
COST–EFFECTIVE DATA
WRANGLING IN DATA LAKES

A thesis submitted to The University of Manchester
for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2020

By
Alex T. Bogatu

School of Computer Science

Contents

Abstract 10

Declaration 11

Copyright 12

Acknowledgements 13

1 Introduction 14
1.1 The importance of data preparation 15
1.2 Motivation: data preparation challenges and opportunities 16
1.3 Data preparation through wrangling 17

1.3.1 Data lakes . 18
1.3.2 Data wrangling . 20

1.4 Aim, objectives and research contributions 22
1.5 Overview of thesis structure . 25

2 Background: data preparation for Big Data 27
2.1 The data warehouse . 28

2.1.1 Building the data warehouse 28
2.1.2 The ETL process . 29
2.1.3 Schema–on–write . 31

2.2 The data lake . 32
2.2.1 Building the data lake . 32
2.2.2 The data wrangling process 34
2.2.3 Schema–on–read . 37

2.3 Cost–effective data wrangling . 38
2.3.1 The scalability challenge 42

2

2.3.2 The heterogeneity challenge 42
2.4 Representative data wrangling systems 43

2.4.1 Wrangler . 43
2.4.2 Data Tamer . 44
2.4.3 Data Civilizer . 45
2.4.4 Value Added Data Systems (VADA) 46

2.5 Summary and conclusions . 46

3 Dataset discovery in data lakes 48
3.1 Motivation and desiderata . 49
3.2 Background and related work . 50

3.2.1 Dataset relatedness . 50
3.2.2 Sources of relatedness evidence 51
3.2.3 Scalable relatedness discovery through Locality Sensitive

Hashing . 53
3.2.4 LSH hash functions and similarity measures 56
3.2.5 Dataset discovery: state–of–the–art 57

3.3 Overview and contributions . 59
3.4 Attribute relatedness . 62

3.4.1 Relatedness evidence . 62
3.4.2 Distance measures . 63
3.4.3 Index construction . 65
3.4.4 Attribute relatedness: the numeric case 67

3.5 Table relatedness . 68
3.5.1 Type–specific aggregation scheme 71
3.5.2 Dataset–level aggregation scheme 72

3.6 Extending relatedness through join paths 74
3.7 Dataset discovery evaluation . 76

3.7.1 Data repositories used in evaluation 76
3.7.2 Baselines and reported measures 78
3.7.3 Individual effectiveness . 81
3.7.4 Comparative effectiveness 82
3.7.5 Comparative efficiency . 85
3.7.6 Impact of join opportunities 87

3.8 Summary and conclusions . 91

3

4 Automatic format transformation 93
4.1 Motivation and desiderata . 94
4.2 Background and related work . 95

4.2.1 Format transformation: definition 96
4.2.2 Format transformation through program synthesis 96
4.2.3 Format transformation: state–of–the–art 99

4.3 Overview and contributions . 101
4.4 Transformation language . 103

4.4.1 Syntax and language elements 103
4.4.2 Language semantics . 106

4.5 Synthesis algorithm . 108
4.5.1 Transformation search . 110

4.6 Format transformation evaluation 120
4.6.1 Data repositories used in evaluation 120
4.6.2 Reported measures . 121
4.6.3 Comparative effectiveness 122
4.6.4 Comparative efficiency . 124

4.7 Summary and conclusions . 125

5 Data format transformation in data lakes 128
5.1 Motivation and desiderata . 129
5.2 Background and related work . 130

5.2.1 Matching relationships . 131
5.2.2 Functional dependencies 132
5.2.3 State–of–the–art . 133

5.3 Overview and contributions . 134
5.4 Discovering examples: FD–based scheme 136

5.4.1 Examples generation . 137
5.4.2 Examples validation . 138

5.5 Discovering examples: weighted scheme 139
5.5.1 Examples generation . 140
5.5.2 Incremental examples selection 145

5.6 Evaluation . 149
5.6.1 Data repositories used in evaluation 150
5.6.2 Reported measures . 151
5.6.3 Effectiveness of FD based scheme 153

4

5.6.4 Effectiveness of weighted scheme 157
5.6.5 Efficiency evaluation . 159

5.7 Summary and conclusions . 162

6 Enabling data profiling in data lakes 165
6.1 Motivation and desiderata . 166
6.2 Background and related work . 167

6.2.1 Inclusion dependencies . 167
6.2.2 State–of–the–art . 168

6.3 Overview and contributions . 169
6.4 Transformation–informed IND discovery 171
6.5 T–IND discovery evaluation . 174

6.5.1 Data repositories used in evaluation 174
6.5.2 Experimental setup and reported measures 175
6.5.3 Evaluation results . 176

6.6 Summary and conclusions . 181

7 Conclusions and future work 183
7.1 Thesis overview . 183
7.2 Main contributions and their significance 185

7.2.1 Data discovery contributions 185
7.2.2 Format transformation contributions 187
7.2.3 Data profiling contributions 188

7.3 Impact of contributions . 189
7.4 Unanswered questions and future work 189
7.5 Final reflections . 192

Bibliography 194

Word Count: 53610

5

List of Tables

2.1 data.gov.uk domains . 35

3.1 Example distances for Figure 3.1 71
3.2 Space overhead for different repositories. 88

4.1 Index entries . 117
4.2 Format transformation types . 121

5.1 Regex primitives . 142
5.2 Weight examples . 145
5.3 Data sources used in evaluation 151
5.4 Resulting column-pairs with example values. 155
5.5 Results of Experiments 5.1 and 5.2 156
5.6 Results of Experiment 5.3 . 157
5.7 Results of Experiment 5.4 . 158
5.8 Results of Experiment 5.5 . 160

6.1 Data sources used in evaluation 176
6.2 Format transformation examples 176
6.3 Results of Experiment 6.1 . 177
6.4 Results of Experiment 6.2 . 180

6

data.gov.uk

List of Figures

2.1 Simplified illustrations of the two main data warehouse implemen-
tation methodologies. 29

2.2 Simplified illustration of the approach to data analysis in data
lakes with examples of possible data wrangling steps necessary for
preparing the data. 33

2.3 Different statistics measured on the constituent tables of a real–
world, open–government data lake: data.gov.uk 35

2.4 Simplified illustration of the interaction between possible steps
undertaken when performing cost–effective data wrangling. 40

3.1 Examples of source and target records involved in a dataset discov-
ery process. 60

3.2 Simplified illustrations of the data discovery process applied on a
collection of datasets. 61

3.3 Illustration of the existing correlation between Equation 3.8 (i.e.,
Euclidean distance) and the probability of two tables being related. 73

3.4 Different statistics measured on the constituent tables of the Syn-
thetic and Smaller Real repositories. 78

3.5 Average individual precision and recall measured on the results
of 100 dataset discovery processes with targets randomly selected
from Smaller Real. 82

3.6 Average precision and recall measured on the results of 100 dataset
discovery processes with targets randomly selected from Synthetic. 84

3.7 Average precision and recall measured on the results of 100 dataset
discovery processes with targets randomly selected from Smaller
Real. 84

7

data.gov.uk

3.8 Average LSH indexing and searching performance measured on the
results of 100 dataset discovery processes with targets randomly
selected from Synthetic or Smaller Real. 86

3.9 Average coverage and attribute precision measured on the results
of 100 dataset discovery processes with targets randomly selected
from Synthetic. 89

3.10 Average coverage and attribute precision measured on the results
of 100 dataset discovery processes with targets randomly selected
from Smaller Real. 91

4.1 Triple of constraints that characterises the proposed transformation
language. 104

4.2 Formal representation of the proposed transformation language. . 105
4.3 A sampling of different ways of generating parts of an output string

from the input string. 110
4.4 FST representations of fs and ft 113
4.5 Edit transducer ET that succinctly describes all transitions allowed

between elements of an alphabet Σ = {A, N, P}. 113
4.6 Edit operation search space: all possible combinations of edit op-

erations that transform the fs into ft. 114
4.7 FST representation of the simplest transformation from fs = ANPA

to ft = NANAP . 115
4.8 Average format transformation precision and recall resulted from

a 10–fold cross–validation process. 123
4.9 Average format transformation efficiency resulted from a 10–fold

cross–validation process. 125

5.1 Examples of source input, target input, intermediate results, and
final results of the examples generation process. 136

5.2 Examples of source and target records from a matching column pair.141
5.3 Examples of source and target tokenised values from a matching

column pair . 142
5.4 Examples of token–sharing buckets containing source and target

values. 143
5.5 Examples of paired source and target values from a matching col-

umn pair. 144

8

5.6 Examples of source and target records from a matching column pair.147
5.7 Examples of source and target records aligned by Algorithm 5.2. . 147
5.8 Pairs of source–target value pairs in the initialisation phase. . . . 148
5.9 Average synthesis time of SynthEdit measured on 100 runs. 162

6.1 Simplified illustration of the constituent steps of a T–IND discovery
process. 171

9

Abstract

Data analytics stands to benefit from the increased availability of datasets that
are held without their conceptual relationships being explicitly known. When
collected, these datasets form a data lake from which, by processes like data prepa-
ration, also known as data wrangling, specific target datasets can be constructed
that enable value–adding analytics. Given the potential vastness and heterogene-
ity of data lakes, obtaining value from such targets often requires significant prior
effort in preparing the data for analysis. For example, data wrangling is reported
to take as much as 80% of the time of data scientists. The issue then arises of
how to decrease this cost.

This thesis investigates what makes data preparation costly and how data
preparation can become more cost–effective through automation. Specifically,
this thesis inquires into two challenges that have been insufficiently covered by
the state–of–the–art, viz., how to automatically pull out of the data lake those
datasets that might contribute to wrangling out a given target, and how to
automatically homogenise the representation of their instance value. We refer to
the former as the problem of dataset discovery and to the latter as the problem
of format transformation. This thesis contributes effective and efficient solutions
to both problems.

The work described in this thesis should be of interest to researchers and
professionals in the areas of data analysis and data wrangling, who, in the process
of preparing the data for analysis, confront themselves with heterogeneously
represented data originating from many autonomous sources.

10

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other
institute of learning.

11

Copyright

i. The author of this thesis (including any appendices and/or schedules to
this thesis) owns certain copyright or related rights in it (the “Copyright”)
and s/he has given The University of Manchester certain rights to use such
Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard
or electronic copy, may be made only in accordance with the Copyright,
Designs and Patents Act 1988 (as amended) and regulations issued under it
or, where appropriate, in accordance with licensing agreements which the
University has from time to time. This page must form part of any such
copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other
intellectual property (the “Intellectual Property”) and any reproductions of
copyright works in the thesis, for example graphs and tables (“Reproduc-
tions”), which may be described in this thesis, may not be owned by the
author and may be owned by third parties. Such Intellectual Property and
Reproductions cannot and must not be made available for use without the
prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication
and commercialisation of this thesis, the Copyright and any Intellectual
Property and/or Reproductions described in it may take place is available
in the University IP Policy (see http://documents.manchester.ac.uk/
DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations
deposited in the University Library, The University Library’s regulations (see
http://www.manchester.ac.uk/library/aboutus/regulations) and in
The University’s policy on presentation of Theses

12

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

First and foremost, I would like to thank my supervisors, Prof. Norman W. Paton
and Dr. Alvaro A. A. Fernandes, for their continuous support and invaluable
advice. I would have never completed a PhD without them and I could not have
asked for better supervisors.

I would like to thank Dr. Nikolaos Konstantinou for all the help he provided,
and to my colleagues and friends in the VADA Project group for their compan-
ionship. My appreciation and recognition to my colleagues from the Information
Management Group and from the School of Computer Science at the University
of Manchester for providing a suitable environment to complete my research.

Finally, I would like to offer my sincere gratitude to my family for their
invaluable support during my PhD studies, and to my future wife, Lacra, for her
love and support, and for putting up with me while I finished this thing.

13

Chapter 1

Introduction

It is said that “information is power”, but this is only partially true when it comes
to information extracted from available data by organisations, an action aimed
at improving their decision–making processes. The power is not conferred by the
simple possession of data alone, but by the ability to manage and analyse it as well.
Market research analysts predict the global Big Data software market to be worth
$92 billions by 2026 [Wik]. This growth is driven by a data “deluge” that promises
virtually inexhaustible resources for analysis that can inform business decision
making processes or unveil new commercial opportunities. But the volume of
available data tends to outpace the capabilities of traditional data management
technologies: it has become increasingly expensive for businesses to manage the
available data pools, with many of the tasks required to prepare the data for
analysis being done manually, through ad–hoc scripts [Data]. However appealing
the promises of data analysis and data–centric business intelligence, in practice,
the data fuelling these opportunities is challenging to interpret and to curate
before it can be useful to analytical algorithms [Datc].

The focus of this thesis is, therefore, on cost-effective data preparation. The
general aim is to explore the extent to which the cost of preparing data for
analysis, a process commonly known as data wrangling [RHH+17], can be reduced
through automation, while preserving the opportunities that stem from increased
availability of data. At the same time, we acknowledge that automatic solutions
are unlikely to be able to match the reach or quality of outcomes obtainable by
data scientists, but any level of automation implies the possibility of added value
for minimal cost.

14

1.1. THE IMPORTANCE OF DATA PREPARATION 15

This chapter continues with the scene setting and discusses why data prepara-
tion is important. Then, it presents the motivation for automatic data preparation
and the context in which it becomes necessary. Lastly, the objectives and research
contributions are described, and an overview is offered on what is to follow in the
remaining chapters.

1.1 The importance of data preparation

The need for, and interest in data preparation have become widespread with
the advent of data warehouses, a notion first proposed by William Inmon in the
1970s. Broadly speaking, the approach taken to prepare the data with which to
build the data warehouse was largely governed by three main processes: Extract,
Transform, and Load (ETL) [Inm92]. The extraction process obtains raw data
from different data sources. The transformation process performs data cleaning
and integration in order to merge the data from multiple sources. The loading
process moves the clean and merged data into the data warehouse where it is
organised in terms of dimensions and facts [Inm92]. Users access the warehoused
data primarily to perform analytical tasks on it. Therefore, preparing data for
analysis largely meant cleaning and structuring the data according to the rules
embodied in the ETL processes used to populate the warehouse. It is clear,
then, that data preparation was (and still is) a vital step, one that ensures the
availability of clean and organised data for answering analytical questions.

In 2010, James Dixon, came up with the notion of a data lake [Dix], arguing
that the traditional warehouse is limited due to size restrictions and narrow search
parameters, hindering the full potential for analysis by imposing a predefined,
fixed schema on the stored datasets. This led to the proposal of data lakes as a
new and more liberal type of data repository, one that stores datasets in their
original raw format, postponing any concerns with structure or with existing
inconsistencies until analysis time. Such a repository promises unrestricted and
malleable data analysis by being open to future opportunities that might not be
known at population time. Storing unprocessed data, however, implies that data
preparation will have to be performed at analysis time, and, potentially, in ways
that are specific to the intended analysis. Therefore, the need for data preparation
is as present as ever in the case of data lakes, and comes with new challenges,
some of which motivate this work, as we now describe.

16 CHAPTER 1. INTRODUCTION

1.2 Motivation: data preparation challenges and
opportunities

Much analysis has been conducted to better understand the needs and opportu-
nities of data management for analytics. This has quickly revealed that taming
the data and extracting its secrets is no free lunch. For example, a 2016 report
on data science [Data] revealed that data scientists spend up to 80% of their time
preparing the data for analysis and only 20% of their time analysing it. Two years
later, a similar report outlined similar figures, with 55% of the respondents citing
that the quantity and quality of the training data was their biggest challenge that
takes up most of their time [Datc]. Such results have become the raison d’etre
for many research efforts, with many papers on data preparation citing the 80/20
rule of working with data, e.g., [KHP+11], [KPHH11], [DFA+17], [KKA+17].

There is a clear need for lowering the data preparation time but this is made
more difficult by the ever increasing availability of potentially useful, heteroge-
neous data. Consider, for instance, the task of estimating customer satisfaction
with a particular (or a range of) products. A company interested in such insights
can have multiple sources of evidence at its disposal: social media posts, e.g.,
tweets about the product, feedback (in the form of comments) on the product
from specialised reviewing platforms, internal feedback obtained from clients, etc..
Each source of evidence can provide data in different formats ranging from un-
structured text to relational data, obeying different formatting rules. Furthermore,
not all available data may be relevant for the product(s) in question or contain
the targeted characteristics. These are only few of the challenges that have to
be overcome when working with large volumes of heterogeneous data such as are
the focus in this dissertation. Also, the studies cited above estimate that 71% of
the interviewed data scientists work primarily with structured data [Datc], so the
techniques proposed in this dissertation focus on relational data, e.g., relational
database tables, CSV files, etc. Other challenges that deal with data governance,
security, or contextual metadata, such as studied in [BBC+15] or [HSG+17], are
acknowledged as contributing to the risk of transforming the data lake into a
data swamp and making the process of data preparation expensive, but are not
addressed in this thesis.

Having touched on the challenges of data preparation, this thesis argues that

1.3. DATA PREPARATION THROUGH WRANGLING 17

data is not only valuable for informing business decisions but also for understand-
ing its real world domain, its structure, and the relationships that hold in it, all
of which can inform data preparation tasks. In other words, given a repository of
data and an analytical goal, there is an opportunity for harnessing such data char-
acteristics to answer questions such as What data should be used for the current
requirements? and What operations are needed to clean the input data? Ulti-
mately, the answers to such questions can inform the specification of which data
preparation steps should be performed, thereby opening the way for automating
those steps and decreasing the preparation cost. Specifically, in this thesis, we
address questions related to (i) automated dataset discovery, which aims to enable
a targeted run of preprocessing tasks onto a relevant subset of sources, with a
view to decreasing the overall cost of preparing the data, and (ii) automated
normalisation of textual value representation, which aims to offer cleaner, more
homogeneous data, as required by most analysis tools and essential for effectively
performing other preparation steps that extract evidence from textual values. We
argue that our ethos of automated dataset discovery and format normalisation
decreases the cost of data preparation (i) by reducing the size of the input through
the discovery of the relevant datasets for the task at hand, and (ii) by relieving
the user from having to write transformation scripts that normalise the format
representation of the values. These cost–reduction opportunities remain mostly
unexploited by the research community, and, when they have been exploited, the
contributed approaches either do not scale well when applied to large and diverse
repositories, or require expert–level manual user intervention. More details on
how the state–of–the–art has exploited these opportunities, and on how our work
relates to existing approaches, are given in the sections that now follow.

1.3 Data preparation through wrangling

The previous section laid out the motivation behind our vision, viz., to enable
cost–effective data preparation, in the absence of expert–level user knowledge,
through the automation of data discovery (which selects the input to a given
analytical task), and through the automation of format transformation (which
normalises that input). Before presenting how our work contributes to such a
vision, and to have a more complete picture as to why such a vision would be
useful, we now briefly introduce the application contexts that make rapid and

18 CHAPTER 1. INTRODUCTION

cost–effective data preparation imperative, i.e., data lakes, as well as the tasks
that are commonly performed to prepare the data, i.e., data wrangling.

1.3.1 Data lakes

The ever increasing availability of data with potential for analysis has produced
a shift from the purposely–designed enterprise data warehouse to a more liberal,
unconstrained dataset repository where information can be stored in its original
representation, without concern for its structure or cleanliness until analysis
time. When asked what is the drive for such a change, businesses often invoke
the opportunities for fast development cycles, exploration and innovation with
significant gains to their competitive edge [HKN+16]. These opportunities become
tangible when data engineers and scientists can generate and use data without the
constraints imposed by the predetermined and largely immutable structure that is
characteristic of traditional data warehouses. The downside of data lakes is that
organisations have to overcome the common challenges that stem from the four
V ’s of Big Data [FGL+16]: Volume relating to the scale (the number of datasets
and their sizes) of repositories; Variety relating to the diversity of data sources,
including publicly available data, internally generated datasets, web extracted
data, etc.; Velocity relating to the rate at which new data is ingested or existing
data is changed; and Veracity relating to the unavoidable uncertainty inherent in
such repositories. Research on data lake management by leaders in the market,
e.g., [HKN+16], [TSRC15], suggests that organisations tend to employ different,
often ad–hoc, and very specific tools and techniques to manage their data lakes.
Such tools often require highly specialised user skills and the data preparation
process is often governed by internally developed best practices and norms.

This thesis does not address organisation–specific data lake management rules
and, therefore, we employ a broad definition of what a data lake is, and we
argue that the proposed contributions are independent from organisation–specific
characteristics and relevant for a broad range of data lake types. In other words,
this thesis does not make any assumptions regarding the size of the repository,
the domain of the datasets (i.e., we do not use domain–specific knowledge), the
existence of metadata for the datasets, or, crucially, regarding interrelationships
and similarities between datasets. We do assume that the data lake consists of
tabular datasets, such as relational database tables or CSV files.

1.3. DATA PREPARATION THROUGH WRANGLING 19

Definition 1.1. A data lake is a centralised repository that allows the storage of
datasets in various formats, with potential for future analysis, at any scale, from
any domain, possibly without any explainable metadata beyond attribute names
and their domain–independent attribute types (i.e., string, integer, etc.).

There are a number of characteristics of a data lake stemming from Definition
1.1, some of which have been already introduced in Section 1.2, that define the
need for cost reduction through automation in data preparation:

• A data lake can contain a large number of datasets from autonomous sources.
This means that each new analytical task could require a different subset of
datasets to be prepared and analysed. The challenge here is to identify relevant
datasets, lest one is forced to do data preparation over the entire data lake.

• The datasets are stored with their original schema and each new analytical task
might require only a subset/combination of the attributes of each dataset. The
challenge here is to identify those attributes and how to, potentially, integrate
them so that analysis can be conducted on a unified set of values. Note that,
here, we do not include cases requiring the entire representation of the data to be
transformed, e.g., semi–structured data transformed to a tabular representation,
since we assume all datasets to be in tabular format.

• The datasets can exhibit inconsistent levels of available metadata, and even no
metadata at all. The challenge here is to identify other sources of evidence that
would allow the correlation of similar datasets/attributes relevant for the given
analytical task and to reliably extract that evidence.

• The attribute values in each dataset can be represented in different formats.
This means that any task, be it part of analysis or preparation, that relies
on evidence extracted from such values would be impacted by inconsistent
representations. The challenge here is to normalise the representation of values
for the datasets that are to be analysed.

Note that the above list of challenges is not exhaustive, but rather represen-
tative with respect to Definition 1.1. With respect to the 4 V ’s of Big Data
mentioned before, the above challenges are mostly characteristic of Volume and
Variety, and this is our focus in this thesis.

20 CHAPTER 1. INTRODUCTION

The orchestration of preparatory tasks that deal with challenges, such men-
tioned above, is known as data wrangling and the next section briefly introduces
the notion.

1.3.2 Data wrangling

We have pointed, in Section 1.1, to the importance of data preparation for analysis
over both data warehouses and data lakes. Just as data preparation in data
warehouses is carried out by ETL processes, data preparation in data lakes uses
data wrangling techniques, i.e., a collection of methods that can enable the
extraction, preparation and integration of large volumes of data originating from
diverse autonomous sources, for the use of different types of users, in a variety of
use cases that often exceed the capabilities of state–of–the–art ETL tools [HHK18],
[RHH+17].

Current data wrangling solutions aim to enable data preparation for users
without deep software engineering skills, by orchestrating the execution of tasks
ranging from data discovery, through data cleaning and transformation, to data
integration [KHP+11], [FGL+16]. In this thesis, we follow the same path laid out
by previous research on data wrangling and define the process as follows.

Definition 1.2. Data wrangling consists of orchestrating a collection of inter-
connected, often user–guided, processes that select, transform, clean, match and
merge the data according to some target specification, with the aim of creating a
data product suitable for downstream analysis.

Definition 1.2 introduces important characteristics of data wrangling: it is a
multi–step process (e.g., [FGL+16], [KHP+11]), involving specialised techniques,
most of them complex enough to sustain their own research areas, e.g., schema
matching [RB01], data cleaning [ACD+16], etc. In line with Definition 1.2, in this
thesis, we consider data wrangling as consisting of the following steps:

• Data discovery, which identifies the relevant datasets for the task in hand,
which are then provided as input for remaining wrangling steps.

• Data profiling, which identifies structural relationships, e.g., inclusion of
instance values, between the attributes of the relevant datasets.

1.3. DATA PREPARATION THROUGH WRANGLING 21

• Schema matching, which postulates matching relationships between attributes
of the relevant datasets.

• Schema mapping, which constructs an executable specification of how to
combine/merge relevant datasets to generate a unified view of the data for
analysis.

• Format transformation, which carries out changes to the representation of
some of the attributes, with a view to reducing some of the existing inconsis-
tencies.

• Data repair, which fixes and amends some of the empty/incorrect values that
are present in the relevant datasets.

In this thesis, of the above wrangling sub–processes, we contribute automated
solutions for data discovery, thus addressing the V olume dimension of the Big
Data challenges, and for format transformation, thus (partly) addressing the
V ariety dimension of the Big Data challenges.

Thus, the two topics at the core of this thesis are data discovery and automatic
format transformation. Both topics have been addressed in the literature before,
albeit with different aims, as follows:

• Data discovery has been studied in terms of searching for related datasets
from a given repository, e.g., [DSFG+12], [NZPM18], [FAK+18]. The proposed
solutions assume high levels of consistency between the representations of similar
instance values of datasets and make extensive use of Web knowledge–bases or
external sources of information about the tables in the repository, neither of
which are always available. Furthermore, techniques for assimilating external
knowledge may involve overheads that negatively impact the performance of
the discovery process, as shown in Chapter 3. Our contributions to the data
discovery problem aim at closing these gaps by identifying relatedness features
that can be mapped to a uniform distance space, are lenient with respect to
heterogeneous representation of similar instance values, and do not rely on
external ontologies.

• Format transformation has been studied when data is transformed based on user–
provided examples [Gul11] and when the user manually writes the transforming
operations based on suggestions from the system [KHP+11]. The former only

22 CHAPTER 1. INTRODUCTION

requires input–output examples to synthesise a transformation. Therefore,
the user has to know what transformation is needed to be able to provide
useful examples. The latter expects manual authoring of transformation scripts.
Therefore, the user has to be familiar with the transformation needed and
know how to express it using a domain specific language. Both approaches
assume a small number of input sources of manageable size and limited levels of
format heterogeneity, identifiable by the user. Our contributions, presented in
Chapters 4 and 5, describe a scalable and automated solution to the problem of
format transformation that requires reduced knowledge about the data and the
required transformation, and reduced or no knowledge about how to express
the latter.

These two topics are further discussed in Chapters 3, 4, and 5, where our
contributions are described in full detail and contrasted with the relevant state–
of–the–art for each topic.

1.4 Aim, objectives and research contributions

The overall hypothesis underlying this thesis is that the overall cost of performing
data wrangling in data lakes can be reduced through automation. We consider
the cost of wrangling to be dominated by the need for deploying human expertise
and by the associated time–cost incurred in identifying, cleaning and integrating
the data prior to analysis. Therefore, the aim of the research presented in this
dissertation is:

To reduce the cost of data preparation by developing techniques that
automate the identification of relevant data for a given wrangling task
and the operations necessary to clean and transform the format repre-
sentation of data values.

In order to fulfil this aim, we define the following objectives:

• O1: Focusing on data discovery, to identify the types of evidence that enable the
identification those datasets in a data lake that are most relevant for the given
task, and to develop techniques that use that evidence to perform cost–effective
dataset discovery.

1.4. AIM, OBJECTIVES AND RESEARCH CONTRIBUTIONS 23

Research contributions:

(i) A distance–based framework that combines five types of evidence in order
to measure the relatedness of two datasets.

(ii) An automated solution that, given a large repository of data and a target
schema with representative instances, uses the techniques from (i) to
identify what datasets should be input to downstream wrangling tasks.

Impact: This would decrease the cost (in terms of time and of user expertise) of
running a significant number of data wrangling tasks on data lakes by focusing
the process on datasets that are relevant for the task at hand.

Evaluation: Success is measured by the effectiveness and the efficiency achieved
when applying the data discovery techniques on data lakes. We measure both
aspects and comparatively analyse our proposal against the closest antagonists,
viz., [NZPM18] and [FAK+18], using a real–world and a synthetic data lake.

• O2: Focusing on data format transformation, to develop techniques that learn
the operations necessary for modifying the representation of strings, efficiently
and with minimal user intervention, with a view to normalising the instance
values of a given attribute.

Research contributions:

(i) A transformation language that is complex enough to express the com-
mon string processing operations that are required to modify the format
representation of data values, while being simple enough to be amenable
to automatic synthesis from given input–output examples.

(ii) An automated solution to format transformation generation, i.e., a syn-
thesis algorithm, that, given a set of input–output examples, generates an
executable transformation that maps each new instance consistent with
the input examples to its corresponding value consistent with the output
examples, and that scales to large sets of examples.

Impact: Such a solution would offer the opportunity for performing format
normalisation of data values in an efficient and automatic manner, without
requiring advanced familiarity with the data values or programming knowledge.

Evaluation: Success is measured by the effectiveness and the efficiency achieved
when performing format transformation on different real–world scenarios. We

24 CHAPTER 1. INTRODUCTION

measure both aspects and comparatively analyse our proposal against the clos-
est antagonist from the sate–of–the–art, viz., [Gul11].

• O3: Focusing on format transformation, to develop techniques that automati-
cally identify the input specifications needed by a format transformation synthe-
sis algorithm, when it is applied on multiple datasets and active user supervision
is impractical.

Research contributions:

(i) An automated solution to the production of example data, i.e., input
specifications, from which synthesis algorithms can learn how to transform
the textual values without user input.

(ii) An automated solution to the pruning of the potentially very large space
of input–output example candidates produced by (i).

Impact: Such a solution has the potential for decreasing the cost (in terms
of time and user expertise) of normalising the format representation of values
at data lake scale by (i) automatically identifying situations in which transfor-
mations are required; and by (ii) automatically and reliably selecting the most
relevant examples that can be used to inform the synthesis of transformation
programs.

Evaluation: Success is measured by the effectiveness and the efficiency of
format transformations, synthesised from automatically generated examples,
applied on real–world datasets of different sizes.

• O4: Focusing on the combined impact of the techniques stemming from O1, O2

and O3, to complement existing methods for performing downstream wrangling
tasks, such as data profiling, with preprocessing steps for normalising the data.

Research contributions: a preprocessing step for data profiling tasks that
normalises data with heterogeneously represented values ahead of running data
profiling specific algorithms.

Impact: This would enable the successful use of state–of–the–art data pro-
filing algorithms, specifically inclusion dependency discovery algorithms, on
datasets that do not exhibit the characteristics expected by such attributes,
e.g., homogeneous format representation of instance values.

1.5. OVERVIEW OF THESIS STRUCTURE 25

Evaluation: Success is measured by the effectiveness gain achieved when
performing data profiling on normalised data, as opposed to performing data
profiling on potentially heterogeneous data.

1.5 Overview of thesis structure

The remainder of this dissertation is structured as follows:

• Chapter 2 presents the technical background of the thesis. We pick up the
discussion introduced in Section 1.3 and extend it by examining the major Big
Data repository types and presenting the vision and motivation for data wran-
gling. From this discussion, the need for cost–effectiveness emerges, demanded
primarily by the challenges of applying data wrangling on data from a data
lake. Two of these challenges, viz., the scalability challenge resulting from the
potential size of the input, and the heterogeneity challenge resulting from the
potential diversity of datasets, are analysed in detail. Before concluding the
chapter, we explore the existing systems for end–to–end data wrangling and
investigate how the scalability and heterogeneity challenges are addressed in
each of them.

• Chapter 3 describes our contributions to the scalability challenge, viz., auto-
matic dataset discovery. We define the term and discuss the notion of data
relatedness and how it plays a role in dataset discovery, i.e., what it means for
two datasets to be related or similar, and how our proposal (called D3L for
dataset discovery in data lakes) positions itself with respect to the state–of–the–
art in dataset discovery. The contributions are then introduced and described
in detail, before we empirically evaluate our method and compare it against the
closest competitors. We end the chapter by revisiting some of the objectives
introduced in this chapter and by indicating whether and how they are fulfilled
by D3L.

• Chapter 4 introduces our contributions to the heterogeneity challenge, viz.,
automatic format normalisation. The chapter sets the scene by providing a
definition of the term and a discussion of the methodology for performing
format normalisation used in the literature. We touch on how to express
the transformations that normalise the format representations, and on how
to learn such transformations automatically from input–output examples. We

26 CHAPTER 1. INTRODUCTION

describe in detail the contributions of the chapter and empirically evaluate
the effectiveness and efficiency of our proposed synthesis algorithm (called
SynthEdit) against the closest antagonist. The chapter concludes by revisiting
the relevant research objectives introduced in this chapter and by indicating
whether and how SynthEdit fulfils them.

• Chapter 5 continues the discussion on format normalisation by describing how
transformation synthesis can be applied to scenarios with many attributes to
transform and where user provision of examples is impractical. The chapter
defines the main goals and presents the background and theoretical notions
upon which the relevant contributions are built. We review the main proposals
for generating input–output examples for synthesis algorithms, and describe
how such techniques can be combined with SynthEdit to perform format nor-
malisation on multiple datasets without active user intervention. Finally, we
empirically evaluate the effectiveness and the efficiency of our proposal by auto-
matically normalising data from various domains. The conclusion of the chapter
uses evidence from the evaluation to discuss whether and how relevant research
objectives mentioned above have been fulfilled.

• Chapter 6 proposes a use case for combining data relatedness discovery and
automatic format transformation, with the goal of enabling the use of specific
data profiling algorithms that assume certain characteristics of the input data,
when such assumptions do not hold. The chapter proposes a preprocessing
step to inclusion dependency discovery and details how data structures specific
to dataset discovery and format normalisation of values can be combined to
process the data ahead of profiling. Finally, the benefits of such pre–cleaning
of the data values are evaluated against data with various characteristics from
various domains. The conclusion of the chapter discusses whether and how the
fulfilment of relevant research objectives from above has been met.

• Chapter 7 summarises the reported contributions and discusses their signifi-
cance. We briefly revisit the state–of–the–art for both dataset discovery and
format transformation, with a focus on gaps that our contributions fill. The
thesis ends with a discussion on how the work done on the two wrangling tasks
addressed can be taken further, i.e., what we see as the main lines of research
for future work.

Chapter 2

Background: data preparation
for Big Data

In the previous chapter we introduced the notions of data lakes and data wrangling.
We now provide a detailed discussion of these areas that represent the research
background upon which we build our contributions in subsequent chapters.

We have defined data wrangling (Definition 1.2) as a process of iterative data
exploration, transformation and integration that provides an end–product that is
suitable for analysis. Two of the data preparation challenges that were cited as
motivating factors for data wrangling in Chapter 1 are the time–consuming nature
of data preparation and the need for specialised technical knowledge. To draw a
more comprehensive picture of the context in which these challenges arise, and
of how state–of–the–art research has approached their treatment, we start from
data warehouses and ETL processes, and then explore the circumstances in which
the shift to the more liberal data lakes has taken place. To this end, we begin by
revisiting the notion of data warehouses in Section 2.1. We explore the principles
upon which such repositories are built and then focus on the operations on the
data that take place in its path from source to analysis, i.e., the ETL process. This
highlights some challenges faced in ETL tasks that demand a different approach
to storage and preparation of data that give rise to the more recent notions of
data lakes and data wrangling, respectively. In Section 2.2 we introduce data
lakes as a type of repository embodying a different approach to the storage of
data for later analysis. We provide examples of what a data lake is and explore
how data wrangling is used to prepare the data for analysis. We then discuss the
need for automating data wrangling tasks in Section 2.3. We finish the chapter

27

28 CHAPTER 2. BACKGROUND: DATA PREPARATION FOR BIG DATA

with an overview of representative data wrangling systems in Section 2.4 and
conclude with a summary in Section 2.5. Note that detailed, technical discussion
and contrast of our contributions with relevant state–of–the–art approaches is
given in later chapters, at the point in which the said research contributions have
been minutely described and evaluated.

2.1 The data warehouse

Before delving into the details of data lakes and data wrangling, we first explore
the notion of a data warehouse and of an ETL process, i.e., the longer–standing
technology for enterprise analytics [KC04], so as to explain how the need for data
lakes emerged, how ETL is different from data wrangling and why ETL does not
always fulfil current data preparation requirements.

2.1.1 Building the data warehouse

Research and development of data warehouses [Inm92] has been conducted on
two fronts. The first front is concerned with the design principles for building and
using a data warehouse. Two proposals are prominent in this area: the Corporate
Information Factory (CIF) [Inm92] and the Dimensional Data Warehouse (DDW)
[KR02]. Figure 2.1 illustrates the two approaches to data warehouse design. The
CIF, also known as the Enterprise Data Warehouse (EDW), is “a subject–oriented,
integrated, non–volatile, time–variant collection of data for managerial decision
making” that stores data in relational format [Inm92]. It is created by ETL
processes that extract the data from sources, transform it according to a set of
predefined rules, and load it into the repository. Once created, the EDW can be
accessed by applications whose requirements are satisfied by the predefined EDW
schema. Sub–repositories, known as data marts, can be built to accommodate
analytic needs that require a different organisation for the data. In creating
additional data marts, more ETL processing is normally required.

The creation of a DDW also relies on ETL processes but, in contrast to a
CIF, data is mapped to a dimensional data model [KR02]. The fundamental
concept in dimensional modelling is the star schema, which typically consists of
a fact table, containing all the measures pertaining to a given data point that
are relevant to the subject area. A fact table is linked to many dimension tables
which provide different viewpoints on the facts, such as over time, over location,

2.1. THE DATA WAREHOUSE 29

(a) A simplified illustration of the Corporate Information Factory
(a.k.a. Enterprise Data Warehouse) model, as popularised by Bill
Inmon [Inm92].

(b) A simplified illustration of the Dimensional Data Warehouse model,
as popularised by Ralph Kimball [KR02].

Figure 2.1: Simplified illustrations of the two main data warehouse implementation
methodologies.

etc.. Multiple star schemas are typically built to satisfy different analytical and
reporting requirements. This allows for the creation of distinct data marts for the
same data warehouse.

Additional design models for the data warehouse have been proposed, e.g.,
[DM88], and comparative studies between different approaches have been reported
in the literature, e.g., [Inm], [CG18], [JT12], [VS99]. Covering this research area
in more detail than this brief introduction is beyond the scope of this thesis.

2.1.2 The ETL process

The second front for research and development in data warehousing is concerned
with Extract, Transform, Load (ETL) processes [Vas09]. Figure 2.1 shows that

30 CHAPTER 2. BACKGROUND: DATA PREPARATION FOR BIG DATA

ETL processes are a fundamental step in creating a data warehouse. They are re-
sponsible for extracting the data from its native sources, transforming it according
to the data warehouse schema, and loading it into the repository itself.

The extraction component interfaces with various data sources and identifies
the data to be extracted. One challenge in this process is to build a logical data
map that documents the relationship between the original source entities and
the final destination entities expected in the data warehouse, be it an enterprise
warehouse or a relational star schema [KC04]. Another challenge is extracting data
from autonomously designed sources. In particular, the problem of extracting
data from the Web has been the focus of numerous research endeavours that
find their application in ETL, e.g., [Kus97], [CMM01], [LRNdST02], [AGM03],
[FGG+14].

The transformation component is typically responsible for contending with the
challenges relating to data quality, such as duplicate records, data inconsistencies
or erroneous data, e.g., [KCH+03], [RD00], [ORRHG05], [BG05]. For example,
AJAX [GFSS00] proposes a declarative language for performing different types
of data transformations. Potter’s Wheel [RH01] enables interactive data cleaning
with the goal of reducing format inconsistencies. HumMer [BBN+05] is a system
for dealing with data fusion problems [BN08].

The loading task typically takes place in bulk, either once–and–for–all or in-
crementally [Vas09]. Most research has been focused on the latter, e.g., on index
maintenance using dwarfs [SDRK02] or tree–like structures [RKR97], [FKM+00],
and on materialised view maintenance [Kot02], with [Rou98] being a useful sum-
mary still.

One widely–shared characteristic of the above proposals is that ETL proce-
dures are designed as workflows, which are intended for use by specialised users
and are governed by highly structured policies. As more and more sub–divisions
of an organisation require access to the data warehouse, these ETL processes have
to fulfil a variety of needs and the policies that govern the process have to be
aligned with these needs. Over time, the organisational entities that build and
maintain the data warehouse, and the beneficiaries of the information extracted
from the data can diverge in terms of requirements, making disruptive redesign
all but inevitable. In the next section, we briefly explore the reasons why this
gap emerges.

2.1. THE DATA WAREHOUSE 31

2.1.3 Schema–on–write

In data warehouses data items are extracted from sources and transformed to
conform to a schema at the time of storage. This schema is the predefined
corporate data model in the case of CIF [Inm92], and the star schema in the case
of DDW [KR02]. This approach is known as schema–on–write and is the main
source of limitation leading to the proposal of data lakes. The main restrictions
of the schema–on–write paradigm are:

• Although it does a good job of enforcing consistency rules on the data
warehouse content, it is not flexible enough to accommodate the concomitant
need for semi–structured or unstructured datasets, e.g., XML data, log files,
social media generated data, etc., that are hard to coerce to the data
warehouse schema.

• The road to data analysis is structure → ingest → analyse. Therefore, there
needs to be a clear a priori analytical objective for which data is being
stored and ingested (inclusive of cleaning, repair and preparation). As a
result, many forms of exploratory data analysis are not supported because
the data that is stored has a predefined scope. For example, e–commerce
companies may mine website interaction logs for fraud and compliance. But
the same data may prove valuable for analysing response times and user
experience. In this case, different representations of the data are needed,
however, it may be that not all use cases are known at the time the data is
loaded into the data warehouse [Sha19].

• The structure of the data dictates the types of analysis that can be per-
formed, and modifying the schema of the data to accommodate a new type
of analysis may be hard. In such cases, a distinct ETL process may have
to be run. Furthermore, the old representation of the data may still be
of interest and, therefore, this can lead to high levels of redundancy and
storage allocation.

For scenarios that require data with different structures to be widely accessible
to different needs in different parts of an organisation, a new type of repository,
and a new approach to preparing the data for analysis are required. The next
section explores the notion of data lakes, in relation to the former, and of data
wrangling, in relation to the latter.

32 CHAPTER 2. BACKGROUND: DATA PREPARATION FOR BIG DATA

2.2 The data lake

In this section, we discuss data lakes, as the notion is construed in this dissertation.
We also describe the process of preparing data in a data lake through wrangling,
which is one approach to minimising the shortcomings of the schema–on–write
paradigm.

2.2.1 Building the data lake

The term data lake was defined in Definition 1.1, as a repository that stores the
data in its original (“raw”) format. The core idea of the data lake vision is that
data with potential for analysis should be stored as–is until its value needs to
be unlocked, instead of being coerced into data mart–like repositories that imply
imposing a predefined structure on the data and, therefore, restricting the range of
possible analyses that can be performed without significant restructuring [QH19],
[Dix].

There is still no consensus among the key commercial players or leading re-
search groups on a formal definition for data lakes, or on a standardised methodol-
ogy for building a data lake [QH19]. Creating such a data repository tends to be a
complex task that involves integration of numerous technologies for data ingestion
and transformation. Research on the subject comes mainly in the form of data
lake management systems, such as the ones described in [HGQ16], [HKN+16],
[HSG+17], [TSRC15], or [WA15]. All these proposals aim to encompass more
than relational data and to record the lifecycle of datasets through lineage in-
formation. To this end, they propose extensible metadata models and parsing
frameworks for different data types (e.g., [QHV16]) that tend to be tailored to
the challenges faced by the organisation that builds and uses the data lake. For
example, Goods [HKN+16], is highly oriented towards rapidly changing data sets.
Others, such as Personal Data Lake [WA15], propose metadata management sys-
tems that promise to give control to the user over managing their data and sharing
it beyond organisational boundaries. As already mentioned, in this thesis we fo-
cus on tabular data and assume a more general notion of a data lake: one that
does not include organisation–specific policies. Our contributions focus on the
automation of the data wrangling process and, therefore, data lake management
systems can be considered orthogonal to our work.

Figure 2.2 is a simplified illustration of the processes involved in building a

2.2. THE DATA LAKE 33

Figure 2.2: Simplified illustration of the approach to data analysis in data lakes
with examples of possible data wrangling steps necessary for preparing the data.

data lake and preparing the data for analysis. Data can be extracted from its
original sources using techniques similar to those used with ETL, e.g., [FGG+14],
[AGM03], [LRNdST02]. The data lake can consist of such extracted data, or
of data internally generated (such as logs or customer interaction statistics),
including tabular data (e.g., CSV files), as well as semi–structured, or unstructured
data. Data lake management systems, such as the ones mentioned above, tend to
layer over this basic functionality by adding metadata, security, and governance–
oriented capabilities.

Once the data is stored in the data lake, applications can access it through
views that can be pregenerated, if the analytical/reporting task is known in
advance, or generated on–demand, when the requirements for the input to the
analysis tool are specified. In both cases, the views are generated by an or-
chestration of techniques including, but not limited to, profiling, cleaning, and
integration, which are collectively referred to as data wrangling steps. Such views
are usually specified as tables containing a unified, integrated version of all data
relevant for the analysis task, since most analysis tools can consume inputs in
tabular form.

Before delving into data wrangling tasks, and in order to have a clearer view
as to what a data lake is and what challenges arise when managing and prepar-
ing datasets for analysis, consider repositories of publicly available open govern-
ment data such as the UK data portal: https://data.gov.uk/, the US data
portal: https://www.data.gov/, the New York data portal: https://opendata.
cityofnewyork.us/, the UK historic data portal: http://www.nationalarchives.
gov.uk/, etc. Figure 2.3 depicts some histograms extracted from tabular data
in the UK data portal. Construed as a data lake, it contains approx. 25, 000

https://data.gov.uk/
https://www.data.gov/
https://opendata.cityofnewyork.us/
https://opendata.cityofnewyork.us/
http://www.nationalarchives.gov.uk/
http://www.nationalarchives.gov.uk/

34 CHAPTER 2. BACKGROUND: DATA PREPARATION FOR BIG DATA

datasets with a total of approx. 1, 000, 000 attributes and over 12 discernible
domains, as shown in Table 2.1. Most datasets contain up to 10, 000 records
and between 1 and 100 columns, while almost half have 20% or more numerical
columns. Furthermore, columns often contain duplicate or missing values. Such
statistics are evidence of the complexity faced by data scientists in selecting the
relevant data for the task at hand, cleaning the selected data, and merging similar
datasets. The orchestration of preparatory tasks that achieve these goals is known
as data wrangling, which we discuss in more detail next.

Note that a data lake is not an alternative to a data warehouse: data lakes
more likely complement data warehouses. For instance, there are reports from
industry that advocate complementing data warehouses with data lakes, e.g.,
[DWa].

