
DEVELOPMENT OF GROUP
THEORY IN THE LANGUAGE OF

INTERNAL SET THEORY

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2019

Zoltan A. Kocsis

School of Natural Sciences
Department of Mathematics

Contents

Abstract 6

Declaration 7

Copyright 8

Acknowledgements 9

1 Introduction 10
1.1 The road to Internal Set Theory . 11
1.2 Working in IST . 25
1.3 Topology via predicates . 30

2 Structural Approximation 47
2.1 Motivation . 47
2.2 Approximation in IST . 49
2.3 Action extension . 62
2.4 Snappy groups . 70

3 Other results 74
3.1 Monotone subsequences . 74
3.2 Sheaves . 76

4 Mechanization 84
4.1 Computer-verified proofs . 84
4.2 Extended type theory . 89
4.3 Syntactic properties . 103
4.4 Agda proof . 111

Bibliography 117

2

A Agda Proof of Theorem 2.3.9 122

Word Count: 27140

3

List of Tables

4.1 Cross-reference: theorems and corresponding Agda modules. 114

4

List of Figures

1.1 Values of the labeling map 𝓁 on the unit circle. 46

3.1 A three-way junction on a network. 83

4.1 A closed term of type ∃𝑥 ∶ ℕ.𝚜𝚝0 ℕ 𝑥 × 𝑥 =ℕ 𝑛 for each canonical
natural 𝑛 ∶ ℕ. 115

4.2 Derivation tree witnessing the existence of a nonstandard number. . . 116

5

Abstract

This thesis explores two novel algebraic applications of Internal Set Theory (IST). We
propose an explicitly topological formalism of structural approximation of groups, gen-
eralizing previous work by Gordon and Zilber. Using the new formalism, we prove
that every profinite group admits a finite approximation in the sense of Zilber. Our
main result states that well-behaved actions of the approximating group on a compact
manifold give rise to similarly well-behaved actions of periodic subgroups of the ap-
proximated group on the same manifold. The theorem generalizes earlier results on
discrete circle actions, and gives partial non-approximability results for SO(3). Moti-
vated by the extraction of computational bounds from proofs in a “pure” fragment of
IST (Sanders), we devise a “pure” presentation of sheaves over topological spaces in the
style of Robinson and prove it equivalent to the usual definition over standard objects.
We introduce a non-standard extension of Martin-Löf Type Theory with a hierarchy
of universes for external propositions along with an external standardness predicate,
allowing us to computer-verify our main result using the Agda proof assistant.

6

Declaration

No portion of the work referred to in this thesis has been sub-
mitted in support of an application for another degree or qual-
ification of this or any other university or other institute of
learning.

7

Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis)
owns certain copyright or related rights in it (the “Copyright”) and s/he has given
The University of Manchester certain rights to use such Copyright, including for
administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-
lectual property (the “Intellectual Property”) and any reproductions of copyright
works in the thesis, for example graphs and tables (“Reproductions”), which may
be described in this thesis, may not be owned by the author and may be owned by
third parties. Such Intellectual Property and Reproductions cannot and must not
be made available for use without the prior written permission of the owner(s) of
the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy, in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations and in The University’s
policy on presentation of Theses.

8

Acknowledgements

First and foremost, I wish to thank my supervisor, Prof. Alexandre Borovik, for taking
me on as a student, for guiding me through the academic process, for providing math-
ematical advice, and for clearing up all the mundane and bureacratic obstacles that got
in my way. Special thanks to

• My academic sibling Ulla Karhumäki and my officemate Jacob Cable, for the
countless hours of productive mathematical discussion.

• My teachers and mentors: Péter Diviánszky, József Farkas, Marwan Fayed, Viola
Somogyi, Jerry Swan, and all others who taught me mathematics. This work
would not exist without them.

• My colleagues Nataliya Balabanova, Jacob Cable, Mahah Javed, Elliot McKer-
non, Rob Nicolaides, Joseph Razavi and Jerry Swan for proof-reading and sanity-
checking this document. Naturally, I am responsible for any remaining errors.

• My family and friends, for their love and support.

9

Chapter 1

Introduction

Following Robinson’s introduction of nonstandard analysis (via ultrafilter constructions
of nonstandard models), Nelson [32] developed an axiomatic set theory (Internal Set
Theory, IST) that extends the familiar Zermelo-Fraenkel Set Theory, and serves as a
convenient framework for the practice of nonstandard analysis. Here we present two
novel applications of Internal Set Theory to algebra.

Chapter 1 gives a concise, self-contained introduction to the theory and practice of In-
ternal Set Theory, with a particular focus on doing topology in the non-standard setting
via the formalism of (what we call) predicated spaces. Most results presented in this
chapter are well-known and have appeared in the literature in various forms; the nov-
elty resides in our presentation, which emphasizes the analogies between the theory of
Alexandroff spaces in ordinary set theory and the theory of general topological spaces
in Internal Set Theory.

The results in Chapter 2 concern structural approximations of groups, in the sense of
Zilber [50, 51]. Using Internal Set Theory, we propose a new notion of approximation
that incorporates an explicit topological ingredient and includes both Zilber’s notion of
finite approximation and Gordon’s [1] notion of LEF group as special cases. Using the
new language, we prove that any profinite group admits a finite approximation in the
sense of Zilber (Proposition 2.2.18). We introduce the notion of Alexandroff approxi-
mation, and show that the class of groups admitting Alexandroff finite approximations
coincides with the class of locally finite groups (Proposition 2.2.36). Our main result
(Theorem 2.3.9) is as follows: if a group 𝐻 approximates 𝐺, then well-behaved ac-
tions of 𝐻 on a compact manifold 𝑀 give rise to similarly well-behaved actions of

10

1.1. THE ROAD TO INTERNAL SET THEORY 11

periodic subgroups of 𝐺 on the same manifold 𝑀 . As a corollary of Theorem 2.3.9,
we obtain partial results about the non-approximability of 𝑆𝑂(3) in the new formalism
(Theorem 2.4.10).

Chapter 3 contains two shorter results. Inspired by the recent ultrapower proof of the
monotone subsequence theorem due to Baszczyk, Kanovei, Katz and Nowik [5], we
give a straightforward, ultrapower-free proof using Internal Set Theory. Motivated by
the work of S. Sanders on extracting computational bounds from proofs in a “pure” frag-
ment of Internal Set Theory, we give a novel, “pure” presentation of sheaves (Defini-
tion 3.2.9) over topological spaces in the style of Robinson’s characterization of continu-
ity, and prove it equivalent to the usual definition for standard objects (Theorem 3.2.15,
Proposition 3.2.17).

In Chapter 4 we present a non-standard variant of Martin-Löf Type Theory that relates
to ordinary Martin-Löf Type Theory the same way Internal Set Theory does to usual
Zermelo-Fraenkel Set Theory. Our extended type theory has a hierarchy of universes
for external propositions along with an external standardness predicate, allowing us to
translate our proof of Theorem 2.3.9 into a type-theory setting, and computer-verify the
resulting proof script using the Agda proof assistant.

1.1 The road to Internal Set Theory

1.1.1. In this section we introduce the axioms of Internal Set Theory, and explain its
relationship to usual (ZFC) set theory. We presume familiarity with the terminology
of first-order logic (languages, theories, free and bound variables, Hilbert-style proof
systems, prenex forms) and the elementary axiomatics of Zermelo-Fraenkel Set Theory,
to the extent covered in the first two chapters of Lévy’s Basic Set Theory [29]. For
a gentler introduction to Internal Set Theory, we recommend Robert’s Nonstandard
Analysis [40].

12 CHAPTER 1. INTRODUCTION

Logic

1.1.2. We fix the notation for the logical connectives as ¬ (negation), ∨ (disjunction),
∧ (conjunction) and → (implication). Notations such as ∼,⊃,& never stand for con-
nectives, and may appear in the text with other (non-logical) meaning. We strive to
make economical use of parentheses. In particular, we often write implication chains
𝜑1 → (𝜑2 → 𝜑3) as 𝜑1 → 𝜑2 → 𝜑3.

1.1.3. There are three major proof calculi for the first-order predicate calculus. Struc-
tural proof theory is best done in terms of Gentzen-style Sequent Calculus, which
uncovers all the deep symmetries of logic. Prawitz’s calculus of Natural Deduction
displays no particularly good proof-theoretic behavior, at least for classical logic, but
it corresponds closely to how we write proofs in mathematics. Finally, Hilbert-style
proof calculi are appropriate for certain proof translation arguments. Nelson [33] uses
a Hilbert-style system for his meta-theoretic results on Internal Set Theory.

1.1.4. Hilbert-style systems have only one inference rule: modus ponens, from 𝜑 and
𝜑→𝜓 infer𝜓 . When translating from one language to another, one needs to verify that
the translations of the axioms are provable and that the rules of inference are preserved
under translation, so having only one rule of inference proves to be a huge convenience.
The logical axioms of our Hilbert system have the following forms:

• K: 𝜑1 → 𝜑2 → 𝜑1,

• S: (𝜑1 → 𝜑2 → 𝜑3)→ (𝜑1 → 𝜑2)→ 𝜑1 → 𝜑3,

• N: (¬𝜑1 → ¬𝜑2)→ (¬𝜑1 → 𝜑2)→ 𝜑1,

• U1: (∀𝑥.𝜙(𝑥))→ 𝜙(𝑡) where 𝑡 is any constant or variable symbol,

• U2: (∀𝑥.𝜑1 → 𝜑2)→ 𝜑1 → ∀𝑦.𝜑2 where 𝑥 does not occur in 𝜑1,

• U3: (∀𝑥.𝜑1 → 𝜑2)→ (∀𝑥.𝜑1)→ ∀𝑥.𝜑2

1.1.5. The first two axioms, K and S, play structural roles, enunciating the logical prin-
ciples weakening and contraction. The third axiom, N, represents reductio ad absur-
dum, controlling the behavior of ¬ and expressing that the logic under consideration is
classical (as opposed to e.g. intuitionistic), while the last three govern the meaning of
the universal quantifier.

1.1. THE ROAD TO INTERNAL SET THEORY 13

1.1.6. Apart from the usual symbols and predicates, our first-order languages often
contain the special-purpose unary predicate 𝑠𝑡. Normally, we read st(𝑥) as 𝑥 is stan-
dard. The “external” quantifiers ∀𝑠𝑡,∃𝑠𝑡 are defined as abbreviations, with ∀𝑠𝑡𝑥.𝜙(𝑥)
and ∃𝑠𝑡𝑥.𝜙(𝑥) abbreviating ∀𝑥.st(𝑥)→ 𝜙(𝑥) and ∃𝑥.st(𝑥)∧𝜙(𝑥) respectively.

1.1.7. The superscript𝑄f in indicates the finiteness of the object introduced by the quan-
tifier 𝑄. In particular, we can take it to abbreviate any of the usual definitions of finite
set in ZFC Set Theory. However, we need to exercise caution when considering set
theories that do not take the Axiom of Choice, as results such as Theorem 1.2.5 would
depend on which of the many (not provably equivalent without Choice) definitions of
finiteness we choose.

1.1.8. Throughout this document, we maintain a strict distinction between relations
and proper predicates: we reserve the use of the former term to indicate predicates that
are represented by sets, as subset of a Cartesian product (e.g. the order relation< on the
natural numbers is represented by the set

{
(𝑥,𝑦) ∈ ℕ2 |||𝑥 < 𝑦}), while the term 𝑛-ary

predicate refers to formulae with 𝑛 free variables in the language under consideration.
The reader is already familiar with a proper binary predicate that does not constitute
a relation in this sense: the global membership predicate ∈ of Zermelo-Fraenkel Set
Theory.

Adjoining Ideal Elements

1.1.9. Definition. The language of the theory PAK consists of the language of Peano
Arithmetic extended with a formal constant symbol𝐾 . The theory PAK consists of the
axioms of Peano Arithmetic, and the following axioms (one for each natural number):

K0 0 < 𝐾 ,

K1 1 < 𝐾 ,

K2 2 < 𝐾 ,

. . .

Kn 𝑛 < 𝐾 ,

. . .

14 CHAPTER 1. INTRODUCTION

1.1.10. Notice that the theory PAK does not extend Peano Arithmetic with new induc-
tion axioms. The induction axiom 𝜑(0)∧ (∀𝑛.𝜑(𝑛)→ 𝜑(𝑛+1))→ ∀𝑥.𝜑(𝑥) belongs to
PAK only if we choose 𝜑 from among the formulae in the language of Peano Arith-
metic. In particular, 0 < 𝐾 ∧ (∀𝑛.𝑛 < 𝐾 → 𝑛+1 < 𝐾)→ ∀𝑥.𝑥 < 𝐾 does not belong to
the axioms of PAK, since 𝜑(𝑛)↔ 𝑛 < 𝐾 contains the constant symbol 𝐾 , which lives
outside the language of Peano Arithmetic. However, we can prove that we do have
∀𝑦.0< 𝑦∧(∀𝑛.𝑛 < 𝑦→ 𝑛+1< 𝑦)→ ∀𝑥.𝑥 < 𝑦 among the theorems of Peano Arithmetic
(use inducton on the formula ∀𝑦.0< 𝑦∧(∀𝑛.𝑛 < 𝑦→ 𝑛+1< 𝑦)→ 𝑥 < 𝑦, exercise!), and
hence among the theorems of PAK. Substituting 𝑦 = 𝐾 using the axiom U1 realizes
the previous non-axiom as a theorem of PAK!

1.1.11. Whenever Peano Arithmetic proves that all numbers 𝑛 have a given property
𝜑, PAK proves that 𝐾 has the property 𝜑. This follows immediately from the fact that
the axioms of Peano Arithmetic form a proper subset of the axioms of the theory PAK.
We will shortly prove a converse of this observation: whenever PAK proves that𝐾 has
some property 𝜑(𝐾), and one can write this property 𝜑(−) in the language of Peano
Arithmetic, then we can find a number 𝑛 ∈ ℕ such that 𝜑(𝑛) holds (and in that case
Peano Arithmetic proves 𝜑(𝑛)).

1.1.12. Definition. Consider theories 𝑇1,𝑇2 such that the language of 𝑇1 forms a proper
subset of the language of 𝑇2. We call 𝑇2 a conservative extension of 𝑇1 if for every
sentence 𝜑 in the language of 𝑇1, we have 𝑇1 ⊢ 𝜑 whenever 𝑇2 ⊢ 𝜑.

1.1.13. Proposition. The theory PAK is a conservative extension of Peano Arithmetic.

Proof. Consider a sentence 𝜑 in the language of Peano Arithmetic, and assume that
PAK proves 𝜑. Take any PAK-proof of 𝜑: such a proof invokes finitely many of the
axioms of PAK, in particular we can find a largest number 𝑛∈ℕ such that the proof uses
the axiom Kn. Replace all occurrences of 𝐾 in the proof with 𝑛+1, and all the axioms
Ki with Peano Arithmetic proofs of 𝑖 < 𝑛+1. This cannot fail: by the maximality of 𝑛,
we have 𝑖 < 𝑛 < 𝑛+1 for all 𝑖 that occur in the proof. Doing all the replacements yields
a proof of the sentence 𝜑 in Peano Arithmetic.
Qed.

1.1.14. Corollary. Consider a formula𝜑(−) of Peano Arithmetic. If PAK proves𝜑(𝐾),
then Peano Arithmetic proves 𝜑(𝑛) for some numeral 𝑛 ∈ ℕ.

Proof. Apply the algorithm of Proposition 1.1.13.

1.1. THE ROAD TO INTERNAL SET THEORY 15

Qed.

1.1.15. Notice that Corollary 1.1.14 relies on the algorithm described in the proof of
Proposition 1.1.13, and not merely on the statement of the proposition: an instance of
proof relevance in mathematics. We use the term corollary in this proof-relevant sense
throughout our work.

1.1.16. The construction of PAK privileges the relation< over other possible relations.
Indeed, we could have defined a theory PAKd in the language of PAK that has the
axioms of Peano Arithmetic, along with the following axioms (one for each natural):

K1 1 divides 𝐾 ,

K2 2 divides 𝐾 ,

. . .

Kn 𝑛 divides 𝐾 ,

. . .

and the resulting theory would satisfy the analogue of Proposition 1.1.13, if one re-
placed 𝐾 with the product

∏
𝑖<𝑛 𝑖 instead of 𝑛+1.

1.1.17. The constant symbol 𝐾 of PAK behaves like an ideal element with respect to
the order relation, and that of PAKd behaves ideally with respect to divisibility. One
should be able to extend the method of paragraph 1.1.16 to add new constants that be-
have like ideal elements for any relation, as long as such ideal elements can coexist
with Peano Arithmetic in the sense that finitely many of the new axioms do not contra-
dict Peano Arithmetic. The notion of admissibility (Definition 1.1.18) formalizes this
intuition.

1.1.18. Definition. We call a binary predicate 𝑅(−,−) in the language of Peano Arith-
metic admissible if for any finite subset of the natural numbers 𝐹 we can find 𝑦 such
that Peano Arithmetic proves that 𝑅(𝑥,𝑦) holds for all 𝑥 ∈ 𝐹 .

1.1.19. Proposition. Every admissible binary predicate 𝑅(−,−) gives rise to a theory
PAKR in the language of PAK conservatively extending Peano Arithmetic with ideal
elements for 𝑅. Vice versa, if a binary predicate gives rise to such a conservative
extension, we can conclude the admissibility of 𝑅(−,−).

16 CHAPTER 1. INTRODUCTION

Proof. We leave the forward direction as an exercise to the reader. For the backward
direction, consider any finite set 𝐹 ⊆ ℕ. The theory PAKR proves the conjunction⋀
𝑥∈𝐹 𝑅(𝑥,𝐾) (since it proves each of the axioms Ki). Hence, PAKR also proves

∃𝑦.
⋀
𝑥∈𝐹 𝑅(𝑥,𝑦), a sentence of Peano Arithmetic. By conservative extension, Peano

Arithmetic proves ∃𝑦.
⋀
𝑥∈𝐹 𝑅(𝑥,𝑦), so it proves that𝑅(𝑥,𝑦) holds for all 𝑥∈ 𝐹 . Using

Definition 1.1.18, we conclude the admissibility of 𝑅.
Qed.

1.1.20. As we have seen, PAK-style extensions add new constants for ideal numbers,
but do not otherwise change Peano Arithmetic. However, we cannot quantify over (or
otherwise keep track of) these additions at the level of syntax. Hence, we could increase
the expressiveness of our extensions by including an explicit new predicate for those
elements that Peano Arithmetic already had, even before we performed the idealization.

1.1.21. Definition. Consider an admissible predicate 𝑅(−,−). The language of the
theory PAKS consists of the language of Peano Arithmetic extended with a formal
constant symbol 𝐾 and a unary atomic predicate st(−). The theory PAKSR consists
of the axioms of Peano Arithmetic, along with the three new axioms below:

1. ∀𝑥.st(𝑥)→ 𝑅(𝑥,𝐾),

2. st(0),

3. ∀𝑛.st(𝑛)→ st(𝑛+1).

1.1.22. Similarly to 1.1.10, our construction of PAKSR does not add new induction ax-
ioms to Peano Arithmetic. In particular, PAKSR does not prove ∀𝑥.st(𝑥), even though
it proves both st(0) and ∀𝑛.st(𝑛)→ st(𝑛+1). Notice that ¬st(𝐾) does not occur among
the axioms.

1.1.23. Exercise. Prove ¬st(𝐾) in PAKSR for 𝑅(𝑥,𝑦)↔ 𝑥 < 𝑦. Choose carefully an-
other binary predicate 𝑅 in such a way that you can prove st(𝐾) in the corresponding
theory PAKSR.

1.1.24. Instead of constructing a new theory PAKSR for each relation𝑅, we could par-
allelize our construction, extending Peano Arithmetic simultaneously with all possible
ideal elements. Indeed, as the construction of the theory PAKSR extends Peano Arith-
metic with ideal elements, so will the Idealization axiom of Internal Set Theory create
ideal elements with respect to any admissible relation. As such, we will not spend

1.1. THE ROAD TO INTERNAL SET THEORY 17

time proving conservative extension over Peano Arithmetic for the likes of PAKSR:
the proof of the conservative extension theorem for Internal Set Theory over ZFC Set
Theory supersedes such results anyway, and we sketch the main ingredient of that latter
proof below.

Internal Set Theory

1.1.25. Definition. The language of Internal Set Theory consists of a binary predicate
symbol − ∈ − (membership) and a unary predicate symbol st(−). The first-order the-
ory referred to as Internal Set Theory consists of the axioms of Zermelo-Fraenkel Set
Theory, the Axiom of Choice, and the additional axiom schemata Idealization, Stan-
dardization and Transfer defined below.

1.1.26. Given a set 𝐴, we introduce the following abbreviated quantifiers:

• ∀𝑠𝑡𝑥 ∈ 𝐴.… abbreviates ∀𝑥.𝑥 ∈ 𝐴∧st(𝑥)→… ,

• ∃𝑠𝑡𝑥 ∈ 𝐴.… abbreviates ∃𝑥.𝑥 ∈ 𝐴∧st(𝑥)∧… ,

1.1.27. Definition. Consider a formula 𝜑 in the language of Internal Set Theory. We
call 𝜑 an internal formula if it does not contain any occurrences of the predicate st(−).
In accordance with the observations of sections 1.1.10 and 1.1.22, we shall permit inter-
nal formulae to contain parameters ranging over both standard and non-standard sets.

1.1.28. Axiom Schema of Idealization: Consider an internal formula 𝜑, and a vari-
able  fresh with respect to 𝜑. The following statements are equivalent.

1. ∀𝑠𝑡 f in .∃𝑦.∀𝑥 ∈  .𝜑(𝑥,𝑦),
2. ∃𝑦.∀𝑠𝑡𝑥.𝜑(𝑥,𝑦)

Notice that the first clause captures the notion of admissible relation introduced in Def-
inition 1.1.18, and the schema internalizes the process of adjoining new constants for
ideal numbers. For example, instantiating Idealization with the predicate 𝜑(𝑥,𝑦) abbre-
viating “𝑥,𝑦∈ℕ and 𝑥 divides 𝑦” gives us an analogue of the ideal element𝐾 ∈ℕ that
appears in 1.1.16.

1.1.29. Axiom Schema of Transfer: Consider an internal formula 𝜑 with free vari-
ables 𝑥1,… ,𝑥𝑛 and no others. The following holds:

∀𝑠𝑡𝑥1.…∀𝑠𝑡𝑥𝑛−1.
(
∀𝑠𝑡𝑥𝑛.𝜑→ ∀𝑥𝑛.𝜑

)

18 CHAPTER 1. INTRODUCTION

That is, if a transfer property holds for every standard element of a standard set, then it
holds for every element of that set1.

1.1.30. Axiom Schema of Standardization: Take an arbitrary (internal or external)
formula 𝜑 with one free variable, and a standard set 𝐺. Then we can construct a stan-
dard set, denoted⦃𝑥 ∈ 𝐺 |𝜑(𝑥)⦄ such that the following are equivalent for each element
𝑎 ∈ 𝐺:

1. 𝑎 ∈ ⦃𝑥 ∈ 𝐺 |𝜑(𝑥)⦄
2. st(𝑎)→ 𝜑(𝑎)

The notation closely resembles Comprehension: indeed, we can see this axiom schema
as an external comprehension principle for a restricted class of formulae. Given the
other axioms, one can show that the set constructed by Standardization is the unique
set satisfying the property above.

1.1.31. Recall that the axiom schema of Comprehension,

∀𝑧.∃!𝑦.∀𝑥.𝑥 ∈ 𝑦↔ (𝑥 ∈ 𝑧∧𝜑)

occurs as one of the axiom schemata of Zermelo-Fraenkel Set Theory. The axiom
justifies the use of set builder notation, by writing {𝑥 ∈ 𝑧 |𝜑} for the set 𝑦whose unique
existence the schema asserts. However, Internal Set Theory does not add new instances
of the Comprehension schema to the underlying ZFC Set Theory: as such, instances
of set-builder notation where the formula 𝜑 is not internal may fail to denote any set
at all! As an example, take {𝑥 ∈ ℕ | st(𝑛)}. Internal Set Theory does not prove the
existence of a set that contains precisely the standard naturals (indeed, we will see in
Corollary 1.2.12 that it proves the non-existence of such a set). In a departure from usual
mathematics, the practitioner of Internal Set Theory has to take great care to avoid such
illegal set formation, by making sure that all instances of set builder notation use only
internal formulae.

Galactic Halo theorem

1.1.32. Nelson [33] gave a proof-theoretic algorithm which translates proofs in Internal
Set Theory to proofs in ZFC. Theorem 1.1.39, the key ingredient of Nelson’s argument,

1Cf. the Tarski-Vaught criterion for elementary substructures.

1.1. THE ROAD TO INTERNAL SET THEORY 19

will make an appearance in the subsequent chapters. As such, we present a proof of
Theorem 1.1.39. To prove conservative extension, one would have to further prove the
admissibility of the modus ponens rule in translation, the preservation of the logical
axioms (i.e. that one can indeed prove the translations of all instances of the logical
schemata introduced in 1.1.4 purely inside ZFC), and (since the translation works only
for bounded formulae) introduce and eliminate a “universe bound”. Proving the preser-
vation of the logical axioms requires a non-trivial use of the Tychonoff theorem (see
[33]-Theorem 3). We assume a good working knowledge of Internal Set Theory in this
subsection: readers who have not worked in Internal Set Theory before should feel free
to skip this subsection for now and proceed directly to Section 1.2.

1.1.33. Lemma. Consider a standard set 𝑉 and an internal formula 𝜑 of Internal Set
Theory with two free variables 𝑥,𝑦. Assume that ∀𝑠𝑡𝑥∈ 𝑉 .∃𝑠𝑡𝑦∈ 𝑉 .𝜑 (𝑥,𝑦). Then IST
proves the existence of a standard function 𝑓 ∶ 𝑉 → 𝑉 such that ∀𝑠𝑡𝑥 ∈ 𝑉 .𝜑 (𝑥,𝑓 (𝑥)).

Proof. Define the function 𝑓 =⦃(𝑥,𝑌) ∈ 𝑉 ×(𝑉) |𝑌 = ⦃𝑦 ∈ 𝑉 |𝜑(𝑥,𝑦)⦄⦄ via a nest-
ed use of the Standardization axiom. Since the set-valued function 𝑓 never takes the
value ∅, the Axiom of Choice gives a function 𝑓 ∶ 𝑉 → 𝑉 with the required property.
Qed.

1.1.34. Notice that the proof of Lemma 1.1.33 does not rely the internality assumption
for𝜑 in any way. However, the lemma, even when restricted to internal formulae, allows
us to prove all instances (internal or external) of Standardization.

1.1.35. Exercise. Show that the theory obtained by adding the Idealization, Trans-
fer principles and Lemma 1.1.33 to Zermelo-Fraenkel Set Theory with the Axiom of
Choice proves every instance of the Standardization schema. Hint: Use Theorem 1.1.39
twice.

1.1.36. Definition. Given a set 𝑆, we denote its finite powerset, the set of all its finite
subsets, by  f in(𝑆). However, if the current context has a formal constant 𝑈 standing
in as a bound for the universe of discourse, we treat the formula 𝑆 ∈  f in(𝑈) as an
abbreviation for the sentence “𝑆 forms a finite set”.

1.1.37. For the sake of simplicity, we may leave bounds implicit, but assume that every
quantifier has a standard bound in the next few paragraphs. Note that Kanovei [26]
shows that the unbounded sentence ∀𝐹 .(∀𝑠𝑡𝑛 ∈ ℕ.st(𝐹 (𝑛)) → ∃𝑠𝑡𝐺.∀𝑠𝑡𝑛 ∈ ℕ.𝐹 (𝑛) =
𝐺(𝑛)) is not equivalent to any sentence of ZFC (and is therefore independent of IST).

20 CHAPTER 1. INTRODUCTION

1.1.38. Definition. Consider bounded sentences Ψ1,Ψ2 of Internal Set Theory, where
Ψ2 has the form ∀𝑠𝑡𝑥1.∀𝑠𝑡𝑥2.…∃𝑠𝑡𝑦1.∃𝑠𝑡𝑦2.…𝜓 for some internal formula𝜓 . We write
[Ψ1] = Ψ2 and say that Ψ1 has Nelson normal form Ψ2 if we can construct a proof tree
with conclusion labeled by [Ψ1] = Ψ2 using finitely many instances of the following
rules (for more about proof trees see 4.1.15).

st
[st(𝑥)] = (∃𝑠𝑡𝑞.𝑥 = 𝑞)

or
int

[𝜑] = 𝜑
or

[Φ] = ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑
¬

[¬Φ] = ∀𝑠𝑡𝑦1 ∈
∏

𝑖𝐴𝑖 → 𝐸1.…∃𝑠𝑡𝑥1 ∈ 𝐴1.…¬𝜑[𝑦𝑖 ∶= 𝑦𝑖(𝑥1,…)]
or

[Φ] = ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑
∀𝑠𝑡

[∀𝑠𝑡𝑧 ∈ 𝐴.Φ] = ∀𝑠𝑡𝑧 ∈ 𝐴.∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑
or

[Φ] = ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑
∀

[∀𝑧.Φ] = ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑌1 ∈  f in(𝐸1).…∀𝑧.∃𝑦1 ∈ 𝑌1.…𝜑
or

[Φ1] = ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑1 [Φ2] = ∀𝑠𝑡𝑣1 ∈ 𝐵1.…∃𝑠𝑡𝑤1 ∈ 𝐹1.…𝜑2
→

[Φ1 →Φ2] = ∀𝑠𝑡𝑣1 ∈ 𝐵1.…∀𝑠𝑡𝑦1 ∈
∏

𝑖𝐴𝑖 → 𝐸1.…∃𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑤1 ∈ 𝐹1.…𝜑′

where 𝜑′ abbreviates 𝜑1[𝑦𝑖 ∶= 𝑦𝑖(𝑥1,…)]→ 𝜑2, Φ,Φ2 stand for arbitrary non-internal
formulae, Φ1 stands for an arbitrary formula, 𝜑𝑖 stand for internal formulae, variable 𝑧
occurs free in each Φ𝑖 and we choose 𝑞 as a fresh variable.

1.1.39. Theorem (Galactic Halo2). Every bounded sentence Ψ of Internal Set Theory
has a logically equivalent (modulo theory), unique Nelson normal form [Ψ].

Proof. For uniqueness, observe that in Definition 1.1.38, the principal connective of
Ψ1 uniquely determines the next available rule of the proof tree. For existence, observe
that the depth of the formula decreases with each application of a rule. Hence, one will
eventually reach either an internal formula (which has itself as a unique Nelson normal
form) or st(𝑥) (which has Nelson normal form ∃𝑠𝑡𝑞.𝑥 = 𝑞 for some fresh variable 𝑞).
For logical equivalence, we argue by induction on structure of the formula, using the
uniqueness and existence of the tree itself as a guide.

2Theorem 1 of [33]. Some authors call formulae of the form ∀𝑠𝑡𝑥.𝜑 halic, and those of the form
∃𝑠𝑡𝑥.𝜑 galactic. In naming this theorem, we pay homage to them.

1.1. THE ROAD TO INTERNAL SET THEORY 21

1. Cases st,int,∀𝑠𝑡: Follow immediately from the definitions.

2. Case ¬: We have

¬Φ↔ ¬[Φ] by inductive assumption

↔ ¬∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑 by the ¬ rule (premise)

↔ ∃𝑠𝑡𝑥1 ∈ 𝐴1.…∀𝑠𝑡𝑦1 ∈ 𝐸1.…¬𝜑 by de Morgan’s laws

↔ ∀𝑠𝑡𝑦1 ∈ Π𝑖𝐴𝑖 → 𝐸1.…∃𝑠𝑡𝑥1 ∈ 𝐴1.…𝜑′ by Lemma 1.1.33

↔ [¬Φ]. by the ¬ rule

where 𝜑′ abbreviates ¬𝜑[𝑦𝑖 ∶= 𝑦𝑖(𝑥1,…)].

3. Case ∀: We have

∀𝑧.Φ↔ ∀𝑧.[Φ] by induction

↔ ∀𝑧.∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑 by the ∀ rule

↔ ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∀𝑧.∃𝑠𝑡𝑦1 ∈ 𝐸1.…𝜑 by quantifier switch

↔ ∀𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑌1 ∈  f in(𝐸1).…𝜑′ by Idealization

↔ [∀𝑧.Φ]. by the ∀ rule

where 𝜑′ abbreviates ∀𝑧.∃𝑦1 ∈ 𝑌1.𝜑.

4. Case →: We have

Φ′ ↔ ([Φ1]→ [Φ2]) by induction

↔ (¬[Φ1]∨ [Φ2]) by classical logic

↔ ([¬Φ1]∨ [Φ2]) by case ¬ above

↔ ((∀𝑠𝑡𝑦1 ∈ Π𝑖𝐴𝑖 → 𝐸1.…∃𝑠𝑡𝑥1 ∈ 𝐴1.…𝜑′)∨

∀𝑠𝑡𝑣1 ∈ 𝐵1.…∃𝑠𝑡𝑤1 ∈ 𝐹1.…𝜑2) by the ¬ rule

↔ ∀𝑠𝑡𝑣1 ∈ 𝐵1.…∀𝑠𝑡𝑦1 ∈ Π𝑖𝐴𝑖 → 𝐸1.…

∃𝑠𝑡𝑥1 ∈ 𝐴1.…∃𝑠𝑡𝑤1 ∈ 𝐹1.…𝜑′ → 𝜑2 by quantifier switch

↔ [Φ1 →Φ2]. by the → rule

where Φ′ abbreviates Φ1 →Φ2 and 𝜑′ abbreviates ¬𝜑[𝑦𝑖 ∶= 𝑦𝑖(𝑥1,…)].

This proves that every bounded formula of Internal Set Theory has a logically equiva-
lent, unique Nelson normal form.
Qed.

22 CHAPTER 1. INTRODUCTION

1.1.40. Using the Galactic Halo theorem, Nelson gives a translation that converts proofs
in Internal Set Theory to proofs in Zermelo-Fraenkel Set Theory with the Axiom of
Choice. If a ZFC formula occurs as the conclusion of the proof inside Internal Set
Theory, the resulting ZFC proof will retain the same conclusion, thus ensuring conser-
vativity of Internal Set Theory over ZFC.

1.1.41. Definition. Given a sentence Φ of Internal Set Theory with Nelson normal
form [Φ] = ∀𝑠𝑡𝑥1.∀𝑠𝑡𝑥2.…∃𝑠𝑡𝑦1.∃𝑠𝑡𝑦2.…𝜑, we refer to the ZFC sentence
[Φ] = ∀𝑥1.∀𝑥2.…∃𝑦1.∃𝑦2.…𝜑 as the Nelson reduction of the formula Φ.

1.1.42. Proposition. We have an equivalence between every bounded sentence Φ of In-
ternal Set Theory and its Nelson reduction [Φ]when we interpret the latter as a sentence
of Internal Set Theory.

Proof. Use Transfer.
Qed.

1.1.43. Proposition ([33]-Theorem 2). Applying the Nelson reduction to Idealization,
(simple) Standardization and Transfer axioms yields theorems of ZFC set theory.

Proof. For notational convenience, we omit most bounds and merge all consecutive
quantifiers of the same sort into one quantifier, e.g. ∀𝑠𝑡𝑡 abbreviates ∀𝑠𝑡𝑡1.∀𝑠𝑡𝑡2.… in
what follows. Similarly for displayed variables in predicates and terms in substitutions.
Our version of the proof differs from Nelson’s account in the treatment of Idealization.

1. Transfer: A Transfer axiom takes the form ∀𝑠𝑡𝑡.(∀𝑠𝑡𝑥.𝜑(𝑥, 𝑡))→ ∀𝑦.𝜑(𝑦, 𝑡) for an
internal formula 𝜑. We calculate its Nelson normal form as

[∀𝑠𝑡𝑡.(∀𝑠𝑡𝑥.𝜑(𝑥, 𝑡))→ ∀𝑦.𝜑(𝑦, 𝑡)]

= ∀𝑠𝑡𝑡.[(∀𝑠𝑡𝑥.𝜑(𝑥, 𝑡))→ ∀𝑦.𝜑(𝑦, 𝑡)]

= ∀𝑠𝑡𝑡.∀𝑠𝑡𝑦.∃𝑠𝑡𝑥.𝜑(𝑥, 𝑡)→ 𝜑(𝑦, 𝑡).

This gives rise to the Nelson reduction ∀𝑡.∀𝑦.∃𝑥.𝜑(𝑥, 𝑡)→ 𝜑(𝑦, 𝑡), a tautology.

2. Idealization F: In the following, we use a purely formal placeholder constant 𝑈
for the universe. Recall that an Idealization axiom takes the form

(∀𝑠𝑡𝐵 ∈  f in(𝑈).∃𝑎.∀𝑏 ∈ 𝐵.𝜑(𝑎,𝑏,𝑤))→ ∃𝑥.∀𝑠𝑡𝑦.𝜑(𝑥,𝑦,𝑤)

1.1. THE ROAD TO INTERNAL SET THEORY 23

for any internal formula𝜑. We first compute the Nelson normal form of the right
hand side: [∃𝑥.∀𝑠𝑡𝑦.𝜑(𝑥,𝑦,𝑤)] = ∀𝑠𝑡𝑌 ∈  f in(𝑈).∃𝑥.∀𝑦 ∈ 𝑌 .𝜑(𝑥,𝑦,𝑤). Using
this, we get the Nelson normal form

∀𝑌 ∈  f in(𝑈).∃𝐵′ ∈  f in( f in(𝑈)).∀𝑤.∃𝐵 ∈ 𝐵′.

(∃𝑎.∀𝑏 ∈ 𝐵.𝜑(𝑎,𝑏,𝑤))→ ∃𝑥.∀𝑦 ∈ 𝑌 .𝜑(𝑥,𝑦,𝑤),

which we need to prove in ZFC Set Theory. To do that, first notice its equivalence
to

∀𝑌 ∈  f in(𝑈).∃𝑍 ∈  f in(𝑈).∀𝑤.

(∃𝑎.∀𝑧 ∈𝑍.𝜑(𝑎,𝑧,𝑤))→ ∃𝑥.∀𝑦 ∈ 𝑌 .𝜑(𝑥,𝑦,𝑤),

obtained by assuming the former then setting 𝑍 =
⋃
𝐵′ to conclude the latter;

then notice that we can write the latter as an instance of a logical tautology.

3. Idealization B: The backward Idealization axiom takes the form

(∃𝑥.∀𝑠𝑡𝑦.𝜑(𝑥,𝑦,𝑤))→ ∀𝑠𝑡𝐵 ∈  f in(𝑈).∃𝑎.∀𝑏 ∈ 𝐵.𝜑(𝑎,𝑏,𝑤)

for any internal formula 𝜑. Computing the Nelson normal form, we get

∀𝐵 ∈  f in(𝑈).∃𝑌 ′ ∈  f in( f in(𝑈)).∀𝑤.∃𝑌 ∈ 𝑌 ′.

(∃𝑥.∀𝑦 ∈ 𝑌 .𝜑(𝑥,𝑦,𝑤))→ ∃𝑎.∀𝑏 ∈ 𝐵.𝜑(𝑎,𝑏,𝑤),

which coincides with the forward case up to renaming.

4. Standardization: We deal only with Standardization in the form of Lemma 1.1.33,
which we can write as

∀𝑤.(∀𝑠𝑡𝑥.∃𝑠𝑡𝑦.𝜑(𝑥,𝑦,𝑤))→ ∃𝑠𝑡𝑏 ∶ 𝑈 → 𝑈.∀𝑠𝑡𝑎.𝜑(𝑎,𝑏(𝑎),𝑤)

where 𝜑 denotes an internal formula, as usual. We first calculate the Nelson
normal form

[∃𝑠𝑡𝑏 ∶ 𝑈 → 𝑈.∀𝑠𝑡𝑎.𝜑(𝑎,𝑏(𝑎),𝑤)] =

∀𝑠𝑡𝑎 ∶ 𝑈 → 𝑈.∃𝑠𝑡𝑏.𝜑(𝑎(𝑏), 𝑏(𝑎(𝑏)),𝑤).

24 CHAPTER 1. INTRODUCTION

Now, we can take the Nelson reduction of the implication, and get

∀𝑎.∀𝑦.∃𝑥.∃𝑏.𝜑(𝑥,𝑦(𝑥),𝑤)→ 𝜑(𝑎(𝑏), 𝑏(𝑎(𝑏)),𝑤)

Finally, we add the universal quantification to obtain the monstrous formula

∀𝑎.∀𝑦.

∃𝑋.∃𝐵.

∀𝑤.∃𝑥 ∈𝑋.∃𝑏 ∈ 𝐵.𝜑(𝑥,𝑦(𝑥),𝑤)→ 𝜑(𝑎(𝑏), 𝑏(𝑎(𝑏)),𝑤).

Notice that we can prove the Nelson reduction of the formula above simply by
setting 𝑋 = {𝑎(𝑦)}, 𝐵 = {𝑦}. These fix 𝑏 and 𝑥 uniquely, and we get the goal

∀𝑎.∀𝑦.

∀𝑤.𝜑(𝑎(𝑦),𝑦(𝑎(𝑦)),𝑤)→ 𝜑(𝑎(𝑦),𝑦(𝑎(𝑦)),𝑤),

an instance of a logical tautology.

Qed.

1.1.44. The translation sketched above relies heavily on the Axiom of Choice: every
switch of quantifiers and every translation of a modus ponens rule hides a use of Choice,
and one also has to prove that the translations of the logical axioms (when instantiated
with external formulae) also yield theorems of ZFC Set Theory. Proving this for logical
axioms of the form U3 requires invocations of Tychonoff’s theorem for products of finite
sets.

1.1.45. Theorem. Both of the following statements imply each other in Zermelo-Fraenkel
Set Theory (without the Axiom of Choice):

• Finite Tychonoff Theorem: The product of an indexed family of finite topolog-
ical spaces satisfies compactness with respect to the product topology.

• Ultrafilter Lemma: Every filter on any set occurs as a subfilter of some ultrafil-
ter.

Proof. Follows from [29]-Theorem 2.21.
Qed.

1.2. WORKING IN IST 25

1.1.46. The Ultrafilter Lemma is independent of Zermelo-Fraenkel Set Theory [4].
With that in mind, and in light of Theorem 1.1.45, we shall see the inevitability of
the phenomenon discussed in 1.1.44: Internal Set Theory conservatively extends ZFC
Set Theory, but Internal Set Theory without the Axiom of Choice does not conserva-
tively extend Zermelo-Fraenkel Set Theory without the Axiom of Choice. We will
prove this in a subsequent section by deducing the Ultrafilter Lemma (Lemma 1.3.40)
in IST without using Choice. Apart from the Finite Tychonoff Theorem, the Nelson
translation also uses full Choice to switch quantifiers3, so one cannot use it to show
that IST without Choice conservatively extends Zermelo-Fraenkel Set Theory with the
Ultrafilter Lemma. However, one can use a model-theoretic argument of Hrbacek [23]
to prove this conservative extension result directly.

1.2 Working in IST

1.2.1. From here on we work inside Internal Set Theory. Consequently, all the theo-
rems that follow are stated and proved in Internal Set Theory, unless otherwise noted.

1.2.2. Proposition. Consider an internal predicate 𝜑 with standard parameters. As-
sume the existence of a nonstandard 𝑥 such that 𝜑(𝑥) holds. Then we can also find a
standard 𝑦 satisfying 𝜑.

Proof. If the predicate𝜑 is internal, so is¬𝜑. The implication (∀𝑠𝑡𝑦.¬𝜑(𝑦))→∀𝑥.¬𝜑(𝑥)
holds by Transfer. Taking the contrapositive, we get the implication (∃𝑥.𝜑(𝑥)) →
∃𝑠𝑡𝑦.𝜑(𝑦). Now assume that we have a nonstandard 𝑥 such that 𝜑(𝑥) holds. Then
a fortiori we have an 𝑥 such that 𝜑(𝑥) holds (we just “forget to mention” the non-
standardness of 𝑥). Hence, the previous implication immediately gives a standard 𝑦
satisfying 𝜑(𝑦).
Qed.

1.2.3. As per Proposition 1.2.2, we can use transfer on any internal formula: any in-
ternal formula has a prenex normal form ∀𝑥.𝑄2𝑦.…𝜑(𝑥,𝑦) where 𝑄𝑖 are quantifiers
∀ or ∃, and 𝜑 is internal and quantifier-free. If 𝑄1 = ∀, then the Transfer axiom
yields ∀𝑥.𝑄2𝑦.…𝜑(𝑥,𝑦) ↔ ∀𝑠𝑡𝑥.𝑄2𝑦.…𝜑(𝑥,𝑦). Otherwise, Proposition 1.2.2 yields
∃𝑠𝑡𝑥.𝑄2𝑦.…𝜑(𝑥,𝑦)↔ ∃𝑥.𝑄2𝑦.…𝜑(𝑥,𝑦). Notice that we have already relied on this in

3However, this use of Choice turns out to be innocent in both Peano arithmetic with finite types and
in the type theory presented in Chapter 4.

26 CHAPTER 1. INTRODUCTION

the proof of Theorem 1.1.39. More importantly, Proposition 1.2.2 allows us to make
provisional assumptions of standardness: whenever we wish to prove an internal im-
plication 𝜑→ 𝜓 , we can start the proof by assuming the standardness of all objects
mentioned in 𝜑. After we prove the conclusion 𝜓 , we can freely discharge these stan-
dardness assumptions. In many situations, the additional standardness assumptions
make the conclusion easier to prove, by enabling the use of previously constructed ideal
elements. The reader will see a substantial example of the phenomenon “in action” in
the proof of Theorem 1.2.7.

1.2.4. Proposition. Consider an internal formula 𝜓 . The following statements are
equivalent.

1. ∃𝑠𝑡 f in .∀𝑦.∃𝑥 ∈  .𝜓(𝑥,𝑦),
2. ∀𝑦.∃𝑠𝑡𝑥.𝜓(𝑥,𝑦).

Proof. Recall that for any internal𝜑, ∀𝑠𝑡 f in .∃𝑦.∀𝑥∈ .𝜑(𝑥,𝑦) and ∃𝑦.∀𝑠𝑡𝑥.𝜑(𝑥,𝑦) are
equivalent. Since𝜓 is an internal formula, so is ¬𝜓 . Setting𝜑 to ¬𝜓 , we get the logical
equivalence of ∀𝑠𝑡 f in .∃𝑦.∀𝑥∈  .¬𝜓(𝑥,𝑦) and ∃𝑦.∀𝑠𝑡𝑥.¬𝜓(𝑥,𝑦). We can take the con-
trapositive and apply de Morgan’s laws to obtain the equivalence of ∃𝑠𝑡 f in .∀𝑦.∃𝑥 ∈
 .𝜓(𝑥,𝑦) and ∀𝑦.∃𝑠𝑡𝑥.𝜓(𝑥,𝑦) as desired.
Qed.

1.2.5. Theorem. Every element of a standard finite set is standard. Furthermore, if
every element of a set 𝐹 is standard, then 𝐹 is finite.

Proof. First consider a standard finite set 𝐹 . Then the following holds:

∃𝑠𝑡 f in𝐻.∀𝑥.∃𝑦 ∈𝐻.𝑥 ∈ 𝐹 → 𝑥 = 𝑦

simply by taking 𝐻 = 𝐹 . Applying Proposition 1.2.4, we obtain that ∀𝑦.∃𝑠𝑡𝑥.𝑥 ∈ 𝐹 →

𝑥 = 𝑦. But then 𝑦 is standard. Now consider a set 𝐹 whose elements are all standard.
Then ∀𝑦.∃𝑠𝑡𝑥.𝑥∈ 𝐹 → 𝑥= 𝑦. Applying the previous equivalence in reverse, we get that
𝐹 ⊆𝐻 for some finite 𝐻 . This proves that 𝐹 is finite.
Qed.

1.2.6. The proof of the combinatorialist’s version of the compactness theorem, a well
known theorem of de Bruijn and Erdős, provides an ideal entry point to Internal Set
Theory, since it uses each of the new axioms at least once. The proof presented below

1.2. WORKING IN IST 27

hides only a compactness argument, but the general technique recurs very often, so we
feel compelled to give an excruciatingly detailed proof. Ultimately, axiomatizing these
situations will reveal a connection to Zilber’s notion of structural approximation via
Definition 2.2.3. In what follows, the word graph denotes an undirected graph with no
loops or multi-edges. We denote the set of vertices of a graph 𝐺 as 𝑉𝐺, the set of edges
as𝐸𝐺. We call a graph finite if it contains finitely many vertices. A coloring of a graph
consists of a map 𝑓 ∶ 𝑉 (𝐺)→ 𝐶 from the vertices of the graph to some set of colors 𝐶
such that no two vertices sharing the same edge get assigned the same color.

1.2.7. Theorem (de Bruijn-Erdős). Consider a finite set of colors 𝐶 = {1,… ,𝑘}. A
graph𝐺 admits a𝐶-coloring precisely if every finite subgraph of𝐺 admits a𝐶-coloring.

Proof. One direction is obvious. For the other direction, assume that we can color ev-
ery finite subgraph of𝐺 with 𝑘∈ℕ colors. In fact, since we can express our conclusion
(𝑘-colorability of 𝐺) using an internal formula, we can provisionally assume the stan-
dardness of both the graph 𝐺 and the finite set 𝐶 of colors. At the end, Transfer will
eliminate these assumptions.

1. Given any finite set 𝑁 of vertices of 𝐺, we can find a finite subgraph of 𝐺 that
contains all the vertices in 𝑁 (take the induced subgraph of the set 𝑁). The
Idealization axiom applies to this situation: we get a finite subgraph 𝐻 ⊆𝐺 that
nevertheless contains every standard vertex of 𝐺.

2. Since 𝐻 is a finite subgraph of 𝐺, our assumption guarantees that it admits a
𝐶-coloring 𝑓 ∶ 𝐻 → {1,…𝑘}. Identify the function 𝑓 with its graph, the set
of all pairs (𝑣,𝑐) such that 𝑓 (𝑣) = 𝑐. Then for any 𝑣 ∈ 𝑉𝐺 we can find a unique
𝑐 ∈ {1,… ,𝑘} such that (𝑣,𝑐) ∈ 𝑓 .

3. Use Standardization to define a standard set

𝑓 ′ = ⦃(𝑣,𝑐) ∈ 𝑉𝐺 ×{1,… ,𝑘} || (𝑣,𝑐) ∈ 𝑓⦄ .
We shall prove that the set 𝑓 ′ also forms the graph of a function 𝑉𝐺→𝐶 , meaning
that for any vertex 𝑣 ∈ 𝑉𝐺 we can find a unique 𝑐 ∈ {1,… ,𝑘} such that (𝑣,𝑐)
belongs to 𝑓 ′.

4. Existence says ∀𝑣 ∈ 𝑉𝐺.∃𝑐 ∈ 𝐶.(𝑣,𝑐) ∈ 𝑓 ′, but by Transfer it suffices to prove
∀𝑠𝑡𝑣 ∈ 𝑉𝐺.∃𝑠𝑡𝑐 ∈ 𝐶.(𝑣,𝑐) ∈ 𝑓 ′. So pick any standard 𝑣 ∈ 𝑉𝐺. We have 𝑣 ∈𝐻
since𝐻 contains every standard vertex. The fact that 𝑓 is a function immediately

28 CHAPTER 1. INTRODUCTION

gives us a 𝑐 ∈ {1,… ,𝑘} such that (𝑣,𝑐) ∈ 𝑓 . But 𝐶 forms a standard finite set,
so we can use Theorem 1.2.5 to conclude the standardness of 𝑐. Now, we have a
standard pair (𝑣,𝑐) ∈ 𝑓 . The Standardization axiom says that (𝑣,𝑐) ∈ 𝑓 ′ holds for
standard 𝑣,𝑐 precisely if (𝑣,𝑐) ∈ 𝑓 . Hence (𝑣,𝑐) ∈ 𝑓 ′ holds, proving existence.

5. For uniqueness, it suffices to prove that

∀𝑠𝑡𝑣 ∈ 𝑉𝐺.∀𝑠𝑡𝑐1, 𝑐2 ∈ 𝐶.(𝑣,𝑐1) ∈ 𝑓 ′∧(𝑣,𝑐2) ∈ 𝑓 ′ → 𝑐1 = 𝑐2.

So take standard 𝑣,𝑐1, 𝑐2 and assume both (𝑣,𝑐1) ∈ 𝑓 ′ and (𝑣,𝑐2) ∈ 𝑓 ′. Using the
standardness of the pairs (𝑣,𝑐1), (𝑣,𝑐2) we can apply Standardization to conclude
(𝑣,𝑐1) ∈ 𝑓 and (𝑣,𝑐2) ∈ 𝑓 . At that point, we can use the fact that 𝑓 is a functional
relation to conclude 𝑐1 = 𝑐2, proving uniqueness.

6. Now we verify that 𝑓 ′ gives a 𝐶-coloring. The sentence

∀𝑣1,𝑣2 ∈ 𝑉𝐺.(𝑣1,𝑣2) ∈ 𝐸𝐺 → 𝑓 ′(𝑣1) ≠ 𝑓 ′(𝑣2)

states this. Transfer applies, so we can get away with showing

∀𝑠𝑡𝑣1,𝑣2 ∈ 𝑉𝐺.(𝑣1,𝑣2) ∈ 𝐸𝐺 → 𝑓 ′(𝑣1) ≠ 𝑓 ′(𝑣2).

So take standard vertices 𝑣1,𝑣2 of the graph and suppose they have an edge be-
tween them. Then

𝑓 ′ (𝑣1) = 𝑓 (𝑣1) ≠ 𝑓 (𝑣2) = 𝑓 ′ (𝑣2)
holds: the equalities follow by Standardization, the inequality follows since 𝑓 is a
𝐶-coloring. As 𝑣1,𝑣2 get different colors, we conclude that 𝑓 ′ gives a𝐶-coloring
of 𝐺.

We have concluded that for standard 𝐺 and 𝐶 , if every finite subgraph of 𝐺 admits
a 𝐶-coloring, so does the entire graph 𝐺. However, the conclusion is internal (with
standard parameters𝐺, 𝐶), so Transfer makes the standardness assumptions redundant.
We get that if every finite subgraph of some graph 𝐺 admits a 𝐶-coloring, then the
entire graph 𝐺 admits a 𝐶-coloring.
Qed.

1.2. WORKING IN IST 29

1.2.8. In the remainder of this section, we establish some basic results concerning stan-
dardness.

1.2.9. Proposition. Consider an internal formula 𝜑(𝑥) that has one free variable and
that does not contain any non-standard parameters. If the sentence ∃!𝑥.𝜑(𝑥) holds, then
the object 𝑥 such that 𝜑(𝑥) holds is necessarily standard.

Proof. Apply Transfer to ∃𝑥.𝜑(𝑥) to conclude the existence of some standard 𝑥 satis-
fying 𝜑(𝑥). By the uniqueness clause, every object 𝑦 satisfying 𝜑(𝑦) equals 𝑥: since 𝑥
is standard, so is 𝑦.
Qed.

1.2.10. Corollary. Given standard sets 𝐴,𝐵, the sets 𝐴×𝐵,𝐴∩𝐵,𝐴∪𝐵,𝐴 ⧵𝐵 and
(𝐵) are all standard, and so is the set of all functions 𝐴→ 𝐵.

Proof. We can characterize each of them via an internal formula with no non-standard
variables (exercise!), and prove their unique existence.
Qed.

1.2.11. Corollary. Given a standard function 𝑓 ∶𝐴→𝐵 and standard 𝑥∈𝐴, the value
𝑓 (𝑥) is standard.

Proof. Regard the (graph of the) function as a subset of 𝐴×𝐵. For each 𝑥 ∈ 𝐴, the
internal formula 𝜑(𝑦)↔ (𝑥,𝑦) ∈ 𝑓 contains no non-standard parameters, and it charac-
terizes the value 𝑦 = 𝑓 (𝑥) uniquely.
Qed.

1.2.12. Corollary. One cannot construct a set that contains precisely the standard ele-
ments of ℕ.

Proof. Assume for a contradiction that we have found such a set ℕ𝑠𝑡. All elements of
ℕ𝑠𝑡 are standard, so by Theorem 1.2.5 ℕ𝑠𝑡 is finite. Consider the maximum element 𝑁
ofℕ𝑠𝑡. We have st(𝑁), so by Corollary 1.2.11, st(𝑁+1) holds as well. But𝑁+1∉ℕ𝑠𝑡,
a contradiction.
Qed.

1.2.13. Zermelo-Fraenkel Set Theory proves the (universal closure of the) axiom of
induction for any formula 𝜑 in its language. This internal induction principle remains
valid in Internal Set Theory. However, unlike ZFC (but similarly to the theory PAKSR

30 CHAPTER 1. INTRODUCTION

considered in 1.1.10 and in 1.1.22), Internal Set Theory does not prove the axiom of
induction for some formulae in its (extended) language. In particular, for st(𝑥) we have
both st(0) and ∀𝑥 ∈ ℕ.st(𝑥) → st(𝑥+ 1) (this follows from Corollary 1.2.11 applied
to the standard function 𝑛↦ 𝑛+1), but of course not ∀𝑛 ∈ ℕ.st(𝑛), which would im-
mediately contradict Idealization. One must maintain constant vigilance not to apply
induction arguments to general formulae in the language of Internal Set Theory, es-
pecially since we make heavy use of binary predicates in the language of IST in the
later chapters of this thesis. On these predicates, we have weaker reasoning principles
(among them External Induction, Theorem 1.2.15) available. We develop these below.

1.2.14. Proposition. Consider a standard natural number 𝑏. All 𝑛 ∈ ℕ with 𝑛 < 𝑏 are
standard.

Proof. The internal formula 𝑥 < 𝑏 does not have non-standard parameters, so we can
construct the finite set𝐵 = {𝑥 ∈ ℕ |𝑥 < 𝑏}. The standardness of𝐵 follows immediately
from Proposition 1.2.9, so we can use Theorem 1.2.5 to conclude that all elements of
𝐵 are standard.
Qed.

1.2.15. Theorem (External Induction). Take any formula 𝜑 in the language of Internal
Set Theory (possibly with non-standard parameters). If 𝜑(0) and ∀𝑠𝑡𝑛.𝜑(𝑛)→ 𝜑(𝑛+1)
both hold, then 𝜑(𝑥) holds for all standard 𝑥 ∈ ℕ.

Proof. Use the axiom of Standardization to construct the set 𝑃 = ⦃𝑥 ∈ ℕ |𝜑(𝑥)⦄. The
formula 𝜓(𝑥)↔ 𝑥 ∈ 𝑃 is internal and its only parameter 𝑃 is standard. Notice that for
standard elements 𝑥, we have𝜑(𝑥)↔𝜓(𝑥), so𝜓(0) and ∀𝑠𝑡𝑛.𝜓(𝑛)→𝜓(𝑛+1) both hold,
and Transfer applies to the latter, so ∀𝑛.𝜓(𝑛) → 𝜓(𝑛+1) holds as well. By the (ordi-
nary, internal) induction principle we get ∀𝑥.𝜓(𝑥). The desired conclusion, ∀𝑠𝑡𝑥.𝜑(𝑥),
follows immediately from the equivalence of 𝜑 and 𝜓 over standard elements.
Qed.

1.3 Topology via predicates

1.3.1. Many applications of Internal Set Theory stem from its ability to transport def-
initions and techniques meant for finite spaces to the general topological setting. In
what follows, we consider topological spaces (𝑇 ,Ω𝑇) where Ω𝑇 denotes the lattice of
open sets, and 𝑇 denotes the carrier (underlying set of points). We employ metonymy,

1.3. TOPOLOGY VIA PREDICATES 31

and write 𝑇 instead of (𝑇 ,Ω𝑇) whenever we deem the identity of Ω𝑇 sufficiently un-
ambiguous.

1.3.2. Given any topological space, we can construct an order relation (often referred to
as the specialization order) on its points that every continuous function preserves. For
finite topological spaces, we can easily achieve the converse as well (Theorem 1.3.6).

1.3.3. Definition. Consider a topological space (𝑇 ,Ω𝑇), and regard two points 𝑥,𝑦∈ 𝑇 .
We write 𝑥 ≤𝑇 𝑦 if ∀𝑉 ∈ Ω𝑇 .𝑥 ∈ 𝑉 → 𝑦 ∈ 𝑉 . We call the resulting preorder relation
≤𝑇 the specialization order of 𝑇 .

1.3.4. Exercise. Check that the construction of Definition 1.3.3 results in a preorder
relation on any topological space. Prove that the resulting relation satisfies the partial
order axioms precisely on T0-separable spaces.

1.3.5. Proposition. Consider a finite topological space (𝑇 ,Ω𝑇). A subset 𝑆 ⊆ 𝑇 be-
longs to Ω𝑇 precisely if for each 𝑥,𝑦 ∈ 𝑇 with 𝑥 ≤ 𝑦, 𝑥 ∈ 𝑆 → 𝑦 ∈ 𝑆.

Proof. Assume that𝑆 ∈Ω𝑇 and 𝑥≤ 𝑦. Since 𝑥∈𝑆, the set𝑆 forms a neighborhood of
𝑥, so𝑆 contains 𝑦. That settles one direction. For the other direction, assume ∀𝑥.∀𝑦.𝑥≤
𝑦∧𝑥 ∈ 𝑆→ 𝑦 ∈ 𝑆. To prove that 𝑆 is open, it suffices to show that 𝑆 contains an open
neighborhood of each 𝑥 ∈ 𝑆. But by our assumption it contains at least the open set⋂

{𝑉 ∈ Ω𝑇 |𝑥 ∈ 𝑉 }.
Qed.

1.3.6. Theorem (Birkhoff’s representation). Take two finite topological spaces 𝑆 and
𝑇 . A function 𝑓 ∶ 𝑆 → 𝑇 is continuous precisely if 𝑥 ≤𝑆 𝑦→ 𝑓 (𝑥) ≤𝑇 𝑓 (𝑦) holds for
all 𝑥,𝑦 ∈ 𝑆.

Proof. The comprehension 𝑉𝑥 =
{
𝑦 ∈ 𝑆 ||𝑥 ≤𝑆 𝑦} constructs the smallest open set con-

taining 𝑥 for every point 𝑥 ∈ 𝑆 of a finite space 𝑆. Hence, we only need to verify the
openness of preimages of open sets of the form 𝑉𝑥 with 𝑥 ∈ 𝑇 .
First consider a monotone4 function 𝑓 ∶ 𝑆 → 𝑇 and any set of the form 𝑉𝑥 for 𝑥 ∈ 𝑇 .
Assume 𝑎 ∈ 𝑓−1(𝑉𝑥) and 𝑎 ≤𝑆 𝑏. We need to prove that 𝑏 ∈ 𝑓−1(𝑉𝑥). But 𝑎 ∈ 𝑓−1(𝑉𝑥)
holds precisely if 𝑥 ≤𝑇 𝑓 (𝑎). Moreover, 𝑓 (𝑎) ≤𝑇 𝑓 (𝑏) follows from 𝑎 ≤𝑆 𝑏 by the
monotonicity assumption. We get 𝑥 ≤𝑇 𝑓 (𝑎) ≤𝑇 𝑓 (𝑏), and thus 𝑏 ∈ 𝑓−1(𝑉𝑥). Since we
chose 𝑎,𝑏 ∈ 𝑆 arbitrarily, this proves the continuity of the function 𝑓 .

4From here on, monotone functions are always monotone increasing.

32 CHAPTER 1. INTRODUCTION

Now consider a continuous function 𝑓 ∶ 𝑆 → 𝑇 . Assume 𝑎 ≤𝑆 𝑏. By the openness of
the preimage of 𝑉𝑓 (𝑎), we get that 𝑓 (𝑎)≤𝑇 𝑓 (𝑎) and 𝑎≤𝑆 𝑏 together imply 𝑓 (𝑎)≤𝑇 𝑓 (𝑏).
All these preconditions hold, so we can conclude 𝑓 (𝑎) ≤𝑇 𝑓 (𝑏). Since we chose 𝑎,𝑏
arbitrarily, this proves the monotonicity of the function 𝑓 .
Qed.

1.3.7. Definition. We call the topological space (𝑇 ,Ω𝑇)with underlying set 𝑇 ={⊥,⊤}
and open set lattice Ω𝑇 = {∅,{⊤},{⊥,⊤}} the Sierpinski space, and denote it 𝑆́.

1.3.8. Proposition. Consider any finite topological space (𝑋,Ω𝑋). We have a one-to-
one correspondence between monotone functions 𝑓 ∶ 𝑋 → 𝑆́ and open sets 𝐹 of the
space 𝑋.

Proof. Apply Propositions 1.3.5 and 1.3.6.
Qed.

1.3.9. Alas, we cannot expect analogues of Proposition 1.3.5 and Theorem 1.3.6 to
hold for general infinite spaces. For example, applying Definition 1.3.3 to the usual
Euclidean topology on the real line ℝ yields a discrete order, and the same happens on
every space with sufficient separation (Proposition 1.3.10), showing cannot reduce the
study of topological spaces and continuous functions to the study of functions preserv-
ing relations.

1.3.10. Proposition. Consider a T1-separable topological space (𝑇 ,Ω𝑇) on which ev-
ery function that preserves the specialization order ≤𝑇 is continuous. Then 𝑇 carries
the discrete topology.

Proof. We show the triviality of the ordering. Consider any two 𝑥,𝑦 ∈ 𝑇 with 𝑥 ≠ 𝑦.
By T1-separation, we obtain an open set 𝑁 such that 𝑥 ∈𝑁 but 𝑦 ∉𝑁 , thus proving
𝑥 ≰𝑇 𝑦. Similarly, we get 𝑦 ≰𝑇 𝑥. This shows that every function 𝑓 ∶ 𝑇 → 𝑇 preserves
the specialization order, and thus is continuous. In particular, continuity holds for the
“characteristic function” mapping elements of 𝑉 to 𝑥 and everything else to 𝑦 for any
set 𝑉 ⊆ 𝑇 . Taking the preimage of𝑁 with respect to this characteristic function shows
the openness of any set 𝑉 . Hence, 𝑇 carries the discrete topology.
Qed.

1.3. TOPOLOGY VIA PREDICATES 33

Predicated Spaces and S-continuity

1.3.11. Birkhoff’s representation theorem requires that the intersection of arbitrary fam-
ilies of open sets itself constitute an open set5. This latter property fails badly for gen-
eral infinite spaces: as we have seen in Proposition 1.3.10, the ≤𝑋 relation gives rise
to equality over any 𝑇1 space (𝑋,Ω𝑋), so we have no hope at all of recovering the
topology from the specialization relation.

1.3.12. In the language of ordinary Zermelo-Fraenkel set theory, every bounded bi-
nary predicate 𝜑 corresponds to a relation (set of ordered pairs), by defining 𝑅 as
{(𝑥,𝑦) ∈ 𝐴×𝐵 |𝜑(𝑥,𝑦)} where 𝐴,𝐵 denote the bounds of the predicate 𝜑. One can’t
say the same about Internal Set Theory: in the language of IST, we can easily construct
predicates that do not form relations. For example, if the predicate 𝜑(𝑥,𝑦) abbreviating
𝑥 ∈ ℕ∧ 𝑦 ∈ ℕ∧ st(𝑥) would form a relation, we could define the “set of all standard
naturals” as {𝑥 ∈ ℕ |𝜑(𝑥,𝑥)}, contradicting Corollary 1.2.12.

1.3.13. One should see the failure of the correspondence between relations and bounded
predicates in Internal Set Theory as an opportunity. The impossibility result of Propo-
sition 1.3.10 applies to any relation, and hence to any bounded ZFC-predicate, but
fortunately not to arbitrary predicates in the language of Internal Set Theory! Here we
show that by replacing the relation in Definition 1.3.3 with a binary predicate, we can
obtain well-behaved analogues of Propositions 1.3.5, Theorem 1.3.6 and even Propo-
sition 1.3.8. This allows us to transport definitions and techniques meant for finite (or
more generally: Alexandroff) spaces to the general topological setting. We elected to
present these results in detail for two reasons: first, to keep the document self-contained,
and second because the ideas inherent in the development will recur in later chapters of
the thesis where we characterize Alexandroff approximations and sheaves over Alexan-
droff spaces. While some of the terminology is novel, all results of the current section
are well-known and have appeared in the literature in various forms. The reader should
consult the General Topology chapter of Nonstandard Analysis in Practice [12] for at-
tributions and alternative formulations.

