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Abstract

TEXTUAL RELATION EXTRACTION WITH EDGE-ORIENTED GRAPH

NEURAL MODELS

Efstathia Christopoulou
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2020

Textual Relation Extraction is an important task for Natural Language Processing
that aims to detect semantic relations between named entities in text. It can be seen
as a multi-aspect challenge, with varying applications to several downstream tasks
such as Question Answering, Knowledge Base Completion and Event Extraction. In
this dissertation, we aim to address two of the most common sub-tasks of Relation
Extraction: the detection of relations inside sentences, also known as intra-sentence
RE, as well as across sentences, known as inter-sentence RE.

Our objectives in this study are two fold. Firstly, we suggest that interactions be-
tween multiple pairs should be taken into account when modelling relations, so as to
enrich pair representations. Secondly, we want to leverage information encoded in
the connections between different pairs, rather than the entities of the pair alone. To
realise both goals, we propose a novel graph-based neural model, which we call edge-
oriented; that is, it exploits the edges of a graph, which by definition correspond to
relations, in the form of multi-dimensional representations. The proposed model can
construct and/or update edge representations between pairs of nodes using other edges
in the graph. As a result, we simultaneously model multiple pairs in a textual snippet
by forming their representations as multi-hop interactions between their arguments.
Throughout this work, we validate the proposed approach on several datasets, show-
ing that it effectively improves relation detection on both multi-pair and single-pair
sentences in different domains.

Regarding document-level relations, we further propose a simple but intuitive way
to construct heterogeneous document-level graphs and infer interactions between their

13



nodes. We suggest that simple graph structures that can be constructed with heuris-
tics can effectively capture interactions of interest in documents. In addition, incor-
porating information from the entire document proves beneficial for both intra- and
inter-sentence relations. Overall, our edge-oriented model achieves promising results,
thus demonstrating its potential suitability for relation extraction and other graph-based
tasks.
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sopoulos and Dr. André Freitas for their invaluable suggestions to improve my thesis,
as well as their interest in my work. Moreover, thank you to everyone I met in ACL
in Australia, ACL in Italy and EMNLP in Hong Kong, something that made attending
conferences one of the most exciting experiences. Thank you for all the interesting
discussions and fun times.

A big thank you goes to all of my former and current colleagues in NaCTeM, who
have supported me through thick and thin. I would have never been able to do this
without you guys: Meizhi, Chryssa, Maolin, Kurt, Thy, Paul, Nhung, Austin, Axel,
Matt, Piotr, Sunil, Jock, Phong.

17



Another big thank you is due to all of my friends from Greece as, despite the
distance, we still maintain the same undergrad-like friendship. Thank you for all the
mental support and tolerance: Nikolas, Konstantina, Thodoris (×3), Dimitris, Foteini,
Dorothea, Xristos, Ioanna, Alex, Marina, Filippos, Kostas, Elisavet, Petros, Leonidas.

Finally, this would not have been possible without the support of my extended fam-
ily, their never-ending mental boost, endless love and their encouragement for whatever
I choose to do. I really want to thank my sister, Dimitra, for being a good flatmate and
for helping me proofread this thesis; some seriously fun times. Last, but not least,
I want to thank Chris for being by my side through it all, and almost becoming a
computer scientist himself because of it. Thank you for always making me believe in
myself.

18



Abbreviations

ADE Adverse Drug Event

CNN Convolutional Neural Network

DDI Drug-Drug Interactions

DS Distant Supervision

EHR Electronic Health Record

GCN Graph Convolutional Network

GRU Gated Recurrent Unit

LSTM Long-Short Term Memory

MIL Multi-instance Learning

MLE Maximum Likelihood Estimation

MLP Multi-layer Perceptron

NEL Named Entity Linking

NIF Negative Instance Filtering

OIE Open Information Extraction

PPI Protein-Protein Interactions

RE Relation Extraction

19



20 Abbreviations

RNN Recurrent Neural Network

SDP Shortest Dependency Path

TL Transfer Learning

TRE Textual Relation Extraction



Chapter 1

Introduction

1.1 Motivation

Humans identify the world around them by “relating” themselves to their surround-
ings. In other words, they form connections with the environment they interact with.
As Aristotle states in Metaphysics “Things are called “relative” (a) In the sense that

‘the double’ is relative to the half, and ‘the triple’ to the third; and in general the

‘many times greater’ to the ‘many times smaller’ [...]”a (Ross, 1925). As such, the
connections individuals form are but a part of a greater ‘network’, where everything
has some degree of relation with everything else; nothing is irrelevant.

One major component of achieving those connections is by developing commu-
nicative mechanisms. While interactions with the environment primarily involve the
senses (touch, sight, smell, etc.), humans, in particular, developed a unique way to
communicate with each other, which occurred in the form of language. Throughout
history, language evolved to accommodate human needs through both oral and written
discourse. Written discourse, i.e. texts, further evolved to adapt to new concepts and
notions and became gradually different according to the domain it addressed. Different
genres emerged as a result, such as literary, medical or legal texts, among others. Such
texts address particular audiences and feature jargon (i.e. specialised vocabulary) that
is unique to each domain.

Every piece of discourse, whether oral or written, must follow a “parameter” in

a“πρός τι λέγεται τὰ μὲν ὡς διπλάσιον πρὸς ἥμισυ καὶ τριπλάσιον πρὸς τριτημόριον, καὶ ὅλως
πολλαπλάσιον πρὸς πολλοστημόριον καὶ ὑπερέχον πρὸς ὑπερεχόμενον: [...]” [Aristotle, Metaphysics,
5.1020b]

21



22 CHAPTER 1. INTRODUCTION

order to facilitate communication; that is, coherence. Coherence, as a principle, en-
sures that both words and phrases, as well as notions and concepts, by extension, can
adequately form meaning and, eventually, pass along a message to another person.
The skill to first understand and then produce language is the most vital ingredient for
human communication, written or oral.

Nowadays, there has been an increasing interest to comprehend this ability further.
This research is of particular interest to the domain of Artificial Intelligence (AI) as, by
understanding this complex human function, we will be able to construct models that
automatically perform the same operation. The abundance of written text, particularly
in digital form, additionally enhances the interest in how humans understand language,
as well as how they understand and form new associations between lexical elements.
Since it is not humanly possible to read through such large amounts of text, in order to
extract important information more effectively, we seek automatic ways to trace facts,
opinions or evidence of known or hidden relations between people, objects or other
concept entities through text. Natural Language Processing is a field of AI that aims to
develop methods to not only encode but also produce language to or from meaningful
representations, for computers.

A part of this field involves developing a particular set of methods for the automatic
identification of named entities in text, as well as the associations between them. The
automatic identification of semantic associations (relations) between named entities is
named Relation Extraction and is the main subject of this study.

In this dissertation, we particularly study textual relation extraction, by focusing
on automatic ways to detect semantic associations between named entities in spe-
cific textual snippets.

1.1.1 Why Graphs?

The semantic associations between entities or concepts are defined by humans and as
a result we can categorise relations in text to be either explicit or implicit. The former
indicates the presence of adequate information in the textual snippet that allows us
to identify the corresponding association. The latter indicates the absence of explicit
contextual information, hence human inference is required to extract the association.
For instance, in the example “John is the son of Peter and Peter is the son of Robert”,
there is clearly a relation between John and Robert. However, this is not explicitly
stated in the sentence.
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Figure 1.1: Example of a semantic graph. Source: towardsdatascience.com

In order to extract these implicit relations, inference is required, i.e. the forma-
tion of conclusions based on given facts or assumptions that are supposed to be true.
Inference is prominent in written discourse. It typically requires the use of existing
associations to form new ones; in other words, it involves the interaction of multiple
elements in its entirety. A Semantic Network (Allen and Frisch, 1982) (also known
as semantic graph) is one of the oldest forms of knowledge representation as a graph
structure, connecting concepts (nodes) with semantic associations (links). Figure 1.1
shows an example of a semantic graph, which connects places, cities and people with
semantic relations.

Graph structures provide a comprehensive visualisation of associations between
different concepts, as well as a way to infer relationships simply by connecting the
dots. For instance, in the example of Figure 1.1, since Alice visited the Eiffel Tower
and the Eiffel Tower is located in Paris, we can infer that Alice visited Paris. In Nat-
ural Language Processing, and in written discourse in particular, the identification of
semantic associations between entities is realised via the task of Relation Extraction
(RE). Approaches for RE that utilise graph structures have attracted particular atten-
tion over the last years where, with the help of neural networks, they have achieved
significantly high performance on existing datasets (Luan et al., 2019).

Graphs are the primary representation of relations, hence their importance in the
construction of graph-based methods for automatic relation extraction. Existing graph-
based methods used in various NLP tasks consider words as nodes and interactions
among them as edges. However, they focus more on the nature and informativeness of

towardsdatascience.com
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the relation participants (i.e. arguments or nodes in the graph) instead of the connec-
tions between them (edges in the graph). Recently, there have been several efforts to
incorporate, or give more significance, to these connections (Gong and Cheng, 2019).
We also aim towards this direction by proposing a method that focuses more in mean-
ingfully representing graph edges with multi-dimensional features instead of graph
nodes.

Our general goal is to address the problem of relation extraction from textual
sources, with respect to a given piece of text, as a graph-based problem and in par-
ticular to effectively model multiple interactions among elements in text. This goal is
twofold. Firstly, it involves constructing simple graph structures from the input text us-
ing named entities and secondly, includes the formation of meaningful representations
between the interactions of these entities using the graph structure.

Our proposed methodology is edge-oriented in the sense that the relations between
two nodes are formed by unique, multi-dimensional edge representations which
are directly used to model interactions in a graph.

1.2 Research Questions, Hypotheses and Objectives

With regard to the problem we aim to study, we form the following research questions
(RQ), accompanied by their respective hypotheses (H).

RQ1 In cases where multiple entities exist in a sentence, could we take advantage of
all intra-sentence entity-to-entity interactions to improve detection of semantic
relations?

H1 The relation between two named entities in a sentence can be supported by
the interactions of these entities with other, co-existing named entities in
the same sentence, in a joint training setting.

RQ2 Can multiple interactions among entities in a sentence be beneficial for detecting
relations in other domains?

H2 Modelling multiple interactions among pairs in a sentence can be effective
for relations in both the generic and the biomedical domain.

RQ3 Can we model documents as heterogeneous graph structures and infer document-
level relations?
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H3.1 We can map documents to partially connected, heterogeneous graph with-
out the need for syntactic dependency structures.

H3.2 Document-level inference, i.e. using information from the entire document,
is beneficial for both intra- and inter-sentence relations.

Based on the research hypotheses proposed, we establish the following research
objectives (O):

O1 Develop a sentence-level, relation extraction model that is independent of ex-
ternal resources and syntactic tools, in order to directly incorporate knowledge
from other pairs in the same sentence in a meaningful way.

O2 Propose an edge-oriented graph encoding mechanism for relation extraction in
sentences, which focuses on the meaning of the connections between entities,
and study its potential effectiveness and suitability in relation extraction tasks.

O3 Validate the proposed approach on sentential datasets belonging to different do-
mains (news and bio-medicine), while investigating the variations and similari-
ties observed in relations between different domains.

O4 Propose an intuitive way to construct document-level graphs without using syn-
tactic dependency tools, in an effort to simplify the task of identifying relations
across sentences.

O5 Investigate the effect of the proposed edge-oriented approach on a heteroge-
neous, document-level graph for detection of intra- and inter-sentence relations.

1.3 Contributions

This study makes the following contributions (C), associated with the previously pre-
sented objectives, as summarised below:

C1 We propose a new methodology that models sequences as graph-based struc-
tures, particularly for relation extraction in sentences. The proposed approach
utilises contextual information from all the pairs in the sentence and does not
require external syntactic tools.
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C2 We develop a graph-based algorithm that models multi-dimensional edge repre-
sentations instead of node representations. The algorithm iteratively composes
multi-hop walks between two entities into edge representations.

C3 We adapt the proposed approach to the biomedical domain, where we prove that
interactions between multiple pairs of named entities can further improve the
detection of associations between other entities in both domains.

C4 We propose a simple methodology to model documents into graphs with hetero-
geneous types of nodes and edges, without the requirement for external syntactic
tools. The graph is constructed using simple heuristics that stem from the natural
associations between elements in a document.

C5 We apply our edge-oriented algorithm on heterogeneous document-level graphs
and improve the detection of relations inside and across sentences.

C6 We test the developed models on both human and automatically annotated cor-
pora showing the effectiveness of our proposed method even when named enti-
ties and relations are noisy.

1.3.1 Publications

A large amount of the work proposed in this dissertation has been already published.
This dissertation contains existing, improved or additional results with relevance to the
following publications, as discussed in the corresponding chapters.

• A Walk-based Model on Entity Graphs for Relation Extraction
? Association for Computational Linguistics (ACL)
? Christopoulou, Miwa, and Ananiadou (2018)

• Adverse Drug Events and Medication Relation Extraction in EHRs with Ensemble
Deep Learning Methodsb

? Journal of American Medical Informatics Association (JAMIA)
? Christopoulou, Tran, Sahu, Miwa, and Ananiadou (2020)

bThis is a co-authored paper and the contributions are discussed in detail in Chapter 5.
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• Inter-sentence Relation Extraction with Document-level Graph Neural Networkc

? Association for Computational Linguistics (ACL)
? Sahu, Christopoulou, Miwa, and Ananiadou (2019)

• Connecting the Dots: Document-level Neural Relation Extraction with Edge-oriented
Graphs
? Empirical Methods for Natural Language Processing (EMNLP-IJCNLP)
? Christopoulou, Miwa, and Ananiadou (2019)

1.4 Dissertation Structure

The dissertation consists of two introductory chapters, three main content chapters and
the conclusions chapter.

In Chapter 2, we provide key definitions regarding the general task of Relation
Extraction. In the first part of the chapter, we discuss the multiple aspects of the task, as
well as the evaluation metrics that are typically used. In the second part, we investigate
existing methods developed for relation extraction over the years by categorising them
in a meaningful taxonomy. We further present structured-based methods in detail and
discuss their advantages and disadvantages for relation extraction. Chapter 3 is a brief
introduction to neural components, some of which are further used in the following
chapters, describing their principal functionality.

Chapter 4 examines our initial hypothesis (H1). We introduce an edge-oriented
graph-based relation extraction model and explain the motivations behind the proposed
approach. We describe in detail the model architecture and validate it on three textual,
sentence-level datasets from the general domain (news articles or encyclopedias). Fi-
nally, extensive analysis is conducted on the different model components to better un-
derstand the behaviour of the model. In this chapter, we include parts of our published
work Christopoulou et al. (2018).

We further adapt and validate our approach on the biomedical domain in Chapter 5.
At this point, we address our second hypothesis (H2) and attempt to prove the effective-
ness of the proposed approach across different domains. Experiments are conducted
with textual data from scientific articles and electronic health records. This chapter
includes work from our published paper Christopoulou et al. (2020).

cThe contents of this paper are not included in this dissertation.
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In Chapter 6, we extend the proposed model to relations that reside across sentences
and deal with document abstracts in particular. Our proposed model is evaluated on
a different relation extraction setting, where the objective is to identify relations be-
tween named entities mapped to Knowledge Bases. We describe a simple method to
construct graphs from documents and address our last two hypotheses (H3.1 & H3.2)
by incorporating our edge-oriented mechanism on document-level graphs. We further
discuss the suitability of this approach to the task at hand. In this chapter, we include
work from our published paper Christopoulou et al. (2019).

In the final Chapter 7, we summarise the findings of each individual chapter and
draw important conclusions from the overall study. Finally, we elaborate on limitations
of the existing work as well as plans for future work.



Chapter 2

Relation Extraction: An Overview

In this chapter we aim to present a thorough overview of Relation Extraction, both
from the perspective of the various tasks that can be associated with it, as well as in
terms of developed methods to tackle these tasks. We first provide key definitions
regarding important components involved in relation extraction tasks, such as entities
and relations. We then split existing tasks into structured categories depending on
the information one aims to extract. The remainder of the chapter discusses in detail
existing approaches across various dimensions, elaborating on their advantages and
limitations.

2.1 Definitions

Textual Snippet A textual snippet is defined as a small piece of a text. Phrases, sen-
tences, paragraphs or documents constitute typical representations. The simple
term snippet will be used henceforth to express textual snippets.

Word A word is a single distinct meaningful element of language. Words always
have a meaning when found alone in discourse, contrary to morphemes that
sometimes need another morpheme to form something meaningful. Essentially,
morphemes are the building blocks of words.

Named Entity A named entity is a word or a group of words that constitute a proper
name, such as a person, an object, a location, an organisation. Named entities
are usually referred to as simply entities.

Entity Mention An occurrence of a named entity is called a named entity mention.

29
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Entity Concept Named entities can occur multiple times in a snippet under the same
name, a synonym or an alias (including abbreviations). Entity concepts corre-
spond to an entity class where entity mentions can be mapped. In Figure 2.1 the
named entities Apple and Apple Computer can be mapped to the entity concept
Apple Inc. as multiple mentions of that concept.

In the following sections we will explicitly distinguish between entity mentions

and entity concepts.

Entity Type Named entities typically belong to a particular semantic category. As a
result, it is common to assign semantic entity types to them, e.g. organisation.
Entity types are also known as entity semantic categories. Both terms will be
used interchangeably.

ORG

PERSON ORG
founder_of relation 

argument
relation 

argument

entity type entity mention word

named entity

relation type

Apple Inc., formerly Apple Computer, Inc., is a multinational corporation that creates
consumer electronics, personal computers, servers and computer software. 

Founder Steve Jobs and Steve Wozniak created Apple Computer on April 1, 1976.

Figure 2.1: Example illustrating the different definitions for entities and relations.

Relation Type Similarly to entity types, the semantic relation type, relation category

or simply relation type describes the semantic category of the relationship be-
tween two or more named entities.

Relation Instance A relation instance is a group of named entities participating in a
relation along with their relation type. In case of two named entities, a relation
instance can be defined as a triple (e1,r,e2), where e1 and e2 correspond to the
named entities and r corresponds to their relation type. As shown in Figure 2.1
the triple (Steve Jobs, founder of, Apple Computer) is a relation instance, or as
commonly used, a relation triple.

Relation Argument In a relation instance, each of the named entities that participate
in the relation are named relation arguments. In the following sections we will
refer to relation arguments as target entities or entities of interest.
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Pair A pair is essentially a relation instance that includes only two relation arguments.
For simplicity, when referring to the relation between two named entities we will
use the term pair.

2.2 Associated Tasks

Textual Relation Extraction (TRE) is an umbrella term that describes the identification
of relations between elements in text. RE can be divided into multiple tasks that focus
on particular types of relations, formulated in different settings. A taxonomy of related
tasks is summarised in Figure 2.2.

 Textual Relation 
 Extraction Tasks

 Domain

 Generic

 Newswire

 Wikipedia

 Biomedical

 Clinical 
 Reports

 Scientific
 Literature

 Textual
 Granularity

 Sentence

 Paragraph

 Document

 Arguments

 Number

 Binary

 N-ary

 Type

 Mentions

 Concepts

 Semantic
 Categories

 Pre-defined

 Binary

 Multi-class

 Multi-label

 Automatic

 Clusters

 Text-based Words

 Events

 Scientific 
 Literature

 Phrases

Figure 2.2: Categories of relation extraction tasks according to different aspects of
extracted information.

An initial distinction can be made based on the target domain. Approaches for re-
lation extraction were initially applied to generic data, extracted from the web or from
encyclopedias such as Wikipedia. However, due to the increasing interest of natural
language processing in extracting structured information for the biomedical domain,
multiple methods have been adapted or developed particularly for the biomedical do-
main, including the scientific literature or clinical reports.

The next more general category refers to the textual granularity from which we
aim to extract relations between named entities. Sentence-level RE, i.e. extraction
of relations in sentences, is the most well-studied RE task. Recently, inter-sentence
RE, i.e. extraction of relations beyond sentences, started to gain more interest from
the scientific community (Gupta et al., 2019). In reality, most existing relations are
inter-sentential. This setting is common in paragraph- or document-level snippets, that
consist of multiple sentences.

We can then separate relation tasks with respect to the number of arguments
participating in the relation. In the case of two entities being involved in a relation, the
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task is defined as binary RE, which is the most commonly-studied RE setting. Apart
from binary RE, recently there has been an increasing interest in n-ary RE, where the
objective is to identify the relation between n number of named entities in a structured
form (Song et al., 2018). The type of arguments between which we aim to extract
a relation can also be considered a different RE task. In particular, mention-level RE
indicates extraction between named entity mentions, while concept-level RE refers to
extraction of relations between concepts. As defined earlier, concepts can be viewed
as generalised named entities, typically mapped to unique Knowledge Base identifiers.
Concept-level RE is more common in the biomedical domain, where entities can be
expressed via multiple names. In this setting, multi-instance learning (Carbonneau
et al., 2018) is usually incorporated in order to learn from the many instances or forms
that a concept can appear in textŒ.

Another RE categorisation is defined based on the semantic categories that named
entities can share. When relation extraction is treated as a classification problem, re-
lations are typically chosen from a set of pre-defined relation categories. The simplest
categorisation is binary classification. This setting involves only two possible relation
categories, i.e. related/non-related. In the case of a larger set of relation categories,
e.g. located-in, founder-of, etc., the classification is named multi-class. Typically, in
multi-class classification, only one relation category is allowed for each pair. Finally, if
a given group of entities can be assigned more than one potential relation type simulta-
neously, the classification is known as multi-label. However, when relation extraction
is treated as an open information extraction setting, relation categories are extracted
automatically from text, hence named text-based, or are latently induced as clusters.

In general, a combination of the aforementioned settings is often targeted by re-
searchers, such as mention-level n-ary RE, concept-level multi-class document-level
RE, and so on. There is also another group of tasks which focuses on more specific re-
lations. In more detail, causal relation extraction (Blanco et al., 2008) aims to identify
relationships of causality between given named entities. Such relations require identi-
fication of indicative words for causality or extraction of patterns between cause-effect
relations. Temporal relation extraction (Ling and Weld, 2010) is another specific RE
task that aims to detect relations of temporality between named entities or events, e.g.
before, after, simultaneously etc. Again, linguistic properties of text such as tenses,
or the order of the narrative should be considered to detect such relations. Finally,
joint extraction of named entities and relations is a common approach, which is of-
ten referred to as end-to-end named entity and relation extraction. The objective is
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to simultaneously extract both named entities and relations between them, either in a
pipeline manner of through joint training. In contrast, simple RE assumes that named
entities are already annotated in text (either by humans or other methods). Joint extrac-
tion has been proven to be an effective method, as relation detection training can assist
named entity recognition (NER) (Miwa and Bansal, 2016; Bekoulis et al., 2018b).

Many downstream NLP tasks include RE as one of their main information extrac-
tion steps. Such an example is event extraction, a task that aims to identify a complex
set of relationships between entities, that constitute an event (Hogenboom et al., 2011).
Events typically require the identification of a trigger word (a key word that specifies
the event), as well as the semantic relations of other words with the trigger. The task
of identifying these relations is named event argument role detection and can be con-
sidered an intermediate step for event identification. Another task that falls in the same
category is Knowledge Based Population (KBP) (Getman et al., 2018). In this task, the
goal is to augment an existing Knowledge Base (KB) with additional information. An
aspect of this task is called slot-filling, where the objective is to identify all possible
information for a specific entity. This is highly correlated with relation extraction as
all information about an entity can be identified through the relations of this entity to
other elements. Other tasks that considerably benefit from RE are Question Answering
(Ostapov, 2011), Fact Verification (Thorne and Vlachos, 2018), etc.

2.2.1 Challenges

The aforementioned tasks involve several other challenges besides the target problem
they aim to solve. Relation Extraction, in general, is a complex procedure that, in an
ideal scenario, involves tackling several linguistic phenomena. We only name a few
here that are the most commonly encountered, but it should be noted that there is a
large variety of such phenomena, due to the diversity of language.

Aliases are occurrences of words in different surface forms, that refer to the same
thing. For example, New York City and NYC refer to the same city, but the former
consists of three words, while the latter is an abbreviation. Named entity linking is
the task used to map multiple such occurrences into a single concept; it is addition-
ally useful for RE so as to extract more general associations. Co-reference is related
to aliases, with the difference that the referents cannot only be nouns or names, but
also pronouns. The identification of co-reference is often targeted in RE in order to
extract associations that might exist in different sentences. Another phenomenon is
polysemy, where each word can have multiple meanings, according to accompanying
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Relation Extraction
 Challenges Polysemy

 Distant Arguments Co-reference

 Aliases

 Negation

 Hypernymy / Hyponymy

 Implicit Relations

 Domain-specific Knowledge

Figure 2.3: A few of the existing challenges in Relation Extraction challenges.

context. Despite existing models that do well in disambiguating entities, there are sev-
eral challenging cases, as entities can still have multiple semantic types despite being
in a single context. Hypernymy and hyponymy refer to the presence of hierarchies be-
tween entities, which are typically challenging when inferring relations. For instance,
if there is a relation between animals and food, it might be that the same relation stands
for dogs, cats etc. However, if there is a relation between cats and food, it does not
necessarily mean that the relation can be generalised to all animals. Knowledge about
the hierarchy of entities provides helpful insight for relation extraction. It is typical that
ontologies are incorporated into RE models to solve such issues. Moreover, negation
is a common grammatical phenomenon that directly affects relations by altering their
meaning. Negation is not always easy to detect since it can be expressed in various
ways. Nevertheless, it is something that should be generally taken into account in RE
applications.

Three other challenges that perhaps are not purely linguistic, concern distant ar-
guments, implicit relations and domain knowledge. Regarding the first, detection of
long-distanced relations is a goal that has been targeted for a long time and continues
to do so until today. The distance between arguments is often a negative factor for their
association, i.e. typically, if two entities are too far apart in a snippet, the chance of
being related is small. However, this is not always the case, as, when sentences are
long, they might include several parenthetical phrases before mentioning the second
participant, leading to longer distance. This issue is generally targeted from RE meth-
ods achieving promising results over the years. Implicit relations, on the other hand,
are mostly studied in discourse, i.e. extraction of relations between clauses. However,
they are also apparent in classic RE, when there is no explicit evidence to support the
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Figure 2.4: Timeline of Relation Extraction datasets. Red boxes correspond to datasets
developed for the biomedical domain, while blue boxes correspond to datasets devel-
oped for the general (news) domain.

underlying relation; although it can be understood from the general context. Addi-
tionally, domain knowledge is another important factor in RE. Different corpora from
different domains use different vocabularies, hence rendering the identification of rela-
tions difficult to adapt to other domains without external domain-specific knowledge.
This type of information can be found in Knowledge Bases or domain-specific anno-
tated corpora, which are often employed by RE methods to facilitate the detection of
entities in domain-specific corpora.

2.2.2 Datasets and Corpora

Over the years, several datasets have been created to assist the development of RE
models. The majority of these datasets have been annotated by humans for different
domains, known as gold annotated corpora. Recently, RE corpora have been created
automatically with the help of Distant Supervision (DS) (Chapter 2.3.4), also known as
silver corpora. For the general domain, RE datasets typically contain multiple named
entities of different semantic types and consequently multiple semantic relation cate-
gories among pairs. For the biomedical domain, existing datasets developed for RE
mostly include only two types of named entities or concepts, as well as two relation
types between them (i.e. related or non-related). This difference can be attributed to
the fact that biomedical corpora are much more challenging to annotate as they require
considerable domain expertise.

Figure 2.4 illustrates the timeline of creation of different relation extraction datasets
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for the news-wire and the biomedical domains. It is worth noting that, in recent times,
more and more datasets are being created either automatically or human annotated,
since older datasets have reached high performances with recent advances in relation
extraction methods. Another interesting observation is that the datasets developed for
the biomedical domain seem to be more compared to the ones developed for the news-
wire domain. This can be attributed to the fact that relation extraction is much more
challenging for the biomedical domain, as biomedical relations are much more com-
plicated, most of the time requiring domain expertise.

We summarise a list of existing and most commonly used relation extraction datasets
for both domains in Table 2.1. The datasets are categorised based on their domain, tex-
tual granularity, classification, arguments and type of annotation. An official relation
extraction task was firstly formulated at the seventh Message Understanding Confer-
ence (MUC-7) in 1998, introducing three semantic entity types (organisation, location,
artifact) and three semantic relation categories (location-of, employee-of, product-of).
Later on, the Automatic Content Extraction (ACE) project started by defining more
semantic entity and relation categories both coarse and fine-grained. The first ACE do-
main datasets developed were developed in 2003, 2004 and 2005 (Doddington et al.,
2004), containing named entities, relations and events in various languages, mostly
from news articles, and have been extensively used by many existing relation extrac-
tion approaches. Another early introduced dataset was that of CoNLL 04 (Roth and
Yih, 2004), which also contains entities and relations for the general domain. How-
ever, it is much smaller than ACE in terms of number of sentences. A few years later,
the SemEval-2010 shared task 8 (Hendrickx et al., 2010) was held, where a general
domain, sentence-level dataset was created for binary relation extraction. The dataset
was widely used to improve relation classification, assuming gold named entities were
given in advance.

The New York Times (NYT) corpus was created by Riedel et al. (2010) using
distant supervision. The dataset was constructed by aligning Freebasea and the New
York Times (NYT) corpus with data between 2005 and 2006 for training and data
from 2007 for testing. The KBP13 dataset was introduced by Angeli et al. (2014)
for multi-instance multi-label (MIML) relation extraction. They utilised the 2010 and
2013 KBP document collections and a snapshot of Wikipedia 2013 as raw text corpus
to perform distant supervision. In a similar manner, WikiData was created by Sorokin
and Gurevych (2017) with Wikipedia relations using distant supervision. Google also

ahttps://developers.google.com/freebase/

https://developers.google.com/freebase/


2.2. ASSOCIATED TASKS 37

constructed their own distantly supervised corpus from Wikipediab. One recent dataset
is the TACRED dataset (Zhang et al., 2017c). It is a large scale relation extraction
dataset with 23 different semantic entity and 41 semantic relation categories. It was
build by querying the English TAC KBP newswire and web forum corpus with target
entity mention pairs of interest. T-Rex (Elsahar et al., 2018) is a recently created dataset
using distant supervision from Wikipedia. In addition, DocRED is the first generic
domain dataset for document-level relations extraction (Yao et al., 2019). Finally, two
additional datasets have been introduced for few-shot relation extraction, FewRel 1.0
(Han et al., 2018) and FewRel 2.0 (Gao et al., 2019). The latter contains annotations
from both domains.

Moving on to the biomedical domain, Protein-Protein Interaction was the first re-
lation extraction task that was targeted. The AIMed (Bunescu and Mooney, 2006) PPI
dataset was constructed from 225 PubMed abstracts and annotated with binary interac-
tions between human proteins. Similarly, the BioInfer dataset (Pyysalo et al., 2007) is a
smaller PPI dataset. The i2b2 Challenge (Uzuner et al., 2011) aimed at identifying re-
lations between biomedical concepts from clinical records, specifically between three
types of pairs; treatment-medical problem, medical problem-test and between medical

problems, including 11 relation categories in total. The ADE-v2 dataset was created
by Gurulingappa et al. (2012a) and contained relations between Adverse Drug Events
(ADEs) and drugs. The PHAEDRA corpus (Thompson et al., 2018) is a semantically
annotated corpus for pharmacovigilance with annotations of entities, relations, events
and coreference. Another very well studied dataset is the DDI, Drug-Drug Interactions
dataset (Herrero-Zazo et al., 2013). The dataset contains annotated drugs and their as-
sociations from two different sources, MEDLINE and DrugBank. It was used as gold
standard in the SemEval-2013 DDI Extraction Task (Segura-Bedmar et al., 2013). The
BioNLP 2013 Bacteria Biotopes Shared Task (Bossy et al., 2013) introduced relations
between bacteria and biotopes. The BioCreative V CDR dataset (Li et al., 2016a) con-
tains document-level binary relations between chemical and disease concepts. It was
the first gold dataset for inter-sentence relation extraction in biomedical abstracts of
full documents. BioCreative VI ChemProt (Krallinger et al., 2017) targeted Chemical-
Protein relations and is a large sentence-level relation extraction dataset with multiple
fine-grained relations between chemicals and proteins. The n2c2 dataset (Henry et al.,
2019) considered relations between drugs and other medication-related entities, in-
cluding 9 different relation categories. (Roberts et al., 2017)

bhttps://ai.googleblog.com/2013/04/50000-lessons-on-how-to-read-relation.html

https://ai.googleblog.com/2013/04/50000-lessons-on-how-to-read-relation.html
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Dataset Domain Gran/ty Class/n Arg. Type Annot.

ACE04 news sentence MC mention gold
CoNLL news sentence MC mention gold
ACE05 news sentence MC mention gold
NYT news sentence MC/ML concept DS
SE-T8 news sentence MC mention gold
GoogleDS news sentence MC concept DS
KBP news sentence MC mention DS
WikiData wikipedia sentence MC mention DS
TACRED news sentence MC mention DS
FewRel 1.0 wikipedia sentence MC mention DS+gold
T-Rex wikipedia sentence MC mention DS
DocRED news abstract MC mention DS+gold
FewRel 2.0 wikipedia/

sentence MC mention DS+gold
biomedical

AIMed biomedical sentence binary mention gold
BioInfer biomedical sentence binary mention gold
i2b2 clinical sentence MC mention gold
ADE-v2 biomedical sentence binary mention gold
DDI biomedical sentence MC/binary mention gold
BB-ST biomedical sentence binary mention gold
CDR biomedical abstract binary concept gold
ChemProt biomedical sentence MC mention gold
GDKD biomedical document binary mention DS
TAC biomedical sentence MC mention gold
n2c2 clinical sentence MC mention gold
CDT biomedical abstract MC concept DS
MADE 1.0 clinical sentences MC mention gold
Phaedra biomedical sentence MC mention gold
GDA biomedical abstract binary concept DS

Table 2.1: Existing Relation Extraction Datasets. Gran/ty refers to Granularity, Class/n
refers to Classification, Arg. refers to Argument, Annot. refers to Annotation, MC
stands for Multi-class classification, ML stands for Multi-label classification and DS
stands for Distant Supervision.

Concerning distantly supervised datasets, Verga et al. (2018) built a large corpus
for abstract-level relation extraction named CTD, by aligning PubMed abstracts with
the CTD database. Similarly, Wu et al. (2019) build GDA by aligning PubMed ab-
stracts with the DisGeNet (Piñero et al., 2016) database. Quirk and Poon (2017) built
a distantly supervised corpus for binary relation extraction between genes and drugs
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using the Gene-Drug Knowledge Database (GDKD), while they later incorporated the
CIVICc database to extend the corpus for ternary relation extraction through drug-
gene-mutation triples. Both datasets were constructed to extract relations from full-text
documents.

2.2.3 Evaluation Metrics

The performance of relation extraction systems is typically measured with a set of
evaluation metrics. The most commonly used metrics include counting the number
of correct and incorrect predictions of a relation extraction model in comparison with
some ground truth annotations. We report the most commonly used metrics designed
to estimate the performance of RE models, as described below, considering that named
entities are given.

Firstly, it is necessary to define errors/statistics that are used to compute these met-
rics. Let us assume that we have a relation extraction problem with only two relation
categories: a pair shares a relation, or it does not share a relation. T P (True Positives)
correspond to the number of instances correctly identified by the model as sharing a
relation, T N (True Negatives) correspond to the total number of instances correctly
identified as not sharing a relation, FP (False Positives) correspond to the total number
of instances incorrectly identified as sharing a relation and FN (False Negatives) cor-
respond to the total number of instances incorrectly identified as not sharing a relation.

Table 2.2 shows the contingency table for a binary relation classification task.
When the true label is different from the prediction label, then FP and FN errors
appear (for positive and negative relation types, respectively). On the contrary, in case
of correct predictions, no errors appear and only T P and T N instances are counted.
By making use of these statistics one can define evaluation metrics to estimate the
performance of a relation extraction system.

Ground Truth

Prediction

Relation No Relation
Relation TP FP
No Relation FN TN

Table 2.2: Contingency table of true positives (TP), false positives (FP), true negatives
(TN) and false negative (FN) for binary relation classification.

Accuracy. Accuracy is used to estimate the number of systematic errors made by a
chttps://civicdb.org/

https://civicdb.org/
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model, i.e. a metric to estimate how accurate a model can be, in terms of how close
the model predictions are to the truth. A combination of all the above statistics forms
the accuracy equation,

ACC =
T P+T N

T P+FP+T N +FN
(2.1)

However, accuracy fails to show the actual types of errors that the model is prone to
make. It can also produce misleading high scores in cases of large imbalance between
the target relation categories. In relation extraction datasets usually the number of neg-
ative relations are significantly more than the positive relations. As a result accuracy is
not considered the best evaluation metric for such problems and two other metrics are
used, namely Precision (P) and Recall (R).

Precision & Recall. Precision calculates the percentage of positively predicted (TP
+ FP) examples that are correctly predicted as positive (TP). On the other hand, Re-

call calculates the percentage of true positive examples (TP + FN) that are correctly
predicted as positive (TP), hence measuring the sensitivity of the model.

P =
T P

T P+FP
(2.2)

R =
T P

T P+FN
(2.3)

Precision-Recall (PR) Curve. These two metrics can be plotted as a curve, describ-
ing the classification ability of a model based on various decision thresholds. The PR
curve is created by typically plotting the Precision on the y-axis and the Recall on the
x-axis. The Area Under the Curve (AUC) score which, in the case of a PR curve, is
called average precision score, is used as an evaluation metric for relation extraction
systems in cases the approaches do not explicitly plot the curve.

F-score. The metrics can also be combined to estimate another metric, named Fβ-
score, which is the harmonic mean of the two (Rijsbergen, 1979). In case of Precision
and Recall being equally weighted (β = 1), the metric is called F1-score.

Fβ = (1+β
2) · P ·R

β2 ·P+R
(2.4)
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False Positive/Negative Rate. These statistical metrics are used to estimate the dis-
crimination capability of a system. The False Positive Rate (FPR) corresponds to the
probability of a model to classify a randomly selected negative example as positive. On
the contrary, the False Negative Rate (FNR) is the probability of a model to classify a
randomly selected positive example as negative.

Micro- and Macro-averaged Metrics

The above described metrics are typically used in cases of binary classification, where
the number of relation categories is equal to two. However, in the case of multi-class

classification, one has to re-define both the statistics and the evaluation metrics. Firstly,
the contingency matrix is modified with different errors for different relation cate-
gories. A toy multi-class classification example is described with three relation types
(including the negative relation type) in Table 2.3. As observed, in the case of false
predictions, the errors are summed for both the true relation and the predicted relation.
For instance, if the prediction of a pair is B but the true label is A, then two types of
errors are counted: a FP for category B due to misclassification and a FN for category
A due to failure of prediction. In the case of prediction as No Relation, it is common to
ignore the FP errors and only measure the FN errors for each missed relation category.
Similarly, in case the true label is No Relation, only FP errors are counted for the each
falsely predicted category.

