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Stochastic Galerkin finite element methods (SGFEMs) are a popular choice for the
numerical solution of PDE problems with uncertain or random inputs that depend on
countably many random variables. Standard SGFEMs compute approximations in a
fixed number of random variables which are selected a priori and the rates of conver-
gence deteriorate as the number of variables increases. The size of the associated linear
systems of equations also grows rapidly with the number of input random variables
and desktop computer memory is quickly exhausted. In general, it is unknown a priori
which, or how many, random variables need be incorporated into the discretisation
in order to estimate quantities of interest to a prescribed error tolerance. Quantities
of interest which depend strongly on a high number of input random variables pose
serious theoretical and computational challenges and new sophisticated algorithms are
required to approximate them.

We focus on the design of efficient adaptive SGFEM algorithms for elliptic PDEs
with inputs with affine dependence on a countably infinite number of random variables.
Starting with an initial cheap–to–compute approximation, we employ an implicit a
posteriori error estimation strategy to steer the adaptive refinement of the approxi-
mation space, ensuring that only the most important random variables with respect
to the energy error are incorporated. To ensure that the correct decisions are made
during the adaptive selection process, the error estimate needs to be highly accurate.
Additionally, a suitable balance between the computational cost of the estimate and
the desired accuracy must be struck to ensure that the algorithm is efficient and quick
to run.

This thesis contains two novel contributions. First, we investigate the so–called
CBS constant associated with two finite element spaces that appears in the bound
relating the true error to the estimated error. With the aim of designing cheap error
estimates with effectivity indices close to one, we compute the CBS constant associated
with several non–standard pairs of finite element spaces. For certain pairs, we also
prove new theoretical estimates for the associated CBS constants using only linear
algebra arguments. Second, we design a novel adaptive multilevel SGFEM algorithm,
where each solution mode is associated with a potentially different finite element space.
When applied to the stochastic diffusion problem, we demonstrate that our multilevel
algorithm performs optimally in that it realises the rate of convergence afforded to
the underlying finite element method for the analogous deterministic problem (despite
the diffusion coefficient being modelled as a function of an infinite number of random
variables). We consider convex and non–convex spatial domains, the latter of which
leads to solutions with spatial singularities. To realise the optimal rates of convergence
on non–convex domains, we also employ a local mesh refinement strategy within our
multilevel algorithm for each solution mode.
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Chapter 1

Introduction

1.1 Uncertainty Quantification

Mathematicians and engineers often model physical processes using partial differential

equations (PDEs). In many circumstances, we employ such models as a replacement

for real world experiments regarded to be either too expensive, unethical or infeasible.

Many physical processes of interest appear naturally; biological and chemical processes

in organic matter for example. Others arise by design in industrial and manufacturing

processes.

Most PDE models require some form of input data. For example, coefficients,

boundary conditions and the geometry of the domain on which the PDE is posed. In

traditional applied mathematics, such inputs are usually assumed to be deterministic,

or completely known. However, when modelling real–world processes, this is often

not the case. Sometimes, data and physical measurements may be collected before

constructing meaningful mathematical representations of model inputs. Clearly, only

a finite number of measurements or recordings can be taken. Similarly, only a limited

amount of data can be stored. Models therefore exhibit a level of uncertainty caused

by a lack of knowledge about their inputs, which we refer to as epistemic uncertainty.

Often, epistemic uncertainty is overlooked and disguised as a modelling assumption.

Whilst many models are still extremely effective, despite the underlying uncertainty,

most state–of–the–art methods now seek to quantify that uncertainty and its impact

on the model solution, thus giving rise to the field of Uncertainty Quantification (UQ).

Broadly speaking, the field of UQ can be split into two distinct research areas;

15



16 CHAPTER 1. INTRODUCTION

forward UQ and inverse UQ. Forward UQ is straightforward to comprehend, and its

essence is captured above. We are simply tasked to consider the following question;

given a model with uncertain inputs, what is the uncertainty in the output? Advancing

this notion we seek to compute probabilistic information about the uncertain output,

its expectation or variance for example, given a probability distribution for the inputs.

In certain situations we may even wish to compute the probability that a rare or

catastrophic event may occur. Conversely, for inverse UQ we are tasked to consider

the question; given a model whose outputs have been observed (subject to noise), what

were the inputs? Recasting the inverse problem in the Bayesian framework enables

us to compute posterior probability distributions for the unknown inputs, conditioned

on available data. In–depth reviews of UQ can be found in [97, 101, 67] and more

information about the Bayesian framework is provided in [99]. The focus of this thesis

is forward UQ and the efficient solution of PDE problems with random or uncertain

inputs.

1.2 Stochastic Finite Element Methods

Our starting point is the deterministic diffusion problem: find u(x) : D → R such that

−∇ · (a(x)∇u(x)) = f(x), x ∈ D, (1.1)

u(x) = g(x), x ∈ ∂D, (1.2)

where D ⊂ R2 is the spatial domain and g(x) : D → R represents some prescribed

Dirichlet data associated with the boundary ∂D of D. Finite element methods (FEMs)

are commonly employed for the numerical solution of PDE problems such as (1.1)–

(1.2) with deterministic input data; see [91, 27, 28, 49] for example. When the model

inputs are uncertain or when we lack information about them, they may be modelled or

represented by functions of suitably chosen random variables. The resulting equations

are often referred to as stochastic PDEs or PDEs with random inputs. The chief

idea of forward UQ is to propagate the uncertainty in the inputs to the outputs (the

solution or some quantity of interest that depends on the solution). In this thesis, we

consider a powerful class of methods for forward UQ called stochastic finite element

methods (SFEMs) (see [60] for a review of several different methods).
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We study the case where the diffusion coefficient a(x) in (1.1) is uncertain. Specif-

ically, we replace a(x) with a random field a(x, ω) : D × Ω→ R of the form

a(x, ω) = a0(x) +
∞∑
m=1

am(x)ξm(ω), (1.3)

for a given sequence of bounded random variables ξm(ω) : Ω→ R and spatially varying

functions am(x) : D → R for m = 0, 1, . . . . We refer to Ω as the stochastic domain

and study the stochastic diffusion problem: find u(x, ω) : D×Ω→ R such that P–a.s.

(i.e., with probability one)

−∇ · (ā(x, ξ)∇u(x, ω)) = f(x), x ∈ D, (1.4)

u(x, ω) = g(x), x ∈ ∂D, (1.5)

where ā(x, ξ) represents the function a(x, ω) with the expansion truncated after M

terms with

ξ :=
(
ξ1(ω), ξ2(ω), . . . , ξM(ω)

)>
: Ω→ RM .

Note that the full coefficient a(x, ω) in (1.3) is a primary focus of this thesis. We

consider ā(x, ξ) here to describe standard SFEMs, the simplest of which are sampling

methods called Monte Carlo FEMs (MCFEMs).

The main idea of MCFEMs is to take random samples of ξ and compute approxima-

tions ui(x) to (1.4)–(1.5) for each sample ā(·, ξi) using standard deterministic FEMs.

Then, the MCFEM approximation for the expectation of u(x, ω), for example, is given

by the sample average

EMC[u] :=
1

N

N∑
i=1

ui(x),

where N is the total number of samples taken. MCFEMs are popular with practi-

tioners because they are non-intrusive in that they can be implemented using existing

deterministic FEM software with little–to–no modification. However, it is well–known

that the approximation error for EMC decays slowly like N−1/2, and many samples and

deterministic solves are required to generate accurate approximations.

Another class of non-intrusive sampling methods are stochastic collocation FEMs

(SCFEMs) [112, 6]. For N samples of ξ, we construct global approximations for u(x, ω)
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of the form

uN(x, ξ) =
N∑
i=1

ui(x)Li(ξ),

where Li(ξ) represents a multivariate polynomial associated with the sample ξi. Whilst

the FEM approximations ui(x) associated with ξi are simple to compute, quantities

such as E[uN ] require numerical integration in M dimensions, which is expensive for

large values of M .

In this thesis, we consider a class of intrusive methods called stochastic Galerkin

FEMs (SGFEMs). They are non–sampling methods which lead to a large linear system

of equations associated with a single forward solve involving ā(x, ξ). Akin to FEMs

for deterministic problems, the main idea is to construct a polynomial basis

{
ψi(ξ); i = 1, 2, . . . , s

}
,

where ψi denotes a multivariate polynomial in the variables ξm for m = 1, 2, . . . ,M ,

and define the SGFEM approximation

uX(x, ξ) =
s∑
i=1

ui(x)ψi(ξ), ui(x) : D → R, (1.6)

for u(x, ω). Then, we use Galerkin approximation to determine the coefficients ui(x)

that define uX . When the basis functions ψi are constructed in a particular way, the

expectation E[uX ] and variance Var(uX) admit exact analytical expressions which are

straightforwardly evaluated without numerical integration, regardless of the size of M .

This is a key advantage of many SGFEMs over MCFEMs. Additionally, sophisticated

SGFEMs do not require the a priori truncation of a(x, ω) in (1.3).

1.3 Stochastic Galerkin FEMs

Standard SGFEMs seek approximations uX in tensor–product spaces

X := H1 ⊗ P, (1.7)

where H1 represents a FEM space of piecewise polynomials on D and P is a set of

global polynomials in the variables ξm for m = 1, 2, . . . ,M . Under this construction,

the coefficients ui in (1.6) reside in H1. It was shown in [7] that the rate of convergence



1.3. STOCHASTIC GALERKIN FEMS 19

of standard SGFEMs deteriorates as we increase the truncation number M associated

with ā(x, ξ). This phenomenon is known as the curse of dimensionality and appears in

many areas of numerical analysis. Consequently, standard SGFEMs are inadequate for

practitioners primarily interested in PDE problems with a high number of uncertain

input variables.

When the full coefficient a(x, ω) in (1.3) is preserved orM is large, for the stochastic

problem (1.4)–(1.5), a different approach is needed. Instead of bounding the approx-

imation error for standard choices of H1 and P in (1.7) a priori, many recent works

analyse the functions am(x) in (1.3) with the aim of constructing tailored sequences of

approximation spaces {X}, not necessarily of the form (1.7), such that the error decays

at a rate independent of the number of input random variables. In the works [24, 23],

SGFEM algorithms driven by a priori analysis of the functions am are proposed, where

the error associated with each discretisation parameter is balanced against the total

number of degrees of freedom. Alternatively, the works [103, 35, 36, 57] use a priori

analysis to establish rates of convergence for so–called best N–term approximations of

the form (1.6) where, roughly speaking, N is the smallest value of s in (1.6) such that

the approximation error on Ω satisfies a prescribed tolerance. In particular, the works

[36] and [57] establish the existence of sequences {X} such that the approximation

error decays to zero at the rate afforded to the underlying FEM for (1.1)–(1.2), with

respect to the total number of degrees of freedom. In general however, the sequence

{X} is unknown explicitly and depends on the problem at hand.

A few algorithms have been proposed in the literature for the adaptive construction

of {X} for the stochastic problem (1.4)–(1.5). Adaptive methods steered by residual–

based a posteriori error estimates are presented in the works [44, 56, 45, 46], whereas

the authors of [22] and [21] employ implicit hierarchical–based error estimation to steer

the adaptive process. Building on the a posteriori error estimation strategy presented

in [22], the aim of this thesis to design new adaptive SGFEMs that construct optimal

sequences {X} in an efficient way, without the a priori truncation of a(x, ω). That is,

for appropriate test problems, our aim is to construct sequences for which the energy

norm of the approximation error decays at the rate afforded to the underlying FEM for

(1.1)–(1.2). Sequences of the form (1.7) are constructed in the works [22] and [21] and

rates of convergence for the error independent of the number of input parameters are
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reported, but they are not optimal. In this thesis we consider a multilevel approach,

where the coefficients ui(x) in (1.6) reside in potentially different FEM spaces.

1.4 Thesis Outline

In Chapter 2, we review important aspects of functional analysis and probability theory

that are used throughout the thesis. In Chapter 3, we discuss Galerkin approxima-

tion and error estimation from an abstract perspective. To provide a simple example,

we solve the deterministic diffusion problem (1.1)–(1.2) using Galerkin finite element

approximation and demonstrate how to estimate the error a posteriori. We also intro-

duce adaptive FEMs and give several numerical examples. Chapter 4 is an extended

discussion of the work published in [37], and contains novel theoretical estimates of the

CBS constants in the bound relating the true errors to the estimated errors computed

in Chapter 3. In Chapter 5, we introduce SGFEMs and error estimation for the para-

metric reformulation of the stochastic diffusion problem. Building on Chapters 3 and

4 and results from [22], we design efficient error estimators which are demonstrated

through numerical experiments to be highly accurate. Chapter 6 is an extended dis-

cussion of the work published in [38], where we design adaptive multilevel SGFEMs

steered by efficient a posteriori error estimates. Numerical experiments demonstrate

that our novel method achieves the optimal rate of convergence for the test problems

considered. Finally, in Chapter 7 we summarise our main results and offer suggestions

and potential directions for future work.



Chapter 2

Background Material

In this Chapter we summarise technical results and background material from func-

tional analysis and probability theory needed for work in Chapters 3–6.

2.1 Functional Analysis

The following results are used extensively in the weak formulation of PDEs, where the

aim is to find approximations to solutions in appropriately chosen function spaces, and

can be found in [76, 28, 49, 70], for example. To ensure that the weak formulations

are well–posed, and to perform error analysis, we first require a norm, which provides

a notion of the distance between two elements in a vector space.

Definition 2.1: Normed vector space.

A norm || · ||V is a functional from a vector space V to R+ such that

(i) ‖u‖V = 0 if and only if u = 0,

(ii) ‖λu‖V = |λ|‖u‖V for all u ∈ V and λ ∈ R, and

(iii) ‖u+ v‖V ≤ ‖u‖V + ‖v‖V for all u, v ∈ V .

We call a vector space equipped with a norm a normed vector space. If only

conditions (ii) and (iii) hold, ‖ · ‖V is a semi–norm and denoted | · |V .

We mostly consider function spaces in this thesis. An important class of normed

function spaces are Lp(D) spaces where D ⊂ Rd (d = 1, 2, 3) is a bounded domain.

21
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Definition 2.2: Lebesgue spaces Lp(D).

The space Lp(D) for 1 ≤ p <∞ is given by

Lp(D) :=
{
u : D → R; ||u||Lp(D) <∞

}
, (2.1)

with norm ||u||Lp(D) :=
[ ∫

D
|u(x)|p dx

] 1
p . We also consider weighted Lp(D) spaces,

denoted Lpw(D), which are defined in the same way as Lp(D) using the norm

||u||Lpw(D) :=

[ ∫
D

|u(x)|pw(x) dx

] 1
p

,

where w(x) is some suitable non–negative weight function.

Definition 2.3: Inner–product space.

An inner product space V is a vector space equipped with an inner–product 〈·, ·〉V :

V × V → R which satisfies the following three axioms:

(i) 〈u, v〉V = 〈v, u〉V for all u, v ∈ V ,

(ii) 〈αu+ βv, w〉V = α〈u,w〉V + β〈v, w〉V for all α, β ∈ R and u, v, w ∈ V ,

(iii) 〈u, u〉V ≥ 0 for all u ∈ V and 〈u, u〉V = 0 ⇐⇒ u = 0.

Since the inner–product 〈·, ·〉V induces the norm ‖u‖V := 〈u, u〉
1
2
V for all u ∈ V , all

inner–product spaces are normed vector spaces. In addition, any complete inner–

product space is called a Hilbert space.

Example 2.1: Hilbert space L2(D).

The space L2(D) is a Hilbert space with respect to the inner–product

〈u, v〉L2(D) :=

∫
D

u(x)v(x) dx, for all u, v ∈ L2(D). (2.2)

The norm induced by the inner–product in (2.2) coincides with the norm in (2.1)

for p = 2. Note that functions in L2(D) need not be continuous.

We can classify functions in L2(D) based on their smoothness or regularity. To

classify functions in this way we require multi–index notation and partial differential

operators.
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Definition 2.4: Multi–index.

We call a sequence of non–negative integers

α = (α1, α2, . . . , αn) ∈ Nn
0 , n ∈ N,

a multi–index and define |α| :=
∑n

i=1 αi. We also define the support of the multi–

index α by supp(α) := {i ∈ N; αi 6= 0}.

Definition 2.5: Partial differential operator.

For a given multi–index α = (α1, α2, . . . , αd), the partial differential operator Dα

is given by

Dα :=
d∏
i=1

(
∂

∂xi

)αi
=

∂|α|

∂x1
α1∂x2

α2 · · · ∂xdαd
,

which operates on functions in the variable x = (x1, x2, . . . , xd)
> ∈ D ⊆ Rd.

Using Definitions 2.2 and 2.5 we may define the Sobolev spaces Hm(D), which cate-

gorise functions by the square–integrability of their weak derivatives.

Definition 2.6: Sobolev spaces Hm(D).

For a positive integer m, the Sobolev space Hm(D) is the space of all functions

u : D → R such that u and all weak derivatives of u up to order m are square–

integrable, that is,

Hm(D) :=
{
u : D → R; Dαu ∈ L2(D), |α| ≤ m

}
.

Sobolev spaces are extremely important in the analysis of solutions to weak formula-

tions of PDEs. For certain choices of a, f,D and g, PDE problems such as (1.1) do

not admit solutions with derivatives interpreted in the classical sense. Instead, we in-

terpret derivatives in the weak sense and seek solutions in Sobolev spaces. The spaces

Hm(D) are also Hilbert spaces with respect to the inner–product

〈u, v〉Hm(D) :=
∑
|α|≤m

〈Dαu,Dαv〉L2(D),
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where 〈·, ·〉L2(D) is given in (2.2), which induces the norm

‖u‖Hm(D) := 〈u, u〉
1
2

Hm(D) =

[ ∑
|α|≤m

〈Dαu,Dαu〉L2(D)

] 1
2

=

[ ∑
|α|≤m

‖Dαu‖2
L2(D)

] 1
2

.

When solving the boundary value problem (BVP) (1.1) we deal with the set of

functions

H1
g (D) :=

{
u ∈ H1(D); γ(u) = g

}
⊂ H1(D), (2.3)

where γ : H1(D)→ L2(∂D) is a trace operator [70, Lemma 2.37] that maps functions

on D to functions on the boundary ∂D. Indeed, if H1
g (D) is non–empty we may seek

weak solutions to (1.1) in H1
g (D) with Dirichlet boundary data g : ∂D → R. The set

H1
g (D) is non–empty if g ∈ H 1

2 (∂D) where

H
1
2 (∂D) :=

{
γ(u); u ∈ H1(D)

}
.

An important space is H1
0 (D) which is a Hilbert space with respect to the inner product

〈u, v〉H1
0 (D) :=

∫
D

∇u(x) · ∇v(x) dx, for all u, v ∈ H1
0 (D).

The induced norm ‖u‖H1
0 (D) := 〈u, u〉

1
2

H1
0 (D)

is a semi–norm on H1(D).

The weak formulation of (1.1) involves a bilinear form and a linear functional.

To prove well–posedness using the Lax–Milgram Lemma (Lemma 2.1) we require the

bilinear form to be bounded and coercive, and the linear functional to be bounded.

Definition 2.7: Bounded and coercive bilinear forms.

Let V be a Hilbert space with respect to 〈·, ·〉V , with induced norm ‖ · ‖V . A

bilinear form B(·, ·) : V × V → R is said to be bounded on V if there exists a

constant C1 > 0 such that

|B(u, v)| ≤ C1‖u‖V ‖v‖V , for all u, v ∈ V,

and coercive on V if there exists a constant C2 > 0 such that

B(u, u) ≥ C2‖u‖2
V , for all u ∈ V.
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Definition 2.8: Bounded linear functional.

Let V be a Hilbert space with respect to 〈·, ·〉V , with induced norm ‖ ·‖V . A linear

functional F (·) : V → R is said to be bounded on V if there exists a constant

C3 > 0 such that

F (u) ≤ C3‖u‖V , for all u ∈ V.

Lemma 2.1: Lax–Milgram [28, Lemma 2.7.7].

Let V be a Hilbert space with respect to 〈·, ·〉V and let B(·, ·) : V × V → R be

a bounded and coercive bilinear form, and F (·) : V → R be a bounded linear

functional. Then there exists a unique u ∈ V that satisfies

B(u, v) = F (v), for all v ∈ V.

Key to proving the boundedness of the bilinear forms B(·, ·) that we encounter is

the Cauchy–Schwarz inequality.

Lemma 2.2: Cauchy–Schwarz inequality [28, 1.1.5].

Let V be a Hilbert space with respect to 〈·, ·〉V , with induced norm ‖ · ‖V . Then

|〈u, v〉V | ≤ ‖u‖V ‖v‖V , for all u, v ∈ V.

In addition, the linear functionals F (·) we encounter involve functions in L2(D). To

prove their boundedness we require the following result that relates the norms ‖·‖L2(D)

and ‖ · ‖H1
0 (D) for functions in H1

0 (D).

Theorem 2.1: Poincaré–Friedrichs inequality [49, Lemma 1.2].

For a bounded domain D ⊂ Rd, there exists a constant Cp > 0 such that

‖u‖L2(D) ≤ Cp‖u‖H1
0 (D), for all u ∈ H1

0 (D).

The final important result that we require is the strengthened Cauchy–Schwarz

inequality, which is used extensively in error analysis for weak solutions of PDEs, and in

the analysis of certain classes of hierarchical preconditioners [3, 86, 5] for linear systems
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of equations associated with finite–dimensional weak problems.

Theorem 2.2: Strenghened Cauchy–Schwarz [48, Theorem 1].

Let V be a Hilbert space equipped with inner product 〈·, ·〉V and induced norm || · ||V
and let V1, V2 be a pair of finite–dimensional subspaces of V satisfying V1∩V2 = {0}.

Then, there exists a constant γ ∈ [0, 1), depending only on V1 and V2 such that

|〈v1, v2〉V | ≤ γ||v1||V ||v2||V , for all v1 ∈ V1, for all v2 ∈ V2. (2.4)

The bound (2.4) is stronger than the traditional Cauchy-Schwarz inequality in the

sense that the modulus of the inner–product on the left–hand side is strictly less than

the product of the norms on the right–hand side. Note that the constant γ ∈ [0, 1) in

(2.4) is not unique. The smallest such constant satisfying (2.4) is

γmin := sup
v1∈V1

sup
v2∈V2

|〈v1, v2〉V |
||v1||V ||v2||V

, (2.5)

and is known as the Cauchy-Buniakowskii-Schwarz (CBS) constant. We can interpret

the CBS constant as the cosine of the angle between the spaces V1 and V2. Indeed, if

V1 and V2 are orthogonal with respect to 〈·, ·〉V , then γmin = 0.

2.2 Probability Theory

In order to formulate PDEs with random inputs in the weak sense, we must first

familiarise ourselves with some essential probability theory. We start this section by

introducing standard concepts such as probability spaces and random variables. We

then extend the theory to random fields. The following standard results can be found

in [59, 29, 70], for example.

2.2.1 Random Variables

The analysis of mathematical models with uncertain inputs is more straightforward

when the sets of all possible outcomes of the inputs are known. If the sets of outcomes

are unknown or potentially infinite, formulating the model and solving it can be dif-

ficult. To this end, we work in a general framework where we are not required (for

now) to explicitly define each possible outcome. We work with measurable spaces of
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the form (Ω,F) where Ω denotes an abstract set of all possible outcomes, and F is

a collection of measurable subsets of Ω (formally a σ–algebra). We assign to (Ω,F)

a probability measure P to form a probability space (Ω,F ,P), where P : F → [0, 1]

returns the probability that an event F ∈ F will happen (the measure of a set), and

P(Ω) = 1. Measurable functions that map events in Ω to R are called real–valued

random variables.

Definition 2.9: Real–valued random variable.

Let (Ω,F ,P) be a probability space. A measurable function X : Ω → R is called

a real–valued random variable. For ω ∈ Ω, the observation X(ω) is called a

realisation of X.

In applied mathematics, we want to choose random variables which suitably represent

the uncertain features of the processes we want to model. Two important statistical

properties are the expectation and the variance of a random variable.

Definition 2.10: Expectation and variance.

Let X be a real–valued random variable on the probability space (Ω,F ,P). If X

is integrable and square integrable on (Ω,F ,P), then the expectation and variance

of X are given by

E[X] :=

∫
Ω

X(ω) dP(ω), (2.6)

Var(X) := E[(X − E[X])2] = E[X2]− E[X]2, (2.7)

respectively. For real–valued random variables, E[X] and Var(X) are constants.

Another important property is the covariance of a pair of random variables.

Definition 2.11: Covariance.

Let X, Y be real–valued random variables on the probability space (Ω,F ,P). The

covariance of X and Y is given by

Cov(X, Y ) := E[(X − E[X])(Y − E[Y ])], (2.8)

where E[XY ] =
∫

Ω
X(ω)Y (ω) dP(ω).
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Integrals such as (2.6), defined over the abstract set Ω, are not usually computable.

For real–valued random variables with a probability density function (pdf) p(x) with

respect to Lebesgue measure, we may perform a change of measure and instead com-

pute expectations over the observation space, that is, we compute

E[X] =

∫
R
xp(x) dx,

which may be evaluated using standard calculus. In this thesis we use uniform random

variables, where all values in some prescribed bounded sub–interval of R are realised

with equal probability.

Definition 2.12: Uniformly distributed random variable.

A random variable X is uniformly distributed on [a, b] ⊂ R if

p(x) =


1
b−a , x ∈ [a, b],

0, otherwise.

We write X ∼ U(a, b) and note that E[X] = b+a
2

and Var(X) = (b−a)2

12
.

Example 2.2: Zero mean and unit variance.

The random variable X ∼ U(−
√

3,
√

3) has zero mean and unit variance, and pdf

p(x) = 1
2
√

3
for −

√
3 ≤ x ≤

√
3.

In Chapter 5 we meet H–valued random variables on a probability space (Ω,F ,P),

where H is a Hilbert space. Such functions may be classified using Bochner spaces,

which are generalisations of Lebesgue spaces (given in Definition 2.2) for possibly other

measures. In this thesis we work with the following class of Bochner spaces.

Definition 2.13: Bochner spaces Lp(Ω, H).

Let (Ω,F ,P) be a probability space and H be a Hilbert space with norm ‖ · ‖H .

Then Lp(Ω, H) with 1 ≤ p < ∞ denotes the space of H-valued random variables

X : Ω→ H with E [||X||pH ] <∞ and is a Banach space with the norm

‖X‖Lp(Ω,H) :=

[ ∫
Ω

‖X(ω)‖pH dP(ω)

] 1
p

= E
[
‖X‖pH

] 1
p . (2.9)
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Example 2.3: Bochner space L2(Ω, H1
0 (D)).

Let D ⊂ R2 and let p = 2 and H = H1
0 (D) in (2.9). Then, the space L2(Ω, H1

0 (D))

of square–integrableH1
0 (D)-valued random variables is a Hilbert space with respect

to the inner product

〈X, Y 〉L2(Ω,H1
0 (D)) :=

∫
Ω

∫
D

∇X · ∇Y dx dP(ω) = E
[∫

D

∇X · ∇Y dx

]
.

For any X(x, ω) ∈ L2(Ω, H1
0 (D)), we have that X(x, ·) ∈ L2(Ω) for every x ∈ D,

and X(·, ω) ∈ H1
0 (D) for every ω ∈ Ω.

2.2.2 Random Fields

H-valued random variables are closely related to random fields. A random field is an

extension of a stochastic process which is indexed in one dimension (usually in time

for t ∈ R).

Definition 2.14: Random field.

A (real–valued) random field {a(x); x ∈ D} for D ⊂ Rd is a set of real–valued

random variables on a probability space (Ω,F ,P). We use the notation a(x, ω) :

D × Ω→ R to stress the dependence on both x and ω.

We consider second–order random fields, which have well–defined mean and covariance

functions.

Definition 2.15: Second–order random field.

A random field a(x, ω) : D × Ω → R is second–order if a(x, ·) ∈ L2(Ω) for every

x ∈ D. By µ(x) := E[a(x, ω)] we denote the mean of a(x, ω), and by

C(x1,x2) := Cov(a(x1, ω), a(x2, ω)) = E[(a(x1, ω)− µ(x1)) (a(x2, ω)− µ(x2))]

for x1,x2 ∈ D, its covariance, both of which are deterministic functions.

Any function in the space L2(Ω, H(D)) for some Hilbert space H(D) is a second–

order random field. In this thesis we seek weak solutions to PDE problems with random

inputs in spaces of this form. We also use second–order random fields to represent
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the inputs. Specifically, we choose inputs from L2(Ω, L2(D)) since functions in this

space admit a Fourier–like expansion called the Karhunen–Loève (KL) expansion [69].

KL expansions provide a practical means to implement random fields numerically in

computer software. Assuming that C(x1,x2) ∈ L2(D × D), where C(x1,x2) is the

covariance function of the random field being expanded (see Definition 2.15), a KL

expansion uses the orthonormal basis provided by the normalised eigenfunctions of the

integral operator C : L2(D)→ L2(D) defined by

(Cφ)(x1) =

∫
D

C(x1,x2)φ(x2) dx2, φ ∈ L2(D). (2.10)

Theorem 2.3: KL expansion of random fields [70, Theorem 7.52].

Let D ⊆ Rd. Consider a (second–order) random field a ∈ L2(Ω, L2(D)) with mean

function µ(·) and (continuous) covariance function C(·, ·). Then

a(x, ω) = µ(x) +
∞∑
m=1

√
νmφm(x)ξm(ω), (2.11)

where the sum converges in L2(Ω, L2(D)),

ξm(ω) :=
1
√
νm
〈a(x, ω)− µ(x), φm(x)〉L2(D)

and {νm, φm} are the eigenvalues and eigenfunctions of the integral operator C in

(2.10) with ν1 ≥ ν2 ≥ · · · ≥ 0. The random variables ξm(ω) have mean zero, unit

variance and are pairwise uncorrelated.

Rather than expand random fields a(x, ω) with prescribed distributions, in this

work we generate random fields by first choosing a mean µ(·) and covariance function

C(·, ·), as well as a set of independent random variables ξm(ω), and construct

a(x, ω) := µ(x) +
∞∑
m=1

√
νmφm(x)ξm(ω), (2.12)

where the eigenpairs {νm, φm} are as described in Theorem 2.3. Under this con-

struction the distribution of a(x, ω) in (2.12) depends on our choices of ξm, µ(x) and

C(x1,x2).

The covariance function associated with a random field a ∈ L2(Ω, L2(D)) resides in

L2(D×D); see Theorem 5.28 of [70]. In order to construct a(x, ω) in (2.12) using the
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eigenpairs associated with (2.10), we must choose covariance functions C ∈ L2(D×D).

Additionally, for expansions of the form (2.12) to be used in computer software, the

infinite sum needs truncating.

One option is to truncate (2.12) a priori say, after M terms, and construct

aM(x, ω) := µ(x) +
M∑
m=1

√
νmφm(x)ξm(ω). (2.13)

Whilst we do not take this approach in our work in Chapters 5 and 6, it is useful to

consider for the following analysis.

If C(x1,x2) = c(x1 − x2) for some function c(·), the error in the total variance

captured by the truncated expansion aM(x, ω) can be stated in terms of the retained

eigenvalues {νm}Mm=1. Since E[ξm(ω)] = 0 we find that

∫
D

Var
(
a(x, ω)

)
− Var

(
aM(x, ω)

)
dx =∫

D

E
[( ∞∑

m=1

√
νmφm(x)ξm(ω)

)2

−
( M∑
m=1

√
νmφm(x)ξm(ω)

)2]
dx.

Covariance functions are, by definition, symmetric and positive semidefinite. If C(·, ·)

is also continuous and D is bounded, then, by Mercer’s theorem [70, Theorem 1.80]

∫
D

Var
(
a(x, ω)

)
− Var

(
aM(x, ω)

)
dx = c(0)leb(D)−

M∑
m=1

νm,

where leb(D) denotes the length, area, or volume of D (corresponding to d = 1, 2, 3

in Theorem 2.3). A useful measurement is the relative error

eM :=

∫
D

Var(a(x, ω))− Var(aM(x, ω)) dx∫
D

Var(a(x, ω)) dx
=
c(0)leb(D)−

∑M
m=1 νm

c(0)leb(D)
(2.14)

which we utilise later in this section. Clearly, eM depends on the rate at which the

eigenvalues {νm}∞m=1 decay, which in turn depends on the regularity of the chosen

covariance function; see [52] or [88, 89, 64] for general results regarding the eigenvalues

of kernels C(x1,x2).

Most covariance functions C(x1,x2) do not lead to an eigenproblem
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D

C(x1,x2)φ(x2) dx2 = νφ(x1) (2.15)

that can be solved analytically. In such cases, the eigenpairs {νm, φm} can be approx-

imated numerically using collocation or Galerkin approximation [94, 43, 70], both of

which require the solution of a discrete eigenproblem. In this thesis we only consider

the separable exponential covariance function, a covariance function that does lead to

an eigenproblem with analytical solutions [54].

Definition 2.16: Separable exponential covariance function.

For D ⊆ Rd, the separable exponential covariance function is given by

C(x1,x2) = σ2 exp

(
−||x1 − x2||1

`

)
, x1,x2 ∈ D, (2.16)

where ` is the correlation length and C(x,x) = c(0) = σ2 ∈ R for x ∈ D is the

variance.

Since the exponential in (2.16) can be written as the product of exponential func-

tions corresponding to each spatial dimension, if appropriate, we may assign a different

correlation length in each dimension. When D is the Cartesian product of bounded

intervals in R, solutions to the eigenproblem (2.15) associated with (2.16) can be gen-

erated by tensorising solutions of one–dimensional eigenproblems. In particular, when

D := [−a, a]2 for 0 < a <∞ we need only solve the eigenproblem∫ a

−a
exp

(
−|x1 − x2|

`

)
φ(x2) dx2 = ν̄φ(x1), x1 ∈ [−a, a], (2.17)

and tensorise the resulting eigenpairs to generate eigenpairs (ν̄m, φm) on D. Note that

the constant σ2 in (2.16) has been neglected in (2.17), and thus we simply construct

a(x, ω) in (2.12) using νm = σ2ν̄m.

Example 2.4: Eigenfunctions, separable exponential covariance.

Let D = [−1, 1]2 and σ = ` = 1 in (2.16). To compute eigenpairs of the corre-

sponding eigenproblem in two dimensions we tensorise the eigenpairs (ν̄, φ) gener-

ated by solving (2.17) analytically [54]. In Figure 2.1 we plot the eigenfunctions

corresponding to the sixteen largest eigenvalues of the two–dimensional problem,

ordered left–to–right, top–to–bottom.
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Figure 2.1: Eigenfunctions of the integral operator (2.10) when C(x1,x2) is the sepa-
rable exponential covariance function given by (2.16) for D = [−1, 1]2 and σ = ` = 1.
The eigenfunctions correspond to the sixteen largest eigenvalues and are ordered left–
to–right, top–to–bottom.