1.3.14. Definition. A predicated space (𝑇 ,◦−) consists of the following data:

• an underlying set (or carrier set) 𝑇 ,

• a binary predicate in the language of Internal Set Theory, ◦−, referred to as the
5Spaces satisfying this property are called Alexandroff spaces.

34 CHAPTER 1. INTRODUCTION

“nearness”, “closeness” or “proximity” predicate,

such that ∀𝑥.∀𝑦.𝑥 ◦− 𝑦→ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 and ∀𝑥 ∈ 𝑇 .𝑥 ◦− 𝑥. As usual, we elide ◦−
and refer to the predicated space (𝑇 ,◦−) simply as 𝑇 whenever the elision causes no
ambiguity.

1.3.15. Definition. Consider two predicated spaces (𝑈,◦−𝑈) and (𝑇 ,◦−𝑇), along with
a function 𝑓 ∶𝑈 → 𝑇 . We call this function S-continuous if for all standard 𝑥 ∈𝑈 and
for all 𝑦 ∈ 𝑈 such that 𝑥 ◦−𝑈 𝑦, we have 𝑓 (𝑥) ◦−𝑇 𝑓 (𝑦).

1.3.16. Definition. We call a subset 𝑉 ⊆ 𝑇 an S-open set of the predicated space (𝑇 ,◦−)
if for all standard 𝑥 ∈ 𝑉 , 𝑉 contains every 𝑦 ∈ 𝑇 such that 𝑥 ◦− 𝑦.
We say that the nearness predicate ◦− represents the topology of the standard topologi-
cal space (𝑇 ,Ω𝑇) if every standard S-open set of (𝑇 ,◦−) forms an open set in (𝑇 ,Ω𝑇)
and every standard open set of (𝑇 ,Ω𝑇) forms an S-open set in (𝑇 ,◦−).
We say that the nearness predicate ◦− universally represents the topology of the stan-
dard topological space (𝑇 ,Ω𝑇) if it represents (𝑇 ,Ω𝑇) and for any other predicate ∼
representing (𝑇 ,Ω𝑇), the implication ∀𝑠𝑡𝑥.∀𝑦.𝑥 ∼ 𝑦→ 𝑥 ◦− 𝑦 holds.

1.3.17. At this point the reader should carefully contemplate how would one would for-
malize the clause defining universal representations in Definition 1.3.16. When we say
“for any other predicate representing the space”, we have to quantify over all predicates,
so no single sentence of set theory (ZFC or IST) suffices for defining universality.

1.3.18. Proposition. For any standard topological space (𝑇 ,Ω𝑇), we can find a near-
ness predicate ◦− on 𝑇 universally representing it.

Proof. Define the predicate 𝑥 ◦− 𝑦 as an abbreviation of ∀𝑠𝑡𝑁 ∈ Ω𝑇 .𝑥 ∈𝑁 → 𝑦 ∈𝑁 .
First take a standard open set 𝑆 ⊆ 𝑇 of the topological space (𝑇 ,Ω𝑇). Consider a pair
𝑥 ◦− 𝑦 with 𝑥 ∈ 𝑆 standard. Since 𝑆 contains a neighborhood of 𝑥, Transfer assures
us that it also contains a standard such neighborhood. That standard neighborhood
contains 𝑦 by definition of the nearness predicate. Thus, 𝑆 forms an S-open set of 𝑇 .
Now, take a standard S-open set 𝑆 ⊆ 𝑇 of the predicated space (𝑇 ,◦−). We have that for
each standard 𝑥∈ 𝑇 and arbitrary 𝑦∈ 𝑇 with 𝑥 ◦− 𝑦, 𝑥∈𝑆→ 𝑦∈𝑆. For every finite set
of topological neighborhoods of 𝑥, we can find an open neighborhood of 𝑥 in Ω𝑇 that
forms a subset of all of them (this is a restatement of the fact that the finite intersection
of topologically open sets is open). By Idealization we deduce the existence of an open
neighborhood of 𝑥, 𝐼𝑥 ∈ Ω𝑇 , that forms a subset of every standard neighborhood of

1.3. TOPOLOGY VIA PREDICATES 35

𝑥. By our assumption 𝑆 contains every 𝑦 ∈ 𝐼𝑥, so 𝐼𝑥 ⊆ 𝑆. Therefore, 𝑆 contains a
neighborhood 𝐼𝑥 of each of standard point 𝑥 ∈ 𝑆. Transfer applies to this statement
(since 𝑆 is standard), and yields that 𝑆 contains a neighborhood of each of its points,
i.e. 𝑆 is open.
For universality, consider any other predicate ∼𝑇 representing the topology of 𝑇 . We
prove the implication 𝑥 ∼𝑇 𝑦→ 𝑥 ◦−𝑇 𝑦 for standard 𝑥 ∈ 𝑇 and arbitrary 𝑦 ∈ 𝑇 . Since
∼𝑇 represents the topology of 𝑇 , we have the implication

∀𝑠𝑡𝑁.∀𝑠𝑡𝑥 ∈ 𝑇 .∀𝑦 ∈ 𝑇 .(𝑥 ∼𝑇 𝑦∧𝑁 ∈ Ω𝑇 ∧𝑥 ∈𝑁)→ 𝑦 ∈𝑁,

and by exchanging connectives and quantifiers we get

∀𝑠𝑡𝑥 ∈ 𝑇 .∀𝑦 ∈ 𝑇 .𝑥 ∼𝑇 𝑦→ (∀𝑠𝑡𝑁 ∈ Ω𝑇 .𝑥 ∈𝑁 → 𝑦 ∈𝑁),

i.e. 𝑥 ∼𝑇 𝑦→ 𝑥 ◦−𝑇 𝑦, as desired.
Qed.

1.3.19. Theorem. Take standard topological spaces (𝑆,Ω𝑆) and (𝑇 ,Ω𝑇) universally
represented by the nearness relations ◦−𝑆 and ◦−𝑇 respectively. A standard function
𝑓 ∶ 𝑆 → 𝑇 forms a continuous map from (𝑆,Ω𝑆) to (𝑇 ,Ω𝑇) precisely if it forms an
S-continuous map from (𝑆,◦−𝑆) to (𝑇 ,◦−𝑇).

Proof. For the predicates ◦−𝑆 and ◦−𝑇 constructed in the proof of Proposition 1.3.18
we can simply imitate the proof of Birkhoff’s representation theorem (exercise, but you
may wish to consult [12]-Section 6.2 for hints). Now consider any other predicates ∼𝑆
and ∼𝑇 representing their respective topologies universally.
Take a standard continuous 𝑓 ∶ 𝑆 → 𝑇 , a standard 𝑥 ∈ 𝑆 and an arbitrary 𝑦 ∈ 𝑆 such
that 𝑥 ∼𝑆 𝑦. By the universality of ◦−𝑆 , the implication ∀𝑠𝑡𝑥′.∀𝑦′.𝑥′ ∼𝑆 𝑦′ → 𝑥′ ◦−𝑆 𝑦′

holds, so we get 𝑥 ◦−𝑆 𝑦. But then 𝑓 (𝑥) ◦−𝑇 𝑓 (𝑦) obtains by the proof of the special
case. Using the universality of ∼𝑇 , we get 𝑓 (𝑥) ∼𝑇 𝑓 (𝑦).
Now take an S-continuous function 𝑓 ∶ 𝑆 → 𝑇 , consider a standard 𝑥 ∈ 𝑆 and an
arbitrary 𝑦∈ 𝑆 such that 𝑥 ◦−𝑆 𝑦. The universality of ∼𝑆 gets us to 𝑥∼𝑆 𝑦, so 𝑓 (𝑥) ∼𝑇
𝑓 (𝑦), and the universality of ◦−𝑇 immediately yields 𝑓 (𝑥) ◦−𝑇 𝑓 (𝑦). Thus, 𝑥 ◦−𝑆 𝑦
implies 𝑓 (𝑥) ◦−𝑇 𝑓 (𝑦), and by the proof of the special case we obtain the continuity of
the function 𝑓 .
Qed.

36 CHAPTER 1. INTRODUCTION

1.3.20. Exercise. Consider ℝ equipped with its usual Euclidean topology, and take a
universal representation ◦−ℝ. Construct

1. a continuous map ℝ→ℝ that is not S-continuous;

2. an S-continuous map ℝ→ℝ that is not continuous;

3. a map ℝ→ℝ that is both continuous and S-continuous, but not standard.

1.3.21. As we have seen, Theorem 1.3.19 provides an almost perfect counterpart to
Birkhoff’s representation theorem, and by Proposition 1.3.18, it works for every stan-
dard topological space, not only Alexandroff spaces. Thanks to Transfer, we can as-
sume that our topology comes from a binary predicate whenever we want to prove a
standard conclusion about an arbitrary topological space. At first sight, the definition
of S-continuity (Definition 1.3.15) may look less pleasant than the mere monotonicity
of the Alexandroff case, since the former requires an assumption of standardness on
the first argument. If one desired an exact correspondence, one could remove this con-
straint, and mutatis mutandis everything would keep working: e.g. one would simply
replace the universal representations of Proposition 1.3.18 with st(𝑥)∧𝑥 ◦− 𝑦. However,
we fare better by putting up with this minor complication. The payoff comes when we
consider functions 𝑓 ∶ℝ→ℝ that do preserve the predicate ◦−ℝ even for non-standard
𝑥: miraculously, this property corresponds exactly to uniform continuity.

1.3.22. Definition. Take a predicated space (𝑇 ,◦−) on the standard set 𝑇 . We call
the structure (𝑇 ,◦−) a topological predicated space if ◦− universally represents some
standard topological space (𝑇 ,Ω𝑇).

1.3.23. From here on we identify standard topological spaces with topological predi-
cated spaces without any further notice. Thanks to Theorem 1.3.19, we do not need to
distinguish between continuous and S-continuous standard functions that go between
topological predicated spaces. However, we will rely on nonstandard functions a cou-
ple of times in our development: therefore, the reader should expect to see functions
for which we explicitly assume both conditions.

Properties of Predicated Spaces

1.3.24. In this subsection we introduce predicated counterparts to the usual properties
of topological spaces (separation axioms, compactness, and so on). Customarily, au-
thors attach the “S-” modifier to these generalized concepts (as we did for continuity

1.3. TOPOLOGY VIA PREDICATES 37

in Definition 1.3.15), but we will refrain from doing so, reusing names of topological
concepts as necessary. The reader should keep in mind that a single property, such as
compactness, has infinitely many different generalizations to predicated spaces that all
coincide over topological predicated spaces, so there is always some degree of arbitrari-
ness in the choice of the generalization that gets to inherit a particular name.

1.3.25. Definition. We call a predicated space (𝑇 ,◦−)

1. Kolmogorov separable if two standard points that share exactly the same nearby
points are equal;

2. Fréchet separable if two nearby standard points are always equal;

3. Hausdorff separable if two standard points that share a common nearby point are
always equal.

1.3.26. It might seem heavy-handed, but the Galactic Halo theorem provides the sim-
plest, most principled way of translating between the common properties of predicated
spaces and their topological counterparts. We encourage the readers who skipped Sec-
tion 1.1.32 to return to that section now and familiarize themselves with at least the
proof of Theorem 1.1.39. We assume throughout that the predicate representing a topo-
logical space is the one given in the proof of Proposition 1.3.18 (exercise: explain why
we do not lose any generality).

1.3.27. Proposition. A topological predicated space is Fréchet in the sense of Defini-
tion 1.3.25 precisely if it satisfies T1-separation as a topological space.

Proof. The following argument implicitly uses the Galactic Halo theorem. We leave
it in this form as preparation for the proof of Proposition 1.3.28. Formally, the Fréchet
condition states the following:

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .𝑥 ◦− 𝑦→ 𝑥 = 𝑦.

We expand the definition of ◦− (as in Proposition 1.3.18) to get the equivalent condition

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .(∀𝑠𝑡𝑁 ∈ Ω𝑇 .𝑥 ∈𝑁 → 𝑦 ∈𝑁)→ 𝑥 = 𝑦.

38 CHAPTER 1. INTRODUCTION

Putting this in prenex form, we obtain

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .∃𝑠𝑡𝑁 ∈ Ω𝑇 .(𝑥 ∈𝑁 → 𝑦 ∈𝑁)→ 𝑥 = 𝑦.

Transfer applies and, we obtain the following Nelson reduction, equivalent to the orig-
inal condition:

∀𝑥,𝑦 ∈ 𝑇 .∃𝑁 ∈ Ω𝑇 .(𝑥 ∈𝑁 → 𝑦 ∈𝑁)→ 𝑥 = 𝑦.

Taking contrapositives gives us the familiar sentence

∀𝑥,𝑦 ∈ 𝑇 .∃𝑁 ∈ Ω𝑇 .𝑥 ≠ 𝑦→ 𝑥 ∈𝑁 ∧𝑦 ∉𝑁.

stating that the space 𝑇 has T1-separation.
Qed.

1.3.28. Proposition. A topological predicated space is Hausdorff in the sense of Defi-
nition 1.3.25 precisely if it is T2-separable (i.e. Hausdorff) as a topological space.

Proof. Formally, the Hausdorff condition states the following:

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .∀𝑠 ∈ 𝑇 .(𝑥 ◦− 𝑠∧𝑦 ◦− 𝑠)→ 𝑥 = 𝑦.

We start by expanding the definition of ◦−, and get the equivalent statement

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .∀𝑠 ∈ 𝑇 .

((∀𝑠𝑡𝑁 ∈ Ω𝑇 .𝑥 ∈𝑁 → 𝑠 ∈𝑁)∧ (∀𝑠𝑡𝑀 ∈ Ω𝑇 .𝑦 ∈𝑀 → 𝑠 ∈𝑀))→ 𝑥 = 𝑦.

Applying the algorithm of the Galactic Halo theorem, we get the equivalence of the
original condition with the following monstrosity:

∀𝑥,𝑦 ∈ 𝑇 .∃𝑁 ′,𝑀 ′ ∈  f in(Ω𝑇).∀𝑠 ∈ 𝑇 .∃𝑁 ∈𝑁 ′.∃𝑀 ∈𝑀 ′.

((𝑥 ∈𝑁 → 𝑠 ∈𝑁)∧ (𝑦 ∈𝑀 → 𝑠 ∈𝑀))→ 𝑥 = 𝑦.

Replacing𝐴→𝐵 with¬𝐴∨𝐵 everywhere yields the more legible, equivalent condition

∀𝑥,𝑦 ∈ 𝑇 .𝑥 ≠ 𝑦→ ∃𝑁 ′,𝑀 ′ ∈  f in(Ω𝑇).∀𝑠 ∈ 𝑇 .∃𝑁 ∈𝑁 ′.∃𝑀 ∈𝑀 ′.

(𝑥 ∈𝑁 ∧ 𝑠 ∉𝑁)∨ (𝑦 ∈𝑀 ∧ 𝑠 ∉𝑀).

1.3. TOPOLOGY VIA PREDICATES 39

Since taking the union
⋃
𝑁 ′ results in an open set of 𝑇 (and similarly for 𝑀 ′), we get

a much simpler equivalent condition,

∀𝑥,𝑦 ∈ 𝑇 .𝑥 ≠ 𝑦→ ∃𝑁,𝑀 ∈ Ω𝑇 .∀𝑠 ∈ 𝑇 .(𝑥 ∈𝑁 ∧ 𝑠 ∉𝑁)∨ (𝑦 ∈𝑀 ∧ 𝑠 ∉𝑀).

Setting 𝑠 = 𝑥 in the above condition proves 𝑦 ∈𝑀 and 𝑥 ∉𝑀 , while setting 𝑠 = 𝑦
proves 𝑥 ∈𝑁 and 𝑦 ∉𝑁 . Thus we get that 𝑁 (𝑀) forms a neighborhood of 𝑥 (resp.
𝑦), and

∀𝑥,𝑦 ∈ 𝑇 .𝑥 ≠ 𝑦→ ∃𝑁,𝑀 ∈ Ω𝑇 .∀𝑠 ∈ 𝑇 .𝑠 ∉𝑁 ∨ 𝑠 ∉𝑀,

proving𝑁 ∩𝑀 = ∅, proving T2-separation for 𝑇 . Clearly, the converses of the last two
implications obtain as well, so a topological predicated space is Hausdorff in the sense
of Definition 1.3.25 precisely if it has T2-separation.
Qed.

1.3.29. Proposition. A topological predicated space satisfies the Kolmogorov condi-
tion of Definition 1.3.25 precisely if it satisfies T0-separation.

Proof. Consider a standard T0 space 𝑇 and two standard points 𝑥,𝑦 ∈ 𝑇 . Assume
∀𝑠∈ 𝑇 .𝑥 ◦− 𝑠↔ 𝑦 ◦− 𝑠. We have 𝑥 ◦− 𝑥 and 𝑦 ◦− 𝑦 by reflexivity, and setting 𝑠= 𝑦 in our
assumption gives 𝑥 ◦− 𝑦. Setting 𝑠 = 𝑥 yields 𝑦 ◦− 𝑥. Now assume for a contradiction
the existence of an open set𝑁 containing 𝑥 but not 𝑦. By Transfer we’d have a standard
such 𝑁 , and since 𝑥 ◦− 𝑦, we’d have 𝑦 ∈𝑁 , a contradiction. Hence, such an 𝑁 cannot
exist. We get the same conclusion if we assume the existence of 𝑀 containing 𝑦 but
not 𝑥. From T0-separation it follows that 𝑥 = 𝑦.
Now consider a Kolmogorov topological predicated space 𝑇 , and take two of its points,
𝑥,𝑦 ∈ 𝑇 . We can provisionally assume the standardness of both 𝑥 and 𝑦. Assume that
every open set 𝑁 that contains 𝑥 also contains 𝑦, and vice versa. A fortiori the same
holds for all standard sets. Hence for all 𝑠 ∈ 𝑇 such that 𝑥 ◦− 𝑠, we have that a standard
neighborhood of 𝑦 contains 𝑥, and hence contains 𝑠, so 𝑦 ◦− 𝑠. Similarly if we switch 𝑥
and 𝑦. Thus, ∀𝑠.𝑥 ◦− 𝑠↔ 𝑦 ◦− 𝑠, and by the Kolmogorov condition we conclude 𝑥 = 𝑦.
Thus, if for two standard points 𝑥,𝑦 we cannot find an open set 𝑁 containing one but
not the other, then 𝑥 = 𝑦. Given the internality of our conclusion, we can discharge the
provisional assumptions of standardness, which proves T0-separation for the space 𝑇 .
Qed.

40 CHAPTER 1. INTRODUCTION

1.3.30. Proposition. A predicated space that satisfies the Hausdorff separation prop-
erty also satisfies the Fréchet separation property. A predicated space that satisfies the
Fréchet separation property also satisfies the Kolmogorov separation property.

Proof. Assume that the predicated space (𝑇 ,◦−) satisfies Hausdorff separation. Then
we have

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .∀𝑠 ∈ 𝑇 .(𝑥 ◦− 𝑠∧𝑦 ◦− 𝑠)→ 𝑥 = 𝑦.

Setting 𝑠 = 𝑥, and using the fact that 𝑥 ◦− 𝑥 holds by reflexivity, we obtain

∀𝑠𝑡𝑥,𝑦 ∈ 𝑇 .𝑦 ◦− 𝑥→ 𝑥 = 𝑦,

so (𝑇 ,◦−) satisfies Fréchet separation. Now, consider standard 𝑥,𝑦∈ 𝑇 such that∀𝑠.𝑥 ◦−
𝑠↔ 𝑦 ◦− 𝑠. Set 𝑠 = 𝑥, and use reflexivity to conclude 𝑦 ◦− 𝑥. By the Fréchet condition
𝑥 = 𝑦, so (𝑇 ,◦−) satisfies Kolmogorov separation.
Qed.

1.3.31. Notice that we did not need to restrict Proposition 1.3.30 to topological predi-
cated spaces: the conclusion holds on any predicated space, regardless of the standard-
ness of the carrier. The reverse implications do not hold: take your favorite standard
non-Hausdorff T1-space and a non-T1 T0-space as counterexamples.

1.3.32. Definition. We call a predicated space compact if every point of the space lies
near a standard point of the space.

1.3.33. Theorem (Robinson’s characterization). A topological predicated space (𝑇 ,◦−)
satisfies Definition 1.3.32 (compactness) precisely if every open cover in (𝑇 ,Ω𝑇) has
a finite subcover.

Proof. Formally, the compactness condition states the following:

∀𝑦 ∈ 𝑇 .∃𝑠𝑡𝑥 ∈ 𝑇 .𝑥 ◦− 𝑦.

We start by expanding the definition of ◦−, and get the equivalent statement

∀𝑦 ∈ 𝑇 .∃𝑠𝑡𝑥 ∈ 𝑇 .∀𝑠𝑡𝑀 ∈ Ω𝑇 .𝑥 ∈𝑀 → 𝑦 ∈𝑀. (⋆)

We wish to apply the Galactic Halo theorem to (⋆). To accomplish that, recall that the

1.3. TOPOLOGY VIA PREDICATES 41

formula

∃𝑠𝑡𝑥 ∈ 𝑇 .∀𝑠𝑡𝑀 ∈ Ω𝑇 .𝑥 ∈𝑀 → 𝑦 ∈𝑀

would have the following Nelson normal form:

∀𝑠𝑡𝑁 ∶ 𝑇 →Ω𝑇 .∃𝑠𝑡𝑥 ∈ 𝑇 .𝑥 ∈𝑁(𝑥)→ 𝑦 ∈𝑁(𝑥).

Therefore, applying the Galactic Halo theorem outputs the equivalent condition

∀𝑁 ∶ 𝑇 →Ω𝑇 .∃𝑋 ∈  f in(𝑇).∀𝑦 ∈ 𝑇 .∃𝑥 ∈𝑋.𝑥 ∈𝑁(𝑥)→ 𝑦 ∈𝑁(𝑥)

when applied to the sentence (⋆). It suffices to prove this condition equivalent to “every
open cover having a finite subcover”.
First assume that the condition holds and consider an open cover 𝑈 ⊆Ω𝑇 of the space
𝑇 . By the Axiom of Choice we can get a function 𝑁 ∶ 𝑇 → Ω𝑇 that assigns to each
point 𝑥 ∈ 𝑇 a covering set 𝑈𝑥 ∈ 𝑈 such that 𝑥 ∈ 𝑈𝑥. By the assumed condition, we
have a finite set of points 𝑋 ⊆ 𝑇 such that ∀𝑦 ∈ 𝑇 .∃𝑥 ∈ 𝑋.𝑦 ∈ 𝑈𝑥. Thus, the set 𝑉 ={
𝑆 ∈ Ω𝑇 ||∃𝑥 ∈𝑋.𝑆 = 𝑈𝑥

}
constitutes a finite subcover of 𝑈 .

Now assume that every open cover has a finite subcover. Consider any function𝑁 from
𝑇 to Ω𝑇 . If we can find a point 𝑞 ∈ 𝑇 such that 𝑞 ∉𝑁(𝑞), then we can set 𝑋 = {𝑞},
and ∀𝑦 ∈ 𝑇 .𝑞 ∈𝑁(𝑞) → 𝑦 ∈𝑁(𝑞) holds vacuously. If we cannot find such a point 𝑞,
then 𝑁 constitutes an open cover of 𝑇 , and its finite subcover gives rise to the desired
set of points 𝑋.
Qed.

1.3.34. Definition. We call a predicated space an equivalence space if its nearness
predicate satisfies transitivity and symmetry.

1.3.35. Proposition. Every metric space admits a universal representation as an equiv-
alence space.

Proof. Consider any metric space 𝑀 equipped with a metric 𝑑 ∶𝑀 → ℝ. Define the
predicate 𝑥 ≈ 𝑦 as an abbreviation for ∀𝑠𝑡𝜀 > 0.𝑑(𝑥,𝑦) < 𝜖. The reflexivity of ≈ follows
from ∀𝑥,𝑦 ∈𝑀.𝑑(𝑥,𝑦) = 0↔ 𝑥 = 𝑦. The symmetry of ≈ follows directly from the fact
that ∀𝑥,𝑦 ∈𝑀.𝑑(𝑥,𝑦) = 𝑑(𝑦,𝑥). To prove transitivity, consider 𝑥,𝑦,𝑧 ∈𝑀 such that
𝑥 ≈ 𝑦 and 𝑦 ≈ 𝑧. Take any standard 𝜀 > 0. Since 𝜀

4 is standard by Proposition 1.2.9, we
have both 𝑑(𝑥,𝑦) < 𝜀

4 and 𝑑(𝑦,𝑧) < 𝜀
4 . The triangle inequality gives 𝑑(𝑥,𝑧) ≤ 𝑑(𝑥,𝑦)+

42 CHAPTER 1. INTRODUCTION

𝑑(𝑦,𝑧) ≤ 𝜀
2 < 𝜀. Since 𝑑(𝑥,𝑧) < 𝜀 for any standard 𝜀, we get 𝑥 ≈ 𝑧 as required.

Now we must prove that ≈ represents the metric topology carried by𝑀 . First consider
a standard open set 𝑉 of the topological space𝑀 , pick any standard 𝑥∈ 𝑉 and consider
a nearby point 𝑦≈ 𝑥. By the openness of 𝑉 in the metric topology, we can find an open
ball 𝐵 containing 𝑥 with 𝐵 ⊆ 𝑉 . By considering the radius 𝑟 of 𝐵, we get that ∃𝑟 >
0.∀𝑦.𝑑(𝑥,𝑦) < 𝑟→ 𝑦 ∈ 𝑉 . Transfer applies, so ∃𝑠𝑡𝑟 > 0.∀𝑦 ∈𝑀.𝑑(𝑥,𝑦) < 𝑟→ 𝑦 ∈ 𝑉 .
Using 𝑦 ≈ 𝑥 and the standardness of 𝑟 we have 𝑑(𝑥,𝑦) < 𝑟. Hence, 𝑦 ∈ 𝑉 .
Now consider a standard set 𝑉 ⊆𝑀 such that ∀𝑠𝑡𝑥∈𝑀.∀𝑦∈𝑀.𝑥≈ 𝑦∧𝑥∈ 𝑉 → 𝑦∈ 𝑉 .
Expanding the definition of ≈ and putting the resulting statement in prenex form gives

∀𝑠𝑡𝑥 ∈𝑀.∀𝑦 ∈𝑀.∃𝑠𝑡𝜀 > 0.𝑑(𝑥,𝑦) < 𝜀∧𝑥 ∈ 𝑉 → 𝑦 ∈ 𝑉 .

Since the prenex form has no non-standard parameters, we can apply the Galactic Halo
theorem to obtain the following equivalent condition:

∀𝑥 ∈𝑀.∃𝐸 ∈  f in(ℝ+).∀𝑦 ∈𝑀.∃𝜀 ∈ 𝐸.𝑑(𝑥,𝑦) < 𝜀∧𝑥 ∈ 𝑉 → 𝑦 ∈ 𝑉 .

Taking the minimum of 𝐸, we get the further equivalent condition

∀𝑥 ∈𝑀.∃𝜀 > 0.∀𝑦 ∈𝑀.𝑑(𝑥,𝑦) < 𝜀∧𝑥 ∈ 𝑉 → 𝑦 ∈ 𝑉

which implies the more legible condition

∀𝑥 ∈ 𝑉 .∃𝜀 > 0.∀𝑦 ∈𝑀.𝑑(𝑥,𝑦) < 𝜀→ 𝑦 ∈ 𝑉 .

But then 𝑉 contains a ball of radius 𝑟 = 𝜀 around each of its points 𝑥 ∈ 𝑉 , and conse-
quently 𝑉 is open in the metric topology of 𝑀 .
Finally, we need to show the universality of ≈. By the universality of the predicate ◦−
of Proposition 1.3.18, it suffices to prove ∀𝑠𝑡𝑥.∀𝑦.𝑥 ◦− 𝑦→ 𝑥 ≈ 𝑦. So assume 𝑥 ◦− 𝑦
and take any standard 𝜀 > 0. The open ball 𝐵 of radius 𝜀 around 𝑥 forms an open set
of the metric topology, and is standard by Proposition 1.2.9. From 𝑥 ◦− 𝑦, st(𝐵) and
𝑥 ∈ 𝐵 we have 𝑦 ∈ 𝐵. But then 𝑑(𝑥,𝑦) < 𝜀, and since 𝜀 was arbitrary, we get 𝑥 ≈ 𝑦.
Qed.

1.3. TOPOLOGY VIA PREDICATES 43

Ultrafilters

1.3.36. We often rely on the following well-known results about ultrafilters in the sub-
sequent chapters, especially in results about structural approximation. The proof strat-
egy consists of little more than making the observation that ultrafilters correspond to
types (in the sense of model theory) of non-standard elements. The only novelty of the
section occurs in the (frankly, totally unsurprising) characterization of metric ultraprod-
ucts in Proposition 1.3.43. The reader may wish to consult the article Ultrafilters and
ultraproducts in non-standard analysis [8] by Cherlin and Hirschfeld for a discussion
of the same subject from a model-theoretic perspective.

1.3.37. Definition. An ultrafilter  over some set 𝐼 has a monadic element if we can
find some 𝜔 ∈ 𝐼 that belongs to every standard element of  .

1.3.38. Proposition. Every ultrafilter  over some set 𝐼 has a monadic element.

Proof. Consider any standard finite non-empty subset  of  . By the finite intersec-
tion property,

⋂ ∈  . Since ∅ ∉  , we can find some 𝑥 ∈
⋂ , and of course that

𝑥 satisfies ∀𝑆 ∈
⋂ .𝑥 ∈ 𝑆. Given the internality of this conclusion, we can apply

Idealization and get a single 𝑥 ∈ 𝐼 that belongs to all standard sets 𝑆 ∈  .
Qed.

1.3.39. Proposition. A standard ultrafilter is non-principal precisely if it has a non-
standard monadic element.

Proof. A standard principal ultrafilter  has a unique standard generator 𝑥 by Propo-
sition 1.2.9, and 𝑥 belongs to every element of  , so a fortiori it constitutes a standard
monadic element of  . In fact,  has a unique monadic element in this case, since
the singleton set {𝑥} forms a standard element of  , so by definition every monadic
element belongs to the set {𝑥}.
Assume that the standard non-principal ultrafilter has a standard monadic element 𝑥∈
𝐼 . Then ∀𝑠𝑡𝑆 ∈  .𝑥 ∈ 𝑆 holds. This formula contains no non-standard parameters, so
Transfer applies and we can conclude ∀𝑆 ∈ .𝑥∈𝑆, contradicting the non-principality
of  .
Qed.

1.3.40. Lemma (Ultrafilter). Every infinite set 𝐼 admits a non-principal ultrafilter.

44 CHAPTER 1. INTRODUCTION

Proof. Provisionally assume the standardness of 𝐼 . By Theorem 1.2.5, the infinite set
𝐼 contains some non-standard element 𝜔 ∈ 𝐼 . Consider the standard set

𝔉 = ⦃𝑆 ∈ (𝐼) |𝜔 ∈ 𝑆⦄
defined using the Standardization axiom. The set 𝔉 forms an ultrafilter. We prove that
𝔉 satisfies the finite intersection property, but leave the other properties as exercises
for the reader. Take standard 𝐴,𝐵 ∈ 𝔉. By the defining property of 𝔉, we get 𝜔 ∈ 𝐴
and 𝜔 ∈ 𝐵, so 𝜔 ∈ 𝐴∩𝐵. Hence, the implication 𝐴 ∈𝔉∧𝐵 ∈𝔉→ 𝐴∩𝐵 ∈𝔉 holds
for standard 𝐴,𝐵, and by Transfer for every 𝐴,𝐵.
The ultrafilter 𝔉 has 𝜔 as a monadic element since 𝜔 ∈ 𝑆 holds for every standard
𝑆 ∈ 𝔉 by definition of the set 𝔉. But we started by choosing a non-standard 𝜔 ∈ 𝐼 ,
so an application of Proposition 1.3.39 shows that 𝔉 is non-principal. We have proved
that every standard infinite set admits a non-principal ultrafilter. Hence, by Transfer,
every infinite set admits a non-principal ultrafilter.
Qed.

1.3.41. Notice that we made no use of the Axiom of Choice in the proof of Lemma 1.3.40.
Since Zermelo-Fraenkel Set Theory without Choice does not prove the Ultrafilter Lemma,
we have now established our claim in 1.1.46 that Internal Set Theory with the Axiom
of Choice removed does not extend Zermelo-Fraenkel Set Theory conservatively.

1.3.42. Theorem. Consider a standard index set 𝐼 , a standard 𝐼-indexed family of sets
𝐴 and a standard ultrafilter  on the set 𝐼 . Let 𝜔 ∈ 𝐼 denote a monadic element of  .
Take two standard elements [𝑓], [𝑔] of the ultraproduct

∏
𝑖∈𝐼 𝐴𝑖∕ . We have [𝑓] = [𝑔]

precisely if for any standard 𝑓 ∈ [𝑓],𝑔 ∈ [𝑔] we have 𝑓 (𝜔) = 𝑔(𝜔).

Proof. The equality [𝑓] = [𝑔] holds precisely if the set {𝑖 ∈ 𝐼|𝑓 (𝑖) = 𝑔(𝑖)} belongs
to the ultrafilter  for some (indeed, any) representatives 𝑓 ∈ [𝑓] and 𝑔 ∈ [𝑔]. Using
the standardness of 𝑓,𝑔,𝐼 , we can conclude the standardness of the set {𝑖 ∈ 𝐼|𝑓 (𝑖) =
𝑔(𝑖)}. The monadic element 𝜔 must therefore belong to this set, giving 𝑓 (𝜔) = 𝑔(𝜔) as
required. The other direction works identically.
Qed.

1.3.43. Theorem. Consider a standard index set 𝐼 , a standard number 𝑘∈ℝ a standard
𝐼-indexed family of groups𝐺, each𝐺𝑖 equipped with a standard bi-invariant 𝑘-bounded
metric 𝑑𝑖, and pick a standard ultrafilter  on the set 𝐼 . Take two standard elements

1.3. TOPOLOGY VIA PREDICATES 45

[𝑓], [𝑔] of the the metric ultraproduct group
∏

𝑦∈𝐼 𝐴𝑖∕𝑑 . We have [𝑓] = [𝑔] precisely
if for any standard 𝑓 ∈ [𝑓],𝑔 ∈ [𝑔] we have ∀𝑠𝑡𝜀 > 0.𝑑𝜔(𝑓 (𝜔),𝑔(𝜔)) < 𝜀 where 𝜔 de-
notes a monadic element of  .

Proof. By the definition of metric ultraproducts ([13]-Definition 2.1.) we have [𝑓] =
[𝑔] in

∏
𝑦∈𝐼 𝐴𝑖∕𝑑 precisely if for any 𝜀 > 0 the set

{
𝑖 ∈ 𝐼 ||𝑑𝑖(𝑓 (𝑖),𝑔(𝑖)) < 𝜀} belongs

to the ultrafilter . So take standard𝑓,𝑔,𝜀. Then we have st
({
𝑖 ∈ 𝐼 ||𝑑𝑖(𝑓 (𝑖),𝑔(𝑖)) < 𝜀});

by Definition 1.3.37 we get 𝜔 ∈
{
𝑖 ∈ 𝐼 ||𝑑𝑖(𝑓 (𝑖),𝑔(𝑖)) < 𝜀}, and consequently we must

have 𝑑𝜔(𝑓 (𝜔),𝑔(𝜔))< 𝜀. For the other direction assume that ∀𝑠𝑡𝜀 > 0.𝑑𝜔(𝑓 (𝜔),𝑔(𝜔))<
𝜀 holds. Reversing the previous argument, we have that for standard 𝜀 the set of indices{
𝑖 ∈ 𝐼 ||𝑑𝑖(𝑓 (𝑖),𝑔(𝑖)) < 𝜀} belongs to  as required. Transfer gives the full result.

Qed.

Brouwer’s fixed point theorem

1.3.44. To finish off this chapter, and to illustrate the use of the tools introduced in the
previous sections, we present an Internal Set Theory proof of Brouwer’s fixed point
theorem, similar to (but simpler than) the standard combinatorial proof going through
Sperner’s coloring lemma.

1.3.45. Theorem (Brouwer’s fixed point). Every continuous function mapping the unit
disk 𝐷 ⊆ℝ2 to itself has a fixed point.

Proof. Identify 𝐷 with the unit disk in ℂ the obvious way. Let ≈ denote the universal
nearness predicate on ℂ that comes from the proof of Proposition 1.3.35. Consider any
continuous function 𝑓 ∶𝐷→𝐷 and provisionally assume the standardness of 𝑓 . Take
a finite set 𝐻 ⊆𝐷 that contains every standard point of 𝐷 (use Idealization). Consider
the labeling function 𝓁 ∶𝐷→ {0,1,2,3} of Figure 1.1, defined by the expression

𝓁(𝑥) =

⎧⎪⎨⎪⎩
0 if 𝑓 (𝑥)−𝑥 = 0;

𝑘+1 if 𝑓 (𝑥)−𝑥 ≠ 0 and arg(𝑓 (𝑥)−𝑥) ∈
[
2
3𝑘𝜋,

2
3 (𝑘+1)𝜋

)
.

If we have 𝑥 ∈𝐻 such that 𝓁(𝑥) = 0, then 𝑓 has the fixed point 𝑥. Otherwise, we can
break the boundary of the disk into three circular arcs such that on each arc 𝓁 takes
exactly two values. Thus, by using Sperner’s lemma ([20]-Theorem 2.6) we can find
three points 𝑥1,𝑥2,𝑥3 ∈𝐻 such that 𝓁(𝑥1) = 1,𝓁(𝑥2) = 2,𝓁(𝑥3) = 3 and 𝐻 contains
no points that lie inside the triangle formed by the three points. This implies that said

46 CHAPTER 1. INTRODUCTION

triangle contains no standard points, and hence 𝑥1 ≈ 𝑥2 ≈ 𝑥3. Since 𝐷 is compact,
we can use Theorem 1.3.33 to find a standard point 𝑥 simultaneously near 𝑥1,𝑥2 and
𝑥3. This means that the complex number 𝑓 (𝑥)−𝑥 lies infinitesimally close to numbers
with arguments in

[
0, 23𝜋

)
,
[
2
3𝜋,

4
3𝜋

)
and

[
4
3𝜋,2𝜋

)
. A moment’s thought (or a glance at

Figure 1.1) shows that the only standard complex number satisfying such a requirement
is zero. Therefore 𝑓 (𝑥)−𝑥 = 0, and 𝑥 constitutes a fixed point for the function 𝑓 .
Qed.

0
𝓁(𝑥) = 0

𝓁(𝑥) = 1

𝓁(𝑥) = 2

𝓁(𝑥) = 3

Figure 1.1: Values of the labeling map 𝓁 on the unit circle.

Chapter 2

Structural Approximation

2.1 Motivation

2.1.1. Somewhat orthogonally to Internal Set Theory, developments in Stability The-
ory led to an idea of dealing with very large finite structures as if they were approxi-
mating models of uncountably categorical theories. Zilber [50] introduced such a the-
ory of approximations with an eye towards applications in physics. Since we define
a more general form of approximation below, we attach the adjective ordinary to Zil-
ber’s notion. As in Pillay [38] and Zilber [51]-Section 3, we restrict our attention to
the cases where the ordinary approximating object consists of a literal ultraproduct of
structures, and not merely an elementary extension of one. This usage has the advan-
tage of being consistent with the more recent applications of the technique in the work
of Morales and Zilber [31].

2.1.2. Definition ([51]-Definition 3.2). Fix some first-order theory 𝑇 . Consider a model
𝐌 of 𝑇 and an 𝐼-indexed family 𝑀 of models of the same theory. An ordinary struc-
tural approximation of 𝐌 consists of the following data:

• an ultrafilter 𝐷 ⊆ (𝐼), and

• a surjective 𝑇 -homomorphism lim ∶
∏

𝑖∈𝐼𝑀𝑖∕𝐷→𝐌

where
∏

𝑖∈𝐼𝑀𝑖∕𝐷 denotes the ultraproduct of𝑀 over the ultrafilter𝐷. If the codomain
of the indexed set𝑀 consists exclusively of finite 𝑇 -structures, we speak of an ordinary
finite approximation.

2.1.3. Definition ([50]-Definition 2.5). Fix notation as in Definition 2.1.2. An ordinary
strong approximation of 𝐌 consists of the following data:

47

48 CHAPTER 2. STRUCTURAL APPROXIMATION

• an ultrafilter 𝐷 ⊆ (𝐼),

• a surjective 𝑇 -homomorphism lim ∶
∏

𝑖∈𝐼𝑀𝑖∕𝐷→𝐌, and

• a 𝑇 -homomorphism colim ∶𝐌→
∏

𝑖∈𝐼𝑀𝑖∕𝐷

such that lim(colim𝑥) = 𝑥 for all 𝑥∈𝐌. If the codomain of the indexed set𝑀 consists
exclusively of finite 𝑇 -structures, we speak of an ordinary strong finite approximation.

2.1.4. Proposition. The group ℤ𝑝 of 𝑝-adic integers admits an ordinary finite cyclic
approximation and the analoguos result holds when we consider ℤ𝑝 as a ring. The
group ℤ̂ (the profinite completion of the integers) admits an ordinary strong finite cyclic
approximation.

Proof. See [51]-Proposition 4.3 and [50]-Proposition 1. These results follow from our
own Corollary 2.2.19 as well.
Qed.

2.1.5. Proposition. The field ℂ of complex numbers admits an ordinary finite approx-
imation. However, the field ℝ of real numbers does not admit any such approximation.

Proof. See [51]-Proposition 5.2.
Qed.

2.1.6. Before Zilber introduced strong approximation, Gordon [1] investigated the sense
in which the finite Fourier transform can approximate the Fourier transform in the
Hilbert space of functions on a locally compact group, which led to the synthesis of the
concept of locally embeddably finite (LEF) groups. LEF and strongly approximable
groups often coincide, e.g. vector spaces are strongly approximable precisely if LEF.

2.1.7. Definition ([6]-Theorem 7.2.5. sic!). We call a group 𝐺 locally embeddably
finite or LEF if we can find an 𝐼-indexed family of groups𝑀𝑖, ultrafilter𝐷⊆ (𝐼) and
injective group homomorphism colim ∶ 𝐺↪

∏
𝑖∈𝐼𝑀𝑖∕𝐷.

2.1.8. Zilber [51] poses the following question: can a sequence of finite groups give
an ordinary finite approximation to the group SO3(ℝ)? Using nonstandard analysis
in superstructures, Pillay [38] rephrased the problem in terms of Bohr compactifica-
tions, tentatively conjecturing that 𝑏𝐺0 is commutative for any pseudo-finite group 𝐺.
Nikolov, Schneider and Thom [34] settled this conjecture in the positive. Their results
not only give a negative answer to Zilber’s original question, but establish the much

2.2. APPROXIMATION IN IST 49

stronger result that one cannot approximate any compact simple Lie group in the sense
of Definition 2.1.2 using finite groups.

2.1.9. The results mentioned in 2.1.8 establish a significant gap between groups that
have finite approximations and those groups that don’t have any such approximation.
We prove that profinite groups always admit ordinary finite approximations (Proposi-
tion 2.2.20), and our main theorem (Theorem 2.3.9) can be used to obtain finer-grained
statements about groups that admit strong approximations by finite groups in fixed, par-
ticular forms (we give two examples in Section 2.3.11).

2.2 Approximation in IST

2.2.1. We start by proposing a new notion of strong approximation in the language
of Internal Set Theory that abstracts away from first-order structures. The new notion
is strictly more general than Zilber’s approximations (although it will take us some
time to actually prove this, in Proposition 2.2.32) and encompasses all of the common
finitariness conditions in group theory. Indeed, ordinary approximation and the LEF
condition both give rise to well-behaved instances of the proposed definition.

2.2.2. Definition. Consider a set 𝐻 and a Fréchet predicated space (𝐺,◦−𝐺) with 𝐺
standard. We call a binary predicate 𝜄(𝑥,𝑦) where 𝑥 ranges over elements of 𝐻 and 𝑦
ranges over elements of 𝐺 a weak approximation of (𝐺,◦−𝐺) via 𝐻 if it satisfies the
following existence-uniqueness conditions:

1. For any standard 𝑔 ∈ 𝐺 we can find ℎ ∈𝐻 such that 𝜄(ℎ,𝑔) holds.

2. For any 𝑔1,𝑔2 ∈𝐺, if we can find ℎ ∈𝐻 such that 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2) both hold,
then 𝑔1 ◦−𝐺 𝑔2.

For finite 𝐻 , we label the weak approximation finite. If (𝐺,1, ⋅) and (𝐻,1𝐻 , ⋅𝐻) form
groups, and 𝜄 is a logical relation of groups in the sense that all of

1. 𝜄(1𝐻 ,1),

2. ∀𝑠𝑡𝑔 ∈ 𝐺.∀ℎ ∈𝐻.𝜄(ℎ,𝑔)→ 𝜄(ℎ−1,𝑔−1), and

3. ∀𝑠𝑡𝑔1,𝑔2 ∈ 𝐺.∀ℎ1,ℎ2 ∈𝐻.𝜄(ℎ1,𝑔1)∧ 𝜄(ℎ2,𝑔2)→ 𝜄(ℎ1 ⋅𝐻 ℎ2,𝑔1 ⋅𝑔2)

hold, then we say that 𝐻 weakly approximates 𝐺 as a group.

50 CHAPTER 2. STRUCTURAL APPROXIMATION

2.2.3. Definition. Consider a Fréchet predicated space (𝐺,◦−𝐺) with 𝐺 standard, and
an arbitrary set 𝐻 . We call a binary predicate 𝜄 an approximation of (𝐺,◦−𝐺) via 𝐻 if

1. the predicate 𝜄 weakly approximates (𝐺,◦−𝐺) via 𝐻 , and

2. for each standard 𝑔 ∈ 𝐺, whenever we can find ℎ1,ℎ2 ∈ 𝐻 with 𝜄(ℎ1,𝑔) and
𝜄(ℎ2,𝑔), we have ℎ1 = ℎ2

As in Definition 2.2.2, we speak of a finite approximation when 𝐻 is a finite set. If
(𝐺, ⋅) and (𝐻, ⋅𝐻) form groups, and 𝜄 is a logical relation of groups in the sense that
∀𝑠𝑡𝑔1,𝑔2 ∈ 𝐺.∀ℎ1,ℎ2 ∈𝐻.𝜄(ℎ1,𝑔1) ∧ 𝜄(ℎ2,𝑔2)→ 𝜄(ℎ1 ⋅𝐻 ℎ2,𝑔1 ⋅ 𝑔2) holds, then we say
that 𝐻 approximates 𝐺 as a group.

2.2.4. Analogously to group approximations, we can define approximations of other
first-order structures (we briefly discuss how to do this in 2.2.12). We wish to relate
strong approximation to the construction of the nonstandard finite sets 𝐻 used in the
proofs of Theorems 1.2.7 and 1.3.45. Indeed, as we will see in Proposition 2.2.7, Def-
inition 2.2.3 axiomatizes some obvious properties of the inclusion map of 𝐻 . For this
reason we may sometimes opt to use functional notation, or choose to represent 𝜄 as an
arrow in diagrams, even when 𝜄 does not stand for a function or functional predicate.

2.2.5. Definition. Consider a standard set 𝐺. Let the binary predicate 𝑔1 ◦− 𝑔2 abbre-
viate the formula st(𝑔1) ∧ st(𝑔2) → 𝑔1 = 𝑔2. We say that 𝐻 approximates 𝐺 as a set
(without mentioning any specific predicate ◦−𝐺 on 𝐺) when 𝐻 approximates (𝐺,◦−).

2.2.6. When 𝐻 approximates a Fréchet space (𝐺,◦−), it also approximates 𝐺 as a set.

2.2.7. Proposition. Every standard set 𝐺 admits a finite approximation 𝐻 .

Proof. For every standard finite subset 𝐹 ∈  f in(𝐺), we can find a finite set 𝐻 that
contains every element of 𝐹 (trivially, just set 𝐹 = 𝐻). The axiom of Idealization
applies to this statement, and yields the existence of a single finite set𝐻 ∈ f in(𝐺) that
nevertheless contains every standard element of𝐺. We can identify the predicate 𝜄with
the graph of the inclusion map 𝐻 ↪ 𝐺. All three required properties hold:

1. For any standard 𝑔 ∈ 𝐺, we have 𝑔 ∈𝐻 , so 𝜄(𝑔) = 𝑔 holds.

2. For any standard 𝑔 ∈𝐺 and ℎ1,ℎ2 ∈𝐻 such that 𝜄(ℎ1) = 𝑔 and 𝜄(ℎ2) = 𝑔, we have
ℎ1 = 𝜄(ℎ1) = 𝑔 = 𝜄(ℎ2) = ℎ2.

2.2. APPROXIMATION IN IST 51

3. For any standard 𝑔1,𝑔2 ∈ 𝐺, and ℎ ∈ 𝐻 such that 𝜄(ℎ) = 𝑔1 and 𝜄(ℎ) = 𝑔2, we
simply have 𝑔1 = 𝜄(ℎ) = 𝑔2.

Qed.

2.2.8. Proposition. Consider a standard ordinary strong approximation of a structure
𝐺 via the 𝐼-indexed sequence 𝐻 . We can find 𝜔 ∈ 𝐼 and an internal binary predicate 𝜄
(relating elements of 𝐻𝜔 to elements of 𝐺) that satisfy the following conditions:

1. For any 𝑔 ∈ 𝐺 we can find ℎ ∈𝐻𝜔 such that 𝜄(ℎ,𝑔) holds.

2. For any 𝑔 ∈𝐺, ℎ1,ℎ2 ∈𝐻𝜔 such that 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) hold, we have ℎ1 = ℎ2.

3. For any standard 𝑔1,𝑔2 ∈ 𝐺 and any ℎ ∈𝐻𝜔 such that 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2) both
hold, we have 𝑔1 = 𝑔2.

Proof. Denote the 𝐼-ultrafilter coming from the ordinary approximation as . Fix a
standard right inverse 𝑟 ∶

∏
𝑖∈𝐼𝐻𝑖∕→

∏
𝑖∈𝐼𝐻𝑖 of the quotient map [−] ∶

∏
𝑖∈𝐼𝐻𝑖→∏

𝑖∈𝐼𝐻𝑖∕. By Proposition 1.3.38 the ultrafilter  has a monadic element 𝜔 ∈ 𝐼 .
Define 𝜄(ℎ,𝑔) between𝐻𝜔 and 𝐺 as an abbreviation for the formula (𝑟◦colim)(𝑔)(𝜔) =
ℎ. We verify the three conditions.

1. For any 𝑔 ∈ 𝐺, one can regard the element (𝑟◦colim)(𝑔) of the Cartesian prod-
uct of the family 𝐻 as a function with signature (𝑖 ∈ 𝐼)→𝐻𝑖. Hence we have
(𝑟◦colim)(𝑔)(𝜔) ∈𝐻𝜔, so the first condition holds for ℎ = (𝑟◦colim)(𝑔)(𝜔).

2. Take any 𝑔 ∈ 𝐺 and ℎ1,ℎ2 ∈ 𝐻𝜔. Assume that 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) both hold.
Then ℎ1 = (𝑟◦colim)(𝑔)(𝜔) = ℎ2 as desired.

3. Take any standard 𝑔1,𝑔2 ∈ 𝐺, and any ℎ ∈𝐻𝜔. Assume that 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2)
both hold. Since we chose 𝑟 as a standard function, and we have st(colim) by the
standardness of the approximation, Corollary 1.2.11 guarantees the standardness
of the functions (𝑟◦colim)(𝑔1) and (𝑟◦colim)(𝑔2). By our assumptions we have

(𝑟◦colim)(𝑔1)(𝜔) = ℎ = (𝑟◦colim)(𝑔2)(𝜔),

so these functions take the same value at the monadic element 𝜔 of . Applying
Theorem 1.3.42, we immediately obtain

[(𝑟◦colim)(𝑔1)] = [(𝑟◦colim)(𝑔2)],

52 CHAPTER 2. STRUCTURAL APPROXIMATION

and since 𝑟 forms a section of the quotient map [−] ∶
∏

𝑖∈𝐼𝐻𝑖→
∏

𝑖∈𝐼𝐻𝑖∕, we
are now in the position to deduce colim(𝑔1) = colim(𝑔2). Applying lim to both
sides of the equation yields 𝑔1 = 𝑔2 as desired.

Qed.

2.2.9. Corollary. Assume that we have a standard ordinary approximation of a struc-
ture𝐺 via the 𝐼-indexed sequence𝐻 . Then𝐻𝜔 approximates𝐺 as a set for some index
𝜔 ∈ 𝐼 .

Proof. Immediate from Proposition 2.2.8.
Qed.

2.2.10. Proposition. Consider a standard ordinary approximation of a structure 𝐺 via
the 𝐼-indexed sequence 𝐻 . We can find 𝜔 ∈ 𝐼 and a binary predicate 𝜄 (relating ele-
ments of 𝐻𝜔 to elements of 𝐺) such that 𝜄 weakly approximates the set 𝐺 via 𝐻𝜔.

Proof. Let 𝜄(ℎ,𝑔) abbreviate ∃𝑠𝑡𝑓 ∶ (𝑖∈ 𝐼)→𝐻𝑖. lim[𝑓] = 𝑔∧𝑓 (𝜔) = ℎ. The required
conditions hold:

1. For any standard 𝑔 ∈ 𝐺, we can obtain ℎ ∈ 𝐻 such that 𝜄(ℎ,𝑔) holds. Take a
standard 𝑔 ∈𝐺. By the surjectivity of lim, we have some [𝑓] such that lim[𝑓] = 𝑔.
Transfer applies due to the standardness of lim and 𝑔, giving us st([𝑓]). Every
standard equivalence class has a standard representative 𝑓 ∈ [𝑓], so one can
simply pick ℎ = 𝑓 (𝜔).

2. For any standard 𝑔1,𝑔2 ∈ 𝐺, and ℎ ∈𝐻 such that 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2), we have
𝑔1 = 𝑔2. Take standard 𝑔1,𝑔2 and arbitrary ℎ such that the approximations hold.
Then we have lim[𝑓1] = 𝑔1 ∧ 𝑓1(𝜔) = ℎ and lim[𝑓2] = 𝑔2 ∧ 𝑓2(𝜔) = ℎ for re-
spective 𝑓1,𝑓2. Thanks to the equality 𝑓1(𝜔) = ℎ = 𝑓2(𝜔), and the fact that
st(𝑓1),st(𝑓2) both hold, we can apply Theorem 1.3.42 to conclude [𝑓1] = [𝑓2]
and therefore 𝑔1 = lim[𝑓1] = lim[𝑓2] = 𝑔2 as desired.

Qed.

2.2.11. Proposition 2.2.8 shows that Zilber’s ordinary strong approximation (and the
LEF condition, since the proof makes no essential use of lim) gives rise to a very spe-
cial, well-behaved case of Definition 2.2.3. In particular, such an approximation has

2.2. APPROXIMATION IN IST 53

internal 𝜄 (but keep in mind that the predicate rarely has all parameters standard, so we
generally cannot apply Transfer to it). The approximations of Proposition 2.2.7, which
feature in the proofs of Theorems 1.2.7 and 1.3.45, do not share all the same good
properties (as the reader should now verify). Nevertheless, these two constructions,
along with Zilber’s ordinary approximation (Proposition 2.2.10) all appear as special
instances of our general definition. Moreover, we can see now that the language of
Internal Set Theory enables us to consider finer-grained variations of these properties,
some of which one cannot define easily (or investigate efficiently) in the ordinary setting.
Definition 2.2.3 may seem overly general at first, but our main result (Theorem 2.3.9)
does apply to every approximation. However, we also build a loose ranking of better-
and-better-behaved approximations, and characterize some of the upper echelons of the
resulting hierarchy.

2.2.12. We have yet to account for a significant detail: the problem of structure preser-
vation. Proposition 2.2.8 does ensure that Zilber-style ordinary structural approxima-
tions give rise to approximations of the same set, but the result does not account for
algebraic structure (in light of Proposition 2.2.7 a mere set-approximation result would
hold little interest). In Proposition 2.2.13 we verify that the resulting approximation in-
deed preserves structure for the case of groups. The same holds for first-order theories
in general, as long as one formulates the homomorphism property of the approximation
predicate correctly (𝜄 has to form a logical relation [21]) and the relevant quantifiers
range over standard elements. We let the patient reader grapple with these details.

2.2.13. Proposition. Assume that we have a standard ordinary strong approximation
of a group 𝐺 via the 𝐼-indexed sequence of groups 𝐻 . Then 𝐻𝜔 approximates 𝐺 as a
group for some index 𝜔 ∈ 𝐼 .

Proof. We only need to show that the predicate 𝜄 constructed in Proposition 2.2.8 sat-
isfies ∀ℎ1,ℎ2 ∈𝐻𝜔.𝜄(ℎ1,𝑔1)∧ 𝜄(ℎ2,𝑔2)→ 𝜄(ℎ1ℎ2,𝑔1𝑔2) for any standard 𝑔1,𝑔2 ∈ 𝐺.
We have a standard representative (𝑟◦colim)(𝑔1) = 𝑓1 ∈ colim(𝑔1) such that 𝑓1(𝜔) = ℎ1.
Similarly, we have a standard 𝑓2 ∈ colim(𝑔2) such that 𝑓2(𝜔) = ℎ2, and a standard
𝑓3 ∈ colim(𝑔1𝑔2). We wish to prove 𝑓3(𝜔) = ℎ1ℎ2. We know st(𝑓1𝑓2) since the stan-
dardness of the multiplication operation follows from the standardness of the approxi-
mation. We also know that 𝑓1𝑓2 ∈ colim(𝑔1)colim(𝑔2) = colim(𝑔1𝑔2) using the homo-
morphism property of colim. Consequently both 𝑓1𝑓2 and 𝑓3 occur as standard repre-
sentatives of the -equivalence class colim(𝑔1𝑔2). It follows from Theorem 1.3.42 that
two standard representatives have the same value at the monadic element 𝜔 of , and

54 CHAPTER 2. STRUCTURAL APPROXIMATION

therefore 𝑓3(𝜔) = 𝑓1(𝜔)𝑓2(𝜔) = ℎ1ℎ2 as required.
Qed.

2.2.14. Exercise. Give another proof of Corollary 2.2.9 using the predicate 𝜄(ℎ,𝑔)↔
∃𝑠𝑡𝑓 ∈ colim(𝑔).𝑓 (𝜔) = ℎ. Which clauses of Proposition 2.2.8 does the resulting appli-
cation satisfy?

2.2.15. We have to build up a library of approximations before we can “distill” the
useful properties that approximations may have. We begin with well-known subclasses
of the class of LEF groups. For Theorem 2.2.18 we have to briefly recall the definition
of profinite groups. Similarly for Theorem 2.2.29 and residually finite groups.

Profinite groups

2.2.16. Definition. The partially ordered set (𝐼,≤) forms a directed partial order or
dpo if every finite subset of 𝐼 has a ≤-upper bound in 𝐼 .
Take a directed partial order (𝐼,≤). An inverse system of groups over (𝐼,≤) consists of
an 𝐼-indexed set of groups𝑀 , and for every 𝑖, 𝑗 ∈ 𝐼 with 𝑖≤ 𝑗 a group homomorphism
𝑀 𝑗

𝑖 ∶𝑀𝑗 →𝑀𝑖.
Consider an inverse system 𝑀 over (𝐼,≤). The set of functions

𝐺 =
{
𝑓 ∶ (𝑖 ∈ 𝐼)→𝑀𝑖

|||∀𝑖, 𝑗 ∈ 𝐼.𝑖 ≤ 𝑗 →𝑀 𝑗
𝑖 (𝑓 (𝑗)) = 𝑓 (𝑖)

}
.

forms a group when equipped with the pointwise group operations on (𝑖 ∈ 𝐼) →𝑀𝑖.
We call this group the inverse limit of the system 𝑀 and denote it lim

←←←←←←←←←←←
𝑀 .

2.2.17. Definition. If a group 𝐺 arises as an inverse limit of an inverse system of finite
groups, we refer to 𝐺 as a profinite group.

2.2.18. Theorem. Every standard profinite group 𝐺 admits a finite approximation as a
group.

Proof. Consider a standard profinite group 𝐺. We can find an inverse system of finite
groups such that 𝐺 arises as an inverse limit of the system. Transfer applies, so we
can in fact write 𝐺 as the inverse limit of a standard system of finite groups 𝑀 on a
standard directed partial order (𝐼,≤). For 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗, the system gives a group
homomorphism 𝑀 𝑗

𝑖 ∶𝑀𝑗 →𝑀𝑖. As per Definition 2.2.16 we can identify 𝐺 with a

2.2. APPROXIMATION IN IST 55

group of functions

𝐺 =
{
𝑓 ∶ (𝑖 ∈ 𝐼)→𝑀𝑖

|||∀𝑖, 𝑗 ∈ 𝐼.𝑖 ≤ 𝑗 →𝑀 𝑗
𝑖 (𝑓 (𝑗)) = 𝑓 (𝑖)

}
where we perform the group operation pointwise. Since 𝐼 forms a directed partial order,
every standard finite subset of 𝐼 has an upper bound. Formally: ∀𝑠𝑡𝐹 ⊆ 𝐼.∃𝑏.∀𝑖∈ 𝐹 .𝑖≤
𝑏∧ 𝑏 ∈ 𝐼 . Idealization immediately yields ∃𝜔 ∈ 𝐼.∀𝑠𝑡𝑖.𝑖 ≤ 𝜔. Set 𝐻 =𝑀𝜔 and define
the predicate 𝜄(ℎ,𝑔) between 𝐻 and 𝐺 as an abbreviation for the formula 𝑔(𝜔) = ℎ.
Then 𝜄 satisfies the following properties:

1. For any 𝑔 ∈𝐺 we can find ℎ∈𝐻 such that 𝜄(ℎ,𝑔) holds. Since 𝑔 ∶ (𝑖∈ 𝐼)→𝑀𝑖,
we have 𝑔(𝜔) ∈𝑀𝜔 =𝐻 and 𝜄(𝑔(𝜔),𝑔) holds trivially.

2. For any 𝑔 ∈ 𝐺, ℎ1,ℎ2 ∈𝐻 such that 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) hold, we have ℎ1 = ℎ2.
Just observe that ℎ1 = 𝑔(𝜔) = ℎ2.

3. For any standard 𝑔1,𝑔2 ∈𝐺 and any ℎ∈𝐻 such that 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2) both hold,
we have 𝑔1 = 𝑔2. Consider two standard functions 𝑔1,𝑔2 ∶ (𝑖∈ 𝐼)→𝑀𝑖. Assume
that 𝑔1(𝜔) = ℎ = 𝑔2(𝜔). We prove that 𝑔1(𝑖) = 𝑔2(𝑖) for all standard 𝑖 ∈ 𝐼 . Take
any standard 𝑖 ∈ 𝐼 . We have 𝑖 ≤ 𝜔 by construction of 𝜔, so the inverse system
contains a group homomorphism 𝑀𝜔

𝑖 ∶ 𝐻 → 𝑀𝑖 such that 𝑀𝜔
𝑖 (𝑔(𝜔)) = 𝑔(𝑖)

holds for any 𝑔 ∈ 𝐺. Applying 𝑀𝜔
𝑖 to both sides of the equality 𝑔1(𝜔) = 𝑔2(𝜔)

yields 𝑔1(𝑖) = 𝑔2(𝑖). Hence, ∀𝑠𝑡𝑖 ∈ 𝐼.𝑔1(𝑖) = 𝑔2(𝑖). By the standardness of 𝑔1,𝑔2,
Transfer applies to this statement and gives 𝑔1 = 𝑔2 as desired.

4. For any 𝑔1,𝑔2 ∈ 𝐺 and ℎ1,ℎ2 ∈ 𝐻 , if 𝜄(ℎ1,𝑔1) and 𝜄(ℎ2,𝑔2) both hold, then so
does 𝜄(ℎ1ℎ2,𝑔1𝑔2). We have 𝑔1(𝜔) = ℎ1 and 𝑔2(𝜔) = ℎ2. One can take products
in 𝐺 pointwise, so (𝑔1𝑔2)(𝜔) = 𝑔1(𝜔)𝑔2(𝜔) = ℎ1ℎ2 as required.

Qed.

2.2.19. Corollary. Every profinite group admits an ordinary finite group approxima-
tion.

Proof. By the standardness of the conclusion, we can provisionally assume the stan-
dardness of the profinite group. By the definition of profinite groups, we can in fact
write it as the inverse limit of a standard system of finite groups 𝑀 on a standard
directed partial order (𝐼,≤). Choose 𝜔, 𝜄 as in Theorem 2.2.18, and construct a non-
principal ultrafilterwith𝜔 as its monadic element (follow the proof of Lemma 1.3.40).

56 CHAPTER 2. STRUCTURAL APPROXIMATION

Denote the ultraproduct
∏

𝑖∈𝐼𝑀𝑖∕ as 𝑀 and consider the standard set

lim =
⦃
(𝐺,𝑓) ∈𝑀× lim

←←←←←←←←←←←
𝑀 |||∀𝑠𝑡𝑔 ∈ 𝐺.∃ℎ ∈𝑀𝜔.𝜄(ℎ,𝑔)∧∀𝑠𝑡𝑖 ∈ 𝐼.𝑀𝜔

𝑖 (ℎ) = 𝑓 (𝑖)
⦄
.

We claim that lim forms the graph of a surjective function lim ∶𝑀 → lim
←←←←←←←←←←←

𝑀 . First we
prove that ∀𝐺 ∈𝑀.∃𝑓 ∈ lim

←←←←←←←←←←←
𝑀.(𝐺,𝑓) ∈ lim. By Transfer it suffices to find standard

𝑓 ∈ lim
←←←←←←←←←←←

𝑀 for standard 𝐺 ∈𝑀. A standard equivalence class 𝐺 has some standard
representative 𝑔 ∈ 𝐺. Pick such a representative and consider the set

𝑓 =
{
(𝑖,𝑥) ∈ (𝑖 ∈ 𝐼)×𝑀𝑖

||𝑀𝜔
𝑖 (𝑔(𝜔)) = 𝑥

}
.

For any standard 𝑖 we have some 𝑥 such that 𝑀𝜔
𝑖 (𝑔(𝜔)) = 𝑥. By the standardness of

the finite set 𝑀𝑖, Theorem 1.2.5 applies and gives st(𝑥). Using Transfer, this shows
that 𝑓 ∶ (𝑖 ∈ 𝐼) → 𝑀𝑖. Similarly, for all standard 𝑖 ≤ 𝑗 ∈ 𝐼 we have 𝑀 𝑗

𝑖 (𝑓 (𝑗)) =
𝑀 𝑗

𝑖 (𝑀
𝜔
𝑗 (𝑔(𝜔))) = 𝑀𝜔

𝑖 (𝑔(𝜔)) = 𝑓 (𝑖). Using Transfer one more time, we conclude
𝑓 ∈ lim

←←←←←←←←←←←
𝑀 . To demonstrate that ∀𝑠𝑡𝑔 ∈ 𝐺.∀𝑠𝑡𝑖 ∈ 𝐼.𝑀𝜔

𝑖 (𝑔(𝜔)) = 𝑓 (𝑖), consider any
other standard 𝑔′ and construct a corresponding function 𝑓 ′. Since st(𝑔) and st(𝑔′)
both hold, and [𝑔] = [𝑔′], Theorem 1.3.42 immediately gives 𝑔(𝜔) = 𝑔′(𝜔), and we
conclude that 𝑓 and 𝑓 ′ have the same standard values. But Transfer applies, so 𝑓 = 𝑓 ′.
Consider a standard 𝑓 ∈ lim

←←←←←←←←←←←
𝑀 . We have 𝑓 ∶ (𝑖 ∈ 𝐼) → 𝑀𝑖 and hence [𝑓] ∈ 𝑀.

Since 𝑓 ∈ [𝑓], we have ∀𝑠𝑡𝑔 ∈ [𝑓].𝑔(𝜔) = 𝑓 (𝜔), and therefore we know that ∀𝑠𝑡𝑓 ∈
lim
←←←←←←←←←←←

𝑀.∀𝑠𝑡𝑖 ∈ 𝐼. lim([𝑓])(𝑖) = 𝑓 (𝑖). The usual Transfer argument goes through, and we
get lim([𝑓]) = 𝑓 for all 𝑓 ∈ lim

←←←←←←←←←←←
𝑀 , proving the surjectivity of lim.

