# DEVELOPMENT OF GROUP THEORY IN THE LANGUAGE OF INTERNAL SET THEORY 

A thesis submitted to the University of Manchester FOR THE DEGREE OF Doctor of Philosophy in the Faculty of Science and Engineering

Zoltan A. Kocsis

School of Natural Sciences
Department of Mathematics

## Contents

Abstract ..... 6
Declaration ..... 7
Copyright ..... 8
Acknowledgements ..... 9
1 Introduction ..... 10

1. 1 The road to Internal Set Theory ..... 11
1.2 Working in IST ..... 25
1.3 Topology via predicates ..... 30
2 Structural Approximation ..... 47
2. 1 Motivation ..... 47
2.2 Approximation in IST ..... 49
2.3 Action extension ..... 62
2.4 Snappy groups ..... 70
3 Other results ..... 74
3.1 Monotone subsequences ..... 74
3.2 Sheaves ..... 76
4 Mechanization ..... 84
4.1 Computer-verified proots ..... 84
4.2 Extended type theory ..... 89
4.3 Syntactic properties ..... 103
4.4 Agda proof ..... 111
Bibliography ..... 117
A Agda Proof of Theorem 2.3.9 ..... 122

Word Count: 27140

## List of Tables

[^0]
## List of Figures

1.1 Values of the labeling map $\ell$ on the unit circle. ..... 46
3.1 A three-way junction on a network. ..... 83
4.1 A closed term of type $\exists x: \mathbb{N . s t}_{0} \mathbb{N} x \times x=_{\mathbb{N}} n$ for each canonical natural $n: \mathbb{N}$ ..... 115
4.2 Derivation tree witnessing the existence of a nonstandard number. ..... 116

## Abstract

This thesis explores two novel algebraic applications of Internal Set Theory (IST). We propose an explicitly topological formalism of structural approximation of groups, generalizing previous work by Gordon and Zilber. Using the new formalism, we prove that every profinite group admits a finite approximation in the sense of Zilber. Our main result states that well-behaved actions of the approximating group on a compact manifold give rise to similarly well-behaved actions of periodic subgroups of the approximated group on the same manifold. The theorem generalizes earlier results on discrete circle actions, and gives partial non-approximability results for $\mathrm{SO}(3)$. Motivated by the extraction of computational bounds from proofs in a "pure" fragment of IST (Sanders), we devise a "pure" presentation of sheaves over topological spaces in the style of Robinson and prove it equivalent to the usual definition over standard objects. We introduce a non-standard extension of Martin-Löf Type Theory with a hierarchy of universes for external propositions along with an external standardness predicate, allowing us to computer-verify our main result using the Agda proof assistant.

## Declaration

No portion of the work referred to in this thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.

## Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the "Copyright") and s/he has given The University of Manchester certain rights to use such Copyright, including for administrative purposes.
ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made.
iii. The ownership of certain Copyright, patents, designs, trade marks and other intellectual property (the "Intellectual Property") and any reproductions of copyright works in the thesis, for example graphs and tables ("Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.
iv. Further information on the conditions under which disclosure, publication and commercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy, in any relevant Thesis restriction declarations deposited in the University Library, The University Library's regulations and in The University's policy on presentation of Theses.

## Acknowledgements

First and foremost, I wish to thank my supervisor, Prof. Alexandre Borovik, for taking me on as a student, for guiding me through the academic process, for providing mathematical advice, and for clearing up all the mundane and bureacratic obstacles that got in my way. Special thanks to

- My academic sibling Ulla Karhumäki and my officemate Jacob Cable, for the countless hours of productive mathematical discussion.
- My teachers and mentors: Péter Diviánszky, József Farkas, Marwan Fayed, Viola Somogyi, Jerry Swan, and all others who taught me mathematics. This work would not exist without them.
- My colleagues Nataliya Balabanova, Jacob Cable, Mahah Javed, Elliot McKernon, Rob Nicolaides, Joseph Razavi and Jerry Swan for proof-reading and sanitychecking this document. Naturally, I am responsible for any remaining errors.
- My family and friends, for their love and support.


## Chapter 1

## Introduction

Following Robinson's introduction of nonstandard analysis (via ultrafilter constructions of nonstandard models), Nelson [32] developed an axiomatic set theory (Internal Set Theory, IST) that extends the familiar Zermelo-Fraenkel Set Theory, and serves as a convenient framework for the practice of nonstandard analysis. Here we present two novel applications of Internal Set Theory to algebra.

Chapter 1 gives a concise, self-contained introduction to the theory and practice of Internal Set Theory, with a particular focus on doing topology in the non-standard setting via the formalism of (what we call) predicated spaces. Most results presented in this chapter are well-known and have appeared in the literature in various forms; the novelty resides in our presentation, which emphasizes the analogies between the theory of Alexandroff spaces in ordinary set theory and the theory of general topological spaces in Internal Set Theory.

The results in Chapter 2 concern structural approximations of groups, in the sense of Zilber [50, 51]. Using Internal Set Theory, we propose a new notion of approximation that incorporates an explicit topological ingredient and includes both Zilber's notion of finite approximation and Gordon's [1] notion of LEF group as special cases. Using the new language, we prove that any profinite group admits a finite approximation in the sense of Zilber (Proposition [2.2.18). We introduce the notion of Alexandroff approximation, and show that the class of groups admitting Alexandroff finite approximations coincides with the class of locally finite groups (Proposition 2.2.36). Our main result (Theorem [2.3.9) is as follows: if a group $H$ approximates $G$, then well-behaved actions of $H$ on a compact manifold $M$ give rise to similarly well-behaved actions of
periodic subgroups of $G$ on the same manifold $M$. As a corollary of Theorem 2.3.9, we obtain partial results about the non-approximability of $S O(3)$ in the new formalism (Theorem [2.4.10).

Chapter 3 contains two shorter results. Inspired by the recent ultrapower proof of the monotone subsequence theorem due to Baszczyk, Kanovei, Katz and Nowik [5], we give a straightforward, ultrapower-free proof using Internal Set Theory. Motivated by the work of S. Sanders on extracting computational bounds from proofs in a "pure" fragment of Internal Set Theory, we give a novel, "pure" presentation of sheaves (Definition (3.2.9) over topological spaces in the style of Robinson's characterization of continuity, and prove it equivalent to the usual definition for standard objects (Theorem [3.2.15, Proposition [3.2.17).

In Chapter 4 we present a non-standard variant of Martin-Löf Type Theory that relates to ordinary Martin-Löf Type Theory the same way Internal Set Theory does to usual Zermelo-Fraenkel Set Theory. Our extended type theory has a hierarchy of universes for external propositions along with an external standardness predicate, allowing us to translate our proof of Theorem 2.3.9 into a type-theory setting, and computer-verify the resulting proof script using the Agda proof assistant.

### 1.1 The road to Internal Set Theory

1.1.1. In this section we introduce the axioms of Internal Set Theory, and explain its relationship to usual (ZFC) set theory. We presume familiarity with the terminology of first-order logic (languages, theories, free and bound variables, Hilbert-style proof systems, prenex forms) and the elementary axiomatics of Zermelo-Fraenkel Set Theory, to the extent covered in the first two chapters of Lévy's Basic Set Theory [29]. For a gentler introduction to Internal Set Theory, we recommend Robert's Nonstandard Analysis [40].

## Logic

1.1.2. We fix the notation for the logical connectives as $\neg$ (negation), $\vee$ (disjunction), $\wedge$ (conjunction) and $\rightarrow$ (implication). Notations such as $\sim, \supset, \&$ never stand for connectives, and may appear in the text with other (non-logical) meaning. We strive to make economical use of parentheses. In particular, we often write implication chains $\varphi_{1} \rightarrow\left(\varphi_{2} \rightarrow \varphi_{3}\right)$ as $\varphi_{1} \rightarrow \varphi_{2} \rightarrow \varphi_{3}$.
1.1.3. There are three major proof calculi for the first-order predicate calculus. Structural proof theory is best done in terms of Gentzen-style Sequent Calculus, which uncovers all the deep symmetries of logic. Prawitz's calculus of Natural Deduction displays no particularly good proof-theoretic behavior, at least for classical logic, but it corresponds closely to how we write proofs in mathematics. Finally, Hilbert-style proof calculi are appropriate for certain proof translation arguments. Nelson [33] uses a Hilbert-style system for his meta-theoretic results on Internal Set Theory.
1.1.4. Hilbert-style systems have only one inference rule: modus ponens, from $\varphi$ and $\varphi \rightarrow \psi$ infer $\psi$. When translating from one language to another, one needs to verify that the translations of the axioms are provable and that the rules of inference are preserved under translation, so having only one rule of inference proves to be a huge convenience. The logical axioms of our Hilbert system have the following forms:

- K: $\varphi_{1} \rightarrow \varphi_{2} \rightarrow \varphi_{1}$,
- $\mathbf{S}:\left(\varphi_{1} \rightarrow \varphi_{2} \rightarrow \varphi_{3}\right) \rightarrow\left(\varphi_{1} \rightarrow \varphi_{2}\right) \rightarrow \varphi_{1} \rightarrow \varphi_{3}$,
- $\mathbf{N}:\left(\neg \varphi_{1} \rightarrow \neg \varphi_{2}\right) \rightarrow\left(\neg \varphi_{1} \rightarrow \varphi_{2}\right) \rightarrow \varphi_{1}$,
- U1: $(\forall x . \phi(x)) \rightarrow \phi(t) \quad$ where $t$ is any constant or variable symbol,
- U2: $\left(\forall x . \varphi_{1} \rightarrow \varphi_{2}\right) \rightarrow \varphi_{1} \rightarrow \forall y . \varphi_{2} \quad$ where $x$ does not occur in $\varphi_{1}$,
- U3: $\left(\forall x . \varphi_{1} \rightarrow \varphi_{2}\right) \rightarrow\left(\forall x . \varphi_{1}\right) \rightarrow \forall x . \varphi_{2}$
1.1.5. The first two axioms, $\mathbf{K}$ and $\mathbf{S}$, play structural roles, enunciating the logical principles weakening and contraction. The third axiom, $\mathbf{N}$, represents reductio ad absur$d u m$, controlling the behavior of $\neg$ and expressing that the logic under consideration is classical (as opposed to e.g. intuitionistic), while the last three govern the meaning of the universal quantifier.
1.1.6. Apart from the usual symbols and predicates, our first-order languages often contain the special-purpose unary predicate st. Normally, we read $\operatorname{st}(x)$ as $x$ is standard. The "external" quantifiers $\forall^{s t}, \exists^{s t}$ are defined as abbreviations, with $\forall^{s t} x . \phi(x)$ and $\exists^{s t} x . \phi(x)$ abbreviating $\forall x . \operatorname{st}(x) \rightarrow \phi(x)$ and $\exists x \cdot \operatorname{st}(x) \wedge \phi(x)$ respectively.
1.1.7. The superscript $Q^{\text {fin }}$ indicates the finiteness of the object introduced by the quantifier $Q$. In particular, we can take it to abbreviate any of the usual definitions of finite set in ZFC Set Theory. However, we need to exercise caution when considering set theories that do not take the Axiom of Choice, as results such as Theorem [L.2.5] would depend on which of the many (not provably equivalent without Choice) definitions of finiteness we choose.
1.1.8. Throughout this document, we maintain a strict distinction between relations and proper predicates: we reserve the use of the former term to indicate predicates that are represented by sets, as subset of a Cartesian product (e.g. the order relation $<$ on the natural numbers is represented by the set $\left\{(x, y) \in \mathbb{N}^{2} \mid x<y\right\}$ ), while the term $n$-ary predicate refers to formulae with $n$ free variables in the language under consideration. The reader is already familiar with a proper binary predicate that does not constitute a relation in this sense: the global membership predicate $\in$ of Zermelo-Fraenkel Set Theory.


## Adjoining Ideal Elements

1.1.9. Definition. The language of the theory PAK consists of the language of Peano Arithmetic extended with a formal constant symbol $K$. The theory PAK consists of the axioms of Peano Arithmetic, and the following axioms (one for each natural number):

K0 $0<K$,
K1 $1<K$,

K2 $2<K$,

Kn $n<K$,
1.1.10. Notice that the theory PAK does not extend Peano Arithmetic with new induction axioms. The induction axiom $\varphi(0) \wedge(\forall n . \varphi(n) \rightarrow \varphi(n+1)) \rightarrow \forall x . \varphi(x)$ belongs to PAK only if we choose $\varphi$ from among the formulae in the language of Peano Arithmetic. In particular, $0<K \wedge(\forall n . n<K \rightarrow n+1<K) \rightarrow \forall x . x<K$ does not belong to the axioms of PAK, since $\varphi(n) \leftrightarrow n<K$ contains the constant symbol $K$, which lives outside the language of Peano Arithmetic. However, we can prove that we do have $\forall y .0<y \wedge(\forall n . n<y \rightarrow n+1<y) \rightarrow \forall x . x<y$ among the theorems of Peano Arithmetic (use inducton on the formula $\forall y .0<y \wedge(\forall n . n<y \rightarrow n+1<y) \rightarrow x<y$, exercise!), and hence among the theorems of PAK. Substituting $y=K$ using the axiom U1 realizes the previous non-axiom as a theorem of PAK!
1.1.11. Whenever Peano Arithmetic proves that all numbers $n$ have a given property $\varphi$, PAK proves that $K$ has the property $\varphi$. This follows immediately from the fact that the axioms of Peano Arithmetic form a proper subset of the axioms of the theory PAK. We will shortly prove a converse of this observation: whenever PAK proves that $K$ has some property $\varphi(K)$, and one can write this property $\varphi(-)$ in the language of Peano Arithmetic, then we can find a number $n \in \mathbb{N}$ such that $\varphi(n)$ holds (and in that case Peano Arithmetic proves $\varphi(n)$ ).
1.1.12. Definition. Consider theories $T_{1}, T_{2}$ such that the language of $T_{1}$ forms a proper subset of the language of $T_{2}$. We call $T_{2}$ a conservative extension of $T_{1}$ if for every sentence $\varphi$ in the language of $T_{1}$, we have $T_{1} \vdash \varphi$ whenever $T_{2} \vdash \varphi$.
1.1.13. Proposition. The theory PAK is a conservative extension of Peano Arithmetic.

Proof. Consider a sentence $\varphi$ in the language of Peano Arithmetic, and assume that PAK proves $\varphi$. Take any PAK-proof of $\varphi$ : such a proof invokes finitely many of the axioms of $\mathbf{P A K}$, in particular we can find a largest number $n \in \mathbb{N}$ such that the proof uses the axiom Kn. Replace all occurrences of $K$ in the proof with $n+1$, and all the axioms Ki with Peano Arithmetic proofs of $i<n+1$. This cannot fail: by the maximality of $n$, we have $i<n<n+1$ for all $i$ that occur in the proof. Doing all the replacements yields a proof of the sentence $\varphi$ in Peano Arithmetic.

## Qed.

1.1.14. Corollary. Consider a formula $\varphi(-)$ of Peano Arithmetic. If PAK proves $\varphi(K)$, then Peano Arithmetic proves $\varphi(n)$ for some numeral $n \in \mathbb{N}$.

Proof. Apply the algorithm of Proposition [.L.13.

## Qed.

1.1.15. Notice that Corollary $\mathbb{L . L . ] 4}$ relies on the algorithm described in the proof of Proposition [....13, and not merely on the statement of the proposition: an instance of proof relevance in mathematics. We use the term corollary in this proof-relevant sense throughout our work.
1.1.16. The construction of PAK privileges the relation < over other possible relations. Indeed, we could have defined a theory PAKd in the language of PAK that has the axioms of Peano Arithmetic, along with the following axioms (one for each natural):

K1 1 divides $K$,
K2 2 divides $K$,

Kn $n$ divides $K$,
and the resulting theory would satisfy the analogue of Proposition [.L.13], if one replaced $K$ with the product $\prod_{i<n} i$ instead of $n+1$.
1.1.17. The constant symbol $K$ of PAK behaves like an ideal element with respect to the order relation, and that of PAKd behaves ideally with respect to divisibility. One should be able to extend the method of paragraph $\mathbb{I . 1 6}$ to add new constants that behave like ideal elements for any relation, as long as such ideal elements can coexist with Peano Arithmetic in the sense that finitely many of the new axioms do not contradict Peano Arithmetic. The notion of admissibility (Definition $1 . .18$ ) formalizes this intuition.
1.1.18. Definition. We call a binary predicate $R(-,-)$ in the language of Peano Arithmetic admissible if for any finite subset of the natural numbers $F$ we can find $y$ such that Peano Arithmetic proves that $R(x, y)$ holds for all $x \in F$.
1.1.19. Proposition. Every admissible binary predicate $R(-,-)$ gives rise to a theory PAKR in the language of PAK conservatively extending Peano Arithmetic with ideal elements for $R$. Vice versa, if a binary predicate gives rise to such a conservative extension, we can conclude the admissibility of $R(-,-)$.

Proof. We leave the forward direction as an exercise to the reader. For the backward direction, consider any finite set $F \subseteq \mathbb{N}$. The theory PAKR proves the conjunction $\bigwedge_{x \in F} R(x, K)$ (since it proves each of the axioms Ki). Hence, PAKR also proves $\exists y . \bigwedge_{x \in F} R(x, y)$, a sentence of Peano Arithmetic. By conservative extension, Peano Arithmetic proves $\exists y$. $\bigwedge_{x \in F} R(x, y)$, so it proves that $R(x, y)$ holds for all $x \in F$. Using Definition IL.L.18, we conclude the admissibility of $R$.

## Qed.

1.1.20. As we have seen, PAK-style extensions add new constants for ideal numbers, but do not otherwise change Peano Arithmetic. However, we cannot quantify over (or otherwise keep track of) these additions at the level of syntax. Hence, we could increase the expressiveness of our extensions by including an explicit new predicate for those elements that Peano Arithmetic already had, even before we performed the idealization.
1.1.21. Definition. Consider an admissible predicate $R(-,-)$. The language of the theory PAKS consists of the language of Peano Arithmetic extended with a formal constant symbol $K$ and a unary atomic predicate st(-). The theory PAKSR consists of the axioms of Peano Arithmetic, along with the three new axioms below:

1. $\forall x \cdot \operatorname{st}(x) \rightarrow R(x, K)$,
2. $\operatorname{st}(0)$,
3. $\forall n . \operatorname{st}(n) \rightarrow \operatorname{st}(n+1)$.
1.1.22. Similarly to l.L.LO, our construction of PAKSR does not add new induction axioms to Peano Arithmetic. In particular, PAKSR does not prove $\forall x$.st $(x)$, even though it proves both $\operatorname{st}(0)$ and $\forall n . \operatorname{st}(n) \rightarrow \operatorname{st}(n+1)$. Notice that $\neg \operatorname{st}(K)$ does not occur among the axioms.
1.1.23. Exercise. Prove $\neg \operatorname{st}(K)$ in PAKSR for $R(x, y) \leftrightarrow x<y$. Choose carefully another binary predicate $R$ in such a way that you can $\operatorname{prove} \operatorname{st}(K)$ in the corresponding theory PAKSR.
1.1.24. Instead of constructing a new theory PAKSR for each relation $R$, we could parallelize our construction, extending Peano Arithmetic simultaneously with all possible ideal elements. Indeed, as the construction of the theory PAKSR extends Peano Arithmetic with ideal elements, so will the Idealization axiom of Internal Set Theory create ideal elements with respect to any admissible relation. As such, we will not spend
time proving conservative extension over Peano Arithmetic for the likes of PAKSR: the proof of the conservative extension theorem for Internal Set Theory over ZFC Set Theory supersedes such results anyway, and we sketch the main ingredient of that latter proof below.

## Internal Set Theory

1.1.25. Definition. The language of Internal Set Theory consists of a binary predicate symbol $-\in-$ (membership) and a unary predicate symbol st(-). The first-order theory referred to as Internal Set Theory consists of the axioms of Zermelo-Fraenkel Set Theory, the Axiom of Choice, and the additional axiom schemata Idealization, Standardization and Transfer defined below.
1.1.26. Given a set $A$, we introduce the following abbreviated quantifiers:

- $\forall^{s t} x \in A \ldots$ abbreviates $\forall x . x \in A \wedge \operatorname{st}(x) \rightarrow \ldots$,
- $\exists^{s t} x \in A \ldots$ abbreviates $\exists x . x \in A \wedge \operatorname{st}(x) \wedge \ldots$,
1.1.27. Definition. Consider a formula $\varphi$ in the language of Internal Set Theory. We call $\varphi$ an internal formula if it does not contain any occurrences of the predicate st( - ). In accordance with the observations of sections [L.L.L0 and IL.L.22, we shall permit internal formulae to contain parameters ranging over both standard and non-standard sets.
1.1.28. Axiom Schema of Idealization: Consider an internal formula $\varphi$, and a variable $\mathcal{F}$ fresh with respect to $\varphi$. The following statements are equivalent.

1. $\forall^{s t f i n} \mathcal{F} . \exists y . \forall x \in \mathcal{F} . \varphi(x, y)$,
2. $\exists y . \forall^{s t} x \cdot \varphi(x, y)$

Notice that the first clause captures the notion of admissible relation introduced in Definition IL.L.], and the schema internalizes the process of adjoining new constants for ideal numbers. For example, instantiating Idealization with the predicate $\varphi(x, y)$ abbreviating " $x, y \in \mathbb{N}$ and $x$ divides $y$ " gives us an analogue of the ideal element $K \in \mathbb{N}$ that appears in L.L.16.
1.1.29. Axiom Schema of Transfer: Consider an internal formula $\varphi$ with free variables $x_{1}, \ldots, x_{n}$ and no others. The following holds:

$$
\forall^{s t} x_{1} \ldots \cdot \forall^{s t} x_{n-1} \cdot\left(\forall^{s t} x_{n} \cdot \varphi \rightarrow \forall x_{n} \cdot \varphi\right)
$$

That is, if a transfer property holds for every standard element of a standard set, then it holds for every element of that set ${ }^{\text {W. }}$.
1.1.30. Axiom Schema of Standardization: Take an arbitrary (internal or external) formula $\varphi$ with one free variable, and a standard set $G$. Then we can construct a standard set, denoted $\{x \in G \mid \varphi(x)\}$ such that the following are equivalent for each element $a \in G$ :

1. $a \in\{|x \in G| \varphi(x)\}$
2. $\operatorname{st}(a) \rightarrow \varphi(a)$

The notation closely resembles Comprehension: indeed, we can see this axiom schema as an external comprehension principle for a restricted class of formulae. Given the other axioms, one can show that the set constructed by Standardization is the unique set satisfying the property above.
1.1.31. Recall that the axiom schema of Comprehension,

$$
\forall z \cdot \exists!y \cdot \forall x . x \in y \leftrightarrow(x \in z \wedge \varphi)
$$

occurs as one of the axiom schemata of Zermelo-Fraenkel Set Theory. The axiom justifies the use of set builder notation, by writing $\{x \in z \mid \varphi\}$ for the set $y$ whose unique existence the schema asserts. However, Internal Set Theory does not add new instances of the Comprehension schema to the underlying ZFC Set Theory: as such, instances of set-builder notation where the formula $\varphi$ is not internal may fail to denote any set at all! As an example, take $\{x \in \mathbb{N} \mid \operatorname{st}(n)\}$. Internal Set Theory does not prove the existence of a set that contains precisely the standard naturals (indeed, we will see in Corollary [1.2.12 that it proves the non-existence of such a set). In a departure from usual mathematics, the practitioner of Internal Set Theory has to take great care to avoid such illegal set formation, by making sure that all instances of set builder notation use only internal formulae.

## Galactic Halo theorem

1.1.32. Nelson [33] gave a proof-theoretic algorithm which translates proofs in Internal Set Theory to proofs in ZFC. Theorem I.L.39, the key ingredient of Nelson's argument,

[^1]will make an appearance in the subsequent chapters. As such, we present a proof of Theorem [.L.39. To prove conservative extension, one would have to further prove the admissibility of the modus ponens rule in translation, the preservation of the logical axioms (i.e. that one can indeed prove the translations of all instances of the logical schemata introduced in [.L. 4 purely inside ZFC), and (since the translation works only for bounded formulae) introduce and eliminate a "universe bound". Proving the preservation of the logical axioms requires a non-trivial use of the Tychonoff theorem (see [33]-Theorem 3). We assume a good working knowledge of Internal Set Theory in this subsection: readers who have not worked in Internal Set Theory before should feel free to skip this subsection for now and proceed directly to Section [1.2.
1.1.33. Lemma. Consider a standard set $V$ and an internal formula $\varphi$ of Internal Set Theory with two free variables $x, y$. Assume that $\forall^{s t} x \in V . \exists^{s t} y \in V . \varphi(x, y)$. Then IST proves the existence of a standard function $f: V \rightarrow V$ such that $\forall^{s t} x \in V . \varphi(x, f(x))$.

Proof. Define the function $\bar{f}=\{\{(x, Y) \in V \times \mathcal{P}(V) \mid Y=\{|y \in V| \varphi(x, y)\}\}\}$ via a nested use of the Standardization axiom. Since the set-valued function $\bar{f}$ never takes the value $\emptyset$, the Axiom of Choice gives a function $f: V \rightarrow V$ with the required property. Qed.
1.1.34. Notice that the proof of Lemma $[. . .33$ does not rely the internality assumption for $\varphi$ in any way. However, the lemma, even when restricted to internal formulae, allows us to prove all instances (internal or external) of Standardization.
1.1.35. Exercise. Show that the theory obtained by adding the Idealization, Transfer principles and Lemma $[. .33]$ to Zermelo-Fraenkel Set Theory with the Axiom of Choice proves every instance of the Standardization schema. Hint: Use Theorem [.L. 39 twice.
1.1.36. Definition. Given a set $S$, we denote its finite powerset, the set of all its finite subsets, by $\mathcal{P}^{\text {fin }}(S)$. However, if the current context has a formal constant $U$ standing in as a bound for the universe of discourse, we treat the formula $S \in \mathcal{P}^{\mathrm{fin}}(U)$ as an abbreviation for the sentence " $S$ forms a finite set".
1.1.37. For the sake of simplicity, we may leave bounds implicit, but assume that every quantifier has a standard bound in the next few paragraphs. Note that Kanovei [26] shows that the unbounded sentence $\forall F$. $\left(\forall^{s t} n \in \mathbb{N} . \operatorname{st}(F(n)) \rightarrow \exists^{s t} G . \forall^{s t} n \in \mathbb{N} . F(n)=\right.$ $G(n)$ ) is not equivalent to any sentence of ZFC (and is therefore independent of IST).
1.1.38. Definition. Consider bounded sentences $\Psi_{1}, \Psi_{2}$ of Internal Set Theory, where $\Psi_{2}$ has the form $\forall^{s t} x_{1} \cdot \forall^{s t} x_{2} \ldots \cdot \exists^{s t} y_{1} \cdot \exists^{s t} y_{2} \ldots \psi$ for some internal formula $\psi$. We write $\left[\Psi_{1}\right]=\Psi_{2}$ and say that $\Psi_{1}$ has Nelson normal form $\Psi_{2}$ if we can construct a proof tree with conclusion labeled by $\left[\Psi_{1}\right]=\Psi_{2}$ using finitely many instances of the following rules (for more about proof trees see 4.1.15).

$$
\begin{aligned}
& \overline{[\operatorname{st}(x)]=}=\left(\exists^{s t} q \cdot x=q\right) ~ s t \\
& \overline{[\varphi]=\varphi} \text { int } \\
& \text { or } \\
& \frac{[\Phi]=\forall^{s t} x_{1} \in A_{1} \ldots \exists^{s t} y_{1} \in E_{1} \ldots \varphi}{[\neg \Phi]=\forall^{s t} \bar{y}_{1} \in \prod_{i} A_{i} \rightarrow E_{1} \ldots . \exists^{s t} x_{1} \in A_{1} \ldots \neg \varphi\left[y_{i}:=\bar{y}_{i}\left(x_{1}, \ldots\right)\right]} \neg \\
& \frac{[\Phi]=\forall^{s t} x_{1} \in A_{1} \ldots \cdot \exists^{s t} y_{1} \in E_{1} \ldots \varphi}{\left[\forall^{s t} z \in A . \Phi\right]=\forall^{s t} z \in A . \forall^{s t} x_{1} \in A_{1} \ldots \exists^{s t} y_{1} \in E_{1} \ldots \varphi} \forall^{s t} \\
& \frac{[\Phi]=\forall^{s t} x_{1} \in A_{1} \ldots \exists^{s t} y_{1} \in E_{1} \ldots \varphi}{[\forall z . \Phi]=\forall^{s t} x_{1} \in A_{1} \ldots \exists^{s t} Y_{1} \in \underset{\text { or }}{\mathcal{P}^{\text {fin }}}\left(E_{1}\right) \ldots \forall z . \exists y_{1} \in Y_{1} \ldots \varphi} \quad \forall \\
& \frac{\left[\Phi_{1}\right]=\forall^{s t} x_{1} \in A_{1} \ldots \exists^{s t} y_{1} \in E_{1} \ldots \varphi_{1} \quad\left[\Phi_{2}\right]=\forall^{s t} v_{1} \in B_{1} \ldots \exists^{s t} w_{1} \in F_{1} \ldots \varphi_{2}}{\left[\Phi_{1} \rightarrow \Phi_{2}\right]=\forall^{s t} v_{1} \in B_{1} \ldots \forall^{s t} \bar{y}_{1} \in \prod_{i} A_{i} \rightarrow E_{1} \ldots \exists^{s t} x_{1} \in A_{1} \ldots \exists^{s t} w_{1} \in F_{1} \ldots \varphi^{\prime}} \rightarrow
\end{aligned}
$$

where $\varphi^{\prime}$ abbreviates $\varphi_{1}\left[y_{i}:=\bar{y}_{i}\left(x_{1}, \ldots\right)\right] \rightarrow \varphi_{2}, \Phi, \Phi_{2}$ stand for arbitrary non-internal formulae, $\Phi_{1}$ stands for an arbitrary formula, $\varphi_{i}$ stand for internal formulae, variable $z$ occurs free in each $\Phi_{i}$ and we choose $q$ as a fresh variable.
1.1.39. Theorem (Galactic $\mathrm{Halo}^{\text {® }}$ ). Every bounded sentence $\Psi$ of Internal Set Theory has a logically equivalent (modulo theory), unique Nelson normal form [ $\Psi]$.

Proof. For uniqueness, observe that in Definition $\mathbb{L} .38$, the principal connective of $\Psi_{1}$ uniquely determines the next available rule of the proof tree. For existence, observe that the depth of the formula decreases with each application of a rule. Hence, one will eventually reach either an internal formula (which has itself as a unique Nelson normal form) or $\operatorname{st}(x)$ (which has Nelson normal form $\exists^{s t} q . x=q$ for some fresh variable $q$ ). For logical equivalence, we argue by induction on structure of the formula, using the uniqueness and existence of the tree itself as a guide.

[^2]1. Cases st,int, $\forall^{s t}$ : Follow immediately from the definitions.
2. Case $\neg:$ We have

$$
\begin{aligned}
\neg \Phi & \leftrightarrow \neg[\Phi] \\
& \leftrightarrow \neg \forall^{s t} x_{1} \in A_{1} \ldots . \exists^{s t} y_{1} \in E_{1} \ldots \varphi \\
& \leftrightarrow \exists^{s t} x_{1} \in A_{1} \ldots \forall^{s t} y_{1} \in E_{1} \ldots \neg \varphi \\
& \leftrightarrow \forall^{s t} \bar{y}_{1} \in \Pi_{i} A_{i} \rightarrow E_{1} \ldots . \exists^{s t} x_{1} \in A_{1} \ldots \varphi^{\prime} \\
& \leftrightarrow[\neg \Phi] .
\end{aligned}
$$

by inductive assumption by the $\neg$ rule (premise) by de Morgan's laws by Lemma [.L. 33
by the $\neg$ rule
where $\varphi^{\prime}$ abbreviates $\neg \varphi\left[y_{i}:=\bar{y}_{i}\left(x_{1}, \ldots\right)\right]$.
3. Case $\forall$ : We have

$$
\begin{array}{rlr}
\forall z . \Phi & \leftrightarrow \forall z .[\Phi] & \text { by induction } \\
& \leftrightarrow \forall z . \forall^{s t} x_{1} \in A_{1} \ldots . \exists^{s t} y_{1} \in E_{1} \ldots \varphi & \text { by the } \forall \text { rule } \\
& \leftrightarrow \forall^{s t} x_{1} \in A_{1} \ldots . \forall z . \exists^{s t} y_{1} \in E_{1} \ldots \varphi & \text { by quantifier switch } \\
& \leftrightarrow \forall^{s t} x_{1} \in A_{1} \ldots . \exists^{s t} Y_{1} \in \mathcal{P}^{\text {fin }}\left(E_{1}\right) \ldots \varphi^{\prime} & \text { by Idealization } \\
& \leftrightarrow[\forall z . \Phi] . & \text { by the } \forall \text { rule }
\end{array}
$$

where $\varphi^{\prime}$ abbreviates $\forall z . \exists y_{1} \in Y_{1} . \varphi$.
4. Case $\rightarrow$ : We have

$$
\begin{array}{rlr}
\Phi^{\prime} \leftrightarrow & \left(\left[\Phi_{1}\right] \rightarrow\left[\Phi_{2}\right]\right) & \text { by induction } \\
\leftrightarrow & \left(\neg\left[\Phi_{1}\right] \vee\left[\Phi_{2}\right]\right) & \text { by classical logic } \\
\leftrightarrow & \left(\left[\neg \Phi_{1}\right] \vee\left[\Phi_{2}\right]\right) & \text { by case } \neg \text { above } \\
\leftrightarrow & \left(\left(\forall^{s t} \bar{y}_{1} \in \Pi_{i} A_{i} \rightarrow E_{1} \ldots \exists^{s t} x_{1} \in A_{1} \ldots \varphi^{\prime}\right) \vee\right. & \\
& \left.\forall^{s t} v_{1} \in B_{1} \ldots . \exists^{s t} w_{1} \in F_{1} \ldots \varphi_{2}\right) & \\
\leftrightarrow & \forall^{s t} v_{1} \in B_{1} \ldots . \forall^{s t} \bar{y}_{1} \in \Pi_{i} A_{i} \rightarrow E_{1} \ldots & \text { by the } \neg \text { rule } \\
& \exists^{s t} x_{1} \in A_{1} \ldots \exists^{s t} w_{1} \in F_{1} \ldots \varphi^{\prime} \rightarrow \varphi_{2} & \\
\leftrightarrow & {\left[\Phi_{1} \rightarrow \Phi_{2}\right] .} & \text { by quantifier switch } \\
& \text { by the } \rightarrow \text { rule }
\end{array}
$$

where $\Phi^{\prime}$ abbreviates $\Phi_{1} \rightarrow \Phi_{2}$ and $\varphi^{\prime}$ abbreviates $\neg \varphi\left[y_{i}:=\bar{y}_{i}\left(x_{1}, \ldots\right)\right]$.
This proves that every bounded formula of Internal Set Theory has a logically equivalent, unique Nelson normal form.

## Qed.

1.1.40. Using the Galactic Halo theorem, Nelson gives a translation that converts proofs in Internal Set Theory to proofs in Zermelo-Fraenkel Set Theory with the Axiom of Choice. If a ZFC formula occurs as the conclusion of the proof inside Internal Set Theory, the resulting ZFC proof will retain the same conclusion, thus ensuring conservativity of Internal Set Theory over ZFC.
1.1.41. Definition. Given a sentence $\Phi$ of Internal Set Theory with Nelson normal form $[\Phi]=\forall^{s t} x_{1} \cdot \forall^{s t} x_{2} \ldots \exists^{s t} y_{1} \cdot \exists^{s t} y_{2} \ldots \varphi$, we refer to the ZFC sentence $\overline{[\Phi]}=\forall x_{1}, \forall x_{2} \ldots \exists y_{1} \cdot \exists y_{2} \ldots \varphi$ as the Nelson reduction of the formula $\Phi$.
1.1.42. Proposition. We have an equivalence between every bounded sentence $\Phi$ of Internal Set Theory and its Nelson reduction $\overline{[\Phi]}$ when we interpret the latter as a sentence of Internal Set Theory.

Proof. Use Transfer.
Qed.
1.1.43. Proposition ([33]-Theorem 2). Applying the Nelson reduction to Idealization, (simple) Standardization and Transfer axioms yields theorems of ZFC set theory.

Proof. For notational convenience, we omit most bounds and merge all consecutive quantifiers of the same sort into one quantifier, e.g. $\forall^{s t} t$ abbreviates $\forall^{s t} t_{1} \cdot \forall^{s t} t_{2} \ldots$ in what follows. Similarly for displayed variables in predicates and terms in substitutions. Our version of the proof differs from Nelson's account in the treatment of Idealization.

1. Transfer: A Transfer axiom takes the form $\forall^{s t} t .\left(\forall^{s t} x . \varphi(x, t)\right) \rightarrow \forall^{y} . \varphi(y, t)$ for an internal formula $\varphi$. We calculate its Nelson normal form as

$$
\begin{aligned}
& {\left[\forall^{s t} t \cdot\left(\forall^{s t} x \cdot \varphi(x, t)\right) \rightarrow \forall^{y} \cdot \varphi(y, t)\right] } \\
= & \forall^{s t} t \cdot\left[\left(\forall^{s t} x \cdot \varphi(x, t)\right) \rightarrow \forall^{y} \cdot \varphi(y, t)\right] \\
= & \forall^{s t} t \cdot \forall^{s t} y \cdot \exists^{s t} x \cdot \varphi(x, t) \rightarrow \varphi(y, t) .
\end{aligned}
$$

This gives rise to the Nelson reduction $\forall t \cdot \forall y \cdot \exists x \cdot \varphi(x, t) \rightarrow \varphi(y, t)$, a tautology.
2. Idealization $F$ : In the following, we use a purely formal placeholder constant $U$ for the universe. Recall that an Idealization axiom takes the form

$$
\left(\forall^{s t} B \in \mathcal{P}^{\mathrm{fin}}(U) . \exists a \cdot \forall b \in B \cdot \varphi(a, b, w)\right) \rightarrow \exists x \cdot \forall^{s t} y \cdot \varphi(x, y, w)
$$

for any internal formula $\varphi$. We first compute the Nelson normal form of the right hand side: $\left[\exists x . \forall^{s t} y . \varphi(x, y, w)\right]=\forall^{s t} Y \in \mathcal{P}^{\text {fin }}(U) . \exists x . \forall y \in Y . \varphi(x, y, w)$. Using this, we get the Nelson normal form

$$
\begin{aligned}
& \forall Y \in \mathcal{P}^{\mathrm{fin}}(U) \cdot \exists B^{\prime} \in \mathcal{P}^{\mathrm{fin}}\left(\mathcal{P}^{\mathrm{fin}}(U)\right) \cdot \forall w \cdot \exists B \in B^{\prime} . \\
& (\exists a \cdot \forall b \in B \cdot \varphi(a, b, w)) \rightarrow \exists x \cdot \forall y \in Y \cdot \varphi(x, y, w),
\end{aligned}
$$

which we need to prove in ZFC Set Theory. To do that, first notice its equivalence to

$$
\begin{aligned}
& \forall Y \in \mathcal{P}^{\mathrm{fin}}(U) \cdot \exists Z \in \mathcal{P}^{\mathrm{fin}}(U) \cdot \forall w . \\
& (\exists a \cdot \forall z \in Z \cdot \varphi(a, z, w)) \rightarrow \exists x \cdot \forall y \in Y \cdot \varphi(x, y, w),
\end{aligned}
$$

obtained by assuming the former then setting $Z=\bigcup B^{\prime}$ to conclude the latter; then notice that we can write the latter as an instance of a logical tautology.
3. Idealization B: The backward Idealization axiom takes the form

$$
\left(\exists x . \forall^{s t} y \cdot \varphi(x, y, w)\right) \rightarrow \forall^{s t} B \in \mathcal{P}^{\mathrm{fin}}(U) . \exists a \cdot \forall b \in B \cdot \varphi(a, b, w)
$$

for any internal formula $\varphi$. Computing the Nelson normal form, we get

$$
\begin{aligned}
& \forall B \in \mathcal{P}^{\mathrm{fin}}(U) . \exists Y^{\prime} \in \mathcal{P}^{\mathrm{fin}}\left(\mathcal{P}^{\mathrm{fin}}(U)\right) . \forall w \cdot \exists Y \in Y^{\prime} . \\
& (\exists x . \forall y \in Y \cdot \varphi(x, y, w)) \rightarrow \exists a \cdot \forall b \in B \cdot \varphi(a, b, w),
\end{aligned}
$$

which coincides with the forward case up to renaming.
4. Standardization: We deal only with Standardization in the form of Lemma l.L.33, which we can write as

$$
\forall w .\left(\forall^{s t} x \cdot \exists^{s t} y \cdot \varphi(x, y, w)\right) \rightarrow \exists^{s t} b: U \rightarrow U \cdot \forall^{s t} a \cdot \varphi(a, b(a), w)
$$

where $\varphi$ denotes an internal formula, as usual. We first calculate the Nelson normal form

$$
\begin{aligned}
& {\left[\exists^{s t} b: U \rightarrow U . .^{s t} a \cdot \varphi(a, b(a), w)\right]=} \\
& \forall^{s t} a: U \rightarrow U . \exists^{s t} b \cdot \varphi(a(b), b(a(b)), w) .
\end{aligned}
$$

Now, we can take the Nelson reduction of the implication, and get

$$
\forall a . \forall y . \exists x . \exists b \cdot \varphi(x, y(x), w) \rightarrow \varphi(a(b), b(a(b)), w)
$$

Finally, we add the universal quantification to obtain the monstrous formula

$$
\begin{aligned}
& \forall a . \forall y . \\
& \exists X . \exists B . \\
& \forall w . \exists x \in X . \exists b \in B . \varphi(x, y(x), w) \rightarrow \varphi(a(b), b(a(b)), w) .
\end{aligned}
$$

Notice that we can prove the Nelson reduction of the formula above simply by setting $X=\{a(y)\}, B=\{y\}$. These fix $b$ and $x$ uniquely, and we get the goal

$$
\begin{aligned}
& \forall a . \forall y . \\
& \forall w . \varphi(a(y), y(a(y)), w) \rightarrow \varphi(a(y), y(a(y)), w),
\end{aligned}
$$

an instance of a logical tautology.

## Qed.

1.1.44. The translation sketched above relies heavily on the Axiom of Choice: every switch of quantifiers and every translation of a modus ponens rule hides a use of Choice, and one also has to prove that the translations of the logical axioms (when instantiated with external formulae) also yield theorems of ZFC Set Theory. Proving this for logical axioms of the form $\mathbf{U}$ 3 requires invocations of Tychonoff's theorem for products of finite sets.
1.1.45. Theorem. Both of the following statements imply each other in Zermelo-Fraenkel Set Theory (without the Axiom of Choice):

- Finite Tychonoff Theorem: The product of an indexed family of finite topological spaces satisfies compactness with respect to the product topology.
- Ultrafilter Lemma: Every filter on any set occurs as a subfilter of some ultrafilter.

Proof. Follows from [29]-Theorem 2.21.

## Qed.

1.1.46. The Ultrafilter Lemma is independent of Zermelo-Fraenkel Set Theory [4]. With that in mind, and in light of Theorem [L.L.45, we shall see the inevitability of the phenomenon discussed in I.L.44: Internal Set Theory conservatively extends ZFC Set Theory, but Internal Set Theory without the Axiom of Choice does not conservatively extend Zermelo-Fraenkel Set Theory without the Axiom of Choice. We will prove this in a subsequent section by deducing the Ultrafilter Lemma (Lemma [.3.40) in IST without using Choice. Apart from the Finite Tychonoff Theorem, the Nelson translation also uses full Choice to switch quantifiers ${ }^{[3]}$, so one cannot use it to show that IST without Choice conservatively extends Zermelo-Fraenkel Set Theory with the Ultrafilter Lemma. However, one can use a model-theoretic argument of Hrbacek [23] to prove this conservative extension result directly.

### 1.2 Working in IST

1.2.1. From here on we work inside Internal Set Theory. Consequently, all the theorems that follow are stated and proved in Internal Set Theory, unless otherwise noted.
1.2.2. Proposition. Consider an internal predicate $\varphi$ with standard parameters. Assume the existence of a nonstandard $x$ such that $\varphi(x)$ holds. Then we can also find a standard $y$ satisfying $\varphi$.

Proof. If the predicate $\varphi$ is internal, so is $\neg \varphi$. The implication $\left(\forall^{s t} y . \neg \varphi(y)\right) \rightarrow \forall x . \neg \varphi(x)$ holds by Transfer. Taking the contrapositive, we get the implication $(\exists x . \varphi(x)) \rightarrow$ $\exists^{s t} y . \varphi(y)$. Now assume that we have a nonstandard $x$ such that $\varphi(x)$ holds. Then a fortiori we have an $x$ such that $\varphi(x)$ holds (we just "forget to mention" the nonstandardness of $x$ ). Hence, the previous implication immediately gives a standard $y$ satisfying $\varphi(y)$.
Qed.
1.2.3. As per Proposition [L.2.2, we can use transfer on any internal formula: any internal formula has a prenex normal form $\forall x \cdot Q_{2} y \ldots \varphi(x, y)$ where $Q_{i}$ are quantifiers $\forall$ or $\exists$, and $\varphi$ is internal and quantifier-free. If $Q_{1}=\forall$, then the Transfer axiom yields $\forall x . Q_{2} y \ldots \varphi(x, y) \leftrightarrow \forall^{s t} x . Q_{2} y \ldots \varphi(x, y)$. Otherwise, Proposition $\mathbb{L} .2 .2$ yields $\exists^{s t} x . Q_{2} y \ldots \varphi(x, y) \leftrightarrow \exists x . Q_{2} y \ldots \varphi(x, y)$. Notice that we have already relied on this in

[^3]the proof of Theorem [.I.39. More importantly, Proposition $\mathbb{L} 2.2$ allows us to make provisional assumptions of standardness: whenever we wish to prove an internal implication $\varphi \rightarrow \psi$, we can start the proof by assuming the standardness of all objects mentioned in $\varphi$. After we prove the conclusion $\psi$, we can freely discharge these standardness assumptions. In many situations, the additional standardness assumptions make the conclusion easier to prove, by enabling the use of previously constructed ideal elements. The reader will see a substantial example of the phenomenon "in action" in the proof of Theorem [.2.7.
1.2.4. Proposition. Consider an internal formula $\psi$. The following statements are equivalent.

1. $\exists^{s t f i n} \mathcal{F} . \forall y \cdot \exists x \in \mathcal{F} . \psi(x, y)$,
2. $\forall y \cdot \exists^{s t} x \cdot \psi(x, y)$.

Proof. Recall that for any internal $\varphi, \forall^{s t \mathrm{fin}} \mathcal{F} . \exists y . \forall x \in \mathcal{F} . \varphi(x, y)$ and $\exists y . \forall^{s t} x . \varphi(x, y)$ are equivalent. Since $\psi$ is an internal formula, so is $\neg \psi$. Setting $\varphi$ to $\neg \psi$, we get the logical equivalence of $\forall^{s t \mathrm{fin}} \mathcal{F} . \exists y . \forall x \in \mathcal{F} . \neg \psi(x, y)$ and $\exists y . \forall^{s t} x . \neg \psi(x, y)$. We can take the contrapositive and apply de Morgan's laws to obtain the equivalence of $\exists^{s t \mathrm{fin}} \mathcal{F} . \forall y . \exists x \in$ $\mathcal{F} . \psi(x, y)$ and $\forall y . \exists^{s t} x . \psi(x, y)$ as desired.

## Qed.

1.2.5. Theorem. Every element of a standard finite set is standard. Furthermore, if every element of a set $F$ is standard, then $F$ is finite.

Proof. First consider a standard finite set $F$. Then the following holds:

$$
\exists^{s t \mathrm{fin}} H . \forall x . \exists y \in H . x \in F \rightarrow x=y
$$

simply by taking $H=F$. Applying Proposition $\mathbb{L 2 . 4}$, we obtain that $\forall y . \exists^{s t} x . x \in F \rightarrow$ $x=y$. But then $y$ is standard. Now consider a set $F$ whose elements are all standard. Then $\forall y . \exists^{s t} x . x \in F \rightarrow x=y$. Applying the previous equivalence in reverse, we get that $F \subseteq H$ for some finite $H$. This proves that $F$ is finite.
Qed.
1.2.6. The proof of the combinatorialist's version of the compactness theorem, a well known theorem of de Bruijn and Erdős, provides an ideal entry point to Internal Set Theory, since it uses each of the new axioms at least once. The proof presented below
hides only a compactness argument, but the general technique recurs very often, so we feel compelled to give an excruciatingly detailed proof. Ultimately, axiomatizing these situations will reveal a connection to Zilber's notion of structural approximation via Definition [2.2.3]. In what follows, the word graph denotes an undirected graph with no loops or multi-edges. We denote the set of vertices of a graph $G$ as $V_{G}$, the set of edges as $E_{G}$. We call a graph finite if it contains finitely many vertices. A coloring of a graph consists of a map $f: V(G) \rightarrow C$ from the vertices of the graph to some set of colors $C$ such that no two vertices sharing the same edge get assigned the same color.
1.2.7. Theorem (de Bruijn-Erdős). Consider a finite set of colors $C=\{1, \ldots, k\}$. A graph $G$ admits a $C$-coloring precisely if every finite subgraph of $G$ admits a $C$-coloring.

Proof. One direction is obvious. For the other direction, assume that we can color every finite subgraph of $G$ with $k \in \mathbb{N}$ colors. In fact, since we can express our conclusion ( $k$-colorability of $G$ ) using an internal formula, we can provisionally assume the standardness of both the graph $G$ and the finite set $C$ of colors. At the end, Transfer will eliminate these assumptions.

1. Given any finite set $N$ of vertices of $G$, we can find a finite subgraph of $G$ that contains all the vertices in $N$ (take the induced subgraph of the set $N$ ). The Idealization axiom applies to this situation: we get a finite subgraph $H \subseteq G$ that nevertheless contains every standard vertex of $\boldsymbol{G}$.
2. Since $H$ is a finite subgraph of $G$, our assumption guarantees that it admits a $C$-coloring $f: H \rightarrow\{1, \ldots k\}$. Identify the function $f$ with its graph, the set of all pairs $(v, c)$ such that $f(v)=c$. Then for any $v \in V_{G}$ we can find a unique $c \in\{1, \ldots, k\}$ such that $(v, c) \in f$.
3. Use Standardization to define a standard set

$$
f^{\prime}=\left\{(v, c) \in V_{G} \times\{1, \ldots, k\} \mid(v, c) \in f\right\} .
$$

We shall prove that the set $f^{\prime}$ also forms the graph of a function $V_{G} \rightarrow C$, meaning that for any vertex $v \in V_{G}$ we can find a unique $c \in\{1, \ldots, k\}$ such that $(v, c)$ belongs to $f^{\prime}$.
4. Existence says $\forall v \in V_{G} \cdot \exists c \in C .(v, c) \in f^{\prime}$, but by Transfer it suffices to prove $\forall^{s t} v \in V_{G} \cdot \exists^{s t} c \in C .(v, c) \in f^{\prime}$. So pick any standard $v \in V_{G}$. We have $v \in H$ since $H$ contains every standard vertex. The fact that $f$ is a function immediately
gives us a $c \in\{1, \ldots, k\}$ such that $(v, c) \in f$. But $C$ forms a standard finite set, so we can use Theorem [ [2.5 to conclude the standardness of $c$. Now, we have a standard pair $(v, c) \in f$. The Standardization axiom says that $(v, c) \in f^{\prime}$ holds for standard $v, c$ precisely if $(v, c) \in f$. Hence $(v, c) \in f^{\prime}$ holds, proving existence.
5. For uniqueness, it suffices to prove that

$$
\forall^{s t} v \in V_{G} \cdot \forall^{s t} c_{1}, c_{2} \in C .\left(v, c_{1}\right) \in f^{\prime} \wedge\left(v, c_{2}\right) \in f^{\prime} \rightarrow c_{1}=c_{2} .
$$

So take standard $v, c_{1}, c_{2}$ and assume both $\left(v, c_{1}\right) \in f^{\prime}$ and $\left(v, c_{2}\right) \in f^{\prime}$. Using the standardness of the pairs $\left(v, c_{1}\right),\left(v, c_{2}\right)$ we can apply Standardization to conclude $\left(v, c_{1}\right) \in f$ and $\left(v, c_{2}\right) \in f$. At that point, we can use the fact that $f$ is a functional relation to conclude $c_{1}=c_{2}$, proving uniqueness.
6. Now we verify that $f^{\prime}$ gives a $C$-coloring. The sentence

$$
\forall v_{1}, v_{2} \in V_{G} \cdot\left(v_{1}, v_{2}\right) \in E_{G} \rightarrow f^{\prime}\left(v_{1}\right) \neq f^{\prime}\left(v_{2}\right)
$$

states this. Transfer applies, so we can get away with showing

$$
\forall^{s t} v_{1}, v_{2} \in V_{G} \cdot\left(v_{1}, v_{2}\right) \in E_{G} \rightarrow f^{\prime}\left(v_{1}\right) \neq f^{\prime}\left(v_{2}\right) .
$$

So take standard vertices $v_{1}, v_{2}$ of the graph and suppose they have an edge between them. Then

$$
f^{\prime}\left(v_{1}\right)=f\left(v_{1}\right) \neq f\left(v_{2}\right)=f^{\prime}\left(v_{2}\right)
$$

holds: the equalities follow by Standardization, the inequality follows since $f$ is a $C$-coloring. As $v_{1}, v_{2}$ get different colors, we conclude that $f^{\prime}$ gives a $C$-coloring of $G$.

We have concluded that for standard $G$ and $C$, if every finite subgraph of $G$ admits a $C$-coloring, so does the entire graph $G$. However, the conclusion is internal (with standard parameters $G, C$ ), so Transfer makes the standardness assumptions redundant. We get that if every finite subgraph of some graph $G$ admits a $C$-coloring, then the entire graph $G$ admits a $C$-coloring.
Qed.
1.2.8. In the remainder of this section, we establish some basic results concerning standardness.
1.2.9. Proposition. Consider an internal formula $\varphi(x)$ that has one free variable and that does not contain any non-standard parameters. If the sentence $\exists$ ! $x \cdot \varphi(x)$ holds, then the object $x$ such that $\varphi(x)$ holds is necessarily standard.

Proof. Apply Transfer to $\exists x . \varphi(x)$ to conclude the existence of some standard $x$ satisfying $\varphi(x)$. By the uniqueness clause, every object $y$ satisfying $\varphi(y)$ equals $x$ : since $x$ is standard, so is $y$.
Qed.
1.2.10. Corollary. Given standard sets $A, B$, the sets $A \times B, A \cap B, A \cup B, A \backslash B$ and $\mathcal{P}(B)$ are all standard, and so is the set of all functions $A \rightarrow B$.

Proof. We can characterize each of them via an internal formula with no non-standard variables (exercise!), and prove their unique existence.

## Qed.

1.2.11. Corollary. Given a standard function $f: A \rightarrow B$ and standard $x \in A$, the value $f(x)$ is standard.

Proof. Regard the (graph of the) function as a subset of $A \times B$. For each $x \in A$, the internal formula $\varphi(y) \leftrightarrow(x, y) \in f$ contains no non-standard parameters, and it characterizes the value $y=f(x)$ uniquely.
Qed.
1.2.12. Corollary. One cannot construct a set that contains precisely the standard elements of $\mathbb{N}$.

Proof. Assume for a contradiction that we have found such a set $\mathbb{N}^{s t}$. All elements of $\mathbb{N}^{s t}$ are standard, so by Theorem $\left[.2 .5 \mathbb{N}^{s t}\right.$ is finite. Consider the maximum element $N$ of $\mathbb{N}^{s t}$. We have $\operatorname{st}(N)$, so by Corollary [L.2.]l, $\operatorname{st}(N+1)$ holds as well. But $N+1 \notin \mathbb{N}^{s t}$, a contradiction.

## Qed.

1.2.13. Zermelo-Fraenkel Set Theory proves the (universal closure of the) axiom of induction for any formula $\varphi$ in its language. This internal induction principle remains valid in Internal Set Theory. However, unlike ZFC (but similarly to the theory PAKSR
considered in $[. L .10$ and in [I.L.22), Internal Set Theory does not prove the axiom of induction for some formulae in its (extended) language. In particular, for $\operatorname{st}(x)$ we have both $\operatorname{st}(0)$ and $\forall x \in \mathbb{N} . \operatorname{st}(x) \rightarrow \operatorname{st}(x+1)$ (this follows from Corollary $\mathbb{L}$.2. W applied to the standard function $n \mapsto n+1)$, but of course not $\forall n \in \mathbb{N} . \operatorname{st}(n)$, which would immediately contradict Idealization. One must maintain constant vigilance not to apply induction arguments to general formulae in the language of Internal Set Theory, especially since we make heavy use of binary predicates in the language of IST in the later chapters of this thesis. On these predicates, we have weaker reasoning principles (among them External Induction, Theorem [1.2.15) available. We develop these below.
1.2.14. Proposition. Consider a standard natural number $b$. All $n \in \mathbb{N}$ with $n<b$ are standard.

Proof. The internal formula $x<b$ does not have non-standard parameters, so we can construct the finite set $B=\{x \in \mathbb{N} \mid x<b\}$. The standardness of $B$ follows immediately from Proposition $\llbracket .2 .9$, so we can use Theorem $\llbracket .2 .5$ to conclude that all elements of $B$ are standard.
Qed.
1.2.15. Theorem (External Induction). Take any formula $\varphi$ in the language of Internal Set Theory (possibly with non-standard parameters). If $\varphi(0)$ and $\forall^{s t} n . \varphi(n) \rightarrow \varphi(n+1)$ both hold, then $\varphi(x)$ holds for all standard $x \in \mathbb{N}$.

Proof. Use the axiom of Standardization to construct the set $P=\{|x \in \mathbb{N}| \varphi(x)\}$. The formula $\psi(x) \leftrightarrow x \in P$ is internal and its only parameter $P$ is standard. Notice that for standard elements $x$, we have $\varphi(x) \leftrightarrow \psi(x)$, so $\psi(0)$ and $\forall^{s t} n . \psi(n) \rightarrow \psi(n+1)$ both hold, and Transfer applies to the latter, so $\forall n \cdot \psi(n) \rightarrow \psi(n+1)$ holds as well. By the (ordinary, internal) induction principle we get $\forall x \cdot \psi(x)$. The desired conclusion, $\forall^{s t} x . \varphi(x)$, follows immediately from the equivalence of $\varphi$ and $\psi$ over standard elements.
Qed.

### 1.3 Topology via predicates

1.3.1. Many applications of Internal Set Theory stem from its ability to transport definitions and techniques meant for finite spaces to the general topological setting. In what follows, we consider topological spaces ( $T, \Omega T$ ) where $\Omega T$ denotes the lattice of open sets, and $T$ denotes the carrier (underlying set of points). We employ metonymy,
and write $T$ instead of $(T, \Omega T)$ whenever we deem the identity of $\Omega T$ sufficiently unambiguous.
1.3.2. Given any topological space, we can construct an order relation (often referred to as the specialization order) on its points that every continuous function preserves. For finite topological spaces, we can easily achieve the converse as well (Theorem [.3.6).
1.3.3. Definition. Consider a topological space $(T, \Omega T)$, and regard two points $x, y \in T$. We write $x \leq_{T} y$ if $\forall V \in \Omega T . x \in V \rightarrow y \in V$. We call the resulting preorder relation $\leq_{T}$ the specialization order of $T$.
1.3.4. Exercise. Check that the construction of Definition $\mathbb{L . 3 . 3}$ results in a preorder relation on any topological space. Prove that the resulting relation satisfies the partial order axioms precisely on $\mathrm{T}_{0}$-separable spaces.
1.3.5. Proposition. Consider a finite topological space ( $T, \Omega T$ ). A subset $S \subseteq T$ belongs to $\Omega T$ precisely if for each $x, y \in T$ with $x \leq y, x \in S \rightarrow y \in S$.

Proof. Assume that $S \in \Omega T$ and $x \leq y$. Since $x \in S$, the set $S$ forms a neighborhood of $x$, so $S$ contains $y$. That settles one direction. For the other direction, assume $\forall x . \forall y . x \leq$ $y \wedge x \in S \rightarrow y \in S$. To prove that $S$ is open, it suffices to show that $S$ contains an open neighborhood of each $x \in S$. But by our assumption it contains at least the open set $\bigcap\{V \in \Omega T \mid x \in V\}$.
Qed.
1.3.6. Theorem (Birkhoff's representation). Take two finite topological spaces $S$ and $T$. A function $f: S \rightarrow T$ is continuous precisely if $x \leq_{S} y \rightarrow f(x) \leq_{T} f(y)$ holds for all $x, y \in S$.

Proof. The comprehension $V_{x}=\left\{y \in S \mid x \leq_{S} y\right\}$ constructs the smallest open set containing $x$ for every point $x \in S$ of a finite space $S$. Hence, we only need to verify the openness of preimages of open sets of the form $V_{x}$ with $x \in T$.
First consider a monotone ${ }^{W}$ function $f: S \rightarrow T$ and any set of the form $V_{x}$ for $x \in T$. Assume $a \in f^{-1}\left(V_{x}\right)$ and $a \leq_{S} b$. We need to prove that $b \in f^{-1}\left(V_{x}\right)$. But $a \in f^{-1}\left(V_{x}\right)$ holds precisely if $x \leq_{T} f(a)$. Moreover, $f(a) \leq_{T} f(b)$ follows from $a \leq_{S} b$ by the monotonicity assumption. We get $x \leq_{T} f(a) \leq_{T} f(b)$, and thus $b \in f^{-1}\left(V_{x}\right)$. Since we chose $a, b \in S$ arbitrarily, this proves the continuity of the function $f$.

[^4]Now consider a continuous function $f: S \rightarrow T$. Assume $a \leq_{S} b$. By the openness of the preimage of $V_{f(a)}$, we get that $f(a) \leq_{T} f(a)$ and $a \leq_{S} b$ together imply $f(a) \leq_{T} f(b)$. All these preconditions hold, so we can conclude $f(a) \leq_{T} f(b)$. Since we chose $a, b$ arbitrarily, this proves the monotonicity of the function $f$.
Qed.
1.3.7. Definition. We call the topological space $(T, \Omega T)$ with underlying set $T=\{\perp, \top\}$ and open set lattice $\Omega T=\{\emptyset,\{T\},\{\perp, T\}\}$ the Sierpinski space, and denote it $\dot{S}$.
1.3.8. Proposition. Consider any finite topological space $(X, \Omega X)$. We have a one-toone correspondence between monotone functions $f: X \rightarrow \dot{S}$ and open sets $F$ of the space $X$.

Proof. Apply Propositions $\mathbb{1 . 3 . 5}$ and $\sqrt{13.6}$.
Qed.
1.3.9. Alas, we cannot expect analogues of Proposition $\mathbb{\boxed { 3 } . 5}$ and Theorem $\mathbb{L . 3 . 6}$ to hold for general infinite spaces. For example, applying Definition $\mathbb{L . 3 . 3}$ to the usual Euclidean topology on the real line $\mathbb{R}$ yields a discrete order, and the same happens on every space with sufficient separation (Proposition [.3.10), showing cannot reduce the study of topological spaces and continuous functions to the study of functions preserving relations.
1.3.10. Proposition. Consider a $T_{1}$-separable topological space $(T, \Omega T)$ on which every function that preserves the specialization order $\leq_{T}$ is continuous. Then $T$ carries the discrete topology.

Proof. We show the triviality of the ordering. Consider any two $x, y \in T$ with $x \neq y$. By $\mathrm{T}_{1}$-separation, we obtain an open set $N$ such that $x \in N$ but $y \notin N$, thus proving $x \not 女_{T} y$. Similarly, we get $y \not \leq_{T} x$. This shows that every function $f: T \rightarrow T$ preserves the specialization order, and thus is continuous. In particular, continuity holds for the "characteristic function" mapping elements of $V$ to $x$ and everything else to $y$ for any set $V \subseteq T$. Taking the preimage of $N$ with respect to this characteristic function shows the openness of any set $V$. Hence, $T$ carries the discrete topology.
Qed.