Example 2.5: Realisations, separable exponential covariance.

Let D = [−1, 1]2 and define a(x, ω) as in (2.12) with ξm(ω) ∼ U(−
√

3,
√

3) in-

dependent, mean µ = 0, and choose the covariance function C(x1,x2) in (2.16)

with σ and ` as in Example 2.4. Once the eigenpairs associated with C(x1,x2)

are computed, we may generate realisations of aM(x, ω) in (2.13) by generating

realisations of ξm(ω) for m = 1, 2, . . . ,M . In Figure 2.2 we plot one realisation

of aM(x, ω) using the same realisations of ξm(ω) for M = 10, 109, 954 terms (left–

to–right), which corresponds to retaining 75%, 95% and 99% of the total variance

of a(x, ω) in terms of (2.14), respectively. Note how the realisation becomes more

oscillatory as M increases.
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Figure 2.2: One realisation of aM(x, ω) in Example 2.5 for M = 10, 109, 954 (left–
to–right). We choose µ = 0, ξm(ω) ∼ U(−

√
3,
√

3) independent, and the covariance
function (2.16) with σ = ` = 1.

It is well known [70] that for the separable exponential covariance function (2.16),

when D is rectangular the square roots of the eigenvalues {νm}∞m=1 in (2.12) decay

asymptotically like m−1, which is very slow. Whilst this rate is independent of the

correlation length `, the pre–asymptomatic regime does depend on ` in that larger

correlation lengths result in larger initial decreases in the eigenvalues [70, Example

7.56]. As a result, when ` is small, it takes many terms M to reduce the relative error

eM associated with aM(x, ω) to a prescribed tolerance, and PDE problems with inputs

of the form described in Example 2.5 are particularly difficult to solve numerically.

Since we are mainly interested in developing numerical methods for PDE problems

with random inputs, rather than the development of PDE models themselves, we also

consider synthetic expansions of the form (2.12), where the pairs (
√
νm, φm) are care-

fully chosen to afford a(x, ω) particular characteristics. That is, we consider examples

not related to specific covariance functions, and therefore not strictly speaking KL

expansions. In the following example, we introduce a synthetic expansion where the

terms
√
νm decay more quickly than those in Example 2.5.

Example 2.6: Synthetic expansion (quadratic decay), realisations.

Let D = [0, 1]2 and define a(x, ω) as in (2.12) with ξm(ω) ∼ U(−1, 1) independent

and mean µ = 0. Following [44], we choose
√
νm = 0.547m−2 and

φm(x) = cos(2πβ1
mx1) cos(2πβ2

mx2) (2.18)
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Figure 2.3: One realisations of aM(x, ω) in Example 2.6 for M = 10, 109, 954 (left–to–
right). We choose µ = 0 and ξm(ω) ∼ U(−1, 1) independent.

for x = (x1, x2)> ∈ D and m ∈ N, with

β1
m = m− 1

2
km(km + 1), β2

m = km − β1
m, km = b−1

2
+ (1

4
+ 2m)

1
2 c.

In Figure 2.3 we plot one realisation of aM(x, ω) using the same realisations of

ξm(ω) for M = 10, 109, 954 terms (left–to–right). Since
√
νm = O(m−2) and terms

corresponding to small values of m in aM(x, ω) dominate the overall behaviour,

we observe little variation in the plots as M increases.

For suitable choices of µ(x) and ξm(ω) in (2.12), the terms
√
νm and φm(x) defined

in Example 2.6 ensure that aM(x, ω) always has positive realisations as M increases.

This is necessary to guarantee that the weak formulations of the PDE problems consid-

ered in Chapters 5 and 6 are well–posed. In contrast, the expansion aM(x, ω) defined

in Example 2.5 depends on our choice of σ as well, and ensuring positive realisations as

M increases is not as straightforward. Expansions like the one described in Example

2.6 are therefore popular choices for designing test problems with random inputs that

are guaranteed to have positive realisations. Such test problems can then be used to

test new solution algorithms.

Example 2.7: Synthetic expansion (quartic decay).

This expansion is a simple variant of the one considered in Example 2.6. Let D

and ξm(ω) be as in Example 2.6 and define a(x, ω) as in (2.12). We choose φm(x)

to be as in (2.18) and select the (faster) decaying coefficients
√
νm = 0.832m−4.

We consider one more synthetic expansion which was introduced in [70].
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Example 2.8: Synthetic expansion (exponential decay).

Let D = [0, 1]2 and define a(x, ω) as in (2.12) with ξm(ω) ∼ U(−
√

3,
√

3) indepen-

dent. We then define

νij := 1
4

exp(−π(i2 + j2)`−2), φij(x) := 2 cos(iπx1) cos(jπx2) (2.19)

(with correlation length `) for i, j = 1, 2, . . . , where φ00 = 1, ν00 = 1
4

and rewrite

the pairs (νij, φij) in terms of the single index m with the new sequence {νm}∞m=1

ordered descendingly.



Chapter 3

Galerkin Approximation & Error

Estimation

Many complex and interesting PDE problems that arise in both academia and industry

do not admit exact solutions, despite the often proven assertion that a unique solu-

tion exists. In such situations, practitioners employ numerical methods such as finite

element methods (FEMs) to approximate the true solution. When the true solution,

or a quantity of interest (QoI) that depends on the true solution, is a key ingredient

in the design of, say, consumer goods, it is of paramount importance that we have an

informed understanding of the magnitude of the approximation error incurred by the

employed numerical method. A priori error analysis provides useful bounds for the

asymptotic behaviour of the approximation error, but does not provide a computable

estimate of the error itself. A posteriori error analysis can provide such estimates. In

this chapter we review classical Galerkin approximation - a discretisation technique

which underpins FEMs - and a well known a posteriori error estimation strategy that

leads to computable estimates of the error [2, 108]. These strategies are then utilised

in Chapters 5 and 6 to design a posteriori error estimators for stochastic Galerkin

finite element methods (SGFEMs) as well as new efficient adaptive algorithms.

3.1 Galerkin Approximation

Our aim is to describe an a posteriori error estimation strategy that can be applied to a

broad class of problems, and demonstrate how it may be implemented on test problems.

37
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We are concerned with a class of problems that arise from Galerkin approximation of

second–order elliptic PDEs, which we now describe.

Let V be a Hilbert space with norm ||·||V and let B : V ×V → R and F : V ×V → R

denote a bilinear form and linear functional, respectively (recall the relevant definitions

from Section 2.1). Consider the problem:

find u ∈ V : B(u, v) = F (v), for all v ∈ V. (3.1)

We are interested in the class of problems for which B(·, ·) is symmetric, bounded

and coercive over V , and F (·) is bounded over V . By Lemma 2.1 there then exists a

unique solution to (3.1). Due to its symmetry, B(·, ·) is also an inner product on V

and induces the so-called energy norm, which we now define.

Definition 3.1: Energy norm.

The energy norm corresponding to problem (3.1) is given by

||v||B = B(v, v)
1
2 for all v ∈ V. (3.2)

Since V is infinite-dimensional, the true solution u ∈ V cannot be computed. As an

alternative we seek a Galerkin approximation to u. Let X denote an NX–dimensional

subspace of V and consider the new discrete problem:

find uX ∈ X : B(uX , v) = F (v), for all v ∈ X. (3.3)

The problem in (3.3) leads to a tractable system of NX equations that enables us to

determine uX ∈ X. Since X is a closed subspace of V , the approximation uX ∈ X is

also unique; see [28, Corollary 2.7.13]. Our choice of X ⊂ V determines the quality of

the approximation uX ≈ u. In order to establish whether our Galerkin approximation

is satisfactory in terms of some error tolerance, we examine the error e = u−uX , which,

due to the properties of the bilinear form satisfies the infinite-dimensional problem:

find e ∈ V : B(e, v) = F (v)−B(uX , v), for all v ∈ V. (3.4)

For the remainder of this section we analyse e ∈ V satisfying (3.4), and the efficient

approximation of e ∈ V is the focus of Section 3.2. The following error analysis is well

known and can be found in [49, 28], for example.
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The true error e ∈ V possesses an orthogonality property inherent to Galerkin

approximation. Combining (3.3) and (3.4) it is easy to show that:

B(e, v) = 0, for all v ∈ X (Galerkin orthogonality). (3.5)

That is, the error is orthogonal to all functions in X with respect to the bilinear form

B(·, ·). Using (3.5) we may further show that uX ∈ X is the best approximation to u

in X with respect to the energy norm || · ||B. Indeed, it follows from the definition of

|| · ||B that

||u− uX ||2B = B(u− uX , u− uX)

= B(u− uX , u− v) +B(u− uX , v − uX)︸ ︷︷ ︸
= 0 due to (3.5)

(for all v ∈ X),

and thus, applying the Cauchy–Schwarz inequality to the right-hand side and can-

celling out a factor of ||u− uX ||B yields the desired result:

||u− uX ||B ≤ ||u− v||B, for all v ∈ X. (3.6)

Equivalently, ||u − uX ||B = infv∈X ||u − v||B, since uX ∈ X. This result is extremely

important. It tells us that if we were to choose a second subspace W ⊂ V such

that X ⊂ W (i.e., W is richer than X) and compute a new Galerkin approximation

uW ∈ W to u, then

||u− uW ||B = inf
v∈W
||u− v||B ≤ inf

v∈X
||u− v||B = ||u− uX ||B, (3.7)

and thus the approximation error cannot increase when measured in the energy norm.

In addition, due to the symmetry of the bilinear form B(·, ·), the square of the energy

error admits the decomposition

||u− uX ||2B = B(u− uX , u− uX)

= B(u, u)− 2B(u, uX) +B(uX , uX)

= B(u, u)− 2B(u− uX , uX)−B(uX , uX)

= ||u||2B − ||uX ||2B − 2B(u− uX , uX)︸ ︷︷ ︸
=0 due to (3.5)

,

and thus

||u− uX ||B =
√
||u||2B − ||uX ||2B. (3.8)
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Generally speaking, a posteriori error estimation strategies for Galerkin approxi-

mation fall into one of two categories; explicit methods or implicit methods . Explicit

methods involve direct computations using data which is available to us after solving

for uX . That is, the input data for the underlying problem and the Galerkin ap-

proximation uX ∈ X itself; see [9, 107, 2] for example. Typically, the residual (the

right–hand side of (3.4), roughly speaking) is exploited to provide upper–bounds for

‖u− uX‖B. In contrast, implicit strategies require the solution of some algebraic sys-

tem of equations associated with the error problem (3.4) itself [16, 1, 49]. Whilst

explicit estimates are often more straightforward to compute, they can lack the ac-

curacy of a well–designed implicit estimate [49]. Additionally, implicit estimates can

lead to precise estimates of the error reduction that would be achieved be performing

certain enrichments of X. Thus, they are especially useful when designing adaptive

FEMs (see Chapters 5 and 6 for concrete examples). Whilst explicit estimates are

often used in the design of adaptive FEMs as well, the bounds relating the true error

reductions to the corresponding estimates usually involve unknown constants, leading

to less confidence in the efficiency of the adaptive process. For the complex stochastic

problem considered in Chapter 5 it is crucial that the dimension of X is kept to a

minimum. Thus, in this work, we opt to take an implicit approach.

In the next section we review a well–known implicit method [15, 2, 108], often

referred to as a Hierarchical method, for the efficient estimation of ||e||B. Akin to

our choice of X in (3.3), the success of this method depends on a finite–dimensional

subspace of V of our choosing. The method is well designed if suitable balance has

been struck between the accuracy of the estimate and the cost to compute it.

3.2 Implicit a Posteriori Error Estimation

Computing the error e ∈ V satisfying (3.4) is a non–trivial task. Again, we employ

Galerkin approximation to approximate it, which enables us to estimate the energy

error ||e||B. Because of (3.5), we do not look for an approximation to e in X. Instead,

we look for an approximation to e in an NW–dimensional space W ⊂ V that is richer

than X. The quality of the resulting approximation is closely related to the quality of
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the Galerkin approximation uW ∈ W to u ∈ V satisfying

find uW ∈ W : B(uW , v) = F (v), for all v ∈ W. (3.9)

By letting eW = uW − uX we see that

B(eW , v) = B(uW , v)−B(uX , v) = F (v)−B(uX , v), for all v ∈ W, (3.10)

which is simply a restatement of (3.4) over W , and thus eW ∈ W satisfying (3.10)

approximates the true error e ∈ V . Problem (3.10) leads to a tractable system of

NW equations that determines eW , and spaces W that contain significantly improved

approximations uW to u (compared to uX), also contain good approximations eW to e.

To analyse the quality of the energy error estimate ||eW ||B ≈ ||e||B, for a given choice

of W , we require the following assumption.

Assumption 3.1: Saturation.

Let the functions u, uX and uW satisfy problems (3.1), (3.3) and (3.9) respectively.

There exists a constant β ∈ [0, 1) (the saturation constant) such that

||u− uW ||B ≤ β||u− uX ||B. (3.11)

Note that (3.11) is a stronger property than (3.7), and always holds for β ≤ 1. Whilst

the constant β depends on the regularity of u ∈ V , which in turn depends on the

problem at hand, in many applications Assumption 3.1 is reasonable [42, 14, 30]. The

precise relationship between ||e||B and ||eW ||B is given in the next result.

Theorem 3.1: [2, Theorem 5.1].

Let Assumption 3.1 hold and let e ∈ V and eW ∈ W satisfy (3.4) and (3.10)

respectively, then

||eW ||B ≤ ||e||B ≤
1√

1− β2
||eW ||B, (3.12)

where β ∈ [0, 1) is the saturation constant satisfying (3.11).

The interpretation of the bound (3.12) is as follows; ||eW ||B will never overestimate

the true energy error ||e||B, but it could underestimate it by a factor of (1− β2)−1/2.

Moreover, enlarging W such that β → 0 ensures ‖|eW ||B → ‖e‖B, and thus ||eW ||B
can be arbitrarily accurate.
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Due to the fact that NW may be significantly larger than NX , problem (3.10) may

be too expensive to solve. We now look to approximate eW ∈ W by solving a cheaper

problem. Suppose that the bilinear form B0 : V × V → R is an inner product on V

with induced norm || · ||B0 = B0(·, ·) 1
2 . Suppose also that the matrix representation of

|| · ||B0 on W is cheaper to assemble and more convenient to work with (e.g. sparser,

or more structured in some way). We may then consider the alternative problem:

find e0 ∈ W : B0(e0, v) = F (v)−B(uX , v), for all v ∈ W. (3.13)

Theorem 3.2: [2, Theorem 5.3].

Let eW ∈ W and e0 ∈ W satisfy (3.10) and (3.13) and suppose that there exist

λ,Λ ∈ R+ such that

λ||w||2B ≤ ||w||2B0
≤ Λ||w||2B, for all w ∈ W, (3.14)

(the norms are equivalent on W ) then

√
λ||e0||B0 ≤ ||eW ||B ≤

√
Λ||e0||B0 . (3.15)

If B0(·, ·) approximates B(·, ·) well, the constants λ and Λ are close to one. When

choosing B0(·, ·), we must strike a balance between the computational gain of solving

(3.13) instead of (3.10), and the loss in accuracy between ||e0||B0 and ||eW ||B.

Problem (3.13) may still be too expensive to solve. By imposing a straightforward

structure on W , we may approximate e0 ∈ W by solving a reduced problem. We insist

that W is an augmented space, that is, we choose a space Y ⊂ V of dimension NY

satisfying X ∩ Y = {0}, and construct

W = X ⊕ Y. (3.16)

We may than consider the lower–dimensional problem

find eY ∈ Y : B0(eY , v) = F (v)−B(uX , v), for all v ∈ Y. (3.17)

Since X and Y are disjoint, and B0(·, ·) induces a norm on the Hilbert space V , we

deduce from Theorem 2.2 that there exists a constant γ ∈ [0, 1) such that

|B0(u, v)| ≤ γ||u||B0||v||B0 , for all u ∈ X, for all v ∈ Y, (3.18)

which leads to the following relationship between ||eY ||B0 and ||e0||B0 .



3.2. IMPLICIT A POSTERIORI ERROR ESTIMATION 43

Theorem 3.3: [2, Theorem 5.2].

Let e0 ∈ W and eY ∈ Y satisfy (3.13) and (3.17) respectively, and suppose that

(3.16) holds. Then

||eY ||B0 ≤ ||e0||B0 ≤
1√

1− γ2
||eY ||B0 , (3.19)

where γ ∈ [0, 1) satisfies (3.18).

Theorem 3.3 tells us that the quality of the estimate ||eY ||B0 for ‖e0‖B0 depends en-

tirely on the compatibility of the subspaces X and Y with respect to the inner product

B0(·, ·). For a fixed choice of X, choosing Y such that the associated CBS constant γmin

is small ensures that the bound (3.19) is tight. Indeed, if X and Y are mutually orthog-

onal with respect to the inner product B0(·, ·), then γmin = 0 and ||eY ||B0 = ||e0||B0 .

For several choices of X and Y , methods to compute and estimate the associated CBS

constant when V = H1
0 (D) are discussed in Chapter 4.

Consolidating Theorems 3.1–3.3 yields the following final result1.

Theorem 3.4.

Let e ∈ V and eY ∈ Y satisfy (3.4) and (3.17) respectively, where (3.16) holds. If

Assumption 3.1 holds, and there exist λ,Λ ∈ R+ such that (3.14) holds, then

√
λ||eY ||B0 ≤ ||e||B ≤

√
Λ√

1− β2
√

1− γ2
||eY ||B0 , (3.20)

where γ ∈ [0, 1) satisfies (3.18) and β ∈ [0, 1) satisfies (3.11).

In summary, the quality of the energy error estimate ||eY ||B0 ≈ ||e||B depends on the

equivalency constants λ and Λ, which depend on our choice of bilinear form B0(·, ·),

β (the saturation constant) and γ (the CBS constant), both of which depend on our

choice of Y . For fixed choices of B(·, ·) and X in the underlying discrete problem (3.3),

choosing B0(·, ·) and Y in (3.17) such that the constants
√
λ and

√
Λ√

1−β2
√

1−γ2
are close

to one ensures that the bound (3.20) is tight. For a computed estimate ||eY ||B0 , it is

then conventional to study its effectivity index which we define below.

1Note that Theorems 3.2 and 3.3 are presented in reverse order in [2]. Consequently, Theorem 5.2
in [2] is stated in terms of ‖ · ‖B rather than ‖ · ‖B0

, and Theorem 5.3 in [2] is stated on the space
Y rather than W . The proofs for both results are trivially amended to account for the new ordering
presented herein.
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Definition 3.2: Effectivity index.

The effectivity index of an a posteriori energy error estimate η ≈ ||e||B, where e

satisfies (3.4), is the ratio

θeff :=
η

||e||B
=

η√
||u||2B − ||uX ||2B

. (3.21)

If η is an accurate energy error estimate, θeff is close to one. If θeff < 1, then η

underestimates ||e||B. Of course, θeff cannot be computed exactly since it depends on

the true solution u ∈ V . For a simple test problem, we demonstrate in Section 3.3 how

θeff may be estimated to assess the quality of the a posteriori error estimator eY ∈ Y

described in this section.

Since W is finite-dimensional, for a given choice of B0(·, ·) the constants λ and Λ

can always be computed. From (3.14) we know that

λ ≤ R(w) ≤ Λ, for all w ∈ W,

where R(w) := B0(w,w)
B(w,w)

, and thus the tightest bound corresponds to λ = infw∈W R(w)

and Λ = supw∈W R(w). For all w ∈ W there exists a vector w ∈ RNW such that

B0(w,w) = wTB0w, B(w,w) = wTBw,

where B0, B ∈ RNW×NW are symmetric and positive definite (they induce a norm),

and thus λ and Λ are the smallest and largest eigenvalues of the generalised eigenvalue

problem B0w = θBw. Unfortunately, the constant β cannot be computed or easily

estimated. For certain problems, including the test problem considered in Section 3.3,

we can verify Assumption 3.1 using a priori error bounds (which requires knowledge

about the regularity of the solution).

3.3 The Deterministic Diffusion Problem

To provide a straightforward example of Galerkin approximation and the a posteriori

error estimation just described, we return to the PDE problem (1.1), which we formally

restate with specific boundary conditions: find u(x) : D → R such that
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−∇ · (a(x)∇u(x)) = f(x), x ∈ D, (3.22)

u(x) = 0, x ∈ ∂D, (3.23)

where D ⊂ R2 is a bounded polygonal domain, and ∂D denotes the boundary of D.

We make the following assumptions on a(x) and f(x).

Assumption 3.2.

There exist constants amin, amax ∈ R+ such that

0 < amin ≤ a(x) ≤ amax <∞, a.e. in D,

and thus a(x) ∈ L∞(D).

Assumption 3.3.

The function f(x) is square integrable on D, that is, f ∈ L2(D).

Taking into account the boundary condition (3.23) it is well known that the weak

formulation of (3.22)–(3.23) is: find u ∈ V := H1
0 (D) such that∫

D

a(x)∇u(x) · ∇v(x) dx =

∫
D

f(x)v(x) dx, for all v ∈ V, (3.24)

where the functions v ∈ V are called test functions and ‖ · ‖V = ‖ · ‖H1
0 (D). Notice that

this is an example of the abstract weak problem (3.1) with

B(u, v) =

∫
D

a(x)∇u(x) · ∇v(x) dx, F (v) =

∫
D

f(x)v(x) dx. (3.25)

Applying Lemma 2.2 and Theorem 2.1 in succession to F (v) yields

|F (v)| ≤ ||f ||L2(D)||v||L2(D) ≤ Cp||f ||L2(D)||v||V ,

for all v ∈ V , and thus under Assumption 3.3 the linear functional F (·) is bounded

over V . Applying Lemma 2.2 to B(u, v) and noting that B(·, ·) is an inner–product

on V yields

|B(u, v)| ≤ amax

∣∣∣∣∫
D

∇u(x) · ∇v(x) dx

∣∣∣∣ ≤ amax||u||V ||v||V ,

B(u, u) ≥ amin

∫
D

|∇u(x)|2 dx = amin||u||2V ,
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for all u, v ∈ V , and thus under Assumption 3.2 the bilinear form B(·, ·) is both

bounded and coercive over V . By Lemma 2.1 it follows that there exists a unique

u ∈ V that satisfies (3.24). In the next section we approximate the true solution using

finite element methods.

3.3.1 Finite Element Methods

Problem (3.24) is infinite–dimensional, and so to find a Galerkin approximation we

choose a subspace X ⊂ V and solve a finite–dimensional problem of the form (3.3).

In this Section we use FEMs to construct the space X. The main idea is to place a

mesh Th of quadrilateral or triangular elements over D, and approximate u ∈ V on

each element using piecewise polynomial approximation. For now, let

X := span

{
φ1(x), φ2(x), . . . , φNX (x)

}
,

and consider the finite–dimensional problem:

find uX ∈ X : B(uX , v) = F (v), for all v ∈ X, (3.26)

where B(·, ·) and F (·) are given in (3.25). Now, posing

uX(x) =

NX∑
i=1

uiφi(x), ui ∈ R,

and choosing the linearly independent test functions v = φj(x) in (3.26) yields

Nx∑
i=1

uiB(φi(x), φj(x)) = F (φj(x)), for j = 1, 2, . . . , NX ,

which is simply a linear system of equations Au = b for the vector of coefficients

u = [u1, u2, . . . , uNX ]>

that defines uX ∈ X. Since u>Au = ||uX ||2B > 0 for all uX 6= 0, the matrix A is

positive definite. In addition, A ∈ RNX×NX and b ∈ RNX have entries

[A]ji =

∫
D

a(x)∇φi(x) · ∇φj(x) dx, [b]j =

∫
D

f(x)φj(x) dx,

for i, j = 1, 2, . . . , NX , and thus A is symmetric.
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(a) mesh of square elements. (b) mesh of triangular elements.

(c) Q1 FEM approximation. (d) P1 FEM approximation.

Figure 3.1: FEM solutions to (3.26) using Q1 elements and P1 elements on the classical
square and L–shape domains, respectively. The square mesh consists of 256 uniform
elements and the triangular mesh consists of 768 uniform elements.

In this thesis, we construct X using nodal basis functions. That is, we insist that

φj(xi) = δij where {x1,x2, . . . ,xNX} is a set of nodes placed at suitable positions

on the mesh. When working with quadrilateral or triangular elements we often (if

appropriate) consider spaces of continuous piecewise bilinear functions (Q1 elements),

or continuous piecewise linear functions (P1 elements), respectively. Both choices are

subspaces of H1(D), and, to ensure continuity, the nodes with respect to which the

basis functions are defined are the vertices of Th. Since X ⊂ H1
0 (D) we ignore nodes

that lie on ∂D and thus NX is the number of internal nodes. Higher order finite

element spaces can be constructed which require additional nodes on each element,

but for now we only consider Q1 and P1 spaces.
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Example 3.1: Q1 and P1 elements.

Let a(x) = f(x) = 1 in (3.24). For our first example, let D = [−1, 1]2 and let

Th denote a uniform square mesh over D consisting of 256 elements, as illustrated

in Figure 3.1a. In Figure 3.1c we plot the corresponding Q1 FEM approximation

uX ∈ X satisfying (3.26). Now, let D = [−1, 1]2\[−1, 0)2 and let Th denote a

uniform triangular mesh over D consisting of 768 elements (see Figure 3.1b). In

Figure 3.1d we plot the corresponding P1 FEM approximation.

The finite element meshes presented in Figures 3.1a and 3.1b consist of relatively

few elements. Since the number of elements ultimately determines the dimension

NX of X, it is reasonable to expect refined versions of these meshes (adding more

elements) to lead to improved FEM approximations. In particular, since the solution

in Figure 3.1d changes most rapidly at the reentrant corner, introducing additional

elements in that vicinity should result in a markedly improved approximation. Whilst

introducing new elements doesn’t necessarily guarantee an improvement, from (3.7) we

know that the approximation will not deteriorate with respect to the energy norm ‖·‖B
(which, since a = 1, is equivalent to ‖ · ‖H1

0 (D)). A key area of finite element analysis

is understanding how the approximation error depends on the underlying mesh Th.

Results of this kind require Th to be admissible or regular in some sense. The shape

regularity of rectangular meshes can be characterised in terms of the maximum edge

ratios βk (the size of the longest edge of �k divided by that of the shortest) of each

element �k in the mesh Th. In a similar way, the regularity of triangular meshes can

be characterised in terms of the minimum interior angles θk of each ∆k ∈ Th.

Definition 3.3: Shape regularity of rectangular meshes.

A sequence of rectangular meshes {Th} is said to be shape regular if there exists

an element �∗ ∈ Th such that for every element in Th, 1 ≤ βk ≤ β∗.

Definition 3.4: Shape regularity of triangular meshes.

A sequence of triangular meshes {Th} is said to be shape regular if there exists an

element ∆∗ ∈ Th such that for every element in Th, θk ≥ θ∗.

Choosing a shape regular mesh ensures that the area of each element in the mesh
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(a) uniform refinement of square elements.

(b) uniform refinement of triangular elements.

Figure 3.2: Example uniform refinement of square and triangular elements. Note that
for both types of element h→ h

2
(recall that h is the length of the longest edge), and in

the case of trianguar elements, two iterations of longest edge bisection are employed.

is both nonzero and finite. In turn, this helps ensure that the associated FEM approx-

imation is well defined, and also leads to the following well known convergence result

(associated with (3.24) in two dimensions).

Theorem 3.5.

Let Assumptions 3.2 and 3.3 hold, and suppose that (3.26) is solved using a Qm

or Pm FEM space X with m ≥ 1. Provided that u ∈ Hm+1(D) and the underlying

mesh Th is shape regular, then there exists a constant C such that

‖u− uX‖B ≤ Chm‖u‖Hm+1(D), (3.27)

where h denotes the length of the largest element edge in the mesh.

Theorem 3.5 is a simple extension of Theorem 1.21 in [49] where a = 1 and ‖ · ‖B and

‖ · ‖H1
0 (D) coincide. When a = a(x), it follows from (3.6) that

‖u− uX‖2
B ≤ ‖u− v‖2

B ≤ amax‖u− v‖2
H1

0 (D), for all v ∈ X,

and standard analysis for bounding ‖u−v‖H1
0 (D) may be employed. Namely, we bound

‖u − πhu‖H1
0 (D) where πhu ∈ X denotes an appropriate interpolant of u ∈ V that is

amenable to analysis.

Theorem 3.5 states that if the true solution u ∈ V has enough regularity (which

depends on D, a, f), then ‖u − uX‖B → 0 as h → 0 at an algebraic rate m that

depends on our choice of X. In the case of Q1 or P1 finite element approximation, we
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simply require that u ∈ H2(D) which results in linear convergence with respect to h,

or equivalently,

‖u− uX‖B ≤ C̄N
−1/2
X , NX →∞, (3.28)

with C̄ > 0. Roughly speaking, this means that the approximation error should at

least halve when we perform a uniform refinement of Th and h → h
2
. By the term

uniform refinement we mean that each element in Th is divided into four smaller equally

sized elements, as illustrated in Figure 3.2 (the resulting sequences {Th} are clearly

shape regular). In the case of triangular elements we define uniform refinement to

coincide with performing two iterations of longest edge bisection [90] on each element

– a strategy that forms two smaller elements by introducing a new edge that connects

the midpoint of the longest edge with the opposing vertex.

Most interesting domains such as the L–shape in Figure 3.1d lead to solutions

u ∈ V with spatial singularities. These singularities mean that u 6∈ H2(D) and the

bound (3.28) is not applicable. Due to the fact that an extremely fine mesh is required

to eradicate the error near the singularity, which is then overkill on other areas of

the domain, this simply means that uniform mesh refinements result in convergence

at a rate worse than −1
2

with respect to NX . Fortunately, the PDE (3.22)–(3.23) is

well studied and for many situations where u 6∈ H2(D), it is possible to construct

a sequence of FEM spaces {X} of dimension NX such that the bound (3.28) holds

[10, 71, 72, 25]. In particular, when P1 FEM approximation is employed on geometries

such as the L–shaped domain in Figures 3.1b and 3.1d, one can construct a sequence

of meshes {Th} such that (3.28) holds. In the next section we adaptively construct

the sequence {Th} by exploiting the a posteriori error estimator eY ∈ Y described in

Section 3.2.

3.3.2 Error Estimation & Adaptive Mesh Refinement

For a given Q1 or P1 approximation uX ∈ X satisfying (3.26) we follow the theoretical

framework outlined in Section 3.2 to approximate ‖u−uX‖B. The bilinear form B(·, ·)

in (3.25) is simple enough to not need approximating, and thus we simply choose a

FEM subspace Y ⊂ H1
0 (D) such that X ∩ Y = {0} and solve

find eY ∈ Y : B(eY , v) = F (v)−B(uX , v), for all v ∈ Y. (3.29)
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The resulting estimate ‖eY ‖B satisfies the bound

‖eY ‖B ≤ ‖u− uX‖B ≤
1√

1− β2
√

1− γ2
‖eY ‖B, (3.30)

where β ∈ [0, 1) satisfies (3.11) for the space W = X ⊕ Y and γ ∈ [0, 1) satisfies

|B(u, v)| ≤ γ‖u‖B‖v‖B, for all u ∈ X, for all v ∈ Y, (3.31)

(recall Theorem 2.2).

The subspace Y may consist of local functions defined elementwise on the same

mesh used to construct X, with support on only a single element (often referred

to as bubble functions). We term the resulting estimator eY ∈ Y a local estimator.

Alternatively, Y may consist of global functions defined on D in the same way that X is

constructed, and we term the resulting estimator a global estimator. Local estimators

are often more complex to implement numerically than global estimators, whilst the

cost to compute global estimators tends to grow more rapidly than for local estimators,

as the mesh is refined. The best approach to take is problem dependent. We provide

examples of both throughout this thesis and start in the next section with a local

estimator for the deterministic diffusion problem.

The Element Residual Method

The error equation (3.29) may be decomposed elementwise over D as

∑
�k∈Th

Bk(eY , v) =
∑

�k∈Th

[
Fk(v)−Bk(uX , v)

]
, (3.32)

for all v ∈ Y where

Bk(u, v) :=

∫
�k

a(x)∇u(x) · ∇v(x) dx, Fk(v) :=

∫
�k

f(x)v(x) dx (3.33)

and, for the sake of simplicity, �k represents an element in a rectangular or triangular

mesh. Assuming that a(x) ∈ C(D) ∩ H1(D), integration by parts on each element

yields the residual equation∑
�k∈Th

Bk(eY , v) =
∑

�k∈Th

[
Fk(v) + 〈∇ · (a∇uX), v〉L2(�k) −

∑
E∈Ek

〈a
q
∂uX
∂n

y
, v〉L2(E)

]
,

for all v ∈ Y , where Ek is the set of edges of �k excluding those on ∂D and
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(a) Q2 error nodes. (b) P2 error nodes.

Figure 3.3: The nodes with respect to which the error estimator eY is computed on
(a) a mesh of square elements, and (b) a mesh of triangular elements, when X is a Q1

and P1 FEM space, respectively.

q
∂uX
∂n

y
:= 1

2

(
∇uX |k −∇uX |k′

)
· ~nE,k, (3.34)

is the total flux equidistributed across the interelement edge E adjoining elements �k

and �k′ . The above characterisation of eY on each element leads to cheap estimates

of eY |�k through the solution of local subproblems. As demonstrated in [49], a good

estimate to eY |�k can be obtained by enforcing the residual equation elementwise.

That is, we compute a local estimator eYk ∈ Yk for each �k ∈ Th that satisfies

Bk(eYk , v) = Fk(v) + 〈∇ · (a∇uX), v〉L2(�k) −
∑
E∈Ek

〈a
q
∂uX
∂n

y
, v〉L2(E), (3.35)

for all v ∈ Yk. Each Yk ⊂ H1
0 (D) consists of functions with only compact support on

�k and must therefore be chosen carefully to ensure that Bk : Yk×Yk → R is coercive.

We define the space Y =
⊕

�k∈Th Yk and construct the estimator eY =
∑

�k∈Th eYk , for

which

‖eY ‖2
B =

∑
�k∈Th

‖eYk‖2
Bk

:=
∑

�k∈Th

Bk(eYk , eYk). (3.36)

For Q1 or P1 FEM spaces X, it is common to construct Yk using the usual Q2 or

P2 element basis functions defined with respect to the edge–midpoints and centroid

of �k, as illustrated in Figures 3.3a and 3.3b. Technically speaking, the basis func-

tion associated with the centroid of the element in Figure 3.3b does not constitute

a P2 function, rather, it is a super–quadratic (including the terms x1x
2
2 and x2

1x2 for

(x1, x2)> ∈ D) used to localise the error to �k in the same way that its Q2 counterpart

does. In addition, since Y ⊂ H1
0 (D) we do not include basis functions with non–zero

support on ∂D in the definition of Yk.
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Table 3.1: Estimated errors ‖eY ‖B for varying h when using the element residual
method (for Example 3.2), as well as the associated approximate effectivity indices
θapprox

eff .