Finally, we must show that lim respects the group operation. As before, having made
the usual provisional assumptions, we only need to show that for standard 𝐺,𝐻 ∈𝑀,
lim(𝐺) lim(𝐻) and lim(𝐺𝐻) take the same value on all standard 𝑖 ∈ 𝐼 .
Consider any standard 𝑔 ∈𝐺 andℎ∈𝐻 , and some standard 𝑖∈ 𝐼 We have 𝑠𝑡(𝐺𝐻),st(𝑔ℎ),
𝑔ℎ ∈ 𝐺𝐻 and

lim(𝐺𝐻)(𝑖) =𝑀𝜔
𝑖 (𝑔ℎ(𝜔))

=𝑀𝜔
𝑖 (𝑔(𝜔)ℎ(𝜔))

=𝑀𝜔
𝑖 (𝑔(𝜔))𝑀

𝜔
𝑖 (ℎ(𝜔))

= lim(𝐺)(𝑖) lim(𝐻)(𝑖).

We have shown that for any standard profinite group lim
←←←←←←←←←←←

𝑀 with 𝐼,≤,𝑀 standard
we have a a non-principal ultrafilter  and a surjective group homomorphism 𝑀 →

2.2. APPROXIMATION IN IST 57

lim
←←←←←←←←←←←

𝑀 . By the internality of this conclusion, we can drop the provisional assumptions of
standardness and conclude that any standard profinite group admits an ordinary group
approximation.
Qed.

2.2.20. Proposition. Every standard profinite group (𝐺,◦−) admits a finite approxima-
tion as a group in the profinite topology ◦−.

Proof. Exercise. Hint: The approximation of Theorem 2.2.18 does the job. To prove
this, observe that 𝑓1 ◦− 𝑓2 in the profinite topology implies having the same values at
standard arguments.
Qed.

Properties of approximations

2.2.21. We have seen in Proposition 2.2.13 that the approximations constructed from
ordinary approximations using Proposition 2.2.8 preserve the group operation. The
approximations coming from Theorem 2.2.18 possess even better properties than the
ones obtained from ordinary approximations in Proposition 2.2.13 (not to mention the
approximations of Exercise 2.2.14). Not only does our approximation have an internal
𝜄 that acts like a group homomorphism on standard elements, but the homomorphism
property obtains for any pair of elements, even non-standard ones. At this stage, talking
about all these different properties starts to feel tedious: time to consolidate what we
learned into a few memorable adjectives. We state Definition 2.2.22 for the case of
groups only: algebraic structures work the same way, and the interested reader can
contend with the general first-order case as in 2.2.12.

2.2.22. Definition. Consider two groups𝐻,𝐺 where𝐻 approximates𝐺 as a group via
the predicate 𝜄. We call 𝜄

1. internal if 𝜄 forms an internal predicate;

2. entire if for any 𝑔 ∈ 𝐺 we can find ℎ ∈𝐻 such that 𝜄(ℎ,𝑔) holds;

3. robust if for any 𝑔1,𝑔2 ∈ 𝐺 and ℎ1,ℎ2 ∈𝐻 such that 𝜄(ℎ1,𝑔1) and 𝜄(ℎ2,𝑔2) both
hold, we have 𝜄(ℎ1ℎ2,𝑔1𝑔2).

2.2.23. The approximations constructed in the proof of Proposition 2.2.13 are internal

58 CHAPTER 2. STRUCTURAL APPROXIMATION

and entire but usually not robust. The approximations constructed as part of Proposi-
tion 2.2.10 and Exercise 2.2.14 are neither internal nor entire, but they are both robust.
The approximations coming from Theorem 2.2.18 are internal, entire and robust. Us-
ing specific properties of the first-order theory under consideration allows us to relate
ordinary strong approximations of certain structures with robust approximations of the
same structures: Theorem 2.2.24 gives an example.

2.2.24. Theorem. Take any field 𝔽 . Assume that we have a standard ordinary approxi-
mation of an 𝔽 -vector-space𝐺 via the 𝐼-indexed sequence of 𝔽 -vector-spaces𝐻 . Then
we can find an internal, entire, robust approximation of𝐺 via𝐻𝜔 for some index 𝜔∈ 𝐼 .

Proof. Denote the 𝐼-ultrafilter coming from the ordinary approximation as . Tak-
ing a direct product of vector spaces yields another vector space, so we can regard
the quotient map [−] ∶

∏
𝑖∈𝐼𝐻𝑖 →

∏
𝑖∈𝐼𝐻𝑖∕ as an epimorphism in the category

of 𝔽 -vector-spaces. But every epimorphism splits in that category, so we get a linear
transformation 𝑟 ∶

∏
𝑖∈𝐼𝐻𝑖∕ →

∏
𝑖∈𝐼𝐻𝑖 such that ∀𝑥.([−]◦𝑟)(𝑥) = 𝑥. By Proposi-

tion 1.3.38 the ultrafilter  has a monadic element 𝜔 ∈ 𝐼 . Define 𝜄(ℎ,𝑔) between 𝐻𝜔

and 𝐺 as an abbreviation for the formula (𝑟◦colim)(𝑔)(𝜔) = ℎ. The resulting approx-
imation 𝜄 has the internal and entire properties by Proposition 2.2.8. We only need to
prove robustness.
Consider any 𝑔1,𝑔2 ∈𝐺 and ℎ1,ℎ2 ∈𝐻𝜔 such that 𝜄(ℎ1,𝑔1) and 𝜄(ℎ2,𝑔2) both hold. Take
any scalar 𝜆∈ 𝔽 . We have (𝑟◦colim)(𝑔1)(𝜔) = ℎ1 and (𝑟◦colim)(𝑔2)(𝜔) = ℎ2. We need
to prove that (𝑟◦colim)(𝜆𝑔1 + 𝑔2)(𝜔) = 𝜆ℎ1 + ℎ2. Using the linearity of both colim
and 𝑟, we have (𝑟◦colim)(𝜆𝑔1 + 𝑔2) = 𝑟(𝜆colim(𝑔1) + colim(𝑔2)) = 𝜆𝑟(colim(𝑔1)) +
𝑟(colim(𝑔2)) as members of the function space

∏
𝑖∈𝐼𝐻𝑖. Equality of functions implies

pointwise equality on all indices, so taking the index 𝜔 ∈ 𝐼 gives us (𝑟◦colim)(𝜆𝑔1+
𝑔2)(𝜔) = 𝜆(𝑟◦colim(𝑔1))(𝜔) + (𝑟◦colim(𝑔2))(𝜔) = 𝜆ℎ1 + ℎ2, which shows the robust-
ness of the approximation.
Qed.

2.2.25. One cannot imitate the reasoning of Theorem 2.2.24 in the case of arbitrary
groups. Given an ordinary strong approximation of 𝐺 via the sequence of finite groups
𝐻𝑖, one wishes to find a section 𝑟 ∶

∏
𝑖∈𝐼𝐻𝑖∕→

∏
𝑖∈𝐼𝐻𝑖 for the quotient map [−] ∶∏

𝑖∈𝐼𝐻𝑖→
∏

𝑖∈𝐼𝐻𝑖∕. Upon success, we would have 𝑟◦colim ∶𝐺↪
∏

𝑖∈𝐼𝐻𝑖. Only
residually finite groups 𝐺 admit such a morphism. This does not mean that robust
approximation implies residually finiteness, merely that we cannot use the construction
of Proposition 2.2.13 to find robust approximations in the non-residually-finite case.

2.2. APPROXIMATION IN IST 59

Residually finite groups

2.2.26. Definition. We call a group 𝐺 residually finite if it embeds into some direct
product of finite groups.

2.2.27. Proposition. A group 𝐺 is residually finite precisely if for any finite subset
𝐹 ⊆ 𝐺 with 1 ∉ 𝐹 we can find a finite index normal subgroup 𝑁 of 𝐺 such that ∀𝑥 ∈
𝐹 .𝑥 ∉𝑁 .

Proof. See [7]-Corollary 2.2.6.
Qed.

2.2.28. Corollary. A standard group𝐺 satisfies residually finiteness precisely if it con-
tains a finite index normal subgroup 𝑁 that does not have any standard element (apart
from the identity).

Proof. Apply Idealization to the normal subgroup condition of Proposition 2.2.27.
Qed.

2.2.29. Theorem. Every standard residually finite group 𝐺 admits a finite internal, en-
tire, robust approximation.

Proof. Take a residually finite group 𝐺. We can use Corollary 2.2.28 to choose a
finite index subgroup 𝑁 that does not contain any standard (non-identity) element of
𝐺. Taking the quotient 𝐻 = 𝐺∕𝑁 yields a finite group by the finite index clause. Let
𝜄(ℎ,𝑔) stand for the binary predicate 𝑔 ∈ ℎ for 𝑔 ∈𝐺 and ℎ ∈𝐺∕𝑁 . Internality follows
by the form of 𝜄. We prove the other clauses below:

1. For any 𝑔 ∈ 𝐺, we have ℎ ∈𝐻 so 𝜄(ℎ,𝑔) holds. We can take ℎ = 𝑔𝑁 , thereby
showing that 𝜄 is entire.

2. For any 𝑔 ∈ 𝐺 and ℎ1,ℎ2 ∈ 𝐻 such that 𝑔 ∈ ℎ1 and 𝑔 ∈ ℎ2, we have ℎ1 = ℎ2.
This just restates the fact that left cosets of a normal subgroup are either disjoint
or identical.

3. For any standard 𝑔1,𝑔2 ∈ 𝐺, and ℎ ∈𝐻 such that 𝑔1 ∈ ℎ and 𝑔2 ∈ ℎ, we have
𝑔1 = 𝑔2. Writing ℎ = 𝑥𝑁 , we get 𝑔1𝑥−1 ∈𝑁 and 𝑥−1𝑔−12 ∈𝑁 , and thus 𝑔1𝑔−12 ∈
𝑁 . But st(𝑔1𝑔−12) holds by Corollary 1.2.11, and the only standard element of𝑁
equals the identity. Hence 𝑔1𝑔−12 = 1 and so 𝑔1 = 𝑔2.

60 CHAPTER 2. STRUCTURAL APPROXIMATION

4. For any 𝑔1,𝑔2 ∈ 𝐺 and any ℎ1 ∈𝐻,ℎ2 ∈𝐻 such that 𝑔1 ∈ ℎ1 and 𝑔2 ∈ ℎ2 we
have 𝑔1𝑔2 ∈ 𝑔1𝑔2𝑁 = ℎ1ℎ2 by the definition of multiplication in 𝐺∕𝑁 .

Qed.

2.2.30. Theorem 2.2.29 proves Theorem 2.2.18 as a special case, since every profinite
group has the property of residually finiteness. However, one does not get a simple
proof of the topological approximation result (Proposition 2.2.20) this way.

2.2.31. Unlike the construction of Theorem 2.2.18, which gave as a corollary the ordi-
nary approximability of profinite groups (Corollary 2.2.19), we cannot expect the result
of Theorem 2.2.29 to transfer to ordinary approximations: we construct a counterexam-
ple in Proposition 2.2.32.

2.2.32. Proposition. Some residually finite groups do not admit ordinary finite approx-
imations.

Proof. Assume for a contradiction that all residually finite groups admit ordinary finite
approximations. Regard 𝑆𝑂(3) as a quotient 𝑓 ∶ 𝐹 ↠ 𝑆𝑂(3) of the free group gener-
ated by all matrices in 𝑆𝑂(3). Since free groups are residually finite, our assumption
allows us to find a finite ordinary approximation lim ∶

∏
𝑖∈𝐼𝐻𝑖∕ ↠ 𝐹 , and to get

an approximation of 𝑆𝑂(3) as 𝑓◦ lim ∶
∏

𝑖∈𝐼𝐻𝑖∕ ↠ 𝑆𝑂(3). This contradicts [34]-
Theorem 7 on ordinary approximations of 𝑆𝑂(3).
Qed.

The Alexandroff case

2.2.33. We wish to investigate the “best possible” approximations: ones where the
approximation predicate 𝜄 constitutes a genuine, bona fide homomorphism of groups.
Analogizing with Alexandroff spaces, which arise as the spaces where the nearness
predicate forms a bona fide relation, we call these Alexandroff approximations. Here
we classify groups that admit such finite approximations. One can define Alexandroff
approximation for other algebraic structures analogously; the diligent reader would fill
in these details while attempting Exercise 2.2.37.

2.2.34. Definition. Consider an approximation 𝜄 of a group 𝐺 (equipped with some
Fréchet predicate ◦−) via a finite group 𝐻 . We call 𝜄 an Alexandroff approximation if
𝜄(ℎ,𝑔)↔ 𝑓 (ℎ) = 𝑔 for some group homomorphism 𝑓 ∶𝐻 → 𝐺.

2.2. APPROXIMATION IN IST 61

2.2.35. Definition. We call a group𝐺 locally finite if every finitely generated subgroup
of 𝐺 has finite order.

2.2.36. Proposition. A group (𝐺,◦−) admits a finite Alexandroff approximation pre-
cisely if 𝐺 is locally finite. In that case one can find an Alexandroff approximation by
a subgroup 𝐻 <𝐺.

Proof. Provisionally assume that 𝐺 is standard. Assume that 𝐺 admits some Alexan-
droff approximation 𝜄 via𝐻 . Consider the group homomorphism 𝑓 ∶𝐻 →𝐺, and take
the image 𝑓 (𝐻) < 𝐺. This subgroup clearly has finite order. Since ∀𝑠𝑡𝑔 ∈ 𝐺.∃ℎ ∈
𝐻.𝜄(ℎ,𝑔) holds, we have that ∀𝑠𝑡𝑔 ∈ 𝐺.𝑔 ∈ 𝑓 (𝐻), and therefore we can find some
𝑋 < 𝐺 that forms a finite subgroup of 𝐺 that contains every standard element of 𝐺.
Using Proposition 1.2.4 we get that for any standard finite subset 𝐹 ⊆ 𝐺 we can find a
finite subgroup 𝑋 < 𝐺 such that 𝐹 ⊆ 𝑋. Thus ⟨𝐹 ⟩ ⊆ 𝑋, and so ⟨𝐹 ⟩ has finite order.
By Transfer the same holds for every finite subset of 𝐺.
Now assume that every finitely generated subgroup of 𝐺 has finite order. Take a finite
subset𝐻 of𝐺 that contains every standard element of𝐺 (follow e.g. the proof of Propo-
sition 2.2.7). Since ⟨𝐻⟩ has finite order, it constitutes a finite subgroup that nonetheless
contains every standard element of 𝐺. Take the inclusion map 𝑓 ∶ ⟨𝐻⟩ ↪ 𝐺 and set
𝜄(ℎ,𝑔) as an abbreviation for 𝑓 (ℎ) = 𝑔. We have to verify three properties:

1. For standard 𝑔 ∈𝐺 we can find ℎ∈ ⟨𝐻⟩ with 𝑓 (ℎ) = 𝑔. Since 𝑔 ∈𝐻 ⊆ ⟨𝐻⟩, we
can set ℎ = 𝑔 and have 𝑓 (ℎ) = ℎ = 𝑔.

2. For standard 𝑔 ∈ 𝐺, arbitrary ℎ1,ℎ2 ∈ ⟨𝐻⟩ such that 𝑓 (ℎ1) = 𝑔 and 𝑓 (ℎ2) = 𝑔,
we have ℎ1 = ℎ2. Since we obtained 𝑓 as an inclusion map, we have ℎ1 = 𝑔 = ℎ2
as desired.

3. For any 𝑔1,𝑔2 ∈ 𝐺 and ℎ ∈ ⟨𝐻⟩ such that 𝑓 (ℎ) = 𝑔1 and 𝑓 (ℎ) = 𝑔2 we have
𝑔1 ◦− 𝑔2. In this case we have 𝑔1 = 𝑔2, so by reflexivity 𝑔1 ◦− 𝑔2.

4. For 𝑔1,𝑔2 ∈ 𝐺 and ℎ1,ℎ2 ∈ ⟨𝐻⟩ such that 𝑓 (ℎ1) = 𝑔1 and 𝑓 (ℎ2) = 𝑔2, we have
𝑓 (ℎ1ℎ2) = 𝑔1𝑔2. Again, this holds simply because we have ℎ1ℎ2 ∈ ⟨𝐻⟩, ℎ1 = 𝑔1
and ℎ2 = 𝑔2.

Qed.

2.2.37. Exercise. Prove that every Boolean algebra admits an Alexandroff approxima-
tion.

62 CHAPTER 2. STRUCTURAL APPROXIMATION

2.2.38. The correspondence presented in Proposition 2.2.36 sheds light on the “unrea-
sonable effectiveness” of Internal Set Theory for locally finite structures. Even The-
orem 1.2.7 relies essentially on the locally finiteness of graph structures: taking the
subgraph induced by a finite subset of vertices results in a finite subgraph. As a more
open-ended exercise, applying Exercise 2.2.37 to Goldblatt’s superstructure proof of
the Stone representation theorem ([16]-Chapter 19.6.) yields a very legible IST-proof
of the same fact.

2.3 Action extension

2.3.1. Approximations allows us to extend well-behaved functions defined on the ap-
proximating object to similarly well-behaved functions defined on the approximated
object, as long as the codomain of the function comes equipped with a nice topology.
In particular, we show that if a group admits a finite approximation with a Lipschitz ac-
tion on some compact manifold, then we can lift this action and obtain an action of any
periodic subgroup of the approximated group on the same manifold (Theorem 2.3.9).

2.3.2. Proposition. Let 𝜄 be a weak approximation of the standard set 𝐺 via the (not
necessarily finite) set 𝐻 . Consider a standard compact Hausdorff topological space
(𝑀,◦−) and a function 𝑓 ∶𝐻 →𝑀 such that ∀ℎ1,ℎ2 ∈𝐻.∀𝑔 ∈𝐺.𝜄(ℎ1,𝑔)∧ 𝜄(ℎ2,𝑔)→
𝑓 (ℎ1) ◦− 𝑓 (ℎ2). There is a function 𝑓 ′ ∶ 𝐺→𝑀 such that for any standard 𝑔 ∈ 𝐺, if
𝜄(ℎ,𝑔) then 𝑓 ′(𝑔) ◦− 𝑓 (ℎ).

Proof. Take such a function 𝑓 ∶𝐻 →𝑀 . Define the set 𝑓 ′ via the Standardization
axiom as 𝑓 ′ = ⦃(𝑔,𝑚) ∈ 𝐺×𝑀 |∃ℎ ∈𝐻.𝜄(ℎ,𝑔)∧𝑚 ◦− 𝑓 (ℎ)⦄. We claim that 𝑓 ′ forms
the graph of a function 𝑓 ′ ∶ 𝐺→𝑀 .
We first prove that ∀𝑠𝑡𝑔.∃𝑠𝑡!𝑚 ∈𝑀.(𝑔,𝑚) ∈ 𝑓 ′. For existence, take a standard 𝑔 ∈ 𝐺.
Since 𝜄 weakly approximates 𝐺 via 𝐻 , we can find ℎ ∈ 𝐻 such that 𝜄(ℎ,𝑔). Using
the compactness of 𝑀 , we immediately get a standard 𝑚 ∈𝑀 such that 𝑚 ◦− 𝑓 (ℎ).
Thus we have (𝑔,𝑚) ∈ 𝑓 ′. For uniqueness, take standard 𝑔 ∈ 𝐺,𝑚1 ∈𝑀 and 𝑚2 ∈𝑀 ,
and assume (𝑔,𝑚1) ∈ 𝑓 ′ and (𝑔,𝑚2) ∈ 𝑓 ′. By definition we get ℎ1,ℎ2 ∈𝐻 such that
𝜄(ℎ1,𝑔),𝑚1 ◦− 𝑓 (ℎ1) and 𝜄(ℎ2,𝑔),𝑚2 ◦− 𝑓 (ℎ2) all hold. From 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) we
obtain 𝑓 (ℎ2) ◦− 𝑓 (ℎ1), and hence (by the properties of the universal representation ◦−)
𝑚1 ◦− 𝑓 (ℎ2). Now we have 𝑚1 ◦− 𝑓 (ℎ2) and 𝑚2 ◦− 𝑓 (ℎ2), so by the Hausdorff property
we conclude 𝑚1 = 𝑚2.
Notice that st(𝑓 ′) holds by Standardization. This means that Transfer applies to the

2.3. ACTION EXTENSION 63

formula ∀𝑠𝑡𝑔.∃𝑠𝑡!𝑚∈𝑀.(𝑔,𝑚) ∈ 𝑓 ′, which proves our claim that 𝑓 ′ ∶𝐺→𝑀 . For any
standard 𝑔 ∈ 𝐺 we have st(𝑓 ′(𝑔)), and since (𝑔,𝑓 ′(𝑔)) ∈ 𝑓 ′ we get ∀ℎ ∈𝐻.𝜄(ℎ,𝑔)→
𝑓 ′(𝑔) ◦− 𝑓 (ℎ) as desired.
Qed.

2.3.3. Corollary. Consider an approximation 𝜄 of the standard set 𝐺 via the (not nec-
essarily finite) set 𝐻 . For any function 𝑓 ∶𝐻 →𝑀 to a standard compact Hausdorff
space 𝑀 we can find a standard function 𝑓 ′ ∶𝐺→𝑀 such that for all standard 𝑔 ∈𝐺,
if 𝜄(ℎ,𝑔) then 𝑓 ′(𝑔) ◦− 𝑓 (ℎ).

Proof. By the definition of approximation we have 𝜄(ℎ1,𝑔)∧ 𝜄(ℎ2,𝑔)→ ℎ1 = ℎ2 for any
standard 𝑔 ∈ 𝐺. Consequently, every function 𝑓 ∶ 𝐻 →𝑀 satisfies 𝑓 (ℎ1) = 𝑓 (ℎ2),
and a fortiori 𝑓 (ℎ1) ◦− 𝑓 (ℎ2). We get the claimed result by applying Proposition 2.3.2.
Qed.

2.3.4. Notice that one cannot weaken the compactness requirement in either Proposi-
tion 2.3.2 or Corollary 2.3.3. In fact, given a non-compact 𝑀 , we can use the charac-
terization of Theorem 1.3.33 to find a point 𝑚 that lies far from every standard point,
i.e. ∀𝑠𝑡𝑥 ∈𝑀.¬𝑥 ◦− 𝑚. Then we cannot even extend the constant function 𝑓 (𝑥) = 𝑚.
One can see the failure of the extension results for non-compact 𝑀 as a (very loose)
counterpart to [51]-Proposition 3.4.

2.3.5. We are now ready to prove our main result for this chapter, Theorem 2.3.9, which
relates actions of an approximating group 𝐻 on standard manifolds to actions of pe-
riodic subgroups of the approximated group 𝐺 on the same manifold. One can see
Theorem 2.3.9 as a (vast) generalization of a result on discrete circle actions due to
Manevitz and Weinberger [30]. The group-theoretic underpinning of our result comes
from the celebrated Newman’s theorem on group actions, which states that a compact
Lie group does not act on a manifold with uniformly small orbits. For what follows
recall that we label a group periodic if each element of the group has finite order.

2.3.6. Theorem (Newman). Take a manifold𝑀 metrized by the metric 𝑑, and consider
a non-empty open subset𝑈 ⊆𝑀 . We can find a real number 𝜈 > 0 depending only on𝑈
and the restriction of 𝑑 to𝑈 such that for any compact Lie group𝐺, the only continuous
action

↻

∶ 𝐺×𝑀 →𝑀 satisfying 𝑑(𝑥,𝑔

↻

𝑥) ≤ 𝜈 for all 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑈 is the trivial
action.

Proof. See [37]-Theorem 1.

64 CHAPTER 2. STRUCTURAL APPROXIMATION

Qed.

2.3.7. Corollary. For any standard compact metric manifold 𝑀 equipped with a stan-
dard metric, we have a standard real number 𝜈 > 0 such that for any finite group 𝐺 ≠ 1,
continuous faithful action

↻

∶𝐺×𝑀 →𝑀 and element 𝑔 ∈𝐺, we can find 𝑛 ∈ ℕ and
𝑥 ∈𝑀 with 𝑑(𝑔𝑛

↻

𝑥,𝑥) > 𝜈.

Proof. Consider a standard compact metric manifold𝑀 . Set𝑈 =𝑀 and obtain a 𝜈 > 0
from Theorem 2.3.6. We can pick a standard such 𝜈 by Transfer. Take the finite group⟨𝑔⟩ < 𝐺. By faithfulness the restricted action

↻ |⟨𝑔⟩ ∶ ⟨𝑔⟩×𝑀 →𝑀 is non-trivial, and
so by Theorem 2.3.6 there are ℎ ∈ ⟨𝑔⟩ and 𝑥 ∈𝑀 such that 𝑑(ℎ

↻

𝑥,𝑥) > 𝜈. Since ℎ
belongs to the finite group ⟨𝑔⟩ we can write ℎ = 𝑔𝑛 for some 𝑛 ∈ ℕ.
Qed.

2.3.8. Definition. Take a positive constant𝐾 ∈ℝ. Consider a group𝐺, a metric space
(𝑀,𝑑) and an action

↻

∶𝐺×𝑀 →𝑀 . We call this action𝐾-Lipschitz if for all 𝑔 ∈𝐺,
𝑥,𝑦 ∈𝑀 , we have 𝑑(𝑔

↻

𝑥,𝑔
↻

𝑦) ≤𝐾 ⋅𝑑(𝑥,𝑦).

2.3.9. Theorem (Main Result). Consider a standard group𝐺 approximated by the finite
group𝐻 , and a standard compact manifold𝑀 . Assume that the group𝐻 acts faithfully
on the manifold𝑀 via the action

↻

∶𝐻 ×𝑀 →𝑀 , and that this action is𝐾-Lipschitz
for some standard 𝐾 > 0 (on some metrization of the manifold). Then every periodic
subgroup of 𝐺 admits a faithful 𝐾-Lipschitz action on 𝑀 .

Proof. For the sake of readability, we divide this long proof into multiple claims.

Claim 1: The set 𝐺×𝑀 approximates 𝐻 ×𝑀 .

Define the predicate 𝜄′((ℎ,𝑚ℎ), (𝑔,𝑚𝑔)) between 𝐻 ×𝑀 and 𝐺×𝑀 as an abbreviation
for 𝜄(ℎ,𝑔)∧𝑚ℎ = 𝑚𝑔. We need to prove the usual properties.

1. For any standard (𝑔,𝑚) ∈𝐺×𝑀 we can find (ℎ,𝑚ℎ) ∈𝐻 ×𝑀 such that we have
𝜄′((ℎ,𝑚ℎ), (𝑔,𝑚)). Take standard (𝑔,𝑚) ∈ 𝐺×𝑀 . Since 𝜄 satisfies the analogous
property, choose ℎ ∈𝐻 such that 𝜄(ℎ,𝑔). We clearly have 𝜄((ℎ,𝑚), (𝑔,𝑚)).

2. For any standard (𝑔,𝑚) ∈ 𝐺×𝑀 and arbitrary (ℎ1,𝑚1), (ℎ2,𝑚2) ∈𝐻 ×𝑀 such
that 𝜄′((ℎ1,𝑚1), (𝑔,𝑚)) and 𝜄′((ℎ2,𝑚2), (𝑔,𝑚)) both hold, we have (ℎ1,𝑚1) = (ℎ2,𝑚2).
The assumptions guarantee𝑚1 =𝑚=𝑚2, so we only need to prove ℎ1 = ℎ2. This
follows since both 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) hold and 𝜄 satisfies the analogous property.

2.3. ACTION EXTENSION 65

3. For any standard (𝑔1,𝑚1), (𝑔2,𝑚2) ∈ 𝐺×𝑀 and arbitrary (ℎ,𝑚) ∈𝐻 ×𝑀 such
that 𝜄′((ℎ,𝑚), (𝑔1,𝑚1)) and 𝜄′((ℎ,𝑚), (𝑔2,𝑚2)) both hold, we have (𝑔1,𝑚1) = (𝑔2,𝑚2).
Again, the assumptions guarantee𝑚1 =𝑚=𝑚2, so we only need to prove 𝑔1 = 𝑔2.
This follows from 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2) using the analogous property of 𝜄.

In what follows, fix a standard metrization of the manifold 𝑀 , and hence realize it as
a compact metric space (𝑀,𝑑). Denote the nearness predicate coming from Proposi-
tion 1.3.35 as ◦−.

Claim 2: We can find a standard function

↻ ′ ∶ 𝐺 ×𝑀 →𝑀 such that for all
standard 𝑔 ∈ 𝐺 and 𝑚 ∈𝑀 , if we have 𝜄(ℎ,𝑔) then we also have 𝑔

↻ ′𝑚 ◦− ℎ

↻

𝑚.

Using Claim 1, we know that 𝜄′ approximates𝐺×𝑀 via𝐻 ×𝑀 . Moreover,𝑀 forms a
compact Hausdorff topological space with the nearness predicate ◦−. Applying Corol-
lary 2.3.3 to the function

↻

∶𝐺×𝑀 →𝑀 gives us a function

↻ ′ ∶𝐺×𝑀 such that for
any standard (𝑔,𝑚) ∈𝐺×𝑀 and any (ℎ,𝑚ℎ) ∈𝐻 ×𝑀 with𝜄′((ℎ,𝑚𝐻), (𝑔,𝑚)), we have
𝑔

↻ ′𝑚 ◦− ℎ

↻

𝑚𝐻 . By the definition of 𝜄′, we have 𝑚𝐻 =𝑚. Thus, if we have 𝜄(ℎ,𝑔) then
we also have 𝑔

↻ ′𝑚 ◦− ℎ

↻

𝑚.

Claim 3: We have 𝜄(1𝐻 ,1𝐺).

Recall that Definition 2.2.3 mandates only the preservation of the group operation; we
prove the preservation of the identity element as a consequence. Since st(1𝐺) holds, we
have some ℎ ∈𝐻 such that 𝜄(ℎ,1𝐺). It suffices to prove that ℎ = 1𝐻 . From 𝜄(ℎ,1𝐺) we
get 𝜄(ℎ2,12𝐺) using the fact that 𝜄 preserves the group operation. But then 𝜄(ℎ2,1𝐺), and
from st(1𝐺) we get ℎ2 = ℎ. Multiplying both sides by ℎ−1 yields ℎ = 1𝐻 as desired.

Claim 4: The action

↻

∶𝐻 ×𝑀 →𝑀 satisfies uniform S-continuity, i.e. for all
ℎ ∈𝐻 and 𝑥,𝑦 ∈𝑀 , if 𝑥 ◦− 𝑦 then ℎ

↻

𝑥 ◦− ℎ

↻

𝑦.

We start by proving that this holds for standard 𝑥 ∈𝑀 . So consider arbitrary ℎ ∈𝐻 ,
standard 𝑥∈𝑀 and arbitrary 𝑦∈𝑀 with 𝑥 ◦− 𝑦. Take any standard 𝜀 > 0. Since st(𝐾)
holds, we know that st(𝐾−1𝜀) holds as well. By 𝑥 ◦− 𝑦, we have 𝑑(𝑥,𝑦) < 𝑠 for any
standard 𝑠 > 0. In particular 𝑑(𝑥,𝑦)≤𝐾−1𝜀. By the𝐾-Lipschitz property of the action

↻

, we know that 𝑑(ℎ

↻

𝑥,ℎ

↻

𝑦) < 𝐾𝑑(𝑥,𝑦) ≤ 𝐾𝐾−1𝜀 = 𝜀. Since we chose an arbitrary
standard 𝜀 > 0, we get ℎ

↻

𝑥 ◦− ℎ

↻

𝑦 as desired.
Now we must prove the same for arbitrary 𝑥∈𝑀 . Consider arbitraryℎ∈𝐻 , 𝑥∈𝑀 and
𝑦∈𝑀 with 𝑥 ◦− 𝑦. Use the compactness of𝑀 to pick standard 𝑥′ such that 𝑥′ ◦− 𝑥. By
transitivity we have 𝑥′ ◦− 𝑦 as well, so by the previous result we have both ℎ

↻

𝑥′ ◦− ℎ

↻

𝑥
and ℎ

↻

𝑥′ ◦− ℎ

↻

𝑦. From symmetry and transitivity it follows that ℎ

↻

𝑥 ◦− ℎ

↻

𝑦.

66 CHAPTER 2. STRUCTURAL APPROXIMATION

Claim 5: For each 𝑚 ∈𝑀 we have 1𝐺

↻ ′𝑚 = 𝑚.

We know that st(

↻ ′), so we can provisionally assume the standardness of𝑚. In that case
we have 1𝐺

↻ ′𝑚 ◦− ℎ

↻

𝑚 for each ℎ ∈𝐻 with 𝜄(ℎ,1𝐺) by Claim 2. From Claim 3 we
know that 𝜄(1𝐻 ,1𝐺), so 1𝐺

↻ ′𝑚 ◦− 1𝐻

↻

𝑚 = 𝑚. Using st(𝑚) it follows that 1𝐺

↻ ′𝑚 = 𝑚
by the Hausdorff property of 𝑀 .

Claim 6: For each 𝑔,ℎ ∈ 𝐺 and 𝑚 ∈𝑀 we have 𝑔ℎ
↻ ′𝑚 = 𝑔

↻ ′(ℎ

↻ ′𝑚).

Caveat: in this part ℎ belongs to 𝐺, not to 𝐻! Given the internal conclusion, we pro-
visionally assume the standardness of 𝑔,ℎ and 𝑚. Since st(𝑔),st(ℎ) hold we can find
𝑔′ ∈𝐻 and ℎ′ ∈𝐻 such that 𝜄(𝑔′,𝑔) and 𝜄(ℎ′,ℎ). By preservation of the group operation
for standard elements, we have 𝜄(𝑔′ℎ′,𝑔ℎ) as well. On one hand, we have

𝑔ℎ

↻ ′𝑚 ◦− 𝑔′ℎ′

↻

𝑚 = 𝑔′

↻

(ℎ′
↻

𝑚).

On the other hand, we have 𝑔
↻ ′(ℎ

↻ ′𝑚) ◦− 𝑔′

↻

(ℎ

↻ ′𝑚). Why? Because ℎ and𝑚 are stan-
dard, and hence st(ℎ

↻ ′𝑚), so Claim 2 applies. We also have ℎ

↻ ′𝑚 ◦− ℎ′

↻

𝑚. Applying
Claim 4 immediately yields 𝑔′

↻

(ℎ

↻ ′𝑚) ◦− 𝑔′

↻

(ℎ′

↻

𝑚), so we get

𝑔

↻ ′(ℎ
↻ ′𝑚) ◦− 𝑔′

↻

(ℎ′

↻

𝑚).

Notice that both 𝑔ℎ

↻ ′𝑚 and 𝑔

↻ ′(ℎ

↻ ′𝑚) satisfy standardness. We have shown that these
two standard elements have a common neighbor. Therefore, by Hausdorff separation
(Definition 1.3.25) we conclude 𝑔ℎ

↻ ′𝑚 = 𝑔

↻ ′(ℎ

↻ ′𝑚), which proves our claim, and
with Claim 5 proves that

↻

∶ 𝐺×𝑀 →𝑀 forms an action of 𝐺 on 𝑀 .

Claim 7: The action

↻ ′ ∶ 𝐺×𝑀 →𝑀 has Lipschitz constant 𝐾 .

By the internality of the conclusion, we can provisionally assume the standardness of ev-
erything in sight. So take standard 𝑔 ∈𝐺, 𝑥,𝑦∈𝑀 . We wish to prove 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦)≤
𝐾𝑑(𝑥,𝑦). Pick 𝑔′ with 𝜄(𝑔′,𝑔) and any standard 𝜀 > 0. Observe that by Claim 2, we
have 𝑑(𝑔

↻ ′𝑥,𝑔′

↻

𝑥) < 𝜀
2 and similarly for 𝑦. By repeated applications of the triangle

2.3. ACTION EXTENSION 67

inequality, we get that

𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦) ≤ 𝑑(𝑔

↻ ′𝑥,𝑔′

↻

𝑦)+𝑑(𝑔′

↻

𝑦,𝑔

↻ ′𝑦)

≤ 𝑑(𝑔

↻ ′𝑥,𝑔′

↻

𝑦)+ 𝜀
2

≤ 𝑑(𝑔′

↻

𝑥,𝑔′

↻

𝑦)+𝑑(𝑔′

↻

𝑥,𝑔

↻ ′𝑥)+ 𝜀
2

≤ 𝑑(𝑔′

↻

𝑥,𝑔′

↻

𝑦)+ 𝜀
2
+ 𝜀
2

= 𝑑(𝑔′

↻

𝑥,𝑔′

↻

𝑦)+𝜀

≤ 𝐾𝑑(𝑥,𝑦)+𝜀.

and therefore 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦)−𝐾𝑑(𝑥,𝑦) ≤ 𝜀 for all standard 𝜀 > 0. By Transfer we im-
mediately obtain 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦) ≤𝐾𝑑(𝑥,𝑦). Discharging the provisional standardness
assumptions, we conclude that the action

↻ ′ admits the standard Lipschitz constant 𝐾
as we claimed.

Claim 8: The action

↻

∶𝐻 ×𝑀 →𝑀 satisfies (metric, 𝜀-𝛿) continuity.

Note that Claim 8 does not follow from Claim 4, as we do not have st(

↻

) (the reader
has already constructed counterexamples as part of Exercise 1.3.20). For each ℎ ∈𝐻 ,
𝑥 ∈𝑀 and 𝜀 > 0 we need to find some 𝛿 > 0 such that for 𝑦 ∈𝑀 , 𝑑(𝑥,𝑦) < 𝛿 implies
𝑑(ℎ

↻
𝑥,ℎ

↻

𝑦) < 𝜀. But this follows immediately from the existence of the Lipschitz
constant, by taking 𝛿 =𝐾−1𝜀.

Claim 9: Consider any periodic subgroup𝑋 <𝐺 and 𝑔 ∈𝑋 such that 𝑔 ≠ 1. We
have 𝑔

↻ ′𝑚 ≠ 𝑚.

By the internality of the conclusion, we can provisionally assume the standardness of
both the subgroup𝑋 and the element 𝑔 ∈𝑋. Given the periodicity of𝑋, the element 𝑔
has finite order. Moreover, st(𝑥) holds, and therefore Proposition 1.2.9 guarantees the
standardness of ord(𝑥) ∈ ℕ.
Consider ℎ ∈ 𝐻 for which we have 𝜄(ℎ,𝑔). Then for any standard 𝑘 ∈ ℕ, we have
𝜄(ℎ𝑘,𝑔𝐾)→ 𝜄(ℎ𝑘+1,𝑔𝑘+1). Thus, by the principle of External Induction (Theorem 1.2.15)
we get that 𝜄(ℎ𝑛,𝑔𝑛) for all standard 𝑛∈ℕ. In particular, for 𝑛=ord(𝑥)we have 𝜄(ℎ𝑛,1𝐺).
We already know 𝜄(1𝐻 ,1𝐺) from Claim 3, so we can conclude ℎ𝑛 = 1𝐻 . Consequently,
ord(ℎ) ≤ ord(𝑔) and by Proposition 1.2.14 we obtain that ℎ has standard order.
We now apply Corollary 2.3.7 of Newman’s theorem to the group𝐻 , the element ℎ and
the action

↻

∶𝐻 ×𝑀 →𝑀 . For this we need to use Claim 8. We get a standard 𝜈 > 0,

68 CHAPTER 2. STRUCTURAL APPROXIMATION

some 𝑛 ∈ ℕ and some 𝑚′ ∈𝑀 such that 𝑑(ℎ𝑛

↻

𝑚′,𝑚′) > 𝜈, and therefore ¬(ℎ𝑛

↻

𝑚′ ◦−
𝑚′).
We know that st(𝑛) holds, since 𝑛 < ord(ℎ) and we have proved the standardness of
ord(ℎ) above. Unfortunately, we cannot expect 𝑚′ ∈𝑀 to satisfy standardness. How-
ever, using the compactness of 𝑀 we can obtain a standard 𝑚 ∈𝑀 with 𝑚 ◦− 𝑚′. We
prove that ¬(ℎ𝑛

↻

𝑚 ◦− 𝑚). Assume for a contradiction that ℎ𝑛
↻

𝑚 ◦− 𝑚 does hold. As
we have ℎ𝑛

↻

𝑚 ◦− ℎ𝑛

↻

𝑚′ from Claim 4, we could use the symmetry and transitivity of
the predicate ◦− to get ℎ𝑛

↻

𝑚′ ◦− ℎ𝑛

↻

𝑚 ◦− 𝑚 ◦− 𝑚′ and reach a contradiction.
By the previous External Induction argument, we know 𝜄(ℎ𝑛,𝑔𝑛), and Claim 2 gives us
𝑔𝑛

↻ ′𝑚 ◦− ℎ𝑛

↻

𝑚. Having 𝑔𝑛

↻ ′𝑚 ◦− 𝑚 would lead to the contradictory chain ℎ𝑛

↻

𝑚 ◦−
𝑔𝑛

↻ ′𝑚 ◦− 𝑚, so ¬(𝑔𝑛

↻ ′𝑚 ◦− 𝑚). We conclude 𝑔𝑛
↻ ′𝑚 ≠ 𝑚 using the reflexivity of the

nearness predicate ◦−. Since 𝑔𝑛

↻ ′𝑚 ≠ 𝑚, clearly 𝑔

↻ ′𝑚 ≠ 𝑚.
Transfer allows us to dispense with the provisional assumptions of standardness on 𝑋
and 𝑔, so for every element 𝑔 of any periodic subgroup 𝑋 we can find 𝑚 ∈𝑀 with
𝑔

↻ ′𝑚 ≠ 𝑚. We conclude that each periodic subgroup 𝑋 of the approximated group 𝐺
acts faithfully on the manifold 𝑀 via the map

↻ ′ ∶ 𝑋 ×𝑀 →𝑀 . So concludes the
proof of our main result.
Qed.

2.3.10. Corollary. Consider a standard group 𝐺 approximated by the finite group 𝐻 ,
and a standard compact manifold 𝑀 . Assume that the group 𝐻 acts isometrically on
the manifold 𝑀 via some action

↻

∶ 𝐻 ×𝑀 →𝑀 . Then every periodic subgroup
𝑋 < 𝐺 admits an isometric action on 𝑀 .

Proof. An isometric action satisfies the 𝐾-Lipschitz condition for 𝐾 = 1. We can
obtain the action

↻ ′ ∶ 𝐺 ×𝑀 → 𝑀 as we do in Theorem 2.3.9. We already know
that 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦) ≤ 𝑑(𝑥,𝑦), so proving 𝑑(𝑥,𝑦) ≤ 𝑑(𝑔 ↻ ′𝑥,𝑔

↻ ′𝑦) suffices to establish
our claim. By the internality of this conclusion, provisionally assume standardness of
𝑥,𝑦 ∈𝑀 as well as of 𝑔 ∈𝐺. Choose some 𝑔′ with 𝜄(𝑔′,𝑔) and any standard 𝜀 > 0. We
have 𝑑(𝑔

↻ ′𝑥,𝑔′

↻

𝑥) < 𝜀
2 and similarly for 𝑦 by the defining property of the function

↻ ′.

2.3. ACTION EXTENSION 69

As usual, we repeatedly apply the triangle inequality to obtain

𝑑(𝑥,𝑦) = 𝑑(𝑔′

↻

𝑥,𝑔′

↻

𝑦)

≤ 𝑑(𝑔

↻ ′𝑥,𝑔′

↻

𝑦)+𝑑(𝑔′

↻

𝑥,𝑔

↻ ′𝑥)

≤ 𝑑(𝑔

↻ ′𝑥,𝑔′

↻

𝑦)+ 𝜀
2

≤ 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦)+𝑑(𝑔′

↻

𝑦,𝑔

↻ ′𝑦)+ 𝜀
2

≤ 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦)+ 𝜀
2
+ 𝜀
2

= 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦)+𝜀.

The inequality 𝑑(𝑥,𝑦) ≤ 𝑑(𝑔

↻ ′𝑥,𝑔
↻ ′𝑦) + 𝜀 holds for any standard 𝜀. Using a short

Transfer argument we get that 𝑑(𝑥,𝑦) ≤ 𝑑(𝑔

↻ ′𝑥,𝑔

↻ ′𝑦) also holds. Discharging the
standardness assumptions, the conclusion holds for all 𝑥,𝑦 ∈𝑀 and all 𝑔 ∈ 𝐺, and so
the periodic subgroups act by isometries.
Qed.

2.3.11. Theorem 2.3.9 places limitations on groups which are approximated by non-
standard groups that act on standard manifolds, especially for the approximation of
periodic groups. We have of course that dihedral groups admit isometric actions on the
circle 𝑆1, which severely constrains groups with dihedral approximations. Similarly,
groups of the form ℤ∕𝑛ℤ×ℤ∕𝑚ℤ ∶ ℤ∕𝓁ℤ for 𝓁 ∈ {2,3,4,6} are the ones that admit
𝐾-Lipschitz actions on the torus 𝑆1×𝑆1 [2].

2.3.12. Theorem (Manevitz-Weinberger, [30]-Theorem 1). Fix some positive 𝐾 ∈ ℝ.
Consider a compact manifold 𝑀 which has a faithful 𝐾-Lipschitz ℤ∕𝑛ℤ action for all
𝑛 ∈ ℕ. Then 𝑀 has a faithful 𝐾-Lipschitz action by ℚ∕ℤ.

Proof. Provisionally assume st(𝐾) and st(𝑀). Using the locally finiteness of ℚ∕ℤ,
we can apply Proposition 2.2.36 to obtain an approximation 𝜄 of ℚ∕ℤ via some finite
subgroup 𝐻 <ℚ∕ℤ. Such a subgroup must have the form ℤ∕𝜔ℤ for some 𝜔 ∈ ℕ, and
therefore 𝐻 admits a faithful 𝐾-Lipschitz action on 𝑀 . Applying Theorem 2.3.9 we
get a faithful 𝐾-Lipschitz action on 𝑀 by ℚ∕ℤ.
Qed.

2.3.13. It is natural to ask whether the𝐾-Lipschitz assumption of Theorem 2.3.9 can be
replaced with some weaker condition. This remains to be seen. Clearly, any potential
condition would have to imply the continuity and S-continuity of the action. However,

70 CHAPTER 2. STRUCTURAL APPROXIMATION

neither continuity nor S-continuity suffice as a replacement: the proof relies on both
conditions, and since the action

↻

∶ 𝐻 ×𝑀 → 𝑀 is not standard, it might satisfy
one continuity condition but not the other. Moreover, the fact that the same condition
appears in both the assumptions and the conclusion makes it hard to find plausible
candidates1.

2.4 Snappy groups

2.4.1. Motivated by the negative result on ordinary approximation of𝑆𝑂(3)mentioned
in 2.1.8, one wishes to say something about the existence of well-behaved approxima-
tions of 𝑆𝑂(3) in the new formalism.

2.4.2. Proposition. One cannot approximate the group 𝑆𝑂(3) using any of its finite
subgroups.

Proof. Evidently one cannot approximate 𝑆𝑂(3) by a standard finite subgroup. So
assume that the predicate 𝜄 approximates 𝑆𝑂(3) via some nonstandard finite subgroup
𝐻 < 𝑆𝑂(3). By the classification of finite subgroups of 𝑆𝑂(3), every subgroup of
𝑆𝑂(3) of order > 60 arises as a dihedral group, so we can assume 𝐻 = 𝐷𝜔 for some
non-standard 𝜔 ∈ ℕ. Since 𝐷𝜔 admits a continuous isometric action on the circle, so
does every periodic subgroup of 𝑆𝑂(3). But 𝐴5 < 𝑆𝑂(3) admits no such action, a
contradiction. Hence one cannot approximate 𝑆𝑂(3) using finite subgroups.
Qed.

2.4.3. We can use Proposition 2.4.2 as a stepping stone for obtaining further results
on non-approximability. For example, by considering a special property (snappiness,
Definition 2.4.5) of the group 𝑆𝑂(3), we get that (unlike the approximations which we
obtain for, say, profinite groups), the approximations of 𝑆𝑂(3) never respect the usual
topology of the group.

2.4.4. Definition. Consider a group𝐻 and a standard topological group𝐺 represented
as an equivalence space (𝐺,◦−). We call a function 𝑓 ∶𝐻→𝐺 an S-near-homomorphism
if 1𝐺 ◦− 𝑓 (1𝐻), and for any 𝑥,𝑦 ∈𝐻 we have 𝑓 (𝑥𝑦) ◦− 𝑓 (𝑥)𝑓 (𝑦).

2.4.5. Definition. We call a standard topological group𝐺 represented as an equivalence
space (𝐺,◦−) snappy if for any finite group𝐻 and S-near-homomorphism 𝑓 ′ ∶𝐻 →𝐺

1That said, moduli-of-continuity conditions do deserve further investigation!

2.4. SNAPPY GROUPS 71

we can find a group homomorphism 𝑓 ∶𝐻 →𝐺 such that for all 𝑥∈𝐻 , 𝑓 (𝑥) ◦− 𝑓 ′(𝑥).

2.4.6. The term snappy of Definition 2.4.5 intends to evoke a picture of a DIP socket:
given a light jiggle, the chip’s electrical connecting pins gently snap into place. In the
same way, giving a gentle jiggle to a near-homomorphism makes all the points that just
barely missed their holes snap into place.

2.4.7. We prove the snappiness of 𝑆𝑂(3) in Corollary 2.4.9. A result of Babai, Friedl
and Lukács [3] perfectly encapsulates the group-theoretic part of the argument, so we
only have to do the non-standard analytic reasoning.

2.4.8. Theorem (Babai-Friedl-Lukács). Let |− | denote the Euclidean matrix norm on
𝑆𝑂(3). Fix a positive 𝜀 < 0.001 and a finite group 𝐻 . Consider a function 𝑓 ′ ∶𝐻 →

𝑆𝑂(3) such that |𝐼 −𝑓 ′(1)| < 𝜀 and |𝑓 ′(𝑥)𝑓 ′(𝑦)−𝑓 ′(𝑥𝑦)| < 𝜀 for all 𝑥,𝑦 ∈𝐻 as well.
Then we can find a group homomorphism 𝑓 ∶𝐻 → 𝑆𝑂(3) such that for all 𝑥 ∈𝐻 the
inequality |𝑓 (𝑥)−𝑓 ′(𝑥)| < 1000𝜀 holds.

Proof. See the proof of [3]-Theorem 1.3.
Qed.

2.4.9. Corollary. The group 𝑆𝑂(3) is snappy.

Proof. The equivalence of all matrix norms guarantees that (in accordance with Theo-
rem 1.3.35) the binary predicate 𝑀1 ◦−𝑀2 defined as ∀𝑠𝑡𝜀 > 0.|𝑀1−𝑀2| < 𝜀 univer-
sally represents the topology of 𝑆𝑂(3) as an equivalence space. In particular we have
the S-continuity of the group operations with respect to this relation. Consider any
S-near-homomorphism 𝑓 ′ ∶𝐻 → 𝑆𝑂(3). Take a standard finite set  ⊆ (0,0.001). De-
note 𝑠=min . We have st

(
𝑠

1000

)
by Corollary 1.2.11, so the inequality |𝑓 ′(𝑥)𝑓 ′(𝑦)−

𝑓 ′(𝑥𝑦)| < 𝑠
1000 obtains for all 𝑥,𝑦 ∈ 𝐻 . Theorem 2.4.8 applies and gives us a group

homomorphism 𝑓 ∶ 𝐻 → 𝑆𝑂(3) such that for all 𝑥 ∈ 𝐻 , |𝑓 (𝑥) − 𝑓 ′(𝑥)| < 𝑠. This
proves that for any standard finite set of numbers we can find a group homomorphism
𝑓 such that for all 𝜀 ∈  , |𝑓 (𝑥)−𝑓 ′(𝑥)| < 𝜀. By the principle of Idealization, we con-
clude the existence of a group homomorphism 𝑓 ∶𝐺→ 𝑆𝑂(3) such that ∀𝑠𝑡𝜀 > 0.∀𝑥∈
𝐻.|𝑓 (𝑥)−𝑓 ′(𝑥)| < 𝜀. Consequently, ∀𝑥 ∈𝐻.𝑓 (𝑥) ◦− 𝑓 ′(𝑥), which proves the snappi-
ness of the group 𝑆𝑂(3).
Qed.

72 CHAPTER 2. STRUCTURAL APPROXIMATION

2.4.10. Theorem. 𝑆𝑂(3) does not admit internal, robust finite approximations for its
usual topology.

Proof. Assume for a contradiction that we have a finite group 𝐻 and the required in-
ternal approximation predicate 𝜄 relating elements of 𝐻 to elements of 𝑆𝑂(3). This
means that the following hold:

A1 For any standard 𝑔 ∈ 𝑆𝑂(3) we can find ℎ ∈𝐻 such that 𝜄(ℎ,𝑔) holds.

A2 For any standard 𝑔 ∈ 𝑆𝑂(3), ℎ1,ℎ2 ∈𝐻 such that 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) hold, we
have ℎ1 = ℎ2.

T1 For any standard 𝑔1,𝑔2 ∈ 𝑆𝑂(3) and any ℎ ∈ 𝐻 such that 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2)
both hold, we have 𝑔1 ◦− 𝑔2.

A4 For any 𝑔1,𝑔2 ∈ 𝑆𝑂(3) and any ℎ1,ℎ2 ∈𝐻 with 𝜄(ℎ1,𝑔1) and 𝜄(ℎ2,𝑔2) we have
𝜄(ℎ1ℎ2,𝑔1𝑔2).

Without loss of generality, we can assume 𝐻 =𝐻 = {𝑥 ∈𝐻 |∃𝑔 ∈ 𝑆𝑂(3).𝜄(ℎ,𝑔)}: if
𝜄 approximates 𝑆𝑂(3) via 𝐻 , then it does the same via 𝐻 . Consider the set defined
by 𝐸 = {(ℎ,𝑔) ∈𝐻 ×𝑆𝑂(3) | 𝜄(ℎ,𝑔)}. The set 𝐸 may not form the graph of a function:
we cannot rule out having 𝜄(ℎ,𝑔1) and 𝜄(ℎ,𝑔2) for non-standard 𝑔1,𝑔2 ∈ 𝐺. However,
𝐻 =𝐻 , so ∀ℎ∈𝐻.∃𝑔 ∈𝐺.𝜄(ℎ,𝑔), and consequently we can apply the Axiom of Choice
to get a function 𝑒′ ∶ 𝐻 → 𝑆𝑂(3) that satisfies 𝜄(ℎ,𝑒′(ℎ)) for all ℎ ∈ 𝐻 . We claim
that 𝑒′ ∶ 𝐻 → 𝑆𝑂(3) gives an S-near-homomorphism between 𝐻 and 𝑆𝑂(3). We
must show that 𝑒′(ℎ1)𝑒′(ℎ2) ◦− 𝑒′(ℎ1ℎ2) for all ℎ1,ℎ2 ∈𝐻 . We have 𝜄(ℎ1, 𝑒′(ℎ1)) and
𝜄(ℎ2, 𝑒′(ℎ2)). By [A4] we get 𝜄(ℎ1ℎ2, 𝑒′(ℎ1)𝑒′(ℎ2)). But we also have 𝜄(ℎ1ℎ2, 𝑒′(ℎ1ℎ2)),
so by [T1] 𝑒′(ℎ1)𝑒′(ℎ2) ◦− 𝑒′(ℎ1ℎ2) as we desired. We know from Corollary 2.4.9 that
𝑆𝑂(3) forms a snappy group: we deduce the existence of a group homomorphism
𝑒 ∶ 𝐻 → 𝑆𝑂(3) such that ∀ℎ ∈ 𝐻.𝑒(ℎ) ◦− 𝑒′(ℎ). The image 𝑒(𝐻) necessarily forms
a finite subgroup of 𝑆𝑂(3). We prove that 𝑒(𝐻) approximates 𝑆𝑂(3). Define the
approximation predicate 𝜉(𝑥,𝑔) between 𝑥 and 𝑔 as an abbreviation for ∃ℎ ∈ 𝐻.𝑥 =
𝑒(ℎ)∧ 𝜄(ℎ,𝑔). We have to prove four things:

1. For any standard 𝑔 ∈ 𝑆𝑂(3) we can find 𝑥 ∈ 𝑒(𝐻) such that 𝜉(𝑥,𝑔) holds. Start
by using [A1] to find ℎ ∈𝐻 with 𝜄(ℎ,𝑔). Set 𝑥 = 𝑒(ℎ).

2. For any standard 𝑔 ∈𝑆𝑂(3) and 𝑥1,𝑥2 ∈ 𝑒(𝐻) such that 𝜉(𝑥1,𝑔) and 𝜉(𝑥2,𝑔) both
hold, we have 𝑥1 = 𝑥2. By 𝜉(𝑥1,𝑔) we have some ℎ1 such that 𝑥1 = 𝑒(ℎ1) and

2.4. SNAPPY GROUPS 73

𝜄(ℎ1,𝑔). By 𝜉(𝑥2,𝑔) we have some ℎ2 such that 𝑥2 = 𝑒(ℎ2) and 𝜄(ℎ2,𝑔). Since we
have 𝜄(ℎ1,𝑔) and 𝜄(ℎ2,𝑔) we can apply [A2] to get ℎ1 = ℎ2. But then 𝑥1 = 𝑒(ℎ1) =
𝑒(ℎ2) = 𝑥2 as required.

3. For any standard 𝑔1,𝑔2 ∈ 𝑆𝑂(3) and 𝑥 ∈ 𝑒(𝐻) such that 𝜉(𝑥,𝑔1) and 𝜉(𝑥,𝑔2)
both hold, we have 𝑔1 = 𝑔2. We have some ℎ1 such that 𝑥 = 𝑒(ℎ1) and 𝜄(ℎ1,𝑔1)
holds. We also have some ℎ2 such that 𝑥 = 𝑒(ℎ2) and 𝜄(ℎ2,𝑔2) holds. We also
have 𝜄(ℎ1, 𝑒′(ℎ1)) and 𝜄(ℎ2, 𝑒′(ℎ2)) by definition of the function 𝑒′. Hence [T1]
gives us 𝑔1 ◦− 𝑒′(ℎ1) and 𝑔2 ◦− 𝑒′(ℎ2). But then we have the following chain
of nearness relationships: 𝑔1 ◦− 𝑒′(ℎ1) ◦− 𝑒(ℎ1) = 𝑥 = 𝑒(ℎ2) ◦− 𝑒′(ℎ2) ◦− 𝑔2, so
𝑔1 ◦− 𝑔2. Since we have st(𝑔1) and st(𝑔2), the Fréchet property (Definition 1.3.25)
guarantees 𝑔1 = 𝑔2.

4. For any standard 𝑔1,𝑔2 ∈ 𝑆𝑂(3), 𝑥1,𝑥2 ∈ 𝑒(𝐻) such that 𝜉(𝑥1,𝑔1) and 𝜉(𝑥2,𝑔2),
we have 𝜉(𝑥1𝑥2,𝑔1𝑔2). By 𝜉(𝑥1,𝑔1) we have some ℎ1 such that 𝑥1 = 𝑒(ℎ1) and
𝜄(ℎ1,𝑔1). By 𝜉(𝑥2,𝑔2) we have some ℎ2 such that 𝑥2 = 𝑒(ℎ2) and 𝜄(ℎ2,𝑔2). We
need to construct some ℎ ∈𝐻 such that 𝑥1𝑥2 = 𝑒(ℎ) and 𝜄(ℎ,𝑔1𝑔2). But we have
𝜄(ℎ1ℎ2,𝑔1𝑔2) using [A4]. Set ℎ = ℎ1ℎ2. We have 𝑒(ℎ) = 𝑒(ℎ1ℎ2) = 𝑒(ℎ1)𝑒(ℎ2) =
𝑥1𝑥2.

The finite subgroup 𝑒(𝐻) of𝑆𝑂(3) approximates𝑆𝑂(3) internally, contradicting Propo-
sition 2.4.2.
Qed.

2.4.11. Problem. Can one extend the proof of Theorem 2.4.10 to non-robust approxi-
mations by proving a more general version of Theorem 2.4.8?

Chapter 3

Other results

In this short chapter we present some of our results that do not concern structural ap-
proximation directly, but relate to the development of algebra in Internal Set Theory.

3.1 Monotone subsequences

3.1.1. Baszczyk, Kanovei, Katz and Nowik [5] have recently presented an ultrapower
proof of the following classical result of Real Analysis: every infinite sequence in
a totally ordered set contains either an infinite constant subsequence or an infinite
strictly monotone subsequence. Inspired by their argument, we give a straightforward,
ultrapower-free proof using Internal Set Theory.

3.1.2. Theorem. Every infinite sequence in a totally ordered set contains either an in-
finite constant subsequence or an infinite strictly monotone subsequence.

Proof. Consider a totally ordered set (𝑆,<), and a sequence 𝑎 ∶ ℕ→ 𝑆. We can pro-
visionally assume the standardness of both the set 𝑆 and the sequence 𝑎. Take any
non-standard 𝜔 ∈ ℕ. Define the following sets:

𝐴1 = ⦃𝑘 ∈ ℕ ||𝑎𝑘 < 𝑎𝜔⦄
𝐴2 = ⦃𝑘 ∈ ℕ ||𝑎𝑘 = 𝑎𝜔⦄
𝐴3 = ⦃𝑘 ∈ ℕ ||𝑎𝑘 > 𝑎𝜔⦄

The Standardization axiom ensures the standardness of all three sets 𝐴1,𝐴2,𝐴3 ⊆ℕ. It
follows by Corollary 1.2.10 that we have st(𝐴1∪𝐴2∪𝐴3). Any standard natural number
𝑛 ∈ ℕ satisfies one of the sentences 𝑎𝑛 < 𝑎𝜔, 𝑎𝑛 = 𝑎𝜔 or 𝑎𝑛 > 𝑎𝜔 and so 𝐴1 ∪𝐴2 ∪𝐴3

74

3.1. MONOTONE SUBSEQUENCES 75

contains every standard natural. By Transfer we immediately get 𝐴1 ∪𝐴2 ∪𝐴3 = ℕ.
Consider the following:

1. If ∀𝑖 ∈ 𝐴1.∃𝑚 ∈ 𝐴1.𝑖 < 𝑚 ∧ 𝑎𝑖 < 𝑎𝑚 holds, then we can construct an infinite,
monotone increasing subsequence of 𝑎 by taking indices in 𝐴1.

2. If ∀𝑗 ∈𝐴3.∃𝑛∈𝐴3.𝑖 < 𝑛∧𝑎𝑗 > 𝑎𝑛 holds, then we can construct an infinite, mono-
tone decreasing subsequence of 𝑎 by taking indices in 𝐴3.

However, if the two previous conditions both fail, then

1. We can find 𝑖 ∈ 𝐴1 such that for all 𝑚 ∈ 𝐴1, if 𝑖 < 𝑚 then 𝑎𝑖 ≥ 𝑎𝑚.

2. We can find 𝑗 ∈ 𝐴3 such that for all 𝑛 ∈ 𝐴3, if 𝑗 < 𝑛 then 𝑎𝑗 ≤ 𝑎𝑛.
By Transfer, we can choose standard values for both 𝑖 and 𝑗; this means that we have
𝑖 < 𝜔 and 𝑗 < 𝜔. Assume for a contradiction that 𝜔 ∈ 𝐴1. Then we have 𝑎𝑖 ≥ 𝑎𝜔.
However, st(𝑖) and 𝑖∈𝐴1 both hold, so by definition 𝑎𝑖 <𝑎𝜔, a contradiction. Therefore,
𝜔 ∉ 𝐴1. Similarly, assume that 𝜔 ∈ 𝐴3. Then we have 𝑎𝑗 ≤ 𝑎𝜔. However, st(𝑗) and
𝑗 ∈ 𝐴3 both hold, so by definition 𝑎𝑗 > 𝑎𝜔, a contradiction. Therefore, 𝜔 ∉ 𝐴3.
Since 𝜔 ∈ ℕ = 𝐴1 ∪𝐴2 ∪𝐴3, we must then have 𝜔 ∈ 𝐴2. A standard finite set has all
its elements standard (Theorem 1.2.5), but 𝜔 is not standard, so 𝐴2 is not finite. But
we have ∀𝑠𝑡𝑛,𝑚 ∈ 𝐴2.𝑎𝑛 = 𝑎𝑚. By Transfer the sequence 𝑎 is constant on the infinite
set 𝐴2 ⊆ ℕ, so 𝑎 has an infinite constant subsequence.
Qed.

3.1.3. The usual proofs of the monotone subsequence theorem go through the Bolzano-
Weierstrass theorem: a bounded sequence has a convergent subsequence, and a con-
vergent sequence has a constant or monotone subsequence; similarly, unbounded se-
quences always have a monotone divergent subsequence. The ultrapower proof of
Baszczyk, Kanovei, Katz and Nowik [5] and the Internal Set Theory proof presented
above both bypass the convergence considerations, and so they work without modifi-
cation in any ordered structure (see also [5]-Remark 3.4. for the relation between the
ultrapower proof and proofs based on the idea of peaks).

76 CHAPTER 3. OTHER RESULTS

3.2 Sheaves

Motivation

3.2.1. The functional interpretation [46] of non-standard arithmetic 𝐏 (Peano arith-
metic in finite types with the Axiom of Extensionality, the Idealization axiom and the
Herbrandized Axiom of Choice; a weak subsystem of Nelson’s Internal Set Theory)
allows one to extract a finite list 𝑡(𝑥) from each 𝐏-proof of ∀𝑠𝑡𝑥.∃𝑠𝑡𝑦.𝜑(𝑥,𝑦), in such
a way that Peano arithmetic in finite types itself (without the additional non-standard
axioms) proves ∀𝑥.∃𝑦 ∈ 𝑡(𝑥).𝜑(𝑥,𝑦). Observing that one can bring the non-standard
definitions of continuity (Definition 1.3.15), compactness (Theorem 1.3.33), Riemann-
integrability etcinto Nelson normal form in 𝐏, Sanders [41] formulated a technique
(ℭℑ) that allows one to convert theorems formulated purely1 in terms of these non-
standard definitions into associated theorems that have effective computational content
and no longer involve non-standard notions.

3.2.2. Techniques such as ℭℑ have seen successful applications in constructive analy-
sis, topology and measure theory. To one day apply similar techniques in algebra, one
needs to find equivalences between nonstandard and classical algebraic notions. Since
we already have a large library of such equivalences in analysis and topology, it’s nat-
ural to start looking for new equivalences where these fields intersect algebra, e.g. in
sheaf theory.

3.2.3. Here we give a pure non-standard characterization of sheaves on topological
spaces. Apart from placing sheaves in the domain of applicability of ℭℑ-style tech-
niques, our characterization also realizes directly a conceptual view of sheaves as “con-
tinuous set-valued maps” enunciated by Vickers [47] which cannot be formalized by
topologizing the class of sets in the ordinary way.

Predicated quivers

3.2.4. One can regard the predicated spaces of Definition 1.3.14 as (external) reflexive
graphs. Generalizing to external reflexive quivers offers a very quick, intuitive path to
defining sheaves on topological spaces.

1Quite literally: the term extraction algorithm underlying the technique ignores internal axioms, so
one has to express all the hypotheses and the conclusion in terms of the non-standard notions.

3.2. SHEAVES 77

3.2.5. Definition. A predicated quiver consists of the following data:

• an underlying edge set 𝐸,

• an underlying vertex set 𝑇 ,

• a reflexivity map 𝑟 ∶ 𝑇 → 𝐸

• a ternary predicate in the language of Internal Set Theory, 𝑒 ∶ 𝑥 ◦− 𝑦, with 𝑒
ranging over the set of edges 𝐸, and 𝑥,𝑦 ranging over the set of vertices 𝑇 ,

subject to the following conditions:

• for each 𝑥 ∈ 𝑇 , 𝑟(𝑥) ∶ 𝑥 ◦− 𝑥, and

• if 𝑒 ∶ 𝑥 ◦− 𝑦 and 𝑒 ∶ 𝑥′ ◦− 𝑦′ then 𝑥 = 𝑥′ and 𝑦 = 𝑦′.

3.2.6. One can see every predicated space as a predicated quiver by setting 𝐸 = 𝑇 2,
taking 𝑟 as the diagonal map 𝑇 → 𝑇 2 and defining (𝑎,𝑏) ∶ 𝑥 ◦− 𝑦 precisely if 𝑎 = 𝑥,
𝑏 = 𝑦 and 𝑎 ◦− 𝑏. Similarly, one can see any small category as a predicated quiver by
treating its objects as vertices, its morphisms as edges, and taking 𝑟 as the map that
sends each object to its identity morphism. We can define maps between predicated
quivers analogously to how we defined continuous maps between predicated spaces.

