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Abstract

This thesis explores two novel algebraic applications of Internal Set Theory (IST). We
propose an explicitly topological formalism of structural approximation of groups, gen-
eralizing previous work by Gordon and Zilber. Using the new formalism, we prove
that every profinite group admits a finite approximation in the sense of Zilber. Our
main result states that well-behaved actions of the approximating group on a compact
manifold give rise to similarly well-behaved actions of periodic subgroups of the ap-
proximated group on the same manifold. The theorem generalizes earlier results on
discrete circle actions, and gives partial non-approximability results for SO(3). Moti-
vated by the extraction of computational bounds from proofs in a “pure” fragment of
IST (Sanders), we devise a “pure” presentation of sheaves over topological spaces in the
style of Robinson and prove it equivalent to the usual definition over standard objects.
We introduce a non-standard extension of Martin-Löf Type Theory with a hierarchy
of universes for external propositions along with an external standardness predicate,
allowing us to computer-verify our main result using the Agda proof assistant.

6



Declaration

No portion of the work referred to in this thesis has been sub-
mitted in support of an application for another degree or qual-
ification of this or any other university or other institute of
learning.

7



Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis)
owns certain copyright or related rights in it (the “Copyright”) and s/he has given
The University of Manchester certain rights to use such Copyright, including for
administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-
lectual property (the “Intellectual Property”) and any reproductions of copyright
works in the thesis, for example graphs and tables (“Reproductions”), which may
be described in this thesis, may not be owned by the author and may be owned by
third parties. Such Intellectual Property and Reproductions cannot and must not
be made available for use without the prior written permission of the owner(s) of
the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy, in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations and in The University’s
policy on presentation of Theses.

8



Acknowledgements

First and foremost, I wish to thank my supervisor, Prof. Alexandre Borovik, for taking
me on as a student, for guiding me through the academic process, for providing math-
ematical advice, and for clearing up all the mundane and bureacratic obstacles that got
in my way. Special thanks to

• My academic sibling Ulla Karhumäki and my officemate Jacob Cable, for the
countless hours of productive mathematical discussion.

• My teachers and mentors: Péter Diviánszky, József Farkas, Marwan Fayed, Viola
Somogyi, Jerry Swan, and all others who taught me mathematics. This work
would not exist without them.

• My colleagues Nataliya Balabanova, Jacob Cable, Mahah Javed, Elliot McKer-
non, Rob Nicolaides, Joseph Razavi and Jerry Swan for proof-reading and sanity-
checking this document. Naturally, I am responsible for any remaining errors.

• My family and friends, for their love and support.

9



Chapter 1

Introduction

Following Robinson’s introduction of nonstandard analysis (via ultrafilter constructions
of nonstandard models), Nelson [32] developed an axiomatic set theory (Internal Set
Theory, IST) that extends the familiar Zermelo-Fraenkel Set Theory, and serves as a
convenient framework for the practice of nonstandard analysis. Here we present two
novel applications of Internal Set Theory to algebra.

Chapter 1 gives a concise, self-contained introduction to the theory and practice of In-
ternal Set Theory, with a particular focus on doing topology in the non-standard setting
via the formalism of (what we call) predicated spaces. Most results presented in this
chapter are well-known and have appeared in the literature in various forms; the nov-
elty resides in our presentation, which emphasizes the analogies between the theory of
Alexandroff spaces in ordinary set theory and the theory of general topological spaces
in Internal Set Theory.

The results in Chapter 2 concern structural approximations of groups, in the sense of
Zilber [50, 51]. Using Internal Set Theory, we propose a new notion of approximation
that incorporates an explicit topological ingredient and includes both Zilber’s notion of
finite approximation and Gordon’s [1] notion of LEF group as special cases. Using the
new language, we prove that any profinite group admits a finite approximation in the
sense of Zilber (Proposition 2.2.18). We introduce the notion of Alexandroff approxi-
mation, and show that the class of groups admitting Alexandroff finite approximations
coincides with the class of locally finite groups (Proposition 2.2.36). Our main result
(Theorem 2.3.9) is as follows: if a group 𝐻 approximates 𝐺, then well-behaved ac-
tions of 𝐻 on a compact manifold 𝑀 give rise to similarly well-behaved actions of

10



1.1. THE ROAD TO INTERNAL SET THEORY 11

periodic subgroups of 𝐺 on the same manifold 𝑀 . As a corollary of Theorem 2.3.9,
we obtain partial results about the non-approximability of 𝑆𝑂(3) in the new formalism
(Theorem 2.4.10).

Chapter 3 contains two shorter results. Inspired by the recent ultrapower proof of the
monotone subsequence theorem due to Baszczyk, Kanovei, Katz and Nowik [5], we
give a straightforward, ultrapower-free proof using Internal Set Theory. Motivated by
the work of S. Sanders on extracting computational bounds from proofs in a “pure” frag-
ment of Internal Set Theory, we give a novel, “pure” presentation of sheaves (Defini-
tion 3.2.9) over topological spaces in the style of Robinson’s characterization of continu-
ity, and prove it equivalent to the usual definition for standard objects (Theorem 3.2.15,
Proposition 3.2.17).

In Chapter 4 we present a non-standard variant of Martin-Löf Type Theory that relates
to ordinary Martin-Löf Type Theory the same way Internal Set Theory does to usual
Zermelo-Fraenkel Set Theory. Our extended type theory has a hierarchy of universes
for external propositions along with an external standardness predicate, allowing us to
translate our proof of Theorem 2.3.9 into a type-theory setting, and computer-verify the
resulting proof script using the Agda proof assistant.

1.1 The road to Internal Set Theory

1.1.1. In this section we introduce the axioms of Internal Set Theory, and explain its
relationship to usual (ZFC) set theory. We presume familiarity with the terminology
of first-order logic (languages, theories, free and bound variables, Hilbert-style proof
systems, prenex forms) and the elementary axiomatics of Zermelo-Fraenkel Set Theory,
to the extent covered in the first two chapters of Lévy’s Basic Set Theory [29]. For
a gentler introduction to Internal Set Theory, we recommend Robert’s Nonstandard
Analysis [40].
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Logic

1.1.2. We fix the notation for the logical connectives as ¬ (negation), ∨ (disjunction),
∧ (conjunction) and → (implication). Notations such as ∼,⊃,& never stand for con-
nectives, and may appear in the text with other (non-logical) meaning. We strive to
make economical use of parentheses. In particular, we often write implication chains
𝜑1 → (𝜑2 → 𝜑3) as 𝜑1 → 𝜑2 → 𝜑3.

1.1.3. There are three major proof calculi for the first-order predicate calculus. Struc-
tural proof theory is best done in terms of Gentzen-style Sequent Calculus, which
uncovers all the deep symmetries of logic. Prawitz’s calculus of Natural Deduction
displays no particularly good proof-theoretic behavior, at least for classical logic, but
it corresponds closely to how we write proofs in mathematics. Finally, Hilbert-style
proof calculi are appropriate for certain proof translation arguments. Nelson [33] uses
a Hilbert-style system for his meta-theoretic results on Internal Set Theory.

1.1.4. Hilbert-style systems have only one inference rule: modus ponens, from 𝜑 and
𝜑→𝜓 infer𝜓 . When translating from one language to another, one needs to verify that
the translations of the axioms are provable and that the rules of inference are preserved
under translation, so having only one rule of inference proves to be a huge convenience.
The logical axioms of our Hilbert system have the following forms:

• K: 𝜑1 → 𝜑2 → 𝜑1,

• S: (𝜑1 → 𝜑2 → 𝜑3)→ (𝜑1 → 𝜑2)→ 𝜑1 → 𝜑3,

• N: (¬𝜑1 → ¬𝜑2)→ (¬𝜑1 → 𝜑2)→ 𝜑1,

• U1: (∀𝑥.𝜙(𝑥))→ 𝜙(𝑡) where 𝑡 is any constant or variable symbol,

• U2: (∀𝑥.𝜑1 → 𝜑2)→ 𝜑1 → ∀𝑦.𝜑2 where 𝑥 does not occur in 𝜑1,

• U3: (∀𝑥.𝜑1 → 𝜑2)→ (∀𝑥.𝜑1)→ ∀𝑥.𝜑2

1.1.5. The first two axioms, K and S, play structural roles, enunciating the logical prin-
ciples weakening and contraction. The third axiom, N, represents reductio ad absur-
dum, controlling the behavior of ¬ and expressing that the logic under consideration is
classical (as opposed to e.g. intuitionistic), while the last three govern the meaning of
the universal quantifier.



1.1. THE ROAD TO INTERNAL SET THEORY 13

1.1.6. Apart from the usual symbols and predicates, our first-order languages often
contain the special-purpose unary predicate 𝑠𝑡. Normally, we read st(𝑥) as 𝑥 is stan-
dard. The “external” quantifiers ∀𝑠𝑡,∃𝑠𝑡 are defined as abbreviations, with ∀𝑠𝑡𝑥.𝜙(𝑥)
and ∃𝑠𝑡𝑥.𝜙(𝑥) abbreviating ∀𝑥.st(𝑥)→ 𝜙(𝑥) and ∃𝑥.st(𝑥)∧𝜙(𝑥) respectively.

1.1.7. The superscript𝑄f in indicates the finiteness of the object introduced by the quan-
tifier 𝑄. In particular, we can take it to abbreviate any of the usual definitions of finite
set in ZFC Set Theory. However, we need to exercise caution when considering set
theories that do not take the Axiom of Choice, as results such as Theorem 1.2.5 would
depend on which of the many (not provably equivalent without Choice) definitions of
finiteness we choose.

1.1.8. Throughout this document, we maintain a strict distinction between relations
and proper predicates: we reserve the use of the former term to indicate predicates that
are represented by sets, as subset of a Cartesian product (e.g. the order relation< on the
natural numbers is represented by the set

{
(𝑥,𝑦) ∈ ℕ2 |||𝑥 < 𝑦}), while the term 𝑛-ary

predicate refers to formulae with 𝑛 free variables in the language under consideration.
The reader is already familiar with a proper binary predicate that does not constitute
a relation in this sense: the global membership predicate ∈ of Zermelo-Fraenkel Set
Theory.

Adjoining Ideal Elements

1.1.9. Definition. The language of the theory PAK consists of the language of Peano
Arithmetic extended with a formal constant symbol𝐾 . The theory PAK consists of the
axioms of Peano Arithmetic, and the following axioms (one for each natural number):

K0 0 < 𝐾 ,

K1 1 < 𝐾 ,

K2 2 < 𝐾 ,

. . .

Kn 𝑛 < 𝐾 ,

. . .
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1.1.10. Notice that the theory PAK does not extend Peano Arithmetic with new induc-
tion axioms. The induction axiom 𝜑(0)∧ (∀𝑛.𝜑(𝑛)→ 𝜑(𝑛+1))→ ∀𝑥.𝜑(𝑥) belongs to
PAK only if we choose 𝜑 from among the formulae in the language of Peano Arith-
metic. In particular, 0 < 𝐾 ∧ (∀𝑛.𝑛 < 𝐾 → 𝑛+1 < 𝐾)→ ∀𝑥.𝑥 < 𝐾 does not belong to
the axioms of PAK, since 𝜑(𝑛)↔ 𝑛 < 𝐾 contains the constant symbol 𝐾 , which lives
outside the language of Peano Arithmetic. However, we can prove that we do have
∀𝑦.0< 𝑦∧(∀𝑛.𝑛 < 𝑦→ 𝑛+1< 𝑦)→ ∀𝑥.𝑥 < 𝑦 among the theorems of Peano Arithmetic
(use inducton on the formula ∀𝑦.0< 𝑦∧(∀𝑛.𝑛 < 𝑦→ 𝑛+1< 𝑦)→ 𝑥 < 𝑦, exercise!), and
hence among the theorems of PAK. Substituting 𝑦 = 𝐾 using the axiom U1 realizes
the previous non-axiom as a theorem of PAK!

1.1.11. Whenever Peano Arithmetic proves that all numbers 𝑛 have a given property
𝜑, PAK proves that 𝐾 has the property 𝜑. This follows immediately from the fact that
the axioms of Peano Arithmetic form a proper subset of the axioms of the theory PAK.
We will shortly prove a converse of this observation: whenever PAK proves that𝐾 has
some property 𝜑(𝐾), and one can write this property 𝜑(−) in the language of Peano
Arithmetic, then we can find a number 𝑛 ∈ ℕ such that 𝜑(𝑛) holds (and in that case
Peano Arithmetic proves 𝜑(𝑛)).

1.1.12. Definition. Consider theories 𝑇1,𝑇2 such that the language of 𝑇1 forms a proper
subset of the language of 𝑇2. We call 𝑇2 a conservative extension of 𝑇1 if for every
sentence 𝜑 in the language of 𝑇1, we have 𝑇1 ⊢ 𝜑 whenever 𝑇2 ⊢ 𝜑.

1.1.13. Proposition. The theory PAK is a conservative extension of Peano Arithmetic.

Proof. Consider a sentence 𝜑 in the language of Peano Arithmetic, and assume that
PAK proves 𝜑. Take any PAK-proof of 𝜑: such a proof invokes finitely many of the
axioms of PAK, in particular we can find a largest number 𝑛∈ℕ such that the proof uses
the axiom Kn. Replace all occurrences of 𝐾 in the proof with 𝑛+1, and all the axioms
Ki with Peano Arithmetic proofs of 𝑖 < 𝑛+1. This cannot fail: by the maximality of 𝑛,
we have 𝑖 < 𝑛 < 𝑛+1 for all 𝑖 that occur in the proof. Doing all the replacements yields
a proof of the sentence 𝜑 in Peano Arithmetic.
Qed.

1.1.14. Corollary. Consider a formula𝜑(−) of Peano Arithmetic. If PAK proves𝜑(𝐾),
then Peano Arithmetic proves 𝜑(𝑛) for some numeral 𝑛 ∈ ℕ.

Proof. Apply the algorithm of Proposition 1.1.13.
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Qed.

1.1.15. Notice that Corollary 1.1.14 relies on the algorithm described in the proof of
Proposition 1.1.13, and not merely on the statement of the proposition: an instance of
proof relevance in mathematics. We use the term corollary in this proof-relevant sense
throughout our work.

1.1.16. The construction of PAK privileges the relation< over other possible relations.
Indeed, we could have defined a theory PAKd in the language of PAK that has the
axioms of Peano Arithmetic, along with the following axioms (one for each natural):

K1 1 divides 𝐾 ,

K2 2 divides 𝐾 ,

. . .

Kn 𝑛 divides 𝐾 ,

. . .

and the resulting theory would satisfy the analogue of Proposition 1.1.13, if one re-
placed 𝐾 with the product

∏
𝑖<𝑛 𝑖 instead of 𝑛+1.

1.1.17. The constant symbol 𝐾 of PAK behaves like an ideal element with respect to
the order relation, and that of PAKd behaves ideally with respect to divisibility. One
should be able to extend the method of paragraph 1.1.16 to add new constants that be-
have like ideal elements for any relation, as long as such ideal elements can coexist
with Peano Arithmetic in the sense that finitely many of the new axioms do not contra-
dict Peano Arithmetic. The notion of admissibility (Definition 1.1.18) formalizes this
intuition.

1.1.18. Definition. We call a binary predicate 𝑅(−,−) in the language of Peano Arith-
metic admissible if for any finite subset of the natural numbers 𝐹 we can find 𝑦 such
that Peano Arithmetic proves that 𝑅(𝑥,𝑦) holds for all 𝑥 ∈ 𝐹 .

1.1.19. Proposition. Every admissible binary predicate 𝑅(−,−) gives rise to a theory
PAKR in the language of PAK conservatively extending Peano Arithmetic with ideal
elements for 𝑅. Vice versa, if a binary predicate gives rise to such a conservative
extension, we can conclude the admissibility of 𝑅(−,−).
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Proof. We leave the forward direction as an exercise to the reader. For the backward
direction, consider any finite set 𝐹 ⊆ ℕ. The theory PAKR proves the conjunction⋀
𝑥∈𝐹 𝑅(𝑥,𝐾) (since it proves each of the axioms Ki). Hence, PAKR also proves

∃𝑦.
⋀
𝑥∈𝐹 𝑅(𝑥,𝑦), a sentence of Peano Arithmetic. By conservative extension, Peano

Arithmetic proves ∃𝑦.
⋀
𝑥∈𝐹 𝑅(𝑥,𝑦), so it proves that𝑅(𝑥,𝑦) holds for all 𝑥∈ 𝐹 . Using

Definition 1.1.18, we conclude the admissibility of 𝑅.
Qed.

1.1.20. As we have seen, PAK-style extensions add new constants for ideal numbers,
but do not otherwise change Peano Arithmetic. However, we cannot quantify over (or
otherwise keep track of) these additions at the level of syntax. Hence, we could increase
the expressiveness of our extensions by including an explicit new predicate for those
elements that Peano Arithmetic already had, even before we performed the idealization.

1.1.21. Definition. Consider an admissible predicate 𝑅(−,−). The language of the
theory PAKS consists of the language of Peano Arithmetic extended with a formal
constant symbol 𝐾 and a unary atomic predicate st(−). The theory PAKSR consists
of the axioms of Peano Arithmetic, along with the three new axioms below:

1. ∀𝑥.st(𝑥)→ 𝑅(𝑥,𝐾),

2. st(0),

3. ∀𝑛.st(𝑛)→ st(𝑛+1).

1.1.22. Similarly to 1.1.10, our construction of PAKSR does not add new induction ax-
ioms to Peano Arithmetic. In particular, PAKSR does not prove ∀𝑥.st(𝑥), even though
it proves both st(0) and ∀𝑛.st(𝑛)→ st(𝑛+1). Notice that ¬st(𝐾) does not occur among
the axioms.

1.1.23. Exercise. Prove ¬st(𝐾) in PAKSR for 𝑅(𝑥,𝑦)↔ 𝑥 < 𝑦. Choose carefully an-
other binary predicate 𝑅 in such a way that you can prove st(𝐾) in the corresponding
theory PAKSR.

1.1.24. Instead of constructing a new theory PAKSR for each relation𝑅, we could par-
allelize our construction, extending Peano Arithmetic simultaneously with all possible
ideal elements. Indeed, as the construction of the theory PAKSR extends Peano Arith-
metic with ideal elements, so will the Idealization axiom of Internal Set Theory create
ideal elements with respect to any admissible relation. As such, we will not spend
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time proving conservative extension over Peano Arithmetic for the likes of PAKSR:
the proof of the conservative extension theorem for Internal Set Theory over ZFC Set
Theory supersedes such results anyway, and we sketch the main ingredient of that latter
proof below.

Internal Set Theory

1.1.25. Definition. The language of Internal Set Theory consists of a binary predicate
symbol − ∈ − (membership) and a unary predicate symbol st(−). The first-order the-
ory referred to as Internal Set Theory consists of the axioms of Zermelo-Fraenkel Set
Theory, the Axiom of Choice, and the additional axiom schemata Idealization, Stan-
dardization and Transfer defined below.

1.1.26. Given a set 𝐴, we introduce the following abbreviated quantifiers:

• ∀𝑠𝑡𝑥 ∈ 𝐴.… abbreviates ∀𝑥.𝑥 ∈ 𝐴∧st(𝑥)→… ,

• ∃𝑠𝑡𝑥 ∈ 𝐴.… abbreviates ∃𝑥.𝑥 ∈ 𝐴∧st(𝑥)∧… ,

1.1.27. Definition. Consider a formula 𝜑 in the language of Internal Set Theory. We
call 𝜑 an internal formula if it does not contain any occurrences of the predicate st(−).
In accordance with the observations of sections 1.1.10 and 1.1.22, we shall permit inter-
nal formulae to contain parameters ranging over both standard and non-standard sets.

1.1.28. Axiom Schema of Idealization: Consider an internal formula 𝜑, and a vari-
able  fresh with respect to 𝜑. The following statements are equivalent.

1. ∀𝑠𝑡 f in .∃𝑦.∀𝑥 ∈  .𝜑(𝑥,𝑦),
2. ∃𝑦.∀𝑠𝑡𝑥.𝜑(𝑥,𝑦)

Notice that the first clause captures the notion of admissible relation introduced in Def-
inition 1.1.18, and the schema internalizes the process of adjoining new constants for
ideal numbers. For example, instantiating Idealization with the predicate 𝜑(𝑥,𝑦) abbre-
viating “𝑥,𝑦∈ℕ and 𝑥 divides 𝑦” gives us an analogue of the ideal element𝐾 ∈ℕ that
appears in 1.1.16.

1.1.29. Axiom Schema of Transfer: Consider an internal formula 𝜑 with free vari-
ables 𝑥1,… ,𝑥𝑛 and no others. The following holds:

∀𝑠𝑡𝑥1.…∀𝑠𝑡𝑥𝑛−1.
(
∀𝑠𝑡𝑥𝑛.𝜑→ ∀𝑥𝑛.𝜑

)
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That is, if a transfer property holds for every standard element of a standard set, then it
holds for every element of that set1.

1.1.30. Axiom Schema of Standardization: Take an arbitrary (internal or external)
formula 𝜑 with one free variable, and a standard set 𝐺. Then we can construct a stan-
dard set, denoted⦃𝑥 ∈ 𝐺 |𝜑(𝑥)⦄ such that the following are equivalent for each element
𝑎 ∈ 𝐺:

1. 𝑎 ∈ ⦃𝑥 ∈ 𝐺 |𝜑(𝑥)⦄
2. st(𝑎)→ 𝜑(𝑎)

The notation closely resembles Comprehension: indeed, we can see this axiom schema
as an external comprehension principle for a restricted class of formulae. Given the
other axioms, one can show that the set constructed by Standardization is the unique
set satisfying the property above.

1.1.31. Recall that the axiom schema of Comprehension,

∀𝑧.∃!𝑦.∀𝑥.𝑥 ∈ 𝑦↔ (𝑥 ∈ 𝑧∧𝜑)

occurs as one of the axiom schemata of Zermelo-Fraenkel Set Theory. The axiom
justifies the use of set builder notation, by writing {𝑥 ∈ 𝑧 |𝜑} for the set 𝑦whose unique
existence the schema asserts. However, Internal Set Theory does not add new instances
of the Comprehension schema to the underlying ZFC Set Theory: as such, instances
of set-builder notation where the formula 𝜑 is not internal may fail to denote any set
at all! As an example, take {𝑥 ∈ ℕ | st(𝑛)}. Internal Set Theory does not prove the
existence of a set that contains precisely the standard naturals (indeed, we will see in
Corollary 1.2.12 that it proves the non-existence of such a set). In a departure from usual
mathematics, the practitioner of Internal Set Theory has to take great care to avoid such
illegal set formation, by making sure that all instances of set builder notation use only
internal formulae.

Galactic Halo theorem

1.1.32. Nelson [33] gave a proof-theoretic algorithm which translates proofs in Internal
Set Theory to proofs in ZFC. Theorem 1.1.39, the key ingredient of Nelson’s argument,

1Cf. the Tarski-Vaught criterion for elementary substructures.
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will make an appearance in the subsequent chapters. As such, we present a proof of
Theorem 1.1.39. To prove conservative extension, one would have to further prove the
admissibility of the modus ponens rule in translation, the preservation of the logical
axioms (i.e. that one can indeed prove the translations of all instances of the logical
schemata introduced in 1.1.4 purely inside ZFC), and (since the translation works only
for bounded formulae) introduce and eliminate a “universe bound”. Proving the preser-
vation of the logical axioms requires a non-trivial use of the Tychonoff theorem (see
[33]-Theorem 3). We assume a good working knowledge of Internal Set Theory in this
subsection: readers who have not worked in Internal Set Theory before should feel free
to skip this subsection for now and proceed directly to Section 1.2.

1.1.33. Lemma. Consider a standard set 𝑉 and an internal formula 𝜑 of Internal Set
Theory with two free variables 𝑥,𝑦. Assume that ∀𝑠𝑡𝑥∈ 𝑉 .∃𝑠𝑡𝑦∈ 𝑉 .𝜑 (𝑥,𝑦). Then IST
proves the existence of a standard function 𝑓 ∶ 𝑉 → 𝑉 such that ∀𝑠𝑡𝑥 ∈ 𝑉 .𝜑 (𝑥,𝑓 (𝑥)).

Proof. Define the function 𝑓 =⦃(𝑥,𝑌 ) ∈ 𝑉 ×(𝑉 ) |𝑌 = ⦃𝑦 ∈ 𝑉 |𝜑(𝑥,𝑦)⦄⦄ via a nest-
ed use of the Standardization axiom. Since the set-valued function 𝑓 never takes the
value ∅, the Axiom of Choice gives a function 𝑓 ∶ 𝑉 → 𝑉 with the required property.
Qed.

1.1.34. Notice that the proof of Lemma 1.1.33 does not rely the internality assumption
for𝜑 in any way. However, the lemma, even when restricted to internal formulae, allows
us to prove all instances (internal or external) of Standardization.

1.1.35. Exercise. Show that the theory obtained by adding the Idealization, Trans-
fer principles and Lemma 1.1.33 to Zermelo-Fraenkel Set Theory with the Axiom of
Choice proves every instance of the Standardization schema. Hint: Use Theorem 1.1.39
twice.

1.1.36. Definition. Given a set 𝑆, we denote its finite powerset, the set of all its finite
subsets, by  f in(𝑆). However, if the current context has a formal constant 𝑈 standing
in as a bound for the universe of discourse, we treat the formula 𝑆 ∈  f in(𝑈 ) as an
abbreviation for the sentence “𝑆 forms a finite set”.

1.1.37. For the sake of simplicity, we may leave bounds implicit, but assume that every
quantifier has a standard bound in the next few paragraphs. Note that Kanovei [26]
shows that the unbounded sentence ∀𝐹 .(∀𝑠𝑡𝑛 ∈ ℕ.st(𝐹 (𝑛)) → ∃𝑠𝑡𝐺.∀𝑠𝑡𝑛 ∈ ℕ.𝐹 (𝑛) =
𝐺(𝑛)) is not equivalent to any sentence of ZFC (and is therefore independent of IST).
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1.1.38. Definition. Consider bounded sentences Ψ1,Ψ2 of Internal Set Theory, where
Ψ2 has the form ∀𝑠𝑡𝑥1.∀𝑠𝑡𝑥2.…∃𝑠𝑡𝑦1.∃𝑠𝑡𝑦2.…𝜓 for some internal formula𝜓 . We write
[Ψ1] = Ψ2 and say that Ψ1 has Nelson normal form Ψ2 if we can construct a proof tree
with conclusion labeled by [Ψ1] = Ψ2 using finitely many instances of the following
rules (for more about proof trees see 4.1.15).

st
[st(𝑥)] = (∃𝑠𝑡𝑞.𝑥 = 𝑞)

or
int

[𝜑] = 𝜑
or

[Φ] = ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑
¬

[¬Φ] = ∀𝑠𝑡𝑦1 ∈
∏

𝑖𝐴𝑖 → 𝐸1.…∃𝑠𝑡𝑥1 ∈ 𝐴1.…¬𝜑[𝑦𝑖 ∶= 𝑦𝑖(𝑥1,…)]
or

[Φ] = ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑
∀𝑠𝑡

[∀𝑠𝑡𝑧 ∈ 𝐴.Φ] = ∀𝑠𝑡𝑧 ∈ 𝐴.∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑
or

[Φ] = ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑
∀

[∀𝑧.Φ] = ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑌1 ∈  f in(𝐸1).…∀𝑧.∃𝑦1 ∈ 𝑌1.…𝜑
or

[Φ1] = ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑1 [Φ2] = ∀𝑠𝑡𝑣1 ∈ 𝐵1.…∃𝑠𝑡𝑤1 ∈ 𝐹1.…𝜑2
→

[Φ1 →Φ2] = ∀𝑠𝑡𝑣1 ∈ 𝐵1.…∀𝑠𝑡𝑦1 ∈
∏

𝑖𝐴𝑖 → 𝐸1.…∃𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑤1 ∈ 𝐹1.…𝜑′

where 𝜑′ abbreviates 𝜑1[𝑦𝑖 ∶= 𝑦𝑖(𝑥1,…)]→ 𝜑2, Φ,Φ2 stand for arbitrary non-internal
formulae, Φ1 stands for an arbitrary formula, 𝜑𝑖 stand for internal formulae, variable 𝑧
occurs free in each Φ𝑖 and we choose 𝑞 as a fresh variable.

1.1.39. Theorem (Galactic Halo2). Every bounded sentence Ψ of Internal Set Theory
has a logically equivalent (modulo theory), unique Nelson normal form [Ψ].

Proof. For uniqueness, observe that in Definition 1.1.38, the principal connective of
Ψ1 uniquely determines the next available rule of the proof tree. For existence, observe
that the depth of the formula decreases with each application of a rule. Hence, one will
eventually reach either an internal formula (which has itself as a unique Nelson normal
form) or st(𝑥) (which has Nelson normal form ∃𝑠𝑡𝑞.𝑥 = 𝑞 for some fresh variable 𝑞).
For logical equivalence, we argue by induction on structure of the formula, using the
uniqueness and existence of the tree itself as a guide.

2Theorem 1 of [33]. Some authors call formulae of the form ∀𝑠𝑡𝑥.𝜑 halic, and those of the form
∃𝑠𝑡𝑥.𝜑 galactic. In naming this theorem, we pay homage to them.
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1. Cases st,int,∀𝑠𝑡: Follow immediately from the definitions.

2. Case ¬: We have

¬Φ↔ ¬[Φ] by inductive assumption

↔ ¬∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑 by the ¬ rule (premise)

↔ ∃𝑠𝑡𝑥1 ∈ 𝐴1.…∀𝑠𝑡𝑦1 ∈ 𝐸1.…¬𝜑 by de Morgan’s laws

↔ ∀𝑠𝑡𝑦1 ∈ Π𝑖𝐴𝑖 → 𝐸1.…∃𝑠𝑡𝑥1 ∈ 𝐴1.…𝜑′ by Lemma 1.1.33

↔ [¬Φ]. by the ¬ rule

where 𝜑′ abbreviates ¬𝜑[𝑦𝑖 ∶= 𝑦𝑖(𝑥1,…)].

3. Case ∀: We have

∀𝑧.Φ↔ ∀𝑧.[Φ] by induction

↔ ∀𝑧.∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑 by the ∀ rule

↔ ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∀𝑧.∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑 by quantifier switch

↔ ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑌1 ∈  f in(𝐸1).…𝜑′ by Idealization

↔ [∀𝑧.Φ]. by the ∀ rule

where 𝜑′ abbreviates ∀𝑧.∃𝑦1 ∈ 𝑌1.𝜑.

4. Case →: We have

Φ′ ↔ ([Φ1]→ [Φ2]) by induction

↔ (¬[Φ1]∨ [Φ2]) by classical logic

↔ ([¬Φ1]∨ [Φ2]) by case ¬ above

↔ ((∀𝑠𝑡𝑦1 ∈ Π𝑖𝐴𝑖 → 𝐸1.…∃𝑠𝑡𝑥1 ∈ 𝐴1.…𝜑′)∨

∀𝑠𝑡𝑣1 ∈ 𝐵1.…∃𝑠𝑡𝑤1 ∈ 𝐹1.…𝜑2) by the ¬ rule

↔ ∀𝑠𝑡𝑣1 ∈ 𝐵1.…∀𝑠𝑡𝑦1 ∈ Π𝑖𝐴𝑖 → 𝐸1.…

∃𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑤1 ∈ 𝐹1.…𝜑′ → 𝜑2 by quantifier switch

↔ [Φ1 →Φ2]. by the → rule

where Φ′ abbreviates Φ1 →Φ2 and 𝜑′ abbreviates ¬𝜑[𝑦𝑖 ∶= 𝑦𝑖(𝑥1,…)].

This proves that every bounded formula of Internal Set Theory has a logically equiva-
lent, unique Nelson normal form.
Qed.
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1.1.40. Using the Galactic Halo theorem, Nelson gives a translation that converts proofs
in Internal Set Theory to proofs in Zermelo-Fraenkel Set Theory with the Axiom of
Choice. If a ZFC formula occurs as the conclusion of the proof inside Internal Set
Theory, the resulting ZFC proof will retain the same conclusion, thus ensuring conser-
vativity of Internal Set Theory over ZFC.

1.1.41. Definition. Given a sentence Φ of Internal Set Theory with Nelson normal
form [Φ] = ∀𝑠𝑡𝑥1.∀𝑠𝑡𝑥2.…∃𝑠𝑡𝑦1.∃𝑠𝑡𝑦2.…𝜑, we refer to the ZFC sentence
[Φ] = ∀𝑥1.∀𝑥2.…∃𝑦1.∃𝑦2.…𝜑 as the Nelson reduction of the formula Φ.

1.1.42. Proposition. We have an equivalence between every bounded sentence Φ of In-
ternal Set Theory and its Nelson reduction [Φ]when we interpret the latter as a sentence
of Internal Set Theory.

Proof. Use Transfer.
Qed.

1.1.43. Proposition ([33]-Theorem 2). Applying the Nelson reduction to Idealization,
(simple) Standardization and Transfer axioms yields theorems of ZFC set theory.

Proof. For notational convenience, we omit most bounds and merge all consecutive
quantifiers of the same sort into one quantifier, e.g. ∀𝑠𝑡𝑡 abbreviates ∀𝑠𝑡𝑡1.∀𝑠𝑡𝑡2.… in
what follows. Similarly for displayed variables in predicates and terms in substitutions.
Our version of the proof differs from Nelson’s account in the treatment of Idealization.

1. Transfer: A Transfer axiom takes the form ∀𝑠𝑡𝑡.(∀𝑠𝑡𝑥.𝜑(𝑥, 𝑡))→ ∀𝑦.𝜑(𝑦, 𝑡) for an
internal formula 𝜑. We calculate its Nelson normal form as

[∀𝑠𝑡𝑡.(∀𝑠𝑡𝑥.𝜑(𝑥, 𝑡))→ ∀𝑦.𝜑(𝑦, 𝑡)]

= ∀𝑠𝑡𝑡.[(∀𝑠𝑡𝑥.𝜑(𝑥, 𝑡))→ ∀𝑦.𝜑(𝑦, 𝑡)]

= ∀𝑠𝑡𝑡.∀𝑠𝑡𝑦.∃𝑠𝑡𝑥.𝜑(𝑥, 𝑡)→ 𝜑(𝑦, 𝑡).

This gives rise to the Nelson reduction ∀𝑡.∀𝑦.∃𝑥.𝜑(𝑥, 𝑡)→ 𝜑(𝑦, 𝑡), a tautology.

2. Idealization F: In the following, we use a purely formal placeholder constant 𝑈
for the universe. Recall that an Idealization axiom takes the form

(∀𝑠𝑡𝐵 ∈  f in(𝑈 ).∃𝑎.∀𝑏 ∈ 𝐵.𝜑(𝑎,𝑏,𝑤))→ ∃𝑥.∀𝑠𝑡𝑦.𝜑(𝑥,𝑦,𝑤)
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for any internal formula𝜑. We first compute the Nelson normal form of the right
hand side: [∃𝑥.∀𝑠𝑡𝑦.𝜑(𝑥,𝑦,𝑤)] = ∀𝑠𝑡𝑌 ∈  f in(𝑈 ).∃𝑥.∀𝑦 ∈ 𝑌 .𝜑(𝑥,𝑦,𝑤). Using
this, we get the Nelson normal form

∀𝑌 ∈  f in(𝑈 ).∃𝐵′ ∈  f in( f in(𝑈 )).∀𝑤.∃𝐵 ∈ 𝐵′.

(∃𝑎.∀𝑏 ∈ 𝐵.𝜑(𝑎,𝑏,𝑤))→ ∃𝑥.∀𝑦 ∈ 𝑌 .𝜑(𝑥,𝑦,𝑤),

which we need to prove in ZFC Set Theory. To do that, first notice its equivalence
to

∀𝑌 ∈  f in(𝑈 ).∃𝑍 ∈  f in(𝑈 ).∀𝑤.

(∃𝑎.∀𝑧 ∈𝑍.𝜑(𝑎,𝑧,𝑤))→ ∃𝑥.∀𝑦 ∈ 𝑌 .𝜑(𝑥,𝑦,𝑤),

obtained by assuming the former then setting 𝑍 =
⋃
𝐵′ to conclude the latter;

then notice that we can write the latter as an instance of a logical tautology.

3. Idealization B: The backward Idealization axiom takes the form

(∃𝑥.∀𝑠𝑡𝑦.𝜑(𝑥,𝑦,𝑤))→ ∀𝑠𝑡𝐵 ∈  f in(𝑈 ).∃𝑎.∀𝑏 ∈ 𝐵.𝜑(𝑎,𝑏,𝑤)

for any internal formula 𝜑. Computing the Nelson normal form, we get

∀𝐵 ∈  f in(𝑈 ).∃𝑌 ′ ∈  f in( f in(𝑈 )).∀𝑤.∃𝑌 ∈ 𝑌 ′.

(∃𝑥.∀𝑦 ∈ 𝑌 .𝜑(𝑥,𝑦,𝑤))→ ∃𝑎.∀𝑏 ∈ 𝐵.𝜑(𝑎,𝑏,𝑤),

which coincides with the forward case up to renaming.

4. Standardization: We deal only with Standardization in the form of Lemma 1.1.33,
which we can write as

∀𝑤.(∀𝑠𝑡𝑥.∃𝑠𝑡𝑦.𝜑(𝑥,𝑦,𝑤))→ ∃𝑠𝑡𝑏 ∶ 𝑈 → 𝑈.∀𝑠𝑡𝑎.𝜑(𝑎,𝑏(𝑎),𝑤)

where 𝜑 denotes an internal formula, as usual. We first calculate the Nelson
normal form

[∃𝑠𝑡𝑏 ∶ 𝑈 → 𝑈.∀𝑠𝑡𝑎.𝜑(𝑎,𝑏(𝑎),𝑤)] =

∀𝑠𝑡𝑎 ∶ 𝑈 → 𝑈.∃𝑠𝑡𝑏.𝜑(𝑎(𝑏), 𝑏(𝑎(𝑏)),𝑤).
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Now, we can take the Nelson reduction of the implication, and get

∀𝑎.∀𝑦.∃𝑥.∃𝑏.𝜑(𝑥,𝑦(𝑥),𝑤)→ 𝜑(𝑎(𝑏), 𝑏(𝑎(𝑏)),𝑤)

Finally, we add the universal quantification to obtain the monstrous formula

∀𝑎.∀𝑦.

∃𝑋.∃𝐵.

∀𝑤.∃𝑥 ∈𝑋.∃𝑏 ∈ 𝐵.𝜑(𝑥,𝑦(𝑥),𝑤)→ 𝜑(𝑎(𝑏), 𝑏(𝑎(𝑏)),𝑤).

Notice that we can prove the Nelson reduction of the formula above simply by
setting 𝑋 = {𝑎(𝑦)}, 𝐵 = {𝑦}. These fix 𝑏 and 𝑥 uniquely, and we get the goal

∀𝑎.∀𝑦.

∀𝑤.𝜑(𝑎(𝑦),𝑦(𝑎(𝑦)),𝑤)→ 𝜑(𝑎(𝑦),𝑦(𝑎(𝑦)),𝑤),

an instance of a logical tautology.

Qed.

1.1.44. The translation sketched above relies heavily on the Axiom of Choice: every
switch of quantifiers and every translation of a modus ponens rule hides a use of Choice,
and one also has to prove that the translations of the logical axioms (when instantiated
with external formulae) also yield theorems of ZFC Set Theory. Proving this for logical
axioms of the form U3 requires invocations of Tychonoff’s theorem for products of finite
sets.

1.1.45. Theorem. Both of the following statements imply each other in Zermelo-Fraenkel
Set Theory (without the Axiom of Choice):

• Finite Tychonoff Theorem: The product of an indexed family of finite topolog-
ical spaces satisfies compactness with respect to the product topology.

• Ultrafilter Lemma: Every filter on any set occurs as a subfilter of some ultrafil-
ter.

Proof. Follows from [29]-Theorem 2.21.
Qed.
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1.1.46. The Ultrafilter Lemma is independent of Zermelo-Fraenkel Set Theory [4].
With that in mind, and in light of Theorem 1.1.45, we shall see the inevitability of
the phenomenon discussed in 1.1.44: Internal Set Theory conservatively extends ZFC
Set Theory, but Internal Set Theory without the Axiom of Choice does not conserva-
tively extend Zermelo-Fraenkel Set Theory without the Axiom of Choice. We will
prove this in a subsequent section by deducing the Ultrafilter Lemma (Lemma 1.3.40)
in IST without using Choice. Apart from the Finite Tychonoff Theorem, the Nelson
translation also uses full Choice to switch quantifiers3, so one cannot use it to show
that IST without Choice conservatively extends Zermelo-Fraenkel Set Theory with the
Ultrafilter Lemma. However, one can use a model-theoretic argument of Hrbacek [23]
to prove this conservative extension result directly.

1.2 Working in IST

1.2.1. From here on we work inside Internal Set Theory. Consequently, all the theo-
rems that follow are stated and proved in Internal Set Theory, unless otherwise noted.

1.2.2. Proposition. Consider an internal predicate 𝜑 with standard parameters. As-
sume the existence of a nonstandard 𝑥 such that 𝜑(𝑥) holds. Then we can also find a
standard 𝑦 satisfying 𝜑.

Proof. If the predicate𝜑 is internal, so is¬𝜑. The implication (∀𝑠𝑡𝑦.¬𝜑(𝑦))→∀𝑥.¬𝜑(𝑥)
holds by Transfer. Taking the contrapositive, we get the implication (∃𝑥.𝜑(𝑥)) →
∃𝑠𝑡𝑦.𝜑(𝑦). Now assume that we have a nonstandard 𝑥 such that 𝜑(𝑥) holds. Then
a fortiori we have an 𝑥 such that 𝜑(𝑥) holds (we just “forget to mention” the non-
standardness of 𝑥). Hence, the previous implication immediately gives a standard 𝑦
satisfying 𝜑(𝑦).
Qed.

1.2.3. As per Proposition 1.2.2, we can use transfer on any internal formula: any in-
ternal formula has a prenex normal form ∀𝑥.𝑄2𝑦.…𝜑(𝑥,𝑦) where 𝑄𝑖 are quantifiers
∀ or ∃, and 𝜑 is internal and quantifier-free. If 𝑄1 = ∀, then the Transfer axiom
yields ∀𝑥.𝑄2𝑦.…𝜑(𝑥,𝑦) ↔ ∀𝑠𝑡𝑥.𝑄2𝑦.…𝜑(𝑥,𝑦). Otherwise, Proposition 1.2.2 yields
∃𝑠𝑡𝑥.𝑄2𝑦.…𝜑(𝑥,𝑦)↔ ∃𝑥.𝑄2𝑦.…𝜑(𝑥,𝑦). Notice that we have already relied on this in

3However, this use of Choice turns out to be innocent in both Peano arithmetic with finite types and
in the type theory presented in Chapter 4.
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the proof of Theorem 1.1.39. More importantly, Proposition 1.2.2 allows us to make
provisional assumptions of standardness: whenever we wish to prove an internal im-
plication 𝜑→ 𝜓 , we can start the proof by assuming the standardness of all objects
mentioned in 𝜑. After we prove the conclusion 𝜓 , we can freely discharge these stan-
dardness assumptions. In many situations, the additional standardness assumptions
make the conclusion easier to prove, by enabling the use of previously constructed ideal
elements. The reader will see a substantial example of the phenomenon “in action” in
the proof of Theorem 1.2.7.

1.2.4. Proposition. Consider an internal formula 𝜓 . The following statements are
equivalent.

1. ∃𝑠𝑡 f in .∀𝑦.∃𝑥 ∈  .𝜓(𝑥,𝑦),
2. ∀𝑦.∃𝑠𝑡𝑥.𝜓(𝑥,𝑦).

Proof. Recall that for any internal𝜑, ∀𝑠𝑡 f in .∃𝑦.∀𝑥∈ .𝜑(𝑥,𝑦) and ∃𝑦.∀𝑠𝑡𝑥.𝜑(𝑥,𝑦) are
equivalent. Since𝜓 is an internal formula, so is ¬𝜓 . Setting𝜑 to ¬𝜓 , we get the logical
equivalence of ∀𝑠𝑡 f in .∃𝑦.∀𝑥∈  .¬𝜓(𝑥,𝑦) and ∃𝑦.∀𝑠𝑡𝑥.¬𝜓(𝑥,𝑦). We can take the con-
trapositive and apply de Morgan’s laws to obtain the equivalence of ∃𝑠𝑡 f in .∀𝑦.∃𝑥 ∈
 .𝜓(𝑥,𝑦) and ∀𝑦.∃𝑠𝑡𝑥.𝜓(𝑥,𝑦) as desired.
Qed.

1.2.5. Theorem. Every element of a standard finite set is standard. Furthermore, if
every element of a set 𝐹 is standard, then 𝐹 is finite.

Proof. First consider a standard finite set 𝐹 . Then the following holds:

∃𝑠𝑡 f in𝐻.∀𝑥.∃𝑦 ∈𝐻.𝑥 ∈ 𝐹 → 𝑥 = 𝑦

simply by taking 𝐻 = 𝐹 . Applying Proposition 1.2.4, we obtain that ∀𝑦.∃𝑠𝑡𝑥.𝑥 ∈ 𝐹 →

𝑥 = 𝑦. But then 𝑦 is standard. Now consider a set 𝐹 whose elements are all standard.
Then ∀𝑦.∃𝑠𝑡𝑥.𝑥∈ 𝐹 → 𝑥= 𝑦. Applying the previous equivalence in reverse, we get that
𝐹 ⊆𝐻 for some finite 𝐻 . This proves that 𝐹 is finite.
Qed.

1.2.6. The proof of the combinatorialist’s version of the compactness theorem, a well
known theorem of de Bruijn and Erdős, provides an ideal entry point to Internal Set
Theory, since it uses each of the new axioms at least once. The proof presented below
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hides only a compactness argument, but the general technique recurs very often, so we
feel compelled to give an excruciatingly detailed proof. Ultimately, axiomatizing these
situations will reveal a connection to Zilber’s notion of structural approximation via
Definition 2.2.3. In what follows, the word graph denotes an undirected graph with no
loops or multi-edges. We denote the set of vertices of a graph 𝐺 as 𝑉𝐺, the set of edges
as𝐸𝐺. We call a graph finite if it contains finitely many vertices. A coloring of a graph
consists of a map 𝑓 ∶ 𝑉 (𝐺)→ 𝐶 from the vertices of the graph to some set of colors 𝐶
such that no two vertices sharing the same edge get assigned the same color.

1.2.7. Theorem (de Bruijn-Erdős). Consider a finite set of colors 𝐶 = {1,… ,𝑘}. A
graph𝐺 admits a𝐶-coloring precisely if every finite subgraph of𝐺 admits a𝐶-coloring.

Proof. One direction is obvious. For the other direction, assume that we can color ev-
ery finite subgraph of𝐺 with 𝑘∈ℕ colors. In fact, since we can express our conclusion
(𝑘-colorability of 𝐺) using an internal formula, we can provisionally assume the stan-
dardness of both the graph 𝐺 and the finite set 𝐶 of colors. At the end, Transfer will
eliminate these assumptions.

1. Given any finite set 𝑁 of vertices of 𝐺, we can find a finite subgraph of 𝐺 that
contains all the vertices in 𝑁 (take the induced subgraph of the set 𝑁). The
Idealization axiom applies to this situation: we get a finite subgraph 𝐻 ⊆𝐺 that
nevertheless contains every standard vertex of 𝐺.

2. Since 𝐻 is a finite subgraph of 𝐺, our assumption guarantees that it admits a
𝐶-coloring 𝑓 ∶ 𝐻 → {1,…𝑘}. Identify the function 𝑓 with its graph, the set
of all pairs (𝑣,𝑐) such that 𝑓 (𝑣) = 𝑐. Then for any 𝑣 ∈ 𝑉𝐺 we can find a unique
𝑐 ∈ {1,… ,𝑘} such that (𝑣,𝑐) ∈ 𝑓 .

3. Use Standardization to define a standard set

𝑓 ′ = ⦃(𝑣,𝑐) ∈ 𝑉𝐺 ×{1,… ,𝑘} || (𝑣,𝑐) ∈ 𝑓⦄ .
We shall prove that the set 𝑓 ′ also forms the graph of a function 𝑉𝐺→𝐶 , meaning
that for any vertex 𝑣 ∈ 𝑉𝐺 we can find a unique 𝑐 ∈ {1,… ,𝑘} such that (𝑣,𝑐)
belongs to 𝑓 ′.

4. Existence says ∀𝑣 ∈ 𝑉𝐺.∃𝑐 ∈ 𝐶.(𝑣,𝑐) ∈ 𝑓 ′, but by Transfer it suffices to prove
∀𝑠𝑡𝑣 ∈ 𝑉𝐺.∃𝑠𝑡𝑐 ∈ 𝐶.(𝑣,𝑐) ∈ 𝑓 ′. So pick any standard 𝑣 ∈ 𝑉𝐺. We have 𝑣 ∈𝐻
since𝐻 contains every standard vertex. The fact that 𝑓 is a function immediately
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gives us a 𝑐 ∈ {1,… ,𝑘} such that (𝑣,𝑐) ∈ 𝑓 . But 𝐶 forms a standard finite set,
so we can use Theorem 1.2.5 to conclude the standardness of 𝑐. Now, we have a
standard pair (𝑣,𝑐) ∈ 𝑓 . The Standardization axiom says that (𝑣,𝑐) ∈ 𝑓 ′ holds for
standard 𝑣,𝑐 precisely if (𝑣,𝑐) ∈ 𝑓 . Hence (𝑣,𝑐) ∈ 𝑓 ′ holds, proving existence.

5. For uniqueness, it suffices to prove that

∀𝑠𝑡𝑣 ∈ 𝑉𝐺.∀𝑠𝑡𝑐1, 𝑐2 ∈ 𝐶.(𝑣,𝑐1) ∈ 𝑓 ′∧(𝑣,𝑐2) ∈ 𝑓 ′ → 𝑐1 = 𝑐2.

So take standard 𝑣,𝑐1, 𝑐2 and assume both (𝑣,𝑐1) ∈ 𝑓 ′ and (𝑣,𝑐2) ∈ 𝑓 ′. Using the
standardness of the pairs (𝑣,𝑐1), (𝑣,𝑐2) we can apply Standardization to conclude
(𝑣,𝑐1) ∈ 𝑓 and (𝑣,𝑐2) ∈ 𝑓 . At that point, we can use the fact that 𝑓 is a functional
relation to conclude 𝑐1 = 𝑐2, proving uniqueness.

6. Now we verify that 𝑓 ′ gives a 𝐶-coloring. The sentence

∀𝑣1,𝑣2 ∈ 𝑉𝐺.(𝑣1,𝑣2) ∈ 𝐸𝐺 → 𝑓 ′(𝑣1) ≠ 𝑓 ′(𝑣2)

states this. Transfer applies, so we can get away with showing

∀𝑠𝑡𝑣1,𝑣2 ∈ 𝑉𝐺.(𝑣1,𝑣2) ∈ 𝐸𝐺 → 𝑓 ′(𝑣1) ≠ 𝑓 ′(𝑣2).

So take standard vertices 𝑣1,𝑣2 of the graph and suppose they have an edge be-
tween them. Then

𝑓 ′ (𝑣1) = 𝑓 (𝑣1) ≠ 𝑓 (𝑣2) = 𝑓 ′ (𝑣2)
holds: the equalities follow by Standardization, the inequality follows since 𝑓 is a
𝐶-coloring. As 𝑣1,𝑣2 get different colors, we conclude that 𝑓 ′ gives a𝐶-coloring
of 𝐺.

We have concluded that for standard 𝐺 and 𝐶 , if every finite subgraph of 𝐺 admits
a 𝐶-coloring, so does the entire graph 𝐺. However, the conclusion is internal (with
standard parameters𝐺, 𝐶), so Transfer makes the standardness assumptions redundant.
We get that if every finite subgraph of some graph 𝐺 admits a 𝐶-coloring, then the
entire graph 𝐺 admits a 𝐶-coloring.
Qed.



1.2. WORKING IN IST 29

1.2.8. In the remainder of this section, we establish some basic results concerning stan-
dardness.

1.2.9. Proposition. Consider an internal formula 𝜑(𝑥) that has one free variable and
that does not contain any non-standard parameters. If the sentence ∃!𝑥.𝜑(𝑥) holds, then
the object 𝑥 such that 𝜑(𝑥) holds is necessarily standard.

Proof. Apply Transfer to ∃𝑥.𝜑(𝑥) to conclude the existence of some standard 𝑥 satis-
fying 𝜑(𝑥). By the uniqueness clause, every object 𝑦 satisfying 𝜑(𝑦) equals 𝑥: since 𝑥
is standard, so is 𝑦.
Qed.

1.2.10. Corollary. Given standard sets 𝐴,𝐵, the sets 𝐴×𝐵,𝐴∩𝐵,𝐴∪𝐵,𝐴 ⧵𝐵 and
(𝐵) are all standard, and so is the set of all functions 𝐴→ 𝐵.

Proof. We can characterize each of them via an internal formula with no non-standard
variables (exercise!), and prove their unique existence.
Qed.

1.2.11. Corollary. Given a standard function 𝑓 ∶𝐴→𝐵 and standard 𝑥∈𝐴, the value
𝑓 (𝑥) is standard.

Proof. Regard the (graph of the) function as a subset of 𝐴×𝐵. For each 𝑥 ∈ 𝐴, the
internal formula 𝜑(𝑦)↔ (𝑥,𝑦) ∈ 𝑓 contains no non-standard parameters, and it charac-
terizes the value 𝑦 = 𝑓 (𝑥) uniquely.
Qed.

1.2.12. Corollary. One cannot construct a set that contains precisely the standard ele-
ments of ℕ.

Proof. Assume for a contradiction that we have found such a set ℕ𝑠𝑡. All elements of
ℕ𝑠𝑡 are standard, so by Theorem 1.2.5 ℕ𝑠𝑡 is finite. Consider the maximum element 𝑁
ofℕ𝑠𝑡. We have st(𝑁), so by Corollary 1.2.11, st(𝑁+1) holds as well. But𝑁+1∉ℕ𝑠𝑡,
a contradiction.
Qed.

1.2.13. Zermelo-Fraenkel Set Theory proves the (universal closure of the) axiom of
induction for any formula 𝜑 in its language. This internal induction principle remains
valid in Internal Set Theory. However, unlike ZFC (but similarly to the theory PAKSR
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considered in 1.1.10 and in 1.1.22), Internal Set Theory does not prove the axiom of
induction for some formulae in its (extended) language. In particular, for st(𝑥) we have
both st(0) and ∀𝑥 ∈ ℕ.st(𝑥) → st(𝑥+ 1) (this follows from Corollary 1.2.11 applied
to the standard function 𝑛↦ 𝑛+1), but of course not ∀𝑛 ∈ ℕ.st(𝑛), which would im-
mediately contradict Idealization. One must maintain constant vigilance not to apply
induction arguments to general formulae in the language of Internal Set Theory, es-
pecially since we make heavy use of binary predicates in the language of IST in the
later chapters of this thesis. On these predicates, we have weaker reasoning principles
(among them External Induction, Theorem 1.2.15) available. We develop these below.

1.2.14. Proposition. Consider a standard natural number 𝑏. All 𝑛 ∈ ℕ with 𝑛 < 𝑏 are
standard.

Proof. The internal formula 𝑥 < 𝑏 does not have non-standard parameters, so we can
construct the finite set𝐵 = {𝑥 ∈ ℕ |𝑥 < 𝑏}. The standardness of𝐵 follows immediately
from Proposition 1.2.9, so we can use Theorem 1.2.5 to conclude that all elements of
𝐵 are standard.
Qed.

1.2.15. Theorem (External Induction). Take any formula 𝜑 in the language of Internal
Set Theory (possibly with non-standard parameters). If 𝜑(0) and ∀𝑠𝑡𝑛.𝜑(𝑛)→ 𝜑(𝑛+1)
both hold, then 𝜑(𝑥) holds for all standard 𝑥 ∈ ℕ.

Proof. Use the axiom of Standardization to construct the set 𝑃 = ⦃𝑥 ∈ ℕ |𝜑(𝑥)⦄. The
formula 𝜓(𝑥)↔ 𝑥 ∈ 𝑃 is internal and its only parameter 𝑃 is standard. Notice that for
standard elements 𝑥, we have𝜑(𝑥)↔𝜓(𝑥), so𝜓(0) and ∀𝑠𝑡𝑛.𝜓(𝑛)→𝜓(𝑛+1) both hold,
and Transfer applies to the latter, so ∀𝑛.𝜓(𝑛) → 𝜓(𝑛+1) holds as well. By the (ordi-
nary, internal) induction principle we get ∀𝑥.𝜓(𝑥). The desired conclusion, ∀𝑠𝑡𝑥.𝜑(𝑥),
follows immediately from the equivalence of 𝜑 and 𝜓 over standard elements.
Qed.

1.3 Topology via predicates

1.3.1. Many applications of Internal Set Theory stem from its ability to transport def-
initions and techniques meant for finite spaces to the general topological setting. In
what follows, we consider topological spaces (𝑇 ,Ω𝑇 ) where Ω𝑇 denotes the lattice of
open sets, and 𝑇 denotes the carrier (underlying set of points). We employ metonymy,
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and write 𝑇 instead of (𝑇 ,Ω𝑇 ) whenever we deem the identity of Ω𝑇 sufficiently un-
ambiguous.

1.3.2. Given any topological space, we can construct an order relation (often referred to
as the specialization order) on its points that every continuous function preserves. For
finite topological spaces, we can easily achieve the converse as well (Theorem 1.3.6).

1.3.3. Definition. Consider a topological space (𝑇 ,Ω𝑇 ), and regard two points 𝑥,𝑦∈ 𝑇 .
We write 𝑥 ≤𝑇 𝑦 if ∀𝑉 ∈ Ω𝑇 .𝑥 ∈ 𝑉 → 𝑦 ∈ 𝑉 . We call the resulting preorder relation
≤𝑇 the specialization order of 𝑇 .

1.3.4. Exercise. Check that the construction of Definition 1.3.3 results in a preorder
relation on any topological space. Prove that the resulting relation satisfies the partial
order axioms precisely on T0-separable spaces.

1.3.5. Proposition. Consider a finite topological space (𝑇 ,Ω𝑇 ). A subset 𝑆 ⊆ 𝑇 be-
longs to Ω𝑇 precisely if for each 𝑥,𝑦 ∈ 𝑇 with 𝑥 ≤ 𝑦, 𝑥 ∈ 𝑆 → 𝑦 ∈ 𝑆.

Proof. Assume that𝑆 ∈Ω𝑇 and 𝑥≤ 𝑦. Since 𝑥∈𝑆, the set𝑆 forms a neighborhood of
𝑥, so𝑆 contains 𝑦. That settles one direction. For the other direction, assume ∀𝑥.∀𝑦.𝑥≤
𝑦∧𝑥 ∈ 𝑆→ 𝑦 ∈ 𝑆. To prove that 𝑆 is open, it suffices to show that 𝑆 contains an open
neighborhood of each 𝑥 ∈ 𝑆. But by our assumption it contains at least the open set⋂

{𝑉 ∈ Ω𝑇 |𝑥 ∈ 𝑉 }.
Qed.

1.3.6. Theorem (Birkhoff’s representation). Take two finite topological spaces 𝑆 and
𝑇 . A function 𝑓 ∶ 𝑆 → 𝑇 is continuous precisely if 𝑥 ≤𝑆 𝑦→ 𝑓 (𝑥) ≤𝑇 𝑓 (𝑦) holds for
all 𝑥,𝑦 ∈ 𝑆.

Proof. The comprehension 𝑉𝑥 =
{
𝑦 ∈ 𝑆 ||𝑥 ≤𝑆 𝑦} constructs the smallest open set con-

taining 𝑥 for every point 𝑥 ∈ 𝑆 of a finite space 𝑆. Hence, we only need to verify the
openness of preimages of open sets of the form 𝑉𝑥 with 𝑥 ∈ 𝑇 .
First consider a monotone4 function 𝑓 ∶ 𝑆 → 𝑇 and any set of the form 𝑉𝑥 for 𝑥 ∈ 𝑇 .
Assume 𝑎 ∈ 𝑓−1(𝑉𝑥) and 𝑎 ≤𝑆 𝑏. We need to prove that 𝑏 ∈ 𝑓−1(𝑉𝑥). But 𝑎 ∈ 𝑓−1(𝑉𝑥)
holds precisely if 𝑥 ≤𝑇 𝑓 (𝑎). Moreover, 𝑓 (𝑎) ≤𝑇 𝑓 (𝑏) follows from 𝑎 ≤𝑆 𝑏 by the
monotonicity assumption. We get 𝑥 ≤𝑇 𝑓 (𝑎) ≤𝑇 𝑓 (𝑏), and thus 𝑏 ∈ 𝑓−1(𝑉𝑥). Since we
chose 𝑎,𝑏 ∈ 𝑆 arbitrarily, this proves the continuity of the function 𝑓 .

4From here on, monotone functions are always monotone increasing.
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Now consider a continuous function 𝑓 ∶ 𝑆 → 𝑇 . Assume 𝑎 ≤𝑆 𝑏. By the openness of
the preimage of 𝑉𝑓 (𝑎), we get that 𝑓 (𝑎)≤𝑇 𝑓 (𝑎) and 𝑎≤𝑆 𝑏 together imply 𝑓 (𝑎)≤𝑇 𝑓 (𝑏).
All these preconditions hold, so we can conclude 𝑓 (𝑎) ≤𝑇 𝑓 (𝑏). Since we chose 𝑎,𝑏
arbitrarily, this proves the monotonicity of the function 𝑓 .
Qed.

1.3.7. Definition. We call the topological space (𝑇 ,Ω𝑇 )with underlying set 𝑇 ={⊥,⊤}
and open set lattice Ω𝑇 = {∅,{⊤},{⊥,⊤}} the Sierpinski space, and denote it 𝑆́.

1.3.8. Proposition. Consider any finite topological space (𝑋,Ω𝑋). We have a one-to-
one correspondence between monotone functions 𝑓 ∶ 𝑋 → 𝑆́ and open sets 𝐹 of the
space 𝑋.

Proof. Apply Propositions 1.3.5 and 1.3.6.
Qed.

1.3.9. Alas, we cannot expect analogues of Proposition 1.3.5 and Theorem 1.3.6 to
hold for general infinite spaces. For example, applying Definition 1.3.3 to the usual
Euclidean topology on the real line ℝ yields a discrete order, and the same happens on
every space with sufficient separation (Proposition 1.3.10), showing cannot reduce the
study of topological spaces and continuous functions to the study of functions preserv-
ing relations.

1.3.10. Proposition. Consider a T1-separable topological space (𝑇 ,Ω𝑇 ) on which ev-
ery function that preserves the specialization order ≤𝑇 is continuous. Then 𝑇 carries
the discrete topology.

Proof. We show the triviality of the ordering. Consider any two 𝑥,𝑦 ∈ 𝑇 with 𝑥 ≠ 𝑦.
By T1-separation, we obtain an open set 𝑁 such that 𝑥 ∈𝑁 but 𝑦 ∉𝑁 , thus proving
𝑥 ≰𝑇 𝑦. Similarly, we get 𝑦 ≰𝑇 𝑥. This shows that every function 𝑓 ∶ 𝑇 → 𝑇 preserves
the specialization order, and thus is continuous. In particular, continuity holds for the
“characteristic function” mapping elements of 𝑉 to 𝑥 and everything else to 𝑦 for any
set 𝑉 ⊆ 𝑇 . Taking the preimage of𝑁 with respect to this characteristic function shows
the openness of any set 𝑉 . Hence, 𝑇 carries the discrete topology.
Qed.
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Predicated Spaces and S-continuity

1.3.11. Birkhoff’s representation theorem requires that the intersection of arbitrary fam-
ilies of open sets itself constitute an open set5. This latter property fails badly for gen-
eral infinite spaces: as we have seen in Proposition 1.3.10, the ≤𝑋 relation gives rise
to equality over any 𝑇1 space (𝑋,Ω𝑋), so we have no hope at all of recovering the
topology from the specialization relation.

1.3.12. In the language of ordinary Zermelo-Fraenkel set theory, every bounded bi-
nary predicate 𝜑 corresponds to a relation (set of ordered pairs), by defining 𝑅 as
{(𝑥,𝑦) ∈ 𝐴×𝐵 |𝜑(𝑥,𝑦)} where 𝐴,𝐵 denote the bounds of the predicate 𝜑. One can’t
say the same about Internal Set Theory: in the language of IST, we can easily construct
predicates that do not form relations. For example, if the predicate 𝜑(𝑥,𝑦) abbreviating
𝑥 ∈ ℕ∧ 𝑦 ∈ ℕ∧ st(𝑥) would form a relation, we could define the “set of all standard
naturals” as {𝑥 ∈ ℕ |𝜑(𝑥,𝑥)}, contradicting Corollary 1.2.12.

1.3.13. One should see the failure of the correspondence between relations and bounded
predicates in Internal Set Theory as an opportunity. The impossibility result of Propo-
sition 1.3.10 applies to any relation, and hence to any bounded ZFC-predicate, but
fortunately not to arbitrary predicates in the language of Internal Set Theory! Here we
show that by replacing the relation in Definition 1.3.3 with a binary predicate, we can
obtain well-behaved analogues of Propositions 1.3.5, Theorem 1.3.6 and even Propo-
sition 1.3.8. This allows us to transport definitions and techniques meant for finite (or
more generally: Alexandroff) spaces to the general topological setting. We elected to
present these results in detail for two reasons: first, to keep the document self-contained,
and second because the ideas inherent in the development will recur in later chapters of
the thesis where we characterize Alexandroff approximations and sheaves over Alexan-
droff spaces. While some of the terminology is novel, all results of the current section
are well-known and have appeared in the literature in various forms. The reader should
consult the General Topology chapter of Nonstandard Analysis in Practice [12] for at-
tributions and alternative formulations.

1.3.14. Definition. A predicated space (𝑇 ,◦−) consists of the following data:

• an underlying set (or carrier set) 𝑇 ,

• a binary predicate in the language of Internal Set Theory, ◦−, referred to as the
5Spaces satisfying this property are called Alexandroff spaces.
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“nearness”, “closeness” or “proximity” predicate,

such that ∀𝑥.∀𝑦.𝑥 ◦− 𝑦→ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 and ∀𝑥 ∈ 𝑇 .𝑥 ◦− 𝑥. As usual, we elide ◦−
and refer to the predicated space (𝑇 ,◦−) simply as 𝑇 whenever the elision causes no
ambiguity.

1.3.15. Definition. Consider two predicated spaces (𝑈,◦−𝑈 ) and (𝑇 ,◦−𝑇 ), along with
a function 𝑓 ∶𝑈 → 𝑇 . We call this function S-continuous if for all standard 𝑥 ∈𝑈 and
for all 𝑦 ∈ 𝑈 such that 𝑥 ◦−𝑈 𝑦, we have 𝑓 (𝑥) ◦−𝑇 𝑓 (𝑦).