## Predicated Spaces and S-continuity

1.3.11. Birkhoff's representation theorem requires that the intersection of arbitrary families of open sets itself constitute an open set ${ }^{\boxed{ }}$. This latter property fails badly for general infinite spaces: as we have seen in Proposition $\left[.3 .10\right.$, the $\leq_{X}$ relation gives rise to equality over any $T_{1}$ space ( $X, \Omega X$ ), so we have no hope at all of recovering the topology from the specialization relation.
1.3.12. In the language of ordinary Zermelo-Fraenkel set theory, every bounded binary predicate $\varphi$ corresponds to a relation (set of ordered pairs), by defining $R$ as $\{(x, y) \in A \times B \mid \varphi(x, y)\}$ where $A, B$ denote the bounds of the predicate $\varphi$. One can't say the same about Internal Set Theory: in the language of IST, we can easily construct predicates that do not form relations. For example, if the predicate $\varphi(x, y)$ abbreviating $x \in \mathbb{N} \wedge y \in \mathbb{N} \wedge \operatorname{st}(x)$ would form a relation, we could define the "set of all standard naturals" as $\{x \in \mathbb{N} \mid \varphi(x, x)\}$, contradicting Corollary [.2.12].
1.3.13. One should see the failure of the correspondence between relations and bounded predicates in Internal Set Theory as an opportunity. The impossibility result of Proposition [.3.10 applies to any relation, and hence to any bounded ZFC-predicate, but fortunately not to arbitrary predicates in the language of Internal Set Theory! Here we show that by replacing the relation in Definition $[.3 .3$ with a binary predicate, we can obtain well-behaved analogues of Propositions [. 2.5 , Theorem $\mathbb{L} .3 .6$ and even Proposition [.3.8. This allows us to transport definitions and techniques meant for finite (or more generally: Alexandroff) spaces to the general topological setting. We elected to present these results in detail for two reasons: first, to keep the document self-contained, and second because the ideas inherent in the development will recur in later chapters of the thesis where we characterize Alexandroff approximations and sheaves over Alexandroff spaces. While some of the terminology is novel, all results of the current section are well-known and have appeared in the literature in various forms. The reader should consult the General Topology chapter of Nonstandard Analysis in Practice [LI2] for attributions and alternative formulations.
1.3.14. Definition. A predicated space ( $T, \circ-$ ) consists of the following data:

- an underlying set (or carrier set) $T$,
- a binary predicate in the language of Internal Set Theory, o-, referred to as the

