimal history length is therefore

dependent upon the required precision and performance. A 24-bit pre-synaptic

time stamp with 2 ms resolution and a maximum of 15 ms delay guarantees a

24 ∗ 2− 15 > 32ms right (LTP) window for any delay.

The pre-sensitive scheme and the deferred event-driven model require the

new input to push the old input record into the carry bit to trigger STDP. What

happens, however, if the new input does not arrive or it arrives at a very low rate?
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The post-synaptic time stamp is pushed forward when new post-synaptic spikes

are generated, and the history records will be lost. If the pre-synaptic firing rate

is too low, there will be no post-synaptic time records within the time window at

the time STDP is triggered. As a result, there are certain restriction in terms of

the firing rate of pre-synaptic neurons to ensure that STDP will be triggered in

time. As shown in Figure 6.17, at the time a new pre-synaptic spike (4) arrives,

the time difference between pre-synaptic spike 2 and post-synaptic spike 1 is 32

ms – the same size of left window (LTD) as the size of right window. Let the

average interval of two pre-synaptic spikes to be Tpre, and the average interval of

two post-synaptic spikes to be Tpost.

1. When Tpost ≤ Tpre + 32 (post-synaptic neurons fire more frequently), to

guarantee a 32 ms left window, the interval between two pre-synaptic spikes

must be no more than 128− 32 = 96ms; this, in turn, requires a firing rate

of more than 1000/96 = 10.4Hz.

2. When Tpost > Tpre + 32 (post-synaptic neurons fire less frequently), a 32 ms

left window can be guaranteed with any pre-synaptic firing rate.

6.5.2 Approximation and optimization

Since the Matlab and SpiNNaker simulations employ different implementation

schemes, exactly the same results are not achievable. Actually, the level of

biophysical realism necessary to achieve useful behavior or model actual brain

dynamics is unclear. For instance, in the case of the well-known STDP plastic-

ity rule, while many models exist describing the behavior [GKvHW96, SBC02,

HTT06], the actual biological data regarding STDP is noisy and of low accuracy.

Observed STDP synaptic modifications exhibit a broad distribution for which the

nominal functional form of STDP models usually constitute an envelope or up-

per bound to the maximum modification [MT96, BP98]. This suggests that high

repeatability or precision in STDP models is not particularly important. In this

context, the STDP implementation on SpiNNaker focuses on efficiency instead of

accuracy.

The SpiNNaker STDP implementation can be further simplified by using

“nearest spike approximation” [MGT08] which limits LTD/LTP to the first/last

presynaptic spike before/after the postsynaptic one. The implementation of the

STDP rule involves a series of processing steps. Most of the processing steps are
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in nested loops and will be executed for a number of iterations during the STDP

process. Thus the performance will decrease significantly with STDP enabled,

a common problem of using STDP. The use of the “nearest spike approxima-

tion” potentially reduces the number of iterations, and will therefore significantly

reduce the overhead.

The length and resolution of the time stamp are reconfigurable to meet dif-

ferent requirements; if a larger time window is required, the length of the pre-

synaptic time stamp can be increased or the resolution can be reduced to 4 ms

per bit. The dynamic adjustment of the time stamp length is also a possible op-

timization, by which users will be able to modify the length of the time stamp or

the time resolution at run-time, to meet the accuracy-performance requirement

during different simulation periods.



Chapter 7

MLP modeling on SpiNNaker

7.1 Overview

Previous chapters have presented approaches to the modeling of spiking neural

networks with STDP learning on SpiNNaker. Although the spiking neural model

has received much attention in recent years, the well-known traditional multi-layer

perceptron (MLP) model is still widely used in various applications. Having been

developed for tens of years, the MLP model has been proved to be a good model

for solving practical problems, especially in speech or pattern recognition. This

chapter investigates, by analysis and simulation, whether SpiNNaker can and how

it should operate when dealing with MLP networks. The work has been published

in [JLK+10a] and [JLK+10b].

7.2 Introduction

Rather than generating spikes when the membrane potential reaches a certain

value, as neurons do in spiking neural networks, neurons of MLP networks use

nonlinear activation functions to produce continuous output values at each propa-

gation cycle. The output of an MLP unit is often interpreted as the mean spiking

rate of a group of biological neurons. MLP networks are normally trained by the

back-propagation (BP) learning rule developed by David E. Rumelhart et al. in

1986 [RHW86, RMG86].

Compared to their sequential alternatives, parallel implementations of MLP

networks can partition and distribute the computational tasks but usually in-

cur severe communication overheads, leading to low actual speedups. Speedups

140
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gained from multiple processors rely on a well tuned parallel scheme. A good

partitioning scheme needs to maximise the distribution of the computation tasks

while keeping communication overheads at low levels. There are a lot of exist-

ing schemes to parallelize a MLP neural network with BP learning rule such as

networking partitioning, pattern partitioning, hybrid partitioning and so on [9].

These partitioning schemes have been mapped onto a variety of parallel hardware

with different topologies such as the hypercube machine, mesh connected mul-

tiprocessors, transputers, networks of workstations as well as dedicated neural

hardware [AB03], [SOM05], [FSS97].

SpiNNaker, as dedicated parallel neural hardware, has its own special hybrid

topology – SpiNNaker CMPs are interconnected through a two dimensional torus

mesh with diagonal connections. To achieve a high efficiency (the ratio of speedup

to number of processors), we present a new mapping scheme for the parallel

implementing of MLP networks with the BP learning rule on SpiNNaker. The new

mapping scheme relies on a checker-board partitioning (CBP) scheme [KSA94],

but the key advantage comes from introducing a pipelined mode.

The CBP scheme cuts the whole weight matrix into small sub-matrices en-

abling communication to be localized and thus reducing the number of commu-

nication packets. In the context of neural networks, the CBP scheme was used

in [KSA94], [YI93] and others, but none addressed the parallelism within each

individual submatrix. Based on the CBP scheme, we have developed a pipelined

checker-boarding partitioning (PCBP) scheme. In the PCBP scheme, in addition

to the traditional group of cores which perform vector-matrix computation, an

extra two groups of cores are employed to compute partial sums and outputs.

The three groups of cores are able to work in parallel as a six-stage pipeline,

allowing overlap of computation and communication. Previous work has consid-

ered pipelined implementations, but was either based on pipelining the work in

each neural network layer [PDG93] or on pipelining between patterns [Pet94].

These can not be applied to recurrent neural networks (RNNs), since all layers in

RNNs are updated concurrently. Our algorithm, on the other hand, overcomes

this barrier by considering pipelining within each partition.

Although the pipelined checker-boarding partitioning (PCBP) scheme pro-

posed works for both feedforward and recurrent networks, we focused mostly on

recurrent networks in this study, based on three reasons:

1. More and more neural models are built based on RNNs to simulate more
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complex situation.

2. RNNs are much more computationally demanding to train than FFNNs.

3. Less research has been undertaken on the parallel implementation of RNNs

than of FFNNs.

An analysis of parallel execution of the algorithm on the SpiNNaker archi-

tecture is presented. The performance evaluation of such a mapping of both

fully-connected and partially-connected networks is also an important objective.

The evaluation is carried out in a semi-experimental and semi-analytical way.

Simulation results from the SOC Designer model of SpiNNaker based on the

PCBP scheme are shown at the end of this chapter and are compared with re-

sults based on the CBP scheme. The performance curves produced show that

with the PCBP scheme, a better speedup can be achieved than with the tradi-

tional non-pipelined CBP scheme. The work proves that SpiNNaker can also deal

with traditional MLP networks very efficiently. The mapping scheme and results

of the performance estimation were used in the proposal for the PDP-squared

project (September 2008 - August 2013) to the EPSRC Cognitive Systems call,

which was granted in February 2008.

7.3 MLP model with BP algorithm

7.3.1 Feedforward and recurrent neural networks

A feedforward network (FFNN), as a standard form of multi-layer perceptron,

consists of a number of simple neurons or units, organized in layers (Figure 7.1(a)).

Neurons in one layer are connected only to neurons in the next layer. There is

no self-connection or connection within the same layer. In such networks, groups

are updated in the order in which they appear in the network’s group array

(sequential updates) and only one layer needs be computed at a time.

Recurrent Neural Networks (RNNs), as shown in Figure 7.1(b), not only have

feedforward connections but also have feedback connections. A neuron in an

RNN may connect to any other neurons including itself. Furthermore, RNNs

use concurrent updates and propagate error derivatives backwards through time.

That is, in each time tick, all layers first update their inputs and then update

their outputs. Backpropagation will not start until the forward phase has run for
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Figure 7.1: MLP models and the weight matrix.
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a given number of time ticks. Backpropagation then loops for the same number of

ticks. In this case, all layers need to be computed at each time. The way neurons

are connected and the way they are updated make RNNs more computationally

intensive than FFNNs.

Suppose there is an RNN with Ppt patterns per batch, Itv time intervals per

pattern and Ttk ticks per time interval. A training iteration for this RNN includes

Ppt BP iterations. In each BP iteration, the system carries out ItvTtk forward

propagation ticks, and then ItvTtk backward propagation ticks. Each backward

propagation tick computes a weight change value which will be accumulated, and

updated later as required (usually every batch of training).

The weights can be seen as a matrix, as shown in Figure 7.1(c). Depending on

the connectivity, the weight matrix may be dense or sparse. In FFNNs, elements

are spread only in the areas indicated by the dot-filled blocks in Figure 7.1(c),

while in RNNs, weights are spread over the whole matrix. In this study, the

partitioning scheme will be discussed based on the weight matrix.

7.3.2 BP algorithm

The BP algorithm was introduced in 1986 [RHW86][RHM86], and is the most

commonly used supervised learning algorithm for training MLP networks. At

the core of the BP algorithm is a delta rule which implements a gradient descent

method in the error space looking for the optimal weight set which minimizes the

error. The BP algorithm requires both forward and backward phases. During

the forward phase, the network gets inputs and produces outputs. During the

backward phase, the delta error δ between the actual output vector and the target

output vector (provided by the training pattern) is computed and δ is propagated

back through the network and weight changes are generated accordingly.

To give a better description of the BP rule, neurons in the input, hidden and

output layers are denoted as ni, nj, nk respectively; wji and wkj are the weights

of connections from neuron ni to nj and nj to nk respectively.

Forward phase

During the forward phase, information propagates from the input to the output

layer (Figure 7.2(a)).