1.3.16. Definition. We call a subset 𝑉 ⊆ 𝑇 an S-open set of the predicated space (𝑇 ,◦−)
if for all standard 𝑥 ∈ 𝑉 , 𝑉 contains every 𝑦 ∈ 𝑇 such that 𝑥 ◦− 𝑦.
We say that the nearness predicate ◦− represents the topology of the standard topologi-
cal space (𝑇 ,Ω𝑇 ) if every standard S-open set of (𝑇 ,◦−) forms an open set in (𝑇 ,Ω𝑇 )
and every standard open set of (𝑇 ,Ω𝑇 ) forms an S-open set in (𝑇 ,◦−).
We say that the nearness predicate ◦− universally represents the topology of the stan-
dard topological space (𝑇 ,Ω𝑇 ) if it represents (𝑇 ,Ω𝑇 ) and for any other predicate ∼
representing (𝑇 ,Ω𝑇 ), the implication ∀𝑠𝑡𝑥.∀𝑦.𝑥 ∼ 𝑦→ 𝑥 ◦− 𝑦 holds.

1.3.17. At this point the reader should carefully contemplate how would one would for-
malize the clause defining universal representations in Definition 1.3.16. When we say
“for any other predicate representing the space”, we have to quantify over all predicates,
so no single sentence of set theory (ZFC or IST) suffices for defining universality.

1.3.18. Proposition. For any standard topological space (𝑇 ,Ω𝑇 ), we can find a near-
ness predicate ◦− on 𝑇 universally representing it.

Proof. Define the predicate 𝑥 ◦− 𝑦 as an abbreviation of ∀𝑠𝑡𝑁 ∈ Ω𝑇 .𝑥 ∈𝑁 → 𝑦 ∈𝑁 .
First take a standard open set 𝑆 ⊆ 𝑇 of the topological space (𝑇 ,Ω𝑇 ). Consider a pair
𝑥 ◦− 𝑦 with 𝑥 ∈ 𝑆 standard. Since 𝑆 contains a neighborhood of 𝑥, Transfer assures
us that it also contains a standard such neighborhood. That standard neighborhood
contains 𝑦 by definition of the nearness predicate. Thus, 𝑆 forms an S-open set of 𝑇 .
Now, take a standard S-open set 𝑆 ⊆ 𝑇 of the predicated space (𝑇 ,◦−). We have that for
each standard 𝑥∈ 𝑇 and arbitrary 𝑦∈ 𝑇 with 𝑥 ◦− 𝑦, 𝑥∈𝑆→ 𝑦∈𝑆. For every finite set
of topological neighborhoods of 𝑥, we can find an open neighborhood of 𝑥 in Ω𝑇 that
forms a subset of all of them (this is a restatement of the fact that the finite intersection
of topologically open sets is open). By Idealization we deduce the existence of an open
neighborhood of 𝑥, 𝐼𝑥 ∈ Ω𝑇 , that forms a subset of every standard neighborhood of
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𝑥. By our assumption 𝑆 contains every 𝑦 ∈ 𝐼𝑥, so 𝐼𝑥 ⊆ 𝑆. Therefore, 𝑆 contains a
neighborhood 𝐼𝑥 of each of standard point 𝑥 ∈ 𝑆. Transfer applies to this statement
(since 𝑆 is standard), and yields that 𝑆 contains a neighborhood of each of its points,
i.e. 𝑆 is open.
For universality, consider any other predicate ∼𝑇 representing the topology of 𝑇 . We
prove the implication 𝑥 ∼𝑇 𝑦→ 𝑥 ◦−𝑇 𝑦 for standard 𝑥 ∈ 𝑇 and arbitrary 𝑦 ∈ 𝑇 . Since
∼𝑇 represents the topology of 𝑇 , we have the implication

∀𝑠𝑡𝑁.∀𝑠𝑡𝑥 ∈ 𝑇 .∀𝑦 ∈ 𝑇 .(𝑥 ∼𝑇 𝑦∧𝑁 ∈ Ω𝑇 ∧𝑥 ∈𝑁)→ 𝑦 ∈𝑁,

and by exchanging connectives and quantifiers we get

∀𝑠𝑡𝑥 ∈ 𝑇 .∀𝑦 ∈ 𝑇 .𝑥 ∼𝑇 𝑦→ (∀𝑠𝑡𝑁 ∈ Ω𝑇 .𝑥 ∈𝑁 → 𝑦 ∈𝑁),

i.e. 𝑥 ∼𝑇 𝑦→ 𝑥 ◦−𝑇 𝑦, as desired.
Qed.

1.3.19. Theorem. Take standard topological spaces (𝑆,Ω𝑆) and (𝑇 ,Ω𝑇 ) universally
represented by the nearness relations ◦−𝑆 and ◦−𝑇 respectively. A standard function
𝑓 ∶ 𝑆 → 𝑇 forms a continuous map from (𝑆,Ω𝑆) to (𝑇 ,Ω𝑇 ) precisely if it forms an
S-continuous map from (𝑆,◦−𝑆) to (𝑇 ,◦−𝑇 ).

Proof. For the predicates ◦−𝑆 and ◦−𝑇 constructed in the proof of Proposition 1.3.18
we can simply imitate the proof of Birkhoff’s representation theorem (exercise, but you
may wish to consult [12]-Section 6.2 for hints). Now consider any other predicates ∼𝑆
and ∼𝑇 representing their respective topologies universally.
Take a standard continuous 𝑓 ∶ 𝑆 → 𝑇 , a standard 𝑥 ∈ 𝑆 and an arbitrary 𝑦 ∈ 𝑆 such
that 𝑥 ∼𝑆 𝑦. By the universality of ◦−𝑆 , the implication ∀𝑠𝑡𝑥′.∀𝑦′.𝑥′ ∼𝑆 𝑦′ → 𝑥′ ◦−𝑆 𝑦′

holds, so we get 𝑥 ◦−𝑆 𝑦. But then 𝑓 (𝑥) ◦−𝑇 𝑓 (𝑦) obtains by the proof of the special
case. Using the universality of ∼𝑇 , we get 𝑓 (𝑥) ∼𝑇 𝑓 (𝑦).
Now take an S-continuous function 𝑓 ∶ 𝑆 → 𝑇 , consider a standard 𝑥 ∈ 𝑆 and an
arbitrary 𝑦∈ 𝑆 such that 𝑥 ◦−𝑆 𝑦. The universality of ∼𝑆 gets us to 𝑥∼𝑆 𝑦, so 𝑓 (𝑥) ∼𝑇
𝑓 (𝑦), and the universality of ◦−𝑇 immediately yields 𝑓 (𝑥) ◦−𝑇 𝑓 (𝑦). Thus, 𝑥 ◦−𝑆 𝑦
implies 𝑓 (𝑥) ◦−𝑇 𝑓 (𝑦), and by the proof of the special case we obtain the continuity of
the function 𝑓 .
Qed.
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1.3.20. Exercise. Consider ℝ equipped with its usual Euclidean topology, and take a
universal representation ◦−ℝ. Construct

1. a continuous map ℝ→ℝ that is not S-continuous;

2. an S-continuous map ℝ→ℝ that is not continuous;

3. a map ℝ→ℝ that is both continuous and S-continuous, but not standard.

1.3.21. As we have seen, Theorem 1.3.19 provides an almost perfect counterpart to
Birkhoff’s representation theorem, and by Proposition 1.3.18, it works for every stan-
dard topological space, not only Alexandroff spaces. Thanks to Transfer, we can as-
sume that our topology comes from a binary predicate whenever we want to prove a
standard conclusion about an arbitrary topological space. At first sight, the definition
of S-continuity (Definition 1.3.15) may look less pleasant than the mere monotonicity
of the Alexandroff case, since the former requires an assumption of standardness on
the first argument. If one desired an exact correspondence, one could remove this con-
straint, and mutatis mutandis everything would keep working: e.g. one would simply
replace the universal representations of Proposition 1.3.18 with st(𝑥)∧𝑥 ◦− 𝑦. However,
we fare better by putting up with this minor complication. The payoff comes when we
consider functions 𝑓 ∶ℝ→ℝ that do preserve the predicate ◦−ℝ even for non-standard
𝑥: miraculously, this property corresponds exactly to uniform continuity.

1.3.22. Definition. Take a predicated space (𝑇 ,◦−) on the standard set 𝑇 . We call
the structure (𝑇 ,◦−) a topological predicated space if ◦− universally represents some
standard topological space (𝑇 ,Ω𝑇 ).

1.3.23. From here on we identify standard topological spaces with topological predi-
cated spaces without any further notice. Thanks to Theorem 1.3.19, we do not need to
distinguish between continuous and S-continuous standard functions that go between
topological predicated spaces. However, we will rely on nonstandard functions a cou-
ple of times in our development: therefore, the reader should expect to see functions
for which we explicitly assume both conditions.

Properties of Predicated Spaces

1.3.24. In this subsection we introduce predicated counterparts to the usual properties
of topological spaces (separation axioms, compactness, and so on). Customarily, au-
thors attach the “S-” modifier to these generalized concepts (as we did for continuity
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in Definition 1.3.15), but we will refrain from doing so, reusing names of topological
concepts as necessary. The reader should keep in mind that a single property, such as
compactness, has infinitely many different generalizations to predicated spaces that all
coincide over topological predicated spaces, so there is always some degree of arbitrari-
ness in the choice of the generalization that gets to inherit a particular name.

1.3.25. Definition. We call a predicated space (𝑇 ,◦−)

1. Kolmogorov separable if two standard points that share exactly the same nearby
points are equal;

2. Fréchet separable if two nearby standard points are always equal;

3. Hausdorff separable if two standard points that share a common nearby point are
always equal.

1.3.26. It might seem heavy-handed, but the Galactic Halo theorem provides the sim-
plest, most principled way of translating between the common properties of predicated
spaces and their topological counterparts. We encourage the readers who skipped Sec-
tion 1.1.32 to return to that section now and familiarize themselves with at least the
proof of Theorem 1.1.39. We assume throughout that the predicate representing a topo-
logical space is the one given in the proof of Proposition 1.3.18 (exercise: explain why
we do not lose any generality).

1.3.27. Proposition. A topological predicated space is Fréchet in the sense of Defini-
tion 1.3.25 precisely if it satisfies T1-separation as a topological space.

Proof. The following argument implicitly uses the Galactic Halo theorem. We leave
it in this form as preparation for the proof of Proposition 1.3.28. Formally, the Fréchet
condition states the following:

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .𝑥 ◦− 𝑦→ 𝑥 = 𝑦.

We expand the definition of ◦− (as in Proposition 1.3.18) to get the equivalent condition

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .(∀𝑠𝑡𝑁 ∈ Ω𝑇 .𝑥 ∈𝑁 → 𝑦 ∈𝑁)→ 𝑥 = 𝑦.



38 CHAPTER 1. INTRODUCTION

Putting this in prenex form, we obtain

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .∃𝑠𝑡𝑁 ∈ Ω𝑇 .(𝑥 ∈𝑁 → 𝑦 ∈𝑁)→ 𝑥 = 𝑦.

Transfer applies and, we obtain the following Nelson reduction, equivalent to the orig-
inal condition:

∀𝑥,𝑦 ∈ 𝑇 .∃𝑁 ∈ Ω𝑇 .(𝑥 ∈𝑁 → 𝑦 ∈𝑁)→ 𝑥 = 𝑦.

Taking contrapositives gives us the familiar sentence

∀𝑥,𝑦 ∈ 𝑇 .∃𝑁 ∈ Ω𝑇 .𝑥 ≠ 𝑦→ 𝑥 ∈𝑁 ∧𝑦 ∉𝑁.

stating that the space 𝑇 has T1-separation.
Qed.

1.3.28. Proposition. A topological predicated space is Hausdorff in the sense of Defi-
nition 1.3.25 precisely if it is T2-separable (i.e. Hausdorff) as a topological space.

Proof. Formally, the Hausdorff condition states the following:

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .∀𝑠 ∈ 𝑇 .(𝑥 ◦− 𝑠∧𝑦 ◦− 𝑠)→ 𝑥 = 𝑦.

We start by expanding the definition of ◦−, and get the equivalent statement

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .∀𝑠 ∈ 𝑇 .

((∀𝑠𝑡𝑁 ∈ Ω𝑇 .𝑥 ∈𝑁 → 𝑠 ∈𝑁)∧ (∀𝑠𝑡𝑀 ∈ Ω𝑇 .𝑦 ∈𝑀 → 𝑠 ∈𝑀))→ 𝑥 = 𝑦.

Applying the algorithm of the Galactic Halo theorem, we get the equivalence of the
original condition with the following monstrosity:

∀𝑥,𝑦 ∈ 𝑇 .∃𝑁 ′,𝑀 ′ ∈  f in(Ω𝑇 ).∀𝑠 ∈ 𝑇 .∃𝑁 ∈𝑁 ′.∃𝑀 ∈𝑀 ′.

((𝑥 ∈𝑁 → 𝑠 ∈𝑁)∧ (𝑦 ∈𝑀 → 𝑠 ∈𝑀))→ 𝑥 = 𝑦.

Replacing𝐴→𝐵 with¬𝐴∨𝐵 everywhere yields the more legible, equivalent condition

∀𝑥,𝑦 ∈ 𝑇 .𝑥 ≠ 𝑦→ ∃𝑁 ′,𝑀 ′ ∈  f in(Ω𝑇 ).∀𝑠 ∈ 𝑇 .∃𝑁 ∈𝑁 ′.∃𝑀 ∈𝑀 ′.

(𝑥 ∈𝑁 ∧ 𝑠 ∉𝑁)∨ (𝑦 ∈𝑀 ∧ 𝑠 ∉𝑀).
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Since taking the union
⋃
𝑁 ′ results in an open set of 𝑇 (and similarly for 𝑀 ′), we get

a much simpler equivalent condition,

∀𝑥,𝑦 ∈ 𝑇 .𝑥 ≠ 𝑦→ ∃𝑁,𝑀 ∈ Ω𝑇 .∀𝑠 ∈ 𝑇 .(𝑥 ∈𝑁 ∧ 𝑠 ∉𝑁)∨ (𝑦 ∈𝑀 ∧ 𝑠 ∉𝑀).

Setting 𝑠 = 𝑥 in the above condition proves 𝑦 ∈𝑀 and 𝑥 ∉𝑀 , while setting 𝑠 = 𝑦
proves 𝑥 ∈𝑁 and 𝑦 ∉𝑁 . Thus we get that 𝑁 (𝑀) forms a neighborhood of 𝑥 (resp.
𝑦), and

∀𝑥,𝑦 ∈ 𝑇 .𝑥 ≠ 𝑦→ ∃𝑁,𝑀 ∈ Ω𝑇 .∀𝑠 ∈ 𝑇 .𝑠 ∉𝑁 ∨ 𝑠 ∉𝑀,

proving𝑁 ∩𝑀 = ∅, proving T2-separation for 𝑇 . Clearly, the converses of the last two
implications obtain as well, so a topological predicated space is Hausdorff in the sense
of Definition 1.3.25 precisely if it has T2-separation.
Qed.

1.3.29. Proposition. A topological predicated space satisfies the Kolmogorov condi-
tion of Definition 1.3.25 precisely if it satisfies T0-separation.

Proof. Consider a standard T0 space 𝑇 and two standard points 𝑥,𝑦 ∈ 𝑇 . Assume
∀𝑠∈ 𝑇 .𝑥 ◦− 𝑠↔ 𝑦 ◦− 𝑠. We have 𝑥 ◦− 𝑥 and 𝑦 ◦− 𝑦 by reflexivity, and setting 𝑠= 𝑦 in our
assumption gives 𝑥 ◦− 𝑦. Setting 𝑠 = 𝑥 yields 𝑦 ◦− 𝑥. Now assume for a contradiction
the existence of an open set𝑁 containing 𝑥 but not 𝑦. By Transfer we’d have a standard
such 𝑁 , and since 𝑥 ◦− 𝑦, we’d have 𝑦 ∈𝑁 , a contradiction. Hence, such an 𝑁 cannot
exist. We get the same conclusion if we assume the existence of 𝑀 containing 𝑦 but
not 𝑥. From T0-separation it follows that 𝑥 = 𝑦.
Now consider a Kolmogorov topological predicated space 𝑇 , and take two of its points,
𝑥,𝑦 ∈ 𝑇 . We can provisionally assume the standardness of both 𝑥 and 𝑦. Assume that
every open set 𝑁 that contains 𝑥 also contains 𝑦, and vice versa. A fortiori the same
holds for all standard sets. Hence for all 𝑠 ∈ 𝑇 such that 𝑥 ◦− 𝑠, we have that a standard
neighborhood of 𝑦 contains 𝑥, and hence contains 𝑠, so 𝑦 ◦− 𝑠. Similarly if we switch 𝑥
and 𝑦. Thus, ∀𝑠.𝑥 ◦− 𝑠↔ 𝑦 ◦− 𝑠, and by the Kolmogorov condition we conclude 𝑥 = 𝑦.
Thus, if for two standard points 𝑥,𝑦 we cannot find an open set 𝑁 containing one but
not the other, then 𝑥 = 𝑦. Given the internality of our conclusion, we can discharge the
provisional assumptions of standardness, which proves T0-separation for the space 𝑇 .
Qed.
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1.3.30. Proposition. A predicated space that satisfies the Hausdorff separation prop-
erty also satisfies the Fréchet separation property. A predicated space that satisfies the
Fréchet separation property also satisfies the Kolmogorov separation property.

Proof. Assume that the predicated space (𝑇 ,◦−) satisfies Hausdorff separation. Then
we have

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .∀𝑠 ∈ 𝑇 .(𝑥 ◦− 𝑠∧𝑦 ◦− 𝑠)→ 𝑥 = 𝑦.

Setting 𝑠 = 𝑥, and using the fact that 𝑥 ◦− 𝑥 holds by reflexivity, we obtain

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .𝑦 ◦− 𝑥→ 𝑥 = 𝑦,

so (𝑇 ,◦−) satisfies Fréchet separation. Now, consider standard 𝑥,𝑦∈ 𝑇 such that∀𝑠.𝑥 ◦−
𝑠↔ 𝑦 ◦− 𝑠. Set 𝑠 = 𝑥, and use reflexivity to conclude 𝑦 ◦− 𝑥. By the Fréchet condition
𝑥 = 𝑦, so (𝑇 ,◦−) satisfies Kolmogorov separation.
Qed.

1.3.31. Notice that we did not need to restrict Proposition 1.3.30 to topological predi-
cated spaces: the conclusion holds on any predicated space, regardless of the standard-
ness of the carrier. The reverse implications do not hold: take your favorite standard
non-Hausdorff T1-space and a non-T1 T0-space as counterexamples.

1.3.32. Definition. We call a predicated space compact if every point of the space lies
near a standard point of the space.

1.3.33. Theorem (Robinson’s characterization). A topological predicated space (𝑇 ,◦−)
satisfies Definition 1.3.32 (compactness) precisely if every open cover in (𝑇 ,Ω𝑇 ) has
a finite subcover.

Proof. Formally, the compactness condition states the following:

∀𝑦 ∈ 𝑇 .∃𝑠𝑡𝑥 ∈ 𝑇 .𝑥 ◦− 𝑦.

We start by expanding the definition of ◦−, and get the equivalent statement

∀𝑦 ∈ 𝑇 .∃𝑠𝑡𝑥 ∈ 𝑇 .∀𝑠𝑡𝑀 ∈ Ω𝑇 .𝑥 ∈𝑀 → 𝑦 ∈𝑀. (⋆)

We wish to apply the Galactic Halo theorem to (⋆). To accomplish that, recall that the
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formula

∃𝑠𝑡𝑥 ∈ 𝑇 .∀𝑠𝑡𝑀 ∈ Ω𝑇 .𝑥 ∈𝑀 → 𝑦 ∈𝑀

would have the following Nelson normal form:

∀𝑠𝑡𝑁 ∶ 𝑇 →Ω𝑇 .∃𝑠𝑡𝑥 ∈ 𝑇 .𝑥 ∈𝑁(𝑥)→ 𝑦 ∈𝑁(𝑥).

Therefore, applying the Galactic Halo theorem outputs the equivalent condition

∀𝑁 ∶ 𝑇 →Ω𝑇 .∃𝑋 ∈  f in(𝑇 ).∀𝑦 ∈ 𝑇 .∃𝑥 ∈𝑋.𝑥 ∈𝑁(𝑥)→ 𝑦 ∈𝑁(𝑥)

when applied to the sentence (⋆). It suffices to prove this condition equivalent to “every
open cover having a finite subcover”.
First assume that the condition holds and consider an open cover 𝑈 ⊆Ω𝑇 of the space
𝑇 . By the Axiom of Choice we can get a function 𝑁 ∶ 𝑇 → Ω𝑇 that assigns to each
point 𝑥 ∈ 𝑇 a covering set 𝑈𝑥 ∈ 𝑈 such that 𝑥 ∈ 𝑈𝑥. By the assumed condition, we
have a finite set of points 𝑋 ⊆ 𝑇 such that ∀𝑦 ∈ 𝑇 .∃𝑥 ∈ 𝑋.𝑦 ∈ 𝑈𝑥. Thus, the set 𝑉 ={
𝑆 ∈ Ω𝑇 ||∃𝑥 ∈𝑋.𝑆 = 𝑈𝑥

}
constitutes a finite subcover of 𝑈 .

Now assume that every open cover has a finite subcover. Consider any function𝑁 from
𝑇 to Ω𝑇 . If we can find a point 𝑞 ∈ 𝑇 such that 𝑞 ∉𝑁(𝑞), then we can set 𝑋 = {𝑞},
and ∀𝑦 ∈ 𝑇 .𝑞 ∈𝑁(𝑞) → 𝑦 ∈𝑁(𝑞) holds vacuously. If we cannot find such a point 𝑞,
then 𝑁 constitutes an open cover of 𝑇 , and its finite subcover gives rise to the desired
set of points 𝑋.
Qed.

1.3.34. Definition. We call a predicated space an equivalence space if its nearness
predicate satisfies transitivity and symmetry.

1.3.35. Proposition. Every metric space admits a universal representation as an equiv-
alence space.

Proof. Consider any metric space 𝑀 equipped with a metric 𝑑 ∶𝑀 → ℝ. Define the
predicate 𝑥 ≈ 𝑦 as an abbreviation for ∀𝑠𝑡𝜀 > 0.𝑑(𝑥,𝑦) < 𝜖. The reflexivity of ≈ follows
from ∀𝑥,𝑦 ∈𝑀.𝑑(𝑥,𝑦) = 0↔ 𝑥 = 𝑦. The symmetry of ≈ follows directly from the fact
that ∀𝑥,𝑦 ∈𝑀.𝑑(𝑥,𝑦) = 𝑑(𝑦,𝑥). To prove transitivity, consider 𝑥,𝑦,𝑧 ∈𝑀 such that
𝑥 ≈ 𝑦 and 𝑦 ≈ 𝑧. Take any standard 𝜀 > 0. Since 𝜀

4 is standard by Proposition 1.2.9, we
have both 𝑑(𝑥,𝑦) < 𝜀

4 and 𝑑(𝑦,𝑧) < 𝜀
4 . The triangle inequality gives 𝑑(𝑥,𝑧) ≤ 𝑑(𝑥,𝑦)+
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𝑑(𝑦,𝑧) ≤ 𝜀
2 < 𝜀. Since 𝑑(𝑥,𝑧) < 𝜀 for any standard 𝜀, we get 𝑥 ≈ 𝑧 as required.

Now we must prove that ≈ represents the metric topology carried by𝑀 . First consider
a standard open set 𝑉 of the topological space𝑀 , pick any standard 𝑥∈ 𝑉 and consider
a nearby point 𝑦≈ 𝑥. By the openness of 𝑉 in the metric topology, we can find an open
ball 𝐵 containing 𝑥 with 𝐵 ⊆ 𝑉 . By considering the radius 𝑟 of 𝐵, we get that ∃𝑟 >
0.∀𝑦.𝑑(𝑥,𝑦) < 𝑟→ 𝑦 ∈ 𝑉 . Transfer applies, so ∃𝑠𝑡𝑟 > 0.∀𝑦 ∈𝑀.𝑑(𝑥,𝑦) < 𝑟→ 𝑦 ∈ 𝑉 .
Using 𝑦 ≈ 𝑥 and the standardness of 𝑟 we have 𝑑(𝑥,𝑦) < 𝑟. Hence, 𝑦 ∈ 𝑉 .
Now consider a standard set 𝑉 ⊆𝑀 such that ∀𝑠𝑡𝑥∈𝑀.∀𝑦∈𝑀.𝑥≈ 𝑦∧𝑥∈ 𝑉 → 𝑦∈ 𝑉 .
Expanding the definition of ≈ and putting the resulting statement in prenex form gives

∀𝑠𝑡𝑥 ∈𝑀.∀𝑦 ∈𝑀.∃𝑠𝑡𝜀 > 0.𝑑(𝑥,𝑦) < 𝜀∧𝑥 ∈ 𝑉 → 𝑦 ∈ 𝑉 .

Since the prenex form has no non-standard parameters, we can apply the Galactic Halo
theorem to obtain the following equivalent condition:

∀𝑥 ∈𝑀.∃𝐸 ∈  f in(ℝ+).∀𝑦 ∈𝑀.∃𝜀 ∈ 𝐸.𝑑(𝑥,𝑦) < 𝜀∧𝑥 ∈ 𝑉 → 𝑦 ∈ 𝑉 .

Taking the minimum of 𝐸, we get the further equivalent condition

∀𝑥 ∈𝑀.∃𝜀 > 0.∀𝑦 ∈𝑀.𝑑(𝑥,𝑦) < 𝜀∧𝑥 ∈ 𝑉 → 𝑦 ∈ 𝑉

which implies the more legible condition

∀𝑥 ∈ 𝑉 .∃𝜀 > 0.∀𝑦 ∈𝑀.𝑑(𝑥,𝑦) < 𝜀→ 𝑦 ∈ 𝑉 .

But then 𝑉 contains a ball of radius 𝑟 = 𝜀 around each of its points 𝑥 ∈ 𝑉 , and conse-
quently 𝑉 is open in the metric topology of 𝑀 .
Finally, we need to show the universality of ≈. By the universality of the predicate ◦−
of Proposition 1.3.18, it suffices to prove ∀𝑠𝑡𝑥.∀𝑦.𝑥 ◦− 𝑦→ 𝑥 ≈ 𝑦. So assume 𝑥 ◦− 𝑦
and take any standard 𝜀 > 0. The open ball 𝐵 of radius 𝜀 around 𝑥 forms an open set
of the metric topology, and is standard by Proposition 1.2.9. From 𝑥 ◦− 𝑦, st(𝐵) and
𝑥 ∈ 𝐵 we have 𝑦 ∈ 𝐵. But then 𝑑(𝑥,𝑦) < 𝜀, and since 𝜀 was arbitrary, we get 𝑥 ≈ 𝑦.
Qed.
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Ultrafilters

1.3.36. We often rely on the following well-known results about ultrafilters in the sub-
sequent chapters, especially in results about structural approximation. The proof strat-
egy consists of little more than making the observation that ultrafilters correspond to
types (in the sense of model theory) of non-standard elements. The only novelty of the
section occurs in the (frankly, totally unsurprising) characterization of metric ultraprod-
ucts in Proposition 1.3.43. The reader may wish to consult the article Ultrafilters and
ultraproducts in non-standard analysis [8] by Cherlin and Hirschfeld for a discussion
of the same subject from a model-theoretic perspective.

1.3.37. Definition. An ultrafilter  over some set 𝐼 has a monadic element if we can
find some 𝜔 ∈ 𝐼 that belongs to every standard element of  .

1.3.38. Proposition. Every ultrafilter  over some set 𝐼 has a monadic element.

Proof. Consider any standard finite non-empty subset  of  . By the finite intersec-
tion property,

⋂ ∈  . Since ∅ ∉  , we can find some 𝑥 ∈
⋂ , and of course that

𝑥 satisfies ∀𝑆 ∈
⋂ .𝑥 ∈ 𝑆. Given the internality of this conclusion, we can apply

Idealization and get a single 𝑥 ∈ 𝐼 that belongs to all standard sets 𝑆 ∈  .
Qed.

1.3.39. Proposition. A standard ultrafilter is non-principal precisely if it has a non-
standard monadic element.

Proof. A standard principal ultrafilter  has a unique standard generator 𝑥 by Propo-
sition 1.2.9, and 𝑥 belongs to every element of  , so a fortiori it constitutes a standard
monadic element of  . In fact,  has a unique monadic element in this case, since
the singleton set {𝑥} forms a standard element of  , so by definition every monadic
element belongs to the set {𝑥}.
Assume that the standard non-principal ultrafilter has a standard monadic element 𝑥∈
𝐼 . Then ∀𝑠𝑡𝑆 ∈  .𝑥 ∈ 𝑆 holds. This formula contains no non-standard parameters, so
Transfer applies and we can conclude ∀𝑆 ∈ .𝑥∈𝑆, contradicting the non-principality
of  .
Qed.

1.3.40. Lemma (Ultrafilter). Every infinite set 𝐼 admits a non-principal ultrafilter.
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Proof. Provisionally assume the standardness of 𝐼 . By Theorem 1.2.5, the infinite set
𝐼 contains some non-standard element 𝜔 ∈ 𝐼 . Consider the standard set

𝔉 = ⦃𝑆 ∈ (𝐼) |𝜔 ∈ 𝑆⦄
defined using the Standardization axiom. The set 𝔉 forms an ultrafilter. We prove that
𝔉 satisfies the finite intersection property, but leave the other properties as exercises
for the reader. Take standard 𝐴,𝐵 ∈ 𝔉. By the defining property of 𝔉, we get 𝜔 ∈ 𝐴
and 𝜔 ∈ 𝐵, so 𝜔 ∈ 𝐴∩𝐵. Hence, the implication 𝐴 ∈𝔉∧𝐵 ∈𝔉→ 𝐴∩𝐵 ∈𝔉 holds
for standard 𝐴,𝐵, and by Transfer for every 𝐴,𝐵.
The ultrafilter 𝔉 has 𝜔 as a monadic element since 𝜔 ∈ 𝑆 holds for every standard
𝑆 ∈ 𝔉 by definition of the set 𝔉. But we started by choosing a non-standard 𝜔 ∈ 𝐼 ,
so an application of Proposition 1.3.39 shows that 𝔉 is non-principal. We have proved
that every standard infinite set admits a non-principal ultrafilter. Hence, by Transfer,
every infinite set admits a non-principal ultrafilter.
Qed.

1.3.41. Notice that we made no use of the Axiom of Choice in the proof of Lemma 1.3.40.
Since Zermelo-Fraenkel Set Theory without Choice does not prove the Ultrafilter Lemma,
we have now established our claim in 1.1.46 that Internal Set Theory with the Axiom
of Choice removed does not extend Zermelo-Fraenkel Set Theory conservatively.

1.3.42. Theorem. Consider a standard index set 𝐼 , a standard 𝐼-indexed family of sets
𝐴 and a standard ultrafilter  on the set 𝐼 . Let 𝜔 ∈ 𝐼 denote a monadic element of  .
Take two standard elements [𝑓 ], [𝑔] of the ultraproduct

∏
𝑖∈𝐼 𝐴𝑖∕ . We have [𝑓 ] = [𝑔]

precisely if for any standard 𝑓 ∈ [𝑓 ],𝑔 ∈ [𝑔] we have 𝑓 (𝜔) = 𝑔(𝜔).

Proof. The equality [𝑓 ] = [𝑔] holds precisely if the set {𝑖 ∈ 𝐼|𝑓 (𝑖) = 𝑔(𝑖)} belongs
to the ultrafilter  for some (indeed, any) representatives 𝑓 ∈ [𝑓 ] and 𝑔 ∈ [𝑔]. Using
the standardness of 𝑓,𝑔,𝐼 , we can conclude the standardness of the set {𝑖 ∈ 𝐼|𝑓 (𝑖) =
𝑔(𝑖)}. The monadic element 𝜔 must therefore belong to this set, giving 𝑓 (𝜔) = 𝑔(𝜔) as
required. The other direction works identically.
Qed.

1.3.43. Theorem. Consider a standard index set 𝐼 , a standard number 𝑘∈ℝ a standard
𝐼-indexed family of groups𝐺, each𝐺𝑖 equipped with a standard bi-invariant 𝑘-bounded
metric 𝑑𝑖, and pick a standard ultrafilter  on the set 𝐼 . Take two standard elements
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[𝑓 ], [𝑔] of the the metric ultraproduct group
∏

𝑦∈𝐼 𝐴𝑖∕𝑑 . We have [𝑓 ] = [𝑔] precisely
if for any standard 𝑓 ∈ [𝑓 ],𝑔 ∈ [𝑔] we have ∀𝑠𝑡𝜀 > 0.𝑑𝜔(𝑓 (𝜔),𝑔(𝜔)) < 𝜀 where 𝜔 de-
notes a monadic element of  .

Proof. By the definition of metric ultraproducts ([13]-Definition 2.1.) we have [𝑓 ] =
[𝑔] in

∏
𝑦∈𝐼 𝐴𝑖∕𝑑 precisely if for any 𝜀 > 0 the set

{
𝑖 ∈ 𝐼 ||𝑑𝑖(𝑓 (𝑖),𝑔(𝑖)) < 𝜀} belongs

to the ultrafilter . So take standard𝑓,𝑔,𝜀. Then we have st
({
𝑖 ∈ 𝐼 ||𝑑𝑖(𝑓 (𝑖),𝑔(𝑖)) < 𝜀});

by Definition 1.3.37 we get 𝜔 ∈
{
𝑖 ∈ 𝐼 ||𝑑𝑖(𝑓 (𝑖),𝑔(𝑖)) < 𝜀}, and consequently we must

have 𝑑𝜔(𝑓 (𝜔),𝑔(𝜔))< 𝜀. For the other direction assume that ∀𝑠𝑡𝜀 > 0.𝑑𝜔(𝑓 (𝜔),𝑔(𝜔))<
𝜀 holds. Reversing the previous argument, we have that for standard 𝜀 the set of indices{
𝑖 ∈ 𝐼 ||𝑑𝑖(𝑓 (𝑖),𝑔(𝑖)) < 𝜀} belongs to  as required. Transfer gives the full result.

Qed.

Brouwer’s fixed point theorem

1.3.44. To finish off this chapter, and to illustrate the use of the tools introduced in the
previous sections, we present an Internal Set Theory proof of Brouwer’s fixed point
theorem, similar to (but simpler than) the standard combinatorial proof going through
Sperner’s coloring lemma.

1.3.45. Theorem (Brouwer’s fixed point). Every continuous function mapping the unit
disk 𝐷 ⊆ℝ2 to itself has a fixed point.

Proof. Identify 𝐷 with the unit disk in ℂ the obvious way. Let ≈ denote the universal
nearness predicate on ℂ that comes from the proof of Proposition 1.3.35. Consider any
continuous function 𝑓 ∶𝐷→𝐷 and provisionally assume the standardness of 𝑓 . Take
a finite set 𝐻 ⊆𝐷 that contains every standard point of 𝐷 (use Idealization). Consider
the labeling function 𝓁 ∶𝐷→ {0,1,2,3} of Figure 1.1, defined by the expression

𝓁(𝑥) =

⎧⎪⎨⎪⎩
0 if 𝑓 (𝑥)−𝑥 = 0;

𝑘+1 if 𝑓 (𝑥)−𝑥 ≠ 0 and arg(𝑓 (𝑥)−𝑥) ∈
[
2
3𝑘𝜋,

2
3 (𝑘+1)𝜋

)
.

If we have 𝑥 ∈𝐻 such that 𝓁(𝑥) = 0, then 𝑓 has the fixed point 𝑥. Otherwise, we can
break the boundary of the disk into three circular arcs such that on each arc 𝓁 takes
exactly two values. Thus, by using Sperner’s lemma ([20]-Theorem 2.6) we can find
three points 𝑥1,𝑥2,𝑥3 ∈𝐻 such that 𝓁(𝑥1) = 1,𝓁(𝑥2) = 2,𝓁(𝑥3) = 3 and 𝐻 contains
no points that lie inside the triangle formed by the three points. This implies that said
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triangle contains no standard points, and hence 𝑥1 ≈ 𝑥2 ≈ 𝑥3. Since 𝐷 is compact,
we can use Theorem 1.3.33 to find a standard point 𝑥 simultaneously near 𝑥1,𝑥2 and
𝑥3. This means that the complex number 𝑓 (𝑥)−𝑥 lies infinitesimally close to numbers
with arguments in

[
0, 23𝜋

)
,
[
2
3𝜋,

4
3𝜋

)
and

[
4
3𝜋,2𝜋

)
. A moment’s thought (or a glance at

Figure 1.1) shows that the only standard complex number satisfying such a requirement
is zero. Therefore 𝑓 (𝑥)−𝑥 = 0, and 𝑥 constitutes a fixed point for the function 𝑓 .
Qed.

0
𝓁(𝑥) = 0

𝓁(𝑥) = 1

𝓁(𝑥) = 2

𝓁(𝑥) = 3

Figure 1.1: Values of the labeling map 𝓁 on the unit circle.



Chapter 2

Structural Approximation

2.1 Motivation

2.1.1. Somewhat orthogonally to Internal Set Theory, developments in Stability The-
ory led to an idea of dealing with very large finite structures as if they were approxi-
mating models of uncountably categorical theories. Zilber [50] introduced such a the-
ory of approximations with an eye towards applications in physics. Since we define
a more general form of approximation below, we attach the adjective ordinary to Zil-
ber’s notion. As in Pillay [38] and Zilber [51]-Section 3, we restrict our attention to
the cases where the ordinary approximating object consists of a literal ultraproduct of
structures, and not merely an elementary extension of one. This usage has the advan-
tage of being consistent with the more recent applications of the technique in the work
of Morales and Zilber [31].

2.1.2. Definition ([51]-Definition 3.2). Fix some first-order theory 𝑇 . Consider a model
𝐌 of 𝑇 and an 𝐼-indexed family 𝑀 of models of the same theory. An ordinary struc-
tural approximation of 𝐌 consists of the following data:

• an ultrafilter 𝐷 ⊆ (𝐼), and

• a surjective 𝑇 -homomorphism lim ∶
∏

𝑖∈𝐼𝑀𝑖∕𝐷→𝐌

where
∏

𝑖∈𝐼𝑀𝑖∕𝐷 denotes the ultraproduct of𝑀 over the ultrafilter𝐷. If the codomain
of the indexed set𝑀 consists exclusively of finite 𝑇 -structures, we speak of an ordinary
finite approximation.

2.1.3. Definition ([50]-Definition 2.5). Fix notation as in Definition 2.1.2. An ordinary
strong approximation of 𝐌 consists of the following data:

47
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• an ultrafilter 𝐷 ⊆ (𝐼),

• a surjective 𝑇 -homomorphism lim ∶
∏

𝑖∈𝐼𝑀𝑖∕𝐷→𝐌, and

• a 𝑇 -homomorphism colim ∶𝐌→
∏

𝑖∈𝐼𝑀𝑖∕𝐷

such that lim(colim𝑥) = 𝑥 for all 𝑥∈𝐌. If the codomain of the indexed set𝑀 consists
exclusively of finite 𝑇 -structures, we speak of an ordinary strong finite approximation.

2.1.4. Proposition. The group ℤ𝑝 of 𝑝-adic integers admits an ordinary finite cyclic
approximation and the analoguos result holds when we consider ℤ𝑝 as a ring. The
group ℤ̂ (the profinite completion of the integers) admits an ordinary strong finite cyclic
approximation.

Proof. See [51]-Proposition 4.3 and [50]-Proposition 1. These results follow from our
own Corollary 2.2.19 as well.
Qed.

2.1.5. Proposition. The field ℂ of complex numbers admits an ordinary finite approx-
imation. However, the field ℝ of real numbers does not admit any such approximation.

Proof. See [51]-Proposition 5.2.
Qed.

2.1.6. Before Zilber introduced strong approximation, Gordon [1] investigated the sense
in which the finite Fourier transform can approximate the Fourier transform in the
Hilbert space of functions on a locally compact group, which led to the synthesis of the
concept of locally embeddably finite (LEF) groups. LEF and strongly approximable
groups often coincide, e.g. vector spaces are strongly approximable precisely if LEF.

2.1.7. Definition ([6]-Theorem 7.2.5. sic!). We call a group 𝐺 locally embeddably
finite or LEF if we can find an 𝐼-indexed family of groups𝑀𝑖, ultrafilter𝐷⊆ (𝐼) and
injective group homomorphism colim ∶ 𝐺↪

∏
𝑖∈𝐼𝑀𝑖∕𝐷.

2.1.8. Zilber [51] poses the following question: can a sequence of finite groups give
an ordinary finite approximation to the group SO3(ℝ)? Using nonstandard analysis
in superstructures, Pillay [38] rephrased the problem in terms of Bohr compactifica-
tions, tentatively conjecturing that 𝑏𝐺0 is commutative for any pseudo-finite group 𝐺.
Nikolov, Schneider and Thom [34] settled this conjecture in the positive. Their results
not only give a negative answer to Zilber’s original question, but establish the much
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stronger result that one cannot approximate any compact simple Lie group in the sense
of Definition 2.1.2 using finite groups.

2.1.9. The results mentioned in 2.1.8 establish a significant gap between groups that
have finite approximations and those groups that don’t have any such approximation.
We prove that profinite groups always admit ordinary finite approximations (Proposi-
tion 2.2.20), and our main theorem (Theorem 2.3.9) can be used to obtain finer-grained
statements about groups that admit strong approximations by finite groups in fixed, par-
ticular forms (we give two examples in Section 2.3.11).

2.2 Approximation in IST

2.2.1. We start by proposing a new notion of strong approximation in the language
of Internal Set Theory that abstracts away from first-order structures. The new notion
is strictly more general than Zilber’s approximations (although it will take us some
time to actually prove this, in Proposition 2.2.32) and encompasses all of the common
finitariness conditions in group theory. Indeed, ordinary approximation and the LEF
condition both give rise to well-behaved instances of the proposed definition.

2.2.2. Definition. Consider a set 𝐻 and a Fréchet predicated space (𝐺,◦−𝐺) with 𝐺
standard. We call a binary predicate 𝜄(𝑥,𝑦) where 𝑥 ranges over elements of 𝐻 and 𝑦
ranges over elements of 𝐺 a weak approximation of (𝐺,◦−𝐺) via 𝐻 if it satisfies the
following existence-uniqueness conditions:

1. For any standard 𝑔 ∈ 𝐺 we can find ℎ ∈𝐻 such that 𝜄(ℎ,𝑔) holds.

2. For any 𝑔1,𝑔2 ∈𝐺, if we can find ℎ ∈𝐻 such that 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2) both hold,
then 𝑔1 ◦−𝐺 𝑔2.

For finite 𝐻 , we label the weak approximation finite. If (𝐺,1, ⋅) and (𝐻,1𝐻 , ⋅𝐻 ) form
groups, and 𝜄 is a logical relation of groups in the sense that all of

1. 𝜄(1𝐻 ,1),

2. ∀𝑠𝑡𝑔 ∈ 𝐺.∀ℎ ∈𝐻.𝜄(ℎ,𝑔)→ 𝜄(ℎ−1,𝑔−1), and

3. ∀𝑠𝑡𝑔1,𝑔2 ∈ 𝐺.∀ℎ1,ℎ2 ∈𝐻.𝜄(ℎ1,𝑔1)∧ 𝜄(ℎ2,𝑔2)→ 𝜄(ℎ1 ⋅𝐻 ℎ2,𝑔1 ⋅𝑔2)

hold, then we say that 𝐻 weakly approximates 𝐺 as a group.
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2.2.3. Definition. Consider a Fréchet predicated space (𝐺,◦−𝐺) with 𝐺 standard, and
an arbitrary set 𝐻 . We call a binary predicate 𝜄 an approximation of (𝐺,◦−𝐺) via 𝐻 if

1. the predicate 𝜄 weakly approximates (𝐺,◦−𝐺) via 𝐻 , and

2. for each standard 𝑔 ∈ 𝐺, whenever we can find ℎ1,ℎ2 ∈ 𝐻 with 𝜄(ℎ1,𝑔) and
𝜄(ℎ2,𝑔), we have ℎ1 = ℎ2

As in Definition 2.2.2, we speak of a finite approximation when 𝐻 is a finite set. If
(𝐺, ⋅) and (𝐻, ⋅𝐻 ) form groups, and 𝜄 is a logical relation of groups in the sense that
∀𝑠𝑡𝑔1,𝑔2 ∈ 𝐺.∀ℎ1,ℎ2 ∈𝐻.𝜄(ℎ1,𝑔1) ∧ 𝜄(ℎ2,𝑔2)→ 𝜄(ℎ1 ⋅𝐻 ℎ2,𝑔1 ⋅ 𝑔2) holds, then we say
that 𝐻 approximates 𝐺 as a group.

2.2.4. Analogously to group approximations, we can define approximations of other
first-order structures (we briefly discuss how to do this in 2.2.12). We wish to relate
strong approximation to the construction of the nonstandard finite sets 𝐻 used in the
proofs of Theorems 1.2.7 and 1.3.45. Indeed, as we will see in Proposition 2.2.7, Def-
inition 2.2.3 axiomatizes some obvious properties of the inclusion map of 𝐻 . For this
reason we may sometimes opt to use functional notation, or choose to represent 𝜄 as an
arrow in diagrams, even when 𝜄 does not stand for a function or functional predicate.

2.2.5. Definition. Consider a standard set 𝐺. Let the binary predicate 𝑔1 ◦− 𝑔2 abbre-
viate the formula st(𝑔1) ∧ st(𝑔2) → 𝑔1 = 𝑔2. We say that 𝐻 approximates 𝐺 as a set
(without mentioning any specific predicate ◦−𝐺 on 𝐺) when 𝐻 approximates (𝐺,◦−).

2.2.6. When 𝐻 approximates a Fréchet space (𝐺,◦−), it also approximates 𝐺 as a set.

2.2.7. Proposition. Every standard set 𝐺 admits a finite approximation 𝐻 .

Proof. For every standard finite subset 𝐹 ∈  f in(𝐺), we can find a finite set 𝐻 that
contains every element of 𝐹 (trivially, just set 𝐹 = 𝐻). The axiom of Idealization
applies to this statement, and yields the existence of a single finite set𝐻 ∈ f in(𝐺) that
nevertheless contains every standard element of𝐺. We can identify the predicate 𝜄with
the graph of the inclusion map 𝐻 ↪ 𝐺. All three required properties hold:

1. For any standard 𝑔 ∈ 𝐺, we have 𝑔 ∈𝐻 , so 𝜄(𝑔) = 𝑔 holds.

2. For any standard 𝑔 ∈𝐺 and ℎ1,ℎ2 ∈𝐻 such that 𝜄(ℎ1) = 𝑔 and 𝜄(ℎ2) = 𝑔, we have
ℎ1 = 𝜄(ℎ1) = 𝑔 = 𝜄(ℎ2) = ℎ2.
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3. For any standard 𝑔1,𝑔2 ∈ 𝐺, and ℎ ∈ 𝐻 such that 𝜄(ℎ) = 𝑔1 and 𝜄(ℎ) = 𝑔2, we
simply have 𝑔1 = 𝜄(ℎ) = 𝑔2.

Qed.

2.2.8. Proposition. Consider a standard ordinary strong approximation of a structure
𝐺 via the 𝐼-indexed sequence 𝐻 . We can find 𝜔 ∈ 𝐼 and an internal binary predicate 𝜄
(relating elements of 𝐻𝜔 to elements of 𝐺) that satisfy the following conditions:

1. For any 𝑔 ∈ 𝐺 we can find ℎ ∈𝐻𝜔 such that 𝜄(ℎ,𝑔) holds.

2. For any 𝑔 ∈𝐺, ℎ1,ℎ2 ∈𝐻𝜔 such that 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) hold, we have ℎ1 = ℎ2.

3. For any standard 𝑔1,𝑔2 ∈ 𝐺 and any ℎ ∈𝐻𝜔 such that 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2) both
hold, we have 𝑔1 = 𝑔2.

Proof. Denote the 𝐼-ultrafilter coming from the ordinary approximation as . Fix a
standard right inverse 𝑟 ∶

∏
𝑖∈𝐼𝐻𝑖∕→

∏
𝑖∈𝐼𝐻𝑖 of the quotient map [−] ∶

∏
𝑖∈𝐼𝐻𝑖→∏

𝑖∈𝐼𝐻𝑖∕. By Proposition 1.3.38 the ultrafilter  has a monadic element 𝜔 ∈ 𝐼 .
Define 𝜄(ℎ,𝑔) between𝐻𝜔 and 𝐺 as an abbreviation for the formula (𝑟◦colim)(𝑔)(𝜔) =
ℎ. We verify the three conditions.

1. For any 𝑔 ∈ 𝐺, one can regard the element (𝑟◦colim)(𝑔) of the Cartesian prod-
uct of the family 𝐻 as a function with signature (𝑖 ∈ 𝐼)→𝐻𝑖. Hence we have
(𝑟◦colim)(𝑔)(𝜔) ∈𝐻𝜔, so the first condition holds for ℎ = (𝑟◦colim)(𝑔)(𝜔).

2. Take any 𝑔 ∈ 𝐺 and ℎ1,ℎ2 ∈ 𝐻𝜔. Assume that 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) both hold.
Then ℎ1 = (𝑟◦colim)(𝑔)(𝜔) = ℎ2 as desired.

3. Take any standard 𝑔1,𝑔2 ∈ 𝐺, and any ℎ ∈𝐻𝜔. Assume that 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2)
both hold. Since we chose 𝑟 as a standard function, and we have st(colim) by the
standardness of the approximation, Corollary 1.2.11 guarantees the standardness
of the functions (𝑟◦colim)(𝑔1) and (𝑟◦colim)(𝑔2). By our assumptions we have

(𝑟◦colim)(𝑔1)(𝜔) = ℎ = (𝑟◦colim)(𝑔2)(𝜔),

so these functions take the same value at the monadic element 𝜔 of . Applying
Theorem 1.3.42, we immediately obtain

[(𝑟◦colim)(𝑔1)] = [(𝑟◦colim)(𝑔2)],
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and since 𝑟 forms a section of the quotient map [−] ∶
∏

𝑖∈𝐼𝐻𝑖→
∏

𝑖∈𝐼𝐻𝑖∕, we
are now in the position to deduce colim(𝑔1) = colim(𝑔2). Applying lim to both
sides of the equation yields 𝑔1 = 𝑔2 as desired.

Qed.

2.2.9. Corollary. Assume that we have a standard ordinary approximation of a struc-
ture𝐺 via the 𝐼-indexed sequence𝐻 . Then𝐻𝜔 approximates𝐺 as a set for some index
𝜔 ∈ 𝐼 .

Proof. Immediate from Proposition 2.2.8.
Qed.

2.2.10. Proposition. Consider a standard ordinary approximation of a structure 𝐺 via
the 𝐼-indexed sequence 𝐻 . We can find 𝜔 ∈ 𝐼 and a binary predicate 𝜄 (relating ele-
ments of 𝐻𝜔 to elements of 𝐺) such that 𝜄 weakly approximates the set 𝐺 via 𝐻𝜔.

Proof. Let 𝜄(ℎ,𝑔) abbreviate ∃𝑠𝑡𝑓 ∶ (𝑖∈ 𝐼)→𝐻𝑖. lim[𝑓 ] = 𝑔∧𝑓 (𝜔) = ℎ. The required
conditions hold:

1. For any standard 𝑔 ∈ 𝐺, we can obtain ℎ ∈ 𝐻 such that 𝜄(ℎ,𝑔) holds. Take a
standard 𝑔 ∈𝐺. By the surjectivity of lim, we have some [𝑓 ] such that lim[𝑓 ] = 𝑔.
Transfer applies due to the standardness of lim and 𝑔, giving us st([𝑓 ]). Every
standard equivalence class has a standard representative 𝑓 ∈ [𝑓 ], so one can
simply pick ℎ = 𝑓 (𝜔).

2. For any standard 𝑔1,𝑔2 ∈ 𝐺, and ℎ ∈𝐻 such that 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2), we have
𝑔1 = 𝑔2. Take standard 𝑔1,𝑔2 and arbitrary ℎ such that the approximations hold.
Then we have lim[𝑓1] = 𝑔1 ∧ 𝑓1(𝜔) = ℎ and lim[𝑓2] = 𝑔2 ∧ 𝑓2(𝜔) = ℎ for re-
spective 𝑓1,𝑓2. Thanks to the equality 𝑓1(𝜔) = ℎ = 𝑓2(𝜔), and the fact that
st(𝑓1),st(𝑓2) both hold, we can apply Theorem 1.3.42 to conclude [𝑓1] = [𝑓2]
and therefore 𝑔1 = lim[𝑓1] = lim[𝑓2] = 𝑔2 as desired.

Qed.

2.2.11. Proposition 2.2.8 shows that Zilber’s ordinary strong approximation (and the
LEF condition, since the proof makes no essential use of lim) gives rise to a very spe-
cial, well-behaved case of Definition 2.2.3. In particular, such an approximation has
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internal 𝜄 (but keep in mind that the predicate rarely has all parameters standard, so we
generally cannot apply Transfer to it). The approximations of Proposition 2.2.7, which
feature in the proofs of Theorems 1.2.7 and 1.3.45, do not share all the same good
properties (as the reader should now verify). Nevertheless, these two constructions,
along with Zilber’s ordinary approximation (Proposition 2.2.10) all appear as special
instances of our general definition. Moreover, we can see now that the language of
Internal Set Theory enables us to consider finer-grained variations of these properties,
some of which one cannot define easily (or investigate efficiently) in the ordinary setting.
Definition 2.2.3 may seem overly general at first, but our main result (Theorem 2.3.9)
does apply to every approximation. However, we also build a loose ranking of better-
and-better-behaved approximations, and characterize some of the upper echelons of the
resulting hierarchy.

2.2.12. We have yet to account for a significant detail: the problem of structure preser-
vation. Proposition 2.2.8 does ensure that Zilber-style ordinary structural approxima-
tions give rise to approximations of the same set, but the result does not account for
algebraic structure (in light of Proposition 2.2.7 a mere set-approximation result would
hold little interest). In Proposition 2.2.13 we verify that the resulting approximation in-
deed preserves structure for the case of groups. The same holds for first-order theories
in general, as long as one formulates the homomorphism property of the approximation
predicate correctly (𝜄 has to form a logical relation [21]) and the relevant quantifiers
range over standard elements. We let the patient reader grapple with these details.

2.2.13. Proposition. Assume that we have a standard ordinary strong approximation
of a group 𝐺 via the 𝐼-indexed sequence of groups 𝐻 . Then 𝐻𝜔 approximates 𝐺 as a
group for some index 𝜔 ∈ 𝐼 .

Proof. We only need to show that the predicate 𝜄 constructed in Proposition 2.2.8 sat-
isfies ∀ℎ1,ℎ2 ∈𝐻𝜔.𝜄(ℎ1,𝑔1)∧ 𝜄(ℎ2,𝑔2)→ 𝜄(ℎ1ℎ2,𝑔1𝑔2) for any standard 𝑔1,𝑔2 ∈ 𝐺.
We have a standard representative (𝑟◦colim)(𝑔1) = 𝑓1 ∈ colim(𝑔1) such that 𝑓1(𝜔) = ℎ1.
Similarly, we have a standard 𝑓2 ∈ colim(𝑔2) such that 𝑓2(𝜔) = ℎ2, and a standard
𝑓3 ∈ colim(𝑔1𝑔2). We wish to prove 𝑓3(𝜔) = ℎ1ℎ2. We know st(𝑓1𝑓2) since the stan-
dardness of the multiplication operation follows from the standardness of the approxi-
mation. We also know that 𝑓1𝑓2 ∈ colim(𝑔1)colim(𝑔2) = colim(𝑔1𝑔2) using the homo-
morphism property of colim. Consequently both 𝑓1𝑓2 and 𝑓3 occur as standard repre-
sentatives of the -equivalence class colim(𝑔1𝑔2). It follows from Theorem 1.3.42 that
two standard representatives have the same value at the monadic element 𝜔 of , and
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therefore 𝑓3(𝜔) = 𝑓1(𝜔)𝑓2(𝜔) = ℎ1ℎ2 as required.
Qed.

2.2.14. Exercise. Give another proof of Corollary 2.2.9 using the predicate 𝜄(ℎ,𝑔)↔
∃𝑠𝑡𝑓 ∈ colim(𝑔).𝑓 (𝜔) = ℎ. Which clauses of Proposition 2.2.8 does the resulting appli-
cation satisfy?

2.2.15. We have to build up a library of approximations before we can “distill” the
useful properties that approximations may have. We begin with well-known subclasses
of the class of LEF groups. For Theorem 2.2.18 we have to briefly recall the definition
of profinite groups. Similarly for Theorem 2.2.29 and residually finite groups.

Profinite groups

2.2.16. Definition. The partially ordered set (𝐼,≤) forms a directed partial order or
dpo if every finite subset of 𝐼 has a ≤-upper bound in 𝐼 .
Take a directed partial order (𝐼,≤). An inverse system of groups over (𝐼,≤) consists of
an 𝐼-indexed set of groups𝑀 , and for every 𝑖, 𝑗 ∈ 𝐼 with 𝑖≤ 𝑗 a group homomorphism
𝑀 𝑗

𝑖 ∶𝑀𝑗 →𝑀𝑖.
Consider an inverse system 𝑀 over (𝐼,≤). The set of functions

𝐺 =
{
𝑓 ∶ (𝑖 ∈ 𝐼)→𝑀𝑖

|||∀𝑖, 𝑗 ∈ 𝐼.𝑖 ≤ 𝑗 →𝑀 𝑗
𝑖 (𝑓 (𝑗)) = 𝑓 (𝑖)

}
.

forms a group when equipped with the pointwise group operations on (𝑖 ∈ 𝐼) →𝑀𝑖.
We call this group the inverse limit of the system 𝑀 and denote it lim

←←←←←←←←←←←
𝑀 .

2.2.17. Definition. If a group 𝐺 arises as an inverse limit of an inverse system of finite
groups, we refer to 𝐺 as a profinite group.

2.2.18. Theorem. Every standard profinite group 𝐺 admits a finite approximation as a
group.

Proof. Consider a standard profinite group 𝐺. We can find an inverse system of finite
groups such that 𝐺 arises as an inverse limit of the system. Transfer applies, so we
can in fact write 𝐺 as the inverse limit of a standard system of finite groups 𝑀 on a
standard directed partial order (𝐼,≤). For 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗, the system gives a group
homomorphism 𝑀 𝑗

𝑖 ∶𝑀𝑗 →𝑀𝑖. As per Definition 2.2.16 we can identify 𝐺 with a
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group of functions

𝐺 =
{
𝑓 ∶ (𝑖 ∈ 𝐼)→𝑀𝑖

|||∀𝑖, 𝑗 ∈ 𝐼.𝑖 ≤ 𝑗 →𝑀 𝑗
𝑖 (𝑓 (𝑗)) = 𝑓 (𝑖)

}
where we perform the group operation pointwise. Since 𝐼 forms a directed partial order,
every standard finite subset of 𝐼 has an upper bound. Formally: ∀𝑠𝑡𝐹 ⊆ 𝐼.∃𝑏.∀𝑖∈ 𝐹 .𝑖≤
𝑏∧ 𝑏 ∈ 𝐼 . Idealization immediately yields ∃𝜔 ∈ 𝐼.∀𝑠𝑡𝑖.𝑖 ≤ 𝜔. Set 𝐻 =𝑀𝜔 and define
the predicate 𝜄(ℎ,𝑔) between 𝐻 and 𝐺 as an abbreviation for the formula 𝑔(𝜔) = ℎ.
Then 𝜄 satisfies the following properties:

1. For any 𝑔 ∈𝐺 we can find ℎ∈𝐻 such that 𝜄(ℎ,𝑔) holds. Since 𝑔 ∶ (𝑖∈ 𝐼)→𝑀𝑖,
we have 𝑔(𝜔) ∈𝑀𝜔 =𝐻 and 𝜄(𝑔(𝜔),𝑔) holds trivially.

2. For any 𝑔 ∈ 𝐺, ℎ1,ℎ2 ∈𝐻 such that 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) hold, we have ℎ1 = ℎ2.
Just observe that ℎ1 = 𝑔(𝜔) = ℎ2.

3. For any standard 𝑔1,𝑔2 ∈𝐺 and any ℎ∈𝐻 such that 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2) both hold,
we have 𝑔1 = 𝑔2. Consider two standard functions 𝑔1,𝑔2 ∶ (𝑖∈ 𝐼)→𝑀𝑖. Assume
that 𝑔1(𝜔) = ℎ = 𝑔2(𝜔). We prove that 𝑔1(𝑖) = 𝑔2(𝑖) for all standard 𝑖 ∈ 𝐼 . Take
any standard 𝑖 ∈ 𝐼 . We have 𝑖 ≤ 𝜔 by construction of 𝜔, so the inverse system
contains a group homomorphism 𝑀𝜔

𝑖 ∶ 𝐻 → 𝑀𝑖 such that 𝑀𝜔
𝑖 (𝑔(𝜔)) = 𝑔(𝑖)

holds for any 𝑔 ∈ 𝐺. Applying 𝑀𝜔
𝑖 to both sides of the equality 𝑔1(𝜔) = 𝑔2(𝜔)

yields 𝑔1(𝑖) = 𝑔2(𝑖). Hence, ∀𝑠𝑡𝑖 ∈ 𝐼.𝑔1(𝑖) = 𝑔2(𝑖). By the standardness of 𝑔1,𝑔2,
Transfer applies to this statement and gives 𝑔1 = 𝑔2 as desired.

4. For any 𝑔1,𝑔2 ∈ 𝐺 and ℎ1,ℎ2 ∈ 𝐻 , if 𝜄(ℎ1,𝑔1) and 𝜄(ℎ2,𝑔2) both hold, then so
does 𝜄(ℎ1ℎ2,𝑔1𝑔2). We have 𝑔1(𝜔) = ℎ1 and 𝑔2(𝜔) = ℎ2. One can take products
in 𝐺 pointwise, so (𝑔1𝑔2)(𝜔) = 𝑔1(𝜔)𝑔2(𝜔) = ℎ1ℎ2 as required.

Qed.

2.2.19. Corollary. Every profinite group admits an ordinary finite group approxima-
tion.

Proof. By the standardness of the conclusion, we can provisionally assume the stan-
dardness of the profinite group. By the definition of profinite groups, we can in fact
write it as the inverse limit of a standard system of finite groups 𝑀 on a standard
directed partial order (𝐼,≤). Choose 𝜔, 𝜄 as in Theorem 2.2.18, and construct a non-
principal ultrafilterwith𝜔 as its monadic element (follow the proof of Lemma 1.3.40).



56 CHAPTER 2. STRUCTURAL APPROXIMATION

Denote the ultraproduct
∏

𝑖∈𝐼𝑀𝑖∕ as 𝑀 and consider the standard set

lim =
⦃
(𝐺,𝑓 ) ∈𝑀× lim

←←←←←←←←←←←
𝑀 |||∀𝑠𝑡𝑔 ∈ 𝐺.∃ℎ ∈𝑀𝜔.𝜄(ℎ,𝑔)∧∀𝑠𝑡𝑖 ∈ 𝐼.𝑀𝜔

𝑖 (ℎ) = 𝑓 (𝑖)
⦄
.

We claim that lim forms the graph of a surjective function lim ∶𝑀 → lim
←←←←←←←←←←←

𝑀 . First we
prove that ∀𝐺 ∈𝑀.∃𝑓 ∈ lim

←←←←←←←←←←←
𝑀.(𝐺,𝑓 ) ∈ lim. By Transfer it suffices to find standard

𝑓 ∈ lim
←←←←←←←←←←←

𝑀 for standard 𝐺 ∈𝑀. A standard equivalence class 𝐺 has some standard
representative 𝑔 ∈ 𝐺. Pick such a representative and consider the set

𝑓 =
{
(𝑖,𝑥) ∈ (𝑖 ∈ 𝐼)×𝑀𝑖

||𝑀𝜔
𝑖 (𝑔(𝜔)) = 𝑥

}
.

For any standard 𝑖 we have some 𝑥 such that 𝑀𝜔
𝑖 (𝑔(𝜔)) = 𝑥. By the standardness of

the finite set 𝑀𝑖, Theorem 1.2.5 applies and gives st(𝑥). Using Transfer, this shows
that 𝑓 ∶ (𝑖 ∈ 𝐼) → 𝑀𝑖. Similarly, for all standard 𝑖 ≤ 𝑗 ∈ 𝐼 we have 𝑀 𝑗

𝑖 (𝑓 (𝑗)) =
𝑀 𝑗

𝑖 (𝑀
𝜔
𝑗 (𝑔(𝜔))) = 𝑀𝜔

𝑖 (𝑔(𝜔)) = 𝑓 (𝑖). Using Transfer one more time, we conclude
𝑓 ∈ lim

←←←←←←←←←←←
𝑀 . To demonstrate that ∀𝑠𝑡𝑔 ∈ 𝐺.∀𝑠𝑡𝑖 ∈ 𝐼.𝑀𝜔

𝑖 (𝑔(𝜔)) = 𝑓 (𝑖), consider any
other standard 𝑔′ and construct a corresponding function 𝑓 ′. Since st(𝑔) and st(𝑔′)
both hold, and [𝑔] = [𝑔′], Theorem 1.3.42 immediately gives 𝑔(𝜔) = 𝑔′(𝜔), and we
conclude that 𝑓 and 𝑓 ′ have the same standard values. But Transfer applies, so 𝑓 = 𝑓 ′.
Consider a standard 𝑓 ∈ lim

←←←←←←←←←←←
𝑀 . We have 𝑓 ∶ (𝑖 ∈ 𝐼) → 𝑀𝑖 and hence [𝑓 ] ∈ 𝑀.

Since 𝑓 ∈ [𝑓 ], we have ∀𝑠𝑡𝑔 ∈ [𝑓 ].𝑔(𝜔) = 𝑓 (𝜔), and therefore we know that ∀𝑠𝑡𝑓 ∈
lim
←←←←←←←←←←←

𝑀.∀𝑠𝑡𝑖 ∈ 𝐼. lim([𝑓 ])(𝑖) = 𝑓 (𝑖). The usual Transfer argument goes through, and we
get lim([𝑓 ]) = 𝑓 for all 𝑓 ∈ lim

←←←←←←←←←←←
𝑀 , proving the surjectivity of lim.

Finally, we must show that lim respects the group operation. As before, having made
the usual provisional assumptions, we only need to show that for standard 𝐺,𝐻 ∈𝑀,
lim(𝐺) lim(𝐻) and lim(𝐺𝐻) take the same value on all standard 𝑖 ∈ 𝐼 .
Consider any standard 𝑔 ∈𝐺 andℎ∈𝐻 , and some standard 𝑖∈ 𝐼 We have 𝑠𝑡(𝐺𝐻),st(𝑔ℎ),
𝑔ℎ ∈ 𝐺𝐻 and

lim(𝐺𝐻)(𝑖) =𝑀𝜔
𝑖 (𝑔ℎ(𝜔))

=𝑀𝜔
𝑖 (𝑔(𝜔)ℎ(𝜔))

=𝑀𝜔
𝑖 (𝑔(𝜔))𝑀

𝜔
𝑖 (ℎ(𝜔))

= lim(𝐺)(𝑖) lim(𝐻)(𝑖).

