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In the late 1980s, A. Premet conjectured that the variety of nilpotent elements of any
finite dimensional restricted Lie algebra over an algebraically closed field of charac-
teristic p > 0 is irreducible. This conjecture remains open, but it is known to hold
for a large class of simple restricted Lie algebras, e.g. for Lie algebras of connected
algebraic groups, and for Cartan series W,S and H.

In this thesis we start by proving that Premet’s conjecture can be reduced to the
semisimple case. The proof is straightforward. However, the reduction of the semisim-
ple case to the simple case is very non-trivial in prime characteristic as semisimple Lie
algebras are not always direct sums of simple ideals. Then we consider some semisim-
ple restricted Lie algebras. Under the assumption that p > 2, we prove that Premet’s
conjecture holds for the semisimple restricted Lie algebra whose socle involves the spe-
cial linear Lie algebra sl2 tensored by the truncated polynomial ring k[X]/(Xp). Then
we extend this example to the semisimple restricted Lie algebra whose socle involves
S ⊗O(m; 1), where S is any simple restricted Lie algebra such that adS = DerS and
its nilpotent variety N (S) is irreducible, and O(m; 1) = k[X1, . . . , Xm]/(Xp

1 , . . . , X
p
m)

is the truncated polynomial ring in m ≥ 2 variables.
In the final chapter we assume that p > 3. We confirm Premet’s conjecture for

the minimal p-envelope W (1;n)p of the Zassenhaus algebra W (1;n) for all n ∈ N≥2.
This is the main result of the research paper [3] which was published in the Journal
of Algebra and Its Applications.
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Chapter 1

Introduction

The theory of modular Lie algebras begins with E. Witt who discovered a new non-

classical simple Lie algebra W (1; 1) sometime before 1937. It is now called the Witt

algebra. Then H. Zassenhaus generalized the Witt algebra and got a new Lie algebra

W (1;n), called the Zassenhaus algebra. In 1937, N. Jacobson introduced the concept

of “restricted Lie algebras”. Later, more nonclassical Lie algebras were constructed.

In this introductory chapter we first review some basic concepts in the theory of

modular Lie algebras. Then we explain the construction process of a class of nonclas-

sical Lie algebras, namely the Lie algebras of Cartan type. In the end, we introduce

Premet’s conjecture on the variety of nilpotent elements of any finite dimensional re-

stricted Lie algebra over an algebraically closed field of characteristic p > 0. We shall

discuss what have been done so far.

Throughout the thesis we assume that all Lie algebras are finite dimensional, and

k is an algebraically closed field of characteristic p > 0 (unless otherwise specified).

We denote by k∗ the multiplicative group of k. We denote by Fp the finite field with p

elements. We denote by N0 the set of all nonnegative integers, i.e. N0 = {0, 1, 2, . . . }.

1.1 Restricted Lie algebras

Let us first introduce the notion of restricted Lie algebras.

Definition 1.1.1. [12, Definition 4, Sec. 7, Chap. V; 31, Sec. 2.1, Chap. 2] Let g be

a Lie algebra over k. A mapping [p] : g → g, x 7→ x[p] is called a [p]-th power map if

it satisfies

8



1.1. Restricted Lie algebras

1. adx[p] = (adx)p,

2. (λx)[p] = λpx[p],

3. (x+ y)[p] = x[p] + y[p] +
∑p−1

i=1 si(x, y), where the terms si(x, y) ∈ g are such that

(ad(tx+ y))p−1(x) =

p−1∑
i=1

isi(x, y)ti−1

for all x, y ∈ g, λ ∈ k and t a variable. The pair (g, [p]) is referred to as a

restricted Lie algebra.

The third condition in the definition is known as Jacobson’s formula for p-th powers.

A more general form of this formula is given by

Lemma 1.1.1. [30, Lemma 1.1.1] Let (g, [p]) be a restricted Lie algebra over k. Then

for all x1, . . . , xm ∈ g, the following holds:( m∑
i=1

xi

)[p]n

=
m∑
i=1

x
[p]n

i +
n−1∑
l=0

v
[p]l

l ,

where vl is a linear combination of commutators in xi, 1 ≤ i ≤ m. By Jacobi identity,

we can rearrange each vl so that vl is in the span of [wt, [wt−1, [. . . , [w2, [w1, w0] . . . ],

where t = pn−l − 1 and each wj, 0 ≤ j ≤ t, is equal to some xi, 1 ≤ i ≤ m.