3.2.7. Definition. An S-continuous map between two predicated quivers (𝐸1,𝑇1, 𝑟1)
and (𝐸2,𝑇2, 𝑟2) consists of a pair of functions 𝑓𝐸 ∶ 𝐸1 → 𝐸2 and 𝑓𝑇 ∶ 𝑇1 → 𝑇2 subject
to the following conditions:

• for every standard 𝑥 ∈ 𝑇 , every 𝑦 ∈ 𝑇 and every 𝑒 ∶ 𝑥 ◦− 𝑦 we have 𝑓𝐸(𝑒) ∶
𝑓𝑇 (𝑥) ◦− 𝑓𝑇 (𝑦), and

• for every 𝑥 ∈ 𝑇 , we have 𝑓𝐸(𝑟1(𝑥)) = 𝑟2(𝑥).

3.2.8. The fact that predicated quivers treat both topological spaces and categories on
an equal footing allows us to define a very simple and well-behaved sheaf-like notion
over a predicated quiver: an S-continuous map from the predicated quiver to the cate-
gory 𝔖𝔢𝔱, itself seen as a predicated quiver (modulo size issues, which one can treat
easily in this case, e.g. via the Replacement axiom). We show that in the topological
case this construction gives rise to actual sheaves.

78 CHAPTER 3. OTHER RESULTS

Predicated Sheaves

3.2.9. Definition. We call an S-continuous map from a predicated quiver (𝐸,𝑇 ,𝑟) to a
small subcategory of the category of sets (regarded as a predicated quiver) a predicated
sheaf on (𝐸,𝑇 ,𝑟).

3.2.10. When we consider a predicated sheaf 𝜑 = (𝑓𝐸 ,𝑓𝑇) on the predicated space
(𝑇 ,◦−), we denote the vertex map 𝑓𝑇 (𝑥) as 𝜑𝑥, and for 𝑥 ◦− 𝑦 the edge map 𝑓𝐸((𝑥,𝑦))
as 𝜑𝑦𝑥.

3.2.11. Definition. Consider a predicated sheaf 𝜑 over the space (𝑇 ,◦−). We call a
function 𝑓 ∶ (𝑥 ∈ 𝑇) → 𝜑𝑥 an S-section of 𝜑 over the S-open set 𝑈 ⊆ 𝑇 if for all
standard 𝑥 ∈ 𝑈 and arbitrary 𝑦 ∈ 𝑈 satisfying 𝑥 ◦− 𝑦, we have 𝜑𝑦𝑥 (𝑓 (𝑥)) = 𝑓 (𝑦).

3.2.12. Recall that a predicated space (𝑇 ,◦−) represents a topological space (𝑇 ,Ω𝑇)
if the standard S-open sets of (𝑇 ,◦−) coincide with the standard open sets of (𝑇 ,Ω𝑇).
Similarly, a predicated sheaf represents a sheaf if its standard S-sections coincide with
the sections of the represented sheaf.

3.2.13. Definition. Take a standard topological space 𝑇 equipped with a standard sheaf
 . We say that the predicated sheaf 𝜑 over 𝑇 represents the sheaf  if the following
hold:

• 𝑥 = 𝜑𝑥 for all 𝑥 ∈ 𝑇 , where 𝑥 denotes the stalk of  at point 𝑥;

• for every standard open 𝑈 and section 𝑓 ∈  , the map 𝑥↦ [𝑓]𝑥 forms an S-
section of 𝜑; and

• for every standard open 𝑈 and S-section 𝑓 ∶ (𝑥∈𝑈)→ 𝜑𝑥 we can find a section
𝑓 ∈  (𝑈) such that ∀𝑥 ∈ 𝑈.𝑓 (𝑥) = [𝑓]𝑥,

where [𝑓]𝑥 denotes the sheaf-theoretic germ of the section 𝑓 at the point 𝑥.

3.2.14. Lemma. Consider a topological predicated space (𝑇 ,◦−), and a standard point
𝑝 ∈ 𝑇 . We can find an open set 𝑃 ∋ 𝑝 that consists entirely of points near 𝑝, i.e. such
that for all 𝑦 ∈ 𝑃 we have 𝑝 ◦− 𝑦.

Proof. Take a topological predicated space (𝑇 ,◦−), and a standard point 𝑝 ∈ 𝑇 . Con-
sider any standard finite set  of open sets containing 𝑝. The finite intersection 𝑃 =

3.2. SHEAVES 79

⋂ contains 𝑝, and lies inside every open 𝑈 ∈ . By the Idealization axiom, we ob-
tain an open set 𝑃 containing 𝑝 that lies inside every standard open 𝑈 ∈Ω𝑇 containing
the point 𝑝. Pick any standard open 𝑁 with 𝑝 ∈𝑁 , and consider any 𝑦 ∈ 𝑃 . We have
𝑃 ⊆𝑁 , so 𝑦 ∈𝑁 . This proves that 𝑝 ◦− 𝑦.
Qed.

3.2.15. Theorem. Consider a standard sheaf  on a standard topological space 𝑇 . We
can find a predicated sheaf 𝜑 that represents  in the sense that for every standard
section 𝑓 of  (𝑈) the function 𝑥↦ [𝑓]𝑥 yields an S-section, and for standard S-section
𝑞 of 𝜑 over 𝑈 we can find a function 𝑓 such that ∀𝑥 ∈ 𝑈.𝑞(𝑥) = [𝑓]𝑥.

Proof. Consider a standard sheaf  on a standard topological space 𝑇 . We can find a
standard map 𝑐 that assigns to each germ 𝑎 around 𝑥 a representative 𝑐(𝑥,𝑎) = (𝑉 ,𝑠)
such that 𝑉 forms an open neighborhood of 𝑥, 𝑠∈ (𝑉) and [𝑐(𝑥,𝑎)]𝑥 = 𝑎. Set𝜑𝑥 =𝑥
and 𝜑𝑦𝑥(𝑎) = [𝑐(𝑥,𝑎)]𝑦 (define the value of the function however you wish for pairs
(𝑥,𝑦) ∈ 𝑇 2 with ¬𝑥 ◦− 𝑦).
First take a standard section 𝑓 ∈  (𝑈). Notice that we get st(𝑈) automatically. We
want to prove that the map 𝑥↦ [𝑓]𝑥 forms an S-section of the predicated sheaf 𝜑 over
𝑈 . According to Definition 3.2.11, this happens precisely if for all standard 𝑥 ∈ 𝑈 and
arbitrary 𝑦∈𝑈 with 𝑥 ◦− 𝑦, we have𝜑𝑦𝑥

(
[𝑓]𝑥

)
= [𝑓]𝑦. Substituting the definition of𝜑𝑦𝑥

given above, we want
[
𝑐
(
𝑥, [𝑓]𝑥

)]
𝑦 = [𝑓]𝑦. Since we have st(𝑓),st(𝑥) and st(𝑐), Corol-

lary 1.2.11 guarantees the standardness of the section 𝑐
(
𝑥, [𝑓]𝑥

)
. Since

[
𝑐
(
𝑥, [𝑓]𝑥

)]
𝑥 =

[𝑓]𝑥, we can find a standard open𝑋 around 𝑥 on which 𝑐
(
𝑥, [𝑓]𝑥

)|𝑋 = 𝑓 |𝑋 . But 𝑥 ◦− 𝑦,
so 𝑦 ∈ 𝑋. Since 𝑐

(
𝑥, [𝑓]𝑥

)
and 𝑓 agree on a neighborhood of 𝑦, they have the same

germ at 𝑦, i.e.
[
𝑐
(
𝑥, [𝑓]𝑥

)]
𝑦 = [𝑓]𝑦. Therefore, the map 𝑥↦ [𝑓]𝑥 forms an S-section

of 𝜑 over 𝑈 . This takes care of one direction.
Now consider a standard S-section 𝑞 ∶ (𝑥 ∈ 𝑈)→ 𝑥. We want to find a section 𝑓 ∈
 (𝑈) such that ∀𝑥 ∈ 𝑈.[𝑓]𝑥 = 𝑞𝑥. We divide this long proof into several claims. If we
have some open set 𝑀 ⊆ 𝑈 and section 𝑠 ∈  (𝑀) such that ∀𝑚 ∈𝑀.[𝑠]𝑚 = 𝑞𝑚, then
we call (𝑀,𝑠) a partial solution. Notice that the predicate “(𝑀,𝑠) constitutes a partial
solution” has no non-standard parameters, so Transfer applies to it.

Claim 1: A partial solution exists around every standard point 𝑥 ∈ 𝑈 .

Take a standard point 𝑥 ∈ 𝑈 . By the S-section condition, we know the following:

∀𝑦 ∈ 𝑈.𝑥 ◦− 𝑦→ [𝑐(𝑥,𝑞𝑥)]𝑦 = 𝑞𝑦

80 CHAPTER 3. OTHER RESULTS

Using Lemma 3.2.14, we can pick an open set𝑋 containing 𝑥 such that we have ∀𝑦.𝑦∈
𝑋 → 𝑥 ◦− 𝑦. We know that 𝑐(𝑥,𝑞𝑥) is a standard section defined on a standard open
containing 𝑥. But 𝑋 lies inside every standard open that contains 𝑥, so we can restrict
𝑐(𝑥,𝑞𝑥) to 𝑋. By setting 𝑠 = 𝑐(𝑥,𝑞𝑥)|𝑋 ∈  (𝑋), the S-section condition yields

∀𝑦 ∈𝑋.[𝑠]𝑦 = 𝑞𝑦

and so (𝑋,𝑠) constitues a partial solution. This proves our claim.

Claim 2: A standard maximal partial solution exists.

Assume that we have a non-empty 𝐼-indexed chain (𝑀𝑖, 𝑠𝑖) of partial solutions. The
union𝑀 =

⋃
𝑖∈𝐼𝑀𝑖 still is itself an open set, and the𝑀𝑖 form an open cover of𝑀 . We

know that if 𝑖 < 𝑗 then [𝑠𝑖]𝑚 = 𝑞𝑚 = [𝑠𝑗]𝑚 for each 𝑚 ∈𝑀𝑖, so by the locality condition
𝑠𝑖 = 𝑠𝑗|𝑀𝑖

. By the gluing condition, we get a section 𝑠∈ (𝑀), and for each𝑚∈𝑀 we
have some 𝑖 such that 𝑚 ∈𝑀𝑖, and there [𝑠]𝑚 = [𝑠𝑖]𝑚 = 𝑞𝑚. Thus (𝑀,𝑠) gives an upper
bound of the chain. By Zorn’s lemma, a maximal partial solution exists. By Transfer,
a standard maximal partial solution exists.

Claim 3: Standard maximal partial solutions (𝑀,𝑠) have 𝑀 = 𝑈 .

Assume for a contradiction that we have a standard maximal partial solution (𝑀,𝑠)
with 𝑀 ⊊𝑈 . This means that we find a point 𝑝 ∈ 𝑈 such that 𝑝 ∉𝑀 . By Transfer, we
can assume st(𝑝). We will extend the partial solution to this standard point 𝑝.
By Claim 1, we can find a partial solution (𝑃 , 𝑡) with 𝑃 ∋ 𝑝. Thus we have ∀𝑚 ∈
𝑀.[𝑠]𝑚 = 𝑞𝑚 and ∀𝑦 ∈ 𝑃 .[𝑠]𝑦 = 𝑞𝑦. This means that ∀𝑦 ∈ 𝑃 ∩𝑀.[𝑠]𝑦 = [𝑡]𝑦, so by
the locality condition 𝑠|𝑃∩𝑀 = 𝑡|𝑃∩𝑀 . Since 𝑠 and 𝑡 agree on the intersection of their
domains of definition, we can glue them together to obtain a partial solution containing
both 𝑀 and 𝑝, and contradicting the maximality of 𝑀 .
Qed.

3.2.16. From Theorem 3.2.15 we know that we can represent any standard sheaf on a
standard topological space using a predicated sheaf. We prove the converse as well.

3.2.17. Proposition. Every standard predicated sheaf on a topological predicated space
𝑇 represents some standard sheaf.

3.2. SHEAVES 81

Proof. Consider the standard predicated sheaf 𝜑 on the standard space 𝑇 . Write Φ for
the standard set

⋃
𝑥∈𝑇 𝜑𝑥. First for any standard open set 𝑈 ∈ Ω𝑇 define

 [𝑈] =⦃
𝑓 ∈  (𝑇 ×Φ) ||| (𝑓 ∶ (𝑧 ∈ 𝑈)→ 𝜑𝑧

)
∧∀𝑠𝑡𝑥.∀𝑦.𝑥 ◦− 𝑦→ 𝜑𝑦𝑥(𝑓 (𝑥)) = 𝑓 (𝑦)

⦄
.

Now we can define our sheaf  as

 = ⦃(𝑈,𝐹) ∈ Ω𝑇 × ( (𝑇 ×Φ)) |𝐹 =  [𝑈]⦄ .
For any standard 𝑈 ∈Ω𝑇 we can find exactly one standard set 𝐹 such that (𝑈,𝐹) ∈  .
By Transfer, we get that  is a function. Similarly, for any standard 𝑈 ∈ Ω𝑇 the value
 (𝑈) forms a subspace of the function space (𝑥 ∈ 𝑈) → 𝜑𝑥, and Transfer ensures
that the same holds for arbitrary 𝑈 . Therefore, we can define our restriction maps
res𝑉𝑈 ∶  (𝑉) →  (𝑈) the obvious way, as restrictions of functions. To see that this
map is well-defined, just apply Transfer to the formula

∀𝑠𝑡𝑈 ∈ Ω𝑇 .∀𝑠𝑡𝑉 ∈ Ω𝑇 .𝑈 ⊆ 𝑉 → ∀𝑠𝑡𝑓 ∈  (𝑉).res𝑉𝑈 (𝑓) ∈  (𝑈).

To prove locality, take an open set𝑈 , an 𝐼-indexed open cover𝑈𝑖 of𝑈 , and two sections
𝑠, 𝑡∈ (𝑈). To show that 𝑠= 𝑡, it suffices to show that for all 𝑥∈𝑈 we have 𝑠(𝑥) = 𝑡(𝑥).
But each 𝑥 ∈ 𝑈 belongs to some 𝑈𝑖, and we see 𝑠(𝑥) = res𝑈𝑈𝑖(𝑠)(𝑥) = res𝑈𝑈𝑖(𝑡)(𝑥) = 𝑡(𝑥).
To prove gluing, take an open set𝑈 , an 𝐼-indexed open cover𝑈𝑖 of𝑈 and an 𝐼-indexed
set of sections 𝑠𝑖 ∈  (𝑈𝑖). Provisionally assume the standardness of all these objects.
For each 𝑥 ∈𝑋 pick an 𝑖 such that 𝑈𝑖 covers 𝑥, and define the function

𝑠 ∶ (𝑥 ∈ 𝑈)→ 𝜑𝑥
𝑠(𝑥) = 𝑠𝑖(𝑥)

Since the sections 𝑠𝑖 agree on all intersections of the cover, the function 𝑠 is well-defined
and standard. We need to prove that 𝑠 ∈  (𝑈), which happens precisely if 𝑠 satisfies
∀𝑠𝑡𝑥 ∈ 𝑈.∀𝑦 ∈ 𝑈.𝑥 ◦− 𝑦→ 𝜑𝑦𝑥(𝑠(𝑥)) = 𝑠(𝑦). So take any standard 𝑥 ∈ 𝑈 . We can find
some 𝑖 ∈ 𝐼 such that 𝑈𝑖 covers 𝑥. By Transfer we can pick such 𝑖 (and hence 𝑈𝑖 and
𝑠𝑖) as standard. Hence, by 𝑥 ◦− 𝑦 we get that 𝑦 ∈ 𝑈𝑖. Moreover, by the standardness of
𝑠𝑖 ∈ (𝑈𝑖), we get that𝜑𝑦𝑥(𝑠𝑖(𝑥)) = 𝑠𝑖(𝑦). But 𝑠𝑖(𝑥) = 𝑠(𝑥) and 𝑠𝑖(𝑦) = 𝑠(𝑦), so𝜑𝑦𝑥(𝑠(𝑥)) =
𝑠(𝑦), and so 𝑠 ∈  (𝑈) as desired. Transfer gets rid of the provisional assumptions, and

82 CHAPTER 3. OTHER RESULTS

we conclude that  forms a sheaf over the space 𝑇 .
Qed.

The Alexandroff case

3.2.18. Over an Alexandroff space (𝑇 ,≤), Theorem 3.2.15 acquires a much stronger
form: every sheaf, whether standard or non-standard, corresponds to a predicated sheaf.

3.2.19. To a point 𝑎 ∈ 𝑇 of the Alexandroff space, we can associate the upper set ↑𝑎 =
{𝑥 ∈ 𝑇 |𝑎 ≤ 𝑥}, and ↑𝑎 forms the smallest open set containing 𝑎. Given a sheaf  over
𝑇 and sections 𝑠, 𝑡 ∈  (𝑈), we have [𝑠]𝑎 = [𝑡]𝑎 precisely if 𝑠|↑𝑎 = 𝑡|↑𝑎. Hence we can
identify the stalk 𝑎 with the set of local sections  (↑𝑎).

3.2.20. By contravariance, whenever we have 𝑎 ≤ 𝑏, we have ↑ 𝑏 ⊆↑ 𝑎. Functoriality
of  gives a map 𝑏

𝑎 ∶  (↑𝑎)→  (↑𝑏). Since we identify stalks 𝑎 with sets of local
sections  (↑𝑎), we can see 𝑏

𝑎 as a map 𝑏
𝑎 ∶ 𝑎 → 𝑏, corresponding directly to the

map 𝜑𝑏𝑎 of Theorem 3.2.15.

Local definition

3.2.21. The correspondence between sheaves and predicated sheaves allow us to define
sheaves in a local, pointwise fashion. This approach works very well for sheaves whose
local behavior is easier to specify than its global behavior. Water flow in a network of
pipes provides a salient example. Locally, we only have one constraint: the amount
of water flowing into a point should equal the amount of water flowing out from that
point. However, specifying a global flow requires understanding the topology of the
entire pipe network.

3.2.22. As a simple example, consider the three-way junction 𝑌 of pipes depicted on
Figure 3.1. Treat the network 𝑌 as a subspace of ℝ2 equipped with the usual Euclidean
topology. We want to define a sheaf whose global sections correspond to possible flows
on the network. We define a predicated sheaf as an S-continuous map of quivers 𝜑. We
begin with the vertex map (the stalks) as follows:

𝜑𝑥 =

⎧⎪⎨⎪⎩
{
(𝑙,𝑢𝑟,𝑢𝑙) ∈ℝ3 ||| 𝑙+𝑢𝑟+𝑢𝑙 = 0

}
if 𝑥 = 𝑝{

(𝑙, 𝑟) ∈ℝ2 ||| 𝑙+ 𝑟 = 0
}

otherwise

3.2. SHEAVES 83

We can define the transition maps by cases as well:

𝜑𝑦𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑙,𝑢𝑟,𝑢𝑙)↦ (−𝑢𝑟,𝑢𝑟) if 𝑥 = 𝑝 and 𝑦 ∈ 𝑈𝑅

(𝑙,𝑢𝑟,𝑢𝑙)↦ (−𝑢𝑙,𝑢𝑙) if 𝑥 = 𝑝 and 𝑦 ∈ 𝑈𝐿

(𝑙,𝑢𝑟,𝑢𝑙)↦ (−𝑙, 𝑙) if 𝑥 = 𝑝 and 𝑦 ∈ 𝐿

(−𝑎,𝑎)↦ (−𝑎,𝑎) otherwise.

p

UL

UR

L

Figure 3.1: A three-way junction on a network.

3.2.23. Problem. Consider a small categoryℭ equipped with a coverage or Grothendieck
topology. Can we turn ℭ into a predicated quiver in such a way that sheaves on ℭ cor-
respond to sheaves in the sense of Grothendieck?

Chapter 4

Mechanization

4.1 Computer-verified proofs

4.1.1. In 1998, Simpson [44] gave a counterexample to the Homotopy Hypothesis, con-
tradicting an earlier, widely accepted argument by Kapranov and Voevodsky [27]. It
took until 2013 for Voevodsky to track down the error in his own argument. This long
struggle led Voevodsky to formulate his Univalent Foundations program [48], which
ultimately led to significant advances in the computer verification (mechanization) of
proofs, including the development of the field of research now known as Homotopy
Type Theory [45].

4.1.2. Unfortunately, our more modest field appears no less vulnerable to erroneous
arguments than algebraic topology. The main result of Chapter 2, Theorem 2.3.9, had a
direct precursor in the form of the Manevitz-Weinberger theorem on discrete circle ac-
tions (Theorem 2.3.12). However, the original proof of that result (see [30]-Theorem 1)
contained a significant mistake that went unnoticed until Imamura [25] found and fixed
the problem a full twelve years later.

4.1.3. The warnings of Sections 1.1.31 and 1.2.13 suggest that Internal Set Theory
(and to some extent model-theoretic non-standard analysis) might have unusual sus-
ceptibility to accidental mistakes due to its reliance on syntactic restrictions on set for-
mation and induction principles that have universal validity in the rest of mathematics.
Given the history of Theorem 2.3.12, we decided to computer-verify our proof of Theo-
rem 2.3.9 by formalizing the argument in an extension of Martin-Löf Type Theory, and
checking the correctness of the resulting proof script using the Agda proof assistant.

84

4.1. COMPUTER-VERIFIED PROOFS 85

4.1.4. Martin-Löf Type Theory (often called Intuitionistic Type Theory) is the formal
system at the heart of the Homotopy Type Theory [45] program. Type theory can
serve as a self-contained alternative to classical first-order logic and ZFC Set Theory
as a foundation for mathematics, and many popular proof assistants and interactive
theorem proving tools (such as Agda, Coq, Lean, NuPRL) use Martin-Löf Type The-
ory or other closely related type theories as their foundation. In particular, the Coq
proof assistant played an essential role in the celebrated computer-verified proofs of
the Appel-Haken [17] and Feit-Thompson theorems [18].

4.1.5. Agda is a pure functional dependently-typed programming language introduced
by Ulf Norell [36] and developed chiefly at Chalmers University, Gothenburg. Through
a correspondence in the Curry-Howard style (see [15]-Chapter 3 for an overview), one
can express mathematical proofs as Agda programs by considering the type of an Agda
program as a mathematical statement and a valid program of that type as a mathemati-
cal proof of the statement. The type system of Agda contains as a subset all the usual
constructions of Martin-Löf Type Theory, so one can formulate proofs in Martin-Löf
Type Theory inside the language of Agda, then use Agda’s type checker to verify their
correctness. Agda works as a proof assistant, as opposed to an automated theorem
prover: it does not generate proofs by itself, but verifies proof scripts that have been en-
coded into its programming language by a human mathematician. Agda provides many
high-level features including data type definitions, universe polymorphism, implicit ar-
guments, pattern matching, and an interactive environment to facilitate program/proof
development in Martin-Löf Type Theory.

4.1.6. Agda has been used as a proof assistant in over 200 published works in computer
science and in mathematics (see the official Agda website [10] for a full list). This in-
cludes formalized results about fundamental groups in Homotopy Type Theory [39]
and isomorphism theorems in Universal Algebra [19] among others. Most importantly,
Xu [49] developed an Agda formalization of the functional interpretation [46] of non-
standard Heyting arithmetic 𝐇 (a weak subsystem of Nelson’s Internal Set Theory).
These preceding developments made Agda a salient choice for our own mechanization
work.

4.1.7. While earlier publications dealing with Internal Set Theory in Agda focused
exclusively on results about subsystems of Internal Set Theory and used Martin-Löf
Type Theory as a meta-theory for their investigations, our current development involves

86 CHAPTER 4. MECHANIZATION

working directly inside an extension of Martin-Löf Type Theory that can faithfully
represent and handle proofs that rely on the Idealization, Standardization and Transfer
principles of Internal Set Theory. To the best of our knowledge, no other proof in
Internal Set Theory has been formalized in such a way to date.

4.1.8. Martin-Löf himself proposed non-standard-analytic supplements to his type the-
ory, reminiscent of the methods used in contemporary research on guarded types. How-
ever, these extensions do not allow us to transcribe proofs written in Nelson-style Inter-
nal Set Theory into type theory. Hence, we propose our own extensions, which augment
Martin-Löf Type Theory with a hierarchy of universes for external propositions, along
with an external standardness predicate. The direct goal of these extensions is to serve
as a foundation for our Agda proof of Theorem 2.3.9.

Type theory, intuitively

4.1.9. In this chapter we present our extensions to Martin-Löf Type Theory and de-
scribe how to work with the extensions using the features available in Agda. We strive
to keep our presentation mostly self-contained and accessible to those without previous
experience with type theories. Due to space constraints, we cannot expect to succeed
in this endeavor. The first few chapters of the IAS book on Homotopy Type Theory [45]
should provide adequate descriptions and further pointers to understand the details we
elide in our presentation. Those readers who enjoy category theory may prefer to start
with Hofmann’s1 Syntax and Semantics of Dependent Types [22] instead. For a full,
syntactic introduction to a specific formalization of Martin-Löf Type Theory, we rec-
ommend [35]-Section 1.3. Do note however that modern versions of the Agda proof
assistant eschew the cumulative2 hierarchy presented there in favor of universe poly-
morphism [43]. For the sake of simplicity and readability, we omit all discussion and
formalism related to universe polymorphism from our thesis.

4.1.10. Martin-Löf Type Theory belongs to the family of typed 𝜆-calculi, so we should
begin our overview by discussing the intuitive meaning of the primary operations of
the 𝜆-calculus, abstraction and application (substitution). The terms, judgments rules

1Hofmann and Voevodsky, two larger-than-life figures in the field of computer-verified proofs, both
died tragically while our work was in progress.

2We really do not want a cumulative hierarchy in our work: we could not have 𝐒𝐞𝐭𝜔 consist of external
predicates anymore, as that would contradict our type-theoretic Standardization axiom. To fix the issue,
we would have to introduce a disjoint external hierarchy, which essentially doubles the number of rules
for the system.

4.1. COMPUTER-VERIFIED PROOFS 87

and proof trees given in this subsection serve only as examples to illustrate general
principles of 𝜆-calculi: they do not form part of the extended Martin-Löf Type Theory
presented in the remainder of the section!

4.1.11. When we treat an expression as a function, we must clearly identify one of the
variables occurring in the expression as the argument of the function. In mathematics,
one usually uses arrow notation for this purpose, writing 𝑥↦ 𝑥2 for the squaring func-
tion (unless the function already has a name, e.g. when one writes the sine function
as sin instead of 𝑥↦ sin𝑥). We understand that whatever meaning the variable 𝑥 had
outside the scope of this notation disappears in the expression that follows. For exam-
ple, even if we had 𝑥 = 1, the expression 𝑥↦ 𝑥2 would not denote 12 ∈ ℝ, but some
function ℝ→ℝ that squares its argument; similarly, we would not distinguish between
the functions 𝑥↦ 𝑥2 and 𝑦↦ 𝑦2. Logically speaking, 𝑥↦… binds the variable 𝑥 in
… , the same way the quantifier binds 𝑥 in ∀𝑥∈ℝ.𝑥4 > 0 or the integral sign binds 𝑥 in
the indefinite integral ∫ 𝑥5𝑑𝑥. As customary in logic, we refer to “not bound” variables
as free, and to each expression we associate its set of free variables the obvious way.
E.g. when + denotes a constant symbol, then the set of free variables of 𝑥+𝑦 consists
of 𝑥 and 𝑦, but the set of free variables of 𝜆𝑦.𝑥+𝑦 consists of 𝑥 only. In the 𝜆-calculus,
the 𝜆 symbol performs the role taken by ↦ in ordinary mathematical notation, so one
would write the squaring function as (𝜆𝑥.𝑥2).

4.1.12. To use a function, one applies it to an argument. This gives rise to the process of
application, which the syntax of the 𝜆-calculus represents by juxtaposition: one writes
the application of 𝑓 to 𝑥 as 𝑓 𝑥. Writing application as juxtaposition optimizes for
legibility, but one could equally well have written app(𝑓,𝑥), or 𝑓 (𝑥) - as one would do
in ordinary mathematics. So one might write (𝜆𝑥.𝑥2) 3 to denote the application of the
squaring function to the number symbol 3.

4.1.13. Application and 𝜆-abstraction form a part of the essential core syntax of every
𝜆-calculus: the terms of every 𝜆-calculus include at least these two constructions, along
with other ones specific to the calculus under consideration. By convention, we omit
superfluous parentheses in terms the following manner:

• 𝜆𝑥.𝜆𝑦.𝑃 stands for (𝜆𝑥.(𝜆𝑦.𝑃)),

• 𝐹 𝑋 𝑌 stands for ((𝐹 𝑋)𝑌).

4.1.14. Distinct from application, one has reduction, the passage from e.g. (𝜆𝑥.𝑥+𝑥)3

88 CHAPTER 4. MECHANIZATION

to 3+ 3. We define reduction using a substitution operation: given an expression 𝑃
the reduction of the application (𝜆𝑥.𝑃) 𝑡 gives 𝑃 [𝑥← 𝑡], where 𝑡[𝑥← 𝑡] denotes the
substitution of the expression 𝑡 for each occurrence of the variable 𝑥 in the term 𝑡 (note
that [−] does not belong to the syntax: it counts as an instruction meaning “perform
the substitution”, not “add [−] to the formula”). We have one complication, so-called
variable capture: (𝜆𝑥.𝜆𝑦.𝑥+𝑦)𝑦 should not reduce to (𝜆𝑦.𝑦+𝑦) but rather to (𝜆𝑦′.𝑦+𝑦′).
We leave the proper definition of such a capture-avoiding substitution operation as an
exercise for the reader. In the next subsection, where we give the formal definition of
type theory, we represent computational rules such as reduction (and reductions done
in reverse) using the notion of definitional equality.

4.1.15. Martin-Löf Type Theory is a typed 𝜆-calculus. Typed calculi are deductive
systems, in which we deduce typing judgments using a collection of permitted inference
rules. Given two terms of the calculus, 𝑡,𝑇 , a typing judgment has the form 𝑡 ∶ 𝑇 , which
we read as “the term 𝑡 has type 𝑇 ”. One sees typing judgments as largely analogous to
set membership, for example one might make typing judgments such as (𝜆𝑥.𝑥2) ∶ℚ→

ℚ+ or
√
2 ∶ ℝ. However, unlike set membership, which forms part of the term syntax

of set theory, a typing judgment is not itself a term. For example, ¬(𝑥 ∶ ℝ) does not
count as a judgment, or even a syntactically well-formed expression. Inference rules
have the form

𝐻1 … 𝐻𝑛 NAME OF RULE
𝐶

where 𝐻𝑖 and 𝐶 denote judgments. The rule above says that once we have made all
the judgments 𝐻𝑖, we are allowed to make the judgment 𝐶 . As an example, take the
inference rule

𝑓 ∶ 𝐴→ 𝐵 𝑥 ∶ 𝐴
FUN-ELIM

𝑓 𝑥 ∶ 𝐵

which states that for any 𝐴,𝐵 variable symbols, if we judge 𝑓 to have type 𝐴→ 𝐵 (a
function from𝐴 to 𝐵), and we judge 𝑥 to have type 𝐴, then we can judge the term (𝑓 𝑥)
to have type 𝐵. A derivation (or proof) of a judgment is a rooted tree constructed using
such inference rules, with the conclusion of the proof sitting at the root of the tree. E.g.

REAL-ADD
add ∶ℝ→ (ℝ→ℝ)

REAL-ONE
1 ∶ℝ

FUN-ELIM
add1 ∶ℝ→ℝ

REAL-ONE
1 ∶ℝ FUN-ELIM

add11 ∶ℝ

4.2. EXTENDED TYPE THEORY 89

forms a proof tree of conclusion add 1 1 ∶ ℝ and uses three different inference rules,
REAL-ADD, REAL-ONE and FUN-ELIM. The reader should write down proper formu-
lations of these rules as an exercise; the reader interested in learning3 even more about
proof trees is referred to to Girard’s excellent Proofs and Types [15].

4.1.16. In a typed setting, free variables require special care: barring further informa-
tion, how does one make any kind of type judgment about the type of 𝑓 𝑥 without
knowing the type of the variable 𝑥?! Naively, one might think that annotating each
free variable with its type (e.g. writing 𝑥∶ℕ instead of 𝑥) would solve this problem. In
practice, this does not work, since the set of valid types depends on the judgments that
have been made previously. For example, writing 𝑥∶𝑦 is valid if we already know that
𝑦 takes one of the values ℝ,ℕ, but not valid if 𝑦 might take a value that does not count
as a type, say 42. De Bruijn [11] gave a satisfactory solution to this issue in the form of
contextual judgments. A context Γ consists of a list of typed variables such that the free
variables of each type appear earlier in the list than the type itself. A contextual typing
judgment has the form Γ ⊢ 𝑡 ∶ 𝑇 , where all the free variables of 𝑡 and 𝑇 appear in the
context Γ. We phrase our formalization of (extended) Martin-Löf type theory purely in
terms of contextual judgments.

4.2 Extended type theory

4.2.1. Here we present an extended variant of Martin-Löf Type Theory that has the
same relationship to ordinary Martin-Löf Type Theory as Internal Set Theory has to
Zermelo-Fraenkel Set Theory, and can cope with Nelson-style reasoning used in the
proof of Theorem 2.3.9. The main innovations of our proposed system include a hierar-
chy of universes indexed by small ordinals that lets us treat external sets and predicates
such as st(−), and a new kind of judgment that allows for a uniform treatment of Trans-
fer schemata. Moreover, we identify a subsystem4 of our extended type theory that
we can effectively encode into Agda, allowing us to computer-verify our proof without
having to extend or modify the Agda proof assistant.

3According to the Japanese proverb, the best way to learn proof trees is to have learned them ten years
ago.

4This subsystem is sufficient for representing the proof of Theorem 2.3.9, but in principle the same
proof could be carried out in weaker subsystems. In particular, we never invoke Idealization or internal-
to-external Transfer principles.

90 CHAPTER 4. MECHANIZATION

Contexts, terms and judgments

4.2.2. In the following, we assume an inexhaustible (at the very least countable) supply
of variable symbols, which we usually denote by lower-case letters from the very end
of the English alphabet.

4.2.3. Definition. We call an ordinal 𝜆 such that 𝜆 < 𝜔+𝜔 a universe level or level for
short. We usually use the letters 𝑖, 𝑗,𝓁 or 𝑚 for variables that range over universe levels.

4.2.4. Definition. In the following, the variables Γ,Δ range over contexts, while 𝑠, 𝑡,𝑆
range over terms. We distinguish four sorts of judgments in our type theory:

1. Judgments Γ ⊢ read as “Γ forms a valid context”.

2. Judgments Γ ⊢ 𝑡 ∶ 𝑆 read as “the term 𝑡 has type 𝑆 in the context Γ”.

3. Judgments Γ ∼ Δ ⊢ read as “Γ and Δ denote the same context by definition”.

4. Judgments Γ⊢ 𝑠∼𝑆 𝑡 read as “the expressions 𝑠 and 𝑡 denote the same inhabitant
of type 𝑆 in the context Γ by definition”,

5. Judgments Γ ⊢ 𝑠⇔𝓁 𝑡 read as “the terms 𝑠 and 𝑡 form a transfer pair at universe
level 𝓁”.

4.2.5. We define the contexts, terms, inference rules and proof trees of type theory in
terms of each other5 via a single, gargantuan, mutually inductive definition. The next
few pages contain multiple Definition blocks (from 4.2.8 to 4.2.35), but one should
consider them as fragments of a single long definition, which does not conclude until
we account for every single rule.

4.2.6. Definition. We maintain a distinction between the full calculus and its safe frag-
ment. We say that a derivation belongs to the safe fragment if it does not contain any
rule whose name contains the symbol ⋆. Some rules require a safety assumption on
some of their premises: we mark these assumptions by writing ⊢𝑠 instead of ⊢ in the
turnstile of the hypothesis. For example, if we write

Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭1 Γ ⊢ 𝑥 ∶ 𝐴
⋆ example rule (not an actual rule)

𝑥 ∶ 𝐒𝐞𝐭0,Γ ⊢

5Is such a definition circular? No, for the same reason that BNF grammars define sets [28].

4.2. EXTENDED TYPE THEORY 91

then the example rule requires that the derivation of its left premise Γ⊢𝐴 ∶ 𝐒𝐞𝐭1 occur
in the safe fragment (i.e. not use rules marked with the ⋆ symbol), while the derivation
of the right premise Γ ⊢ 𝑥 ∶𝐴 may use any rule, including those marked with ⋆. Simi-
larly, since the name of the example rule itself contains the ⋆ symbol, any premise of
any rule marked with ⊢𝑠 cannot use the example rule in its derivation.

Rules: Contexts and variables

4.2.7. First we describe the rules of context formations. These rules have conclusions
labeled with judgments of the form Γ. Recall that we read these judgments as “Γ forms
a valid context”. For the sake of readability, the empty context ∅ receives special treat-
ment in the syntax: we simply write 𝑥1 ∶ 𝑇1 to denote the context ∅,𝑥1 ∶ 𝑇1.

4.2.8. Definition. Using the variable conventions discussed above and in the preceding
definitions, we take the following context formation rules in our type theory.

CTX-NUL
∅ ⊢

Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝑖 CTX-EXT
Γ,𝑥 ∶ 𝐴 ⊢

In the rule CTX-EXT, we require that the variable 𝑥 not occur in the context Γ. We take
the following variable introduction rule:

Γ,𝑥 ∶ 𝐴,Δ ⊢
VAR

Γ,𝑥 ∶ 𝐴,Δ ⊢ 𝑥 ∶ 𝐴

The presentation of the rules continues in Definition 4.2.10.

Rules: Context equality

4.2.9. The rules presented in this subsection pertain to judgments of the form Γ ∼ Δ,
read as “Γ and Δ denote the same context by definition”. These rules ensure that ∼
behaves like an equivalence relation, and tell us when we can consider two contexts
equal. Other rules will ensure that we can substitute equal contexts for each other (recall
that we give these definitions mutually inductively, as described in Section 4.2.5).

4.2.10. Definition. We take the following context equality rules.

CEQ-NULL
∅ ∼ ∅ ⊢

Γ ∼ Δ ⊢ Γ ⊢ 𝐴 ∼ 𝐵 ∶ 𝐒𝐞𝐭𝑖 CEQ-EXTN
Γ,𝑥 ∶ 𝐴 ∼ Δ,𝑥 ∶ 𝐵 ⊢

92 CHAPTER 4. MECHANIZATION

Γ ∼ Δ ⊢ CEQ-SYMM
Δ ∼ Γ ⊢

Γ ∼ Π ⊢ Π ∼ Δ ⊢ CEQ-TRAN
Γ ∼ Δ ⊢

Mirroring the constraints of the rule CTX-EXT, we require that the variable 𝑥 not oc-
cur in the contexts Γ and Δ within the rule CEQ-EXTN. The presentation of the rules
continues in Definition 4.2.12.

Rules: Term equality

4.2.11. Recall that we read judgments of the form Γ⊢ 𝑠∼𝑆 𝑡 as “the expressions 𝑠 and
𝑡 denote the same term of type 𝑆 in the context Γ by definition”. Type theory has its
own internal definition of equality between objects (equality types or path types); one
must not confuse those with the equality judgments presented here, which concern only
the equations that hold between terms “by definition”. We always allow replacement
of definitionally equal terms and contexts with each other in any part of any judgment,
while eliding some of the congruence rules asserting this fact in our presentation.

4.2.12. Definition. We take the following term equality rules.

Γ ⊢ 𝑡 ∶ 𝐴 TEQ-REFL
Γ ⊢ 𝑡 ∼𝐴 𝑡

Γ ⊢ 𝑠 ∼𝐴 𝑡 TEQ-SYMM
Γ ⊢ 𝑡 ∼𝐴 𝑠

Γ ⊢ 𝑠 ∼𝐴 𝑝 Γ ⊢ 𝑝 ∼𝐴 𝑡 TEQ-TRAN
Γ ⊢ 𝑡 ∼𝐴 𝑠

Γ ∼ Δ Γ ⊢ 𝐴 ∼𝐒𝐞𝐭𝑖 𝐵 Γ ⊢ 𝑡 ∶ 𝐴
TEQ-SUBT

Δ ⊢ 𝑡 ∶ 𝐵

Γ ∼ Δ Γ ⊢ 𝐴 ∼𝐒𝐞𝐭𝑖 𝐵 Γ ⊢ 𝑠 ∼𝐴 𝑡
TEQ-SUBE

Δ ⊢ 𝑠 ∼𝐵 𝑡

The presentation of the rules continues in Definition 4.2.17.

4.2. EXTENDED TYPE THEORY 93

Rules: Universes and Type Formation

4.2.13. The type theory of Agda (strictly speaking, Martin-Löf Type Theory with a
stratified hierarchy of large types) comes equipped with a hierarchy of universes

𝐒𝐞𝐭0 ∶ 𝐒𝐞𝐭1 ∶ 𝐒𝐞𝐭2 ∶…

Generally, we can think of 𝐒𝐞𝐭0 as the “set of all (small) sets”, and judgments 𝑆 ∶ 𝐒𝐞𝐭0
as stating “𝑆 is a set”. Under a Curry-Howard interpretation, one might as well read
this as “𝑆 is a proposition”. The same way set theories have to avoid constructing the
set of all sets, type theory cannot admit 𝐒𝐞𝐭𝜆 ∶ 𝐒𝐞𝐭𝜆 on pain of contradiction: if we take
such a rule, Girard’s paradox (a variant of the Burali-Forti paradox) makes the resulting
system inconsistent [24]. To avoid contradiction while giving a type to 𝐒𝐞𝐭0, we can
introduce the universe hierarchy, and take 𝐒𝐞𝐭0 ∶ 𝐒𝐞𝐭1, 𝐒𝐞𝐭1 ∶ 𝐒𝐞𝐭2 etc.

4.2.14. Internal Set Theory requires a strict separation between internal predicates/propo-
sitions and external ones, such as the proposition st(𝑥). Uses of the latter usually fall
under much stricter rules (e.g. not available for use within induction arguments, as in
1.1.10). We shall use a second hierarchy of universes, indexed by the levels𝜔,𝜔+1,… ,
for these external predicates and propositions.

4.2.15. We use ordinal indices for the external hierarchy as a notational convenience,
not because of some deep relationship between external predicates and the ordinal hi-
erarchy. Indeed, since our type theory does not have cumulativity, there is no type-
theoretic relationship between 𝐒𝐞𝐭0 and 𝐒𝐞𝐭𝜔; we could treat internal and external sets
as two completely disjoint hierarchies and use the notation 𝐄𝐒𝐞𝐭0 ∶ 𝐄𝐒𝐞𝐭1 ∶… for the
latter. The reasons for not doing this are two-fold. The first is desire for parsimony: the
standard ordinal operations max and + make for a shorter presentation, and not having
to include separate rules for the 𝐒𝐞𝐭- and 𝐄𝐒𝐞𝐭-hierarchies essentially halves the num-
ber of necessary rules. The second consideration is much more pragmatic: we wish to
check our proofs using an unmodified Agda proof checker, and current versions of Agda
already have an option for doing some “unsafe” things with 𝐒𝐞𝐭𝜔 without destroying
compatibility with standard universe-polymorphic Agda code.

4.2.16. Type formation rules control how one can introduce new types. Like universe
formation rules, the conclusion of such rules have the form Γ ⊢ 𝑡 ∶ 𝐒𝐞𝐭𝑖 for some 𝑖,
asserting that the term 𝑡 inhabits some universe of types. One can regard the universe

94 CHAPTER 4. MECHANIZATION

formation rules themselves as special type formation rules for the types 𝐒𝐞𝐭𝑖. We give
the type formation rules for each primitive type of the theory in its respective section.

4.2.17. Definition. We admit the following universe formation rules:

Γ ⊢ UNIV-INT
Γ ⊢ 𝐒𝐞𝐭𝓁 ∶ 𝐒𝐞𝐭𝓁+1

Γ ⊢ ⋆ UNIV-EXT
Γ ⊢ 𝐒𝐞𝐭𝜔+𝓁 ∶ 𝐒𝐞𝐭𝜔+𝓁+1

The variable 𝓁 ranges over universe levels satisfying 𝓁 < 𝜔, the + symbol denotes the
usual addition operation on the ordinals. Notice that we never have 𝐒𝐞𝐭𝑖 ∶ 𝐒𝐞𝐭𝜆 for any
limit ordinal 𝜆 ∈ {0,𝜔}. The presentation of the rules continues in Definition 4.2.19.

Rules: Dependent function type

4.2.18. Here we introduce the dependent function type ∀𝑥 ∶ 𝐴.𝐵. We can get a fairly
close set-theoretic analogue of this type in classical Zermelo-Fraenkel Set Theory by
taking an 𝐴-indexed family of sets 𝐵𝑥, and forming the set

𝑃 =

{
𝑓 ∶ 𝐴→

⋃
𝑥∈𝐴

𝐵𝑥
|||||∀𝑥 ∈ 𝐴.𝑓 (𝑥) ∈ 𝐵𝑥

}
.

In set theory, we would denote the set 𝑃 as
∏

𝑥∈𝐴𝐵𝑥, and refer to it as the infinite
Cartesian product of the family𝐵𝑥. In type theory, the dependent function type loosely
corresponds to this set 𝑃 . As such, we might denote the dependent function as (𝑥 ∶
𝐴)→ 𝐵 or even as a product

∏
𝑥∶𝐴𝐵; through the Curry-Howard correspondence, we

can identify dependent products with (higher-order) universal quantification, and since
we take this perspective, we shall write it as ∀𝑥 ∶ 𝐴.𝐵. When the variable 𝑥 does not
occur at all in the term 𝐵, we write 𝐴→ 𝐵 (like function spaces in Set Theory, or like
implication → via the Curry-Howard correspondence). Agda provides some form of
support for all of these notations. The application operation discussed in Section 4.1.12
provides the elimination rule for dependent functions, while 𝜆-abstraction acts as the
introduction rule. The computation rules formalize reduction by substitution.

4.2.19. Definition. We admit the following dependent function rules:

4.2. EXTENDED TYPE THEORY 95

Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝑖 Γ,𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝐒𝐞𝐭𝑗
DFUN-FORM

Γ ⊢ (∀𝑥 ∶ 𝐴.𝐵) ∶ 𝐒𝐞𝐭max{𝑖,𝑗}

Γ,𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
DFUN-INTR

Γ ⊢ 𝜆𝑥.𝑡 ∶ ∀𝑥 ∶ 𝐴.𝐵

Γ ⊢ 𝑓 ∶ ∀𝑥 ∶ 𝐴.𝐵 Γ ⊢ 𝑡 ∶ 𝐴
DFUN-ELIM

Γ ⊢ 𝑓𝑡 ∶ 𝐵[𝑥← 𝑡]

Γ,𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 Γ ⊢ 𝑠 ∶ 𝐴
DFUN-COMP

Γ ⊢ (𝜆𝑥.𝑡)𝑠 ∼𝐵[𝑥←𝑠] 𝑡[𝑥← 𝑠]

where the variables 𝑖, 𝑗 range over all possible universe levels, including levels over
𝜔 and 𝑡[𝑥 ← 𝑠] denotes the capture-avoiding substitution of the term 𝑠 for each oc-
currence of the variable 𝑥 in the term 𝑡. The presentation of the rules continues in
Definition 4.2.21.

Rules: Dependent sum type

4.2.20. Similarly to the set-theoretic analogue of ∀𝑥 ∶ 𝐴.𝐵, we can approximate the
meaning of the dependent sum type ∃𝑥 ∶𝐴.𝐵 very well in classical ZFC Set Theory by
starting with an 𝐴-indexed family of sets 𝐵𝑥, and forming the set

𝑃 =

{
(𝑎,𝑏) ∈ 𝐴×

⋃
𝑥∈𝐴

𝐵𝑥
|||||𝑏 ∈ 𝐵𝑎

}

using Comprehension and Union. For the two-element index set 𝐴 = {1,2}, the con-
struction gives the disjoint union 𝐵1⊎𝐵2, and for a constant family 𝐵𝑥 = 𝐵 the binary
Cartesian product 𝐴×𝐵. Indeed, if 𝑥 does not occur in 𝐵, we will write 𝐴×𝐵 for
∃𝑥 ∶ 𝐴.𝐵. Through the Curry-Howard correspondence, we can identify dependent
sums with (higher-order) existential quantification, and 𝐴 ×𝐵 with the conjunction
𝐴∧𝐵. The introduction rule corresponds to the formation of an ordered pair: if 𝑡 ∶ 𝐴
and 𝑠 ∶ 𝐵𝑡, then we have (𝑡, 𝑠) ∶ ∃𝑥 ∶ 𝐴.𝐵𝑥. The elimination rules correspond to coor-
dinate projections.

4.2.21. Definition. We admit the following dependent sum rules:

96 CHAPTER 4. MECHANIZATION

Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝑖 Γ,𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝐒𝐞𝐭𝑗
DSUM-FORM

Γ ⊢ (∃𝑥 ∶ 𝐴.𝐵) ∶ 𝐒𝐞𝐭max{𝑖,𝑗}

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑠 ∶ 𝐵[𝑥← 𝑡]
DSUM-INTR

Γ ⊢ (𝑡, 𝑠) ∶ (∃𝑥 ∶ 𝐴.𝐵)

Γ ⊢ 𝑡 ∶ (∃𝑥 ∶ 𝐴.𝐵)
DSUM-ELIML

Γ ⊢ 𝜋1𝑡 ∶ 𝐴
Γ ⊢ 𝑡 ∶ (∃𝑥 ∶ 𝐴.𝐵)

DSUM-ELIMR
Γ ⊢ 𝜋2𝑡 ∶ 𝐵[𝑥← 𝜋2𝑡]

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑠 ∶ 𝐵[𝑥← 𝑡]
DSUM-COMPL

Γ ⊢ 𝜋1(𝑡, 𝑠) ∼𝐴 𝑡

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑠 ∶ 𝐵[𝑥← 𝑡]
DSUM-COMPR

Γ ⊢ 𝜋2(𝑡, 𝑠) ∼𝐵[𝑥←𝑡] 𝑠

where as usual 𝑡[𝑥← 𝑠] denotes the substitution of the term 𝑠 for each occurrence of the
variable 𝑥 in the term 𝑡. The presentation of the rules continues in Definition 4.2.24.

Rules: Empty type

4.2.22. We call ⊥ the empty type. It corresponds (unsurprisingly) to the empty set in
set theory. Through the Curry-Howard perspective, 𝑥 ∶ ⊥ acts as a proof of a pure con-
tradiction; as such, we can represent negation as 𝐴→ ⊥, and we sometimes abbreviate
the latter as ¬𝐴. The elimination rule for the empty type corresponds to the principle of
explosion: if we manage to produce a proof of a contradiction, anything follows. The
empty type lacks inhabitants, and so it does not have any introduction rules.

4.2.23. Due to the presence of the standardness predicate 𝚜𝚝, and in line with Sec-
tion 1.1.10, our extended type theory restricts inductive elimination rules to internal
levels of the universe hierarchy (𝐒𝐞𝐭𝑖 for 𝑖 < 𝜔). This limitation does not affect the
elimination rule for the empty type, which remains valid for all 𝑖, including 𝑖 ≥ 𝜔.

4.2.24. Definition. We admit the following empty type rules:

Γ ⊢ EMPT-FORM
Γ ⊢ ⊥ ∶ 𝐒𝐞𝐭0

4.2. EXTENDED TYPE THEORY 97

Γ ⊢ 𝑡 ∶ ⊥ Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝑖 EMPT-ELIM
Γ ⊢ 𝚊𝚋𝚜𝚞𝚛𝚍 𝐴 𝑡 ∶ 𝐴

where the variable 𝑖 ranges over all universe levels. The presentation of the rules con-
tinues in Definition 4.2.27.

Rules: Equality type

4.2.25. Definitional equality ∼ expresses the computation rules associated with types
that hold by definition; Agda will perform such substitutions automatically using simple
term rewriting. The propositional equality types have a different purpose: they serve as
types for equality proofs, internal to the theory. Under a Curry-Howard interpretation,
we read 𝑝 ∶ 𝑎=𝑆 𝑏 as “𝑝 proves that the inhabitant 𝑎 of type 𝑆 equals the inhabitant 𝑏 of
the same type”. Agda does not perform substitutions along propositional equalities au-
tomatically. The introduction rule for the equality type states the reflexivity of equality
(for each 𝑥 ∶ 𝑇 , 𝑥 =𝑇 𝑥).

4.2.26. One can choose between multiple different elimination rules for the equality
type. We take the strongest elimination rule, Streicher’s rule K as our equality elimi-
nation rule since it’s the default option in Agda’s type theory as well. Our formalized
proof of Theorem 2.3.9 does not rely on this choice in any form and would work even
if we took a weaker elimination rule (such as the elimination rule J commonly used in
Homotopy Type Theory). However, we require that the elimination rule permit elimi-
nation into any universe level, including levels 𝑖≥𝜔 of the external hierarchy, since we
need the capability of transporting standardness predicate. That is, if we have a proof
of 𝑥 = 𝑦, and a proof of 𝚜𝚝(𝑥), we want to have some way to obtain the conclusion
𝚜𝚝(𝑦). At first glance, this may seem like a departure from Internal Set Theory. As a
matter of fact, Internal Set Theory does put forth an identical requirement, but sweeps
it under the rug of first-order logic: ∀𝑥.∀𝑦.𝑥 = 𝑦∧ st(𝑥)→ st(𝑦) does hold in Internal
Set Theory, not as an axiom of Internal Set Theory, but as an axiom of first-order logic.
Since type theory acts as its own underlying logic, it has to make provision for this
requirement explicitly.

4.2.27. Definition. We admit the following equality type rules:

Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝑖 Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑠 ∶ 𝐴
EQT-FORM

Γ ⊢ (𝑡 =𝐴 𝑠) ∶ 𝐒𝐞𝐭𝑖

98 CHAPTER 4. MECHANIZATION

Γ ⊢ 𝑡 ∶ 𝐴 EQT-INTR
Γ ⊢ 𝚛𝚎𝚏𝚕𝐴 𝑡 ∶ (𝑡 =𝐴 𝑡)

[𝑥1] [𝑥2] [𝑥3] [𝑥4] [𝑥5]
EQT-ELIMK

Γ ⊢ 𝙺 𝐴 (𝜆𝑥.𝜆𝑝.𝐶) 𝑡 𝑞 𝑃 ∶ 𝐶[𝑝← 𝑃 ,𝑥← 𝑡]

[𝑥1] [𝑥2] [𝑥3] [𝑥4]
EQT-COMP

Γ ⊢ 𝙺 𝐴 (𝜆𝑥.𝜆𝑝.𝐶) 𝑡 𝑞 (𝚛𝚎𝚏𝚕 𝐴 𝑡) ∼𝐶[𝑝←𝚛𝚎𝚏𝚕 𝐴 𝑡,𝑥←𝑡] 𝑞

where

x1: Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝑖

x2: Γ,𝑥 ∶ 𝐴,𝑝 ∶ 𝑥 =𝐴 𝑥 ⊢ 𝐶 ∶ 𝐒𝐞𝐭𝑗

x3: Γ ⊢ 𝑡 ∶ 𝐴

x4: Γ ⊢ 𝑞 ∶ 𝐶[𝑝← 𝚛𝚎𝚏𝚕 𝐴 𝑡,𝑥← 𝑡]

x5: Γ ⊢ 𝑃 ∶ 𝑡 =𝐴 𝑡

and the variables 𝑖, 𝑗 range over all universe levels, internal or external. The presenta-
tion of the rules continues in Definition 4.2.29.

Rules: Transfer

4.2.28. Since Standardization works over any predicate, internal or external, we can
admit it as a proper axiom over all universe levels. Similarly, we can admit Idealization
over internal predicates by admitting it as a proper axiom over universe levels below 𝜔.
However, the Transfer axioms work only over those internal predicates which have all
parameters standard. To capture this purely syntactic restriction, we handle Transfer
using a new form of judgment, Γ ⊢ 𝐴↔𝑖 𝐵, meaning “one can transfer between 𝐴 and
𝐵 of universe level 𝑖 in the context Γ”. Before we assert the rules governing this new
sort of judgment, we have to give meaning to the analogues of the predicate st(−) of
Internal Set Theory, the standardness types 𝚜𝚝 𝐴 𝑡, read as “𝑡 is a standard inhabitant
of type 𝐴”. This type lives in the external hierarchy, and does not have introduction or
elimination rules, as one can use the Transfer axioms directly for all introductions and
eliminations of 𝚜𝚝.

4.2. EXTENDED TYPE THEORY 99

4.2.29. Definition. In all the rules that follow, the variables 𝓁, 𝑖, 𝑗 range over universe
levels of the internal hierarchy (strictly below𝜔), and the variable 𝑥 is fresh with respect
to the context Γ. We admit the following standardness type formation rule.

Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝓁 Γ ⊢ 𝑡 ∶ 𝐴
⋆ ST-FORM

Γ ⊢ 𝚜𝚝𝓁 𝐴 𝑡 ∶ 𝐒𝐞𝐭𝜔

Define the notation ∀𝑠𝑡𝑥 ∶𝐴.𝐵 as an abbreviation for ∀𝑥 ∶𝐴.𝚜𝚝𝐴 𝑥→𝐵, and similarly
∃𝑠𝑡𝑥 ∶ 𝐴.𝐵 as an abbreviation for ∃𝑥 ∶ 𝐴.𝚜𝚝 𝐴 𝑥∧𝐵. In accordance with the rule ST-
FORM, we need to have Γ ⊢ 𝐴 ∶ 𝐒𝐞𝐭𝓁 for some 𝓁 < 𝜔 before we can write ∀𝑠𝑡𝑥 ∶ 𝐴.𝐵.
We admit the following transfer rules.

Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁 ⋆ TRF-REFL
Γ ⊢ 𝐴⇔𝓁 𝐴

Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁 Γ,𝑥 ∶ 𝐴 ⊢ 𝐵⇔𝑖 𝐵′
⋆ TRF-DFUN

Γ ⊢ (∀𝑥 ∶ 𝐴.𝐵)⇔max{𝓁,𝑖} (∀𝑠𝑡𝑥 ∶ 𝐴.𝐵′)

Γ ⊢ 𝐴⇔𝑖 𝐴′ Γ ⊢ 𝐵⇔𝑗 𝐵′

⋆ TRF-FUN
Γ ⊢ (𝐴→ 𝐵)⇔max{𝑖,𝑗} (𝐴′ → 𝐵′)

Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁 Γ,𝑥 ∶ 𝐴 ⊢ 𝐵⇔𝑖 𝐵′
⋆ TRF-DSUM

Γ ⊢ (∃𝑥 ∶ 𝐴.𝐵)⇔max{𝓁,𝑖} (∃𝑠𝑡𝑥 ∶ 𝐴.𝐵′)

Γ ⊢ 𝐴⇔𝑖 𝐴′ Γ ⊢ 𝐵⇔𝑗 𝐵′

⋆ TRF-SUM
Γ ⊢ (𝐴×𝐵)⇔max{𝑖,𝑗} (𝐴′×𝐵′)

The presentation of the rules continues in Definition 4.2.32.

Rules: Naturals and Finite Lists

4.2.30. We call a rule a proper axiom if it has the form

Γ ⊢ AX-T
Γ ⊢ 𝑡 ∶ 𝐴

100 CHAPTER 4. MECHANIZATION

for fixed terms 𝑡,𝐴 and an arbitrary context Γ. One can treat introduction and elimi-
nation rules for the basic types of the theory (ℕ, 𝙻𝚒𝚜𝚝, etc)̇ as either proper axioms or
pure inference rules; compare e.g.

Γ ⊢ axiom
Γ ⊢ 𝚜𝚞𝚌 ∶ ℕ→ ℕ

Γ ⊢ 𝑛 ∶ ℕ inf. rule
Γ ⊢ 𝚜𝚞𝚌 𝑛 ∶ ℕ

Presenting the basic types using pure inference rules results in a more modular the-
ory (the definition of ℕ does not depend on how we define universes and dependent
functions, or whether we have them at all), at the cost of longer and more complicated
proofs in the meta-theory, and a less clear correspondence with the Agda code. On that
account, we opt to introduce the basic types of our type theory as proper axioms (along
with formation and computation rules). To save space, we give all the axioms on single
lines, e.g. we write the axiom introducing 𝚜𝚞𝚌 simply as 𝚜𝚞𝚌 ∶ ℕ→ ℕ. Later on, we
present the Idealization and Standardization principles the same way as well.

4.2.31. The type of natural numbers has two introduction rules, stating that zero is a
natural number and the successor of every natural number is also a natural number.
The principle of induction gives the elimination rule. We define the type 𝙻𝚒𝚜𝚝 𝐴 of
finite lists over the type 𝐴 in a similar fashion, with the elimination rule given by struc-
tural induction. In accordance with Section 1.1.10, we have to restrict these induction
principles to the universe levels of the internal hierarchy.

4.2.32. Definition. Let the variable 𝓁 range over universe levels below 𝜔, and let 𝑖
range over all universe levels. We admit the following rules for the type of natural
numbers (using the notation of Section 4.2.30):

ℕ ∶ 𝐒𝐞𝐭0
𝚣𝚎𝚛𝚘 ∶ ℕ

𝚜𝚞𝚌 ∶ ℕ→ ℕ

𝚒𝚗𝚍𝚞𝚌𝚝𝚒𝚘𝚗𝓁 ∶ ∀𝜑 ∶ ℕ→ 𝐒𝐞𝐭𝓁.

𝜑 𝚣𝚎𝚛𝚘→

(∀𝑘 ∶ ℕ.𝜑 𝑘→ 𝜑 (𝚜𝚞𝚌 𝑘))→

∀𝑛 ∶ ℕ.𝜑 𝑛

4.2. EXTENDED TYPE THEORY 101

along with the computation rules

𝚒𝚗𝚍𝚞𝚌𝚝𝚒𝚘𝚗𝓁 𝜑 𝑧 𝑠 𝚣𝚎𝚛𝚘 ∼ 𝑧 and

𝚒𝚗𝚍𝚞𝚌𝚝𝚒𝚘𝚗𝓁 𝜑 𝑧 𝑠 (𝚜𝚞𝚌 𝑛) ∼ 𝑠 (𝚒𝚗𝚍𝚞𝚌𝚝𝚒𝚘𝚗𝓁 𝜑 𝑧 𝑠 𝑛).

We admit the following rules for the type of finite lists.

𝙻𝚒𝚜𝚝𝑖 ∶ 𝐒𝐞𝐭𝑖 → 𝐒𝐞𝐭𝑖
𝚎𝚖𝚙𝚝𝚢𝑖 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝑖.𝙻𝚒𝚜𝚝𝑖 𝐴

𝚌𝚘𝚗𝚜𝑖 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝑖.𝐴→ 𝙻𝚒𝚜𝚝𝑖 𝐴→ 𝙻𝚒𝚜𝚝𝑖 𝐴

𝚕𝚒𝚜𝚝𝚎𝚕𝚒𝚖𝑖,𝓁 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝑖.∀𝜑 ∶ 𝙻𝚒𝚜𝚝𝑖 𝐴→ 𝐒𝐞𝐭𝓁.

𝜑 (𝚎𝚖𝚙𝚝𝚢𝑖 𝐴)→(
∀𝑎 ∶ 𝐴.∀𝑘 ∶ 𝙻𝚒𝚜𝚝𝑖 𝐴.𝜑 𝑘→ 𝜑 (𝚌𝚘𝚗𝚜𝑖 𝐴 𝑎 𝑘)

)
→

∀𝑛 ∶ 𝙻𝚒𝚜𝚝𝑖 𝐴.𝜑 𝑛

along with the computation rules

• 𝚕𝚒𝚜𝚝𝚎𝚕𝚒𝚖𝑖,𝓁 𝐴 𝜑 𝑒 𝑐 (𝚎𝚖𝚙𝚝𝚢𝑖 𝐴) ∼ 𝑒 and

• 𝚕𝚒𝚜𝚝𝚎𝚕𝚒𝚖𝑖,𝓁 𝐴 𝜑 𝑒 𝑐 (𝚌𝚘𝚗𝚜𝑖 𝐴 ℎ 𝑡) ∼ 𝑐 ℎ (𝚕𝚒𝚜𝚝𝚎𝚕𝚒𝚖𝑖,𝓁 𝐴 𝜑 𝑒 𝑐 𝑡).

We define the list membership predicate 𝚎𝚕𝚎𝚖𝑖 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭0.𝐴→ 𝙻𝚒𝚜𝚝𝑖 𝐴→ 𝐒𝐞𝐭0 as an
abbreviation for the term

𝜆𝐴 ∶ 𝐒𝐞𝐭𝑖.𝜆𝑒 ∶ 𝐴.𝚕𝚒𝚜𝚝𝚎𝚕𝚒𝚖𝑖,𝓁 𝐴 (𝜆𝑥.𝐒𝐞𝐭0) ⊥ (𝜆ℎ.𝜆𝑡.𝜆𝑃 .¬(𝑒 = ℎ)→ 𝑃)

When one can deduce the universe level 𝑖 and the type 𝐴 from the surrounding text, we
often leave these implicit and denote 𝚎𝚕𝚎𝚖𝑖 𝐴 𝑥 𝑛 as 𝑥 ∈ 𝑛. The presentation of the
rules continues in Definition 4.2.35.

4.2.33. Exercise. Prove that the list membership predicate 𝚎𝚕𝚎𝚖𝑖 defined in Defini-
tion 4.2.32 satisfies the definitional equalities

𝚎𝚕𝚎𝚖𝑖 𝐴 𝑒 (𝚎𝚖𝚙𝚝𝚢𝑖 𝐴) ∼ ⊥

𝚎𝚕𝚎𝚖𝑖 𝐴 𝑒 (𝚌𝚘𝚗𝚜𝑖 𝐴 ℎ 𝑡) ∼ ¬(𝑒 = ℎ)→ 𝚎𝚕𝚎𝚖𝑖 𝐴 𝑒 𝑡.

Convince yourself of the correctness of the definition (hint: the equalities above state

102 CHAPTER 4. MECHANIZATION

that no 𝑒 belong to the empty list, and if 𝑒 belongs to a list starting with the element 𝑎,
then either 𝑎 = 𝑒 or 𝑒 belongs to the tail of the same list).

Rules: IST Axioms

4.2.34. We now give the Idealization, Standardization and Transfer axioms. Thanks to
the extended hierarchy of universes, an external predicate on the type 𝐴 corresponds
simply to a function of signature 𝐴 → 𝐒𝐞𝐭𝜔, while functions of signature 𝐴 → 𝐒𝐞𝐭0
always give internal predicates. This allows us to admit both Idealization and Stan-
dardization as proper axioms without any complication. Unfortunately, the same trick
would not work for Transfer axioms, since they require not only the internality of their
predicates, but also that said predicates do not contain any non-standard parameters
(otherwise we could transfer the true sentence ∀𝑠𝑡𝑛 ∶ ℕ.𝑛 < 𝜔 and conclude 𝜔 < 𝜔).
Consequently, we need to use the transfer judgments introduced in Definition 4.2.29 to
define the valid instances of Transfer axioms.

4.2.35. Definition. Let the variables 𝓁,𝑚,𝑘, 𝑖, 𝑗 range over universe levels of the inter-
nal hierarchy (strictly below 𝜔). We admit the following Idealization/Standardization
rules into our type theory (using the notation of Section 4.2.30):

⋆𝙸𝚍𝚎𝚊𝚕𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝙵𝓁,𝑚,𝑘 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝓁.∀𝐵 ∶ 𝐒𝐞𝐭𝑚.∀𝜑 ∶ 𝐴→ 𝐵→ 𝐒𝐞𝐭𝑘.

(∀𝑠𝑡𝑡 ∶ 𝐿𝑖𝑠𝑡 𝐴.∃𝑏 ∶ 𝐵.∀𝑎 ∶ 𝐴.𝑎 ∈ 𝑡→ 𝜑 𝑎 𝑏)→

∃𝑏 ∶ 𝐵.∀𝑠𝑡𝑎 ∶ 𝐴.𝜑 𝑎 𝑏

⋆𝙸𝚍𝚎𝚊𝚕𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝙱𝓁,𝑚,𝑘 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝓁.∀𝐵 ∶ 𝐒𝐞𝐭𝑚.∀𝜑 ∶ 𝐴→ 𝐵→ 𝐒𝐞𝐭𝑘.

