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This thesis investigates multi-agent systems problems for systems with negative imag-
inary dynamics. Via tools from negative imaginary theory and graph theory, this re-
search addresses the following three multi-agent systems problems: (i) the distributed
robust stabilization problem for networked multi-agent systems with strict negative
imaginary uncertainties; (ii) the robust output consensus problem for homogeneous
multi-agent systems with negative imaginary dynamics; and (iii) a rendezvous problem
for multiple wheeled mobile robots, through the development of cooperative control
strategies for integrator negative imaginary systems.

The main results of this thesis are summarised as follows. Firstly, a solution to
the distributed robust stabilization problem for networked multi-agent systems with
strict negative imaginary uncertainties is proposed. The solution includes the deriva-
tion of sufficient conditions, in an LMI framework, for the existence of control protocol
parameters such that the control protocol robustly stabilizes a networked multi-agent
system in presence of strictly negative imaginary uncertainties of certain DC size; and
guaranteeing that robust stability is achieved when variations in the network topology
occur. Secondly, a solution to the robust output consensus problem for homogeneous
multi-agent systems with negative imaginary dynamics is proposed. The solution in-
cludes relaxing the assumptions imposed in earlier literature thereby derive robust
output consensus conditions under L2 external disturbances and model uncertainty
which are not restricted and which simplify in the single-input single-output case to
provide several insights not easily captured in the multi-input multi-output case. Fi-
nally, a solution to a rendezvous problem for nonholonomic wheeled mobile robots
via the negative imaginary systems theory is proposed. The solution includes the
derivation of necessary and sufficient conditions that guarantee output consensus and
output tracking for strongly connected, balanced and directed networks of integrators
subject to energy-bounded disturbances using the negative imaginary internal stabil-
ity theorems and then utilize the results to achieve rendezvous of multiple wheeled
mobile robot. Examples are provided in each of the three aforementioned research
problems to demonstrate the effectiveness of the associated proposed results. Addi-
tionally, experimental results from real-robots are provided for the rendezvous research
problem.

This research contributes to the existing literature on cooperative control of multi-
agent systems with negative imaginary properties. The research provides a timely and
necessary study of the robust stabilization, output consensus and rendezvous problems
for networked systems with negative imaginary properties. This current research is
important since many practical systems can be modelled as negative imaginary systems
and achieving a certain behaviour in multi-agent systems has potential real-world
applications.
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Chapter 1

Introduction

1.1 Background

Distributed control of networked multi-agent systems (MASs) and negative imaginary

(NI) systems theory are two distinct areas of significant importance to the control

systems community.

Distributed control of networked MASs has been an active field of study over the

past two decades. Examples of distributed MASs in real-world applications which

have a lot of benefits to society include smart grid [1], sensor networks [2], unmanned

aerial vehicles [3], and wheeled mobile robots [4], to name a few. The distributed

control approach for multi-agent systems is considered more promising compared to

the centralized approach due to physical constraints such as limited resources and

energy, short wireless communication ranges, narrow bandwidths, and large sizes of

agents to control [5]. Furthermore, the motives and advantages of using a distributed

control approach for multi-agent systems rather than a centralized approach include

flexible scalability, high robustness, and cost reduction in the design, manufacturing,

and operation of such systems [6]. Cooperation among agents, through locally shared

information, plays a fundamental role in distributed control systems. That is, agents

interact locally with each other in order to achieve a desired collective behaviour or a

global control objective such as stability of a network, consensus, tracking a reference,

rendezvous, synchronization, etc. In other words, distributed control is concerned with

the design of distributed control laws (also known as protocols) in order to guarantee

a desired collective behaviour or a global control objective for networked MASs. The

17



design of distributed control laws is interesting and challenging due to the need to

take into consideration the dynamics of the individual agents and also the interaction

among them which is limited to a local neighbour-to-neighbour interaction. Moreover,

synthesis of robust control protocols is inevitably required due to uncertainties in the

multi-agent dynamics and network environment.

The existing literature on cooperation/distributed control of multi-agent systems

is extensive because taking into account different factors lead to different results. For

example, factors such as type of agents dynamics whether single integrator, double inte-

grator or general dynamics; communication/network topology among agents whether

direct or undirected; available type of shared information whether state or output

measurements; the consideration of robust or non-robust design; and the type of

desired collective behaviour lead to various analysis and synthesis outcomes. For

example, consensus control has been addressed in [7, 8] for single integrators, in

[9, 10, 11, 12] for double integrators and in [13, 14, 15, 16] for general dynamics.

Consensus/synchronization problems for multi-agent systems using relative output

measurements have been addressed in [14, 17, 18, 15, 16]. Robust stability, robust

consensus, and robust synchronization of multi-agent dynamical systems with differ-

ent types of unstructured uncertainties (perturbations due to modelling errors) have

been addressed in [19, 20, 18, 17]. Robust consensus under switching topologies has

been addressed in [21]. For more details in this area of research, extensive overviews

can be found in [22, 23, 5, 24, 25, 26] while books relating to this field of study include

[27, 6, 28, 29].

The NI systems theory was first introduced in [30] in the interest to develop,

in a systematic framework, robust stability results for flexible structures with co-

located force actuators and position sensors. Broadly speaking, negative imaginary

systems have the Hermitian imaginary part of their frequency response function matrix

negative semi-definite for all positive frequencies excluding frequencies at which a pole

exists on the imaginary axis [31]. The transfer functions of NI systems may have

a relative degree between zero and two and may have unstable zeros. For single-

input single-output (SISO) systems, the NI property of a system can be visualized

graphically through Nyquist plots. Specifically, the Nyquist plot of SISO NI systems

lie on or below the real axis for all positive frequencies. Strictly negative imaginary

18



(SNI) systems are an important subset of the NI class. The Nyquist plot for SISO

SNI systems strictly lies below the real axis for all positive frequencies and can only

touch the real axis at frequencies zero and infinity since the systems are real and

rational. Examples of NI systems include single integrator, double integrator and

undamped second order systems. The Nyquist plots of such NI systems are shown in

Figure 1.1(a) to Figure 1.1(c) respectively. Examples of SNI systems include stable first

order systems, lightly damped second order systems and all-pass filters. The Nyquist

plots of such SNI systems are shown in Figure 1.1(d) to Figure 1.1(f) respectively.
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Figure 1.1: Nyquist plots for NI and SNI systems, (a) – (c) are plots for NI systems
while (d) – (f) are plots for SNI systems.

In recent years, a great focus has been placed upon the study of NI systems from

both a theoretical and application side and rapid developments in this field have been

witnessed, such as, for example [32, 33, 34, 35, 36, 37, 38, 39]. Among the areas NI

systems literature specifically focuses on include robust stability analysis [34, 40, 41,

30], controller synthesis [42, 43, 44, 45, 46, 47, 48], discrete-time systems [33, 49, 50,

51], nano-positioning systems [36, 52, 53], and applications to multi-agent systems

[38, 39, 54].

The study of (robust) cooperative control of multiple NI systems is motived by
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applications where an individual NI system can not achieve a specific goal on its own,

such as controlling and ensuring stability of large vehicle platoons or carrying a large

load to a desired destination by means of cooperation among multi-link robotic arms

[55, 54, 38, 39] (see Figure 1.2).

(a) large vehicle platoon

(b) multi-link robotic arms

Figure 1.2: Examples of cooperation of NI multi-agent systems.

In this thesis, we focus on investigating multi-agent systems problems for negative

imaginary systems. Considering relevant literature, we mention [55, 54, 38, 39]. In [55],

the authors analyse the stability of a string of subsystems with NI properties and apply

the results to decentralized control of large vehicle platoons. However, the class of

systems considered in the study is limited to SISO SNI systems and the interconnection

of the subsystems is limited to a string interconnection. In [54], the authors also

study the stability of a string of subsystems but for a wider class of systems with NI

properties and apply the results to decentralized control of large vehicle platoons. The

class of systems considered in [54] are multi-input multi-output (MIMO) NI systems

with possible poles on the imaginary axis excluding poles at the origin. Still the

interconnection of the subsystems in [54] is limited to a string interconnection. In [38,

39], the authors addressed the robust output feedback consensus problem for networks

of homogeneous and heterogeneous NI systems respectively. Specifically, the issue was

addressed by reformulating the consensus problem into an internal stability problem,

owing to properties of Laplacian matrix of the network graph, and thus providing a

solution by means of NI systems robust stability results in [30, 41, 40]. Conditions were

derived that guarantee output consensus under L2 external disturbances and model

uncertainties. However, the works in [38, 39] have several limitations which will be

discussed in details in the next section.
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1.2 Inadequacy of previous research and identified

gaps in literature

Although robust output feedback consensus was investigated in [38, 39] for networks

of homogeneous and heterogeneous negative imaginary systems respectively under L2

external disturbance and model uncertainties, the work therein has several limitations.

Some of the limitations in [38, 39] and identified gaps in the field of robust cooperative

control of multiple NI systems are discussed as follows. First, the nominal plants in

[38, 39] are assumed NI but the situation, which appears due to physical considera-

tions, where the only knowledge about the system is that its perturbation belongs to

a certain class (in this case SNI perturbations) has not been considered. Second, the

derived conditions in [38, 39] which guarantee robust output consensus for networked

NI systems are only applicable when certain assumptions hold. However, there are

cases where these assumptions fail to hold, leading to a need to develop a framework

for the robust output consensus problem for networked NI systems which can handle

all situations. Third, the works in [38, 39] only deals with undirected graphs to model

the interaction among the systems. On the other hand, no previous study has in-

vestigated whether output consensus and tracking can be achieved for a certain class

of NI systems under directed communication among the systems. Finally, numeri-

cal examples provided in the cooperative control of multiple NI systems literature to

validate the associated theoretical results are limited to simulation via Matlab. The

only work known in this area to have provided experimental validation is given in [56].

Hence, literature in this area generally lacks validating the theoretical results through

experiments on real systems.

1.3 Research problems

This thesis aims at addressing the aforementioned identified gaps and limitations. Via

tools from NI systems theory and graph theory, this current PhD study will focus on

addressing the following multi-agent systems problems:

• the distributed robust stabilization problem for networked multi-agent systems

with strict negative imaginary uncertainties and communication among agents
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in the network modelled by an undirected graph with at least one self-loop;

• the robust output consensus problem for homogeneous multi-agent systems with

negative imaginary dynamics that are subject to L2 external disturbances and

model uncertainties; and communication among systems in the network modelled

by an undirected graph in a generalised framework;

• a rendezvous problem for multiple wheeled mobile robots, through the develop-

ment of cooperative control strategies for integrator NI systems with directional

information flow that is balanced and strongly connected.

1.4 Motivation for current research

1.4.1 Distributed robust stabilization problem for networked

MASs with SNI uncertainties

The motivating factors for considering to address the distributed robust stabilization

problem for networked systems with SNI uncertainties are as follows. Firstly, flexible

structures are usually modelled as infinite dimensional distributed parameter systems

[40]. It is typical, however, to use a finite dimensional model for control design pur-

pose leading to modelling errors due to unmodelled dynamics. The transfer function

of such systems from force inputs and position outputs often poses the NI property

and the associated unmodelled dynamics usually belong to the SNI class [30]. It is

vital in the control design process to take such unmodelled dynamics in to account,

otherwise these unmodelled dynamics may lead to instability and performance degra-

dation of the controlled system. Secondly, recall that in [38, 39] the nominal plants

are assumed NI. However, due to physical considerations, in some situations the only

thing known about each agent/system is that the perturbation belongs to the SNI

class. Consequently, in order to guarantee stability against this class of uncertainties

via the robust feedback stability result in [30, 41, 34, 40] a control protocol needs to

be designed such that the nominal closed-loop networked system is NI. Although the

works in [31, 47, 46, 44] address the case where a system’s perturbation is SNI, the

works therein only deal with individual systems and are not suitable for networks of

systems. Particularly in the literature on NI systems, a systematic robust static state
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feedback synthesis method for (single) systems with SNI uncertainty was proposed in

[47]. On the other hand, no previous study has addressed control synthesis in an LMI

framework for robust stability of networked systems with SNI uncertainties. Lastly,

dynamic uncertainties due to modelling error have not been much of a focus in the

literature on networked multi-agent systems. Few researchers have only considered

taking such uncertainties into account in the analysis and synthesis of distributed con-

trol protocols. Furthermore, the focus was mainly on uncertainties bounded in H∞

norm. In this context, recall that robust stability of multi-agent dynamical systems

was studied in [19] where three different types of multiplicative perturbations were

considered. Robust synchronization of uncertain multi-agent networks was addressed

in [18] and [17] with uncertainties in the form of additive perturbations in [18] and in

the form of coprime factor perturbations in [17]. Robust consensus control for multi-

agent systems involving gap metric uncertainties was investigated in [20]. It is known

[30] that, the dynamic uncertainties of NI systems are mainly characterised by phase

bounds, where the phase lies between −π and 0. Using phase information in control

design for lightly damped (i.e. highly resonant) systems is much more effective than

using gain information [47, 57]. In other words, for such lightly damped systems gain

stabilization, which is dependent on the small-gain theorem, leads to conservative de-

sign results [30, 47]. On the other hand, phase stabilization, which ensures stability

by restricting the phase of the open-loop system and by which the NI robust stability

results were established, yields more powerful, less conservative and robust control

systems [31, 57]. Consequently, all the above factors motivate the investigation of the

distributed robust stabilization problem for networked systems with SNI uncertainties

via tools from NI systems theory.

1.4.2 Robust output consensus problem for homogeneous multi-

agent systems with negative imaginary dynamics

Consensus is defined as agents reaching an agreement on a certain quantity of interest

[25]. Reaching consensus in MASs is a common and desirable collective behaviour and

has been extensively studied in the cooperative control of MASs including the study in

[38, 39] for the case where the agents are NI systems. The motivations for this current
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study comes from the importance of consensus of MAS in real-world applications [23],

the many practical systems that can be modelled as NI systems [30, 40], and the

establishment of the general internal stability results in [34] by which it is possible to

extend the work of [38].

Internal stability of interconnected systems is a fundamental requirement in control

systems design [58]. Lightly damped flexible structures with colocated position sensors

and force actuators are highly resonant dynamical systems. The modelling of such sys-

tems can often belong to the class of negative imaginary systems. Ensuring stability

of such systems in face of unmodelled dynamics is quite difficult [30, 31]. Therefore,

the literature on NI systems has paid particular attention to robust stability analysis

of interconnected NI systems [30, 41, 40, 34]. The first robust stability result for NI

systems was established in [30] for stable NI systems and was later found to be valid

for NI systems with poles on the imaginary axis excluding poles at the origin in [41].

The result in [30, 41] showed that the internal stability of two systems connected in

a positive feedback interconnection where one system is negative imaginary and the

other system is strictly negative imaginary is tested via a dc loop gain condition pro-

vided two assumptions at infinite frequency hold. Afterwards, conditions for internal

stability were proposed in [40] for NI systems with possible poles at the origin despite

being proposed under restrictive assumptions. These internal stability results were ini-

tially found useful in addressing robust consensus problems for networked NI systems.

By using these results, the robust output feedback consensus problem was addressed

in [38, 39] for networks of homogeneous and heterogeneous NI systems respectively.

Specifically, the issue was addressed by reformulating the consensus problem into an

internal stability problem, owing to properties of Laplacian matrix of the network

graph, and thus providing a solution by means of the aforementioned NI systems ro-

bust stability results in [30, 41, 40]. Conditions were derived that guarantee output

consensus under L2 external disturbances and model uncertainties. However, the re-

strictive assumptions under which the aforementioned robust consensus conditions are

applicable make the work in [38, 39] not suitable for cases where these assumptions

fail to hold. Hence, lacking conditions for all situations, it would not be possible to

determine robust output consensus for networked NI systems except for those that
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satisfy the assumptions in [38, 39]. Consequently, a framework for the robust out-

put consensus problem for networked negative imaginary systems is needed to fill this

gap in literature. Recently, new results for internal stability of a positive feedback

interconnection of an NI system and an SNI system has been developed in [34] which

generalise the existing internal stability results by removing the restrictive assump-

tions which had been previously imposed. These new results motivate this current

research, in which the robust output consensus problem for networks of homogeneous

negative imaginary systems is addressed which extends and overcomes limitations in

[38].

1.4.3 Rendezvous problem for multiple WMRs

The motivating factors for considering a rendezvous problem for multiple wheeled

mobile robots via NI systems theory are as follows. Firstly, rendezvous of multi-agent

systems is an important desirable task in cooperative control of multi-agent systems.

The rendezvous problem is closely related to the consensus problem with position being

the state of interest in rendezvous [24]. In applications where the position is the state

of interest rather than velocity, the NI systems theory is deemed effective. Moreover,

it is possible to simplify the dynamics of nonholonomic WMRs to a single integrator

model via input-output linearisation. Therefore, simple yet sophisticated control laws

for integrator NI systems can be designed in a systematic way which can then be

directly applied to WMRs. This motives the choice of the NI systems theory to tackle

the rendezvous problem for multiple nonholonomic WMRs. Secondly, recall that the

robust output consensus problem was addressed in [38] and [39], and the robust output

tracking problem was addressed in [39] for networks of NI systems. Nevertheless, the

works in [38, 39] are limited to undirected graphs when it comes to modelling the

interaction among the systems. This motivates the desire to investigate consensus

and tracking problems for certain classes of NI systems with directed information

flow among them. Finally, recall that the literature on multi-agent NI systems lacks

validation of theoretical results through experiments on real systems. This motivates

the interest of validating the developed cooperative control strategies on real-robots.
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1.5 Thesis outline

The thesis is divided into six chapters which is organized as follows.

Chapter 1: Introduction

In this chapter, a background on distributed control of networked MASs, NI systems

theory, and robust cooperative control of multiple NI systems is first given. Then,

inadequacies in previous research and identified gaps in literature are discussed. Af-

terwards, the research problems that are addressed in this thesis are stated followed by

the motivations for carrying out the current research and addressing such problems.

Chapter 2: Preliminaries

In this chapter, the necessary mathematical tools and material that underpin the de-

velopment of the work in this thesis are presented. The chapter begins with providing

some basic concepts in matrix theory followed by some basic concepts on state space

systems and linear matrix inequalities respectively. Moreover, foundational results in

negative imaginary systems theory are given in this chapter. The chapter is concluded

with material related to algebraic graph theory.

Chapter 3 : Distributed robust stabilization of networked multi-agent sys-

tems with strict negative imaginary uncertainties

In this chapter, a solution to the distributed robust stabilization problem for net-

worked multi-agent systems with strict negative imaginary uncertainties is proposed.