Ground Truth

Prediction

Relation A Relation B No Relation
Relation A TP (A) FP (A) & FN (B) FP (A)
Relation B FP (B) & FN (A) TP (B) FP (B)
No Relation FN (A) FN (B) TN

Table 2.3: Contingency table of true positives (TP), false positives (FP), true negatives
(TN) and false negative (FN) for a toy example of multi-class Relation Extraction with
two relation categories (A and B).

In order to measure the performance of the model in a multi-class setting, the P, R
and F1 metrics are transformed into micro- and macro- averages over the relation types.
A macro-averaged metric computes the primary metric independently for each relation
type and then estimates their average. On the contrary, a micro-averaged metric first
aggregates the statistics for all relation types and then estimates the final score based
on the aggregated statistics. The micro- and macro-averaged metrics for Precision and
Recall are described in the following equations, where c indicates a relation category.
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F-score is estimated in a similar manner by replacing P and R in Equation (2.4) with
Pmicro, Rmicro or Pmacro, Rmacro respectively.

Pmicro =
∑c TPc

∑c TPc +∑c FPc
, (2.5)

Rmicro =
∑c TPc

∑c TPc +∑c FNc
(2.6)

Pmacro =
1
|c|∑c

Pc, (2.7) Rmacro =
1
|c|∑c

Rc (2.8)

For the Average Precision score, as the area under the PR-curve, in multi-class
classification problems, the PR-curve of each class can be aggregated into a single
score using micro- or macro-averaging. The same stands for the FP and FN rates that
can be calculated for all categories at the same time (micro-averaging) or for each class
separately and then averaged (macro-averaging).

2.3 Taxonomy of Approaches

In the previous sections we categorised relation extraction based on a set of aspects
that together can form different relation extraction tasks. Another division to follow
is based on existing approaches developed for these tasks. In this dissertation, we
attempt to classify relation extraction methods in four large categories. Our proposed
categorisation is illustrated in Figure 2.5.

The first category, which is also the most common division followed by existing
surveys (Bach and Badaskar, 2007; Zhang et al., 2017a), is based on the type of learn-
ing. Here, we define learning as the method used inside the model to exploit the pro-
vided textual data, either raw, human or automatically annotated. This category can be
sub-divided into different learning approaches, including learning only from annotated
data (supervised), learning by leveraging additional unlabelled data (semi-supervised),
learning using distant signals from external resources (distantly-supervised), methods
leveraging data from rich domains for prediction in lower resource domains (transfer
learning), as well as methods that do no require any amount of labelled data (unsuper-
vised). Learning from annotated data involves approaches that take advantage of the
entire existing annotated set, as well as approaches that aim to learn using only a small
portion and the annotated examples.

The second category is based on the computational component that each ap-
proach uses. Approaches can be categorised in statistical and neural. The former
typically make use of explicit features to represent relation instances and feed them
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Figure 2.5: Taxonomy of Relation Extraction approaches.

into machine learning classifiers, use kernel-functions to compute similarities between
different structures or probabilistic graphical models that treat the task as tracking
probabilistic dependencies between random variables. The latter takes advantage of
recent advances in neural networks, which represent instances with fixed-size, dense-
vector representations, namely embeddings. Several architectures were proposed over
the years (Recurrent, Recursive, Convolutional and Transformer networks), achieving
state-of-the-art results.

Another division considers the type of the underlying structural representation.
Existing approaches can be categorised in pattern-, sequence-, tree- or graph-oriented,
though, as it will be revealed later on, most recent and best performing approaches
actually employ a combination of different structures. Models have dealt with structure
either implicitly (in the form of features) or explicitly (as transforming the input into
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a certain structure), with kernel approaches introducing various structures for relation
extraction, which were then adapted into neural approaches.

Finally, we can divide methods based on the type of features they incorporate,
which is correlated with implicit structure representation. Typical features include
linguistic features, features obtained from external resources such as Knowledge Bases
or semantic inventories, as well as automatically constructed features obtained from
language models, primarily used by neural architectures. Networks such as Word2Vec
(Mikolov et al., 2013) and Glove (Pennington et al., 2014) automatically learn rich
word representations from raw textual sources. The most recent advance in language
representation learning constitutes the development of deep bi-directional neural-based
models, named Transformers (Vaswani et al., 2017), which are able to produce higher
quality dense word representations that capture a large range of linguistic phenomena
(Clark et al., 2019).

Since the proposed methods of this dissertation follow the fully supervised setting,
we will give more emphasis to approaches that use this type of learning. However, for
purposes of completeness, we will briefly describe other learning settings including
distantly-supervised, semi-supervised, transfer learning and unsupervised. We further
split supervised relation extraction approaches based on the underlying textual struc-
ture they use, so that it is easier to later on categorise the approaches proposed in this
thesis. Inside these categorisations, we describe the computational component used by
each method, the target task and domain, as well as whether it relies on a particular
set of features. We further point the reader to more detailed survey papers for more
information regarding the corresponding methods.

2.3.1 Supervised Learning

Supervised learning methods treat the task of relation extraction as a classification
problem, where the goal is to classify a set of arguments into a particular set of
pre-defined relation categories. The timeline of supervised approaches is quite clear;
feature-base methods were extensively used in the past, which were later replaced by
kernel-based methods that were, in turn, overthrown by neural architectures.

Feature-based methods require that the input instances are transformed into feature
vectors, with only the explicit information of these fixed-size vectors being used for
classification, something that required the careful selection of features. Kernel-based
methods (Vapnik, 1999; Cristianini et al., 2000) were employed to represent instances
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in a latent space (typically of a higher dimensionality) in order to increase the ex-
pressiveness by investigating implicit feature spaces. A kernel function takes a pair
of data as input and computes a score of similarity between them. The advantage of
kernel-based approaches is that they can compute the dot product between two high di-
mensional vectors without explicitly mapping the vectors into the new space (Bishop,
2006). As a result, kernel-based methods followed a more structured approach by
accepting structured input such as sequences, trees or graphs.

Since both feature-based and kernel-based methods in fact required a set of manu-
ally generated features as input, neural networks quickly replaced them. Their advan-
tage compared to the former is, primarily, their property to contain richer information
into a single vector representation of a fixed dimensionality. Neural models are the
most recent advance in terms of computation, which came to replace kernel-based
models by using rich representations, instead of hand-crafted features, to represent
words. Many of the ideas obtained in the past, with feature- and kernel-based meth-
ods, were adopted by Neural Network architectures in an effort to represent text with
sufficient structure and, at the same time, extract as much information as possible.

We attempt to classify both statistical and neural-based approaches into five cate-
gories that relate with the underlying text structure chosen by each approach. Although
this classification breaks the strict timeline of developed approaches, we aim to show
that older structures are consistently used with more sophisticated computational com-
ponents as NNs. This eventually led to the usage of even more complex structures,
such as graphs and hybrid approaches, that utilise a combination of multiple structures
in order to represent relations.

2.3.1.1 Pattern-oriented Methods

Patterns were the initial form of structure used to extract relations from text. Ap-
proaches such as Agichtein and Gravano (2000) and Brin (1998) were using hand-
generated patterns, either via soft or strict matching, to identify relations in text. A
large resource of textual patterns for relations was also developed by Nakashole et al.
(2012). Relations are organised in a taxonomy similarly to WordNet (Miller, 1995),
harnessing information from existing Knowledge Bases. Such approaches, however,
were quickly abandoned, particularly with the creation of human annotated datasets,
since they were too restrictive in identifying multiple expressions that describe the
same thing. Instead, methods moved on in representing text with other forms of struc-
ture such as sequences, trees or graphs, which latently use automatically generated
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patterns.

2.3.1.2 Sequence-oriented Methods

The goal of sequence-based methods is to represent a set of arguments given their
corresponding context as a sequence, considering word order. They take into account
either the entire sequence or sequential parts of the input snippet, in order to identify
the relation between a set of arguments.

Sub-sequence Modelling

Initial sequence-based approaches were based on kernels, with the method of Bunescu
and Mooney (2006) proposing a sub-sequence kernel for extraction of interactions be-
tween Proteins from sentences. Their intuition lay in the observation that a relation
between two entities is likely to exist in the sequence before, between or after the
two entities in text. Their method showed promising results for extraction of protein-
protein interactions; however, it failed to consider multiple interactions in the same
sentence. Giuliano et al. (2006) adopted a similar approach for the same task by mod-
elling the sub-sequences of the sentence similar to Bunescu and Mooney (2006), along
with local context that is based on the target entities. The authors used only shallow
linguistic features such as tokens, POS-tags, lemmas and orthographic features to rep-
resent entities, combining a local and a global context kernel linearly. They argued
that the usage of other structured methods, such as trees, is restrictive since parsers
were only developed for certain languages. An additional argument included the fact
that trees ignored several information from the sentence. However, even stopwords
can be useful for modelling the relation between a pair of entities, depending on the
position they appear at. Results showcased that local context (information only about
the entities) provided poor performance compared with global context, indicating that
the entities alone are not enough to model their relation and richer information from
the sentence context is required. A drawback of their approach was that they did not
model the direction of the relation between two proteins, instead using the given direc-
tion from the data.

The rise of sequence-based methods was coincidental with the introduction of neu-
ral networks, especially networks that were developed to perform on sequences or
sub-sequences. The first such models were Convolutional Neural Networks (CNNs),
which emerged from their extensive usage on image processing. CNNs perform on
short sub-sequences that are composed of a few continuous words in a textual snippet.
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Initially, Collobert et al. (2011) proposed the usage of CNNs for a set of NLP tasks
including POS-tagging, Named Entity Recognition, chunking and Semantic Role La-
belling. The approach was adapted by Zeng et al. (2014), who were the first to propose
CNNs for relation extraction. In their work, they underlined the extensive feature
engineering required by previous approaches and proved that, by using CNNs, they
could obtain significantly higher performance on relation classification without major
pre-processing. One of their primary contributions was the introduction of relative
distances from the target entities, which were embedding into dense vector represen-
tations. These representations were combined with word representations as input to
the model, and proved to provide structural information regarding the position of the
target entities in the sentence. Positional features provided a 10 percent boost in per-
formance. Limitations of this approach include the fixation of positional embeddings
during training to initially randomly assigned values, as well as the usage of a single
window of size three, i.e. constructing only representations of tri-grams.

These limitations were later addressed by Nguyen and Grishman (2015), who pro-
posed to use multiple windows in CNNs, consequently improving performance on
relation classification. A further novelty of the approach was the introduction of pre-
trained word embeddings with Word2Vec as the input to the model, in addition to
enabling trainable positional embeddings. Moreover, they addressed the difficulty of
training with imbalanced dataset, which is often the case in RE, showing that the num-
ber of negative instances greatly affects the performance of RE models. However,
they do not model interactions between pairs in their approach and instead assume that
only a single target pair resides in a sentence. dos Santos et al. (2015a) addressed the
problem of the negative relation instances in relation extraction by forcing the model
to focus more on the positive relation categories. They additionally showed that util-
ising pre-trained word embeddings obtained with Word2Vec, instead of distributional
models, improves performance.

In the biomedical domain, CNN networks have been successfully applied on Drug-
Drug Interactions (DDI) extraction (Liu et al., 2016) using multiple pre-trained word
embeddings as input to the model, disease-treatment interactions (Sahu et al., 2016)
and Protein-Protein Interactions (PPI) (Quan et al., 2016). However, in the work of
Quan et al. (2016), the length of window sizes required in comparison to Nguyen and
Grishman (2015), is much larger, potentially indicating that the associations between
biomedical entities are further apart than those in the generic domain. As a result,
the proposed approach failed to capture associations when the input sentence was very
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long. Towards this direction, attention-based CNNs were developed in order to cap-
ture diverse contextual information with respect to the target pair, which may reside
in different parts of the sentence. One such approach was proposed by Wang et al.
(2016), where two attention mechanisms are incorporated to select relevant parts of
the sentence for the target entity pair. The authors proposed an attention-based pooling
function, instead of the max-pooling operation that was typically used in CNNs so far,
achieving the state-of-the-art performance on the SemEval 2010 relation classification
dataset. However, the authors point out that their approach fails to determine implicit
relations, i.e. where there is not textual evidence of a relation, as well as pairs that are
used in metaphorical contexts. Along the same vein, different CNNs were proposed
for Drug-Drug interactions (Asada et al., 2017) and classification of treatment-disease
relations in clinical records (Shen and Huang, 2016) by employing more sophisticated
attention mechanisms.

Full Sequence Modelling

Despite the effectiveness that CNNs showed as sequential models for relation extrac-
tion, they had the disadvantage of not being able to model long-range dependencies
well, as they focused on encoding local context using a short window. Although at-
tention mechanisms helped in this regard, encoding the full context was impossible
for these networks. This was something that could be solved by Recurrent Neural
Networks (RNNs) (Elman, 1990) and their variants, as neural models developed par-
ticularly for sequences. The Long-Short Term Memory (LSTM) Network is a par-
ticular variant that showed to be effective in modelling long sequences. One of the
first approaches to using Recurrent networks for relation extraction was that of Zhang
and Wang (2015). The authors proposed a bidirectional Recurrent NN model that
utilised only pre-trained word embeddings and position indicators instead of relative
distances, as input to the model. The difference between the two is that position in-
dicators are inserted as additional tokens in the sentence before and after each target
entity. A max pooling operation accumulated the representation of the entire sequence
into a single embedding. The proposed approach performed better than the CNN ap-
proaches with relative distance embeddings while evaluated on two generic domain
datasets, and confirmed that Recurrent NNs are more effective in encoding longer se-
quences than CNNs. However, an existing limitation was that the method considered
only one named entity pair per sentence. Zhang et al. (2015) proposed Bidirectional
LSTM networks for relation extraction with relative distance embeddings, though they
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incorporated additional features from parsers. They adapted the idea of Bunescu and
Mooney (2006) into the sub-sequence kernel and split the input sentence into three
spans; a max-pooling operation then generated a representation for every two con-
secutive spans. Dependency features boosted performance, though only the use of
word embeddings as input feature yielded competitive results to CNN-based methods.
The method was not directly comparable, however, to the simple recurrent variant,
as the input word embeddings were different between the two methods. Kavuluru
et al. (2017) augmented the input of an BiLSTM network with character-level infor-
mation that was encoded with LSTMs, which were so far explored for other tasks such
as POS-tagging (Santos and Zadrozny, 2014) and morphological language modelling
(Kim et al., 2016). These features proved to be effective in the biomedical domain
when extracting DDIs.

Attention-based approaches were proposed along with recurrent networks as well,
such as the work of Zhou et al. (2016b). The authors used attention instead of max-
pooling (as in Zhang and Wang (2015)) to produce the final sentence representation.
The paper shows a detailed comparison among LSTM and RNN variants with different
pre-trained word embeddings and position indicators. They showed that the difference
between LSTM and RNN was not significant for the SemEval 2010 relation extraction
dataset when using distributional embeddings. Attention mechanisms boosted perfor-
mance by 2.5% and the usage of more informative word embeddings created by Glove
or Word2Vec increased performance further, without incorporating other lexical fea-
tures. This approach influenced subsequent works that proposed attention networks for
detection of DDIs in the biomedical domain (Yi et al., 2017; Zheng et al., 2017; Sahu
and Anand, 2018). A position-aware attention was proposed by Zhang et al. (2017c),
along with a larger relation extraction dataset to satisfy the needs of deep neural models
for large amounts of data during training (Adel et al., 2016). The authors underlined
the problem of recurrent models in controlling the contribution of each word in the se-
quence explicitly, as well as the poor modelling of subject and object positions by prior
work. Thus, they proposed to measure the importance of each word in the sentence via
an attention mechanism that incorporates both the contextualised representation of the
word, as well as the global position of the word in the sequence. In contrast with using
BiLSTM networks, the authors used a single direction network and stacked two LSTM
layers one on top of the other, which contributed to performance, but at the same time
increased the computational cost. Similar to other approaches, however, the proposed
model considered only a single pair per sentence, thus ignoring dependencies among
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pairs in the same sentence. This was tackled in the approach of Sorokin and Gurevych
(2017), who proposed an LSTM with attention to aggregate information from multiple
pairs in the sentence when constructing the representation of a target named entity pair.
The model considered the similarity of pairs in the same sentence rather than directly
modelling their interactions.

2.3.1.3 Tree-oriented Methods

In contrast with sequence-oriented approaches, trees are more complex representa-
tions in terms of structure. However, they were one of the first representations used
(after rules and patterns) in order to represent language and by consequence relations.
This was mainly because syntactic parsing was an active research topic much prior to
relation extraction; as such, there were already few syntactic and dependency parsers
developed, that were able to provide tree-based structures for any textual snippet. Such
approaches can be seen from two different perspectives. The first are approaches that
incorporate dependency-based information derived from parsers as features into ma-
chine learning classifiers. The second are approaches which utilise a tree-oriented
structure into the model directly. We attempt to describe both methods in this section.
A strict separation of the former methods is not straightforward, since typically they
constitute a combination of features. For this reason, we include herein approaches
that are not restricted to tree-based features alone, but consider them in their repre-
sentations. A drawback of such approaches, however, is their dependency on these
external tools that severely restrict their domain portability, as well as propagate po-
tential parsing errors inside the model.

Implicit Tree Structure

Implicitly tree structure was initially investigated by simply converting information
from parsers into features. Kambhatla (2004) proposed a feature-based method that
incorporated multiple features including syntactic, lexical and semantic ones. The ad-
ditional features improved the expressiveness of the model compared only with using
syntactic features. Later on, Zhou et al. (2005) demonstrated that base phrase chunk-
ing features can yield better performance compared with full parsing features, since
shallow information contains the most informative parts in a sentence.

In the biomedical domain, Katrenko and Adriaans (2006) proposed a feature-based
method with dependency tree features for the identification of PPIs and protein-gene
interactions. Sætre et al. (2007) combined features from two different parsers into a
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tree kernel. In their results, they proved that a combination of parsers yields better
performance compared to using a single one. Trees were also used for extracting re-
lations from Wikipedia Nguyen et al. (2007). Issues regarding domain portability of
tree-oriented approaches were discussed in Miyao et al. (2008) for the task of detecting
PPIs. In particular, the authors tested the output of various parsers by converting them
into different tree- and graph-based representations. They showed that features from
different parsers have different performance when re-training the parsers on data of a
different domain, highlighting the need for domain adaptation when using such fea-
tures, as well as portability issues of parsing tools. A similar concept was underlined
by Liu et al. (2010). The authors pointed out that the words in a biomedical corpus are
less discriminative for relation extraction compared to the words in newswire corpora,
indicating the difficulty of RE in the biomedical domain. Furthermore, they proved
that base phrase chunks are good features across domains and that dependency parsing
features contribute more to the performance of biomedical corpora, where interactions
are more complex.

Explicit Tree Structure

One of the first tree-based approaches utilising explicit tree structure was that of Ze-
lenko et al. (2003), who used a tree-based kernel on constituency trees. They were
able to take full advantage of the tree structure of a sentence using kernels, compared
to methods that did not consider the structure of the text explicitly. Their proposed ap-
proach was, however, tested only on two relation categories while, at the same time, it
was much slower compared to feature-based classifiers. Later on, Culotta and Sorensen
(2004) proposed tree kernels on dependency trees instead of constituency ones. Their
hypothesis was that similar relations will share a similar substructure in their depen-
dency trees. For each entity pair they created an augmented tree, where each node
was represented by a set of features. However, the model suffered from low recall and
limited expressivity due to the requirement for matching nodes to be at the same tree
depth.

The most well-known tree-based method was introduced by Bunescu and Mooney
(2005), who proposed to use only the Shortest Dependency Path (SDP) in a depen-
dency tree in order to represent a pair of entities. In fact, the authors constructed both
a tree (using a Context Free Grammar parser) and a graph (using a Combinatory Cate-
gorial Grammar parser), but found that a kernel performing on the SDP of the sentence
dependency tree yielded better results, due to the increased accuracy of the tree-based
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parser. They proved that the SDP is enough compared to the common sub-tree used by
Culotta and Sorensen (2004) and yielded significantly higher performance on the ACE
2003 dataset. Furthermore, since the representation was now a path instead of a tree,
the kernel computation was much faster. Nevertheless, the method had much lower
recall than precision since the compared paths required to have the same length, some-
thing that reduced the expressivity of the model. This finding was confirmed by Zhang
et al. (2006a), who compared different parts of constituency trees for representing re-
lated pairs and concluded that, indeed, the shortest path in the tree connecting the
two entities contains the most useful information and achieves the best performance
with a convolution tree kernel. They further showed that semantic entity type features
can contribute significantly to the detection of relations, something also confirmed in
Zhang et al. (2006b).

The first approach that utilised neural networks in relation extraction was proposed
by Socher et al. (2012) on the SemEval-2010 dataset. In particular, a Matrix-Vector Re-
cursive Neural Network was introduced, that performed on the path of a constituency
tree that contained the two target entities. The network formed representations for
constituents in a bottom-up manner by using a compositionality function. The method
influenced several subsequent methods to apply Recursive networks instead of kernels.
Hashimoto et al. (2013) followed the same approach but used a different composition-
ality function, where phrases of importance were explicitly weighted more than non-
informative ones. Later on, Ebrahimi and Dou (2015) proposed the application of a
Recursive NN on the shortest path between two entities in a dependency tree com-
pared with the previous models that performed on constituency trees. The advantage
of the approach lay in the faster computation of the proposed architecture. In a similar
vein, Xu et al. (2015c) also utilised the shortest dependency path between two entities
on a dependency tree, but instead utilised a sequential LSTM network to encode it.
They used two LSTMs along the left and right sub-paths of the SDP to encode infor-
mation for the root node. A max pooling operation over the multiple representations
for words, POS-tags, grammatical and WordNet features, resulted into a final represen-
tation for the root, which was then classified into a relation category. Liu et al. (2015)
observed that methods that utilise SDPs between two relation instances can have a
similar SDP but belong to different relation categories. As a result, methods employ-
ing only SDPs can fail to classify them correctly. They thus proposed to augment the
SDP with the sub-trees attached to each node in the path, in order to form a more
informative structure. A combination of recurrent and convolutional networks helped
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construct the representation of a pair. They concluded that the two structures (SDP
and sub-trees) play different roles in RE and appropriate architectures are required to
encode this information. Since sequential and recursive models have been used, Li
et al. (2015) analysed the effectiveness of Recursive versus recurrent networks and
concluded that recursive architectures are more effective when dealing with arguments
far apart in the sentence. However, the use of bi-directionally in recurrent networks
reduces the performance difference between the two. A sequential model generalised
to operate on tree-structured topologies was proposed by Tai et al. (2015) and evalu-
ated on semantic sentence relatedness and sentimental classification. The method was
adapted by Miwa and Bansal (2016), who combined sequence and tree representation
in a hybrid model for simultaneous extraction of entities and relations. In their anal-
ysis, they concluded that the input structure (i.e. sequence or tree) is more important
than the actual model used to encode it (tree LSTM or sequence LSTM), demonstrat-
ing the importance of structural information in relation extraction. Cai et al. (2016)
introduced LSTMs to encode the SDP between a target pair and CNNs on top of them
to extract local features from the dependency units. They applied this process to both
directions and concatenated the two outputs.

In the biomedical domain, Wang et al. (2017) utilised LSTMs on tree-structures
that were converted into sequences using Depth First Search (DFS) and Breadth First
Search (BFS). Lim et al. (2018) utilised a novel position encoding scheme to better
measure the relative distance between words in a sentence. They fed position and word
embeddings into a tree-LSTM network and achieved the state-of-the-art performance
in DDI identification. Drawbacks include failure to detect relations in complex sen-
tences or when drugs are far apart from each other. Moreover, factuality or speculation
are not handled properly, thus classifying pairs as false positives.

More recently, the rise of Graph Convolutional Neural networks (GCN) (Kipf and
Welling, 2017) opened new ways to support the encoding of tree-structures for relation
extraction. An initial approach was introduced in Zhang et al. (2018b), who used the
SDP between two entities of the dependency tree of a sentence as input to a GCN
network. A pruning strategy was incorporated in order to remove uninformative edges
from the tree.
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2.3.1.4 Graph-oriented Methods

In comparison with trees, graphs are more flexible structures that enable multiple types
of interactions. A major difference between trees and graphs is that the former are re-
stricted into having only a single parent node, whereas the latter enable arbitrary con-
nections between nodes. Graph-oriented approaches use a graph structure and attempt
to encode it via a machine learning algorithm. Existing approaches can be broadly
divided into two categories: methods that simply perform on existing graph structures,
i.e. the input graph is given to the model, and methods that first construct the graph
and then use a particular model to encode the interactions in the structure.

Link Prediction

With regard to the first category, pre-defined graphs can roughly be considered to be-
long into two families: Knowledge Graphs and Networks. The former corresponds to
the graphical representation of a Knowledge Base and has a strictly defined schema
in the form of triples consisting of two arguments and a relation between them. Re-
lations come from an existing set, while arguments belong to particular semantic cat-
egories (typically fine-grained), such as people, lawyers, locations, and so on. On the
contrary, Networks refer to structures that model relationships between much broader
categories; users in social networks, for instance. In addition, Knowledge Networks
combine diverse information from multiple KBs, where the association between nodes
in this case, is more loosely defined.

Link prediction in Knowledge Graphs is a task relevant to relation extraction. Con-
trary to typical RE, it deals with multi-relational data where the potential relation cat-
egories can be thousands. Furthermore, relations are always extracted between named
entity concepts rather than mentions. This means that KGs contain factual relations,
i.e. relations that are not dependent on a specific context (e.g. a sentence), but in-
stead generally hold as ground truth. Since all KGs are incomplete, the goal of KG
link prediction is to find potential missing associations (edges/links) between concepts
(nodes).

Compositional approaches are vector space models that aim to construct pair repre-
sentations of particular relations using compositionality functions. Socher et al. (2013)
proposed the neural tensor network with an augmented bilinear transformation. The
model offered high expressiveness but required many parameters, something that was
later improved by Nickel et al. (2016), who proposed holographic embeddings using
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circular correlation between the representations of two concepts. Translational ap-
proaches aim to predict the existence of a relation based on the similarity of entity and
relation embeddings in the vector space. The most well-known approach is that of Bor-
des et al. (2013), named TransE. The authors represent a relation as a translation oper-
ation between two concept vectors, inspired by the properties of Word2Vec (Mikolov
et al., 2013) vectors. Several subsequent models attempted to improve expressiveness
while preserving computational efficiency (Wang et al., 2014; Trouillon et al., 2016).
Recent state-of-the-art approaches for link prediction utilise tensor factorisation (Bal-
azevic et al.) or Graph Neural Networks (Schlichtkrull et al., 2018; Dettmers et al.,
2018).

Link prediction has also been targeted for networks, using graph-based algorithms
that encode the nodes into low dimensional representations taking advantage of the
structure of the network. One of the most used algorithms is DeepWalk (Perozzi et al.,
2014), which was motivated by the SkipGram architecture of Word2Vec (Mikolov
et al., 2013) and adapted the idea into modelling a stream of short random walks on
a graph as a sequence. LINE (Tang et al., 2015) investigates both first and second-
order proximity neighbourhoods. The authors proposed an edge-sampling strategy
which scales linearly to the number of edges and is independent of the number of
nodes. Finally, Node2Vec (Grover and Leskovec, 2016) is an improved extension of
DeepWalk that constructs node representations based on flexible neighbourhoods in
the network, by using a combination of both Bread-First-Search (BFS) and Depth-
First-Search (DFS) sampling strategies in graphs.

In this thesis, we borrow a few ideas from compositional approaches that have
been used in KG link prediction, as will be discussed in Chapter 4. Since, however,
link prediction is not our target task, we refer readers to more detailed surveys for
models developed for link prediction in KGs (Nguyen, 2017) and networks (Martı́nez
et al., 2017; Cui et al., 2018b).

Graph Construction and Encoding

As seen in the Section 2.3.1.3, there are models that apply graph-encoding mechanisms
on tree-based structures obtained from dependency parsers (Zhang et al., 2018b). In
general, approaches that construct graph structures and then encode them, typically
rely on trees obtained from a parser, and utilise heuristics in order to transform them
into graphs. As we will see, the majority of such approaches have been proposed for
cross-sentence relation extraction.
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A first approach was proposed in McDonald et al. (2005) where n-ary relations
were decomposed into a set of binary associations represented as a non-directed graph,
with entities as nodes and associations between them as edges. A classifier is trained
on the binary associations and then maximal cliques are selected from the generated
graph to form n-ary associations. In particular Bordes et al. (2013) proposed to model
shortest paths on graph constructed via dependency for PPIs. Later approaches on
graphs were kernel-based, with Airola et al. (2008) proposing a graph kernel for PPIs.
They proposed a graph representation for each candidate relation instance, taking into
account the shortest dependency hypothesis of Bunescu and Mooney (2005), the linear
order of the sentence and all the paths between two target entity nodes in the graph.
They showed that other kernel methods lack the expressive power to consider complex
representations that create cycles, such as graphs. Most recently, Panyam et al. (2018)
proposed two graph kernels that perform on enhanced dependency graphs with edge
weights. This enables the model to distinguish between the SDP in the graph and other,
likely informative, paths. However, the method failed on sentences that contained
multiple entities.

A first approach for cross-sentence relation extraction in the biomedical domain
was proposed by Quirk and Poon (2017). The authors underline that the limited amount
of work in cross-sentence RE is attributed to the domain of focus. As they explain, sen-
tences containing relations of interest are more likely to exist in the newswire domain; a
rarer occurrence in the biomedical domain, where inter-sentence interactions can have
significant impact for interaction discovery (Banko et al., 2007). The method proposed
a document-level graph, with words as nodes and edges constructed from dependency
parsing, co-reference resolution and discourse relations. Additional heuristic adja-
cency edges between adjacent words were used in order to tackle potential errors from
the parser. They incorporated a binary logistic regression classifier and considered K-
shortest dependency paths between the two entities as input to the model. Evaluation
showed that coreference edges were of poor quality for the biomedical domain and
thus reduced performance. A drawback of the approach was that it only considered
associations that span up to three sentences.

A subsequent approach by Peng et al. (2017) extended the document-level graph
for detection of n-ary relations in the biomedical domain. The authors followed the
same setting and data proposed by Quirk and Poon (2017), but instead used a graph-
LSTM network on two Directed Acyclic Graphs (DAG) for forward and backward de-
pendencies, respectively, which was an extended version of the tree-LSTM proposed



2.3. TAXONOMY OF APPROACHES 57

in Miwa and Bansal (2016). They showcased that LSTM networks performed better
compared to CNNs for binary, cross-sentence RE, and graphs performed better than
tree-based approaches on the SDP. They additionally proved that multi-task learning
between ternary (three arguments) and binary relation extraction improved the perfor-
mance of both settings regardless of the usage of sequential or graph LSTMs. Similar
to (Quirk and Poon, 2017), co-reference and discourse edges obtained from parser of-
fered no significant gains, but when using gold dependencies in the document graph
results were improved. Later Song et al. (2018) improved the idea by modelling the
entire document graph as a whole using a recurrent graph network. The authors un-
derline the lower performance on intra-sentence RE is due to potentially less training
examples, as well as the fact that single sentences do not provide enough context for
cross-sentence RE, thus information from other sentences is needed to enhance their
representations.

Recently Zhu et al. (2019) introduced another GCN network for relation extraction
by incorporating edge information into the node representations in order to improve
detection of multi-hop relations. In their approach, entities are considered to be nodes.
The connection between each pair is encoded separately by using an LSTM network
into an edge weight. Guo et al. (2019) extended the idea of Zhang et al. (2018b) and
incorporated an attention mechanism into GCN in order to prune the trees, instead of
using rules. The model was applied on full dependency trees which were transformed
into fully connected graph structures. The method is a soft edge pruning approach
and was able to achieve state-of-the-art performance in binary and n-ary RE inside
and across sentences. Fu et al. (2019) introduced an end-to-end model for extraction
of relations based on a bidirectional GCN network on directed graphs. The authors
proposed a two-step procedure in order to further take advantage of interactions be-
tween named entities and relations and were able to successfully model overlapping
relations, i.e. relations that share at least one entity. They showcased that modelling
interactions between relations came with significant performance improvements. The
model was applied on silver corpora, which are not human annotated. Sahu et al.
(2019) proposed a GCN encoder for inter-sentence relation extraction over syntactic
dependency graphs. The difference in the approach in comparison with other methods
that used trees to create graphs, was that they incorporated the Enju dependency parser
who extracted predicate-argument structures, thus directly resulting into a graph. Co-
reference and adjacency edges were added following previous work, though corefer-
ence did not offer improvements. As one of the latest advances, Zhao et al. (2019)
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combined GCNs with BERT (Devlin et al., 2019) to model associations between pairs
of entities, using shared entities across sentences, thus encoding the topology of the
graph. Contrary tp approaches where the nodes of the graph corresponded to words,
the nodes in this case corresponded to entities. This was something that was also
adapted for graph construction from other approaches as well, such as De Cao et al.
(2019) for cross-document question answering. Constructed entity-word graphs were
also explored by Tagawa et al. (2019) for knowledge graph completion.

2.3.1.5 Structural Hybridity

In reality, the majority of the aforementioned structure-based methods are hybrid. Hy-
brid approaches can include a mixture of different models that operate on the same
structure; for instance, using different syntactic kernels (Zhao and Grishman, 2005) or
multiple sequential models (Vu et al., 2016; Zhou et al., 2017; Raj et al., 2017). Sec-
ondly, they can be a combination of algorithms that perform on different structures. For
example, the work of Miwa and Bansal (2016) clearly belongs to this category, as it
explicitly encodes and combines sequences with trees. Moreover, Zhang et al. (2018a)
divided the SDP between entities into a dependency word sequence and a relation se-
quence. They used different networks to encode different structures. Early analysis on
combining structures can be found in Jiang and Zhai (2007), who investigated the dif-
ference in performance when using sequence, syntactic parse tree or dependency parse
tree features. They found that each subspace has adequate information for represen-
tation of relations. When combining features from different levels of complexity with
additional feature pruning the best performance could be achieved. This was probably
due to the combination of diverse information from the different structures.

Furthermore, latest work on graph structures is mostly hybrid. For instance, the
model of Zhang et al. (2018b) may explicitly use tree structures, though their best
model uses contextualised representations of nodes, which are constructed using a
BiLSTM network on the input sentence. In essence, sequential information is used
implicitly in the tree structure. Similarly, the extension work of Guo et al. (2019) per-
forms best with contextualised node representations. In their work it is stated that the
combination of densely connected (graph) structures and attention on tree structures is
able to produce better representations for downstream tasks.

In Table 2.4, we provide a summary of the general benefits and drawbacks of exist-
ing structure-based approaches for relation extraction. As observed, graphs combine
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Benefits Drawbacks

Pattern • High accuracy • Restrictive expressiveness
• Low recall

Sequence • Consider discourse order
• Capture local/global discourse

information

• Ignore complicated associations
• Consider uninformative words

in the sequence

Tree • Ignore non-important words
• Perform well for long sequences

• Dependent on domain-specific
tools
• Structure does not imply linear

ordering

Graph • Large expressiveness
• Can be constructed without

domain-specific tools
• Benefits of trees and sequences

• Search space can be too large

Table 2.4: Table summarising benefits and drawbacks of methods using different struc-
tures.

advantages from both sequences and trees, offering larger flexibility and expressive-
ness. Recent advances in relation extraction using contextualised graph-based struc-
tures, further motivate our ideas for graph-based techniques for detection of not only
intra- but also inter-sentence associations.

2.3.2 Semi-supervised Learning

The generation of gold annotated data is an expensive and time-consuming process for
humans. Semi-supervised learning methods aim to take advantage of the large amount
of existing unlabelled data in the web, and use them in conjunction with existing, but
small, human-annotated data. One way to perform semi-supervised learning is to rely
on trained algorithms that enable the automatic labelling of unlabelled data.

Bootstrapping is one of earliest and most common semi-supervised techniques.
An abstract framework of is depicted in Figure 2.6a. Initially, a set of seed examples
(existing annotated instances) are utilised to assist in the annotation of additional data.
Examples annotated with high confidence are integrated into a larger set of labelled
data used to re-train the model. One of the first bootstrapping systems for relation
extraction was DIPRE by Brin (1998) for extraction of author-book relations from
the Web. The method was pattern-based, thus suffered from limited expressiveness
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(a) General intuition about semi-supervised
learning. Source: www.analyticsvidhya.
com

(b) General procedure of active learning.
Source: http://inspirehep.net

and low recall. A similar approach is that of Agichtein and Gravano (2000), where
they identified organisation-location pairs with their system, Snowball. They firstly
represented each pair as a pattern-vector and then grouped vectors into classes using
semantic similarity, resulting in better recall. Later, Xu et al. (2007) studied n-ary
relation extraction with bootstrapping in their system DARE, again using rules. Other
bootstrapping approaches include relations from the web (Pantel and Pennacchiotti,
2006), utilisation of co-reference (Gabbard et al., 2011) and and usage of probabilistic
models (Pawar et al., 2014). Studies such as Vyas et al. (2009); Kozareva and Hovy
(2010) provide an extensive investigation on different criteria for selecting seed sets
for bootstrapping.

Although bootstrapping is an efficient method, it typically suffers from semantic
drift. Another set of approaches to tackle this use multi-view learning, which essen-
tially trains two different classifiers on different views of the data. Training enforces
agreement between the two classifiers before selecting data to augment the training
set. One such algorithm is co-training (Blum and Mitchell, 1998). Zhang (2004) rep-
resented a relation instance using lexical and semantic features. In their co-training al-
gorithm, they randomly project the feature space into different views with random fea-
ture projection. Multiple classifiers trained on the feature projections produced votes
for the inclusion/exclusion of unlabelled examples into the training set. Similarly, Li
et al. (2016b) trained a feature and a graph-based kernel on two different views of the
data for intra-sentence biomedical relation extraction.

A different set of methods utilise active learning as a way to label unlabelled data.

www.analyticsvidhya.com
www.analyticsvidhya.com
http://inspirehep.net
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Active learning is a kind of learning algorithm where a machine learning system itera-
tively learns and selects a small, but informative amount of unlabelled data, gives them
to human annotators and then adds them to the training data (Figure 2.6b). Following
this method, Mohamed et al. (2010) studied different ways to select informative data
for labelling by developing four different strategies. They applied their method on PPI
detection. Zhang et al. (2012) proposed an active learning technique for biomedical
relation extraction with several stages. They studied how to select informative data
for labelling, how to remove duplicate examples between annotators, effective feature
generation for each example and, finally, efficient feature selection for the learner. Sun
and Grishman (2012) used active learning with multi-view learning using local and
global views of a relation instance. Later on, Fu and Grishman (2013) improved the
model in terms of efficiency.

2.3.3 Transfer Learning

In comparison with other learning schemes, Transfer Learning (TL) is used when the
labelled data in a certain domain are relatively few or non-existent. Thus, the goal is to
leverage information from auxiliary domains (domain adaptation) or tasks (multi-task
learning) in order to make predictions for the target domain. A recent trend, how-
ever, is unsupervised pre-training of language models that produce high quality word
embeddings, which can be incorporated directly into existing neural architectures.