Let us give some examples of restricted Lie algebras.

Example 1.1.1. 1. Any associative algebra A over k is a Lie algebra with the Lie

bracket given by [x, y] := xy − yx for all x, y ∈ A. Denote this Lie algebra by

A(−). Then A(−) is a restricted Lie algebra with the [p]-th power map given by

x 7→ xp for all x ∈ A; see [31, Sec. 2.1, Chap. 2] for details. In particular, if

A = Matn(k), the algebra of n × n matrices with entries in k, then the general

linear Lie algebra gln(k) := Matn(k)(−) is a restricted Lie algebra.

2. Let A be any algebra over k (not necessarily associative). The derivation algebra

DerA is a restricted Lie algebra with the [p]-th power map given by D 7→ Dp for

all D ∈ DerA; see [12, Sec. 7, Chap. V] for details. As an example, the Lie alge-

bra g of an algebraic k-group G is a restricted Lie algebra as g is identified with

the subalgebra of left invariant derivations of k[G]; see [10, Sec. 9.1, Chap. III].
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1.1. Restricted Lie algebras

If a [p]-th power map exists on a Lie algebra g, we may ask how many different

[p]-th power maps there are. It turns out that

Lemma 1.1.2. [31, Proposition 2.1, Sec. 2.2, Chap. 2] In a restricted Lie algebra

(g, [p]), every [p]-th power map is of the form x 7→ x[p] + f(x), where f is a map of g

into its centre z(g) satisfying f(λx+ y) = λpf(x) + f(y) for all x, y ∈ g, λ ∈ k.

An immediate corollary is that

Corollary 1.1.1. [31, Corollary 2.2, Sec. 2.2, Chap. 2] If a Lie algebra g is centreless,

then g has at most one [p]-th power map.

Definition 1.1.2. [31, Sec. 2.1, Chap. 2] Let (g, [p]) be a restricted Lie algebra over

k. A subalgebra (respectively an ideal) S of g is called a p-subalgebra (respectively a

p-ideal) if x[p] ∈ S for all x ∈ S.

Examples of p-ideals include the centre z(g) and the radical Rad g. Moreover, if I

and J are p-ideals of g, then so are I + J , I ∩ J , and (I + J)/J ∼= I/(I ∩ J).

Note that if I is a p-ideal of g, then the quotient Lie algebra g/I carries a natural

[p]-th power map given by (x + I)[p] := x[p] + I for all x ∈ g; see [31, Proposition 1.4,

Sec. 2.1, Chap. 2].

Definition 1.1.3. [31, p. 65] Let S be a subset of a restricted Lie algebra (g, [p]).

(i) The intersection of all p-subalgebras of g containing S, denoted Sp, is a p-

subalgebra of g and is referred to as the p-subalgebra generated by S in g. Note

that Sp is the smallest p-subalgebra of g containing S.

(ii) Let i ∈ N0. The image of S under the iterated application of the [p]-th power

map, denoted S[p]i, is defined by

S[p]i := {x[p]i |x ∈ S}.

Let us give an explicit characterization of Sp in the following case.

Lemma 1.1.3. [31, Proposition 1.3(1), Sec. 2.1, Chap. 2] Let (g, [p]) be a restricted

Lie algebra over k, and let H be a subalgebra of g with basis {ej | j ∈ J}. Then the

p-subalgebra of g generated by H is given by

Hp =
∑
i≥0

〈H [p]i〉 =
∑

j∈J,i≥0

ke
[p]i

j .
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1.1. Restricted Lie algebras

Definition 1.1.4. [31, Sec. 2.3, Chap. 2] Let (g, [p]) be a restricted Lie algebra over k.

An element x ∈ g is called semisimple (or p-semisimple) if x ∈ (kx[p])p =
∑

i≥1 kx
[p]i.

If x[p] = x, then x is called toral.

Lemma 1.1.4. [31, Proposition 3.3, Sec. 2.3, Chap. 2] Let (g, [p]) be a restricted Lie

algebra over k. Then the following statements hold:

(i) If x is toral, then x is semisimple.

(ii) If x and y are semisimple and [x, y] = 0, then x+ y is semisimple.

(iii) If x is semisimple, then x[p]i is semisimple for every i ∈ N. Moreover, y is

semisimple for every y ∈ (kx)p.