Via transformation techniques and under certain assumptions on the network graph

which models the communication among the agents, a result is given that simplifies the

problem under consideration. Consequently, sufficient conditions, in an LMI frame-

work, are derived to ensure the existence of control protocol parameters such that

the control protocol robustly stabilizes a networked multi-agent system in presence

of SNI uncertainties of certain DC size. An algorithm for control protocol design is

also provided and the advantages of this design algorithm are discussed. A numerical

example is then given to show the usefulness of the proposed results.
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Chapter 4: Robust output consensus of homogeneous multi-agent systems

with negative imaginary dynamics

In this chapter, a solution to the robust output consensus problem for networks of

homogeneous negative imaginary systems (with possible poles at the origin) is pro-

posed. The general internal stability results developed in [9] are utilized. By removing

certain assumptions which had been imposed earlier in the literature, necessary and

sufficient conditions that ensure robust output consensus for networks of homogeneous

NI systems under L2 external disturbances and model uncertainty are derived. It is

also shown that, when the NI systems have no poles at the origin, the derived con-

ditions specialise to those in [38] by either imposing the same two assumptions at

infinite frequency or by imposing different assumptions which had not been known

previously. Moreover, conditions that ensure robust output consensus for some special

cases are provided including specialisation to SISO NI systems. The advantages of

these specialised cases are also discussed. A detailed convergence analysis is also pro-

vided followed by two examples which demonstrate the effectiveness of the proposed

results over earlier results when the assumptions of earlier results do not hold.

Chapter 5: Cooperative control of integrator negative imaginary systems

with application to rendezvous multiple mobile robots

In this chapter, a solution to a rendezvous problem for nonholonomic wheeled mobile

robots is proposed through the development of cooperative control strategies for in-

tegrator NI systems with directional information flow that is balanced and strongly

connected. It is shown that a network of homogeneous MIMO integrators with di-

rected information flow that is balanced and strongly connected retains the NI prop-

erty. Afterwards, necessary and sufficient conditions are derived that guarantee output

consensus and output tracking for strongly connected, balanced and directed networks

of integrators subject to energy-bounded disturbances using the NI internal stability

theorems. Experimental results from both real-robot and simulation are then pro-

vided to validate the effectiveness of the proposed theoretical results in solving the

rendezvous problem for multiple wheeled mobile robots.
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Chapter 6: Conclusions

In this chapter, the contributions of this thesis are summarised and possible directions

for future research are discussed.
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Chapter 2

Preliminaries

This chapter includes the necessary mathematical tools and material that underpin

the development of the work in this thesis. The main topics covered in this chapter

are as follows. First, some basic matrix theory is introduced in Section 2.1. Then,

some basic concepts on state space systems and linear matrix inequalities are covered

in Section 2.2 and Section 2.3 respectively. Foundational results in negative imaginary

systems theory is given in Section 2.4. Finally, substantial material on algebraic graph

theory is presented in Section 2.5.

2.1 Matrix Theory

In this section, basic material on matrix theory is covered. Material covered in this

section can be found in [59, 60, 61, 62, 63].

2.1.1 Miscellaneous

The null space, range and rank of a matrix are defined in the following three definitions

respectively.

Definition 2.1 ([59, 60]). Let A ∈ Cm×n. Then, the null space of A is defined as the

set of all vectors x for which Ax = 0. That is

N(A) = {x ∈ Cn : Ax = 0}.

Definition 2.2 ([59, 60]). Let A ∈ Cm×n. Then, the range of A is defined as

R(A) = {y ∈ Cm : y = Ax, x ∈ Cn}.
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Definition 2.3 ([60, 61]). Let A ∈ Cm×n. Then rank A is defined as

rank(A) = dim(R(A)).

Since rank (A)= rank (A∗), then rank (A) equals the maximum number of independent

rows or columns.

Diagonal and block diagonal matrices are defined below.

Definition 2.4 ([62]). A matrix A ∈ Cn×n is diagonal if aij = 0 for i 6= j.

Definition 2.5 ([62]). A block diagonal matrix A ∈ Cn×n is of the form

A =




A11 0
. . .

0 Akk


 = diag(A11, . . . , Akk)

in which Aii ∈ Cni×ni, i = 1, . . . , k,
∑k

i=1 ni = n, and all blocks above and below the

block diagonal are zero blocks.

Unitary and Orthogonal matrices are defined as follows.

Definition 2.6 ([62, 61]). A matrix A ∈ Cn×n is unitary if A∗A = AA∗ = I. A matrix

A ∈ Rn×n is orthogonal if ATA = AAT = I.

The definitions of Hermitian, symmetric and semidefinite matrices are given below.

Definition 2.7 ([62]). A matrix A ∈ Cn×n is said to be Hermitian if A∗ = A. A

matrix A ∈ Rn×n is said to be symmetric if AT = A.

Definition 2.8 ([62, 61]). A symmetric matrix A ∈ Rn×n is

1. positive definite if and only if xTAx > 0 for all nonzero x ∈ R and it is written

as A > 0.

2. positive semidefinite if and only if xTAx ≥ 0 for all nonzero x ∈ R and it is

written as A ≥ 0.

3. negative definite if −A is positive definite and it is written as A < 0.

4. negative semidefinite if −A is positive semidefinite and it is written as A ≤ 0.
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2.1.2 Kronecker product

The Kronecker product is an important notion that has been extensively used through-

out this thesis to express the collective networked system. Thus, the definition and

properties of Kronecker product are summarized below and can be found in [59, 60, 61].

Definition 2.9. Let A ∈ Rm×n and B ∈ Rp×q, then the Kronecker product of A and

B is defined as the matrix

A⊗B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB



∈ Rmp×nq.

Lemma 2.1. Let A, B, C and D be of appropriate dimensions. Then, the following

properties hold:

1. (Im ⊗ In) = Imn,

2. (In ⊗ A) = diag(A,A, · · · , A),

3. (A⊗ In) =




a11In a12In · · · a1mIn
...

...
...

am1In am2In · · · ammIn


,

4. (µA)⊗B = A⊗ (µB) = µ(A⊗B), where µ is a scalar,

5. (A⊗B)(C ⊗D) = (AC)⊗ (BD),

6. (A⊗B)T = AT ⊗BT ,

7. (A⊗B)−1 = A−1 ⊗B−1,

8. A⊗ (B + C) = A⊗B + A⊗ C.

2.1.3 Singular value decomposition

The singular value decomposition (SVD) is a powerful tool in matrix analysis and

applications. It can be used in analysing gains and directionality in multi-variable
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systems [63]. One of the advantages of SVD is that it can be applied to every matrix.

That is, the SVD is not limited to square matrices and can also be applied to non-

square matrices. More details on SVD can be found in [61, 60, 63].

Theorem 2.1. [61, 60]. Let A ∈ Cm×n. Then there exists unitary matrices

U =
[
u1, u2, . . . , um

]
∈ Cm×m

V =
[
v1, v2, . . . , vn

]
∈ Cn×n

such that

A = UΣV ∗, Σ =


Σ1 0

0 0




where

Σ1 =




σ1 0 · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σp




σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, p = min{m,n}

and σi is the ith singular value.

The columns of U are called the left singular vectors of A while the columns of V

are called the right singular vectors of A.

2.1.4 Eigenvalues and Eigenvectors

The eigenvalues of the Laplacian matrix of a network graph play an important role

in consensus control analysis and design. Also, the eigenvalues and eigenvectors of

the Laplacian matrix have been used in chapter 4 of this thesis to determine the final

convergence of a multiple NI systems in consensus. Hence, a brief explanation of the

concept of eigenvalues and eigenvectors is given below. More details can be found in

[62, 61].

Definition 2.10 ([62]). Let A ∈ Cn×n. If a scalar λ and a nonzero vector x satisfying

the equation

Ax = λx, x ∈ Cn, x 6= 0, λ ∈ C
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then λ is called an eigenvalue of A and x is called an eigenvector of A associated with

λ.

Definition 2.11 ([62, 61]). The spectrum of A ∈ Cn×n is the set of eigenvalues of A,

i.e, the set of all roots of the characteristic polynomial det(A− λI) = 0.

A nonzero vector x ∈ Cn is a right eigenvector of A corresponding to λ an eigenvalue

of A if

Ax = λx.

In a similar manner, a nonzero vector y ∈ Cn is a left eigenvector of A corresponding

to λ an eigenvalue of A if

y∗A = λy∗.

The notion of algebraic and geometric multiplicity is given as follows.

Definition 2.12 ([61]). Let λ be an eigenvalue of A. The algebraic multiplicity is the

number of times λ appears as a root of the characteristic polynomial det(A− λI) = 0.

The geometric multiplicity of λ is the number of associated independent eigenvectors

which is equal to dimension of the nullspace of A− λI; dimN(A− λI).

Generally, the geometric multiplicity is less than or equal to the algebraic multi-

plicity. In fact if the geometric multiplicity is less than its algebraic multiplicity, then

A is said to be defective. If for every eigenvalue of A, the geometric multiplicity is

equal to its algebraic multiplicity, then A is said to be diagonalizable.

2.1.5 Jordan block

Every complex matrix can be transformed into a Jordan canonical form. The notion

of Jordan canonical form is given in the following theorem.

Theorem 2.2. [61, 62] Let A ∈ Cn×n with {λ1, λ2, . . . , λq−1, λq} distinct eigenvalues.

Then there exists a nonsingular matrix T ∈ Cn×n such that

T−1AT = J = diag(J1, . . . , Jq)
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where each Jordan block matrix Ji ∀i ∈ {1, . . . , q} has the form

Ji =




λi 1 0 . . . 0

0 λi 1 0
...

...
. . . λi

. . . . . .

. . . 1 0
...

. . . λi 1

0 . . . . . . 0 λi




.

2.2 State space systems

This section presents some basic concepts in linear control systems theory. The mate-

rial in this section can be found in [60].

Suppose that P (s) is a real-rational transfer matrix which is proper. Then a state

space model (A,B,C,D) such that

P (s) =


 A B

C D


 = C(sI − A)−1B +D

is said to be a realisation of P (s). The A, B, C, and D are real constant matrices

with appropriate dimensions.

Definition 2.13. A matrix A is said to be stable or Hurwitz if all its eigenvalues are

in the open left half plane, that is, all its eigenvalues have strictly negative real part.

Theorem 2.3. Let A ∈ Rn×n and B ∈ Rn×q, then the following are equivalent:

i) (A,B) is controllable.

ii) The matrix
[
A− λI B

]
has full row rank for all λ in C.

iii) For any eigenvalue λ of A and associated left eigenvector x such that x∗A = x∗λ,

x∗B 6= 0.

Theorem 2.4. Let A ∈ Rn×n and C ∈ Rq×n, then the following are equivalent:

i) (C,A) is observable.

ii) The matrix


A− λI

C


 has full column rank for all λ in C.
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iii) For any eigenvalue λ of A and associated right eigenvector y such that Ay = λy,

Cy 6= 0.

Definition 2.14. A state space realisation (A,B,C,D) of P (s) is said to be minimal

if (A,B) is controllable and (C,A) is observable.

2.3 Linear matrix inequalities

Linear matrix inequalities (LMIs) are a powerful tool that are used to formulate a wide

range of control systems problems which can be solved numerically (when difficult to

solve analytically) in an efficient way using, for example, interior point techniques

[64, 65, 66]. In chapter 3 of this thesis, we use an LMI approach to address the

distributed robust stabilization problem for networked multi-agent systems with strict

negative imaginary uncertainties. Therefore, some basics about LMIs are gathered

below (see [64, 65, 66] for more details).

Definition 2.15 ([64]). A linear matrix inequality is a constraint of the form

F (x) = F0 +
n∑

i=1

xiFi > 0 (2.1)

where x = [x1, . . . , xn]T ∈ Rn is the variable and Fi = F T
i ∈ Rn×n, i = 0, . . . , n are

given symmetric matrices.

The LMI (2.1) is a convex constraint on x. Thus, its solution set is a convex subset

and finding a solution to the LMI (2.1) is called a feasibility problem [65]. For non-

strict LMIs, the inequality (2.1) is replaced by a non-strict one, i.e., F (x) ≥ 0. Also,

the inequality (2.1) can be rewritten as −F (x) < 0. Furthermore, multiple LMI

constraints can be considered as a single LMI constraint since F1(x) > 0, F2(x) >

0, . . . , Fk(x) > 0 is equivalent to F (x) = diag(F1(x), . . . , Fk(x) > 0. In a wide variety

of control problems the decision variable is a matrix variable instead of a scalar. Thus,

the inequality(2.1) is considered as F (X) > 0 where X = XT ∈ Rn×n.

When a control systems problem is formulated in terms of LMIs, the problem can be

solved exactly by efficient convex optimization algorithms, known also as ”LMI solvers”

[65]. YALMIP [67] is a modelling language used to define and solve optimization

problems. Moreover, SeDuMi [68] is one of the optimization solvers that YALMIP
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depends upon to solve an optimization problem. In chapter 3 of this thesis, we use

YALMIP and SeDuMi to solve the LMI constraints to obtain a feasible solution.

2.4 Negative Imaginary Systems

In this section we recall some foundational results in the NI systems theory which have

been instrumental in this thesis.

Negative imaginary systems with poles on the imaginary axis excluding poles at

the origin are defined as follows.

Definition 2.16 ([41]). A square, real, rational, proper transfer function matrix P (s)

is said to be negative imaginary if

1. P (s) has no poles at the origin and in <[s] > 0;

2. j[P (jω) − P (jω)∗] ≥ 0 for all ω ∈ (0,∞) except values of ω where jω is a pole

of P (s);

3. if jω0 with ω0 ∈ (0,∞) is a pole of P (s), then it is a simple pole and the residue

matrix K0 = lims→jω0(s− jω0)jP (s) is Hermitian and positive semidefinite.

The definition of NI systems has been extended to include poles at the origin in

[40]. Negative imaginary systems (with possible poles at the origin) are defined as

follows.

Definition 2.17 ([40]). A square, real, rational, proper transfer function matrix P (s)

is said to be negative imaginary if

1. P (s) has no poles in <[s] > 0;

2. j[P (jω) − P (jω)∗] ≥ 0 for all ω ∈ (0,∞) except values of ω where jω is a pole

of P (s);

3. if jω0 with ω0 ∈ (0,∞) is a pole of P (s), then it is a simple pole and the residue

matrix K0 = lims→jω0(s− jω0)jP (s) is Hermitian and positive semidefinite;

4. if s = 0 is a pole of P (s), then lims→0 s
kP (s) = 0 ∀k ≥ 3 and lims→0 s

2P (s) is

Hermitian and positive semidefinite.
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Strictly negative imaginary systems are a subset of the NI class. Strictly negative

imaginary systems are defined as follows.

Definition 2.18 ([30]). A square, real, rational, proper transfer function matrix K(s)

is said to be strictly negative imaginary if

1. K(s) has no poles in <[s] ≥ 0;

2. j[K(jω)−K(jω)∗] > 0 for all ω ∈ (0,∞).

Let P (s) be an NI system without poles at the origin and K(s) be an SNI system,

then the following properties hold (see [30] and also [41, Cor. 3]):

Property 2.1. P (0) ≥ P (∞),

Property 2.2. K(0) > K(∞).

The following lemma is used to check whether a system belongs to the class of NI

or not.

Lemma 2.2 ([47]). Let (A,B,C,D) be a state space realization of P (s) ∈ Rm×m

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m with m ≤ n. If det(A) 6= 0,

D = DT and there exists a real matrix Y = Y T > 0 such that

AY + Y AT ≤ 0 and B + AY CT = 0, (2.2)

then P (s) is negative imaginary.

The following theorem is the first main robust stability result for NI systems found

in literature. It is valid for NI systems with poles on the imaginary axis excluding

poles at the origin. The result states that a necessary and sufficient condition for

internal stability of two systems interconnected via positive feedback with one system

negative imaginary and the other strict negative imaginary is that their DC loop gain

be less than unity provided two conditions at infinite frequency are also satisfied.

Theorem 2.5 ([30, 41]). Given a negative imaginary transfer function matrix P (s)

and a strictly negative imaginary transfer function matrix ∆(s) that also satisfy ∆(∞) ≥
0 and P (∞)∆(∞) = 0. Then the positive feedback interconnection [P (s),∆(s)] as

shown in Figure 2.1 is internally stable if and only if λ̄(P (0)∆(0)) < 1.
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P (s)

∆(s)
+

+

Figure 2.1: Positive feedback interconnection of P (s) and ∆(s).

The following lemma characterises robust stability for NI systems in the same form

as the small gain theorem. This result is a corollary to the principal theorem stated

in the literature (also stated above and can be found in [30, Th. 5] or [41, Th. 1]). It

was first proposed in [30] for stable NI systems and later shown to be also valid for

marginally stable NI systems in [41].

Lemma 2.3 ([30, 41]). Given γ > 0 and a negative imaginary transfer function matrix

P (s). Then the positive feedback interconnection [∆(s), P (s)] is internally stable for all

strict negative imaginary transfer function matrices ∆(s) satisfying ∆(∞)P (∞) = 0,

∆(∞) ≥ 0 and λ̄ (∆(0)) < (1/γ) (respectively, ≤ (1/γ)) if and only if λ̄ (P (0)) ≤ γ

(respectively, < γ).

The following lemma provides an internal stability result when the NI system has

a single pole at the origin.

Lemma 2.4 ([40]). Let the transfer function matrix K(s) be SNI and the strictly proper

transfer function matrix P (s) be NI. Define P2 = lim
s→0

s2P (s), P1 = lim
s→0

s
(
P (s)− P2

s2

)
,

and P0 = lim
s→0

(
P (s) − P2

s2
− P1

s

)
. Let P2 = 0 and P1 6= 0. Factorise P1 = F1V

T
1

with F1 and V1 having full column rank such that V T
1 V1 = I. Suppose that N(P T

1 ) ⊆
N(P T

0 ). Then the closed-loop positive feedback interconnection between P (s) and K(s)

is internally stable if and only if

F T
1 K(0)F1 < 0. (2.3)
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2.5 Algebraic graph theory

Algebraic graph theory is fundamental in the study of cooperative and consensus

control of multi-agent systems. In this section, we present some substantial knowledge

on graph theory which has been instrumental in this thesis. Detailed material on

graph theory can be found in [6, 26].

Graphs are used to model information exchange among agents in a network. The

vertices (also known as nodes) of a graph represent the agents while the edges repre-

sent the communication topology (information exchange) among agents. Graphs are

categorized as directed or undirected. Furthermore, undirected graphs can either be

allowed to have self-loops or not be allowed to have self-loops. Figure 2.2 shows three

graphs with different communication topologies.

v3

v1

v2

(a)

v3

v1

v2

(b)

v3

v1

v2

(c)

Figure 2.2: Network graphs with different topologies. (a) Undirected graph without
self-loops. (b) Undirected graph with a self-loop. (c) Directed graph.

The information flow is bidirectional in an undirected graph whereas directional in

a directed graph. Directed communication among agents means that some agents can

only receive information while others can only send information to their neighbouring

agents. On the other hand, undirected communication means that each agent can both

receive and send information to its neighbouring agents. This information can be either

the state measurements of agents if available, or the output measurements of agents

when the state measurements are not available. If a failure in the communication

link among agents occurs (which means additional or removal of some edges from the

graph) the network topology is known as switching topology otherwise it is a fixed

topology. Furthermore, the dynamics of agents in a network can all be the same, in
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such case the network is known as a homogeneous network or they may differ from

each other, in this case the network is known as a heterogeneous network.

In what follows, a detailed description about undirected and directed graphs is

given including the adjacency and Laplacian matrices which play an important role in

solving consensus problems.

.