In each step of the propagation, neuron nj receives an output vector o0, . . . ,oi



CHAPTER 7. MLP MODELING ON SPINNAKER 145

jn

jn

1

j

N

i ji
i

net

o w






0o

1o

io

0jw

1jw

jiw ( )

j

j j

o

f net


jo

0 jw

1 jw

kjw1

j

N

k kj
k

e

w




' ( )

j

j j je f net

 
j

0

1

k

(a) Forward phase.

jn

jn

1

j

N

i ji
i

net

o w






0o

1o

io

0jw

1jw

jiw ( )

j

j j

o

f net


jo

0 jw

1 jw

kjw1

j

N

k kj
k

e

w




' ( )

j

j j je f net

 
j

0

1

k

(b) Backward phase.

Figure 7.2: Computational phases of a MLP network with BP learning.

from the previous layer and produces a net input netj according to

netj =
N∑
i=1

oiwji. (7.1)

The generated netj is then passed to a continuous non-linear activation func-

tion fj to generate the output oj according to

oj = fj(netj). (7.2)

The output oj will be passed to neurons in the next layer until the propagation

goes through the output layer.

Backward phase

In the backward phase, firstly, the output ok produced in the output layer is

compared with the target tk to generate an error ek which is ek = tk − ok. This

error ek is then used to produce the delta error δk given by

δk = ekf
′
(netk) = (tk − ok)f

′
(netk). (7.3)

The delta error δk can be used to produced weight updates of wkj denoted by ∆wkj

according to ∆wkj = ηδkoj, where η is the learning rate. Then, δk is propagated

back to the previous layer and is used to compute the error ej according to

ej =
N∑
k=1

δkwkj, (7.4)
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as indicated in Figure 7.2(b). The delta error of this layer δj is given by

δj = ejf
′
(netj) =

N∑
k=1

δkwkjf
′
(netj). (7.5)

Weight changes ∆wji for connections from ni to nj are given by

∆wji = ηδjoi. (7.6)

The BP rule is usually required to be run for a number of iteration to have

a network fully trained. Normally, weights are updated once per training batch.

A training batch contains a number of patterns. One pattern will apply for a

number of intervals, each is comprised of a number of ticks. In a FFNN, one tick

comprises a full BP process – one forward phase and one backward phase; while

in an RNN, the backward phase starts only after the forward phase runs for the

given number of ticks.

The activation function

The activation function converts a net input to an output. Different activation

functions can be used, but they should have some common features: continuous,

differentiable, nonlinear, and monotonically nondecreasing. For the sake of effi-

ciency, both the activation function and its derivative should be easy to compute.

A commonly used activation function is the sigmoid function defined in Equation

7.7:

f(x) =
1

1 + e−x
(7.7)

with its derivative:

f ′(x) = f(x)[1− f(x)] (7.8)

The sigmoid function is illustrated in Figure 7.3:

7.3.3 The neural simulator – Lens

Lens is a light, efficient network simulator written in the C and Tcl languages

[Roh], which runs on a variety of platforms including both Unix and Windows.

It is developed mainly to support MLP networks with backpropagation learning

(both feedforward and recurrent networks), but it also supports a range of other
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Figure 7.3: The sigmoid function.

neural network models such as deterministic Boltzmann machines and Kohonen

networks.

The Lens implementation of backpropagation networks is used as a practical

example during our study. At the end of this chapter, a comparison, based on the

same network, will be shown, between the performance estimated on SpiNNaker

simulation and the performance on a single PC using Lens.

7.4 Partitioning and mapping schemes

7.4.1 Review of partitioning schemes

In a parallel simulation, computation tasks are distributed over a set of processors

to achieve better performance. Each processor in the parallel system produces

only a partial result and information exchanges among processors are therefore

required to produce the final result. This communication overhead usually re-

sults in a decrement in the overall performance and parallel schemes have been

developed to solve this problem: Firstly, a partitioning scheme may be used to

divide a neural network into small sub-networks; a mapping scheme may then be

used to map the sub-networks onto different processors.

Depending on the level of parallelism, MLP networks with the BP algorithm

can be partitioned either by training patterns, the network, or a hybrid of these

two [KSA94, SM98, SS98]. Pattern parallelism is often used by general-purpose

neural software, for instance – Lens, running parallel training on PC Clusters. It
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runs different sets of training patterns concurrently on different processors. Each

processor keeps a local copy of the complete network and accumulates weight

changes for the given training patterns [JMM89, WC90, RB88]. Since most of

the learning algorithms compute weight changes on a per-pattern basis, pattern

parallelism can be applied on top of most network parallelism.

In this study, the focus is on network parallelism which captures the inherent

parallelism in the neural networks. The multiplication-accumulation operations

between the output vector and the weight matrix in equations 7.1 and 7.4 can

be parallelized by partitioning the weight matrix. The weight matrix can be

partitioned by element, row, column, or sub-matrix, which corresponding to the

complete weight partitioning [Ble87], inset grouping [ZMMW90b, ZMMW90a],

outset grouping and checkerboarding partitioning schemes [KH89, KSA94, YI93]

respectively. Complete weight partitioning allocates one processor per weight for

maximum concurrency but incurs too much communication. Inset grouping is

efficient in the forward phase but not efficient in the backward phase. Outset

grouping is efficient in the backward phase but not efficient in the forward phase.

Some schemes allocate both inset weights and outset weights to the same pro-

cessor by duplicating weights [SM98]. But this causes inefficiency during weight

updating, because weights in different processors have to be synchronized. The

CBP scheme partitions the weight matrix into sub-matrices and thereby optimizes

both forward and backward phases1.

7.4.2 The CBP scheme and the non-pipelined model

The CBP partitioning scheme is used to split the weight matrix as the starting

point of the algorithm. The first step, for simplicity, is to analyze the mapping

of RNNs onto a 2D torus topology with one processor per node. Figure 7.4

shows an example of a 6x6 weight matrix mapped onto 9 nodes (or processors)

interconnected by a 2D torus. Each processor keeps a 2x2 sub-matrix of weights

in its local memory. Processors 1− 9 are assigned to GroupA responsible for the

vector-matrix multiplication. Among those 9 processors in GroupA, 3 processors

in the main diagonal are selected and named m1−m3. Processors m1−m3 are

assigned to GroupB, responsible for the partial result accumulation and output

computation.

1It has been proved in [YI93] that the minimum communication steps are obtained only
when the matrix is divided into square sub-matrices.
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Figure 7.4: Checkerboarding partitioning. Each processor keeps a 2x2 sub-matrix
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vector-matrix multiplication. Among those 9 processors in GroupA, 3 processors
in the main diagonal are selected and named m1..m3 (GroupB), responsible for
the partial result accumulation and output computation. In step1 of the forward
phase, processor m1 (the same one as processor 1) sends the output to processor
1, 4, 7 (shown as blue arrows). In step2, processors 1, 2, 3 do the computation and
send packets to processor m1 (shown as red arrows). Processor m1 accumulates
partial results and produces an output. Other processors behave in the same way.
The backward phase is the same as the forward phase, but swapping the order of
columns and rows.
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Figure 7.5: Communication patterns generated accordingly from Figure 7.4,
showing both the forward phase (right-directed arrows) and the backward phase
(left-directed arrows).
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Communication pattern analysis

For a more general discussion, an n-neuron network and a torus with p processors

(nodes) are now considered, while maintaining the same one processor per node

relation. In fully connected networks, the size of the weight matrix is n by

n and each processor stores and updates a n√
p

by n√
p

sub-matrix. Assuming the

transmission of a packet along a link takes α time units, while sending or receiving

a packet takes β time units, in each forward tick the operations can be divided

into two discrete steps following the communication pattern illustrated in Figure

7.5.

In step1, for each column, the GroupB processors compute their outputs ac-

cording to Equation 7.2 and send them to GroupA for a specific row (See blue

arrows in Figures 7.4 and 7.5). The communication is localized within each row of

processors. For this communication, the
√
p processors in one row of the 2D torus

can be seen as connected in a ring topology (see Figure 7.6(b)). The row-wise

communication requires a broadcast2 in the ring topology with
√
p processors.

The diameter3 of the ring is
√
p

2
. So the packets’ traveling time is α

√
p

2
. There are

also two other operations, one send and one receive, which take 2β time units.

There are n√
p

columns of weights in each processor, so the communication time

for step1 of a forward tick Tc1 (for any 1 < p < n2) is

Tc1 = (α

√
p

2
+ 2β)

n
√
p
. (7.9)

In step2, for each column, GroupA processors in one column do the vector-

matrix multiplication according to equation 7.1 (see the red arrows in Figures 7.4

and 7.5). Note that each processor in the column only produces a partial result

which is sent to the GroupB processors in the same column. The communication

is thus localized within each column of processors. The
√
p processors in one

column of the torus can again be seen as connected in a ring topology. The

column-wise communication requires the accumulation in a single processor4 in

a ring with
√
p processors. For each single node accumulation, the diameter of

the ring is
√
p

2
. It takes α

√
p

2
time units for the packet transmission. However, in

step2, the first packet will arrive very soon since there is only one link to travel.

2Sending the same packet from a single processor to every other processor [BT89].
3The maximum distance of the network, where the distance is the minimum number of links

between any pair of processor [BT89].
4Sending a packet to a given processor from every other processor[BT89].
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In most practical situations, β is larger than α. So a new packet usually arrives

before the previous packet was processed. As a result, the communication time

for packets, α
√
p

2
, is hidden. Only the time of one send, one link transfer and

√
p

receive operations are considered, and they take β(
√
p+ 1) +α time units. There

are n√
p

columns of weights in each processor, so the communication time for step2

of a forward tick Tc2 (for any 1 < p < n2) is

Tc2 = [β(
√
p+ 1) + α)]

n
√
p
. (7.10)

When
√
p is large, β(

√
p+ 1) + α ≈ β

√
p. When 1 < p < n2, we obtain

Tc1 =
α

2
n+ 2β

n
√
p
, Tc2 = βn. (7.11)

In RNNs, BP starts when the forward phase has looped for a certain number

of ticks. As shown in Figure 7.5, the communication pattern and time in the

backward phase are exactly the same as in the forward phase.

In this model, only operations within the vector-matrix multiplication task

are parallelized. But the three main tasks, vector-matrix multiplication, output

computation and communications, are not parallelized and neither can they work

in a pipelined mode, since the GroupB processors are selected from the processors

in GroupA. This is also a common limitation found in some other published

implementations [KSA94], [YI93]. Hereafter this model is referred to as the non-

pipelined model.

Mapping onto SpiNNaker without pipeline

(a) Torus-connected CMPs (b) Ring

Figure 7.6: Network topologies and SpiNNaker

What if each node in Figure 7.4 is replaced by a chip multiprocessor (CMP),
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as shown in Figure 7.6(a)? SpiNNaker is used as a paradigm for such an analysis.