Mesh h ‖eY ‖B ‖uX‖2
B θapprox

eff

8× 8 2−2 1.1339× 10−1 5.4934× 10−1 0.9957
16× 16 2−3 5.7068× 10−2 5.5904× 10−1 0.9980
32× 32 2−4 2.8590× 10−2 5.6149× 10−1 0.9984
64× 64 2−5 1.4303× 10−2 5.6210× 10−1 0.9870

128× 128 2−6 7.1528× 10−3 5.6226× 10−1 1.0116

Example 3.2: Rate of convergence.

Let a, f be as in Example 3.1, D = [−1, 1]2 and Th denote a uniform mesh of

square elements over D. We compute the Q1 FEM approximation uX ∈ X to

u ∈ V satisfying (3.26) for varying h, as well as the corresponding energy error

estimate ‖eY ‖B in (3.36) by solving (3.35) on each element with Yk as described

earlier (using Q2 element basis functions). To examine the quality of ‖eY ‖B we

approximate θeff (recall Definition 3.2) by computing a reference solution uref ∈ Xref

on a fine mesh of 1024× 1024 elements and evaluating

θapprox
eff :=

‖eY ‖B√
‖uref‖2

B − ‖uX‖2
B

, ‖uref‖2
B = 5.6231× 10−1. (3.37)

In Table 3.1 we observe that θapprox
eff is close to one for each value of h, meaning

that the energy error estimate is good and robust with respect to h. As predicted

by the theoretical bound (3.27) for the chosen FEM space (Q1), we also observe

the error roughly halves as h→ h
2
.

For our choice of X and Y in Example 3.2 it is well known that the smallest γ satisfying

(3.31) is bounded above by
√

5
11

[83, 37]. With the aim of designing error estimates

with a tight associated bound (3.30), in the next chapter we compute and estimate

γmin ∈ [0, 1) for various other choices of X and Y .

Unfortunately, β in (3.30) cannot be easily estimated. We are interested in the

smallest such constant given by βmin = ||u−uW ||B
||u−uX ||B

. Both uX ∈ X and uW ∈ W can be

computed by considering problems (3.3) and (3.9), respectively, but it goes without

saying that we do not have our hands on the true solution u ∈ V . We mentioned

previously that in some situations asymptotic results from a priori error analysis can
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Table 3.2: Estimated errors ‖eY ‖B for varying h when using the global residual ap-
proach (for Example 3.3), as well as the associated approximate effectivity indices
θapprox

eff .

# elements ‖eY ‖B ‖uX‖2
B θapprox

eff

768 5.7852× 10−2 2.1028× 10−1 0.9388
3072 3.2274× 10−2 2.1288× 10−1 0.9324

12, 288 1.8447× 10−2 2.1368× 10−1 0.9266
49, 152 1.0800× 10−2 2.1394× 10−1 0.9240
196, 608 6.4553× 10−3 2.1403× 10−1 0.9298

be utilised to help understand β. Suppose that X is a Q1 FEM space associated with a

uniform mesh of square elements Th with element width h (as in Example 3.2). Now,

suppose that we augment X with the space of Q2 functions whose basis functions

are defined with respect to the edge-midpoints and element centroids of Th. Label the

resulting space W and note that W is then the usual Q2 FEM space associated with Th.

If u ∈ H3(D), then, from (3.27) we know that for the simple diffusion problem (3.24)

considered, ||u − uX ||B = O(h) and ||u − uW ||B = O(h2). As a result, βmin = O(h)

and thus βmin → 0 as h→ 0. For even moderate mesh widths h (h = 2−4 = 0.0625 for

example) we are confident that βmin � 1.

A Global Residual Approach

Depending on the complexity of the PDE problem at hand, it is sometimes beneficial

to solve the residual equation – (3.29) in this case – directly, without splitting it into

many local problems. Whilst the complexity of solving the global problem may be

suboptimal with respect to the number of elements in the mesh (in that it requires

the solution of a large linear system of equations, the cost of which may not scale

optimally), the implementation is much simpler than that of the element residual

method.

Example 3.3: Rate of convergence, spatial singularity.

Let a, f be as in Example 3.1, D = [−1, 1]2\[−1, 0)2 and Th denote a uniform

mesh of triangular elements over D. Starting from the mesh given in Figure

3.1b, we compute the corresponding P1 FEM approximation uX ∈ X to u ∈ V

satisfying (3.26) for varying h (again, performing uniform refinements) as well as
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103 104 105

dof
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dof-1/2

dof-1/3

Energy Error

Figure 3.4: The estimated errors ‖eY ‖B given in Table 3.2 for Example 3.3 versus the
corresponding number of degrees of freedom (dof) NX .

the corresponding energy error estimate ‖eY ‖B by solving (3.29). We construct

Y using the usual (global) P2 and super–quadratic basis functions, defined with

respect to the element edge–midpoints and centroids of Th, respectively. We also

compute θapprox
eff using a reference solution uref ∈ Xref obtained using a fine mesh

of 977, 830 elements, resulting in ‖uref‖2
B = 2.1407 × 10−1. In Table 3.2 we find

that the effectivity indices are close to one for each mesh, and in Figure 3.4 we

plot ‖eY ‖B against NX where, as theoretically asserted in [77], we observe that

the error decays at the rate −1
3
, rather than −1

2
, with respect to NX .

The cost to compute uX ∈ X satisfying some prescribed error tolerance, as well as

the amount of computer memory required, is significantly higher when the error scales

like N
−1/3
X than when it scales like N

−1/2
X . Fortunately, for the problem considered in

Example 3.3, the rate −1
2

can be recovered by employing an adaptive mesh refinement

strategy where a sequence of non–uniform meshes is carefully constructed.

Adaptive Mesh Refinement

Meshes of triangular elements are considerably more flexible and amenable to adaptive

refinement than meshes of square elements. This is due to the fact that hanging nodes –
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(a) mesh of square elements. (b) mesh of triangular elements.

Figure 3.5: Example hanging nodes (red markers) following the refinement of a single
(a) square element and (b) triangular element (the pink shaded regions).

nodes positioned on the edges of some elements, but at the vertices of others (resulting

in a discontinuous approximation) – are much more easily resolved when triangles are

employed. Hanging nodes typically occur when some elements in the mesh are refined

and certain adjoining elements are not. In this thesis we refine triangular elements

by performing a single iteration of longest edge bisection, and square elements by

performing a uniform refinement, producing four smaller elements. The simple fix

to remove hanging nodes is to refine a few more elements in the mesh, however, in

the case of square meshes this can lead to large batches of elements being refined,

and the benefits of adaptively constructing the mesh may be lost. In Figure 3.5

we illustrate the process of refining a single element (the pink shaded region) in an

example square mesh and a single element in a triangular mesh, leading, in both cases,

to the introduction of hanging nodes (represented by the red markers). Notice that

resolving the hanging nodes in the square mesh would result in a complete uniform

refinement of the original mesh, whereas only a single element refinement is required

to resolve the hanging node in the triangular mesh. For this reason, in this thesis

we only consider meshes of triangular elements when implementing an adaptive mesh

refinement strategy.

Given a FEM approximation uX ∈ X, we may sometimes exploit the corresponding

a posteriori error estimator eY ∈ Y to drive the adaptive refinement of the underlying

mesh Th. Suppose that we have an error estimate ‖eYk‖Bk associated with each element

�k ∈ Th. In the case of the global residual approach, provided that Bk : Yk × Yk →

R with Yk := Y |�k is coercive, each ‖eYk‖Bk is simply given by taking ‖eYk‖Bk :=√
Bk(eYk , eYk) with eYk := eY |�k , and in the case of the element residual method we

simply consider the energy norms ‖eYk‖Bk at hand (recall their definition in (3.36)).
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The next step is to select, or mark, the elements that we wish to refine, based on

the size of the corresponding estimates ‖eYk‖Bk . A common approach is to employ a

Dörfler [41] marking strategy where a minimal subset of marked elements M ⊂ Th
satisfying ∑

�k∈M

‖eYk‖2
Bk
≥ θmark

∑
�k∈Th

‖eYk‖2
Bk

(3.38)

is determined, for the user–defined threshold parameter θmark ∈ (0, 1]. The elements

in M are then refined in the mesh Th, and, due to the type of refinement described,

the resulting sequence is shape regular. Note that choosing θmark = 1 is the same

as marking all elements in the mesh, but is not equivalent to performing a uniform

refinement of Th (recall Figure 3.2 along with our definition of uniform refinement of

triangles). Uniformly refining triangles in this way does not lead to the introduction

of hanging nodes. In contrast, refining any number of elements in Th once can lead to

the introduction of hanging nodes, and so, as previously discussed, these are removed

by refining a few more elements. Once the refined mesh has been generated, the well

known [71] iterative process

SOLVE → ESTIMATE → MARK → REFINE, (3.39)

is repeated until ‖eY ‖B < tol, where tol denotes a user–defined error tolerance.

Example 3.4: Spatial adaptivity.

Let a, f be as in Example 3.1, and D and X, Y ⊂ H1
0 (D) be as in Example 3.3.

Starting from the initial uniform mesh given in Figure 3.6a, we compute uX ∈ X

and eY ∈ Y satisfying (3.26) and (3.29), respectively. Using (3.38) with θmark = 1
2

(this is a standard choice used in much of the literature, see [72, 108] for example)

we then construct a minimal set of marked elements M and refine the mesh. We

set tol = 3.5× 10−2 and repeat (3.39) until ‖eY ‖B < tol.

In Figure 3.6b we present the final mesh generated by the iterative process.

Notice that many elements have been added at the corners of D, and most notably,

at the reentrant corner, where the solution changes most rapidly. By plotting

‖eY ‖B against NX at each step of the iterative procedure, we confirm in Figure

3.6c the assertion that the rate −1
2

can be realised for the L–shape domain. In
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(a) initial mesh. (b) adaptively constructed mesh.

102 103
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dof-1/2
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(c) rate of convergence of ‖eY ‖B.

Figure 3.6: Adaptive mesh construction (for Example 3.4) on the L–shape domain
using a Dörfler marking strategy with θmark = 1

2
and tol = 3.5× 10−2.

Figure 3.7 we plot the element error estimates ‖eYk‖Bk associated with the final

mesh in Figure 3.6b. Observe that the error is most prominent at the reentrant

corner of D.

The regularity of u ∈ V satisfying (3.24) on the L–shape domain is directly related

to the (270◦) reflex angle at the reentrant corner [77]. In fact, the regularity of u ∈ V

diminishes as this angle increases. In Example 3.5 we investigate the crack domain

D = [−1, 1]2\
{

(x1, x2)> ∈ R2; −1 < x1 ≤ 0, x2 = 0
}
, (3.40)

for which the reflex angle is at its maximum.

Example 3.5: Spatial adaptivity, crack domain.

We rerun the experiment presented in Example 3.4 for D given in (3.40). We start

from the initial uniform mesh given in Figure 3.8a and present the adaptively

constructed mesh in Figure 3.8b for the same tolerance tol = 3.5 × 10−2. The
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Figure 3.7: The element errors ‖eYk‖Bk associated with the final mesh in Figure 3.6b
(for Example 3.4) when θmark = 1

2
and tol = 3.5× 10−2.

red lines in these figures denote the “crack” in D. Using the marking parameter

θmark = 1
2
, we confirm in Figure 3.8c that the rate −1

2
can be realised for the

tougher crack domain.

3.4 Summary

In this chapter, we introduced Galerkin approximation for a class of abstract infinite–

dimensional weak problems of the form (3.1) over a Hilbert space V . For a computed

Galerkin approximation uX ∈ X ⊂ V satisfying (3.3) where X is finite–dimensional,

we outlined in Section 3.2 how the energy error ‖e‖B = ‖u − uX‖B can be efficiently

estimated a posteriori by solving an auxiliary problem of the form (3.17) over a finite–

dimensional subspace Y ⊂ V satisfying X ∩ Y = {0}. The resulting estimate ‖eY ‖B0

is related to the true error ‖e‖B by the bound (3.20).

In Section 3.3, we demonstrated that the weak formulation of the diffusion problem

(3.22)–(3.23) is an example of the abstract form (3.1) and discussed how Galerkin ap-

proximations uX ∈ X ⊂ V = H1
0 (D) can be generated using finite elements methods.
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(a) initial mesh. (b) adaptively constructed mesh.

102 103

dof

10-1
dof-1/2
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(c) rate of convergence of ‖eY ‖B.

Figure 3.8: Adaptive mesh construction (for Example 3.5) on the crack domain using
a Dörfler marking strategy with θmark = 1

2
and tol = 3.5× 10−2. The red line denotes

the crack in D along the line {(x1, x2)> ∈ R2; −1 < x1 ≤ 0, x2 = 0}.

Following the abstract framework for error estimation, in Section 3.3.2 we explained

how to compute the estimate ‖eY ‖B0 ≈ ‖e‖B. We introduced the element residual

method which required the solution of many local auxiliary problems as well as a

global approach involving one large problem. The performance of both approaches for

certain choices of Y ⊂ H1
0 (D) was tested and in Tables 3.1 and 3.2 effectivity indices

close to one were reported, meaning that the error estimates are highly accurate. Fi-

nally we demonstrated how a posteriori error estimators can be exploited to steer the

adaptive refinement of finite element meshes. This is a powerful tool when the domain

is non–convex and leads to spatially singular solutions. Indeed, for Examples 3.4 and

3.5, the error decays at the optimal rate −1
2

with respect to the number of DOFs NX

for the deterministic diffusion problem, using P1 approximation on the L–shape and

crack domains.

The standard strategies outlined in this chapter will be exploited to design adaptive
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SGFEMs in Chapters 5 and 6 for the more complex parametric diffusion problem. In

the following chapter we investigate the constant γ ∈ [0, 1) in the bound (3.30).



Chapter 4

The CBS constant

In this Chapter, we are concerned with the constant γ appearing in the error bound

(3.30) associated with the problem (3.22)–(3.23). Determining the CBS constant γmin

(the smallest such constant) associated with this bound, for specified pairs of finite–

dimensional subspaces X, Y ⊂ H1
0 (D) where X is a standard FEM space (Q1 for

example), enables us in Chapters 5 and 6 to design effective error estimators for the

more complex stochastic diffusion problem discussed briefly in Chapter 1. Calculating

the CBS constant associated with the splitting of a subspace W = (X ⊕ Y ) ⊂ V into

X and Y , where V is a Hilbert space and W is finite–dimensional, can sometimes be

cast as an eigenvalue problem involving matrices. For various different pairings of sub-

spaces X, Y ⊂ H1
0 (D), we compute the associated CBS constants γmin by solving the

corresponding eigenvalue problem. For some of these pairings, the eigenvalue problem

has a special structure which we exploit to establish novel analytical expressions for

the associated CBS constants.

We begin our investigation in the next section by reformulating the strengthened

Cauchy–Schwarz inequality (2.4) in terms of matrices that operate on disjoint vector

spaces, and recall some standard results from [48]. Note that CBS constants associated

with the splitting of vector spaces also arise in the analysis of certain preconditioners

and iterative methods for linear systems of equations, see [3, 48, 86, 5, 4, 84], for ex-

ample. Consequently, all results in this chapter extend beyond the field of a posteriori

error analysis that we are interested in. The work presented in this chapter is based

62
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on results from the published article [37].

4.1 Global CBS constants

First, we recall some standard results from [48]. Suppose that M ∈ RN×N is symmetric

and positive definite with size N := m + n for m,n ∈ N. The space
(
RN , (·, ·)M

)
is

then a Hilbert space with respect to the inner product

(u,v)M = u>Mv, u,v ∈ RN .

Next, consider the following finite–dimensional subspaces U and V of RN :

U :=

{(
u1

0

)
; u1 ∈ Rm

}
, V :=

{(
0

v2

)
; v2 ∈ Rn

}
. (4.1)

When M has a particular block structure, Theorem 2.2 coupled with the spaces (4.1)

leads to the following well–known result (a discrete CBS inequality).

Corollary 4.1: [48, Corollary 1].

Let M ∈ RN×N be a symmetric and positive definite 2 × 2 block matrix with the

structure

M =

 B C>

C A

 , (4.2)

where N = m+ n, B ∈ Rm×m, A ∈ Rn×n and C ∈ Rn×m. There exists a constant

γ ∈ [0, 1) such that

(
u>1 C

>v2

)2 ≤ γ2
(
u>1 Bu1

) (
v>2 Av2

)
, (4.3)

for all u1 ∈ Rm and v2 ∈ Rn, and thus the associated CBS constant satisfies

γ2
min := sup

u1∈Rm
sup

v2∈Rn

(
u>1 C

>v2

)2(
u>1 Bu1

) (
v>2 Av2

) .
Herein all supremums and infinums are assumed to exclude the zero vector or function.

Note that for any matrix M which has the properties stated in Corollary 4.1, the blocks

B ∈ Rm×m, A ∈ Rn×n and the matrix CB−1C> ∈ Rn×n are all symmetric and positive

definite. We also have the following known result.
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Theorem 4.1: [48, Theorem 2].

Let M be as in Corollary 4.1. Any constant γ that satisfies (4.3) also satisfies

γ2v>2 Av2 ≥ v>2 CB
−1C>v2, for all v2 ∈ Rn.

From Theorem 4.1 we learn that

γ2
min = sup

v2∈Rn

v>2 CB
−1C>v2

v>2 Av2

, (4.4)

and thus the square of the CBS constant is the largest eigenvalue θmax of the generalised

eigenvalue problem

CB−1C>v2 = θAv2, (4.5)

which is well defined and can be easily solved numerically (using the MATLAB routine

eigs, for example).

Using the above results, we now demonstrate how to numerically compute the CBS

constant associated with the strengthened Cauchy–Schwarz inequality

|〈u, v〉a| ≤ γ〈u, u〉
1
2
a 〈v, v〉

1
2
a , for all u ∈ Y, for all v ∈ X, (4.6)

where

〈u, v〉a :=

∫
D

a(x)∇u(x) · ∇v(x) dx, (4.7)

and a(x) satisfies Assumption 3.2. We consider various FEM spaces X, Y ⊂ H1
0 (D)

satisfying X ∩ Y = {0}. Notice that the inner–product in (4.7) coincides with the

bilinear form B(·, ·) defined in (3.25), and thus (4.6) and (3.31) (associated with (3.25))

are equivalent. Accordingly, when X is the underlying FEM space associated with

(3.26), and Y is the FEM space chosen for the error estimation problem (3.29), the

CBS constant associated with (4.6) appears in the error bound (3.30).

Suppose we choose X and Y of the form

X = span
{
φ1(x), φ2(x), . . . , φn(x)

}
, Y = span

{
ψ1(x), ψ2(x), . . . , ψm(x)

}
, (4.8)

with X ∩ Y = {0} and define the augmented subspace

W := Y ⊕X = span
{

Φ1(x),Φ2(x), . . . ,ΦN(x)
}
,
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(a) (b) (c)

Figure 4.1: Internal (a), edge (b), and corner (c) Q1 elements for Example 4.1. The
black and clear markers are the nodes at which the basis functions of X and Y are
defined, respectively.

of dimension N = m + n, where Φi = ψi for i = 1, 2, . . . ,m and Φm+j = φj for

j = 1, 2, . . . , n. For any functions u ∈ Y and v ∈ X, there exist vectors u ∈ U and

v ∈ V such that 〈u, v〉a = u>Mv, where the matrix M ∈ RN×N has the structure

(4.2) with block–wise entries

[A]ij = 〈φi, φj〉a, i, j = 1, . . . , n,

[B]ij = 〈ψi, ψj〉a, i, j = 1, . . . ,m, (4.9)

[C]ij = 〈φi, ψj〉a, i = 1, . . . , n, j = 1, . . . ,m.

Clearly, M is also symmetric and positive definite and thus, by Corollary 4.1 there

exists a constant γ ∈ [0, 1) such that (4.3) holds, which is equivalent to (4.6). The CBS

constant associated with (4.6) for the spaces X and Y defined in (4.8) then satisfies

(4.4) for the blocks A, B and C defined in (4.9), and can thus be determined by solving

the eigenvalue problem (4.5).

In the examples below, we fix a FEM space X associated with a uniform mesh Th
on D, and then construct Y elementwise by insisting that it admits the decomposition

Y =
⊕
�k∈Th

Yk, Yk := span
{
ψk1(x), ψk2(x), . . . , ψkmk(x)

}
⊂ H1

0 (D), (4.10)

where �k denotes an element in Th. We choose the functions {ψki }
mk
i=1 to be bubble

functions with only compact support on �k, which is the same construction of Y

used in Section 3.3.2 in the implementation of the element residual method for a

posteriori error estimation. Recall that the dimension dim(Yk) of the resulting local

problems (3.35) is mk. In Chapter 5, we deal with error estimation problems for the

parametric diffusion problem of dimension mk × dim(P ), where P denotes a space
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Table 4.1: Computed values of γ2
min for Example 4.1, for varying h. The space X is

the usual Q1 FEM space and four choices of Y are considered.

Mesh h N Q1(h/2) Q2(h) Q2(h/2) Q4(h)
4× 4 2−1 73 0.3381 0.4106 0.0401 0.0109
8× 8 2−2 337 0.3673 0.4454 0.0437 0.0119

16× 16 2−3 1441 0.3735 0.4527 0.0445 0.0121
32× 32 2−4 5953 0.3747 0.4541 0.0446 0.0121
64× 64 2−5 24193 0.3749 0.4544 0.0446 0.0121
Converged value 0.3750 0.4545 0.0446 0.0121

of polynomials associated with the parametric component of the problem. To ensure

that the computational cost of solving those problems remains reasonable, we limit

the size of mk. For fixed choices of X, in Examples 4.1 and 4.2 below we investigate

the CBS constant γmin associated with (4.6) for several different choices of Y of the

form (4.10) of a fixed small dimension. Our aim is to determine which spaces yield the

smallest CBS constants, so that the term
√

1− γ2
min appearing in the bound (3.30)

associated with (3.22)–(3.23) is close to one. Fixing mk in this way leads to some

interesting and non–standard choices of Y . In the following examples, which were

originally considered in [37], we construct the corresponding matrix M and compute

the CBS constant by solving the eigenvalue problem (4.5).

Example 4.1: X = Q1(h) (bilinear elements).

Let a = 1, D = [−1, 1]2 and Th denote a uniform mesh of square elements with

element width h. We choose X to be the usual Q1 FEM space associated with Th
and write X = Q1(h) to stress the dependence of X on h. On each �k we then

construct a space Yk of dimension mk ≤ 5, and construct Y as in (4.10). That

is, we limit mk to be the maximum number of new Q1 nodes that would appear

on each element in Th, if we were to perform a uniform mesh refinement. Hence,

the basis functions of Yk are constructed with respect to the edge midpoints and

centroid of the element �k. In Figure 4.1 we illustrate an arbitrary internal, edge

and corner Q1 element �k ∈ Th. Note the exclusion of nodes on the edge and

corner elements to ensure that Y ⊂ H1
0 (D). We start with two standard choices

of Y :

1. Piecewise bilinear bubbles: Q1(h/2). We uniformly refine each element



4.1. GLOBAL CBS CONSTANTS 67

�k ∈ Th into four smaller sub–elements. Then, for each Yk, we construct a

piecewise bilinear basis by assembling together the standard Q1 element basis

functions defined on the four new sub–elements (there are sixteen functions;

four per sub–element), with shared support at the clear markers in Figure

4.1. The functions assembled at the element centroids of Th consist of four

sub–element contributions, whereas the functions assembled at the midpoints

consist of only two.

2. Biquadratic bubbles: Q2(h). Consider the standard set of nine Q2 ele-

ment basis functions defined on each element in Th, and keep only those five

associated with the clear markers in Figure 4.1.

In columns four and five of Table 4.1 we record γ2
min for the two choices of Y

described above for varying h. These spaces are standard and the bounds γ2
min ≤ 3

8

and γ2
min ≤ 5

11
have been reported previously in [84] and [83], respectively. Our

third and fourth choices of Y below are non–standard, however, and to the best of

our knowledge CBS constants for these spaces have not been computed previously

in the literature.

3. Piecewise biquadratic bubbles: Q2(h/2). We uniformly refine each ele-

ment �k ∈ Th. Then, as for option 1, we assemble collections of the thirty–

six Q2 element basis functions defined across the new sub–elements (nine

per sub–element) with shared support at the clear markers in Figure 4.1.

Again, functions assembled at the element centroids of Th consist of four

contributions and functions assembled at the midpoints consist of two.

4. Biquartic bubbles: Q4(h). Consider the standard set of twenty–five Q4

element basis functions defined on each element in Th, and keep only those

five associated with the clear markers in Figure 4.1.

We record γ2
min for these two (non–standard) choices of Y in the last two columns

of Table 4.1 for varying h. Of the four choices considered, Y = Q4(h) yields

the smallest CBS constant and thus the term
√

1− γ2
min appearing in the bound

(3.30), for this space, is the closest to one.
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(a) (b) (c)

Figure 4.2: Internal (a), edge (b), and corner (c) Q2 elements for Example 4.2. The
black and clear/red markers are the nodes at which the basis functions of X and Y
are defined, respectively.

Example 4.2: X = Q2(h) (biquadratic elements).

Let a, D and Th be as in Example 4.1 and let X be the usual Q2 space associated

with Th. On each �k we now construct a space Yk of dimension mk ≤ 16 with

basis functions defined at the additional Q2 nodes that would be introduced by

performing a uniform refinement of �k. In Figure 4.2 we illustrate an arbitrary

internal, edge and corner Q2 element �k ∈ Th. We now make the following four

choices of Y (the first two of which are standard):

1. Piecewise biquadratic bubbles: Q2(h/2). We uniformly refine each ele-

ment �k ∈ Th. Then, for each Yk, we construct a piecewise biquadratic basis

by assembling together the standard Q2 element basis functions defined on

the new sub–elements (of which there are thirty–six), with shared support

at the clear and red markers in Figure 4.2.

2. Biquartic bubbles: Q4(h). Consider the standard set of twenty–five Q4

element basis functions on each element in Th, and keep only those defined

at the sixteen clear and red markers in Figure 4.2.

3–4. Reduced spaces: Qr
2(h/2) and Qr

4(h). For our third and fourth choices

we consider some more non–standard FEM spaces. We modify the first two

choices by removing the basis functions defined at the red markers in Figure

4.2, and denote the resulting number of degrees of freedom by Nr. This

configuration is motived by error estimation results presented in [68], where

it is demonstrated that the space Y = Qr
4(h) defines a more accurate error
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Table 4.2: Computed values of γ2
min for Example 4.2, for varying h. The space X is

the usual Q2 finite element space and four choices of Y are considered.

Mesh h N Q2(h/2) Q4(h) Nr Qr
2(h/2) Qr

4(h)
2× 2 2−0 57 0.6764 0.3834 41 0.4904 0.3208
4× 4 2−1 273 0.6911 0.4341 209 0.5579 0.3565
8× 8 2−2 1185 0.6911 0.4391 929 0.5723 0.3595

16× 16 2−3 4929 0.6911 0.4399 3905 0.5758 0.3599
32× 32 2−4 20097 0.6911 0.4401 16001 0.5766 0.3600
Converged value 0.6911 0.4401 0.5769 0.3600

estimator ‖eY ‖B satisfying (3.30) than the richer space Y = Q4(h). Note

however that the associated CBS constant was not investigated in [68].

In Table 4.2 we record γ2
min for the four choices of Y described above for varying

h, where we observe that the space Y = Qr
4(h) yields the smallest CBS constant.

Whilst the spaces Y = Q4(h) and Y = Qr
4(h) have been employed previously in

the construction of certain a posteriori error estimators in [68], the constants γ2
min

provided in Table 4.2 offer a new insight, and, to the best of our knowledge, have

not been investigated previously.

Since the space Y = Q4(h) is richer than Y = Qr
4(h), the saturation constant

βmin associated with the former is bounded above by that of the latter. In order

for Y = Qr
4(h) to define a more accurate estimator than Y = Q4(h), in terms of

(3.30) and as demonstrated empirically in [68], the CBS constant associated with

Y = Qr
4(h) must be smaller than the constant associated with Y = Q4(h), which

we confirm in Table 4.2.

The finite element meshes Th used to compute the CBS constants presented in

Tables 4.1 and 4.2 are relatively coarse, and N could in fact be much larger for the

problem (3.26) (associated with (3.22)–(3.23)) of interest. For large N , the eigenvalue

problem (4.5) becomes expensive to solve. To circumnavigate this issue, we show in

the next section that tight upper bounds for γ2
min can be cheaply computed using only

local analysis on a single element �k ∈ Th. Using standard results (see [48]), we derive

an eigenvalue problem for which the size of the associated matrices depends only on

the total number of nodes defined on a single element (recall Figures 4.1 and 4.2).
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4.2 Local Estimates of CBS constants

Element stiffness matrices tend to be only symmetric and positive semi–definite, and

consequently Corollary 4.1 cannot be applied at a local level. Instead, we work with

the vector spaces

Uk :=

{(
u1

0

)
; u1 ∈ Rmk

}
, Vk :=

{(
0

v2

)
; v2 ∈ Rnk

}
. (4.11)

where Uk, Vk ⊂ RNk for Nk = mk + nk, and consider the following theorem.

Theorem 4.2: [48, Theorem 3].

Let Mk ∈ RNk×Nk be a symmetric and positive semi–definite 2 × 2 block matrix

given by

Mk =

 Bk C>k

Ck Ak

 , (4.12)

where Bk ∈ Rmk×mk is invertible, Ak ∈ Rnk×nk , Ck ∈ Rnk×mk and N (Mk) ⊂ Vk.

Then, there exists a constant γk ∈ [0, 1) such that

(
u>1 C

>
k v2

)2 ≤ γ2
k

(
u>1 Bku1

) (
v>2 Akv2

)
, (4.13)

for all u1 ∈ Rmk and v2 ∈ Rnk .

Theorem 4.3: [48, Theorem 4].

Let the vector spaces Uk, Vk and the matrix Mk be given by (4.11) and (4.12), and

assume N (Mk) ⊂ Vk. Any constant γk satisfying (4.13) then also satisfies

γ2
kv
>
2 Akv2 ≥ v>2 CkB

−1
k C>k v2, for all v2 ∈ Rnk .

For matrices Mk that satisfy the stated conditions in Theorem 4.2, we learn from

Theorem 4.3 that

γ2
k,min = sup

v2 6∈N (Ak)

v>2 CkB
−1
k C>k v2

v>2 Akv2

, (4.14)

and thus γ2
k,min is the largest eigenvalue θmax satisfying the eigenvalue problem

CkB
−1
k C>k v2 = θAkv2, v2 6∈ N (Ak). (4.15)
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To solve (4.15) numerically, deflation (removing certain rows and columns) is needed

to deal with the null spaces of CkB
−1
k C>k and Ak. Having said that, computing γ2

k,min

remains straightforward.

Given two subspaces X, Y ⊂ H1
0 (D), the inner–product 〈u, v〉a of u ∈ Y with

v ∈ X admits the elementwise decomposition

〈u, v〉a =
∑

�k∈Th

∫
�k

ak∇uk · ∇vk dx =:
∑

�k∈Th

〈uk, vk〉ak , (4.16)

where ak = a|�k and

uk := u|�k ∈ Yk := Y |�k , vk := v|�k ∈ Xk := X|�k ,

with Yk, Xk ⊂ H1(�k). Now, consider spaces of the form

Xk = span
{
φk1(x), φk2(x), . . . , φknk(x)

}
, Yk = span

{
ψk1(x), ψk2(x), . . . , ψkmk(x)

}
,

with Xk ∩ Yk = {0} and define the augmented subspace

Wk := Yk ⊕Xk = span
{

Φk
1(x),Φk

2(x), . . . ,Φk
Nk

(x)
}
,

of dimension Nk = mk + nk, where Φk
i = ψki for i = 1, 2, . . . ,mk and Φk

mk+j = φkj

for j = 1, 2, . . . , nk. For any uk ∈ Yk and vk ∈ Xk, there exist vectors uk ∈ Uk and

vk ∈ Vk such that 〈uk, vk〉ak = u>kMkvk, where the matrix Mk ∈ RNk×Nk has the

structure (4.12) with

[Ak]ij = 〈φki , φkj 〉ak , i, j = 1, . . . , nk,

[Bk]ij = 〈ψki , ψkj 〉ak , i, j = 1, . . . ,mk, (4.17)

[Ck]ij = 〈φki , ψkj 〉ak , i = 1, . . . , nk, j = 1, . . . ,mk.

Since 〈·, ·〉ak only induces a semi–norm on H1(�k), the matrix Mk is only positive

semi–definite. However, if the subspacesXk and Yk are chosen such thatBk is invertible

and

N (Mk) =

{(
0
v2

)
; Akv2 = 0 and C>k v2 = 0

}
(4.18)

(ensuring that N (Mk) ⊂ Vk), there exists a constant γk ∈ [0, 1) such that (4.13) holds

for the blocks given in (4.17), or equivalently
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〈uk, vk〉2ak ≤ γ2
k〈uk, uk〉ak〈vk, vk〉ak , (4.19)

for all uk ∈ Yk and vk ∈ Xk, with the smallest such constant satisfying (4.14). The

significance of (4.19) is that we may now estimate the global CBS constant γmin satis-

fying (4.6). Indeed, combining (4.16) with (4.19) and employing the Cauchy–Schwarz

inequality for sums yields

〈u, v〉a ≤
∑

�k∈Th

γk,min〈uk, uk〉
1
2
ak〈vk, vk〉

1
2
ak ≤ max

�k∈Th
γk,min〈u, u〉

1
2
a 〈v, v〉

1
2
a (4.20)

for all u ∈ Y and v ∈ X. Comparing (4.20) with (4.6) we find that

γmin ≤ max
�k∈Th

γk,min =: γ∗. (4.21)

If we may assume that a(x) is well–enough approximated by a function ah(x) that

is constant in each element in Th, then, on each element �k ∈ Th we have a symmetric

and positive semi–definite matrix

Mk = αk

 Bk C>k

Ck Ak

 , αk := ah|�k ,

where Bk is invertible and Bk, Ak and Ck do not depend on αk. The corresponding

local eigenvalue problem is

(αkCk)(αkBk)
−1(αkC

>
k )v2 = θ(αkAk)v2, v2 6∈ N (Ak),

which is equivalent to the eigenvalue problem (4.15) with a = 1. Thus, the associated

CBS constant γk,min satisfying (4.14) is independent of αk and ah(x). When the mesh

Th is uniform so that γk,min is independent of h (the element width), and fine enough so

that ah(x) approximates a(x) well, we my cheaply approximate γ∗ in (4.21) by setting

ak = 1 in the definition of 〈·, ·〉ak in (4.16), and solving (4.15) for the blocks defined in

(4.17) for a single internal element, as this is larger than the constant associated with

the corner/edge elements (its a supremum over a superset). If the mesh is nonuniform

or unstructured however, each γk,min depends on the geometry of the associated element

in the mesh and thus γmin cannot be approximated by computing a single constant in

this manner.