Initial approaches used rules (Feiyu Xu and Felger, 2008), while others used ker-
nels combined with lexical information generalised by clustering or similarity (Plank
and Moschitti, 2013). The latter method showed that the usage of Brown clusters
(Brown et al., 1992), combined with tree-based kernels, offered significant improve-
ment when no available labelled data exist for the target domain. At the same time
they confirmed previous findings that gold semantic entity type information into the
model, offer significant improvements. Word embeddings and clustering features were
also investigated by Nguyen and Grishman (2014), using a hand-crafted feature model
under the same setting. On the contrary, Nguyen et al. (2014) follow a different setting,
where a few labelled data exist for the target domain. A subsequent approach showed
that combining word embeddings into tree-kernels yielded the best results (Nguyen
et al., 2015), while later Fu et al. (2017) showed that incorporation of neural networks
with adversarial training further improved performance without hand-crafted features.
A similar intuition was proposed by (Rios et al., 2018); although the method is promis-
ing, it suffers from the class imbalance problem during training.
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Another set of approaches for TL include multi-task learning. The work of Jiang
(2009) relied on the intuition that different relations can have common structures and
suggested a combination of entity type constraints and feature generality via human
knowledge. Thus, multi-task learning between different relation categories could help
in transferring knowledge, using a weight vector to share features among different
domains. The latest approach of Sanh et al. (2019) uses a neural model on several
semantic tasks, including NER, co-reference resolution and relation extraction. Their
intuition is that some tasks are low-level and relatively easy to solve, while others are
high-level, meaning that they require deeper processing. Their hierarchical multi-task
learning approach achieves state-of-the-art performance on all tasks.

The latest trend in TL approaches is unsupervised pre-training, by training lan-
guage models (Devlin et al., 2019; Peters et al., 2018) in massive raw corpora and
then fine-tuning them on other domains that have limited labelled data. The difference
with early work on language modelling is that these models can capture more com-
plex linguistic phenomena (Clark et al., 2019). Improvements using these approaches
have been shown for both the generic (Baldini Soares et al., 2019) and the biomedical
domain (Peng et al., 2019).

2.3.4 Distant Learning

Distant Supervision (DS) for relation extraction emerged as a different learning set-
ting that does not require any human annotated data, as is the case for supervised and
semi-supervised learning. In contrast, labelled data are obtained automatically using
distant signals, typically from existing Knowledge Bases that contain a large amount
of relational facts. Although this relaxes the need for human annotation efforts, the
procedure that must be followed is not that simple. In particular, one must first per-
form named entity recognition on the raw text and then apply entity linking (Hachey
et al., 2013) between the textually identified named entities the ones existing in the
KB. It is then possible to align the raw text with the KB information and automatically
annotate large amounts of unlabelled data. The initial scheme of the distant annota-
tion process is shown in Figure 2.7. If relations exist between named entities in the
KB, then sentences containing these entities can potentially be labelled with the KB
relations.

Distant Supervision has been broadly used during the last decade for automatic
annotation of relation extraction datasets. First Mintz et al. (2009) proposed a simple
DS setting, based on the following assumption:
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Relation
/business/company/founders

...

Entity 1
Apple
...

Raw Text

Steve Jobs was the co-founder and CEO of Apple and formerly Pixar.
Steve Jobs passed away the day before Apple unveiled iPhone 4S in late 2011.

Entity 2
Steve Jobs

... alignment

Figure 2.7: Abstract schema of Distant Supervision (DS) annotation procedure. Image
adapted from Zeng et al. (2015).

“If two entities participate in a relation (in the KB), any sentence that contains those
two entities might express that relation.”.

In essence, if two entities co-occur in a sentence and are also annotated as related in
the KB, they are assigned a positive relation label from the KB. If two entities co-occur
but are not annotated as related in the KB, they are then given the “no relation” label.
The authors utilised Freebase to annotate Wikipedia articles in order to collect a large
set of distantly annotated sentences.

However, this automatic annotation process can introduce a lot of noise (false posi-
tives) by assigning relations to pairs that are not actually related given a particular con-
text. To deal with the noisy corpora that this setting produced, Riedel et al. (2010) in-
troduced Multi-Instance Learning (MIL). As the authors mention in their paper, “When
the knowledge base is external, entities may just appear in the same sentence because
they are related to the same topic, not necessarily because the sentence is express-
ing their relations in our training knowledge base”. The MIL setting relies on the
expressed-at-least-once assumption as follows:

“If two entities participate in a relation, at least one sentence that mentions these two
entities might express that relation.”

In this setting, the input is considered to be a bag-of-sentences, i.e. all sentences as-
sociated with a certain pair. The argument types are concepts, rather than mentions,
and classification is performed for each concept pair (fact), considering each pair oc-
currence in a sentence as another mention of the pair. Each model is then responsible
for selecting informative instances from the bag in order to identify whether a pair
shares a certain relation or not. In the approach of Riedel et al. (2010), the authors
aligned Freebase with the New York Times (NYT) corpus in order to achieve complete
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separation between the raw text and the KB, since Wikipedia shares many data with
Freebase. They developed a graphical model to distinguish whether two entities are
related in a certain sentence.

However, even in this setting, each pair of interest is assigned a single relation la-
bel. Hoffmann et al. (2011) argued that this scenario is too restrictive and, in reality,
a target pair in a KB can share multiple relation types, i.e. multi-label classification.
They proposed a novel graphical model that allows both multiple instances of a target
pair and overlapping relations. In a similar manner, Surdeanu et al. (2012) formally ad-
dressed multi-instance and multi-label RE on distantly supervised corpora using graph-
ical models. However, since KBs are incomplete, i.e. do not contain all possible facts
of the world, false negatives are also an issue, as pointed by Min et al. (2013). As
a result, most methods report the performance in terms of Precision-Recall curves on
held-out data, or report the precision on the top K most confident pairs against human
annotations.

Later on, several approaches were developed to deal with distantly supervised cor-
pora, using multi-instance learning following the expressed-at-least-once assumption,
and particularly investigated how to select informative instances from the bag. Zeng
et al. (2015) proposed to use a Piecewise CNN (PCNN) without relying on automatic
NLP tools for text processing and feature engineering (e.g. parsers). However, in their
method, they only selected one sentence from the bag, leading to large information
loss. Attempts to solve this limitation were proposed by several methods, including
cross-sentence max pooling over the sentences of the bag (Jiang et al., 2016), CNNs
with attention over the bag instead of max pooling (Lin et al., 2016), ranking losses
(Ye et al., 2017), hierachical attention to select only a few sentences (Zhou et al., 2018)
and structured attention of words and sentences (Du et al., 2018).

Another set of approaches, targeted to incorporate additional information from the
text or the KB (domain knowledge). Zeng et al. (2017b) incorporated indirect informa-
tion from other sentences in the dataset that contain at least one of the target entities of
a pair. Differently, Ji et al. (2017) used a PCNN with attention over sentences by addi-
tionally incorporating entity descriptors to directly add KB knowledge information into
the entity representations. Vashishth et al. (2018) proposed to include relation aliases
and semantic entity types obtained from the KB, further enhancing distantly supervised
RE. In a similar vein, She et al. (2018) utilised entity descriptors from Wikipedia for
English and Chinese relation extraction. There is also a very recent amount of work
that utilises information from the KB in the form of embeddings (Wang et al., 2018;
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Xu and Barbosa, 2019; Zhang et al., 2019a; Trisedya et al., 2019) which is very much
aligned with link prediction and KB enrichment.

A different group of methods focuses more on the noisy nature of distantly cre-
ated data and proposes measures to effectively reduce it. These methods can also be
seen as attempting to reduce the false negative instances during training. Early meth-
ods include the work of Takamatsu et al. (2012), who introduced a generative model
to predict wrong relational patterns and removed instances based on them. Xu et al.
(2013) proposed a passage retrieval model based on the assumption that pairs found
in many relevant sentences to a particular relation type, are likely to express the re-
lation. Zeng et al. (2017a) developed a cost-sensitive ranking loss to deal with class
imbalance, while other approaches performed filtering using heuristics (Intxaurrondo
et al., 2013), cluster-based sampling (Sterckx et al., 2014) and reinforcement learning
(Feng et al., 2018). Following a different approach Ren et al. (2017) proposed a model
that deals with the noisy nature of the data with the help of semantic similarity be-
tween the representations of entities and relations. Luo et al. (2017) tried to directly
model the noise distribution in DS data and use it in a transition matrix to produce
estimations concerning the noise in the predicted labels. Similarly, Qin et al. (2018)
introduced a generator-discriminator model for noise reduction in DS corpora. DS
has been effectively introduced for annotation of documents or paragraphs (including
intra- and inter-sentence relations) for the generic (Web) (Augenstein et al., 2014) and
the biomedical domain (Quirk and Poon, 2017; Verga et al., 2018). For a more de-
tailed review of DS methods we refer readers to the extended survey of Smirnova and
Cudré-Mauroux (2019).

2.3.5 Unsupervised Approaches

In contrast with all previous approaches, unsupervised methods do not require any la-
belled data from any domain (source or target) or human curated Knowledge Bases.
These methods generally fall into two categories: Clustering methods to induce rela-
tion types and Open Information Extraction (OIE) from text. The difference of classic
RE with unsupervised clustering methods is that, in the latter, relation labels are es-
sentially clusters, thus enabling the discovery of new relation categories. On the other
hand, Open Information Extraction finds possible triples in the form of subject, predi-

cate, object that express a relation from text, as shown in Figure 2.8.

Most existing clustering approaches rely on measuring semantic similarity or co-
occurrence. Hasegawa et al. (2004) first proposed clustering for unsupervised RE



66 CHAPTER 2. RELATION EXTRACTION: AN OVERVIEW

Figure 2.8: Relation examples extracted from typical information extraction systems
and Open Information Extraction systems.

gathering co-occurring named entities in sentences along with their context words (in-
between the two named entities). Chen et al. (2005) improved this approach by using
feature selection criteria during clustering. Additionally, they automatically estimate
the number of clusters and utilise discriminate category matching for better identifi-
cation of relation labels from clusters. Yan et al. (2009) proposed relation extraction
between Wikipedia concepts, where pairs were clustered together based on the simi-
larity of their contexts. Lin and Pantel (2001) relied on the distributional hypothesis
(Harris, 1954) that words that co-occur together tend to be similar. In this work, the
authors conclude that “paths in dependency trees have similar meanings if they tend to
connect similar sets of words”. They generated inference rules and discovered potential
relations from unstructured text. Later on, Yao et al. (2011) experimented with genera-
tive probabilistic models on raw corpora. They used a variation of the LDA algorithm
(Blei et al., 2003) for topic modelling, where the relation categories were viewed as
latent topics. In quite a similar manner, Lopez de Lacalle and Lapata (2013) utilise a
topic model to extract an arbitrary number of relation categories from tuples represent-
ing syntactic relations between entities. More recent approaches utilise discrete-state
variational autoencoders (Marcheggiani and Titov, 2016).

Open information extraction was firstly introduced in Banko et al. (2007) and their
system TextRunner for OIE from the Web. Wu and Weld (2010) improved TextRun-
ner’s precision and recall by utilising Wikipedia infoboxes to generate better training
data. Another well known OIE system is that of Fader et al. (2011), namely ReVerb.
The authors focused on extracting identifiers for binary relations expressed by verbs in
English and proposed syntactic and lexical constraints over them. Then, Etzioni et al.
(2011) improved ReVerb’s argument detection module by incorporating an additional
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argument learner. Mausam et al. (2012) proposed OLLIE, an improved version of Re-
Verb that tackles two of its principal shortcomings. Firstly, it explores more relational
phrases than verbs (such as adjectives and nouns) and, secondly, acknowledges con-
text information into the relation extraction procedure. Gamallo et al. (2012) utilised a
dependency parser to obtain rich information for arguments and relations in text. After
dependency parsing, verb clauses are identified along with their participants. A set of
rules was employed to extract relation triples.

Recently, Graphene (Cetto et al., 2018) was developed for sentences that have a
complex linguistic structure. The model builds a two-layer hierarchical representation
in the form of facts and their accompanying contexts. It additionally extracts rhetorical
relations through which facts maintain their semantic relations. Niklaus et al. (2018)
provide a detailed survey of several existing OIE systems. A first step towards neural
OIE was taken by Cui et al. (2018a), where an LSTM encoder-decoder network was
trained on the extracted relations of an existing OIE system. Their method showed
promising results compared to state-of-the-art models for the same task. Recent meth-
ods for OIE try to take advantage of Question-Answering datasets and transform them
into training data. In more detail, Stanovsky et al. (2018) treat unsupervised RE as
a semantic role labelling problem using transformed QA datasets. They showed the
benefits of coupling QA and OIE data to train better relation extractors. Following the
same trend, Bhutani et al. (2019) suggested a neural model that combined vector repre-
sentations of both questions and answers to extract knowledge facts. The system also
utilised relevant information from multiple sentences, outperforming other models on
predicting relation tuples from QA pairs.

2.4 Conclusions, Limitations and Challenges

In this chapter, we presented a broad overview of relation extraction. We firstly cate-
gorised RE into several associated tasks that are formed based on the kind of informa-
tion one aims to extract. Investigation however, through related work, revealed that the
majority of approaches have mainly targeted sentence-level relation extraction, while
document-level relation extraction and, by consequence, relations of higher order (n
arity) remain an understudied field, for both the generic and the biomedical domain.
This further motivates our investigation for document-level RE, as will be discussed in
Chapter 6.
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We extensively discussed prior work in the field, where we divided existing meth-
ods into four large categories, the subcategories of which can fully describe an existing
method for RE tasks. In particular, the type of learning was considered our first division
into supervised, semi-supervised, distantly supervised, transfer learning and unsuper-
vised techniques. We focused mainly on fully supervised techniques, since this is the
main learning setting of our methods. Other learning techniques were also mentioned
for the purposes of completeness, as well as to illustrate that significant efforts have
taken place in order for models to generalise well without the dependence on learning
from large amounts of human-annotated data.

Our second and more fine-grained division relied on the structural representation
of each method. We partitioned these approaches into pattern-, sequence-, tree-, and
graph-oriented. A main observation was that pattern-based methods were the first to be
developed for RE, while tree-oriented approaches were extensively adapted between
the 2000s and 2010. Later on, neural architectures initially utilised sequence-oriented
techniques that performed on long or shorter sequences. These methods, however,
were further augmented with tree-structured information or explicit transformation of
the input into a tree structure, proving the effectiveness and popularity of such forma-
tions for the task of relation extraction. However, the flexibility of tree structures was
limited, despite their efficacy. Graph-based methods emerged as a result, where initial
efforts incorporated graphs for cross-level relation extraction. Graph-based methods
are consistently used in latest approaches for RE since they provide more leeway in
connecting various elements, thus capturing latent information in the input snippet.
Their success has motivated our proposed approach of be graph-oriented, where we
experimented with various types of graphs; either homogeneous, heterogeneous, par-
tially or fully connected. Nonetheless, the search space in such methods can increase
significantly and, as a result, a variety of pruning techniques has been introduced to
remove non-informative connections.

It is important to note that it is fairly hard to strictly categorise prior work into too
fine-grained categories, due to the diversity of methods and learning techniques ex-
plored over the years. Looking over the large variety of structure-oriented RE methods
in the timeline, we concluded that each has its own benefits and drawbacks, which is
why most approaches are actually hybrid in nature. Figure 2.9 illustrates the timeline
of the aforementioned approaches, showing the underlying textual structure of each ap-
proach with different colours. We focus on showcasing the methods that had the most
impact on the field over time, leaving more detailed work to be described in subsequent
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Base Phrase Chunking features (Zhou)

Shortest Dependency Path kernel (Bunescu)

Sub-sequence kernel (Bunescu)

MV-Recursive NN (Socher)

ML DS (Hoffmann)

Word2Vec (Mikolov)

DIPRE (Brin)

CNN + Positions (Zeng)

SDP Recursive NN (Ebrahimi)

CNN + Multiple Windows (Nguyen)

CNN + Multiple embeddings (Liu)

BiLSTM + Tree LSTM (Miwa)

BiLSTM + Attention (Zhou)

BiDAG LSTM (Peng)

Context-aware LSTM (Sorokin)

Graph State LSTM (Song)

EPGNN (Zhao)

BiGCN (Fu)

AGGCN (Guo)

GCN document 
(Sahu)

BiLSTM (Zhang)

SDP LSTM (Xu)

GCN on Trees (Zhang)

Transformer Document 
(Verga)

Document Graph (Quirk)

Char LSTM + BiLSTM (Kavuluru)

2xLSTM + Positional Attention 
(Zhang)

CNN + Attention (Wang)

BiRNN + Position Indicators (Zhang)

Snowball (Agichtein)

At-least-one DS (Riedel)

Transfer (Plank)

Clustering IE (Hasegawa)

ReVerb (Etzioni)

MIL-ML (Surdeanu)

DS Desnoise (Ren)

Discrete-state VAE (Marcheggiani)

Graphene (Cetto)

QA in OIE (Cui)TextRunner (Banko)

N-ary Generic (Xu)

Distant Supervision (Minz)

Figure 2.9: Timeline of existing methods for Relation Extraction. Red flags indicate
sequence-oriented approaches, green flags indicate tree-oriented approaches and blue
flags indicate graph-oriented approaches. The flags under the timeline correspond to
non fully supervised methods.

chapters.

Despite the many approaches proposed for RE, there is still a number of limitations
that we aim to tackle in this work. A first problem among existing approaches is that
they treat multiple pairs in a certain context (particularly sentences) in isolation, thus
failing to model higher interactions among pairs. Another limitation is that they do not
model the directionality of relations, with the exception of approaches applied on the
SemEval 2010 shared task, that explicitly required directed relations. In Chapter 4, we
will discuss the fact that graph-based approaches can model directionality thus being
useful in modelling directions, which is an important property of relations. Further-
more, we address the issue of portability of approaches in relation extraction which, in
their majority, use external tools such as parsers, to enhance performance. A drawback
of such approaches is that direct application to different domains is not straightforward,
since the corresponding tools need to be adapted as well. We thus aim to propose a
non-domain specific approach that can be effectively used for relation extraction in the
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biomedical domain. It is important to mention, however, that a limitation of the meth-
ods that will be presented in future chapters, is that we consider named entities already
extracted and annotated, thus focusing only on extraction of relations among them, for
both sentence-level and document-level RE.



Chapter 3

Technical Background

In this chapter we provide fundamental technical background for the remainder of this
dissertation. We provide a short introduction to Artificial Neural Networks and present
fundamental information about basic network architectures used in the following chap-
ters, as well as information regarding their training procedure. In essence, this chapter
serves as a brief introduction to neural networks in order to facilitate the reader in the
following chapters.

3.1 Artificial Neural Networks

Artificial Neural Networks (ANN) or Neural Networks (NN), for short, are computing
tools that were inspired by efforts to simulate the function of the brain. They can be
seen as a graph, with nodes (neurons) and connections between them. These networks
that were modelled by McCulloch and Pitts (1943), were initially implemented as elec-
tric circuits. Then, Hebb (1962) supported the concept of the artificial neuron, where
he proposed Hebbian learning, a form of learning where the neural nodes strengthen
their associations when used simultaneously. The computation performed in a single
neuron, also known as a Perceptron, is the following: Each incoming connection to
the neuron has an associated weight which is multiplied with its corresponding input.
The output of the neuron is the weighted summation of its inputs (with an additional
bias value), passed from an activation function that controls the amplitude of the out-
put. The neuron computation can be seen visually in Figure 3.1a or in the form on an
equation as,

y = f
(

w>x+b
)
, (3.1)

71
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where y is the output of the neuron, b is a scalar bias weight, x ∈ Rn are the network
inputs and w ∈ Rn is a vector with the synaptic weights.
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(c) Two-layer Perceptron.

By combining multiple neurons together, we can construct layered networks. The
first of these networks is considered to be the single-layered Perceptron, whose algo-
rithm was proposed by Rosenblatt (1957). We can imagine that the layered Perceptron
consists of d neurons (N) that share the same input (Figure 3.1b). Analogously with the
computation of a neuron, we can write the computation of a single-layered Perceptron
as,

y = f (W x+b) , (3.2)

where f corresponds to an activation function, W ∈ Rd×n is a synaptic weight matrix
multiplied by the input vector x ∈ Rn, b ∈ Rd is a bias vector with dimensionality d

and y ∈ Rd is the output vector of the network.

The Perceptron is known as a binary classifier, able to solve linearly separable
problems. The most famous example that shows the inability of the Perceptron to
solve non-linearly separable problems is that of the boolean XOR operator. Minsky
and Papert (1969) proposed the multi-layered Perceptron (MLP) for this purpose. The
introduction of one additional (hidden) layer in the network enabled the projection of
the data into a different space, where linear separability is feasible. Now the output of
a two-layer network (as seen in Figure 3.1c) can be written as,

z = f2(W2 f1(W1 x+b1)+b2), (3.3)

where x ∈ Rn, z ∈ Rm, W1 ∈ Rd×n, W2 ∈ Rm×d , b1 ∈ Rd and b1 ∈ Rm. By stacking
several layers, one can create very deep neural architectures. The single layer Percep-
tron is the most classic feed-forward neural network, in the sense that its computation
does not form cycles.
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Mapping elements to vectors

An elemental property of learning with neural networks is that they represent inputs,
outputs and intermediate states using vector representations. The transformation of the
input of a network into real-valued vectors is known as the embedding layer. For Natu-
ral Language Processing tasks and particularly text, the input is considered a sequence
of words, i.e. the input is discrete. As such, converting words to vectors is necessary
when working with neural networks. On the contrary, the inputs are not discrete in
computer vision, i.e. images are treated as a matrices of pixels (each pixel has a nu-
merical value) and are fed into the NN model directly. Hence, there is no need for an
embedding layer. Since we aim to work with text, we introduce the traditional way to
construct an embedding layer as follows.

Firstly, we define a dictionary D that contains all the words of the dataset that we
want to use. Secondly, we define a mapping function in order to associate a word
with a real-valued feature vector. For this purpose, a look-up table LTW (·) is con-
structed (Collobert and Weston, 2008), where each word i ∈ D is embedded into a
d-dimensional feature vector,

LTW (i) = Wi, (3.4)

where Wi ∈Rd is the ith column of matrix W and d is the dimensionality of the column
vector. Following the same procedure, one can map other elements into vectors, such
as relative distances (i.e. signed integers), sub-words, etc.

3.2 Network Training

In this section we introduce and briefly describe techniques used for training neural
networks. The methods that follow are primarily used as tools for the research con-
ducted in this dissertation. We additionally provide fundamental information that can
facilitate the understanding of their functionality.

3.2.1 Classification and Cost Function

In the beginning of Section 3.1, we defined the output of a multi-layer neural network
as a vector z. In classification problems, the last layer of the network typically maps
the output to a vector of dimensionality equal to the number of potential classification
categories. The values of this vector can be seen as un-normalised scores, one for each
of these categories. If C is the number of classification categories, then the vector is
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z ∈RC. In order to convert the un-normalised scores into probabilities, we employ the
softmax activation function. This helps us compute the probability qc of a category
c ∈C given an input vector x as follows,

qc = softmax(zc) =
exp(zc)

∑
C
k=1 exp(zk)

, (3.5)

where zc is the un-normalised score as resulted from the network for category c. Soft-
max can be considered as a “soft argmax” operation. It amplifies the largest un-
normalised score and normalises the scores of the output in order to reside in [0,1]
and sum to one.

Loss Function

In order to train NN models, we need to define a function that can help us measure, in
a quantitative way, how satisfied we are with the predictions that our model produced.
This function is referred to as loss function.

Let us assume we have a multi-class problem, with C being the number of clas-
sification categories, and a dataset with N examples {xi,ci}N

i=1, where xi is the input
vector corresponding to example i and ci is the correct category associated with this
example, which is an integer. Let f (x;θ) be an abstractly defined function that repre-
sents our NN model, with x our input examples and θ being the model’s parameters
(e.g. matrices). In general, the loss function over our entire dataset can be defined as
the average of the losses of each example:

L(θ) =
1
N

N

∑
i=1

Li ( f (xi;θ),ci) (3.6)

Our training objective is to minimise the loss with respect to θ. Formalising this ob-
jective, we have:

θ̂ = argmin
θ

L(θ) (3.7)

There are several loss functions used to train neural networks. However, the most
vastly used for classification problems is the cross-entropy loss. We assume that the
output of the NN model for the i-th example is the probability distribution qi over a set
of categories, as resulted after the softmax activation. The true category distribution
for each example can be expressed as a one-hot vector pi with a probability equal to
one for the correct category and a probability equal to zero for all the other categories,
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such as pi,ci = 1 and pi,c j = 0, where pi,ci is the ci-th element of pi. Since we have
two distributions, we can measure their dissimilarity. This information can be used to
estimate our satisfaction with the model predictions, hence forming a loss function.

Our goal is to encourage our model to produce a distribution that matches the cor-
rect distribution for each example. In order to realise that, we can use the Maximum
Likelihood Estimation (MLE) principle to maximise the likelihood of predicting the
correct category for each example. Translating this into a loss function (that we want
to minimise), we need to maximise the log likelihood thus minimise the negative log
likelihood of the correct category, for example i:

Li(θ) =− log( f (xi;θ),ci) =− log(qi,ci) , (3.8)

where, qi,ci is the probability of the NN model to predict the correct category ci given
example i with θ parameters (later omitted for readability). The reason that we work
with the log-likelihood is because of the faster and easier computation that the log
function results in computers by avoiding potential under-flows.

If we take the average of the losses over all the input examples we have,

L(θ) =
1
N

N

∑
i=1

Li(θ) =
1
N

N

∑
i=1
− log(qi,ci)

=
1
N

N

∑
i=1
−

(
C

∑
k=1

pi,k log(qi,k)

)

=
1
N

N

∑
i=1

H (pi,qi)

(3.9)

The last term is the cross-entropy between the actual distribution pi and the predicted
distribution qi, since pi,k is equal to one only when k = ci. Hence, the maximisation of
the log-likelihood is the same as the minimisation of the cross-entropy for each exam-
ple, which gave its name to the loss function. In binary classification problems, the loss
function is referred to as binary cross-entropy loss, while in multi-class classification
problems we also use the term categorical cross-entropy loss.
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3.2.2 Learning

Back-propagation

In order for a network to be trained, we need to use the computed loss and update its
parameters accordingly. This can be realised using the back-propagation technique.
Back-propagation is the backbone of neural networks training. The back-propagation
algorithm (Rumelhart et al., 1988) essentially provides an effective way to calculate
and transfer the error of the model into its parameters throughout the entire network.
This technique, or also known as error propagation, computes the gradient of a loss
function, with respect to each parameter of the network.

In order to apply back-propagation, the loss function needs to be differentiable
with respect to the parameters of the network. Since, in complex networks, the loss is
dependent on multiple parameters, we compute the partial derivatives of the loss with
respect to each parameter in a backward manner, i.e. from the loss to the parameters
of the very first layer. For this purpose, we employ the gradient chain-rule. To briefly
describe how back-propagation works, consider an example neural network f that does
the following computation,

f (x,y,z) = x y+ z, if a = x y, then f = a+ z,

where we defined a as in intermediate result. For now consider that x,y,z are all scalars.
We want to compute the gradient of the output with respect to the network inputs, as

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

Starting from the network output, we can compute the gradient backwards as follows,

∂ f
∂x

=
∂ f
∂a

∂a
∂x

= 1 · y = y, (3.10)

∂ f
∂y

=
∂ f
∂a

∂a
∂y

= 1 · x = x, (3.11)

∂ f
∂z

= 1 (3.12)

From this procedure we can see that the gradient of the intermediate result a helped
us compute the gradient of the output f , which essentially constitutes the chain-rule.
At each computation node (e.g. a or f ) we can simply compute the local gradient that
corresponds to the gradient of the output of the node, with respect to one of the inputs,
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and multiply this with the upstream gradient, which is the gradient that comes from the
next computation node, as shown in the schematic of Figure 3.2.
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=
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local gradient

=

∂𝐿
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∂𝑎
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*

Figure 3.2: Abstract schematic of backward computation for a multiplication unit.
Adaptation from cs231n.stanford.edu

In case we have vectors instead of scalars, the computation of the chain rule is the
same, though now we compute the Jacobian matrix, which contains the derivatives of
each element of the output with respect to each element of the input. The shape of the
gradient with respect to a variable is the same as that of the variable. Let us suppose
we have the following neural network, again using an intermediate output vector a,
that results in a scalar f :

f (x,W) = ||W x||2, if a = W x, then f = ||a||2

We want to compute the gradient of the output with respect to the input as,

∂ f
∂x

,
∂ f
∂W

Starting again from the output and moving backwards, we have,

∂ f
∂W

=
∂ f
∂a

∂a
∂W

= 2a x>, (3.13)

∂ f
∂x

=
∂ f
∂a

∂a
∂x

= 2W> a , (3.14)

This process is extended and applied to more complicated neural models with several
layers. The main advantage of back-propagation lies in the fast computation of all the
gradients throughout the entire network.
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Parameter Optimisation

After estimating the partial derivatives of each parameter in the network, we need to
update the network parameters θ in order to minimise the loss function L(θ) (Equa-
tion (3.7)). This is achieved via parameter optimisation. The formulation of the best
parameters is achieved by iterative parameter updates during training.

One of the first optimisation methods was that of Gradient Descend (GD) (Cauchy,
1847), where the weights were updated globally on the entire training set, towards the
opposite direction of the gradient of the loss L:

θt+1 = θt−η ∇θ L(θt) (3.15)

where η corresponds to the learning rate and t indicates the iteration step. In more
detail, each parameter is only updated using a part of its partial derivative, which is
controlled via the η hyper-parameter called the learning rate. Typically, large learning
rates result in large changes to the network weights, while small learning rates result
in small changes and consequently smoother learning.

The motivation behind GD was that we need to find the minimum point of our loss,
hence we need to traverse the parameter space by going towards the direction that will
lead to the lowest point of the loss. This point can be found moving along the nega-
tive direction of the gradient, that will lead us to the steepest descent (opposite from
the steepest ascent which is represented by the (positive) direction of the gradient).
However, if our training set is very large, it is very slow and expensive to compute the
gradient of the loss for the entire dataset before we make an update. Therefore, in prac-
tice, we use Stochastic Gradient Descent (SGD), which aims to update the network
parameters for a randomly chosen set of training examples, named a mini-batch. For
each mini-batch of n < N examples, an estimate of the true gradient is computed over
the selected examples and an update is made based on these examples only.

θt+1 = θt−η ∇θ

1
n

n

∑
i=1

Li (θt) (3.16)

SGD suffers from several problems, the most important of which being that it has
trouble navigating along curves that are steep in one direction but not so steep in an-
other (saddle points). Additionally, SGD updates the model parameters at each step
using a noisy estimation of the actual gradient, so it might take a very long time to
converge. In order to avoid these problems, SGD with momentum (Qian, 1999) was
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proposed. The idea was based on updating the parameters towards the direction of
a velocity (moving average, or simply average of gradients) rather than the gradient
itself, using a parameter ρ that can be seen as corresponding to friction,

vt+1 = ρ vt +η∇θ

1
n

n

∑
i=1

Li (θt) , (3.17)

θt+1 = θt− vt+1 (3.18)

This way, velocity is accumulated through time and the parameters are updated faster
or slower, depending on the direction of the gradients.

Another widely used optimisation algorithm is Adam (Kingma and Ba, 2015),
which estimates adaptive learning rates for each parameter θ of the network. Adam
combines SGD’s momentum (average of gradients), along with an exponentially de-
caying average of squared gradients similar to AdaDelta (Zeiler, 2012).

mt+1 = β1 mt +(1−β1) gt+1, m̂t+1 =
mt+1

1−β
t+1
1

, (3.19)

ut+1 = β2 ut +(1−β2) g2
t+1, ût+1 =

ut+1

1−β
t+1
2

, (3.20)

θt+1 = θt−η
m̂t+1√
ût+1 + ε

(3.21)

where gt+1 = ∇θ L
(
θt+1

)
are the network weights gradients. Other optimisation ap-

proaches include RMSProp (unpublished) and AdaGrad (Duchi et al., 2011).

Regularisation

During training, a neural model is typically evaluated on another set of data, named the
validation set (also known as development set). In general, we aim at creating models
with good generalisation ability, i.e., models that are able to make decent predictions,
not only on the validation set but also on another, blind data set known as the test set.
However, models are trained on the training set and the loss function is minimised on
this set. As a consequence, if the NN model is expressive enough, it can overfit on the
training data. The opposite scenario involves what is known as underfitting, i.e. the
model is unable to fit the training data. In the former case, the model results in higher
generalisation error when applied on unseen data. Regularisation techniques have thus
been developed in order to mitigate this problem. We briefly discuss some of the most
well-known regularisation techniques used in neural networks.
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Weight Decay. This type of regularisation is the one most commonly used to avoid
over-fitting. It essentially penalises the weights of a network by a controllable scalar
λ, as follows,

θ̂ = argmin
θ

L(θ)+λ R(θ) (3.22)

The parameter update will take place as,

θt+1 = θt−η ∇θ L(θt)−η λ ∇θ R(θ), (3.23)

Two common weight decay regularisers are the L1 and L2 regularisation, described
in Equations (3.24) and (3.25). Since the gradient of L1 has two possible outcomes
(+1 and −1), in the first case 1 will be subtracted from θ while, in the second, 1
will be added. In both cases θ tends to be pushed towards zero. Hence, L1 prefers
more sparse parameters for multi-dimensional problems leading to fewer variables and
simpler models.

RL1(θ) = ‖θ‖1 = ∑
i
|θi|, (3.24)

RL2(θ) = ‖θ‖
2
2 = ∑

i
θ

2
i (3.25)

On the contrary, the derivative of L2 substracts a portion of 2θ from the θ parameter.
The penalisation is proportional to the θ parameter. As a result, L2 regularisation
forces all network parameters to be relatively small, though not exactly zero, leading
to non-sparse parameters.

Figure 3.3: Dropout illustration (Srivas-
tava et al., 2014).

Figure 3.4: Early stopping criterion.
Source: stanford.edu

Dropout. Dropout (Srivastava et al., 2014) was proposed as a method to prevent neural
models from relying on specific weights. In essence, the technique randomly replaces

stanford.edu
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weights in the network with zeros, i.e. “dropping” units (Figure 3.3). Dropout ran-
domly drops units at each iteration step, and can thus be considered as generating a
different model each time, finally producing an ensemble. This is one of the reasons
for the technique’s success, while the other is considered to be the incorporation of
noise into the network through the missing units. Dropout makes the training slower
in general, but enables models to generalise better. Last, but not least, the probability
of dropping units can be tuned for different layers: input, hidden or output ones.

Early Stopping. Early stopping is another regularisation technique used in practice
while training neural models (Caruana et al., 2001). It is essentially a heuristic that as-
sumes that, if the loss of a model on the validation set starts to increase but the training
loss continues to decrease, training must stop due to over-fitting (Figure 3.4). Typi-
cally, early stopping involves choosing a hyper-parameter, named patience. The value
of patience indicates the number of training epochs that we wait for, after observing the
validation loss increasing (and the training loss decreasing). If, after a number of con-
tinuous epochs (patience), the validation loss keeps decreasing, we stop the training
and choose the model parameters that resulted in the best (lowest) validation loss.

3.3 Neural Components

Given the necessary information for network training, we describe the most important
neural networks that are used in NLP applications.

3.3.1 Convolutional Neural Networks

A family of feed-forward neural networks, named Convolutional Neural Networks
(CNN), were initially introduced for image processing (Sharma et al., 2018). Their
name stems from their core computation, convolution, a linear, mathematical operation
that can replace matrix multiplication (Smith et al., 1997). The origins of CNNs lay in
neuroscience. Their inspiration was based on an experiment conducted by Hubel and
Wiesel (1962), where they observed that some neurons in the visual cortex of the brain
of cats were triggered by the presence of specific edges of certain orientation. For
instance, some neurons responded to vertical, horizontal or diagonal edges. The re-
searchers additionally observed that these neurons were organised in column-ordering



82 CHAPTER 3. TECHNICAL BACKGROUND

inside the brain, producing visual perception. This observation resulted in the theoret-
ical basis of CNNs, where different neural components exist and are responsible for
encoding different types of information.

Vanilla CNN

Figure 3.5: Architecture of a Convolutional Neural Network (CNN) (Kim, 2014).

CNNs were firstly applied on images, with LeCun et al. (1989) proposing auto-
matic training of the convolution kernel. These networks have already gained signif-
icant interest in the domain of image processing, where they still constitute the core
computational network of the domain. Their introduction to text came much later, with
one of the first approaches presented in Kim (2014). Their basic computation on se-
quences of words for sentence representation is depicted in Figure 3.5. The input is a
sentence, which is converted into a numerical matrix, with each word being associated
with a real-valued vector (embedding layer). The architecture of a CNN network con-
sists of three building blocks which, as a group, can be repeated in order to form deeper
networks. These blocks are: a convolution layer, a non-linear layer and a pooling layer.

Consider an input word represented as a k-dimensional vector xi ∈ Rk. A sentence
is then represented as the concatenation of n words as s = x1:n = [x1;x2; , · · · , ;xn], with
“;” denoting the concatenation operation. In order to perform convolution across the
sentence words, we use a filter f ∈Rhk, with dimensionality equal to the product of the
number of sequential words h and their dimension k. The number of sequential words
is also known as a window of size h. The convolution operation with one filter on a
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window of h words produces a single feature ci, as shown in Equation (3.26):

ci = g
(

f> xi:i+h−1 +b
)

(3.26)

where b is a scalar, xi:i+h−1 ∈Rhk is the concatenation of h words and g is a non-linear
activation function. The convolution operation is applied on all possible slices of the
sentence {x1:h,x2:h+1, . . . ,xn−h+1:n} creating a set of features, named the feature map,
Equation (3.27).

c = [c1,c2, · · · ,cn−h+1], (3.27)

ĉ = max(c) (3.28)

A max pooling operation, Equation (3.28), is then applied on the feature map c to
extract the most prominent feature ĉ for this filter f. CNNs typically use multiple
filters, with different window sizes, to extract as many feature maps as possible. After
the pooling operation of each one of m filters, the resulted features are concatenated
into a single vector v = [ĉ1; ĉ2; , · · · , ; ĉm] and fed into a fully connected layer.

Essentially, CNNs are able to extract n-grams through different filter sizes. As
a result, they can perform n-gram composition, i.e. words that consist of up to n

characters or phrases with n words. The max pooling operation ensures that only
the best-matched n-gram will be selected out of the applications of a specific filter to
continuous windows of the input.