SpiNNaker is a system based on a torus-connected CMP topology (it also contains

diagonal connections). In this study, the diagonal connections are not required,

hence the system can be seen as a standard 2D torus topology (one SpiNNaker

chip, or 20 cores, per node) as shown in Figure 7.6(a).

If the CBP is mapped onto SpiNNaker directly (without pipeline), all pro-

cessors in a chip can be used for processing. Since there are 20 processors (in a

4x5 rectangle) in each chip, the diameter of the ring is reduced from
√
p

2
to
√
p

8
,

about 1/4 of the original value. The time required on SpiNNaker without pipeline

becomes:

Tc1 =
α

8
n+ 2β

n
√
p
, Tc2 = βn. (7.12)

7.4.3 Mapping onto SpiNNaker with pipeline

To achieve better efficiency, a new pipelined model called PCBP is proposed.

The mapping on SpiNNaker using the PCBP scheme is illustrated in Figure 7.7.

Each rectangle (with rounded corners) represents one SpiNNaker chip. Each cir-

cle within a rectangle denotes a processing core. Up to 19 processors out of 20 are

used in each chip. In this mapping scheme, rather than picking the GroupB pro-

cessors from the GroupA processors, an independent set of processors (1 processor

per chip) are employed as GroupB processors. In addition to the 16 GroupA pro-

cessors and 1 GroupB processor, 2 GroupC processors are also employed. In

step1, rather than sending packets from GroupB to GroupA directly, the packets

now go through GroupC processors. GroupC processors get single node broad-

cast packets from GroupB processors, and then forward to GroupA processors.

Similarly, in step2, the GroupC processors are responsible for receiving and ac-

cumulating partial results from the GroupA processors on the same chip and

then forwarding the results to the GroupB processors. Each GroupC processor

takes care of two columns/rows of GroupA processors (8 processors) in turn. In

each chip, the three groups of processors are working in parallel and produce a

six-stage pipeline as shown in Figure 7.8. Hereafter this mapping algorithm is

referred to as the pipelined model (PCBP).
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Figure 7.7: Mapping on SpiNNaker using the pipelined model (PCBP). Each
rectangle (with rounded corners) represents one SpiNNaker chip. Each circle in a
rectangle denotes a processing core. 19 processors out of 20 are used in each chip.
Among them 16 (4 by 4) processors are allocated to GroupA, 1 (a/b/c/d) pro-
cessor is allocated to GroupB and the other 2 (x and y) are allocated to GroupC.
In step1, GroupB processors produce outputs and send to GroupC processors.
GroupC processors get single node broadcast packets from GroupB processors,
and then forward to GroupA processors. In step2, GroupA processors do the vec-
tor matrix computation and send results to GroupC processors with same color.
Each GroupC processor receives packets from GroupA processors in two columns
(2 by 4 processors) in turn and accumulates partial results, then forwards the
results to GroupB processors. Notice that whatever the number of chips in one
column, only four GroupB processors in total are required, each responsible for
one column, since there are only four columns of GroupA processors in total.
GroupC processors need to send packets to two GroupB processors in the same
color in turn (for example processor x sends to processor a and c). The back-
ward phase works exactly the same as the forward phase, but swaps the order of
columns and rows. In each chip, the three groups of processors are working in
parallel and produce a six-stage pipeline.



CHAPTER 7. MLP MODELING ON SPINNAKER 154

(Sp)VxM comm
Comm
Step2

ADDOutput
Comm
step1

(Sp)VxM comm
Comm
Step2

ADDOutput
Comm
step1

(Sp)VxM comm
Comm
Step2

ADDOutput
Comm
step1

GroupAGroupB GroupC

Figure 7.8: The six-stage pipeline. The pipeline is generated according to the
mapping shown in Figure 7.7. The communication and computation are well
overlapped with each other in this pipeline.

Communication analysis

Compared to the CBP model shown in Figures 7.4 and 7.5, in the PCBP model

the on-chip communication between GroupA and GroupC processors is localized

and small-scale (4 packets per column); the accumulation operation performed by

GroupC processors requires only four processor cycles per column. Both of them

are fast enough to be hidden by the off-chip communication or other computation.

The off-chip row-wise/column-wise communication can be seen as communi-

cation in a ring topology with a diameter of
√
p

8
; and with the help of the GroupC

processors, the number of packets that go to a GroupB processor is reduced to

1/4 of the original number. The communication time in step1 Tpc1 and in step2

Tpc2 when 1 < p < n2 is

Tpc1 =
α

8
n+ 2β

n
√
p
, Tpc2 =

β

4
n. (7.13)

7.4.4 Data storage

The way a sub-matrix is stored effects the performance of the computation. A

matrix is stored either by row order storage (RS) or by column order storage

(CS). RS is efficient for the backward computation, because elements in the same

row are kept in a continuous space of the memory. But it is inefficient for the

forward computation, because of the non-continuous weight storage. Similarly,

CS is efficient for forward computation but inefficient for the backward compu-

tation. As a result, the time taken for the forward and backward computations

is different. The CS scheme is used in this implementation, which causes the

forward computation to be faster than the backward computation.
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7.4.5 Analytical comparison

With the basic analytical models of the mapping algorithms in hand, they can

be compared. For this, certain parameters need to be fixed. Assuming:

1. There are a number p of GroupA processors (p = 20 per chip in the non-

pipelined model, p = 16 per chip in the pipelined model)

2. A multiply-accumulate operation of GroupA processors in a forward tick

takes time θf (including the average time of memory access), while the same

operation takes θb in a backward tick (θf 6= θb due to the data presentation)

3. The output computation of GroupB processors in the forward phase takes

of , and in the backward phase takes ob

Thus we have:

• computing a sub-matrix in a forward and backward tick takes θf
n2

p
and θb

n2

p

respectively

• computing the outputs in a forward and backward tick takes of
n√
p

and ob
n√
p

respectively

These are summarized in Table 7.1.

Table 7.1: Computation and communication cost

Operations Forward Backward

step1 step2 step1 step2

Comms. pipelined α
8
n+ 2β n√

p
β
4
n α

8
n+ 2β n√

p
β
4
n

Comms. non-pipelined α
8
n+ 2β n√

p
βn α

8
n+ 2β n√

p
βn

Comp. GroupA θf
n2

p
θb
n2

p

Comp. GroupB of
n√
p

ob
n√
p

On a single processor

Let p = 1, then no communication is required. Time required Tseri for processing

one forward tick plus one backward tick on a single processor is:

Tseri = (θf + θb)n
2 + (of + ob)n. (7.14)
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The non-pipelined model

In the non-pipelined mode, communication and computation are carried out se-

quentially. The time required in the non-pipelined model for one forward tick

plus one backward tick T nppara is:

T nppara = (θf + θb)
n2

p
+ (of + ob)

n
√
p

+ (
α

4
+ 2β +

4β
√
p

)n. (7.15)

The pipelined model

The pipelined model allows the overlap of communication and computation. In

most practical problems, the link transmission time α is small compared to the

packet send/receive time β, and the communication of step1 can be hidden be-

hind the communication of step2 due to the pipeline (Figure 7.8). θb is obviously

larger than θf when using column order storage (CS) of the weight matrix. The

computation times of GroupB processors are smaller than either the communica-

tion time or the computation time of GroupA processors (shown later), therefore

the computation of the GroupB processors is hidden behind either the commu-

nication or the computation time of GroupA processors. The time required in

the pipelined model for one forward tick plus one backward tick T ppara relies on

the relationship between the computation and the communication because of the

overlapping:

Situation1 Communication takes more time than either forward or backward

computation when p ≥ 4θb
n
β
. In this situation, computation is fully hidden be-

hind communication.

T ppara =
β

2
n (7.16)

Situation2 Communication takes longer than forward computation, but less

time than backward computation, when 4θf
n
β
≤ p < 4θb

n
β
. In this situation,

communication is hidden partially.

T ppara = θb
n2

p
+
β

4
n (7.17)

Situation3 Communication takes less time than forward or backward computa-

tion when p < 4θf
n
β
. In this situation, the communication is hidden behind the
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computation.

T ppara = (θf + θb)
n2

p
(7.18)

Speedup and efficiency

The speedup S and efficiency of an algorithm E are defined as:

S =
Tseri
Tpara

, E =
S

ptotal
(7.19)

Where ptotal is the total number of processors in the system, including GroupA,

GroupB and GroupC processors (For the sake of fairness, ptotal = 20 per chip

are used in both non-pipelined model and pipelined model when calculating the

efficiency E. This highlights the improvement provided by the new method).

7.4.6 Memory requirements

Here the memory requirement for GroupA processors (the most memory demand-

ing processors among the three groups of processors) is assessed. Each GroupA

processor needs to keep four types of data: weights, weight derivatives, input

histories and delta errors, as shown in Table 7.2.

Table 7.2: The memory requirement of a GroupA processor in fully connected
RNNs

Elements Symbol Number

Weights w n2

p

Weight Derivatives ∆w n2

p

Input Histories o n√
p
TtkItv

Delta Errors δ n√
p

Each weight in the the sub-matrix is associated with a weight derivative to

accumulate changes. A history buffer is required for keeping old inputs in a for-

ward tick. The history inputs will be required in Equation 7.6 during a backward

tick. The length of history is TtkItv, since there are TtkItv forward propagations

before backward propagations start. Each history comprises a vector of n/
√
p

inputs. Each processor also needs to keep a vector of n/
√
p delta errors as inputs

during a backward tick. Assuming each element takes s bytes and Mfull is the
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total memory requirement, we get:

Mfull = [2
n2

p
+ (TtkItv + 1)

n
√
p

]s (7.20)

7.4.7 Performance estimation

The performance of the system is evaluated analytically, since the real SpiNNaker

chip is not available yet, and there is still quite a lot of software programming

work remaining to be done to make the system fully functional. However, the

analytical model presented helps us to determine the system scale and to predict

the system performance.

A medium size system configuration up to 1000 chips is run to get first perfor-

mance results on the SpiNNaker SoC Designer model. By using 16-bit fixed-point

arithmetic we have (in nanoseconds)5:

θf = 26, θb = 42, α = 10, β = 140, of = 880, ob = 1400 (7.21)

The first evaluation carried out is based on a scheme that runs a variety of

scales of RNNs on a 500-chip SpiNNaker configuration. A performance compari-

son between the non-pipelined (CBP) and the pipelined (PCBP) model is shown

in Figure 7.9. Initially the performance of the pipelined model is dominated by

the communication, shown in red. When the scale of the network increases, the

computation starts dominating the performance partially at the point of about

7,000 neurons, shown in green. When the number of neurons are more than

about 11,000, the computation is fully dominating, shown in blue. The efficiency

comparison between the pipelined and non-pipelined model on a 500-chip SpiN-

Naker, modeling up to 15,000 fully-connected neurons, is shown in Figure 7.10.