2.2.2 The data wrangling process

The path followed by data from sources to analysis tools, as illustrated in Figure
2.2, does not align well with the design principles of ETL procedures: ETL tasks
would have to generate various types of views, on demand, from data with no fixed
structure. This suggests that there is a need for a different type of data preparation.
Data wrangling is the orchestration of profiling, cleaning, transformation, and
integration tasks over datasets to ensure they are suitable for a given analysis
task [HHK19]. Data wrangling tasks underpin tools accessible not only to IT
professionals, as was the case with ETL, but to a broader range of users, such
as data and business analysts, as well as managers. Research on the subject
has gained traction with the realisation that, if data is not warehoused with a
predefined analysis objective in mind, but stored in a data lake repository in
anticipation of unplanned–for analysis, data preparation and cleaning can take up
the majority of the time (up to 80%) of data scientists [DJ03], [KPHH12]. This
high cost is determined by the limitations of preparation tasks, most of which
are derived from ETL processes, in coping with the volume, variety, veracity, and
velocity of the data. Specifically, research on data wrangling (e.g., [KHP+11],
[KPHH12]) has identified the following sources of difficulties in data preparation:

Semi–structured data: Writing complex regular expressions to extract data into rel-
evant fields proves to be a hard task. This prompted research into data extraction

2.2. THE DATA LAKE 35

10
–1
00

10
0–
1K

1K
–1
0K

10
K–
10
0K

10
0K
–1
M

1M
+

0

20

40

17

39
27

11
3 3%

da
ta
se
ts

(a) Cardinality of the
constituent tables.

1–
10

10
–1
00

10
0–
1K

1K
–1
0K

10
K+

0

20

40 33

5 1 1%
da

ta
se
ts

(b) Arity of the
constituent tables.

0
1–
20

20
–4
0

40
–6
0

60
–8
0

80
–1
00

0
10
20
30
40 31

22 26

10 7 4%
da

ta
se
ts

(c) % of numeric attributes
in the constituent tables.

Figure 2.3: Different statistics measured on the constituent tables of a real–world,
open–government data lake: data.gov.uk

Domain Num. datasets
Business & Economy 313
Crime & Justice 134
Defence 87
Education 716
Environment 1,963
Government 4,743
Government Spending 12,478
Health 1,578
Maps 465
Society 745
Towns & Cities 644
Transport 452

Table 2.1: data.gov.uk domains

from sources other than Web sites, e.g., [BGHZ15], [LG14], [RG17], [BLMT16].

Data cleaning: Data quality problems that were already driving research on data
transformation in the context of ETL [KCH+03], [RD00], [ORRHG05], [BG05]
are rife in data wrangling as well. According to [ACD+16], research in this area
falls into one or more of the following four categories:

• Rule–based algorithms for detection and repair of integrity constraint viola-
tions, e.g., functional dependencies, inclusion dependencies, etc. [AAO+15],
[CIP13], [FLM+12], [KIJ+15], [FG12]: These algorithms are embedded into
data cleaning systems such as [DEE+13] and [RCIR17]. These proposals

data.gov.uk
data.gov.uk

36 CHAPTER 2. BACKGROUND: DATA PREPARATION FOR BIG DATA

are built around user input since there is no easy way to reliably automate
the detection and repair of constraint violations.

• Pattern enforcement and transformation tools [KHP+11], [CMI+15], [AMI+16],
[JACJ17], [HCG+18], [Gul11], [Sin16]: These tools discover format inconsis-
tencies in data values starting from user–provided input–output examples
or from other user interventions. In Chapter 4, we discuss this work in more
detail since our contributions regarding format transformation belong to
this category.

• Quantitative error–detection algorithms [PSC+15], [WT14], [AGN15]: The
main tasks addressed by this line of work involve identifying outliers and
dealing with missing values and other glitches in the data. Once again,
the user has a central role in many of these research proposals, i.e., the
correctness of a repair rule is ultimately decided by the user.

• Record linkage and de–duplication algorithms [ADKC18, NH10, EIV07]:
The objective of these techniques is to detect records that contain similar
data for the same real world entities. In the process, they employ techniques
for indexing, comparison and classification of records to identify duplicates.
Once identified, the candidates are presented to human domain experts to
decide on their similarity [SBI+13].

Data integration: Integrating multiple data sources and presenting the user with
a unified view of the data [DHI12] is a long–standing research problem, with most
of the efforts centred on schema matching [RB01], schema mapping generation
and selection [MPFK19], [Pap19], and data exchange [ABLM14], in the context
of relational databases. Recent research (e.g., [AW18]) studied the problem of
data integration in the context of data lakes, taking into account the potential
scale of the repository and the potential level of heterogeneity in data models,
e.g., structured/semi–structured/unstructured data.

Data discovery: The identification of datasets relevant for a given analysis task is,
in comparison, a relatively recent concern. This problem has roots in the source
selection challenge [DSS12] that appears in data integration scenarios and aims
at balancing the quality of integrated data and integration cost. Source selection
starts from a pool of relevant datasets for the given integration task, but with

2.2. THE DATA LAKE 37

different degrees of relevance. With the ever increasing availability of data, we find
ourselves past the point where one could impose upon any collection of datasets
any global, conceptually cohesive, model that captures their interrelationships and
allows us to identify that initial pool of relevant sources for a given analytical task.
This is the problem that data discovery aims to solve in [DSFG+12], [NZPM18],
[FAK+18], [MNZ+18]. This area is further discussed in Chapter 3, since our
contributions relating to dataset discovery belong to this category.

Motivated by the above list of challenges, research on data wrangling has
inched towards a more holistic view of the process, with recent proposals consid-
ering data wrangling as a collection of interconnected processes, involving tasks
from all fields mentioned above. For example, D2WL [SAPS19] is a conceptual
data wrangling language, focused primarily on traffic data, aiming to describe
several wrangling tasks (e.g., data selection, data cleaning, data integration, etc.)
at a high level of abstraction, and to bridge the gap between different platforms
that can be used to perform different wrangling tasks.

Other, more general, approaches rely on the interrelationships between data
instances from external data/metadata sources, and on user preferences to auto-
mate the constituent wrangling sub–processes and decrease human involvement
[FGL+16]. This results in a cost–effective view of data wrangling, and represents
the foundation upon which we build our contributions in this thesis. As such,
Section 2.3 of this chapter is dedicated to a detailed exploration of the principles
and particularities of this view.

2.2.3 Schema–on–read

We have seen that the clash between current needs and opportunities in data
analysis and the data warehouse principles have brought forward the need for a
different approach to data management: data processing should allow for the cre-
ation of multiple views on the same collection of datasets if this has the potential
for uncovering new analysis opportunities. The data lake seems to be an important
step towards achieving this ethos because of its pledge for low–cost data storage
followed by flexible data processing bounded only by the specifications of the cur-
rent task, i.e., the input requirements of the current task. This approach is called
schema–on–read and it tackles the schema–on–write disadvantages presented in
Section 2.1.3 as follows:

38 CHAPTER 2. BACKGROUND: DATA PREPARATION FOR BIG DATA

• Because data is stored without or with minimal processing, it is not uncom-
mon for a data lake to contain semi–structured and unstructured data such
as XML files or log files. The consequence is that preparing such data for
analysis can be costly in terms of time and required expertise.

• The road to data analysis is ingest → structure → analyse. Therefore,
the prescriptive approach imposed by the predefined schema required by
the data warehouse is replaced by a descriptive approach, favourable for
exploratory data analysis, one that is only governed by the analysis input
requirements. This is how the promise of enabling multiple views on the
same collection of datasets is fulfilled. The consequence is, of course, the
need to perform data preparation on–demand - typically by employing data
wrangling techniques.

• If on–demand data preparation is possible, then the multiple views on the
same data do not generate duplicate data sets, since every new view that
stems from the same original is created on–the–fly.

There are two important aspects emerging from the above discussion. Firstly,
the need for schema–on–read is not absolute, i.e., schema–on–write may still be
the appropriate model to follow if the use case does not require the flexibility of
the former. For example, it is worth mentioning that preprocessed data stored
in a data warehouse leads to much faster analysis since most of the preparation
has already been done by ETL. Secondly, the success of schema–on–read depends
on successful on–demand data preparation. Furthermore, it can be argued that
a costly data preparation step can undermine the benefits of schema–on–read.
When preparing and managing the data stored in a data lake becomes too dif-
ficult, the repository is commonly considered a data swamp. The next section
presents research endeavours that aim to fulfil the promise of cost–effective data
wrangling, i.e., reliable and semi–automated data wrangling that dispenses with
deep technical knowledge from the user or with too granular user interactions,
and, thus, help preventing data lakes from becoming data swamps.

2.3 Cost–effective data wrangling

Data wrangling appears to be both a problem and an opportunity in the field of
data preparation. A problem, because, with the advent of data repository types

2.3. COST–EFFECTIVE DATA WRANGLING 39

such as data lakes, data preparation needs to be accessible to different types of
users, often unskilled in programming preparation scripts, while still coping with
the four V’s of Big Data. An opportunity, because the ever increasing availability
of data can inform the preparation process and allow for the automation of certain
wrangling tasks, thus making the process more cost–effective.

Recent research on the subject (e.g., [FGL+16]), has exposed the double
nature of data wrangling and championed research that aims at decreasing the
wrangling cost by considering the process as a collection of sub–tasks that can,
individually, be automated [Pat19] and, collectively, contribute to making the
entire process cost–effective. Specifically, research guided by the vision of data
wrangling proposed in [FGL+16], to which we adhere in this thesis, proposes an
approach to data wrangling that (i) involves tasks from all fields mentioned in
Section 2.2.2, e.g., data discovery, data integration, data cleaning, etc. [KKA+17];
(ii) adopts a best–effort ethos and, therefore, embraces compromise guided by user
priorities [AKP+18]; (iii) makes full use of all the available information, including
internally curated reference data and knowledge–bases, that can inform the process
[KBC+17]; and (iv) adopts an incremental, pay–as–you–go approach [SDH08],
[PBE+16] that is guided by the user, thus addressing the needs highlighted in
Section 2.2.2, while being cost-effective, i.e., user guidance plays a role in informing
automated tasks but does not require deep technical knowledge or too granular
interaction [BPE+13].

Inspired by the above approach, we adopt the following definition for cost–
effective data wrangling:

Definition 2.1. A cost–effective data wrangling process combines a collection
of wrangling components that between them cover most of the data preparation
lifecycle, uses interrelationships between data entities, e.g., datasets, attributes,
and external sources of data/metadata to automate each wrangling component,
wherever possible, with the aim of decreasing the amount of user involvement and
the level of user expertise needed to perform the wrangling tasks.

In line with Definition 2.1, Figure 2.4 illustrates the elements of such a view of
data wrangling. Firstly, data can originate from a data warehouse, or from a data
lake, or from any other type of repository, i.e., cost–effective data wrangling is not
restricted by the type of backend, rather it is driven by the need for on–demand

40 CHAPTER 2. BACKGROUND: DATA PREPARATION FOR BIG DATA

Figure 2.4: Simplified illustration of the interaction between possible steps under-
taken when performing cost–effective data wrangling.

data preparation performed by users that are not specialists in data preparation
processes. Secondly, data wrangling consists of multiple sub–processes, including,
but not limited to:

• Data discovery: for identifying the relevant sources for the current analytical
task. This step is necessary when data originates in a data lake or on the
web, e.g., [MNZ+18].

• Schema matching: for identifying similar entities that, often, are represented
differently, e.g., [RB01].

• Schema mapping: for merging datasets into a unified view upon which
analysis is then conducted, e.g., [MPFK19].

• Data format transformation: for normalising the representation of values
with the aim of reducing inconsistencies, e.g., [HCG+18].

• Data repair: for identifying missing/incorrect values in data and attempting
to correct them, e.g., [FG12].

Section 2.2.2 briefly describes some examples of state–of–the–art approaches for
performing each of the above wrangling sub–tasks.

Each of the above processes can be informed by additional sources of informa-
tion:

• Data context [KBC+17], in the form of reference data, master data and
examples data. Reference data is defined as a collection of values that

2.3. COST–EFFECTIVE DATA WRANGLING 41

stipulate the valid domain of a set of specific attributes. Thus, reference
data is complete, in that there are few/no missing values, and accurate, in
that it provides correct values to be occurring in the final view presented for
analysis. Master data is defined as a consistent view on the core entities in
an organisation. Although it has the same veracity properties as reference
data, master data is an internal source of information to the organisation
and includes interrelationships between entities. Example data is defined as
a collection of data values that exemplify what is expected to appear in the
view presented for analysis, including the format in which the values should
be represented. For example, in a real estate scenario, reference data can
be represented by a complete list of postcodes from a particular region that
are accessible through an open data portal, master data would comprise
information about the properties for sale/rent advertised by a particular
organisation, including details such as address or cost, and example data
could include information about past values for particular attributes such
as cost, which may be available from open government statistics.

• User context [AKP+18], in the form of a set of predefined quality criteria for
the resulting view passed to the analysis applications. Such criteria could
reflect a preference for completeness over correctness, or vice–versa, or could
require the presence of certain values and/or attributes in the final result.

• Other data/metadata, including information that results from running in-
dividual wrangling sub–tasks and that can inform other sub–tasks, e.g.,
identifying that two or more datasets are unionable/joinable in the discov-
ery step can be valuable for the schema mapping generation step.

The potential for cost–effectiveness relies on the above sources of information
to decrease the level of user involvement in performing tasks, such as in Figure
2.4. In the next two sections, we introduce two examples of challenges faced
when performing data wrangling on data lakes, that are amenable to automation
and, therefore, have the potential for decreasing the wrangling cost. In our
discussion, we focus on two wrangling components: data discovery and data
format transformation, and we assume that data wrangling is applied on a data
lake. Other examples of tasks that can benefit from the use fo data/user context
are discussed in [KBC+17] and [AKP+18].

42 CHAPTER 2. BACKGROUND: DATA PREPARATION FOR BIG DATA

2.3.1 The scalability challenge

The first source of increased cost when applying data wrangling on data lakes
is the potential scale of the input. Consider the following example, inspired by
[KP19]: a real estate company intends to perform an estimation of the rent/sale
prices for a particular geographic area. To this end, it uses data from an open
government data lake with information about past property sales, quality–of–life
statistics, crime statistics, tax data, etc. The first step in reducing the cost of
wrangling is to apply it only on relevant sources, e.g., datasets with properties
from the different geographic locations of interest. This is the motivation for the
data discovery step, which we define as follows:

Definition 2.2. Given the target schema of a dataset to be subject to an ana-
lytical task (ideally including exemplar tuples and expected attribute names), the
data discovery component finds which datasets in the data lake contain relevant
information to populate the target (and, therefore, are useful as inputs for data
wrangling).

For the discovery component to reduce the cost implied by the scalability
challenge, it must be automated, since manually identifying the relevant datasets
is impractical due to the potential size of the repository. In our example, the
exemplar tuples mentioned in Definition 2.2, can come from the data context
and, once exemplar records are available, the most similar datasets from the data
lake can be identified automatically and passed as input to the data wrangling
process. Chapter 3 presents our contributions to data discovery and shows how
the existence of exemplar tuples can enable the automation of data discovery.

2.3.2 The heterogeneity challenge

Another source of increased wrangling cost is the inconsistency (or heterogeneity)
in format representation of values. Consider again our real estate example. In such
a scenario, addresses are often represented following heterogeneous conventions,
e.g., street name followed by street number or vice–versa, using abbreviations such
as “St” instead of “Street”, etc. These variations in format require a normalisation
step before data is subject to analysis since, often, analytical algorithms assume
the input has been normalised [LRG+18]. This is the motivation for the format
transformation step, which we define as follows:

2.4. REPRESENTATIVE DATA WRANGLING SYSTEMS 43

Definition 2.3. Given the target schema of a dataset to be subject to an analytical
task (ideally including exemplar tuples and expected attribute names), the data
format transformation component carries out changes with a view to normalising
the representation of instance values of the same attribute.

For the format transformation component to reduce the cost implied by the
heterogeneity challenge, it must be automated, since manually identifying values
to be transformed and manually writing transformation rules is impractical due
to the programming steps required and the potential size of the repository. This
challenge also impacts on the quality of the outcome of internal components in
the wrangling process itself. For example, schema matching relies on information
extracted from instance values and would have to take format inconsistencies into
account in the absence of a format normalisation step. State–of–the–art schema
matching tools (e.g., COMA++ [ADMR05]) normally do not do so.

In Definition 2.3, the exemplar tuples can come, as previously, from data con-
text. Chapter 4 presents our contributions to format heterogeneity and describes
how the existence of exemplar tuples can enable the automation of data format
transformation.

In the next section, we explore the state–of–the–art in data wrangling, with a
focus on how these tackled the two problems, and on how much user involvement
is assumed.

2.4 Representative data wrangling systems

In this dissertation, we describe research contributions that can underpin func-
tional components to support dataset discovery and a specific form of format
transformations, with the goal of addressing the scalability and heterogeneity
challenges of data wrangling in data lakes. In this section, we review the most
important wrangling systems from a research perspective. Later chapters, i.e.,
Chapters 3 and 4, analyse the state-of-the-art in the narrower research areas of
dataset discovery and format transformations.

2.4.1 Wrangler

Wrangler [KPHH11] is a descendant of the Potter’s Wheel data cleaning system
[RH01] and provides interactive mechanisms for transforming data, correcting

44 CHAPTER 2. BACKGROUND: DATA PREPARATION FOR BIG DATA

erroneous or missing values, and integrating multiple data sources.
Goal: to assist the user in authoring expressive data transformation rules.
Methodology: to achieve its goal by combining the benefits of a declarative
transformation language, which is able to express various transformation rules,
with a predictive user interaction model [HHK15], which aims to relieve the user
from the burden of technical specification.
Operation mode: the users select some data value that is to be subject to a
transformation and the system uses predictive methods to suggest a variety of
possible next steps that transform the selection (or else the user can author rules
directly). Suggestions are presented in the form of rules expressed using a domain–
specific language. Rules can be organised as a script for later use on similar
datasets. Transformations include operations such as aggregation, mathematical
functions, string manipulation, or merging of two or more columns.
Cost–effectiveness: the user is relieved from having to cope with the potential
size of input datasets by being presented with a subset of the records on which
transformations are being designed and tested. If proved useful, the suggestions
made by the system can relieve the user from writing the rules as well. However,
the user still has to know what transformation is required and how to express the
transformation, i.e., the user needs to understand the suggestions. Furthermore,
there is no discovery component, so the user has to know what datasets to consider
for the given task.

2.4.2 Data Tamer

The Data Tamer system [SBI+13], [SI18] offers user–guided methods for data
transformation, schema matching and mapping, and data deduplication.
Goal: to provide scalable data preparation through automation, informed by
training data, i.e., it does not require programming knowledge to perform data
preparation.
Methodology: to achieve its goal by combining string comparisons based on
known string similarity measures (such as Jaccard and cosine) with both distribution–
based similarity measures (such as Welch t-test), and user expertise to identify
similar attributes and merge them. It also combines clustering algorithms (such
as K–means [AV07]) with classification techniques to perform record linkage.
Operation mode: Data Tamer automatically runs several algorithms for each
task it performs and appeals to the user for decision making. The system is guided

2.4. REPRESENTATIVE DATA WRANGLING SYSTEMS 45

by an administrator that specifies the collection of data sources for Data Tamer
to curate. Then, one ore more domain experts supervise the process by answering
questions raised by the automated algorithms that perform the wrangling.
Cost–effectiveness: although the system can perform most of the tasks automat-
ically, user input is still crucial to Data Tamer. The system assumes the domain
experts to be able to decide on problematic cases that may require advanced
technical knowledge. The processing of large datasets is tackled by employing
sampling techniques, but the input itself is still assumed to be provided by the
user, i.e., there is no discovery component. The challenge of inconsistent format
representations is not considered by this system.

2.4.3 Data Civilizer

The Data Civilizer system [DFA+17] aims to facilitate the analysis of data in the
wild (e.g., from data lakes), by offering automated data profiling and discovery,
join path selection, and on–demand data cleaning.
Goal: to offer efficient methods for (i) the discovery of datasets of interest from
large numbers of tables; (ii) linking relevant datasets; (iii) cleaning the desired
data; and (iv) integrating the discovered datasets;
Methodology: to achieve its goal by combining a linkage graph that describes
primary key–foreign key and similarity relationships between table attributes, for
discovery and linkage, with integrity constraints–based data cleaning for ensuring
the quality of the data values.
Operation mode: the discovery task is based on keyword search among the
attribute names/instance values. The search for tables is performed through their
names, attributes, or content, as well as their relationships with other attributes
and tables, as captured in the linkage graph. The data cleaning task is performed
with guidance from the user. More specifically, the actual cleaning of a dataset
requires feedback from the user on how to change the values of cells that are
estimated to be erroneous.
Cost–effectiveness: the discovery process is a central component in Data Cv-
ilizer, therefore, addressing the scalability issue thereby. As for the potential
inconsistency of data value representations, this can only be addressed through
constraint–based cleaning, which is not expressive enough to catch many incon-
sistency cases. For example, using such an approach, data values have to be
transformed with direct editing from the user. The user is, therefore, actively

46 CHAPTER 2. BACKGROUND: DATA PREPARATION FOR BIG DATA

involved in the data cleaning process, although the task itself does not require
expert–level knowledge.

2.4.4 Value Added Data Systems (VADA)

The VADA system [KKA+17, KAB+19] aims to implement the cost–effective
data wrangling paradigm introduced in Section 2.3. It supports most of the data
wrangling sub–tasks discussed in this chapter, including data discovery, schema
matching and mapping generation, data format transformation and data repair.
The methods claimed as contributions in this thesis and described in detail in the
next two chapters have been integrated into the VADA system.
Goal: to offer cost–effective data wrangling as defined in Definition 2.2.
Methodology: the wrangling workflow is similar to the one in Figure 2.4, and
makes use of several components that employ state–of–the–art methods for Web
data extraction [FGG+13], schema matching [DR02], schema mapping [MMP+11],
data repair using conditional functional dependencies [FG12], and data format
transformations [BPFK18], [BFPK19]. Components are dynamically orchestrated
using a Vadalog–based reasoner [BSG18].
Operation mode: with reference to Figure 2.4, given a target schema to be
populated with data, each relevant input dataset is automatically cleaned, trans-
formed and merged. Throughout, data/user context information is used to inform
the decision–making algorithms [KBC+17], and the user is only asked for feedback
in the form of simple questions that do not require expert–level knowledge [KP19].
Cost–effectiveness: the user is relieved from having to manually extract data,
write transformation and repair rules, and specify how to merge the relevant
datasets by employing automatic algorithms informed by data and user context
[KBC+17]. One consequence of simple question–based feedback and of automation
is that users have less control over the wrangling process, i.e., they are limited to
the capabilities of the automated techniques as informed by user feedback.

2.5 Summary and conclusions

Data preparation has been a significant research concern in Big Data management
in recent years [HHK18], with many research proposals on the subject evolving
into commercial solutions (e.g., Trifacta (www.trifacta.com/, Tamr (www.tamr.
com/)). These research endeavours and their commercial materialisation are

www.trifacta.com/
www.tamr.com/
www.tamr.com/

2.5. SUMMARY AND CONCLUSIONS 47

evidence that there is demand for innovative data preparation proposals. This
chapter has briefly explored the research landscape in this area, starting from
traditional data warehouses and ETL–based data preparation and continuing
with the more liberal data lake repositories that, by adopting the schema–on–read
paradigm over the traditional schema–on–write, fuelled the development of new
data preparation approaches that enable on–demand data access to a broader
range of users. The success of systems such as Wrangler (now commercialised
by Trifacta) has demonstrated the viability of data wrangling as the deliverer
of self–service data preparation, i.e, data preparation performed by users who
know the data best, even if they are not IT experts. But the ever increasing
availability of data and analysis opportunities asks for cost–effectiveness, where,
among other desiderata, the user should not need to be highly skilled in manually
conducting/guiding wrangling tasks, nor need to manually identify the datasets
relevant for the task at hand (when applied on data from a data lake).

In the next two chapters, we discuss in detail the techniques devised to auto-
mate data discovery and data format transformation cost–effectively.

Chapter 3

Dataset discovery in data lakes

This chapter focuses on techniques employed to perform the dataset discovery
task in data wrangling. We have defined the process of dataset discovery in
Definition 2.2 as a functional component of data wrangling that identifies the
relevant input that can lead to the the construction of specific target datasets
used for value–adding analytics in data lakes.

The primary goal of dataset discovery is to select for relevance from an (other-
wise unmanageable) collection of data sources those datasets on which to run tasks
such as schema matching (e.g., [RB01]), format transformation (e.g., [BFPK19],
[Gul11], [KHP+11])), or schema mapping generation (e.g., [MPR09], [MPFK19]).
So, given a target (which ideally includes exemplar tuples and expected attribute
names), the dataset discovery process aims to find which datasets are most useful
as inputs for data wrangling. By most useful, we mean datasets (or possibly
projections thereof) that are unionable with the target, and, desirably, joinable
with each other. So, given a target, a solution to this dataset discovery problem,
returns a set of datasets, some of which are potentially horizontal fragments, and,
when possible, others that are potentially joinable with the horizontal fragments
to contribute additional attributes to the target. We refer to such datasets as
related to the given target. Thus, the objective of dataset discovery is:

To identify related datasets from a data lake that are relevant for
populating as many target attributes as possible.

In Section 3.1, we motivate our desiderata for the proposed dataset discovery
approach. Then, in Section 3.2, we set the scene for this chapter by introducing

48

3.1. MOTIVATION AND DESIDERATA 49

the theoretical concepts that underpin our approach, together with the state–
of–the–art on dataset discovery. Next, we state the main contributions of this
chapter and introduce an overview of the approach in Section 3.3. Section 3.4
discusses relatedness at attribute level and presents what types of similarity
evidence are employed, the associated distance measures, and how we rely on
specialised search techniques to efficiently compute the distance values and to find
related attributes. Section 3.5 moves the discussion from attribute–level to dataset–
level by describing how multiple attributes from the same dataset and five types
of distances contribute to a dataset–level distance measure that quantifies the
relatedness between the target dataset and other datasets relevant for populating
the target. Relatedness–by–joinability is then covered in Section 3.6, where we
show how the same data structures used to identify related datasets can also
be used to derive postulated join paths between datasets, with the potential for
increasing the coverage of target attributes. Finally, we empirically evaluate our
approach, with a focus on both efficiency and effectiveness, against the closest
state–of–the–art competitors.

3.1 Motivation and desiderata

To achieve a better understanding of the ramifications of the problem addressed in
this chapter, we introduce a set of desiderata, motivated by specific characteristics
of data lakes:

Missing metadata. A data lake often provides limited metadata and it is
often hard to link its contents to external sources of information such as domain
ontologies that could define the entities described in the datasets. Therefore,
we need to induce characteristics from the data itself that can be reliably used
as sources of evidence for the discovery of relatedness relationships between
datasets. This evidence should be quantifiable, minimally dependent on supple-
mentary data that may not always be available, and tolerant of different levels
of metadata and schema–level information associated with the sources.

Schema heterogeneity. A data lake often contains datasets from many
different sources that obey different rules, so some types of relatedness evidence
may only hold for a few datasets, but not all. For example, attribute names
may clearly describe the domain of attributes for some datasets, while being

50 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

abstract or even missing altogether for other datasets. Therefore, we need
relatedness evidence types that rely on different characteristics of the data, and
a balanced aggregation method that balances the weight given to each evidence
type.

Format representation heterogeneity. A data lake often contains datasets
with inconsistent information about the same real–world entities in terms of how
data values are represented. Therefore, we need relatedness evidence types that
are lenient in identifying related datasets with respect to format inconsistencies,
thereby reducing the negative impact of format heterogeneity.

Scale. A data lake often contains a large number of datasets. For example, the
open government data lakes mentioned in Chapter 2 contains tens of thousands
of datasets. Therefore, we need a scalable technique that, while being able
to benefit from multiple types of relatedness evidence, avoids all–against–all
comparison methods that are quadratic on the number of items compared.

3.2 Background and related work

Before describing how we meet the above desiderata, we define the central notion of
this chapter, viz., dataset relatedness, and discuss the technical background upon
which our approach builds. Firstly, we introduce the concepts that ground our
approach, and, secondly, we introduce the state–of–the–art methods for finding
related/similar/unionable datasets in data lakes.

3.2.1 Dataset relatedness

We formally define the relatedness of a dataset S with respect to a target T as
follows:

Definition 3.1. Given a dataset S with attributes a1, . . . , an and a target dataset
T with attributes a′1, . . . , a′m, we say that S and T are related iff ∃ai ∈ {a1, . . . , an},
such that ai contains values drawn from the same domain represented by some
attribute a′j ∈ {a′1, . . . , a′m}, and, therefore, is relevant for populating a′j, i.e., ai
and a′j are attribute–level related.

3.2. BACKGROUND AND RELATED WORK 51

For simplicity, we only consider one–to–one relatedness between attributes. In
a many–to–one (or one–to–many) case, i.e., when an attribute from S is related
to more than one attribute from T (or vice–versa), we choose the most related
attribute pair.

Given two datasets S1 and S2 related with respect to a target T , the following
properties follow from Definition 3.1:

• S1 and S2 can have different degrees of relatedness to T , subject to how
many of their attributes are related to some target attribute and to how
strongly related those attributes are.

• S1 and S2 are unionable on the attributes related to the same target attribute
and each is unionable with the target itself. We focus on relatedness–by–
unionability in Section 3.4.

• If S1 and S2 are joinable as well, then the projection of the attributes related
to some target attribute over the result of joining them on those attributes
is, potentially, more related to T than S1 and S2 individually. We explore
this property in Section 3.6.

We consider attribute–level relatedness to also imply attribute–level similarity,
and quantify the former using distance measures, often used to also quantify the
latter: the closer, the more similar, and the more similar, the more related.

3.2.2 Sources of relatedness evidence

In performing dataset discovery, we employ the following sources of similarity
evidence, some of which originate from research on schema and ontology matching
(e.g., [DR02], [ADMR05]) and on distributional semantics (e.g., [TP10]).

Instance values set-similarity between two attributes a and a′ is defined as
the ratio of shared items between their value sets. When quantified, the similarity
sim(a, a′), is a number between 0 and 1, such that the closer sim(a, a′) is to 1,
the more similar the two sets are. The similarity has the additional property that
it can be seen as a distance measure dist(a, a′) = 1 − sim(a, a′), often used in
algorithms that aim to cluster a collection of sets into groups of closely resembling
sets [Bro97]. Examples of systems that rely on instance–based similarity measures
include schema and ontology matching systems such as COMA++ [ADMR05]

52 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

and DUMAS [BN05]. In our approach we employ instance values similarities for
identifying related attributes with overlapping instance values.

Attribute name similarity is defined as the similarity between the strings
representing the attribute names of two attributes. Three types of string similar-
ity measures are prominent in the literature: token–based, character–based, and
hybrid [YLDF16]. Token–based measures model each string as a set of tokens
and quantifies the similarity between two strings based on the common tokens
shared by their corresponding token sets, e.g., Jaccard similarity, cosine similarity.
Character–based measures model each string as a sequence of characters and quan-
tify the similarity between two strings based on the number of different characters
in the two sequences, e.g., edit or Levenshtein distance calculates the minimum
number of single–character insertions, deletions and substitutions that transforms
one string into another. Lastly, hybrid measures combine similarities at token and
character levels, e.g., [WLF11], [WLF14]. Systems such as COMA++ [ADMR05]
use attribute name similarity when deciding on the equivalence of two attributes
for schema matching purposes. We also use attribute name similarity, in addition
to instance values overlap, as evidence in our approach.

Contextual similarity is used as evidence in the case of attributes whose
names and extents are expressed in natural language, e.g., person names, addresses,
product descriptions, etc.. This means that such values can often be found in
textual corpora such as news articles, books, Wikipedia articles, etc. The existence
of such corpora has been exploited in areas such as distributional semantics based
on vector space models (VSM) to quantify the similarity of two strings using their
context (roughly, their surrounding terms), as defined by the given text corpora
[TP10]. The hypothesis upon which such approaches are grounded and which
justifies the application of VSM in measuring word similarities, is that words that
occur in similar contexts tend to have similar meanings. Examples of systems that
rely on VSM to measure the similarity of words include INDRA [SSB+18] and
GenSim [RS10]. We use contextual similarity as evidence in deciding on attribute
relatedness when instance–based and attribute name–based techniques are not
effective.

Ontologies and knowledge–bases are also sources of similarity signals
that do not rely on the resemblance of data values. Examples include YAGO
[SKW07], Wikipedia and other Web table corpora [CHW+08], WordNet [Mil95],
and DBpedia [ABK+07]. Such sources of evidence are used to map individual

3.2. BACKGROUND AND RELATED WORK 53

terms in the attribute names/values to entities in an ontology, or to identify
relationships between attributes, that can lead to a decision on their similarity.
Proposals that do this include [VHM+11] and [LSC10]. We do not use such
external sources of similarity evidence in our approach because we found that
only very seldom can data values or attribute names in a data lake be mapped
to an external ontology or knowledge–base.

Statistical similarity is used as evidence when the attributes that are com-
pared have numerical domains. When this is the case, evidence types that rely on
overlap or annotation of instance values can only emit very weak similarity signals.
This is because numbers cannot be analysed in terms of their individual values as
usefully as text can. Alternatively, numbers can be meaningful when considered
as part of a probability distribution. For instance, given two attributes, one de-
noting age of persons, and another denoting the weight of persons, the existence
of the same individual value, say 68, in each attribute extent does not stand as
evidence of similarity. However, if we consider the entire distribution of values
for each attribute, more evidence about their dissimilarity can be gleaned. A
number of statistical measures that quantify the distance (or similarity) between
two statistical objects, such as two probability distributions, have been proposed.
Examples include the Kullback–Leibler (KL) divergence [KL51], the Kolmogorov–
Smirnov (KS) statistic [Con99a], or the Jensen–Shannon (JS) divergence [DLP02].
We employ the KS statistic to decide on the relatedness of numerical attributes.

3.2.3 Scalable relatedness discovery through Locality Sen-
sitive Hashing

The problem of identifying similar/duplicate elements has been studied, in areas
such as Information Retrieval, in the context of document clustering (where simi-
lar text objects, e.g., sentences, paragraphs, or documents, are grouped together
(e.g., [AZ12])), or in the context of Web pages (where near–duplicate pages are
identified to increase the quality of a web crawler, e.g., [MJDS07], [MKK+08])).
The database research area has had a long–standing interest in the subject as
well, in the context of record linkage and deduplication (where similar techniques
are used to match records from several databases that refer to the same entities
(e.g., [Chr12])). In all these research endeavours, besides the features that de-
scribe the objects being compared, which often rely on the types of similarity

54 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

evidence mentioned above, the crux of the matter lies in the comparison itself,
i.e., how to perform efficient similarity grouping on many objects so as to avoid
all–against–all comparisons which can be very computationally expensive. Since
it is often the case that most comparisons are between objects that are dissimilar,
an important technique known as blocking [BCFE03], can be used to reduce the
large number of potential comparisons by removing as many dissimilar candidate
pairs as possible. One prominent idea in this direction is to use hashing for simi-
larity search [WTSSJ14], with proposals that perform nearest–neighbour search,
(e.g. [AI08], [IM98]), proving to be effective in reducing the number of potentially
similar objects [AAK10] before more computationally expensive comparisons are
performed.

Locality Sensitive Hashing (LSH) [IM98] is a randomised hashing framework
for efficient approximate nearest–neighbour search in high–dimensional spaces. It
is based on a family of hash functions that map similar input items to the same
hash code with higher probability than dissimilar ones. Before formally defining
LSH, we introduce necessary definitions and notation.

The nearest–neighbour search problem is defined as: given a query item
q, find an item NN(q), called a nearest–neighbour, from a set of items X =
{x1, x2, . . . , xn}, so that NN(q) = arg minx∈X dist(q, x), where dist(q, x) is a
given distance function that measures the similarity between q and x. The
K–NN search problem is a generalisation where the K–nearest neighbours are
searched.

The fixed–radius near neighbour (R–near neighbour) problem, an alternative
to the nearest neighbour search, is defined as: given a query item q, find the items
R that are within a distance R from q, R = {x|dist(q, x) ≤ R, x ∈ X}.

Lastly, the c–approximate R–nearest neighbour search problem is defined
as: given a query q, find some item x, called (R, c)–near neighbour, so that
dist(q, x) ≤ cR, for some constant c > 1, called the approximation factor, such
that dist(q, x) is no more than c times the distance of the nearest point to q.

LSH was formally introduced in [IM98] and [GIM99] as a probabilistic ap-
proach to the (R, c)–near neighbour problem in d–dimensional spaces, based on
a family of hash functions H, with the property that the collision probability of
such hash functions is high for inputs that are similar and low for those that are
not. Formally, an LSH family of hash functions is defined as follows:

3.2. BACKGROUND AND RELATED WORK 55

Definition 3.2. A family H is called (R, cR, P1, P2)–sensitive if, for all h ∈ H
and for any two items p and q, the following conditions hold:

• if dist(p, q) ≤ R, then Prob[h(p) = h(q)] ≥ P1,

• if dist(p, q) ≥ cR, then Prob[h(p) = h(q)] ≤ P2

where c > 1 and P1 > P2.

Intuitively, a distance of at most R between points gives a higher collision
probability between their hash codes than the probability given by more distant
points. It follows that, given two near neighbours p′ and q′, P2 < Prob[h(p′) =
h(q′)] < P1.

According to [IM98], in practice, given an LSH family H, in order to increase
the chance of collisions between hash codes of near similar candidates, the LSH
scheme amplifies the gap between the upper (i.e., P1) and lower (i.e., P2) prob-
ability bounds by concatenating several hash functions from H. In particular,
K functions h1, . . . , hK are chosen independently and uniformly at random from
H to form a compound hash function g. Given a new instance x, the output of
g(x) = (h1(x)|| . . . ||hK(x)) is a bit pattern that identifies a bucket in a hash table
where x is to be stored (|| denotes concatenation between the bit patterns returned
by each hi(x)). However, increasing the gap between P1 and P2 reduces the chance
of hash code collisions between similar items. To improve the recall, L compound
functions g1, . . . , gL, are chosen, each of which corresponding to a different hash
table. These functions are used to hash each item x into L hash codes, and L hash
tables are constructed to index the buckets that correspond to these hash codes,
respectively. Each bucket in the hash table is identified by a hash code computed
using the concatenation of the results of the K hash functions from H that aim to
maximise the probability of collisions for near items. Given a query q, the items
lying in the L buckets identified by gi(q), with 1 ≤ i ≤ L, are retrieved as similar
candidates to q. Consequently, in practice, the LSH scheme has to be configured
with values for K and L. Often, this is done through the simple configuration
of a similarity threshold, with respect to the similarity measure used, since it is
possible to analytically determine effective values for K and L given the similarity
threshold [RLU14], [SLH12].

Finally, resolving the (R, c)–near neighbour problem using an LSH family of
hash functions, given a query q, is efficient by the following theorem:

56 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

Theorem 1. Given an (R, cR, P1, P2)–sensitive family of hash functions for a
distance D, there exists an algorithm for the (R, c)–near neighbour problem under
distance D which uses O(dn+ n1+ρ) space, with query time dominated by O(nρ)
distance computations, and O(nρ log1/P2 n) evaluations of hash functions, where
ρ = log(1/P1)

log(1/P2) .

The proof for Theorem 1 can be found in [IM98] or [DIIM04].

3.2.4 LSH hash functions and similarity measures

We now turn our attention to exemplar LSH hash functions and similarity dis-
tances that can be used in practical applications of (R, c)–near neighbour search.

MinHash, introduced in [Bro97] and [BCFM98], is an LSH hashing scheme
that returns hash codes with high probability of collisions for sets with high
Jaccard similarity. Given two sets A and B, their Jaccard similarity is given by:

jacc(A,B) = |A ∩B|
|A ∪B|

(3.1)

MinHash is defined as follows: given a universe U from which elements of two
sets A and B, which we assume are arbitrarily ordered, are drawn, pick a random
permutation Π from U , and define h(A) = mina∈A Π(a), where the minimum is
applied on the numerical order of elements in the permutation. It is shown in
[BGMZ97] that

Prob[h(A) = h(B)] = jacc(A,B) (3.2)

In practice, the equality in Equation 3.2 becomes an approximation since it is
unfeasible to generate a truly random permutation and, therefore, approximate
techniques for generating Π are used (e.g., [BGMZ97]).

Random projections–based LSH scheme [AI08], [Cha02] has been proposed
to solve the near–neighbour search problem under the angular distance between
vectors. For two multi–dimensional vectors ~v and ~u, the angular distance θ
between them is given by:

3.2. BACKGROUND AND RELATED WORK 57

θ(~v, ~u) = arccos ~vT~u

||~v||||~u||
(3.3)

An associated hash function is defined in [Cha02] as follows. First, a vector
~r is chosen at random from a multi–dimensional Gaussian distribution. Then, a
hash function h~r of a vector ~u is defined as follows:

h~r(~u) =

 1 if ~r · ~u ≥ 0
0 if ~r · ~u < 0

Then, [Cha02] shows that for two vectors ~v and ~u,

Prob[h~r(~v) = h~r(~u)] = 1− θ(~v, ~u)
π

(3.4)

In practice, Equation 3.4 is often used to approximate the cosine similarity
between ~v and ~u. This is possible because, as shown in [Cha02], the function
1 − θ(~v,~u)

π
is always within a factor of 0.878 from the function cos θ (the cosine

similarity).
LSH schemes for other similarity measures have been proposed in the literature,

including for the lp distance [DIIM04] and for the Hamming distance [IM98]. The
approach proposed in this chapter builds on Equations 3.2 and 3.4, and, therefore,
we do not discuss any other LSH schemes.

3.2.5 Dataset discovery: state–of–the–art

Data lakes are usually seen as vast repositories of company, government or Web
data (e.g., [CHW+08, EMH09]). Previous work has considered dataset discovery
in the guise of table augmentation and stitching (e.g., [LB17, LHWY13]), union-
ability discovery, or joinability discovery (e.g., [DSFG+12, NZPM18, FAK+18,
FMQ+18]). We add to this work with a focus on a notion of relatedness, defined
in the next section, construed as unionability and/or joinability.

LSH-based dataset discovery. LSH has been adopted by the data man-
agement research community due to its useful properties regarding similarity

58 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

estimation at linear retrieval times w.r.t. the search space size [MNZ+18]. One
example is Aurum [FAK+18] (and its extension from [FMQ+18]), a system to
build, maintain and query an abstraction of a data lake as a knowledge graph.
Similarly, Table Union Search [NZPM18] focuses on the problem of unionability
discovery between datasets, treated as an LSH index lookup task. As we do, both
proposals use LSH–based indexes to efficiently search for related attributes in
data repositories. While the underlying data structures used in both cases are
similar to the ones we rely on, there are a number of key differences: (i) we make
use of more types of similarity, whose combined import is to inform decisions on
relatedness with a diversity of signals; (ii) we adopt an approach based on schema–
and instance–level fine–grained features that prove more effective in identifying
relatedness, especially in cases when similar entities are inconsistently represented;
and (iii) we map these features to a uniform distance space that offers a holistic
view on the notion of relatedness between attributes, to which each type of simi-
larity evidence contributes, as instructed by an underlying weighting scheme. We
describe in detail how we achieve these advantages in the next sections.

Web table augmentation and search. The idea of table augmentation
relies on extending Web tables with additional useful information from external
sources that improve the results of schema matching (e.g., [LB17, LHWY13]) or
facilitate replies to queries about entities of interest (e.g., [YGCC12]). In the
former case, the idea is to combine Web tables, which are often small, into larger
ones and to match these enlarged tables with knowledge bases or large base tables,
with the intuition that the combined tables emit a stronger similarity signal that
can inform the matching process. In the latter case, the goal is to create and/or
populate a target schema with information from Web sources, starting from a
set of entities of interest. To this end, similarity discovery, based on attribute
names and instance values, is employed to discover Web tables that can contribute
with relevant information. In our work, our backend is a data lake, and not the
Web, and our objective is to enable data wrangling on vast repositories of data
by selecting only the relevant datasets given a target. In doing so, we do not
assume the existence of external augmentative or descriptive information from
Web tables or ontologies.

Web data integration. The discovery of unionable and joinable Web ta-
bles has been studied in Octopus [CHK09], which combines search, extraction
and cleaning operators to cluster datasets from the Web into unionable groups

3.3. OVERVIEW AND CONTRIBUTIONS 59

by means of keyword-based string similarities and Web metadata. [DSFG+12]
identifies entity–complementary (i.e., unionable) and schema–complementary (i.e.,
joinable) tables by using external knowledge bases to label datasets at instance
and schema levels. This leads to a decision on unionability and joinability of
those tables. We also search for related tables but because we envisage the need
for downstream wrangling we assume a target table and refrain from relying on
Web knowledge bases or external metadata about tables in the lake because such
data would not always be available.

Data lake management systems: Data lakes have been the focus of recent
research on data management systems, e.g., [TSRC15, HKN+16]. Such propos-
als focus on data lifecycle and rely on extensible metadata models and parsing
frameworks for different data types, tailored for the challenges faced by the or-
ganisation that builds and uses the data lake, e.g., Goods [HKN+16], is highly
oriented towards rapidly changing data sets.

3.3 Overview and contributions

We now present an overview of our approach. Recall that our goal in this chapter is
to identify datasets from a data lake that can contribute information for populating
a given target. Consider Figure 3.1 as an example. The target T contains
information about general practices (i.e., family doctors/primary care centres).
We want to find tables (e.g., S1 and S2) that are useful for populating T . Moreover,
if there is insufficient evidence that S3 and T are related as well, we want to find
join opportunities (e.g., of Practice Name/Practice in S1/S2 with GP in S3) that
allow us to increase target coverage (e.g., by populating Hours in T).

Figure 3.2 illustrates the overall approach described in this chapter. The
approach can be broadly seen as similarity–based in the sense that, from the
attribute names and values in each dataset given at input, we extract features that
convey signals of similarity used in quantifying the degree of relatedness between
datasets, as defined in Definition 3.1. As shown in Figure 3.2, we extract five
types of features which we map to buckets in LSH indexes, thereby guaranteeing
that shared bucket membership (i.e., the proximity of the hash keys generated
for each attribute) is indicative of similarity, as per the hash function used. Then,
given a target dataset, the task of identifying related datasets from a data lake is
conducted by repeating the same operations illustrated in Figure 3.2 for the target

60 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

S1: Source: GP practices
Practice Name Address City Postcode Patients
Dr E Cullen 51 Botanic Av Belfast BT7 1JL 1202
Blackfriars 1a Chapel St Salford M3 6AF 3572

S2: Source: GP funding
Practice City Postcode Payment
The London Clinic London W1G 6BW 73648
Blackfriars Salford M3 6AF 15530

S3: Source: Local GPs
GP Location Opening hours
Blackfriars Salford 08:00-18:00
Radclife Care - 07:00-20:00

T : Target: GPs
Practice Street City Postcode Hours
Radclife 69 Church St Manchester M26 2SP 07:00-20:00
Bolton Medical 21 Rupert St Bolton BL3 6PY 08:00-16:00

Figure 3.1: Examples of source and target records involved in a dataset discovery
process.

attributes. In other words, the LSH buckets where the target attributes end up
give the related attributes from which an aggregated, dataset–level relatedness
measure is computed for each parent dataset. Lastly, Figure 3.2 suggests the use in
this process of two similarity measures (i.e., Jaccard and Cosine similarities), and
a different treatment for categorical/textual and numerical values. The specifics
and reasoning behind such design choices are detailed throughout this chapter.