Graph CNN

A recently developed neural model based on CNNs is the Graph CNN (GCN), pro-
posed for application on graph structures instead of sequences (Kipf and Welling,
2017; Marcheggiani and Titov, 2017). GCNs aim to learn an informative represen-
tation for each node in the graph, taking as input a set of nodes with corresponding
representations and an adjacency matrix. Their key operation is to take advantage of
neighbouring node information and update the current node representation iteratively.
As shown in Figure 3.6, for a simple non-directed graph during the first iteration,
a node (marked in grey) is updated by aggregating information from its immediate
neighbours (marked in blue). The process is repeated in the second iteration, although
this time, the node of interest (grey) is updated with information included in further
nodes (2-hops away) since its immediate neighbours included this information in the
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GCN Layer l = 1

Initial Graph l = 0

...

GCN Layer l = 2

...

Figure 3.6: Abstract representation of Graph Convolutional Neural Networks.

previous step.

In order to achieve that, we stack multiple GCN layers on top of one other to encode
information from distant neighbouring nodes in the current node,

v(l+1)
i = f

(
∑

u∈v(i)
W(l) v(l)u +b(l)

)
, (3.29)

where v(l+1)
i ∈ Rm is the representation of the node of interest resulted from the l-th

GCN layer, u ∈ v(i) is a set of neighbouring nodes to vi, vu ∈ Rd is the representation
of a neighbouring node, W(l) ∈ Rm×d and b(l) ∈ Rm are learnable parameters of the
l-th GCN hidden layer and f as a non-linear function. GCNs can be found in different
variations than the one described in Equation (3.29). For instance, instead of summing
the neighbouring node representations, we can normalise the adjacency matrix in order
to estimate the final node representation as the average of the representations of the
neighbouring nodes.

3.3.2 Recurrent Neural Networks

In comparison with CNNs and Perceptron, Recurrent Neural Networks (RNNs) are a
special type of network that was developed to be applied on sequences. In particular,
they are ideal for sequence-to-sequence problems such as Machine Translation (Cho
et al., 2014), where the input is a sequence of arbitrary length and the output is an-
other sequence of possibly different length. There are two main versions of RNNs;
the vanilla RNNs, which constitute the base model, and Long-Short Term Memory
Networks (LSTM), a different variant that overcomes certain problems of the vanilla
version. There are more RNN-based models as well, such as the Gated Recurrent Unit
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(GRU). However, we do not include them here as they are not used in the models
proposed in this thesis.

Vanilla RNN

Recurrent Neural Networks (RNN) were originally introduced by Elman (1990). These
networks rely on a special connection from themselves to themselves, called the recur-

rent connection. This enables them to be applied on sequences, such as words in a
sentence. The characteristic of RNNs is that a single RNN cell can be unfolded in
order to perform the same operation on each element of a sequence, using the previous
element as additional input. This modelling has been referred to as memory, from the
perspective that RNNs are able to remember information about their previous inputs.
This memory is represented in the form of a vector, also known as the hidden state.

RNN

input

output

recurrent
connection

(a) Single RNN cell.

RNN

x1

y
1

RNN

x2

y
2

RNN

x3

y
3

. . . RNN

y
N

xN

h0 h1 h2 h3 hN−1 hN

(b) Repeating module of a vanilla RNN.

Figure 3.7: Architecture of the Recurrent Neural Network (RNN).

As illustrated in Figure 3.7a, the RNN cell receives input and produces output.
However, if we unfold the recurrent connection (Figure 3.7b), we can imagine each
piece of input in a sequence passed through an RNN cell along with the previous hidden
state. The initial hidden state is typically initialised with zeros. The computation that
takes place inside each cell is described in Equations (3.30)-(3.31), as a two-layer
neural network.

ht = tanh(Whh ht−1 +Wxh xt +bhh) , (3.30)

yt = Wyh ht +byh, (3.31)

where Wxh ∈ Rm×d , Whh ∈ Rm×m and Wy ∈ Rk×m are weight matrices, associated
with the input, hidden and output vectors respectively, bhh ∈ Rm and by ∈ Rk are bias
vectors, xt ∈ Rd is the input vector at step t, ht ∈ Rm is the hidden state representation
at step t, tanh is the hyperbolic tangent non-linear function and yt ∈Rk is the output of
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the RNN block at step t.

The weight matrices in RNNs are shared across all steps. RNNs are powerful net-
works that can be considered equal to Turing machines (Hyotyniemi, 1996). However,
they suffer from the inability to model long term dependencies that arise from the
problem of the vanishing gradient.

Long-Short Term Memory

The LSTM network was initially proposed by Hochreiter and Schmidhuber (1997)
and its main advantage over the vanilla RNN is the ability to solve the problem of the
vanishing gradient leading to effective encoding of longer sequences. In vanilla RNNs,
in order to compute the gradient of the loss with respect to the hidden state, we need
to traverse the entire sequence through back-propagation (Bengio et al., 1994; Pascanu
et al., 2013). Since in a multiplication operation, e.g. W ·h, the gradient with respect
to h is W>, the gradient of the loss with respect to the initial hidden state h0 will be
the power of the matrix to the length of the sequence. If the largest singular value of
the weight matrix is larger than one then the gradient of the loss with respect to h0 will
explode, which is known as an exploding gradient, while if the value is less than one
the gradient will vanish, known as a vanishing gradient. Exploding gradients can be
avoided with gradient clipping, by restricting the norm of the gradient in a specified
range. On the other hand, vanishing gradients can be resolved with LSTMs.

LSTM is a specialised version of the RNN that is able to learn long-term dependen-
cies. There are five hidden layers inside each LSTM cell that interact with each other.
Four of these layers are named gates and are responsible for different computations
in the cell. The last and most important layer is the cell state, which can be viewed
as an artificial memory and is kept internally inside the cell. The following equations
describe the function of each gate (it , ft , ot , gt) the computation of the cell state (ct)
and the LSTM output (ht) at east step t:

it = σ(Wxi xt +bxi +Whi ht−1 +bhi) , (3.32)

ft = σ
(
Wx f xt +bx f +Wh f ht−1 +bh f

)
, (3.33)

ot = σ(Wxo xt +bxo +Who ht−1 +bho) , (3.34)

gt = tanh
(
Wxg xt +bxg +Whg ht−1 +bhg

)
, (3.35)

ct = ft� ct−1 + it�gt , (3.36)

ht = ot� tanh(ct) (3.37)



3.3. NEURAL COMPONENTS 87

where � denotes element-wise multiplication, W and b correspond to weight matrices
and bias vectors, respectively.

Intuitively, the function of each gate controls the memory of the LSTM cell. There-
fore, if we imagine an LSTM cell as our memory, we control how much we want to
forget from our current cell state through the forget gate (Equation (3.33)). Incoming
input information (represented as the output of Equation (3.35)) is controlled by the
input gate (Equation (3.32)) before being added to the cell state. Finally, the amount of
current memory (ct) that is revealed to the next hidden state is controlled by the output
gate (Equation (3.34)). As described in Figure 3.8, our current memory ct is influenced

� � tanh �

tanh

�� �� �
�

��

��

��−1

��

��

��−1

Figure 3.8: Abstract representation of an LSTM cell. The weight matrices W and bias
vectors b are removed for brevity. The circled (×) represents element-wise multiplica-
tion, while the circled plus (+) represents addition.

by the existing memory (ct−1) and how much we forget (ft) in addition to a portion of
new information.

Bi-directionality

Bi-directionality was first introduced for RNNs by Schuster and Paliwal (1997) as an
extension of vanilla RNN. The model was designed to utilise input from both past and
future states at the same time, essentially increasing the amount of context information
available to the network. The introduction of the opposite direction was particularly
important when applied to LSTM variants (Graves and Schmidhuber, 2005; Thireou
and Reczko, 2007). In practice, bi-directionality is applied using two distinct neural
models applied from left-to-right and right-to-left on the input sequence. Typically, the
outputs of the two networks are concatenated to form a final representation for each
sequence output, as follows,

yt = [−→ot ;←−ot ], (3.38)
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where −→ot and←−ot correspond to the output of the left-to-right and right-to-left network,
respectively; yt is the final output of the bi-directional network and “;” indicates a
concatenation operation.

3.3.3 Attention Mechanisms

The previously described models were heavily used for sequence-to-sequence tasks
thanks to their sequential nature. Typically, two sequence-based networks were em-
ployed. An encoder that encodes the entire sequence into a single vector represen-
tation, and a decoder that generates (decodes) a new sequence from the given vector.
The encoder-decoder architectures have been the core principle in machine translation.
However, even though LSTMs can perform better when given longer sequences, it was
observed that, for these particular tasks, some information is forgotten. A case of that
is parenthetical text, typically inserted in the middle of a sentence. For this reason,
it was necessary to find a way to pay more attention to particular words or parts of
an input sequence that could play an important role in the production of the decoded
sequence.

Attention mechanisms were initially developed for machine translation Bahdanau
et al. (2015) in order to help the model remember important words that were located
far away from the end of the sequence, or with respect to certain aspects. Several
attention mechanisms were developed over the years, each one of them serving dif-
ferent purposes. However, all of these mechanisms try to measure the importance of
different elements in a sequence with regard to other elements. In general, an attention
mechanism can be defined as a function f that estimates a weight ai for each element
of a sequence s = {x1,x2, . . . ,xN}, given input query q. The attention weight is then
normalised by the weights over the entire sequence.

ai = f (q,xi), (3.39)

αi = softmax(ai) =
exp(ai)

∑
N
j=1 exp(a j)

, (3.40)

where N is the length of the sequence and αi is the normalised attention score as-
sociated with the element i. One of the benefits of attention mechanisms is that the
attention scores can be easily visualised, leading to potential interpretability (Wiegr-
effe and Pinter, 2019).
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Additive Attention. One of the first attention mechanisms was additive attention (also
referred to as concat attention in Luong et al. (2015)), proposed by Bahdanau et al.
(2015) for machine translation. The main idea behind it was to align the words of
the input sentence (in the source language) with the words of another sentence (in the
target language). Attention weights were estimated for each word representation st

in the source sequence, with respect to the representation of a word hi in the target
sequence.

aadditive(st ,hi) = v>a tanh(Wa[st ;hi]), (3.41)

where aadditive is the attention score of the word pair (st , hi), d is the dimensionality
of the vectors that represent the words st and hi, “;” corresponds to the concatenation
operation, va ∈ Rm and Wa ∈ Rm×2d are learned parameters of the attention network.

A simplified version of this type of attention was proposed by Zhou et al. (2016b)
which learns the importance of a word i in a sequence s = {x1,x2, . . . ,xN} using a
learned attention vector,

avector,i = u>a tanh(xi), (3.42)

where ua ∈ Rd is the learned attention vector, xi ∈ Rd corresponds to the vector of
word i in the input sequence and avector,i is the attention score for word i. Then, the
final sequence representation is formed as the weighted average of the representations
of its words.

Dot-Product Attention. Another type of attention was proposed by Luong et al.
(2015), again for machine translation. In their approach, a direct multiplication was
realised between the current word representation s in the source sequence and a word
representation h in the target sequence. The inner product of the two vectors produces
a scalar, which is the attention weight for the word t. A variation of the dot-product
attention is that of scaled dot-product attention, introduced by Vaswani et al. (2017).
Here, the attention weight is scaled by a scalar correlated with the dimensionality d of
the representations, in order to avoid very small gradients due to large dimensionalities.

adot(st ,hi) = s>t hi, (3.43)

ascale-dot(st ,hi) =
s>t hi√

d
, (3.44)

where st and hi ∈ Rd .
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Self-attention. However, even without paying attention to specific words of a se-
quence, we can allow the sequence to attend to oneself highlighting important aspects
of it (words or phrases) using self-attention. Self-attention was proposed by Lin et al.
(2017) and applied to several NLP tasks, including not only relation extraction, but also
sentiment analysis (Montoyo et al., 2012) and textual entailment (Dagan and Glick-
man, 2004). The attention vector ai for a word i is estimated in a similar manner to
additive attention,

ai = v>a tanh(Wa hi) , (3.45)

where Wa ∈Rm×d , va ∈Rm are learned attention parameters and hi ∈Rd corresponds
to the representation of word i in the input sequence. Self-attention, however, is applied
several times on the input sequence to extract multiple important spans. In this case,
the vector va becomes a matrix Va ∈ Rm×r.

ai = V>a tanh(Wa hi) , (3.46)

where ai ∈Rr is a vector with r attention weights for word i of the input sequence. The
authors further added a penalisation term to the attention parameters in order to force
the model to attend to different sections of the sequence.

Multi-head Attention. Multi-head attention is an extended adaptation of the dot-
product attention and self-attention proposed by Vaswani et al. (2017). This type of
attention is the core component of the Transformer network, a powerful network based
on attention that surpasses the performance of the previously described sequential en-
coders (RNN and CNN) on various tasks. Based on this mechanism, several recent
networks have been introduced, achieving state-of-the-art performance on several tasks
(Devlin et al., 2019; Yang et al., 2019). We do not explain in more detail this particular
type of attention, as we do not use it in the following parts of the thesis. We encourage
readers to advise the recent literature for more details.



Chapter 4

Sentence-level Neural Relation
Extraction

In this chapter, we introduce a novel neural model for sentence-level relation extrac-
tion on the generic domain, particularly newswire and Wikipedia. We address our first
hypothesis (H1), as introduced in Chapter 1: “The relation between two named en-
tities in a sentence can be supported by the interactions of these entities with other,
co-existing named entities in the same sentence, in a joint training setting”. We pro-
pose a model that deviates from existing RE approaches, in that we treat all pairs in a
sentence simultaneously and model their interactions with fixed dimensionality vector
representations. We present an iterative algorithm that encodes interactions of named
entity pairs in a sentence using all possible connections between the target entities.
We evaluate our model on three multi-entity datasets, showing improvements over
state-of-the-art methods. Additional analysis of the model’s components substantiates
important conclusions, not only with respect to the model’s behaviour, but also to the
characteristics of different relations between named entities. Parts of this work have
been published in Christopoulou et al. (2018).

4.1 Motivation

As shown by previous work, the majority of developed approaches targeted the task
of sentence-level RE. Most recent methods rely on deep neural networks, given their
ability to efficiently encode important information into fixed-length vector representa-
tions. In this work, we also utilise deep neural network architectures based on their
success in existing RE tasks (Miwa and Bansal, 2016; Nguyen and Grishman, 2015;
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Zhang et al., 2018a, 2017b).
The aforementioned methods assume that a single pair resides in a sentence, thus

ignoring co-existing pairs. As a result, the model encodes the representation of each
pair separately, without considering latent interactions with other pairs. Despite this
assumption, in real-life scenarios, a sentence typically contains multiple named enti-
ties and, consequently, multiple interactions among them. Moreover, it is expected
that, at least some, if not all, of these pairs share commonalities with each other and
their co-occurrence can further provide important information about their relation cat-
egories. This assumption was adopted by Sorokin and Gurevych (2017), where they
constructed the representation of a pair of interest by incorporating the representations
of other sentential pairs. They mostly address how co-occurrence of different relation
categories can be beneficial in RE (i.e. directed by often co-occurs with produced by)
rather than other semantic knowledge, such as compositionality. The proposed ap-
proach, however, has two limitations. The first is that it encodes the representations of
pairs separately from one another in a sentence and then combines them. Secondly, it
does not model the directionality of relations, hence using the direction of the pairs as
given by the dataset.

Towards a similar direction, we try to simultaneously model multiple pairs in a
sentence and take advantage of their interactions. To this end, we develop the following
hypothesis:

The relation between two named entities in a sentence can be supported by the
interactions of these entities with other, co-existing named entities in the same
sentence.

In order to better explain this intuition, one can look at the example illustrated in
Figure 4.1, where the relation between a pair of interest (namely a “target” pair) can
be influenced by other interactions in the same sentence. The relation between troops

and Basra can be extracted in two ways: directly, by looking at the target entities and
the sentence context, or indirectly by incorporating information from other pairs in
the sentence, essentially breaking down the semantics of a sentence into smaller parts.
The context around a pair can help us identify its relation. For instance, we can tell
that the person entity (PER) troops is related to the location entity (LOC) Iraq, through
preposition in. Similarly, Basra is related to the geopolitical entity (GPE) Iraq, with the
preposition near as evidence. However, for the connection between troops and Basra

we need to consider a more implicit connection, via the intermediate entity Iraq. In
essence, the path from troops to Iraq to Basra can further support the relation between
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troops and Basra, in addition to the existing context. Since Basra is part of Iraq and
troops are located in (physically) Iraq, it is expected that they will share the same
relation with Basra.

In southern Iraq today near Basra , two members surrendered to U.S. troops
LOC PER

PART-WHOLE PHYS
PHYS

GPE

Figure 4.1: Relation examples from ACE (Automatic Content Extraction) 2005
dataset (Doddington et al., 2004).

Since we want to take advantage of multiple entities in a certain snippet and model
their interactions, we do so via a graph structure. A graph can essentially be used
to represent all named entity pairs alongside their interactions in a sentence simulta-
neously. Most state-of-the-art RE models depend on external syntactic tools to build
graph or tree structures, such as the shortest dependency path (SDP) between two en-
tities in a sentence (Xu et al., 2015a; Miwa and Bansal, 2016). Despite the offers of
syntactic structures for relation extraction, their usage has two drawbacks. The first
is that, when relations are implicit, the parser cannot return an informative path for
the relation. The second is the dependence on external that leads to domain-restricted
models. To tackle the above shortcomings, we build our model to be independent of
domain-specific tools. In particular, we choose to place the named entities of a sen-
tence as nodes in the graph and consider the relations between every two nodes as
edges. We generate a unique representation for each edge and construct representa-
tions of entity chains iteratively, in order to model complex associations. We show
that the proposed model can perform comparably well with models that use syntactic
parsers not only for long-distance pairs, but also on sentences that include two or more
entities. In the following sections, we first introduce the task at hand and then describe
the proposed model in detail.

Task Definition

The particular Relation Extraction task that we target can be formally described as
follows: Given a sentence s with words {w1,w2, . . . ,wn} ∈ s and identified named
entities {e1,e2, . . . ,em} ∈ E, along with their semantic types {t1, t2, . . . , tm} ∈ T , the
task is to identify a relation r from a set of pre-defined semantic relation categories R

for each pair of named entities (ei,e j) in sentence s. The model’s input is a sentence,
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the named entities and their semantic types, while the output is a set of ordered triples
in the form of (ei,r,e j) denoting that entity ei has a relation r with entity e j.

4.2 Proposed Approach

The proposed model architecture is illustrated in Figure 4.2. The input to the model is
a sentence and the contained named entities.

Attention

...

e2w3 w5 e3 e1

context target

Attention

Linear

BiLSTM

w6w2 w3 w4 w5w1

e1 e2

Linear

e3

e1 e3e2
e1

e3 e2

Input 

Edge
Layer

...

Interpolation

...

e1
e2

blstm

pos1
pos2

type

Softmax

[ e1, e2 ]

Walk
Layer

e3w3 e2 w5 e1

context target

[ e1, e3 ]

Bilinear

e3

Figure 4.2: Overview of the proposed model. Each small square represents a vector.
The relative position embeddings (pos1, pos2) and the semantic entity types (type) are
generated in the embedding layer, but attached to each word or entity after the BiL-
STM encoder. This is not explicitly shown in the figure for readability. The BiLSTM
encoder receives only word embeddings.
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4.2.1 Sequence Encoding

Sequence encoding is responsible for generating contextualised word representations,
based on the input sentence.

Generation of embeddings

In order to encode the input sequence using neural models, we first need to map exist-
ing information into real-values, fixed dimensional vectors. This procedure takes place
in an embedding layer, as described in Chapter 3.

For the proposed model, the embedding layer involves the creation of dw, dt , dp-
dimensional vectors which are assigned to words, semantic entity types and relative
positions to the target entities, respectively. We map all words and semantic types into
real-valued vectors w and t. Relative positions to target entities are created based on
the position of words in the sentence, motivated by the work of Zeng et al. (2014) and
their effectiveness in RE. In more detail, for each word in the sentence, we attach two
relative positions with respect to each target entity. For instance, as shown in Figure
4.3, the relative position of surrendered to Basra is +4 and the relative position to
troops is −3. Similarly to words and semantic entity types, we embed real-valued
vectors p to these positions. In case the target entities consist of more than one word,

In southern Iraq today near Basra , two members surrendered to U.S. troops
GPE

+4 -3

PER

Figure 4.3: Example showing the relative positions of the word surrendered with re-
spect to the target entities Basra and troops.

the relative positions are estimated using their first or the last word, depending on
whether the context word (or entity) is before or after the target entity.

In essence, positional information further enables the model to learn explicitly
where each word is positioned in the sentence. Semantic entity types provide a strong
inductive bias for several classes, as has been shown in previous work (Zhang et al.,
2006b). This additional information is not necessary for the model to work and we
experiment in Section 4.5.3 with their contribution (or not) to the performance.
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Contextualisation of words

In order to contextualise the word embeddings so that each word contains information
about the words that surround it, we feed the previously defined word representations
of each sentence into a BiLSTM layer, which was introduced in Chapter 3.3.2. BiL-
STMs have been widely used for relation extraction (Miwa and Bansal, 2016; Zhou
et al., 2016b; Katiyar and Cardie, 2017; Bekoulis et al., 2018b; Sahu and Anand, 2018)
due to their effectiveness in encoding long-term dependencies between words. They
additionally consider the sequential structure of the sentence, taking the word order
into account. It is important to note, at this point, that the focus of the proposed
approach is not on the choice of the encoder but, rather, on how to model the inter-
actions between different pairs in a sentence. As such, one can replace this encoder
with another one, e.g. Convolutional Neural Networks (Chapter 3.3.1) or Transformers
(Vaswani et al., 2017).

For each word wi in a sentence, we transform it into a word embedding wi and feed
it to the BiLSTM. We concatenate the two resulting representations from the left-to-
right and right-to-left passes of the network into a de-dimensional vector, xi = [

−→
hi ;
←−
hi ],

which serves as the BiLSTM layer output of word wi.

As already discussed, existing models developed for Relation Extraction assume
that only one entity pair exists in a sentence. In previous approaches (Nguyen and
Grishman, 2015; Miwa and Bansal, 2016; Sorokin and Gurevych, 2017), the input se-
quence is formed as the concatenation of word w embeddings and other information,
such as semantic entity type t and/or relative position p embeddings. However, as we
choose to treat all named entity pairs simultaneously, we cannot consider the concate-
nation of these embeddings as the encoder’s input (particularly position). One named
entity might participate in multiple relations, hence having different relative positions
to the words in the sentence. We thus avoid encoding target pair-dependent information
in the BiLSTM layer, and instead use only word embeddings as the encoder’s input.
This decision has two main advantages: (i) The computational cost is reduced, as this
computation is repeated based on the number of sentences, instead of the number of
pairs (i.e. each sentence is given to the encoder once, in comparison with other models
that repeat each sentence based on the number of pairs (Nguyen and Grishman, 2015;
Miwa and Bansal, 2016; Sorokin and Gurevych, 2017)), (ii) we share the sequence
encoding layer’s parameters among the pairs of a sentence. The second advantage is
particularly important, as it enables the model to indirectly learn latent dependencies
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between entities in the same sentence, during training. This is something that is con-
firmed by the work of Bekoulis et al. (2018b), in a multi-task setting when detecting
both entities and relations. As we will show in the Section 4.5.2, sharing the sequence
encoding layer across pairs in a sentence, resulted in large improvement when detect-
ing relations between single pairs in a sentence.

4.2.2 Edge Layer

After constructing contextualised word representations for each sentence, the next step
involves the construction of the graph. We first map the named entities into nodes
and then consider their interactions as edges. For this particular setting, as we can-
not know the related named entities in advance, nor their direction, we create a fully
connected graph structure without self-node connections. Our graph representation is
edge-oriented in the sense that it creates an edge representation for each pair, which
includes information about the pair’s nodes and context. This decision is based on the
observation that since one entity can participate in multiple relations (with other enti-
ties), the connections of different pairs should be unique and not shared, as is the case
of node-oriented models (Kipf and Welling, 2017). It is, thus, more straightforward
to have different relation (edge) representations for each pair in a sentence, hence we
investigate such an approach. This is also more suitable for the creation of walks, as
will be later discussed.

In order to create pair-centric representations, which are associated with edge rep-
resentations in our graph structure, we construct two types of information: (i) target
pair representations and (ii) target pair context representations.

Target pair representations. If an entity e j consists of I words, we create a single
word representation by averaging the BiLSTM representations of its corresponding
words,

xe j =
1
|I|∑i∈I

xi, (4.1)

where I is a set with the word indices inside entity e.

The final representation of an entity e j is the concatenation of its surface form represen-
tation xe j , the representation of its entity type te j and the representation of its relative
position to entity ei: pe j,ei . Hence, the representations of a pair’s entities (vertices) vei
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and ve j are formed as follows:

vei = [xei; tei;pei,e j ], (4.2)

ve j = [xe j ; te j ;pe j,ei], (4.3)

where ‘;’ corresponds to the vertical concatenation operation. In this equation, as well
as in all of the following equations, we assume column vectors.

Target pair context representations. The next step involves the construction of the
representation of the context for each target pair. The context of a target pair can be
defined as all of the words and named entities in the sentence that are not part of the
pair’s arguments. Although the target pair representation already contains contextual
information obtained from the BiLSTM layer, we choose to explicitly model the con-
text of a particular pair in an effort to highlight words that are particularly important
for the relation of the pair.

The context of a target pair consists of words (not belonging to any entity) and
other entities in the sentence. For each context word wz of a target pair ei, e j, we
concatenate its BiLSTM representation xwz , its semantic type representation twz and
two relative position representations: to target entity ei, pwz,ei and to target entity e j,
pwz,e j . These context words, that are not part of a named entity (wz), are assigned a
special semantic entity type “O” (out-of-entity). The final representation for a context
word wz of a target pair ei,e j is formed as,

vei,e j,wz = [xwz; twz;pwz,ei;pwz,e j ] (4.4)

In a similar manner, the representation of a context named entity ez (that is not one of
the target entities) is formed as,

vei,e j,ez = [xez; tez;pez,ei;pez,e j ] (4.5)

It is important to note here that additional named entities in the sentence are treated as
entities in the pair context.

For a sentence s, the context representations for all entity pairs are expressed as a
fourth order tensor C, where rows and columns correspond to entities and the depth
corresponds to the context (words and entities) of the pair (nc). These representations
are then compiled into a single context representation for each pair, using an attention
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mechanism.

One attention mechanism for RE was proposed in Zhou et al. (2016b), where at-
tentive pooling was used to create a weighted average of the word representations in a
sentence. We adapt the same mechanism on the context of each pair as follows,

u = q> tanh(Cei,e j),

α = softmax(u),

cei,e j = Cei,e j α
>,

(4.6)

where dc = de +dt +2dp is the dimensionality of the context representations, Cei,e j ∈
Rdc×nc , q ∈Rdc denotes a trainable attention vector, α ∈ R1×nc is the attention weights
vector and cei,e j ∈ Rdc is the context representation of the pair ei,e j. An illustration of
the computation of the above procedure is depicted in Figure 4.4.

tanh

softmax
�

�
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Figure 4.4: Attention and Linear layers used in the network.

Finally, we concatenate the representations of the target pair and the pair’s context.
We use a fully connected linear layer to reduce the dimensionality of the resulting
vector, as follows,

v(1)ei,e j = Ws [vei;ve j ;cei,e j ] ∈ Rds, (4.7)

where, dm = 2de+dc is the dimensionality before reduction, Ws ∈Rds×dm with ds < dm

and ds is the dimensionality after reduction. This vector corresponds to the representa-
tion of the initial edge between vertices i and j. The (1) in the exponent indicates that
the edge contains information for this pair only.

4.2.3 Walk-based Inference

Our principal aim is to support the relation between an entity pair using interactions
with co-existing entities in the same sentence. We model these relations as chains of
associations from the first to the second target entity, via other entities. To model such
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chains of interactions, we propose a walk-based inference mechanism that iteratively
generates and aggregates multi-hop representations.

We initially define the concepts of paths and walks from Graph Theory. Let G =

(V,E) be a graph with V vertices and E edges. In Graph Theory, a path is a set of
edges that connect a sequence of distinct nodes. On the contrary, a walk is a set of
edges that connect a sequence of nodes, though nodes can be repeated. The reasons
that we choose walks instead of paths are two-fold. Firstly, walks are more flexible
as there is no need to keep track of repeated nodes. Secondly, walks have been used
by some methods that operate on graphs for construction of node embeddings (Per-
ozzi et al., 2014; Grover and Leskovec, 2016) with successful results. However, we
should highlight that these approaches incorporate random walks, while our search is
not completely random, as will be explained later.

With this layer we generate a representation for each target entity pair. This repre-
sentation encapsulates a finite number of walks (interaction chains) of different lengths
between the arguments of the pair. The representation of one-length walk between two
entities (Equation (5.8)) serves as a building block, in order to create representations
for one-to-l length walks between the pair arguments in an iterative manner. For nota-
tion simplicity in the following equations, we consider entity vertices i and j instead
of ei and e j. The walk-based algorithm can be seen as a two-step process repeated N

times: walk generation and walk aggregation.

Walk generation. During the generation step, our goal is to combine two edges in
order to form a new one. Our focus is to create edge representations, instead of node
representations, since we aim to represent the latent association between two entities in
the form of a unique vector. We take inspiration from the work of Socher et al. (2013),
who proposed a neural tensor network to identify whether a certain relation between
two named entities holds. Their approach is compositional, i.e. two representations
are combined, forming a new one. In their approach, they use a bilinear transformation
to combine two entity representations with a relation-specific matrix, one for each
relation, into a vector. We follow a similar procedure applied on the edges, i.e. we
combine two edge representations into a new one. We choose to simplify the relation
matrix into a second-order tensor, in order to enable the sharing of commonalities
between relation types. Moreover, we modify the computation to one element-wise
multiplication and one tensor multiplication, in order for the composition function to
result into a vector of same dimensionality as the inputs. This is particularly useful
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when iterating over the walk layer several times. The new vector is then passed from a
non-linear activation function, as follows,

f
(

v(l)ik ,v
(l)
k j

)
= σ

(
v(l)ik �

(
Wb v(l)k j

))
, (4.8)

where v(l)ik ∈ Rds corresponds to an edge representation that includes information from
walks of length one-to-l between entities ei and ek, � represents element-wise multi-
plication, σ is the sigmoid non-linear function and Wb ∈ Rds×ds is a trainable weight
matrix. This equation results in edge representations that include information from
walks of length two-to-2l. An edge representation created as such is, essentially, the
representation of a walk from the first entity node i to the second entity node j via
some intermediate node k.

Walk aggregation. In the walk aggregation step, we aim to combine shorter and
longer walks from the first target node to the second, in order to include all possible
walk lengths inside the pair representation. We, thus, linearly combine the initial edge
representations and the newly composed edge representation using linear interpolation,

v(2l)
i j = β v(l)i j +(1−β) ∑

k 6=i, j
f
(

v(l)ik ,v
(l)
k j

)
, (4.9)

where β is a scalar that indicates the importance of the representations that include
shorter walks.

We generally consider β as a hyper-parameter, which we tune. Overall, we expect
that performance will increase with a larger β for shorter walks based on the short-
est path assumption. In detail, the shorted path has been used on dependency trees
(Xu et al., 2015c), but also node classification (Borgwardt and Kriegel, 2005), where
it was proved that longer walks reduce performance. We hypothesise that this can be
extended for walks generated as chains of interactions between entities.

Iteration. Overall, using Equations (4.8) and (4.9) with l = 1, we create edge repre-
sentations encoding walks of length one-to-two. We then create walks of length one-
to-four by re-applying these two equations in order with l = 2. We repeat this process
a finite number of times, N. The maximum length of the generated walks is equivalent
to L = 2N . Finally, if a sentence contains only two named entities, we do not use the
walk-based mechanism. Instead, we force the pair to keep its original representation.
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In brief, the iterative algorithm of the walk-based inference is described below:

Algorithm 1 Walk-based inference iterative algorithm.

Require: V vertices, E edges, N itera-
tions

Ensure: l = 1,n = 1
1: for n≤ N do
2: for i, j ∈V ×V do
3: for all k ∈V and k 6= i, j do
4: combine v(l)ik and v(l)k j → v(2l)

ik j

5: end for
6: aggregate via k→ v(2l)

i j
7: end for
8: l = 2n

9: n = n+1
10: end for
11: return v(2

N)
i j

4.2.4 Classification

In the final layer of the network, we pass the resulting pair representation into a fully
connected linear layer with a softmax function on top to generate normalised probabil-
ity scores for each relation category.

y = softmax(Wr v(L)ei,e j +br), (4.10)

where Wr ∈ Rdr×ds is the weight matrix, dr is the total number of relation types and
br ∈ Rdr is the bias vector.

As mentioned earlier, we do not know the direction of the relation between two
named entities, i.e. whether the relation is from the first argument to the second or the
opposite. For this reason, we augment the number of relation categories by the inverse
relations. In essence, if a relation is formed from the first argument to the second, we
name it 1-to-2, and when the relation is formed from the second argument to the first,
we name it 2-to-1. In total, we use 2dr +1 relation categories. The additional category
corresponds to the no relation (NR) category.

4.3 Experimental Settings

4.3.1 Datasets and Comparisons

In order to test the performance of the proposed model, we choose to evaluate it on
four, sentence-level datasets specific on the generic domain.
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ACE 2004 defines 7 coarse-grained semantic entity categories (Facility (FAC), Geo-

Political Entities (GPE), Location (LOC), Organisation (ORG), Person (PER), Vehicle

(VEH) and Weapon (WEA)) and 7 relation categories (Artifact (ART), EMP-ORG,
GPE-AFF, Other-AFF, Person-Social (PER-SOC), Physical (PHYS)) (Doddington
et al., 2004). We follow the same process as Miwa and Bansal (2016) by removing
the disc domain documents, using the same pre-trained word embeddings and doing2
5-fold cross-validation on bnews and nwire domains. The statistics of the dataset are
shown in Table 4.1. For this dataset, we aim to not only identify the relation type
between an entity pair, but also the directionality of the relation.
We compare our model with SPTree Miwa and Bansal (2016) using the same pre-
trained Wikipedia word embeddings and data split. In order to fairly compare our
model with theirs, we re-trained the latter using the publicly available source code on
gold named entities, with early stopping with patience equal to five.

Data

Documents
Sentences 4,951
Entities 21,509
Positive Pairs 4,084

ART 211
EMP-ORG 1,624
GPE-AFF 529
OTHER-AFF 142
PER-SOC 365
PHYS 1,213

Negative pairs (%) 91.90

Average sentence length 24
Average entities/sentence 4.3

Table 4.1: Statistics for ACE
2004 dataset.

ACE05-D
ACE05-ND

Train Dev. Test

Documents 351 80 80 595
Sentences 5,417 1,342 1,128 10,922
Entities 24,410 5,909 5,087 48,153
Positive Pairs 4,780 1,131 1,151 8,669

ART 489 96 151 872
GEN-AFF 511 124 104 950
ORG-AFF 1,469 365 359 2,516
PART-WHOLE 774 162 182 1,299
PER-SOC 438 106 77 1,085
PHYS 1,099 278 278 1,947

Negative pairs (%) 92.12 92.16 90.98 92.72

Avg. sentence length 22 21 22 22
Avg. entities/sentence 4.5 4.4 4.5 4.4

Table 4.2: Statistics for ACE 2005 dataset for two
different settings, ACE05-D: classification of rela-
tion type and direction and ACE05-ND: classification
of relation type only.

ACE 2005 is an improved version of ACE 2004. It defines the same 7 semantic entity
categories and 6 relation categories (Artifact (ART), Gen-Affiliation (GEN-AFF), Org-

Affiliation (ORG-AFF), Part-Whole (PART-WHOLE), Person Social (PER-SOC) and
Physical (PHYS)).
We compare our model with two state-of-the-art models on this dataset. The first
model, is again SPTree (Miwa and Bansal, 2016). We follow the same pre-processing,
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removing the cts, un domain documents, use the same train/development/test data split
and the same pre-trained word embeddings. The statistics of the dataset are shown in
Table 4.2. Again, we re-trained the model with gold named entities and applied early
stopping with patience equal to five. For this version of ACE 2005, we aim to identify
both the relation category and the directionality of the relation between two named
entities. We will refer to this version as ACE05-D (direction).

The second model, is named CNN (Nguyen and Grishman, 2015). We follow the same
setting, performing 5-fold cross validation (the folds were provided by the authors) on
the dataset and used the same pre-trained word embeddings. We additionally remove
entity type embeddings since they were not used in their work. The authors removed
pairs with distance larger than 15 words, hence reducing the number of negative pairs
in the dataset by 2%. Instead, we keep these pairs during both training and prediction.
The dataset statistics are shown in the last column of Table 4.2.
For this version of ACE 2005, we do not identify the direction of the relation; we
merely predict the semantic relation type between two named entities, following Nguyen
and Grishman (2015). We will refer to this version as ACE05-ND (no direction).

WikiData is a distantly supervised dataset developed by Sorokin and Gurevych (2017)
using the Wikipedia corpus. The dataset contains sentences with multiple named enti-
ties and consists of 351 relation categories. It is split into training, validation and held-
out sets without overlapping in terms of sentences and relation instances. We slightly
modified the dataset as follows: We removed self-relations, duplicated pairs and pairs
that have at least one missing argument. These changes led us to use approximately
99.7% of the original dataset, as shown in Table 4.3.

To draw comparisons on this work, we compare with the ContextAware model of
Sorokin and Gurevych (2017), using the same data split, and pre-train Glove word
embeddings. We also remove semantic entity type embeddings for a fair comparison,
since they were not used in their work. We re-ran the ContextAware model on the
modified dataset and report on the performance. Two minor differences between the
two models are: firstly, the authors treat only up to 7 pairs in a sentence at the same
time and, secondly, they restrict the maximum sentence length to 36. Our proposed
model does not contain these restrictions. We do not classify different directionality
candidates for this dataset. Instead, we consider the direction of each pair as given
during classification, similar to their work.
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Training Validation Held-out

Original # pairs 777,481 252,277 740,963
Missing arguments 985 273 962
# Self-pairs 577 202 593
# Duplicate pairs 5 1 12

Final # pairs 775,914 (99.7%) 251,801 (99.8%) 739,396 (99.7%)
# Sentences 371,860 123,751 360,083
# Positive pairs 547,763 178,291 573,013
# Negative pairs 228,151 73,510 166,383
Average sentence length 23.74 23.72 23.91
Average entities/sentence 3.14 3.08 2.94

Table 4.3: Statistics for the WikiData dataset.

SemEval 2010-Task 8 is a manually annotated, sentence-level dataset with 9 relation
categories (Cause-Effect, Instrument-Agency, Product-Producer, Content-Container,
Entity-Origin, Entity-Destination, Component-Whole, Member-Collection and Message-

Topic) (Hendrickx et al., 2010). Each sentence contains only two named entities. We
consider the Other relation category as the negative relation category. The dataset is
split in 8,000 training and 2,717 test sentences. We use 800 randomly selected sen-
tences from the training set to act as our development set. The statistics of the dataset
are shown in Table 4.4. The official performance metric is macro-averaged F1-score.
We will refer to the dataset as SE-2010 for brevity.
Although this dataset does not have multiple entities per sentence, we choose to evalu-
ate our model on it in order to show that it can still work in such datasets, even without
using the walk-based mechanism. We directly compare our model with Miwa and
Bansal (2016) using the same pre-processing and pre-trained Wikipedia word embed-
dings.