2.5.1 Undirected graphs

An undirected graph G = (V , E) consists of a non-empty finite vertex set V = {v1, v2, . . . , vN}
and an edge set E ⊂ V × V of unordered pairs of vertices, called edges. An edge in G
is denoted by (vi, vj). If (vi, vj) ∈ E , then vertices (i.e., agents) vi and vj are adjacent

(or neighbours) and can obtain information from each other. The set of neighbours of

vertex vi is defined as Ni = {vj ∈ V : (vj, vi) ∈ E}. An edge (vi, vi) is called a self-loop.

A loop around vertex vi means that agent vi has access to its own absolute measure-

ments. A graph is said to be simple if it contains no self-loops and no repeated edges.

For simple graphs, self edges are not allowed, that is, (vi, vi) /∈ E . A path in a graph

from vi to vj is a sequence of edges of the form (vi, vi+1), (vi+1, vi+2), . . . , (vj−1, vj). An

undirected graph is connected if there is an undirected path between every pair of dis-

tinct vertices. The adjacency matrix A = [aij] ∈ RN×N of G with self-loops is defined

as aij = aji = 1 if (vi, vj) ∈ E , aii = 1 if vi has a self-loop, and 0 otherwise. The

adjacency matrix A = [aij] ∈ RN×N of G with no self-loops is defined as aij = aji = 1

if (vi, vj) ∈ E , 0 otherwise. The Laplacian matrix L = [lij] ∈ RN×N of G is defined as

lij = −aij, for i 6= j and lii =
∑N

j=1 aij for all i ∈ {1, . . . , N}. Based on the adjacency

matrix, this definition can fit for both simple graphs and for graphs with self-loops.

The notation L̂ is hereafter used to indicate the Laplacian matrix associated with

a graph with self-loops whilst the notation L is used to indicate the Laplacian matrix

associated with graphs with no self-loops.

It is well known that L is symmetric and has nonnegative eigenvalues when the

graph is undirected, i.e., L is positive semidefinite. Furthermore, for undirected graphs,

zero is a simple eigenvalue of L and the associated eigenvector is 1N if and only if the

undirected graph is connected [26, 25]. Let µi be the ith eigenvalue of an L associated

with an undirected and connected graph. Then the eigenvalues of L can be arranged
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as

0 = µ1 < µ2 ≤ µ3 ≤ · · · ≤ µN , (2.4)

and we denote λ̄(L) as the largest eigenvalue of L and λ2(L) as the second smallest

eigenvalue of L, that is

λ̄(L) = µN , λ2(L) = µ2. (2.5)

The following lemma states that the Laplacian matrix associated with G with self-loops

is positive definite when G is connected.

Lemma 2.5 ([69]). For a graph with at least one self-loop, the Laplacian matrix L̂ is

positive definite, if the graph is connected.

2.5.2 Directed graphs

A directed graph G = (V , E) consists of a non-empty finite vertex set V = {v1, v2, . . . , vN}
and an edge set E ⊂ V × V of ordered pair of vertices, called edges. An edge

in G is denoted by (vi, vj). If (vi, vj) ∈ E , then agent vj can obtain information

from agent vi ,but not necessarily vice versa. The set of neighbours of vertex vi

is defined as Ni = {vj ∈ V : (vj, vi) ∈ E}. Self edges are not allowed, that is,

(vi, vi) /∈ E . A directed path in a graph from vi to vj is a sequence of edges of the form

(vi, vi+1), (vi+1, vi+2), . . . , (vj−1, vj). A directed graph is strongly connected if there

is a directed path from every vertex to every other vertex. The adjacency matrix

A = [aij] ∈ RN×N of G is defined as aij = 1 if (vj, vi) ∈ E , while aij = 0 if (vj, vi) /∈ E .

The Laplacian matrix L = [lij] ∈ RN×N of G is defined as lii =
∑

j 6=i aij and lij = −aij
for all i 6= j. A graph is called balanced if

∑N
j=1 aij =

∑N
j=1 aji for all i.

Lemma 2.6 ([7, 70]). If G is strongly connected, then its Laplacian L satisfies:

1. rank(L) = N − 1;

2. zero is a simple eigenvalue of L and 1N is the corresponding eigenvector, i.e.

L1N = 0N and the remaining N − 1 eigenvalues all have positive real parts.

Lemma 2.7 ([7]). A directed graph G is balanced if and only if 1TNL = 0TN .

Lemma 2.8 ([71]). Let G be a strongly connected and balanced graph. Then, L+LT ≥
0 (i.e. positive semidefinite) with zero being its simple eigenvalue.
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Chapter 3

Distributed robust stabilization of

networked multi-agent systems

with strict negative imaginary

uncertainties

3.1 Introduction

In control design, simplified mathematical models are typically used to model real

physical systems. This results in discrepancies between the true physical system and

the simplified mathematical model which are know as uncertainties (modelling errors).

In the control design process, it is vital to take such uncertainties into account so as

not to lead to adverse effects such as instability of the controlled system. As a result,

stability of a closed-loop system in face of such uncertainties is a fundamental require-

ment in robust control. In networked multi-agent systems the problem of ensuring

stability of the networked system in face of uncertainties in the dynamics of agents is

much more complicated due to the additional factors that need to be considered in

control protocol design such as the interaction among the agents. Thus, it is worth

the effort to consider the study of such networked multi-agent systems problems. We

here consider the distributed robust stabilization problem for networked multi-agent

systems with SNI uncertainties. Recall that the problem of ensuring a certain collec-

tive behaviour in the presence of dynamic uncertainties due to modelling errors has
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not been much of a focus in the literature on networked multi-agent systems with

the few published studies in [19, 20, 18, 17] being limited to uncertainties bounded

in H∞ norm (gain bound). However, in systems where the dynamical uncertainties

are characterised by phase bounds, ensuring stability by phase stabilization methods is

typical and lead to less conservative design compared with the use of gain stabilization

methods [31, 57]. Many practical systems posses the NI properties such as for example

lightly damped mechanical systems [30]. The dynamical uncertainties of NI systems

typically belong to the SNI class and are mainly characterised by phase bounds. Thus

one can effectively use the NI robust stability results, which were established based on

phase stabilization, to deal with stability of systems with SNI uncertainties. Hence, we

utilize the NI robust stability results in [30, 41] in addressing the considered distributed

robust stabilization problem.

In this chapter, a solution to the distributed robust stabilization problem of net-

worked multi-agent systems with SNI uncertainties is proposed. To address the prob-

lem, tools from negative imaginary systems theory and graph theory are utilized. Two

main results are presented in this chapter. For the first result, it is shown that, under

certain assumptions on the network graph, a state, input and output transformation

preserves the NI property of the network. This result simplifies the protocol synthesis

procedure. For the second result which is based on the first one, sufficient conditions

in an LMI framework are derived that ensure the existence of control protocol param-

eters such that the control protocol robustly stabilizes a networked multi-agent system

in presence of SNI uncertainties of certain DC size. Moreover, the synthesised control

protocol is shown to ensure robust stability when variations in the network topology

occur. An example is provided to show the effectiveness of the proposed results.

3.2 Problem Formulation

Consider a group of N linear uncertain agents. The dynamics of the ith agent are

described by

ẋi(t) = Axi(t) +B1wi(t) +B2ui(t),

zi(t) = C1xi(t),

ŵi(s) = ∆i(s)ẑi(s),

(3.1)
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where xi(t) ∈ Rn, wi(t) ∈ Rm, ui(t) ∈ Rp, and zi(t) ∈ Rm are the state, disturbance,

control input and controlled output of the ith agent, respectively with m ≤ n. The

matrices A ∈ Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×p, C1 ∈ Rm×n are known constant matrices.

The transfer function matrix ∆i(s) represents the uncertainty in the dynamics of the

ith agent where ŵi(s) and ẑi(s) are the Laplace transform of wi(t) and zi(t) respectively.

Suppose that the uncertainty in the dynamics of each agent satisfies the following

property and conditions:

Assumption 3.1. For all i ∈ {1, . . . , N}, the uncertainty ∆i(s) is strict negative

imaginary and satisfies ∆i(∞) ≥ 0 and λ̄(∆i(0)) ≤ (1/γ), where γ > 0 is a pre-

specified number.

The uncertainty thus gives rise to the heterogeneity of the multi-agent system.

Following [69], the control protocol for the ith agent is

ui(t) = cK

(
N∑

j=1

aij(xi(t)− xj(t)) + aiixi(t)

)
, (3.2)

where c > 0 is the coupling strength to be selected, K ∈ Rp×n is the control feedback

gain matrix to be designed and aij are the elements of the adjacency matrix with

aii = 1 ∀i ∈ {1, . . . , q}, and aii = 0 ∀i ∈ {q + 1, . . . , N}. This protocol structure

means that each agent receives the sum of relative state measurements with respect

to its neighbours. In addition, a subset of agents receive their own absolute state

measurements. Without loss of generality, it is assumed that the first q (q � N) agents

have access to their own absolute state measurements. Consequently, the network

graph that models the information exchange among the agents satisfies the following

assumption.

Assumption 3.2. The graph is connected, undirected and at least one vertex has a

self-loop.

Dropping time dependency and Laplace variable dependency where it is clear from

the context, it is clear that agent dynamics (3.1) can be rewritten as

ẋ = (IN ⊗ A)x+ (IN ⊗B1)w + (IN ⊗B2)u,

z = (IN ⊗ C1)x,

ŵ = ∆(s)ẑ,

(3.3)
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and control law (3.2) can be rewritten as

u = (cL̂ ⊗K)x, (3.4)

where x =
[
xT1 , . . . , x

T
N

]T
∈ RnN , w =

[
wT1 , . . . , w

T
N

]T
∈ RmN , u =

[
uT1 , . . . , u

T
N

]T
∈

RpN , z =
[
zT1 , . . . , z

T
N

]T
∈ RmN , ∆(s) = diag(∆1(s), . . . ,∆N(s)), ŵ is the Laplace

transform of w, ẑ is the Laplace transform of z and L̂ ∈ RN×N is the Laplacian matrix

associated with G. By applying protocol (3.4) (or equivalently (3.2) to each agent i

in (3.1)) to the uncertain agents (3.3), the resulting uncertain closed-loop networked

multi-agent system becomes

ẋ =
(

(IN ⊗ A) + (cL̂ ⊗B2K)
)
x+ (IN ⊗B1)w,

z = (IN ⊗ C1)x,
(3.5)

and

ŵ = ∆(s)ẑ. (3.6)

Note that ∆(s) is SNI since each ∆i(s), i ∈ {1, . . . , N} is SNI and satisfies ∆(∞) ≥ 0

and λ̄(∆(0)) ≤ 1/γ by noting that λ̄(∆(0)) = max
i=1,...,N

λ̄(∆i(0)) ≤ 1/γ. The transfer

function matrix of the nominal closed-loop networked multi-agent system from w to z

is strictly proper and given by

Gcl(s) = Ccl(sInN − Acl)−1Bcl, (3.7)

where Acl = (IN ⊗ A) + (cL̂ ⊗ B2K), Bcl = (IN ⊗ B1), Ccl = (IN ⊗ C1) and has an

associated DC gain of

λ̄(Gcl(0)) = λ̄(Ccl(−Acl)−1Bcl). (3.8)

The uncertain networked multi-agent system is depicted in Figure 3.1. According to

Lemma 2.3, we can define the distributed robust stabilization problem as follows.

Definition 3.1. Given γ > 0, control protocol (3.2) is said to robustly stabilize the

networked system with agent dynamics (3.1) against any strict negative imaginary

uncertainty satisfying Assumption 3.1 if it is designed such that the transfer function

matrix (3.7) is negative imaginary and satisfies the DC gain condition λ̄(Gcl(0)) < γ.
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Generalised

plant

(cL̂ ⊗K)

∆(s)

z w

x u

∆(s)

Gcl(s)

wz

Figure 3.1: Networked multi-agent system with SNI uncertainty.

3.3 Problem reduction and robust protocol synthe-

sis

In order to address the distributed robust stabilization problem, the following technical

lemmas are required.

Lemma 3.1. Let U ∈ RN×N be any orthogonal matrix, R(s) ∈ RNm×Nm and let

R̃(s) = (UT ⊗ Im)R(s)(U ⊗ Im). Then the following hold:

1. R̃(s) is NI (resp. SNI) if and only if R(s) is NI (resp. SNI).

2. λ̄(R̃(0)) = λ̄(R(0)).

Proof. The proof is straight forward from the definition of NI (SNI) systems and

properties of orthogonal matrices.

Lemma 3.2 ([39]). diag(R1(s), . . . , RN(s)) is NI if and only if Ri(s) are all NI for

i ∈ {1, . . . , N}.

The following lemma states that under certain assumptions on the network graph,

the NI property is preserved due to transformation.

Lemma 3.3. Given γ > 0 and assume that the network topology G satisfies Assump-

tion 3.2. Let L̂ be the Laplacian matrix of G and let λi for all i ∈ {1, . . . , N} be
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the eigenvalues of L̂. Then, the transfer function matrix (3.7) of the networked sys-

tem (3.5) is negative imaginary and satisfies λ̄(Gcl(0)) < γ if and only if for all

i ∈ {1, . . . , N}, the transfer functions G̃i(s) of the following N isolated subsystems

x̃i = (A+ cλiB2K)x̃i +B1w̃i,

z̃i = C1x̃i,
(3.9)

are all negative imaginary and satisfy λ̄(G̃i(0)) < γ simultaneously, where G̃i(s) =

C1(sI − A− cλiB2K)−1B1.

Proof. The idea of the proof is to transform the networked system (3.5) into a set of

block diagonal systems

˙̃x = ((IN ⊗ A) + (cΛ⊗B2K)) x̃+ (IN ⊗B1)w̃,

z̃ = (IN ⊗ C1)x̃.
(3.10)

in a similar manner to the decomposition approach used in [72, 69, 18, 17] by letting

x̃ = (UT ⊗ In)x, w̃ = (UT ⊗ Im)w, z̃ = (UT ⊗ Im)z and decomposing L̂ as UT L̂U =

Λ = diag(λ1, λ2, . . . , λN) where U ∈ RN×N is an orthogonal matrix. Consequently,

the transfer function matrix of the transformed system (3.10) from w̃ to z̃, which we

denote G̃cl(s), can be expressed as

G̃cl(s) = diag
(
G̃1(s), . . . , G̃N(s)

)
= (UT ⊗ Im)Gcl(s)(U ⊗ Im). (3.11)

The desired conclusion then follows from Lemmas 3.1 and 3.2.

Remark 3.1. According to Definition 3.1, the distributed robust stabilization problem

is solved by designing a control protocol such that the transfer function matrix Gcl(s)

of the large scale nominal closed-loop networked system is NI and satisfies the DC

gain condition. Lemma 3.3 states that a necessary and sufficient condition for Gcl(s)

to be NI and satisfy the DC gain condition is that N reduced-order subsystems, where

each subsystem has the order of a single agent, satisfy the NI property and DC gain

condition simultaneously. Consequently, the previous lemma plays a role in facilitating

and simplifying the design procedure where the protocol parameters can be designed

based on the reduced-order systems.

Remark 3.2. Reduction of the problem as stated in the previous remark is appli-

cable since the uncertainty resulting from transformation remains SNI. If we denote
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the uncertainty of the transformed system as shown in Figure 3.2 by ∆̃(s), we have

∆̃(s) = (UT⊗Im)∆(s)(U⊗Im). Since ∆(s) is SNI and satisfies ∆(∞) ≥ 0, λ̄(∆(0)) ≤
1/γ, then according to Lemma 3.1 so will ∆̃(s) be SNI and satisfy the corresponding

conditions. As a result, under Assumption 3.2 of the network topology, internal sta-

bility of the system in Figure 3.1 is equivalent to the internal stability of the system in

Figure 3.2.

∆̃(s)

G̃cl(s)

w̃z̃

Figure 3.2: Transformed system.

Remark 3.3. We now give a justification for using graphs with at least one self-loop

in this work instead of simple graphs as used in for example [18, 17]. Although the

work in [18, 17] assumes simple graphs in their approach to robust synchronization,

the results therein are suitable only for the case where the dynamics of the nominal

plants have no poles in the open-right half plane. That is, the work therein restricts

the matrix A from containing eigenvalues with positive real parts. In this work, we

impose no such restrictions on the eigenvalues of matrix A. Thus, the graph which

models the network topology cannot be simple but instead must contain at least one

self-loop, as assumed in Assumption 3.2, because a simple connected graph will have

one zero eigenvalue (see e.g.,[73]) and thus the subsystem in (3.9) corresponding to

λ1 = 0 cannot be controlled to satisfy the NI property.

Lemma 3.3 reveals that for networked dynamical system (3.5) to satisfy the NI

property, it suffices to find a positive scalar c and a gain matrix K such that sys-

tems (3.9) satisfy the NI property simultaneously.
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Theorem 3.1 below gives sufficient conditions under which a c > 0 and a feedback

gain matrix K exist such that the networked multi-agent system is robustly stabilized

by control protocol (3.2).

Theorem 3.1. Given γ > 0, a network topology that satisfies Assumption 3.2 and an

uncertain multi-agent system (3.1) with C1B2 = 0, m ≤ n and (A,B2) controllable. If

there exists a matrix Y = Y T > 0 and a scalar τ > 0 such that
AY + Y AT − τB2B

T
2 B1 + AY CT

1

BT
1 + C1Y A

T 0


 ≤ 0, (3.12)

C1Y C
T
1 < γI, (3.13)

det(AY − 1

2
τB2B

T
2 ) 6= 0, (3.14)

then there exists a feedback gain matrix K and a scalar c ≥ τ
min

i∈{1,...,N}
λi

such that control

protocol (3.2) robustly stabilizes the networked multi-agent system in the presence of

any strict negative imaginary uncertainty satisfying Assumption 3.1. Moreover, a

suitable feedback gain matrix K is given by K = −0.5BT
2 Y
−1.

Proof. Since the LMI condition (3.12) holds for some matrix Y > 0 and some scalar

τ > 0 and since c ≥ τ
λi

for all i ∈ {1, . . . , N}, it follows that for all i ∈ {1, . . . , N}

AY + Y AT − cλiB2B

T
2 B1 + AY CT

1

BT
1 + C1Y A

T 0


 ≤


AY + Y AT − τB2B

T
2 B1 + AY CT

1

BT
1 + C1Y A

T 0


 ≤ 0 (3.15)

as λi > 0 for all i ∈ {1, . . . , N}. This implies that

AY + Y AT − cλiB2B
T
2 ≤ 0, (3.16a)

B1 + AY CT
1 = 0. (3.16b)

Furthermore, since C1B2 = 0 by assumption, then (3.16b) can be written as

B1 + AY CT
1 − 0.5cλiB2B

T
2 C

T
1 = 0. (3.17)

Now let K = −0.5BT
2 Y
−1. Via simple algebraic manipulation, (3.16a) and (3.17)

become

(A+ cλiB2K)Y + Y (A+ cλiB2K)T ≤ 0, (3.18a)

B1 + (A+ cλiB2K)Y CT
1 = 0, (3.18b)
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for all i ∈ {1, . . . , N}. Furthermore, (3.14) implies

det(A− 0.5τB2B
T
2 Y
−1) 6= 0

which is equivalent to

det(A+ τB2K) 6= 0. (3.19)

Now since cλi ≥ τ for all i ∈ {1, . . . , N}, it can be written as cλi = τ + αi where

αi ≥ 0. Then,

det(A+ cλiB2K) = det(A+ τB2K + αiB2K)

= det(A+ τB2K) det(I + (A+ τB2K)−1αiB2K). (3.20)

We need to show that det(A+ cλiB2K) 6= 0 for all i ∈ {1, . . . , N}. Towards this end,

det(A+ cλiB2K) 6= 0 ⇔ det(I + (A+ τB2K)−1αiB2K) 6= 0 (3.21)

for all i ∈ {1, . . . , N}. It is easily seen that det(A + cλiB2K) 6= 0 for αi = 0, i ∈
{1, . . . , N}. For αi > 0, i ∈ {1, . . . , N} we have

det(I + (A+ τB2K)−1αiB2K) = αni det

(
1

αi
I + (A+ τB2K)−1B2K

)
(3.22)

and is nonzero if and only if 1
αi
I + (A+ τB2K)−1B2K is nonsingular which is satisfied

when <{λj[(A + τB2K)−1B2K]} ≥ 0 ∀j since 1/αi for i ∈ {1, . . . , N} is a positive

scalar. Therefore, what is left is to show that <{λj[(A+ τB2K)−1B2K]} ≥ 0 ∀j.

