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Abstract

Radiomics studies identify imaging biomarkers that can be used to predict treat-
ment outcomes. One limitation is model over-fitting due to the high number of
radiomic features extracted from a single image. Careful feature selection is there-
fore paramount to ensure redundant information is discarded, useful information
retained. The aim of this study is to evaluate the test-retest repeatability of ra-
diomic features from the GTV and peritumoral regions of T2-weighted and Dixon
water-only images in cervical cancer patients.
21 scans, each comprising of 2 T2-weighted and 2 Dixon sequence images, were in-
cluded in this study. This resulted in a total of 42 test-retest pairs of images. The
GTV was contoured by a single observer on each of the T2W images and transferred
through rigid registration to the Dixon sequence images. For each image, radiomic
features were extracted from 2 regions: the GTV and a peritumoral region extending
2 voxels (1.875mm for T2-weighted images and 1.923mm for Dixon images) from
the GTV contour but restricted to remain inside the cervix/uterus so as not to
sample surrounding tissues. PyRadiomics was used to extract first-order, shape,
and texture radiomic features from the original T2W and Dixon images, and their
Laplacian of Gaussian-filtered (σ = 3, 4, and 5) and Wavelet-filtered counterparts.
Spearman’s |ρ| was used to exclude features highly correlated with volume (|ρ| ≥
0.9). Of the remaining features, those with minimal variation in a test-retest pair of
images were selected using one-way random effects Intraclass Correlation Coefficient
(ICC), to assess absolute agreement of feature values. The criteria ICC(1,1) ≥ 0.9
was used. Remaining features were grouped by feature class and the feature with
the lowest Spearman’s correlation to volume within the class was considered stable.
A total of 1130 features were extracted from each image. Features with Spear-
man’s |ρ| ≥ 0.9 in relation to volume were discarded. For the T2W images, 86%
and 87.1% of the 1130 features extracted from the GTV and peritumoral regions
respectively remained. For the Dixon images, 86.1% and 87.8% of the 1130 features
extracted from the GTV and peritumoral regions respectively remained. Features
with ICC(1,1) ≥ 0.9 were considered to have excellent test-retest repeatability and
were retained. For the T2W images, these were 24.9% and 7.6% of the 1130 ra-
diomic features extracted from the GTV and peritumoral region, respectively. For
the Dixon images, they were 4.6% and 4.0% of the 1130 radiomic features extracted
from the GTV and peritumoral region, respectively.
In conclusion, stable features were identified for each feature class and can be used
in larger data-sets to build reliable predictive models. To confirm generalisability of
our findings, validation of our results on a similar data-set is required.
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Chapter 1

Introduction

1.1 Cervical Cancer

Cervical Cancer (CC) is the fourth most common cancer in women, with slightly
more than half of diagnosed women dying in 2020 [1] worldwide. Figure 1.1.1 shows
the incidence and mortality rates of the most common cancers in women as of 2020,
according to the World Health Organisation (WHO) International Agency for Re-
search on Cancer (IARC) 2020. The incidence and mortality of CC is estimated to
grow by 21% and 27% respectively by the year 2030. This is especially in middle
and low-income countries where incidence is higher and mortality is twice the rate
in high income countries [2]. With intervention such as the elimination strategy
employed by WHO, however, it is projected that the incidence and mortality could
reduce significantly [2]–[4].

According to WHO, cervical cancer can be controlled through primary preven-

Figure 1.1.1: Estimated number of cancer incidence and mortality worldwide in
females, of all ages in the year 2020 [5]
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tion, secondary prevention, tertiary prevention and palliative care [2], [6]. Primary
prevention entails vaccination against Human Papilloma Viruses (HPV). Secondary
prevention entails screening and treating pre-cancerous lesions while tertiary pre-
vention entails treatment of cervical cancer and palliative care. These prevention
mechanisms are, however, not easily accessible to populations in low and middle
income countries, resulting in the current projected rise in incidence and mortality
rates.
A majority, (over 95%), of cervix cancer cases are attributed to persistent infection
with the sexually transmitted HPV [1]. There are various types of HPV, with the
most notorious being types 16 and 18 which have been attributed to 70% of cer-
vical cancer cases [1]. While most HPV infections and pre-cancerous lesions clear
up on their own, HPV infections can become chronic and pre-cancerous lesions can
progress to invasive cancer. Women with a weakened immune system, such as those
living with HIV are therefore at a higher risk [7]. HPV, however, can be vaccinated
against and efforts by the World Health Organisation (WHO) are being increased
to ensure vaccine uptake [8], especially in young adolescent girls [9].
The most common screening test is the Pap smear test, which detects precancerous
cells or cancerous cells (indicative of cervical cancer). A positive result is followed by
a histopathological assessment of a cervical biopsy and imaging [10] to check extent
of disease. Cervical cancer staging is determined clinically based on tumour size
and the degree of pelvic extension. Figure 1.1.2 show a summary of cervical cancer
staging according to the Fédération Internationale de Gynécologie et d’Obstétrique
(FIGO).
Early-stage cervical cancer can be managed surgically while the recommended treat-
ment options for late-stage cervical cancer also includes chemotherapy, external
beam radiotherapy, and brachytherapy [6]. Section 1.3 explains more about radio-
therapy. The survival rate for cervical cancer patients depends on disease stage,
among other factors [4], [11], [12]. For instance, Lymph Node Metastasis (LNM),
where there’s nodal involvement of disease, is a risk factor associated with survival
of cervical cancer patients.

1.2 Imaging

Imaging plays an integral role in the detection, staging [13], treatment planning and
treatment of tumours as well as assessment of treatment response. Lately, imaging
has been seen to provide a non-invasive way to capture tumour heterogeneity [14],
which, consequently gives huge potential for targeted treatment. This makes imag-
ing potentially preferable to biopsy, pending further research into repeatability and
correlation to histopathology [14], [15].
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Figure 1.1.2: Cervical Cancer (CC) diagnosis and staging according to FIGO (2018)
[13]

The main imaging modalities used are Computed Tomography (CT), Magnetic Res-
onance Imaging (MRI) and Positron Emission Tomography (PET). The modality
used is dependent on the location of the tumour and the kind of information being
gathered about the tumour. CT scans give high resolution structural information
about the location and shape of tumours [10]. MRI scans, due to their excellent
soft tissue contrast, give good visualisation of the primary tumour and the extent
of soft tissue disease [16] as well as tumour functional and molecular characteristics
[10]. PET imaging, on the other hand, is a type of nuclear medicine imaging where a
radioactive tracer is used [10]. In oncology, F-fluorodeoxyglucose (FDG) radioactive
tracer is commonly used to assess tumour metabolism, specifically glucose uptake
in the tumour.
In this study, we will be using multiparametric-MRI scans. MRI is increasingly
becoming a common imaging modality for cervical cancer, because it offers high ac-
curacy and detailed evaluation of pelvic tissues and organs as well as good contrast
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resolution ([17]–[21]) with no radiation [22]. It is extremely versatile and can provide
multiparametric information from both morphological and functional signals [23].
Multiparametric-Magnetic Resonance (mpMR) Imaging involves MR imaging where
multiple MRI sequences are combined[24], [25]. It gives a more accurate assessment
of the tissue micro-environment than the conventional MRI [25]–[27]. In this study,
we will be looking at 2D T2 weighted Turbo Spin Echo (TSE) images and 3D
DIXON gradient echo water-only images. T2-weighted imaging (T2WI) offers good
signal-to-noise ratio which gives good soft tissue contrast [28], [29]. In cervical can-
cer, T2W scans are good for showing the extent of disease [30]. Water-only Dixon
imaging is where images are acquired with uniform suppression of the fat signal in
a single acquisition [31], [32]. In cervical cancer imaging, fat suppression allows for
better tissue mapping and consequently, better co-registration of images. This is
because the bright fat signal may reduce the tumour’s conspicuity leading to mis-
registration [32].

1.3 Radiation Therapy (RT)

Treatments for cervical cancer include surgery, Radiation Therapy (RT)/radiotherapy,
chemotherapy or a combination of the methods. Treatment method used depends on
cervical cancer stage and other factors such as whether a patient wishes to maintain
fertility [33]. For early-stage cervical cancer, surgery and/or radiotherapy is used for
treatment while for advanced-stage cervical cancer, radiation and/or chemotherapy
and sometimes surgery is used for treatment [34].
Radiotherapy uses ionising radiation to kill cancer cells and constitutes a major
part of treatment for 50% of cancer patients [35], [36]. For cervical cancer, it can
be delivered internally (brachytherapy) and/or externally (External Beam Radia-
tion Therapy (EBRT)) and is used as part of the main treatment or to treat local
recurrence and distant failure. Radiotherapy can be used for curative purposes
(curative/radical radiotherapy), administered before local treatment (neoadjuvant
radiotherapy) [37] and given after primary treatment to eradicate residual disease
and reduce risk of recurrence (adjuvant radiotherapy) [38].
If radiotherapy is chosen as part of the treatment, a radiotherapy planning CT scan
is acquired. This scan is used to design a personalised treatment plan for the pa-
tient. It covers the target regions where radiation will be delivered as well as nearby
regions at risk of receiving some radiation, Organs at Risk (OARs). Expectations
of motion - a challenge in radiotherapy delivery - such as of the cervix and uterus in
cervical cancer are also defined in this scan [39]. In cervical cancer, OARs include
the bladder, rectum and bowel. Target volumes include, the Gross Tumour volume
(GTV) which is the visible disease region at diagnosis, the Clinical Target Volume
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(CTV) which covers both the GTV as well as areas that may have microscopic
disease, the Internal Target Volume (ITV) which is the CTV and internal margins
to compensate for internal motions, and the Planning Target Volume (PTV) which
covers the CTV and the uncertainties in the positioning and set-up for treatment
delivery [39]–[42]. The CTV the High Risk CTV, CTV-HR, (the region suspected to
have the highest risk of recurrence - typically, the entire cervix), Intermediate Risk
CTV, CTV-IR, (the region including the CTV-HR and a margin surrounding the
cervix borders) and the Low Risk CTV, CTV-LR, (the areas at risk for microscopic
spread from the GTV) [39].
Radiotherapy dose directly relates to tumour control but also incurs risk to healthy
tissues and organs, so RT delivery while reducing normal tissue damage and toxicity
is paramount [36], [43]. This concept is represented by a “Therapeutic Ratio, which
is the ratio of the tumour control probability (TCP) and normal tissue complication
probability (NTCP) at a specified level of response (usually <5% or 0.05) for nor-
mal tissue” [44]. Adaptive radiotherapy has gained interest recently as it entails a
radiation treatment plan that accounts for changes such as internal motion, tumour
shrinkage, patient setup or machine delivery deviations and it estimates the actual
delivered dose to a patient as the treatment progresses [45].
In this work, we will be looking at radiomic features from the GTV and a peritu-
moral region.