The pipelined model is more efficient than the non-pipelined model in most of

the cases and its efficiency can reach as high as 0.8 when computation dominates.

The efficiency of the non-pipelined model increase when the ratio of neurons to

processors increases, getting close to 1 when the ratio is large. However, in that

case, the system behavior is closer to serial computing than to parallel computing.

5According to table 7.1, when p ≥ 1600, β
4n ≥ ob

n√
p ; when p < 1600 and n > 1360,

θf
n2

p > of
n√
p and θb

n2

p > ob
n√
p . So on any network with a population of 1360 neurons and

above, the computation time of GroupB processors is either hidden by the communication or
hidden by the computation time of the GroupA processors.
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Figure 7.9: A performance comparison between the non-pipelined (CBP) and the
pipelined (PCBP) models. Initially the performance of the pipelined model is
dominated by the communication shown in red (situation 1). When the scale
of the network increases, the computation starts dominating the performance
partially at the point of about 7,000 neurons, shown in green (situation 2). When
the number of neurons are more than about 11,000, the computation is fully
dominating, shown in blue (situation 3).

In the second simulation, the effect of running a fixed number (5000) of neu-

rons on a variant number of SpiNNaker chips is considered. As shown in Figure

7.11, it is very effective to use more chips initially, as the processing time drops

dramatically. However, the gain in the performance becomes small at about 210

chips and above, where the communication becomes the bottleneck. The effi-

ciency comparison is shown in Figure 7.12.

7.5 Partially-connected RNNs

This far, we have restricted our discussion to fully-connected neuronal networks.

The proposed pipelined model works also for partially-connected RNNs. Connec-

tion weights in a partially-connected network form a sparse matrix. The efficiency

of computation is effected by the distribution of elements in the matrix. If the

elements are evenly distributed, each processor carries out a similar amount of

computation and the backpropagation algorithm can be parallelized well. Oth-

erwise, the workloads in the processors are not balanced, in which case, some of

the processors may be busy while others are idle. A partially-connected RNN
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Figure 7.10: Efficiency comparison. Different situations of the pipelined model
are illustrated by different colors. The pipelined model is more efficient than
the non-pipelined model in most of the cases and its efficiency can reach as high
as 0.8 when computation dominates. The efficiency of the non-pipelined model
increases when the ratio of neurons to processors increases, getting close to 1
when the ratio is large. However, in that case, the system behavior is closer to
serial computing than to parallel computing.
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Figure 7.11: Performance comparison. It is very effective to use more chips ini-
tially (blue), as the computation is dominating. However, the processing time
stops descending when using more than about 360 chips, in which case commu-
nication becomes the bottleneck (red).
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Figure 7.12: Efficiency comparison. Initially the efficiency of the pipelined model
is high (blue), and then the efficiency drops because of the communication dom-
inating (green and red), while in the non-pipelined case, the efficiency is always
descending.

is less computationally intensive due to the sparsity. However, the gain in the

communication time by the CBP partitioning is very little, as the communication

can only be avoided when all of the elements in a column/row of the sub-matrix

are non-zero (NZ) elements, which is a very rare case in a partial problem.

7.5.1 The data structure

The definition of the data structure is a problem of sparse matrix storage. Using

sparsity saves a large amount of computation and memory space. In this case,

the data structure has to be optimal for the sparse matrix-vector multiplication

(SpMxV)). There are lots of proposed optimization techniques to improve the

performance of SpMxV [KGK08].

A sparse data structure should be both compact and easy to access. The

compressed column storage (CCS) [DGL89] is a widely used storage scheme for

sparse matrices. The CCS scheme gets NZ elements in order from each column

and keeps them in a continuous memory space. The representation of elements is

given by three one-dimensional arrays. The first array keeps the numerical values

of NZ elements. The second array keeps a list of row indices. There is one to

one mapping between the first and the second array, and therefore both of them

have a number of members equal to the total number of NZ elements. The third
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array contains address pointers each of which points to an element in the first

and the second arrays, indicating the starting address of a column. The length

of the third array is equal to the number of columns. As an example, consider

the matrix A below: 
1 −2 0 0

0 0 4 0

9 0 0 −1

5 7 0 8


The corresponding CCR representation is:

Table 7.3: Compressed Column Order Storage

ID 0 1 2 3 4 5 6 7

Val 1 9 5 -2 7 4 -1 8

Row 0 2 3 0 3 1 2 3

Col start 0 3 5 6

In Table 7.3 ”Val”, ”Row” and ”Col start” denote the first, second and third

array respectively.

The CCS scheme is quite efficient during the forward SpMxV computation

but is inefficient during the backward SpMxV computation. The backward com-

putation requires instant row-wise accessing of NZ elements. The compressed

row storage (CRS) scheme, on the other hand, keeps the matrix row-wise and

hence optimizes the backward computation. To achieve high computation speed

in both phases, the weights for partially-connected RNNs are duplicated (not as

in the fully-connected case), and CCS and CRS for forward and backward are

used respectively. The drawback of duplicating weights is that the updating time

is doubled, and it requires more memory space. In a practical problem, the dupli-

cated updates will not decrease the performance too much, firstly because there

is usually a long interval between two updates and secondly both the weight sets

are located in the same processor.

7.5.2 Analytical comparison

In this study, assuming each neuron connects to a fixed population of m other

neurons, the number of NZ elements in each row of the sparse matrix is m and
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there are mn NZ elements in the sparse matrix in total. If the weights are

uniformly distributed, there will be also about m NZ elements in each column.

There are an average of mn/p NZ elements in each sub-matrix. Therefore, the

computation times for the forward and backward phases is θsfmn/p and θsbmn/p

respectively. The communication is the same as in Table 7.1. The results are

summarized in Table 7.4

Table 7.4: The computation and communication time of partially-connected
RNNs

Operations Forward Backward

Comms. pipelined step1 step2 step1 step2
α
8
n+ 2β n√

p
β
4
n α

8
n+ 2β n√

p
β
4
n

Comp. GroupA θsf
mn
p

θsb
mn
p

Comp. GroupB of
n√
p

ob
n√
p

On a single processor

The time required T sseri for processing one forward tick plus one backward tick in

partially-connected RNNs on a single processor:

T sseri = (θsf + θsb)mn+ (of + ob)n (7.22)

The non-pipelined model

The time required in the non-pipelined model for one forward tick plus one back-

ward tick in partially-connected RNNs T snppara is:

T snppara = (θsf + θsb)
mn

p
+ (of + ob)

n
√
p

+ (
α

4
+ 2β +

4β
√
p

)n (7.23)

The pipelined mode

The time required for one forward tick plus one backward tick T sppara in the

partially-connected RNNs is:

Situation1 Communication takes more time than either forward or backward

computation when p ≥ 4θsb
m
β

. In this situation, computation is fully hidden

behind communication.

T sppara =
β

2
n (7.24)
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Situation2 Communication takes more time than forward computation, but

takes less time than backward computation, when 4θsf
m
β
≤ p < 4θsb

m
β

. In this

situation, communication is hidden partially.

T sppara = (θsb
m

p
+
β

4
)n (7.25)

Situation3 Communication takes less time than forward or backward computa-

tion when p < 4θsf
m
β

. In this situation, the communication is hidden behind the

computation.

T sppara = (θsf + θsb)
mn

p
(7.26)

7.5.3 Memory requirements

Input histories and delta errors consume the same amount of memory space in

a partially-connected RNN and a fully-connected RNN. However, a partial RNN

requires an additional memory space for duplicated weights. CCS weights for the

forward phase take (2mn + n/
√
p). CRS weights and weight derivatives for the

backward phase take (3mn+ n/
√
p). So we get Table 7.5:

Table 7.5: The memory requirements for a GroupA processor in partially-
connected RNNs

Elements Symbol Number

CCS weights wccs
2mn
p

+ n√
p

CRS Weights and Wight Derivatives wcrs,∆w
3mn
p

+ n√
p

Input Histories o n√
p
TtkItv

Delta Errors δ n√
p

Let each element be s bytes and total memory usage be Mpart, we get:

Mpart = [5
mn

p
+ (TtkItv + 3)

n
√
p

]s (7.27)
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Figure 7.13: Performance comparison between non-pipelined model and pipelined
model on 500 SpiNNaker chips, modeling up to 5000 neurons with a fixed number
of 500 connections per neuron. In this case, the number of connections remains
constant when the number of neurons increases, hence the time cost increases
linearly. Since less communication is required as compared to the fully-connected
case, the computation keeps dominating in this scenario.
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Figure 7.14: Efficiency comparison. The efficiency remains almost constant when
the number of neurons increases, since the computation is always dominating in
this scenario.
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Figure 7.15: Performance comparison between non-pipelined model and pipelined
model on modeling 5000 neurons with a fixed 500 connections per neuron, on
SpiNNaker with up to 1000 chips.
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Figure 7.16: Efficiency comparison.
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7.5.4 Performance estimation

According to the simulation results, we have6:

θsf = 65, θsb = 95 (7.28)

Let m = 500. Similar evaluations as shown in the previous section are performed.

Figure 7.13 shows the performance when modeling a range of numbers of neurons

with a fixed number of connections on 500 SpiNNaker chips. Figure 7.14 shows

the efficiency comparison of the non-pipelined model to the pipelined model.

Figure 7.15 shows performance curves when modeling 5000 neurons on a number

of SpiNNaker chips, and Figure 7.16 shows the efficiency comparison.