4.3.2 Implementation Details

For all datasets, the Stanford CoreNLP toolkit (Manning et al., 2014) was used for
sentence splitting and tokenisation. Pairs are generated between all entities residing in
a sentence. Pairs that are not assigned a semantic relation category in the annotations
receive the NR (no-relation) category.

We originally implemented our model using the Chainer librarya (Tokui et al.,
2015). In this dissertation, we report the results which can be obtained by using the

ahttps://chainer.org/

https://chainer.org/
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Train Dev. Test

Sentences 7,200 800 2,717
Entities 14,400 1,600 5,434
Positive Pairs 5,933 657 2,263

Cause-Effect 901 102 328
Component-Whole 859 82 312
Content-Container 486 54 192
Entity-Destination 761 84 292
Entity-Origin 641 75 258
Instrument-Agency 448 56 156
Member-Collection 631 59 233
Message-Topic 573 61 261
Product-Producer 633 84 231

Negative pairs (%) 17.6 17.88 16.71
Average sentence length 19.09 18.98 19.12

Table 4.4: Statistics for SemEval-2010 Task 8 dataset.

published version of the model written in PyTorchb. The model was trained with the
Adam optimiser (Kingma and Ba, 2015) using cross-entropy loss (Golik et al., 2013).
In the following experiments we assume entities are given and use existing pre-trained
word embeddings.

Regarding more specific network settings, the forget bias of the BiLSTM layer was
initialised with a value equal to one, following the work of Jozefowicz et al. (2015).
Gradient clipping, dropout on the embedding and output layers and L2 regularisation,
without regularising the biases, are incorporated to avoid overfitting. We additionally
use early stopping in order to chose the number of training epochs and use parameter
averaging following Hashimoto et al. (2013) during prediction. Similarly to previous
work, we observed that averaging the parameters resulted in more stable training. We
tune the model hyper-parameters on the development set of the ACE05-D version, us-
ing the RoBO Toolkit (Klein et al., 2017). We use the same hyper-parameters on the
ACE05-ND version and ACE 2004. The only hyper-parameter that is tuned separately
for this dataset is the best training epoch, based on the development set. For the Wiki-
Data and SemEval datasets, we tune hyper-parameters on the respective development
sets. Readers can refer to Appendix A.1 for the detailed hyper-parameter settings of
the proposed model on each dataset.

bhttps://github.com/fenchri/walk-based-re

https://github.com/fenchri/walk-based-re
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4.4 Results

Evaluation is performed on all datasets by reporting the performance based on the pri-
mary metric (micro- or macro-average) Precision, Recall and F1-score of each dataset.
In more detail, we report two models. A baseline model (L = 1) that does not con-
sider the walk-based layer; that is, the pair representation is simply formed as the
concatenation of the pair entities and their context. The second model incorporates the
walk-based layer. We experiment with a different number of maximum walk lengths L

(2, 4, 8). The model with the best performing walk length on the development is used
as the primary (chosen) model on the test set. However, we also report the performance
on the test set with other walk lengths, in order to better illustrate their effect.

For all the following experiments, we perform significance testing using the Ap-
proximate Randomisation algorithm (Noreen, 1989).

4.4.1 Candidate Pairs Classification

Before moving on to the main results, we report some preliminary experiments regard-
ing the choice of pair candidates for classification. As we mentioned in Section 4.2.4,
the number of relation categories is augmented with the inverse relation types in order
to represent directionality of relations. In addition, our entity graph is fully connected
and non-directed since we do consider any restrictions regarding the connections of
entities in a sentence. As a result, the proposed model generates two edge represen-
tations for each pair, i.e. one from the first argument to the second and the inverse.
These representations are substantially different from one another since in the walk
generation process we introduced a non-linear activation function (Equation (4.8)). It
is thus reasonable to experiment with which of these two representations is better to
choose for classification.

In our initial experimentation (Christopoulou et al., 2018), we followed the setting
of Miwa and Bansal (2016), where candidate pair instances were generated based on
the position of their arguments in the sentence. In a left-to-right instance (L2R) the
first argument appears first in a sentence and the second appears second, while the op-
posite applies in a right-to-left instance (R2L). For example, in the sentence of Figure
4.1, for the target pair Basra-troops, a L2R instance is (Basra, troops) with relation
2-PHYS-1 and a R2L instance is (troops, Basra) with relation 1-PHYS-2. Follow-
ing previous work, we classified both edge representations (corresponding to L2R and
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R2L instances) and summed their respective losses (Loss = L2R+R2L). The final re-
lation label for a target pair was selected by choosing the positive (i.e. different from
NR category) and most confident prediction between the two, as in Xu et al. (2015b)
(Prediction = L2R+R2L). The performance of this experiment, on the ACE05-D de-
velopment set, can be seen in the first row of Table 4.5 (setting A).

Micro F1 (%)

Setting Loss Prediction L = 1 L = 2 L = 4 L = 8

A L2R+R2L L2R+R2L 59.51 62.09 62.77 60.87
B L2R L2R 61.50 63.09 64.80∗ 63.13∗

C R2L R2L 61.94∗ 63.19 65.10∗ 64.09∗

D L2R+R2L L2R 58.44 61.65 62.41 60.69
E L2R+R2L R2L 59.62 61.36 62.38 60.65
F L2R+R2L L2R+R2L† 59.64 61.88 62.58 61.05
G L2R L2R+R2L 54.10∗ 61.28 63.40 61.79
H R2L L2R+R2L 51.73 62.15 63.67 60.49

I Ensemble E & F 61.81 63.03 65.10∗ 63.72∗

Table 4.5: Performance of different pair candidates on the ACE05-D development set.
∗ indicates significance at p < 0.05 in comparison with setting A. † indicates that we
choose the most confident prediction after classifying both instances.

We later experimented with training the model using only information from one of
the two instances (settings B, C), where we observed significant performance improve-
ment in comparison with our original setting A. This is contradictory with the findings
of Miwa and Bansal (2016), where the authors observed that using one of the instances
produced similar performance to using both.

In order to analyse the reason for this phenomenon, we first evaluated different
prediction settings to make sure that the low performance of setting A is not because
of errors when resolving conflicts between predictions. Settings D and E correspond
to choosing one of the two instances for prediction instead of resolving them. In set-
ting F we always choose the prediction of the most confident instance. As it can be
observed from Table 4.5, all of these settings produced similar performance to setting
A, indicating the this phenomenon is potentially related with how we compute the loss
(joint training of both instances). Indeed, when computing the loss over one instance
but using two predictions (settings G, H) performance is significantly worse for the
L = 1 model, but this is not the case for the walk-based model. We speculate that this
is an indication that the walk-based layer captures directionality information, since it
can classify both instances well.



4.4. RESULTS 109

We attribute this behaviour, in comparison with the finding of Miwa and Bansal
(2016), to the following (plausible) reasons. In the model of Miwa et al. (2009), the
SDP between two entities with dependency edge labels is used to represent the pair.
The SDP contains strong biases regarding the correct direction of the relation. On
the contrary, our model (before training) has no prior knowledge about the potentially
correct relation direction. The propagation of information from instances of different
directionalities can confuse the model that does not have any guiding relation direction
biases. Possibly, adding further constrains to the classifier can alleviate this. However
we leave further investigation as future work. We conclude that, for our proposed
model, joint training of instances with different directions hurts the performance and
instead one should be used. For the remaining datasets, in case we classify the direction
of the relation, we experiment with both instances and choose those one that yielded
the best results on the development set. By applying the AR significance test, the
difference between the two is not significant (settings B, C).

4.4.2 Performance Comparison

Table 4.6 illustrates the performance of our proposed model in comparison with state-
of-the-art models on four different datasets.

In all datasets, the walk-based model with 4-length walks (L = 4) is significantly
better than the baseline L = 1. Regarding the ACE05-D dataset, we compare our
model with SPTree (Miwa and Bansal, 2016), where higher performance was achieved,
though not to a significant degree. We additionally compare with a CNN model
(Nguyen and Grishman, 2015), where again the best performing model was L = 4. Re-
garding the performance on the ACE 2004 dataset, our proposed model outperforms
SPTree model. We also manage to outperform the model of Sorokin and Gurevych
(2017) on the distantly supervised WikiData dataset by a significant margin for all
walk lengths, with best results for L = 4. For the SemEval 2010 dataset, our model
cannot outperform the state-of-the-art but we can achieve a decent performance when
using the baseline model.

The difference in performance between the ACE datasets and the rest (WikiData,
SE-2010) is due to the number of negative samples. The ACE datasets contain approx-
imately 92% of no relation pairs, while WikiData and SE-2010 have approximately
30% and 17% respectively. As a result, finding related pairs in the ACE datasets
is much more challenging compared to the other two. In addition, in the WikiData
dataset, directionality is assumed given, which improves performance by almost 10%
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Dataset Model Dir. Metric P (%) R (%) F1 (%)

A
C

E
05

-D

SPTree (Miwa and Bansal, 2016)

X Micro

69.4 62.0 65.5
No walks L = 1 72.7 57.9 64.5
+ walks L = 2 75.3 58.1 65.6
+ walks L = 4 72.1 62.2 66.8∗
+ walks L = 8 71.8 59.5 65.0

A
C

E
05

-N
D CNN (Nguyen and Grishman, 2015)

5 Micro

71.5 53.9 61.3
No walks L = 1 69.8 52.8 60.1
+ walks L = 2 74.0 53.3 61.9
+ walks L = 4 69.8 56.1 62.2∗
+ walks L = 8 69.5 53.1 60.2

A
C

E
20

04

SPTree (Miwa and Bansal, 2016)

X Micro

64.3 60.5 62.3
No walks L = 1 69.3 61.1 64.9�

+ walks L = 2 71.0 61.4 65.8�

+ walks L = 4 70.3 62.4 66.1∗�
+ walks L = 8 72.3 60.0 65.5�

W
ik

iD
at

a ContextAware (Sorokin and Gurevych, 2017)

5 Micro

79.9 77.8 78.9
No walks L = 1 82.0 74.5 78.1�

+ walks L = 2 81.9 76.5 79.1∗�

+ walks L = 4 81.9 77.8 79.8∗�
+ walks L = 8 81.5 77.6 79.5∗�

SE
-2

01
0 SPTree (Miwa and Bansal, 2016)

X Macro
82.2 87.4 84.7

CNN (Nguyen and Grishman, 2015) - - 82.8
No walks L = 1 79.4 83.5 81.4

Table 4.6: Performance on the four datasets in comparison with the state-of-the-art. ∗
indicates significance at p < 0.05 in comparison with L = 1. � indicates significance at
p< 0.05 in comparison with the state-of-the-art. Dir indicates identification of relation
direction or not.

in preliminary experiments. This is not reflected in the ACE05-ND results, as this per-
formance boost is counterbalanced by the removal of semantic entity type embeddings.
Type embedding contribute approximately 8% to the performance, as will be discussed
in Section 4.5.3.

4.5 Analysis and Discussion

We choose ACE05-D as the primary dataset to conduct extensive analysis; in particu-
lar, we employ the data split of Miwa and Bansal (2016). The reasons for this choice
are attributed to the manual annotation of the dataset, the significant improvement in
terms of relation categories and general annotation quality (Li and Ji, 2014) over ACE
2004 and that identifying both relations and their directions is a more challenging task.
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Additionally, a data split as such is preferred due to computational restrictions com-
pared with a cross-validation setting. We also report some basic analysis on the Wiki-
Data dataset as a large multi-entity dataset. However, due to its automatic generation,
we do not consider deeper analysis.

We divide our analysis into three parts. The first part discusses particular errors of
the model, using both quantitative and qualitative analysis. The second pertains to the
walk-based layer, i.e. analysis that can evaluate the effectiveness of this mechanism
and in which cases it performs better than other models. The last part discusses addi-
tional model enhancements, such as the effect of positional and semantic entity type
embeddings as well as the efficacy of the attention mechanism in the construction of
the context representation.

4.5.1 Error Analysis

We investigate the performance of our model on different relation categories in com-
parison with the state-of-the-art. As it can be observed from Table 4.7, the walk-based
model outperforms SPTree only in the ORG-AFF and ART relation categories of the
ACE05-D dataset. Two plausible reasons exist for this behaviour. First, the SPTree

Category
F1 (%)

L = 1 L = 2 L = 4 L = 8 SPTree

PHYS 46.32 43.84 51.90 48.95 52.95
ORG-AFF 79.71 81.13 81.87 79.32 78.22
GEN-AFF 58.48 56.25 54.65 54.86 56.00
ART 57.94 58.33 60.63 56.56 49.36
PART-WHOLE 64.48 68.89 68.85 68.89 71.66
PER-SOC 70.34 70.59 65.75 66.67 69.80

Micro score 64.51 65.62 66.85 65.08 65.53
Macro score 63.19 64.10 64.37 63.03 63.75

Table 4.7: Performance for each class on the ACE05-D test set for multiple walk
lengths. SPTree refers to the model proposed by Miwa and Bansal (2016).

model uses a dependency parser, which enables the detection of patterns that indicate
particular relationships with high accuracy. On the contrary, in our model we rely on
the attention mechanism in order to identify informative words for the pair. While
this has the advantage that words ignored by the SDP can now be considered, par-
ticular relations exhibit certain syntactical structures that are more easily captured by
dependency-based models.
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As we can observe in some cases, the walk-based mechanism might not be re-
quired, thus resulting in lower performance. For instance, for the PER-SOC (Person-
Social) and GEN-AFF relation categories, the baseline (L = 1) model performs better
than, or comparably to, the walk-based models. As the pair representations are updated
simultaneously for all the pairs in the same sentence, latent dependencies between en-
tities in a sentence can also be encoded through the shared sequence layer, which
explains the success of L = 1 in some cases. For example, in the GEN-AFF category,
although walks are not useful, the baseline model performs better than SPTree.

We further investigate the confusion matrix of the best performing model L = 4 on
the ACE05-D test set. As observed from Table 4.8, the majority of errors occur due to
False Negatives (predicted class NR: no relation), which can be justified by the large
portion of the negative relations in the dataset (approximately 92%).

true / pred ART GEN-AFF ORG-AFF PART-WHOLE PER-SOC PHYS NR
ART 77 1 0 0 0 6 67
GEN-AFF 0 47 10 4 0 5 38
ORG-AFF 0 3 289 0 0 2 65
PART-WHOLE 0 2 0 126 0 4 50
PER-SOC 0 0 0 0 48 0 29
PHYS 0 4 0 4 0 130 140
NR 26 11 48 50 21 76

Table 4.8: Confusion matrix on the ACE 2005 test set (SPTree split) for L = 4.

We perform similar analysis on the WikiData dataset, estimating the performance
of the most frequent classes, similar to Sorokin and Gurevych (2017), as shown in Ta-
ble 4.9. The walk-based model does not always outperform the ContextAware model.
Our model is mostly helpful on the Citizenship, Subclass of and Instance of relation
categories. Similar performance with the ContextAware model is observed for Part of

and Sport relation categories. Overall, we can notice that the walk-based mechanism
is beneficial in almost all relation categories in comparison to the Baseline (L = 1),
indicating that, in sentences with multiple named entities, interactions between pairs
are important for relation extraction. The difference between our model and the Con-
textAware model is that our approach aims to form chains of interactions between two
named entities, through other entities, in the same sentence. The latter represents a
pair as a weighted average of the representations of the context pairs residing on the
same sentence. It thus mostly relies on modelling the co-occurrence of different rela-
tion types between pairs in the same sentence and, consequently, measures how similar
two pairs are. We deem that these two approaches are complementary and potential
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Category
F1 (%)

L = 1 L = 2 L = 4 L = 8 ContextAware

Located in 79.68 81.79 83.30 83.05 84.99
Shares border 69.04 70.40 71.99 72.04 75.35
Citizenship 91.96 92.09 92.21 92.19 90.54
Subclass of 56.49 58.82 59.04 57.41 48.42
Instance of 84.96 85.20 85.26 85.29 84.55
Part of 50.08 50.55 50.76 50.86 51.24
Country 82.65 84.72 86.59 86.32 90.37
Sport 98.18 98.08 98.15 98.22 98.19

Micro score 78.10 79.17 79.83 79.56 78.90
Macro score 76.86 77.96 78.60 78.35 78.04

Table 4.9: Performance for the top 8 most frequent relation categories on the WikiData
test set. The Macro F1-scores correspond to these classes only. ContextAware refers to
the model proposed by Sorokin and Gurevych (2017).

combination could lead to better performance.
We finally report some qualitative examples on ACE05-D and Wikidata datasets.

In the first example, the model does not detect the relation between Putin and Russia.

Case Pred. SPTree Truth Sentence

Common
sense

NR NR
ORG-
AFF

they should be very worried about this item , I believe
Putin is slowly sliding Russia back to what it once
was .

Semantics PHYS PHYS NR He is being tried in Greece in absentia .

Coordi-
nation

ART ART ART
it was hit by coalition bombs and missiles and then
burned and looted by iraqis .

Coordi-
nation

ART NR ART
it was hit by coalition bombs and missiles and then
burned and looted by iraqis .

Implicit
relation

PHYS NR NR
Tareq Ayyoub , a journalist with Al-Jazeera , died
when a U.S . warplane bombed the Arab-language
satellite television ’s office .

Table 4.10: Examples of predictions made by the best performing walk-based model
L = 4 on the ACE05-D dataset. The named entities in bold indicate the target pair
arguments. The named entities in italics indicate other entities in the sentence.

As observed, the ORG-AFF relation between the two entities is not implied by the
sentence and the model needs to perform common-sense reasoning in order to correctly
identify the relation. Currently, our model does not directly support this, and neither
does SPTree, except from the usage of pre-trained word embeddings. However, even
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if the original embeddings captured some correlation between these two entities, they
are likely to lose their original meaning during model training. This can be because
the original embeddings were trained on Wikipedia, but the ACE05-D dataset contains
mostly news articles that refer to war, political disputes etc, that Wikipedia might not
contain. Another difficult case is that of the second example. The entity He cannot
be considered situated in Greece, due to the presence of the phrase in absentia, which
indicates absence. However, both models incorrectly predict it as a Physical relation.
This illustrates a larger problem of the models that do not take bigrams into account.

In the following two examples, the model correctly identifies the artifact relations,
whereas SPTree is able to find only one of the two. The final example can be considered
an implicit relation; that is, the relation is not directly expressed in the sentence, though
we can infer it by reading it. The journalist cannot have died if he was not located in
the office. Due to annotation restrictions by the ACE05 dataset, however, such relations
are not annotated.

Case Pred. CA Truth Sentence

KB inc.
cast
member

cast
member

NR
She made her Hollywood feature film debut in The
Grudge 2 in 2006 , a horror sequel starring Amber
Tamblyn and Sarah Michelle Gellar .

Distance
subclass
of

NR
subclass
of

It consists in the worship of the ngel zex , the Bai
word for patrons or lords , rendered as benzhu in Chi-
nese , that are local gods and deified ancestors of the
Bai nation .

Coordi-
nation

prod.
com-
pany

NR
prod.
com-
pany

Famous American serials of the silent era include
The Perils of Pauline and The Exploits of Elaine
made by Pathé Frères and starring Pearl White .

Coordi-
nation

cast
member

NR
cast
member

Famous American serials of the silent era include The
Perils of Pauline and The Exploits of Elaine made
by Pathé Frères and starring Pearl White .

Table 4.11: Examples of predictions made by the best performing walk-based model
L = 4 on the WikiData dataset. CA corresponds to the ContextAware model. The
named entities in bold indicate the target pair arguments. The named entities in italics
indicate other entities in the sentence.

Regarding the WikiData dataset, as shown in Table 4.11, a first category of errors
for both our model and the ContextAware is that the KB that was used to create the
corpus, is incomplete. As a result, even though several relations stand, they are not an-
notated in the dataset. Secondly, we observe from the second row of the table that our
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model can detect relations that are very far apart (24 words), while the ContextAware
cannot do so. Finally, we can once again see that our model performs well in coordi-
nation, particularly in cases were multiple entities exist and relate to each other. For
instance, in the last two examples, ContextAware fails to find both relations, while
the walk-based model not only assigns a positive relation, but also differentiates the
relation between the arguments, despite not incorporating semantic entity types.

4.5.2 Walk-based mechanism

We then move on to analyse the walk-based mechanism. As a first attempt, we estimate
the performance of the proposed model, for multiple walk lengths, on sentences that
contain a varying number of entities. In more detail, we group sentences by consider-
ing the number of entities required to form complete hops with the walk-based model.
For instance, when three entities exist in the sentence, we can form up to two-length
paths L = 2. When four or five entities exist, we need L = 4 and for 6 to 9 entities
we need L = 8. We expect that, for multi-entity sentences, the walk-based mechanism
should perform better than the baseline model.

Figure 4.5: Performance as a function of the number of entities in a sentence for dif-
ferent number of walks on the (a) ACE05-D and the (b) WikiData development sets.
The bar plots in the second row illustrate the distribution of sentences for each group
of entities.

Results in Figure 4.5 reveal that, for multi-pair sentences, the walk-based model
performs better than the baseline model (L = 1). However, the existence of multi-
ple pairs does not indicate that all pairs can benefit from one another. For instance,
for 6-9 entities, the performance of L = 2,4,8 is similar, indicating that more walks
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are not necessarily beneficial despite the presence of more named entities in the sen-
tence. This observation implies that, in general, the walk-based mechanism should be
adapted to different pairs, using potentially different hops instead of using all possible
intermediate entities in the sentence. For the WikiData dataset, we observe that the
walk-based model is more effective, either for single pairs (similarly to the ACE05-D
dataset) or for more than 6 entities. For three named entities, the ContextAware model
outperforms our approach, implying that co-occurrence of relations is more common
when fewer entities exist in the sentence. It is important to note that, during train-
ing, parameters are updated by considering all pairs simultaneously. As a result, latent
dependencies between entities are learned, which can result into improving the entity
representations of single pairs.

We additionally plot the learning curves for the different walk lengths, by randomly
sampling a percentage of sentences as training data. Figure 4.6 demonstrates that,
generally, all models benefit from more training data. It appears that L = 1 shows the
slowest ascent, indicating limited capabilities compared to the walk-based models.

Figure 4.6: Learning curves for different walk lengths on the ACE05-D development
set.

Finally, we investigate the effect of the beta (β) weight in the walk-based mech-
anism. For this purpose, we train our model with multiple β values ranging from 0
to 1. A beta value equal to zero indicates that only extended walk representations (2-
hops or more) are used to construct the final pair representation. On the other hand, a
beta value equal to one indicates that only short edge representations will be used for
the construction of the pair representation, without considering longer ones, as results
from Equation (4.9).
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Figure 4.7: Performance as a function of different β values for multiple walks length
on the ACE05-D development set. The performance of β = 0 for L = 8 is not reported
as it is below 20%.

As we can see from Figure 4.7, the increase of the beta value leads to better perfor-
mance for longer walks, with peaks around β= 0.8. However, for a single-hop (L = 2),
the performance follows a marginally ascending trend and ranges from 58% to 63%.
The best beta value for this setting is equal to 0.5, i.e. both 1-step and 2-step repre-
sentations are weighed equally. This serves as an indication that shorter walks, i.e. of
length 1 and 2, contain important information regarding associations between named
entities. Yet, longer walks are more likely to contain noise since many pair represen-
tations are used to form the walk. As a result, we deem that, when representations of
longer walks are weighed less, we can alleviate adding too much noise and simultane-
ously consider a small amount of potentially useful information. In addition, the fact
the L = 4 surpasses L = 2 with β≥ 0.7 indicates that we indeed need information from
longer inference chains, although it is crucial to control their contribution into the pair
representation. This observation confirms our expectation that the shortest walk (or
path) between two named entities contains the most important information for relation
extraction, as proved by Borgwardt and Kriegel (2005); Xu et al. (2015c).

4.5.3 Edge representation enhancements

We also investigate the effect of the initial edge representations in the model for dif-
ferent walk lengths. We perform ablation analysis on the different edge representation
enhancements. In particular, we begin with a baseline edge representation that consists
of the concatenation of two entities using their LSTM representation. We gradually add
bi-directionality, relative position, entity types and contextual embeddings.
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As we can observe from Table 4.12, bi-directionality, positional and semantic en-
tity type embeddings contribute to the improvement of the initial edge representation.
Even when the initial representation is considered weak, i.e. does not contain rich con-
textual information, the walk-based model improves over L = 1 despite the low infor-
mativeness of the representations. In particular, the semantic entity type embeddings
improve the performance for a large margin over all models. This is to be expected,
as the information of the type of a pair’s arguments are a strong inductive bias for the
relation that the two entities share.

Micro F1 (%)

Setting L = 1 L = 2 L = 4 L = 8

Baseline LSTM 50.13 49.16 52.53 50.55
+ Bi-direction 54.61 53.84 56.51 55.42

+ position 56.28 56.46 58.81 57.61
+ entity type 64.16 64.03 65.54 64.04

+ context words 62.86 62.74 65.30 64.63
+ context entities 63.23 62.43 65.04 64.73
+ context words, entities 61.94∗ 63.19 65.10 64.09

Table 4.12: Ablation analysis in the ACE05-D development set for different model
enhancements. ∗ indicates significance at p < 0.05 with the last model.

However, it appears that additional pair-specific context information into the initial
edge representations hurts the performance, mostly for no walks (L = 1) or short walks
(L = 2). We experimented with adding word or entity context separately, which appear
to have a similar effect. The decrease in the performance can be attributed to several
reasons. Firstly, the baseline model has limited expressive power and additional pa-
rameters can lead to overfitting. Secondly, the BiLSTM layer already contains enough
contextual information into the word representations and, consequently, the entity rep-
resentations. Thirdly, we can observe that the performance of L = 4 and L = 8 does not
drop so much with additional context. A possible explanation might be that, for longer
walks, the original edge information fades with time, since we aggregate walks in an
iterative manner. As a result, by adding context, we can enhance the pair representa-
tion for longer walks. Overall, we conclude that, despite our intuition that additional
context might be required to construct unique edge representations for each pair, it
is not indispensable, since both the linear reduction layer in Equation (5.8) and the
walk-based mechanism (Equations (4.8)-(4.9)) produce unique edge representations.

We finally analyse the attention mechanism that we used to construct pair-specific
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context representations. At this point, we should note that there has been intense de-
bate, recently, about whether attention mechanisms are interpretable and if they should
be used to explain decisions made by the models. Recent work has shed some light
on possible reasons that attention weights might be misdealing, or that they can in-
deed provide some useful insights of the model’s behaviour (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019). Here, we do not aim to use the attention weights in order
to assess the correctness or quality of the model’s predictions; rather, we aim to ob-
serve what associations can be captured when using this attention mechanism inside
the model.

In Table 4.13, we present some examples where our best performing model (L = 4)
succeeds or fails to detect the relation between the pair, along with the attention weights
produced for the sentence where the pair belongs.

Pred. Truth Arg1 Arg2 Sentence

PHYS PHYS Rula
Amin

capital

PHYS PHYS firefighters field

ORG-
AFF

ORG-
AFF

analyst our

PHYS NR area Baghdad

PHYS NR He Greece

ORG-
AFF

NR Russian bear

Table 4.13: Attention heatmaps for the L = 4 walk-based model on the ACE05-D
development set. The underlined words correspond to additional named entities in the
sentence.

For the first two examples, the attention mechanism can identify words that are
important for the pair, however, with unexpected weights. The word the receives higher
attention score compared to from or at in each example, respectively. Regarding the
third example, the attention weights look arbitrary with respect to the target pair. For
the next two sentences, it appears that from is weighed very less but other words in
between the pair are weighed more. In the last example, the attention mechanism
assigns different weights to several context words. This seems reasonable as there is
no explicit relevant context word for this particular relation.
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The behaviour of attention in our model, seems not to be generally consistent to
what we would expect. One explanation regards the shared sequence layer among the
pairs of a sentence. For instance, consider example number three from Table 4.13.
There are four named entities in this sentence, hence six pairs. As all pairs are pre-
dicted simultaneously and also use the same input sequence representation, the atten-
tion mechanism also attempts to attend to important words for each pair at the same
time. It can typically succeed when there are few named entities in the sentence, or if
the patterns among pairs match. However, attending (via a single vector) to multiple
words for different pairs simultaneously, might introduce noise to the learned vector.
As a result, higher weights can be assigned to words that are more relevant to entities
not participating in the target pair.

To support the above claims about simultaneous updates, we list some examples
from the incorrectly identified pairs on the SemEval 2010 development set, which
contains only two named entities per sentence with enough context information. The
model almost always finds appropriate contextual words for the pair, as shown in Ta-
ble 4.14. The fact that attention seems to attend to important elements for a given pair
in this dataset and that the final prediction is wrong, clearly indicates a lack of addi-
tion information needed to detect the correct relation. For example, from is a common
pattern for both Entity-Origin and Cause-Effect relations, but the named entities them-
selves indicate that the latter is correct. It is worth noting that the highest weighted
words or entities in all of the examples (Tables 4.13, 4.14) appear in the middle of the
pair. We will further investigate the impact of using different attention mechanisms in
the next chapter.

Pred. Truth Sentence

Entity-
Destination

NR

Instrument-
Agency NR

Entity-
Origin

Cause-
Effect

Table 4.14: Attention heatmaps for the baseline model on the SemEval 2010 develop-
ment set. The words in boxes indicate the target named entity pair.
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4.6 Related Work

Traditionally, relation extraction approaches have incorporated a large variety of hand-
crafted features to represent related entity pairs (Hermann and Blunsom, 2013; Miwa
and Sasaki, 2014; Nguyen and Grishman, 2014; Gormley et al., 2015). Recent models
instead employ neural network architectures and achieve state-of-the-art results with-
out heavy feature engineering.

State-of-the-art systems have proved to achieve good performance on relation ex-
traction using RNNs (Liu et al., 2015; Cai et al., 2016; Xu et al., 2016) and CNNs
(Zeng et al., 2014; Sorokin and Gurevych, 2017). However, most approaches do not
take into account the dependencies between relations in a single sentence (Miwa and
Bansal, 2016; dos Santos et al., 2015b; Nguyen and Grishman, 2015) and treat each
pair separately. Methods that divert from this direction, such as Miwa and Sasaki
(2014); Gupta et al. (2016); Sorokin and Gurevych (2017), treat the relations predic-
tion globally. They consider interactions between entities and relations but not between
relations explicitly. Other models tackle this issue using relation reasoning over en-
tity paths. However, these approaches perform on pre-defined Knowledge Base (KB)
graphs (Neelakantan et al., 2015; Das et al., 2017; Yin et al., 2018), whereas we built
entity-based graphs from sentences without prior knowledge.

Recent graph-based models incorporate Graph CNNs with dependency parsing
(Zhang et al., 2018b) or Graph LSTMs for cross-sentence relation extraction (Peng
et al., 2017; Song et al., 2018). These models, however, encode pairwise information
into the node representations instead of the edge representations between nodes, which
are unique for each pair.

The most relevant work to ours is that of Sorokin and Gurevych (2017). In their
work, they try to take advantage of other pairs that exist in the same sentence with
the target pair. They form the final pair representation as a weighted average of the
representations of the other, namely context pairs, in the sentence. However, the main
difference between the two approaches is that we aim to explicitly utilise the interac-
tions between pairs in order to form chains of associations between named entities.
Instead, previous work mostly measures the similarity of the target pair with the re-
maining pairs in the sentence.
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4.7 Conclusion

In this chapter, we elaborated on our first hypothesis (H1) and described a novel neural
network model that takes advantage of existing named entities in a sentence to support
relation extraction.

Our model constructs an entity-based graph for each sentence, with named entities
placed as nodes and relations between them as edges. Each edge is associated with
an initial representation that is the combination of information from both the named
entities that participate in the relation, as well as the pair’s context. Then, an inference
mechanism combines consecutive edges iteratively in order to create chains of inter-
actions via intermediate entities in the same sentence. These chains of interactions are
formed via walk generation on the entity graph, encoding up-to L-length walks be-
tween the entities of a pair into a single pair representation. This renders our model
edge-oriented, in the sense that it forms and updates unique edge representations in-
stead of nodes, compared to existing graph-based models.

We evaluated our model on four sentence-level datasets, with multiple and single
pairs per sentence. We compared the performance with the state-of-the-art models and
observed comparable or superior performance for the ACE 2004 and 2005 datasets
without the use of any external syntactic tools. We additionally evaluated our model
on a distantly supervised dataset, where we achieved better performance compared
to a model which also utilises co-existing pairs in the same sentence. Finally, we
showcased that our baseline can achieve decent performance on corpora that do not
include multiple entities.

We conducted in-depth analysis of the model by looking into three aspects: (i) the
model classification and, in particular, the directionality of the classified pairs, (ii) the
walk-based mechanism and (iii) the initial edge representations. Our analysis regard-
ing classification revealed that one direction is enough for the particular model, while
two directions tend to cause confusion during learning. Moreover, the walk-based
mechanism can boost the performance in cases of multiple sentential pairs. However,
this improvement is relevant, as sometimes more named entities do not necessarily
require longer walks.

From the analysis on the edge representation enhancements, we concluded that
the semantic entity type embeddings are the most important model parameter, while
the pairwise context embeddings are the least important. The attention mechanism
that we incorporated is not necessary and can actually hurt performance, since the
simultaneous pair prediction cannot be effectively handled via a single vector. It is thus
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possible that another attention mechanism, such as multi-head attention (Vaswani et al.,
2017), can encode more effectively fine-grained contextual information to several pairs
at once.

Finally, the main characteristics of the proposed approach can be summarised into
four factors: (i) the encoding of dependencies between relations with a shared se-
quence encoding layer, (ii) the simultaneous prediction of all pairs residing in a sen-
tence, (iii) the formulation of multiple walks between named entities (i.e. chains of
interactions) as fixed dimensionality vectors, and (iv) the independence from external
syntactic tools.



Chapter 5

Adaptation to the Biomedical Domain

In the previous chapter, we introduced an edge-oriented graph encoding mechanism
using walks on entity graphs, which can take advantage of interactions between mul-
tiple pairs in a sentence. The proposed method was evaluated against generic domain
corpora, from news and encyclopedias. In this chapter, we aim to experiment with the
same sentence-level mechanism addressing our second hypothesis (H2), i.e. to assess
the effectiveness of the approach across domains and evaluate whether similar obser-
vations hold, regarding the model behaviour. We present two test cases, with respect
to the biomedical domain, biomedical literature documents and clinical reports, where
we highlight the corresponding challenges for each test case. This chapter serves both
as an application of the previously proposed method to another domain, as well as a
more detailed description of the general linguistic challenges for relation extraction on
biomedical text, as a more challenging domain.

5.1 Biomedical Relation Extraction

Relation Extraction has attracted particular interest in the biomedical domain as current
state-of-the-art RE methods can easily extend to relations between biomedical entities.
The importance of biomedical RE is reflected on the impact that automatic extraction
methods can have on the domain of medical research. The increase of medical data
over the last years, especially in the form of scientific articles (MedLine), urges the
need for automatic extraction methods of structured information from the literature. A
few examples of such cases are discovery of associations, Personalised Medicine and
Pharmacovigilance.

With regard to the first case, data extracted with automatic methods can provide

124
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assistance to clinical researchers and medical practitioners. For instance, biomedi-
cal interactions of interest (not yet discovered) can be hidden in the vast literature.
Since medical research requires time and resources (lab experiments, clinical trials,
etc), automatically extracting candidate associations between medical and/or molecu-
lar entities from various published articles, can point researchers towards investigating
more focused directions, thus saving time and effort. A field dedicated to discover-
ing associations with extensive application to biomedical literature, is Literature-based
Discovery, introduced in the early 1980s from Don R. Swanson (Swanson, 2008). Re-
lated methods aim to link medical concepts that are discussed and analysed in separate
documents, through other interactions among them, and generate lists of hypotheses of
potential associations (Henry and McInnes, 2017).

Personalised medicine (PM) (Vogenberg et al., 2010) has been a very active re-
search field in the last decade, that targets to form patient-specific treatments based on
the patient’s medical history and current condition. Systems with the ability to cross-
reference conditions, symptoms or treatments of multiple patients or other recorded
cases, can greatly benefit methods developed for stratified medicine. Pharmacovilig-
ilance is correlated with the PM field and, as the name implies, has as principal goal
the identification, assessment and prevention of Adverse Drug Reactions (ADR). Ad-
ditionally, abuse of drugs or misuse of wrong prescriptions, are also areas of interest,
as they can result in ADRs. As different organisms exhibit different reactions to medi-
cation, clustering information about common reactions, or reactions that appear under
certain conditions, can positively impact drug safety. It is worth noting that the above
methods search for extracting information across various types of documents such as
literature, clinical reports, prescriptions, medical records, etc.

5.1.1 Challenges

Early research in the domain has focused on Protein-Protein Interactions (PPI) with
five major datasets (AIMed, BioInfer, HPRD50, IEPA and LLL). However, these cor-
pora are relatively small. Several differences also exist between them, mainly due to
different annotation strategies (Pyysalo et al., 2008). Later on, Drug-Drug Interactions
(DDIs) became particularly important due to the increase of ADRs. Several studies ex-
amine novel ways to identify DDIs and also relate to the discovery of new interactions
between drugs or other substances (Liu et al., 2012; Dewi et al., 2017). Addition-
ally, multiple shared tasks have been proposed over the years for the explicit automatic
identification of ADRs (Jagannatha et al., 2019) or disease-treatment relations (Uzuner
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et al., 2011).

In general, biomedical relation extraction is a much more challenging task not only
compared to the generic RE from news or encyclopedias but also to other biomedical
tasks such as Named Entity Recognition or Sentence Similarity. As recently shown
in Peng et al. (2019) even when incorporating large amounts of external resources
as source of domain-specific information, the performance of RE compared to other
tasks, is still lower. There exist plenty of reasons for this phenomenon that relate to the
nature of entities and relations in this domain.

An initial challenge is corpora annotation for the biomedical domain, which is an
expensive procedure, as domain expertise is required. In all developed bio-related cor-
pora, human annotators have medical training and experience in the field. By contrast,
in the generic domain, typically an educated person can perform an annotation pro-
cess. Furthermore, relations expressed between medical entities can vary, from broad,
e.g. cause-effect, to very specific, e.g. agonist, inhibitor. The difficulty of annota-
tion is reflected in the few semantic types of biomedical entities and semantic relation
categories in existing biomedical corpora. Some of those focus on binary relation ex-
traction, i.e. whether a pair of entities shares or does not share a relation, while in
other different semantic relation categories are annotated; however, they are restricted
between named entities of specific types. Moreover, these annotations tend to be fine-
grained as they usually derive from biomedical ontologies. There is, thus, a tendency
to merge multiple semantic relation types into more broad categories to avoid data
sparsity.