1.4 Radiomics

Radiomics is “the high-throughput extraction and analysis of large amounts of im-
age features from radiographic images” [14], [18], [46], [47]. It is an emerging field of
image analysis that has the potential to assist in clinical decision making and patient
risk stratification [48]–[50]. Radiomics aims at identifying image biomarkers (“tests
that can be measured objectively and evaluated as an indicator of a biologic process”
[51]) that can be used to predict treatment outcomes. This is through exploring how
various image characteristics or features, describe aspects of the target area, such as
the tumour. The features, described in sub-section 1.4.1 below, non-invasively give
information, that may be imperceivable by the human eye and specific to tumours
which consequently gives potential for precise diagnosis, staging, treatment response
assessment, evaluation of the tumours and survival prediction [19], [50], [52]–[59].
One benefit of radiomics is that it takes advantage of an existing cancer treatment
protocol - imaging - which is used to diagnose, stage, plan treatment and monitor
disease progression [60].
A typical radiomics workflow follows the following steps: Image acquisition, image
segmentation, pre-processing, feature extraction and finally, data analysis. These
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steps are described in detail in subsection 1.4.3.

1.4.1 Radiomic Features

Radiomic features are the features extracted from radiographic images [14], [19].
They describe the distribution of intensity values of individual voxels, spatial rela-
tionships between various intensity levels, texture heterogeneity patterns, descrip-
tors of tumour geometry, relations of tumour to surrounding tissues [14], among
others. They also aid in prediction of outcomes such as treatment response since
they have been seen to change with continued treatment [18], [52].
There are various platforms for radiomic features extractions, including PyRa-
diomics [61], CERR [62], TexRAD [63], LIFEx [64] and IBEX [65]. It is considered
best practice to specify the software used and the version of the software and to also
ensure the specific software version adheres to the Image Biomarker Standardisation
Initiative (IBSI) guidelines as suggested in a study by Fornacon-Wood et al (2020)
[66]. These guidelines have been set to standardise radiomic feature definition and
calculation [67]. In this work, we will be using PyRadiomics [61]. Radiomic features
- as defined in the PyRadiomics documentation [61] - are categorised as follows:
First-Order Statistics Features. These are also referred to as intensity features
and they describe the distribution of grey-level signal intensities of individual voxels
within a Regions of Interest (ROIs) [68]–[70]. There are 19 first order statistics
features in PyRadiomics. These features have potential to predict Lymph Node
Metastasis (LNM) which is associated with poor prognosis in cervical cancer pa-
tients [71], [72].
Shape Features. They describe the geometrical characteristics of the ROIs and
include shape-based 2D and 3D features. They can also be referred to as morpho-
logical [73] or geometric features [74]. There are 16 3D and 10 2D shape features.
Texture Features. These are matrix features, based on the joint probability dis-
tribution of pairs of voxels, that examine the spatial relationship between grey-level
signal intensities in an image. First, a matrix is defined: Grey Level Co-occurence
Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), Grey Level Size Zone
Matrix (GLSZM), Neighbouring Grey Tone Difference Matrix (NGTDM) and Grey
Level Dependence Matrix (GLDM), after which some metrics on the matrix are
evaluated [70]. Texture features have been seen to predict the stage [75] and give
the histological type of patients with cervical cancer [76].
There are 24 GLCM features and these describe the statistical information about
how pixel pairs are distributed in the image by showing the distribution character-
istics of brightness and locations between image pixels with similar brightness [70],
[77]. Figure 1.4.1 shows an example of how to find the Grey-Level Co-Occurrence
matrix of an image in the 0◦ direction.
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There are 16 GLRLM features. Galloway et al (1975) described GLRLM features

Figure 1.4.1: Grey-Level Co-Occurrence Matrix example. With I being the image
and GLCM being its corresponding GLCM matrix, element (1,1) on GLCM con-
tains the value 1 because there is only one instance in the input image where two
horizontally adjacent pixels have the values 1 and 1, respectively. element (1,2) on
GLCM contains the value 2 because there are two instances where two horizontally
adjacent pixels have the values 1 and 2 [78].

as those showing the length of consecutive voxels having the same intensity in a
pre-set direction in the image. This means texture in a specific direction, where fine
texture has more short runs while coarse texture has more long runs with different
intensity values [68], [69]. Figure 1.4.2 shows an example of how to find the Grey-
Level Run-Length matrices of an image in 4 directions (0◦, 45◦, 90◦ and 135◦.
There are 16 GLSZM features. Thibault et al (2014) described GLSZM features as

those that quantify gray level zones in an image, which are defined as the number
of connected voxels that share the same gray level intensity. The region of interest
is homogeneous when the matrix is wide and flat, and it is heterogeneous when
the matrix is narrow. GLSZM is rotation-independent, unlike GLCM and GLRLM.
This means that, it results in 1 matrix for each image, unlike rotation-dependent
features that result in a matrix for each rotation direction. Figure 1.4.3 shows an
example, from Van Griethuysen et al (2017) [61], of how to find the GLSZM of an
image.

There are 5 NGTDM features and these quantify the difference between a grey
value and the average grey value of its neighbours within a specified distance. The
resultant matrix contains the sum of absolute differences for the grey levels. Figure
1.4.4 illustrates an example of how to find the neighbourhood grey tone difference
matrix of an image, I.
The 14 GLDM features quantify gray level dependencies in an image, which are

defined as the number of connected voxels within a certain distance that are depen-
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Figure 1.4.2: Grey-Level Run-Length Matrix example in 4 directions: 0◦, 45◦, 90◦

and 135◦ [69]

dent on the center voxel. IBSI names GLDM features as Neighbouring Grey Level
Dependence Matrix features. This feature is rotationally independent [47]. Figure
1.4.5, is an example of how to find the grey level dependence matrix, P, of an image,
I. Table 1.4.1 shows the MR sequence, the distribution of features, the site looked at,
the number of patients, and the feature selection method used in a few MRI-based
radiomic studies for cervical cancer. In summary, Wang et al (2019), Shi et al (2022)
and Wu et al (2019) used MRI-based radiomic features and showed that radiomic
features could predict lymph node metastasis in cervical cancer [68], [80], [81]. Fiset
et al (2019) used MRI-based radiomic features in a test-retest analysis to find stable
radiomic features [82]. They found over 200 features to be stable in images acquired
with 14-47 minutes of each other. Hua et al (2020) found that considering radiomic
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Figure 1.4.3: I is a 5X5 image with 5 discrete grey levels and P is the resultant
Grey-Level Size Zone matrix. In the grey level size zone matrix P(i,j), the (i,j)th
element equals the number zones with grey level i and size j in the ROI. [61]

Figure 1.4.4: I is a 4X4 image with 5 discrete grey levels, but missing voxels of
discrete value 4. the resultant matrix is such that i is the grey level; ni is the
number of voxels with grey level i; pi is the grey level probability and equal to ni/Nv

(Nv is the total number of voxels with a neighbour) while si is the sum of absolute
differences for grey level i [79]

features of cervical cancer peritumor tissues could contribute to improving Lymph
Vascular Space Invasion prediction performance [83]. Fang et al (2020) showed an
MRI-based radiomics score could be used as a prognostic biomarker for patients
with early-stage (IB-IIA) cervical cancer and facilitate clinical decision [84]. Liu
et al (2019) carried out a reproducibility study of apparent diffusion coefficient in
cervical cancer [85]. Traverso et al (2020) found that applying normalisation prior
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Figure 1.4.5: I is a 5X5 image with 5 discrete grey levels and P is the resultant
Grey-Level Dependence matrix. In the grey level dependence matrix P(i,j), the (i,j)th
element equals the number zones with grey level i and size j in the ROI. [79]

to features extraction increased the reproducibility of ADC-based radiomics features
[86]. Takada et al (2020) used MRI radiomics to predict recurrence [87]. First or-
der features and textural features are most used, apart from studies investigating a
specific radiomic feature as in the study [88].
In this study, we will extract first-order, shape and texture features on the original
images, images that have gone through Laplacian of Gaussian (LoG) transforma-
tion with sigma values (σ = 3, 4, and 5) and images that have undergone Wavelet
filtering.
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1.4.2 Applications of Radiomics