We now revisit Example 4.1, and for the four choices of Y considered compute the

local CBS constants γk,min associated with a single internal element. The space Xk is
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1 2

34

5

6

7

8
9

Figure 4.3: An arbitrary internal Q1 element �k ∈ Th. The numbering of the solid
black and clear makers illustrates the chosen ordering of the basis functions of Xk and
Yk, respectively.

fixed to be the usual Q1 FEM space whose basis functions are defined with respect to

the black markers in Figure 4.3, and ordered as shown. It follows that nk = 4, and

with a = 1, we have the classical Q1 element stiffness matrix

Ak =


2/3 −1/6 −1/3 −1/6

−1/6 2/3 −1/6 −1/3

−1/3 −1/6 2/3 −1/6

−1/6 −1/3 −1/6 2/3

 . (4.22)

The ordering of the black markers in Figure 4.3 leads to Ak in (4.22) having a special

structure. Indeed, it is a circulant matrix, meaning that all of its columns are cyclic

permutations of its first column (and thus Ak is fully specified by its first column).

The eigenpairs of circulant matrices can be neatly expressed analytically, which we

exploit in the next section.

Lemma 4.1: [109, Corollary 5.16].

Let T ∈ Rn×n be a circulant matrix with first column given by t = [t0, . . . , tn−1]>.

The eigenvalues λj and eigenvectors vj of T are

λj =
n−1∑
k=0

tkω
k
j , vj = n(−1/2)[1, ωj, ω

2
j , . . . , ω

n−1
j ]> (4.23)

where ωj = exp(2πij/n) and i =
√
−1.

The matrix Ak also has zero rows sums, and is thus a singular matrix with

N (Ak) = span
{

(1, 1, 1, 1)>
}
. (4.24)

For the four choices of Yk considered in Example 4.1 which, by design, all have

dimension mk = 5, we construct the 2×2 block matrix Mk ∈ R9×9 and calculate γ2
k,min
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by solving the eigenvalue problem (4.15). The ordering of the basis functions of Yk is

as illustrated by the clear markers in Figure 4.3.

Example 4.3: Local CBS constants.

For the four choices Yk = Q1(h/2),Q2(h),Q2(h/2),Q4(h), we find that

Bk =


4/3 −1/3 0 −1/3 −1/3

−1/3 4/3 −1/3 0 −1/3

0 −1/3 4/3 −1/3 −1/3

−1/3 0 −1/3 4/3 −1/3

−1/3 −1/3 −1/3 −1/3 8/3

 ,


88/45 −16/45 0 −16/45 −16/15

−16/45 88/45 −16/45 0 −16/15

0 −16/45 88/45 −16/45 −16/15

−16/45 0 −16/45 88/45 −16/15

−16/15 −16/15 −16/15 −16/15 256/45

 ,


56/45 −1/45 0 −1/45 −1/15

−1/45 56/45 −1/45 0 −1/15

0 −1/45 56/45 −1/45 −1/15

−1/45 0 −1/45 56/45 −1/15

−1/15 −1/15 −1/15 −1/15 112/45

 ,


373/127 −39/197 1/2326 −39/197 84/247

−39/197 373/127 −39/197 1/2326 84/247

1/2326 −39/197 373/127 −39/197 84/247

−39/197 1/2326 −39/197 373/127 84/247

84/247 84/247 84/247 84/247 3166/203

 ,

respectively. Note that for each choice of Yk, the matrixBk is an invertible bordered

matrix of the form

Bk =

 B̄k bk

b>k µk

 , (4.25)

where, due to the ordering of the clear markers in Figure 4.3, B̄k ∈ R4×4 is a

symmetric circulant matrix, bk ∈ R4 is a constant vector, and µk ∈ R is a positive

constant. In addition, each Ck ∈ R4×5 has the special structure

Ck = αkP, P :=


1 −1 −1 1 0

1 1 −1 −1 0

−1 1 1 −1 0

−1 −1 1 1 0

 , (4.26)

where αk = 1
4
, 1

3
, 1

12
, 1

15
(each corresponding to a space Yk, ordered as shown at the
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start of the Example) and N (Mk) = span{(0>, 1, 1, 1, 1)>}. Since

N (Ak) ⊂ N (CT
k ) = span{(1, 0, 1, 0)>, (0, 1, 0, 1)>}

with N (Ak) defined in (4.24), all four spaces N (Mk) satisfy (4.18). Thus, the CBS

constants associated with all four choices of Yk satisfy (4.14) and can be found by

solving the corresponding eigenvalue problem (4.15). We find that

γ2
k,min =

3

8
,

5

11
,

5

112
,

2363216

195180975
,

or equivalently, γ2
k,min = 0.3750, 0.4545, 0.0446, 0.0121 (to four decimal places).

Comparing the results of Example 4.3 with those presented in Table 4.1 we confirm

the relationship (4.21).

4.3 Novel Theoretical Estimates

In this section we fix Xk to be the local Q1 finite element space which fixes Ak to

be as in (4.22), and demonstrate that if the matrices Bk and Ck have the structures

(4.25) and (4.26) observed in Example 4.3, then the eigenvalues of (4.15) may be

expressed analytically. Consequently, to determine the associated CBS constant γk,min,

the eigenvalue problem (4.15) need not be assembled nor solved. We begin with an

abstract result, where we prove the existence of constant γk ∈ [0, 1) satisfying (4.13)

when CkB
−1
k C>k has a certain simple structure. The following results are taken from

[37], and we drop the subscript k to simplify notation.

Theorem 4.4: [37, Theorem 8].

Let M ∈ R9×9 be a symmetric and positive semidefinite matrix with the 2×2 block

structure (4.12), where B ∈ R5×5 is symmetric and positive definite and A is given

by (4.22). If the matrix CB−1C> ∈ R4×4 is of the form

CB−1C> = δ


1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

 =: δQ, (4.27)
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for some constant δ ∈ R+, then there exists a constant γ ∈ [0, 1) such that

(u>1 C
>v2)2 ≤ γ2u>1 Bu1v

>
2 Av2, ∀u1 ∈ R5, ∀v2 ∈ R4. (4.28)

Proof.

It is sufficient to show that N (M) is given by (4.18). The result then follows from

Theorem 4.2. Again, let x> = (u>1 v>2 ) ∈ R9 for u1 ∈ R5 and v2 ∈ R4 be such that

Mx = 0. Then

Bu1 + C>v2 = 0, (4.29)

Cu1 + Av2 = 0, (4.30)

and Sv2 = 0 for the Schur complement S = A − CB−1C> = A − δQ. Since the

matrices

S =


2
3
− δ −1

6
δ − 1

3
−1

6

−1
6

2
3
− δ −1

6
δ − 1

3

δ − 1
3
−1

6
2
3
− δ −1

6

−1
6

δ − 1
3
−1

6
2
3
− δ


and A are circulant with zero row sums, we have

N (S) = N (A) = span
{

(1, 1, 1, 1)>
}

(4.31)

and thus v2 ∈ N (A). We now show that u1 = 0 and C>v2 = 0 for all v2 ∈ N (A).

If v2 ∈ N (A), from (4.30) it follows that Cu1 = 0. Since B is invertible, (4.29)

gives

0 = v>2 Cu1 = −(C>v2)>B−1(C>v2),

0 = (Bu1)>B−1(Bu1)

Since B−1 is also invertible, we conclude that Bu1 = 0 and u1 = 0. Finally,

u1 = 0 and (4.29) gives C>v2 = 0.

We now show that provided the conditions of Theorem 4.4 are satisfied, then the

CBS constant γmin associated with (4.28) can be computed analytically.
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Theorem 4.5: [37, Theorem 9].

Let M ∈ R9×9 be as in Theorem 4.4, then the smallest constant γ ∈ [0, 1) satisfying

(4.28), denoted γmin (the CBS constant), is given by

γ2
min = 2δ, (4.32)

where δ ∈ R+ is the constant in (4.27).

Proof.

Recall from (4.15) that γ2
min is the largest eigenvalue θmax satisfying

CB−1C>v2 = θAv2, v2 6∈ N (A). (4.33)

By considering the expression Qu = 0 it is easy to show that

N (Q) = span
{

(1, 0, 1, 0)>, (0, 1, 0, 1)>
}
, (4.34)

and so N (A) ⊂ N (Q). Under the stated assumptions, we have

CB−1C> = δQ = δ

[
1 −1

−1 1

]
⊗
[

1 0

0 1

]
=: δQ1 ⊗Q2,

and the set of eigenvalues is {2δ, 2δ, 0, 0}. The basis vectors of N (Q) in (4.34) are

eigenvectors corresponding to the zero eigenvalues. In addition,

P1 =


1

1

−1

−1

 =

[
1

−1

]
⊗
[

1

1

]
=: p1 ⊗ p2,

is an eigenvector corresponding to θ = 2δ. To see this, note that

CB−1C>P1 = δ (Q1 ⊗Q2) (p1 ⊗ p2) = δ

[
1 −1

−1 1

] [
1

−1

]
⊗ p2

= δ

[
2

−2

]
⊗ p2 = 2δp1 ⊗ p2 = 2δP1.

The same is true for P2 = [−1, 1, 1,−1]>. Furthermore, the vectors P1 and P2

also satisfy AP1 = P1 and AP2 = P2 (and clearly do not belong to N (A), see

(4.31)) and hence are eigenvectors of A with eigenvalue θ = 1. Thus
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CB−1C>Pi = δQPi = 2δPi = 2δ(1)Pi = 2δAPi, i = 1, 2.

That is, P1 and P2 are eigenvectors in (4.33) with θ = 2δ. If we take u to be

a member of N (Q) but not N (A), then (4.33) is trivially satisfied with θ = 0.

Hence, γ2
min = max{0, 2δ} = 2δ.

Using the inverse for block matrices, we now demonstrate that ifB has the structure

(4.25) and C has the structure (4.26), the matrix CB−1C> always has the structure

given in (4.27) and an explicit expression is available for the constant δ in (4.32).

Lemma 4.2: [37, Lemma 1].

If the matrix C ∈ R4×5 has the form C = αP for α ∈ R and P in (4.26), and if

B ∈ R5×5 has the form (4.25), where B̄ ∈ R4×4 is a symmetric circulant matrix,

b ∈ R4 is a constant vector, and µ ∈ R, then CB−1C> has the form (4.27).

Proof.

First we show that if B has the form (4.25) then so does B−1. We have

B−1 =

 B̄−1 + ν−1B̄−1bb>B̄−1 −ν−1B̄−1b

−ν−1b>B̄−1 ν−1


where ν := µ− b>B̄−1b ∈ R is the Schur complement. Since B̄ is symmetric and

circulant, so is its inverse (see [39], for example). Consequently, q := B̄−1b ∈ R4×1

is a constant vector and qq> ∈ R4×4 is a constant matrix. This is because b is a

constant vector and the row sums of a circulant matrix are equal. Therefore

B−1 =

 B̂ b̂

b̂> ν−1

 , (4.35)

where B̂ := B̄−1 + ν−1qq> ∈ R4×4 is a symmetric circulant matrix bordered by

b̂ := −ν−1q ∈ R4×1 and ν ∈ R is a constant. Hence, B−1 has the form

B−1 =


α1 α2 α3 α2 ×
α2 α1 α2 α3 ×
α3 α2 α1 α2 ×
α2 α3 α2 α1 ×
× × × × ×

 , (4.36)
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for some α1, α2, α3 ∈ R and, for the rest of the proof, the elements marked with ×

are not important. Now, elementary matrix multiplication with C gives

CB−1 = (α1 − α3)α


1 −1 −1 1 ×̄
1 1 −1 −1 ×̄
−1 1 1 −1 ×̄
−1 −1 1 1 ×̄

 ,
(again the elements marked with ×̄ are not important) and

CB−1C> = 4(α1 − α3)α2


1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

 = δQ

with δ := 4(α1 − α3)α2 ∈ R.

Combining the last two results, we find that γ2
min = 8(α1 − α3)α2 and thus to

compute the CBS constant we need only know α (one entry of C) and α1 and α3 (two

entries of the first column of B−1 or B̂). Applying Lemma 4.1 to B̄ in Lemma 4.3

below enables us to determine the first column of B̄−1 in the definition of B̂.

Lemma 4.3: [37, Lemma 3].

Let the principle minor B̄ in (4.25) of the matrix B be given by

B̄ =


b1 b2 b3 b2

b2 b1 b2 b3

b3 b2 b1 b2

b2 b3 b2 b1

 . (4.37)

Then the eigenvalues of B̄ are

λ1 = b1 − b3, λ2 = b1 − 2b2 + b3, λ3 = λ1, λ4 = b1 + 2b2 + b3, (4.38)

and the eigenvectors of B̄ are given by the columns of the unitary matrix

F ∗ =
1

2


1 1 1 1

i −1 −i 1

−1 1 −1 1

−i −1 i 1

 .
Moreover, B̄ = F ∗diag(λ)F , where λ = [λ1, λ2, λ3, λ4]>.

Combining the above results, gives the following final result.
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Theorem 4.6: [37, Theorem 10].

Let the assumptions of Theorem 4.4 and Lemma 4.2 hold, with the entries of B̄

labelled as in (4.37). Then, the square of the CBS constant associated with (4.28)

is given by

γ2
min = 8α2(b1 − b3)−1. (4.39)

Proof.

From Lemma 4.2, we have CB−1C> = δQ with δ = 4α2(α1 − α3) where α1 and

α3 are elements of the matrix B̂ in (4.35), which depends on the inverse of B̄ in

(4.25). By Lemma 4.3,

B̄−1 = F ∗


λ−1

1 0 0 0

0 λ−1
2 0 0

0 0 λ−1
1 0

0 0 0 λ−1
4

F.
Since B̄−1 is circulant, its entries are known once we specify its first column c̄.

Furthermore, since

F = (F ∗)∗ =
1

2


1 −i −1 i

1 −1 1 −1

1 i −1 −i
1 1 1 1

 ,
we have c̄ := B̄−1e1 = F ∗diag(1./λ)Fe1 = 1

2
F ∗(1./λ). It follows that

c̄ =
1

4


1 1 1 1

i −1 −i 1

−1 1 −1 1

−i −1 i 1



λ−1

1

λ−1
2

λ−1
1

λ−1
4

 =
1

4


2λ−1

1 + λ−1
2 + λ−1

4

λ−1
4 − λ−1

2

λ−1
2 + λ−1

4 − 2λ−1
1

λ−1
4 − λ−1

2

 . (4.40)

Now, since B̂ := B̄−1 + ν−1qq> in Lemma 4.2, we know that

α1 = [c̄]1 + τ, α3 = [c̄]3 + τ, τ ∈ R,

and consequently, by considering (4.40) and the eigenvalues (4.38), we have

α1 − α3 = [c̄]1 − [c̄]3 =
1

4

(
2λ−1

1 + 2λ−1
1

)
= λ−1

1 = (b1 − b3)−1 .
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Table 4.3: The constants α, b1, b3 ∈ R required to compute γ2
k,min = 8α2(b1 − b3)−1

when Xk is the local Q1 space and Yk is chosen as in Example 4.1.

Yk α b1 b3 γ2
k,min

Q1(h/2) 1/4 4/3 0 0.3750
Q2(h) 1/3 88/45 0 0.4545
Q2(h/2) 1/12 56/45 0 0.0446
Q4(h) 1/15 373/127 1/2326 0.0121

Since B is symmetric and positive definite, so is B̄. Consequently, λ1 > 0 and

δ = 4α2 (b1 − b3)−1 > 0. The result follows by Theorem 4.5.

For the four choices of Yk described in Example 4.3, we record the associated values

of α, b1 and b3, as well as the squares of the associated CBS constants given by (4.39),

in Table 4.3 (to stress that these are local quantities we reintroduce the subscript k).

The results match the CBS constants computed numerically in Example 4.3, which,

unlike the new analytical method, required the eigenproblem (4.15) to be assembled

and solved.

4.4 Summary

In this chapter, we investigated the constant γ ∈ [0, 1) in the strengthened Cauchy–

Schwarz inequality (4.6) for the inner product (4.7) associated with the weak diffusion

problem (3.24). Recall that for two subspaces X, Y ⊂ H1
0 (D) satisfying X ∩ Y = {0},

where X is the space chosen for the discrete weak problem (3.26) and Y is the space

chosen for the error problem (3.29), any constant γ satisfying (4.6) also appears in the

error bound (3.30). We denoted by γmin the smallest such constant and called it the

CBS constant. Determining pairs X, Y for which the CBS constant is close to zero

ensures that the term
√

1− γ2
min in the error bound (3.30) is close to one. In Examples

4.1 and 4.2, we solved a large eigenvalue problem to compute the CBS constant for

fixed choices of X and various standard and non–standard choices of Y of a fixed small

dimension. When X = Q1(h), the space Y = Q4(h) yields the smallest CBS constant

of the four choices considered (γ2
min ≤ 0.0121). When X = Q2(h), Y = Qr

4(h) yields

the smallest constant (γ2
min ≤ 0.3600). Finally, in Section 4.3 we exploited results from

linear algebra to prove novel theoretical estimates for CBS constants associated with
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the space X = Q1(h) and certain special choices of Y (including the four considered

in Example 4.1), for which no eigenvalue problem need be assembled nor solved. We

presented our main and final result in Theorem 4.6.

Whilst originating from a deterministic problem, the CBS constants investigated in

this chapter also play a role in a posteriori error estimation for the parametric diffusion

problem, which is the focus of the next chapter.



Chapter 5

The Parametric Diffusion Problem

We begin this chapter by briefly considering the stochastic diffusion problem, where

the diffusion coefficient a(x) in (3.22)–(3.23) is replaced with a second–order random

field a(x, ω) ∈ L2(Ω, L2(D)) (recall Definitions 2.15 and 2.13). We assume that a(x, ω)

is a function of a countably infinite number of random variables ξm(ω) : Ω→ Γm ⊂ R

for m = 1, 2, . . . associated with a probability space (Ω,F ,P), which we collect into

the vector ξ(ω) = (ξ1(ω), ξ2(ω), . . . )> : Ω → Γ (a multivariate random variable), for

the observation space Γ = Γ1 × Γ2 × · · · . More specifically, we assume that a(x, ω) is

of the form

a(x, ω) = a0(x) +
∞∑
m=1

am(x)ξm(ω), (5.1)

with the random variables {ξm(ω); m ∈ N} bounded, mean zero and i.i.d. (inde-

pendent and identically distributed). Note that the structure of a(x, ω) in (5.1) is a

natural choice; recall the structure of KL expansions of second–order random fields in

Theorem 2.3. We consider the problem: find u(x, ω) : D × Ω → R such that P–a.s.

(i.e., with probability one)

−∇ · (a(x, ω)∇u(x, ω)) = f(x), x ∈ D, (5.2)

u(x, ω) = 0, x ∈ ∂D, (5.3)

where, as in Section 3.3, D ⊂ R2 is a bounded polygonal domain and f(x) satisfies

Assumption 3.3.

The solution u(x, ω) to (5.2)–(5.3) is uncertain through its dependence on ξ(ω).

Once obtained, we may quantify the uncertainty in u(x, ω) by computing important

83
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statistical quantities such as its expectation and variance. It is also possible to compute

probabilities involving u(x, ω), such as the probability that a rare or catastrophic event

may occur (for example, the probability that u(x, ·) surpasses some critical value at the

point x ∈ D). In the same way, the uncertainty in many other deterministic models

can be quantified by incorporating random variables and/or fields into the model and

solving the resulting stochastic problem. For example, stochastic convection diffusion,

elasticity and Navier–Stokes problems are considered in [105, 66, 73], [62, 44, 63] and

[81, 98] respectively. With them, the new stochastic components bring an additional

complexity, the handling of which is often intricate and problem dependent

The stochastic problem (5.2)–(5.3) is well understood theoretically [40, 93, 7, 8, 112,

6], and its efficient numerical approximation is the focus of many works. For example,

Monte Carlo, collocation and Galerkin–based approaches are taken in [34, 17, 32],

[75, 74, 102, 61] and [44, 22, 21, 47], respectively. The aim of this thesis is to design new

Galerkin–based methods that achieve the theoretically best known rates of convergence

with respect to the number of degrees of freedom. More information about these rates

will be provided at the end of this chapter and the start of Chapter 6. For now, we are

interested in approximating solutions to (5.2)–(5.3) in the weak sense, but working on

the abstract domain Ω is computationally inconvenient. In the next section we consider

an equivalent parametric formulation of (5.2)–(5.3) that is more straightforward to

work with.

5.1 The Parametric Formulation

Instead of working with random variables ξm(ω) on a probability space (Ω,F ,P), in this

chapter we perform a change of variable and work with parameters ym := ξm(ω) (the

image of ξm(ω)) on the space (Γm,B(Γm), πm), where πm is the probability distribution

of ξm(ω), and B(Γm) denotes the Borel σ–algebra on Γm. Since each ξm(ω) is mean

zero; ∫
Γm

ym dπm(ym) = 0, m = 1, 2, . . . . (5.4)

Moreover, we collect the parameters ym ∈ Γm into the vector y = (y1, y2, . . . )
> ∈ Γ

and work on the tensor–product space (Γ,B(Γ), π), where π is the joint probability
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distribution of ξ(ω), and B(Γ) denotes the Borel σ–algebra on Γ. Since the underly-

ing random variables ξm(ω) are independent, the joint probability distribution π is a

product measure, given by

π(y) =
∞∏
m=1

πm(ym).

We now replace a(x) in (3.22)–(3.23) with coefficients a(x,y) ∈ L2(Γ, L2(D)) of

the form

a(x,y) = a0(x) +
∞∑
m=1

am(x)ym, (5.5)

and consider the parametric diffusion problem: find u(x,y) : D×Γ→ R that satisfies

−∇ · (a(x,y)∇u(x,y)) = f(x), x ∈ D, y ∈ Γ, (5.6)

u(x,y) = 0, x ∈ ∂D, y ∈ Γ. (5.7)

We refer to Γ as the parameter domain and make the following important assumption

on a(x,y) in (5.5).

Assumption 5.1.

The parameters ym are images of uniformly distributed random variables ξm(ω) ∼

U(−1, 1) so that ym ∈ Γm = [−1, 1] for m = 1, 2, . . . . Moreover, the spatially

varying terms a0(x), am(x) ∈ L∞(D) for m = 1, 2, . . . and ‖am‖∞ → 0 sufficiently

quickly as m→∞ so that

∞∑
m=1

‖am‖∞ < ess inf
x∈D

a0(x) <∞. (5.8)

The affine decomposition (5.5) is not the only possibility. Many developments

have been made recently concerning the solution of parametric PDE problems with

lognormal or log–transformed coefficients of the form a(x,y) = ez(x,y), where z(x,y)

could be a Gaussian random field [55, 105, 31, 106, 87], but such coefficients are

not the focus of this work. Additionally, f(x) in (5.6) may feature uncertainty and

be modelled by expansions like (5.5) and the boundary conditions may be nonzero

and/or non–Dirichlet. The methods discussed herein are easily extended to handle

such situations – we make convenient choices of f and the boundary conditions to

simplify the analysis of the corresponding weak problem. In Section 5.2 we discuss the

weak formulation of (5.6)–(5.7), but first we introduce some test problems.
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5.1.1 Test Problems

In this work we consider the following four test problems, each with a different ex-

pansion a(x,y) in (5.6) of the form (5.5) so that the sequences {‖am‖∞}∞m=1 decay at

different rates, where ‖am‖∞ ≥ ‖am+1‖∞ for all m > 1. We begin with Test problem

TP1 below which has the slowest decaying sequence.

Test Problem 1 (TP1)

First, we consider a problem from [18]. Let D = [−1, 1]2 and

f(x) = 1
8
(2− x2

1 − x2
2), x = (x1, x2)> ∈ D.

We choose

a(x,y) = 1 +
√

3
∞∑
m=1

√
νmφm(x)ym, (5.9)

where (νm, φm) are the eigenpairs of the integral operator (2.10) for the covariance

function (2.16) with σ = 0.15 and ` = 2. This choice is simply the parametric form of

a(x, ω) defined in Example 2.5 and thus
√
νm behaves like m−1 as m→∞ [70]. Note

that the random variables ξm(ω) ∼ U(−
√

3,
√

3) defined in Example 2.5 are rescaled

such that

ym :=
ξm(ω)√

3
, m = 1, 2, . . . ,

takes values in Γm = [−1, 1].

Test Problems 2 and 3 (TP2, TP3)

Next, we consider a problem from [44, 22] where D = [0, 1]2, f(x) = 1 and a(x,y) is

the parametric form of a(x, ω) defined in Examples 2.6 and 2.7. Specifically, we choose

a(x,y) = 1 +
∞∑
m=1

αmφm(x)ym, (5.10)

where φm(x) is defined in (2.18) and we set αm = 0.547m−2, 0.832m−4 for Test Prob-

lems TP2 and TP3, respectively. Note that synthetic expansions like (5.10) may be

employed in conjunction with more complex geometries such as the L–shape and crack

domains D discussed in Section 3.3. In contrast, the eigenpairs (νm, φm) in (5.9) are

known only for domains D with a simple geometry.
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Test Problem 4 (TP4)

Finally, we consider a problem from [70]. Let f(x) and D be as in TP2 and let a(x,y)

be the parametric form of a(x, ω) defined in Example 2.8. Specifically, we choose

a(x,y) = 2 +
√

3
∞∑
m=0

√
νmφm(x)ym, (5.11)

where φm(x) and νm are the terms in (2.19) with ` = 0.65, but reordered in terms of a

single index m such that ν1 ≥ ν2 ≥ · · · . Note that the sequence {‖am‖∞}∞m=1 decays

most quickly for this test problem.

5.2 The Weak Parametric Diffusion Problem

The weak formulation of the parametric problem (5.6)–(5.7) is:

find: u ∈ V := L2
π(Γ, H1

0 (D)) : B(u, v) = F (v), for all v ∈ V (5.12)

for the symmetric bilinear form and linear functional

B(u, v) =

∫
Γ

∫
D

a(x,y)∇u(x,y) · ∇v(x,y) dx dπ(y), (5.13)

F (v) =

∫
Γ

∫
D

f(x)v(x,y) dx dπ(y), (5.14)

respectively [40], where H1
0 (D) is the same space considered in Section 3.3 for the

analogous deterministic weak problem, and L2
π(Γ, H1

0 (D)) is the Bochner space (recall

Definition 2.13 and Example 2.3)

L2
π(Γ, H1

0 (D)) =

{
v(x,y) : D × Γ→ R;

∫
Γ

‖v(·,y)‖2
H1

0 (D) dπ(y) <∞
}
,

associated with the probability space (Γ,B(Γ), π). Note that V is a Hilbert space and

thus (5.12) is an example of the abstract problem (3.1). In addition, V is equipped

with the norm

‖v‖V =

[ ∫
Γ

‖v(·,y)‖2
H1

0 (D) dπ(y)

] 1
2

, for all v ∈ V.

The following assumption on a(x,y) ensures that B(·, ·) in (5.13) is bounded and

coercive over V , and induces the energy norm ‖v‖B = B(v, v)1/2 for all v ∈ V .
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Assumption 5.2.

There exist constants amin, amax ∈ R+ such that

0 < amin ≤ a(x,y) ≤ amax <∞, a.e. in D × Γ, (5.15)

and thus a(x,y) ∈ L∞(D × Γ).

Note that (5.8) is a sufficient condition for Assumption 5.2 to hold. We now show that

the weak problem (5.12) is well–posed. By Lemma 2.2 we find that

|F (v)| ≤ ‖f‖L2(Γ,L2(D))‖v‖L2(Γ,L2(D)) = ‖f‖L2(D)‖v‖L2(Γ,L2(D)),

for all v ∈ V , and from Theorem 2.1

‖v(·,y)‖L2(D) ≤ Cp‖v(·,y)‖H1
0 (D), y ∈ Γ, for all v ∈ V.

Squaring both sides and integrating over Γ yields ‖v‖2
L2(Γ,L2(D)) ≤ C2

p‖v‖2
V so that

|F (v)| ≤ Cp‖f‖L2(D)‖v‖V , for all v ∈ V,

and thus under Assumption 3.3 the linear functional F (·) is bounded over V . By the

same arguments used in Section 3.3 for the deterministic problem, it is straightforward

to show that

|B(u, v)| ≤ amax‖u‖V ‖v‖V , B(u, u) ≥ amin‖u‖2
V , for all u, v ∈ V,

and thus under Assumption 5.2 the bilinear form B(·, ·) is both bounded and coercive

over V . Since V is a Hilbert space, by Lemma 2.1 there exists a unique u ∈ V satisfying

(5.12).

Additionally, under Assumption 5.2 the bilinear form B(·, ·) in (5.13) also inherits

the decomposition in (5.5), that is

B(u, v) = B0(u, v) +
∞∑
m=1

Bm(u, v), for all u, v,∈ V, (5.16)

with the component bilinear forms B0, Bm : V × V → R given by

B0(u, v) =

∫
Γ

∫
D

a0(x)∇u(x,y) · ∇v(x,y) dx dπ(y), (5.17)

Bm(u, v) =

∫
Γ

∫
D

am(x)ym∇u(x,y) · ∇v(x,y) dx dπ(y), (5.18)
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for m = 1, 2, . . . . Under the following assumption on a0(x), the parameter–free bilinear

form B0(·, ·) in (5.17) also induces the norm ‖ · ‖B0 = B0(·, ·)1/2 on V .

Assumption 5.3.

There exist constants a0
min, a

0
max ∈ R+ such that

0 < a0
min ≤ a0(x) ≤ a0

max <∞, a.e. in D,

and thus a0(x) ∈ L∞(D).

Under Assumptions 5.2 and 5.3 it is straightforward to show that

λ‖v‖2
B ≤ ‖v‖2

B0
≤ Λ‖v‖2

B, for all v ∈ V, (5.19)

where 0 < λ < 1 < Λ <∞, and

λ = a0
mina

−1
max, Λ = a0

maxa
−1
min. (5.20)

5.3 SGFEM Approximation

We now seek Galerkin approximations to u ∈ V by projecting the problem (5.12) onto

a finite–dimensional subspace X ⊂ V . The spaces L2
π(Γ, H1

0 (D)) and L2
π(Γ)⊗H1

0 (D)

are isometrically isomorphic (the norm is preserved; see [92]), meaning that functions

with the properties of those in V can be constructed by tensorising functions in L2
π(Γ),

given by

L2
π(Γ) =

{
v(y) : Γ→ R;

∫
Γ

v(y)2 dπ(y) <∞
}
,

with functions in H1
0 (D).

We consider the finite–dimensional problem

find: uX ∈ X : B(uX , v) = F (v), for all v ∈ X, (5.21)

where X is the tensor–product subspace

X := H1 ⊗ P, H1 ⊂ H1
0 (D), P ⊂ L2

π(Γ). (5.22)

The space H1 is chosen to be a FEM space of piecewise polynomials constructed

with respect to a mesh Th on D. Since the solution u ∈ V is analytic with respect to
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the parameters ym [7, 35], we construct P using global polynomials on Γ. Note that in

the same way we construct H1, we may also construct P using piecewise polynomials

of a fixed degree with only local support on “elements” of Γ, see [110, 111, 67] for

example, but such spaces are not considered in this work. For now, we delay making

specific choices of H1 and P and simply let

H1 = span
{
φ1(x), φ2(x), . . . , φn(x)

}
, P = span

{
ψ1(y), ψ2(y), . . . , ψs(y)

}
.

In turn, this provides us with a basis for X, namely

X = span
{
φi(x)ψj(y); i = 1, 2, . . . , n, j = 1, 2, . . . , s

}
, NX := dim(X) = ns.

5.3.1 Linear Systems

Expressing the Galerkin approximation uX ∈ X as

uX(x,y) =
n∑
i=1

s∑
j=1

uijφi(x)ψj(y), uij ∈ R,

and choosing the linearly independent test functions v = φq(x)ψr(y) in (5.21) yields

n∑
i=1

s∑
j=1

uijB(φi(x)ψj(y), φq(x)ψr(y)) = F (φq(x)ψr(y)),

for q = 1, 2, . . . , n and r = 1, 2, . . . , s. This is a linear system of equations Au = b for

the block vector of coefficients

u =

[
[u11, u21, . . . , un1]>, [u12, u22, . . . , un2]>, . . . , [u1s, u2s, . . . , uns]

>
]>
.

Since u>Au = ||uX ||2B > 0 for all uX 6= 0, the matrix A is positive definite. Further-

more, A ∈ RNX×NX and b ∈ RNX have the block structure

A =


A11 A12 · · · A1s

A21 A22 · · · A2s
...

...
. . .

...

As1 As2 · · · Ass

 , b =


b1

b2
...

bs

 , (5.23)

with entries

[Arj]qi =

∫
Γ

ψj(y)ψr(y)

∫
D

a(x,y)∇φi(x) · ∇φq(x) dx dπ(y),

[br]q =

∫
Γ

ψr(y) dπ(y)

∫
D

f(x)φq(x) dx,
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for i, q = 1, 2, . . . , n and j, r = 1, 2, . . . , s, and thus A is symmetric since Arj = A>jr.

Notice that, due to the decomposition of a(x,y) in (5.5), each block Arj ∈ Rn×n admits

the decomposition

Arj = 〈ψj, ψr〉L2
π(Γ)K0 +

∞∑
m=1

〈ymψj, ψr〉L2
π(Γ)Km, (5.24)

where Km ∈ Rn×n has entries

[Km]qi =

∫
D

am(x)∇φi(x) · ∇φq(x) dx, m = 0, 1, . . . ,

for i, q = 1, 2, . . . , n. Similarly, by defining the matrices Gm ∈ Rs×s with entries

[G0]rj = 〈ψj, ψr〉L2
π(Γ), [Gm]rj = 〈ymψj, ψr〉L2

π(Γ), m = 1, 2, . . . , (5.25)

for j, r = 1, 2, . . . , s, we observe that A in (5.23) admits the Kronecker–product repre-

sentation

A = G0 ⊗K0 +
∞∑
m=1

Gm ⊗Km. (5.26)

The decomposition (5.26) is well–known [78, 50, 79] and is a fundamental characteristic

of the stochastic Galerkin method when approximation spaces of the form (5.22) are

considered for the finite–dimensional weak problem (5.21).

The sparsity pattern and spectral properties of the matrix A depend on the specific

choices of H1 and P we make; see [51] for a detailed analysis. These choices depend

on the problem at hand. The vector b in (5.23) admits a Kronecker–product structure

as well, but this is not important for the remainder of this thesis. Of course, for

the matrix A to be used in computations, the infinite sum in (5.26) must be either

truncated, or, have a finite number of nonzero terms. In the next section we show the

latter is true for certain choices of P ⊂ L2
π(Γ) in (5.22).