7.6 SpiNNaker VS. PC

I

O1

O2

H1

H2

Output1

Output2

Hidden1

Hidden2

Input
400

800

61

50-5000

50-5000

Figure 7.17: A recurrent neural network

Here, the performance on a 500-chip SpiNNaker machine to the performance

on a Pentium 3.2GHz PC with 1GB RAM are compared. The network used

for testing is a model of word reading, called the “primary system” [WR07,

WCWRed]. The primary system model comprises one input layer, two hid-

den layers and two output layers as shown in Figure 7.17 (each circle denotes

a layer of neurons). There are 400 neurons in the input layer I, 800 neurons in

6Because the weight derivatives are calculated in the backward phase according to equation
7.6, the backward computation takes longer than the forward computation
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the output layer O1, 61 neurons in the output layer O2, and a variable number

of 50 - 5000 neurons in each hidden layer. Weights are updated once after a

batch. There are 8000 GroupA processors in the system (16 GroupA processors

per chip). Assuming the number of hidden neurons in one hidden layer is h. For

both fully-connected and partially-connected networks, we have:

Ttk = 5, Itv = 1, Ppt = 3000, n = 1261 + 2h, p = 8000 (7.29)

The performance on the 500-chip SpiNNaker machine is estimated analytically

based on the equations developed in previous sections. The simulation time

required for one update T SpiNN is:

T SpiNN = TparaTtkItvPpt (7.30)

The performance on the Pentium PC is obtained from Lens simulations. Re-

gression analysis on results from Lens simulations confirms that in the fully-

connected case the processing time T pcfull (in seconds) can be described by the

quadratic equation:

T pcfull = 0.000421h2 + 0.308h+ 180 (7.31)

whereas in the partially-connected case (a fixed number of connections), the

relationship between time T pcpart and number of hidden units h is clearly linear,

and can be described by the equation:

T pcpart = 0.594h+ 180 (7.32)

7.6.1 The fully-connected network

The primary system model with full connections (each neuron connects to every

other neurons) is firstly investigate.

Speed

The processing time required for one update is listed in Table 7.6.

In Table 7.6, “Hidden” is the number of neurons in one hidden layer; “Time

on Spi.” is the processing time for one weight update on the 500-chip SpiNNaker
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Table 7.6: The time required for one update of the fully-connected networks

Hidden Time on Spi. (s) Sub-Matrix Time on PC (s)

5000 16.1 125x125 12245

4500 13.6 114x114 10091

4000 11.6 103x103 8148

3500 9.71 92x92 6415

3000 7.96 81x81 4893

2000 5.52 59x59 2480

1000 3.42 36x36 909

500 2.37 25x25 439

Figure 7.18: The speed comparison of the fully-Connected networks on SpiNNaker
and on the PC.
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machine, and “Sub-Matrix” is the size of the weight matrix each processor is

modeling. “Time on PC” is the processing time on the Pentium PC simulation.

The speed comparison is shown in Figure 7.18. According to the results shown

in Figure 7.18, the simulation speed on a 500-chip SpiNNaker (right scale) is ap-

proximately 400-700 times faster than the simulation speed on the Pentium PC

(left scale). On both SpiNNaker and PC, the processing time increases exponen-

tially when the size of the network increases.

Memory usage

Each element in this implementation is 16-bit (2 bytes), so s = 2. Assuming up

to 60KB local memory in each processor is available to use, we have:

Mfull < 60000 (7.33)

By substituting Equation 7.20, and Equation 7.29 to Equation 7.33, we get:

h < 4870

As a result, with 500 SpiNNaker chips, it is possible to model a fully-connected

RNN with up to about 4870 neurons per hidden layer.

7.6.2 The partially-connected network

In this simulation, the same “primary system” model, as the one used above, is

used, but with only partial connections – each neuron connects to a fixed number

of 500 other neurons (m = 500).

Speed

Results from the SpiNNaker simulation and from the PC simulation are listed in

Table 7.7:

The speed comparison shown in Figure 7.19 indicates that the SpiNNaker

machine (right scale) is about 200-300 times faster than the PC (left scale) in

simulating the partially-connected networks. On both SpiNNaker and PC, the

processing time increases linearly when the number of hidden units increases.
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Table 7.7: The time required for one update of the partially-connected networks

Hidden Time on Spi. (s) Time on PC (s)

5000 11.82 3150

4000 9.72 2556

3000 7.62 1962

2000 5.52 1368

1000 3.42 774

500 2.37 447

Figure 7.19: The speed comparison of the partially-connected networks on SpiN-
Naker and on the PC.
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Memory usage

According to Equation 7.27, and Equation 7.29. Let s = 2 and m = 500. For

Mpart < 60000, we get:

h < 22011

As a result, with a 500-chip SpiNNaker machine, we are able to simulate a

partially-connected RNN with up to about 22011 neurons per hidden layer using

the duplicated compressed storage scheme.

7.7 Discussion and conclusion

This chapter presents an efficient implementation of MLP networks with the

BP rule on a 2D torus-connected CMP topology. An efficient pipelined map-

ping scheme is proposed over the traditional non-pipelined scheme. By using the

pipelined model, the communication can be localized and communication/com-

putation overlap is allowed to avoid/reduce the overhead. Compared to the tra-

ditional non-pipelined mode, our scheme is more efficient in most practical cases.

A detailed performance analysis of such an implementation is also presented. A

mapping scheme is usually a trade-off between computation and communications.

The performance curves shown are significant and can help to determine the ideal

number of processors for a given scale of problem. We have shown analytically

and through simulation that SpiNNaker is suited for computing MLP networks

with the BP rule, providing a path to the further development of parallel solutions

for the simulation of large-scale neural networks.

We have focused our analysis on recurrent networks. The pipelined (PCBP)

model can also be applied to feedforward networks. To do this, each sub-matrix

block (dot-filled blocks shown in Figure 7.1(c)) needs to be mapped on such a

topology. Instead of using the same weight matrix in each tick as we do for

recurrent networks, different sub-matrix blocks will be applied each time after

update in the feedforward case, and it is still able to get benefits from the pipelined

model.

There is no doubt that mapping schemes are mostly topology or architec-

ture dependent. In this chapter, analysis is made on the torus-connected CMP

topology and SpiNNaker is used as a platform for evaluation. The CBP mapping

relies on a torus-like topology to partition the network into squares to achieve
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good balance between the forward and backward phases of computation. The

main contribution of this work is the new pipelined model which increases the

efficiency of the original CBP mapping. The pipeline model may be applicable

to other mapping schemes on other topologies.

The Drain time of the pipeline during analysis are not taken account. The

large sub-matrix partition provides better consistency which leads to an improve-

ment in the efficiency (load initialization and procedure call overheads). There-

fore, an excessive number of processors with very small sub-matrix partitions are

not recommended.

The communication bottleneck is that the receiving end during single node

accumulation. It causes a blockage in the communication system, if an output

processor (GroupB processor) receives too many packets at a time. This problem

can be solved by a binary tree comprised of more GroupB processors. GroupA

and GroupC processors are on the same CMP, this also brings a possibility to

speedup the communication by using shared a memory scheme instead of using

the standard multi-cast mechanism provided by the on-chip router.

There is a possible workload balance problem within different groups of pro-

cessors: There are three groups of processors. In each column/row of processing,

the workloads of Groups B and C are fixed, while the workload of Group A is

variable, depending on the scale of the neural network. It has been shown that

for any network with more than 1360 neurons on a system with fewer than 1600

processors, the processing time of Group A dominates. On a system with more

than 1600 processors, the communication time dominates. As a result, the time

cost of Groups B and C is always hidden in the pipeline when the system scale

is large.

There is also a possible workload balance problem caused by neural network

applications: The differences in neuron population in different layer of RNNs will

NOT cause any workload balance problem, since RNNs use concurrent updating.

But a non-uniform distribution of connections (which may happen in partially-

connected networks) can cause balance problems. Workload balance problems

are very common issues in parallel distributed processing, and we are not focused

on solving these problems in this study.

We focus mostly on the communication between processors in the same colum-

n/row, while ignoring the concurrency of communication between processors in
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different columns/rows. Since the communication is well localized to rows/-

columns and the bottleneck is the packet receiving operation, the communication

overhead brought in by the concurrency can be neglected.

One potential issue involved in the implementation is the synchronization be-

tween each group of processors. For instance, a GroupC processor needs to receive

and accumulate the four packets generated from the first column of sub-matrix

computation, by four GroupA processors in the same column, before moving on

to process the next four packets generated from the second column of sub-matrix

computation. Neither packets from different columns of the sub-matrix, nor the

ones from different columns of processors should be mixed up. In a parallel

system, the order of packet arrivals can not be guaranteed, which consequently

requires a receiving processor to be able to identify the source of a packet (from

which processor and which column/row of sub-matrix processing the packet was

transmitted). A synchronization mechanism is required to solve this problem.



Chapter 8

Conclusion

8.1 Summary of thesis

This thesis explores algorithms as well as software implementation for efficient

parallel simulation of neural networks on the SpiNNaker chip multiprocessor sys-

tem. The main focus are on dealing with communication overhead incurred by

the distributed processing, minimizing the processing time, and saving memory

usage. Two typical neural networks with learning rules have been investigated:

the spiking neural network model with STDP learning and the multi-layer percep-

tron model with BP learning. The modeling schemes are either fully implemented

and tested (in the case of spiking neural network with STDP learning), or ana-

lytically studied and evaluated (in the case of multi-layer perceptron model with

BP learning).

In this thesis, initially, a brief introduction to the modeling theory of spiking

neural networks is presented in Chapter 2. Neural network applications are intrin-

sically parallel systems. The large population of processing units and complicated

inter-connections are the source of the great potential of a neural network sys-

tem, but also making the neural network modeling task extremely computation-

ally demanding, which over-stretches the resources of the conventional desktop

computers in simulating large-scale neural networks.

There have been many attempts to build parallel engineering systems for sim-

ulating large-scale neural networks. They were reviewed in Chapter 3. Most of

the solutions have their particular benefits as well as downside. Based on the

study of neural network models and existing engineering systems, we find that

neuromorphic hardware ought not to be hardwired to a certain neural model,

175
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since neural modeling research is still in the discovering stage. Neuromorphic

hardware also needs to deliver considerable processing power for large-scale net-

work simulation. The system reconfigurability with variant size is necessary to

be applied to different fields. A new system called SpiNNaker was proposed ac-

cordingly to these requirements. SpiNNaker not only provides a general-purpose

and high-performance platform for large-scale neural network simulation, but it

is also flexible, scalable and power efficient. These features create the potential

of using SpiNNaker for very different purposes. The proposed SpiNNaker archi-

tecture raises the research topic of understanding how to map neural models onto

such a system – a topic investigated in the rest of the chapters.

Chapter 4 discusses building a neural system using the Izhikevich model on a

single ARM968 processor. The first problem addressed was to determine how to

simulate the Izhikevich equations efficiently on the ARM968 using 16-bit fixed-

point arithmetic. A scheme called “dual scaling factor” was used to achieve an

accurate resolution without sacrificing performance. By converting the presenta-

tion of the equations, and using ARM specific instructions, 1 ms simulation can

be performed with 6 fixed-point mathematical operations plus 2 shift operations.