Radiomics has been seen to hypothesised to predict treatment response and out-
comes [15], [90]. For instance, a study by Yip et al (2016) [18], found that first-order
features changed according to treatment response, that NGTDM derived coarse-
ness, busyness, and contrast could better differentiate between responders and non-
responders to chemo-radiotherapy and that coarseness predicted patient overall sur-
vival. Some studies, Shukla- Dave et al (2012), King et al (2013), Peng et al (2013)
have shown a relationship between radiomic feature changes and tumour changes
in response to treatment. Coroller et al (2015) also showed that radiomic features
from CT images could potentially predict potential for metastasis in lung cancer
patients. Other studies, [54], [60], have shown that radiomics can be used to char-
acterise tumour aggressiveness, hence tailor an intensive treatment regimen which
consequently improves prognosis.
Gillies et al (2016) found that radiomics can be used for image guided biopsy collec-
tion due to its ability to show tumour heterogeneity. This way biopsies are collected
from the most informative part of the tumour a priori [53], such as in [91].
Studies have shown that radiomics can allow for the differentiation between early
stage and advanced stage tumours [18]. For instance, Mu et al (2015), used PET
radiomic features to classify CC patients into early and advanced stage CC. Early
patient stratification can aid in individualised treatment[18].
Radiomics can allow for the differentiation between malignant and benign tissue. For
example, [92] showed that radiomics had potential to differentiate between cancer-
ous and non-cancerous prostate tissue. Nie et al (2008), used MR radiomic features
to differentiate between malignant and benign tumours in breasts.
Image biomarkers have been seen to have a relationship with tumour genetics. For
instance, Nair et al (2012, 2014), showed that some first-order radiomic features
strongly correlated with gene signatures and expressions relating to patient sur-
vival.
In summary, the table 1.4.3 shows that MR radiomics in CC has been used to predict
disease-free survival, to predict lymph-vascular space invasion (LVSI), investigate re-
peatability and reproducibility of MR-based radiomic features, investigate radiomic
feature sensitivity to inter-observer variability, segmentation methods, reconstruc-
tion algorithms and image processing, investigate treatment response and disease
free survival.

1.4.3 Radiomics Workflow

The process of a radiomics study is as summarised in figure 1.4.6 [93]. Each step in
the workflow affects the results of a radiomics study as shown in Figure 1.4.7 and
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Table 1.4.5.

Figure 1.4.6: A radiomics workflow [93]

Image Acquisition

This is the first step in the workflow. It entails acquiring high quality and standard-
ised images. Each imaging modality has its own characteristics that could affect a
radiomics study [50] as shown in figure 1.4.7.
The acquisition mode, reconstruction parameters, smoothing, segmentation thresh-

old, as described in Figure 1.4.7, could affect the outcomes of a radiomics study. For
instance, in MR imaging, acquisition parameters greatly affect stability of radiomics
[82]. This is because MR images do not have fixed tissue-specific numeric voxel in-
tensity units, so MR imaging under constant conditions could give varying results
[94]. The optimal way of solving this would be to standardise all image acquisition
protocols [95] or by performing careful image processing before feature extraction is
done [96]. For instance, performing normalisation before quantitative image analy-
sis is commonly carried out [86], [94]. Another challenge with MR-based radiomics
studies is that different MR scan protocols may have different voxel sizes. In such
a case, performing resampling prior to quantitative image analysis is advised [97],
[98]. Table 1.4.2, adapted from a publication looking into radiomics by Scapicchio
et al (2021) [70], shows some pre-processing techniques that could be applied to
images before quantitative image analysis.
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Figure 1.4.7: Factors influencing radiomics stability in each step of a radiomics
workflow for MRI, CT and PET [50].

Pre-processing technique Effect on image
Resampling Changing the number of pixels in the image using

interpolation (linear, polynomial, spline, etc.).
Normalisation or intensity
standardisation

Changing the range of pixel intensity values, in or-
der to remove bias, scaling factors and outliers from
the image.

Quantisation of gray levels Reduction of gray levels used to represent the im-
age.

Motion correction Reduction of motion confounds.
Filtering to remove noise
and/or improve image char-
acteristics

Laplacian: bringing out area of rapid intensity
change and usually used for edge detection. Gaus-
sian: smoothing the image and reducing noise.
Wavelet filtering or transform methods: decompos-
ing the original image and offering some advan-
tages, such as variation of the spatial resolution (to
represent textures at the most appropriate scale),
enhancement of the texture appearance and a very
wide range of choices for the wavelet function that
can be adjusted for specific applications.

Table 1.4.2: Examples of pre-processing techniques that could be applied before quan-
titative image analysis.
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Segmentation

Segmentation entails delineating the Regions of Interest (ROIs) in 2D scans or Vol-
ume of Interest (VOI) in 3D scans. These areas are such as those which contain
the tumour, microscopic disease as well as the Organs at Risk (OARs). The areas
delineated are determined by the region in which the tumour exists as well as sur-
rounding organs.
Segmentation can be manual (carried out by an oncologist or a radiologist), auto-
matic, or semi-automatic (incorporating both a human observer and an automated
method), and so the choice of segmentation is based upon the method that gives the
best accuracy. Manual delineation, which is the current gold standard, has the dis-
advantage of introducing inter-observer variability [99] and is also time consuming.
An automated method of segmentation is less time consuming and offers consistent
results, especially where many scans are involved [50] and has been found to in-
crease reproducibility and robustness of the radiomic features [18]. However, one
study found that automated segmentation produced false positives [100]. Overall,
studies agree that a semi-automated method would be preferable as it combines
human intervention, which reduces false positives, while maintaining the benefits of
automatic segmentation [18], [99], [101].
Proper delineation of the tumour area improves radiotherapy delivery [102], [103]
as it improves lesion targeting, which consequently leads to lower recurrence rates
[103], [104]. Proper segmentation also minimises radiation toxicities to Organs at
Risk [105], such as bowel toxicity during Cervical Cancer. In radiomic studies, seg-
mentation provides the mask with which radiomics feature extraction can be applied.

Image Processing

Image processing is done for various reasons such as to enhance image quality. MR
images, for instance, contain Gaussian noise [106], so they require denoising [47].
They may also have non-uniform intensities that need to be corrected [107]. Some
image processing techniques that can be applied include: Image normalisation, re-
sampling, image discretisation and applying filtering on the original images [50],
[61]. Improving uniformity of image features improves repeatability of radiomics
features across various patients [108].
The type of image processing applied depends on the data being used in the study
and the kind of study being carried out. For instance, in this study where mul-
tiparametric MR images will be used, the image processing that will be employed
includes, image normalisation, resampling, applying filtering such as Laplacian of
Gaussian and Wavelet filtering, and image discretisation with a fixed bin count.
Filtering or performing mathematical transforms on the original images prior to
radiomic feature extraction, allows for the identification of patterns and details in
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the image that may have been imperceivable [53], [94]. In PyRadiomics, filtering
specifications are specified in the parameters file’s settings section after which the
original images undergo filtering or transformation, after which first-order, shape
and second-order radiomic features are extracted from the resulting images. All
image processing parameters to be applied on a data-set are defined in the PyRa-
diomics documentation [61].
Since various image processing techniques exist with each offering different out-
comes, outlining the processing done in a study is crucial to ensure results can be
verified and reproduced on a different data-set.
Table 1.4.3 shows various image processing techniques done in Cervical Cancer ra-
diomics studies, the extraction platform used and the study’s endpoint.
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Introduction

There are various image processing techniques. Each of these techniques influences
the outcomes of a radiomics study and can be dependent on the type of imaging
modality used and the intended goal [47]. For this reason, proper reporting of all
techniques applied in the study allows for validation of results and reproducibility
of the results on a different data-set.
Some image processing techniques applied on MR images include normalisation prior
to features extraction, which was seen to increase the reproducibility of Apparent
diffusion coefficient (ADC)-based radiomics features [86]. Resampling is another
technique that aims at maintaining a consistent isotropic voxel spacing across dif-
ferent measurements and devices which gives good reproducibility [82], [118], [119].
Grey-level discretisation is another image processing technique dependent on the
imaging modality used. The main methods are using a Fixed Bin Number (FBN)
or a Fixed Bin Size (FBS). Choice of grey-level discretisation method depends on
the imaging modality and the intended purpose for image intensities discretisation.
Since grey-level discretisation impacts image intensities within the ROIs, radiomic
feature values and the robustness of features extracted are also impacted [120].
FBS allows for comparison to be made for discretised data with different calibrated
ranges, such as PET and CT data, since the bins belonging to the overlapping range
will represent the same data interval images [47]. It can also be referred to as the
absolute discretisation method [121]. FBN normalises images and is especially ben-
eficial in data with arbitrary intensity units such as MRI data [47], [50]. It can also
be referred to as the relative discretisation method [121]. Table 1.4.4, adapted from
IBSI documentation [47], is a table with recommendations of when to use FBN or
FBS. Since we will be using MR images, whose imaging intensity units are arbitrary,
Fixed Bin Number (FBN) will be used in this study.