We have shown that for any standard profinite group lim
←←←←←←←←←←←

𝑀 with 𝐼,≤,𝑀 standard
we have a a non-principal ultrafilter  and a surjective group homomorphism 𝑀 →
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lim
←←←←←←←←←←←

𝑀 . By the internality of this conclusion, we can drop the provisional assumptions of
standardness and conclude that any standard profinite group admits an ordinary group
approximation.
Qed.

2.2.20. Proposition. Every standard profinite group (𝐺,◦−) admits a finite approxima-
tion as a group in the profinite topology ◦−.

Proof. Exercise. Hint: The approximation of Theorem 2.2.18 does the job. To prove
this, observe that 𝑓1 ◦− 𝑓2 in the profinite topology implies having the same values at
standard arguments.
Qed.

Properties of approximations

2.2.21. We have seen in Proposition 2.2.13 that the approximations constructed from
ordinary approximations using Proposition 2.2.8 preserve the group operation. The
approximations coming from Theorem 2.2.18 possess even better properties than the
ones obtained from ordinary approximations in Proposition 2.2.13 (not to mention the
approximations of Exercise 2.2.14). Not only does our approximation have an internal
𝜄 that acts like a group homomorphism on standard elements, but the homomorphism
property obtains for any pair of elements, even non-standard ones. At this stage, talking
about all these different properties starts to feel tedious: time to consolidate what we
learned into a few memorable adjectives. We state Definition 2.2.22 for the case of
groups only: algebraic structures work the same way, and the interested reader can
contend with the general first-order case as in 2.2.12.

2.2.22. Definition. Consider two groups𝐻,𝐺 where𝐻 approximates𝐺 as a group via
the predicate 𝜄. We call 𝜄

1. internal if 𝜄 forms an internal predicate;

2. entire if for any 𝑔 ∈ 𝐺 we can find ℎ ∈𝐻 such that 𝜄(ℎ,𝑔) holds;

3. robust if for any 𝑔1,𝑔2 ∈ 𝐺 and ℎ1,ℎ2 ∈𝐻 such that 𝜄(ℎ1,𝑔1) and 𝜄(ℎ2,𝑔2) both
hold, we have 𝜄(ℎ1ℎ2,𝑔1𝑔2).

2.2.23. The approximations constructed in the proof of Proposition 2.2.13 are internal
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and entire but usually not robust. The approximations constructed as part of Proposi-
tion 2.2.10 and Exercise 2.2.14 are neither internal nor entire, but they are both robust.
The approximations coming from Theorem 2.2.18 are internal, entire and robust. Us-
ing specific properties of the first-order theory under consideration allows us to relate
ordinary strong approximations of certain structures with robust approximations of the
same structures: Theorem 2.2.24 gives an example.

2.2.24. Theorem. Take any field 𝔽 . Assume that we have a standard ordinary approxi-
mation of an 𝔽 -vector-space𝐺 via the 𝐼-indexed sequence of 𝔽 -vector-spaces𝐻 . Then
we can find an internal, entire, robust approximation of𝐺 via𝐻𝜔 for some index 𝜔∈ 𝐼 .

Proof. Denote the 𝐼-ultrafilter coming from the ordinary approximation as . Tak-
ing a direct product of vector spaces yields another vector space, so we can regard
the quotient map [−] ∶

∏
𝑖∈𝐼𝐻𝑖 →

∏
𝑖∈𝐼𝐻𝑖∕ as an epimorphism in the category

of 𝔽 -vector-spaces. But every epimorphism splits in that category, so we get a linear
transformation 𝑟 ∶

∏
𝑖∈𝐼𝐻𝑖∕ →

∏
𝑖∈𝐼𝐻𝑖 such that ∀𝑥.([−]◦𝑟)(𝑥) = 𝑥. By Proposi-

tion 1.3.38 the ultrafilter  has a monadic element 𝜔 ∈ 𝐼 . Define 𝜄(ℎ,𝑔) between 𝐻𝜔

and 𝐺 as an abbreviation for the formula (𝑟◦colim)(𝑔)(𝜔) = ℎ. The resulting approx-
imation 𝜄 has the internal and entire properties by Proposition 2.2.8. We only need to
prove robustness.
Consider any 𝑔1,𝑔2 ∈𝐺 and ℎ1,ℎ2 ∈𝐻𝜔 such that 𝜄(ℎ1,𝑔1) and 𝜄(ℎ2,𝑔2) both hold. Take
any scalar 𝜆∈ 𝔽 . We have (𝑟◦colim)(𝑔1)(𝜔) = ℎ1 and (𝑟◦colim)(𝑔2)(𝜔) = ℎ2. We need
to prove that (𝑟◦colim)(𝜆𝑔1 + 𝑔2)(𝜔) = 𝜆ℎ1 + ℎ2. Using the linearity of both colim
and 𝑟, we have (𝑟◦colim)(𝜆𝑔1 + 𝑔2) = 𝑟(𝜆colim(𝑔1) + colim(𝑔2)) = 𝜆𝑟(colim(𝑔1)) +
𝑟(colim(𝑔2)) as members of the function space

∏
𝑖∈𝐼𝐻𝑖. Equality of functions implies

pointwise equality on all indices, so taking the index 𝜔 ∈ 𝐼 gives us (𝑟◦colim)(𝜆𝑔1+
𝑔2)(𝜔) = 𝜆(𝑟◦colim(𝑔1))(𝜔) + (𝑟◦colim(𝑔2))(𝜔) = 𝜆ℎ1 + ℎ2, which shows the robust-
ness of the approximation.
Qed.

2.2.25. One cannot imitate the reasoning of Theorem 2.2.24 in the case of arbitrary
groups. Given an ordinary strong approximation of 𝐺 via the sequence of finite groups
𝐻𝑖, one wishes to find a section 𝑟 ∶

∏
𝑖∈𝐼𝐻𝑖∕→

∏
𝑖∈𝐼𝐻𝑖 for the quotient map [−] ∶∏

𝑖∈𝐼𝐻𝑖→
∏

𝑖∈𝐼𝐻𝑖∕. Upon success, we would have 𝑟◦colim ∶𝐺↪
∏

𝑖∈𝐼𝐻𝑖. Only
residually finite groups 𝐺 admit such a morphism. This does not mean that robust
approximation implies residually finiteness, merely that we cannot use the construction
of Proposition 2.2.13 to find robust approximations in the non-residually-finite case.
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Residually finite groups

2.2.26. Definition. We call a group 𝐺 residually finite if it embeds into some direct
product of finite groups.

2.2.27. Proposition. A group 𝐺 is residually finite precisely if for any finite subset
𝐹 ⊆ 𝐺 with 1 ∉ 𝐹 we can find a finite index normal subgroup 𝑁 of 𝐺 such that ∀𝑥 ∈
𝐹 .𝑥 ∉𝑁 .

Proof. See [7]-Corollary 2.2.6.
Qed.

2.2.28. Corollary. A standard group𝐺 satisfies residually finiteness precisely if it con-
tains a finite index normal subgroup 𝑁 that does not have any standard element (apart
from the identity).

Proof. Apply Idealization to the normal subgroup condition of Proposition 2.2.27.
Qed.

2.2.29. Theorem. Every standard residually finite group 𝐺 admits a finite internal, en-
tire, robust approximation.

Proof. Take a residually finite group 𝐺. We can use Corollary 2.2.28 to choose a
finite index subgroup 𝑁 that does not contain any standard (non-identity) element of
𝐺. Taking the quotient 𝐻 = 𝐺∕𝑁 yields a finite group by the finite index clause. Let
𝜄(ℎ,𝑔) stand for the binary predicate 𝑔 ∈ ℎ for 𝑔 ∈𝐺 and ℎ ∈𝐺∕𝑁 . Internality follows
by the form of 𝜄. We prove the other clauses below:

1. For any 𝑔 ∈ 𝐺, we have ℎ ∈𝐻 so 𝜄(ℎ,𝑔) holds. We can take ℎ = 𝑔𝑁 , thereby
showing that 𝜄 is entire.

2. For any 𝑔 ∈ 𝐺 and ℎ1,ℎ2 ∈ 𝐻 such that 𝑔 ∈ ℎ1 and 𝑔 ∈ ℎ2, we have ℎ1 = ℎ2.
This just restates the fact that left cosets of a normal subgroup are either disjoint
or identical.

3. For any standard 𝑔1,𝑔2 ∈ 𝐺, and ℎ ∈𝐻 such that 𝑔1 ∈ ℎ and 𝑔2 ∈ ℎ, we have
𝑔1 = 𝑔2. Writing ℎ = 𝑥𝑁 , we get 𝑔1𝑥−1 ∈𝑁 and 𝑥−1𝑔−12 ∈𝑁 , and thus 𝑔1𝑔−12 ∈
𝑁 . But st(𝑔1𝑔−12 ) holds by Corollary 1.2.11, and the only standard element of𝑁
equals the identity. Hence 𝑔1𝑔−12 = 1 and so 𝑔1 = 𝑔2.
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4. For any 𝑔1,𝑔2 ∈ 𝐺 and any ℎ1 ∈𝐻,ℎ2 ∈𝐻 such that 𝑔1 ∈ ℎ1 and 𝑔2 ∈ ℎ2 we
have 𝑔1𝑔2 ∈ 𝑔1𝑔2𝑁 = ℎ1ℎ2 by the definition of multiplication in 𝐺∕𝑁 .

Qed.

2.2.30. Theorem 2.2.29 proves Theorem 2.2.18 as a special case, since every profinite
group has the property of residually finiteness. However, one does not get a simple
proof of the topological approximation result (Proposition 2.2.20) this way.

2.2.31. Unlike the construction of Theorem 2.2.18, which gave as a corollary the ordi-
nary approximability of profinite groups (Corollary 2.2.19), we cannot expect the result
of Theorem 2.2.29 to transfer to ordinary approximations: we construct a counterexam-
ple in Proposition 2.2.32.

2.2.32. Proposition. Some residually finite groups do not admit ordinary finite approx-
imations.

Proof. Assume for a contradiction that all residually finite groups admit ordinary finite
approximations. Regard 𝑆𝑂(3) as a quotient 𝑓 ∶ 𝐹 ↠ 𝑆𝑂(3) of the free group gener-
ated by all matrices in 𝑆𝑂(3). Since free groups are residually finite, our assumption
allows us to find a finite ordinary approximation lim ∶

∏
𝑖∈𝐼𝐻𝑖∕ ↠ 𝐹 , and to get

an approximation of 𝑆𝑂(3) as 𝑓◦ lim ∶
∏

𝑖∈𝐼𝐻𝑖∕ ↠ 𝑆𝑂(3). This contradicts [34]-
Theorem 7 on ordinary approximations of 𝑆𝑂(3).
Qed.

The Alexandroff case

2.2.33. We wish to investigate the “best possible” approximations: ones where the
approximation predicate 𝜄 constitutes a genuine, bona fide homomorphism of groups.
Analogizing with Alexandroff spaces, which arise as the spaces where the nearness
predicate forms a bona fide relation, we call these Alexandroff approximations. Here
we classify groups that admit such finite approximations. One can define Alexandroff
approximation for other algebraic structures analogously; the diligent reader would fill
in these details while attempting Exercise 2.2.37.

2.2.34. Definition. Consider an approximation 𝜄 of a group 𝐺 (equipped with some
Fréchet predicate ◦−) via a finite group 𝐻 . We call 𝜄 an Alexandroff approximation if
𝜄(ℎ,𝑔)↔ 𝑓 (ℎ) = 𝑔 for some group homomorphism 𝑓 ∶𝐻 → 𝐺.
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2.2.35. Definition. We call a group𝐺 locally finite if every finitely generated subgroup
of 𝐺 has finite order.

2.2.36. Proposition. A group (𝐺,◦−) admits a finite Alexandroff approximation pre-
cisely if 𝐺 is locally finite. In that case one can find an Alexandroff approximation by
a subgroup 𝐻 <𝐺.

Proof. Provisionally assume that 𝐺 is standard. Assume that 𝐺 admits some Alexan-
droff approximation 𝜄 via𝐻 . Consider the group homomorphism 𝑓 ∶𝐻 →𝐺, and take
the image 𝑓 (𝐻) < 𝐺. This subgroup clearly has finite order. Since ∀𝑠𝑡𝑔 ∈ 𝐺.∃ℎ ∈
𝐻.𝜄(ℎ,𝑔) holds, we have that ∀𝑠𝑡𝑔 ∈ 𝐺.𝑔 ∈ 𝑓 (𝐻), and therefore we can find some
𝑋 < 𝐺 that forms a finite subgroup of 𝐺 that contains every standard element of 𝐺.
Using Proposition 1.2.4 we get that for any standard finite subset 𝐹 ⊆ 𝐺 we can find a
finite subgroup 𝑋 < 𝐺 such that 𝐹 ⊆ 𝑋. Thus ⟨𝐹 ⟩ ⊆ 𝑋, and so ⟨𝐹 ⟩ has finite order.
By Transfer the same holds for every finite subset of 𝐺.
Now assume that every finitely generated subgroup of 𝐺 has finite order. Take a finite
subset𝐻 of𝐺 that contains every standard element of𝐺 (follow e.g. the proof of Propo-
sition 2.2.7). Since ⟨𝐻⟩ has finite order, it constitutes a finite subgroup that nonetheless
contains every standard element of 𝐺. Take the inclusion map 𝑓 ∶ ⟨𝐻⟩ ↪ 𝐺 and set
𝜄(ℎ,𝑔) as an abbreviation for 𝑓 (ℎ) = 𝑔. We have to verify three properties:

1. For standard 𝑔 ∈𝐺 we can find ℎ∈ ⟨𝐻⟩ with 𝑓 (ℎ) = 𝑔. Since 𝑔 ∈𝐻 ⊆ ⟨𝐻⟩, we
can set ℎ = 𝑔 and have 𝑓 (ℎ) = ℎ = 𝑔.

2. For standard 𝑔 ∈ 𝐺, arbitrary ℎ1,ℎ2 ∈ ⟨𝐻⟩ such that 𝑓 (ℎ1) = 𝑔 and 𝑓 (ℎ2) = 𝑔,
we have ℎ1 = ℎ2. Since we obtained 𝑓 as an inclusion map, we have ℎ1 = 𝑔 = ℎ2
as desired.

3. For any 𝑔1,𝑔2 ∈ 𝐺 and ℎ ∈ ⟨𝐻⟩ such that 𝑓 (ℎ) = 𝑔1 and 𝑓 (ℎ) = 𝑔2 we have
𝑔1 ◦− 𝑔2. In this case we have 𝑔1 = 𝑔2, so by reflexivity 𝑔1 ◦− 𝑔2.

4. For 𝑔1,𝑔2 ∈ 𝐺 and ℎ1,ℎ2 ∈ ⟨𝐻⟩ such that 𝑓 (ℎ1) = 𝑔1 and 𝑓 (ℎ2) = 𝑔2, we have
𝑓 (ℎ1ℎ2) = 𝑔1𝑔2. Again, this holds simply because we have ℎ1ℎ2 ∈ ⟨𝐻⟩, ℎ1 = 𝑔1
and ℎ2 = 𝑔2.

Qed.

2.2.37. Exercise. Prove that every Boolean algebra admits an Alexandroff approxima-
tion.
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2.2.38. The correspondence presented in Proposition 2.2.36 sheds light on the “unrea-
sonable effectiveness” of Internal Set Theory for locally finite structures. Even The-
orem 1.2.7 relies essentially on the locally finiteness of graph structures: taking the
subgraph induced by a finite subset of vertices results in a finite subgraph. As a more
open-ended exercise, applying Exercise 2.2.37 to Goldblatt’s superstructure proof of
the Stone representation theorem ([16]-Chapter 19.6.) yields a very legible IST-proof
of the same fact.

2.3 Action extension

2.3.1. Approximations allows us to extend well-behaved functions defined on the ap-
proximating object to similarly well-behaved functions defined on the approximated
object, as long as the codomain of the function comes equipped with a nice topology.
In particular, we show that if a group admits a finite approximation with a Lipschitz ac-
tion on some compact manifold, then we can lift this action and obtain an action of any
periodic subgroup of the approximated group on the same manifold (Theorem 2.3.9).

2.3.2. Proposition. Let 𝜄 be a weak approximation of the standard set 𝐺 via the (not
necessarily finite) set 𝐻 . Consider a standard compact Hausdorff topological space
(𝑀,◦−) and a function 𝑓 ∶𝐻 →𝑀 such that ∀ℎ1,ℎ2 ∈𝐻.∀𝑔 ∈𝐺.𝜄(ℎ1,𝑔)∧ 𝜄(ℎ2,𝑔)→
𝑓 (ℎ1) ◦− 𝑓 (ℎ2). There is a function 𝑓 ′ ∶ 𝐺→𝑀 such that for any standard 𝑔 ∈ 𝐺, if
𝜄(ℎ,𝑔) then 𝑓 ′(𝑔) ◦− 𝑓 (ℎ).

Proof. Take such a function 𝑓 ∶𝐻 →𝑀 . Define the set 𝑓 ′ via the Standardization
axiom as 𝑓 ′ = ⦃(𝑔,𝑚) ∈ 𝐺×𝑀 |∃ℎ ∈𝐻.𝜄(ℎ,𝑔)∧𝑚 ◦− 𝑓 (ℎ)⦄. We claim that 𝑓 ′ forms
the graph of a function 𝑓 ′ ∶ 𝐺→𝑀 .
We first prove that ∀𝑠𝑡𝑔.∃𝑠𝑡!𝑚 ∈𝑀.(𝑔,𝑚) ∈ 𝑓 ′. For existence, take a standard 𝑔 ∈ 𝐺.
Since 𝜄 weakly approximates 𝐺 via 𝐻 , we can find ℎ ∈ 𝐻 such that 𝜄(ℎ,𝑔). Using
the compactness of 𝑀 , we immediately get a standard 𝑚 ∈𝑀 such that 𝑚 ◦− 𝑓 (ℎ).
Thus we have (𝑔,𝑚) ∈ 𝑓 ′. For uniqueness, take standard 𝑔 ∈ 𝐺,𝑚1 ∈𝑀 and 𝑚2 ∈𝑀 ,
and assume (𝑔,𝑚1) ∈ 𝑓 ′ and (𝑔,𝑚2) ∈ 𝑓 ′. By definition we get ℎ1,ℎ2 ∈𝐻 such that
𝜄(ℎ1,𝑔),𝑚1 ◦− 𝑓 (ℎ1) and 𝜄(ℎ2,𝑔),𝑚2 ◦− 𝑓 (ℎ2) all hold. From 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) we
obtain 𝑓 (ℎ2) ◦− 𝑓 (ℎ1), and hence (by the properties of the universal representation ◦−)
𝑚1 ◦− 𝑓 (ℎ2). Now we have 𝑚1 ◦− 𝑓 (ℎ2) and 𝑚2 ◦− 𝑓 (ℎ2), so by the Hausdorff property
we conclude 𝑚1 = 𝑚2.
Notice that st(𝑓 ′) holds by Standardization. This means that Transfer applies to the
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formula ∀𝑠𝑡𝑔.∃𝑠𝑡!𝑚∈𝑀.(𝑔,𝑚) ∈ 𝑓 ′, which proves our claim that 𝑓 ′ ∶𝐺→𝑀 . For any
standard 𝑔 ∈ 𝐺 we have st(𝑓 ′(𝑔)), and since (𝑔,𝑓 ′(𝑔)) ∈ 𝑓 ′ we get ∀ℎ ∈𝐻.𝜄(ℎ,𝑔)→
𝑓 ′(𝑔) ◦− 𝑓 (ℎ) as desired.
Qed.

2.3.3. Corollary. Consider an approximation 𝜄 of the standard set 𝐺 via the (not nec-
essarily finite) set 𝐻 . For any function 𝑓 ∶𝐻 →𝑀 to a standard compact Hausdorff
space 𝑀 we can find a standard function 𝑓 ′ ∶𝐺→𝑀 such that for all standard 𝑔 ∈𝐺,
if 𝜄(ℎ,𝑔) then 𝑓 ′(𝑔) ◦− 𝑓 (ℎ).

Proof. By the definition of approximation we have 𝜄(ℎ1,𝑔)∧ 𝜄(ℎ2,𝑔)→ ℎ1 = ℎ2 for any
standard 𝑔 ∈ 𝐺. Consequently, every function 𝑓 ∶ 𝐻 →𝑀 satisfies 𝑓 (ℎ1) = 𝑓 (ℎ2),
and a fortiori 𝑓 (ℎ1) ◦− 𝑓 (ℎ2). We get the claimed result by applying Proposition 2.3.2.
Qed.

2.3.4. Notice that one cannot weaken the compactness requirement in either Proposi-
tion 2.3.2 or Corollary 2.3.3. In fact, given a non-compact 𝑀 , we can use the charac-
terization of Theorem 1.3.33 to find a point 𝑚 that lies far from every standard point,
i.e. ∀𝑠𝑡𝑥 ∈𝑀.¬𝑥 ◦− 𝑚. Then we cannot even extend the constant function 𝑓 (𝑥) = 𝑚.
One can see the failure of the extension results for non-compact 𝑀 as a (very loose)
counterpart to [51]-Proposition 3.4.

2.3.5. We are now ready to prove our main result for this chapter, Theorem 2.3.9, which
relates actions of an approximating group 𝐻 on standard manifolds to actions of pe-
riodic subgroups of the approximated group 𝐺 on the same manifold. One can see
Theorem 2.3.9 as a (vast) generalization of a result on discrete circle actions due to
Manevitz and Weinberger [30]. The group-theoretic underpinning of our result comes
from the celebrated Newman’s theorem on group actions, which states that a compact
Lie group does not act on a manifold with uniformly small orbits. For what follows
recall that we label a group periodic if each element of the group has finite order.

2.3.6. Theorem (Newman). Take a manifold𝑀 metrized by the metric 𝑑, and consider
a non-empty open subset𝑈 ⊆𝑀 . We can find a real number 𝜈 > 0 depending only on𝑈
and the restriction of 𝑑 to𝑈 such that for any compact Lie group𝐺, the only continuous
action

↻

∶ 𝐺×𝑀 →𝑀 satisfying 𝑑(𝑥,𝑔

↻

𝑥) ≤ 𝜈 for all 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑈 is the trivial
action.

Proof. See [37]-Theorem 1.
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Qed.

2.3.7. Corollary. For any standard compact metric manifold 𝑀 equipped with a stan-
dard metric, we have a standard real number 𝜈 > 0 such that for any finite group 𝐺 ≠ 1,
continuous faithful action

↻

∶𝐺×𝑀 →𝑀 and element 𝑔 ∈𝐺, we can find 𝑛 ∈ ℕ and
𝑥 ∈𝑀 with 𝑑(𝑔𝑛

↻

𝑥,𝑥) > 𝜈.

Proof. Consider a standard compact metric manifold𝑀 . Set𝑈 =𝑀 and obtain a 𝜈 > 0
from Theorem 2.3.6. We can pick a standard such 𝜈 by Transfer. Take the finite group⟨𝑔⟩ < 𝐺. By faithfulness the restricted action

↻ |⟨𝑔⟩ ∶ ⟨𝑔⟩×𝑀 →𝑀 is non-trivial, and
so by Theorem 2.3.6 there are ℎ ∈ ⟨𝑔⟩ and 𝑥 ∈𝑀 such that 𝑑(ℎ

↻

𝑥,𝑥) > 𝜈. Since ℎ
belongs to the finite group ⟨𝑔⟩ we can write ℎ = 𝑔𝑛 for some 𝑛 ∈ ℕ.
Qed.

2.3.8. Definition. Take a positive constant𝐾 ∈ℝ. Consider a group𝐺, a metric space
(𝑀,𝑑) and an action

↻

∶𝐺×𝑀 →𝑀 . We call this action𝐾-Lipschitz if for all 𝑔 ∈𝐺,
𝑥,𝑦 ∈𝑀 , we have 𝑑(𝑔

↻

𝑥,𝑔
↻

𝑦) ≤𝐾 ⋅𝑑(𝑥,𝑦).

2.3.9. Theorem (Main Result). Consider a standard group𝐺 approximated by the finite
group𝐻 , and a standard compact manifold𝑀 . Assume that the group𝐻 acts faithfully
on the manifold𝑀 via the action

↻

∶𝐻 ×𝑀 →𝑀 , and that this action is𝐾-Lipschitz
for some standard 𝐾 > 0 (on some metrization of the manifold). Then every periodic
subgroup of 𝐺 admits a faithful 𝐾-Lipschitz action on 𝑀 .

Proof. For the sake of readability, we divide this long proof into multiple claims.

Claim 1: The set 𝐺×𝑀 approximates 𝐻 ×𝑀 .

Define the predicate 𝜄′((ℎ,𝑚ℎ), (𝑔,𝑚𝑔)) between 𝐻 ×𝑀 and 𝐺×𝑀 as an abbreviation
for 𝜄(ℎ,𝑔)∧𝑚ℎ = 𝑚𝑔. We need to prove the usual properties.

1. For any standard (𝑔,𝑚) ∈𝐺×𝑀 we can find (ℎ,𝑚ℎ) ∈𝐻 ×𝑀 such that we have
𝜄′((ℎ,𝑚ℎ), (𝑔,𝑚)). Take standard (𝑔,𝑚) ∈ 𝐺×𝑀 . Since 𝜄 satisfies the analogous
property, choose ℎ ∈𝐻 such that 𝜄(ℎ,𝑔). We clearly have 𝜄((ℎ,𝑚), (𝑔,𝑚)).

2. For any standard (𝑔,𝑚) ∈ 𝐺×𝑀 and arbitrary (ℎ1,𝑚1), (ℎ2,𝑚2) ∈𝐻 ×𝑀 such
that 𝜄′((ℎ1,𝑚1), (𝑔,𝑚)) and 𝜄′((ℎ2,𝑚2), (𝑔,𝑚)) both hold, we have (ℎ1,𝑚1) = (ℎ2,𝑚2).
The assumptions guarantee𝑚1 =𝑚=𝑚2, so we only need to prove ℎ1 = ℎ2. This
follows since both 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) hold and 𝜄 satisfies the analogous property.
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3. For any standard (𝑔1,𝑚1), (𝑔2,𝑚2) ∈ 𝐺×𝑀 and arbitrary (ℎ,𝑚) ∈𝐻 ×𝑀 such
that 𝜄′((ℎ,𝑚), (𝑔1,𝑚1)) and 𝜄′((ℎ,𝑚), (𝑔2,𝑚2)) both hold, we have (𝑔1,𝑚1) = (𝑔2,𝑚2).
Again, the assumptions guarantee𝑚1 =𝑚=𝑚2, so we only need to prove 𝑔1 = 𝑔2.
This follows from 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2) using the analogous property of 𝜄.

In what follows, fix a standard metrization of the manifold 𝑀 , and hence realize it as
a compact metric space (𝑀,𝑑). Denote the nearness predicate coming from Proposi-
tion 1.3.35 as ◦−.

Claim 2: We can find a standard function

↻ ′ ∶ 𝐺 ×𝑀 →𝑀 such that for all
standard 𝑔 ∈ 𝐺 and 𝑚 ∈𝑀 , if we have 𝜄(ℎ,𝑔) then we also have 𝑔

↻ ′𝑚 ◦− ℎ

↻

𝑚.

Using Claim 1, we know that 𝜄′ approximates𝐺×𝑀 via𝐻 ×𝑀 . Moreover,𝑀 forms a
compact Hausdorff topological space with the nearness predicate ◦−. Applying Corol-
lary 2.3.3 to the function

↻

∶𝐺×𝑀 →𝑀 gives us a function

↻ ′ ∶𝐺×𝑀 such that for
any standard (𝑔,𝑚) ∈𝐺×𝑀 and any (ℎ,𝑚ℎ) ∈𝐻 ×𝑀 with𝜄′((ℎ,𝑚𝐻 ), (𝑔,𝑚)), we have
𝑔

↻ ′𝑚 ◦− ℎ

↻

𝑚𝐻 . By the definition of 𝜄′, we have 𝑚𝐻 =𝑚. Thus, if we have 𝜄(ℎ,𝑔) then
we also have 𝑔

↻ ′𝑚 ◦− ℎ

↻

𝑚.

Claim 3: We have 𝜄(1𝐻 ,1𝐺).

Recall that Definition 2.2.3 mandates only the preservation of the group operation; we
prove the preservation of the identity element as a consequence. Since st(1𝐺) holds, we
have some ℎ ∈𝐻 such that 𝜄(ℎ,1𝐺). It suffices to prove that ℎ = 1𝐻 . From 𝜄(ℎ,1𝐺) we
get 𝜄(ℎ2,12𝐺) using the fact that 𝜄 preserves the group operation. But then 𝜄(ℎ2,1𝐺), and
from st(1𝐺) we get ℎ2 = ℎ. Multiplying both sides by ℎ−1 yields ℎ = 1𝐻 as desired.

Claim 4: The action

↻

∶𝐻 ×𝑀 →𝑀 satisfies uniform S-continuity, i.e. for all
ℎ ∈𝐻 and 𝑥,𝑦 ∈𝑀 , if 𝑥 ◦− 𝑦 then ℎ

↻

𝑥 ◦− ℎ

↻

𝑦.

We start by proving that this holds for standard 𝑥 ∈𝑀 . So consider arbitrary ℎ ∈𝐻 ,
standard 𝑥∈𝑀 and arbitrary 𝑦∈𝑀 with 𝑥 ◦− 𝑦. Take any standard 𝜀 > 0. Since st(𝐾)
holds, we know that st(𝐾−1𝜀) holds as well. By 𝑥 ◦− 𝑦, we have 𝑑(𝑥,𝑦) < 𝑠 for any
standard 𝑠 > 0. In particular 𝑑(𝑥,𝑦)≤𝐾−1𝜀. By the𝐾-Lipschitz property of the action

↻

, we know that 𝑑(ℎ

↻

𝑥,ℎ

↻

𝑦) < 𝐾𝑑(𝑥,𝑦) ≤ 𝐾𝐾−1𝜀 = 𝜀. Since we chose an arbitrary
standard 𝜀 > 0, we get ℎ

↻

𝑥 ◦− ℎ

↻

𝑦 as desired.
Now we must prove the same for arbitrary 𝑥∈𝑀 . Consider arbitraryℎ∈𝐻 , 𝑥∈𝑀 and
𝑦∈𝑀 with 𝑥 ◦− 𝑦. Use the compactness of𝑀 to pick standard 𝑥′ such that 𝑥′ ◦− 𝑥. By
transitivity we have 𝑥′ ◦− 𝑦 as well, so by the previous result we have both ℎ

↻

𝑥′ ◦− ℎ

↻

𝑥
and ℎ

↻

𝑥′ ◦− ℎ

↻

𝑦. From symmetry and transitivity it follows that ℎ

↻

𝑥 ◦− ℎ

↻

𝑦.
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Claim 5: For each 𝑚 ∈𝑀 we have 1𝐺

↻ ′𝑚 = 𝑚.

We know that st(

↻ ′), so we can provisionally assume the standardness of𝑚. In that case
we have 1𝐺

↻ ′𝑚 ◦− ℎ

↻

𝑚 for each ℎ ∈𝐻 with 𝜄(ℎ,1𝐺) by Claim 2. From Claim 3 we
know that 𝜄(1𝐻 ,1𝐺), so 1𝐺

↻ ′𝑚 ◦− 1𝐻

↻

𝑚 = 𝑚. Using st(𝑚) it follows that 1𝐺

↻ ′𝑚 = 𝑚
by the Hausdorff property of 𝑀 .

Claim 6: For each 𝑔,ℎ ∈ 𝐺 and 𝑚 ∈𝑀 we have 𝑔ℎ
↻ ′𝑚 = 𝑔

↻ ′(ℎ

↻ ′𝑚).

Caveat: in this part ℎ belongs to 𝐺, not to 𝐻! Given the internal conclusion, we pro-
visionally assume the standardness of 𝑔,ℎ and 𝑚. Since st(𝑔),st(ℎ) hold we can find
𝑔′ ∈𝐻 and ℎ′ ∈𝐻 such that 𝜄(𝑔′,𝑔) and 𝜄(ℎ′,ℎ). By preservation of the group operation
for standard elements, we have 𝜄(𝑔′ℎ′,𝑔ℎ) as well. On one hand, we have

𝑔ℎ

↻ ′𝑚 ◦− 𝑔′ℎ′

↻

𝑚 = 𝑔′

↻

(ℎ′
↻

𝑚).

On the other hand, we have 𝑔
↻ ′(ℎ

↻ ′𝑚) ◦− 𝑔′

↻

(ℎ

↻ ′𝑚). Why? Because ℎ and𝑚 are stan-
dard, and hence st(ℎ

↻ ′𝑚), so Claim 2 applies. We also have ℎ

↻ ′𝑚 ◦− ℎ′

↻

𝑚. Applying
Claim 4 immediately yields 𝑔′

↻

(ℎ

↻ ′𝑚) ◦− 𝑔′

↻

(ℎ′

↻

𝑚), so we get

𝑔

↻ ′(ℎ
↻ ′𝑚) ◦− 𝑔′

↻

(ℎ′

↻

𝑚).

Notice that both 𝑔ℎ

↻ ′𝑚 and 𝑔

↻ ′(ℎ

↻ ′𝑚) satisfy standardness. We have shown that these
two standard elements have a common neighbor. Therefore, by Hausdorff separation
(Definition 1.3.25) we conclude 𝑔ℎ

↻ ′𝑚 = 𝑔

↻ ′(ℎ

↻ ′𝑚), which proves our claim, and
with Claim 5 proves that

↻

∶ 𝐺×𝑀 →𝑀 forms an action of 𝐺 on 𝑀 .

Claim 7: The action

↻ ′ ∶ 𝐺×𝑀 →𝑀 has Lipschitz constant 𝐾 .

By the internality of the conclusion, we can provisionally assume the standardness of ev-
erything in sight. So take standard 𝑔 ∈𝐺, 𝑥,𝑦∈𝑀 . We wish to prove 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦)≤
𝐾𝑑(𝑥,𝑦). Pick 𝑔′ with 𝜄(𝑔′,𝑔) and any standard 𝜀 > 0. Observe that by Claim 2, we
have 𝑑(𝑔

↻ ′𝑥,𝑔′

↻

𝑥) < 𝜀
2 and similarly for 𝑦. By repeated applications of the triangle
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inequality, we get that

𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦) ≤ 𝑑(𝑔

↻ ′𝑥,𝑔′

↻

𝑦)+𝑑(𝑔′

↻

𝑦,𝑔

↻ ′𝑦)

≤ 𝑑(𝑔

↻ ′𝑥,𝑔′

↻

𝑦)+ 𝜀
2

≤ 𝑑(𝑔′

↻

𝑥,𝑔′

↻

𝑦)+𝑑(𝑔′

↻

𝑥,𝑔

↻ ′𝑥)+ 𝜀
2

≤ 𝑑(𝑔′

↻

𝑥,𝑔′

↻

𝑦)+ 𝜀
2
+ 𝜀
2

= 𝑑(𝑔′

↻

𝑥,𝑔′

↻

𝑦)+𝜀

≤ 𝐾𝑑(𝑥,𝑦)+𝜀.

and therefore 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦)−𝐾𝑑(𝑥,𝑦) ≤ 𝜀 for all standard 𝜀 > 0. By Transfer we im-
mediately obtain 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦) ≤𝐾𝑑(𝑥,𝑦). Discharging the provisional standardness
assumptions, we conclude that the action

↻ ′ admits the standard Lipschitz constant 𝐾
as we claimed.

Claim 8: The action

↻

∶𝐻 ×𝑀 →𝑀 satisfies (metric, 𝜀-𝛿) continuity.

Note that Claim 8 does not follow from Claim 4, as we do not have st(

↻

) (the reader
has already constructed counterexamples as part of Exercise 1.3.20). For each ℎ ∈𝐻 ,
𝑥 ∈𝑀 and 𝜀 > 0 we need to find some 𝛿 > 0 such that for 𝑦 ∈𝑀 , 𝑑(𝑥,𝑦) < 𝛿 implies
𝑑(ℎ

↻
𝑥,ℎ

↻

𝑦) < 𝜀. But this follows immediately from the existence of the Lipschitz
constant, by taking 𝛿 =𝐾−1𝜀.

Claim 9: Consider any periodic subgroup𝑋 <𝐺 and 𝑔 ∈𝑋 such that 𝑔 ≠ 1. We
have 𝑔

↻ ′𝑚 ≠ 𝑚.

By the internality of the conclusion, we can provisionally assume the standardness of
both the subgroup𝑋 and the element 𝑔 ∈𝑋. Given the periodicity of𝑋, the element 𝑔
has finite order. Moreover, st(𝑥) holds, and therefore Proposition 1.2.9 guarantees the
standardness of ord(𝑥) ∈ ℕ.
Consider ℎ ∈ 𝐻 for which we have 𝜄(ℎ,𝑔). Then for any standard 𝑘 ∈ ℕ, we have
𝜄(ℎ𝑘,𝑔𝐾 )→ 𝜄(ℎ𝑘+1,𝑔𝑘+1). Thus, by the principle of External Induction (Theorem 1.2.15)
we get that 𝜄(ℎ𝑛,𝑔𝑛) for all standard 𝑛∈ℕ. In particular, for 𝑛=ord(𝑥)we have 𝜄(ℎ𝑛,1𝐺).
We already know 𝜄(1𝐻 ,1𝐺) from Claim 3, so we can conclude ℎ𝑛 = 1𝐻 . Consequently,
ord(ℎ) ≤ ord(𝑔) and by Proposition 1.2.14 we obtain that ℎ has standard order.
We now apply Corollary 2.3.7 of Newman’s theorem to the group𝐻 , the element ℎ and
the action

↻

∶𝐻 ×𝑀 →𝑀 . For this we need to use Claim 8. We get a standard 𝜈 > 0,
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some 𝑛 ∈ ℕ and some 𝑚′ ∈𝑀 such that 𝑑(ℎ𝑛

↻

𝑚′,𝑚′) > 𝜈, and therefore ¬(ℎ𝑛

↻

𝑚′ ◦−
𝑚′).
We know that st(𝑛) holds, since 𝑛 < ord(ℎ) and we have proved the standardness of
ord(ℎ) above. Unfortunately, we cannot expect 𝑚′ ∈𝑀 to satisfy standardness. How-
ever, using the compactness of 𝑀 we can obtain a standard 𝑚 ∈𝑀 with 𝑚 ◦− 𝑚′. We
prove that ¬(ℎ𝑛

↻

𝑚 ◦− 𝑚). Assume for a contradiction that ℎ𝑛
↻

𝑚 ◦− 𝑚 does hold. As
we have ℎ𝑛

↻

𝑚 ◦− ℎ𝑛

↻

𝑚′ from Claim 4, we could use the symmetry and transitivity of
the predicate ◦− to get ℎ𝑛

↻

𝑚′ ◦− ℎ𝑛

↻

𝑚 ◦− 𝑚 ◦− 𝑚′ and reach a contradiction.
By the previous External Induction argument, we know 𝜄(ℎ𝑛,𝑔𝑛), and Claim 2 gives us
𝑔𝑛

↻ ′𝑚 ◦− ℎ𝑛

↻

𝑚. Having 𝑔𝑛

↻ ′𝑚 ◦− 𝑚 would lead to the contradictory chain ℎ𝑛

↻

𝑚 ◦−
𝑔𝑛

↻ ′𝑚 ◦− 𝑚, so ¬(𝑔𝑛

↻ ′𝑚 ◦− 𝑚). We conclude 𝑔𝑛
↻ ′𝑚 ≠ 𝑚 using the reflexivity of the

nearness predicate ◦−. Since 𝑔𝑛

↻ ′𝑚 ≠ 𝑚, clearly 𝑔

↻ ′𝑚 ≠ 𝑚.
Transfer allows us to dispense with the provisional assumptions of standardness on 𝑋
and 𝑔, so for every element 𝑔 of any periodic subgroup 𝑋 we can find 𝑚 ∈𝑀 with
𝑔

↻ ′𝑚 ≠ 𝑚. We conclude that each periodic subgroup 𝑋 of the approximated group 𝐺
acts faithfully on the manifold 𝑀 via the map

↻ ′ ∶ 𝑋 ×𝑀 →𝑀 . So concludes the
proof of our main result.
Qed.

2.3.10. Corollary. Consider a standard group 𝐺 approximated by the finite group 𝐻 ,
and a standard compact manifold 𝑀 . Assume that the group 𝐻 acts isometrically on
the manifold 𝑀 via some action

↻

∶ 𝐻 ×𝑀 →𝑀 . Then every periodic subgroup
𝑋 < 𝐺 admits an isometric action on 𝑀 .

Proof. An isometric action satisfies the 𝐾-Lipschitz condition for 𝐾 = 1. We can
obtain the action

↻ ′ ∶ 𝐺 ×𝑀 → 𝑀 as we do in Theorem 2.3.9. We already know
that 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦) ≤ 𝑑(𝑥,𝑦), so proving 𝑑(𝑥,𝑦) ≤ 𝑑(𝑔 ↻ ′𝑥,𝑔

↻ ′𝑦) suffices to establish
our claim. By the internality of this conclusion, provisionally assume standardness of
𝑥,𝑦 ∈𝑀 as well as of 𝑔 ∈𝐺. Choose some 𝑔′ with 𝜄(𝑔′,𝑔) and any standard 𝜀 > 0. We
have 𝑑(𝑔

↻ ′𝑥,𝑔′

↻

𝑥) < 𝜀
2 and similarly for 𝑦 by the defining property of the function

↻ ′.
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As usual, we repeatedly apply the triangle inequality to obtain

𝑑(𝑥,𝑦) = 𝑑(𝑔′

↻

𝑥,𝑔′

↻

𝑦)

≤ 𝑑(𝑔

↻ ′𝑥,𝑔′

↻

𝑦)+𝑑(𝑔′

↻

𝑥,𝑔

↻ ′𝑥)

≤ 𝑑(𝑔

↻ ′𝑥,𝑔′

↻

𝑦)+ 𝜀
2

≤ 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦)+𝑑(𝑔′

↻

𝑦,𝑔

↻ ′𝑦)+ 𝜀
2

≤ 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦)+ 𝜀
2
+ 𝜀
2

= 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦)+𝜀.

The inequality 𝑑(𝑥,𝑦) ≤ 𝑑(𝑔

↻ ′𝑥,𝑔
↻ ′𝑦) + 𝜀 holds for any standard 𝜀. Using a short

Transfer argument we get that 𝑑(𝑥,𝑦) ≤ 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦) also holds. Discharging the
standardness assumptions, the conclusion holds for all 𝑥,𝑦 ∈𝑀 and all 𝑔 ∈ 𝐺, and so
the periodic subgroups act by isometries.
Qed.

2.3.11. Theorem 2.3.9 places limitations on groups which are approximated by non-
standard groups that act on standard manifolds, especially for the approximation of
periodic groups. We have of course that dihedral groups admit isometric actions on the
circle 𝑆1, which severely constrains groups with dihedral approximations. Similarly,
groups of the form ℤ∕𝑛ℤ×ℤ∕𝑚ℤ ∶ ℤ∕𝓁ℤ for 𝓁 ∈ {2,3,4,6} are the ones that admit
𝐾-Lipschitz actions on the torus 𝑆1×𝑆1 [2].

2.3.12. Theorem (Manevitz-Weinberger, [30]-Theorem 1). Fix some positive 𝐾 ∈ ℝ.
Consider a compact manifold 𝑀 which has a faithful 𝐾-Lipschitz ℤ∕𝑛ℤ action for all
𝑛 ∈ ℕ. Then 𝑀 has a faithful 𝐾-Lipschitz action by ℚ∕ℤ.

Proof. Provisionally assume st(𝐾) and st(𝑀). Using the locally finiteness of ℚ∕ℤ,
we can apply Proposition 2.2.36 to obtain an approximation 𝜄 of ℚ∕ℤ via some finite
subgroup 𝐻 <ℚ∕ℤ. Such a subgroup must have the form ℤ∕𝜔ℤ for some 𝜔 ∈ ℕ, and
therefore 𝐻 admits a faithful 𝐾-Lipschitz action on 𝑀 . Applying Theorem 2.3.9 we
get a faithful 𝐾-Lipschitz action on 𝑀 by ℚ∕ℤ.
Qed.

2.3.13. It is natural to ask whether the𝐾-Lipschitz assumption of Theorem 2.3.9 can be
replaced with some weaker condition. This remains to be seen. Clearly, any potential
condition would have to imply the continuity and S-continuity of the action. However,
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neither continuity nor S-continuity suffice as a replacement: the proof relies on both
conditions, and since the action

↻

∶ 𝐻 ×𝑀 → 𝑀 is not standard, it might satisfy
one continuity condition but not the other. Moreover, the fact that the same condition
appears in both the assumptions and the conclusion makes it hard to find plausible
candidates1.

2.4 Snappy groups

2.4.1. Motivated by the negative result on ordinary approximation of𝑆𝑂(3)mentioned
in 2.1.8, one wishes to say something about the existence of well-behaved approxima-
tions of 𝑆𝑂(3) in the new formalism.

2.4.2. Proposition. One cannot approximate the group 𝑆𝑂(3) using any of its finite
subgroups.

Proof. Evidently one cannot approximate 𝑆𝑂(3) by a standard finite subgroup. So
assume that the predicate 𝜄 approximates 𝑆𝑂(3) via some nonstandard finite subgroup
𝐻 < 𝑆𝑂(3). By the classification of finite subgroups of 𝑆𝑂(3), every subgroup of
𝑆𝑂(3) of order > 60 arises as a dihedral group, so we can assume 𝐻 = 𝐷𝜔 for some
non-standard 𝜔 ∈ ℕ. Since 𝐷𝜔 admits a continuous isometric action on the circle, so
does every periodic subgroup of 𝑆𝑂(3). But 𝐴5 < 𝑆𝑂(3) admits no such action, a
contradiction. Hence one cannot approximate 𝑆𝑂(3) using finite subgroups.
Qed.

2.4.3. We can use Proposition 2.4.2 as a stepping stone for obtaining further results
on non-approximability. For example, by considering a special property (snappiness,
Definition 2.4.5) of the group 𝑆𝑂(3), we get that (unlike the approximations which we
obtain for, say, profinite groups), the approximations of 𝑆𝑂(3) never respect the usual
topology of the group.

2.4.4. Definition. Consider a group𝐻 and a standard topological group𝐺 represented
as an equivalence space (𝐺,◦−). We call a function 𝑓 ∶𝐻→𝐺 an S-near-homomorphism
if 1𝐺 ◦− 𝑓 (1𝐻 ), and for any 𝑥,𝑦 ∈𝐻 we have 𝑓 (𝑥𝑦) ◦− 𝑓 (𝑥)𝑓 (𝑦).

2.4.5. Definition. We call a standard topological group𝐺 represented as an equivalence
space (𝐺,◦−) snappy if for any finite group𝐻 and S-near-homomorphism 𝑓 ′ ∶𝐻 →𝐺

1That said, moduli-of-continuity conditions do deserve further investigation!
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we can find a group homomorphism 𝑓 ∶𝐻 →𝐺 such that for all 𝑥∈𝐻 , 𝑓 (𝑥) ◦− 𝑓 ′(𝑥).

2.4.6. The term snappy of Definition 2.4.5 intends to evoke a picture of a DIP socket:
given a light jiggle, the chip’s electrical connecting pins gently snap into place. In the
same way, giving a gentle jiggle to a near-homomorphism makes all the points that just
barely missed their holes snap into place.

2.4.7. We prove the snappiness of 𝑆𝑂(3) in Corollary 2.4.9. A result of Babai, Friedl
and Lukács [3] perfectly encapsulates the group-theoretic part of the argument, so we
only have to do the non-standard analytic reasoning.

2.4.8. Theorem (Babai-Friedl-Lukács). Let |− | denote the Euclidean matrix norm on
𝑆𝑂(3). Fix a positive 𝜀 < 0.001 and a finite group 𝐻 . Consider a function 𝑓 ′ ∶𝐻 →

𝑆𝑂(3) such that |𝐼 −𝑓 ′(1)| < 𝜀 and |𝑓 ′(𝑥)𝑓 ′(𝑦)−𝑓 ′(𝑥𝑦)| < 𝜀 for all 𝑥,𝑦 ∈𝐻 as well.
Then we can find a group homomorphism 𝑓 ∶𝐻 → 𝑆𝑂(3) such that for all 𝑥 ∈𝐻 the
inequality |𝑓 (𝑥)−𝑓 ′(𝑥)| < 1000𝜀 holds.

Proof. See the proof of [3]-Theorem 1.3.
Qed.

2.4.9. Corollary. The group 𝑆𝑂(3) is snappy.

Proof. The equivalence of all matrix norms guarantees that (in accordance with Theo-
rem 1.3.35) the binary predicate 𝑀1 ◦−𝑀2 defined as ∀𝑠𝑡𝜀 > 0.|𝑀1−𝑀2| < 𝜀 univer-
sally represents the topology of 𝑆𝑂(3) as an equivalence space. In particular we have
the S-continuity of the group operations with respect to this relation. Consider any
S-near-homomorphism 𝑓 ′ ∶𝐻 → 𝑆𝑂(3). Take a standard finite set  ⊆ (0,0.001). De-
note 𝑠=min . We have st

(
𝑠

1000

)
by Corollary 1.2.11, so the inequality |𝑓 ′(𝑥)𝑓 ′(𝑦)−

𝑓 ′(𝑥𝑦)| < 𝑠
1000 obtains for all 𝑥,𝑦 ∈ 𝐻 . Theorem 2.4.8 applies and gives us a group

homomorphism 𝑓 ∶ 𝐻 → 𝑆𝑂(3) such that for all 𝑥 ∈ 𝐻 , |𝑓 (𝑥) − 𝑓 ′(𝑥)| < 𝑠. This
proves that for any standard finite set of numbers we can find a group homomorphism
𝑓 such that for all 𝜀 ∈  , |𝑓 (𝑥)−𝑓 ′(𝑥)| < 𝜀. By the principle of Idealization, we con-
clude the existence of a group homomorphism 𝑓 ∶𝐺→ 𝑆𝑂(3) such that ∀𝑠𝑡𝜀 > 0.∀𝑥∈
𝐻.|𝑓 (𝑥)−𝑓 ′(𝑥)| < 𝜀. Consequently, ∀𝑥 ∈𝐻.𝑓 (𝑥) ◦− 𝑓 ′(𝑥), which proves the snappi-
ness of the group 𝑆𝑂(3).
Qed.
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2.4.10. Theorem. 𝑆𝑂(3) does not admit internal, robust finite approximations for its
usual topology.

Proof. Assume for a contradiction that we have a finite group 𝐻 and the required in-
ternal approximation predicate 𝜄 relating elements of 𝐻 to elements of 𝑆𝑂(3). This
means that the following hold:

A1 For any standard 𝑔 ∈ 𝑆𝑂(3) we can find ℎ ∈𝐻 such that 𝜄(ℎ,𝑔) holds.

A2 For any standard 𝑔 ∈ 𝑆𝑂(3), ℎ1,ℎ2 ∈𝐻 such that 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) hold, we
have ℎ1 = ℎ2.

T1 For any standard 𝑔1,𝑔2 ∈ 𝑆𝑂(3) and any ℎ ∈ 𝐻 such that 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2)
both hold, we have 𝑔1 ◦− 𝑔2.

A4 For any 𝑔1,𝑔2 ∈ 𝑆𝑂(3) and any ℎ1,ℎ2 ∈𝐻 with 𝜄(ℎ1,𝑔1) and 𝜄(ℎ2,𝑔2) we have
𝜄(ℎ1ℎ2,𝑔1𝑔2).

Without loss of generality, we can assume 𝐻 =𝐻 = {𝑥 ∈𝐻 |∃𝑔 ∈ 𝑆𝑂(3).𝜄(ℎ,𝑔)}: if
𝜄 approximates 𝑆𝑂(3) via 𝐻 , then it does the same via 𝐻 . Consider the set defined
by 𝐸 = {(ℎ,𝑔) ∈𝐻 ×𝑆𝑂(3) | 𝜄(ℎ,𝑔)}. The set 𝐸 may not form the graph of a function:
we cannot rule out having 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2) for non-standard 𝑔1,𝑔2 ∈ 𝐺. However,
𝐻 =𝐻 , so ∀ℎ∈𝐻.∃𝑔 ∈𝐺.𝜄(ℎ,𝑔), and consequently we can apply the Axiom of Choice
to get a function 𝑒′ ∶ 𝐻 → 𝑆𝑂(3) that satisfies 𝜄(ℎ,𝑒′(ℎ)) for all ℎ ∈ 𝐻 . We claim
that 𝑒′ ∶ 𝐻 → 𝑆𝑂(3) gives an S-near-homomorphism between 𝐻 and 𝑆𝑂(3). We
must show that 𝑒′(ℎ1)𝑒′(ℎ2) ◦− 𝑒′(ℎ1ℎ2) for all ℎ1,ℎ2 ∈𝐻 . We have 𝜄(ℎ1, 𝑒′(ℎ1)) and
𝜄(ℎ2, 𝑒′(ℎ2)). By [A4] we get 𝜄(ℎ1ℎ2, 𝑒′(ℎ1)𝑒′(ℎ2)). But we also have 𝜄(ℎ1ℎ2, 𝑒′(ℎ1ℎ2)),
so by [T1] 𝑒′(ℎ1)𝑒′(ℎ2) ◦− 𝑒′(ℎ1ℎ2) as we desired. We know from Corollary 2.4.9 that
𝑆𝑂(3) forms a snappy group: we deduce the existence of a group homomorphism
𝑒 ∶ 𝐻 → 𝑆𝑂(3) such that ∀ℎ ∈ 𝐻.𝑒(ℎ) ◦− 𝑒′(ℎ). The image 𝑒(𝐻) necessarily forms
a finite subgroup of 𝑆𝑂(3). We prove that 𝑒(𝐻) approximates 𝑆𝑂(3). Define the
approximation predicate 𝜉(𝑥,𝑔) between 𝑥 and 𝑔 as an abbreviation for ∃ℎ ∈ 𝐻.𝑥 =
𝑒(ℎ)∧ 𝜄(ℎ,𝑔). We have to prove four things:

1. For any standard 𝑔 ∈ 𝑆𝑂(3) we can find 𝑥 ∈ 𝑒(𝐻) such that 𝜉(𝑥,𝑔) holds. Start
by using [A1] to find ℎ ∈𝐻 with 𝜄(ℎ,𝑔). Set 𝑥 = 𝑒(ℎ).

2. For any standard 𝑔 ∈𝑆𝑂(3) and 𝑥1,𝑥2 ∈ 𝑒(𝐻) such that 𝜉(𝑥1,𝑔) and 𝜉(𝑥2,𝑔) both
hold, we have 𝑥1 = 𝑥2. By 𝜉(𝑥1,𝑔) we have some ℎ1 such that 𝑥1 = 𝑒(ℎ1) and
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𝜄(ℎ1,𝑔). By 𝜉(𝑥2,𝑔) we have some ℎ2 such that 𝑥2 = 𝑒(ℎ2) and 𝜄(ℎ2,𝑔). Since we
have 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) we can apply [A2] to get ℎ1 = ℎ2. But then 𝑥1 = 𝑒(ℎ1) =
𝑒(ℎ2) = 𝑥2 as required.

3. For any standard 𝑔1,𝑔2 ∈ 𝑆𝑂(3) and 𝑥 ∈ 𝑒(𝐻) such that 𝜉(𝑥,𝑔1) and 𝜉(𝑥,𝑔2)
both hold, we have 𝑔1 = 𝑔2. We have some ℎ1 such that 𝑥 = 𝑒(ℎ1) and 𝜄(ℎ1,𝑔1)
holds. We also have some ℎ2 such that 𝑥 = 𝑒(ℎ2) and 𝜄(ℎ2,𝑔2) holds. We also
have 𝜄(ℎ1, 𝑒′(ℎ1)) and 𝜄(ℎ2, 𝑒′(ℎ2)) by definition of the function 𝑒′. Hence [T1]
gives us 𝑔1 ◦− 𝑒′(ℎ1) and 𝑔2 ◦− 𝑒′(ℎ2). But then we have the following chain
of nearness relationships: 𝑔1 ◦− 𝑒′(ℎ1) ◦− 𝑒(ℎ1) = 𝑥 = 𝑒(ℎ2) ◦− 𝑒′(ℎ2) ◦− 𝑔2, so
𝑔1 ◦− 𝑔2. Since we have st(𝑔1) and st(𝑔2), the Fréchet property (Definition 1.3.25)
guarantees 𝑔1 = 𝑔2.

4. For any standard 𝑔1,𝑔2 ∈ 𝑆𝑂(3), 𝑥1,𝑥2 ∈ 𝑒(𝐻) such that 𝜉(𝑥1,𝑔1) and 𝜉(𝑥2,𝑔2),
we have 𝜉(𝑥1𝑥2,𝑔1𝑔2). By 𝜉(𝑥1,𝑔1) we have some ℎ1 such that 𝑥1 = 𝑒(ℎ1) and
𝜄(ℎ1,𝑔1). By 𝜉(𝑥2,𝑔2) we have some ℎ2 such that 𝑥2 = 𝑒(ℎ2) and 𝜄(ℎ2,𝑔2). We
need to construct some ℎ ∈𝐻 such that 𝑥1𝑥2 = 𝑒(ℎ) and 𝜄(ℎ,𝑔1𝑔2). But we have
𝜄(ℎ1ℎ2,𝑔1𝑔2) using [A4]. Set ℎ = ℎ1ℎ2. We have 𝑒(ℎ) = 𝑒(ℎ1ℎ2) = 𝑒(ℎ1)𝑒(ℎ2) =
𝑥1𝑥2.

The finite subgroup 𝑒(𝐻) of𝑆𝑂(3) approximates𝑆𝑂(3) internally, contradicting Propo-
sition 2.4.2.
Qed.

2.4.11. Problem. Can one extend the proof of Theorem 2.4.10 to non-robust approxi-
mations by proving a more general version of Theorem 2.4.8?



Chapter 3

Other results

In this short chapter we present some of our results that do not concern structural ap-
proximation directly, but relate to the development of algebra in Internal Set Theory.

3.1 Monotone subsequences

3.1.1. Baszczyk, Kanovei, Katz and Nowik [5] have recently presented an ultrapower
proof of the following classical result of Real Analysis: every infinite sequence in
a totally ordered set contains either an infinite constant subsequence or an infinite
strictly monotone subsequence. Inspired by their argument, we give a straightforward,
ultrapower-free proof using Internal Set Theory.

3.1.2. Theorem. Every infinite sequence in a totally ordered set contains either an in-
finite constant subsequence or an infinite strictly monotone subsequence.

Proof. Consider a totally ordered set (𝑆,<), and a sequence 𝑎 ∶ ℕ→ 𝑆. We can pro-
visionally assume the standardness of both the set 𝑆 and the sequence 𝑎. Take any
non-standard 𝜔 ∈ ℕ. Define the following sets:

𝐴1 = ⦃𝑘 ∈ ℕ ||𝑎𝑘 < 𝑎𝜔⦄
𝐴2 = ⦃𝑘 ∈ ℕ ||𝑎𝑘 = 𝑎𝜔⦄
𝐴3 = ⦃𝑘 ∈ ℕ ||𝑎𝑘 > 𝑎𝜔⦄

The Standardization axiom ensures the standardness of all three sets 𝐴1,𝐴2,𝐴3 ⊆ℕ. It
follows by Corollary 1.2.10 that we have st(𝐴1∪𝐴2∪𝐴3). Any standard natural number
𝑛 ∈ ℕ satisfies one of the sentences 𝑎𝑛 < 𝑎𝜔, 𝑎𝑛 = 𝑎𝜔 or 𝑎𝑛 > 𝑎𝜔 and so 𝐴1 ∪𝐴2 ∪𝐴3

74
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contains every standard natural. By Transfer we immediately get 𝐴1 ∪𝐴2 ∪𝐴3 = ℕ.
Consider the following:

1. If ∀𝑖 ∈ 𝐴1.∃𝑚 ∈ 𝐴1.𝑖 < 𝑚 ∧ 𝑎𝑖 < 𝑎𝑚 holds, then we can construct an infinite,
monotone increasing subsequence of 𝑎 by taking indices in 𝐴1.

2. If ∀𝑗 ∈𝐴3.∃𝑛∈𝐴3.𝑖 < 𝑛∧𝑎𝑗 > 𝑎𝑛 holds, then we can construct an infinite, mono-
tone decreasing subsequence of 𝑎 by taking indices in 𝐴3.

However, if the two previous conditions both fail, then

1. We can find 𝑖 ∈ 𝐴1 such that for all 𝑚 ∈ 𝐴1, if 𝑖 < 𝑚 then 𝑎𝑖 ≥ 𝑎𝑚.

2. We can find 𝑗 ∈ 𝐴3 such that for all 𝑛 ∈ 𝐴3, if 𝑗 < 𝑛 then 𝑎𝑗 ≤ 𝑎𝑛.
By Transfer, we can choose standard values for both 𝑖 and 𝑗; this means that we have
𝑖 < 𝜔 and 𝑗 < 𝜔. Assume for a contradiction that 𝜔 ∈ 𝐴1. Then we have 𝑎𝑖 ≥ 𝑎𝜔.
However, st(𝑖) and 𝑖∈𝐴1 both hold, so by definition 𝑎𝑖 <𝑎𝜔, a contradiction. Therefore,
𝜔 ∉ 𝐴1. Similarly, assume that 𝜔 ∈ 𝐴3. Then we have 𝑎𝑗 ≤ 𝑎𝜔. However, st(𝑗) and
𝑗 ∈ 𝐴3 both hold, so by definition 𝑎𝑗 > 𝑎𝜔, a contradiction. Therefore, 𝜔 ∉ 𝐴3.
Since 𝜔 ∈ ℕ = 𝐴1 ∪𝐴2 ∪𝐴3, we must then have 𝜔 ∈ 𝐴2. A standard finite set has all
its elements standard (Theorem 1.2.5), but 𝜔 is not standard, so 𝐴2 is not finite. But
we have ∀𝑠𝑡𝑛,𝑚 ∈ 𝐴2.𝑎𝑛 = 𝑎𝑚. By Transfer the sequence 𝑎 is constant on the infinite
set 𝐴2 ⊆ ℕ, so 𝑎 has an infinite constant subsequence.
Qed.

3.1.3. The usual proofs of the monotone subsequence theorem go through the Bolzano-
Weierstrass theorem: a bounded sequence has a convergent subsequence, and a con-
vergent sequence has a constant or monotone subsequence; similarly, unbounded se-
quences always have a monotone divergent subsequence. The ultrapower proof of
Baszczyk, Kanovei, Katz and Nowik [5] and the Internal Set Theory proof presented
above both bypass the convergence considerations, and so they work without modifi-
cation in any ordered structure (see also [5]-Remark 3.4. for the relation between the
ultrapower proof and proofs based on the idea of peaks).
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3.2 Sheaves

Motivation

3.2.1. The functional interpretation [46] of non-standard arithmetic 𝐏 (Peano arith-
metic in finite types with the Axiom of Extensionality, the Idealization axiom and the
Herbrandized Axiom of Choice; a weak subsystem of Nelson’s Internal Set Theory)
allows one to extract a finite list 𝑡(𝑥) from each 𝐏-proof of ∀𝑠𝑡𝑥.∃𝑠𝑡𝑦.𝜑(𝑥,𝑦), in such
a way that Peano arithmetic in finite types itself (without the additional non-standard
axioms) proves ∀𝑥.∃𝑦 ∈ 𝑡(𝑥).𝜑(𝑥,𝑦). Observing that one can bring the non-standard
definitions of continuity (Definition 1.3.15), compactness (Theorem 1.3.33), Riemann-
integrability etcinto Nelson normal form in 𝐏, Sanders [41] formulated a technique
(ℭℑ) that allows one to convert theorems formulated purely1 in terms of these non-
standard definitions into associated theorems that have effective computational content
and no longer involve non-standard notions.

3.2.2. Techniques such as ℭℑ have seen successful applications in constructive analy-
sis, topology and measure theory. To one day apply similar techniques in algebra, one
needs to find equivalences between nonstandard and classical algebraic notions. Since
we already have a large library of such equivalences in analysis and topology, it’s nat-
ural to start looking for new equivalences where these fields intersect algebra, e.g. in
sheaf theory.

3.2.3. Here we give a pure non-standard characterization of sheaves on topological
spaces. Apart from placing sheaves in the domain of applicability of ℭℑ-style tech-
niques, our characterization also realizes directly a conceptual view of sheaves as “con-
tinuous set-valued maps” enunciated by Vickers [47] which cannot be formalized by
topologizing the class of sets in the ordinary way.

Predicated quivers

3.2.4. One can regard the predicated spaces of Definition 1.3.14 as (external) reflexive
graphs. Generalizing to external reflexive quivers offers a very quick, intuitive path to
defining sheaves on topological spaces.

1Quite literally: the term extraction algorithm underlying the technique ignores internal axioms, so
one has to express all the hypotheses and the conclusion in terms of the non-standard notions.
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3.2.5. Definition. A predicated quiver consists of the following data:

• an underlying edge set 𝐸,

• an underlying vertex set 𝑇 ,

• a reflexivity map 𝑟 ∶ 𝑇 → 𝐸

• a ternary predicate in the language of Internal Set Theory, 𝑒 ∶ 𝑥 ◦− 𝑦, with 𝑒
ranging over the set of edges 𝐸, and 𝑥,𝑦 ranging over the set of vertices 𝑇 ,

subject to the following conditions:

• for each 𝑥 ∈ 𝑇 , 𝑟(𝑥) ∶ 𝑥 ◦− 𝑥, and

• if 𝑒 ∶ 𝑥 ◦− 𝑦 and 𝑒 ∶ 𝑥′ ◦− 𝑦′ then 𝑥 = 𝑥′ and 𝑦 = 𝑦′.

3.2.6. One can see every predicated space as a predicated quiver by setting 𝐸 = 𝑇 2,
taking 𝑟 as the diagonal map 𝑇 → 𝑇 2 and defining (𝑎,𝑏) ∶ 𝑥 ◦− 𝑦 precisely if 𝑎 = 𝑥,
𝑏 = 𝑦 and 𝑎 ◦− 𝑏. Similarly, one can see any small category as a predicated quiver by
treating its objects as vertices, its morphisms as edges, and taking 𝑟 as the map that
sends each object to its identity morphism. We can define maps between predicated
quivers analogously to how we defined continuous maps between predicated spaces.