Other challenges emerge with respect to language. The general linguistic chal-
lenges that were described for RE in Chapter 2 are also existent for relations of the
biomedical domain. However, we highlight a few that seem to be more common to this
domain. Firstly, medical entities are individually complex; thus, their interactions sub-
sequently have a particularly complex nature. Such entities can be found in text with
several different names or aliases. For instance, Suxamethonium, is a medication used
to cause short-term paralysis during anesthesia, can be found in text as, Suxametho-

nium, Suxamethonium chloride, Sch, succinylcholine or even 2,2’-[(1,4-dioxobutane-

1,4-diyl)bis(oxy)]bis(N,N,N-trimethylethanaminium), where all refer to the same sub-
stance. The variance of entity surface forms is a frequent phenomenon in biomedical
text, which is what motivates methods to normalise named entities into concepts to
facilitate further tasks (Leaman et al., 2013).
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Another linguistic challenge is hypernymy and hyponymy, where entities are clas-
sified as belonging to specific categories. For instance, Streptococcus Pneumoniae is
under the more general Streptococcus category. This is also found in the general do-
main, but can be a regular case for biomedical text. It can generally cause issues in
RE, if systems detect a relation with an entity belonging to a more general category,
but fail to detect the relation with the more specific entity. In addition, biomedical texts
are highly technical, since they can either describe conducted experiments or particu-
lar treatment schemes that involve multiple rounds of medication, dosages, etc. This
is related to the usage of specific vocabulary, particular verbs or expressions, such as
in vitro, down-regulation, inhibits, and so on. Finally, scientific literature contains a
fair amount of speculations (Kilicoglu and Bergler, 2008). Modality auxiliaries (e.g.
maybe, could), epistemic verbs or adjectives (e.g. seem, probable, possible) can be
used as evidence for the existence or not of a relation, which highly depends on the
annotation scheme followed by the dataset.

Our objective in the following sections is not to study any particular linguistic
phenomenon but, rather, to investigate how interactions between different pairs of
biomedical entities can affect the identification of other pairs in the same sentence,
when multiple pairs co-exist. We particularly experiment with inclusion and exclusion
of interactions between specific entity categories and examine whether they are helpful
(or not) for the identification of other pairs. Additionally, we perform similar analysis
to the previous chapter, in order to prove the effectiveness of our proposed model in
this domain.

5.2 Scientific Articles

Our first goal is to evaluate our previously proposed edge-oriented mechanism on ex-
tracting relations from biomedical scientific articles. MEDLINE (Medical Literature
Analysis and Retrieval System Online)a is the largest database containing free scien-
tific journal articles for biomedical literature covering topics from medicine, nursing,
pharmacy, dentistry, veterinary medicine, health care, molecular evolution and bio-
chemistry, currently containing around 24 million articles. MEDLINE is compiled by
the United States National Library of Medicine (NLM) (DeBakey, 1991) and is easily
accessed through the PubMedb search engine, that primarily stores information about

ahttps://www.nlm.nih.gov/bsd/pmresources.html
bhttps://www.ncbi.nlm.nih.gov/pubmed

https://www.nlm.nih.gov/bsd/pmresources.html
https://www.ncbi.nlm.nih.gov/pubmed
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text abstracts.
A different platform from PubMed, PubMed Central (PMC)c, is a digital repository

that stores more than five million full-text articles related to biomedical and life sci-
ences research, spanning from the late 1700s. While PubMed is a searchable database
of biomedical citations and abstracts, the full-text articles are stored elsewhere. On the
contrary, PMC is a free digital archive of full articles, accessible via a web browserd.
Enhanced metadata are created from the submitted articles to PMC, creating special
document identifiers as well as medical ontologies.

5.2.1 Chemical-Protein Interactions

Over the years, experts have annotated portions of scientific biomedical articles in or-
der to assist research in automatic identification of biomedical named entities and their
interactions. Most existing work revolves around interactions of Chemicals or Genes
and genetics separately, where several ontologies have been developed, such as Drug-
Bank (Wishart et al., 2007), KeGG (Kanehisa and Goto, 2000), PharmGKB (Thorn
et al., 2013), ChEMBL (Gaulton et al., 2011), ChemProt KB (Taboureau et al., 2010),
CTD Mattingly et al. (2006), etc. However, these databases provide general interac-
tions between chemical compounds, genes and diseases, while they are simultaneously
difficult to construct, as they require resources via experimentation or long hours of re-
viewing biomedical literature texts.

Figure 5.1: ChemProt-BioCreative VI dataset relation categories. Faded lines corre-
spond to semantic categories that are not used for evaluation.

One of the largest existing human annotated datasets for biomedical RE is ChemProt.
The dataset focuses on the extraction of chemical-protein/gene interactions from the

chttps://www.ncbi.nlm.nih.gov/pmc/about/intro/
dhttp://wayback.archive-it.org/org-350/20180312141605/https://www.nlm.nih.gov/pubs/factsheets/

dif med pub.html

https://www.ncbi.nlm.nih.gov/pmc/about/intro/
http://wayback.archive-it.org/org-350/20180312141605/https://www.nlm.nih.gov/pubs/factsheets/dif_med_pub.html
http://wayback.archive-it.org/org-350/20180312141605/https://www.nlm.nih.gov/pubs/factsheets/dif_med_pub.html
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literature. The dataset was originally released as part of the BioCreative VI shared task
(Krallinger et al., 2017), as investigation of interactions between these types of entities
was underexplored. The ChemProt challenge organisers used the PubMed abstracts
published between 2005 and 2014 as the challenge data. Named entities and their in-
teractions were annotated by domain experts. The original dataset annotations include
fine-grained types of interactions between chemical-protein pairs. In order to avoid re-
dundant class definitions, the organisers grouped the annotations into 10 semantically
related categories which share some underlying biological properties (Figure 5.1). For
evaluation purposes alone, only 6 semantic categories were considered, including the
no relation (NR) category.

5.2.2 Related Work

Early work on Chemical-Protein interactions started in Open Information Extraction,
where Craven et al. (1999) used Machine Learning methods with weak supervision
for particular semantic relations. Later on, Rindflesch et al. (2000) proposed Edgar,
a natural language processing tool that uses a semantic knowledge base of biomedical
terms to identify potential relations between drugs and genes.

Regarding the ChemProt BioCreative VI corpus, most proposed approaches were
initially developed as part of the challenge. The best performing system was that of
Peng et al. (2018) where the authors proposed an ensemble of CNN, Recurrent NN and
SVM classifiers. Corbett and Boyle (2018) introduced a transfer-learning framework
in combination with domain-specific, highly contextualised word embeddings. Infor-
mation from different domains proved to be effective and impacted the performance.
More recently, Lung et al. (2019) proposed a feature-based model with different types
of lexical and semantic features; achieving, however, lower performance compared
to the neural-based models. Mehryary et al. (2017) proposed two systems: an SVM
classifier with hand-crafted features and an ensemble of LSTM networks that utilise
the shortest dependency path between two target entities. The combination of both
systems yielded competitive performance, which was later improved by using an en-
semble with multiple RNN networks (Mehryary et al., 2018).

Several methods used attention mechanisms to improve relation extraction between
chemicals and proteins. In particular, Liu et al. (2017b) introduced an attention RNN
model and, later on, they improved their method by augmenting the training set (Liu
et al., 2018). However, deviating from previous works, the authors did not mask the tar-
get named entities, i.e. did not replace the names of the chemical or gene/protein with
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a unique identifier. This inevitably resulted in less informative word representations,
as the number of out-of-vocabulary words increased. Following the same direction,
Verga et al. (2018) proposed a Transformer-based network that was able to perform
better than Liu et al. (2017b) without named entity masking. Lim and Kang (2018)
incorporated a special position-feature scheme along with a Tree-LSTM, achieving
similar performance with the best model during the challenge. Recently, Zhang et al.
(2019b) achieved state-of-the-art performance with ELMo (Peters et al., 2018), which
are highly contextualised word embeddings, and through incorporating a multi-head
attention mechanism on top of a BiLSTM network.

5.2.3 Proposed Approach

We aim to apply our previously introduced model (Chapter 4) to the biomedical do-
main for scientific articles. In a similar fashion, the architecture consists of five layers:
an embedding layer, a sentence encoding layer, an edge representation/graph construc-
tion layer, an inference layer and, lastly, a classification layer. The main differences
with our previous model are featured only in the edge representation layer and the
classification layer, as we describe below.

Edge Representation Layer

In our previous chapter, we discovered that the attention mechanism that we used in
order to represent the context of a target named entity pair did not perform as expected.
We attributed this behaviour to the simultaneous updates of the attention parameters for
multiple pairs in the same sentence, that disabled learning of informative patterns for
each pair separately. In order to further investigate this for the biomedical domain, we
additionally experiment with a different attention mechanism, motivated by Vaswani
et al. (2017). The proposed mechanism is independent of any learning parameters
and is pair dependent, hence we expect to resolve the problem of identifying relation
patterns for all pairs in the sentence simultaneously. In essence, this attention mecha-
nism aims to measure the importance of an entity towards other words in the sentence.
We adapt this into an argument-based framework, similar to Wang et al. (2016), by
measuring the importance of each context word or entity to each pair argument.

The representation of a target named entity ei is similar to the one in our previous
architecture, with a small difference; the representation is constructed as the concate-
nation of the BiLSTM word representation xei , the representation of its semantic type
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tei and the relative positions to each target entity pei,ei and pei,e j ,

vei = [xei; tei;pei,ei;pei,e j ], (5.1)

ve j = [xe j ; te j ;pe j,ei;pe j,e j ] (5.2)

Here, we add the relative position to the target entity itself (something we avoided
before), which is always zero, in order to have the same dimensionalities for the argu-
ment representation and the pair context representation. The purpose of this choice is
to facilitate the computation of attention as described below.

The context of a given pair again consists of the remaining words, that are not part
of any entity name, and named entities in the sentence, which are not part of either of
the target named entities. This can be seen as a fourth-order tensor C where the rows
correspond to the first argument, the columns correspond to the second argument and
the depth corresponds to the words and named entities that belong to the context.

Cei,e j =

 xez; tez;pez,ei;pez,e j

. . .

xwz; twz;pwz,ei;pwz,e j

 (5.3)

The scale-dot attention creates two attention distributions, one for each target entity,
that contain weights corresponding to the significance of each context word or entity
towards the target argument. As a result, two context representations are formed as
the weighted average of the words in the context. The two representations are then
concatenated to form the final context representation for the target pair.

The application of the scale-dot attention mechanism (Vaswani et al., 2017), is as
follows, with k ∈ {ei,e j},

ak,i =
v>k zi√

d
, vk,zi ∈ Rd (5.4)

αk = softmax
i

(ak), (5.5)

ck = Cei,e j α
>
k , (5.6)

cei,e j = [cei;ce j ], (5.7)

where vk is the vector representation of argument k, zi is the vector representation of
a context word or entity, αk corresponds to the attention weight vector for argument k

across all context words and entities, and cei,e j ∈R2d is the final context representation
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for the target pair, as the concatenation of the context representations of each argument.

Since the described attention mechanism does not depend on learned parameters,
but rather measures some similarity between the target entity and the words/entities of
the context, we expect it to highlight important words for each of the arguments that
could further enhance the edge representations. Dimensionality reduction is performed
on the resulted representation, before feeding it to the walk-based layer,

v(1)ei,e j = Ws [vei;ve j ;cei,e j ] ∈ Rdo , (5.8)

where Ws ∈ Rdo×4d with do < d and do is the dimensionality after reduction.

Classification Layer

According to the task annotation guidelines, the ChemProt relations were directed, i.e.
only relations from a chemical to a gene/protein were annotated, and not vice versa.
Hence, we choose to classify only Chemical-Protein candidates for this particular task,
using a softmax classifier. We treat this task as a multi-class problem, since each pair
can be assigned a particular semantic relation category.

5.2.4 Experimental Settings

We apply our previously introduced edge-oriented model on the ChemProt dataset.
The dataset was pre-processed with the GENIA sentence splitter and tagger for sen-
tence splitting and tokenisation, respectively. In case a named entity had two semantic
entity types at the same time (e.g. both Chemical and Gene/Protein), we kept them as
two separate instances. We removed duplicate pairs, as well as pairs that had conflicted
types with other pairs (e.g. Relation A and Relation B at the same time), since their
occurrences were minor. The overall statistics of the dataset after pre-processing can
be found in Table 5.1.

We tuned our proposed model on the development set using randomly initialised
word embeddings, without additional context information into the edge representa-
tions. We used the RoBo toolkit (Klein et al., 2017) to select the best hyper-parameters.
Readers can refer to Appendix A.2 for detailed information regarding the hyper-parameter
values for this dataset. We then further experimented using other types of pre-trained
word embeddings and incorporated additional context into the edge representations. In
all experiments, we only used the training set to train the model.
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Train Dev. Test

Sentences 3,771 2,203 3,074
Pairs 4,147 2,412 3,444

CPR-3 768 550 665
CPR-4 2,251 1,092 1,661
CPR-5 173 116 194
CPR-6 235 197 281
CPR-9 720 457 643

Negative pairs (%) 77.03 78.66 78
Entities 16,069 9,561 13,372

Chemical 7,891 4,717 6,741
Protein 8,178 4,844 6,631

Average sentence length 34.42 34.55 34.48
Average entities/sentence 4.26 4.34 4.35

Duplicate pairs 15 11 11
Conflicting pairs 10 4 14

Table 5.1: Statistics of the ChemProt BioCreative VI dataset.

In comparison with previous work, most existing approaches propose to mask the
target named entities by replacing their entire span with a unique identifier (Peng et al.,
2018; Corbett and Boyle, 2018; Lim and Kang, 2018). The motivation behind this tech-
nique is to reduce the number of unknown words in the pre-trained word embeddings
in order to enhance the generalisability of the model. However, these models consider
a single named entity pair per sentence. Since our model considers multiple named
entities in a sentence at the same time, we cannot apply the masking criterion, as con-
flicts arise in cases where named entities share some words. We additionally want to
enable the model to learn from the multiple surface forms of entities.

For this reason, we primarily compare with existing approaches that do not perform
entity masking, such as Liu et al. (2017a) and Verga et al. (2018). We also compare
with a few of the current state-of-the-art approaches on this dataset, despite the fact that
they incorporate domain-dependent tools, additional data or named entity masking.

5.2.5 Results and Analysis

We first find the best setting for our model by experimenting with different types of
context construction and walk-lengths on the development set. Randomly initialised
word embeddings were used for this comparison. In more detail, we experiment with
models that do not contain any additional context information into the edge represen-
tations, namely the NoCntx setting. We then further experiment with our previously
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proposed attention mechanism, namely Vector, as introduced in Chapter 4, Equation
(4.6). Finally, we test the proposed Scale-Dot attention as described in Equations (5.4)-
(5.7). From all these settings, only the Vector attention mechanism requires a vector to
be learned. The parameters are tuned for each of these settings.

Model
Micro F1 (%)

NoCntx Vector Scale-Dot

L = 1 52.77 52.18 52.17
L = 2 54.81∗ 53.72 54.31∗

L = 4 52.83 53.36 54.74∗�

L = 8 53.90 54.16∗ 55.68∗�

Table 5.2: Performance comparison between different walk lengths and context con-
struction techniques on the ChemProt development set. ∗ and � indicate significance
at p < 0.05 in comparison with L = 1 and NoCntx, respectively.

As we can observe in Table 5.2, the baseline model (L = 1) performs lower than
the walk-based model for all context construction mechanisms. It is not always sig-
nificantly lower, however. Significantly higher performance is observed for all walk
lengths when using the scale-dot attention mechanism. In general, the scale-dot atten-
tion performs better for longer walks (L = 4, L = 8), while the NoCntx setting is better
for shorter walks (L = 2). A comparison of the context construction mechanisms for
each walk length, shows that only the scale-dot attention yields better results than no
context at all. This is aligned with our observation in the general domain, where the
vector attention mechanism performed similarly to the setting without context. We
speculate that additional context information in the edge representations is not always
necessary. However, it can be beneficial for longer walks, depending on the method
that we use to construct the edge. Overall, we believe that, ideally, a perfect initial
representation for each pair (edge) will further help the walk-based layer. By further
comparing the vector and the scale-dot mechanisms, they are significantly different
only for L = 8.

We additionally illustrate in Table 5.3, heatmaps of attention weights examples
for the vector and scale-dot attention mechanisms. We follow the same intuition as
in the previous chapter, that attention can provide some insights on what information
the network weighs more. We do not judge the performance of the model or its final
decisions for each pair exclusively based on these weights. In fact, for all the examples
described below, the model produces correct predictions. In the example sentence
of the first block, we can see that the vector attention weighs words that are not so
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Attention Arg1 Arg2 Sentence

Vector Caffeine kinase

Scale-Dot
(Arg1) Caffeine kinase

Scale-Dot
(Arg2) Caffeine kinase

Vector Caffeine ATM

Scale-Dot
(Arg1) Caffeine ATM

Scale-Dot
(Arg2) Caffeine ATM

Vector Cd ERalpha

Scale-Dot
(Arg1) Cd ERalpha

Scale-Dot
(Arg2) Cd ERalpha

Table 5.3: Attention heatmaps for the L = 8 model on the ChemProt development set.

important for the pair, e.g. checkpoint, while we would expect inhibits. The scale-
dot attention on the other hand, gives higher weight to the verb inhibits and ATM

that, indeed, determine the relation. It is interesting to note that, in the second block
where the second argument is ATM, scale-dot identifies the word kinase as the most
important, as expected. The vector attention correctly highlights inhibits, but misses
kinase. In the final block, the vector attention can identify the important word with
a very high score, whereas scale-dot gives higher weights to other entities such as
ERbeta. We can conclude weighing certain words more, cannot necessarily determine
if the context representation is informative or not. The main difference between the
two mechanisms is that scale-dot tends to pay attention to the words close to each
argument which, indeed, are relation-indicative words for the most part, while vector
observes the words globally. The latter is something that might not always capture
what ideally we expect it to. It is worth noting that the assigned weights highly depend
on the position embeddings of the context words to the target pair, which might also
explain the tendency to pay attention to words with a minimum distance from each
argument.
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We compare our best performing model (L= 8) with the current state-of-the-art ap-
proaches on the ChemProt BioCreative VI test set by additionally experimenting with
other types of pre-trained word embeddings. We distinguish between approaches that
make use of additional training data and apply named entity masking. Our proposed

Model Embed. Data/Tools Mask P (%) R (%) F1 (%)

CNN (Liu et al., 2017b) Glove 5 5 47.7 43.7 45.6
Att-GRU Glove 5 5 48.4 49.1 48.8
Transformer (Verga et al., 2018) Random 5 5 48.0 54.1 50.8
Hybrid (Peng et al., 2018) PubMed+Glove 3 3 72.6 57.3 64.1
LSTM (Corbett and Boyle, 2018) Glove 3 3 56.1 67.8 61.4
SPINN (Lim and Kang, 2018) PubMed+PMC 3 3 61.5 58.9 60.2

Walks L = 8
Random 5 5 63.6 43.8 51.9
Glove 5 5 64.6 44.4 52.6
PubMed+PMC 5 5 65.1 38.5 48.3

Walks L = 8 (freeze)
Random 5 5 56.6 44.5 49.8
Glove 5 5 58.3 47.8 52.5
PubMed+PMC 5 5 62.9 50.1 55.8

Table 5.4: Performance comparison with the state-of-the-art on the ChemProt BioCre-
ative VI test set in terms of micro-averaged precision (P), recall (R) and F1-score. The
field mask indicates masking of named entities with unique identifiers.

model performs better than the models that do not incorporate such information. It
is also important to note that our system has fairly low recall compared to precision
while, in other models, the opposite case is observed. Our recall is similar to that of
Liu et al. (2017b), who does not report training of the decision threshold for accepting
a pair as related. In fact, Verga et al. (2018) trained the decision threshold for each
relation category, which can improve recall. They additionally trained the model by
using the same number of positive and negative instances in each batch. Since, how-
ever, the dataset is originally imbalanced, this procedure will lead to either repetition
of positive instances, or ignorance of negative instances. As a result, the comparison
is relatively unfair based on the fact that the model might see more instances of a cer-
tain relation, thus learn it better. Lastly, the introduction of named entity masking and
pre-trained word embeddings can further lead to improvement in recall as the number
of out-of-vocabulary words decreases.

Experimentation with different pre-trained word embeddings is performed by both
updating the embedding layer or freezing it, i.e. disabling updates of the word em-
beddings during training. As we can observe from Table 5.4, updating is required
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for randomly initialised word embeddings. On the other hand, when using domain-
specific word embeddings (PubMed+PMC), it appears that performance worsens. We
attribute this behaviour to the fact that the embeddings are already trained on domain
specific corpora and further tuning possibly distorts their representations. However,
this is not the case when using general-domain embeddings, such as Glove. Freezing
the embedding layer improved recall but instead sacrificed precision. An overall con-
clusion from these comparisons is that domain-knowledge is required to achieve good
performance in the biomedical domain. For the following analysis, we keep the setting
with randomly initialised word embeddings as the model hyper-parameters were tuned
for this setting.

Based on the confusion matrix of Table 5.5, the model tends to predict most pairs
as not sharing a relation, as is expected due to the class imbalance. Additionally, it

true / pred CPR:3 CPR:4 CPR:5 CPR:6 CPR:9 NR
CPR:3 189 80 3 1 1 391
CPR:4 31 956 2 0 11 661
CPR:5 1 12 75 6 0 100
CPR:6 0 9 6 140 0 126
CPR:9 4 26 0 0 225 463
NR 118 403 27 34 86

Table 5.5: Confusion matrix for the L = 8 model on the ChemProt test set.

appears that CPR:3 and CPR:4 are often confused (this is something also observed by
prior work (Liu et al., 2018; Corbett and Boyle, 2018)), while CPR:9 is some times
miss-classified as CPR:4. We qualitatively report some of these cases in Table 5.6 to
provide some inside regarding these errors.

Firstly, we observe that confusion between the two classes is mostly because of
the presence of negative words (e.g. suppressed) along with positive ones, related to
different pairs. In the first example, icilin activates TPRM8 so the up-regulator (CPR:3)
class is correct. However, the presence of suppressed which relates to low pH and has
a negative meaning is associated with the down-regulator class (CPR:4), producing a
wrong prediction. Additionally, negation is not handled properly by the model in the
last example, which again causes miss-classification. The next two examples refer to
a case of mishandling negation, either explicitly with neither, nor or implicitly using
the verb blocked. In the last example, it appears that the model does not recognise
that the word substrates expresses a product-of relation. It is worth noting that, when
incorporating domain-specific embeddings, this error is averted, as domain-knowledge
encodes the necessary meaning to these words.
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Error Pred. Truth Sentence

Context
misconcep-
tion

CPR:4 CPR:3
In contrast , menthol - and icilin - activated TRPM8 cur-
rents were suppressed by low pH .

Negation CPR:4 CPR:3
Neither ryanodine nor EGTA inhibited down - regulation
of alpha - AR mRNA by NE .

Negation CPR:3 CPR:4
Further , AICAR pretreatment blocked PAR - 1 - induced
increase in permeability of mouse - lung microvessels .

Missing se-
mantics

CPR:4 CPR:9
Amezinium and debrisoquine are substrates of uptake1
and potent inhibitors of monoamine oxidase in perfused
lungs of rats .

Table 5.6: Examples of wrong predictions by the proposed model on the ChemProt
development set. The named entities in bold indicate the target pair arguments. Words
in italics indicate additional entities in the sentence.

Category
F1 (%)

L = 1 L = 2 L = 4 L = 8 Transformer

CPR:3 34.79 41.10 38.61 41.54 36.91
CPR:4 64.39 66.24 65.51 65.98 60.27
CPR:5 41.57 35.67 42.05 38.42 42.51
CPR:6 59.41 60.87 64.55 64.69 60.05
CPR:9 36.06 34.39 36.36 39.23 47.17

Micro 52.77 54.81 54.74 55.68 52.81
Macro 48.76 49.88 51.22 51.30 50.08

Table 5.7: Category-wise performance on the ChemProt development set.

Analysis on the performance for each relation category reveals that different walk
lengths work better for different relation categories, similarly to the general domain.
Moreover, the walk-based mechanism should be adapted for each pair or potential
relation category. We compare with the transformer-based model proposed by Verga
et al. (2018) using their best pre-trained model. The walk-based model outperforms
CPR:3, CPR:4 (most frequent class) and CPR:6 relation categories. However, the
Transformer is better for the remaining two categories.

We then repeat our entity-based analysis by measuring the performance as a func-
tion of the number of named entities in the sentence, as illustrated in Figure 5.2. Once
again, we observe that the walk-based mechanism outperforms both Transformer and
the baseline for single pairs per sentence. Larger improvement is observed for 3 or 4-5
entities while, for more than 10 entities, the Transformer performs slightly better.
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Figure 5.2: Performance on the ChemProt BioCreative VI development set as a func-
tion of the number of entities per sentence.

Since there are not many annotated entities of different semantic types in the biomed-
ical domain, we can experiment with the contribution of different interactions in the
sentence. In particular, we choose to ignore specific combinations of named entities
in our walk-based mechanism. The possible combinations of named entities are re-

... inhibition of platelet cyclooxygenase-1 and monocyte cyclooxygenase-2 by meloxicam in healthy subjects .

ChemicalProteinProtein

CPR:4
CPR:4

Figure 5.3: Example of ChemProt relations.

stricted to Chemical-Protein, Chemical-Chemical and Protein-Protein. We remove
Chemical-Chemical and Protein-Protein connections from our fully connected graph.
This results in disabling inference through these links. For instance, as shown in Figure
5.3, in order to generate a Chemical-Protein interaction via an intermediate Protein, we
need to enable CP and PP interactions. If we disable PP interactions and there is no
other Chemical entity in the sentence, we cannot represent the pair via multi-hops. We
observe that, for all walk lengths, the removal of additional interactions significantly
reduces performance. In some cases, the removal of particular interactions might re-
sult in improvements, such as L = 2. It is also notable that different relation categories
are influenced by these changes if one observes the macro-F1 score. We can conclude
from both the micro and macro-averaged scores that additional interactions between



140 CHAPTER 5. ADAPTATION TO THE BIOMEDICAL DOMAIN

Interactions
Micro F1 (%) Macro F1 (%)

L = 2 L = 4 L = 8 L = 2 L = 4 L = 8

ALL 54.81 54.74 55.68 49.88 51.22 51.30
− CC 55.70 53.57 53.12∗ 49.25 48.78 49.53
− PP 53.27∗ 53.78 54.36∗ 50.27 48.86 50.52
− CC, PP 51.83∗ 52.52∗ 53.29∗ 47.51 47.55 49.25

Table 5.8: Ablation analysis for different types of interactions on the ChemProt
BioCreative VI development set. CC, PP correspond to Chemical-Protein, Chemical-
Chemical and Protein-Protein interactions. ∗ indicates significance at p < 0.05 with
the ALL setting.

named entities in a sentence are beneficial for the detection of other pairs by providing
additional context. Our model is able to take advantage of these interactions in an ef-
fective manner, although further improvements can be applied to specialise multi-hops
for each pair and/or relation category.

5.3 Electronic Health Records

We now move on to investigate RE in another type of biomedical text. The current
largest database storing Electronic Health Records (EHRs) is MIMIC-III (Medical In-
formation Mart for Intensive Care) (Johnson et al., 2016). It is a freely available col-
lection of de-identified health-related data that are associated with more than 40,000
patients who stayed in critical care units in the Beth Israel Deaconess Medical Center
between 2001 and 2012. The database includes information such as demographics,
vital sign measurements made at the bedside (approximately 1 data point per hour),
laboratory test results, procedures, medications, caregiver notes, imaging reports, and
mortality (both in and out of hospital). The language of EHRs is typically less for-
mal compared to that of scientific literature. The records contain prescriptions or other
types of information which, most of the time, are not present in full context. As a re-
sult, relation extraction methods require methods that can infer interactions with lim-
ited context. We evaluate our model on data from such a source.

5.3.1 Drug-Medication and ADE Interactions

The interactions between drugs and medication-related entities are crucial to avoid
harmful consequences of pharmaceuticals. In particular, adverse drug events (ADEs)
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reflect how much certain drugs can affect patients by causing undesirable side effects
(Bates et al., 1995). ADEs are different from ADRs in that they refer to general adverse
events that occur in various dosages, not only for normal doses to a man.

Clinical narratives and electronic health records constitute a rich source for ADE
evidence. Hence, careful examination of clinical narratives can provide helpful infor-
mation for pharmacovigilance. However, the large amount of EHRs, as well as their
informal and unstructured nature, makes the mining of interesting interactions related
to ADEs a challenging task for clinicians. To tackle this issue, NLP techniques have
been widely applied on EHRs to automatically extract ADE-related information using
RE methods.

We evaluated our Relation Extraction system on EHRs through participation to
the 2018 n2c2 shared task on Challenges in Natural Language Processing for Clin-
ical Datae. The challenge aimed to extract and classify drug-related interactions in
EHRs. In particular, given an EHR with annotated drug and medication entities, the
task requires the identification of potential interactions between them and their corre-
sponding relation types. Based on the annotation scheme, the relation type between
two entities can be formed as a combination of their semantic types. For instance, the
relation between a Drug and a Dosage is named as a Drug-Dosage relation. Hence,
we treat this task as a binary classification problem and simply classify an entity pair
as related or not related. During the challenge, we proposed models that detect both
inside sentence (intra-) and across sentence (inter-) relations and experimented with
their ensembles, using gold or predicted named entities. As this was a collaborative
work, this dissertation will refer to only a part of the study that regards the application
of our edge-oriented, walk-based model (Christopoulou et al., 2018) to the task, for
intra-sentence relations detection. More information about the entire system can be
found in Christopoulou et al. (2020).

5.3.2 Related Work

Due to the lack of publicly available data, initial approaches identified potential ADEs
using co-occurrence statistics and feature-based methods while evaluating on drugs
with known adverse effects (Wang et al., 2009). Later, Kang et al. (2014) built a knowl-
edge base utilising information from the Unified Medical Language System (UMLS).
Drugs and ADEs were determined based on a concept matching module. The shortest

ehttps://n2c2.dbmi.hms.harvard.edu/track2

https://n2c2.dbmi.hms.harvard.edu/track2
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path between two concepts in the knowledge base was used to identify potential re-
lations. Following feature-based techniques, graph topological and linguistic features
were also explored to automatically detect drugs and their ADEs in unstructured text
(Dasgupta et al., 2017).

Over the years, several researchers worked on creating additional annotated data
with medication-drug interactions. The 2010 Informatics for Integrating Biology and
the Bedside/Veteran Affairs challenge on concepts, assertions, and relations in clinical
text (Uzuner et al., 2011) focused on RE among medical problem, treatment and test
pairs. The best performing systems in the challenge (Roberts et al., 2010; de Bruijn
et al., 2010) used dictionaries and feature-based methods, while a CNN model was
proposed to achieve competitive performance a few years later (Sahu et al., 2016).

A systematically annotated corpus was generated in Gurulingappa et al. (2012b)
for extraction of Drug-Dosage and Drug-ADEs relationships from medical case re-
ports. Based on this corpus, an end-to-end system including CNN and BiLSTM net-
works was proposed on the shortest dependency path of an entity pair (Li et al., 2018a).
The method was extended by replacing the shortest dependency path with an attention
mechanism (Ramamoorthy and Murugan, 2018), achieving higher performance. ADE
relation extraction was treated as a multi-label, sequence-to-sequence problem using
BiLSTMs in Bekoulis et al. (2018b). Performance was further improved with adversar-
ial training (Bekoulis et al., 2018a). Finally, Zhao et al. (2018) treated ADEs relations
as event structures by proposing a two-step event extraction process, including CNNs
and a beam search algorithm.

The Text Analysis Conference (TAC) Adverse Reaction Extraction from Drug La-
bels Track 2 (Roberts et al., 2017) asked participants to identify relations between
adverse reactions and other named entities. The highest performing system in the chal-
lenge proposed a cascaded sequence labelling approach of BiLSTM conditional ran-
dom fields (BLSTM-CRF) networks for end-to-end NER-RE (Xu et al., 2017) while
the second ranking system used BiLSTM-attention (Dandala et al., 2017). A richer
ADE-related corpus was developed by Munkhdalai et al. (2018) extending to 8 named
entities and 7 relation types. They compared different models including support vector
machine (SVM), LSTM and BiLSTM-attention. In the recent MADE (Medication,
indication and Adverse Drug Events) 1.0 Challenge (Jagannatha et al., 2019), partici-
pants had to identify relations between medication and ADEs, indications, other signs
and symptoms. Once again, BiLSTM-attention networks achieved state-of-the-art per-
formance (Dandala et al., 2018; Li et al., 2017).
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5.3.3 Motivation

In the previous section, we incorporated Chemical-Chemical and Protein-Protein inter-
actions to enhance detection of Chemical-Protein associations. In general, interactions
between particular types of entities might be unusual. For instance, in this particu-
lar task, we aim to identify interactions between Drugs and other, medication-related
entities, such as Frequency, Dosage, Strength, Form. An interaction between a Form

and a Frequency is not very common. On the contrary, interactions between Drugs are
very frequent in biomedical text (Segura-Bedmar et al., 2013) and it has been proven
that they can potentially affect the associations between drugs and ADEs (Liu et al.,
2017a).

Drug-DrugADE-Drug

ADE-Drug

	...	hypotension	when	attempting	to	wean	down	the	dopamine	that	required	atropine

DrugDrugADE

Figure 5.4: Example sentence from the n2c2 dataset with additional Drug-Drug inter-
actions.

In the example of Figure 5.4, the direct association between hypotension and at-

ropine is not evident when first reading the sentence. However, if we use the ADE-
Drug relation hypotension-dopamine and the additional Drug-Drug interaction dopamine-

atropine, the target relation hypotension-atropine becomes clear. In order to enable
DDIs to influence other relations, but at the same time restrict the interactions between
all entities in a sentence, we restrict the generated pairs to include at least one drug.
Although DDIs are not annotated in the n2c2 dataset, we use them as an intermediate
step to infer non–Drug-Drug relations, as in the previous task. Essentially, we infer the
association between a pair using a series of interactions between entities in a sentence,
including DDIs, as in the example of Figure 5.4.

5.3.4 Proposed Approach

To extract relations from EHRs, we modified the input of our model according to some
observations on the dataset. Again, a major difference with existing models (Yi et al.,
2017; Björne and Salakoski, 2018) is that our approach considers multiple pairs in the
same sentence simultaneously.
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In the first layer (i.e., the embedding layer), we map words, semantic entity types
and relative positions to real-valued vectors. We follow the same approach as Zeng
et al. (2014) to represent the relative position of a word to the pair of interest, which
we define as the target pair. We observe that, in EHRs, several patterns express rela-
tions between entities without any supportive context words. For instance, the sentence
“itraconazoleDrug 100mgStrength qdFrequency” is a typical example of a medical prescrip-
tion, where no context words are present. Typically, the relations between itraconazole

and attributes 100mg and qd are inferred by humans even without explicit textual ev-
idence. As sequences of Drug–N number of non-Drug entities seem important, we
combine word and entity-type information as the input representation of the network,
as shown in Figure 5.5. This differs from the input of the model described in Chap-
ter 4. In preliminary experiments, we experimented with adding semantic entity type
information both before and after the encoder, with the former leading to better per-
formance. The resulting representation is then passed into a BiLSTM layer to encode
sentential-context information into the word representations.

Drug-DrugADE-Drug

ADE-Drug

	...	hypotension	when	attempting	to	wean	down	the	dopamine	that	required	atropine

BiLSTM

Edge
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DrugDrugADE
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Figure 5.5: Proposed network architecture.
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To enable interactions between pairs, we map a sentence into a directed graph struc-
ture, where entities constitute the nodes and edges correspond to the representation of
the relation between two nodes. Figure 5.5 illustrates the proposed model, consisting of
five layers. The initial edge representations of the entity graph (length L = 1) are equal
to the entity pair representations. We combine the representations of the embedding
layer and the output of the BiLSTM layer into a weighted average (highway layer (Sri-
vastava et al., 2015)), which results in context-aware word representations. Again, this
is a modification compared to the previous model (Chapter 4), which we found to per-
form slightly better for this task. We represent an entity by averaging its corresponding
word representations. The new representations are augmented with relative position
embeddings to the target entities and fed into an attention mechanism that produces
entity context representation, based on the importance of the sentence words towards
this entity. We employ the two-step walk-based algorithm, as described in Chapter 4.
The main difference with the work on the general domain and the Chemical-Protein
interactions is that we restrict the graph connections (partially connected graph) and
the subsequent constructed walks between nodes. In order to form a connection, at
least one of the nodes should correspond to a Drug. The final output of the walk-based
layer is fed into a binary classifier to predict relation or no relation for each pair.

To summarise, the current model differs from our original model in the following
aspects: (i) The input layer is the concatenation of words and semantic entity types,
instead of only words, (ii) the output of the BiLSTM layer is concatenated with the
word embeddings layer, instead of using only the output of the BiLSTM and (iii) a
scale-dot attention is used instead of the vector attention.

5.3.5 Experimental Settings

The organisers provided 303 discharge summaries extracted from MIMIC-III (Johnson
et al., 2016), annotated with Drugs, ADEs and other medication-related entities as well
as their interactions. We randomly split the documents into training and development
sets (80% and 20%, respectively), while duplicate relations were ignored, as shown in
Table 5.9. We used LingPipe for sentence splitting and OSCAR4 for word tokenisation
Jessop et al. (2011). We further split a sentence if it contained any of the following
strings: “\n \n”, “:\n”, or “]\n”. If a token contained any of the following special
characters “@, ?, %, ), (“, we also broke it into fine-grained tokens. We additionally
replaced terms that match the de-identified patient data such as “doctor X” or “patient
X” with a static string of DEIDTERM, to reduce noise in the corpus.
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Training Development

Total Sentences 44,475 11,520
Sentences with > 1 entity 7,125 1,907
Sentences with 1 entity 1,835 401
Sentences w/o entities 35,515 9,212
Sentences with 1 pair 1,672 409

Inter Intra Inter Intra

# positive relations 1,994 26,591 570 7,119
Strength-Drug 36 5,276 13 1,373
Dosage-Drug 107 3,192 33 888
Duration-Drug 29 489 4 120
Frequency-Drug 158 4,828 53 1,259
Form-Drug 123 5,060 74 1,358
Route-Drug 107 4,220 35 1,173
Reason-Drug 1,239 2,830 307 783
ADE-Drug 195 696 51 165
Negative relations (%) 97.5 59.9 97.2 56.3

Duplicate relations 19 9
Average sentence length 21.36 21.32
Average entities/sentence 5.39 5.4

Table 5.9: Statistics for the n2c2 dataset for intra- and inter-sentence relations for the
training and development sets.