Imaging Intensity Units Re-Segmentation range FBN FBS
[a, b] ✓ ✓

calibrated [a, ∞] ✓ ✓
none ✓ X

arbitrary none ✓ X

Table 1.4.4: PET and CT images contain calibrated imaging intensity units, MR
images contain arbitrary imaging intensity units1. While FBN uses the actual range
of intensities within the identified ROI 2, FBS uses the lower bound of the reseg-
mentation range as the minimum set value 3 [47], [122].
Checkmarks (✓) - recommended combinations of resegmentation range and discreti-
sation algorithm.
Crossmarks (X) - non-recommended combinations.
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Feature Extraction

This is the stage at which radiomic features are extracted. The features are termed
“quantitative imaging biomarkers” [60]. Some features can be derived from others,
and since there are various definitions for feature calculations, the Image Biomarker
Standardisation Initiative (IBSI) guidelines were set up to standardise feature calcu-
lations [14], [47], [123]. Of great importance to note is that the reliability and value
of radiomic features is highly dependent on the choice of the radiomics package and
the package version [66], so following standardisation guidelines such as those set by
the IBSI [47] significantly strengthens any radiomics study. This is because different
radiomics packages and different versions of the same radiomics package may define
radiomic features differently as was shown by a study carried out by Fornacon-Wood
et al (2020) [66].
At this stage of a radiomics workflow, ensuring the features extraction software used
adheres to IBSI guidelines and is readily available to other researchers to allow for
verification of results is considered best practice [66].
Extraction Platform
There are various platforms for radiomic features extractions, including PyRa-
diomics [79], CERR [62], TexRAD [63], LIFEx [64] and IBEX [65]. It is considered
best practice to specify the software used and the version of the software and to
also ensure the specific software version adheres to IBSI guidelines as suggested in a
study by Fornacon-Wood et al (2020) [66]. This is because computation of radiomic
features has been defined in various ways on various platforms. Features may have
different names and/or computation across various feature extraction platforms.
Open-source tool-kits are preferred as they allow for easy verification of results [66],
as opposed to in-house and commercial software, especially those not made readily
available. Table 1.4.3 shows the main tool-kits used in the various studies. In this
project, PyRadiomics, which is open-source and adheres to IBSI guidelines, will be
used to extract radiomic features.

Feature Selection and Analysis

Extracted radiomic features are not all informative and feature usefulness can de-
pend on the study being carried out. These features are usually many which carries
the risk of model over-fitting. The aim of this multi-step recursive process, there-
fore, is to exclude features that are non-reproducible, redundant (they depend on
other extracted features [124]) and non-relevant to the study from the data-set and
also to analyse retained features in relation to intended outcomes. Features retained
are those that are considered most informative based on their independence from
others, their robustness and prominence on the data [14].
The choice of statistical methods employed depends on the study being carried out,
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but since there are various statistical methods for feature selection and analysis,
proper reporting is also important to allow for reproducibility of results by other
researchers. Validation of the methods on external data is important for verification
of results [15], [125], [126].
In this study, we will be looking at feature selection. One way of reducing the num-
ber of features is to drop features that are confounded, especially to volume. This
is because volume is a known prognostic indicator (large tumours generally mean
more advanced cancer with poorer outcomes). Features that correlate with volume
would, therefore, be redundant in a study [82]. Another way is to find correlation
in the remaining features and dropping features that give similar information. Test-
retest repeatability analysis has also been used to select stable features. This is
because test-retest analysis relies on the assumption that images acquired within a
short duration of each other should not have varying radiomic feature values [82],
[108], [125]. In radiomics, repeatability refers to features that remain the same when
imaged multiple times on the same subject [108], while reproducibility refers to fea-
tures that remain the same in one subject at different visits or features that remain
the same when imaged using different equipment, different software, different image
acquisition settings, or different operators such as in different clinics, whether in
the same subject or in different subjects [108], [127]. Repeatability is a term used
when the radiomics features extracted are considered to be “stable” or “robust”
[82], [121], [125], [128], [129]. Radiomics features-based models combine repeatable
features with clinical parameters and information such as patient demographics to
predict outcomes [90].
Other feature selection methods that could be used include using multiple observers
in a radiomic study and looking for agreement of features between observers could
be used to select features that are robust to inter-observer variability [130]. The
retained features are then used in models [131] to, say, investigate associations to
outcomes.
In this study, radiomic features retained will be those that are not highly correlated
to volume and remain robust within a test-retest setting.
In conclusion, there are various factors that could affect a radiomic features’ re-
peatability. These factors range from the image acquisition modalities and settings,
image reconstruction algorithms, image processing carried out, and the platform
used to extract radiomic features [108]. Table 1.4.5 shows a summary of these fac-
tors as well as ways to mitigate the factors. Each of these factors could potentially
give different results. It is therefore paramount to employ proper reporting of ev-
ery aspect of the study as insufficient reporting of radiomics studies greatly impedes
study reproducibility and utilisation of results in clinical settings [132]. For this rea-
son, studies have agreed that systematic documentation of methods and processes
is paramount to allow for replication of results.
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There are some guidelines that have been established to improve the quality of
radiomics studies, such as the Image Biomarker Standardisation Initiative (IBSI)
guidelines, the Transparent Reporting of a multivariable prediction model for In-
dividual Prognosis Or Diagnosis (TRIPOD) guidelines and the Radiomics Quality
Score (RQS). All these guidelines are continously evolving and aim to improve the
quality of radiomic studies. The IBSI guidelines govern the technical aspects such
as the implementation of a radiomics study [47], [50]. The TRIPOD guidelines cover
the standards for reporting of models. The RQS divides a study into 5 phases and
seeks to find the quality of the study by assigning a score based on the methodology
and quality of the study [122]. Figure 1.4.8 is a summary of an RQS workflow. In

Figure 1.4.8: An RQS workflow [122]

summary, there are various factors that could affect a radiomics study [14], [18].
These factors manifest in all steps of the radiomics workflow [50] as outlined in
Figure 1.4.7. Table 1.4.5, adapted from a study by Fornacon-Wood et al (2020) [93]
summarises the potential problems and solutions.

Validation of Results and Modelling

The final step of the radiomics workflow is the validation of results. This is where
methods used in the study are employed on a different data-set to test for similar
outcomes. Validation of results is then followed by model building. As with other
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Problem area Potential problems Potential solutions

Image acquisition
Different scanners and
acquisitions protocols affect
feature reproducibility

Image phantoms on different scanners to
provide baseline, establish credibility of
scanners and protocols, catalogue
reproducible features, model a
correction algorithm, harmonise data

Patient motion affects feature
reproducibility

Set motion tolerances, reduce ROI
boundaries, use single phase from 4D
images, find robust features using 4DCT
data

Image acquisition
and reconstruction

Image resolution parameters
(voxel size, slice thickness)
affect feature values model
performance

Control resolution parameters in
prospective studies, resample to
common resolution and voxel depth,
apply smoothing image filters, apply
deep learning methods

Image
reconstruction

Image reconstruction
algorithm and reconstruction
parameters (kernel) affects
features

Pre-processing image correction and
harmonisation of acquisition techniques

Segmentation

Delineation variability affects
features and is time
consuming. Results from one
disease are not necessarily
transferable to another

Expert ROI definition, multiple
observers, identification of stable
features with respect to delineation,
automated segmentation, image filtering

Pre-processing

Number of grey levels used to
discretise histogram and
texture features affects
feature values, as does width

Texture features can be normalised to
reduce dependency on the number of
grey levels, number of grey levels used
for discretisation should be recorded
with feature formula. 128 grey levels
may be optimal for texture features
along with thresholding

Feature correlation
Strong correlations between
tumour volume and radiomic
features exist

Normalisation of features to volume, bit
depth resampling, feature redesign,
more robust statistics to check added
value of radiomics signatures

Test re-test

Radiomic features may not be
repeatable over multiple
measurements, repeatable
features are not generalisable
to other disease sites

Test-retest data acquisition, use of
multiple 4D phases, use of simulated
retest by image perturbation

Modelling clinical
outcome

Different modelling strategies
affect model performance

Sample sizes above 50 give better
predictive performance, as does
normalising features. No consensus on
best modelling strategies to use

Table 1.4.5: Table showing a summary of some factors affecting radiomics studies
and potential solutions to the factors adapted from a study by Fornacon-Wood et al
(2020) [93]

steps in the radiomics workflow, model building follows guidelines that have been
devised on modelling and reporting in the Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis (TRIPOD) [133]. TRIPOD
governs the proper reporting of any study that entails the development or validation
of a prediction model for the purpose of diagnosis or prognosis [133].
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1.5 Summary and Aims

The overall aim of this study is to identify multiparametric-MR-based radiomic
features that are robust to test-retest in cervical cancer. These features can then be
utilised in larger data-sets to build reliable predictive models. This will be achieved
through the following sub-aims:

• Setting up a radiomics pipeline using PyRadiomics to extract radiomic features
from T2-weighted and Dixon images for Cervical Cancer patients.

• Selecting stable radiomic features based on high Intraclass Correlation Coef-
ficient value between features in a test-retest setting.