AY + Y AT − τB2B
T
2 ≤ 0⇔ (AY − 1

2
τB2B

T
2 ) + (AY − 1

2
τB2B

T
2 )T ≤ 0

⇔ (AY − 1

2
τB2B

T
2 )−T + (AY − 1

2
τB2B

T
2 )−1 ≤ 0

⇔ (AY − 1

2
τB2B

T
2 )−1 + (AY − 1

2
τB2B

T
2 )−T ≤ 0

⇒ BT
2 (AY − 1

2
τB2B

T
2 )−1B2 +BT

2 (AY − 1

2
τB2B

T
2 )−TB2 ≤ 0

⇔ [BT
2 (AY − 1

2
τB2B

T
2 )−1B2]I + I[BT

2 (AY − 1

2
τB2B

T
2 )−TB2] ≤ 0

⇒ <{λj[BT
2 (AY − 1

2
τB2B

T
2 )−1B2]} ≤ 0 ∀j

⇔ <{λj[(AY −
1

2
τB2B

T
2 )−1B2B

T
2 ]} ≤ 0 ∀j

⇔ <{λj[Y −1(A− 1

2
τB2B

T
2 Y
−1)−1B2B

T
2 ]} ≤ 0 ∀j

⇔ <{λj[(A−
1

2
τB2B

T
2 Y
−1)−1B2B

T
2 Y
−1]} ≤ 0 ∀j

⇔ <{λj[(A+ τB2K)−1B2K]} ≥ 0 ∀j. (3.23)
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It follows that

det(A+ cλiB2K) 6= 0 for all i ∈ {1, . . . , N}. (3.24)

Consequently, G̃i(s) is negative imaginary for all i ∈ {1, . . . , N} by Lemma 2.2.

It remains to show that the DC gain of each subsystem is less than γ. Since the

LMI condition (3.13) holds, via (3.24) and (3.18b) it follows that

γI > C1Y C
T
1 = C1(A+ cλiB2K)−1(A+ cλiB2K)Y CT

1

= C1(−A− cλiB2K)−1B1 = G̃i(0) (3.25)

for all i ∈ {1, . . . , N}. Consequently, λ̄(G̃i(0)) < γ for all i ∈ {1, . . . , N}.
From Lemma 3.3 we conclude that Gcl(s) is NI and λ̄(Gcl(0)) < γ.

Now since Gcl(s) is strictly proper, we have ∆(∞)Gcl(∞) = 0 and since the uncertainty

satisfies Assumption 3.1, it follows from Lemma 2.3 that control protocol (3.2) robustly

stabilizes the networked multi-agent system.

Remark 3.4. C1B2 = 0 means that the transfer function from ui to zi ∀i ∈ {1, . . . , N}
has a relative degree strictly greater than unity. This is hence often fulfilled in practice

due to strictly proper actuator dynamics and strictly proper plant dynamics.

Remark 3.5. By imposing the assumption C1B2 = 0 in Theorem 3.1, we get simpler

solvable conditions (3.12)–(3.14) which do not involve the network topology.

Remark 3.6. The determinant condition appears because the negative imaginary prop-

erty excludes poles at the origin. This non-convex condition is not troublesome as a

feasible solution for Y and τ can always be obtained first by solving the LMI conditions

and then checking whether the computed values satisfy the determinant condition or

not. If they do not, then a small increase in τ often resolves the problem.

Thus, the steps required to design the protocol can be summarized in the following

algorithm:

1. Solve the LMI conditions (3.12)–(3.13) for Y > 0 and τ > 0. Then, check

whether the determinant condition (3.14) is satisfied or not. If not, perturb

τ and/or Y to satisfy all of (3.12)–(3.14).

2. Let the feedback gain matrix K = −0.5BT
2 Y
−1.
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3. Select the coupling strength c to satisfy c ≥ τ
min

i∈{1,...,N}
λi

, where λi ∀i ∈ {1, . . . , N}

are the eigenvalues of L̂ (note that the minimum value of c that can be selected

is when the equal sign holds).

Remark 3.7. The benefit of the aforementioned design procedure is that the feedback

gain matrix K is first designed without any knowledge of the network graph. Then,

the coupling strength c is adjusted to handle the effect of the network topology. Thus

once a feedback gain matrix K is designed, robust stability against SNI uncertainties

with certain DC size is achieved via control protocol (3.2) for various different network

graphs that satisfy the condition λi ≥ τ/c for all i ∈ {1, . . . , N}. Clearly this inequality

is satisfied for a rich class of Laplacian matrices and associated network topologies.

Consequently, by selecting a large enough value for the coupling strength c, both robust

stability to agents dynamics and robustness to variations in the network topology can

be guaranteed.

Remark 3.8. Although we build on the work of [69], it is important to observe that the

results here are not a specialisation of the results in [69] because we consider a distinct

problem from [69]. It is assumed in [69] that the agents are subject to external distur-

bances in L2[0,∞) and the problem consider therein is to evaluate the performance of

a networked multi-agent system subject to these external disturbances. In this work, we

consider the situation where agents are subject to dynamical uncertainties (modelling

errors) which belong to the SNI class and the problem here is to maintain stability of

the network in the presence of SNI uncertainties with a certain DC size. The authors

of [69] study a suboptimal H∞ control problem, where distributed controllers need to

be found such that the H∞ norm of a transfer function is less than a desired tolerance.

Thus it is essential that the gain be small over all frequency ranges. On the contrary,

the distributed robust stabilization problem we consider here requires to find distributed

controllers such that a transfer function matrix satisfies the NI property and only the

DC gain value be restricted on one-side, which is less conservative. Whereas [69] derive

conditions for the existence of controllers to have unbounded H∞ performance region

in order to ensure a level of robustness with respect to the communication topology, the

results we present in this chapter derive conditions for the existence of controllers that

robustly stabilize networked systems in the presence of dynamical uncertainties that
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belong to the SNI class as well as achieving robustness to variations in the network

topology.

Remark 3.9. It is worth mentioning that the robust stabilization problem we address

in this chapter is somehow different and not comparable to the consensus problem

addressed for example in [26, 73]. Modelling errors in the agents dynamics are not

considered in [26, 73]. Furthermore, the consensus problem addressed therein requires

convergence of the states to an unspecified common value depending on the initial state

information. This can only be satisfied with simple network graphs where zero is a sim-

ple eigenvalue of the Laplacian matrix L and hence span{1N} is contained in the null

space of L, consequently consensus is guaranteed [26]. The robust stabilization problem

we address here is mainly concerned with guaranteeing robust stability of the networked

system in presence of modelling errors which belong to the SNI class. As stated in Re-

mark 3.3, it is essential the network graph contains at least one self-loop as for simple

graphs where zero is a simple eigenvalue of L the subsystem in (3.9) corresponding to

this zero eigenvalue of L cannot be controlled to satisfy the NI property, consequently

robust stabilization cannot be guaranteed. Nevertheless, it may be of interest to investi-

gate consensus to a desired reference/trajectory as a next step provided robust stability

against SNI uncertainties is satisfied first for the networked system. However, this

may be challenging and not straightforward and is beyond the scope of this thesis.

3.4 Numerical Example

The example in [47] is modified in order to design distributed controllers for systems

with heterogeneous SNI uncertainties. Consider a group of N = 6 uncertain systems

connected over a network topology. The block diagram of the ith uncertain systems

in depicted in Figure 3.3 and the network topology that models the communication

among the systems and the associated Laplacian matrix are shown in Figure 3.4.

Each of the six systems contains an uncertain flexible structure with co-located

force actuation and position sensing and thus the transfer function of the ith flexible

structure Mi(s) ∀i ∈ {1, . . . , 6} is strictly negative imaginary. For control design

purpose, Mi(s) has been replaced by unity gain and the resulting modelling error

∆i(s) = Mi(s) − 1 is an SNI uncertainty as shown in Figure 3.3. It is assumed that
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Figure 3.3: Block diagram of the ith uncertain system to be controlled.
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4 −1 −1 −1 0 0
−1 2 −1 0 0 0
−1 −1 4 −1 −1 0
−1 0 −1 3 0 −1
0 0 −1 0 2 −1
0 0 0 −1 −1 2




Figure 3.4: Network topology and associated Laplacian matrix.

∆i(s) satisfies Assumption 3.1 with γ = 1. Via results of this chapter, parameters K

and c of distributed control protocol (3.2) can be designed to ensure robust stability of

the closed-loop networked system against SNI uncertainties and also ensure robustness

to variations in the network topology.

To this end, the dynamics of the ith system can be obtained from Figure 3.3 in

the form of (3.1) with xi = [xTi1, x
T
i2, x

T
i3]T and matrices

A =




−2 1 0

1 −5 1

0 0 −4


 , B1 =




1

0

0


 , B2 =




0

0

1


 ,

C1 =
[
0 1 0

]
.

It is easy to see that C1B2 = 0, m ≤ n and (A,B2) is controllable. It can also be seen

from Figure 3.3 that the transfer function from ui to zi has a relative degree strictly
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greater than unity which emphasises the statement in Remark 3.4.

Using the YALMIP [67] and SeDuMi [68] toolboxes to solve the LMI conditions as

according to step 1 in the algorithm, we obtain the feasible solutions

Y =




3.7674 0.4547 −0.4949

0.4545 0.0909 0

−0.4946 0 0.4946


 > 0,

and τ = 2.7377. We check that det(AY − 1
2
τB2B

T
2 ) = −3.3474 6= 0. No perturbations

to Y and τ are necessary. From step 2 in the algorithm, the feedback gain matrix is

given by

K = −1

2
BT

2 Y
−1 =

[
−0.5 2.5 −1.5

]
.

The minimum eigenvalue of L̂ in Figure 3.4 is 0.1266. We hence select the coupling

strength c according to step 3 in the algorithm to be c = 43 (twice the minimum

value). Thus, Theorem 3.1 states that the control protocol with the values of K

and c as computed above robustly stabilizes the networked system against any SNI

uncertainty having a DC gain less than or equal to unity.

To illustrate this and to avoid construction of the 18th order (N = 6 and n = 3)

overall plant dynamics in (3.5), we simply demonstrate that each of the N subsystems

G̃i(s) given by (3.9) within the transformed overall plant dynamics (3.10) are all

individually NI and satisfy the DC gain conditions. Figure 3.5 gives the Nyquist plots

of the 6 subsystems; that is G̃i(s), ∀i ∈ {1, . . . , 6}. It is clear from the plots that the

systems have a negative imaginary frequency response. Furthermore, Table 3.1 gives

the explicit transfer functions for G̃i(s) from which it is easy to verify that each G̃i(s)

is stable. Table 3.1 also shows that the nonsingular determinant condition (3.24) is

satisfied for each of the 6 subsystems, and that the DC gains of G̃i(s), i ∈ {1, . . . , 6}
are all equal to 0.1 since they have been all set to be equal to C1Y C

T
1 which are less

than unity.

Moreover, control protocol (3.2) with the same values of K and c as designed above

also guarantees a level of robustness to variations in the network topology. To see this,

consider the four different network topologies in Figure 3.6 constructed by adding

or/and removing links from the original network topology in Figure 3.4. Control

protocol (3.2) with the same values of K and c as designed above is guaranteed to
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Figure 3.5: Nyquist plots of G̃i(s),∀i ∈ {1, . . . , 6}, c = 43.

Table 3.1: Verifying the NI property for G̃i(s), i ∈ {1, . . . , 6}
i λi G̃i(s) G̃i(0) = C1Y C

T
1 det(A+ cλiB2K)

1 0.1266 s+9.504
s3+19.23 s2+82.98 s+104.5

0.1 −104.5

2 1.2205 s+57.05
s3+90.29 s2+462.9 s+627.6

0.1 −627.6

3 2.3293 s+105.2
s3+162.3 s2+847.9 s+1158

0.1 −1157.7

4 3.0647 s+137.2
s3+210.1 s2+1103 s+1509

0.1 −1509.4

5 4.9643 s+219.8
s3+333.5 s2+1763 s+2418

0.1 −2417.6

6 5.2945 s+234.1
s3+355 s2+1875 s+2575

0.1 −2575.5

achieve robust stability for all four various different networked systems (i.e. agents

may be connected over any of the four network topologies) in the presence of SNI

uncertainties with DC gains less than or equal to unity since c = 43 is greater than

the minimum value of c corresponding to each of these network graphs. The minimum

values of c which correspond to the network graphs of Figure 3.6a to Figure 3.6d are

18.764, 25.1627, 40.8283, 34.3070 respectively.
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Figure 3.6: Four different network topologies.

We can also easily demonstrate that for some specific uncertainties the conclusion

holds. For instance, choose ∆1(s) = 0.5/(s + 1), ∆2(s) = (1 − s)/(1 + s), ∆3(s) =

1/(s+ 3), ∆4(s) = 1/(s2 + 3s+ 2), ∆5(s) = 1/(s+ 1)2, ∆6(s) = (0.5s+ 1)/(s2 + s+ 1)

which are SNI. ∆(s) in Figure 3.1 has λ̄(∆(0)) = 1 ≤ 1/γ. A pole-zero map of

Gcl(I−∆Gcl)
−1 is shown in Figure 3.7 for the original network topology in Figure 3.4.

Since all closed-loop poles are in the left half plane, we conclude that the heterogeneous

perturbed closed-loop system of Figure 3.1 is internally stable.
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Figure 3.7: Poles and zeros of Gcl(I − ∆Gcl)
−1 corresponding to original network

topology; poles are marked by x, and zeros are marked by o.

3.5 Summary

This chapter studied the distributed robust stabilization problem for networked multi-

agent systems with strict negative imaginary uncertainties. It was shown that a state,

input and output transformation preserves the NI property of the network when the

network topology is modelled by an undirected graph with self-loops. This result was

shown to be useful in control protocol design as the problem simplified to finding

parameters which ensured that each of the multiple reduced-order systems satisfy the

NI property. The synthesis procedure involved the design of two separate parameters;

one which is a scalar that handles the effect of the network topology and the other

one was a state feedback gain matrix. The advantage of this design procedure lies

in the ability of the control protocol to maintain robust stability in the face of SNI

uncertainties for different network topologies by simply appropriately adjusting this

coupling scalar while leaving the state feedback gain matrix unchanged. A numerical

example was given to show the usefulness of the results.
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Chapter 4

Robust output consensus of

homogeneous multi-agent systems

with negative imaginary dynamics

4.1 Introduction

This chapter contributes to the existing literature on cooperative control of multiple

NI systems. (Robust) cooperative control of multiple NI systems is motivated by ap-

plications where an individual NI system cannot achieve a desired collective behaviour

on its own. Consensus, where agents cooperate to reach an agreement, is one of the

most important and desirable collective behaviours due to the potential real-world

applications it may have [23]. Consensus of MAS has been studied widely by many

researchers. In terms of agents dynamics both homogeneous and heterogeneous dy-

namics have been considered and in terms of the shared information both state and

output information have been considered such as, for example, [22, 14, 38, 39, 7]. In

this chapter, we address the robust output consensus problem for multiple homoge-

neous NI systems. First, we focus here on homogeneous NI dynamics since the null

space property of the Laplacian matrix, by which a collective behaviour is governed

by, only exists for homogeneous dynamics. Furthermore, although [39] overcomes this

issue and considers heterogeneous NI dynamics it comes at the expense of providing

some robust output consensus conditions that are sufficient but not necessary. There-

fore, by considering homogeneous NI dynamics, we are able here to obtain necessary
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and sufficient conditions for robust output consensus. Second, we use here relative

output measurements as it is practically more significant since full state information

is not always available.

In [14, 15, 16] consensus problems for homogeneous MAS using relative output

measurements were addressed. However, unlike [14, 15, 16] which use state space

techniques and observer-based consensus protocols where protocol design involves the

solution of Riccati equations or/and linear matrix inequalities, the robust output con-

sensus conditions we propose here are much simpler since they depend on the dc and

infinite frequency gains of the systems as well as the network graph but not on the

precise dynamics of the systems. Meanwhile, most closely related to our work is [38]

and the motivations for this current study comes from the importance of consensus of

MAS in real-world applications [23], the many practical systems that can be modelled

as NI systems [30, 40], and the establishment of the general internal stability results in

[34] by which it is possible to extend the work of [38]. While the work of [38] has suc-

cessfully considered the robust output consensus problem for networked homogeneous

NI systems, it has certain limitations in terms of the imposed assumptions. A principal

limitation of [38] is that for NI systems with no poles at the origin, two assumptions

at infinite frequency need to hold before the robust output consensus condition can be

considered, while for systems with poles at the origin, the NI systems are limited to

being strictly proper, matrix factorisation is required, and null space conditions need

to be satisfied before the robust output consensus conditions can be considered. As a

result, it not possible to determine robust output consensus for networked NI systems

with the results of [38] when such assumptions do not hold.

In this chapter, we build on and extend the work of [38]. Similar to [38] we address

the robust output consensus problem as an internal stability problem for networked NI

systems subject to external disturbances and model uncertainties but different from

[38] we use the generalised internal stability results in [34] to do so rather than those

in [30, 41, 40] thereby extending the results of [38]. Therefore, the advantages of this

current work over [38] and the main contributions of this chapter to existing knowledge

are summarised as follows: (i) we relax the assumptions imposed in [38] thereby derive

robust output consensus conditions which are not restricted; (ii) one distinct advantage

that unfolds in our work is that not only do the derived conditions specialise to those
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in [38] by imposing the same two assumptions at infinite frequency but also specialise

to those in [38] by imposing different assumptions which were unknown in [38]; (iii) the

derived conditions simplify in the SISO case providing several insights which are not

easily captured in the MIMO case (for SISO NI systems with no poles at origin) and

are less sensitive to the network graph that models the interconnection of the systems

(for SISO NI systems with poles at origin); and (iv) we show that consensus for some

networked NI systems including a network of robotic arms cannot be determined by

the results in [38] but can easily be concluded via the results of this chapter.