Definition 1.1.5. [31, Sec. 2.4, Chap. 2] Let (g, [p]) be a restricted Lie algebra over

k. A subalgebra t ⊂ g is called a torus if t is an abelian p-subalgebra of g consisting

of semisimple elements.

Lemma 1.1.5. [31, Theorem 3.6(1), Sec. 2.3, Chap. 2] Let (g, [p]) be a restricted Lie

algebra over k. Then any torus in g has a basis consisting of toral elements.

Definition 1.1.6. [30, Notation 1.2.5] Let (g, [p]) be a restricted Lie algebra over k.

Set

MT(g) := max{dim t | t is a torus of g},

the maximal dimension of tori in g.

Lemma 1.1.6. [30, Lemma 1.2.6(2)] Let (g, [p]) be a restricted Lie algebra over k and

let I be a p-ideal of g. Then the following holds:

MT(g) = MT(g/I) + MT(I).

Note that in a restricted Lie algebra (g, [p]), Cartan subalgebras can be described

by maximal tori.

Definition 1.1.7. [31, Sec. 1.3, Chap. 1] Let L be a Lie algebra over k (not necessarily

restricted). The lower central series of L is the sequence of ideals of L defined as

follows: L1 = L,Li+1 = [L,Li] for i ≥ 1. Then

L = L1 ⊇ L2 ⊇ · · · ⊇ Ln ⊇ . . .

We say that L is nilpotent if Lm = 0 for some m ∈ N.

11



1.2. p-envelopes

Definition 1.1.8. [31, Sec. 1.4, Chap. 1] Let L be a Lie algebra over k (not necessarily

restricted). A subalgebra h of L is called a Cartan subalgebra if it is nilpotent and

equal to its own normalizer, i.e.

h = NL(h) =: {x ∈ L | [x, h] ∈ h for all h ∈ h}.

Theorem 1.1.1. [31, Theorem 4.1, Sec. 2.4, Chap. 2] Let (g, [p]) be a restricted Lie

algebra over k. Let h be a subalgebra of g. The following statements are equivalent:

(i) h is a Cartan subalgebra.

(ii) There exists a maximal torus t in g such that h = cg(t), the centralizer of t in g.

Definition 1.1.9. [31, Sec. 2.1, Chap. 2] Let (g, [p]) be a restricted Lie algebra over

k. An element x ∈ g is called nilpotent (or p-nilpotent) if there is n ∈ N such that

x[p]n = 0 .

We denote by N (g) the variety of all nilpotent elements in g. It is well known that

N (g) is a Zariski closed, conical subset of g.

Theorem 1.1.2 (Jordan-Chevalley Decomposition [31, Theorem 3.5, Chap. 2]).

Let (g, [p]) be a restricted Lie algebra over k. For any x ∈ g, there exist a unique

semisimple element xs ∈ g and a unique nilpotent element xn ∈ g such that x = xs+xn

and [xs, xn] = 0.

It follows from the above theorem that g = N (g) if and only if MT(g) = 0.

1.2 p-envelopes

Let L be a Lie algebra over k. It is useful to embed L into a restricted Lie algebra.

Definition 1.2.1. [31, Sec. 2.5, Chap. 2] Let L be a Lie algebra over k. A triple

(L, [p], i) consisting of a restricted Lie algebra (L, [p]) and a Lie algebra homomorphism

i : L→ L is called a p-envelope of L if i is injective and the p-subalgebra generated by

i(L), denoted (i(L))p, coincides with L.

We often identify L with i(L) ⊂ L. Let us review some properties of p-envelopes.

12



1.3. Gradations and standard filtrations

Theorem 1.2.1. [30, Theorem 1.1.7] Let (L1, [p]1, i1) and (L2, [p]2, i2) be two

p-envelopes of L. Then there exists an isomorphism ψ of restricted Lie algebras

ψ : L1/z(L1)
∼−→ L2/z(L2)

such that ψ ◦ π1 ◦ i1 = π2 ◦ i2, where π1 : L1 → L1/z(L1) and π2 : L2 → L2/z(L2) are

the canonical homomorphisms of restricted Lie algebras.

Definition 1.2.2. [31, Sec. 2.5, Chap. 2] A p-envelope (L, [p], i) of L is called minimal

if z(L) ⊂ z(i(L)).