• Identifying a stable radiomic feature from each feature class.
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Abstract

Purpose: The aim of this study is to evaluate the test-retest repeatability of ra-
diomic features from the GTV and peritumoral regions of T2-weighted and Dixon
water-only images in cervical cancer patients.
Methods: 21 scans, each comprising of 2 T2-weighted and 2 Dixon sequence im-
ages, were included in this study. This resulted in a total of 42 test-retest pairs of
images. The GTV was contoured by a single observer on each of the T2W images
and transferred through rigid registration to the Dixon sequence images. For each
image, radiomic features were extracted from 2 regions: the GTV and a peritumoral
region extending 2 voxels (1.875mm for T2-weighted images and 1.923mm for Dixon
images) from the GTV contour but restricted to remain inside the cervix/uterus so
as not to sample surrounding tissues.
PyRadiomics was used to extract first-order, shape, and texture radiomic features
from the original T2W and Dixon images, and their Laplacian of Gaussian-filtered
(σ = 3, 4, and 5) and Wavelet-filtered counterparts. Spearman’s Rank Correlation
Coefficient, |ρ|, was used to exclude features highly correlated with volume (|ρ| ≥
0.9). Of the remaining features, those with minimal variation in a test-retest pair of
images were selected using one-way random effects Intraclass Correlation Coefficient
(ICC), to assess absolute agreement of feature values. The criteria ICC(1,1) ≥ 0.9
was used. Remaining features were grouped by feature class and the feature with
the lowest Spearman’s correlation to volume within the class was considered stable.
Results: A total of 1130 features were extracted from each image. Features with
Spearman’s |ρ| ≥ 0.9 in relation to volume were discarded. For the T2W images,
86% and 87.1% of the 1130 features extracted from the GTV and peritumoral regions
respectively remained. For the Dixon images, 86.1% and 87.8% of the 1130 features
extracted from the GTV and peritumoral regions respectively remained. Features
with ICC(1,1) ≥ 0.9 were considered to have excellent test-retest repeatability and
were retained. For the T2W images, these were 24.9% and 7.6% of the 1130 ra-
diomic features extracted from the GTV and peritumoral region, respectively. For
the Dixon images, they were 4.6% and 4.0% of the 1130 radiomic features extracted
from the GTV and peritumoral region, respectively.
Conclusions: Stable features were identified for each feature class and can be used
in larger data-sets to build reliable predictive models.To confirm generalisability of
our findings, validation of our results on a similar data-set is required.
Keywords: Radiomics, MRI, Cervical Cancer, Test-retest, Repeatability, T2-Weighted,
Dixon.
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2.1 Introduction

Radiomics - “the high-throughput extraction and analysis of large amounts of image
features from radiographic images” - promises to identify image characteristics that
may predict treatment outcomes [14]. However, identification of robust radiomic
features is first required before model building. The main challenge as identified
by existing studies is the need for optimal analysis parameters and consistent fea-
ture reporting [82], [125]. For instance, pre-processing parameters have been shown
to affect radiomic texture features [134] which presents a challenge especially since
different image modalities require different quantisation methods, each producing
varying results [47], [121]. The Image Biomarker Standardisation Initiative (IBSI)
guidelines have been set to standardise radiomic feature definition and calculation
[67], which significantly strengthens a radiomics study.
Studies investigating repeatability (comparison on the same subject under constant
conditions) and reproducibility (comparison under varying conditions) of radiomic
features have been used to improve model generalisability [82], [108], [125]. Test-
retest analysis of radiomic features is one way of identifying feature repeatability
[82], [125] and it compares scans acquired on the same patient within a short du-
ration of time. Features that remain stable in the test-retest setting are considered
robust and suitable for use in predictive models and generally result in better model
generalisability. Studies have confirmed that features from scans acquired within
minutes of each other are not all stable. Stable features are those that are consid-
ered most informative for the study based on their independence from other features,
repeatability or prominence in the data. For instance, a study looking at test-retest
repeatability by Fiset et al (2019) evaluated the stability of radiomic features from
MR images of cervical cancer [82]. They found that 47.9% of the extracted features
for their test-retest cohort were not stable.
While most radiomic studies look at CT data, there has been an increased appreci-
ation of MRI-based radiomic studies due to the excellent soft-tissue contrast offered
by MR imaging. For cervical cancer, MR imaging results in high accuracy and
detailed evaluation of pelvic tissues and organs as well as good contrast resolution
([17]–[21]) with no radiation [22], and affords versatility such as the option for mul-
tiparametric information from both morphological and functional signals [23].
Most radiomic studies look at the Gross Tumour volume (GTV) region. However,
evidence has shown microscopic disease near the GTV which is why the Clinical Tar-
get Volume (CTV) includes areas near the GTV that are suspected to have presence
of microscopic disease [40]–[42]. Radiomic studies done on the peritumoral region
in cervical cancer look at in-field recurrence [87], prediction of nodal metastasis and
distant metastasis [115], by analysing the region near the GTV for microscopic dis-
ease [81], [89], [117].
In this work, we perform test-retest analysis to investigate repeatability of radiomic
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features in cervical cancer from T2-weighted (T2W) and Dixon MR images for the
GTV and peritumoral regions. This is the first cervical cancer study looking at
test-retest repeatability in the peritumoral region as well as test-retest analysis us-
ing MR data that includes Dixon images. Overall, we aim to guide the selection of
stable radiomic features for use in predictive models on larger data-sets.

2.2 Materials and Methods

2.2.1 Patient Demographics

Data from a cohort of 7 Cervical Cancer (CC) patients treated with concurrent
chemoradiotherapy, between September 2017 and September 2018 was available.
The data was collected and analysed with approval (Ethics: Greater Manchester
South Research Ethics Committee: 17/NW/0300). 2 patients had FIGO stage IB2
CC and 5 patients had FIGO stage IIB CC.
A summary of patient demographics is outlined in Table 2.2.1.

2.2.2 Image Acquisition

All images were acquired on the same 1.5T MR system (MAGNETOM Aera; Siemens
Healthcare, Erlangen, Germany). For this study the following sequences were used:
2D T2 weighted Turbo Spin Echo (TSE) (TR/TE = 5390/99 ms, in-plane resolu-
tion = 0.9375 x 0.9375 mm, slice thickness = 3mm) and a 3D DIXON gradient echo
(TR/TE = 7.2/2.4 ms, in-plane resolution 0.9615 x 0.9615 mm, slice thickness =
3mm) water-only image.
Collectively, 21 scans were acquired, where each patient underwent 3 MR scans
taken at least a week apart, with the first scan being acquired on the first day of
radiotherapy treatment. At each MR scan, a T2-weighted image was taken at the
start and at the end of the visit resulting in a test-retest pair. Dixon sequences were
sequentially acquired over 10 minutes. The first and last Dixon images in the se-
quence were collected as a test-retest pair. Overall, 6 test-retest pairs were acquired
for each patient, resulting in a total of 42 test-retest pairs of images. Scanner and
imaging parameters are summarised in Table 2.2.1.
2 regions were identified for this study: the Gross Tumour volume (GTV) and the
peritumoral region. Contouring of the GTV and Organs at Risk (OARs) was carried
out using Raystation v6 (Raysearch AB, Stockholm, Sweden) on all the T2-weighted
sequence slices. As in Fiset et al (2019), rigid registration was performed such that
GTV contours on the T2-Weighted sequence images were propagated onto the Dixon
sequence images with no modification. This was to minimise intra-observer contour-
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Characteristics Value
Number of patients 7
Age (yrs)

Mean ± SD 50.1±13.5
Median[Min, Max] 48 [36, 75]

Height (m)
Mean ± SD 1.61±0.05
Median[Min, Max] 1.6 [1.54, 1.68]

Weight (kg)
Mean ± SD 72.6±17.1
Median[Min, Max] 64 [57, 106]

Comorbidity score
None 5
Mild 1
Moderate 1

Tumour characteristics
FIGO Stage (n)
IB2 2
IIB 5
Volume, mean ± SD
(cm3) 6.1±1.5

Imaging sequence
Image Parameters T2-Weighted Dixon
Number of images 42 42
MR Scanner (n)

Siemens
MAGNETOM Aera 42 42

Magnetic Field (n)
1.5 T 42 42

Sequence, median (range)
Slice Thickness (mm) 3 3
TE (ms) 99 2.4
TR (ms) 5390 7.2
Scanning sequence SE GR
Sequence variant SK, SP, OSP SP, OSP

Pixel Spacing (mm) 0.9375 x 0.9375 0.9615 x 0.9615

Table 2.2.1: A summary of the patient demographics for the cohort and Imaging
parameters for the MR scanner used in this work.
SD - standard deviation
TE - Echo time
TR - Repetition time
SE - Spin echo
GR - Gradient echo
SK - Segmented k-space
SP - Spoiled
OSP - Oversampling phase
The same patients were used in the T2-weighted and Dixon MR sequences in the
study.

ing variation between T2-weighted and Dixon MR images [82].
The GTV contour of each image was dilated by a value of 2 voxels (1.875mm for T2-
weighted images and 1.923mm for Dixon images) to form the peritumoral region’s
contour using SciPy’s multidimensional binary dilation module. This was done for
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all T2-Weighted and Dixon images. This contour was restricted to remain inside the
cervix/uterus (within the Intermediate Risk Clinical Target Volume (CTV-IR)) so
as not to sample surrounding tissues [135]. The peritumoral region was then defined
as the region between the GTV and peritumoral contours as shown in Figures 2.2.1
and 2.2.2. Wu et al (2021) explored various tumor sites to determine the predictive
value of additional peritumoral regions based on deep learning and radiomics [135].
They found the size of the peritumor to be critical in giving additional predictive
value in three tumor datasets (gastrointestinal stromal tumors, laryngeal carcinoma
and nasopharyngeal carcinoma), and only the performance of 1.5 mm–4.5 mm per-
itumors was found to be stable.
Moving forward, 4 data-sets were identified:

• T2W images and their respective GTV contours

• T2W images and their respective peritumoral region contours

• Dixon images and their respective GTV contours

• Dixon images and their respective peritumoral region contours

Figure 2.2.1 shows T2W images while Figure 2.2.2 shows Dixon images acquired
at the start and end of a single scan - forming 2 test-retest pairs - for 1 patient
with FIGO Stage IIB cervical cancer; the GTV (region within the red contour) was
delineated independently; and the peritumoral region (region between the red and
green contours) was acquired through dilating the GTV by 2 voxels.