(∃𝑏 ∶ 𝐵.∀𝑠𝑡𝑎 ∶ 𝐴.𝜑 𝑎 𝑏)→

∀𝑠𝑡𝑡 ∶ 𝐿𝑖𝑠𝑡 𝐴.∃𝑏 ∶ 𝐵.∀𝑎 ∶ 𝐴.𝑎 ∈ 𝑡→ 𝜑 𝑎 𝑏

⋆𝚂𝚝𝚊𝚗𝚍𝚊𝚛𝚍𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝓁 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝓁.∀𝜑 ∶ 𝐴→ 𝐒𝐞𝐭𝜔.∃𝑠𝑡𝜓 ∶ 𝐴→ 𝐒𝐞𝐭𝓁.

∀𝑠𝑡𝑎 ∶ 𝐴.(𝜓 𝑎→ 𝜑 𝑎)∧ (𝜑 𝑎→ 𝜓 𝑎)

We take the following Transfer axioms.

Γ ⊢ 𝐴⇔𝑗 𝐴′ Δ ⊢
⋆ AX-TRAL

Δ ⊢ 𝚃𝚛𝚊𝙻Γ,𝐴,𝐴′ ∶ ∀𝑠𝑡[Γ].(𝐴→ 𝐴′)

Γ ⊢ 𝐴⇔𝑗 𝐴′ Δ ⊢
⋆ AX-TRAR

Δ ⊢ 𝚃𝚛𝚊𝚁Γ,𝐴,𝐴′ ∶ ∀𝑠𝑡[Γ].(𝐴′ → 𝐴)

4.3. SYNTACTIC PROPERTIES 103

where the variable 𝑥 is fresh with respect to the context Γ, and ∀𝑠𝑡[Γ].𝑡 is defined via
the following structurally recursive clauses:

• ∀𝑠𝑡[∅].𝑡 denotes 𝑡;

• ∀𝑠𝑡[Γ,𝑥 ∶ 𝐴].𝑡 denotes ∀𝑠𝑡[Γ].(∀𝑠𝑡𝑥 ∶ 𝐴.𝑡).

This concludes the presentation of the rules of our extended type theory.

4.3 Syntactic properties

4.3.1. Calling a formal system a “type theory” conjures up mental images of certain
desirable syntactic properties that such theories tend to satisfy. These include type-
theory-specific features such as the substitution property and the existence of canonical
forms, as well as more general desiderata such as monotonicity and consistency. Here
we discuss which of these properties our newly defined type theory enjoys.

4.3.2. We call a term of type ℕ a canonical natural number if we can write it purely in
terms of 𝚣𝚎𝚛𝚘 and 𝚜𝚞𝚌. Recall that a theory has canonical forms if we can computa-
tionally turn every derivation tree with conclusion ⊢ 𝑡 ∶ ℕ into a derivation tree with
conclusion ⊢ 𝑡 ∼ℕ 𝑛 for some canonical natural number 𝑛. Since we intend to use our
extended type theory for classical (as opposed to constructive) reasoning, the existence
of canonical forms loses its relevance: adding axioms without computation rules (such
as the principle of excluded middle or Voevodsky’s univalence axiom) destroy canon-
icity. Indeed, one does not have canonical forms in our extended type theory, since
the IST axioms lack associated computation rules. More generally, a consistent theory
cannot have canonical forms in the presence of 𝙸𝚍𝚎𝚊𝚕𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝙵, since one can use the
axiom to show the existence of a term 𝑡 with ¬𝚜𝚝 ℕ 𝑡, while our type theory proves
𝚜𝚝 ℕ 𝑛 for any canonical natural number 𝑛 (exercise!).

4.3.3. Definition. We say that a type theory enjoys the monotonicity property if, given
a derivation tree with conclusion Γ⊢ 𝑎 ∶𝐴 and a derivation tree with conclusion Γ,Δ⊢,
we can find a derivation tree of Γ,Δ ⊢ 𝑎 ∶ 𝐴.

4.3.4. Definition. We say that a type theory enjoys the substitution property if, given
a derivation tree with conclusion Γ⊢ 𝑎 ∶𝐴 and a derivation tree with conclusion Γ,𝑥 ∶

104 CHAPTER 4. MECHANIZATION

𝐴,Δ ⊢ 𝑡 ∶ 𝑇 (Γ,𝑥 ∶ 𝐴,Δ ⊢), we can find a derivation tree with conclusion Γ,Δ[𝑥←

𝑎] ⊢ 𝑡[𝑥← 𝑎] ∶ 𝑇 [𝑥← 𝑎] (resp. Γ,Δ[𝑥← 𝑎] ⊢).

4.3.5. Theorem. The safe fragment (Definition 4.2.6) of our calculus enjoys the substi-
tution property, the monotonicity property and the following presupposition properties:

1. If Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝑖 [has a derivation tree], then [so does] Γ ⊢𝑠.

2. If Γ ⊢𝑠 𝑡 ∶ 𝐴, then Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝑖 for some level 𝑖 < 𝜔.

3. If Γ ⊢𝑠 𝑡 ∼𝐴 𝑠, then Γ ⊢𝑠 𝑡 ∶ 𝐴 and Γ ⊢𝑠 𝑠 ∶ 𝐴.

Proof. These properties follow by induction on the length of the derivation tree, com-
bined with a case analysis on the last used rule (see [14]-Lemma 2.1.10 for an example
of a proof in this vein).
Qed.

4.3.6. Lemma. If Γ⊢ 𝑡⇔𝑖 𝑣 has a derivation tree in the full calculus, then Γ⊢𝑠 𝑡 ∶ 𝐒𝐞𝐭𝑖
has a derivation tree in the safe fragment.

Proof. By induction on the derivation tree. If we used the rule ⋆ TRF-REFL as the last
rule of our derivation tree, then the tree has the form

⋮1
Γ ⊢𝑠 𝑡 ∶ 𝐒𝐞𝐭𝓁 ⋆ TRF-REFL
Γ ⊢ 𝑡⇔𝓁 𝑡

for some 𝑖 = 𝓁 < 𝜔. Consequently, Γ ⊢𝑠 𝑡 ∶ 𝐒𝐞𝐭𝓁 has a derivation tree ⋮1 in the safe
fragment.
Otherwise, we must have used one of the following rules: ⋆ TRF-DFUN, ⋆ TRF-FUN,
⋆ TRF-DSUM or ⋆ TRF-SUM. Without loss of generality we consider only the first two
of these. In the first case, our tree has the shape

⋮1
Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁

⋮2
Γ,𝑥 ∶ 𝐴 ⊢ 𝐵⇔𝑚 𝐵′

⋆ TRF-DFUN
Γ ⊢ (∀𝑥 ∶ 𝐴.𝐵)⇔max{𝓁,𝑚} (∀𝑠𝑡𝑥 ∶ 𝐴.𝐵′)

where 𝑡 has the form ∀𝑥 ∶𝐴.𝐵, 𝑣 has the form ∀𝑠𝑡𝑥 ∶𝐴.𝐵′ and 𝑖=max{𝓁,𝑚}. Applying
the induction hypothesis to the subtree ⋮2, we get a derivation tree ⋮2′ of conclusion
Γ,𝑥 ∶ 𝐴 ⊢𝑠 𝐵 ∶ 𝐒𝐞𝐭𝑚. Thus, we can construct a proof tree with the desired conclusion
Γ ⊢𝑠 ∀𝑥 ∶ 𝐴.𝐵 ∶ 𝐒𝐞𝐭max{𝓁,𝑚} in the safe fragment:

4.3. SYNTACTIC PROPERTIES 105

⋮1
Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁

⋮2′
Γ,𝑥 ∶ 𝐴 ⊢𝑠 𝐵 ∶ 𝐒𝐞𝐭𝑚 DFUN-FORM

Γ ⊢ ∀𝑥 ∶ 𝐴.𝐵 ∶ 𝐒𝐞𝐭max{𝓁,𝑚}

In the second case, our tree has shape
⋮1

Γ ⊢ 𝐴⇔𝓁 𝐴′
⋮2

Γ ⊢ 𝐵⇔𝑚 𝐵′
⋆ TRF-FUN

Γ ⊢ (𝐴→ 𝐵)⇔max{𝓁,𝑚} (𝐴′ → 𝐵′)

where 𝑡 has the form 𝐴→ 𝐵, 𝑣 has the form 𝐴′ → 𝐵′ and 𝑖 = max{𝓁,𝑚}. Applying
the induction hypothesis to the subtrees ⋮1 and ⋮2, we get derivation trees ⋮1′ and ⋮2′

with respective conclusions Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁 and Γ ⊢𝑠 𝐵 ∶ 𝐒𝐞𝐭𝑚. We can pick a variable
𝑥 fresh with respect to both contexts Γ and Δ, and using the rule CTX-EXT on the
subtree ⋮1′ we can obtain Γ,𝑥 ∶ 𝐴 ⊢𝑠. Now, by the monotonicity property of the safe
fragment (Theorem 4.3.5), we have a derivation tree ⋮2′′ with conclusion Γ,𝑥 ∶ 𝐴 ⊢𝑠

𝐵 ∶ 𝐒𝐞𝐭𝑚, so we can conclude
⋮1′

Γ ⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝓁
⋮2′′

Γ,𝑥 ∶ 𝐴 ⊢𝑠 𝐵 ∶ 𝐒𝐞𝐭𝑚 DFUN-FORM
Γ ⊢ 𝐴→ 𝐵 ∶ 𝐒𝐞𝐭max{𝓁,𝑚}

which proves our claim.
Qed.

4.3.7. Corollary. The operation ∀𝑠𝑡[Γ] introduced in Definition 4.2.35 is well-typed.

Proof. We need to verify that if Γ ⊢ 𝑡⇔𝑖 𝑠 then for every 𝑥 ∶𝐴 in Γ we have 𝐴 ∶ 𝐒𝐞𝐭𝓁
for some 𝓁 < 𝜔. By Lemma 4.3.6 we have Γ ⊢𝑠 𝑡 ∶ 𝐒𝐞𝐭𝑖, so by the presupposition
property for the safe fragment (Theorem 4.3.5) we have Γ⊢𝑠. But all derivations in the
safe fragment clearly have the desired property.
Qed.

4.3.8. Theorem. Our extended type theory enjoys the substitution property: given a
derivation tree with conclusion Γ ⊢ 𝑎 ∶ 𝐴 and a derivation tree with conclusion Γ,𝑥 ∶
𝐴,Δ ⊢ 𝑡 ∶ 𝑇 (Γ,𝑥 ∶ 𝐴,Δ ⊢), we can find a derivation tree with conclusion Γ,Δ[𝑥←

𝑎] ⊢ 𝑡[𝑥← 𝑎] ∶ 𝑇 [𝑥← 𝑎] (resp. Γ,Δ[𝑥← 𝑎] ⊢).

Proof. The proof by induction proceeds analogously to that of Theorem 4.3.5. Ex-
tending a system with proper axioms in the style of Section 4.2.30 cannot break the
substitution property, so it suffices to consider only the case where the derivation of

106 CHAPTER 4. MECHANIZATION

Γ ⊢ 𝑎 ∶ 𝐴 starts with one of the rules ⋆ AX-TRAL or ⋆ AX-TRAR, without loss of
generality the former. So the tree has the form

⋮1
Π ⊢𝑀 ⇔𝑗 𝑀 ′

⋮2
Γ ⊢

⋆ AX-TRAL
Γ ⊢ 𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′ ∶ ∀𝑠𝑡[Π].(𝑀 →𝑀 ′)

If the other derivation tree has the conclusion Γ,𝑥 ∶ 𝐴,Δ ⊢, we distinguish two cases.

• Δ has the form ∅. Then we have to produce a derivation tree with conclusion
Γ ⊢; but we already have that, in the form of ⋮2.

• Δ has the form Δ′, 𝑞 ∶ 𝑄. Then we have to produce a derivation tree with con-
clusion Γ,Δ′[𝑥← 𝑎], 𝑞 ∶ 𝑄[𝑥← 𝑎] ⊢, and we must have had CTX-EXT as the
last rule in the derivation of Γ,𝑥 ∶ 𝐴,Δ′, 𝑞 ∶ 𝑄 ⊢ 𝑡 ∶ 𝑇 . This means we have a
derivation tree for Γ,𝑥 ∶ 𝐴,Δ′ ⊢ 𝑄 ∶ 𝐒𝐞𝐭𝑖 for some 𝑖. Applying the induction
hypothesis to this derivation yields Γ,Δ′[𝑥← 𝑎] ⊢ 𝑄[𝑥← 𝑎] ∶ 𝐒𝐞𝐭𝑖, so we can
finish the proof by using CTX-EXT again.

Now, if the other derivation tree has the conclusion Γ,𝑥 ∶ 𝐴,Δ ⊢ 𝑡 ∶ 𝑇 , and the last
rule of the tree contains a formation, introduction or elimination rule, then the proof
proceeds uniformly by applying the induction hypothesis to each premise, then applying
the rule again to all the results. Otherwise, the VAR rule occurs as the last rule of the
tree. If the variable 𝑡 ∶ 𝑇 occurs in either Γ or Δ, we can proceed by induction using
the previous strategy. Otherwise, the derivation tree has the following form:

⋮3
Γ,𝑥 ∶ ∀𝑠𝑡[Π].(𝑀 →𝑀 ′),Δ ⊢

VAR
Γ,𝑥 ∶ ∀𝑠𝑡[Π].(𝑀 →𝑀 ′),Δ ⊢ 𝑥 ∶ ∀𝑠𝑡[Π].(𝑀 →𝑀 ′)

and we have to produce a derivation tree with conclusion Γ,Δ[𝑥 ← 𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′] ⊢
𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′ ∶ ∀𝑠𝑡[Π].(𝑀→𝑀 ′). Using the induction hypothesis on ⋮3, we get a deriva-
tion tree ⋮3′ with conclusion Γ,Δ[𝑥← 𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′] ⊢. The derivation tree

⋮1
Π ⊢𝑀 ⇔𝑗 𝑀 ′

⋮3′
Γ,Δ[𝑥← 𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′] ⊢

⋆ AX-TRAL
Γ,Δ[𝑥← 𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′] ⊢ 𝚃𝚛𝚊𝙻Π,𝑀,𝑀 ′ ∶ ∀𝑠𝑡[Π].(𝑀 →𝑀 ′)

suffices and concludes our proof.
Qed.

4.3.9. Exercise. Prove the monotonicity property.

4.3. SYNTACTIC PROPERTIES 107

4.3.10. Proposition. No consistent extension of our type theory enjoys canonicity.

Proof. First we show that for every canonical natural number 𝑛 our type theory proves
𝚜𝚝0 ℕ 𝑛. For canonical 𝑛 we can easily find a derivation tree ⊢𝑠 𝑛 ∶ ℕ. We give the
derivation tree for a closed term of type ∃𝑥 ∶ ℕ.𝚜𝚝0 ℕ 𝑥×𝑥 =ℕ 𝑛 on Figure 4.1. Using
this term, a transport argument immediately gives a derivation tree for ⊢ 𝚜𝚝0 ℕ 𝑛.
Find a closed term 𝑓 ∶ ∀𝑆 ∶ 𝙻𝚒𝚜𝚝ℕ.∃𝑥 ∶ℕ.∀𝑦 ∶ℕ.𝑦∈𝑆→ ¬(𝑦= 𝑥) in our type theory
(clearly we can already do this in Martin-Löf Type Theory without the extensions).
Then the closed term

𝙸𝚍𝚎𝚊𝚕𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝙵 ℕ ℕ (𝜆𝑥.𝜆𝑦.¬(𝑥 = 𝑦)) 𝑓

has type ∃𝑥 ∶ ℕ.∀𝑠𝑡𝑦 ∶ ℕ.¬(𝑥 = 𝑦). Denoting the term by 𝑓 ′, we have derivation trees
for

⊢ 𝜋1𝑓
′ ∶ ℕ and

⊢ 𝜋2𝑓
′ ∶ ∀𝑠𝑡𝑦 ∶ ℕ.¬(𝜋1𝑓 ′ = 𝑦).

Using these, we can construct the derivation tree of Figure 4.2 which witnesses the
non-standardness of 𝜋2𝑓 ′.
Now, if we had an extension of our type theory that has 𝜋2𝑓 ′ ∼ 𝑛 for some canonical
natural number 𝑛 ∶ ℕ, then we would have proofs of both 𝚜𝚝0 ℕ𝑛 and 𝚜𝚝0 ℕ → ⊥,
showing the inconsistency of the extension. Therefore, consistent extensions of our
type theory do not enjoy canonicity.
Qed.

4.3.11. Proposition. One can conservatively extend our type theory with the rule

⊢𝑠 𝐴 ∶ 𝐒𝐞𝐭𝑖 ⊢𝑠 𝑡 ∶ 𝐴
ST-CON

Γ ⊢ 𝚜𝚝𝚌𝚘𝚗𝑖 𝐴 𝑡 ∶ 𝚜𝚝𝑖 𝐴 𝑡

along with a rule ST-FUN realizing the analogue of Lemma 1.1.33.

Proof. For the conservativity of ST-CON, just notice that the proof of Figure 4.1 does
not use any specific fact about ℕ or about the canonicity of the numeral 𝑛.

108 CHAPTER 4. MECHANIZATION

We prove the conservativity of ST-FUN by explicitly constructing a term 𝚜𝚝𝚏𝚞𝚗 of the
required type. Start by picking (exercise!) a derivation tree with conclusion

𝐴 ∶ 𝐒𝐞𝐭𝑖,𝐵 ∶ 𝐴→ 𝐒𝐞𝐭𝑗 ,𝑓 ∶ ∀𝑥 ∶ 𝐴.𝐵,𝑎 ∶ 𝐴 ⊢𝑠

(𝑓 𝑎,𝚛𝚎𝚏𝚕 (𝐵 𝑎) (𝑓 𝑎)) ∶ ∃𝑦 ∶ 𝐵 𝑎.𝑦 =𝐵 𝑎 𝑓 𝑥.

Denote the context by Γ, the term (𝑓 𝑎,𝚛𝚎𝚏𝚕 (𝐵 𝑎) (𝑓 𝑎))) by 𝑝, its type by 𝑃 . We can
construct the derivation tree

⋮
Γ,𝑦 ∶ 𝐵 𝑎 ⊢ 𝐵 𝑎 ∶ 𝐒𝐞𝐭𝑗

⋮
Γ,𝑦 ∶ 𝐵 𝑎 ⊢ 𝑦 ∶ 𝐵 𝑎

⋮
Γ,𝑦 ∶ 𝐵 𝑎 ⊢ 𝑓 𝑥 ∶ 𝐵 𝑎

EQT-FORM
Γ,𝑦 ∶ 𝐵 𝑎 ⊢ 𝑦 =𝐵 𝑎 𝑓 𝑥 ⋆ TRF-REFL

Γ,𝑦 ∶ 𝐵 𝑎 ⊢ (𝑦 =𝐵 𝑎 𝑓 𝑥)⇔max{𝑖,𝑗} (𝑦 =𝐵 𝑎 𝑓 𝑥)
⋆ TRF-DSUM

Γ ⊢ (∃𝑦 ∶ 𝐵 𝑎.𝑦 =𝐵 𝑎 𝑓 𝑥)⇔max{𝑖,𝑗} (∃𝑠𝑡𝑦 ∶ 𝐵 𝑎.𝑦 =𝐵 𝑎 𝑓 𝑥)

and using the rule ⋆ AX-TRAL we get a closed term

𝑡 ∶ ∀𝑠𝑡[Γ].(∃𝑦 ∶ 𝐵 𝑎.𝑦 =𝐵 𝑎 𝑓 𝑥→ ∃𝑠𝑡𝑦 ∶ 𝐵 𝑎.𝑦 =𝐵 𝑎 𝑓 𝑥).

Using this term, we can easily construct a term of type ∀𝑠𝑡[Γ].∃𝑠𝑡𝑦 ∶ 𝐵 𝑎.𝑦 =𝐵 𝑎 𝑓 𝑥,
and from there on 𝚜𝚝𝚏𝚞𝚗 of type ∀𝑠𝑡[Γ].𝚜𝚝𝑗 (𝐵 𝑎) (𝑓 𝑥).
Qed.

Consistency

4.3.12. The implementation of Agda assumes that the underlying type theory obeys the
substitution property (Theorem 4.3.8) and monotonicity; if these did not hold for our
extended type theory, we could not check the proofs using Agda. Proposition 4.3.11
also plays a significant role in the mechanization, by significantly shortening common
standardness proofs. At this point, we have all the syntactic properties required to
proceed with the mechanization. Before we move on, we take a brief look at consistency
and conservative extension results for our proposed calculus.

4.3.13. Theorem. Our type theory does not constitute a conservative extension of or-
dinary Martin-Löf Type Theory.

4.3. SYNTACTIC PROPERTIES 109

Proof. We employ a strategy from Sanders [42] to prove Markov’s principle for an ar-
bitrary predicate. By a celebrated result of Coquand and Mannaa [9], ordinary Martin-
Löf Type Theory does not prove Markov’s principle, so this suffices to prove the non-
conservativity of our extension. The argument takes place (informally) inside our ex-
tended type theory. Let 𝐴⊎𝐵 denote a constructive disjunction operation, say

∃𝑛 ∶ ℕ.(𝑛 =ℕ 0→ 𝐴)× ((𝑛 =ℕ 0→ ⊥)→ 𝐵).

Take any standard predicate 𝑃 ∶ ℕ→ 𝐒𝐞𝐭0, and assume that ∀𝑛 ∶ ℕ.𝑃 𝑛⊎¬(𝑃 𝑛) and
¬∀𝑛 ∶ ℕ.𝑃𝑛 hold. Take a nonstandard 𝜔 ∶ ℕ. Assuming ∀𝑛 ∶ ℕ.𝑛 < 𝜔→ 𝑃 𝑛 would
immediately imply ∀𝑠𝑡𝑛 ∶ ℕ.𝑃 𝑛, which would contradict ¬∀𝑛 ∶ ℕ.𝑃𝑛 after a use of
Transfer. Hence, we have ¬∀𝑛 ∶ ℕ.𝑛 < 𝜔→ 𝑃 𝑛. But type theory does prove

∀𝑘 ∶ ℕ.¬(∀𝑛 ∶ ℕ.𝑛 < 𝑘→ 𝑃 𝑛)→ ∃𝑛 ∶ ℕ.¬(𝑃 𝑛)

and substituting 𝑘 = 𝜔 immediately gives us

¬(∀𝑛 ∶ ℕ.𝑛 < 𝜔→ 𝑃 𝑛)→ ∃𝑛 ∶ ℕ.¬(𝑃 𝑛).

We have established ¬∀𝑛 ∶ ℕ.𝑛 < 𝜔→ 𝑃 𝑛 earlier, so we can conclude ∃𝑛 ∶ ℕ.¬(𝑃 𝑛).
Since we started with an arbitrary standard predicate 𝑃 ∶ ℕ→ 𝐒𝐞𝐭0, we have shown

∀𝑠𝑡𝑃 ∶ ℕ→ 𝐒𝐞𝐭0.(∀𝑛 ∶ ℕ.𝑃 𝑛⊎¬(𝑃 𝑛))→ ¬(∀𝑛 ∶ ℕ.𝑃 𝑛)→ ∃𝑛 ∶ ℕ.¬(𝑃 𝑛).

Using a quick Transfer argument we get the same conclusion for an arbitrary predicate,
which proves Markov’s principle.
Qed.

4.3.14. Given its similarity to Internal Set Theory and our extended type theory, it
would be very surprising if our extended type theory would turn out to be inconsistent.
That said, a full proof of consistency for our extended type theory seems out of our
reach, at least in the near future. While we suspect that (in principle) a proof transla-
tion argument done in the style of Nelson [33] (see Proposition 1.1.43) and targeting a
carefully chosen classical extension of Martin-Löf Type Theory, will suffice to establish
the consistency of our extensions, such an argument presents many technical difficul-
ties. First of all, even classical extensions of type theory lack prenex forms (if 𝑥 occurs
in 𝐶 then one cannot rewrite ∀𝑥 ∶ (∀𝑦 ∶ 𝐴.𝐵).𝐶 as ∃𝑦 ∶ 𝐴.∀𝑥 ∶ 𝐵.𝐶 since the types

110 CHAPTER 4. MECHANIZATION

no longer match). This complicates the formulation of any possible analogue of the
Galactic Halo theorem. Even if one finds a way around this particular barrier, one has
to face the fact that type theory has many more rules than the first-order logic underly-
ing Zermelo-Fraenkel Set Theory, which makes a Nelson-style proof translation far less
convenient. However, such a translation would have a major advantage over the one for
Zermelo-Fraenkel Set Theory: while in ZF, the Galactic Halo theorem requires a full
Choice principle to realize the quantifier switches, Martin-Löf Type Theory proves all
these instances of Choice, so the quantifier switch turns out to be innocent, and all the
non-constructive content of the translation is concentrated in the Ultrafilter Lemma.

4.3.15. Proposition. If we remove the axioms 𝙸𝚍𝚎𝚊𝚕𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝙵 and 𝙸𝚍𝚎𝚊𝚕𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝙱
from our extended type theory, we obtain a consistent extension of ordinary Martin-Löf
Type Theory.

Proof. We sketch a proof that our theory with these two axioms removed conserva-
tively extends ordinary Martin-Löf Type Theory extended with the Law of Excluded
Middle 𝐿𝐸𝑀𝑖 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝑖.¬𝐴⊎𝐴. Consider the proof translation that transcribes
proofs in the extended theory into proofs of ordinary Martin-Löf Type Theory by send-
ing 𝐒𝐞𝐭𝜔+𝓁 to 𝐒𝐞𝐭𝓁 and 𝚜𝚝𝐴 𝑡 ∶ 𝐒𝐞𝐭𝜔 to 𝚣𝚎𝚛𝚘=ℕ 𝚣𝚎𝚛𝚘 ∶ 𝐒𝐞𝐭0. The interpretation of the
Transfer rules and axioms becomes trivial. All we have to do is give an interpretation
to the transcribed Standardization axioms

⋆𝚂𝚝𝚊𝚗𝚍𝚊𝚛𝚍𝚒𝚣𝚊𝚝𝚒𝚘𝚗𝓁 ∶ ∀𝐴 ∶ 𝐒𝐞𝐭𝓁.∀𝜑 ∶ 𝐴→ 𝐒𝐞𝐭0.∃𝜓 ∶ 𝐴→ 𝐒𝐞𝐭𝓁.

∀𝑎 ∶ 𝐴.(𝜓 𝑎→ 𝜑 𝑎)× (𝜑 𝑎→ 𝜓 𝑎)

We can realize this using excluded middle for 𝓁 > 0 by considering the following term:

𝜆𝐴.𝜆𝜑.𝜆𝑎.

𝚒𝚗𝚍𝚞𝚌𝚝𝚒𝚘𝚗𝓁(𝜆𝑝.𝐒𝐞𝐭𝓁−1)(𝐒𝐞𝐭𝓁−1 → ⊥)(𝜆𝑘.𝜆𝑝.𝐒𝐞𝐭𝓁−1)(𝐿𝐸𝑀0(𝜑 𝑎)) ∶

∀𝐴 ∶ 𝐒𝐞𝐭𝓁.(𝐴→ 𝐒𝐞𝐭0)→ 𝐴→ 𝐒𝐞𝐭0

Denote this term 𝑓 . Intuitively, 𝑓 performs a case analysis on the value of𝐿𝐸𝑀𝑖 (𝜑 𝑎).
If it finds ¬𝐴, then it returns the uninhabited type 𝐒𝐞𝐭𝓁−1 → ⊥, otherwise it returns the
inhabited type 𝐒𝐞𝐭𝓁−1. Taking𝜓 as 𝑓 𝐴𝜑 allows us to interpret the 𝚂𝚝𝚊𝚗𝚍𝚊𝚛𝚍𝚒𝚣𝚊𝚝𝚒𝚘𝚗
axioms: the implications hold since 𝜓 𝑎 has an inhabitant precisely if 𝜑 𝑎 does.
Qed.

4.4. AGDA PROOF 111

4.4 Agda proof

4.4.1. We discuss remaining matters related to the formalized proof of Theorem 2.3.9
in this final section. We do not give a syntax reference for the language of Agda: the
interested reader can refer to the original article introducting Agda [36], and to the wide
range of tutorials available on the official Agda website6.

Extended type theory in Agda

4.4.2. Agda is a general-purpose proof assistant implementing Martin-Löf Type The-
ory. It does not know about, and does not incorporate, the extensions we proposed
in the previous sections. Fortunately, newer versions of Agda (2.6.0 and above) have
features and facilities that we can use to simulate working in our extended type theory,
while maintaining fairly wide correctness guarantees.

4.4.3. First we have to deal with the question of the extended universe hierarchy in-
troduced in Definition 4.2.17. Normally, Agda supports only finite levels in its uni-
verse hierarchy, and does not allow declaring new universes (sorts) without modify-
ing the source code of the type checker. However, since version 2.6.0, Agda provides
an option -omega-in-omega that permits us to treat 𝚂𝚎𝚝𝜔 as a new universe level
obeying 𝚂𝚎𝚝𝜔 ∶ 𝚂𝚎𝚝𝜔. This allows us to simulate an external hierarchy by defining
𝐒𝐞𝐭𝜔+𝓁 = 𝐒𝐞𝐭𝜔 = 𝚂𝚎𝚝𝜔 for each level 𝓁 < 𝜔. Major caveat: the onus of responsibil-
ity of ensuring that one can assign consistent universe levels to all occurrences on the
symbol 𝚂𝚎𝚝𝜔 falls on the author of the proof script! We manually annotated the proof
script with a suitable universe level assignment to certify that our proof does not violate
this constraint.

4.4.4. With access to the external hierarchy, we can declare external predicates as in-
habitants of 𝐴→ 𝐒𝐞𝐭𝜔. Some constructions (such as the Idealization axiom and the
induction principle over the natural numbers) do not accept external predicates as argu-
ments. Fortunately, Agda knows that 𝐒𝐞𝐭𝜔 ≠ 𝐒𝐞𝐭𝓁 for any internal (i.e. actual) level 𝓁,
so the Agda proof checker will automatically ensure that we do not supply an external
predicate to a construction that works only with internal predicates. However, Agda’s
pattern matching mechanism (a shorthand notation for nested uses of induction princi-
ples) does not perform this check, and would allow us to do invalid proofs by induction,

6See https://agda.readthedocs.io/en/v2.6.0.1/getting-started/tutorial-list.html

https://agda.readthedocs.io/en/v2.6.0.1/getting-started/tutorial-list.html

112 CHAPTER 4. MECHANIZATION

such as proving the standardness of all natural numbers. Therefore, we have to disable
definitions by pattern matching using the -no-pattern-matching option provided by
Agda.

4.4.5. As discussed in Definition 4.2.35, we can introduce the Idealization and Stan-
dardization principles as proper axioms using Agda’s postulate keyword. The same
method works for encoding all TRF- rules, apart from TRF-REFL. To implement the
latter, we have to introduce a distinction between safe and general Agda modules, in a
similar way to how we separated ⊢𝑠 and ⊢ in Section 4.2.30. We write safe modules
in the pure subset of Agda, without access to any of the previously discussed features
coming from our proposed extensions. As such, a top-level definition of 𝑡 ∶ 𝑇 in a safe
module corresponds to a derivation ⊢𝑠 𝑡 ∶ 𝑇 in our extended type theory. We add a pri-
vate constructor defined-in-safe-module used only to declare top level definitions
in safe modules standard.

4.4.6. Given the implementation details above, one might wonder: what do we need to
believe this proof, given that Agda checked it?

1. Martin-Löf Type Theory. One has to believe the consistency and mathematical
relevance of Martin-Löf Type Theory. As mentioned in Section 4.1.4, Martin-
Löf Type Theory has been in use since the 1970s to general satisfaction and has
served as a basis for many formalized proofs. The currently prevalent foundation
of mathematics, Zermelo-Fraenkel Set Theory with the Axiom of Choice (along
with some mild large cardinal assumptions) proves the consistency of all common
variants of Martin-Löf Type Theory.

2. The extensions to type theory. We formalized the proof of our main result in a
way that never invokes the Idealization axiom, so the proof of Proposition 4.3.15
applies and guarantees consistency.

3. The Agda implementation. One has to trust that the type theory implemented
by the Agda proof checker accurately reflects Martin-Löf Type Theory, and our
additional postulates accurately reflect the extensions. Demotically: “one has
to trust that the Agda proof checker can check at least this particular proof (if
nothing else).”

4. Accurate transcription. A formal argument establishes exactly what the author
states, not necessarily what the author means, much less what the author desires.

4.4. AGDA PROOF 113

One may look at the formalized, computer-verified proof given in the appendix
and ask: “yes, you have produced a verifiable formal proof of some statement,
but how do we know that the proved statement corresponds to the informal state-
ment of Theorem 2.3.9?” We chose our proposed extensions to type theory with
this requirement in mind, so that the type-theoretic development can follow the
informal argument as closely as possible. Fortunately, the notions involved in
the statement of our main result (groups, group actions, metric spaces, strong
approximation) have short, axiomatic definitions, so one can easily verify the
correspondence between the concepts and their formalized counterparts.

5. Newman’s theorem. As discussed in the relevant chapter, Theorem 2.3.6 (New-
man’s theorem) provides the group-theoretic substrate of our result. In principle,
one could write down and computer-verify a proof of Newman’s theorem in Agda.
However, a formal statement and verification of Newman’s theorem lies far out-
side the scope of our work, and would probably make a fine research project of its
own. As such, we admit Theorem 2.3.6 without proof, and rely on it as a “black
box”. Newman’s theorem is the only such presupposition used in our argument.

4.4.7. The formal proof consists of approximately 3500 lines of Agda code (not count-
ing the in-line comments), organized hierarchically into 23 modules. Table 4.1 cross-
references the sections of this document with their corresponding modules. The for-
malized proof of Theorem 2.3.9 follows the original argument very closely, except for
one minor modification. We wanted our proof to avoid appeals to Idealization, since
the fragment of extended type theory in Proposition 4.3.15 omits this axiom. However,
Theorem 2.3.9 depends on Proposition 1.2.14, and the textbook proof of the latter relies
on an Idealization argument. We give an alternative proof (presented in Section 4.4.8)
that bypasses this use of Idealization using a slightly more involved appeal to external
induction.

4.4.8 (Alternate proof of Proposition 1.2.14). Consider a standard natural number 𝑏.
All 𝑛 ∈ ℕ with 𝑛 < 𝑏 are standard.

Proof. Let 𝜑(𝑏) abbreviate the following property: ∀𝑛 ∈ ℕ.𝑛 ≤ 𝑏→ st(𝑛). We prove
∀𝑠𝑡𝑏.𝜑(𝑏) using external induction (Theorem 1.2.15).

• Base case: We need to prove ∀𝑛.𝑛 ≤ 0 → st(𝑛). But 𝑛 ≤ 0 implies 𝑛 = 0, and
st(0) holds by Proposition 1.2.9.

114 CHAPTER 4. MECHANIZATION

• Inductive case: We have a standard 𝑘 such that all 𝑛 ≤ 𝑘 satisfy st(𝑛). We need
to prove that all 𝑛≤ 𝑘+1 satisfy st(𝑛). If 𝑛≤ 𝑘, then we can conclude st(𝑛) using
the induction hypothesis. Otherwise, 𝑛 = 𝑘+1, and st(𝑘+1) follows from the
standardness of 𝑘 using Corollary 1.2.11.

By the principle of external induction, we have that given any standard natural 𝑏, if
𝑛 ≤ 𝑏 then st(𝑛).
Qed.

Section Description Module
1.2.14 Standard naturals closed downward IST.Naturals
1.2.15 External induction IST.Naturals
1.3.35 Metric spaces are equivalence spaces IST.PredicatedTopologies
1.3.38 Ultrafilters have monadic elements IST.Ultrafilters
2.3.3 Function extension theorem IST.Results.ExtensionTheorem
2.3.9 Action extension theorem IST.Results.MainTheorem

Table 4.1: Cross-reference: theorems and corresponding Agda modules.

4.4.9. Type-checking the proof requires Agda version 2.6.0.1. Verifying the complete
proof takes less than 2 minutes on a modern computer, and needs approximately 2 gi-
gabytes of free RAM.

4.4. AGDA PROOF 115

⊢
𝑠
𝑛
∶
ℕ

⊢
𝑠
𝑛
∶
ℕ

EQ
T-

IN
TR

⊢
𝑠
𝚛𝚎

𝚏𝚕
ℕ
𝑛
∶
𝑛
=
𝑛

D
SU

M
-I

N
TR

⊢
𝑠
(𝑛
,𝚛
𝚎𝚏

𝚕
ℕ
𝑛)

∶
(∃
𝑥
∶
ℕ
.𝑥

=
𝑛)

…
1

C
TX

-N
U

L
∅
⊢
𝑠

N
A

T-
FO

R
M

⊢
𝑠
ℕ
∶
𝐒𝐞

𝐭 0
C

TX
-E

X
T

𝑥
∶
ℕ
⊢
𝑠

…
2

…
1

⊢
𝑠
𝑛
∶
ℕ

N
A

T-
FO

R
M

𝑥
∶
ℕ
⊢
𝑠
ℕ
∶
𝐒𝐞

𝐭 0

…
2

V
A

R
𝑥
∶
ℕ
⊢
𝑠
𝑥
∶
ℕ

𝑥
∶
ℕ
⊢
𝑠
𝑛
∶
ℕ

EQ
T-

FO
R

M
𝑥
∶
ℕ
⊢
𝑥
=
ℕ
𝑛
∶
𝐒𝐞

𝐭 0
⋆

TR
F-

R
EF

L
𝑥
∶
ℕ
⊢
𝑥
=
𝑛
⇔

0
𝑥
=
𝑛
⋆

TR
F-

D
SU

M
⊢
∃𝑥

∶
ℕ
.𝑥

=
𝑛
⇔

0
∃𝑠
𝑡 𝑥

∶
ℕ
.𝑥

=
𝑛

C
TX

-N
U

L
∅
⊢
⋆

A
X

-T
R

A
L

⊢
𝚃𝚛

𝚊𝙻
∶
(∃𝑥

∶
ℕ
.𝑥

=
𝑛
→

∃𝑠
𝑡 𝑥

∶
ℕ
.𝑥

=
𝑛) D

FU
N

-E
LI

M
⊢
𝚃𝚛

𝚊𝙻
(𝑛
,𝚛
𝚎𝚏

𝚕
ℕ
𝑛)

∶
(∃𝑠

𝑡 𝑥
∶
ℕ
.𝑥

=
𝑛)

Fi
gu

re
4.

1:
A

cl
os

ed
te

rm
of

ty
pe

∃𝑥
∶
ℕ
.𝚜
𝚝 0

ℕ
𝑥
×
𝑥
=
ℕ
𝑛

fo
re

ac
h

ca
no

ni
ca

ln
at

ur
al
𝑛
∶
ℕ

.

116 CHAPTER 4. MECHANIZATION

C
TX-N

U
L

∅
⊢

N
A

T-F
O

R
M

⊢
ℕ
∶
𝐒𝐞𝐭0

⊢
𝜋
1 𝑓

′∶
ℕ
⋆

S
T-F

O
R

M
⊢
𝚜𝚝

0 ℕ
(𝜋

1 𝑓
′)∶

𝐒𝐞𝐭𝜔
C

TX-E
X

T
𝑝
∶
𝑃
⊢

…
2

𝑝
∶
𝑃
⊢
𝜋
2 𝑓

′∶
∀
𝑠𝑡𝑦

∶
ℕ
.𝚜𝚝

ℕ
𝑦
→
𝜋
1 𝑓

′=
ℕ
𝑦
→
⊥

𝑝
∶
𝑃
⊢
𝜋
1 𝑓

′∶
ℕ

D
FU

N-E
LIM

𝑝
∶
𝑃
⊢
𝜋
2 𝑓

′(𝜋
1 𝑓

′)∶
𝑃
→
𝜋
1 𝑓

′=
ℕ
𝜋
1 𝑓

′→
⊥

…
2

V
A

R
𝑝
∶
𝑃
⊢
𝑝
∶
𝑃

D
FU

N-E
LIM

𝑝
∶
𝑃
⊢
𝜋
2 𝑓

′(𝜋
1 𝑓

′)𝑝
∶
𝑃
→
⊥

…
1

…
1

𝑝
∶
𝑃
⊢
𝜋
1 𝑓

′∶
ℕ

E
Q

T-IN
TR

𝑝
∶
𝑃
⊢
𝚛𝚎𝚏𝚕

ℕ
(𝜋

1 𝑓
′)∶

𝜋
1 𝑓

′=
ℕ
𝜋
1 𝑓

′
D

FU
N-E

LIM
𝑝
∶
𝑃
⊢
𝜋
2 𝑓

′(𝜋
1 𝑓

′)𝑝
(𝚛𝚎𝚏𝚕

ℕ
(𝜋

1 𝑓
′))∶

⊥
D

FU
N-IN

TR
⊢
(𝜆𝑝.𝜋

2 𝑓
′(𝜋

1 𝑓
′)𝑝

(𝚛𝚎𝚏𝚕
ℕ
(𝜋

1 𝑓
′)))∶

𝚜𝚝
0 ℕ

(𝜋
1 𝑓

′)
→
⊥

w
here

𝑃
abbreviatesthe

term
𝚜𝚝

0 ℕ
(𝜋

1 𝑓
′) .

Figure
4.2:D

erivation
tree

w
itnessing

the
existence

ofa
nonstandard

num
ber.

Bibliography

[1] M. A. ALEKSEEV, L. Y. GLEBSKII, AND E. I. GORDON, On approximation of
groups, group actions, and Hopf algebras, Journal of Mathematical Sciences, 107
(2001), pp. 4305–4332.

[2] M. ARBO, K. BENKOWSKI, B. COATE, H. NORDSTROM, C. PETERSON, AND

A. WOOTTON, The genus level of a group, Involve, 2 (2009), pp. 323–340.

[3] L. BABAI, K. FRIEDL, AND A. LUKÁCS, Near-representations of finite groups,
tech. rep., Computer and Automation Research Institute, Hungarian Academy of
Sciences, 06 2003.

[4] A. BLASS, A model without ultrafilters, Bulletin of the Polish Academy of Sci-
ences: Mathematics, Astronomy, Physics, 4 (1977), pp. 329–331.

[5] P. BASZCZYK, V. KANOVEI, AND M. KATZ, Monotone subsequence via Ultra-
power, Open Mathematics, 16 (2018), pp. 149–153.

[6] T. CECCHERINI-SILBERSTEIN, Cellular automata and groups, Springer-Verlag,
Heidelberg New York, 2010.

[7] T. CECCHERINI-SILBERSTEIN AND M. COORNAERT, Residually finite groups,
in Cellular Automata and Groups, T. Ceccherini-Silberstein, ed., Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 37–55.

[8] G. CHERLIN AND J. HIRSCHFELD, Ultrafilters and ultraproducts in non-
standard analysis, in Contributions to Non-Standard Analysis, W. Luxemburg and
A. Robinson, eds., vol. 69 of Studies in Logic and the Foundations of Mathemat-
ics, Elsevier, 1972, pp. 261 – 279.

[9] T. COQUAND AND B. MANNAA, The Independence of Markov’s Principle in
Type Theory, in 1st International Conference on Formal Structures for Compu-
tation and Deduction (FSCD 2016), D. Kesner and B. Pientka, eds., vol. 52 of

117

118 BIBLIOGRAPHY

Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany,
2016, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 17:1–17:18.

[10] N. A. DANIELSSON, Papers using Agda. The Agda Wiki - https://wiki.

portal.chalmers.se/agda/pmwiki.php?n=Main.PapersUsingAgda . Ac-
cessed: 2019-07-01.

[11] N. G. DE BRUIJN, Automath, a language for mathematics, in Automation of Rea-
soning: 2: Classical Papers on Computational Logic 1967–1970, J. H. Siekmann
and G. Wrightson, eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 1983,
pp. 159–200.

[12] F. DIENER AND M. DIENER, eds., Nonstandard Analysis in Practice, Springer
Berlin Heidelberg, 1995.

[13] M. DOUCHA, Metric topological groups: their metric approximation and
metric ultraproducts, to appear in Groups, Geometry, and Dynamics, (2016),
p. arXiv:1601.07449.

[14] P. GARDNER, Representing Logics in Type Theory, PhD thesis, University of Ed-
inburgh, UK, 1992.

[15] J.-Y. GIRARD, P. TAYLOR, AND Y. LAFONT, Proofs and Types, Cambridge Uni-
versity Press, New York, NY, USA, 1989.

[16] R. GOLDBLATT, Lectures on the Hyperreals: an Introduction to Nonstandard
Analysis, Springer, New York, 1998.

[17] G. GONTHIER, The four colour theorem: Engineering of a formal proof, in Com-
puter Mathematics, D. Kapur, ed., Berlin, Heidelberg, 2008, Springer Berlin Hei-
delberg, p. 333.

[18] G. GONTHIER, A. ASPERTI, J. AVIGAD, Y. BERTOT, C. COHEN, F. GARIL-
LOT, S. LE ROUX, A. MAHBOUBI, R. O’CONNOR, S. OULD BIHA, I. PASCA,
L. RIDEAU, A. SOLOVYEV, E. TASSI, AND L. THÉRY, A Machine-Checked Proof
of the Odd Order Theorem, in ITP 2013, 4th Conference on Interactive Theorem
Proving, S. Blazy, C. Paulin, and D. Pichardie, eds., vol. 7998 of LNCS, Rennes,
France, July 2013, Springer, pp. 163–179.

https://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.PapersUsingAgda
https://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.PapersUsingAgda

BIBLIOGRAPHY 119

[19] E. GUNTHER, A. GADEA, AND M. PAGANO, Formalization of universal algebra
in Agda, Electronic Notes in Theoretical Computer Science, 338 (2018), pp. 147 –
166. The 12th Workshop on Logical and Semantic Frameworks, with Applications
(LSFA 2017).

[20] M. HENLE, A Combinatorial Introduction to Topology, Dover Publications, 1994.

[21] C. HERMIDA, U. S. REDDY, AND E. P. ROBINSON, Logical relations and para-
metricity - a Reynolds Programme for Category Theory and Programming Lan-
guages, Electronic Notes in Theoretical Computer Science, 303 (2014), pp. 149 –
180. Proceedings of the Workshop on Algebra, Coalgebra and Topology 2013.

[22] M. HOFMANN, Syntax and semantics of dependent types, in Semantics and Logics
of Computation, Cambridge University Press, 1997, pp. 79–130.

[23] K. HRBACEK, Axiom of choice in nonstandard set theory, Journal of Logic and
Analysis [electronic only], 4 (2012).

[24] A. J. C. HURKENS, A simplification of girard’s paradox, in Typed Lambda Calculi
and Applications, M. Dezani-Ciancaglini and G. Plotkin, eds., Berlin, Heidelberg,
1995, Springer Berlin Heidelberg, pp. 266–278.

[25] T. IMAMURA, A nonstandard construction of direct limit group actions, arXiv
e-prints, (2018), p. arXiv:1812.00575.

[26] V. KANOVEI AND M. REEKEN, Nonstandard Analysis, Axiomatically, Springer
Monographs in Mathematics, Springer Berlin Heidelberg, 2013.

[27] M. M. KAPRANOV AND V. A. VOEVODSKY, Infinity-groupoids and homotopy
types, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 32 (1991),
pp. 29–46.

[28] N. KRISHNASWAMI, Explicit set of types and terms in Martin-Loef type the-
ory. Theoretical Computer Science Stack Exchange. - https://cstheory.

stackexchange.com/q/39361 (version: 2017-10-24).

[29] A. LEVY, Basic Set Theory, Dover Publications, Mineola, NY, USA, 2002.

[30] L. M. MANEVITZ AND S. WEINBERGER, Discrete circle actions: A note using
non-standard analysis, Israel Journal of Mathematics, 94 (1996), pp. 147–155.

https://cstheory.stackexchange.com/q/39361
https://cstheory.stackexchange.com/q/39361

120 BIBLIOGRAPHY

[31] J. A. C. MORALES AND B. ZILBER, The geometric semantics of algebraic quan-
tum mechanics, Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 373 (2015).

[32] E. NELSON, Internal set theory: A new approach to nonstandard analysis, Bul-
letin of the American Mathematical Society, 83 (1977), pp. 1165–1198.

[33] E. NELSON, The syntax of nonstandard analysis, Annals of Pure and Applied
Logic, 38 (1988), pp. 123 – 134.

[34] N. NIKOLOV, J. SCHNEIDER, AND A. THOM, Some remarks on finitarily approx-
imable groups, Journal de l’Ecole Polytechnique - Mathematiques, 5 (2017).

[35] U. NORELL, Towards a practical programming language based on dependent type
theory, PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Gothenburg, Sweden, September 2007.

[36] U. NORELL, Dependently Typed Programming in Agda, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009, pp. 230–266.

[37] J. PARDON, Totally disconnected groups (not) acting on two-manifolds, arXiv e-
prints, (2018), p. arXiv:1811.08748.

[38] A. PILLAY, Remarks on compactifications of pseudofinite groups, Fundamenta
Mathematicae, 236 (2017), pp. 193 – 200.

[39] D. R. LICATA AND M. SHULMAN, Calculating the fundamental group of the
circle in Homotopy Type Theory, in Proceedings of the Symposium on Logic in
Computer Science, 06 2013, pp. 223–232.

[40] A. ROBERT, Nonstandard analysis, Wiley-Interscience Publications, Wiley, 1988.

[41] S. SANDERS, The unreasonable effectiveness of Nonstandard Analysis, arXiv e-
prints, (2015), p. arXiv:1508.07434.

[42] , A note on non-classical Nonstandard Arithmetic, to appear in Annals of
Pure and Applied Logic, (2018), p. arXiv:1805.11705.

[43] G. SCHERER AND A. ABEL, Universe subtyping in Martin-Löf type theory (in-
ternship report, tech. rep., Department of Computer Science and Engineering,
Chalmers University of Technology, 2011.

BIBLIOGRAPHY 121

[44] C. SIMPSON, Homotopy Theory of Higher Categories: From Segal Categories to
n-Categories and Beyond, New Mathematical Monographs, Cambridge Univer-
sity Press, 2011.

[45] THE UNIVALENT FOUNDATIONS PROGRAM, Homotopy Type Theory: Univalent
foundations of mathematics, tech. rep., Institute for Advanced Study, 2013.

[46] B. VAN DEN BERG, E. BRISEID, AND P. SAFARIK, A functional interpretation for
nonstandard arithmetic, Annals of Pure and Applied Logic, 163 (2012), pp. 1962
– 1994.

[47] S. VICKERS, Fuzzy sets and geometric logic, Fuzzy Sets and Systems, 161 (2010),
pp. 1175 – 1204. Foundations of Lattice-Valued Mathematics with Applications
to Algebra and Topology.

[48] V. A. VOEVODSKY, Special year on Univalent Foundations of Mathematics. Pro-
gramme Proposal, Institute for Advanced Study, 2012.

[49] C. XU, Implementing the nonstandard Dialectica interpretation. Github
- https://cj-xu.github.io/agda/nonstandard_dialectica/Index.html .
Accessed: 2019-07-01.

[50] B. ZILBER, Structural approximation. draft on author’s personal website
(https://people.maths.ox.ac.uk/zilber/approx.pdf), Mar 2010.

[51] B. ZILBER, Perfect Infinities and Finite Approximation, in Infinity and Truth,
C. Chitat, Q. Feng, T. A. Slaman, and W. H. Woodin, eds., WSPC, 2013.

https://cj-xu.github.io/agda/nonstandard_dialectica/Index.html

Appendix A

Agda Proof of Theorem 2.3.9

The next 52 pages contain the 2019-08-27 revision of the Agda proofs described in
Chapter 4. The newest version of the proof is available in the Github repository at

https://github.com/zaklogician/agda-ist-algebra.git

The software is provided “as is”, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability and fitness for a particular
purpose. In no event shall the authors or copyright holders be liable for any claim,
damages or other liability, whether in an action of contract, tort or otherwise, arising
from, out of or in connection with the software or the use or other dealings in the
software. Licensing terms may differ between the online and printed versions.

122

123

module IST.Safe.Base where 1
 2
-- Here we define standard constructions from type theory, including 3
-- the usual dependent sum types and equality. This development 4
-- takes place in ordinary MLTT/Agda, without the external hierarchy. 5
 6
open import Agda.Primitive 7
 8
 9
-- TRIVIAL DATA TYPES -- 10
 11
-- The empty type and ex falso quodlibet. 12
 13
data ⊥ : Set where 14
 15
absurd : {ℓ : Level} → ⊥ → ∀ {A : Set ℓ} → A 16
absurd () 17
 18
-- The singleton type. 19
 20
data ⊤ : Set where 21
 tt : ⊤ 22
 23
 24
-- EXISTENTIAL QUANTIFICATION -- 25
 26
-- Now we deal with existential quantifiers. Alas, unlike the ∀ 27
-- case, Agda does not provide a builtin for this, so we need to 28
-- declare two variants, ∃ (for the internal hierarchy) and ∃* 29
-- (for the external hierarchy). Here we declare the internal 30
-- variant ∃, and define ∧ in terms of it. 31
 32
infixr 4 _,_ 33
record ∃ {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} (B : A → Set ℓ₂) : Set (ℓ₂ ⊔ ℓ₁) where 34
 constructor _,_ 35
 field 36
 proj₁ : A 37
 proj₂ : B proj₁ 38
open ∃ public 39
 40
∧ : ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Set ℓ₂ → Set (ℓ₂ ⊔ ℓ₁) 41
A ∧ B = ∃ λ (x : A) → B 42
 43
 44
-- LISTS / FINITE SETS -- 45
 46
data List {ℓ : Level} (A : Set ℓ) : Set ℓ where 47
 [] : List A 48
 ∷ : A → (xs : List A) → List A 49
 50
List-induction : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {B : List A → Set ℓ₂} → 51
 B [] → (∀ x → ∀ xs → B xs → B (x ∷ xs)) → ∀ y → B y 52
List-induction base-case inductive-case [] = base-case 53
List-induction base-case inductive-case (x ∷ xs) = 54
 inductive-case x xs (List-induction base-case inductive-case xs) 55
 56
data _∈_ {ℓ} {A : Set ℓ} (x : A) : List A → Set ℓ where 57
 ∈-head : ∀ {ys} → x ∈ (x ∷ ys) 58
 ∈-tail : ∀ {y ys} → x ∈ ys → x ∈ (y ∷ ys) 59
 60
 61
-- DISJUNCTION -- 62
 63
-- We could encode (constructive) disjunction using ∃ and a two-element 64
-- type, but declaring an explicit data type keeps reasoning much 65
-- more legible. 66
 67
data _∨_ {ℓ₁ ℓ₂ : Level} (A : Set ℓ₁) (B : Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where 68
 inl : A → A ∨ B 69
 inr : B → A ∨ B 70
 71
by-cases : {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set ℓ₁} {B : Set ℓ₂} → 72
 (P : Set ℓ₃) → (A → P) → (B → P) → A ∨ B → P 73
by-cases P A-implies-P B-implies-P (inl a) = A-implies-P a 74

124

by-cases P A-implies-P B-implies-P (inr b) = B-implies-P b 75
 76
postulate 77
 by-LEM : {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₂} → {B : Set ℓ₂} → ((A → ⊥) → B) → A ∨ B 78
 79
 80
-- EQUALITY -- 81
 82
-- We define equality only for the internal hierarchy, but only 83
-- with the internal induction principle. Later on, 84
-- we will admit a transport* principle for the external 85
-- hierarchy. This counts as a "hidden axiom" of IST, because 86
-- first-order logic is assumed to have equality. Really, we'd need 87
-- to check that the Nelson translation of (x = y) → st(x) → st(y) is 88
-- provable in ZFC. 89
 90
infix 4 _≡_ 91
data _≡_ {ℓ : Level} {A : Set ℓ} (x : A) : A → Set where 92
 refl : x ≡ x 93
 94
sym : {ℓ : Level} {A : Set ℓ} {x y : A} → x ≡ y → y ≡ x 95
sym refl = refl 96
 97
tran : {ℓ : Level} {A : Set ℓ} {x y z : A} → x ≡ y → y ≡ z → x ≡ z 98
tran refl refl = refl 99
 100
cong : {ℓ : Level} {A B : Set ℓ} {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y 101
cong f refl = refl 102
 103
transport : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {x y : A} → x ≡ y → ∀ {φ : A → Set ℓ₂} → φ x → φ y 104
transport refl z = z 105
 106
≡-ind : {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → {x : A} → (φ : (x ≡ x) → Set ℓ₂) → φ refl → ∀ e → φ e 107
≡-ind φ p refl = p 108
 109
 110
-- COMBINATORIAL (CLOSED) LAMBDA TERMS -- 111
 112
-- We cannot use induction on Set-types, so how do we prove them 113
-- standard? In IST, we do not have to deal with this problem, 114
-- since we normally encode functions as their graphs (sets of 115
-- ordered pairs), and IST already provides rules for the 116
-- standardness of sets. 117
 118
-- In Agda, functions do not coincide with sets of ordered pairs, 119
-- and we need to ensure that all MLTT-definable functions are 120
-- indeed standard. To accomplish this, the rules below suffice: 121
-- 1. All pure combinatorial λ-terms with standard co/domain are themselves standard. 122
-- 2. Functions defined by induction are standard. 123
-- 3. Applying a standard value to a standard function yields a standard result. 124
-- These rules exhaust all possible ways of defining functions 125
-- in MLTT. 126
 127
-- E.g. to prove that (λi. _=_ (f i) (g i)) is standard, we would 128
-- argue as follows: 129
-- 1. (\a.\b.\c. a b c) is a purely combinatorial λ-term, so standard. 130
-- 2. (\b.\c _=_ b c) is standard when both _=_ and (\a.\b.\c. a b c) are standard. 131
-- 3. (\c _=_ (f i) c) is standard when both (f i) and (\b.\c _=_ b c) are standard. 132
-- 4. (_=_ (f i) (g i)) is standard when both (g i) and (\c. _=_ (f i) (g i)) are standard. 133
-- So we'd conclude that the inhabitant (λi. _=_ (f i) (g i)) 134
-- of the type Set is standard as long as (f i) and (g i) are. 135
 136
-- Here we declare the combinatorial instances that we actually use 137
-- in our development, so that we can safely declare them standard in 138
-- IST.Base. 139
 140
abs-5 : (I : Set) → ({X : Set} → X → X → Set) → 141
 (b : I → Set) → 142
 (f : (i : I) → b i) → 143
 (g : (i : I) → b i) → 144
 (i : I) → Set 145
abs-5 I = λ (a : {X : Set} → X → X → Set) → 146
 λ (b : I → Set) → 147
 λ (f : (i : I) → b i) → 148
 λ (g : (i : I) → b i) → 149
 λ (i : I) → a {b i} (f i) (g i) 150

125

 151
abs-4 : (A M X : Set) → 152
 (f : A → M → M) → 153
 (e : X → A) → 154
 X → M → M 155
abs-4 A M X f e x m = f (e x) m 156
 157
abs-K : {ℓ₁ ℓ₂ : Level} (A : Set ℓ₁) (B : Set ℓ₂) → A → B → A 158
abs-K A B = λ (a : A) → λ (b : B) → a 159
 160
abs-K-h : {ℓ₁ ℓ₂ : Level} (A : Set ℓ₁) (B : Set ℓ₂) → A → {_ : B} → A 161
abs-K-h A B = λ (a : A) → λ {b : B} → a 162
 163
 164
-- We admit the law of excluded middle. 165
 166
postulate 167
 excluded-middle : {ℓ : Level} → (A : Set ℓ) → A ∨ (A → ⊥) 168
 169
-- 170
 171
 172
module IST.Safe.Util where 173
 174
-- Here we define standard constructions from type theory, including 175
-- the usual dependent sum types and equality. This development 176
-- takes place in ordinary MLTT/Agda, without the external hierarchy. 177
 178
open import Agda.Primitive 179
open import IST.Safe.Base 180
 181
lemma-product-equality : {ℓ₁ ℓ₂ : Level} {X : Set ℓ₁} {Y : Set ℓ₂} {x₁ x₂ : X} → ∀ {y₁ y₂ : Y} → 182
 x₁ ≡ x₂ → y₁ ≡ y₂ → (x₁ , y₁) ≡ (x₂ , y₂) 183
lemma-product-equality refl refl = refl 184
 185
-- 186
 187
 188
module IST.Safe.Naturals where 189
 190
open import Agda.Primitive 191
open import IST.Safe.Base 192
 193
data ℕ : Set where 194
 zero : ℕ 195
 suc : ℕ → ℕ 196
 197
{-# BUILTIN NATURAL ℕ #-} 198
 199
ℕ-induction : {ℓ : Level} → {φ : ℕ → Set ℓ} → 200
 φ 0 → (∀ k → φ k → φ (suc k)) → ∀ n → φ n 201
ℕ-induction base-case inductive-case zero = base-case 202
ℕ-induction base-case inductive-case (suc n) = inductive-case n (ℕ-induction base-case 203
inductive-case n) 204
 205
data _≤_ : ℕ → ℕ → Set where 206
 ≤-zero : {x : ℕ} → 0 ≤ x 207
 ≤-suc : {x y : ℕ} → x ≤ y → suc x ≤ suc y 208
 209
≤-tran : (x y z : ℕ) → x ≤ y → y ≤ z → x ≤ z 210
≤-tran .0 y z ≤-zero q = ≤-zero 211
≤-tran .(suc _) .(suc _) .(suc _) (≤-suc p) (≤-suc q) = ≤-suc (≤-tran _ _ _ p q) 212
 213
≤-than-zero : (x : ℕ) → x ≤ 0 → x ≡ 0 214
≤-than-zero .0 ≤-zero = refl 215
 216
≤-refl : ∀ x → x ≤ x 217
≤-refl zero = ≤-zero 218
≤-refl (suc x) = ≤-suc (≤-refl x) 219
 220
≤-not-suc : ∀ x → suc x ≤ x → ⊥ 221
≤-not-suc zero () 222
≤-not-suc (suc x) (≤-suc p) = ≤-not-suc x p 223
 224

126

≤-match : (x y : ℕ) → x ≤ suc y → (x ≤ y) ∨ (x ≡ suc y) 225
≤-match .0 y ≤-zero = inl ≤-zero 226
≤-match (suc a) zero (≤-suc p) = inr (cong suc (≤-than-zero a p)) 227
≤-match (suc a) (suc b) (≤-suc p) with ≤-match a b p 228
≤-match (suc a) (suc b) (≤-suc p) | inl q = inl (≤-suc q) 229
≤-match (suc a) (suc b) (≤-suc p) | inr q = inr (cong suc q) 230
 231
-- 232
 233
 234
module IST.Safe.FiniteSets where 235
 236
open import IST.Safe.Base 237
 238
record IsFiniteSet 239
 (Carrier : Set) 240
 : Set where 241
 field 242
 list-of-elements : List Carrier 243
 has-all-elements : (x : Carrier) → x ∈ list-of-elements 244
 245
record FiniteSet : Set₁ where 246
 field 247
 Carrier : Set 248
 isFiniteSet : IsFiniteSet Carrier 249
 open IsFiniteSet isFiniteSet public 250
 251
-- 252
 253
 254
module IST.Safe.Reals where 255
 256
open import Agda.Primitive 257
open import IST.Safe.Base 258
 259
-- We present an ordered field axiomatically. We do not give a completeness axiom. 260
 261
-- ℝ forms a commutative ring. 262
infixr 5 _+_ 263
infixr 6 _·_ 264
postulate 265
 ℝ : Set 266
 + : ℝ → ℝ → ℝ 267
 0r : ℝ 268
 +-comm : ∀ {x y : ℝ} → x + y ≡ y + x 269
 +-assoc : ∀ {x y z : ℝ} → (x + y) + z ≡ x + (y + z) 270
 +-unit-left : ∀ {x : ℝ} → 0r + x ≡ x 271
 minus : ℝ → ℝ 272
 +-inverse-left : ∀ {x : ℝ} → x + minus x ≡ 0r 273
 274
 · : ℝ → ℝ → ℝ 275
 1r : ℝ 276
 ·-comm : ∀ {x y : ℝ} → x · y ≡ y · x 277
 ·-assoc : ∀ {x y z : ℝ} → (x · y) · z ≡ x · (y · z) 278
 ·-unit-left : ∀ {x : ℝ} → 1r · x ≡ x 279
 ·-null-left : ∀ {x : ℝ} → x · 0r ≡ 0r 280
 281
 distr-left : ∀ {x y z : ℝ} → x · (y + z) ≡ x · y + x · z 282
 283
-- The right laws follow by commutativity. 284
 285
+-unit-right : ∀ {x : ℝ} → x + 0r ≡ x 286
+-unit-right = tran +-comm +-unit-left 287
 288
·-unit-right : ∀ {x : ℝ} → x · 1r ≡ x 289
·-unit-right = tran ·-comm ·-unit-left 290
 291
·-null-right : ∀ {x : ℝ} → 0r · x ≡ 0r 292
·-null-right = tran ·-comm ·-null-left 293
 294
distr-right : ∀ {x y z : ℝ} → (x + y) · z ≡ x · z + y · z 295
distr-right {x} {y} {z} = step-3 where 296
 step-1 : z · x + z · y ≡ x · z + z · y 297
 step-1 = cong (λ p → p + z · y) ·-comm 298

127

 step-2 : x · z + z · y ≡ x · z + y · z 299
 step-2 = cong (λ p → x · z + p) ·-comm 300
 step-3 : (x + y) · z ≡ x · z + y · z 301
 step-3 = tran (tran (tran ·-comm distr-left) step-1) step-2 302
 303
-- ℝ forms an ordered commutative ring. 304
 305
infix 4 _<_ 306
infix 4 _≤ᵣ_ 307
postulate 308
 < : ℝ → ℝ → Set 309
 <-trichotomy-strong : ∀ x y → (x ≡ y) ∨ ((x < y) ∨ (y < x)) 310
 <-asym-1 : ∀ x y → x < y → x ≡ y → ⊥ 311
 <-asym-2 : ∀ x y → x < y → y < x → ⊥ 312
 <-tran : ∀ x y z → x < y → y < z → x < z 313
 <-plus : ∀ x y c → x < y → x + c < y + c 314
 <-mult : ∀ x y c → 0r < c → x < y → c · x < c · y 315
 <-nontrivial : 0r < 1r 316
 317
-- ℝ forms a field 318
 319
≠ : ℝ → ℝ → Set 320
x ≠ y = ((x < y) → ⊥) → y < x 321
 322
postulate 323
 inv : (r : ℝ) → (r ≠ 0r) → ℝ 324
 ·-inverse-left : ∀ {x : ℝ} → (p : x ≠ 0r) → inv x p · x ≡ 1r 325
 326
+-inverse-right : ∀ {x : ℝ} → minus x + x ≡ 0r 327
+-inverse-right = tran +-comm +-inverse-left 328
 329
·-inverse-right : ∀ {x : ℝ} → (x≠0 : x ≠ 0r) → x · inv x x≠0 ≡ 1r 330
·-inverse-right x≠0 = tran ·-comm (·-inverse-left x≠0) 331
 332
-- We state and prove some useful elementary theorems about ℝ. 333
 334
·-minus : ∀ {x : ℝ} → minus x ≡ (minus 1r) · x 335
·-minus {x} = sym step-9 where 336
 step-1 : x + minus 1r · x ≡ (1r · x) + minus 1r · x 337
 step-1 = cong (λ p → p + minus 1r · x) (sym (·-unit-left)) 338
 step-2 : 1r · x + minus 1r · x ≡ (1r + minus 1r) · x 339
 step-2 = sym (distr-right) 340
 step-3 : (1r + minus 1r) · x ≡ 0r 341
 step-3 = tran (cong (λ p → p · x) +-inverse-left) ·-null-right 342
 step-4 : x + minus 1r · x ≡ 0r 343
 step-4 = tran (tran step-1 step-2) step-3 344
 step-5 : minus x + (x + minus 1r · x) ≡ minus x + 0r 345
 step-5 = cong (λ p → minus x + p) step-4 346
 step-6 : minus x + (x + minus 1r · x) ≡ minus x 347
 step-6 = tran step-5 +-unit-right 348
 step-7 : (minus x + x) + minus 1r · x ≡ minus x 349
 step-7 = tran +-assoc step-6 350
 step-8 : 0r + minus 1r · x ≡ minus x 351
 step-8 = tran (cong (λ p → p + minus 1r · x) (sym +-inverse-right)) step-7 352
 step-9 : minus 1r · x ≡ minus x 353
 step-9 = tran (sym +-unit-left) step-8 354
 355
<-trichotomy : ∀ {φ : Set} → ∀ x y → (x < y → φ) → (x ≡ y → φ) → (y < x → φ) → φ 356
<-trichotomy {φ} x y p q r with <-trichotomy-strong x y 357
<-trichotomy {φ} x y p q r | inl x-equals-y = q x-equals-y 358
<-trichotomy {φ} x y p q r | inr (inl x-under-y) = p x-under-y 359
<-trichotomy {φ} x y p q r | inr (inr y-under-x) = r y-under-x 360
 361
<-minus : ∀ {x : ℝ} → 0r < x → minus x < 0r 362
<-minus {x} positive-x = <-trichotomy 0r (minus x) 363
 (λ z → absurd (not-positive z)) 364
 (λ z → absurd (not-zero z)) 365
 (λ z → z) where 366
 not-positive : 0r < minus x → ⊥ 367
 not-positive positive-minus-x = <-asym-2 0r x positive-x negative-x where 368
 step-1 : 0r + x < minus x + x 369
 step-1 = <-plus 0r (minus x) x positive-minus-x 370
 step-2 : 0r + x < 0r 371
 step-2 = transport +-inverse-right {λ p → 0r + x < p} step-1 372