[^5]```
"nearness","closeness" or "proximity" predicate,
```

such that $\forall x . \forall y . x \circ-y \rightarrow x \in T \wedge y \in T$ and $\forall x \in T . x \circ-x$. As usual, we elide $\circ-$ and refer to the predicated space ( $T, \circ-$ ) simply as $T$ whenever the elision causes no ambiguity.
1.3.15. Definition. Consider two predicated spaces $\left(U, \circ^{-}\right)$and $\left(T, \circ_{T}\right)$, along with a function $f: U \rightarrow T$. We call this function $S$-continuous if for all standard $x \in U$ and for all $y \in U$ such that $x \circ_{U} y$, we have $f(x) \circ-_{T} f(y)$.
1.3.16. Definition. We call a subset $V \subseteq T$ an $S$-open set of the predicated space ( $T, \circ-$ ) if for all standard $x \in V, V$ contains every $y \in T$ such that $x \circ-y$.
We say that the nearness predicate o- represents the topology of the standard topological space ( $T, \Omega T$ ) if every standard S-open set of ( $T, \circ^{-}$) forms an open set in $(T, \Omega T)$ and every standard open set of ( $T, \Omega T$ ) forms an S-open set in ( $T, \circ$ ).
We say that the nearness predicate o- universally represents the topology of the standard topological space $(T, \Omega T)$ if it represents $(T, \Omega T)$ and for any other predicate $\sim$ representing $(T, \Omega T)$, the implication $\forall^{s t} x . \forall y . x \sim y \rightarrow x \circ y$ holds.
1.3.17. At this point the reader should carefully contemplate how would one would formalize the clause defining universal representations in Definition L.3.16. When we say "for any other predicate representing the space", we have to quantify over all predicates, so no single sentence of set theory (ZFC or IST) suffices for defining universality.
1.3.18. Proposition. For any standard topological space $(T, \Omega T)$, we can find a nearness predicate $\circ$ on $T$ universally representing it.

Proof. Define the predicate $x \circ y$ as an abbreviation of $\forall^{s t} N \in \Omega T . x \in N \rightarrow y \in N$. First take a standard open set $S \subseteq T$ of the topological space ( $T, \Omega T$ ). Consider a pair $x \circ-y$ with $x \in S$ standard. Since $S$ contains a neighborhood of $x$, Transfer assures us that it also contains a standard such neighborhood. That standard neighborhood contains $y$ by definition of the nearness predicate. Thus, $S$ forms an S-open set of $T$. Now, take a standard S-open set $S \subseteq T$ of the predicated space ( $T, \circ-$ ). We have that for each standard $x \in T$ and arbitrary $y \in T$ with $x \circ-y, x \in S \rightarrow y \in S$. For every finite set of topological neighborhoods of $x$, we can find an open neighborhood of $x$ in $\Omega T$ that forms a subset of all of them (this is a restatement of the fact that the finite intersection of topologically open sets is open). By Idealization we deduce the existence of an open neighborhood of $x, I_{x} \in \Omega T$, that forms a subset of every standard neighborhood of
$x$. By our assumption $S$ contains every $y \in I_{x}$, so $I_{x} \subseteq S$. Therefore, $S$ contains a neighborhood $I_{x}$ of each of standard point $x \in S$. Transfer applies to this statement (since $S$ is standard), and yields that $S$ contains a neighborhood of each of its points, i.e. $S$ is open.

For universality, consider any other predicate $\sim_{T}$ representing the topology of $T$. We prove the implication $x \sim_{T} y \rightarrow x 0_{T} y$ for standard $x \in T$ and arbitrary $y \in T$. Since $\sim_{T}$ represents the topology of $T$, we have the implication

$$
\forall^{s t} N . \forall^{s t} x \in T . \forall y \in T .\left(x \sim_{T} y \wedge N \in \Omega T \wedge x \in N\right) \rightarrow y \in N,
$$

and by exchanging connectives and quantifiers we get

$$
\forall^{s t} x \in T . \forall y \in T . x \sim_{T} y \rightarrow\left(\forall^{s t} N \in \Omega T . x \in N \rightarrow y \in N\right),
$$

i.e. $x \sim_{T} y \rightarrow x \square_{T} y$, as desired.

Qed.
1.3.19. Theorem. Take standard topological spaces $(S, \Omega S)$ and ( $T, \Omega T$ ) universally represented by the nearness relations $0^{-}$and $0_{T}$ respectively. A standard function $f: S \rightarrow T$ forms a continuous map from $(S, \Omega S)$ to $(T, \Omega T)$ precisely if it forms an S-continuous map from $\left(S, \circ_{S}\right)$ to $\left(T, \circ_{T}\right)$.

Proof. For the predicates $a_{S}$ and $\square_{T}$ constructed in the proof of Proposition [4.3.] we can simply imitate the proof of Birkhoff's representation theorem (exercise, but you may wish to consult [112]-Section 6.2 for hints). Now consider any other predicates $\sim_{S}$ and $\sim_{T}$ representing their respective topologies universally.
Take a standard continuous $f: S \rightarrow T$, a standard $x \in S$ and an arbitrary $y \in S$ such that $x \sim_{S} y$. By the universality of $\circ_{S}$, the implication $\forall^{s t} x^{\prime} . \forall y^{\prime} . x^{\prime} \sim_{S} y^{\prime} \rightarrow x^{\prime} \circ_{s} y^{\prime}$ holds, so we get $x \circ^{-} y$. But then $f(x) \circ_{T} f(y)$ obtains by the proof of the special case. Using the universality of $\sim_{T}$, we get $f(x) \sim_{T} f(y)$.
Now take an S-continuous function $f: S \rightarrow T$, consider a standard $x \in S$ and an arbitrary $y \in S$ such that $x \circ_{S} y$. The universality of $\sim_{S}$ gets us to $x \sim_{S} y$, so $f(x) \sim_{T}$ $f(y)$, and the universality of $\circ_{T}$ immediately yields $f(x) \circ_{T} f(y)$. Thus, $x \circ^{-} y$ implies $f(x) \circ_{T} f(y)$, and by the proof of the special case we obtain the continuity of the function $f$.
Qed.
1.3.20. Exercise. Consider $\mathbb{R}$ equipped with its usual Euclidean topology, and take a universal representation $\circ_{\mathbb{R}}$. Construct

1. a continuous map $\mathbb{R} \rightarrow \mathbb{R}$ that is not S-continuous;
2. an S-continuous map $\mathbb{R} \rightarrow \mathbb{R}$ that is not continuous;
3. a map $\mathbb{R} \rightarrow \mathbb{R}$ that is both continuous and S-continuous, but not standard.
1.3.21. As we have seen, Theorem $\mathbb{[ . 3 . 1 9}$ provides an almost perfect counterpart to Birkhoff's representation theorem, and by Proposition [.3.18, it works for every standard topological space, not only Alexandroff spaces. Thanks to Transfer, we can assume that our topology comes from a binary predicate whenever we want to prove a standard conclusion about an arbitrary topological space. At first sight, the definition of S-continuity (Definition [1.3.15) may look less pleasant than the mere monotonicity of the Alexandroff case, since the former requires an assumption of standardness on the first argument. If one desired an exact correspondence, one could remove this constraint, and mutatis mutandis everything would keep working: e.g. one would simply replace the universal representations of Proposition $\| .3 .18$ with $\operatorname{st}(x) \wedge x \circ-y$. However, we fare better by putting up with this minor complication. The payoff comes when we consider functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that do preserve the predicate $o_{\mathbb{R}}$ even for non-standard $x$ : miraculously, this property corresponds exactly to uniform continuity.
1.3.22. Definition. Take a predicated space ( $T, \circ-$ ) on the standard set $T$. We call the structure ( $T, \circ-$ ) a topological predicated space if o- universally represents some standard topological space ( $T, \Omega T$ ).
1.3.23. From here on we identify standard topological spaces with topological predicated spaces without any further notice. Thanks to Theorem [L.3.19, we do not need to distinguish between continuous and S-continuous standard functions that go between topological predicated spaces. However, we will rely on nonstandard functions a couple of times in our development: therefore, the reader should expect to see functions for which we explicitly assume both conditions.

## Properties of Predicated Spaces

1.3.24. In this subsection we introduce predicated counterparts to the usual properties of topological spaces (separation axioms, compactness, and so on). Customarily, authors attach the "S-" modifier to these generalized concepts (as we did for continuity
in Definition [.3.15), but we will refrain from doing so, reusing names of topological concepts as necessary. The reader should keep in mind that a single property, such as compactness, has infinitely many different generalizations to predicated spaces that all coincide over topological predicated spaces, so there is always some degree of arbitrariness in the choice of the generalization that gets to inherit a particular name.
1.3.25. Definition. We call a predicated space ( $T, \circ-$ )

1. Kolmogorov separable if two standard points that share exactly the same nearby points are equal;
2. Fréchet separable if two nearby standard points are always equal;
3. Hausdorff separable if two standard points that share a common nearby point are always equal.
1.3.26. It might seem heavy-handed, but the Galactic Halo theorem provides the simplest, most principled way of translating between the common properties of predicated spaces and their topological counterparts. We encourage the readers who skipped Section [I.L.32 to return to that section now and familiarize themselves with at least the proof of Theorem L.L.39. We assume throughout that the predicate representing a topological space is the one given in the proof of Proposition $\mathbb{\$ . 3 . 1 8}$ (exercise: explain why we do not lose any generality).
1.3.27. Proposition. A topological predicated space is Fréchet in the sense of Definition $\left[.3 .25\right.$ precisely if it satisfies $\mathrm{T}_{1}$-separation as a topological space.

Proof. The following argument implicitly uses the Galactic Halo theorem. We leave it in this form as preparation for the proof of Proposition $\mathbb{L . 3 . 2 8}$. Formally, the Fréchet condition states the following:

$$
\forall^{s t} x, y \in T . x \circ y \rightarrow x=y .
$$

We expand the definition of $0-$ (as in Proposition [.3.18) to get the equivalent condition

$$
\forall^{s t} x, y \in T .\left(\forall^{s t} N \in \Omega T . x \in N \rightarrow y \in N\right) \rightarrow x=y .
$$

Putting this in prenex form, we obtain

$$
\forall^{s t} x, y \in T . \exists^{s t} N \in \Omega T .(x \in N \rightarrow y \in N) \rightarrow x=y .
$$

Transfer applies and, we obtain the following Nelson reduction, equivalent to the original condition:

$$
\forall x, y \in T . \exists N \in \Omega T .(x \in N \rightarrow y \in N) \rightarrow x=y .
$$

Taking contrapositives gives us the familiar sentence

$$
\forall x, y \in T . \exists N \in \Omega T . x \neq y \rightarrow x \in N \wedge y \notin N .
$$

stating that the space $T$ has $T_{1}$-separation.

## Qed.

1.3.28. Proposition. A topological predicated space is Hausdorff in the sense of Definition $\left[.3 .25\right.$ precisely if it is $\mathrm{T}_{2}$-separable (i.e. Hausdorff) as a topological space.

Proof. Formally, the Hausdorff condition states the following:

$$
\forall^{s t} x, y \in T . \forall s \in T .(x \circ-s \wedge y \circ-s) \rightarrow x=y .
$$

We start by expanding the definition of $\circ-$, and get the equivalent statement

$$
\begin{aligned}
& \forall^{s t} x, y \in T . \forall s \in T . \\
& \left(\left(\forall^{s t} N \in \Omega T . x \in N \rightarrow s \in N\right) \wedge\left(\forall^{s t} M \in \Omega T . y \in M \rightarrow s \in M\right)\right) \rightarrow x=y .
\end{aligned}
$$

Applying the algorithm of the Galactic Halo theorem, we get the equivalence of the original condition with the following monstrosity:

$$
\begin{aligned}
& \forall x, y \in T . \exists N^{\prime}, M^{\prime} \in \mathcal{P}^{\mathrm{fin}}(\Omega T) . \forall s \in T . \exists N \in N^{\prime} . \exists M \in M^{\prime} . \\
& ((x \in N \rightarrow s \in N) \wedge(y \in M \rightarrow s \in M)) \rightarrow x=y .
\end{aligned}
$$

Replacing $A \rightarrow B$ with $\neg A \vee B$ everywhere yields the more legible, equivalent condition

$$
\begin{aligned}
& \forall x, y \in T . x \neq y \rightarrow \exists N^{\prime}, M^{\prime} \in \mathcal{P}^{\mathrm{fin}}(\Omega T) . \forall s \in T . \exists N \in N^{\prime} . \exists M \in M^{\prime} . \\
& (x \in N \wedge s \notin N) \vee(y \in M \wedge s \notin M) .
\end{aligned}
$$

Since taking the union $\bigcup N^{\prime}$ results in an open set of $T$ (and similarly for $M^{\prime}$ ), we get a much simpler equivalent condition,

$$
\forall x, y \in T . x \neq y \rightarrow \exists N, M \in \Omega T . \forall s \in T .(x \in N \wedge s \notin N) \vee(y \in M \wedge s \notin M) .
$$

Setting $s=x$ in the above condition proves $y \in M$ and $x \notin M$, while setting $s=y$ proves $x \in N$ and $y \notin N$. Thus we get that $N(M)$ forms a neighborhood of $x$ (resp. $y$ ), and

$$
\forall x, y \in T . x \neq y \rightarrow \exists N, M \in \Omega T . \forall s \in T . s \notin N \vee s \notin M,
$$

proving $N \cap M=\emptyset$, proving $\mathrm{T}_{2}$-separation for $T$. Clearly, the converses of the last two implications obtain as well, so a topological predicated space is Hausdorff in the sense of Definition $\left[.3 .25\right.$ precisely if it has $\mathrm{T}_{2}$-separation.

## Qed.

1.3.29. Proposition. A topological predicated space satisfies the Kolmogorov condition of Definition $\left[.3 .25\right.$ precisely if it satisfies $\mathrm{T}_{0}$-separation.

Proof. Consider a standard $\mathrm{T}_{0}$ space $T$ and two standard points $x, y \in T$. Assume $\forall s \in T . x \circ-s \leftrightarrow y \circ-s$. We have $x \circ-x$ and $y \circ-y$ by reflexivity, and setting $s=y$ in our assumption gives $x \circ-y$. Setting $s=x$ yields $y \circ-x$. Now assume for a contradiction the existence of an open set $N$ containing $x$ but not $y$. By Transfer we'd have a standard such $N$, and since $x \circ-y$, we'd have $y \in N$, a contradiction. Hence, such an $N$ cannot exist. We get the same conclusion if we assume the existence of $M$ containing $y$ but not $x$. From $\mathrm{T}_{0}$-separation it follows that $x=y$.
Now consider a Kolmogorov topological predicated space $T$, and take two of its points, $x, y \in T$. We can provisionally assume the standardness of both $x$ and $y$. Assume that every open set $N$ that contains $x$ also contains $y$, and vice versa. A fortiori the same holds for all standard sets. Hence for all $s \in T$ such that $x \circ s$, we have that a standard neighborhood of $y$ contains $x$, and hence contains $s$, so $y \circ-s$. Similarly if we switch $x$ and $y$. Thus, $\forall s . x \circ-s \leftrightarrow y \circ-s$, and by the Kolmogorov condition we conclude $x=y$. Thus, if for two standard points $x, y$ we cannot find an open set $N$ containing one but not the other, then $x=y$. Given the internality of our conclusion, we can discharge the provisional assumptions of standardness, which proves $\mathrm{T}_{0}$-separation for the space $T$.
1.3.30. Proposition. A predicated space that satisfies the Hausdorff separation property also satisfies the Fréchet separation property. A predicated space that satisfies the Fréchet separation property also satisfies the Kolmogorov separation property.

Proof. Assume that the predicated space ( $T, 0^{-}$) satisfies Hausdorff separation. Then we have

$$
\forall^{s t} x, y \in T . \forall s \in T .(x \circ-s \wedge y \circ-s) \rightarrow x=y .
$$

Setting $s=x$, and using the fact that $x \circ-x$ holds by reflexivity, we obtain

$$
\forall^{s t} x, y \in T . y \circ-x \rightarrow x=y,
$$

so ( $T, \circ$ ) ) satisfies Fréchet separation. Now, consider standard $x, y \in T$ such that $\forall s . x \circ-$ $s \leftrightarrow y \circ-s$. Set $s=x$, and use reflexivity to conclude $y \circ-x$. By the Fréchet condition $x=y$, so ( $T, \circ-$ ) satisfies Kolmogorov separation.

## Qed.

1.3.31. Notice that we did not need to restrict Proposition $\mathbb{\boxed { 2 } . 3 0}$ to topological predicated spaces: the conclusion holds on any predicated space, regardless of the standardness of the carrier. The reverse implications do not hold: take your favorite standard non-Hausdorff $\mathrm{T}_{1}$-space and a non- $\mathrm{T}_{1} \mathrm{~T}_{0}$-space as counterexamples.
1.3.32. Definition. We call a predicated space compact if every point of the space lies near a standard point of the space.
1.3.33. Theorem (Robinson's characterization). A topological predicated space ( $T, \circ_{-}$) satisfies Definition $[1.3 .32$ (compactness) precisely if every open cover in $(T, \Omega T)$ has a finite subcover.

Proof. Formally, the compactness condition states the following:

$$
\forall y \in T . \exists^{s t} x \in T . x \circ-y .
$$

We start by expanding the definition of $\circ-$, and get the equivalent statement

$$
\forall y \in T . \exists^{s t} x \in T . \forall^{s t} M \in \Omega T . x \in M \rightarrow y \in M .
$$

We wish to apply the Galactic Halo theorem to ( $\star$ ). To accomplish that, recall that the
formula

$$
\exists^{s t} x \in T . \forall^{s t} M \in \Omega T . x \in M \rightarrow y \in M
$$

would have the following Nelson normal form:

$$
\forall^{s t} N: T \rightarrow \Omega T . \exists^{s t} x \in T . x \in N(x) \rightarrow y \in N(x) .
$$

Therefore, applying the Galactic Halo theorem outputs the equivalent condition

$$
\forall N: T \rightarrow \Omega T . \exists X \in \mathcal{P}^{\mathrm{fin}}(T) . \forall y \in T . \exists x \in X . x \in N(x) \rightarrow y \in N(x)
$$

when applied to the sentence ( $\star$ ). It suffices to prove this condition equivalent to "every open cover having a finite subcover".
First assume that the condition holds and consider an open cover $U \subseteq \Omega T$ of the space $T$. By the Axiom of Choice we can get a function $N: T \rightarrow \Omega T$ that assigns to each point $x \in T$ a covering set $U_{x} \in U$ such that $x \in U_{x}$. By the assumed condition, we have a finite set of points $X \subseteq T$ such that $\forall y \in T . \exists x \in X . y \in U_{x}$. Thus, the set $V=$ $\left\{S \in \Omega T \mid \exists x \in X . S=U_{x}\right\}$ constitutes a finite subcover of $U$.
Now assume that every open cover has a finite subcover. Consider any function $N$ from $T$ to $\Omega T$. If we can find a point $q \in T$ such that $q \notin N(q)$, then we can set $X=\{q\}$, and $\forall y \in T . q \in N(q) \rightarrow y \in N(q)$ holds vacuously. If we cannot find such a point $q$, then $N$ constitutes an open cover of $T$, and its finite subcover gives rise to the desired set of points $X$.

## Qed.

1.3.34. Definition. We call a predicated space an equivalence space if its nearness predicate satisfies transitivity and symmetry.
1.3.35. Proposition. Every metric space admits a universal representation as an equivalence space.

Proof. Consider any metric space $M$ equipped with a metric $d: M \rightarrow \mathbb{R}$. Define the predicate $x \approx y$ as an abbreviation for $\forall^{s t} \varepsilon>0 . d(x, y)<\epsilon$. The reflexivity of $\approx$ follows from $\forall x, y \in M . d(x, y)=0 \leftrightarrow x=y$. The symmetry of $\approx$ follows directly from the fact that $\forall x, y \in M . d(x, y)=d(y, x)$. To prove transitivity, consider $x, y, z \in M$ such that $x \approx y$ and $y \approx z$. Take any standard $\varepsilon>0$. Since $\frac{\varepsilon}{4}$ is standard by Proposition [1.2.2, we have both $d(x, y)<\frac{\varepsilon}{4}$ and $d(y, z)<\frac{\varepsilon}{4}$. The triangle inequality gives $d(x, z) \leq d(x, y)+$
$d(y, z) \leq \frac{\varepsilon}{2}<\varepsilon$. Since $d(x, z)<\varepsilon$ for any standard $\varepsilon$, we get $x \approx z$ as required.
Now we must prove that $\approx$ represents the metric topology carried by $M$. First consider a standard open set $V$ of the topological space $M$, pick any standard $x \in V$ and consider a nearby point $y \approx x$. By the openness of $V$ in the metric topology, we can find an open ball $B$ containing $x$ with $B \subseteq V$. By considering the radius $r$ of $B$, we get that $\exists r>$ $0 . \forall y . d(x, y)<r \rightarrow y \in V$. Transfer applies, so $\exists^{s t} r>0 . \forall y \in M . d(x, y)<r \rightarrow y \in V$. Using $y \approx x$ and the standardness of $r$ we have $d(x, y)<r$. Hence, $y \in V$.
Now consider a standard set $V \subseteq M$ such that $\forall^{s t} x \in M . \forall y \in M . x \approx y \wedge x \in V \rightarrow y \in V$. Expanding the definition of $\approx$ and putting the resulting statement in prenex form gives

$$
\forall^{s t} x \in M . \forall y \in M . \exists^{s t} \varepsilon>0 . d(x, y)<\varepsilon \wedge x \in V \rightarrow y \in V .
$$

Since the prenex form has no non-standard parameters, we can apply the Galactic Halo theorem to obtain the following equivalent condition:

$$
\forall x \in M . \exists E \in \mathcal{P}^{\mathrm{fin}}\left(\mathbb{R}_{+}\right) . \forall y \in M . \exists \varepsilon \in E . d(x, y)<\varepsilon \wedge x \in V \rightarrow y \in V .
$$

Taking the minimum of $E$, we get the further equivalent condition

$$
\forall x \in M . \exists \varepsilon>0 . \forall y \in M . d(x, y)<\varepsilon \wedge x \in V \rightarrow y \in V
$$

which implies the more legible condition

$$
\forall x \in V . \exists \varepsilon>0 . \forall y \in M . d(x, y)<\varepsilon \rightarrow y \in V .
$$

But then $V$ contains a ball of radius $r=\varepsilon$ around each of its points $x \in V$, and consequently $V$ is open in the metric topology of $M$.
Finally, we need to show the universality of $\approx$. By the universality of the predicate $\circ$ of Proposition $\mathbb{L . 3 . J 8}$, it suffices to prove $\forall^{s t} x . \forall y . x \circ-y \rightarrow x \approx y$. So assume $x \circ-y$ and take any standard $\varepsilon>0$. The open ball $B$ of radius $\varepsilon$ around $x$ forms an open set of the metric topology, and is standard by Proposition [.2.9. From $x \circ-y, \operatorname{st}(\boldsymbol{B})$ and $x \in B$ we have $y \in B$. But then $d(x, y)<\varepsilon$, and since $\varepsilon$ was arbitrary, we get $x \approx y$.
Qed.

## Ultrafilters

1.3.36. We often rely on the following well-known results about ultrafilters in the subsequent chapters, especially in results about structural approximation. The proof strategy consists of little more than making the observation that ultrafilters correspond to types (in the sense of model theory) of non-standard elements. The only novelty of the section occurs in the (frankly, totally unsurprising) characterization of metric ultraproducts in Proposition [.3.43. The reader may wish to consult the article Ultrafilters and ultraproducts in non-standard analysis [8] by Cherlin and Hirschfeld for a discussion of the same subject from a model-theoretic perspective.
1.3.37. Definition. An ultrafilter $\mathcal{F}$ over some set $I$ has a monadic element if we can find some $\omega \in I$ that belongs to every standard element of $\mathcal{F}$.
1.3.38. Proposition. Every ultrafilter $\mathcal{F}$ over some set $I$ has a monadic element.

Proof. Consider any standard finite non-empty subset $\mathcal{S}$ of $\mathcal{F}$. By the finite intersection property, $\bigcap \mathcal{S} \in \mathcal{F}$. Since $\emptyset \notin \mathcal{F}$, we can find some $x \in \bigcap \mathcal{S}$, and of course that $x$ satisfies $\forall S \in \bigcap S . x \in S$. Given the internality of this conclusion, we can apply Idealization and get a single $x \in I$ that belongs to all standard sets $S \in \mathcal{F}$.
Qed.
1.3.39. Proposition. A standard ultrafilter is non-principal precisely if it has a nonstandard monadic element.

Proof. A standard principal ultrafilter $\mathcal{F}$ has a unique standard generator $x$ by Proposition $\mathbb{L 2 . 2}$, and $x$ belongs to every element of $\mathcal{F}$, so $a$ fortiori it constitutes a standard monadic element of $\mathcal{F}$. In fact, $\mathcal{F}$ has a unique monadic element in this case, since the singleton set $\{x\}$ forms a standard element of $\mathcal{F}$, so by definition every monadic element belongs to the set $\{x\}$.
Assume that the standard non-principal ultrafilter $\mathcal{F}$ has a standard monadic element $x \in$ $I$. Then $\forall^{s t} S \in \mathcal{F} . x \in S$ holds. This formula contains no non-standard parameters, so Transfer applies and we can conclude $\forall S \in \mathcal{F} . x \in S$, contradicting the non-principality of $\mathcal{F}$.

Qed.
1.3.40. Lemma (Ultrafilter). Every infinite set $I$ admits a non-principal ultrafilter.

Proof. Provisionally assume the standardness of $I$. By Theorem [L.2.5, the infinite set $I$ contains some non-standard element $\omega \in I$. Consider the standard set

$$
\mathfrak{F}=\{S \in \mathcal{P}(I) \mid \omega \in S\}
$$

defined using the Standardization axiom. The set $\mathfrak{F}$ forms an ultrafilter. We prove that $\mathfrak{F}$ satisfies the finite intersection property, but leave the other properties as exercises for the reader. Take standard $A, B \in \mathfrak{F}$. By the defining property of $\mathfrak{F}$, we get $\omega \in A$ and $\omega \in B$, so $\omega \in A \cap B$. Hence, the implication $A \in \mathfrak{F} \wedge B \in \mathfrak{F} \rightarrow A \cap B \in \mathfrak{F}$ holds for standard $A, B$, and by Transfer for every $A, B$.
The ultrafilter $\mathfrak{F}$ has $\omega$ as a monadic element since $\omega \in S$ holds for every standard $S \in \mathfrak{F}$ by definition of the set $\mathfrak{F}$. But we started by choosing a non-standard $\omega \in I$, so an application of Proposition $[.3 .39$ shows that $\mathfrak{F}$ is non-principal. We have proved that every standard infinite set admits a non-principal ultrafilter. Hence, by Transfer, every infinite set admits a non-principal ultrafilter.
Qed.
1.3.41. Notice that we made no use of the Axiom of Choice in the proof of Lemma $\sqrt{3.40}$. Since Zermelo-Fraenkel Set Theory without Choice does not prove the Ultrafilter Lemma, we have now established our claim in $[.1 .46$ that Internal Set Theory with the Axiom of Choice removed does not extend Zermelo-Fraenkel Set Theory conservatively.
1.3.42. Theorem. Consider a standard index set $I$, a standard $I$-indexed family of sets $A$ and a standard ultrafilter $\mathcal{F}$ on the set $I$. Let $\omega \in I$ denote a monadic element of $\mathcal{F}$. Take two standard elements $[f],[g]$ of the ultraproduct $\prod_{i \in I} A_{i} / \mathcal{F}$. We have $[f]=[g]$ precisely if for any standard $f \in[f], g \in[g]$ we have $f(\omega)=g(\omega)$.

Proof. The equality $[f]=[g]$ holds precisely if the set $\{i \in I \mid f(i)=g(i)\}$ belongs to the ultrafilter $\mathcal{F}$ for some (indeed, any) representatives $f \in[f]$ and $g \in[g]$. Using the standardness of $f, g, I$, we can conclude the standardness of the set $\{i \in I \mid f(i)=$ $g(i)\}$. The monadic element $\omega$ must therefore belong to this set, giving $f(\omega)=g(\omega)$ as required. The other direction works identically.

## Qed.

1.3.43. Theorem. Consider a standard index set $I$, a standard number $k \in \mathbb{R}$ a standard $I$-indexed family of groups $G$, each $G_{i}$ equipped with a standard bi-invariant $k$-bounded metric $d_{i}$, and pick a standard ultrafilter $\mathcal{F}$ on the set $I$. Take two standard elements
$[f]$, $[g]$ of the the metric ultraproduct group $\prod_{y \in I} A_{i} / d_{\mathcal{F}}$. We have $[f]=[g]$ precisely if for any standard $f \in[f], g \in[g]$ we have $\forall^{s t} \varepsilon>0 . d_{\omega}(f(\omega), g(\omega))<\varepsilon$ where $\omega$ denotes a monadic element of $\mathcal{F}$.

Proof. By the definition of metric ultraproducts ([[13]-Definition 2.1.) we have $[f]=$ $[g]$ in $\prod_{y \in I} A_{i} / d_{\mathcal{F}}$ precisely if for any $\varepsilon>0$ the set $\left\{i \in I \mid d_{i}(f(i), g(i))<\varepsilon\right\}$ belongs to the ultrafilter $\mathcal{F}$. So take standard $f, g, \varepsilon$. Then we have st $\left(\left\{i \in I \mid d_{i}(f(i), g(i))<\varepsilon\right\}\right)$; by Definition $\left[.3 .37\right.$ we get $\omega \in\left\{i \in I \mid d_{i}(f(i), g(i))<\varepsilon\right\}$, and consequently we must have $d_{\omega}(f(\omega), g(\omega))<\varepsilon$. For the other direction assume that $\forall^{s t} \varepsilon>0 . d_{\omega}(f(\omega), g(\omega))<$ $\varepsilon$ holds. Reversing the previous argument, we have that for standard $\varepsilon$ the set of indices $\left\{i \in I \mid d_{i}(f(i), g(i))<\varepsilon\right\}$ belongs to $\mathcal{F}$ as required. Transfer gives the full result.
Qed.

## Brouwer's fixed point theorem

1.3.44. To finish off this chapter, and to illustrate the use of the tools introduced in the previous sections, we present an Internal Set Theory proof of Brouwer's fixed point theorem, similar to (but simpler than) the standard combinatorial proof going through Sperner's coloring lemma.
1.3.45. Theorem (Brouwer's fixed point). Every continuous function mapping the unit disk $D \subseteq \mathbb{R}^{2}$ to itself has a fixed point.

Proof. Identify $D$ with the unit disk in $\mathbb{C}$ the obvious way. Let $\approx$ denote the universal nearness predicate on $\mathbb{C}$ that comes from the proof of Proposition [.3.35. Consider any continuous function $f: D \rightarrow D$ and provisionally assume the standardness of $f$. Take a finite set $H \subseteq D$ that contains every standard point of $D$ (use Idealization). Consider the labeling function $\ell: D \rightarrow\{0,1,2,3\}$ of Figure $I . . D$, defined by the expression

$$
\ell(x)= \begin{cases}0 & \text { if } f(x)-x=0 \\ k+1 & \text { if } f(x)-x \neq 0 \text { and } \arg (f(x)-x) \in\left[\frac{2}{3} k \pi, \frac{2}{3}(k+1) \pi\right)\end{cases}
$$

If we have $x \in H$ such that $\ell(x)=0$, then $f$ has the fixed point $x$. Otherwise, we can break the boundary of the disk into three circular arcs such that on each arc $\ell$ takes exactly two values. Thus, by using Sperner's lemma ([20]-Theorem 2.6) we can find three points $x_{1}, x_{2}, x_{3} \in H$ such that $\ell\left(x_{1}\right)=1, \ell\left(x_{2}\right)=2, \ell\left(x_{3}\right)=3$ and $H$ contains no points that lie inside the triangle formed by the three points. This implies that said
triangle contains no standard points, and hence $x_{1} \approx x_{2} \approx x_{3}$. Since $D$ is compact, we can use Theorem $[.3 .33]$ to find a standard point $x$ simultaneously near $x_{1}, x_{2}$ and $x_{3}$. This means that the complex number $f(x)-x$ lies infinitesimally close to numbers with arguments in $\left[0, \frac{2}{3} \pi\right),\left[\frac{2}{3} \pi, \frac{4}{3} \pi\right)$ and $\left[\frac{4}{3} \pi, 2 \pi\right)$. A moment's thought (or a glance at Figure [.ل.) shows that the only standard complex number satisfying such a requirement is zero. Therefore $f(x)-x=0$, and $x$ constitutes a fixed point for the function $f$.
Qed.


Figure 1.1: Values of the labeling map $\ell$ on the unit circle.

## Chapter 2

## Structural Approximation

### 2.1 Motivation

2.1.1. Somewhat orthogonally to Internal Set Theory, developments in Stability Theory led to an idea of dealing with very large finite structures as if they were approximating models of uncountably categorical theories. Zilber [50] introduced such a theory of approximations with an eye towards applications in physics. Since we define a more general form of approximation below, we attach the adjective ordinary to Zilber's notion. As in Pillay [38] and Zilber [57]-Section 3, we restrict our attention to the cases where the ordinary approximating object consists of a literal ultraproduct of structures, and not merely an elementary extension of one. This usage has the advantage of being consistent with the more recent applications of the technique in the work of Morales and Zilber [31].
2.1.2. Definition ([57]-Definition 3.2). Fix some first-order theory $T$. Consider a model $\mathbf{M}$ of $T$ and an $I$-indexed family $M$ of models of the same theory. An ordinary structural approximation of $\mathbf{M}$ consists of the following data:

- an ultrafilter $D \subseteq \mathcal{P}(I)$, and
- a surjective $T$-homomorphism $\lim : \prod_{i \in I} M_{i} / D \rightarrow \mathbf{M}$
where $\prod_{i \in I} M_{i} / D$ denotes the ultraproduct of $M$ over the ultrafilter $D$. If the codomain of the indexed set $M$ consists exclusively of finite $T$-structures, we speak of an ordinary finite approximation.
2.1.3. Definition ([50]-Definition 2.5). Fix notation as in Definition [.L.2]. An ordinary strong approximation of $\mathbf{M}$ consists of the following data:
- an ultrafilter $D \subseteq \mathcal{P}(I)$,
- a surjective $T$-homomorphism lim : $\prod_{i \in I} M_{i} / D \rightarrow \mathbf{M}$, and
- a $T$-homomorphism colim : $\mathbf{M} \rightarrow \prod_{i \in I} M_{i} / D$
such that $\lim (\operatorname{colim} x)=x$ for all $x \in \mathbf{M}$. If the codomain of the indexed set $M$ consists exclusively of finite $T$-structures, we speak of an ordinary strong finite approximation.
2.1.4. Proposition. The group $\mathbb{Z}_{p}$ of $p$-adic integers admits an ordinary finite cyclic approximation and the analoguos result holds when we consider $\mathbb{Z}_{p}$ as a ring. The group $\hat{\mathbb{Z}}$ (the profinite completion of the integers) admits an ordinary strong finite cyclic approximation.

Proof. See [51]-Proposition 4.3 and [50]-Proposition 1. These results follow from our own Corollary 2.2 .19 as well.

## Qed.

2.1.5. Proposition. The field $\mathbb{C}$ of complex numbers admits an ordinary finite approximation. However, the field $\mathbb{R}$ of real numbers does not admit any such approximation.

Proof. See [51]-Proposition 5.2.
Qed.
2.1.6. Before Zilber introduced strong approximation, Gordon [⿴囗 $]$ investigated the sense in which the finite Fourier transform can approximate the Fourier transform in the Hilbert space of functions on a locally compact group, which led to the synthesis of the concept of locally embeddably finite (LEF) groups. LEF and strongly approximable groups often coincide, e.g. vector spaces are strongly approximable precisely if LEF.
2.1.7. Definition ([6]-Theorem 7.2.5. sic!). We call a group $G$ locally embeddably finite or $L E F$ if we can find an $I$-indexed family of groups $M_{i}$, ultrafilter $D \subseteq \mathcal{P}(I)$ and injective group homomorphism colim : $G \hookrightarrow \prod_{i \in I} M_{i} / D$.
2.1.8. Zilber [57] poses the following question: can a sequence of finite groups give an ordinary finite approximation to the group $\mathrm{SO}_{3}(\mathbb{R})$ ? Using nonstandard analysis in superstructures, Pillay [38] rephrased the problem in terms of Bohr compactifications, tentatively conjecturing that $b G^{0}$ is commutative for any pseudo-finite group $G$. Nikolov, Schneider and Thom [34] settled this conjecture in the positive. Their results not only give a negative answer to Zilber's original question, but establish the much
stronger result that one cannot approximate any compact simple Lie group in the sense of Definition [2.L.2] using finite groups.
2.1.9. The results mentioned in [2.L.8 establish a significant gap between groups that have finite approximations and those groups that don't have any such approximation. We prove that profinite groups always admit ordinary finite approximations (Proposition (2.2.20), and our main theorem (Theorem [2.3.9) can be used to obtain finer-grained statements about groups that admit strong approximations by finite groups in fixed, particular forms (we give two examples in Section 2.3.1I).

### 2.2 Approximation in IST

2.2.1. We start by proposing a new notion of strong approximation in the language of Internal Set Theory that abstracts away from first-order structures. The new notion is strictly more general than Zilber's approximations (although it will take us some time to actually prove this, in Proposition 2.2.32) and encompasses all of the common finitariness conditions in group theory. Indeed, ordinary approximation and the LEF condition both give rise to well-behaved instances of the proposed definition.
2.2.2. Definition. Consider a set $H$ and a Fréchet predicated space ( $G, \circ^{G}$ ) with $G$ standard. We call a binary predicate $l(x, y)$ where $x$ ranges over elements of $H$ and $y$ ranges over elements of $G$ a weak approximation of $\left(G, \circ_{G}\right)$ via $H$ if it satisfies the following existence-uniqueness conditions:

1. For any standard $g \in G$ we can find $h \in H$ such that $l(h, g)$ holds.
2. For any $g_{1}, g_{2} \in G$, if we can find $h \in H$ such that $l\left(h, g_{1}\right)$ and $l\left(h, g_{2}\right)$ both hold, then $g_{1}{ }^{\circ}{ }_{G} g_{2}$.

For finite $H$, we label the weak approximation finite. If $(G, 1, \cdot)$ and $\left(H, 1_{H},{ }_{H}\right)$ form groups, and $l$ is a logical relation of groups in the sense that all of

1. $l\left(1_{H}, 1\right)$,
2. $\forall^{s t} g \in G . \forall h \in H . l(h, g) \rightarrow l\left(h^{-1}, g^{-1}\right)$, and
3. $\forall^{s t} g_{1}, g_{2} \in G . \forall h_{1}, h_{2} \in H . l\left(h_{1}, g_{1}\right) \wedge l\left(h_{2}, g_{2}\right) \rightarrow l\left(h_{1} \cdot{ }_{H} h_{2}, g_{1} \cdot g_{2}\right)$
hold, then we say that $H$ weakly approximates $G$ as a group.
2.2.3. Definition. Consider a Fréchet predicated space $\left(G, 0_{G}\right)$ with $G$ standard, and an arbitrary set $H$. We call a binary predicate $\iota$ an approximation of $\left(G, \circ_{G}\right)$ via $H$ if
4. the predicate $l$ weakly approximates $\left(G, 0_{G}\right)$ via $H$, and
5. for each standard $g \in G$, whenever we can find $h_{1}, h_{2} \in H$ with $l\left(h_{1}, g\right)$ and $l\left(h_{2}, g\right)$, we have $h_{1}=h_{2}$

As in Definition [2.2.2, we speak of a finite approximation when $H$ is a finite set. If $(G, \cdot)$ and $\left(H, \cdot{ }_{H}\right)$ form groups, and $l$ is a logical relation of groups in the sense that $\forall^{s t} g_{1}, g_{2} \in G . \forall h_{1}, h_{2} \in H . l\left(h_{1}, g_{1}\right) \wedge l\left(h_{2}, g_{2}\right) \rightarrow l\left(h_{1} \cdot{ }_{H} h_{2}, g_{1} \cdot g_{2}\right)$ holds, then we say that $H$ approximates $G$ as a group.
2.2.4. Analogously to group approximations, we can define approximations of other first-order structures (we briefly discuss how to do this in 2.2.12). We wish to relate strong approximation to the construction of the nonstandard finite sets $H$ used in the proofs of Theorems $\mathbb{L 2 . 7}$ and $\mathbb{L 3 . 4 5 \text { . Indeed, as we will see in Proposition 2.2.7, Def- }}$ inition $\sqrt[2.2 .3]{ }$ axiomatizes some obvious properties of the inclusion map of $H$. For this reason we may sometimes opt to use functional notation, or choose to represent $l$ as an arrow in diagrams, even when $l$ does not stand for a function or functional predicate.
2.2.5. Definition. Consider a standard set $G$. Let the binary predicate $g_{1} \circ-g_{2}$ abbreviate the formula $\operatorname{st}\left(g_{1}\right) \wedge \operatorname{st}\left(g_{2}\right) \rightarrow g_{1}=g_{2}$. We say that $H$ approximates $G$ as a set (without mentioning any specific predicate $\square_{G}$ on $G$ ) when $H$ approximates ( $G, \circ-$ ).
2.2.6. When $H$ approximates a Fréchet space ( $G, \circ-$ ), it also approximates $G$ as a set.
2.2.7. Proposition. Every standard set $G$ admits a finite approximation $H$.

Proof. For every standard finite subset $F \in \mathcal{P}^{\text {fin }}(G)$, we can find a finite set $H$ that contains every element of $F$ (trivially, just set $F=H$ ). The axiom of Idealization applies to this statement, and yields the existence of a single finite set $H \in \mathcal{P}^{\text {fin }}(G)$ that nevertheless contains every standard element of $G$. We can identify the predicate $l$ with the graph of the inclusion map $H \hookrightarrow G$. All three required properties hold:

1. For any standard $g \in G$, we have $g \in H$, so $l(g)=g$ holds.
2. For any standard $g \in G$ and $h_{1}, h_{2} \in H$ such that $l\left(h_{1}\right)=g$ and $l\left(h_{2}\right)=g$, we have $h_{1}=l\left(h_{1}\right)=g=l\left(h_{2}\right)=h_{2}$.
3. For any standard $g_{1}, g_{2} \in G$, and $h \in H$ such that $l(h)=g_{1}$ and $\imath(h)=g_{2}$, we simply have $g_{1}=l(h)=g_{2}$.

## Qed.

2.2.8. Proposition. Consider a standard ordinary strong approximation of a structure $G$ via the $I$-indexed sequence $H$. We can find $\omega \in I$ and an internal binary predicate $l$ (relating elements of $H_{\omega}$ to elements of $G$ ) that satisfy the following conditions:

1. For any $g \in G$ we can find $h \in H_{\omega}$ such that $l(h, g)$ holds.
2. For any $g \in G, h_{1}, h_{2} \in H_{\omega}$ such that $l\left(h_{1}, g\right)$ and $l\left(h_{2}, g\right)$ hold, we have $h_{1}=h_{2}$.
3. For any standard $g_{1}, g_{2} \in G$ and any $h \in H_{\omega}$ such that $l\left(h, g_{1}\right)$ and $l\left(h, g_{2}\right)$ both hold, we have $g_{1}=g_{2}$.

Proof. Denote the $I$-ultrafilter coming from the ordinary approximation as $\mathcal{D}$. Fix a standard right inverse $r: \prod_{i \in I} H_{i} / \mathcal{D} \rightarrow \prod_{i \in I} H_{i}$ of the quotient map [-] : $\prod_{i \in I} H_{i} \rightarrow$ $\prod_{i \in I} H_{i} / \mathcal{D}$. By Proposition $\llbracket .3 .38$ the ultrafilter $\mathcal{D}$ has a monadic element $\omega \in I$. Define $l(h, g)$ between $H_{\omega}$ and $G$ as an abbreviation for the formula $(r \circ \operatorname{colim})(g)(\omega)=$ $h$. We verify the three conditions.

1. For any $g \in G$, one can regard the element (rocolim) $(g)$ of the Cartesian product of the family $H$ as a function with signature $(i \in I) \rightarrow H_{i}$. Hence we have $(r o \operatorname{colim})(g)(\omega) \in H_{\omega}$, so the first condition holds for $h=(r \circ \operatorname{colim})(g)(\omega)$.
2. Take any $g \in G$ and $h_{1}, h_{2} \in H_{\omega}$. Assume that $l\left(h_{1}, g\right)$ and $l\left(h_{2}, g\right)$ both hold. Then $h_{1}=($ rocolim $)(g)(\omega)=h_{2}$ as desired.
3. Take any standard $g_{1}, g_{2} \in G$, and any $h \in H_{\omega}$. Assume that $l\left(h, g_{1}\right)$ and $l\left(h, g_{2}\right)$ both hold. Since we chose $r$ as a standard function, and we have st(colim) by the standardness of the approximation, Corollary $\mathbb{L . 2 . \square}$ guarantees the standardness of the functions $(r o \operatorname{colim})\left(g_{1}\right)$ and $(r o \operatorname{colim})\left(g_{2}\right)$. By our assumptions we have

$$
(r \circ \operatorname{colim})\left(g_{1}\right)(\omega)=h=(r \circ \operatorname{colim})\left(g_{2}\right)(\omega),
$$

so these functions take the same value at the monadic element $\omega$ of $\mathcal{D}$. Applying Theorem [.3.42, we immediately obtain

$$
\left[(r \circ \text { colim })\left(g_{1}\right)\right]=\left[(r \circ \text { colim })\left(g_{2}\right)\right],
$$

and since $r$ forms a section of the quotient map $[-]: \prod_{i \in I} H_{i} \rightarrow \prod_{i \in I} H_{i} / \mathcal{D}$, we are now in the position to deduce $\operatorname{colim}\left(g_{1}\right)=\operatorname{colim}\left(g_{2}\right)$. Applying lim to both sides of the equation yields $g_{1}=g_{2}$ as desired.

## Qed.

2.2.9. Corollary. Assume that we have a standard ordinary approximation of a structure $G$ via the $I$-indexed sequence $H$. Then $H_{\omega}$ approximates $G$ as a set for some index $\omega \in I$.

Proof. Immediate from Proposition 2.2.8.
Qed.
2.2.10. Proposition. Consider a standard ordinary approximation of a structure $G$ via the $I$-indexed sequence $H$. We can find $\omega \in I$ and a binary predicate $l$ (relating elements of $H_{\omega}$ to elements of $G$ ) such that $l$ weakly approximates the set $G$ via $H_{\omega}$.

Proof. Let $l(h, g)$ abbreviate $\exists^{s t} f:(i \in I) \rightarrow H_{i} \cdot \lim [f]=g \wedge f(\omega)=h$. The required conditions hold:

1. For any standard $g \in G$, we can obtain $h \in H$ such that $l(h, g)$ holds. Take a standard $g \in G$. By the surjectivity of lim, we have some $[f]$ such that $\lim [f]=g$. Transfer applies due to the standardness of $\lim$ and $g$, giving us st $([f])$. Every standard equivalence class has a standard representative $f \in[f]$, so one can simply pick $h=f(\omega)$.
2. For any standard $g_{1}, g_{2} \in G$, and $h \in H$ such that $l\left(h, g_{1}\right)$ and $l\left(h, g_{2}\right)$, we have $g_{1}=g_{2}$. Take standard $g_{1}, g_{2}$ and arbitrary $h$ such that the approximations hold. Then we have $\lim \left[f_{1}\right]=g_{1} \wedge f_{1}(\omega)=h$ and $\lim \left[f_{2}\right]=g_{2} \wedge f_{2}(\omega)=h$ for respective $f_{1}, f_{2}$. Thanks to the equality $f_{1}(\omega)=h=f_{2}(\omega)$, and the fact that $\operatorname{st}\left(f_{1}\right), \operatorname{st}\left(f_{2}\right)$ both hold, we can apply Theorem [.3.42 to conclude $\left[f_{1}\right]=\left[f_{2}\right]$ and therefore $g_{1}=\lim \left[f_{1}\right]=\lim \left[f_{2}\right]=g_{2}$ as desired.

Qed.
2.2.11. Proposition $[2.2 .8$ shows that Zilber's ordinary strong approximation (and the LEF condition, since the proof makes no essential use of lim) gives rise to a very special, well-behaved case of Definition [2.2.3. In particular, such an approximation has
internal $l$ (but keep in mind that the predicate rarely has all parameters standard, so we generally cannot apply Transfer to it). The approximations of Proposition 2.2.7, which feature in the proofs of Theorems $\llbracket .2 .7$ and $\llbracket .3 .45$, do not share all the same good properties (as the reader should now verify). Nevertheless, these two constructions, along with Zilber's ordinary approximation (Proposition [2.2.10) all appear as special instances of our general definition. Moreover, we can see now that the language of Internal Set Theory enables us to consider finer-grained variations of these properties, some of which one cannot define easily (or investigate efficiently) in the ordinary setting. Definition 2.2 .3 may seem overly general at first, but our main result (Theorem 2.3.9) does apply to every approximation. However, we also build a loose ranking of better-and-better-behaved approximations, and characterize some of the upper echelons of the resulting hierarchy.
2.2.12. We have yet to account for a significant detail: the problem of structure preservation. Proposition 2.2 .8 does ensure that Zilber-style ordinary structural approximations give rise to approximations of the same set, but the result does not account for algebraic structure (in light of Proposition 2.2.7 a mere set-approximation result would hold little interest). In Proposition [2.2.13] we verify that the resulting approximation indeed preserves structure for the case of groups. The same holds for first-order theories in general, as long as one formulates the homomorphism property of the approximation predicate correctly ( $\iota$ has to form a logical relation [21]) and the relevant quantifiers range over standard elements. We let the patient reader grapple with these details.
2.2.13. Proposition. Assume that we have a standard ordinary strong approximation of a group $G$ via the $I$-indexed sequence of groups $H$. Then $H_{\omega}$ approximates $G$ as a group for some index $\omega \in I$.

Proof. We only need to show that the predicate $l$ constructed in Proposition 2.2.8 satisfies $\forall h_{1}, h_{2} \in H_{\omega} . l\left(h_{1}, g_{1}\right) \wedge l\left(h_{2}, g_{2}\right) \rightarrow l\left(h_{1} h_{2}, g_{1} g_{2}\right)$ for any standard $g_{1}, g_{2} \in G$. We have a standard representative $(r o \operatorname{colim})\left(g_{1}\right)=f_{1} \in \operatorname{colim}\left(g_{1}\right)$ such that $f_{1}(\omega)=h_{1}$. Similarly, we have a standard $f_{2} \in \operatorname{colim}\left(g_{2}\right)$ such that $f_{2}(\omega)=h_{2}$, and a standard $f_{3} \in \operatorname{colim}\left(g_{1} g_{2}\right)$. We wish to prove $f_{3}(\omega)=h_{1} h_{2}$. We know $\operatorname{st}\left(f_{1} f_{2}\right)$ since the standardness of the multiplication operation follows from the standardness of the approximation. We also know that $f_{1} f_{2} \in \operatorname{colim}\left(g_{1}\right) \operatorname{colim}\left(g_{2}\right)=\operatorname{colim}\left(g_{1} g_{2}\right)$ using the homomorphism property of colim. Consequently both $f_{1} f_{2}$ and $f_{3}$ occur as standard representatives of the $\mathcal{D}$-equivalence class $\operatorname{colim}\left(g_{1} g_{2}\right)$. It follows from Theorem $\mathbb{L 3 . 4 2}$ that two standard representatives have the same value at the monadic element $\omega$ of $\mathcal{D}$, and
therefore $f_{3}(\omega)=f_{1}(\omega) f_{2}(\omega)=h_{1} h_{2}$ as required.
Qed.
2.2.14. Exercise. Give another proof of Corollary $[2.2 .9$ using the predicate $l(h, g) \leftrightarrow$ $\exists^{s t} f \in \operatorname{colim}(g) . f(\omega)=h$. Which clauses of Proposition 2.2.8 does the resulting application satisfy?
2.2.15. We have to build up a library of approximations before we can "distill" the useful properties that approximations may have. We begin with well-known subclasses of the class of LEF groups. For Theorem 2.2 .18 we have to briefly recall the definition of profinite groups. Similarly for Theorem 2.2.29 and residually finite groups.

## Profinite groups

2.2.16. Definition. The partially ordered set $(I, \leq)$ forms a directed partial order or $d p o$ if every finite subset of $I$ has a $\leq$-upper bound in $I$.
Take a directed partial order $(I, \leq)$. An inverse system of groups over $(I, \leq)$ consists of an $I$-indexed set of groups $M$, and for every $i, j \in I$ with $i \leq j$ a group homomorphism $M_{i}^{j}: M_{j} \rightarrow M_{i}$.
Consider an inverse system $M$ over $(I, \leq)$. The set of functions

$$
G=\left\{f:(i \in I) \rightarrow M_{i} \mid \forall i, j \in I . i \leq j \rightarrow M_{i}^{j}(f(j))=f(i)\right\} .
$$

forms a group when equipped with the pointwise group operations on $(i \in I) \rightarrow M_{i}$. We call this group the inverse limit of the system $M$ and denote it $\lim M$.
2.2.17. Definition. If a group $G$ arises as an inverse limit of an inverse system of finite groups, we refer to $G$ as a profinite group.
2.2.18. Theorem. Every standard profinite group $G$ admits a finite approximation as a group.

Proof. Consider a standard profinite group $G$. We can find an inverse system of finite groups such that $G$ arises as an inverse limit of the system. Transfer applies, so we can in fact write $G$ as the inverse limit of a standard system of finite groups $M$ on a standard directed partial order $(I, \leq)$. For $i, j \in I$ with $i \leq j$, the system gives a group homomorphism $M_{i}^{j}: M_{j} \rightarrow M_{i}$. As per Definition 2.2 .16 we can identify $G$ with a
group of functions

$$
G=\left\{f:(i \in I) \rightarrow M_{i} \mid \forall i, j \in I . i \leq j \rightarrow M_{i}^{j}(f(j))=f(i)\right\}
$$

where we perform the group operation pointwise. Since $I$ forms a directed partial order, every standard finite subset of $I$ has an upper bound. Formally: $\forall^{s t} F \subseteq I . \exists b . \forall i \in F . i \leq$ $b \wedge b \in I$. Idealization immediately yields $\exists \omega \in I . \forall^{s t} i . i \leq \omega$. Set $H=M_{\omega}$ and define the predicate $l(h, g)$ between $H$ and $G$ as an abbreviation for the formula $g(\omega)=h$. Then $l$ satisfies the following properties:

1. For any $g \in G$ we can find $h \in H$ such that $l(h, g)$ holds. Since $g:(i \in I) \rightarrow M_{i}$, we have $g(\omega) \in M_{\omega}=H$ and $\imath(g(\omega), g)$ holds trivially.
2. For any $g \in G, h_{1}, h_{2} \in H$ such that $l\left(h_{1}, g\right)$ and $l\left(h_{2}, g\right)$ hold, we have $h_{1}=h_{2}$. Just observe that $h_{1}=g(\omega)=h_{2}$.
3. For any standard $g_{1}, g_{2} \in G$ and any $h \in H$ such that $l\left(h, g_{1}\right)$ and $l\left(h, g_{2}\right)$ both hold, we have $g_{1}=g_{2}$. Consider two standard functions $g_{1}, g_{2}:(i \in I) \rightarrow M_{i}$. Assume that $g_{1}(\omega)=h=g_{2}(\omega)$. We prove that $g_{1}(i)=g_{2}(i)$ for all standard $i \in I$. Take any standard $i \in I$. We have $i \leq \omega$ by construction of $\omega$, so the inverse system contains a group homomorphism $M_{i}^{\omega}: H \rightarrow M_{i}$ such that $M_{i}^{\omega}(g(\omega))=g(i)$ holds for any $g \in G$. Applying $M_{i}^{\omega}$ to both sides of the equality $g_{1}(\omega)=g_{2}(\omega)$ yields $g_{1}(i)=g_{2}(i)$. Hence, $\forall^{s t} i \in I . g_{1}(i)=g_{2}(i)$. By the standardness of $g_{1}, g_{2}$, Transfer applies to this statement and gives $g_{1}=g_{2}$ as desired.
4. For any $g_{1}, g_{2} \in G$ and $h_{1}, h_{2} \in H$, if $l\left(h_{1}, g_{1}\right)$ and $l\left(h_{2}, g_{2}\right)$ both hold, then so does $l\left(h_{1} h_{2}, g_{1} g_{2}\right)$. We have $g_{1}(\omega)=h_{1}$ and $g_{2}(\omega)=h_{2}$. One can take products in $G$ pointwise, so $\left(g_{1} g_{2}\right)(\omega)=g_{1}(\omega) g_{2}(\omega)=h_{1} h_{2}$ as required.

## Qed.

2.2.19. Corollary. Every profinite group admits an ordinary finite group approximation.

Proof. By the standardness of the conclusion, we can provisionally assume the standardness of the profinite group. By the definition of profinite groups, we can in fact write it as the inverse limit of a standard system of finite groups $M$ on a standard directed partial order $(I, \leq)$. Choose $\omega, l$ as in Theorem [2.2.18, and construct a nonprincipal ultrafilter $\mathcal{D}$ with $\omega$ as its monadic element (follow the proof of Lemmall.3.401).

Denote the ultraproduct $\prod_{i \in I} M_{i} / \mathcal{D}$ as $M_{\mathcal{D}}$ and consider the standard set

$$
\left.\lim =\left\{(G, f) \in M_{\mathcal{D}} \times \lim M \mid \forall^{s t} g \in G . \exists h \in M_{\omega} \cdot l(h, g) \wedge \forall^{s t} i \in I \cdot M_{i}^{\omega}(h)=f(i)\right]\right\} .
$$

We claim that $\lim$ forms the graph of a surjective function $\lim : M_{\mathcal{D}} \rightarrow \underset{\longleftarrow}{\lim M}$. First we prove that $\forall G \in M_{\mathcal{D}} \cdot \exists f \in \underset{\rightleftarrows}{\lim } M .(G, f) \in \lim$. By Transfer it suffices to find standard $f \in \underset{\longleftrightarrow}{\lim M}$ for standard $G \in M_{\mathcal{D}}$. A standard equivalence class $G$ has some standard representative $g \in G$. Pick such a representative and consider the set

$$
f=\left\{(i, x) \in(i \in I) \times M_{i} \mid M_{i}^{\omega}(g(\omega))=x\right\} .
$$

For any standard $i$ we have some $x$ such that $M_{i}^{\omega}(g(\omega))=x$. By the standardness of the finite set $M_{i}$, Theorem $[2.5$ applies and gives $\operatorname{st}(x)$. Using Transfer, this shows that $f:(i \in I) \rightarrow M_{i}$. Similarly, for all standard $i \leq j \in I$ we have $M_{i}^{j}(f(j))=$ $M_{i}^{j}\left(M_{j}^{\omega}(g(\omega))\right)=M_{i}^{\omega}(g(\omega))=f(i)$. Using Transfer one more time, we conclude $f \in \underset{\rightleftarrows}{\lim } M$. To demonstrate that $\forall^{s t} g \in G . \forall^{s t} i \in I \cdot M_{i}^{\omega}(g(\omega))=f(i)$, consider any other standard $g^{\prime}$ and construct a corresponding function $f^{\prime}$. Since $\operatorname{st}(g)$ and $\operatorname{st}\left(g^{\prime}\right)$ both hold, and $[g]=\left[g^{\prime}\right]$, Theorem $\left[.3 .42\right.$ immediately gives $g(\omega)=g^{\prime}(\omega)$, and we conclude that $f$ and $f^{\prime}$ have the same standard values. But Transfer applies, so $f=f^{\prime}$. Consider a standard $f \in \underset{\leftrightarrows}{\lim M}$. We have $f:(i \in I) \rightarrow M_{i}$ and hence $[f] \in M_{\mathcal{D}}$. Since $f \in[f]$, we have $\forall^{s t} g \in[f] . g(\omega)=f(\omega)$, and therefore we know that $\forall^{s t} f \in$ $\lim _{\longleftarrow} M \cdot \forall^{s t} i \in I \cdot \lim ([f])(i)=f(i)$. The usual Transfer argument goes through, and we get $\lim ([f])=f$ for all $f \in \lim M$, proving the surjectivity of lim.
Finally, we must show that lim respects the group operation. As before, having made the usual provisional assumptions, we only need to show that for standard $G, H \in M_{\mathcal{D}}$, $\lim (G) \lim (H)$ and $\lim (G H)$ take the same value on all standard $i \in I$.
Consider any standard $g \in G$ and $h \in H$, and some standard $i \in I$ We have $\operatorname{st}(G H)$, st $(g h)$, $g h \in G H$ and

$$
\begin{aligned}
\lim (G H)(i) & =M_{i}^{\omega}(g h(\omega)) \\
& =M_{i}^{\omega}(g(\omega) h(\omega)) \\
& =M_{i}^{\omega}(g(\omega)) M_{i}^{\omega}(h(\omega)) \\
& =\lim (G)(i) \lim (H)(i) .
\end{aligned}
$$

We have shown that for any standard profinite group $\lim M$ with $I, \leq, M$ standard we have a a non-principal ultrafilter $\mathcal{D}$ and a surjective group homomorphism $M_{\mathcal{D}} \rightarrow$
$\underset{\longleftarrow}{\lim M}$. By the internality of this conclusion, we can drop the provisional assumptions of standardness and conclude that any standard profinite group admits an ordinary group approximation.

## Qed.

2.2.20. Proposition. Every standard profinite group ( $G, \circ-$ ) admits a finite approximation as a group in the profinite topology $\circ$ -

Proof. Exercise. Hint: The approximation of Theorem [2.2.J8 does the job. To prove this, observe that $f_{1} \circ f_{2}$ in the profinite topology implies having the same values at standard arguments.

## Qed.

## Properties of approximations

2.2.21. We have seen in Proposition 2.2.13] that the approximations constructed from ordinary approximations using Proposition [2.2.8 preserve the group operation. The approximations coming from Theorem [2.2.18 possess even better properties than the ones obtained from ordinary approximations in Proposition 2.2.13] (not to mention the approximations of Exercise [2.2.14). Not only does our approximation have an internal $l$ that acts like a group homomorphism on standard elements, but the homomorphism property obtains for any pair of elements, even non-standard ones. At this stage, talking about all these different properties starts to feel tedious: time to consolidate what we learned into a few memorable adjectives. We state Definition 2.2 .22 for the case of groups only: algebraic structures work the same way, and the interested reader can contend with the general first-order case as in 2.2.12.
2.2.22. Definition. Consider two groups $H, G$ where $H$ approximates $G$ as a group via the predicate $l$. We call $l$

1. internal if $\iota$ forms an internal predicate;
2. entire if for any $g \in G$ we can find $h \in H$ such that $l(h, g)$ holds;
3. robust if for any $g_{1}, g_{2} \in G$ and $h_{1}, h_{2} \in H$ such that $l\left(h_{1}, g_{1}\right)$ and $l\left(h_{2}, g_{2}\right)$ both hold, we have $\imath\left(h_{1} h_{2}, g_{1} g_{2}\right)$.
2.2.23. The approximations constructed in the proof of Proposition 2.2 .13 are internal
and entire but usually not robust. The approximations constructed as part of Proposition 2.2.10 and Exercise 2.2.14 are neither internal nor entire, but they are both robust. The approximations coming from Theorem [2.2.J8 are internal, entire and robust. Using specific properties of the first-order theory under consideration allows us to relate ordinary strong approximations of certain structures with robust approximations of the same structures: Theorem 2.2 .24 gives an example.
2.2.24. Theorem. Take any field $\mathbb{F}$. Assume that we have a standard ordinary approximation of an $\mathbb{F}$-vector-space $G$ via the $I$-indexed sequence of $\mathbb{F}$-vector-spaces $H$. Then we can find an internal, entire, robust approximation of $G$ via $H_{\omega}$ for some index $\omega \in I$.

Proof. Denote the $I$-ultrafilter coming from the ordinary approximation as $\mathcal{D}$. Taking a direct product of vector spaces yields another vector space, so we can regard the quotient map [-] : $\prod_{i \in I} H_{i} \rightarrow \prod_{i \in I} H_{i} / \mathcal{D}$ as an epimorphism in the category of $\mathbb{F}$-vector-spaces. But every epimorphism splits in that category, so we get a linear transformation $r: \prod_{i \in I} H_{i} / \mathcal{D} \rightarrow \prod_{i \in I} H_{i}$ such that $\forall x$.([-]or) $(x)=x$. By Proposition $\llbracket .3 .38$ the ultrafilter $\mathcal{D}$ has a monadic element $\omega \in I$. Define $\imath(h, g)$ between $H_{\omega}$ and $G$ as an abbreviation for the formula $(r o c o l i m)(g)(\omega)=h$. The resulting approximation $t$ has the internal and entire properties by Proposition [2.2.8. We only need to prove robustness.
Consider any $g_{1}, g_{2} \in G$ and $h_{1}, h_{2} \in H_{\omega}$ such that $l\left(h_{1}, g_{1}\right)$ and $l\left(h_{2}, g_{2}\right)$ both hold. Take any scalar $\lambda \in \mathbb{F}$. We have $(r \circ \operatorname{colim})\left(g_{1}\right)(\omega)=h_{1}$ and $(r \circ$ colim $)\left(g_{2}\right)(\omega)=h_{2}$. We need to prove that $(r o c o l i m)\left(\lambda g_{1}+g_{2}\right)(\omega)=\lambda h_{1}+h_{2}$. Using the linearity of both colim and $r$, we have $(r o \operatorname{colim})\left(\lambda g_{1}+g_{2}\right)=r\left(\lambda \operatorname{colim}\left(g_{1}\right)+\operatorname{colim}\left(g_{2}\right)\right)=\lambda r\left(\operatorname{colim}\left(g_{1}\right)\right)+$ $r\left(\operatorname{colim}\left(g_{2}\right)\right)$ as members of the function space $\prod_{i \in I} H_{i}$. Equality of functions implies pointwise equality on all indices, so taking the index $\omega \in I$ gives us (rocolim) $\left(\lambda g_{1}+\right.$ $\left.g_{2}\right)(\omega)=\lambda\left(r \circ \operatorname{colim}\left(g_{1}\right)\right)(\omega)+\left(r o \operatorname{colim}\left(g_{2}\right)\right)(\omega)=\lambda h_{1}+h_{2}$, which shows the robustness of the approximation.
Qed.
2.2.25. One cannot imitate the reasoning of Theorem $\sqrt[2.2 .24]{ }$ in the case of arbitrary groups. Given an ordinary strong approximation of $G$ via the sequence of finite groups $H_{i}$, one wishes to find a section $r: \prod_{i \in I} H_{i} / \mathcal{D} \rightarrow \prod_{i \in I} H_{i}$ for the quotient map [-] : $\prod_{i \in I} H_{i} \rightarrow \prod_{i \in I} H_{i} / \mathcal{D}$. Upon success, we would have rocolim : $G \hookrightarrow \prod_{i \in I} H_{i}$. Only residually finite groups $G$ admit such a morphism. This does not mean that robust approximation implies residually finiteness, merely that we cannot use the construction of Proposition 2.2 .13 to find robust approximations in the non-residually-finite case.

## Residually finite groups

2.2.26. Definition. We call a group $G$ residually finite if it embeds into some direct product of finite groups.
2.2.27. Proposition. A group $G$ is residually finite precisely if for any finite subset $F \subseteq G$ with $1 \notin F$ we can find a finite index normal subgroup $N$ of $G$ such that $\forall x \in$ $F . x \notin N$.

Proof. See [7]-Corollary 2.2.6.
Qed.
2.2.28. Corollary. A standard group $G$ satisfies residually finiteness precisely if it contains a finite index normal subgroup $N$ that does not have any standard element (apart from the identity).

Proof. Apply Idealization to the normal subgroup condition of Proposition 2.2.27. Qed.
2.2.29. Theorem. Every standard residually finite group $G$ admits a finite internal, entire, robust approximation.

Proof. Take a residually finite group $G$. We can use Corollary 2.2 .28 to choose a finite index subgroup $N$ that does not contain any standard (non-identity) element of $G$. Taking the quotient $H=G / N$ yields a finite group by the finite index clause. Let $l(h, g)$ stand for the binary predicate $g \in h$ for $g \in G$ and $h \in G / N$. Internality follows by the form of $l$. We prove the other clauses below:

1. For any $g \in G$, we have $h \in H$ so $l(h, g)$ holds. We can take $h=g N$, thereby showing that $l$ is entire.
2. For any $g \in G$ and $h_{1}, h_{2} \in H$ such that $g \in h_{1}$ and $g \in h_{2}$, we have $h_{1}=h_{2}$. This just restates the fact that left cosets of a normal subgroup are either disjoint or identical.
3. For any standard $g_{1}, g_{2} \in G$, and $h \in H$ such that $g_{1} \in h$ and $g_{2} \in h$, we have $g_{1}=g_{2}$. Writing $h=x N$, we get $g_{1} x^{-1} \in N$ and $x^{-1} g_{2}^{-1} \in N$, and thus $g_{1} g_{2}^{-1} \in$ $N$. But st $\left(g_{1} g_{2}^{-1}\right)$ holds by Corollary $[2.1$, and the only standard element of $N$ equals the identity. Hence $g_{1} g_{2}^{-1}=1$ and so $g_{1}=g_{2}$.
4. For any $g_{1}, g_{2} \in G$ and any $h_{1} \in H, h_{2} \in H$ such that $g_{1} \in h_{1}$ and $g_{2} \in h_{2}$ we have $g_{1} g_{2} \in g_{1} g_{2} N=h_{1} h_{2}$ by the definition of multiplication in $G / N$.

## Qed.

2.2.30. Theorem 2.2 .29 proves Theorem [2.2.18 as a special case, since every profinite group has the property of residually finiteness. However, one does not get a simple proof of the topological approximation result (Proposition 2.2.20) this way.
2.2.31. Unlike the construction of Theorem 2.2.18, which gave as a corollary the ordinary approximability of profinite groups (Corollary 2.2.19), we cannot expect the result of Theorem R.2.29 to transfer to ordinary approximations: we construct a counterexample in Proposition [2.2.32.
2.2.32. Proposition. Some residually finite groups do not admit ordinary finite approximations.

Proof. Assume for a contradiction that all residually finite groups admit ordinary finite approximations. Regard $S O(3)$ as a quotient $f: F \rightarrow S O(3)$ of the free group generated by all matrices in $S O(3)$. Since free groups are residually finite, our assumption allows us to find a finite ordinary approximation $\lim : \prod_{i \in I} H_{i} / \mathcal{D} \rightarrow F$, and to get an approximation of $S O(3)$ as $f \circ \lim : \prod_{i \in I} H_{i} / \mathcal{D} \rightarrow S O(3)$. This contradicts [34]Theorem 7 on ordinary approximations of $S O(3)$.
Qed.

## The Alexandroff case

2.2.33. We wish to investigate the "best possible" approximations: ones where the approximation predicate $l$ constitutes a genuine, bona fide homomorphism of groups. Analogizing with Alexandroff spaces, which arise as the spaces where the nearness predicate forms a bona fide relation, we call these Alexandroff approximations. Here we classify groups that admit such finite approximations. One can define Alexandroff approximation for other algebraic structures analogously; the diligent reader would fill in these details while attempting Exercise 2.2.37.
2.2.34. Definition. Consider an approximation $t$ of a group $G$ (equipped with some Fréchet predicate o-) via a finite group $H$. We call $l$ an Alexandroff approximation if $l(h, g) \leftrightarrow f(h)=g$ for some group homomorphism $f: H \rightarrow G$.
2.2.35. Definition. We call a group $G$ locally finite if every finitely generated subgroup of $G$ has finite order.
2.2.36. Proposition. A group ( $G, \circ-$ ) admits a finite Alexandroff approximation precisely if $G$ is locally finite. In that case one can find an Alexandroff approximation by a subgroup $H<G$.

Proof. Provisionally assume that $G$ is standard. Assume that $G$ admits some Alexandroff approximation $t$ via $H$. Consider the group homomorphism $f: H \rightarrow G$, and take the image $f(H)<G$. This subgroup clearly has finite order. Since $\forall^{s t} g \in G . \exists h \in$ $H . l(h, g)$ holds, we have that $\forall^{s t} g \in G . g \in f(H)$, and therefore we can find some $X<G$ that forms a finite subgroup of $G$ that contains every standard element of $G$. Using Proposition $\llbracket .2 .4$ we get that for any standard finite subset $F \subseteq G$ we can find a finite subgroup $X<G$ such that $F \subseteq X$. Thus $\langle F\rangle \subseteq X$, and so $\langle F\rangle$ has finite order. By Transfer the same holds for every finite subset of $G$.
Now assume that every finitely generated subgroup of $G$ has finite order. Take a finite subset $H$ of $G$ that contains every standard element of $G$ (follow e.g. the proof of Proposition (2.2.7). Since $\langle\boldsymbol{H}\rangle$ has finite order, it constitutes a finite subgroup that nonetheless contains every standard element of $G$. Take the inclusion map $f:\langle H\rangle \hookrightarrow G$ and set $\iota(h, g)$ as an abbreviation for $f(h)=g$. We have to verify three properties:

1. For standard $g \in G$ we can find $h \in\langle H\rangle$ with $f(h)=g$. Since $g \in H \subseteq\langle H\rangle$, we can set $h=g$ and have $f(h)=h=g$.
2. For standard $g \in G$, arbitrary $h_{1}, h_{2} \in\langle H\rangle$ such that $f\left(h_{1}\right)=g$ and $f\left(h_{2}\right)=g$, we have $h_{1}=h_{2}$. Since we obtained $f$ as an inclusion map, we have $h_{1}=g=h_{2}$ as desired.
3. For any $g_{1}, g_{2} \in G$ and $h \in\langle H\rangle$ such that $f(h)=g_{1}$ and $f(h)=g_{2}$ we have $g_{1} \circ g_{2}$. In this case we have $g_{1}=g_{2}$, so by reflexivity $g_{1} \circ g_{2}$.
4. For $g_{1}, g_{2} \in G$ and $h_{1}, h_{2} \in\langle H\rangle$ such that $f\left(h_{1}\right)=g_{1}$ and $f\left(h_{2}\right)=g_{2}$, we have $f\left(h_{1} h_{2}\right)=g_{1} g_{2}$. Again, this holds simply because we have $h_{1} h_{2} \in\langle H\rangle, h_{1}=g_{1}$ and $h_{2}=g_{2}$.

## Qed.

2.2.37. Exercise. Prove that every Boolean algebra admits an Alexandroff approximation.
2.2.38. The correspondence presented in Proposition 2.2 .36 sheds light on the "unreasonable effectiveness" of Internal Set Theory for locally finite structures. Even Theorem $\mathbb{L 2 . 7}$ relies essentially on the locally finiteness of graph structures: taking the subgraph induced by a finite subset of vertices results in a finite subgraph. As a more open-ended exercise, applying Exercise 2.2 .37 to Goldblatt's superstructure proof of the Stone representation theorem ([16]-Chapter 19.6.) yields a very legible IST-proof of the same fact.

### 2.3 Action extension

2.3.1. Approximations allows us to extend well-behaved functions defined on the approximating object to similarly well-behaved functions defined on the approximated object, as long as the codomain of the function comes equipped with a nice topology. In particular, we show that if a group admits a finite approximation with a Lipschitz action on some compact manifold, then we can lift this action and obtain an action of any periodic subgroup of the approximated group on the same manifold (Theorem 2.3.9).
2.3.2. Proposition. Let $l$ be a weak approximation of the standard set $G$ via the (not necessarily finite) set $H$. Consider a standard compact Hausdorff topological space $\left(M, \circ^{-}\right)$and a function $f: H \rightarrow M$ such that $\forall h_{1}, h_{2} \in H . \forall g \in G . l\left(h_{1}, g\right) \wedge l\left(h_{2}, g\right) \rightarrow$ $f\left(h_{1}\right) \circ-f\left(h_{2}\right)$. There is a function $f^{\prime}: G \rightarrow M$ such that for any standard $g \in G$, if $l(h, g)$ then $f^{\prime}(g) \circ f(h)$.

Proof. Take such a function $f: H \rightarrow M$. Define the set $f^{\prime}$ via the Standardization axiom as $f^{\prime}=\{(g, m) \in G \times M \mid \exists h \in H . l(h, g) \wedge m \circ-f(h)\}$. We claim that $f^{\prime}$ forms the graph of a function $f^{\prime}: G \rightarrow M$.
We first prove that $\forall^{s t} g . \exists^{s t}!m \in M .(g, m) \in f^{\prime}$. For existence, take a standard $g \in G$. Since $l$ weakly approximates $G$ via $H$, we can find $h \in H$ such that $l(h, g)$. Using the compactness of $M$, we immediately get a standard $m \in M$ such that $m \circ-f(h)$. Thus we have $(g, m) \in f^{\prime}$. For uniqueness, take standard $g \in G, m_{1} \in M$ and $m_{2} \in M$, and assume $\left(g, m_{1}\right) \in f^{\prime}$ and $\left(g, m_{2}\right) \in f^{\prime}$. By definition we get $h_{1}, h_{2} \in H$ such that $l\left(h_{1}, g\right), m_{1} \circ f\left(h_{1}\right)$ and $l\left(h_{2}, g\right), m_{2} \circ f\left(h_{2}\right)$ all hold. From $l\left(h_{1}, g\right)$ and $l\left(h_{2}, g\right)$ we obtain $f\left(h_{2}\right) \circ-f\left(h_{1}\right)$, and hence (by the properties of the universal representation $\circ$-) $m_{1} \circ f\left(h_{2}\right)$. Now we have $m_{1} \circ f\left(h_{2}\right)$ and $m_{2} \circ f\left(h_{2}\right)$, so by the Hausdorff property we conclude $m_{1}=m_{2}$.
Notice that st $\left(f^{\prime}\right)$ holds by Standardization. This means that Transfer applies to the
formula $\forall^{s t} g . \exists^{s t}!m \in M .(g, m) \in f^{\prime}$, which proves our claim that $f^{\prime}: G \rightarrow M$. For any standard $g \in G$ we have $\operatorname{st}\left(f^{\prime}(g)\right)$, and since $\left(g, f^{\prime}(g)\right) \in f^{\prime}$ we get $\forall h \in H . l(h, g) \rightarrow$ $f^{\prime}(g) \circ f(h)$ as desired.
Qed.
2.3.3. Corollary. Consider an approximation $l$ of the standard set $G$ via the (not necessarily finite) set $H$. For any function $f: H \rightarrow M$ to a standard compact Hausdorff space $M$ we can find a standard function $f^{\prime}: G \rightarrow M$ such that for all standard $g \in G$, if $l(h, g)$ then $f^{\prime}(g) \circ f(h)$.

Proof. By the definition of approximation we have $l\left(h_{1}, g\right) \wedge l\left(h_{2}, g\right) \rightarrow h_{1}=h_{2}$ for any standard $g \in G$. Consequently, every function $f: H \rightarrow M$ satisfies $f\left(h_{1}\right)=f\left(h_{2}\right)$, and a fortiori $f\left(h_{1}\right) \circ f\left(h_{2}\right)$. We get the claimed result by applying Proposition 2.3.2. Qed.
2.3.4. Notice that one cannot weaken the compactness requirement in either Proposition 2.3.2 or Corollary [2.3.3. In fact, given a non-compact $M$, we can use the characterization of Theorem $[\boxed{3.33}$ to find a point $m$ that lies far from every standard point, i.e. $\forall^{s t} x \in M . \neg x \circ-m$. Then we cannot even extend the constant function $f(x)=m$. One can see the failure of the extension results for non-compact $M$ as a (very loose) counterpart to [5]]-Proposition 3.4.
2.3.5. We are now ready to prove our main result for this chapter, Theorem 2.3.9, which relates actions of an approximating group $H$ on standard manifolds to actions of periodic subgroups of the approximated group $G$ on the same manifold. One can see Theorem 2.3.9 as a (vast) generalization of a result on discrete circle actions due to Manevitz and Weinberger [30]. The group-theoretic underpinning of our result comes from the celebrated Newman's theorem on group actions, which states that a compact Lie group does not act on a manifold with uniformly small orbits. For what follows recall that we label a group periodic if each element of the group has finite order.
2.3.6. Theorem (Newman). Take a manifold $M$ metrized by the metric $d$, and consider a non-empty open subset $U \subseteq M$. We can find a real number $v>0$ depending only on $U$ and the restriction of $d$ to $U$ such that for any compact Lie group $G$, the only continuous action $\mathrm{C}: G \times M \rightarrow M$ satisfying $d(x, g \mathrm{C} x) \leq \nu$ for all $g \in G$ and $x \in U$ is the trivial action.

Proof. See [37]-Theorem 1.

Qed.
2.3.7. Corollary. For any standard compact metric manifold $M$ equipped with a standard metric, we have a standard real number $v>0$ such that for any finite group $G \neq 1$, continuous faithful action $\mathrm{C}: G \times M \rightarrow M$ and element $g \in G$, we can find $n \in \mathbb{N}$ and $x \in M$ with $d\left(g^{n} \mathrm{C} x, x\right)>v$.

Proof. Consider a standard compact metric manifold $M$. Set $U=M$ and obtain a $v>0$ from Theorem 2.3.6. We can pick a standard such $v$ by Transfer. Take the finite group $\langle g\rangle<G$. By faithfulness the restricted action $\mathrm{C}_{\langle g\rangle}:\langle g\rangle \times M \rightarrow M$ is non-trivial, and so by Theorem $\boxed{2.3 .6}$ there are $h \in\langle g\rangle$ and $x \in M$ such that $d(h \subset x, x)>v$. Since $h$ belongs to the finite group $\langle g\rangle$ we can write $h=g^{n}$ for some $n \in \mathbb{N}$.
Qed.
2.3.8. Definition. Take a positive constant $K \in \mathbb{R}$. Consider a group $G$, a metric space $(M, d)$ and an action $\subset: G \times M \rightarrow M$. We call this action $K$-Lipschitz if for all $g \in G$, $x, y \in M$, we have $d(g \mathrm{C} x, g \subset y) \leq K \cdot d(x, y)$.
2.3.9. Theorem (Main Result). Consider a standard group $G$ approximated by the finite group $H$, and a standard compact manifold $M$. Assume that the group $H$ acts faithfully on the manifold $M$ via the action $\mathrm{C}: H \times M \rightarrow M$, and that this action is $K$-Lipschitz for some standard $K>0$ (on some metrization of the manifold). Then every periodic subgroup of $G$ admits a faithful $K$-Lipschitz action on $M$.

Proof. For the sake of readability, we divide this long proof into multiple claims.
Claim 1: The set $G \times M$ approximates $H \times M$.
Define the predicate $\iota^{\prime}\left(\left(h, m_{h}\right),\left(g, m_{g}\right)\right)$ between $H \times M$ and $G \times M$ as an abbreviation for $l(h, g) \wedge m_{h}=m_{g}$. We need to prove the usual properties.

1. For any standard $(g, m) \in G \times M$ we can find $\left(h, m_{h}\right) \in H \times M$ such that we have $\iota^{\prime}\left(\left(h, m_{h}\right),(g, m)\right)$. Take standard $(g, m) \in G \times M$. Since $\iota$ satisfies the analogous property, choose $h \in H$ such that $l(h, g)$. We clearly have $l((h, m),(g, m))$.
2. For any standard $(g, m) \in G \times M$ and arbitrary $\left(h_{1}, m_{1}\right),\left(h_{2}, m_{2}\right) \in H \times M$ such that $\iota^{\prime}\left(\left(h_{1}, m_{1}\right),(g, m)\right)$ and $\iota^{\prime}\left(\left(h_{2}, m_{2}\right),(g, m)\right)$ both hold, we have $\left(h_{1}, m_{1}\right)=\left(h_{2}, m_{2}\right)$. The assumptions guarantee $m_{1}=m=m_{2}$, so we only need to prove $h_{1}=h_{2}$. This follows since both $\iota\left(h_{1}, g\right)$ and $\iota\left(h_{2}, g\right)$ hold and $\iota$ satisfies the analogous property.
3. For any standard $\left(g_{1}, m_{1}\right),\left(g_{2}, m_{2}\right) \in G \times M$ and arbitrary $(h, m) \in H \times M$ such that $\iota^{\prime}\left((h, m),\left(g_{1}, m_{1}\right)\right)$ and $\iota^{\prime}\left((h, m),\left(g_{2}, m_{2}\right)\right)$ both hold, we have $\left(g_{1}, m_{1}\right)=\left(g_{2}, m_{2}\right)$. Again, the assumptions guarantee $m_{1}=m=m_{2}$, so we only need to prove $g_{1}=g_{2}$. This follows from $l\left(h, g_{1}\right)$ and $l\left(h, g_{2}\right)$ using the analogous property of $l$.

In what follows, fix a standard metrization of the manifold $M$, and hence realize it as a compact metric space $(M, d)$. Denote the nearness predicate coming from Proposition $[.3 .35$ as 0 .

Claim 2: We can find a standard function $\mathrm{C}^{\prime}: G \times M \rightarrow M$ such that for all standard $g \in G$ and $m \in M$, if we have $l(h, g)$ then we also have $g \mathrm{C}^{\prime} m \circ-h \mathrm{C} m$.

Using Claim 1, we know that $\iota^{\prime}$ approximates $G \times M$ via $H \times M$. Moreover, $M$ forms a compact Hausdorff topological space with the nearness predicate $\circ-$. Applying Corollary 2.3 .3 to the function $\mathrm{C}: G \times M \rightarrow M$ gives us a function $\mathrm{C}^{\prime}: G \times M$ such that for any standard $(g, m) \in G \times M$ and any $\left(h, m_{h}\right) \in H \times M$ with $_{\prime}^{\prime}\left(\left(h, m_{H}\right),(g, m)\right)$, we have $g \mathrm{C}^{\prime} m \circ-h \subset m_{H}$. By the definition of $\iota^{\prime}$, we have $m_{H}=m$. Thus, if we have $\iota(h, g)$ then we also have $g \mathrm{C}^{\prime} m \circ-h \mathrm{C} m$.

Claim 3: We have $l\left(1_{H}, 1_{G}\right)$.
Recall that Definition 2.2.3 mandates only the preservation of the group operation; we prove the preservation of the identity element as a consequence. Since st $\left(1_{G}\right)$ holds, we have some $h \in H$ such that $l\left(h, 1_{G}\right)$. It suffices to prove that $h=1_{H}$. From $l\left(h, 1_{G}\right)$ we get $l\left(h^{2}, 1_{G}^{2}\right)$ using the fact that $l$ preserves the group operation. But then $l\left(h^{2}, 1_{G}\right)$, and from st $\left(1_{G}\right)$ we get $h^{2}=h$. Multiplying both sides by $h^{-1}$ yields $h=1_{H}$ as desired.

Claim 4: The action C : $H \times M \rightarrow M$ satisfies uniform S-continuity, i.e. for all $h \in H$ and $x, y \in M$, if $x \circ y$ then $h \subset x \circ-h \subset y$.

We start by proving that this holds for standard $x \in M$. So consider arbitrary $h \in H$, standard $x \in M$ and arbitrary $y \in M$ with $x \circ-y$. Take any standard $\varepsilon>0$. Since $\operatorname{st}(K)$ holds, we know that $\operatorname{st}\left(K^{-1} \varepsilon\right)$ holds as well. By $x \circ-y$, we have $d(x, y)<s$ for any standard $s>0$. In particular $d(x, y) \leq K^{-1} \varepsilon$. By the $K$-Lipschitz property of the action C , we know that $d(h \subset x, h \subset y)<K d(x, y) \leq K K^{-1} \varepsilon=\varepsilon$. Since we chose an arbitrary standard $\varepsilon>0$, we get $h \subset x \circ-h \mathrm{C} y$ as desired.
Now we must prove the same for arbitrary $x \in M$. Consider arbitrary $h \in H, x \in M$ and $y \in M$ with $x \circ-y$. Use the compactness of $M$ to pick standard $x^{\prime}$ such that $x^{\prime} \circ-x$. By transitivity we have $x^{\prime} \circ-y$ as well, so by the previous result we have both $h \mathrm{C} x^{\prime} \circ-h \mathrm{C} x$ and $h \subset x^{\prime} \circ-h \subset y$. From symmetry and transitivity it follows that $h \subset x \circ-h \subset y$.

Claim 5: For each $m \in M$ we have $1_{G} \mathrm{C}^{\prime} m=m$.
We know that st( $\left.C^{\prime}\right)$, so we can provisionally assume the standardness of $m$. In that case we have $1_{G} \mathrm{C}^{\prime} m \circ-h \mathrm{C} m$ for each $h \in H$ with $\imath\left(h, 1_{G}\right)$ by Claim 2. From Claim 3 we know that $l\left(1_{H}, 1_{G}\right)$, so $1_{G} \mathrm{C}^{\prime} m \circ-1_{H} \mathrm{C} m=m$. Using st $(m)$ it follows that $1_{G} \mathrm{C}^{\prime} m=m$ by the Hausdorff property of $M$.

Claim 6: For each $g, h \in G$ and $m \in M$ we have $g h \mathrm{C}^{\prime} m=g \mathrm{C}^{\prime}\left(h \mathrm{C}^{\prime} m\right)$.

Caveat: in this part $h$ belongs to $G$, not to $H$ ! Given the internal conclusion, we provisionally assume the standardness of $g, h$ and $m$. Since st $(g)$, st $(h)$ hold we can find $g^{\prime} \in H$ and $h^{\prime} \in H$ such that $l\left(g^{\prime}, g\right)$ and $l\left(h^{\prime}, h\right)$. By preservation of the group operation for standard elements, we have $l\left(g^{\prime} h^{\prime}, g h\right)$ as well. On one hand, we have

$$
g h \subset^{\prime} m \circ-g^{\prime} h^{\prime} \subset m=g^{\prime} \subset\left(h^{\prime} \subset m\right) .
$$

On the other hand, we have $g \mathrm{C}^{\prime}\left(h \mathrm{C}^{\prime} m\right)-g^{\prime} \subset\left(h \mathrm{C}^{\prime} m\right)$. Why? Because $h$ and $m$ are standard, and hence st $\left(h \mathrm{C}^{\prime} m\right.$ ), so Claim 2 applies. We also have $h \mathrm{C}^{\prime} m \circ-h^{\prime} \mathrm{C}^{\prime} m$. Applying Claim 4 immediately yields $g^{\prime} \subset\left(h \mathrm{C}^{\prime} m\right) \circ-g^{\prime} \subset\left(h^{\prime} \subset m\right)$, so we get

$$
g \mathrm{C}^{\prime}\left(h \mathrm{C}^{\prime} m\right) \circ g^{\prime} \subset\left(h^{\prime} \subset m\right)
$$

Notice that both $g h \mathrm{C}^{\prime} m$ and $g \mathrm{C}^{\prime}\left(h \mathrm{C}^{\prime} m\right)$ satisfy standardness. We have shown that these two standard elements have a common neighbor. Therefore, by Hausdorff separation (Definition [1.3.25) we conclude $g h \mathrm{C}^{\prime} m=g \mathrm{C}^{\prime}\left(h \mathrm{C}^{\prime} m\right)$, which proves our claim, and with Claim 5 proves that $\mathrm{C}: G \times M \rightarrow M$ forms an action of $G$ on $M$.

Claim 7: The action $\mathrm{C}^{\prime}: G \times M \rightarrow M$ has Lipschitz constant $K$.

By the internality of the conclusion, we can provisionally assume the standardness of everything in sight. So take standard $g \in G, x, y \in M$. We wish to prove $d\left(g C^{\prime} x, g C^{\prime} y\right) \leq$ $K d(x, y)$. Pick $g^{\prime}$ with $l\left(g^{\prime}, g\right)$ and any standard $\varepsilon>0$. Observe that by Claim 2, we have $d\left(g \mathrm{C}^{\prime} x, g^{\prime} \subset x\right)<\frac{\varepsilon}{2}$ and similarly for $y$. By repeated applications of the triangle
inequality, we get that

$$
\begin{aligned}
d\left(g \mathrm{C}^{\prime} x, g \mathrm{C}^{\prime} y\right) & \leq d\left(g \mathrm{C}^{\prime} x, g^{\prime} \subset y\right)+d\left(g^{\prime} \subset y, g \mathrm{C}^{\prime} y\right) \\
& \leq d\left(g \mathrm{C}^{\prime} x, g^{\prime} \subset y\right)+\frac{\varepsilon}{2} \\
& \leq d\left(g^{\prime} \subset x, g^{\prime} \subset y\right)+d\left(g^{\prime} \subset x, g \mathrm{C}^{\prime} x\right)+\frac{\varepsilon}{2} \\
& \leq d\left(g^{\prime} \mathrm{C} x, g^{\prime} \subset y\right)+\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =d\left(g^{\prime} \subset x, g^{\prime} \subset y\right)+\varepsilon \\
& \leq K d(x, y)+\varepsilon .
\end{aligned}
$$

and therefore $d\left(g \mathrm{C}^{\prime} x, g \mathrm{C}^{\prime} y\right)-K d(x, y) \leq \varepsilon$ for all standard $\varepsilon>0$. By Transfer we immediately obtain $d\left(g \mathrm{C}^{\prime} x, g \mathrm{C}^{\prime} y\right) \leq K d(x, y)$. Discharging the provisional standardness assumptions, we conclude that the action $\mathrm{C}^{\prime}$ admits the standard Lipschitz constant $K$ as we claimed.

Claim 8: The action $\mathrm{C}: H \times M \rightarrow M$ satisfies (metric, $\varepsilon-\delta$ ) continuity.
Note that Claim 8 does not follow from Claim 4, as we do not have st(C) (the reader has already constructed counterexamples as part of Exercise [.3.20). For each $h \in H$, $x \in M$ and $\varepsilon>0$ we need to find some $\delta>0$ such that for $y \in M, d(x, y)<\delta$ implies $d(h \subset x, h \subset y)<\varepsilon$. But this follows immediately from the existence of the Lipschitz constant, by taking $\delta=K^{-1} \varepsilon$.

Claim 9: Consider any periodic subgroup $X<G$ and $g \in X$ such that $g \neq 1$. We have $g \mathrm{C}^{\prime} m \neq m$.

By the internality of the conclusion, we can provisionally assume the standardness of both the subgroup $X$ and the element $g \in X$. Given the periodicity of $X$, the element $g$ has finite order. Moreover, st $(x)$ holds, and therefore Proposition [L.2.9 guarantees the standardness of $\operatorname{ord}(x) \in \mathbb{N}$.

Consider $h \in H$ for which we have $l(h, g)$. Then for any standard $k \in \mathbb{N}$, we have $l\left(h^{k}, g^{K}\right) \rightarrow l\left(h^{k+1}, g^{k+1}\right)$. Thus, by the principle of External Induction (Theorem [.2.15) we get that $l\left(h^{n}, g^{n}\right)$ for all standard $n \in \mathbb{N}$. In particular, for $n=\operatorname{ord}(x)$ we have $l\left(h^{n}, 1_{G}\right)$. We already know $l\left(1_{H}, 1_{G}\right)$ from Claim 3 , so we can conclude $h^{n}=1_{H}$. Consequently, $\operatorname{ord}(h) \leq \operatorname{ord}(g)$ and by Proposition $[.2 .14$ we obtain that $h$ has standard order.
We now apply Corollary 2.3 .7 of Newman's theorem to the group $H$, the element $h$ and the action $\mathrm{C}: H \times M \rightarrow M$. For this we need to use Claim 8 . We get a standard $v>0$,
some $n \in \mathbb{N}$ and some $m^{\prime} \in M$ such that $d\left(h^{n} \mathrm{Cm}^{\prime}, m^{\prime}\right)>v$, and therefore $\neg\left(h^{n} \mathrm{C} m^{\prime} \circ-\right.$ $m^{\prime}$ ).
We know that $\operatorname{st}(n)$ holds, since $n<\operatorname{ord}(h)$ and we have proved the standardness of $\operatorname{ord}(h)$ above. Unfortunately, we cannot expect $m^{\prime} \in M$ to satisfy standardness. However, using the compactness of $M$ we can obtain a standard $m \in M$ with $m \circ-m^{\prime}$. We prove that $\neg\left(h^{n} \mathrm{C} m \circ-m\right)$. Assume for a contradiction that $h^{n} \mathrm{C} m \circ-m$ does hold. As we have $h^{n} \mathrm{Cm} \circ-h^{n} \mathrm{C} m^{\prime}$ from Claim 4, we could use the symmetry and transitivity of the predicate $\circ$ to get $h^{n} \mathrm{C} m^{\prime} \circ-h^{n} \mathrm{C} m \circ-m \circ-m^{\prime}$ and reach a contradiction.
By the previous External Induction argument, we know $l\left(h^{n}, g^{n}\right)$, and Claim 2 gives us $g^{n} \mathrm{C}^{\prime} m \circ-h^{n} \mathrm{C} m$. Having $g^{n} \mathrm{C}^{\prime} m \circ-m$ would lead to the contradictory chain $h^{n} \mathrm{C} m \circ-$ $g^{n} \mathrm{C}^{\prime} m \circ-m$, so $\neg\left(g^{n} \mathrm{C}^{\prime} m \circ-m\right.$ ). We conclude $g^{n} \mathrm{C}^{\prime} m \neq m$ using the reflexivity of the nearness predicate $\circ-$. Since $g^{n} \mathrm{C}^{\prime} m \neq m$, clearly $g \mathrm{C}^{\prime} m \neq m$.
Transfer allows us to dispense with the provisional assumptions of standardness on $X$ and $g$, so for every element $g$ of any periodic subgroup $X$ we can find $m \in M$ with $g \mathrm{C}^{\prime} m \neq m$. We conclude that each periodic subgroup $X$ of the approximated group $G$ acts faithfully on the manifold $M$ via the map $\mathrm{C}^{\prime}: X \times M \rightarrow M$. So concludes the proof of our main result.
Qed.
2.3.10. Corollary. Consider a standard group $G$ approximated by the finite group $H$, and a standard compact manifold $M$. Assume that the group $H$ acts isometrically on the manifold $M$ via some action $\mathrm{C}: H \times M \rightarrow M$. Then every periodic subgroup $X<G$ admits an isometric action on $M$.

Proof. An isometric action satisfies the $K$-Lipschitz condition for $K=1$. We can obtain the action $\mathrm{C}^{\prime}: G \times M \rightarrow M$ as we do in Theorem 2.3.9. We already know that $d\left(g \mathrm{C}^{\prime} x, g \mathrm{C}^{\prime} y\right) \leq d(x, y)$, so proving $d(x, y) \leq d\left(g \mathrm{C}^{\prime} x, g \mathrm{C}^{\prime} y\right)$ suffices to establish our claim. By the internality of this conclusion, provisionally assume standardness of $x, y \in M$ as well as of $g \in G$. Choose some $g^{\prime}$ with $l\left(g^{\prime}, g\right)$ and any standard $\varepsilon>0$. We have $d\left(g \mathrm{C}^{\prime} x, g^{\prime} \mathrm{C} x\right)<\frac{\varepsilon}{2}$ and similarly for $y$ by the defining property of the function $\mathrm{C}^{\prime}$.

As usual, we repeatedly apply the triangle inequality to obtain

$$
\begin{aligned}
d(x, y) & =d\left(g^{\prime} \mathrm{C} x, g^{\prime} \mathrm{C} y\right) \\
& \leq d\left(g \mathrm{C}^{\prime} x, g^{\prime} \mathrm{C} y\right)+d\left(g^{\prime} \mathrm{C} x, g \mathrm{C}^{\prime} x\right) \\
& \leq d\left(g \mathrm{C}^{\prime} x, g^{\prime} \mathrm{C} y\right)+\frac{\varepsilon}{2} \\
& \leq d\left(g \mathrm{C}^{\prime} x, g \mathrm{C}^{\prime} y\right)+d\left(g^{\prime} \mathrm{C} y, g \mathrm{C}^{\prime} y\right)+\frac{\varepsilon}{2} \\
& \leq d\left(g \mathrm{C}^{\prime} x, g \mathrm{C}^{\prime} y\right)+\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =d\left(g \mathrm{C}^{\prime} x, g \mathrm{C}^{\prime} y\right)+\varepsilon .
\end{aligned}
$$

The inequality $d(x, y) \leq d\left(g \mathrm{C}^{\prime} x, g \mathrm{C}^{\prime} y\right)+\varepsilon$ holds for any standard $\varepsilon$. Using a short Transfer argument we get that $d(x, y) \leq d\left(g \mathrm{C}^{\prime} x, g \mathrm{C}^{\prime} y\right)$ also holds. Discharging the standardness assumptions, the conclusion holds for all $x, y \in M$ and all $g \in G$, and so the periodic subgroups act by isometries.

## Qed.

2.3.11. Theorem 2.3 .9 places limitations on groups which are approximated by nonstandard groups that act on standard manifolds, especially for the approximation of periodic groups. We have of course that dihedral groups admit isometric actions on the circle $S^{1}$, which severely constrains groups with dihedral approximations. Similarly, groups of the form $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}: \mathbb{Z} / \ell \mathbb{Z}$ for $\ell \in\{2,3,4,6\}$ are the ones that admit $K$-Lipschitz actions on the torus $S^{1} \times S^{1}[2]$.
2.3.12. Theorem (Manevitz-Weinberger, [30]-Theorem 1). Fix some positive $K \in \mathbb{R}$. Consider a compact manifold $M$ which has a faithful $K$-Lipschitz $\mathbb{Z} / n \mathbb{Z}$ action for all $n \in \mathbb{N}$. Then $M$ has a faithful $K$-Lipschitz action by $\mathbb{Q} / \mathbb{Z}$.

Proof. Provisionally assume st $(K)$ and $\operatorname{st}(M)$. Using the locally finiteness of $\mathbb{Q} / \mathbb{Z}$, we can apply Proposition $\mathbb{2 . 2 . 3 6}$ to obtain an approximation $\iota$ of $\mathbb{Q} / \mathbb{Z}$ via some finite subgroup $H<\mathbb{Q} / \mathbb{Z}$. Such a subgroup must have the form $\mathbb{Z} / \omega \mathbb{Z}$ for some $\omega \in \mathbb{N}$, and therefore $H$ admits a faithful $K$-Lipschitz action on $M$. Applying Theorem 2.3 .9 we get a faithful $K$-Lipschitz action on $M$ by $\mathbb{Q} / \mathbb{Z}$.
Qed.
2.3.13. It is natural to ask whether the $K$-Lipschitz assumption of Theorem 2.3 .9 can be replaced with some weaker condition. This remains to be seen. Clearly, any potential condition would have to imply the continuity and S-continuity of the action. However,
neither continuity nor S-continuity suffice as a replacement: the proof relies on both conditions, and since the action $\mathrm{C}: H \times M \rightarrow M$ is not standard, it might satisfy one continuity condition but not the other. Moreover, the fact that the same condition appears in both the assumptions and the conclusion makes it hard to find plausible candidates ${ }^{\text {W. }}$.

### 2.4 Snappy groups

2.4.1. Motivated by the negative result on ordinary approximation of $S O(3)$ mentioned in 2.1.8, one wishes to say something about the existence of well-behaved approximations of $S O(3)$ in the new formalism.
2.4.2. Proposition. One cannot approximate the group $S O$ (3) using any of its finite subgroups.

Proof. Evidently one cannot approximate $S O(3)$ by a standard finite subgroup. So assume that the predicate $l$ approximates $S O(3)$ via some nonstandard finite subgroup $H<S O(3)$. By the classification of finite subgroups of $S O(3)$, every subgroup of $S O(3)$ of order $>60$ arises as a dihedral group, so we can assume $H=D_{\omega}$ for some non-standard $\omega \in \mathbb{N}$. Since $D_{\omega}$ admits a continuous isometric action on the circle, so does every periodic subgroup of $S O(3)$. But $A_{5}<S O(3)$ admits no such action, a contradiction. Hence one cannot approximate $S O(3)$ using finite subgroups.

## Qed.

2.4.3. We can use Proposition $[2.4 .2$ as a stepping stone for obtaining further results on non-approximability. For example, by considering a special property (snappiness, Definition [2.4.5) of the group $S O$ (3), we get that (unlike the approximations which we obtain for, say, profinite groups), the approximations of $S O(3)$ never respect the usual topology of the group.
2.4.4. Definition. Consider a group $H$ and a standard topological group $G$ represented as an equivalence space ( $G, \circ-$ ). We call a function $f: H \rightarrow G$ an $S$-near-homomorphism if $1_{G} \circ f\left(1_{H}\right)$, and for any $x, y \in H$ we have $f(x y) \circ f(x) f(y)$.
2.4.5. Definition. We call a standard topological group $G$ represented as an equivalence space ( $G, \circ^{-}$) snappy if for any finite group $H$ and S-near-homomorphism $f^{\prime}: H \rightarrow G$

[^6]we can find a group homomorphism $f: H \rightarrow G$ such that for all $x \in H, f(x) \circ f^{\prime}(x)$.
2.4.6. The term snappy of Definition 2.4 .5 intends to evoke a picture of a DIP socket: given a light jiggle, the chip's electrical connecting pins gently snap into place. In the same way, giving a gentle jiggle to a near-homomorphism makes all the points that just barely missed their holes snap into place.
2.4.7. We prove the snappiness of $S O(3)$ in Corollary [2.4.9. A result of Babai, Friedl and Lukács [3] perfectly encapsulates the group-theoretic part of the argument, so we only have to do the non-standard analytic reasoning.
2.4.8. Theorem (Babai-Friedl-Lukács). Let $|-|$ denote the Euclidean matrix norm on $S O(3)$. Fix a positive $\varepsilon<0.001$ and a finite group $H$. Consider a function $f^{\prime}: H \rightarrow$ $S O(3)$ such that $\left|I-f^{\prime}(1)\right|<\varepsilon$ and $\left|f^{\prime}(x) f^{\prime}(y)-f^{\prime}(x y)\right|<\varepsilon$ for all $x, y \in H$ as well. Then we can find a group homomorphism $f: H \rightarrow S O$ (3) such that for all $x \in H$ the inequality $\left|f(x)-f^{\prime}(x)\right|<1000 \varepsilon$ holds.

Proof. See the proof of [3]-Theorem 1.3.
Qed.
2.4.9. Corollary. The group $S O(3)$ is snappy.

Proof. The equivalence of all matrix norms guarantees that (in accordance with Theorem [.3.35) the binary predicate $M_{1} \circ M_{2}$ defined as $\forall^{s t} \varepsilon>0 .\left|M_{1}-M_{2}\right|<\varepsilon$ universally represents the topology of $S O(3)$ as an equivalence space. In particular we have the S-continuity of the group operations with respect to this relation. Consider any S-near-homomorphism $f^{\prime}: H \rightarrow S O(3)$. Take a standard finite set $S \subseteq(0,0.001)$. Denote $s=\min S$. We have st $\left(\frac{s}{1000}\right)$ by Corollary [.2.II, so the inequality $\mid f^{\prime}(x) f^{\prime}(y)-$ $f^{\prime}(x y) \left\lvert\,<\frac{s}{1000}\right.$ obtains for all $x, y \in H$. Theorem [2.4.8 applies and gives us a group homomorphism $f: H \rightarrow S O$ (3) such that for all $x \in H,\left|f(x)-f^{\prime}(x)\right|<s$. This proves that for any standard finite set of numbers we can find a group homomorphism $f$ such that for all $\varepsilon \in S,\left|f(x)-f^{\prime}(x)\right|<\varepsilon$. By the principle of Idealization, we conclude the existence of a group homomorphism $f: G \rightarrow S O(3)$ such that $\forall^{s t} \varepsilon>0 . \forall x \in$ $H .\left|f(x)-f^{\prime}(x)\right|<\varepsilon$. Consequently, $\forall x \in H . f(x) \circ f^{\prime}(x)$, which proves the snappiness of the group $S O(3)$.
Qed.
2.4.10. Theorem. $S O(3)$ does not admit internal, robust finite approximations for its usual topology.

Proof. Assume for a contradiction that we have a finite group $H$ and the required internal approximation predicate $t$ relating elements of $H$ to elements of $S O$ (3). This means that the following hold:

A1 For any standard $g \in S O(3)$ we can find $h \in H$ such that $l(h, g)$ holds.
A2 For any standard $g \in S O(3), h_{1}, h_{2} \in H$ such that $l\left(h_{1}, g\right)$ and $l\left(h_{2}, g\right)$ hold, we have $h_{1}=h_{2}$.

T1 For any standard $g_{1}, g_{2} \in S O(3)$ and any $h \in H$ such that $l\left(h, g_{1}\right)$ and $l\left(h, g_{2}\right)$ both hold, we have $g_{1} \circ-g_{2}$.

A4 For any $g_{1}, g_{2} \in S O(3)$ and any $h_{1}, h_{2} \in H$ with $l\left(h_{1}, g_{1}\right)$ and $l\left(h_{2}, g_{2}\right)$ we have $l\left(h_{1} h_{2}, g_{1} g_{2}\right)$.

Without loss of generality, we can assume $H=\bar{H}=\{x \in H \mid \exists g \in S O(3) . l(h, g)\}$ : if $l$ approximates $S O(3)$ via $H$, then it does the same via $\bar{H}$. Consider the set defined by $E=\{(h, g) \in H \times S O(3) \mid \imath(h, g)\}$. The set $E$ may not form the graph of a function: we cannot rule out having $l\left(h, g_{1}\right)$ and $l\left(h, g_{2}\right)$ for non-standard $g_{1}, g_{2} \in G$. However, $H=\bar{H}$, so $\forall h \in H . \exists g \in G . l(h, g)$, and consequently we can apply the Axiom of Choice to get a function $e^{\prime}: H \rightarrow S O(3)$ that satisfies $l\left(h, e^{\prime}(h)\right)$ for all $h \in H$. We claim that $e^{\prime}: H \rightarrow S O(3)$ gives an S-near-homomorphism between $H$ and $S O(3)$. We must show that $e^{\prime}\left(h_{1}\right) e^{\prime}\left(h_{2}\right) \circ e^{\prime}\left(h_{1} h_{2}\right)$ for all $h_{1}, h_{2} \in H$. We have $l\left(h_{1}, e^{\prime}\left(h_{1}\right)\right)$ and $l\left(h_{2}, e^{\prime}\left(h_{2}\right)\right)$. By [A4] we get $l\left(h_{1} h_{2}, e^{\prime}\left(h_{1}\right) e^{\prime}\left(h_{2}\right)\right)$. But we also have $l\left(h_{1} h_{2}, e^{\prime}\left(h_{1} h_{2}\right)\right)$, so by [T1] $e^{\prime}\left(h_{1}\right) e^{\prime}\left(h_{2}\right) \circ e^{\prime}\left(h_{1} h_{2}\right)$ as we desired. We know from Corollary 2.4.9 that $S O(3)$ forms a snappy group: we deduce the existence of a group homomorphism $e: H \rightarrow S O(3)$ such that $\forall h \in H . e(h) \circ e^{\prime}(h)$. The image $e(H)$ necessarily forms a finite subgroup of $S O(3)$. We prove that $e(H)$ approximates $S O(3)$. Define the approximation predicate $\xi(x, g)$ between $x$ and $g$ as an abbreviation for $\exists h \in H . x=$ $e(h) \wedge l(h, g)$. We have to prove four things:

1. For any standard $g \in S O(3)$ we can find $x \in e(H)$ such that $\xi(x, g)$ holds. Start by using [A1] to find $h \in H$ with $l(h, g)$. Set $x=e(h)$.
2. For any standard $g \in S O(3)$ and $x_{1}, x_{2} \in e(H)$ such that $\xi\left(x_{1}, g\right)$ and $\xi\left(x_{2}, g\right)$ both hold, we have $x_{1}=x_{2}$. By $\xi\left(x_{1}, g\right)$ we have some $h_{1}$ such that $x_{1}=e\left(h_{1}\right)$ and
$l\left(h_{1}, g\right)$. By $\xi\left(x_{2}, g\right)$ we have some $h_{2}$ such that $x_{2}=e\left(h_{2}\right)$ and $l\left(h_{2}, g\right)$. Since we have $\iota\left(h_{1}, g\right)$ and $l\left(h_{2}, g\right)$ we can apply [A2] to get $h_{1}=h_{2}$. But then $x_{1}=e\left(h_{1}\right)=$ $e\left(h_{2}\right)=x_{2}$ as required.
3. For any standard $g_{1}, g_{2} \in S O$ (3) and $x \in e(H)$ such that $\xi\left(x, g_{1}\right)$ and $\xi\left(x, g_{2}\right)$ both hold, we have $g_{1}=g_{2}$. We have some $h_{1}$ such that $x=e\left(h_{1}\right)$ and $l\left(h_{1}, g_{1}\right)$ holds. We also have some $h_{2}$ such that $x=e\left(h_{2}\right)$ and $l\left(h_{2}, g_{2}\right)$ holds. We also have $l\left(h_{1}, e^{\prime}\left(h_{1}\right)\right)$ and $l\left(h_{2}, e^{\prime}\left(h_{2}\right)\right)$ by definition of the function $e^{\prime}$. Hence [T1] gives us $g_{1} \circ e^{\prime}\left(h_{1}\right)$ and $g_{2} \circ e^{\prime}\left(h_{2}\right)$. But then we have the following chain of nearness relationships: $g_{1} \circ e^{\prime}\left(h_{1}\right) \circ e\left(h_{1}\right)=x=e\left(h_{2}\right) \circ e^{\prime}\left(h_{2}\right) \circ-g_{2}$, so $g_{1} \circ-g_{2}$. Since we have st $\left(g_{1}\right)$ and $\operatorname{st}\left(g_{2}\right)$, the Fréchet property (Definition [.3.25) guarantees $g_{1}=g_{2}$.
4. For any standard $g_{1}, g_{2} \in S O(3), x_{1}, x_{2} \in e(H)$ such that $\xi\left(x_{1}, g_{1}\right)$ and $\xi\left(x_{2}, g_{2}\right)$, we have $\xi\left(x_{1} x_{2}, g_{1} g_{2}\right)$. By $\xi\left(x_{1}, g_{1}\right)$ we have some $h_{1}$ such that $x_{1}=e\left(h_{1}\right)$ and $l\left(h_{1}, g_{1}\right)$. By $\xi\left(x_{2}, g_{2}\right)$ we have some $h_{2}$ such that $x_{2}=e\left(h_{2}\right)$ and $l\left(h_{2}, g_{2}\right)$. We need to construct some $h \in H$ such that $x_{1} x_{2}=e(h)$ and $l\left(h, g_{1} g_{2}\right)$. But we have $l\left(h_{1} h_{2}, g_{1} g_{2}\right)$ using [A4]. Set $h=h_{1} h_{2}$. We have $e(h)=e\left(h_{1} h_{2}\right)=e\left(h_{1}\right) e\left(h_{2}\right)=$ $x_{1} x_{2}$.

The finite subgroup $e(H)$ of $S O(3)$ approximates $S O(3)$ internally, contradicting Proposition 2.4.2.

## Qed.

2.4.11. Problem. Can one extend the proof of Theorem 2.4.10 to non-robust approximations by proving a more general version of Theorem [.4.8?

## Chapter 3

## Other results

In this short chapter we present some of our results that do not concern structural approximation directly, but relate to the development of algebra in Internal Set Theory.

### 3.1 Monotone subsequences

3.1.1. Baszczyk, Kanovei, Katz and Nowik [5] have recently presented an ultrapower proof of the following classical result of Real Analysis: every infinite sequence in a totally ordered set contains either an infinite constant subsequence or an infinite strictly monotone subsequence. Inspired by their argument, we give a straightforward, ultrapower-free proof using Internal Set Theory.
3.1.2. Theorem. Every infinite sequence in a totally ordered set contains either an infinite constant subsequence or an infinite strictly monotone subsequence.

Proof. Consider a totally ordered set ( $S,<$ ), and a sequence $a: \mathbb{N} \rightarrow S$. We can provisionally assume the standardness of both the set $S$ and the sequence $a$. Take any non-standard $\omega \in \mathbb{N}$. Define the following sets:

$$
\begin{aligned}
& A_{1}=\left\{k \in \mathbb{N} \mid a_{k}<a_{\omega}\right\} \\
& A_{2}=\left\{k \in \mathbb{N} \mid a_{k}=a_{\omega}\right\} \\
& A_{3}=\left\{k \in \mathbb{N} \mid a_{k}>a_{\omega}\right\}
\end{aligned}
$$

The Standardization axiom ensures the standardness of all three sets $A_{1}, A_{2}, A_{3} \subseteq \mathbb{N}$. It follows by Corollary [.2.IO that we have $\operatorname{st}\left(A_{1} \cup A_{2} \cup A_{3}\right)$. Any standard natural number $n \in \mathbb{N}$ satisfies one of the sentences $a_{n}<a_{\omega}, a_{n}=a_{\omega}$ or $a_{n}>a_{\omega}$ and so $A_{1} \cup A_{2} \cup A_{3}$
contains every standard natural. By Transfer we immediately get $A_{1} \cup A_{2} \cup A_{3}=\mathbb{N}$. Consider the following:

1. If $\forall i \in A_{1} . \exists m \in A_{1} . i<m \wedge a_{i}<a_{m}$ holds, then we can construct an infinite, monotone increasing subsequence of $a$ by taking indices in $A_{1}$.
2. If $\forall j \in A_{3} . \exists n \in A_{3} . i<n \wedge a_{j}>a_{n}$ holds, then we can construct an infinite, monotone decreasing subsequence of $a$ by taking indices in $A_{3}$.

However, if the two previous conditions both fail, then

1. We can find $i \in A_{1}$ such that for all $m \in A_{1}$, if $i<m$ then $a_{i} \geq a_{m}$.
2. We can find $j \in A_{3}$ such that for all $n \in A_{3}$, if $j<n$ then $a_{j} \leq a_{n}$.

By Transfer, we can choose standard values for both $i$ and $j$; this means that we have $i<\omega$ and $j<\omega$. Assume for a contradiction that $\omega \in A_{1}$. Then we have $a_{i} \geq a_{\omega}$. However, $\operatorname{st}(i)$ and $i \in A_{1}$ both hold, so by definition $a_{i}<a_{\omega}$, a contradiction. Therefore, $\omega \notin A_{1}$. Similarly, assume that $\omega \in A_{3}$. Then we have $a_{j} \leq a_{\omega}$. However, $\operatorname{st}(j)$ and $j \in A_{3}$ both hold, so by definition $a_{j}>a_{\omega}$, a contradiction. Therefore, $\omega \notin A_{3}$. Since $\omega \in \mathbb{N}=A_{1} \cup A_{2} \cup A_{3}$, we must then have $\omega \in A_{2}$. A standard finite set has all its elements standard (Theorem [.2.5), but $\omega$ is not standard, so $A_{2}$ is not finite. But we have $\forall^{s t} n, m \in A_{2} \cdot a_{n}=a_{m}$. By Transfer the sequence $a$ is constant on the infinite set $A_{2} \subseteq \mathbb{N}$, so $a$ has an infinite constant subsequence.
Qed.
3.1.3. The usual proofs of the monotone subsequence theorem go through the BolzanoWeierstrass theorem: a bounded sequence has a convergent subsequence, and a convergent sequence has a constant or monotone subsequence; similarly, unbounded sequences always have a monotone divergent subsequence. The ultrapower proof of Baszczyk, Kanovei, Katz and Nowik [5] and the Internal Set Theory proof presented above both bypass the convergence considerations, and so they work without modification in any ordered structure (see also [5]-Remark 3.4. for the relation between the ultrapower proof and proofs based on the idea of peaks).

### 3.2 Sheaves

## Motivation

3.2.1. The functional interpretation [46] of non-standard arithmetic $\mathbf{P}$ (Peano arithmetic in finite types with the Axiom of Extensionality, the Idealization axiom and the Herbrandized Axiom of Choice; a weak subsystem of Nelson's Internal Set Theory) allows one to extract a finite list $t(x)$ from each $\mathbf{P}$-proof of $\forall^{s t} x . \exists^{s t} y . \varphi(x, y)$, in such a way that Peano arithmetic in finite types itself (without the additional non-standard axioms) proves $\forall x . \exists y \in t(x) . \varphi(x, y)$. Observing that one can bring the non-standard definitions of continuity (Definition L.3.15), compactness (Theorem [.3.33), Riemannintegrability etcinto Nelson normal form in $\mathbf{P}$, Sanders [41] formulated a technique ( $\mathbb{C}$ ) that allows one to convert theorems formulated purely ${ }^{\mathbb{W}}$ in terms of these nonstandard definitions into associated theorems that have effective computational content and no longer involve non-standard notions.
3.2.2. Techniques such as $\mathfrak{C} \mathfrak{F}$ have seen successful applications in constructive analysis, topology and measure theory. To one day apply similar techniques in algebra, one needs to find equivalences between nonstandard and classical algebraic notions. Since we already have a large library of such equivalences in analysis and topology, it's natural to start looking for new equivalences where these fields intersect algebra, e.g. in sheaf theory.
3.2.3. Here we give a pure non-standard characterization of sheaves on topological spaces. Apart from placing sheaves in the domain of applicability of $\mathfrak{C} \mathfrak{F}$-style techniques, our characterization also realizes directly a conceptual view of sheaves as "continuous set-valued maps" enunciated by Vickers [47] which cannot be formalized by topologizing the class of sets in the ordinary way.

## Predicated quivers

3.2.4. One can regard the predicated spaces of Definition $\sqrt{2} . \sqrt{4}$ as (external) reflexive graphs. Generalizing to external reflexive quivers offers a very quick, intuitive path to defining sheaves on topological spaces.

[^7]3.2.5. Definition. A predicated quiver consists of the following data:

- an underlying edge set $E$,
- an underlying vertex set $T$,
- a reflexivity map $r: T \rightarrow E$
- a ternary predicate in the language of Internal Set Theory, $e: x \circ y$, with $e$ ranging over the set of edges $E$, and $x, y$ ranging over the set of vertices $T$,
subject to the following conditions:
- for each $x \in T, r(x): x \circ-x$, and
- if $e: x \circ-y$ and $e: x^{\prime} \circ y^{\prime}$ then $x=x^{\prime}$ and $y=y^{\prime}$.
3.2.6. One can see every predicated space as a predicated quiver by setting $E=T^{2}$, taking $r$ as the diagonal map $T \rightarrow T^{2}$ and defining $(a, b): x \circ-y$ precisely if $a=x$, $b=y$ and $a \circ-b$. Similarly, one can see any small category as a predicated quiver by treating its objects as vertices, its morphisms as edges, and taking $r$ as the map that sends each object to its identity morphism. We can define maps between predicated quivers analogously to how we defined continuous maps between predicated spaces.
3.2.7. Definition. An $S$-continuous map between two predicated quivers $\left(E_{1}, T_{1}, r_{1}\right)$ and $\left(E_{2}, T_{2}, r_{2}\right)$ consists of a pair of functions $f_{E}: E_{1} \rightarrow E_{2}$ and $f_{T}: T_{1} \rightarrow T_{2}$ subject to the following conditions:
- for every standard $x \in T$, every $y \in T$ and every $e: x \circ-y$ we have $f_{E}(e)$ : $f_{T}(x) \circ f_{T}(y)$, and
- for every $x \in T$, we have $f_{E}\left(r_{1}(x)\right)=r_{2}(x)$.
3.2.8. The fact that predicated quivers treat both topological spaces and categories on an equal footing allows us to define a very simple and well-behaved sheaf-like notion over a predicated quiver: an S-continuous map from the predicated quiver to the category Set, itself seen as a predicated quiver (modulo size issues, which one can treat easily in this case, e.g. via the Replacement axiom). We show that in the topological case this construction gives rise to actual sheaves.


## Predicated Sheaves

3.2.9. Definition. We call an $S$-continuous map from a predicated quiver $(E, T, r)$ to a small subcategory of the category of sets (regarded as a predicated quiver) a predicated sheaf on ( $E, T, r$ ).
3.2.10. When we consider a predicated sheaf $\varphi=\left(f_{E}, f_{T}\right)$ on the predicated space $(T, \circ-)$, we denote the vertex map $f_{T}(x)$ as $\varphi_{x}$, and for $x \circ-y$ the edge map $f_{E}((x, y))$ as $\varphi_{x}^{y}$.
3.2.11. Definition. Consider a predicated sheaf $\varphi$ over the space ( $T, \circ-$ ). We call a function $f:(x \in T) \rightarrow \varphi_{x}$ an $S$-section of $\varphi$ over the $S$-open set $U \subseteq T$ if for all standard $x \in U$ and arbitrary $y \in U$ satisfying $x \circ y$, we have $\varphi_{x}^{y}(f(x))=f(y)$.
3.2.12. Recall that a predicated space $(T, \circ-)$ represents a topological space $(T, \Omega T)$ if the standard S -open sets of $(T, \circ-)$ coincide with the standard open sets of $(T, \Omega T)$. Similarly, a predicated sheaf represents a sheaf if its standard S-sections coincide with the sections of the represented sheaf.
3.2.13. Definition. Take a standard topological space $T$ equipped with a standard sheaf $\mathcal{F}$. We say that the predicated sheaf $\varphi$ over $\boldsymbol{T}$ represents the sheaf $\mathcal{F}$ if the following hold:

- $\mathcal{F}_{x}=\varphi_{x}$ for all $x \in T$, where $\mathcal{F}_{x}$ denotes the stalk of $\mathcal{F}$ at point $x$;
- for every standard open $U$ and section $f \in \mathcal{V}$, the map $x \mapsto[f]_{x}$ forms an Ssection of $\varphi$; and
- for every standard open $U$ and S-section $\bar{f}:(x \in U) \rightarrow \varphi_{x}$ we can find a section $f \in \mathcal{F}(U)$ such that $\forall x \in U . \bar{f}(x)=[f]_{x}$,
where $[f]_{x}$ denotes the sheaf-theoretic germ of the section $f$ at the point $x$.
3.2.14. Lemma. Consider a topological predicated space ( $T, \circ^{-}$), and a standard point $p \in T$. We can find an open set $P \ni p$ that consists entirely of points near $p$, i.e. such that for all $y \in P$ we have $p \circ-y$.

Proof. Take a topological predicated space ( $T, \circ-$ ), and a standard point $p \in T$. Consider any standard finite set $\mathcal{V}$ of open sets containing $p$. The finite intersection $P=$
$\bigcap \mathcal{V}$ contains $p$, and lies inside every open $U \in \mathcal{V}$. By the Idealization axiom, we obtain an open set $P$ containing $p$ that lies inside every standard open $U \in \Omega T$ containing the point $p$. Pick any standard open $N$ with $p \in N$, and consider any $y \in P$. We have $P \subseteq N$, so $y \in N$. This proves that $p \circ-y$.

## Qed.

3.2.15. Theorem. Consider a standard sheaf $\mathcal{F}$ on a standard topological space $T$. We can find a predicated sheaf $\varphi$ that represents $\mathcal{F}$ in the sense that for every standard section $f$ of $\mathcal{F}(U)$ the function $x \mapsto[f]_{x}$ yields an S-section, and for standard S-section $q$ of $\varphi$ over $U$ we can find a function $f$ such that $\forall x \in U . q(x)=[f]_{x}$.

Proof. Consider a standard sheaf $\mathcal{F}$ on a standard topological space $T$. We can find a standard map $c$ that assigns to each germ $a$ around $x$ a representative $c(x, a)=(V, s)$ such that $V$ forms an open neighborhood of $x, s \in \mathcal{F}(V)$ and $[c(x, a)]_{x}=a$. Set $\varphi_{x}=\mathcal{F}_{x}$ and $\varphi_{x}^{y}(a)=[c(x, a)]_{y}$ (define the value of the function however you wish for pairs $(x, y) \in T^{2}$ with $\neg x \circ-y$ ).
First take a standard section $f \in \mathcal{F}(U)$. Notice that we get $\operatorname{st}(U)$ automatically. We want to prove that the map $x \mapsto[f]_{x}$ forms an S-section of the predicated sheaf $\varphi$ over $U$. According to Definition 3.2. 工, this happens precisely if for all standard $x \in U$ and arbitrary $y \in U$ with $x \circ-y$, we have $\varphi_{x}^{y}\left([f]_{x}\right)=[f]_{y}$. Substituting the definition of $\varphi_{x}^{y}$ given above, we want $\left[c\left(x,[f]_{x}\right)\right]_{y}=[f]_{y}$. Since we have $\operatorname{st}(f)$, $\operatorname{st}(x)$ and $\operatorname{st}(c)$, Corollary $\amalg 2 . \square$ guarantees the standardness of the section $c\left(x,[f]_{x}\right)$. Since $\left[c\left(x,[f]_{x}\right)\right]_{x}=$ $[f]_{x}$, we can find a standard open $X$ around $x$ on which $\left.c\left(x,[f]_{x}\right)\right|_{X}=\left.f\right|_{X}$. But $x \circ-y$, so $y \in X$. Since $c\left(x,[f]_{x}\right)$ and $f$ agree on a neighborhood of $y$, they have the same germ at $y$, i.e. $\left[c\left(x,[f]_{x}\right)\right]_{y}=[f]_{y}$. Therefore, the map $x \mapsto[f]_{x}$ forms an S-section of $\varphi$ over $U$. This takes care of one direction.
Now consider a standard S-section $q:(x \in U) \rightarrow \mathcal{F}_{x}$. We want to find a section $f \in$ $\mathcal{F}(U)$ such that $\forall x \in U .[f]_{x}=q_{x}$. We divide this long proof into several claims. If we have some open set $M \subseteq U$ and section $s \in \mathcal{F}(M)$ such that $\forall m \in M .[s]_{m}=q_{m}$, then we call $(M, s)$ a partial solution. Notice that the predicate " $(M, s)$ constitutes a partial solution" has no non-standard parameters, so Transfer applies to it.

Claim 1: A partial solution exists around every standard point $x \in U$.
Take a standard point $x \in U$. By the $S$-section condition, we know the following:

$$
\forall y \in U . x \circ y \rightarrow\left[c\left(x, q_{x}\right)\right]_{y}=q_{y}
$$

Using Lemma B.2.14, we can pick an open set $X$ containing $x$ such that we have $\forall y . y \in$ $X \rightarrow x \circ y$. We know that $c\left(x, q_{x}\right)$ is a standard section defined on a standard open containing $x$. But $X$ lies inside every standard open that contains $x$, so we can restrict $c\left(x, q_{x}\right)$ to $X$. By setting $s=\left.c\left(x, q_{x}\right)\right|_{X} \in \mathcal{F}(X)$, the S -section condition yields

$$
\forall y \in X .[s]_{y}=q_{y}
$$

and so ( $X, s$ ) constitues a partial solution. This proves our claim.
Claim 2: A standard maximal partial solution exists.

Assume that we have a non-empty $I$-indexed chain $\left(M_{i}, s_{i}\right)$ of partial solutions. The union $M=\bigcup_{i \in I} M_{i}$ still is itself an open set, and the $M_{i}$ form an open cover of $M$. We know that if $i<j$ then $\left[s_{i}\right]_{m}=q_{m}=\left[s_{j}\right]_{m}$ for each $m \in M_{i}$, so by the locality condition $s_{i}=\left.s_{j}\right|_{M_{i}}$. By the gluing condition, we get a section $s \in \mathcal{F}(\boldsymbol{M})$, and for each $m \in M$ we have some $i$ such that $m \in M_{i}$, and there $[s]_{m}=\left[s_{i}\right]_{m}=q_{m}$. Thus ( $M, s$ ) gives an upper bound of the chain. By Zorn's lemma, a maximal partial solution exists. By Transfer, a standard maximal partial solution exists.

Claim 3: Standard maximal partial solutions ( $M, s$ ) have $M=U$.
Assume for a contradiction that we have a standard maximal partial solution ( $M, s$ ) with $M \subsetneq U$. This means that we find a point $p \in U$ such that $p \notin M$. By Transfer, we can assume $\operatorname{st}(p)$. We will extend the partial solution to this standard point $p$.
By Claim 1, we can find a partial solution $(P, t)$ with $P \ni p$. Thus we have $\forall m \in$ $M .[s]_{m}=q_{m}$ and $\forall y \in P .[s]_{y}=q_{y}$. This means that $\forall y \in P \cap M .[s]_{y}=[t]_{y}$, so by the locality condition $\left.s\right|_{P \cap M}=\left.t\right|_{P \cap M}$. Since $s$ and $t$ agree on the intersection of their domains of definition, we can glue them together to obtain a partial solution containing both $M$ and $p$, and contradicting the maximality of $M$.
Qed.
3.2.16. From Theorem $B .2 .15$ we know that we can represent any standard sheaf on a standard topological space using a predicated sheaf. We prove the converse as well.
3.2.17. Proposition. Every standard predicated sheaf on a topological predicated space $T$ represents some standard sheaf.

Proof. Consider the standard predicated sheaf $\varphi$ on the standard space $T$. Write $\Phi$ for the standard set $\bigcup_{x \in T} \varphi_{x}$. First for any standard open set $U \in \Omega T$ define

$$
\begin{aligned}
& \mathcal{F}[U]= \\
& \left\{|f \in \mathcal{P}(T \times \Phi)|\left(f:(z \in U) \rightarrow \varphi_{z}\right) \wedge \forall^{s t} x . \forall y . x \circ-y \rightarrow \varphi_{x}^{y}(f(x))=f(y)\right\} .
\end{aligned}
$$

Now we can define our sheaf $\mathcal{F}$ as

$$
\mathcal{F}=\{(U, F) \in \Omega T \times \mathcal{P}(\mathcal{P}(T \times \Phi)) \mid F=\mathcal{F}[U]\} .
$$

For any standard $U \in \Omega T$ we can find exactly one standard set $F$ such that $(U, F) \in \mathcal{F}$. By Transfer, we get that $\mathcal{F}$ is a function. Similarly, for any standard $U \in \Omega T$ the value $\mathcal{F}(U)$ forms a subspace of the function space $(x \in U) \rightarrow \varphi_{x}$, and Transfer ensures that the same holds for arbitrary $U$. Therefore, we can define our restriction maps $\operatorname{res}_{U}^{V}: \mathcal{F}(V) \rightarrow \mathcal{F}(U)$ the obvious way, as restrictions of functions. To see that this map is well-defined, just apply Transfer to the formula

$$
\forall^{s t} U \in \Omega T \cdot \forall^{s t} V \in \Omega T \cdot U \subseteq V \rightarrow \forall^{s t} f \in \mathcal{F}(V) \cdot \operatorname{res}_{U}^{V}(f) \in \mathcal{F}(U)
$$

To prove locality, take an open set $U$, an $I$-indexed open $\operatorname{cover} U_{i}$ of $U$, and two sections $s, t \in \mathcal{F}(U)$. To show that $s=t$, it suffices to show that for all $x \in U$ we have $s(x)=t(x)$. But each $x \in U$ belongs to some $U_{i}$, and we see $s(x)=\operatorname{res}_{U_{i}}^{U}(s)(x)=\operatorname{res}_{U_{i}}^{U}(t)(x)=t(x)$. To prove gluing, take an open set $U$, an $I$-indexed open cover $U_{i}$ of $U$ and an $I$-indexed set of sections $s_{i} \in \mathcal{F}\left(U_{i}\right)$. Provisionally assume the standardness of all these objects. For each $x \in X$ pick an $i$ such that $U_{i} \operatorname{covers} x$, and define the function

$$
\begin{aligned}
& s:(x \in U) \rightarrow \varphi_{x} \\
& s(x)=s_{i}(x)
\end{aligned}
$$

Since the sections $s_{i}$ agree on all intersections of the cover, the function $s$ is well-defined and standard. We need to prove that $s \in \mathcal{F}(U)$, which happens precisely if $s$ satisfies $\forall^{s t} x \in U . \forall y \in U . x \circ-y \rightarrow \varphi_{x}^{y}(s(x))=s(y)$. So take any standard $x \in U$. We can find some $i \in I$ such that $U_{i}$ covers $x$. By Transfer we can pick such $i$ (and hence $U_{i}$ and $s_{i}$ ) as standard. Hence, by $x \circ-y$ we get that $y \in U_{i}$. Moreover, by the standardness of $s_{i} \in \mathcal{F}\left(U_{i}\right)$, we get that $\varphi_{x}^{y}\left(s_{i}(x)\right)=s_{i}(y)$. But $s_{i}(x)=s(x)$ and $s_{i}(y)=s(y)$, so $\varphi_{x}^{y}(s(x))=$ $s(y)$, and so $s \in \mathcal{F}(U)$ as desired. Transfer gets rid of the provisional assumptions, and
we conclude that $\mathcal{F}$ forms a sheaf over the space $T$.

## Qed.

## The Alexandroff case

3.2.18. Over an Alexandroff space $(T, \leq)$, Theorem $B .2 .15$ acquires a much stronger form: every sheaf, whether standard or non-standard, corresponds to a predicated sheaf.
3.2.19. To a point $a \in T$ of the Alexandroff space, we can associate the upper set $\uparrow a=$ $\{x \in T \mid a \leq x\}$, and $\uparrow a$ forms the smallest open set containing $a$. Given a sheaf $\mathcal{F}$ over $T$ and sections $s, t \in \mathcal{F}(U)$, we have $[s]_{a}=[t]_{a}$ precisely if $\left.s\right|_{\uparrow a}=\left.t\right|_{\uparrow a}$. Hence we can identify the stalk $\mathcal{F}_{a}$ with the set of local sections $\mathcal{F}(\uparrow a)$.
3.2.20. By contravariance, whenever we have $a \leq b$, we have $\uparrow b \subseteq \uparrow a$. Functoriality of $\mathcal{F}$ gives a map $\mathcal{F}_{a}^{b}: \mathcal{F}(\uparrow a) \rightarrow \mathcal{F}(\uparrow b)$. Since we identify stalks $\mathcal{F}_{a}$ with sets of local sections $\mathcal{F}(\uparrow a)$, we can see $\mathcal{F}_{a}^{b}$ as a map $\mathcal{F}_{a}^{b}: \mathcal{F}_{a} \rightarrow \mathcal{F}_{b}$, corresponding directly to the $\operatorname{map} \varphi_{a}^{b}$ of Theorem 3.2.15.

## Local definition

3.2.21. The correspondence between sheaves and predicated sheaves allow us to define sheaves in a local, pointwise fashion. This approach works very well for sheaves whose local behavior is easier to specify than its global behavior. Water flow in a network of pipes provides a salient example. Locally, we only have one constraint: the amount of water flowing into a point should equal the amount of water flowing out from that point. However, specifying a global flow requires understanding the topology of the entire pipe network.
3.2.22. As a simple example, consider the three-way junction $Y$ of pipes depicted on Figure B.I. Treat the network $Y$ as a subspace of $\mathbb{R}^{2}$ equipped with the usual Euclidean topology. We want to define a sheaf whose global sections correspond to possible flows on the network. We define a predicated sheaf as an S-continuous map of quivers $\varphi$. We begin with the vertex map (the stalks) as follows:

$$
\varphi_{x}= \begin{cases}\left\{(l, u r, u l) \in \mathbb{R}^{3} \mid l+u r+u l=0\right\} & \text { if } x=p \\ \left\{(l, r) \in \mathbb{R}^{2} \mid l+r=0\right\} & \text { otherwise }\end{cases}
$$

We can define the transition maps by cases as well:

$$
\varphi_{x}^{y}=\left\{\begin{array}{lll}
(l, u r, u l) \mapsto(-u r, u r) & & \text { if } x=p \text { and } y \in U R \\
(l, u r, u l) \mapsto(-u l, u l) & & \text { if } x=p \text { and } y \in U L \\
(l, u r, u l) \mapsto(-l, l) & & \text { if } x=p \text { and } y \in L \\
(-a, a) \mapsto(-a, a) & & \text { otherwise. }
\end{array}\right.
$$



Figure 3.1: A three-way junction on a network.
3.2.23. Problem. Consider a small category $\mathfrak{C}$ equipped with a coverage or Grothendieck topology. Can we turn $\mathfrak{C}$ into a predicated quiver in such a way that sheaves on $\mathfrak{C}$ correspond to sheaves in the sense of Grothendieck?

## Chapter 4

## Mechanization

### 4.1 Computer-verified proofs

4.1.1. In 1998, Simpson [44] gave a counterexample to the Homotopy Hypothesis, contradicting an earlier, widely accepted argument by Kapranov and Voevodsky [27]. It took until 2013 for Voevodsky to track down the error in his own argument. This long struggle led Voevodsky to formulate his Univalent Foundations program [48], which ultimately led to significant advances in the computer verification (mechanization) of proofs, including the development of the field of research now known as Homotopy Type Theory [45].
4.1.2. Unfortunately, our more modest field appears no less vulnerable to erroneous arguments than algebraic topology. The main result of Chapter 2, Theorem 2.3.9, had a direct precursor in the form of the Manevitz-Weinberger theorem on discrete circle actions (Theorem 2.3.12). However, the original proof of that result (see [30]-Theorem 1) contained a significant mistake that went unnoticed until Imamura [25] found and fixed the problem a full twelve years later.
4.1.3. The warnings of Sections $[.[.3]$ and $[.2 .13]$ suggest that Internal Set Theory (and to some extent model-theoretic non-standard analysis) might have unusual susceptibility to accidental mistakes due to its reliance on syntactic restrictions on set formation and induction principles that have universal validity in the rest of mathematics. Given the history of Theorem [2.3.12, we decided to computer-verify our proof of Theorem 2.3.9 by formalizing the argument in an extension of Martin-Löf Type Theory, and checking the correctness of the resulting proof script using the Agda proof assistant.
4.1.4. Martin-Löf Type Theory (often called Intuitionistic Type Theory) is the formal system at the heart of the Homotopy Type Theory [45] program. Type theory can serve as a self-contained alternative to classical first-order logic and ZFC Set Theory as a foundation for mathematics, and many popular proof assistants and interactive theorem proving tools (such as Agda, Coq, Lean, NuPRL) use Martin-Löf Type Theory or other closely related type theories as their foundation. In particular, the Coq proof assistant played an essential role in the celebrated computer-verified proofs of the Appel-Haken [II7] and Feit-Thompson theorems [I8]].
4.1.5. Agda is a pure functional dependently-typed programming language introduced by Ulf Norell [36] and developed chiefly at Chalmers University, Gothenburg. Through a correspondence in the Curry-Howard style (see [15]-Chapter 3 for an overview), one can express mathematical proofs as Agda programs by considering the type of an Agda program as a mathematical statement and a valid program of that type as a mathematical proof of the statement. The type system of Agda contains as a subset all the usual constructions of Martin-Löf Type Theory, so one can formulate proofs in Martin-Löf Type Theory inside the language of Agda, then use Agda's type checker to verify their correctness. Agda works as a proof assistant, as opposed to an automated theorem prover: it does not generate proofs by itself, but verifies proof scripts that have been encoded into its programming language by a human mathematician. Agda provides many high-level features including data type definitions, universe polymorphism, implicit arguments, pattern matching, and an interactive environment to facilitate program/proof development in Martin-Löf Type Theory.
4.1.6. Agda has been used as a proof assistant in over 200 published works in computer science and in mathematics (see the official Agda website [10] for a full list). This includes formalized results about fundamental groups in Homotopy Type Theory [39] and isomorphism theorems in Universal Algebra [19] among others. Most importantly, Xu [49] developed an Agda formalization of the functional interpretation [46] of nonstandard Heyting arithmetic H (a weak subsystem of Nelson's Internal Set Theory). These preceding developments made Agda a salient choice for our own mechanization work.
4.1.7. While earlier publications dealing with Internal Set Theory in Agda focused exclusively on results about subsystems of Internal Set Theory and used Martin-Löf Type Theory as a meta-theory for their investigations, our current development involves
working directly inside an extension of Martin-Löf Type Theory that can faithfully represent and handle proofs that rely on the Idealization, Standardization and Transfer principles of Internal Set Theory. To the best of our knowledge, no other proof in Internal Set Theory has been formalized in such a way to date.
4.1.8. Martin-Löf himself proposed non-standard-analytic supplements to his type theory, reminiscent of the methods used in contemporary research on guarded types. However, these extensions do not allow us to transcribe proofs written in Nelson-style Internal Set Theory into type theory. Hence, we propose our own extensions, which augment Martin-Löf Type Theory with a hierarchy of universes for external propositions, along with an external standardness predicate. The direct goal of these extensions is to serve as a foundation for our Agda proof of Theorem 2.3.2.

## Type theory, intuitively

4.1.9. In this chapter we present our extensions to Martin-Löf Type Theory and describe how to work with the extensions using the features available in Agda. We strive to keep our presentation mostly self-contained and accessible to those without previous experience with type theories. Due to space constraints, we cannot expect to succeed in this endeavor. The first few chapters of the IAS book on Homotopy Type Theory [45] should provide adequate descriptions and further pointers to understand the details we elide in our presentation. Those readers who enjoy category theory may prefer to start with Hofmann's ${ }^{[10}$ Syntax and Semantics of Dependent Types [22] instead. For a full, syntactic introduction to a specific formalization of Martin-Löf Type Theory, we recommend [35]-Section 1.3. Do note however that modern versions of the Agda proof assistant eschew the cumulative ${ }^{\mathbb{D}}$ hierarchy presented there in favor of universe polymorphism [43]. For the sake of simplicity and readability, we omit all discussion and formalism related to universe polymorphism from our thesis.
4.1.10. Martin-Löf Type Theory belongs to the family of typed $\lambda$-calculi, so we should begin our overview by discussing the intuitive meaning of the primary operations of the $\lambda$-calculus, abstraction and application (substitution). The terms, judgments rules

[^8]and proof trees given in this subsection serve only as examples to illustrate general principles of $\lambda$-calculi: they do not form part of the extended Martin-Löf Type Theory presented in the remainder of the section!
4.1.11. When we treat an expression as a function, we must clearly identify one of the variables occurring in the expression as the argument of the function. In mathematics, one usually uses arrow notation for this purpose, writing $x \mapsto x^{2}$ for the squaring function (unless the function already has a name, e.g. when one writes the sine function as $\sin$ instead of $x \mapsto \sin x$ ). We understand that whatever meaning the variable $x$ had outside the scope of this notation disappears in the expression that follows. For example, even if we had $x=1$, the expression $x \mapsto x^{2}$ would not denote $1^{2} \in \mathbb{R}$, but some function $\mathbb{R} \rightarrow \mathbb{R}$ that squares its argument; similarly, we would not distinguish between the functions $x \mapsto x^{2}$ and $y \mapsto y^{2}$. Logically speaking, $x \mapsto \ldots$ binds the variable $x$ in $\ldots$, the same way the quantifier binds $x$ in $\forall x \in \mathbb{R} . x^{4}>0$ or the integral sign binds $x$ in the indefinite integral $\int x^{5} d x$. As customary in logic, we refer to "not bound" variables as free, and to each expression we associate its set of free variables the obvious way. E.g. when + denotes a constant symbol, then the set of free variables of $x+y$ consists of $x$ and $y$, but the set of free variables of $\lambda y \cdot x+y$ consists of $x$ only. In the $\lambda$-calculus, the $\lambda$ symbol performs the role taken by $\mapsto$ in ordinary mathematical notation, so one would write the squaring function as $\left(\lambda x \cdot x^{2}\right)$.
4.1.12. To use a function, one applies it to an argument. This gives rise to the process of application, which the syntax of the $\lambda$-calculus represents by juxtaposition: one writes the application of $f$ to $x$ as $f x$. Writing application as juxtaposition optimizes for legibility, but one could equally well have written $\operatorname{app}(f, x)$, or $f(x)$ - as one would do in ordinary mathematics. So one might write $\left(\lambda x \cdot x^{2}\right) 3$ to denote the application of the squaring function to the number symbol 3 .
4.1.13. Application and $\lambda$-abstraction form a part of the essential core syntax of every $\lambda$-calculus: the terms of every $\lambda$-calculus include at least these two constructions, along with other ones specific to the calculus under consideration. By convention, we omit superfluous parentheses in terms the following manner:

- $\lambda x . \lambda y . P$ stands for $(\lambda x .(\lambda y . P))$,
- $F X Y$ stands for $((F X) Y)$.
4.1.14. Distinct from application, one has reduction, the passage from e.g. $(\lambda x . x+x) 3$
to $3+3$. We define reduction using a substitution operation: given an expression $P$ the reduction of the application $(\lambda x . P) t$ gives $P[x \leftarrow t]$, where $t[x \leftarrow t]$ denotes the substitution of the expression $t$ for each occurrence of the variable $x$ in the term $t$ (note that $[-]$ does not belong to the syntax: it counts as an instruction meaning "perform the substitution", not "add [-] to the formula"). We have one complication, so-called variable capture: $(\lambda x . \lambda y \cdot x+y) y$ should not reduce to $(\lambda y \cdot y+y)$ but rather to $\left(\lambda y^{\prime} \cdot y+y^{\prime}\right)$. We leave the proper definition of such a capture-avoiding substitution operation as an exercise for the reader. In the next subsection, where we give the formal definition of type theory, we represent computational rules such as reduction (and reductions done in reverse) using the notion of definitional equality.
4.1.15. Martin-Löf Type Theory is a typed $\lambda$-calculus. Typed calculi are deductive systems, in which we deduce typing judgments using a collection of permitted inference rules. Given two terms of the calculus, $t, T$, a typing judgment has the form $t: T$, which we read as "the term t has type T". One sees typing judgments as largely analogous to set membership, for example one might make typing judgments such as $\left(\lambda x . x^{2}\right): \mathbb{Q} \rightarrow$ $\mathbb{Q}_{+}$or $\sqrt{2}: \mathbb{R}$. However, unlike set membership, which forms part of the term syntax of set theory, a typing judgment is not itself a term. For example, $\neg(x: \mathbb{R})$ does not count as a judgment, or even a syntactically well-formed expression. Inference rules have the form

where $H_{i}$ and $C$ denote judgments. The rule above says that once we have made all the judgments $H_{i}$, we are allowed to make the judgment $C$. As an example, take the inference rule

$$
\frac{f: A \rightarrow B \quad x: A}{f x: B} \text { FUN-ELIM }
$$

which states that for any $A, B$ variable symbols, if we judge $f$ to have type $A \rightarrow B$ (a function from $A$ to $B$ ), and we judge $x$ to have type $A$, then we can judge the term ( $f x$ ) to have type $\boldsymbol{B}$. A derivation (or proof) of a judgment is a rooted tree constructed using such inference rules, with the conclusion of the proof sitting at the root of the tree. E.g.
forms a proof tree of conclusion add $11: \mathbb{R}$ and uses three different inference rules, Real-Add, Real-One and Fun-Elim. The reader should write down proper formulations of these rules as an exercise; the reader interested in learning ${ }^{[6]}$ even more about proof trees is referred to to Girard's excellent Proofs and Types [15]].
4.1.16. In a typed setting, free variables require special care: barring further information, how does one make any kind of type judgment about the type of $f x$ without knowing the type of the variable $x$ ?! Naively, one might think that annotating each free variable with its type (e.g. writing $x_{: \mathbb{N}}$ instead of $x$ ) would solve this problem. In practice, this does not work, since the set of valid types depends on the judgments that have been made previously. For example, writing $x_{: y}$ is valid if we already know that $y$ takes one of the values $\mathbb{R}, \mathbb{N}$, but not valid if $y$ might take a value that does not count as a type, say 42. De Bruijn [IU] gave a satisfactory solution to this issue in the form of contextual judgments. A context $\Gamma$ consists of a list of typed variables such that the free variables of each type appear earlier in the list than the type itself. A contextual typing judgment has the form $\Gamma \vdash t: T$, where all the free variables of $t$ and $T$ appear in the context $\Gamma$. We phrase our formalization of (extended) Martin-Löf type theory purely in terms of contextual judgments.

### 4.2 Extended type theory

4.2.1. Here we present an extended variant of Martin-Löf Type Theory that has the same relationship to ordinary Martin-Löf Type Theory as Internal Set Theory has to Zermelo-Fraenkel Set Theory, and can cope with Nelson-style reasoning used in the proof of Theorem 2.3.9. The main innovations of our proposed system include a hierarchy of universes indexed by small ordinals that lets us treat external sets and predicates such as st( $(-)$, and a new kind of judgment that allows for a uniform treatment of Transfer schemata. Moreover, we identify a subsystem ${ }^{\text {m }}$ of our extended type theory that we can effectively encode into Agda, allowing us to computer-verify our proof without having to extend or modify the Agda proof assistant.

[^9]
## Contexts, terms and judgments

4.2.2. In the following, we assume an inexhaustible (at the very least countable) supply of variable symbols, which we usually denote by lower-case letters from the very end of the English alphabet.
4.2.3. Definition. We call an ordinal $\lambda$ such that $\lambda<\omega+\omega$ a universe level or level for short. We usually use the letters $i, j, \ell$ or $m$ for variables that range over universe levels.
4.2.4. Definition. In the following, the variables $\Gamma, \Delta$ range over contexts, while $s, t, S$ range over terms. We distinguish four sorts of judgments in our type theory:

1. Judgments $\Gamma \vdash$ read as " $\Gamma$ forms a valid context".
2. Judgments $\Gamma \vdash t: S$ read as "the term $t$ has type $S$ in the context $\Gamma$ ".
3. Judgments $\Gamma \sim \Delta \vdash$ read as " $\Gamma$ and $\Delta$ denote the same context by definition".
4. Judgments $\Gamma \vdash s \sim_{s} t$ read as "the expressions $s$ and denote the same inhabitant of type $S$ in the context $\Gamma$ by definition",
5. Judgments $\Gamma \vdash s \Leftrightarrow_{\ell} t$ read as "the terms $s$ and $t$ form a transfer pair at universe level "".
4.2.5. We define the contexts, terms, inference rules and proof trees of type theory in terms of each other ${ }^{\square}$ via a single, gargantuan, mutually inductive definition. The next few pages contain multiple Definition blocks (from 4.2 .8 to 4.2 .35 ), but one should consider them as fragments of a single long definition, which does not conclude until we account for every single rule.
4.2.6. Definition. We maintain a distinction between the full calculus and its safe fragment. We say that a derivation belongs to the safe fragment if it does not contain any rule whose name contains the symbol $\star$. Some rules require a safety assumption on some of their premises: we mark these assumptions by writing $\vdash^{s}$ instead of $\vdash$ in the turnstile of the hypothesis. For example, if we write

$$
\frac{\Gamma \vdash^{s} A: \mathbf{S e t}_{1} \quad \Gamma \vdash x: A}{x: \mathbf{S e t}_{0}, \Gamma \vdash} \star \text { example rule (not an actual rule) }
$$

[^10]then the example rule requires that the derivation of its left premise $\Gamma \vdash A: \boldsymbol{S e t}_{1}$ occur in the safe fragment (i.e. not use rules marked with the $\star$ symbol), while the derivation of the right premise $\Gamma \vdash x: A$ may use any rule, including those marked with $\star$. Similarly, since the name of the example rule itself contains the $\star$ symbol, any premise of any rule marked with $\vdash^{s}$ cannot use the example rule in its derivation.

## Rules: Contexts and variables

4.2.7. First we describe the rules of context formations. These rules have conclusions labeled with judgments of the form $\Gamma$. Recall that we read these judgments as " $\Gamma$ forms a valid context". For the sake of readability, the empty context $\emptyset$ receives special treatment in the syntax: we simply write $x_{1}: T_{1}$ to denote the context $\emptyset, x_{1}: T_{1}$.
4.2.8. Definition. Using the variable conventions discussed above and in the preceding definitions, we take the following context formation rules in our type theory.

In the rule CTX-Ext, we require that the variable $x$ not occur in the context $\Gamma$. We take the following variable introduction rule:

$$
\frac{\Gamma, x: A, \Delta \vdash}{\Gamma, x: A, \Delta \vdash x: A} \mathrm{VAR}
$$

The presentation of the rules continues in Definition 4.2.10.

## Rules: Context equality

4.2.9. The rules presented in this subsection pertain to judgments of the form $\Gamma \sim \Delta$, read as " $\Gamma$ and $\Delta$ denote the same context by definition". These rules ensure that $\sim$ behaves like an equivalence relation, and tell us when we can consider two contexts equal. Other rules will ensure that we can substitute equal contexts for each other (recall that we give these definitions mutually inductively, as described in Section 4.2.5).
4.2.10. Definition. We take the following context equality rules.

$$
\overline{\emptyset \sim \emptyset \vdash} \text { CEQ-NULL } \quad \frac{\Gamma \sim \Delta \vdash \quad \Gamma \vdash A \sim B: \mathbf{S e t}_{i}}{\Gamma, x: A \sim \Delta, x: B \vdash} \text { CEQ-EXTN }
$$

$$
\frac{\Gamma \sim \Delta \vdash}{\Delta \sim \Gamma \vdash} \text { CEQ-SYMM } \quad \frac{\Gamma \sim \Pi \vdash \quad \Pi \sim \Delta \vdash}{\Gamma \sim \Delta \vdash} \text { CEQ-Tran }
$$

Mirroring the constraints of the rule CTX-Ext, we require that the variable $x$ not occur in the contexts $\Gamma$ and $\Delta$ within the rule CEQ-Extn. The presentation of the rules continues in Definition 4.2.12.

## Rules: Term equality

4.2.11. Recall that we read judgments of the form $\Gamma \vdash s \sim_{S} t$ as "the expressions $s$ and $t$ denote the same term of type $S$ in the context $\Gamma$ by definition". Type theory has its own internal definition of equality between objects (equality types or path types); one must not confuse those with the equality judgments presented here, which concern only the equations that hold between terms "by definition". We always allow replacement of definitionally equal terms and contexts with each other in any part of any judgment, while eliding some of the congruence rules asserting this fact in our presentation.
4.2.12. Definition. We take the following term equality rules.

$$
\begin{aligned}
& \frac{\Gamma \vdash t: A}{\Gamma \vdash t \sim_{A} t} \text { TEQ-REFL } \quad \frac{\Gamma \vdash s \sim_{A} t}{\Gamma \vdash t \sim_{A} s} \text { TEQ-Symm } \\
& \frac{\Gamma \vdash s \sim_{A} p \quad \Gamma \vdash p \sim_{A} t}{\Gamma \vdash t \sim_{A} s} \text { TEQ-TRAN } \\
& \frac{\Gamma \sim \Delta \quad \Gamma \vdash A \sim_{\text {Set }_{i} B} \quad \Gamma \vdash t: A}{\Delta \vdash t: B} \text { TEQ-SUBT } \\
& \frac{\Gamma \sim \Delta \quad \Gamma \vdash A \sim_{\operatorname{Set}_{i}} B \quad \Gamma \vdash s \sim_{A} t}{\Delta \vdash s \sim_{B} t} \text { TEQ-SUBE }
\end{aligned}
$$

The presentation of the rules continues in Definition 4.2.J7.

## Rules: Universes and Type Formation

4.2.13. The type theory of Agda (strictly speaking, Martin-Löf Type Theory with a stratified hierarchy of large types) comes equipped with a hierarchy of universes

$$
\operatorname{Set}_{0}: \text { Set }_{1}: \text { Set }_{2}: \ldots
$$

Generally, we can think of $\mathbf{S e t}_{0}$ as the "set of all (small) sets", and judgments $S$ : Set $_{0}$ as stating " $S$ is a set". Under a Curry-Howard interpretation, one might as well read this as " $S$ is a proposition". The same way set theories have to avoid constructing the set of all sets, type theory cannot admit $\operatorname{Set}_{\lambda}$ : $\operatorname{Set}_{\lambda}$ on pain of contradiction: if we take such a rule, Girard's paradox (a variant of the Burali-Forti paradox) makes the resulting system inconsistent [24]. To avoid contradiction while giving a type to $\operatorname{Set}_{0}$, we can introduce the universe hierarchy, and take $\operatorname{Set}_{0}:$ Set $_{1}$, Set $_{1}:$ Set $_{2}$ etc.
4.2.14. Internal Set Theory requires a strict separation between internal predicates/propositions and external ones, such as the proposition $\operatorname{st}(x)$. Uses of the latter usually fall under much stricter rules (e.g. not available for use within induction arguments, as in L.L.(0). We shall use a second hierarchy of universes, indexed by the levels $\omega, \omega+1, \ldots$, for these external predicates and propositions.
4.2.15. We use ordinal indices for the external hierarchy as a notational convenience, not because of some deep relationship between external predicates and the ordinal hierarchy. Indeed, since our type theory does not have cumulativity, there is no typetheoretic relationship between $\mathbf{S e t}_{0}$ and $\mathbf{S e t}_{\omega}$; we could treat internal and external sets as two completely disjoint hierarchies and use the notation $\mathbf{E S e t}_{0}:$ ESet $_{1}: \ldots$ for the latter. The reasons for not doing this are two-fold. The first is desire for parsimony: the standard ordinal operations max and + make for a shorter presentation, and not having to include separate rules for the Set- and ESet-hierarchies essentially halves the number of necessary rules. The second consideration is much more pragmatic: we wish to check our proofs using an unmodified Agda proof checker, and current versions of Agda already have an option for doing some "unsafe" things with Set ${ }_{\omega}$ without destroying compatibility with standard universe-polymorphic Agda code.
4.2.16. Type formation rules control how one can introduce new types. Like universe formation rules, the conclusion of such rules have the form $\Gamma \vdash t: \mathbf{S e t}_{i}$ for some $i$, asserting that the term $t$ inhabits some universe of types. One can regard the universe
formation rules themselves as special type formation rules for the types Set $_{i}$. We give the type formation rules for each primitive type of the theory in its respective section.
4.2.17. Definition. We admit the following universe formation rules:

$$
\begin{gathered}
\frac{\Gamma \vdash}{\Gamma \vdash \boldsymbol{\operatorname { S e t }}_{\ell}: \boldsymbol{\operatorname { S e t }}_{\ell+1}} \text { UnIV-INT } \\
\frac{\Gamma \vdash}{\Gamma \vdash \boldsymbol{\operatorname { S e t }}_{\omega+\ell}: \boldsymbol{\operatorname { S e t }}_{\omega+\ell+1}} \star \text { UnIV-EXT }
\end{gathered}
$$

The variable $\ell$ ranges over universe levels satisfying $\ell<\omega$, the + symbol denotes the usual addition operation on the ordinals. Notice that we never have $\boldsymbol{S e t}_{i}: \boldsymbol{S e t}_{\lambda}$ for any limit ordinal $\lambda \in\{0, \omega\}$. The presentation of the rules continues in Definition 4.2.19.

## Rules: Dependent function type

4.2.18. Here we introduce the dependent function type $\forall x: A . B$. We can get a fairly close set-theoretic analogue of this type in classical Zermelo-Fraenkel Set Theory by taking an $A$-indexed family of sets $B_{x}$, and forming the set

$$
P=\left\{f: A \rightarrow \bigcup_{x \in A} B_{x} \mid \forall x \in A \cdot f(x) \in B_{x}\right\} .
$$

In set theory, we would denote the set $P$ as $\prod_{x \in A} B_{x}$, and refer to it as the infinite Cartesian product of the family $B_{x}$. In type theory, the dependent function type loosely corresponds to this set $P$. As such, we might denote the dependent function as ( $x$ : $A) \rightarrow B$ or even as a product $\prod_{x: A} B$; through the Curry-Howard correspondence, we can identify dependent products with (higher-order) universal quantification, and since we take this perspective, we shall write it as $\forall x: A . B$. When the variable $x$ does not occur at all in the term $B$, we write $A \rightarrow B$ (like function spaces in Set Theory, or like implication $\rightarrow$ via the Curry-Howard correspondence). Agda provides some form of support for all of these notations. The application operation discussed in Section [.L.L2 provides the elimination rule for dependent functions, while $\lambda$-abstraction acts as the introduction rule. The computation rules formalize reduction by substitution.
4.2.19. Definition. We admit the following dependent function rules:

$$
\begin{gathered}
\frac{\Gamma \vdash A: \mathbf{S e t}_{i} \quad \Gamma, x: A \vdash B: \mathbf{S e t}_{j}}{\Gamma \vdash(\forall x: A . B): \operatorname{Set}_{\max \{i, j\}}} \text { DFUN-FORM } \\
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x . t: \forall x: A . B} \text { DFUN-INTR } \\
\frac{\Gamma \vdash f: \forall x: A . B \quad \Gamma \vdash t: A}{\Gamma \vdash f t: B[x \leftarrow t]} \text { DFUN-ELIM } \\
\frac{\Gamma, x: A \vdash t: B \quad \Gamma \vdash s: A}{\Gamma \vdash(\lambda x . t) s \sim_{B[x \leftarrow s]} t[x \leftarrow s]} \text { DFUN-ComP }
\end{gathered}
$$

where the variables $i, j$ range over all possible universe levels, including levels over $\omega$ and $t[x \leftarrow s]$ denotes the capture-avoiding substitution of the term $s$ for each occurrence of the variable $x$ in the term $t$. The presentation of the rules continues in Definition 4.2 .21 .

## Rules: Dependent sum type

4.2.20. Similarly to the set-theoretic analogue of $\forall x: A . B$, we can approximate the meaning of the dependent sum type $\exists x: A . B$ very well in classical ZFC Set Theory by starting with an $A$-indexed family of sets $\boldsymbol{B}_{x}$, and forming the set

$$
P=\left\{(a, b) \in A \times \bigcup_{x \in A} B_{x} \mid b \in B_{a}\right\}
$$

using Comprehension and Union. For the two-element index set $A=\{1,2\}$, the construction gives the disjoint union $B_{1} \uplus B_{2}$, and for a constant family $B_{x}=B$ the binary Cartesian product $A \times B$. Indeed, if $x$ does not occur in $B$, we will write $A \times B$ for $\exists x: A . B$. Through the Curry-Howard correspondence, we can identify dependent sums with (higher-order) existential quantification, and $A \times B$ with the conjunction $A \wedge B$. The introduction rule corresponds to the formation of an ordered pair: if $t: A$ and $s: B_{t}$, then we have $(t, s): \exists x: A . B_{x}$. The elimination rules correspond to coordinate projections.
4.2.21. Definition. We admit the following dependent sum rules:

$$
\begin{gathered}
\frac{\Gamma \vdash A: \mathbf{S e t}_{i} \quad \Gamma, x: A \vdash B: \mathbf{S e t}_{j}}{\Gamma \vdash(\exists x: A . B): \mathbf{S e t}_{\max \{i, j\}}} \text { DSUM-FORM } \\
\frac{\Gamma \vdash t: A \quad \Gamma \vdash s: B[x \leftarrow t]}{\Gamma \vdash(t, s):(\exists x: A . B)} \text { Dsum-INTR }
\end{gathered}
$$

$$
\begin{gathered}
\frac{\Gamma \vdash t:(\exists x: A . B)}{\Gamma \vdash \pi_{1} t: A} \text { Dsum-ELIML } \frac{\Gamma \vdash t:(\exists x: A . B)}{\Gamma \vdash \pi_{2} t: B\left[x \leftarrow \pi_{2} t\right]} \text { Dsum-ELIMR } \\
\frac{\Gamma \vdash t: A \quad \Gamma \vdash s: B[x \leftarrow t]}{\Gamma \vdash \pi_{1}(t, s) \sim_{A} t} \text { Dsum-ComPL } \\
\\
\frac{\Gamma \vdash t: A \quad \Gamma \vdash s: B[x \leftarrow t]}{\Gamma \vdash \pi_{2}(t, s) \sim_{B[x \leftarrow t]} s} \text { Dsum-ComPR }
\end{gathered}
$$

where as usual $t[x \leftarrow s]$ denotes the substitution of the term $s$ for each occurrence of the variable $x$ in the term $t$. The presentation of the rules continues in Definition 4.2.24.

## Rules: Empty type

4.2.22. We call $\perp$ the empty type. It corresponds (unsurprisingly) to the empty set in set theory. Through the Curry-Howard perspective, $x: \perp$ acts as a proof of a pure contradiction; as such, we can represent negation as $A \rightarrow \perp$, and we sometimes abbreviate the latter as $\neg A$. The elimination rule for the empty type corresponds to the principle of explosion: if we manage to produce a proof of a contradiction, anything follows. The empty type lacks inhabitants, and so it does not have any introduction rules.
4.2.23. Due to the presence of the standardness predicate st, and in line with Section IL.L.L, our extended type theory restricts inductive elimination rules to internal levels of the universe hierarchy $\left(\mathbf{S e t}_{i}\right.$ for $\left.i<\omega\right)$. This limitation does not affect the elimination rule for the empty type, which remains valid for all $i$, including $i \geq \omega$.
4.2.24. Definition. We admit the following empty type rules:

$$
\frac{\Gamma \vdash}{\Gamma \vdash \perp: \boldsymbol{S e t}_{0}} \text { EMPT-FORM }
$$

$$
\frac{\Gamma \vdash t: \perp \quad \Gamma \vdash A: \text { Set }_{i}}{\Gamma \vdash \text { absurd } A t: A} \text { Empt-ELim }
$$

where the variable $i$ ranges over all universe levels. The presentation of the rules continues in Definition 4.2.27.

## Rules: Equality type

4.2.25. Definitional equality $\sim$ expresses the computation rules associated with types that hold by definition; Agda will perform such substitutions automatically using simple term rewriting. The propositional equality types have a different purpose: they serve as types for equality proofs, internal to the theory. Under a Curry-Howard interpretation, we read $p: a={ }_{S} b$ as " $p$ proves that the inhabitant $a$ of type $S$ equals the inhabitant $b$ of the same type". Agda does not perform substitutions along propositional equalities automatically. The introduction rule for the equality type states the reflexivity of equality (for each $x: T, x={ }_{T} x$ ).
4.2.26. One can choose between multiple different elimination rules for the equality type. We take the strongest elimination rule, Streicher's rule K as our equality elimination rule since it's the default option in Agda's type theory as well. Our formalized proof of Theorem 2.3.9 does not rely on this choice in any form and would work even if we took a weaker elimination rule (such as the elimination rule J commonly used in Homotopy Type Theory). However, we require that the elimination rule permit elimination into any universe level, including levels $i \geq \omega$ of the external hierarchy, since we need the capability of transporting standardness predicate. That is, if we have a proof of $x=y$, and a proof of $\operatorname{st}(x)$, we want to have some way to obtain the conclusion st ( $y$ ). At first glance, this may seem like a departure from Internal Set Theory. As a matter of fact, Internal Set Theory does put forth an identical requirement, but sweeps it under the rug of first-order logic: $\forall x . \forall y \cdot x=y \wedge \operatorname{st}(x) \rightarrow \operatorname{st}(y)$ does hold in Internal Set Theory, not as an axiom of Internal Set Theory, but as an axiom of first-order logic. Since type theory acts as its own underlying logic, it has to make provision for this requirement explicitly.
4.2.27. Definition. We admit the following equality type rules:

$$
\frac{\Gamma \vdash A: \mathbf{S e t}_{i} \quad \Gamma \vdash t: A \quad \Gamma \vdash s: A}{\Gamma \vdash\left(t={ }_{A} s\right): \mathbf{S e t}_{i}} \text { EQT-FORM }
$$

$$
\begin{gathered}
\frac{\Gamma \vdash t: A}{\Gamma \vdash \operatorname{refl} A t:\left(t={ }_{A} t\right)} \text { EQT-InTR } \\
\frac{[x 1] \quad[x 2] \quad[x 3] \quad[x 4] \quad[x 5]}{\Gamma \vdash \mathrm{K} A(\lambda x . \lambda p . C) t q P: C[p \leftarrow P, x \leftarrow t]} \text { EQT-ELIMK } \\
\frac{[x 1] \quad[x 2] \quad[x 3] \quad[x 4]}{\Gamma \vdash \mathrm{K} A(\lambda x . \lambda p . C) t q(\operatorname{refl} A t) \sim_{C[p \leftarrow \mathrm{refl} A t, x \leftarrow t]} q} \text { EQT-ComP }
\end{gathered}
$$

where

$$
\begin{aligned}
& \mathrm{x} 1: \Gamma \vdash A: \operatorname{Set}_{i} \\
& \mathrm{x} 2: \Gamma, x: A, p: x={ }_{A} x \vdash C: \mathbf{S e t}_{j} \\
& \mathrm{x} 3: \Gamma \vdash t: A \\
& \mathrm{x} 4: \Gamma \vdash q: C[p \leftarrow \mathrm{refl} A t, x \leftarrow t] \\
& \mathrm{x} 5: \Gamma \vdash P: t={ }_{A} t
\end{aligned}
$$

and the variables $i, j$ range over all universe levels, internal or external. The presentation of the rules continues in Definition 4.2.29.

## Rules: Transfer

4.2.28. Since Standardization works over any predicate, internal or external, we can admit it as a proper axiom over all universe levels. Similarly, we can admit Idealization over internal predicates by admitting it as a proper axiom over universe levels below $\omega$. However, the Transfer axioms work only over those internal predicates which have all parameters standard. To capture this purely syntactic restriction, we handle Transfer using a new form of judgment, $\Gamma \vdash A \leftrightarrow_{i} B$, meaning "one can transfer between $A$ and $B$ of universe level $i$ in the context $\Gamma$ ". Before we assert the rules governing this new sort of judgment, we have to give meaning to the analogues of the predicate st(-) of Internal Set Theory, the standardness types st $A t$, read as " $t$ is a standard inhabitant of type $A$ ". This type lives in the external hierarchy, and does not have introduction or elimination rules, as one can use the Transfer axioms directly for all introductions and eliminations of st.
4.2.29. Definition. In all the rules that follow, the variables $\ell, i, j$ range over universe levels of the internal hierarchy (strictly below $\omega$ ), and the variable $x$ is fresh with respect to the context $\Gamma$. We admit the following standardness type formation rule.

$$
\frac{\Gamma \vdash A: \operatorname{Set}_{\ell} \quad \Gamma \vdash t: A}{\Gamma \vdash \operatorname{st}_{\ell} A t: \operatorname{Set}_{\omega}} \star \text { ST-FORM }
$$

Define the notation $\forall^{s t} x: A . B$ as an abbreviation for $\forall x: A$.st $A x \rightarrow B$, and similarly $\exists^{s t} x: A . B$ as an abbreviation for $\exists x: A$. st $A x \wedge B$. In accordance with the rule STForm, we need to have $\Gamma \vdash A: \operatorname{Set}_{\ell}$ for some $\ell<\omega$ before we can write $\forall^{s t} x: A . B$. We admit the following transfer rules.

$$
\begin{aligned}
& \frac{\Gamma \vdash^{s} A: \mathbf{S e t}_{\ell}}{\Gamma \vdash A \Leftrightarrow_{\ell} A} \star \text { TRF-REFL } \\
& \frac{\Gamma \vdash^{s} A: \operatorname{Set}_{\ell} \quad \Gamma, x: A \vdash B \Leftrightarrow_{i} B^{\prime}}{\Gamma \vdash(\forall x: A . B) \Leftrightarrow_{\max \{\ell, i\}}\left(\forall^{s t} x: A . B^{\prime}\right)} \star \text { TrF-DFUN } \\
& \frac{\Gamma \vdash A \Leftrightarrow_{i} A^{\prime} \quad \Gamma \vdash B \Leftrightarrow_{j} B^{\prime}}{\Gamma \vdash(A \rightarrow B) \Leftrightarrow_{\max \{i, j\}}\left(A^{\prime} \rightarrow B^{\prime}\right)} \star \text { TRF-FUN } \\
& \frac{\Gamma \vdash^{s} A: \operatorname{Set}_{\ell} \quad \Gamma, x: A \vdash B \Leftrightarrow_{i} B^{\prime}}{\Gamma \vdash(\exists x: A \cdot B) \Leftrightarrow_{\max \{\ell, i\}}\left(\exists^{s t} x: A \cdot B^{\prime}\right)} \star \text { TRF-DSUM } \\
& \frac{\Gamma \vdash A \Leftrightarrow_{i} A^{\prime} \quad \Gamma \vdash B \Leftrightarrow_{j} B^{\prime}}{\Gamma \vdash(A \times B) \Leftrightarrow_{\max \{i, j\}}\left(A^{\prime} \times B^{\prime}\right)} \star \text { TRF-SUM }
\end{aligned}
$$

The presentation of the rules continues in Definition 4.2.32.

## Rules: Naturals and Finite Lists

4.2.30. We call a rule a proper axiom if it has the form

$$
\frac{\Gamma \vdash}{\Gamma \vdash t: A} \mathrm{AX}-\mathrm{T}
$$

for fixed terms $t, A$ and an arbitrary context $\Gamma$. One can treat introduction and elimination rules for the basic types of the theory ( $\mathbb{N}$, List, etc) as either proper axioms or pure inference rules; compare e.g.

$$
\frac{\Gamma \vdash}{\Gamma \vdash \operatorname{suc}: \mathbb{N} \rightarrow \mathbb{N}} \text { axiom } \frac{\Gamma \vdash n: \mathbb{N}}{\Gamma \vdash \operatorname{suc} n: \mathbb{N}} \text { inf. rule }
$$

Presenting the basic types using pure inference rules results in a more modular theory (the definition of $\mathbb{N}$ does not depend on how we define universes and dependent functions, or whether we have them at all), at the cost of longer and more complicated proofs in the meta-theory, and a less clear correspondence with the Agda code. On that account, we opt to introduce the basic types of our type theory as proper axioms (along with formation and computation rules). To save space, we give all the axioms on single lines, e.g. we write the axiom introducing suc simply as suc: $\mathbb{N} \rightarrow \mathbb{N}$. Later on, we present the Idealization and Standardization principles the same way as well.
4.2.31. The type of natural numbers has two introduction rules, stating that zero is a natural number and the successor of every natural number is also a natural number. The principle of induction gives the elimination rule. We define the type List $A$ of finite lists over the type $A$ in a similar fashion, with the elimination rule given by structural induction. In accordance with Section $\mathbb{L . L D}$, we have to restrict these induction principles to the universe levels of the internal hierarchy.
4.2.32. Definition. Let the variable $\ell$ range over universe levels below $\omega$, and let $i$ range over all universe levels. We admit the following rules for the type of natural numbers (using the notation of Section 4.2.30) :