3.2.7. Definition. An S-continuous map between two predicated quivers (𝐸1,𝑇1, 𝑟1)
and (𝐸2,𝑇2, 𝑟2) consists of a pair of functions 𝑓𝐸 ∶ 𝐸1 → 𝐸2 and 𝑓𝑇 ∶ 𝑇1 → 𝑇2 subject
to the following conditions:

• for every standard 𝑥 ∈ 𝑇 , every 𝑦 ∈ 𝑇 and every 𝑒 ∶ 𝑥 ◦− 𝑦 we have 𝑓𝐸(𝑒) ∶
𝑓𝑇 (𝑥) ◦− 𝑓𝑇 (𝑦), and

• for every 𝑥 ∈ 𝑇 , we have 𝑓𝐸(𝑟1(𝑥)) = 𝑟2(𝑥).

3.2.8. The fact that predicated quivers treat both topological spaces and categories on
an equal footing allows us to define a very simple and well-behaved sheaf-like notion
over a predicated quiver: an S-continuous map from the predicated quiver to the cate-
gory 𝔖𝔢𝔱, itself seen as a predicated quiver (modulo size issues, which one can treat
easily in this case, e.g. via the Replacement axiom). We show that in the topological
case this construction gives rise to actual sheaves.
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Predicated Sheaves

3.2.9. Definition. We call an S-continuous map from a predicated quiver (𝐸,𝑇 ,𝑟) to a
small subcategory of the category of sets (regarded as a predicated quiver) a predicated
sheaf on (𝐸,𝑇 ,𝑟).

3.2.10. When we consider a predicated sheaf 𝜑 = (𝑓𝐸 ,𝑓𝑇 ) on the predicated space
(𝑇 ,◦−), we denote the vertex map 𝑓𝑇 (𝑥) as 𝜑𝑥, and for 𝑥 ◦− 𝑦 the edge map 𝑓𝐸((𝑥,𝑦))
as 𝜑𝑦𝑥.

3.2.11. Definition. Consider a predicated sheaf 𝜑 over the space (𝑇 ,◦−). We call a
function 𝑓 ∶ (𝑥 ∈ 𝑇 ) → 𝜑𝑥 an S-section of 𝜑 over the S-open set 𝑈 ⊆ 𝑇 if for all
standard 𝑥 ∈ 𝑈 and arbitrary 𝑦 ∈ 𝑈 satisfying 𝑥 ◦− 𝑦, we have 𝜑𝑦𝑥 (𝑓 (𝑥)) = 𝑓 (𝑦).

3.2.12. Recall that a predicated space (𝑇 ,◦−) represents a topological space (𝑇 ,Ω𝑇 )
if the standard S-open sets of (𝑇 ,◦−) coincide with the standard open sets of (𝑇 ,Ω𝑇 ).
Similarly, a predicated sheaf represents a sheaf if its standard S-sections coincide with
the sections of the represented sheaf.

3.2.13. Definition. Take a standard topological space 𝑇 equipped with a standard sheaf
 . We say that the predicated sheaf 𝜑 over 𝑇 represents the sheaf  if the following
hold:

• 𝑥 = 𝜑𝑥 for all 𝑥 ∈ 𝑇 , where 𝑥 denotes the stalk of  at point 𝑥;

• for every standard open 𝑈 and section 𝑓 ∈  , the map 𝑥↦ [𝑓 ]𝑥 forms an S-
section of 𝜑; and

• for every standard open 𝑈 and S-section 𝑓 ∶ (𝑥∈𝑈 )→ 𝜑𝑥 we can find a section
𝑓 ∈  (𝑈 ) such that ∀𝑥 ∈ 𝑈.𝑓 (𝑥) = [𝑓 ]𝑥,

where [𝑓 ]𝑥 denotes the sheaf-theoretic germ of the section 𝑓 at the point 𝑥.

3.2.14. Lemma. Consider a topological predicated space (𝑇 ,◦−), and a standard point
𝑝 ∈ 𝑇 . We can find an open set 𝑃 ∋ 𝑝 that consists entirely of points near 𝑝, i.e. such
that for all 𝑦 ∈ 𝑃 we have 𝑝 ◦− 𝑦.

Proof. Take a topological predicated space (𝑇 ,◦−), and a standard point 𝑝 ∈ 𝑇 . Con-
sider any standard finite set  of open sets containing 𝑝. The finite intersection 𝑃 =



3.2. SHEAVES 79

⋂ contains 𝑝, and lies inside every open 𝑈 ∈ . By the Idealization axiom, we ob-
tain an open set 𝑃 containing 𝑝 that lies inside every standard open 𝑈 ∈Ω𝑇 containing
the point 𝑝. Pick any standard open 𝑁 with 𝑝 ∈𝑁 , and consider any 𝑦 ∈ 𝑃 . We have
𝑃 ⊆𝑁 , so 𝑦 ∈𝑁 . This proves that 𝑝 ◦− 𝑦.
Qed.

3.2.15. Theorem. Consider a standard sheaf  on a standard topological space 𝑇 . We
can find a predicated sheaf 𝜑 that represents  in the sense that for every standard
section 𝑓 of  (𝑈 ) the function 𝑥↦ [𝑓 ]𝑥 yields an S-section, and for standard S-section
𝑞 of 𝜑 over 𝑈 we can find a function 𝑓 such that ∀𝑥 ∈ 𝑈.𝑞(𝑥) = [𝑓 ]𝑥.

Proof. Consider a standard sheaf  on a standard topological space 𝑇 . We can find a
standard map 𝑐 that assigns to each germ 𝑎 around 𝑥 a representative 𝑐(𝑥,𝑎) = (𝑉 ,𝑠)
such that 𝑉 forms an open neighborhood of 𝑥, 𝑠∈ (𝑉 ) and [𝑐(𝑥,𝑎)]𝑥 = 𝑎. Set𝜑𝑥 =𝑥
and 𝜑𝑦𝑥(𝑎) = [𝑐(𝑥,𝑎)]𝑦 (define the value of the function however you wish for pairs
(𝑥,𝑦) ∈ 𝑇 2 with ¬𝑥 ◦− 𝑦).
First take a standard section 𝑓 ∈  (𝑈 ). Notice that we get st(𝑈 ) automatically. We
want to prove that the map 𝑥↦ [𝑓 ]𝑥 forms an S-section of the predicated sheaf 𝜑 over
𝑈 . According to Definition 3.2.11, this happens precisely if for all standard 𝑥 ∈ 𝑈 and
arbitrary 𝑦∈𝑈 with 𝑥 ◦− 𝑦, we have𝜑𝑦𝑥

(
[𝑓 ]𝑥

)
= [𝑓 ]𝑦. Substituting the definition of𝜑𝑦𝑥

given above, we want
[
𝑐
(
𝑥, [𝑓 ]𝑥

)]
𝑦 = [𝑓 ]𝑦. Since we have st(𝑓 ),st(𝑥) and st(𝑐), Corol-

lary 1.2.11 guarantees the standardness of the section 𝑐
(
𝑥, [𝑓 ]𝑥

)
. Since

[
𝑐
(
𝑥, [𝑓 ]𝑥

)]
𝑥 =

[𝑓 ]𝑥, we can find a standard open𝑋 around 𝑥 on which 𝑐
(
𝑥, [𝑓 ]𝑥

)|𝑋 = 𝑓 |𝑋 . But 𝑥 ◦− 𝑦,
so 𝑦 ∈ 𝑋. Since 𝑐

(
𝑥, [𝑓 ]𝑥

)
and 𝑓 agree on a neighborhood of 𝑦, they have the same

germ at 𝑦, i.e.
[
𝑐
(
𝑥, [𝑓 ]𝑥

)]
𝑦 = [𝑓 ]𝑦. Therefore, the map 𝑥↦ [𝑓 ]𝑥 forms an S-section

of 𝜑 over 𝑈 . This takes care of one direction.
Now consider a standard S-section 𝑞 ∶ (𝑥 ∈ 𝑈 )→ 𝑥. We want to find a section 𝑓 ∈
 (𝑈 ) such that ∀𝑥 ∈ 𝑈.[𝑓 ]𝑥 = 𝑞𝑥. We divide this long proof into several claims. If we
have some open set 𝑀 ⊆ 𝑈 and section 𝑠 ∈  (𝑀) such that ∀𝑚 ∈𝑀.[𝑠]𝑚 = 𝑞𝑚, then
we call (𝑀,𝑠) a partial solution. Notice that the predicate “(𝑀,𝑠) constitutes a partial
solution” has no non-standard parameters, so Transfer applies to it.

Claim 1: A partial solution exists around every standard point 𝑥 ∈ 𝑈 .

Take a standard point 𝑥 ∈ 𝑈 . By the S-section condition, we know the following:

∀𝑦 ∈ 𝑈.𝑥 ◦− 𝑦→ [𝑐(𝑥,𝑞𝑥)]𝑦 = 𝑞𝑦
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Using Lemma 3.2.14, we can pick an open set𝑋 containing 𝑥 such that we have ∀𝑦.𝑦∈
𝑋 → 𝑥 ◦− 𝑦. We know that 𝑐(𝑥,𝑞𝑥) is a standard section defined on a standard open
containing 𝑥. But 𝑋 lies inside every standard open that contains 𝑥, so we can restrict
𝑐(𝑥,𝑞𝑥) to 𝑋. By setting 𝑠 = 𝑐(𝑥,𝑞𝑥)|𝑋 ∈  (𝑋), the S-section condition yields

∀𝑦 ∈𝑋.[𝑠]𝑦 = 𝑞𝑦

and so (𝑋,𝑠) constitues a partial solution. This proves our claim.

Claim 2: A standard maximal partial solution exists.

Assume that we have a non-empty 𝐼-indexed chain (𝑀𝑖, 𝑠𝑖) of partial solutions. The
union𝑀 =

⋃
𝑖∈𝐼𝑀𝑖 still is itself an open set, and the𝑀𝑖 form an open cover of𝑀 . We

know that if 𝑖 < 𝑗 then [𝑠𝑖]𝑚 = 𝑞𝑚 = [𝑠𝑗]𝑚 for each 𝑚 ∈𝑀𝑖, so by the locality condition
𝑠𝑖 = 𝑠𝑗|𝑀𝑖

. By the gluing condition, we get a section 𝑠∈ (𝑀), and for each𝑚∈𝑀 we
have some 𝑖 such that 𝑚 ∈𝑀𝑖, and there [𝑠]𝑚 = [𝑠𝑖]𝑚 = 𝑞𝑚. Thus (𝑀,𝑠) gives an upper
bound of the chain. By Zorn’s lemma, a maximal partial solution exists. By Transfer,
a standard maximal partial solution exists.

Claim 3: Standard maximal partial solutions (𝑀,𝑠) have 𝑀 = 𝑈 .

Assume for a contradiction that we have a standard maximal partial solution (𝑀,𝑠)
with 𝑀 ⊊𝑈 . This means that we find a point 𝑝 ∈ 𝑈 such that 𝑝 ∉𝑀 . By Transfer, we
can assume st(𝑝). We will extend the partial solution to this standard point 𝑝.
By Claim 1, we can find a partial solution (𝑃 , 𝑡) with 𝑃 ∋ 𝑝. Thus we have ∀𝑚 ∈
𝑀.[𝑠]𝑚 = 𝑞𝑚 and ∀𝑦 ∈ 𝑃 .[𝑠]𝑦 = 𝑞𝑦. This means that ∀𝑦 ∈ 𝑃 ∩𝑀.[𝑠]𝑦 = [𝑡]𝑦, so by
the locality condition 𝑠|𝑃∩𝑀 = 𝑡|𝑃∩𝑀 . Since 𝑠 and 𝑡 agree on the intersection of their
domains of definition, we can glue them together to obtain a partial solution containing
both 𝑀 and 𝑝, and contradicting the maximality of 𝑀 .
Qed.

3.2.16. From Theorem 3.2.15 we know that we can represent any standard sheaf on a
standard topological space using a predicated sheaf. We prove the converse as well.

3.2.17. Proposition. Every standard predicated sheaf on a topological predicated space
𝑇 represents some standard sheaf.
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Proof. Consider the standard predicated sheaf 𝜑 on the standard space 𝑇 . Write Φ for
the standard set

⋃
𝑥∈𝑇 𝜑𝑥. First for any standard open set 𝑈 ∈ Ω𝑇 define

 [𝑈 ] =⦃
𝑓 ∈  (𝑇 ×Φ) ||| (𝑓 ∶ (𝑧 ∈ 𝑈 )→ 𝜑𝑧

)
∧∀𝑠𝑡𝑥.∀𝑦.𝑥 ◦− 𝑦→ 𝜑𝑦𝑥(𝑓 (𝑥)) = 𝑓 (𝑦)

⦄
.

Now we can define our sheaf  as

 = ⦃(𝑈,𝐹 ) ∈ Ω𝑇 × ( (𝑇 ×Φ)) |𝐹 =  [𝑈 ]⦄ .
For any standard 𝑈 ∈Ω𝑇 we can find exactly one standard set 𝐹 such that (𝑈,𝐹 ) ∈  .
By Transfer, we get that  is a function. Similarly, for any standard 𝑈 ∈ Ω𝑇 the value
 (𝑈 ) forms a subspace of the function space (𝑥 ∈ 𝑈 ) → 𝜑𝑥, and Transfer ensures
that the same holds for arbitrary 𝑈 . Therefore, we can define our restriction maps
res𝑉𝑈 ∶  (𝑉 ) →  (𝑈 ) the obvious way, as restrictions of functions. To see that this
map is well-defined, just apply Transfer to the formula

∀𝑠𝑡𝑈 ∈ Ω𝑇 .∀𝑠𝑡𝑉 ∈ Ω𝑇 .𝑈 ⊆ 𝑉 → ∀𝑠𝑡𝑓 ∈  (𝑉 ).res𝑉𝑈 (𝑓 ) ∈  (𝑈 ).

To prove locality, take an open set𝑈 , an 𝐼-indexed open cover𝑈𝑖 of𝑈 , and two sections
𝑠, 𝑡∈ (𝑈 ). To show that 𝑠= 𝑡, it suffices to show that for all 𝑥∈𝑈 we have 𝑠(𝑥) = 𝑡(𝑥).
But each 𝑥 ∈ 𝑈 belongs to some 𝑈𝑖, and we see 𝑠(𝑥) = res𝑈𝑈𝑖(𝑠)(𝑥) = res𝑈𝑈𝑖(𝑡)(𝑥) = 𝑡(𝑥).
To prove gluing, take an open set𝑈 , an 𝐼-indexed open cover𝑈𝑖 of𝑈 and an 𝐼-indexed
set of sections 𝑠𝑖 ∈  (𝑈𝑖). Provisionally assume the standardness of all these objects.
For each 𝑥 ∈𝑋 pick an 𝑖 such that 𝑈𝑖 covers 𝑥, and define the function

𝑠 ∶ (𝑥 ∈ 𝑈 )→ 𝜑𝑥
𝑠(𝑥) = 𝑠𝑖(𝑥)

Since the sections 𝑠𝑖 agree on all intersections of the cover, the function 𝑠 is well-defined
and standard. We need to prove that 𝑠 ∈  (𝑈 ), which happens precisely if 𝑠 satisfies
∀𝑠𝑡𝑥 ∈ 𝑈.∀𝑦 ∈ 𝑈.𝑥 ◦− 𝑦→ 𝜑𝑦𝑥(𝑠(𝑥)) = 𝑠(𝑦). So take any standard 𝑥 ∈ 𝑈 . We can find
some 𝑖 ∈ 𝐼 such that 𝑈𝑖 covers 𝑥. By Transfer we can pick such 𝑖 (and hence 𝑈𝑖 and
𝑠𝑖) as standard. Hence, by 𝑥 ◦− 𝑦 we get that 𝑦 ∈ 𝑈𝑖. Moreover, by the standardness of
𝑠𝑖 ∈ (𝑈𝑖), we get that𝜑𝑦𝑥(𝑠𝑖(𝑥)) = 𝑠𝑖(𝑦). But 𝑠𝑖(𝑥) = 𝑠(𝑥) and 𝑠𝑖(𝑦) = 𝑠(𝑦), so𝜑𝑦𝑥(𝑠(𝑥)) =
𝑠(𝑦), and so 𝑠 ∈  (𝑈 ) as desired. Transfer gets rid of the provisional assumptions, and
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we conclude that  forms a sheaf over the space 𝑇 .
Qed.

The Alexandroff case

3.2.18. Over an Alexandroff space (𝑇 ,≤), Theorem 3.2.15 acquires a much stronger
form: every sheaf, whether standard or non-standard, corresponds to a predicated sheaf.

3.2.19. To a point 𝑎 ∈ 𝑇 of the Alexandroff space, we can associate the upper set ↑𝑎 =
{𝑥 ∈ 𝑇 |𝑎 ≤ 𝑥}, and ↑𝑎 forms the smallest open set containing 𝑎. Given a sheaf  over
𝑇 and sections 𝑠, 𝑡 ∈  (𝑈 ), we have [𝑠]𝑎 = [𝑡]𝑎 precisely if 𝑠|↑𝑎 = 𝑡|↑𝑎. Hence we can
identify the stalk 𝑎 with the set of local sections  (↑𝑎).

3.2.20. By contravariance, whenever we have 𝑎 ≤ 𝑏, we have ↑ 𝑏 ⊆↑ 𝑎. Functoriality
of  gives a map 𝑏

𝑎 ∶  (↑𝑎)→  (↑𝑏). Since we identify stalks 𝑎 with sets of local
sections  (↑𝑎), we can see 𝑏

𝑎 as a map 𝑏
𝑎 ∶ 𝑎 → 𝑏, corresponding directly to the

map 𝜑𝑏𝑎 of Theorem 3.2.15.

Local definition

3.2.21. The correspondence between sheaves and predicated sheaves allow us to define
sheaves in a local, pointwise fashion. This approach works very well for sheaves whose
local behavior is easier to specify than its global behavior. Water flow in a network of
pipes provides a salient example. Locally, we only have one constraint: the amount
of water flowing into a point should equal the amount of water flowing out from that
point. However, specifying a global flow requires understanding the topology of the
entire pipe network.

3.2.22. As a simple example, consider the three-way junction 𝑌 of pipes depicted on
Figure 3.1. Treat the network 𝑌 as a subspace of ℝ2 equipped with the usual Euclidean
topology. We want to define a sheaf whose global sections correspond to possible flows
on the network. We define a predicated sheaf as an S-continuous map of quivers 𝜑. We
begin with the vertex map (the stalks) as follows:

𝜑𝑥 =

⎧⎪⎨⎪⎩
{
(𝑙,𝑢𝑟,𝑢𝑙) ∈ℝ3 ||| 𝑙+𝑢𝑟+𝑢𝑙 = 0

}
if 𝑥 = 𝑝{

(𝑙, 𝑟) ∈ℝ2 ||| 𝑙+ 𝑟 = 0
}

otherwise
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We can define the transition maps by cases as well:

𝜑𝑦𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑙,𝑢𝑟,𝑢𝑙)↦ (−𝑢𝑟,𝑢𝑟) if 𝑥 = 𝑝 and 𝑦 ∈ 𝑈𝑅

(𝑙,𝑢𝑟,𝑢𝑙)↦ (−𝑢𝑙,𝑢𝑙) if 𝑥 = 𝑝 and 𝑦 ∈ 𝑈𝐿

(𝑙,𝑢𝑟,𝑢𝑙)↦ (−𝑙, 𝑙) if 𝑥 = 𝑝 and 𝑦 ∈ 𝐿

(−𝑎,𝑎)↦ (−𝑎,𝑎) otherwise.

p

UL

UR

L

Figure 3.1: A three-way junction on a network.

3.2.23. Problem. Consider a small categoryℭ equipped with a coverage or Grothendieck
topology. Can we turn ℭ into a predicated quiver in such a way that sheaves on ℭ cor-
respond to sheaves in the sense of Grothendieck?



Chapter 4

Mechanization

4.1 Computer-verified proofs

4.1.1. In 1998, Simpson [44] gave a counterexample to the Homotopy Hypothesis, con-
tradicting an earlier, widely accepted argument by Kapranov and Voevodsky [27]. It
took until 2013 for Voevodsky to track down the error in his own argument. This long
struggle led Voevodsky to formulate his Univalent Foundations program [48], which
ultimately led to significant advances in the computer verification (mechanization) of
proofs, including the development of the field of research now known as Homotopy
Type Theory [45].

4.1.2. Unfortunately, our more modest field appears no less vulnerable to erroneous
arguments than algebraic topology. The main result of Chapter 2, Theorem 2.3.9, had a
direct precursor in the form of the Manevitz-Weinberger theorem on discrete circle ac-
tions (Theorem 2.3.12). However, the original proof of that result (see [30]-Theorem 1)
contained a significant mistake that went unnoticed until Imamura [25] found and fixed
the problem a full twelve years later.

4.1.3. The warnings of Sections 1.1.31 and 1.2.13 suggest that Internal Set Theory
(and to some extent model-theoretic non-standard analysis) might have unusual sus-
ceptibility to accidental mistakes due to its reliance on syntactic restrictions on set for-
mation and induction principles that have universal validity in the rest of mathematics.
Given the history of Theorem 2.3.12, we decided to computer-verify our proof of Theo-
rem 2.3.9 by formalizing the argument in an extension of Martin-Löf Type Theory, and
checking the correctness of the resulting proof script using the Agda proof assistant.

84
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4.1.4. Martin-Löf Type Theory (often called Intuitionistic Type Theory) is the formal
system at the heart of the Homotopy Type Theory [45] program. Type theory can
serve as a self-contained alternative to classical first-order logic and ZFC Set Theory
as a foundation for mathematics, and many popular proof assistants and interactive
theorem proving tools (such as Agda, Coq, Lean, NuPRL) use Martin-Löf Type The-
ory or other closely related type theories as their foundation. In particular, the Coq
proof assistant played an essential role in the celebrated computer-verified proofs of
the Appel-Haken [17] and Feit-Thompson theorems [18].

4.1.5. Agda is a pure functional dependently-typed programming language introduced
by Ulf Norell [36] and developed chiefly at Chalmers University, Gothenburg. Through
a correspondence in the Curry-Howard style (see [15]-Chapter 3 for an overview), one
can express mathematical proofs as Agda programs by considering the type of an Agda
program as a mathematical statement and a valid program of that type as a mathemati-
cal proof of the statement. The type system of Agda contains as a subset all the usual
constructions of Martin-Löf Type Theory, so one can formulate proofs in Martin-Löf
Type Theory inside the language of Agda, then use Agda’s type checker to verify their
correctness. Agda works as a proof assistant, as opposed to an automated theorem
prover: it does not generate proofs by itself, but verifies proof scripts that have been en-
coded into its programming language by a human mathematician. Agda provides many
high-level features including data type definitions, universe polymorphism, implicit ar-
guments, pattern matching, and an interactive environment to facilitate program/proof
development in Martin-Löf Type Theory.

4.1.6. Agda has been used as a proof assistant in over 200 published works in computer
science and in mathematics (see the official Agda website [10] for a full list). This in-
cludes formalized results about fundamental groups in Homotopy Type Theory [39]
and isomorphism theorems in Universal Algebra [19] among others. Most importantly,
Xu [49] developed an Agda formalization of the functional interpretation [46] of non-
standard Heyting arithmetic 𝐇 (a weak subsystem of Nelson’s Internal Set Theory).
These preceding developments made Agda a salient choice for our own mechanization
work.

4.1.7. While earlier publications dealing with Internal Set Theory in Agda focused
exclusively on results about subsystems of Internal Set Theory and used Martin-Löf
Type Theory as a meta-theory for their investigations, our current development involves
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working directly inside an extension of Martin-Löf Type Theory that can faithfully
represent and handle proofs that rely on the Idealization, Standardization and Transfer
principles of Internal Set Theory. To the best of our knowledge, no other proof in
Internal Set Theory has been formalized in such a way to date.

4.1.8. Martin-Löf himself proposed non-standard-analytic supplements to his type the-
ory, reminiscent of the methods used in contemporary research on guarded types. How-
ever, these extensions do not allow us to transcribe proofs written in Nelson-style Inter-
nal Set Theory into type theory. Hence, we propose our own extensions, which augment
Martin-Löf Type Theory with a hierarchy of universes for external propositions, along
with an external standardness predicate. The direct goal of these extensions is to serve
as a foundation for our Agda proof of Theorem 2.3.9.

Type theory, intuitively

4.1.9. In this chapter we present our extensions to Martin-Löf Type Theory and de-
scribe how to work with the extensions using the features available in Agda. We strive
to keep our presentation mostly self-contained and accessible to those without previous
experience with type theories. Due to space constraints, we cannot expect to succeed
in this endeavor. The first few chapters of the IAS book on Homotopy Type Theory [45]
should provide adequate descriptions and further pointers to understand the details we
elide in our presentation. Those readers who enjoy category theory may prefer to start
with Hofmann’s1 Syntax and Semantics of Dependent Types [22] instead. For a full,
syntactic introduction to a specific formalization of Martin-Löf Type Theory, we rec-
ommend [35]-Section 1.3. Do note however that modern versions of the Agda proof
assistant eschew the cumulative2 hierarchy presented there in favor of universe poly-
morphism [43]. For the sake of simplicity and readability, we omit all discussion and
formalism related to universe polymorphism from our thesis.

4.1.10. Martin-Löf Type Theory belongs to the family of typed 𝜆-calculi, so we should
begin our overview by discussing the intuitive meaning of the primary operations of
the 𝜆-calculus, abstraction and application (substitution). The terms, judgments rules

1Hofmann and Voevodsky, two larger-than-life figures in the field of computer-verified proofs, both
died tragically while our work was in progress.

2We really do not want a cumulative hierarchy in our work: we could not have 𝐒𝐞𝐭𝜔 consist of external
predicates anymore, as that would contradict our type-theoretic Standardization axiom. To fix the issue,
we would have to introduce a disjoint external hierarchy, which essentially doubles the number of rules
for the system.
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and proof trees given in this subsection serve only as examples to illustrate general
principles of 𝜆-calculi: they do not form part of the extended Martin-Löf Type Theory
presented in the remainder of the section!

4.1.11. When we treat an expression as a function, we must clearly identify one of the
variables occurring in the expression as the argument of the function. In mathematics,
one usually uses arrow notation for this purpose, writing 𝑥↦ 𝑥2 for the squaring func-
tion (unless the function already has a name, e.g. when one writes the sine function
as sin instead of 𝑥↦ sin𝑥). We understand that whatever meaning the variable 𝑥 had
outside the scope of this notation disappears in the expression that follows. For exam-
ple, even if we had 𝑥 = 1, the expression 𝑥↦ 𝑥2 would not denote 12 ∈ ℝ, but some
function ℝ→ℝ that squares its argument; similarly, we would not distinguish between
the functions 𝑥↦ 𝑥2 and 𝑦↦ 𝑦2. Logically speaking, 𝑥↦… binds the variable 𝑥 in
… , the same way the quantifier binds 𝑥 in ∀𝑥∈ℝ.𝑥4 > 0 or the integral sign binds 𝑥 in
the indefinite integral ∫ 𝑥5𝑑𝑥. As customary in logic, we refer to “not bound” variables
as free, and to each expression we associate its set of free variables the obvious way.
E.g. when + denotes a constant symbol, then the set of free variables of 𝑥+𝑦 consists
of 𝑥 and 𝑦, but the set of free variables of 𝜆𝑦.𝑥+𝑦 consists of 𝑥 only. In the 𝜆-calculus,
the 𝜆 symbol performs the role taken by ↦ in ordinary mathematical notation, so one
would write the squaring function as (𝜆𝑥.𝑥2).

4.1.12. To use a function, one applies it to an argument. This gives rise to the process of
application, which the syntax of the 𝜆-calculus represents by juxtaposition: one writes
the application of 𝑓 to 𝑥 as 𝑓 𝑥. Writing application as juxtaposition optimizes for
legibility, but one could equally well have written app(𝑓,𝑥), or 𝑓 (𝑥) - as one would do
in ordinary mathematics. So one might write (𝜆𝑥.𝑥2) 3 to denote the application of the
squaring function to the number symbol 3.

4.1.13. Application and 𝜆-abstraction form a part of the essential core syntax of every
𝜆-calculus: the terms of every 𝜆-calculus include at least these two constructions, along
with other ones specific to the calculus under consideration. By convention, we omit
superfluous parentheses in terms the following manner:

• 𝜆𝑥.𝜆𝑦.𝑃 stands for (𝜆𝑥.(𝜆𝑦.𝑃 )),

• 𝐹 𝑋 𝑌 stands for ((𝐹 𝑋)𝑌 ).

4.1.14. Distinct from application, one has reduction, the passage from e.g. (𝜆𝑥.𝑥+𝑥)3
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to 3+ 3. We define reduction using a substitution operation: given an expression 𝑃
the reduction of the application (𝜆𝑥.𝑃 ) 𝑡 gives 𝑃 [𝑥← 𝑡], where 𝑡[𝑥← 𝑡] denotes the
substitution of the expression 𝑡 for each occurrence of the variable 𝑥 in the term 𝑡 (note
that [−] does not belong to the syntax: it counts as an instruction meaning “perform
the substitution”, not “add [−] to the formula”). We have one complication, so-called
variable capture: (𝜆𝑥.𝜆𝑦.𝑥+𝑦)𝑦 should not reduce to (𝜆𝑦.𝑦+𝑦) but rather to (𝜆𝑦′.𝑦+𝑦′).
We leave the proper definition of such a capture-avoiding substitution operation as an
exercise for the reader. In the next subsection, where we give the formal definition of
type theory, we represent computational rules such as reduction (and reductions done
in reverse) using the notion of definitional equality.

4.1.15. Martin-Löf Type Theory is a typed 𝜆-calculus. Typed calculi are deductive
systems, in which we deduce typing judgments using a collection of permitted inference
rules. Given two terms of the calculus, 𝑡,𝑇 , a typing judgment has the form 𝑡 ∶ 𝑇 , which
we read as “the term 𝑡 has type 𝑇 ”. One sees typing judgments as largely analogous to
set membership, for example one might make typing judgments such as (𝜆𝑥.𝑥2) ∶ℚ→

ℚ+ or
√
2 ∶ ℝ. However, unlike set membership, which forms part of the term syntax

of set theory, a typing judgment is not itself a term. For example, ¬(𝑥 ∶ ℝ) does not
count as a judgment, or even a syntactically well-formed expression. Inference rules
have the form

𝐻1 … 𝐻𝑛 NAME OF RULE
𝐶

where 𝐻𝑖 and 𝐶 denote judgments. The rule above says that once we have made all
the judgments 𝐻𝑖, we are allowed to make the judgment 𝐶 . As an example, take the
inference rule

𝑓 ∶ 𝐴→ 𝐵 𝑥 ∶ 𝐴
FUN-ELIM

𝑓 𝑥 ∶ 𝐵

which states that for any 𝐴,𝐵 variable symbols, if we judge 𝑓 to have type 𝐴→ 𝐵 (a
function from𝐴 to 𝐵), and we judge 𝑥 to have type 𝐴, then we can judge the term (𝑓 𝑥)
to have type 𝐵. A derivation (or proof ) of a judgment is a rooted tree constructed using
such inference rules, with the conclusion of the proof sitting at the root of the tree. E.g.

REAL-ADD
add ∶ℝ→ (ℝ→ℝ)

REAL-ONE
1 ∶ℝ

FUN-ELIM
add1 ∶ℝ→ℝ

REAL-ONE
1 ∶ℝ FUN-ELIM

add11 ∶ℝ
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forms a proof tree of conclusion add 1 1 ∶ ℝ and uses three different inference rules,
REAL-ADD, REAL-ONE and FUN-ELIM. The reader should write down proper formu-
lations of these rules as an exercise; the reader interested in learning3 even more about
proof trees is referred to to Girard’s excellent Proofs and Types [15].

4.1.16. In a typed setting, free variables require special care: barring further informa-
tion, how does one make any kind of type judgment about the type of 𝑓 𝑥 without
knowing the type of the variable 𝑥?! Naively, one might think that annotating each
free variable with its type (e.g. writing 𝑥∶ℕ instead of 𝑥) would solve this problem. In
practice, this does not work, since the set of valid types depends on the judgments that
have been made previously. For example, writing 𝑥∶𝑦 is valid if we already know that
𝑦 takes one of the values ℝ,ℕ, but not valid if 𝑦 might take a value that does not count
as a type, say 42. De Bruijn [11] gave a satisfactory solution to this issue in the form of
contextual judgments. A context Γ consists of a list of typed variables such that the free
variables of each type appear earlier in the list than the type itself. A contextual typing
judgment has the form Γ ⊢ 𝑡 ∶ 𝑇 , where all the free variables of 𝑡 and 𝑇 appear in the
context Γ. We phrase our formalization of (extended) Martin-Löf type theory purely in
terms of contextual judgments.

4.2 Extended type theory

4.2.1. Here we present an extended variant of Martin-Löf Type Theory that has the
same relationship to ordinary Martin-Löf Type Theory as Internal Set Theory has to
Zermelo-Fraenkel Set Theory, and can cope with Nelson-style reasoning used in the
proof of Theorem 2.3.9. The main innovations of our proposed system include a hierar-
chy of universes indexed by small ordinals that lets us treat external sets and predicates
such as st(−), and a new kind of judgment that allows for a uniform treatment of Trans-
fer schemata. Moreover, we identify a subsystem4 of our extended type theory that
we can effectively encode into Agda, allowing us to computer-verify our proof without
having to extend or modify the Agda proof assistant.

3According to the Japanese proverb, the best way to learn proof trees is to have learned them ten years
ago.

4This subsystem is sufficient for representing the proof of Theorem 2.3.9, but in principle the same
proof could be carried out in weaker subsystems. In particular, we never invoke Idealization or internal-
to-external Transfer principles.
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Contexts, terms and judgments

4.2.2. In the following, we assume an inexhaustible (at the very least countable) supply
of variable symbols, which we usually denote by lower-case letters from the very end
of the English alphabet.

4.2.3. Definition. We call an ordinal 𝜆 such that 𝜆 < 𝜔+𝜔 a universe level or level for
short. We usually use the letters 𝑖, 𝑗,𝓁 or 𝑚 for variables that range over universe levels.

4.2.4. Definition. In the following, the variables Γ,Δ range over contexts, while 𝑠, 𝑡,𝑆
range over terms. We distinguish four sorts of judgments in our type theory:

1. Judgments Γ ⊢ read as “Γ forms a valid context”.

2. Judgments Γ ⊢ 𝑡 ∶ 𝑆 read as “the term 𝑡 has type 𝑆 in the context Γ”.

3. Judgments Γ ∼ Δ ⊢ read as “Γ and Δ denote the same context by definition”.

4. Judgments Γ⊢ 𝑠∼𝑆 𝑡 read as “the expressions 𝑠 and 𝑡 denote the same inhabitant
of type 𝑆 in the context Γ by definition”,

5. Judgments Γ ⊢ 𝑠⇔𝓁 𝑡 read as “the terms 𝑠 and 𝑡 form a transfer pair at universe
level 𝓁”.

4.2.5. We define the contexts, terms, inference rules and proof trees of type theory in
terms of each other5 via a single, gargantuan, mutually inductive definition. The next
few pages contain multiple Definition blocks (from 4.2.8 to 4.2.35), but one should
consider them as fragments of a single long definition, which does not conclude until
we account for every single rule.

4.2.6. Definition. We maintain a distinction between the full calculus and its safe frag-
ment. We say that a derivation belongs to the safe fragment if it does not contain any
rule whose name contains the symbol ⋆. Some rules require a safety assumption on
some of their premises: we mark these assumptions by writing ⊢𝑠 instead of ⊢ in the
turnstile of the hypothesis. For example, if we write

Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭1 Γ ⊢ 𝑥 ∶ 𝐴
⋆ example rule (not an actual rule)

𝑥 ∶ 𝐒𝐞𝐭0,Γ ⊢

5Is such a definition circular? No, for the same reason that BNF grammars define sets [28].
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then the example rule requires that the derivation of its left premise Γ⊢𝐴 ∶ 𝐒𝐞𝐭1 occur
in the safe fragment (i.e. not use rules marked with the ⋆ symbol), while the derivation
of the right premise Γ ⊢ 𝑥 ∶𝐴 may use any rule, including those marked with ⋆. Simi-
larly, since the name of the example rule itself contains the ⋆ symbol, any premise of
any rule marked with ⊢𝑠 cannot use the example rule in its derivation.

Rules: Contexts and variables

4.2.7. First we describe the rules of context formations. These rules have conclusions
labeled with judgments of the form Γ. Recall that we read these judgments as “Γ forms
a valid context”. For the sake of readability, the empty context ∅ receives special treat-
ment in the syntax: we simply write 𝑥1 ∶ 𝑇1 to denote the context ∅,𝑥1 ∶ 𝑇1.

4.2.8. Definition. Using the variable conventions discussed above and in the preceding
definitions, we take the following context formation rules in our type theory.

CTX-NUL
∅ ⊢

Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝑖 CTX-EXT
Γ,𝑥 ∶ 𝐴 ⊢

In the rule CTX-EXT, we require that the variable 𝑥 not occur in the context Γ. We take
the following variable introduction rule:

Γ,𝑥 ∶ 𝐴,Δ ⊢
VAR

Γ,𝑥 ∶ 𝐴,Δ ⊢ 𝑥 ∶ 𝐴

The presentation of the rules continues in Definition 4.2.10.

Rules: Context equality

4.2.9. The rules presented in this subsection pertain to judgments of the form Γ ∼ Δ,
read as “Γ and Δ denote the same context by definition”. These rules ensure that ∼
behaves like an equivalence relation, and tell us when we can consider two contexts
equal. Other rules will ensure that we can substitute equal contexts for each other (recall
that we give these definitions mutually inductively, as described in Section 4.2.5).

4.2.10. Definition. We take the following context equality rules.

CEQ-NULL
∅ ∼ ∅ ⊢

Γ ∼ Δ ⊢ Γ ⊢ 𝐴 ∼ 𝐵 ∶ 𝐒𝐞𝐭𝑖 CEQ-EXTN
Γ,𝑥 ∶ 𝐴 ∼ Δ,𝑥 ∶ 𝐵 ⊢
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Γ ∼ Δ ⊢ CEQ-SYMM
Δ ∼ Γ ⊢

Γ ∼ Π ⊢ Π ∼ Δ ⊢ CEQ-TRAN
Γ ∼ Δ ⊢

Mirroring the constraints of the rule CTX-EXT, we require that the variable 𝑥 not oc-
cur in the contexts Γ and Δ within the rule CEQ-EXTN. The presentation of the rules
continues in Definition 4.2.12.

Rules: Term equality

4.2.11. Recall that we read judgments of the form Γ⊢ 𝑠∼𝑆 𝑡 as “the expressions 𝑠 and
𝑡 denote the same term of type 𝑆 in the context Γ by definition”. Type theory has its
own internal definition of equality between objects (equality types or path types); one
must not confuse those with the equality judgments presented here, which concern only
the equations that hold between terms “by definition”. We always allow replacement
of definitionally equal terms and contexts with each other in any part of any judgment,
while eliding some of the congruence rules asserting this fact in our presentation.

4.2.12. Definition. We take the following term equality rules.

Γ ⊢ 𝑡 ∶ 𝐴 TEQ-REFL
Γ ⊢ 𝑡 ∼𝐴 𝑡

Γ ⊢ 𝑠 ∼𝐴 𝑡 TEQ-SYMM
Γ ⊢ 𝑡 ∼𝐴 𝑠

Γ ⊢ 𝑠 ∼𝐴 𝑝 Γ ⊢ 𝑝 ∼𝐴 𝑡 TEQ-TRAN
Γ ⊢ 𝑡 ∼𝐴 𝑠

Γ ∼ Δ Γ ⊢ 𝐴 ∼𝐒𝐞𝐭𝑖 𝐵 Γ ⊢ 𝑡 ∶ 𝐴
TEQ-SUBT

Δ ⊢ 𝑡 ∶ 𝐵

Γ ∼ Δ Γ ⊢ 𝐴 ∼𝐒𝐞𝐭𝑖 𝐵 Γ ⊢ 𝑠 ∼𝐴 𝑡
TEQ-SUBE

Δ ⊢ 𝑠 ∼𝐵 𝑡

The presentation of the rules continues in Definition 4.2.17.
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Rules: Universes and Type Formation

4.2.13. The type theory of Agda (strictly speaking, Martin-Löf Type Theory with a
stratified hierarchy of large types) comes equipped with a hierarchy of universes

𝐒𝐞𝐭0 ∶ 𝐒𝐞𝐭1 ∶ 𝐒𝐞𝐭2 ∶…

Generally, we can think of 𝐒𝐞𝐭0 as the “set of all (small) sets”, and judgments 𝑆 ∶ 𝐒𝐞𝐭0
as stating “𝑆 is a set”. Under a Curry-Howard interpretation, one might as well read
this as “𝑆 is a proposition”. The same way set theories have to avoid constructing the
set of all sets, type theory cannot admit 𝐒𝐞𝐭𝜆 ∶ 𝐒𝐞𝐭𝜆 on pain of contradiction: if we take
such a rule, Girard’s paradox (a variant of the Burali-Forti paradox) makes the resulting
system inconsistent [24]. To avoid contradiction while giving a type to 𝐒𝐞𝐭0, we can
introduce the universe hierarchy, and take 𝐒𝐞𝐭0 ∶ 𝐒𝐞𝐭1, 𝐒𝐞𝐭1 ∶ 𝐒𝐞𝐭2 etc.

4.2.14. Internal Set Theory requires a strict separation between internal predicates/propo-
sitions and external ones, such as the proposition st(𝑥). Uses of the latter usually fall
under much stricter rules (e.g. not available for use within induction arguments, as in
1.1.10). We shall use a second hierarchy of universes, indexed by the levels𝜔,𝜔+1,… ,
for these external predicates and propositions.

4.2.15. We use ordinal indices for the external hierarchy as a notational convenience,
not because of some deep relationship between external predicates and the ordinal hi-
erarchy. Indeed, since our type theory does not have cumulativity, there is no type-
theoretic relationship between 𝐒𝐞𝐭0 and 𝐒𝐞𝐭𝜔; we could treat internal and external sets
as two completely disjoint hierarchies and use the notation 𝐄𝐒𝐞𝐭0 ∶ 𝐄𝐒𝐞𝐭1 ∶… for the
latter. The reasons for not doing this are two-fold. The first is desire for parsimony: the
standard ordinal operations max and + make for a shorter presentation, and not having
to include separate rules for the 𝐒𝐞𝐭- and 𝐄𝐒𝐞𝐭-hierarchies essentially halves the num-
ber of necessary rules. The second consideration is much more pragmatic: we wish to
check our proofs using an unmodified Agda proof checker, and current versions of Agda
already have an option for doing some “unsafe” things with 𝐒𝐞𝐭𝜔 without destroying
compatibility with standard universe-polymorphic Agda code.

4.2.16. Type formation rules control how one can introduce new types. Like universe
formation rules, the conclusion of such rules have the form Γ ⊢ 𝑡 ∶ 𝐒𝐞𝐭𝑖 for some 𝑖,
asserting that the term 𝑡 inhabits some universe of types. One can regard the universe
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formation rules themselves as special type formation rules for the types 𝐒𝐞𝐭𝑖. We give
the type formation rules for each primitive type of the theory in its respective section.

4.2.17. Definition. We admit the following universe formation rules:

Γ ⊢ UNIV-INT
Γ ⊢ 𝐒𝐞𝐭𝓁 ∶ 𝐒𝐞𝐭𝓁+1

Γ ⊢ ⋆ UNIV-EXT
Γ ⊢ 𝐒𝐞𝐭𝜔+𝓁 ∶ 𝐒𝐞𝐭𝜔+𝓁+1

The variable 𝓁 ranges over universe levels satisfying 𝓁 < 𝜔, the + symbol denotes the
usual addition operation on the ordinals. Notice that we never have 𝐒𝐞𝐭𝑖 ∶ 𝐒𝐞𝐭𝜆 for any
limit ordinal 𝜆 ∈ {0,𝜔}. The presentation of the rules continues in Definition 4.2.19.

Rules: Dependent function type

4.2.18. Here we introduce the dependent function type ∀𝑥 ∶ 𝐴.𝐵. We can get a fairly
close set-theoretic analogue of this type in classical Zermelo-Fraenkel Set Theory by
taking an 𝐴-indexed family of sets 𝐵𝑥, and forming the set

𝑃 =

{
𝑓 ∶ 𝐴→

⋃
𝑥∈𝐴

𝐵𝑥
|||||∀𝑥 ∈ 𝐴.𝑓 (𝑥) ∈ 𝐵𝑥

}
.

In set theory, we would denote the set 𝑃 as
∏

𝑥∈𝐴𝐵𝑥, and refer to it as the infinite
Cartesian product of the family𝐵𝑥. In type theory, the dependent function type loosely
corresponds to this set 𝑃 . As such, we might denote the dependent function as (𝑥 ∶
𝐴)→ 𝐵 or even as a product

∏
𝑥∶𝐴𝐵; through the Curry-Howard correspondence, we

can identify dependent products with (higher-order) universal quantification, and since
we take this perspective, we shall write it as ∀𝑥 ∶ 𝐴.𝐵. When the variable 𝑥 does not
occur at all in the term 𝐵, we write 𝐴→ 𝐵 (like function spaces in Set Theory, or like
implication → via the Curry-Howard correspondence). Agda provides some form of
support for all of these notations. The application operation discussed in Section 4.1.12
provides the elimination rule for dependent functions, while 𝜆-abstraction acts as the
introduction rule. The computation rules formalize reduction by substitution.

4.2.19. Definition. We admit the following dependent function rules:
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Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝑖 Γ,𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝐒𝐞𝐭𝑗
DFUN-FORM

Γ ⊢ (∀𝑥 ∶ 𝐴.𝐵) ∶ 𝐒𝐞𝐭max{𝑖,𝑗}

Γ,𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
DFUN-INTR

Γ ⊢ 𝜆𝑥.𝑡 ∶ ∀𝑥 ∶ 𝐴.𝐵

Γ ⊢ 𝑓 ∶ ∀𝑥 ∶ 𝐴.𝐵 Γ ⊢ 𝑡 ∶ 𝐴
DFUN-ELIM

Γ ⊢ 𝑓𝑡 ∶ 𝐵[𝑥← 𝑡]

Γ,𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 Γ ⊢ 𝑠 ∶ 𝐴
DFUN-COMP

Γ ⊢ (𝜆𝑥.𝑡)𝑠 ∼𝐵[𝑥←𝑠] 𝑡[𝑥← 𝑠]

where the variables 𝑖, 𝑗 range over all possible universe levels, including levels over
𝜔 and 𝑡[𝑥 ← 𝑠] denotes the capture-avoiding substitution of the term 𝑠 for each oc-
currence of the variable 𝑥 in the term 𝑡. The presentation of the rules continues in
Definition 4.2.21.

Rules: Dependent sum type

4.2.20. Similarly to the set-theoretic analogue of ∀𝑥 ∶ 𝐴.𝐵, we can approximate the
meaning of the dependent sum type ∃𝑥 ∶𝐴.𝐵 very well in classical ZFC Set Theory by
starting with an 𝐴-indexed family of sets 𝐵𝑥, and forming the set

𝑃 =

{
(𝑎,𝑏) ∈ 𝐴×

⋃
𝑥∈𝐴

𝐵𝑥
|||||𝑏 ∈ 𝐵𝑎

}

using Comprehension and Union. For the two-element index set 𝐴 = {1,2}, the con-
struction gives the disjoint union 𝐵1⊎𝐵2, and for a constant family 𝐵𝑥 = 𝐵 the binary
Cartesian product 𝐴×𝐵. Indeed, if 𝑥 does not occur in 𝐵, we will write 𝐴×𝐵 for
∃𝑥 ∶ 𝐴.𝐵. Through the Curry-Howard correspondence, we can identify dependent
sums with (higher-order) existential quantification, and 𝐴 ×𝐵 with the conjunction
𝐴∧𝐵. The introduction rule corresponds to the formation of an ordered pair: if 𝑡 ∶ 𝐴
and 𝑠 ∶ 𝐵𝑡, then we have (𝑡, 𝑠) ∶ ∃𝑥 ∶ 𝐴.𝐵𝑥. The elimination rules correspond to coor-
dinate projections.

4.2.21. Definition. We admit the following dependent sum rules:
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Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝑖 Γ,𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝐒𝐞𝐭𝑗
DSUM-FORM

Γ ⊢ (∃𝑥 ∶ 𝐴.𝐵) ∶ 𝐒𝐞𝐭max{𝑖,𝑗}

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑠 ∶ 𝐵[𝑥← 𝑡]
DSUM-INTR

Γ ⊢ (𝑡, 𝑠) ∶ (∃𝑥 ∶ 𝐴.𝐵)

Γ ⊢ 𝑡 ∶ (∃𝑥 ∶ 𝐴.𝐵)
DSUM-ELIML

Γ ⊢ 𝜋1𝑡 ∶ 𝐴
Γ ⊢ 𝑡 ∶ (∃𝑥 ∶ 𝐴.𝐵)

DSUM-ELIMR
Γ ⊢ 𝜋2𝑡 ∶ 𝐵[𝑥← 𝜋2𝑡]

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑠 ∶ 𝐵[𝑥← 𝑡]
DSUM-COMPL

Γ ⊢ 𝜋1(𝑡, 𝑠) ∼𝐴 𝑡

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑠 ∶ 𝐵[𝑥← 𝑡]
DSUM-COMPR

Γ ⊢ 𝜋2(𝑡, 𝑠) ∼𝐵[𝑥←𝑡] 𝑠

where as usual 𝑡[𝑥← 𝑠] denotes the substitution of the term 𝑠 for each occurrence of the
variable 𝑥 in the term 𝑡. The presentation of the rules continues in Definition 4.2.24.

Rules: Empty type

4.2.22. We call ⊥ the empty type. It corresponds (unsurprisingly) to the empty set in
set theory. Through the Curry-Howard perspective, 𝑥 ∶ ⊥ acts as a proof of a pure con-
tradiction; as such, we can represent negation as 𝐴→ ⊥, and we sometimes abbreviate
the latter as ¬𝐴. The elimination rule for the empty type corresponds to the principle of
explosion: if we manage to produce a proof of a contradiction, anything follows. The
empty type lacks inhabitants, and so it does not have any introduction rules.

4.2.23. Due to the presence of the standardness predicate 𝚜𝚝, and in line with Sec-
tion 1.1.10, our extended type theory restricts inductive elimination rules to internal
levels of the universe hierarchy (𝐒𝐞𝐭𝑖 for 𝑖 < 𝜔). This limitation does not affect the
elimination rule for the empty type, which remains valid for all 𝑖, including 𝑖 ≥ 𝜔.

4.2.24. Definition. We admit the following empty type rules:

Γ ⊢ EMPT-FORM
Γ ⊢ ⊥ ∶ 𝐒𝐞𝐭0
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Γ ⊢ 𝑡 ∶ ⊥ Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝑖 EMPT-ELIM
Γ ⊢ 𝚊𝚋𝚜𝚞𝚛𝚍 𝐴 𝑡 ∶ 𝐴

where the variable 𝑖 ranges over all universe levels. The presentation of the rules con-
tinues in Definition 4.2.27.

Rules: Equality type

4.2.25. Definitional equality ∼ expresses the computation rules associated with types
that hold by definition; Agda will perform such substitutions automatically using simple
term rewriting. The propositional equality types have a different purpose: they serve as
types for equality proofs, internal to the theory. Under a Curry-Howard interpretation,
we read 𝑝 ∶ 𝑎=𝑆 𝑏 as “𝑝 proves that the inhabitant 𝑎 of type 𝑆 equals the inhabitant 𝑏 of
the same type”. Agda does not perform substitutions along propositional equalities au-
tomatically. The introduction rule for the equality type states the reflexivity of equality
(for each 𝑥 ∶ 𝑇 , 𝑥 =𝑇 𝑥).

4.2.26. One can choose between multiple different elimination rules for the equality
type. We take the strongest elimination rule, Streicher’s rule K as our equality elimi-
nation rule since it’s the default option in Agda’s type theory as well. Our formalized
proof of Theorem 2.3.9 does not rely on this choice in any form and would work even
if we took a weaker elimination rule (such as the elimination rule J commonly used in
Homotopy Type Theory). However, we require that the elimination rule permit elimi-
nation into any universe level, including levels 𝑖≥𝜔 of the external hierarchy, since we
need the capability of transporting standardness predicate. That is, if we have a proof
of 𝑥 = 𝑦, and a proof of 𝚜𝚝(𝑥), we want to have some way to obtain the conclusion
𝚜𝚝(𝑦). At first glance, this may seem like a departure from Internal Set Theory. As a
matter of fact, Internal Set Theory does put forth an identical requirement, but sweeps
it under the rug of first-order logic: ∀𝑥.∀𝑦.𝑥 = 𝑦∧ st(𝑥)→ st(𝑦) does hold in Internal
Set Theory, not as an axiom of Internal Set Theory, but as an axiom of first-order logic.
Since type theory acts as its own underlying logic, it has to make provision for this
requirement explicitly.

4.2.27. Definition. We admit the following equality type rules:

Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝑖 Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑠 ∶ 𝐴
EQT-FORM

Γ ⊢ (𝑡 =𝐴 𝑠) ∶ 𝐒𝐞𝐭𝑖
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Γ ⊢ 𝑡 ∶ 𝐴 EQT-INTR
Γ ⊢ 𝚛𝚎𝚏𝚕𝐴 𝑡 ∶ (𝑡 =𝐴 𝑡)

[𝑥1] [𝑥2] [𝑥3] [𝑥4] [𝑥5]
EQT-ELIMK

Γ ⊢ 𝙺 𝐴 (𝜆𝑥.𝜆𝑝.𝐶) 𝑡 𝑞 𝑃 ∶ 𝐶[𝑝← 𝑃 ,𝑥← 𝑡]

[𝑥1] [𝑥2] [𝑥3] [𝑥4]
EQT-COMP

Γ ⊢ 𝙺 𝐴 (𝜆𝑥.𝜆𝑝.𝐶) 𝑡 𝑞 (𝚛𝚎𝚏𝚕 𝐴 𝑡) ∼𝐶[𝑝←𝚛𝚎𝚏𝚕 𝐴 𝑡,𝑥←𝑡] 𝑞

where

x1: Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝑖

x2: Γ,𝑥 ∶ 𝐴,𝑝 ∶ 𝑥 =𝐴 𝑥 ⊢ 𝐶 ∶ 𝐒𝐞𝐭𝑗

x3: Γ ⊢ 𝑡 ∶ 𝐴

x4: Γ ⊢ 𝑞 ∶ 𝐶[𝑝← 𝚛𝚎𝚏𝚕 𝐴 𝑡,𝑥← 𝑡]

x5: Γ ⊢ 𝑃 ∶ 𝑡 =𝐴 𝑡

and the variables 𝑖, 𝑗 range over all universe levels, internal or external. The presenta-
tion of the rules continues in Definition 4.2.29.

Rules: Transfer

4.2.28. Since Standardization works over any predicate, internal or external, we can
admit it as a proper axiom over all universe levels. Similarly, we can admit Idealization
over internal predicates by admitting it as a proper axiom over universe levels below 𝜔.
However, the Transfer axioms work only over those internal predicates which have all
parameters standard. To capture this purely syntactic restriction, we handle Transfer
using a new form of judgment, Γ ⊢ 𝐴↔𝑖 𝐵, meaning “one can transfer between 𝐴 and
𝐵 of universe level 𝑖 in the context Γ”. Before we assert the rules governing this new
sort of judgment, we have to give meaning to the analogues of the predicate st(−) of
Internal Set Theory, the standardness types 𝚜𝚝 𝐴 𝑡, read as “𝑡 is a standard inhabitant
of type 𝐴”. This type lives in the external hierarchy, and does not have introduction or
elimination rules, as one can use the Transfer axioms directly for all introductions and
eliminations of 𝚜𝚝.
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4.2.29. Definition. In all the rules that follow, the variables 𝓁, 𝑖, 𝑗 range over universe
levels of the internal hierarchy (strictly below𝜔), and the variable 𝑥 is fresh with respect
to the context Γ. We admit the following standardness type formation rule.

Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝓁 Γ ⊢ 𝑡 ∶ 𝐴
⋆ ST-FORM

Γ ⊢ 𝚜𝚝𝓁 𝐴 𝑡 ∶ 𝐒𝐞𝐭𝜔

Define the notation ∀𝑠𝑡𝑥 ∶𝐴.𝐵 as an abbreviation for ∀𝑥 ∶𝐴.𝚜𝚝𝐴 𝑥→𝐵, and similarly
∃𝑠𝑡𝑥 ∶ 𝐴.𝐵 as an abbreviation for ∃𝑥 ∶ 𝐴.𝚜𝚝 𝐴 𝑥∧𝐵. In accordance with the rule ST-
FORM, we need to have Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝓁 for some 𝓁 < 𝜔 before we can write ∀𝑠𝑡𝑥 ∶ 𝐴.𝐵.
We admit the following transfer rules.

Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁 ⋆ TRF-REFL
Γ ⊢ 𝐴⇔𝓁 𝐴

Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁 Γ,𝑥 ∶ 𝐴 ⊢ 𝐵⇔𝑖 𝐵′
⋆ TRF-DFUN

Γ ⊢ (∀𝑥 ∶ 𝐴.𝐵)⇔max{𝓁,𝑖} (∀𝑠𝑡𝑥 ∶ 𝐴.𝐵′)

Γ ⊢ 𝐴⇔𝑖 𝐴′ Γ ⊢ 𝐵⇔𝑗 𝐵′

⋆ TRF-FUN
Γ ⊢ (𝐴→ 𝐵)⇔max{𝑖,𝑗} (𝐴′ → 𝐵′)

Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁 Γ,𝑥 ∶ 𝐴 ⊢ 𝐵⇔𝑖 𝐵′
⋆ TRF-DSUM

Γ ⊢ (∃𝑥 ∶ 𝐴.𝐵)⇔max{𝓁,𝑖} (∃𝑠𝑡𝑥 ∶ 𝐴.𝐵′)

Γ ⊢ 𝐴⇔𝑖 𝐴′ Γ ⊢ 𝐵⇔𝑗 𝐵′

⋆ TRF-SUM
Γ ⊢ (𝐴×𝐵)⇔max{𝑖,𝑗} (𝐴′×𝐵′)

The presentation of the rules continues in Definition 4.2.32.

Rules: Naturals and Finite Lists

4.2.30. We call a rule a proper axiom if it has the form

Γ ⊢ AX-T
Γ ⊢ 𝑡 ∶ 𝐴
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for fixed terms 𝑡,𝐴 and an arbitrary context Γ. One can treat introduction and elimi-
nation rules for the basic types of the theory (ℕ, 𝙻𝚒𝚜𝚝, etc)̇ as either proper axioms or
pure inference rules; compare e.g.

Γ ⊢ axiom
Γ ⊢ 𝚜𝚞𝚌 ∶ ℕ→ ℕ

Γ ⊢ 𝑛 ∶ ℕ inf. rule
Γ ⊢ 𝚜𝚞𝚌 𝑛 ∶ ℕ

Presenting the basic types using pure inference rules results in a more modular the-
ory (the definition of ℕ does not depend on how we define universes and dependent
functions, or whether we have them at all), at the cost of longer and more complicated
proofs in the meta-theory, and a less clear correspondence with the Agda code. On that
account, we opt to introduce the basic types of our type theory as proper axioms (along
with formation and computation rules). To save space, we give all the axioms on single
lines, e.g. we write the axiom introducing 𝚜𝚞𝚌 simply as 𝚜𝚞𝚌 ∶ ℕ→ ℕ. Later on, we
present the Idealization and Standardization principles the same way as well.

4.2.31. The type of natural numbers has two introduction rules, stating that zero is a
natural number and the successor of every natural number is also a natural number.
The principle of induction gives the elimination rule. We define the type 𝙻𝚒𝚜𝚝 𝐴 of
finite lists over the type 𝐴 in a similar fashion, with the elimination rule given by struc-
tural induction. In accordance with Section 1.1.10, we have to restrict these induction
principles to the universe levels of the internal hierarchy.

4.2.32. Definition. Let the variable 𝓁 range over universe levels below 𝜔, and let 𝑖
range over all universe levels. We admit the following rules for the type of natural
numbers (using the notation of Section 4.2.30):

ℕ ∶ 𝐒𝐞𝐭0
𝚣𝚎𝚛𝚘 ∶ ℕ

𝚜𝚞𝚌 ∶ ℕ→ ℕ

𝚒𝚗𝚍𝚞𝚌𝚝𝚒𝚘𝚗𝓁 ∶ ∀𝜑 ∶ ℕ→ 𝐒𝐞𝐭𝓁.

𝜑 𝚣𝚎𝚛𝚘→

(∀𝑘 ∶ ℕ.𝜑 𝑘→ 𝜑 (𝚜𝚞𝚌 𝑘))→

∀𝑛 ∶ ℕ.𝜑 𝑛
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along with the computation rules

𝚒𝚗𝚍𝚞𝚌𝚝𝚒𝚘𝚗𝓁 𝜑 𝑧 𝑠 𝚣𝚎𝚛𝚘 ∼ 𝑧 and

𝚒𝚗𝚍𝚞𝚌𝚝𝚒𝚘𝚗𝓁 𝜑 𝑧 𝑠 (𝚜𝚞𝚌 𝑛) ∼ 𝑠 (𝚒𝚗𝚍𝚞𝚌𝚝𝚒𝚘𝚗𝓁 𝜑 𝑧 𝑠 𝑛).

We admit the following rules for the type of finite lists.

𝙻𝚒𝚜𝚝𝑖 ∶ 𝐒𝐞𝐭𝑖 → 𝐒𝐞𝐭𝑖
𝚎𝚖𝚙𝚝𝚢𝑖 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝑖.𝙻𝚒𝚜𝚝𝑖 𝐴

𝚌𝚘𝚗𝚜𝑖 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝑖.𝐴→ 𝙻𝚒𝚜𝚝𝑖 𝐴→ 𝙻𝚒𝚜𝚝𝑖 𝐴

𝚕𝚒𝚜𝚝𝚎𝚕𝚒𝚖𝑖,𝓁 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝑖.∀𝜑 ∶ 𝙻𝚒𝚜𝚝𝑖 𝐴→ 𝐒𝐞𝐭𝓁.

𝜑 (𝚎𝚖𝚙𝚝𝚢𝑖 𝐴)→(
∀𝑎 ∶ 𝐴.∀𝑘 ∶ 𝙻𝚒𝚜𝚝𝑖 𝐴.𝜑 𝑘→ 𝜑 (𝚌𝚘𝚗𝚜𝑖 𝐴 𝑎 𝑘)

)
→

∀𝑛 ∶ 𝙻𝚒𝚜𝚝𝑖 𝐴.𝜑 𝑛

along with the computation rules

• 𝚕𝚒𝚜𝚝𝚎𝚕𝚒𝚖𝑖,𝓁 𝐴 𝜑 𝑒 𝑐 (𝚎𝚖𝚙𝚝𝚢𝑖 𝐴) ∼ 𝑒 and

• 𝚕𝚒𝚜𝚝𝚎𝚕𝚒𝚖𝑖,𝓁 𝐴 𝜑 𝑒 𝑐 (𝚌𝚘𝚗𝚜𝑖 𝐴 ℎ 𝑡) ∼ 𝑐 ℎ (𝚕𝚒𝚜𝚝𝚎𝚕𝚒𝚖𝑖,𝓁 𝐴 𝜑 𝑒 𝑐 𝑡).

We define the list membership predicate 𝚎𝚕𝚎𝚖𝑖 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭0.𝐴→ 𝙻𝚒𝚜𝚝𝑖 𝐴→ 𝐒𝐞𝐭0 as an
abbreviation for the term

𝜆𝐴 ∶ 𝐒𝐞𝐭𝑖.𝜆𝑒 ∶ 𝐴.𝚕𝚒𝚜𝚝𝚎𝚕𝚒𝚖𝑖,𝓁 𝐴 (𝜆𝑥.𝐒𝐞𝐭0) ⊥ (𝜆ℎ.𝜆𝑡.𝜆𝑃 .¬(𝑒 = ℎ)→ 𝑃 )

When one can deduce the universe level 𝑖 and the type 𝐴 from the surrounding text, we
often leave these implicit and denote 𝚎𝚕𝚎𝚖𝑖 𝐴 𝑥 𝑛 as 𝑥 ∈ 𝑛. The presentation of the
rules continues in Definition 4.2.35.

4.2.33. Exercise. Prove that the list membership predicate 𝚎𝚕𝚎𝚖𝑖 defined in Defini-
tion 4.2.32 satisfies the definitional equalities

𝚎𝚕𝚎𝚖𝑖 𝐴 𝑒 (𝚎𝚖𝚙𝚝𝚢𝑖 𝐴) ∼ ⊥

𝚎𝚕𝚎𝚖𝑖 𝐴 𝑒 (𝚌𝚘𝚗𝚜𝑖 𝐴 ℎ 𝑡) ∼ ¬(𝑒 = ℎ)→ 𝚎𝚕𝚎𝚖𝑖 𝐴 𝑒 𝑡.

Convince yourself of the correctness of the definition (hint: the equalities above state
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that no 𝑒 belong to the empty list, and if 𝑒 belongs to a list starting with the element 𝑎,
then either 𝑎 = 𝑒 or 𝑒 belongs to the tail of the same list).

Rules: IST Axioms

4.2.34. We now give the Idealization, Standardization and Transfer axioms. Thanks to
the extended hierarchy of universes, an external predicate on the type 𝐴 corresponds
simply to a function of signature 𝐴 → 𝐒𝐞𝐭𝜔, while functions of signature 𝐴 → 𝐒𝐞𝐭0
always give internal predicates. This allows us to admit both Idealization and Stan-
dardization as proper axioms without any complication. Unfortunately, the same trick
would not work for Transfer axioms, since they require not only the internality of their
predicates, but also that said predicates do not contain any non-standard parameters
(otherwise we could transfer the true sentence ∀𝑠𝑡𝑛 ∶ ℕ.𝑛 < 𝜔 and conclude 𝜔 < 𝜔).
Consequently, we need to use the transfer judgments introduced in Definition 4.2.29 to
define the valid instances of Transfer axioms.

4.2.35. Definition. Let the variables 𝓁,𝑚,𝑘, 𝑖, 𝑗 range over universe levels of the inter-
nal hierarchy (strictly below 𝜔). We admit the following Idealization/Standardization
rules into our type theory (using the notation of Section 4.2.30):

⋆𝙸𝚍𝚎𝚊𝚕𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝙵𝓁,𝑚,𝑘 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝓁.∀𝐵 ∶ 𝐒𝐞𝐭𝑚.∀𝜑 ∶ 𝐴→ 𝐵→ 𝐒𝐞𝐭𝑘.

(∀𝑠𝑡𝑡 ∶ 𝐿𝑖𝑠𝑡 𝐴.∃𝑏 ∶ 𝐵.∀𝑎 ∶ 𝐴.𝑎 ∈ 𝑡→ 𝜑 𝑎 𝑏)→

∃𝑏 ∶ 𝐵.∀𝑠𝑡𝑎 ∶ 𝐴.𝜑 𝑎 𝑏

⋆𝙸𝚍𝚎𝚊𝚕𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝙱𝓁,𝑚,𝑘 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝓁.∀𝐵 ∶ 𝐒𝐞𝐭𝑚.∀𝜑 ∶ 𝐴→ 𝐵→ 𝐒𝐞𝐭𝑘.