Theorem 1.2.2. [30, Theorem 1.1.6 and Corollary 1.1.8; 31, Theorem 5.8, Sec. 2.5,

Chap. 2]

(i) If (L, [p], i) is a p-envelope of L, then there exists a minimal p-envelope (H, [p]1, i1)

of L and an ideal J ⊂ z(L) such that L = H ⊕ J and i1 = i (i.e. H ⊂ L).

(ii) Any two minimal p-envelopes of L are isomorphic as ordinary Lie algebras.

(iii) Suppose L is semisimple. Then every minimal p-envelope of L is semisimple,

and all minimal p-envelopes of L are isomorphic as restricted Lie algebras.

Remark 1.2.1. [30, p. 22; 31, p. 97] If L is semisimple, then we can easily describe its

minimal p-envelope. Since L is semisimple, there is an embedding L ∼= adL ↪→ DerL

via the adjoint representation. Then the minimal p-envelope of L is the p-subalgebra

of DerL generated by adL, i.e. (adL)p. To compute (adL)p, we often identify L with

adL.

1.3 Gradations and standard filtrations

Definition 1.3.1. [31, Sec. 3.2, Chap. 3] Let L be a Lie algebra over k. A Z-grading

of L is a collection of subspaces (Li)i∈Z such that

(i) L =
⊕

i∈Z Li and

(ii) [Li, Lj] ⊂ Li+j for all i, j ∈ Z.

If there exist r, s ∈ Z such that L =
⊕s
−r Li, then r (respectively s) is called the depth

(respectively height) of this gradation.

13



1.3. Gradations and standard filtrations

Note that L0 is a Lie subalgebra of L and each subspace Li obtains an L0-module

structure via the adjoint representation.

Definition 1.3.2. [31, Sec. 3.2, Chap. 3] Let (g, [p]) be a restricted Lie algebra over

k. A gradation (gi)i∈Z of g is called restricted if g
[p]
i ⊂ gpi for all i ∈ Z.

Definition 1.3.3. [31, Sec. 1.9, Chap. 1] Let L be a Lie algebra over k. A descending

filtration of L is a collection of subspaces (L(i))i∈Z such that

(i) L(i) ⊃ L(j) if i ≤ j.

(ii) [L(i), L(j)] ⊂ L(i+j) for all i, j ∈ Z.

A filtration is called separating if ∩i∈ZL(i) = {0} and exhaustive if ∪i∈ZL(i) = L. The

notion of ascending filtration is defined similarly.

It is common to use descending filtrations for Lie algebras. Note that L(0) is a

Lie subalgebra of L and each subspace L(i) obtains an L(0)-module structure via the

adjoint representation. If the filtration is exhaustive, then ∩i∈ZL(i) is an ideal of L. If

in addition that L is simple, then either L(i) = L for all i, or the filtration is separating;

see [31, p. 100]. By a result of Weisfeiler [35], we can define standard filtrations.

Definition 1.3.4. [24, Sec. 2.4; 30, Definition 3.5.1] Let L be a Lie algebra over k

and L(0) be a maximal subalgebra of L. Let L(−1) be an L(0)-invariant subspace of L

which contains L(0). Moreover, assume that L(−1)/L(0) is an irreducible L(0)-module.

Set

L(i+1) := {x ∈ L(i) | [x, L(−1)] ⊂ L(i)}, i ≥ 0,

L(−i−1) := [L(−i), L(−1)] + L(−i), i ≥ 1.

The sequence of subspaces (L(i))i∈Z defines a standard filtration on L.

Since L(0) is a maximal subalgebra of L this filtration is exhaustive. If L is simple,

then this filtration is separating. So there are s1 > 0 and s2 ≥ 0 such that

L = L(−s1) ⊃ · · · ⊃ L(0) ⊃ · · · ⊃ L(s2+1) = (0). (1.1)

Theorem 1.3.1. [31, Theorem 1.3, Sec. 3.1, Chap. 3] Let L be a simple Lie algebra

over an algebraically closed field of characteristic p > 3. If there is x ∈ L such that

(adx)p−1 = 0, then there exists a standard filtration as above (1.1).

14



1.4. Graded Lie algebras of Cartan type

It was proved by A. Premet that such x 6= 0 with (ad x)p−1 = 0 always exists

in simple Lie algebras over algebraically closed fields of characteristic p > 3; see [17,

Theorem 1] . Hence they admit a standard filtration.