5.3.2 Approximation Spaces

To compute SGFEM approximations uX ∈ X satisfying (5.21) it remains for us to

choose H1 and P in (5.22). Since D is a square for all four test problems in Section

5.1.1, in this chapter we simply choose either H1 = Q1(h) or H1 = Q2(h), constructed

with respect to a uniform mesh of square elements Th over D with element width h

(recall Examples 4.1 and 4.2).
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With the aim of constructing a basis for P comprising of global multivariate poly-

nomials in y on Γ, we tensorise sets of univariate polynomials in ym on each Γm. To

this end, consider

J =
{
µ = (µ1, µ2, . . . ) ∈ NN

0 ; #supp(µ) <∞
}
, (5.27)

the set of finitely supported multi–indices, where

supp(µ) :=
{
m ∈ N; µm 6= 0

}
,

as well as the families of univariate polynomials

Ψm =
{
ψµm(ym) : Γm → R; µm = 0, 1, . . .

}
, m = 1, 2, . . . . (5.28)

Here, ψµm(ym) denotes a univariate polynomial of degree µm in the parameter ym for

m = 1, 2, . . . with ψ0(ym) = 1. Consequently, we can define global polynomials on Γ

by selecting a multi–index µ ∈ J and constructing

ψµ(y) =
∞∏
m=1

ψµm(ym) =
∏

m∈supp(µ)

ψµm(ym).

For given families of polynomials {Ψm}∞m=1, we simply choose a set of multi–indices

JP ⊂ J with cardinality card(JP ) = s to define P , that is

P := span
{
ψµ(y); µ ∈ JP

}
. (5.29)

To ensure that the basis functions of P are orthogonal with respect to the inner–

product 〈·, ·〉L2
π(Γ), the families of univariate polynomials Ψm are chosen to be orthog-

onal with respect to the inner–product 〈·, ·〉L2
πm

(Γm) for m = 1, 2, . . . . Indeed, due to

the product measure π,

〈ψµ, ψν〉L2
π(Γ) =

∫
Γ

ψµ(y)ψν(y) dπ(y)

=
∞∏
m=1

∫
Γm

ψµm(ym)ψνm(ym) dπm(ym)

=
∞∏
m=1

δµmνm

= δµν ,

(5.30)

for any two multi–indices µ, ν ∈ JP .



5.3. SGFEM APPROXIMATION 93

We now address the important issue that to compute SGFEM approximations

uX ∈ X satisfying (5.21), the sums in (5.16) and (5.26) must have a finite number of

nonzero terms. It was briefly touched upon that it is not necessary to truncate the

expansion (5.5) a priori to achieve this. If we assume that only the first M parameters

are active (i.e., we assume that for every µ ∈ JP , µm = 0 for m > M), then, provided

(5.4) holds, Bm(uX , v) = 0 for uX , v ∈ X and all m > M [18]. In other words, the

projection onto X = H1⊗P truncates the sum in (5.16) after M terms. Equivalently,

the matrix A in (5.26) becomes

A = G0 ⊗K0 +
M∑
m=1

Gm ⊗Km, (5.31)

where, due to (5.30), it follows that G0 = I. Coefficient matrices of this form are too

expensive to invert explicitly. To solve the linear system of equations associated with

A in (5.31), an iterative approach is required. Many avenues have been explored; see

the works [79, 50, 104, 96, 80, 82] for example.

It is well–known that if Γm is symmetric about zero and the measure πm has even

density with respect to Lebesgue measure, we can construct families of orthonormal

univariate polynomials (5.28) satisfying a three–term recurrence of the form

1

amjm+1

ψjm+1(ym) = ymψjm(ym)− 1

amjm
ψjm−1(ym), (5.32)

for jm = 1, 2, . . . ; see [58, 53] for example. The constants amjm+1 and amjm depend on the

measure πm. Using the relationship (5.32) is is easy to show that the matrices Gm ∈

Rs×s defined in (5.25) are extremely sparse. Assuming that P contains polynomials

in the first M parameters only, then for two basis functions ψj(y) and ψr(y) of P , or

equivalently ψµ(y) and ψν(y) where µ, ν ∈ JP are multi–indices, we have

[Gm]νµ = 〈ymψµ(y), ψν(y)〉L2
π(Γ)

= 〈ymψµm(ym), ψνm(ym)〉L2
πm

(Γm)

M∏
s=1, s6=m

δµsνs ,

and through the recurrence relation (5.32) we find that

[Gm]νµ =

[
1

amµm+1

δ(µm+1)νm +
1

amµm
δ(µm−1)νm

] M∏
s=1, s6=m

δµsνs .
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Consequently, [Gm]νµ is nonzero only when the multi–indices µ and ν differ by one in

themth position, and are the same in all other positions. The significance of this is two–

fold. Firstly, the matrices Gm for m = 1, 2, . . . ,M have at most two nonzero entries

per row and column, regardless of the dimension s of P [70]. Secondly, the entries of

Gm can be determined explicitly without performing any numerical integration. When

ym is the image of a uniformly distributed random variable ξm(ω) (with a constant

pdf), the families of orthogonal polynomials on Γm are Legendre basis polynomials.

The following example is similar to examples given in [70, 85].

Example 5.1: Legendre polynomials on Γm.

Let Γm = [−1, 1] be the image of a mean zero and uniformly distributed random

variable ξm(ω) ∼ U(−1, 1) for m = 1, 2, . . . ,M . Then, dπm(ym) = 1
2
dym,

1

amµm
=

µm√
(2µm + 1)(2µm − 1)

,

and the recurrence relation (5.32) generates families of Legendre polynomials with

ψ0(ym) = 1 and ψ1(ym) =
√

3ym. Furthermore,

[Gm]νµ =



µm+1√
(2µm+3)(2µm+1)

, µ
m
= ν, µm = νm − 1,

µm√
(2µm+1)(2µm−1)

, µ
m
= ν, µm = νm + 1,

0, otherwise,

where µ
m
= ν denotes that µ and ν differ only in the mth position.

We always assume that µ = 0 is a member of JP and is listed first in the set. Some

choices of JP lead to standard sets of polynomials. Below, we introduce tensor–product

polynomials.

Definition 5.1: Tensor–product polynomials.

Consider the multi–indices

JT (M,k) :=
{
µ ∈ J ; µm ≤ k for m = 1, 2, . . . ,M, µm = 0 for m > M

}
,

then P in (5.29) for JP = JT (M,k) is the space of tensor–product polynomials of

degree ≤ k in each of y1, y2, . . . , yM , and s = (k + 1)M .
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Example 5.2.

Let JP = JT (2, 2), then, s = 9 and

JP =
{

(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2), (2, 1), (1, 2), (2, 2)
}
,

where it is understood that for each µ ∈ JP , µm = 0 for all m > M = 2.

Another choice is complete polynomials.

Definition 5.2: Complete polynomials.

Consider the multi–indices

JC(M,k) :=
{
µ ∈ J ; |µ| ≤ k, µm = 0 for m > M

}
, |µ| :=

∞∑
m=1

µm,

then P in (5.29) for JP = JC(M,k) is the space of complete polynomials of total

degree ≤ k in each of y1, y2, . . . , yM , and s = (M+k)!
M !k!

.

Example 5.3.

Let JP = JC(2, 2), then, s = 6 and

JP =
{

(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)
}
⊂ JT (2, 2).

Again, it is understood that for each µ ∈ JP , µm = 0 for all m > 2.

It is actually possible to construct tensor–product polynomial spaces with doubly

orthogonal basis functions that also satisfy

〈ymψµ, ψν〉L2
π(Γ) = Cm

µmνmδµν , m = 1, 2, . . . ,M,

for any µ, ν ∈ JT (M,k) [7, 51]. Computationally speaking this is very convenient; the

resulting matrices Gm in (5.25) are all diagonal and the linear system Au = b for A in

(5.31) decouples into s many n–dimensional systems associated with the blocks Arr in

(5.24) for r = 1, 2, . . . , s. Since, however, the cardinality s of JC(M,k) is often much

smaller than that of JT (M,k), it is not always clear when tensor–product spaces of

doubly orthogonal polynomials of degree ≤ k in each variable are preferable to spaces

of complete polynomials.

A third and less standard choice is hyperbolic–cross polynomials.
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Figure 5.1: Schematic of the multi–index sets JC(2, 7) (red crosses) and JH(2, 7, q)
(blue circles) for varying q. Each multi–index is of the form µ = (µ1, µ2, 0, . . . ) and
we plot µ1 and µ2.

Definition 5.3: Hyperbolic polynomials.

Consider the multi–indices

JH(M,k, q) :=
{
µ ∈ J ; ‖µ‖q ≤ k, µm = 0 for m > M

}
,

where

‖µ‖q :=

[ ∞∑
m=1

µqm

] 1
q

, 0 < q ≤ 1, (5.33)

and q is a user–defined parameter. We say that P in (5.29) for JP = JH(M,k, q)

is the space of q–hyperbolic polynomials in the parameters y1, y2, . . . , yM .

The norm ‖ · ‖q in (5.33) penalises multi–indices µ ∈ J with larger supports supp(µ)

(recall Definition 2.4) and absolute sums |µ| (the total degree of ψµ(y)). Such spaces

have been employed in the literature in the construction of polynomial chaos expan-

sions [26, 100] and stochastic collocation methods [13] for PDE problems with random

coefficients. Notice that when q = 1, JH(M,k, q) = JC(M,k). To demonstrate the
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influence of (5.33) we provide the following example.

Example 5.4: Complete versus hyperbolic–cross polynomials.

Consider multi–indices µ = (µ1, µ2, 0, . . . ) in the sets JC(2, 7) and JH(2, 7, q). In

Figure 5.1 we plot µ1 and µ2 for each multi–index in both sets for q = 0.3, 0.5, 0.7, 0.9.

Each red cross and blue circle represents a multi–index in JC(2, 7) and JH(2, 7, q)

respectively. Note how for each choice of q, the retained multi–indices lie under a

hyperbola–like curve.

Mean & Variance of SGFEM Approximations

Once an SGFEM approximation uX ∈ X has been computed, we may compute impor-

tant statistical quantities such as its expectation (2.6) and variance (2.7). Again, we

work with the probability space (Γ,B(Γ), π) instead of the space (Ω,F ,P). When the

basis of P is constructed as described, that is, when ψ0 = 1 and 〈ψµ, ψν〉L2
π(Γ) = δµν

for any two multi–indices µ, ν ∈ JP , E[uX ] and Var(uX) admit neat analytical repre-

sentations which do not require numerical integration over Γ.

We may express uX as

uX(x,y) =
∑
µ∈JP

uµX(x)ψµ(y), uµX(x) =
n∑
i=1

uµi φi(x), uµi ∈ R,

so that

E[uX ] =

∫
Γ

uX dπ(y) =
∑
µ∈JP

uµX(x)

∫
Γ

ψµ(y)× 1 dπ(y) = u0X(x), (5.34)

and thus the expectation of uX is simply the mean mode u0X ∈ H1
0 (D) associated with

the multi–index 0 ∈ JP . Likewise, we find that

E[u2
X ] =

∫
Γ

u2
X dπ(y) =

∑
µ∈JP

∑
ν∈JP

uµX(x)uνX(x)

∫
Γ

ψµ(y)ψν(y) dπ(y) =
∑
µ∈JP

uµX(x)2,

and thus

Var(uX) = E[u2
X ]− E[uX ]2 =

∑
µ∈JP \{0}

uµX(x)2, (5.35)

which also resides in H1
0 (D). The above expressions for E[uX ] and Var(uX) are stan-

dard and can be found in [70], for example.
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Figure 5.2: Expectation and variance of the SGFEM approximation uX ∈ X con-
structed in Example 5.5.

5.3.3 Numerical Experiments

In this section we construct X = H1 ⊗ P in (5.22) by making specific choices of H1

and P and compute SGFEM approximations uX ∈ X by solving (5.21). In Example

5.5 below we consider TP2 in Section 5.1.1 and calculate the associated expectation

and variance (5.34) and (5.35).

Example 5.5: Expectation and variance, TP2.

Consider TP2 with JP = JC(5, 3) and construct H1 = Q1(h) over a uniform 32×32

mesh of square elements Th (so that h = 2−5). In Figure 5.2 we plot the expectation

E[uX ] and the variance Var(uX), where uX ∈ X satisfies (5.21).

For our next example, we investigate the accuracy of uX ∈ X when JP = JH(M,k, q)

in the definition of P in (5.29) for certain choices of M , k and q.

Example 5.6.

Consider TP1 with H1 as in Example 5.5 (i.e., Th is 32×32), and compute uX ∈ X

satisfying (5.21) with JP = JH(M,k, q). We fix the polynomial degree k = 6 and

vary the number of active parameters M = 2, . . . , 7 for each q ∈ {0.4, 0.7, 1}. In

Figure 5.3 we plot the energy error ‖uref − uX‖B =
√
‖uref‖2

B − ‖uX‖2
B where uref

is a reference solution obtained using a uniform square mesh of 128×128 elements

and the multi–indices J ref
P = JC(9, 8). We now repeat this process for TP2 and
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Figure 5.3: The energy errors ‖uref−uX‖B versus the corresponding number of degrees
of freedom (dof) NX for TP1 in Example 5.6. We choose H1 = Q1(2−4) and JP =
JH(M,k, q) in the definition of P in (5.29) with k = 6 fixed, and vary M = 2, . . . , 7
for each q ∈ {0.4, 0.7, 1}.

plot the corresponding errors in Figure 5.4. Observe from Figures 5.3 and 5.4 that

NX grows much more rapidly as we increase M for larger values of q (most notably

when q = 1 meaning that JP = JC(M, 6)).

Recall that the number of active parameters M determines how many terms in the

expansion a(x,y) in (5.5) play a role in the computation of the SGFEM approximation

uX ∈ X satisfying (5.21). Since the sequence {‖am‖∞}∞m=1 decays more slowly for TP1

than the sequence for TP2, we expect TP1 to require a larger number of terms M to

achieve high levels of accuracy. Indeed, in Figure 5.3 we observe consistent decreases

in ‖uref − uX‖B as we increase M , whereas the errors in Figure 5.4 begin to stagnate

for M > 4, meaning that an increase in the number of active parameters no longer

leads to improved accuracy. To further reduce the error once it has stagnated, we need

to either increase k, refine Th, or both.

We also observe in Figure 5.3 that for fixed values of M , the errors for all three

values of q are comparable (with k and Th fixed). In particular, we achieve the same
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Figure 5.4: The energy errors ‖uref−uX‖B versus the corresponding number of degrees
of freedom (dof) NX for TP2 in Example 5.6. We choose H1 = Q1(2−5) and JP =
JH(M,k, q) in the definition of P in (5.29) with k = 6 fixed, and vary M = 2, . . . , 7
for each q ∈ {0.4, 0.7, 1}.

accuracy using q = 0.4 as we do using q = 1, and choosing JP = JH(M, 6, 0.4) over

JP = JH(M, 6, 1) is significantly more efficient since the corresponding value of NX is

much smaller (approximately two orders of magnitude smaller when M = 7). Likewise,

in Figure 5.4 we observe that significant computational gains can be made by choosing

q = 0.7 instead of q = 1 (for fixed choices of M , k and Th). Choosing q = 0.4 however

leads to a drop in accuracy when comparing the errors for fixed values of M , and the

computational gains are not as clear to determine.

Whilst the optimal choice of q is problem dependent and generally unknown, Fig-

ures 5.3 and 5.4 both demonstrate that, in some situations, significant computational

savings can be made by carefully selecting the set of multi–indices JP ⊂ J that define

P ⊂ L2
π(Γ) in (5.29). Moreover, the error associated with our choice of JP must be

carefully balanced against the error associated with Th (the mesh used to construct

the FEM space H1) to prevent the total error from stagnating and avoid doing un-

necessary work. In the same way a posteriori error estimation was employed to drive
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the adaptive refinement of Th in Section 3.3.2, we may exploit a posteriori error es-

timators to adaptively construct the set JP and refine the mesh Th. The aim is to

select only the most important multi–indices µ ∈ J for the set JP with respect to the

energy error and minimise the dimension NX of X ⊂ V = H1
0 (D) ⊗ L2

π(Γ) such that

‖u−uX‖B < tol for some prescribed error tolerance tol. To this end, in the following

section we discuss efficient a posteriori error estimation for SGFEMs.

5.4 A Posteriori Error Estimation

We now look to estimate the energy error ‖u−uX‖B for a given SGFEM approximation

uX ∈ X = H1 ⊗ P satisfying (5.21). A few explicit strategies for the model problem

(5.6)–(5.7) have been proposed in the literature that directly utilise the residual

r := f +∇ · (a∇uX),

Specifically, a general framework for residual–based error estimation for SGFEMs for

elliptic problems is developed in [44, 45], where overestimation of the true error by up

to a factor of 10 is reported for certain test problems. A similar approach is taken in [46]

where residuals are computed using an equilibrated fluxes strategy and overestimation

upto a factor of 5 is reported for certain test problems. We take an implicit approach;

by following the theoretical framework outlined in Section 3.2 (provided by [15, 2,

108]) we rederive the estimation strategy developed in [18] and [22] in a way that is

convenient for our analysis. In those works, effectivity indices close to one are reported

for test problems similar to those considered in [44, 45, 46].

Suppose that we choose a second subspace W ⊂ V such that W ⊃ X and solve

find eW ∈ W : B(eW , v) = F (v)−B(uX , v), for all v ∈ W,

which we previously labelled (3.10), where B(·, ·) and F (·) are, here, given in (5.13)

and (5.14), respectively. If Assumption 3.1 holds for the chosen spaces X and W , then

the bound (3.12) holds. Under Assumption 5.3, so that the norm equivalence (5.19)

holds, the bound (3.15) also holds where e0 ∈ W satisfies

find e0 ∈ W : B0(e0, v) = F (v)−B(uX , v), for all v ∈ W, (5.36)

which we previously labelled (3.13), and, here, B0(·, ·) is given in (5.17).
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There are several possible ways to construct W . Following [22], we choose

W = X ⊕
(

(H2 ⊗ P )⊕ (H1 ⊗Q)

)
=: X ⊕ Y, (5.37)

where H2 and Q are to be chosen (recall that X = H1 ⊗ P is already chosen). To

ensure that X ∩ Y = {0}, we choose H2 ⊂ H1
0 (D) and Q ⊂ L2

π(Γ) such that

H1 ∩H2 = {0}, P ∩Q = {0}, (5.38)

which also gives Y1 ∩ Y2 = {0} for

Y1 := H2 ⊗ P, Y2 := H1 ⊗Q. (5.39)

In the same way as we define P in (5.29), to construct Q, we choose a subset JQ ⊂ J

satisfying JP ∩ JQ = ∅ and define

Q := span
{
ψν(y); ν ∈ JQ

}
. (5.40)

In this way, the spaces P and Q are mutually orthogonal with respect to the inner–

product 〈·, ·〉L2
π(Γ), since (5.30) holds for any two multi–indices in J . Furthermore, due

to the tensor product structure of Y1 and Y2 and the fact that P ∩Q = {0}, it can be

shown that

B0(u, v) = 0, for all u ∈ Y1, for all v ∈ Y2. (5.41)

To see this, expand u ∈ Y1 and v ∈ Y2 in the chosen bases and use (5.30).

Given Y defined as in (5.37), we can then compute the error estimate η := ‖eY ‖B0

by solving

find eY ∈ Y : B0(eY , v) = F (v)−B(uX , v), for all v ∈ Y, (5.42)

previously labelled (3.17), and the bound (3.19) holds. Combining all the previous

results yields Theorem 3.4, which, for completeness, we now restate for our parametric

diffusion problem.

Theorem 5.1: [22, Theorem 4.1].

Let u ∈ V satisfy (5.12) and let the SGFEM approximation uX ∈ X satisfy (5.21)

for X = H1 ⊗ P defined as in (5.22). Define Y and W as in (5.37), choosing H2

and Q such that (5.38) holds, and let eY ∈ Y satisfy (5.42). If Assumptions 3.1
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and 5.2–5.3 hold, then η := ‖eY ‖B0 satisfies

√
λη ≤ ‖u− uX‖B ≤

√
Λ√

1− γ2
√

1− β2
η, (5.43)

where λ and Λ are defined in (5.20), and β, γ ∈ [0, 1) satisfy (3.11) and (3.18).

Decomposition of the Error

We are now tasked to compute η = ‖eY ‖B0 . Fortunately, due to the structure we

impose on Y , this problem can be simplified greatly. Indeed, when Y is chosen as in

(5.37), problem (5.42) decouples into two smaller ones on Y1 and Y2 (rather than one

large problem on Y ). By construction, we have that Y1 ∩ Y2 = {0}, and so

eY = eY1 + eY2 , for some eY1 ∈ Y1, eY2 ∈ Y2.

Due to the bilinearity of B0(·, ·), and the fact that (5.42) holds for all functions in

both Y1 and Y2, we may consider the equivalent restatement of problem (5.42): find

the component errors eY1 ∈ Y1 and eY2 ∈ Y2 such that

B0(eY1 , vi) +B0(eY2 , vi) = F (vi)−B(uX , vi), for all vi ∈ Yi, i = 1, 2.

By (5.41) it follows that B0(eY2 , v1) = 0 and B0(eY1 , v2) = 0 for all v1 ∈ Y1 and v2 ∈ Y2,

and thus the above problems are reduced to the following two smaller problems;

find eY1 ∈ Y1 : B0(eY1 , v) = F (v)−B(uX , v), for all v ∈ Y1, (5.44)

find eY2 ∈ Y2 : B0(eY2 , v) = F (v)−B(uX , v), for all v ∈ Y2, (5.45)

of dimension dim(Y1) = dim(H2)dim(P ) and dim(Y2) = dim(H1)dim(Q), respectively.

In addition, since Y2 admits the decomposition

Y2 =
⊕
ν∈JQ

Y ν
2 , Y ν

2 := H1 ⊗Qν , Qν := span{ψν(y)}, (5.46)

so that eY2 =
∑

ν∈JQ e
ν
Y2

for some functions eνY2
∈ Y ν

2 , a similar orthogonality argument

proves that (5.45) decouples into card(JQ) many smaller problems:

find eνY2
∈ Y ν

2 : B0(eνY2
, v) = F (v)−B(uX , v), for all v ∈ Y ν

2 , (5.47)
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of dimension dim(H1). Moreover, since B0(eY1 , eY2) = 0 and B0(eµY2
, eνY2

) = 0 for any

two multi–indices where µ 6= ν, we have

η = ‖eY ‖B0 =

[
‖eY1‖2

B0
+ ‖eY2‖2

B0

] 1
2

=

[
‖eY1‖2

B0
+
∑
ν∈JQ

‖eνY2
‖2
B0

] 1
2

, (5.48)

where ‖eY1‖B0 estimates the energy error associated with our choice of H1, and ‖eY2‖B0

estimates the energy error associated with our choice of P . This is precisely the

estimator considered in [22].

As noted in [22], the coefficient matrix associated with problem (5.47) is the same

for each ν ∈ JQ (only the right–hand side changes). Consequently, the computation of

the estimates ‖eνY2
‖B0 may be cheaply vectorised over the set of multi–indices ν ∈ JQ.

Problem (5.44) also decouples further, into card(JP ) many problems of dimension

dim(H2), but this is not essential for now and is addressed in Chapter 6.

The CBS Constant

In [22], the augmented space W in (5.37) is rearranged as

W =

(
(H1 ⊕H2)⊗ P

)
⊕ (H2 ⊗Q).

The analysis in that work relies on the orthogonality with respect to 〈·, ·〉L2
π(Γ) of P

and Q, rather than Y1 and Y2 given in (5.39), and the decoupling of (5.36) into two

smaller problems over (H1⊕H2)⊗P and H2⊗Q. A CBS constant is introduced into

the analysis by splitting the former into H1⊗P and H2⊗P . The approach we take is

subtly different – we introduce a CBS constant by splitting the augmented space W

into X and Y , as was done in Section 3.3.2 for the analogous deterministic problem.

We demonstrate that the analysis of the constant γ in the bound (5.43) is the same

for both approaches.

If Assumption 5.3 holds, then H1
0 (D) is a Hilbert space with respect to the inner–

product (4.7) with a0(x) in place of a(x). In addition, since H1∩H2 = {0}, the bound

(4.6) holds with H1 and H2 in place of X and Y , respectively, which we restate for

completeness; there exists a constant γ ∈ [0, 1) such that

|〈u, v〉a0 | ≤ γ〈u, u〉
1
2
a0〈v, v〉

1
2
a0 , for all u ∈ H1, for all v ∈ H2 (5.49)
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(we have swapped the order of H1 and H2). In [18] it is shown that any constant γ in

(5.49) also satisfies the strengthened Cauchy–Schwarz inequality

|B0(u, v1)| ≤ γ‖u‖B0‖v1‖B0 , for all u ∈ X, for all v1 ∈ Y1 = H2 ⊗ P.

Every v ∈ Y admits the decomposition v = v1 + v2 for some functions v1 ∈ Y1 and

v2 ∈ Y2. Since Y1 and Y2 are mutually orthogonal in terms of (5.41), then

‖v‖2
B0

= ‖v1‖2
B0

+ ‖v2‖2
B0

=⇒ ‖v1‖B0 ≤ ‖v‖B0 .

In addition, since P and Q are mutually orthogonal with respect to the inner–product

〈·, ·〉L2
π(Γ),

B0(u, v) = B0(u, v1), for all u ∈ X, for all v ∈ Y,

and thus, combining the previous results yields

|B0(u, v)| = |B0(u, v1)| ≤ γ‖u‖B0‖v1‖B0 ≤ γ‖u‖B0‖v‖B0 , (5.50)

for all u ∈ X and v ∈ Y , where γ appears in (5.49). The bound (5.50) coincides with

(3.18) – the bound associated with the splitting of W into X and Y – and thus any

constant in (5.50) also appears in the error bound (5.43). In other words, the CBS

constants γmin associated with the splitting of W into X and Y and (H1⊕H2)⊗P into

H1⊗P and H2⊗P are both bounded above by the CBS constant associated with the

finite element spaces H1 and H2. Recall that CBS constants associated with (5.49),

or equivalently (4.6), are the main focus of Chapter 4 and are computed for a variety

of FEM spaces H1, H2 ⊂ H1
0 (D).

Estimated Error Reductions

For a computed SGFEM approximation uX ∈ X satisfying (5.21) with X of the form

(5.22), as well as an a posteriori error estimator eY ∈ Y satisfying (5.42) with Y of

the form (5.37), we now briefly consider strategies for enriching X with the aim of

computing enhanced SGFEM approximations. Consider the problems

find uW1 ∈ W1 : B(uW1 , v) = F (v), for all v ∈ W1, (5.51)

find uW2 ∈ W2 : B(uW2 , v) = F (v), for all v ∈ W2, (5.52)
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where

W1 = (H1 ⊕H2)⊗ P, W2 = H1 ⊗ (P ⊕ Q̄), (5.53)

with Q̄ = ⊕ν∈J̄QQν for some subset J̄Q ⊆ JQ. That is, W1 and W2 represent spaces

of the form (5.22) with enriched spatial and parametric components, respectively, and

uW1 ∈ W1 and uW2 ∈ W2 represent enhanced SGFEM approximations.

Due to Galerkin orthogonality we find that

‖eWi
‖2
B = ‖u− uX‖2

B − ‖uWi
− uX‖2

B, eWi
:= u− uWi

, i = 1, 2,

where eW1 and eW2 are the errors associated with the augmented spaces W1 and W2

in (5.53) which we may rearrange as

W1 = (X ⊕ Y1), W2 := (X ⊕ Ȳ2), Ȳ2 =
⊕
ν∈J̄Q

Y ν
2 ,

(recall the definition of Y ν
2 in (5.46)). In other words, ‖uW1 − uX‖2

B characterises the

reduction in ‖u − uX‖2
B (the square of the energy error) that would be achieved by

augmenting X with Y1 and computing an enhanced approximation uW1 ∈ W1 satisfying

(5.51). Likewise, ‖uW2 − uX‖2
B characterises the reduction in ‖u − uX‖2

B that would

be achieved by augmenting X with Ȳ2 and computing uW2 ∈ W2 satisfying (5.52).

The following result provides estimates for these quantities, and demonstrates that

the constant γ in (5.43) also plays an important role in adaptive SGFEMs. This is a

simple extension of a result proved in [18]; the proof is very similar.

Theorem 5.2.

Let uX ∈ X = H1⊗P satisfy (5.21), the approximations uW1 ∈ W1 and uW2 ∈ W2

satisfy (5.51) and (5.52) where W1 and W2 are defined as in (5.53) for some subset

J̄Q ⊆ JQ, and define eȲ2
:=
∑

ν∈J̄Q e
ν
Y2

so that ‖eȲ2
‖2
B0

=
∑

ν∈J̄Q ‖e
ν
Y2
‖2
B0

. Then,

the following estimates hold:

λ‖eY1‖2
B0
≤ ‖uW1 − uX‖2

B ≤
Λ

1− γ2
‖eY1‖2

B0
, (5.54)

λ‖eȲ2
‖2
B0
≤ ‖uW2 − uX‖2

B ≤ Λ‖eȲ2
‖2
B0
, (5.55)

where λ,Λ are defined in (5.19), and γ ∈ [0, 1) satisfies (3.18).
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When the constant γ appearing in the bound (5.54) is small, we have more con-

fidence that the estimates ‖eY1‖B0 and ‖ēY2‖B0 for ‖uW1 − uX‖B and ‖uW2 − uX‖B
are accurate. Once a suitable set J̄Q ⊆ JQ has been determined, (5.54) and (5.55)

provide theoretical foundations for the design of adaptive SGFEMs, which is the focus

of Chapter 6. For a simple example, when J̄Q = JQ so that Ȳ2 = Y2, ‖eY1‖B0 and

‖eY2‖B0 provide estimates of the error reductions that would be achieved by augment-

ing X with Y1 = (H2 ⊗ P ) or Y2 = (H1 ⊗Q), respectively. Then, a simple enrichment

strategy is to perform X → X ⊕ Yi for i = argmaxj{‖eYj‖B0 ; j = 1, 2} and compute

a new SGFEM approximation uX ∈ X satisfying (5.21).

5.4.1 Numerical Experiments

In this section we investigate the accuracy of the error estimate η defined in (5.48).

We begin by making specific choices of X = H1 ⊗ P in (5.22) and computing uX ∈ X

satisfying (5.21). Next, choosing H2 ⊂ H1
0 (D) and Q ⊂ L2

π(Γ) so that the conditions

(5.38) are satisfied, we solve problems (5.44) and (5.47) and compute η in (5.48). The

dimension of the tensor product space Y1 = H2⊗P associated with problem (5.44) can

become unwieldy, especially if the dimension of P is high (which is fixed at the point we

wish to estimate ‖u− uX‖B). To keep costs reasonable, we insist on the elementwise

decomposition H2 =
⊕

�k∈Th H2k where every mk–dimensional space H2k ⊂ H1
0 (D)

contains functions with only compact support on �k, and employ the element residual

method outlined in Section 3.3.2. Following [18], for each �k ∈ Th we solve the local

mks–dimensional problem: find eY1k
∈ Y1k := H2k ⊗ P satisfying

B0k(eY1k
, v) = Fk(v) +

∫
Γ

〈∇ · (a(·,y)∇uX(·,y)), v(·,y)〉L2(�k) dπ(y)

−
∑
E∈Ek

∫
Γ

〈a(·,y)
q
∂uX
∂n

y
(y), v(·,y)〉L2(E) dπ(y),

(5.56)

for all v ∈ Y1k, where Ek is the set of edges of �k excluding those on ∂D, J∂uX
∂n

K(y) is

given in (3.34) and

B0k(u, v) =

∫
Γ

∫
�k

a0(x)∇u(x,y) · ∇v(x,y) dx dπ(y),

Fk(v) =

∫
Γ

∫
�k

f(x)v(x,y) dx dπ(y).

(5.57)
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We then evaluate the spatial error estimate

‖eY1‖2
B0

=
∑

�k∈Th

‖eY1k
‖2
B0k

:=
∑

�k∈Th

B0k(eY1k
, eY1k

), (5.58)

in order to evaluate η defined in (5.48).

The spaces H1 and H2 in this section play the role of X and Y in Chapter 4 (in

that both pairings are disjoint subspaces of H1
0 (D) and relate to an error estimation

problem). To keep notation consistent for the SGFEM problem, we now refer to X and

Y in Chapter 4 as H1 and H2. Our construction of H2 is identical to the construction

(4.10). When H1 and H2 coincide with the choices made in Examples 4.1 and 4.2, and

a0(x) in (5.5) and (5.57) is a constant, the values reported in Tables 4.1 and 4.2 are

the squares of the CBS constants γmin associated with (5.49), and hence appear in the

bounds (5.43) and (5.54). All eight choices of H2 considered in Examples 4.1 and 4.2

(four per choice of H1) lead to CBS constants away from one. Thus, they are sensible

candidates with which to define the space Y1 = H2 ⊗ P in the error problem (5.44)

(since term 1/
√

1− γ2
min in the bound (5.43) doesn’t blow up). Building on Chapter

4, we now investigate which choices of H2 and Q lead to the best estimates η = ‖eY ‖B0

satisfying (5.43) (resulting in effectivity indices close to one). The following results

were first published in [37].

We begin by choosing the SGFEM spaceX = H1⊗P . We choose eitherH1 = Q1(h)

or H1 = Q2(h), constructed with respect to uniform meshes of square elements Th with

element width h, and set

JP = JC(M,k), (5.59)

so that P in (5.29) represents the space of complete polynomials on Γ of total degree

≤ k in each y1, y2, . . . , yM . For the error estimate η = ‖eY ‖B0 satisfying (5.43), we fix

JQ = JC(M + 1, k + 1)\JP (5.60)

(for now), where JC(M + 1, k+ 1) is the set of multi–indices associated with complete

polynomials of total degree ≤ k + 1 in the first M + 1 parameters, and consider the

different choices of H2 described in Examples 4.1 and 4.2. In order to test the accuracy

of η = ‖eY ‖B0 , we also compute reference solutions uref ∈ Xref where the space Xref

is constructed with Href
1 = Q2(h) on a uniform mesh of square elements with element
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Table 5.1: Effectivity indices θapprox
eff for TP1 in Example 5.7. We fix H1 = Q1(h), JP

and JQ as in (5.59) and (5.60) with M = 5 and make four choices of H2 for varying h
(with k fixed) and varying k (with h fixed).

h ‖uref − uX‖B Q2(h) Q4(h) Q1(h/2) Q2(h/2)
2−1 3.8125× 10−2 0.98 0.12 0.87 1.04
2−2 1.9254× 10−2 0.97 0.16 0.87 1.04
2−3 1.0244× 10−2 0.93 0.22 0.84 0.99
2−4 6.2277× 10−3 0.80 0.31 0.73 0.85
2−5 4.7187× 10−3 0.62 0.39 0.59 0.65
k ‖uref − uX‖B Q2(h) Q4(h) Q1(h/2) Q2(h/2)
2 1.0251× 10−2 0.93 0.22 0.84 0.99
3 1.0244× 10−2 0.93 0.22 0.84 0.99
4 1.0244× 10−2 0.93 0.22 0.84 0.99
5 1.0244× 10−2 0.93 0.22 0.84 0.99
6 1.0244× 10−2 0.93 0.22 0.84 0.99

width h = 2−7 and the set J ref
P = JC(10, 8). We then evaluate the effectivity index

θapprox
eff :=

‖eY ‖B0√
‖uref‖2

B − ‖uX‖2
B

.