```
N:Set
zero:\mathbb{N}
suc: \mathbb{N}->\mathbb{N}
induction}\mp@subsup{}{\ell}{}:\forall\varphi:\mathbb{N}->\mp@subsup{\boldsymbol{Set}}{\ell}{}
    \varphi zero }
    (\forallk:\mathbb{N}.\varphik->\varphi(\mathrm{ suc }k))->
```

    \(\forall n: \mathbb{N} . \varphi n\)
    along with the computation rules

```
induction}\ell\varphi\mp@code{|}\mathrm{ zero }~z\mathrm{ and
induction}\ell\ell\varphizs(sucn)~s(\mp@subsup{\mathrm{ induction }}{\ell}{}\varphizsn)
```

We admit the following rules for the type of finite lists.

```
List \(_{i}:\) Set \(_{i} \rightarrow\) Set \(_{i}\)
\(\mathrm{empty}_{i}: \forall A: \operatorname{Set}_{i} \cdot\) List \(_{i} A\)
\(\operatorname{cons}_{i}: \forall A: \operatorname{Set}_{i} . A \rightarrow \operatorname{List}_{i} A \rightarrow \operatorname{List}_{i} A\)
listelim \(_{i, \ell}: \forall A: \operatorname{Set}_{i}: \forall \varphi:\) List \(_{i} A \rightarrow \operatorname{Set}_{\ell}\).
    \(\varphi\left(\operatorname{empty}_{i} A\right) \rightarrow\)
    \(\left(\forall a: A . \forall k:\right.\) List \(_{i} A . \varphi k \rightarrow \varphi\left(\right.\) cons \(\left.\left._{i} A a k\right)\right) \rightarrow\)
        \(\forall n:\) List \(_{i}\) A. \(\varphi n\)
```

along with the computation rules

- listelim $_{i, \ell} A \varphi e c\left(\operatorname{empty}_{i} A\right) \sim e$ and
- $\operatorname{listelim}_{i, \ell} A \varphi e c\left(\right.$ cons $\left._{i} A h t\right) \sim c h\left(\operatorname{listelim}_{i, \ell} A \varphi e c t\right)$.

We define the list membership predicate $\mathrm{elem}_{i}: \forall A: \operatorname{Set}_{0} \cdot A \rightarrow \mathrm{List}_{i} A \rightarrow \mathbf{S e t}_{0}$ as an abbreviation for the term

$$
\lambda A: \operatorname{Set}_{i} \cdot \lambda e: A . \text { listelim }_{i, \ell} A\left(\lambda x \cdot \operatorname{Set}_{0}\right) \perp(\lambda h . \lambda t . \lambda P . \neg(e=h) \rightarrow P)
$$

When one can deduce the universe level $i$ and the type $A$ from the surrounding text, we often leave these implicit and denote $\mathrm{elem}_{i} A x n$ as $x \in n$. The presentation of the rules continues in Definition 4.2.35.
4.2.33. Exercise. Prove that the list membership predicate elem $_{i}$ defined in Definition 4.2.32 satisfies the definitional equalities

```
elem}\mp@subsup{i}{i}{}Ae(\mp@subsup{empty}{i}{A}A)~
elem
```

Convince yourself of the correctness of the definition (hint: the equalities above state
that no $e$ belong to the empty list, and if $e$ belongs to a list starting with the element $a$, then either $a=e$ or $e$ belongs to the tail of the same list).

## Rules: IST Axioms

4.2.34. We now give the Idealization, Standardization and Transfer axioms. Thanks to the extended hierarchy of universes, an external predicate on the type $A$ corresponds simply to a function of signature $A \rightarrow \mathbf{S e t}_{\omega}$, while functions of signature $A \rightarrow \mathbf{S e t}_{0}$ always give internal predicates. This allows us to admit both Idealization and Standardization as proper axioms without any complication. Unfortunately, the same trick would not work for Transfer axioms, since they require not only the internality of their predicates, but also that said predicates do not contain any non-standard parameters (otherwise we could transfer the true sentence $\forall^{s t} n: \mathbb{N} . n<\omega$ and conclude $\omega<\omega$ ). Consequently, we need to use the transfer judgments introduced in Definition 4.2 .29 to define the valid instances of Transfer axioms.
4.2.35. Definition. Let the variables $\ell, m, k, i, j$ range over universe levels of the internal hierarchy (strictly below $\omega$ ). We admit the following Idealization/Standardization rules into our type theory (using the notation of Section 4.2 .30 ):

$$
\begin{aligned}
& \star \text { IdealizationF }_{\ell, m, k}: \forall A: \operatorname{Set}_{\ell} \cdot \forall B: \operatorname{Set}_{m} \cdot \forall \varphi: A \rightarrow B \rightarrow \text { Set }_{k} . \\
& \quad\left(\forall^{s t} t: \text { List } A \cdot \exists b: B \cdot \forall a: A \cdot a \in t \rightarrow \varphi a b\right) \rightarrow \\
& \quad \exists b: B \cdot \forall^{s t} a: A \cdot \varphi a b \\
& \star \text { IdealizationB }_{\ell, m, k}: \forall A: \operatorname{Set}_{\ell} \cdot \forall B: \operatorname{Set}_{m} \cdot \forall \varphi: A \rightarrow B \rightarrow \text { Set }_{k} . \\
& \quad\left(\exists b: B \cdot \forall^{s t} a: A \cdot \varphi a b\right) \rightarrow \\
& \quad \forall^{s t} t: \text { List A. } \exists b: B \cdot \forall a: A \cdot a \in t \rightarrow \varphi a b \\
& \star \text { Standardization }_{\ell}: \forall A: \operatorname{Set}_{\ell} \cdot \forall \varphi: A \rightarrow \operatorname{Set}_{\omega} \cdot \exists^{s t} \psi: A \rightarrow \operatorname{Set}_{\ell} . \\
& \quad \forall^{s t} a: A \cdot(\psi a \rightarrow \varphi a) \wedge(\varphi a \rightarrow \psi a)
\end{aligned}
$$

We take the following Transfer axioms.

$$
\begin{gathered}
\frac{\Gamma \vdash A \Leftrightarrow_{j} A^{\prime} \quad \Delta \vdash}{\Delta \vdash \operatorname{TraL}_{\Gamma, A, A^{\prime}}: \forall^{s t}[\Gamma] \cdot\left(A \rightarrow A^{\prime}\right)} \star \mathrm{Ax}-\mathrm{TRAL} \\
\frac{\Gamma \vdash A \Leftrightarrow_{j} A^{\prime} \quad \Delta \vdash}{\Delta \vdash \operatorname{TraR}_{\Gamma, A, A^{\prime}}: \forall^{s t}[\Gamma] \cdot\left(A^{\prime} \rightarrow A\right)} \star \text { Ax-TRAR }
\end{gathered}
$$

where the variable $x$ is fresh with respect to the context $\Gamma$, and $\forall^{s t}[\Gamma] . t$ is defined via the following structurally recursive clauses:

- $\forall^{s t}[\emptyset] . t$ denotes $t$;
- $\forall^{s t}[\Gamma, x: A] . t$ denotes $\forall^{s t}[\Gamma] .\left(\forall^{s t} x: A . t\right)$.

This concludes the presentation of the rules of our extended type theory.

### 4.3 Syntactic properties

4.3.1. Calling a formal system a "type theory" conjures up mental images of certain desirable syntactic properties that such theories tend to satisfy. These include type-theory-specific features such as the substitution property and the existence of canonical forms, as well as more general desiderata such as monotonicity and consistency. Here we discuss which of these properties our newly defined type theory enjoys.
4.3.2. We call a term of type $\mathbb{N}$ a canonical natural number if we can write it purely in terms of zero and suc. Recall that a theory has canonical forms if we can computationally turn every derivation tree with conclusion $\vdash t: \mathbb{N}$ into a derivation tree with conclusion $\vdash t \sim_{\mathbb{N}} n$ for some canonical natural number $n$. Since we intend to use our extended type theory for classical (as opposed to constructive) reasoning, the existence of canonical forms loses its relevance: adding axioms without computation rules (such as the principle of excluded middle or Voevodsky's univalence axiom) destroy canonicity. Indeed, one does not have canonical forms in our extended type theory, since the IST axioms lack associated computation rules. More generally, a consistent theory cannot have canonical forms in the presence of IdealizationF, since one can use the axiom to show the existence of a term $t$ with $\neg s t \mathbb{N} t$, while our type theory proves st $\mathbb{N} n$ for any canonical natural number $n$ (exercise!).
4.3.3. Definition. We say that a type theory enjoys the monotonicity property if, given a derivation tree with conclusion $\Gamma \vdash a: A$ and a derivation tree with conclusion $\Gamma, \Delta \vdash$, we can find a derivation tree of $\Gamma, \Delta \vdash a: A$.
4.3.4. Definition. We say that a type theory enjoys the substitution property if, given a derivation tree with conclusion $\Gamma \vdash a: A$ and a derivation tree with conclusion $\Gamma, x$ :
$A, \Delta \vdash t: T(\Gamma, x: A, \Delta \vdash)$, we can find a derivation tree with conclusion $\Gamma, \Delta[x \leftarrow$ $a] \vdash t[x \leftarrow a]: T[x \leftarrow a]$ (resp. $\Gamma, \Delta[x \leftarrow a] \vdash)$.
4.3.5. Theorem. The safe fragment (Definition 4.2 .6 ) of our calculus enjoys the substitution property, the monotonicity property and the following presupposition properties:

1. If $\Gamma \vdash^{s} A: \operatorname{Set}_{i}$ [has a derivation tree], then [so does] $\Gamma \vdash^{s}$.
2. If $\Gamma \vdash^{s} t: A$, then $\Gamma \vdash^{s} A$ : $\operatorname{Set}_{i}$ for some level $i<\omega$.
3. If $\Gamma \vdash^{s} t \sim_{A} s$, then $\Gamma \vdash^{s} t: A$ and $\Gamma \vdash^{s} s: A$.

Proof. These properties follow by induction on the length of the derivation tree, combined with a case analysis on the last used rule (see [14]]-Lemma 2.1.10 for an example of a proof in this vein).

## Qed.

4.3.6. Lemma. If $\Gamma \vdash t \Leftrightarrow_{i} v$ has a derivation tree in the full calculus, then $\Gamma \vdash^{s} t$ : $_{\mathbf{S e t}_{i}}$ has a derivation tree in the safe fragment.

Proof. By induction on the derivation tree. If we used the rule $\star$ Trf-Refl as the last rule of our derivation tree, then the tree has the form

$$
\frac{\Gamma \vdash^{s} t_{1}: \boldsymbol{S e t}_{\ell}}{\Gamma \vdash t \Leftrightarrow_{\ell} t} \star \text { TRF-REFL }
$$

for some $i=\ell<\omega$. Consequently, $\Gamma \vdash^{s} t$ : $\mathbf{S e t}_{\ell}$ has a derivation tree $\vdots_{1}$ in the safe fragment.
Otherwise, we must have used one of the following rules: $\star$ Trf-DFun, $\star$ Trf-Fun, $\star$ Trf-DSum or $\star$ Trf-Sum. Without loss of generality we consider only the first two of these. In the first case, our tree has the shape

$$
\frac{\Gamma \vdash^{s} A{ }^{\vdots}: \mathbf{S e t}_{\ell} \quad \Gamma, x: A \vdash^{\vdots_{2}} B \Leftrightarrow_{m} B^{\prime}}{\Gamma \vdash(\forall x: A . B) \Leftrightarrow_{\max \{\ell, m\}}\left(\forall^{s t} x: A . B^{\prime}\right)} \star \text { TrF-DFUN }
$$

where $t$ has the form $\forall x: A . B, v$ has the form $\forall^{s t} x: A \cdot B^{\prime}$ and $i=\max \{\ell, m\}$. Applying the induction hypothesis to the subtree $\vdots_{2}$, we get a derivation tree $\vdots_{2^{\prime}}$ of conclusion $\Gamma, x: A \vdash^{s} B: \mathbf{S e t}_{m}$. Thus, we can construct a proof tree with the desired conclusion $\Gamma \vdash^{s} \forall x: A . B: \operatorname{Set}_{\max \{\ell, m\}}$ in the safe fragment:

$$
\frac{\Gamma \vdash^{s} A \dot{\vdots}_{1}: \operatorname{Set}_{\ell} \quad \Gamma, x: A \vdash^{\Sigma_{2}^{\prime}} B: \boldsymbol{S e t}_{m}}{\Gamma \vdash \forall x: A . B: \operatorname{Set}_{\max \{\ell, m\}}} \text { DFUN-FORM }
$$

In the second case, our tree has shape
where $t$ has the form $A \rightarrow B, v$ has the form $A^{\prime} \rightarrow B^{\prime}$ and $i=\max \{\ell, m\}$. Applying the induction hypothesis to the subtrees $\vdots_{1}$ and $\vdots_{2}$, we get derivation trees $\vdots_{1^{\prime}}$ and $\vdots_{2^{\prime}}$ with respective conclusions $\Gamma \vdash^{s} A: \operatorname{Set}_{\ell}$ and $\Gamma \vdash^{s} B: \mathbf{S e t}_{m}$. We can pick a variable $x$ fresh with respect to both contexts $\Gamma$ and $\Delta$, and using the rule Ctx-Ext on the subtree $:_{1^{\prime}}$ we can obtain $\Gamma, x: A \vdash^{s}$. Now, by the monotonicity property of the safe fragment (Theorem 4.3.5), we have a derivation tree $:_{2^{\prime \prime}}$ with conclusion $\Gamma, x: A \vdash^{s}$ $B:$ Set $_{m}$, so we can conclude

$$
\frac{\Gamma \vdash^{s}{\stackrel{\vdots}{A} 1^{\prime}}_{A} \mathbf{\operatorname { S e t }} \boldsymbol{t}_{\ell} \quad \Gamma, x: A \vdash^{\vdots_{2}^{\prime \prime}} B: \operatorname{Set}_{m}}{\Gamma \vdash A \rightarrow B: \operatorname{Set}_{\max \{\ell, m\}}} \text { DFUN-FORM }
$$

which proves our claim.
Qed.
4.3.7. Corollary. The operation $\forall^{s t}[\Gamma]$ introduced in Definition 4.2 .35 is well-typed.

Proof. We need to verify that if $\Gamma \vdash t \Leftrightarrow_{i} s$ then for every $x: A$ in $\Gamma$ we have $A$ : Set $e_{\ell}$ for some $\ell<\omega$. By Lemma 4.3 .6 we have $\Gamma \vdash^{s} t$ : Set ${ }_{i}$, so by the presupposition property for the safe fragment (Theorem 4.3.5) we have $\Gamma \vdash^{s}$. But all derivations in the safe fragment clearly have the desired property.
Qed.
4.3.8. Theorem. Our extended type theory enjoys the substitution property: given a derivation tree with conclusion $\Gamma \vdash a: A$ and a derivation tree with conclusion $\Gamma, x$ : $A, \Delta \vdash t: T(\Gamma, x: A, \Delta \vdash)$, we can find a derivation tree with conclusion $\Gamma, \Delta[x \leftarrow$ $a] \vdash t[x \leftarrow a]: T[x \leftarrow a]$ (resp. $\Gamma, \Delta[x \leftarrow a] \vdash)$.

Proof. The proof by induction proceeds analogously to that of Theorem 4.3.5. Extending a system with proper axioms in the style of Section 4.2 .30 cannot break the substitution property, so it suffices to consider only the case where the derivation of
$\Gamma \vdash a: A$ starts with one of the rules $\star$ Ax-TraL or $\star$ Ax-TraR, without loss of generality the former. So the tree has the form

$$
\frac{\Pi \vdash M_{1}^{\vdots_{1}} \Leftrightarrow_{j} M^{\prime} \stackrel{\vdots}{\Gamma} \stackrel{\sum_{2}}{\Gamma}}{\Gamma \vdash \operatorname{TraL}} \underset{\Pi, M, M^{\prime}}{ }: \forall^{s t}[\Pi] .\left(M \rightarrow M^{\prime}\right) \text { Ax-TRAL }
$$

If the other derivation tree has the conclusion $\Gamma, x: A, \Delta \vdash$, we distinguish two cases.

- $\Delta$ has the form $\emptyset$. Then we have to produce a derivation tree with conclusion $\Gamma \vdash$; but we already have that, in the form of $\vdots_{2}$.
- $\Delta$ has the form $\Delta^{\prime}, q: Q$. Then we have to produce a derivation tree with conclusion $\Gamma, \Delta^{\prime}[x \leftarrow a], q: Q[x \leftarrow a] \vdash$, and we must have had CTX-ЕХт as the last rule in the derivation of $\Gamma, x: A, \Delta^{\prime}, q: Q \vdash t: T$. This means we have a derivation tree for $\Gamma, x: A, \Delta^{\prime} \vdash Q: \mathbf{S e t}_{i}$ for some $i$. Applying the induction hypothesis to this derivation yields $\Gamma, \Delta^{\prime}[x \leftarrow a] \vdash Q[x \leftarrow a]:$ Set $_{i}$, so we can finish the proof by using CTX-Ехт again.

Now, if the other derivation tree has the conclusion $\Gamma, x: A, \Delta \vdash t: T$, and the last rule of the tree contains a formation, introduction or elimination rule, then the proof proceeds uniformly by applying the induction hypothesis to each premise, then applying the rule again to all the results. Otherwise, the VAR rule occurs as the last rule of the tree. If the variable $t: T$ occurs in either $\Gamma$ or $\Delta$, we can proceed by induction using the previous strategy. Otherwise, the derivation tree has the following form:

$$
\frac{\Gamma, x: \forall^{s t}[\Pi] \cdot\left(M \rightarrow M^{\prime}\right), \Delta \vdash}{\Gamma, x: \forall^{s t}[\Pi] \cdot\left(M \rightarrow M^{\prime}\right), \Delta \vdash x: \forall^{s t}[\Pi] \cdot\left(M \rightarrow M^{\prime}\right)} \operatorname{VAR}
$$

and we have to produce a derivation tree with conclusion $\Gamma, \Delta\left[x \leftarrow \operatorname{TraL} \mathrm{~L}_{\Pi, M, M^{\prime}}\right] \vdash$ $\operatorname{TraL} \mathrm{I}_{\Pi, M, M^{\prime}}: \forall^{s t}[\Pi] .\left(M \rightarrow M^{\prime}\right)$. Using the induction hypothesis on $\vdots_{3}$, we get a derivation tree $:_{3^{\prime}}$ with conclusion $\Gamma, \Delta\left[x \leftarrow \operatorname{TraL}_{\Pi, M, M^{\prime}}\right] \vdash$. The derivation tree

$$
\frac{\vdots_{1}}{\Pi \vdash M \Leftrightarrow_{j} M^{\prime} \quad \Gamma, \Delta\left[x \leftarrow{\stackrel{\operatorname{Tr}^{3^{\prime}}}{ }}_{\left.\Gamma \mathrm{L}_{\Pi, M, M^{\prime}}\right] \vdash}^{\Gamma, \Delta[x \leftarrow \operatorname{TraL}}{ }_{\Pi, M, M^{\prime}}\right] \vdash \operatorname{TraL}_{\Pi, M, M^{\prime}}: \forall^{s t}[\Pi] .\left(M \rightarrow M^{\prime}\right)} \star \operatorname{Ax-TRAL}
$$

suffices and concludes our proof.
Qed.
4.3.9. Exercise. Prove the monotonicity property.
4.3.10. Proposition. No consistent extension of our type theory enjoys canonicity.

Proof. First we show that for every canonical natural number $n$ our type theory proves $\mathrm{st}_{0} \mathbb{N} n$. For canonical $n$ we can easily find a derivation tree $\vdash^{s} n: \mathbb{N}$. We give the derivation tree for a closed term of type $\exists x:{\mathbb{N} . s t_{0}}^{\mathbb{N}} x \times x={ }_{\mathbb{N}} n$ on Figure 4.l. Using this term, a transport argument immediately gives a derivation tree for $\vdash s t_{0} \mathbb{N} n$.
Find a closed term $f: \forall S:$ List $\mathbb{N} . \exists x: \mathbb{N} . \forall y: \mathbb{N} . y \in S \rightarrow \neg(y=x)$ in our type theory (clearly we can already do this in Martin-Löf Type Theory without the extensions). Then the closed term

$$
\text { IdealizationF } \mathbb{N} \mathbb{N}(\lambda x \cdot \lambda y . \neg(x=y)) f
$$

has type $\exists x: \mathbb{N} . \forall^{s t} y: \mathbb{N} . \neg(x=y)$. Denoting the term by $f^{\prime}$, we have derivation trees for

$$
\begin{aligned}
& \vdash \pi_{1} f^{\prime}: \mathbb{N} \text { and } \\
& \vdash \pi_{2} f^{\prime}: \forall^{s t} y: \mathbb{N} . \neg\left(\pi_{1} f^{\prime}=y\right) .
\end{aligned}
$$

Using these, we can construct the derivation tree of Figure 4.2 which witnesses the non-standardness of $\pi_{2} f^{\prime}$.
Now, if we had an extension of our type theory that has $\pi_{2} f^{\prime} \sim n$ for some canonical natural number $n: \mathbb{N}$, then we would have proofs of both $\mathrm{st}_{0} \mathbb{N} n$ and $\mathrm{st}_{0} \mathbb{N} \rightarrow \perp$, showing the inconsistency of the extension. Therefore, consistent extensions of our type theory do not enjoy canonicity.
Qed.
4.3.11. Proposition. One can conservatively extend our type theory with the rule

$$
\frac{\vdash^{s} A: \mathbf{S e t}_{i} \quad \vdash^{s} t: A}{\Gamma \vdash \operatorname{stcon}_{i} A t: \mathrm{st}_{i} A t} \text { St-Con }
$$

along with a rule ST-FUN realizing the analogue of Lemma [I.L.33.
Proof. For the conservativity of St-Con, just notice that the proof of Figure 4.11 does not use any specific fact about $\mathbb{N}$ or about the canonicity of the numeral $n$.

We prove the conservativity of ST-FUN by explicitly constructing a term stfun of the required type. Start by picking (exercise!) a derivation tree with conclusion

$$
\begin{aligned}
& A: \operatorname{Set}_{i}, B: A \rightarrow \operatorname{Set}_{j}, f: \forall x: A . B, a: A \vdash^{s} \\
& (f a, \operatorname{refl}(B a)(f a)): \exists y: B a \cdot y={ }_{B a} f x .
\end{aligned}
$$

Denote the context by $\Gamma$, the term $(f a$, refl $(B a)(f a)))$ by $p$, its type by $P$. We can construct the derivation tree

$$
\begin{aligned}
& \frac{\Gamma, y: B a \stackrel{\vdots}{\vdash} B a: \text { Set }_{j} \quad \Gamma, y: B a \stackrel{\vdots}{\vdash} y: B a \quad \Gamma, y: B a \stackrel{\vdots}{\vdash} f x: B a}{\Gamma, y: B a \vdash y=_{B a} f x} \text { EQT-FORM }
\end{aligned}
$$

and using the rule $\star \mathrm{Ax}$-TraL we get a closed term

$$
t: \forall^{s t}[\Gamma] .\left(\exists y: B a . y={ }_{B} a f x \rightarrow \exists^{s t} y: B \text { a.y }=_{\text {B }} f x\right) .
$$

Using this term, we can easily construct a term of type $\forall^{s t}[\Gamma] \cdot \exists^{s t} y: B a . y={ }_{B}{ }_{a} f x$, and from there on stfun of type $\forall^{s t}[\Gamma]$.st $t_{j}(B a)(f x)$.
Qed.

## Consistency

4.3.12. The implementation of Agda assumes that the underlying type theory obeys the substitution property (Theorem 4.3.8) and monotonicity; if these did not hold for our extended type theory, we could not check the proofs using Agda. Proposition 4.3.Tl also plays a significant role in the mechanization, by significantly shortening common standardness proofs. At this point, we have all the syntactic properties required to proceed with the mechanization. Before we move on, we take a brief look at consistency and conservative extension results for our proposed calculus.
4.3.13. Theorem. Our type theory does not constitute a conservative extension of ordinary Martin-Löf Type Theory.

Proof. We employ a strategy from Sanders [42] to prove Markov's principle for an arbitrary predicate. By a celebrated result of Coquand and Mannaa [9], ordinary MartinLöf Type Theory does not prove Markov's principle, so this suffices to prove the nonconservativity of our extension. The argument takes place (informally) inside our extended type theory. Let $A \uplus B$ denote a constructive disjunction operation, say

$$
\exists n: \mathbb{N} .\left(n={ }_{\mathbb{N}} 0 \rightarrow A\right) \times\left(\left(n=_{\mathbb{N}} 0 \rightarrow \perp\right) \rightarrow B\right)
$$

Take any standard predicate $P: \mathbb{N} \rightarrow \operatorname{Set}_{0}$, and assume that $\forall n: \mathbb{N} . P n \uplus \neg(P n)$ and $\neg \forall n: \mathbb{N} . P_{n}$ hold. Take a nonstandard $\omega: \mathbb{N}$. Assuming $\forall n: \mathbb{N} . n<\omega \rightarrow P n$ would immediately imply $\forall^{s t} n: \mathbb{N} . P n$, which would contradict $\neg \forall n: \mathbb{N} . P_{n}$ after a use of Transfer. Hence, we have $\neg \forall n: \mathbb{N} . n<\omega \rightarrow P n$. But type theory does prove

$$
\forall k: \mathbb{N} . \neg(\forall n: \mathbb{N} . n<k \rightarrow P n) \rightarrow \exists n: \mathbb{N} . \neg(P n)
$$

and substituting $k=\omega$ immediately gives us

$$
\neg(\forall n: \mathbb{N} . n<\omega \rightarrow P n) \rightarrow \exists n: \mathbb{N} . \neg(P n) .
$$

We have established $\neg \forall n: \mathbb{N} . n<\omega \rightarrow P n$ earlier, so we can conclude $\exists n: \mathbb{N} . \neg(P n)$. Since we started with an arbitrary standard predicate $P: \mathbb{N} \rightarrow$ Set $_{0}$, we have shown

$$
\forall^{s t} P: \mathbb{N} \rightarrow \operatorname{Set}_{0} .(\forall n: \mathbb{N} . P n \uplus \neg(P n)) \rightarrow \neg(\forall n: \mathbb{N} . P n) \rightarrow \exists n: \mathbb{N} . \neg(P n) .
$$

Using a quick Transfer argument we get the same conclusion for an arbitrary predicate, which proves Markov's principle.

## Qed.

4.3.14. Given its similarity to Internal Set Theory and our extended type theory, it would be very surprising if our extended type theory would turn out to be inconsistent. That said, a full proof of consistency for our extended type theory seems out of our reach, at least in the near future. While we suspect that (in principle) a proof translation argument done in the style of Nelson [33] (see Proposition [.1.43) and targeting a carefully chosen classical extension of Martin-Löf Type Theory, will suffice to establish the consistency of our extensions, such an argument presents many technical difficulties. First of all, even classical extensions of type theory lack prenex forms (if $x$ occurs in $C$ then one cannot rewrite $\forall x:(\forall y: A . B) . C$ as $\exists y: A . \forall x: B . C$ since the types
no longer match). This complicates the formulation of any possible analogue of the Galactic Halo theorem. Even if one finds a way around this particular barrier, one has to face the fact that type theory has many more rules than the first-order logic underlying Zermelo-Fraenkel Set Theory, which makes a Nelson-style proof translation far less convenient. However, such a translation would have a major advantage over the one for Zermelo-Fraenkel Set Theory: while in ZF, the Galactic Halo theorem requires a full Choice principle to realize the quantifier switches, Martin-Löf Type Theory proves all these instances of Choice, so the quantifier switch turns out to be innocent, and all the non-constructive content of the translation is concentrated in the Ultrafilter Lemma.
4.3.15. Proposition. If we remove the axioms IdealizationF and IdealizationB from our extended type theory, we obtain a consistent extension of ordinary Martin-Löf Type Theory.

Proof. We sketch a proof that our theory with these two axioms removed conservatively extends ordinary Martin-Löf Type Theory extended with the Law of Excluded Middle $L E M_{i}: \forall A: \operatorname{Set}_{i} . \neg A \uplus A$. Consider the proof translation that transcribes proofs in the extended theory into proofs of ordinary Martin-Löf Type Theory by sending $\operatorname{Set}_{\omega+\ell}$ to $\operatorname{Set}_{\ell}$ and st $A t: \boldsymbol{S e t}_{\omega}$ to zero $=_{\mathbb{N}}$ zero : $\boldsymbol{S e t}_{0}$. The interpretation of the Transfer rules and axioms becomes trivial. All we have to do is give an interpretation to the transcribed Standardization axioms