Figure 2.2.1: Axial T2-weighted images of a single patient with FIGO Stage IIB
cervical cancer at the first visit. The GTV (in red), is contoured independently on
each image. The peritumoral region (in green), is derived from the GTV by dilation
of 2 voxels.
“a” T2-Weighted MR image at the start of the visit; “b” T2-Weighted MR image at
the end of the visit.
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Figure 2.2.2: Axial Dixon images of a single patient with FIGO Stage IIB cervical
cancer at the first visit. The GTV (in red), is propagated from the corresponding
T2W image acquired within the same visit as in Figure 2.2.1 above. The peritumoral
region (in green), is propagated from the corresponding T2W image’s peritumoral
region in Figure 2.2.1.
“c” Dixon MR image at the start of the visit; “d” Dixon MR image at the end of
the visit.

2.2.3 Image Processing

All images and their respective contours underwent image processing as defined in
the PyRadiomics package v.3.0.1 before feature extraction [50], [61] as follows:
All images and contour files were resampled to the same in-plane resolution of
0.9mm × 0.9mm × 3.0mm using B-Spline interpolation which has been seen to
retain soft-tissue contrast and give good reproducibility [82].
Whole image intensity normalisation was also carried out since MR images have
non-uniform intensities that need to be corrected to allow comparison between im-
ages [107]. This was by centering at the mean and dividing by standard deviation
of the gray values in the image as per RyRadiomics standards. Improving unifor-
mity of image intensity improves repeatability of radiomics features across various
patients [108].
Since MR images have arbitrary intensity units, IBSI recommends performing the
Fixed Bin Number (FBN) image discretisation method. To get the FBN value,
first-order range feature values were divided by bin width (Fixed Bin Size (FBS)).
IBSI recommends a bin width value of approximately 5. In this study, a bin number
of 64 was used which corresponds to a bin size of 5 for an average first-order range
value of 320.
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2.2.4 Feature Extraction

PyRadiomics version 3.0.1, an open-source software that has been validated against
the Image Biomarker Standardisation Initiative (IBSI) standards [61], was used to
extract radiomic features. All the default radiomic features defined in the PyRa-
diomics documentation [50], [61] were extracted from the original image, its Lapla-
cian of Gaussian (LoG)-filtered (with σ = 3, 4, and 5) and Wavelet-filtered (8
decompositions) counterparts. LoG filtering was performed to enhance image edges
with the sigma values determining the coarseness of the texture features [61]. Sigma
values were selected from literature to give a range of coarseness [82], [125]. A sigma
of 3, relative to the other sigma values, emphasises on fine textures (change over a
short distance), while 5, relative to the other sigma values emphasises coarse tex-
tures (gray level change over a large distance) [61]. Wavelet-filtering was done to
denoise the images by applying all combinations of high- and low-pass filters on each
image dimension [125].
Radiomic features extracted on the original images included 19 first order features,
16 3D shape features and texture features including: 24 Grey Level Co-occurence
Matrix (GLCM) features, 16 Grey Level Run Length Matrix (GLRLM) features, 16
Grey Level Size Zone Matrix (GLSZM) features, 14 Grey Level Dependence Matrix
(GLDM) features and 5 Neighbouring Grey Tone Difference Matrix (NGTDM) fea-
tures. On each of the filtered images (LoG-filtered and Wavelet-filtered), 19 first
order features, and texture features: 24 Grey Level Co-occurence Matrix (GLCM)
features, 16 Grey Level Run Length Matrix (GLRLM) features, 16 Grey Level Size
Zone Matrix (GLSZM) features, 14 Grey Level Dependence Matrix (GLDM) fea-
tures and 5 Neighbouring Grey Tone Difference Matrix (NGTDM) features, were
extracted.
Image processing and feature extraction as described above was carried out on all 4
datasets. The script used to extract radiomics features using Python version 3.6.9
is available in the Appendix, Section A.1. The parameters script describing the
settings applied on the images prior as well as the radiomic features extracted and
the image types is also available in the Appendix, Section A.1.

2.2.5 Feature Selection

Volume is a known prognostic indicator, so radiomic features that are highly cor-
related to volume do not add meaningful information to a radiomics study [82].
Volume confounded features were dropped as a first step in feature selection. Spear-
man’s Rank Correlation Coefficient, ρ, was used to investigate the relationship be-
tween tumour volume and all the extracted radiomic features. Only features meeting
the condition |ρ| < 0.9 were retained [82], [136].
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Stability of the remaining features was evaluated using a one-way random effects
Intraclass Correlation Coefficient, to assess absolute agreement of feature values
(ICC(1,1)), with a confidence interval of 95%. ICC(1,1), recommended by Koo et
al (2016) [137], [138], was used to select features with minimal variation in a test-
retest pair of images. Features with ICC ≥ 0.9 were considered to have excellent
repeatability and were retained.
Remaining features were grouped by feature class. Spearman’s Rank Correlation
Coefficient, ρ was then used to select a feature within a feature class that was least
correlated to volume. Feature selection was carried out with Python version 3.6.9
and R package version 1.4.1717 (2021) on all 4 data-sets. The scripts used to select
features are available in the Appendix, Section A.1.

2.3 Results

A total of 1130 features were extracted on each image. Figure 2.3.1 shows barplots of
the percentage of features remaining at each feature selection step for each radiomic
feature class. Figure 2.3.1(a) is a barplot of feature selection for T2W images on the
GTV region while Figure 2.3.1(b) is a barplot of feature selection for Dixon images
on the GTV region. Figure 2.3.1(c) is a barplot of feature selection for T2W images
on the peritumoral region while Figure 2.3.1(d) is a barplot of feature selection for
Dixon images on the peritumoral region.
Features not correlated with volume were retained. For the T2W images, 972 and
984 of the 1130 radiomic features extracted from the GTV and peritumoural regions
respectively remained; For the Dixon images, 974 and 992 of the 1130 radiomic
features extracted from the GTV and peritumoural regions respectively remained.
Figure 2.3.1 shows in percentage, the number of features for each feature class that
were correlated to volume (in orange) and those that reamined (in red and maroon).
Tables showing the Spearman’s rank correlation coefficient values for all 4 data-sets
are available in the appendix A.1.
Radiomic features with minimal variation in a test-retest pair of images (ICC(1,1)
≥ 0.9) were retained. This was 281 and 86 features in the T2W datasets for the
GTV and peritumoural region respectively (24.9% and 7.6% of the total number of
radiomic features extracted from the GTV and peritumoral region respectively). In
the Dixon data-sets, this was 52 and 45 features for the GTV and peritumoural re-
gion respectively (4.6% and 4.0% of the total number of radiomic features extracted
from the GTV and peritumoral region, respectively). These features are indicated
in maroon in Figure 2.3.1. Tables A.2.1 and A.2.2 show a breakdown of feature
classes with excellent ICC values for both the GTV and peritumoral regions.
Table A.2.3 shows a summary of the number of features retained at each feature
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selection step. Figures 2.3.2 and 2.3.3 shows Venn diagrams of remaining features.
No feature within the GLCM and NGTDM feature classes had an excellent ICC for
Dixon images. Shape features in all 4 data-sets exhibited the same behaviour in
all feature selection steps. Finally, the percentage number of first-order and shape
features that had excellent ICC was higher than that of texture features, except in
the data-set looking at the GTV region of T2W images where the overall percentage
of features with excellent ICC was higher than in other data-sets. Table A.2.4 in
the Appendix shows the selected stable radiomic feature from each feature class in
all 4 data-sets.

Figure 2.3.1: Radiomic features remaining after each feature selections step as a
percentage of the total number of features extracted in each feature class, irregard-
less of image type, as follows: 14 shape features, 216 first-order features, 288 GLCM
features, 192 GLRLM features, 192 GLSZM features, 168 GLDM features and 60
NGTDM features.
|ρ| ≥ 0.9 - features dropped due to high correlation to volume.
ICC < 0.9 (in red) - features with poor Intraclass Correlation Coefficient were elim-
inated.
ICC ≥ 0.9 (in dark red) - remaining features with excellent ICC were retained.
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Figure 2.3.2: Venn diagrams showing relationships between radiomic features re-
maining for each MR sequence after all feature selection steps.
(a) Number of radiomic features remaining in the GTV and peritumoral regions
from T2W images. (b) Number of radiomic features remaining in the GTV and
peritumoral regions from Dixon images.

Figure 2.3.3: Venn diagrams showing relationships between radiomic features re-
maining in each location after all feature selection steps.
(c) Number of radiomic features remaining in the GTV region for both T2W and
Dixon images. (d) Number of radiomic features remaining in the peritumoral region
for both T2W and Dixon images.