(∃𝑏 ∶ 𝐵.∀𝑠𝑡𝑎 ∶ 𝐴.𝜑 𝑎 𝑏)→

∀𝑠𝑡𝑡 ∶ 𝐿𝑖𝑠𝑡 𝐴.∃𝑏 ∶ 𝐵.∀𝑎 ∶ 𝐴.𝑎 ∈ 𝑡→ 𝜑 𝑎 𝑏

⋆𝚂𝚝𝚊𝚗𝚍𝚊𝚛𝚍𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝓁 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝓁.∀𝜑 ∶ 𝐴→ 𝐒𝐞𝐭𝜔.∃𝑠𝑡𝜓 ∶ 𝐴→ 𝐒𝐞𝐭𝓁.

∀𝑠𝑡𝑎 ∶ 𝐴.(𝜓 𝑎→ 𝜑 𝑎)∧ (𝜑 𝑎→ 𝜓 𝑎)

We take the following Transfer axioms.

Γ ⊢ 𝐴⇔𝑗 𝐴′ Δ ⊢
⋆ AX-TRAL

Δ ⊢ 𝚃𝚛𝚊𝙻Γ,𝐴,𝐴′ ∶ ∀𝑠𝑡[Γ].(𝐴→ 𝐴′)

Γ ⊢ 𝐴⇔𝑗 𝐴′ Δ ⊢
⋆ AX-TRAR

Δ ⊢ 𝚃𝚛𝚊𝚁Γ,𝐴,𝐴′ ∶ ∀𝑠𝑡[Γ].(𝐴′ → 𝐴)
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where the variable 𝑥 is fresh with respect to the context Γ, and ∀𝑠𝑡[Γ].𝑡 is defined via
the following structurally recursive clauses:

• ∀𝑠𝑡[∅].𝑡 denotes 𝑡;

• ∀𝑠𝑡[Γ,𝑥 ∶ 𝐴].𝑡 denotes ∀𝑠𝑡[Γ].(∀𝑠𝑡𝑥 ∶ 𝐴.𝑡).

This concludes the presentation of the rules of our extended type theory.

4.3 Syntactic properties

4.3.1. Calling a formal system a “type theory” conjures up mental images of certain
desirable syntactic properties that such theories tend to satisfy. These include type-
theory-specific features such as the substitution property and the existence of canonical
forms, as well as more general desiderata such as monotonicity and consistency. Here
we discuss which of these properties our newly defined type theory enjoys.

4.3.2. We call a term of type ℕ a canonical natural number if we can write it purely in
terms of 𝚣𝚎𝚛𝚘 and 𝚜𝚞𝚌. Recall that a theory has canonical forms if we can computa-
tionally turn every derivation tree with conclusion ⊢ 𝑡 ∶ ℕ into a derivation tree with
conclusion ⊢ 𝑡 ∼ℕ 𝑛 for some canonical natural number 𝑛. Since we intend to use our
extended type theory for classical (as opposed to constructive) reasoning, the existence
of canonical forms loses its relevance: adding axioms without computation rules (such
as the principle of excluded middle or Voevodsky’s univalence axiom) destroy canon-
icity. Indeed, one does not have canonical forms in our extended type theory, since
the IST axioms lack associated computation rules. More generally, a consistent theory
cannot have canonical forms in the presence of 𝙸𝚍𝚎𝚊𝚕𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝙵, since one can use the
axiom to show the existence of a term 𝑡 with ¬𝚜𝚝 ℕ 𝑡, while our type theory proves
𝚜𝚝 ℕ 𝑛 for any canonical natural number 𝑛 (exercise!).

4.3.3. Definition. We say that a type theory enjoys the monotonicity property if, given
a derivation tree with conclusion Γ⊢ 𝑎 ∶𝐴 and a derivation tree with conclusion Γ,Δ⊢,
we can find a derivation tree of Γ,Δ ⊢ 𝑎 ∶ 𝐴.

4.3.4. Definition. We say that a type theory enjoys the substitution property if, given
a derivation tree with conclusion Γ⊢ 𝑎 ∶𝐴 and a derivation tree with conclusion Γ,𝑥 ∶
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𝐴,Δ ⊢ 𝑡 ∶ 𝑇 (Γ,𝑥 ∶ 𝐴,Δ ⊢), we can find a derivation tree with conclusion Γ,Δ[𝑥←

𝑎] ⊢ 𝑡[𝑥← 𝑎] ∶ 𝑇 [𝑥← 𝑎] (resp. Γ,Δ[𝑥← 𝑎] ⊢).

4.3.5. Theorem. The safe fragment (Definition 4.2.6) of our calculus enjoys the substi-
tution property, the monotonicity property and the following presupposition properties:

1. If Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝑖 [has a derivation tree], then [so does] Γ ⊢𝑠.

2. If Γ ⊢𝑠 𝑡 ∶ 𝐴, then Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝑖 for some level 𝑖 < 𝜔.

3. If Γ ⊢𝑠 𝑡 ∼𝐴 𝑠, then Γ ⊢𝑠 𝑡 ∶ 𝐴 and Γ ⊢𝑠 𝑠 ∶ 𝐴.

Proof. These properties follow by induction on the length of the derivation tree, com-
bined with a case analysis on the last used rule (see [14]-Lemma 2.1.10 for an example
of a proof in this vein).
Qed.

4.3.6. Lemma. If Γ⊢ 𝑡⇔𝑖 𝑣 has a derivation tree in the full calculus, then Γ⊢𝑠 𝑡 ∶ 𝐒𝐞𝐭𝑖
has a derivation tree in the safe fragment.

Proof. By induction on the derivation tree. If we used the rule ⋆ TRF-REFL as the last
rule of our derivation tree, then the tree has the form

⋮1
Γ ⊢𝑠 𝑡 ∶ 𝐒𝐞𝐭𝓁 ⋆ TRF-REFL
Γ ⊢ 𝑡⇔𝓁 𝑡

for some 𝑖 = 𝓁 < 𝜔. Consequently, Γ ⊢𝑠 𝑡 ∶ 𝐒𝐞𝐭𝓁 has a derivation tree ⋮1 in the safe
fragment.
Otherwise, we must have used one of the following rules: ⋆ TRF-DFUN, ⋆ TRF-FUN,
⋆ TRF-DSUM or ⋆ TRF-SUM. Without loss of generality we consider only the first two
of these. In the first case, our tree has the shape

⋮1
Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁

⋮2
Γ,𝑥 ∶ 𝐴 ⊢ 𝐵⇔𝑚 𝐵′

⋆ TRF-DFUN
Γ ⊢ (∀𝑥 ∶ 𝐴.𝐵)⇔max{𝓁,𝑚} (∀𝑠𝑡𝑥 ∶ 𝐴.𝐵′)

where 𝑡 has the form ∀𝑥 ∶𝐴.𝐵, 𝑣 has the form ∀𝑠𝑡𝑥 ∶𝐴.𝐵′ and 𝑖=max{𝓁,𝑚}. Applying
the induction hypothesis to the subtree ⋮2, we get a derivation tree ⋮2′ of conclusion
Γ,𝑥 ∶ 𝐴 ⊢𝑠 𝐵 ∶ 𝐒𝐞𝐭𝑚. Thus, we can construct a proof tree with the desired conclusion
Γ ⊢𝑠 ∀𝑥 ∶ 𝐴.𝐵 ∶ 𝐒𝐞𝐭max{𝓁,𝑚} in the safe fragment:
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⋮1
Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁

⋮2′
Γ,𝑥 ∶ 𝐴 ⊢𝑠 𝐵 ∶ 𝐒𝐞𝐭𝑚 DFUN-FORM

Γ ⊢ ∀𝑥 ∶ 𝐴.𝐵 ∶ 𝐒𝐞𝐭max{𝓁,𝑚}

In the second case, our tree has shape
⋮1

Γ ⊢ 𝐴⇔𝓁 𝐴′
⋮2

Γ ⊢ 𝐵⇔𝑚 𝐵′
⋆ TRF-FUN

Γ ⊢ (𝐴→ 𝐵)⇔max{𝓁,𝑚} (𝐴′ → 𝐵′)

where 𝑡 has the form 𝐴→ 𝐵, 𝑣 has the form 𝐴′ → 𝐵′ and 𝑖 = max{𝓁,𝑚}. Applying
the induction hypothesis to the subtrees ⋮1 and ⋮2, we get derivation trees ⋮1′ and ⋮2′

with respective conclusions Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁 and Γ ⊢𝑠 𝐵 ∶ 𝐒𝐞𝐭𝑚. We can pick a variable
𝑥 fresh with respect to both contexts Γ and Δ, and using the rule CTX-EXT on the
subtree ⋮1′ we can obtain Γ,𝑥 ∶ 𝐴 ⊢𝑠. Now, by the monotonicity property of the safe
fragment (Theorem 4.3.5), we have a derivation tree ⋮2′′ with conclusion Γ,𝑥 ∶ 𝐴 ⊢𝑠

𝐵 ∶ 𝐒𝐞𝐭𝑚, so we can conclude
⋮1′

Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁
⋮2′′

Γ,𝑥 ∶ 𝐴 ⊢𝑠 𝐵 ∶ 𝐒𝐞𝐭𝑚 DFUN-FORM
Γ ⊢ 𝐴→ 𝐵 ∶ 𝐒𝐞𝐭max{𝓁,𝑚}

which proves our claim.
Qed.

4.3.7. Corollary. The operation ∀𝑠𝑡[Γ] introduced in Definition 4.2.35 is well-typed.

Proof. We need to verify that if Γ ⊢ 𝑡⇔𝑖 𝑠 then for every 𝑥 ∶𝐴 in Γ we have 𝐴 ∶ 𝐒𝐞𝐭𝓁
for some 𝓁 < 𝜔. By Lemma 4.3.6 we have Γ ⊢𝑠 𝑡 ∶ 𝐒𝐞𝐭𝑖, so by the presupposition
property for the safe fragment (Theorem 4.3.5) we have Γ⊢𝑠. But all derivations in the
safe fragment clearly have the desired property.
Qed.

4.3.8. Theorem. Our extended type theory enjoys the substitution property: given a
derivation tree with conclusion Γ ⊢ 𝑎 ∶ 𝐴 and a derivation tree with conclusion Γ,𝑥 ∶
𝐴,Δ ⊢ 𝑡 ∶ 𝑇 (Γ,𝑥 ∶ 𝐴,Δ ⊢), we can find a derivation tree with conclusion Γ,Δ[𝑥←

𝑎] ⊢ 𝑡[𝑥← 𝑎] ∶ 𝑇 [𝑥← 𝑎] (resp. Γ,Δ[𝑥← 𝑎] ⊢).

Proof. The proof by induction proceeds analogously to that of Theorem 4.3.5. Ex-
tending a system with proper axioms in the style of Section 4.2.30 cannot break the
substitution property, so it suffices to consider only the case where the derivation of
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Γ ⊢ 𝑎 ∶ 𝐴 starts with one of the rules ⋆ AX-TRAL or ⋆ AX-TRAR, without loss of
generality the former. So the tree has the form

⋮1
Π ⊢𝑀 ⇔𝑗 𝑀 ′

⋮2
Γ ⊢

⋆ AX-TRAL
Γ ⊢ 𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′ ∶ ∀𝑠𝑡[Π].(𝑀 →𝑀 ′)

If the other derivation tree has the conclusion Γ,𝑥 ∶ 𝐴,Δ ⊢, we distinguish two cases.

• Δ has the form ∅. Then we have to produce a derivation tree with conclusion
Γ ⊢; but we already have that, in the form of ⋮2.

• Δ has the form Δ′, 𝑞 ∶ 𝑄. Then we have to produce a derivation tree with con-
clusion Γ,Δ′[𝑥← 𝑎], 𝑞 ∶ 𝑄[𝑥← 𝑎] ⊢, and we must have had CTX-EXT as the
last rule in the derivation of Γ,𝑥 ∶ 𝐴,Δ′, 𝑞 ∶ 𝑄 ⊢ 𝑡 ∶ 𝑇 . This means we have a
derivation tree for Γ,𝑥 ∶ 𝐴,Δ′ ⊢ 𝑄 ∶ 𝐒𝐞𝐭𝑖 for some 𝑖. Applying the induction
hypothesis to this derivation yields Γ,Δ′[𝑥← 𝑎] ⊢ 𝑄[𝑥← 𝑎] ∶ 𝐒𝐞𝐭𝑖, so we can
finish the proof by using CTX-EXT again.

Now, if the other derivation tree has the conclusion Γ,𝑥 ∶ 𝐴,Δ ⊢ 𝑡 ∶ 𝑇 , and the last
rule of the tree contains a formation, introduction or elimination rule, then the proof
proceeds uniformly by applying the induction hypothesis to each premise, then applying
the rule again to all the results. Otherwise, the VAR rule occurs as the last rule of the
tree. If the variable 𝑡 ∶ 𝑇 occurs in either Γ or Δ, we can proceed by induction using
the previous strategy. Otherwise, the derivation tree has the following form:

⋮3
Γ,𝑥 ∶ ∀𝑠𝑡[Π].(𝑀 →𝑀 ′),Δ ⊢

VAR
Γ,𝑥 ∶ ∀𝑠𝑡[Π].(𝑀 →𝑀 ′),Δ ⊢ 𝑥 ∶ ∀𝑠𝑡[Π].(𝑀 →𝑀 ′)

and we have to produce a derivation tree with conclusion Γ,Δ[𝑥 ← 𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′] ⊢
𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′ ∶ ∀𝑠𝑡[Π].(𝑀→𝑀 ′). Using the induction hypothesis on ⋮3, we get a deriva-
tion tree ⋮3′ with conclusion Γ,Δ[𝑥← 𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′] ⊢. The derivation tree

⋮1
Π ⊢𝑀 ⇔𝑗 𝑀 ′

⋮3′
Γ,Δ[𝑥← 𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′] ⊢

⋆ AX-TRAL
Γ,Δ[𝑥← 𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′] ⊢ 𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′ ∶ ∀𝑠𝑡[Π].(𝑀 →𝑀 ′)

suffices and concludes our proof.
Qed.

4.3.9. Exercise. Prove the monotonicity property.
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4.3.10. Proposition. No consistent extension of our type theory enjoys canonicity.

Proof. First we show that for every canonical natural number 𝑛 our type theory proves
𝚜𝚝0 ℕ 𝑛. For canonical 𝑛 we can easily find a derivation tree ⊢𝑠 𝑛 ∶ ℕ. We give the
derivation tree for a closed term of type ∃𝑥 ∶ ℕ.𝚜𝚝0 ℕ 𝑥×𝑥 =ℕ 𝑛 on Figure 4.1. Using
this term, a transport argument immediately gives a derivation tree for ⊢ 𝚜𝚝0 ℕ 𝑛.
Find a closed term 𝑓 ∶ ∀𝑆 ∶ 𝙻𝚒𝚜𝚝ℕ.∃𝑥 ∶ℕ.∀𝑦 ∶ℕ.𝑦∈𝑆→ ¬(𝑦= 𝑥) in our type theory
(clearly we can already do this in Martin-Löf Type Theory without the extensions).
Then the closed term

𝙸𝚍𝚎𝚊𝚕𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝙵 ℕ ℕ (𝜆𝑥.𝜆𝑦.¬(𝑥 = 𝑦)) 𝑓

has type ∃𝑥 ∶ ℕ.∀𝑠𝑡𝑦 ∶ ℕ.¬(𝑥 = 𝑦). Denoting the term by 𝑓 ′, we have derivation trees
for

⊢ 𝜋1𝑓
′ ∶ ℕ and

⊢ 𝜋2𝑓
′ ∶ ∀𝑠𝑡𝑦 ∶ ℕ.¬(𝜋1𝑓 ′ = 𝑦).

Using these, we can construct the derivation tree of Figure 4.2 which witnesses the
non-standardness of 𝜋2𝑓 ′.
Now, if we had an extension of our type theory that has 𝜋2𝑓 ′ ∼ 𝑛 for some canonical
natural number 𝑛 ∶ ℕ, then we would have proofs of both 𝚜𝚝0 ℕ𝑛 and 𝚜𝚝0 ℕ → ⊥,
showing the inconsistency of the extension. Therefore, consistent extensions of our
type theory do not enjoy canonicity.
Qed.

4.3.11. Proposition. One can conservatively extend our type theory with the rule

⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝑖 ⊢𝑠 𝑡 ∶ 𝐴
ST-CON

Γ ⊢ 𝚜𝚝𝚌𝚘𝚗𝑖 𝐴 𝑡 ∶ 𝚜𝚝𝑖 𝐴 𝑡

along with a rule ST-FUN realizing the analogue of Lemma 1.1.33.

Proof. For the conservativity of ST-CON, just notice that the proof of Figure 4.1 does
not use any specific fact about ℕ or about the canonicity of the numeral 𝑛.
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We prove the conservativity of ST-FUN by explicitly constructing a term 𝚜𝚝𝚏𝚞𝚗 of the
required type. Start by picking (exercise!) a derivation tree with conclusion

𝐴 ∶ 𝐒𝐞𝐭𝑖,𝐵 ∶ 𝐴→ 𝐒𝐞𝐭𝑗 ,𝑓 ∶ ∀𝑥 ∶ 𝐴.𝐵,𝑎 ∶ 𝐴 ⊢𝑠

(𝑓 𝑎,𝚛𝚎𝚏𝚕 (𝐵 𝑎) (𝑓 𝑎)) ∶ ∃𝑦 ∶ 𝐵 𝑎.𝑦 =𝐵 𝑎 𝑓 𝑥.

Denote the context by Γ, the term (𝑓 𝑎,𝚛𝚎𝚏𝚕 (𝐵 𝑎) (𝑓 𝑎))) by 𝑝, its type by 𝑃 . We can
construct the derivation tree

⋮
Γ,𝑦 ∶ 𝐵 𝑎 ⊢ 𝐵 𝑎 ∶ 𝐒𝐞𝐭𝑗

⋮
Γ,𝑦 ∶ 𝐵 𝑎 ⊢ 𝑦 ∶ 𝐵 𝑎

⋮
Γ,𝑦 ∶ 𝐵 𝑎 ⊢ 𝑓 𝑥 ∶ 𝐵 𝑎

EQT-FORM
Γ,𝑦 ∶ 𝐵 𝑎 ⊢ 𝑦 =𝐵 𝑎 𝑓 𝑥 ⋆ TRF-REFL

Γ,𝑦 ∶ 𝐵 𝑎 ⊢ (𝑦 =𝐵 𝑎 𝑓 𝑥)⇔max{𝑖,𝑗} (𝑦 =𝐵 𝑎 𝑓 𝑥)
⋆ TRF-DSUM

Γ ⊢ (∃𝑦 ∶ 𝐵 𝑎.𝑦 =𝐵 𝑎 𝑓 𝑥)⇔max{𝑖,𝑗} (∃𝑠𝑡𝑦 ∶ 𝐵 𝑎.𝑦 =𝐵 𝑎 𝑓 𝑥)

and using the rule ⋆ AX-TRAL we get a closed term

𝑡 ∶ ∀𝑠𝑡[Γ].(∃𝑦 ∶ 𝐵 𝑎.𝑦 =𝐵 𝑎 𝑓 𝑥→ ∃𝑠𝑡𝑦 ∶ 𝐵 𝑎.𝑦 =𝐵 𝑎 𝑓 𝑥).

Using this term, we can easily construct a term of type ∀𝑠𝑡[Γ].∃𝑠𝑡𝑦 ∶ 𝐵 𝑎.𝑦 =𝐵 𝑎 𝑓 𝑥,
and from there on 𝚜𝚝𝚏𝚞𝚗 of type ∀𝑠𝑡[Γ].𝚜𝚝𝑗 (𝐵 𝑎) (𝑓 𝑥).
Qed.

Consistency

4.3.12. The implementation of Agda assumes that the underlying type theory obeys the
substitution property (Theorem 4.3.8) and monotonicity; if these did not hold for our
extended type theory, we could not check the proofs using Agda. Proposition 4.3.11
also plays a significant role in the mechanization, by significantly shortening common
standardness proofs. At this point, we have all the syntactic properties required to
proceed with the mechanization. Before we move on, we take a brief look at consistency
and conservative extension results for our proposed calculus.

4.3.13. Theorem. Our type theory does not constitute a conservative extension of or-
dinary Martin-Löf Type Theory.
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Proof. We employ a strategy from Sanders [42] to prove Markov’s principle for an ar-
bitrary predicate. By a celebrated result of Coquand and Mannaa [9], ordinary Martin-
Löf Type Theory does not prove Markov’s principle, so this suffices to prove the non-
conservativity of our extension. The argument takes place (informally) inside our ex-
tended type theory. Let 𝐴⊎𝐵 denote a constructive disjunction operation, say

∃𝑛 ∶ ℕ.(𝑛 =ℕ 0→ 𝐴)× ((𝑛 =ℕ 0→ ⊥)→ 𝐵).

Take any standard predicate 𝑃 ∶ ℕ→ 𝐒𝐞𝐭0, and assume that ∀𝑛 ∶ ℕ.𝑃 𝑛⊎¬(𝑃 𝑛) and
¬∀𝑛 ∶ ℕ.𝑃𝑛 hold. Take a nonstandard 𝜔 ∶ ℕ. Assuming ∀𝑛 ∶ ℕ.𝑛 < 𝜔→ 𝑃 𝑛 would
immediately imply ∀𝑠𝑡𝑛 ∶ ℕ.𝑃 𝑛, which would contradict ¬∀𝑛 ∶ ℕ.𝑃𝑛 after a use of
Transfer. Hence, we have ¬∀𝑛 ∶ ℕ.𝑛 < 𝜔→ 𝑃 𝑛. But type theory does prove

∀𝑘 ∶ ℕ.¬(∀𝑛 ∶ ℕ.𝑛 < 𝑘→ 𝑃 𝑛)→ ∃𝑛 ∶ ℕ.¬(𝑃 𝑛)

and substituting 𝑘 = 𝜔 immediately gives us

¬(∀𝑛 ∶ ℕ.𝑛 < 𝜔→ 𝑃 𝑛)→ ∃𝑛 ∶ ℕ.¬(𝑃 𝑛).

We have established ¬∀𝑛 ∶ ℕ.𝑛 < 𝜔→ 𝑃 𝑛 earlier, so we can conclude ∃𝑛 ∶ ℕ.¬(𝑃 𝑛).
Since we started with an arbitrary standard predicate 𝑃 ∶ ℕ→ 𝐒𝐞𝐭0, we have shown

∀𝑠𝑡𝑃 ∶ ℕ→ 𝐒𝐞𝐭0.(∀𝑛 ∶ ℕ.𝑃 𝑛⊎¬(𝑃 𝑛))→ ¬(∀𝑛 ∶ ℕ.𝑃 𝑛)→ ∃𝑛 ∶ ℕ.¬(𝑃 𝑛).

Using a quick Transfer argument we get the same conclusion for an arbitrary predicate,
which proves Markov’s principle.
Qed.

4.3.14. Given its similarity to Internal Set Theory and our extended type theory, it
would be very surprising if our extended type theory would turn out to be inconsistent.
That said, a full proof of consistency for our extended type theory seems out of our
reach, at least in the near future. While we suspect that (in principle) a proof transla-
tion argument done in the style of Nelson [33] (see Proposition 1.1.43) and targeting a
carefully chosen classical extension of Martin-Löf Type Theory, will suffice to establish
the consistency of our extensions, such an argument presents many technical difficul-
ties. First of all, even classical extensions of type theory lack prenex forms (if 𝑥 occurs
in 𝐶 then one cannot rewrite ∀𝑥 ∶ (∀𝑦 ∶ 𝐴.𝐵).𝐶 as ∃𝑦 ∶ 𝐴.∀𝑥 ∶ 𝐵.𝐶 since the types
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no longer match). This complicates the formulation of any possible analogue of the
Galactic Halo theorem. Even if one finds a way around this particular barrier, one has
to face the fact that type theory has many more rules than the first-order logic underly-
ing Zermelo-Fraenkel Set Theory, which makes a Nelson-style proof translation far less
convenient. However, such a translation would have a major advantage over the one for
Zermelo-Fraenkel Set Theory: while in ZF, the Galactic Halo theorem requires a full
Choice principle to realize the quantifier switches, Martin-Löf Type Theory proves all
these instances of Choice, so the quantifier switch turns out to be innocent, and all the
non-constructive content of the translation is concentrated in the Ultrafilter Lemma.

4.3.15. Proposition. If we remove the axioms 𝙸𝚍𝚎𝚊𝚕𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝙵 and 𝙸𝚍𝚎𝚊𝚕𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝙱
from our extended type theory, we obtain a consistent extension of ordinary Martin-Löf
Type Theory.

Proof. We sketch a proof that our theory with these two axioms removed conserva-
tively extends ordinary Martin-Löf Type Theory extended with the Law of Excluded
Middle 𝐿𝐸𝑀𝑖 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝑖.¬𝐴⊎𝐴. Consider the proof translation that transcribes
proofs in the extended theory into proofs of ordinary Martin-Löf Type Theory by send-
ing 𝐒𝐞𝐭𝜔+𝓁 to 𝐒𝐞𝐭𝓁 and 𝚜𝚝𝐴 𝑡 ∶ 𝐒𝐞𝐭𝜔 to 𝚣𝚎𝚛𝚘=ℕ 𝚣𝚎𝚛𝚘 ∶ 𝐒𝐞𝐭0. The interpretation of the
Transfer rules and axioms becomes trivial. All we have to do is give an interpretation
to the transcribed Standardization axioms

⋆𝚂𝚝𝚊𝚗𝚍𝚊𝚛𝚍𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝓁 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝓁.∀𝜑 ∶ 𝐴→ 𝐒𝐞𝐭0.∃𝜓 ∶ 𝐴→ 𝐒𝐞𝐭𝓁.

∀𝑎 ∶ 𝐴.(𝜓 𝑎→ 𝜑 𝑎)× (𝜑 𝑎→ 𝜓 𝑎)

We can realize this using excluded middle for 𝓁 > 0 by considering the following term:

𝜆𝐴.𝜆𝜑.𝜆𝑎.

𝚒𝚗𝚍𝚞𝚌𝚝𝚒𝚘𝚗𝓁(𝜆𝑝.𝐒𝐞𝐭𝓁−1)(𝐒𝐞𝐭𝓁−1 → ⊥)(𝜆𝑘.𝜆𝑝.𝐒𝐞𝐭𝓁−1)(𝐿𝐸𝑀0(𝜑 𝑎)) ∶

∀𝐴 ∶ 𝐒𝐞𝐭𝓁.(𝐴→ 𝐒𝐞𝐭0)→ 𝐴→ 𝐒𝐞𝐭0

Denote this term 𝑓 . Intuitively, 𝑓 performs a case analysis on the value of𝐿𝐸𝑀𝑖 (𝜑 𝑎).
If it finds ¬𝐴, then it returns the uninhabited type 𝐒𝐞𝐭𝓁−1 → ⊥, otherwise it returns the
inhabited type 𝐒𝐞𝐭𝓁−1. Taking𝜓 as 𝑓 𝐴𝜑 allows us to interpret the 𝚂𝚝𝚊𝚗𝚍𝚊𝚛𝚍𝚒𝚣𝚊𝚝𝚒𝚘𝚗
axioms: the implications hold since 𝜓 𝑎 has an inhabitant precisely if 𝜑 𝑎 does.
Qed.
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4.4 Agda proof

4.4.1. We discuss remaining matters related to the formalized proof of Theorem 2.3.9
in this final section. We do not give a syntax reference for the language of Agda: the
interested reader can refer to the original article introducting Agda [36], and to the wide
range of tutorials available on the official Agda website6.

Extended type theory in Agda

4.4.2. Agda is a general-purpose proof assistant implementing Martin-Löf Type The-
ory. It does not know about, and does not incorporate, the extensions we proposed
in the previous sections. Fortunately, newer versions of Agda (2.6.0 and above) have
features and facilities that we can use to simulate working in our extended type theory,
while maintaining fairly wide correctness guarantees.

4.4.3. First we have to deal with the question of the extended universe hierarchy in-
troduced in Definition 4.2.17. Normally, Agda supports only finite levels in its uni-
verse hierarchy, and does not allow declaring new universes (sorts) without modify-
ing the source code of the type checker. However, since version 2.6.0, Agda provides
an option -omega-in-omega that permits us to treat 𝚂𝚎𝚝𝜔 as a new universe level
obeying 𝚂𝚎𝚝𝜔 ∶ 𝚂𝚎𝚝𝜔. This allows us to simulate an external hierarchy by defining
𝐒𝐞𝐭𝜔+𝓁 = 𝐒𝐞𝐭𝜔 = 𝚂𝚎𝚝𝜔 for each level 𝓁 < 𝜔. Major caveat: the onus of responsibil-
ity of ensuring that one can assign consistent universe levels to all occurrences on the
symbol 𝚂𝚎𝚝𝜔 falls on the author of the proof script! We manually annotated the proof
script with a suitable universe level assignment to certify that our proof does not violate
this constraint.

4.4.4. With access to the external hierarchy, we can declare external predicates as in-
habitants of 𝐴→ 𝐒𝐞𝐭𝜔. Some constructions (such as the Idealization axiom and the
induction principle over the natural numbers) do not accept external predicates as argu-
ments. Fortunately, Agda knows that 𝐒𝐞𝐭𝜔 ≠ 𝐒𝐞𝐭𝓁 for any internal (i.e. actual) level 𝓁,
so the Agda proof checker will automatically ensure that we do not supply an external
predicate to a construction that works only with internal predicates. However, Agda’s
pattern matching mechanism (a shorthand notation for nested uses of induction princi-
ples) does not perform this check, and would allow us to do invalid proofs by induction,

6See https://agda.readthedocs.io/en/v2.6.0.1/getting-started/tutorial-list.html

https://agda.readthedocs.io/en/v2.6.0.1/getting-started/tutorial-list.html
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such as proving the standardness of all natural numbers. Therefore, we have to disable
definitions by pattern matching using the -no-pattern-matching option provided by
Agda.

4.4.5. As discussed in Definition 4.2.35, we can introduce the Idealization and Stan-
dardization principles as proper axioms using Agda’s postulate keyword. The same
method works for encoding all TRF- rules, apart from TRF-REFL. To implement the
latter, we have to introduce a distinction between safe and general Agda modules, in a
similar way to how we separated ⊢𝑠 and ⊢ in Section 4.2.30. We write safe modules
in the pure subset of Agda, without access to any of the previously discussed features
coming from our proposed extensions. As such, a top-level definition of 𝑡 ∶ 𝑇 in a safe
module corresponds to a derivation ⊢𝑠 𝑡 ∶ 𝑇 in our extended type theory. We add a pri-
vate constructor defined-in-safe-module used only to declare top level definitions
in safe modules standard.

4.4.6. Given the implementation details above, one might wonder: what do we need to
believe this proof, given that Agda checked it?

1. Martin-Löf Type Theory. One has to believe the consistency and mathematical
relevance of Martin-Löf Type Theory. As mentioned in Section 4.1.4, Martin-
Löf Type Theory has been in use since the 1970s to general satisfaction and has
served as a basis for many formalized proofs. The currently prevalent foundation
of mathematics, Zermelo-Fraenkel Set Theory with the Axiom of Choice (along
with some mild large cardinal assumptions) proves the consistency of all common
variants of Martin-Löf Type Theory.

2. The extensions to type theory. We formalized the proof of our main result in a
way that never invokes the Idealization axiom, so the proof of Proposition 4.3.15
applies and guarantees consistency.

3. The Agda implementation. One has to trust that the type theory implemented
by the Agda proof checker accurately reflects Martin-Löf Type Theory, and our
additional postulates accurately reflect the extensions. Demotically: “one has
to trust that the Agda proof checker can check at least this particular proof (if
nothing else).”

4. Accurate transcription. A formal argument establishes exactly what the author
states, not necessarily what the author means, much less what the author desires.
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One may look at the formalized, computer-verified proof given in the appendix
and ask: “yes, you have produced a verifiable formal proof of some statement,
but how do we know that the proved statement corresponds to the informal state-
ment of Theorem 2.3.9?” We chose our proposed extensions to type theory with
this requirement in mind, so that the type-theoretic development can follow the
informal argument as closely as possible. Fortunately, the notions involved in
the statement of our main result (groups, group actions, metric spaces, strong
approximation) have short, axiomatic definitions, so one can easily verify the
correspondence between the concepts and their formalized counterparts.

5. Newman’s theorem. As discussed in the relevant chapter, Theorem 2.3.6 (New-
man’s theorem) provides the group-theoretic substrate of our result. In principle,
one could write down and computer-verify a proof of Newman’s theorem in Agda.
However, a formal statement and verification of Newman’s theorem lies far out-
side the scope of our work, and would probably make a fine research project of its
own. As such, we admit Theorem 2.3.6 without proof, and rely on it as a “black
box”. Newman’s theorem is the only such presupposition used in our argument.

4.4.7. The formal proof consists of approximately 3500 lines of Agda code (not count-
ing the in-line comments), organized hierarchically into 23 modules. Table 4.1 cross-
references the sections of this document with their corresponding modules. The for-
malized proof of Theorem 2.3.9 follows the original argument very closely, except for
one minor modification. We wanted our proof to avoid appeals to Idealization, since
the fragment of extended type theory in Proposition 4.3.15 omits this axiom. However,
Theorem 2.3.9 depends on Proposition 1.2.14, and the textbook proof of the latter relies
on an Idealization argument. We give an alternative proof (presented in Section 4.4.8)
that bypasses this use of Idealization using a slightly more involved appeal to external
induction.

4.4.8 (Alternate proof of Proposition 1.2.14). Consider a standard natural number 𝑏.
All 𝑛 ∈ ℕ with 𝑛 < 𝑏 are standard.

Proof. Let 𝜑(𝑏) abbreviate the following property: ∀𝑛 ∈ ℕ.𝑛 ≤ 𝑏→ st(𝑛). We prove
∀𝑠𝑡𝑏.𝜑(𝑏) using external induction (Theorem 1.2.15).

• Base case: We need to prove ∀𝑛.𝑛 ≤ 0 → st(𝑛). But 𝑛 ≤ 0 implies 𝑛 = 0, and
st(0) holds by Proposition 1.2.9.
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• Inductive case: We have a standard 𝑘 such that all 𝑛 ≤ 𝑘 satisfy st(𝑛). We need
to prove that all 𝑛≤ 𝑘+1 satisfy st(𝑛). If 𝑛≤ 𝑘, then we can conclude st(𝑛) using
the induction hypothesis. Otherwise, 𝑛 = 𝑘+1, and st(𝑘+1) follows from the
standardness of 𝑘 using Corollary 1.2.11.

By the principle of external induction, we have that given any standard natural 𝑏, if
𝑛 ≤ 𝑏 then st(𝑛).
Qed.

Section Description Module
1.2.14 Standard naturals closed downward IST.Naturals
1.2.15 External induction IST.Naturals
1.3.35 Metric spaces are equivalence spaces IST.PredicatedTopologies
1.3.38 Ultrafilters have monadic elements IST.Ultrafilters
2.3.3 Function extension theorem IST.Results.ExtensionTheorem
2.3.9 Action extension theorem IST.Results.MainTheorem

Table 4.1: Cross-reference: theorems and corresponding Agda modules.

4.4.9. Type-checking the proof requires Agda version 2.6.0.1. Verifying the complete
proof takes less than 2 minutes on a modern computer, and needs approximately 2 gi-
gabytes of free RAM.
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Appendix A

Agda Proof of Theorem 2.3.9

The next 52 pages contain the 2019-08-27 revision of the Agda proofs described in
Chapter 4. The newest version of the proof is available in the Github repository at

https://github.com/zaklogician/agda-ist-algebra.git

The software is provided “as is”, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability and fitness for a particular
purpose. In no event shall the authors or copyright holders be liable for any claim,
damages or other liability, whether in an action of contract, tort or otherwise, arising
from, out of or in connection with the software or the use or other dealings in the
software. Licensing terms may differ between the online and printed versions.
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module IST.Safe.Base where 1 
 2 
-- Here we define standard constructions from type theory, including 3 
-- the usual dependent sum types and equality. This development 4 
-- takes place in ordinary MLTT/Agda, without the external hierarchy. 5 
 6 
open import Agda.Primitive 7 
 8 
 9 
-- TRIVIAL DATA TYPES -- 10 
 11 
-- The empty type and ex falso quodlibet. 12 
 13 
data ⊥ : Set where 14 
 15 
absurd : {ℓ : Level} → ⊥ → ∀ {A : Set ℓ} → A 16 
absurd () 17 
 18 
-- The singleton type. 19 
 20 
data ⊤ : Set where 21 
  tt : ⊤ 22 
 23 
 24 
-- EXISTENTIAL QUANTIFICATION -- 25 
 26 
-- Now we deal with existential quantifiers. Alas, unlike the ∀ 27 
-- case, Agda does not provide a builtin for this, so we need to 28 
-- declare two variants, ∃ (for the internal hierarchy) and ∃* 29 
-- (for the external hierarchy). Here we declare the internal 30 
-- variant ∃, and define ∧ in terms of it. 31 
 32 
infixr 4 _,_ 33 
record ∃ {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} (B : A → Set ℓ₂) : Set (ℓ₂ ⊔ ℓ₁) where 34 
  constructor _,_ 35 
  field 36 
    proj₁ : A 37 
    proj₂ : B proj₁ 38 
open ∃ public 39 
 40 
_∧_ : ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Set ℓ₂ → Set (ℓ₂ ⊔ ℓ₁) 41 
A ∧ B = ∃ λ (x : A) → B 42 
 43 
 44 
-- LISTS / FINITE SETS -- 45 
 46 
data List {ℓ : Level} (A : Set ℓ) : Set ℓ where 47 
  [] : List A 48 
  _∷_ : A → (xs : List A) → List A 49 
 50 
List-induction : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {B : List A → Set ℓ₂} → 51 
                 B [] → (∀ x → ∀ xs → B xs → B (x ∷ xs)) → ∀ y → B y 52 
List-induction base-case inductive-case [] = base-case 53 
List-induction base-case inductive-case (x ∷ xs) = 54 
  inductive-case x xs (List-induction base-case inductive-case xs) 55 
 56 
data _∈_ {ℓ} {A : Set ℓ} (x : A) : List A → Set ℓ where 57 
  ∈-head : ∀ {ys} → x ∈ (x ∷ ys) 58 
  ∈-tail : ∀ {y ys} → x ∈ ys → x ∈ (y ∷ ys) 59 
 60 
 61 
-- DISJUNCTION -- 62 
 63 
-- We could encode (constructive) disjunction using ∃ and a two-element 64 
-- type, but declaring an explicit data type keeps reasoning much 65 
-- more legible. 66 
 67 
data _∨_ {ℓ₁ ℓ₂ : Level} (A : Set ℓ₁) (B : Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where 68 
  inl : A → A ∨ B 69 
  inr : B → A ∨ B 70 
 71 
by-cases : {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set ℓ₁} {B : Set ℓ₂} → 72 
           (P : Set ℓ₃) → (A → P) → (B → P) → A ∨ B → P 73 
by-cases P A-implies-P B-implies-P (inl a) = A-implies-P a 74 
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by-cases P A-implies-P B-implies-P (inr b) = B-implies-P b 75 
 76 
postulate 77 
  by-LEM : {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₂} → {B : Set ℓ₂} → ((A → ⊥) → B) → A ∨ B 78 
   79 
 80 
-- EQUALITY -- 81 
 82 
-- We define equality only for the internal hierarchy, but only 83 
-- with the internal induction principle. Later on, 84 
-- we will admit a transport* principle for the external 85 
-- hierarchy. This counts as a "hidden axiom" of IST, because 86 
-- first-order logic is assumed to have equality. Really, we'd need 87 
-- to check that the Nelson translation of (x = y) → st(x) → st(y) is 88 
-- provable in ZFC. 89 
 90 
infix 4 _≡_ 91 
data _≡_ {ℓ : Level} {A : Set ℓ} (x : A) : A → Set where 92 
  refl : x ≡ x 93 
 94 
sym : {ℓ : Level} {A : Set ℓ} {x y : A} → x ≡ y → y ≡ x 95 
sym refl = refl 96 
 97 
tran : {ℓ : Level} {A : Set ℓ} {x y z : A} → x ≡ y → y ≡ z → x ≡ z 98 
tran refl refl = refl 99 
 100 
cong : {ℓ : Level} {A B : Set ℓ} {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y 101 
cong f refl = refl 102 
 103 
transport : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {x y : A} → x ≡ y → ∀ {φ : A → Set ℓ₂} → φ x → φ y 104 
transport refl z = z 105 
 106 
≡-ind : {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → {x : A} → (φ : (x ≡ x) → Set ℓ₂) → φ refl → ∀ e → φ e 107 
≡-ind φ p refl = p 108 
 109 
 110 
-- COMBINATORIAL (CLOSED) LAMBDA TERMS -- 111 
 112 
-- We cannot use induction on Set-types, so how do we prove them 113 
-- standard? In IST, we do not have to deal with this problem, 114 
-- since we normally encode functions as their graphs (sets of 115 
-- ordered pairs), and IST already provides rules for the 116 
-- standardness of sets. 117 
 118 
-- In Agda, functions do not coincide with sets of ordered pairs, 119 
-- and we need to ensure that all MLTT-definable functions are 120 
-- indeed standard. To accomplish this, the rules below suffice: 121 
-- 1. All pure combinatorial λ-terms with standard co/domain are themselves standard. 122 
-- 2. Functions defined by induction are standard. 123 
-- 3. Applying a standard value to a standard function yields a standard result. 124 
-- These rules exhaust all possible ways of defining functions 125 
-- in MLTT. 126 
 127 
-- E.g. to prove that (λi. _=_ (f i) (g i)) is standard, we would 128 
-- argue as follows: 129 
-- 1. (\a.\b.\c. a b c) is a purely combinatorial λ-term, so standard. 130 
-- 2. (\b.\c _=_ b c) is standard when both _=_ and (\a.\b.\c. a b c) are standard. 131 
-- 3. (\c _=_ (f i) c) is standard when both (f i) and (\b.\c _=_ b c) are standard. 132 
-- 4. (_=_ (f i) (g i)) is standard when both (g i) and (\c. _=_ (f i) (g i)) are standard. 133 
-- So we'd conclude that the inhabitant (λi. _=_ (f i) (g i)) 134 
-- of the type Set is standard as long as (f i) and (g i) are. 135 
 136 
-- Here we declare the combinatorial instances that we actually use 137 
-- in our development, so that we can safely declare them standard in 138 
-- IST.Base. 139 
 140 
abs-5 : (I : Set) → ({X : Set} → X → X → Set) → 141 
        (b : I → Set) → 142 
        (f : (i : I) → b i) → 143 
        (g : (i : I) → b i) → 144 
        (i : I) → Set 145 
abs-5 I = λ (a : {X : Set} → X → X → Set) → 146 
          λ (b : I → Set) → 147 
          λ (f : (i : I) → b i) → 148 
          λ (g : (i : I) → b i) → 149 
          λ (i : I) → a {b i} (f i) (g i) 150 
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 151 
abs-4 : (A M X : Set) → 152 
        (f : A → M → M) → 153 
        (e : X → A) → 154 
        X → M → M 155 
abs-4 A M X f e x m = f (e x) m 156 
 157 
abs-K : {ℓ₁ ℓ₂ : Level} (A : Set ℓ₁) (B : Set ℓ₂) → A → B → A 158 
abs-K A B = λ (a : A) → λ (b : B) → a 159 
 160 
abs-K-h : {ℓ₁ ℓ₂ : Level} (A : Set ℓ₁) (B : Set ℓ₂) → A → {_ : B} → A 161 
abs-K-h A B = λ (a : A) → λ {b : B} → a 162 
 163 
 164 
-- We admit the law of excluded middle. 165 
 166 
postulate 167 
  excluded-middle : {ℓ : Level} → (A : Set ℓ) → A ∨ (A → ⊥) 168 
 169 
-------------------------------------------------------------------------------- 170 
 171 
 172 
module IST.Safe.Util where 173 
 174 
-- Here we define standard constructions from type theory, including 175 
-- the usual dependent sum types and equality. This development 176 
-- takes place in ordinary MLTT/Agda, without the external hierarchy. 177 
 178 
open import Agda.Primitive 179 
open import IST.Safe.Base 180 
 181 
lemma-product-equality : {ℓ₁ ℓ₂ : Level} {X : Set ℓ₁} {Y : Set ℓ₂} {x₁ x₂ : X} → ∀ {y₁ y₂ : Y} → 182 
                         x₁ ≡ x₂ → y₁ ≡ y₂ → (x₁ , y₁) ≡ (x₂ , y₂) 183 
lemma-product-equality refl refl = refl 184 
 185 
-------------------------------------------------------------------------------- 186 
 187 
 188 
module IST.Safe.Naturals where 189 
 190 
open import Agda.Primitive 191 
open import IST.Safe.Base 192 
 193 
data ℕ : Set where 194 
  zero : ℕ 195 
  suc : ℕ → ℕ 196 
 197 
{-# BUILTIN NATURAL ℕ #-} 198 
 199 
ℕ-induction : {ℓ : Level} → {φ : ℕ → Set ℓ} → 200 
              φ 0 → (∀ k → φ k → φ (suc k)) → ∀ n → φ n 201 
ℕ-induction base-case inductive-case zero = base-case 202 
ℕ-induction base-case inductive-case (suc n) = inductive-case n (ℕ-induction base-case 203 
inductive-case n) 204 
 205 
data _≤_ : ℕ → ℕ → Set where 206 
  ≤-zero : {x : ℕ} → 0 ≤ x 207 
  ≤-suc : {x y : ℕ} → x ≤ y → suc x ≤ suc y 208 
 209 
≤-tran : (x y z : ℕ) → x ≤ y → y ≤ z → x ≤ z 210 
≤-tran .0 y z ≤-zero q = ≤-zero 211 
≤-tran .(suc _) .(suc _) .(suc _) (≤-suc p) (≤-suc q) = ≤-suc (≤-tran _ _ _ p q) 212 
 213 
≤-than-zero : (x : ℕ) → x ≤ 0 → x ≡ 0 214 
≤-than-zero .0 ≤-zero = refl 215 
 216 
≤-refl : ∀ x → x ≤ x 217 
≤-refl zero = ≤-zero 218 
≤-refl (suc x) = ≤-suc (≤-refl x) 219 
 220 
≤-not-suc : ∀ x → suc x ≤ x → ⊥ 221 
≤-not-suc zero () 222 
≤-not-suc (suc x) (≤-suc p) = ≤-not-suc x p 223 
 224 
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≤-match : (x y : ℕ) → x ≤ suc y → (x ≤ y) ∨ (x ≡ suc y) 225 
≤-match .0 y ≤-zero = inl ≤-zero 226 
≤-match (suc a) zero (≤-suc p) = inr (cong suc (≤-than-zero a p)) 227 
≤-match (suc a) (suc b) (≤-suc p) with ≤-match a b p 228 
≤-match (suc a) (suc b) (≤-suc p) | inl q = inl (≤-suc q) 229 
≤-match (suc a) (suc b) (≤-suc p) | inr q = inr (cong suc q) 230 
 231 
-------------------------------------------------------------------------------- 232 
 233 
 234 
module IST.Safe.FiniteSets where 235 
 236 
open import IST.Safe.Base 237 
 238 
record IsFiniteSet 239 
  (Carrier : Set) 240 
  : Set where 241 
  field 242 
    list-of-elements : List Carrier 243 
    has-all-elements : (x : Carrier) → x ∈ list-of-elements 244 
 245 
record FiniteSet : Set₁ where 246 
  field 247 
    Carrier : Set 248 
    isFiniteSet : IsFiniteSet Carrier 249 
  open IsFiniteSet isFiniteSet public 250 
 251 
-------------------------------------------------------------------------------- 252 
 253 
 254 
module IST.Safe.Reals where 255 
 256 
open import Agda.Primitive 257 
open import IST.Safe.Base 258 
 259 
-- We present an ordered field axiomatically. We do not give a completeness axiom. 260 
 261 
-- ℝ forms a commutative ring. 262 
infixr 5 _+_ 263 
infixr 6 _·_ 264 
postulate 265 
  ℝ : Set 266 
  _+_ : ℝ → ℝ → ℝ 267 
  0r : ℝ 268 
  +-comm : ∀ {x y : ℝ} → x + y ≡ y + x 269 
  +-assoc : ∀ {x y z : ℝ} → (x + y) + z ≡ x + (y + z) 270 
  +-unit-left : ∀ {x : ℝ} → 0r + x ≡ x 271 
  minus : ℝ → ℝ 272 
  +-inverse-left : ∀ {x : ℝ} → x + minus x ≡ 0r 273 
 274 
  _·_ : ℝ → ℝ → ℝ 275 
  1r : ℝ 276 
  ·-comm : ∀ {x y : ℝ} → x · y ≡ y · x 277 
  ·-assoc : ∀ {x y z : ℝ} → (x · y) · z ≡ x · (y · z) 278 
  ·-unit-left : ∀ {x : ℝ} → 1r · x ≡ x 279 
  ·-null-left : ∀ {x : ℝ} → x · 0r ≡ 0r 280 
   281 
  distr-left : ∀ {x y z : ℝ} → x · (y + z) ≡ x · y + x · z 282 
 283 
-- The right laws follow by commutativity. 284 
 285 
+-unit-right : ∀ {x : ℝ} → x + 0r ≡ x 286 
+-unit-right = tran +-comm +-unit-left 287 
 288 
·-unit-right : ∀ {x : ℝ} → x · 1r ≡ x 289 
·-unit-right = tran ·-comm ·-unit-left 290 
 291 
·-null-right : ∀ {x : ℝ} → 0r · x ≡ 0r 292 
·-null-right = tran ·-comm ·-null-left 293 
 294 
distr-right : ∀ {x y z : ℝ} → (x + y) · z ≡ x · z + y · z 295 
distr-right {x} {y} {z} = step-3 where 296 
  step-1 : z · x + z · y ≡ x · z + z · y 297 
  step-1 = cong (λ p → p + z · y) ·-comm 298 
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  step-2 : x · z + z · y ≡ x · z + y · z 299 
  step-2 = cong (λ p → x · z + p) ·-comm 300 
  step-3 : (x + y) · z ≡ x · z + y · z 301 
  step-3 = tran (tran (tran ·-comm distr-left) step-1) step-2 302 
 303 
-- ℝ forms an ordered commutative ring. 304 
 305 
infix 4 _<_ 306 
infix 4 _≤ᵣ_ 307 
postulate 308 
  _<_ : ℝ → ℝ → Set 309 
  <-trichotomy-strong : ∀ x y → (x ≡ y) ∨ ((x < y) ∨ (y < x)) 310 
  <-asym-1 : ∀ x y → x < y → x ≡ y → ⊥ 311 
  <-asym-2 : ∀ x y → x < y → y < x → ⊥  312 
  <-tran : ∀ x y z → x < y → y < z → x < z 313 
  <-plus : ∀ x y c → x < y → x + c < y + c 314 
  <-mult : ∀ x y c → 0r < c → x < y → c · x < c · y 315 
  <-nontrivial : 0r < 1r 316 
 317 
-- ℝ forms a field 318 
 319 
_≠_ : ℝ → ℝ → Set 320 
x ≠ y = ((x < y) → ⊥) → y < x 321 
 322 
postulate 323 
  inv : (r : ℝ) → (r ≠ 0r) → ℝ 324 
  ·-inverse-left : ∀ {x : ℝ} → (p : x ≠ 0r) → inv x p · x ≡ 1r 325 
   326 
+-inverse-right : ∀ {x : ℝ} → minus x + x ≡ 0r 327 
+-inverse-right = tran +-comm +-inverse-left 328 
 329 
·-inverse-right : ∀ {x : ℝ} → (x≠0 : x ≠ 0r) → x · inv x x≠0 ≡ 1r 330 
·-inverse-right x≠0 = tran ·-comm (·-inverse-left x≠0) 331 
 332 
-- We state and prove some useful elementary theorems about ℝ. 333 
 334 
·-minus : ∀ {x : ℝ} → minus x ≡ (minus 1r) · x 335 
·-minus {x} = sym step-9 where 336 
  step-1 : x + minus 1r · x ≡ (1r · x) + minus 1r · x 337 
  step-1 = cong (λ p → p + minus 1r · x) (sym (·-unit-left)) 338 
  step-2 : 1r · x + minus 1r · x ≡ (1r + minus 1r) · x 339 
  step-2 = sym (distr-right) 340 
  step-3 : (1r + minus 1r) · x ≡ 0r 341 
  step-3 = tran (cong (λ p → p · x) +-inverse-left) ·-null-right 342 
  step-4 : x + minus 1r · x ≡ 0r 343 
  step-4 = tran (tran step-1 step-2) step-3 344 
  step-5 : minus x + (x + minus 1r · x) ≡ minus x + 0r 345 
  step-5 = cong (λ p → minus x + p) step-4 346 
  step-6 : minus x + (x + minus 1r · x) ≡ minus x 347 
  step-6 = tran step-5 +-unit-right 348 
  step-7 : (minus x + x) + minus 1r · x ≡ minus x 349 
  step-7 = tran +-assoc step-6 350 
  step-8 : 0r + minus 1r · x ≡ minus x 351 
  step-8 = tran (cong (λ p → p + minus 1r · x) (sym +-inverse-right)) step-7 352 
  step-9 : minus 1r · x ≡ minus x 353 
  step-9 = tran (sym +-unit-left) step-8 354 
 355 
<-trichotomy : ∀ {φ : Set} → ∀ x y → (x < y → φ) → (x ≡ y → φ) → (y < x → φ) → φ 356 
<-trichotomy {φ} x y p q r with <-trichotomy-strong x y 357 
<-trichotomy {φ} x y p q r | inl x-equals-y = q x-equals-y 358 
<-trichotomy {φ} x y p q r | inr (inl x-under-y) = p x-under-y 359 
<-trichotomy {φ} x y p q r | inr (inr y-under-x) = r y-under-x 360 
 361 
<-minus : ∀ {x : ℝ} → 0r < x → minus x < 0r 362 
<-minus {x} positive-x = <-trichotomy 0r (minus x) 363 
  (λ z → absurd (not-positive z)) 364 
  (λ z → absurd (not-zero z)) 365 
  (λ z → z) where 366 
  not-positive : 0r < minus x → ⊥ 367 
  not-positive positive-minus-x = <-asym-2 0r x positive-x negative-x  where 368 
    step-1 : 0r + x < minus x + x 369 
    step-1 = <-plus 0r (minus x) x positive-minus-x 370 
    step-2 : 0r + x < 0r 371 
    step-2 = transport +-inverse-right {λ p → 0r + x < p} step-1 372 
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    negative-x : x < 0r 373 
    negative-x = transport +-unit-left {λ p → p < 0r} step-2 374 
  not-zero : 0r ≡ minus x → ⊥ 375 
  not-zero zero-minus-x = <-asym-1 0r x positive-x (sym zero-x) where 376 
    step-1 : x + 0r ≡ 0r 377 
    step-1 = transport (sym zero-minus-x) {λ p → x + p ≡ 0r} +-inverse-left 378 
    zero-x : x ≡ 0r 379 
    zero-x = transport (+-unit-right {x}) {λ p → p ≡ 0r} step-1 380 
 381 
<-inverse : ∀ {x : ℝ} → (p : 0r < x) → 0r < inv x (λ _ → p) 382 
<-inverse {x} p = <-trichotomy 0r (inv x (λ _ → p)) 383 
  (λ z → z) 384 
  (λ z → absurd (not-zero z)) 385 
  (λ z → absurd (not-negative z)) where 386 
  not-zero : 0r ≡ inv x (λ _ → p) → ⊥ 387 
  not-zero 0r-inverse = <-asym-1 _ _ <-nontrivial step-3 where 388 
    step-1 : 0r · x ≡ inv x (λ _ → p) · x 389 
    step-1 = cong (λ p → p · x) 0r-inverse 390 
    step-2 : 0r · x ≡ 1r 391 
    step-2 = tran step-1 (·-inverse-left (λ _ → p)) 392 
    step-3 : 0r ≡ 1r 393 
    step-3 = tran (sym ·-null-right) step-2 394 
  not-negative : inv x (λ _ → p) < 0r → ⊥ 395 
  not-negative negative-invx = <-asym-2 _ _ <-nontrivial step-3 where 396 
    x' : ℝ 397 
    x' = inv x (λ _ → p) 398 
    step-1 : x · x' < x · 0r 399 
    step-1 = <-mult x' 0r x p negative-invx 400 
    step-2 : 1r < x · 0r 401 
    step-2 = transport (·-inverse-right (λ _ → p)) {λ p → p < x · 0r} step-1 402 
    step-3 : 1r < 0r 403 
    step-3 = transport ·-null-left {λ p → 1r < p} step-2 404 
 405 
<-plus-both : ∀ (x X y Y : ℝ) → x < X → y < Y → x + y < X + Y 406 
<-plus-both x X y Y p q = <-tran _ _ _ step-1 step-4 where 407 
  step-1 : x + y < X + y 408 
  step-1 = <-plus x X y p 409 
  step-2 : y + X < Y + X 410 
  step-2 = <-plus y Y X q 411 
  step-3 : X + y < Y + X 412 
  step-3 = transport (+-comm {y} {X}) {λ z → z < Y + X} step-2  413 
  step-4 : X + y < X + Y 414 
  step-4 = transport (+-comm {Y} {X}) {λ z → X + y < z} step-3 415 
 416 
<-plus-left : ∀ x y c → x < y → (c + x) < (c + y) 417 
<-plus-left x y c p = step-3 where 418 
  step-1 : x + c < y + c 419 
  step-1 = <-plus x y c p 420 
  step-2 : c + x < y + c 421 
  step-2 = transport +-comm {λ p → p < y + c} step-1 422 
  step-3 : c + x < c + y 423 
  step-3 = transport +-comm {λ p → c + x < p} step-2 424 
 425 
lemma-ε-of-room : ∀ (x : ℝ) → (∀ (ε : ℝ) → 0r < ε → x < ε) → (x < 0r → ⊥) → x ≡ 0r 426 
lemma-ε-of-room x x<ε x≥0 = <-trichotomy {x ≡ 0r} x 0r 427 
  (λ z → absurd (x≥0 z)) 428 
  (λ z → z) 429 
  (λ z → absurd (<-asym-2 x x (x<ε x z) (x<ε x z))) 430 
 431 
lemma-ε-of-room-plus : ∀ (x y : ℝ) → (∀ (ε : ℝ) → 0r < ε → x < y + ε) → (x ≡ y → ⊥) → x < y 432 
lemma-ε-of-room-plus x y x<ε x≥y = <-trichotomy {x < y} x y 433 
  (λ z → z) 434 
  (λ z → absurd (x≥y z)) 435 
  (λ z → x<y z) where 436 
    0<x-y : y < x → 0r < x + minus y 437 
    0<x-y y<x = absurd (<-asym-1 x x x<x refl) where 438 
      step-1 : y + minus y < x + minus y 439 
      step-1 = <-plus y x (minus y) y<x 440 
      step-2 : 0r < x + minus y 441 
      step-2 = transport +-inverse-left {λ z → z < x + minus y} step-1 442 
      step-3 : x < y + x + minus y 443 
      step-3 = x<ε (x + minus y) step-2 444 
      step-4 : y + x + minus y ≡ y + minus y + x 445 
      step-4 = cong (λ z → y + z) (+-comm {x} {minus y}) 446 
      step-5 : (y + minus y) + x ≡ x 447 
      step-5 = tran (cong (λ z → z + x) +-inverse-left) +-unit-left 448 
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      step-6 : y + x + minus y ≡ x 449 
      step-6 = tran step-4 (tran (sym +-assoc) step-5) 450 
      x<x : x < x 451 
      x<x = transport step-6 {λ z → x < z} step-3 452 
    x<y : y < x → x < y 453 
    x<y y<x = absurd (<-asym-1 x x x<x refl) where 454 
      x<y+x-y : x < y + x + minus y 455 
      x<y+x-y = x<ε (x + minus y) (0<x-y y<x) 456 
      y+x-y-equals-x : y + x + minus y ≡ x 457 
      y+x-y-equals-x = 458 
        tran (cong (λ z → y + z) +-comm) 459 
        (tran (sym +-assoc) (tran (cong (λ z → z + x) +-inverse-left) +-unit-left)) 460 
      x<x : x < x 461 
      x<x = transport y+x-y-equals-x {λ z → x < z} x<y+x-y 462 
 463 
-- We prove some theorems about 1/2 that we need to work with metric spaces. 464 
 465 
2r : ℝ 466 
2r = 1r + 1r 467 
 468 
pos-2r : 0r < 2r 469 
pos-2r = <-tran 0r 1r 2r <-nontrivial step-2 where 470 
  step-1 : 0r + 1r < 1r + 1r 471 
  step-1 = <-plus 0r 1r 1r <-nontrivial 472 
  step-2 : 1r < 1r + 1r 473 
  step-2 = transport +-unit-left {λ p → p < 1r + 1r} step-1 474 
 475 
1r-less-than-2r : 1r < 2r 476 
1r-less-than-2r = step-2 where 477 
  step-1 : 0r + 1r < 1r + 1r 478 
  step-1 = <-plus 0r 1r 1r <-nontrivial 479 
  step-2 : 1r < 1r + 1r 480 
  step-2 = transport +-unit-left {λ p → p < 1r + 1r} step-1 481 
 482 
1/2r : ℝ 483 
1/2r = inv 2r (λ _ → pos-2r) 484 
 485 
pos-1/2r : 0r < 1/2r 486 
pos-1/2r = <-inverse pos-2r 487 
 488 
1/2r-less-than-1r : 1/2r < 1r 489 
1/2r-less-than-1r = step-3 where 490 
  step-1 : 1/2r · 1r < 1/2r · 2r 491 
  step-1 = <-mult 1r 2r 1/2r pos-1/2r 1r-less-than-2r 492 
  step-2 : 1/2r < 1/2r · 2r 493 
  step-2 = transport ·-unit-right {λ p → p < 1/2r · 2r} step-1 494 
  step-3 : 1/2r < 1r 495 
  step-3 = transport (·-inverse-left (λ _ → pos-2r)) {λ p → 1/2r < p} step-2 496 
 497 
1/2r-half : 1/2r + 1/2r ≡ 1r 498 
1/2r-half = tran step-6 (tran step-5 (tran step-4 step-3)) where 499 
  step-1 : 2r · (1/2r + 1/2r) ≡ 2r · 1/2r + 2r · 1/2r 500 
  step-1 = distr-left {2r} {1/2r} {1/2r} 501 
  step-2 : 2r · 1/2r + 2r · 1/2r ≡ 2r 502 
  step-2 = cong (λ p → p + p) (·-inverse-right (λ _ → pos-2r)) 503 
  step-3 : 1/2r · 2r · (1/2r + 1/2r) ≡ 1r 504 
  step-3 = tran (cong (λ p → 1/2r · p) (tran step-1 step-2)) (·-inverse-left (λ _ → pos-2r)) 505 
  step-4 : (1/2r · 2r) · (1/2r + 1/2r) ≡ 1/2r · 2r · (1/2r + 1/2r) 506 
  step-4 = ·-assoc 507 
  step-5 : 1r · (1/2r + 1/2r) ≡ (1/2r · 2r) · (1/2r + 1/2r) 508 
  step-5 = cong (λ p → p · (1/2r + 1/2r)) (sym (·-inverse-left (λ _ → pos-2r))) 509 
  step-6 : 1/2r + 1/2r ≡ 1r · (1/2r + 1/2r) 510 
  step-6 = sym ·-unit-left 511 
 512 
_/2r : ℝ → ℝ 513 
x /2r = 1/2r · x 514 
 515 
pos-/2r-v : (x : ℝ) → 0r < x → 0r < x /2r 516 
pos-/2r-v x pos-x = transport ·-null-left {λ p → p < 1/2r · x} (<-mult 0r x 1/2r pos-1/2r pos-x) 517 
 518 
x/2r-less-than-x : (x : ℝ) → 0r < x → (x /2r) < x 519 
x/2r-less-than-x x pos-x = step-3 where 520 
  step-1 : x · 1/2r < x · 1r 521 
  step-1 = <-mult 1/2r 1r x pos-x 1/2r-less-than-1r 522 
  step-2 : x /2r < x · 1r 523 
  step-2 = transport (·-comm {x} {1/2r}) {λ p → p < x · 1r} step-1 524 
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  step-3 : x /2r < x 525 
  step-3 = transport (·-unit-right {x}) {λ p → x /2r < p} step-2 526 
 527 
/2r-half : ∀ {x : ℝ} → x /2r + x /2r ≡ x 528 
/2r-half {x} = tran step-1 step-2 where 529 
  step-1 : x /2r + x /2r ≡ (1/2r + 1/2r) · x 530 
  step-1 = sym (distr-right {1/2r} {1/2r} {x}) 531 
  step-2 : (1/2r + 1/2r) · x ≡ x 532 
  step-2 = tran (cong (λ p → p · x) 1/2r-half) ·-unit-left 533 
 534 
-- We prove some results about ≤ that we need for Lipschitz conditions. 535 
 536 
_≤ᵣ_ : ℝ → ℝ → Set 537 
a ≤ᵣ b = (a ≡ b) ∨ (a < b) 538 
 539 
≤ᵣ-tran : ∀ x y z → x ≤ᵣ y → y ≤ᵣ z → x ≤ᵣ z 540 
≤ᵣ-tran x .x .x (inl refl) (inl refl) = inl refl 541 
≤ᵣ-tran x .x z (inl refl) (inr p) = inr p 542 
≤ᵣ-tran x y .y (inr p) (inl refl) = inr p 543 
≤ᵣ-tran x y z (inr p) (inr q) = inr (<-tran x y z p q) 544 
≤ᵣ-plus : ∀ x y c → x ≤ᵣ y → (x + c) ≤ᵣ (y + c) 545 
≤ᵣ-plus x .x c (inl refl) = inl refl 546 
≤ᵣ-plus x y c (inr p) = inr (<-plus x y c p) 547 
≤ᵣ-mult : ∀ x y c → 0r ≤ᵣ c → x ≤ᵣ y → (c · x) ≤ᵣ (c · y) 548 
≤ᵣ-mult x .x .0r (inl refl) (inl refl) = inl refl 549 
≤ᵣ-mult x y .0r (inl refl) (inr q) = inl (tran ·-null-right (sym ·-null-right)) 550 
≤ᵣ-mult x .x c (inr p) (inl refl) = inl refl 551 
≤ᵣ-mult x y c (inr p) (inr q) = inr (<-mult x y c p q) 552 
≤ᵣ-nontrivial : 0r ≤ᵣ 1r 553 
≤ᵣ-nontrivial = inr <-nontrivial 554 
 555 
≤ᵣ-minus : ∀ {x : ℝ} → 0r ≤ᵣ x → minus x ≤ᵣ 0r 556 
≤ᵣ-minus (inl refl) = inl (tran (sym +-unit-left) +-inverse-left) 557 
≤ᵣ-minus (inr p) = inr (<-minus p) 558 
 559 
≤ᵣ-plus-both : ∀ (x X y Y : ℝ) → x ≤ᵣ X → y ≤ᵣ Y → x + y ≤ᵣ X + Y 560 
≤ᵣ-plus-both x .x y .y (inl refl) (inl refl) = inl refl 561 
≤ᵣ-plus-both x .x y Y (inl refl) (inr q) = inr step-3 where 562 
  step-1 : y + x < Y + x 563 
  step-1 = <-plus y Y x q 564 
  step-2 : x + y < Y + x 565 
  step-2 = transport +-comm {λ p → p < Y + x} step-1 566 
  step-3 : x + y < x + Y 567 
  step-3 = transport +-comm {λ p → x + y < p} step-2 568 
≤ᵣ-plus-both x X y .y (inr p) (inl refl) = inr (<-plus x X y p) 569 
≤ᵣ-plus-both x X y Y (inr p) (inr q) = inr (<-plus-both x X y Y p q)  570 
 571 
≤ᵣ-plus-left : ∀ x y c → x ≤ᵣ y → (c + x) ≤ᵣ (c + y) 572 
≤ᵣ-plus-left x y c p = step-3 where 573 
  step-1 : x + c ≤ᵣ y + c 574 
  step-1 = ≤ᵣ-plus x y c p 575 
  step-2 : c + x ≤ᵣ y + c 576 
  step-2 = transport +-comm {λ p → p ≤ᵣ y + c} step-1 577 
  step-3 : c + x ≤ᵣ c + y 578 
  step-3 = transport +-comm {λ p → c + x ≤ᵣ p} step-2 579 
 580 
≤ᵣ-dichotomy : ∀ x y → (x ≤ᵣ y) ∨ (y ≤ᵣ x) 581 
≤ᵣ-dichotomy x y with <-trichotomy-strong x y 582 
≤ᵣ-dichotomy x y | inl x-equals-y = inl (inl x-equals-y) 583 
≤ᵣ-dichotomy x y | inr (inl x-under-y) = inl (inr x-under-y) 584 
≤ᵣ-dichotomy x y | inr (inr y-under-x) = inr (inr y-under-x) 585 
 586 
lemma-lesser : ∀ (x y : ℝ) → (∀ (ε : ℝ) → 0r < ε → x ≤ᵣ y + ε) → ∀ (ε : ℝ) → 0r < ε → x < y + ε 587 
lemma-lesser x y p ε pos-ε = step-3 where 588 
  step-1 : x ≤ᵣ y + (ε /2r) 589 
  step-1 = p (ε /2r) (pos-/2r-v ε pos-ε) 590 
  step-2 : y + (ε /2r) < y + ε 591 
  step-2 = <-plus-left (ε /2r) ε y (x/2r-less-than-x ε pos-ε) 592 
  step-3 : x < y + ε 593 
  step-3 with step-1 594 
  step-3 | inl refl = step-2 595 
  step-3 | inr p = <-tran _ _ _ p step-2 596 
 597 
lemma-ε-of-room-plus-≤ᵣ : ∀ (x y : ℝ) → (∀ (ε : ℝ) → 0r < ε → x ≤ᵣ y + ε) → x ≤ᵣ y 598 
lemma-ε-of-room-plus-≤ᵣ x y p with ≤ᵣ-dichotomy x y 599 