```
\star Standardization}\mp@subsup{\ell}{\ell}{}:\forallA:\mp@subsup{\boldsymbol{Set}}{\ell}{}.\forall\varphi:A->\mp@subsup{\boldsymbol{Set}}{0}{}.\exists\psi:A->\mp@subsup{\boldsymbol{Set}}{\ell}{
    \foralla:A.(\psi a ¢ \varphi a) ×(\varphia->\psia)
```

We can realize this using excluded middle for $\ell>0$ by considering the following term:

$$
\begin{aligned}
& \lambda A \cdot \lambda \varphi \cdot \lambda a . \\
& \text { induction }_{\ell}\left(\lambda p \cdot \operatorname{Set}_{\ell-1}\right)\left(\operatorname{Set}_{\ell-1} \rightarrow \perp\right)\left(\lambda k \cdot \lambda p \cdot \operatorname{Set}_{\ell-1}\right)\left(L E M_{0}(\varphi a)\right): \\
& \forall A: \operatorname{Set}_{\ell} \cdot\left(A \rightarrow \operatorname{Set}_{0}\right) \rightarrow A \rightarrow \operatorname{Set}_{0}
\end{aligned}
$$

Denote this term $f$. Intuitively, $f$ performs a case analysis on the value of $L E M_{i}(\varphi a)$. If it finds $\neg A$, then it returns the uninhabited type $\operatorname{Set}_{\ell-1} \rightarrow \perp$, otherwise it returns the inhabited type $\mathbf{S e t}_{\ell-1}$. Taking $\psi$ as $f A \varphi$ allows us to interpret the Standardization axioms: the implications hold since $\psi a$ has an inhabitant precisely if $\varphi a$ does. Qed.

### 4.4 Agda proof

4.4.1. We discuss remaining matters related to the formalized proof of Theorem 2.3.9 in this final section. We do not give a syntax reference for the language of Agda: the interested reader can refer to the original article introducting Agda [36], and to the wide range of tutorials available on the official Agda website ${ }^{\sqrt{6}}$.

## Extended type theory in Agda

4.4.2. Agda is a general-purpose proof assistant implementing Martin-Löf Type Theory. It does not know about, and does not incorporate, the extensions we proposed in the previous sections. Fortunately, newer versions of Agda (2.6.0 and above) have features and facilities that we can use to simulate working in our extended type theory, while maintaining fairly wide correctness guarantees.
4.4.3. First we have to deal with the question of the extended universe hierarchy introduced in Definition 4.2.17. Normally, Agda supports only finite levels in its universe hierarchy, and does not allow declaring new universes (sorts) without modifying the source code of the type checker. However, since version 2.6.0, Agda provides an option -omega-in-omega that permits us to treat $\operatorname{Set} \omega$ as a new universe level obeying $\operatorname{Set} \omega: \operatorname{Set} \omega$. This allows us to simulate an external hierarchy by defining $\operatorname{Set}_{\omega+\ell}=\operatorname{Set}_{\omega}=\operatorname{Set} \omega$ for each level $\ell<\omega$. Major caveat: the onus of responsibility of ensuring that one can assign consistent universe levels to all occurrences on the symbol Set $\omega$ falls on the author of the proof script! We manually annotated the proof script with a suitable universe level assignment to certify that our proof does not violate this constraint.
4.4.4. With access to the external hierarchy, we can declare external predicates as inhabitants of $A \rightarrow$ Set $_{\omega}$. Some constructions (such as the Idealization axiom and the induction principle over the natural numbers) do not accept external predicates as arguments. Fortunately, Agda knows that $\mathbf{S e t}_{\omega} \neq \mathbf{S e t}_{\ell}$ for any internal (i.e. actual) level $\ell$, so the Agda proof checker will automatically ensure that we do not supply an external predicate to a construction that works only with internal predicates. However, Agda's pattern matching mechanism (a shorthand notation for nested uses of induction principles) does not perform this check, and would allow us to do invalid proofs by induction,

[^11]such as proving the standardness of all natural numbers. Therefore, we have to disable definitions by pattern matching using the -no-pattern-matching option provided by Agda.
4.4.5. As discussed in Definition 4.2 .35 , we can introduce the Idealization and Standardization principles as proper axioms using Agda's postulate keyword. The same method works for encoding all TrF- rules, apart from TrF-REFL. To implement the latter, we have to introduce a distinction between safe and general Agda modules, in a similar way to how we separated $\vdash^{s}$ and $\vdash$ in Section 4.2 .30 . We write safe modules in the pure subset of Agda, without access to any of the previously discussed features coming from our proposed extensions. As such, a top-level definition of $t: T$ in a safe module corresponds to a derivation $\vdash^{s} t: T$ in our extended type theory. We add a private constructor defined-in-safe-module used only to declare top level definitions in safe modules standard.
4.4.6. Given the implementation details above, one might wonder: what do we need to believe this proof, given that Agda checked it?

1. Martin-Löf Type Theory. One has to believe the consistency and mathematical relevance of Martin-Löf Type Theory. As mentioned in Section 4.L.4, MartinLöf Type Theory has been in use since the 1970s to general satisfaction and has served as a basis for many formalized proofs. The currently prevalent foundation of mathematics, Zermelo-Fraenkel Set Theory with the Axiom of Choice (along with some mild large cardinal assumptions) proves the consistency of all common variants of Martin-Löf Type Theory.
2. The extensions to type theory. We formalized the proof of our main result in a way that never invokes the Idealization axiom, so the proof of Proposition 4.3.15 applies and guarantees consistency.
3. The Agda implementation. One has to trust that the type theory implemented by the Agda proof checker accurately reflects Martin-Löf Type Theory, and our additional postulates accurately reflect the extensions. Demotically: "one has to trust that the Agda proof checker can check at least this particular proof (if nothing else)."
4. Accurate transcription. A formal argument establishes exactly what the author states, not necessarily what the author means, much less what the author desires.

One may look at the formalized, computer-verified proof given in the appendix and ask: "yes, you have produced a verifiable formal proof of some statement, but how do we know that the proved statement corresponds to the informal statement of Theorem 2.3.9?" We chose our proposed extensions to type theory with this requirement in mind, so that the type-theoretic development can follow the informal argument as closely as possible. Fortunately, the notions involved in the statement of our main result (groups, group actions, metric spaces, strong approximation) have short, axiomatic definitions, so one can easily verify the correspondence between the concepts and their formalized counterparts.
5. Newman's theorem. As discussed in the relevant chapter, Theorem 2.3.6 (Newman's theorem) provides the group-theoretic substrate of our result. In principle, one could write down and computer-verify a proof of Newman's theorem in Agda. However, a formal statement and verification of Newman's theorem lies far outside the scope of our work, and would probably make a fine research project of its own. As such, we admit Theorem 2.3.6 without proof, and rely on it as a "black box". Newman's theorem is the only such presupposition used in our argument.
4.4.7. The formal proof consists of approximately 3500 lines of Agda code (not counting the in-line comments), organized hierarchically into 23 modules. Table 4.11 crossreferences the sections of this document with their corresponding modules. The formalized proof of Theorem 2.3 .9 follows the original argument very closely, except for one minor modification. We wanted our proof to avoid appeals to Idealization, since the fragment of extended type theory in Proposition 4.3.15 omits this axiom. However, Theorem 2.3.9] depends on Proposition [.2.14, and the textbook proof of the latter relies on an Idealization argument. We give an alternative proof (presented in Section 4.4.8) that bypasses this use of Idealization using a slightly more involved appeal to external induction.
4.4.8 (Alternate proof of Proposition $[.2 .14)$. Consider a standard natural number $b$. All $n \in \mathbb{N}$ with $n<b$ are standard.

Proof. Let $\varphi(b)$ abbreviate the following property: $\forall n \in \mathbb{N} . n \leq b \rightarrow \operatorname{st}(n)$. We prove $\forall^{s t} b . \varphi(b)$ using external induction (Theorem [1.2.15).

- Base case: We need to prove $\forall n . n \leq 0 \rightarrow \operatorname{st}(n)$. But $n \leq 0$ implies $n=0$, and st(0) holds by Proposition [1.2.9.
- Inductive case: We have a standard $k$ such that all $n \leq k$ satisfy st $(n)$. We need to prove that all $n \leq k+1$ satisfy $\operatorname{st}(n)$. If $n \leq k$, then we can conclude $\operatorname{st}(n)$ using the induction hypothesis. Otherwise, $n=k+1$, and $\operatorname{st}(k+1)$ follows from the standardness of $k$ using Corollary [.2.1].

By the principle of external induction, we have that given any standard natural $b$, if $n \leq b$ then $\operatorname{st}(n)$.
Qed.

| Section | Description | Module |
| :---: | :---: | :---: |
| [1.2.14 | Standard naturals closed downward | IST.Naturals |
| 1.2.15 | External induction | IST.Naturals |
| [1.3.35 | Metric spaces are equivalence spaces | IST.PredicatedTopologies |
| . 1.3 .38 | Ultrafilters have monadic elements | IST.Ultrafilters |
| 2.3.3 | Function extension theorem | IST.Results.ExtensionTheorem |
| 2.3 .9 | Action extension theorem | IST.Results.MainTheorem |

Table 4.1: Cross-reference: theorems and corresponding Agda modules.
4.4.9. Type-checking the proof requires Agda version 2.6.0.1. Verifying the complete proof takes less than 2 minutes on a modern computer, and needs approximately 2 gigabytes of free RAM.


$$
-s_{r}
$$

NAT-FORM $\quad \cdots_{2}$

$\star$ Ax-TraL
$\overline{x: \mathbb{N} \vdash^{s} \mathbb{N}: \operatorname{Set}_{0}}$
$-\operatorname{TraL}(n, r e f l \mathbb{N} n):\left(\exists^{s t} x: \mathbb{N} x=n\right)$

$$
1 \perp a L(n, 1 E \perp \perp \ln n
$$

$$
\begin{aligned}
& \frac{\vdash^{s} n: \mathbb{N} \frac{\vdash^{s} n: \mathbb{N}}{\vdash^{s} r e f l \mathbb{N} n: n=n} \text { EQT-INTR }}{\vdash^{s}(n, \operatorname{refl} \mathbb{N} n):(\exists x: \mathbb{N} \cdot x=n)} \text { DSUM-INTR } \\
& \cdots 1 \\
& \frac{\overline{\emptyset \vdash}}{} \begin{array}{l}
\text { CTX-NUL } \frac{\vdash^{s} \mathbb{N}: \text { Set }_{0}}{} \text { NAT-FORM } \\
x: \mathbb{N} \vdash^{s} \\
\cdots \cdots 2
\end{array}
\end{aligned}
$$

- TraL $(n$, refiN $n) \cdot(\exists \neq \mathbb{N} . x=n)$
TraL (n,ref1 N $n$ ): (
$\vdash$ CtX-Nul $\vdash \operatorname{TraL}:\left(\exists x: \mathbb{N} . x=n \rightarrow \exists^{s t} x: \mathbb{N} . x=n\right)$ AX-TRAL
$\mathbb{N}: \operatorname{lon}^{(1)}$
路






## Bibliography

[1] M. A. Alekseev, L. Y. GlebskiI, and E. I. Gordon, On approximation of groups, group actions, and Hopf algebras, Journal of Mathematical Sciences, 107 (2001), pp. 4305-4332.
[2] M. Arbo, K. Benkowski, B. Coate, H. Nordstrom, C. Peterson, and A. Wootton, The genus level of a group, Involve, 2 (2009), pp. 323-340.
[3] L. Babai, K. Friedl, and A. LukÁcs, Near-representations of finite groups, tech. rep., Computer and Automation Research Institute, Hungarian Academy of Sciences, 062003.
[4] A. Blass, A model without ultrafilters, Bulletin of the Polish Academy of Sciences: Mathematics, Astronomy, Physics, 4 (1977), pp. 329-331.
[5] P. Baszczyk, V. Kanovei, and M. Katz, Monotone subsequence via Ultrapower, Open Mathematics, 16 (2018), pp. 149-153.
[6] T. Ceccherini-Silberstein, Cellular automata and groups, Springer-Verlag, Heidelberg New York, 2010.
[7] T. Ceccherini-Silberstein and M. Coornaert, Residually finite groups, in Cellular Automata and Groups, T. Ceccherini-Silberstein, ed., Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 37-55.
[8] G. Cherlin and J. Hirschfeld, Ultrafilters and ultraproducts in nonstandard analysis, in Contributions to Non-Standard Analysis, W. Luxemburg and A. Robinson, eds., vol. 69 of Studies in Logic and the Foundations of Mathematics, Elsevier, 1972, pp. 261 - 279.
[9] T. Coquand and B. Mannaa, The Independence of Markov's Principle in Type Theory, in 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016), D. Kesner and B. Pientka, eds., vol. 52 of

Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, 2016, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, pp. 17:1-17:18.
[10] N. A. Danielsson, Papers using Agda. The Agda Wiki - https://wiki. portal.chalmers.se/agda/pmwiki.php?n=Main.PapersUsingAgda Accessed: 2019-07-01.
[11] N. G. DE Bruisn, Automath, a language for mathematics, in Automation of Reasoning: 2: Classical Papers on Computational Logic 1967-1970, J. H. Siekmann and G. Wrightson, eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 1983, pp. 159-200.
[12] F. Diener and M. Diener, eds., Nonstandard Analysis in Practice, Springer Berlin Heidelberg, 1995.
[13] M. Doucha, Metric topological groups: their metric approximation and metric ultraproducts, to appear in Groups, Geometry, and Dynamics, (2016), p. arXiv:1601.07449.
[14] P. GARDNER, Representing Logics in Type Theory, PhD thesis, University of Edinburgh, UK, 1992.
[15] J.-Y. Girard, P. Taylor, and Y. Lafont, Proofs and Types, Cambridge University Press, New York, NY, USA, 1989.
[16] R. Goldblatt, Lectures on the Hyperreals: an Introduction to Nonstandard Analysis, Springer, New York, 1998.
[17] G. Gonthier, The four colour theorem: Engineering of a formal proof, in Computer Mathematics, D. Kapur, ed., Berlin, Heidelberg, 2008, Springer Berlin Heidelberg, p. 333.
[18] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. Le Roux, A. Mahboubi, R. O’Connor, S. Ould Biha, I. Pasca, L. Rideau, A. Solovyev, E. Tassi, and L. Théry, A Machine-Checked Proof of the Odd Order Theorem, in ITP 2013, 4th Conference on Interactive Theorem Proving, S. Blazy, C. Paulin, and D. Pichardie, eds., vol. 7998 of LNCS, Rennes, France, July 2013, Springer, pp. 163-179.
[19] E. Gunther, A. Gadea, and M. Pagano, Formalization of universal algebra in Agda, Electronic Notes in Theoretical Computer Science, 338 (2018), pp. 147 166. The 12th Workshop on Logical and Semantic Frameworks, with Applications (LSFA 2017).
[20] M. Henle, A Combinatorial Introduction to Topology, Dover Publications, 1994.
[21] C. Hermida, U. S. Reddy, and E. P. Robinson, Logical relations and parametricity - a Reynolds Programme for Category Theory and Programming Languages, Electronic Notes in Theoretical Computer Science, 303 (2014), pp. 149 180. Proceedings of the Workshop on Algebra, Coalgebra and Topology 2013.
[22] M. Hofmann, Syntax and semantics of dependent types, in Semantics and Logics of Computation, Cambridge University Press, 1997, pp. 79-130.
[23] K. Hrbacek, Axiom of choice in nonstandard set theory, Journal of Logic and Analysis [electronic only], 4 (2012).
[24] A. J. C. Hurkens, A simplification of girard's paradox, in Typed Lambda Calculi and Applications, M. Dezani-Ciancaglini and G. Plotkin, eds., Berlin, Heidelberg, 1995, Springer Berlin Heidelberg, pp. 266-278.
[25] T. Imamura, A nonstandard construction of direct limit group actions, arXiv e-prints, (2018), p. arXiv:1812.00575.
[26] V. Kanovei and M. Reeken, Nonstandard Analysis, Axiomatically, Springer Monographs in Mathematics, Springer Berlin Heidelberg, 2013.
[27] M. M. Kapranov and V. A. Voevodsky, Infinity-groupoids and homotopy types, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 32 (1991), pp. 29-46.
[28] N. Krishnaswami, Explicit set of types and terms in Martin-Loef type theory. Theoretical Computer Science Stack Exchange. - https://cstheory. stackexchange.com/व/39361 (version: 2017-10-24).
[29] A. Levy, Basic Set Theory, Dover Publications, Mineola, NY, USA, 2002.
[30] L. M. Manevitz and S. Weinberger, Discrete circle actions: A note using non-standard analysis, Israel Journal of Mathematics, 94 (1996), pp. 147-155.
[31] J. A. C. Morales and B. Zilber, The geometric semantics of algebraic quantum mechanics, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373 (2015).
[32] E. Nelson, Internal set theory: A new approach to nonstandard analysis, Bulletin of the American Mathematical Society, 83 (1977), pp. 1165-1198.
[33] E. Nelson, The syntax of nonstandard analysis, Annals of Pure and Applied Logic, 38 (1988), pp. 123 - 134.
[34] N. Nikolov, J. Schneider, and A. Thom, Some remarks on finitarily approximable groups, Journal de l'Ecole Polytechnique - Mathematiques, 5 (2017).
[35] U. Norell, Towards a practical programming language based on dependent type theory, PhD thesis, Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden, September 2007.
[36] U. Norell, Dependently Typed Programming in Agda, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 230-266.
[37] J. Pardon, Totally disconnected groups (not) acting on two-manifolds, arXiv eprints, (2018), p. arXiv:1811.08748.
[38] A. Pillay, Remarks on compactifications of pseudofinite groups, Fundamenta Mathematicae, 236 (2017), pp. 193-200.
[39] D. R. Licata and M. Shulman, Calculating the fundamental group of the circle in Homotopy Type Theory, in Proceedings of the Symposium on Logic in Computer Science, 06 2013, pp. 223-232.
[40] A. Robert, Nonstandard analysis, Wiley-Interscience Publications, Wiley, 1988.
[41] S. SANDERS, The unreasonable effectiveness of Nonstandard Analysis, arXiv eprints, (2015), p. arXiv:1508.07434.
[42] _——A note on non-classical Nonstandard Arithmetic, to appear in Annals of Pure and Applied Logic, (2018), p. arXiv:1805.11705.
[43] G. Scherer and A. Abel, Universe subtyping in Martin-Löf type theory (internship report, tech. rep., Department of Computer Science and Engineering, Chalmers University of Technology, 2011.
[44] C. Simpson, Homotopy Theory of Higher Categories: From Segal Categories to n-Categories and Beyond, New Mathematical Monographs, Cambridge University Press, 2011.
[45] The Univalent Foundations Program, Homotopy Type Theory: Univalent foundations of mathematics, tech. rep., Institute for Advanced Study, 2013.
[46] B. VAN DEN BERG, E. Briseid, and P. SAFARIK, A functional interpretation for nonstandard arithmetic, Annals of Pure and Applied Logic, 163 (2012), pp. 1962 - 1994.
[47] S. Vickers, Fuzzy sets and geometric logic, Fuzzy Sets and Systems, 161 (2010), pp. 1175 - 1204. Foundations of Lattice-Valued Mathematics with Applications to Algebra and Topology.
[48] V. A. Voevodsky, Special year on Univalent Foundations of Mathematics. Programme Proposal, Institute for Advanced Study, 2012.
[49] C. Xu, Implementing the nonstandard Dialectica interpretation. Github - https://cj-xu.qithub.io/agda/nonstandard_dialectica/Index.html

Accessed: 2019-07-01.
[50] B. Zilber, Structural approximation. draft on author's personal website (https://people.maths.ox.ac.uk/zilber/approx.pdf), Mar 2010.
[51] B. Zilber, Perfect Infinities and Finite Approximation, in Infinity and Truth, C. Chitat, Q. Feng, T. A. Slaman, and W. H. Woodin, eds., WSPC, 2013.

## Appendix A

## Agda Proof of Theorem 2.3.9

The next 52 pages contain the 2019-08-27 revision of the Agda proofs described in Chapter 4. The newest version of the proof is available in the Github repository at
https://github.com/zaklogician/agda-ist-algebra.git
The software is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability and fitness for a particular purpose. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software. Licensing terms may differ between the online and printed versions.

```
module IST.Safe.Base where
-- Here we define standard constructions from type theory, including
-- the usual dependent sum types and equality. This development
-- takes place in ordinary MLTT/Agda, without the external hierarchy.
open import Agda.Primitive
-- TRIVIAL DATA TYPES --
-- The empty type and ex falso quodlibet.
data \perp : Set where
absurd : {\ell : Level} -> \perp -> \forall {A : Set \ell} ->A
absurd ()
-- The singleton type.
data T : Set where
    tt : T
-- EXISTENTIAL QUANTIFICATION --
-- Now we deal with existential quantifiers. Alas, unlike the }
-- case, Agda does not provide a builtin for this, so we need to
-- declare two variants, ヨ (for the internal hierarchy) and ヨ*
-- (for the external hierarchy). Here we declare the internal
-- variant ヨ, and define ^ in terms of it.
infixr 4 _'
record \exists {
    constructor _'_
    field
        proj}1: : A
        proj}2: : B proj1
    open ヨ public
```



```
\overline{A}}\overline{\wedge}B=\exists\lambda(x:A)->
-- LISTS / FINITE SETS --
data List {\ell : Level} (A : Set \ell) : Set \ell where
    [] : List A
    _:_ : A }->(xs : List A) -> List A
```




```
List-induction base-case inductive-case [] = base-case
List-induction base-case inductive-case (x :: xs) =
    inductive-case x xs (List-induction base-case inductive-case xs)
data }\in{\ell} {A : Set \ell} (x : A) : List A -> Set \ell where
    \in-head : }\forall\mathrm{ {ys} }->x\in(x::ys
    \in-tail : }\forall\mathrm{ {y ys} }->\textrm{x}\in\textrm{ys}->\textrm{x}\in(y:: ys
-- DISJUNCTION --
-- We could encode (constructive) disjunction using }\exists\mathrm{ and a two-element
-- type, but declaring an explicit data type keeps reasoning much
-- more legible.
```



```
    inl : A }->\textrm{A}V 
    inr: B }->\textrm{A}V\textrm{B
```




```
by-cases P A-implies-P B-implies-P (inl a) = A-implies-P a
```

```
by-cases P A-implies-P B-implies-P (inr b) = B-implies-P b
postulate
```



```
-- EQUALITY --
-- We define equality only for the internal hierarchy, but only
-- with the internal induction principle. Later on,
-- we will admit a transport* principle for the external
-- hierarchy. This counts as a "hidden axiom" of IST, because
-- first-order logic is assumed to have equality. Really, we'd need
-- to check that the Nelson translation of (x = y) -> st(x) -> st(y) is
-- provable in ZFC.
infix 4 _#
```



```
    refl : x \equiv x
sym : {\ell : Level} {A : Set \ell} {x y : A} }->\textrm{x}\equiv\textrm{y}->\textrm{y}\equiv\textrm{x
sym refl = refl
tran : {\ell : Level} {A : Set \ell} {x y z : A} -> x \equiv y -> y \equiv z -> x \equiv z
tran refl refl = refl
cong : {\ell : Level} {A B : Set l} {x y : A} -> (f : A }->\textrm{B})->\textrm{x}\equiv\textrm{f
cong f refl = refl
```



```
transport refl z = z
```



```
\equiv-ind \varphi p refl = p
-- COMBINATORIAL (CLOSED) LAMBDA TERMS --
-- We cannot use induction on Set-types, so how do we prove them
-- standard? In IST, we do not have to deal with this problem,
-- since we normally encode functions as their graphs (sets of
-- ordered pairs), and IST already provides rules for the
-- standardness of sets.
-- In Agda, functions do not coincide with sets of ordered pairs,
-- and we need to ensure that all MLTT-definable functions are
-- indeed standard. To accomplish this, the rules below suffice:
-- 1. All pure combinatorial \lambda-terms with standard co/domain are themselves standard.
-- 2. Functions defined by induction are standard.
-- 3. Applying a standard value to a standard function yields a standard result.
-- These rules exhaust all possible ways of defining functions
-- in MLTT.
-- E.g. to prove that (\lambdai. _=_ (f i) (g i)) is standard, we would
-- argue as follows:
-- 1. (\a.\b.\c. a b c) is a purely combinatorial \lambda-term, so standard.
-- 2. (\b.\c _=_ b c) is standard when both _= and (\a.\b.\c. a b c) are standard.
-- 3. (\c = (f i) c) is standard when both (f i) and (\b.\c = b c) are standard.
-- 4. (_=_-(\overline{f i) (g i)) is standard when both (g i) and (\c. _=_ (f i) (g i)) are standard.}
-- So we'\overline{d conclude that the inhabitant (\lambdai. =_(f i) (g i))}
-- of the type Set is standard as long as (f i) and (g i) are.
-- Here we declare the combinatorial instances that we actually use
-- in our development, so that we can safely declare them standard in
-- IST.Base.
abs-5 : (I : Set) }->({X:Set} ->X 侈X X -> Set) 
    (b : I -> Set) }
    (f : (i : I) -> b i) }
    (g : (i : I) -> b i) }
    (i : I) -> Set
abs-5 I = \lambda (a : {X : Set } }->\textrm{X}->\textrm{X}->\mathrm{ Set) }
    \lambda (b : I }->\mathrm{ Set) }
    \lambda (f : (i : I) -> b i) }
    \lambda(g: (i : I) }->\textrm{b}\mathrm{ i) }
    \lambda (i : I) ->a {b i} (f i) (g i)
```

151

```
abs-4 : (A M X : Set) }
    (f : A -> M -> M) ->
    (e : X }->\textrm{A})
    X }->M->
abs-4 A M X f e x m = f (e x) m
```



```
abs-K A B = \lambda (a : A) }->\lambda(\textrm{b}:\textrm{B})->\textrm{a
```



```
abs-K-h A B = \lambda (a:A) }->\lambda{\textrm{a}:\textrm{B}}->\textrm{a
-- We admit the law of excluded middle.
postulate
    excluded-middle : {\ell : Level} -> (A : Set \ell) -> A V (A -> \perp)
```

module IST.Safe.Util where
-- Here we define standard constructions from type theory, including
-- the usual dependent sum types and equality. This development
-- takes place in ordinary MLTT/Agda, without the external hierarchy.
open import Agda.Primitive
open import IST.Safe.Base
lemma-product-equality $:\left\{\ell_{1} \ell_{2}: \operatorname{Level}\right\}\left\{\mathrm{X}: \operatorname{Set} \ell_{1}\right\}\left\{Y: \operatorname{Set} \ell_{2}\right\}\left\{\mathrm{X}_{1} \mathrm{X}_{2}: \mathrm{X}\right\} \rightarrow \forall\left\{\mathrm{y}_{1} \mathrm{Y}_{2}: \mathrm{Y}\right\} \rightarrow$
$\mathrm{x}_{1} \equiv \mathrm{x}_{2} \rightarrow \mathrm{y}_{1} \equiv \mathrm{y}_{2} \rightarrow\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \equiv\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
lemma-product-equality refl refl $=$ refl
module IST.Safe.Naturals where
open import Agda.Primitive
open import IST.Safe.Base
data $\mathbb{N}$ : Set where
zero : $\mathbb{N}$
suc : $\mathbb{N} \rightarrow \mathbb{N}$
\{-\# BUILTIN NATURAL $\mathbb{N}$ \#-\}
$\mathbb{N}$-induction : $\{\ell:$ Level $\} \rightarrow\{\varphi: \mathbb{N} \rightarrow$ Set $\ell\} \rightarrow$
$\varphi 0 \rightarrow(\forall \mathrm{k} \rightarrow \varphi \mathrm{k} \rightarrow \varphi($ suc k$)) \rightarrow \forall \mathrm{n} \rightarrow \varphi \mathrm{n}$
$\mathbb{N}$-induction base-case inductive-case zero = base-case
$\mathbb{N}$-induction base-case inductive-case (suc $n$ ) = inductive-case $n$ ( $\mathbb{N}$-induction base-case
inductive-case n)
data $\leq: \mathbb{N} \rightarrow \mathbb{N} \rightarrow$ Set where
$\leq$-zero : $\{\mathrm{x}: \mathbb{N}\} \rightarrow 0 \leq \mathrm{x}$
$\leq-$ suc : $\{x \mathrm{y}: \mathbb{N}\} \rightarrow \mathrm{x} \leq \mathrm{y} \rightarrow$ suc $\mathrm{x} \leq \operatorname{suc} \mathrm{y}$
$\leq-\operatorname{tran}:(\mathrm{x} y \mathrm{z}: \mathbb{N}) \rightarrow \mathrm{x} \leq \mathrm{y} \rightarrow \mathrm{y} \leq \mathrm{z} \rightarrow \mathrm{x} \leq \mathrm{z}$
s-tran. 0 y z s-zero q = s-zero
$\leq-\operatorname{tran} \cdot\left(\right.$ suc _ $\left.^{\prime}\right) \cdot\left(\right.$ suc _ $\left.^{\prime}\right) \cdot($ suc _) $(\leq-$ suc p) $(\leq-$ suc q) $=\leq-$ suc $(\leq-\operatorname{tran}$
$\qquad$ p q)
S-than-zero : $(\mathrm{x}: \mathbb{N}) \rightarrow \mathrm{x} \leq 0 \rightarrow \mathrm{x} \equiv 0$
s-than-zero . $0 \leq$-zero $=$ refl
$\leq-r e f l: \forall x \rightarrow x \leq x$
s-refl zero = s-zero
s-refl (suc $x$ ) $=$ s-suc ( $\leq$-refl $x$ )
$\leq-n o t-s u c: ~ \forall x \rightarrow$ suc $\mathrm{x} \leq \mathrm{x} \rightarrow \perp$
s-not-suc zero ()
s-not-suc (suc x) ( $\leq-$ suc $p$ ) $=\leq-$ not-suc $x p$
S-match : (x y : N ) -> x \leq suc y -> (x \leq y) V (x \equiv suc y)
S-match : (x y : N ) -> x \leq suc y -> (x \leq y) V (x \equiv suc y)
s-match .0 y \leq-zero = inl \leq-zero
s-match .0 y \leq-zero = inl \leq-zero
\leq-match (suc a) zero (\leq-suc p) = inr (cong suc (\leq-than-zero a p))
\leq-match (suc a) zero (\leq-suc p) = inr (cong suc (\leq-than-zero a p))
s-match (suc a) (suc b) (\leq-suc p) with s-match a b p
s-match (suc a) (suc b) (\leq-suc p) with s-match a b p
\leq-match (suc a) (suc b) (\leq-suc p) | inl q = inl (\leq-suc q)
\leq-match (suc a) (suc b) (\leq-suc p) | inl q = inl (\leq-suc q)
s-match (suc a) (suc b) (\leq-suc p) | inr q = inr (cong suc q)
s-match (suc a) (suc b) (\leq-suc p) | inr q = inr (cong suc q)
module IST.Safe.FiniteSets where
open import IST.Safe.Base
record IsFiniteSet
(Carrier : Set)
: Set where
field
list-of-elements : List Carrier
has-all-elements $:(x: C a r r i e r) \rightarrow x \in$ list-of-elements
record FiniteSet : Set ${ }_{1}$ where
field
Carrier : Set
isFiniteSet : IsFiniteSet Carrier
open IsFiniteSet isFiniteSet public
module IST.Safe.Reals where
open import Agda.Primitive
open import IST.Safe.Base
-- We present an ordered field axiomatically. We do not give a completeness axiom.
-- $\mathbb{R}$ forms a commutative ring.
infixr 5 +
infixr $6_{-}^{-}$-
postulate
$\mathbb{R}:$ Set
$+: \mathbb{R} \rightarrow \mathbb{R} \rightarrow \mathbb{R}$
Or: $\mathbb{R}$
+- comm : $\forall\{x y: \mathbb{R}\} \rightarrow x+y \equiv y+x$
$+-a s s o c: \forall\{x y z: \mathbb{R}\} \rightarrow(x+y)+z \equiv x+(y+z)$
+-unit-left : $\forall\{x: \mathbb{R}\} \rightarrow 0 r+x \equiv x$
minus $: \mathbb{R} \rightarrow \mathbb{R}$
+-inverse-left : $\forall\{x: \mathbb{R}\} \rightarrow x+\operatorname{minus} x \equiv 0 r$
$: \mathbb{R} \rightarrow \mathbb{R} \rightarrow \mathbb{R}$
Ir: $\mathbb{R}$
$\cdot-$ comm : $\forall\{x$ y $: \mathbb{R}\} \rightarrow x \cdot y \equiv y \cdot x$
$\cdot-a s s o c: \forall\{x y z: \mathbb{R}\} \rightarrow(x \cdot y) \cdot z \equiv x \cdot(y \cdot z)$
-unit-left : $\forall\{x: \mathbb{R}\} \rightarrow 1 r \cdot x \equiv x$
- null-left : $\forall\{x: \mathbb{R}\} \rightarrow x \cdot$ or $\equiv 0 r$
distr-left $: \forall\{x y z: \mathbb{R}\} \rightarrow x \cdot(y+z) \equiv x \cdot y+x \cdot z$
-- The right laws follow by commutativity.
+-unit-right : $\forall\{x: \mathbb{R}\} \rightarrow x+0 r \equiv x$
+- unit-right $=$ tran +- comm + -unit-left
--unit-right : $\forall\{x: \mathbb{R}\} \rightarrow x \cdot 1 r \equiv x$
--unit-right $=$ tran $\cdot-c o m m \cdot-u n i t-l e f t$
$\cdot-n u l l-r i g h t: ~ \forall\{x: \mathbb{R}\} \rightarrow 0 r \cdot x \equiv 0 r$
-null-right $=$ tran $\cdot-c o m m \cdot-n u l l-l e f t$
distr-right : $\forall\{x \quad y \mathrm{z}: \mathbb{R}\} \rightarrow(\mathrm{x}+\mathrm{y}) \cdot \mathrm{z} \equiv \mathrm{x} \cdot \mathrm{z}+\mathrm{y} \cdot \mathrm{z}$
distr-right $\{x\}\{y\}\{z\}=$ step-3 where
step-1 : $z \cdot x+z \cdot y \equiv x \cdot z+z \cdot y$
step-1 $=$ cong $(\lambda p \rightarrow p+z \cdot y) \cdot-c o m m$

299

```
step-2 : \(x \cdot z+z \cdot y \equiv x \cdot z+y \cdot z\)
step-2 \(=\) cong \((\lambda p \rightarrow x \cdot z+p) \cdot-c o m m\)
step-3 : \((x+y) \cdot z \equiv x \cdot z+y \cdot z\)
step-3 \(=\) tran (tran (tran --comm distr-left) step-1) step-2
-- \(\mathbb{R}\) forms an ordered commutative ring.
```

```
infix \(4 \quad<\)
```

infix $4 \quad<$
infix 4 _r $_{r}^{-}$
infix 4 _r $_{r}^{-}$
postulate
postulate
${ }_{-}^{<}$_ $: \mathbb{R} \rightarrow \mathbb{R} \rightarrow$ Set
${ }_{-}^{<}$_ $: \mathbb{R} \rightarrow \mathbb{R} \rightarrow$ Set
$<-$ trichotomy-strong : $\forall x y \rightarrow(x \equiv y) \vee((x<y) \vee(y<x))$
$<-$ trichotomy-strong : $\forall x y \rightarrow(x \equiv y) \vee((x<y) \vee(y<x))$
$<-a s y m-1: \forall x \mathrm{y} \rightarrow \mathrm{x}<\mathrm{y} \rightarrow \mathrm{x} \equiv \mathrm{y} \rightarrow \perp$
$<-a s y m-1: \forall x \mathrm{y} \rightarrow \mathrm{x}<\mathrm{y} \rightarrow \mathrm{x} \equiv \mathrm{y} \rightarrow \perp$
$<-a s y m-2: \forall x y \rightarrow x<y \rightarrow y<x \rightarrow \perp$
$<-a s y m-2: \forall x y \rightarrow x<y \rightarrow y<x \rightarrow \perp$
$<-$ tran : $\forall x y z \rightarrow x<y \rightarrow y<z \rightarrow x<z$
$<-$ tran : $\forall x y z \rightarrow x<y \rightarrow y<z \rightarrow x<z$
$<-\mathrm{plus}: \forall \mathrm{x} y \mathrm{c} \rightarrow \mathrm{x}<\mathrm{y} \rightarrow \mathrm{x}+\mathrm{c}<\mathrm{y}+\mathrm{c}$
$<-\mathrm{plus}: \forall \mathrm{x} y \mathrm{c} \rightarrow \mathrm{x}<\mathrm{y} \rightarrow \mathrm{x}+\mathrm{c}<\mathrm{y}+\mathrm{c}$
$<-m u l t: \forall x$ y $\mathrm{c} \rightarrow \mathrm{Or}<\mathrm{c} \rightarrow \mathrm{x}<\mathrm{y} \rightarrow \mathrm{c} \cdot \mathrm{x}<\mathrm{c} \cdot \mathrm{y}$
$<-m u l t: \forall x$ y $\mathrm{c} \rightarrow \mathrm{Or}<\mathrm{c} \rightarrow \mathrm{x}<\mathrm{y} \rightarrow \mathrm{c} \cdot \mathrm{x}<\mathrm{c} \cdot \mathrm{y}$
<-nontrivial : Or < 1r
<-nontrivial : Or < 1r
-- $\mathbb{R}$ forms a field
-- $\mathbb{R}$ forms a field
$\neq{ }_{-}: \mathbb{R} \rightarrow \mathbb{R} \rightarrow$ Set
$\neq{ }_{-}: \mathbb{R} \rightarrow \mathbb{R} \rightarrow$ Set
$x \neq y=((x<y) \rightarrow \perp) \rightarrow y<x$
$x \neq y=((x<y) \rightarrow \perp) \rightarrow y<x$
postulate
postulate
inv $:(r: \mathbb{R}) \rightarrow(r \neq 0 r) \rightarrow \mathbb{R}$
inv $:(r: \mathbb{R}) \rightarrow(r \neq 0 r) \rightarrow \mathbb{R}$
- inverse-left : $\forall\{x: \mathbb{R}\} \rightarrow(p: x \neq 0 r) \rightarrow$ inv $x p \cdot x \equiv 1 r$
- inverse-left : $\forall\{x: \mathbb{R}\} \rightarrow(p: x \neq 0 r) \rightarrow$ inv $x p \cdot x \equiv 1 r$
+-inverse-right : $\forall\{x: \mathbb{R}\} \rightarrow$ minus $x+x \equiv 0 r$
+-inverse-right : $\forall\{x: \mathbb{R}\} \rightarrow$ minus $x+x \equiv 0 r$
+-inverse-right $=$ tran $+-c o m m$ +-inverse-left
+-inverse-right $=$ tran $+-c o m m$ +-inverse-left
$\cdot-i n v e r s e-r i g h t: \forall\{x: \mathbb{R}\} \rightarrow(x \neq 0: x \neq 0 r) \rightarrow x$ inv $x x \neq 0 \equiv 1 r$
$\cdot-i n v e r s e-r i g h t: \forall\{x: \mathbb{R}\} \rightarrow(x \neq 0: x \neq 0 r) \rightarrow x$ inv $x x \neq 0 \equiv 1 r$
--inverse-right $x \neq 0=$ tran $\cdot-$ comm ( - -inverse-left $x \neq 0)$
--inverse-right $x \neq 0=$ tran $\cdot-$ comm ( - -inverse-left $x \neq 0)$
-- We state and prove some useful elementary theorems about $\mathbb{R}$.
-- We state and prove some useful elementary theorems about $\mathbb{R}$.
$\cdot-m i n u s: \forall\{x: \mathbb{R}\} \rightarrow$ minus $x \equiv$ (minus $1 r$ ) $\cdot x$

- minus $\{x\}=$ sym step-9 where
step-1 : $x+$ minus 1r $\cdot x \equiv(1 r \cdot x)+$ minus 1r $\cdot x$
step-1 $=\operatorname{cong}(\lambda p \rightarrow p+\operatorname{minus} 1 r \cdot x)$ (sym (•unit-left))
step-2 : $1 r \cdot x+\operatorname{minus} 1 r \cdot x \equiv(1 r+m i n u s 1 r) \cdot x$
step-2 $=$ sym (distr-right)
step-3 : (1r + minus $1 r) \cdot x \equiv 0 r$
step-3 $=\operatorname{tran}(\operatorname{cong}(\lambda p \rightarrow p \cdot x)+$ inverse-left) $\cdot-n u l l-r i g h t$
step-4 : $\mathrm{x}+$ minus $1 \mathrm{r} \cdot \mathrm{x} \equiv 0 \mathrm{r}$
step-4 $=\operatorname{tran}$ (tran step-1 step-2) step-3
step-5 : minus $x+(x+$ minus $1 r \cdot x) \equiv$ minus $x+0 r$
step-5 $=$ cong $(\lambda p \rightarrow$ minus $x+p)$ step -4
step-6 : minus $x+(x+$ minus $1 r \cdot x) \equiv$ minus $x$
step-6 $=$ tran step-5 +-unit-right
step-7 : (minus $x+x$ ) + minus $1 r \cdot x \equiv$ minus $x$
step-7 $=$ tran $+-a s s o c$ step- 6
step-8 : Or + minus $1 r \cdot x \equiv$ minus $x$
step-8 $=\operatorname{tran}($ cong $(\lambda p \rightarrow p+$ minus $1 r \cdot x)$ (sym +-inverse-right)) step-7
step-9 : minus 1r $\cdot x \equiv$ minus $x$
step-9 $=$ tran (sym +-unit-left) step-8
$<-$ trichotomy : $\forall\{\varphi: \operatorname{Set}\} \rightarrow \forall x \operatorname{y} \rightarrow(\mathrm{x}<\mathrm{y} \rightarrow \varphi) \rightarrow(\mathrm{x} \equiv \mathrm{y} \rightarrow \varphi) \rightarrow(\mathrm{y}<\mathrm{x} \rightarrow \varphi) \rightarrow \varphi$
$<-t r i c h o t o m y ~\{\varphi\}$ x y p q r with <-trichotomy-strong x y
<-trichotomy $\{\varphi\}$ x y p q r | inl $x$-equals-y $=q$ x-equals-y
$<-t r i c h o t o m y ~\{\varphi\}$ x y p q $r$ | inr (inl $x$-under-y) $=p x$-under-y
$<-t r i c h o t o m y ~\{\varphi\}$ x y p q $r$ | inr (inr $y$-under-x) $=r y$-under-x
$<-m i n u s: \forall\{x: \mathbb{R}\} \rightarrow 0 r<x \rightarrow$ minus $x<0 r$
$<-m i n u s ~\{x\}$ positive-x $=<-t r i c h o t o m y ~ O r ~(m i n u s ~ x)$
$(\lambda z \rightarrow$ absurd (not-positive $z)$ )
( $\lambda \mathrm{z} \rightarrow$ absurd (not-zero z$)$ )
$(\lambda z \rightarrow z)$ where
not-positive : Or < minus $x \rightarrow \perp$
not-positive positive-minus-x $=<-a s y m-2$ 0r $x$ positive-x negative-x where
step-1 : $0 r+x<$ minus $x+x$
step-1 $=<-p l u s$ Or (minus $x$ ) $x$ positive-minus-x
step-2 : 0r $+x<0 r$
step-2 $=$ transport + -inverse-right $\{\lambda p \rightarrow 0 r+x<p\}$ step-1

```
```

        negative-x : x < Or
    ```
        negative-x : x < Or
        negative-x = transport +-unit-left {\lambda p -> p < Or} step-2
        negative-x = transport +-unit-left {\lambda p -> p < Or} step-2
    not-zero : Or \equiv minus x }->
    not-zero : Or \equiv minus x }->
    not-zero zero-minus-x = <-asym-1 Or x positive-x (sym zero-x) where
    not-zero zero-minus-x = <-asym-1 Or x positive-x (sym zero-x) where
        step-1 : x + Or \equiv 0r
        step-1 : x + Or \equiv 0r
        step-1 = transport (sym zero-minus-x) {\lambda p -> x + p \equiv Or} +-inverse-left
        step-1 = transport (sym zero-minus-x) {\lambda p -> x + p \equiv Or} +-inverse-left
        zero-x : x \equiv 0r
        zero-x : x \equiv 0r
        zero-x = transport (+-unit-right {x}) {\lambda p -> p \equiv 0r} step-1
        zero-x = transport (+-unit-right {x}) {\lambda p -> p \equiv 0r} step-1
<-inverse : }\forall{x:\mathbb{R}}->(p:0r < x) -> 0r < inv x ( \lambda _ m )
<-inverse : }\forall{x:\mathbb{R}}->(p:0r < x) -> 0r < inv x ( \lambda _ m )
<-inverse {x} p = <-trichotomy Or (inv x ( }\mp@subsup{\lambda}{~}{}->\textrm{p})\mathrm{ )
```

<-inverse {x} p = <-trichotomy Or (inv x ( }\mp@subsup{\lambda}{~}{}->\textrm{p})\mathrm{ )

```


```

    (\lambda z -> absurd (not-zero z))
    ```
    (\lambda z -> absurd (not-zero z))
    (\lambda z -> absurd (not-negative z)) where
```

    (\lambda z -> absurd (not-negative z)) where
    ```


```

    not-zero Or-inverse = <-asym-1 _ _ <-nontrivial step-3 where
    ```
    not-zero Or-inverse = <-asym-1 _ _ <-nontrivial step-3 where
        step-1 : 0r · x \equiv inv x (\lambda__ \ p ) · x
        step-1 : 0r · x \equiv inv x (\lambda__ \ p ) · x
        step-1 = cong (\lambda p P p · x) Or-inverse
        step-1 = cong (\lambda p P p · x) Or-inverse
        step-2 : 0r · x \equiv 1r
        step-2 : 0r · x \equiv 1r
        step-2 = tran step-1 (--inverse-left ( }\mp@subsup{\lambda}{~}{~
        step-2 = tran step-1 (--inverse-left ( }\mp@subsup{\lambda}{~}{~
        step-3 : 0r \equiv 1r
        step-3 : 0r \equiv 1r
        step-3 = tran (sym .-null-right) step-2
        step-3 = tran (sym .-null-right) step-2
    not-negative : inv x ( \lambda _ m p) < Or -> \perp
    not-negative : inv x ( \lambda _ m p) < Or -> \perp
    not-negative negative-inv}\overline{v}=<-asym-2 _ _ <-nontrivial step-3 where
    not-negative negative-inv}\overline{v}=<-asym-2 _ _ <-nontrivial step-3 where
        x' : \mathbb{R}
        x' : \mathbb{R}
        x' = inv x (\lambda _ > p)
        x' = inv x (\lambda _ > p)
        step-1 : x · x' < x · Or
        step-1 : x · x' < x · Or
        step-1 = <-mult x' Or x p negative-invx
        step-1 = <-mult x' Or x p negative-invx
        step-2 : 1r < x · Or
        step-2 : 1r < x · Or
        step-2 = transport (·-inverse-right ( }\mp@subsup{\lambda}{~}{~}->\textrm{p})) {\lambda p -> p < x · 0r} step-1
        step-2 = transport (·-inverse-right ( }\mp@subsup{\lambda}{~}{~}->\textrm{p})) {\lambda p -> p < x · 0r} step-1
        step-3 : 1r < Or
        step-3 : 1r < Or
        step-3 = transport \cdot-null-left {\lambda p -> 1r < p} step-2
        step-3 = transport \cdot-null-left {\lambda p -> 1r < p} step-2
<-plus-both : }\forall(\textrm{x X y Y : R ) }->\textrm{x}<\textrm{X}->\textrm{Y}<\textrm{Y}->\textrm{X}+\textrm{y}<\textrm{X}+\textrm{Y
<-plus-both : }\forall(\textrm{x X y Y : R ) }->\textrm{x}<\textrm{X}->\textrm{Y}<\textrm{Y}->\textrm{X}+\textrm{y}<\textrm{X}+\textrm{Y
<-plus-both x X y Y p q = <-tran __ step-1 step-4 where
<-plus-both x X y Y p q = <-tran __ step-1 step-4 where
    step-1 : x + y < X + y
    step-1 : x + y < X + y
    step-1 = <-plus x X y p
    step-1 = <-plus x X y p
    step-2 : y + X < Y + X
    step-2 : y + X < Y + X
    step-2 = <-plus y Y X q
    step-2 = <-plus y Y X q
    step-3 : X + y < Y + X
    step-3 : X + y < Y + X
    step-3 = transport (+-comm {y} {X}) {\lambda z -> z < Y + X} step-2
    step-3 = transport (+-comm {y} {X}) {\lambda z -> z < Y + X} step-2
    step-4 : X + y < X + Y
    step-4 : X + y < X + Y
    step-4 = transport (+-comm {Y} {X}) {\lambda z }->\textrm{X}+\textrm{Y}<\textrm{z}}\mathrm{ step-3
    step-4 = transport (+-comm {Y} {X}) {\lambda z }->\textrm{X}+\textrm{Y}<\textrm{z}}\mathrm{ step-3
<-plus-left : \forall x y c -> x < y -> (c + x) < (c + y)
<-plus-left : \forall x y c -> x < y -> (c + x) < (c + y)
<-plus-left x y c p = step-3 where
<-plus-left x y c p = step-3 where
    step-1 : x + c < y + c
    step-1 : x + c < y + c
    step-1 = <-plus x y c p
    step-1 = <-plus x y c p
    step-2 : c + x < y + c
    step-2 : c + x < y + c
    step-2 = transport +-comm {\lambda p }->\textrm{p}<\textrm{y}+\textrm{c}}\mathrm{ step-1
    step-2 = transport +-comm {\lambda p }->\textrm{p}<\textrm{y}+\textrm{c}}\mathrm{ step-1
    step-3 : c + x < c + y
    step-3 : c + x < c + y
    step-3 = transport +-comm {\lambda p ->c + x < p} step-2
    step-3 = transport +-comm {\lambda p ->c + x < p} step-2
lemma-\varepsilon-of-room : \forall(x:\mathbb{R})->(\forall(\varepsilon:\mathbb{R})->0r<\varepsilon->x<\varepsilon)->(x<0r -> &) }->\textrm{x
lemma-\varepsilon-of-room : \forall(x:\mathbb{R})->(\forall(\varepsilon:\mathbb{R})->0r<\varepsilon->x<\varepsilon)->(x<0r -> &) }->\textrm{x
lemma-\varepsilon-of-room x x<\varepsilon x\geq0=<-trichotomy {x \equiv0r} x 0r
lemma-\varepsilon-of-room x x<\varepsilon x\geq0=<-trichotomy {x \equiv0r} x 0r
    (\lambda z -> absurd (x\geq0 z))
    (\lambda z -> absurd (x\geq0 z))
    (\lambda z -> z)
    (\lambda z -> z)
    (\lambda z -> absurd (<-asym-2 x x (x<\varepsilon x z) (x<\varepsilon x z)))
    (\lambda z -> absurd (<-asym-2 x x (x<\varepsilon x z) (x<\varepsilon x z)))
lemma-\varepsilon-of-room-plus : \forall (x y : \mathbb{R})->(\forall(\varepsilon:\mathbb{R})->0r<\varepsilon->x<y+\varepsilon) }->(\textrm{x}\equiv\textrm{y}=\textrm{y}->\perp)->\textrm{x}<\textrm{y
lemma-\varepsilon-of-room-plus : \forall (x y : \mathbb{R})->(\forall(\varepsilon:\mathbb{R})->0r<\varepsilon->x<y+\varepsilon) }->(\textrm{x}\equiv\textrm{y}=\textrm{y}->\perp)->\textrm{x}<\textrm{y
lemma-\varepsilon-of-room-plus x y x<\varepsilon x\geqy = <-trichotomy {x < y} x y
lemma-\varepsilon-of-room-plus x y x<\varepsilon x\geqy = <-trichotomy {x < y} x y
    (\lambda z -> z)
    (\lambda z -> z)
    (\lambda z -> absurd (x\geqy z))
    (\lambda z -> absurd (x\geqy z))
    (\lambda z }->x<y z) wher
    (\lambda z }->x<y z) wher
        0<x-y : y < x }->0r<x+minus y
        0<x-y : y < x }->0r<x+minus y
        0<x-y y<x = absurd (<-asym-1 x x x<x refl) where
        0<x-y y<x = absurd (<-asym-1 x x x<x refl) where
            step-1 : y + minus y < x + minus y
            step-1 : y + minus y < x + minus y
            step-1 = <-plus y x (minus y) y<x
            step-1 = <-plus y x (minus y) y<x
            step-2 : 0r < x + minus y
            step-2 : 0r < x + minus y
            step-2 = transport +-inverse-left {\lambda z -> z< x + minus y} step-1
            step-2 = transport +-inverse-left {\lambda z -> z< x + minus y} step-1
            step-3 : x < y + x + minus y
            step-3 : x < y + x + minus y
            step-3 = x<\varepsilon (x + minus y) step-2
            step-3 = x<\varepsilon (x + minus y) step-2
            step-4 : y + x + minus y \equiv y + minus y + x
            step-4 : y + x + minus y \equiv y + minus y + x
            step-4 = cong (\lambda z -> y + z) (+-comm {x} {minus y})
            step-4 = cong (\lambda z -> y + z) (+-comm {x} {minus y})
            step-5 : (y + minus y) + x \equiv x
            step-5 : (y + minus y) + x \equiv x
            step-5 = tran (cong ( }\lambda\textrm{z}->\textrm{z + x) +-inverse-left) +-unit-left
```

            step-5 = tran (cong ( }\lambda\textrm{z}->\textrm{z + x) +-inverse-left) +-unit-left
    ```

449
450
452
```

    step-6 : y + x + minus y \equiv x
    ```
    step-6 : y + x + minus y \equiv x
    step-6 = tran step-4 (tran (sym +-assoc) step-5)
    step-6 = tran step-4 (tran (sym +-assoc) step-5)
    x<x : x < x
    x<x : x < x
    x<x = transport step-6 {\lambda z }->\textrm{x}<\textrm{x
    x<x = transport step-6 {\lambda z }->\textrm{x}<\textrm{x
    x<y : y < x }->\textrm{x}<\textrm{y
    x<y : y < x }->\textrm{x}<\textrm{y
    x<y y<x = absurd (<-asym-1 x x x<x refl) where
    x<y y<x = absurd (<-asym-1 x x x<x refl) where
        x<y+x-y : x < y + x + minus y
        x<y+x-y : x < y + x + minus y
    x<y+x-y = x<\varepsilon (x + minus y) (0<x-y y<x)
    x<y+x-y = x<\varepsilon (x + minus y) (0<x-y y<x)
    y+x-y-equals-x : y + x + minus y \equiv x
    y+x-y-equals-x : y + x + minus y \equiv x
    y+x-y-equals-x =
    y+x-y-equals-x =
        tran (cong ( }\lambda\textrm{z}->\textrm{y}+\textrm{z}) +-comm
        tran (cong ( }\lambda\textrm{z}->\textrm{y}+\textrm{z}) +-comm
        (tran (sym +-assoc) (tran (cong ( }\lambda\textrm{z}->\textrm{z}+\textrm{x}) +-inverse-left) +-unit-left))
        (tran (sym +-assoc) (tran (cong ( }\lambda\textrm{z}->\textrm{z}+\textrm{x}) +-inverse-left) +-unit-left))
    x<x : x < x
    x<x : x < x
    x<x = transport y+x-y-equals-x {\lambda z }->\textrm{x
    x<x = transport y+x-y-equals-x {\lambda z }->\textrm{x
-- We prove some theorems about 1/2 that we need to work with metric spaces.
-- We prove some theorems about 1/2 that we need to work with metric spaces.
2r: \mathbb{R}
2r: \mathbb{R}
2r=1r + 1r
2r=1r + 1r
pos-2r:0r< 2r
pos-2r:0r< 2r
pos-2r = <-tran 0r 1r 2r <-nontrivial step-2 where
pos-2r = <-tran 0r 1r 2r <-nontrivial step-2 where
    step-1 : 0r + 1r< 1r + 1r
    step-1 : 0r + 1r< 1r + 1r
    step-1 = <-plus Or 1r 1r <-nontrivial
    step-1 = <-plus Or 1r 1r <-nontrivial
    step-2 : 1r< 1r + 1r
```

    step-2 : 1r< 1r + 1r
    ```


```

1r-less-than-2r: 1r< 2r

```
1r-less-than-2r: 1r< 2r
1r-less-than-2r = step-2 where
1r-less-than-2r = step-2 where
    step-1 : Or + 1r< 1r + 1r
    step-1 : Or + 1r< 1r + 1r
    step-1 = <-plus Or 1r 1r <-nontrivial
    step-1 = <-plus Or 1r 1r <-nontrivial
    step-2 : 1r < 1r + 1r
    step-2 : 1r < 1r + 1r
    step-2 = transport +-unit-left {\lambda p }->\textrm{p}<1r+1r} step-
    step-2 = transport +-unit-left {\lambda p }->\textrm{p}<1r+1r} step-
1/2r: \mathbb{R}
1/2r: \mathbb{R}
1/2r=inv 2r ( }\lambda,->\mathrm{ pos-2r)
1/2r=inv 2r ( }\lambda,->\mathrm{ pos-2r)
pos-1/2r : 0r < 1/2r
pos-1/2r : 0r < 1/2r
pos-1/2r = <-inverse pos-2r
pos-1/2r = <-inverse pos-2r
1/2r-less-than-1r : 1/2r< 1r
1/2r-less-than-1r : 1/2r< 1r
1/2r-less-than-1r = step-3 where
1/2r-less-than-1r = step-3 where
    step-1 : 1/2r . 1r< 1/2r . 2r
    step-1 : 1/2r . 1r< 1/2r . 2r
    step-1 = <-mult 1r 2r 1/2r pos-1/2r 1r-less-than-2r
    step-1 = <-mult 1r 2r 1/2r pos-1/2r 1r-less-than-2r
    step-2 : 1/2r< 1/2r. 2r
    step-2 : 1/2r< 1/2r. 2r
    step-2 = transport - -unit-right {\lambda p }->\textrm{p}<1/2r\cdot2r} step-
    step-2 = transport - -unit-right {\lambda p }->\textrm{p}<1/2r\cdot2r} step-
    step-3 : 1/2r < 1r
    step-3 : 1/2r < 1r
    step-3 = transport (--inverse-left (\lambda_ -> pos-2r)) {\lambda p -> 1/2r < p} step-2
    step-3 = transport (--inverse-left (\lambda_ -> pos-2r)) {\lambda p -> 1/2r < p} step-2
1/2r-half : 1/2r + 1/2r \equiv 1r
1/2r-half : 1/2r + 1/2r \equiv 1r
1/2r-half = tran step-6 (tran step-5 (tran step-4 step-3)) where
1/2r-half = tran step-6 (tran step-5 (tran step-4 step-3)) where
    step-1 : 2r. (1/2r + 1/2r) \equiv 2r . 1/2r + 2r \cdot 1/2r
    step-1 : 2r. (1/2r + 1/2r) \equiv 2r . 1/2r + 2r \cdot 1/2r
    step-1 = distr-left {2r} {1/2r} {1/2r}
    step-1 = distr-left {2r} {1/2r} {1/2r}
    step-2 : 2r \cdot 1/2r + 2r c 1/2r \equiv 2r
    step-2 : 2r \cdot 1/2r + 2r c 1/2r \equiv 2r
    step-2 = cong ( }\lambda\textrm{p}->\textrm{p}+\textrm{p}) (\cdot-inverse-right ( \lambda _ m pos-2r)
    step-2 = cong ( }\lambda\textrm{p}->\textrm{p}+\textrm{p}) (\cdot-inverse-right ( \lambda _ m pos-2r)
    step-3 : 1/2r \cdot 2r ( (1/2r + 1/2r) \equiv 1r
    step-3 : 1/2r \cdot 2r ( (1/2r + 1/2r) \equiv 1r
    step-3 = tran (cong ( }\lambda,p->1/2r.p) (tran step-1 step-2)) (.-inverse-left (\lambda - m pos-2r)
    step-3 = tran (cong ( }\lambda,p->1/2r.p) (tran step-1 step-2)) (.-inverse-left (\lambda - m pos-2r)
    step-4 : (1/2r . 2r) . (1/2r + 1/2r) \equiv 1/2r c 2r ( (1/2r + 1/2r)
    step-4 : (1/2r . 2r) . (1/2r + 1/2r) \equiv 1/2r c 2r ( (1/2r + 1/2r)
    step-4 = --assoc
    step-4 = --assoc
    step-5 : 1r \cdot (1/2r + 1/2r) \equiv (1/2r \cdot 2r) \cdot (1/2r + 1/2r)
    step-5 : 1r \cdot (1/2r + 1/2r) \equiv (1/2r \cdot 2r) \cdot (1/2r + 1/2r)
    step-5 = cong ( }\lambda\textrm{p}->\textrm{p}\cdot(1/2r+1/2r)) (sym (--inverse-left (\lambda _ pos-2r))
    step-5 = cong ( }\lambda\textrm{p}->\textrm{p}\cdot(1/2r+1/2r)) (sym (--inverse-left (\lambda _ pos-2r))
    step-6:1/2r+1/2r\equiv1r:(1/2r+1/2r)
    step-6:1/2r+1/2r\equiv1r:(1/2r+1/2r)
    step-6 = sym \cdot-unit-left
    step-6 = sym \cdot-unit-left
/2r:\mathbb{R}->\mathbb{R}
/2r:\mathbb{R}->\mathbb{R}
x /2r = 1/2r. x
x /2r = 1/2r. x
pos-/2r-v : (x : R | , Or < x }->0r<0r<x/2
pos-/2r-v : (x : R | , Or < x }->0r<0r<x/2
pos-/2r-v x pos-x = transport - null-left {\lambda p -> p < 1/2r \cdot x} (<-mult 0r x 1/2r pos-1/2r pos-x)
pos-/2r-v x pos-x = transport - null-left {\lambda p -> p < 1/2r \cdot x} (<-mult 0r x 1/2r pos-1/2r pos-x)
x/2r-less-than-x : (x : \mathbb{R})->0r<x->(x/2r)<x
x/2r-less-than-x : (x : \mathbb{R})->0r<x->(x/2r)<x
x/2r-less-than-x x pos-x = step-3 where
x/2r-less-than-x x pos-x = step-3 where
    step-1 : x · 1/2r < x . 1r
    step-1 : x · 1/2r < x . 1r
    step-1 = <-mult 1/2r 1r x pos-x 1/2r-less-than-1r
    step-1 = <-mult 1/2r 1r x pos-x 1/2r-less-than-1r
    step-2 : x / 2r < x · 1r
    step-2 : x / 2r < x · 1r
    step-2 = transport (.-comm {x} {1/2r}) {\lambda p -> p < x · 1r} step-1
```

    step-2 = transport (.-comm {x} {1/2r}) {\lambda p -> p < x · 1r} step-1
    ```
    step-3 : x / 2r < x
    step-3 = transport (--unit-right {x}) {\lambda p -> x / 2r < p} step-2
/2r-half : }\forall{x:\mathbb{R}}->x/2r+x/2r\equiv
/2r-half {x} = tran step-1 step-2 where
    step-1 : x /2r + x /2r \equiv (1/2r + 1/2r) . x
    step-1 = sym (distr-right {1/2r} {1/2r} {x})
    step-2 : (1/2r + 1/2r) · x \equiv x
    step-2 = tran (cong ( }\lambda\textrm{p}->\textrm{p}\cdotx)1/2r-half) \cdot-unit-lef
-- We prove some results about \leq that we need for Lipschitz conditions.
_ sr_ : \mathbb{R }
a}\mp@subsup{\leq}{r}{}\textrm{b}=(\textrm{a}\equiv\textrm{b})\quad\vee(\textrm{a}<\textrm{b}
s
sm-tran x .x .x (inl refl) (inl refl) = inl refl
\leqrtran x .x z (inl refl) (inr p) = inr p
smtran x y . y (inr p) (inl refl) = inr p
sr-tran x y z (inr p) (inr q) = inr (<-tran x y z p q)
smplus: }\forall\textrm{x}y\textrm{y C f x }\mp@subsup{\leq}{r}{}y->(x+c) \mp@subsup{x}{r}{}(y+c
sm-plus x .x c (inl refl) = inl refl
srplus x y c (inr p) = inr (<-plus x y c p)
```



```
s
s
s
s
s
sm-nontrivial = inr <-nontrivial
\leqr-minus : }\forall{x:\mathbb{R}}->0r \leqr x -> minus x \leqre 0r
\leqrminus (inl refl) = inl (tran (sym +-unit-left) +-inverse-left)
sm-minus (inr p) = inr (<-minus p)
```



```
\leqr-plus-both x .x y .y (inl refl) (inl refl) = inl refl
s
    step-1 : y + x < Y + x
    step-1 = <-plus y Y x q
    step-2 : x + y < Y + x
    step-2 = transport +-comm {\lambda p -> p < Y + x} step-1
    step-3 : x + y < x + Y
    step-3 = transport +-comm {\lambda p -> x + y < p} step-2
sm-plus-both x X y .y (inr p) (inl refl) = inr (<-plus x X y p)
sm-plus-both x X y Y (inr p) (inr q) = inr (<-plus-both x X y Y p q)
```



```
sm-plus-left x y c p = step-3 where
    step-1 : x + c \leqr y + c
    step-1 = \leqs-plus x y c p
    step-2 : c + x \leqr y + c
    step-2 = transport +-comm {\lambda p -> p \leqr y + c} step-1
    step-3 : c + x \leqr c + y
    step-3 = transport +-comm {\lambda p -> c + x \leqr p} step-2
sredichotomy : }\forall\textrm{x y }->(\textrm{x}\mp@subsup{\leq}{r}{
s
s
sr-dichotomy x y | inr (inl x-under-y) = inl (inr x-under-y)
sr-dichotomy x y | inr (inr y-under-x) = inr (inr y-under-x)
```



```
lemma-lesser x y p \varepsilon pos-\varepsilon = step-3 where
    step-1 : x \leqr y + (\varepsilon /2r)
    step-1 = p (\varepsilon /2r) (pos-/2r-v \varepsilon pos-\varepsilon)
    step-2 : y + (\varepsilon /2r) < y + \varepsilon
    step-2 = <-plus-left (\varepsilon /2r) \varepsilon y (x/2r-less-than-x \varepsilon pos-\varepsilon)
    step-3 : x < y + &
    step-3 with step-1
    step-3 | inl refl = step-2
    step-3 | inr p = <-tran
```

$\qquad$

``` p step-2
lemma-\varepsilon-of-room-plus-\leq _r : }\forall(\textrm{x}y:\mathbb{R})->(\forall(\varepsilon:\mathbb{R})->0r<\varepsilon->x\mp@subsup{\leq}{r}{
lemma-\varepsilon-of-room-plus-\leq s x y p with }\mp@subsup{\leq}{r}{}\mathrm{ -dichotomy x y
```

```
lemma-\varepsilon-of-room-plus-\mp@subsup{s}{r}{}}\textrm{x y p | inl (inl x-equals-y) = inl x-equals-y
```

lemma-\varepsilon-of-room-plus-\mp@subsup{s}{r}{}}\textrm{x y p | inl (inl x-equals-y) = inl x-equals-y
lemma-\varepsilon-of-room-plus-\leqs x y p | inl (inr x-under-y) = inr x-under-y
lemma-\varepsilon-of-room-plus-\leqs x y p | inl (inr x-under-y) = inr x-under-y
lemma-\varepsilon-of-room-plus-\leqr x y p | inr (inl y-equals-x) = inl (sym y-equals-x)
lemma-\varepsilon-of-room-plus-\leqr x y p | inr (inl y-equals-x) = inl (sym y-equals-x)
lemma-\varepsilon-of-room-plus-\leqr x y p | inr (inr y-under-x) =
lemma-\varepsilon-of-room-plus-\leqr x y p | inr (inr y-under-x) =
inr (lemma-\varepsilon-of-room-plus x y p' x-neq-y) where
inr (lemma-\varepsilon-of-room-plus x y p' x-neq-y) where
p' : \forall (\varepsilon : \mathbb{R})->0r< \& -> x<y + \varepsilon
p' : \forall (\varepsilon : \mathbb{R})->0r< \& -> x<y + \varepsilon
p' = lemma-lesser x y p
p' = lemma-lesser x y p
x-neq-y : x \equiv y -> \perp
x-neq-y : x \equiv y -> \perp
x-neq-y x-equals-y = <-asym-1 y y (transport x-equals-y {\lambda p -> y < p} y-under-x) refl
x-neq-y x-equals-y = <-asym-1 y y (transport x-equals-y {\lambda p -> y < p} y-under-x) refl
module IST.Safe.Groups where
module IST.Safe.Groups where
open import IST.Safe.Base
open import IST.Safe.Base
open import IST.Safe.FiniteSets
open import IST.Safe.FiniteSets
open import IST.Safe.Naturals
open import IST.Safe.Naturals
record IsGroup
record IsGroup
(Carrier : Set)
(Carrier : Set)
(identity : Carrier)
(identity : Carrier)
(operation : Carrier -> Carrier -> Carrier)
(operation : Carrier -> Carrier -> Carrier)
(inverse : Carrier -> Carrier)
(inverse : Carrier -> Carrier)
: Set where
: Set where
field
field
assoc : }\forall\mathrm{ (x y z : Carrier) }->\mathrm{ operation (operation x y) z \# operation x (operation y z)
assoc : }\forall\mathrm{ (x y z : Carrier) }->\mathrm{ operation (operation x y) z \# operation x (operation y z)
unit-left : \forall (x : Carrier) -> operation identity x \equiv x
unit-left : \forall (x : Carrier) -> operation identity x \equiv x
unit-right : }\forall\mathrm{ (x : Carrier) }->\mathrm{ operation x identity झ x
unit-right : }\forall\mathrm{ (x : Carrier) }->\mathrm{ operation x identity झ x
inverse-left : }\forall\mathrm{ (x : Carrier) }->\mathrm{ operation (inverse x) x  identity
inverse-left : }\forall\mathrm{ (x : Carrier) }->\mathrm{ operation (inverse x) x  identity
inverse-right : }\forall\mathrm{ (x : Carrier) }->\mathrm{ operation x (inverse x) 三 identity
inverse-right : }\forall\mathrm{ (x : Carrier) }->\mathrm{ operation x (inverse x) 三 identity
power : Carrier }->\mathbb{N}->\mathrm{ Carrier
power : Carrier }->\mathbb{N}->\mathrm{ Carrier
power x zero = identity
power x zero = identity
power x (suc n) = operation x (power x n)
power x (suc n) = operation x (power x n)
record Group : Set ( where
record Group : Set ( where
field
field
Carrier : Set
Carrier : Set
identity : Carrier
identity : Carrier
operation : Carrier -> Carrier -> Carrier
operation : Carrier -> Carrier -> Carrier
inverse : Carrier -> Carrier
inverse : Carrier -> Carrier
isGroup : IsGroup Carrier identity operation inverse
isGroup : IsGroup Carrier identity operation inverse
open IsGroup isGroup public
open IsGroup isGroup public
record IsPeriodicGroup
record IsPeriodicGroup
(Carrier : Set)
(Carrier : Set)
(identity : Carrier)
(identity : Carrier)
(operation : Carrier -> Carrier }->\mathrm{ Carrier)
(operation : Carrier -> Carrier }->\mathrm{ Carrier)
(inverse : Carrier -> Carrier)
(inverse : Carrier -> Carrier)
: Set where
: Set where
field
field
isGroup : IsGroup Carrier identity operation inverse
isGroup : IsGroup Carrier identity operation inverse
open IsGroup isGroup
open IsGroup isGroup
field
field
order : Carrier }->\mathbb{N
order : Carrier }->\mathbb{N
order-identity : }\forall\textrm{g}->\textrm{power g (order g) \equiv identity

```
        order-identity : }\forall\textrm{g}->\textrm{power g (order g) \equiv identity
```




```
        order-nonzero : }\forall\textrm{g}->\mathrm{ order g # 0 }-> 
```

        order-nonzero : }\forall\textrm{g}->\mathrm{ order g # 0 }-> 
    record PeriodicGroup : Set. where
    record PeriodicGroup : Set. where
    field
    field
        Carrier : Set
        Carrier : Set
        identity : Carrier
        identity : Carrier
        operation : Carrier -> Carrier -> Carrier
        operation : Carrier -> Carrier -> Carrier
        inverse : Carrier -> Carrier
        inverse : Carrier -> Carrier
        isPeriodicGroup : IsPeriodicGroup Carrier identity operation inverse
        isPeriodicGroup : IsPeriodicGroup Carrier identity operation inverse
    open IsPeriodicGroup isPeriodicGroup public
    open IsPeriodicGroup isPeriodicGroup public
    open IsGroup isGroup public
    open IsGroup isGroup public
    asGroup : Group
    asGroup : Group
    asGroup =
    asGroup =
        record { Carrier = Carrier
        record { Carrier = Carrier
                    ; identity = identity
                    ; identity = identity
                    ; operation = operation
                    ; operation = operation
                    ; inverse = inverse
    ```
                    ; inverse = inverse
```

```
        ; isGroup = isGroup
```