We can define restricted filtrations in a similar way.

Definition 1.3.5. [31, Sec. 3.1, Chap. 3] Let (g, [p]) be a restricted Lie algebra over

k. A filtration (g(i))i∈Z of g is called restricted if g
[p]
(i) ⊂ g(pi) for all i ∈ Z.

It is useful to note the interrelation between gradations and filtrations; see [31,

Sec. 3.3, Chap. 3]. Given any Z-graded Lie algebra L =
⊕

i∈Z Li, set L(j) :=
⊕

i≥j Li.

Then this Z-grading induces a filtration on L. Conversely, suppose L has a descending

filtration (L(i))i∈Z. We can define the graded Lie algebra grL associated with L. Put

Lj := L(j)/L(j+1) for all j ∈ Z. Then grL :=
⊕

j∈Z Lj. The Lie bracket in grL is given

by

[x+ L(j+1), y + L(l+1)] := [x, y] + L(j+l+1)

for all x ∈ L(j) and y ∈ L(l).

1.4 Graded Lie algebras of Cartan type

In a series of papers, A. Premet and H. Strade have completed the classification of

finite dimensional simple modular Lie algebras and proved the following:

Theorem 1.4.1 (Classification Theorem [25, Theorem 1.1]).

Any finite dimensional simple Lie algebra over an algebraically closed field of charac-

teristic p > 3 is of classical, Cartan or Melikian type.

The classical simple modular Lie algebras include both classical simple (modulo its

centre for slmp) and exceptional Lie algebras over C. They were constructed using a

Chevalley basis by reduction modulo p [4]. The Melikian algebrasM(m,n) depend on

two parameters m,n ∈ N, and they only occur in characteristic 5 [16]. The Lie algebras

of Cartan type provide a large class of nonclassical simple Lie algebras. They are

finite dimensional modular analogues of the four families Witt, special, Hamiltonian,

contact of infinite dimensional complex Lie algebras. Their construction was motivated

by Cartan’s work on pseudogroups. The formal power series algebras over C were

15



1.4. Graded Lie algebras of Cartan type

replaced by divided power algebras over k; see [14] and [15]. Our work relates to Lie

algebras of Cartan type, particularly the general Cartan type Lie algebras. So let us

give a detailed description of these Lie algebras. All definitions and theorems can be

found in [1], [30] and [31].

Notation 1.4.1. [30, Sec. 2.1, Chap. 2; 31, Sec. 3.5, Chap. 3] Let Nm
0 denote the set

of all m-tuples of nonnegative integers. For a = (a1, . . . , am), b = (b1, . . . , bm) ∈ Nm
0 ,

we write

x
(ai)
i :=

1

ai!
xaii , x(a) :=

m∏
i=1

x
(ai)
i ,(

a+ b

b

)
:=

m∏
i=1

(
ai + bi
bi

)
, a! :=

m∏
i=1

ai!,

|a| :=
m∑
i=1

ai.

Definition 1.4.1. [30, Sec. 2.1, Chap. 2] Let O(m) denote the commutative associa-

tive algebra with unit element over k defined by generators x
(r)
i , 1 ≤ i ≤ m, r ≥ 0, and

relations

x
(0)
i = 1, x

(r)
i x

(s)
i =

(
r + s

r

)
x

(r+s)
i , 1 ≤ i ≤ m, r, s ≥ 0.

Then {x(a) | a ∈ Nm
0 } forms a basis of O(m), and O(m) is called the divided power

algebra.

For simplicity, we write x
(1)
i as xi. Some results on binomial coefficients may be

useful.

Lemma 1.4.1. [30, Lemma 2.1.2(1)] For a, b ∈ N, let a =
∑

i≥0 aip
i, b =

∑
i≥0 bip

i,

0 ≤ ai, bi ≤ p− 1, be the p-adic expansions of a and b. Then the following congruence

holds: (
a

b

)
≡
∏
i≥0

(
ai
bi

)
(mod p).

Sketch of proof. Let a and b be as in the lemma. Let Y be a variable. Note that

for any integer n such that 1 ≤ n ≤ p− 1,(
p

n

)
≡ 0 (mod p).
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1.4. Graded Lie algebras of Cartan type

Hence

(1 + Y )p ≡ 1 + Y p (mod p).