More formally, given a data lake S, and a target attribute t with exemplar
values, the dataset discovery process finds the set of attributes A from datasets
in S, that are within a distance τ from t (i.e., A = {a|dist(t, a) ≤ τ}), with τ a
preconfigured threshold parameter. To account for multiple cases, including when
(a) exemplar target values are insufficient or unavailable, (b) exemplar target
values are not shared by other attributes in the data lake, or (c) the attributes
are numerical, we consider five nearest–neighbour sub–problems, each taking a
different distance measure. Each such distance measure quantifies a relatedness
signal between t and each candidate from A, one for each type of similarity
evidence used.

Overall, we make the following contributions:

3.3. OVERVIEW AND CONTRIBUTIONS 61

Figure 3.2: Simplified illustrations of the data discovery process applied on a
collection of datasets.

• We propose a new distance–based framework that, given a target, can be used
to efficiently determine the relatedness between attributes in the target table
and datasets in a lake. We do this using five types of evidence: (i) attribute
name similarity, when schema–level information is available; (ii) attribute extent
overlap, when attributes share common values; (iii) word–embedding similarity,
when attributes are semantically similar but have different value domains; (iv)
format representation similarity, when attribute values follow regular represen-
tation patterns; and (v) domain distribution similarity, for numerical attributes.

• We show how to map the signal from each of the above evidence types onto a
common space, such that the resulting attribute distance vectors combine the
separate measurements of relatedness, and propose a weighting scheme that
reflects the signal strength from different evidence types.

• We extend the notion of relatedness to tables whose similarity signal with the
target is weak but that join with tables that contribute values to additional
target attributes.

62 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

• We empirically show, using both real–world and synthetic data, that our ap-
proach is significantly more effective and more efficient than the closest com-
petitors from the state-of-the-art.

3.4 Attribute relatedness

We first aim to identify related attributes, i.e., attributes whose values can be used
to populate some attribute in the target, and to quantify their degree of relatedness.
Strictly, this can only be done if they store values for the same property type of
the same real world entity. However, data lakes are characterised by a dearth of
metadata. There is a need, then, to postulate whether two attributes from two
datasets are related, relying only on evidence that the datasets themselves convey.

3.4.1 Relatedness evidence

We use five types of evidence for postulating on attribute relatedness: names
(N), values (V), formats (F), word–embeddings (E) [MSC+13], and domain dis-
tributions (D). From names we derive q–grams; from values we derive tokens,
format–describing regular expressions and word–embeddings; and from extents we
derive domain distributions. Note that, in the case of both attribute names and
attribute values, we break up string representations with a view to obtaining finer–
grained evidence. In other words, we operate at sub–token level, e.g, n–grams, as
opposed to operating at full names/values level. The motivation is the expected
“dirtiness" of the data lake, e.g., attributes may have names or values that denote
the same real–world entity but are represented differently. Using such evidence
implies that our approach is lenient in identifying related attributes, reducing the
impact of dirty data. This is an important point of contrast with related work,
as the experimental results will show.

Let a and a′ be attributes with extents [[a]] and [[a′]], resp. We now describe
how we aim to capture similarity signals for each type of evidence:

N : given an attribute name, we transform it into a set of q–grams (qset, for
short), aiming to construe relatedness between attribute names as the Jaccard
distance between their qsets. Let Q(a) denote the qset of a.

V : given an attribute value, we transform it into a set of informative tokens (tset,

3.4. ATTRIBUTE RELATEDNESS 63

for short). By informative, we mean a notion akin to term–frequency/inverse–
document–frequency (TF/IDF) from information retrieval, as explained later.
We aim to construe relatedness between attribute values as the Jaccard distance
between their tsets. Let T (a) denote the union of the tsets of every value in [[a]].

F : given an attribute value, we represent its format (i.e., the regular, predictable
structure of, e.g., email addresses, URIs, dates, etc.) by a set of regular expres-
sions (rsets, for short) grounded on a set of primitives we describe later. We aim
to construe relatedness between attribute value formats as the Jaccard distance
of their rsets. Let R(a) denote the union of the rsets of every value v in [[a]].

E : given an attribute value that has textual content, we capture its context-
aware semantics as described by a word–embedding model (WEM) [GMJB17],
as follows: each word in the attribute value is assigned a vector (with a WEM–
specific dimension p) that denotes its position in the WEM–defined space. The
p-vectors of each such word are then combined into a p–vector for the whole
attribute. We aim to construe relatedness between attribute values with textual
content as the cosine distance of their vectors. Let ~a denote the set of word–
embedding p–vectors of every value in [[a]].

D : given a numeric attribute, only N and F are useful in construing similarity,
as the others (viz., V and E) are dependent on the existence of structural
components (viz., tokens and words) that can only be reasonably expected in
non–numeric data. So, we aim to construe relatedness between numeric attribute
values as the Kolmogorov-Smirnov statistic (KS) [Con99b] over their extents
understood as samples of their originating domain. The smaller KS is, the
closer the attributes are w.r.t. to their value distribution.

3.4.2 Distance measures

Each of the five types of evidence above gives rise to a distance measure bounded
by the [0, 1] interval. Given two attributes a and a′, from different features of
their respective names and extents, all of which carry useful but different signals
of relatedness, we can compute the following distances:

• From attribute names we derive qsets and compute the Jaccard distance
between qsets:

DN(a, a′) = 1− Q(a) ∩Q(a′)
Q(a) ∪Q(a′)

64 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

• From attribute values we derive tsets and compute the Jaccard distance
between tsets:

DV(a, a′) = 1− T (a) ∩ T (a′)
T (a) ∪ T (a′)

• From formats we derive rsets and compute the Jaccard distance between
rsets:

DF(a, a′) = 1− R(a) ∩R(a′)
R(a) ∪R(a′)

• From embeddings we derive vectors and compute the cosine distance
between them:

DE(a, a′) = 1− ~aT~a′

||~a|| · ||~a′||

• From domain extents, in the case of attributes with numerical values, we
derive domain distributions and compute the KS statistic between them:

DD(a, a′) = sup
x
|Fa(x)− Fa′(x)|

Intuitively, DD(a, a′) is given by the maximal difference between cumulative
probabilities computed at a value x.

In order to avoid carrying pairwise comparisons in computing the above dis-
tances, as others have done (e.g., [NZPM18], [FAK+18]), we adopt an approximate
solution based on LSH that offers efficient distance computation, at the potential
expense of accuracy. To this end, we use Jaccard and cosine distances because
of their property of being locality–sensitive ([Bro97, Cha02]). Specifically, the
probability that MinHash/random–projections returns the same hash value for
two sets is approximately equal to their Jaccard/cosine similarity. Since N–, V–,
F–relatedness are grounded on Jaccard similarity, and E–relatedness is grounded
on cosine similarity, we use MinHash/random projections to efficiently approxi-
mate the above distances. We do not use the same strategy for D–relatedness
because there is no corresponding LSH hashing scheme that leads to analogous
gains.

The combined import of the above measurements is to inform decisions on
relatedness with a diversity of signals. The smallest such distances are, the more
closely related the attributes, and since the distances are defined over different
features of the data, they provide more viewpoints on relatedness.

3.4. ATTRIBUTE RELATEDNESS 65

3.4.3 Index construction

In our approach, given a data lake S and a target table T , finding the set of
related datasets in S to T is a computational task performed after indexing S.
For a given S, we build four LSH indexes, which, resp., are used to compute
N–, V–, F–, and E–relatedness between attributes. We call these indexes IN, IV,
IF, and IE, resp. Given two attributes a and a′, they are N (resp., V, F, and
E)–related if a′ ∈ IN.lookup(a) (and resp. for the other indexes). Index insertion
is shown in Algorithm 3.1. The subroutines in sans–serif are described below, by
reference to Example 3.1.

Example 3.1. Let a be an attribute, with name Address and extent [[a]] = {’18

Portland Street, M1 3BE’, ’41 Oxford Road, M13 9PL’ ’9 Mirabel Street, M3 1NN’ }.

Given an attribute a, we call the sets associated with each relatedness type
(i.e., its qset, tset, rset and word-embedding vectors ~a) the set representations of
a.

• get_qgrams(a): Obtaining the qset Q(a) of an attribute a is the straightforward
procedure of computing the q–grams of its name. We have used q = 4 as this
avoids having too many similar qset pair candidates, while benefiting from fine–
grained comparisons of attribute names. For Example 3.1, get_qgrams(a) =
{addr, ddre, dres, ress}.

• frequent/infrequent tokens: The tset T (a) and word–embedding vector ~a of an
attribute value are obtained in tandem by construing the extent of a as a set
of documents, a value v as a document, each document as a set of parts (split
at punctuation characters), and each part as a set of words. With one pass on
the extent, we tokenize the values (get_tokens(v)) and construct a histogram of
token occurrences (which we assume to have an associated data structure from
which we can retrieve its frequent and infrequent token sets). Then, for each part
in the value/document, the procedure (a) adds to T (a), the word t in that part
that has the fewest occurrences in the extent, and (b) takes the word in that part
that has the most occurrences in the extent, retrieves its word-embedding vector
from a WEM (e.g., fastText [GMJB17]) and adds that vector to ~a. For Example
3.1, get_tokens(a) = {portland, 3BE, oxford, 9PL, . . .}. Note that since terms
like “street”, “road”, or the area–level tokens in the UK postcode information

66 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

Algorithm 3.1 Index construction

Input: Indexes IN, IV, IE, IF, Attribute a
Output: Updated IN, IV, IE, IF

1: function InsertIntoIndexes
2: Q(a)← {};T (a)← {};R(a)← {};~a← {};
3: H ← histogram.new()
4: Q(a)← get_qgrams(a)
5: for all v ∈ [[a]] do
6: H.insert(get_tokens(v))
7: R(a)← R(a) ∪ get_regex_string(v)
8: end for
9: for all t ∈ H.infrequent() do
10: T (a)← T (a) ∪ {t}
11: end for
12: for all t ∈ H.frequent() do
13: ~a← ~a ∪ get_embedding(t)
14: end for
15: IN.insert(MinHash(Q(a)))
16: IV.insert(MinHash(T (a)))
17: IE.insert(RandomProjections(~a))
18: IF.insert(MinHash(R(a)))
19: end function

are frequently occurring, they are considered weak signal carriers of value–level
similarity, i.e., not part of T (a). However, such terms are indicative of the
possible domain–specific types from which the attribute extent is drawn, viz.,
Address in this case. Therefore, they are the terms for which word-embedding
vectors are sought, i.e, get_embedding(t).

• get_regex_string(v): The rset R(a) of an attribute value builds on the following
set of primitive lexical classes defined by regular expressions: C = [A−Z][a−z]+,
U = [A−Z]+, L = [a−z]+, N = [0−9]+, A = [A−Za−z0−9]+, P = [., ; : /−]+.
P also includes any other character not caught by previous primitive classes.
Given an attribute value, we tokenize it and, for each token t, once we find its
matching lexical class l, we add its denoting symbol to a string that describes
the format for the value, and add that string to the set representation R(a).
If the same symbol appears consecutively, all occurrences but the first are
replaced by ’+’, e.g., {NC+P+A+}. If an attribute value matches more than

3.4. ATTRIBUTE RELATEDNESS 67

one primitive class, we choose the first match, in the order enumerated above.

The set representations of related attributes are hashed into similar LSH
partitions, i.e., rather than indexing full attribute names/values we index set
representations, so that signals are both finer–grained and crisper. We can then
define N–, V– and F–relatedness in terms of Jaccard similarity of the correspond-
ing set representations, and E–relatedness in terms of cosine similarity of the
corresponding set representations, and efficiently approximate these measures:
Jaccard/cosine distance between two set representations is approximated by the
bit–level similarity of their MinHash/random–projection values, which act as keys
for the LSH buckets they are stored in.

3.4.4 Attribute relatedness: the numeric case

Numeric attributes are a special case in our framework. Of the four types of evi-
dence we take into account, only names and formats provide relatedness evidence
when dealing with numbers. This is because numbers cannot be analysed in terms
of tokens as usefully as text can. Hence, token frequency and word–embedding
vectors are not useful signals. Moreover, LSH hashing schemes are not available
that can be applied to features that we are able to extract from numeric values.
So, we do not index numeric values into the respective indexes. We do index them
into the name– and format–related indexes even though, for numbers, formatting
is less indicative of conceptual equivalence. For example, an attribute denoting
the age of a person might share many values with an attribute denoting the
person’s weight or height and it is difficult to think of features that might provide
the kind of diversity of viewpoints that we adopt for textual values. In such cases,
rather than grounding relatedness decisions on their value–level similarity, we use
the Kolmogorov–Smirnov (KS) statistic to decide whether the attribute extents,
seen as samples, are drawn from the same distribution.

The inability to rely on the V and E indexes means that, for numeric attributes,
we cannot obtain the same scale of computational savings from blocking and
distance computation that we obtain for textual ones. Algorithm 3.2 describes
how we characterise D–relatedness instead. We use evidence from the N and F
indexes in a decision on whether we proceed to consider the D–relatedness or not.
In addition, in Algorithm 3.2, we rely on the notion of a subject attribute (defined
below) to contextualise the numerical value in terms of the entity of which it is a

68 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

presumed property. In Algorithm 3.2, by I∗ we mean look–ups on all of IN, IV, IE,
and IF, with an existential interpretation, i.e., membership in any one of them.

We only compute KS, our measure of D–relatedness when there is sufficient
evidence from indexes we already have that a and a′ are related, thereby benefiting
from the blocking effect they give rise to.

To define (and identify) subject attributes, we follow the approach from
[VHM+11] and [DSFG+12]:

Definition 3.3. Given a table T with two or more attributes {a1, . . . , an}, an
attribute ai is called the subject attribute of T if ai identifies the entities the dataset
is about, whereas non-subject attributes describe properties of the identified entity.

To identify such attributes, we use the supervised learning technique in
[VHM+11]. Intuitively, this approach favours leftmost non–numeric attributes
with few nulls and many distinct values. As in [DSFG+12], we assume each
dataset has only one subject attribute and that this attribute has non–numeric
values. For example, in Figure 3.1, the subject attribute of S1 is Practice Name,
the subject attribute of S2 is Practice, the subject attribute of S3 is GP, and the
subject attribute of T is Practice.

To validate the technique proposed in [VHM+11] for the identification of
subject attributes on the data we used, we have built a classification model
(invoked in get_subject_attribute) and 10–fold cross–validated it on 350 datasets
from data.gov.uk (the data lake used in experiments) with manually identified
subject attributes. The average accuracy is 89%.

3.5 Table relatedness

This section explains how we propagate the relatedness measures from attributes
to the datasets they are part of.

For each related attribute, four distances are computed. In addition, if both
ai and the related attribute are numeric, there may be a distribution–based
measurement (depending on the guards previously described) computed using the
KS statistic, otherwise that measurement is set to 1 (i.e., maximally distant).

Given a target T with attributes {a1, . . . , an}, for each ai we obtain its set
representations and use the corresponding hashing schemes to retrieve, from

3.5. TABLE RELATEDNESS 69

Algorithm 3.2 Computing D-relatedness

Input: Numeric attributes a in table T and a′ in table S
Output: DD(a, a′)

1: function ComputeDD
2: i← get_subject_attribute(T)
3: i′ ← get_subject_attribute(S)
4: if i′ ∈ I∗.lookup(i) then
5: return KS([[a]], [[a′]])
6: else if a′ ∈ IN.lookup(a) then
7: return KS([[a]], [[a′]])
8: else if a′ ∈ IF.lookup(a) then
9: return KS([[a]], [[a′]])
10: else
11: return 1
12: end if
13: end function

each of the four indexes, every attribute that is related to ai, paired with the
corresponding relatedness measure, estimated based on Equations 3.2 and 3.4
(i.e., its distance to ai). This is so by virtue of the relationship between hashing
schemes and similarity types. Specifically, given a target attribute ai and an LSH
index IM ,M ∈ {N,V,F,E}, consider Kai = {kai

1 , . . . , k
ai
L }, the set of keys in index

IM that identify the buckets under which ai has been stored. Recall that L is a
preconfigured LSH parameter, together with the length of each key in Kai . For
each candidate attribute a′j in the data lake, for which Kai ∩ Ka′

j 6= ∅ (i.e., there
is at least one bucket in IM that contains both ai and a′j), the distance dist(ai, a′j)
is given by:

dist(ai, a′j) ≈ 1− |K
ai ∩ Ka′

j |
L

(3.5)

Intuitively, and as per Equations 3.2 and 3.4, the distance between ai and a′j
is estimated based on the probability that at least one key of ai collides with a
key of a′j. The higher this probability, the more similar the two attributes are,
and the smaller the distance between them.

Each such distance value is a number between 0 and 1, quantifying the degree

70 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

of relatedness between the two attributes, as defined by the type of evidence used.
Note that there may be many datasets in a data lake that can be considered
related to a target. This is because table relatedness is possible if at least one
pair of attributes (ai, a′j) are considered related by at least one LSH index, even
though dist(ai, a′j) may be large. To limit the number of related candidates to
a target, we consider only the top–k candidate datasets returned as potentially
related to that target, with k being set at search time. Consequently, our goal in
this chapter becomes:

Given a target schema, find the top–k most related datasets from a
data lake that are relevant for populating as many target attributes as
possible.

The statement above implies that the list of all potentially related datasets
with the target have to be ranked and the top–k picked as the solution. This, in
turn, implies that the relatedness between the target and a candidate datasets
has to be aggregated into a single value. Note that, so far, we have described how
relatedness at attribute–level is quantified, for each type of evidence used. We now
describe how the relatedness between attributes is propagated to dataset–level.
To this end, we propose two aggregation schemes to quantify the relatedness
between a target T and a source S, as a single measure, irrespective of how many
pairs of related attributes exist between them.

Consider again the example in Figure 3.1. As mentioned, for each target
attribute we retrieve similar in-lake attributes using the indexes. We group
the results by the dataset the attributes originate from. As an example of the
structures that are created through this grouping (one for each dataset that has at
least one attribute that is related to some attribute of the target), consider Table
3.1. Here, for simplicity, we use hypothetical distance values (the exact ones can be
obtained by applying Equation 3.5) to exemplify the degree of similarity between
attribute pairs. The table contains three rows because, of the five attributes in the
target T in Figure 3.1, only three attributes in the S2 dataset are in any degree
related to it. We observe that (T.Practice, S2.Practice) and (T.City, S2.City)
have identical attribute names so DN is 0. For all three pairs in the table, we have
DV and DE smaller than 1, which means that there is evidence of their V- and
E-relatedness, and the distribution distance DD equal to 1, since all three pairs
contain attributes with textual values.

3.5. TABLE RELATEDNESS 71

Table 3.1: Example distances for Figure 3.1

Pair DN DV DF DE DD

(T.Practice, S2.P ractice) 0.0 0.9 0.6 0.2 1.0
(T.City, S2.City) 0.0 0.2 0.2 0.3 1.0
(T.Postcode, S2.Postcode) 0.0 0.6 0.1 0.8 1.0

3.5.1 Type–specific aggregation scheme

We now describe how each relatedness distance Dt, t ∈ {N,V,F,E,D}, of two
data sets S and T is computed from the distances between their related attributes.
Intuitively, we want to aggregate, column–wise, the distances that appear in the
cells of a table like Table 3.1 to obtain a 5–dimensional vector that captures the
relatedness between the two corresponding datasets (i.e., T and S2 from Figure
3.1, in this case). We aggregate using a weighted average of the relatedness
distances D = {DN, DV, DF, DE, DD} to obtain the desired 5–dimensional vector.

More formally, let T and S be the target and source tables from which Table
3.1 is constructed. We use Equation 3.6 on each column of Table 3.1 to aggregate
its values:

Dt(T, S) =
∑m
i=1w

i
tD

i
t∑m

i=1w
i
t

(3.6)

with m, the number of rows in Table 3.1, i.e., the number of attributes in T that
are related to some attribute in S, and t ∈ {N,V,F,E,D}.

We must define the weights to use in Equation 3.6. Recall that, for each
distance type t, by performing a look–up on the corresponding index for a target
attribute a, we retrieve every attribute of datasets in the lake that is related to a,
paired with the corresponding relatedness measure, i.e., its distance to a computed
with Equation 3.5. In other words, for each target attribute a, we can compute a
distribution of relatedness measurements of type t, i.e., the set of all distances of
type t between a and every attribute in the lake that is related to a. We denote
such a set as Rt. Given a distance value Di

t between two attributes, e.g., a cell
value from Table 3.1, its associated weight wit is given by the complementary
cumulative distribution function evaluated at Di

t:

wit = 1− Prob[d ≤ Di
t],∀d ∈ Rt (3.7)

72 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

Intuitively, each weight wit represents the probability that an observed distance
Di
t is the smallest in Rt. This allows the weights to compensate for the presence

of a potentially high number of weakly related attributes to a target attribute:
attributes far away from the target attribute will have a small weight.

As an example, consider again the pair of datasets (T, S2) from Figure 3.1,
with their aligned attributes shown in Table 3.1. For each t ∈ {N,V,F,E,D}, we
use the distribution, Rt, of all computed distances of type t between the target
attribute and all other t–related attributes in the lake, to decide how important
a given distance Di

t is in Equation 3.6. For instance, if S2.Postcode is among
the most V–related attributes to T.Postcode in the entire data lake, D3

V (i.e., the
third value on DV column of Table 3.1) will have a high weight in Equation 3.6,
denoting a strong relatedness signal, relative to all other attributes V–related to
T.Postcode. Conversely, if S2.Postcode is among the least E–related attributes
to T.Postcode in the entire data lake, D3

E (i.e., the third value on DE column of
Table 3.1) will have a low weight in Equation 3.6, denoting a weak relatedness
signal, relative to all other E–related attributes to T.Postcode.

3.5.2 Dataset–level aggregation scheme

Equation 3.6 is applied on each column of a table like Table 3.1, and this results in a
5–dimensional vector, ~dv(T,S) = [DN(T, S), DV(T, S), DF(T, S), DE(T, S), DD(T, S)].
In order to derive a scalar value from ~dv(T,S) that can stand as a measurement of
the relatedness between T and S, we consider S to be a point in a 5–dimensional
Euclidean space, where each distance measure represents a different dimension.
In this space, the coordinates of T are [0, 0, 0, 0, 0]. This allows us to compute
a combined distance of S from T using the weighted l2–norm of ~dv(T,S) (i.e., the
weighted Euclidean distance):

D(T, S) =

√√√√∑5
t=1(wt × ~dv(T,S)[t])2∑5

t=1wt
(3.8)

Again, we must define the weights to use in Equation 3.8. Note that here the
weights represent a proposal as to the relative importance of each evidence type
t, i.e., each type of relatedness measure.

3.5. TABLE RELATEDNESS 73

(a) Related correlation (b) Unrelated correlation

Figure 3.3: Illustration of the existing correlation between Equation 3.8 (i.e.,
Euclidean distance) and the probability of two tables being related.

We have set the weights using an empirical procedure: we started by constru-
ing relatedness discovery as a binary classification problem defined on two data
repositories, one with real–world data from data.gov.uk, and one with synthetic
data used in [NZPM18]. Both these repositories are analysed in Section 3.7 of
this chapter. The procedure we have followed to determine the weights to be used
in Equation 3.8 was:

1. We used the benchmark provided in [NZPM18], which comes with the
ground truth about relatedness, to create a training set by choosing related
and unrelated pairs of the form (T, S) (i.e., positive and negative examples,
resp.) from the benchmark ground truth. In the training set, if S is related
to T , then we label the pair as related (i.e., 1), otherwise we label it as
unrelated (i.e., 0). Each such pair has a feature vector of five associated
elements, i.e., the five distance measures obtained through Equation 3.6.

2. We built a logistic regression classifier using the training set, relying on
coordinate descent [HCL+08] to optimise the coefficient of each feature.
We tested the resulting model against a test set, created similarly to the
training set, using data from a ground truth of a manually created real–
world benchmark, and obtained an accuracy of approx. 89%. Details about
the test benchmark are given in Section 3.7.

3. We used the coefficients of the resulting model as the respective weights in
Equation 3.8.

The same procedure was repeated for a data repository of real–word data, for
which the ground truth has been created manually, by a human. In both cases,

data.gov.uk

74 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

the most important distance type proved to be the one based on instance values,
followed by the name–based distance, the embeddings–based distance, and the
format–based distance. In practice, we have observed that using either set of
weights with Equation 3.8 returns similar results.

The intuition behind the use of this approach to determine suitable weight
values is that the coefficients obtained through optimisation will minimise the
distance between highly–related datasets and maximise it between unrelated
datasets. Figure 3.3 confirms our hypothesis and shows that, for 10, 000 pairs of
tables (T, S) from the ground truth of the data repository used in [NZPM18]: (a)
the weighted Euclidean distance between T and S, computed using Equation 3.8,
is negatively correlated with the probability of S being related to T , as returned
by the trained model, and (b) the weighted Euclidean distance between T and S,
computed using Equation 3.8, is positively correlated with the probability of S not
being related to T , computed by subtracting the probability of the two datasets
being related from 1. In other words, when the probability of two datasets being
related is high, the distance between the two datasets returned by Equation 3.8
is small, and when the same probability is low, i.e., the probability of the two
datasets not being related is high, the distance between the two datasets is large.

Given a target table T to be populated, and a data repository S = {S1, S2, ..., Sn},
the dataset discovery problem is the problem of finding the k-most related datasets
to T in S, where dataset relatedness is measured using Equation 3.8.

3.6 Extending relatedness through join paths

The techniques described so far construe relatedness discovery as finding datasets
in the lake with attributes that are aligned (by which we mean related by any of
the evidence types) to as many attributes in the target as possible. In this section,
we show how some of the indexes we build for characterising similarity can be
used to discover join opportunities between the k–most related tables to a target
and non–top–k tables. Thus, tables with weaker relatedness signal are included
in the solution if, through joins, they contribute to covering more attributes in
the target. More formally, given a target T , let S = {S1, . . . Sn} be the set of all
datasets from a data lake, and Sk, k ≤ n, the k–most related datasets to T . In
this section, we describe how to identify datasets in S − Sk that, through joins
with datasets in Sk, contribute to populating T .

3.6. EXTENDING RELATEDNESS THROUGH JOIN PATHS 75

We focus on joins based on postulated (possibly partial) inclusion dependencies.
Although these can be computed using data profiling techniques [PBF+15], this
is not practical given the size of the data lakes we are focusing on, i.e., they adopt
and all-against-all comparison strategy. Thus, we consider two datasets S and S ′

to be joinable if they are SA–joinable (SA for subject–attribute, as per Definition
3.3).

Definition 3.4. Two datasets S and S ′ are SA–joinable if ∃ a, an attribute from
S, and ∃ a′, an attribute from S ′, such that:

• at least one of a or a′ is a subject attribute, and

• there is IV-based evidence that the tsets T (a) and T (a′) overlap.

Thus, we rely on IV to identify inclusion dependencies and, instead of using
candidate keys, we rely on subject attributes.

To determine whether two tsets overlap, we consider the overlap coefficient
between two tsets as follows:

ov(T (a), T (a′)) = |T (a) ∩ T (a′)|
min(|T (a)|, |T (a′)|) (3.9)

Let τ be a similarity threshold computed based on the parameters K and L of
MinHash–based LSH, as defined in [RLU14]: τ = (1

L
)

1
K . If a and a′ are V–related,

given the properties of LSH under MinHash, then they are Jaccard–similar with a
similarity between their respective tsets of at least τ . Then, by the set–theoretic
inclusion–exclusion principle, it follows that

τ × (|T (a)|+ |T (a′)|)
(1 + τ)×min(|T (a)|, |T (a′)|) ≤ ov(T (a), T (a′)) ≤ 1 (3.10)

We construe the discovery of join paths as a graph traversal problem, and, in
order to identify SA–join paths among the elements of S, we define an SA-join
graph, GS = (S, I) over the entire data lake, where S is the node set and I the
edge set defined using the two SA–joinability conditions from Definition 3.4: each
edge from I connects two SA–joinable nodes Si and Sj.

76 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

Given an SA–join graph GS and a set Sk of k–most related datasets to a given
target T , we find the set of SA–join paths from each S ∈ Sk to all other vertices
in GS (or in a connected component of GS that contains S) that are not in Sk,
using Algorithm 3.3. Specifically, given datasets S ∈ Sk, the function traverses
GS depth–first, starting from S. A join path is added to a globally accessible set
of join paths J when (i) all its constituent nodes, apart from the starting node S,
are not in Sk, (ii) the path is not cyclic, and (iii) there is evidence from at least
one index that every node in the path is related to the target.

Algorithm 3.3 is called for each S ∈ Sk and returns a set of SA–join paths,
each of which starts from S. Each dataset in such a join path has the potential
to improve target population, either through the addition of new instance values
to an already covered target attribute, or by populating previously uncovered
attributes. In the next section we show that, by taking join opportunities into
account, both the achievable ratio of covered target attributes and the precision
of attributes that are considered for populating the target are improved.

3.7 Dataset discovery evaluation

In this section, we firstly describe the data repositories used to evaluate our
proposed technique (referred to as D3L for Dataset Discovery in Data lakes) and
the measures we report in evaluating it. Then, we evaluate the effectiveness of each
of the relatedness evidence types and compare them against their aggregation.
We then compare the effectiveness and the efficiency of D3L with that of the
techniques proposed in [NZPM18] (referred to as TUS for Table Union Search)
and in [FAK+18] (referred to as Aurum). Finally, we evaluate the impact on
target coverage and attribute precision when, in addition to the top–k datasets,
we also consider datasets that are joinable with the ones in the top–k.

3.7.1 Data repositories used in evaluation

We use the following repositories in the experiments:

• Synthetic (∼1.1GB): ∼5,000 tables (used in TUS [NZPM18]) synthetically
derived from 32 base tables containing Canadian open government data
using random projections and selections on the base tables. We use this
repository to measure comparative effectiveness in terms of precision and

3.7. DATASET DISCOVERY EVALUATION 77

Algorithm 3.3 Join paths discovery
1: function FindJoinPath(start, path)
2: path.append(start)
3: for all Ni ∈ GS .neighbours(start) do
4: if Ni /∈ Sk and Ni /∈ path and Ni ∈ I∗.lookup(T) then
5: new_path← FindJoinPath(Ni, path)
6: J ← J ∪ {new_path}
7: end if
8: end for
9: return path
10: end function

recall. The average answer size is 260 (i.e., the average number of related
tables over 100 randomly picked targets). This dataset is available at github.
com/RJMillerLab/table-union-search-benchmark.git.

• Smaller Real (∼600MB): ∼700 tables from real world UK open government
data, with information on domains such as business, health, transportation,
public service, etc. Again, we use this repository to measure comparative
effectiveness. The average answer size is 110.

• Larger Real (∼12GB): ∼43,000 tables with real world information from dif-
ferent UK National Health Service organisations (webarchive.nationalarchives.
gov.uk/search/). We only use this repository to measure comparative ef-
ficiency. The scripts used to download the two real world data sets are
available at github.com/alex-bogatu/DataSpiders.git.

For Synthetic the ground truth has been obtained by recording through the
derivation procedure, for every table, which other tables are related to it. For
Smaller Real a human has manually recorded, for every table in the lake, which
other tables are related to it, as defined in Definition 3.1. In both ground truth
instances each table T in the repository is listed with all its attributes along with
every table T ′, along with its own attributes that are related to some attribute
in T . As per Definition 3.1, two attributes are considered related in the ground
truth if both contain values drawn from the same domain.

Figure 3.4 describes the arity, the cardinality and the percentage of numeri-
cal attributes of the two repositories used in measuring effectiveness. Arity can
have a significant impact on the top–k ranking because sources with many sim-
ilar attributes tend to be ranked higher by our weighted scheme, and on target

github.com/RJMillerLab/table-union-search-benchmark.git
github.com/RJMillerLab/table-union-search-benchmark.git
webarchive.nationalarchives.gov.uk/search/
webarchive.nationalarchives.gov.uk/search/
github.com/alex-bogatu/DataSpiders.git

78 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

(a) Arity of the
constituent tables.

(b) Cardinality of the
constituent tables.

(c) Data types of the
attributes in the
constituent tables

Figure 3.4: Different statistics measured on the constituent tables of the Synthetic
and Smaller Real repositories.

coverage because it is influenced by the number of attributes related to some
target attribute. Cardinality influences the accuracy of similarity estimation and
of join path discovery because a high overlap between instance values can deter-
mine a high probability of collisions between MinHash hashes. Lastly, numerical
attributes are an important special case, as discussed in Section 3.4.4.

3.7.2 Baselines and reported measures

TUS [NZPM18] proposes a unionability measuring framework that builds on top
of three types of evidence extracted exclusively from instance–values, aiming to
inform decisions on unionability between datasets from different viewpoints. TUS
uses similar indexing and querying models to D3L and, therefore, it is a good
candidate for a comparative analysis against D3L w.r.t. both effectiveness and
efficiency.

Aurum [FAK+18] uses both schema– and instance–level information to identify
different relationships between attributes of a data lake. A two–step process
profiles and indexes the data, creating a graph structure that can be used for
key–word search, unionability, or joinability discovery. This makes Aurum a
good candidate for a comparative analysis against D3L w.r.t. indexing time,
effectiveness, and the added value of join paths. Conversely, Aurum employs
a different querying model, treating queries as graph traversal problems, rather
than LSH index lookups. This means that the discovery process in Aurum is not
influenced by the same parameters, e.g., k, as in D3L. This makes an efficiency
comparison between Aurum and D3L w.r.t. search time infeasible.

In our experiments we measure the following characteristics:

3.7. DATASET DISCOVERY EVALUATION 79

1. Individual effectiveness. We measure how effective each type of index is
in identifying related datasets. To this end, we report the Precision and the
Recall at k (for a range of k values) in discovering the top–k most related
datasets to a randomly picked target.

2. Comparative effectiveness. We measure how effective D3L is, using all
five types of relatedness evidence, against TUS and Aurum. To this end,
we report the Precision and the Recall at k (for a range of k values) in
discovering the top–k most related datasets using D3L, TUS, and Aurum.

3. Comparative efficiency. We measure (a) the time taken to create the
indexes for D3L, TUS, and Aurum; (b) the time necessary to query the
indexes and compute the top–k solution for D3L and TUS (for reasons
mentioned above), and (c) the space overhead incurred for all three solutions.

4. Join impact. We measure the impact of using join opportunities in per-
forming dataset discovery using each of the three solutions, relative to (a) a
measure of target coverage defined as the ratio of target attributes covered
by at least one dataset from the result, and (b) to a measure of target at-
tribute precision defined as the percentage of candidate attributes correctly
covering some target attribute.

For the purposes of computing precision and recall for (1) and (2) above, we
define:

• TP. A table from repository R that is in the top-k tables returned and is
related to the target in the ground truth for R is a true positive;

• FP. A table from repository R that is in the top-k tables returned and is
not related to the target in the ground truth for R is a false positive;

• FN. A table from repository R that is related to the target in the ground
truth for R but is not a member of the top–k tables returned is a false
negative.

As usual, precision p is defined by:

p = TP

(TP + FP)

80 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

Recall r is defined by:

r = TP

(TP + FN)

In assessing the result (i.e., the top–k tables returned), we count the occurrence
of a table in the answer as a true positive if, as per the corresponding ground
truth, at least one, but not necessarily all, attributes of a table in the solution is
related to the target. We apply this interpretation to both D3L and TUS.

In our interpretation of true positives, we consider that failing to identify one
related attribute should not be considered a sufficient condition for concluding
that the table it belongs to is unrelated to the target: every attribute that can
contribute to populating the target does indeed so contribute. We present more
insight on the coverage of the target in the experiments pertaining to relatedness
as joinability.

For the purposes of computing the target coverage for (4) above, firstly, let
Sk = {S1, . . . Sk} be the k-most related datasets to a given target T . Given a
dataset Si ∈ Sk, let JSi

be the set of all join paths Jl that start from Si. We
denote the arity of T by arity(T) and the projection from Si of the attributes
that are related to some attribute in T by πrelated(T)(Si). Similarly, we denote the
projection from the result of the join path JSi

of the attributes that are related
to some attribute in T by πrelated(T)(JSi

).
We define the coverage of Si on T as the ratio of attributes in T that are

related to some attribute in Si:

covSi
(T) = arity(πrelated(T)(Si))

arity(T) (3.11)

Note that the coverage of a join path Jl ∈ JSi
can be defined in a similar way

by replacing Si with the result of the join. For the purpose of our comparison
though, we are interested in the combined coverage of all the join path results in
JSi

, since each join path can contribute new attributes to the target. As such, we
define the coverage of JSi

on T as:

covJSi
(T) =

arity(⋃
Jl∈JSi

πrelated(T)(Jl))

arity(T) (3.12)

3.7. DATASET DISCOVERY EVALUATION 81

Given Equations 3.11 and 3.12, we average the coverage measures of all Si ∈ Sk,
and use the resulting measures for different k, to show how the target coverage
increases when we consider datasets in join paths.

For the purpose of computing attribute precision for (4) above, we count an
alignment between an attribute of a dataset Si and a target attribute as a true
positive if, as per the ground truth, the two attributes are related (by Definition
3.1), and as a false positive otherwise. Correspondingly, we extend this definition
for a set of join paths JSi

. Firstly, we find the set of all attributes of datasets
in JSi

that are aligned with the same target attribute, and count this set as a
true positive if it contains at least one element that is related with that target
attribute in the ground truth, and as a false positive otherwise. As before, for
both cases, we report the average attribute precision of all Si in Sk, for different
k.

All experiments have been run on Ubuntu 16.04.1 LTS, on a 3.40 GHz Intel
Core i7-6700 CPU and 16 GB RAM machine.

In the results below, each point is the average computed by running D3L

(and TUS, where pertinent) over 100 randomly selected targets in the respective
repository.

Each solution, viz. D3L, TUS, and Aurum, is implemented using LSH
Forest[BCG05], configured with a threshold of 0.7 and a MinHash size of 256.

3.7.3 Individual effectiveness

We first evaluate the effectiveness of the discovery process conducted using each
evidence type individually. We only discuss here the results obtained for the
Smaller Real repository; running the experiment on the Synthetic repository
returned similar behaviour in terms of precision and recall.

Experiment 3.1. Smaller Real: Individual precision and recall

The purpose of this experiment is to evaluate the effectiveness of individual
evidence types against what is achievable when using the combined approach.
In Figure 3.5, the low precision (e.g., [0.10, 0.30]) and recall (e.g., [0.03, 0.43])
achieved using format suggests that the format representation in itself is not suffi-
ciently discriminating, e.g., there may be many single–word or number attributes

82 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

(a) Precision
(b) Recall

Figure 3.5: Average individual precision and recall measured on the results of 100
dataset discovery processes with targets randomly selected from Smaller Real.

that represent different entities. The remaining evidence types yield higher preci-
sion: at the average answer size, k = 110, all four evidence types achieve between
0.43 (embeddings) and 0.60 (values) precision, and between 0.49 (embeddings) and
0.70 (values) recall.

Aggregating all five measures using the aggregation framework described in
Section 3.5 results in a nearly constant increase in both precision and recall,
compared with the best individual evidence type: values. For instance, at k = 110,
the 60% precision achieved when using value-based similarity is increased to almost
70% when considering all evidence types. Similarly, recall increases from 65%
when using values to more than 70% when combining all measurements. Overall,
there is a 29% increase in the percentage of correct values returned at k = 110,
which explains the increase in both precision and recall when all relatedness
evidence types are considered.

Performing the same experiment for non–numerical attributes only, i.e., DD =
1, resulted in an average decrease in the aggregated precision and recall of less
than 3.5% each. This suggests that, for this benchmark, most of the discoverable
related numerical attributes are already identified by other types of evidence, e.g.,
N, F.

3.7.4 Comparative effectiveness

In the experiments below, we report the precision and recall of D3L, TUS, and
Aurum at k (i.e., computed over the top-k tables returned) on the Synthetic and
Smaller Real repositories w.r.t. to their respective ground truth.

3.7. DATASET DISCOVERY EVALUATION 83

Experiment 3.2. Synthetic: Precision and recall as answer size grows

The purpose of this experiment is to compare the effectiveness of D3L and
the two baselines when the repository contains “well–behaved” data , i.e., since
the data has been generated through random projections and selections starting
from the same base tables, there is no variation in the representation of attribute
names or instance values.

The results are shown in Figure 3.6. D3L proves to be highly precise for
k ∈ [5, 140] and to linearly decrease in the second part of the interval (down to
0.65 when k = 350). This suggests that most of the closely related datasets are at
the top of the ranking. Similarly, Aurum is comparatively precise for k ∈ [5, 50]
but degrades linearly for the rest of the interval (down to 0.49 when k = 350).
TUS precision suggests that between 20% and 30% of the retrieved results are
false positives consistently ranked higher than truly related tables.

Overall, D3L performs better than the baselines because the finer–grained
features are more diagnostic of similarity and the aggregation framework allows
each evidence to contribute to the ranking, therefore reducing the impact of
highly–scored false positives, i.e., a strong score in one dimension is balanced
with a, potentially, lower score in another. By contrast, both baselines employ a
max–score aggregation that only considers the highest similarity score. In case
of TUS, the transformation of similarity scores into probabilities determines a
further dispersion of true positives across the entire set of results.

Recall rises fast for k ∈ [5, 140] for all approaches and levels out beyond the
average answer size. As k increases, D3L is able to identify up to 20% more
relevant tables compared to TUS, and up to 10% more relevant tables compared
to Aurum. This is because D3L employs a multi–evidence relatedness discovery
that guards against too many misses. We found that both TUS and Aurum tend
to miss relevant attributes that do not share values with some target attribute.
This is because TUS relies exclusively on instance values evidence, and Aurum’s
name and TF/IDF–based evidence proves less dependable than content–based
evidence.

Experiment 3.3. Smaller Real: Precision and recall as answer size
grows

The purpose of this experiment is to compare the effectiveness of D3L, TUS,
and Aurum when the data repository contains less “well–behaved” data , i.e., since

84 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

(a) Precision (b) Recall

Figure 3.6: Average precision and recall measured on the results of 100 dataset
discovery processes with targets randomly selected from Synthetic.

(a) Precision (b) Recall

Figure 3.7: Average precision and recall measured on the results of 100 dataset
discovery processes with targets randomly selected from Smaller Real.

the the repository contains real world data from data.gov.uk, there are variations
in the representation of attribute names and instance values that represent the
same entity.

The results are shown in Figure 3.7. D3L correctly identifies highly related
datasets, e.g., k ∈ [5, 110], resulting in precision between 0.2 and 0.4 higher com-
pared to TUS, and between 0.05 and 0.3 higher compared to Aurum. This is
because the value–based similarity evidence used by TUS and Aurum expect
equality between the instance values of similar attributes, which is not a char-
acteristic of Smaller Real. As with the Synthetic benchmark, the aggregation
framework of D3L also contributes to the improved precision.

Regarding recall, at the average answer size of k = 110, D3L identifies more
than 70% of the related datasets, while both TUS and Aurum identify around

data.gov.uk

3.7. DATASET DISCOVERY EVALUATION 85

55%. In fact, the performance gap is wider between D3L and the two baselines
for Smaller Real than for Synthetic across the entire range of k values. This could
be explained by the fact that D3L employs a more lenient approach w.r.t. format
representation of values when indexing and comparing attributes. In contrast,
TUS and Aurum are more dependent on consistent, clean values than D3L. High
levels of consistency and cleanliness are features of the synthetically generated
tables but are less prevalent in real–world data.

3.7.5 Comparative efficiency

In these experiments, We report performance data for D3L, TUS, and Aurm,
where pertinent. We report the time it takes to create the indexes and the time
it takes to compute the top-k solution. Note that the implementation of TUS
in [NZPM18] is not publicly available so we have implemented it ourselves using
information from the paper. For Aurum, we have used the implementation from
github. com/ mitdbg/ aurum-datadiscovery

Experiment 3.4. Time to create the indexes as the data lake size grows

The results are shown in Figure 3.8a. For each system, the reported values
include the times required for preprocessing the data and for creating all data
structures later used in performing dataset discovery.

Compared to TUS, D3L performed up to 4x better on small and medium
sized lakes, e.g., 7.5K tables, and up to 6x better on larger ones, e.g., 12.5K.
Aurum performs up to 5x better that D3L for small data lakes, e.g., 2.5K
tables, and comparable with D3L for larger lakes, e.g., 12.5K. The dominant
task in both D3L and TUS is data pre–processing, e.g., generating summary
representations for each attribute, while in Aurum the dominant task is the
creation of the graph structure used to perform discovery. The common tasks
of generating MinHash/random–projection signatures and creating LSH indexes
have been found to take comparable amounts of time in all three systems. The
main reason for the poorer performance of TUS seems to lie in its approach to
semantic evidence, for which, in [NZPM18], YAGO [SKW07] is used. Having to
map each token of each instance value into a YAGO knowledge base significantly
slows down index construction and, as the effectiveness results have shown, for
perhaps insufficient return on investment.

github.com/mitdbg/aurum-datadiscovery

86 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

(a) Indexing time (b) Synthetic search (c) Smaller real search

Figure 3.8: Average LSH indexing and searching performance measured on the
results of 100 dataset discovery processes with targets randomly selected from
Synthetic or Smaller Real.

Experiment 3.5. Synthetic: Effect on search time as answer size
grows

In the next two experiments, we report the effect of the answer size on the time
needed to compute the answer. The requested size of the answer is the parameter
that most significantly affects the search time for D3L and TUS. Conversely,
the Aurum query model is not impacted by the size of the result: even when
using LSH Forest, the indexes are queried only once, when the graph structure
is created. In the case of D3L and TUS, every query is an index–lookup task
configured with a value for k.

Figure 3.8b shows the results for Synthetic. D3L performs much better than
TUS because the reliance on YAGO of the latter to provide semantic informa-
tion proves to be a performance leakage point: recall that, at search time, the
same process of mapping each instance value to YAGO is applied on the target.
Moreover, in TUS, the index is only a blocking mechanism, i.e., there remains
a significant amount of computation to be done before the unionability measure-
ments are obtained. In contrast, D3L does not use knowledge–base mapping
and its distance–based approach means that search returns plug directly into
relatedness measurements.

Although not directly comparable, we also report the average search time
of Aurum obtained for 100 queries on Synthetic, with a graph structure that
accommodates a result size of at least 260 datasets: 22.42 seconds.

Experiment 3.6. Smaller Real: Effect on search time as answer size
grows

In this experiment, we use the Smaller Real for which we vary the answer size

3.7. DATASET DISCOVERY EVALUATION 87

from k = 10 to k = 110 (the average answer size) growing by 20 at each step.
The results shown in Figure 3.8c tell a different story from Figure 3.8b. While

D3L still outperforms TUS, the performance gap shrinks considerably, particu-
larly for k > 50. This is because Smaller Real contains a greater ratio of numeric
values (shown in Figure 3.4c) and fewer tables overall than Synthetic (700 v. 5000).
While D3L spends computation time in considering numeric attributes, they are
completely ignored by TUS. Thus, the performance leaks that were significant
before do not occur in this case. The flip side, for TUS, is a loss of about 0.2 in
both precision and recall at k = 110.