4.2 Problem description

Consider a network of N homogeneous NI systems with external disturbances acting

on each system. The dynamics of the ith NI system are described as

yi = doi + P (s) (dini
+ ui) ∀i ∈ {1, . . . , N} (4.1)

where P (s) is an n×n transfer function matrix of the ith NI system, ui, yi, dini
and doi

are all vector signals with “n” elements and dini
and doi are also energy-bounded in an

H2 (or in the time domain L2[0,∞)) sense. The signals ui, yi, dini
and doi denote con-

trol input, output of the ith NI system, input and output disturbances respectively. It

is assumed that relative output measurements with respect to neighbouring agents are

available to each system. The network graph which models the information exchange

among the systems is assumed fixed and satisfies the following assumption:

Assumption 4.1. The network graph G is undirected and connected.

Following [38], the distributed control protocol for the ith NI system is given by

ui = K(s)zi,

zi =
∑N

j=1
aij(yi − yj),

∀i ∈ {1, . . . , N} (4.2)

where K(s) is the transfer function matrix of an SNI feedback controller, zi represents

the signal of relative measurements of neighbouring agents with respect to system i

and aij denotes the elements of the adjacency matrix associated with the network

graph G. The collective network dynamics can thus be written as

y = do + (IN ⊗ P (s)) (din + u) , (4.3)

and
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P (s) . . . 0
...

. . .
...

0 . . . P (s)

L ⊗
In

K(s) . . . 0
...

. . .
...

0 . . . K(s)
u

din up

+

yz

+

do

yp

Figure 4.1: Real physical system with real disturbances.

u = (IN ⊗K(s))z,

z = (L ⊗ In)y,
(4.4)

where z =
[
zT1 , . . . , z

T
N

]T
, y =

[
yT1 , . . . , y

T
N

]T
, u =

[
uT1 , . . . , u

T
N

]T
, din =

[
dTin1

, . . . , dTinN

]T

and do =
[
dTo1 , . . . , d

T
oN

]T
are all vector signals with “nN” elements and din and do are

also energy-bounded in an H2 (or in the time domain L2[0,∞)) sense. L ∈ RN×N

is the Laplacian matrix associated with the network graph G. A block diagram of

the closed loop networked MAS is depicted in Figure 4.1. This figure represents the

block diagram of the real physical system with real disturbances. In this chapter we

address the robust output consensus problem for networks of NI systems as an internal

stability problem. To this end, via block diagram algebra, it is possible to move the

block (L⊗In) in Figure 4.1 right past the summing junction to obtain a mathematical

equivalent system as shown in Figure 4.2. It can be seen that the disturbances on

P (s) . . . 0
...

. . .
...

0 . . . P (s)

L ⊗
In

K(s) . . . 0
...

. . .
...

0 . . . K(s)

L ⊗
In

din up yp

z +

+

u do

Figure 4.2: Mathematical equivalent system.

signal z in Figure 4.2 are a subset of the disturbances acting on the signal y in Fig-

ure 4.1 due to L being rank deficient. Let wo be the disturbances acting on signal z,

let P̄ (s) = (L ⊗ In)(IN ⊗ P (s)) denote the transfer function matrix from up to z and
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let K̄(s) = IN ⊗K(s) denote the transfer function matrix from z to u. According to

[38, Lemma 3], P̄ (s) is NI if and only if P (s) is NI with G satisfying Assumption 4.1.

Similarly, K̄(s) is SNI since K(s) is SNI. Then, the internal stability framework we

consider, for addressing the output consensus problem, is given in Figure 4.3. That

P (s) . . . 0
...

. . .
...

0 . . . P (s)

L ⊗
In

K(s) . . . 0
...

. . .
...

0 . . . K(s)

win up yp

z +

+

P̄ (s)

K̄(s)

wou

Figure 4.3: Internal stability framework.

is, we address the output consensus problem as an internal stability problem for the

interconnection [P̄ (s), K̄(s)] where the plant P̄ (s) is black-boxed thus we are being

silent about the signal yp.

Remark 4.1. Internal stability of the interconnection [P̄ , K̄] guarantees that for all

bounded inputs (win, wo), the outputs (up, z) are bounded. (see e.g. [60]). Then,

internal stability on the signals up and z is equivalent to consensus on signal y in

Figure 4.1 via properties of L and via rank deficiency in the matrix L ⊗ In. On the

other hand, internal stability of the interconnection [P̄ , K̄] does not imply asymptotic

stability of the state space description; since P̄ (s) is unobservable. Thus, the nature

of the output signal y (or yp) is depended on the block (IN ⊗ P (s)) and hence the

final convergence trajectory of the output will depend on the dynamics of P (s). For

example, if P (s) is an integrator and up → 0, then yp → a constant value, if P (s)

has stable dynamics and up → 0, then yp → 0, etc. This will be discussed further in

Section 4.4.
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The following remark discusses how model uncertainties are captured in this frame-

work.

Remark 4.2. Model uncertainties are captured in this framework by noting that any

additive NI perturbations to a nominal NI system results in an NI perturbed sys-

tem. Other forms of feedback uncertainties are also possible that preserve NI prop-

erties (see e.g. [35], [54]). Hence, P (s) is regarded interchangeably as a nomi-

nal or perturbed plant as long as it fulfils the robust output consensus conditions

As an example, consider a family of NI plant dynamics with the same dc and in-

finite frequency gains. Different systems such as P1(s) = (s + 6)/(s + 1.8) and

P2(s) = ((s+ 1)(s+ 2)(s+ 3)) / ((s2 + 2s+ 3)(s+ 0.6)) both belong to this set. As

will be shown in the next section, the consensus conditions depend on the dc and infi-

nite frequency gains of the systems as well as the network graph but not on the precise

dynamics of the systems.

The robust output consensus problem we consider is defined as follows.

Definition 4.1 ([38, 39]). For a family of NI plant dynamics and for all L2[0,∞) dis-

turbances acting on the plant input and/or output, robust output consensus is said to

be achieved with distributed control protocol (4.2) for a network of NI systems if there

exists εi(t) ∈ L2[0,∞) ∀i ∈ {1, . . . , N} such that yi(t)→ yss(t)+εi(t) ∀i ∈ {1, . . . , N},
where yss(t) is the final convergence trajectory. Note that εi(t) = 0 ∀t and ∀i ∈
{1, . . . , N} when there are no external disturbances.

Our objective is to derive conditions for robust output consensus of a network of

homogeneous NI systems under L2 external disturbances and model uncertainty by

using the general internal stability results in [34].

4.3 Robust output consensus

4.3.1 Networked homogeneous NI systems with no poles at

the origin

The following theorem gives conditions under which robust output consensus is achieved

for networked NI systems with no poles at the origin.
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Theorem 4.1. Consider a network of homogeneous NI systems P (s) without poles at

the origin, a network graph G that satisfies Assumption 4.1 and an SNI feedback con-

troller K(s) for each NI agent. Let µi for all i ∈ {1, . . . , N} be the eigenvalues of the

Laplacian matrix L associated with G ordered as stated in (2.4). Then, the following

three statements are equivalent:

(a) robust output consensus is achieved via control protocol (4.4) for networked sys-

tem (4.3) as shown in Figure 4.1 (or in a distributed manner (4.2) for each system

(4.1)) under any external disturbances din, do ∈ LnN2 [0,∞) and model uncertainty that

retains the NI property of the perturbed system P (s);

(b) the set of conditions

In − µiP (∞)K(∞) is nonsingular ,

λ̄[[In − µiP (∞)K(∞)]−1[µiP (∞)K(0)− In]] < 0, and

λ̄[[In − µiK(0)P (∞)]−1[µiK(0)P (0)− In]] < 0,

are satisfied for all i ∈ {2, . . . , N};

(c) the set of conditions

In − µiP (∞)K(∞) is nonsingular,

λ̄[[µiP (0)K(∞)− In][In − µiP (∞)K(∞)]−1] < 0, and

λ̄[[µiK(0)P (0)− In][In − µiK(∞)P (0)]−1] < 0,

are satisfied for all i ∈ {2, . . . , N}.

Proof. We begin by proving the equivalence of conditions (a) and (b). Let P̄ (s) =

L⊗ P (s) and K̄(s) = IN ⊗K(s). Now P̄ (s) is NI by [38, Lemma 3] and has no poles

at the origin since P (s) has no poles at origin. Also, K̄(s) is SNI since K(s) is SNI.

Via Remark 4.1 and as in the proof of [38, Th. 1], the internal stability of [P̄ (s), K̄(s)]

in Figure 4.3 implies output consensus (Figure 4.1) when din = do = 0, by noting

that z → 0 ⇔ y → 1N ⊗ yss since Assumption 4.1 holds. According to [34, Th. 9],

[P̄ (s), K̄(s)] is internally stable if and only if

INn − P̄ (∞)K̄(∞) is nonsingular,

λ̄[[INn − P̄ (∞)K̄(∞)]−1[P̄ (∞)K̄(0)− INn]] < 0, and

λ̄[[INn − K̄(0)P̄ (∞)]−1[K̄(0)P̄ (0)− INn]] < 0.

Now L is a real symmetric matrix due to Assumption 4.1. Thus, L can be written

as L = UΛUT where U is an orthogonal matrix and Λ is a diagonal matrix with

65



eigenvalues of L on the diagonal. Then,

INn − P̄ (∞)K̄(∞)

= INn − (L ⊗ P (∞))(IN ⊗K(∞))

= INn − (L ⊗ P (∞)K(∞))

= INn − (UΛUT ⊗ P (∞)K(∞))

= (U ⊗ In)[INn − (Λ⊗ P (∞)K(∞))](UT ⊗ In)

= (U ⊗ In)diag(In − µiP (∞)K(∞))(UT ⊗ In)

∀i ∈ {1, 2, . . . , N}.

So,

INn − P̄ (∞)K̄(∞) is nonsingular

⇔ In − µiP (∞)K(∞) ∀i ∈ {2, . . . , N} is nonsingular

(due to the fact that U and UT are nonsingular

matrices and for µ1 = 0, In is nonsingular).

Furthermore,

λ̄[[INn − P̄ (∞)K̄(∞)]−1[P̄ (∞)K̄(0)− INn]] < 0

⇔ λ̄[[INn − (L ⊗ P (∞)K(∞))]−1[(L ⊗ P (∞)K(0))− INn]] < 0

⇔ λ̄[[INn − (UΛUT ⊗ P (∞)K(∞))]−1[(UΛUT ⊗ P (∞)K(0))− INn]] < 0

⇔ λ̄[(U ⊗ In)[INn − (Λ⊗ P (∞)K(∞))]−1(UT ⊗ In)(U ⊗ In)

× [(Λ⊗ P (∞)K(0))− INn](UT ⊗ In)] < 0

⇔ λ̄[[INn − (Λ⊗ P (∞)K(∞))]−1[(Λ⊗ P (∞)K(0))− INn]] < 0

⇔ max
i=1,...,N

λ̄[[In − µiP (∞)K(∞)]−1[µiP (∞)K(0)− In]] < 0

(since the matrix in the previous step is block diagonal)

⇔ λ̄[[In − µiP (∞)K(∞)]−1[µiP (∞)K(0)− In]] < 0 ∀i ∈ {2, . . . , N}

(since for µ1 = 0, the condition is trivally fulfilled)
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and

λ̄[[INn − K̄(0)P̄ (∞)]−1[K̄(0)P̄ (0)− INn]] < 0

⇔ λ̄[[INn − L⊗K(0)P (∞)]−1[L ⊗K(0)P (0)− INn]] < 0

⇔ λ̄[[INn − (UΛUT ⊗K(0)P (∞))]−1[(UΛUT ⊗K(0)P (0))− INn]] < 0

⇔ λ̄[(U ⊗ In)[INn − (Λ⊗K(0)P (∞))]−1(UT ⊗ In)(U ⊗ In)

× [(Λ⊗K(0)P (0))− INn](UT ⊗ In)] < 0

⇔ λ̄[[INn − (Λ⊗K(0)P (∞))]−1[(Λ⊗K(0)P (0))− INn]] < 0

⇔ max
i=1,...,N

λ̄[[In − µiK(0)P (∞)]−1[µiK(0)P (0)− In]] < 0

(since the matrix in the previous step is block diagonal)

⇔ λ̄[[In − µiK(0)P (∞)]−1[µiK(0)P (0)− In]] < 0 ∀i ∈ {2, . . . , N}

(since for µ1 = 0, the condition is trivally fulfilled) .

The proof for robust output consensus under external disturbances and model uncer-

tainties then follows similarly to that in the proof of [38, Th.1] (see also Remark 4.2

for model uncertainties). The equivalence of conditions (a) and (c) can be proved in

a similar manner by applying [34, Th. 14] instead of [34, Th. 9].

Remark 4.3. The first and second conditions within conditions (b) of Theorem 4.1

guarantee that the matrix In−µiK(0)P (∞) in the third condition is nonsingular ∀i ∈
{2, . . . , N}.

Remark 4.4. Unlike [38], both set of conditions (b) and (c) of Theorem 4.1 include

the nonzero eigenvalues of the Laplacian matrix L. Thus, it can be concluded that

the nonzero eigenvalues of L play a central role in achieving output consensus for

networks of NI systems when the assumptions P (∞)K(∞) = 0 and K(∞) ≥ 0 of [38]

are relaxed.

The following corollary shows that the conditions of Theorem 4.1 not only specialise

to that in [38] by imposing the same two assumptions at infinite frequency but also

specialise to that in [38] by imposing different assumptions which were not known

previously in [38].

Corollary 4.1. Let the hypotheses of Theorem 4.1 hold and furthermore let either

(i) P (∞)K(∞) = 0 and K(∞) ≥ 0 , or (ii) P (∞)K(∞) = 0 and P (0) > 0, or
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(iii) P (∞) = 0 hold. Then, robust output consensus is achieved via control proto-

col (4.4) for networked system (4.3) as shown in Figure 4.1 (or in a distributed manner

(4.2) for each system (4.1)) under any external disturbances din, do ∈ LnN2 [0,∞) and

model uncertainty that retains the NI property of the perturbed system P (s) if and only

if

λ̄[P (0)K(0)] <
1

λ̄(L)
.

Proof. For the case that (i) holds, the result is a direct consequence of the equiva-

lence of conditions (a) and (b) of Theorem 4.1 and the lines of the proof here follow

those of [34, Cor. 12] with the difference of having the eigenvalues of L included

here. Furthermore, λ̄[P (0)K(0)] < 1/µi ∀i ∈ {2, . . . , N} ⇔ λ̄[P (0)K(0)] < 1/λ̄(L)

since (2.4) holds by Assumption 4.1. Also, λ̄[P (0)K(0)] < 1/λ̄(L) ⇔ µiP (0) <

K(0)−1 ∀i ⇒ µiP (∞) < K(0)−1 (since P (∞) ≤ P (0) via [41, Cor. 3]) and µi >

0 ∀i ∈ {2, . . . , N} and µ1 = 0 via Assumption 4.1. For the case that (ii) holds, the

result is a direct consequence of the equivalence of conditions (a) and (c) of Theo-

rem 4.1 and the lines of the proof here follow those of [34, Cor. 15] with the differ-

ence of having the eigenvalues of L included here. Furthermore, λ̄[P (0)K(0)] < 1/µi

∀i ∈ {2, . . . , N} ⇔ λ̄[P (0)K(0)] < 1/λ̄(L) since (2.4) holds due to Assumption 4.1.

Also, λ̄[P (0)K(0)] < 1/λ̄(L) ⇔ µiK(0) < P (0)−1 ∀i ⇒ µiK(∞) < P (0)−1 ∀i
(since K(∞) < K(0) via [41, Cor. 3]) and µi > 0 ∀i ∈ {2, . . . , N} and µ1 = 0 via

Assumption 4.1. For the case that (iii) holds, the result is a direct consequence of the

equivalence of conditions (a) and (b) of Theorem 4.1 with P (∞) = 0 and by (2.4).

4.3.2 SISO specialisation: no poles at the origin

The following theorem shows that when the NI systems are SISO, the robust output

consensus conditions of Theorem 4.1 can be simplified as follows.

Theorem 4.2. Consider a network of homogeneous SISO NI systems P (s) without

poles at the origin, a network graph G that satisfies Assumption 4.1 and an SNI feedback

controller K(s) for each NI agent. Let µi for all i ∈ {1, . . . , N} be the eigenvalues of the

Laplacian matrix L associated with G ordered as stated in (2.4). Then, robust output

consensus is achieved via control protocol (4.4) for networked system (4.3) as shown in
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Figure 4.1 (or in a distributed manner (4.2) for each system (4.1)) under any external

disturbances din, do ∈ LnN2 [0,∞) and model uncertainty that retains the NI property of

the perturbed system P (s) if and only if any of the following five conditions holds:

1) P (0)K(0) < 1/λ̄(L) and P (∞)K(∞) < 1/λ̄(L) ;

2) K(∞) > 0 and P (∞)K(∞) > 1/λ2(L);

3) K(0) < 0 and P (0)K(0) > 1/λ2(L);

4) K(∞) > 0 and there exists i ∈ {i ∈ {2, . . . , N − 1}: µi 6= µi+1} such that

P (0)K(0) < 1/µi and P (∞)K(∞) > 1/µi+1 ;

5) K(0) < 0 and there exists i ∈ {i ∈ {2, . . . , N − 1}: µi 6= µi+1} such that

P (0)K(0) > 1/µi+1 and P (∞)K(∞) < 1/µi.

Proof. Since n = 1, conditions (b) of Theorem 4.1 become P (∞)K(∞) 6= 1/µi,

µiP (∞)K(0)−1
1−µiP (∞)K(∞)

< 0 and µiK(0)P (0)−1
1−µiK(0)P (∞)

< 0 ∀i ∈ {2, . . . , N}. Furthermore, since (2.4)

holds, these three conditions reduce to either conditions i), ii), or iii) below.

i) P (0)K(0) < 1/λ̄(L), P (∞)K(∞) < 1/λ̄(L) and P (∞)K(0) < 1/λ̄(L);

ii) P (0)K(0) > 1/λ2(L), P (∞)K(∞) > 1/λ2(L) and P (∞)K(0) > 1/λ2(L);

iii) There exists i ∈ {i ∈ {2, . . . , N−1}: µi 6= µi+1} such that 1/µi+1 < P (0)K(0) <

1/µi, 1/µi+1 < P (∞)K(∞) < 1/µi and 1/µi+1 < P (∞)K(0) < 1/µi.

Likewise, conditions (c) of Theorem 4.1 with (2.4) lead to either conditions I), II), or

III) below.

I) P (0)K(0) < 1/λ̄(L), P (∞)K(∞) < 1/λ̄(L) and P (0)K(∞) < 1/λ̄(L);

II) P (0)K(0) > 1/λ2(L), P (∞)K(∞) > 1/λ2(L) and P (0)K(∞) > 1/λ2(L);

III) There exists i ∈ {i ∈ {2, . . . , N−1}: µi 6= µi+1} such that 1/µi+1 < P (0)K(0) <

1/µi, 1/µi+1 < P (∞)K(∞) < 1/µi and 1/µi+1 < P (0)K(∞) < 1/µi.