2.4 Discussion

The aim of this thesis was to guide the selection of stable radiomic features in cervi-
cal cancer using test-retest repeatability analysis. These features would be used to
build predictive models on a larger data-set. In this study we looked at multipara-
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metric MR cervical cancer data (T2-Weighted and Dixon images) in two locations:
the GTV and a peritumoral region. Our aim was met through setting up a radiomics
pipeline that extracted radiomic features from the GTV and a peritumoral region
for both T2-Weighted and Dixon water-only images. Stable radiomic features were
then selected based on a 3-step selection process. The first step entailed selecting
features not highly correlated with volume. Of these features, those with minimal
variation in a test-retest pair of images were retained in the second step using the
Intraclass Correlation Coefficient (ICC) and the criteria ICC(1,1)≥0.9. The fea-
tures that satisfied this criteria were then grouped based on their respective feature
classes where the feature with the least correlation to volume in each feature class
was selected in the third step as being stable and could be used to build reliable
predictive models.

2.4.1 Novelty and Comparison to literature

Radiomic studies investigating test-retest repeatability of multiparametric MR data
have mostly been carried out on prostate cancer [125], [139], [140] or using a phan-
tom [141]. Fiset et al (2019) however carried a test-retest study in MR cervical data,
but only one MR sequence was studied - axial T2-weighted turbo spin-echo (TSE)
sequence [82]. So far no study has been carried out in test-retest analysis for cervical
cancer using multiparametric-MR data even though most clinical settings combine
MR sequences to reach a diagnosis [142]. Our study looked at 2 MR sequences,
T2-Weighted and Dixon water-only, and highlighted the difference in radiomic fea-
ture repeatability for the different MR sequences in cervical cancer. We also showed
radiomic feature stability also varied for different regions by looking at the GTV
region and the peritumoral region.
In our study, we observed more T2-weighted image features as being stable com-
pared to Dixon image features. This supports findings by Lecler et al (2019) [142]
whose work showed that various MR sequences gave different radiomic feature sta-
bility results. In addition, features from the GTV region exhibited more stability
than those from the peritumoral region, though the difference in this number for
the 2 Dixon images’ data-sets was small as shown in Figure A.2.3 in the Appendix
section A.2.
Studies looking at test-retest radiomics have found shape and first-order features to
be repeatable [82], [108], [125], [143]. Studies by Fiset et al (2019) and Schwier et al
(2019), used the same assessment of feature repeatability that we used in our study.
In line with their results, we found shape features showing consistent repeatability
in all 4 data-sets. The number of shape features at each feature selection step was
similar on all data-sets. This was expected since the contours were delineated by one
observer, there was minimal or lack of geometric changes in the regions of interest
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in our test-retest setting, and the individual T2W image contours were propagated
onto the Dixon images acquired within a visit. For this reason, we hypothesise that
shape features do not add valuable information to a test-retest repeatability study.
This consistence in all shape features, however could be used to test intra-observer
uncertainty. It could also be used to provide confidence that the clinician performed
consistent segmentation between images in the test-retest setting.
Various clustering methods could be employed for selecting radiomic features that
do not contain redundant information. We clustered our features based on their
feature classes. Notably, for the 2 data-sets looking at Dixon images, we did not
find any GLCM and NGTDM feature that satisfied our stability criteria (see Figure
2.3.1 and Table A.2.4). This could have been because we only allowed for features
with excellent repeatability, ICC(1,1) ≥ 0.9.
While a high number of texture features had a good ICC, there were generally few
texture features with excellent ICC in all 4 data-sets. This finding supported a
systematic review by Traverso et al (2018) [108] that found texture features to be
least reproducible, compared to first-order and shape features in CT images. Work
by Fiset et al (2019) [82] also had the same finding for cervical cancer T2-weighted
MRI data.
Texture features are mostly considered in studies looking at the peritumoral region.
For instance Chong et al (2021) looked at the prediction of tumour budding in
cervical cancer patients and selected filtered texture features to use in a prediction
model [83], [144]. However, the definition of the peritumoural region in our data-sets
resulted in an annuli which could be considered to have dimensions too small for
meaningful calculation of texture features. For this reason, these features are likely
to be unstable and could be excluded from the resulting analysis. However, first-
order features from the peritumoral region could also be used for lymph-vascular
space invasion prediction in cervical cancer as shown in a study by Li et al (2019)
[109]

2.4.2 Limitations

This study is hampered by the relatively small cohort size of 7 patients, however,
the density of the timeseries resulting in 42 test-retest pairs of images was sufficient
to give substantial results and support the intention of this study - to guide the
selection of radiomic features for similar data-sets. In addition, though we ensured
that the selected stable features were the ones least correlated to volume, a known
prognostic indicator, we did not evaluate the clinical relevance of these stable fea-
tures.
In the image processing step, sub-section 2.2.3, we chose to do upsampling of all our
images (Table 2.2.1) to the same in-plane resolution of 0.9mm × 0.9mm × 3.0mm.
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Though, according to IBSI [47] there is no consensus as to whether upsampling or
downsampling is preferable for resampling, upsampling may have introduced artifi-
cial information to our data [47].
The third limitation is that we used a high Intraclass Correlation Coefficient, ICC(1,1)
threshold of 0.9. Most studies looking at test-retest analysis use a lower threshold of
either 0.75 or 0.8 ICC, corresponding to “good and excellent repeatability” respec-
tively, thus allowing more features into the “excellent ICC” category [19], [82], [90],
[125]. The rationale behind our high threshold was that the images in our test-retest
cohort were acquired within minutes of each other. We therefore assumed that there
would be very minimal variation between radiomic features from images acquired
within minutes of each other, given the controlled environment lacking variations in
image acquisition parameters. A limitation in this assumption is that having a high
threshold could lead to a loss of features that may hold relevant information [142].
Despite the high ICC(1,1) threshold set, we still found a high number of features
falling under the “excellent” category, Table A.2.4. Based on the number of scans
used in this study, this high number of features makes model building more complex
due to multiple testing [70].
Another limitation is that, while test-retest analysis offers valuable information in
terms of determining radiomic features’ stability under minimally varying condi-
tions, it can be argued that a test-retest setting where comparison is drawn between
images are acquired within minutes of each other, does not represent a clinical set-
ting where images are typically acquired days apart [143].
Finally, there was no assessment of any anatomical motions or changes that may
take place within the time between the 2 images in the test-retest setting, nor the
impact these potential changes could have on the radiomic feature values.

2.4.3 Research impact and future work

Overall, despite the short duration of time between the images in our test-retest
data-sets, less than 25% of features extracted from each of the data-sets had an
ICC(1,1) ≥ 0.9 as shown in Table A.2.3. This highlights the need for careful feature
selection in radiomics studies [82], [125]. We therefore support the recommendation
that a test-retest analysis should be carried out in radiomic studies to minimise
variabilities in acquisition parameters and improve reliability of radiomic features
used in models [82], [108], [143].
The identified stable features can be used to build models for larger data-sets based
on similar imaging protocols including MR sequences used in this study. For the
GTV region, these could be models looking at treatment response. For the peritu-
moral region, these could be models predicting nodal or distant metastasis based on
microscopic disease in this region.
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Based on the data-set used in this study - 3 scans for each patient, investigation
into changes in radiomic features across different time-points could be carried out
to potentially evaluate treatment response.

2.5 Conclusion

In conclusion, multiparametric MRI-based radiomic features of cervical cancer were
investigated for repeatability in a test-retest setting. A radiomics pipeline using
PyRadiomics to extract radiomic features from T2-weighted and Dixon images for
Cervical Cancer patients was set-up, stable radiomic features based on high Intr-
aclass Correlation Coefficient value between features in a test-retest setting were
selected and the stable radiomic feature from each feature class were identified.
It was determined that most radiomic features extracted from images acquired
within minutes of each other varied greatly and were study-specific. We there-
fore suggest consideration for test-retest repeatability analysis for radiomics studies,
which allows for the selection of features that remain stable under constant condi-
tions, to improve model generalisability, rather than using pre-selected features from
prior studies. Further work is required to validate our findings before the identified
stable features can be used to build reliable models on a larger data-set.
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Chapter 3

Conclusion

Radiomics has potential to enhance clinical decision making through the identifica-
tion of imaging biomarkers that can be used to predict treatment outcomes. One
limitation is model over-fitting due to the high number of radiomic features extracted
from a single image, which affects model generalisability. Test-retest analysis im-
proves generalisability of models built using radiomic features since it allows for
elimination of features that change at constant conditions. This way, only stable
features are retained. Stable features are those that are considered most informa-
tive for the study based on their independence from other features, repeatability
and prominence in the data.
The aim of this study was to investigate multiparametric MRI-based radiomic fea-
tures of cervical cancer for repeatability in a test-retest setting. A radiomics pipeline
using PyRadiomics to extract radiomic features from T2-weighted and Dixon im-
ages for Cervical Cancer patients was set-up, stable radiomic features based on high
Intraclass Correlation Coefficient value between features in a test-retest setting were
selected and the stable radiomic feature from each feature class were identified. It
was determined that most radiomic features extracted from images acquired within
minutes of each other were minimally stable and varied based on MR sequence used
and the site the features were extracted from. We therefore advice region and MR
sequence-specific test-retest analyses for selection of radiomic features, rather than
using pre-selected features from prior studies, for reliable models and to improve
model generalisability. Further work is required to validate our findings before the
identified stable features can be used to build reliable models on a larger data-set.
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Appendix A

Test-Retest Repeatability of
Multiparametric MR-based
Radiomic Features in Cervical
Cancer.

This section contains supplementary material for the journal manuscript.