 

131 

 

lemma-ε-of-room-plus-≤ᵣ x y p | inl (inl x-equals-y) = inl x-equals-y 600 
lemma-ε-of-room-plus-≤ᵣ x y p | inl (inr x-under-y) = inr x-under-y 601 
lemma-ε-of-room-plus-≤ᵣ x y p | inr (inl y-equals-x) = inl (sym y-equals-x) 602 
lemma-ε-of-room-plus-≤ᵣ x y p | inr (inr y-under-x) = 603 
  inr (lemma-ε-of-room-plus x y p' x-neq-y) where 604 
  p' : ∀ (ε : ℝ) → 0r < ε → x < y + ε 605 
  p' = lemma-lesser x y p 606 
  x-neq-y : x ≡ y → ⊥ 607 
  x-neq-y x-equals-y = <-asym-1 y y (transport x-equals-y {λ p → y < p} y-under-x) refl 608 
 609 
-------------------------------------------------------------------------------- 610 
 611 
 612 
module IST.Safe.Groups where 613 
 614 
open import IST.Safe.Base 615 
open import IST.Safe.FiniteSets 616 
open import IST.Safe.Naturals 617 
 618 
record IsGroup 619 
  (Carrier : Set) 620 
  (identity : Carrier) 621 
  (operation : Carrier → Carrier → Carrier) 622 
  (inverse : Carrier → Carrier) 623 
  : Set where 624 
  field 625 
    assoc : ∀ (x y z : Carrier) → operation (operation x y) z ≡ operation x (operation y z) 626 
    unit-left : ∀ (x : Carrier) → operation identity x ≡ x 627 
    unit-right : ∀ (x : Carrier) → operation x identity ≡ x 628 
    inverse-left : ∀ (x : Carrier) → operation (inverse x) x ≡ identity 629 
    inverse-right : ∀ (x : Carrier) → operation x (inverse x) ≡ identity 630 
  power : Carrier → ℕ → Carrier 631 
  power x zero = identity 632 
  power x (suc n) = operation x (power x n) 633 
 634 
record Group : Set₁ where 635 
  field 636 
    Carrier : Set 637 
    identity : Carrier 638 
    operation : Carrier → Carrier → Carrier 639 
    inverse : Carrier → Carrier 640 
    isGroup : IsGroup Carrier identity operation inverse 641 
  open IsGroup isGroup public 642 
 643 
 644 
record IsPeriodicGroup 645 
  (Carrier : Set) 646 
  (identity : Carrier) 647 
  (operation : Carrier → Carrier → Carrier) 648 
  (inverse : Carrier → Carrier) 649 
  : Set where 650 
  field 651 
    isGroup : IsGroup Carrier identity operation inverse 652 
  open IsGroup isGroup 653 
  field 654 
    order : Carrier → ℕ 655 
    order-identity : ∀ g → power g (order g) ≡ identity 656 
    order-minimal : ∀ g → ∀ n → power g (suc n) ≡ identity → order g ≤ (suc n) 657 
    order-nonzero : ∀ g → order g ≡ 0 → ⊥ 658 
     659 
record PeriodicGroup : Set₁ where 660 
  field 661 
    Carrier : Set 662 
    identity : Carrier 663 
    operation : Carrier → Carrier → Carrier 664 
    inverse : Carrier → Carrier 665 
    isPeriodicGroup : IsPeriodicGroup Carrier identity operation inverse 666 
  open IsPeriodicGroup isPeriodicGroup public 667 
  open IsGroup isGroup public 668 
  asGroup : Group 669 
  asGroup = 670 
    record { Carrier = Carrier 671 
           ; identity = identity 672 
           ; operation = operation 673 
           ; inverse = inverse 674 
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           ; isGroup = isGroup 675 
           } 676 
  power-lemma : ∀ g → ∀ n → g ≡ identity → power g n ≡ identity 677 
  power-lemma .(identity) zero refl = refl 678 
  power-lemma .(identity) (suc n) refl = tran (unit-left (power identity n)) inductive-679 
hypothesis where 680 
    inductive-hypothesis : power identity n ≡ identity 681 
    inductive-hypothesis = power-lemma identity n refl 682 
 683 
  power-lemma-contrapositive : ∀ g → ∀ n → (power g n ≡ identity → ⊥) → g ≡ identity → ⊥ 684 
  power-lemma-contrapositive g n gn-not-identity g-identity = gn-not-identity (power-lemma g n 685 
g-identity) 686 
 687 
 688 
record IsFiniteGroup 689 
  (Carrier : Set) 690 
  (identity : Carrier) 691 
  (operation : Carrier → Carrier → Carrier) 692 
  (inverse : Carrier → Carrier) 693 
  : Set where 694 
  field 695 
    isGroup : IsGroup Carrier identity operation inverse 696 
  open IsGroup isGroup 697 
  field 698 
    isFiniteSet : IsFiniteSet Carrier 699 
    order : Carrier → ℕ 700 
    order-identity : ∀ g → power g (order g) ≡ identity 701 
    order-minimal : ∀ g → ∀ n → power g (suc n) ≡ identity → order g ≤ suc n 702 
    order-nonzero : ∀ g → order g ≡ 0 → ⊥ 703 
 704 
record FiniteGroup : Set₁ where 705 
  field 706 
    Carrier : Set 707 
    identity : Carrier 708 
    operation : Carrier → Carrier → Carrier 709 
    inverse : Carrier → Carrier 710 
    isFiniteGroup : IsFiniteGroup Carrier identity operation inverse 711 
  open IsFiniteGroup isFiniteGroup public 712 
  open IsGroup isGroup public 713 
  asGroup : Group 714 
  asGroup = 715 
    record { Carrier = Carrier 716 
           ; identity = identity 717 
           ; operation = operation 718 
           ; inverse = inverse 719 
           ; isGroup = isGroup 720 
           } 721 
  power-lemma : ∀ g → ∀ n → g ≡ identity → power g n ≡ identity 722 
  power-lemma .(identity) zero refl = refl 723 
  power-lemma .(identity) (suc n) refl = tran (unit-left (power identity n)) inductive-724 
hypothesis where 725 
    inductive-hypothesis : power identity n ≡ identity 726 
    inductive-hypothesis = power-lemma identity n refl 727 
 728 
  power-lemma-contrapositive : ∀ g → ∀ n → (power g n ≡ identity → ⊥) → g ≡ identity → ⊥ 729 
  power-lemma-contrapositive g n gn-not-identity g-identity = gn-not-identity (power-lemma g n 730 
g-identity) 731 
 732 
 733 
record IsFiniteSubgroup 734 
  (Source : FiniteGroup) 735 
  (Target : Group) 736 
  (Map : FiniteGroup.Carrier Source → Group.Carrier Target) 737 
  : Set where 738 
  open FiniteGroup Source public 739 
  field 740 
    Map-identity : Map identity ≡ Group.identity Target 741 
    Map-operation : ∀ g h → 742 
      Map (operation g h) ≡ Group.operation Target (Map g) (Map h) 743 
    Map-injective : ∀ g h → Map g ≡ Map h → g ≡ h 744 
 745 
record FiniteSubgroup (Target : Group) : Set₁ where 746 
  field 747 
    Source : FiniteGroup 748 
    Map : FiniteGroup.Carrier Source → Group.Carrier Target 749 
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    isFiniteSubgroup : IsFiniteSubgroup Source Target Map 750 
  open IsFiniteSubgroup isFiniteSubgroup public 751 
  Map-power : ∀ g → ∀ n → Map (power g n) ≡ Group.power Target (Map g) n 752 
  Map-power g zero = Map-identity 753 
  Map-power g (suc n) = tran (Map-operation g gn) step-1 where 754 
    gn : Carrier 755 
    gn = power g n 756 
    mgn : Group.Carrier Target 757 
    mgn = Group.power Target (Map g) n 758 
    inductive-hypothesis : Map gn ≡ mgn 759 
    inductive-hypothesis = Map-power g n 760 
    step-1 : Group.operation Target (Map g) (Map gn) ≡ Group.operation Target (Map g) mgn 761 
    step-1 = cong (Group.operation Target (Map g)) inductive-hypothesis 762 
 763 
 764 
record IsPeriodicSubgroup 765 
  (Source : PeriodicGroup) 766 
  (Target : Group) 767 
  (Map : PeriodicGroup.Carrier Source → Group.Carrier Target) 768 
  : Set where 769 
  open PeriodicGroup Source public 770 
  field 771 
    Map-identity : Map identity ≡ Group.identity Target 772 
    Map-operation : ∀ g h → 773 
      Map (operation g h) ≡ Group.operation Target (Map g) (Map h) 774 
    Map-injective : ∀ g h → Map g ≡ Map h → g ≡ h 775 
 776 
record PeriodicSubgroup (Target : Group) : Set₁ where 777 
  field 778 
    Source : PeriodicGroup 779 
    Map : PeriodicGroup.Carrier Source → Group.Carrier Target 780 
    isPeriodicSubgroup : IsPeriodicSubgroup Source Target Map 781 
  open IsPeriodicSubgroup isPeriodicSubgroup public 782 
  Map-power : ∀ g → ∀ n → Map (power g n) ≡ Group.power Target (Map g) n 783 
  Map-power g zero = Map-identity 784 
  Map-power g (suc n) = tran (Map-operation g gn) step-1 where 785 
    gn : Carrier 786 
    gn = power g n 787 
    mgn : Group.Carrier Target 788 
    mgn = Group.power Target (Map g) n 789 
    inductive-hypothesis : Map gn ≡ mgn 790 
    inductive-hypothesis = Map-power g n 791 
    step-1 : Group.operation Target (Map g) (Map gn) ≡ Group.operation Target (Map g) mgn 792 
    step-1 = cong (Group.operation Target (Map g)) inductive-hypothesis 793 
 794 
-------------------------------------------------------------------------------- 795 
 796 
 797 
module IST.Safe.MetricSpaces where 798 
 799 
open import IST.Safe.Base 800 
open import IST.Safe.Reals 801 
 802 
record IsMetricSpace 803 
  (Carrier : Set) 804 
  (distance : Carrier → Carrier → ℝ) 805 
  : Set where 806 
  field 807 
    nonnegative : ∀ x y → distance x y < 0r → ⊥ 808 
    reflexive-1 : ∀ x y → distance x y ≡ 0r → x ≡ y 809 
    reflexive-2 : ∀ x → distance x x ≡ 0r 810 
    symmetry : ∀ x y → distance x y ≡ distance y x 811 
    triangle-≤ᵣ : ∀ x y z → distance x z ≤ᵣ distance x y + distance y z 812 
  triangle : ∀ x y z b → (distance x y + distance y z < b) → distance x z < b 813 
  triangle x y z b p with triangle-≤ᵣ x y z 814 
  triangle x y z b p | inl eq = transport (sym eq) {λ p → p < b} p 815 
  triangle x y z b p | inr lt = <-tran _ _ _ lt p 816 
 817 
record MetricSpace : Set₁ where 818 
  field 819 
    Carrier : Set 820 
    distance : Carrier → Carrier → ℝ 821 
    isMetricSpace : IsMetricSpace Carrier distance 822 
  open IsMetricSpace isMetricSpace public 823 
-------------------------------------------------------------------------------- 824 
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 825 
 826 
module IST.Safe.GroupActions where 827 
 828 
open import IST.Safe.Base 829 
open import IST.Safe.Naturals 830 
open import IST.Safe.Reals 831 
open import IST.Safe.MetricSpaces 832 
open import IST.Safe.Groups 833 
 834 
record IsGroupAction 835 
  (Source : Group) 836 
  (Target : Set) 837 
  (Map : Group.Carrier Source → Target → Target) 838 
  : Set where 839 
  open Group Source 840 
  field 841 
    action-identity : ∀ m → Map identity m ≡ m 842 
    action-operation : ∀ g h → ∀ m → Map g (Map h m) ≡ Map (operation g h) m 843 
 844 
record GroupAction (Source : Group) (Target : Set) : Set where 845 
  field 846 
    Map : Group.Carrier Source → Target → Target 847 
    isGroupAction : IsGroupAction Source Target Map 848 
  open IsGroupAction isGroupAction public 849 
 850 
 851 
record IsDiscreteAction 852 
  (Source : FiniteGroup) 853 
  (Target : MetricSpace) 854 
  (Map : FiniteGroup.Carrier Source → 855 
         MetricSpace.Carrier Target → MetricSpace.Carrier Target) 856 
  : Set where 857 
  open FiniteGroup Source 858 
  open MetricSpace Target 859 
  field 860 
    isGroupAction : IsGroupAction (FiniteGroup.asGroup Source) (MetricSpace.Carrier Target) Map 861 
    continuity : ∀ (g : FiniteGroup.Carrier Source) → 862 
                 ∀ (m : MetricSpace.Carrier Target) → 863 
                 ∀ (ε : ℝ) → 0r < ε → ∃ λ (δ : ℝ) → (0r < δ) ∧ ( 864 
                 ∀ (m' : MetricSpace.Carrier Target) → 865 
                 distance m m' < δ → 866 
                 distance (Map g m) (Map g m') < ε) 867 
 868 
 869 
record DiscreteAction (Source : FiniteGroup) (Target : MetricSpace) : Set where 870 
  field  871 
    Map : FiniteGroup.Carrier Source → 872 
          MetricSpace.Carrier Target → MetricSpace.Carrier Target 873 
    isDiscreteAction : IsDiscreteAction Source Target Map 874 
  open IsDiscreteAction isDiscreteAction public 875 
  open IsGroupAction isGroupAction public 876 
 877 
  power-faithful : ∀ (g : FiniteGroup.Carrier Source) → 878 
                   ∀ (m : MetricSpace.Carrier Target) → 879 
                   ∀ (n : ℕ) → Map g m ≡ m → Map (FiniteGroup.power Source g n) m ≡ m 880 
  power-faithful g m zero gm-equals-m = action-identity m 881 
  power-faithful g m (suc n) gm-equals-m = tran (tran step-1 step-2) gm-equals-m where 882 
    inductive-hypothesis : Map (FiniteGroup.power Source g n) m ≡ m 883 
    inductive-hypothesis = power-faithful g m n gm-equals-m 884 
    step-1 : Map (FiniteGroup.power Source g (suc n)) m ≡ 885 
             Map g (Map (FiniteGroup.power Source g n) m) 886 
    step-1 = sym (action-operation g (FiniteGroup.power Source g n) m) 887 
    step-2 : Map g (Map (FiniteGroup.power Source g n) m) ≡ 888 
             Map g m 889 
    step-2 = cong (Map g) inductive-hypothesis 890 
 891 
 892 
record IsPeriodicDiscreteAction 893 
  (Source : PeriodicGroup) 894 
  (Target : MetricSpace) 895 
  (Map : PeriodicGroup.Carrier Source → 896 
         MetricSpace.Carrier Target → MetricSpace.Carrier Target) 897 
  : Set where 898 
  open PeriodicGroup Source 899 
  open MetricSpace Target 900 
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  field 901 
    isGroupAction : IsGroupAction (PeriodicGroup.asGroup Source) (MetricSpace.Carrier Target) 902 
Map 903 
    continuity : ∀ (g : PeriodicGroup.Carrier Source) → 904 
                 ∀ (m : MetricSpace.Carrier Target) → 905 
                 ∀ (ε : ℝ) → 0r < ε → ∃ λ (δ : ℝ) → (0r < δ) ∧ ( 906 
                 ∀ (m' : MetricSpace.Carrier Target) → 907 
                 distance m m' < δ → 908 
                 distance (Map g m) (Map g m') < ε) 909 
 910 
 911 
record PeriodicDiscreteAction (Source : PeriodicGroup) (Target : MetricSpace) : Set where 912 
  field  913 
    Map : PeriodicGroup.Carrier Source → 914 
          MetricSpace.Carrier Target → MetricSpace.Carrier Target 915 
    isPeriodicDiscreteAction : IsPeriodicDiscreteAction Source Target Map 916 
  open IsPeriodicDiscreteAction isPeriodicDiscreteAction public 917 
  open IsGroupAction isGroupAction public 918 
 919 
  power-faithful : ∀ (g : PeriodicGroup.Carrier Source) → 920 
                   ∀ (m : MetricSpace.Carrier Target) → 921 
                   ∀ (n : ℕ) → Map g m ≡ m → Map (PeriodicGroup.power Source g n) m ≡ m 922 
  power-faithful g m zero gm-equals-m = action-identity m 923 
  power-faithful g m (suc n) gm-equals-m = tran (tran step-1 step-2) gm-equals-m where 924 
    inductive-hypothesis : Map (PeriodicGroup.power Source g n) m ≡ m 925 
    inductive-hypothesis = power-faithful g m n gm-equals-m 926 
    step-1 : Map (PeriodicGroup.power Source g (suc n)) m ≡ 927 
             Map g (Map (PeriodicGroup.power Source g n) m) 928 
    step-1 = sym (action-operation g (PeriodicGroup.power Source g n) m) 929 
    step-2 : Map g (Map (PeriodicGroup.power Source g n) m) ≡ 930 
             Map g m 931 
    step-2 = cong (Map g) inductive-hypothesis 932 
 933 
-------------------------------------------------------------------------------- 934 
 935 
 936 
module IST.Safe.NewmansTheorem where 937 
 938 
open import IST.Safe.Base 939 
open import IST.Safe.Naturals 940 
open import IST.Safe.Reals 941 
open import IST.Safe.MetricSpaces 942 
open import IST.Safe.Groups 943 
open import IST.Safe.GroupActions 944 
 945 
 946 
-- Formally proving Newman's theorem lies outside the scope of our work, and so 947 
-- we do not give a definition of compact metric manifolds. Instead, we work with 948 
-- Newman spaces: metric spaces that satisfy Corollary 2.3.6. By Newman's theorem 949 
-- (Theorem 2.3.5.) all compact metric manifolds form Newman spaces. 950 
 951 
record IsNewmanSpace 952 
  (M : MetricSpace) 953 
  (ν : ℝ) 954 
  : Set₁ where 955 
  open MetricSpace M 956 
  field 957 
    isPositive : 0r < ν 958 
    isNewmanConstant : 959 
      ∀ (G : FiniteGroup) → 960 
      ∀ (g : FiniteGroup.Carrier G) → (g ≡ FiniteGroup.identity G → ⊥) → 961 
       962 
      ∀ (A : DiscreteAction G M) →  963 
       964 
      (∀ (x : FiniteGroup.Carrier G) → (x ≡ FiniteGroup.identity G → ⊥) → 965 
      ∃ λ (m : Carrier) → DiscreteAction.Map A x m ≡ m → ⊥) → 966 
       967 
      ∃ λ (n : ℕ) → ∃ λ (m : Carrier) → (n ≤ FiniteGroup.order G g) ∧ 968 
      (ν < distance m (DiscreteAction.Map A (FiniteGroup.power G g n) m)) 969 
 970 
record NewmanSpace : Set₁ where 971 
  field 972 
    asMetricSpace : MetricSpace 973 
    inhabitant : MetricSpace.Carrier asMetricSpace 974 
    newman-constant : ℝ 975 
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    isNewmanSpace : IsNewmanSpace asMetricSpace newman-constant 976 
  open MetricSpace asMetricSpace public 977 
  open IsNewmanSpace isNewmanSpace public 978 
 979 
-------------------------------------------------------------------------------- 980 
 981 
 982 
module IST.Safe.Validation where 983 
 984 
-- T. Chow on Hirsch-style criticism of mechanized proofs: 985 
-- "As you know, one thing that a skeptic can say even when shown a formal  986 
-- proof is, Yes, you've produced a formal proof of *something*, but what  987 
-- you've proved isn't the statement that we know [..]" 988 
 989 
-- To avoid Hirsch-style criticism, we give some basic examples to convince 990 
-- the reader that our notion of group, periodic group, finite group, metric 991 
-- space corresponds to the usual notions. 992 
 993 
open import Agda.Primitive 994 
open import IST.Safe.Base 995 
open import IST.Safe.Naturals 996 
open import IST.Safe.FiniteSets 997 
open import IST.Safe.Reals 998 
open import IST.Safe.Groups 999 
open import IST.Safe.GroupActions 1000 
open import IST.Safe.MetricSpaces 1001 
open import IST.Safe.NewmansTheorem 1002 
 1003 
-- ℤ/2ℤ forms a (finite, a fortiori periodic) group. 1004 
 1005 
data ℤ₂ : Set where 1006 
  0₂ : ℤ₂ 1007 
  1₂ : ℤ₂ 1008 
 1009 
infixl 10 _+₂_ 1010 
_+₂_ : ℤ₂ → ℤ₂ → ℤ₂ 1011 
0₂ +₂ y = y 1012 
1₂ +₂ 0₂ = 1₂ 1013 
1₂ +₂ 1₂ = 0₂ 1014 
 1015 
+₂-assoc : ∀ (x y z : ℤ₂) → x +₂ y +₂ z ≡ x +₂ (y +₂ z) 1016 
+₂-assoc 0₂ y z = refl 1017 
+₂-assoc 1₂ 0₂ z = refl 1018 
+₂-assoc 1₂ 1₂ 0₂ = refl 1019 
+₂-assoc 1₂ 1₂ 1₂ = refl 1020 
 1021 
+₂-unit-right : ∀ (x : ℤ₂) → x +₂ 0₂ ≡ x 1022 
+₂-unit-right 0₂ = refl 1023 
+₂-unit-right 1₂ = refl 1024 
 1025 
+₂-inverse : ∀ (x : ℤ₂) → x +₂ x ≡ 0₂ 1026 
+₂-inverse 0₂ = refl 1027 
+₂-inverse 1₂ = refl 1028 
 1029 
ℤ/2ℤ : Group 1030 
ℤ/2ℤ = record 1031 
         { Carrier = ℤ₂ 1032 
         ; identity = 0₂ 1033 
         ; operation = _+₂_ 1034 
         ; inverse = λ x → x 1035 
         ; isGroup = record 1036 
                       { assoc = +₂-assoc 1037 
                       ; unit-left = λ _ → refl 1038 
                       ; unit-right = +₂-unit-right 1039 
                       ; inverse-left = +₂-inverse 1040 
                       ; inverse-right = +₂-inverse 1041 
                       } 1042 
         } 1043 
 1044 
order₂ : ℤ₂ → ℕ 1045 
order₂ 0₂ = suc zero 1046 
order₂ 1₂ = suc (suc zero) 1047 
 1048 



 

137 

 

order₂-identity : (g : ℤ₂) → IsGroup.power (Group.isGroup ℤ/2ℤ) g (order₂ g) ≡ 0₂ 1049 
order₂-identity 0₂ = refl 1050 
order₂-identity 1₂ = refl 1051 
 1052 
order₂-nonzero : (g : ℤ₂) → order₂ g ≡ 0 → ⊥ 1053 
order₂-nonzero 0₂ () 1054 
order₂-nonzero 1₂ () 1055 
 1056 
order₂-minimal : (g : ℤ₂) → (n : ℕ) → IsGroup.power (Group.isGroup ℤ/2ℤ) g (suc n) ≡ 0₂ → order₂ 1057 
g ≤ suc n 1058 
order₂-minimal 0₂ n p = ≤-suc ≤-zero  1059 
order₂-minimal 1₂ (suc zero) refl = ≤-suc (≤-suc ≤-zero) 1060 
order₂-minimal 1₂ (suc (suc n)) p = ≤-suc (≤-suc ≤-zero) 1061 
 1062 
ℤ/2ℤ' : PeriodicGroup 1063 
ℤ/2ℤ' = record 1064 
          { Carrier = ℤ₂ 1065 
          ; identity = 0₂ 1066 
          ; operation = _+₂_ 1067 
          ; inverse = λ x → x 1068 
          ; isPeriodicGroup = record 1069 
                                { isGroup =  Group.isGroup ℤ/2ℤ 1070 
                                ; order = order₂ 1071 
                                ; order-identity = order₂-identity 1072 
                                ; order-minimal = order₂-minimal 1073 
                                ; order-nonzero = order₂-nonzero 1074 
                                } 1075 
          } 1076 
 1077 
-- the order is determined by the definition 1078 
 1079 
order₂-unique : ∀ (p : IsPeriodicGroup ℤ₂ 0₂ _+₂_ (λ x → x)) → 1080 
                (IsPeriodicGroup.order p 0₂ ≡ 1) ∧ (IsPeriodicGroup.order p 1₂ ≡ 2) 1081 
order₂-unique p = ord-0₂-equals-1 , ord-1₂-equals-2 where 1082 
  open IsPeriodicGroup p 1083 
  ord-0₂-equals-1 : order 0₂ ≡ 1 1084 
  ord-0₂-equals-1 = lemma (order 0₂) (order-minimal 0₂ zero refl) (order-nonzero 0₂) where 1085 
    lemma : ∀ x → x ≤ 1 → (x ≡ 0 → ⊥) → x ≡ 1 1086 
    lemma zero p q = absurd (q refl) 1087 
    lemma (suc .0) (≤-suc ≤-zero) q = refl 1088 
  ord-1₂-under-2 : order 1₂ ≤ 2 1089 
  ord-1₂-under-2 = order-minimal 1₂ (suc zero) refl 1090 
  ord-1₂-neq-1 : order 1₂ ≡ 1 → ⊥ 1091 
  ord-1₂-neq-1 assumption = absurd (0₂-neq-1₂ 0₂-equals-1₂) where 1092 
    step-1 : IsGroup.power isGroup 1₂ (order 1₂) ≡ 0₂ 1093 
    step-1 = order-identity 1₂ 1094 
    step-2 : IsGroup.power isGroup 1₂ 1 ≡ 0₂ 1095 
    step-2 = transport assumption {λ p → IsGroup.power isGroup 1₂ p ≡ 0₂} step-1 1096 
    step-3 : IsGroup.power isGroup 1₂ 1 ≡ 1₂ 1097 
    step-3 = refl 1098 
    0₂-neq-1₂ : 0₂ ≡ 1₂ → ⊥ 1099 
    0₂-neq-1₂ () 1100 
    0₂-equals-1₂ : 0₂ ≡ 1₂ 1101 
    0₂-equals-1₂ = tran (sym step-2) step-3 1102 
  ord-1₂-equals-2 : order 1₂ ≡ 2 1103 
  ord-1₂-equals-2 = lemma (order 1₂) ord-1₂-under-2 (order-nonzero 1₂) ord-1₂-neq-1 where 1104 
    lemma : ∀ x → x ≤ 2 → (x ≡ 0 → ⊥) → (x ≡ 1 → ⊥) → x ≡ 2 1105 
    lemma .0 ≤-zero q r = absurd (q refl) 1106 
    lemma .1 (≤-suc ≤-zero) q r = absurd (r refl) 1107 
    lemma .2 (≤-suc (≤-suc ≤-zero)) q r = refl 1108 
   1109 
 1110 
-- ℤ₂ forms a finite group 1111 
 1112 
list₂ : List ℤ₂ 1113 
list₂ = 0₂ ∷ (1₂ ∷ []) 1114 
 1115 
has-all-elements₂ : ∀ (x : ℤ₂) → x ∈ list₂ 1116 
has-all-elements₂ 0₂ = ∈-head 1117 
has-all-elements₂ 1₂ = ∈-tail ∈-head 1118 
 1119 
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finite₂ : IsFiniteSet ℤ₂ 1120 
finite₂ = record { list-of-elements = list₂ ; has-all-elements = has-all-elements₂ } 1121 
 1122 
ℤ/2ℤ'' : FiniteGroup 1123 
ℤ/2ℤ'' = record 1124 
           { Carrier = ℤ₂ 1125 
           ; identity = 0₂ 1126 
           ; operation = _+₂_ 1127 
           ; inverse = λ x → x 1128 
           ; isFiniteGroup = record 1129 
                               { isGroup = Group.isGroup ℤ/2ℤ 1130 
                               ; isFiniteSet = finite₂ 1131 
                               ; order = order₂ 1132 
                               ; order-identity = order₂-identity 1133 
                               ; order-minimal = order₂-minimal 1134 
                               ; order-nonzero = order₂-nonzero 1135 
                               } 1136 
           } 1137 
 1138 
-- The set of natural numbers is not finite. 1139 
 1140 
infinite-ℕ : IsFiniteSet ℕ → ⊥ 1141 
infinite-ℕ finite-ℕ = ≤-not-suc M contradiction where 1142 
  open IsFiniteSet finite-ℕ renaming (list-of-elements to list; has-all-elements to all) 1143 
  max : ∀ (x y : ℕ) → ∃ λ M → (x ≤ M) ∧ (y ≤ M) 1144 
  max zero y = y , ≤-zero , ≤-refl y 1145 
  max (suc x) zero = suc x , ≤-refl (suc x) , ≤-zero 1146 
  max (suc x) (suc y) with max x y 1147 
  max (suc x) (suc y) | M , x≤M , y≤M = suc M , ≤-suc x≤M , ≤-suc y≤M 1148 
  maximum : ∀ (nats : List ℕ) → ∃ λ M → ∀ z → z ∈ nats → z ≤ M 1149 
  maximum [] = zero , (λ x ()) 1150 
  maximum (x ∷ xs) with maximum xs 1151 
  maximum (x ∷ xs) | M , M-dominates-xs with max x M 1152 
  maximum (x ∷ xs) | M , M-dominates-xs | M' , x≤M' , M≤M' = M' , M'-dominates-xs where 1153 
    M'-dominates-xs : ∀ z → z ∈ (x ∷ xs) → z ≤ M' 1154 
    M'-dominates-xs z ∈-head = x≤M' 1155 
    M'-dominates-xs z (∈-tail p) = ≤-tran z M M' (M-dominates-xs z p) M≤M' 1156 
  M : ℕ 1157 
  M = proj₁ (maximum list) 1158 
  M-dominates-list : ∀ (x : ℕ) → x ∈ list → x ≤ M 1159 
  M-dominates-list = proj₂ (maximum list) 1160 
  M-largest : ∀ (x : ℕ) → x ≤ M 1161 
  M-largest x = M-dominates-list x (all x) 1162 
  contradiction : suc M ≤ M 1163 
  contradiction = M-largest (suc M) 1164 
 1165 
-- Metric spaces exist, in particular the discrete metric is a metric. 1166 
 1167 
discrete : ℤ₂ → ℤ₂ → ℝ 1168 
discrete 0₂ 0₂ = 0r 1169 
discrete 0₂ 1₂ = 1r 1170 
discrete 1₂ 0₂ = 1r 1171 
discrete 1₂ 1₂ = 0r 1172 
 1173 
discrete-nonnegative : ∀ (x y : ℤ₂) → discrete x y < 0r → ⊥ 1174 
discrete-nonnegative 0₂ 0₂ p = <-asym-1 0r 0r p refl 1175 
discrete-nonnegative 0₂ 1₂ p = <-asym-2 0r 1r <-nontrivial p 1176 
discrete-nonnegative 1₂ 0₂ p = <-asym-2 0r 1r <-nontrivial p 1177 
discrete-nonnegative 1₂ 1₂ p = <-asym-1 0r 0r p refl 1178 
 1179 
discrete-reflexive-1 : ∀ (x y : ℤ₂) → discrete x y ≡ 0r → x ≡ y 1180 
discrete-reflexive-1 0₂ 0₂ refl = refl 1181 
discrete-reflexive-1 0₂ 1₂ p = absurd (<-asym-1 0r 1r <-nontrivial (sym p)) 1182 
discrete-reflexive-1 1₂ 0₂ p = absurd (<-asym-1 0r 1r <-nontrivial (sym p)) 1183 
discrete-reflexive-1 1₂ 1₂ refl = refl 1184 
 1185 
discrete-reflexive-2 : ∀ (x : ℤ₂) → discrete x x ≡ 0r 1186 
discrete-reflexive-2 0₂ = refl 1187 
discrete-reflexive-2 1₂ = refl 1188 
 1189 
discrete-symmetry : ∀ (x y : ℤ₂) → discrete x y ≡ discrete y x 1190 
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discrete-symmetry 0₂ 0₂ = refl 1191 
discrete-symmetry 0₂ 1₂ = refl 1192 
discrete-symmetry 1₂ 0₂ = refl 1193 
discrete-symmetry 1₂ 1₂ = refl 1194 
 1195 
discrete-triangle : ∀ (x y z : ℤ₂) → discrete x z ≤ᵣ discrete x y + discrete y z 1196 
discrete-triangle 0₂ 0₂ 0₂ = inl (sym +-unit-left) 1197 
discrete-triangle 0₂ 0₂ 1₂ = inl (sym +-unit-left) 1198 
discrete-triangle 0₂ 1₂ 0₂ = inr pos-2r 1199 
discrete-triangle 0₂ 1₂ 1₂ = inl (sym +-unit-right) 1200 
discrete-triangle 1₂ 0₂ 0₂ = inl (sym +-unit-right) 1201 
discrete-triangle 1₂ 0₂ 1₂ = inr pos-2r 1202 
discrete-triangle 1₂ 1₂ 0₂ = inl (sym +-unit-left) 1203 
discrete-triangle 1₂ 1₂ 1₂ = inl (sym +-unit-left) 1204 
 1205 
ℤ₂-metric : MetricSpace 1206 
ℤ₂-metric = 1207 
  record { Carrier = ℤ₂ 1208 
         ; distance = discrete 1209 
         ; isMetricSpace = record 1210 
             { nonnegative = discrete-nonnegative 1211 
             ; reflexive-1 = discrete-reflexive-1 1212 
             ; reflexive-2 = discrete-reflexive-2 1213 
             ; symmetry = discrete-symmetry 1214 
             ; triangle-≤ᵣ = discrete-triangle 1215 
             } 1216 
         } 1217 
 1218 
-- Faithful, K-Lipschitz actions exist. 1219 
 1220 
act : ℤ₂ → ℤ₂ → ℤ₂ 1221 
act x y = x +₂ y 1222 
 1223 
act-identity : ∀ m → act 0₂ m ≡ m 1224 
act-identity = Group.unit-left ℤ/2ℤ 1225 
 1226 
act-operation : ∀ (g h : ℤ₂) → ∀ m → act g (act h m) ≡ act (g +₂ h) m 1227 
act-operation g h m = sym (+₂-assoc g h m) 1228 
 1229 
action₂ : GroupAction ℤ/2ℤ ℤ₂ 1230 
action₂ = record 1231 
  { Map = act 1232 
  ; isGroupAction = record 1233 
    { action-identity = act-identity 1234 
    ; action-operation = act-operation 1235 
    } 1236 
  } 1237 
 1238 
act-faithful : ∀ (g : ℤ₂) → (g ≡ 0₂ → ⊥) → ∃ λ (m : ℤ₂) → act g m ≡ m → ⊥ 1239 
act-faithful 0₂ p = absurd (p refl) 1240 
act-faithful 1₂ p = 1₂ , lemma 1₂ where 1241 
  lemma : ∀ x → act 1₂ x ≡ x → ⊥ 1242 
  lemma 0₂ () 1243 
  lemma 1₂ () 1244 
 1245 
K : ℝ 1246 
K = 1r 1247 
 1248 
act-lipschitz : ∀ (g : ℤ₂) → ∀ (x y : ℤ₂) → discrete (act g x) (act g y) ≤ᵣ (K · discrete x y) 1249 
act-lipschitz 0₂ 0₂ 0₂ = transport (sym (·-null-left {K})) {λ p → 0r ≤ᵣ p} (inl refl) 1250 
act-lipschitz 0₂ 0₂ 1₂ = transport (sym (·-unit-right {K})) {λ p → 1r ≤ᵣ p} (inl refl) 1251 
act-lipschitz 0₂ 1₂ 0₂ = transport (sym (·-unit-right {K})) {λ p → 1r ≤ᵣ p} (inl refl) 1252 
act-lipschitz 0₂ 1₂ 1₂ = transport (sym (·-null-left {K})) {λ p → 0r ≤ᵣ p} (inl refl) 1253 
act-lipschitz 1₂ 0₂ 0₂ = transport (sym (·-null-left {K})) {λ p → 0r ≤ᵣ p} (inl refl) 1254 
act-lipschitz 1₂ 0₂ 1₂ = transport (sym (·-unit-right {K})) {λ p → 1r ≤ᵣ p} (inl refl) 1255 
act-lipschitz 1₂ 1₂ 0₂ = transport (sym (·-unit-right {K})) {λ p → 1r ≤ᵣ p} (inl refl) 1256 
act-lipschitz 1₂ 1₂ 1₂ = transport (sym (·-null-left {K})) {λ p → 0r ≤ᵣ p} (inl refl) 1257 
 1258 
-- Newman spaces exist. 1259 
 1260 
nonzero-lemma : ∀ n → (n ≡ 0 → ⊥) → 1 ≤ n 1261 
nonzero-lemma zero p = absurd (p refl) 1262 
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nonzero-lemma (suc n) p = ≤-suc ≤-zero 1263 
 1264 
alt-lemma-1 : ∀ g → (g ≡ 0₂ → ⊥) → g ≡ 1₂ 1265 
alt-lemma-1 0₂ p = absurd (p refl) 1266 
alt-lemma-1 1₂ p = refl 1267 
 1268 
alt-lemma-0 : ∀ g → (g ≡ 1₂ → ⊥) → g ≡ 0₂ 1269 
alt-lemma-0 0₂ p = refl 1270 
alt-lemma-0 1₂ p = absurd (p refl) 1271 
 1272 
ℤ₂-newman : NewmanSpace 1273 
ℤ₂-newman = record 1274 
              { asMetricSpace = ℤ₂-metric 1275 
              ; inhabitant = 0₂ 1276 
              ; newman-constant = 1/2r 1277 
              ; isNewmanSpace = record 1278 
                { isPositive = pos-1/2r 1279 
                ; isNewmanConstant = newman 1280 
                } 1281 
              } where 1282 
  newman : (G : FiniteGroup) (g : FiniteGroup.Carrier G) → (g ≡ FiniteGroup.identity G → ⊥) → 1283 
           (A : DiscreteAction G ℤ₂-metric) → 1284 
           ( ∀ x → (x ≡ FiniteGroup.identity G → ⊥) → ∃ λ m → DiscreteAction.Map A x m ≡ m → ⊥) 1285 
→ 1286 
           ∃ λ n → ∃ λ m → (n ≤ FiniteGroup.order G g) ∧ 1287 
           (1/2r < MetricSpace.distance ℤ₂-metric m (DiscreteAction.Map A (FiniteGroup.power G g 1288 
n) m)) 1289 
  newman G g p A nontriv-A  with nontriv-A g p 1290 
  newman G g p A nontriv-A | 0₂ , q = 1 , 0₂ , nonzero-lemma _ step-1 , step-3 where 1291 
    step-1 : IsFiniteGroup.order (FiniteGroup.isFiniteGroup G) g ≡ 0 → ⊥ 1292 
    step-1 = FiniteGroup.order-nonzero G g 1293 
    m : ℤ₂ 1294 
    m = DiscreteAction.Map A (FiniteGroup.operation G g (FiniteGroup.identity G)) 0₂ 1295 
    m' : ℤ₂ 1296 
    m' = DiscreteAction.Map A g 0₂ 1297 
    m-equals-m' : m ≡ m' 1298 
    m-equals-m' = cong (λ z → DiscreteAction.Map A z 0₂) (FiniteGroup.unit-right G g) 1299 
    m'-equals-1₂ : m' ≡ 1₂ 1300 
    m'-equals-1₂ = alt-lemma-1 m' q 1301 
    1₂-equals-m : 1₂ ≡ m 1302 
    1₂-equals-m = sym (tran m-equals-m' m'-equals-1₂) 1303 
    step-2 : discrete 0₂ m ≡ 1r 1304 
    step-2 = transport 1₂-equals-m {λ z → discrete 0₂ z ≡ 1r} refl 1305 
    step-3 : 1/2r < discrete 0₂ m 1306 
    step-3 = transport (sym step-2) {λ z → 1/2r < z} 1/2r-less-than-1r 1307 
  newman G g p A nontriv-A | 1₂ , q = 1 , 1₂ , nonzero-lemma _ step-1 , step-3 where 1308 
    step-1 : IsFiniteGroup.order (FiniteGroup.isFiniteGroup G) g ≡ 0 → ⊥ 1309 
    step-1 = FiniteGroup.order-nonzero G g 1310 
    m : ℤ₂ 1311 
    m = DiscreteAction.Map A (FiniteGroup.operation G g (FiniteGroup.identity G)) 1₂ 1312 
    m' : ℤ₂ 1313 
    m' = DiscreteAction.Map A g 1₂ 1314 
    m-equals-m' : m ≡ m' 1315 
    m-equals-m' = cong (λ z → DiscreteAction.Map A z 1₂) (FiniteGroup.unit-right G g) 1316 
    m'-equals-0₂ : m' ≡ 0₂ 1317 
    m'-equals-0₂ = alt-lemma-0 m' q 1318 
    0₂-equals-m : 0₂ ≡ m 1319 
    0₂-equals-m = sym (tran m-equals-m' m'-equals-0₂) 1320 
    step-2 : discrete 1₂ m ≡ 1r 1321 
    step-2 = transport 0₂-equals-m {λ z → discrete 1₂ z ≡ 1r} refl 1322 
    step-3 : 1/2r < discrete 1₂ m 1323 
    step-3 = transport (sym step-2) {λ z → 1/2r < z} 1/2r-less-than-1r 1324 
 1325 
-------------------------------------------------------------------------------- 1326 
 1327 
 1328 
{-# OPTIONS --omega-in-omega #-} 1329 
 1330 
module IST.Base where 1331 
 1332 
open import Agda.Primitive 1333 
open import IST.Safe.Base public 1334 
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 1335 
-- We start by defining the sort of the external sets. 1336 
-- Internal sets belong to the first segment of the universe hierarchy, 1337 
-- while external sets belong to the second segment: 1338 
-- Set 0 : Set 1 : Set 2 : ...  Set ω : Set (ω + 1) : ... 1339 
-- \_________________________/  \_______________________/ 1340 
--      internal sets                external sets 1341 
-- Alas, Agda does not support higher segments of the hierarchy yet, 1342 
-- so we work under --omega-in-omega. Everything here should be typable 1343 
-- in the full hierarchy, however, by replacing some occurrences of 1344 
-- Set ω with Set (ω + 1). 1345 
 1346 
ESet : Setω 1347 
ESet = Setω 1348 
 1349 
ESet₁ : Setω 1350 
ESet₁ = Setω 1351 
 1352 
-- We postulate a predicate st(-) asserting that its argument is standard. 1353 
-- Note that the value of st(-) lives in the external hierarchy. 1354 
-- This ensures that the type (I → Set ℓ) ranges over internal predicates 1355 
-- only, whenever ℓ < ω. 1356 
 1357 
-- By declaring ST as a private data type, we ensure the following: 1358 
-- 1. st(x) is treated as a contractible type for all x. 1359 
-- 2. Outside of this module, the only way to produce a value of st(-) 1360 
--    is by using the rules/axioms presented here. 1361 
 1362 
private 1363 
  data ST {ℓ : Level} {S : Set ℓ} (x : S) : ESet where 1364 
    trust-me-its-standard : ST x 1365 
 1366 
st : {ℓ : Level} → {S : Set ℓ} → S → ESet 1367 
st = ST 1368 
 1369 
-- A Safe module does not have access to any extended features (st predicates, 1370 
-- IST axioms, Setω), so a top-level definition `t : T` in a Safe module 1371 
-- corresponds to a derivation `⊢ˢ t : T` in extended type theory. 1372 
-- By the admissibility of the St-Con rule, we can mark any such definition 1373 
-- standard. This is accomplished by opening SafeImportTools, and using 1374 
-- the provided constructor. 1375 
 1376 
module SafeImportTools where 1377 
  declared-in-safe-module : {ℓ : Level} {S : Set ℓ} (x : S) → st x 1378 
  declared-in-safe-module _ = trust-me-its-standard 1379 
 1380 
-- The internal hierarchy consists only of standard universes. This follows 1381 
-- from the admissibility of the St-Con rule. 1382 
 1383 
st-Set : {ℓ : Level} → st (Set ℓ) 1384 
st-Set = trust-me-its-standard 1385 
 1386 
-- FUNCTION TYPES -- 1387 
 1388 
-- We declare that the type former ∀ (and by extension →) preserve standardness. 1389 
-- This is an easy consequence of the Transfer rules. 1390 
 1391 
st-→ : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → st A → (B : Set ℓ₂) → st B → st (A → B) 1392 
st-→ A st-A B st-B = trust-me-its-standard 1393 
 1394 
st-∀ : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → st A → (B : A → Set ℓ₂) → st B → st (∀ a → B a) 1395 
st-∀ A st-A B st-B = trust-me-its-standard 1396 
 1397 
-- Function application preserves standardness, i.e. if f and x are standard, 1398 
-- then so is f(x). Notice that this principle occurs as a theorem in Nelson's 1399 
-- Internal Set Theory, and follows from St-Fun for our extended type theory. 1400 
-- We add variations for dependent and simple function types, with or without 1401 
-- hidden arguments. 1402 
 1403 
st-fun-d : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → (B : A → Set ℓ₂) → 1404 
         (f : (x : A) → B x) → (x : A) → 1405 
         st f → st x → st (f x) 1406 
st-fun-d A B f x st-f st-x = trust-me-its-standard 1407 
 1408 
st-fun-hd : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → (B : A → Set ℓ₂) → 1409 
           (f : {x : A} → B x) → (x : A) → 1410 
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           st (λ x → f {x}) → st x → st (f {x}) 1411 
st-fun-hd A B f x st-f st-x = st-fun-d A B (λ x → f {x}) x st-f st-x 1412 
 1413 
st-fun : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → (B : Set ℓ₂) → 1414 
         (f : A → B) → (x : A) → 1415 
         st f → st x → st (f x) 1416 
st-fun A B f x st-f st-x = st-fun-d A (λ _ → B) f x st-f st-x 1417 
 1418 
st-fun-h : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → (B : Set ℓ₂) → 1419 
           (f : {a : A} → B) → (x : A) → 1420 
           st (λ x → f {x}) → st x → st (f {x}) 1421 
st-fun-h A B f x st-f st-x = st-fun A B (λ x → f {x}) x st-f st-x 1422 
 1423 
-- That leaves function abstraction. 1424 
-- It would be convenient to have the following converse: 1425 
--   st-λ : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → st A → (B : A → Set ℓ₂) → (∀ a → st a → st (B a)) → 1426 
st B 1427 
--   st-λ A st-A B st-Ba = trust-me-its-standard 1428 
-- Alas, this principle does not hold. Consider e.g. 1429 
-- the function f : ℕ → {0,1} with f(n)=0 ↔ n=ω, which is not 1430 
-- standard, but takes standard values everywhere. 1431 
 1432 
-- So how do we prove Set-types standard? In IST, we do not 1433 
-- have to deal with this problem, since we normally encode 1434 
-- functions as their graphs (sets of ordered pairs), and IST 1435 
-- already provides rules for the standardness of sets. 1436 
 1437 
-- In Agda, functions do not coincide with sets of ordered pairs, 1438 
-- and we need to ensure that all MLTT-definable functions are 1439 
-- indeed standard, even if we define them in terms of standard 1440 
-- objects constructed by Standardization, i.e. necessarily 1441 
-- outside of a Safe module. . To accomplish this, we can make the following observations: 1442 
-- 1. All combinatorial (closed) λ-terms are constructible in the Safe fragment, and hence 1443 
standard. 1444 
-- 2. The eliminators of all data types available in the Safe fragment are themselves standard. 1445 
-- 3. Applying a standard value to a standard function yields a standard result. 1446 
-- These rules exhaust all possible ways of defining functions in MLTT. 1447 
 1448 
-- E.g. to prove that (λi. _=_ (f i) (g i)) is standard, we can 1449 
-- argue as follows: 1450 
-- 1. (\a.\b.\c. a b c) is a purely combinatorial λ-term, so standard. 1451 
-- 2. (\b.\c _=_ b c) is standard when both _=_ and (\a.\b.\c. a b c) are standard. 1452 
-- 3. (\c _=_ (f i) c) is standard when both (f i) and (\b.\c _=_ b c) are standard. 1453 
-- 4. (_=_ (f i) (g i)) is standard when both (g i) and (\c. _=_ (f i) (g i)) are standard. 1454 
-- So we'd conclude that the inhabitant (λi. _=_ (f i) (g i)) 1455 
-- of the type Set is standard as long as (f i) and (g i) are. 1456 
 1457 
-- We face one problem: the difficulty of encoding the 1458 
-- standardness of combinatorial λ-terms in Agda. To simplify 1459 
-- our life, we pre-declare instances that we actually use 1460 
-- during the present development. 1461 
 1462 
st-abs-5 : (I : Set) → st (abs-5 I) 1463 
st-abs-5 I = trust-me-its-standard 1464 
 1465 
st-abs-4 : st abs-4 1466 
st-abs-4 = trust-me-its-standard 1467 
 1468 
st-abs-K : {ℓ₁ ℓ₂ : Level} (A : Set ℓ₁) (B : Set ℓ₂) → st (abs-K A B) 1469 
st-abs-K A B = trust-me-its-standard 1470 
 1471 
st-abs-K-h : {ℓ₁ ℓ₂ : Level} (A : Set ℓ₁) (B : Set ℓ₂) → st (abs-K-h A B) 1472 
st-abs-K-h A B = trust-me-its-standard 1473 
 1474 
 1475 
-- TRIVIAL DATA TYPES -- 1476 
 1477 
absurd* : {ℓ : Level} → ⊥ → ∀ {A : ESet} → A 1478 
absurd* () 1479 
 1480 
st-⊥ : st ⊥ 1481 
st-⊥ = trust-me-its-standard 1482 
 1483 
st-⊤ : st ⊤ 1484 
st-⊤ = trust-me-its-standard 1485 
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 1486 
st-tt : st tt 1487 
st-tt = trust-me-its-standard 1488 
 1489 
 1490 
-- EXISTENTIAL QUANTIFICATION -- 1491 
 1492 
-- Now we deal with existential quantifiers. Alas, unlike the ∀ 1493 
-- case, Agda does not provide a builtin for this, so we need to 1494 
-- declare two variants, ∃ (for the internal hierarchy) and ∃* 1495 
-- (for the external hierarchy). 1496 
 1497 
st-∃ : ∀ {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → ∃ {ℓ₁} {ℓ₂} {A}) 1498 
st-∃ = trust-me-its-standard 1499 
 1500 
st-∃-full : ∀ {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → st (∃ {ℓ₁} {ℓ₂} {A}) 1501 
st-∃-full = trust-me-its-standard 1502 
 1503 
st-∃-_,_ : ∀ {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → λ (B : A → Set ℓ₂) → ∃._,_ {ℓ₁} {ℓ₂} {A} {B}) 1504 
st-∃-_,_ = trust-me-its-standard 1505 
 1506 
st-∃-_,_-full : ∀ {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → {B : A → Set ℓ₂} → st (∃._,_ {ℓ₁} {ℓ₂} {A} {B}) 1507 
st-∃-_,_-full = trust-me-its-standard 1508 
 1509 
st-∃-proj₁ : ∀ {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → λ (B : A → Set ℓ₂) → ∃.proj₁ {ℓ₁} {ℓ₂} {A} 1510 
{B}) 1511 
st-∃-proj₁ = trust-me-its-standard 1512 
 1513 
st-∃-proj₁-full : ∀ {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → {B : A → Set ℓ₂} → st (∃.proj₁ {ℓ₁} {ℓ₂} {A} 1514 
{B}) 1515 
st-∃-proj₁-full = trust-me-its-standard 1516 
 1517 
st-∃-proj₂ : ∀ {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → λ (B : A → Set ℓ₂) → ∃.proj₂ {ℓ₁} {ℓ₂} {A} 1518 
{B}) 1519 
st-∃-proj₂ = trust-me-its-standard 1520 
 1521 
st-∃-proj₂-full : ∀ {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → {B : A → Set ℓ₂} → st (∃.proj₂ {ℓ₁} {ℓ₂} {A} 1522 
{B}) 1523 
st-∃-proj₂-full = trust-me-its-standard 1524 
 1525 
st-∧ : ∀ {ℓ₁ ℓ₂ : Level} → st (_∧_ {ℓ₁} {ℓ₂}) 1526 
st-∧ = trust-me-its-standard 1527 
 1528 
record ∃* {ℓ : Level} {A : Set ℓ} (B : A → ESet) : ESet where 1529 
  constructor _,_ 1530 
  field 1531 
    proj₁ : A 1532 
    proj₂ : B proj₁ 1533 
open ∃* public 1534 
 1535 
record _*∧*_ (A B : ESet) : ESet where 1536 
  constructor _,_ 1537 
  field 1538 
    proj₁ : A 1539 
    proj₂ : B 1540 
open _*∧*_ public 1541 
 1542 
 1543 
-- LISTS / FINITE SETS -- 1544 
 1545 
st-List : {ℓ : Level} → st (List {ℓ}) 1546 
st-List = trust-me-its-standard 1547 
 1548 
st-[] : {ℓ : Level} → st (λ {A : Set ℓ} → [] {ℓ} {A}) 1549 
st-[] = trust-me-its-standard 1550 
 1551 
st-∷ : {ℓ : Level} → st (λ {A : Set ℓ} → _∷_ {ℓ} {A}) 1552 
st-∷ = trust-me-its-standard 1553 
 1554 
 1555 
-- DISJUNCTION -- 1556 
 1557 
-- We could encode the disjunction A ∨ B using ¬ A → B, or 1558 
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-- in a more constructive spirit as ∃n:ℕ. (n = 0 → A) ∧ (n ≠ 0) → B, 1559 
-- but we find it more legible to use the inductive definition, along 1560 
-- with a strong elimination principle. 1561 
 1562 
st-∨ : {ℓ₁ ℓ₂ : Level} → st (_∨_ {ℓ₁} {ℓ₂}) 1563 
st-∨ = trust-me-its-standard 1564 
 1565 
st-inl : {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → λ {B : Set ℓ₂} → inl {ℓ₁} {ℓ₂} {A} {B}) 1566 
st-inl = trust-me-its-standard 1567 
 1568 
st-inr : {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → λ {B : Set ℓ₂} → inr {ℓ₁} {ℓ₂} {A} {B}) 1569 
st-inr = trust-me-its-standard 1570 
 1571 
by-cases* : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {B : Set ℓ₂} → 1572 
           (P : ESet) → (A → P) → (B → P) → A ∨ B → P 1573 
by-cases* P A-implies-P B-implies-P (inl a) = A-implies-P a 1574 
by-cases* P A-implies-P B-implies-P (inr b) = B-implies-P b 1575 
 1576 
 1577 
-- EQUALITY -- 1578 
 1579 
-- We introduced equality only for the internal hierarchy, at 1580 
-- least for now. This satisfies the usual principles. 1581 
-- We declare a variant of transport (equality preserves all 1582 
-- properties) that works for external predicates. Note that 1583 
-- this is a logical axiom in IST, which makes it invisible. 1584 
-- Technically, one should have x = y → st(x) → st(y) as an 1585 
-- axiom even there, we fix this omission in our version 1586 
-- of the Nelson translation. 1587 
 1588 
transport* : {ℓ : Level} {A : Set ℓ} {x y : A} → x ≡ y → ∀ {φ : A → Setω} → φ x → φ y 1589 
transport* refl z = z 1590 
 1591 
st-≡ : {ℓ : Level} → st (λ {A : Set ℓ} → _≡_ {ℓ} {A}) 1592 
st-≡ = trust-me-its-standard 1593 
 1594 
st-≡-full : {ℓ : Level} → {A : Set ℓ} → st (_≡_ {ℓ} {A}) 1595 
st-≡-full = trust-me-its-standard 1596 
 1597 
st-refl : {ℓ : Level} → st (λ {A : Set ℓ} → λ {x : A} → refl {ℓ} {A} {x}) 1598 
st-refl = trust-me-its-standard 1599 
 1600 
st-≡-ind : {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → λ {x : A} → ≡-ind {ℓ₁} {ℓ₂} {A} {x}) 1601 
st-≡-ind = trust-me-its-standard 1602 
 1603 
 1604 
-- AXIOM: TRANSFER -- 1605 
 1606 
-- TransferPred implements the Transfer rules Dfun and Dsum. 1607 
-- This has the advantage that it does no branching. We do not 1608 
-- rely on Transfer for non-prenex formulae in our development, 1609 
-- so this suffices. 1610 
 1611 
-- Notice that TransferPred does not satisfy strict positivity. 1612 
-- We do not export an elimination rule, so we cannot use it in 1613 
-- a dangerous/inconsistent way. If the need for an eliminator 1614 
-- ever arises, we can make it strictly positive by indexing 1615 
-- over the number of free variables. 1616 
 1617 
data internal {ℓ : Level} (φ : Set ℓ) : ESet where 1618 
  fromInternal : φ → internal φ 1619 
 1620 
toInternal : {ℓ : Level} → (φ : Set ℓ) → internal φ → φ 1621 
toInternal φ (fromInternal x) = x 1622 
 1623 
data TransferPred : ESet where 1624 
  ∀' : (A : Set) → ((φ : A) → TransferPred) → TransferPred 1625 
  ∃' : (E : Set) → ((φ : E) → TransferPred) → TransferPred 1626 
  int' : (φ : Set) → TransferPred 1627 
 1628 
toTransferI : TransferPred → Set 1629 
toTransferI (∀' A φ) = ∀ (a : A) → toTransferI (φ a) 1630 
toTransferI (∃' E φ) = ∃ λ (e : E) → toTransferI (φ e) 1631 
toTransferI (int' φ) = φ 1632 
 1633 
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toTransferE : TransferPred → ESet 1634 
toTransferE (∀' A φ) = ∀ (a : A) → st a → toTransferE (φ a) 1635 
toTransferE (∃' E φ) = ∃* λ (e : E) → st e *∧* toTransferE (φ e) 1636 
toTransferE (int' φ) = internal φ 1637 
 1638 
std-params : TransferPred → ESet 1639 
std-params (∀' A φ) = st A *∧* ∀ (a : A) → st a → std-params (φ a) 1640 
std-params (∃' E φ) = st E *∧* ∀ (e : E) → st e → std-params (φ e) 1641 
std-params (int' φ) = st φ 1642 
 1643 
postulate 1644 
  ax-Transfer-IE : (φ : TransferPred) → toTransferI φ → std-params φ → toTransferE φ 1645 
  ax-Transfer-EI : (φ : TransferPred) → toTransferE φ → std-params φ → toTransferI φ 1646 
 1647 
 1648 
-- AXIOM: Standardization -- 1649 
 1650 
postulate 1651 
  ⟦_⟧ : ∀ {ℓ} → {A : Set ℓ} → (A → ESet) → A → Set ℓ 1652 
  ax-Standard-1 : ∀ {ℓ} → {A : Set ℓ} → (φ : A → ESet) → st ⟦ φ ⟧ 1653 
  ax-Standard-2 : ∀ {ℓ} → {A : Set ℓ} → (φ : A → ESet) → 1654 
    (∀ x → st x → ⟦ φ ⟧ x → φ x) 1655 
  ax-Standard-3 : ∀ {ℓ} → {A : Set ℓ} → (φ : A → ESet) → 1656 
    (∀ x → st x → φ x → ⟦ φ ⟧ x) 1657 
 1658 
 1659 
-- AXIOM: Idealization -- 1660 
 1661 
postulate 1662 
  ax-Ideal-1 : {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set ℓ₁} {B : Set ℓ₂} (φ : A → B → Set ℓ₃) → 1663 
               (∀ (xs : List A) → st xs → ∃ λ b → ∀ (x : A) → x ∈ xs → φ x b) → 1664 
               ∃* λ b → ∀ (x : A) → st x → φ x b 1665 
  ax-Ideal-2 : {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set ℓ₁} {B : Set ℓ₂} → (φ : A → B → Set ℓ₃) → 1666 
               (∃* λ b → ∀ (x : A) → st x → φ x b) → 1667 
               ∀ (xs : List A) → st xs → ∃ λ b → ∀ (x : A) → x ∈ xs → φ x b 1668 
 1669 
-------------------------------------------------------------------------------- 1670 
 1671 
 1672 
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1673 
 1674 
module IST.Util where 1675 
 1676 
-- We prove a bunch of useful lemmata. 1677 
 1678 
open import Agda.Primitive 1679 
open import IST.Safe.Util public 1680 
 1681 
open import IST.Base 1682 
 1683 
-- If x and y are standard, then so is (x , y). 1684 
lemma-pairing : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {B : Set ℓ₂} → (x : A) → (y : B) → 1685 
                st {ℓ₁} {A} x → st {ℓ₂} {B} y → st {ℓ₁ ⊔ ℓ₂} {A ∧ B} (x , y) 1686 
lemma-pairing {ℓ₁} {ℓ₂} {A} {B} x y st-x st-y = st-pair-x-y where 1687 
  pair : A → B → A ∧ B 1688 
  pair = _,_ 1689 
  st-pair : st pair 1690 
  st-pair = st-∃-_,_-full 1691 
  st-pair-x : st (pair x) 1692 
  st-pair-x = st-fun A (B → A ∧ B) pair x st-pair st-x 1693 
  st-pair-x-y : st (pair x y) 1694 
  st-pair-x-y = st-fun B (A ∧ B) (pair x) y st-pair-x st-y 1695 
 1696 
lemma-proj₁ : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {B : Set ℓ₂} → (ab : A ∧ B) → st ab → st (proj₁ ab) 1697 
lemma-proj₁ {ℓ₁} {ℓ₂} {A} {B} ab st-ab = st-sproj-ab where 1698 
  sproj : A ∧ B → A 1699 
  sproj = proj₁ 1700 
  st-sproj : st sproj 1701 
  st-sproj = st-∃-proj₁-full 1702 
  st-sproj-ab : st (sproj ab) 1703 
  st-sproj-ab = st-fun _ _ sproj ab st-sproj st-ab 1704 
 1705 
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lemma-proj₁-d : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {B : A → Set ℓ₂} → (ab : ∃ λ a → B a) → st ab → st 1706 
(proj₁ ab) 1707 
lemma-proj₁-d {ℓ₁} {ℓ₂} {A} {B} ab st-ab = st-sproj-ab where 1708 
  sproj : (∃ λ a → B a) → A 1709 
  sproj = proj₁ 1710 
  st-sproj : st sproj 1711 
  st-sproj = st-∃-proj₁-full 1712 
  st-sproj-ab : st (sproj ab) 1713 
  st-sproj-ab = st-fun _ _ sproj ab st-sproj st-ab 1714 
 1715 
lemma-proj₂ : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {B : Set ℓ₂} → (ab : A ∧ B) → st ab → st (proj₂ ab) 1716 
lemma-proj₂ {ℓ₁} {ℓ₂} {A} {B} ab st-ab = st-sproj-ab where 1717 
  sproj : A ∧ B → B 1718 
  sproj = proj₂ 1719 
  st-sproj : st sproj 1720 
  st-sproj = st-∃-proj₂-full 1721 
  st-sproj-ab : st (sproj ab) 1722 
  st-sproj-ab = st-fun _ _ sproj ab st-sproj st-ab 1723 
 1724 
-- If b is standard, then so is any constant function returning b. 1725 
lemma-constfun : {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → {B : Set ℓ₂} → (b : B) → st b → st (λ (a : A) → 1726 
b) 1727 
lemma-constfun {_} {_} {A} {B} b st-b = st-K-b where 1728 
  K : B → A → B 1729 
  K x y = x 1730 
  st-K : st K 1731 
  st-K = st-abs-K B A 1732 
  st-K-b : st (K b) 1733 
  st-K-b = st-fun _ _ K b st-K st-b 1734 
 1735 
lemma-constfun-h : {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → {B : Set ℓ₂} → (b : B) → st b → st (λ {a : A} 1736 
→ b) 1737 
lemma-constfun-h {ℓ₁} {ℓ₂} {A} {B} b st-b = st-K-b where 1738 
  K : B → {a : A} → B 1739 
  K x {y} = x 1740 
  st-K : st K 1741 
  st-K = st-abs-K-h B A 1742 
  st-K-b : st (λ {a : A} → K b {a}) 1743 
  st-K-b = st-fun _ _ K b st-K st-b 1744 
 1745 
-------------------------------------------------------------------------------- 1746 
 1747 
 1748 
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1749 
 1750 
module IST.Naturals where 1751 
 1752 
open import Agda.Primitive 1753 
open import IST.Safe.Naturals public 1754 
 1755 
open import IST.Base 1756 
open SafeImportTools 1757 
 1758 
st-ℕ : st {lsuc lzero} ℕ 1759 
st-ℕ = declared-in-safe-module ℕ 1760 
 1761 
st-zero : st zero 1762 
st-zero = declared-in-safe-module zero 1763 
 1764 
st-suc : st suc 1765 
st-suc = declared-in-safe-module suc 1766 
 1767 
st-ℕ-induction : {ℓ : Level} → st λ {φ} → ℕ-induction {ℓ} {φ} 1768 
st-ℕ-induction {ℓ} = declared-in-safe-module λ {φ} → ℕ-induction {ℓ} {φ} 1769 
 1770 
st-ℕ-induction-full : {ℓ : Level} → (φ : ℕ → Set ℓ) → st (ℕ-induction {ℓ} {φ}) 1771 
st-ℕ-induction-full _ = declared-in-safe-module ℕ-induction 1772 
 1773 
st-≤ : st _≤_ 1774 
st-≤ = declared-in-safe-module _≤_ 1775 
 1776 
external-induction : {φ : ℕ → ESet} → φ zero → (∀ k → st k → φ k → φ (suc k)) → ∀ n → st n → φ 1777 
n 1778 
external-induction {φ} base-case inductive-case n st-n = 1779 
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  ax-Standard-2 φ n st-n (ψ-forall n) where 1780 
  ψ : ℕ → Set 1781 
  ψ = ⟦ φ ⟧ 1782 
  st-ψ : st ψ 1783 
  st-ψ = ax-Standard-1 φ 1784 
  ψ-base : ψ zero 1785 
  ψ-base = ax-Standard-3 φ zero st-zero base-case 1786 
  ψ-inductive-st : ∀ k → st k → ψ k → ψ (suc k) 1787 
  ψ-inductive-st k st-k ψ-k = 1788 
    ax-Standard-3 φ (suc k) (st-fun _ _ suc k st-suc st-k) (inductive-case k st-k (ax-Standard-2 1789 
φ k st-k ψ-k)) 1790 
  ψ-inductive : ∀ k → ψ k → ψ (suc k) 1791 
  ψ-inductive = ax-Transfer-EI (∀' ℕ (λ k → int' (ψ k → ψ (suc k)))) 1792 
    (λ k st-k → fromInternal (ψ-inductive-st k st-k)) 1793 
    (st-ℕ , λ a st-a → st-→ (⟦ φ ⟧ a) (st-fun _ _ ψ a st-ψ st-a) 1794 
    (⟦ φ ⟧ (suc a)) (st-fun _ _ ψ (suc a) st-ψ (st-fun _ _ suc a st-suc st-a))) 1795 
  ψ-forall : ∀ n → ψ n 1796 
  ψ-forall = ℕ-induction ψ-base ψ-inductive 1797 
 1798 
bounded-st : ∀ (b : ℕ) → st b → ∀ (n : ℕ) → n ≤ b → st n 1799 
bounded-st = external-induction {λ b → ∀ m → m ≤ b → st m} base-case inductive-case where 1800 
  base-case : ∀ m → m ≤ zero → st m 1801 
  base-case m m≤0 = transport* (sym (≤-than-zero m m≤0)) {λ n → st {lzero} {ℕ} n} st-zero 1802 
  inductive-case : ∀ k → st k → (∀ m → m ≤ k → st m) → ∀ n → n ≤ suc k → st n 1803 
  inductive-case k st-k inductive-hypothesis n n≤k+1 = 1804 
    by-cases* {lzero} {lzero} {n ≤ k} (st n) case-A case-B (≤-match n k n≤k+1) where 1805 
      case-A : n ≤ k → st n 1806 
      case-A = inductive-hypothesis n 1807 
      st-k+1 : st (suc k) 1808 
      st-k+1 = st-fun _ _ suc k st-suc st-k 1809 
      case-B : n ≡ suc k → st n 1810 
      case-B n-equals-k+1 = transport* (sym n-equals-k+1) {λ n → st {lzero} {ℕ} n} st-k+1 1811 
 1812 
-------------------------------------------------------------------------------- 1813 
 1814 
 1815 
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1816 
 1817 
module IST.FiniteSets where 1818 
 1819 
open import Agda.Primitive 1820 
open import IST.Safe.FiniteSets public 1821 
 1822 
open import IST.Base 1823 
open SafeImportTools 1824 
 1825 
st-FiniteSet : st FiniteSet 1826 
st-FiniteSet = declared-in-safe-module FiniteSet 1827 
 1828 
st-FiniteSet-Carrier : st FiniteSet.Carrier 1829 
st-FiniteSet-Carrier = declared-in-safe-module FiniteSet.Carrier 1830 
 1831 
-------------------------------------------------------------------------------- 1832 
 1833 
 1834 
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1835 
 1836 
module IST.Reals where 1837 
 1838 
open import IST.Safe.Reals public 1839 
 1840 
open import IST.Base 1841 
open SafeImportTools 1842 
 1843 
st-ℝ : st ℝ 1844 
st-ℝ = declared-in-safe-module ℝ 1845 
 1846 
st-+ : st _+_ 1847 
st-+ = declared-in-safe-module _+_ 1848 
 1849 
st-minus : st minus 1850 
st-minus = declared-in-safe-module minus 1851 
 1852 
st-· : st _·_ 1853 
st-· = declared-in-safe-module _·_ 1854 
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 1855 
st-inv : st inv 1856 
st-inv = declared-in-safe-module inv 1857 
 1858 
st-< : st _<_ 1859 
st-< = declared-in-safe-module _<_ 1860 
 1861 
st-≤ᵣ : st _≤ᵣ_ 1862 
st-≤ᵣ = declared-in-safe-module _≤ᵣ_ 1863 
 1864 
st-0r : st 0r 1865 
st-0r = declared-in-safe-module 0r 1866 
 1867 
st-1r : st 1r 1868 
st-1r = declared-in-safe-module 1r 1869 
 1870 
st-inv-v : ∀ x → (e : x ≠ 0r) → st x → st (inv x e) 1871 
st-inv-v x e _ = declared-in-safe-module (inv x e) 1872 
 1873 
st-2r : st 2r 1874 
st-2r = st-fun _ _ (_+_ 1r) 1r (st-fun _ _ _+_ 1r st-+ st-1r) st-1r 1875 
 1876 
st-1/2r : st 1/2r 1877 
st-1/2r = st-inv-v 2r (λ _ → pos-2r) st-2r 1878 
 1879 
st-/2r-v : (x : ℝ) → st x → st (x /2r) 1880 
st-/2r-v x st-x = st-fun _ _ (_·_ 1/2r) x (st-fun _ _ _·_ 1/2r st-· st-1/2r) st-x 1881 
 1882 
-------------------------------------------------------------------------------- 1883 
 1884 
 1885 
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1886 
 1887 
module IST.Groups where 1888 
 1889 
open import IST.Safe.Groups public 1890 
 1891 
open import IST.Base 1892 
open SafeImportTools 1893 
 1894 
st-Group : st Group 1895 
st-Group = declared-in-safe-module Group 1896 
 1897 
st-Group-Carrier : st Group.Carrier 1898 
st-Group-Carrier = declared-in-safe-module Group.Carrier 1899 
 1900 
st-Group-identity : st Group.identity 1901 
st-Group-identity = declared-in-safe-module Group.identity 1902 
 1903 
st-Group-operation : st Group.operation 1904 
st-Group-operation = declared-in-safe-module Group.operation 1905 
 1906 
st-Group-inverse : st Group.inverse 1907 
st-Group-inverse = declared-in-safe-module Group.inverse 1908 
 1909 
st-Group-power : st Group.power 1910 
st-Group-power = declared-in-safe-module Group.power 1911 
 1912 
st-FiniteGroup : st FiniteGroup 1913 
st-FiniteGroup = declared-in-safe-module FiniteGroup 1914 
 1915 
st-FiniteGroup-Carrier : st FiniteGroup.Carrier 1916 
st-FiniteGroup-Carrier = declared-in-safe-module FiniteGroup.Carrier 1917 
 1918 
st-FiniteGroup-identity : st FiniteGroup.identity 1919 
st-FiniteGroup-identity = declared-in-safe-module FiniteGroup.identity 1920 
 1921 
st-FiniteGroup-operation : st FiniteGroup.operation 1922 
st-FiniteGroup-operation = declared-in-safe-module FiniteGroup.operation 1923 
 1924 
st-FiniteGroup-inverse : st FiniteGroup.inverse 1925 
st-FiniteGroup-inverse = declared-in-safe-module FiniteGroup.inverse 1926 
 1927 
st-FiniteGroup-order : st FiniteGroup.order 1928 
st-FiniteGroup-order = declared-in-safe-module FiniteGroup.order 1929 
 1930 