(⇐) Condition 1) implies both conditions i) and I) via [34, Lemma 5]. Condi-

tion 2) together with using properties of [41, Cor. 3] imply P (0) ≥ P (∞) > 0 and

K(0) > K(∞) > 0 respectively. Then we get P (0)K(0) ≥ P (∞)K(0), P (0)K(∞) ≥
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P (∞)K(∞) > 1/λ2(L), P (0)K(0) > P (0)K(∞), and P (∞)K(0) > P (∞)K(∞) >

1/λ2(L) which together imply conditions ii) and II). Likewise, condition 3) together

with using properties of [41, Cor. 3] imply P (∞) ≤ P (0) < 0 and K(∞) < K(0) <

0 respectively. Then we get 1/λ2(L) < P (0)K(0) < P (0)K(∞), P (∞)K(0) <

P (∞)K(∞), 1/λ2(L) < P (0)K(0) ≤ P (∞)K(0) and P (0)K(∞) ≤ P (∞)K(∞)

which together imply conditions ii) and II). Condition 4) together with using prop-

erties of [41, Cor. 3] imply P (0) ≥ P (∞) > 0 and K(0) > K(∞) > 0 respectively.

Then we get 1/µi > P (0)K(0) ≥ P (∞)K(0), P (0)K(∞) ≥ P (∞)K(∞) > 1/µi+1,

1/µi > P (0)K(0) > P (0)K(∞) and P (∞)K(0) > P (∞)K(∞) > 1/µi+1 which to-

gether give conditions iii) and III). Likewise, condition 5) together with using prop-

erties of [41, Cor. 3] imply P (∞) ≤ P (0) < 0 and K(∞) < K(0) < 0 respectively.

Then we get P (0)K(∞) > P (0)K(0) > 1/µi+1, 1/µi > P (∞)K(∞) > P (∞)K(0),

P (∞)K(0) > P (0)K(0) > 1/µi+1 and 1/µi > P (∞)K(∞) > P (0)K(∞) which to-

gether imply conditions iii) and III).

(⇒) Both conditions i) and I) reduce to condition 1). Now consider the five cases

as in the proof of [34, Th. 17] which are 0 < K(∞) < K(0), 0 = K(∞) < K(0),

K(∞) < 0 < K(0), K(∞) < K(0) = 0 and K(∞) < K(0) < 0. Only the first

and last cases are allowed by conditions ii), iii), II) and III) as the three middle cases

violate them. Consequently, it is easy to see that condition ii) [resp. II)] imply either

condition 2) or 3) while condition iii) [resp. III)] imply either condition 4) or 5).

The following example shows the effectiveness of Theorem 4.2.

Example 4.1. Given five homogeneous SISO NI systems each with transfer function

P (s) = 1
s2+5

+ 2. We consider the connection of these NI systems over the network

topology shown in Figure 4.4. The associated Laplacian matrix L is also shown in Fig-

ure 4.4. The nonzero eigenvalues of L arranged as in (2.4) are {0.6972, 1.3820, 3.6180,

4.3028}. Consider distributed control protocol (4.2) with the following SNI feedback

controller K(s) = 1
s+5

+ d where d is a tuning parameter and d 6= 0. We use Theo-

rem 4.2 to study the effect of tuning parameter d on achieving robust output consensus.

It is important to note that since P (∞)K(∞) = 2d 6= 0, the results in [38, Th. 1] can-

not be used to determine whether robust output consensus of the networked NI systems

can be achieved or not. The values of d are chosen as 0.2, 0.4, 0.6, 4, and −4. It

70



chch
3

2

1

5

4

L =




3 −1 −1 0 −1
−1 2 −1 0 0
−1 −1 3 −1 0
0 0 −1 1 0
−1 0 0 0 1




Figure 4.4: Network graph and associated Laplacian matrix.

is easy to check that for d = 0.2 and d = 0.6, conditions 1)–5) of Theorem 4.2 fail

to hold. Thus, we conclude that robust output consensus is not achieved with these

values. For d = 0.4, condition 4) is satisfied; for d = 4, condition 2) is satisfied; and

for d = −4, condition 1) is satisfied. Thus, we conclude that robust output consensus

is achieved with these values. However, it is important to note that Condition 4) of

Theorem 4.2 involves the knowledge of all nonzero eigenvalues (hence more sensitive

to the network graph) whereas conditions 1) and 2) of Theorem 4.2 depend only on the

knowledge of the largest and second smallest eigenvalue of L respectively (hence less

sensitive to network graph).

Remark 4.5. Although SNI controller synthesis for performance is not explicitly cov-

ered in this chapter, Example 4.1 gives an indication how an SNI controller to each

NI system in the SISO case can be selected to reduce the effect of the network graph

which is not apparent in the MIMO case. It can be deduced from Theorem 4.2 and

Example 4.1 that it is preferable to select the SNI controller in protocol (4.2) to satisfy

either one of the first three conditions in Theorem 4.2 and avoid satisfying the last

two conditions of Theorem 4.2 in order to minimize the effect of the network graph on

robust output consensus since an estimate for the second smallest and largest eigen-

values of L would only be needed. Furthermore, unlike the MIMO case, a Nyquist plot

interpretation can be drawn for the SISO case in a similar manner as in [34] but with

the difference that the crucial point here is no longer +1. Theorem 4.2 indicates that

robust output consensus is achieved via condition 1) when the Nyquist plot of P (s)K(s)
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starts and ends to the left of 1/λ̄(L), and via either condition 2) or 3) when the Nyquist

plot of P (s)K(s) starts and ends to the right of 1/λ2(L) and additionally P (0), P (∞),

K(0) and K(∞) all have the same sign; either positive or negative. Moreover, ro-

bust output consensus is achieved via condition 4) when the Nyquist plot of P (s)K(s)

starts to the left of 1/µi and ends to the right of 1/µi+1 for an i ∈ {i ∈ {2, . . . , N −1}:
µi 6= µi+1} and additionally P (0), P (∞), K(0) and K(∞) all have positive signs and

via condition 5) when the Nyquist plot of P (s)K(s) starts to the right of 1/µi+1 and

ends to the left of 1/µi for an i ∈ {i ∈ {2, . . . , N − 1}: µi 6= µi+1} and additionally

P (0), P (∞), K(0) and K(∞) all have negative signs.

4.3.3 Networked homogeneous NI systems with poles at the

origin

The following theorem gives conditions under which robust output consensus is achieved

for networked NI systems with possible poles at the origin.

Theorem 4.3. Consider a network of homogeneous NI systems P (s), a network graph

G that satisfies Assumption 4.1, and an SNI feedback controller K(s) for each NI agent.

Let µi for all i ∈ {1, . . . , N} be the eigenvalues of the Laplacian matrix L associated

with G ordered as stated in (2.4). Let Ψ < 0 be such that λ̄[P (∞)Ψ] < 1/λ̄(L). Then,

the following three conditions are equivalent:

(a) robust output consensus is achieved via control protocol (4.4) for networked sys-

tem (4.3) as shown in Figure 4.1 (or in a distributed manner (4.2) for each system

(4.1)) under any external disturbances din, do ∈ L2[0,∞) and model uncertainty that

retains the NI property of the perturbed system P (s);

(b) the set of conditions

In − µiP (∞)K(∞) is nonsingular,

λ̄[[In − µiP (∞)K(∞)]−1[µiP (∞)K(0)− In]] < 0, and

λ̄[lims→0[[In−µiΨP (∞)][In−µiK(s)P (∞)]−1 [µiK(s)P (s)−In][In−µiΨP (s)]−1]] < 0,

are satisfied for all i ∈ {2, . . . , N};

(c) the set of conditions

In − µiP (∞)K(∞) is nonsingular,

λ̄[lims→0[[In−µiP (s)Ψ]−1[µiP (s)K(∞)−In][In−µiP (∞)K(∞)]−1[In−µiP (∞)Ψ]]] < 0,
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and λ̄[lims→0[[µiK(s)P (s)− In][In − µiK(∞)P (s)]−1] < 0,

are satisfied for all i ∈ {2, . . . , N}.

Proof. We begin by proving the equivalence of conditions (a) and (b). Recall that

P̄ (s) = L ⊗ P (s) in Figure 4.3 is NI and now has poles at the origin since P (s) has

poles at the origin and K̄(s) = IN ⊗ K(s) in Figure 4.3 is SNI since K(s) is SNI.

Also, recall that the internal stability of [P̄ (s), K̄(s)] implies output consensus when

din = do = 0. Thus, we shall prove the internal stability of [P̄ (s), K̄(s)] and then

the proof for robust output consensus runs as before. Let Ψ̄ = (IN ⊗ Ψ). We have

Ψ̄ < 0 if and only if Ψ < 0. Also, λ̄[P̄ (∞)Ψ̄] = λ̄[L ⊗ P (∞)Ψ] < 1 if and only if

λ̄[P (∞)Ψ] < 1/λ̄(L). Hence by applying [34, Th. 24], [P̄ (s), K̄(s)] is internally stable

if and only if

INn − P̄ (∞)K̄(∞) is nonsingular,

λ̄[[INn − P̄ (∞)K̄(∞)]−1[P̄ (∞)K̄(0)− INn]] < 0, and

λ̄[lims→0[[INn − Ψ̄P̄ (∞)][INn − K̄(s)P̄ (∞)]−1

× [K̄(s)P̄ (s)− INn][INn − Ψ̄P̄ (s)]−1]] < 0.

Recall that L is a real symmetric matrix due to Assumption 4.1. Thus, by applying

the same transformation as in Theorem 4.1 we arrive at conditions (b) of this theorem.

It is not difficult to verify that the equivalence of conditions (a) and (c) can be proved

in a similar manner by applying [34, Th. 26] rather than [34, Th. 24].

It is important to show that the limits in Theorem 4.3 are finite ∀i ∈ {2, . . . , N}.
To this end, we begin by stating a modified version of [34, Lemma 28].

Lemma 4.1. Let the hypotheses of Theorem 4.3 hold and furthermore consider In −
µiP (∞)K(∞) nonsingular and λ̄[lims→0[[In − µiP (s)Ψ]−1[µiP (s)K(∞)− In]

[In − µiP (∞)K(∞)]−1[In − µiP (∞)Ψ]]] < 0 ∀i ∈ {2, . . . , N}. Then, lims→0[[In −
µiΨP (s)][In − µiK(∞)P (s)]−1] ∀i ∈ {2, . . . , N} is finite and nonsingular.

Proof. The proof is omitted since it follows similar arguments as in the proof of [34,

Lemma 28].

Remark 4.6. For the limit in conditions (b) of Theorem 4.3: Since µiP (s) is NI

∀i ∈ {2, . . . , N}, Ψ < 0 and λ̄[µiP (∞)Ψ] < 1 ∀i ∈ {2, . . . , N}, then Lemma 20 of
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[34] can be employed to show that both [In − µiΨP (s)]−1 and µiP (s)[In − µiΨP (s)]−1

have no poles at the origin ∀i ∈ {2, . . . , N}. Hence, lims→0[[µiK(s)P (s) − In][In −
µiΨP (s)]−1]] is finite ∀i ∈ {2, . . . , N}. For the limits in conditions (c) of Theo-

rem 4.3: The limit in the second condition is finite ∀i ∈ {2, . . . , N} since lims→0[[In−
µiP (s)Ψ]−1[µiP (s)K(∞)− In]] is finite ∀i ∈ {2, . . . , N} by [34, Lemma 20] while the

limit in the third condition is finite ∀i ∈ {2, . . . , N} by [34, Lemma 20] and Lemma 4.1

above since lims→0[[µiK(s)P (s) − In][In − µiK(∞)P (s)]−1] = lims→0[[µiK(s)P (s) −
In][In − µiΨP (s)]−1[In − µiΨP (s)][In − µiK(∞)P (s)]−1] ∀i ∈ {2, . . . , N}.

When the networked NI systems have a single or double pole at the origin in all

directions, the robust output consensus conditions will neither depend on the nonzero

eigenvalues of L nor on the matrix Ψ as follows.

Corollary 4.2. Consider a network of homogeneous strictly proper NI systems P (s),

a network graph G that satisfies Assumption 4.1, and an SNI feedback controller K(s)

for each NI agent. Assume one of the following conditions hold:

1) lims→0 s
2P (s) is nonsingular;

2) lims→0 s
2P (s) = 0 and lims→0 sP (s) is nonsingular.

Then, robust output consensus is achieved via control protocol (4.4) for networked

system (4.3) as shown in Figure 4.1 (or in a distributed manner (4.2) for each system

(4.1)) under any external disturbances din, do ∈ L2[0,∞) and model uncertainty that

retains the NI property of the perturbed system P (s) if and only if K(0) < 0.

Proof. Since P (∞) = 0, conditions (b) in Theorem 4.3 reduce to

λ̄[lims→0[[µiK(s)P (s)− In][In − µiΨP (s)]−1]] < 0 (4.5)

while conditions (c) in Theorem 4.3 reduce to

λ̄[lims→0[[In − µiP (s)Ψ]−1[µiP (s)K(∞)− In]] < 0, and

λ̄[lims→0[[µiK(s)P (s)− In][In − µiK(∞)P (s)]−1] < 0
(4.6)

∀i ∈ {2, . . . , N}. The proof is then similar to the proof of [34, Cor. 32] but when

applied either to condition (4.5) or (4.6).
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Remark 4.7. A procedure was provided in [34] for selecting Ψ by first decomposing

P (∞) as P (∞) = QΛQT , where Q is an orthogonal matrix and Λ is diagonal, then

selecting Λ1 as a diagonal matrix with negative elements such that Λ−Λ1 > 0 so that

Ψ = QΛ−1
1 QT fulfills the required condition λ̄[P (∞)Ψ] < 1 as this is equivalent to

P (∞) − Ψ−1 > 0. Since the nonzero eigenvalues of L play an important role in the

robust output consensus conditions, we hence need to select Λ1 such that Λ− 1
λ̄(L)

Λ1 > 0

since the condition λ̄[P (∞)Ψ] < 1 is replaced here by λ̄[P (∞)Ψ] < 1/λ̄(L).

4.3.4 SISO specialisation: must have pole(s) at the origin

The following corollary shows that when the NI systems are SISO and must either

have a single or double pole at the origin, the robust output consensus conditions of

Theorem 4.3 can be simplified as follows.

Corollary 4.3. Consider a network of homogeneous SISO NI systems P (s) with s = 0

being a single or double pole of P (s), a network graph G that satisfies Assumption 4.1

and an SNI feedback controller K(s) for each NI agent. Then, robust output consensus

is achieved via control protocol (4.4) for networked system (4.3) as shown in Figure 4.1

(or in a distributed manner (4.2) for each system (4.1)) under any external distur-

bances din, do ∈ LnN2 [0,∞) and model uncertainty that retains the NI property of the

perturbed system P (s) if and only if either one of the following conditions hold:

1) P (∞)K(∞) < 1/λ̄(L) and K(0) < 0;

2) P (∞)K(∞) > 1/λ2(L) and K(∞) > 0.

Proof. The two conditions in this corollary can be obtained either via conditions (b)

or conditions (c) of Theorem 4.3. First, we give the proof via conditions (c) of The-

orem 4.3. Since n = 1, conditions (c) of Theorem 4.3 become P (∞)K(∞) 6= 1/µi

∀i ∈ {2, . . . , N}, K(∞)
1−µiK(∞)P (∞)

< 0 ∀i ∈ {2, . . . , N}, and K(0)
K(∞)

> 0 after writing P (s)

in its Laurent series form and taking the limit at s → 0. Consider the three cases

for the first condition: P (∞)K(∞) > 1/µi ∀i ∈ {2, . . . , N}, P (∞)K(∞) < 1/µi

∀i ∈ {2, . . . , N} and there exists i ∈ {i ∈ {2, . . . , N − 1}: µi 6= µi+1} such that

1/µi+1 < P (∞)K(∞) < 1/µi. The third case is violated by the second condition.

Hence we consider the first two cases. These two cases with (2.4) and the NI property
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K(0) > K(∞) lead to the three conditions being reduced to either condition 1) or 2)

in this corollary. Second, we give the proof via conditions (b) of Theorem 4.3. Since

n = 1, conditions (b) of Theorem 4.3 become P (∞)K(∞) 6= 1/µi,
µiP (∞)K(0)−1
1−µiP (∞)K(∞)

< 0

and K(0)
1−µiP (∞)K(0)

< 0 ∀i ∈ {2, . . . , N} after writing P (s) in its Laurent series form and

taking the limit at s → 0. The three aforementioned cases are considered where the

third case is violated by the third condition. Hence, these three conditions with (2.4)

lead to either one of the following conditions

i) P (∞)K(∞) < 1/λ̄(L), P (∞)K(0) < 1/λ̄(L), and K(0) < 0;

ii) P (∞)K(∞) > 1/λ2(L), P (∞)K(0) > 1/λ2(L), and K(0) > 0.

The equivalence between i) and 1) and the equivalence between ii) and 2) can be

concluded via similar arguments as in the proof of [34, Cor. 30]

4.4 Convergence analysis

In this section, we study convergence of the networked systems under distributed

control protocol (4.2). Recall form Remark 4.1 that internal stability of the inter-

connection [P̄ , K̄] does not imply asymptotic stability of the state space description

since P̄ (s) is unobservable. Thus, we are interested in analysing the final steady state

trajectory of the networked system. We show that the same conclusion as in [38] for

the final convergence can be drawn here which states that the steady state behaviour

of the closed loop networked system is determined by the eigenvalues of the closed

loop networked system on the imaginary axis. In doing so, the external disturbances

and model uncertainty will not be considered in this section.

Let a minimal realisation for the ith NI system P (s) be

ẋi = Axi +Bui

yi = Cxi +Dui

, i ∈ {1, . . . , N} (4.7)

and a minimal realisation for the ith SNI controller K(s) be

˙̄xi = Āx̄i + B̄ūi

ȳi = C̄x̄i + D̄ūi

, i ∈ {1, . . . , N} (4.8)

76



where A ∈ Rp×p, B ∈ Rp×n, C ∈ Rn×p, D ∈ Rn×n, Ā ∈ Rq×q, B̄ ∈ Rq×n, C̄ ∈ Rn×q

and D̄ ∈ Rn×n. Define R = (INn−L⊗DD̄). Unlike [38], the closed loop system, with

the assumption DD̄ = 0 removed, is now given by


ẋ

˙̄x


 = Ψcl


x
x̄


 (4.9)

where Ψcl is defined as

Ψcl =

[
(IN ⊗ A) + (L ⊗BD̄)R−1(IN ⊗ C) (IN ⊗BC̄) + (L ⊗BD̄)R−1(IN ⊗DC̄)

(L ⊗ B̄)R−1(IN ⊗ C) (IN ⊗ Ā) + (L ⊗ B̄)R−1(IN ⊗DC̄)

]
.

Define R̃i = (In − µiDD̄) and S̃i = (In − µiD̄D). The following Lemma yields infor-

mation about the spectrum of Ψcl, which can be considered a generalisation of [38,

Lemma 5].

Lemma 4.2. Let µi be the ith eigenvalue of L associated with eigenvector viL. The

spectrum of Ψcl is given by the union of the spectra of the following matrices:

ψi =


A+ µiBD̄R̃

−1
i C BC̄ + µiBD̄R̃

−1
i DC̄

µiB̄R̃
−1
i C Ā+ µiB̄R̃

−1
i DC̄


 ∀i ∈ {1, . . . , N}.