128

 negative-x : x < 0r 373
 negative-x = transport +-unit-left {λ p → p < 0r} step-2 374
 not-zero : 0r ≡ minus x → ⊥ 375
 not-zero zero-minus-x = <-asym-1 0r x positive-x (sym zero-x) where 376
 step-1 : x + 0r ≡ 0r 377
 step-1 = transport (sym zero-minus-x) {λ p → x + p ≡ 0r} +-inverse-left 378
 zero-x : x ≡ 0r 379
 zero-x = transport (+-unit-right {x}) {λ p → p ≡ 0r} step-1 380
 381
<-inverse : ∀ {x : ℝ} → (p : 0r < x) → 0r < inv x (λ _ → p) 382
<-inverse {x} p = <-trichotomy 0r (inv x (λ _ → p)) 383
 (λ z → z) 384
 (λ z → absurd (not-zero z)) 385
 (λ z → absurd (not-negative z)) where 386
 not-zero : 0r ≡ inv x (λ _ → p) → ⊥ 387
 not-zero 0r-inverse = <-asym-1 _ _ <-nontrivial step-3 where 388
 step-1 : 0r · x ≡ inv x (λ _ → p) · x 389
 step-1 = cong (λ p → p · x) 0r-inverse 390
 step-2 : 0r · x ≡ 1r 391
 step-2 = tran step-1 (·-inverse-left (λ _ → p)) 392
 step-3 : 0r ≡ 1r 393
 step-3 = tran (sym ·-null-right) step-2 394
 not-negative : inv x (λ _ → p) < 0r → ⊥ 395
 not-negative negative-invx = <-asym-2 _ _ <-nontrivial step-3 where 396
 x' : ℝ 397
 x' = inv x (λ _ → p) 398
 step-1 : x · x' < x · 0r 399
 step-1 = <-mult x' 0r x p negative-invx 400
 step-2 : 1r < x · 0r 401
 step-2 = transport (·-inverse-right (λ _ → p)) {λ p → p < x · 0r} step-1 402
 step-3 : 1r < 0r 403
 step-3 = transport ·-null-left {λ p → 1r < p} step-2 404
 405
<-plus-both : ∀ (x X y Y : ℝ) → x < X → y < Y → x + y < X + Y 406
<-plus-both x X y Y p q = <-tran _ _ _ step-1 step-4 where 407
 step-1 : x + y < X + y 408
 step-1 = <-plus x X y p 409
 step-2 : y + X < Y + X 410
 step-2 = <-plus y Y X q 411
 step-3 : X + y < Y + X 412
 step-3 = transport (+-comm {y} {X}) {λ z → z < Y + X} step-2 413
 step-4 : X + y < X + Y 414
 step-4 = transport (+-comm {Y} {X}) {λ z → X + y < z} step-3 415
 416
<-plus-left : ∀ x y c → x < y → (c + x) < (c + y) 417
<-plus-left x y c p = step-3 where 418
 step-1 : x + c < y + c 419
 step-1 = <-plus x y c p 420
 step-2 : c + x < y + c 421
 step-2 = transport +-comm {λ p → p < y + c} step-1 422
 step-3 : c + x < c + y 423
 step-3 = transport +-comm {λ p → c + x < p} step-2 424
 425
lemma-ε-of-room : ∀ (x : ℝ) → (∀ (ε : ℝ) → 0r < ε → x < ε) → (x < 0r → ⊥) → x ≡ 0r 426
lemma-ε-of-room x x<ε x≥0 = <-trichotomy {x ≡ 0r} x 0r 427
 (λ z → absurd (x≥0 z)) 428
 (λ z → z) 429
 (λ z → absurd (<-asym-2 x x (x<ε x z) (x<ε x z))) 430
 431
lemma-ε-of-room-plus : ∀ (x y : ℝ) → (∀ (ε : ℝ) → 0r < ε → x < y + ε) → (x ≡ y → ⊥) → x < y 432
lemma-ε-of-room-plus x y x<ε x≥y = <-trichotomy {x < y} x y 433
 (λ z → z) 434
 (λ z → absurd (x≥y z)) 435
 (λ z → x<y z) where 436
 0<x-y : y < x → 0r < x + minus y 437
 0<x-y y<x = absurd (<-asym-1 x x x<x refl) where 438
 step-1 : y + minus y < x + minus y 439
 step-1 = <-plus y x (minus y) y<x 440
 step-2 : 0r < x + minus y 441
 step-2 = transport +-inverse-left {λ z → z < x + minus y} step-1 442
 step-3 : x < y + x + minus y 443
 step-3 = x<ε (x + minus y) step-2 444
 step-4 : y + x + minus y ≡ y + minus y + x 445
 step-4 = cong (λ z → y + z) (+-comm {x} {minus y}) 446
 step-5 : (y + minus y) + x ≡ x 447
 step-5 = tran (cong (λ z → z + x) +-inverse-left) +-unit-left 448

129

 step-6 : y + x + minus y ≡ x 449
 step-6 = tran step-4 (tran (sym +-assoc) step-5) 450
 x<x : x < x 451
 x<x = transport step-6 {λ z → x < z} step-3 452
 x<y : y < x → x < y 453
 x<y y<x = absurd (<-asym-1 x x x<x refl) where 454
 x<y+x-y : x < y + x + minus y 455
 x<y+x-y = x<ε (x + minus y) (0<x-y y<x) 456
 y+x-y-equals-x : y + x + minus y ≡ x 457
 y+x-y-equals-x = 458
 tran (cong (λ z → y + z) +-comm) 459
 (tran (sym +-assoc) (tran (cong (λ z → z + x) +-inverse-left) +-unit-left)) 460
 x<x : x < x 461
 x<x = transport y+x-y-equals-x {λ z → x < z} x<y+x-y 462
 463
-- We prove some theorems about 1/2 that we need to work with metric spaces. 464
 465
2r : ℝ 466
2r = 1r + 1r 467
 468
pos-2r : 0r < 2r 469
pos-2r = <-tran 0r 1r 2r <-nontrivial step-2 where 470
 step-1 : 0r + 1r < 1r + 1r 471
 step-1 = <-plus 0r 1r 1r <-nontrivial 472
 step-2 : 1r < 1r + 1r 473
 step-2 = transport +-unit-left {λ p → p < 1r + 1r} step-1 474
 475
1r-less-than-2r : 1r < 2r 476
1r-less-than-2r = step-2 where 477
 step-1 : 0r + 1r < 1r + 1r 478
 step-1 = <-plus 0r 1r 1r <-nontrivial 479
 step-2 : 1r < 1r + 1r 480
 step-2 = transport +-unit-left {λ p → p < 1r + 1r} step-1 481
 482
1/2r : ℝ 483
1/2r = inv 2r (λ _ → pos-2r) 484
 485
pos-1/2r : 0r < 1/2r 486
pos-1/2r = <-inverse pos-2r 487
 488
1/2r-less-than-1r : 1/2r < 1r 489
1/2r-less-than-1r = step-3 where 490
 step-1 : 1/2r · 1r < 1/2r · 2r 491
 step-1 = <-mult 1r 2r 1/2r pos-1/2r 1r-less-than-2r 492
 step-2 : 1/2r < 1/2r · 2r 493
 step-2 = transport ·-unit-right {λ p → p < 1/2r · 2r} step-1 494
 step-3 : 1/2r < 1r 495
 step-3 = transport (·-inverse-left (λ _ → pos-2r)) {λ p → 1/2r < p} step-2 496
 497
1/2r-half : 1/2r + 1/2r ≡ 1r 498
1/2r-half = tran step-6 (tran step-5 (tran step-4 step-3)) where 499
 step-1 : 2r · (1/2r + 1/2r) ≡ 2r · 1/2r + 2r · 1/2r 500
 step-1 = distr-left {2r} {1/2r} {1/2r} 501
 step-2 : 2r · 1/2r + 2r · 1/2r ≡ 2r 502
 step-2 = cong (λ p → p + p) (·-inverse-right (λ _ → pos-2r)) 503
 step-3 : 1/2r · 2r · (1/2r + 1/2r) ≡ 1r 504
 step-3 = tran (cong (λ p → 1/2r · p) (tran step-1 step-2)) (·-inverse-left (λ _ → pos-2r)) 505
 step-4 : (1/2r · 2r) · (1/2r + 1/2r) ≡ 1/2r · 2r · (1/2r + 1/2r) 506
 step-4 = ·-assoc 507
 step-5 : 1r · (1/2r + 1/2r) ≡ (1/2r · 2r) · (1/2r + 1/2r) 508
 step-5 = cong (λ p → p · (1/2r + 1/2r)) (sym (·-inverse-left (λ _ → pos-2r))) 509
 step-6 : 1/2r + 1/2r ≡ 1r · (1/2r + 1/2r) 510
 step-6 = sym ·-unit-left 511
 512
_/2r : ℝ → ℝ 513
x /2r = 1/2r · x 514
 515
pos-/2r-v : (x : ℝ) → 0r < x → 0r < x /2r 516
pos-/2r-v x pos-x = transport ·-null-left {λ p → p < 1/2r · x} (<-mult 0r x 1/2r pos-1/2r pos-x) 517
 518
x/2r-less-than-x : (x : ℝ) → 0r < x → (x /2r) < x 519
x/2r-less-than-x x pos-x = step-3 where 520
 step-1 : x · 1/2r < x · 1r 521
 step-1 = <-mult 1/2r 1r x pos-x 1/2r-less-than-1r 522
 step-2 : x /2r < x · 1r 523
 step-2 = transport (·-comm {x} {1/2r}) {λ p → p < x · 1r} step-1 524

130

 step-3 : x /2r < x 525
 step-3 = transport (·-unit-right {x}) {λ p → x /2r < p} step-2 526
 527
/2r-half : ∀ {x : ℝ} → x /2r + x /2r ≡ x 528
/2r-half {x} = tran step-1 step-2 where 529
 step-1 : x /2r + x /2r ≡ (1/2r + 1/2r) · x 530
 step-1 = sym (distr-right {1/2r} {1/2r} {x}) 531
 step-2 : (1/2r + 1/2r) · x ≡ x 532
 step-2 = tran (cong (λ p → p · x) 1/2r-half) ·-unit-left 533
 534
-- We prove some results about ≤ that we need for Lipschitz conditions. 535
 536
≤ᵣ : ℝ → ℝ → Set 537
a ≤ᵣ b = (a ≡ b) ∨ (a < b) 538
 539
≤ᵣ-tran : ∀ x y z → x ≤ᵣ y → y ≤ᵣ z → x ≤ᵣ z 540
≤ᵣ-tran x .x .x (inl refl) (inl refl) = inl refl 541
≤ᵣ-tran x .x z (inl refl) (inr p) = inr p 542
≤ᵣ-tran x y .y (inr p) (inl refl) = inr p 543
≤ᵣ-tran x y z (inr p) (inr q) = inr (<-tran x y z p q) 544
≤ᵣ-plus : ∀ x y c → x ≤ᵣ y → (x + c) ≤ᵣ (y + c) 545
≤ᵣ-plus x .x c (inl refl) = inl refl 546
≤ᵣ-plus x y c (inr p) = inr (<-plus x y c p) 547
≤ᵣ-mult : ∀ x y c → 0r ≤ᵣ c → x ≤ᵣ y → (c · x) ≤ᵣ (c · y) 548
≤ᵣ-mult x .x .0r (inl refl) (inl refl) = inl refl 549
≤ᵣ-mult x y .0r (inl refl) (inr q) = inl (tran ·-null-right (sym ·-null-right)) 550
≤ᵣ-mult x .x c (inr p) (inl refl) = inl refl 551
≤ᵣ-mult x y c (inr p) (inr q) = inr (<-mult x y c p q) 552
≤ᵣ-nontrivial : 0r ≤ᵣ 1r 553
≤ᵣ-nontrivial = inr <-nontrivial 554
 555
≤ᵣ-minus : ∀ {x : ℝ} → 0r ≤ᵣ x → minus x ≤ᵣ 0r 556
≤ᵣ-minus (inl refl) = inl (tran (sym +-unit-left) +-inverse-left) 557
≤ᵣ-minus (inr p) = inr (<-minus p) 558
 559
≤ᵣ-plus-both : ∀ (x X y Y : ℝ) → x ≤ᵣ X → y ≤ᵣ Y → x + y ≤ᵣ X + Y 560
≤ᵣ-plus-both x .x y .y (inl refl) (inl refl) = inl refl 561
≤ᵣ-plus-both x .x y Y (inl refl) (inr q) = inr step-3 where 562
 step-1 : y + x < Y + x 563
 step-1 = <-plus y Y x q 564
 step-2 : x + y < Y + x 565
 step-2 = transport +-comm {λ p → p < Y + x} step-1 566
 step-3 : x + y < x + Y 567
 step-3 = transport +-comm {λ p → x + y < p} step-2 568
≤ᵣ-plus-both x X y .y (inr p) (inl refl) = inr (<-plus x X y p) 569
≤ᵣ-plus-both x X y Y (inr p) (inr q) = inr (<-plus-both x X y Y p q) 570
 571
≤ᵣ-plus-left : ∀ x y c → x ≤ᵣ y → (c + x) ≤ᵣ (c + y) 572
≤ᵣ-plus-left x y c p = step-3 where 573
 step-1 : x + c ≤ᵣ y + c 574
 step-1 = ≤ᵣ-plus x y c p 575
 step-2 : c + x ≤ᵣ y + c 576
 step-2 = transport +-comm {λ p → p ≤ᵣ y + c} step-1 577
 step-3 : c + x ≤ᵣ c + y 578
 step-3 = transport +-comm {λ p → c + x ≤ᵣ p} step-2 579
 580
≤ᵣ-dichotomy : ∀ x y → (x ≤ᵣ y) ∨ (y ≤ᵣ x) 581
≤ᵣ-dichotomy x y with <-trichotomy-strong x y 582
≤ᵣ-dichotomy x y | inl x-equals-y = inl (inl x-equals-y) 583
≤ᵣ-dichotomy x y | inr (inl x-under-y) = inl (inr x-under-y) 584
≤ᵣ-dichotomy x y | inr (inr y-under-x) = inr (inr y-under-x) 585
 586
lemma-lesser : ∀ (x y : ℝ) → (∀ (ε : ℝ) → 0r < ε → x ≤ᵣ y + ε) → ∀ (ε : ℝ) → 0r < ε → x < y + ε 587
lemma-lesser x y p ε pos-ε = step-3 where 588
 step-1 : x ≤ᵣ y + (ε /2r) 589
 step-1 = p (ε /2r) (pos-/2r-v ε pos-ε) 590
 step-2 : y + (ε /2r) < y + ε 591
 step-2 = <-plus-left (ε /2r) ε y (x/2r-less-than-x ε pos-ε) 592
 step-3 : x < y + ε 593
 step-3 with step-1 594
 step-3 | inl refl = step-2 595
 step-3 | inr p = <-tran _ _ _ p step-2 596
 597
lemma-ε-of-room-plus-≤ᵣ : ∀ (x y : ℝ) → (∀ (ε : ℝ) → 0r < ε → x ≤ᵣ y + ε) → x ≤ᵣ y 598
lemma-ε-of-room-plus-≤ᵣ x y p with ≤ᵣ-dichotomy x y 599

131

lemma-ε-of-room-plus-≤ᵣ x y p | inl (inl x-equals-y) = inl x-equals-y 600
lemma-ε-of-room-plus-≤ᵣ x y p | inl (inr x-under-y) = inr x-under-y 601
lemma-ε-of-room-plus-≤ᵣ x y p | inr (inl y-equals-x) = inl (sym y-equals-x) 602
lemma-ε-of-room-plus-≤ᵣ x y p | inr (inr y-under-x) = 603
 inr (lemma-ε-of-room-plus x y p' x-neq-y) where 604
 p' : ∀ (ε : ℝ) → 0r < ε → x < y + ε 605
 p' = lemma-lesser x y p 606
 x-neq-y : x ≡ y → ⊥ 607
 x-neq-y x-equals-y = <-asym-1 y y (transport x-equals-y {λ p → y < p} y-under-x) refl 608
 609
-- 610
 611
 612
module IST.Safe.Groups where 613
 614
open import IST.Safe.Base 615
open import IST.Safe.FiniteSets 616
open import IST.Safe.Naturals 617
 618
record IsGroup 619
 (Carrier : Set) 620
 (identity : Carrier) 621
 (operation : Carrier → Carrier → Carrier) 622
 (inverse : Carrier → Carrier) 623
 : Set where 624
 field 625
 assoc : ∀ (x y z : Carrier) → operation (operation x y) z ≡ operation x (operation y z) 626
 unit-left : ∀ (x : Carrier) → operation identity x ≡ x 627
 unit-right : ∀ (x : Carrier) → operation x identity ≡ x 628
 inverse-left : ∀ (x : Carrier) → operation (inverse x) x ≡ identity 629
 inverse-right : ∀ (x : Carrier) → operation x (inverse x) ≡ identity 630
 power : Carrier → ℕ → Carrier 631
 power x zero = identity 632
 power x (suc n) = operation x (power x n) 633
 634
record Group : Set₁ where 635
 field 636
 Carrier : Set 637
 identity : Carrier 638
 operation : Carrier → Carrier → Carrier 639
 inverse : Carrier → Carrier 640
 isGroup : IsGroup Carrier identity operation inverse 641
 open IsGroup isGroup public 642
 643
 644
record IsPeriodicGroup 645
 (Carrier : Set) 646
 (identity : Carrier) 647
 (operation : Carrier → Carrier → Carrier) 648
 (inverse : Carrier → Carrier) 649
 : Set where 650
 field 651
 isGroup : IsGroup Carrier identity operation inverse 652
 open IsGroup isGroup 653
 field 654
 order : Carrier → ℕ 655
 order-identity : ∀ g → power g (order g) ≡ identity 656
 order-minimal : ∀ g → ∀ n → power g (suc n) ≡ identity → order g ≤ (suc n) 657
 order-nonzero : ∀ g → order g ≡ 0 → ⊥ 658
 659
record PeriodicGroup : Set₁ where 660
 field 661
 Carrier : Set 662
 identity : Carrier 663
 operation : Carrier → Carrier → Carrier 664
 inverse : Carrier → Carrier 665
 isPeriodicGroup : IsPeriodicGroup Carrier identity operation inverse 666
 open IsPeriodicGroup isPeriodicGroup public 667
 open IsGroup isGroup public 668
 asGroup : Group 669
 asGroup = 670
 record { Carrier = Carrier 671
 ; identity = identity 672
 ; operation = operation 673
 ; inverse = inverse 674

132

 ; isGroup = isGroup 675
 } 676
 power-lemma : ∀ g → ∀ n → g ≡ identity → power g n ≡ identity 677
 power-lemma .(identity) zero refl = refl 678
 power-lemma .(identity) (suc n) refl = tran (unit-left (power identity n)) inductive-679
hypothesis where 680
 inductive-hypothesis : power identity n ≡ identity 681
 inductive-hypothesis = power-lemma identity n refl 682
 683
 power-lemma-contrapositive : ∀ g → ∀ n → (power g n ≡ identity → ⊥) → g ≡ identity → ⊥ 684
 power-lemma-contrapositive g n gn-not-identity g-identity = gn-not-identity (power-lemma g n 685
g-identity) 686
 687
 688
record IsFiniteGroup 689
 (Carrier : Set) 690
 (identity : Carrier) 691
 (operation : Carrier → Carrier → Carrier) 692
 (inverse : Carrier → Carrier) 693
 : Set where 694
 field 695
 isGroup : IsGroup Carrier identity operation inverse 696
 open IsGroup isGroup 697
 field 698
 isFiniteSet : IsFiniteSet Carrier 699
 order : Carrier → ℕ 700
 order-identity : ∀ g → power g (order g) ≡ identity 701
 order-minimal : ∀ g → ∀ n → power g (suc n) ≡ identity → order g ≤ suc n 702
 order-nonzero : ∀ g → order g ≡ 0 → ⊥ 703
 704
record FiniteGroup : Set₁ where 705
 field 706
 Carrier : Set 707
 identity : Carrier 708
 operation : Carrier → Carrier → Carrier 709
 inverse : Carrier → Carrier 710
 isFiniteGroup : IsFiniteGroup Carrier identity operation inverse 711
 open IsFiniteGroup isFiniteGroup public 712
 open IsGroup isGroup public 713
 asGroup : Group 714
 asGroup = 715
 record { Carrier = Carrier 716
 ; identity = identity 717
 ; operation = operation 718
 ; inverse = inverse 719
 ; isGroup = isGroup 720
 } 721
 power-lemma : ∀ g → ∀ n → g ≡ identity → power g n ≡ identity 722
 power-lemma .(identity) zero refl = refl 723
 power-lemma .(identity) (suc n) refl = tran (unit-left (power identity n)) inductive-724
hypothesis where 725
 inductive-hypothesis : power identity n ≡ identity 726
 inductive-hypothesis = power-lemma identity n refl 727
 728
 power-lemma-contrapositive : ∀ g → ∀ n → (power g n ≡ identity → ⊥) → g ≡ identity → ⊥ 729
 power-lemma-contrapositive g n gn-not-identity g-identity = gn-not-identity (power-lemma g n 730
g-identity) 731
 732
 733
record IsFiniteSubgroup 734
 (Source : FiniteGroup) 735
 (Target : Group) 736
 (Map : FiniteGroup.Carrier Source → Group.Carrier Target) 737
 : Set where 738
 open FiniteGroup Source public 739
 field 740
 Map-identity : Map identity ≡ Group.identity Target 741
 Map-operation : ∀ g h → 742
 Map (operation g h) ≡ Group.operation Target (Map g) (Map h) 743
 Map-injective : ∀ g h → Map g ≡ Map h → g ≡ h 744
 745
record FiniteSubgroup (Target : Group) : Set₁ where 746
 field 747
 Source : FiniteGroup 748
 Map : FiniteGroup.Carrier Source → Group.Carrier Target 749

133

 isFiniteSubgroup : IsFiniteSubgroup Source Target Map 750
 open IsFiniteSubgroup isFiniteSubgroup public 751
 Map-power : ∀ g → ∀ n → Map (power g n) ≡ Group.power Target (Map g) n 752
 Map-power g zero = Map-identity 753
 Map-power g (suc n) = tran (Map-operation g gn) step-1 where 754
 gn : Carrier 755
 gn = power g n 756
 mgn : Group.Carrier Target 757
 mgn = Group.power Target (Map g) n 758
 inductive-hypothesis : Map gn ≡ mgn 759
 inductive-hypothesis = Map-power g n 760
 step-1 : Group.operation Target (Map g) (Map gn) ≡ Group.operation Target (Map g) mgn 761
 step-1 = cong (Group.operation Target (Map g)) inductive-hypothesis 762
 763
 764
record IsPeriodicSubgroup 765
 (Source : PeriodicGroup) 766
 (Target : Group) 767
 (Map : PeriodicGroup.Carrier Source → Group.Carrier Target) 768
 : Set where 769
 open PeriodicGroup Source public 770
 field 771
 Map-identity : Map identity ≡ Group.identity Target 772
 Map-operation : ∀ g h → 773
 Map (operation g h) ≡ Group.operation Target (Map g) (Map h) 774
 Map-injective : ∀ g h → Map g ≡ Map h → g ≡ h 775
 776
record PeriodicSubgroup (Target : Group) : Set₁ where 777
 field 778
 Source : PeriodicGroup 779
 Map : PeriodicGroup.Carrier Source → Group.Carrier Target 780
 isPeriodicSubgroup : IsPeriodicSubgroup Source Target Map 781
 open IsPeriodicSubgroup isPeriodicSubgroup public 782
 Map-power : ∀ g → ∀ n → Map (power g n) ≡ Group.power Target (Map g) n 783
 Map-power g zero = Map-identity 784
 Map-power g (suc n) = tran (Map-operation g gn) step-1 where 785
 gn : Carrier 786
 gn = power g n 787
 mgn : Group.Carrier Target 788
 mgn = Group.power Target (Map g) n 789
 inductive-hypothesis : Map gn ≡ mgn 790
 inductive-hypothesis = Map-power g n 791
 step-1 : Group.operation Target (Map g) (Map gn) ≡ Group.operation Target (Map g) mgn 792
 step-1 = cong (Group.operation Target (Map g)) inductive-hypothesis 793
 794
-- 795
 796
 797
module IST.Safe.MetricSpaces where 798
 799
open import IST.Safe.Base 800
open import IST.Safe.Reals 801
 802
record IsMetricSpace 803
 (Carrier : Set) 804
 (distance : Carrier → Carrier → ℝ) 805
 : Set where 806
 field 807
 nonnegative : ∀ x y → distance x y < 0r → ⊥ 808
 reflexive-1 : ∀ x y → distance x y ≡ 0r → x ≡ y 809
 reflexive-2 : ∀ x → distance x x ≡ 0r 810
 symmetry : ∀ x y → distance x y ≡ distance y x 811
 triangle-≤ᵣ : ∀ x y z → distance x z ≤ᵣ distance x y + distance y z 812
 triangle : ∀ x y z b → (distance x y + distance y z < b) → distance x z < b 813
 triangle x y z b p with triangle-≤ᵣ x y z 814
 triangle x y z b p | inl eq = transport (sym eq) {λ p → p < b} p 815
 triangle x y z b p | inr lt = <-tran _ _ _ lt p 816
 817
record MetricSpace : Set₁ where 818
 field 819
 Carrier : Set 820
 distance : Carrier → Carrier → ℝ 821
 isMetricSpace : IsMetricSpace Carrier distance 822
 open IsMetricSpace isMetricSpace public 823
-- 824

134

 825
 826
module IST.Safe.GroupActions where 827
 828
open import IST.Safe.Base 829
open import IST.Safe.Naturals 830
open import IST.Safe.Reals 831
open import IST.Safe.MetricSpaces 832
open import IST.Safe.Groups 833
 834
record IsGroupAction 835
 (Source : Group) 836
 (Target : Set) 837
 (Map : Group.Carrier Source → Target → Target) 838
 : Set where 839
 open Group Source 840
 field 841
 action-identity : ∀ m → Map identity m ≡ m 842
 action-operation : ∀ g h → ∀ m → Map g (Map h m) ≡ Map (operation g h) m 843
 844
record GroupAction (Source : Group) (Target : Set) : Set where 845
 field 846
 Map : Group.Carrier Source → Target → Target 847
 isGroupAction : IsGroupAction Source Target Map 848
 open IsGroupAction isGroupAction public 849
 850
 851
record IsDiscreteAction 852
 (Source : FiniteGroup) 853
 (Target : MetricSpace) 854
 (Map : FiniteGroup.Carrier Source → 855
 MetricSpace.Carrier Target → MetricSpace.Carrier Target) 856
 : Set where 857
 open FiniteGroup Source 858
 open MetricSpace Target 859
 field 860
 isGroupAction : IsGroupAction (FiniteGroup.asGroup Source) (MetricSpace.Carrier Target) Map 861
 continuity : ∀ (g : FiniteGroup.Carrier Source) → 862
 ∀ (m : MetricSpace.Carrier Target) → 863
 ∀ (ε : ℝ) → 0r < ε → ∃ λ (δ : ℝ) → (0r < δ) ∧ (864
 ∀ (m' : MetricSpace.Carrier Target) → 865
 distance m m' < δ → 866
 distance (Map g m) (Map g m') < ε) 867
 868
 869
record DiscreteAction (Source : FiniteGroup) (Target : MetricSpace) : Set where 870
 field 871
 Map : FiniteGroup.Carrier Source → 872
 MetricSpace.Carrier Target → MetricSpace.Carrier Target 873
 isDiscreteAction : IsDiscreteAction Source Target Map 874
 open IsDiscreteAction isDiscreteAction public 875
 open IsGroupAction isGroupAction public 876
 877
 power-faithful : ∀ (g : FiniteGroup.Carrier Source) → 878
 ∀ (m : MetricSpace.Carrier Target) → 879
 ∀ (n : ℕ) → Map g m ≡ m → Map (FiniteGroup.power Source g n) m ≡ m 880
 power-faithful g m zero gm-equals-m = action-identity m 881
 power-faithful g m (suc n) gm-equals-m = tran (tran step-1 step-2) gm-equals-m where 882
 inductive-hypothesis : Map (FiniteGroup.power Source g n) m ≡ m 883
 inductive-hypothesis = power-faithful g m n gm-equals-m 884
 step-1 : Map (FiniteGroup.power Source g (suc n)) m ≡ 885
 Map g (Map (FiniteGroup.power Source g n) m) 886
 step-1 = sym (action-operation g (FiniteGroup.power Source g n) m) 887
 step-2 : Map g (Map (FiniteGroup.power Source g n) m) ≡ 888
 Map g m 889
 step-2 = cong (Map g) inductive-hypothesis 890
 891
 892
record IsPeriodicDiscreteAction 893
 (Source : PeriodicGroup) 894
 (Target : MetricSpace) 895
 (Map : PeriodicGroup.Carrier Source → 896
 MetricSpace.Carrier Target → MetricSpace.Carrier Target) 897
 : Set where 898
 open PeriodicGroup Source 899
 open MetricSpace Target 900

135

 field 901
 isGroupAction : IsGroupAction (PeriodicGroup.asGroup Source) (MetricSpace.Carrier Target) 902
Map 903
 continuity : ∀ (g : PeriodicGroup.Carrier Source) → 904
 ∀ (m : MetricSpace.Carrier Target) → 905
 ∀ (ε : ℝ) → 0r < ε → ∃ λ (δ : ℝ) → (0r < δ) ∧ (906
 ∀ (m' : MetricSpace.Carrier Target) → 907
 distance m m' < δ → 908
 distance (Map g m) (Map g m') < ε) 909
 910
 911
record PeriodicDiscreteAction (Source : PeriodicGroup) (Target : MetricSpace) : Set where 912
 field 913
 Map : PeriodicGroup.Carrier Source → 914
 MetricSpace.Carrier Target → MetricSpace.Carrier Target 915
 isPeriodicDiscreteAction : IsPeriodicDiscreteAction Source Target Map 916
 open IsPeriodicDiscreteAction isPeriodicDiscreteAction public 917
 open IsGroupAction isGroupAction public 918
 919
 power-faithful : ∀ (g : PeriodicGroup.Carrier Source) → 920
 ∀ (m : MetricSpace.Carrier Target) → 921
 ∀ (n : ℕ) → Map g m ≡ m → Map (PeriodicGroup.power Source g n) m ≡ m 922
 power-faithful g m zero gm-equals-m = action-identity m 923
 power-faithful g m (suc n) gm-equals-m = tran (tran step-1 step-2) gm-equals-m where 924
 inductive-hypothesis : Map (PeriodicGroup.power Source g n) m ≡ m 925
 inductive-hypothesis = power-faithful g m n gm-equals-m 926
 step-1 : Map (PeriodicGroup.power Source g (suc n)) m ≡ 927
 Map g (Map (PeriodicGroup.power Source g n) m) 928
 step-1 = sym (action-operation g (PeriodicGroup.power Source g n) m) 929
 step-2 : Map g (Map (PeriodicGroup.power Source g n) m) ≡ 930
 Map g m 931
 step-2 = cong (Map g) inductive-hypothesis 932
 933
-- 934
 935
 936
module IST.Safe.NewmansTheorem where 937
 938
open import IST.Safe.Base 939
open import IST.Safe.Naturals 940
open import IST.Safe.Reals 941
open import IST.Safe.MetricSpaces 942
open import IST.Safe.Groups 943
open import IST.Safe.GroupActions 944
 945
 946
-- Formally proving Newman's theorem lies outside the scope of our work, and so 947
-- we do not give a definition of compact metric manifolds. Instead, we work with 948
-- Newman spaces: metric spaces that satisfy Corollary 2.3.6. By Newman's theorem 949
-- (Theorem 2.3.5.) all compact metric manifolds form Newman spaces. 950
 951
record IsNewmanSpace 952
 (M : MetricSpace) 953
 (ν : ℝ) 954
 : Set₁ where 955
 open MetricSpace M 956
 field 957
 isPositive : 0r < ν 958
 isNewmanConstant : 959
 ∀ (G : FiniteGroup) → 960
 ∀ (g : FiniteGroup.Carrier G) → (g ≡ FiniteGroup.identity G → ⊥) → 961
 962
 ∀ (A : DiscreteAction G M) → 963
 964
 (∀ (x : FiniteGroup.Carrier G) → (x ≡ FiniteGroup.identity G → ⊥) → 965
 ∃ λ (m : Carrier) → DiscreteAction.Map A x m ≡ m → ⊥) → 966
 967
 ∃ λ (n : ℕ) → ∃ λ (m : Carrier) → (n ≤ FiniteGroup.order G g) ∧ 968
 (ν < distance m (DiscreteAction.Map A (FiniteGroup.power G g n) m)) 969
 970
record NewmanSpace : Set₁ where 971
 field 972
 asMetricSpace : MetricSpace 973
 inhabitant : MetricSpace.Carrier asMetricSpace 974
 newman-constant : ℝ 975

136

 isNewmanSpace : IsNewmanSpace asMetricSpace newman-constant 976
 open MetricSpace asMetricSpace public 977
 open IsNewmanSpace isNewmanSpace public 978
 979
-- 980
 981
 982
module IST.Safe.Validation where 983
 984
-- T. Chow on Hirsch-style criticism of mechanized proofs: 985
-- "As you know, one thing that a skeptic can say even when shown a formal 986
-- proof is, Yes, you've produced a formal proof of *something*, but what 987
-- you've proved isn't the statement that we know [..]" 988
 989
-- To avoid Hirsch-style criticism, we give some basic examples to convince 990
-- the reader that our notion of group, periodic group, finite group, metric 991
-- space corresponds to the usual notions. 992
 993
open import Agda.Primitive 994
open import IST.Safe.Base 995
open import IST.Safe.Naturals 996
open import IST.Safe.FiniteSets 997
open import IST.Safe.Reals 998
open import IST.Safe.Groups 999
open import IST.Safe.GroupActions 1000
open import IST.Safe.MetricSpaces 1001
open import IST.Safe.NewmansTheorem 1002
 1003
-- ℤ/2ℤ forms a (finite, a fortiori periodic) group. 1004
 1005
data ℤ₂ : Set where 1006
 0₂ : ℤ₂ 1007
 1₂ : ℤ₂ 1008
 1009
infixl 10 _+₂_ 1010
+₂ : ℤ₂ → ℤ₂ → ℤ₂ 1011
0₂ +₂ y = y 1012
1₂ +₂ 0₂ = 1₂ 1013
1₂ +₂ 1₂ = 0₂ 1014
 1015
+₂-assoc : ∀ (x y z : ℤ₂) → x +₂ y +₂ z ≡ x +₂ (y +₂ z) 1016
+₂-assoc 0₂ y z = refl 1017
+₂-assoc 1₂ 0₂ z = refl 1018
+₂-assoc 1₂ 1₂ 0₂ = refl 1019
+₂-assoc 1₂ 1₂ 1₂ = refl 1020
 1021
+₂-unit-right : ∀ (x : ℤ₂) → x +₂ 0₂ ≡ x 1022
+₂-unit-right 0₂ = refl 1023
+₂-unit-right 1₂ = refl 1024
 1025
+₂-inverse : ∀ (x : ℤ₂) → x +₂ x ≡ 0₂ 1026
+₂-inverse 0₂ = refl 1027
+₂-inverse 1₂ = refl 1028
 1029
ℤ/2ℤ : Group 1030
ℤ/2ℤ = record 1031
 { Carrier = ℤ₂ 1032
 ; identity = 0₂ 1033
 ; operation = _+₂_ 1034
 ; inverse = λ x → x 1035
 ; isGroup = record 1036
 { assoc = +₂-assoc 1037
 ; unit-left = λ _ → refl 1038
 ; unit-right = +₂-unit-right 1039
 ; inverse-left = +₂-inverse 1040
 ; inverse-right = +₂-inverse 1041
 } 1042
 } 1043
 1044
order₂ : ℤ₂ → ℕ 1045
order₂ 0₂ = suc zero 1046
order₂ 1₂ = suc (suc zero) 1047
 1048

137

order₂-identity : (g : ℤ₂) → IsGroup.power (Group.isGroup ℤ/2ℤ) g (order₂ g) ≡ 0₂ 1049
order₂-identity 0₂ = refl 1050
order₂-identity 1₂ = refl 1051
 1052
order₂-nonzero : (g : ℤ₂) → order₂ g ≡ 0 → ⊥ 1053
order₂-nonzero 0₂ () 1054
order₂-nonzero 1₂ () 1055
 1056
order₂-minimal : (g : ℤ₂) → (n : ℕ) → IsGroup.power (Group.isGroup ℤ/2ℤ) g (suc n) ≡ 0₂ → order₂ 1057
g ≤ suc n 1058
order₂-minimal 0₂ n p = ≤-suc ≤-zero 1059
order₂-minimal 1₂ (suc zero) refl = ≤-suc (≤-suc ≤-zero) 1060
order₂-minimal 1₂ (suc (suc n)) p = ≤-suc (≤-suc ≤-zero) 1061
 1062
ℤ/2ℤ' : PeriodicGroup 1063
ℤ/2ℤ' = record 1064
 { Carrier = ℤ₂ 1065
 ; identity = 0₂ 1066
 ; operation = _+₂_ 1067
 ; inverse = λ x → x 1068
 ; isPeriodicGroup = record 1069
 { isGroup = Group.isGroup ℤ/2ℤ 1070
 ; order = order₂ 1071
 ; order-identity = order₂-identity 1072
 ; order-minimal = order₂-minimal 1073
 ; order-nonzero = order₂-nonzero 1074
 } 1075
 } 1076
 1077
-- the order is determined by the definition 1078
 1079
order₂-unique : ∀ (p : IsPeriodicGroup ℤ₂ 0₂ _+₂_ (λ x → x)) → 1080
 (IsPeriodicGroup.order p 0₂ ≡ 1) ∧ (IsPeriodicGroup.order p 1₂ ≡ 2) 1081
order₂-unique p = ord-0₂-equals-1 , ord-1₂-equals-2 where 1082
 open IsPeriodicGroup p 1083
 ord-0₂-equals-1 : order 0₂ ≡ 1 1084
 ord-0₂-equals-1 = lemma (order 0₂) (order-minimal 0₂ zero refl) (order-nonzero 0₂) where 1085
 lemma : ∀ x → x ≤ 1 → (x ≡ 0 → ⊥) → x ≡ 1 1086
 lemma zero p q = absurd (q refl) 1087
 lemma (suc .0) (≤-suc ≤-zero) q = refl 1088
 ord-1₂-under-2 : order 1₂ ≤ 2 1089
 ord-1₂-under-2 = order-minimal 1₂ (suc zero) refl 1090
 ord-1₂-neq-1 : order 1₂ ≡ 1 → ⊥ 1091
 ord-1₂-neq-1 assumption = absurd (0₂-neq-1₂ 0₂-equals-1₂) where 1092
 step-1 : IsGroup.power isGroup 1₂ (order 1₂) ≡ 0₂ 1093
 step-1 = order-identity 1₂ 1094
 step-2 : IsGroup.power isGroup 1₂ 1 ≡ 0₂ 1095
 step-2 = transport assumption {λ p → IsGroup.power isGroup 1₂ p ≡ 0₂} step-1 1096
 step-3 : IsGroup.power isGroup 1₂ 1 ≡ 1₂ 1097
 step-3 = refl 1098
 0₂-neq-1₂ : 0₂ ≡ 1₂ → ⊥ 1099
 0₂-neq-1₂ () 1100
 0₂-equals-1₂ : 0₂ ≡ 1₂ 1101
 0₂-equals-1₂ = tran (sym step-2) step-3 1102
 ord-1₂-equals-2 : order 1₂ ≡ 2 1103
 ord-1₂-equals-2 = lemma (order 1₂) ord-1₂-under-2 (order-nonzero 1₂) ord-1₂-neq-1 where 1104
 lemma : ∀ x → x ≤ 2 → (x ≡ 0 → ⊥) → (x ≡ 1 → ⊥) → x ≡ 2 1105
 lemma .0 ≤-zero q r = absurd (q refl) 1106
 lemma .1 (≤-suc ≤-zero) q r = absurd (r refl) 1107
 lemma .2 (≤-suc (≤-suc ≤-zero)) q r = refl 1108
 1109
 1110
-- ℤ₂ forms a finite group 1111
 1112
list₂ : List ℤ₂ 1113
list₂ = 0₂ ∷ (1₂ ∷ []) 1114
 1115
has-all-elements₂ : ∀ (x : ℤ₂) → x ∈ list₂ 1116
has-all-elements₂ 0₂ = ∈-head 1117
has-all-elements₂ 1₂ = ∈-tail ∈-head 1118
 1119

138

finite₂ : IsFiniteSet ℤ₂ 1120
finite₂ = record { list-of-elements = list₂ ; has-all-elements = has-all-elements₂ } 1121
 1122
ℤ/2ℤ'' : FiniteGroup 1123
ℤ/2ℤ'' = record 1124
 { Carrier = ℤ₂ 1125
 ; identity = 0₂ 1126
 ; operation = _+₂_ 1127
 ; inverse = λ x → x 1128
 ; isFiniteGroup = record 1129
 { isGroup = Group.isGroup ℤ/2ℤ 1130
 ; isFiniteSet = finite₂ 1131
 ; order = order₂ 1132
 ; order-identity = order₂-identity 1133
 ; order-minimal = order₂-minimal 1134
 ; order-nonzero = order₂-nonzero 1135
 } 1136
 } 1137
 1138
-- The set of natural numbers is not finite. 1139
 1140
infinite-ℕ : IsFiniteSet ℕ → ⊥ 1141
infinite-ℕ finite-ℕ = ≤-not-suc M contradiction where 1142
 open IsFiniteSet finite-ℕ renaming (list-of-elements to list; has-all-elements to all) 1143
 max : ∀ (x y : ℕ) → ∃ λ M → (x ≤ M) ∧ (y ≤ M) 1144
 max zero y = y , ≤-zero , ≤-refl y 1145
 max (suc x) zero = suc x , ≤-refl (suc x) , ≤-zero 1146
 max (suc x) (suc y) with max x y 1147
 max (suc x) (suc y) | M , x≤M , y≤M = suc M , ≤-suc x≤M , ≤-suc y≤M 1148
 maximum : ∀ (nats : List ℕ) → ∃ λ M → ∀ z → z ∈ nats → z ≤ M 1149
 maximum [] = zero , (λ x ()) 1150
 maximum (x ∷ xs) with maximum xs 1151
 maximum (x ∷ xs) | M , M-dominates-xs with max x M 1152
 maximum (x ∷ xs) | M , M-dominates-xs | M' , x≤M' , M≤M' = M' , M'-dominates-xs where 1153
 M'-dominates-xs : ∀ z → z ∈ (x ∷ xs) → z ≤ M' 1154
 M'-dominates-xs z ∈-head = x≤M' 1155
 M'-dominates-xs z (∈-tail p) = ≤-tran z M M' (M-dominates-xs z p) M≤M' 1156
 M : ℕ 1157
 M = proj₁ (maximum list) 1158
 M-dominates-list : ∀ (x : ℕ) → x ∈ list → x ≤ M 1159
 M-dominates-list = proj₂ (maximum list) 1160
 M-largest : ∀ (x : ℕ) → x ≤ M 1161
 M-largest x = M-dominates-list x (all x) 1162
 contradiction : suc M ≤ M 1163
 contradiction = M-largest (suc M) 1164
 1165
-- Metric spaces exist, in particular the discrete metric is a metric. 1166
 1167
discrete : ℤ₂ → ℤ₂ → ℝ 1168
discrete 0₂ 0₂ = 0r 1169
discrete 0₂ 1₂ = 1r 1170
discrete 1₂ 0₂ = 1r 1171
discrete 1₂ 1₂ = 0r 1172
 1173
discrete-nonnegative : ∀ (x y : ℤ₂) → discrete x y < 0r → ⊥ 1174
discrete-nonnegative 0₂ 0₂ p = <-asym-1 0r 0r p refl 1175
discrete-nonnegative 0₂ 1₂ p = <-asym-2 0r 1r <-nontrivial p 1176
discrete-nonnegative 1₂ 0₂ p = <-asym-2 0r 1r <-nontrivial p 1177
discrete-nonnegative 1₂ 1₂ p = <-asym-1 0r 0r p refl 1178
 1179
discrete-reflexive-1 : ∀ (x y : ℤ₂) → discrete x y ≡ 0r → x ≡ y 1180
discrete-reflexive-1 0₂ 0₂ refl = refl 1181
discrete-reflexive-1 0₂ 1₂ p = absurd (<-asym-1 0r 1r <-nontrivial (sym p)) 1182
discrete-reflexive-1 1₂ 0₂ p = absurd (<-asym-1 0r 1r <-nontrivial (sym p)) 1183
discrete-reflexive-1 1₂ 1₂ refl = refl 1184
 1185
discrete-reflexive-2 : ∀ (x : ℤ₂) → discrete x x ≡ 0r 1186
discrete-reflexive-2 0₂ = refl 1187
discrete-reflexive-2 1₂ = refl 1188
 1189
discrete-symmetry : ∀ (x y : ℤ₂) → discrete x y ≡ discrete y x 1190

139

discrete-symmetry 0₂ 0₂ = refl 1191
discrete-symmetry 0₂ 1₂ = refl 1192
discrete-symmetry 1₂ 0₂ = refl 1193
discrete-symmetry 1₂ 1₂ = refl 1194
 1195
discrete-triangle : ∀ (x y z : ℤ₂) → discrete x z ≤ᵣ discrete x y + discrete y z 1196
discrete-triangle 0₂ 0₂ 0₂ = inl (sym +-unit-left) 1197
discrete-triangle 0₂ 0₂ 1₂ = inl (sym +-unit-left) 1198
discrete-triangle 0₂ 1₂ 0₂ = inr pos-2r 1199
discrete-triangle 0₂ 1₂ 1₂ = inl (sym +-unit-right) 1200
discrete-triangle 1₂ 0₂ 0₂ = inl (sym +-unit-right) 1201
discrete-triangle 1₂ 0₂ 1₂ = inr pos-2r 1202
discrete-triangle 1₂ 1₂ 0₂ = inl (sym +-unit-left) 1203
discrete-triangle 1₂ 1₂ 1₂ = inl (sym +-unit-left) 1204
 1205
ℤ₂-metric : MetricSpace 1206
ℤ₂-metric = 1207
 record { Carrier = ℤ₂ 1208
 ; distance = discrete 1209
 ; isMetricSpace = record 1210
 { nonnegative = discrete-nonnegative 1211
 ; reflexive-1 = discrete-reflexive-1 1212
 ; reflexive-2 = discrete-reflexive-2 1213
 ; symmetry = discrete-symmetry 1214
 ; triangle-≤ᵣ = discrete-triangle 1215
 } 1216
 } 1217
 1218
-- Faithful, K-Lipschitz actions exist. 1219
 1220
act : ℤ₂ → ℤ₂ → ℤ₂ 1221
act x y = x +₂ y 1222
 1223
act-identity : ∀ m → act 0₂ m ≡ m 1224
act-identity = Group.unit-left ℤ/2ℤ 1225
 1226
act-operation : ∀ (g h : ℤ₂) → ∀ m → act g (act h m) ≡ act (g +₂ h) m 1227
act-operation g h m = sym (+₂-assoc g h m) 1228
 1229
action₂ : GroupAction ℤ/2ℤ ℤ₂ 1230
action₂ = record 1231
 { Map = act 1232
 ; isGroupAction = record 1233
 { action-identity = act-identity 1234
 ; action-operation = act-operation 1235
 } 1236
 } 1237
 1238
act-faithful : ∀ (g : ℤ₂) → (g ≡ 0₂ → ⊥) → ∃ λ (m : ℤ₂) → act g m ≡ m → ⊥ 1239
act-faithful 0₂ p = absurd (p refl) 1240
act-faithful 1₂ p = 1₂ , lemma 1₂ where 1241
 lemma : ∀ x → act 1₂ x ≡ x → ⊥ 1242
 lemma 0₂ () 1243
 lemma 1₂ () 1244
 1245
K : ℝ 1246
K = 1r 1247
 1248
act-lipschitz : ∀ (g : ℤ₂) → ∀ (x y : ℤ₂) → discrete (act g x) (act g y) ≤ᵣ (K · discrete x y) 1249
act-lipschitz 0₂ 0₂ 0₂ = transport (sym (·-null-left {K})) {λ p → 0r ≤ᵣ p} (inl refl) 1250
act-lipschitz 0₂ 0₂ 1₂ = transport (sym (·-unit-right {K})) {λ p → 1r ≤ᵣ p} (inl refl) 1251
act-lipschitz 0₂ 1₂ 0₂ = transport (sym (·-unit-right {K})) {λ p → 1r ≤ᵣ p} (inl refl) 1252
act-lipschitz 0₂ 1₂ 1₂ = transport (sym (·-null-left {K})) {λ p → 0r ≤ᵣ p} (inl refl) 1253
act-lipschitz 1₂ 0₂ 0₂ = transport (sym (·-null-left {K})) {λ p → 0r ≤ᵣ p} (inl refl) 1254
act-lipschitz 1₂ 0₂ 1₂ = transport (sym (·-unit-right {K})) {λ p → 1r ≤ᵣ p} (inl refl) 1255
act-lipschitz 1₂ 1₂ 0₂ = transport (sym (·-unit-right {K})) {λ p → 1r ≤ᵣ p} (inl refl) 1256
act-lipschitz 1₂ 1₂ 1₂ = transport (sym (·-null-left {K})) {λ p → 0r ≤ᵣ p} (inl refl) 1257
 1258
-- Newman spaces exist. 1259
 1260
nonzero-lemma : ∀ n → (n ≡ 0 → ⊥) → 1 ≤ n 1261
nonzero-lemma zero p = absurd (p refl) 1262

140

nonzero-lemma (suc n) p = ≤-suc ≤-zero 1263
 1264
alt-lemma-1 : ∀ g → (g ≡ 0₂ → ⊥) → g ≡ 1₂ 1265
alt-lemma-1 0₂ p = absurd (p refl) 1266
alt-lemma-1 1₂ p = refl 1267
 1268
alt-lemma-0 : ∀ g → (g ≡ 1₂ → ⊥) → g ≡ 0₂ 1269
alt-lemma-0 0₂ p = refl 1270
alt-lemma-0 1₂ p = absurd (p refl) 1271
 1272
ℤ₂-newman : NewmanSpace 1273
ℤ₂-newman = record 1274
 { asMetricSpace = ℤ₂-metric 1275
 ; inhabitant = 0₂ 1276
 ; newman-constant = 1/2r 1277
 ; isNewmanSpace = record 1278
 { isPositive = pos-1/2r 1279
 ; isNewmanConstant = newman 1280
 } 1281
 } where 1282
 newman : (G : FiniteGroup) (g : FiniteGroup.Carrier G) → (g ≡ FiniteGroup.identity G → ⊥) → 1283
 (A : DiscreteAction G ℤ₂-metric) → 1284
 (∀ x → (x ≡ FiniteGroup.identity G → ⊥) → ∃ λ m → DiscreteAction.Map A x m ≡ m → ⊥) 1285
→ 1286
 ∃ λ n → ∃ λ m → (n ≤ FiniteGroup.order G g) ∧ 1287
 (1/2r < MetricSpace.distance ℤ₂-metric m (DiscreteAction.Map A (FiniteGroup.power G g 1288
n) m)) 1289
 newman G g p A nontriv-A with nontriv-A g p 1290
 newman G g p A nontriv-A | 0₂ , q = 1 , 0₂ , nonzero-lemma _ step-1 , step-3 where 1291
 step-1 : IsFiniteGroup.order (FiniteGroup.isFiniteGroup G) g ≡ 0 → ⊥ 1292
 step-1 = FiniteGroup.order-nonzero G g 1293
 m : ℤ₂ 1294
 m = DiscreteAction.Map A (FiniteGroup.operation G g (FiniteGroup.identity G)) 0₂ 1295
 m' : ℤ₂ 1296
 m' = DiscreteAction.Map A g 0₂ 1297
 m-equals-m' : m ≡ m' 1298
 m-equals-m' = cong (λ z → DiscreteAction.Map A z 0₂) (FiniteGroup.unit-right G g) 1299
 m'-equals-1₂ : m' ≡ 1₂ 1300
 m'-equals-1₂ = alt-lemma-1 m' q 1301
 1₂-equals-m : 1₂ ≡ m 1302
 1₂-equals-m = sym (tran m-equals-m' m'-equals-1₂) 1303
 step-2 : discrete 0₂ m ≡ 1r 1304
 step-2 = transport 1₂-equals-m {λ z → discrete 0₂ z ≡ 1r} refl 1305
 step-3 : 1/2r < discrete 0₂ m 1306
 step-3 = transport (sym step-2) {λ z → 1/2r < z} 1/2r-less-than-1r 1307
 newman G g p A nontriv-A | 1₂ , q = 1 , 1₂ , nonzero-lemma _ step-1 , step-3 where 1308
 step-1 : IsFiniteGroup.order (FiniteGroup.isFiniteGroup G) g ≡ 0 → ⊥ 1309
 step-1 = FiniteGroup.order-nonzero G g 1310
 m : ℤ₂ 1311
 m = DiscreteAction.Map A (FiniteGroup.operation G g (FiniteGroup.identity G)) 1₂ 1312
 m' : ℤ₂ 1313
 m' = DiscreteAction.Map A g 1₂ 1314
 m-equals-m' : m ≡ m' 1315
 m-equals-m' = cong (λ z → DiscreteAction.Map A z 1₂) (FiniteGroup.unit-right G g) 1316
 m'-equals-0₂ : m' ≡ 0₂ 1317
 m'-equals-0₂ = alt-lemma-0 m' q 1318
 0₂-equals-m : 0₂ ≡ m 1319
 0₂-equals-m = sym (tran m-equals-m' m'-equals-0₂) 1320
 step-2 : discrete 1₂ m ≡ 1r 1321
 step-2 = transport 0₂-equals-m {λ z → discrete 1₂ z ≡ 1r} refl 1322
 step-3 : 1/2r < discrete 1₂ m 1323
 step-3 = transport (sym step-2) {λ z → 1/2r < z} 1/2r-less-than-1r 1324
 1325
-- 1326
 1327
 1328
{-# OPTIONS --omega-in-omega #-} 1329
 1330
module IST.Base where 1331
 1332
open import Agda.Primitive 1333
open import IST.Safe.Base public 1334

141

 1335
-- We start by defining the sort of the external sets. 1336
-- Internal sets belong to the first segment of the universe hierarchy, 1337
-- while external sets belong to the second segment: 1338
-- Set 0 : Set 1 : Set 2 : ... Set ω : Set (ω + 1) : ... 1339
-- _________________________/ _______________________/ 1340
-- internal sets external sets 1341
-- Alas, Agda does not support higher segments of the hierarchy yet, 1342
-- so we work under --omega-in-omega. Everything here should be typable 1343
-- in the full hierarchy, however, by replacing some occurrences of 1344
-- Set ω with Set (ω + 1). 1345
 1346
ESet : Setω 1347
ESet = Setω 1348
 1349
ESet₁ : Setω 1350
ESet₁ = Setω 1351
 1352
-- We postulate a predicate st(-) asserting that its argument is standard. 1353
-- Note that the value of st(-) lives in the external hierarchy. 1354
-- This ensures that the type (I → Set ℓ) ranges over internal predicates 1355
-- only, whenever ℓ < ω. 1356
 1357
-- By declaring ST as a private data type, we ensure the following: 1358
-- 1. st(x) is treated as a contractible type for all x. 1359
-- 2. Outside of this module, the only way to produce a value of st(-) 1360
-- is by using the rules/axioms presented here. 1361
 1362
private 1363
 data ST {ℓ : Level} {S : Set ℓ} (x : S) : ESet where 1364
 trust-me-its-standard : ST x 1365
 1366
st : {ℓ : Level} → {S : Set ℓ} → S → ESet 1367
st = ST 1368
 1369
-- A Safe module does not have access to any extended features (st predicates, 1370
-- IST axioms, Setω), so a top-level definition `t : T` in a Safe module 1371
-- corresponds to a derivation `⊢ˢ t : T` in extended type theory. 1372
-- By the admissibility of the St-Con rule, we can mark any such definition 1373
-- standard. This is accomplished by opening SafeImportTools, and using 1374
-- the provided constructor. 1375
 1376
module SafeImportTools where 1377
 declared-in-safe-module : {ℓ : Level} {S : Set ℓ} (x : S) → st x 1378
 declared-in-safe-module _ = trust-me-its-standard 1379
 1380
-- The internal hierarchy consists only of standard universes. This follows 1381
-- from the admissibility of the St-Con rule. 1382
 1383
st-Set : {ℓ : Level} → st (Set ℓ) 1384
st-Set = trust-me-its-standard 1385
 1386
-- FUNCTION TYPES -- 1387
 1388
-- We declare that the type former ∀ (and by extension →) preserve standardness. 1389
-- This is an easy consequence of the Transfer rules. 1390
 1391
st-→ : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → st A → (B : Set ℓ₂) → st B → st (A → B) 1392
st-→ A st-A B st-B = trust-me-its-standard 1393
 1394
st-∀ : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → st A → (B : A → Set ℓ₂) → st B → st (∀ a → B a) 1395
st-∀ A st-A B st-B = trust-me-its-standard 1396
 1397
-- Function application preserves standardness, i.e. if f and x are standard, 1398
-- then so is f(x). Notice that this principle occurs as a theorem in Nelson's 1399
-- Internal Set Theory, and follows from St-Fun for our extended type theory. 1400
-- We add variations for dependent and simple function types, with or without 1401
-- hidden arguments. 1402
 1403
st-fun-d : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → (B : A → Set ℓ₂) → 1404
 (f : (x : A) → B x) → (x : A) → 1405
 st f → st x → st (f x) 1406
st-fun-d A B f x st-f st-x = trust-me-its-standard 1407
 1408
st-fun-hd : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → (B : A → Set ℓ₂) → 1409
 (f : {x : A} → B x) → (x : A) → 1410

142

 st (λ x → f {x}) → st x → st (f {x}) 1411
st-fun-hd A B f x st-f st-x = st-fun-d A B (λ x → f {x}) x st-f st-x 1412
 1413
st-fun : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → (B : Set ℓ₂) → 1414
 (f : A → B) → (x : A) → 1415
 st f → st x → st (f x) 1416
st-fun A B f x st-f st-x = st-fun-d A (λ _ → B) f x st-f st-x 1417
 1418
st-fun-h : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → (B : Set ℓ₂) → 1419
 (f : {a : A} → B) → (x : A) → 1420
 st (λ x → f {x}) → st x → st (f {x}) 1421
st-fun-h A B f x st-f st-x = st-fun A B (λ x → f {x}) x st-f st-x 1422
 1423
-- That leaves function abstraction. 1424
-- It would be convenient to have the following converse: 1425
-- st-λ : {ℓ₁ ℓ₂ : Level} → (A : Set ℓ₁) → st A → (B : A → Set ℓ₂) → (∀ a → st a → st (B a)) → 1426
st B 1427
-- st-λ A st-A B st-Ba = trust-me-its-standard 1428
-- Alas, this principle does not hold. Consider e.g. 1429
-- the function f : ℕ → {0,1} with f(n)=0 ↔ n=ω, which is not 1430
-- standard, but takes standard values everywhere. 1431
 1432
-- So how do we prove Set-types standard? In IST, we do not 1433
-- have to deal with this problem, since we normally encode 1434
-- functions as their graphs (sets of ordered pairs), and IST 1435
-- already provides rules for the standardness of sets. 1436
 1437
-- In Agda, functions do not coincide with sets of ordered pairs, 1438
-- and we need to ensure that all MLTT-definable functions are 1439
-- indeed standard, even if we define them in terms of standard 1440
-- objects constructed by Standardization, i.e. necessarily 1441
-- outside of a Safe module. . To accomplish this, we can make the following observations: 1442
-- 1. All combinatorial (closed) λ-terms are constructible in the Safe fragment, and hence 1443
standard. 1444
-- 2. The eliminators of all data types available in the Safe fragment are themselves standard. 1445
-- 3. Applying a standard value to a standard function yields a standard result. 1446
-- These rules exhaust all possible ways of defining functions in MLTT. 1447
 1448
-- E.g. to prove that (λi. _=_ (f i) (g i)) is standard, we can 1449
-- argue as follows: 1450
-- 1. (\a.\b.\c. a b c) is a purely combinatorial λ-term, so standard. 1451
-- 2. (\b.\c _=_ b c) is standard when both _=_ and (\a.\b.\c. a b c) are standard. 1452
-- 3. (\c _=_ (f i) c) is standard when both (f i) and (\b.\c _=_ b c) are standard. 1453
-- 4. (_=_ (f i) (g i)) is standard when both (g i) and (\c. _=_ (f i) (g i)) are standard. 1454
-- So we'd conclude that the inhabitant (λi. _=_ (f i) (g i)) 1455
-- of the type Set is standard as long as (f i) and (g i) are. 1456
 1457
-- We face one problem: the difficulty of encoding the 1458
-- standardness of combinatorial λ-terms in Agda. To simplify 1459
-- our life, we pre-declare instances that we actually use 1460
-- during the present development. 1461
 1462
st-abs-5 : (I : Set) → st (abs-5 I) 1463
st-abs-5 I = trust-me-its-standard 1464
 1465
st-abs-4 : st abs-4 1466
st-abs-4 = trust-me-its-standard 1467
 1468
st-abs-K : {ℓ₁ ℓ₂ : Level} (A : Set ℓ₁) (B : Set ℓ₂) → st (abs-K A B) 1469
st-abs-K A B = trust-me-its-standard 1470
 1471
st-abs-K-h : {ℓ₁ ℓ₂ : Level} (A : Set ℓ₁) (B : Set ℓ₂) → st (abs-K-h A B) 1472
st-abs-K-h A B = trust-me-its-standard 1473
 1474
 1475
-- TRIVIAL DATA TYPES -- 1476
 1477
absurd* : {ℓ : Level} → ⊥ → ∀ {A : ESet} → A 1478
absurd* () 1479
 1480
st-⊥ : st ⊥ 1481
st-⊥ = trust-me-its-standard 1482
 1483
st-⊤ : st ⊤ 1484
st-⊤ = trust-me-its-standard 1485

143

 1486
st-tt : st tt 1487
st-tt = trust-me-its-standard 1488
 1489
 1490
-- EXISTENTIAL QUANTIFICATION -- 1491
 1492
-- Now we deal with existential quantifiers. Alas, unlike the ∀ 1493
-- case, Agda does not provide a builtin for this, so we need to 1494
-- declare two variants, ∃ (for the internal hierarchy) and ∃* 1495
-- (for the external hierarchy). 1496
 1497
st-∃ : ∀ {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → ∃ {ℓ₁} {ℓ₂} {A}) 1498
st-∃ = trust-me-its-standard 1499
 1500
st-∃-full : ∀ {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → st (∃ {ℓ₁} {ℓ₂} {A}) 1501
st-∃-full = trust-me-its-standard 1502
 1503
st-∃-_,_ : ∀ {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → λ (B : A → Set ℓ₂) → ∃._,_ {ℓ₁} {ℓ₂} {A} {B}) 1504
st-∃-_,_ = trust-me-its-standard 1505
 1506
st-∃-_,_-full : ∀ {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → {B : A → Set ℓ₂} → st (∃._,_ {ℓ₁} {ℓ₂} {A} {B}) 1507
st-∃-_,_-full = trust-me-its-standard 1508
 1509
st-∃-proj₁ : ∀ {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → λ (B : A → Set ℓ₂) → ∃.proj₁ {ℓ₁} {ℓ₂} {A} 1510
{B}) 1511
st-∃-proj₁ = trust-me-its-standard 1512
 1513
st-∃-proj₁-full : ∀ {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → {B : A → Set ℓ₂} → st (∃.proj₁ {ℓ₁} {ℓ₂} {A} 1514
{B}) 1515
st-∃-proj₁-full = trust-me-its-standard 1516
 1517
st-∃-proj₂ : ∀ {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → λ (B : A → Set ℓ₂) → ∃.proj₂ {ℓ₁} {ℓ₂} {A} 1518
{B}) 1519
st-∃-proj₂ = trust-me-its-standard 1520
 1521
st-∃-proj₂-full : ∀ {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → {B : A → Set ℓ₂} → st (∃.proj₂ {ℓ₁} {ℓ₂} {A} 1522
{B}) 1523
st-∃-proj₂-full = trust-me-its-standard 1524
 1525
st-∧ : ∀ {ℓ₁ ℓ₂ : Level} → st (_∧_ {ℓ₁} {ℓ₂}) 1526
st-∧ = trust-me-its-standard 1527
 1528
record ∃* {ℓ : Level} {A : Set ℓ} (B : A → ESet) : ESet where 1529
 constructor _,_ 1530
 field 1531
 proj₁ : A 1532
 proj₂ : B proj₁ 1533
open ∃* public 1534
 1535
record _*∧*_ (A B : ESet) : ESet where 1536
 constructor _,_ 1537
 field 1538
 proj₁ : A 1539
 proj₂ : B 1540
open _*∧*_ public 1541
 1542
 1543
-- LISTS / FINITE SETS -- 1544
 1545
st-List : {ℓ : Level} → st (List {ℓ}) 1546
st-List = trust-me-its-standard 1547
 1548
st-[] : {ℓ : Level} → st (λ {A : Set ℓ} → [] {ℓ} {A}) 1549
st-[] = trust-me-its-standard 1550
 1551
st-∷ : {ℓ : Level} → st (λ {A : Set ℓ} → _∷_ {ℓ} {A}) 1552
st-∷ = trust-me-its-standard 1553
 1554
 1555
-- DISJUNCTION -- 1556
 1557
-- We could encode the disjunction A ∨ B using ¬ A → B, or 1558