We also report the average search time of Aurum obtained for 100 queries on
Smaller real, with a graph structure that accommodates a result size of at least
110: 18.37 seconds.

Experiment 3.7. Space overhead of the indexes

In Table 3.2, we report the total space occupied by indexes, relative to the
data lake size, for three repositories: Synthetic (1.1 GB), Smaller Real (600 MB),
and a sample of Larger Real (3 GB). We used a sample of the Larger Real because
building the TUS indexes for the full 12 GB repository requires more than 20
hours. We also report the combined space overhead of Aurum’s graph data
structure, profile store, and LSH indexes.

For the Synthetic repository, TUS and Aurum occupy 13% less space com-
pared to D3L. This is because D3L indexes four types of relatedness evidence,
as opposed to only three in TUS and Aurum. The differences in occupied space
increase for Smaller and Larger Real repositories. This is because, in addition to
creating more indexes, D3L uses finer–grained features for relatedness discovery,
which results in more related attributes being discovered, which, in turn, results
in more entries (buckets) per index.

3.7.6 Impact of join opportunities

In this section, we report on the impact of identifying join paths that start from
some table from the top-k. Our stated motivation for searching join paths is to
populate as many target attributes as possible. As such, we adopt the notions
of coverage and attribute precision defined in Section 3.7.2 to compare what is
achievable when we take into account join opportunities and when we do not, i.e.,
what is the impact of considering tables resulting from join paths on the coverage

88 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

Table 3.2: Space overhead for different repositories.

Synthetic Smaller Real Larger Real (sample)
D3L 69% 33% 58%
TUS 56% 19% 32%
Aurum 55% 20% 29%

of the target and on the attribute precision. Our hypothesis is that by considering
join paths we can identify relevant datasets that are not part of the initial ranked
solution, but can improve the target coverage.

In these experiments, we use the Synthetic and Smaller Real repositories since
measuring precision requires a ground truth.

We report the target coverage and attribute precision with (D3L+J/Aurum+
J) and without (D3L/Aurum/TUS) augmenting the top–k result with joinable
datasets. Note that the graph structure built by Aurum includes PK/FK can-
didate relationships, but TUS does not address joinability discovery.

Experiment 3.8. Synthetic: Target coverage as answer size grows

The purpose of the next two experiments is to compare the target coverage
and the attribute precision achieved on Synthetic, and, therefore, on data “well–
behaved”.

The D3L+ J and Aurum+ J curves from Figure 3.9a suggests that the two
systems are able to cover most target attributes by following join paths. The sharp
decrease in coverage when join paths are not considered confirms our hypothesis
that join paths allow us to identify sources potentially far away from the target
but relevant for maximizing its coverage. The superior coverage manifested by
Aurum for k ∈ [5, 80] can be explained by the fact that the ranking strategy
employed in Aurum favours the quantity of covered target attributes, over the
strength of the relatedness. In D3L’s case, the aggregation framework splits the
ranking criteria between the number of covered attributes and the strength of the
similarity. TUS seems to return many unrelated datasets with the given target
at the top of the ranking and, therefore, is less effective in covering it.

Experiment 3.9. Synthetic: Attribute precision as answer size grows

Figure 3.9b shows how many of the attributes used to populate the target
are correct in each case. Attribute precision is between 85% and 100% when
populating the target with the attributes returned by D3L + J and k < 260, in

3.7. DATASET DISCOVERY EVALUATION 89

(a) Target coverage (b) Attribute precision

Figure 3.9: Average coverage and attribute precision measured on the results of
100 dataset discovery processes with targets randomly selected from Synthetic.

contrast with Aurum + j, which decreases more sharply, i.e., a lower bound of
65% at k = 260. The results are consistent with the ones reported in Section 3.7.4
and are the consequences of the same characteristics: finer–grained features that
are more diagnostic and multi–evidence similarity signals considered by D3L(+J).
Furthermore, the join paths in D3L+ J are built on more than just uniqueness
of values (as is the case for Aurum + J), i.e., they use subject– attributes, and,
therefore, they introduce fewer false positives. As before, TUS returns more
unrelated tables at the top of the ranking than D3L and Aurm and, therefore, is
less precise.

Experiment 3.10. Smaller Real: Target coverage as answer size grows

The purpose of this experiment is to compare the target coverage and the
attribute precision achieved on Smaller Real, and, therefore, on data less “well–
behaved”.

Figure 3.10a shows that both D3L+ J and Aurum+ J achieve considerable
improvements in coverage over their join–unaware variants. The increase is, as
expected, smaller at low k values, e.g. k ∈ [5, 20], because the top of the ranking
already covers the target well. As k increases, the improvement in coverage
becomes more significant, especially in Aurum′s case. This suggests, once again,
that tables that are related to the target but are not included in the top-k (due
to an index miss, or weak relatedness signals) can be identified by traversing join
paths from some top-k datasets.

The low TUS coverage shown in Figure 3.10a suggests that the top-k solution
covers only a small fraction of the target attributes. This is because the datasets

90 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

at the top of the ranked solution contain attributes aligned with approx. 25%
of target attributes, while the rest (even as k increases) do not contribute many
additional attributes.

D3L proves significantly better at covering target attributes than TUS and
Aurum for the entire interval of k values. This is because, as previous experiments
showed, D3L retrieves higher quality datasets (i.e., more related to the target)
from the lake. The decrease of the curve as k increases can be explained by the
fact that the measure is an average of individual coverage values. As k increases,
there are more datasets with small coverage and the overall average decreases.

Experiment 3.11. Smaller Real: Attribute precision as answer size
grows

Figure 3.10b suggests that only 35% to 45%, and only 20% to 50% of the
target attributes populated by TUS and Aurum, resp., are correct. This is not
surprising since the dataset–level precision reported in Section 3.7.4 showed that
at most 50%, in the case of TUS, and at most 70%, in the case of Aurum, of the
retrieved datasets are indeed relevant for populating the target.

The increased precision of D3L is explained by its ability to identify attribute
relatedness even when the format representation of values differs. The difference
is preserved when joinable tables are considered. By including tables from the
join paths in the solution, at k ∈ [50, 170], the attribute precision increases by up
to 0.2. Note that, for D3L+ J , there is not much increase at the head and tail of
the k values interval, since datasets at the top already cover the target precisely,
while datasets that are joinable with tables far away from the target provide low
quality attributes. Furthermore, the precision of D3L+J does not descend below
the precision of D3L, suggesting that most of the attributes contributed by the
former are true positives.

Finally, as in the Synthetic case, the use of more restrictive conditions (i.e.,
the use of subject attributes, when searching for join), allows D3L + J to cover
the target more precisely.

3.8. SUMMARY AND CONCLUSIONS 91

(a) Target coverage (b) Attribute precision

Figure 3.10: Average coverage and attribute precision measured on the results
of 100 dataset discovery processes with targets randomly selected from Smaller
Real.

3.8 Summary and conclusions

This chapter has focused on describing an effective and efficient solution to the
problem of dataset discovery, seen as a nearest–neighbour search task. The
approach employs five types of relatedness evidence with the goal of maximising
effectiveness by covering a wide range of cases, and LSH techniques, for blocking
and quantifying relatedness, with the goal of maximizing efficiency by identifying
potential relatedness relationships in linear time. The main characteristics of D3L

are:

• The use of relatedness evidence conveyed only by the data representations them-
selves, without the use of external metadata or ontologies. The effectiveness
experiments in Section 3.7 show that by relying only on this type of relatedness
evidence, we can still effectively identify datasets related to a given target.
Therefore, D3L meets the desideratum stemming from the potential lack of
metadata associated with a data lake, as stated in Section 3.1.

• The use of multiple types of relatedness features, each grounded on a different
type of evidence, and the mapping of those features into a uniform distance
space. The effectiveness experiments in Section 3.7 also show that, with the
exception of format, each type of feature used can be effective individually.
Moreover, all of them complement each other when used in tandem. Therefore,
D3L meets the desideratum for multiple types of relatedness evidence that can
be reliably aggregated, as stated in Section 3.1.

92 CHAPTER 3. DATASET DISCOVERY IN DATA LAKES

• The use of fine–grained features of the data values that allow a reliable iden-
tification of relatedness in the presence of format representation heterogeneity.
The effectiveness experiments in Section 3.7, especially those performed on
the Smaller Real repository, show that D3L is lenient w.r.t. the potential
discrepancies in format heterogeneity existing in real–world data lakes. There-
fore, D3L meets the desideratum for reliable relatedness evidence, even when
the values from which features are extracted are inconsistent in their textual
representation, as stated in Section 3.1.

• The use of LSH indexes for identifying potentially related attributes and for
estimating values for the various relatedness measures used. The efficiency
experiments in Section 3.7 show that the time required to index a data lake
grows linearly w.r.t. the data lake size, and that the time required to compute
the top–k solution grows linearly w.r.t. the size of the expected solution.
Therefore, D3L avoids all–against–all comparisons when discovering related
datasets and meets the scalability desideratum, as stated in Section 3.1.

• The use of join paths, which are discoverable using the same indexing structures,
to extend the notion of relatedness. The join paths experiments in Section 3.7
show the benefit in terms of target coverage and attribute precision of including
joinable tables in the discovery solution.

In summary, the results constitute compelling empirical evidence that D3L

leads to better precision and better recall in faster time than the closest state–
of–the–art competitors, and that the first objective of our research, as stated
in Section 1.4 has been met: (i) D3L is able to effectively identify the most
relevant input for a given target and, therefore, minimise the cost of applying
data wrangling by avoiding running the wrangling process on irrelevant datasets;
(ii) given the target schema, the discovery process is fully automatic so that the
cost associated with the need for users with expert–level skills is reduced.

Chapter 4

Automatic format transformation

The techniques presented in Chapter 3 provide a means to contain the size of the
input of a data wrangling process by directly addressing the scalability challenge
introduced in Section 2.3.1. In addition, dataset discovery aims to be lenient
in postulating the relatedness of datasets with heterogeneous representations of
instance values by employing a granular analysis of data. However, being lenient
with respect to different format representations does not solve the problem in-
troduced by the heterogeneity challenge from Section 2.3.2. Indeed, data format
transformation, the subject of this chapter, is required to normalise the represen-
tation of values, and thereby reduce inconsistencies. Thus, this chapter treats the
task of format normalisation as an approach to overcome the heterogeneity chal-
lenge. We do so by construing the identification of format manipulation operations
as the problem of synthesising string processing operations from input–output
examples. Later, in Chapter 5, we will see that performing format normalisation
at larger scales (e.g., in data lakes) introduces the new challenge of identifying
suitable training data for our synthesis problem.

The aim of this chapter can be summarised as follows:

Given exemplar pairs of input and expected output strings, automat-
ically synthesise string processing operations (which we call transfor-
mations) that, consistently with the examples, transform new strings
whose format representation conform with the input examples into
output strings whose format representation conform with the corre-
sponding output examples.

93

94 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

In this chapter, we describe a novel method for synthesising format represen-
tation transformations, independently from most characteristics of a data lake. In
the next chapter, we discuss the implications of applying this chapter’s techniques
on large scale repositories such, as data lakes.

In Section 4.1, we motivate our choice of viewing format transformation as a
program synthesis problem, and present our desiderata for the proposed method.
Then, in Section 4.2, we introduce the concepts underpinning our approach,
together with a brief discussion of the state–of–the–art on format transformation.
The contributions of this chapter are briefly outlined in Section 4.3, and then
described in detail in Sections 4.4 and 4.5. Finally, we empirically evaluate our
proposal in Section 4.6, as part of a comparative analysis with the closest state–
of–the–art alternative, before concluding in Section 4.7.

4.1 Motivation and desiderata

The importance of format transformation as a task in preparing data for analysis
has been acknowledged since the rise of data warehouses and ETL. For exam-
ple, systems such as AJAX [GFSS00] or Potter’s Wheel [RH01] defined regular
expression based languages for expressing transformations, with the goal of nor-
malising the representation of string values. Later on, [KHP+11] put format
transformation at the core of data wrangling and proposed Wrangler, an inter-
active system for authoring transformation operations. The approach to format
transformation followed in Wrangler has also been adopted by industry lead-
ers in data wrangling, e.g., Trifacta (https://www.trifacta.com) and Talend
(https://www.talend.com).

Much of this focus on format transformation has been motivated by the re-
current conclusion that “janitorial” tasks, such as cleaning and reformatting data
values, are the most tedious in preparing data for analysis [Data, Datb]. Such
tediousness comes also with a need for expert–level knowledge due to format trans-
formation being performed mostly through manually authored scripts consisting
of string manipulation operations. Consequently, the task can be characterised as
time consuming and involving advanced technical/programming knowledge. This
comes in contradiction with the principles of cost–effective data wrangling defined
in Section 2.3. As such, in this chapter we propose a format transformation
solution with the following properties:

https://www.trifacta.com
https://www.talend.com

4.2. BACKGROUND AND RELATED WORK 95

Simple specifications. At heart, format transformation is a domain–specific
programming problem where the user has to be familiar with the data so that
she can derive the logical specifications from which a transformation program
is constructed. If we wish to avoid an appeal to programming experts, then
we need a format transformation technique that is amenable to synthesis, e.g.,
based only on very simple requirement specifications, such as input–output
example pairs.

Automated transformations. Transformations have to be expressed using
an underlying, often domain–specific, language. An iterative or user–guided
transformation process would require, in addition to knowledge about the data
to be transformed, familiarity with the language as well. Therefore, we aim
at a fully automated solution that does not require end–users to provide any
other annotations/hints than exemplar inputs and expected outputs.

Fast convergence. In addition to reduced technical knowledge, time–related
efficiency is necessary for cost–effective data wrangling. As such, we aim at
an efficient solution for synthesising a transformation from few examples, as
required for on–demand data wrangling scenarios.

Effective results. Effectiveness is paramount for there to be trust in an
automated solution. Therefore, we aim at delivering a format transformation
proposal that, whilst aiming at being efficient, achieves a level of effectiveness
similar to that of the current state–of–the–art.

4.2 Background and related work

The above desiderata suggest that we aim to provide a format transformation
solution that requires reduced familiarity with the input data and reduced famil-
iarity with the language used to express the transformations. To this end, we first
define the central notions and discuss the technical background upon which our
approach builds. We also analyse how representative state–of–the–art alternatives
fall short of fully delivering on the above requirements.

96 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

4.2.1 Format transformation: definition

In this section we formally define the notion of format transformation used in this
chapter. To this end, consider a simple example string denoting a calendar date,
24/04/1989, which we will refer to throughout this section.

We start by defining the notion of format of a string, construed as a sequence
of tokens, each of which has an associated domain–independent type denoted by
an element in a collection of lexical primitives such as number, word, punctuation,
etc.. A full description of the primitives used is provided in Section 4.4. For the
purpose of defining the concept of format transformation, we consider the format
of the example string s =24/04/1989 to be fs = Nd/Nm/Ny, where each token
represents the number denoting the day, the number denoting the month, and
the number denoting the year, respectively. The ’/’ characters act as separators.
It follows that fs identifies a class of strings with the same format, e.g., dates
represented consistently with fs. We say that a string s =24/04/1989 is an
instantiation of the class represented by fs = Nd/Nm/Ny, and we denote such
relationship by s : fs. We can then define a format transformation:

Definition 4.1. Given two formats fin and fout, andM = {(in, out)|in : fin, out :
fout}, i.e., the mapping from instantiations of fin to their corresponding instantia-
tions of fout, a format transformation is a function T such that ∀(ini, outi) ∈M,
T (ini) = outi.

Intuitively, for fin = Nd/Nm/Ny and fout = Nm/Nd/Ny, a transformation be-
tween the two formats would transform any calendar date that follows fin to an
equivalent date represented following fout, e.g., such a transformation can simply
swap the Nd and Nm tokens of each input instantiation of fin to obtain the corre-
sponding representation that follows fout. The challenge, however, is to identify
the sub–strings, i.e., numbers in this case, that represent the same token type
in each (in, out) string pair. This is a central task in our format transformation
proposal, as seen later in this chapter.

4.2.2 Format transformation through program synthesis

One of the goals of cost–effective data wrangling in both, industry and research
communities, has been the ability to delegate data preparation tasks to non–
specialist users, e.g., users who do not have programming skills, or who are not

4.2. BACKGROUND AND RELATED WORK 97

particularly familiar with the characteristics of the data [FGL+16], [HHK19]. For
a format transformation technique to meet this goal, a methodology is required
that relieves the user from the burden of manually writing (parts of the) trans-
formations. One approach is to use Program Synthesis (PS), by means of which
we can automatically find a program, expressed in an underlying language, that
satisfies the user intent expressed in the form of requirement specifications and/or
constraints [GPS17]. While PS has a long research history, in this thesis, we only
focus on characteristics that are relevant to format transformation. In this thesis,
we consider a program to be represented by a collections of transformations, each
transformation conforming to Definition 4.1.

At the core of PS there are three main components: (i) an underlying language
that determines what is achievable in terms of transformations; (ii) a class of
input specifications that define the requirements for transformations; and (iii) a
synthesis algorithm, often called a program synthesizer (or, simply, a synthesizer)
that searches over the space of possible programs defined by (i) to find the program
that is consistent with most, if not all, of (ii). As such, the complexity of (iii) is
governed by (i) and (ii). In the rest of this section, we briefly explore each of these
dimensions and introduce the principles upon which we ground our proposal in
later sections.

The underlying language determines the means to express the operations
that the synthesizer must learn to combine in order to meet the input requirements.
At the same time, the language defines the search space to be covered by the
synthesizer at synthesis time, as we describe next. Languages can be imperative
or functional, have restricted control structures or not, and come with diverse
operator sets (e.g., [SGF13]). Others are restricted to a subset of an existing,
general purpose or domain–specific programming language, or to a specifically
designed domain–specific language (e.g., [Nix85], [Ang87], [Gul11], [HG11]).

Formally, a language L associated with a synthesis algorithm is defined by
a Context Free Grammar (CFG) G = (V,Σ, S, P), where Σ is a finite alphabet
of terminal symbols, V is a finite set of non–terminal symbols, S is the starting
symbol, and P is a finite set of production rules for rewriting non–terminals into
a combination of other non–terminal and/or terminal symbols. Each production
rule has the form V → (V ∪ Σ)∗, where the asterisk represents the Kleene star
operation, i.e., zero or more.

The search space to be explored by a synthesis algorithm is determined by

98 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

the CFG that defines the underlying language, and includes all possible combi-
nations of language–specific operators/constructs that are consistent with the
input specifications (defined next). Broadly speaking, the search space can range
from the space of Turing-complete programs, for very complex languages, to more
restricted computational models defined by a much simpler CFG. Since cover-
ing a large search space can quickly become inefficient, the design of languages
that are to be synthesised often involves a trade–off between expressiveness and
the complexity of finding simple consistent hypotheses within that space. For
example, to quote from [Gul10], “the underlying language of a synthesis task
has to be large/expressive enough to cover the possible operations required by
the input specifications, while being restrictive enough so that it is amenable to
efficient search”. This is an important property of synthesis programming which
will inform our design of the transformation language proposed in this chapter.

The input specifications determine how the user intention, or the expected
program behaviour, is conveyed to the synthesizer. Often, such specifications are
expressed using formulas in some logic (e.g., first–order predicate logic) that map
inputs of the program to their corresponding outputs by telling the synthesizer
what the resulting program should do. For example, a logical specification that
instructs a synthesizer that any input array A with n elements should be mapped
to a sorted output would look like: ∀k.(0 ≤ k < n− 1)⇒ (A[k] ≤ A[k + 1]).

Writing first–order formulas to describe complex program behaviours requires
skills beyond the reach of non–specialised users. Therefore, at the expense of clar-
ity, simpler types of specifications have been proposed that relieve the user from
having to formalise the expected behaviour. For instance, it has been shown that
it is possible to map natural language specifications into logical representations
[ZC09]. The challenge here would be to overcome the potential ambiguity intro-
duced by natural language. An even simpler form of specification is represented
by pairs of input–output examples, which we use in our approach, where the
user specifies instances of suitable inputs to the program and expected outputs.
The challenge in such a case is to prevent the synthesizer from overfitting the
input, thereby limiting the effectiveness of the resulting program to the examples
provided at synthesis time.

For a more comprehensive discussion of program synthesis, we refer the reader
to [Gul10] and [GPS17].

The search technique is the final dimension in PS and defines the manner

4.2. BACKGROUND AND RELATED WORK 99

in which the synthesizer tries to cover all programs in the space defined by the
underlying language, that are consistent with the input specifications. Often,
this step also involves a ranking task that chooses the best (or the top-k best)
program(s). Examples of search techniques range from brute force, where every
possible program is checked against each input constraint (e.g., [BT03]), through
probabilistic and logical reasoning (e.g., [KP08]), to more specialised ones based
on Version Space Algebra (VSA) [Mit82] (e.g., [RGM14]) that aims to use DAG–
based techniques to efficiently cover the space of possible programs, given the
input constraints. VSA has been successfully used for learning shell scripts and
text editing programs[LDW00], and is the search technique of choice for many of
the state–of–the–art algorithms (e.g., [Gul11], [Sin16]).

4.2.3 Format transformation: state–of–the–art

We now review the main state–of–the–art solutions for performing format trans-
formation, as part of a data wrangling process or as a standalone task. For-
mat transformation is seen as a data cleaning task in the research literature
[ACD+16], normalising and transforming data values through pattern enforcement
and transformation tools. When it comes to automating format transformation,
two approaches are prominent: Programming–by–Example (PBE) solutions and
Programming–by–Demonstration (PBD) solutions.

PBE format transformation. In PBE, the user is only asked for input
specifications represented by pairs of input–output strings, the first element of
which is in some occurring format, and the second element conveys the expected
output, i.e., is in the target format.

FlashFill [Gul11], as well as its variation BlinkFill [Sin16], are PBE–based
tools for automating string processing operations, focusing on spreadsheet data.
Given one or more input specifications in the form of input–output pairs, these
synthesis algorithms perform a search of the space of possible programs with
a view to finding those that are consistent with the given input–output pairs.
These programs are then ranked based on Occam’s razor principle that a simpler
explanation (a program, in this case) is preferable over a more complex alternative.
The size of the search space is defined by a language consisting of string processing
operators (e.g., substring, concatenate). The search space is explored using Version
Space Algebra techniques to decrease the cost of covering the potentially huge
number of operator combinations consistent with the given examples, but even

100 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

so, these algorithms are still exponential in the number of examples and highly
polynomial in the length of the examples [RGM14].

FlashFill and BlinkFill have been highly influential due to their excellent
results in automating format transformation for spreadsheets. Spreadsheet pro-
cessing often involves datasets of manageable sizes, a small number of examples
and active user involvement in providing additional example data when needed.
In contrast, in data wrangling and data analysis, format transformation is applied
repetitively on large datasets from many sources, where examples are not readily
available and user supervision is often impractical. In cases where diversity causes
a great many examples to be needed, user interaction again becomes impractical.
This provides an opportunity for taking the human factor out of the synthesis pro-
cess, but a large number of examples presents a challenge for synthesis algorithms,
such as FlashFill and BlinkFill, due to their high complexity. This is a motivating
factor for the contributions reported in this chapter. We also use input–output
examples as input specifications for performing string processing operations, but
we perform a more efficient search of the space of possible programs, which allows
to contend with larger collections of training examples, when available.

Other tools that build on the same theoretical principles as FlashFill and
BlinkFill include FlashExtract [LG14] for extracting structured (tabular or hi-
erarchical) data from semi–structured text/log files and Webpages, FlashRelate
[BGHZ15] for extracting tabular/relational data out of semi-structured spread-
sheets, and [SG16] for cleaning spreadsheet data types (e.g., date, time, name,
and units). A comprehensive survey can be found in [Gul12].

Other proposals that rely on PBE include TDE [HCG+18] where the aim is
to collect many predefined transformations and to build a search engine for end–
users to easily reuse them. When examples are provided, the search engine is used
to find the most suitable transformation consistent with the given specifications.
Other proposals, such as DataXFormer [AMI+16], rely on the same principle
for creating a transformation search engine that, in addition to input–output
examples, uses attribute names to find relevant Web data, from which desired
output values can be extracted.

PBD format transformation. In PBD [Bro93], as opposed to PBE, the
user is required to provide an initial state, intermediate states, and the final
state of the process. In other words, the synthesising procedure is much more
interactive and assumes the user is much more knowledgeable with respect to the

4.3. OVERVIEW AND CONTRIBUTIONS 101

underlying language and its capabilities.
Wrangler [KPHH11] is a PBD–based tool in which the input specifications are

provided by the user through a user interface by highlighting values (or parts of
data values) that are subject to transformations. These interactions are translated
into input specifications through a technique known as predictive interaction
[HHK15], and a program is synthesised by performing a user–guided exploration
of the space of possible transformations, searching for the ones that are consistent
with the input specifications. Intermediate input from the user is further required
for refining the possible transformations, until a suitable transformation is found
(chosen by the user as well). The underlying language consists of string operators,
such as move, replace, operators for manipulating table columns/rows, and basic
join operations.

In this chapter we describe a solution for automating the production of format
transformation based on edit operations and automata theory, which we call Syn-
thEdit. It uses PBE and is, therefore, similar to the other PBE–based techniques
in the sense that we use the same type of input specifications, i.e., input–output
examples, but differs from them in the following respects:

• SynthEdit uses a simple language based on edit operations that proves to
be efficient to synthesise, while being expressive enough to accommodate
commonly used string manipulation operations.

• SynthEdit uses a search method based on finite–state automata operations,
which proves to be order of magnitudes more efficient than the methods
used in solutions such as FlashFill.

4.3 Overview and contributions

We now present an overview of our approach to automatic format transformation,
and the main contributions in this chapter.

We start by describing a representative example, Example 4.1, where data
has been extracted from the Web and the task is to derive a transformation
that can generate the Target values using the Source values. Moreover, such a
transformation should be applicable on any string that follows a format similar
to the one followed by the Source values.

102 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

Example 4.1. 20th century NY state governor names and years in office:

Source Target
Hugh Leo Carey (74-82) Hugh L. Carey (1974-1982)

Jay Henry Lehman (33-42) Jay H. Lehman (1933-1942)

We start by presenting the language we use to express the transformations. In
defining this language, we bear in mind the trade–off characteristic to program
synthesis to the effect that the language has to be simple enough to admit efficient
synthesis, but still expressive enough to describe frequently required string ma-
nipulation tasks. We define our language in terms of three simple edit operations,
i.e., Insert, Delete, Substitute, applied on substrings of the input values, which we
call tokens (e.g., Hugh, Leo, 74, etc.).

The input specifications are represented by pairs of the form illustrated in
Example 4.1, i.e., Source values denote the occurring input and Target values
denote the desired corresponding output. Each such pair is called an example
instance and we often refer to the input and output values of one example instance
as the source and target strings, respectively.

Finally, the synthesis algorithm performs a search over the space of possible
edit operation combinations and returns the simplest such combination, i.e., the
transformation with the fewest steps. It then moves to match each edit operation
against correspondences between input (source) and output (target) tokens.

SynthEdit is the result of the following specific research contributions:

• A format transformation language over strings that is expressive enough to
represent a variety of string manipulation operations, such as token substitution,
deletion, insertion, as well as substring extraction and concatenation. At the
same time, the language is restrictive enough to allow efficient synthesis from
input–output examples.

• A synthesis algorithm that, given a collection of input–output string pairs, effi-
ciently covers the space of possible transformations expressed in the previously
mentioned language, that are consistent with the given input–output pairs, and
returns the simplest such transformation. The algorithm also allows for the
synthesis of conditional transformations, based on the formats followed by the
input example pairs.

4.4. TRANSFORMATION LANGUAGE 103

• An empirical evaluation showing that SynthEdit is significantly more efficient
than the closest state–of–the–art competitor, while achieving comparable effec-
tiveness.

4.4 Transformation language

In defining a language L for our transformation synthesis solution, we operate
within the triangle of interrelated constraints from Figure 4.1. Focusing on one
corner detracts from what is achievable in the other two. Specifically, L is ex-
pressive if it allows for the representation of various manipulation operations
on strings, such as substring extraction, concatenation, etc.. L is searchable if
there is a synthesis algorithm (discussed in Section 4.5) that, given a set of input
specifications, can identify in reasonable time programs expressed using L that
are consistent with the input specifications. The trade–off between these two
properties has already been discussed in Section 4.2.2. Finally, L is descriptive
if the operations represented using it are intuitive, i.e., close to natural language.
We impose this last constraint motivated by the desire to create a transforma-
tion synthesis solution that can be improved through user feedback, if needed,
and, hence, whose results can be understood by users without a strong program-
ming background. In defining such a language, we started from, arguably, the
simplest/most intuitive set of operations on strings: the set of edit operations
[JM09] Insert, Delete and Substitute. These operations represent the core of the
transformation language, which is defined next.

Note that, in this chapter, we only discuss automatic format transformation,
i.e., the user is not involved beyond the provision of input–output examples. Fea-
tures such as manual editing/improvement of the resulting programs (performed
by non–programmers) are left for future work, but we argue that in order for this
to be possible, the language has to retain its descriptive character.

4.4.1 Syntax and language elements

We use INS, DEL, SUB to denote the edit operations Insert, Delete and Sub-
stitute, respectively; we use ε to denote an empty string, len(s) for the length of
a string s, s[i : j] for the substring of s that starts at the i–th character and ends
at the j–th in s, and c to denote the c–th occurrence of a token in a string, with

104 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

Expressive Searchable

Descriptive

L

Figure 4.1: Triple of constraints that characterises the proposed transformation
language.

all string positions starting from 0. Lastly, we denote the beginning and end of a
string s by ˆ and $, respectively.

In Figure 4.2 s is a string (a collection of characters), i, j are string in-
dexes/character positions, and c is a token position. The figure shows the pro-
duction rules of a grammar that defines our transformation language L. Before
detailing the semantics of L, we review its core elements.

Tokens: We view a string s as a collection of tokens, where each token is
represented as a pair of the type r of the token and the position of the token in
the string. Similarly to existing algorithms for format transformation, SynthEdit
supports three classes of tokens: (i) regular expression tokens that match a
predefined regular expression pattern; (ii) constant string tokens with a value
equal to the corresponding constant string, and (iii) special tokens that mark the
beginning/end of a string. The token type r is further detailed below, while the
position expression is treated in the next section.

Regular expression primitives: Obtaining the set of tokens for a string s
builds on a set of primitive lexical classes defined by regular expressions. Each
such class denotes a token type. The regular expression primitives we use are as
follows:

N denotes a sequence of one or more digits. The corresponding regular expres-
sion is [0-9]+.

U denotes a sequence of one or more uppercase letters. The corresponding
regular expression is [A-Z]+.

L denotes a sequence of one or more lowercase letters. The corresponding
regular expression is [a-z]+.

4.4. TRANSFORMATION LANGUAGE 105

Transformation program Q := Switch((f1, T1), . . . , (fn, Tn))
Format descriptor f := r1, . . . , rk
Regex primitive r := ˆ |N | U | L | A | Q | P | W |$
Transformation T := O1; O2; . . . ; Om;
Edit operation O := INS(E) | DEL(t) | SUB(t, E)

String expression E := Copy(t) | Const(s)
| Substr(t, i, j) | Concat(E1, . . . , En)

Token t := (r,P)
Position expression P := Pos(r1, r2, c)

Figure 4.2: Formal representation of the proposed transformation language.

A denotes a sequence of one or more letters. The corresponding regular ex-
pression is [A-Za-z]+.

Q denotes a sequence of one or more letters or numbers. The corresponding
regular expression is [A-Za-z0-9]+.

W denotes a sequence of one or more spaces. The corresponding regular ex-
pression is \s+.

P denotes a sequence of one or more punctuation signs or other special symbols.
The corresponding regular expression is [., ; : /-_?!&$]+.

Format descriptors. We call a sequence of regular expression primitive
identifiers, denoting the format of a given string, a format descriptor. The order
of the primitives corresponds to the order of the respective tokens in the given
string. For instance, going back to Example 4.1, the format of the values in the
Source column is A W A W A W P N P N P, i.e., an alphabet token followed by white
space, then an alphabet token, and so on. Note that the format descriptor is a
type expression, so it does not include instance values.

These are the singleton elements (i.e., lexical elements in grammatical terms),
of our language L. The rest of the elements of L are represented by expressions
(i.e., non–terminals in grammatical terms) whose semantics are given next.

106 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

4.4.2 Language semantics

In this section we review each type of expression, describing its semantics and
how expressions are assembled to form a transformation program.

Position expressions: In L, a token t is represented by a pair consisting of
a token type r and a position expression P. r is a regular expression primitive
that matches the token value, i.e., a substring of a given string s. The semantics
of a position expression Pos(r1, r2, c) is to evaluate to a substring s[j : k] of a
given string s, such that ∃ i, j, k, l (0 ≤ i < j < k < l ≤ len(s) − 1), where
s[i : j] matches r1 and s[k : l] matches r2. Furthermore, s[j : k] is the c–th such
substring in s. If such a substring does not exist then the expression evaluates
to ε. Note that the value of c is relative to the token’s neighbours and that such
an expression allows us to uniquely identify each token in a given string using its
neighbour tokens and, at the same time, allows for the expression to evaluate to
ε when applied on strings with different format representations. Note that t only
exists if the string value returned by P matches r.

String expressions: A string expression E has one of Copy, Const, Substr,
or Concat as constructor, and takes as argument a string s or the result of another
string expression. A string expression returns a new string, as follows:

Copy(t) evaluates to the string value of token t.

Const(s) evaluates to a constant string s.

Substr(t, i, j) returns the substring that starts at position i and ends at
position j − 1 of the string value of t.

Concat(E1, . . . , En) performs string concatenation on the results of applying
E1, . . . , En.

Edit operations: An edit operation O has one of INS, DEL, or SUB as
constructor, and takes as argument a token or a string expression. Edit operations
perform insertion (INS), removal (DEL), or replacement (SUB) of the string
resulting from applying the expressions given as parameters, on a given string s.

Transformations: A transformation T is a sequence of edit operations.
Transformation program: The top–level expression of a transformation

program Q has a Switch constructor that, when applied, the expression effects

4.4. TRANSFORMATION LANGUAGE 107

transformations on a input string s, conditioned by the equality between the
format descriptor of s and a given format descriptor.

As a simple illustration of how all the elements of language L come together,
consider Example 4.2. The transformation program that, as we explain in the
next section, is synthesised from the two pairs of strings, source and target, is
given below:

Example 4.2. Extract the month name from the given date:

Source Target
28 March 2010 March

1 June 99 June

Switch((fsource, T)), where

fsource = N W A W N

T = DEL((N, Pos(ˆ, W, 0))); DEL((W, Pos(N, A, 0)));

SUB((A, Pos(W, W, 0)), Copy((A, Pos(W, W, 0))));

DEL((W, Pos(A, N, 0)));DEL((N, Pos(W, $, 0)));

The intuition in Example 4.2 is to remove the first occurring number between
the beginning of the source string and the white space, remove the first occurring
white space flanked by a number and an alphabet token, replace the first occurring
alphabet token with itself, and delete the rest of the tokens. The output of such
a transformation program will be the target value corresponding to the source
value showed in Example 4.2. This transformation program is associated with the
format descriptor of the source values (note that in this case both source values
have the same format descriptor). Consequently, each new string that follows
the associated format descriptor will be a suitable input for the transformation
program.

There are a number of questions left unanswered with respect to Example 4.2.
For instance, why is the illustrated transformation program preferred over other,
potentially equivalent programs, e.g., insert “March”/“June” at the beginning
of the source string and delete all other tokens to obtain the target string? Or
how is the Copy string expression synthesised? We answer such questions in the
next section by describing the synthesis algorithm used to learn transformation
programs from examples.

108 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

4.5 Synthesis algorithm

In this section we describe the algorithm that produces the transformation pro-
grams that edit the source values into their corresponding target values, and
illustrate it using Examples 4.1 and 4.2. In particular, we focus on Example
4.1 because it requires a more complex program that includes multiple types of
string expressions. Specifically, for the two source and target pairs mentioned in
Example 4.1, the transformation program shown in Expression 4.1 is synthesised
by the algorithm we are about to describe. Note that the transformation program
from Expression 4.1 omits the position expressions for clarity and replaces them
with the index of each token, counted from 0. The overall intuition is to obtain
each target token using some processing of a source token. This would allow
for the application of the same transformation program on new source strings,
for which the corresponding target is unknown. Note that the transformation
program in Expression 4.1 is consistent with both rows in Example 4.1, and,
hence, the top–level Switch constructor has only one branch. In cases where the
source strings instantiate more than one format descriptor, the top–level Switch
constructor contains multiple branches, one for each format descriptor. In other
words, the synthesis algorithm learns a conditional transformation program, as
described in Section 4.5.1.1.

Given one example instance, the algorithm for synthesising the transformation
program from Expression 4.1 consists of two main tasks:

1. Find the combination of edit operations that transform a string with the
format of the exemplar source string into a string with the format of the
exemplar target string. Clearly, there can be many such valid combinations,
so the first task aims at exploring the, potentially huge, search space, to
find the simplest edit operation combination, i.e., the combination with the
fewest edit operations. We call this the transformation search task.

2. Map each generic token type from the generic transformation obtained at the
previous step, against the correct string expression applied on some source
token. Consequently, each target token in the transformation resulting
from (1) above is expressed as a processing of some source token, making
the resulting transformation applicable on new input strings, for which the
corresponding output is yet unseen, i.e., not part of the example instances.
We call this the transformation instantiation task.

4.5. SYNTHESIS ALGORITHM 109

Switch((fs, T)), where
fs = A W A W A W P N P N P
T = SUB(As

0, Copy(As
0)); SUB(Ws

0, Copy(Ws
0)); SUB(As

1, Substr(As
1, 0, 1));

INS(Const(”.”));SUB(Ws
1, Copy(Ws

0)); SUB(As
2, Copy(As

2));
SUB(Ws

2, Copy(Ws
0)); SUB(Ps

0, Copy(Ps
0));

SUB(Ns
0, Concat(Const(”19”), Copy(Ns

0))); SUB(Ps
1, Copy(Ps

1));
SUB(Ns

1, Concat(Const(”19”), Copy(Ns
1))); SUB(Ps

2, Copy(Ps
2));

(4.1)

As
i/At

j : the ith/jth token of type A from source/target, i, j ≥ 0.

Before giving more details on the two steps above, consider the following.
Given a collection of input specifications, input–output examples in our case,
most traditional program synthesis algorithms include a search task that aims at
identifying every transformation expressible in the underlying language that is
consistent with the input specifications. Next, these transformations are usually
ranked using some function to determine the most suitable transformation to be
returned by the algorithm (or the top–k such transformations).

There are two important challenges faced by the solutions that employ such an
approach. Firstly, subject to the number of operators supported by the underlying
language, the space of all possible combinations of such operators that would be
consistent with the input specifications can be huge. [Gul11] discusses the simple
example in Figure 4.3 of transforming phone numbers from one format into another.
The figure shows some of the different ways of generating parts of the output
string from the input string, using FlashFill–specific substring and constant string
operations. Even with only two string operations used, the various combinations
shown suggests a problem of scale when searching for transformation candidates
that are consistent with the input specifications.

The second challenge faced by most of synthesis algorithms for format trans-
formation is the need to account for possible ambiguity in the input specifications.
For instance, consider the following hypothetical pair of input–output strings,
similar to the ones in Example 4.1: (Gavin Paul Parker (90-96), Gavin P. Parker
(1990-1996)). Assuming that we consider each target token as the result of trans-
forming some source token, there is a question as to whether the middle name
initial, P, in the target comes from the middle name or from the last name in
the source. Of course, a human would use intuition to conclude that P is the

110 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

Figure 4.3: A sampling of different ways of generating parts of an output string
from the input string.

initial of the middle name, but a synthesis algorithm has no access to intuition
and has to consider both options, unless there is enough evidence in the example
instances to filter out one of them. This has the effect of increasing the number
of transformations that have to be considered.

Due to challenges such as discussed above, algorithms such as FlashFill are
exponential in the number of examples and highly polynomial in the length of the
examples [RGM14]. This is an important motivating factor for our work in this
chapter, since exponential complexity is impractical for format transformation on
many datasets.

4.5.1 Transformation search

We show how SynthEdit addresses the scalability challenge in this section. In
searching for the transformations that are consistent with the input specifications,
SynthEdit only considers a subset of the operators of the language presented
in Section 4.4, viz., it only considers the three edit operations insert, delete,
substitute, and delays the synthesis of string expressions until the transformation
instantiation phase. One immediate consequence of this decision is that the
resulting transformations will consist of operations with generic parameters, i.e.,
for each operand of an edit operation we will know its type, e.g., A, N, etc., but
not its position in the source/target string. Identifying the correct positions
for each operand of a generic edit operations, and, more importantly, the string
expressions that have to be applied on some source token to obtain a target token,
are addressed in the next section.

The generic version of the transformation in Expression 4.1, is Expression

4.5. SYNTHESIS ALGORITHM 111

4.2. Note that the token positions shown in Expression 4.2 simply denote the
order of appearance of tokens in the format descriptors of the source string,
fsource = A W A W A W P N P N P, and the target string, ftarget = A W U P W A W P N P N P.
Furthermore, each operation is a function of some source and some target token.
Such transformations do not offer the possibility of applying them on some source
string for which the corresponding target is unknown, i.e., target values are only
known at synthesis time, nor do they provide a means to determine how to obtain
the target tokens from some source token. However, using only three operations
to express the transformations makes the search space more manageable. Further-
more, because these operations are the edit operations, there is an opportunity
for using known edit distance computation techniques to perform the search task
efficiently, as described next. To this end, we first need to introduce the notion
of a finite state transducer (FST). We only introduce here the notions needed
to explain the search technique we used in SynthEdit. A more comprehensive
description of these notions is found in [JM09].

SUB(As
0, A

t
0); SUB(Ws

0, W
t
0); SUB(As

1, U
t
0); INS(Pt

0);

SUB(Ws
1, W

t
1); SUB(As

2, A
t
1); SUB(Ws

2, W
t
2); SUB(Ps

0, P
t
1);

SUB(Ns
0, N

t
0); SUB(Ps

1, P
t
2); SUB(Ns

1, N
t
1); SUB(Ps

2, P
t
3);

(4.2)

Definition 4.2. A finite state transducer is a 7–tuple (Q,Σ,Γ, δ, ω, q0, F), where:

• Q is a finite set of states;

• Σ is the finite input alphabet of the transducer;

• Γ is the finite output alphabet of the transducer;

• δ : Q× Σ→ Q is the transition function;

• ω : Q× Σ→ Γ is the output function;

• q0 ∈ Q is the start state;

• F ⊆ Q is the set of accept states.

112 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

Such constructions are often used in areas such as speech recognition and ma-
chine translation (e.g., [MPR02]) to represent valid word sequences in a language
model. One other application of particular interest for our case is in computing
the edit distance between two strings, as described in [Moh02] and summarised
next.

Broadly speaking, the action of an FST can be viewed as computing an
operation on two strings. For example, consider an input alphabet Σ consisting
of a subset of the regular expression–based token type symbols introduced in
Section 4.4.1, i.e., Σ = {A, N, P}. Consider the following two format descriptors
consisting of characters from Σ, fs = ANPA, and ft = NANAP. Each of fs and ft
can be represented in terms of a FST (FSTfs and FSTft), as shown in Figure 4.4,
where each FST denotes an operation that leaves each character unchanged.

Similarly, and inspired by the algorithm for computing the edit distance
between two FST–represented strings from [Moh02], for the entire alphabet
Σ = {A, N, P}, we can define an FST, called the edit transducer (ETΣ), that
represents the possible edit operations over elements of Σ. This transducer is
shown in Figure 4.5.

Intuitively, the edit transducer ETΣ describes a restricted set of edit operation
as transitions between the elements of Σ, where A : A, N : N, P : P denote
substitutions, i.e., a transition from some element of Σ to itself; ε : A, ε : N, ε : P
denote insertions, i.e., a transition from the empty string ε to some element of
Σ; and A : ε, N : ε, P : ε denote deletions, i.e., a transition from some element of
Σ to the empty string ε. Note that we do not consider substitutions where the
left–hand side and the right–hand side are different, e.g., A : N. The intuition
is that, when construing A, N and P as token types, defined in Section 4.4.1, a
substitution between, say, an alphabet token and a numeric token, is not useful
because there is no string expression in the language defined in Section 4.4.1 that
would successfully translate a word to a number. The usefulness of this restriction
becomes clear when the instantiation stage of the synthesis algorithm is presented,
in the next section.

We now address the problem of computing the edit distance between two
strings, defined as the minimal cost of a series of symbol insertions, deletions,
or substitutions transforming one string into the other. The intuition is that
the series of edit operations, whose cumulative cost equates to the edit distance,
can be construed as a transformation that edits the source string into the target

4.5. SYNTHESIS ALGORITHM 113

0start 1 2 3 4A : A N : N P : P A : A

(a) FSTfs

0start 1 2 3 4 5N : N A : A N : N A : A P : P

(b) FSTft

Figure 4.4: FST representations of fs and ft
where States 0 are the initial states and States 4 and 5 are the final states.

0
A : Aε : AA : ε N : N

ε : N
N : ε

P : Pε : PP : ε

Figure 4.5: Edit transducer ET that succinctly describes all transitions allowed
between elements of an alphabet Σ = {A, N, P}.

string. The flip side is that the space of possible combinations of edit operations
that have to be considered can be huge. For example, Figure 4.6 illustrates an
FST representation of the search space of edit operations (with the restriction
mentioned above that substitutions are only allowed between the same elements
of alphabet Σ) that would transform fs into ft.

The problem of efficiently computing the edit distance between two strings s
and t given by their FST representations and an alphabet Σ, has been studied in
[Moh02] where Theorem 2 is shown to hold:

Theorem 2. Let U be an FST defined by U = FSTs ◦ ETΣ ◦ FSTt. Let π be a
shortest path of U from the initial state to the final states. Then, π is labeled with
one of the best alignments between the string accepted by FSTs and the string
accepted by FSTt and the edit distance between the two strings d(s, t) = w[π],
where w[π] is the cumulative weight of the edges constituting the shortest path.

In Theorem 2, the ◦ operator denotes the composition operation on automata
[JM09]. [Moh02] also shown that the complexity of computing the edit distance
between two string s and t is O(len(s)× len(t)). Theorem 2 guarantees, therefore,

114 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

Figure 4.6: Edit operation search space: all possible combinations of edit opera-
tions that transform the fs into ft.

the low complexity (at most quadratic on the length of the input–output strings)
of our transformation search task.