Furthermore, let
[
vi1
∗
vi2
∗
]∗

be an eigenvector of ψi. Then, the corresponding eigen-

vector of Ψcl is


v

i
L ⊗ vi1
viL ⊗ vi2


 .

Proof. By Assumption 4.1, the Laplacian matrix can be decomposed as L = UΛUT

where U = [u1, . . . , uN ].Therefore,

(L ⊗ D̄)R−1

= (INn − L⊗ D̄D)−1(L ⊗ D̄)

= (U ⊗ In)(INn − Λ⊗ D̄D)−1(UT ⊗ In)(L ⊗ D̄)

=
[
(u1 ⊗ In), . . . , (uN ⊗ In)

]
diag(S̃−1

i )




(uT1 ⊗ In)
...

(uTN ⊗ In)


 (L ⊗ D̄) ∀i ∈ {1, . . . , N}

=
[∑N

i=1
(ui ⊗ In)S̃−1

i (uTi ⊗ In)
]

(L ⊗ D̄).
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Similarly, (L ⊗ In)R−1 = [
∑N

i=1(ui ⊗ In)R̃−1
i (uTi ⊗ In)](L ⊗ In), and the entries of Ψcl

can be expressed as

Ψcl11 = (IN ⊗ A) + (IN ⊗B)

[
N∑

i=1

(ui ⊗ In)S̃−1
i (uTi ⊗ In)

]
(L ⊗ D̄C)

Ψcl12 = (IN ⊗BC̄) + (IN ⊗B)

[
N∑

i=1

(ui ⊗ In)S̃−1
i (uTi ⊗ In)

]
(L ⊗ D̄DC̄)

Ψcl21 = (IN ⊗ B̄)

[
N∑

i=1

(ui ⊗ In)R̃−1
i (uTi ⊗ In)

]
(L ⊗ C)

Ψcl22 = (IN ⊗ Ā) + (IN ⊗ B̄)

[
N∑

i=1

(ui ⊗ In)R̃−1
i (uTi ⊗ In)

]
(L ⊗DC̄).

Without loss of generality, let viL be a normalized eigenvector of L associated with the

eigenvalue µi. Also, since the columns of U are a set of N orthonormal vectors, each of

which is an eigenvector of L, it follows that uTj v
i
L = 0 ∀i 6= j, uTi v

i
L = 1 and ui = viL.

Let λψi
be the eigenvalue of ψi. We consequently obtain

Ψcl


v

i
L ⊗ vi1
viL ⊗ vi2




=


v

i
L ⊗ (Avi1 + µiBD̄R̃

−1
i Cvi1 +BC̄vi2 + µiBD̄R̃

−1
i DC̄vi2)

viL ⊗ (µiB̄R̃
−1
i Cvi1 + Āvi2 + µiB̄R̃

−1
i DC̄vi2)




=


v

i
L ⊗ λψi

vi1

viL ⊗ λψi
vi2


 = λψi


v

i
L ⊗ vi1
viL ⊗ vi2




which shows that λψi
is also an eigenvalue of Ψcl with


v

i
L ⊗ vi1
viL ⊗ vi2


 being the associated

eigenvector.

The importance of Lemma 4.2 is that it characterises the spectrum of Ψcl which

plays an essential role in determining the final convergence of system (4.9). In what

follows we show that the steady-state behaviour of the closed loop system (4.9) is in

particular determined by the eigenvalues of A on the imaginary axis. For µ1 = 0, ψ1 =
A BC̄

0 Ā


. For µi > 0 ∀i ∈ {2, . . . , N}, ψi =


A BC̄

0 Ā


 + µi


BD̄
B̄


 R̃−1

i

[
C DC̄

]
.

The eigenvalues of ψ1 are the union of the eigenvalues of A and Ā which are in the

CLHP and OLHP, respectively. For µi > 0 ∀i ∈ {2, . . . , N} and det(A) 6= 0, using [41,
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Lemma 7] and [41, Lemma 8], ψi can be written as

ψi =


A BC̄

0 Ā


+ µi


BD̄
B̄


 R̃−1

i

[
C DC̄

]
= ΦTi

where Ti =


Y

−1 − µiC∗D̄R̃−1
i C −C∗S̃−1

i C̄

−µiC̄∗R̃−1
i C Ȳ −1 − µiC̄∗R̃−1

i DC̄


, Φ =


AY 0

0 ĀȲ


, and in a

similar manner as [34, Th. 9] ψi is Hurwitz if and only if conditions (b) of Theorem 4.1

are satisfied. For µi > 0 ∀i ∈ {2, . . . , N} and det(A) = 0, it can be verified that


A1 B1C̄1

0 Ā1


+


B1D̄1

B̄1


R−1

1

[
C1 D1C̄1

]
= ψi

where A1 = A+µiBΨ(I −µiDΨ)−1C, B1 = B(I −µiΨD)−1, C1 = µi(I −µiDΨ)−1C,

D1 = µiD(I−µiΨD)−1, Ā1 = Ā, B̄1 = B̄, C̄1 = C̄, D̄1 = D̄−Ψ and R−1
1 = (I−D1D̄1).

Also, since (A,B,C,D) is a minimal realisation of P (s) it follows that (A1, B1, C1, D1)

is a minimal realisation of P1(s) = µi(I − µiP (s)Ψ)−1P (s) which is an NI system

without poles at the origin via [34, Lemma 20] ∀i ∈ {2, . . . , N}. Moreover, it is

obvious that (Ā1, B̄1, C̄1, D̄1) is a minimal realisation of K1(s) = K(s) − Ψ which is

SNI. Consequently, det(A1) 6= 0 and [41, Lemma 7], [41, Lemma 8] can be employed

to write ψi as

ΦiTi =


A1 B1C̄1

0 Ā1


+


B1D̄1

B̄1


R−1

1

[
C1 D1C̄1

]
= ψi

where Ti =


Y1i

−1 − C∗1D̄1R
−1
1 C1 −C∗1S−1

1 C̄1

−C̄∗1R−1
1 C1 Ȳ −1

1 − C̄∗1R−1
1 D1C̄1


, Φi =


A1Y1i 0

0 Ā1Ȳ1


, R1 =

(I −D1D̄1) and S1 = (I − D̄1D1). Hence, ψi is Hurwitz if and only if ∀i ∈ {2, . . . , N},
I − P1(∞)K1(∞) is nonsingular, λ̄[[I − P1(∞)K1(∞)]−1[P (∞)1K1(0) − I]] < 0, and

λ̄[[I−K1(0)P1(∞)]−1[K1(0)P1(0)−I]] < 0 if and only if conditions (b) of Theorem 4.3

are satisfied in a similar manner as [34, Th. 9] and via similar arguments as in the

proof of [34, Th. 24], respectively. Thus, the eigenvalues of Ψcl on the imaginary axis

are the eigenvalues of A on the imaginary axis and all the remaining eigenvalues of Ψcl

are in the OLHP. Let n0 be the number of eigenvalues of Ψcl on the imaginary axis

denoted by λA and let vrA and vlA be the right and left eigenvectors of A associated

with λA (note that they can also represent respectively the generalised right and left
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eigenvectors of A associated with λA in case the algebraic multiplicity is greater then

the geometric multiplicity). The steady state expression of system (4.9) is given below.

Theorem 4.4. The steady state trajectory of system (4.9) is given by


x(t)

x̄(t)


 t→∞−−−→

[
w1 . . . wn0

]
eJ
′t




v∗1
...

v∗n0





x(0)

x̄(0)


 (4.10)

where J ′ is the Jordan block associated with λA, and ∀j ∈ {1, . . . , n0}

wj =


1N ⊗ vrA

0Nq×1


 , vj =


 1N ⊗ 1

N
vl

A

1N ⊗ 1
N

(λAIq − Ā)−∗C̄∗B∗vl
A




are the right and left eigenvectors of Ψcl associated with λA.

Proof. Similar to proof of [38, Th. 2].

Since we are concerned with output consensus, internal stability guarantees that

y → 1N ⊗ yss. Thus, the final output convergence is given by

y(t) = R−1(IN ⊗ C)x(t) +R−1(IN ⊗DC̄)x̄(t)

Ry(t) = (IN ⊗ C)x(t) + (IN ⊗DC̄)x̄(t)

1N ⊗ yss =
[
(IN ⊗ C) (IN ⊗DC̄)

]

x(t)

x̄(t)


 .

4.5 Illustrative examples

In this section, we give two examples to demonstrate the effectiveness of the robust

output consensus results proposed in this chapter. In each example, four NI systems

are considered. The network topology that models the interaction among the NI

systems and its associated Laplacian matrix are given in Figure 4.5.

4.5.1 Without poles at the origin

The transfer function matrix of the four NI systems and the SNI feedback controller

for each NI agent are

P (s) =




2s2+2.2
s2+0.6

0

0 1
s+1


 , K(s) =




1
s2+15s+20

0

0 −2s−9
s+5


 ,
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2 3

L =




2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1




Figure 4.5: Network Graph and associated Laplacian matrix.

respectively. Although P (∞)K(∞) = 0, K(∞) 6≥ 0. Thus, the results in [38, Th. 1]

cannot be used to determine robust output consensus of the networked NI systems.

On the other hand, since P (0) > 0 we conclude via Corollary 4.1 (case (ii)) that

robust output consensus is achieved for the NI systems since λ̄[P (0)K(0)] = 0.18 <

(1/λ̄(L)) = 0.24 as shown in Figure 4.6 with external disturbances acting on the

systems.
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Figure 4.6: Robust output consensus for networked NI systems.

4.5.2 With poles at the origin

Here we consider four homogeneous flexible robotic arms. Figure 4.7 shows the model

of the ith robotic arm. The arm is modelled by slewing beam with co-located

piezoelectric actuator and sensor and is driven by a motor pinned to one of its ends
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Vai

Vsix2

L

x1

x

y

τiθi

Figure 4.7: Schematic diagram of a slewing beam equivalent to ith robotic arm [40].

[74]. Thus, the ith robotic arm has two inputs (Vai, τi) which represent voltage and

torque applied to the piezoelectric actuator and motor respectively, and two outputs

(Vsi, θi) which represent voltage sensed by the piezoelectric sensor and the motor hub

angle respectively ∀i ∈ {1, . . . , 4}. Whereas the robotic arm has an infinite dimensional

model, for purpose of control design a finite dimensional model can be approximated.

A finite dimensional model Pi(s) = P (s) ∀i ∈ {1, . . . , 4} for the flexible robotic arms,

taking the first resonant mode into account (see [40] for more details), is obtained as

P (s) =


 Pτ,θ(s) PVa,θ(s)

Pτ,Vs(s) PVa,Vs(s)


 =




3.231s2+1.618
s2(s2+3.42)

3.5573×10−4

s2+3.42

3.5573×10−4

s2+3.42
2.35

s2+3.42


 . (4.11)

It can be verified by Definition 2.17 that (4.11) is NI with two poles at the origin.

Consider the SNI controller in [40]

K(s) =



−4.29s2−231.5s−5.11.9

s2+62.13s+232.4
15s−247.5

s2+62.13s+232.4

15s−247.5
s2+62.13s+232.4

−2.22s2−117.9s−162
s2+62.13s+232.4


 .

Although P (s) has poles at the origin and is strictly proper, the results in [38] cannot

be used to determine robust output consensus for the robotic arms since N(P2) 6⊆ N(P0)

where N denotes the null space and P0, P2 are the coefficients in the Laurent series

expansion of P (s) around the zero. On the other hand, robust output consensus

for the robotic arms can be easily concluded via Theorem 4.3 of this chapter. In

fact, we need only check condition (4.5) since P (∞) = 0. Now since it is possible

to select Ψ = K(0) < 0 (see [34]), we check that (4.5) is satisfied ∀i ∈ {2, 3, 4},
i.e. λ̄[lims→0[[µiK(s)P (s) − In][In − µiΨP (s)]−1]] = −1 < 0 ∀i ∈ {2, 3, 4}. Observe

that with this choice of Ψ, we were able to easily determine robust output consensus

without knowledge of the eigenvalues of L. Note that [39, Th. 15], which captures

robust output consensus for the heterogeneous case, is much more complicated to use
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Figure 4.8: Robust output consensus for networked robotic arms.

since the conditions are checked for the augmented networked plant and controller

which increase in dimension by increasing the number of connected agents. More-

over, matrix factorisation is needed and additional conditions need to be satisfied,

such as non-singularity and sign semidefiniteness, for specific matrices before being

able to determine whether output consensus is achieved or not. Simulation results,

using the finite dimensional model (4.11), are shown in Figure 4.8. The initial condi-

tions have been arbitrarily chosen as [1, 0.1, 2, 0.2, 3, 0.3]T , [−1, 0.1,−2, 0.2,−3, 0.3]T ,

[2.5, 0.5,−2.5, 0.6,−3.2, 0.1]T , [2, 0.3,−5.5, 0.4,−1, 0.2]T for the four NI systems re-

spectively, and [0, 0]T for all four SNI controllers. It can be seen from Figure 4.8 that

robust output consensus is achieved with external disturbances.

4.6 Summary

Necessary and sufficient conditions for robust output consensus were proposed for

multiple homogeneous NI systems which are subject to L2 external disturbances and

model uncertainties by utilising the recently published robust NI stability results. Ad-

vantages of the proposed results over existing results in literature were discussed. It

was shown that the derived conditions specialise to those in earlier literature by either

imposing the same assumptions at infinite frequency or by imposing different ones

which had not been known previously. It was also shown that the derived conditions

simplify in the SISO case. Furthermore, it was shown that the steady state behaviour

of the closed loop networked system is determined by the eigenvalues of the closed loop
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networked system on the imaginary axis which is in agreement with conclusions of ear-

lier studies. The results were enhanced by several examples such that the effectiveness

of the proposed results over earlier results were apparent when the assumptions of

earlier results do not hold.
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Chapter 5

Cooperative control of integrator

negative imaginary systems with

application to rendezvous multiple

mobile robots

5.1 Introduction

The study of multiple mobile robot cooperation falls under the more general field of

study: cooperative control of multi-agent systems. It has been recognized as an impor-

tant field of study due to the various applications mobile robots have which directly

benefit society such as cooperative rescue missions in hazardous environments. There-

fore, cooperative control of multi-robot systems has been studied widely by researchers

over the past decade such as in [75, 4, 76] to name a few. Rendezvous of multiple

mobile robots is a common desirable task that needs to be achieved via the design

of appropriate distributed control laws. Specifically, to achieve rendezvous, multiple

robots cooperate with each other in order to reach the same position. The rendezvous

problem has been studied extensively over the past decade such as in [77, 78, 79, 80]

to name a few.

In this chapter, a rendezvous problem for multiple nonholonomic wheeled mobile

robots is tackled via the negative imaginary systems theory. Some of the advantages of

using the NI systems theory to tackle such a problem are as follows. First, recall that
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the NI systems theory is deemed effective in applications where position is the state

of interest. Second, but not least, recall that the dynamics of nonholonomic WMRs

can be simplified to a single integrator model via input-output linearisation making it

possible to develop simple yet sophisticated control laws for integrator NI systems in a

systematic way which can be directly applied to WMRs. Cooperative control strategies

are proposed in this chapter for integrator NI systems which are then implemented

on real-robots to achieve rendezvous. The theoretical work in this chapter builds on

[38] and [39]. Recall that robust output consensus was addressed in [38] and [39] for

networks of homogeneous and heterogeneous NI systems respectively by reformulating

the consensus problem into an internal stability problem. Also, recall that robust

output tracking for multiple NI systems was addressed in [39]. However, one drawback

associated with the work in [38, 39] is that it only deals with undirected graphs to model

the interaction among the systems and hence is not applicable to directed graphs.

Nevertheless, we prove in this chapter that for MIMO integrator NI systems and for

directed graphs that are balanced and strongly connected the consensus and tracking

problems can be guaranteed via the NI internal stability theorems. Consequently, the

results are utilized to achieve rendezvous for multiple nonholonomic WMRs.

The remainder of this chapter is organized as follows. First, we prove that multiple

integrator NI systems with directional information flow that is balanced and strongly

connected retain the NI property. Subsequently, we derive conditions, using NI systems

theory, such that output consensus and cooperative tracking are guaranteed for a

network of integrators with strongly connected, balanced and directed information

flow subject to energy-bounded disturbances. Finally, experimental results from both

real-robot and simulation are provided to validate the effectiveness of the proposed

theoretical results in solving a rendezvous problem for multiple WMRs.

5.2 Problem Formulation

Consider a group of N homogeneous MIMO integrators with external disturbances

acting on each system. The dynamics of the ith system are described as

yi = woi + P (s)(ui + wini
) ∀i ∈ {1, . . . , N}, (5.1)
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where P (s) = k
s
Im is the transfer matrix with k > 0, ui and yi are the control input

and output of the ith system respectively. Also, wini
and woi are input and output

disturbances which are energy-bounded in an H2 (or in the time domain L2[0,∞))

sense. The information flow among the integrators is modelled by a directed graph G
which is assumed balanced and strongly connected.

Following [38], the distributed control law is given by

ui = K(s)zi,

zi =
N∑

j=1

aij(yi − yj),
(5.2)

where K(s) is a SNI feedback controller to each system, zi denotes the signal of relative

output measurements and aij are the elements of the adjacency matrix associated with

the network graph G. The collective network dynamics can be written as

y = wo + (IN ⊗ P (s))(u+ win), (5.3)

and

u = (IN ⊗K(s))z,

z = (L ⊗ Im)y,
(5.4)

where L is the Laplacian matrix associated with the network graph G. The closed

loop networked system is shown in Figure 5.1. By moving the block (L ⊗ Im) past

P (s) . . . 0
...

. . .
...

0 . . . P (s)

L ⊗
Im

K(s) . . . 0
...

. . .
...

0 . . . K(s)
u

win

+

yz

+

wo

Figure 5.1: Real physical networked system; general framework adopted from [38] but
L here is for directed, strongly connected and balanced graphs.

the summing junction and letting w̄o = (L ⊗ Im)wo, we obtain the block diagram

of Figure 5.2. Note that w̄o is a subset of wo since L is rank deficient. Consider
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P (s) . . . 0
...

. . .
...

0 . . . P (s)

L ⊗
Im

K(s) . . . 0
...

. . .
...

0 . . . K(s)

win

z +

+

P̄ (s)

K̄(s)

w̄ou

Figure 5.2: Internal stability framework; general framework adopted from [38] but L
here is for directed, strongly connected and balanced graphs.

the augmented plant P̄ (s) to be the integration of the agents dynamics with the

network topology; i.e. the transfer function from u to z. Then P̄ (s) can be written as

P̄ (s) = (L⊗ Im)(IN ⊗P (s)) = (L⊗P (s)). Also, let K̄(s) = (IN ⊗K(s)) which is SNI

since K(s) is SNI.

Our objectives is first to show that P̄ (s) is NI when P (s) is a MIMO integrator

and L corresponds to a directed, strongly connected and balanced graph. Then, we

derive conditions using NI systems theory for which output consensus and cooperative

tracking are achieved. This can be done since internal stability of the interconnection

[P̄ (s), K̄(s)] in Figure 5.2 is equivalent to consensus on the output y in Figure 5.1 by

the properties and the rank deficiency of the Laplacian matrix L.