We first consider test problem TP1 in Section 5.1.1, which was initially investigated

in [18]. In that work, the authors truncate the coefficient a(x,y) in (5.9) a priori after

M terms. Consequently, the parametric problem (5.6)–(5.7) is instead posed on the

finite–dimensional domain D×Γ̄, where Γ̄ = Γ1×Γ2×· · ·×ΓM , and the approximations

uX ∈ X and uref ∈ Xref are both functions of only M parameters. In turn, they choose

JQ = JC(M,k + 1)\JP in the definition of Q. In our experiments, u ∈ V is a function

of infinitely many parameters and uref is a function of Mref > M parameters. This

subtle (yet crucial) variation is reflected in our choice of JQ in (5.60). We extend the

results provided in [18] by adapting the same error estimation strategy for the more

complicated infinite–dimensional problem.

Example 5.7: TP1, H1 = Q1(h).

Consider TP1 with JP = JC(5, k) and H1 = Q1(h). Initially, we compute uX ∈ X

satisfying (5.21) for varying h with fixed k = 4, and varying k with fixed h = 2−3.

For each uX ∈ X we compute the error estimator eY ∈ Y by solving (5.45) and

(5.56) (on each �k ∈ Th) for JQ defined in (5.60) and the four choices of H2

described in Example 4.1. In Table 5.1 we record the effectivity indices θapprox
eff .

When H1 = Q1(h), we observe from Table 5.1 that H2 = Q2(h) and H2 = Q2(h/2)

define very good estimators. We also observe thatH2 = Q4(h) defines a poor estimator,
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Table 5.2: Effectivity indices θapprox
eff for TP1 in Example 5.8. We fix H1 = Q2(h), JP

and JQ as in (5.59) and (5.60) with M = 5 and make four choices of H2 for varying h
(with k fixed) and varying k (with h fixed).

h ‖uref − uX‖B Q4(h) Q2(h/2) Qr4(h) Qr2(h/2)
2−0 4.8622× 10−3 0.66 0.66 0.55 0.59
2−1 4.1729× 10−3 0.48 0.49 0.46 0.47
2−2 4.1003× 10−3 0.44 0.45 0.44 0.44
2−3 4.0945× 10−3 0.44 0.44 0.44 0.44
2−4 4.0941× 10−3 0.44 0.44 0.44 0.44
k ‖uref − uX‖B Q4(h) Q2(h/2) Qr4(h) Qr2(h/2)
2 4.1134× 10−3 0.45 0.45 0.45 0.45
3 4.0950× 10−3 0.44 0.44 0.44 0.44
4 4.0945× 10−3 0.44 0.44 0.44 0.44
5 4.0945× 10−3 0.44 0.44 0.44 0.44
6 4.0945× 10−3 0.44 0.44 0.44 0.44

despite the fact that its associated CBS constant is the smallest (γ2
min ≤ 0.0121) and

the term
√

1− γ2
min is closest to one. For all four estimates, the constants λ and Λ in

the bound (5.43) are fixed, suggesting that when H2 = Q4(h), the saturation constant

βmin is close to one, or equivalently, the enriched space X → X⊕Y = W leads to little

improvement in accuracy (recall Assumption 3.1). The same conclusion is drawn by

considering the estimated error reductions ‖eY1‖B0 and ‖eY2‖B0 in Theorem 5.2 (with

J̄Q = JQ), which are accurate since γmin is small. Since η is small in comparison to

‖uref − uX‖B, both ‖eY1‖B0 and ‖eY2‖B0 in (5.48) are as well, and thus the true error

reductions are small and βmin is close to one.

Example 5.8: TP1, H1 = Q2(h).

We now repeat the experiment conducted in Example 5.7 with H1 = Q2(h) and the

four choices of H2 described in Example 4.2 (recall that the sets of multi–indices

JP and JQ that define P and Q are fixed in (5.59) and (5.60) with M = 5), and

record the effectivity indices in Table 5.2.

When H1 = Q2(h), we observe from Table 5.2 that for all four choices of H2, the

true error stagnates and the error estimates are poor as we vary both h and k. The

quality of each SGFEM approximation uX ∈ X depends on our choices of M,k and h

(through our choices of P and H1), and thus, to compute improved approximations,

we must increase M . We observed a similar behaviour in Table 5.1, where the true

errors also stagnated as we increased k. In that experiment, the spatial errors are

significant enough for h–refinements to lead to improved SGFEM approximations. By
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Table 5.3: Effectivity indices θapprox
eff for TP1 in Example 5.9. We fix H1 = Q2(h), JP

and JQ as in (5.59) and (5.61) (modified choice) with M = 5 and make four choices
of H2 for varying h (with k fixed) and varying k (with h fixed).

h ‖uref − uX‖B Q4(h) Q2(h/2) Qr4(h) Qr2(h/2)
2−0 4.8622× 10−3 0.71 0.71 0.61 0.64
2−1 4.1729× 10−3 0.83 0.83 0.81 0.82
2−2 4.1003× 10−3 0.81 0.82 0.81 0.81
2−3 4.0945× 10−3 0.81 0.81 0.81 0.81
2−4 4.0941× 10−3 0.81 0.81 0.81 0.81
k ‖uref − uX‖B Q4(h) Q2(h/2) Qr4(h) Qr2(h/2)
2 4.1134× 10−3 0.82 0.82 0.82 0.82
3 4.0950× 10−3 0.81 0.81 0.81 0.81
4 4.0945× 10−3 0.81 0.81 0.81 0.81
5 4.0945× 10−3 0.81 0.81 0.81 0.81
6 4.0945× 10−3 0.81 0.81 0.81 0.81

choosing H1 = Q2(h) in this experiment, the spatial errors are vastly reduced and

the total error stagnates with both k and h. We now address the reason for the poor

estimated errors.

For the estimate η = ‖eY ‖B0 to be accurate, the space Y in (5.37) must comprise

of functions that would substantially improve the current SGFEM approximation (to

ensure that βmin is small). We noted previously that the approximation error is dom-

inated by our choice of M in that more parameters ym are required in the definition

of P to further reduce the energy errors in Table 5.2 (the errors stagnate with both h

and k). Due to our choice of JQ in (5.60), the space Q contains polynomials in only

one additional parameter. Since the sequence {‖am‖∞}∞m=1 associated with a(x,y) in

(5.9) for TP1 decays very slowly, we expect that more than one additional parameter

is needed in the definition of Q in order for Y to contain functions that lead to sub-

stantial reductions in the current approximation error. To this end, we investigate in

Example 5.9 below the performance of the estimate η = ‖eY ‖B0 for the modified space

Q associated with the set of multi–indices

JQ = JC(M + 3, k + 1)\JP . (5.61)

Example 5.9: TP1, H1 = Q2(h) with modified Q.

We rerun the experiment conducted in Example 5.8 for the set JQ in (5.61) that

defines Q in (5.40), and record the updated effectivity indices in Table 5.3.

We observe in Table 5.3 that the effectivity indices θapprox
eff corresponding to the
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Table 5.4: Effectivity indices θapprox
eff for TP2 in Example 5.10. We fix H1 = Q1(h), JP

and JQ as in (5.59) and (5.60) with M = 5 and make four choices of H2 for varying h
(with k fixed) and varying k (with h fixed).

h ‖uref − uX‖B Q2(h) Q4(h) Q1(h/2) Q2(h/2)
2−2 6.0892× 10−2 0.96 0.10 1.32 0.92
2−3 3.0684× 10−2 0.95 0.12 1.32 0.93
2−4 1.5386× 10−2 0.95 0.14 1.32 0.94
2−5 7.7745× 10−3 0.95 0.18 1.32 0.93
2−6 4.0408× 10−3 0.93 0.26 1.28 0.92
k ‖uref − uX‖B Q2(h) Q4(h) Q1(h/2) Q2(h/2)
2 3.0723× 10−2 0.95 0.13 1.31 0.93
3 3.0686× 10−2 0.95 0.12 1.32 0.93
4 3.0684× 10−2 0.95 0.12 1.32 0.93
5 3.0684× 10−2 0.95 0.12 1.32 0.93
6 3.0684× 10−2 0.95 0.12 1.32 0.93

modified choice of JQ are much improved (in comparison to those recorded in Table

5.2). The estimate η still underestimates ‖u−uX‖B however, and thus a large number

of additional parameters must be incorporated into the definition of JQ to ensure that

θapprox
eff is close to one. Additionally, we observe little difference between the accuracy

of η for all four choices of H2. To better compare the four spaces, we now consider test

problem TP2 in Section 5.1.1. The sequence {‖am‖∞}∞m=1 associated with a(x,y) in

(5.10) for TP2 decays more quickly than that for TP1. As a result, the error associated

with our choice of M is less dominant (recall that the errors stagnated in Figure 5.4

as M was increased).

Example 5.10: TP2, H1 = Q1(h) and H1 = Q2(h).

We rerun the experiments conducted in Examples 5.7 and 5.8 with JQ in (5.60)

for TP2, and record the effectivity indices in Tables 5.4 and 5.5, respectively.

We observe from Table 5.4 (when H1 = Q1(h)) that the space H2 = Q2(h) yields

the best estimator, very closely followed by H2 = Q2(h/2). From Table 5.5 (when H1 =

Q2(h)) we observe that the space H2 = Q4(h) yields the best estimator, closely followed

by H2 = Qr
2(h/2) (recall that H2 = Qr

4(h/2) yields the smallest CBS constant). Note

that for these experiments, we employ the original definition of Q associated with the

set JQ in (5.60), for which one additional parameter is activated. Consequently, when

the sequence {‖am‖∞}∞m=1 associated with expansions a(x,y) of the form (5.5) decays

quickly enough, only a small number of additional active parameters are needed in the

definition of Q to ensure that the effectivity indices θapprox
eff are close to one. When the
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Table 5.5: Effectivity indices θapprox
eff for TP2 in Example 5.10. We fix H1 = Q2(h), JP

and JQ as in (5.59) and (5.60) with M = 5 and make four choices of H2 for varying h
(with k fixed) and varying k (with h fixed).

h ‖uref − uX‖B Q4(h) Q2(h/2) Qr4(h) Qr2(h/2)
2−1 2.7738× 10−2 0.94 0.92 0.66 0.76
2−2 8.3254× 10−3 1.08 1.13 0.77 0.90
2−3 2.4871× 10−3 1.10 1.17 0.82 0.95
2−4 1.4017× 10−3 0.82 0.85 0.73 0.77
2−5 1.2813× 10−3 0.71 0.71 0.70 0.70
k ‖uref − uX‖B Q4(h) Q2(h/2) Qr4(h) Qr2(h/2)
2 3.1896× 10−3 1.03 1.08 0.86 0.93
3 2.5511× 10−3 1.10 1.16 0.83 0.95
4 2.4871× 10−3 1.10 1.17 0.82 0.95
5 2.4805× 10−3 1.10 1.18 0.82 0.95
6 2.4798× 10−3 1.10 1.18 0.82 0.95

sequence decays too slowly, as for TP1 in Examples 5.7–5.8, extra care must be taken

when designing Q. Since publishing these results in [37], the choice H2 = Qr
2(h/2), as

well as JQ in (5.61), has been incorporated into the software package S-IFISS [19].

5.4.2 Adaptive Single–level SGFEMs

In this section, we provide details of how the error estimator eY ∈ Y satisfying (5.42)

may be exploited to drive the adaptive enrichment of X = H1⊗P in (5.22) associated

with (5.21). Adaptive methods for PDE problems with inputs of the form (5.5) are

essential. Suppose that we truncate a(x,y) after M terms and consider the parametric

problem (5.6)–(5.7) on the finite dimensional domain D× Γ̄ where Γ̄ = Γ1× · · ·×ΓM .

Assume that D is convex, f(x) ∈ L2(D) and a(x,y) ∈ L∞(Γ̄,W 1,∞(D)). When H1

is the Q1 or P1 finite element space associated with a regular mesh Th of rectangular

or triangular elements with maximum element edge length h and JP = JT (M,k) in

the definition of P in (5.29), it is shown in Proposition 5.1 of [7] that the energy error

‖u− uX‖B (for the truncated problem) satisfies

‖u− uX‖B ≤ c1h+ c2

M∑
m=1

rk+1
m , (5.62)

where we assume that rm := ‖am/a‖∞ < 1. Here, c1, c2 > 0 depend on a, f and D but

are independent of h and k. Note that rk+1
m = e−cm(k+1) for m = 1, 2, . . . ,M , where

cm = − log(rm) > 0, and thus

‖u− uX‖B = O(h) +O(Me−minm{cm}(k+1)).
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Clearly, the rate of convergence of ‖u−uX‖B deteriorates as we increaseM . In other

words, standard SGFEMs of the type described in this chapter suffer from the curse of

dimensionality and are highly inefficient when employed for the infinite–dimensional

problem (5.6)–(5.7), where M is not fixed a priori or is particularly large. In order for

SGFEMs to be a practical tool for tackling high–dimensional parametric PDE prob-

lems, the convergence rates must be independent of the number of input parameters.

Several works establish the existence of sequences {X} (not necessarily of the form

(5.22)) such that the energy error for the infinite problem (5.12) decays to zero at an al-

gebraic rate s independent of the number of active parameters as NX = dim(X)→∞;

see the works [23, 35, 36, 57] for early seminal results as well as [33, 12, 11].

Notice that X = H1 ⊗ P in (5.22) decomposes as

X =
⊕
µ∈JP

H1 ⊗ P µ, P µ = span
{
ψµ(y)

}
. (5.63)

This approach can be considered as assigning the same FEM space H1 to each µ ∈ JP ,

and thus we refer to the tensor–product structure in (5.22) as the single–level structure.

The design of adaptive single–level SGFEM algorithms is the main focus of the works

[22, 21]. Both articles present algorithms which successfully construct sequences of

spaces {X} such that the error decays at a rate independent of the number of input

parameters. In the next section, we test the performance of an algorithm from [22].

A Simple Adaptive Algorithm

The estimated error reductions ‖eY1‖B0 and ‖eȲ2
‖B0 in Theorem 5.2 may be exploited

to design simple adaptive SGFEM algorithms. Suppose that uX ∈ X satisfying (5.21)

with X of the form (5.22) is computed, where H1 = Q1(h) is constructed with respect

to a uniform mesh of square elements Th with element width h, and P is defined in

(5.29) for some subset JP ⊂ J . Suppose as well that the spatial estimator eY1 ∈ Y1

and the parametric estimators eνY2
∈ Y ν

2 satisfying (5.44) and (5.47), respectively, are

computed for some space H2 and subset JQ satisfying H1∩H2 = {0} and JP ∩JQ = ∅.

Recall that ‖eY1‖B0 and ‖eȲ2
‖B0 provide accurate estimates of the error reduction that

would be achieved by performing the enrichments X → W1,W2, where W1 and W2 are

given in (5.53), and computing enhanced approximations satisfying (5.51) or (5.52),

respectively. For suitable choices of J̄Q ⊆ JQ, the enrichment strategy associated with
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max{‖eY1‖B0 , ‖eȲ2
‖B0} can lead to cost–effective reductions of ‖u− uX‖B.

Following [22], we choose

J̄Q =
{
ν ∈ JQ; ‖eνY2

‖B0 ≥ ‖eY1‖B0

}
.

If ‖eY1‖B0 > ‖eȲ2
‖B0 , the polynomial space P goes unchanged and a uniform refinement

on the spatial domain is performed, i.e., h → h
2

so that H1 → Q1(h
2
). Otherwise,

additional polynomials on Γ are added to P by setting JP → JP ∪ J̄Q in the definition

(5.29). As in Section 3.3.2, the iterative process

SOLVE → ESTIMATE → MARK → REFINE, (5.64)

is repeated until ‖eY ‖B0 < tol, where tol denotes a user–defined error tolerance. In

this loop, the module MARK determines the set of multi-indices J̄Q and REFINE executes

the chosen refinement strategy (spatial or parametric).

It was proven in [22] that, due to recurrence relation (5.32), ‖eνY2
‖B0 = 0 for con-

siderably many multi–indices ν ∈ J\JP . To avoid unnecessary work when computing

‖eY ‖B0 , it is essential that we identify the set of multi–indices J∗ ⊂ J that result in

nonzero contributions ‖eνY2
‖B0 to the total error. Indeed, this set is given by

J∗ =
{
µ ∈ J\JP ; µ = ν + εm for all ν ∈ JP , for all m ∈ N

}
, (5.65)

where εm is the Kronecker delta sequence given by

εm := (εm1 , ε
m
2 , . . . ), εmj = δmj, for all j ∈ N.

We call J∗ the set of neighbouring multi–indices and choose a subset JQ ⊂ J∗ with

which to define the error problem (5.45). Specifically, we choose

JQ =
{
ν ∈ J∗; max{supp(ν)} ≤M + ∆M

}
, (5.66)

where ∆M ∈ N is the number of additional parameters we wish to activate. In other

words, JQ is the set of all multi–indices ν ∈ J which are nonzero in at most the first

M + ∆M positions such that ‖eνY2
‖B0 6= 0.

We now test the performance of the above algorithm by applying it to test problems

TP1 and TP2 detailed in Section 5.1.1.
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Figure 5.5: The convergence of η = ‖eY ‖B0 for Example 5.11 as well as the number of
active parameters M and multi–indices card(JP ) in the definition of X at each step of
the adaptive algorithm. We set the tolerance tol = 3× 10−3.

Example 5.11: Adaptive single–level SGFEM.

For test problems TP1 and TP2, we start by constructing low–dimensional spaces

X = H1 ⊗ P using uniform 16 × 16 meshes Th and JP = {(0, 0, . . . ), (1, 0, . . . )}

to compute initial approximations uX ∈ X satisfying (5.21). To compute the

error estimate ‖eY ‖B0 in (5.48), we construct H2 using the usual (global) Q2 basis

functions, defined with respect to the element edge–midpoints and centroids of Th
(recall Example 3.3 for a similar setup), and choose JQ as in (5.66) with ∆M = 5.

For both problems, we adaptively construct a sequence of approximation spaces
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{X} by repeating (5.64) until ‖eY ‖B < tol := 3 × 10−3. In Figures 5.5a and

5.5b we plot the convergence of η = ‖eY ‖B0 . In Figures 5.5c and 5.5d we plot the

number of active parameters M and multi–indices card(JP ) in the definition of X

at each step of the algorithm.

Figures 5.5a and 5.5b confirm that sequences of SGFEM spaces {X} with a single–

level structure can be constructed such that the energy error decays to zero at a rate

independent of the number of active parameters, or, equivalently, the number of terms,

in the expansion (5.5). Indeed, η = ‖eY ‖B0 decays at the rate of approximately −1
5

and

−1
3

with respect to the number of DOFs NX for TP1 and TP2, respectively. Notice

that many more active parameters are required in the definition of X for TP1 than

TP2 to ensure that η = ‖eY ‖B0 meets a prescribed tolerance. At the final step of the

algorithm, twenty parameters are active for TP1 whereas only five are active for TP2.

Again, we expect these results to relate directly to the rate of decay of the sequence

{‖am‖∞}∞m=1 associated with a(x,y) in (5.5). Since the sequence for TP1 decays more

slowly than the sequence for TP2, a larger number of terms am(x) are elected to play

a role in the SGFEM approximation uX ∈ X. The observed rates of convergence of

−1
5

and −1
3

in Figure 5.5 are problematic in that large increases in NX result in only

small decreases in ‖u−uX‖B. For small error tolerances tol, the single–level SGFEM

algorithm presented in this section is very slow to converge.

5.5 Summary

In this chapter, we introduced the parametric diffusion problem (5.6)–(5.7), where the

coefficient a(x) in (3.22)–(3.23) was replaced with a coefficient a(x,y) ∈ L2
π(Γ, L2(D))

(a parameterised second–order random field) of the form (5.5). We employed standard

SGFEMs in Section 5.2 to solve the associated weak formulation (5.12), where approx-

imations were sought in tensor–product spaces of the form X = H1⊗P in (5.22) with

H1 ⊂ H1
0 (D) representing a FEM space of piecewise polynomials on D and P ⊂ L2

π(Γ)

representing a set of global polynomials on Γ. When P is the space of q–hyperbolic

polynomials of degree k in the first M parameters ym, we showed in Example 5.6 that

significant computational savings can be made when solving test problems TP1 and

TP2 in Section 5.1.1 by carefully selecting the parameter q ∈ (0, 1]. Indeed, the errors
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associated with q = 0.4 in Figure 5.3 for TP1, for example, are comparable to the er-

rors associated with q = 1, despite the massive reduction in the corresponding number

of DOFs. Crucially, for TP1 and TP2, large numbers of multi–indices µ ∈ J in (5.27)

are of little importance with respect to the energy error and must be overlooked when

choosing the subset JP ⊂ J in the definition of P in (5.29).

In Section 5.4, we derived the error estimate ‖eY ‖B0 ≈ ‖u − uX‖B from [22] in

Theorem 5.1, where uX ∈ X is a computed SGFEM approximation satisfying (5.21).

The accuracy of η = ‖eY ‖B0 depends on the subspaces H2 ⊂ H1
0 (D) and Q ⊂ L2

π(Γ).

In Section 5.4.1, we investigated which choices of H2 and Q lead to estimates η with

effectivity indices close to one. We showed in Examples 5.8 and 5.9 that if the sequence

{‖am‖∞}∞m=1 associated with a(x,y) in (5.5) decays too slowly, a large number of active

parameters ym are needed in the definition of Q. Building on those results, in Example

5.11 we tested a simple adaptive algorithm that exploits the estimate η = ‖eY ‖B0 to

automatically select the most important multi–indices µ ∈ J for JP and enrich the

space H1. The sets JP were successfully tailored to the problem at hand – recall Figures

5.5c and 5.5d for some quantitative differences between the sets for test problems TP1

and TP2 – and convergence rates independent of the number of active parameters M

were reported. In Chapter 6, we improve upon the rates of convergence in Figures

5.5a and 5.5b by designing adaptive SGFEMs where X has a more complex multilevel

structure.



Chapter 6

Adaptive & Multilevel SGFEMs

In Chapter 5 we discussed so–called single–level SGFEMs for the parametric diffusion

problem (5.6)–(5.7). We solved the finite–dimensional weak problem (5.21) for B(·, ·)

and F (·) defined in (5.13) and (5.14), with approximation spaces X of the form (5.22).

It was shown in Example 5.11 that sequences {X} of single–level SGFEM spaces can

be constructed adaptively such that ‖u− uX‖B → 0 at an algebraic rate independent

of the number of input parameters ym, thus breaking the curse of dimensionality

associated with standard SGFEMs and the a priori error bound (5.62).

The best known theoretical rates of convergence are realised when X has a multi-

level structure. That is, when

X =
⊕
µ∈JP

Hµ
1 ⊗ P µ, P µ = span

{
ψµ(y)

}
, JP ⊂ J, (6.1)

where Hµ
1 ⊂ H1

0 (D) is a potentially different FEM space for each multi–index µ ∈ JP .

It is shown in [36] that under Assumptions 3.3 and 5.2, if the sequences

{
‖am‖∞

}∞
m=1

,
{
‖∇am‖∞

}∞
m=1
∈ `p(N), (6.2)

for some 0 < p < 1 small enough, there exists a sequence of spaces {X} of the form

(6.1) for which the energy error ‖u− uX‖B decays to zero at the rate afforded to the

chosen FEM applied to the analogous parameter–free problem. Whilst the sequence

{X} is generally unknown explicitly, it is demonstrated in [36] that the multi–indices

JP associated with each space X in the sequence correspond to the card(JP ) largest

119
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values of ‖uµ‖H1
0 (D) associated with the decomposition

u(x,y) =
∑
µ∈J

uµ(x)ψµ(y), uµ ∈ H1
0 (D), (6.3)

of u ∈ V = L2
π(Γ, H1

0 (D)) satisfying (5.12).

Adaptive multilevel SGFEMs have been considered previously in [44] and [56],

where the authors employ an explicit residual–based a posteriori error estimation

strategy to steer the adaptive construction of X. In this work, we extend the im-

plicit a posteriori error estimation strategy developed in [18, 22] (and analysed in

Chapter 5) to the multilevel setting and then use this to design new SGFEMs. Our

aim is to construct sequences of multilevel spaces {X} for which the energy norm of

the approximation error decays at the best possible rate. In general, to understand

the optimum rate of convergence for a particular test problem beforehand, we need to

know the value of p in (6.2) associated with a(x,y) in (5.5). However, if our methods

realise the rate afforded to the chosen FEM for the analogous parameter-free problem,

the value of p in (6.2) is small enough and the optimum rate has been achieved.

6.1 Multilevel Approximation Spaces

To construct multilevel spaces of the form (6.1), we must first choose a subset JP ⊂ J

of multi–indices and then choose an appropriate set of FEM spaces

H1 :=
{
Hµ

1

}
µ∈JP

, Hµ
1 ⊂ H1

0 (D). (6.4)

Let

Hµ
1 = span

{
φµi (x); i = 1, 2, . . . , Nµ

1

}
, µ ∈ JP ,

then, any function v(x,y) can be expanded in its basis as

v(x,y) =
∑
ν∈JP

Nν
1∑

j=1

vνj φ
ν
j (x)ψν(y)

with vνj ∈ R. Note that the order of these finite sums is not interchangeable.

We now describe the construction of the set of FEM spaces H1. In this work, we

insist that each space Hµ
1 ∈ H1 is constructed using continuous, piecewise polynomials

of the same degree. Whilst this is not necessary, it enables us to characterise each
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Hµ
1 with only a single discretisation parameter (a level number) associated with the

underlying finite element meshes.

We construct each space in the set H1 with respect to a finite element mesh over D.

We assume that we can construct or have access to (from software packages, perhaps)

a nested sequence of regular (no hanging nodes) rectangular or triangular meshes

T = {Ti; i = 0, 1, . . . }, (6.5)

such that Tj can be obtained from one or more refinements of Ti for j > i. For a fixed

polynomial degree, the sequence T then gives rise to a sequence of conforming finite

element spaces

H(0) ⊂ H(1) ⊂ · · · ⊂ H1
0 (D),

whereH(i) depends on Ti. We call i the mesh level number and construct eachHµ
1 ∈ H1

with respect to one of the meshes in T . That is, to each µ ∈ JP we assign a mesh level

number `µ = i for some i ∈ N0 and set Hµ
1 = H(i). If `µ = `ν for two multi–indices

µ, ν ∈ JP , then Hµ
1 = Hν

1 . We collect the chosen levels in the set

` :=
{
`µ; µ ∈ JP

}
and thus, card(`) = card(JP ). Given a fixed polynomial degree and the sequence (6.5),

each Hµ
1 ∈ H1 is simply determined by its mesh level number `µ and the multilevel

space X in (6.1) is completely characterised by our choices of JP and `.

Once JP and ` have been chosen, we solve the finite–dimensional weak problem:

find: uX ∈ X : B(uX , v) = F (v), for all v ∈ X, (6.6)

where B(·, ·) and F (·) are defined in (5.13) and (5.14), respectively. Expanding the

SGFEM approximation as

uX(x,y) =
∑
µ∈JP

uµX(x)ψµ(y), uµX(x) =

Nµ
1∑

i=1

uµi φ
µ
i (x), uµi ∈ R, (6.7)

and choosing the linearly independent test functions v = φνj (x)ψν(y) in (6.6) yields

∑
µ∈JP

Nµ
1∑

i=1

uµi B(φµi (x)ψµ(y), φνj (x)ψν(y)) = F (φνj (x)ψν(y)), (6.8)
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for all ν ∈ JP and j = 1, 2, . . . , N ν
1 . This is a linear system of equations Au = b where

A ∈ RNX×NX and u,b ∈ RNX with

NX = dim(X) =
∑
µ∈JP

dim(Hµ
1 ) =

∑
µ∈JP

Nµ
1 .

In the next section, we derive the precise structure and entries of A. We also explain

how the action of A on vectors can be efficiently computed within an iterative solver.

6.2 Multilevel SGFEM Matrices

The matrix A associated with the system of equations (6.8) is symmetric and positive

definite with a block structure. Indeed, the blocks of A, as well as the blocks of u and

b, are indexed by the elements (multi–indices) of JP . Namely

[A]νµ = Aνµ ∈ RNν
1×N

µ
1 , [b]ν = bν ∈ RNν

1 , [u]µ = uµ ∈ RNµ
1 ,

for µ, ν ∈ JP , with entries

[Aνµ]ji = B(φµi (x)ψµ(y), φνj (x)ψν(y)),

[bν ]j = F (φνj (x)ψν(y)),

[uµ]i = uµi ,

for i = 1, 2, . . . , Nµ
1 and j = 1, 2, . . . , N ν

1 . The positions of the blocks Aνµ and bν in A

and b coincide with that of Arj and br in (5.23) for the single–level method, however,

the dimensions of Aνµ and bν are not necessarily uniform and Aνµ may not be square.

Taking the decomposition of a(x,y) in (5.5) into account yields

[Aνµ]ji =

∫
Γ

ψµ(y)ψν(y)

∫
D

a(x,y)∇φµi (x) · ∇φνj (x) dx dπ(y)

=
M∑
m=0

[Gm]νµ

∫
D

am(x)∇φµi (x) · ∇φνj (x) dx,

where the matrices Gm are defined in (5.25) and M is number of active parameters

ym incorporated into JP . Consequently, the blocks Aνµ of A admit the decomposition

Aνµ =
M∑
m=0

[Gm]νµK
m
νµ, [Km

νµ]ji :=

∫
D

am(x)∇φµi (x) · ∇φνj (x) dx, (6.9)
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for i = 1, 2, . . . , Nµ
1 and j = 1, 2, . . . , N ν

1 . The entries of the matrices Km
νµ depend on

finite element basis functions φµi (x) and φνj (x) associated with a pair of meshes T`µ and

T`ν , which may be different. Consequently, Km
νµ ∈ RNν

1×N
µ
1 is nonsquare if `µ 6= `ν so

that Nµ
1 6= N ν

1 . As a result, A does not admit the Kronecker–product decomposition

(5.31) afforded to its single–level counterpart, and efficient matrix–vector products are

no longer computable through standard formulae.

6.2.1 Efficient Matrix–Vector Products

Once we have solved the linear system Au = b, the vector u provides the coefficients

uµi that define uX(x,y) in (6.7). It should be noted, however, that we do not explicitly

construct A. We need only compute the action of A on vectors when using iterative

solvers to approximate u. We exploit the structure of A by computing the matrix–

vector product v = Ax blockwise via

[v]ν = [Ax]ν =
∑
µ∈JP

Aνµ[x]µ =
∑
µ∈JP

M∑
m=0

[Gm]νµK
m
νµ[x]µ, (6.10)

for ν ∈ JP .

The stiffness matrices Km
νµ in (6.10) depend on the triplet (m, ν, µ) for ν, µ ∈ JP and

m = 0, 1, . . . ,M . This suggests that (M + 1)s2 matrices need to be computed where

s = card(JP ). For large values of M or s, this is prohibitively expensive. Recall, the

single–level method only required the computation of (M + 1) stiffness matrices. For

multilevel SGFEMs to be cost–effective, we must be especially careful not to perform

any unnecessary computations. It is clear from (6.10) that we do not need to compute

Km
νµ when [Gm]νµ = 0. It was shown in Chapter 5 that G0 = I and the matrices Gm

have at most two non–zero entries per row. Hence, a sharper upper bound for the

number of required stiffness matrices is (1 + 2M)s.

Whilst this bound takes the sparsity of each Gm into account, it does not exploit

the fact that the polynomial degree of the FEM spaces Hµ
1 is fixed and the same mesh

T`µ may be assigned to several multi–indices µ ∈ JP . In fact, we need only compute

Km
νµ for all distinct triplets (m, `ν , `µ) for which [Gm]νµ is nonzero. Let `∗ denote the

set of distinct elements of ` with cardinality t := card(`∗) ≤ s. Then, an improved
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Table 6.1: Theoretical upper bound t + M min{s, T} for the number of required ma-
trices Km

νµ for test problems TP1–TP4, and the actual number when the set JP and
the mesh level numbers ` are selected automatically using Algorithm 1 in Section 6.4.

test problem s t M t+M min{s, T} actual
TP1 169 4 93 934 313
TP2 36 5 13 200 53
TP3 17 5 3 50 22
TP4 21 3 8 51 31

upper bound is

t+M min
{
s, T

}
, T := t

2
(t− 1),

where T is the number of distinct pairings of elements in `∗. Here, note that there are

exactly t distinct triples (0, `µ, `µ) associated with the matrixG0 and T possible distinct

triples (m, `ν , `µ) associated with Gm for m = 1, 2, . . . ,M . An adaptive algorithm for

automatically selecting JP as well as the associated set of mesh level numbers ` is

developed in Section 6.4. In Table 6.1 we record s, t, M and the number of matrices

Km
νµ that are required at the final step of that algorithm (when the error tolerance

is set to ε = 2 × 10−3), for the four test problems outlined in Section 5.1.1. This

algorithm will be described in detail later. For now, we simply note that, since the

same mesh level number is assigned to many multi–indices in JP , the total number of

stiffness matrices required is much lower than the above bounds suggest.

6.2.2 Efficient Assembly of Stiffness Matrices

When the basis functions φµi and φνj associated with the stiffness matrix Km
νµ in (6.9)

are defined with respect to two meshes T`µ and T`ν that have different mesh level

numbers (`µ 6= `ν), Km
νµ cannot be constructed using conventional element assembly

methods. Computing these non–square matrices is a tough computational challenge

and requires new software to be written. In [44], to avoid this, the non–square matrices

are approximated using a projection technique involving only the square matrices

Km
µµ that feature in the diagonal blocks Aµµ of A. Even with this approximation

step, the multilevel method considered in [44] is reported to be too computationally

expensive. Furthermore, the authors report that the approximation technique does not

maintain the natural symmetry of A, and thus iterative solvers such as the conjugate
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(a) T`µ . (b) T`ν . (c) elements embedded in
�coarse.

Figure 6.1: Example meshes with (a) Nµ
1 = 9 and level number `µ and (b) N ν

1 = 25
and level number `ν = `µ + 1.

gradient method are technically no longer applicable. In this section we describe how

the matrices Km
νµ can be computed quickly and efficiently, without the need for the

approximation step used in [44].

We describe the construction of Km
νµ for two multi–indices µ, ν ∈ JP , with `µ 6= `ν

(m is not important here) for a simple example. To convey the key ideas we consider

only uniform meshes of square elements on a square domainD. However, the procedure

is applicable to any FEM spaces Hµ
1 and Hν

1 for which the associated meshes T`µ and

T`ν are nested, that is, when T`ν is obtained from conforming refinements of T`µ .

Example 6.1: Matrix assembly.