Given Σ = {A, N, P}, fs = ANPA, ft = NANAP, FSTfs as depicted in Figure 4.4a,
FSTft as depicted in Figure 4.4b, and ETΣ as depicted in Figure 4.5, then U ,
i.e., the result of the composition between FSTfs , ETΣ, and FSTft , is shown in
Figure 4.6. This is a representation of all possible edit operation combinations
(i.e., the search space) that can transform fs into ft. The shortest path from the
initial state 0 to the final state 29 is illustrated in Figure 4.7. Note that, for the
purpose of this chapter, we are not interested in the actual distance between the
two strings, but in the sequence of edit operations that constitute the shortest
path. As such, our transducers are not weighted. This means that the shortest
path is simply the path with the fewest operations, and we construe such shortest
path between the initial and final states as the simplest generic transformation,
consistent with the input–output pair of strings. In Figure 4.7, this transformation
is: T = DEL(N);SUB(A, A);SUB(N, N); INS(P);SUB(A, A);DEL(P). Note that,
when there are multiple equivalent shortest paths from the initial state to the
final state, we can simply choose one of them, since any such path would translate
the source into the target.

Theorem 2 gives rise to Algorithm 4.1, which we employ in SynthEdit to
perform the first task for the synthesis algorithm: searching for the best transfor-
mation consistent with the input–output pair of strings.

4.5. SYNTHESIS ALGORITHM 115

0start 1 7 12 19 24 29N : ε A : A N : N ε : P A : A P : ε

Figure 4.7: FST representation of the simplest transformation from fs = ANPA to
ft = NANAP

Algorithm 4.1 Transformation search

Input: Example instance (s, t), edit transducer ETΣ of token types alphabet
Σ = {N, U, L, A, Q, W, P}
Output: A generic transformation T

1: function TransformationSearch
2: fs ← get_format_descriptor(s)
3: ft ← get_format_descriptor(t)
4: FSTfs ← get_fst(fs)
5: FSTft ← get_fst(ft)
6: FSTsearch_space ← FSTfs ◦ ETΣ ◦ FSTft

7: T ← shortest_path(FSTsearch_space)
8: return T
9: end function

In Algorithm 4.1, the get_format_descriptor(s) function gets a string s as
input and returns a sequence of tokens, from which we only consider the token
types in this algorithm, by searching for the substrings of s that match one of
the regular expressions presented in Section 4.4.1, a process we call tokenization.
Specifically, through tokenization for each of the source values from Example 4.1,
we obtain the following sequence of tokens:
(A, Pos(ˆ, W, 0)), (W, Pos(A, A, 0)), (A, Pos(W, W, 0)), (W, Pos(A, A, 1)), (A, Pos(W, W, 1)),
(W, Pos(A, P, 0)), (P, Pos(W, N, 0)), (N, Pos(P, P, 0)), (P, Pos(N, N, 0)), (N, Pos(P, P, 1)),
(P, Pos(N, $, 0)).

The collection of left–hand side terms of each pair denotes the format descriptor
of the tokenized string.

Function get_fst(f) gets a format descriptor f as input, construed as a string,
and returns an FST representation of f, similar to the examples in Figure 4.4.

Lines 6 and 7 in Algorithm 4.1 represent the application of Theorem 2 from
which we obtain the resulting sequence of edit operations (as exemplified in Figure
4.7), as a generic transformation (similar to the one exemplified in Expression 4.2)
that we instantiate as described later. Therefore, under the theoretical guarantees
of Theorem 2, the operations at lines 6 and 7, viz. transducer composition and

116 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

shortest path, are tractable, with a complexity given by O(len(s)×len(t)) [Moh02].

4.5.1.1 Transformation instantiation

Given an example instance such as the ones shown in Example 4.1, the transfor-
mation search task described in the previous section identifies a generic sequence
of edit operations, such as the one shown in Expression 4.2. We call such a
transformation generic because it allows for the editing of the token–type format
representation of the source into the token–type format representation of the
target, but not for the editing with respect to token values. Furthermore, each
edit operation is a function of a source and a target token. The latter is know at
synthesis time, but is not relevant when the transformation is applied on a new
input string for which the corresponding expected output is unknown. In order
to obtain a transformation that acts at token–value level and that can be applied
on new input strings, we need to consider each target token in Expression (4.2) in
the context of the value(s) of some source token(s), in order to obtain Expression
4.1. This is the goal of the methods described in this section.

The transformation instantiation task comprises the following two steps:
Step 1. Given a pair of input–output strings, the first step in instantiating a

generic transformation is to identify, for each target token, the source tokens that
can be used to derive it. In other words, for a target token ti, we identify the
source tokens whose values are syntactically closest to the value of ti. To this end,
we create an inverted index I in which each target token value identifies a list of
pairs of the form (sj, lcsj), where lcsj is the longest common substring between
a source token sj and ti. For instance, the first two columns in Table 4.1 depict
three index entries obtained for the first row in Example 4.1. The third column
indicates the type of string expressions that can be applied on the source token
to obtain the value of ti, as described next.

The longest common substring between two strings s and t is the longest string
shared by both s and t. This is a well studied problem, and we use a dynamic
programming algorithm [Gus97] to solve it.

Step 2. With the index I indicating the source tokens for deriving each target
token value, we can synthesise the string expressions to be applied on the former
to obtain the latter. Algorithms 4.2 and 4.3 depict the process of synthesising a
string expression given a target token and its corresponding list of pairs of the
form (sj, lcsj), contained in index I created at the previous step.

4.5. SYNTHESIS ALGORITHM 117

Table 4.1: Index entries

ti [(sj, lcs(sj ,ti))] Expression
1 Hugh [(Hugh, Hugh)] Copy
2 L [(Leo, L)] Substr
3 1974 [(74, 74)] Concat

Algorithm 4.2 String expression synthesis

Input: Index entry: ti → pairsti
Output: A string expression E

1: function ExpressionSynthesis
2: if pairsti is empty then
3: return Const(ti)
4: end if
5: (sj, lcsj)← best_pair(pairsti

)
6: if sj == lcsj == ti then
7: E ← Copy(sj)
8: else if lcsj ⊂ sj && lcsj == ti then
9: E ← Substr(sj, indexOf(lcsj, sj))
10: else
11: E ← Concat(ConcatSynthesis(ti, pairsti))
12: end if
13: return E
14: end function

For each entry of I, we can apply a function ExpressionSynthesis (defined
in Algorithm 4.2) to synthesise a string expression that uses some source token
values to obtain the target token value. The function in line 5 in Algorithm
4.2 returns a pair (sj, lcsj) where sj is the source token whose value is the most
similar to the target token value. Note that we only process the best such pair
because its source token has the most useful value to derive the target token
value. When the best pair is not the desired one, i.e. when the target token
has to be obtained from a different source token, or when it is not clear which
source token has the closest value to the target token value, we rely on multiple
example instances to disambiguate and to synthesise a string expression. The
indexOf(lcsj, sj) function at line 9 returns the start and end indexes of lcsj in sj.

When there is no source token that can be used to obtain ti, ExpressionSynthesis
returns a Const expression. Alternatively, if the longest common substring is
identical to both the source and the target token values, the result is a Copy

118 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

expression (e.g., row 1 in Table 4.1). If the longest common substring is only
equal to the target token value, it means that ti can be obtained from the source
token using a Substr expression (e.g., row 2 in Table 4.1).

Finally, when the source token value is a substring of the target token value,
a Concat expression is synthesised using Algorithm 4.3. The ConcatSynthesis
function processes all pairs for the current index entry, as opposed to only the best
pair, and consumes the target token value as soon as it is able to derive a part of
it. For example, for row 3 in Table 4.1, 74 is a source token and, therefore, the
condition at line 4 in Algorithm 4.3 is met. At the next iteration ti = 19, because
we have consumed the previous value, there is no pair in pairsti that covers the
new value, which means that the condition in line 11 evaluates to true and the
next expression learned is Const. In the end, the target token in row 3 in Table 4.1
is obtained using the following string expression: Concat(Const(”19”), Copy(Ns

0)),
where Ns

0 is the first occurring number in the source string in Example 4.1, i.e.,
74.

Algorithms 4.2 and 4.3 describe the procedure that maps each target token to
a string expression to be applied on one or more source token values. Thus, we
can now replace each target token in Expression 4.2 with its corresponding string
expression to obtain Expression 4.1, which expresses the desired transformation,
is consistent with the given examples, and is suitable to be applied on new input
strings that are similar in format representation to the source string.

In terms of complexity, the dominant task in instantiating a transformation
is the construction of the inverted index in Step 1 above, where the longest
common substring for each pair of tokens is generated using dynamic programming.
Therefore, the complexity of index construction is given by O(k× l×u×v), where
k is the number of source tokens, l is the number of target tokens, u is the source
token value length, and v is the target token value length.

4.5.1.2 Learning from multiple examples

The synthesis algorithm described in the last two sections receives as input one
example instance, i.e., one pair of source and target strings, and returns a trans-
formation that is associated with the format descriptor of the source string to
create one branch in the top–level Switch constructor, as described in Section 4.4.
In practice though, there are often multiple example instances available. There
are two important aspects to consider here:

4.5. SYNTHESIS ALGORITHM 119

Algorithm 4.3 Concat expression synthesis

Input: Index entry: ti → pairsti
Output: A list of string expression exp

1: function ConcatSynthesis
2: exp← []
3: for all (sj, lcsj) ∈ pairsti do
4: if sj == lcsj then
5: exp← exp+ [Copy(sj)]
6: else
7: exp← exp+ [Substr(sj, indexOf(lcsj, sj))]
8: end if
9: ti ← replace(ti, lcsj, ””)
10: end for
11: if len(ti) > 0 then
12: exp← exp+ [Const(ti)]
13: end if
14: return exp
15: end function

• If there are multiple examples with the same source format descriptor and
the synthesis results in more than one transformation, the transformation
that is consistent with most example instances is the one associated with
the source format descriptor in the Switch constructor branch. This makes
SynthEdit lenient with respect to potentially erroneous or ambiguous ex-
ample instances, as long as there are more instances with the same source
format descriptor available, thereby addressing the ambiguity challenge dis-
cussed before.

• If there are multiple example instances with different source format de-
scriptors the examples are partitioned according to their source format
descriptors, resulting in a conditional transformation program with as many
branches as there are unique source format descriptors.

Finally, applying SynthEdit on new strings requires the format descriptor of
the new input to match the format descriptor of one transformation program
branch. If this does not hold, then the transformation is not performed and the
input string is left unchanged.

The transformation language and synthesis algorithm described in this chapter

120 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

enable the synthesis of conditional transformation programs that can perform
string processing operations, starting from input–output examples. The types of
transformations that are covered by SynthEdit include:

• Permutations of existing string tokens, or of sub–tokens of existing string
tokens achieved by applying SUB operations on tokens or string expressions.

• Addition of new (constant) tokens, based on other existing tokens or un-
related to them, achieved by applying INS operations on tokens or string
expressions.

• Removal of existing tokens achieved by applying DEL operations.

One transformation type that is not supported by SynthEdit involves looping
programs, i.e., performing the same operation on successive tokens. Synthesising
and performing such transformations with SynthEdit requires an extension to
the notion of format descriptor with the “one or more” (+) construct specific to
regular expressions, so that strings with an arbitrary number of words are matched
to the same program branch, i.e., the one that provides the loop transformation.
We leave such extensions for future work.

4.6 Format transformation evaluation

In this section, we firstly present the data we use to evaluate the effectiveness
and the efficiency of SyntheEdit and describe the measures we report. We then
show the outcomes of a comparative evaluation of SynthEdit and FlashFill

[Gul11]. The implementation of FlashFill used is from the PROSE SDK project
(https://microsoft.github.io/prose/).

4.6.1 Data repositories used in evaluation

In the experiments, we have used the data benchmark available at microsoft.com/

en-us/research/wp-content/uploads/2016/12/WebTableBenchmark.zip. It con-
sists of 33 real–world data sets, with a total of approximately 80 pairs of input–
output columns. Each pair of input–output columns consists of up to 200 example
instances from several domains such as person names, phone numbers, websites,
songs, etc. There are up to six basic types of transformations in the benchmark,

https://microsoft.github.io/prose/
microsoft.com/en-us/research/wp-content/uploads/2016/12/WebTableBenchmark.zip
microsoft.com/en-us/research/wp-content/uploads/2016/12/WebTableBenchmark.zip

4.6. FORMAT TRANSFORMATION EVALUATION 121

Table 4.2: Format transformation types

Transformation Source Target
Punct. removal “Ask Me Why” Ask Me Why
(Sub)Token
extraction Gov. Earl Warren - Republican Earl Warren
(Sub)Token
permutation Peter Hardeman Burnett Burnett Petter H.
(Sub)Token
insertion Maggie Paoletti Prof. Maggie Paoletti
Token
abbreviation Statistical and Computer Science SCS
Case
alteration CANNED DRIED ASPARAGUS canned dried asparagus
Case alteration,
token permutation,
token insertion,
token extraction Prof. Benson Theo tbenson@duke.edu

with many examples describing different combinations of the basic types. Table 4.2
gives source–target examples for each transformation type and one combination
example (viz., the last row of Table 4.2). All transformation types are grounded
on string operations that are supported by both SynthEdit and FlashFill.

4.6.2 Reported measures

We measure the following characteristics of both SynthEdit and FlashFill:

1. Effectiveness in performing string transformations on input strings. To
this end, we report the precision and recall of both SynthEdit and FlashFill
measured over all pairs of input–output columns mentioned above.

2. Efficiency in synthesising string transformations, given various numbers of
example instances. To this end, we report the synthesis time required for
each of SynthEdit and FlashFill to synthesise a transformation program.

For the purposes of computing precision and recall for (1) above, we define:

• TP. Any input string, not included in the examples from which a trans-
formation program has been synthesised, that is correctly transformed by
that transformation program is a true positive, in which case the output
of the transformation applied on the input is equal to the expected output
provided by the benchmark (recall that each pair of input–output strings
contained up to 200 records of inputs and expected outputs).

122 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

• FP. Any input string, not included in the examples from which a transfor-
mation program has been synthesised, that is incorrectly transformed by
that transformation program is a false positive, in which case the output
of the transformation applied on the input is different from the expected
output provided by the benchmark.

• FN. Any input string, not included in the examples from which a trans-
formation program has been synthesised, that is left unchanged by that
transformation program is a false negative, in which case the format de-
scriptor of the input string did not match any format descriptor from the
conditional transformation program.

As usual, precision p is defined by:

p = TP

(TP + FP)
Recall r is defined by:

r = TP

(TP + FN)
We report the average precision, recall and synthesis time over all pairs of

input–output columns using a k–fold cross–validation technique and controlled
numbers of examples. At each iteration (fold), we synthesise a transformation
program from n randomly picked example instances and test on the remaining
instances.

All experiments have been run on a 2.60 GHz Intel Core i7-4720HQ CPU with
12 GB RAM.

In the results below, each point is the average computed by running SynthEdit
and FlashFill over ten folds.

4.6.3 Comparative effectiveness

The purpose of this experiment is to compare the effectiveness of SynthEdit and
FlashFill as the number of examples varies.

The precision results are shown in Figure 4.8a. SynthEdit achieves lower
precision compared with FlashFill for the different numbers of examples. The
difference can be explained by the ability of FlashFill to better generalise trans-
formations as more examples are added, by using a classifier trained on example

4.6. FORMAT TRANSFORMATION EVALUATION 123

(a) Format transformation precision (b) Format transformation recall

Figure 4.8: Average format transformation precision and recall resulted from a
10–fold cross–validation process.

instances. This allows it to correctly transform strings with format representations
not covered, but close to the ones in the examples, and to partition the example
instances based not only on format descriptor–like patterns, but on features of
the values as well. As a result, strings that, according to SynthEdit have similar
format descriptors and, therefore, are subject to the same transformation, would
be treated differently in FlashFill by being subject to different transformations.
For instance, consider Example 4.3 where the intuition is to parse the name from
Source as last name followed by first name initial, unless the person is a Professor,
in which case the title should be included in the target. For such a scenario,
SynthEdit synthesises a conditional transformation program with three branches,
out of which only one covers examples that contain the title in the source string,
even though row 1 in Example 4.3 should generate a different transformation from
the one generated by rows 2 and 5. In contrast, FlashFill is able to create a
conditional transformation program based on the value of the title, which is the
correct way of treating this scenario.

For the last two cases in Figure 4.8a, i.e., 64 and 128 examples, there are no
results to report for FlashFill because it required more than the 12 GB of RAM
memory that was available.

Example 4.3. Name parsing:

124 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

Source Target
Dr. Eran Yahav Yahav, E.

Prof. Kathleen Fisher Prof. Fisher, K.
Bill Gates Gates, B.

George Ciprian Necula Necula, G.
Prof. Ken McMillan Prof. McMillan, K.

The down side of using classifiers in picking the right transformation given a
new input string, as is the case for FlashFill, is that, in some cases, there can be
multiple transformation candidates with close probabilities. In other words, the
classifier can become confused when the features of the new input format are too
close to the features of more than one class used during learning, or even fail to
classify a valid input string. This means that, for some input strings, FlashFill
fails to identify the appropriate transformation, or the transformation picked is
not consistent with the input, e.g., the transformation expects a type of token that
is not present in the input. The consequence is a drop in recall that is reflected in
Figure 4.8b as the number of examples increases. In contrast, SynthEdit achieves
better recall because the strict one–to–one mapping between format descriptors
and input strings enables it to better differentiate between transformation cases.

The lower precision of SynthEdit can be countered by performing additional
evaluation before deciding on the transformation to apply. At present, the condi-
tional evaluation and the partitioning of examples at synthesis time are done based
on format descriptor equality. A potential improvement would be to perform a
subsequent value–based conditional evaluation when the format descriptors are
equivalent, but the transformations synthesised are different. This is a potential
path for future work.

4.6.4 Comparative efficiency

The purpose of this experiment is to compare the efficiency of the synthesis
algorithms employed by SynthEdit and FlashFill, as the number of examples
increases.

Figure 4.9 confirms the high cost of FlashFill when the number of examples
is large. In contrast, SynthEdit proves more than two orders of magnitude
faster in synthesising transformations (note the logarithmic scale of the plot).

4.7. SUMMARY AND CONCLUSIONS 125

Figure 4.9: Average format transformation efficiency resulted from a 10–fold
cross–validation process.

As opposed to FlashFill, SynthEdit does not aim to exhaust the search space
of transformations for each example instance. Our algorithm uses edit distance
computations to find the shortest path between the token–type representations
of the source and target strings by employing FST operations which perform
transformation search in quadratic time for each input–output example instance
(as described in Section 4.5.1). Consequently, the transformation language is
simpler but more efficient to learn.

As before, for 64 and 128 examples, FlashFill requires more than 12 GB of
RAM memory.

4.7 Summary and conclusions

This chapter has contributed an effective and efficient solution to the problem
of automating format transformation given input–output examples. We have
used an edit–distance based approach that identifies the shortest path from a
source string to a target string and uses matching of source and target tokens
to generalise transformations applicable on new input strings, similar in format
representation to the examples. Results from a comparative evaluation provide
evidence that SynthEdit performs substantially more efficiently than the state-
of-the-art, while achieving comparable precision and better recall in comparison

126 CHAPTER 4. AUTOMATIC FORMAT TRANSFORMATION

with the state–of–the–art.
Overall, the main characteristics of the solution proposed in this chapter are:

• SynthEdit requires a simple input consisting of input strings, paired with
expected output strings. Input–output examples are one of the simplest forms
of input specification in program synthesis, requiring limited knowledge about
the data to be transformed and no knowledge about the underlying language
used to express the transformations. Therefore, SynthEdit meets the desire
for simple specifications stated in Section 4.1.

• Assuming the set of input–output examples describes a transformation program
within the boundaries of the language defined in Section 4.4, SynthEdit can
reach a transformation that is consistent with the given examples automatically,
without additional user intervention. Therefore, the automation desideratum
in Section 4.1 is satisfied.

• Owning to being grounded on automata–specific techniques when computing
and searching the space of possible transformations consistent with the given
examples, the synthesis algorithm proposed in Section 4.5 is characterised by
quadratic complexity with respect to the length of the examples (recall Theorem
2). This algorithmic complexity, together with empirical evidence shown in
Section 4.6, means that the fast convergence desideratum in Section 4.1 is
satisfied.

• When the synthesised transformation program is checked against new inputs,
SynthEdit proves effective, as long as the required sequence of operations is
(a) consistent with the examples, (b) expressible using the language defined in
Section 4.4, and (c) the examples used to synthesise the transformations do not
exhibit ambiguity with respect to string processing operations. When compared
with the state–of–the–art, SynthEdit achieves better recall and comparable
precision. In other words, the desideratum for effectiveness in Section 4.1 is
satisfied if (a) there are enough examples to synthesise a transformation, (b)
the input data has a regular structure, and (c) there is a clear correspondence
between the tokens of the input and corresponding output strings. For all other
cases (e.g., repetitive (or loop) transformations), high effectiveness can still be
achieved in the presence of many examples covering the same transformation
case.

4.7. SUMMARY AND CONCLUSIONS 127

Finally, the evaluation results constitute compelling evidence that SynthEdit
has the potential of fulfilling the second research objective stated in Section 1.4
of Chapter 1: (i) SynthEdit relies on a transformation language that can express
common string processing operations involved in modifying the format represen-
tation of strings, and (ii) SynthEdit includes a synthesis algorithm that, starting
from simple input–output example strings, can efficiently learn a transformation
program expressed in the language from (i) that is consistent with the examples.
When applied at larger scale, the simplicity of the input–specifications required
demands reduced familiarity with the data values from the user, while the auto-
mated solution for synthesising a transformation program demands no advanced
technical knowledge, e.g., programming expertise, from the user.

Chapter 5

Data format transformation in
data lakes

The discussion in Chapter 4 has focused on algorithms that enable the synthesis
of format transformation programs from input–output examples. In describing
such algorithms we took a detour from the data lake–centric viewpoint that had
governed the discussion until then. We have shown that the proposed synthe-
sis algorithm, i.e., SynthEdit, outperforms the state–of–the–art alternatives with
respect to the time required to learn a transformation program. However, indepen-
dently of how many input–output examples are used, the assumption in Chapter
4 is that the user provides them and that they cover most of the transformation
scenarios that have to be performed. Returning to the issue of performing data
format transformation at data lake scale, we observe that these assumptions do
not hold when there are different transformation needs among the instance values
of the same column, many such columns and many datasets to transform. Thus,
this chapter aims to provide automatic techniques that can assist (or even replace)
the user in the task of providing input–output examples to transformation syn-
thesis algorithms such as SynthEdit or FlashFill, and, therefore, fully automate
the process of format transformation.

In short, the aim of this chapter can be summarised as follows:

Given a collection of datasets from which pairs of source and target
columns with overlapping, albeit potentially differently formatted, val-
ues can be identified, automatically pair source and target instance

128

5.1. MOTIVATION AND DESIDERATA 129

values that represent similar concepts and can be construed as input–
output example instances for a format transformation synthesizer.

If Chapter 4 aimed at automating the production of format transformation
programs starting from given input–output examples, this chapter aims at au-
tomating the production of examples, i.e., it focuses on the discovery of value
pairs that can be used as examples for synthesis algorithms. As already mentioned
before, automatic solutions are unlikely to be able to match the reach or quality of
transformations produced by data scientists, but any level of automation provides
the possibility of added value for minimal cost by relieving the user from the
burden of finding suitable example instances for each transformation case. Thus,
we adhere to the ethos of cost–effective data wrangling introduced in Chapter 2
that aims for minimal user involvement in the data preparation stage.

In Section 5.1 we motivate the need for automatic discovery of examples for
format transformation synthesizers and discuss our desiderata for the proposed
methods. Then, in Section 5.2 we introduce the underlying notions upon which
the proposed techniques are built, and discuss the relevant related work. The
contributions claimed in this chapter are briefly outlined in Section 5.3, and
detailed in Sections 5.4 and 5.5. We close the chapter with an empirical evaluation
of the chapter’s proposals in Section 5.6, before drawing some conclusions in
Section 5.7.

5.1 Motivation and desiderata

Many of the state–of–the–art proposals for format transformation (e.g., FlashFill
[Gul11], Wrangler [KPHH11]) assume format transformation scenarios that are
characterised by (i) inputs of manageable sizes, i.e., few transformation cases
that require a reduced number of input specifications, so that the search space
of potential transformations is manageable, and (ii) a small number of datasets
to be transformed, so that the user can analyse them individually, provide cov-
ering examples, and supervise the format transformation task applied on each
one. While we have shown in Chapter 4 how SynthEdit dispenses with (i), the
impact of assumption (ii) was not addressed there. Therefore, in this chapter,
we are motivated by the need to automate the identification of suitable example
instances for format transformations synthesizers, so that they can be applied

130 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

when there are too many transformation cases involved, or when the user is not so
familiar with the transformation needs of each dataset, as to be able to manually
provide covering examples. Specifically, in this chapter we propose an automated
solution for the production of input–output example instances with the following
properties:

Validity. The candidate pairs of input–output strings to act as example
instances have to denote a valid transformation. For instance, the two strings
of an example instance have to represent the same real world entity when the
transformation denotes a variation in the format representation (e.g., calendar
dates expressed in different formats), or the entity represented by the target
value has to be subsumed by the source entities when the transformation denotes
an extraction operation (e.g., the street name in an address string). When this
is the case, we say that the example instances are valid.

Representativity. Synthesis algorithms such as SynthEdit rely on example
instances to learn transformations that can be applied on unseen input strings.
Therefore, the example instances have to be representative for the unseen strings
to be transformed, i.e., to cover the formats and transformation cases exhibited
by the strings to be transformed.

Non–redundancy. Although SynthEdit proved more efficient in synthesising
transformations than the closest alternative from the state–of–the–art, it can
still be impacted by a large number of examples. Consequently, when the num-
ber of automatically generated example instances is large, a pruning strategy
must eliminate instances that exemplify transformations already covered by
previous examples.

Automation. The generation of examples that meet the conditions mentioned
above has to be performed automatically, without user intervention. Conse-
quently, we have to identify suitable sources of evidence and devise techniques
that ensure the validity, representativity, and non–redundancy of the example
instances produced.

5.2 Background and related work

In achieving our goal, in this chapter we rely on technical background that allows
us to meet the desiderata defined in Section 5.1. We now describe this technical

5.2. BACKGROUND AND RELATED WORK 131

background. We also analyse how the closest alternatives for identifying pairs of
similar strings relate to our proposal, although many such alternatives have not
been designed for the generation of examples for format synthesis algorithms and,
consequently, fall short of delivering on the above desiderata.

5.2.1 Matching relationships

Given pairs of attributes that contain instances from similar real world domains,
we need to pair (i.e., align) instance values that represent similar entities. Con-
sequently, only the pairs of attributes with values drawn from the same domain
(i.e., that are semantically related, and that share some values) are candidates to
have their instances aligned. We use schema matching [RB01] for this purpose,
i.e., we consider such attributes to be in a matching relationship. In particular, we
are interested in instance–level matching relationships: a matching relationship
defined by the overlap in the value extents of two attributes.

Definition 5.1. Given two attributes s and t from two different datasets, with
their value extents seen as sets of values V (s) and V (t), resp., we say that s
matches t (or that t matches s) iff |V (s) ∩ V (t)| ≥ θ, where θ is a matching
threshold.

The role of θ in Definition 5.1 is to avoid performing all–against–all alignments
between the attributes of two given datasets, i.e., we use schema matching to
obtain evidence of instance–level similarity between attributes before aligning
their values.

Note that Definition 5.1 does not take into account potential discrepancies
between the format representation of s values and t values. In fact, in this chapter,
such discrepancies are assumed to be present, since uniform format representations
would not require any format transformation. Also note that matching discovery
relies on instance values set–similarity, as discussed in Section 3.2.2. Therefore,
and as per Definition 3.1, s and t can be considered related. It follows that, by
replacing the sets of values V (s) and V (t) from Definition 5.1 with tsets T (s)
and T (t), defined in Section 3.4.1, we can rely on techniques described in Section
3.4 to identify instance–level matching candidates, despite the potential presence
of inconsistencies in format representation of values. Alternatively, we can use
schema matching tools, such as COMA++ [ADMR05], to discover matching

132 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

relationships. This is possible because matching tools such as COMA++ include
string similarity discovery techniques that act at token level, therefore not being
impacted by format representation heterogeneity.

Schema and ontology matching is a vast research area that engages interest
from multiple research communities such as relational databases and data inte-
gration (e.g., [Rah11], [HRO06], [RB01]), and ontologies and the semantic web
(e.g., [SE13], [Noy04]). The main goal is to find correspondences between table
columns/ontology concepts that can be postulated as equivalences and thereby
underpin the integration of data from multiple such sources. In this chapter, we
use off–the–shelf schema matching techniques as a precursor for examples genera-
tion as our needs expand to identifying column–level correspondences, i.e., with
such correspondences in hand, we perform instance value alignment.

Finally, we note that, although the discovery of matching column pairs, i.e.,
candidates for performing examples generation and transformation synthesis, can
be automated through the use of techniques such as the ones mentioned above,
the transformations themselves are not symmetric, i.e., given a transformation τ ,
τ(s) = t does not entail that τ(t) = s. Therefore, in this chapter, we rely on the
user to specify the dataset whose (source) columns contain values that have to
be formatted differently, and the dataset whose (target) columns contain values
that denote the expected/desired formatting. Although it is possible to set these
roles automatically, in this chapter we do not address this need. We do focus on
how to automatically generate example instances for a pair of matching column,
once the source and the target are known, which is the basic, default scenario in
data wrangling.

5.2.2 Functional dependencies

In addition to matching relationships, we use hypothesised functional dependencies
(FDs) [Cod71], when available, to generate (and to check the validity of) instance
value alignments. In this section, we briefly recall the well known notion of
functional dependencies in tabular data, such as relational databases. Later,
in Section 5.4, we describe how such relationships are used to generate value
alignments.

Definition 5.2. Given two attributes s1 and s2 from the same dataset D, a
functional dependency (FD), written as s1 → s2, expresses that all pairs of tuples

5.2. BACKGROUND AND RELATED WORK 133

from D that have the same value on s1 must also have same values on s2.

Consequently, the left–hand side of a FD might be a key in a relational dataset,
because keys uniquely determine all other attributes. Functional dependencies
arise in real–world datasets as well, e.g., a national insurance number determines
a person’s name, or a person’s name may determine the person’s gender, etc.

In Definition 5.2, s1 is called determinant and s2 is called dependant. Although,
both the determinant and the dependant can be sets of attributes, in this chapter,
we only consider FDs between single attributes, as these suffice for us to reliably
identify instance value alignments suitable as examples for synthesizers.

Lastly, in practice, FD discovery is often performed using specialised data
profiling tools, e.g., Metanome [PBF+15], and algorithms, e.g., HyFD [PN16].

5.2.3 State–of–the–art

Research on data cleaning and transformation includes a number of proposals for
automating the alignment of instance values between matching columns, many
of which have been designed with other goals in mind than the generation of
example instances for synthesis algorithms.

An important body of work that is close to our proposal and was developed
with the goal of improving transformation synthesis is [WK16]. In this approach,
an example recommending algorithm is proposed to assist the user in providing
enough examples for an entire column to be transformed. To this end, the
approach samples a set of records for automatic inspection. It then uses machine
learning techniques to identify potentially incorrect records and presents these
records for the users to examine. This proposal can be considered orthogonal
to our approach as the techniques described in this chapter are construed as
an automatic initialisation phase of a pay-as-you-go process [PBE+16], of which
[WK16] can be construed as the refinement phase, i.e., one where previous results
are improved with user support.

In recent years, there has been an increasing number of proposals that use
declarative, constraint-based quality rules to detect and repair data values (e.g.
[YGCC12, CIP13, FLM+12], and see [Fan08, Fan15, FG12] for surveys). For
many of these heuristic techniques, rule–based corrections are possible, as long
as the repairing values are present either in an external reference data set or in
the original one. For example, in [FLM+12] the correct values are searched for

134 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

in a master dataset using editing rules that specify how to resolve violations, at
the cost of requiring intense levels of user involvement. While the semantics of
editing rules can be seen as related to the approach we describe in Section 5.4,
there are two essential differences. Firstly, editing rules deal with instance–level
repairs, i.e. every tuple is checked against every rule and the values of the columns
covered by the rule are replaced with correct ones from the reference data set (if
they exist). Our approach determines pairs of values from which we can learn
transformations that hold for entire columns, so we do not search for the correct
version of every value that needs transformation, but for a small number of values
that describe the formatting of the correct version. Secondly, we determine the
alignments automatically, without user guidance.

Recent work on transformation–driven join operations [ZHC17] resulted in
a technique for automatically joining two tables using fuzzy value pairing and
synthesis of transformation programs. Their approach leverages substring indexes
to efficiently identify candidate row pairs that can potentially join, and then
it synthesises a transformation program whose execution can lead to equijoins.
Although their principle is similar to the approach described in Section 5.5, their
focus on joining operations requires the columns from which examples are being
searched to be candidate keys in their respective datasets (or one key and one
foreign–key). Our approach aims to enable normalisation for any column that
has a match with a target column.

5.3 Overview and contributions

In this chapter, we propose two techniques for automatically generating input–
output example instances for synthesis algorithms that demand such input speci-
fications, starting from a target dataset (that contains some instances of values
with the desired formatting), and one or more source datasets (that contain values
to be transformed). The overall goal is to enable program synthesis from examples
to work with numerous sources or with many transformation cases that would be
laborious to cover by user–provided examples.

The first technique makes use of matching candidates and hypothesised func-
tional dependencies to identify value alignments. Specifically, given two datasets S
and T in which we identify two functional dependency candidates, S.a→ S.b and
T.c→ T.d, and two matching candidates (S.a, T.c) and (S.b, T.d), we align values

5.3. OVERVIEW AND CONTRIBUTIONS 135

from the right–hand sides of the functional dependencies, S.b and T.d, where their
corresponding left–hand sides, S.a and T.c, have equal values. For example, in Fig-
ure 5.1 (a) and (b), in order to pair together the values from S.Date and T.Date,
we need the FDs S.Permit_Nr. → S.Date and T.Permit_Nr. → T.Date, and
the matching instances (S.Permit_Nr., T.Permit_Nr.) and (S.Date, T.Date).
In addition, we need the values of the Permit_Nr. columns to have overlapping
values. We argue that the resulting pairs can be used as examples for synthesizers
to transform the format of the values from S.Date to the format represented in
T.Date, as described in the next section.

The second technique addresses Web–extraction scenarios. In the case of
Web–extracted data, functional dependency candidates are often hard to discover
due to data inconsistencies or simply because such relationships do not exist. To
address this scenario, we propose a second, less restrictive technique, based on
string similarities and candidate matching relationships, which proves to have
comparable effectiveness at the expense of efficiency. Specifically, for each match-
ing pair candidate (S.a, T.b), we do a string similarity–based pairing of values
from S.a and T.b. Then, we assign a confidence measure to each pair of values
and use it to select a subset of pairs as examples for synthesis algorithms. For
instance, in Figure 5.1, we pair the values of S.Date and T.Date that represent
the same date using their string similarity, without requiring a common tuple
identifier such as Permit_Nr.

Overall, the main contributions of this chapter are:

• We describe a FD–based examples generation technique that, given a target
and one or more source datasets, relies on the existence of hypothesised FDs
and matching relationships to automatically align the instance values of some
source column and the matching target column. The resulting alignments can
be construed as examples for transforming the rest of the source values.

• In case FDs cannot be discovered, we describe a string similarity–based exam-
ples generation technique that, given a source and a target datasets, relies on
schema matching and string similarity (i.e., approximate) alignment of source
and corresponding target values. As before, the resulting alignments can be
construed as examples for transforming the rest of the source values that are
not part of the generated examples.

• Given the approximate nature of the second proposal, the number of potentially

136 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

S.Permit_Nr. S.Date S.Contractor S.Cost S.Address S.Permit_Type
100484472 2013-05-03 BILLY LAWLESS 83319 730 Grand Ave Renovation

(a) Source

T.Permit_Nr. T.Date T.Cost T.Contractor T.Address T.Type
100484472 05/03/2013 $83319.00 BILLY LAWLESS Grand Ave, Nr. 730 Renovation

(b) Target

Matches(S, T)
{〈S.Permit_Nr., T.Permit_Nr.〉, 〈S.Date, T.Date〉, 〈S.Cost, T.Cost〉,
〈S.Address, T.Address〉, ...}

S.FD = T.FD

{Permit_Nr.→ Date, Permit_Nr.→ Cost, Permit_Nr.→ Address,

Permit_Nr.→ Contractor, ...}

Generated
Examples

{〈S.Date, T.Date, 〈”2013− 05− 03”, ”05/03/2013”〉〉, 〈S.Cost, T.Cost,
〈”83319”, ”$83319.00”〉〉, 〈S.Address, T.Address,
〈”730 Grand Ave”, ”Grand Ave, Nr. 730”...}

(c) Partial intermediate and final results from the algorithm

Figure 5.1: Examples of source input, target input, intermediate results, and final
results of the examples generation process.

valid value alignments generated can be very large. We describe a pruning and
selection strategy that identifies the most relevant value alignments to be used
as examples for a synthesis algorithm.

• We perform an empirical evaluation of the above approaches with real–world
data.

5.4 Discovering examples: FD–based scheme

In this section, we describe an approach to the automatic identification of ex-
amples, drawing on the relationships between attributes. Our aim is to use
transformation program synthesis in more complex scenarios than spreadsheets.
For example, consider a scenario, similar to the one in Figure 5.1, in which we
would like to integrate information about issued building permits from several
different sources, and for the result to be standardised to a single format per col-
umn. Specifically, we want to represent the columns of the resulting dataset using
the formatting conventions used in one of the original datasets, which acts as the
target. Providing manual examples to synthesise the transformations needed can
be a non–trivial and costly task that requires knowledge of the formats of the
values existing in the entire dataset. In the approach described next, the core idea

5.4. DISCOVERING EXAMPLES: FD–BASED SCHEME 137

is to identify/align values from source and target datasets, where the source and
target values for a column can be expected to represent the same information.

5.4.1 Examples generation

Assume we have two descriptions of an issued building permit, as depicted in
Figure 5.1. To generate a transformation that applies to the Address columns, we
need to know which values in the source and target Address columns are likely
to be equivalent, despite being differently formatted. There are different types of
evidence that could be used to reach such a conclusion. In the approach described
here, we would draw the conclusion that 730 Grand Ave and Grand Ave, Nr. 730
are equivalent from the following observations:

• the names of the first column in the two tables match (because of the
identical substring Permit_Nr. they share);

• a functional dependency holds for the instances given, Permit_Nr. →
Address in each of the tables;

• the names of the fifth column (Address) of the two tables match;

• the values for the first column in the two tuples are the same.

In practice, the name–based matching evidence has to be complemented by
value overlap because the latter ensures the existence of valid alignments between
values.

Note that the previous types of evidence do not guarantee a correct outcome
since it is possible for the given conditions to hold, and for the values not to be
equivalent. As an example of such a case, the Address attributes of the source
and target tables might have had different semantics.

More formally, assume we have two data sets, source S and target T . S has the
attributes (sa1, ...san), and T has the attributes (ta1, ...tam). We want values from
S to be formatted as in T . Further, assume that we have instances of S and T
available. Then we can run an FD discovery algorithm (e.g. [PN16]) to postulate
that FDs exist between attributes of S and T . This gives rise to collections of
candidates FDs for S and T , S.FD = {sai → saj, ...} and T.FD = {tau → tav, ...}
(as exemplified in Figure 5.1 (c)).

138 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

In addition, assume we have a function Match that, given S and T , returns
a set of pairwise matches between the attribute in S and T , Match(S, T) =
{〈sai, taj〉, ...}. Match can be implemented using a schema matching algorithm,
most likely in our context making use of instance level matchers [RB01], given
the need for shared values.

Then, Algorithm 5.1 can be used to compute a set of examples for synthesising
transformations between values from columns of S and of T .

Algorithm 5.1 relies on the definition of functional dependencies (Definition 5.2)
and the existence of matching relationships (Definition 5.1) between attributes of
S and T to align instance values that represent similar real world concepts and that
can be used as examples for synthesis algorithms. When such relationships exist,
the query in lines 8–10 generates value alignments such as the ones exemplified
in Figure 5.1 (c).

5.4.2 Examples validation

Although Algorithm 5.1 can return sets of examples that can be used for synthe-
sising transformations, there is no guarantee that the transformation generation
algorithm will produce effective transformations. The synthesised transforma-
tions may be unsuitable for various reasons, e.g., (a) the required transformation
cannot be expressed using the available transformation language, (b) the data is
not amenable to homogenisation (e.g. because there is no regular structure in
the data), or (c) there are errors in the data. As a result, there is a need for an
additional validation step that seeks to determine, again automatically, whether
or not a suitable transformation can be synthesised.

In our approach, the set of examples returned by Algorithm 5.1 is discarded
unless a 10–fold cross validation process is successful. In this process, the set
of generated examples is randomly partitioned into ten equally sized subsets.
Then, transformations are synthesised, in ten rounds, using examples from nine
partitions, and tested on the remaining partition. Thus, the validation step
ensures that the generated examples are likely to return valid transformations
(recall the validity desideratum from Section 5.1).

The cross validation step can be used with different thresholds on the fraction
of correct results produced. In Section 5.6, our approach is to retain a set of
examples only if the synthesised transformations behave correctly throughout all
the iterations of the validation process.

5.5. DISCOVERING EXAMPLES: WEIGHTED SCHEME 139

Algorithm 5.1 Example discovery using functional dependencies.
1: function FdEgsGen(S,T)
2: Egs← {}
3: for all sa ∈ S and ta ∈ T do
4: if 〈sa, ta〉 ∈Matches(S, T) then
5: for all (sa→ sad) ∈ S.FD and
6: (sa→ sad) ∈ T.FD do
7: if 〈sad, tad〉 ∈Matches(S, T) then
8: EgV als← select distinct
9: S.sad, T.tad from S, T where
10: S.sa = T.ta
11: EgPairs← (sad, tad, 〈EgV als〉)
12: Egs← Egs ∪ {EgPairs}
13: end if
14: end for
15: end if
16: end for
17: return Egs
18: end function

5.5 Discovering examples: weighted scheme

The technique described in the previous section uses a set of hypothesised func-
tional dependencies to pair values from a source dataset S : (sa1, ...san) and a
target dataset T : (ta1, ...tam), that represent the same real world entity. While
such an approach can be effective in some scenarios (as shown in Section 5.6),
often the assumptions underlying Algorithm 5.1 are too strong. For instance,
candidate FDs may be missing, or state–of–the–art FD discovery is unable to
find them due to inconsistencies in values. Furthermore, the number of example
pairs generated by Algorithm 5.1 can be very large, while the number of cases
covered by the examples is small, i.e., Algorithm 5.1 offers no control over the
number of examples generated for one transformation case, e.g., changing the
format representation of a date string. For such simple cases, techniques such as
FlashFill or SynthEdit often require few example instances. Not only is it the case
that many examples that cover the same transformation scenario are redundant,
but they can increase the runtime of the synthesis process. As mentioned in
Chapter 4, FlashFill is known to be exponential in the number of examples and
high degree polynomial in the size of each example [RGM14].

To address these scenarios, in this section we describe an approach to automatic

140 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

identification of examples that uses string similarities between values in pairs of
matching column, as returned by the Match function introduced in the previous
section. We also propose an incremental example selection algorithm that, out of
the example pairs that are generated, selects a relevant subset for which there is
evidence that effective transformations can be synthesised.

The objective of the example discovery technique described next is: given two
columns from different tables, to heuristically identify pairs of values that are
similar. To this end, we start by tokenizing each column value, where each token
is a substring of the original value delimited by punctuation or spaces. The tokens
enable the grouping of values into blocks, where each block contains values from
both columns with common tokens. An intra–block, pairwise comparison of values
is conducted to determine potentially equivalent instances. Given the fact that the
syntactic comparison does not guarantee the optimal pairing of equivalent values,
each candidate pair obtained will have an associated score. This quantifies the
degree of similarity of the paired values, and is used later to determine a minimal
sub–set of candidate value pairs that can be used as examples to synthesise an
effective transformation program.

5.5.1 Examples generation

Consider a pair of columns (S.sa, T.ta), exemplified in Figure 5.2, between which
there is a matching correspondence. The objective is to identify which values in
the source column sa and target column ta are likely to be equivalent. Starting
from the existence of a matching relationship between the two columns, we can
pair values based on their string representations and postulate that, for example,
730 Grand Ave and Grand Ave, Nr. 730 are sufficiently similar as to represent
the same address.

More formally, assume we have two datasets, source S and target T . S has
the attributes (sa1, ...san), and T has the attributes (ta1, ...tam). We want values
from S to be formatted as in T . Further, assume we have a function, Match, that
returns a set of pairwise matches between the attribute names in S and T . Then,
we can use Algorithm 5.2 to pair values from matching column sai and taj that
are likely to be equivalent. The obtained pairs can then be used as examples for
synthesis algorithms to generate transformation programs that will format values
from sai as in taj.

Figure 5.2 depicts a pair of matching columns, each with 4 values, that we

5.5. DISCOVERING EXAMPLES: WEIGHTED SCHEME 141

sa
1 730 Grand Ave
2 93 Roland St
3 21 Duke Ave
4 44 Park Rd

ta
1 Robinson St, Nr. 14
2 Park Rd, Nr. 44
3 Grand Central Ave, Nr. 331
4 Grand Ave, Nr. 730

Figure 5.2: Examples of source and target records from a matching column pair.

Algorithm 5.2 Weighted examples discovery using string similarities.
1: function wEgsGen(S,T)
2: Egs← {}
3: for all 〈sa, ta〉 ∈Matches(S, T) do
4: Toks ← Tokenise(sa)
5: Tokt ← Tokenise(ta)
6: Idx← Index(Toks, T okt)
7: Egs← Egs ∪WeightedPairing(Idx)
8: end for
9: return Egs
10: end function

will use throughout this section to describe the details of our approach. Notice
that in a real–world case, the number of tuples of sa and ta would most likely
be different and so would the ratio of shared values, i.e., the candidates for the
resulting examples.

When applied to the column pair from Figure 5.2, Algorithm 5.2 has the
following steps:

Tokenise, in lines 4 and 5: For each value in columns sa and ta, the Tokenise
method transforms the string representation of the value into an array represen-
tation, where each element of the array is a token as defined by the list of
regular–expression–based primitives in Table 5.1. Note that Table 5.1 contains
primitives similar to the ones used by SynthEdit to identify format descriptors.
Moreover, the same primitives are at the core of FlashFill. Consequently, the
technique described in this section is compatible with both synthesis algorithms.
The last primitive types, punctuation and space, are used for separators only.
The intuition is that a punctuation sign has small significance in determining the
similarity of two values, e.g., the separators have a small weight in determining
the equivalence of 24/04/1989 and 04.24.1989. To illustrate this, Figure 5.3,
describes the tokenised representations of values from Figure 5.2.