The approach of modeling neural representations was then introduced – using an

event-address mapping (EAM) scheme to store synaptic weights in the external

memory at the receiving (post-synaptic) end. A lookup table maintains a map-

ping from the spike event to the address of the synaptic weight. Synaptic weights

are fetched and transferred into the local memory when a spike arrives. Being

an important feature of spiking neural networks, the synaptic delays are also im-

plemented in this model. An event driven model is used for system scheduling.

At the end of Chapter 4, the system was functionally tested by running a small

network, and the performance was evaluated.

In Chapter 5, the previous single processor system is extended to a multi-

processor system. Software running on the host PC called “InitLoad” was devel-

oped to do the automatic mapping. “InitLoad” loads the neural network descrip-

tion files, and converts them into data files which can be loaded onto SpiNNaker.

The multi-processor simulation was tested using the four-chip SoC designer model

of SpiNNaker to produce coincident results as Matlab simulations. The system is

further tested by running a Doughnut Hunter neural application on both the SoC

Designer model and the physical SpiNNaker Test Chip. Based on the experience

gained from this study, software architecture for SpiNNaker was discussed at the
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end of this chapter, leading to future study.

STDP was selected as the learning rule for neural network training. The

implementation of STDP on SpiNNaker was described in Chapter 6. The dis-

tributed nature of parallel processing causes an inefficiency when implementing

STDP on SpiNNaker using traditional pre-post-sensitive scheme. The problem is

solved by an alternative pre-sensitive scheme, which triggering STDP only when

a pre-synaptic spike arrives, because only at that time are the synaptic weights

in the local memory of a processor and it only requires the weights to be kept in

one order (indexed by the pre-synaptic neuron). Due to the difference between

the electronic and biological time of packet arrival caused by the synaptic delay, a

deferred event-driven model is used to postpone the STDP until there is enough

information in the history record, which guarantees the size of time window for

STDP. The result of the neural network with STDP simulation was shown at the

end of the chapter.

As universal neuromorphic hardware, SpiNNaker is designed to support differ-

ent neural models. The feasibility of modeling MLP networks onto SpiNNaker was

investigated in Chapter 7. To achieve low communication overheads, the CBP

scheme was used to partition the weight matrix. The performance of training

MLPs on SpiNNaker was estimated analytically. To achieve better performance,

a new scheme, based on the CBP scheme, called the PCBP scheme, is proposed

to allow overlapping of communication and processing. The performance analy-

sis shows that the PCBP scheme is more efficient than the CBP scheme in both

full-connection and partial-connection cases. The memory requirements are also

estimated for both types of network. The time of training the primary system

model on SpiNNaker with the time on a single PC, is compared, to highlight the

speedups achieved.

The research work described in this thesis demonstrates the feasibility of, and

provides the implementation details for, modeling different types of neural net-

work on a scalable chip multiprocessor system. During the study, a number of

problems were solved by developing novel approaches which may also be applica-

ble to other, larger, neural hardware models.



CHAPTER 8. CONCLUSION 178

8.2 Future work

The research discovers several potential issues related to the real-time parallel

simulation of neural networks, leading to further investigation:

1. Supporting more neural models. Spiking neural networks are the type of

neural network that SpiNNaker was originally designed for. The Izhike-

vich neuronal model is used as an example during the study. There are

also a range of other popular neuronal models such as the LIF model and

the Hodgkin-Huxley model. They can also be implemented on SpiNNaker.

Different models can be integrated into the system library, then users can

choose which model to use in their simulation. The implementation of a

neuronal model is dependent on other parts of the system, making it easy to

extend the library of models. Other learning rules can also be investigated

and implemented, in addition to STDP.

2. Monitor processor application. There is very little monitor processor func-

tion developed in this thesis. More monitor processor functions will be

required for system management and fault-tolerance purposes..

3. Neuron to processor mapping. As previously discussed in Section 5.6.1,

a well defined algorithm for neuron to processor mapping for the spiking

neural network simulation is needed. This is a little bit complicated because

it relates to how the neurons are indexed in an application network. The

indices need to be distance-related to give extra information. This may

require a rule to be built for indexing neurons based on their distances and

communication patterns.

4. An easy-to-use software model. As previously discussed in Section 5.6.4, a

well developed software model will be required to reduce the time for a new

user to use such a parallel system. An interface between SpiNNaker and

a general-purpose neural network description language is much preferred.

It is ideal for users to run their existing application on SpiNNaker without

changing their original code. A graphical user interface running on the Host

PC will also be required for the easy downloading of neural codes, to check

neuron states, and do the debugging when necessary.

5. More application tests. As soon as a more comprehensive software model

is built on SpiNNaker, more applications can be run on SpiNNaker for the
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further testing of the system. A more complicated application supported

by a larger scale neural network is a good examination of the whole system.

6. New neural functions. The functionality of neurons implemented on SpiN-

Naker so far is very simple. There are a lot more neural dynamic effects,

such as short-term plasticity, dopamine effects, conductance-based synapses

and so on. These functions may also be required in some neural simulations.

In addition, neural network theory is still developing, leading to discover-

ies of novel functions and models. The SpiNNaker neural library must be

regularly updated to support the new theories.



Bibliography

[AB03] R.A. Ayoubi and M.A. Bayoumi. Efficient mapping algorithm of

multilayer neural network on torus architecture. Parallel and Dis-

tributed Systems, IEEE Transactions on, 14(9):932–943, Sept. 2003.

[AB07] Sophie Achard and Ed Bullmore. Efficiency and cost of economical

functional brain networks. PLoS Comput Biol., 3:E17, 2007.

[AC81] J. Angevine and C. Cotman. Principles of Neuroanatomy. NY:

Oxford University Press, New York, 1981.

[BDM04] Tom Binzegger, Rodney J. Douglas, and Kevan A. C. Martin. A

quantitative map of the circuit of cat primary visual cortex. The

Journal of Neuroscience, 24:8441–8453, 2004.

[Ble87] Guy Blelloch. Network learning on the connection machine. In In

Proceedings of the Tenth International Joint Conference on Artifi-

cial Intelligence, pages 323–326, 1987.

[Boa00] K. A. Boahen. Point-to-point connectivity between neuromorphic

chips using address events. IEEE Trans. Circuits Syst., 47(5):416–

434, 2000.

[BP98] Guoqiang Bi and Muming Poo. Synaptic modifications in cul-

tured hippocampal neurons: dependence on spike timing, synaptic

strength, and postsynaptic cell type. The Journal of Neuroscience,

18(24):10464–10472, 1998.

[BPF03] W.J. Bainbridge, L.A. Plana, and S.B. Furber. The design and test

of a smartcard chip using a chain self-timed network-on-chip. In

Proc. DATE’04, 2003.

180



BIBLIOGRAPHY 181

[Bri] http://www.briansimulator.org/.

[BRSW91] W. Bialek, F. Rieke, Rob R. De Ruyter Van Steveninck, and

D. Warland. Reading a neural code. Science, 252:1854–1857, 1991.

[BT89] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and distributed

computation: numerical methods. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1989.

[BY00] G.A.P.C. Burns and M.P. Young. Analysis of the connectional

organization of neural systems associated with the hippocampus in

rats. Philosophical Transactions of the Royal Society of London,

355:55C70, 2000.

[Caj02] Santiago R.y Cajal. Texture of the Nervous System of Man and the

Vertebrates. Springer, 2002.

[CEVB97] S.M. Crook, G.B. Ermentrout, M.C. Vanier, and J.M. Bower. The

role of axonal delay in the synchronization of networks of cou-

pled cortical oscillators. Journal of Computational Neuroscience,

4:161C172, 1997.

[CG90] B. W. Connors and M. J. Gutnick. Intrinsic firing patterns of

diverse neocortical neurons. Trends in Neurosci., 13:99–104, 1990.

article.

[CK88] C. E. Carr and M. Konishi. Axonal delay lines for time measure-

ment in the owl’s brainstem. PNAS, 85:8311–8315, 1988.

[CKWR09] Gert Cauwenberghs, Moonjung Kyung, Eric Weiss, and Venkat

Rangan. A vlsi implementation: Izhikevich’s neuron model. Tech-

nical report, BENG/BGGN 260 Neurodynamics, University of Cal-

ifornia San Diego, 2009.

[DGL89] I. S. Duff, Roger G. Grimes, and John G. Lewis. Sparse matrix test

problems. ACM Trans. Math. Softw., 15(1):1–14, 1989.

[Ecc73] J. Eccles. The Understanding of the Brain. NY: McGraw-Hill Book

Co., 1973.



BIBLIOGRAPHY 182

[FE91] Daniel J. Felleman and David C. Van Essen. Distributed hierar-

chical processing in the primate cerebral cortex. Cerebral Cortex,

1:1–47, 1991.

[FSS97] Shou King Foo, P. Saratchandran, and N. Sundararajan. Parallel

implementation of backpropagation neural networks on a heteroge-

neous array of transputers. Systems, Man, and Cybernetics, Part

B, IEEE Transactions on, 27(1):118–126, Feb 1997.

[FT07] Steve Furber and Steve Temple. Neural systems engineering. Jour-

nal of the Royal Society Interface, 4(13):193–206, April 2007.

[FTB06] S. B. Furber, S. Temple, and A. D. Brown. On-chip and inter-chip

networks for modelling large-scale neural systems, 2006.

[GB08] Dan Goodman and Romain Brette. Brian: a simulator for spiking

neural networks in python. In Front. Neuroinform., 2008.

[GB09] Dan F M. Goodman and Romain Brette. The brian simulator. In

Front. Neurosci., 2009.

[GBC99] Jay R. Gibson, Michael Beierlein, and Barry W. Connors. Two

networks of electrically coupled inhibitory neurons in neocortex.

Nature, 402:75–79, 1999.

[GEN] http://www.genesis-sim.org/genesis/.

[GFvH94] Raphael Ritz1and Wulfram Gerstner, Ursula Fuentes, and J. Leo

van Hemmen. A biologically motivated and analytically soluble

model of collective oscillations in the cortex. Biological Cybernetics,

71:349–358, 1994.

[GHS09] Mark Glover, Alister Hamilton, and Leslie S. Smith. An analog

vlsi integrate-and-fire neural network for sound segmentation. In

Seventh International Conference on Microelectronics for Neural,

Fuzzy and Bio-Inspired Systems, 2009.

[GK02] Wulfram Gerstner and Werner M. Kistler. Spiking Neuron Mod-

els: Single Neurons, Populations, Plasticity. Cambridge University

Press, 2002.