For simplicity, assume that D ⊂ R2 is square and that the spaces Hµ
1 and Hµ

2 are

Q1 FEM spaces defined with respect to two uniform meshes of square elements

T`µ and T`ν , respectively, that are only one refinement apart. In particular, let T`µ

denote a 2× 2 grid (see Figure 6.1a) with mesh level number `µ and let T`ν denote

a 4 × 4 grid (see Figure 6.1b) with mesh level number `ν := `µ + 1 (representing

a uniform refinement of T`µ). As is standard practice in FEM software, we retain

the boundary nodes when initially constructing Km
νµ ∈ RNν

1×N
µ
1 so that

Nµ
1 = dim(Hµ

1 ) := 9, Nν
2 = dim(Hν

1 ) := 25.

To construct the matrix Km
νµ ∈ R25×9 defined in (6.9) we concatenate four

9 × 4 coarse–element matrices – one for each element in the coarse mesh T`µ . In

Figure 6.1c we highlight one such element, which we denote �coarse, as well as
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Figure 6.2: The four embedded elements in Figure 6.1c on which we construct four
4× 4 local matrices.

the four elements in the finer grid that are embedded within it. The associated

coarse–element matrix Km
νµ,coarse ∈ R9×4 has entries

[Km
νµ,coarse]ji =

∫
�coarse

am∇φµ,coarse
i · ∇φν,coarse

j dx

for i = 1, 2, 3, 4 and j = 1, 2, . . . , 9, where the sets of Q1 basis functions

{
φµ,coarse
i ; i = 1, 2, 3, 4

}
,

{
φν,coarse
j ; j = 1, 2, . . . , 9

}
,

are defined with respect to the round and cross markers in Figure 6.1c, respectively.

Note that the functions φµ,coarse
i are global functions with respect to �coarse in that

they are supported on (only) the whole element. In contrast, the functions φν,coarse
j

are supported only on patches of �coarse and are piecewise functions. As a result,

we construct the coarse–element matrix Km
νµ,coarse ∈ R9×4 by concatenating four

4× 4 fine–element matrices – one for each fine element in �coarse.

In Figure 6.2 we highlight the four fine elements that are embedded in �coarse.

The associated fine–element matrices Km
νµ,fine ∈ R4×4 have entries

[Km
νµ,fine]ji =

∫
�fine

am∇φµ,coarse
i · ∇φν,fine

j dx, (6.11)

where �fine is one of the four elements embedded in �coarse and the basis functions

{
φν,fine
j ; j = 1, 2, 3, 4

}
,

are defined with respect to the crosses in Figure 6.2, that are supported only on

�fine (the shaded regions).

For Q1 approximation, the construction of the matrices Km
νµ always reduces to the

concatenation of 4 × 4 fine–element matrices Km
νµ,fine, even if the two grids are more
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(a) �fine ∈ T`ν embedded
in �coarse.

(b) �coarse ∈ T`µ . (c) �ref = [−1, 1]2.

Figure 6.3: Example 2×2 Gauss quadrature points (c) on a reference element mapped
to (a) a fine element in T`ν and (b) a coarse element in T`µ .

than one refinement level apart. Similarly, for P1 approximation the construction of

Km
νµ reduces to the concatenation of 3 × 3 fine–element matrices. If `µ = `ν so that

Km
νµ is square we use conventional element assembly methods. In either case, we need

only perform quadrature on elements in the fine mesh.

Efficient Numerical Quadrature

The way we employ quadrature to evaluate the integrals in (6.11) plays a key role in

designing computationally efficient multilevel methods. Here, we explain how quadra-

ture can be vectorised over the coarse elements �coarse ∈ Tµ when the meshes Tµ
and Tν are uniform. If appropriate, software implementations of Q1 or Q2 finite ele-

ment methods map the reference element �ref = [−1, 1]2 in Figure 6.3c to elements in

physical space; �fine or �coarse in Figures 6.3a and 6.3b for example. This mapping

is extremely convenient and uses the Q1 element basis functions associated with the

square markers in Figure 6.3c. Through the mapping from �ref to �fine, the evaluation

of basis functions on �fine at quadrature points in physical space can, for example, be

written in terms of evaluating basis functions on �ref at reference quadrature points.

The same goes for the mapping from �ref to �coarse, thus we never explicitly define

basis functions on �fine or �coarse. We illustrate by the grey crosses in Figure 6.3c the

2 × 2 Gauss quadrature rule on �ref, as well as their mapped positions in �fine and

�coarse in Figures 6.3a and 6.3b, respectively.

Suppose now that we seek to compute the entries of the matrix Km
νµ,fine in (6.11)

associated with the shaded element in the left–most diagram in Figure 6.2. By def-

inition, the mapping from �ref to �fine ensures that the quadrature points at which
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(a) �ref = [−1, 1]2. (b) �coarse ∈ T`µ .

Figure 6.4: (a) The 2 × 2 Gauss quadrature points on �ref shifted to the lower–left
quadrant as well as (b) the corresponding mapped points in �coarse.

∇φν,fine
j in (6.11) is implicitly evaluated lie in �fine. We also want to evaluate ∇φµ,coarse

i

at the same quadrature points. To achieve this using a map from �ref to �coarse, we

must initially shift the reference quadrature points to the lower–left quadrant of �ref.

Then, the quadrature points at which ∇φµ,coarse
i is implicitly evaluated lie in �fine and

coincide with those for ∇φν,fine
j . This is visualised in Figure 6.4. Note that all the fine–

element matrices associated with, for example, the lower–left quadrants of the coarse

elements, can be computed simultaneously, since these all require the same mapping

of the quadrature points on �ref to its lower–left quadrant.

6.3 A Posteriori Error Estimation

Given a multilevel space X of the form (6.1) and an SGFEM approximation uX ∈ X

satisfying (6.6), we want to estimate ||u−uX ||B a posteriori. Again, we use the implicit

strategy outlined in Chapter 3 as a foundation for a new multilevel SGFEM strategy.

Our starting point is the abstract problem (3.17), which we recall for our parametric

problem:

find eY ∈ Y : B0(eY , v) = F (v)−B(uX , v), for all v ∈ Y, (6.12)

where, Y ⊂ V = L2
π(Γ, H1

0 (D)) satisfies X ∩ Y = {0}, B(·, ·) and F (·) are defined

in (5.13) and (5.14), and B0(·, ·) is the parameter–free bilinear form defined in (5.17).

If Assumption 3.1 holds for the space W := X ⊕ Y , as well as Assumptions 5.2 and

5.3, then the estimate η = ‖eY ‖B0 satisfies the bound (3.20) for the constants λ and Λ

defined in (5.20). In addition, β is the constant in (3.11) associated with our choices

of X and W , and γ is the constant in (3.18) associated with our choices of X and Y .
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Our goal in this Chapter is to design an efficient adaptive multilevel SGFEM algo-

rithm, in which the energy error ‖u − uX‖B is estimated a posteriori at each step by

solving (6.12). Suppose that the sets H1 and JP which define X in (6.1) are chosen,

then, one possibility (as remarked in [22]) is to choose a subset JQ ⊂ J in the definition

of Q in (5.40) such that JP ∩ JQ = ∅, as well as another set of FEM spaces

H2 :=
{
Hµ

2

}
µ∈JP

, Hµ
2 ⊂ H1

0 (D), Hµ
1 ∩H

µ
2 = {0}, (6.13)

and construct

Y =

(⊕
µ∈JP

Hµ
2 ⊗ P µ

)
⊕ (H ⊗Q), (6.14)

where H ⊂ H1
0 (D) is some other FEM space to be chosen; we discuss this later. This

multilevel structure is simply a more general version of the structure of Y defined in

(5.37), in that we have more flexibility in the way we combine new functions on D

with existing polynomials on Γ and vice versa. The quality of the estimate η = ‖eY ‖B0

depends on our choices ofHµ
2 and JQ, since these affect the constants γ and β appearing

in (3.20).

Decomposition of the Error

The space Y in (6.14) admits the decomposition Y = Y1⊕ Y2 such that Y1 ∩ Y2 = {0}

for the spaces

Y1 :=
⊕
µ∈JP

Hµ
2 ⊗ P µ, Y2 := H ⊗Q,

and thus eY = eY1 + eY2 for some eY1 ∈ Y1 and eY2 ∈ Y2. By the mutual orthogonality

of P given in (5.29) and Q with respect to the inner–product 〈·, ·〉L2
π(Γ), problem (6.12)

again decouples into two lower–dimensional problems:

find eYi ∈ Yi : B0(eYi , v) = F (v)−B(uX , v), for all v ∈ Yi, (6.15)

for i = 1, 2, of dimension dim(Y1) =
∑

µ∈JP dim(Hµ
2 ) and dim(Y2) = dim(H)dim(Q),

respectively. Note that the only difference between these problems and those in (5.44)–

(5.45) is the construction of the spaces Y1 and Y2.

Clearly, the spaces Y1 and Y2 decompose as

Y1 =
⊕
µ∈JP

Y µ
1 , Y µ

1 := Hµ
2 ⊗ P µ, Y2 =

⊕
ν∈JQ

Y ν
2 , Y ν

2 := H ⊗Qν , (6.16)
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where Qν is defined in (5.46). It follows that

Y µ
1 ∩ Y

µ̄
1 = {0}, for µ 6= µ̄, Y ν

2 ∩ Y ν̄
2 = {0}, for ν 6= ν̄,

and thus eY1 ∈ Y1 and eY2 ∈ Y2 can be further decomposed as

eY1 =
∑
µ∈JP

eµY1
, eµY1

∈ Y µ
1 , eY2 =

∑
ν∈JQ

eνY2
, eνY2

∈ Y ν
2 .

Like the decoupled problems in (5.47) for the single–level method, another orthogonal-

ity argument shows that the first problem in (6.15) decouples into card(JP ) problems

of dimension Nµ
Y1

:= dim(Y µ
1 ) = dim(Hµ

2 ), and the second into card(JQ) problems of

dimension N ν
Y2

:= dim(Y ν
2 ) = dim(H), namely

find eµY1
∈ Y µ

1 : B0(eµY1
, v) = F (v)−B(uX , v), for all v ∈ Y µ

1 , (6.17)

find eνY2
∈ Y ν

2 : B0(eνY2
, v) = F (v)−B(uX , v), for all v ∈ Y ν

2 , (6.18)

for µ ∈ JP and ν ∈ JQ.

The total estimate ‖eY ‖B0 then admits the familiar decomposition

η = ‖eY ‖B0 =

[
‖eY1‖2

B0
+ ‖eY2‖2

B0

] 1
2

=

[ ∑
µ∈JP

‖eµY1
‖2
B0

+
∑
ν∈JQ

‖eνY2
‖2
B0

] 1
2

. (6.19)

As before, we refer to ‖eY1‖B0 as the spatial estimate and to ‖eY2‖B0 as the parametric

estimate. Roughly speaking, each ‖eµY1
‖B0 estimates the energy lost through the ap-

proximation ‖uµX‖H1
0 (D) ≈ ‖uµ‖H1

0 (D) for µ ∈ JP , whereas each ‖eνY2
‖B0 estimates the

energy of the mode associated with ν ∈ JQ that is neglected in the definition of the

SGFEM approximation uX ∈ X.

The CBS constant

We now identify a constant γ = γ∗ for which (3.18) holds for the bilinear form B0(·, ·)

defined in (5.17) for the multilevel spaces X and Y in (6.1) and (6.14). Under As-

sumption 5.3, the space H1
0 (D) is a Hilbert space with respect to the inner–product

(4.7) with a0(x) in place of a(x). The spaces Hµ
1 , H

µ
2 ⊂ H1

0 (D) satisfy Hµ
1 ∩H

µ
2 = {0}.

Thus, by Theorem 2.2 there exists a constant γµ ∈ [0, 1) such that

|〈u, v〉a0| ≤ γµ〈u, u〉
1
2
a0〈v, v〉

1
2
a0 , for all u ∈ Hµ

1 , for all v ∈ Hµ
2 , (6.20)
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for each µ ∈ JP .

Expand two arbitrary functions u ∈ X and v ∈ Y by

u =
∑
µ∈JP

uµψµ(y), uµ ∈ Hµ
1 ,

v =
∑
µ̄∈JP

vµ̄1ψµ̄(y) +
∑
ν∈JQ

vν2ψν(y), vµ̄1 ∈ H
µ̄
2 , v

ν
2 ∈ H,

i.e., v = v1 + v2 for some functions v1 ∈ Y1 and v2 ∈ Y2. From the definition of B(·, ·)

in (5.17)

B0(u, v) =
∑
µ∈JP

∑
µ̄∈JP

∫
Γ

ψµ(y)ψµ̄(y) dπ(y)

∫
D

a0∇uµ · ∇vµ̄1 dx

+
∑
µ∈JP

∑
ν∈JQ

∫
Γ

ψµ(y)ψν(y) dπ(y)

∫
D

a0∇uµ · ∇vν2 dx.

Due to the orthogonality of the polynomials {ψµ(y)}µ∈JP∩JQ with respect to the inner–

product 〈·, ·〉L2
π(Γ), the first double–sum has nonzero contributions only when µ = µ̄,

and since JP ∩ JQ = ∅, the second double–sum is equal to zero, that is

|B0(u, v)| =
∣∣∣∣ ∑
µ∈JP

∫
D

a0∇uµ · ∇vµ1 dx
∣∣∣∣ =

∣∣∣∣ ∑
µ∈JP

〈uµ, vµ1 〉a0

∣∣∣∣.
Applying (6.20) as well as the Cauchy–Schwarz inequality for sums yields

|B0(u, v)| ≤ γ∗
∑
µ∈JP

〈uµ, uµ〉
1
2
a0〈vµ1 , v

µ
1 〉

1
2
a0

≤ γ∗

[ ∑
µ∈JP

〈uµ, uµ〉a0

] 1
2
[ ∑
µ∈JP

〈vµ1 , v
µ
1 〉a0

] 1
2

for all u ∈ X and v ∈ Y , where

γ∗ := max
µ∈JP
{γµmin}, (6.21)

and γµmin denotes the CBS constant associated with the bound (6.20). Note that

‖u‖2
B0

=
∑
µ∈JP

〈uµ, uµ〉a0 , ‖v1‖2
B0

=
∑
µ∈JP

〈vµ1 , v
µ
1 〉a0 ,

and ‖v1‖B0 ≤ ‖v‖B0 (recall Section 5.4). Thus

|B0(u, v)| ≤ γ∗‖u‖B0‖v‖B0 , for all u ∈ X, for all v ∈ Y,
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and the bound (3.18) holds for the multilevel spaces X and Y with the constant γ = γ∗

in (6.21). Consequently, the constant γ∗ appears in the error bound (3.20) and can be

determined by analysing the FEM spaces Hµ
1 and Hµ

2 (clearly, the CBS constant γmin

associated with (3.18) also satisfies γmin ≤ γ∗).

In Chapter 4 we showed that for two FEM spaces Hµ
1 , H

µ
2 ⊂ H1

0 (D), there often

exists a sharp upper bound for the associated CBS constant γµmin that is independent

of the mesh level number `µ, or equivalently, the size of the underlying grid.

6.3.1 The Spatial & Parametric Estimates

In this section we first discuss possible choices for the FEM spaces H2 = {Hµ
2 }µ∈JP

that define the tensor–product spaces

Y1 :=
{
Y µ

1 ; µ ∈ JP
}

(6.22)

in (6.16). For each Hµ
1 ∈ H1 in the definition of X in (6.1), Hµ

2 ⊂ H1
0 (D) must be

chosen such that Hµ
1 ∩ H

µ
2 = {0}. Recall that the FEM spaces Hµ

1 are constructed

using piecewise polynomials of the same degree, with respect to an underling mesh

T`µ = Ti ∈ T for some i ∈ N0. In light of the single–level experiments conducted in

Chapter 5, we recommend the following analogous multilevel options:

1. Construct each Hµ
2 with piecewise polynomials of the same degree as those in

Hµ
1 . Specifically, use basis functions associated with the new nodes that would

be introduced by performing the mesh refinement T`µ → Ti+1, i.e., by increasing

the mesh level number by one.

2. Construct each Hµ
2 using piecewise polynomials of a higher degree than those in

Hµ
1 , with respect to the same mesh T`µ . Exclude basis functions associated with

nodes with respect to which basis functions of Hµ
1 are defined.

For both options, the spaces Hµ
2 can be constructed with locally or globally defined

functions (recall similar Examples in Sections 5.4.1 and 5.4.2).

We now choose the set JQ and the space H ⊂ H1
0 (D) that define the tensor–product

spaces

Y2 :=
{
Y ν

2 ; ν ∈ JQ
}

(6.23)
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in (6.16). We choose JQ as in (5.66), where ∆M is the number of additional parameters

we wish to activate, and H = H µ̄
1 for some µ̄ ∈ JP . That is, we choose H to be one of

the FEM spaces already used in the definition of X in (6.1). We make this choice for

several important reasons:

1. Choosing H in this way straightforwardly ensures that the spaces Y2 are auto-

mated as X changes at each step of an adaptive algorithm.

2. In an adaptive algorithm, the spaces Y ν
2 = H ⊗ Qν serve as candidates with

which to augment X. If X is augmented by Y ν
2 for some ν ∈ JQ, choosing

H = H µ̄
1 maintains the structure of Y in (6.14) at the next adaptive step.

3. The cost of computing the parametric estimate ‖eY2‖B0 is easily balanced against

the effectivity of the total estimate ‖eY ‖B0 by choosing a suitable multi–index

µ̄ ∈ JP .

4. The coefficient matrix associated with the parametric problems (6.18) coincides

with the matrix K0
µ̄µ̄, which was computed to generate the SGFEM approx-

imation uX ∈ X. More generally, many of the matrices Km
νµ appear on the

right–hand side of the problems (6.18) through the term B(uX , v).

Note that through our choice of Y in (6.14), the constant β in (3.20) depends on

µ̄. We seek a multi-index µ̄ ∈ JP that strikes the right balance between the cost

of computing the parametric error estimator and the effectivity of the total estimate

||eY ||B0 . If we choose µ̄ such that `µ̄ = maxµ∈JP `, i.e., choose H = H µ̄
1 to be the richest

FEM space used so far, ||eY1||B0 may be disproportionately expensive to compute,

especially if `µ = `µ̄ for very few multi–indices µ ∈ JP . Moreover, dim(X) will grow

too quickly when we augment X with spaces in Y2, and an adaptive algorithm is

unlikely to realise the optimum rates of convergence. Conversely, if `µ̄ = minµ∈JP `

the computation of ||eY1 ||B0 may be wasteful as its contribution to the effectivity of

the total error estimate may be negligible. As a result, the error reduction associated

with augmenting X with spaces from Y2 may also be negligible. To strike a balance,

we will choose µ̄ to correspond to the FEM space Hµ
1 with the smallest mesh level

number `µ such that the number of spaces with level number `µ or less is greater than

or equal to d1
2
card(JP )e. We denote this choice by µ̄ = arg avgµ∈JP `.
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Example 6.2.

Suppose card(JP ) = 4 and ` = {5, 3, 3, 4}, then `µ̄ = 3. Similarly, if card(JP ) = 5

and ` = {5, 5, 3, 4, 3}, then `µ̄ = 4.

Although we have no formal proof, experiments provided in Section 6.4.3 suggest that

the heuristic choice µ̄ = arg avgµ∈JP ` performs well. Note that there are many other

possibilities; µ̄ here ensures that the dimensions of the spaces in Y2 are always modest

in comparison to those of the spaces Hµ
1 ⊗ P µ in the definition of X in (6.1).

6.4 Adaptive Multilevel SGFEMs

In this section we design a new adaptive multilevel SGFEM algorithm that is steered

by analysing the sets of component error estimates

EY1 :=
{
‖eµY1
‖B0 ; µ ∈ JP

}
, EY2 :=

{
‖eνY2
‖B0 ; ν ∈ JQ

}
. (6.24)

Suppose that the multi–indices JP ⊂ J and the finite element spaces H1 have been

chosen and that the associated SGFEM approximation uX ∈ X satisfying (6.6) has

been computed for the multilevel space X in (6.1). Suppose as well that the multi–

indices JQ ⊂ J∗ (for J∗ defined in (5.65)) and the finite element spaces H2 and H

have been chosen, and that the associated error estimator eY ∈ Y satisfying (6.12) has

been computed for the multilevel space Y in (6.14). If ‖eY ‖B0 is deemed too large,

we need to augment X with new functions that will result in an improved SGFEM

approximation to u ∈ V . In the following, we demonstrate that by analysing the

available sets of component estimates EY1 and EY2 in (6.24), we can estimate the error

reduction that would be achieved by augmenting X with specific subsets of Y1 and

Y2 (defined in (6.22) and (6.23)), respectively, and computing a new approximation

uX ∈ X. Key to achieving the best rates of convergence is the inclusion of functions

in X that lead to significant error reductions as well as the exclusion of functions that

lead to negligible reductions.

Estimated Error Reduction Ratios

Suppose that we consider augmenting X with a subset of spaces Ȳ1 ⊆ Y1 or Ȳ2 ⊆ Y2.

The elements of Y1 (Y µ
1 ) are indexed by the multi–indices µ ∈ JP . Thus, a subset of



6.4. ADAPTIVE MULTILEVEL SGFEMS 135

Y1 is simply determined by choosing a subset J̄P ⊆ JP . Likewise, a subset of Y2 is

determined by choosing a subset J̄Q ⊆ JQ. Consider now the augmentation spaces

Ȳ1 :=
⊕
µ∈J̄P

Y µ
1 , Ȳ2 :=

⊕
ν∈J̄Q

Y ν
2 , (6.25)

and the discrete problems

find uW1 ∈ W1 : B(uW1 , v) = F (v), for all v ∈ W1, (6.26)

find uW2 ∈ W2 : B(uW2 , v) = F (v), for all v ∈ W2, (6.27)

where

W1 := X ⊕ Ȳ1 =

( ⊕
µ∈JP \J̄P

Hµ
1 ⊗ P µ

)
⊕
(⊕
µ∈J̄P

(Hµ
1 ⊕H

µ
2 )⊗ P µ

)
,

and

W2 := X ⊕ Ȳ2 = X ⊕
(⊕
ν∈J̄Q

H µ̄
1 ⊗Qν

)
.

That is, W1 corresponds to enriching FEM spaces Hµ
1 associated with certain solution

modes in the definition of uX ∈ X, namely, those modes associated with the multi–

indices µ ∈ J̄P . Conversely, W2 corresponds to adding new solution modes associated

with J̄Q to the definition of uX , with associated FEM spaces H µ̄
1 .

As in Chapter 5, we find through Galerkin orthogonality that

‖eWi
‖2
B = ‖u− uX‖2

B − ‖uWi
− uX‖2

B, i = 1, 2,

where eWi
= u − uWi

denotes the error associated with the augmented space Wi.

Thus, ‖uWi
− uX‖2

B characterises the reduction in ‖u− uX‖2
B that would be achieved

by augmenting X with Ȳi and computing an enhanced approximation uWi
satisfying

(6.26) for i = 1 or (6.27) for i = 2. The following result provides estimates for these

quantities and is a simple extension of Theorem 5.2.

Theorem 6.1.

Let uX ∈ X satisfy (6.6) and let the enhanced approximations uW1 ∈ W1, uW2 ∈ W2

satisfy (6.26) and (6.27), respectively. Define

eȲ1
:=
∑
µ∈J̄P

eµY1
, eȲ2

:=
∑
ν∈J̄Q

eνY2
,
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for some subsets J̄P ⊆ JP and J̄Q ⊆ JQ so that

‖eȲ1
‖2
B0

=
∑
µ∈J̄P

‖eµY1
‖2
B0
, ‖eȲ2

‖2
B0

=
∑
ν∈J̄Q

‖eνY2
‖2
B0
. (6.28)

Then, the following estimates hold:

λ‖eȲ1
‖2
B0
≤ ‖uW1 − uX‖2

B ≤
Λ

1− γ2
‖eȲ1
‖2
B0
, (6.29)

λ‖eȲ2
‖2
B0
≤ ‖uW2 − uX‖2

B ≤ Λ‖eȲ2
‖2
B0
, (6.30)

where λ,Λ are defined in (5.20), and γ ∈ [0, 1) satisfies (3.18).

We now determine an appropriate enrichment strategy for X by considering the

bounds (6.29)–(6.30). A key ingredient of this strategy is the determination of suitable

sets of multi–indices J̄P and J̄Q. We only want to consider important subsets of JP

and JQ that would result in worthwhile error reductions when augmenting X with the

corresponding spaces Ȳ1 or Ȳ2 in (6.25). Assuming for now that J̄P and J̄Q are suitable,

we explain how to use the estimates ‖eȲ1
‖B0 and ‖eȲ2

‖B0 to steer the enrichment of

X. The appropriate selection of J̄P and J̄Q is the focus of Section 6.4.2.

One option is to perform the enrichment corresponding to max{‖eȲ1
‖B0 , ‖eȲ2

‖B0}.

Whilst this may lead to large reductions of ||u− uX ||B, it does not take into account

the computational cost incurred. We want to construct sequences of SGFEM spaces

{X} for which the energy error decays to zero at the best possible rate with respect

to NX (for the underlying sequence of finite element spaces {H(i); i = 0, 1, . . . }). This

strategy is unlikely to achieve that, hence, the dimensions of the augmentation spaces

Ȳ1 and Ȳ2 associated with the sets J̄P and J̄Q should be taken into account.

Recall that Nµ
Y1

= dim(Y µ
1 ) and N ν

Y2
= dim(Y ν

2 ). The dimensions of the spaces Ȳ1

and Ȳ2 are hence given by

NȲ1
:= dim(Ȳ1) =

∑
µ∈J̄P

Nµ
1 , NȲ2

:= dim(Ȳ2) =
∑
ν∈J̄Q

N ν
2 ,

respectively. Due to Theorem 6.1, the ratios

RȲi :=
‖eȲi‖2

B0

NȲi

, i = 1, 2, (6.31)

provide approximations to the square of the true error reductions per additional DOF.
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Algorithm 1: Adaptive multilevel SGFEM

Input : problem data a(x,y), f(x); initial index set JP and mesh level numbers `;
energy error tolerance ε.

Output: final SGFEM approximation uX and energy error estimate η.

1 choose version (1 or 2)
2 for k = 0, 1, 2, . . . do
3 uX ← SOLVE

[
a, f, JP , `

]
4 JQ ← PARAMETRIC INDICES

[
JP
]

see (5.66)
5 EY1 ← COMPONENT SPATIAL ERRORS

[
uX , JP , `

]
(6.24)

6 EY2 ← COMPONENT PARAMETRIC ERRORS
[
uX , JQ, `

]
7 η =

[∑
µ∈JP ||e

µ
Y1
||2B0

+
∑

ν∈JQ ||e
ν
Y2
||2B0

] 1
2 (6.19)

8 if η < ε then
9 return uX , η

10 else
11 [enrichment type, J̄ ]← ENRICHMENT INDICES

[
version,EY1 ,EY2 , JP , JQ

]
12 if enrichment type = spatial then
13 `→

{
`µ+; µ ∈ J̄

}
∪
{
`µ; µ ∈ JP \J̄

}
(6.32)

14 else
15 JP → JP ∪ J̄
16 `→ ` ∪

{
`µ̄; ν ∈ J̄

}
17 end

18 end

19 end

That is

RȲi ≈
‖uWi

− uX‖2
B

NȲi

, i = 1, 2.

For suitable sets J̄P ⊂ JP and J̄Q ⊂ JQ, we are thus able to perform the enrichment

strategy corresponding to the maximum estimated reduction in ||u− uX ||2B per addi-

tional DOF. In other words, we augment X with the space Ȳ1 or Ȳ2 corresponding to

max{RȲ1
, RȲ2
}.

6.4.1 An Adaptive Algorithm

We now use the error estimation strategy discussed in Section 6.3 and the resulting

estimated ratios (6.31) to propose an adaptive multilevel SGFEM for the numerical

solution of (5.6)–(5.7). Starting from an initial SGFEM space X of the form (6.1), our

algorithm generates a sequence of spaces {X} and terminates when η = ‖eY ‖B0 ≤ ε

where ε denotes a prescribed error tolerance. Assuming that the polynomial degree of

the FEM approximation on D has been fixed, to compute the initial approximation
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uX ∈ X we need only supply an initial set of multi–indices JP ⊂ J and a corresponding

set of mesh level numbers ` = {`µ; µ ∈ JP}. Typically, we choose an initial small level

number `0 and set `µ = `0 for all µ ∈ JP . Once the corresponding error estimate ||eY ||B0

has been computed, we then implement either a spatial or parametric enrichment of

X, corresponding to max{RȲ1
, RȲ2
}.

If max{RȲ1
, RȲ2
} = RȲ1

we enrich a subset of the FEM spaces in H1. Specifically,

we refine the meshes T`µ associated with the multi–indices J̄P and update the set `.

That is, if `µ = i for some µ ∈ J̄P , we set `µ → i + 1 or equivalently replace T`µ with

the next mesh in the sequence T in (6.5). To represent this process, in our adaptive

algorithm we write

`µ → `µ+, for all µ ∈ J̄P . (6.32)

Conversely, if max{RȲ1
, RȲ2
} = RȲ2

, we add J̄Q to the set JP . In this case, we also

update ` and H1 with card(J̄Q) copies of µ̄ and H µ̄
1 , respectively, which maintains the

relationship card(JP ) = card(`). In the spirit of (5.64), the process is repeated once

updated versions of JP and ` are defined and a new SGFEM approximation uX ∈ X

is computed. The general process is outlined in Algorithm 1 – at a given step k:

• SOLVE computes an SGFEM approximation uX ∈ X to u ∈ V satisfying (6.6).

• PARAMETRIC INDICES uses (5.66) to determine the subset JQ of the neighbouring

indices to JP for a prescribed choice of ∆M .

• COMPONENT SPATIAL ERRORS and COMPONENT PARAMETRIC ERRORS compute the

sets of error estimates EY1 and EY2 in (6.24), respectively, by solving (6.17) and

(6.18).

• ENRICHMENT INDICES analyses the sets EY1 and EY2 in conjunction with the

formulae in (6.31) to construct suitable sets J̄P and J̄Q and determines how to

enrich the current SGFEM space X.

6.4.2 Selection of Enrichment Indices

Here, we present two versions of the module ENRICHMENT INDICES which we outline

in Algorithm 2. To determine suitable subsets J̄P ⊂ JP and J̄Q ⊂ JQ we utilise the
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Algorithm 2: ENRICHMENT INDICES versions 1 and 2

Input : version; EY1 ; EY2 ; JP ; JQ.
Output: enrichment type, J̄ .

1 δY1 = maxµ∈JP RY1 , δY2 = maxν∈JQ RY2

2 if δY1 > δY2 then
3 J̄Q = {ν ∈ JQ; RνY2

= δY2}
4 if version = 1 then
5 J̄P = {µ ∈ JP ; RµY1

> δY2}
6 else
7 J̄P ← MARK[EY1 ,NY1 , δY2 ]
8 end

9 else
10 J̄P = {µ ∈ JP ; RµY1

= δY1}
11 if version = 1 then
12 J̄Q = {ν ∈ JQ; RνY2

> δY1}
13 else
14 J̄Q ← MARK[EY2 ,NY2 , δY1 ]
15 end

16 end
17 if RȲ1

> RȲ2
then

18 enrichment type = spatial, J̄ = J̄P
19 else
20 enrichment type = parametric, J̄ = J̄Q
21 end
22 return [enrichment type, J̄ ]

dimensions of the spaces Y µ
1 and Y ν

2 in the sets Y1 and Y2 (defined in (6.22)–(6.23)). In

Algorithm 2, the dimensions of Y µ
1 and Y ν

2 are stored in the sets NY1 := {Nµ
1 ; µ ∈ JP}

and NY2 := {N ν
2 ; ν ∈ JQ}.

Firstly, we define the sets of estimated error reduction ratios

RY1 :=
{
Rµ
Y1

; µ ∈ JP
}
, RY2 :=

{
Rν
Y2

; ν ∈ JQ
}
, (6.33)

with elements

Rµ
Y1

:=
‖eµY1
‖2
B0

Nµ
Y1

, µ ∈ JP , Rµ
Y2

:=
‖eνY2
‖2
B0

Nν
Y2

, ν ∈ JQ.

In both versions of ENRICHMENT INDICES we choose the sets J̄P and J̄Q by considering

the spaces Y µ
1 for µ ∈ JP and Y ν

2 for ν ∈ JQ that offer the most favourable estimated

error reduction ratios Rµ
Y1

and Rν
Y2

. We simply look at the largest ratios

δY1 := max
µ∈JP

RY1 , δY2 := max
ν∈JQ

RY2 ,
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and use min{δY1 , δY2} as a tolerance. This principle underpins both versions of the

module ENRICHMENT INDICES, which we now introduce.

For Version 1, if δY1 > δY2 so that δY2 is the acting tolerance, we set

J̄P =
{
µ ∈ JP ; Rµ

Y1
≥ δY2

}
, J̄Q =

{
ν ∈ JQ; Rν

Y2
= δY2

}
.

Likewise, if δY2 > δY1 so that δY1 is the acting tolerance, we set

J̄P =
{
µ ∈ JP ; Rµ

Y1
= δY1

}
, J̄Q =

{
ν ∈ JQ; Rν

Y2
≥ δY1

}
.

The type of enrichment is determined by computing and comparing the ratios RȲ1
and

RȲ2
defined in (6.31). If RȲ1

> RȲ2
we perform spatial enrichment and set J̄ = J̄P .

Thus, X is augmented with Ȳ1 at the next step of Algorithm 1. Otherwise, we perform

parametric enrichment and set J̄ = J̄Q so that X is augmented with Ȳ2.

For version 2, if δY1 > δY2 , we choose J̄P to be the largest subset of JP such that

RȲ1
> δY2 (recall RȲ1

depends on J̄P ). Similarly, if δY2 > δY1 , we choose J̄Q to be the

largest subset of JQ such that RȲ2
> δY1 . Again, the enrichment type chosen is the one

associated with max{RȲ1
, RȲ2
}. Version 2 is reminiscent of a Dörfler marking strategy

[41] and so the module that generates J̄P (if δY1 > δY2) and J̄Q (if δY2 > δY1) is called

MARK. We stress however, that for both versions of ENRICHMENT INDICES, no marking

or tuning parameters are required.

6.4.3 Numerical Experiments

We now test the performance of Algorithms 1 and 2 by solving the four test problems

(TP1–TP4) described in Section 5.1.1. Specifically, using Algorithms 1–2 we generate

sequences of SGFEM approximations {uX} by solving the finite–dimensional problem

(6.6) for sequences of adaptively constructed multilevel SGFEM spaces {X}. To begin

our investigation we initialise Algorithm 1 by constructing an initial space X for each

test problem. The following results were originally published in [38].

First, we select an appropriate sequence of FEM spaces

H :=
{
H(i); i = 0, 1, . . .

}
, H(0) ⊂ H(1) ⊂ · · · ⊂ H1

0 (D).