144

-- in a more constructive spirit as ∃n:ℕ. (n = 0 → A) ∧ (n ≠ 0) → B, 1559
-- but we find it more legible to use the inductive definition, along 1560
-- with a strong elimination principle. 1561
 1562
st-∨ : {ℓ₁ ℓ₂ : Level} → st (_∨_ {ℓ₁} {ℓ₂}) 1563
st-∨ = trust-me-its-standard 1564
 1565
st-inl : {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → λ {B : Set ℓ₂} → inl {ℓ₁} {ℓ₂} {A} {B}) 1566
st-inl = trust-me-its-standard 1567
 1568
st-inr : {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → λ {B : Set ℓ₂} → inr {ℓ₁} {ℓ₂} {A} {B}) 1569
st-inr = trust-me-its-standard 1570
 1571
by-cases* : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {B : Set ℓ₂} → 1572
 (P : ESet) → (A → P) → (B → P) → A ∨ B → P 1573
by-cases* P A-implies-P B-implies-P (inl a) = A-implies-P a 1574
by-cases* P A-implies-P B-implies-P (inr b) = B-implies-P b 1575
 1576
 1577
-- EQUALITY -- 1578
 1579
-- We introduced equality only for the internal hierarchy, at 1580
-- least for now. This satisfies the usual principles. 1581
-- We declare a variant of transport (equality preserves all 1582
-- properties) that works for external predicates. Note that 1583
-- this is a logical axiom in IST, which makes it invisible. 1584
-- Technically, one should have x = y → st(x) → st(y) as an 1585
-- axiom even there, we fix this omission in our version 1586
-- of the Nelson translation. 1587
 1588
transport* : {ℓ : Level} {A : Set ℓ} {x y : A} → x ≡ y → ∀ {φ : A → Setω} → φ x → φ y 1589
transport* refl z = z 1590
 1591
st-≡ : {ℓ : Level} → st (λ {A : Set ℓ} → _≡_ {ℓ} {A}) 1592
st-≡ = trust-me-its-standard 1593
 1594
st-≡-full : {ℓ : Level} → {A : Set ℓ} → st (_≡_ {ℓ} {A}) 1595
st-≡-full = trust-me-its-standard 1596
 1597
st-refl : {ℓ : Level} → st (λ {A : Set ℓ} → λ {x : A} → refl {ℓ} {A} {x}) 1598
st-refl = trust-me-its-standard 1599
 1600
st-≡-ind : {ℓ₁ ℓ₂ : Level} → st (λ {A : Set ℓ₁} → λ {x : A} → ≡-ind {ℓ₁} {ℓ₂} {A} {x}) 1601
st-≡-ind = trust-me-its-standard 1602
 1603
 1604
-- AXIOM: TRANSFER -- 1605
 1606
-- TransferPred implements the Transfer rules Dfun and Dsum. 1607
-- This has the advantage that it does no branching. We do not 1608
-- rely on Transfer for non-prenex formulae in our development, 1609
-- so this suffices. 1610
 1611
-- Notice that TransferPred does not satisfy strict positivity. 1612
-- We do not export an elimination rule, so we cannot use it in 1613
-- a dangerous/inconsistent way. If the need for an eliminator 1614
-- ever arises, we can make it strictly positive by indexing 1615
-- over the number of free variables. 1616
 1617
data internal {ℓ : Level} (φ : Set ℓ) : ESet where 1618
 fromInternal : φ → internal φ 1619
 1620
toInternal : {ℓ : Level} → (φ : Set ℓ) → internal φ → φ 1621
toInternal φ (fromInternal x) = x 1622
 1623
data TransferPred : ESet where 1624
 ∀' : (A : Set) → ((φ : A) → TransferPred) → TransferPred 1625
 ∃' : (E : Set) → ((φ : E) → TransferPred) → TransferPred 1626
 int' : (φ : Set) → TransferPred 1627
 1628
toTransferI : TransferPred → Set 1629
toTransferI (∀' A φ) = ∀ (a : A) → toTransferI (φ a) 1630
toTransferI (∃' E φ) = ∃ λ (e : E) → toTransferI (φ e) 1631
toTransferI (int' φ) = φ 1632
 1633

145

toTransferE : TransferPred → ESet 1634
toTransferE (∀' A φ) = ∀ (a : A) → st a → toTransferE (φ a) 1635
toTransferE (∃' E φ) = ∃* λ (e : E) → st e *∧* toTransferE (φ e) 1636
toTransferE (int' φ) = internal φ 1637
 1638
std-params : TransferPred → ESet 1639
std-params (∀' A φ) = st A *∧* ∀ (a : A) → st a → std-params (φ a) 1640
std-params (∃' E φ) = st E *∧* ∀ (e : E) → st e → std-params (φ e) 1641
std-params (int' φ) = st φ 1642
 1643
postulate 1644
 ax-Transfer-IE : (φ : TransferPred) → toTransferI φ → std-params φ → toTransferE φ 1645
 ax-Transfer-EI : (φ : TransferPred) → toTransferE φ → std-params φ → toTransferI φ 1646
 1647
 1648
-- AXIOM: Standardization -- 1649
 1650
postulate 1651
 ⟦_⟧ : ∀ {ℓ} → {A : Set ℓ} → (A → ESet) → A → Set ℓ 1652
 ax-Standard-1 : ∀ {ℓ} → {A : Set ℓ} → (φ : A → ESet) → st ⟦ φ ⟧ 1653
 ax-Standard-2 : ∀ {ℓ} → {A : Set ℓ} → (φ : A → ESet) → 1654
 (∀ x → st x → ⟦ φ ⟧ x → φ x) 1655
 ax-Standard-3 : ∀ {ℓ} → {A : Set ℓ} → (φ : A → ESet) → 1656
 (∀ x → st x → φ x → ⟦ φ ⟧ x) 1657
 1658
 1659
-- AXIOM: Idealization -- 1660
 1661
postulate 1662
 ax-Ideal-1 : {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set ℓ₁} {B : Set ℓ₂} (φ : A → B → Set ℓ₃) → 1663
 (∀ (xs : List A) → st xs → ∃ λ b → ∀ (x : A) → x ∈ xs → φ x b) → 1664
 ∃* λ b → ∀ (x : A) → st x → φ x b 1665
 ax-Ideal-2 : {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set ℓ₁} {B : Set ℓ₂} → (φ : A → B → Set ℓ₃) → 1666
 (∃* λ b → ∀ (x : A) → st x → φ x b) → 1667
 ∀ (xs : List A) → st xs → ∃ λ b → ∀ (x : A) → x ∈ xs → φ x b 1668
 1669
-- 1670
 1671
 1672
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1673
 1674
module IST.Util where 1675
 1676
-- We prove a bunch of useful lemmata. 1677
 1678
open import Agda.Primitive 1679
open import IST.Safe.Util public 1680
 1681
open import IST.Base 1682
 1683
-- If x and y are standard, then so is (x , y). 1684
lemma-pairing : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {B : Set ℓ₂} → (x : A) → (y : B) → 1685
 st {ℓ₁} {A} x → st {ℓ₂} {B} y → st {ℓ₁ ⊔ ℓ₂} {A ∧ B} (x , y) 1686
lemma-pairing {ℓ₁} {ℓ₂} {A} {B} x y st-x st-y = st-pair-x-y where 1687
 pair : A → B → A ∧ B 1688
 pair = _,_ 1689
 st-pair : st pair 1690
 st-pair = st-∃-_,_-full 1691
 st-pair-x : st (pair x) 1692
 st-pair-x = st-fun A (B → A ∧ B) pair x st-pair st-x 1693
 st-pair-x-y : st (pair x y) 1694
 st-pair-x-y = st-fun B (A ∧ B) (pair x) y st-pair-x st-y 1695
 1696
lemma-proj₁ : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {B : Set ℓ₂} → (ab : A ∧ B) → st ab → st (proj₁ ab) 1697
lemma-proj₁ {ℓ₁} {ℓ₂} {A} {B} ab st-ab = st-sproj-ab where 1698
 sproj : A ∧ B → A 1699
 sproj = proj₁ 1700
 st-sproj : st sproj 1701
 st-sproj = st-∃-proj₁-full 1702
 st-sproj-ab : st (sproj ab) 1703
 st-sproj-ab = st-fun _ _ sproj ab st-sproj st-ab 1704
 1705

146

lemma-proj₁-d : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {B : A → Set ℓ₂} → (ab : ∃ λ a → B a) → st ab → st 1706
(proj₁ ab) 1707
lemma-proj₁-d {ℓ₁} {ℓ₂} {A} {B} ab st-ab = st-sproj-ab where 1708
 sproj : (∃ λ a → B a) → A 1709
 sproj = proj₁ 1710
 st-sproj : st sproj 1711
 st-sproj = st-∃-proj₁-full 1712
 st-sproj-ab : st (sproj ab) 1713
 st-sproj-ab = st-fun _ _ sproj ab st-sproj st-ab 1714
 1715
lemma-proj₂ : {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} {B : Set ℓ₂} → (ab : A ∧ B) → st ab → st (proj₂ ab) 1716
lemma-proj₂ {ℓ₁} {ℓ₂} {A} {B} ab st-ab = st-sproj-ab where 1717
 sproj : A ∧ B → B 1718
 sproj = proj₂ 1719
 st-sproj : st sproj 1720
 st-sproj = st-∃-proj₂-full 1721
 st-sproj-ab : st (sproj ab) 1722
 st-sproj-ab = st-fun _ _ sproj ab st-sproj st-ab 1723
 1724
-- If b is standard, then so is any constant function returning b. 1725
lemma-constfun : {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → {B : Set ℓ₂} → (b : B) → st b → st (λ (a : A) → 1726
b) 1727
lemma-constfun {_} {_} {A} {B} b st-b = st-K-b where 1728
 K : B → A → B 1729
 K x y = x 1730
 st-K : st K 1731
 st-K = st-abs-K B A 1732
 st-K-b : st (K b) 1733
 st-K-b = st-fun _ _ K b st-K st-b 1734
 1735
lemma-constfun-h : {ℓ₁ ℓ₂ : Level} → {A : Set ℓ₁} → {B : Set ℓ₂} → (b : B) → st b → st (λ {a : A} 1736
→ b) 1737
lemma-constfun-h {ℓ₁} {ℓ₂} {A} {B} b st-b = st-K-b where 1738
 K : B → {a : A} → B 1739
 K x {y} = x 1740
 st-K : st K 1741
 st-K = st-abs-K-h B A 1742
 st-K-b : st (λ {a : A} → K b {a}) 1743
 st-K-b = st-fun _ _ K b st-K st-b 1744
 1745
-- 1746
 1747
 1748
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1749
 1750
module IST.Naturals where 1751
 1752
open import Agda.Primitive 1753
open import IST.Safe.Naturals public 1754
 1755
open import IST.Base 1756
open SafeImportTools 1757
 1758
st-ℕ : st {lsuc lzero} ℕ 1759
st-ℕ = declared-in-safe-module ℕ 1760
 1761
st-zero : st zero 1762
st-zero = declared-in-safe-module zero 1763
 1764
st-suc : st suc 1765
st-suc = declared-in-safe-module suc 1766
 1767
st-ℕ-induction : {ℓ : Level} → st λ {φ} → ℕ-induction {ℓ} {φ} 1768
st-ℕ-induction {ℓ} = declared-in-safe-module λ {φ} → ℕ-induction {ℓ} {φ} 1769
 1770
st-ℕ-induction-full : {ℓ : Level} → (φ : ℕ → Set ℓ) → st (ℕ-induction {ℓ} {φ}) 1771
st-ℕ-induction-full _ = declared-in-safe-module ℕ-induction 1772
 1773
st-≤ : st _≤_ 1774
st-≤ = declared-in-safe-module _≤_ 1775
 1776
external-induction : {φ : ℕ → ESet} → φ zero → (∀ k → st k → φ k → φ (suc k)) → ∀ n → st n → φ 1777
n 1778
external-induction {φ} base-case inductive-case n st-n = 1779

147

 ax-Standard-2 φ n st-n (ψ-forall n) where 1780
 ψ : ℕ → Set 1781
 ψ = ⟦ φ ⟧ 1782
 st-ψ : st ψ 1783
 st-ψ = ax-Standard-1 φ 1784
 ψ-base : ψ zero 1785
 ψ-base = ax-Standard-3 φ zero st-zero base-case 1786
 ψ-inductive-st : ∀ k → st k → ψ k → ψ (suc k) 1787
 ψ-inductive-st k st-k ψ-k = 1788
 ax-Standard-3 φ (suc k) (st-fun _ _ suc k st-suc st-k) (inductive-case k st-k (ax-Standard-2 1789
φ k st-k ψ-k)) 1790
 ψ-inductive : ∀ k → ψ k → ψ (suc k) 1791
 ψ-inductive = ax-Transfer-EI (∀' ℕ (λ k → int' (ψ k → ψ (suc k)))) 1792
 (λ k st-k → fromInternal (ψ-inductive-st k st-k)) 1793
 (st-ℕ , λ a st-a → st-→ (⟦ φ ⟧ a) (st-fun _ _ ψ a st-ψ st-a) 1794
 (⟦ φ ⟧ (suc a)) (st-fun _ _ ψ (suc a) st-ψ (st-fun _ _ suc a st-suc st-a))) 1795
 ψ-forall : ∀ n → ψ n 1796
 ψ-forall = ℕ-induction ψ-base ψ-inductive 1797
 1798
bounded-st : ∀ (b : ℕ) → st b → ∀ (n : ℕ) → n ≤ b → st n 1799
bounded-st = external-induction {λ b → ∀ m → m ≤ b → st m} base-case inductive-case where 1800
 base-case : ∀ m → m ≤ zero → st m 1801
 base-case m m≤0 = transport* (sym (≤-than-zero m m≤0)) {λ n → st {lzero} {ℕ} n} st-zero 1802
 inductive-case : ∀ k → st k → (∀ m → m ≤ k → st m) → ∀ n → n ≤ suc k → st n 1803
 inductive-case k st-k inductive-hypothesis n n≤k+1 = 1804
 by-cases* {lzero} {lzero} {n ≤ k} (st n) case-A case-B (≤-match n k n≤k+1) where 1805
 case-A : n ≤ k → st n 1806
 case-A = inductive-hypothesis n 1807
 st-k+1 : st (suc k) 1808
 st-k+1 = st-fun _ _ suc k st-suc st-k 1809
 case-B : n ≡ suc k → st n 1810
 case-B n-equals-k+1 = transport* (sym n-equals-k+1) {λ n → st {lzero} {ℕ} n} st-k+1 1811
 1812
-- 1813
 1814
 1815
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1816
 1817
module IST.FiniteSets where 1818
 1819
open import Agda.Primitive 1820
open import IST.Safe.FiniteSets public 1821
 1822
open import IST.Base 1823
open SafeImportTools 1824
 1825
st-FiniteSet : st FiniteSet 1826
st-FiniteSet = declared-in-safe-module FiniteSet 1827
 1828
st-FiniteSet-Carrier : st FiniteSet.Carrier 1829
st-FiniteSet-Carrier = declared-in-safe-module FiniteSet.Carrier 1830
 1831
-- 1832
 1833
 1834
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1835
 1836
module IST.Reals where 1837
 1838
open import IST.Safe.Reals public 1839
 1840
open import IST.Base 1841
open SafeImportTools 1842
 1843
st-ℝ : st ℝ 1844
st-ℝ = declared-in-safe-module ℝ 1845
 1846
st-+ : st _+_ 1847
st-+ = declared-in-safe-module _+_ 1848
 1849
st-minus : st minus 1850
st-minus = declared-in-safe-module minus 1851
 1852
st-· : st _·_ 1853
st-· = declared-in-safe-module _·_ 1854

148

 1855
st-inv : st inv 1856
st-inv = declared-in-safe-module inv 1857
 1858
st-< : st _<_ 1859
st-< = declared-in-safe-module _<_ 1860
 1861
st-≤ᵣ : st _≤ᵣ_ 1862
st-≤ᵣ = declared-in-safe-module _≤ᵣ_ 1863
 1864
st-0r : st 0r 1865
st-0r = declared-in-safe-module 0r 1866
 1867
st-1r : st 1r 1868
st-1r = declared-in-safe-module 1r 1869
 1870
st-inv-v : ∀ x → (e : x ≠ 0r) → st x → st (inv x e) 1871
st-inv-v x e _ = declared-in-safe-module (inv x e) 1872
 1873
st-2r : st 2r 1874
st-2r = st-fun _ _ (_+_ 1r) 1r (st-fun _ _ _+_ 1r st-+ st-1r) st-1r 1875
 1876
st-1/2r : st 1/2r 1877
st-1/2r = st-inv-v 2r (λ _ → pos-2r) st-2r 1878
 1879
st-/2r-v : (x : ℝ) → st x → st (x /2r) 1880
st-/2r-v x st-x = st-fun _ _ (_·_ 1/2r) x (st-fun _ _ _·_ 1/2r st-· st-1/2r) st-x 1881
 1882
-- 1883
 1884
 1885
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1886
 1887
module IST.Groups where 1888
 1889
open import IST.Safe.Groups public 1890
 1891
open import IST.Base 1892
open SafeImportTools 1893
 1894
st-Group : st Group 1895
st-Group = declared-in-safe-module Group 1896
 1897
st-Group-Carrier : st Group.Carrier 1898
st-Group-Carrier = declared-in-safe-module Group.Carrier 1899
 1900
st-Group-identity : st Group.identity 1901
st-Group-identity = declared-in-safe-module Group.identity 1902
 1903
st-Group-operation : st Group.operation 1904
st-Group-operation = declared-in-safe-module Group.operation 1905
 1906
st-Group-inverse : st Group.inverse 1907
st-Group-inverse = declared-in-safe-module Group.inverse 1908
 1909
st-Group-power : st Group.power 1910
st-Group-power = declared-in-safe-module Group.power 1911
 1912
st-FiniteGroup : st FiniteGroup 1913
st-FiniteGroup = declared-in-safe-module FiniteGroup 1914
 1915
st-FiniteGroup-Carrier : st FiniteGroup.Carrier 1916
st-FiniteGroup-Carrier = declared-in-safe-module FiniteGroup.Carrier 1917
 1918
st-FiniteGroup-identity : st FiniteGroup.identity 1919
st-FiniteGroup-identity = declared-in-safe-module FiniteGroup.identity 1920
 1921
st-FiniteGroup-operation : st FiniteGroup.operation 1922
st-FiniteGroup-operation = declared-in-safe-module FiniteGroup.operation 1923
 1924
st-FiniteGroup-inverse : st FiniteGroup.inverse 1925
st-FiniteGroup-inverse = declared-in-safe-module FiniteGroup.inverse 1926
 1927
st-FiniteGroup-order : st FiniteGroup.order 1928
st-FiniteGroup-order = declared-in-safe-module FiniteGroup.order 1929
 1930

149

st-FiniteGroup-power : st FiniteGroup.power 1931
st-FiniteGroup-power = declared-in-safe-module FiniteGroup.power 1932
 1933
 1934
st-PeriodicGroup : st PeriodicGroup 1935
st-PeriodicGroup = declared-in-safe-module PeriodicGroup 1936
 1937
st-PeriodicGroup-Carrier : st PeriodicGroup.Carrier 1938
st-PeriodicGroup-Carrier = declared-in-safe-module PeriodicGroup.Carrier 1939
 1940
st-PeriodicGroup-identity : st PeriodicGroup.identity 1941
st-PeriodicGroup-identity = declared-in-safe-module PeriodicGroup.identity 1942
 1943
st-PeriodicGroup-operation : st PeriodicGroup.operation 1944
st-PeriodicGroup-operation = declared-in-safe-module PeriodicGroup.operation 1945
 1946
st-PeriodicGroup-inverse : st PeriodicGroup.inverse 1947
st-PeriodicGroup-inverse = declared-in-safe-module PeriodicGroup.inverse 1948
 1949
st-PeriodicGroup-order : st PeriodicGroup.order 1950
st-PeriodicGroup-order = declared-in-safe-module PeriodicGroup.order 1951
 1952
st-PeriodicGroup-power : st PeriodicGroup.power 1953
st-PeriodicGroup-power = declared-in-safe-module PeriodicGroup.power 1954
 1955
-- 1956
 1957
 1958
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1959
 1960
module IST.MetricSpaces where 1961
 1962
open import Agda.Primitive 1963
open import IST.Safe.MetricSpaces public 1964
 1965
open import IST.Base 1966
open SafeImportTools 1967
 1968
st-MetricSpace : st MetricSpace 1969
st-MetricSpace = declared-in-safe-module MetricSpace 1970
 1971
st-MetricSpace-Carrier : st MetricSpace.Carrier 1972
st-MetricSpace-Carrier = declared-in-safe-module MetricSpace.Carrier 1973
 1974
st-MetricSpace-distance : st MetricSpace.distance 1975
st-MetricSpace-distance = declared-in-safe-module MetricSpace.distance 1976
 1977
st-MetricSpace-Carrier-full : (M : MetricSpace) → st M → st (MetricSpace.Carrier M) 1978
st-MetricSpace-Carrier-full M st-M = st-fun _ _ MetricSpace.Carrier M st-MetricSpace-Carrier st-1979
M 1980
 1981
st-MetricSpace-distance-full : (M : MetricSpace) → st M → st (MetricSpace.distance M) 1982
st-MetricSpace-distance-full M st-M = declared-in-safe-module (MetricSpace.distance M) 1983
 1984
-- 1985
 1986
 1987
module IST.GroupActions where 1988
 1989
open import IST.Safe.GroupActions public 1990
 1991
-- 1992
 1993
 1994
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 1995
 1996
module IST.NewmansTheorem where 1997
 1998
open import Agda.Primitive 1999
open import IST.Safe.NewmansTheorem public 2000
 2001
open import IST.Base 2002
open SafeImportTools 2003
 2004
st-NewmanSpace : st NewmanSpace 2005
st-NewmanSpace = declared-in-safe-module NewmanSpace 2006
 2007

150

st-NewmanSpace-asMetricSpace : st NewmanSpace.asMetricSpace 2008
st-NewmanSpace-asMetricSpace = declared-in-safe-module NewmanSpace.asMetricSpace 2009
 2010
st-NewmanSpace-inhabitant : st NewmanSpace.inhabitant 2011
st-NewmanSpace-inhabitant = declared-in-safe-module NewmanSpace.inhabitant 2012
 2013
st-NewmanSpace-newman-constant : st NewmanSpace.newman-constant 2014
st-NewmanSpace-newman-constant = declared-in-safe-module NewmanSpace.newman-constant 2015
 2016
-- 2017
 2018
 2019
{-# OPTIONS --omega-in-omega #-} 2020
 2021
-- TODO: Make sure that this confirms to the new coding standards. 2022
-- This is taken from an older version of the proof code. 2023
-- Note that our main proof does not rely on these arguments. 2024
 2025
module IST.Ultrafilters where 2026
 2027
open import Agda.Primitive 2028
open import IST.Base 2029
open import IST.Util 2030
 2031
⋂ : {I : Set} → List (I → Set) → I → Set 2032
⋂ [] i = ⊤ 2033
⋂ (φ ∷ []) i = φ i 2034
⋂ (φ ∷ φs) i = φ i ∧ (⋂ φs i) 2035
 2036
lemma-⋂ : {I : Set} → (φs : List (I → Set)) → ∀ (i : I) → ⋂ φs i → ∀ φ → φ ∈ φs → φ i 2037
lemma-⋂ (.φ ∷ []) i has-i φ ∈-head = has-i 2038
lemma-⋂ (.φ ∷ (ψ ∷ φs)) i has-i φ ∈-head = proj₁ has-i 2039
lemma-⋂ (ψ ∷ []) i has-i φ (∈-tail ()) 2040
lemma-⋂ (ψ₁ ∷ (ψ₂ ∷ ψs)) i has-i φ (∈-tail φ∈φs) = lemma-⋂ (ψ₂ ∷ ψs) i (proj₂ has-i) φ φ∈φs 2041
 2042
⊆ : {I : Set} → List (I → Set) → ((I → Set) → Set) → Set 2043
[] ⊆ UF = ⊤ 2044
(φ ∷ []) ⊆ UF = UF φ 2045
(φ ∷ φs) ⊆ UF = UF φ ∧ (φs ⊆ UF) 2046
 2047
⇒ : {I : Set} → (I → Set) → (I → Set) → Set 2048
φ ⇒ ψ = ∀ i → φ i → ψ i 2049
 2050
~ : {I : Set} → (I → Set) → I → Set 2051
~ φ i = φ i → ⊥ 2052
 2053
module Stage1 2054
 (I : Set) 2055
 (st-I : st I) 2056
 (UF : (I → Set) → Set) 2057
 (UF-upward : {φ ψ : I → Set} → φ ⇒ ψ → UF φ → UF ψ) 2058
 (UF-inhabit : {φ : I → Set} → UF φ → ∃ λ i → φ i) 2059
 (UF-fip : {φs : List (I → Set)} → φs ⊆ UF → UF (⋂ φs)) 2060
 (UF-alt : {φ : I → Set} → (UF φ → ⊥) → UF (~ φ)) 2061
 where 2062
 ∅ : I → Set 2063
 ∅ i = ⊥ 2064
 2065
 U : I → Set 2066
 U i = ⊤ 2067
 2068
 step-1 : UF ∅ → ⊥ 2069
 step-1 has-∅ = proj₂ (UF-inhabit has-∅) 2070
 2071
 step-2 : UF U 2072
 step-2 = UF-upward {~ ∅} {U} (λ i _ → tt) (UF-alt step-1) 2073
 2074
 arbitrary : I 2075
 arbitrary = proj₁ (UF-inhabit step-2) 2076
 2077
 Element : Set₁ 2078
 Element = ∃ λ (φ : I → Set) → UF φ 2079
 2080

151

 reduce : List Element → List (I → Set) 2081
 reduce [] = [] 2082
 reduce (φ ∷ φs) = (proj₁ φ) ∷ reduce φs 2083
 2084
 lemma-reduce : (φs : List Element) → reduce φs ⊆ UF 2085
 lemma-reduce [] = tt 2086
 lemma-reduce (φ ∷ []) = proj₂ φ 2087
 lemma-reduce (φ ∷ (ψ ∷ φs)) = proj₂ φ , lemma-reduce (ψ ∷ φs) 2088
 2089
 step-3 : ∀ (φs : List Element) → st φs → ∃ λ (i : I) → ∀ (φ : Element) → φ ∈ φs → proj₁ φ i 2090
 step-3 φs _ = proj₁ ⋂-inhabit , λ φ φ∈φs → jump (proj₁ φ) (lemma φ φs φ∈φs) where 2091
 ⋂-inhabit : ∃ λ (i : I) → ⋂ (reduce φs) i 2092
 ⋂-inhabit = UF-inhabit (UF-fip {reduce φs} (lemma-reduce φs)) 2093
 jump : ∀ (φ : I → Set) → φ ∈ reduce φs → φ (proj₁ ⋂-inhabit) 2094
 jump = lemma-⋂ (reduce φs) (proj₁ ⋂-inhabit) (proj₂ ⋂-inhabit) 2095
 lemma : (φ : Element) → (φs : List Element) → φ ∈ φs → proj₁ φ ∈ reduce φs 2096
 lemma φ .(φ ∷ _) ∈-head = ∈-head 2097
 lemma φ (ψ ∷ φs) (∈-tail p) = ∈-tail (lemma φ φs p) 2098
 2099
 thm-1 : ∃* λ (i : I) → ∀ (φ : Element) → st φ → proj₁ φ i 2100
 thm-1 = ax-Ideal-1 _ step-3 2101
 2102
 ω : I 2103
 ω = proj₁ thm-1 2104
 2105
 module Stage2 2106
 (st-UF : st UF) 2107
 (UF-2val* : (φ : ESet) → (A : I → Set) → (UF A ≡ ⊤ → φ) → (UF A ≡ ⊥ → φ) → φ) 2108
 where 2109
 2110
 ~UF~ : {A : I → Set} → (∀ (i : I) → A i) → (∀ (i : I) → A i) → Set 2111
 f ~UF~ g = UF (λ i → f i ≡ g i) 2112
 2113
 ~ω~ : {A : I → Set} → (∀ (i : I) → A i) → (∀ (i : I) → A i) → Set 2114
 f ~ω~ g = f ω ≡ g ω 2115
 2116
 thm-2 : {A : I → Set} → st A → (f : ∀ (i : I) → A i) → st f → (g : ∀ (i : I) → A i) → st g → 2117
 f ~UF~ g → f ~ω~ g 2118
 thm-2 {A} st-A f st-f g st-g p = using-thm-1 where 2119
 st-f=g : st (λ i → f i ≡ g i) 2120
 st-f=g = st-req-f-g where 2121
 recombinator : ({X : Set} → X → X → Set) → (b : I → Set) → (f : (i : I) → b i) → (g : (i 2122
: I) → b i) → I → Set 2123
 recombinator = λ (a : {X : Set} → X → X → Set) → λ (b : I → Set) → λ (f : (i : I) → b i) 2124
→ λ (g : (i : I) → b i) → 2125
 λ (i : I) → a {b i} (f i) (g i) 2126
 st-recombinator : st recombinator 2127
 st-recombinator = st-abs-5 I 2128
 recombinator-≡ : (b : I → Set) → (f : (i : I) → b i) → (g : (i : I) → b i) → I → Set 2129
 recombinator-≡ = recombinator (_≡_ {lzero}) 2130
 st-recombinator-≡ : st recombinator-≡ 2131
 st-recombinator-≡ = st-fun _ _ recombinator (_≡_ {lzero}) st-recombinator st-≡ 2132
 req : (f : ∀ i → A i) → (g : ∀ i → A i) → I → Set 2133
 req = recombinator-≡ A 2134
 st-req : st req 2135
 st-req = st-fun-d _ _ recombinator-≡ A st-recombinator-≡ st-A 2136
 req-f : (g : ∀ i → A i) → I → Set 2137
 req-f = req f 2138
 st-req-f : st req-f 2139
 st-req-f = st-fun _ _ req f st-req st-f 2140
 req-f-g : I → Set 2141
 req-f-g = req-f g 2142
 st-req-f-g : st req-f-g 2143
 st-req-f-g = st-fun _ _ req-f g st-req-f st-g 2144
 eq : I → Set 2145
 eq i = f i ≡ g i 2146
 pair : (A : I → Set) → UF A → Element 2147
 pair A a = A , a 2148
 st-pair : st pair 2149
 st-pair = st-∃-_,_-full 2150
 st-pair-eq : st (pair eq) 2151
 st-pair-eq = st-fun-d _ _ pair eq st-pair st-f=g 2152
 st-pair-eq-p : st (pair eq p) 2153
 st-pair-eq-p = st-fun-d _ _ (pair eq) p st-pair-eq (st-UF-p p) where 2154

152

 if-⊥ : UF eq ≡ ⊥ → ∀ (p : UF eq) → st p 2155
 if-⊥ x = transport* (sym x) {λ S → ∀ (p : S) → st p} λ () 2156
 if-⊤ : UF eq ≡ ⊤ → ∀ (p : UF eq) → st p 2157
 if-⊤ x = transport* (sym x) {λ S → ∀ (p : S) → st p} helper where 2158
 helper : (p : ⊤) → st p 2159
 helper tt = st-tt 2160
 st-UF-p : ∀ (p : UF eq) → st p 2161
 st-UF-p = UF-2val* (∀ (p : UF eq) → st p) eq if-⊤ if-⊥ 2162
 using-thm-1 : f ω ≡ g ω 2163
 using-thm-1 = proj₂ thm-1 (eq , p) st-pair-eq-p 2164
 2165
-- we get the converse of thm-2 by the exact same argument, as ¬(f ~UF~ g) → UF (λ i → ¬ (f i ≡ 2166
g i)) 2167
 2168
-- 2169
 2170
 2171
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 2172
 2173
module IST.PredicatedTopologies where 2174
 2175
open import Agda.Primitive 2176
open import IST.Base 2177
open import IST.Reals 2178
 2179
---- 2180
-- Def. A relational space consists of a carrier set C and a reflexive 2181
-- binary predicate (the 'nearness predicate') on C. 2182
 2183
record IsPredicatedSpace 2184
 (Carrier : Set) 2185
 (nearby : Carrier → Carrier → ESet) 2186
 : ESet where 2187
 field 2188
 reflexive : ∀ x → nearby x x 2189
 2190
record PredicatedSpace : ESet₁ where 2191
 field 2192
 Carrier : Set 2193
 nearby : Carrier → Carrier → ESet 2194
 isPredicatedSpace : IsPredicatedSpace Carrier nearby 2195
 open IsPredicatedSpace isPredicatedSpace public 2196
 2197
 2198
-- Def. A separable space is a relational space where no two standard points 2199
-- are neighbors. (normally known as T1 space, we refer to those as Kolmogorov) 2200
 2201
record IsSeparableSpace 2202
 (Carrier : Set) 2203
 (nearby : Carrier → Carrier → ESet) 2204
 : ESet where 2205
 field 2206
 isPredicatedSpace : IsPredicatedSpace Carrier nearby 2207
 separable : ∀ x → st x → ∀ y → st y → nearby x y → nearby y x → x ≡ y 2208
 2209
record SeparableSpace : ESet₁ where 2210
 field 2211
 Carrier : Set 2212
 nearby : Carrier → Carrier → ESet 2213
 isSeparableSpace : IsSeparableSpace Carrier nearby 2214
 open IsSeparableSpace isSeparableSpace public 2215
 open IsPredicatedSpace isPredicatedSpace public 2216
 2217
 2218
-- Def. A compact space is a relation space where every every element is near 2219
-- a standard element. 2220
 2221
record IsCompactSpace 2222
 (Carrier : Set) 2223
 (nearby : Carrier → Carrier → ESet) 2224
 : ESet where 2225
 field 2226
 isPredicatedSpace : IsPredicatedSpace Carrier nearby 2227
 compact : ∀ x → ∃* λ y → st y *∧* nearby y x 2228
 2229

153

record CompactSpace : ESet₁ where 2230
 field 2231
 Carrier : Set 2232
 nearby : Carrier → Carrier → ESet 2233
 isCompactSpace : IsCompactSpace Carrier nearby 2234
 open IsCompactSpace isCompactSpace public 2235
 open IsPredicatedSpace isPredicatedSpace public 2236
 2237
 2238
-- Def. A Hausdorff space is a relational space where two different standard 2239
-- points do not share a neighbor. 2240
 2241
record IsHausdorffSpace 2242
 (Carrier : Set) 2243
 (nearby : Carrier → Carrier → ESet) 2244
 : ESet where 2245
 field 2246
 isPredicatedSpace : IsPredicatedSpace Carrier nearby 2247
 hausdorff : ∀ x → st x → ∀ y → st y → ∀ z → nearby x z → nearby y z → x ≡ y 2248
 2249
record HausdorffSpace : ESet₁ where 2250
 field 2251
 Carrier : Set 2252
 nearby : Carrier → Carrier → ESet 2253
 isHausdorffSpace : IsHausdorffSpace Carrier nearby 2254
 open IsHausdorffSpace isHausdorffSpace public 2255
 open IsPredicatedSpace isPredicatedSpace public 2256
 -- Thm. Every Hausdorff space is separable. 2257
 private 2258
 separable : ∀ x → st x → ∀ y → st y → nearby x y → nearby y x → x ≡ y 2259
 separable x st-x y st-y x-near-y y-near-x = 2260
 hausdorff x st-x y st-y x (reflexive x) y-near-x 2261
 isSeparableSpace : IsSeparableSpace Carrier nearby 2262
 isSeparableSpace = record { isPredicatedSpace = isPredicatedSpace; separable = separable } 2263
 open IsSeparableSpace isSeparableSpace public 2264
 2265
 2266
-- Def. A compact Hausdorff space is a relational space that is also a compact 2267
-- space. Duh. 2268
 2269
record IsCompactHausdorffSpace 2270
 (Carrier : Set) 2271
 (nearby : Carrier → Carrier → ESet) 2272
 : ESet where 2273
 field 2274
 isHausdorffSpace : IsHausdorffSpace Carrier nearby 2275
 isCompactSpace : IsCompactSpace Carrier nearby 2276
 2277
record CompactHausdorffSpace : ESet₁ where 2278
 field 2279
 Carrier : Set 2280
 nearby : Carrier → Carrier → ESet 2281
 isHausdorffSpace : IsHausdorffSpace Carrier nearby 2282
 isCompactSpace : IsCompactSpace Carrier nearby 2283
 open IsHausdorffSpace isHausdorffSpace public 2284
 open IsPredicatedSpace isPredicatedSpace public 2285
 open IsCompactSpace isCompactSpace public 2286
 2287
 2288
-- Def. An equivalence space is a relational space whose 2289
-- nearness predicate is transitive and symmetric. 2290
 2291
record IsEquivalenceSpace 2292
 (Carrier : Set) 2293
 (nearby : Carrier → Carrier → ESet) 2294
 : ESet where 2295
 field 2296
 isPredicatedSpace : IsPredicatedSpace Carrier nearby 2297
 transitive : ∀ x y z → nearby x y → nearby y z → nearby x z 2298
 symmetric : ∀ x y → nearby x y → nearby y x 2299
 2300
record EquivalenceSpace : ESet₁ where 2301
 field 2302
 Carrier : Set 2303
 nearby : Carrier → Carrier → ESet 2304
 isEquivalenceSpace : IsEquivalenceSpace Carrier nearby 2305

154

 open IsEquivalenceSpace isEquivalenceSpace public 2306
 open IsPredicatedSpace isPredicatedSpace public 2307
 2308
 2309
-- Def. A Hausdorff equivalence space is an equivalence space that is 2310
-- also a Hausdorff space. Duh. 2311
 2312
record IsHausdorffEquivalenceSpace 2313
 (Carrier : Set) 2314
 (nearby : Carrier → Carrier → ESet) 2315
 : ESet where 2316
 field 2317
 isHausdorffSpace : IsHausdorffSpace Carrier nearby 2318
 isEquivalenceSpace : IsEquivalenceSpace Carrier nearby 2319
 2320
record HausdorffEquivalenceSpace : ESet₁ where 2321
 field 2322
 Carrier : Set 2323
 nearby : Carrier → Carrier → ESet 2324
 isHausdorffSpace : IsHausdorffSpace Carrier nearby 2325
 isEquivalenceSpace : IsEquivalenceSpace Carrier nearby 2326
 open IsHausdorffSpace isHausdorffSpace public 2327
 open IsPredicatedSpace isPredicatedSpace public 2328
 open IsEquivalenceSpace isEquivalenceSpace public 2329
 2330
 2331
-- Def. A compact Hausdorff equivalence space is an equivalence space that is also a compact 2332
-- space. Duh. 2333
 2334
record IsCompactHausdorffEquivalenceSpace 2335
 (Carrier : Set) 2336
 (nearby : Carrier → Carrier → ESet) 2337
 : ESet where 2338
 field 2339
 isHausdorffSpace : IsHausdorffSpace Carrier nearby 2340
 isCompactSpace : IsCompactSpace Carrier nearby 2341
 isEquivalenceSpace : IsEquivalenceSpace Carrier nearby 2342
 2343
record CompactHausdorffEquivalenceSpace : ESet₁ where 2344
 field 2345
 Carrier : Set 2346
 nearby : Carrier → Carrier → ESet 2347
 isHausdorffSpace : IsHausdorffSpace Carrier nearby 2348
 isCompactSpace : IsCompactSpace Carrier nearby 2349
 isEquivalenceSpace : IsEquivalenceSpace Carrier nearby 2350
 open IsHausdorffSpace isHausdorffSpace public 2351
 open IsPredicatedSpace isPredicatedSpace public 2352
 open IsCompactSpace isCompactSpace public 2353
 open IsEquivalenceSpace isEquivalenceSpace public 2354
 2355
 2356
open import IST.MetricSpaces 2357
 2358
-- Thm. Every standard metric space induces a Hausdorff equivalence space by setting 2359
-- x o- y ↔ ∀ˢ ε > 0. d(x,y) < ε 2360
metric-to-hausdorff-equivalence : (MS : MetricSpace) → st MS → HausdorffEquivalenceSpace 2361
metric-to-hausdorff-equivalence MS st-MS = 2362
 record { Carrier = M 2363
 ; nearby = nearby 2364
 ; isHausdorffSpace = isHausdorffSpace 2365
 ; isEquivalenceSpace = isEquivalenceSpace 2366
 } where 2367
 M : Set 2368
 M = MetricSpace.Carrier MS 2369
 2370
 st-M : st M 2371
 st-M = st-MetricSpace-Carrier-full MS st-MS 2372
 2373
 d : M → M → ℝ 2374
 d = MetricSpace.distance MS 2375
 2376
 st-d : st d 2377
 st-d = st-MetricSpace-distance-full MS st-MS 2378
 2379
 nearby : M → M → ESet 2380
 nearby x y = ∀ (ε : ℝ) → st ε → 0r < ε → d x y < ε 2381

155

 2382
 reflexive : ∀ x → nearby x x 2383
 reflexive x ε st-ε 0r<ε = dxx<ε where 2384
 open MetricSpace MS 2385
 dxx<ε : d x x < ε 2386
 dxx<ε = transport (sym (reflexive-2 x)) {λ z → z < ε} 0r<ε 2387
 2388
 symmetric : ∀ x y → nearby x y → nearby y x 2389
 symmetric x y x-near-y ε st-ε pos-ε = dyx<ε where 2390
 open MetricSpace MS 2391
 dxy<ε : d x y < ε 2392
 dxy<ε = x-near-y ε st-ε pos-ε 2393
 dyx<ε : d y x < ε 2394
 dyx<ε = transport (symmetry x y) {λ p → p < ε} dxy<ε 2395
 2396
 transitive : ∀ x y z → nearby x y → nearby y z → nearby x z 2397
 transitive x y z x-near-y y-near-z ε st-ε pos-ε = dxz' where 2398
 open MetricSpace MS 2399
 ε/2 : ℝ 2400
 ε/2 = ε /2r 2401
 st-ε/2 : st ε/2 2402
 st-ε/2 = st-/2r-v ε st-ε 2403
 pos-ε/2 : 0r < ε/2 2404
 pos-ε/2 = pos-/2r-v ε pos-ε 2405
 dxy : d x y < ε/2 2406
 dxy = x-near-y ε/2 st-ε/2 pos-ε/2 2407
 dyz : d y z < ε/2 2408
 dyz = y-near-z ε/2 st-ε/2 pos-ε/2 2409
 dxy-dyx : d x y + d y z < ε/2 + ε/2 2410
 dxy-dyx = <-tran _ _ _ step-1 step-2 where 2411
 step-1 : d x y + d y z < ε/2 + d y z 2412
 step-1 = <-plus (d x y) ε/2 (d y z) dxy 2413
 step-2 : ε/2 + d y z < ε/2 + ε/2 2414
 step-2 = transport +-comm {λ p → p < ε/2 + ε/2} (<-plus (d y z) ε/2 ε/2 dyz) 2415
 dxz : d x z < ε/2 + ε/2 2416
 dxz = triangle x y z (ε/2 + ε/2) dxy-dyx 2417
 dxz' : d x z < ε 2418
 dxz' = transport /2r-half {λ p → d x z < p} dxz 2419
 2420
 isPredicatedSpace : IsPredicatedSpace M nearby 2421
 isPredicatedSpace = record { reflexive = reflexive } 2422
 2423
 isEquivalenceSpace : IsEquivalenceSpace M nearby 2424
 isEquivalenceSpace = 2425
 record { isPredicatedSpace = isPredicatedSpace 2426
 ; transitive = transitive 2427
 ; symmetric = symmetric 2428
 } 2429
 hausdorff : ∀ x → st x → ∀ y → st y → ∀ z → nearby x z → nearby y z → x ≡ y 2430
 hausdorff x st-x y st-y z x-near-z y-near-z = reflexive-1 x y zero-dxy where 2431
 open MetricSpace MS 2432
 x-near-y : nearby x y 2433
 x-near-y = transitive x z y x-near-z (symmetric y z y-near-z) 2434
 x-near-y-int : (ε : ℝ) → st ε → internal (0r < ε → d x y < ε) 2435
 x-near-y-int ε st-ε = fromInternal (x-near-y ε st-ε) 2436
 st-dxy : st (d x y) 2437
 st-dxy = st-fun _ _ (d x) y (st-fun _ _ d x st-d st-x) st-y 2438
 Φ : TransferPred 2439
 Φ = ∀' ℝ λ ε → int' (0r < ε → d x y < ε) 2440
 std-Φ : st ℝ *∧* ((ε : ℝ) → st ε → st (0r < ε → d x y < ε)) 2441
 std-Φ = st-ℝ , (λ ε st-ε → st-→ (0r < ε) 2442
 (st-fun _ _ (_<_ 0r) ε (st-fun _ _ _<_ 0r st-< st-0r) st-ε) 2443
 (d x y < ε) 2444
 (st-fun _ _ (_<_ (d x y)) ε (st-fun _ _ _<_ (d x y) st-< st-2445
dxy) st-ε)) 2446
 dxy<ε : ∀ (ε : ℝ) → 0r < ε → d x y < ε 2447
 dxy<ε = ax-Transfer-EI Φ x-near-y-int std-Φ 2448
 zero-dxy : d x y ≡ 0r 2449
 zero-dxy = lemma-ε-of-room (d x y) dxy<ε (nonnegative x y) 2450
 2451
 isHausdorffSpace : IsHausdorffSpace M nearby 2452
 isHausdorffSpace = 2453
 record { isPredicatedSpace = isPredicatedSpace 2454
 ; hausdorff = hausdorff 2455
 } 2456

156

 2457
-- 2458
 2459
 2460
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 2461
 2462
module IST.Approximation where 2463
 2464
open import Agda.Primitive 2465
open import IST.Base 2466
open import IST.PredicatedTopologies 2467
 2468
 2469
record IsApproximation 2470
 (Source : Set) 2471
 (Target : Set) 2472
 (Map : Source → Target → ESet) 2473
 : ESet where 2474
 field 2475
 Target-st : st Target 2476
 Map-exists : ∀ (g : Target) → st g → ∃* λ (h : Source) → Map h g 2477
 Map-unique-Source : 2478
 ∀ (g : Target) → st g → 2479
 ∀ (h₁ : Source) → Map h₁ g → ∀ (h₂ : Source) → Map h₂ g → h₁ ≡ h₂ 2480
 Map-unique-Target : 2481
 ∀ (g₁ : Target) → st g₁ → ∀ (g₂ : Target) → st g₂ → 2482
 ∀ (h : Source) → Map h g₁ → Map h g₂ → g₁ ≡ g₂ 2483
 2484
-- Map-cont : 2485
-- ∀ (h₁ h₂ : Source) → ∀ (g₁ g₂ : Target) → Map h₁ g₁ → Map h₂ g₂ → 2486
-- nearby h₁ h₂ → nearby g₁ g₂ 2487
-- -- makes no sense since S-continuity relies on the standardness 2488
-- -- of the first element of the nearness relation. 2489
 2490
record Approximation (Source : Set) (Target : Set) : ESet₁ where 2491
 field 2492
 Map : Source → Target → ESet 2493
 isApproximation : IsApproximation Source Target Map 2494
 open IsApproximation isApproximation public 2495
 2496
 2497
record IsTopApproximation 2498
 (Source : PredicatedSpace) 2499
 (Target : SeparableSpace) 2500
 (Map : PredicatedSpace.Carrier Source → SeparableSpace.Carrier Target → ESet) 2501
 : ESet where 2502
 open SeparableSpace Target renaming 2503
 (Carrier to G 2504
 ; nearby to G-near 2505
) 2506
 open PredicatedSpace Source renaming 2507
 (Carrier to H 2508
 ; nearby to H-near 2509
) 2510
 field 2511
 Target-st : st G 2512
 Map-exists : ∀ (g : G) → st g → ∃* λ (h : H) → Map h g 2513
 Map-Source : 2514
 ∀ (g : G) → st g → 2515
 ∀ (h₁ : H) → Map h₁ g → ∀ (h₂ : H) → Map h₂ g → H-near h₁ h₂ 2516
 Map-Target : 2517
 ∀ (g₁ : G) → st g₁ → ∀ (g₂ : G) → st g₂ → 2518
 ∀ (h : H) → Map h g₁ → Map h g₂ → G-near g₁ g₂ 2519
 2520
 2521
record TopApproximation (Source : PredicatedSpace) (Target : SeparableSpace) : ESet₁ where 2522
 field 2523
 Map : PredicatedSpace.Carrier Source → SeparableSpace.Carrier Target → ESet 2524
 isTopApproximation : IsTopApproximation Source Target Map 2525
 open IsTopApproximation isTopApproximation public 2526
 2527
 2528
open import IST.Groups 2529
 2530
record IsFiniteGroupApproximation 2531

157

 (Source : FiniteGroup) 2532
 (Target : Group) 2533
 (Map : FiniteGroup.Carrier Source → Group.Carrier Target → ESet) 2534
 : ESet where 2535
 field 2536
 isApproximation : IsApproximation (FiniteGroup.Carrier Source) (Group.Carrier Target) Map 2537
 Map-homomorphism : 2538
 ∀ (h₁ h₂ : FiniteGroup.Carrier Source) → 2539
 ∀ (g₁ : Group.Carrier Target) → st g₁ → ∀ (g₂ : Group.Carrier Target) → st g₂ → 2540
 Map h₁ g₁ → Map h₂ g₂ → Map (FiniteGroup.operation Source h₁ h₂) (Group.operation Target g₁ 2541
g₂) 2542
 open IsApproximation isApproximation 2543
 open Group Target renaming 2544
 (Carrier to G 2545
 ; identity to 1G 2546
 ; operation to xG 2547
 ; inverse to iG 2548
 ; assoc to G-associative 2549
 ; unit-left to G-unit-left 2550
 ; unit-right to G-unit-right 2551
 ; inverse-left to G-inverse-left 2552
 ; inverse-right to G-inverse-right 2553
) 2554
 open FiniteGroup Source renaming 2555
 (Carrier to H 2556
 ; identity to 1H 2557
 ; operation to xH 2558
 ; inverse to iH 2559
 ; assoc to H-associative 2560
 ; unit-left to H-unit-left 2561
 ; unit-right to H-unit-right 2562
 ; inverse-left to H-inverse-left 2563
 ; inverse-right to H-inverse-right 2564
) 2565
 Map-preserves-unit : st Target → Map 1H 1G 2566
 Map-preserves-unit st-Target = Map-1H-1G where 2567
 st-1G : st 1G 2568
 st-1G = st-fun-d _ _ Group.identity Target st-Group-identity st-Target 2569
 1H-unique : ∀ (h : H) → Map h 1G → h ≡ 1H 2570
 1H-unique h Map-h-1G = step-8 where 2571
 step-1 : Map (xH h h) (xG 1G 1G) 2572
 step-1 = Map-homomorphism h h 1G st-1G 1G st-1G Map-h-1G Map-h-1G 2573
 step-2 : Map (xH h h) 1G 2574
 step-2 = transport* (G-unit-left 1G) {λ z → Map (xH h h) z} step-1 2575
 step-3 : xH h h ≡ h 2576
 step-3 = Map-unique-Source 1G st-1G (xH h h) step-2 h Map-h-1G 2577
 step-4 : xH (iH h) (xH h h) ≡ xH (iH h) h 2578
 step-4 = cong (λ z → xH (iH h) z) step-3 2579
 step-5 : xH (xH (iH h) h) h ≡ xH (iH h) (xH h h) 2580
 step-5 = H-associative (iH h) h h 2581
 step-6 : xH 1H h ≡ xH (xH (iH h) h) h 2582
 step-6 = sym (cong (λ z → xH z h) (H-inverse-left h)) 2583
 step-7 : h ≡ xH (xH (iH h) h) h 2584
 step-7 = tran (sym (H-unit-left h)) step-6 2585
 step-8 : h ≡ 1H 2586
 step-8 = tran (tran (tran step-7 step-5) step-4) (H-inverse-left h) 2587
 1H'-exists : ∃* λ (h : H) → Map h 1G 2588
 1H'-exists = Map-exists 1G st-1G 2589
 1H' : H 2590
 1H' = proj₁ (Map-exists 1G st-1G) 2591
 Map-1H'-1G : Map 1H' 1G 2592
 Map-1H'-1G = proj₂ 1H'-exists 2593
 1H'-equals-1H : 1H' ≡ 1H 2594
 1H'-equals-1H = 1H-unique 1H' Map-1H'-1G 2595
 Map-1H-1G : Map 1H 1G 2596
 Map-1H-1G = transport* 1H'-equals-1H {λ z → Map z 1G} Map-1H'-1G 2597
 Map-preserves-unit-Target : st Target → ∀ (g : G) → st g → Map 1H g → g ≡ 1G 2598
 Map-preserves-unit-Target st-Target g st-g Map-1H-g = 2599
 Map-unique-Target g st-g 1G st-1G 1H Map-1H-g (Map-preserves-unit st-Target) where 2600
 st-1G : st 1G 2601
 st-1G = st-fun-d _ _ Group.identity Target st-Group-identity st-Target 2602
 2603
record FiniteGroupApproximation (Source : FiniteGroup) (Target : Group) : ESet₁ where 2604
 field 2605
 Map : FiniteGroup.Carrier Source → Group.Carrier Target → ESet 2606

158

 isFiniteGroupApproximation : IsFiniteGroupApproximation Source Target Map 2607
 open IsFiniteGroupApproximation isFiniteGroupApproximation public 2608
 open IsApproximation isApproximation public 2609
 2610
-- 2611
 2612
 2613
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 2614
 2615
module IST.Results.ExtensionTheorem where 2616
 2617
open import IST.Base 2618
open import IST.Util 2619
open import IST.Approximation 2620
open import IST.PredicatedTopologies 2621
 2622
 2623
-- Theorem: If H approximates G via ι, then we can extend every 2624
-- function f : H → M (where M is a standard compact Hausdorff space) to a 2625
-- function f' : G → M using standardization, setting 2626
-- f' = ⟦ (g,m) ∈ G × M | ∃ h ∈ H. ι(h)=g ∧ f(h)=m ⟧. 2627
record ExtensionTheorem : ESet where 2628
 field 2629
 G : Set 2630
 H : Set 2631
 A : Approximation H G 2632
 M# : CompactHausdorffSpace 2633
 st-M : st (CompactHausdorffSpace.Carrier M#) 2634
 f : H → CompactHausdorffSpace.Carrier M# 2635
 open CompactHausdorffSpace M# hiding (Carrier) 2636
 open Approximation A 2637
 private 2638
 -- We refer to the underlying set of the space M# as M, and the 2639
 -- approximation proper as ι. 2640
 2641
 M : Set 2642
 M = CompactHausdorffSpace.Carrier M# 2643
 2644
 ι : H → G → ESet 2645
 ι = Approximation.Map A 2646
 2647
 -- Recall that by definition of approximation, G is standard. 2648
 st-G : st G 2649
 st-G = Approximation.Target-st A 2650
 2651
 -- We construct the set f' = ⟦ ∃ˢ h. ι(h) = g ∧ m o- f(h) ⟧ by Standardization. 2652
 pre-ext : G ∧ M → ESet 2653
 pre-ext gm = ∃* λ (h : H) → ι h (proj₁ gm) *∧* nearby (proj₂ gm) (f h) 2654
 2655
 -- Construction: 2656
 -- The set f' forms the graph of the function we seek. 2657
 f' : G ∧ M → Set 2658
 f' = ⟦ pre-ext ⟧ 2659
 2660
 st-f' : st f' 2661
 st-f' = ax-Standard-1 pre-ext 2662
 2663
 private 2664
 st-f'gm : (g : G) → (m : M) → st g → st m → st (f' (g , m)) 2665
 st-f'gm g m st-g st-m = st-fun (G ∧ M) Set f' (g , m) st-f' (lemma-pairing g m st-g st-m) 2666
 2667
 -- We prove that for standard g, there is always some standard m such that (g,m) ∈ f'. 2668
 f'-exists-st : ∀ (g : G) → st g → ∃* λ (m : M) → st m *∧* internal (f' (g , m)) 2669
 f'-exists-st g st-g = m , st-m , fromInternal f'-gm where 2670
 -- Take a standard g, and pick an approximation h with ι(h)=g. 2671
 h : H 2672
 h = proj₁ (Map-exists g st-g) 2673
 ι-h-g : ι h g 2674
 ι-h-g = proj₂ (Map-exists g st-g) 2675
 -- Compute f(h). Use the compactness of M to find a standard point 2676
 -- near f(h). 2677
 m : M 2678
 m = proj₁ (compact (f h)) 2679
 st-m : st m 2680
 st-m = proj₁ (proj₂ (compact (f h))) 2681

159

 m-near-fh : nearby m (f h) 2682
 m-near-fh = proj₂ (proj₂ (compact (f h))) 2683
 -- Since ι(h)=g and m lies near f(h), by definition (g,m) belongs to f'. 2684
 pre-ext-gm : pre-ext (g , m) 2685
 pre-ext-gm = h , (ι-h-g , m-near-fh) 2686
 st-gm : st (g , m) 2687
 st-gm = lemma-pairing g m st-g st-m 2688
 f'-gm : f' (g , m) 2689
 f'-gm = ax-Standard-3 pre-ext _ st-gm pre-ext-gm 2690
 2691
 -- Existence conclusion: 2692
 -- By transfer, for any g, there is some m such that (g,m) ∈ f'. 2693
 f'-exists : ∀ (g : G) → ∃ λ (m : M) → f' (g , m) 2694
 f'-exists = ax-Transfer-EI Φ f'-exists-st st-params-Φ where 2695
 Φ : TransferPred 2696
 Φ = ∀' G λ g → ∃' M λ m → int' (f' (g , m)) 2697
 st-params-Φ : std-params Φ 2698
 st-params-Φ = st-G , λ a st-a → 2699
 st-M , λ e st-e → st-fun _ _ f' (a , e) st-f' (lemma-pairing a e st-a st-e) 2700
 2701
 private 2702
 -- Now we prove for standard g the uniqueness of the m such that (g,m) ∈ f'. 2703
 -- This proves that f' forms (the graph of) a function. 2704
 f'-unique-st : 2705
 ∀ (g : G) → st g → ∀ (m₁ : M) → st m₁ → ∀ (m₂ : M) → st m₂ → 2706
 f' (g , m₁) → f' (g , m₂) → 2707
 m₁ ≡ m₂ 2708
 f'-unique-st g st-g m₁ st-m₁ m₂ st-m₂ f'-gm₁ f'-gm₂ = m₁-equals-m₂ where 2709
 -- Since (g,mᵢ) are standard, they satisfy the defining formula of f', 2710
 -- so we can find hᵢ near gᵢ such that mᵢ lies near f(hᵢ). 2711
 -- First, we pick h₁. 2712
 st-gm₁ : st (g , m₁) 2713
 st-gm₁ = lemma-pairing g m₁ st-g st-m₁ 2714
 pre-ext-gm₁ : pre-ext (g , m₁) 2715
 pre-ext-gm₁ = ax-Standard-2 pre-ext (g , m₁) st-gm₁ f'-gm₁ 2716
 h₁ : H 2717
 h₁ = proj₁ pre-ext-gm₁ 2718
 ι-h₁-g : ι h₁ g 2719
 ι-h₁-g = proj₁ (proj₂ pre-ext-gm₁) 2720
 m₁-near-fh₁ : nearby m₁ (f h₁) 2721
 m₁-near-fh₁ = proj₂ (proj₂ pre-ext-gm₁) 2722
 -- Now, we pick h₂. 2723
 st-gm₂ : st (g , m₂) 2724
 st-gm₂ = lemma-pairing g m₂ st-g st-m₂ 2725
 pre-ext-gm₂ : pre-ext (g , m₂) 2726
 pre-ext-gm₂ = ax-Standard-2 pre-ext (g , m₂) st-gm₂ f'-gm₂ 2727
 h₂ : H 2728
 h₂ = proj₁ pre-ext-gm₂ 2729
 ι-h₂-g : ι h₂ g 2730
 ι-h₂-g = proj₁ (proj₂ pre-ext-gm₂) 2731
 m₂-near-fh₂ : nearby m₂ (f h₂) 2732
 m₂-near-fh₂ = proj₂ (proj₂ pre-ext-gm₂) 2733
 -- Now, h₁ and h₂ both approximate g, so by the approximation 2734
 -- uniqueness clause, h₁ = h₂. 2735
 h₁-equals-h₂ : h₁ ≡ h₂ 2736
 h₁-equals-h₂ = Map-unique-Source g st-g h₁ ι-h₁-g h₂ ι-h₂-g 2737
 fh₁-equals-fh₂ : f h₁ ≡ f h₂ 2738
 fh₁-equals-fh₂ = cong f h₁-equals-h₂ 2739
 -- Since m₂ lies near f(h₂), and h₁ = h₂, we have that 2740
 -- m₂ lies near f(h₁) as well. 2741
 m₂-near-fh₁ : nearby m₂ (f h₁) 2742
 m₂-near-fh₁ = 2743
 transport* (sym fh₁-equals-fh₂) {λ z -> nearby m₂ z} m₂-near-fh₂ 2744
 -- But then m₁ and m₂ share a common neighbor, f(h₁). By the Hausdorff 2745
 -- property, this implies m₁ = m₂. 2746
 m₁-equals-m₂ : m₁ ≡ m₂ 2747
 m₁-equals-m₂ = hausdorff m₁ st-m₁ m₂ st-m₂ (f h₁) m₁-near-fh₁ m₂-near-fh₁ 2748
 2749
 -- Uniqueness conclusion: 2750
 -- Since uniqueness holds for standard g, Transfer gives that it holds for arbitrary g. 2751
 -- Hence, the set f' forms the graph of a function. 2752
 f'-unique : ∀ (g : G) → ∀ (m₁ : M) → ∀ (m₂ : M) → f' (g , m₁) → f' (g , m₂) → m₁ ≡ m₂ 2753

160

 f'-unique = ax-Transfer-EI Φ 2754
 (λ g st-g m₁ st-m₁ m₂ st-m₂ → fromInternal (f'-unique-st g st-g m₁ st-m₁ m₂ st-m₂)) st-params-2755
Φ where 2756
 Φ : TransferPred 2757
 Φ = ∀' G λ g → ∀' M λ m₁ → ∀' M λ m₂ → int' (f' (g , m₁) → f' (g , m₂) → m₁ ≡ m₂) 2758
 st-params-Φ : std-params Φ 2759
 st-params-Φ = 2760
 st-G , λ g st-g → 2761
 st-M , λ m₁ st-m₁ → 2762
 st-M , λ m₂ st-m₂ → st-Φ g st-g m₁ st-m₁ m₂ st-m₂ where 2763
 st-f'-gm₁ : (g : G) → st g → (m₁ : M) → st m₁ → st (f' (g , m₁)) 2764
 st-f'-gm₁ g st-g m₁ st-m₁ = st-fun _ _ f' (g , m₁) st-f' (lemma-pairing g m₁ st-g st-m₁) 2765
 st-f'-gm₂ : (g : G) → st g → (m₂ : M) → st m₂ → st (f' (g , m₂)) 2766
 st-f'-gm₂ g st-g m₂ st-m₂ = st-fun _ _ f' (g , m₂) st-f' (lemma-pairing g m₂ st-g st-m₂) 2767
 st-m₁≡m₂ : (m₁ : M) → st m₁ → (m₂ : M) → st m₂ → st (m₁ ≡ m₂) 2768
 st-m₁≡m₂ m₁ st-m₁ m₂ st-m₂ = st-fun M Set (_≡_ m₁) m₂ (st-fun M (M → Set) _≡_ m₁ st-≡-full 2769
st-m₁) st-m₂ 2770
 st-f'-gm₂-st-m₁≡m₂ : (g : G) → st g → (m₁ : M) → st m₁ → (m₂ : M) → st m₂ → st (f' (g , m₂) 2771
→ m₁ ≡ m₂) 2772
 st-f'-gm₂-st-m₁≡m₂ g st-g m₁ st-m₁ m₂ st-m₂ = 2773
 st-→ _ (st-f'-gm₂ g st-g m₂ st-m₂) _ (st-m₁≡m₂ m₁ st-m₁ m₂ st-m₂) 2774
 st-Φ : (g : G) → st g → (m₁ : M) → st m₁ → (m₂ : M) → st m₂ → st (f' (g , m₁) → f' (g , m₂) 2775
→ m₁ ≡ m₂) 2776
 st-Φ g st-g m₁ st-m₁ m₂ st-m₂ = 2777
 st-→ (f' (g , m₁)) (st-f'-gm₁ g st-g m₁ st-m₁) (f' (g , m₂) → m₁ ≡ m₂) 2778
 (st-f'-gm₂-st-m₁≡m₂ g st-g m₁ st-m₁ m₂ st-m₂) 2779
 2780
{- 2781
-- Theorem 2: If the sequence H approximates the structure G in the sense of 2782
-- Zilber, then there is some H(ω) that approximates G in the sense above. 2783
module Thm2 2784
 (I : Set) 2785
 (H : I → Set) 2786
 (_~D~_ : (∀ i → H i) → (∀ i → H i) → Set) 2787
 (st-D : st _~D~_) 2788
 (ω : I) 2789
 (ax-ω-1 : ∀ (f g : ∀ i → H i) → st f → st g → f ~D~ g → f ω ≡ g ω) 2790
 (ax-ω-2 : ∀ (f g : ∀ i → H i) → st f → st g → f ω ≡ g ω → f ~D~ g) 2791
 (G : Set) 2792
 (st-G : st G) 2793
 (φ : G → (∀ i → H i) → Set) 2794
 (φ-exists : ∀ (g : G) → ∃ λ (h : ∀ i → H i) → φ g h) 2795
 (lim : (∀ i → H i) → G) 2796
 (lim-surjective : ∀ (g : G) → ∃ λ (h : ∀ i → H i) → lim h ≡ g) 2797
 (lim-respects-D : ∀ (h₁ h₂ : ∀ i → H i) → h₁ ~D~ h₂ → lim h₁ ≡ lim h₂) 2798
 (lim-preserves-φ : ∀ (g : G) → ∀ (h : ∀ i → H i) → φ g h → _≡_ g (lim h)) 2799
 where 2800
 colim : G → (∀ i → H i) 2801
 colim g = ∃.proj₁ (φ-exists g) 2802
 2803
 colim-splits-lim : ∀ (g : G) → lim (colim g) ≡ g 2804
 colim-splits-lim g = sym step-2 where 2805
 step-1 : φ g (colim g) 2806
 step-1 = ∃.proj₂ (φ-exists g) 2807
 step-2 : g ≡ lim (colim g) 2808
 step-2 = lim-preserves-φ g (colim g) step-1 2809
 2810
 ι : H ω → G → Setω 2811
 ι h g = internal (colim g ω ≡ h) 2812
 2813
 ι-exists : ∀ (g : G) → st g → ∃* λ (h : H ω) → ι h g 2814
 ι-exists g st-g = colim g ω , fromInternal refl 2815
 2816
 ι-unique : ∀ (g : G) → st g → ∀ (h₁ : H ω) → ι h₁ g → ∀ (h₂ : H ω) → ι h₂ g → h₁ ≡ h₂ 2817
 ι-unique g st-g h₁ (fromInternal ι-h₁-g) h₂ (fromInternal ι-h₂-g) = tran (sym ι-h₁-g) ι-h₂-g 2818
 2819
 open Thm1 G (H ω) st-G ι ι-exists ι-unique 2820
 2821
-- If furthermore everything in Thm2 is standard, then we have co-uniquness as well. 2822
module Thm2-X 2823
 (I : Set) 2824
 (H : I → Set) 2825
 (_~D~_ : (∀ i → H i) → (∀ i → H i) → Set) 2826

161

 (st-D : st _~D~_) 2827
 (ω : I) 2828
 (ax-ω-1 : ∀ (f g : ∀ i → H i) → st f → st g → f ~D~ g → f ω ≡ g ω) 2829
 (ax-ω-2 : ∀ (f g : ∀ i → H i) → st f → st g → f ω ≡ g ω → f ~D~ g) 2830
 (G : Set) 2831
 (st-G : st G) 2832
 (φ : G → (∀ i → H i) → Set) 2833
 (φ-exists : ∀ (g : G) → ∃ λ (h : ∀ i → H i) → φ g h) 2834
 (lim : (∀ i → H i) → G) 2835
 (lim-surjective : ∀ (g : G) → ∃ λ (h : ∀ i → H i) → lim h ≡ g) 2836
 (lim-respects-D : ∀ (h₁ h₂ : ∀ i → H i) → h₁ ~D~ h₂ → lim h₁ ≡ lim h₂) 2837
 (lim-preserves-φ : ∀ (g : G) → ∀ (h : ∀ i → H i) → φ g h → _≡_ g (lim h)) 2838
 (φ-exists-st : ∀ (g : G) → st g → st (proj₁ (φ-exists g))) 2839
 where 2840
 2841
 open Thm2 I H _~D~_ st-D ω ax-ω-1 ax-ω-2 G st-G φ φ-exists lim lim-surjective lim-respects-D 2842
lim-preserves-φ 2843
 2844
 st-colim-v : ∀ (g : G) → st g → st (colim g) 2845
 st-colim-v g st-g = φ-exists-st g st-g 2846
 2847
 ι-counique : ∀ (h : H ω) → ∀ (g₁ g₂ : G) → st g₁ → st g₂ → ι h g₁ → ι h g₂ → g₁ ≡ g₂ 2848
 ι-counique h g₁ g₂ st-g₁ st-g₂ ι-h-g₁ ι-h-g₂ = equality where 2849
 step-1 : ι (colim g₁ ω) g₁ 2850
 step-1 with proj₂ (ι-exists g₁ st-g₁) 2851
 step-1 | fromInternal x = fromInternal x 2852
 step-2 : colim g₁ ω ≡ h 2853
 step-2 = sym (ι-unique g₁ st-g₁ h ι-h-g₁ (colim g₁ ω) step-1) 2854
 step-3 : ι (colim g₂ ω) g₂ 2855
 step-3 with proj₂ (ι-exists g₂ st-g₂) 2856
 step-3 | fromInternal x = fromInternal x 2857
 step-4 : colim g₂ ω ≡ h 2858
 step-4 = sym (ι-unique g₂ st-g₂ h ι-h-g₂ (colim g₂ ω) step-3) 2859
 step-5 : colim g₁ ω ≡ colim g₂ ω 2860
 step-5 = tran step-2 (sym step-4) 2861
 step-6 : colim g₁ ~D~ colim g₂ 2862
 step-6 = ax-ω-2 (colim g₁) (colim g₂) (st-colim-v g₁ st-g₁) (st-colim-v g₂ st-g₂) step-5 2863
 step-7 : lim (colim g₁) ≡ lim (colim g₂) 2864
 step-7 = lim-respects-D (colim g₁) (colim g₂) step-6 2865
 equality : g₁ ≡ g₂ 2866
 equality = tran (sym (colim-splits-lim g₁)) (tran step-7 (colim-splits-lim g₂)) 2867
-} 2868
 2869
-- 2870
 2871
 2872
{-# OPTIONS --omega-in-omega --no-pattern-matching #-} 2873
 2874
module IST.Results.MainTheorem where 2875
 2876
open import IST.Base 2877
open import IST.Util 2878
open import IST.Approximation 2879
open import IST.MetricSpaces 2880
open import IST.Reals 2881
open import IST.Naturals 2882
open import IST.PredicatedTopologies 2883
open import IST.Results.ExtensionTheorem 2884
open import IST.Groups 2885
open import IST.GroupActions 2886
open import IST.NewmansTheorem 2887
 2888
 2889
-- Theorem. Assume that the finite group H approximates the standard group G as a group via an 2890
external 2891
-- predicate ι. Consider a faithful K-Lipschitz faithful action of H on M, for some 2892
standard K > 0. 2893
-- Every periodic subgroup of G also admits a standard faithful K-Lipschitz action 2894
on M. 2895
record MainTheorem : ESet where 2896
 field 2897
 G# : Group 2898
 st-G# : st G# 2899
 H# : FiniteGroup 2900