BIBLIOGRAPHY 183

[GKES89] C.M. Gray, P. Konig, A.K. Engel, and W. Singer. Oscillatory re-

sponses in cat visual cortex exhibit inter-columnar synchroniza-

tion which reflects global stimulus properties. Nature, 338:334–337,

1989.

[GKvHW96] W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner. A

neuronal learning rule for sub-millisecond temporal coding. Nature,

383:76–78, 1996.

[GW89] C.D. Gilbert and T.N. Wiesel. Columnar specificity of intrinsic hor-

izontal and corticocortical connections in cat visual cortex. Journal

of Neuroscience, 9:2432–2442, 1989.

[HCG+08] Patric Hagmann, Leila Cammoun, Xavier Gigandet, Reto Meuli,

Christopher J. Honey, Van J. Wedeen, and Olaf Sporns. Mapping

the structural core of human cerebral cortex. PLoS Biol, 6:e159,

2008.

[Heb49] D. O. Hebb. The organization of Behavior. Wiley-Interscience,

New York, 1949.

[HGG+05] H. H. Hellmich, M. Geike, P. Griep, P. Mahr, M. Rafanelli, and

H. Klar. Emulation engine for spiking neurons and adaptive synap-

tic weights. In In Proc. IJCNN, page 3261C3266, 2005.

[HH52] A. L. Hodgkin and A. Huxley. A quantitative description of mem-

brane current and its application to conduction and excitation in

nerve. Physiol. London, 117:500–544, 1952.

[Hil01] Bertil Hille. Ion Channels of Excitable Membranes (3rd Edition).

Sinauer Associates Inc, 2001.

[HK04] H. Hellmich and H. Klar. An FPGA based simulation accelera-

tion platform for spiking neural networks. In Circuits and Systems,

2004. MWSCAS ’04. The 2004 47th Midwest Symposium on, vol-

ume 2, pages II–389–II–392 vol.2, July 2004.

[Hop82] J. J. Hopfield. Neural networks and physical systems with emergent

collective computational abilities. In Proceedings of the National

Academy of Sciences, volume 79, pages 2554 – 2559, 1982.



BIBLIOGRAPHY 184

[HTT06] M. Hartley, N. Taylor, and J. Taylor. Understanding spike-

time-dependent plasticity: A biologically motivated computational

model. Neurocomputing, 69(16):2005–2016, July 2006.

[IE08] Eugene M. Izhikevich and Gerald M. Edelman. Large-scale model of

mammalian thalamocortical systems. PNAS, 105:3593–3598, 2008.

[IF07] G. Indiveri and S. Fusi. Spike-based learning in VLSI networks of

integrate-and-fire neurons. In Circuits and Systems, 2007. ISCAS

2007. IEEE International Symposium on, pages 3371–3374, May

2007.

[IGE04] Eugene M. Izhikevich, Joe A. Gally, and Gerald M. Edelman. Spike-

timing dynamics of neuronal groups. Cerebral Cortex, 14:933–944,

2004.

[Ind03] G. Indiveri. A low-power adaptive integrate-and-fire neuron circuit.

In Circuits and Systems, 2003. ISCAS ’03. Proceedings of the 2003

International Symposium on, volume 4, pages 820–823, May 2003.

[Izh03] E. M. Izhikevich. Simple model of spiking neurons. IEEE Trans.

Neural Networks, 14(6):1569– 1572, 2003.

[Izh04] E. M. Izhikevich. Which model to use for cortical spiking neurons.

IEEE Trans. Neural Networks, 15(5):1063– 1070, 2004. article.

[Izh06] Eugene M. Izhikevich. Polychronization: Computation with spikes.

Neural Computation, 18(2):245–282, February 2006.

[Izh07] Eugene M. Izhikevich. Dynamical Systems in Neuroscience: The

Geometry of Excitability and Bursting. The MIT Press, 2007.

[JFW08] X. Jin, S. Furber, and J. Woods. Efficient modelling of spiking

neural networks on a scalable chip multiprocessor. In Proc. 2008

International Joint Conference on Neural Networks, Hong Kong,

2008.

[JGP+10] X. Jin, F. Galluppi, C. Patterson, A.D. Rast, S. Davies, S. Temple,

and S.B. Furber. Algorithm and software for simulation of spiking

neural networks on the multi-chip spinnaker system. In Proc. 2010

International Joint Conference on Neural Networks, 2010.



BIBLIOGRAPHY 185

[JLK+10a] X. Jin, M. Lujan, M.M. Khan, L.A. Plana, A.D. Rast,

S.R.Welbourne, and S.B. Furber. Algorithm for mapping multi-

layer bp networks onto the spinnaker neuromorphic hardware. In

Proc. International Symposium on Parallel and Distributed Com-

puting (ISPDC’2010), 2010.

[JLK+10b] X. Jin, M. Lujan, M.M. Khan, L.A. Plana, A.D. Rast, S.R. Wel-

bourne, and S.B. Furber. Efficient parallel implementation of mul-

tilayer backpropagation network on torus-connected cmps. In Proc.

of the ACM International Conference on Computing Frontiers,

2010.

[JMM89] K. Joe, Y. Mori, and S. Miyake. Simulation of a large-scale neural

network on a parallel computer. In Proc. 1989 Conf. Hypercubes,

Concurrent Computation Application, pages 1111–1118, 1989.

[JRG+09] X. Jin, A. Rast, F. Galluppi, M. Khan, and S. Furber. Imple-

menting learning on the spinnaker universal neural chip multipro-

cessor. In Proc. 16th Intl. Conf. on Neural Information Processing

(ICONIP2009), Bangkok, Thailand, 2009.

[JRG+10] X. Jin, A.D. Rast, F. Galluppi, S. Davies, and S.B. Furber. Imple-

menting spike-timing-dependent plasticity on spinnaker neuromor-

phic hardware. In Proc. 2010 International Joint Conference on

Neural Networks, 2010.

[KGK08] Kornilios Kourtis, Georgios Goumas, and Nectarios Koziris. Op-

timizing sparse matrix-vector multiplication using index and value

compression. In CF ’08: Proceedings of the 2008 conference on

Computing frontiers, pages 87–96, New York, NY, USA, 2008.

ACM.

[KH89] S. Y. Kung and J. N. Hwang. A unified systolic architecture for

artificial neural networks. J. Parallel Distrib. Comput., 6(2):358–

387, 1989.

[Kha09] Muhammad Mukaram Khan. Configuring a Massively Parallel

CMP System for Real-Time Neural Applications. PhD thesis, Com-

puter Science, University of Manchester, 2009.



BIBLIOGRAPHY 186

[KLP+08] M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E.Painkras, and

S. Furber. Spinnaker: Mapping neural networks onto a massively-

parallel chip multiprocessor. In In Proc. Intl. Joint Conf. on Neural

Networks (IJCNN2008), Hong Kong, 2008.

[Koh95] Teuvo Kohonen. Self-Organizing Maps. Springer Series in Informa-

tion Sciences, 1995.

[KPJ+09] M.M. Khan, E. Painkras, X. Jin, L.A. Plana, J.V. Woods, and S.B.

Furber. System level modelling for spinnaker cmp system. In Proc.

1st International Workshop on Rapid Simulation and Performance

Evaluation: Methods and Tools (RAPIDO’09), 2009.

[KS92] A. K. Kreiter and W. Singer. Oscillatory neuronal responses in the

visual cortex of the awake macaque monkey. European Journal of

Neuroscience, 4:369–375, 1992.

[KSA94] Vipin Kumar, Shashi Shekhar, and Minesh B. Amin. A scalable

parallel formulation of the backpropagation algoritm for hypercubes

and related architectures. In IEEE Transactions on Parallel and

Distributed Systems, volume 5, 1994.

[Lan03] J. Langner. Development of a Parallel Computing Optimized Head

Movement Correction Method in Positron Emission Tomography.

PhD thesis, University of Applied Sciences Dresden and Research

Center Dresden-Rossendorf, Germany,, 2003.

[Les95] Rmy Lestienne. Determination of the precision of spike timing in

the visual cortex of anaesthetised cats. In Biological Cybernetics,

1995.

[LMAB06] J. Lin, P. Merolla, J. Arthur, and K Boahen. Programmable con-

nections in neuromorphic grids. In 49th IEEE Midwest Symposium

on Circuits and Sysmtems, pages 80–84, 2006.

[Ltda] ARM Ltd. ARM RealView SoC Designer v7.1 User Guide.

[Ltdb] ARM Ltd. RealView Development Suite v3.1.



BIBLIOGRAPHY 187

[Mah92] M. Mahowald. VLSI analogs of neuronal visual processing: a syn-

thesis of form and function. PhD thesis, California Inst. Tech.,

Pasadena, CA, 1992.

[Mar06] H. Markram. The blue brain project. Nat Rev Neurosci., 7:153–160,

2006.

[MASB07] Paul A. Merolla, John V. Arthur, Bertram E. Shi, and Kwabena A.

Boahen. Expandable networks for neuromorphic chips. In IEEE

Transactions on Circuits and Systems, February 2007.

[MD91] Misha Mahowald and Rodney Douglas. A silicon neuron. Nature,

354:515 – 518, 1991.

[Mea89] Carver Mead. Analog VLSI and neural systems. Addison-Wesley

Longman Publishing Co., Inc., 1989.

[MGT08] Timothe Masquelier, Rudy Guyonneau, and Simon J. Thorpe.

Spike timing dependent plasticity finds the start of repeating pat-

terns in continuous spike trains. PLoS ONE, 3(1):e1377, 01 2008.

[MMG+07] L.P. Maguire, T.M. McGinnity, B. Glackin, A. Ghani, A. Bela-

treche, and J. Harkin. Challenges for large-scale implementations

of spiking neural networks on FPGAs. Neurocomputing, 71(1-3):13

– 29, 2007.

[MNTP03] L. Marner, J.R. Nyengaard, Y. Tang, and B. Pakkenberg. Marked

loss of myelinated nerve fibers in the human brain with age. J

Comp Neurol., 462:144–52, 2003.

[Mor03] RGM. Morris. The discovery of long-term potentiation. Philo-

sophical Transactions of the Royal Society of London, 358:617–620,

2003.

[MP43] W. Mcculloch and W. A. Pitts. A logical calculus of the ideas

immanent in nervous activity. Bulletin of Mathematical Biophysics,

5:115–133, 1943. incollection.

[MP69] M. Minsky and S. Papert. Perceptrons: An Introduction to Com-

putational Geometry. MIT Press, Cambridge, MA, 1969. book.