Index, in line 6: The tokens are used to create an inverted index I(sa, ta)

142 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

Primitive Regex Description
Alph [a–zA–Z]+ One or more letters
LowAlph [a–z]+ One or more lowercase letters
UppAlph [A–Z]+ One or more uppercase letters
Num [0–9]+ One or more digits
AlphNum [a–zA–Z0–9]+ One ore more letters or digits
Punct [., ; : /-_?!&$]+ One or more punctuation signs
Space [\s]+ One or more spaces

Table 5.1: Regex primitives

sa - tokenised
1 [730,Grand,Ave]
2 [93,Roland,St]
3 [21,Duke,Ave]
4 [44,Park,Rd]

ta - tokenised
1 [Robinson,St,Nr,14]
2 [Park,Rd,Nr,44]
3 [Grand,Central,Ave,Nr,331]
4 [Grand,Ave,Nr,730]

Figure 5.3: Examples of source and target tokenised values from a matching
column pair

for the pair of matching columns. For each token t, the inverted list I[t] is a
list of all values from sa and ta which contain token t. For example, if t =Ave,
then I[t] = [sai.’730 Grand Ave’,taj.’Grand Ave, Nr. 730’, ...], i.e., all the values
from sa and ta containing token Ave. Figure 5.4 shows three index entries for
tokenised values in Figure 5.3 with each row denoting an index entry where the
Token column is the key and Inverted list is the list of values containing the token.

WeightedPairing, in line 7: Each source value in each index entry is paired,
by Algorithm 5.3, with the most similar target value according to a confidence
measure described below. For instance, if t = Ave and I[t] = [sa.’730 Grand Ave’,
ta.’Grand Ave, Nr. 730’, ta.’Grand Central Ave, Nr. 331’], then the returned
pair would be (sa.’730 Grand Ave’, ta.’Grand Ave, Nr. 730’). Similar examples
can be seen in Figure 5.5 for indexed values in Figure 5.4.

Weight: Each pair of values (sa.x, ta.y), returned in the previous step, has
a weight σ assigned to it that is computed by the SimPairing method (line
3 in Algorithm 5.3), according to Equation 5.1. We define θ, in Equation 5.2,
as the overlap coefficient between two strings of characters which divides their
intersection by the size of the smaller of the two sets; M as the number of
tokens under which the pair is indexed; IDFrk, in Equation 5.3, as the inverse
document frequency (IDF) of a token rk, under which the pair (sa.x, ta.y) has

5.5. DISCOVERING EXAMPLES: WEIGHTED SCHEME 143

Token Inverted list

Grand
[sa.’730 Grand Ave’,ta.’Grand Central Ave, Nr. 331’,
ta.’Grand Ave, Nr. 730’]

Ave
[sa.’730 Grand Ave’,sa.’21 Duke Ave’,
ta.’Grand Central Ave, Nr. 331’,ta.’Grand Ave, Nr. 730’]

Park [sa.’44 Park Rd’,ta.’Park Rd, Nr. 44’]

Figure 5.4: Examples of token–sharing buckets containing source and target
values.

Algorithm 5.3 The WeightedPairing function of Alg. 5.2
1: function WeightedPairing(Idx)
2: for all e ∈ Idx.entries do
3: pairs← SimPairing(e)
4: maxPair ← null
5: for all p ∈ pairs do
6: if maxPair.weight < p.weight then
7: maxPair ← p
8: end if
9: end for
10: Egs← Egs ∪ {maxPair}
11: end for
12: return Egs
13: end function

been indexed, computed as a logarithmically scaled fraction obtained by dividing
the total number of values from both columns by the number of values containing
token rk; and φ as a similarity measure, e.g., the Euclidean distance metric, of
the two strings. In Equation 5.1, θ is used to penalise pairs with very dissimilar
values, and IDFrk is used to weight down pairs indexed under a very common
token, e.g. St, Ave. For instance, the pair (sa.’730 Grand Ave’,ta.’Grand Ave,
Nr. 730’) in Figure 5.5 has been indexed under two tokens, Grand and Ave. The
first entry will have a higher weight because there are four occurrences of Ave
in Figure 5.2, and only three of Grand. Notice that the proposed weight is not
intended to be a normalised similarity measure between two strings, but rather to
identify the pairs of values that are more likely than others to be valid examples
for synthesis algorithms.

σ = θ(sa.x, ta.y)× max
1≤k≤M

(IDFrk × φ(sa.x, ta.y)) (5.1)

144 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

Token Value pairs
Grand [(sa.’730 Grand Ave’,ta.’Grand Ave, Nr. 730’)]

Ave
[(sa.’730 Grand Ave’,ta.’Grand Ave, Nr. 730’),
(sa.’21 Duke Ave’,ta.’Grand Central Ave, Nr. 331’)]

Park [(sa.’44 Park Rd’,ta.’Park Rd, Nr. 44’)]

Figure 5.5: Examples of paired source and target values from a matching column
pair.

θ(X, Y) = |X ∩ Y |
min (|X|, |Y |) (5.2)

IDFrk = log
(
N

nrk

)
(5.3)

To illustrate the behaviour of Equation 5.1 in practice, Table 5.2 shows exam-
ples of encountered cases and their respective coefficient values. In the table, the
first column depicts the token (i.e., key) under which the pair from the second
column has been stored in the index. The last three columns are the values for θ
(i.e., overlap coefficient), IDFrk

(i.e., the IDF of the key token) and φ (i.e., the
string similarity). For both θ and φ, we only consider alphanumeric characters,
i.e., non-separators. In computing φ, the key token is also removed from the
strings, unless the result is the empty string. All coefficients are computed using
lowercase strings.

Of particular interest in Table 5.2 is row 2. While the two strings represent the
same address, the key token is very common, and, therefore has a small IDF . The
same pair also appears in a bucket identified by the token morgan, which seems
to be less frequent than st, and, hence has a higher IDF (note that in Equation
5.1 we only consider the maximum product of IDF and φ). The difference in
string lengths in the third row leads to a relatively small φ, but the high overlap
and token IDF compensate for that. The last two rows are false positives, i.e.,
pairs that should not be considered examples. Here, the dissimilarity of strings is
evident from the low value of at least one coefficient. In general, high values for
θ and/or φ denote strong evidence of validity, while a combination of low/mid-
range values suggests false positives. Whenever the dissimilarity is not caught by
Equation 5.1, we rely on Algorithm 5.4 to eliminate false positives, as described
in the next section. The final example set, returned by Algorithm 5.3 for the
two columns in Figure 5.2, includes three pairs, i.e. the set of distinct pairs in

5.5. DISCOVERING EXAMPLES: WEIGHTED SCHEME 145

Token rk Value pair θ IDFrk
φ

2016 (2016-01-04,04/01/2016) 1.0 1.27 1.0
st (71 Morgan St,Morgan St, Nr. 71) 1.0 0.32 0.60
mckeon (Howard P. Mckeon (R-Calif), Mckeon) 1.0 2.67 0.55
robert (Kruzel, Robert,Robert L Danley Jr) 0.5 3.84 0.36
neal (Tatum O’Neal,neal_h_brian) 0.33 2.55 0.29

Table 5.2: Weight examples

Figure 5.5, each one having an assigned weight that is used in the selection process
described next.

5.5.2 Incremental examples selection

Algorithm 5.2 returns sets of examples that can be used for synthesising trans-
formation programs, but, as with the FD–based technique, there is no guarantee
that effective transformations will be produced from these examples. Further-
more, given its approximate nature, Algorithm 5.2 can generate a high number
of example pairs, many of which are not valid example instances, i.e., do not
represent similar concepts. This means that validation techniques such as the one
proposed in Section 5.4.2 would fail. Finally, the large number of examples gener-
ated by Algorithm 5.2 can drastically increase the synthesis time. To address all
these potential caveats, we describe a selection technique that aims to refine the
example set produced by Algorithm 5.2 by selecting only the smallest subset for
which there is evidence that it will produce effective transformations. We define
the evidence as the effectiveness of the synthesis algorithms, using the selected
subset, to produce a transformation program that will correctly transform the
original set of examples generated by Algorithm 5.2.

More formally, given an example set E = {e1, e2, ..., en} produced by Algo-
rithm 5.2, with ei = (eini , eouti), the incremental selection technique, described in
Algorithm 5.4, returns an example set F = {f1, f2, ...fm}, with F ⊆ E and m ≤ n,
such that when F is used as the input to a synthesis algorithm produces a set
of transformation expressions T = {τ1, τ2, ..., τp} such that ∀ei ∈ E,∃τj ∈ T with
τj (eini) = eouti .

The objective of Algorithm 5.4 is twofold: (i) to purge pairs of values returned
by Algorithm 5.2 which are not equivalent; and (ii) to minimise the set of exam-
ples by purging redundant pairs (recall the representativity and non–redundancy

146 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

Algorithm 5.4 Examples selection
1: function EgsSelection(Egs)
2: Egs← Sort(Egs)
3: minEgs← InitEgs(Egs)
4: p← Synthesise(minEgs,Egs \minEgs)
5: while p 6= ε do
6: if GetFormat(p.in) /∈ GetFormats(Egs \minEgs) then
7: return REJECT Egs
8: end if
9: minEgs← minEgs ∪ {p}
10: p← Synthesise(minEgs,Egs \minEgs)
11: end while
12: return minEgs
13: end function

desiderata from Section 5.1). Regarding (ii), recall from Chapter 4 that a syn-
thesised program is more likely to correctly transform all the test values if the
example pairs cover all of the formats existing in the test data. But if there
are too many example pairs covering the same format, this will exponentially
increase the cost of the synthesis. In Algorithm 5.4, we consider two examples to
be redundant if they cover the same format.

To illustrate the technique in practice, consider the pair of source and target
columns depicted in Figure 5.6. The attribute sb contains full names of U.S.
politicians, while tb contains person last names. The objective is to generate
examples for synthesising a transformation program that extracts the last names
in sb. For this purpose, we start by applying Algorithm 5.2, which produces a
set of example pairs, nine of which are represented in Figure 5.7, sorted by their
corresponding weights. Next, Algorithm 5.4 follows the steps described below:

Sort, in line 2: The set of example pairs returned by Algorithm 5.2 is sorted
into descending order based on the weights. The result of this step is shown in
Figure 5.7.

Initialise Examples, in line 3: The algorithm starts by selecting the ex-
ample pair with the highest weight, for each format present in the example set.
Specifically, the pairs depicted in Figure 5.7 describe three formats presented here
using the notation introduced in Section 4.4.1, i.e., rows 1–3 (A W A), rows 4–7
(A W A P A), and rows 8-9 (A W U P W A). Note that, while the pairs with the same
format are grouped together for clarity, this may not be the case in a real world
scenario. Note also that both the punctuation and space count as token types

5.5. DISCOVERING EXAMPLES: WEIGHTED SCHEME 147

sb
1 Jim K. Lee
2 Billy W. Tauzin
3 Clarence Thomas
4 Joe Ackerman–Specter
5 Tommy Thompson
6 George W. Bush
7 Alphonso Jackson
n ...

tb
1 Benjamin-Stock
2 Bush
3 Millender-Cramer
4 Jackson
5 Thomas
6 Lee
7 Ackerman
m ...

Figure 5.6: Examples of source and target records from a matching column pair.

sb tb W
1 Condoleezza Rice Rice 2.21
2 Michael Leavitt Leavitt 2.16
3 Clarence Thomas Thomas 2.09
4 Juanita Millender–Cramer Millender-Cramer 1.76
5 Joe Ackerman–Specter Ackerman 1.34
6 Tammy Liu–Vitter Liu-Vitter 1.32
7 Walter Ben–Stock Benjamin-Stock 0.84
8 George W. Bush Bush 0.81
9 Joe K. Pitts Pitts 0.79

Figure 5.7: Examples of source and target records aligned by Algorithm 5.2.

rather than separators (as was the case for the tokenization step in the previous
section) because the goal in this case is to identify covered format descriptors.
The three examples from Figure 5.8 have the highest weights for their respective
formats.

Synthesise, lines 4 and 10: This method, illustrated in Algorithm 5.5, takes as
input a set of example pairs (viz., the pairs with the highest weights as returned
by the InitEgs method), and a set of test pairs (viz., the pairs with lower
weights than the ones considered as examples). Then, a transformation program
is synthesised using SynthEdit on the example set (line 2 in Algorithm 5.5). The
resulting program is then tested against each pair from the test set. If the result
of a transformation is different from the expected test output (line 4 in Algorithm
5.5), and if there has not been a previous test value describing the same format
which was correctly transformed (line 5 in Algorithm 5.5), then that failing pair
is returned. The IsF irst(p) method at line 5, checks if pair p has the highest
weight for the format it describes.

148 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

Source Value Target Value
Condoleezza Rice Rice
Juanita Millender-Cramer Millender-Cramer
George W. Bush Bush

Figure 5.8: Pairs of source–target value pairs in the initialisation phase.

Algorithm 5.5 The Synthesise method of Alg. 5.4
1: function Synthesise(Egs,TestEgs)
2: τ ← FlashFill(Egs)
3: for all p ∈ TestEgs do
4: if τ(p.in) 6= p.out then
5: if IsF irst(p) then
6: return p
7: end if
8: end if
9: end for
10: return ε
11: end function

Increment, in line 9: Every time the Synthesise method returns a failing
pair, the pair is added to the previous set of examples. The intuition is that
the initial set of examples did not cover the format described by the failing pair,
therefore, by taking it as an example, another format is covered.

Halting Condition, in line 6: Algorithm 5.4 stops when there are no more
failing test pairs, or when the halting condition is met, viz., all the pairs describing
a failing format have been used as examples. This means that there are not enough
examples for that format, the algorithm returns and the example set is rejected.

To continue with the example in Figure 5.7, when Synthesise is called in line 4
in Algorithm 5.4, the pairs in Figure 5.8 are used as the example set to synthesise
a transformation program τ , which is then tested against the rest of the values
in Figure 5.7. Notice that for row 5 of Figure 5.7, the transformation synthesised
from the examples depicted in Figure 5.8 fails, i.e., τ(Joe Ackerman–Specter) 6=
Ackerman, because Ackerman is not the last name. The pair at row 4 has the
highest weight from the test pairs describing the same format f , meaning that
f has not been covered by the previous example set, so the pair is added to the
example set at line 9 in Algorithm 5.4, and a new iteration starts.

Of particular interest is row 7 in Figure 5.7. Notice that, given the values
exemplified so far, there is no transformation program that can transform Walter

5.6. EVALUATION 149

Ben-Stock to Benjamin-Stock. If the previous pair (row 6), which has a higher
weight, is correctly transformed, i.e., τ(Tammy Liu-Vitter) =Liu-Vitter, then
the pair in row 7 is ignored as a false-positive that was returned by Algorithm
5.2, and the algorithm continues (towards a successful result in this case). This
result includes rows 1, 4, 5, and 8 of Figure 5.7, i.e., the minimal set of examples
that produces a transformation program that correctly transforms the rest of
the pairs. Otherwise, if τ(Tammy Liu-Vitter) 6=Liu-Vitter and τ(Walter Ben-
Stock) 6=Benjamin-Stock, the halting condition is met, i.e., there are no more pairs
for the format described by these two failing pairs, and the example set generated
by Algorithm 5.2 is rejected.

We argue that there is no need to perform 10–fold cross–validation on the
returned set of examples, as was done in Section 5.4.2. The intuition is that if
Algorithm 5.4 returns a valid set of examples, there is enough evidence to consider
that a synthesis algorithm can return a transformation program that correctly
transforms the source values covered by the seen examples. Furthermore, if it
were applied on the output of Algorithm 4, cross–validation would fail because
it requires at least two example pairs per format in the candidate example set.
In other words, the validation technique requires redundant example candidates,
which is exactly what Algorithm 5.4 tries to avoid.

5.6 Evaluation

In this chapter, we evaluate the hypothesis that the process of transforming
formats in a data lake using SynthEdit (discussed in Chapter 4) can be automated
by replacing the user–provided examples with example generation algorithms
presented above. In a scenario in which information from multiple, heterogeneous
data sets is to be integrated, it falls on data scientists to identify values that
need to be transformed in a source dataset, and their corresponding versions in a
target dataset. Our approach removes the user from this process by automating
the identification of examples for use by program synthesis.

To illustrate and evaluate the methods proposed in this chapter, firstly, we
use open government Web–data to assess the effectiveness of Algorithm 5.1 at
identifying candidate column pairs that can contribute input–output examples
when their values are aligned. We do not perform this experiment for Algorithm
5.2 because this would be equivalent to evaluating the effectiveness of the Match

150 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

function which is not the focus of this chapter.
Secondly, we evaluate the effectiveness of the validation technique discussed

in Section 5.4.2, in conjunction with Algorithm 5.1 for identifying problematic
column pairs. We do not perform this experiment for Algorithm 5.2 because, as
mentioned before, the cross–validation technique is not applicable in the case of
the latter algorithm.

Next, we evaluate the effectiveness of using SynthEdit to synthesise trans-
formations informed by examples generated automatically using Algorithms 5.1
and 5.2. We also use Algorithm 5.4 to decide on the most informative subset of
example instances, showing that the example selection technique is effective in
reducing the number of examples.

Finally, we evaluate the efficiency of the algorithms discussed in this chapter
when applied on datasets of various sizes.

5.6.1 Data repositories used in evaluation

The motivation for the techniques explored in this chapter is the desire to remove
the need for manual specification of examples when using synthesis algorithms.
To asses the efficiency and the effectiveness of the methods we selected a col-
lection of 9 source–target pairs of related datasets from Web–based data lakes,
e.g., data.gov.uk, data.ny.gov, etc.. The source dataset contains values to be
transformed and the target dataset provides values in the desired format. The
datasets have been chosen to reflect multiple transformation types accommodated
by SynthEdit, as described in Chapter 4, e.g., punctuation removal, (sub)token
extraction/deletion/permutation/insertion, case alteration, or combinations of
two or more such transformation types.

Table 5.3 describes the domain, location, cardinality and arity of the source
and target datasets used in experiments.

Note that only the first five pairs of datasets are used to evaluate the FD–based
examples generation approach from Section 5.4, since those were the datasets for
which the state–of–the–art data profiling algorithms (e.g., HyFD [PN16]) were
successful.

Each pair of source–target datasets contributes one or more pairs of matching
columns that contain overlapping instance values with dissimilar format repre-
sentations. We delegate the Match function used in the proposed algorithms to
COMA 3.0 Community Edition (sourceforge.net/projects/coma-ce/) [ADMR05],

data.gov.uk
data.ny.gov
sourceforge.net/projects/coma-ce/

5.6. EVALUATION 151

Domain Source/Target URLs Cardinality Arity

Food Hygiene ratings.food.gov.uk 12,323 7
data.gov.uk 61 10

Lobbyists data.cityofchicago.org 7,542 12
data.cityofchicago.org 210 19

Doctors/Addresses www.nhs.uk 7,696 19
data.gov.uk 17,867 3

Building Permits app.enigma.io 10,000 13
data.cityofchicago.org 1,245 13

Citations dl.acm.org 1,072 16
ieeexplore.ieee.org 2,000 11

US Politicians opensecrets.org 620 9
govtrack.us/congress 11,870 10

Restaurants app.enigma.io 25,000 19
data.ny.gov 21,000 18

Movies imdb.com 75,000 4
imdb.com 15,000 5

Employment data.cityofchicago.org 31,000 8
data.cityofchicago.org 12,000 7

Table 5.3: Data sources used in evaluation

a state–of–the–art schema matching tool. Note that only the generation of ex-
amples is claimed as contribution in this chapter and, hence, evaluated in this
section. Although they are relevant in practice, we do not separately evaluate
the off-the-shelf components we use, viz., COMA and HyFD. They have been
evaluated directly by their authors and/or in comparative studies (see [ADMR05]
and [PN16]).

5.6.2 Reported measures

We report on the following characteristics of the proposed examples generation
techniques:

1. Effectiveness

(a) of Algorithm 5.1 in identifying candidate column pairs, i.e., pairs where
(i) the members are in a matching relationship, (ii) represent depen-
dants in two functional dependencies, and (iii) contain overlapping
values that denote the same real–world concepts. To this end, we

152 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

report the precision and recall of the algorithm applied on datasets
where there are known suitable candidates.

(b) of the transformation programs synthesised by SynthEdit from the
example instances produced by Algorithms 5.1 and 5.2. To this end,
we report the precision and recall of the result of the transformations
synthesised from the generated examples, applied on previously unseen
values from the source dataset.

2. Efficiency in generating examples given various dataset pairs. To this end,
we report the running times of Algorithms 5.1, 5.2, and 5.4 when applied to
datasets from various domains. In the case of Algorithm 5.4, we only run it
on the results of Algorithm 5.2 since the output of the latter often includes
the output of Algorithm 5.1. In practice, the example selection technique
can be applied on the result of Algorithms 5.1 or 5.2.

3. We also analyse the effectiveness of the cross–validation technique in identi-
fying problematic column pairs, i.e., pairs that cannot be taken as examples
for synthesising transformations. In this case, we report the fraction of can-
didate column pairs returned by Algorithm 5.1 that are valid by a 10–fold
cross validation process, and discuss the causes of failure.

For the purposes of computing precision and recall for (1 (a)) above we define:

• TP. A pair of columns that share values representing the same concept and
that is present in the output of Algorithm 5.1 is a true positive.

• FP. A pair of columns with values representing different concepts and that
is present in the output of Algorithm 5.1 is a false positive.

• FN. A pair of columns that share values representing the same concept and
that is not part of the output of Algorithm 5.1 is a false negative.

A ground truth was manually created for the domains in Table 5.3, in which a
column from the source and a column from the target create a pair in the ground
truth if they represent the same concept.

Similarly, following the definitions of precision and recall of format transfor-
mations introduced in Section 4.6.2, for the purposes of computing precision and
recall for (1 (b)) above, we define:

5.6. EVALUATION 153

• TP. An input string, not included in the examples from which a transforma-
tion program has been synthesised, that is correctly transformed is a true
positive.

• FP. An input string, not included in the examples from which a transfor-
mation program has been synthesised, that is incorrectly transformed by
that transformation program is a false positive.

• FN. An input string, not included in the examples from which a trans-
formation program has been synthesised, that is left unchanged by that
transformation program is false negative.

A ground truth was manually, in which a random selection of 300 instance val-
ues from the source column, not part of the generated examples, were transformed
and the results manually evaluated.

As usual, precision p is defined by:

p = TP

(TP + FP)
Recall r is defined by:

r = TP

(TP + FN)
All experiments have been run on a 2.60 GHz Intel Core i7-4720HQ CPU with

12 GB RAM.

5.6.3 Effectiveness of FD based scheme

In this section we evaluate the results of Algorithm 5.1 using an off–the–shelf
matcher to identify column level matches between a source dataset and a target
dataset, and an off–the–shelf profiling tool to identify functional dependencies
(FDs). We then use these two types of relationships to generate input–output
examples for the required transformations using Algorithm 5.1. The resulting
sets of examples are then validated using a 10–fold cross–validation process, as
described in Section 5.4.2. Note that, in practice, the first two steps mentioned
above are necessary only if the input data doesn’t explicitly contain pre–discovered
matching correspondences or functional dependency candidates, e.g. a relational
database that contains explicit FDs for its relations. Finally, the validated pairs

154 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

are input to a synthesis algorithm and the resulting transformations are applied
on new source values.

Experiment 5.1. Can Algorithm 5.1 identify candidate column pairs?

Representative examples of candidate columns pairs that are identified by
Algorithm 5.1, together with a source and corresponding target instance values,
are given in Table 5.4. The last column illustrates the number of unique example
pairs generated by Algorithm 5.1 for each case.

The results of this experiment are presented in columns Precision and Recall
of Table 5.5, for the data sets in Table 5.4. In general, both precision and recall
are high. In the case of the Building Permits domain, there are three attributes in
each dataset representing a cost (see row 9 in Table 5.4 for an example). Although
there are nine possible source column–target column alignments, Algorithm 5.1
was able to identify the correct ones and returned no false positives. Food Hygiene
precision is 0.86 due to a bad match returned by COMA. An example of this
match is on the second row of Table 5.4. The two columns have the same name
(AddressLine), but different semantics. The precision and recall for Citation are
reduced by one bad match returned by COMA (represented in the last row of
Table 5.4) and two missing matches (i.e. two pairs of columns that were not
reported as matches by COMA).

Experiment 5.2. Is the validation process successful at identifying
problematic column pairs?

A column pair is problematic if we cannot synthesise a suitable transformation.
Note that in Experiment 5.1 we measured the effectiveness of Algorithm 5.1 at
identifying correct column pairs. Here we check whether the alignment of values,
i.e. the result of the selection in lines 8–10 in Algorithm 5.1, denotes suitable
examples for synthesising a correct transformation. To evaluate this we run a
10–fold cross validation task on each pair of columns from Experiment 5.1. We
now discuss the candidate pairs for which validation has failed, and have the cases
for which validation has passed to be discussed in the next experiment. A pair of
columns is considered to pass the validation step if all transformations are correct
across all iterations.

The fraction of the candidate column pairs that pass validation is reported in
the last column of Table 5.5. Column pairs have failed validation for the following
reasons: (i) the matched columns have different semantics, and thus incompatible

5.6. EVALUATION 155

Domain
Source
semantics

Source
example

Target
semantics

Target
example egs.

1 Food Hyg.
Rating
Date 2015-12-01

Rating
Date 01/12/2015 57

2 Food Hyg.
Building
Name

Royal Free
Hospital Street Pond Street 59

3 Food Hyg.
Business
Name Waitrose

Business
Name Waitrose 60

4 Lobby
Person
Name

Mr. Neil G
Bluhm

Person
Name Bluhm Neil G 206

5 Lobby Phone (312) 463-1000 Phone (312) 463-1000 191

6 Docs./Addrs. Address
55 Swain Street,
Watchet Street Swain Street 41

7 Docs./Addrs. City Salford City Manchester 28

8 Build Perm. Address 1885 Maud Ave Address
Maud Ave,
Nr. 1885 26

9 Build Perm. Cost 6048 Cost $6048.00 22

10 Build Perm.
Issue
Date 2014-06-05

Issue
Date 06/05/2014 26

11 Citations
Author
Names

Sven Apel and
Dirk Beyer

Author
Names

S. Apel;
D. Beyer 56

12 Citations Date " " Date 2-8 May 2010 32
13 Citations Year 2011 Year 2011 56

14 Citations
Num. of
pages 10

Start
page 401 56

Table 5.4: Resulting column-pairs with example values.

values, for which no transformation can be produced, which is the case for two
of the eight column pairs that fail validation (for example see row 2 and row 14
in Table 5.4); (ii) the matched columns have the same semantics, but SynthEdit
has failed to synthesise a suitable transformation, which is the case for two of
the column pairs that fail validation (as an example, consider the lists of author
names from row 11 in Table 5.4); (iii) there are issues with the specific values
in candidate columns, which is the case for four of the column pairs that fail
validation (as an example, consider the missing information from row 12 in Table
5.4 the and inconsistent values in row 7 in Table 5.4).

It is important to note that, in practice, the effectiveness of the off–the–shelf
tools that we used here can be impacted by characteristics of the data such as
the ones exemplified above. This evaluation shows that the validation method
we employ is able to filter out example sets that otherwise would produce invalid
transformations or no transformations at all.

Experiment 5.3. Does the synthesis algorithm produce effective trans-
formation programs from the example pairs generated by Algorithms

156 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

Domain Candidates Precision Recall Valid
Food Hyg. 6 0.83 1.00 5/6
Lobby 9 1.00 1.00 9/9
Docs./Addrs. 2 1.00 1.00 1/2
Build Perm. 12 1.00 1.00 12/12
Citations 7 0.86 0.75 1/7

Table 5.5: Results of Experiments 5.1 and 5.2

5.1?

To evaluate this, in Table 5.6 we report the precision and recall of the trans-
formations synthesised from the examples generated in the previous experiments.
The missing row numbers are the cases in Table 5.4 that failed validation.

Of the 28 validated cases from Table 5.5, all but six are identity transforma-
tions, i.e. the source and target values are the same (e.g., rows 3, 5 and 13 in
Table 5.6). This can often happen in practice. For instance, row 13 represents the
year for a publication which is most commonly represented as a four–digit number.
In such cases, SynthEdit was able to identify that the transformation is only a
copying operation. Of the six cases where the values are modified, the precision
and recall are both 1.0 in two cases (rows 1 and 10 in Table 5.6), confirming the
results of the evaluation performed in Chapter 4 according to which SynthEdit is
effective in such simple cases. For row 8, the transformation is more complicated
given that the street name does not always have a fixed number of words, and
the street number can have a different position. In this case, Algorithm 5.1 was
able to identify enough examples to cover most of the existing formats. There
were problems with the transformations generated in three cases. For row 4,
a few source values do not conform to the usual pattern (e.g. the full stop is
missing after the salutation). For row 9, not all source values are represented
as integers, giving rise to incorrect transformations. For row 6, similarly to row
9, the examples do not cover all the relevant address formats, i.e. 41 examples
are used to synthesise a program to transform a rather large number of values
(approx. 7,700).

In summary, the technique evaluated above proves to be effective in scenarios
where certain conditions are met. The most important of these is that the
source and target contain overlapping information on some of the tuples, i.e. the
left–hand sides of the functional dependencies used in Algorithm 5.1. Another
important condition is for SynthEdit to be able to synthesise transformations

5.6. EVALUATION 157

#
Source
semantics

Source
example

Target
semantics

Target
example Prec. Rec.

1
Rating
Date 2015-12-01

Rating
Date 01/12/2015 1.0 1.0

3
Business
Name Waitrose

Business
Name Waitrose 1.0 1.0

4
Person
Name

Mr. Neil G
Bluhm

Person
Name Bluhm Neil G 0.91 0.90

5 Phone (312) 463-1000 Phone (312) 463-1000 1.0 1.0

6 Address
55 Swain Street,
Watchet Street Swain Street 0.57 1.0

8 Address 1885 Maud Ave Address
Maud Ave,
Nr. 1885 0.89 1.0

9 Cost 6048 Cost $6048.00 0.95 1.0
10 Date 2014-06-05 Date 06/05/2014 1.0 1.0
13 Year 2011 Year 2011 1.0 1.0

Table 5.6: Results of Experiment 5.3

from the pairs of generated examples. The evaluation shows that as long as these
conditions are met, we can dispense with user intervention in this stage of the
cleaning process by synthesising and applying transformations automatically.

5.6.4 Effectiveness of weighted scheme

In this section we evaluate the effectiveness of Algorithms 5.2 and 5.4 using all nine
pairs of datasets from Table 5.4. As was the case with the FD–based proposal, we
hypothesise that the task of providing examples by the user, which is often required
in current data format transformation tools, can be partly replaced by Algorithms
5.2 and 5.4. We use the same complementary tools as before, i.e. COMA and
HyFD. We analyse the effectiveness of Algorithm 5.4 when applied to the output
of a previous run of Algorithm 5.2. Note that, in practice, Algorithm 5.2 should
not be used without a subsequent selection of its output, i.e., Algorithm 5.4, since,
subject to the degree of similarity between the string values of matching pairs of
columns, many of the generated examples may not reflect a valid transformation:
the source and target strings may be similar to some degree, but not represent
the same concept. The ethos of Algorithm 5.4 is to identify and eliminate such
examples, together with other redundant instances.

Experiment 5.4. Does the synthesis algorithm produce effective trans-
formation programs from the example pairs generated by Algorithms
5.2 and 5.4?

158 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

#
Source
sem.

Target
sem. Source Target Alg.2 Alg.4 Prec Rec

1 Date Date 2015-12-01 01/12/2015 57 1 1.00 1.00

2
Pers.
name

Pers.
name

Mr. Neil G
Bluhm

Bluhm
Neil G 206 25 0.64 0.75

3 Addr. Addr.

55 Swain
Street,
Watchet Swain Street 2819 N/A N/A N/A

4 Addr. Addr.
1885 Maud
Ave

Maud Ave,
Nr. 1885 1051 14 0.86 1.00

5 Cost Cost 6048 $6048.00 257 3 0.98 1.00

6
Pers.
name

Pers.
name

Pete Stark
(D-Calif) Stark 473 34 0.62 1.00

7
Pers.
name

Pers.
name

Pete Stark
(D-Calif) Pete 279 25 0.70 1.00

8
Pers.
name State

Pete Stark
(D-Calif) Calif 23 6 0.91 1.00

9 Addr. Addr.

41 Page
Avenue,
Delhi

Page
Avenue 1401 N/A N/A N/A

10 Date Date
2014-06-23
00:00:00+00 06/23/2014 1148 1 1.00 1.00

11
Pers.
name Username Jim Brown jim_brown 1872 N/A N/A N/A

12
Pers.
name Username Perry Lang lang.perry 1680 17 0.71 1.00

13
Pers.
name

Pers.
name

OUTTEN,
MIA G

Mia G
Outtent 8903 22 0.87 0.98

14 Addr. Addr.

2440 N
Cannon
Drive Cannon Dr 21 4 0.80 1.00

Table 5.7: Results of Experiment 5.4

For each matching column pair returned by the Match function, we first
run Algorithm 5.2, the result is then passed to Algorithm 5.4, then, using the
output from the latter and SynthEdit, a transformation program is synthesised
and applied to 300 random source values that have not been used in the examples.
We manually evaluate the output of each transformation and report the precision
and recall for each domain, as shown in Table 5.7. The table shows fourteen
cases of transformations, together with the semantics of source and target values,
an example instance, the number of examples generated by Algorithm 5.2, the
number of examples selected by Algorithm 5.4, and the precision and recall of
applying the transformations synthesised from the selected examples.

Of the fourteen cases exemplified in Table 5.7, Algorithm 5.4 rejected three
example sets: rows 3, 9, and 11. For rows 3 and 11, the halting condition was met,
while in the case of row 9, SynthEdit was unable to synthesise a transformation

5.6. EVALUATION 159

program due to a high degree of heterogeneity in the format representation of
values. For the rest of the matching column pairs, recall fell below 0.98 only
in the case of row 2. This was due to the fact that person names often contain
common tokens which can lead to highly weighted false positives (i.e., pairs of
strings that, although similar to some extent, do not depict valid transformations)
being returned by Algorithms 5.2 and 5.4. This is also true for precision. In
fact, all of the cases with precision lower than 0.80 are of person names that
exhibit the same characteristic. In the case of precision, the lower values were
a consequence of the ambiguity challenge discussed in Section 4.5 of Chapter 4,
i.e., the generated examples were not descriptive enough to clearly distinguish a
single transformation from all the possible ones.

Notice that Table 5.7 shows large differences between the number of example
pairs generated by Algorithm 5.2 and the pairs selected by Algorithm 5.4 across
most of the cases exemplified. This suggests that many of the pairs generated by
Algorithm 5.2 are covering a relatively small number of formats. For instance, in
the case of row 1, all source values of the 57 example pairs generated by Algorithm
5.2 are describing a single date format. Therefore, Algorithm 5.4 returned a single
pair.

Consistently with results discussed in Section 4.6, the recall values in Table
5.7 are close to 1.00. This means that SynthEdit transformed most of the strings
on which it has been tested. It follows that Algorithm 5.2 successfully identified
example instances for most of the format representations in the source columns,
and that Algorithm 5.4 successfully selected representative example instances for
each such format.

5.6.5 Efficiency evaluation

In this section we provide a comparative study of the two schemes for generating
examples presented in this chapter by analysing the computational cost of each
technique, i.e., Algorithms 5.1, 5.2, and 5.4, the computational cost of transforma-
tion synthesis using examples generated by each method, and the consequences
(if any) of removing examples through Algorithm 5.4.

Experiment 5.5. How efficient is the generation of examples?

Table 5.8 shows results on cases from Table 5.4 for which examples have been
generated using both schemes. The other cases from Table 5.4 have either been

160 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

#

Source/
Target
card Alg.5.1 Alg.5.2 Alg.5.4 Alg.5.1(s) Alg.5.2(s) Alg.5.4(s)

1 12,323/61 57 57 1 0.006 0.2 0.61
2 7,542/210 206 206 25 0.005 0.15 9.9
4 10,000/1,245 26 1,051 14 0.006 12.5 5.1
5 10,000/1,245 22 257 3 0.005 0.15 0.76

Table 5.8: Results of Experiment 5.5

used only with the weighted technique because the conditions for the FD–based
approach were not met, or the generated examples failed the validation step in
the FD–based approach. We report the row identifier in Table 5.4 on the first
column, while the rest of the columns represent the source/target cardinality, the
number of example pairs returned by Algorithm 5.1, the number of example pairs
returned by Algorithm 5.2 and Algorithm 5.4, and the time in seconds required to
generate the examples by each algorithm, resp. Note that we only analyse cases
for which the validation stage has been passed (for the FD–based scheme) and
for which the selection stage returned at least one example pair (for the weighted
scheme).

The complexity of Algorithm 5.1 is dominated by the number of matching
relationships of the source and target and by the number of functional dependency
candidates for each dataset (lines 3 and 5-6). In practice, the number of matches
and FDs tends to be small, meaning that the time required to run Algorithm 5.1
is dominated by the SQL select query at lines 8–10. Conversely, the complexity of
Algorithm 5.2 is dominated by the number of records of the two datasets, i.e., the
more instance values two columns have, the more entries the index will contain,
which translates into more pairwise string similarity comparisons. The first two
rows of Table 5.8 show that if we do not use functional dependencies and resort to
string matching, generating the same number of examples takes 30 times longer.
Often (e.g., last two rows), the pairs generated by Algorithm 5.2 contain false
positives, i.e. example instances for which the two strings do not represent the
same thing. To mitigate such cases we employ Algorithm 5.4, the complexity of
which is dominated by SynthEdit. The number of seconds required to refine the
examples generated by Algorithm 5.2 using Algorithm 5.4 is reported in the last
column of Table 5.8. The selection of examples for row 2 took longer than for row
4 because of a greater format heterogeneity in the case of the former, which leads

5.6. EVALUATION 161

to multiple iterations for Algorithm 5.4, i.e., multiple runs of SynthEdit.

Experiment 5.6. How efficient is the synthesis process given the gen-
erated examples?

The benefit of minimising examples can be observed in Figure 5.9, where the
time it takes SynthEdit to synthesise a transformation program, is reported. We
compare synthesising transformations from the examples generated by Algorithm
5.1, on the one hand, and by Algorithm 5.2, refined by Algorithm 5.4, on the
other. Once again, the results are consistent with those obtained in Chapter 4.
It can be observed that eliminating redundant example instances substantially
improves synthesis time, especially when there are many examples per format:
the fact that for row 2 Algorithm 5.4 reduced 206 examples to 25 suggests that
there are almost 9 examples per format.

With respect to the transformations synthesised, for cases 1 and 2 in Table
5.8, the transformation resulting from the examples returned by Algorithm 5.1
was equivalent to the transformation obtained from the examples returned by
Algorithm 5.4. For the last two cases, the transformation synthesised from the
examples returned by Algorithm 5.4 was more complex: it included more condi-
tional branches. This is unsurprising, as the number of candidate pairs generated
by Algorithm 5.2 contains more formats that the ones from Algorithm 5.1.

In summary, the experiments in this section, together with the ones in Sec-
tion 5.6.3, show that the FD–based approach efficiently generates more effective
example pairs, as long as FDs can be discovered. This approach can lead to an
increase in synthesis cost due to redundant example instances. The problem of
too many examples instances that cover the same transformation cases can be
solved in practice by employing the example selection technique in Algorithm
5.4. For cases where FDs are not available, the weighted solution can prove vi-
able at the expense of effectiveness. For example, row 2 of Table 5.8, where the
number of example instances has been reduced from 206 to 25, represents a case
where the weighted scheme proves less effective than the FD–based scheme: the
transformation precision decreased from 0.91 when 206 example instances were
used, to 0.64 when only the 25 instances selected by Algorithm 5.4 were used. A
closer investigation showed that, through selection, only one example instance
per format representation survived, but, in some cases, SynthEdit needed more
examples per format representation to overcome the ambiguity issue discussed in
Section 4.5.

162 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

1 2 4 5
0

0.5

1

1.5

2

2.5

3

1.61

2.88

0.72 0.69

5 · 10−2

0.9

0.36

6 · 10−2

Table 5.8 rows

se
co
nd

s
Alg.5.1 Alg.5.2+5.4

Figure 5.9: Average synthesis time of SynthEdit measured on 100 runs.

5.7 Summary and conclusions

This chapter has focused on discussing procedures that enable the application of
format transformations (Chapter 4) on data lakes. Specifically, these proposals
addresses the assumption of Chapter 4 that the provision of examples for program
synthesis is performed by the user. In large–scale scenarios, where there are
many datasets to transform, or where the instance values of a column to be
transformed exhibit multiple format representations that would each require at
least one example instance, we argued that such manual intervention is too
costly. Consequently, in this chapter, we proposed the automation of the example
provisioning task and only relying on the user to provide one or more datasets
where examples should be searched for. These datasets, which in our approach
act as the targets, can, for example, be part of the data context. This concept was
introduced in Section 2.3 of Chapter 2 as a collection of data values that supports
the wrangling process by stipulating the domain of the data that is prepared
for analysis, or that exemplifies the entities that are expected to appear in the
resulting dataset, together with their representation.

We proposed two approaches for the automatic generation of examples with
the following characteristics:

5.7. SUMMARY AND CONCLUSIONS 163

• The first approach employs matching relationships and hypothesised functional
dependencies to align the instance values of matching source and target columns.
The result can be construed as example instances for synthesising transforma-
tion programs that can normalise the representation of the rest of the values
of the source. The use of postulated FDs, followed by 10–fold cross validation,
leads to a set of valid examples w.r.t. the transformations needed, therefore
addressing the validity desideratum from Section 5.1.

• When FDs are not identifiable, a second approach relies on string similarities to
perform the same type of value alignment between source and target instance
values.

• Given the approximate nature of string similarity pairing, a selection method
was proposed to filter out inconsistent and redundant pairs. The result is a
subset of source–target value alignments that cover most of the format represen-
tations present in the unfiltered version. Instead of a cross-validation step, the
selection method uses a synthesizer to ensure the validity of the resulting set
of examples, i.e., that a transformation program can be synthesised from the
resulting examples. In addition, the selection algorithm is designed with the
representativity and non–redundancy desiderata in mind, i.e., it searches for
representative examples for each format descriptor encountered in the unfiltered
set of examples and it aims to eliminate redundant example instances.

• Lastly, both approaches perform automatic examples generation, and, therefore,
address the need for automation expressed in the last desideratum of Section
5.1.

The experiments conducted on data selected from various Web–based data
lakes showed that, given a source S and target T datasets, the FD–based examples
generation approach is efficient and effective when the following conditions are
met:

• ∃ S.sa, T.ta, two columns from S and T , respectively, such that S.sa matches T.ta;

• ∃ S.sx, T.tx, two columns from S and T , respectively, such that S.sx matches T.tx
and S.sx→ S.sa and T.tx→ T.ta;

• S.sx and T.tx share some values;

164 CHAPTER 5. DATA FORMAT TRANSFORMATION IN DATA LAKES

• The values of S.sa and T.ta are amenable to homogenisation, i.e., their values
are regularly structured.

When FDs are not available, the second approach, based on string–similarities,
exhibited comparable effectiveness at the expense of efficiency, when compared
with the FD–based proposal. Moreover, the weighted proposal requires the exis-
tence of an example selection step that proved capable of reliably reducing the
set of examples instances to a minimal subset for which there is enough evidence
to inform the synthesis of a transformation program.

Overall, the two examples generation approaches presented in this chapter,
prove effective in alleviating the burden of manual example provisioning for per-
forming format transformations, thereby meeting objective O3 of Chapter 1.

Chapter 6

Enabling data profiling in data
lakes

Chapters 3–5 have described our research contributions to the vision of cost–
effective data wrangling. However, and as discussed in Chapter 2, cost–effective
data wrangling comprises more tasks than the ones covered in this thesis. For
instance, the transformed and cleaned datasets have to be merged into a unified
view through data integration before being delivered to consumer applications.
Such tasks assume knowledge about the structural relationships intra– and inter–
data sets.

Given a collection of datasets, specialised data profiling algorithms have been
devised to identify semantic relationships (e.g., functional dependencies [Cod71]
and inclusion dependencies [CFP82]) when they exist. While functional depen-
dencies can be an important input to schema normalisation and to data cleaning
(as shown in Chapter 5), our focus in this chapter is on inclusion dependencies,
which are essential in data integration. When data integration is performed on
collections of heterogeneous datasets (e.g., data lakes), the assumptions made by
algorithms for inclusion dependency (IND) discovery do not always hold. Thus,
our aim in this chapter is to contribute to enabling the profiling of data lakes,
with a focus on INDs discovery. We approach this task by combining elements
specific to data discovery and format transformation, thus showing that the two
main topics of this thesis, which are valuable in themselves, can also be used
together to support another task of data wrangling.

Our aim in this chapter can be summarised as follows:

165

166 CHAPTER 6. ENABLING DATA PROFILING IN DATA LAKES

Given a collection of datasets with potentially differently formatted
values, identify inclusion dependencies between attributes from distinct
datasets.

State–of–the–art INDs discovery algorithms (e.g., BINDER [PKQN15], FAIDA
[KPD+17], SINDY [KPN15]) on their own cannot always achieve our declared
aim, since such algorithms assume normalised representations of instance values
and string equality between the values of the members of an IND. One possible
solution to this problem is described in Section 6.4. Prior to that, in Section
6.1, we present our motivation and our desiderata for the proposed solution. We
discuss the technical background in Section 6.2, and define the boundaries of our
approach in Section 6.3. We close the chapter with an empirical evaluation of
the proposed technique in Section 6.5, before presenting the main conclusions in
Section 6.6.

6.1 Motivation and desiderata

In a nutshell, an inclusion dependency (IND) between two attributes implies that
for all database states, the set of values of one attribute must be a subset of the
values of another attribute, often from a different table. The task of identifying
INDs often implies two challenges, viz., (i) how to contend with inconsistencies in
the format representation of instance values that are equivalent in meaning, and
(ii) how to remain efficient given the ever increasing size of the datasets, in terms
of number of records as well as attributes. Most of the state–of–the–art proposals
for IND discovery focus on the second challenge, and seek to devise scalable
techniques that cover the potentially huge space of IND candidates. In so doing,
they assume that the first challenge does not arise, i.e., they assume homogeneous
representations across all instance values. Consequently, IND discovery algorithms
are not easily applicable on data lakes characterised by format inconsistencies
between similar instance values.

Motivated by the need for data profiling in wrangling data from data lakes,
we propose one approach for enabling the use of IND discovery algorithms on
data with inconsistent format representations. To this end, we rely on the contri-
butions reported for dataset discovery, in Chapter 3, and for automatic format

6.2. BACKGROUND AND RELATED WORK 167

transformation, in Chapters 4 and 5, and seek to devise a prepossessing step to
the IND discovery algorithms with the following properties:

• It should enable the discovery of new INDs, previously missed by the used
algorithms due to inconsistencies in the format representations of instance
values.

• It should enable the identification of most, if not all, shared values between the
members of an IND, irrespective of their format representation.

The two desiderata above are motivated by the need for accuracy in identify-
ing all the shared instance values between the composing attributes of an IND
candidate: (i) if we are looking for full inclusion of the set of values of the first
attribute in the set of values of the second attribute, then missing a single shared
value due to a different representation amounts to discarding the IND candidate;
(ii) if we are interested in only a fraction of the values of the first set to be included
in the second value set, then missing shared values due to different formatting
amounts to discarding the IND candidate if the overlap between value sets drops
below the expected minimal fraction. In both cases, discarding an IND candidate
could lead to missing a valid join opportunity between the two members of the
dependency.