Since D is square for all four test problems, we choose the underlying sequence T in

(6.5) to be uniform meshes of square elements. Indeed, we choose Ti to represent a
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2i× 2i grid over D for i = 0, 1, 2 . . . so that Ti+1 represents a uniform refinement of Ti.

Thus, Ti has element width h(i) := 21−i for test problem TP1 and h(i) := 2−i for test

problems TP2–TP4. We choose H to be the set of Q1 FEM spaces associated with T

and initialise Algorithm 1 with

JP =
{

(0, 0, . . . ), (1, 0, . . . )
}
, ` =

{
4, 4
}

(corresponding to the polynomials ψ1(y) = 1 and ψ2(y) = y1). In other words, for

each µ ∈ JP we choose Hµ
1 = H(4) in the definition of H1 in (6.4). The sequence T

could also be constructed using uniform meshes of triangular elements. Additionally,

the meshes T need not be uniform. Shishkin meshes [95, 113, 65] are a straightforward

alternative to uniform meshes (for problems with boundary layers) and Algorithms 1

and 2 would not change in that case.

To compute the error estimate η in (6.19) we now choose the FEM spaces H2 in

(6.13) that define problems (6.17). Following the adaptive single–level experiments

conducted in Example 5.11, we construct each Hµ
2 using the global Q2 basis functions

defined with respect to the element–edge midpoints and centroids of T`µ (the mesh

associated with Hµ
1 ) for µ ∈ JP . We also fix ∆M = 5 in the definition of JQ in (5.66)

that defines problems (6.18). To test the performance of η = ‖eY ‖B0 at each step

of Algorithm 1, we compute effectivity indices θapprox
eff by replacing u in (3.21) with a

surrogate reference solution uref, generated by applying Algorithm 1 and version 1 of

Algorithm 2 with a very small tolerance εref.

For our first example, we investigate the rate of convergence of the energy error.

Example 6.3: Rates of Convergence.

We solve test problems TP1–TP4 using Algorithm 1 with ε = 2×10−3 and version

1 of Algorithm 2. In Figure 6.5 we plot η = ‖eY ‖B0 versus the number of DOFs NX

(left) and the corresponding effectivity indices θapprox
eff at each step k of Algorithm

1 (right) for TP1–TP4 (top–to–bottom). We observe that the error behaves like

N
−1/3
X for TP1 and like N

−1/2
X for TP2–TP4. Compare this with the inferior rates

of −1
5

and −1
3

realised by the single–level method in Example 5.11 for TP1 and

TP2. Additionally, the effectivity indices are close to one for all four problems,

meaning that the error estimate η = ‖eY ‖B0 is highly accurate.
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Figure 6.5: Plots of the convergence of η = ‖eY ‖B0 versus the number of DOFs NX

(left) and effectivity indices θapprox
eff (right) for Example 6.3 when solving test problems

TP1–TP4 (top–to–bottom) using Algorithms 1 and 2 (version 1).

The observed rate of −1
2

with respect to NX in Example 6.3 is optimal for the given

sequence H of Q1 FEM spaces. In other words, the sequences in (6.2) decay quickly

enough and the corresponding value of p is small enough for the rate afforded to

the chosen FEM for the analogous parameter–free problem to be realised. Note that

for TP1, it is difficult to determine whether the observed rate of −1
3

is optimal or

not. On the one hand, the true solution u ∈ V may not be afforded enough spatial

regularity and the rate may be optimal given the set H. On the other, u ∈ V may have

enough spatial regularity, but the sequences in (6.2) decay too slowly. Additionally,

Assumption 5.2 may simply not hold for TP1 (due to our choices of µ = 1 and

σ = 0.15), despite the well–posedness of (6.6) following the implicit truncation of the
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Figure 6.6: The convergence of maxx∈D E[uX ] (a) and maxx∈D Var(uX) (b) at each
step of Algorithm 1 for TP2 in Example 6.3.

sum in (5.9) after M terms.

Two potential QoIs are maxx∈D E[u] and maxx∈D Var(u). In Figure 6.6 we plot

the values of maxx∈D E[uX ] and maxx∈D Var(uX) at each step of Algorithm 1 for TP2.

Notice how both QoIs converge after approximately ten steps. It is also possible to

develop adaptive SGFEM algorithms which reduce Q(u)−Q(uX) in the most efficient

way, instead of ‖u− uX‖B, where Q(u) denotes a QoI involving u ∈ V . Such methods

often require an effective energy error estimate (such as those considered in this thesis)

and employ a stopping criterion appropriate for the QoI considered; see [20] for an

example in the single–level SGFEM framework.

We now investigate the qualitative differences between the spacesX associated with

Example 6.3 at the final step of Algorithm 1 for test problems TP1–TP4. In Table 6.2

we record the final number of active parameters M and multi–indices card(JP ) used

in the definition of X at the final step. We also record the number of multi–indices

µ ∈ JP that are assigned the same FEM space Hµ
1 from the set H, or equivalently,

that are assigned the same mesh level number `µ with associated element width h(`µ).

Notice that for all four test problems, the finest mesh employed from the sequence T

is assigned to only a single multi–index in JP . Conversely, the coarsest mesh employed

is assigned to the greatest number of multi–indices. For TP1, approximately 70% of

all multi–indices in JP are assigned the mesh T4 ∈ T with element width 2−3. Due

to the decay rates of αm in (5.10) for TP2 and TP3, a larger number of parameters

ym are activated for TP2 (M = 13) than for TP3 (M = 3). Additionally, the slow
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Table 6.2: Number of solution modes assigned the same element width h(`µ) (corre-
sponding to a mesh level number `µ in `) at the final step of Algorithm 1 (with version
1 of Algorithm 2) as well as the final number of active parameters M and multi–indices
card(JP ) for test problems TP1–TP4.

test problem 2−3 2−4 2−5 2−6 2−7 2−8 card(JP ) M
TP1 118 49 1 0 1 0 169 93
TP2 – 25 6 3 1 1 36 13
TP3 – 5 7 2 2 1 17 3
TP4 – 17 3 0 1 0 21 8

Table 6.3: The first twelve multi-indices from the set JP generated by Algorithm 1
(with version 1 of Algorithm 2) and the associated element widths h(`µ) assigned to
those multi-indices at the final step for test problems TP1–TP4.

TP1 TP2 TP3 TP4
µ h(`µ) µ h(`µ) µ h(`µ) µ h(`µ)

(0 0 0 0 0 0 0 0 0 0) 2−7 (0 0 0 0 0 0) 2−8 (0 0 0) 2−8 (0 0 0 0 0 0) 2−7

(1 0 0 0 0 0 0 0 0 0) 2−5 (1 0 0 0 0 0) 2−7 (1 0 0) 2−7 (1 0 0 0 0 0) 2−5

(0 0 1 0 0 0 0 0 0 0) 2−4 (0 0 1 0 0 0) 2−6 (2 0 0) 2−7 (0 0 1 0 0 0) 2−5

(0 1 0 0 0 0 0 0 0 0) 2−4 (0 1 0 0 0 0) 2−6 (3 0 0) 2−6 (0 1 0 0 0 0) 2−5

(0 0 0 0 0 1 0 0 0 0) 2−4 (2 0 0 0 0 0) 2−6 (0 1 0) 2−5 (0 0 0 1 0 0) 2−4

(0 0 0 0 1 0 0 0 0 0) 2−4 (1 1 0 0 0 0) 2−5 (4 0 0) 2−6 (1 0 1 0 0 0) 2−4

(0 0 0 1 0 0 0 0 0 0) 2−4 (0 0 0 0 0 1) 2−5 (1 1 0) 2−5 (1 1 0 0 0 0) 2−4

(2 0 0 0 0 0 0 0 0 0) 2−3 (0 0 0 0 1 0) 2−5 (5 0 0) 2−5 (2 0 0 0 0 0) 2−4

(0 0 0 0 0 0 0 1 0 0) 2−4 (0 0 0 1 0 0) 2−5 (2 1 0) 2−5 (0 0 0 0 0 1) 2−4

(0 0 0 0 0 0 1 0 0 0) 2−4 (1 0 1 0 0 0) 2−5 (0 0 1) 2−5 (0 0 0 0 1 0) 2−4

(0 0 0 0 0 0 0 0 0 1) 2−4 (2 1 0 0 0 0) 2−4 (3 1 0) 2−5 (1 0 0 1 0 0) 2−4

(0 0 0 0 0 0 0 0 1 0) 2−4 (3 0 0 0 0 0) 2−5 (6 0 0) 2−5 (0 1 1 0 0 0) 2−4

decay of the terms νm in (5.9) leads to a large number of parameters being activated

for TP1 (M = 93), and the number of multi–indices incorporated into the definition

of X is significantly larger (card(JP ) = 169) for TP1 than for TP2–TP4.

In Table 6.3 we display the first twelve multi–indices µ ∈ J that were chosen

by Algorithms 1 and 2 (version 1) and added to the set JP for test problems TP1–

TP4. We also record the final element widths h(`µ) assigned to those multi–indices.

The multi–indices µ ∈ JP that are selected in the early stages of Algorithm 1 are

always assigned the finest meshes. This behaviour is to be expected since those multi–

indices correspond to the most important solution modes with respect to the energy

error. In particular, the mean solution mode associated with the multi–index µ =

(0, 0, . . . ) (recall (5.34)) is always allocated the finest mesh. Notice that the multi–

indices added to JP for TP1 mostly correspond to univariate polynomials of degree

one, which activate more parameters ym and terms in the expansion (5.9). In contrast,

the multi–indices added to JP for TP3 correspond mostly to higher degree polynomials
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in the currently active parameters. Perhaps unexpectedly, the multi–indices selected

for TP4 most resemble those for TP1, despite the fact that the sequence {‖am‖∞}∞m=1

decays most quickly for this problem. That said, we observe from Table 6.2 that

significantly fewer fine meshes are employed for TP4 than for TP3 and despite the

increased number of active parameters (M = 8), TP4 may be computationally cheaper

to solve than TP3.

In the next example we investigate the computational cost of solving test problems

TP1–TP4 using Algorithm 1 and both versions of Algorithm 2. All computations were

performed in MATLAB using new software developed from components of the S-IFISS

toolbox [19] on an Intel Core i7 4770k 3.50Ghz CPU with 24GB of RAM.

Example 6.4: Computational timings.

We solve test problems TP1–TP4 using Algorithm 1 with decreasing values of ε

and both versions of Algorithm 2. In Table 6.4 we record the cumulative time (T )

in seconds and the number of adaptive steps (K) taken for η = ‖eY ‖B0 to satisfy

each tolerance ε. At each step of Algorithm 1, the module SOLVE employs the pre-

conditioned conjugate gradient (CG) method with a mean–based preconditioner

[79] to solve (6.6). In particular, we employ the block–diagonal preconditioner A0

given by

[A0]µµ := K0
µµ, µ ∈ JP ,

where K0
µµ is parameter–free and defined in (6.9). We never construct A0 explicitly

and the action of A−1
0 on vectors is computed by applying the actions of [A0]−1

µµ

blockwise. The number of CG iterations required is independent of the mesh level

numbers ` (the spatial discretisation) but does depend on the variance of a(x,y)

[79]. Typically, more iterations are required as the constants λ < 1 < Λ in (5.20)

become smaller and larger, respectively.

Recall that test problems TP1–TP4 in Section 5.1.1 are ordered by the rate of decay

of the associated sequences {‖am‖∞}∞m=1 (slowest–to–fastest). We observe from Table

6.4 that for the same values of ε and both versions of Algorithm 2, TP4 is always the

fastest problem to solve and TP1 is always the slowest. Additionally, due to the large

number of matrices required, memory limitations mean that error tolerances below
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Table 6.4: Solution times T (in seconds) and total adaptive step counts K required
to solve test problems TP1–TP4 using Algorithms 1 and 2 (versions 1 and 2) with
various choices of the error tolerances ε. The symbol ‘–’ denotes that the estimated
error at the previous step is already below the tolerance and the preceeding T and K
are applicable.

TP1 TP2 TP3 TP4
ver. 1 ver. 2 ver. 1 ver. 2 ver. 1 ver. 2 ver. 1 ver. 2

ε T K T K T K T K T K T K T K T K
4.5 · 10−3 2 6 2 6 1 7 5 6 1 10 1 7 1 5 2 5
3.0 · 10−3 13 14 3 8 4 9 – – 3 12 3 9 2 10 – –
1.5 · 10−3 311 83 325 34 27 26 29 10 16 20 11 11 7 19 5 7
9.0 · 10−4 236 70 167 13 87 36 62 15 23 29 22 8
7.5 · 10−4

out of memory
– – – – 100 38 – – 36 38 – –

6.0 · 10−4 881 147 – – 147 44 92 18 110 48 80 9
4.5 · 10−4 2197 177 1306 19 484 61 340 22 158 59 95 10

ε = 1.5 × 10−3 for TP1 could not be achieved. This is easily remedied by computing

all the stiffness matrices required by the modules SOLVE, COMPONENT SPATIAL ERRORS

and COMPONENT PARAMETRIC ERRORS at each step of Algorithm 1, rather than storing

them in computer memory for the next step (recall from Table 6.1 that TP1 requires a

significantly higher number of matrices than the other three test problems). However,

this would inevitably increase the timings T recorded in Table 6.4.

We also observe that for TP2–TP4 and smaller tolerances ε, version 2 of Algorithm

2 results in considerably quicker solution times T and a lower step count K. The lower

step count is due to the fact that the sets of multi–indices J̄ produced by Algorithm

2 are usually richer for version 2 than for version 1. Note that a single step of Al-

gorithm 1 with version 2 is also more expensive. Thus, time savings are only made

when enough steps and calls to the modules SOLVE, COMPONENT SPATIAL ERRORS and

COMPONENT PARAMETRIC ERRORS are saved. The timings for all four test problems can

also be improved by computing the matrices Km
νµ in parallel, since these are indepen-

dent of each other. Similarly, the matrices Gm and the elements in the sets EY1 and

EY2 in (6.24) may be computed in parallel as well.

In Figure 6.7 we plot the cumulative time T versus the number of DOFs NX (left)

at each step of Algorithm 1 with version 2 of Algorithm 2 for TP1–TP4 (top–to–

bottom). The total number of markers, each reflecting a single step of Algorithm 1,

equals the final value of K in Table 6.4. For example, Algorithm 1 takes 10 steps

to satisfy the tolerance ε = 4.5 × 10−4 for TP4, which corresponds to T = 95 and is

represented by the tenth and final marker in Figure 6.7. Notice that for TP3 and TP4,
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Figure 6.7: Plots of the total computational time T (left) in seconds accumulated over
all refinement steps versus the number of DOFs NX and the error estimation–solve
time ratio r at each step k (right) when solving TP1–TP4 (top–to–bottom) using
Algorithm 1 with version 2 of Algorithm 2.

Algorithm 1 performs almost optimally in that the time behaves almost linearly with

respect to NX . In contrast, for problems such as TP1 and TP2 where the sequence

{‖am‖∞}∞m=1 decays more slowly, the time T behaves less favourably, like N1.35
X and

N1.2
X , respectively. Whilst the rates 1.35 and 1.2 are not optimal, they are more than

acceptable. We also plot the ratio r of the cumulative time taken to estimate the energy

error (lines 5 and 6 of Algorithm 1) to the time taken to compute the corresponding

approximation uX ∈ X (line 3 of Algorithm 1) at each step of Algorithm 1. We

observe that r does not grow with NX and thus the cost of estimating the error is

proportional to the cost of computing the SGFEM approximation itself. At the final

step of Algorithm 1, r < 2.5 for all four problems.
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6.5 Extension to Localised Mesh Refinement

In this section, we briefly consider the parametric diffusion problem (5.6)–(5.7) with

domainsD ⊂ R2 that lead to spatially singular solutions. Specifically, we work with the

L–shape and crack domains considered in Examples 3.3–3.5. We construct multilevel

SGFEM spaces X of the form (6.1) for some subset JP ⊂ J (where J is defined in

(5.27)), where each space Hµ
1 ⊂ H1

0 (D) is constructed with respect to a non–uniform

mesh Tµ of triangular elements over D. By modifying Algorithms 1 and 2, our aim is

to locally refine the meshes Tµ to realise the optimum rate of convergence of −1
2

with

respect to NX on the more challenging L–shape and crack domains, when employing

P1 approximation. Recall from Example 3.3 that the error decays at the rate of −1
3

with respect to the number of DOFs when performing uniform mesh refinements on

the L–shape domain. In Examples 3.4 and 3.5, we were able to recover the rate −1
2

by employing a local mesh refinement strategy.

A new framework is required to adaptively construct sequences of multilevel SGFEM

spaces {X} of the form (6.1) with locally refined meshes. Since the sequence of meshes

{Tµ} associated with the space Hµ
1 is to be constructed adaptively, it is no longer pos-

sible within an algorithm to assign a mesh from an underlying sequence such as T in

(6.5) to a multi–index µ ∈ JP . Recall that the multilevel SGFEM space X in Section

6.1 is completely determined by the set JP and the corresponding set of mesh level

numbers `. Instead, X here is determined by JP and the set of meshes

T ; =
{
Tµ; µ ∈ JP

}
. (6.34)

In an adaptive algorithm, JP is enriched and the meshes in (6.34) are refined, maintain-

ing the relationship card(JP ) = card(T ). Typically, we initialise T by constructing an

initial coarse triangulation T0 and setting Tµ = T0 for each µ ∈ JP . Note that any two

meshes Tµ and Tν from the set T for µ 6= ν are almost certainly different. As a result,

the total number of stiffness matrices Km
νµ required to compute an SGFEM approxi-

mation uX ∈ X could be significantly higher than the number required in Section 6.1

where uniform meshes are employed.

The assembly method described in Section 6.2.2 for the efficient construction of Km
νµ

straightforwardly extends to the case where Tµ and Tν are non–uniform. Assume that

the meshes Tµ and Tν are constructed by performing different conforming refinements
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(a) initial mesh T0. (b) Tµ. (c) Tν .

Figure 6.8: Two conforming refinements Tµ and Tν of an initial mesh T0. The blue
elements in Tµ and Tν are subsets of the pink elements in Tν and Tµ, respectively.

of an initial mesh T0 (using longest edge bisection [90]). Then, no element edge in Tµ
crosses an edge in Tν and every element in Tµ is a subset or a superset of an element in

Tν and vice versa. This is illustrated in Figure 6.8 where Tµ and Tν in Figures 6.8b and

6.8c are different conforming refinements of T0 in Figure 6.8a. The blue elements in Tµ
and Tν are subsets of the pink elements in Tν and Tµ, respectively. We construct Km

νµ

by concatenating coarse–element matrices associated with each pink (coarse) element.

In contrast to the construction of Km
νµ in Example 6.1, the coarse–element matrices

here are non–uniform in size and not necessarily associated with the same mesh.

Once the approximation uX ∈ X satisfying (6.6) is computed, we may estimate the

energy error ‖u − uX‖B as before by solving problems (6.17) and (6.18) for suitable

choices of H2 = {Hµ
2 }µ∈JP , JQ ⊂ J and H ⊂ H1

0 (D) (recall Section 6.3) and evaluating

η = ‖eY ‖B0 in (6.19). Here onwards we fix H = H0, the P1 FEM space associated

with the initial mesh T0.

An Adaptive Algorithm

In this section, we explain how to incorporate local spatial refinement into Algorithm

1 by exploiting the spatial estimators eµY1
∈ Y µ

1 satisfying (6.17) for µ ∈ JP . Consider

the sets of elementwise estimates

Eµ :=
{
‖eµY1k

‖B0k
; ∆k ∈ Tµ

}
,

for µ ∈ JP , where

‖eµY1k
‖2
B0k

:= B0k(e
µ
Y1k
, eµY1k

), eµY1k
:= eµY1

|∆k
,

and

B0k(v, v) =

∫
Γ

∫
∆k

a0(x)|∇v(x,y)|2 dx dπ(y), for all v ∈ Y µ
1 |∆k

.
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We define the estimated error reduction

‖eȲ1
‖2
B0

:=
∑
µ∈J̄P

∑
∆k∈M∗µ

‖eµY1k
‖2
B0k
. (6.35)

for suitably chosen sets (to be discussed) J̄P ⊆ JP andM∗
µ ⊆ Tµ. Whilst the quantity

‖eȲ1
‖2
B0

doesn’t formally satisfy an error reduction bound such as (6.29), it serves as a

suitable proxy for the square of the error reduction that would be achieved by refining

the elementsM∗
µ in the mesh Tµ for each µ ∈ J̄P and computing an enhanced SGFEM

approximation.

Recall the error reduction ratio RȲ1
= ‖eȲ1

‖2
B0
/NȲ1

in (6.31). To reflect the new

definition of ‖eȲ1
‖2
B0

in (6.35), we redefine NȲ1
to be

NȲ1
:=
∑
µ∈J̄P

N∗µ, N∗µ := Nµ+
1 −Nµ

1 , (6.36)

where Nµ
1 is the dimension of Hµ

1 . Suppose for now that the elementsM∗
µ in the mesh

Tµ are refined (including the resolution of hanging nodes) and write Tµ → Tµ+. We

denote by Nµ+
1 in (6.36) the dimension of the enriched space Hµ+

1 ⊃ Hµ
1 associated

with the refined mesh Tµ+. Note that the definitions of ‖eȲ2
‖2
B0

and RȲ2
in (6.28) and

(6.31) go unchanged and, as in Section 6.4.1, we implement the enrichment of X that

corresponds to max{RȲ1
, RȲ2
}.

If spatial enrichment is chosen, we enrich the spaces Hµ
1 for µ ∈ J̄P by employing

the refinement Tµ → Tµ+ so that Hµ
1 → Hµ+

1 . Otherwise, if parametric refinement is

chosen we add J̄Q to JP and update T with card(J̄Q) copies of the initial mesh T0. In

turn, this updates H1 with card(J̄Q) copies of H0. The new procedure is outlined in

Algorithm 3. Notice the input of T0 and compare lines 13 and 16 of Algorithm 1 with

those of Algorithm 3. Additionally, the module COMPONENT SPATIAL ERRORS has two

additional outputs; E∗ and M∗, where

M∗ :=
{
M∗

µ; µ ∈ JP
}
.

When spatial enrichment is chosen, the set of elementsM∗
µ ⊆ Tµ is required to perform

the refinement Tµ → Tµ+ for µ ∈ J̄P . We now explain how to choose suitable setsM∗
µ

(as well as J̄P and J̄Q) and define E∗.



6.5. EXTENSION TO LOCALISED MESH REFINEMENT 151

Algorithm 3: Adaptive multilevel SGFEM with local mesh refinement

Input : problem data a(x,y), f(x); initial index set JP and mesh T0; energy error
tolerance ε.

Output: final SGFEM approximation uX and energy error estimate η.

1 T = {T0; µ ∈ JP }
2 choose version (1 or 2)
3 for k = 0, 1, 2, . . . do
4 uX ← SOLVE

[
a, f, JP ,T

]
5 JQ ← PARAMETRIC INDICES

[
JP
]

see (5.66)
6 [EY1 ,E∗,M∗]← COMPONENT SPATIAL ERRORS

[
uX , JP ,T

]
7 EY2 ← COMPONENT PARAMETRIC ERRORS

[
uX , JQ, T0

]
8 η =

[∑
µ∈JP ||e

µ
Y1
||2B0

+
∑

ν∈JQ ||e
ν
Y2
||2B0

] 1
2 (6.19)

9 if η < ε then
10 return uX , η
11 else
12 [enrichment type, J̄ ]← ENRICHMENT INDICES

[
version,E∗,EY2 , JP , JQ

]
13 if enrichment type = spatial then
14 T →

{
Tµ+; µ ∈ J̄

}
∪
{
Tµ; µ ∈ JP \J̄

}
15 else
16 JP → JP ∪ J̄
17 T → T ∪

{
T0; ν ∈ J̄

}
18 end

19 end

20 end

Selection of Enrichment Indices

Following the selection ofM⊂ Th associated with (3.38), we employ a Dörfler marking

strategy. For each µ ∈ JP , we construct a minimal subset of marked elementsMµ ⊂ Tµ
satisfying

∑
∆k∈Mµ

‖eµY1k
‖2
B0k
≥ θmark

∑
∆k∈Tµ

‖eµY1k
‖2
B0k
. (6.37)

Suppose that the elements Mµ are refined in the mesh Tµ to produce Tµ+, with any

hanging nodes resolved. The total set of refined elements in Tµ may be richer thanMµ.

We denote this set byM∗
µ and note thatM∗

µ = Tµ\Tµ+. The logical steps of Algorithm

2 (the module ENRICHMENT INDICES in Algorithms 1 and 3) do not change and we only

switch the input of EY1 with the output E∗ from COMPONENT SPATIAL ERRORS. Here,

E∗ :=
{
E∗µ; µ ∈ JP

}
, E∗µ :=

∑
∆k∈M∗µ

‖eµY1k
‖2
B0k
, ‖eµY1k

‖B0k
∈ Eµ.
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We also redefine the set of ratios RY1 in (6.33) by

RY1 :=
{
Rµ
Y1

; µ ∈ JP
}
, Rµ

Y1
:=
E∗µ
N∗µ

,

as well as the set NY1 := {N∗µ; µ ∈ JP}; the definitions of RY2 in (6.33) and NY2 go

unchanged. With these new definitions, Algorithm 2 constructs subsets J̄P ⊆ JP and

J̄Q ⊆ JQ as usual and the set J̄ = J̄P or J̄ = J̄Q corresponding to max{RȲ1
, RȲ2
} is

outputted to Algorithm 3.

6.5.1 Numerical Experiments

Here we test the performance of Algorithm 3 by solving test problems TP4 and TP3

on the L–shape and crack domains

D = [−1, 1]2\[−1, 0)2,

D = [−1, 1]2\
{

(x1, x2)> ∈ R2; −1 < x1 ≤ 0, x2 = 0
}
.

We initialise Algorithm 1 with the set

JP =
{

(0, 0, . . . ), (1, 0 . . . )
}
,

and T0 given in Figures 6.9a and 6.9b for TP4 and TP3, respectively and choose H1

to be the set of P1 spaces associated with T , i.e., Hµ
1 = H0 for each µ ∈ JP .

To compute the error estimate η in (6.19) we now choose the FEM spaces H2.

Similar to Example 3.3, we construct each Hµ
2 ∈ H2 using the usual (global) P2 and

super–quadratic basis functions, defined with respect to the element edge–midpoints

and centroids of Tµ. We also choose JQ as given in (5.66) with ∆M = 5 fixed and,

following the success of Examples 3.4 and 3.5, fix θmark = 1
2

in (6.37). In the following

Example we compute sequences of SGFEM spaces {X} of the form (6.1) by adaptively

constructing the set JP and locally refining each mesh in T .

Example 6.5: Rates of Convergence, spatial singularity.

We solve TP4 and TP3 using Algorithm 3 with ε = 3 × 10−3 and version 2 of

Algorithm 2. In Figures 6.9c and 6.9d we plot the energy error estimate η =

‖eY ‖B0 versus the number of DOFs NX at each step k of Algorithm 3. For both

problems, we observe that the error decays at the optimum rate of −1
2
. Similar test

problems are considered in [21] where local mesh refinement is incorporated into
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# elements = 192

(a) T0 for the L–shape domain.

# elements = 256

(b) T0 for the crack domain.

102 104 106

dof

10-3

10-2

10-1

dof-0.52

Energy Error

(c) convergence of η = ‖eY ‖B0 for TP4.

102 104 106

dof

10-3

10-2

10-1

dof-0.52

Energy Error

(d) convergence of η = ‖eY ‖B0 for TP3.

Figure 6.9: Initial meshes T0 and convergence of η = ‖eY ‖B0 for Example 6.5 when
solving test problems TP4 and TP3 on the L–shape and crack domains, respectively.
The red line is the crack in D along the line {(x1, x2)> ∈ R2; −1 < x1 ≤ 0, x2 = 0}.

an adaptive single–level SGFEM similar to the one in Section 5.4.2. The energy

error is reported in [21] to decay at rates between −1
3

and −4
5
.

Figures 6.10 and 6.11 (top) display surface plots of the coefficients uµX(x) (recall

uX(x,y) in (6.7)) associated with the first three multi–indices µ ∈ JP selected by

Algorithms 2 and 3 in Example 6.5. Below them, we also display the locally refined

meshes Tµ associated with those multi–indices after the fifteenth step of Algorithm

3. Notice how refinement is concentrated primarily at the point (0, 0)> ∈ D where

the true solution u ∈ V is spatially singular and other areas where uµX(x) has steeper

gradients. At the final step of Algorithm 3, card(JP ) = 26 and card(JP ) = 17 for TP4
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Figure 6.10: Top: surface plots of the coefficients uµX(x) associated with the multi–
indices µ = (0, 0, . . . ), (1, 0, . . . ), (2, 0, . . . ) ∈ JP for TP4 on the L–shape domain when
Algorithm 3 terminates. Bottom: the corresponding adaptively constructed meshes
Tµ ∈ T after the k = 15th step.

and TP3, respectively, meaning that as many meshes Tµ for µ ∈ JP are independently

and locally refined. Observe from Figures 6.9b and 6.9d that many adaptive steps (the

black markers) are required for Algorithm 3 to terminate. A major reason for this is our

choice H = H0 associated with the parametric error problem (6.18). When parametric

enrichment is performed in Algorithm 3, card(J̄) copies of T0 are added to the set T .

Algorithm 3 subsequently takes several steps to refine the newly incorporated meshes

to a state commensurate with the other meshes in the set. To avoid this, H ⊂ H1
0 (D)

must be automated and depend on the current SGFEM space X. Recall in Section

6.3.1 that we chose H = H µ̄
1 where µ̄ = arg avgµ∈JP ` ∈ JP .

6.6 Summary

In this chapter, we introduced multilevel approximation spaces X of the form (6.1) and

explained how the coefficients uµX(x) of multilevel approximations uX ∈ X satisfying
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Figure 6.11: Top: surface plots of the coefficients uµX(x) associated with the multi–
indices µ = (0, 0, . . . ), (1, 0, . . . ), (2, 0, . . . ) ∈ JP for TP3 on the crack domain when
Algorithm 3 terminates. Bottom: the corresponding adaptively constructed meshes
Tµ ∈ T after the k = 15th step.

(6.6) reside in potentially different FEM spaces Hµ
1 ⊂ H1

0 (D). The associated stiffness

matrices Km
νµ in (6.9) often depend on basis functions φµi and φνj associated with

different meshes T`µ and T`ν , respectively, where `µ, `ν ∈ ` are mesh level numbers.

In Section 6.2.2, we demonstrated how to construct these matrices efficiently using

numerical quadrature.

In Section 6.4.1, we designed a novel adaptive multilevel SGFEM (the combination

of Algorithms 1 and 2) which automatically decides whether to perform spatial or

parametric enrichment of the approximation space. The adaptive process is driven by

sharp estimates of the true error reduction per additional DOF for several enrichment

options (the sets RY1 and RY2 in (6.33)). Our algorithm implements only the most

economical options and numerical experiments in Section 6.4.3 demonstrate that the

new method achieves the optimal rate of convergence for the test problems considered.

A notable feature of our method is that no marking or turning parameters are required.

The effectivity indices θapprox
eff in Figure 6.5 also demonstrate that the a posteriori error
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estimate η = ‖eY ‖B0 is highly accurate at each step of the algorithm. In order to realise

the optimal rates of convergence on non–convex spatial domains such as the L–shape

and crack domains, in Section 6.5 we introduced Algorithm 3 which employs local

mesh refinement for each solution mode. Figures 6.10 and 6.11 show that Algorithm

3 successfully refines the meshes Tµ ∈ T and resolves complex features of the modal

coefficients uµX(x) ∈ Hµ
1 .



Chapter 7

Conclusions

In this thesis, we considered efficient adaptive SGFEMs for the numerical solution of

elliptic PDEs with uncertain or parameter dependent inputs. For a model problem, we

considered the stochastic diffusion problem (5.2)–(5.3) where the uncertain diffusion

coefficient a(x, ω) is modelled as a KL–type expansion of the form (5.1), depending

on a countably infinite number of random variables. Our motivation for this work

comes from the fact that many existing methods require the a priori truncation of

the infinite sum in (5.1) or do not achieve the theoretically optimal rates of conver-

gence for the model problem. Consequently, when the chosen stopping tolerance for

the approximation error is small, such methods are slow to run and quickly exhaust

computer memory. We designed two novel adaptive multilevel SGFEMs – Algorithms

1 and 3 – which, when applied to various test problems, achieved the optimal rates of

convergence on convex and non–convex spatial domains, respectively.

Algorithms 1 and 3 are steered by highly accurate efficient a posteriori error es-

timates. In Chapter 4, we investigated the so–called CBS constant for non–standard

pairs of FEM spaces H1 and H2 that appears in the bound relating the true errors

to the estimated errors. This chapter is an extended discussion of the work published

in [37] and contains our first novel contributions. Our main result – Theorem 4.6 –

provides a novel theoretical estimate of the CBS constant for certain special pairs of

H1 and H2. CBS constants arise in many areas of numerical analysis and thus our

results extend beyond the field of a posteriori error estimation.

In Chapter 5, we introduced standard SGFEMs and error estimation for the para-

metric reformulation of the stochastic diffusion problem. Building on Chapter 4, we

157
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designed cheap–to–compute a posteriori error estimates with effectivity indices close to

one and discussed the adaptive construction of SGFEM approximation spaces. Chap-

ter 6 is an extended discussion of the work published in [38] where we married several

important aspects of Chapters 3–5 to design Algorithms 1 and 3. Our novel multilevel

algorithms automatically decide whether spatial or parametric enrichment of the ap-

proximation space is required, including the incorporation of more input parameters

into the discretisation. We stress that Algorithms 1 and 3 do not require the a priori

truncation of the infinite sum appearing in the input a(x,y) in (5.5).

We conclude this thesis by highlighting some interesting directions and opportuni-

ties for future research. The design of adaptive SGFEMs is in its infancy and the most

efficient methods apply only to second–order elliptic PDEs with affine dependence on a

countable number of input random variables. We envisage that several aspects of this

work can stimulate the design of new adaptive multilevel methods for more complex

PDE models or models with non–affine dependence on the input variables. Many prac-

titioners also seek quantities of interest that depend on the solution to PDE models,

rather than the full solution itself. For example, we may be interested in the maximum

value of the solution or its value at a particular point in the spatial domain. Adap-

tive methods which efficiently reduce the energy error do not necessarily approximate

quantities of interest in an efficient way. To this end, goal–oriented adaptivity enables

us to tailor approximation spaces to the quantity of interest. We expect that the most

efficient goal–oriented SGFEMs will include those for which a multilevel structure is

imposed on the approximation space. The development of such methods will allow for

a broader class of problems to be considered for quick and efficient UQ.
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[7] Babuška, I. M., Tempone, R., and Zouraris, G. E. (2004). Galerkin finite element

approximations of stochastic elliptic partial differential equations. SIAM J. Numer.

Anal., 42(2):800–825.
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