 

149 

 

st-FiniteGroup-power : st FiniteGroup.power 1931 
st-FiniteGroup-power = declared-in-safe-module FiniteGroup.power 1932 
 1933 
 1934 
st-PeriodicGroup : st PeriodicGroup 1935 
st-PeriodicGroup = declared-in-safe-module PeriodicGroup 1936 
 1937 
st-PeriodicGroup-Carrier : st PeriodicGroup.Carrier 1938 
st-PeriodicGroup-Carrier = declared-in-safe-module PeriodicGroup.Carrier 1939 
 1940 
st-PeriodicGroup-identity : st PeriodicGroup.identity 1941 
st-PeriodicGroup-identity = declared-in-safe-module PeriodicGroup.identity 1942 
 1943 
st-PeriodicGroup-operation : st PeriodicGroup.operation 1944 
st-PeriodicGroup-operation = declared-in-safe-module PeriodicGroup.operation 1945 
 1946 
st-PeriodicGroup-inverse : st PeriodicGroup.inverse 1947 
st-PeriodicGroup-inverse = declared-in-safe-module PeriodicGroup.inverse 1948 
 1949 
st-PeriodicGroup-order : st PeriodicGroup.order 1950 
st-PeriodicGroup-order = declared-in-safe-module PeriodicGroup.order 1951 
 1952 
st-PeriodicGroup-power : st PeriodicGroup.power 1953 
st-PeriodicGroup-power = declared-in-safe-module PeriodicGroup.power 1954 
 1955 
-------------------------------------------------------------------------------- 1956 
 1957 
 1958 
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1959 
 1960 
module IST.MetricSpaces where 1961 
 1962 
open import Agda.Primitive 1963 
open import IST.Safe.MetricSpaces public 1964 
 1965 
open import IST.Base 1966 
open SafeImportTools 1967 
 1968 
st-MetricSpace : st MetricSpace 1969 
st-MetricSpace = declared-in-safe-module MetricSpace 1970 
 1971 
st-MetricSpace-Carrier : st MetricSpace.Carrier 1972 
st-MetricSpace-Carrier = declared-in-safe-module MetricSpace.Carrier 1973 
 1974 
st-MetricSpace-distance : st MetricSpace.distance 1975 
st-MetricSpace-distance = declared-in-safe-module MetricSpace.distance 1976 
 1977 
st-MetricSpace-Carrier-full : (M : MetricSpace) → st M → st (MetricSpace.Carrier M) 1978 
st-MetricSpace-Carrier-full M st-M = st-fun _ _ MetricSpace.Carrier M st-MetricSpace-Carrier st-1979 
M 1980 
 1981 
st-MetricSpace-distance-full : (M : MetricSpace) → st M → st (MetricSpace.distance M) 1982 
st-MetricSpace-distance-full M st-M = declared-in-safe-module (MetricSpace.distance M)  1983 
 1984 
-------------------------------------------------------------------------------- 1985 
 1986 
 1987 
module IST.GroupActions where 1988 
 1989 
open import IST.Safe.GroupActions public 1990 
 1991 
-------------------------------------------------------------------------------- 1992 
 1993 
 1994 
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1995 
 1996 
module IST.NewmansTheorem where 1997 
 1998 
open import Agda.Primitive 1999 
open import IST.Safe.NewmansTheorem public 2000 
 2001 
open import IST.Base 2002 
open SafeImportTools 2003 
 2004 
st-NewmanSpace : st NewmanSpace 2005 
st-NewmanSpace = declared-in-safe-module NewmanSpace 2006 
 2007 
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st-NewmanSpace-asMetricSpace : st NewmanSpace.asMetricSpace 2008 
st-NewmanSpace-asMetricSpace = declared-in-safe-module NewmanSpace.asMetricSpace 2009 
 2010 
st-NewmanSpace-inhabitant : st NewmanSpace.inhabitant 2011 
st-NewmanSpace-inhabitant = declared-in-safe-module NewmanSpace.inhabitant 2012 
 2013 
st-NewmanSpace-newman-constant : st NewmanSpace.newman-constant 2014 
st-NewmanSpace-newman-constant = declared-in-safe-module NewmanSpace.newman-constant 2015 
 2016 
-------------------------------------------------------------------------------- 2017 
 2018 
 2019 
{-# OPTIONS --omega-in-omega #-} 2020 
 2021 
-- TODO: Make sure that this confirms to the new coding standards. 2022 
-- This is taken from an older version of the proof code. 2023 
-- Note that our main proof does not rely on these arguments. 2024 
 2025 
module IST.Ultrafilters where 2026 
 2027 
open import Agda.Primitive 2028 
open import IST.Base 2029 
open import IST.Util 2030 
 2031 
⋂ : {I : Set} → List (I → Set) → I → Set 2032 
⋂ [] i = ⊤ 2033 
⋂ (φ ∷ []) i = φ i 2034 
⋂ (φ ∷ φs) i = φ i ∧ (⋂ φs i) 2035 
 2036 
lemma-⋂ : {I : Set} → (φs : List (I → Set)) → ∀ (i : I) → ⋂ φs i → ∀ φ → φ ∈ φs → φ i 2037 
lemma-⋂ (.φ ∷ []) i has-i φ ∈-head = has-i 2038 
lemma-⋂ (.φ ∷ (ψ ∷ φs)) i has-i φ ∈-head = proj₁ has-i 2039 
lemma-⋂ (ψ ∷ []) i has-i φ (∈-tail ()) 2040 
lemma-⋂ (ψ₁ ∷ (ψ₂ ∷ ψs)) i has-i φ (∈-tail φ∈φs) = lemma-⋂ (ψ₂ ∷ ψs) i (proj₂ has-i) φ φ∈φs   2041 
 2042 
_⊆_ : {I : Set} → List (I → Set) → ((I → Set) → Set) → Set 2043 
[] ⊆ UF = ⊤ 2044 
(φ ∷ []) ⊆ UF = UF φ 2045 
(φ ∷ φs) ⊆ UF = UF φ ∧ (φs ⊆ UF) 2046 
 2047 
_⇒_ : {I : Set} → (I → Set) → (I → Set) → Set 2048 
φ ⇒ ψ = ∀ i → φ i → ψ i 2049 
 2050 
~ : {I : Set} → (I → Set) → I → Set 2051 
~ φ i = φ i → ⊥ 2052 
 2053 
module Stage1 2054 
  (I : Set) 2055 
  (st-I : st I) 2056 
  (UF : (I → Set) → Set) 2057 
  (UF-upward : {φ ψ : I → Set} → φ ⇒ ψ → UF φ → UF ψ) 2058 
  (UF-inhabit : {φ : I → Set} → UF φ → ∃ λ i → φ i) 2059 
  (UF-fip : {φs : List (I → Set)} → φs ⊆ UF → UF (⋂ φs)) 2060 
  (UF-alt : {φ : I → Set} → (UF φ → ⊥) → UF (~ φ)) 2061 
  where 2062 
  ∅ : I → Set 2063 
  ∅ i = ⊥ 2064 
 2065 
  U : I → Set 2066 
  U i = ⊤ 2067 
 2068 
  step-1 : UF ∅ → ⊥ 2069 
  step-1 has-∅ = proj₂ (UF-inhabit has-∅) 2070 
  2071 
  step-2 : UF U 2072 
  step-2 = UF-upward {~ ∅} {U} (λ i _ → tt) (UF-alt step-1) 2073 
 2074 
  arbitrary : I 2075 
  arbitrary = proj₁ (UF-inhabit step-2) 2076 
 2077 
  Element : Set₁ 2078 
  Element = ∃ λ (φ : I → Set) → UF φ 2079 
 2080 
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  reduce : List Element → List (I → Set) 2081 
  reduce [] = [] 2082 
  reduce (φ ∷ φs) = (proj₁ φ) ∷ reduce φs 2083 
 2084 
  lemma-reduce : (φs : List Element) → reduce φs ⊆ UF 2085 
  lemma-reduce [] = tt 2086 
  lemma-reduce (φ ∷ []) = proj₂ φ 2087 
  lemma-reduce (φ ∷ (ψ ∷ φs)) = proj₂ φ , lemma-reduce (ψ ∷ φs) 2088 
 2089 
  step-3 : ∀ (φs : List Element) → st φs → ∃ λ (i : I) → ∀ (φ : Element) → φ ∈ φs → proj₁ φ i  2090 
  step-3 φs _ = proj₁ ⋂-inhabit , λ φ φ∈φs → jump (proj₁ φ) (lemma φ φs φ∈φs) where 2091 
    ⋂-inhabit : ∃ λ (i : I) → ⋂ (reduce φs) i 2092 
    ⋂-inhabit = UF-inhabit (UF-fip {reduce φs} (lemma-reduce φs)) 2093 
    jump : ∀ (φ : I → Set) → φ ∈ reduce φs → φ (proj₁ ⋂-inhabit) 2094 
    jump = lemma-⋂ (reduce φs) (proj₁ ⋂-inhabit) (proj₂ ⋂-inhabit) 2095 
    lemma : (φ : Element) → (φs : List Element) → φ ∈ φs → proj₁ φ ∈ reduce φs 2096 
    lemma φ .(φ ∷ _) ∈-head = ∈-head 2097 
    lemma φ (ψ ∷ φs) (∈-tail p) = ∈-tail (lemma φ φs p) 2098 
 2099 
  thm-1 : ∃* λ (i : I) → ∀ (φ : Element) → st φ → proj₁ φ i 2100 
  thm-1 = ax-Ideal-1 _ step-3 2101 
 2102 
  ω : I 2103 
  ω = proj₁ thm-1 2104 
 2105 
  module Stage2 2106 
    (st-UF : st UF) 2107 
    (UF-2val* : (φ : ESet) → (A : I → Set) → (UF A ≡ ⊤ → φ) → (UF A ≡ ⊥ → φ) → φ) 2108 
    where 2109 
 2110 
    _~UF~_ : {A : I → Set} → (∀ (i : I) → A i) → (∀ (i : I) → A i) → Set 2111 
    f ~UF~ g = UF (λ i → f i ≡ g i) 2112 
 2113 
    _~ω~_ : {A : I → Set} → (∀ (i : I) → A i) → (∀ (i : I) → A i) → Set 2114 
    f ~ω~ g = f ω ≡ g ω 2115 
 2116 
    thm-2 : {A : I → Set} → st A → (f : ∀ (i : I) → A i) → st f → (g : ∀ (i : I) → A i) → st g → 2117 
            f ~UF~ g → f ~ω~ g 2118 
    thm-2 {A} st-A f st-f g st-g p = using-thm-1 where 2119 
      st-f=g : st (λ i → f i ≡ g i) 2120 
      st-f=g = st-req-f-g where 2121 
        recombinator : ({X : Set} → X → X → Set) → (b : I → Set) → (f : (i : I) → b i) → (g : (i 2122 
: I) → b i) → I → Set 2123 
        recombinator = λ (a : {X : Set} → X → X → Set) → λ (b : I → Set) → λ (f : (i : I) → b i) 2124 
→ λ (g : (i : I) → b i) → 2125 
                       λ (i : I) → a {b i} (f i) (g i) 2126 
        st-recombinator : st recombinator 2127 
        st-recombinator = st-abs-5 I 2128 
        recombinator-≡ : (b : I → Set) → (f : (i : I) → b i) → (g : (i : I) → b i) → I → Set 2129 
        recombinator-≡ = recombinator (_≡_ {lzero}) 2130 
        st-recombinator-≡ : st recombinator-≡ 2131 
        st-recombinator-≡ = st-fun _ _ recombinator (_≡_ {lzero}) st-recombinator st-≡ 2132 
        req : (f : ∀ i → A i) → (g : ∀ i → A i) → I → Set 2133 
        req = recombinator-≡ A 2134 
        st-req : st req 2135 
        st-req = st-fun-d _ _ recombinator-≡ A st-recombinator-≡ st-A 2136 
        req-f : (g : ∀ i → A i) → I → Set 2137 
        req-f = req f 2138 
        st-req-f : st req-f 2139 
        st-req-f = st-fun _ _ req f st-req st-f 2140 
        req-f-g : I → Set 2141 
        req-f-g = req-f g 2142 
        st-req-f-g : st req-f-g 2143 
        st-req-f-g = st-fun _ _ req-f g st-req-f st-g 2144 
      eq : I → Set 2145 
      eq i = f i ≡ g i 2146 
      pair : (A : I → Set) → UF A → Element 2147 
      pair A a = A , a 2148 
      st-pair : st pair 2149 
      st-pair = st-∃-_,_-full 2150 
      st-pair-eq : st (pair eq) 2151 
      st-pair-eq = st-fun-d _ _ pair eq st-pair st-f=g 2152 
      st-pair-eq-p : st (pair eq p) 2153 
      st-pair-eq-p = st-fun-d _ _ (pair eq) p st-pair-eq (st-UF-p p) where 2154 
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        if-⊥ : UF eq ≡ ⊥ → ∀ (p : UF eq) → st p 2155 
        if-⊥ x = transport* (sym x) {λ S → ∀ (p : S) → st p} λ () 2156 
        if-⊤ : UF eq ≡ ⊤ → ∀ (p : UF eq) → st p 2157 
        if-⊤ x = transport* (sym x) {λ S → ∀ (p : S) → st p} helper where 2158 
          helper : (p : ⊤) → st p 2159 
          helper tt = st-tt 2160 
        st-UF-p : ∀ (p : UF eq) → st p 2161 
        st-UF-p = UF-2val* (∀ (p : UF eq) → st p) eq if-⊤ if-⊥ 2162 
      using-thm-1 : f ω ≡ g ω 2163 
      using-thm-1 = proj₂ thm-1 (eq , p) st-pair-eq-p 2164 
 2165 
-- we get the converse of thm-2 by the exact same argument, as ¬(f ~UF~ g) → UF (λ i → ¬ (f i ≡ 2166 
g i)) 2167 
 2168 
-------------------------------------------------------------------------------- 2169 
 2170 
 2171 
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 2172 
 2173 
module IST.PredicatedTopologies where 2174 
 2175 
open import Agda.Primitive 2176 
open import IST.Base 2177 
open import IST.Reals 2178 
 2179 
---- 2180 
-- Def. A relational space consists of a carrier set C and a reflexive 2181 
-- binary predicate (the 'nearness predicate') on C. 2182 
 2183 
record IsPredicatedSpace 2184 
  (Carrier : Set) 2185 
  (nearby : Carrier → Carrier → ESet) 2186 
  : ESet where 2187 
  field 2188 
    reflexive : ∀ x → nearby x x 2189 
 2190 
record PredicatedSpace : ESet₁ where 2191 
  field 2192 
    Carrier : Set 2193 
    nearby : Carrier → Carrier → ESet 2194 
    isPredicatedSpace : IsPredicatedSpace Carrier nearby 2195 
  open IsPredicatedSpace isPredicatedSpace public 2196 
 2197 
 2198 
-- Def. A separable space is a relational space where no two standard points 2199 
-- are neighbors. (normally known as T1 space, we refer to those as Kolmogorov) 2200 
 2201 
record IsSeparableSpace 2202 
  (Carrier : Set) 2203 
  (nearby : Carrier → Carrier → ESet) 2204 
  : ESet where 2205 
  field 2206 
    isPredicatedSpace : IsPredicatedSpace Carrier nearby 2207 
    separable : ∀ x → st x → ∀ y → st y → nearby x y → nearby y x → x ≡ y 2208 
 2209 
record SeparableSpace : ESet₁ where 2210 
  field 2211 
    Carrier : Set 2212 
    nearby : Carrier → Carrier → ESet 2213 
    isSeparableSpace : IsSeparableSpace Carrier nearby 2214 
  open IsSeparableSpace isSeparableSpace public 2215 
  open IsPredicatedSpace isPredicatedSpace public 2216 
 2217 
 2218 
-- Def. A compact space is a relation space where every every element is near 2219 
-- a standard element. 2220 
 2221 
record IsCompactSpace 2222 
  (Carrier : Set) 2223 
  (nearby : Carrier → Carrier → ESet) 2224 
  : ESet where 2225 
  field 2226 
    isPredicatedSpace : IsPredicatedSpace Carrier nearby 2227 
    compact : ∀ x → ∃* λ y → st y *∧* nearby y x 2228 
 2229 
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record CompactSpace : ESet₁ where 2230 
  field 2231 
    Carrier : Set 2232 
    nearby : Carrier → Carrier → ESet 2233 
    isCompactSpace : IsCompactSpace Carrier nearby 2234 
  open IsCompactSpace isCompactSpace public 2235 
  open IsPredicatedSpace isPredicatedSpace public 2236 
 2237 
 2238 
-- Def. A Hausdorff space is a relational space where two different standard 2239 
-- points do not share a neighbor. 2240 
 2241 
record IsHausdorffSpace 2242 
  (Carrier : Set) 2243 
  (nearby : Carrier → Carrier → ESet) 2244 
  : ESet where 2245 
  field 2246 
    isPredicatedSpace : IsPredicatedSpace Carrier nearby 2247 
    hausdorff : ∀ x → st x → ∀ y → st y → ∀ z → nearby x z → nearby y z → x ≡ y 2248 
 2249 
record HausdorffSpace : ESet₁ where 2250 
  field 2251 
    Carrier : Set 2252 
    nearby : Carrier → Carrier → ESet 2253 
    isHausdorffSpace : IsHausdorffSpace Carrier nearby 2254 
  open IsHausdorffSpace isHausdorffSpace public 2255 
  open IsPredicatedSpace isPredicatedSpace public 2256 
  -- Thm. Every Hausdorff space is separable. 2257 
  private 2258 
    separable : ∀ x → st x → ∀ y → st y → nearby x y → nearby y x → x ≡ y 2259 
    separable x st-x y st-y x-near-y y-near-x = 2260 
      hausdorff x st-x y st-y x (reflexive x) y-near-x 2261 
    isSeparableSpace : IsSeparableSpace Carrier nearby 2262 
    isSeparableSpace = record { isPredicatedSpace = isPredicatedSpace; separable = separable } 2263 
  open IsSeparableSpace isSeparableSpace public 2264 
 2265 
 2266 
-- Def. A compact Hausdorff space is a relational space that is also a compact 2267 
-- space. Duh. 2268 
 2269 
record IsCompactHausdorffSpace 2270 
  (Carrier : Set) 2271 
  (nearby : Carrier → Carrier → ESet) 2272 
  : ESet where 2273 
  field 2274 
    isHausdorffSpace : IsHausdorffSpace Carrier nearby 2275 
    isCompactSpace : IsCompactSpace Carrier nearby 2276 
 2277 
record CompactHausdorffSpace : ESet₁ where 2278 
  field 2279 
    Carrier : Set 2280 
    nearby : Carrier → Carrier → ESet 2281 
    isHausdorffSpace : IsHausdorffSpace Carrier nearby 2282 
    isCompactSpace : IsCompactSpace Carrier nearby 2283 
  open IsHausdorffSpace isHausdorffSpace public 2284 
  open IsPredicatedSpace isPredicatedSpace public 2285 
  open IsCompactSpace isCompactSpace public 2286 
 2287 
 2288 
-- Def. An equivalence space is a relational space whose 2289 
-- nearness predicate is transitive and symmetric. 2290 
 2291 
record IsEquivalenceSpace 2292 
  (Carrier : Set) 2293 
  (nearby : Carrier → Carrier → ESet) 2294 
  : ESet where 2295 
  field 2296 
    isPredicatedSpace : IsPredicatedSpace Carrier nearby 2297 
    transitive : ∀ x y z → nearby x y → nearby y z → nearby x z 2298 
    symmetric : ∀ x y → nearby x y → nearby y x 2299 
 2300 
record EquivalenceSpace : ESet₁ where 2301 
  field 2302 
    Carrier : Set 2303 
    nearby : Carrier → Carrier → ESet 2304 
    isEquivalenceSpace : IsEquivalenceSpace Carrier nearby 2305 
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  open IsEquivalenceSpace isEquivalenceSpace public 2306 
  open IsPredicatedSpace isPredicatedSpace public 2307 
 2308 
 2309 
-- Def. A Hausdorff equivalence space is an equivalence space that is 2310 
-- also a Hausdorff space. Duh. 2311 
 2312 
record IsHausdorffEquivalenceSpace 2313 
  (Carrier : Set) 2314 
  (nearby : Carrier → Carrier → ESet) 2315 
  : ESet where 2316 
  field 2317 
    isHausdorffSpace : IsHausdorffSpace Carrier nearby 2318 
    isEquivalenceSpace : IsEquivalenceSpace Carrier nearby 2319 
 2320 
record HausdorffEquivalenceSpace : ESet₁ where 2321 
  field 2322 
    Carrier : Set 2323 
    nearby : Carrier → Carrier → ESet 2324 
    isHausdorffSpace : IsHausdorffSpace Carrier nearby 2325 
    isEquivalenceSpace : IsEquivalenceSpace Carrier nearby 2326 
  open IsHausdorffSpace isHausdorffSpace public 2327 
  open IsPredicatedSpace isPredicatedSpace public 2328 
  open IsEquivalenceSpace isEquivalenceSpace public 2329 
 2330 
 2331 
-- Def. A compact Hausdorff equivalence space is an equivalence space that is also a compact 2332 
-- space. Duh. 2333 
 2334 
record IsCompactHausdorffEquivalenceSpace 2335 
  (Carrier : Set) 2336 
  (nearby : Carrier → Carrier → ESet) 2337 
  : ESet where 2338 
  field 2339 
    isHausdorffSpace : IsHausdorffSpace Carrier nearby 2340 
    isCompactSpace : IsCompactSpace Carrier nearby 2341 
    isEquivalenceSpace : IsEquivalenceSpace Carrier nearby 2342 
 2343 
record CompactHausdorffEquivalenceSpace : ESet₁ where 2344 
  field 2345 
    Carrier : Set 2346 
    nearby : Carrier → Carrier → ESet 2347 
    isHausdorffSpace : IsHausdorffSpace Carrier nearby 2348 
    isCompactSpace : IsCompactSpace Carrier nearby 2349 
    isEquivalenceSpace : IsEquivalenceSpace Carrier nearby 2350 
  open IsHausdorffSpace isHausdorffSpace public 2351 
  open IsPredicatedSpace isPredicatedSpace public 2352 
  open IsCompactSpace isCompactSpace public 2353 
  open IsEquivalenceSpace isEquivalenceSpace public 2354 
 2355 
 2356 
open import IST.MetricSpaces 2357 
 2358 
-- Thm. Every standard metric space induces a Hausdorff equivalence space by setting 2359 
-- x o- y ↔ ∀ˢ ε > 0. d(x,y) < ε 2360 
metric-to-hausdorff-equivalence : (MS : MetricSpace) → st MS → HausdorffEquivalenceSpace 2361 
metric-to-hausdorff-equivalence MS st-MS = 2362 
  record { Carrier = M 2363 
         ; nearby = nearby 2364 
         ; isHausdorffSpace = isHausdorffSpace 2365 
         ; isEquivalenceSpace = isEquivalenceSpace 2366 
         } where 2367 
  M : Set 2368 
  M = MetricSpace.Carrier MS 2369 
 2370 
  st-M : st M 2371 
  st-M = st-MetricSpace-Carrier-full MS st-MS 2372 
 2373 
  d : M → M → ℝ 2374 
  d = MetricSpace.distance MS 2375 
 2376 
  st-d : st d 2377 
  st-d = st-MetricSpace-distance-full MS st-MS 2378 
 2379 
  nearby : M → M → ESet 2380 
  nearby x y = ∀ (ε : ℝ) → st ε → 0r < ε → d x y < ε 2381 
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 2382 
  reflexive : ∀ x → nearby x x 2383 
  reflexive x ε st-ε 0r<ε = dxx<ε where 2384 
    open MetricSpace MS 2385 
    dxx<ε : d x x < ε 2386 
    dxx<ε = transport (sym (reflexive-2 x)) {λ z → z < ε} 0r<ε 2387 
 2388 
  symmetric : ∀ x y → nearby x y → nearby y x 2389 
  symmetric x y x-near-y ε st-ε pos-ε = dyx<ε where 2390 
    open MetricSpace MS 2391 
    dxy<ε : d x y < ε 2392 
    dxy<ε = x-near-y ε st-ε pos-ε 2393 
    dyx<ε : d y x < ε 2394 
    dyx<ε = transport (symmetry x y) {λ p → p < ε} dxy<ε 2395 
 2396 
  transitive : ∀ x y z → nearby x y → nearby y z → nearby x z 2397 
  transitive x y z x-near-y y-near-z ε st-ε pos-ε = dxz' where 2398 
    open MetricSpace MS 2399 
    ε/2 : ℝ 2400 
    ε/2 = ε /2r 2401 
    st-ε/2 : st ε/2 2402 
    st-ε/2 = st-/2r-v ε st-ε 2403 
    pos-ε/2 : 0r < ε/2 2404 
    pos-ε/2 = pos-/2r-v ε pos-ε 2405 
    dxy : d x y < ε/2 2406 
    dxy = x-near-y ε/2 st-ε/2 pos-ε/2 2407 
    dyz : d y z < ε/2 2408 
    dyz = y-near-z ε/2 st-ε/2 pos-ε/2 2409 
    dxy-dyx : d x y + d y z < ε/2 + ε/2 2410 
    dxy-dyx = <-tran _ _ _ step-1 step-2 where 2411 
      step-1 : d x y + d y z < ε/2 + d y z 2412 
      step-1 = <-plus (d x y) ε/2 (d y z) dxy 2413 
      step-2 : ε/2 + d y z < ε/2 + ε/2 2414 
      step-2 = transport +-comm {λ p → p < ε/2 + ε/2} (<-plus (d y z) ε/2 ε/2 dyz) 2415 
    dxz : d x z < ε/2 + ε/2 2416 
    dxz = triangle x y z (ε/2 + ε/2) dxy-dyx 2417 
    dxz' : d x z < ε 2418 
    dxz' = transport /2r-half {λ p → d x z < p} dxz 2419 
 2420 
  isPredicatedSpace : IsPredicatedSpace M nearby 2421 
  isPredicatedSpace = record { reflexive = reflexive } 2422 
 2423 
  isEquivalenceSpace : IsEquivalenceSpace M nearby 2424 
  isEquivalenceSpace = 2425 
    record { isPredicatedSpace = isPredicatedSpace 2426 
           ; transitive = transitive 2427 
           ; symmetric = symmetric 2428 
           } 2429 
  hausdorff : ∀ x → st x → ∀ y → st y → ∀ z → nearby x z → nearby y z → x ≡ y 2430 
  hausdorff x st-x y st-y z x-near-z y-near-z = reflexive-1 x y zero-dxy where 2431 
    open MetricSpace MS 2432 
    x-near-y : nearby x y 2433 
    x-near-y = transitive x z y x-near-z (symmetric y z y-near-z) 2434 
    x-near-y-int : (ε : ℝ) → st ε → internal (0r < ε → d x y < ε) 2435 
    x-near-y-int ε st-ε = fromInternal (x-near-y ε st-ε) 2436 
    st-dxy : st (d x y) 2437 
    st-dxy = st-fun _ _ (d x) y (st-fun _ _ d x st-d st-x) st-y 2438 
    Φ : TransferPred 2439 
    Φ = ∀' ℝ λ ε → int' (0r < ε → d x y < ε) 2440 
    std-Φ : st ℝ *∧* ((ε : ℝ) → st ε → st (0r < ε → d x y < ε)) 2441 
    std-Φ = st-ℝ , (λ ε st-ε → st-→ (0r < ε) 2442 
                                    (st-fun _ _ (_<_ 0r) ε (st-fun _ _ _<_ 0r st-< st-0r) st-ε) 2443 
                                    (d x y < ε) 2444 
                                    (st-fun _ _ (_<_ (d x y)) ε (st-fun _ _ _<_ (d x y) st-< st-2445 
dxy) st-ε)) 2446 
    dxy<ε : ∀ (ε : ℝ) → 0r < ε → d x y < ε 2447 
    dxy<ε = ax-Transfer-EI Φ x-near-y-int std-Φ 2448 
    zero-dxy : d x y ≡ 0r 2449 
    zero-dxy = lemma-ε-of-room (d x y) dxy<ε (nonnegative x y) 2450 
   2451 
  isHausdorffSpace : IsHausdorffSpace M nearby 2452 
  isHausdorffSpace = 2453 
    record { isPredicatedSpace = isPredicatedSpace 2454 
           ; hausdorff = hausdorff 2455 
           } 2456 
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 2457 
-------------------------------------------------------------------------------- 2458 
 2459 
 2460 
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 2461 
 2462 
module IST.Approximation where 2463 
 2464 
open import Agda.Primitive 2465 
open import IST.Base 2466 
open import IST.PredicatedTopologies 2467 
 2468 
 2469 
record IsApproximation 2470 
  (Source : Set) 2471 
  (Target : Set) 2472 
  (Map : Source → Target → ESet) 2473 
  : ESet where 2474 
  field 2475 
    Target-st : st Target 2476 
    Map-exists : ∀ (g : Target) → st g → ∃* λ (h : Source) → Map h g 2477 
    Map-unique-Source : 2478 
      ∀ (g : Target) → st g → 2479 
      ∀ (h₁ : Source) → Map h₁ g → ∀ (h₂ : Source) → Map h₂ g → h₁ ≡ h₂ 2480 
    Map-unique-Target : 2481 
      ∀ (g₁ : Target) → st g₁ → ∀ (g₂ : Target) → st g₂ → 2482 
      ∀ (h : Source) → Map h g₁ → Map h g₂ → g₁ ≡ g₂ 2483 
 2484 
-- Map-cont : 2485 
--   ∀ (h₁ h₂ : Source) → ∀ (g₁ g₂ : Target) → Map h₁ g₁ → Map h₂ g₂ → 2486 
--   nearby h₁ h₂ → nearby g₁ g₂ 2487 
-- -- makes no sense since S-continuity relies on the standardness 2488 
-- -- of the first element of the nearness relation. 2489 
 2490 
record Approximation (Source : Set) (Target : Set) : ESet₁ where 2491 
  field 2492 
    Map : Source → Target → ESet 2493 
    isApproximation : IsApproximation Source Target Map 2494 
  open IsApproximation isApproximation public 2495 
 2496 
 2497 
record IsTopApproximation 2498 
  (Source : PredicatedSpace) 2499 
  (Target : SeparableSpace) 2500 
  (Map : PredicatedSpace.Carrier Source → SeparableSpace.Carrier Target → ESet) 2501 
  : ESet where 2502 
  open SeparableSpace Target renaming 2503 
    ( Carrier to G 2504 
    ; nearby to G-near 2505 
    ) 2506 
  open PredicatedSpace Source renaming 2507 
    ( Carrier to H 2508 
    ; nearby to H-near 2509 
    ) 2510 
  field 2511 
    Target-st : st G 2512 
    Map-exists : ∀ (g : G) → st g → ∃* λ (h : H) → Map h g 2513 
    Map-Source : 2514 
      ∀ (g : G) → st g → 2515 
      ∀ (h₁ : H) → Map h₁ g → ∀ (h₂ : H) → Map h₂ g → H-near h₁ h₂ 2516 
    Map-Target : 2517 
      ∀ (g₁ : G) → st g₁ → ∀ (g₂ : G) → st g₂ → 2518 
      ∀ (h : H) → Map h g₁ → Map h g₂ → G-near g₁ g₂ 2519 
 2520 
 2521 
record TopApproximation (Source : PredicatedSpace) (Target : SeparableSpace) : ESet₁ where 2522 
  field 2523 
    Map : PredicatedSpace.Carrier Source → SeparableSpace.Carrier Target → ESet 2524 
    isTopApproximation : IsTopApproximation Source Target Map 2525 
  open IsTopApproximation isTopApproximation public 2526 
   2527 
 2528 
open import IST.Groups 2529 
 2530 
record IsFiniteGroupApproximation 2531 
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  (Source : FiniteGroup) 2532 
  (Target : Group) 2533 
  (Map : FiniteGroup.Carrier Source → Group.Carrier Target → ESet) 2534 
  : ESet where 2535 
  field 2536 
    isApproximation : IsApproximation (FiniteGroup.Carrier Source) (Group.Carrier Target) Map 2537 
    Map-homomorphism : 2538 
      ∀ (h₁ h₂ : FiniteGroup.Carrier Source) → 2539 
      ∀ (g₁ : Group.Carrier Target) → st g₁ → ∀ (g₂ : Group.Carrier Target) → st g₂ → 2540 
      Map h₁ g₁ → Map h₂ g₂ → Map (FiniteGroup.operation Source h₁ h₂) (Group.operation Target g₁ 2541 
g₂) 2542 
  open IsApproximation isApproximation 2543 
  open Group Target renaming 2544 
    ( Carrier to G 2545 
    ; identity to 1G 2546 
    ; operation to xG 2547 
    ; inverse to iG 2548 
    ; assoc to G-associative 2549 
    ; unit-left to G-unit-left 2550 
    ; unit-right to G-unit-right 2551 
    ; inverse-left to G-inverse-left 2552 
    ; inverse-right to G-inverse-right 2553 
    ) 2554 
  open FiniteGroup Source renaming 2555 
    ( Carrier to H 2556 
    ; identity to 1H 2557 
    ; operation to xH 2558 
    ; inverse to iH 2559 
    ; assoc to H-associative 2560 
    ; unit-left to H-unit-left 2561 
    ; unit-right to H-unit-right 2562 
    ; inverse-left to H-inverse-left 2563 
    ; inverse-right to H-inverse-right 2564 
    ) 2565 
  Map-preserves-unit : st Target → Map 1H 1G 2566 
  Map-preserves-unit st-Target = Map-1H-1G where 2567 
    st-1G : st 1G 2568 
    st-1G = st-fun-d _ _ Group.identity Target st-Group-identity st-Target 2569 
    1H-unique : ∀ (h : H) → Map h 1G → h ≡ 1H 2570 
    1H-unique h Map-h-1G = step-8 where 2571 
      step-1 : Map (xH h h) (xG 1G 1G)  2572 
      step-1 = Map-homomorphism h h 1G st-1G 1G st-1G Map-h-1G Map-h-1G 2573 
      step-2 : Map (xH h h) 1G 2574 
      step-2 = transport* (G-unit-left 1G) {λ z → Map (xH h h) z} step-1 2575 
      step-3 : xH h h ≡ h 2576 
      step-3 = Map-unique-Source 1G st-1G (xH h h) step-2 h Map-h-1G 2577 
      step-4 : xH (iH h) (xH h h) ≡ xH (iH h) h 2578 
      step-4 = cong (λ z → xH (iH h) z) step-3 2579 
      step-5 : xH (xH (iH h) h) h ≡ xH (iH h) (xH h h) 2580 
      step-5 = H-associative (iH h) h h 2581 
      step-6 : xH 1H h ≡ xH (xH (iH h) h) h 2582 
      step-6 = sym (cong (λ z → xH z h) (H-inverse-left h)) 2583 
      step-7 : h ≡ xH (xH (iH h) h) h 2584 
      step-7 = tran (sym (H-unit-left h)) step-6 2585 
      step-8 : h ≡ 1H 2586 
      step-8 = tran (tran (tran step-7 step-5) step-4) (H-inverse-left h) 2587 
    1H'-exists : ∃* λ (h : H) → Map h 1G 2588 
    1H'-exists = Map-exists 1G st-1G 2589 
    1H' : H 2590 
    1H' = proj₁ (Map-exists 1G st-1G) 2591 
    Map-1H'-1G : Map 1H' 1G 2592 
    Map-1H'-1G = proj₂ 1H'-exists 2593 
    1H'-equals-1H : 1H' ≡ 1H 2594 
    1H'-equals-1H = 1H-unique 1H' Map-1H'-1G 2595 
    Map-1H-1G : Map 1H 1G 2596 
    Map-1H-1G = transport* 1H'-equals-1H {λ z → Map z 1G} Map-1H'-1G   2597 
  Map-preserves-unit-Target : st Target → ∀ (g : G) → st g → Map 1H g → g ≡ 1G 2598 
  Map-preserves-unit-Target st-Target g st-g Map-1H-g = 2599 
    Map-unique-Target g st-g 1G st-1G 1H Map-1H-g (Map-preserves-unit st-Target) where 2600 
    st-1G : st 1G 2601 
    st-1G = st-fun-d _ _ Group.identity Target st-Group-identity st-Target 2602 
     2603 
record FiniteGroupApproximation (Source : FiniteGroup) (Target : Group) : ESet₁ where 2604 
  field 2605 
    Map : FiniteGroup.Carrier Source → Group.Carrier Target → ESet 2606 
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    isFiniteGroupApproximation : IsFiniteGroupApproximation Source Target Map 2607 
  open IsFiniteGroupApproximation isFiniteGroupApproximation public 2608 
  open IsApproximation isApproximation public 2609 
 2610 
-------------------------------------------------------------------------------- 2611 
 2612 
 2613 
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 2614 
 2615 
module IST.Results.ExtensionTheorem where 2616 
 2617 
open import IST.Base 2618 
open import IST.Util 2619 
open import IST.Approximation 2620 
open import IST.PredicatedTopologies 2621 
 2622 
 2623 
-- Theorem: If H approximates G via ι, then we can extend every 2624 
-- function f : H → M (where M is a standard compact Hausdorff space) to a 2625 
-- function f' : G → M using standardization, setting 2626 
-- f' = ⟦ (g,m) ∈ G × M | ∃ h ∈ H. ι(h)=g ∧ f(h)=m ⟧. 2627 
record ExtensionTheorem : ESet where 2628 
  field 2629 
    G : Set 2630 
    H : Set 2631 
    A : Approximation H G 2632 
    M# : CompactHausdorffSpace 2633 
    st-M : st (CompactHausdorffSpace.Carrier M#) 2634 
    f : H → CompactHausdorffSpace.Carrier M# 2635 
  open CompactHausdorffSpace M# hiding (Carrier) 2636 
  open Approximation A 2637 
  private 2638 
    -- We refer to the underlying set of the space M# as M, and the 2639 
    -- approximation proper as ι. 2640 
     2641 
    M : Set 2642 
    M = CompactHausdorffSpace.Carrier M# 2643 
 2644 
    ι : H → G → ESet 2645 
    ι = Approximation.Map A 2646 
 2647 
    -- Recall that by definition of approximation, G is standard. 2648 
    st-G : st G 2649 
    st-G = Approximation.Target-st A 2650 
 2651 
    -- We construct the set f' = ⟦ ∃ˢ h. ι(h) = g ∧ m o- f(h) ⟧ by Standardization. 2652 
    pre-ext : G ∧ M → ESet 2653 
    pre-ext gm = ∃* λ (h : H) → ι h (proj₁ gm) *∧* nearby (proj₂ gm) (f h) 2654 
 2655 
  -- Construction: 2656 
  -- The set f' forms the graph of the function we seek. 2657 
  f' : G ∧ M → Set 2658 
  f' = ⟦ pre-ext ⟧ 2659 
 2660 
  st-f' : st f' 2661 
  st-f' = ax-Standard-1 pre-ext 2662 
 2663 
  private 2664 
    st-f'gm : (g : G) → (m : M) → st g → st m → st (f' (g , m)) 2665 
    st-f'gm g m st-g st-m = st-fun (G ∧ M) Set f' (g , m) st-f' (lemma-pairing g m st-g st-m) 2666 
 2667 
  -- We prove that for standard g, there is always some standard m such that (g,m) ∈ f'.  2668 
  f'-exists-st : ∀ (g : G) → st g → ∃* λ (m : M) → st m *∧* internal (f' (g , m)) 2669 
  f'-exists-st g st-g = m , st-m , fromInternal f'-gm where 2670 
    -- Take a standard g, and pick an approximation h with ι(h)=g. 2671 
    h : H 2672 
    h = proj₁ (Map-exists g st-g) 2673 
    ι-h-g : ι h g 2674 
    ι-h-g = proj₂ (Map-exists g st-g) 2675 
    -- Compute f(h). Use the compactness of M to find a standard point 2676 
    -- near f(h). 2677 
    m : M 2678 
    m = proj₁ (compact (f h)) 2679 
    st-m : st m 2680 
    st-m = proj₁ (proj₂ (compact (f h))) 2681 
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    m-near-fh : nearby m (f h) 2682 
    m-near-fh = proj₂ (proj₂ (compact (f h))) 2683 
    -- Since ι(h)=g and m lies near f(h), by definition (g,m) belongs to f'. 2684 
    pre-ext-gm : pre-ext (g , m) 2685 
    pre-ext-gm = h , (ι-h-g , m-near-fh) 2686 
    st-gm : st (g , m) 2687 
    st-gm = lemma-pairing g m st-g st-m 2688 
    f'-gm : f' (g , m) 2689 
    f'-gm = ax-Standard-3 pre-ext _ st-gm pre-ext-gm 2690 
 2691 
  -- Existence conclusion: 2692 
  -- By transfer, for any g, there is some m such that (g,m) ∈ f'. 2693 
  f'-exists : ∀ (g : G) → ∃ λ (m : M) → f' (g , m) 2694 
  f'-exists = ax-Transfer-EI Φ f'-exists-st st-params-Φ where 2695 
    Φ : TransferPred 2696 
    Φ = ∀' G λ g → ∃' M λ m → int' (f' (g , m)) 2697 
    st-params-Φ : std-params Φ 2698 
    st-params-Φ = st-G , λ a st-a → 2699 
                  st-M , λ e st-e → st-fun _ _ f' (a , e) st-f' (lemma-pairing a e st-a st-e) 2700 
 2701 
  private 2702 
    -- Now we prove for standard g the uniqueness of the m such that (g,m) ∈ f'. 2703 
    -- This proves that f' forms (the graph of) a function. 2704 
    f'-unique-st : 2705 
      ∀ (g : G)  → st g → ∀ (m₁ : M) → st m₁ → ∀ (m₂ : M) → st m₂ → 2706 
      f' (g , m₁) → f' (g , m₂) → 2707 
      m₁ ≡ m₂ 2708 
    f'-unique-st g st-g m₁ st-m₁ m₂ st-m₂ f'-gm₁ f'-gm₂ = m₁-equals-m₂ where 2709 
      -- Since (g,mᵢ) are standard, they satisfy the defining formula of f', 2710 
      -- so we can find hᵢ near gᵢ such that mᵢ lies near f(hᵢ). 2711 
      -- First, we pick h₁. 2712 
      st-gm₁ : st (g , m₁) 2713 
      st-gm₁ = lemma-pairing g m₁ st-g st-m₁ 2714 
      pre-ext-gm₁ : pre-ext (g , m₁) 2715 
      pre-ext-gm₁ = ax-Standard-2 pre-ext (g , m₁) st-gm₁ f'-gm₁ 2716 
      h₁ : H 2717 
      h₁ = proj₁ pre-ext-gm₁ 2718 
      ι-h₁-g : ι h₁ g 2719 
      ι-h₁-g = proj₁ (proj₂ pre-ext-gm₁) 2720 
      m₁-near-fh₁ : nearby m₁ (f h₁) 2721 
      m₁-near-fh₁ = proj₂ (proj₂ pre-ext-gm₁) 2722 
      -- Now, we pick h₂. 2723 
      st-gm₂ : st (g , m₂) 2724 
      st-gm₂ = lemma-pairing g m₂ st-g st-m₂ 2725 
      pre-ext-gm₂ : pre-ext (g , m₂) 2726 
      pre-ext-gm₂ = ax-Standard-2 pre-ext (g , m₂) st-gm₂ f'-gm₂ 2727 
      h₂ : H 2728 
      h₂ = proj₁ pre-ext-gm₂ 2729 
      ι-h₂-g : ι h₂ g 2730 
      ι-h₂-g = proj₁ (proj₂ pre-ext-gm₂) 2731 
      m₂-near-fh₂ : nearby m₂ (f h₂) 2732 
      m₂-near-fh₂ = proj₂ (proj₂ pre-ext-gm₂) 2733 
      -- Now, h₁ and h₂ both approximate g, so by the approximation 2734 
      -- uniqueness clause, h₁ = h₂. 2735 
      h₁-equals-h₂ : h₁ ≡ h₂ 2736 
      h₁-equals-h₂ = Map-unique-Source g st-g h₁ ι-h₁-g h₂ ι-h₂-g 2737 
      fh₁-equals-fh₂ : f h₁ ≡ f h₂ 2738 
      fh₁-equals-fh₂ = cong f h₁-equals-h₂ 2739 
      -- Since m₂ lies near f(h₂), and h₁ = h₂, we have that 2740 
      -- m₂ lies near f(h₁) as well. 2741 
      m₂-near-fh₁ : nearby m₂ (f h₁) 2742 
      m₂-near-fh₁ = 2743 
        transport* (sym fh₁-equals-fh₂) {λ z -> nearby m₂ z} m₂-near-fh₂ 2744 
      -- But then m₁ and m₂ share a common neighbor, f(h₁). By the Hausdorff 2745 
      -- property, this implies m₁ = m₂. 2746 
      m₁-equals-m₂ : m₁ ≡ m₂ 2747 
      m₁-equals-m₂ = hausdorff m₁ st-m₁ m₂ st-m₂ (f h₁) m₁-near-fh₁ m₂-near-fh₁ 2748 
 2749 
  -- Uniqueness conclusion: 2750 
  -- Since uniqueness holds for standard g, Transfer gives that it holds for arbitrary g. 2751 
  -- Hence, the set f' forms the graph of a function. 2752 
  f'-unique : ∀ (g : G) → ∀ (m₁ : M) → ∀ (m₂ : M) → f' (g , m₁) → f' (g , m₂) → m₁ ≡ m₂ 2753 
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  f'-unique = ax-Transfer-EI Φ 2754 
    (λ g st-g m₁ st-m₁ m₂ st-m₂ → fromInternal (f'-unique-st g st-g m₁ st-m₁ m₂ st-m₂)) st-params-2755 
Φ where 2756 
    Φ : TransferPred 2757 
    Φ = ∀' G λ g → ∀' M λ m₁ → ∀' M λ m₂ → int' (f' (g , m₁) → f' (g , m₂) → m₁ ≡ m₂) 2758 
    st-params-Φ : std-params Φ 2759 
    st-params-Φ = 2760 
      st-G , λ g st-g → 2761 
      st-M , λ m₁ st-m₁ → 2762 
      st-M , λ m₂ st-m₂ → st-Φ g st-g m₁ st-m₁ m₂ st-m₂ where 2763 
      st-f'-gm₁ : (g : G) → st g → (m₁ : M) → st m₁ → st (f' (g , m₁)) 2764 
      st-f'-gm₁ g st-g m₁ st-m₁ = st-fun _ _ f' (g , m₁) st-f' (lemma-pairing g m₁ st-g st-m₁) 2765 
      st-f'-gm₂ : (g : G) → st g → (m₂ : M) → st m₂ → st (f' (g , m₂)) 2766 
      st-f'-gm₂ g st-g m₂ st-m₂ = st-fun _ _ f' (g , m₂) st-f' (lemma-pairing g m₂ st-g st-m₂) 2767 
      st-m₁≡m₂ : (m₁ : M) → st m₁ → (m₂ : M) → st m₂ → st (m₁ ≡ m₂) 2768 
      st-m₁≡m₂ m₁ st-m₁ m₂ st-m₂ = st-fun M Set (_≡_ m₁) m₂ (st-fun M (M → Set) _≡_ m₁ st-≡-full 2769 
st-m₁) st-m₂ 2770 
      st-f'-gm₂-st-m₁≡m₂ : (g : G) → st g → (m₁ : M) → st m₁ → (m₂ : M) → st m₂ → st (f' (g , m₂) 2771 
→ m₁ ≡ m₂) 2772 
      st-f'-gm₂-st-m₁≡m₂ g st-g m₁ st-m₁ m₂ st-m₂ = 2773 
        st-→ _ (st-f'-gm₂ g st-g m₂ st-m₂) _ (st-m₁≡m₂ m₁ st-m₁ m₂ st-m₂) 2774 
      st-Φ : (g : G) → st g → (m₁ : M) → st m₁ → (m₂ : M) → st m₂ → st (f' (g , m₁) → f' (g , m₂) 2775 
→ m₁ ≡ m₂) 2776 
      st-Φ g st-g m₁ st-m₁ m₂ st-m₂ = 2777 
        st-→ (f' (g , m₁)) (st-f'-gm₁ g st-g m₁ st-m₁) (f' (g , m₂) → m₁ ≡ m₂) 2778 
             (st-f'-gm₂-st-m₁≡m₂ g st-g m₁ st-m₁ m₂ st-m₂) 2779 
 2780 
{- 2781 
-- Theorem 2: If the sequence H approximates the structure G in the sense of 2782 
-- Zilber, then there is some H(ω) that approximates G in the sense above. 2783 
module Thm2 2784 
  (I : Set) 2785 
  (H : I → Set) 2786 
  (_~D~_ : (∀ i → H i) → (∀ i → H i) → Set) 2787 
  (st-D : st _~D~_) 2788 
  (ω : I) 2789 
  (ax-ω-1 : ∀ (f g : ∀ i → H i) → st f → st g → f ~D~ g → f ω ≡ g ω) 2790 
  (ax-ω-2 : ∀ (f g : ∀ i → H i) → st f → st g → f ω ≡ g ω → f ~D~ g) 2791 
  (G : Set) 2792 
  (st-G : st G) 2793 
  (φ : G → (∀ i → H i) → Set) 2794 
  (φ-exists : ∀ (g : G) → ∃ λ (h : ∀ i → H i) → φ g h) 2795 
  (lim : (∀ i → H i) → G) 2796 
  (lim-surjective : ∀ (g : G) → ∃ λ (h : ∀ i → H i) → lim h ≡ g) 2797 
  (lim-respects-D : ∀ (h₁ h₂ : ∀ i → H i) → h₁ ~D~ h₂ → lim h₁ ≡ lim h₂) 2798 
  (lim-preserves-φ : ∀ (g : G) → ∀ (h : ∀ i → H i) → φ g h → _≡_ g (lim h)) 2799 
  where 2800 
  colim : G → (∀ i → H i) 2801 
  colim g = ∃.proj₁ (φ-exists g) 2802 
 2803 
  colim-splits-lim : ∀ (g : G) → lim (colim g) ≡ g 2804 
  colim-splits-lim g = sym step-2 where 2805 
    step-1 : φ g (colim g) 2806 
    step-1 = ∃.proj₂ (φ-exists g) 2807 
    step-2 : g ≡ lim (colim g) 2808 
    step-2 = lim-preserves-φ g (colim g) step-1 2809 
 2810 
  ι : H ω → G → Setω 2811 
  ι h g = internal (colim g ω ≡ h) 2812 
 2813 
  ι-exists : ∀ (g : G) → st g → ∃* λ (h : H ω) → ι h g 2814 
  ι-exists g st-g = colim g ω , fromInternal refl 2815 
   2816 
  ι-unique : ∀ (g : G) → st g → ∀ (h₁ : H ω) → ι h₁ g → ∀ (h₂ : H ω) → ι h₂ g → h₁ ≡ h₂ 2817 
  ι-unique g st-g h₁ (fromInternal ι-h₁-g) h₂ (fromInternal ι-h₂-g) = tran (sym ι-h₁-g) ι-h₂-g 2818 
 2819 
  open Thm1 G (H ω) st-G ι ι-exists ι-unique 2820 
 2821 
-- If furthermore everything in Thm2 is standard, then we have co-uniquness as well. 2822 
module Thm2-X 2823 
  (I : Set) 2824 
  (H : I → Set) 2825 
  (_~D~_ : (∀ i → H i) → (∀ i → H i) → Set) 2826 
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  (st-D : st _~D~_) 2827 
  (ω : I) 2828 
  (ax-ω-1 : ∀ (f g : ∀ i → H i) → st f → st g → f ~D~ g → f ω ≡ g ω) 2829 
  (ax-ω-2 : ∀ (f g : ∀ i → H i) → st f → st g → f ω ≡ g ω → f ~D~ g) 2830 
  (G : Set) 2831 
  (st-G : st G) 2832 
  (φ : G → (∀ i → H i) → Set) 2833 
  (φ-exists : ∀ (g : G) → ∃ λ (h : ∀ i → H i) → φ g h) 2834 
  (lim : (∀ i → H i) → G) 2835 
  (lim-surjective : ∀ (g : G) → ∃ λ (h : ∀ i → H i) → lim h ≡ g) 2836 
  (lim-respects-D : ∀ (h₁ h₂ : ∀ i → H i) → h₁ ~D~ h₂ → lim h₁ ≡ lim h₂) 2837 
  (lim-preserves-φ : ∀ (g : G) → ∀ (h : ∀ i → H i) → φ g h → _≡_ g (lim h)) 2838 
  (φ-exists-st : ∀ (g : G) → st g → st (proj₁ (φ-exists g)) ) 2839 
  where 2840 
 2841 
    open Thm2 I H _~D~_ st-D ω ax-ω-1 ax-ω-2 G st-G φ φ-exists lim lim-surjective lim-respects-D 2842 
lim-preserves-φ 2843 
 2844 
    st-colim-v : ∀ (g : G) → st g → st (colim g) 2845 
    st-colim-v g st-g = φ-exists-st g st-g 2846 
     2847 
    ι-counique : ∀ (h : H ω) → ∀ (g₁ g₂ : G) → st g₁ → st g₂ → ι h g₁ → ι h g₂ → g₁ ≡ g₂ 2848 
    ι-counique h g₁ g₂ st-g₁ st-g₂ ι-h-g₁ ι-h-g₂ = equality where 2849 
      step-1 : ι (colim g₁ ω) g₁ 2850 
      step-1 with proj₂ (ι-exists g₁ st-g₁) 2851 
      step-1 | fromInternal x = fromInternal x 2852 
      step-2 : colim g₁ ω ≡ h 2853 
      step-2 = sym (ι-unique g₁ st-g₁ h ι-h-g₁ (colim g₁ ω) step-1) 2854 
      step-3 : ι (colim g₂ ω) g₂ 2855 
      step-3 with proj₂ (ι-exists g₂ st-g₂) 2856 
      step-3 | fromInternal x = fromInternal x 2857 
      step-4 : colim g₂ ω ≡ h 2858 
      step-4 = sym (ι-unique g₂ st-g₂ h ι-h-g₂ (colim g₂ ω) step-3) 2859 
      step-5 : colim g₁ ω ≡ colim g₂ ω 2860 
      step-5 = tran step-2 (sym step-4) 2861 
      step-6 : colim g₁ ~D~ colim g₂ 2862 
      step-6 = ax-ω-2 (colim g₁) (colim g₂) (st-colim-v g₁ st-g₁) (st-colim-v g₂ st-g₂) step-5 2863 
      step-7 : lim (colim g₁) ≡ lim (colim g₂) 2864 
      step-7 = lim-respects-D (colim g₁) (colim g₂) step-6 2865 
      equality : g₁ ≡ g₂ 2866 
      equality = tran (sym (colim-splits-lim g₁)) (tran step-7 (colim-splits-lim g₂)) 2867 
-} 2868 
 2869 
-------------------------------------------------------------------------------- 2870 
 2871 
 2872 
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 2873 
 2874 
module IST.Results.MainTheorem where 2875 
 2876 
open import IST.Base 2877 
open import IST.Util 2878 
open import IST.Approximation 2879 
open import IST.MetricSpaces 2880 
open import IST.Reals 2881 
open import IST.Naturals 2882 
open import IST.PredicatedTopologies 2883 
open import IST.Results.ExtensionTheorem 2884 
open import IST.Groups 2885 
open import IST.GroupActions 2886 
open import IST.NewmansTheorem 2887 
 2888 
 2889 
-- Theorem. Assume that the finite group H approximates the standard group G as a group via an 2890 
external 2891 
--          predicate ι. Consider a faithful K-Lipschitz faithful action of H on M, for some 2892 
standard K > 0. 2893 
--          Every periodic subgroup of $G$ also admits a standard faithful $K$-Lipschitz action 2894 
on $M$. 2895 
record MainTheorem : ESet where 2896 
  field 2897 
    G# : Group 2898 
    st-G# : st G# 2899 
    H# : FiniteGroup 2900 
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    ι# : FiniteGroupApproximation H# G# 2901 
    M# : NewmanSpace 2902 
    st-M# : st M# 2903 
    A# : DiscreteAction H# (NewmanSpace.asMetricSpace M#) 2904 
  -- We first name everything in context. 2905 
  open Group G# renaming 2906 
    ( Carrier to G 2907 
    ; identity to 1G 2908 
    ; operation to xG 2909 
    ; inverse to iG 2910 
    ; assoc to G-associative 2911 
    ; unit-left to G-unit-left 2912 
    ; unit-right to G-unit-right 2913 
    ; inverse-left to G-inverse-left 2914 
    ; inverse-right to G-inverse-right 2915 
    ) 2916 
  open FiniteGroup H# renaming 2917 
    ( Carrier to H 2918 
    ; identity to 1H 2919 
    ; operation to xH 2920 
    ; inverse to iH 2921 
    ; assoc to H-associative 2922 
    ; unit-left to H-unit-left 2923 
    ; unit-right to H-unit-right 2924 
    ; inverse-left to H-inverse-left 2925 
    ; inverse-right to H-inverse-right 2926 
    ) 2927 
  open MetricSpace (NewmanSpace.asMetricSpace M#) renaming (Carrier to M) 2928 
  open DiscreteAction A# renaming (Map to act) 2929 
  open FiniteGroupApproximation ι# renaming (Map to ι) 2930 
  private 2931 
    M#' : MetricSpace 2932 
    M#' = NewmanSpace.asMetricSpace M# 2933 
    st-M#' : st M#' 2934 
    st-M#' = st-fun _ _ NewmanSpace.asMetricSpace M# st-NewmanSpace-asMetricSpace st-M# 2935 
    st-G : st G 2936 
    st-G = st-fun _ _ Group.Carrier G# st-Group-Carrier st-G# 2937 
    st-xG : st xG 2938 
    st-xG = st-fun-d _ _ Group.operation G# st-Group-operation st-G# 2939 
    st-1G : st 1G 2940 
    st-1G = st-fun-d _ _ Group.identity G# st-Group-identity st-G# 2941 
    st-M : st M 2942 
    st-M = st-fun _ _ MetricSpace.Carrier M#' st-MetricSpace-Carrier st-M#' 2943 
    st-distance : st distance 2944 
    st-distance = st-fun-d _ _ MetricSpace.distance M#' st-MetricSpace-distance st-M#' 2945 
    st-asMetricSpace-M# : st (NewmanSpace.asMetricSpace M#) 2946 
    st-asMetricSpace-M# = 2947 
      st-fun _ _ NewmanSpace.asMetricSpace M# st-NewmanSpace-asMetricSpace st-M# 2948 
    M## : HausdorffEquivalenceSpace 2949 
    M## = metric-to-hausdorff-equivalence (NewmanSpace.asMetricSpace M#) st-asMetricSpace-M# 2950 
  open HausdorffEquivalenceSpace M## renaming (Carrier to M-Carrier) 2951 
  -- The theorem requires one additional assumption to ensure the continuity of the resulting 2952 
  -- action. This can e.g. be a Lipschitz constant. 2953 
  field 2954 
    act-faithful : ∀ (g : H) → (g ≡ 1H → ⊥) → ∃ λ (m : M) → act g m ≡ m → ⊥ 2955 
    isCompactSpace : IsCompactSpace M nearby 2956 
    K : ℝ 2957 
    st-K : st K 2958 
    positive-K : 0r < K 2959 
    lipschitz : ∀ (g : H) → ∀ (x y : M) → distance (act g x) (act g y) ≤ᵣ (K · distance x y) 2960 
  open IsCompactSpace isCompactSpace 2961 
  private 2962 
    K' : ℝ 2963 
    K' = inv K (λ _ → positive-K) 2964 
    st-K' : st K' 2965 
    st-K' = st-inv-v K (λ _ → positive-K) st-K 2966 
    positive-K' : 0r < K' 2967 
    positive-K' = <-inverse positive-K 2968 
 2969 
    -- We prove the continuity of the action of H. 2970 
    S-continuity : ∀ (g : H) → ∀ (x : M) → st x → ∀ (y : M) → nearby x y → nearby (act g x) (act 2971 
g y) 2972 
    S-continuity g x st-x y x-near-y ε st-ε positive-ε = agx-near-agy where 2973 
      s : ℝ 2974 
      s = K' · ε 2975 
      st-s : st s 2976 
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      st-s = st-fun _ _ (_·_ K') ε (st-fun _ _ _·_ K' st-· st-K') st-ε 2977 
      positive-s : 0r < s 2978 
      positive-s = step-3 where 2979 
        step-1 : K' · 0r < s 2980 
        step-1 = <-mult 0r ε K' positive-K' positive-ε 2981 
        step-2 : K' · 0r ≡ 0r 2982 
        step-2 = ·-null-left 2983 
        step-3 : 0r < s 2984 
        step-3 = transport step-2 {λ x → x < s} step-1 2985 
      dxy-under-s : distance x y < s 2986 
      dxy-under-s = x-near-y s st-s positive-s 2987 
      kdxy-under-ks : K · distance x y < K · s 2988 
      kdxy-under-ks = <-mult (distance x y) s K positive-K (x-near-y s st-s positive-s) 2989 
      kK'ε-equals-ε : K · s ≡ ε 2990 
      kK'ε-equals-ε = tran (tran step-1 step-2) step-3 where 2991 
        step-1 : K · (K' · ε) ≡ (K · K') · ε 2992 
        step-1 = sym ·-assoc 2993 
        step-2 : (K · K') · ε ≡ 1r · ε 2994 
        step-2 = cong (λ x → x · ε) (·-inverse-right (λ _ → positive-K)) 2995 
        step-3 : 1r · ε ≡ ε 2996 
        step-3 = ·-unit-left 2997 
      kdxy-under-ε : K · distance x y < ε 2998 
      kdxy-under-ε = transport kK'ε-equals-ε {λ p → (K · distance x y) < p} kdxy-under-ks 2999 
      agx-near-agy : distance (act g x) (act g y) < ε 3000 
      agx-near-agy = by-cases _ case-1 case-2 (lipschitz g x y) where 3001 
        case-1 :  distance (act g x) (act g y) ≡ K · distance x y → 3002 
                  distance (act g x) (act g y) < ε 3003 
        case-1 p = transport (sym p) {λ p → p < ε} kdxy-under-ε 3004 
        case-2 : distance (act g x) (act g y) < K · distance x y → 3005 
                 distance (act g x) (act g y) < ε 3006 
        case-2 p = <-tran _ _ _ p kdxy-under-ε 3007 
 3008 
    -- We prove that continuity of the action over a compact manifold implies uniform 3009 
continuity. 3010 
    -- TODO: move this proof to a more appropriate module. 3011 
    S-uniform-continuity : ∀ (g : H) → ∀ (x : M) → ∀ (y : M) → nearby x y → nearby (act g x) 3012 
(act g y) 3013 
    S-uniform-continuity g x y x-near-y = fx-near-fy where 3014 
      x' : M 3015 
      x' = proj₁ (compact x) 3016 
      st-x' : st x' 3017 
      st-x' = proj₁ (proj₂ (compact x)) 3018 
      x'-near-x : nearby x' x 3019 
      x'-near-x = proj₂ (proj₂ (compact x)) 3020 
      x'-near-y : nearby x' y 3021 
      x'-near-y = transitive _ _ _ x'-near-x x-near-y 3022 
      fx'-near-fx : nearby (act g x') (act g x) 3023 
      fx'-near-fx = S-continuity g x' st-x' x x'-near-x 3024 
      fx'-near-fy : nearby (act g x') (act g y) 3025 
      fx'-near-fy = S-continuity g x' st-x' y x'-near-y 3026 
      fx-near-fy : nearby (act g x) (act g y) 3027 
      fx-near-fy = transitive _ _ _ (symmetric _ _ fx'-near-fx) fx'-near-fy 3028 
 3029 
    -- Group approximations of standard groups preserve and reflect unit elements. 3030 
    ι-preserves-unit : ι 1H 1G 3031 
    ι-preserves-unit = Map-preserves-unit st-G# 3032 
 3033 
    ι-preserves-unit-Target : ∀ (g : G) → st g → ι 1H g → g ≡ 1G 3034 
    ι-preserves-unit-Target = Map-preserves-unit-Target st-G# 3035 
 3036 
    -- We wish to apply the Extension Theorem to extend the action. 3037 
    -- To do that, we prove that a group approximation between H and G 3038 
    -- induces an appropriate set approximation between products (H × M) 3039 
    -- and (G × M). 3040 
    ι' : (H ∧ M) → G ∧ M → ESet 3041 
    ι' hm₁ gm₂ = ι (proj₁ hm₁) (proj₁ gm₂) *∧* internal (proj₂ hm₁ ≡ proj₂ gm₂) 3042 
    -- ι' (h , m₁) (g , m₂) = ι h g ∧* internal (m₁ ≡ m₂) 3043 
 3044 
    ι'-exists : ∀ (gm : G ∧ M) → st gm → ∃* λ (hm : H ∧ M) → ι' hm gm 3045 
    ι'-exists gm st-gm = (h , m) , ι'-hm-gm where 3046 
      g : G 3047 
      g = proj₁ gm 3048 
      m : M 3049 
      m = proj₂ gm 3050 
      st-g : st g 3051 