In this chapter we are interested in the second case above, viz., partial INDs,
which we define in the next section.

6.2 Background and related work

The goal of this chapter is to introduce an approach to facilitate the discovery
of INDs between the attributes of datasets in a data lake. Firstly, we briefly
explore the notion of inclusion dependencies and the state–of–the–art available
for discovering them.

6.2.1 Inclusion dependencies

Inclusion dependencies are a fundamental type of structural metadata, originally
devised in the context of relational databases [CFP82]. Intuitively, an IND states
that a combination of attributes from one table is a subset of the values of another

168 CHAPTER 6. ENABLING DATA PROFILING IN DATA LAKES

attribute combination, often from a different table. Formally, INDs are defined
as follows:

Definition 6.1. Given S and T , two datasets with schemas s = (s1, . . . , sk) and
t = (t1, . . . , tm), respectively, let s̄ = si1 , . . . sin and t̄ = tj1 , . . . tjn be two n–ary
attribute combinations with attributes from s and t, respectively. An inclusion
dependency, s̄ ⊆ t̄, states that s̄ is included in t̄ if for every tuple rs ∈ S, there is
a tuple rt ∈ T , such that rs[s̄] = rt[t̄].

In Definition 6.1, s̄ is called the dependant column combination, and t̄ is
called the referenced column combination. In this chapter, we focus on column
combinations with only one dependant and only one referenced, often represented
using attribute names, e.g., si ⊆ tj. This is because the format transformation
algorithm used to normalise format inconsistencies in attribute values was devised
with single values in mind. Supporting n-ary INDs is a topic for future work.

Furthermore, since it is more likely for two attributes si and tj from a data lake
to share some, rather than all, values, in this chapter we focus on partial inclusion
dependencies, defined with respect to an overlap coefficient ov(si, tj) ∈ [0, 1]
between the extent of the dependant si and the extent of the referenced tj. The
overlap coefficient is defined as follows:

ov(si, tj) = |[[si]] ∩ [[tj]]|
|[[si]]|

(6.1)

where |[[s]]| represents the cardinality of the extent of attribute s.

From Equation 6.1 it follows that, given an IND si ⊆ tj, with ov(si, tj) < 1,
∃ tj ⊆ si, with ov(tj, si) < 1. In other words, two attributes with overlapping
instance values but not in a full inclusion relationship can spawn two partial IND
candidates, each with an overlap coefficient given by Equation 6.1.

6.2.2 State–of–the–art

In practice, INDs are important for many tasks such as data integration [MHH+01],
[ZHO+10], schema design [LV00], query optimisation [Gry98], and integrity check-
ing [CTF88]. In this section we briefly mention some of the IND discovery
algorithms available in the literature, which we use as “black–boxes” on datasets

6.3. OVERVIEW AND CONTRIBUTIONS 169

preprocessed by the technique proposed in this chapter. As such, any improvement
in the effectiveness of IND discovery in this chapter originates from combining
existing IND discovery algorithms with the proposed preprocessing step, and not
from modifying or devising new algorithms.

Early IND discovery proposals (e.g., [KL03]), made use of SQL–statements to
check the validity of IND candidates generated based on instance value overlap.
Later approaches, such as SPIDER [BLN06], focused more on efficiency by us-
ing inverted indexes and sort–based merging to identify pairs of attributes with
overlapping extents. Again, aiming at efficiency, FAIDA [KPD+17] and SINDY
[KPN15] use hash–based approximate methods and map–reduce techniques, re-
spectively, to speed-up the identification of IND candidates. The latter of the two
discovers partial INDs as well.

Lastly, BINDER [PKQN15] construes the task of IND discovery as a divide–
and–conquer problem of efficiently identifying pairs of attributes with overlapping
instance values and discovers both unary and n–ary INDs.

Both partial and full INDs are important in identifying potential joining
opportunities between datasets from a data lake. Consequently, the IND discovery
algorithm we use this chapter is SINDY [KPN15], but our proposed preprocessing
step enables the identification of INDs between differently formatted attributes
can be used in conjunction with most IND discovery proposals.

On the task of performing IND discovery on differently formatted datasets,
Auto–Join [ZHC17], which we covered in Section Chapter 5, aims at discov-
ering transformation–accompanied join opportunities. Their hypothesis is that
similarity–join operations can be converted to equi–join operations through the use
of automatically synthesised transformations. To this end, they propose a space
of transformation operators, less expressive than our transformation language
proposed in Chapter 4, that is searched for the suitable combination, i.e., trans-
formation, that would equalise the values of given join attributes. A pre–search
for suitable pairs of joinable attributes performs an all–against–all q–gram–based
comparison that can be costly when many input datasets are used.

6.3 Overview and contributions

In this section we provide an overview of our method which we call T–IND, for
transformation–informed inclusion dependency discovery. As the name suggests,

170 CHAPTER 6. ENABLING DATA PROFILING IN DATA LAKES

the intuition is that, given a collection of datasets with heterogeneous formatting
of similar values, one can use format transformations to normalise the value rep-
resentation of attributes before searching for INDs. Therefore, we characterise
our main contribution in this chapter as follows: a preprocessing step to the iden-
tification of INDs that combines data–relatedness discovery and automatic format
transformations to mitigate the impact of heterogeneous format representations
on inclusion dependency discovery.

Since the envisaged usage of INDs in the context of data wrangling is for
creating join opportunities that can eventually contribute to merging the wrangled
datasets into an unified view, we are mostly interested in INDs between join
attributes.

Figure 6.1 illustrates a three–step approach to T–IND discovery, where steps
(1) and (2) represent the contribution claimed in this chapter to a state–of–
the–art IND discovery, e.g., an algorithm such as SINDY, in step (3). Overall,
the intuition is to enrich the search space of attributes, among which INDs are
searched, with transformed variants of (some) of the original attributes.

With respect to each component from Figure 6.1, firstly, we assume that T–
IND discovery is not performed on the entire data lake, but on a subset of datasets
for which we already know that potential INDs exist, i.e., there is evidence of
pairs of attributes with overlapping values. This assumption is necessary because
both IND discovery and examples generation tasks incur a performance cost when
the scale of the input matches the potential scale of a data lake. The cost of
IND discovery is high, as most IND discovery algorithms perform a pair–wise
processing of attributes given at input. Similarly, the potential cost of example
generation results from the need to align similar instance values given a pair of
attributes, as discussed in Chapter 5.

The subset of datasets on which to apply T–IND discovery can result from
dataset discovery, as discussed in Chapter 3, i.e., viewing IND discovery as a data
preparation task, is natural to firstly identify the relevant inputs from the data
lake, through dataset discovery, and then apply preparation processes on those
inputs alone.

With the subset of relevant datasets to profile in hand, resulted from a dataset
discovery task, we rely on already created LSH indexes to efficiently identify pairs
of attributes for which there is evidence of overlapping values (step (1) in Figure
6.1). Each such (dependant, referenced) pair is passed to an example generation

6.4. TRANSFORMATION–INFORMED IND DISCOVERY 171

Figure 6.1: Simplified illustration of the constituent steps of a T–IND discovery
process.

and transformation process (as described in Chapter 5) that may reformat the
dependant attribute (step (2) in Figure 6.1).

Under the requirements of example generation, pairs of source and target
attributes have to be identified beforehand. In such a pair, the source represents
the attribute to be transformed, and the target represents the attribute that
exemplifies the expected result of the transformation. Recall that, in Chapter
5, we relied on schema matching techniques for identifying such pairs. While
taking the same approach here would be a viable option, in this chapter we rely
on the LSH–based indexes, created as part of data discovery. Specifically, we
use the index that groups attributes based on their instance values, IV). The
advantages of using an LSH index are twofold: (i) as per Theorem 1 from Chapter
3, LSH–based similarity discovery is more efficient than the all–against–all string
comparison often employed by schema matching algorithms such as COMA++
[DR02], and (ii) assuming dataset discovery is one of the earliest tasks in data
wrangling, and performed once on the entire data lake, LSH–based indexes can
be reused when T–IND discovery task is to be performed.

6.4 Transformation–informed IND discovery

In this section we discuss each step in Figure 6.1 and brought together in Algorithm
6.1. The process assumes a given collection of already discovered related datasets,
call it D, an already created value–based LSH index, call it IV, that groups
attributes of datasets in D that share instance values, and a state–of–the–art
IND discovery algorithm that takes as input a collection of attributes (together

172 CHAPTER 6. ENABLING DATA PROFILING IN DATA LAKES

with their sets of distinct instance values) and returns a collection of INDs. Then,
Algorithm 6.1 can be applied to discover the collection of transformation–informed
inclusion dependencies between attributes of datasets from D.

Intuitively, T–IND discovery considers each attribute ai of each datasets from
D (line 3). For each such attribute, an index lookup is performed (line 4) to
identify the neighbouring attributes of ai for which, as per the design principles
of IV, there is evidence that their extents share values with the extent of ai. For
each such neighbouring attribute nai that is also part of some dataset from D
(line 5), a set of example pairs is generated using the technique introduced in
Section 5.5 of Chapter 5 (line 6). The resulting example instances are used to
synthesise a transformation program τ using SynthEdit (line 7), which is then
used to transform each instance value of ai (line 8). The result is a new attribute
aτi that is a normalised version of ai, and that is added to an attribute pool (line
9), together with the neighbour nai that acted as the target in the synthesis
process. Finally, the resulting attribute pool, which now contains attributes with
mostly normalised extents, is searched for partial INDs using an off–the–shelf
IND discovery algorithm (line 13), e.g., SINDY.

With respect to Algorithm 6.1 we observe the following:

• The LSH lookup process in line 4 considers only attributes with non–
numerical values, since IV does not contain numerical attributes (as dis-
cussed in Section 3.4 of Chapter 3). In order to include numerical attributes
as well, a matching task would have to be performed before data profiling,
and the results of the former used in preprocessing the input for the latter.
In this chapter, we only consider non–numerical attributes.

• The transformation step in line 8 modifies each instance value of ai whose
format representations are covered by the previously generated examples.
Otherwise, the values are left unchanged.

• T–IND discovery relies on the off–the–shelf IND discovery algorithm used
at line 13, the compute the overlap coefficient between the attributes con-
tained in the pool, and to compare the coefficient against a pre–configured
threshold.

• If ai is not amenable to normalisation, then aτi will be equivalent to ai. It
follows that the INDs that do not require a format transformation and that

6.4. TRANSFORMATION–INFORMED IND DISCOVERY 173

Algorithm 6.1 T–IND discovery

Input: All attributes of all datasets from D, IV
Output: A collection of T–INDs

1: function TIND_discovery
2: tinds← {}; attribute_pool← {}
3: for all ai ∈ D do
4: for all nai ∈ IV.lookup(ai) do
5: if nai ∈ D then
6: eg ← examples_generation([[ai]], [[nai]])
7: τ ← SynthEdit(eg)
8: aτi ← τ(ai)
9: attribute_pool← attribute_pool ∪ {aτi , nai}
10: end if
11: end for
12: end for
13: tinds← IND_discovery(attribute_pool)
14: return tinds
15: end function

would have been discovered without normalising the values beforehand (by
applying SINDY directly on the set of attributes from D) are subsumed
by the final collection of T–INDs. This is why, in line 9, the original
ai is not added to the attribute pool. Furthermore, if only few of the
dependant values require a format transformation to become equivalent to
the corresponding referenced values, while others are already equivalent,
the resulting T–IND would be characterised by a greater overlap coefficient
than the IND discovered without pre–normalising the values.

• Assuming there are attributes in the datasets ofD whose values are amenable
to transformations and, therefore, can be normalised to some format repre-
sentation of another attribute, new INDs, undiscoverable in the absence of
a normalisation process, would potentially be part of the final collection of
T–INDs.

The last two observations above suggest the emphasis of our design on the two
desiderata mentioned in Section 6.1: to improve the overlap of some of the partial
INDs discoverable without pre–format–transformation as well, and to discover
new partial INDs that would not be identified without normalising the values

174 CHAPTER 6. ENABLING DATA PROFILING IN DATA LAKES

beforehand. We now describe the evaluation carried out to ascertain the extent
to which these goals have been met.

6.5 T–IND discovery evaluation

The goal of this chapter is to enable the discovery of inclusion dependencies on
input attributes that exhibit format representation inconsistencies. To this end,
we propose preprocessing the input to a traditional IND discovery algorithm, as
discussed in Section 6.4.

To evaluate our contributions, we use data from Web–based data lakes to com-
pare the results of applying a state–of–the–art IND discovery algorithm (SINDY)
to datasets from multiple domains, and the results of applying a T–IND discovery
process, i.e., the same IND discovery algorithm is preceded by data discovery
and format transformation, on the same datasets. Specifically, we compare the
number of INDs discovered using SINDY on the set of original attributes from
our input datasets and the number of INDs discovered using SINDY on a set
of attributes preprocessed as in Algorithm 6.1. We also analyse and report on
the INDs discoverable only when using T–IND discovery, the INDs discoverable
when using any of the two approaches but characterised by a greater overlap
coefficient when using T–IND discovery, and on the INDs that are missed by
T–IND discovery but discoverable when using SINDY.

Finally, we briefly discuss the viability of the obtained INDs with respect
to performing join operations and we touch on the cost of performing T–IND
discovery in terms of the time required to run the pre–format–transformation
steps.

6.5.1 Data repositories used in evaluation

The motivation for T–IND discovery is given by the need to identify INDs even
when the input datasets exhibit format representation heterogeneity among their
attributes. To asses the proposed method, we require input datasets that contain
information from similar areas, and whose values are formatted differently (at least
on some of the attributes). Consequently, we explored government–specific open
data lakes, e.g., data.gov.uk, public.enigma.com, opendata.cityofnewyork.
us, data.parliament.uk, etc., and extracted 95 datasets from 10 different do-
mains, with attributes characterised by various levels of format heterogeneity.

data.gov.uk
public.enigma.com
opendata.cityofnewyork.us
opendata.cityofnewyork.us
data.parliament.uk

6.5. T–IND DISCOVERY EVALUATION 175

Table 6.1 describes the domain, number of datasets, average cardinality and arity,
and total number of attributes of the data used in the evaluation, with the last
three columns referring to non–numerical attributes.

In Table 6.1, datasets from the same domain include attributes with similar
information formatted differently that hinder the discovery of INDs. Table 6.2
illustrates some examples of such instance value pairs. Note that, in order for
IND discovery algorithms to discover an IND between attributes with such values,
each dependant value has to be transformed to its corresponding referenced value
(or vice–versa). This is precisely what the preprocessing step proposed in this
chapter aims to do.

Note also that Table 6.2 illustrates transformation needs specific to partial
join attributes. While it may not be always the case that attributes paired by the
LSH–index do represent viable join opportunities, in the experiments from this
section, the vast majority of reported INDs refer to pairs of joinable attributes.

6.5.2 Experimental setup and reported measures

In performing the experiments we use a publicly–available implementation of
SINDY (https://github.com/sekruse/sindy) for inclusion dependency discov-
ery. For LSH–indexing we used a value–based index created using the techniques
described in Section 3.4 of Chapter 3. For example, generation and transforma-
tion synthesis we used the weighted scheme described in Section 5.5 of Chapter
5 and the SynthEdit algorithm from Chapter 4, respectively. We used 0.7 for
both the overlap threshold value in SINDY, i.e., two attributes have to have an
overlap coefficient of at least 0.7 in order to be considered an IND candidate, and
the similarity threshold in LSH, i.e., two attributes are grouped under the same
bucket in the LSH index if their Jaccard similarity is estimated to be at least 0.7.

We run SINDY and Algorithm 6.1, separately, on each domain mentioned in
Table 6.1, and we analyse and report the count of the following types of INDs:

• The INDs that are discovered by SINDY and the INDs that are discovered
by Algorithm 6.1.

• The INDs that are discovered by Algorithm 6.1 alone.

• The INDs that are discovered by SINDY with no preprocessing of the input
attributes.

https://github.com/sekruse/sindy

176 CHAPTER 6. ENABLING DATA PROFILING IN DATA LAKES

Domain # datasets Avg. cardinality Avg. arity Total arity
Texas governors 5 37 4 15
California gov. 4 42 5 19
US presidents 12 53 5 63
NY gov. 10 56 4 32
Hospital finance 13 443 13 189
UK parliament 7 671 13 91
UK local elections 9 1,241 11 112
NY businesses 10 2,645 13 128
Ocean companies 15 6,588 11 181
Building permits 10 6,989 29 233

Table 6.1: Data sources used in evaluation

Domain Dependant Referenced
Texas gov. Sam Houston Gov. Sam Houston

California gov. John McDougall;
1818 March 30 1866; (Age 48) McDougall, John

US presidents John Adams (1735-1826) J. Adams
NY governors Gov. Hugh Leo Carey Hugh L. Carey
Hospital finance 726 Fourth Street, Marysville Fourth Street
UK parliament Grant Shapps shappsg@parliament.uk
UK local elections Edmonton Gill GILL

NY businesses 6717 4TH AVENUE,
BROOKLIN 4th Av.

Ocean companies Sea Star LTD. Sea Star
Building permits EUGENE BROLLYN Brollyn, Eugene

Table 6.2: Format transformation examples

• The INDs that are discovered by SINDY and Algorithm 6.1 but are charac-
terised by a greater overlap coefficient in the latter.

Note that we do not analyse or report INDs that appear in both cases but
are characterised by a smaller overlap coefficient in the result of Algorithm 6.1
because we have not encountered such INDs. For this to happen it would require
the transformation to modify some source instance values that were previously
equivalent in meaning and format representation to some target instance values.

6.5.3 Evaluation results

Experiment 6.1. How many INDs and how many T–INDs are discov-
ered?

6.5. T–IND DISCOVERY EVALUATION 177

Domain INDs T–INDs New INDs Improved INDs Lost INDs
Texas gov. 4 4 1 0 1
California gov. 6 6 0 1 0
US presidents 108 154 46 8 0
NY governors 38 46 22 2 14
Hospital finance 1,182 1,228 46 113 0
UK parliament 205 189 12 6 28
UK local elections 38 30 2 1 10
NY businesses 23 24 4 2 3
Ocean companies 308 388 123 20 43
Building permits 235 330 116 21 21

Table 6.3: Results of Experiment 6.1

The purpose of this experiment is to show the benefit, if any, of applying
Algorithm 6.1 over the standalone use of SINDY, i.e., the benefit of performing
LSH index–based candidate selection and format–transformation before searching
for INDs.

Table 6.3 reports the number of INDs discovered by SINDY (the INDs column),
the number of INDs discovered when applying T–IND discovery (the T–INDs
column), the number of INDs resulting only when using T–IND discovery, i.e.,
missed by SINDY, (the New INDs column), the number of INDs with a greater
overlap coefficient that result from T–IND discovery (the Improved INDs column),
and the number of INDs discovered only when using SINDY, i.e., missed by T–IND
discovery, (the Lost INDs column).

In most of the cases, a close analysis reveals that the generated INDs represent
viable join opportunities, e.g., both the dependent and the referenced denote the
same entities and uniquely identify the records they appear on: governor names,
business names, addresses, etc. For instance, some datasets from California
governors domain identify their records best on a column, Governor, that contains
the governor name, his date of birth, and his age, e.g., Gray Davis; December 26
1942 (age 73), while in other datasets the Governor attribute simply contains the
person’s name, e.g., Davis, Gray. A transformation that extracts the governor
name from the first example can enable the discovery of an IND between the
transformed first attribute and the second attribute. Similarly, some datasets
from the UK parliament domain, identify members of parliament by their names,
e.g., Gavin Strang, while other datasets include an attribute with the email address,
in addition to the name attribute, e.g., strangg@parliament.uk. Consequently, in

178 CHAPTER 6. ENABLING DATA PROFILING IN DATA LAKES

addition to an IND between name attributes, a transformation that derives the
email address from the name can enable the discovery of an IND between email
address attributes.

Of particular interest is the Hospital finance domain where there are more
than 1, 000 INDs discovered. Many such INDs (more than 50%) represent de-
pendencies between attributes denoting calendar dates, e.g., (“10 March 2008”,
“The 10 of March, 2008”). While the transformation synthesised for such cases
seems to correctly equalise the value representation between the dependant and
the referenced attributes, such a pair is, arguably, less viable to be used as a join
path than the pair of attributes denoting hospital addresses or hospital adminis-
trator names of the same domain.

T–IND discovery proves able to identify INDs that are otherwise missed by
SINDY, sometimes identifying as much as 50% more INDs, e.g., Building permits
and NY governors domains. This increase is given by the existence of attributes
with similar meanings but different representations between the datasets of the
respective domains. For example, in some cases New York governor names are
formatted differently, e.g., George Clinton (1777 - 1795) and Clinton, George.
Similarly, some building addresses in the Building permits domain are denoted
using a single attribute, e.g., 733 Front Street, while others are expressed using
multiple attributes, e.g., the house number 733, and the street name Front St. A
transformation that extracts different address components from an address string
can inform, in this case, two INDs that can only be discovered through T–IND
discovery.

Conversely, Algorithm 6.1 can result in the loss of as much as 36% of the
INDs discovered by SINDY, e.g., NY governors domain. This happens because,
while SINDY computes the exact overlap for each combination of two attributes
given at input, T–IND discovery relies on LSH partitioning and considers only
the attribute pairs whose members are part of the same bucket. Furthermore,
LSH (with MinHash) is known ([SL15], [ZHC17]) to be less effective when the
size distribution of the input sets is skewed or when the sizes are very small. A
close verification of the INDs missed by Algorithm 6.1 showed that the component
attributes contained only a few distinct values, e.g., the attributes denoting a
political party in UK elections, NY governors, or Texas governors datasets contain
between 2 and 4 distinct values, e.g., Republican, Democrat, Conservative, Labour.
Similarly, the attribute denoting the city name in NY businesses contains only

6.5. T–IND DISCOVERY EVALUATION 179

one value: New York. A possible approach to mitigate such behaviour is to rely
on LSH indexing for identifying overlapping but distinctly formatted attributes,
and on all–against–all overlap computation for attributes with overlapping and
equivalently represented values.

Finally, in some cases, Algorithm 6.1 discovers stronger evidence of overlap
between attribute values, e.g., up to 10% of the INDs discovered by SINDY have
been identified by Algorithm 6.1 as having a greater overlap coefficient, e.g., Hos-
pital finances domain. This happens because, through format transformation,
more values of the dependant attribute become equal to values of the referenced
attribute. A close analysis of these cases shows that the average overlap improve-
ment per domain is often less than 10%. Most of the time, the dependant values
that become equal to some referenced value through transformation, contain extra
characters/punctuation signs that are not present in the latter value. For example,
a dependant attribute denoting the type of organisation a hospital represents in
the Hospital finances domain contains values such as Non Profit Corp . The cor-
responding referenced attribute contains the same type of values but few of them
include a dot at the end, e.g, Non Profit Corp. . Some of these cases involving
extra/missing characters are solved through transformations and, therefore, the
overlap coefficient of the resulting IND increases.

Experiment 6.2. What is the cost of performing the preprocessing
steps on the input attributes ?

The purpose of this experiment is to evaluate the cost incurred by SINDY and
T–IND discovery in terms of the time required to discover the INDs.

Table 6.4 reports the time, in seconds, spent by SINDY and by Algorithm 6.1
searching for INDs, and the percentage of the time, relative to the latter, that
corresponds to generating examples and transforming the values. We focus on
example generation and transformation since this is the most costly task when
the size and number of input attributes increases.

When there are few input attributes and few INDs to be discovered (e.g., less
than 40), both SINDY and T–IND discovery take less than 20 seconds to run (e.g.,
NY businesses and UK elections domains). In contrast, more input attributes
combined with a high cardinality lead to a dramatic increase in the time required
by T–IND discovery to run, while the time required by SINDY remains at no
more than 5 seconds, e.g., Building permits domain. Whenever T–IND discovery
takes more than a few seconds to run, e.g., domains such as US presidents or

180 CHAPTER 6. ENABLING DATA PROFILING IN DATA LAKES

Domain SINDY(s) Alg. 6.1(s) Transformation time(%)
Texas gov. 1.46 3.24 10.01%
California gov. 1.82 2.91 6.2%
US presidents 1.35 121.28 98.36%
NY governors 1.93 298.39 98.93%
Hospital finance 2.38 172.34 97.15%
UK parliament 2.07 601.45 99.38%
UK local elections 2.65 6.48 34.22%
NY businesses 3.02 10.54 45.27%
Ocean companies 3.76 1,187.84 99.4%
Building permits 5.41 4,035.96 99.75%

Table 6.4: Results of Experiment 6.2

Ocean companies, more than 98% of the running time is spent generating examples
and transforming values, while the rest is split between LSH–index lookup and
running SINDY.

A close analysis of the above behaviour shows that, as expected, given the
evaluation results from Chapter 5, examples generation becomes expensive when
the input attributes contain many values with a high degree of source format
inconsistencies, i.e., when there are many formats used to represent the source
values. For example, domains such as Ocean companies or Building permits, each
with an average cardinality of nearly 7, 000 records, are characterised by many
source formats. The consequence is that, in such cases, examples generation can
require many iterations, each one performing program synthesis and validation
against some of the values (see Section 5.5 of Chapter 5 for details). For instance,
in the case of Building permits, T–IND discovery took more than one hour to
discover 50% more INDs than SINDY, with examples generation involving, on
average, more than 100 iterations per pair of attributes with overlapping instance
values and more than 500 such pairs. Recall, from Chapter 5, that each iteration
uses a reduced set of example instances to synthesise a transformation program and
to transform all dependant values. At each subsequent iteration, the previous set
of examples is incremented and the synthesis/transformation tasks are performed
again. The loop continues until there is evidence of successful transformation of
dependant values or of the impossibility to synthesise a transformation.

In summary, the experiments of this section show that selecting attribute pairs
for IND discovery and pre–normalising those attributes can be effective, with as
much as 50% more INDs discovered than the simple use of an IND discovery

6.6. SUMMARY AND CONCLUSIONS 181

algorithm, many of which represent viable join opportunities. The flip side is that
LSH–based selection and pre–normalisation of attributes come at an efficiency
cost that can be too high if there are many values to transform with a high degree
of format heterogeneity.

This drawback can, potentially, be alleviated through horizontal scaling of the
example generation process. For instance, the processes of generating examples
and transformation, given a pair of attributes, is independent from the generation
of examples and transformation of another pair of attributes. This means that
the inner loop of Algorithm 6.1 can be easily parallelized.

6.6 Summary and conclusions

This chapter has proposed an approach in which techniques specific to data
relatedness discovery are combined with automatic format transformation of
instance values to enable the discovery of partial inclusion dependencies, even
when the values from the input datasets exhibit formatting inconsistencies. We
materialised this technique in a three–step process (Figure 6.1), where the first
two steps constitute the claimed contributions: LSH–based attribute selection
and automatic format transformation, respectively, while the third step is the
application of an existing state–of–the–art IND discovery algorithm. The resulting
technique, formalised in Algorithm 6.1, exhibits the following characteristics:

• It considers the input as a collection of attributes that is updated in the first
two steps with normalised versions of dependant attributes, therefore making
possible the discovery of INDs that would otherwise be missed due to format
inconsistencies. This is in line with the first desideratum discussed in Section
6.1.

• Through the format normalisation process, the number of shared values (and
the overlap coefficient) between a dependant and a referenced attribute can
increase, thereby, addressing the second desideratum discussed in Section 6.1.

The impact of the above characteristics has been assessed using open govern-
ment data from multiple domains. The results showed that, compared with a
standalone use of an IND discovery algorithm, our technique is promising in iden-
tifying more INDs, some of which are characterised by higher degrees of overlap

182 CHAPTER 6. ENABLING DATA PROFILING IN DATA LAKES

between dependant and referenced attributes. In contrast, our proposal in this
chapter can lead to missing INDs, otherwise discoverable using state–of–the–art
algorithms. Often, such INDs are between attributes with few distinct values and
skewed cardinalities that suffer from known weaknesses in LSH and MinHash.

For attributes with many instance values and many format representations,
effectiveness comes at a performance cost represented by the time required to
normalise the values before searching for INDs.

Overall, in this chapter, we showed that data relatedness discovery and au-
tomatic format transformation are two data preparation tasks that can can be
effectively combined with the goal of improving the results of other individual
wrangling steps, such as data profiling. Since the proposed preprocessing step
relies on transformation synthesis algorithms, the improvements in IND discovery
shown in this chapter are possible if the conditions for performing format trans-
formation synthesis, discussed in Chapter 4, are met. When this is the case, the
proposal of this chapter leads to the fulfilment of objective O4 from Chapter 1.

Chapter 7

Conclusions and future work

Data preparation has been called “janitorial” work many times (e.g., [NYt],
[Datc]), mainly due to its repetitive, often mundane, handcrafted tasks that
require active user involvement for long periods. At the same time, it has been
widely acknowledged that preparing the data for analysis is an essential require-
ment for extracting value from that data. This thesis set out to investigate what
makes data preparation challenging and costly, and how data preparation can
become more cost–effective. In this chapter, we recall the stages of this investi-
gation and reflect on the significance of the contributions made. We also look at
future work that might advance the area of data wrangling and reflect on whether
or not data wrangling is worthwhile.

7.1 Thesis overview

We started with the conviction that data preparation is important, encouraged
by the large number of reports and research papers that stress its significance
and cite the famous claim that “data scientists spend up to 80% of their time
preparing the data for analysis and only 20% of their time analysing it”, e.g.,
[Datc, Data, Datb], [KHP+11, DFA+17, KKA+17]. Then, we chose to focus
on a scenario in which data analysis is to be performed on data flowing out of
a, potentially large, repository with datasets in various formats, from multiple
domains, i.e. a data lake. This type of environment and existing work on the
subject encouraged us to consider data wrangling as the embodiment of data
preparation in data lakes. Next, we set out to identify what makes data wrangling
costly in terms of time, effort, and user technical knowledge required to perform it

183

184 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

in data lakes. We pinned down two challenges that were insufficiently addressed
in the state–of–the–art:

• The scalability challenge: Wrangling data becomes more costly when
applied on an ever increasing data repository due to the need to run, often
different, wrangling processes on many datasets.

• The heterogeneity challenge: Wrangling data becomes more costly when
applied on data whose textual values are inconsistently formatted due to
the labour intensive, often manual, tasks involved in normalising the values.

A review of current trends in data wrangling revealed the opportunities for ad-
dressing the above challenges, thereby making data wrangling more cost–effective.
We identified the potential for automating two of the many data wrangling sub–
processes: the data discovery component, addressing the scalability challenge,
and the format transformation component, addressing the heterogeneity challenge.
Specifically, we argued that, by automating the discovery of datasets related to
a given target dataset, we can limit the application of, potentially costly, wran-
gling tasks to the relevant input. Similarly, by automating the process of format
normalisation, we relieve the user from having to manually identify, potentially
many, transformation needs, and from manually writing transformation rules for
each case.

Having pinned down the main opportunities that motivate us, we defined the
research aim of the thesis:

This thesis aims to reduce the cost of data preparation by developing
techniques that automate the identification of data relevant for a given
wrangling task and the operations necessary to clean and transform
the format representation of data values.

Given this aim, we described in detail techniques to perform data discovery
and format transformation automatically. In the next section (Section 7.2), we
briefly describe these techniques again, whilst revisiting the main contributions of
this thesis. We both discuss the significance of these contributions with respect to
the gaps in the state–of–the–art they aim to fill, and assess our success in filling
in those gaps. Finally, we discuss some unanswered questions in the area of data
wrangling and present a few ideas aimed at advancing the work of this thesis in
Section 7.4.

7.2. MAIN CONTRIBUTIONS AND THEIR SIGNIFICANCE 185

7.2 Main contributions and their significance

The major contributions were introduced in Chapter 1, in relation to the main
objectives that steered the research in this thesis. We now review those objectives
and contributions, together with their significance with respect to the advances
over the state–of–the–art they provide.

7.2.1 Data discovery contributions

On the topic of data discovery and the scalability problem, this thesis sought to
identify the types of evidence that enable the identification in a data lake of those
datasets that are most relevant for the given task, and to develop techniques that
use the evidence to perform cost–effective dataset discovery, i.e., O1 from Chapter
1.

Representative data wrangling systems such as Wrangler [KPHH11] or Data
Tamer [SBI+13], expect their input to be provided by the user and, therefore,
they do not address the scalability challenge directly. In other relevant works,
e.g., [DFA+17, NZPM18, FAK+18], the problem of data discovery is tackled
directly by means similar to our proposal from Chapter 3. However, important
characteristics, often exhibited in real–world data lakes, have been identified as
not being addressed by these proposals:

• Data lakes often contain data from various sources with different representa-
tions of similar concepts. Therefore, the discovery process ought to be lenient
with respect to the format representation of textual values. In Chapter 3, we
addressed this desideratum by contributing a method for finding related at-
tributes using both schema and instance–level fine–grained features, i.e., based
on tokens of instance values rather than full instance values. The evaluation
section of Chapter 3 showed that the use of such features is more effective
in identifying relatedness than relying on full values, especially in cases when
similar entities are inconsistently represented.

• Data stored in data lakes does not obey pre–determined rules/schemas and
it often lacks descriptive metadata. Therefore, relatedness evidence ought to
be extracted from the data values themselves and based on multiple types of
evidence that can be considered together in quantifying the level of related-
ness between two datasets. In Chapter 3, we addressed this desideratum by

186 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

contributing a framework for measuring relatedness that maps five types of
similarity evidence to a uniform distance space, thereby enabling an aggregated
view on the notion of relatedness between two datasets, to which each type of
evidence contributes. The evaluation section of Chapter 3 showed that such
combination of similarity signals identifies the closely related datasets to a given
target more effectively than each type of the evidence independently can do.

• Given a target dataset, the discovery of relevant datasets with which to pop-
ulate it requires example instance values that can prove insufficient to relate
all potentially useful candidates from a data lake. Therefore, other means of
relating datasets, that can overcome a weak relatedness signal from the used
evidence, ought to be considered. In Chapter 3, we addressed this desideratum
by contributing a method for relating datasets based on postulated join paths
between closely related datasets and less related datasets to a given target. The
evaluation section showed that join paths allow for the identification of addi-
tional datasets, weakly related to the target, but, nevertheless, with attributes
relevant for increasing the target coverage.

The extensive experiments of Chapter 3 compared our proposal for data dis-
covery with state–of–the–art alternatives represented by TUS [NZPM18] and
Aurum [FAK+18]. The results showed that D3L allows for more effective dataset
discovery due to its distance–based framework, which enables each type of evi-
dence used to contribute to measuring the relatedness between two datasets, and
to its use of schema and instance–level fine–grained features, which are more
lenient in identifying relatedness relationships, especially when similar entities
are inconsistently represented. Furthermore, our proposal proved capable of more
precise covering of the target dataset due to its use of join paths based on LSH
evidence and subject–attributes.

Treating the datasets discovery as an LSH index lookup task and leveraging
LSH properties to efficiently compute relatedness measurements, showed that
D3L is also more efficient than TUS in both, index construction and discovery
tasks, and comparatively efficient with Aurum.

Overall, the contributions envisaged in Chapter 1 as necessary for automatic
dataset discovery in data lakes have been provided, as reviewed above. Thus, we
consider objective O1 of this thesis attained.

7.2. MAIN CONTRIBUTIONS AND THEIR SIGNIFICANCE 187

7.2.2 Format transformation contributions

On the topic of format transformation and the heterogeneity challenge, this the-
sis set out to relieve the user from having to manually identify the need for
transformation and to create transformation scripts designed to normalise the
textual representation of similar entities. This has been approached by develop-
ing algorithms that automatically identify similar entities with different textual
representations and use them to learn a sequence of string operations that edit
an input string into its corresponding output, thereby addressing O2 and O3 from
Chapter 1.

Representative data wrangling systems either do not tackle the problem of
unnormalised textual representation of values (e.g., Tamer [SBI+13]), or rely
on the user to guide and decide the normalisation process (e.g., Data Civilizer
[DFA+17]). Other approaches assist the user in developing transformation scripts,
but still assume advanced technical knowledge (e.g., Wrangler [KPHH11]).

Fully automated approaches to format transformation have been proposed in
the area of spreadsheet transformation (e.g., [Gul11], [Sin16]). Although these
proposals fulfil many of the desiderata envisaged in Chapter 4, they lack two
important properties that become essential when applying such algorithms on
data in a data lake:

• Fast convergence: datasets of large sizes may exhibit multiple transformation
requirements, each of which has to be covered by at least one input–output
example. This, in turn, may result in a large number of examples that generate
a time–cost problem for state–of–the–art synthesis algorithms. In Chapter 4,
we address the requirement for fast convergence, while preserving the level of
effectiveness achieved by the closest competitor, with (i) an expression language
that is expressive enough to represent a variety of string manipulation opera-
tions, while being restrictive enough to allow efficient synthesis given a set of
input–output examples; and (ii) a synthesis algorithm that, given a collection of
input–output string pairs, efficiently converges to the simplest transformation
consistent with the given examples.

• Automatic provision of input–output examples: relying on the user to provide
more than a few valid and representative input–output examples required to
normalise a dataset is unrealistic, especially when there are multiple such
datasets to process and the datasets themselves could be large. In Chapter

188 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

5, we address this requirement by devising two reliable techniques for the
automatic provision of input–output examples for synthesis algorithms that
relieve the user from having to manually input such specifications.

The evaluation section of Chapter 4 showed that our proposed synthesis al-
gorithm, SynthEdit, performed substantially more efficiently than the closest
state–of–the–art alternative, FlashFill [Gul11], while achieving better recall and
comparable precision. The performance improvement stems mostly from the un-
derlying reliance of SynthEdit on automata structures that allow for an efficient
coverage of the, potentially large, space of possible transformations consistent
with the given examples.

On the topic of employing SynthEdit in an automatic setting to normalise
datasets from a data lake, the evaluation section of Chapter 5 showed that input
specifications, in the form of input–output examples, can be reliably and auto-
matically generated by using either postulated functional dependencies or similar
matching of instance values. Furthermore, a potentially high cost of synthesis was
shown to be avoidable by automatically pruning redundant examples instances.

Overall, the contributions envisaged in Chapter 1 as necessary for automatic
format normalisation in data lakes have been provided, as reviewed above. Thus,
we consider objectives O2 and O3 of this thesis attained.

7.2.3 Data profiling contributions

Normalised instance values can benefit not only the data analysis process by
providing a clean end–product of data wrangling, but other individual wrangling
tasks as well. For example, given that data profiling algorithms and, specifi-
cally, inclusion dependency (IND) discovery algorithms (e.g., BINDER [PKQN15],
FAIDA [KPD+17], SINDY [KPN15]) assume normalised formatting in their input
attributes, datasets from a data lake with potentially inconsistent value represen-
tations are not a suitable use case for such algorithms. In Chapter 6, we set out
to attain objective O4 from Chapter 1, and address the above mentioned problem
by proposing a preprocessing of the input to profiling algorithms. Specifically,
we employ data discovery–specific index structures to efficiently identify pairs of
attributes with overlapping values, and format transformations to automatically
normalise the values of such candidates, so that specialised profiling algorithms
can find INDs.

7.3. IMPACT OF CONTRIBUTIONS 189

Experiments conducted on real–world datasets showed that, compared with
a standalone use of an IND discovery algorithm, our technique is promising for
identifying more INDs, some of which are also characterised by higher degrees
of overlap between dependant and referenced attributes. For attributes with
many instance values and many format representations, the effectiveness comes
at the expense of efficiency due to the extra step of normalising the values before
searching for INDs.

Overall, in Chapter 6 we show that data preselection and format normalisation
can be beneficial for other wrangling tasks, such as data profiling and, thus, we
consider O4 of this thesis attained.

7.3 Impact of contributions

The previous section argued that the empirical evaluations performed in Chapters
3–6 shows that this thesis’s contributions fulfil the objectives set in Chapter 1, and
successfully cover the limitations identified in the state–of–the–art. In this section,
we observe that the reported contributions are being transferred to a commercial
product, viz., Data Preparer (https://thedatavaluefactory.com/).

Data Preparer is an automated data preparation tool and a materialisation
of the vision of cost–effective data wrangling proposed in the VADA project
[KKA+17, KAB+19]. The tool brings together several state–of–the–art techniques
focused on specific wrangling tasks, e.g., data discovery, data profiling, schema
matching and mapping, format transformations, etc. The implementations of
D3L from Chapter 3, and SynthEdit from Chapters 4, together with example
generation techniques from Chapter 5, are the bases upon which the data discovery
and format transformations components of Data Preparer have been built.

The incorporation of the ideas of this thesis into a commercial solution that
is driven by wrangling cost reduction, together with the fulfilment of specific
desiderata left unaddressed by current state–of–the–art, demonstrate the potential
for practical impact of our contributions.

7.4 Unanswered questions and future work

Research on data wrangling is still in its early years, especially in the context of
data lakes. In this thesis, we have contributed to the automation of only two of the

https://thedatavaluefactory.com/

190 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

tasks involved. This suggests that we are far from exhausting the space of needs
in data wrangling. In fact, there are many research questions left unanswered
even on the wrangling tasks of interest in this thesis. In this section, we visit some
of these questions and briefly propose some ideas on how to tackle the problems
they raise that may act as starting points for future work on data discovery, on
format transformations, and on data wrangling as a whole.

Can the evidence for discovery be extended with domain knowledge?
One approach to improving data discovery is to incorporate domain knowledge

into the relatedness evidence used in drawing the relationships between datasets.
Work on this subject has been conducted in [LSC10, VHM+11, PAKS16]. While
the ideas stemming from this body of work are relevant for our data discovery
scenario in this thesis, they involve the use of external knowledge–bases and aim
for a general degree of annotation that often performs poorly, as seen in Chapter 3
where TUS [NZPM18], which considers YAGO as a source of similarity evidence,
proved less precise and less efficient than D3L. One alternative would be to
narrow down the scope of the annotations to domain–specific knowledge–bases
that would constitute a sixth type of evidence in determining the relatedness
between datasets.

Can the relatedness of numerical attributes be grounded on an LSH
indexing scheme?

In Chapter 3, the relatedness of numerical attributes is treated as a special
case that is not construed as common LSH bucket membership. This is because
hashing schemes with LSH properties that can quantify the resemblance of numer-
ical distributions are still on–going research topics. A few proposals have shown
promising results under certain conditions, e.g., [GD04] for LSH–based earth
mover’s distance estimation, and [MFH+17] for LSH–based Jensen–Shannon di-
vergence estimation.

From a practical point of view, an implementation and integration of such LSH
schemes into D3L would represent an interesting next step. Given the restrictions
the current distribution similarity estimation proposals convey, e.g., samples of
equal sizes, their applicability could be limited. Therefore, from a research point of
view, further investigation on fast estimation of numerical distribution similarity
measures that avoids all–against–all comparisons would be welcomed.

Can other data wrangling tasks benefit from the discovery methodol-
ogy?

7.4. UNANSWERED QUESTIONS AND FUTURE WORK 191

The focus of Chapter 3 has been data discovery. To that extent, each dataset
of the data lake has been vertically partitioned and construed as a collection
of attributes (with associated instance values). However, the nearest neighbour
search techniques employed in performing attribute–level relatedness discovery
construe their input, i.e., the attributes, as merely sets of items. This opens the
opportunity for other wrangling tasks, whose inputs can be processed as sets of
items, to be suitable use cases for the same methodology. One such example is
the entity resolution problem [EIV07] (i.e., duplicate record detection), where,
from individual records of a dataset, a set can be derived and indexed under
specific LSH structures. Although this has been tried before (e.g., [Chr12]) an
additional challenge is to adapt the multi–evidence aggregation scheme used for
dataset discovery to the problem of duplicate detection.

Can transformations be applied beyond inconsistency of formats?
On the topic of transformations, in this thesis we have considered the nor-

malisation of textual representation on strings. But the heterogeneity of data
consists of more than just formatting, e.g., schema level heterogeneity, lexical
heterogeneity, etc.

Recent work on program synthesis has addressed the problem of spreadsheet
table transformations (e.g., [HG11]) that allows for automatic structural changes
to a table. The proposed algorithm is devised, again, with spreadsheets in mind
and suffers from the same efficiency issues as FlashFill. There is an opportunity
here to apply the methodology used with SynthEdit for performing table trans-
formations, e.g., split column, concatenate columns, etc., efficiently. The initial
challenges would be to devise a language expressive enough to describe table trans-
formations and simple enough to be amenable to synthesis, to determine what
constitutes an input–output example, and how to map different such examples to
automata states and transitions (recall from Chapter 4 that automata structures
are at the core of SynthEdit methodology).

Can data wrangling be applied on semi/un–structured data?
Industry reports (e.g., [Datc]) suggest that 30% of data analysis tasks involve

semi–structured and unstructured data, e.g., log files, tweets, user reviews, etc.
Often, data lakes can contain a variety of data types ranging from structured and
tabular data to unstructured datasets. Since, most of the time, analytical tools
expect tabular inputs, wrangling semi/un–structured data from a data lake would
also involve a new task of extracting and mapping the most relevant pieces of

192 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

information from such a dataset to a tabular format. Moreover, these types of data
come with similar challenges to the ones considered in this thesis. For example,
relatedness relationships between unstructured data sets need to be discovered as
well. The challenge here is that unstructured data does not come with an intrinsic
schema that can be leveraged to derive useful similarity signals. Other techniques
would have to be identified/devised in order to extract useful evidence from such
data, e.g., natural language processing–based entity recognition, e.g., [RCME11].

Can the current proposals be adapted for user–guided data wrangling?
In this thesis, automation has been the basis for cost–reduction in data discov-

ery and format normalisation. However, automatic solutions are unlikely to be
able to match the reach or quality of cleaning produced by data scientists. One
potential direction for future research would be the incorporation of user feedback
in the process of dataset discovery and format transformation. The aim in a
user–guided wrangling process would be to help a human interpret the data in
the lake, not to serve data to an automated wrangling pipeline. User supervision
could come, for example, in the form of corrections made to the end–product that
triggers a re–run of specific wrangling tasks, and does not involve advanced tech-
nical knowledge. This is, essentially, the vision of cost–effective data wrangling
envisioned by the VADA system [KKA+17, KAB+19], and adopted in this thesis.
Therefore, incorporating user feedback in the solutions presented in this thesis
represent a promising direction for future work.

7.5 Final reflections

The concomitant achievements from the last decades in data management and
machine learning have transformed the task of data analysis into an enabler
of reliable data–driven business decisions. Initially, the advancement in data
management focused mostly on silo-ed data models, specific to data warehousing.
As data become more and more available, two needs surfaced: the need for a
more liberal data management approach, and the possibility of performing data
analysis on–demand, often by non–experts. The first need was addressed by data
lakes, as discussed in Chapter 2. The second need proved more challenging, as
the process of analysis implies clean data that is often hard to acquire. This is
how data wrangling emerged as the beacon for self–service data preparation and
this is where our contributions from this thesis can make a significant practical

7.5. FINAL REFLECTIONS 193

impact. Specifically, data discovery offers the possibility of focusing the wrangling
efforts on relevant data for the task at hand, while format transformation opens
the possibility for performing basic operations required to clean the data to users
without a programming background.