BIBLIOGRAPHY 188

[MT96] H. Markram and M. Tsodyks. Redistribution of synaptic efficacy

between neocortical pyramidal neurons. Nature, 382(382):807–810,

1996.

[NASV+03] Lionel G. Nowak, Rony Azouz, Maria V. Sanchez-Vives, Charles M.

Gray, and David A. McCormick. Electrophysiological classes of cat

primary visual cortical neurons in vivo as revealed by quantitative

analyses. J Neurophysiol, 89:1541–1566, 2003.

[NDK+09] Jayram Moorkanikara Nageswaran, Nikil Dutt, Jeffrey L. Krich-

mar, Alex Nicolau, and Alex Veidenbaum. Efficient simulation of

large-scale spiking neural networks using cuda graphics processors.

In International Joint Conference on Neural Networks, 2009.

[NEU] http://neuron.duke.edu/.

[NMW92] J. Nichols, A. Martin, and B. Wallace. From Neuron to Brain. MA:

Sinauer Associates, Inc., Sunderland, 3rd edition edition, 1992.

[PDG93] A. Petrowski, G. Dreyfus, and C. Girault. Performance analysis of

a pipelined backpropagation parallel algorithm. Neural Networks,

IEEE Transactions on, 4(6):970–981, Nov 1993.

[Pet94] A. Petrowski. Choosing among several parallel implementations of

the backpropagation algorithm. In Neural Networks, 1994. IEEE

World Congress on Computational Intelligence., 1994 IEEE Inter-

national Conference on, volume 3, pages 1981–1986 vol.3, Jun-2 Jul

1994.

[PFT+07] L. Plana, S. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and

S. Yang. A gals infrastructure for a massively parallel multiproces-

sor. IEEE Design & Test of Computers, 24(5):454–463, Sep.-Oct.

2007.

[PGG+05] Martin Pearson, Ian Gilhespy, Kevin Gurney, Chris Melhuish, Ben-

jamin Mitchinson, Mokhtar Nibouche, and Anthony Pipe. A real-

time, fpga based, biologically plausible neural network processor.

In In proceeding of Artificial Neural Networks: Formal Models and

Their Applications - ICANN 2005, 2005.



BIBLIOGRAPHY 189

[PNS09] D. Pecevski, T. Natschlager, and K. Schuch. Pcsim: a parallel simu-

lation environment for neural circuits fully integrated with python.

In Front. Neuroinform, 2009.

[RB88] Charles R. Rosenberg and Guy Blelloch. An implementation of

network learning on the connection machine. Connectionist models

and their implications: readings from cognitive science, pages 329–

340, 1988.

[RCF+05] M. LA ROSA, E. CARUSO, L. FORTUNA, M. FRASCA, L. OC-

CHIPINTI, and F. RIVOLI. Neuronal dynamics on fpga : Izhike-

vich’s model. In Proceedings of the International Society for Optical

Engineering, July 2005.

[RGJF10] A. D. Rast, F. Galluppi, X. Jin, and S.B. Furber. The leaky

integrate-and-fire neuron: A platform for synaptic model explo-

ration on the spinnaker chip. In Proc. 2010 International Joint

Conference on Neural Networks, 2010.

[RHM86] D.E. Rumelhart, G.E. Hinton, and J.L. Mcclelland. A General

Framework for Parallel Distributed Processing, chapter 2, pages 45–

76. MIT Press, 1986.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning

internal representations by error propagation, chapter 8, pages 318–

362. MIT Press, Cambridge, MA, USA, 1986.

[RJG+10] A.D. Rast, X. Jin, F. Galluppi, L.A. Plana, C. Patterson, and

S.B. Furber. Scalable event-driven native parallel processing: The

spinnaker neuromimetic system. In ACM International Conference

on Computing Frontiers 2010, 2010.

[RMG86] D. E. Rumelhart, J. L. Mcclelland, and The P. D. P. Research

Group. Parallel Distributed Processing: Explorations in the Mi-

crostructure of Cognition. Volume 1: Foundations. Cambridge,

MA: MIT Press, 1986.

[Roh] Douglas Rohde. Lens manual - the light, efficient network simulator.



BIBLIOGRAPHY 190

[Ros58] Frank Rosenblatt. The perceptron: A probabilistic model for infor-

mation storage and organization in the brain. Psychological Review,

65:386–408, 1958.

[RS97] Raphael RitzE and Terrence J Sejnowski. Synchronous oscillatory

activity in sensory systems: new vistas on mechanisms. Current

Opinion in Neurobiology, 7:536–546, 1997.

[SA01] Sen Song and L.F. Abbott. Cortical development and remapping

through spike timing-dependent plasticity. Neuron, 32(2):339 – 350,

October 2001.

[SBC02] H. Z. Shouval, M. F. Bear, and L. N. Cooper. A unified model of

nmda receptor-dependent bidirectional synaptic plasticity. PNAS,

99(16):10831–10836, August 2002.

[SBY95] J.W. Scannell, C. Blakemore, and M.P. Young. Analysis of connec-

tivity in the cat cerebral cortex. Journal of Neuroscience, 15:1463–

1483, 1995.

[SD99] M.F. Simoni and S.P. DeWeerth. Adaptation in a vlsi model of a

neuron. Circuits and Systems II: Analog and Digital Signal Pro-

cessing, IEEE Transactions on, 46(7):967–970, Jul 1999.

[Sin95] W. Singer. The role of synchrony in neocortical processing and

synaptic plasticity. In Physics of Neural Networks. Models of Neural

Networks II, pages 141–173, 1995.

[Siv91] M. Sivilotti. Wiring considerations in analog VLSI systems, with

application to field-programmable networks. PhD thesis, California

Inst. Tech., Pasadena, CA., 1991.

[SJ95] S.R. Schultz and M.A. Jabri. Analogue vlsi ‘integrate-and-fire’ neu-

ron with frequency adaptation. Electronics Letters, 31(16):1357–

1358, Aug 1995.

[SM98] V. Sudhakar and C. Siva Ram Murthy. Efficient mapping of back-

propagation algorithm onto a network of workstations. Systems,

Man, and Cybernetics, Part B, IEEE Transactions on, 28:841–848,

1998.



BIBLIOGRAPHY 191

[SMA00] Sen Song, Kenneth D. Miller, and L. F. Abbott. Competitive heb-

bian learning through spike-timing-dependent synaptic plasticity.

Nature Neuroscience, 3:919 – 926, 2000.

[SMJK98] T. Schoenauer, N. Mehrtash, A. Jahnke, and H. Klar. Maspinn:

Novel concepts for a neuroaccelerator for spiking neural networks.

In Proc. VIDYNN’98, Stockholm, 1998.

[SOM05] S. Suresh, S.N. Omkar, and V. Mani. Parallel implementation of

back-propagation algorithm in networks of workstations. Parallel

and Distributed Systems, IEEE Transactions on, 16(1):24–34, Jan.

2005.

[SS98] N. Sundararajan and P. Saratchandran. Parallel Architectures

for Artificial Neural Networks : Paradigms and Implementations.

Wiley-IEEE Computer Society Press, December 1998.

[ST02] Olaf Sporns and Giulio Tononi. Classes of network connectivity

and dynamics. Complexity, 7:28–38, 2002.

[Ste67] R. B. Stein. Some models of neuronal variability. Biophys., 7:37–68,

1967.

[STE00] O. Sporns, G. Tononi, and G.M. Edelman. Theoretical neu-

roanatomy: Relating anatomical and functional connectivity in

graphs and cortical connection matrices. Cerebral Cortex, 10:127–

141, 2000.

[STK05] O. Sporns, G. Tononi, and R. Kotter. The human connectome:

A structural description of the human brain. PLoS Comput Biol.,

1:245C251, 2005.

[Swa85] H. A. Swadlow. Physiological properties of individual cerebral ax-

ons studied in vivo for as long as one year. Journal of Neurophysi-

ology, 54:1346–1362, 1985.

[Swa88] H. A. Swadlow. Efferent neurons and suspected interneurons in

binocular visual cortex of the awake rabbit: receptive fields and

binocular properties. Journal of Neurophysiology, 59:1162–1187,

1988.



BIBLIOGRAPHY 192

[TFM96] Simon Thorpe, Denis Fize, and Catherine Marlot. Speed of pro-

cessing in the human visual. Nature, 381:520–522, 1996.

[TM07] Jean-Philippe Thivierge and Gary F. Marcus. The topographic

brain: from neural connectivity to cognition. Trends in Neuro-

sciences, 30:251–259, 2007.

[Tuc88] Henry C. Tuckwell. Introduction to Theoretical Neurobiology. Cam-

bridge University Press, 1988.

[WC90] B. W. Wah and L. Chu. Efficient mapping of neural networks on

multicomputers. In Int. Conf. Parallel Processing, pages I234–1241,

1990.

[WCWRed] Stephen R. Welbourne, J. Crisp, A. Woollams, and Matthew

A. Lambon Ralph. Phonological, deep and surface dyslexia from

a single pdp model of reading: An implementation of the primary

systems hypothesis. Psychological Review, submitted.

[WD07] J.H.B. Wijekoon and P. Dudek. Spiking and bursting firing patterns

of a compact vlsi cortical neuron circuit. In IJCNN, 2007.

[WR07] Stephen R. Welbourne and Matthew A. Lambon Ralph. Using

parallel distributed processing models to simulate phonological

dyslexia: The key role of plasticity related recovery. Journal of

Cognitive Neuroscience, 19:1125–1139, 2007.

[YI93] T. Yukawa and T. Ishikawa. Optimal parallel back-propagation

schemes for mesh-connected and bus-connected multiprocessors.

Neural Networks, 1993., IEEE International Conference on,

3:1748–1753, 1993.

[You92] M. P. Young. Objective analysis of the topological organization of

the primate cortical visual system. Nature, 358:152–155, 1992.

[ZMMW90a] Xiru Zhang, Michael McKenna, Jill P. Mesirov, and David L. Waltz.

The backpropagation algorithm on grid and hypercube architec-

tures. Parallel Computing, 14(3):317–327, 1990.



BIBLIOGRAPHY 193

[ZMMW90b] Xiru Zhang, Michael Mckenna, Jill P. Mesirov, and David L. Waltz.

An efficient implementation of the back-propagation algorithm on

the connection machine cm-2. Advances in neural information pro-

cessing systems, 2:801–809, 1990.

[ZTH+98] Li I. Zhang, Huizhong W. Tao, Christine E. Holt, William A. Har-

ris, and Muming Poo. A critical window for cooperation and compe-

tition among developing retinotectal synapses. Nature, 395:37–44,

1998.