5.3 Main results

5.3.1 Output consensus

The following lemma states that the augmented plant P̄ (s) is NI for a network of

homogeneous MIMO integrators and directed information flow that is balanced and

strongly connected.

Lemma 5.1. Consider a network of MIMO integrators with directed information flow

G that is balanced and strongly connected. Then, P̄ (s) is negative imaginary.

88



Proof. Since the network consists of MIMO integrators with P (s) = k
s
Im, it follows

that P (jω)∗ = −P (jω). We need to show that P̄ (s) is NI according to Definition 2.17.

In fact we only need to show that P̄ (s) satisfy conditions 1, 2 and 3 of Definition 2.17

since the agents are integrators. First, since P (s) has a pole at the origin, then P̄ (s)

will have its poles at the origin as well. Consequently, condition 1 is satisfied. To show

condition 2 is satisfied we have

j
(
P̄ (jω)− P̄ (jω)∗

)
= j ((L ⊗ P (jω))− (L∗ ⊗ P (jω)∗))

= j ((L ⊗ P (jω))− (L∗ ⊗−P (jω)))

= j ((L ⊗ P (jω)) + (L∗ ⊗+P (jω)))

= j ((L+ L∗)⊗ P (jω))

= j

(
(L+ L∗)⊗ k

jω
Im

)

=
k

ω
((L+ L∗)⊗ Im)

=
k

ω

(
(L+ LT )⊗ Im

)
≥ 0 ∀ω > 0,

is positive semidefinite by Lemma 2.8, by properties of Kronecker product and by

noting that L is real.

Finally we have that lims→0 s
rP̄ (s) = lims→0 s

r(L⊗ k
s
Im) = 0Nm×Nm for all r ≥ 3 and

lims→0 s
2P̄ (s) = lims→0 s

2(L ⊗ k
s
Im) = 0Nm×Nm.

Accordingly, P̄ (s) is NI.

The following theorem gives a condition under which output consensus is achieved

for a network of integrators with information flow that is balanced and strongly con-

nected.

Theorem 5.1. Consider a network of MIMO integrators with directed information

flow G that is balanced and strongly connected. Let K(s) be a strictly negative imag-

inary feedback controller for each integrator. Then, output feedback consensus is

achieved via control protocol (5.4) for networked system (5.3) as shown in Figure 5.1

(or in a distributed manner (5.2) for each system (5.1)) under any external distur-

bances win, wo ∈ L2[0,∞) if and only if K(0) < 0.

Proof. Fist we need to prove that [P̄ (s), K̄(s)] as depicted in Figure 5.2 is internally

stable using Lemma 2.4. Then, internal stability of the interconnection [P̄ (s), K̄(s)]
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in Figure 5.2 is equivalent to consensus on output y in Figure 5.1 by properties of

Laplacian matrix L and due to (L ⊗ Im) being rank deficient. To this end, we have

already shown in Lemma 5.1 that P̄ (s) is NI. Also, K̄(s) = (IN ⊗K(s)) is SNI since

K(s) is SNI. For P (s) = k
s
Im we have P2 = 0m×m, P1 = kIm, and P0 = 0m×m. This

gives P̄2 = (L ⊗ P2) = 0Nm×Nm, and P̄1 = (L ⊗ P1) = (L ⊗ kIm) 6= 0Nm×Nm. Also,

N(P̄ T
1 ) = N(LT ⊗ P T

1 ) = {1N ⊗ b : b ∈ Rm×1} ∪ {0Nm×1} and N(P̄ T
0 ) = N(LT ⊗

P T
0 ) = {1N ⊗ b : b ∈ Rm×1} ∪ {c ⊗ d : c ∈ RN×1, d ∈ Rm×1} due to Lemma 2.7 and

Lemma 2 in [38]. Consequently, N(P̄ T
1 ) ⊆ N(P̄ T

0 ). As G is strongly connected we have

rank(L) = N − 1. Thus, the singular value decomposition of L will have the form

L =
[
U1 U2

]

Σ 0

0 0




V

T
1

V T
2


 = U1ΣV T

1 , with U1 ∈ RN×N−1, 0 < Σ ∈ RN−1×N−1, and

V T
1 ∈ RN−1×N . Subsequently, P̄1 can be written as P̄1 = (L⊗ kIm) = (U1Σ⊗ k)(V1 ⊗
Im)T = F̄1V̄

T
1 .

Hence, F̄1
T
K̄(0)F̄1 = (U1Σ ⊗ k)T (IN ⊗ K(0))(U1Σ ⊗ k) = (ΣTUT

1 U1Σ ⊗ kK(0)k) =

(ΣTΣ ⊗ k2K(0)) < 0 if and only if K(0) < 0 since ΣTΣ > 0 with full rank of N − 1

and k > 0. We conclude that [P̄ (s), K̄(s)] is internally stable if and only if K(0) < 0.

The proof that internal stability of [P̄ (s), K̄(s)] implies output consensus with and

without external disturbances is similar to that of Theorem 1 in [38] with the only

difference being that here L1N = 0N holds because G is strongly connected.

5.3.2 Cooperative tracking to a pre-defined fixed reference

In this section we show that the NI stability theory can be used to solve a cooperative

tracking problem for multiple integrator NI systems. The distributed control law now

becomes

ui = K(s)zi,

zi =
N∑

j=1

aij(yi − yj) + di(yi − r),
(5.5)

for all i ∈ {1, . . . , N} where r is the fixed reference and di = 1 if agent i is connected

to the reference and di = 0 otherwise. The collective dynamics of the control law can

be written as

u = (IN ⊗K(s))z,

z = ((L+D)⊗ Im)(y − 1Nr).
(5.6)
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The plant from u to z is P̄ (s) = ((L+D)⊗ Im)(IN ⊗P (s)) = ((L+D)⊗P (s)) which

is NI following similar steps as in Lemma 5.1 and noting that (L +D) + (L +D)T is

positive definite since D is nonzero diagonal matrix, and by Lemmas 2.6 and 2.8.

P (s) . . . 0
...

. . .
...

0 . . . P (s)

(L + D)
⊗

Im

K(s) . . . 0
...

. . .
...

0 . . . K(s)

K̄(s)

u + + y - z

P̄ (s)
wowin 1Nr

Figure 5.3: Cooperative output tracking block diagram.

The following theorem gives a condition under which cooperative output tracking to a

fixed reference is achieved for a network of MIMO integrators with directed information

flow that is balanced and strongly connected.

Theorem 5.2. Consider a network of MIMO integrators with directed information

flow G that is balanced and strongly connected. Let K(s) be a strictly negative imag-

inary feedback controller for each integrator. Then, cooperative output tracking to a

fixed reference r is achieved via control protocol (5.6) for networked system (5.3) as

shown in Figure 5.3 (or in a distributed manner (5.5) for each system (5.1)) under

any external disturbances win, wo ∈ L2[0,∞) if and only if K(0) < 0.

Proof. Following similar steps as in the proof of Theorem 5.1, [P̄ (s), K̄(s)] is internally

stable if and only if K(0) < 0. Subsequently, internal stability of [P̄ (s), K̄(s)] yields

z → 0 in (5.6). That is, zi → 0 ∀i ∈ {1, . . . , N} in (5.5). Hence, yi → yj ∀j ∈ Ni, j 6= i

with di = 0 and yi → r when di = 1. Consequently, cooperative output tracking to a

fixed reference r is achieved, i.e., yi = yj = r ∀i ∈ {1, . . . , N} and ∀j ∈ Ni, j 6= i.

Remark 5.1. A simple DC gain condition, that can easily be satisfied, guarantees

output consensus and tracking via the distributed control law proposed in this chapter.

This can be considered an advantage over other existing protocols in literature, for
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example [77] where state space techniques and finding suitable gain matrices to satisfy

certain conditions are required in the design.

5.4 Application

In this section we apply the theoretical results of Section 5.3.2 to achieve rendezvous

of nonholonomic WMR.

5.4.1 Robot model

Consider a group of N = 3 homogeneous WMR. The kinematic model of the ith robot

is given by

ẋi = vi cosφi,

ẏi = vi sinφi,

φ̇i = wi.

∀i ∈ {1, 2, 3} (5.7)

where (xi, yi) is the position of the ith robot and φi is its orientation. Also, vi and ωi

are the linear and angular velocities of the ith robot respectively. In this chapter, we

are interested in the rendezvous problem defined as follows:

Problem statement 5.1. Find a distributed control law vi and wi for each WMR such

that all WMR reach a pre-defined fixed rendezvous position (xr, yr) which is available

only to some of the WMR.

In order to apply NI cooperative tracking results of Section 5.3.2 to the WMR,

we apply input output linearisation such that the system between the new input and

output is linear (see e.g. [81, 82] for more information). Define two new outputs to be

controlled as

x̃i = xi + l cosφi

ỹi = yi + l sinφi

, ∀i ∈ {1, 2, 3} (5.8)

where l 6= 0 is the distance from (x̃i, ỹi) to (xi, yi). Using the kinematic model (5.7),

the new dynamics of the WMR is given by



˙̃xi

˙̃yi


 = F (φi)


vi
ωi


 (5.9)
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where F (φi) =


cosφi −l sinφi

sinφi l cosφi


. Define new inputs to be u1i, u2i. Using these two

new control variables we get


vi
ωi


 = F (φi)

−1


u1i

u2i


 (5.10)

and the robot’s linearised model becomes

˙̃xi = u1i

˙̃yi = u2i.
, ∀i ∈ {1, 2, 3} (5.11)

The dynamic of system (5.11) is linear and decoupled and corresponds to an integrator

NI system; i.e. P (s) = 1
s
I2 which implies that the algorithms of the previous section

can be directly applied.

5.4.2 Simulation results

The initial positions (in metres) and orientation (in degrees) are chosen as (0.7, 0.4, 0),

(0.3, 0.4, 0) and (0.5, 0.1, 0) for the three robots. Also, we assume in this simulation

that l = 0.03 m. The final rendezvous position (in metres) is (0.5, 0.3). Note that with

this approach the orientation is left uncontrolled. The network graph that models

the communication links among the three robots is shown in Figure 5.4. Also, the

1

2 3

r

Figure 5.4: Network graph.

reference is available only to system 1. Hence, the Laplacian matrix associated with
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G and the diagonal matrix D are

L =




1 0 −1

−1 1 0

0 −1 1


 , D =




1 0 0

0 0 0

0 0 0


 .

An SNI controller for each robot is chosen as K(s) = −3s−2
s+1

I2 with zero initial condi-

tion which satisfies K(0) = −2I2 < 0. Consequently, rendezvous is achieved via the

cooperative output position tracking results of Theorem 5.2 as shown in Figure 5.5

without and with external input disturbances. Also, Figure 5.6 shows a time plot of

Figure 5.5(b) which confirms convergence to the final rendezvous position.
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Figure 5.5: Rendezvous for WMR, (a) without disturbances and (b) with disturbances.
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Figure 5.6: Positions of the three robots with disturbances

5.4.3 Experimental results

To validate the proposed control mechanism using real-robot experiments, miniature

mobile robots, Mona [83] which is a low-cost and open-source mobile robot platform,

were deployed. Mona has been developed for use in the research of swarm robotics [84].

Experiments were conducted in a rectangular arena with dimensions of 1.4 m× 0.9 m

which has been developed for study on long-term swarm robotics scenarios [85]. An

open-source multi-robot tracking system [86] which tracks both the position and ori-

entation of the robot using an overhead camera was used. Via a unique circular tag

attached on the surface of each robot, the position and orientation can be tracked. The

position information is sent to the controller via a ROS communication framework.

Three Mona robots where used in the experiment. The initial positions of the
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three robots were (0.6942, 0.376) m , (0.3296, 0.4415) m, and (0.4409, 0.1194) m. The

final rendezvous position was (0.5, 0.3) m. Also, l = 0.03 m for the robots. The same

network graph of Figure 5.4 was used. The controller to each Mona robot was the

same as the one designed in Section 5.4.2. Snapshots of the positions of the three

Mona robots during the experiment at different time durations is shown in Figure 5.7.

As can be seen from the figure, the Mona robots rendezvous at the desired reference

position. The position trajectory of the three Mona robots is shown in Figure 5.8.

Note that in order to avoid collision during the experiment, each robot stops when it

is near the rendezvous point (0.05 m range). Finally, the control inputs are shown in

Figure 5.9. It is apparent that the control inputs switch between their extreme values

over the entire control time interval. That is, the control inputs saturate because the

control magnitude is limited due to physical consideration. Such control inputs are

known as bang-bang control inputs. An advantage of bang-bang control inputs is that

maximum effort is applied so that the final trajectory is reached in minimum time.

More details on bang-bang control can be found in [87].

Figure 5.7: Position snapshots of the 3 Mona robots at different time durations starting
from initial position and ending in rendezvous. (a) t = 0 s. (b) t = 2 s. (c) t = 5 s. (d)
t = 11 s.
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Figure 5.8: Position trajectory and rendezvous of three Mona robots to final position
(0.5, 0.3) m marked in cross.
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Figure 5.9: The control input which represents the desired (reference) velocity to each
motor. (a) Control input 1. (b) Control input 2.
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5.5 Summary

In this chapter, the cooperative control problem for a network of integrators with

directed information flow that is balanced and strongly connected was addressed via

negative imaginary systems theory. Moreover, a rendezvous problem for multiple

wheeled mobile robots was tackled via the proposed cooperative tracking results. First,

a directed, strongly connected and balanced network of integrators was shown to

retains the NI property. Consequently, a condition was derived that guarantees output

consensus for the networked system under external disturbances by use of internal

stability results from NI systems theory. It was also shown that cooperative tracking to

a pre-defined fixed reference can also be achieved for the networked system in a similar

manner. Finally, experimental results, using Mona robots, as well as simulation results

showed that rendezvous is achieved via the distributed control protocol proposed with

communication among the robots being modelled by directed graphs that are balanced

and strongly connected.
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Chapter 6

Conclusions

This thesis makes several noteworthy contributions to the study of networked multi-

agent systems with negative imaginary properties. These contributions are sum-

marised in this chapter alongside with suggestions on possible directions for future

research. Prior to exploring and developing the work of this thesis, existing studies

on this topic were very limited which were reported in [38, 39]. The main aim of this

thesis is to fill in the gap that existed in the literature regarding negative imaginary

systems in a multi-agent framework. The thesis addresses three problems, namely

(i) the distributed robust stabilization problem of networked multi-agent systems with

strict negative imaginary uncertainties, (ii) the robust output consensus problem for

homogeneous multi-agent systems with negative imaginary dynamics, and (iii) a ren-

dezvous problem for nonholonomic wheeled mobile robots, and proposes a solution to

each of them.

6.1 Contributions

The main contributions of this thesis are summarised below.

1. Propose a solution to the distributed robust stabilization problem of networked

multi-agent systems with strict negative imaginary uncertainties (results of Chap-

ter 3). Particularly,

• show that under the assumption that the network graph is connected and
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undirected with at least one self-loop, a state, input and output trans-

formation preserves the negative imaginary property. Thus, show that a

necessary and sufficient condition for the transfer function matrix of the

nominal closed-loop networked system to be NI and satisfy a DC gain con-

dition is that multiple reduced-order equivalent systems be NI and satisfy

a DC gain condition simultaneously;

• derive sufficient conditions, in an LMI framework, for the existence of con-

trol protocol parameters such that the control protocol robustly stabilizes

a networked multi-agent system in presence of SNI uncertainties of certain

DC size;

• provide an algorithm to design the control protocol parameters; which are

a positive scalar that handles the effect of the network topology and a state

feedback gain matrix;

• ensure robust stability when variations in the network topology occur by

simply appropriately adjusting the positive scalar while leaving the state

feedback gain matrix unchanged;

• provide a numerical example to show the usefulness of the proposed results.

2. provide a solution to the robust output consensus problem for multiple homo-

geneous negative imaginary systems by means of recently published robust NI

stability results (results of Chapter 4). Particularly,

• we relax the assumptions imposed in [38] thereby derive robust output

consensus conditions under L2 external disturbances and model uncertainty

which are not restricted;

• one distinct advantage that unfolds in our work is that not only do the

derived conditions specialise to those in [38] by imposing the same two

assumptions at infinite frequency but also specialise to those in [38] by

imposing different assumptions which were unknown in [38];

• the derived conditions simplify in the SISO case providing several insights

which are not easily captured in the MIMO case (for SISO NI systems

with no poles at origin) and are less sensitive to the network graph that
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models the interconnection of the systems (for SISO NI systems with poles

at origin);

• provide an analysis for the final steady state trajectory of the networked

systems and proof that it is in agreement with conclusions of earlier studies;

and

• provide examples that demonstrate the capability of the proposed robust

output consensus results over earlier results when earlier assumptions fail

to hold.

3. Propose a solution to a rendezvous problem for nonholonomic wheeled mobile

robots via the negative imaginary systems theory (results of Chapter 5). Partic-

ularly,

• show that the NI property is preserved for multiple MIMO integrator sys-

tems with directional information flow that is balanced and strongly con-

nected;

• derive necessary and sufficient conditions that guarantee output consensus

and output tracking for strongly connected, balanced and directed networks

of integrators subject to energy-bounded disturbances using the NI internal

stability theorems;

• utilize the aforementioned results to achieve rendezvous of multiple WMR.

Specifically, provide experimental results from both real-robot and simu-

lation to validate the effectiveness of the proposed theoretical results in

solving a rendezvous problem for multiple WMR.

6.2 Directions for future research

Possible directions for future research are briefly discussed below.

• One of the main aspects of this thesis is addressing the robust output consensus

problems in networks of continuous-time negative imaginary systems. However,

the thesis did not consider addressing the robust output consensus problem in

networks of discrete-time negative imaginary systems. Recently, the theory on
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discrete-time negative imaginary systems has been developed [51, 88, 49]. As

indicated in [51], the theory is promising because modern applications depend

significantly on digital control. Thus, it would be of interest to explore the

robust output consensus problem in networks of discrete-time negative imaginary

systems.

• It is unavoidable that components of a control system wear out over time. Thus,

it is of importance to detect any faulty component and also isolate it before an

entire failure of a system occurs. For this reason, fault detection and isolation

(FDI) has been an important field of study in the control systems community. A

survey on this topic can be found in [89]. Particularly, there has been a growing

trend towards the study of FDI of multi-agent systems. A distributed simulta-

neous fault detection and consensus control problem was addressed in [90]. With

the methodology proposed in [90], each agent can detect both its faults and its

neighbours faults and isolate them. Therefore, a possible area of future research

would be to study the problem of distributed FDI in networks of homogeneous

NI systems and investigate whether a methodology can be developed such that

each NI system can detect and isolate its own and its neighbouring agents faults.

• Controller synthesis for a class of NI systems was addressed in [45] via a data-

driven approach. The proposed controller methodology in [45] guarantees that

the controller satisfies the NI property at every frequency point thus the sta-

bility of the closed loop system is ensured via the NI internal stability results

in [30, 31]. This study provides an insight for future research directions as it

would be interesting to investigate whether distributed control protocols can be

synthesised for networked NI systems using a data-driven approach.
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