The research in data wrangling is still at the beginning, with numerous chal-
lenges still to be addressed. For example, automating other wrangling steps, e.g.,
entity resolution, schema matching, etc. But the argument has not been closed
on data discovery and transformation either. As mentioned above, we consider
that future work on unaddressed needs in these two areas (e.g., discovery on
non–tabular data, table transformations, etc.) can benefit from the methodology
described in the chapters of this thesis.

We conclude this thesis on cost–effective data wrangling by addressing on final
question regarding the importance of this area and, consequently, of the work
presented in the previous chapters: Is data wrangling worth the effort?. This
question arises from the fact that most of the research on the topic envisions it
as being exploratory in nature: proper data wrangling can sometimes involve a
daunting amount of work and time with little to show for in the end. We have seen
in Chapter 2 that, through the adoption of the schema–on–read model, there is a
cost shift from structuring the data once for data warehouse loading to preparing
it every time a new analysis task is conducted. We answer the above question
by reiterating an important argument of Chapter 2: there is no better or best
with performing data preparation before warehouse loading or after data lake
extraction. Just like most things in data analysis, it depends on the use–case. For
instance, if the type of analysis is known in advance and results need to be fast
and repetitive then schema–on–write might be the answer. Alternatively, if there
are a lot of unknowns with the data and constant new sources, schema–on–read
is more appropriate.

Finally, we end this thesis with one last argument to support the importance
of the work described here: data has often been called “the new oil” [Oil] due
to its immeasurable potential for business value. In this context, data wrangling,
together with data analysis, represent the foundation that allows organisations to
become truly data–driven enterprises.

Bibliography

[AAK10] Parag Agrawal, Arvind Arasu, and Raghav Kaushik. On indexing
error-tolerant set containment. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, SIG-
MOD ’10, pages 927–938, 2010.

[AAO+15] Ziawasch Abedjan, Cuneyt Gurcan Akcora, Mourad Ouzzani, Paolo
Papotti, and Michael Stonebraker. Temporal rules discovery for
web data cleaning. PVLDB, 9(4):336–347, 2015.

[ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann,
Richard Cyganiak, and Zachary Ives. Dbpedia: A nucleus for a
web of open data. In Proceedings of the 6th International The Se-
mantic Web and 2Nd Asian Conference on Asian Semantic Web
Conference, ISWC’07/ASWC’07, pages 722–735, 2007.

[ABLM14] Marcelo Arenas, Pablo Barceló, Leonid Libkin, and Filip Murlak.
Foundations of Data Exchange. Cambridge University Press, 2014.

[ACD+16] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez,
Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Michael Stonebraker,
and Nan Tang. Detecting data errors: Where are we and what needs
to be done? Proc. VLDB Endow., 9(12):993–1004, August 2016.

[ADKC18] Ö Akgün, A. Dearle, G. N. C. Kirby, and P. Christen. Using
metric space indexing for complete and efficient record linkage. In
Advances in Knowledge Discovery and Data Mining - 22nd Pacific-
Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June
3-6, 2018, Proceedings, Part III, pages 89–101, 2018.

[ADMR05] David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard

194

BIBLIOGRAPHY 195

Rahm. Schema and ontology matching with COMA++. In Proceed-
ings of the ACM SIGMOD International Conference on Manage-
ment of Data, Baltimore, Maryland, USA, June 14-16, 2005, pages
906–908, 2005.

[AGM03] Arvind Arasu and Hector Garcia-Molina. Extracting structured
data from web pages. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’03,
pages 337–348, 2003.

[AGN15] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Profiling
relational data: a survey. VLDB J., 24(4):557–581, 2015.

[AI08] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. Commun.
ACM, 51(1):117–122, January 2008.

[AKP+18] Edward Abel, John A. Keane, Norman W. Paton, Alvaro A. A. Fer-
nandes, Martin Koehler, Nikolaos Konstantinou, Julio César Cortés
Ríos, Nurzety A. Azuan, and Suzanne M. Embury. User driven
multi-criteria source selection. Inf. Sci., 430:179–199, 2018.

[AMI+16] Ziawasch Abedjan, John Morcos, Ihab F. Ilyas, Mourad Ouzzani,
Paolo Papotti, and Michael Stonebraker. Dataxformer: A robust
transformation discovery system. In 32nd IEEE International Con-
ference on Data Engineering, ICDE 2016, Helsinki, Finland, May
16-20, 2016, pages 1134–1145, 2016.

[Ang87] Dana Angluin. Learning regular sets from queries and counterex-
amples. Inf. Comput., 75(2):87–106, 1987.

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: the advantages
of careful seeding. In Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2007, New Or-
leans, Louisiana, USA, January 7-9, 2007, pages 1027–1035, 2007.

[AW18] Hassan H. Alrehamy and Coral Walker. Semlinker: automating big
data integration for casual users. J. Big Data, 5:14, 2018.

196 BIBLIOGRAPHY

[AZ12] Charu C. Aggarwal and ChengXiang Zhai. A Survey of Text Clus-
tering Algorithms, pages 77–128. Springer US, 2012.

[BBC+15] Anant P. Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol
Deshpande, Aaron J. Elmore, Samuel Madden, and Aditya G.
Parameswaran. Datahub: Collaborative data science & dataset
version management at scale. In CIDR 2015, Seventh Biennial Con-
ference on Innovative Data Systems Research, Asilomar, CA, USA,
January 4-7, 2015, Online Proceedings, 2015.

[BBN+05] Alexander Bilke, Jens Bleiholder, Felix Naumann, Christoph Böhm,
Karsten Draba, and Melanie Weis. Automatic data fusion with
hummer. In Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB ’05, pages 1251–1254, 2005.

[BCFE03] Rohan Baxter, Peter Christen, and Centre For Epidemiology. A
comparison of fast blocking methods for record linkage. Proc. of
ACM SIGKDD’03 Workshop on Data Cleaning, Record Linkage,
and Object Consolidation, 07 2003.

[BCFM98] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael
Mitzenmacher. Min-wise independent permutations (extended ab-
stract). In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC ’98, pages 327–336, 1998.

[BCG05] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. Lsh forest:
Self-tuning indexes for similarity search. In Proceedings of the 14th
International Conference on World Wide Web, WWW ’05, pages
651–660, 2005.

[BFPK19] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Niko-
laos Konstantinou. Synthedit: Format transformations by example
using edit operations. In Advances in Database Technology - 22nd
International Conference on Extending Database Technology, EDBT
2019, Lisbon, Portugal, March 26-29, 2019, pages 714–717, 2019.

[BG05] Jose Barateiro and Helena Galhardas. A survey of data quality
tools. Datenbank-Spektrum, 14:15–21, 01 2005.

BIBLIOGRAPHY 197

[BGHZ15] Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin G. Zorn.
Flashrelate: extracting relational data from semi-structured spread-
sheets using examples. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015, pages 218–228, 2015.

[BGMZ97] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and
Geoffrey Zweig. Syntactic clustering of the web. In Selected Papers
from the Sixth International Conference on World Wide Web, pages
1157–1166, 1997.

[BLMT16] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano
Tarlao. Inference of regular expressions for text extraction from
examples. IEEE Trans. Knowl. Data Eng., 28(5):1217–1230, 2016.

[BLN06] Jana Bauckmann, Ulf Leser, and Felix Naumann. Efficiently com-
puting inclusion dependencies for schema discovery. In Proceedings
of the 22nd International Conference on Data Engineering Work-
shops, ICDE 2006, 3-7 April 2006, Atlanta, GA, USA, page 2, 2006.

[BN05] Alexander Bilke and Felix Naumann. Schema matching using du-
plicates. In Proceedings of the 21st International Conference on
Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan, pages
69–80, 2005.

[BN08] Jens Bleiholder and Felix Naumann. Data fusion. ACM Comput.
Surv., 41(1):1:1–1:41, 2008.

[BPE+13] Khalid Belhajjame, Norman W. Paton, Suzanne M. Embury, Alvaro
A. A. Fernandes, and Cornelia Hedeler. Incrementally improving
dataspaces based on user feedback. Inf. Syst., 38(5):656–687, 2013.

[BPFK18] A. Bogatu, N. W. Paton, A. A A Fernandes, and M. Koehler. To-
wards automatic data format transformations: Data wrangling at
scale. The Computer Journal, 12 2018.

[Bro93] Ruven E. Brooks. Watch what I do: Programming by demonstration.
edited by allen cypher (book review). International Journal of Man-
Machine Studies, 39(6):1051–1057, 1993.

198 BIBLIOGRAPHY

[Bro97] A. Broder. On the resemblance and containment of documents. In
Proceedings of the Compression and Complexity of Sequences 1997,
SEQUENCES ’97, pages 21–, 1997.

[BSG18] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. The vada-
log system: Datalog-based reasoning for knowledge graphs. PVLDB,
11(9):975–987, 2018.

[BT03] Yoah Bar-David and Gadi Taubenfeld. Automatic discovery of
mutual exclusion algorithms. In Distributed Computing, 17th In-
ternational Conference, DISC 2003, Sorrento, Italy, October 1-3,
2003, Proceedings, pages 136–150, 2003.

[CFP82] Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou.
Inclusion dependencies and their interaction with functional de-
pendencies. In Proceedings of the ACM Symposium on Principles
of Database Systems, March 29-31, 1982, Los Angeles, California,
USA, pages 171–176, 1982.

[CG18] Pravin Chandra and Manoj K. Gupta. Comprehensive survey on
data warehousing research. International Journal of Information
Technology, 10(2):217–224, Jun 2018.

[Cha02] Moses S. Charikar. Similarity estimation techniques from round-
ing algorithms. In Proceedings of the Thiry-fourth Annual ACM
Symposium on Theory of Computing, STOC ’02, pages 380–388,
2002.

[CHK09] Michael J. Cafarella, Alon Y. Halevy, and Nodira Khoussainova.
Data integration for the relational web. PVLDB, 2(1):1090–1101,
2009.

[Chr12] Peter Christen. A survey of indexing techniques for scalable
record linkage and deduplication. IEEE Trans. Knowl. Data Eng.,
24(9):1537–1555, 2012.

[CHW+08] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu,
and Yang Zhang. Webtables: exploring the power of tables on the
web. PVLDB, 1(1):538–549, 2008.

BIBLIOGRAPHY 199

[CIP13] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Holistic data cleaning:
Putting violations into context. In 29th IEEE International Confer-
ence on Data Engineering, ICDE 2013, Brisbane, Australia, April
8-12, 2013, pages 458–469, 2013.

[CMI+15] Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Pa-
potti, Nan Tang, and Yin Ye. KATARA: A data cleaning system
powered by knowledge bases and crowdsourcing. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015,
pages 1247–1261, 2015.

[CMM01] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Road-
runner: Towards automatic data extraction from large web sites.
In VLDB 2001, Proceedings of 27th International Conference on
Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages
109–118, 2001.

[Cod71] E. F. Codd. Further normalization of the data base relational model.
IBM Research Report, San Jose, California, RJ909, 1971.

[Con99a] W. J. Conover. Practical nonparametric statistics. Wiley, 3. ed
edition, 1999.

[Con99b] W. J. Conover. Practical nonparametric statistics. Wiley, 1999.

[CTF88] Marco A. Casanova, Luiz Tucherman, and Antonio L. Furtado. En-
forcing inclusion dependencies and referencial integrity. In Four-
teenth International Conference on Very Large Data Bases, August
29 - September 1, 1988, Los Angeles, California, USA, Proceedings.,
pages 38–49, 1988.

[Data] Data scientist report 2016. https://visit.figure-eight.com/
rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_
2016.pdf. Accessed: 2019-04-01.

[Datb] Data scientist report 2017. https://visit.figure-eight.com/
rs/416-ZBE-142/images/CrowdFlower_DataScienceReport.pdf.
Accessed: 2019-04-01.

https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport.pdf
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport.pdf

200 BIBLIOGRAPHY

[Datc] Data scientist report 2018. visit.figure-eight.com/
WC-2018-Data-Scientist-Report_.html. Accessed: 2019-03-30.

[DEE+13] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed K. Elma-
garmid, Ihab F. Ilyas, Mourad Ouzzani, and Nan Tang. NADEEF:
a commodity data cleaning system. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD
2013, New York, NY, USA, June 22-27, 2013, pages 541–552, 2013.

[DFA+17] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang,
Michael Stonebraker, Ahmed K. Elmagarmid, Ihab F. Ilyas, Samuel
Madden, Mourad Ouzzani, and Nan Tang. The data civilizer system.
In CIDR 2017, 8th Biennial Conference on Innovative Data Sys-
tems Research, Chaminade, CA, USA, January 8-11, 2017, Online
Proceedings, 2017.

[DHI12] AnHai Doan, Alon Y. Halevy, and Zachary G. Ives. Principles of
Data Integration. Morgan Kaufmann, 2012.

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable distributions. In
Proceedings of the Twentieth Annual Symposium on Computational
Geometry, SCG ’04, pages 253–262, 2004.

[Dix] James Dixon. Data lakes. https://jamesdixon.wordpress.com/
2010/10/14/pentaho-hadoop-and-data-lakes/. Accessed: 2019-
03-30.

[DJ03] Tamraparni Dasu and Theodore Johnson. Exploratory Data Mining
and Data Cleaning. John Wiley, 2003.

[DLP02] Ido Dagan, Lillian Lee, and Fernando Peteira. Similarity-based
methods for word sense disambiguation. 05 2002.

[DM88] B. A. Devlin and P. T. Murphy. An architecture for a business and
information system. IBM Systems Journal, 27(1):60–80, 1988.

[DR02] Hong Hai Do and Erhard Rahm. COMA - A system for flexible

visit.figure-eight.com/WC-2018-Data-Scientist-Report_.html
visit.figure-eight.com/WC-2018-Data-Scientist-Report_.html
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/

BIBLIOGRAPHY 201

combination of schema matching approaches. In VLDB 2002, Pro-
ceedings of 28th International Conference on Very Large Data Bases,
August 20-23, 2002, Hong Kong, China, pages 610–621, 2002.

[DSFG+12] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae
Lee, Fei Wu, Reynold Xin, and Cong Yu. Finding related tables. In
Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’12, pages 817–828, 2012.

[DSS12] Xin Luna Dong, Barna Saha, and Divesh Srivastava. Less is more:
Selecting sources wisely for integration. PVLDB, 6(2):37–48, 2012.

[DWa] Data warehouse augmentation. cdn2.hubspot.net/hubfs/443949/
DWAugmentationWhitePaper11.1.16.pdf. Accessed: 2019-04-03.

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S.
Verykios. Duplicate record detection: A survey. IEEE Trans. Knowl.
Data Eng., 19(1):1–16, 2007.

[EMH09] H. Elmeleegy, J. Madhavan, and A. Y. Halevy. Harvesting relational
tables from lists on the web. The VLDB Journal, 2(1), 2009.

[FAK+18] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina
Yuan, Samuel Madden, and Michael Stonebraker. Aurum: A data
discovery system. In 34th IEEE International Conference on Data
Engineering, ICDE 2018, Paris, France, April 16-19, 2018, pages
1001–1012, 2018.

[Fan08] W. Fan. Dependencies revisited for improving data quality. In
PODS 2008, June 9-11, pages 159–170, 2008.

[Fan15] W. Fan. Data quality: From theory to practice. SIGMOD Record,
44(3):7–18, 2015.

[FG12] Wenfei Fan and Floris Geerts. Foundations of Data Quality Manage-
ment. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2012.

[FGG+13] Tim Furche, Georg Gottlob, Giovanni Grasso, Christian Schallhart,
and Andrew Jon Sellers. Oxpath: A language for scalable data

cdn2.hubspot.net/hubfs/443949/DW Augmentation White Paper 11.1.16.pdf
cdn2.hubspot.net/hubfs/443949/DW Augmentation White Paper 11.1.16.pdf

202 BIBLIOGRAPHY

extraction, automation, and crawling on the deep web. VLDB J.,
22(1):47–72, 2013.

[FGG+14] Tim Furche, Georg Gottlob, Giovanni Grasso, Xiaonan Guo, Giorgio
Orsi, Christian Schallhart, and Cheng Wang. Diadem: Thousands
of websites to a single database. Proc. VLDB Endow., 7(14):1845–
1856, October 2014.

[FGL+16] Tim Furche, Georg Gottlob, Leonid Libkin, Giorgio Orsi, and Nor-
man W. Paton. Data wrangling for big data: Challenges and op-
portunities. In Proceedings of the 19th International Conference
on Extending Database Technology, EDBT 2016, Bordeaux, France,
March 15-16, 2016, Bordeaux, France, March 15-16, 2016., pages
473–478, 2016.

[FKM+00] R. Fenk, A. Kawakami, V. Markl, R. Bayer, and S. Osaki. Bulk
loading a data warehouse built upon a ub-tree. In Proceedings 2000
International Database Engineering and Applications Symposium
(Cat. No.PR00789), pages 179–187, 2000.

[FLM+12] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu.
Towards certain fixes with editing rules and master data. VLDB J.,
21(2):213–238, 2012.

[FMQ+18] R.C. Fernandez, E. Mansour, E.E. Qahtan, A.K. Elmagarmid, I.F.
Ilyas, S. Madden, M. Ouzzani, M. Stonebraker, and N. Tang. Seep-
ing semantics: Linking datasets using word embeddings for data
discovery. In ICDE, 2018.

[GD04] Kristen Grauman and Trevor Darrell. Fast contour matching us-
ing approximate earth mover’s distance. In 2004 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR 2004), with CD-ROM, 27 June - 2 July 2004, Washington,
DC, USA, pages 220–227, 2004.

[GFSS00] Helena Galhardas, Daniela Florescu, Dennis Shasha, and Eric Simon.
Ajax: An extensible data cleaning tool. In Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’00, pages 590–, 2000.

BIBLIOGRAPHY 203

[GIM99] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity
search in high dimensions via hashing. In Proceedings of the 25th
International Conference on Very Large Data Bases, VLDB ’99,
pages 518–529, 1999.

[GMJB17] E. Grave, T. Mikolov, A. Joulin, and P. Bojanowski. Bag of tricks
for efficient text classification. In EACL, pages 427–431, 2017.

[GPS17] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program
synthesis. Foundations and Trends in Programming Languages, 4(1-
2):1–119, 2017.

[Gry98] Jarek Gryz. Query folding with inclusion dependencies. In Proceed-
ings of the Fourteenth International Conference on Data Engineer-
ing,Orlando, Florida, USA, February 23-27, 1998, pages 126–133,
1998.

[Gul10] Sumit Gulwani. Dimensions in program synthesis. In Proceedings
of the 12th International ACM SIGPLAN Conference on Princi-
ples and Practice of Declarative Programming, July 26-28, 2010,
Hagenberg, Austria, pages 13–24, 2010.

[Gul11] Sumit Gulwani. Automating string processing in spreadsheets
using input-output examples. In Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages
317–330, 2011.

[Gul12] Sumit Gulwani. Synthesis from examples: Interaction models
and algorithms. In 14th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, SYNASC 2012,
Timisoara, Romania, September 26-29, 2012, pages 8–14, 2012.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Com-
puter Science and Computational Biology. Cambridge University
Press, 1997.

[HCG+18] Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek R. Narasayya,
and Surajit Chaudhuri. Transform-data-by-example (TDE): an

204 BIBLIOGRAPHY

extensible search engine for data transformations. PVLDB,
11(10):1165–1177, 2018.

[HCL+08] C. Hsieh, K Chang, C. Lin, S. S. Keerthi, and S. Sundararajan.
A dual coordinate descent method for large-scale linear SVM. In
ICML, pages 408–415, 2008.

[HG11] William R. Harris and Sumit Gulwani. Spreadsheet table transfor-
mations from examples. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 317–328,
2011.

[HGQ16] Rihan Hai, Sandra Geisler, and Christoph Quix. Constance: An
intelligent data lake system. In SIGMOD, pages 2097–2100, 2016.

[HHK15] Jeffrey Heer, Joseph M. Hellerstein, and Sean Kandel. Predictive in-
teraction for data transformation. In CIDR 2015, Seventh Biennial
Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 4-7, 2015, Online Proceedings, 2015.

[HHK18] Joseph M. Hellerstein, Jeffrey Heer, and Sean Kandel. Self-service
data preparation: Research to practice. IEEE Data Eng. Bull.,
41(2):23–34, 2018.

[HHK19] Jeffrey Heer, Joseph M. Hellerstein, and Sean Kandel. Data wran-
gling. In Encyclopedia of Big Data Technologies. 2019.

[HKN+16] Alon Halevy, Flip Korn, Natalya F. Noy, Christopher Olston, Neok-
lis Polyzotis, Sudip Roy, and Steven Euijong Whang. Goods: Orga-
nizing google’s datasets. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages 795–806,
2016.

[HRO06] Alon Halevy, Anand Rajaraman, and Joann Ordille. Data integra-
tion: The teenage years. In Proceedings of the 32Nd International
Conference on Very Large Data Bases, VLDB ’06, pages 9–16, 2006.

BIBLIOGRAPHY 205

[HSG+17] Joseph M. Hellerstein, Vikram Sreekanti, Joseph E. Gonzalez, James
Dalton, Akon Dey, Sreyashi Nag, Krishna Ramachandran, Sudhan-
shu Arora, Arka Bhattacharyya, Shirshanka Das, Mark Donsky,
Gabriel Fierro, Chang She, Carl Steinbach, Venkat Subramanian,
and Eric Sun. Ground: A data context service. In CIDR 2017, 8th
Biennial Conference on Innovative Data Systems Research, Chami-
nade, CA, USA, January 8-11, 2017, Online Proceedings, 2017.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing, STOC
’98, pages 604–613, 1998.

[Inm] William H. Inmon. a tale of two architectures. https://release.
nl/magazines/Aveq/118597.pdf. Accessed: 2019-04-09.

[Inm92] William H. Inmon. Building the Data Warehouse. John Wiley &
Sons, Inc., 1992.

[JACJ17] Zhongjun Jin, Michael R. Anderson, Michael J. Cafarella, and H. V.
Jagadish. Foofah: Transforming data by example. In Proceedings of
the 2017 ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 683–698, 2017.

[JM09] Dan Jurafsky and James H. Martin. Speech and language process-
ing: an introduction to natural language processing, computational
linguistics, and speech recognition, 2nd Edition. Prentice Hall series
in artificial intelligence. Prentice Hall, Pearson Education Interna-
tional, 2009.

[JT12] Rajni Jindal and Shweta Taneja. Comparative study of data ware-
house design approaches : A survey. International Journal of
Database Management Systems, 4:33–45, 02 2012.

[KAB+19] Nikolaos Konstantinou, Edward Abel, Luigi Bellomarini, Alex Bo-
gatu, Cristina Civili, Endri Irfanie, Martin Koehler, Lacramioara
Mazilu, Emanuel Sallinger, Alvaro Fernandes, Georg Gottlob, John

https://release.nl/magazines/Aveq/118597.pdf
https://release.nl/magazines/Aveq/118597.pdf

206 BIBLIOGRAPHY

Keane, and Norman Paton. Vada: An architecture for end user
informed data preparation. Journal of Big Data, 7 2019.

[KBC+17] Martin Koehler, Alex Bogatu, Cristina Civili, Nikolaos Konstanti-
nou, Edward Abel, Alvaro A. A. Fernandes, John A. Keane, Leonid
Libkin, and Norman W. Paton. Data context informed data wran-
gling. In 2017 IEEE International Conference on Big Data, BigData
2017, Boston, MA, USA, December 11-14, 2017, pages 956–963,
2017.

[KC04] Ralph Kimball and Joe Caserta. The data warehouse ETL toolkit.
Wiley, 2004.

[KCH+03] Won Kim, Byoung-Ju Choi, Eui-Kyeong Hong, Soo-Kyung Kim,
and Doheon Lee. A taxonomy of dirty data. Data Min. Knowl.
Discov., 7(1):81–99, January 2003.

[KHP+11] Sean Kandel, Jeffrey Heer, Catherine Plaisant, Jessie Kennedy,
Frank van Ham, Nathalie Henry Riche, Chris Weaver, Bongshin
Lee, Dominique Brodbeck, and Paolo Buono. Research directions
in data wrangling: Visualizations and transformations for usable
and credible data. Information Visualization, 10(4):271–288, 2011.

[KIJ+15] Zuhair Khayyat, Ihab F. Ilyas, Alekh Jindal, Samuel Madden,
Mourad Ouzzani, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan
Tang, and Si Yin. Bigdansing: A system for big data cleansing. In
Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 -
June 4, 2015, pages 1215–1230, 2015.

[KKA+17] Nikolaos Konstantinou, Martin Koehler, Edward Abel, Cristina
Civili, Bernd Neumayr, Emanuel Sallinger, Alvaro A.A. Fernandes,
Georg Gottlob, John A. Keane, Leonid Libkin, and Norman W.
Paton. The vada architecture for cost-effective data wrangling. In
Proceedings of the 2017 ACM International Conference on Manage-
ment of Data, SIGMOD ’17, pages 1599–1602. ACM, 2017.

[KL51] S. Kullback and R. A. Leibler. On information and sufficiency. The
Annals of Mathematical Statistics, 22(1):79–86, 03 1951.

BIBLIOGRAPHY 207

[KL03] Ronald S. King and James J. Legendre. Discovery of functional
and approximate functional dependencies in relational databases.
JAMDS, 7(1):49–59, 2003.

[Kot02] Yannis Kotidis. Aggregate View Management in Data Warehouses,
pages 711–741. Springer US, 2002.

[KP08] Gal Katz and Doron A. Peled. Genetic programming and model
checking: Synthesizing new mutual exclusion algorithms. In Auto-
mated Technology for Verification and Analysis, 6th International
Symposium, ATVA 2008, Seoul, Korea, October 20-23, 2008. Pro-
ceedings, pages 33–47, 2008.

[KP19] Nikolaos Konstantinou and Norman W. Paton. Feedback driven
improvement of data preparation pipelines. In Proceedings of the
21st International Workshop on Design, Optimization, Languages
and Analytical Processing of Big Data, co-located with EDBT/ICDT
Joint Conference, DOLAP@EDBT/ICDT 2019, Lisbon, Portugal,
March 26, 2019., 2019.

[KPD+17] Sebastian Kruse, Thorsten Papenbrock, Christian Dullweber,
Moritz Finke, Manuel Hegner, Martin Zabel, Christian Zöllner, and
Felix Naumann. Fast approximate discovery of inclusion depen-
dencies. In Datenbanksysteme für Business, Technologie und Web
(BTW2017), 17. Fachtagung des GI-Fachbereichs „Datenbanken und
Informationssysteme" (DBIS), 6.-10. März 2017, Stuttgart, Ger-
many, Proceedings, pages 207–226, 2017.

[KPHH11] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey
Heer. Wrangler: interactive visual specification of data transfor-
mation scripts. In Proceedings of the International Conference on
Human Factors in Computing Systems, CHI 2011, Vancouver, BC,
Canada, May 7-12, 2011, pages 3363–3372, 2011.

[KPHH12] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey
Heer. Enterprise data analysis and visualization: An interview study.
IEEE Trans. Vis. Comput. Graph., 18(12):2917–2926, 2012.

208 BIBLIOGRAPHY

[KPN15] Sebastian Kruse, Thorsten Papenbrock, and Felix Naumann. Scaling
out the discovery of inclusion dependencies. In Datenbanksysteme
für Business, Technologie und Web (BTW),16. Fachtagung des GI-
Fachbereichs "Datenbanken und Informationssysteme" (DBIS), 4.-
6.3.2015 in Hamburg, Germany. Proceedings, pages 445–454, 2015.

[KR02] Ralph Kimball and Margy Ross. The data warehouse toolkit: the
complete guide to dimensional modeling. Wiley, 2002.

[Kus97] Nicholas Kushmerick. Wrapper Induction for Information Extrac-
tion. PhD thesis, 1997.

[LB17] O. Lehmberg and C. Bizer. Stitching web tables for improving
matching quality. PVLDB, 10(11):1502–1513, 2017.

[LDW00] Tessa A. Lau, Pedro M. Domingos, and Daniel S. Weld. Version
space algebra and its application to programming by demonstration.
In Proceedings of the Seventeenth International Conference on Ma-
chine Learning (ICML 2000), Stanford University, Stanford, CA,
USA, June 29 - July 2, 2000, pages 527–534, 2000.

[LG14] Vu Le and Sumit Gulwani. Flashextract: a framework for data ex-
traction by examples. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’14, Edinburgh,
United Kingdom - June 09 - 11, 2014, pages 542–553, 2014.

[LHWY13] X. Ling, A. Y. Halevy, F. Wu, and C. Yu. Synthesizing union tables
from the web. In IJCAI, pages 2677–2683, 2013.

[LRG+18] Massimo Lusetti, Tatyana Ruzsics, Anne Gohring, Tanja Samardzic,
and Elisabeth Stark. Encoder-decoder methods for text normaliza-
tion. In Proceedings of the Fifth Workshop on NLP for Similar
Languages, Varieties and Dialects (VarDial 2018), 08 2018.

[LRNdST02] Alberto H. F. Laender, Berthier A. Ribeiro-Neto, Altigran S.
da Silva, and Juliana S. Teixeira. A brief survey of web data extrac-
tion tools. SIGMOD Rec., 31(2):84–93, June 2002.

BIBLIOGRAPHY 209

[LSC10] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotat-
ing and searching web tables using entities, types and relationships.
PVLDB, 3(1):1338–1347, 2010.

[LV00] Mark Levene and Millist W. Vincent. Justification for inclusion
dependency normal form. IEEE Trans. Knowl. Data Eng., 12(2):281–
291, 2000.

[MFH+17] Xianling Mao, Bo-Si Feng, Yi-Jing Hao, Liqiang Nie, Heyan Huang,
and Guihua Wen. S2JSD-LSH: A locality-sensitive hashing schema
for probability distributions. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA., pages 3244–3251, 2017.

[MHH+01] Renée J. Miller, Mauricio A. Hernández, Laura M. Haas, Ling-Ling
Yan, C. T. Howard Ho, Ronald Fagin, and Lucian Popa. The clio
project: Managing heterogeneity. SIGMOD Record, 30(1):78–83,
2001.

[Mil95] George A. Miller. Wordnet: A lexical database for english. Commun.
ACM, 38(11):39–41, November 1995.

[Mit82] Tom M. Mitchell. Generalization as search. Artif. Intell., 18(2):203–
226, 1982.

[MJDS07] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. De-
tecting near-duplicates for web crawling. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07, pages
141–150, 2007.

[MKK+08] Jayant Madhavan, David Ko, Lucja Kot, Vignesh Ganapathy, Alex
Rasmussen, and Alon Halevy. Google’s deep web crawl. Proc. VLDB
Endow., 1(2):1241–1252, August 2008.

[MMP+11] Bruno Marnette, Giansalvatore Mecca, Paolo Papotti, Salvatore
Raunich, and Donatello Santoro. ++spicy: an opensource tool for
second-generation schema mapping and data exchange. PVLDB,
4(12):1438–1441, 2011.

210 BIBLIOGRAPHY

[MNZ+18] Renée J. Miller, Fatemeh Nargesian, Erkang Zhu, Christina
Christodoulakis, Ken Q. Pu, and Periklis Andritsos. Making open
data transparent: Data discovery on open data. IEEE Data Eng.
Bull., 41(2):59–70, 2018.

[Moh02] Mehryar Mohri. Edit-distance of weighted automata. In Implemen-
tation and Application of Automata, 7th International Conference,
CIAA 2002, Tours, France, July 3-5, 2002, Revised Papers, pages
1–23, 2002.

[MPFK19] Lacramioara Mazilu, Norman W. Paton, Alvaro A. A. Fernandes,
and Martin Koehler. Dynamap: Schema mapping generation in the
wild. In Proceedings of the 31st International Conference on Sci-
entific and Statistical Database Management, SSDBM 2019, Santa
Cruz, CA, USA, July 23-25, 2019, pages 37–48, 2019.

[MPR02] Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted
finite-state transducers in speech recognition. Computer Speech &
Language, 16(1):69–88, 2002.

[MPR09] G. Mecca, P. Papotti, and S. Raunich. Core schema mappings. In
SIGMOD, pages 655–668, 2009.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. Distributed representations of words and phrases and
their compositionality. In Advances in Neural Information Process-
ing Systems 26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meeting held December
5-8, 2013, Lake Tahoe, Nevada, United States., pages 3111–3119,
2013.

[NH10] Felix Naumann and Melanie Herschel. An Introduction to Duplicate
Detection. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2010.

[Nix85] Robert P. Nix. Editing by example. ACM Trans. Program. Lang.
Syst., 7(4):600–621, 1985.

[Noy04] Natalya F. Noy. Semantic integration: A survey of ontology-based
approaches. SIGMOD Rec., 33(4):65–70, December 2004.

BIBLIOGRAPHY 211

[NYt] Janitor work. www.nytimes.com/2014/08/18/technology/
for-big-data-scientists-hurdle-to-insights-is-janitor-work.
html. Accessed: 2019-08-21.

[NZPM18] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller.
Table union search on open data. PVLDB, 11(7):813–825, 2018.

[Oil] Data is the new oil. www.economist.com/leaders/2017/05/06/
the-worlds-most-valuable-resource-is-no-longer-oil-but-data.
Accessed: 2020-02-11.

[ORRHG05] Paulo Oliveira, Fatima Rodrigues, Pedro Rangel Henriques, and
Helena Galhardas. A taxonomy of data quality problems. Journal
of Data and Information Quality - JDIQ, 01 2005.

[PAKS16] Minh Pham, Suresh Alse, Craig A. Knoblock, and Pedro A. Szekely.
Semantic labeling: A domain-independent approach. In The Seman-
tic Web - ISWC 2016 - 15th International Semantic Web Conference,
Kobe, Japan, October 17-21, 2016, Proceedings, Part I, pages 446–
462, 2016.

[Pap19] Paolo Papotti. Schema mapping. In Encyclopedia of Big Data
Technologies. 2019.

[Pat19] Norman W. Paton. Automating data preparation: Can we? should
we? must we? In Proceedings of the 21st International Work-
shop on Design, Optimization, Languages and Analytical Process-
ing of Big Data, co-located with EDBT/ICDT Joint Conference,
DOLAP@EDBT/ICDT 2019, Lisbon, Portugal, March 26, 2019.,
2019.

[PBE+16] Norman W. Paton, Khalid Belhajjame, Suzanne M. Embury, Al-
varo A. A. Fernandes, and Ruhaila Maskat. Pay-as-you-go data
integration: Experiences and recurring themes. In SOFSEM 2016:
Theory and Practice of Computer Science - 42nd International Con-
ference on Current Trends in Theory and Practice of Computer
Science, Harrachov, Czech Republic, January 23-28, 2016, Proceed-
ings, pages 81–92, 2016.

www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

212 BIBLIOGRAPHY

[PBF+15] T. Papenbrock, T Bergmann, M. Finke, J. Zwiener, and F. Nau-
mann. Data profiling with metanome. PVLDB, 8(12):1860–1863,
2015.

[PKQN15] Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz,
and Felix Naumann. Divide & conquer-based inclusion dependency
discovery. PVLDB, 8(7):774–785, 2015.

[PN16] Thorsten Papenbrock and Felix Naumann. A hybrid approach to
functional dependency discovery. In Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages
821–833, 2016.

[PSC+15] Nataliya Prokoshyna, Jaroslaw Szlichta, Fei Chiang, Renée J. Miller,
and Divesh Srivastava. Combining quantitative and logical data
cleaning. PVLDB, 9(4):300–311, 2015.

[QH19] Christoph Quix and Rihan Hai. Data lake. In Encyclopedia of Big
Data Technologies. 2019.

[QHV16] Christoph Quix, Rihan Hai, and Ivan Vatov. GEMMS: A generic
and extensible metadata management system for data lakes. In
CAiSE 2016, pages 129–136, 2016.

[Rah11] Erhard Rahm. Towards large-scale schema and ontology matching.
In Schema Matching and Mapping, pages 3–27. 2011.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal, 10(4):334–350,
December 2001.

[RCIR17] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher
Ré. Holoclean: Holistic data repairs with probabilistic inference.
PVLDB, 10(11):1190–1201, 2017.

[RCME11] A Ritter, S. Clark, Mausam, and O. Etzioni. Named entity recog-
nition in tweets: An experimental study. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing,
EMNLP ’11, 2011.

BIBLIOGRAPHY 213

[RD00] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and
current approaches. IEEE Data Engineering Bulletin, 23:2000, 2000.

[RG17] Mohammad Raza and Sumit Gulwani. Automated data extrac-
tion using predictive program synthesis. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA., pages 882–890, 2017.

[RGM14] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. Pro-
gramming by example using least general generalizations. In Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artificial In-
telligence, July 27 -31, 2014, Québec City, Québec, Canada., pages
283–290, 2014.

[RH01] Vijayshankar Raman and Joseph M. Hellerstein. Potter’s wheel:
An interactive data cleaning system. In Proceedings of the 27th
International Conference on Very Large Data Bases, VLDB ’01,
pages 381–390, 2001.

[RHH+17] Tye Rattenbury, Joseph M. Hellerstein, Jeffrey Heer, Sean Kandel,
and Connor Carreras. Principles of Data Wrangling. OâĂŹReilly
Media, Inc., 2017.

[RKR97] Nick Roussopoulos, Yannis Kotidis, and Mema Roussopoulos. Cu-
betree: Organization of and bulk incremental updates on the data
cube. In Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’97, pages 89–99,
1997.

[RLU14] Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman. Mining of
Massive Datasets. 01 2014.

[Rou98] Nick Roussopoulos. Materialized views and data warehouses. SIG-
MOD Rec., 27(1):21–26, March 1998.

[RS10] Radim Rehurek and Petr Sojka. Software framework for topic mod-
elling with large corpora. pages 45–50, 05 2010.

214 BIBLIOGRAPHY

[SAPS19] S. Sampaio, M. Aljubairah, H. A. Permana, and P. Sampaio. A
conceptual approach for supporting traffic data wrangling tasks.
Comput. J., 62(3), 2019.

[SBI+13] Michael Stonebraker, Daniel Bruckner, Ihab F. Ilyas, George
Beskales, Mitch Cherniack, Stanley B. Zdonik, Alexander Pagan,
and Shan Xu. Data curation at scale: The data tamer system. In
CIDR 2013, Sixth Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 6-9, 2013, Online Proceed-
ings, 2013.

[SDH08] Anish Das Sarma, Xin Dong, and Alon Y. Halevy. Bootstrap-
ping pay-as-you-go data integration systems. In Proceedings of the
ACM SIGMOD International Conference on Management of Data,
SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages
861–874, 2008.

[SDRK02] Yannis Sismanis, Antonios Deligiannakis, Nick Roussopoulos, and
Yannis Kotidis. Dwarf: Shrinking the petacube. In Proceedings of
the 2002 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’02, pages 464–475, 2002.

[SE13] P. Shvaiko and J. Euzenat. Ontology matching: State of the art
and future challenges. IEEE Transactions on Knowledge and Data
Engineering, 25(1):158–176, Jan 2013.

[SG16] Rishabh Singh and Sumit Gulwani. Transforming spreadsheet data
types using examples. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016, pages 343–356, 2016.

[SGF13] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. Template-
based program verification and program synthesis. STTT, 15(5-
6):497–518, 2013.

[Sha19] Mehul Shah. Data warehouses are dead, long live data warehousing!

BIBLIOGRAPHY 215

In CIDR 2019, 9th Biennial Conference on Innovative Data Sys-
tems Research, Asilomar, CA, USA, January 13-16, 2019, Online
Proceedings, 2019.

[SI18] Michael Stonebraker and Ihab F. Ilyas. Data integration: The
current status and the way forward. IEEE Data Eng. Bull., 41(2):3–
9, 2018.

[Sin16] Rishabh Singh. Blinkfill: Semi-supervised programming by example
for syntactic string transformations. PVLDB, 9(10):816–827, 2016.

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago:
a core of semantic knowledge. In Proceedings of the 16th Interna-
tional Conference on World Wide Web, WWW 2007, Banff, Alberta,
Canada, May 8-12, 2007, pages 697–706, 2007.

[SL15] Anshumali Shrivastava and Ping Li. Asymmetric minwise hashing
for indexing binary inner products and set containment. In Pro-
ceedings of the 24th International Conference on World Wide Web,
WWW 2015, Florence, Italy, May 18-22, 2015, pages 981–991, 2015.

[SLH12] M. Slaney, Y. Lifshits, and J. He. Optimal parameters for locality-
sensitive hashing. Proceedings of the IEEE, 100(9):2604–2623, Sep.
2012.

[SSB+18] Juliano Efson Sales, Leonardo Souza, Siamak Barzegar, Brian Davis,
André Freitas, and Siegfried Handschuh. Indra: A word embedding
and semantic relatedness server. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation,
LREC 2018, Miyazaki, Japan, May 7-12, 2018., 2018.

[TP10] Peter D. Turney and Patrick Pantel. From frequency to meaning:
Vector space models of semantics. J. Artif. Intell. Res., 37:141–188,
2010.

[TSRC15] Ignacio G. Terrizzano, Peter M. Schwarz, Mary Roth, and John E.
Colino. Data wrangling: The challenging yourney from the wild to
the lake. In CIDR 2015, Seventh Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January 4-7, 2015,
2015.

216 BIBLIOGRAPHY

[Vas09] Panos Vassiliadis. A survey of extract-transform-load technology.
International Journal of Data Warehousing and Mining, 5:1–27, 07
2009.

[VHM+11] Petros Venetis, Alon Y. Halevy, Jayant Madhavan, Marius Pasca,
Warren Shen, Fei Wu, Gengxin Miao, and Chung Wu. Recovering
semantics of tables on the web. PVLDB, 4(9):528–538, 2011.

[VS99] Panos Vassiliadis and Timos Sellis. A survey of logical models for
olap databases. SIGMOD Rec., 28(4):64–69, December 1999.

[WA15] Coral Walker and Hassan H. Alrehamy. Personal data lake with
data gravity pull. In Fifth IEEE International Conference on Big
Data and Cloud Computing, BDCloud 2015, Dalian, China, August
26-28, 2015, pages 160–167, 2015.

[Wik] Worldwide big data market forecast. wikibon.com/
2016-2026-worldwide-big-data-market-forecast. Accessed:
2019-03-30.

[WK16] Bo Wu and Craig A. Knoblock. Maximizing correctness with mini-
mal user effort to learn data transformations. In Proceedings of the
21st International Conference on Intelligent User Interfaces, IUI
2016, Sonoma, CA, USA, March 7-10, 2016, pages 375–384, 2016.

[WLF11] Jiannan Wang, Guoliang Li, and Jianhua Feng. Fast-join: An
efficient method for fuzzy token matching based string similarity
join. In Proceedings of the 27th International Conference on Data
Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany,
pages 458–469, 2011.

[WLF14] Jiannan Wang, Guoliang Li, and Jianhua Feng. Extending string
similarity join to tolerant fuzzy token matching. ACM Trans.
Database Syst., 39(1):1–45, 2014.

[WT14] Jiannan Wang and Nan Tang. Towards dependable data repairing
with fixing rules. In International Conference on Management of
Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages
457–468, 2014.

wikibon.com/2016-2026-worldwide-big-data-market-forecast
wikibon.com/2016-2026-worldwide-big-data-market-forecast

BIBLIOGRAPHY 217

[WTSSJ14] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji.
Hashing for similarity search: A survey. 08 2014.

[YGCC12] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri. In-
fogather: entity augmentation and attribute discovery by holistic
matching with web tables. In SIGMOD, pages 97–108, 2012.

[YLDF16] Minghe Yu, Guoliang Li, Dong Deng, and Jianhua Feng. String
similarity search and join: a survey. Frontiers of Computer Science,
10(3):399–417, Jun 2016.

[ZC09] Luke S. Zettlemoyer and Michael Collins. Learning context-
dependent mappings from sentences to logical form. In ACL 2009,
Proceedings of the 47th Annual Meeting of the Association for Com-
putational Linguistics and the 4th International Joint Conference
on Natural Language Processing of the AFNLP, 2-7 August 2009,
Singapore, pages 976–984, 2009.

[ZHC17] Erkang Zhu, Yeye He, and Surajit Chaudhuri. Auto-join: Joining
tables by leveraging transformations. PVLDB, 10(10):1034–1045,
2017.

[ZHO+10] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M.
Procopiuc, and Divesh Srivastava. On multi-column foreign key
discovery. PVLDB, 3(1):805–814, 2010.

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	The importance of data preparation
	Motivation: data preparation challenges and opportunities
	Data preparation through wrangling
	Data lakes
	Data wrangling

	Aim, objectives and research contributions
	Overview of thesis structure

	Background: data preparation for Big Data
	The data warehouse
	Building the data warehouse
	The ETL process
	Schema–on–write

	The data lake
	Building the data lake
	The data wrangling process
	Schema–on–read

	Cost–effective data wrangling
	The scalability challenge
	The heterogeneity challenge

	Representative data wrangling systems
	Wrangler
	Data Tamer
	Data Civilizer
	Value Added Data Systems (VADA)

	Summary and conclusions

	Dataset discovery in data lakes
	Motivation and desiderata
	Background and related work
	Dataset relatedness
	Sources of relatedness evidence
	Scalable relatedness discovery through Locality Sensitive Hashing
	LSH hash functions and similarity measures
	Dataset discovery: state–of–the–art

	Overview and contributions
	Attribute relatedness
	Relatedness evidence
	Distance measures
	Index construction
	Attribute relatedness: the numeric case

	Table relatedness
	Type–specific aggregation scheme
	Dataset–level aggregation scheme

	Extending relatedness through join paths
	Dataset discovery evaluation
	Data repositories used in evaluation
	Baselines and reported measures
	Individual effectiveness
	Comparative effectiveness
	Comparative efficiency
	Impact of join opportunities

	Summary and conclusions

	Automatic format transformation
	Motivation and desiderata
	Background and related work
	Format transformation: definition
	Format transformation through program synthesis
	Format transformation: state–of–the–art

	Overview and contributions
	Transformation language
	Syntax and language elements
	Language semantics

	Synthesis algorithm
	Transformation search

	Format transformation evaluation
	Data repositories used in evaluation
	Reported measures
	Comparative effectiveness
	Comparative efficiency

	Summary and conclusions

	Data format transformation in data lakes
	Motivation and desiderata
	Background and related work
	Matching relationships
	Functional dependencies
	State–of–the–art

	Overview and contributions
	Discovering examples: FD–based scheme
	Examples generation
	Examples validation

	Discovering examples: weighted scheme
	Examples generation
	Incremental examples selection

	Evaluation
	Data repositories used in evaluation
	Reported measures
	Effectiveness of FD based scheme
	Effectiveness of weighted scheme
	Efficiency evaluation

	Summary and conclusions

	Enabling data profiling in data lakes
	Motivation and desiderata
	Background and related work
	Inclusion dependencies
	State–of–the–art

	Overview and contributions
	Transformation–informed IND discovery
	T–IND discovery evaluation
	Data repositories used in evaluation
	Experimental setup and reported measures
	Evaluation results

	Summary and conclusions

	Conclusions and future work
	Thesis overview
	Main contributions and their significance
	Data discovery contributions
	Format transformation contributions
	Data profiling contributions

	Impact of contributions
	Unanswered questions and future work
	Final reflections

	Bibliography