A.1 Online Repository

The radiomics pipeline used in this study is available on Github [145].
Tables showing Spearman’s Correlation Coefficient values for extracted radiomic
features in relation to the original shape MeshVolume for all of the 4 data-sets are
also available on GitHub [145].

A.2 Intraclass Correlation Coefficient, ICC(1,1)

Table A.2.1 shows the number of features that were seen to be in the excellent ICC
category (ICC ≥ 0.9), good ICC category (0.9 > ICC ≥ 0.75) and poor ICC category
(ICC < 0.75) in the Gross Tumour volume (GTV) region.
Table A.2.2 shows the number of features that were seen to be in the excellent ICC
category (ICC ≥ 0.9), good ICC category (0.9 > ICC ≥ 0.75) and poor ICC category
(ICC < 0.75) in the peritumoral region.
Tables showing ICC values and p values for all 4 data-sets are available on GitHub
[145].
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Test-Retest Repeatability of Multiparametric MR-based Radiomic
Features in Cervical Cancer.

Original LoG Wavelet

Feature Class T2W Dixon T2W Dixon T2W Dixon
n n n n n n

3D Shape Total 4 4 0 0 0 0
ICC ≥ 0.9 1 1 0 0 0 0
0.9 > ICC ≥ 0.75 1 1 0 0 0 0
ICC < 0.75 2 2 0 0 0 0

First-order Total 16 16 48 48 128 128
ICC ≥ 0.9 11 4 43 0 34 30
0.9 > ICC ≥ 0.75 5 0 5 19 38 22
ICC < 0.75 0 12 0 29 56 76

GLCM Total 24 24 72 72 179 180
ICC ≥ 0.9 16 0 44 0 20 0
0.9 > ICC ≥ 0.75 6 2 28 44 67 51
ICC < 0.75 2 22 0 28 92 129

GLRLM Total 14 14 41 42 112 112
ICC ≥ 0.9 6 0 20 3 10 0
0.9 > ICC ≥ 0.75 2 0 12 22 31 21
ICC < 0.75 6 14 9 17 71 91

GLSZM Total 14 14 40 39 112 113
ICC ≥ 0.9 3 0 16 4 13 3
0.9 > ICC ≥ 0.75 3 1 15 10 41 22
ICC < 0.75 8 13 9 25 58 88

GLDM Total 12 12 36 36 96 96
ICC ≥ 0.9 6 0 23 7 9 0
0.9 > ICC ≥ 0.75 2 0 6 17 35 28
ICC < 0.75 4 12 7 12 52 68

NGTDM Total 2 2 6 6 16 16
ICC ≥ 0.9 1 0 4 0 1 0
0.9 > ICC ≥ 0.75 1 0 2 3 7 7
ICC < 0.75 0 2 0 3 8 9

Table A.2.1: GTV ICC values for Radiomics features remaining after dropping
volume-confounded features.
T2W - T2-weighted
n - number of features
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Test-Retest Repeatability of Multiparametric MR-based Radiomic
Features in Cervical Cancer.

Original LoG Wavelet

Feature Class T2W Dixon T2W Dixon T2W Dixon
n n n n n n

3D Shape Total 4 4 0 0 0 0
ICC ≥ 0.9 3 3 0 0 0 0
0.9 > ICC ≥ 1 1 0 0 0 0
ICC < 0.75 0 0 0 0 0 0

First-order Total 16 16 48 48 128 128
ICC ≥ 0.9 13 4 17 0 11 32
0.9 > ICC ≥ 3 3 23 5 31 24
ICC < 0.75 0 9 8 43 86 72

GLCM Total 24 24 72 72 184 184
ICC ≥ 0.9 3 0 3 0 6 0
0.9 > ICC ≥ 10 0 31 8 25 36
ICC < 0.75 11 24 38 64 153 148

GLRLM Total 14 15 42 42 112 113
ICC ≥ 0.9 0 1 1 0 8 1
0.9 > ICC ≥ 14 0 20 3 12 12
ICC < 0.75 0 14 21 39 92 100

GLSZM Total 14 14 45 44 112 144
ICC ≥ 0.9 1 0 6 1 6 1
0.9 > ICC ≥ 10 2 9 2 11 11
ICC < 0.75 3 12 30 41 95 102

GLDM Total 12 13 36 36 96 97
ICC ≥ 0.9 1 1 2 0 4 1
0.9 > ICC ≥ 10 3 15 4 12 9
ICC < 0.75 1 9 19 32 80 87

NGTDM Total 2 2 7 9 16 17
ICC ≥ 0.9 0 0 1 0 0 0
0.9 > ICC ≥ 1 0 2 6 2 5
ICC < 0.75 1 2 4 3 14 12

Table A.2.2: Peritumoral region ICC values for Radiomics features remaining after
dropping volume-confounded features.
T2W - T2-weighted
n - number of features

T2-weighted images Dixon images

1130 GTV (n) Peritumoral
region (n) GTV (n) Peritumoral

region (n)
Volume correlation,
Spearman’s, |ρ| < 0.9 972 984 974 992

ICC ≥ 0.9 281 86 52 45

Table A.2.3: Number of radiomic features remaining after each feature selections
step.
n - number of features
GTV - Gross Tumour Volume
ICC - Intraclass Correlation Coefficient
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Test-Retest Repeatability of Multiparametric MR-based Radiomic
Features in Cervical Cancer.
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Appendix B

Alternative Peritumoral Region
Analysis

B.1 Introduction

This chapter entails a test-retest study to investigate repeatability of radiomic fea-
tures in cervical cancer from T2-weighted (T2W) and Dixon water-only images for
the GTV and the peritumoral region. It is adapted from an abstract that will be
presented as a digital poster at The European Society for Radiotherapy and Oncol-
ogy Congress (ESTRO) 2022 Congress [146].

B.2 Materials and Methods

6 patients with FIGO stage IB2 and IIB cervical cancer had 3 MR scans each, with
at least a week between scans. The scans were acquired on a single MR machine.
At each scan, a T2-weighted image was taken at the start and end of the exam and
Dixon sequences were sequentially acquired over 10 minutes. For this study, T2W
images at the start and end of the scan and the first and last Dixon sequences in
the scan were included, resulting in 4 images per scan. This selection resulted in a
total of 36 test-retest pairs including both T2W and Dixon sequences.
For each image, radiomic features were extracted from 2 regions: the GTV and a
peritumoral region. The GTV was contoured by a single observer on all the start
and end T2W images, and transferred through rigid registration to the first and last
Dixon sequence images. The peritumoral region was acquired through dilating the
first scan’s GTV by 2 voxels (∼1.8mm) and using this contour on the second and
third scans. The regions are shown in Figures B.2.1 and B.2.2.
PyRadiomics was used to extract first-order, shape, and texture radiomic features

from the original T2W and Dixon images, and their Laplacian of Gaussian-filtered
(with σ = 3, 4, and 5) and Wavelet-filtered counterparts. This resulted in 1127
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Results

Figure B.2.1: Images from a single MR scan showing the GTV (red contour) and
a peritumoral region extending 1.8mm from the GTV (region between the green and
red contours). Figures “a” and “b” are T2-weighted images at the start and end of
the scan, respectively

Figure B.2.2: Images from a single MR scan showing the GTV (red contour) and
a peritumoral region extending 1.8mm from the GTV (region between the green and
red contours). Figures “c” and “d” are Dixon water-only images at the start and
end of the scan, respectively

features per image.
Spearman’s Rank Correlation Coefficient, ρ, was used to exclude features highly
correlated with volume (|ρ| ≥ 0.9). Of the remaining features, those with minimal
variation between the start and end of a single scan were selected as being stable
using Intraclass Correlation Coefficient, ICC (1,1) ≥ 0.9. Spearman’s, ρ, was then
used to identify features that were not correlated with each other, with features
having |ρ| < 0.65 being considered acceptable.
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B.3 Results

In the GTV region, only original shape SurfaceVolumeRatio and MeshVolume fea-
tures were repeatable in T2W and Dixon images. Original first-order Interquartil-
eRange feature was also repeatable in T2W images.
In the peritumoral region, only original shape Elongation was repeatable in both
T2W and Dixon images.
Table B.3.1a shows the number of radiomic features remaining at each step of the
feature selection process. Less than 1% of radiomic features were stable and con-
tained non-redundant information for potential predicitve modelling. Figure B.3.1
shows Venn diagrams of identified stable features in the GTV and peritumoral re-
gions for both T2W and Dixon sequences.

T2-weighted images Dixon images

1127 GTV (n) Peritumoral
region (n) GTV (n) Peritumoral

region (n)
Volume correlation,
Spearman’s, |ρ| < 0.9 956 1003 976 1018

ICC ≥ 0.9 219 54 96 70
Correlation between
features, Spearman’s |ρ| <
0.65

3 1 2 1

Table B.3.1: Table showing number of radiomic features remaining after a feature
selection method. 1127 is the total number of features extracted in each region for
each MR sequence.
n - number of features
GTV - Gross Tumour Volume
ICC - Intraclass Correlation Coefficient

B.4 Conclusion

We show that features stable for one MR sequence are not necessarily stable in other
sequences, and that the image region from which they are extracted can impact
feature repeatability. We therefore advice region and modality specific test-retest
analyses for selection of radiomic features for reliable models.
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Figure B.3.1: Venn diagrams comparing features that were stable in T2W images
(i) and Dixon-MR images (ii) for the GTV and peritumoral regions; and features
that were stable in the GTV (iii) and in the peritumoral region (iv) for T2W and
Dixon images.
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