        ; isGroup = isGroup
            }
            }
    power-lemma : \forall g -> \forall n -> g \equiv identity }->\mathrm{ power g n # identity
    power-lemma : \forall g -> \forall n -> g \equiv identity }->\mathrm{ power g n # identity
    power-lemma .(identity) zero refl = refl
    power-lemma .(identity) zero refl = refl
    power-lemma .(identity) (suc n) refl = tran (unit-left (power identity n)) inductive-
    power-lemma .(identity) (suc n) refl = tran (unit-left (power identity n)) inductive-
    hypothesis where
hypothesis where
inductive-hypothesis : power identity n \equiv identity
inductive-hypothesis : power identity n \equiv identity
inductive-hypothesis = power-lemma identity n refl
inductive-hypothesis = power-lemma identity n refl
power-lemma-contrapositive : \forall g -> \forall n -> (power g n \equiv identity -> \perp) -> g \equiv identity -> \perp
power-lemma-contrapositive : \forall g -> \forall n -> (power g n \equiv identity -> \perp) -> g \equiv identity -> \perp
power-lemma-contrapositive g n gn-not-identity g-identity = gn-not-identity (power-lemma g n
power-lemma-contrapositive g n gn-not-identity g-identity = gn-not-identity (power-lemma g n
g-identity)
g-identity)
record IsFiniteGroup
record IsFiniteGroup
(Carrier : Set)
(Carrier : Set)
(identity : Carrier)
(identity : Carrier)
(operation : Carrier -> Carrier -> Carrier)
(operation : Carrier -> Carrier -> Carrier)
(inverse : Carrier -> Carrier)
(inverse : Carrier -> Carrier)
: Set where
: Set where
field
field
isGroup : IsGroup Carrier identity operation inverse
isGroup : IsGroup Carrier identity operation inverse
open IsGroup isGroup
open IsGroup isGroup
field
field
isFiniteSet : IsFiniteSet Carrier
isFiniteSet : IsFiniteSet Carrier
order : Carrier }->\mathbb{N
order : Carrier }->\mathbb{N
order-identity : }\forall\textrm{g}->\mathrm{ power g (order g) \# identity
order-identity : }\forall\textrm{g}->\mathrm{ power g (order g) \# identity
order-minimal : \forallg -> \forall n -> power g (suc n) \equiv identity -> order g \leq suc n
order-minimal : \forallg -> \forall n -> power g (suc n) \equiv identity -> order g \leq suc n
order-nonzero : }\forall\textrm{g}->\mathrm{ order g }\equiv0->
order-nonzero : }\forall\textrm{g}->\mathrm{ order g }\equiv0->
record FiniteGroup : Set }\mp@subsup{}{1}{}\mathrm{ where
record FiniteGroup : Set }\mp@subsup{}{1}{}\mathrm{ where
field
field
Carrier : Set
Carrier : Set
identity : Carrier
identity : Carrier
operation : Carrier -> Carrier -> Carrier
operation : Carrier -> Carrier -> Carrier
inverse : Carrier -> Carrier
inverse : Carrier -> Carrier
isFiniteGroup : IsFiniteGroup Carrier identity operation inverse
isFiniteGroup : IsFiniteGroup Carrier identity operation inverse
open IsFiniteGroup isFiniteGroup public
open IsFiniteGroup isFiniteGroup public
open IsGroup isGroup public
open IsGroup isGroup public
asGroup : Group
asGroup : Group
asGroup =
asGroup =
record { Carrier = Carrier
record { Carrier = Carrier
; identity = identity
; identity = identity
; operation = operation
; operation = operation
; inverse = inverse
; inverse = inverse
; isGroup = isGroup
; isGroup = isGroup
}
}
power-lemma : \forall g -> \forall n -> g \equiv identity }->\mathrm{ power g n \# identity
power-lemma : \forall g -> \forall n -> g \equiv identity }->\mathrm{ power g n \# identity
power-lemma .(identity) zero refl = refl
power-lemma .(identity) zero refl = refl
power-lemma .(identity) (suc n) refl = tran (unit-left (power identity n)) inductive-
power-lemma .(identity) (suc n) refl = tran (unit-left (power identity n)) inductive-
hypothesis where
hypothesis where
inductive-hypothesis : power identity n \equiv identity
inductive-hypothesis : power identity n \equiv identity
inductive-hypothesis = power-lemma identity n refl
inductive-hypothesis = power-lemma identity n refl
power-lemma-contrapositive : \forall g -> \forall n -> (power g n \equiv identity -> \perp) -> g \equiv identity -> \perp
power-lemma-contrapositive : \forall g -> \forall n -> (power g n \equiv identity -> \perp) -> g \equiv identity -> \perp
power-lemma-contrapositive g n gn-not-identity g-identity = gn-not-identity (power-lemma g n
power-lemma-contrapositive g n gn-not-identity g-identity = gn-not-identity (power-lemma g n
g-identity)
g-identity)
record IsFiniteSubgroup
record IsFiniteSubgroup
(Source : FiniteGroup)
(Source : FiniteGroup)
(Target : Group)
(Target : Group)
(Map : FiniteGroup.Carrier Source -> Group.Carrier Target)
(Map : FiniteGroup.Carrier Source -> Group.Carrier Target)
: Set where
: Set where
open FiniteGroup Source public
open FiniteGroup Source public
field
field
Map-identity : Map identity \equiv Group.identity Target
Map-identity : Map identity \equiv Group.identity Target
Map-operation : \forall g h }
Map-operation : \forall g h }
Map (operation g h) \equiv Group.operation Target (Map g) (Map h)
Map (operation g h) \equiv Group.operation Target (Map g) (Map h)
Map-injective : \forall g h }->\mathrm{ Map g \# Map h }->\textrm{g}\equiv\textrm{h
Map-injective : \forall g h }->\mathrm{ Map g \# Map h }->\textrm{g}\equiv\textrm{h
record FiniteSubgroup (Target : Group) : Set. where
record FiniteSubgroup (Target : Group) : Set. where
field
field
Source : FiniteGroup
Source : FiniteGroup
Map : FiniteGroup.Carrier Source -> Group.Carrier Target

```
        Map : FiniteGroup.Carrier Source -> Group.Carrier Target
```

        isFiniteSubgroup : IsFiniteSubgroup Source Target Map
    open IsFiniteSubgroup isFiniteSubgroup public
    Map-power : \(\forall \mathrm{g} \rightarrow \forall \mathrm{n} \rightarrow\) Map (power g n) \(\equiv\) Group.power Target (Map g) n
    Map-power \(g\) zero = Map-identity
    Map-power g (suc n) = tran (Map-operation g gn) step-1 where
    gn : Carrier
    gn = power \(g \mathrm{n}\)
    mgn : Group.Carrier Target
    mgn = Group.power Target (Map g) n
    inductive-hypothesis : Map gn \(\equiv \mathrm{mgn}\)
    inductive-hypothesis = Map-power \(g\) n
    step-1 : Group.operation Target (Map g) (Map gn) ㅋ Group.operation Target (Map g) mgn
    step-1 = cong (Group.operation Target (Map g)) inductive-hypothesis
    ```
record IsPeriodicSubgroup
    (Source : PeriodicGroup)
    (Target : Group)
    (Map : PeriodicGroup.Carrier Source -> Group.Carrier Target)
    : Set where
    open PeriodicGroup Source public
    field
        Map-identity : Map identity \equiv Group.identity Target
        Map-operation : \forall g h }
            Map (operation g h) \equiv Group.operation Target (Map g) (Map h)
            Map-injective : \forall g h }->\mathrm{ Map g # Map h }->\textrm{g}\equiv\textrm{h
record PeriodicSubgroup (Target : Group) : Seti where
    field
        Source : PeriodicGroup
        Map : PeriodicGroup.Carrier Source -> Group.Carrier Target
        isPeriodicSubgroup : IsPeriodicSubgroup Source Target Map
    open IsPeriodicSubgroup isPeriodicSubgroup public
    Map-power : \forall g -> \forall n -> Map (power g n) \equiv Group.power Target (Map g) n
    Map-power g zero = Map-identity
    Map-power g (suc n) = tran (Map-operation g gn) step-1 where
        gn : Carrier
        gn = power g n
        mgn : Group.Carrier Target
        mgn = Group.power Target (Map g) n
        inductive-hypothesis : Map gn \equiv mgn
        inductive-hypothesis = Map-power g n
        step-1 : Group.operation Target (Map g) (Map gn) \equiv Group.operation Target (Map g) mgn
        step-1 = cong (Group.operation Target (Map g)) inductive-hypothesis
```

module IST.Safe.MetricSpaces where
open import IST.Safe.Base
open import IST.Safe.Reals
record IsMetricSpace
(Carrier : Set)
(distance : Carrier $\rightarrow$ Carrier $\rightarrow \mathbb{R}$ )
: Set where
field
nonnegative : $\forall \mathrm{x} y \rightarrow$ distance $\mathrm{x} y<0 r \rightarrow \perp$
reflexive-1 : $\forall x y \rightarrow$ distance $x y \equiv 0 r \rightarrow x \equiv y$
reflexive-2 : $\forall \mathrm{x} \rightarrow$ distance $\mathrm{x} x \equiv 0 \mathrm{r}$
symmetry : $\forall \mathrm{x} y \rightarrow$ distance $\mathrm{x} y \equiv$ distance $\mathrm{y} x$
triangle $-\leq_{r}: \forall x$ y $z \rightarrow$ distance $x ~ z \leq_{r}$ distance $x y+d i s t a n c e ~ y ~ z$
triangle : $\forall \mathrm{x} y \mathrm{z} \mathrm{b} \rightarrow($ distance $\mathrm{x} y+$ distance $\mathrm{y} \mathrm{z}<\mathrm{b}$ ) $\rightarrow$ distance $\mathrm{x} \mathrm{z}<\mathrm{b}$
triangle x y z b p with triangle- $\leq_{r} x y z$
triangle $x$ y z b p | inl eq = transport (sym eq) $\{\lambda p \rightarrow p<b\} p$
triangle $x$ y $z$ b p | inr lt $=<-$ tran
$\qquad$
lt p
record MetricSpace : Set ${ }_{1}$ where
field
Carrier : Set
distance : Carrier $\rightarrow$ Carrier $\rightarrow \mathbb{R}$
isMetricSpace : IsMetricSpace Carrier distance
open IsMetricSpace isMetricSpace public

```
module IST.Safe.GroupActions where
```

module IST.Safe.GroupActions where
open import IST.Safe.Base
open import IST.Safe.Base
open import IST.Safe.Naturals
open import IST.Safe.Naturals
open import IST.Safe.Reals
open import IST.Safe.Reals
open import IST.Safe.MetricSpaces
open import IST.Safe.MetricSpaces
open import IST.Safe.Groups
open import IST.Safe.Groups
record IsGroupAction
record IsGroupAction
(Source : Group)
(Source : Group)
(Target : Set)
(Target : Set)
Map : Group.Carrier Source -> Target -> Target)
Map : Group.Carrier Source -> Target -> Target)
: Set where
: Set where
open Group Source
open Group Source
field
field
action-identity : }\forall\textrm{m}->\mathrm{ Map identity m }\equiv\textrm{m
action-identity : }\forall\textrm{m}->\mathrm{ Map identity m }\equiv\textrm{m
action-operation : \forallg h G Vm Map g (Map h m) \equiv Map (operation g h) m
action-operation : \forallg h G Vm Map g (Map h m) \equiv Map (operation g h) m
record GroupAction (Source : Group) (Target : Set) : Set where
record GroupAction (Source : Group) (Target : Set) : Set where
field
field
Map : Group.Carrier Source -> Target -> Target
Map : Group.Carrier Source -> Target -> Target
isGroupAction : IsGroupAction Source Target Map
isGroupAction : IsGroupAction Source Target Map
open IsGroupAction isGroupAction public
open IsGroupAction isGroupAction public
record IsDiscreteAction
record IsDiscreteAction
(Source : FiniteGroup)
(Source : FiniteGroup)
(Target : MetricSpace)
(Target : MetricSpace)
(Map : FiniteGroup.Carrier Source ->
(Map : FiniteGroup.Carrier Source ->
MetricSpace.Carrier Target -> MetricSpace.Carrier Target)
MetricSpace.Carrier Target -> MetricSpace.Carrier Target)
: Set where
: Set where
open FiniteGroup Source
open FiniteGroup Source
open MetricSpace Target
open MetricSpace Target
field
field
isGroupAction : IsGroupAction (FiniteGroup.asGroup Source) (MetricSpace.Carrier Target) Map
isGroupAction : IsGroupAction (FiniteGroup.asGroup Source) (MetricSpace.Carrier Target) Map
continuity : }\forall\mathrm{ (g : FiniteGroup.Carrier Source) }
continuity : }\forall\mathrm{ (g : FiniteGroup.Carrier Source) }
\forall (m : MetricSpace.Carrier Target) }
\forall (m : MetricSpace.Carrier Target) }
\forall(\varepsilon:\mathbb{R})->0r<\varepsilon->\exists\lambda (\delta:\mathbb{R})->(0r<\delta) ^(
\forall(\varepsilon:\mathbb{R})->0r<\varepsilon->\exists\lambda (\delta:\mathbb{R})->(0r<\delta) ^(
\forall (m' : MetricSpace.Carrier Target) }
\forall (m' : MetricSpace.Carrier Target) }
distance m m' < \delta
distance m m' < \delta
distance (Map g m) (Map g m') < \varepsilon)
distance (Map g m) (Map g m') < \varepsilon)
record DiscreteAction (Source : FiniteGroup) (Target : MetricSpace) : Set where
record DiscreteAction (Source : FiniteGroup) (Target : MetricSpace) : Set where
field
field
Map : FiniteGroup.Carrier Source ->
Map : FiniteGroup.Carrier Source ->
MetricSpace.Carrier Target -> MetricSpace.Carrier Target
MetricSpace.Carrier Target -> MetricSpace.Carrier Target
isDiscreteAction : IsDiscreteAction Source Target Map
isDiscreteAction : IsDiscreteAction Source Target Map
open IsDiscreteAction isDiscreteAction public
open IsDiscreteAction isDiscreteAction public
open IsGroupAction isGroupAction public
open IsGroupAction isGroupAction public
power-faithful : }\forall\mathrm{ (g : FiniteGroup.Carrier Source) }
power-faithful : }\forall\mathrm{ (g : FiniteGroup.Carrier Source) }
\forall (m : MetricSpace.Carrier Target) }
\forall (m : MetricSpace.Carrier Target) }
\forall (n : N ) , Map g m \equivm m Map (FiniteGroup.power Source g n) m mm
\forall (n : N ) , Map g m \equivm m Map (FiniteGroup.power Source g n) m mm
power-faithful g m zero gm-equals-m = action-identity m
power-faithful g m zero gm-equals-m = action-identity m
power-faithful g m (suc n) gm-equals-m = tran (tran step-1 step-2) gm-equals-m where
power-faithful g m (suc n) gm-equals-m = tran (tran step-1 step-2) gm-equals-m where
inductive-hypothesis : Map (FiniteGroup.power Source g n) m \equivm
inductive-hypothesis : Map (FiniteGroup.power Source g n) m \equivm
inductive-hypothesis = power-faithful g m n gm-equals-m
inductive-hypothesis = power-faithful g m n gm-equals-m
step-1 : Map (FiniteGroup.power Source g (suc n)) m \equiv
step-1 : Map (FiniteGroup.power Source g (suc n)) m \equiv
Map g (Map (FiniteGroup.power Source g n) m)
Map g (Map (FiniteGroup.power Source g n) m)
step-1 = sym (action-operation g (FiniteGroup.power Source g n) m)
step-1 = sym (action-operation g (FiniteGroup.power Source g n) m)
step-2 : Map g (Map (FiniteGroup.power Source g n) m) \equiv
step-2 : Map g (Map (FiniteGroup.power Source g n) m) \equiv
Map g m
Map g m
step-2 = cong (Map g) inductive-hypothesis
step-2 = cong (Map g) inductive-hypothesis
record IsPeriodicDiscreteAction
record IsPeriodicDiscreteAction
(Source : PeriodicGroup)
(Source : PeriodicGroup)
(Target : MetricSpace)
(Target : MetricSpace)
(Map : PeriodicGroup.Carrier Source }
(Map : PeriodicGroup.Carrier Source }
MetricSpace.Carrier Target -> MetricSpace.Carrier Target)
MetricSpace.Carrier Target -> MetricSpace.Carrier Target)
: Set where
: Set where
open PeriodicGroup Source
open PeriodicGroup Source
open MetricSpace Target

```
    open MetricSpace Target
```

```
    field
```

    field
            isGroupAction : IsGroupAction (PeriodicGroup.asGroup Source) (MetricSpace.Carrier Target)
            isGroupAction : IsGroupAction (PeriodicGroup.asGroup Source) (MetricSpace.Carrier Target)
    Map
Map
continuity : \forall (g : PeriodicGroup.Carrier Source) ->
continuity : \forall (g : PeriodicGroup.Carrier Source) ->
\forall (m : MetricSpace.Carrier Target) ->
\forall (m : MetricSpace.Carrier Target) ->
\forall(\varepsilon:\mathbb{R})->0r<\varepsilon->\exists\lambda (\delta:\mathbb{R})->(0r<\delta) ^(
\forall(\varepsilon:\mathbb{R})->0r<\varepsilon->\exists\lambda (\delta:\mathbb{R})->(0r<\delta) ^(
\forall (m' : MetricSpace.Carrier Target) ->
\forall (m' : MetricSpace.Carrier Target) ->
distance m m' < \delta ->
distance m m' < \delta ->
distance (Map g m) (Map g m') < \&)
distance (Map g m) (Map g m') < \&)
record PeriodicDiscreteAction (Source : PeriodicGroup) (Target : MetricSpace) : Set where
record PeriodicDiscreteAction (Source : PeriodicGroup) (Target : MetricSpace) : Set where
field
field
Map : PeriodicGroup.Carrier Source ->
Map : PeriodicGroup.Carrier Source ->
MetricSpace.Carrier Target -> MetricSpace.Carrier Target
MetricSpace.Carrier Target -> MetricSpace.Carrier Target
isPeriodicDiscreteAction : IsPeriodicDiscreteAction Source Target Map
isPeriodicDiscreteAction : IsPeriodicDiscreteAction Source Target Map
open IsPeriodicDiscreteAction isPeriodicDiscreteAction public
open IsPeriodicDiscreteAction isPeriodicDiscreteAction public
open IsGroupAction isGroupAction public
open IsGroupAction isGroupAction public
power-faithful : \forall (g : PeriodicGroup.Carrier Source) ->
power-faithful : \forall (g : PeriodicGroup.Carrier Source) ->
| (m : MetricSpace.Carrier Target) }
| (m : MetricSpace.Carrier Target) }
\forall (n : N ) -> Map g m \equivm M Map (PeriodicGroup.power Source g n) m \equivm
\forall (n : N ) -> Map g m \equivm M Map (PeriodicGroup.power Source g n) m \equivm
power-faithful g m zero gm-equals-m = action-identity m
power-faithful g m zero gm-equals-m = action-identity m
power-faithful g m (suc n) gm-equals-m = tran (tran step-1 step-2) gm-equals-m where
power-faithful g m (suc n) gm-equals-m = tran (tran step-1 step-2) gm-equals-m where
inductive-hypothesis : Map (PeriodicGroup.power Source g n) m \equivm
inductive-hypothesis : Map (PeriodicGroup.power Source g n) m \equivm
inductive-hypothesis = power-faithful g m n gm-equals-m
inductive-hypothesis = power-faithful g m n gm-equals-m
step-1 : Map (PeriodicGroup.power Source g (suc n)) m \equiv
step-1 : Map (PeriodicGroup.power Source g (suc n)) m \equiv
Map g (Map (PeriodicGroup.power Source g n) m)
Map g (Map (PeriodicGroup.power Source g n) m)
step-1 = sym (action-operation g (PeriodicGroup.power Source g n) m)
step-1 = sym (action-operation g (PeriodicGroup.power Source g n) m)
step-2 : Map g (Map (PeriodicGroup.power Source g n) m) \equiv
step-2 : Map g (Map (PeriodicGroup.power Source g n) m) \equiv
Map g m
Map g m
step-2 = cong (Map g) inductive-hypothesis
step-2 = cong (Map g) inductive-hypothesis
module IST.Safe.NewmansTheorem where
open import IST.Safe.Base
open import IST.Safe.Naturals
open import IST.Safe.Reals
open import IST.Safe.MetricSpaces
open import IST.Safe.Groups
open import IST.Safe.GroupActions
-- Formally proving Newman's theorem lies outside the scope of our work, and so
-- we do not give a definition of compact metric manifolds. Instead, we work with
-- Newman spaces: metric spaces that satisfy Corollary 2.3.6. By Newman's theorem
-- (Theorem 2.3.5.) all compact metric manifolds form Newman spaces.
record IsNewmanSpace
(M : MetricSpace)
(\nu : \mathbb{R})
: Set }\mp@subsup{|}{1}{where
open MetricSpace M
field
isPositive : 0r < v
isNewmanConstant :
\forall (G : FiniteGroup) }
\forall(g : FiniteGroup.Carrier G) }->(\textrm{g}\equiv\mathrm{ FiniteGroup.identity G }-> \perp)
\forall (A : DiscreteAction G M) }
(\forall (x : FiniteGroup.Carrier G) }->(x \equiv FiniteGroup.identity G -> \perp) >
\exists \lambda (m : Carrier) -> DiscreteAction.Map A x m \equiv m -> \perp) ->
\exists \lambda (n : N ) ->\exists \lambda (m : Carrier) }->(\textrm{n}\leq FiniteGroup.order G g) ^
(\nu < distance m (DiscreteAction.Map A (FiniteGroup.power G g n) m))
record NewmanSpace : Set }\mp@subsup{}{1}{}\mathrm{ where
field
asMetricSpace : MetricSpace
inhabitant : MetricSpace.Carrier asMetricSpace
newman-constant : \mathbb{R}

```
            isNewmanSpace : IsNewmanSpace asMetricSpace newman-constant
    open MetricSpace asMetricSpace public
    open IsNewmanSpace isNewmanSpace public
module IST.Safe.Validation where
-- T. Chow on Hirsch-style criticism of mechanized proofs:
-- "As you know, one thing that a skeptic can say even when shown a formal
-- proof is, Yes, you've produced a formal proof of *something*, but what
-- you've proved isn't the statement that we know [..]"
-- To avoid Hirsch-style criticism, we give some basic examples to convince
-- the reader that our notion of group, periodic group, finite group, metric
-- space corresponds to the usual notions.
open import Agda. Primitive
open import IST.Safe.Base
open import IST.Safe.Naturals
open import IST.Safe.FiniteSets
open import IST.Safe.Reals
open import IST.Safe.Groups
open import IST.Safe.GroupActions
open import IST.Safe.MetricSpaces
open import IST.Safe.NewmansTheorem
-- \(\mathbb{Z} / 2 \mathbb{Z}\) forms a (finite, a fortiori periodic) group.
data \(\mathbb{Z}_{2}\) : Set where
    \(0_{2}: \mathbb{Z}_{2}\)
    \(1_{2}: \mathbb{Z}_{2}\)
infixl 10 _ \({ }^{+}{ }_{2}\)
\({ }^{+}{ }_{2}-: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}\)
\(\overline{0}_{2} \overline{+}_{2} \quad y=y\)
\(1_{2}+0_{2}=1_{2}\)
\(1_{2}+1_{2}=0_{2}\)
\(+_{2}-\operatorname{assoc}: \forall\left(x\right.\) y \(\left.z: \mathbb{Z}_{2}\right) \rightarrow x+_{2} y+_{2} z \equiv x+_{2}\left(y+_{2} z\right)\)
\(+_{2}\)-assoc \(0_{2}\) y \(z=r e f l\)
\(+_{2}-\operatorname{assoc} 1_{2} 0_{2} \quad z=r e f l\)
\(+_{2}\)-assoc \(1_{2} 1_{2} \quad 0_{2}=\) refl
\(+_{2}\)-assoc \(1_{2} 1_{2} 1_{2}=\) refl
\({ }_{2}\)-unit-right : \(\forall\left(\mathrm{x}: \mathbb{Z}_{2}\right) \rightarrow \mathrm{x}+_{2} \mathrm{O}_{2} \equiv \mathrm{x}\)
\(+_{2}\)-unit-right \(0_{2}=\) refl
\(+_{2}\)-unit-right \(1_{2}=\) refl
\(+_{2}\)-inverse : \(\forall\left(\mathrm{x}: \mathbb{Z}_{2}\right) \rightarrow \mathrm{x}+{ }_{2} \mathrm{x} \equiv \mathrm{O}_{2}\)
\(+_{2}\)-inverse \(0_{2}=\) refl
\(+{ }_{2}\)-inverse \(1_{2}=\) refl
\(\mathbb{Z} / 2 \mathbb{Z}\) : Group
\(\mathbb{Z} / 2 \mathbb{Z}=\) record
    \(\left\{\right.\) Carrier \(=\mathbb{Z}_{2}\)
    ; identity \(=0_{2}\)
    ; operation \(=+_{2}\)
    ; inverse \(=\lambda \overline{\mathrm{x}} \rightarrow \mathrm{x}\)
    ; isGroup \(=\) record
                                    \{ assoc \(=+_{2}-\) assoc
                                    unit-left \(=\lambda_{-} \rightarrow\) refl
                    ; unit-right \(=+_{2}\)-unit-right
                    ; inverse-left \(=+_{2}\)-inverse
                    ; inverse-right \(=+_{2}\)-inverse
                \}
    \}
order \(_{2}: \mathbb{Z}_{2} \rightarrow \mathbb{N}\)
order \(_{2} 0_{2}=\) suc zero
order \(_{2} 1_{2}=\operatorname{suc}\) (suc zero)

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1070
1071
1072
1073
1074
1075
1076
1077
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113


```

order2-identity }\mp@subsup{O}{2}{}=ref

```
order2-identity }\mp@subsup{O}{2}{}=ref
order2-identity 12 = refl
order2-identity 12 = refl
order_2-nonzero : (g : }\mp@subsup{\mathbb{Z}}{2}{}\mathrm{ ) }->\mp@subsup{\mathrm{ order }}{2}{}g\equiv0->
order_2-nonzero : (g : }\mp@subsup{\mathbb{Z}}{2}{}\mathrm{ ) }->\mp@subsup{\mathrm{ order }}{2}{}g\equiv0->
order2-nonzero O2 ()
order2-nonzero O2 ()
order2-nonzero 12 ()
order2-nonzero 12 ()
order 2-minimal : (g : \mathbb{Z}
order 2-minimal : (g : \mathbb{Z}
g}\leq\mathrm{ suc n
g}\leq\mathrm{ suc n
order2-minimal O}\mp@subsup{0}{2}{}\textrm{n}\mathrm{ p = s-suc s-zero
order2-minimal O}\mp@subsup{0}{2}{}\textrm{n}\mathrm{ p = s-suc s-zero
order 2-minimal 12 (suc zero) refl = \leq-suc (\leq-suc \leq-zero)
order 2-minimal 12 (suc zero) refl = \leq-suc (\leq-suc \leq-zero)
orderr2-minimal 12 (suc (suc n)) p = \leq-suc (\leq-suc \leq-zero)
orderr2-minimal 12 (suc (suc n)) p = \leq-suc (\leq-suc \leq-zero)
Z/2\mathbb{Z' : PeriodicGroup}
Z/2\mathbb{Z' : PeriodicGroup}
Z/2\mathbb{Z' = record}
Z/2\mathbb{Z' = record}
    { Carrier = \mathbb{Z}
    { Carrier = \mathbb{Z}
    ; identity = O2
    ; identity = O2
    ; operation = _+2_
    ; operation = _+2_
    ; inverse = \lambda \overline{x}->x
    ; inverse = \lambda \overline{x}->x
    ; isPeriodicGroup = record
    ; isPeriodicGroup = record
                                    { isGroup = Group.isGroup \mathbb{Z}/2\mathbb{Z}
                                    { isGroup = Group.isGroup \mathbb{Z}/2\mathbb{Z}
                                    ; order = order2
                                    ; order = order2
                            ; order-identity = order 2-identity
                            ; order-identity = order 2-identity
                            ; order-minimal = order2-minimal
                            ; order-minimal = order2-minimal
                            ; order-nonzero = order 2-nonzero
                            ; order-nonzero = order 2-nonzero
        }
        }
-- the order is determined by the definition
-- the order is determined by the definition
order_2-unique : }\forall\mathrm{ (p : IsPeriodicGroup }\mp@subsup{\mathbb{Z}}{2}{}\mp@subsup{O}{2}{}\mp@subsup{_}{-}{+}\mp@subsup{}{2}{\prime
order_2-unique : }\forall\mathrm{ (p : IsPeriodicGroup }\mp@subsup{\mathbb{Z}}{2}{}\mp@subsup{O}{2}{}\mp@subsup{_}{-}{+}\mp@subsup{}{2}{\prime
                            (IsPeriodicGroup.order p 0 # 三 1) ^ (IsPeriodicGroup.order p 1 | \equiv 2)
                            (IsPeriodicGroup.order p 0 # 三 1) ^ (IsPeriodicGroup.order p 1 | \equiv 2)
order2-unique p = ord-02-equals-1 , ord-12-equals-2 where
order2-unique p = ord-02-equals-1 , ord-12-equals-2 where
    open IsPeriodicGroup p
    open IsPeriodicGroup p
    ord-0}\mp@subsup{0}{2}{}\mathrm{ -equals-1 : order }\mp@subsup{0}{2}{}\equiv
    ord-0}\mp@subsup{0}{2}{}\mathrm{ -equals-1 : order }\mp@subsup{0}{2}{}\equiv
    ord-0}\mp@subsup{0}{2}{}\mathrm{ -equals-1 = lemma (order ( O2) (order-minimal O zero refl) (order-nonzero O}\mp@subsup{O}{2}{}\mathrm{ ) where
    ord-0}\mp@subsup{0}{2}{}\mathrm{ -equals-1 = lemma (order ( O2) (order-minimal O zero refl) (order-nonzero O}\mp@subsup{O}{2}{}\mathrm{ ) where
        lemma : \forall x }->\textrm{x}\leq1->(\textrm{x}\equiv0->\perp)->\textrm{x}\equiv
        lemma : \forall x }->\textrm{x}\leq1->(\textrm{x}\equiv0->\perp)->\textrm{x}\equiv
        lemma zero p q = absurd (q refl)
        lemma zero p q = absurd (q refl)
        lemma (suc .0) (\leq-suc \leq-zero) q = refl
        lemma (suc .0) (\leq-suc \leq-zero) q = refl
    ord-12-under-2 : order 12 \leq 2
    ord-12-under-2 : order 12 \leq 2
    ord-12-under-2 = order-minimal 12 (suc zero) refl
    ord-12-under-2 = order-minimal 12 (suc zero) refl
    ord-12-neq-1 : order 12 \equiv1 
    ord-12-neq-1 : order 12 \equiv1 
    ord-12-neq-1 assumption = absurd ( (O2-neq-1 12 O2-equals-1 ) where
    ord-12-neq-1 assumption = absurd ( (O2-neq-1 12 O2-equals-1 ) where
        step-1 : IsGroup.power isGroup 12 (order 1 1 ) \equiv O O
        step-1 : IsGroup.power isGroup 12 (order 1 1 ) \equiv O O
        step-1 = order-identity 1 }\mp@subsup{1}{2}{
        step-1 = order-identity 1 }\mp@subsup{1}{2}{
        step-2 : IsGroup.power isGroup 12 1 \equiv 02
        step-2 : IsGroup.power isGroup 12 1 \equiv 02
        step-2 = transport assumption {\lambda p -> IsGroup.power isGroup 12 p \equiv O O } step-1
        step-2 = transport assumption {\lambda p -> IsGroup.power isGroup 12 p \equiv O O } step-1
        step-3 : IsGroup.power isGroup 12 1 \equiv 12
        step-3 : IsGroup.power isGroup 12 1 \equiv 12
        step-3 = refl
        step-3 = refl
        02-neq-12 : 0 02 \equiv 12 }->
        02-neq-12 : 0 02 \equiv 12 }->
        0
        0
        0}\mp@subsup{2}{2}{\mathrm{ -equals-1}
        0}\mp@subsup{2}{2}{\mathrm{ -equals-1}
        0}\mp@subsup{0}{2}{}\mathrm{ -equals-1 ( }=\mathrm{ tran (sym step-2) step-3
        0}\mp@subsup{0}{2}{}\mathrm{ -equals-1 ( }=\mathrm{ tran (sym step-2) step-3
    ord-12-equals-2 : order 12 
    ord-12-equals-2 : order 12 
    ord-12-equals-2 = lemma (order 12) ord-1 -under-2 (order-nonzero 1 1 ) ord-1 - - neq-1 where
    ord-12-equals-2 = lemma (order 12) ord-1 -under-2 (order-nonzero 1 1 ) ord-1 - - neq-1 where
        lemma : \forallx f x \leq 2 -> (x \equiv 0 -> \perp) }->(\textrm{x}\equiv1->\perp) -> x \equiv 2
        lemma : \forallx f x \leq 2 -> (x \equiv 0 -> \perp) }->(\textrm{x}\equiv1->\perp) -> x \equiv 2
        lemma . 0 \leq-zero q r = absurd (q refl)
        lemma . 0 \leq-zero q r = absurd (q refl)
        lemma .1 (\leq-suc \leq-zero) q r = absurd (r refl)
        lemma .1 (\leq-suc \leq-zero) q r = absurd (r refl)
        lemma . 2 (\leq-suc (\leq-suc \leq-zero)) q r = refl
        lemma . 2 (\leq-suc (\leq-suc \leq-zero)) q r = refl
-- }\mp@subsup{\mathbb{Z}}{2}{}\mathrm{ forms a finite group
-- }\mp@subsup{\mathbb{Z}}{2}{}\mathrm{ forms a finite group
list}\mp@subsup{\mp@code{2}}{2}{: List }\mp@subsup{\mathbb{Z}}{2}{
list}\mp@subsup{\mp@code{2}}{2}{: List }\mp@subsup{\mathbb{Z}}{2}{
list2 = 02 :: (12 :: [])
list2 = 02 :: (12 :: [])
has-all-elements}\mp@subsup{s}{2}{}:\forall(x : \mathbb{Z}2) -> x \in list 2
has-all-elements}\mp@subsup{s}{2}{}:\forall(x : \mathbb{Z}2) -> x \in list 2
has-all-elements}\mp@subsup{2}{2}{}\mp@subsup{O}{2}{}=\epsilon-hea
has-all-elements}\mp@subsup{2}{2}{}\mp@subsup{O}{2}{}=\epsilon-hea
has-all-elements }\mp@subsup{|}{2}{}=\mathrm{ E-tail E-head
```

has-all-elements }\mp@subsup{|}{2}{}=\mathrm{ E-tail E-head

```
\begin{tabular}{|c|c|}
\hline 1120 & finite \({ }_{2}\) : IsFiniteSet \(\mathbb{Z}_{2}\) \\
\hline 1121 & finite \(_{2}=\) record \{ list-of-elements \(=\) list \(_{2}\); has-all-elements \(=\) has-all-elements \({ }_{2}\) \} \\
\hline 1122 & \\
\hline 1123 & \(\mathbb{Z} / 2 \mathbb{Z} '\) ' : FiniteGroup \\
\hline 1124 & \(\mathbb{Z} / 2 \mathbb{Z}^{\prime} '=\) record \\
\hline 1125 & \{ Carrier \(=\mathbb{Z}_{2}\) \\
\hline 1126 & ; identity \(=\mathrm{O}_{2}\) \\
\hline 1127 & ; operation \(={ }^{+}{ }_{2}\) \\
\hline 1128 & ; inverse \(=\lambda \overline{\mathrm{x}} \rightarrow \mathrm{x}\) \\
\hline 1129 & ; isFiniteGroup = record \\
\hline 1130 & \{ isGroup = Group.isGroup \(\mathbb{Z} / 2 \mathbb{Z}\) \\
\hline 1131 & ; isFiniteSet \(=\) finite \(_{2}\) \\
\hline 1132 & ; order \(=\) order \(_{2}\) \\
\hline 1133 & ; order-identity \(=\) order 2 -identity \\
\hline 1134 & ; order-minimal \(=\) order 2 -minimal \\
\hline 1135 & ; order-nonzero \(=\) order \(_{2}\)-nonzero \\
\hline 1136 & , \\
\hline 1137 & ) \\
\hline 1138 & \\
\hline 1139 & -- The set of natural numbers is not finite. \\
\hline 1140 & \\
\hline 1141 & infinite- \(\mathbb{N}\) : IsFiniteSet \(\mathbb{N} \rightarrow \perp\) \\
\hline 1142 &  \\
\hline 1143 & open IsFiniteSet finite- \(\mathbb{N}\) renaming (list-of-elements to list; has-all-elements to all) \\
\hline 1144 & \(\max : \forall(\mathrm{x} y: \mathbb{N}) \rightarrow \exists{ }^{\text {a }}\), \(\mathrm{M} \rightarrow(\mathrm{x} \leq \mathrm{M}) \wedge(\mathrm{y} \leq \mathrm{M})\) \\
\hline 1145 & max zero y = y , \(\leq-z e r o\), \(\leq-r e f l y ~\) \\
\hline 1146 & \(\max (\) suc \(x\) ) zero = suc \(x, \leq-r e f l ~(s u c x), ~ \leq-z e r o ~\) \\
\hline 1147 & max (suc x) (suc y) with max \(x\) y \\
\hline 1148 &  \\
\hline 1149 & maximum : \(\forall\) (nats : List \(\mathbb{N}\) ) \(\rightarrow \exists \lambda \mathrm{M} \rightarrow \forall \mathrm{z} \rightarrow \mathrm{z} \in\) nats \(\rightarrow \mathrm{z} \leq \mathrm{M}\) \\
\hline 1150 & maximum [] = zero, ( \(\lambda\) x ()) \\
\hline 1151 & maximum (x :: xs) with maximum xs \\
\hline 1152 & maximum ( x : : xs ) | M , M-dominates-xs with max x M \\
\hline 1153 &  \\
\hline 1154 & \(M^{\prime}-\) dominates-xs : \(\forall \mathrm{z} \rightarrow \mathrm{z} \in(\mathrm{x}:: \mathrm{xs}) \rightarrow \mathrm{z} \leq \mathrm{M}^{\prime}\) \\
\hline 1155 & M'-dominates-xs z E-head \(=\mathrm{x} \leq \mathrm{M}^{\prime}\) \\
\hline 1156 &  \\
\hline 1157 & \(\mathrm{M}: \mathbb{N}\) \\
\hline 1158 & \(\mathrm{M}=\mathrm{proj}_{1}\) (maximum list) \\
\hline 1159 & M -dominates-list : \(\forall(\mathrm{x}: \mathbb{N}) \rightarrow \mathrm{x} \in\) list \(\rightarrow \mathrm{x} \leq \mathrm{M}\) \\
\hline 1160 & M -dominates-list \(=\) proje (maximum list) \\
\hline 1161 & M -largest : \(\forall(\mathrm{x}: \mathbb{N}) \rightarrow \mathrm{x} \leq \mathrm{M}\) \\
\hline 1162 & M -largest \(\mathrm{x}=\mathrm{M}\)-dominates-list x (all x ) \\
\hline 1163 & contradiction : suc \(\mathrm{M} \leq \mathrm{M}\) \\
\hline 1164 & contradiction \(=\) M-largest (suc M) \\
\hline 1165 & \\
\hline 1166 & -- Metric spaces exist, in particular the discrete metric is a metric. \\
\hline 1167 & \\
\hline 1168 & discrete : \(\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{R}\) \\
\hline 1169 & discrete \(\mathrm{O}_{2} \mathrm{O}_{2}=0 \mathrm{r}\) \\
\hline 1170 & discrete \(\mathrm{O}_{2} 1_{2}=1 \mathrm{r}\) \\
\hline 1171 & discrete \(1_{2} \mathrm{O}_{2}=1 \mathrm{r}\) \\
\hline 1172 & discrete \(1_{2} 1_{2}=0 \mathrm{r}\) \\
\hline 1173 & \\
\hline 1174 & discrete-nonnegative : \(\forall\left(\mathrm{x} \mathrm{y}\right.\) : \(\left.\mathbb{Z}_{2}\right) \rightarrow\) discrete x y \(<0 r \rightarrow \perp\) \\
\hline 1175 & discrete-nonnegative \(\mathrm{O}_{2} \mathrm{O}_{2} \mathrm{p}=<-\mathrm{asym}-1\) Or 0 r p refl \\
\hline 1176 & discrete-nonnegative \(0_{2} 1_{2} \mathrm{p}=<-a s y m-2\) Or 1 r <-nontrivial p \\
\hline 1177 & discrete-nonnegative \(1_{2} \mathrm{O}_{2} \mathrm{p}=<-\mathrm{asym}\)-2 0 r 1 r <-nontrivial p \\
\hline 1178 & discrete-nonnegative \(1_{2} 1_{2} \mathrm{p}=<-\mathrm{asym}-1\) or \(0 r \mathrm{p}\) refl \\
\hline 1179 & \\
\hline 1180 & discrete-reflexive-1 : \(\forall\) (x y : \(\mathbb{Z}_{2}\) ) \(\rightarrow\) discrete \(\mathrm{x} \mathrm{y} \equiv \mathrm{Or} \rightarrow \mathrm{x} \equiv \mathrm{y}\) \\
\hline 1181 & discrete-reflexive-1 \(\mathrm{O}_{2} \mathrm{O}_{2}\) refl \(=\) refl \\
\hline 1182 & discrete-reflexive-1 \(0_{2} 1_{2} \mathrm{p}=\) absurd (<-asym-1 Or \(1 \mathrm{r}<\) - nontrivial (sym p) ) \\
\hline 1183 & discrete-reflexive-1 \(1_{2} 0_{2} \mathrm{p}=\) absurd (<-asym-1 Or 1r <-nontrivial (sym p) ) \\
\hline 1184 & discrete-reflexive-1 \(1_{2} 1_{2}\) refl \(=\) refl \\
\hline 1185 & \\
\hline 1186 & discrete-reflexive-2 : \(\forall\left(\mathrm{x}: \mathbb{Z}_{2}\right) \rightarrow\) discrete \(\mathrm{x} x \equiv 0 \mathrm{r}\) \\
\hline 1187 & discrete-reflexive-2 \(0_{2}=\) refl \\
\hline 1188 & discrete-reflexive-2 \(1_{2}=\) refl \\
\hline 1189 & \\
\hline 1190 & discrete-symmetry : \(\forall\left(\mathrm{x} \mathrm{y}: \mathbb{Z}_{2}\right) \rightarrow\) discrete \(\mathrm{x} y \equiv\) discrete y x \\
\hline
\end{tabular}
```

discrete-symmetry O2 O2 = refl
discrete-symmetry O}\mp@subsup{O}{2}{}=\mathrm{ refl
discrete-symmetry 12 O2 = refl
discrete-symmetry 12 12 = refl
discrete-triangle : }\forall\mathrm{ (x y z : Z Z 2 ) }->\mathrm{ discrete x z sr discrete x y + discrete y z
discrete-triangle O2 O2 O2 = inl (sym +-unit-left)
discrete-triangle O2 O2 12 = inl (sym +-unit-left)
discrete-triangle O2 12 O = inr pos-2r
discrete-triangle O}\mp@subsup{O}{2}{\prime}\mp@subsup{1}{2}{}=\mathrm{ inl (sym +-unit-right)
discrete-triangle 12 O O O = inl (sym +-unit-right)
discrete-triangle 12 O I 12 = inr pos-2r
discrete-triangle 12 12 O = inl (sym +-unit-left)
discrete-triangle 12 12 12 = inl (sym +-unit-left)
\mp@subsup{\mathbb{Z}}{2}{}
\mp@subsup{\mathbb{Z}}{2}{}\mathrm{ -metric =}
record { Carrier = 螛
; distance = discrete
; isMetricSpace = record
{ nonnegative = discrete-nonnegative
; reflexive-1 = discrete-reflexive-1
; reflexive-2 = discrete-reflexive-2
; symmetry = discrete-symmetry
; triangle-\leqrr = discrete-triangle
}
}
-- Faithful, K-Lipschitz actions exist.
act : }\mp@subsup{\mathbb{Z}}{2}{}->\mp@subsup{\mathbb{Z}}{2}{}->\mp@subsup{\mathbb{Z}}{2}{
act x y = x +2 y
act-identity : \forall m act 0}\mp@subsup{0}{2}{}\textrm{m}\equiv\textrm{m
act-identity = Group.unit-left \mathbb{Z}/2\mathbb{Z}
act-operation : }\forall(\textrm{g h : Z
act-operation g h m = sym (+}\mp@subsup{2}{2}{}-\mathrm{ assoc g h m)
action}\mp@subsup{|}{2}{}: GroupAction \mathbb{Z}/2\mathbb{Z}\mp@subsup{\mathbb{Z}}{2}{
action2 = record
{ Map = act
; isGroupAction = record
{ action-identity = act-identity
; action-operation = act-operation
}
}
act-faithful : }\forall(\textrm{g}:\mp@subsup{\mathbb{Z}}{2}{})->(\textrm{g}\equiv\mp@subsup{0}{2}{}->\perp)->\exists\lambda(\textrm{m}:\mp@subsup{\mathbb{Z}}{2}{})->\mathrm{ act g m }\equiv\textrm{m}->
act-faithful }\mp@subsup{0}{2}{
act-faithful 1 1 p = 12, lemma 12 where
lemma : }\forall\textrm{x}->\mathrm{ act 1 12 }\textrm{x}\equiv\textrm{x}->
lemma O2 ()
lemma 12 ()
K : \mathbb{R}
K = 1r
act-lipschitz : \forall (g: \mathbb{Z}
act-lipschitz O2 O2 O2 = transport (sym (--null-left {K})) {\lambda p -> 0r \leqr p} (inl refl)
act-lipschitz O O O 1 1 = transport (sym (-unit-right {K})) {\lambda p -> 1r \leqr p} (inl refl)
act-lipschitz O2 1 2 O = transport (sym (-unit-right {K})) {\lambda p -> lr \leqr p} (inl refl)
act-lipschitz 02 12 12 = transport (sym (- -null-left {K})) {\lambda p -> Or \leqr p} (inl refl)
act-lipschitz 12 O2 O = transport (sym (-null-left {K})) {\lambda p -> Or \leqrep} (inl refl)
act-lipschitz 1 1 O O 1 2 = transport (sym (-unit-right {K})) {\lambda p -> 1r \leqr p} (inl refl)
act-lipschitz 1 1 1 1 < O = transport (sym (-unit-right {K})) {\lambda p -> 1r \leqrep} (inl refl)
act-lipschitz 12 12 12 = transport (sym (-null-left {K})) {\lambda p -> Or \leqr p} (inl refl)
-- Newman spaces exist.

```
```

nonzero-lemma : \forall n -> (n \equiv0 -> \perp) }->1\leq\textrm{n

```
nonzero-lemma : \forall n -> (n \equiv0 -> \perp) }->1\leq\textrm{n
nonzero-lemma zero p = absurd (p refl)
```

nonzero-lemma (suc n) $p=$-suc $\leq-z e r o$
alt-lemma-1 : $\forall \mathrm{g} \rightarrow\left(\mathrm{g} \equiv \mathrm{O}_{2} \rightarrow \perp\right) \rightarrow \mathrm{g} \equiv \mathrm{I}_{2}$
alt-lemma-1 $0_{2} p=$ absurd ( $p$ refl)
alt-lemma-1 $1_{2} p=r e f l$
alt-lemma-0 : $\forall \mathrm{g} \rightarrow\left(\mathrm{g} \equiv \mathrm{l}_{2} \rightarrow \perp\right) \rightarrow \mathrm{g} \equiv \mathrm{O}_{2}$
alt-lemma-0 $\quad 0_{2} \mathrm{p}=$ refl
alt-lemma-0 $1_{2} p=$ absurd ( $p$ refl)
$\mathbb{Z}_{2}$-newman : NewmanSpace
$\mathbb{Z}_{2}$-newman $=$ record
\{ asMetricSpace $=\mathbb{Z}_{2}$-metric
; inhabitant $=\mathrm{O}_{2}$
; newman-constant = 1/2r
; isNewmanSpace = record
\{ isPositive $=$ pos-1/2r
; isNewmanConstant = newman
\}
\} where
newman : (G : FiniteGroup) ( g : FiniteGroup.Carrier $G) \rightarrow(\mathrm{g} \equiv$ FiniteGroup.identity $G \rightarrow \perp) \rightarrow$
(A : DiscreteAction $G \mathbb{Z}_{2}$-metric) $\rightarrow$
$(\forall x \rightarrow(x \equiv$ FiniteGroup.identity $G \rightarrow \perp) \rightarrow \exists \lambda m \rightarrow$ DiscreteAction.Map A $x m \equiv m \rightarrow \perp)$
$\rightarrow$
$\exists \lambda \mathrm{n} \rightarrow \exists \lambda \mathrm{m} \rightarrow(\mathrm{n} \leq$ FiniteGroup.order $G \mathrm{~g}) ~ \wedge$
(1/2r < MetricSpace.distance $\mathbb{Z}_{2}$-metric m (DiscreteAction.Map A (FiniteGroup.power G g
n) m) )
newman $G g p A$ nontriv-A with nontriv-A $g p$
newman $G \mathrm{~g} p \mathrm{~A}$ nontriv-A $\mid 0_{2}, q=1,0_{2}$, nonzero-lemma step-1 , step-3 where
step-1 : IsFiniteGroup.order (FiniteGroup.isFiniteGroup G) $g \equiv 0 \rightarrow \perp$
step-1 = FiniteGroup.order-nonzero G g
$m: \mathbb{Z}_{2}$
m = DiscreteAction.Map A (FiniteGroup.operation G g (FiniteGroup.identity G)) $0_{2}$
$m^{\prime}: \mathbb{Z}_{2}$
$m^{\prime}=$ DiscreteAction.Map A g $0_{2}$
m-equals-m' : m $\equiv \mathrm{m}^{\prime}$
m-equals-m' = cong ( $\lambda \mathrm{z} \rightarrow$ DiscreteAction.Map $A \mathrm{z} \mathrm{O}_{2}$ ) (FiniteGroup.unit-right G g)
$m^{\prime}$-equals- $1_{2}: m^{\prime} \equiv 1_{2}$
$\mathrm{m}^{\prime}$-equals-1 $=$ alt-lemma-1 m' q
$1_{2}$-equals-m : $1_{2} \equiv \mathrm{~m}$
$1_{2}$-equals-m $=$ sym (tran m-equals-m' m'-equals-1 ${ }_{2}$ )
step-2 : discrete $0_{2} \mathrm{~m} \equiv 1 \mathrm{r}$
step-2 $=$ transport $1_{2}$-equals-m $\left\{\lambda \mathrm{z} \rightarrow \operatorname{discrete} 0_{2} \mathrm{z} \equiv 1 \mathrm{r}\right\}$ refl
step-3 : $1 / 2 \mathrm{r}<$ discrete $\mathrm{O}_{2} \mathrm{~m}$
step-3 = transport (sym step-2) \{ $\mathrm{X} \boldsymbol{z} \rightarrow 1 / 2 \mathrm{r}<\mathrm{z}\} 1 / 2 r-l e s s-t h a n-1 r$
newman $G \mathrm{~g} p \mathrm{~A}$ nontriv-A | $1_{2}, \mathrm{q}=1,1_{2}$, nonzero-lemma _step-1, step-3 where
step-1 : IsFiniteGroup.order (FiniteGroup.isFiniteGroup G) g $\equiv 0 \rightarrow \perp$
step-1 = FiniteGroup.order-nonzero G g
$\mathrm{m}: \mathbb{Z}_{2}$
$m=$ DiscreteAction.Map A (FiniteGroup.operation G g (FiniteGroup.identity G)) $1_{2}$
$m^{\prime}: \mathbb{Z}_{2}$
$m^{\prime}=$ DiscreteAction.Map A g $1_{2}$
m-equals-m' : m $\equiv$ m'
m-equals-m' = cong ( $\lambda \mathrm{z} \rightarrow$ DiscreteAction.Map $A \mathrm{z} 1_{2}$ ) (FiniteGroup.unit-right G g)
$m^{\prime}$-equals- $\mathrm{O}_{2}$ : m' $\equiv \mathrm{O}_{2}$
$\mathrm{m}^{\prime-e q u a l s-0_{2}}=$ alt-lemma-0 $\mathrm{m}^{\prime} \mathrm{q}$
$0_{2}$-equals-m : $0_{2} \equiv \mathrm{~m}$
$0_{2}$-equals-m $=s y m$ (tran $m$-equals-m' m'-equals $-0_{2}$ )
step-2 : discrete $1_{2} \mathrm{~m} \equiv 1 \mathrm{r}$
step-2 $=$ transport $0_{2}$-equals-m $\left\{\lambda z \rightarrow \operatorname{discrete} 1_{2} z \equiv 1 r\right\}$ refl
step-3 : 1/2r < discrete $1_{2} \mathrm{~m}$
step-3 $=$ transport (sym step-2) $\{\lambda z \rightarrow 1 / 2 r<z\} 1 / 2 r-1 e s s-t h a n-1 r$
\{-\# OPTIONS --omega-in-omega \#-\}
module IST.Base where
open import Agda.Primitive
open import IST.Safe.Base public

| 1335 1336 | We start by defining the sort of the external sets. |
| :---: | :---: |
| 1337 | -- Internal sets belong to the first segment of the universe hierarchy, |
| 1338 | -- while external sets belong to the second segment: |
| 1339 | -- Set 0 : Set 1 : Set 2 : ... Set $\omega$ : Set ( $\omega+1$ ) : |
| 1340 | -- \_____ \____________ |
| 1341 | -- internal sets external sets |
| 1342 | -- Alas, Agda does not support higher segments of the hierarchy yet, |
| 1343 | -- so we work under --omega-in-omega. Everything here should be typable |
| 1344 | -- in the full hierarchy, however, by replacing some occurrences of |
| 1345 | -- Set $\omega$ with Set ( $\omega+1$ ). |
| 1346 |  |
| 1347 | ESet : Set $\omega$ |
| 1348 | ESet $=$ Set $\omega$ |
| 1349 |  |
| 1350 | ESet ${ }_{1}$ : Set $\omega$ |
| 1351 | $\mathrm{ESet}_{1}=$ Set $\omega$ |
| 1352 |  |
| 1353 | -- We postulate a predicate st(-) asserting that its argument is standard. |
| 1354 | -- Note that the value of st(-) lives in the external hierarchy. |
| 1355 | -- This ensures that the type ( $I \rightarrow$ Set $\ell$ ) ranges over internal predicates |
| 1356 | -- only, whenever $\ell<\omega$. |
| 1357 |  |
| 1358 | -- By declaring ST as a private data type, we ensure the following: |
| 1359 | -- 1. st(x) is treated as a contractible type for all x. |
| 1360 | -- 2. Outside of this module, the only way to produce a value of st(-) |
| 1361 | is by using the rules/axioms presented here. |
| 1362 |  |
| 1363 | private |
| 1364 | data ST \{ $\boldsymbol{S}$ : Level\} $\{\mathrm{S}$ : Set $\ell\}(\mathrm{x}: \mathrm{S})$ : ESet where |
| 1365 | trust-me-its-standard : ST x |
| 1366 |  |
| 1367 | st : $\{\ell:$ Level $\} \rightarrow\{\mathrm{S}:$ Set $\ell\} \rightarrow \mathrm{S} \rightarrow$ ESet |
| 1368 | st $=$ ST |
| 1369 |  |
| 1370 | A Safe module does not have access to any extended features (st predicates, |
| 1371 | -- IST axioms, Setw), so a top-level definition `t : $T$ ' in a Safe module |
| 1372 | -- corresponds to a derivation 'rs $t$ : $T$ ' in extended type theory. |
| 1373 | -- By the admissibility of the St-Con rule, we can mark any such definition |
| 1374 | -- standard. This is accomplished by opening SafeImportTools, and using |
| 1375 | -- the provided constructor. |
| 1376 |  |
| 1377 | module SafeImportTools where |
| 1378 | declared-in-safe-module : $\{\ell:$ Level $\}$ \{ $S$ : Set $\ell\}(\mathrm{x}: \mathrm{S}) \rightarrow$ st x |
| 1379 | declared-in-safe-module _ = trust-me-its-standard |
| 1380 |  |
| 1381 | -- The internal hierarchy consists only of standard universes. This follows |
| 1382 | -- from the admissibility of the St-Con rule. |
| 1383 |  |
| 1384 | st-Set : $\{\ell:$ Level $\} \rightarrow$ st (Set $\ell)$ |
| 1385 | st-Set $=$ trust-me-its-standard |
| 1386 |  |
| 1387 | -- FUNCTION TYPES -- |
| 1388 |  |
| 1389 | -- We declare that the type former $\forall$ (and by extension $\rightarrow$ ) preserve standardness. |
| 1390 | -- This is an easy consequence of the Transfer rules. |
| 1391 |  |
| 1392 | st $\rightarrow$ : $\left\{\ell_{1} \ell_{2}:\right.$ Level $\} \rightarrow\left(\mathrm{A}:\right.$ Set $\left.\ell_{1}\right) \rightarrow$ st $A \rightarrow\left(\mathrm{~B}: \operatorname{Set} \ell_{2}\right) \rightarrow$ st $\mathrm{B} \rightarrow$ st $(\mathrm{A} \rightarrow \mathrm{B})$ |
| 1393 | $s t \rightarrow$ A st-A B st-B = trust-me-its-standard |
| 1394 |  |
| 1395 | st- $\forall:\left\{\ell_{1} \ell_{2}:\right.$ Level $\} \rightarrow\left(\mathrm{A}: \operatorname{Set} \ell_{1}\right) \rightarrow$ st $\mathrm{A} \rightarrow\left(\mathrm{B}: \mathrm{A} \rightarrow\right.$ Set $\left.\ell_{2}\right) \rightarrow$ st $\mathrm{B} \rightarrow$ st $(\forall \mathrm{a} \rightarrow \mathrm{B}$ a) |
| 1396 | st- $\forall$ A st-A B st-B = trust-me-its-standard |
| 1397 |  |
| 1398 | -- Function application preserves standardness, i.e. if $f$ and $x$ are standard, |
| 1399 | -- then so is $f(x)$. Notice that this principle occurs as a theorem in Nelson's |
| 1400 | -- Internal Set Theory, and follows from St-Fun for our extended type theory. |
| 1401 | -- We add variations for dependent and simple function types, with or without |
| 1402 | -- hidden arguments. |
| 1403 |  |
| 1404 | st-fun-d : $\left\{\ell_{1} \ell_{2}:\right.$ Level $\} \rightarrow\left(\mathrm{A}: \operatorname{Set} \ell_{1}\right) \rightarrow\left(\mathrm{B}: \mathrm{A} \rightarrow\right.$ Set $\left.\ell_{2}\right) \rightarrow$ |
| 1405 | $(\mathrm{f}:(\mathrm{x}: \mathrm{A}) \rightarrow \mathrm{B}$ x) $\rightarrow(\mathrm{x}: \mathrm{A}) \rightarrow$ |
| 1406 | st $\mathrm{f} \rightarrow$ st $\mathrm{x} \rightarrow$ st (f x$)$ |
| 1407 | st-fun-d A B f x st-f st-x = trust-me-its-standard |
| 1408 |  |
| 1409 | st-fun-hd : $\left\{\ell_{1} \ell_{2}:\right.$ Level $\} \rightarrow\left(\mathrm{A}: \operatorname{Set} \ell_{1}\right) \rightarrow\left(\mathrm{B}: \mathrm{A} \rightarrow\right.$ Set $\left.\ell_{2}\right) \rightarrow$ |
| 1410 | $(\mathrm{f}:\{\mathrm{x}: \mathrm{A}\} \rightarrow \mathrm{B} x) \rightarrow(\mathrm{x}: \mathrm{A}) \rightarrow$ |

| 1411 | st ( $\lambda \mathrm{x} \rightarrow \mathrm{f}\{\mathrm{x}\}) \rightarrow$ st $\mathrm{x} \rightarrow$ st (f $\{\mathrm{x}\})$ |
| :---: | :---: |
| 1412 | st-fun-hd A B f x st-f st-x = st-fun-d A B ( $\lambda x \rightarrow f(x\}) x$ st-f st-x |
| 1413 |  |
| 1414 | st-fun : $\left\{\ell_{1} \ell_{2}:\right.$ Level $\} \rightarrow\left(\mathrm{A}: \operatorname{Set} \ell_{1}\right) \rightarrow\left(\mathrm{B}:\right.$ Set $\left.\ell_{2}\right) \rightarrow$ |
| 1415 | $(\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}) \rightarrow(\mathrm{x}: \mathrm{A}) \rightarrow$ |
| 1416 | st $\mathrm{f} \rightarrow$ st $\mathrm{x} \rightarrow$ st (f f$)$ |
| 1417 | st-fun $A B \mathrm{f} x$ st-f st-x $=$ st-fun-d $A(\lambda, \rightarrow B) f x$ st-f st-x |
| 1418 |  |
| 1419 | st-fun-h : $\left\{\ell_{1} \ell_{2}:\right.$ Level $\} \rightarrow\left(\mathrm{A}: \operatorname{Set} \ell_{1}\right) \rightarrow\left(\mathrm{B}: \operatorname{Set} \ell_{2}\right) \rightarrow$ |
| 1420 | $(\mathrm{f}:\{\mathrm{a}: \mathrm{A}\} \rightarrow \mathrm{B}) \rightarrow(\mathrm{x}: \mathrm{A}) \rightarrow$ |
| 1421 | st $(\lambda x \rightarrow f(x\}) \rightarrow$ st $x \rightarrow$ St (f $\{x\}$ ) |
| 1422 | st-fun-h A $\mathrm{B}^{\text {f }} \mathrm{x}$ st-f $s t-x=s t-f u n A B(\lambda x \rightarrow f(x\}) x$ st-f st-x |
| 1423 |  |
| 1424 | -- That leaves function abstraction. |
| 1425 | -- It would be convenient to have the following converse: |
| 1426 | - st- $\lambda:\left\{\ell_{1} \ell_{2}:\right.$ Level $\} \rightarrow\left(\mathrm{A}: \operatorname{Set} \ell_{1}\right) \rightarrow$ st $\mathrm{A} \rightarrow\left(\mathrm{B}: \mathrm{A} \rightarrow \operatorname{Set} \ell_{2}\right) \rightarrow(\forall \mathrm{a} \rightarrow$ st a $\rightarrow$ st $(\mathrm{B}$ a) $) \rightarrow$ |
| 1427 | st B |
| 1428 | -- st-X A st-A B st-Ba = trust-me-its-standard |
| 1429 | -- Alas, this principle does not hold. Consider e.g. |
| 1430 | -- the function $f: \mathbb{N} \rightarrow\{0,1\}$ with $f(n)=0 \leftrightarrow n=\omega$, which is not |
| 1431 | -- standard, but takes standard values everywhere. |
| 1432 |  |
| 1433 | -- So how do we prove Set-types standard? In IST, we do not |
| 1434 | -- have to deal with this problem, since we normally encode |
| 1435 | -- functions as their graphs (sets of ordered pairs), and IST |
| 1436 | -- already provides rules for the standardness of sets. |
| 1437 |  |
| 1438 | -- In Agda, functions do not coincide with sets of ordered pairs, |
| 1439 | -- and we need to ensure that all MLTT-definable functions are |
| 1440 | -- indeed standard, even if we define them in terms of standard |
| 1441 | -- objects constructed by Standardization, i.e. necessarily |
| 1442 | -- outside of a Safe module. . To accomplish this, we can make the following observations: |
| 1443 | -- 1. All combinatorial (closed) $\lambda$-terms are constructible in the Safe fragment, and hence |
| 1444 | standard. |
| 1445 | -- 2. The eliminators of all data types available in the Safe fragment are themselves standard. |
| 1446 | -- 3. Applying a standard value to a standard function yields a standard result. |
| 1447 | -- These rules exhaust all possible ways of defining functions in MLTT. |
| 1448 |  |
| 1449 | -- E.g. to prove that (Xi. _=_ (f i) (g i)) is standard, we can |
| 1450 | -- argue as follows: - - |
| 1451 | -- 1. (\a.\b.\c. a b c) is a purely combinatorial $\lambda$-term, so standard. |
| 1452 | -- 2. ( $\backslash \mathrm{b} . \backslash \mathrm{c}=\mathrm{b}$ c) is standard when both $=$ and ( $\mathrm{a}_{\text {a }}$, b . \c. a b c) are standard. |
| 1453 |  |
| 1454 |  |
| 1455 |  |
| 1456 | -- of the type Set is standard as long as (f i) and (g i) are. |
| 1457 |  |
| 1458 | -- We face one problem: the difficulty of encoding the |
| 1459 | -- standardness of combinatorial $\lambda$-terms in Agda. To simplify |
| 1460 | -- our life, we pre-declare instances that we actually use |
| 1461 | -- during the present development. |
| 1462 |  |
| 1463 | st-abs-5 : ( I : Set) $\rightarrow$ st (abs-5 I) |
| 1464 | st-abs-5 I = trust-me-its-standard |
| 1465 |  |
| 1466 | st-abs-4 : st abs-4 |
| 1467 | st-abs-4 $=$ trust-me-its-standard |
| 1468 |  |
| 1469 | st-abs-K : $\left\{\ell_{1} \ell_{2}:\right.$ Level\} ( $\mathrm{A}: \operatorname{Set} \ell_{1}$ ) ( $\mathrm{B}^{\text {: }}$ Set $\ell_{2}$ ) $\rightarrow$ st (abs-K A B) |
| 1470 | st-abs-K A B = trust-me-its-standard |
| 1471 |  |
| 1472 | st-abs-K-h : $\left\{\ell_{1} \ell_{2}:\right.$ Level $\}$ ( $\mathrm{A}: \operatorname{Set} \ell_{1}$ ) ( $\mathrm{B}^{\text {: }}$ Set $\ell_{2}$ ) $\rightarrow$ st (abs-K-h A B) |
| 1473 | st-abs-K-h A B = trust-me-its-standard |
| 1474 |  |
| 1475 |  |
| 1476 | -- TRIVIAL DATA TYPES -- |
| 1477 |  |
| 1478 | absurd* : $\left\{\ell\right.$ : Level\} $\rightarrow \perp \rightarrow \forall$ \{ ${ }^{\text {a }}$ : ESet $\} \rightarrow \mathrm{A}$ |
| 1479 | absurd* () |
| 1480 |  |
| 1481 | st- 1 : st $\perp$ |
| 1482 | st- 1 = trust-me-its-standard |
| 1483 |  |
| 1484 | st-T : st T |
| 1485 | $s t-T=$ trust-me-its-standard |

```
st-tt : st tt
```

st-tt : st tt
st-tt = trust-me-its-standard
st-tt = trust-me-its-standard
-- EXISTENTIAL QUANTIFICATION --
-- EXISTENTIAL QUANTIFICATION --
-- Now we deal with existential quantifiers. Alas, unlike the \forall
-- Now we deal with existential quantifiers. Alas, unlike the \forall
-- case, Agda does not provide a builtin for this, so we need to
-- case, Agda does not provide a builtin for this, so we need to
-- declare two variants, \exists (for the internal hierarchy) and ヨ*
-- declare two variants, \exists (for the internal hierarchy) and ヨ*
-- (for the external hierarchy).