We experimented with the following settings: (a) different walk lengths, (b) type
of pre-trained word embeddings and (c) randomly removing non-related pairs in the
training set, which we define as negative instance filtering (NIF). Significance test-
ing was performed using the Approximate Randomisation significance test (Noreen,
1989). While training, negative filtering was used to counterbalance the bias towards
the negative relation class. However, it is worth noting that this dataset contains only
60% of inter-sentence negative relations, which is significantly lower than ChemProt
and the ACE corpora for the generic domain.

5.3.6 Results and Analysis

We first experimented with different walk lengths, attention mechanisms and pre-
trained word embeddings. The results of various combinations are visible in Table
5.10. It appears that domain-specific word embeddings (PubMed) have generally lower
performance than Randomly initialised word embeddings. These domain-specific em-
beddings were trained on scientific articles, which might indicate why they do not offer
much in terms of performance for this corpus. Additionally, similar to our results from
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the scientific articles, the scale-dot attention appears to perform slightly better com-
pared to the vector attention, hence we chose it for our experiments. Finally, walks
of length L = 8 give the best performance for randomly initialised word embeddings,
while negative instance filtering further improves the recall of the system. This can be
attributed to the fact that the n2c2 corpus contains 5 to 6 named entities per sentence,
on average (Table 5.9), thus longer walks are needed to encode all interactions.

Model
PubMed Random

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

V
ec

to
r L = 2 97.15 89.90 93.39 96.56 88.79 92.51

L = 4 97.46 90.27 93.73 97.76 89.90 93.67
L = 8 97.51 90.29 93.76 97.81 90.51 94.02
+ NIF 97.11 91.05 93.98 97.37 90.88 94.01

Sc
al

e-
do

t L = 2 97.53 90.33 93.80 97.67 90.29 93.84
L = 4 98.00 90.51 94.11 98.03 90.40 94.06
L = 8 97.87 89.94 93.74 98.04 90.66 94.20
+ NIF 97.13 91.05 93.99 97.34 91.15 94.14

Table 5.10: Performance of the Walk-based model on the n2c2 development set in
terms of micro-averaged F1-score for different walk lengths, attention mechanisms
(Vector, Scaled-dot) and pre-trained word embeddings. PubMed and Random indicate
the usage of pre-trained word embeddings and randomly initialised word embeddings,
respectively. NIF indicates the addition of Negative Instance Filtering.

Choosing our best setting, we compare our model with the other models that we
proposed during the challenge. These are a Weighted-LSTM model that combines
information from different layers into the pair representation, and a Transformer-based
model, applied on single sentences. Table 5.11 reports the performance on both the
development and test sets of the n2c2 dataset. As we can observe, the Walk-based
model performs better than the Weighted model on the development set, but has similar
performance on the test set. Despite this difference, our model has less parameters than
the Weighted model, which stacks 2-BiLSTMs, as our walk-based layer consists of a
single learned matrix. NIF improves the performance of the model in terms of F1-
score on the test set. In general, performance of all models on this dataset is very high
compared to previously evaluated datasets, due to the very high coverage in relations
in each sentence.

We then investigate the contribution of the additional Drug-Drug Interactions that
we allowed in the Walk-based model. For this purpose, we retrain the model with-
out DDIs by only considering interactions between non–Drug and Drug pairs when
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Model
Dev. Set Test Set

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Weighted, 1×BiLSTM 97.02 89.85 93.30 96.32 89.13 92.58
Weighted, 2×BiLSTM 97.19 90.57 93.76 96.88 90.04 93.34
Transformer 95.49 90.46 92.91 95.79 90.11 92.86

Walks L = 2 97.67 90.29 93.84 - - -
Walks L = 4 98.03 90.40 94.06∗ - - -
Walks L = 8 98.04 90.66 94.20∗ 97.45 89.46 93.28
+ Negative Filtering 97.34 91.15 94.14 96.72 90.16 93.33

Table 5.11: Performance comparison of the walk-based model with other models on
the n2c2 development and test sets in terms of micro-averaged precision (P), recall (R)
and F1-score (F1). ∗ indicates statistical significance at p < 0.05 in comparison with
the Weighted model.

forming walks. In this setting, the ADE-Drug pair hypotension-atropine of Figure 5.4,
cannot incorporate walks of L = 2 in its representation, as valid entity paths between
the corresponding target entities cannot be formed. In essence, by removing DDIs, we
restrict the valid multi-hops between two entities.

As noted in Table 5.12, the Walk-based model performs significantly lower with-
out DDIs. Additionally, significance testing designated that different walk lengths
perform similarly when excluding DDIs. A closer observation of the performance on

Category
− DDIs (%) + DDIs (%)

P R F1 P R F1

Strength-Drug 99.20 98.20 98.69 99.34 98.20 98.77
Dosage-Drug 97.65 94.58 96.09 98.53 94.58 96.52
Duration-Drug 98.32 94.35 96.30 97.52 95.16 96.33
Frequency-Drug 97.72 94.74 96.21 99.44 95.13 97.24
Form-Drug 98.55 94.30 96.38 99.05 94.23 96.58
Route-Drug 98.22 96.03 97.11 99.48 95.78 97.60
Reason-Drug 91.24 64.54 75.60 92.73 66.27 77.30
ADE-Drug 82.12 68.06 74.43 81.92 67.13 73.79

Micro 97.16 90.41 93.66 98.04 90.66 94.20∗

Macro 97.31 90.13 93.45 98.03 90.32 93.89

Table 5.12: Performance comparison with inclusion (+) or exclusion (−) for Drug-
Drug Interactions (DDIs) on the n2c2 development set for walks-length L = 8. ∗ de-
notes significance at p < 0.01 in comparison with − DDIs.

each relation category reveals that Reason-Drug has the largest improvement from the
introduction of Drug-Drug interactions. In this particular dataset, Reason entities are
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typically diseases or symptoms that lead to the prescription of a drug. DDIs are par-
ticularly helpful to determine the relation between a Drug and a disease or a symptom,
as they can serve as cause. However, we observe that DDIs do not improve the perfor-
mance of ADE-Drug associations. A possible explanation is that ADE-Drug relations
are very few in this dataset, hence the model cannot learn adequate patterns for their
recognition. Additionally, ADE entities are mostly diseases and, sometimes, a certain
disease can be polysemous, i.e. both a Reason and an ADE. For instance, a Drug can
cause a disease (ADE) which, in turn, requires the prescription of another Drug. This
automatically renders the disease as Reason at the same time. Improving the interac-
tions of Drugs with Reason thus might result in deterioration of ADE-Drug relations.
A small improvement is also observed for Frequency-Drug relations, since DDIs can
affect the frequency of drug administration.

Since we treat this task as a binary classification problem, errors are restricted to
two categories. Moreover, there are no directionality errors as the relation is always
from a non-Drug to a Drug entity. We try to analyse the incorrect predictions of our
model using category-wise false positive rates (FPR) and false negative rate (FNR). We
estimate the error rate as the proportion of all negative instances that were misclassified
as positive (FPR) and the proportion of all positive instances that were misclassified as
negative (FNR), as computed in Equations (5.9) and (5.10),

FPRi =
#FP in class i

#FP in class i+#TN in class i
, (5.9)

FNRi =
#FN in class i

#FN in class i+#TP in class i
(5.10)

Figure 5.6 visualises the false negative error rates of all intra-sentence models and
their ensemble, as evaluated only on intra-sentence pairs (we do not report the FPR,
as we found it was below 1% for all models and relation categories). It is observed
that ADE-Drug and Reason-Drug classes have the highest probability to misclassify
a pair as negative (10% for ADE and 5% for Reason). In fact, these classes are the
most difficult to predict as they require well-formed context and relation-indicative
words. In the sentence “Allergies: BactrimDrug (rashADE)”, the relation between ADE
and Drug is not evident as there are no keywords to support it. In contrast, Duration,
Form, Strength, and other similar entities are always found close to a drug and fol-
low a standard pattern which can be learned from sequential models. For instance,
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Figure 5.6: False negative error rate of intra-sentence models and their ensemble on
the development set.

“AzithromycinDrug 250 mgStrength Tablet SigForm”. Although Duration-Drug has the
least positive occurrences in the dataset, our model can detect it since it is always re-
lated to the closest drug. Compared with Weighted LSTM, the Walk-based model is
less biased to negative relations, as the introduction of negative filtering and the walk-
inference enables the identification of more positive instances. The combination of
models reduces the FNR. As we did not develop category-wise classifiers, the models
try to fit all relation patterns under a single category. Additionally, since ADE- and
Reason-Drug patterns are much fewer compared to other non–Drug-Drug pairs, all
models tend to have lower performance on these particular categories. It is worth not-
ing that we did not incorporate domain-specific information from external Knowledge
Bases to enhance ADE-Drug detection.

We finally perform the same analysis as in previous sections to check if the walk-
based mechanism benefits multi-entity sentences. As shown in Figure 5.7, perfor-
mance increases with longer walks. Among different walk lengths, L = 8 has the
best performance across multi-entity sentences, outperforming the other two models.
For single pairs, the walk-based models perform similarly with the Weighted LSTM
model. This is because both models consider updates from multiple pairs at the same
time. This is another indication that training on multi-entity sentences, without assum-
ing a single pair per sentence, can improve the performance on single-sentence pairs
as latent, common information between pairs in the same sentence can be learned by
the model. On the contrary, since the Transformer model considers only a single pair
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Figure 5.7: Performance of intra-sentence models on the development set on sentences
with different number of entities. The bottom figure illustrates the distribution of each
groups of entities.

at a time, it has 1% lower performance.

5.4 Conclusion

In this chapter we proposed to adapt the previously described edge-oriented model to
the biomedical domain. Initially, we discussed some of the most common challenges
associated with RE in this domain, which make detection of relations more demand-
ing compared to the generic domain. Some challenges include high dependency on
domain-knowledge, technical writing, named entities with several aliases that high-
light the need for entity linking and normalisation. Other challenges also reflected on
the text use cases that we investigated, scientific articles and electronic health records.
For instance, both texts included technical writing, EHRs did contain less context com-
pared to scientific articles, the latter included several nested entities.

In the first test case, we focused on Chemical-Protein interactions from the lit-
erature, were we found that the inclusion of Chemical-Chemical and Protein-Protein
interactions in our graph played a significant role in performance improvement. How-
ever, incorporation of domain-specific knowledge in the form of pre-trained word em-
beddings can positively impact performance further, indicating the need for external
knowledge in this domain. One of the largest problems of our model for this dataset
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was the handling of negation, since relations appeared in text together with semanti-
cally opposite words, i.e. ‘blocked the increase’. A thorough investigation of tech-
niques that aim to focus on detecting such cases should be part of future work. We
additionally compared two attention mechanisms for context construction. We con-
firmed our initial observation from the general domain that a learned-attention vector
is not effective due to the nature of our proposed algorithm, that simultaneously treats
all pairs in a sentence. By changing the mechanism, performance slightly improved,
while we found that additional context information is helpful mostly for longer walks.

In the second case, we focused on Drug-Medication relations including Adverse
Drug Events from EHRs. The incorporation of Drug-Drug interactions in the model
assisted the prediction of Reason-Drug relations by a large margin, while it additionally
improved Frequency-Drug interactions. However, ADE-Drug relations still constitute
a challenging task, which is partially attributed to the polysemy of ADEs with Reason
named entities as well as the need for information from domain-specific Knowledge
Bases in order to increase detection.

For both test cases, we found that mapping sentences into entity-based graphs and
encoding interactions among them using an edge-oriented mechanism, is beneficial for
multi-entity sentences, similarly to the general domain. The mechanism is particularly
helpful when relations are implicit, i.e. there is no explicit evidence in text, though
they can be inferred when reading the sentence.



Chapter 6

Document-level Neural Relation
Extraction

In the previous chapters, we extensively examined the case of interactions that belong
in the same sentence, by proposing a sentence-level graph-based neural algorithm that
performs on entity graphs. In this chapter, we propose an extension of this approach
for document-level relation extraction. Our main contribution is the introduction of a
simple, yet intuitive way to transform documents into graphs, without the need for syn-
tactic tools, by addressing our third hypothesis (H3.1). We further aim to improve both
intra- and inter-sentence relation extraction using the proposed graph structure and our
walk-based mechanism addressing our last hypothesis (H3.2). The lack of document-
level corpora on the generic domain for inter-sentence relation extraction forces us to
evaluate the proposed approach on two biomedical domain datasetsa. Experimental
results show that we are able to achieve better performance even compared to exist-
ing approaches that incorporate additional data or tools during training, especially for
the detection of inter-sentence relations. The contents of this chapter are published in
Christopoulou et al. (2019).

6.1 Motivation

Although methods for extracting relations within sentences (i.e. intra-sentence relation
extraction) are useful, in real-world scenarios, a large amount of relations are expressed

aA generic domain dataset (Yao et al., 2019) for this task became available after acceptance of this
work to a peer-reviewed conference.
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The case of a 40 - year - old patient who underwent an unsuccessful 

Bilateral optic neuropathy due to combined and

treatment .

ethambutol and isoniazid

is reported . A with an unusual central

was found .

cadaver kidney transplantation and was treated with

scotoma

isoniazidethambutol

bilateral retrobulbar neuropathy

bitemporal hemianopic

Figure 6.1: Example of document-level, inter-sentence relations adapted from the CDR
dataset (Li et al., 2016a). The solid and dotted lines represent intra- and inter-sentence
relations, respectively.

across sentences. The task of identifying these relations is named inter-sentence Rela-
tion Extraction. Typically, inter-sentence relations occur in textual snippets with sev-
eral sentences, such as within documents. In these snippets, an entity can be repeated
under the same phrase or alias, that corresponds to different entity mentions of the
same entity concept. In order to identify the multiple mentions of an entity concept,
a Knowledge Base is usually involved. Each named entity in the snippet is associ-
ated with a unique Knowledge Base identifier (KB ID), through a process known as
Named Entity Linking (NEL) (Hachey et al., 2013). Mentions that are grounded to the
same KB ID can be seen as co-referring mentions belonging to the same entity con-

cept. However, these particular occurrences are restricted to nouns and proper names,
in contrast to pronouns that can also be considered to co-refer with named entities in
co-reference resolution tasks (Clark and González-Brenes, 2008).

We aim to use the multiple entity mention along with the entity concepts in which
they belong, together with other structural elements of the document, to enhance the
identification of inter-sentence relations. For instance, one can look at the example of
Figure 6.1. The entities bilateral optic neuropathy, ethambutol and isoniazid have two
mentions each (appear two times), while the entity scotoma has one mention (appears
one time). The relation between the chemical ethambutol and the disease scotoma is
clearly inter-sentential (dotted lines), since there is no occurrence of the two in the
same sentence. Their association can only be determined if we consider the inter-
actions between the mentions of these entities in different sentences. A mention of
bilateral optic neuropathy interacts with a mention of ethambutol in the first sentence.
Another mention of the former interacts with the mention of scotoma in the third sen-
tence. This chain of interactions can help us infer that the entity ethambutol has a
relation with the entity scotoma.

The most common technique currently used to handle multiple mentions of named
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entities (concepts) is Multi-Instance Learning (MIL). Initially, MIL was introduced by
Riedel et al. (2010) for noise reduction purposes in corpora that were created using
distant supervision (Mintz et al., 2009). As mentioned in Chapter 2, MIL in this set-
ting considers multiple sentences (bags-of-sentences), each of which contain a pair of
entities. A bag-of-sentences contains all the sentences where a target named entity pair
can be found. The relaxed assumption states that at least one sentence that mentions
the two entities might express this relation. Verga et al. (2018) introduced another MIL
setting for relation extraction between named entities in a document. In this setting,
entities mapped to the same KB ID are considered to be mentions of an entity concept
and pairs of mentions correspond to the pair’s multiple instances. In order to construct
distantly supervised corpora, relations are given to pairs of entity concepts, if they are
in the same document and are known to share a relation in the KB. As a result, the re-
lation between the two concepts can be either because they are mentioned in the same
sentence, or by inter-sentence inference, or from the meaning of the entire document.
It is thus necessary to model interactions that take place in the entire documents, in
order to detect relations between concepts.

As mentioned in the previous chapter, however, this type of document-level RE
between named entity concepts is not so common in the generic domain. Typically,
generic NEs do not have so many aliases and, also, the most interesting interactions
are observed when they co-occur in the same sentence (Banko et al., 2007). On the
contrary, in the biomedical domain, document-level relations are particularly important
given the numerous aliases that biomedical entities can have (Quirk and Poon, 2017).

To deal with document-level RE, recent approaches assume that only two mentions
of the target entities reside in the document (Nguyen and Verspoor, 2018; Verga et al.,
2018) or utilise different models for intra- and inter-sentence RE (Gu et al., 2016; Li
et al., 2016b; Gu et al., 2017). In contrast with approaches that employ sequential
models (Nguyen and Verspoor, 2018; Gu et al., 2017; Zhou et al., 2016a), graph-based
neural approaches have proven useful in encoding long-distance, inter-sentential in-
formation (Peng et al., 2017; Quirk and Poon, 2017; Gupta et al., 2019). These mod-
els interpret words as nodes and connections between them as edges. They typically
perform on the nodes by updating their representations during training. However, a
relation between two entities depends on different contexts, especially in a document.
It could thus be better expressed with an edge connection that is unique for the pair. A
straightforward way to address this is to create graph-based models that rely on edge
representations that rather focus on node representations, which are shared between
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multiple entity pairs.

We propose to tackle document-level, intra- and inter-sentence RE using MIL, with
a graph-based neural model, when entity concept annotations are available, i.e. entity
linking is already performed to associate entity mentions to KB concepts. Our main
objective is to infer the relation between two entities by exploiting other interactions
in the document, that are more general than word-level interactions. We construct a
document graph with heterogeneous types of nodes and edges to better capture differ-
ent dependencies between elements of the document. In the proposed graph, a node
corresponds to either entities, mentions, or sentences, instead of words. Connections
between distinct nodes are derived from simple heuristic rules, while we generate dif-
ferent edge representations for each connection between two nodes. Differently from
our previous work on sentences, we enable construction of edge representations even
between nodes that were not initially connected, in order to form concept-level pair
representations.

6.2 Proposed Approach

We build our model as a significant extension of our previously proposed sentence-
level model, introduced in Chapter 4 (Christopoulou et al., 2018) for document-level
RE. The most critical difference between the two models, is the introduction and
construction of a partially-connected document graph instead of a fully-connected
sentence-level graph. Additionally, the document graph consists of heterogeneous

types of nodes and edges in comparison with the sentence-level graph that contains
only entity-nodes and single edge types among them. Furthermore, the proposed ap-
proach utilises multi-instance learning when mention-level annotations are available.
This means that the proposed approach can identify interactions both between named
entity concepts, when NEL annotations are available, or named entity mentions when
they are not.

Task Setting

For clarification purposes, we consider the target task as document-level Relation Ex-
traction between concept-level named entities. The input is an annotated document.
The annotations include concept-level entities (with assigned KB IDs), as well as mul-
tiple occurrences of each entity under the same phrase or alias, i.e., entity mentions, in
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BiLSTM Classifier
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treatment
N iterations

Document sentences Sentence Encoding Layer Inference LayerGraph Construction
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isoniazid
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Figure 6.2: Abstract architecture of the proposed approach. The model receives a doc-
ument and encodes each sentence separately. A document-level graph is constructed
and fed into an iterative algorithm to generate edge representations between the target
entity nodes. Some node connections are not shown for brevity.

the document. We consider the associations of mentions to concept entities as given
(associated KB IDs), assuming the named entity linking is already applied on the cor-
pus. The objective of the task is given an annotated document as such, to identify the
relation (or not) for all the concept-level pairs in that document. For the remainder
of the chapter, we will refer to concept-level annotations as entities and mention-level
annotations as mentions, for convenience.

6.2.1 Sentence Encoding Layer

Following our previous work, first, each word in the sentences of the input document is
transformed into a dense vector representation, i.e., a word embedding. The vectorised
words of each sentence are then fed into a BiLSTM network, named the encoder. The
output of the encoder results in contextualised representations for each word of the
input sentence.

6.2.2 Graph Layer

The contextualised word representations from the encoder are used to construct a
document-level graph structure, where both nodes and edges are represented by n-
dimensional vectors. The graph layer comprises of two sub-layers, a node construc-
tion layer and an edge construction layer. We compose the representations of the graph
nodes in the first sub-layer and the representations of the edges in the second one.
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6.2.2.1 Node construction

We propose the formation of three distinct types of nodes in the graph, given the ex-
isting elements in the document: mention nodes (M) nm, entity nodes (E) ne, and
sentence nodes (S) ns. We adopt a simple approach, where each node representation
is computed as the average of the embeddings of different elements. Firstly, mention
nodes correspond to different mentions of entities in the input document. The repre-
sentation of a mention node is formed as the average of the words (w) that the mention
contains. Secondly, entity nodes represent unique entity concepts. The representation
of an entity node is computed as the average of the mention (m) representations associ-
ated with the entity. Finally, sentence nodes correspond to sentences. A sentence node
is represented as the average of the word representations in the sentence. In order to
distinguish different node types in the graph, we concatenate a node type embedding
to each node representation. The final node representations for each node type are then
estimated as follows,

nmi = [average
w∈mi

(w); tm], (6.1)

ne j = [average
m∈e j

(m); te], (6.2)

nsk = [average
w∈sk

(w); ts], (6.3)

where m, e and s correspond to mentions, entities and sentences, respectively, w de-
notes a word embedding, m denotes a mention embedding, t corresponds to the node
type embedding and average corresponds to the averaging operation.

6.2.2.2 Edge construction

We construct a non-directed adjacency matrix for the heterogeneous graph by using
heuristic rules that stem from the natural associations between the elements of a doc-
ument, i.e., mentions, entities and sentences. We do not directly connect entity nodes,
as we aim to construct an edge representation between them using other existing edges
in the graph. As a result, the entity-to-entity (EE) relations will be inferred. We define
five types of edges between different nodes and further construct unique edge repre-
sentations for each one, using the following criteria:

Mention-Mention (MM): Co-occurrence of mentions in a sentence might be a weak
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indication of an interaction. For this reason, we create mention-to-mention edges only
if the corresponding mentions reside in the same sentence.
The edge representation between each mention pair mi and m j is generated by concate-
nating the representations of the nodes nmi and nm j , the contexts cmi,m j and a distance
embedding associated with the distance between the two mentions dmi,m j , in terms of
intermediate words:

xMM = [nmi;nm j ;cmi,m j ;dmi,m j ] (6.4)

Here, we generate the context representation for these pairs in order to encode local,
pair-centric information. We use an argument-based attention mechanism (Wang et al.,
2016), to measure the importance of other words in the sentence towards the mention
of interest, with k ∈ {1,2} as the mention arguments,

αk,i = n>mk
wi,

ak,i =
exp(αk,i)

∑ j∈[1,n], j 6∈mk
exp(αk, j)

,

ai = (a1,i + a2,i)/2,

cm1,m2 = Hᵀ a,

(6.5)

where nmk is a mention node representation, wi is a sentence word representation, ai is
the attention weight of word i for mention pair m1,m2, H ∈ Rw×d is a sentence word
representations matrix, a ∈Rw is the attention weights vector for the pair and cm1,m2 is
the final context representation for the mention pair.

Mention-Sentence (MS): Mention-to-sentence nodes are connected only if the men-
tion resides in the sentence. Their initial edge representation is constructed as a con-
catenation of the mention and sentence nodes,

xMS = [nm;ns] (6.6)

Mention-Entity (ME): We connect a mention node to an entity node if the mention is
associated with the entity, i.e. correspond to the same concept,

xME = [nm;ne] (6.7)

Sentence-Sentence (SS): Motivated by Quirk and Poon (2017), we connect sentence
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nodes to encode non-local information as well discourse associations. The main differ-
ence with prior work is that our edges are unlabelled, non-directed and span multiple
sentences. To encode the distance between sentences, we concatenate it to the sentence
node representations in the form of an embedding:

xSS = [nsi;ns j ;dsi,s j ] (6.8)

Since intermediate sentences might contain redundant information about the associ-
ation between a pair of interest, we choose to experiment with directly connecting
sentences that are not adjacent. For instance, in the example document of Figure 6.1,
the second sentence is not really necessary for the identification of the inter-sentence
association between bilateral optic neuropathy and scotoma. In particular, we con-
sider SSdirect as adjacent, ordered edges (distance = 1) and SSindirect as indirect, non-
ordered edges (distance > 1) between S nodes, respectively. In our setting, SS denotes
the combination of the twp as SS = SSdirect∪SSindirect.

Entity-Sentence (ES): To directly model entity-to-sentence associations and create
shorter paths, we connect an entity node to a sentence node if at least one mention of
the entity resides in this sentence,

xES = [ne;ns] (6.9)

The previously described edge representations have different dimensionalities. Hence,
to result in edge representations of equal dimensionality, we use different linear reduc-
tion layers for different edge representations,

e(1)z = Wz xz, (6.10)

where e(1)z is an edge representation of length 1, Wz ∈ Rdz×d corresponds to a learned
matrix and z ∈ [MM,MS,ME,SS,ES]. We expect that the linear layers will learn the
best features that describe each edge type.

6.2.3 Inference Layer

We then try to directly model interactions between different pairs of nodes in the graph
and consequently generate edges between entity nodes. For this purpose, we adapt
our two-step inference mechanism, proposed in Christopoulou et al. (2018). In cases



6.2. PROPOSED APPROACH 161

where there is an existing edge in the graph, we update its representation whereas, if a
new edge is created, we construct its representation using other edges in the graph.

We initialise the graph only with the edges described in Section 6.2.2.2, mean-
ing that direct entity-to-entity (EE) edges are absent. We can only generate EE edge
representations by representing a path (or walk) between their nodes.

For completeness, we describe again our two-step procedure with the correspond-
ing notation in order to match the previous steps of the method. We first generate a
walk between two nodes i and j using intermediate nodes k, by combining the rep-
resentations of two consecutive edges eik and ek j. This action generates a new edge
representation that includes walks of double length. We combine all existing walks
between i and j through k. The i, j, and k nodes can be any of the three node types E,
M, or S. Intermediate nodes without adjacent edges to the target nodes are ignored.

f
(

e(l)ik ,e
(l)
k j

)
= σ

(
e(l)ik �

(
W e(l)k j

))
, (6.11)

where σ is the sigmoid non-linear function, W ∈Rdz×dz is a learned parameter matrix,
� refers to element-wise multiplication, l is the length of the walk and eik corresponds
to the representation of the edge between nodes i and k.

During the second step, we aggregate the original edge representation (short walk)
and the new edge representation (longer walk) resulted from Equation (6.11) with lin-
ear interpolation, as follows:

e(2l)
i j = β e(l)i j +(1−β) ∑

k 6=i, j
f
(

e(l)ik ,e
(l)
k j

)
, (6.12)

where β ∈ [0,1] is a scalar that controls the contribution of the shorter walks. If a
multi-hop representation cannot be formed in this step, we only take into account the
original pair representation with β = 1.

In cases where we can construct a new edge representation, we choose a high value
for β in order to give more weight to the shorter walks, as was previously discussed (Xu
et al., 2015c; Borgwardt and Kriegel, 2005). This choice also results from our previous
experiments in the biomedical domain, that showed that a β value around 0.8 is a good
choice for walks longer than 4. After N iterations, the final edge representation will
correspond to walks between different elements of length up-to 2N .

It is important to note at this point that, in order to represent an entity-to-entity edge
(EE), we need at least 2-hops for intra-sentence detection, via an E-S-E path (meaning
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that at least one mention of the first entity co-occurs with a mention of the other entity).
We also need 4-hops to represent an inter-sentence entity-to-entity association via an
E-S-S-E path, if we allow SSindirect edges.

6.2.4 Classification

To classify the concept-level entity pairs of interest, we incorporate a softmax classifier
using the entity-to-entity edges (EE) of the document graph, that correspond to the
concept-level entity pairs. We only classify pairs based on the semantic restrictions of
the dataset, i.e. each entity-concept must belong to a specific semantic category.

y = softmax(Wc eEE +bc) , (6.13)

where Wc ∈Rr×dz and bc ∈Rr are learned parameters of the classification layer and r

is the number of relation categories.

6.3 Experimental Settings

The model was developed using PyTorchb (Paszke et al., 2017). We incorporated early
stopping to identify the best training epoch and used Adam (Kingma and Ba, 2015) as
the model optimiser. A detailed version of the model hyper-parameters can be found
in the Appendix A.3.

6.3.1 Data and Task Settings

We evaluated the proposed model on two datasets that belong to the biomedical do-
main. The first dataset is human annotated, while the second was automatically con-
structed using Distant Supervision.

CDR (BioCreative V). The Chemical-Disease Reactions dataset was created by Li
et al. (2016a) for document-level RE. It consists of 1,500 PubMed abstracts that are
split into three equally sized sets for training, development and testing. The dataset was
manually annotated with binary interactions between Chemical and Disease concepts.
For this dataset, we utilised PubMed pre-trained word embeddings (Chiu et al., 2016).

bCode for this model is available in https://github.com/fenchri/edge-oriented-graph

https://github.com/fenchri/edge-oriented-graph
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Due to the small size of the dataset, some approaches create a new split from the
union of train and development sets (Verga et al., 2018; Zhou et al., 2018). We chose
to merge the train and development sets and re-train our model in its entirety, for eval-
uation on the test set as Lin et al. (2016) and Zhou et al. (2016a) suggest. To compare
with related work, we followed Verga et al. (2018) and Gu et al. (2016) and ignored
non-related pairs that correspond to general concepts (MeSH vocabulary hypernym fil-
tering).

GDA (DisGeNet). The Gene-Disease Associations dataset was introduced by Wu et al.
(2019), containing 30,192 MEDLINE abstracts, split into 29,192 articles for training
and 1,000 for testing. The dataset was automatically annotated with binary interactions
between Gene and Disease concepts at the document-level, using distant supervision.
Associations between concepts were generated by aligning the DisGeNet (Piñero et al.,
2016) platform with PubMed abstracts. We randomly split the training set into a 80/20
percentage split as training and development sets, repectively. For the GDA dataset,
we used randomly initialised word embeddings.

Train Dev. Test

Documents 500 500 500
Sentences 4,621 4,626 4,847
Positive pairs 1,038 1,012 1,066

Intra 754 766 747
Inter 284 246 319
(%) 27.3 24.3 29.9

Negative pairs 4,202 4,075 4,138
Entities

Chemical 1,467 1,507 1,434
Disease 1,965 1,864 1,988

Mentions
Chemical 5,162 5,307 5,370

Disease 4,252 4,328 4,430

Avg. entities/doc 6.9 6.7 6.8
Avg. sentences/doc 9.2 9.3 9.7
Avg. mentions/entity 2.7 2.9 2.9
Avg. sentence length 25.6 25.4 25.7

Table 6.1: CDR dataset statistics.

Train Dev. Test

Documents 23,353 5,839 1,000
Sentences 236,010 58,589 9,975
Positive pairs 36,079 8,762 1,502

Intra 30,199 7,408 1,273
Inter 5,880 1,354 229
(%) 16.2 15.4 15.2

Negative pairs 96,399 24,362 3,720
Entities

Gene 46,151 11,406 1,903
Disease 67,257 16,703 2,778

Mentions
Gene 205,457 51,410 8,404

Disease 226,015 56,318 9,524

Avg. entities/doc 4.9 4.8 4.7
Avg. sentences/doc 9.1 9.1 10
Avg. mentions/entity 3.8 3.8 3.8
Avg. sentence length 32.9 32.9 29.7

Table 6.2: GDA dataset statistics.
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In Tables 6.1-6.2, we summarise the statistics for the CDR and GDA datasets, re-
spectively. For all datasets, we used the GENIA Sentence Splitterc and GENIA Taggerd

for sentence splitting and word tokenisation. We additionally removed mentions in the
given abstracts that were not grounded to a Knowledge Base ID (ID equal to −1). It is
interesting to observe that the percentage of inter-sentence pairs in the CDR dataset is
around 30%, contrary to 15% in the GDA dataset.

6.3.2 Model Settings and Comparisons

We explore multiple settings of the proposed graph using different edges (MM, ME,
MS, ES, SS) and edge enhancements (node type embeddings, mention-pairs context
embeddings, distance embeddings). We name our model EoG, an abbreviation for
Edge-Oriented Graph. We briefly describe the model settings and the models we com-
pared it to. In all of the following experiments, we used the Approximate Randomisa-
tion Significance Test (Noreen, 1989) when performing comparisons.

Additional comparisons are made with three baseline models we create. EoG refers
to our main model with edges {MM, ME, MS, ES, SS}. The EoG (Full) setting refers
to a model with a fully connected graph, where the graph nodes are all connected to
each other, including E nodes. For this purpose, we introduce an additional linear layer
for the EE edges as in Equation (6.10). The EoG (NoInf ) setting refers to a no infer-

ence model, where the iterative inference algorithm (Section 6.2.3) is ignored. The
concatenation of the entity node embeddings is used to represent the target pair. In
this case, we also make use of an additional EE linear layer for EE edges, since they
cannot be constructed otherwise. Finally, the EoG (Sent) setting refers to a model that
was trained on sentences instead of documents. For each entity-level pair, we merge
the predictions of the mention-level pairs in different sentences using a maximum as-
sumption: if at least one mention-level prediction indicates a positive relation between
the target pair, then we predict the entity-concept pair as related, similarly to Gu et al.
(2017). All of the described settings incorporate node type embeddings, contextual
embeddings for MM edges and distance embeddings for MM and SS edges, unless
otherwise stated.

We further compare our proposed approach to the state-of-the-art approaches on
the CDR and the GDA datasets. For the CDR dataset, Verga et al. (2018), Gu et al.
(2017) and Nguyen and Verspoor (2018) consider a single pair in each document,

chttp://www.nactem.ac.uk/y-matsu/geniass/
dhttp://www.nactem.ac.uk/GENIA/tagger/

http://www.nactem.ac.uk/y-matsu/geniass/
http://www.nactem.ac.uk/GENIA/tagger/
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hence they repeat the input document a number of times that is equal to the number
of entity-concept pairs in the document. Additionally, Verga et al. (2018) incorporates
a Transformer-based network with sub-word embeddings and trains their proposed
model on a section of the union of the training and development data. Gu et al. (2017)
use two different networks for intra- and inter-sentence relations detection and merge
the two outputs with additional rules in order to obtain the final overall performance. A
similar case is that of Li et al. (2016b), who uses co-training with additional unlabelled
training data. Peng et al. (2016) use an SVM-based method with hand-crafted features,
additional training data and the shortest dependency path on the dependency graph of
each sentence. Zhou et al. (2016a) proposed a combination of feature-based, kernel-
based and neural network-based methods with additional hand-crafted features and
post-processing rules. Panyam et al. (2018) proposed an SVM model with graph-
based kernels, while Zheng et al. (2018) used a CNN stacked on top of an LSTM
network with masked named entities. Finally, Sahu et al. (2019) proposed to apply a
Graph Convolutional Neural network on the document-level dependency graph created
following Quirk and Poon (2017).

It is important to mention that we consider a fair comparison with the model pro-
posed by Sahu et al. (2019). For the remaining models, the training data and their
pre-processing differ. For the GDA dataset, we draw comparisons with the model of
Wu et al. (2019), which originally proposed the GDA dataset. In their method, they in-
corporate a CNN with a GRU-RNN network stacked on top. We re-trained their model
on our own data split, for a fair comparison. However, they used entity masking, i.e.
replaced the target named entities with a unique identifier (e.g. <CHEM> for chem-
icals and <DIS> for diseases) in their experiments. Their code was tailored to this
choice and, as a result, the comparison between the two models is not completely fair.

6.4 Results

Table 6.3 depicts the performance of our proposed model on the CDR test set, in
comparison with the state-of-the-art. The proposed model outperforms the (neural)
state-of-the-art by 1.3 percentage points of overall performance. The models under
the middle line correspond to approaches that take advantage of syntactic dependency
tools or additional training data. Our model performs significantly better on intra- and
inter-sentential pairs, even compared to models that rely on syntactic tools.

In comparison with the baselines, the EoG model performs best for all pair types.
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Method
Overall (%) Intra (%) Inter (%)

P R F1 P R F1 P R F1

SVM+CNN (Gu et al., 2017) 55.7 68.1 61.3 59.7 55.0 57.2 51.9 7.0 11.7
Transformer (Verga et al., 2018) 55.6 70.8 62.1 - - - - - -
CNN (Nguyen and Verspoor, 2018) 57.0 68.6 62.3 - - - - - -

EoG 62.1 65.2 63.6 64.0 73.0 68.2 56.0 46.7 50.9
EoG (Full) 59.1 56.2 57.6� 71.2 62.3 66.5 37.1 42.0 39.4�

EoG (NoInf ) 48.2 50.2 49.2� 65.8 55.2 60.2� 25.4 38.5 30.6�

EoG (Sent) 56.9 53.5 55.2� 56.9 76.4 65.2 - - -

Hybrid (Zhou et al., 2016a) 55.6 68.4 61.3 - - - - - -
SVM (Peng et al., 2016) 62.1 64.2 63.1 - - - - - -
SVM (Li et al., 2016b) 60.8 76.4 67.7 67.3 52.4 58.9 - - -
SVM (Panyam et al., 2018) 53.2 69.7 60.3 54.7 80.6 65.1 47.8 43.8 45.7
LSTM+CNN (Zheng et al., 2018) 56.2 67.9 61.5 - - - - - -
GCN (Sahu et al., 2019) 52.8 66.0 58.6 - - - - - -

Table 6.3: Overall, intra- and inter-sentence pairs performance comparison with the
state-of-the-art on the CDR test set. The methods below the double line take advantage
of additional training data and/or incorporate external tools. � indicates significance at
p < 0.01 of the baselines compared with EoG.

In particular, for the inter-sentence pairs, performance significantly drops with a fully
connected graph (Full) or without inference (NoInf ). The former indicates that our
heuristics are sensible. It is also important to note that the intra-sentence pairs substan-
tially benefit from the document-level information, as EoG surpasses the performance
of training on single sentences (Sent) by 3%. Finally, the performance drop in intra-
sentence pairs, as a result of the inference algorithm removal (NoInf ), suggests that
multiple entity associations exist in sentences as well (Christopoulou et al., 2018).
Their interactions can be beneficial in cases of lack of other context information.

Model
Dev. F1 (%) Test F1 (%)

Overall Intra Inter Overall Intra Inter

Wu et al. (2019) 80.0∗ 83.8∗ 55.7 81.1 84.8 56.2∗

EoG 78.6 83.0 46.9 80.1 84.7 45.6
EoG (Full) 77.8∗ 82.2∗ 54.2∗ 79.9 84.6 54.7∗

EoG (NoInf ) 71.6∗ 77.1∗ 45.3 73.7∗ 79.2∗ 47.0
EoG (Sent) 72.1∗ 78.1∗ - 73.0∗ 78.8∗ -

Table 6.4: Performance comparison on the GDA development and test sets. ∗ indicates
significance at p < 0.05 in comparison with EoG.