162

 ι# : FiniteGroupApproximation H# G# 2901
 M# : NewmanSpace 2902
 st-M# : st M# 2903
 A# : DiscreteAction H# (NewmanSpace.asMetricSpace M#) 2904
 -- We first name everything in context. 2905
 open Group G# renaming 2906
 (Carrier to G 2907
 ; identity to 1G 2908
 ; operation to xG 2909
 ; inverse to iG 2910
 ; assoc to G-associative 2911
 ; unit-left to G-unit-left 2912
 ; unit-right to G-unit-right 2913
 ; inverse-left to G-inverse-left 2914
 ; inverse-right to G-inverse-right 2915
) 2916
 open FiniteGroup H# renaming 2917
 (Carrier to H 2918
 ; identity to 1H 2919
 ; operation to xH 2920
 ; inverse to iH 2921
 ; assoc to H-associative 2922
 ; unit-left to H-unit-left 2923
 ; unit-right to H-unit-right 2924
 ; inverse-left to H-inverse-left 2925
 ; inverse-right to H-inverse-right 2926
) 2927
 open MetricSpace (NewmanSpace.asMetricSpace M#) renaming (Carrier to M) 2928
 open DiscreteAction A# renaming (Map to act) 2929
 open FiniteGroupApproximation ι# renaming (Map to ι) 2930
 private 2931
 M#' : MetricSpace 2932
 M#' = NewmanSpace.asMetricSpace M# 2933
 st-M#' : st M#' 2934
 st-M#' = st-fun _ _ NewmanSpace.asMetricSpace M# st-NewmanSpace-asMetricSpace st-M# 2935
 st-G : st G 2936
 st-G = st-fun _ _ Group.Carrier G# st-Group-Carrier st-G# 2937
 st-xG : st xG 2938
 st-xG = st-fun-d _ _ Group.operation G# st-Group-operation st-G# 2939
 st-1G : st 1G 2940
 st-1G = st-fun-d _ _ Group.identity G# st-Group-identity st-G# 2941
 st-M : st M 2942
 st-M = st-fun _ _ MetricSpace.Carrier M#' st-MetricSpace-Carrier st-M#' 2943
 st-distance : st distance 2944
 st-distance = st-fun-d _ _ MetricSpace.distance M#' st-MetricSpace-distance st-M#' 2945
 st-asMetricSpace-M# : st (NewmanSpace.asMetricSpace M#) 2946
 st-asMetricSpace-M# = 2947
 st-fun _ _ NewmanSpace.asMetricSpace M# st-NewmanSpace-asMetricSpace st-M# 2948
 M## : HausdorffEquivalenceSpace 2949
 M## = metric-to-hausdorff-equivalence (NewmanSpace.asMetricSpace M#) st-asMetricSpace-M# 2950
 open HausdorffEquivalenceSpace M## renaming (Carrier to M-Carrier) 2951
 -- The theorem requires one additional assumption to ensure the continuity of the resulting 2952
 -- action. This can e.g. be a Lipschitz constant. 2953
 field 2954
 act-faithful : ∀ (g : H) → (g ≡ 1H → ⊥) → ∃ λ (m : M) → act g m ≡ m → ⊥ 2955
 isCompactSpace : IsCompactSpace M nearby 2956
 K : ℝ 2957
 st-K : st K 2958
 positive-K : 0r < K 2959
 lipschitz : ∀ (g : H) → ∀ (x y : M) → distance (act g x) (act g y) ≤ᵣ (K · distance x y) 2960
 open IsCompactSpace isCompactSpace 2961
 private 2962
 K' : ℝ 2963
 K' = inv K (λ _ → positive-K) 2964
 st-K' : st K' 2965
 st-K' = st-inv-v K (λ _ → positive-K) st-K 2966
 positive-K' : 0r < K' 2967
 positive-K' = <-inverse positive-K 2968
 2969
 -- We prove the continuity of the action of H. 2970
 S-continuity : ∀ (g : H) → ∀ (x : M) → st x → ∀ (y : M) → nearby x y → nearby (act g x) (act 2971
g y) 2972
 S-continuity g x st-x y x-near-y ε st-ε positive-ε = agx-near-agy where 2973
 s : ℝ 2974
 s = K' · ε 2975
 st-s : st s 2976

163

 st-s = st-fun _ _ (_·_ K') ε (st-fun _ _ _·_ K' st-· st-K') st-ε 2977
 positive-s : 0r < s 2978
 positive-s = step-3 where 2979
 step-1 : K' · 0r < s 2980
 step-1 = <-mult 0r ε K' positive-K' positive-ε 2981
 step-2 : K' · 0r ≡ 0r 2982
 step-2 = ·-null-left 2983
 step-3 : 0r < s 2984
 step-3 = transport step-2 {λ x → x < s} step-1 2985
 dxy-under-s : distance x y < s 2986
 dxy-under-s = x-near-y s st-s positive-s 2987
 kdxy-under-ks : K · distance x y < K · s 2988
 kdxy-under-ks = <-mult (distance x y) s K positive-K (x-near-y s st-s positive-s) 2989
 kK'ε-equals-ε : K · s ≡ ε 2990
 kK'ε-equals-ε = tran (tran step-1 step-2) step-3 where 2991
 step-1 : K · (K' · ε) ≡ (K · K') · ε 2992
 step-1 = sym ·-assoc 2993
 step-2 : (K · K') · ε ≡ 1r · ε 2994
 step-2 = cong (λ x → x · ε) (·-inverse-right (λ _ → positive-K)) 2995
 step-3 : 1r · ε ≡ ε 2996
 step-3 = ·-unit-left 2997
 kdxy-under-ε : K · distance x y < ε 2998
 kdxy-under-ε = transport kK'ε-equals-ε {λ p → (K · distance x y) < p} kdxy-under-ks 2999
 agx-near-agy : distance (act g x) (act g y) < ε 3000
 agx-near-agy = by-cases _ case-1 case-2 (lipschitz g x y) where 3001
 case-1 : distance (act g x) (act g y) ≡ K · distance x y → 3002
 distance (act g x) (act g y) < ε 3003
 case-1 p = transport (sym p) {λ p → p < ε} kdxy-under-ε 3004
 case-2 : distance (act g x) (act g y) < K · distance x y → 3005
 distance (act g x) (act g y) < ε 3006
 case-2 p = <-tran _ _ _ p kdxy-under-ε 3007
 3008
 -- We prove that continuity of the action over a compact manifold implies uniform 3009
continuity. 3010
 -- TODO: move this proof to a more appropriate module. 3011
 S-uniform-continuity : ∀ (g : H) → ∀ (x : M) → ∀ (y : M) → nearby x y → nearby (act g x) 3012
(act g y) 3013
 S-uniform-continuity g x y x-near-y = fx-near-fy where 3014
 x' : M 3015
 x' = proj₁ (compact x) 3016
 st-x' : st x' 3017
 st-x' = proj₁ (proj₂ (compact x)) 3018
 x'-near-x : nearby x' x 3019
 x'-near-x = proj₂ (proj₂ (compact x)) 3020
 x'-near-y : nearby x' y 3021
 x'-near-y = transitive _ _ _ x'-near-x x-near-y 3022
 fx'-near-fx : nearby (act g x') (act g x) 3023
 fx'-near-fx = S-continuity g x' st-x' x x'-near-x 3024
 fx'-near-fy : nearby (act g x') (act g y) 3025
 fx'-near-fy = S-continuity g x' st-x' y x'-near-y 3026
 fx-near-fy : nearby (act g x) (act g y) 3027
 fx-near-fy = transitive _ _ _ (symmetric _ _ fx'-near-fx) fx'-near-fy 3028
 3029
 -- Group approximations of standard groups preserve and reflect unit elements. 3030
 ι-preserves-unit : ι 1H 1G 3031
 ι-preserves-unit = Map-preserves-unit st-G# 3032
 3033
 ι-preserves-unit-Target : ∀ (g : G) → st g → ι 1H g → g ≡ 1G 3034
 ι-preserves-unit-Target = Map-preserves-unit-Target st-G# 3035
 3036
 -- We wish to apply the Extension Theorem to extend the action. 3037
 -- To do that, we prove that a group approximation between H and G 3038
 -- induces an appropriate set approximation between products (H × M) 3039
 -- and (G × M). 3040
 ι' : (H ∧ M) → G ∧ M → ESet 3041
 ι' hm₁ gm₂ = ι (proj₁ hm₁) (proj₁ gm₂) *∧* internal (proj₂ hm₁ ≡ proj₂ gm₂) 3042
 -- ι' (h , m₁) (g , m₂) = ι h g ∧* internal (m₁ ≡ m₂) 3043
 3044
 ι'-exists : ∀ (gm : G ∧ M) → st gm → ∃* λ (hm : H ∧ M) → ι' hm gm 3045
 ι'-exists gm st-gm = (h , m) , ι'-hm-gm where 3046
 g : G 3047
 g = proj₁ gm 3048
 m : M 3049
 m = proj₂ gm 3050
 st-g : st g 3051

164

 st-g = lemma-proj₁ (g , m) st-gm 3052
 st-m : st m 3053
 st-m = lemma-proj₂ (g , m) st-gm 3054
 h : H 3055
 h = proj₁ (Map-exists g st-g) 3056
 ι-h-g : ι h g 3057
 ι-h-g = proj₂ (Map-exists g st-g) 3058
 ι'-hm-gm : ι' (h , m) (g , m) 3059
 ι'-hm-gm = ι-h-g , fromInternal refl 3060
 3061
 ι'-unique-Source : ∀ (gm : G ∧ M) → st gm → 3062
 ∀ (h₁m : H ∧ M) → ι' h₁m gm → 3063
 ∀ (h₂m : H ∧ M) → ι' h₂m gm → 3064
 h₁m ≡ h₂m 3065
 ι'-unique-Source gm st-gm h₁m ι-h₁m-gm h₂m ι-h₂m-gm = 3066
 h₁m-equals-h₂m where 3067
 g : G 3068
 g = proj₁ gm 3069
 m : M 3070
 m = proj₂ gm 3071
 h₁ : H 3072
 h₁ = proj₁ h₁m 3073
 m₁ : M 3074
 m₁ = proj₂ h₁m 3075
 h₂ : H 3076
 h₂ = proj₁ h₂m 3077
 m₂ : M 3078
 m₂ = proj₂ h₂m 3079
 st-g : st g 3080
 st-g = lemma-proj₁ (g , m) st-gm 3081
 st-m : st m 3082
 st-m = lemma-proj₂ (g , m) st-gm 3083
 m₁-equals-m : m₁ ≡ m 3084
 m₁-equals-m = toInternal _ (proj₂ ι-h₁m-gm) 3085
 m₂-equals-m : m₂ ≡ m 3086
 m₂-equals-m = toInternal _ (proj₂ ι-h₂m-gm) 3087
 m₁-equals-m₂ : m₁ ≡ m₂ 3088
 m₁-equals-m₂ = tran m₁-equals-m (sym m₂-equals-m) 3089
 h₁-equals-h₂ : h₁ ≡ h₂ 3090
 h₁-equals-h₂ = Map-unique-Source g st-g h₁ (proj₁ ι-h₁m-gm) h₂ (proj₁ ι-h₂m-gm) 3091
 pair : H → M → H ∧ M 3092
 pair x y = (x , y) 3093
 product-lemma : ∀ {x₁ x₂ : H} → ∀ {y₁ y₂ : M} → 3094
 x₁ ≡ x₂ → y₁ ≡ y₂ → (pair x₁ y₁) ≡ (pair x₂ y₂) 3095
 product-lemma = lemma-product-equality 3096
 h₁m-equals-h₂m : (h₁ , m₁) ≡ (h₂ , m₂) 3097
 h₁m-equals-h₂m = product-lemma h₁-equals-h₂ m₁-equals-m₂ 3098
 3099
 ι'-unique-Target : ∀ (g₁m : G ∧ M) → st g₁m → 3100
 ∀ (g₂m : G ∧ M) → st g₂m → 3101
 ∀ (hm : H ∧ M) → ι' hm g₁m → ι' hm g₂m → 3102
 g₁m ≡ g₂m 3103
 ι'-unique-Target g₁m st-g₁m g₂m st-g₂m hm ι'-hm-g₁m ι'-hm-g₂m = 3104
 g₁m-equals-g₂m where 3105
 g₁ : G 3106
 g₁ = proj₁ g₁m 3107
 m₁ : M 3108
 m₁ = proj₂ g₁m 3109
 g₂ : G 3110
 g₂ = proj₁ g₂m 3111
 m₂ : M 3112
 m₂ = proj₂ g₂m 3113
 h : H 3114
 h = proj₁ hm 3115
 m : M 3116
 m = proj₂ hm 3117
 st-g₁ : st g₁ 3118
 st-g₁ = lemma-proj₁ (g₁ , m₁) st-g₁m 3119
 st-g₂ : st g₂ 3120
 st-g₂ = lemma-proj₁ (g₂ , m₂) st-g₂m 3121
 st-m₁ : st m₁ 3122

165

 st-m₁ = lemma-proj₂ (g₁ , m₁) st-g₁m 3123
 st-m₂ : st m₂ 3124
 st-m₂ = lemma-proj₂ (g₂ , m₂) st-g₂m 3125
 m₁-equals-m : m ≡ m₁ 3126
 m₁-equals-m = toInternal _ (proj₂ ι'-hm-g₁m) 3127
 m₂-equals-m : m ≡ m₂ 3128
 m₂-equals-m = toInternal _ (proj₂ ι'-hm-g₂m) 3129
 m₁-equals-m₂ : m₁ ≡ m₂ 3130
 m₁-equals-m₂ = tran (sym m₁-equals-m) (m₂-equals-m) 3131
 ι-h-g₁ : ι h g₁ 3132
 ι-h-g₁ = proj₁ ι'-hm-g₁m 3133
 ι-h-g₂ : ι h g₂ 3134
 ι-h-g₂ = proj₁ ι'-hm-g₂m 3135
 g₁-equals-g₂ : g₁ ≡ g₂ 3136
 g₁-equals-g₂ = Map-unique-Target g₁ st-g₁ g₂ st-g₂ h ι-h-g₁ ι-h-g₂ 3137
 pair : G → M → G ∧ M 3138
 pair x y = (x , y) 3139
 product-lemma : ∀ {x₁ x₂ : G} → ∀ {y₁ y₂ : M} → 3140
 x₁ ≡ x₂ → y₁ ≡ y₂ → (pair x₁ y₁) ≡ (pair x₂ y₂) 3141
 product-lemma = lemma-product-equality 3142
 g₁m-equals-g₂m : (g₁ , m₁) ≡ (g₂ , m₂) 3143
 g₁m-equals-g₂m = product-lemma g₁-equals-g₂ m₁-equals-m₂ 3144
 3145
 st-G∧M : st (G ∧ M) 3146
 st-G∧M = st-fun _ _ (_∧_ G) M (st-fun _ _ _∧_ G st-∧ st-G) st-M 3147
 3148
 A#∧M : Approximation (H ∧ M) (G ∧ M) 3149
 A#∧M = record { Map = ι' 3150
 ; isApproximation = record { Target-st = st-G∧M 3151
 ; Map-exists = ι'-exists 3152
 ; Map-unique-Source = ι'-unique-Source 3153
 ; Map-unique-Target = ι'-unique-Target 3154
 } 3155
 } 3156
 -- Now we can invoke the extension theorem to extend the action to a map G × M → M. 3157
 by-extension : ExtensionTheorem 3158
 by-extension = 3159
 record { G = G ∧ M 3160
 ; H = H ∧ M 3161
 ; A = A#∧M 3162
 ; M# = record 3163
 { Carrier = M 3164
 ; nearby = nearby 3165
 ; isHausdorffSpace = isHausdorffSpace 3166
 ; isCompactSpace = isCompactSpace 3167
 } 3168
 ; st-M = st-M 3169
 ; f = λ hm → act (proj₁ hm) (proj₂ hm) } 3170
 open ExtensionTheorem by-extension hiding (G; H; A; M#; st-M; f) renaming 3171
 (f' to act-G 3172
 ; st-f' to st-act-G 3173
 ; f'-exists to act-G-exists 3174
 ; f'-exists-st to act-G-exists-st 3175
 ; f'-unique to act-G-unique 3176
) 3177
 3178
 -- The extension theorem extends the action with signature H × M → M to a 3179
 -- function with signature G × M → M. Here we prove the result standard-valued. 3180
 act' : G → M → M 3181
 act' g m = proj₁ (act-G-exists (g , m)) 3182
 3183
 act'-property : ∀ (g : G) → ∀ (m : M) → act-G ((g , m) , act' g m) 3184
 act'-property g m = proj₂ (act-G-exists (g , m)) 3185
 3186
 act'-st-valued : ∀ (g : G) → st g → ∀ (m : M) → st m → st (act' g m) 3187
 act'-st-valued g st-g m st-m = st-act'-g-m where 3188
 gm : G ∧ M 3189
 gm = (g , m) 3190
 sm : ∃* λ (m' : M) → st m' *∧* internal (act-G ((g , m) , m')) 3191
 sm = act-G-exists-st (g , m) (lemma-pairing g m st-g st-m) 3192
 st-sm : st (proj₁ sm) 3193
 st-sm = proj₁ (proj₂ sm) 3194
 f'-gm-sm : act-G (gm , (proj₁ sm)) 3195

166

 f'-gm-sm = toInternal _ (proj₂ (proj₂ sm)) 3196
 sm-equals-act-G-m : proj₁ sm ≡ act' g m -- act-G ((g , m) , ?) 3197
 sm-equals-act-G-m = act-G-unique (g , m) (proj₁ sm) (act' g m) f'-gm-sm (act'-property g 3198
m) 3199
 st-act'-g-m : st (act' g m) 3200
 st-act'-g-m = transport* sm-equals-act-G-m {st} st-sm 3201
 3202
 act'-property-st : ∀ (g : G) → st g → ∀ (m : M) → st m → 3203
 ∃* λ (hm : H ∧ M) → ι' hm (g , m) *∧* nearby (act' g m) (act (proj₁ hm) 3204
(proj₂ hm)) 3205
 act'-property-st g st-g m st-m = 3206
 ax-Standard-2 _ ((g , m) , act' g m) act-G-pair (act'-property g m) where 3207
 st-gm : st (g , m) 3208
 st-gm = lemma-pairing g m st-g st-m 3209
 act-G-pair : st ((g , m) , act' g m) 3210
 act-G-pair = lemma-pairing (g , m) (act' g m) st-gm (act'-st-valued g st-g m st-m) 3211
 3212
 -- The main lemma: if h approximates g, then the result of the action of h 3213
 -- lies near the result of the action of g. 3214
 act'-lemma : ∀ (g : G) → st g → ∀ (m : M) → st m → ∀ (h : H) → ι h g → 3215
 nearby (act' g m) (act h m) 3216
 act'-lemma g st-g m st-m h ι-h-g = agm-near-ahm where 3217
 ι'-hm-gm : ι' (h , m) (g , m) 3218
 ι'-hm-gm = ι-h-g , fromInternal refl 3219
 hm'-exists : ∃* λ (hm' : H ∧ M) → ι' hm' (g , m) *∧* nearby (act' g m) (act (proj₁ hm') 3220
(proj₂ hm')) 3221
 hm'-exists = act'-property-st g st-g m st-m 3222
 h' : H 3223
 h' = proj₁ (proj₁ hm'-exists) 3224
 m' : M 3225
 m' = proj₂ (proj₁ hm'-exists) 3226
 ι'-hm'-gm : ι' (h' , m') (g , m) 3227
 ι'-hm'-gm = proj₁ (proj₂ hm'-exists) 3228
 hm'-equals-hm : (h' , m') ≡ (h , m) 3229
 hm'-equals-hm = 3230
 ι'-unique-Source (g , m) (lemma-pairing g m st-g st-m) (h' , m') ι'-hm'-gm (h , m) ι'-3231
hm-gm 3232
 h'-equals-h : h' ≡ h 3233
 h'-equals-h = cong proj₁ hm'-equals-hm 3234
 m'-equals-m : m' ≡ m 3235
 m'-equals-m = cong proj₂ hm'-equals-hm 3236
 agm-near-ahm' : nearby (act' g m) (act h' m') 3237
 agm-near-ahm' = proj₂ (proj₂ hm'-exists) 3238
 agm-near-ahm : nearby (act' g m) (act h m) 3239
 agm-near-ahm = 3240
 transport* h'-equals-h {λ z → nearby (act' g m) (act z m)} 3241
 (transport* m'-equals-m {λ z → nearby (act' g m) (act h' z)} agm-near-ahm') 3242
 3243
 -- First we prove that the identity acts via the identity function. 3244
 act'-identity-st : ∀ (m : M) → st m → internal (act' 1G m ≡ m) 3245
 act'-identity-st m st-m = fromInternal a1Gm-equals-m where 3246
 a1Gm-near-a1Hm : nearby (act' 1G m) (act 1H m) 3247
 a1Gm-near-a1Hm = act'-lemma 1G st-1G m st-m 1H ι-preserves-unit 3248
 a1Gm-near-m : nearby (act' 1G m) m 3249
 a1Gm-near-m = transport* (action-identity m) {λ z → nearby (act' 1G m) z} a1Gm-near-a1Hm 3250
 a1Gm-equals-m : act' 1G m ≡ m 3251
 a1Gm-equals-m = hausdorff (act' 1G m) st-a1Gm m st-m m a1Gm-near-m (reflexive m) where 3252
 st-a1Gm : st (act' 1G m) 3253
 st-a1Gm = act'-st-valued 1G st-1G m st-m 3254
 3255
 act'-identity : ∀ (m : M) → act' 1G m ≡ m 3256
 act'-identity = ax-Transfer-EI (∀' M (λ m → int' (act' 1G m ≡ m))) act'-identity-st std-Φ 3257
where 3258
 Φ : TransferPred 3259
 Φ = ∀' M λ m → int' (act' 1G m ≡ m) 3260
 std-Φ : st M *∧* ∀ (m : M) → st m → st (act' 1G m ≡ m) 3261
 std-Φ = st-M , λ m st-m → 3262
 st-fun _ _ (eq (act' 1G m)) m 3263
 (st-fun _ _ eq (act' 1G m) st-eq (help1 m st-m)) st-m where 3264
 eq : M → M → Set 3265
 eq = _≡_ 3266
 st-eq : st eq 3267
 st-eq = st-≡-full 3268
 help1 : (m : M) → st m → st (act' 1G m) 3269

167

 help1 m st-m = act'-st-valued 1G st-1G m st-m 3270
 3271
 -- Now we prove that the action is a homomorphism with respect to the operations. 3272
 act'-operation-st : ∀ (g : G) → st g → ∀ (h : G) → st h → ∀ (m : M) → st m → 3273
 internal (act' g (act' h m) ≡ act' (xG g h) m) 3274
 act'-operation-st g st-g h st-h m st-m = fromInternal (sym (a'ghm-equals-a'ga'hm)) where 3275
 -- Book-keeping: We must prove that if g' approximates g and 3276
 -- h' approximates h then g'h' approximates gh. 3277
 gh : G 3278
 gh = xG g h 3279
 st-gh : st gh 3280
 st-gh = st-fun _ _ (xG g) h (st-fun _ _ xG g st-xG st-g) st-h 3281
 g' : H 3282
 g' = proj₁ (Map-exists g st-g) 3283
 ι-g'-g : ι g' g 3284
 ι-g'-g = proj₂ (Map-exists g st-g) 3285
 h' : H 3286
 h' = proj₁ (Map-exists h st-h) 3287
 ι-h'-h : ι h' h 3288
 ι-h'-h = proj₂ (Map-exists h st-h) 3289
 g'h' : H 3290
 g'h' = xH g' h' 3291
 ι-g'h'-gh : ι g'h' gh 3292
 ι-g'h'-gh = Map-homomorphism g' h' g st-g h st-h ι-g'-g ι-h'-h 3293
 -- It follows on one hand that applying gh to m results in a neighbor 3294
 -- of applying g'h' to m. 3295
 a'ghm-near-ag'ah'm : nearby (act' gh m) (act g'h' m) 3296
 a'ghm-near-ag'ah'm = act'-lemma gh st-gh m st-m g'h' ι-g'h'-gh 3297
 ag'h'm-equals-ag'ah'm : act g'h' m ≡ act g' (act h' m) 3298
 ag'h'm-equals-ag'ah'm = sym (action-operation g' h' m) 3299
 one-hand : nearby (act' gh m) (act g' (act h' m)) 3300
 one-hand = transport* ag'h'm-equals-ag'ah'm {λ z → nearby (act' gh m) z} a'ghm-near-3301
ag'ah'm 3302
 -- It follows on the other hand that the result of applying g' to h' at m 3303
 -- neighbors the same element. 3304
 a'ga'hm-near-ag'a'hm : nearby (act' g (act' h m)) (act g' (act' h m)) 3305
 a'ga'hm-near-ag'a'hm = act'-lemma g st-g (act' h m) (act'-st-valued h st-h m st-m) g' ι-3306
g'-g 3307
 a'hm-near-ah'm : nearby (act' h m) (act h' m) 3308
 a'hm-near-ah'm = act'-lemma h st-h m st-m h' ι-h'-h 3309
 ag'a'hm-near-ag'ah'm : nearby (act g' (act' h m)) (act g' (act h' m)) 3310
 ag'a'hm-near-ag'ah'm = S-uniform-continuity g' (act' h m) (act h' m) a'hm-near-ah'm 3311
 other-hand : nearby (act' g (act' h m)) (act g' (act h' m)) 3312
 other-hand = transitive _ _ _ a'ga'hm-near-ag'a'hm ag'a'hm-near-ag'ah'm 3313
 -- These both satisfy standardness! 3314
 st-one : st (act' gh m) 3315
 st-one = act'-st-valued gh st-gh m st-m 3316
 st-other : st (act' g (act' h m)) 3317
 st-other = act'-st-valued g st-g (act' h m) (act'-st-valued h st-h m st-m) 3318
 -- By Hausdorff separation standard values with common neighbors are equal. 3319
 a'ghm-equals-a'ga'hm : act' gh m ≡ act' g (act' h m) 3320
 a'ghm-equals-a'ga'hm = 3321
 hausdorff (act' gh m) st-one 3322
 (act' g (act' h m)) st-other 3323
 (act g' (act h' m)) one-hand other-hand 3324
 3325
 act'-operation : ∀ (g : G) → ∀ (h : G) → ∀ (m : M) → act' g (act' h m) ≡ act' (xG g h) m 3326
 act'-operation = ax-Transfer-EI Φ act'-operation-st std-Φ where 3327
 Φ : TransferPred 3328
 Φ = ∀' G λ g → ∀' G λ h → ∀' M λ m → int' (act' g (act' h m) ≡ act' (xG g h) m) 3329
 eq : M → M → Set 3330
 eq = _≡_ 3331
 st-eq : st eq 3332
 st-eq = st-≡-full 3333
 st-one : ∀ (g h : G) → ∀ (m : M) → st g → st h → st m → st (act' (xG g h) m) 3334
 st-one g h m st-g st-h st-m = 3335
 act'-st-valued (xG g h) (st-fun _ _ (xG g) h (st-fun _ _ xG g st-xG st-g) st-h) m st-m 3336
 st-other : ∀ (g h : G) → ∀ (m : M) → st g → st h → st m → st (act' g (act' h m)) 3337
 st-other g h m st-g st-h st-m = act'-st-valued g st-g (act' h m) (act'-st-valued h st-h m 3338
st-m) 3339
 std-Φ : st G *∧* ∀ (g : G) → st g → st G *∧* ∀ (h : G) → st h → st M *∧* 3340
 ∀ (m : M) → st m → st (act' g (act' h m) ≡ act' (xG g h) m) 3341
 std-Φ = st-G , λ g st-g → 3342
 st-G , λ h st-h → 3343
 st-M , λ m st-m → st-fun _ _ (eq (act' g (act' h m))) (act' (xG g h) m) 3344

168

 (st-fun _ _ eq (act' g (act' h m)) st-eq (st-other g h m st-g st-h st-m)) 3345
 (st-one g h m st-g st-h st-m) 3346
 -- At this point we know that act' has all the properties of an action of G on M. 3347
 -- But it might be a trivial action - we have to rule that out! 3348
 3349
 -- Before discussing faithfulness, we note that act' is a standard action, and therefore 3350
 -- it satisfies both S-continuity and ε-δ continuity. 3351
 3352
 act'-lipschitz-st! : ∀ (g : G) → st g → 3353
 ∀ (x : M) → st x → 3354
 ∀ (y : M) → st y → internal (3355
 distance (act' g x) (act' g y) ≤ᵣ (K · distance x y) 3356
) 3357
 act'-lipschitz-st! g st-g x st-x y st-y = fromInternal difference-0 where 3358
 h : H 3359
 h = proj₁ (Map-exists g st-g) 3360
 ι-h-g : ι h g 3361
 ι-h-g = proj₂ (Map-exists g st-g) 3362
 difference-ε-st : ∀ (ε : ℝ) → st ε → 0r < ε → distance (act' g x) (act' g y) ≤ᵣ K · 3363
distance x y + ε 3364
 difference-ε-st ε st-ε positive-ε = by-cases _ case-1 case-2 (lipschitz h y x) where 3365
 ε/2 : ℝ 3366
 ε/2 = ε /2r 3367
 st-ε/2 : st ε/2 3368
 st-ε/2 = st-/2r-v ε st-ε 3369
 positive-ε/2 : 0r < ε/2 3370
 positive-ε/2 = pos-/2r-v ε positive-ε 3371
 case-2 : distance (act h y) (act h x) < K · distance y x → 3372
 distance (act' g x) (act' g y) ≤ᵣ K · distance x y + ε 3373
 case-2 final-1 = inr final-13 where 3374
 final-2 : distance (act h y) (act h x) < K · distance x y 3375
 final-2 = transport (symmetry y x) {λ z → distance (act h y) (act h x) < K · z} final-3376
1 3377
 final-3 : distance (act' g x) (act h x) < ε/2 3378
 final-3 = act'-lemma g st-g x st-x h ι-h-g ε/2 st-ε/2 positive-ε/2 3379
 final-4 : distance (act h x) (act' g x) < ε/2 3380
 final-4 = transport (symmetry (act' g x) (act h x)) {λ z → z < ε/2} final-3 3381
 final-5 : distance (act h y) (act h x) + distance (act h x) (act' g x) < K · distance 3382
x y + ε/2 3383
 final-5 = <-plus-both (distance (act h y) (act h x)) _ _ _ final-2 final-4 3384
 final-6 : distance (act h y) (act' g x) < K · distance x y + ε/2 3385
 final-6 = triangle (act h y) (act h x) (act' g x) (K · distance x y + ε/2) final-5 3386
 final-7 : distance (act' g y) (act h y) < ε/2 3387
 final-7 = act'-lemma g st-g y st-y h ι-h-g ε/2 st-ε/2 positive-ε/2 3388
 final-8 : distance (act h y) (act' g y) < ε/2 3389
 final-8 = transport (symmetry (act' g y) (act h y)) {λ z → z < ε/2} final-7 3390
 final-9 : distance (act' g x) (act h y) < K · distance x y + ε/2 3391
 final-9 = transport (symmetry (act h y) (act' g x)) {λ z → z < K · distance x y + ε/2} 3392
final-6 3393
 final-10 : 3394
 distance (act' g x) (act h y) + distance (act h y) (act' g y) < (K · distance x y + 3395
ε/2) + ε/2 3396
 final-10 = <-plus-both (distance (act' g x) (act h y)) _ _ _ final-9 final-8 3397
 final-11 : distance (act' g x) (act' g y) < (K · distance x y + ε/2) + ε/2 3398
 final-11 = triangle (act' g x) (act h y) (act' g y) 3399
 ((K · distance x y + ε/2) + ε/2) final-10 3400
 final-12 : distance (act' g x) (act' g y) < K · distance x y + ε/2 + ε/2 3401
 final-12 = transport +-assoc {λ z → distance (act' g x) (act' g y) < z} final-11 3402
 final-13 : distance (act' g x) (act' g y) < K · distance x y + ε 3403
 final-13 = 3404
 transport (/2r-half {ε}) {λ z → distance (act' g x) (act' g y) < K · distance x y + 3405
z} final-12 3406
 3407
 case-1 : distance (act h y) (act h x) ≡ K · distance y x → 3408
 distance (act' g x) (act' g y) ≤ᵣ K · distance x y + ε 3409
 case-1 final-1 = final-x12 where 3410
 final-x1 : 3411
 distance (act' g x) (act' g y) ≤ᵣ distance (act' g x) (act h y) + distance (act h y) 3412
(act' g y) 3413
 final-x1 = triangle-≤ᵣ (act' g x) (act h y) (act' g y) 3414
 final-x2 : 3415
 distance (act h y) (act' g x) ≤ᵣ distance (act h y) (act h x) + distance (act h x) 3416
(act' g x) 3417
 final-x2 = triangle-≤ᵣ (act h y) (act h x) (act' g x) 3418
 final-x3 : 3419

169

 distance (act' g x) (act' g y) ≤ᵣ distance (act h y) (act' g x) + distance (act h y) 3420
(act' g y) 3421
 final-x3 = transport (symmetry (act' g x) (act h y)) 3422
 {λ p → distance (act' g x) (act' g y) ≤ᵣ p + distance (act h y) (act' g 3423
y)} final-x1 3424
 final-x4 : 3425
 distance (act h y) (act' g x) + distance (act h y) (act' g y) ≤ᵣ 3426
 (distance (act h y) (act h x) + distance (act h x) (act' g x)) + distance (act h y) 3427
(act' g y) 3428
 final-x4 = ≤ᵣ-plus _ _ (distance (act h y) (act' g y)) final-x2 3429
 final-x5 : 3430
 distance (act' g x) (act' g y) ≤ᵣ 3431
 (distance (act h y) (act h x) + distance (act h x) (act' g x)) + distance (act h y) 3432
(act' g y) 3433
 final-x5 = ≤ᵣ-tran _ _ _ final-x3 final-x4 3434
 final-x6 : 3435
 distance (act' g x) (act' g y) ≤ᵣ 3436
 distance (act h y) (act h x) + (distance (act h x) (act' g x) + distance (act h y) 3437
(act' g y)) 3438
 final-x6 = transport +-assoc {λ p → distance (act' g x) (act' g y) ≤ᵣ p} final-x5 3439
 final-3 : distance (act' g x) (act h x) < ε/2 3440
 final-3 = act'-lemma g st-g x st-x h ι-h-g ε/2 st-ε/2 positive-ε/2 3441
 final-4 : distance (act h x) (act' g x) < ε/2 3442
 final-4 = transport (symmetry (act' g x) (act h x)) {λ z → z < ε/2} final-3 3443
 final-7 : distance (act' g y) (act h y) < ε/2 3444
 final-7 = act'-lemma g st-g y st-y h ι-h-g ε/2 st-ε/2 positive-ε/2 3445
 final-8 : distance (act h y) (act' g y) < ε/2 3446
 final-8 = transport (symmetry (act' g y) (act h y)) {λ z → z < ε/2} final-7 3447
 final-x7 : 3448
 distance (act h x) (act' g x) + distance (act h y) (act' g y) ≤ᵣ ε/2 + ε/2 3449
 final-x7 = ≤ᵣ-plus-both _ _ _ _ (inr final-4) (inr final-8) 3450
 final-x8 : 3451
 distance (act h x) (act' g x) + distance (act h y) (act' g y) ≤ᵣ ε 3452
 final-x8 = transport (/2r-half {ε}) 3453
 {λ p → distance (act h x) (act' g x) + distance (act h y) (act' g y) ≤ᵣ 3454
p} 3455
 final-x7 3456
 final-x9 : 3457
 distance (act h y) (act h x) + (distance (act h x) (act' g x) + distance (act h y) 3458
(act' g y)) ≤ᵣ 3459
 distance (act h y) (act h x) + ε 3460
 final-x9 = ≤ᵣ-plus-left _ _ (distance (act h y) (act h x)) final-x8 3461
 final-x10 : 3462
 distance (act' g x) (act' g y) ≤ᵣ distance (act h y) (act h x) + ε 3463
 final-x10 = ≤ᵣ-tran _ _ _ final-x6 final-x9 3464
 final-x11 : 3465
 distance (act' g x) (act' g y) ≤ᵣ K · distance y x + ε 3466
 final-x11 = transport final-1 {λ p → distance (act' g x) (act' g y) ≤ᵣ p + ε} final-3467
x10 3468
 final-x12 : 3469
 distance (act' g x) (act' g y) ≤ᵣ K · distance x y + ε 3470
 final-x12 = transport (symmetry y x) {λ p → distance (act' g x) (act' g y) ≤ᵣ K · p + 3471
ε} final-x11 3472
 3473
 difference-ε : ∀ (ε : ℝ) → 0r < ε → distance (act' g x) (act' g y) ≤ᵣ K · distance x y + 3474
ε 3475
 difference-ε = ax-Transfer-EI Φ (λ ε → λ st-ε → fromInternal (difference-ε-st ε st-ε)) 3476
std-Φ where 3477
 Φ : TransferPred 3478
 Φ = ∀' ℝ λ ε → int' (0r < ε → distance (act' g x) (act' g y) ≤ᵣ K · distance x y + ε) 3479
 std-Φ : 3480
 st ℝ *∧* (∀ (a : ℝ) → st a → st (0r < a → distance (act' g x) (act' g y) ≤ᵣ K · 3481
distance x y + a)) 3482
 std-Φ = 3483
 st-ℝ , λ a st-a → 3484
 st-→ _ (st-fun _ _ (_<_ 0r) a (st-fun _ _ _<_ 0r st-< st-0r) st-a) _ 3485
 (st-fun _ _ (_≤ᵣ_ (distance (act' g x) (act' g y))) 3486
 (K · distance x y + a) 3487
 (st-fun _ _ _≤ᵣ_ (distance (act' g x) (act' g y)) 3488
 st-≤ᵣ (st-fun _ _ (distance (act' g x)) (act' g y) 3489
 (st-fun _ _ distance (act' g x) 3490
 st-distance (act'-st-valued g st-g x st-x)) 3491
 (act'-st-valued g st-g y st-y))) 3492
 (st-fun _ _ (_+_ (K · distance x y)) a 3493
 (st-fun _ _ _+_ (K · distance x y) 3494
 st-+ (st-fun _ _ (_·_ K) (distance x y) 3495

170

 (st-fun _ _ _·_ K st-· st-K) 3496
 (st-fun _ _ (distance x) y (st-fun _ _ distance x st-distance st-x) st-y))) st-a)) 3497
 difference-0 : distance (act' g x) (act' g y) ≤ᵣ K · distance x y 3498
 difference-0 = lemma-ε-of-room-plus-≤ᵣ _ _ difference-ε 3499
 3500
 act'-lipschitz! : ∀ (g : G) → 3501
 ∀ (x : M) → 3502
 ∀ (y : M) → 3503
 distance (act' g x) (act' g y) ≤ᵣ (K · distance x y) 3504
 act'-lipschitz! = ax-Transfer-EI Φ act'-lipschitz-st! std-Φ where 3505
 Φ : TransferPred 3506
 Φ = ∀' G λ g → ∀' M λ x → ∀' M λ y → int' (distance (act' g x) (act' g y) ≤ᵣ K · distance 3507
x y) 3508
 std-Φ : st G *∧* (∀ (g : G) → st g → st M *∧* (∀ (x : M) → st x → st M *∧* (∀ (y : M) → st 3509
y → 3510
 st (distance (act' g x) (act' g y) ≤ᵣ K · distance x y)))) 3511
 std-Φ = st-G , λ g st-g → st-M , λ x st-x → st-M , λ y st-y → 3512
 st-fun _ _ (_≤ᵣ_ (distance (act' g x) (act' g y))) 3513
 (K · distance x y) 3514
 (st-fun _ _ _≤ᵣ_ (distance (act' g x) (act' g y)) 3515
 st-≤ᵣ (st-fun _ _ (distance (act' g x)) (act' g y) 3516
 (st-fun _ _ distance (act' g x) 3517
 st-distance (act'-st-valued g st-g x st-x)) (act'-st-valued g st-g y st-y))) 3518
 (st-fun _ _ (_·_ K) (distance x y) 3519
 (st-fun _ _ _·_ K st-· st-K) (st-fun _ _ (distance x) y 3520
 (st-fun _ _ distance x st-distance st-x) st-y)) 3521
 3522
 act'-S-uniform-continuity : ∀ (g : G) → 3523
 ∀ (x : M) → 3524
 ∀ (y : M) → nearby x y → nearby (act' g x) (act' g y) 3525
 act'-S-uniform-continuity g x y x-near-y ε st-ε positive-ε = agx-near-agy where 3526
 s : ℝ 3527
 s = K' · ε 3528
 st-s : st s 3529
 st-s = st-fun _ _ (_·_ K') ε (st-fun _ _ _·_ K' st-· st-K') st-ε 3530
 positive-s : 0r < s 3531
 positive-s = step-3 where 3532
 step-1 : K' · 0r < s 3533
 step-1 = <-mult 0r ε K' positive-K' positive-ε 3534
 step-2 : K' · 0r ≡ 0r 3535
 step-2 = ·-null-left 3536
 step-3 : 0r < s 3537
 step-3 = transport step-2 {λ x → x < s} step-1 3538
 dxy-under-s : distance x y < s 3539
 dxy-under-s = x-near-y s st-s positive-s 3540
 kdxy-under-ks : K · distance x y < K · s 3541
 kdxy-under-ks = <-mult (distance x y) s K positive-K (x-near-y s st-s positive-s) 3542
 kK'ε-equals-ε : K · s ≡ ε 3543
 kK'ε-equals-ε = tran (tran step-1 step-2) step-3 where 3544
 step-1 : K · (K' · ε) ≡ (K · K') · ε 3545
 step-1 = sym ·-assoc 3546
 step-2 : (K · K') · ε ≡ 1r · ε 3547
 step-2 = cong (λ x → x · ε) (·-inverse-right (λ _ → positive-K)) 3548
 step-3 : 1r · ε ≡ ε 3549
 step-3 = ·-unit-left 3550
 kdxy-under-ε : K · distance x y < ε 3551
 kdxy-under-ε = transport kK'ε-equals-ε {λ p → (K · distance x y) < p} kdxy-under-ks 3552
 agx-near-agy : distance (act' g x) (act' g y) < ε 3553
 agx-near-agy = by-cases _ case-1 case-2 (act'-lipschitz! g x y) where 3554
 case-1 : distance (act' g x) (act' g y) ≡ K · distance x y → 3555
 distance (act' g x) (act' g y) < ε 3556
 case-1 p = transport (sym p) {λ p → p < ε} kdxy-under-ε 3557
 case-2 : distance (act' g x) (act' g y) < K · distance x y → 3558
 distance (act' g x) (act' g y) < ε 3559
 case-2 p = <-tran _ _ _ p kdxy-under-ε 3560
 3561
 act'-continuity : ∀ (g : G) → ∀ (m : M) → 3562
 ∀ (ε : ℝ) → 0r < ε → 3563
 ∃ λ (δ : ℝ) → (0r < δ) ∧ (3564
 ∀ (m' : M) → distance m m' < δ → distance (act' g m) (act' g m') < ε) 3565
 act'-continuity x m ε positive-ε = K' · ε , (positive-K'ε , helper) where 3566
 positive-K'ε : 0r < K' · ε 3567
 positive-K'ε = transport (·-null-left) {λ z → z < K' · ε} (<-mult 0r ε K' positive-K' 3568
positive-ε) 3569
 helper : (m' : M) → distance m m' < K' · ε → distance (act' x m) (act' x m') < ε 3570

171

 helper m' p = step-5 where 3571
 step-1 : distance (act' x m) (act' x m') ≤ᵣ K · distance m m' 3572
 step-1 = act'-lipschitz! x m m' 3573
 step-2 : K · distance m m' < K · (K' · ε) 3574
 step-2 = <-mult _ _ _ positive-K p 3575
 step-3 : K · (K' · ε) ≡ ε 3576
 step-3 = 3577
 tran (sym (·-assoc {K} {K'} {ε})) (3578
 tran (cong (λ z → z · ε) (3579
 ·-inverse-right (λ _ → positive-K))) ·-unit-left) 3580
 step-4 : K · distance m m' < ε 3581
 step-4 = transport step-3 {λ z → K · distance m m' < z} step-2 3582
 step-5 : distance (act' x m) (act' x m') < ε 3583
 step-5 = by-cases _ case-1 case-2 step-1 where 3584
 case-1 : distance (act' x m) (act' x m') ≡ K · distance m m' → 3585
 distance (act' x m) (act' x m') < ε 3586
 case-1 p = transport (sym p) {λ p → p < ε} step-4 3587
 case-2 : distance (act' x m) (act' x m') < K · distance m m' → 3588
 distance (act' x m) (act' x m') < ε 3589
 case-2 p = <-tran _ _ _ p step-4 3590
 3591
 -- We prove that the action G × M → M we constructed satisfies faithfulness on every 3592
 -- finite subgroup X < G. We need ∀X.∀x∈X.∃m∈M. x≠1 → x@m≠m. By internality, it suffices 3593
 -- to prove ∀ˢᵗX.∀ˢᵗx∈X.∃m∈M. x≠1 → x@m≠m, so we establish the latter. 3594
 record Faithfulness : ESet where 3595
 field 3596
 X<G : PeriodicSubgroup G# 3597
 open PeriodicSubgroup X<G renaming 3598
 (Source to X# 3599
 ; Map to emb 3600
 ; Map-identity to emb-identity 3601
 ; Map-operation to emb-operation 3602
 ; Map-injective to emb-injective 3603
 ; Map-power to emb-power 3604
) 3605
 field 3606
 st-X# : st X# 3607
 st-emb : st emb 3608
 open PeriodicGroup X# renaming 3609
 (Carrier to X 3610
 ; identity to 1X 3611
 ; operation to xX 3612
 ; inverse to iX 3613
 ; assoc to X-associative 3614
 ; unit-left to X-unit-left 3615
 ; unit-right to X-unit-right 3616
 ; inverse-left to X-inverse-left 3617
 ; inverse-right to X-inverse-right 3618
 ; order to X-order 3619
 ; order-minimal to X-order-minimal 3620
) 3621
 3622
 st-X : st X 3623
 st-X = st-fun _ _ PeriodicGroup.Carrier X# st-PeriodicGroup-Carrier st-X# 3624
 3625
 st-1X : st 1X 3626
 st-1X = st-fun-d _ _ PeriodicGroup.identity X# st-PeriodicGroup-identity st-X# 3627
 3628
 st-X-order : st X-order 3629
 st-X-order = st-fun-d _ _ PeriodicGroup.order X# st-PeriodicGroup-order st-X# 3630
 3631
 -- We prove that X acts on M using a meet-in-the-middle argument. 3632
 xact : X → M → M 3633
 xact x m = act' (emb x) m 3634
 3635
 xact-st-valued : ∀ (x : X) → st x → ∀ (m : M) → st m → st (act' (emb x) m) 3636
 xact-st-valued x st-x m st-m = act'-st-valued (emb x) (st-fun _ _ emb x st-emb st-x) m st-m 3637
 3638
 xact-identity : ∀ (m : M) → xact 1X m ≡ m 3639
 xact-identity m = tran xact-1X-equals-act'-1G (act'-identity m) where 3640
 xact-1X-equals-act'-1G : xact 1X m ≡ act' 1G m 3641
 xact-1X-equals-act'-1G = transport emb-identity {λ z → xact 1X m ≡ act' z m} refl 3642
 3643
 xact-operation : ∀ (x y : X) (m : M) → xact x (xact y m) ≡ xact (xX x y) m 3644
 xact-operation x y m = tran step-1 step-2 where 3645
 step-1 : xact x (xact y m) ≡ act' (xG (emb x) (emb y)) m 3646

172

 step-1 = act'-operation (emb x) (emb y) m 3647
 step-2 : act' (xG (emb x) (emb y)) m ≡ act' (emb (xX x y)) m 3648
 step-2 = cong (λ z → act' z m) (sym (emb-operation x y)) 3649
 3650
 xact-continuity : ∀ (x : X) → ∀ (m : M) → 3651
 ∀ (ε : ℝ) → 0r < ε → 3652
 ∃ λ (δ : ℝ) → (0r < δ) ∧ (3653
 ∀ (m' : M) → distance m m' < δ → distance (xact x m) (xact x m') < ε) 3654
 xact-continuity x m ε positive-ε = act'-continuity (emb x) m ε positive-ε 3655
 3656
 X-Action : PeriodicDiscreteAction X# M#' 3657
 X-Action = 3658
 record { Map = xact 3659
 ; isPeriodicDiscreteAction = 3660
 record { isGroupAction = 3661
 record { action-identity = xact-identity 3662
 ; action-operation = xact-operation } 3663
 ; continuity = xact-continuity 3664
 } 3665
 } 3666
 3667
 module Given (x : X) (st-x : st x) (x-not-id : x ≡ 1X → ⊥) where 3668
 st-emb-x : st (emb x) 3669
 st-emb-x = st-fun _ _ emb x st-emb st-x 3670
 3671
 -- We have a standard element x ∈ G, so we can pick a h with ι(h,x). 3672
 h : H 3673
 h = proj₁ (Map-exists (emb x) st-emb-x) 3674
 3675
 ι-h-x : ι h (emb x) 3676
 ι-h-x = proj₂ (Map-exists (emb x) st-emb-x) 3677
 3678
 -- Since x≠1, h≠1. 3679
 3680
 emb-x-not-id : emb x ≡ 1G → ⊥ 3681
 emb-x-not-id emb-x-equals-id = x-not-id (emb-injective _ _ (tran emb-x-equals-id (sym emb-3682
identity))) 3683
 3684
 h-not-id : h ≡ 1H → ⊥ 3685
 h-not-id h-equals-id = emb-x-not-id step-2 where 3686
 step-1 : ι 1H (emb x) 3687
 step-1 = transport* h-equals-id {λ z → ι z (emb x)} ι-h-x 3688
 step-2 : emb x ≡ 1G 3689
 step-2 = Map-unique-Target (emb x) st-emb-x 1G st-1G 1H step-1 ι-preserves-unit 3690
 3691
 -- We prove that ι(h,x) → ι(hⁿ,xⁿ) for all standard n ∈ ℕ. Note that this requires 3692
 -- a style of argument known as external induction, and the implication would not 3693
 -- hold for nonstandard n. 3694
 3695
 ι-hn-xn : ∀ (n : ℕ) → st n → ι (FiniteGroup.power H# h n) (Group.power G# (emb x) n) 3696
 ι-hn-xn n st-n = external-induction 3697
 {λ n → ι (FiniteGroup.power H# h n) (Group.power G# (emb x) n)} 3698
 (Map-preserves-unit st-G#) ψ-inductive n st-n where 3699
 ψ-inductive : ∀ k → st k → ι (FiniteGroup.power H# h k) (Group.power G# (emb x) k) → 3700
 ι (FiniteGroup.power H# h (suc k)) (Group.power G# (emb x) (suc k)) 3701
 ψ-inductive k st-k ι-hk-xk = 3702
 Map-homomorphism h hk (emb x) st-emb-x xk st-xk ι-h-x ι-hk-xk where 3703
 hk : H 3704
 hk = FiniteGroup.power H# h k 3705
 xk : G 3706
 xk = Group.power G# (emb x) k 3707
 st-xk : st xk 3708
 st-xk = 3709
 st-fun _ _ (Group.power G# (emb x)) k 3710
 (st-fun _ _ (Group.power G#) (emb x) 3711
 (st-fun-d _ _ Group.power G# st-Group-power st-G#) st-emb-x) st-k 3712
 3713
 -- Since we have ι(hⁿ,xⁿ) for all standard n∈ℕ, and the order ord(x) belongs to the 3714
 -- standard naturals, it follows that ord(h) < ord(x), and hence ord(h) also belongs 3715
 -- among the standard naturals. 3716
 3717
 h-ordx-equals-1H : FiniteGroup.power H# h (X-order x) ≡ 1H 3718
 h-ordx-equals-1H = step-6 where 3719
 step-1 : ι (FiniteGroup.power H# h (X-order x)) (Group.power G# (emb x) (X-order x)) 3720
 step-1 = ι-hn-xn (X-order x) (st-fun _ _ X-order x st-X-order st-x) 3721

173

 step-2 : PeriodicGroup.power X# x (X-order x) ≡ 1X 3722
 step-2 = PeriodicGroup.order-identity X# x 3723
 step-3 : emb (PeriodicGroup.power X# x (X-order x)) ≡ 1G 3724
 step-3 = tran (cong emb step-2) emb-identity 3725
 step-4 : Group.power G# (emb x) (X-order x) ≡ 1G 3726
 step-4 = tran (sym (emb-power x (X-order x))) step-3 3727
 step-5 : ι (FiniteGroup.power H# h (X-order x)) 1G 3728
 step-5 = transport* step-4 {λ z → ι (FiniteGroup.power H# h (X-order x)) z} 3729
 step-1 3730
 step-6 : FiniteGroup.power H# h (X-order x) ≡ 1H 3731
 step-6 = Map-unique-Source 1G st-1G (FiniteGroup.power H# h (X-order x)) 3732
 step-5 1H (Map-preserves-unit st-G#) 3733
 3734
 h-order : FiniteGroup.order H# h ≤ X-order x 3735
 h-order = 3736
 ℕ-induction {_} {λ n → X-order x ≡ n → FiniteGroup.order H# h ≤ n} case-A case-B (X-3737
order x) refl where 3738
 case-A : X-order x ≡ 0 → FiniteGroup.order H# h ≤ 0 3739
 case-A ordx-equals-0 = absurd (PeriodicGroup.order-nonzero X# x ordx-equals-0) 3740
 case-B : ∀ (k : ℕ) → (X-order x ≡ k → FiniteGroup.order H# h ≤ k) → 3741
 X-order x ≡ suc k → FiniteGroup.order H# h ≤ (suc k) 3742
 case-B k ihyp ord-x-equals-suc-k = step-2 where 3743
 step-1 : FiniteGroup.power H# h (suc k) ≡ 1H 3744
 step-1 = transport ord-x-equals-suc-k {λ n → FiniteGroup.power H# h n ≡ 1H} h-ordx-3745
equals-1H 3746
 step-2 : FiniteGroup.order H# h ≤ suc k 3747
 step-2 = FiniteGroup.order-minimal H# h k step-1 3748
 3749
 open import IST.NewmansTheorem 3750
 3751
 -- We apply the corollary of Newman's theorem to obtain a standard ν 3752
 -- such that for any finite group G, g∈G and faithful discrete action 3753
 -- @ of G on the manifold M, we can find some n < ord(g) and m'∈M 3754
 -- such that gⁿ@m' is ν-far from m'. 3755
 -- In particular, we shall find n < ord(h) and m'∈M such that 3756
 -- hⁿ@m' is ν-far m'. Since ord(h) is standard, so is n. 3757
 3758
 by-newman-1 : ∃ λ (ν : ℝ) → (0r < ν) ∧ (3759
 ∀ (G : FiniteGroup) → 3760
 ∀ (g : FiniteGroup.Carrier G) → 3761
 ∀ (A : DiscreteAction G M#') → 3762
 (g ≡ FiniteGroup.identity G → ⊥) → 3763
 (∀ (x : FiniteGroup.Carrier G) → (x ≡ FiniteGroup.identity G → ⊥) → 3764
 ∃ λ (m : M) → 3765
 DiscreteAction.Map A x m ≡ m → ⊥) → 3766
 ∃ λ (n : ℕ) → ∃ λ (m : M) → 3767
 (n ≤ FiniteGroup.order G g) ∧ 3768
 (ν < distance m (DiscreteAction.Map A (FiniteGroup.power G g n) m))) 3769
 by-newman-1 = 3770
 NewmanSpace.newman-constant M# , (NewmanSpace.isPositive M#) , 3771
 (λ G g A p → NewmanSpace.isNewmanConstant M# G g p A) -- newman-corollary M# 3772
 3773
 ν : ℝ 3774
 ν = proj₁ by-newman-1 3775
 3776
 st-ν : st ν 3777
 st-ν = st-fun _ _ NewmanSpace.newman-constant M# st-NewmanSpace-newman-constant st-M# 3778
 3779
 positive-ν : 0r < ν 3780
 positive-ν = proj₁ (proj₂ by-newman-1) 3781
 3782
 by-newman-2 : 3783
 ∀ (G : FiniteGroup) → 3784
 ∀ (g : FiniteGroup.Carrier G) → 3785
 ∀ (A : DiscreteAction G M#') → 3786
 (g ≡ FiniteGroup.identity G → ⊥) → 3787
 (∀ (x : FiniteGroup.Carrier G) → (x ≡ FiniteGroup.identity G → ⊥) → 3788
 ∃ λ (m : M) → 3789
 DiscreteAction.Map A x m ≡ m → ⊥) → 3790
 ∃ λ (n : ℕ) → ∃ λ (m : M) → 3791
 (n ≤ FiniteGroup.order G g) ∧ 3792
 (ν < distance m (DiscreteAction.Map A (FiniteGroup.power G g n) m)) 3793
 by-newman-2 = proj₂ (proj₂ by-newman-1) 3794
 3795

174

 by-newman-3 : 3796
 ∃ λ (n : ℕ) → ∃ λ (m : M) → 3797
 (n ≤ FiniteGroup.order H# h) ∧ 3798
 (ν < distance m (act (FiniteGroup.power H# h n) m)) 3799
 by-newman-3 = by-newman-2 H# h A# h-not-id act-faithful 3800
 3801
 n' : ℕ 3802
 n' = proj₁ by-newman-3 3803
 3804
 m' : M 3805
 m' = proj₁ (proj₂ by-newman-3) 3806
 3807
 n'-less-than-order : n' ≤ FiniteGroup.order H# h 3808
 n'-less-than-order = proj₁ (proj₂ (proj₂ by-newman-3)) 3809
 3810
 st-n' : st n' 3811
 st-n' = bounded-st (X-order x) (st-fun _ _ X-order x st-X-order st-x) n' 3812
 (≤-tran n' (FiniteGroup.order H# h) (X-order x) n'-less-than-order h-order) 3813
 3814
 hn' : H 3815
 hn' = FiniteGroup.power H# h n' 3816
 3817
 hn'm'-ν-far-from-m' : ν < distance m' (act hn' m') 3818
 hn'm'-ν-far-from-m' = proj₂ (proj₂ (proj₂ by-newman-3)) 3819
 3820
 hn'm'-not-near-m' : nearby (act hn' m') m' → ⊥ 3821
 hn'm'-not-near-m' hn'm'-near-m' = <-asym-1 _ _ step-3 refl where 3822
 step-1 : ν < distance (act hn' m') m' 3823
 step-1 = transport (symmetry m' (act hn' m')) {λ z → ν < z} hn'm'-ν-far-from-m' 3824
 step-2 : distance (act hn' m') m' < ν 3825
 step-2 = hn'm'-near-m' ν st-ν positive-ν 3826
 step-3 : ν < ν 3827
 step-3 = <-tran ν (distance (act hn' m') m') ν step-1 step-2 3828
 3829
 -- The manifold element m'∈M might not satisfy standardness. Fortunately, by the 3830
 -- compactness of M, we can find a standard neighbor m∈M. 3831
 3832
 m : M 3833
 m = proj₁ (compact m') 3834
 3835
 st-m : st m 3836
 st-m = proj₁ (proj₂ (compact m')) 3837
 3838
 m-near-m' : nearby m m' 3839
 m-near-m' = proj₂ (proj₂ (compact m')) 3840
 3841
 hn'm-near-hn'm' : nearby (act hn' m) (act hn' m') 3842
 hn'm-near-hn'm' = S-uniform-continuity hn' m m' m-near-m' 3843
 3844
 hn'm-not-near-m : nearby (act hn' m) m → ⊥ 3845
 hn'm-not-near-m hn'm-near-m = hn'm'-not-near-m' step-3 where 3846
 step-1 : nearby (act hn' m') (act hn' m) 3847
 step-1 = symmetric _ _ hn'm-near-hn'm' 3848
 step-2 : nearby (act hn' m') m 3849
 step-2 = transitive _ _ _ step-1 hn'm-near-m 3850
 step-3 : nearby (act hn' m') m' 3851
 step-3 = transitive _ _ _ step-2 m-near-m' 3852
 3853
 -- By the standardness of m, we have xⁿ@m near hⁿ@m, and since 3854
 -- hⁿ@m lies far from m, so does xⁿ@m. Hence, xⁿ@m ≠ m. 3855
 3856
 xn' : X 3857
 xn' = PeriodicGroup.power X# x n' 3858
 3859
 st-xn' : st xn' 3860
 st-xn' = st-fun _ _ (PeriodicGroup.power X# x) n' 3861
 (st-fun _ _ (PeriodicGroup.power X#) x 3862
 (st-fun-d _ _ PeriodicGroup.power X# st-PeriodicGroup-power st-X#) st-x) st-n' 3863
 3864
 xn'm-near-hn'm : nearby (xact xn' m) (act hn' m) 3865
 xn'm-near-hn'm = act'-lemma (emb xn') st-emb-xn' m st-m hn' ι-hn'-xn' where 3866
 st-emb-xn' : st (emb xn') 3867
 st-emb-xn' = st-fun _ _ emb xn' st-emb 3868
 (st-fun _ _ (PeriodicGroup.power X# x) n' 3869
 (st-fun _ _ (PeriodicGroup.power X#) x 3870

175

 (st-fun-d _ _ PeriodicGroup.power X# st-PeriodicGroup-power st-X#) st-x) st-n') 3871
 ι-hn'-xn' : ι hn' (emb xn') 3872
 ι-hn'-xn' = transport* (sym (emb-power x n')) {λ z → ι hn' z} (ι-hn-xn n' st-n') 3873
 3874
 xn'm-not-near-m : nearby (xact xn' m) m → ⊥ 3875
 xn'm-not-near-m xn'm-near-m = hn'm-not-near-m step-2 where 3876
 step-1 : nearby (act hn' m) (xact xn' m) 3877
 step-1 = symmetric _ _ xn'm-near-hn'm 3878
 step-2 : nearby (act hn' m) m 3879
 step-2 = transitive _ _ _ step-1 xn'm-near-m 3880
 3881
 xn'm-not-equals-m : xact xn' m ≡ m → ⊥ 3882
 xn'm-not-equals-m xn'm-equals-m = xn'm-not-near-m xn'm-near-m where 3883
 xn'm-near-m : nearby (xact xn' m) m 3884
 xn'm-near-m = transport* (sym xn'm-equals-m) {λ z → nearby z m} (reflexive m) 3885
 3886
 -- From xⁿ@m ≠ m, it follows that x@m ≠ m. We chose x arbitrarily, so we get 3887
 -- faithfulness. 3888
 3889
 xm-not-equals-m : xact x m ≡ m → ⊥ 3890
 xm-not-equals-m xm-equals-m = 3891
 xn'm-not-equals-m (PeriodicDiscreteAction.power-faithful X-Action x m n' xm-equals-m) 3892
 3893
 exists-xm-not-equals-m : ∃* λ (m : M) → (st m) *∧* internal (xact x m ≡ m → ⊥) 3894
 exists-xm-not-equals-m = m , st-m , fromInternal xm-not-equals-m 3895
 open Given 3896
 3897
 faithfulness-st : ∀ (x : X) → st x → (x ≡ 1X → ⊥) → 3898
 ∃* λ (m : M) → (st m) *∧* internal (xact x m ≡ m → ⊥) 3899
 faithfulness-st = exists-xm-not-equals-m 3900
 3901
 faithfulness-var : ∀ (x : X) → st x → ∃* λ (m : M) → (st m) *∧* internal ((x ≡ 1X → ⊥) → 3902
xact x m ≡ m → ⊥) 3903
 faithfulness-var x st-x = by-cases* _ case-1 case-2 (excluded-middle (x ≡ 1X)) where 3904
 zm : M 3905
 zm = NewmanSpace.inhabitant M# 3906
 st-zm : st zm 3907
 st-zm = st-fun-d _ _ NewmanSpace.inhabitant M# st-NewmanSpace-inhabitant st-M# 3908
 case-1 : x ≡ 1X → 3909
 ∃* λ (m : M) → (st m) *∧* internal ((x ≡ 1X → ⊥) → xact x m ≡ m → ⊥) 3910
 case-1 x-equals-1 = zm , st-zm , fromInternal (λ x-neq-1 → absurd (x-neq-1 x-equals-1)) 3911
 case-2 : (x ≡ 1X → ⊥) → 3912
 ∃* λ (m : M) → (st m) *∧* internal ((x ≡ 1X → ⊥) → xact x m ≡ m → ⊥) 3913
 case-2 x-neq-1 = vm , st-vm , fromInternal (λ z → step-2) where 3914
 step-1 : ∃* (λ m₁ → st m₁ *∧* internal (xact x m₁ ≡ m₁ → ⊥)) 3915
 step-1 = faithfulness-st x st-x x-neq-1 3916
 vm : M 3917
 vm = proj₁ step-1 3918
 st-vm : st vm 3919
 st-vm = proj₁ (proj₂ step-1) 3920
 step-2 : xact x vm ≡ vm → ⊥ 3921
 step-2 = toInternal _ (proj₂ (proj₂ step-1)) 3922
 3923
 faithfulness : ∀ (x : X) → ∃ λ (m : M) → (x ≡ 1X → ⊥) → xact x m ≡ m → ⊥ 3924
 faithfulness = ax-Transfer-EI Φ faithfulness-var std-Φ where 3925
 Φ : TransferPred 3926
 Φ = ∀' X λ x → ∃' M λ m → int' ((x ≡ 1X → ⊥) → xact x m ≡ m → ⊥) 3927
 std-Φ : st X *∧* (∀ (a : X) → st a → st M *∧* 3928
 (∀ (e : M) → st e → st ((a ≡ 1X → ⊥) → xact a e ≡ e → ⊥))) 3929
 std-Φ = 3930
 st-X , λ a st-a → st-M , λ e st-e → st-→ (a ≡ 1X → ⊥) 3931
 (st-→ (a ≡ 1X) (st-fun _ _ (_≡_ a) 1X (st-fun _ _ _≡_ a st-≡-full st-a) st-1X) ⊥ st-⊥) 3932
(xact a e ≡ e → ⊥) 3933
 (st-→ (xact a e ≡ e) (st-fun _ _ (_≡_ (xact a e)) e (st-fun _ _ _≡_ (xact a e) 3934
 st-≡-full (xact-st-valued a st-a e st-e)) st-e) ⊥ st-⊥) 3935
 3936

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	The road to Internal Set Theory
	Working in IST
	Topology via predicates

	Structural Approximation
	Motivation
	Approximation in IST
	Action extension
	Snappy groups

	Other results
	Monotone subsequences
	Sheaves

	Mechanization
	Computer-verified proofs
	Extended type theory
	Syntactic properties
	Agda proof

	Bibliography
	Agda Proof of Theorem 2.3.9