```
-- (for the external hierarchy).
```




```
st-ヨ = trust-me-its-standard
```

```
st-ヨ = trust-me-its-standard
```




```
st-ヨ-full = trust-me-its-standard
```

```
st-ヨ-full = trust-me-its-standard
```




```
st-ヨ-_,_ = trust-me-its-standard
```

```
st-ヨ-_,_ = trust-me-its-standard
```




```
st-ヨ-_,_-full = trust-me-its-standard
```

```
st-ヨ-_,_-full = trust-me-its-standard
```




```
{B})
```

{B})
st-ق-proj1 = trust-me-its-standard

```
st-ق-proj1 = trust-me-its-standard
```




```
{B} )
```

{B} )
st-ヨ-proj_-full = trust-me-its-standard

```
st-ヨ-proj_-full = trust-me-its-standard
```




```
{B})
```

{B})
st-\exists-proj}2= trust-me-its-standard

```
st-\exists-proj}2= trust-me-its-standard
```




```
{B})
```

{B})
st-ヨ-proj2-full = trust-me-its-standard

```
st-ヨ-proj2-full = trust-me-its-standard
```




```
st-\Lambda = trust-me-its-standard
```

st-\Lambda = trust-me-its-standard
record ヨ* {\ell : Level} {A : Set \ell} (B : A -> ESet) : ESet where
record ヨ* {\ell : Level} {A : Set \ell} (B : A -> ESet) : ESet where
constructor _'_
constructor _'_
field
field
proj}1 : A
proj}1 : A
proj2 : B proj1
proj2 : B proj1
open ヨ* public
open ヨ* public
record _****_(A B : ESet) : ESet where
record _****_(A B : ESet) : ESet where
constructor
constructor
field
field
proj1 : A
proj1 : A
proje : B
proje : B
open _*^*_ public
open _*^*_ public
-- LISTS / FINITE SETS --
-- LISTS / FINITE SETS --
st-List : {\ell : Level} -> st (List {\ell})
st-List : {\ell : Level} -> st (List {\ell})
st-List = trust-me-its-standard
st-List = trust-me-its-standard
st-[] : {\ell : Level} -> st (\lambda {A : Set \ell} -> [] {\ell} {A})
st-[] : {\ell : Level} -> st (\lambda {A : Set \ell} -> [] {\ell} {A})
st-[] = trust-me-its-standard
st-[] = trust-me-its-standard
st-:: : {\ell : Level} -> st (\lambda {A : Set \ell} -> _::_ {\ell} {A})
st-:: : {\ell : Level} -> st (\lambda {A : Set \ell} -> _::_ {\ell} {A})
st-:: = trust-me-its-standard
st-:: = trust-me-its-standard
-- DISJUNCTION --
-- DISJUNCTION --
-- We could encode the disjunction A V B using ᄀ A -> B, or

```
-- We could encode the disjunction A V B using ᄀ A -> B, or
```

1559

```
-- in a more constructive spirit as \(\exists \mathrm{n}: \mathbb{N} .(\mathrm{n}=0 \rightarrow \mathrm{~A}) \wedge(\mathrm{n} \neq 0) \rightarrow B\),
-- but we find it more legible to use the inductive definition, along
-- with a strong elimination principle.
```




```
st-V = trust-me-its-standard
```



```
st-inl = trust-me-its-standard
```



```
st-inr = trust-me-its-standard
by-cases* : { { < }\mp@subsup{\ell}{2}{
    (P : ESet) }->(A->P)->(B->P)->A\veeB->
by-cases* P A-implies-P B-implies-P (inl a) = A-implies-P a
by-cases* P A-implies-P B-implies-P (inr b) = B-implies-P b
-- EQUALITY --
-- We introduced equality only for the internal hierarchy, at
-- least for now. This satisfies the usual principles.
-- We declare a variant of transport (equality preserves all
-- properties) that works for external predicates. Note that
-- this is a logical axiom in IST, which makes it invisible.
-- Technically, one should have x = y -> st(x) -> st(y) as an
-- axiom even there, we fix this omission in our version
-- of the Nelson translation.
```



```
transport* refl z = z
st-\equiv: {\ell : Level} }->\mathrm{ st ( }\lambda{A:\operatorname{Set \ell} ->_ #_ {\ell} {A})
st-\equiv = trust-me-its-standard
st-\equiv-full : {\ell : Level} }->\mathrm{ {A : Set l} }->\mathrm{ st (_三_ { &} {A})
st-\equiv-full = trust-me-its-standard
st-refl : {\ell : Level} }->\mathrm{ st ( }\lambda{A:S Set \ell} -> \lambda {x : A} -> refl {\ell} {A} {x}
st-refl = trust-me-its-standard
```



```
st-\equiv-ind = trust-me-its-standard
-- AXIOM: TRANSFER --
-- TransferPred implements the Transfer rules Dfun and Dsum.
-- This has the advantage that it does no branching. We do not
-- rely on Transfer for non-prenex formulae in our development,
-- so this suffices.
-- Notice that TransferPred does not satisfy strict positivity.
-- We do not export an elimination rule, so we cannot use it in
-- a dangerous/inconsistent way. If the need for an eliminator
-- ever arises, we can make it strictly positive by indexing
-- over the number of free variables.
data internal {\ell : Level} ( }\varphi:\operatorname{Set \ell) : ESet where
    fromInternal : \varphi -> internal }
toInternal : {\ell : Level} -> (\varphi : Set \ell) -> internal \varphi -> \varphi
toInternal }\varphi\mathrm{ (fromInternal x) = x
data TransferPred : ESet where
    \forall' : (A : Set) }->((\varphi:A) -> TransferPred) -> TransferPred
    \exists' : (E : Set) }->((\varphi:E) -> TransferPred) -> TransferPred
    int': (\varphi : Set) -> TransferPred
toTransferI : TransferPred -> Set
toTransferI ( }\mp@subsup{\forall}{}{\prime}\textrm{A}\varphi)=\forall(a:A) -> toTransferI ( ( a a),
toTransferI (\exists' E \varphi ) = \exists \lambda (e : E) -> toTransferI (\varphi e)
toTransferI (int' \varphi) = \varphi
```

```
toTransferE : TransferPred -> ESet
toTransferE ( }\mp@subsup{\forall}{}{\prime}\mathrm{ A }\varphi)=\forall (a : A) -> st a -> toTransferE (\varphi a
toTransferE (\exists' E \varphi) = ヨ* \lambda (e : E) -> st e *^* toTransferE (\varphi e)
toTransferE (int' \varphi) = internal }
std-params : TransferPred }->\mathrm{ ESet
std-params (\forall' A \varphi) = st A *^* \forall (a : A) -> st a -> std-params (\varphi a)
std-params (\exists' E \varphi ) = st E *^* \forall (e : E) -> st e -> std-params (\varphi e)
std-params (int' \varphi) = st \varphi
postulate
    ax-Transfer-IE : ( }\varphi:\mathrm{ : TransferPred) }->\mathrm{ toTransferI }\varphi->\mathrm{ std-params }\varphi->\mathrm{ toTransferE }
    ax-Transfer-EI : ( }\varphi\mathrm{ : TransferPred) > toTransferE }\varphi->\mathrm{ std-params }\varphi->\mathrm{ toTransferI }
-- AXIOM: Standardization --
postulate
    \llbracket\rrbracket: \forall{\ell} }->{A:Set \ell}->(A)PESet)->A->Set \ell
    ax-Standard-1 : \forall {\ell} }->{A : Set \ell} -> (\varphi : A -> ESet) -> st \llbracket \varphi\rrbracket
    ax-Standard-2 : }\forall{\ell}->{A:Set \ell}->(\varphi: A -> ESet) 
        (}\forall\textrm{x}->\mathrm{ st x }->\mathbb{\llbracket}\varphi\rrbracket\textrm{x}->\varphi\textrm{x}
    ax-Standard-3 : \forall {\ell} }->{A:Set \ell} -> (\varphi : A -> ESet) 
```



```
-- AXIOM: Idealization --
postulate
```



```
                (}\forall(xs : List A) -> st xs -> \exists \lambda b -> \forall (x : A) -> x \in xs -> \varphi x b) ->
                \exists* \lambda b -> \forall (x : A) }->\mathrm{ st x }->\varphi, x 
```



```
                (\exists* \lambda b -> \forall (x : A) -> st x }->\varphi\textrm{e} \textrm{b})
```



```
{-# OPTIONS --omega-in-omega --no-pattern-matching #-}
module IST.Util where
-- We prove a bunch of useful lemmata.
open import Agda.Primitive
open import IST.Safe.Util public
open import IST.Base
-- If x and y are standard, then so is (x , y).
```




```
lemma-pairing { { 1 } { { , } {A} {B} x y st-x st-y = st-pair-x-y where
    pair : A }->\textrm{B}->\textrm{A}\wedge\textrm{B
    pair = ,
    st-pair : st pair
    st-pair = st-ヨ__,_-full
    st-pair-x : st (pair x)
    st-pair-x = st-fun A (B A A ^ B) pair x st-pair st-x
    st-pair-x-y : st (pair x y)
    st-pair-x-y = st-fun B (A ^ B) (pair x) y st-pair-x st-y
```



```
lemma-projo { { & } { { , } {A} {B} ab st-ab = st-sproj-ab where
    sproj : A ^ B }->
    sproj = proje
    st-sproj : st sproj
    st-sproj = st-ヨ-proj}1-ful
    st-sproj-ab : st (sproj ab)
    st-sproj-ab = st-fun _ _ sproj ab st-sproj st-ab
```

1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777 1778 1779



```
(projo ab)
```

(projo ab)
lemma-proj}\mp@subsup{1}{-}{-d { { \& } {处} {A} {B} ab st-ab = st-sproj-ab where
lemma-proj}\mp@subsup{1}{-}{-d { { \& } {处} {A} {B} ab st-ab = st-sproj-ab where
sproj : (\exists \lambda a }->\textrm{B}a)->
sproj : (\exists \lambda a }->\textrm{B}a)->
sproj = proj1
sproj = proj1
st-sproj : st sproj
st-sproj : st sproj
st-sproj = st-\exists-proj1-full
st-sproj = st-\exists-proj1-full
st-sproj-ab : st (sproj ab)
st-sproj-ab : st (sproj ab)
st-sproj-ab = st-fun _ _ sproj ab st-sproj st-ab

```
    st-sproj-ab = st-fun _ _ sproj ab st-sproj st-ab
```




```
lemma-proj2 {伎} {片} {A} {B} ab st-ab = st-sproj-ab where
```

lemma-proj2 {伎} {片} {A} {B} ab st-ab = st-sproj-ab where
sproj : A ^ B }->\textrm{B
sproj : A ^ B }->\textrm{B
sproj = proj2
sproj = proj2
st-sproj : st sproj
st-sproj : st sproj
st-sproj=st-ヨ-proj2-full
st-sproj=st-ヨ-proj2-full
st-sproj-ab : st (sproj ab)
st-sproj-ab : st (sproj ab)
st-sproj-ab = st-fun _ _ sproj ab st-sproj st-ab
st-sproj-ab = st-fun _ _ sproj ab st-sproj st-ab
-- If b is standard, then so is any constant function returning b.

```
-- If b is standard, then so is any constant function returning b.
```




```
b)
```

b)
lemma-constfun {_} {_} {A} {B} b st-b = st-K-b where
lemma-constfun {_} {_} {A} {B} b st-b = st-K-b where
K : B }->\textrm{A}->\textrm{B
K : B }->\textrm{A}->\textrm{B
K x y = x
K x y = x
st-K : st K
st-K : st K
st-K = st-abs-K B A
st-K = st-abs-K B A
st-K-b : st (K b)
st-K-b : st (K b)
st-K-b = st-fun__ K b st-K st-b

```
        st-K-b = st-fun__ K b st-K st-b
```




```
b b)
```

b b)
lemma-constfun-h { { 1 } { { < } {A} {B} b st-b = st-K-b where
lemma-constfun-h { { 1 } { { < } {A} {B} b st-b = st-K-b where
K:B 倞 {a:A}}->\textrm{B
K:B 倞 {a:A}}->\textrm{B
K x {y} = x
K x {y} = x
st-K : st K
st-K : st K
st-K = st-abs-K-h B A
st-K = st-abs-K-h B A
st-K-b : st (\lambda {a : A} -> K b {a})
st-K-b : st (\lambda {a : A} -> K b {a})
st-K-b = st-fun__K b st-K st-b
st-K-b = st-fun__K b st-K st-b
{-\# OPTIONS --omega-in-omega --no-pattern-matching \#-}
{-\# OPTIONS --omega-in-omega --no-pattern-matching \#-}
module IST.Naturals where
module IST.Naturals where
open import Agda.Primitive
open import Agda.Primitive
open import IST.Safe.Naturals public
open import IST.Safe.Naturals public
open import IST.Base
open import IST.Base
open SafeImportTools
open SafeImportTools
st-\mathbb{N}: st {lsuc lzero} N
st-\mathbb{N}: st {lsuc lzero} N
st-\mathbb{N}=\mathrm{ declared-in-safe-module }\mathbb{N}
st-\mathbb{N}=\mathrm{ declared-in-safe-module }\mathbb{N}
st-zero : st zero
st-zero : st zero
st-zero = declared-in-safe-module zero
st-zero = declared-in-safe-module zero
st-suc : st suc
st-suc : st suc
st-suc = declared-in-safe-module suc

```
st-suc = declared-in-safe-module suc
```




```
st-\mathbb{N}\mathrm{ -induction { { } = declared-in-safe-module }\lambda{\varphi}->\mathbb{N}\mathrm{ -induction { {} { }|}
```

st-\mathbb{N}\mathrm{ -induction { { } = declared-in-safe-module }\lambda{\varphi}->\mathbb{N}\mathrm{ -induction { {} { }|}
st-\mathbb{N}\mathrm{ -induction-full : { l : Level} }->(\varphi:\mathbb{N}->\operatorname{Set \ell)}->\mathrm{ st (NN-induction {l} { }\varphi})
st-\mathbb{N}\mathrm{ -induction-full : { l : Level} }->(\varphi:\mathbb{N}->\operatorname{Set \ell)}->\mathrm{ st (NN-induction {l} { }\varphi})
st-\mathbb{N}\mathrm{ -induction-full _ = declared-in-safe-module }\mathbb{N}\mathrm{ -induction}
st-\mathbb{N}\mathrm{ -induction-full _ = declared-in-safe-module }\mathbb{N}\mathrm{ -induction}
st-\leq : st _\leq
st-\leq : st _\leq
st-\leq = dec\overline{lar}ed-in-safe-module _\leq_

```
st-\leq = dec\overline{lar}ed-in-safe-module _\leq_
```




```
n
```

n
external-induction {\varphi} base-case inductive-case n st-n =

```
external-induction {\varphi} base-case inductive-case n st-n =
```

```
    ax-Standard-2 \varphi n st-n (\psi-forall n) where
    \psi : \mathbb{N}->\mathrm{ Set}
    \psi=\llbracket\varphi\rrbracket
    st-\psi : st \psi
    st-\psi = ax-Standard-1 \varphi
    \psi-base : \psi zero
    \psi-base = ax-Standard-3 \varphi zero st-zero base-case
    \psi-inductive-st : }\forall\textrm{k}->\mathrm{ st k }->\psi|\textrm{k}->\psi (suc k
    \psi-inductive-st k st-k \psi-k =
        ax-Standard-3 \varphi (suc k) (st-fun _ _ suc k st-suc st-k) (inductive-case k st-k (ax-Standard-2
\varphi k st-k \psi-k))
    \psi-inductive : }\forall\textrm{k}->\psi\textrm{k}->\psi(\mathrm{ suc k)
    \psi-inductive = ax-Transfer-EI ( }\mp@subsup{|}{}{\prime}\mathbb{N}(\lambdak->\mp@subsup{int'}{}{\prime}(\psik->\psi(suc k)))
            ( \lambda k st-k }->\mathrm{ fromInternal ( }\psi\mathrm{ -inductive-st k st-k))
            (st-\mathbb{N},\lambda a st-a ->st-->(\llbracket \varphi\rrbracketa) (st-fun__ _ | a st-\psi st-a)
            (\llbracket \varphi\rrbracket(suc a)) (st-fun__\psi (suc a) st-\psi (st-fun _ suc a st-suc st-a)))
    \psi-forall : }\forall\textrm{n}->\psi\textrm{n
    \psi-forall = \mathbb{N-induction }\psi\mathrm{ -base }\psi\mathrm{ -inductive}
bounded-st : }\forall(\textrm{b}:\mathbb{N})->\mathrm{ st }\textrm{b}->\forall\mp@code{(n : N ) }->\textrm{n}\leq\textrm{b}->\mathrm{ st n
bounded-st = external-induction {\lambda b G \forall m m m b b st m} base-case inductive-case where
    base-case : \forallm m m sero }->\mathrm{ st m
    base-case m m\leq0 = transport* (sym (\leq-than-zero m m\leq0)) {\lambda n -> st {lzero} {NN n} st-zero
    inductive-case : }\forall\textrm{k}->\mathrm{ st k m ( }\forall\textrm{m}->\textrm{m}\leq\textrm{k}->\mathrm{ st m) }->\mathrm{ ( 
    inductive-case k st-k inductive-hypothesis n n\leqk+1=
        by-cases* {lzero} {lzero} {n \leq k} (st n) case-A case-B (\leq-match n k n\leqk+1) where
        case-A : n \leq k -> st n
        case-A = inductive-hypothesis n
        st-k+1 : st (suc k)
        st-k+1 = st-fun suc k st-suc st-k
        case-B : n \equiv suc }\mp@subsup{}{}{-}\mp@subsup{}{}{-}->\mathrm{ st n
        case-B n-equals-k+1 = transport* (sym n-equals-k+1) {\lambda n s st {lzero} {\mathbb{N}} n} st-k+1
{-# OPTIONS --omega-in-omega --no-pattern-matching #-}
module IST.FiniteSets where
open import Agda.Primitive
open import IST.Safe.FiniteSets public
open import IST.Base
open SafeImportTools
st-FiniteSet : st FiniteSet
st-FiniteSet = declared-in-safe-module FiniteSet
st-FiniteSet-Carrier : st FiniteSet.Carrier
st-FiniteSet-Carrier = declared-in-safe-module FiniteSet.Carrier
{-# OPTIONS --omega-in-omega --no-pattern-matching #-}
module IST.Reals where
open import IST.Safe.Reals public
open import IST.Base
open SafeImportTools
st-\mathbb{R}: st \mathbb{R}
st-\mathbb{R}= declared-in-safe-module \mathbb{R}
st-+ : st +
st-+ = dec\overline{lared-in-safe-module _+_}+
st-minus : st minus
st-minus = declared-in-safe-module minus
st-• : st .
st-. = dec\overline{lared-in-safe-module__}.
```

1855
1856
1857
1858
1859

```
st-inv : st inv
st-inv = declared-in-safe-module inv
st-< : st <
st-< = dec\overline{l}ared-in-safe-module _<_
st-\leqre : st \leqrn
st-\mp@subsup{s}{r}{}= declared-in-safe-module __ rr_
st-0r : st 0r
st-Or = declared-in-safe-module Or
st-1r : st 1r
st-1r = declared-in-safe-module 1r
st-inv-v : }\forall\textrm{x}->(\textrm{e}:\textrm{x}\not=0\textrm{Or})->\mathrm{ st }\textrm{x}->\mathrm{ st (inv x e)
st-inv-v x e _ = declared-in-safe-module (inv x e)
st-2r: st 2r
st-2r = st-fun__ (_+_ lr) 1r (st-fun _ _ _+_ 1r st-+ st-1r) st-1r
st-1/2r: st 1/2r
st-1/2r = st-inv-v 2r ( }\lambda->->pos-2r) st-2
st-/2r-v : (x : \mathbb{R}) -> st x }->\mathrm{ st (x / 2r)
st-/2r-v x st-x = st-fun__(___ 1/2r) x (st-fun______ 1/2r st-* st-1/2r) st-x
{-# OPTIONS --omega-in-omega --no-pattern-matching #-}
module IST.Groups where
open import IST.Safe.Groups public
open import IST.Base
open SafeImportTools
st-Group : st Group
st-Group = declared-in-safe-module Group
st-Group-Carrier : st Group.Carrier
st-Group-Carrier = declared-in-safe-module Group.Carrier
st-Group-identity : st Group.identity
st-Group-identity = declared-in-safe-module Group.identity
st-Group-operation : st Group.operation
st-Group-operation = declared-in-safe-module Group.operation
st-Group-inverse : st Group.inverse
st-Group-inverse = declared-in-safe-module Group.inverse
st-Group-power : st Group.power
st-Group-power = declared-in-safe-module Group.power
st-FiniteGroup : st FiniteGroup
st-FiniteGroup = declared-in-safe-module FiniteGroup
st-FiniteGroup-Carrier : st FiniteGroup.Carrier
st-FiniteGroup-Carrier = declared-in-safe-module FiniteGroup.Carrier
st-FiniteGroup-identity : st FiniteGroup.identity
st-FiniteGroup-identity = declared-in-safe-module FiniteGroup.identity
st-FiniteGroup-operation : st FiniteGroup.operation
st-FiniteGroup-operation = declared-in-safe-module FiniteGroup.operation
st-FiniteGroup-inverse : st FiniteGroup.inverse
st-FiniteGroup-inverse = declared-in-safe-module FiniteGroup.inverse
st-FiniteGroup-order : st FiniteGroup.order
st-FiniteGroup-order = declared-in-safe-module FiniteGroup.order
```

```
st-FiniteGroup-power : st FiniteGroup.power
st-FiniteGroup-power = declared-in-safe-module FiniteGroup.power
st-PeriodicGroup : st PeriodicGroup
st-PeriodicGroup = declared-in-safe-module PeriodicGroup
st-PeriodicGroup-Carrier : st PeriodicGroup.Carrier
st-PeriodicGroup-Carrier = declared-in-safe-module PeriodicGroup.Carrier
st-PeriodicGroup-identity : st PeriodicGroup.identity
st-PeriodicGroup-identity = declared-in-safe-module PeriodicGroup.identity
st-PeriodicGroup-operation : st PeriodicGroup.operation
st-PeriodicGroup-operation = declared-in-safe-module PeriodicGroup.operation
st-PeriodicGroup-inverse : st PeriodicGroup.inverse
st-PeriodicGroup-inverse = declared-in-safe-module PeriodicGroup.inverse
st-PeriodicGroup-order : st PeriodicGroup.order
st-PeriodicGroup-order = declared-in-safe-module PeriodicGroup.order
st-PeriodicGroup-power : st PeriodicGroup.power
st-PeriodicGroup-power = declared-in-safe-module PeriodicGroup.power
{-# OPTIONS --omega-in-omega --no-pattern-matching #-}
module IST.MetricSpaces where
open import Agda.Primitive
open import IST.Safe.MetricSpaces public
open import IST.Base
open SafeImportTools
st-MetricSpace : st MetricSpace
st-MetricSpace = declared-in-safe-module MetricSpace
st-MetricSpace-Carrier : st MetricSpace.Carrier
st-MetricSpace-Carrier = declared-in-safe-module MetricSpace.Carrier
st-MetricSpace-distance : st MetricSpace.distance
st-MetricSpace-distance = declared-in-safe-module MetricSpace.distance
st-MetricSpace-Carrier-full : (M : MetricSpace) -> st M -> st (MetricSpace.Carrier M)
st-MetricSpace-Carrier-full M st-M = st-fun _ _ MetricSpace.Carrier M st-MetricSpace-Carrier st-
M
st-MetricSpace-distance-full : (M : MetricSpace) -> st M -> st (MetricSpace.distance M)
st-MetricSpace-distance-full M st-M = declared-in-safe-module (MetricSpace.distance M)
----------------------------------------------------------------------------------------------
module IST.GroupActions where
open import IST.Safe.GroupActions public
```



```
{-# OPTIONS --omega-in-omega --no-pattern-matching #-}
module IST.NewmansTheorem where
open import Agda.Primitive
open import IST.Safe.NewmansTheorem public
open import IST.Base
open SafeImportTools
st-NewmanSpace : st NewmanSpace
st-NewmanSpace = declared-in-safe-module NewmanSpace
```

2008

```
st-NewmanSpace-asMetricSpace : st NewmanSpace.asMetricSpace
st-NewmanSpace-asMetricSpace = declared-in-safe-module NewmanSpace.asMetricSpace
st-NewmanSpace-inhabitant : st NewmanSpace.inhabitant
st-NewmanSpace-inhabitant = declared-in-safe-module NewmanSpace.inhabitant
st-NewmanSpace-newman-constant : st NewmanSpace.newman-constant
st-NewmanSpace-newman-constant = declared-in-safe-module NewmanSpace.newman-constant
{-# OPTIONS --omega-in-omega #-}
-- TODO: Make sure that this confirms to the new coding standards.
-- This is taken from an older version of the proof code.
-- Note that our main proof does not rely on these arguments.
module IST.Ultrafilters where
open import Agda.Primitive
open import IST.Base
open import IST.Util
\cap:{I : Set} -> List (I }->\mathrm{ Set) }->\mathrm{ I }->\mathrm{ Set
\cap [] i = T
\cap(\varphi:: []) i = \varphi i
\cap (\varphi :: \varphiS) i = \varphi i ^ (\bigcap \varphiS i)
```



```
lemma-\bigcap (.\varphi :: []) i has-i \varphi E-head = has-i
lemma-\bigcap (.\varphi :: (\psi :: \varphiS)) i has-i \varphi E-head = projo has-i
lemma-\bigcap (\psi :: []) i has-i \varphi (E-tail ())
```



```
\subseteq_ : {I : Set} }->\mathrm{ List (I }->\mathrm{ Set) }->((I)->\mathrm{ Set) }->\mathrm{ Set) }->\mathrm{ Set
[] \subseteq UF = T
(\varphi :: []) \subseteq UF = UF \varphi
(\varphi:: \varphiS )\subseteqUF=UF}\varphi\wedge(\varphiS\subseteqUF
=> : {I : Set} -> (I }->\mathrm{ Set) }->(I)->\mathrm{ Set) }->\mathrm{ Set
\varphi \Rightarrow \psi = \forall ~ i ~ \rightarrow \varphi ~ i ~ \rightarrow \psi ~ i
\sim \mp@code { : ~ \{ I ~ : ~ S e t \} ~ } \rightarrow ( I \rightarrow \text { Set ) } \rightarrow \text { I } \rightarrow \text { Set}
~\varphi i }=\varphi\mathrm{ i }->
module Stage1
    (I : Set)
    (st-I : st I)
    (UF : (I }->\mathrm{ Set) }->\mathrm{ Set)
    (UF-upward : {\varphi \psi: I }->\mathrm{ Set } }->\varphi=>\psi->\textrm{SF}\varphi->\textrm{UF}\psi
    (UF-inhabit : {\varphi: I }->\mathrm{ Set } }->\operatorname{UF}\varphi->\exists\lambda i -> \varphi i)
    (UF-fip : {\varphiS: List (I -> Set)} -> \varphiS \subseteq UF -> UF (\cap \varphiS))
    (UF-alt : {\varphi: I -> Set} -> (UF \varphi -> \perp) }->\mathrm{ ) UF (~ }\varphi)\mathrm{ )
    where
    \emptyset: I }->\mathrm{ Set
    i = \perp
    U : I }->\mathrm{ Set
    U i = T
    step-1 : UF \emptyset -> \perp
    step-1 has-\emptyset = proj2 (UF-inhabit has-\emptyset)
    step-2 : UF U
    step-2 = UF-upward {~ \emptyset} {U} (\lambda i _ -> tt) (UF-alt step-1)
    arbitrary : I
    arbitrary = proj1 (UF-inhabit step-2)
    Element : Set }\mp@subsup{\boldsymbol{N}}{1}{
    Element = \exists \lambda (\varphi: I }->\mathrm{ Set) }->\mathrm{ UF }
```

```
reduce : List Element -> List (I -> Set)
reduce [] = []
reduce (\varphi :: \varphis) = (proj1 \varphi) :: reduce \varphiS
lemma-reduce : ( }\varphi\mathrm{ S : List Element) }->\mathrm{ reduce }\varphis\subseteq U
lemma-reduce [] = tt
lemma-reduce (\varphi :: []) = projz \varphi
lemma-reduce (\varphi :: (\psi :: \varphis)) = projz \varphi , lemma-reduce (\psi :: \varphis)
step-3 : \forall (\varphis : List Element) }->\mathrm{ st }\varphis->\exists\lambda(i: I) -> \forall (\varphi: Element) -> \varphi \in \varphis -> proj1 \varphi i
step-3 \varphis _ = proj1 \cap-inhabit , \lambda \varphi \varphi\in\varphiS -> jump (proj1 \varphi) (lemma \varphi \varphis \varphi\in\varphiS) where
    \cap-inhabit : \exists \lambda (i : I) }->\mathrm{ \ (reduce }\varphis) 
    @-inhabit = UF-inhabit (UF-fip {reduce \varphis} (lemma-reduce \varphis))
```



```
    jump = lemma-\cap (reduce \varphis) (proj1 \cap-inhabit) (proj_ \cap-inhabit)
    lemma : ( }\varphi:\mathrm{ : Element ) }->(\varphiS: List Element) -> \varphi E \varphiS -> proji \varphi E reduce \varphi
    lemma \varphi . (\varphi :: _) E-head = E-head
    lemma \varphi (\psi :: \varphi\overline{S}) (E-tail p) = E-tail (lemma \varphi \varphiS p)
thm-1 : \exists* \lambda (i : I) }->\forall(\varphi: Element) -> st \varphi -> proj1 \varphi 
thm-1 = ax-Ideal-1 step-3
\omega : I
\omega = proj1 thm-1
module Stage2
    (st-UF : st UF)
    (UF-2val* : ( }\varphi: : ESet) ->(A : I -> Set) ->(UF A \equivT->\varphi)->(UF A \equiv \perp -> \varphi ) ->\varphi
    where
    ~UF~_ : {A : I -> Set} -> (\forall (i : I) -> A i) }->(\forall (i : I) -> A i) -> Se
    f ~UF~
    ~
    \}~\omega\overline{~}g=f\omega\g
    thm-2 : {A : I }->\mathrm{ Set} }->\mathrm{ st A }->(f:\forall (i : I) ->A i) -> st f -> (g: : (i : I) -> A i) -> st g ->
            f ~UF~ g -> f ~\omega~ g
    thm-2 {A} st-A f st-f g st-g p = using-thm-1 where
        st-f=g : st (\lambda i f f i \equivg i)
        st-f=g = st-req-f-g where
```



```
: I) }->\mathrm{ b i) }->\mathrm{ I }->\mathrm{ Set
            recombinator = \lambda (a : {X : Set} }->\textrm{X}->\textrm{X}->\textrm{Set)}->\lambda(\textrm{b}: : I -> Set) -> \lambda (f : (i : I) -> b i),
->\lambda(g:(i: I) }->\textrm{b}\mathrm{ i) }
                \lambda (i : I) -> a {b i} (f i) (g i)
        st-recombinator : st recombinator
        st-recombinator = st-abs-5 I
        recombinator-\equiv : (b : I -> Set) -> (f : (i : I) -> b i) -> (g : (i : I) -> b i) -> I -> Set
        recombinator-\equiv = recombinator (_\equiv_ {lzero})
        st-recombinator-\equiv : st recombinator-\equiv
        st-recombinator-\equiv = st-fun _ _ recombinator (_\equiv_ {lzero}) st-recombinator st-\equiv
        req : (f : \forall i }->\textrm{A}\mathrm{ i) }->(\textrm{g}=\overline{\textrm{V}}\textrm{i}->\textrm{A}\mathrm{ i) }->\textrm{I}->\mathrm{ Set
        req = recombinator-\equiv A
        st-req : st req
        st-req = st-fun-d _ _ recombinator-\equiv A st-recombinator-\equiv st-A
        req-f : (g : \forall i }->\mathrm{ A i) }->\mathrm{ I }->\mathrm{ Set
        req-f = req f
        st-req-f : st req-f
        st-req-f = st-fun _ _ req f st-req st-f
        req-f-g : I -> Set
        req-f-g = req-f g
        st-req-f-g : st req-f-g
        st-req-f-g = st-fun __ req-f g st-req-f st-g
        eq : I -> Set
        eq i = f i \equivg i
        pair : (A : I }->\mathrm{ Set) }->\mathrm{ UF A }->\mathrm{ Element
        pair A a = A, a
        st-pair : st pair
        st-pair = st-\exists-_,_-full
        st-pair-eq : st' (\overline{pair eq)}
        st-pair-eq = st-fun-d _ _ pair eq st-pair st-f=g
        st-pair-eq-p : st (pair \overline{r eq p)}
        st-pair-eq-p = st-fun-d _ _ (pair eq) p st-pair-eq (st-UF-p p) where
```

2155
2156
2157 2158 2159 2160 2161 2162

```
    if-\perp : UF eq \equiv \perp -> \forall (p : UF eq) }->\mathrm{ st p
    if-\perp x = transport* (sym x) {\lambda S -> \forall (p : S) -> st p} \lambda ()
        if-T : UF eq \equivT T \forall (p : UF eq) }->\mathrm{ st p
        if-T x = transport* (sym x) {\lambda S -> \forall (p : S) -> st p} helper where
        helper : (p : T) -> st p
        helper tt = st-tt
        st-UF-p : \forall (p : UF eq) }->\mathrm{ st p
        st-UF-p = UF-2val* (V (p : UF eq) -> st p) eq if-T if-\perp
    using-thm-1 : f \omega \equivg \omega
        using-thm-1 = proj2 thm-1 (eq , p) st-pair-eq-p
```

-- we get the converse of thm-2 by the exact same argument, as $\neg(f \sim U F \sim g) \rightarrow U F(\lambda i \rightarrow \neg(f i \equiv$
g i))

```
{-# OPTIONS --omega-in-omega --no-pattern-matching #-}
module IST.PredicatedTopologies where
open import Agda.Primitive
open import IST.Base
open import IST.Reals
-- Def. A relational space consists of a carrier set C and a reflexive
-- binary predicate (the 'nearness predicate') on C.
record IsPredicatedSpace
    (Carrier : Set)
    (nearby : Carrier }->\mathrm{ Carrier }->\mathrm{ ESet)
    : ESet where
    field
        reflexive : }\forall\textrm{x}->\mathrm{ nearby x x
record PredicatedSpace : ESet }\mp@subsup{\boldsymbol{1}}{\mathrm{ where}}{\mathrm{ wher }
    field
        Carrier : Set
        nearby : Carrier }->\mathrm{ Carrier }->\mathrm{ ESet
        isPredicatedSpace : IsPredicatedSpace Carrier nearby
    open IsPredicatedSpace isPredicatedSpace public
-- Def. A separable space is a relational space where no two standard points
-- are neighbors. (normally known as Tl space, we refer to those as Kolmogorov)
record IsSeparableSpace
    Carrier : Set)
    (nearby : Carrier }->\mathrm{ Carrier }->\mathrm{ ESet)
    : ESet where
    field
        isPredicatedSpace : IsPredicatedSpace Carrier nearby
        separable : }\forall\textrm{x}->\mathrm{ st }\textrm{x}->\forall\textrm{y}->\mathrm{ st y m nearby x y m nearby y x }->\textrm{x}\equiv\textrm{x
record SeparableSpace : ESet }\mp@subsup{\boldsymbol{1}}{\mathbf{ where}}{
    field
        Carrier : Set
        nearby : Carrier }->\mathrm{ Carrier }->\mathrm{ ESet
        isSeparableSpace : IsSeparableSpace Carrier nearby
    open IsSeparableSpace isSeparableSpace public
    open IsPredicatedSpace isPredicatedSpace public
-- Def. A compact space is a relation space where every every element is near
-- a standard element.
record IsCompactSpace
    (Carrier : Set)
    (nearby : Carrier }->\mathrm{ Carrier }->\mathrm{ ESet)
    - ESet where
    field
        isPredicatedSpace : IsPredicatedSpace Carrier nearby
        compact : }\forall\textrm{x}->\exists*\lambday y st y *^* nearby y x
```

```
record CompactSpace : ESet }\mp@subsup{\mathbf{1}}{\mathrm{ where}}{\mathrm{ wh}
    field
            Carrier : Set
            nearby : Carrier }->\mathrm{ Carrier }->\mathrm{ ESet
            isCompactSpace : IsCompactSpace Carrier nearby
    open IsCompactSpace isCompactSpace public
    open IsPredicatedSpace isPredicatedSpace public
-- Def. A Hausdorff space is a relational space where two different standard
-- points do not share a neighbor.
record IsHausdorffSpace
    (Carrier : Set)
    (nearby : Carrier }->\mathrm{ Carrier }->\mathrm{ ESet)
    : ESet where
    field
            isPredicatedSpace : IsPredicatedSpace Carrier nearby
        hausdorff : }\forall\textrm{x}->\mathrm{ st }\textrm{x}->\forall\textrm{y}->\mathrm{ st y }->\forall\textrm{z}->\mathrm{ nearby x z }->\mathrm{ nearby y z }->\textrm{x}\equiv\textrm{y
record HausdorffSpace : ESet }\mp@subsup{1}{1}{}\mathrm{ where
    field
        Carrier : Set
        nearby : Carrier }->\mathrm{ Carrier }->\mathrm{ ESet
        isHausdorffSpace : IsHausdorffSpace Carrier nearby
    open IsHausdorffSpace isHausdorffSpace public
    open IsPredicatedSpace isPredicatedSpace public
    -- Thm. Every Hausdorff space is separable.
    private
        separable : }\forall\textrm{x}->\mathrm{ st }\textrm{x}->\forall\textrm{y}->\mathrm{ st y }->\mathrm{ nearby x y }->\mathrm{ nearby y x }->\textrm{x}\equiv\textrm{y
        separable x st-x y st-y x-near-y y-near-x =
            hausdorff x st-x y st-y x (reflexive x) y-near-x
        isSeparableSpace : IsSeparableSpace Carrier nearby
        isSeparableSpace = record { isPredicatedSpace = isPredicatedSpace; separable = separable }
    open IsSeparableSpace isSeparableSpace public
-- Def. A compact Hausdorff space is a relational space that is also a compact
-- space. Duh.
record IsCompactHausdorffSpace
        (Carrier : Set)
        (nearby : Carrier }->\mathrm{ Carrier }->\mathrm{ ESet)
        : ESet where
        field
            isHausdorffSpace : IsHausdorffSpace Carrier nearby
        isCompactSpace : IsCompactSpace Carrier nearby
record CompactHausdorffSpace : ESet. where
    field
        Carrier : Set
        nearby : Carrier }->\mathrm{ Carrier }->\mathrm{ ESet
        isHausdorffSpace : IsHausdorffSpace Carrier nearby
        isCompactSpace : IsCompactSpace Carrier nearby
    open IsHausdorffSpace isHausdorffSpace public
    open IsPredicatedSpace isPredicatedSpace public
    open IsCompactSpace isCompactSpace public
-- Def. An equivalence space is a relational space whose
-- nearness predicate is transitive and symmetric.
record IsEquivalenceSpace
        (Carrier : Set)
        (nearby : Carrier }->\mathrm{ Carrier }->\mathrm{ ESet)
        : ESet where
        field
            isPredicatedSpace : IsPredicatedSpace Carrier nearby
        transitive : }\forall\textrm{x}y\textrm{y z }->\mathrm{ nearby x y }->\mathrm{ nearby y z }->\mathrm{ nearby x z
        symmetric : }\forall\textrm{x}y->\mathrm{ nearby x y }->\mathrm{ nearby y x
    record EquivalenceSpace : ESet }\mp@subsup{\boldsymbol{1}}{1}{where
        field
        Carrier : Set
        nearby : Carrier }->\mathrm{ Carrier }->\mathrm{ ESet
        isEquivalenceSpace : IsEquivalenceSpace Carrier nearby
```

open IsEquivalenceSpace isEquivalenceSpace public
open IsPredicatedSpace isPredicatedSpace public

```
-- Def. A Hausdorff equivalence space is an equivalence space that is
-- also a Hausdorff space. Duh.
record IsHausdorffEquivalenceSpace
    (Carrier : Set)
    (nearby : Carrier -> Carrier -> ESet)
    : ESet where
    field
        isHausdorffSpace : IsHausdorffSpace Carrier nearby
        isEquivalenceSpace : IsEquivalenceSpace Carrier nearby
record HausdorffEquivalenceSpace : ESet1 where
    field
        Carrier : Set
        nearby : Carrier -> Carrier -> ESet
        isHausdorffSpace : IsHausdorffSpace Carrier nearby
            isEquivalenceSpace : IsEquivalenceSpace Carrier nearby
    open IsHausdorffSpace isHausdorffSpace public
    open IsPredicatedSpace isPredicatedSpace public
    open IsEquivalenceSpace isEquivalenceSpace public
```

-- Def. A compact Hausdorff equivalence space is an equivalence space that is also a compact
-- space. Duh.
record IsCompactHausdorffEquivalenceSpace
(Carrier : Set)
(nearby : Carrier $\rightarrow$ Carrier $\rightarrow$ ESet)
: ESet where
field
isHausdorffSpace : IsHausdorffSpace Carrier nearby
isCompactSpace : IsCompactSpace Carrier nearby
isEquivalenceSpace : IsEquivalenceSpace Carrier nearby
record CompactHausdorffEquivalenceSpace : ESet ${ }_{1}$ where
field
Carrier : Set
nearby : Carrier $\rightarrow$ Carrier $\rightarrow$ ESet
isHausdorffSpace : IsHausdorffSpace Carrier nearby
isCompactSpace : IsCompactSpace Carrier nearby
isEquivalenceSpace : IsEquivalenceSpace Carrier nearby
open IsHausdorffSpace isHausdorffSpace public
open IsPredicatedSpace isPredicatedSpace public
open IsCompactSpace isCompactSpace public
open IsEquivalenceSpace isEquivalenceSpace public
open import IST.MetricSpaces
-- Thm. Every standard metric space induces a Hausdorff equivalence space by setting
-- x o- $\mathrm{y} \leftrightarrow \forall^{\mathrm{s}} \varepsilon>0$. $\mathrm{d}(\mathrm{x}, \mathrm{y})<\varepsilon$
metric-to-hausdorff-equivalence : (MS : MetricSpace) $\rightarrow$ st MS $\rightarrow$ HausdorffequivalenceSpace
metric-to-hausdorff-equivalence MS st-MS =
record \{ Carrier = M
; nearby = nearby
; isHausdorffSpace = isHausdorffSpace
; isEquivalenceSpace = isEquivalenceSpace
\} where
M : Set
M = MetricSpace.Carrier MS
st-M : st M
st-M = st-MetricSpace-Carrier-full MS st-MS
$d: M \rightarrow M \rightarrow \mathbb{R}$
d = MetricSpace.distance MS
st-d : st d
st-d = st-MetricSpace-distance-full MS st-MS
nearby : $M \rightarrow M \rightarrow$ ESet
nearby $\mathrm{x} y=\forall(\varepsilon: \mathbb{R}) \rightarrow$ st $\varepsilon \rightarrow 0 r<\varepsilon \rightarrow \mathrm{dx} \mathrm{y}<\varepsilon$

```
reflexive : }\forall\textrm{x}->\mathrm{ nearby x x
reflexive x \varepsilon st-\varepsilon 0r<\varepsilon = dxx<\varepsilon where
    open MetricSpace MS
    dxx<\varepsilon : d x x < \varepsilon
    dxx<\varepsilon = transport (sym (reflexive-2 x)) {\lambda z -> z < \varepsilon} Or<\varepsilon
symmetric : }\forall\textrm{x}y->\mathrm{ nearby x y }->\mathrm{ nearby y x
symmetric x y x-near-y \varepsilon st-\varepsilon pos-\varepsilon = dyx<\varepsilon where
    open MetricSpace MS
    dxy<\varepsilon : d x y < \varepsilon
    dxy<\varepsilon = x-near-y \varepsilon st-\varepsilon pos-\varepsilon
    dyx<\varepsilon : d y x < \varepsilon
    dyx<\varepsilon = transport (symmetry x y) {\lambda p P p<\varepsilon} dxy<\varepsilon
transitive : }\forall\textrm{x}y\textrm{y}|->\mathrm{ nearby }x y -> nearby y z m nearby x z
transitive x y z x-near-y y-near-z \varepsilon st-\varepsilon pos-\varepsilon = dxz' where
    open MetricSpace MS
    \varepsilon/2:\mathbb{R}
    \varepsilon/2 = \varepsilon /2r
    st-\varepsilon/2 : st \varepsilon/2
    st-\varepsilon/2 = st-/2r-v \varepsilon st-\varepsilon
    pos-\varepsilon/2 : 0r < \varepsilon/2
    pos-\varepsilon/2 = pos-/2r-v \varepsilon pos-\varepsilon
    dxy : d x y < \varepsilon/2
    dxy = x-near-y \varepsilon/2 st-\varepsilon/2 pos-\varepsilon/2
    dyz : d y z < \varepsilon/2
    dyz = y-near-z \varepsilon/2 st-\varepsilon/2 pos-\varepsilon/2
    dxy-dyx : d x y + dy z < \varepsilon/2 + \varepsilon/2
    dxy-dyx = <-tran _ _ _ step-1 step-2 where
            step-1 : d x y + d y z < \varepsilon/2 + d y z
            step-1 = <-plus (d x y) \varepsilon/2 (d y z) dxy
            step-2 : \varepsilon/2 + d y z < \varepsilon/2 + \varepsilon/2
            step-2 = transport +-comm {\lambda p -> p < \varepsilon/2 + \varepsilon/2} (<-plus (d y z) \varepsilon/2 \varepsilon/2 dyz)
    dxz : d x z < \varepsilon/2 + \varepsilon/2
    dxz = triangle x y z (\varepsilon/2 + \varepsilon/2) dxy-dyx
    dxz' : d x z < \varepsilon
    dxz'}=\mathrm{ transport /2r-half {\ p > d x z < p} dxz
isPredicatedSpace : IsPredicatedSpace M nearby
isPredicatedSpace = record { reflexive = reflexive }
isEquivalenceSpace : IsEquivalenceSpace M nearby
isEquivalenceSpace =
    record { isPredicatedSpace = isPredicatedSpace
                ; transitive = transitive
                    symmetric = symmetric
                }
    hausdorff : }\forall\textrm{x}->\mathrm{ st }\textrm{x}->\forall\textrm{y}->\mathrm{ st y }->\forall\textrm{z}->\mathrm{ nearby x z m nearby y z }->\textrm{x}\equiv\textrm{y
    hausdorff x st-x y st-y z x-near-z y-near-z = reflexive-1 x y zero-dxy where
    open MetricSpace MS
    x-near-y : nearby x y
    x-near-y = transitive x z y x-near-z (symmetric y z y-near-z)
    x-near-y-int : ( \varepsilon : \mathbb{R}) -> st \varepsilon }->\mathrm{ internal (Or < & }->\textrm{d}x\textrm{x}<\textrm{y}<\varepsilon
    x-near-y-int }\varepsilon\mathrm{ st- }=\mathrm{ fromInternal (x-near-y & st-&)
    st-dxy : st (d x y)
    st-dxy = st-fun __ (d x) y (st-fun _ _ d x st-d st-x) st-y
    \Phi : TransferPred
    \Phi= \forall' \mathbb{R }\lambda \varepsilon -> int' (Or < \varepsilon }->\textrm{d}x\textrm{x
```



```
    std-\Phi=st-\mathbb{R},(\lambda\varepsilonst-\varepsilon->st->->(0r<\varepsilon)
                                    (st-fun _- (_<_Or) \varepsilon (st-fun ___<_Or st-< st-0r) st-\varepsilon)
                    (d x y < &)
                    (st-fun__ (_<_ (d x y)) \varepsilon (st-fun_______(d x y) st-< st-
dxy) st-\varepsilon))
        dxy<\varepsilon : \forall (\varepsilon : \mathbb{R})->0r<\varepsilon->d x y < &
        dxy<\varepsilon = ax-Transfer-EI \Phi x-near-y-int std-\Phi
        zero-dxy : d x y \equiv Or
        zero-dxy = lemma-\varepsilon-of-room (d x y) dxy<\varepsilon (nonnegative x y)
    isHausdorffSpace : IsHausdorffSpace M nearby
    isHausdorffSpace =
        record { isPredicatedSpace = isPredicatedSpace
            ; hausdorff = hausdorff
                }
```

```
{-# OPTIONS --omega-in-omega --no-pattern-matching #-}
```

module IST.Approximation where
open import Agda.Primitive
open import IST.Base
open import IST.PredicatedTopologies
record IsApproximation
(Source : Set)
(Target : Set)
(Map : Source $\rightarrow$ Target $\rightarrow$ ESet)
: ESet where
field
Target-st : st Target
Map-exists : $\forall$ ( $g$ : Target) $\rightarrow$ st $g \rightarrow \exists * \lambda(h: S o u r c e) \rightarrow$ Map h $g$
Map-unique-Source :
$\forall$ (g : Target) $\rightarrow$ st $g \rightarrow$
$\forall\left(h_{1}:\right.$ Source $) \rightarrow$ Map $h_{1} g \rightarrow \forall\left(h_{2}:\right.$ Source $) \rightarrow$ Map $h_{2} g \rightarrow h_{1} \equiv h_{2}$
Map-unique-Target :
$\forall\left(g_{1}:\right.$ Target $) \rightarrow$ st $g_{1} \rightarrow \forall\left(g_{2}:\right.$ Target $) \rightarrow$ st $g_{2} \rightarrow$
$\forall(\mathrm{h}:$ Source $) \rightarrow$ Map $\mathrm{h} \mathrm{g}_{1} \rightarrow$ Map $\mathrm{h} \mathrm{g}_{2} \rightarrow \mathrm{~g}_{1} \equiv \mathrm{~g}_{2}$
-- Map-cont :
$--\quad \forall\left(h_{1} h_{2}:\right.$ Source $) \rightarrow \forall\left(g_{1} g_{2}:\right.$ Target $) \rightarrow \operatorname{Map}_{1} \mathrm{~h}_{1} \rightarrow$ Map $h_{2} g_{2} \rightarrow$
-- nearby $h_{1} h_{2} \rightarrow$ nearby $g_{1} g_{2}$
-- -- makes no sense since S-continuity relies on the standardness
-- -- of the first element of the nearness relation.
record Approximation (Source : Set) (Target : Set) : ESet $\boldsymbol{1}_{1}$ where
field
Map : Source $\rightarrow$ Target $\rightarrow$ ESet
isApproximation : IsApproximation Source Target Map
open IsApproximation isApproximation public
record IsTopApproximation
(Source : PredicatedSpace)
(Target : SeparableSpace)
(Map : PredicatedSpace.Carrier Source $\rightarrow$ SeparableSpace.Carrier Target $\rightarrow$ ESet)
: ESet where
open SeparableSpace Target renaming
( Carrier to G
; nearby to G-near
)
open PredicatedSpace Source renaming
( Carrier to H
; nearby to $H$-near
)
field
Target-st : st G
Map-exists $: \forall(g: G) \rightarrow$ st $g \rightarrow \exists * \lambda(h: H) \rightarrow M a p h g$
Map-Source :
$\forall \quad(\mathrm{g}: \mathrm{G}) \rightarrow$ st $g \rightarrow$
$\forall\left(h_{1}: H\right) \rightarrow \operatorname{Map}_{1} h_{1} g \rightarrow \forall\left(h_{2}: H\right) \rightarrow \operatorname{Map} h_{2} g \rightarrow H$-near $h_{1} h_{2}$
Map-Target :
$\forall \quad\left(g_{1}: G\right) \rightarrow$ st $g_{1} \rightarrow \forall\left(g_{2}: G\right) \rightarrow$ st $g_{2} \rightarrow$
$\forall(\mathrm{h}: \mathrm{H}) \rightarrow$ Map $\mathrm{h} \mathrm{g}_{1} \rightarrow$ Map $\mathrm{h} \mathrm{g}_{2} \rightarrow \mathrm{G}$-near $\mathrm{g}_{1} \mathrm{~g}_{2}$
record TopApproximation (Source : PredicatedSpace) (Target : SeparableSpace) : ESet $\boldsymbol{1}_{\mathbf{1}}$ where
field
Map : PredicatedSpace.Carrier Source $\rightarrow$ SeparableSpace.Carrier Target $\rightarrow$ ESet
isTopApproximation : IsTopApproximation Source Target Map
open IsTopApproximation isTopApproximation public
open import IST.Groups
record IsFiniteGroupApproximation

```
    (Source : FiniteGroup)
    Target : Group)
    Map : FiniteGroup.Carrier Source -> Group.Carrier Target -> ESet)
    - ESet where
    field
        isApproximation : IsApproximation (FiniteGroup.Carrier Source) (Group.Carrier Target) Map
    Map-homomorphism :
            \forall (h1 h h : FiniteGroup.Carrier Source) }
            \forall (g1 : Group.Carrier Target) }->\mathrm{ st g}\mp@subsup{g}{1}{}->\forall(\mp@subsup{g}{2}{}: Group.Carrier Target) -> st gg >
```



```
g2)
    open IsApproximation isApproximation
    open Group Target renaming
        ( Carrier to G
        ; identity to 1G
        ; operation to xG
        ; inverse to iG
        ; assoc to G-associative
        ; unit-left to G-unit-left
        ; unit-right to G-unit-right
        ; inverse-left to G-inverse-left
        ; inverse-right to G-inverse-right
        ,
        open FiniteGroup Source renaming
    ( Carrier to H
        ; identity to 1H
        ; operation to xH
        ; inverse to iH
        ; assoc to H-associative
        ; unit-left to H-unit-left
        ; unit-right to H-unit-right
        ; inverse-left to H-inverse-left
        ; inverse-right to H-inverse-right
        )
        Map-preserves-unit : st Target }->\mathrm{ Map 1H 1G
        Map-preserves-unit st-Target = Map-1H-1G where
        st-1G : st 1G
        st-1G = st-fun-d _ _ Group.identity Target st-Group-identity st-Target
        1H-unique : }\forall(\textrm{h}:\textrm{H})->\textrm{Map h 1G }->\textrm{h}\equiv1
        1H-unique h Map-h-1G = step-8 where
            step-1 : Map (xH h h) (xG 1G 1G)
            step-1 = Map-homomorphism h h 1G st-1G 1G st-1G Map-h-1G Map-h-1G
            step-2 : Map (xH h h) 1G
            step-2 = transport* (G-unit-left 1G) {\lambda z -> Map (xH h h) z} step-1
            step-3 : xH h h \equivh
            step-3 = Map-unique-Source 1G st-1G (xH h h) step-2 h Map-h-1G
            step-4 : xH (iH h) (xH h h) \equiv xH (iH h) h
            step-4 = cong ( }\lambda\textrm{z}->\textrm{xH}(iH\textrm{h}) z) step-
            step-5 : xH (xH (iH h) h) h \equiv xH (iH h) (xH h h)
            step-5 = H-associative (iH h) h h
            step-6 : xH 1H h \equiv xH (xH (iH h) h) h
            step-6 = sym (cong ( }\lambda\mathrm{ z }->\mathrm{ xH z h) (H-inverse-left h))
            step-7 : h \equiv xH (xH (iH h) h) h
            step-7 = tran (sym (H-unit-left h)) step-6
            step-8 : h \equiv 1H
            step-8 = tran (tran (tran step-7 step-5) step-4) (H-inverse-left h)
```



```
    1H'-exists = Map-exists 1G st-1G
    1H' : H
    1H' = proj1 (Map-exists 1G st-1G)
    Map-1H'-1G : Map 1H' 1G
    Map-1H'-1G = proj2 1H'-exists
    1H'-equals-1H : 1H' \equiv 1H
    1H'-equals-1H = 1H-unique 1H' Map-1H'-1G
    Map-1H-1G : Map 1H 1G
    Map-1H-1G = transport* 1H'-equals-1H {\lambda z -> Map z 1G} Map-1H'-1G
Map-preserves-unit-Target : st Target }->\forall(g:G) -> st g -> Map 1H g -> g \equiv 1G
Map-preserves-unit-Target st-Target g st-g Map-1H-g =
    Map-unique-Target g st-g 1G st-1G 1H Map-1H-g (Map-preserves-unit st-Target) where
    st-1G : st 1G
    st-1G = st-fun-d
```

$\qquad$

``` Group.identity Target st-Group-identity st-Target
record FiniteGroupApproximation (Source : FiniteGroup) (Target : Group) : ESet \({ }_{1}\) where field
Map : FiniteGroup.Carrier Source \(\rightarrow\) Group. Carrier Target \(\rightarrow\) ESet
```

```
    isFiniteGroupApproximation : IsFiniteGroupApproximation Source Target Map
open IsFiniteGroupApproximation isFiniteGroupApproximation public
open IsApproximation isApproximation public
```

```
{-# OPTIONS --omega-in-omega --no-pattern-matching #-}
```

module IST.Results.ExtensionTheorem where
open import IST.Base
open import IST.Util
open import IST.Approximation
open import IST.PredicatedTopologies
-- Theorem: If H approximates $G$ via 1, then we can extend every
-- function $f$ : $H \rightarrow M$ (where $M$ is a standard compact Hausdorff space) to a
-- function f' : G $\rightarrow$ M using standardization, setting
-- $f^{\prime}=\llbracket(g, m) \in G \times M \mid \exists h \in H . \quad l(h)=g \wedge f(h)=m \rrbracket$.
record ExtensionTheorem : ESet where
field
G : Set
H : Set
A : Approximation H G
M\# : CompactHausdorffspace
st-M : st (CompactHausdorffSpace.Carrier M\#)
f : H $\rightarrow$ CompactHausdorffSpace.Carrier M\#
open CompactHausdorffSpace M\# hiding (Carrier)
open Approximation A
private
-- We refer to the underlying set of the space $M \#$ as $M$, and the
-- approximation proper as 1.
M : Set
M = CompactHausdorffSpace.Carrier M\#
$\iota: H \rightarrow G \rightarrow$ ESet
し = Approximation.Map A
-- Recall that by definition of approximation, $G$ is standard.
st-G : st G
st-G $=$ Approximation.Target-st A
-- We construct the set $f^{\prime}=\llbracket \exists s h . ~ l(h)=g \wedge m \circ-f(h) \rrbracket$ by Standardization.
pre-ext : G $\wedge$ M $\rightarrow$ ESet
pre-ext $g m=\exists * \lambda(h: H) \rightarrow\left(h\left(p r o j_{1} g m\right){ }^{*} \wedge^{*}\right.$ nearby (proj 2 gm) (f h)
-- Construction:
-- The set $\mathrm{f}^{\prime}$ forms the graph of the function we seek.
$\mathrm{f}^{\prime}: ~ G \wedge \mathrm{M} \rightarrow$ Set
$\mathrm{f}^{\prime}=\llbracket$ pre-ext 】
st-f' : st f'
st-f' = ax-Standard-1 pre-ext
private
st-f'gm : (g : G) $\rightarrow(m: M) \rightarrow$ st $g \rightarrow s t m \rightarrow s t(f '(g, m))$
st-f'gm g m st-g st-m = st-fun (G $\wedge$ M) Set f' ( $g$, m) st-f' (lemma-pairing g m st-g st-m)
-- We prove that for standard $g$, there is always some standard $m$ such that ( $g, m$ ) $\in f^{\prime}$.
$f^{\prime}-e x i s t s-s t: ~ \forall(g: G) \rightarrow s t g \rightarrow \exists * \lambda(m: M) \rightarrow$ st $m * \wedge^{*}$ internal (f' (g , m))
$f^{\prime-e x i s t s-s t ~} g s t-g=m$, st-m , fromInternal f'-gm where
-- Take a standard g, and pick an approximation $h$ with $l(h)=g$.
h : H
$h=$ proj $_{1}$ (Map-exists g st-g)
l-h-g : l h g
$\iota-\mathrm{h}-\mathrm{g}=\operatorname{proj}_{2}$ (Map-exists g st-g)
-- Compute $f(h)$. Use the compactness of $M$ to find a standard point
-- near f(h).
m : M
$m=$ proj $_{1}($ compact (f h))
st-m : st m
st-m $=\operatorname{proj}_{1}\left(\right.$ proj$\left._{2}(\operatorname{compact}(\mathrm{f} h))\right)$

2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747

```
    m-near-fh : nearby m (f h)
    m-near-fh = proj2 (projz (compact (f h)))
    -- Since l(h)=g and m lies near f(h), by definition (g,m) belongs to f'.
    pre-ext-gm : pre-ext (g , m)
    pre-ext-gm = h , (l-h-g , m-near-fh)
    st-gm : st (g , m)
    st-gm = lemma-pairing g m st-g st-m
    f'-gm : f' (g , m)
    f'-gm = ax-Standard-3 pre-ext _ st-gm pre-ext-gm
-- Existence conclusion:
-- By transfer, for any g, there is some m such that (g,m) \in f'.
f'-exists : \forall (g : G) -> \exists \lambda (m : M) -> f' (g , m)
f'-exists = ax-Transfer-EI \Phi f'-exists-st st-params-\Phi where
    \Phi : TransferPred
    \Phi= \forall' G \lambda g -> ヨ' M \lambda m -> int' (f' (g , m))
    st-params-\Phi : std-params \Phi
    st-params-\Phi = st-G , \lambda a st-a }
                st-M , \lambda e st-e -> st-fun _ _ f' (a , e) st-f' (lemma-pairing a e st-a st-e)
private
    -- Now we prove for standard g the uniqueness of the m such that (g,m) E f'.
    -- This proves that f' forms (the graph of) a function.
    f'-unique-st :
        \forall (g : G) -> st g -> \forall (m
        f' (g , m
        m
    f'-unique-st g st-g m}\mp@subsup{m}{1}{}st-\mp@subsup{m}{1}{\prime}\mp@subsup{m}{2}{}\mathrm{ st-m}\mp@subsup{m}{2}{\prime}\mp@subsup{f}{}{\prime}-g\mp@subsup{m}{1}{}\mp@subsup{f}{}{\prime}-g\mp@subsup{m}{2}{}=\mp@subsup{m}{1}{\prime}\mathrm{ -equals-m
        -- Since (g,mi) are standard, they satisfy the defining formula of f',
        -- so we can find hi near gi such that mi lies near f(hi).
        -- First, we pick hi.
        st-gm
        st-gm
        pre-ext-gm : pre-ext (g , m
        pre-ext-gm
        h
        h}\mp@subsup{h}{1}{\prime}=\mp@subsup{proj}{1}{\prime}\mathrm{ pre-ext-gm
        \iota-h
        l-h}\mp@subsup{h}{1}{-g = proj}1 (proj2 pre-ext-gm ),
        m
        m
        -- Now, we pick h2.
        st-gm}\mp@subsup{2}{2}{\mathrm{ : st (g , m}
        st-gm}\mp@subsup{m}{2}{= lemma-pairing g m}\mp@subsup{m}{2}{}\mathrm{ st-g st-m
        pre-ext-gm}2 : pre-ext (g , m2
        pre-ext-gm2 = ax-Standard-2 pre-ext (g , m}\mp@subsup{m}{2}{\prime}) st-gm2 f'-gm2
        h2 : H
        h}\mp@subsup{h}{2}{\prime}=\mp@subsup{proj}{1}{\prime}\mathrm{ pre-ext-gm
        l-h}\mp@subsup{h}{2}{}-g: l h h g
        l-h}\mp@subsup{h}{2}{-g = proj}1 (proj2 pre-ext-gm_),
        m
        m
        -- Now, }\mp@subsup{h}{1}{}\mathrm{ and }\mp@subsup{h}{2}{}\mathrm{ both approximate g, so by the approximation
        -- uniqueness clause, }\mp@subsup{h}{1}{}=\mp@subsup{h}{2}{}\mathrm{ .
        h}\mp@subsup{h}{1}{-equals-h}\mp@subsup{h}{2}{}:\mp@subsup{h}{1}{}\equiv\mp@subsup{h}{2}{
        h}\mp@subsup{h}{1}{-equals-h}\mp@subsup{h}{2}{}= Map-unique-Source g st-g h h l-h1-g h h l-h2-
        fh}\mp@subsup{h}{1}{-equals-f\mp@subsup{h}{2}{}}:\textrm{f}\mp@subsup{\textrm{h}}{1}{}\equivf\mp@subsup{h}{2}{
```



```
        -- Since m}\mp@subsup{m}{2}{}\mathrm{ lies near f( }\mp@subsup{h}{2}{})\mathrm{ , and }\mp@subsup{h}{1}{}=\mp@subsup{h}{2}{}\mathrm{ , we have that
        -- m}\mp@subsup{m}{2}{}\mathrm{ lies near f(h) as well.
        m
        m
```



```
        -- But then m}\mp@subsup{m}{1}{}\mathrm{ and m}\mp@subsup{m}{2}{}\mathrm{ share a common neighbor, f(h). By the Hausdorff
        -- property, this implies m1 = m2.
        m
        m
-- Uniqueness conclusion:
-- Since uniqueness holds for standard g, Transfer gives that it holds for arbitrary g.
-- Hence, the set f' forms the graph of a function.
```



```
    f'-unique = ax-Transfer-EI Ф
            (\lambda g st-g m}\mp@subsup{m}{1}{}st-\mp@subsup{m}{1}{}\mp@subsup{m}{2}{}st-\mp@subsup{m}{2}{}->\mathrm{ fromInternal (f'-unique-st g st-g m}\mp@subsup{m}{1}{}\mathrm{ st-m}\mp@subsup{m}{1}{}\mp@subsup{m}{2}{}\mathrm{ st-m
\Phi where
        \Phi : TransferPred
```



```
        st-params-\Phi : std-params \Phi
        st-params-\Phi =
            st-G , \lambda g st-g }
            st-M, \lambda m}\mp@subsup{m}{1}{st-m
            st-M, \lambda m}\mp@subsup{m}{2}{st-m}\mp@subsup{m}{2}{}->\mathrm{ st-Ф g st-g m}\mp@subsup{m}{1}{}\mathrm{ st-m
            st-f'-gm
            st-f'-gm
            st-f'-gm}\mp@subsup{m}{2}{\prime}:(g:G)->\mathrm{ st g }->(\mp@subsup{m}{2}{}:M)->\mathrm{ st m}\mp@subsup{m}{2}{}->\mathrm{ st (f' (g , m
```



```
            st - m
```



```
st-m}\mp@subsup{m}{1}{\prime}\mathrm{ ) st-m
            st-f'-gm
m
            st-f'-gm
```



```
        st-\Phi:(g:G) -> st g -> (m, m M) ->st m
m
            st-\Phi g st-g m}\mp@subsup{m}{1}{}\mathrm{ st-m1 m}\mp@subsup{m}{2}{}\mathrm{ st-m}\mp@subsup{m}{2}{=
            st->->(f' (g , m
                (st-f'-gm
{-
-- Theorem 2: If the sequence H approximates the structure G in the sense of
-- Zilber, then there is some H(\omega) that approximates G in the sense above.
module Thm2
    (I : Set)
    (H : I }->\mathrm{ Set)
    (_~D~_ : (\forall i ->H i) }->(\forall\mathrm{ i }->\mathrm{ H i) }->\mathrm{ Set)
    (st-D : st _~D~_)
    (\omega : I)
    (ax-\omega-1 : \forall (f g : \forall i -> H i) -> st f -> st g f f ~ D~ g f f \omega \equiv g \omega)
    (ax-\omega-2 : \forall (f g : \forall i }->\textrm{H}\mathrm{ i) }->\mathrm{ st f }->\mathrm{ st g f f L =g L f f ~D~ g)
    (G : Set)
    (st-G : st G)
    (\varphi : G -> (\forall i }->\textrm{H}\mathrm{ i) }->\mathrm{ Set)
    (\varphi-exists : \forall (g : G) }->\exists\lambda(\textrm{h}:\forall i -> H i) -> \varphi g h)
    (lim : ( }\forall\mathrm{ i }->\textrm{H}\mathrm{ i) }->\textrm{G}
    (lim-surjective : }\forall(g:G)->\exists \ (h : \forall i -> H i) -> lim h \equivg
```



```
    (lim-preserves-\varphi: \forall (g:G) -> V (h: V i }->\textrm{H}\mathrm{ i) }->\varphi\textrm{g h i _ #_g (lim h))
    where
    colim : G -> (\forall i -> H i)
    colim g = ヨ.proji (\varphi-exists g)
    colim-splits-lim : \forall (g : G) }->\operatorname{lim}(colim g) \equiv
    colim-splits-lim g = sym step-2 where
        step-1 : \varphi g (colim g)
        step-1 = \exists.proj2 (\varphi-exists g)
        step-2 : g \equiv lim (colim g)
        step-2 = lim-preserves-\varphi g (colim g) step-1
    \iota H \omega -> G -> Set\omega
    \iota h g = internal (colim g \omega \equiv h)
    \iota-exists : \forall (g : G) -> st g -> ヨ* \lambda (h : H \omega) -> l h g
    \iota-exists g st-g = colim g \omega , fromInternal refl
```



```
    \iota-unique g st-g hi (fromInternal \imath-h
    open Thm1 G (H \omega) st-G l l-exists l-unique
-- If furthermore everything in Thm2 is standard, then we have co-uniquness as well.
module Thm2-X
    (I : Set)
    (H : I }->\mathrm{ Set)
    (_~D~_ : (V i }->\textrm{H}\mathrm{ i) )
```

```
    (st-D : st _ ~D~_)
    (\omega : I)
```



```
    (ax-\omega-2: : (f g : \forall i }->\textrm{H}\mathrm{ i) }->\mathrm{ st f }->\mathrm{ st g f f w =g w f f ~D~g)
    (G : Set)
    (st-G : st G)
    (\varphi:G 隹 (V i }->\textrm{H}\mathrm{ i) }->\mathrm{ Set)
```



```
    (lim : (V i }->\textrm{H}\mathrm{ i) }->\textrm{G}
```





```
    (\varphi-exists-st : }\forall(g):G) -> st g -> st (proji (\varphi-exists g)) ), 
where
    open Thm2 I H ~D~ st-D \omega ax-\omega-1 ax-\omega-2 G st-G \varphi \varphi-exists lim lim-surjective lim-respects-D
lim-preserves-\varphi
    st-colim-v : }\forall(g:G) -> st g -> st (colim g),
    st-colim-v g st-g = \varphi-exists-st g st-g
    \iota-counique: }\forall(\textrm{h}:\textrm{H}\omega)->\forall\mp@code{(g}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{}:G)->\mathrm{ st g
    \iota-counique h g}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{}st-\mp@subsup{g}{1}{}\mathrm{ st-g}\mp@subsup{g}{2}{}\iota-h-\mp@subsup{g}{1}{}\quad\iota-h-\mp@subsup{g}{2}{}=\mathrm{ equality where
        step-1 : l (colim g
        step-1 with proj2 (l-exists g
        step-1 | fromInternal }x=\mathrm{ fromInternal }
    step-2 : colim g}\mp@subsup{g}{1}{}\omega\equiv
    step-2 = sym ( L-unique g
    step-3 : L (colim g2 \omega) g}\mp@subsup{g}{2}{
    step-3 with proj2 (l-exists g}\mp@subsup{g}{2}{}\mathrm{ st-g2)
    step-3 | fromInternal x = fromInternal x
    step-4 : colim g2 \omega 
    step-4 = sym (\iota-unique g2 st-g2 h \iota-h-g2 (colim g}\mp@subsup{g}{2}{}\omega)\mathrm{ step-3)
    step-5 : colim g}\mp@code{|}
    step-5 = tran step-2 (sym step-4)
    step-6 : colim g}\mp@subsup{g}{1}{~}~\mathrm{ D colim g}
```



```
    step-7 : lim (colim g
    step-7 = lim-respects-D (colim g1) (colim g2) step-6
    equality : g
    equality = tran (sym (colim-splits-lim g1)) (tran step-7 (colim-splits-lim g2))
```

$-\}$
\{-\# OPTIONS --omega-in-omega --no-pattern-matching \#-\}
module IST.Results.MainTheorem where
open import IST.Base
open import IST.Util
open import IST.Approximation
open import IST.MetricSpaces
open import IST.Reals
open import IST.Naturals
open import IST.PredicatedTopologies
open import IST.Results.ExtensionTheorem
open import IST.Groups
open import IST.GroupActions
open import IST.NewmansTheorem
-- Theorem. Assume that the finite group $H$ approximates the standard group $G$ as a group via an external
-- predicate $\llcorner$. Consider a faithful K-Lipschitz faithful action of $H$ on $M$ for some
standard $K>0$.
-- Every periodic subgroup of \$G\$ also admits a standard faithful \$K\$-Lipschitz action on $\$ \mathrm{M}$.
record MainTheorem : ESet where
field
G\# : Group
st-G\# : st G\#
H\# : FiniteGroup

2901

```
    \iota# : FiniteGroupApproximation H# G#
    M# : NewmanSpace
    st-M# : st M#
    A# : DiscreteAction H# (NewmanSpace.asMetricSpace M#)
-- We first name everything in context.
open Group G# renaming
    ( Carrier to G
        ; identity to 1G
        ; operation to xG
        ; inverse to iG
        ; assoc to G-associative
        ; unit-left to G-unit-left
        ; unit-right to G-unit-right
        ; inverse-left to G-inverse-left
        ; inverse-right to G-inverse-right
    pen FiniteGroup H# renaming
        ( Carrier to H
        ; identity to 1H
        ; operation to xH
        ; inverse to iH
        ; assoc to H-associative
        ; unit-left to H-unit-left
        ; unit-right to H-unit-right
        ; inverse-left to H-inverse-left
        ; inverse-right to H-inverse-right
    )
    open MetricSpace (NewmanSpace.asMetricSpace M#) renaming (Carrier to M)
    open DiscreteAction A# renaming (Map to act)
    open FiniteGroupApproximation \iota# renaming (Map to l)
    private
        M#' : MetricSpace
        M#' = NewmanSpace.asMetricSpace M#
        st-M#' : st M#'
        st-M#' = st-fun NewmanSpace.asMetricSpace M# st-NewmanSpace-asMetricSpace st-M#
        st-G : st G
        st-G = st-fun _ _ Group.Carrier G# st-Group-Carrier st-G#
        st-xG : st xG
        st-xG = st-fun-d
                Group.operation G# st-Group-operation st-G#
    st-1G : st 1G
    st-1G = st-fun-d _ _ Group.identity G# st-Group-identity st-G#
    st-M : st M
    st-M = st-fun __ MetricSpace.Carrier M#' st-MetricSpace-Carrier st-M#'
    st-distance : \overline{st}
    st-distance = st-fun-d _ _ MetricSpace.distance M#' st-MetricSpace-distance st-M#'
    st-asMetricSpace-M# : st (NewmanSpace.asMetricSpace M#)
    st-asMetricSpace-M# =
            st-fun __ NewmanSpace.asMetricSpace M# st-NewmanSpace-asMetricSpace st-M#
        M## : HausdorffEquivalenceSpace
        M## = metric-to-hausdorff-equivalence (NewmanSpace.asMetricSpace M#) st-asMetricSpace-M#
        open HausdorffEquivalenceSpace M## renaming (Carrier to M-Carrier)
        -- The theorem requires one additional assumption to ensure the continuity of the resulting
        -- action. This can e.g. be a Lipschitz constant.
        field
```