 

164 

 

      st-g = lemma-proj₁ (g , m) st-gm 3052 
      st-m : st m 3053 
      st-m = lemma-proj₂ (g , m) st-gm 3054 
      h : H 3055 
      h = proj₁ (Map-exists g st-g) 3056 
      ι-h-g : ι h g 3057 
      ι-h-g = proj₂ (Map-exists g st-g) 3058 
      ι'-hm-gm : ι' (h , m) (g , m) 3059 
      ι'-hm-gm = ι-h-g , fromInternal refl 3060 
 3061 
    ι'-unique-Source : ∀ (gm : G ∧ M) → st gm → 3062 
                       ∀ (h₁m : H ∧ M) → ι' h₁m gm → 3063 
                       ∀ (h₂m : H ∧ M) → ι' h₂m gm → 3064 
                       h₁m ≡ h₂m  3065 
    ι'-unique-Source gm st-gm h₁m ι-h₁m-gm h₂m ι-h₂m-gm = 3066 
      h₁m-equals-h₂m where 3067 
      g : G 3068 
      g = proj₁ gm 3069 
      m : M 3070 
      m = proj₂ gm 3071 
      h₁ : H 3072 
      h₁ = proj₁ h₁m 3073 
      m₁ : M 3074 
      m₁ = proj₂ h₁m 3075 
      h₂ : H 3076 
      h₂ = proj₁ h₂m 3077 
      m₂ : M 3078 
      m₂ = proj₂ h₂m 3079 
      st-g : st g 3080 
      st-g = lemma-proj₁ (g , m) st-gm 3081 
      st-m : st m 3082 
      st-m = lemma-proj₂ (g , m) st-gm 3083 
      m₁-equals-m : m₁ ≡ m 3084 
      m₁-equals-m = toInternal _ (proj₂ ι-h₁m-gm) 3085 
      m₂-equals-m : m₂ ≡ m 3086 
      m₂-equals-m = toInternal _ (proj₂ ι-h₂m-gm) 3087 
      m₁-equals-m₂ : m₁ ≡ m₂ 3088 
      m₁-equals-m₂ = tran m₁-equals-m (sym m₂-equals-m) 3089 
      h₁-equals-h₂ : h₁ ≡ h₂ 3090 
      h₁-equals-h₂ = Map-unique-Source g st-g h₁ (proj₁ ι-h₁m-gm) h₂ (proj₁ ι-h₂m-gm) 3091 
      pair : H → M → H ∧ M 3092 
      pair x y = (x , y) 3093 
      product-lemma : ∀ {x₁ x₂ : H} → ∀ {y₁ y₂ : M} → 3094 
                     x₁ ≡ x₂ → y₁ ≡ y₂ → (pair x₁ y₁) ≡ (pair x₂ y₂) 3095 
      product-lemma = lemma-product-equality 3096 
      h₁m-equals-h₂m : (h₁ , m₁) ≡ (h₂ , m₂) 3097 
      h₁m-equals-h₂m = product-lemma h₁-equals-h₂ m₁-equals-m₂ 3098 
 3099 
    ι'-unique-Target : ∀ (g₁m : G ∧ M) → st g₁m → 3100 
                       ∀ (g₂m : G ∧ M) → st g₂m → 3101 
                       ∀ (hm : H ∧ M) → ι' hm g₁m → ι' hm g₂m → 3102 
                       g₁m ≡ g₂m 3103 
    ι'-unique-Target g₁m st-g₁m g₂m st-g₂m hm ι'-hm-g₁m ι'-hm-g₂m = 3104 
      g₁m-equals-g₂m where 3105 
      g₁ : G 3106 
      g₁ = proj₁ g₁m 3107 
      m₁ : M 3108 
      m₁ = proj₂ g₁m 3109 
      g₂ : G 3110 
      g₂ = proj₁ g₂m 3111 
      m₂ : M 3112 
      m₂ = proj₂ g₂m 3113 
      h : H 3114 
      h = proj₁ hm 3115 
      m : M 3116 
      m = proj₂ hm 3117 
      st-g₁ : st g₁ 3118 
      st-g₁ = lemma-proj₁ (g₁ , m₁) st-g₁m 3119 
      st-g₂ : st g₂ 3120 
      st-g₂ = lemma-proj₁ (g₂ , m₂) st-g₂m 3121 
      st-m₁ : st m₁ 3122 
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      st-m₁ = lemma-proj₂ (g₁ , m₁) st-g₁m 3123 
      st-m₂ : st m₂ 3124 
      st-m₂ = lemma-proj₂ (g₂ , m₂) st-g₂m 3125 
      m₁-equals-m : m ≡ m₁ 3126 
      m₁-equals-m = toInternal _ (proj₂ ι'-hm-g₁m) 3127 
      m₂-equals-m : m ≡ m₂ 3128 
      m₂-equals-m = toInternal _ (proj₂ ι'-hm-g₂m) 3129 
      m₁-equals-m₂ : m₁ ≡ m₂ 3130 
      m₁-equals-m₂ = tran (sym m₁-equals-m) (m₂-equals-m) 3131 
      ι-h-g₁ : ι h g₁ 3132 
      ι-h-g₁ = proj₁ ι'-hm-g₁m 3133 
      ι-h-g₂ : ι h g₂ 3134 
      ι-h-g₂ = proj₁ ι'-hm-g₂m 3135 
      g₁-equals-g₂ : g₁ ≡ g₂ 3136 
      g₁-equals-g₂ = Map-unique-Target g₁ st-g₁ g₂ st-g₂ h ι-h-g₁ ι-h-g₂ 3137 
      pair : G → M → G ∧ M 3138 
      pair x y = (x , y) 3139 
      product-lemma : ∀ {x₁ x₂ : G} → ∀ {y₁ y₂ : M} → 3140 
                     x₁ ≡ x₂ → y₁ ≡ y₂ → (pair x₁ y₁) ≡ (pair x₂ y₂) 3141 
      product-lemma = lemma-product-equality 3142 
      g₁m-equals-g₂m : (g₁ , m₁) ≡ (g₂ , m₂) 3143 
      g₁m-equals-g₂m = product-lemma g₁-equals-g₂ m₁-equals-m₂ 3144 
 3145 
    st-G∧M : st (G ∧ M) 3146 
    st-G∧M = st-fun _ _ (_∧_ G) M (st-fun _ _ _∧_ G st-∧ st-G) st-M 3147 
 3148 
    A#∧M : Approximation (H ∧ M) (G ∧ M) 3149 
    A#∧M = record { Map = ι' 3150 
                  ; isApproximation = record { Target-st = st-G∧M 3151 
                                             ; Map-exists = ι'-exists 3152 
                                             ; Map-unique-Source = ι'-unique-Source 3153 
                                             ; Map-unique-Target = ι'-unique-Target 3154 
                                             } 3155 
                  } 3156 
    -- Now we can invoke the extension theorem to extend the action to a map G × M → M. 3157 
    by-extension : ExtensionTheorem 3158 
    by-extension = 3159 
      record { G = G ∧ M 3160 
             ; H = H ∧ M 3161 
             ; A = A#∧M 3162 
             ; M# = record 3163 
                      { Carrier = M 3164 
                      ; nearby = nearby 3165 
                      ; isHausdorffSpace = isHausdorffSpace 3166 
                      ; isCompactSpace = isCompactSpace 3167 
                      } 3168 
             ; st-M = st-M 3169 
             ; f = λ hm → act (proj₁ hm) (proj₂ hm) } 3170 
    open ExtensionTheorem by-extension hiding (G; H; A; M#; st-M; f) renaming 3171 
      ( f' to act-G 3172 
      ; st-f' to st-act-G 3173 
      ; f'-exists to act-G-exists 3174 
      ; f'-exists-st to act-G-exists-st 3175 
      ; f'-unique to act-G-unique 3176 
      ) 3177 
 3178 
    -- The extension theorem extends the action with signature H × M → M to a 3179 
    -- function with signature G × M → M. Here we prove the result standard-valued. 3180 
    act' : G → M → M 3181 
    act' g m = proj₁ (act-G-exists (g , m)) 3182 
 3183 
    act'-property : ∀ (g : G) → ∀ (m : M) → act-G ((g , m) , act' g m) 3184 
    act'-property g m = proj₂ (act-G-exists (g , m)) 3185 
 3186 
    act'-st-valued : ∀ (g : G) → st g → ∀ (m : M) → st m → st (act' g m) 3187 
    act'-st-valued g st-g m st-m = st-act'-g-m where 3188 
      gm : G ∧ M 3189 
      gm = (g , m) 3190 
      sm : ∃* λ (m' : M) → st m' *∧* internal (act-G ((g , m) , m')) 3191 
      sm = act-G-exists-st (g , m) (lemma-pairing g m st-g st-m) 3192 
      st-sm : st (proj₁ sm) 3193 
      st-sm = proj₁ (proj₂ sm) 3194 
      f'-gm-sm : act-G (gm , (proj₁ sm)) 3195 
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      f'-gm-sm = toInternal _ (proj₂ (proj₂ sm)) 3196 
      sm-equals-act-G-m : proj₁ sm ≡ act' g m -- act-G ((g , m) , ?) 3197 
      sm-equals-act-G-m = act-G-unique (g , m) (proj₁ sm) (act' g m) f'-gm-sm (act'-property g 3198 
m) 3199 
      st-act'-g-m : st (act' g m) 3200 
      st-act'-g-m = transport* sm-equals-act-G-m {st} st-sm 3201 
 3202 
    act'-property-st : ∀ (g : G) → st g → ∀ (m : M) → st m → 3203 
                       ∃* λ (hm : H ∧ M) → ι' hm (g , m) *∧* nearby (act' g m) (act (proj₁ hm) 3204 
(proj₂ hm))  3205 
    act'-property-st g st-g m st-m = 3206 
      ax-Standard-2 _ ((g , m) , act' g m) act-G-pair (act'-property g m) where 3207 
      st-gm : st (g , m) 3208 
      st-gm = lemma-pairing g m st-g st-m 3209 
      act-G-pair : st ((g , m) , act' g m) 3210 
      act-G-pair = lemma-pairing (g , m) (act' g m) st-gm (act'-st-valued g st-g m st-m) 3211 
 3212 
    -- The main lemma: if h approximates g, then the result of the action of h 3213 
    -- lies near the result of the action of g. 3214 
    act'-lemma : ∀ (g : G) → st g → ∀ (m : M) → st m → ∀ (h : H) → ι h g → 3215 
                 nearby (act' g m) (act h m) 3216 
    act'-lemma g st-g m st-m h ι-h-g = agm-near-ahm where 3217 
      ι'-hm-gm : ι' (h , m) (g , m) 3218 
      ι'-hm-gm = ι-h-g , fromInternal refl 3219 
      hm'-exists : ∃* λ (hm' : H ∧ M) → ι' hm' (g , m) *∧* nearby (act' g m) (act (proj₁ hm') 3220 
(proj₂ hm')) 3221 
      hm'-exists = act'-property-st g st-g m st-m 3222 
      h' : H 3223 
      h' = proj₁ (proj₁ hm'-exists) 3224 
      m' : M 3225 
      m' = proj₂ (proj₁ hm'-exists) 3226 
      ι'-hm'-gm : ι' (h' , m') (g , m) 3227 
      ι'-hm'-gm = proj₁ (proj₂ hm'-exists) 3228 
      hm'-equals-hm : (h' , m') ≡ (h , m) 3229 
      hm'-equals-hm = 3230 
        ι'-unique-Source (g , m) (lemma-pairing g m st-g st-m) (h' , m') ι'-hm'-gm (h , m) ι'-3231 
hm-gm 3232 
      h'-equals-h : h' ≡ h 3233 
      h'-equals-h = cong proj₁ hm'-equals-hm 3234 
      m'-equals-m : m' ≡ m 3235 
      m'-equals-m = cong proj₂ hm'-equals-hm 3236 
      agm-near-ahm' : nearby (act' g m) (act h' m') 3237 
      agm-near-ahm' = proj₂ (proj₂ hm'-exists) 3238 
      agm-near-ahm : nearby (act' g m) (act h m) 3239 
      agm-near-ahm = 3240 
        transport* h'-equals-h {λ z → nearby (act' g m) (act z m)} 3241 
          (transport* m'-equals-m {λ z → nearby (act' g m) (act h' z)} agm-near-ahm') 3242 
 3243 
    -- First we prove that the identity acts via the identity function. 3244 
    act'-identity-st : ∀ (m : M) → st m → internal (act' 1G m ≡ m) 3245 
    act'-identity-st m st-m = fromInternal a1Gm-equals-m where 3246 
      a1Gm-near-a1Hm : nearby (act' 1G m) (act 1H m) 3247 
      a1Gm-near-a1Hm = act'-lemma 1G st-1G m st-m 1H ι-preserves-unit 3248 
      a1Gm-near-m : nearby (act' 1G m) m 3249 
      a1Gm-near-m = transport* (action-identity m) {λ z → nearby (act' 1G m) z} a1Gm-near-a1Hm 3250 
      a1Gm-equals-m : act' 1G m ≡ m 3251 
      a1Gm-equals-m = hausdorff (act' 1G m) st-a1Gm m st-m m a1Gm-near-m (reflexive m) where 3252 
        st-a1Gm : st (act' 1G m) 3253 
        st-a1Gm = act'-st-valued 1G st-1G m st-m 3254 
 3255 
    act'-identity : ∀ (m : M) → act' 1G m ≡ m 3256 
    act'-identity = ax-Transfer-EI (∀' M (λ m → int' (act' 1G m ≡ m))) act'-identity-st std-Φ 3257 
where 3258 
      Φ : TransferPred 3259 
      Φ = ∀' M λ m → int' (act' 1G m ≡ m) 3260 
      std-Φ : st M *∧* ∀ (m : M) → st m → st (act' 1G m ≡ m) 3261 
      std-Φ = st-M , λ m st-m → 3262 
              st-fun _ _ (eq (act' 1G m)) m 3263 
              (st-fun _ _ eq (act' 1G m) st-eq (help1 m st-m)) st-m where 3264 
        eq : M → M → Set 3265 
        eq = _≡_ 3266 
        st-eq : st eq 3267 
        st-eq = st-≡-full 3268 
        help1 : (m : M) → st m → st (act' 1G m) 3269 



 

167 

 

        help1 m st-m = act'-st-valued 1G st-1G m st-m 3270 
 3271 
    -- Now we prove that the action is a homomorphism with respect to the operations. 3272 
    act'-operation-st : ∀ (g : G) → st g → ∀ (h : G) → st h → ∀ (m : M) → st m → 3273 
                        internal (act' g (act' h m) ≡ act' (xG g h) m) 3274 
    act'-operation-st g st-g h st-h m st-m = fromInternal (sym (a'ghm-equals-a'ga'hm)) where 3275 
      -- Book-keeping: We must prove that if g' approximates g and 3276 
      -- h' approximates h then g'h' approximates gh. 3277 
      gh : G 3278 
      gh = xG g h 3279 
      st-gh : st gh 3280 
      st-gh = st-fun _ _ (xG g) h (st-fun _ _ xG g st-xG st-g) st-h 3281 
      g' : H 3282 
      g' = proj₁ (Map-exists g st-g) 3283 
      ι-g'-g : ι g' g 3284 
      ι-g'-g = proj₂ (Map-exists g st-g)  3285 
      h' : H 3286 
      h' = proj₁ (Map-exists h st-h) 3287 
      ι-h'-h : ι h' h 3288 
      ι-h'-h = proj₂ (Map-exists h st-h) 3289 
      g'h' : H 3290 
      g'h' = xH g' h' 3291 
      ι-g'h'-gh : ι g'h' gh 3292 
      ι-g'h'-gh = Map-homomorphism g' h' g st-g h st-h ι-g'-g ι-h'-h  3293 
      -- It follows on one hand that applying gh to m results in a neighbor 3294 
      -- of applying g'h' to m. 3295 
      a'ghm-near-ag'ah'm : nearby (act' gh m) (act g'h' m) 3296 
      a'ghm-near-ag'ah'm = act'-lemma gh st-gh m st-m g'h' ι-g'h'-gh 3297 
      ag'h'm-equals-ag'ah'm : act g'h' m ≡ act g' (act h' m) 3298 
      ag'h'm-equals-ag'ah'm = sym (action-operation g' h' m) 3299 
      one-hand : nearby (act' gh m) (act g' (act h' m)) 3300 
      one-hand = transport* ag'h'm-equals-ag'ah'm {λ z → nearby (act' gh m) z} a'ghm-near-3301 
ag'ah'm 3302 
      -- It follows on the other hand that the result of applying g' to h' at m 3303 
      -- neighbors the same element. 3304 
      a'ga'hm-near-ag'a'hm : nearby (act' g (act' h m)) (act g' (act' h m)) 3305 
      a'ga'hm-near-ag'a'hm = act'-lemma g st-g (act' h m) (act'-st-valued h st-h m st-m) g' ι-3306 
g'-g 3307 
      a'hm-near-ah'm : nearby (act' h m) (act h' m) 3308 
      a'hm-near-ah'm = act'-lemma h st-h m st-m h' ι-h'-h 3309 
      ag'a'hm-near-ag'ah'm : nearby (act g' (act' h m)) (act g' (act h' m)) 3310 
      ag'a'hm-near-ag'ah'm = S-uniform-continuity g' (act' h m) (act h' m) a'hm-near-ah'm 3311 
      other-hand : nearby (act' g (act' h m)) (act g' (act h' m)) 3312 
      other-hand = transitive _ _ _ a'ga'hm-near-ag'a'hm ag'a'hm-near-ag'ah'm 3313 
      -- These both satisfy standardness! 3314 
      st-one : st (act' gh m) 3315 
      st-one = act'-st-valued gh st-gh m st-m 3316 
      st-other : st (act' g (act' h m)) 3317 
      st-other = act'-st-valued g st-g (act' h m) (act'-st-valued h st-h m st-m) 3318 
      -- By Hausdorff separation standard values with common neighbors are equal. 3319 
      a'ghm-equals-a'ga'hm : act' gh m ≡ act' g (act' h m) 3320 
      a'ghm-equals-a'ga'hm = 3321 
        hausdorff (act' gh m) st-one 3322 
                  (act' g (act' h m)) st-other 3323 
                  (act g' (act h' m)) one-hand other-hand 3324 
 3325 
    act'-operation : ∀ (g : G) → ∀ (h : G) → ∀ (m : M) → act' g (act' h m) ≡ act' (xG g h) m 3326 
    act'-operation = ax-Transfer-EI Φ act'-operation-st std-Φ where 3327 
      Φ : TransferPred 3328 
      Φ = ∀' G λ g → ∀' G λ h → ∀' M λ m → int' (act' g (act' h m) ≡ act' (xG g h) m) 3329 
      eq : M → M → Set 3330 
      eq = _≡_ 3331 
      st-eq : st eq 3332 
      st-eq = st-≡-full 3333 
      st-one : ∀ (g h : G) → ∀ (m : M) → st g → st h → st m → st (act' (xG g h) m) 3334 
      st-one g h m st-g st-h st-m = 3335 
        act'-st-valued (xG g h) (st-fun _ _ (xG g) h (st-fun _ _ xG g st-xG st-g) st-h) m st-m 3336 
      st-other : ∀ (g h : G) → ∀ (m : M) → st g → st h → st m → st (act' g (act' h m)) 3337 
      st-other g h m st-g st-h st-m = act'-st-valued g st-g (act' h m) (act'-st-valued h st-h m 3338 
st-m) 3339 
      std-Φ : st G *∧* ∀ (g : G) → st g → st G *∧* ∀ (h : G) → st h → st M *∧* 3340 
              ∀ (m : M) → st m → st (act' g (act' h m) ≡ act' (xG g h) m) 3341 
      std-Φ = st-G , λ g st-g → 3342 
              st-G , λ h st-h → 3343 
              st-M , λ m st-m →  st-fun _ _ (eq (act' g (act' h m))) (act' (xG g h) m) 3344 
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              (st-fun _ _ eq (act' g (act' h m)) st-eq (st-other g h m st-g st-h st-m)) 3345 
              (st-one g h m st-g st-h st-m) 3346 
    -- At this point we know that act' has all the properties of an action of G on M. 3347 
    -- But it might be a trivial action - we have to rule that out! 3348 
 3349 
    -- Before discussing faithfulness, we note that act' is a standard action, and therefore 3350 
    -- it satisfies both S-continuity and ε-δ continuity. 3351 
 3352 
    act'-lipschitz-st! :  ∀ (g : G) → st g → 3353 
                         ∀ (x : M) → st x → 3354 
                         ∀ (y : M) → st y → internal ( 3355 
                           distance (act' g x) (act' g y) ≤ᵣ (K · distance x y) 3356 
                         ) 3357 
    act'-lipschitz-st! g st-g x st-x y st-y = fromInternal difference-0 where 3358 
      h : H 3359 
      h = proj₁ (Map-exists g st-g) 3360 
      ι-h-g : ι h g 3361 
      ι-h-g = proj₂ (Map-exists g st-g) 3362 
      difference-ε-st : ∀ (ε : ℝ) → st ε → 0r < ε → distance (act' g x) (act' g y) ≤ᵣ K · 3363 
distance x y + ε 3364 
      difference-ε-st ε st-ε positive-ε = by-cases _ case-1 case-2 (lipschitz h y x) where 3365 
        ε/2 : ℝ 3366 
        ε/2 = ε /2r 3367 
        st-ε/2 : st ε/2 3368 
        st-ε/2 = st-/2r-v ε st-ε 3369 
        positive-ε/2 : 0r < ε/2 3370 
        positive-ε/2 = pos-/2r-v ε positive-ε 3371 
        case-2 : distance (act h y) (act h x) < K · distance y x → 3372 
                 distance (act' g x) (act' g y) ≤ᵣ K · distance x y + ε 3373 
        case-2 final-1 = inr final-13 where 3374 
          final-2 : distance (act h y) (act h x) < K · distance x y 3375 
          final-2 = transport (symmetry y x) {λ z → distance (act h y) (act h x) < K · z} final-3376 
1 3377 
          final-3 : distance (act' g x) (act h x) < ε/2 3378 
          final-3 = act'-lemma g st-g x st-x h ι-h-g ε/2 st-ε/2 positive-ε/2 3379 
          final-4 : distance (act h x) (act' g x) < ε/2 3380 
          final-4 = transport (symmetry (act' g x) (act h x)) {λ z → z < ε/2} final-3 3381 
          final-5 : distance (act h y) (act h x) + distance (act h x) (act' g x) < K · distance 3382 
x y + ε/2 3383 
          final-5 = <-plus-both (distance (act h y) (act h x)) _ _ _ final-2 final-4 3384 
          final-6 : distance (act h y) (act' g x) < K · distance x y + ε/2 3385 
          final-6 = triangle (act h y) (act h x) (act' g x) (K · distance x y + ε/2) final-5 3386 
          final-7 : distance (act' g y) (act h y) < ε/2 3387 
          final-7 = act'-lemma g st-g y st-y h ι-h-g ε/2 st-ε/2 positive-ε/2 3388 
          final-8 : distance (act h y) (act' g y) < ε/2 3389 
          final-8 = transport (symmetry (act' g y) (act h y)) {λ z → z < ε/2} final-7 3390 
          final-9 : distance (act' g x) (act h y) < K · distance x y + ε/2 3391 
          final-9 = transport (symmetry (act h y) (act' g x)) {λ z → z < K · distance x y + ε/2} 3392 
final-6 3393 
          final-10 : 3394 
            distance (act' g x) (act h y) + distance (act h y) (act' g y) < (K · distance x y + 3395 
ε/2) + ε/2 3396 
          final-10 = <-plus-both (distance (act' g x) (act h y)) _ _ _ final-9 final-8 3397 
          final-11 : distance (act' g x) (act' g y) < (K · distance x y + ε/2) + ε/2 3398 
          final-11 = triangle (act' g x) (act h y) (act' g y) 3399 
                       ((K · distance x y + ε/2) + ε/2) final-10 3400 
          final-12 : distance (act' g x) (act' g y) < K · distance x y + ε/2 + ε/2 3401 
          final-12 = transport +-assoc {λ z → distance (act' g x) (act' g y) < z} final-11 3402 
          final-13 : distance (act' g x) (act' g y) < K · distance x y + ε 3403 
          final-13 = 3404 
            transport (/2r-half {ε}) {λ z → distance (act' g x) (act' g y) < K · distance x y + 3405 
z} final-12 3406 
 3407 
        case-1 : distance (act h y) (act h x) ≡ K · distance y x → 3408 
                 distance (act' g x) (act' g y) ≤ᵣ K · distance x y + ε 3409 
        case-1 final-1 = final-x12 where 3410 
          final-x1 : 3411 
            distance (act' g x) (act' g y) ≤ᵣ distance (act' g x) (act h y) + distance (act h y) 3412 
(act' g y) 3413 
          final-x1 = triangle-≤ᵣ (act' g x) (act h y) (act' g y) 3414 
          final-x2 : 3415 
            distance (act h y) (act' g x) ≤ᵣ distance (act h y) (act h x) + distance (act h x) 3416 
(act' g x) 3417 
          final-x2 = triangle-≤ᵣ (act h y) (act h x) (act' g x) 3418 
          final-x3 : 3419 
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            distance (act' g x) (act' g y) ≤ᵣ distance (act h y) (act' g x) + distance (act h y) 3420 
(act' g y) 3421 
          final-x3 = transport (symmetry (act' g x) (act h y)) 3422 
                       {λ p → distance (act' g x) (act' g y) ≤ᵣ p + distance (act h y) (act' g 3423 
y)} final-x1 3424 
          final-x4 : 3425 
             distance (act h y) (act' g x) + distance (act h y) (act' g y) ≤ᵣ 3426 
             (distance (act h y) (act h x) + distance (act h x) (act' g x)) + distance (act h y) 3427 
(act' g y) 3428 
          final-x4 = ≤ᵣ-plus _ _ (distance (act h y) (act' g y)) final-x2 3429 
          final-x5 : 3430 
             distance (act' g x) (act' g y) ≤ᵣ 3431 
             (distance (act h y) (act h x) + distance (act h x) (act' g x)) + distance (act h y) 3432 
(act' g y) 3433 
          final-x5 = ≤ᵣ-tran _ _ _ final-x3 final-x4 3434 
          final-x6 : 3435 
             distance (act' g x) (act' g y) ≤ᵣ 3436 
             distance (act h y) (act h x) + (distance (act h x) (act' g x) + distance (act h y) 3437 
(act' g y)) 3438 
          final-x6 = transport +-assoc {λ p → distance (act' g x) (act' g y) ≤ᵣ p} final-x5 3439 
          final-3 : distance (act' g x) (act h x) < ε/2 3440 
          final-3 = act'-lemma g st-g x st-x h ι-h-g ε/2 st-ε/2 positive-ε/2 3441 
          final-4 : distance (act h x) (act' g x) < ε/2 3442 
          final-4 = transport (symmetry (act' g x) (act h x)) {λ z → z < ε/2} final-3 3443 
          final-7 : distance (act' g y) (act h y) < ε/2 3444 
          final-7 = act'-lemma g st-g y st-y h ι-h-g ε/2 st-ε/2 positive-ε/2 3445 
          final-8 : distance (act h y) (act' g y) < ε/2 3446 
          final-8 = transport (symmetry (act' g y) (act h y)) {λ z → z < ε/2} final-7 3447 
          final-x7 : 3448 
            distance (act h x) (act' g x) + distance (act h y) (act' g y) ≤ᵣ ε/2 + ε/2 3449 
          final-x7 = ≤ᵣ-plus-both _ _ _ _ (inr final-4) (inr final-8) 3450 
          final-x8 : 3451 
            distance (act h x) (act' g x) + distance (act h y) (act' g y) ≤ᵣ ε 3452 
          final-x8 = transport (/2r-half {ε}) 3453 
                       {λ p → distance (act h x) (act' g x) + distance (act h y) (act' g y) ≤ᵣ 3454 
p} 3455 
                       final-x7 3456 
          final-x9 : 3457 
            distance (act h y) (act h x) + (distance (act h x) (act' g x) + distance (act h y) 3458 
(act' g y)) ≤ᵣ 3459 
            distance (act h y) (act h x) + ε 3460 
          final-x9 = ≤ᵣ-plus-left _ _ (distance (act h y) (act h x)) final-x8 3461 
          final-x10 : 3462 
            distance (act' g x) (act' g y) ≤ᵣ distance (act h y) (act h x) + ε 3463 
          final-x10 = ≤ᵣ-tran _ _ _ final-x6 final-x9 3464 
          final-x11 : 3465 
            distance (act' g x) (act' g y) ≤ᵣ K · distance y x + ε 3466 
          final-x11 = transport final-1 {λ p → distance (act' g x) (act' g y) ≤ᵣ p + ε} final-3467 
x10 3468 
          final-x12 : 3469 
            distance (act' g x) (act' g y) ≤ᵣ K · distance x y + ε 3470 
          final-x12 = transport (symmetry y x) {λ p → distance (act' g x) (act' g y) ≤ᵣ K · p + 3471 
ε} final-x11 3472 
 3473 
      difference-ε : ∀ (ε : ℝ) → 0r < ε → distance (act' g x) (act' g y) ≤ᵣ K · distance x y + 3474 
ε 3475 
      difference-ε = ax-Transfer-EI Φ (λ ε → λ st-ε → fromInternal (difference-ε-st ε st-ε)) 3476 
std-Φ where 3477 
        Φ : TransferPred 3478 
        Φ = ∀' ℝ λ ε → int' (0r < ε → distance (act' g x) (act' g y) ≤ᵣ K · distance x y + ε) 3479 
        std-Φ : 3480 
          st ℝ *∧* (∀ (a : ℝ) → st a → st (0r < a → distance (act' g x) (act' g y) ≤ᵣ K · 3481 
distance x y + a)) 3482 
        std-Φ = 3483 
          st-ℝ , λ a st-a → 3484 
          st-→ _ (st-fun _ _ (_<_ 0r) a (st-fun _ _ _<_ 0r st-< st-0r) st-a) _ 3485 
             (st-fun _ _ (_≤ᵣ_ (distance (act' g x) (act' g y))) 3486 
             (K · distance x y + a) 3487 
             (st-fun _ _ _≤ᵣ_ (distance (act' g x) (act' g y)) 3488 
             st-≤ᵣ (st-fun _ _ (distance (act' g x)) (act' g y) 3489 
             (st-fun _ _ distance (act' g x) 3490 
             st-distance (act'-st-valued g st-g x st-x)) 3491 
             (act'-st-valued g st-g y st-y))) 3492 
             (st-fun _ _ (_+_ (K · distance x y)) a 3493 
             (st-fun _ _ _+_ (K · distance x y) 3494 
             st-+ (st-fun _ _ (_·_ K) (distance x y) 3495 
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             (st-fun _ _ _·_ K st-· st-K) 3496 
             (st-fun _ _ (distance x) y (st-fun _ _ distance x st-distance st-x) st-y))) st-a)) 3497 
      difference-0 : distance (act' g x) (act' g y) ≤ᵣ K · distance x y 3498 
      difference-0 = lemma-ε-of-room-plus-≤ᵣ _ _ difference-ε 3499 
 3500 
    act'-lipschitz! :  ∀ (g : G) → 3501 
                       ∀ (x : M) → 3502 
                       ∀ (y : M) → 3503 
                       distance (act' g x) (act' g y) ≤ᵣ (K · distance x y) 3504 
    act'-lipschitz! = ax-Transfer-EI Φ act'-lipschitz-st! std-Φ where 3505 
      Φ : TransferPred 3506 
      Φ = ∀' G λ g → ∀' M λ x → ∀' M λ y → int' (distance (act' g x) (act' g y) ≤ᵣ K · distance 3507 
x y) 3508 
      std-Φ : st G *∧* (∀ (g : G) → st g → st M *∧* (∀ (x : M) → st x → st M *∧* (∀ (y : M) → st 3509 
y → 3510 
              st (distance (act' g x) (act' g y) ≤ᵣ K · distance x y)))) 3511 
      std-Φ = st-G , λ g st-g → st-M , λ x st-x → st-M , λ y st-y → 3512 
        st-fun _ _ (_≤ᵣ_ (distance (act' g x) (act' g y))) 3513 
          (K · distance x y) 3514 
          (st-fun _ _ _≤ᵣ_ (distance (act' g x) (act' g y)) 3515 
          st-≤ᵣ (st-fun _ _ (distance (act' g x)) (act' g y) 3516 
          (st-fun _ _ distance (act' g x) 3517 
          st-distance (act'-st-valued g st-g x st-x)) (act'-st-valued g st-g y st-y))) 3518 
          (st-fun _ _ (_·_ K) (distance x y) 3519 
          (st-fun _ _ _·_ K st-· st-K) (st-fun _ _ (distance x) y 3520 
          (st-fun _ _ distance x st-distance st-x) st-y)) 3521 
 3522 
    act'-S-uniform-continuity : ∀ (g : G) → 3523 
                                ∀ (x : M) →  3524 
                                ∀ (y : M) → nearby x y → nearby (act' g x) (act' g y) 3525 
    act'-S-uniform-continuity g x y x-near-y ε st-ε positive-ε = agx-near-agy where 3526 
      s : ℝ 3527 
      s = K' · ε 3528 
      st-s : st s 3529 
      st-s = st-fun _ _ (_·_ K') ε (st-fun _ _ _·_ K' st-· st-K') st-ε 3530 
      positive-s : 0r < s 3531 
      positive-s = step-3 where 3532 
        step-1 : K' · 0r < s 3533 
        step-1 = <-mult 0r ε K' positive-K' positive-ε 3534 
        step-2 : K' · 0r ≡ 0r 3535 
        step-2 = ·-null-left 3536 
        step-3 : 0r < s 3537 
        step-3 = transport step-2 {λ x → x < s} step-1 3538 
      dxy-under-s : distance x y < s 3539 
      dxy-under-s = x-near-y s st-s positive-s 3540 
      kdxy-under-ks : K · distance x y < K · s 3541 
      kdxy-under-ks = <-mult (distance x y) s K positive-K (x-near-y s st-s positive-s) 3542 
      kK'ε-equals-ε : K · s ≡ ε 3543 
      kK'ε-equals-ε = tran (tran step-1 step-2) step-3 where 3544 
        step-1 : K · (K' · ε) ≡ (K · K') · ε 3545 
        step-1 = sym ·-assoc 3546 
        step-2 : (K · K') · ε ≡ 1r · ε 3547 
        step-2 = cong (λ x → x · ε) (·-inverse-right (λ _ → positive-K)) 3548 
        step-3 : 1r · ε ≡ ε 3549 
        step-3 = ·-unit-left 3550 
      kdxy-under-ε : K · distance x y < ε 3551 
      kdxy-under-ε = transport kK'ε-equals-ε {λ p → (K · distance x y) < p} kdxy-under-ks 3552 
      agx-near-agy : distance (act' g x) (act' g y) < ε 3553 
      agx-near-agy = by-cases _ case-1 case-2 (act'-lipschitz! g x y) where 3554 
        case-1 : distance (act' g x) (act' g y) ≡ K · distance x y → 3555 
                 distance (act' g x) (act' g y) < ε 3556 
        case-1 p = transport (sym p) {λ p → p < ε} kdxy-under-ε 3557 
        case-2 : distance (act' g x) (act' g y) < K · distance x y → 3558 
                 distance (act' g x) (act' g y) < ε 3559 
        case-2 p = <-tran _ _ _ p kdxy-under-ε 3560 
       3561 
    act'-continuity : ∀ (g : G) → ∀ (m : M) → 3562 
                      ∀ (ε : ℝ) → 0r < ε → 3563 
                      ∃ λ (δ : ℝ) → (0r < δ) ∧ ( 3564 
                      ∀ (m' : M) → distance m m' < δ → distance (act' g m) (act' g m') < ε) 3565 
    act'-continuity x m ε positive-ε = K' · ε , (positive-K'ε , helper) where 3566 
      positive-K'ε : 0r < K' · ε 3567 
      positive-K'ε = transport (·-null-left) {λ z → z < K' · ε} (<-mult 0r ε K' positive-K' 3568 
positive-ε) 3569 
      helper : (m' : M) → distance m m' < K' · ε → distance (act' x m) (act' x m') < ε 3570 
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      helper m' p = step-5 where 3571 
        step-1 : distance (act' x m) (act' x m') ≤ᵣ K · distance m m' 3572 
        step-1 = act'-lipschitz! x m m' 3573 
        step-2 : K · distance m m' < K · (K' · ε) 3574 
        step-2 = <-mult _ _ _ positive-K p 3575 
        step-3 : K · (K' · ε) ≡ ε 3576 
        step-3 = 3577 
          tran (sym (·-assoc {K} {K'} {ε})) ( 3578 
          tran (cong (λ z → z · ε) ( 3579 
          ·-inverse-right (λ _ → positive-K))) ·-unit-left) 3580 
        step-4 : K · distance m m' < ε 3581 
        step-4 = transport step-3 {λ z → K · distance m m' < z} step-2 3582 
        step-5 : distance (act' x m) (act' x m') < ε 3583 
        step-5 = by-cases _ case-1 case-2 step-1 where 3584 
          case-1 : distance (act' x m) (act' x m') ≡ K · distance m m' → 3585 
                   distance (act' x m) (act' x m') < ε 3586 
          case-1 p = transport (sym p) {λ p → p < ε} step-4 3587 
          case-2 : distance (act' x m) (act' x m') < K · distance m m' → 3588 
                   distance (act' x m) (act' x m') < ε 3589 
          case-2 p = <-tran _ _ _ p step-4 3590 
 3591 
  -- We prove that the action G × M → M we constructed satisfies faithfulness on every 3592 
  -- finite subgroup X < G. We need ∀X.∀x∈X.∃m∈M. x≠1 → x@m≠m. By internality, it suffices 3593 
  -- to prove ∀ˢᵗX.∀ˢᵗx∈X.∃m∈M. x≠1 → x@m≠m, so we establish the latter. 3594 
  record Faithfulness : ESet where 3595 
    field 3596 
      X<G : PeriodicSubgroup G# 3597 
    open PeriodicSubgroup X<G renaming 3598 
      ( Source to X# 3599 
      ; Map to emb 3600 
      ; Map-identity to emb-identity 3601 
      ; Map-operation to emb-operation 3602 
      ; Map-injective to emb-injective 3603 
      ; Map-power to emb-power 3604 
      ) 3605 
    field 3606 
      st-X# : st X# 3607 
      st-emb : st emb 3608 
    open PeriodicGroup X# renaming 3609 
      ( Carrier to X 3610 
      ; identity to 1X 3611 
      ; operation to xX 3612 
      ; inverse to iX 3613 
      ; assoc to X-associative 3614 
      ; unit-left to X-unit-left 3615 
      ; unit-right to X-unit-right 3616 
      ; inverse-left to X-inverse-left 3617 
      ; inverse-right to X-inverse-right 3618 
      ; order to X-order 3619 
      ; order-minimal to X-order-minimal 3620 
      ) 3621 
 3622 
    st-X : st X 3623 
    st-X = st-fun _ _ PeriodicGroup.Carrier X# st-PeriodicGroup-Carrier st-X# 3624 
 3625 
    st-1X : st 1X 3626 
    st-1X = st-fun-d _ _ PeriodicGroup.identity X# st-PeriodicGroup-identity st-X# 3627 
 3628 
    st-X-order : st X-order 3629 
    st-X-order = st-fun-d _ _ PeriodicGroup.order X# st-PeriodicGroup-order st-X# 3630 
 3631 
    -- We prove that X acts on M using a meet-in-the-middle argument. 3632 
    xact : X → M → M 3633 
    xact x m = act' (emb x) m 3634 
 3635 
    xact-st-valued : ∀ (x : X) → st x → ∀ (m : M) → st m → st (act' (emb x) m) 3636 
    xact-st-valued x st-x m st-m = act'-st-valued (emb x) (st-fun _ _ emb x st-emb st-x) m st-m 3637 
 3638 
    xact-identity : ∀ (m : M) → xact 1X m ≡ m 3639 
    xact-identity m = tran xact-1X-equals-act'-1G (act'-identity m) where 3640 
      xact-1X-equals-act'-1G : xact 1X m ≡ act' 1G m 3641 
      xact-1X-equals-act'-1G = transport emb-identity {λ z → xact 1X m ≡ act' z m} refl 3642 
 3643 
    xact-operation : ∀ (x y : X) (m : M) → xact x (xact y m) ≡ xact (xX x y) m 3644 
    xact-operation x y m = tran step-1 step-2 where 3645 
      step-1 : xact x (xact y m) ≡ act' (xG (emb x) (emb y)) m 3646 
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      step-1 = act'-operation (emb x) (emb y) m 3647 
      step-2 : act' (xG (emb x) (emb y)) m ≡ act' (emb (xX x y)) m 3648 
      step-2 = cong (λ z → act' z m) (sym (emb-operation x y)) 3649 
 3650 
    xact-continuity : ∀ (x : X) → ∀ (m : M) → 3651 
                      ∀ (ε : ℝ) → 0r < ε → 3652 
                      ∃ λ (δ : ℝ) → (0r < δ) ∧ ( 3653 
                      ∀ (m' : M) → distance m m' < δ → distance (xact x m) (xact x m') < ε) 3654 
    xact-continuity x m ε positive-ε = act'-continuity (emb x) m ε positive-ε 3655 
     3656 
    X-Action : PeriodicDiscreteAction X# M#' 3657 
    X-Action = 3658 
      record { Map = xact 3659 
             ; isPeriodicDiscreteAction = 3660 
               record { isGroupAction = 3661 
                 record { action-identity = xact-identity 3662 
                        ; action-operation = xact-operation } 3663 
                      ; continuity = xact-continuity 3664 
                      } 3665 
             } 3666 
 3667 
    module Given (x : X) (st-x : st x) (x-not-id : x ≡ 1X → ⊥) where 3668 
      st-emb-x : st (emb x) 3669 
      st-emb-x = st-fun _ _ emb x st-emb st-x 3670 
 3671 
      -- We have a standard element x ∈ G, so we can pick a h with ι(h,x). 3672 
      h : H 3673 
      h = proj₁ (Map-exists (emb x) st-emb-x) 3674 
 3675 
      ι-h-x : ι h (emb x) 3676 
      ι-h-x = proj₂ (Map-exists (emb x) st-emb-x) 3677 
 3678 
      -- Since x≠1, h≠1. 3679 
 3680 
      emb-x-not-id : emb x ≡ 1G → ⊥ 3681 
      emb-x-not-id emb-x-equals-id = x-not-id (emb-injective _ _ (tran emb-x-equals-id (sym emb-3682 
identity))) 3683 
 3684 
      h-not-id : h ≡ 1H → ⊥ 3685 
      h-not-id h-equals-id = emb-x-not-id step-2 where 3686 
        step-1 : ι 1H (emb x) 3687 
        step-1 = transport* h-equals-id {λ z → ι z (emb x)} ι-h-x 3688 
        step-2 : emb x ≡ 1G 3689 
        step-2 = Map-unique-Target (emb x) st-emb-x 1G st-1G 1H step-1 ι-preserves-unit 3690 
 3691 
      -- We prove that ι(h,x) → ι(hⁿ,xⁿ) for all standard n ∈ ℕ. Note that this requires 3692 
      -- a style of argument known as external induction, and the implication would not 3693 
      -- hold for nonstandard n. 3694 
 3695 
      ι-hn-xn : ∀ (n : ℕ) → st n → ι (FiniteGroup.power H# h n) (Group.power G# (emb x) n) 3696 
      ι-hn-xn n st-n = external-induction 3697 
                         {λ n → ι (FiniteGroup.power H# h n) (Group.power G# (emb x) n)} 3698 
                         (Map-preserves-unit st-G#) ψ-inductive n st-n where 3699 
        ψ-inductive : ∀ k → st k → ι (FiniteGroup.power H# h k) (Group.power G# (emb x) k) → 3700 
                      ι (FiniteGroup.power H# h (suc k)) (Group.power G# (emb x) (suc k)) 3701 
        ψ-inductive k st-k ι-hk-xk = 3702 
          Map-homomorphism h hk (emb x) st-emb-x xk st-xk ι-h-x ι-hk-xk where 3703 
          hk : H 3704 
          hk = FiniteGroup.power H# h k 3705 
          xk : G 3706 
          xk = Group.power G# (emb x) k 3707 
          st-xk : st xk 3708 
          st-xk = 3709 
            st-fun _ _ (Group.power G# (emb x)) k 3710 
            (st-fun _ _ (Group.power G#) (emb x) 3711 
            (st-fun-d _ _ Group.power G# st-Group-power st-G#) st-emb-x) st-k 3712 
 3713 
      -- Since we have ι(hⁿ,xⁿ) for all standard n∈ℕ, and the order ord(x) belongs to the 3714 
      -- standard naturals, it follows that ord(h) < ord(x), and hence ord(h) also belongs 3715 
      -- among the standard naturals. 3716 
 3717 
      h-ordx-equals-1H : FiniteGroup.power H# h (X-order x) ≡ 1H 3718 
      h-ordx-equals-1H = step-6  where 3719 
        step-1 : ι (FiniteGroup.power H# h (X-order x)) (Group.power G# (emb x) (X-order x)) 3720 
        step-1 = ι-hn-xn (X-order x) (st-fun _ _ X-order x st-X-order st-x) 3721 
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        step-2 : PeriodicGroup.power X# x (X-order x) ≡ 1X 3722 
        step-2 = PeriodicGroup.order-identity X# x 3723 
        step-3 : emb (PeriodicGroup.power X# x (X-order x)) ≡ 1G 3724 
        step-3 = tran (cong emb step-2) emb-identity 3725 
        step-4 : Group.power G# (emb x) (X-order x) ≡ 1G 3726 
        step-4 = tran (sym (emb-power x (X-order x))) step-3 3727 
        step-5 : ι (FiniteGroup.power H# h (X-order x)) 1G 3728 
        step-5 = transport* step-4 {λ z → ι (FiniteGroup.power H# h (X-order x)) z} 3729 
                   step-1 3730 
        step-6 : FiniteGroup.power H# h (X-order x) ≡ 1H 3731 
        step-6 = Map-unique-Source 1G st-1G (FiniteGroup.power H# h (X-order x)) 3732 
                   step-5 1H (Map-preserves-unit st-G#) 3733 
 3734 
      h-order : FiniteGroup.order H# h ≤ X-order x 3735 
      h-order = 3736 
        ℕ-induction {_} {λ n → X-order x ≡ n → FiniteGroup.order H# h ≤ n} case-A case-B (X-3737 
order x) refl where 3738 
        case-A : X-order x ≡ 0 → FiniteGroup.order H# h ≤ 0 3739 
        case-A ordx-equals-0 = absurd (PeriodicGroup.order-nonzero X# x ordx-equals-0) 3740 
        case-B : ∀ (k : ℕ) → (X-order x ≡ k → FiniteGroup.order H# h ≤ k) → 3741 
                             X-order x ≡ suc k → FiniteGroup.order H# h ≤ (suc k) 3742 
        case-B k ihyp ord-x-equals-suc-k = step-2 where 3743 
          step-1 : FiniteGroup.power H# h (suc k) ≡ 1H 3744 
          step-1 = transport ord-x-equals-suc-k {λ n → FiniteGroup.power H# h n ≡ 1H} h-ordx-3745 
equals-1H 3746 
          step-2 : FiniteGroup.order H# h ≤ suc k 3747 
          step-2 = FiniteGroup.order-minimal H# h k step-1 3748 
 3749 
      open import IST.NewmansTheorem 3750 
 3751 
      -- We apply the corollary of Newman's theorem to obtain a standard ν 3752 
      -- such that for any finite group G, g∈G and faithful discrete action 3753 
      -- @ of G on the manifold M, we can find some n < ord(g) and m'∈M 3754 
      -- such that gⁿ@m' is ν-far from m'. 3755 
      -- In particular, we shall find n < ord(h) and m'∈M such that 3756 
      -- hⁿ@m' is ν-far m'. Since ord(h) is standard, so is n. 3757 
 3758 
      by-newman-1 : ∃ λ (ν : ℝ) → (0r < ν) ∧ ( 3759 
        ∀ (G : FiniteGroup) → 3760 
        ∀ (g : FiniteGroup.Carrier G) → 3761 
        ∀ (A : DiscreteAction G M#') → 3762 
        (g ≡ FiniteGroup.identity G → ⊥) → 3763 
        (∀ (x : FiniteGroup.Carrier G) → (x ≡ FiniteGroup.identity G → ⊥) → 3764 
          ∃ λ (m : M) → 3765 
          DiscreteAction.Map A x m ≡ m → ⊥) → 3766 
        ∃ λ (n : ℕ) → ∃ λ (m : M) → 3767 
        (n ≤ FiniteGroup.order G g) ∧ 3768 
        (ν < distance m (DiscreteAction.Map A (FiniteGroup.power G g n) m))) 3769 
      by-newman-1 = 3770 
        NewmanSpace.newman-constant M# , (NewmanSpace.isPositive M#) , 3771 
        (λ G g A p → NewmanSpace.isNewmanConstant M# G g p A) -- newman-corollary M# 3772 
 3773 
      ν : ℝ 3774 
      ν = proj₁ by-newman-1 3775 
 3776 
      st-ν : st ν 3777 
      st-ν = st-fun _ _ NewmanSpace.newman-constant M# st-NewmanSpace-newman-constant st-M# 3778 
 3779 
      positive-ν : 0r < ν 3780 
      positive-ν = proj₁ (proj₂ by-newman-1) 3781 
 3782 
      by-newman-2 :  3783 
        ∀ (G : FiniteGroup) → 3784 
        ∀ (g : FiniteGroup.Carrier G) → 3785 
        ∀ (A : DiscreteAction G M#') → 3786 
        (g ≡ FiniteGroup.identity G → ⊥) → 3787 
        (∀ (x : FiniteGroup.Carrier G) → (x ≡ FiniteGroup.identity G → ⊥) → 3788 
          ∃ λ (m : M) → 3789 
          DiscreteAction.Map A x m ≡ m → ⊥) → 3790 
        ∃ λ (n : ℕ) → ∃ λ (m : M) → 3791 
        (n ≤ FiniteGroup.order G g) ∧ 3792 
        (ν < distance m (DiscreteAction.Map A (FiniteGroup.power G g n) m)) 3793 
      by-newman-2 = proj₂ (proj₂ by-newman-1) 3794 
 3795 
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      by-newman-3 : 3796 
        ∃ λ (n : ℕ) → ∃ λ (m : M) → 3797 
        (n ≤ FiniteGroup.order H# h) ∧ 3798 
        (ν < distance m (act (FiniteGroup.power H# h n) m)) 3799 
      by-newman-3 = by-newman-2 H# h A# h-not-id act-faithful 3800 
 3801 
      n' : ℕ 3802 
      n' = proj₁ by-newman-3 3803 
 3804 
      m' : M 3805 
      m' = proj₁ (proj₂ by-newman-3) 3806 
 3807 
      n'-less-than-order : n' ≤ FiniteGroup.order H# h 3808 
      n'-less-than-order = proj₁ (proj₂ (proj₂ by-newman-3)) 3809 
 3810 
      st-n' : st n' 3811 
      st-n' = bounded-st (X-order x) (st-fun _ _ X-order x st-X-order st-x) n' 3812 
        (≤-tran n' (FiniteGroup.order H# h) (X-order x) n'-less-than-order h-order) 3813 
 3814 
      hn' : H 3815 
      hn' = FiniteGroup.power H# h n' 3816 
 3817 
      hn'm'-ν-far-from-m' : ν < distance m' (act hn' m') 3818 
      hn'm'-ν-far-from-m' = proj₂ (proj₂ (proj₂ by-newman-3)) 3819 
 3820 
      hn'm'-not-near-m' : nearby (act hn' m') m' → ⊥ 3821 
      hn'm'-not-near-m' hn'm'-near-m' = <-asym-1 _ _ step-3 refl where 3822 
        step-1 : ν < distance (act hn' m') m' 3823 
        step-1 = transport (symmetry m' (act hn' m')) {λ z → ν < z} hn'm'-ν-far-from-m' 3824 
        step-2 : distance (act hn' m') m' < ν 3825 
        step-2 = hn'm'-near-m' ν st-ν positive-ν 3826 
        step-3 : ν < ν 3827 
        step-3 = <-tran ν (distance (act hn' m') m') ν step-1 step-2 3828 
 3829 
      -- The manifold element m'∈M might not satisfy standardness. Fortunately, by the 3830 
      -- compactness of M, we can find a standard neighbor m∈M.  3831 
 3832 
      m : M 3833 
      m = proj₁ (compact m') 3834 
 3835 
      st-m : st m 3836 
      st-m = proj₁ (proj₂ (compact m')) 3837 
 3838 
      m-near-m' : nearby m m' 3839 
      m-near-m' = proj₂ (proj₂ (compact m')) 3840 
 3841 
      hn'm-near-hn'm' : nearby (act hn' m) (act hn' m') 3842 
      hn'm-near-hn'm' = S-uniform-continuity hn' m m' m-near-m' 3843 
 3844 
      hn'm-not-near-m : nearby (act hn' m) m → ⊥ 3845 
      hn'm-not-near-m hn'm-near-m = hn'm'-not-near-m' step-3 where 3846 
        step-1 : nearby (act hn' m') (act hn' m) 3847 
        step-1 = symmetric _ _ hn'm-near-hn'm' 3848 
        step-2 : nearby (act hn' m') m 3849 
        step-2 = transitive _ _ _ step-1 hn'm-near-m 3850 
        step-3 : nearby (act hn' m') m' 3851 
        step-3 = transitive _ _ _ step-2 m-near-m' 3852 
 3853 
      -- By the standardness of m, we have xⁿ@m near hⁿ@m, and since 3854 
      -- hⁿ@m lies far from m, so does xⁿ@m. Hence, xⁿ@m ≠ m. 3855 
 3856 
      xn' : X 3857 
      xn' = PeriodicGroup.power X# x n' 3858 
       3859 
      st-xn' : st xn' 3860 
      st-xn' = st-fun _ _ (PeriodicGroup.power X# x) n' 3861 
        (st-fun _ _ (PeriodicGroup.power X#) x 3862 
        (st-fun-d _ _ PeriodicGroup.power X# st-PeriodicGroup-power st-X#) st-x) st-n' 3863 
 3864 
      xn'm-near-hn'm : nearby (xact xn' m) (act hn' m) 3865 
      xn'm-near-hn'm = act'-lemma (emb xn') st-emb-xn' m st-m hn' ι-hn'-xn' where 3866 
        st-emb-xn' : st (emb xn') 3867 
        st-emb-xn' = st-fun _ _ emb xn' st-emb 3868 
          (st-fun _ _ (PeriodicGroup.power X# x) n' 3869 
          (st-fun _ _ (PeriodicGroup.power X#) x 3870 



 

175 

 

          (st-fun-d _ _ PeriodicGroup.power X# st-PeriodicGroup-power st-X#) st-x) st-n' ) 3871 
        ι-hn'-xn' : ι hn' (emb xn') 3872 
        ι-hn'-xn' = transport* (sym (emb-power x n')) {λ z → ι hn' z} (ι-hn-xn n' st-n') 3873 
 3874 
      xn'm-not-near-m : nearby (xact xn' m) m → ⊥ 3875 
      xn'm-not-near-m xn'm-near-m = hn'm-not-near-m step-2 where 3876 
        step-1 : nearby (act hn' m) (xact xn' m) 3877 
        step-1 = symmetric _ _ xn'm-near-hn'm 3878 
        step-2 : nearby (act hn' m) m 3879 
        step-2 = transitive _ _ _ step-1 xn'm-near-m 3880 
 3881 
      xn'm-not-equals-m : xact xn' m ≡ m → ⊥ 3882 
      xn'm-not-equals-m xn'm-equals-m = xn'm-not-near-m xn'm-near-m where 3883 
        xn'm-near-m : nearby (xact xn' m) m 3884 
        xn'm-near-m = transport* (sym xn'm-equals-m) {λ z → nearby z m} (reflexive m) 3885 
 3886 
      -- From xⁿ@m ≠ m, it follows that x@m ≠ m. We chose x arbitrarily, so we get 3887 
      -- faithfulness. 3888 
 3889 
      xm-not-equals-m : xact x m ≡ m → ⊥ 3890 
      xm-not-equals-m xm-equals-m = 3891 
        xn'm-not-equals-m (PeriodicDiscreteAction.power-faithful X-Action x m n' xm-equals-m) 3892 
 3893 
      exists-xm-not-equals-m : ∃* λ (m : M) → (st m) *∧* internal (xact x m ≡ m → ⊥) 3894 
      exists-xm-not-equals-m = m , st-m , fromInternal xm-not-equals-m 3895 
    open Given 3896 
 3897 
    faithfulness-st : ∀ (x : X) → st x → (x ≡ 1X → ⊥) → 3898 
                      ∃* λ (m : M) → (st m) *∧* internal (xact x m ≡ m → ⊥) 3899 
    faithfulness-st = exists-xm-not-equals-m 3900 
 3901 
    faithfulness-var : ∀ (x : X) → st x → ∃* λ (m : M) → (st m) *∧* internal ((x ≡ 1X → ⊥) → 3902 
xact x m ≡ m → ⊥) 3903 
    faithfulness-var x st-x = by-cases* _ case-1 case-2 (excluded-middle (x ≡ 1X)) where 3904 
      zm : M 3905 
      zm = NewmanSpace.inhabitant M# 3906 
      st-zm : st zm 3907 
      st-zm = st-fun-d _ _ NewmanSpace.inhabitant M# st-NewmanSpace-inhabitant st-M# 3908 
      case-1 : x ≡ 1X → 3909 
               ∃* λ (m : M) → (st m) *∧* internal ((x ≡ 1X → ⊥) → xact x m ≡ m → ⊥) 3910 
      case-1 x-equals-1 = zm , st-zm , fromInternal (λ x-neq-1 → absurd (x-neq-1 x-equals-1)) 3911 
      case-2 : (x ≡ 1X → ⊥) → 3912 
               ∃* λ (m : M) → (st m) *∧* internal ((x ≡ 1X → ⊥) → xact x m ≡ m → ⊥) 3913 
      case-2 x-neq-1 = vm , st-vm , fromInternal (λ z → step-2) where 3914 
        step-1 : ∃* (λ m₁ → st m₁ *∧* internal (xact x m₁ ≡ m₁ → ⊥)) 3915 
        step-1 = faithfulness-st x st-x x-neq-1 3916 
        vm : M 3917 
        vm = proj₁ step-1 3918 
        st-vm : st vm 3919 
        st-vm = proj₁ (proj₂ step-1) 3920 
        step-2 : xact x vm ≡ vm → ⊥ 3921 
        step-2 = toInternal _ (proj₂ (proj₂ step-1)) 3922 
 3923 
    faithfulness : ∀ (x : X) → ∃ λ (m : M) → (x ≡ 1X → ⊥) → xact x m ≡ m → ⊥ 3924 
    faithfulness = ax-Transfer-EI Φ faithfulness-var std-Φ where 3925 
      Φ : TransferPred 3926 
      Φ = ∀' X λ x → ∃' M λ m → int' ((x ≡ 1X → ⊥) → xact x m ≡ m → ⊥) 3927 
      std-Φ : st X *∧* (∀ (a : X) → st a → st M *∧* 3928 
        (∀ (e : M) → st e → st ((a ≡ 1X → ⊥) → xact a e ≡ e → ⊥))) 3929 
      std-Φ = 3930 
        st-X , λ a st-a → st-M , λ e st-e → st-→ (a ≡ 1X → ⊥) 3931 
        (st-→ (a ≡ 1X) (st-fun _ _ (_≡_ a) 1X (st-fun _ _ _≡_ a st-≡-full st-a) st-1X) ⊥ st-⊥) 3932 
(xact a e ≡ e → ⊥) 3933 
        (st-→ (xact a e ≡ e) (st-fun _ _ (_≡_ (xact a e)) e (st-fun _ _ _≡_ (xact a e) 3934 
        st-≡-full (xact-st-valued a st-a e st-e)) st-e) ⊥ st-⊥) 3935 
 3936 
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