We also apply our model on the distantly supervised GDA dataset, as shown in Ta-
ble 6.4, for both the development and the test sets. Our model results for intra-sentence
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pairs are consistent with the findings of the CDR dataset for both development and test
sets. This indicates that document-level information is helpful for intra-sentence RE.
However, performance differs for inter-sentence pairs. In particular, it appears that
the fully connected graph (Full) works best among the other settings, while the no in-
ference mechanism is actually better than EoG on the test set. We partially attribute
this behaviour to the small number of inter-sentence pairs in the GDA dataset (only
15% compared to 30% in the CDR dataset) that results in inadequate learning patterns
for EoG. Another reason might be that since inter-sentence pairs are few, some inter-
actions might already be identified during training as intra-sentence. In fact, 42% of
inter-sentence pairs in the test set, are intra-sentence in the training set. This is also
observed for CDR for 13% of inter-sentence pairs. We also believe that the automatic
nature of the GDA dataset cannot guarantee that inter-sentence relations are correct in
comparison with the human-annotated CDR dataset. Nevertheless, further investiga-
tion is required to determine the causes of this discrepancy between the two datasets.
We leave further investigation as part of future work.

In comparison with the model proposed by Wu et al. (2019), we observe lower
performance on both the development and the test sets. However, the comparison with
our model is not absolutely fair, since we do not consider entity masking. We could not
re-run their model without this feature. In general, we observe only a 2% difference
in the inter-sentence performance (for the Full model), while similar intra-sentence
performance is noted on the test set. By performing significance testing, we observe
that the results between Wu et al. (2019) and our model are not significantly different
on the test set for intra-sentence pairs.

Since we propose a document-level graph structure, it is reasonable to compare
the performance model when using another graph encoder instead of our walk-based
encoder. For this reason, we employ a Graph Convolutional Network (GCN) with
residual connections between its layers and shared parameters from the second layer.
The GCN setting relies on the node representations, which include the type of the node.
In order to classify the entity-concept pairs, we simply concatenate the representations
of the two entity-concept nodes. We additionally compare with the GCN model pro-
posed by Sahu et al. (2019), that uses a dependency graph with additional co-reference
edges. As shown in Table 6.5, our proposed model outperforms the dependency graph
GCN for all relation pairs by a large margin. This might be due to the lack of contextu-
alised representation into the GCN model. On the other hand, the GCN encoder on our
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Model
Dev F1 (%)

Overall Intra Inter

GCN (1 Layer) 59.11∗ 65.68∗ 42.58
GCN (2 Layers) 60.15∗ 66.08∗ 44.55
GCN (3 Layers) 59.28∗ 65.11∗ 44.34
GCN (4 Layers) 59.15∗ 64.93∗ 43.93

EoG 63.57 68.25 46.68
Sahu et al. (2019) 57.19 63.43 36.90

Table 6.5: Comparison of the Edge-oriented Graph (EoG) with Graph Convolutional
Network (GCN) on the CDR development set. ∗ indicates significance at p < 0.05 in
comparison with EoG.

proposed graph performs better than the dependency graph. EoG is better by approx-
imately 2% in intra- and 2% in inter-sentence relations in comparison with the best
GCN model. However, application of other GCN variants (e.g. R-GCN (Schlichtkrull
et al., 2018)) might yield better performance using the same graph structure. The small
differences, overall, between the two encoders, indicate that the proposed graph struc-
ture, although simple, can be effective for detection of inter-sentence relations.

6.5 Analysis and Discussion

For further analysis, we choose the CDR dataset as it is human annotated. We con-
duct a series of experiments to better understand the advantages and limitations of the
proposed model. We primarily analyse the effect of specific graph edges and then
investigate some qualitative analysis.

6.5.1 Exploring the Effect of Edges

We conduct ablation analysis on the effect of direct and indirect sentence-to-sentence
(SS) edges as a function of the walks length. Figures 6.3a, 6.3b and 6.3c illustrate the
performance of both graphs for overall, intra- and inter-sentence pairs, respectively.

The first observation is that usage of direct SS edges only, reduces the overall per-
formance almost by 4% for walks of length up-to L = 8. This drop mostly affects
inter-sentence pairs, where an 18% point drop is observed. In fact, adjacent edges
(SSdirect) need longer inference to perform better, in comparison with additional indi-
rect edges (SS) for which less steps are required. The superiority of SS edges, for all
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(a) Overall

(b) Intra-sentential

(c) Inter-sentential

Figure 6.3: Performance as a function of the walks length when using direct (SSdirect)
or direct and indirect (SS) sentence-to-sentence edges, on the CDR development set.

inference steps, compared to SSdirect edges on inter-sentence pairs detection, confirms
our hypothesis that, in a narrative, some intermediate information might not be impor-
tant or relevant. The observation that indirect edges perform slightly better than direct
for intra-sentence pairs (L≤ 16) agrees with the results of Table 6.3, where we showed
that inter-sentence information can act as complementary evidence for intra-sentence
pairs.

We additionally conduct ablation analysis on the graph edges and nodes, as shown
in Table 6.6. Usage of EE edges only (i.e. simple concatenation of Entity (E) node
representations) results in poor performance across pairs, especially for intra-sentence
ones. Information about intra-sentence pairs is implicitly encoded into the node repre-
sentations via the mention nodes. However, the actual interactions between mentions
in sentences are not explicitly encoded in this setting.

Removal of MM and ME edges does not significantly affect performance, as ES
edges can replace their impact in the construction of EE edges. For instance, E-M-M-
E is replaced by E-S-E. Complete removal of connections to M nodes results in low
inter-sentence performance. This behaviour pinpoints that mention-level information
and their interactions are important for the identification of cross-sentence relations.
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Edge Types
F1 (%)

Overall Intra Inter

EE 55.14� 61.31� 40.34∗

EoG 63.57 68.25 46.68
−MM 62.77 67.93 46.65
−ME 61.57� 66.39∗ 45.40
−MS 62.92 67.55 44.74
− ES 61.41∗ 66.44∗ 43.04
− SSindirect 59.70� 67.09 28.00�

− SS 57.41� 65.45∗ 1.59�

−MM, ME, MS (M nodes) 60.46� 66.07∗ 39.56�

− ES, MS, SS (S nodes) 56.86� 64.63� 0.00

Table 6.6: Ablation analysis for different edge and node types on the CDR devel-
opment set. ∗ and � indicate significance at p < 0.05 and p < 0.01 respectively, in
comparison with EoG.

Removal of ES edges reduces the performance of all pairs, as encoding of EE
edges becomes more challenging through longer walks. In practice, in this setting,
we need paths of length 3 (E-M-M-E) for intra- and paths length 5 (E-M-S-S-M-E) for
inter-sentence pairs. We further observe very poor identification of inter-sentence pairs
without SS connections, either direct or indirect. This is complements the inability of
the model to identify any inter-sentence pairs without connections to S nodes. In this
scenario, we enable identification of pairs across sentences only through MM and ME
edges, as shown in Figure 6.4a. In fact, for the CDR dataset, 78% of inter-sentential
pairs have at least one argument that is mentioned only once in the document. The
identification of these pairs, without S nodes, requires very long inference paths (mini-
mum inference length 6, E-M-M-E-M-M-E). As shown in Figure 6.4b, the introduction
of S nodes results in a path with half the length, which we expect to better represent
the relation. Longer walk representations are weaker than shorter ones, as we have
proved in previous chapters. We believe that this is also the case for the extraction of
relations in documents. This suggests a limitation in the encoding mechanism and the
graph structure, to model relations between far apart entities when there are no shorter
(and valid) paths between them, e.g. in full-text documents.

The final analysis on the effect of edges is to investigate the additional enhance-
ments incorporated in them, as shown in Table 6.7. In general, intra-sentence pairs
are not affected by these settings. However, for inter-sentence pairs, removal of node
type embeddings and distance embeddings results in a 2% and 5% drop in terms of
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(a) MM, ME edges (b) ES, SS edges

Figure 6.4: Relation paths with different types of edges.

F1-score. These results indicate that the interactions between different elements in a
document, along with the distance between sentences and mentions, play an important
role in inter-sentence pair inference. Removing all of these settings does not perform
worse than removing one of them, which might suggest potential model over-fitting
due to the number of learned parameters.

Model
F1 (%)

Overall Intra Inter

EoG 63.57 68.25 46.68
− node types (T) 62.31 67.50 44.80
−MM context (C) 62.88 67.67 46.59
− distances (D) 62.53 68.00 41.53
− T, C, D 63.10 68.44 43.48

Table 6.7: Ablation analysis of edge enhancements on the CDR development set.

6.5.2 Supplementary Analysis

Moving on to other types of analysis, we further examine the performance of different
models on detecting inter-sentence pairs, based on their distance in terms of intermedi-
ate sentences. Figure 6.5 illustrates that, as the distance increases, the performance of
EoG decreases. In particular, for long-distanced pairs (distance ≥ 4), EoG has lower
performance compared to the setting with a fully-connected graph. This points towards
the difficulty in predicting far away pairs alongside a possible requirement for other,
latent document-level information that EoG (Full) is able to capture.

We additionally report the learning curves of EoG and the proposed baselines in
Figure 6.6. As we can observe, for almost all data samples, the proposed model outper-
forms all baselines. The first that seems to start saturating is the Sent model, probably
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Figure 6.5: Performance of inter-sentence pairs on the CDR development set as a
function of their sentence distance.

because it cannot take advantage of information from the entire document. On the con-
trary, Full and EoG have a very steep ascending trend, indicating that more patterns
can be captured by the model when given more instances.

Figure 6.6: Learning curves for the proposed model and baselines on the CDR devel-
opment set. The x-axis determines the percentage of training instances, where each
instances is a document, expect for the case of Sent where it is a sentence.

Finally, we perform qualitative analysis and investigate some of the cases where
the graph models succeed or fail to identify the related pairs. For this purpose, we
randomly check some of the common false negative errors among the EoG models.
We identify four types of errors, as shown in Table 6.8. In the first case, when multiple
entities reside in the same sentence and are connected with conjunctions (e.g., ‘and’)
or commas, the model often could not find associations with all of them. This can be
likely because too many associations introduce noise. The second error derives from
missing co-reference connections. For instance, pyeloureteritis cystica is referred to
as disease in a later sentence. Although our model cannot directly create co-reference
edges, S nodes potentially simulate such links by encoding the co-referring entities
into the sentence representation. However, it is possible to augment the existing graph
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Error Snippet

Collocation Following short exposure to oral prednisone [...]. Both presented
in the emergency room with profound coma, hypotension, severe
hyperglycemia, and acidosis.

Co-
reference

The etiology of pyeloureteritis cystica has long been [...] The dis-
ease occurred subsequent to the initiation of heparin therapy [...]

Hypernymy Time trends in warfarin-associated hemorrhage. [...] The propor-
tion of patients with major and intracranial bleeding increased [...]

Speculation We suggest that sleep deprivation may add to the risk of bupropion
- associated seizures .

Table 6.8: Examples of errors made by the EoG model.

if such information is available (e.g. a co-reference detection system is firstly applied
on the document). The next error is associated with hyponymy detection. In the third
example, hemorrhage is a hypernym of intracranial bleeding and, due to the MeSH
hierarchy, they are assigned different KB IDs, hence treated as different entities. The
model can find the intra-sentential relation but cannot generalise the inter-sentential
one, as it has no knowledge of the hierarchy of terms. A potential solution is to add ex-
ternal ontology-related information into the model, in order to resolve such cases. The
final example contains a speculative sentence, where the bold entities do not share a re-
lation. However, our proposed model predicts them as related, ignoring the speculative
term may.

6.6 Related Work

Traditional approaches focus on intra-sentence supervised RE, utilising CNN or RNN,
ignoring multiple entities in a sentence (Zeng et al., 2014; Nguyen and Grishman,
2015) as well as incorporating external syntactic tools (Miwa and Bansal, 2016; Zhang
et al., 2018b).

Other approaches deal with distantly-supervised datasets, but are also limited to
intra-sentential relations. They utilise Piecewise Convolutional Neural Networks (PCNN)
(Zeng et al., 2015), attention mechanisms (Lin et al., 2016; Zhou et al., 2018), entity
descriptors (Jiang et al., 2016) and graph CNNs (Vashishth et al., 2018) to perform
MIL on bags-of-sentences that contain multiple mentions of an entity pair. Recently,
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Zeng et al. (2017b) proposed a method for extracting paths between entities, using
the target entities’ mentions in several different sentences (in possibly different doc-
uments), as intermediate connectors. They allow mention-to-mention edges only if
these mentions belong to the same entity, considering that a single mention pair exists
in a sentence and utilises only 1-hop inference. On the contrary, we not only allow in-
teractions between all mentions in the same sentence, but also consider multiple edges
between mentions, entities and sentences in a document with multi-hop inference.

Current approaches that try to deal with document-level RE are mostly graph-
based. As discussed in Chapter 2, the work of (Quirk and Poon, 2017) introduced
the notion of a document graph, where nodes are words and edges represent intra- and
inter-sentential relations between the words. Following this work, other approaches
incorporated graph-based models for document-level RE, such as graph LSTM (Peng
et al., 2017), graph CNN (Song et al., 2018) or RNNs on dependency tree structures
(Gupta et al., 2019). Recently, Jia et al. (2019) improved n-ary RE using informa-
tion from multiple sentences and paragraphs in a document. Similar to our approach,
they choose to directly classify concept-level pairs rather than multiple mention-level
pairs. Although they consider sub-relations to model related tuples, they ignore inter-
actions with other entities outside of the target tuple in the discourse units (sentence or
paragraph).

Non-graph-based approaches utilise different intra- and inter-sentence models and
merge the resulted predictions (Gu et al., 2016, 2017). Other approaches extract
document-level representations for each candidate entity pair (Zheng et al., 2018; Li
et al., 2018b; Wu et al., 2019), or use syntactic dependency structures (Zhou et al.,
2016a; Peng et al., 2016). Verga et al. (2018) proposed a Transformer-based model
for document-level relation extraction with multi-instance learning, merging multiple
mention pairs. Nguyen and Verspoor (2018) used a CNN with additional character-
level embeddings. Singh and Bhatia (2019) also utilised Transformer and connected
two target entities by combining them directly and via a contextual token. However,
they consider only a single target entity pair per document.

6.7 Conclusion

In this chapter, we presented a simple mechanism to transform documents into graphs
and perform intra- and inter-sentence relation extraction simultaneously. The proposed
approach constructs a partially connected, document-level graph with heterogeneous
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types of nodes and edges. Our edge-oriented walk mechanism was applied on the
graph structure with internal multi-instance learning. To the best of our knowledge,
this is the first approach to utilise an edge-oriented model for document-level RE and
construct graphs without dependencies for this task.

We experimented with two biomedical corpora, for Chemical-Disease and Gene-
Disease interactions, and proved the effectiveness of the proposed graph structure with-
out requiring external syntactic tools. The application of a GCN encoder instead of the
walk-based inference, showed decent performance for the proposed graph structure,
indicating that possibly more sophisticated graph encoding mechanisms can achieve
better results.

Extensive analysis on the effect of different edges included in the graph, revealed
that indirect connections between sentence nodes proved to be extremely useful for
inter-sentence relation extraction. In addition, the introduction of sentence-level nodes
allowed the generation of shorter connections between distant concepts. For both our
tested datasets, we proved that document-level information can contribute to the iden-
tification of intra-sentence pairs leading to higher precision and F1-score.

We additionally discussed limitations of the current approach for a set specific
linguistic phenomena such as speculation, co-reference and hypernymy. The explicit
incorporation of external knowledge to the model, not only in the form of pre-trained
word embeddings, can be effective for resolving most of these errors. Finally, an-
other considered limitation is that, in the proposed approach, we assume named entity
mentions and their associated concepts are given. Experiments on an automatically
created corpus, however, with noisy annotations of mentions and entities, showed that
the model can still produce reasonable performance which indicates that additional au-
tomatically generated data can be used to further train the model and provide domain-
specific knowledge.



Chapter 7

Conclusions

This dissertation discussed the task of Relation Extraction, i.e. the identification of
typed relations between named entities in textual sources. The main content was organ-
ised into seven chapters: An introductory chapter, an RE overview chapter, a technical
background chapter, three main content chapters and the current (conclusion) chapter.

In the first part of the overview Chapter 2, we provided definitions of elements in-
volved in Relation Extraction, discussed the multiple tasks that are currently studied,
along with developed datasets, and described the evaluation metrics used. We defined
four general categories under which we can group different relation extraction tasks,
that correspond to the target domain, the number of arguments and their type, as well as
the semantic categories of relations. In this dissertation we considered RE tasks from
all of these categories. In particular, we delved into both the generic and the biomed-
ical domain, identified relations in both sentences and paragraphs, while the entity
types were named entity mentions or named entity concepts. Yet, our methods were
restricted to the identification of pre-defined relation categories from existing datasets.
The second part of the chapter explored the existing literature, categorising methods
initially based on their type of learning and further based on the type of text structural
representation they use. The latter was our main category of focus, where the effec-
tiveness of recent graph-oriented approaches motivated our proposed RE methods.

Chapter 3 served mostly as a technical background chapter in an effort to famil-
iarise non-expert readers with fundamental terminologies and techniques used in neu-
ral architectures. Since the main methodology of this dissertation is based on these
tools, we briefly described the two basic architectures of RNNs and CNNs, attention
mechanisms, as well as network parameter training techniques.
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7.1 Confirmation of Research Hypotheses

The main goal of the presented work is to explore a different type of approaches for
relation extraction, with a more specific focus to textual snippets that contain many
annotated named entities. Our primary goal was to effectively map a textual snippet
from a sequence into a graph structure using the contained named entities, and en-
code interactions between them by taking advantage of the graph form. As stated in
the introduction, our approach is edge-oriented in the sense that it constructs multi-
dimensional edge representations which are directly used to model interactions in a
graph. The developed algorithm is able to encode a finite number of walks between
two named entities, given a textual snippet, into the representation of an edge. This en-
ables the proposed technique to represent associations between long-distance entities,
as well as to identify interactions that are not necessarily supported by explicit context.

In Chapter 4, we addressed our initial research question and hypothesis regarding
the modelling of multi-pair sentences as follows:

RQ1 In cases where multiple entities exist in a sentence, could we take advantage of
all entity-to-entity interactions to improve detection of semantic relations?

H1 The relation between two named entities in a sentence can be supported by
the interactions of these entities with other, co-existing named entities in
the same sentence, in a joint training setting.

In order to test our hypothesis, we firstly investigated relation extraction between
named entities in the generic domain, involving text from newswire articles and en-
cyclopedia entries. Using all annotated entities in a sentence, we mapped the input
into a fully connected graph structure, where nodes correspond to entities and edges
correspond to the representations of relations between them. We introduced an edge-
oriented graph model that forms interactions between pairs of entities as vectors. The
core of the model is a walk-based mechanism that iteratively combines consecutive
edges via an intermediate node, and forms edge representations that consider chains of
entity interactions. The proposed mechanism is able to generate a new representation
which essentially corresponds to a number of walks, of different lengths, between two
nodes (entities) in the graph.

Evaluation on the proposed approach on three general domain datasets revealed
that even if the method does not incorporate external syntactic parsers to assist RE, it
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shows competitive results. By analysing the method, we observed that it was particu-
larly successful when extracting relations from sentences that contained many entities,
something that was consistent across datasets, thus confirming our hypothesis. In ad-
dition, we found that the method can outperform other methods that consider multiple
entities per sentence when the entities are too far apart, showing that the edge-oriented
walk algorithm can bridge the gap between long-distance pairs. We further observed
that the proposed technique worked well, not only for multi-pair sentences, but also for
sentences with only one pair. Performance consistently improved across datasets for
such cases, proving that joint training of multiple interactions in a sentence can have a
large positive impact for other pairs that do no have explicit additional information in
their context.

Supplementary analysis of the walk-based mechanism revealed that longer walks
are not so informative, hence they need to be weighted less into the edge representation,
confirming existing findings about the shortest path being the most informative one
in tree and graph structures. Ablation analysis on the information used to construct
the initial edges showed that semantic entity types provide a strong inductive bias for
relations. Furthermore, pair-centric context information into the edge representation
appeared to not always be necessary. This suggested either a faulty choice of the
context encoding mechanism or the redundancy of additional information.

Taking into account the aforementioned findings, we conclude the following:

• Detection of relations between entities can be supported by interactions with
other entities in the same sentence.

• Joint training of multiple pair interactions in sentences, results in improved rep-
resentations (and, consequently, performance) in both multi-pair and single-pair
sentences.

• Shortest walks in graph structures contain more valuable information for rela-
tion extraction than longer ones.

In Chapter 5, we addressed the portability of the proposed graph-oriented approach
to another domain, addressing our second research question:

RQ2 Can multiple interactions among entities in a sentence be beneficial for detecting
relations in other domains?

H2 Modelling multiple interactions among pairs in a sentence can be effective
for relations in both the generic and the biomedical domains.
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To prove our hypothesis, we adapted the previously described edge-oriented model to
the biomedical domain. In particular, we focused on two types of biomedical text:
scientific articles and electronic health records. The first one studied interactions be-
tween Chemical and Gene/Protein entities, while the second one involved interactions
between Drugs and other medication-related entities with a focus on ADEs. In this
chapter, we first addressed the problem of representing pair-centric context informa-
tion into the edge representation, where our previous mechanism proved to be faulty.
We found that this information is beneficial for the biomedical domain, though us-
ing another attention mechanism to encode it. One of the findings was that there is
a tendency that longer walks can benefit more from such information into the edge
representations.

The proposed model also performed significantly better compared to a Transformer-
based model, on both multi-pair and single-pair sentences for Chemical-Protein rela-
tions. Moreover, we found that adding certain types of interactions (e.g. Protein-
Protein) in the graph had a positive impact on the performance. However, a limitation
of our model was that it often failed to identify the existence of negation in a relation,
especially in sentences where both positive and negative words occurred close to the
target entities. This result revealed the need for more sophisticated context encoding
mechanisms that can capture such phenomena.

In the case of EHRs, firstly, we again observed performance improvement in con-
trast with other models for multi- and single-pair sentences. Additionally, when we in-
corporated Drug-Drug interactions for the detection of Drug-medication relations, the
detection of Reason-Drug and Frequency-Drug associations improved significantly.
However, ADE-Drug associations still performed lower than other relations, due to
their ambiguous nature in biomedical text. Inclusion of external resources as auxil-
iary information can assist the correct detection of such pairs. Overall, from all these
experiments on sentence-level biomedical corpora, we confirm our hypothesis that in-
teractions of named entities with other entities in a sentence can be beneficial across
domains. We can thus conclude the following:

• Interactions between multiple pairs in sentences, can assist the detection of re-
lations across domains.

The aforementioned work mainly focused on the context of sentences. As a result,
in Chapter 6, we investigated the identification of relations across sentences, where it
has already been proven that multiple interactions are helpful for the detection of inter-
sentence relations (Quirk and Poon, 2017). We addressed our final research question
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and hypotheses:

RH3 Can we model documents as heterogeneous graph structures and infer document-
level relations?

H3.1 We can map documents to partially connected, heterogeneous graphs with-
out the need for syntactic dependency structures.

H3.2 Document-level inference, i.e. using information from the entire document,
is beneficial for both intra- and inter-sentence relations.

We firstly proposed to create a different graph-structure from the sentence-level one,
more suitable for documents. In particular, the graph was partially connected and
included heterogeneous types of nodes and edges. Heuristics were used to connect
different nodes in the graph and the proposed edge-oriented inference mechanism was
applied. Another important difference is that we performed relation extraction between
named entity concepts and not mentions, thus tackling the issue of entity surface form
variation in biomedical text using multi-instance learning.

Evaluation on two document-level biomedical corpora revealed that our proposed
approach was able to outperform existing approaches that were not graph-based, or
incorporated other types of graphs (e.g. constructed from dependency parsers). We
found that usage of a GCN encoder also provided decent performance with the pro-
posed graph structure, thus confirming our first hypothesis. It is important to note that
another, potentially more advanced, graph encoding mechanism can provide higher
performance.

Analysis on the types of nodes and edges revealed that the most impactful nodes
were the ones corresponding to sentences. In fact, the complete removal of sen-
tence nodes disabled the detection of inter-sentence relations. We explained this phe-
nomenon through the creation of “shortcuts” between named entities through sentence
nodes. Their incorporation produced more robust edge representations, compared to
only using entity and mention nodes, which resulted in the creation of very long infer-
ence paths. Consequently, we again confirmed our observation from sentences (Chap-
ter 4), that longer walks are less informative compared to shorter ones. Furthermore,
the introduction of indirect, non-adjacent, sentence-to-sentence edges was decisive for
detection of inter-sentence associations. This finding supported a smaller hypothesis
for the construction of these connections; that is, that intermediate sentences might
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not be relevant or informative for the extraction of relations. Our second hypothe-
sis was confirmed by observing that, for both corpora, the introduction of document
level information compared to only using information from sentences yielded higher
performance for intra-sentence relations.

Cases of errors produced by the model include missing co-reference links, identi-
fication of relations between hypernyms and not hyponyms, as well as wrongly classi-
fying as positive speculative relations. Based on the above observations, we can draw
the following conclusions:

• Document-level associations are important for both intra- and inter-sentence re-
lations.

• We can construct document-level graphs without the need for external depen-
dency tools and achieve good performance in detection of inter-sentence rela-
tions.

Overall, the work presented in this PhD thesis proved first, that graph structures
are an effective structure representation for tasks that model connections between el-
ements, such as relation extraction. Secondly, additional information from different
interactions between pairs are beneficial for sentences and documents that contain two
or more entities. We attempted to look at the task in the form of a graph, modelling
edges as dense feature vectors. The success of the method comes with certain limita-
tions, though we believe it might highlight a new angle on how pairs and their interac-
tions can be represented. In addition, the proposed walk-based mechanism can further
be used independently, on top of different architectures, in order to encode interac-
tions between other types of nodes that are not necessarily named entities. We believe
that the presented work will inspire further investigation of graph-based models and
particularly how we can use other interactions in a present context to our advantage.

7.2 Limitations and Future Work

In this dissertation, we investigated only partially the task of Relation Extraction within
and across sentences. Our proposed approach, although proved useful for the tasks at
hand, has several limitations which should be addressed in future work.
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7.2.1 Extension to Other Tasks

The proposed approach does not explicitly rely on any domain-specific resources and
tools, such as POS taggers, dependency parsers or dictionaries. However, a major
limitation of the work could consider that, in all of the methods, we assumed named
entities and their semantic categories as given, regarding the case of sentence-level RE.
For document-level RE, we also assumed that entity linking is performed in advance
and mentions are grounded to KB IDs. Overall, we deemed that this choice is sensible
given the recent advances in named entity recognition. However, it is expected that
these assumptions will drastically affect the detection performance in more realistic
scenarios. For this reason, we also performed experiments on noisy corpora, i.e. when
annotations were produced automatically and not provided by experts, for both the
case of sentences and documents. Despite a few discrepancies that are expected when
the input is noisy, the proposed model performed reasonably. We believe that this is a
strong indication that our proposed approach can work well without necessarily using
gold annotations.

A certain step towards future work is to combine named entity recognition and re-
lation extraction in an end-to-end manner, similarly to prior work (Roth and Yih, 2004;
Miwa and Bansal, 2016; Bekoulis et al., 2018b). Standalone NER techniques already
reach state-of-the-art performance. The joint training of named entities is generally
beneficial for relation extraction. We expect that an end-to-end approach can benefit
from our method, since it considers interactions between all entities in the sentence.
This method is likely to force prediction of more entities, while simultaneously restrict
relations between valid pairs of entities.

The method can also be extended to other tasks that can be converted into graphs.
For instance, dependency parsing can be considered a relevant task. However, the num-
ber of nodes and consequently edges will be much larger, since the nodes correspond
to the words in a sentence. A straightforward application of the document-level model
can be for documents that do not have concept-level annotations. This can be realised
by simply ignoring the concept (E) nodes. Additionally, at the current state, the model
can be used to predict ternary relations, i.e. relations that consist of three arguments.
This is realised in the walk-generation step that produces representations among three
entities, which can be directly classified, before aggregation. Finally, we would like to
adapt a semi-supervised direction in the future, in order to produce less data hungry
models that can show better generalisation capabilities.
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7.2.2 Memory Requirements

Another, more technical, drawback of the model is the amount of memory it requires
to store the edge representations, mostly for document-level RE. If a graph contains N

nodes, the overall number of edges is N2. Since we consider nodes as entities (or other
elements, but not words), the total number of nodes in our model is smaller than other
approaches. However, we construct more representations. This can be restrictive in
terms of memory usage, in cases were the graphs are constructed from full documents
or the method is applied to Knowledge Base graphs.

A solution to this problem is to enable shared edge representations instead of using
completely different representations for all of the edges in the graph. An interesting
direction is to share some of the edge representations based on criteria that can either
stem from heuristics, or from the graph structure itself. For example, we can share
representations of edges that are similar to other edges using some similarity function
between their vectors, or share edges between nodes that have a number of paths in
common. Edge sharing might also result in improved performance since, despite our
intuition that pairs depend on different contexts, there are several similarities between
them in a textual snippet, which can be modelled via partial edge representation shar-
ing.

7.2.3 Edge Engineering

In Chapters 4 and 5 we investigated different ways to construct an initial edge represen-
tation and, in more detail, how to incorporate additional context information into the
representation. We found that the inclusion or exclusion of context has an impact on
the model performance, although it is overall helpful mostly when using longer walks.
An explanation might be that, when creating representations of long walks, the initial
information of the edge is gradually forgotten and additional context can be proven
useful.

In order to further investigate the impact of the edge representation one can perform
edge-engineering. We investigated three types of attention mechanisms: vector (Zhou
et al., 2016b), scale-dot (Vaswani et al., 2017) and argument-based (Wang et al., 2016)
for context construction. However, we deem that the best choice of how one should
encode the context of a pair (or incorporate additional context at all) largely depends
on the task, the data at hand and the walk construction. Looking at recent approaches,
bidirectional multi-head attention mechanisms (Devlin et al., 2019) can encode several
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useful information from the context and, as a result, might be a more suitable choice
for our method.

This is also related to edges constructed for document-level interactions, as de-
scribed in Chapter 6. In these cases, since the graph is not fully connected, several
properties of the graph can be used as additional edge-features. For instance, the degree
of each node or the number of mentions residing in a sentence in mention-to-sentence
edges. Instead of multi-dimensional features, we could convert this into edge weights
which could be incorporated into the walk-based mechanism.

7.2.4 Walk-based Inference

Another limitation of our model, as pointed out in Chapter 4, is that the same walks
length is used across all pairs in the sentence. However, different pairs typically require
different inference, as indicated by our analysis on both the general and the biomedical
domains. In order to address this, one should allow a different number of walks for
each pair, which subsequently points to a potential pair-wise β weight. From our over-
all experiments, it appears that a value of β from 0.7 to 0.9 is effective for walks length
larger or equal to 4, while walks of length 2 work well with a value of 0.5. However,
this can be considered a hyper-parameter and, as such, be separately tuned or learned
automatically during training. We believe that the latter is more suitable, since both the
length of the walks and their weighting factor can be automatically adjusted for each
dataset.

Another aspect of the walk-based mechanism is the aggregation step. Currently, we
consider summing the different representations that result from usage of intermediate
nodes. However, we could use a weighting scheme that can be learned during training
to give different amount of importance to different walks. A simple scheme can again
be an attention mechanism, that will weight the importance of each walk representation
before aggregation.

On the other hand, we would like to investigate a combination of the edge-oriented
approached with Graph Convolutional Neural models, due to their success in several
tasks. So far, there have been several recent methods that take advantage of edge-based
features in the form of weights (Beck et al., 2018; Vashishth et al., 2018; Schlichtkrull
et al., 2018), thus an extension to multi-dimensional edge vectors seems interesting.



Appendix A

Hyper-parameter Settings

We report the hyper-parameter settings for each model in the aforementioned chapters
with appropriate references.

A.1 Chapter 4

For the ACE 2005 dataset, we tuned the model hyper-parameters using the RoBO
toolkit (Klein et al., 2017). The same hyper-parameters were used for the ACE 2004
dataset.

Parameter

Optimisation Method Bohamian
Maximiser scipy
No iterations 30
Acquisition Function log ei
Acquisition Optimiser L-BFGS-B
n init 3

Learning rate [0.001, 0.003]
Gradient clipping [5, 30]
Input Layer dropout [0.0, 0.5]
Output Layer dropout [0.0, 0.5]
Regularisation [10−7, 10−4]
Entity type dimension 10, 15, 20, 25
Relative position dimension 10, 15, 20, 25
β [0.5, 0.9]

Table A.1: Tuning settings and hyper-parameter range for the ACE 2005 dataset.

The best parameters for each model are summarised in Table A.2
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Parameter
ACE 2005 / 2004

L = 1 L = 2 L = 4 L = 8

β - 0.72 0.77 0.88
Batchsize 10 10 10 10
Word dimension 200 200 200 200
Embedddings Wikipedia / Google
Attention Additive
LSTM dimension 100 100 100 100
Entity Type dimension 25 20 20 20
Relative Position dimension 25 25 25 25
Input Layer dropout 0.13 0.26 0.11 0.49
Output Layer dropout 0.38 0.38 0.32 0.36
Learning Rate 0.0017 0.003 0.002 0.001
Optimiser Adam Adam Adam Adam
Regularisation 6.1·10−5 0.0001 5.7·10−5 1.88·10−5

Gradient Clipping 30 8.6 24.4 10.5
Patience 5 5 5 5
Early stopping metric Micro F1-score
Parameter Averaging X X X X

Table A.2: Hyper-parameter settings of the walk-based model that were used for the
ACE 2005 and ACE 2004 datasets, for different number of walks L.

For the Wikidata dataset, we selected hyper-parameters based on the best perform-
ing settings of the ACE dataset.

Parameter WikiData SemEval-2010

β 0.75 -
Batchsize 64 10
Word dimension 50 200
Attention Additive Additive
Embedddings Glove 6B Wikipedia
LSTM dimension 100 100
Entity Type dimension - -
Relative Position dimension 25 25
Input Layer dropout 0.5 0.0
Output Layer dropout 0.3 0.5
Learning Rate 0.002 0.003
Optimiser Adam Adam
Regularisation 10−5 10−4

Gradient Clipping 10 5
Patience 5 5
Early stopping metric Validation Loss Macro F1-score
Parameter Averaging X X

Table A.3: Hyper-parameter settings of the walk-based model for WikiData and
SemEval-2010 datasets.
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A.2 Chapter 5

For the n2c2 and ChemProt datasets, we tuned the model parameters with the RoBO
toolkit (Klein et al., 2017), with the following settings.

Parameter n2c2 ChemProt

Optimisation Method Bohaiann BayesOpt
Maximiser scipy scipy
No iterations 10 10
Acquisition Function log ei ei
Acquisition Optimiser L-BFGS-B gp mcmc
n init 3 3

Learning rate [0.001, 0.003] [0.001, 0.003]
Gradient clipping [5, 30] [5, 30]
Input Layer dropout [0.0, 0.5] [0.0, 0.5]
Output Layer dropout [0.0, 0.5] [0.0, 0.5]
Regularisation [10−7, 10−4] [10−7, 10−4]
Entity type dimension 16, 20, 26, 32 10
Relative position dimension 15, 20, 25 25
β [0.5, 0.9] [0.5, 0.9]

Table A.4: Tuning settings and hyper-parameter range for the n2c2 and the ChemProt
Datasets.

The final parameters used for both datasets are summarised in Table A.5.

A.3 Chapter 6

For the experiments conducted with the CDR and GDA datasets, we used the develop-
ment set to identify the stopping training epoch and tune the number of inference itera-
tions. Except from these parameters, all experiments used the same hyper-parameters,
with a fixed initialisation seed. For the CDR dataset EoG, (Full) and (Sent) models
performed best with l = 8,2,4 inference steps, respectively. The chosen batchsize was
equal to 2. For the GDA dataset, EoG and EoG (Sent) performed best with l = 16 and
EoG (Full) with l = 4 inference steps. The chosen batchsize was equal to 3. For all
experiments performance was measured in terms of micro Precision (P), Recall (R)
and F1-score (F1). We list the hyper-parameters used to train the proposed model in
Table A.6.
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Parameter
n2c2 ChemProt

L = 8 L = 1 L = 2 L = 4 L = 8

β 0.75 - 0.5 0.76 0.85
Batchsize 3 10 10 10 10
Word dimension 200 200 200 200 200
Word Embeddings Random Random Random Random Random
Attention Scale-Dot None None Scale-Dot Scale-Dot
LSTM dimension 100 100 100 100 100
Entity Type dimension 26 10 10 10 10
Relative Position dimension 25 25 25 25 25
Input Layer dropout 0.46 0.5 0.0 0.008 0.33
Output Layer dropout 0.34 0.0 0.0 0.1 0.43
Learning Rate 0.002 0.003 0.003 0.003 0.0028
Optimiser Adam Adam Adam Adam Adam
Regularisation 2.6·10−4 10−4 10−4 10−4 5.1·10−5

Gradient Clipping 18.86 5 16.44 22.82 17.26
Patience 5 5 5 5 5
Early stopping metric Micro F1 Micro F1 Micro F1 Micro F1 Micro F1
Parameter Averaging X X X X X

Table A.5: Hyper-parameter settings of the walk-based model for the n2c2 and the
ChemProt BioCreative VI datasets for the corresponding number of walks L.

Parameter CDR GDA

β 0.8 0.8
Batch size 2 3
Word dimension 200 200
Embeddings PubMed Random
LSTM dimension 100 100
Edge dimension 100 100
Node type dimension 10 10
Inference iterations [0,5] [0,5]
Distance dimension 10 10
Dropout word embedding layer 0.5 0.5
Dropout classification layer 0.3 0.3
Learning rate 0.002 0.002
Optimiser Adam Adam
Regularisation 10−4 10−4

Gradient clipping 10 10
Early stop patience 10 5
Early stop metric Micro F1 Micro F1
Parameter Averaging X X

Table A.6: Hyper-parameter settings used in the reported experiments for the CDR and
the GDA datasets.
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Marc-André Carbonneau, Veronika Cheplygina, Eric Granger, and Ghyslain Gagnon.
Multiple instance learning: A survey of problem characteristics and applications.
Pattern Recognition, 77:329–353, 2018.

Rich Caruana, Steve Lawrence, and C. Lee Giles. Overfitting in neural nets: Backprop-
agation, Conjugate Gradient, and Early stopping. In Advances in Neural Information

Processing Systems, pages 402–408. MIT Press, 2001.

Augustin Cauchy. Méthode générale pour la résolution des systemes d’équations si-
multanées. Comptes rendus de l’Académie des Sciences Paris, 25(1847):536–538,
1847.



BIBLIOGRAPHY 193
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Bouchard. Complex embeddings for simple link prediction. In Proceedings of the

33nd International Conference on Machine Learning, ICML, volume 48 of JMLR

Workshop and Conference Proceedings, pages 2071–2080. JMLR.org, 2016.



220 BIBLIOGRAPHY
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