```
        isCompactSpace : IsCompactSpace M nearby
        K}:\mathbb{R
        st-K : st K
        positive-K : Or < K
        lipschitz : \forall (g : H) -> \forall (x y : M) -> distance (act g x) (act g y) \leqr (K . distance x y)
        open IsCompactSpace isCompactSpace
        private
        K' : \mathbb{R}
        K' = inv K (\lambda__ m positive-K)
        st-K' : st K'
        st-K' = st-inv-v K (\lambda _ -> positive-K) st-K
        positive-K' : Or < K'
        positive-K' = <-inverse positive-K
    -- We prove the continuity of the action of H.
        S-continuity : \forall (g : H) -> \forall (x : M) -> st x -> V (y : M) -> nearby x y m nearby (act g x) (act
g y)
    S-continuity g x st-x y x-near-y \varepsilon st-\varepsilon positive-\varepsilon = agx-near-agy where
        s}:\mathbb{R
        S = K' . &
        st-s : st s
```


positive-s : $0 \bar{r}<\bar{s}$
positive-s $=$ step-3 where
step-1 : K' • Or < s
step-1 $=<-$ mult $0 r$ r $K^{\prime}$ positive-K' positive-
step-2 : K' • Or $\equiv$ Or
step-2 $=\cdot-$ null-left
step-3 : 0r < s
step-3 $=$ transport step-2 $\{\lambda x \rightarrow x<s\}$ step-1
dxy-under-s : distance $x$ y $<s$
dxy-under-s $=x-n e a r-y ~ s ~ s t-s ~ p o s i t i v e-s ~$
kdxy-under-ks : K • distance $x$ y < K • s
kdxy-under-ks $=$ <-mult (distance $x$ y) $s k$ positive-K (x-near-y s st-s positive-s)
kK'ع-equals- $: ~ K ~ \cdot ~ s ~ \equiv ~ \varepsilon ~$
kK' $\varepsilon$-equals- $\varepsilon=\operatorname{tran}($ tran step-1 step-2) step-3 where
step-1 : K • (K' • $\varepsilon$ ) $\equiv\left(\mathrm{K} \cdot \mathrm{K}^{\prime}\right) \cdot \varepsilon$
step-1 = sym •-assoc
step-2 : (K • K') • $\varepsilon \equiv 1 \mathrm{r} \cdot \varepsilon$
step-2 $=$ cong ( $\lambda \mathrm{x} \rightarrow \mathrm{x} \cdot \varepsilon)$ (•-inverse-right ( $\lambda_{\sim} \rightarrow$ positive-K))
step-3 : 1r • $\varepsilon \equiv \varepsilon$
step-3 = --unit-left
kdxy-under- $\varepsilon$ : K • distance $\mathrm{x} \mathrm{y}<\varepsilon$
$k d x y$-under $-\varepsilon=$ transport $k K^{\prime} \varepsilon$-equals- $\varepsilon\{\lambda p \rightarrow(K \cdot$ distance $x y)<p\}$ kdxy-under-ks
agx-near-agy : distance (act g x) (act g y) < $\varepsilon$
agx-near-agy = by-cases _ case-1 case-2 (lipschitz g x y) where
case-1 : distance $(\operatorname{ac} \bar{t} g \mathrm{x})(\operatorname{act} \mathrm{g} y) \equiv \mathrm{K}$. distance $\mathrm{x} y \rightarrow$
distance (act g x) (act g y) $<\varepsilon$
case-1 $p=$ transport (sym $p$ ) $\{\lambda p \rightarrow p<\varepsilon\}$ kdxy-under- $\varepsilon$
case-2 : distance (act $g \mathrm{x}$ ) (act $\mathrm{g} y$ ) $<\mathrm{K}$. distance $\mathrm{x} y \rightarrow$
distance (act $g$ x) (act $g y$ ) $<\varepsilon$
case-2 $p=<-\operatorname{tran}$ _ _ _ p kdxy-under- $\varepsilon$
-- We prove that continuity of the action over a compact manifold implies uniform
continuity.
-- TODO: move this proof to a more appropriate module.
S-uniform-continuity : $\forall(g: H) \rightarrow \forall(x: M) \rightarrow \forall(y: M) \rightarrow$ nearby $x y \rightarrow$ nearby (act $g x)$
(act g y)
S-uniform-continuity $g x y x-n e a r-y=f x-n e a r-f y$ where
$x^{\prime}: M$
$x^{\prime}=\operatorname{proj}_{1}$ (compact $x$ )
st-x' : st $x^{\prime}$
st-x' $=\operatorname{proj}_{1}\left(\right.$ proj$\left._{2}(c o m p a c t ~ x)\right)$
x'-near-x : nearby $x^{\prime} x$
$x^{\prime}-n e a r-x=\operatorname{proj}_{2}\left(\right.$ proj$\left._{2}(c o m p a c t ~ x)\right)$
$x^{\prime}-n e a r-y$ : nearby $x^{\prime} y$
$x^{\prime}-n e a r-y=$ transitive _ _ x'-near-x x-near-y
fx'-near-fx : nearby (act $g x^{\prime}$ ) (act $g x$ )
fx'-near-fx $=$ S-continuity $g x^{\prime}$ st-x' $x x^{\prime}-n e a r-x$
fx'-near-fy : nearby (act $g x^{\prime}$ ) (act $\left.g y\right)$
fx'-near-fy $=$ S-continuity $g x^{\prime}$ st-x' $y$ x'-near-y
fx-near-fy : nearby (act $g$ x) (act $g y$ )
fx-near-fy = transitive _ _ _ (symmetric _ _ fx'-near-fx) fx'-near-fy
-- Group approximations of standard groups preserve and reflect unit elements.
ı-preserves-unit : 1 1H 1G
เ-preserves-unit = Map-preserves-unit st-G\#
$\iota$-preserves-unit-Target : $\forall(\mathrm{g}: \mathrm{G}) \rightarrow$ st $\mathrm{g} \rightarrow \mathrm{\iota} \mathrm{H} \mathrm{g} \rightarrow \mathrm{g} \equiv 1 \mathrm{G}$
ı-preserves-unit-Target $=$ Map-preserves-unit-Target st-G\#
-- We wish to apply the Extension Theorem to extend the action.
-- To do that, we prove that a group approximation between $H$ and $G$
-- induces an appropriate set approximation between products (H $\times \mathrm{M}$ )
-- and (G $\times \mathrm{M}$ ).
$\iota^{\prime}:(H \wedge M) \rightarrow G \wedge M \rightarrow$ ESet

$--\iota^{\prime}\left(h, m_{1}\right)\left(g, m_{2}\right)=\iota h g \Lambda^{*}$ internal $\left(m_{1} \equiv m_{2}\right)$
$\iota^{\prime-e x i s t s ~: ~} \forall(g m: G \wedge M) \rightarrow$ st $g m \rightarrow \exists \star \lambda(h m: H \wedge M) \rightarrow l^{\prime} h m g m$
$\iota^{\prime}-e x i s t s ~ g m ~ s t-g m=(h, m), l^{\prime-h m-g m ~ w h e r e ~}$
g : G
$\mathrm{g}=\mathrm{proj}_{1} \mathrm{gm}$
m : M
$m=$ proj $_{2} g m$
st-g : st $g$

3052

```
    st-g = lemma-proji (g , m) st-gm
    st-m : st m
    st-m = lemma-projz (g , m) st-gm
    h : H
    h = proji (Map-exists g st-g)
    \iota-h-g : \iota h g
    l-h-g = proj2 (Map-exists g st-g)
    l'-hm-gm: l' (h , m) (g , m)
    L'-hm-gm = l-h-g , fromInternal refl
\iota'-unique-Source : }\forall(\textrm{gm}:G\wedgeM) -> st gm ->
                                    \forall (him : H ^M) -> ' ' }\mp@subsup{\textrm{h}}{1}{}\textrm{m}gm
                                    \forall(h)m : H ^ M) -> '' }\mp@subsup{h}{2}{}mggm 
                            h}\mp@subsup{h}{1}{m}\equiv\mp@subsup{h}{2}{}
\iota'-unique-Source gm st-gm him \iota-h}\mp@subsup{h}{1}{}m-gm him \iota- h_m-gm
    h}\mp@subsup{h}{1}{m}\mathrm{ -equals-h}\mp@subsup{h}{2}{}m\mathrm{ where
    g : G
    g = proji gm
    m : M
    m = proje gm
    h
    h}\mp@subsup{h}{1}{}=\mp@subsup{\operatorname{proj}}{1}{}\mp@subsup{h}{1}{}
    m
    m
    h}\mp@subsup{h}{2}{: H
    h}\mp@subsup{h}{2}{}=\mp@subsup{projoj }{1}{\prime}\mp@subsup{h}{2}{}
    m
    m
    st-g : st g
    st-g = lemma-proji (g , m) st-gm
    st-m : st m
    st-m = lemma-projz (g , m) st-gm
    m
    m
    m
    m2-equals-m = toInternal _ (proj2 ו-h mm-gm)
    m
    m
    h}\mp@subsup{h}{1}{}\mathrm{ -equals-h}\mp@subsup{h}{2}{}:\mp@subsup{h}{1}{}\equiv\mp@subsup{h}{2}{
```



```
    pair : H ->M }->\textrm{H}\wedge\textrm{M
    pair x y = (x , y)
    product-lemma : }\forall{\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\textrm{x}}{2}{}:\textrm{H}}->\forall\mp@code{\forall{\mp@subsup{y}{1}{}}\mp@subsup{\textrm{y}}{2}{}:M}
                                    \mp@subsup{x}{1}{}}\equiv\mp@subsup{x}{2}{}->\mp@subsup{y}{1}{}\equiv\mp@subsup{y}{2}{}->(\mathrm{ pair }\mp@subsup{x}{1}{}\mp@subsup{y}{1}{})\equiv(\mathrm{ pair }\mp@subsup{x}{2}{}\mp@subsup{y}{2}{}
    product-lemma = lemma-product-equality
    h}\mp@subsup{h}{1}{m}\mathrm{ -equals-h}\mp@subsup{h}{2}{}m:(\mp@subsup{h}{1}{},\mp@subsup{m}{1}{})\equiv(\mp@subsup{h}{2}{},\mp@subsup{m}{2}{}
    h}\mp@subsup{h}{1}{m-equals-h}\mp@subsup{h}{2}{}m=\mathrm{ product-lemma h}\mp@subsup{h}{1}{}\mathrm{ -equals-h}\mp@subsup{h}{2}{}\mp@subsup{m}{1}{}\mathrm{ -equals-m
\iota'-unique-Target : }\forall(\mp@subsup{g}{1}{}m:G ^M) -> st gim m
                    \forall (g}\mp@subsup{g}{2}{m}:G\wedgeM)->\mathrm{ st }\mp@subsup{g}{2}{}m
                    \forall (hm : H ^M) -> L' hm gim }->\mp@subsup{L}{}{\prime}\textrm{l}=\textrm{hm g}\mp@subsup{g}{2}{m}
                    g}\mp@subsup{\mp@code{m}}{m}{m}\equiv\mp@subsup{g}{2}{}
\iota'-unique-Target g}\mp@subsup{g}{1}{}m\mathrm{ st-g1m g
    g1m-equals-g2m where
    g
    g
    m
    m
    g2 : G
    g}\mp@subsup{\mp@code{g}}{= proj}{1}\mp@subsup{g}{2}{m
    m
    m
    h : H
    h = proje hm
    m : M
    m = projz hm
```



```
    st-g
    st-g}\mp@subsup{g}{2}{}\mathrm{ : st g}\mp@subsup{g}{2}{
    st-g}\mp@subsup{g}{2}{}=\mathrm{ lemma-proj}1(\mp@subsup{g}{2}{},\mp@subsup{m}{2}{})st-\mp@subsup{g}{2}{}
    st-m}\mp@subsup{m}{1}{}\mathrm{ : st m}\mp@subsup{m}{1}{
```

```
    st-m
    st-m}\mp@subsup{m}{2}{}\mathrm{ : st m
    st-m}\mp@subsup{m}{2}{\prime}=lemma-proj2 ( g2, m2) st-g2
    m
    m
    m
    m
    m1
    m
    l-h-g
    \iota-h-g
    l-h-g2 : l h g
    \iota-h-g}\mp@subsup{g}{2}{\prime}=\mp@subsup{proj}{1}{\prime}\mp@subsup{\iota}{}{\prime}-\textrm{hm}-\mp@subsup{g}{2}{}
    g1-equals-g}\mp@subsup{g}{2}{}:\mp@subsup{g}{1}{}\equiv\mp@subsup{g}{2}{
    g
    pair : G -> M -> G ^ M
    pair x y = (x , y)
    product-lemma : }\forall{\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\textrm{x}}{2}{}:\textrm{G}}->⿱\mp@code{| {\mp@subsup{y}{1}{}}\mp@subsup{\textrm{y}}{2}{}: : M} 
    \mp@subsup{x}{1}{}}\equiv\mp@subsup{\textrm{x}}{2}{}->\mp@subsup{\textrm{y}}{1}{}\equiv\mp@subsup{\textrm{y}}{2}{}->(\mathrm{ pair }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\textrm{y}}{1}{})\equiv(\mathrm{ pair x 
    product-lemma = lemma-product-equality
    g}\mp@subsup{g}{1}{m-equals-g}\mp@subsup{g}{2}{m}:(\mp@subsup{g}{1}{},\mp@subsup{m}{1}{})\equiv(\mp@subsup{g}{2}{},\mp@subsup{m}{2}{}
```



```
st-G^M : st (G ^ M)
st-G^M = st-fun _ _ (_^_G) M (st-fun _ _ ____ G st-^ st-G) st-M
A#^M : Approximation (H ^ M) (G ^ M)
A#^M = record { Map = \iota'
                                    ; isApproximation = record { Target-st = st-G^M
                                    ; Map-exists = L'-exists
                                    ; Map-unique-Source = l'-unique-Source
                                    ; Map-unique-Target = ''-unique-Target
            }
-- Now we can invoke the extension theorem to extend the action to a map G }\timesM->M\mathrm{ M.
by-extension : ExtensionTheorem
by-extension =
    record { G = G ^ M
                ; H}=H\wedge
                ; A = A#^M
                ; M# = record
                    { Carrier = M
                    ; nearby = nearby
                    ; isHausdorffSpace = isHausdorffSpace
                    ; isCompactSpace = isCompactSpace
                    ;
                ; st-M = st-M
                ; f = \lambda hm }->\mathrm{ act (proji hm) (proj2 hm) }
open ExtensionTheorem by-extension hiding (G; H; A; M#; st-M; f) renaming
    ( f' to act-G
    ; st-f' to st-act-G
    ; f'-exists to act-G-exists
    ; f'-exists-st to act-G-exists-st
    ; f'-unique to act-G-unique
    )
-- The extension theorem extends the action with signature H }\timesM->M\mathrm{ to a
-- function with signature G }\timesM->M->M. Here we prove the result standard-valued
act' : G -> M }->\textrm{M
act' g m = proji (act-G-exists (g , m))
act'-property : }\forall(g:G)->\forall(m:M)->\operatorname{act-G ((g, m) , act' g m)
act'-property g m = projz (act-G-exists (g , m))
```



```
act'-st-valued g st-g m st-m = st-act'-g-m where
    gm : G ^ M
    gm=(g,m)
    sm: : `* \lambda (m': M) -> st m' *^* internal (act-G ((g , m) , m'))
    sm = act-G-exists-st (g , m) (lemma-pairing g m st-g st-m)
    st-sm : st (projo sm)
    st-sm = proje (proj2 sm)
    f'-gm-sm : act-G (gm , (proj}1 sm)
```

```
        f'-gm-sm = toInternal _ (proj2 (proj2 sm))
        sm-equals-act-G-m : projı sm \equiv act' g m -- act-G ((g , m) , ?)
        sm-equals-act-G-m = act-G-unique (g , m) (proji sm) (act' g m) f'-gm-sm (act'-property g
m)
        st-act'-g-m : st (act' g m)
        st-act'-g-m = transport* sm-equals-act-G-m {st} st-sm
    act'-property-st : \forall (g : G) -> st g -> \forall (m : M) -> st m ->
                            \exists* \lambda (hm : H ^ M) -> l' hm (g , m) *^* nearby (act' g m) (act (projı hm)
(projz hm))
    act'-property-st g st-g m st-m =
        ax-Standard-2 ((g , m) , act' g m) act-G-pair (act'-property g m) where
        st-gm : st (g , m)
        st-gm = lemma-pairing g m st-g st-m
        act-G-pair : st ((g , m) , act' g m)
        act-G-pair = lemma-pairing (g , m) (act' g m) st-gm (act'-st-valued g st-g m st-m)
    -- The main lemma: if h approximates g, then the result of the action of h
    -- lies near the result of the action of g.
    act'-lemma : \forall (g : G) -> st g -> V (m : M) -> st m -> \forall (h : H) -> \llcorner h g ->
                nearby (act' g m) (act h m)
    act'-lemma g st-g m st-m h l-h-g = agm-near-ahm where
        l'-hm-gm : l' (h , m) (g , m)
        l'-hm-gm = l-h-g , fromInternal refl
        hm'-exists : \exists* \lambda (hm' : H ^ M) -> '' hm' (g , m) *^* nearby (act' g m) (act (proj1 hm')
(proj2 hm'))
    hm'-exists = act'-property-st g st-g m st-m
    h' : H
    h' = proj1 (proj1 hm'-exists)
    m' : M
    m' = proj2 (proj1 hm'-exists)
    l'-hm'-gm : l' (h' , m') (g , m)
    L'-hm'-gm = proj1 (proj2 hm'-exists)
    hm'-equals-hm : (h' , m') \equiv (h , m)
    hm'-equals-hm =
            l'-unique-Source (g , m) (lemma-pairing g m st-g st-m) (h' , m') l'-hm'-gm (h , m) l'-
hm-gm
    h'-equals-h : h' \equiv h
    h'-equals-h = cong projı hm'-equals-hm
    m'-equals-m : m' \equiv m
    m'-equals-m = cong projz hm'-equals-hm
    agm-near-ahm' : nearby (act' g m) (act h' m')
    agm-near-ahm' = proj2 (proj2 hm'-exists)
    agm-near-ahm : nearby (act' g m) (act h m)
    agm-near-ahm =
            transport* h'-equals-h {\lambda z -> nearby (act' g m) (act z m)}
                    (transport* m'-equals-m {\lambda z -> nearby (act' g m) (act h' z)} agm-near-ahm')
    -- First we prove that the identity acts via the identity function.
    act'-identity-st : \forall (m : M) -> st m -> internal (act' 1G m \equiv m)
    act'-identity-st m st-m = fromInternal alGm-equals-m where
        a1Gm-near-a1Hm : nearby (act' 1G m) (act 1H m)
        a1Gm-near-a1Hm = act'-lemma 1G st-1G m st-m 1H l-preserves-unit
        a1Gm-near-m : nearby (act' 1G m) m
        a1Gm-near-m = transport* (action-identity m) {\lambda z -> nearby (act' 1G m) z} alGm-near-a1Hm
        a1Gm-equals-m : act' 1G m \equiv m
        a1Gm-equals-m = hausdorff (act' 1G m) st-alGm m st-m m alGm-near-m (reflexive m) where
            st-a1Gm : st (act' 1G m)
            st-a1Gm = act'-st-valued 1G st-1G m st-m
    act'-identity : \forall (m : M) -> act' 1G m \equiv m
    act'-identity = ax-Transfer-EI ( }\mp@subsup{\forall}{}{\prime}\textrm{M}(\lambda m -> int' (act' 1G m \equiv m))) act'-identity-st std-\Phi
where
    \Phi : TransferPred
    \Phi = \forall' M \lambda m -> int' (act' 1G m \equiv m)
    std-\Phi : st M *^* \forall (m : M) -> st m -> st (act' 1G m \equiv m)
    std-\Phi = st-M , \lambda m st-m ->
                    st-fun _ _ (eq (act' 1G m)) m
                    (st-fun _ _ eq (act' 1G m) st-eq (help1 m st-m)) st-m where
            eq : M -> M -> Set
            eq = _\equiv
            st-eq : st eq
            st-eq = st-\equiv-full
            help1 : (m : M) -> st m -> st (act' 1G m)
```

-- Now we prove that the action is a homomorphism with respect to the operations. act'-operation-st : $\forall(\mathrm{g}: \mathrm{G}) \rightarrow$ st $g \rightarrow \forall(\mathrm{~h}: \mathrm{G}) \rightarrow$ st $\mathrm{h} \rightarrow \forall(\mathrm{m}: \mathrm{M}) \rightarrow$ st $\mathrm{m} \rightarrow$

## internal (act' g (act' h m) $\equiv$ act' (xG g h) m)

act'-operation-st $g$ st-g $h$ st-h $m s t-m=$ fromInternal (sym (a'ghm-equals-a'ga'hm)) where -- Book-keeping: We must prove that if g' approximates $g$ and
-- h' approximates h then g'h' approximates gh.
gh : G
$\mathrm{gh}=\mathrm{xG} \mathrm{g} \mathrm{h}$
st-gh : st gh
st-gh $=$ st-fun _ _ (xG g) h (st-fun _ _ xG g st-xG st-g) st-h
$g^{\prime}$ : H
$g^{\prime}=$ proj $_{1}$ (Map-exists g st-g)
l-g'-g : l g' g
l-g'-g $=$ proj$_{2}$ (Map-exists g st-g)
$h^{\prime}$ : H
$h^{\prime}=$ proj $_{1}$ (Map-exists h st-h)
l-h'-h : l h' h
l-h'-h = proje (Map-exists h st-h)
g'h' : H
$g^{\prime} h^{\prime}=x H g^{\prime} h^{\prime}$
l-g'h'-gh : l g'h' gh
l-g'h'-gh = Map-homomorphism g' h' g st-g h st-h l-g'-g l-h'-h
-- It follows on one hand that applying gh to m results in a neighbor
-- of applying g'h' to m.
a'ghm-near-ag'ah'm : nearby (act' gh m) (act g'h' m)
a'ghm-near-ag'ah'm = act'-lemma gh st-gh m st-m g'h' i-g'h'-gh
ag'h'm-equals-ag'ah'm : act g'h' m $\equiv$ act $g^{\prime}$ (act $h^{\prime} m$ )
ag'h'm-equals-ag'ah'm = sym (action-operation g' h' m)
one-hand : nearby (act' gh m) (act g' (act h' m))
one-hand = transport* ag'h'm-equals-ag'ah'm $\{\lambda z \rightarrow$ nearby (act' gh m) $z\}$ a'ghm-nearag'ah'm
-- It follows on the other hand that the result of applying g' to h' at m
-- neighbors the same element.
a'ga'hm-near-ag'a'hm : nearby (act' g (act' h m)) (act g' (act' h m) )
$a^{\prime} g a ' h m-n e a r-a g^{\prime} a^{\prime} h m=a c t '-l e m m a \operatorname{st-g}(a c t ' h m)(a c t '-s t-v a l u e d h$ st-h m st-m) g' $1-$
g'-g
a'hm-near-ah'm : nearby (act' h m) (act h' m)
$a^{\prime} h m-n e a r-a h ' m=a c t '-l e m m a ~ h ~ s t-h ~ m ~ s t-m ~ h ' ~ l-h '-h ~$
ag'a'hm-near-ag'ah'm : nearby (act g' (act' h m)) (act g' (act h' m))
ag'a'hm-near-ag'ah'm = S-uniform-continuity g' (act' h m) (act h' m) a'hm-near-ah'm
other-hand : nearby (act' g (act' h m)) (act g' (act h' m))
other-hand = transitive a'ga'hm-near-ag'a'hm ag'a'hm-near-ag'ah'm
-- These both satisfy stān̄̄ā̄dness!
st-one : st (act' gh m)
st-one = act'-st-valued gh st-gh m st-m
st-other : st (act' g (act' h m))
st-other $=$ act'-st-valued $g$ st-g (act' h m) (act'-st-valued h st-h m st-m)
-- By Hausdorff separation standard values with common neighbors are equal.
a'ghm-equals-a'ga'hm : act' gh m $\equiv$ act' $g$ (act' $h \mathrm{~m}$ )
a'ghm-equals-a'ga'hm =
hausdorff (act' gh m) st-one
(act' g (act' h m)) st-other
(act g' (act h' m) ) one-hand other-hand

```
    act'-operation : \forall (g : G) -> \forall (h : G) -> \forall (m : M) -> act' g (act' h m) \equiv act' (xG g h) m
    act'-operation = ax-Transfer-EI \Phi act'-operation-st std-\Phi where
    \Phi : TransferPred
    \Phi= \forall' G \lambda g -> *' G \lambda h }->\mp@subsup{\forall}{}{\prime}M\textrm{M \lambda m -> int' (act' g (act' h m) \equiv act' (xG g h) m)
    eq : M }->\textrm{M}->\textrm{Set
    eq = _ #
    st-eq : st eq
    st-eq = st-\equiv-full
    st-one : \forall (g h : G) -> \forall (m : M) -> st g -> st h -> st m -> st (act' (xG g h) m)
    st-one g h m st-g st-h st-m =
            act'-st-valued (xG g h) (st-fun _ _ (xG g) h (st-fun __ _xG g st-xG st-g) st-h) m st-m
        st-other : \forall (g h : G) -> \forall (m : M) -> st g -> st h -> st m -> st (act' g (act' h m))
    st-other g h m st-g st-h st-m = act'-st-valued g st-g (act' h m) (act'-st-valued h st-h m
    std-\Phi : st G *^* \forall (g : G) -> st g -> st G *^* \forall (h : G) -> st h -> st M *^*
            \forall (m : M) -> st m -> st (act' g (act' h m) \equiv act' (xG g h) m)
    std-\Phi = st-G , \lambda g st-g 
            st-G , \lambda h st-h }
            st-M , \lambda m st-m -> st-fun _ _ (eq (act' g (act' h m))) (act' (xG g h) m)
```

st-m)
-- At this point we know that act' has all the properties of an action of $G$ on $M$.
-- But it might be a trivial action - we have to rule that out!
-- Before discussing faithfulness, we note that act' is a standard action, and therefore
-- it satisfies both $S$-continuity and $\varepsilon-\delta$ continuity.

```
    act'-lipschitz-st! : }\forall(\textrm{g}:\textrm{G})->\mathrm{ st g }
                \forall (x : M) -> st x }
                                \forall (y : M) }->\mathrm{ st }y->\mathrm{ internal (
                            distance (act' g x) (act' g y) }\mp@subsup{\leq}{r}{}(\textrm{K}\cdot\mp@code{distance x y)
                )
    act'-lipschitz-st! g st-g x st-x y st-y = fromInternal difference-0 where
        h : H
        h = projo (Map-exists g st-g)
        l-h-g : l h g
        L-h-g = proj2 (Map-exists g st-g)
        difference-\varepsilon-st : }\forall(\varepsilon:\mathbb{R})->\mathrm{ st }\varepsilon->0r<\varepsilon->\mathrm{ distance (act' g x) (act' g y) mr K
distance x y + \varepsilon
    difference-\varepsilon-st \varepsilon st-\varepsilon positive-\varepsilon = by-cases__ case-1 case-2 (lipschitz h y x) where
        \varepsilon/2 : \mathbb{R}
        \varepsilon/2 = \varepsilon/2r
        st-\varepsilon/2 : st \varepsilon/2
        st-\varepsilon/2 = st-/2r-v \varepsilon st-\varepsilon
        positive-\varepsilon/2 : 0r < \varepsilon/2
        positive-\varepsilon/2 = pos-/2r-v \varepsilon positive-\varepsilon
        case-2 : distance (act h y) (act h x) < K . distance y x }
                            distance (act' g x) (act' g y) \leqr K . distance x y + &
        case-2 final-1 = inr final-13 where
            final-2 : distance (act h y) (act h x) < K . distance x y
            final-2 = transport (symmetry y x) {\lambda z -> distance (act h y) (act h x) < K . z} final-
1
            final-3 : distance (act' g x) (act h x) < \varepsilon/2
            final-3 = act'-lemma g st-g x st-x h l-h-g \varepsilon/2 st-\varepsilon/2 positive-\varepsilon/2
            final-4 : distance (act h x) (act' gx) < &/2
            final-4 = transport (symmetry (act'g x) (act h x)) {\lambda z -> z < \varepsilon/2} final-3
            final-5 : distance (act h y) (act h x) + distance (act h x) (act' g x) < K . distance
```

$x y+\varepsilon / 2$
final-5 $=$ <-plus-both (distance (act $h y$ (act $h x$ ) ) final-2 final-4
final-6 : distance (act $h y)(\operatorname{act} g x)<K \cdot d i s t a n c e \bar{x} y+\varepsilon / 2$
final-6 = triangle (act $h y$ ) (act $h x$ ) (act' $g x$ ) (K distance $x y+\varepsilon / 2$ ) final-5
final-7 : distance (act' g y) (act hy) < $\quad$ / 2
final-7 = act'-lemma $g$ st-g y st-y h $1-\mathrm{h}-\mathrm{g} \varepsilon / 2$ st- $/ 2$ positive- $/ 2$
final-8 : distance (act hy) (act' g y) < $\varepsilon / 2$
final-8 $=$ transport (symmetry (act' $g y)(\operatorname{act} h y))\{\lambda z \rightarrow z<\varepsilon / 2\}$ final-7
final-9 : distance (act' $g x)(\operatorname{act} h y)<K$. distance $x y+\varepsilon / 2$
final-9 $=$ transport (symmetry (act $h y)(\operatorname{act} g \mathrm{x})$ ) $\{\lambda \mathrm{z} \rightarrow \mathrm{z}<\mathrm{K} \cdot$ distance $\mathrm{x} \mathrm{y}+\varepsilon / 2\}$
final-6
final-10 :
distance (act' $g x)(\operatorname{act} h y)+d i s t a n c e(a c t h y)(a c t ' g y)<(K$ distance $x y+$
$\varepsilon / 2)+\varepsilon / 2$
final-10 $=<-p l u s-b o t h$ (distance (act' $g x)$ (act $h y)$ ) final-9 final-8
final-11 : distance (act' $g x)\left(\operatorname{act}^{\prime} g y\right)<\left(K \cdot d i s t a n \bar{c} e^{-} x-y+\varepsilon / 2\right)+\varepsilon / 2$
final-11 = triangle (act' $g x$ ) (act hy) (act'gy)
$((K \cdot d i s t a n c e x y+\varepsilon / 2)+\varepsilon / 2)$ final-10
final-12 : distance (act' $g x$ ) (act' $g y)<K$. distance $x y+\varepsilon / 2+\varepsilon / 2$
final-12 = transport +-assoc $\{\lambda z \rightarrow$ distance (act' $g x$ ) (act' $g y)<z\}$ final-11
final-13 : distance (act' $g x$ ) (act' $g y)<K$. distance $x y+\varepsilon$
final-13 =
transport (/2r-half $\{\varepsilon\}) \quad\{\lambda \mathrm{z} \rightarrow$ distance (act' $g \mathrm{x})($ act' $g \mathrm{y})<\mathrm{K} \cdot \mathrm{distance} \mathrm{x} y+$
z\} final-12
case-1 : distance (act $h y)(\operatorname{act} h x) \equiv K$. distance $y x \rightarrow$
distance (act' $g x)(\operatorname{act} \quad g y) \leq_{r} K$. distance $x y+\varepsilon$
case-1 final-1 = final-x12 where
final-x1 :
distance (act' $g x)(\operatorname{act} \quad g y) \leq_{r}$ distance (act' $\left.g x\right)(\operatorname{act} h y)$ distance (act $\left.h y\right)$
(act' $g y)$

final-x2 :
distance (act $h y)(\operatorname{act} \quad g x) \leq_{r}$ distance (act $\left.h y\right)(a c t h x)+d i s t a n c e(a c t h x)$
(act' $g x$ )
final-x2 $=$ triangle $-\leq_{r}(\operatorname{act} h y)(\operatorname{act} h x)(a c t ' g x)$
final-x3 :

```
    distance (act' g x) (act' g y) \leqr distance (act h y) (act' g x) + distance (act h y)
(act' g y)
    final-x3 = transport (symmetry (act' g x) (act h y))
                            {\lambda p -> distance (act' g x) (act' g y) }\mp@subsup{\leq}{r}{}p+\mathrm{ + distance (act h y) (act' g
y)} final-x1
    final-x4 :
        distance (act h y) (act' g x) + distance (act h y) (act' g y) sm
        (distance (act h y) (act h x) + distance (act h x) (act' g x)) + distance (act h y)
(act' g y)
    final-x4 = \leqr_plus _ _ (distance (act h y) (act' g y)) final-x2
    final-x5 :
        distance (act' g x) (act' g y) }\mp@subsup{\leq}{r}{
        (distance (act h y) (act h x) + distance (act h x) (act' g x)) + distance (act h y)
(act' g y)
    final-x5 = \leqn-tran _ _ _ final-x3 final-x4
    final-x6 :
        distance (act' g x) (act' g y) }\mp@subsup{\leq}{r}{
        distance (act h y) (act h x) + (distance (act h x) (act' g x) + distance (act h y)
(act' g y))
    final-x6 = transport +-assoc {\lambda p -> distance (act' g x) (act' g y) \leqr p} final-x5
    final-3 : distance (act' g x) (act h x) < \varepsilon/2
    final-3 = act'-lemma g st-g x st-x h l-h-g \varepsilon/2 st-\varepsilon/2 positive-\varepsilon/2
    final-4 : distance (act h x) (act' g x) < &/2
    final-4 = transport (symmetry (act' g x) (act h x)) {\lambda z -> z < \varepsilon/2} final-3
    final-7 : distance (act' g y) (act h y) < &/2
    final-7 = act'-lemma g st-g y st-y h l-h-g \varepsilon/2 st-\varepsilon/2 positive-\varepsilon/2
    final-8 : distance (act h y) (act' g y) < \varepsilon/2
    final-8 = transport (symmetry (act' g y) (act h y)) {\lambda z -> z< &/2} final-7
    final-x7 :
        distance (act h x) (act' g x) + distance (act h y) (act' g y) \leqre \varepsilon/2 + \varepsilon/2
    final-x7 = \leqreplus-both _ _ _ _ (inr final-4) (inr final-8)
    final-x8 :
        distance (act h x) (act' g x) + distance (act h y) (act' g y) \leqre &
    final-x8 = transport (/2r-half {\varepsilon})
                                    {\lambda p -> distance (act h x) (act' g x) + distance (act h y) (act' g y) \leqr
p}
    final-x9 :
        distance (act h y) (act h x) + (distance (act h x) (act' g x) + distance (act h y)
(act' g y)) \leqx
            distance (act h y) (act h x) + \varepsilon
            final-x9 = \leqm-plus-left _ _ (distance (act h y) (act h x)) final-x8
    final-x10 :
            distance (act' g x) (act' g y) \leqrg distance (act h y) (act h x) + \varepsilon
            final-x10 = \leqr-tran _ _ _ final-x6 final-x9
            final-x11 :
            distance (act' g x) (act' g y) \leqr K . distance y x + \varepsilon
            final-x11 = transport final-1 {\lambda p -> distance (act' g x) (act' g y) \leqr p + \varepsilon} final-
x10
            final-x12 :
            distance (act' g x) (act' g y) \leqr K . distance x y + \varepsilon
            final-x12 = transport (symmetry y x) {\lambda p -> distance (act' g x) (act' g y) \leqr K . p +
\varepsilon} final-x11
    difference-\varepsilon : }\forall(\varepsilon:\mathbb{R})->0r<\varepsilon->\mathrm{ distance (act' g x) (act' g y) }\mp@subsup{\leq}{r}{
\varepsilon
    difference-\varepsilon = ax-Transfer-EI \Phi (\lambda \varepsilon -> \lambda st-\varepsilon }->\mathrm{ fromInternal (difference- -st & st- &))
std-\Phi where
        \Phi : TransferPred
        \Phi= \forall' \mathbb{R }\lambda \varepsilon -> int' (0r < \varepsilon -> distance (act' g x) (act' g y) \leqre K b distance x y + \varepsilon)
        std-\Phi :
            st \mathbb{R *^* ( }\forall(\textrm{a}:\mathbb{R})->\mathrm{ st a }->\mathrm{ st (0r < a }->\mathrm{ distance (act' g x) (act' g y) }\mp@subsup{\leq}{r}{}\textrm{K}
distance x y + a))
        std-\Phi =
            st-\mathbb{R , \lambda a st-a }->
            st->_ (st-fun __ (_<_ Or) a (st-fun____<_Or st-< st-0r) st-a)
```



```
                    (K · distance x y + a)
                    (st-fun _ _ _ \leqrr_ (distance (act' g x) (act' g y))
                    st-\leqre (st-fun __ (distance (act' g x)) (act' g y)
                    (st-fun distance (act' g x)
                    st-distance
                    (act'-st-valued g st-g y st-y)))
                    (st-fun ( + (K . distance x y)) a
                    (st-fun - - +_-- (K | distance x y)
                    st-+ (st-fun _ (_ K) (distance x y)
```

```
                    (st-fun . K st-• st-K)
                    (st-fun _ - (distance x) y (st-fun _ _ distance x st-distance st-x) st-y))) st-a))
difference-0 : distance (act' g x) (act' g y) \leqr K . distance x y
difference-0 = lemma-\varepsilon-of-room-plus-\leqr_ _ _ difference-\varepsilon
```

```
        act'-lipschitz! : }\forall (g : G) ->
```

        act'-lipschitz! : }\forall (g : G) ->
                                \forall (x : M) }
                                \forall (x : M) }
                                \forall (y : M) }
                                \forall (y : M) }
                distance (act'g x) (act' g y) \leqre (K . distance x y)
                distance (act'g x) (act' g y) \leqre (K . distance x y)
    act'-lipschitz! = ax-Transfer-EI \Phi act'-lipschitz-st! std-\Phi where
    act'-lipschitz! = ax-Transfer-EI \Phi act'-lipschitz-st! std-\Phi where
        \Phi : TransferPred
    ```
        \Phi : TransferPred
```




```
x y)
```

x y)
std-\Phi: st G *^* (
std-\Phi: st G *^* (
Y
Y
st (distance (act' g x) (act' g y) \leqre K . distance x y))))
st (distance (act' g x) (act' g y) \leqre K . distance x y))))
std-\Phi=st-G , \lambda g st-g -> st-M , \lambda x st-x }->\mathrm{ st-M , \ y st-y
std-\Phi=st-G , \lambda g st-g -> st-M , \lambda x st-x }->\mathrm{ st-M , \ y st-y
st-fun___(_\mp@subsup{s}{r}{_}
st-fun___(_\mp@subsup{s}{r}{_}
(K \cdot distance x y)
(K \cdot distance x y)
(st-fun ____sr_ (distance (act' g x) (act'g y))
(st-fun ____sr_ (distance (act' g x) (act'g y))
st-\leqrr (st-\overline{fun}_- (distance (act'gx)) (act'g g)
st-\leqrr (st-\overline{fun}_- (distance (act'gx)) (act'g g)
(st-fun _ _ distance (act' g x)
(st-fun _ _ distance (act' g x)
st-distancè (act'-st-valued g st-g x st-x)) (act'-st-valued g st-g y st-y)))
st-distancè (act'-st-valued g st-g x st-x)) (act'-st-valued g st-g y st-y)))
(st-fun _ _ (_._ K) (distance x y)
(st-fun _ _ (_._ K) (distance x y)
(st-fun _ _ _._ K st-· st-K) (st-fun _ _ (distance x) y
(st-fun _ _ _._ K st-· st-K) (st-fun _ _ (distance x) y
(st-fun - - distance x st-distance st-x) st-y))
(st-fun - - distance x st-distance st-x) st-y))
act'-S-uniform-continuity : }\forall(g:G)
\forall (x : M) }
\forall (y : M) -> nearby x y }->\mathrm{ nearby (act' g x) (act' g y)
act'-S-uniform-continuity g x y x-near-y \varepsilon st-\varepsilon positive-\varepsilon = agx-near-agy where
S : \mathbb{R}
s}=\mp@subsup{K}{}{\prime}\cdot
st-s : st s
st-s = st-fun__(_._ K') \varepsilon (st-fun______ K'st-* st-K') st-\varepsilon
positive-s : 0\overline{r}< s
positive-s = step-3 where
step-1 : K' . Or < s
step-1 = <-mult Or \varepsilon K' positive-K' positive-\varepsilon
step-2 : K' . Or \equiv Or
step-2 = --null-left
step-3 : Or < s
step-3 = transport step-2 {\lambda x }->\textrm{x}<\textrm{s}}\mathrm{ step-1
dxy-under-s : distance x y < s
dxy-under-s = x-near-y s st-s positive-s
kdxy-under-ks : K · distance x y < K · s
kdxy-under-ks = <-mult (distance x y) s K positive-K (x-near-y s st-s positive-s)
kK'\varepsilon-equals-\varepsilon : K · s \equiv
kK'\varepsilon-equals-\varepsilon = tran (tran step-1 step-2) step-3 where
step-1 : K · (K' · \varepsilon) \equiv (K · K') · \varepsilon
step-1 = sym \cdot-assoc
step-2 : (K · K') · \varepsilon \equiv 1r * \varepsilon
step-2 = cong ( }\lambda\textrm{x}->\textrm{x}\cdot\varepsilon) (\cdot-inverse-right (\lambda _ > positive-K)
step-3 : 1r · \varepsilon \equiv \varepsilon
step-3 = ·-unit-left
kdxy-under-\varepsilon : K · distance x y < \varepsilon
kdxy-under-\varepsilon = transport kK'\varepsilon-equals-\varepsilon {\lambda p -> (K · distance x y) < p} kdxy-under-ks
agx-near-agy : distance (act' g x) (act' g y) < \varepsilon
agx-near-agy = by-cases _ case-1 case-2 (act'-lipschitz! g x y) where
case-1 : distance (act' g x) (act' g y) \equivK . distance x y }
distance (act' g x) (act' g y) < \&

```

```

            case-2 : distance (act' g x) (act' g y) < K . distance x y }
                    distance (act' g x) (act' g y) < &
            case-2 p = <-tran _ _ _ p kdxy-under-\varepsilon
        act'-continuity : }\forall(\textrm{g}:\textrm{G})->\vec{ (m : M) }
                        \forall(\varepsilon:\mathbb{R})->0r<\varepsilon->
                        \exists 人 (\delta:\mathbb{R})->(0r<\delta) ^(
                        \forall (m' : M) -> distance m m' < \delta -> distance (act' g m) (act' g m') < &)
        act'-continuity x m \varepsilon positive-\varepsilon = K' · \varepsilon, (positive-K'\varepsilon , helper) where
        positive-K'\varepsilon : Or < K' . \varepsilon
        positive-K'\varepsilon= transport (*-null-left) {\lambda z > z < K' . \varepsilon} (<-mult Or \varepsilon K' positive-K'
    positive-\varepsilon)
helper : (m' : M) -> distance m m' < K' ' \varepsilon -> distance (act' x m) (act' x m') < \varepsilon

```
helper \(m^{\prime} p=\) step-5 where
step-1 : distance (act' \(x m\) ) (act' \(x m^{\prime}\) ) \(\leq_{r} K\). distance \(m m^{\prime}\)
step-1 = act'-lipschitz! \(x \mathrm{~m} \mathrm{~m}^{\prime}\)
step-2 : K • distance \(m m^{\prime}<K \cdot\left(K^{\prime} \cdot \varepsilon\right)\)

step-3 : K • ( \(\mathrm{K}^{\prime} \cdot{ }^{-} \varepsilon \overline{)} \equiv \varepsilon\)
step-3 =
\(\operatorname{tran}\left(\operatorname{sym}\left(\cdot-\operatorname{assoc}\{\mathrm{K}\}\left\{\mathrm{K}^{\prime}\right\}\{\varepsilon\}\right)\right)\) (
tran (cong ( \(\lambda \mathrm{z} \rightarrow \mathrm{z} \cdot \varepsilon\) ) (
--inverse-right ( \(\lambda_{-} \rightarrow\) positive-K)) ) •-unit-left)
step-4 : K \(\cdot\) distance \(m m^{\prime}<\varepsilon\)
step-4 \(=\) transport step-3 \(\left\{\lambda \mathrm{z} \rightarrow \mathrm{K} \cdot\right.\) distance \(\left.\mathrm{m} \mathrm{m}^{\prime}<\mathrm{z}\right\}\) step-2
step-5 : distance (act' x m) (act' x m') <
step-5 \(=\) by-cases - case-1 case-2 step-1 where
case-1 : distance \((a c t ' x m)\left(a c t ' x m^{\prime}\right) \equiv K \cdot d i s t a n c e m m m o\) distance (act' \(x \mathrm{~m}\) ) (act' \(\mathrm{x} \mathrm{m}^{\prime}\) ) \(<\varepsilon\)
case-1 \(p=\) transport (sym \(p)\{\lambda p \rightarrow p<\varepsilon\}\) step-4
case-2 : distance (act' x m) (act' \(\left.x m^{\prime}\right)<K \cdot\) distance \(m m^{\prime} \rightarrow\) distance (act' \(x \mathrm{~m}\) ) (act' \(\mathrm{x} \mathrm{m}^{\prime}\) ) \(<\varepsilon\)
case-2 \(p=<-\operatorname{tran} \quad-\quad \mathrm{p}\) step-4
-- We prove that the action \(G \times M \rightarrow M\) we constructed satisfies faithfulness on every
-- finite subgroup \(X<G\). We need \(\forall X . \forall x \in X . \exists m \in M . x \neq 1 \rightarrow x @ m \neq m\). By internality, it suffices
-- to prove \(\forall s^{t} X . \forall s^{t} x \in X . \exists m \in M . x \neq 1 \rightarrow x @ m \neq m\), so we establish the latter.
record Faithfulness : ESet where
field
\(X<G\) : PeriodicSubgroup \(G \#\)
open PeriodicSubgroup \(X<G\) renaming
( Source to X\#
; Map to emb
; Map-identity to emb-identity
; Map-operation to emb-operation
; Map-injective to emb-injective
; Map-power to emb-power
)
field
st-X\# : st X\#
st-emb : st emb
open PeriodicGroup X\# renaming
( Carrier to X
; identity to 1 X
; operation to xX
; inverse to iX
; assoc to X-associative
; unit-left to X-unit-left
; unit-right to X-unit-right
; inverse-left to X-inverse-left
; inverse-right to \(X\)-inverse-right
; order to X-order
; order-minimal to X-order-minimal
)
st-X : st \(X\)
st-X = st-fun _ _ PeriodicGroup. Carrier X\# st-PeriodicGroup-Carrier st-X\#
st-1X : st \(1 X\)
\(s t-1 X=s t-f u n-d \quad\) _ PeriodicGroup.identity \(X \#\) st-PeriodicGroup-identity st-X\#
st-X-order : st \(X\)-order
st-X-order = st-fun-d _ _ PeriodicGroup.order X\# st-PeriodicGroup-order st-X\#
-- We prove that \(X\) acts on \(M\) using a meet-in-the-middle argument.
xact \(: X \rightarrow M \rightarrow M\)
xact \(x m=\operatorname{act}^{\prime}(e m b x) m\)
xact-st-valued : \(\forall(x: X) \rightarrow\) st \(x \rightarrow \forall(m: M) \rightarrow\) st \(m \rightarrow\) st (act' (emb \(x) m\) )
xact-st-valued \(x\) st-x \(m\) st-m = act'-st-valued (emb \(x\) ) (st-fun__emb \(x\) st-emb st-x) m st-m
xact-identity : \(\forall(\mathrm{m}: M) \rightarrow\) xact \(1 \mathrm{X} m \equiv \mathrm{~m}\)
xact-identity \(m=t r a n ~ x a c t-1 X-e q u a l s-a c t '-1 G(a c t '-i d e n t i t y ~ m) ~ w h e r e ~\)
xact-1X-equals-act'-1G: xact \(1 X \mathrm{~m} \equiv a c t^{\prime} 1 \mathrm{G} \mathrm{m}\)
xact-1X-equals-act'-1G \(=\) transport emb-identity \(\{\lambda \mathrm{z} \rightarrow\) xact \(1 X \mathrm{~m} \equiv\) act' z m\(\} \mathrm{refl}\)
```

xact-operation : }\forall(x y : X) (m : M) -> xact x (xact y m) \equiv xact (xX x y) m
xact-operation x y m = tran step-1 step-2 where
step-1 : xact x (xact y m) \equiv act' (xG (emb x) (emb y)) m

```

3647
```

    step-1 = act'-operation (emb x) (emb y) m
    step-2 : act' (xG (emb x) (emb y)) m \equiv act' (emb (xX x y)) m
    step-2 = cong (\lambda z -> act' z m) (sym (emb-operation x y))
    xact-continuity : }\forall(x : X) -> \forall (m : M) ->
\forall (\varepsilon:\mathbb{R})->0r<\varepsilon->
\exists (\delta : \mathbb{R})->(0r<\delta) ^ (
\forall (m' : M) -> distance m m' < \delta -> distance (xact x m) (xact x m') < \&)
xact-continuity x m \varepsilon positive-\varepsilon = act'-continuity (emb x) m \varepsilon positive-\varepsilon
X-Action : PeriodicDiscreteAction X\# M\#'
X-Action =
record { Map = xact
; isPeriodicDiscreteAction =
record { isGroupAction =
record { action-identity = xact-identity
; action-operation = xact-operation }
; continuity = xact-continuity
}
}
module Given (x : X) (st-x : st x) (x-not-id : x \equiv 1X }->\mathrm{ () where
st-emb-x : st (emb x)
st-emb-x = st-fun _ _ emb x st-emb st-x
-- We have a standard element x G G, so we can pick a h with \iota(h,x).
h : H
h = proji (Map-exists (emb x) st-emb-x)
l-h-x : l h (emb x)
l-h-x = proje (Map-exists (emb x) st-emb-x)
-- Since x\not=1, h\not=1.
emb-x-not-id : emb x \equiv 1G }->
emb-x-not-id emb-x-equals-id = x-not-id (emb-injective _ _ (tran emb-x-equals-id (sym emb-
identity)))
h-not-id : h \equiv 1H }->
h-not-id h-equals-id = emb-x-not-id step-2 where
step-1 : l 1H (emb x)
step-1 = transport* h-equals-id {\lambda z -> l z (emb x)} l-h-x
step-2 : emb x \equiv 1G
step-2 = Map-unique-Target (emb x) st-emb-x 1G st-1G 1H step-1 ו-preserves-unit
-- We prove that }\iota(h,x)->\iota(hn,\mp@subsup{x}{}{n})\mathrm{ for all standard n }\in\mathbb{N}\mathrm{ . Note that this requires
-- a style of argument known as external induction, and the implication would not
-- hold for nonstandard n.
\iota-hn-xn : \forall (n : N ) > st n -> l (FiniteGroup.power H\# h n) (Group.power G\# (emb x) n)
\iota-hn-xn n st-n = external-induction
{\lambda n > l (FiniteGroup.power H\# h n) (Group.power G\# (emb x) n)}
(Map-preserves-unit st-G\#) \psi-inductive n st-n where
\psi-inductive : }\forall\textrm{k}->\mathrm{ st k
\iota (FiniteGroup.power H\# h (suc k)) (Group.power G\# (emb x) (suc k))
\psi-inductive k st-k l-hk-xk =
Map-homomorphism h hk (emb x) st-emb-x xk st-xk l-h-x l-hk-xk where
hk : H
hk = FiniteGroup.power H\# h k
xk : G
xk = Group.power G\# (emb x) k
st-xk : st xk
st-xk=
st-fun _ _ (Group.power G\# (emb x)) k
(st-fun _ _ (Group.power G\#) (emb x)
(st-fun-\overline{d _ _ Group.power G\# st-Group-power st-G\#) st-emb-x) st-k}
-- Since we have }\iota(\mp@subsup{h}{}{n},\mp@subsup{x}{}{n})\mathrm{ for all standard n}n\in\mathbb{N}\mathrm{ , and the order ord(x) belongs to the
-- standard naturals, it follows that ord(h) < ord(x), and hence ord(h) also belongs
-- among the standard naturals.
h-ordx-equals-1H : FiniteGroup.power H\# h (X-order x) \equiv 1H
h-ordx-equals-1H = step-6 where
step-1 : l (FiniteGroup.power H\# h (X-order x)) (Group.power G\# (emb x) (X-order x))
step-1 = l-hn-xn (X-order x) (st-fun _ X-order x st-X-order st-x)

```
step-2 : PeriodicGroup.power \(X \# x(X\)-order \(x) \equiv 1 X\)
step-2 = PeriodicGroup.order-identity \(X \# x\)
step-3 : emb (PeriodicGroup.power X\# x (X-order x)) \(\equiv 1 \mathrm{G}\)
step-3 \(=\operatorname{tran}(\) cong emb step-2) emb-identity
step-4 : Group.power G\# (emb x) (X-order x) \(\equiv 1 \mathrm{G}\)
step-4 \(=\operatorname{tran}(\operatorname{sym}(e m b-p o w e r x(X-o r d e r x)))\) step-3
step-5 : 1 (FiniteGroup.power H\# h (X-order X )) 1 G
step-5 \(=\) transport* step \(-4\{\lambda z \rightarrow\) (FiniteGroup.power \(H \# h(X\)-order \(x)) ~ z\}\) step-1
step-6 : FiniteGroup. power \(H \# h(X\)-order \(x) \equiv 1 H\)
step-6 = Map-unique-Source 1G st-1G (FiniteGroup.power H\# h (X-order x))
step-5 1H (Map-preserves-unit st-G\#)
h-order : FiniteGroup.order H\# h X-order \(x\)
h -order \(=\)
\(\mathbb{N}\)-induction \(\}\{\lambda n \rightarrow X\)-order \(x \equiv n \rightarrow\) FiniteGroup.order \(H \# h \leq n\}\) case-A case-B (X-
order x) refl where
case-A : X-order \(x \equiv 0 \rightarrow\) FiniteGroup. order \(H \# h \leq 0\)
case-A ordx-equals-0 \(=\) absurd (PeriodicGroup.order-nonzero \(X \#\) \(X\) ordx-equals-0)
case-B \(: \forall(k: \mathbb{N}) \rightarrow(X\)-order \(x \equiv k \rightarrow\) FiniteGroup.order \(H \# h \leq k) \rightarrow\)
X -order \(\mathrm{x} \equiv\) suc \(\mathrm{k} \rightarrow\) FiniteGroup. order \(H \# \mathrm{~h} \leq\) (suc k )
case-B \(k\) ihyp ord-x-equals-suc-k \(=\) step-2 where
step-1 : FiniteGroup. power \(H \# h(s u c k) \equiv 1 H\)
step-1 = transport ord-x-equals-suc-k \(\{\lambda n \rightarrow\) FiniteGroup.power \(H \# h n \equiv 1 H\} h-o r d x-\)
equals-1H
step-2 : FiniteGroup.order \(H \# h \leq\) suc \(k\)
step-2 \(=\) FiniteGroup.order-minimal H\# h k step-1
open import IST.NewmansTheorem
-- We apply the corollary of Newman's theorem to obtain a standard \(v\)
-- such that for any finite group G, \(g \in G\) and faithful discrete action
-- @ of \(G\) on the manifold \(M\), we can find some \(n<o r d(g)\) and m' \(\in M\)
-- such that \(g^{n} @ m^{\prime}\) is v-far from m'.
-- In particular, we shall find \(n<o r d(h)\) and m'EM such that
-- \(h^{n} @ m^{\prime}\) is v-far m'. Since ord(h) is standard, so is \(n\).
by-newman-1 : \(\exists \lambda(\nu: \mathbb{R}) \rightarrow(0 r<\nu) \wedge(\)
\(\forall\) (G : FiniteGroup) \(\rightarrow\)
\(\forall \quad(g\) : FiniteGroup.Carrier G) \(\rightarrow\)
\(\forall\) (A : DiscreteAction \(\left.G M \#^{\prime}\right) \rightarrow\)
\((g \equiv\) FiniteGroup.identity \(G \rightarrow \perp) \rightarrow\)
\((\forall(x)\) FiniteGroup. Carrier \(G) \rightarrow(x \equiv\) FiniteGroup.identity \(G \rightarrow \perp) \rightarrow\)
\(\exists \lambda(\mathrm{m}: \mathrm{M}) \rightarrow\)
DiscreteAction.Map \(A x \mathrm{~m} \equiv \mathrm{~m} \rightarrow \perp) \rightarrow\)
\(\exists \lambda(\mathrm{n}: \mathbb{N}) \rightarrow \exists \lambda(\mathrm{m}: M) \rightarrow\)
( \(n \leq\) FiniteGroup.order \(G\) g) \(\wedge\)
\((\nu<\) distance \(m\) (DiscreteAction.Map A (FiniteGroup.power G \(g \mathrm{n}\) ) m)) )
by-newman-1 =
NewmanSpace.newman-constant \(\mathrm{M} \#\), (NewmanSpace.isPositive M\#) ,
\((\lambda G g A p \rightarrow\) NewmanSpace.isNewmanConstant \(M \# G g \operatorname{A} A)\)-- newman-corollary \(M \#\)
\(\nu: \mathbb{R}\)
\(\nu=\) proj \(_{1}\) by-newman-1
st-v : st \(v\)
\(s t-v=s t-f u n{ }_{-}=N\) NewmanSpace.newman-constant \(M \#\) st-NewmanSpace-newman-constant st-M\#
positive-v : Or < v
positive-v \(=\) proje \(_{1}\) (proj2 by-newman-1)
by-newman-2 :
\(\forall\) (G : FiniteGroup) \(\rightarrow\)
\(\forall\) ( \(g\) : FiniteGroup. Carrier G) \(\rightarrow\)
\(\forall\) (A : DiscreteAction G M\#') \(\rightarrow\)
\((g \equiv\) FiniteGroup.identity \(G \rightarrow \perp) \rightarrow\)
\((\forall \quad(x:\) FiniteGroup. Carrier \(G) \rightarrow(x \equiv\) FiniteGroup.identity \(G \rightarrow \perp) \rightarrow\)
\(\exists \lambda(\mathrm{m}: \mathrm{M}) \rightarrow\)
DiscreteAction. Map A \(\mathrm{x} \mathrm{m} \equiv \mathrm{m} \rightarrow \perp) \rightarrow\)
\(\exists \lambda(\mathrm{n}: \mathbb{N}) \rightarrow \exists \lambda(\mathrm{m}: M) \rightarrow\)
\((\mathrm{n} \leq\) FiniteGroup.order G g) \(\wedge\)
( \(v<\) distance m (DiscreteAction. Map A (FiniteGroup.power G g n) m) )
by-newman-2 \(=\) proj\(_{2}\) (proj 2 by-newman-1)
```

by-newman-3 :
\exists (n : N ) , ヨ 人 (m : M)
(n \leq FiniteGroup.order H\# h) ^
(\nu < distance m (act (FiniteGroup.power H\# h n) m))
by-newman-3 = by-newman-2 H\# h A\# h-not-id act-faithful
n' : N
n' = proj1 by-newman-3
m' : M
m' = projo (proj2 by-newman-3)
n'-less-than-order : n' \leq FiniteGroup.order H\# h
n'-less-than-order = proji (proj}2 (proj2 by-newman-3)),
st-n' : st n'
st-n' = bounded-st (X-order x) (st-fun X-order x st-X-order st-x) n'
(\leq-tran n' (FiniteGroup.order H\# h) (\overline{X}-\overline{order x) n'-less-than-order h-order)}
hn' : H
hn' = FiniteGroup.power H\# h n'
hn'm'-v-far-from-m' : v < distance m' (act hn' m')
hn'm'-v-far-from-m'= proj2 (proj2 (proj2 by-newman-3))
hn'm'-not-near-m' : nearby (act hn' m') m' }->
hn'm'-not-near-m' hn'm'-near-m' = <-asym-1 _ _ step-3 refl where
step-1 : v < distance (act hn' m') m'
step-1 = transport (symmetry m' (act hn' m')) {\lambda z -> v < z} hn'm'-v-far-from-m'
step-2 : distance (act hn' m') m' < v
step-2 = hn'm'-near-m' v st-v positive-v
step-3 : v < v
step-3 = <-tran v (distance (act hn' m') m') v step-1 step-2
-- The manifold element m'\inM might not satisfy standardness. Fortunately, by the
-- compactness of M, we can find a standard neighbor m\inM.
m : M
m = proji (compact m')
st-m : st m
st-m = projo (proje}2(\mathrm{ compact m'))
m-near-m' : nearby m m'
m-near-m' = proj2 (proj2 (compact m'))
hn'm-near-hn'm' : nearby (act hn'm) (act hn' m')
hn'm-near-hn'm' = S-uniform-continuity hn' m m' m-near-m'
hn'm-not-near-m : nearby (act hn' m) m -> \perp
hn'm-not-near-m hn'm-near-m = hn'm'-not-near-m' step-3 where
step-1 : nearby (act hn' m') (act hn' m)
step-1 = symmetric _ _ hn'm-near-hn'm'
step-2 : nearby (act hn' m') m
step-2 = transitive _ _ _ step-1 hn'm-near-m
step-3 : nearby (act hn' m') m'
step-3 = transitive _ _ _ step-2 m-near-m'
-- By the standardness of m, we have xn@m near h n@m, and since
-- hn@m lies far from m, so does }\mp@subsup{x}{}{n}@m\mathrm{ . Hence, }\mp@subsup{x}{}{n}@m\not=m\mathrm{ .
xn' : X
xn' = PeriodicGroup.power X\# x n'
st-xn' : st xn'
st-xn' = st-fun __ (PeriodicGroup.power X\# x) n'
(st-fun (PeriodicGroup.power X\#) x
(st-fun-\overline{d _ _ PeriodicGroup.power X\# st-PeriodicGroup-power st-X\#) st-x) st-n'}
xn'm-near-hn'm : nearby (xact xn' m) (act hn' m)
xn'm-near-hn'm = act'-lemma (emb xn') st-emb-xn' m st-m hn' l-hn'-xn' where
st-emb-xn' : st (emb xn')
st-emb-xn' = st-fun _,_ emb xn' st-emb
(st-fun _ _ (PeriodicGroup.power X\# x) n'
(st-fun _ _ (PeriodicGroup.power X\#) x

```

3871
```

            (st-fun-d _ _ PeriodicGroup.power X# st-PeriodicGroup-power st-X#) st-x) st-n' )
            \iota-hn'-xn': : \ hn'' (emb xn')
            \iota-hn'-xn' = transport* (sym (emb-power x n')) {\lambda z -> \iota hn' z} (l-hn-xn n' st-n')
        xn'm-not-near-m : nearby (xact xn' m) m -> \perp
        xn'm-not-near-m xn'm-near-m = hn'm-not-near-m step-2 where
        step-1 : nearby (act hn' m) (xact xn' m)
        step-1 = symmetric _ xn'm-near-hn'm
        step-2 : nearby (act}\mp@subsup{\}{}{\prime}\mp@subsup{n}{}{\prime}\textrm{m})\textrm{m
        step-2 = transitive _ _ _ step-1 xn'm-near-m
        xn'm-not-equals-m : xact xn' m \equivm m \perp
        xn'm-not-equals-m xn'm-equals-m = xn'm-not-near-m xn'm-near-m where
        xn'm-near-m : nearby (xact xn' m) m
        xn'm-near-m = transport* (sym xn'm-equals-m) {\lambda z -> nearby z m} (reflexive m)
        -- From x }\mp@subsup{x}{}{n}@m\not=m, it follows that x@m f m. We chose x arbitrarily, so we get
        -- faithfulness.
        xm-not-equals-m : xact x m \equivm m \perp
        xm-not-equals-m xm-equals-m =
            xn'm-not-equals-m (PeriodicDiscreteAction.power-faithful X-Action x m n' xm-equals-m)
        exists-xm-not-equals-m : \exists* \lambda (m : M) -> (st m) *^* internal (xact x m \equiv m -> \perp)
        exists-xm-not-equals-m = m , st-m , fromInternal xm-not-equals-m
    open Given
    faithfulness-st : }\forall(\textrm{x : X ) }->\mathrm{ st }\textrm{x}->(\textrm{x}\equiv1\textrm{X}->\perp) 
                                    \exists* \lambda (m:M) -> (st m) *^* internal (xact x m \equivm > L)
    faithfulness-st = exists-xm-not-equals-m
    faithfulness-var : \forall (x : X) -> st x > \exists* \lambda (m : M) -> (st m) *^* internal ((x \equiv 1X }
    xact x m \equivm m \perp)
faithfulness-var x st-x = by-cases* _ case-1 case-2 (excluded-middle (x \equiv 1X)) where
zm : M
zm = NewmanSpace.inhabitant M\#
st-zm : st zm
st-zm = st-fun-d
_ NewmanSpace.inhabitant M\# st-NewmanSpace-inhabitant st-M\#
case-1 : x = 1X

```

```

        case-1 x-equals-1 = zm , st-zm , fromInternal (\lambda x-neq-1 -> absurd (x-neq-1 x-equals-1))
        case-2 : (x \equiv 1X }-> \perp) 
    ```

```

        case-2 x-neq-1 = vm , st-vm , fromInternal ( }\lambda\textrm{z}->\mathrm{ step-2) where
            step-1 : \exists* ( }\lambda\mp@subsup{m}{1}{\prime}->\mathrm{ st m}\mp@subsup{m}{1}{**^* internal (xact x m
            step-1 = faithfulness-st x st-x x-neq-1
            vm : M
            vm = projo step-1
            st-vm : st vm
            st-vm = proji (proj2 step-1)
            step-2 : xact x vm \equivvm }->
            step-2 = toInternal (proj2 (proj2 step-1))
    ```

```

    faithfulness = ax-Transfer-EI \Phi faithfulness-var std-\Phi where
        \Phi : TransferPred
        \Phi= \forall' X \lambda x }->\mp@subsup{\exists}{}{\prime}M\textrm{M}\lambda\textrm{m}->\mathrm{ int' ((x 
        std-\Phi : st X *^^* ( }\forall\mathrm{ (a : X) }->\mathrm{ st a }->\mathrm{ st M *^^*
            (\forall (e : M) -> st e }->\mathrm{ st ((a # 1X 
        std-\Phi=
            st-X, \lambda a st-a }->\mathrm{ st-M, \ e st-e }->\mathrm{ st }->\mathrm{ , (a 三 1X }-> \perp
            (st->-> (a \equiv 1X) (st-fun__ (_三_a) 1X (st-fun____ =_ a st-\equiv-full st-a) st-1X) \perp st-\perp)
    (xact a e \equive m \perp)
(st->) (xact a e \equive) (st-fun___(_\equiv_ (xact a e)) e (st-fun____ __ (xact a e)
st-\equiv-full (xact-st-valued a st-a e st-e)) st-e) \perp st-\perp)

```
```


[^0]:    4.1 Cross-reference: theorems and corresponding Agda modules.

    114

[^1]:    ${ }^{1}$ Cf. the Tarski-Vaught criterion for elementary substructures.

[^2]:    ${ }^{2}$ Theorem 1 of [33]. Some authors call formulae of the form $\forall^{s t} x . \varphi$ halic, and those of the form $\exists^{s t} x . \varphi$ galactic. In naming this theorem, we pay homage to them.

[^3]:    ${ }^{3}$ However, this use of Choice turns out to be innocent in both Peano arithmetic with finite types and in the type theory presented in Chapter 4 .

[^4]:    ${ }^{4}$ From here on, monotone functions are always monotone increasing.

[^5]:    ${ }^{5}$ Spaces satisfying this property are called Alexandroff spaces.

[^6]:    ${ }^{1}$ That said, moduli-of-continuity conditions do deserve further investigation!

[^7]:    ${ }^{1}$ Quite literally: the term extraction algorithm underlying the technique ignores internal axioms, so one has to express all the hypotheses and the conclusion in terms of the non-standard notions.

[^8]:    ${ }^{1}$ Hofmann and Voevodsky, two larger-than-life figures in the field of computer-verified proofs, both died tragically while our work was in progress.
    ${ }^{2}$ We really do not want a cumulative hierarchy in our work: we could not have Set ${ }_{\omega}$ consist of external predicates anymore, as that would contradict our type-theoretic Standardization axiom. To fix the issue, we would have to introduce a disjoint external hierarchy, which essentially doubles the number of rules for the system.

[^9]:    ${ }^{3}$ According to the Japanese proverb, the best way to learn proof trees is to have learned them ten years ago.
    ${ }^{4}$ This subsystem is sufficient for representing the proof of Theorem 2.3.9, but in principle the same proof could be carried out in weaker subsystems. In particular, we never invoke Idealization or internal-to-external Transfer principles.

[^10]:    ${ }^{5}$ Is such a definition circular? No, for the same reason that BNF grammars define sets [28].

[^11]:    ${ }^{6}$ See https://aqda.readthedocs.io/en/v2.6.0.1/qettinq-started/tutorial-list.html