In general, one can show by induction that for any i ≥ 1,

(1 + Y )p
i ≡ 1 + Y pi (mod p).

Consider (1 + Y )a and expand it over Z, we get

(1 + Y )a =
∏
i≥0

(1 + Y )aip
i ≡

∏
i≥0

(1 + Y pi)ai (mod p).

Compare the coefficients of Y b on both sides, we get(
a

b

)
≡
∏
i≥0

(
ai
bi

)
(mod p).

This completes the sketch of proof.

Applying the above result, we can prove that

Corollary 1.4.1. Let r ∈ N be such that r ≥ 2 and 1 ≤ s ≤ r − 1. Then for any

0 ≤ i ≤ ps − 1, the following congruence holds:(
pr − ps + i

pr − ps

)
≡ 1 (mod p).

Proof. Let r ∈ N be such that r ≥ 2 and 1 ≤ s ≤ r − 1. Then the p-adic expansion

of pr − ps is

pr − ps =
r−1∑
j=s

(p− 1)pj. (1.2)

Since 0 ≤ i ≤ ps − 1 and the p-adic expansion of ps − 1 is ps − 1 =
∑s−1

j=0(p− 1)pj, it

follows that the p-adic expansion of i is

i =
s−1∑
j=0

ajp
j, (1.3)

where 0 ≤ aj ≤ p − 1 and 0 ≤
∑s−1

j=0 aj ≤ s(p − 1). By (1.2) and (1.3), the p-adic

expansion of pr − ps + i is

pr − ps + i =
s−1∑
j=0

ajp
j +

r−1∑
j=s

(p− 1)pj.

It follows from Lemma 1.4.1 that(
pr − ps + i

pr − ps

)
≡

s−1∏
j=0

(
aj
0

)
·
r−1∏
j=s

(
p− 1

p− 1

)
(mod p) = 1 (mod p).

This completes the proof.

17



1.4. Graded Lie algebras of Cartan type

Note that there is a Z-grading on O(m) given by O(m)i := span{x(a) | |a| = i}.

Hence O(m) =
⊕∞

i=0O(m)i. Put O(m)(j) :=
⊕

i≥j O(m)i. Then this Z-grading

induces a descending filtration on O(m), called the standard filtration.

Definition 1.4.2. [30, Definition 2.1.1] A system of divided powers on O(m)(1) is a

sequence of maps

γr : O(m)(1) → O(m), f 7→ f (r) ∈ O(m),

where r ≥ 0, satisfying

(i) f (0) = 1, f (r) ∈ O(m)(1) for all f ∈ O(m)(1), r > 0,

(ii) f (1) = f for all f ∈ O(m)(1),

(iii) f (r)f (s) = (r+s)!
r!s!

f (r+s) for all f ∈ O(m)(1), r, s ≥ 0,

(iv) (f + g)(r) =
∑r

l=0 f
(l)g(r−l) for all f, g ∈ O(m)(1), r ≥ 0,

(v) (fg)(r) = f rg(r) for all f ∈ O(m), g ∈ O(m)(1), r ≥ 0,

(vi) (f (s))(r) = (rs)!
r!(s!)r

f (rs) for all f ∈ O(m)(1), r ≥ 0, s > 0.

Definition 1.4.3. [30, Definition 2.1.1(2)] A derivation D of O(m) is called special

if D(f (r)) = f (r−1)D(f) for all f ∈ O(m)(1) and r > 0.

For 1 ≤ i ≤ m, set εi = (δi1, . . . , δim). Let ∂i denote the ith partial derivative

defined by ∂i(x
(a)) = x(a−εi) if ai > 0 and 0 otherwise; see [31, p. 132]. We denote by

W (m) the set of all special derivations of O(m). This is a Lie subalgebra of DerO(m)

and it obtains an O(m)-module structure via (fD)(g) := fD(g) for all f, g ∈ O(m)

and D ∈ W (m). Since each D ∈ W (m) is uniquely determined by its effects on

x1, . . . , xm, the Lie algebra W (m) is a free O(m)-module of rank m generated by

the partial derivatives ∂1, . . . , ∂m; see [30, Proposition 2.1.4]. By [31, Lemma 2.1(1),

Sec. 4.2, Chap. 4], we know that for any f, g ∈ O(m) and D,E ∈ W (m),

[fD, gE] = fD(g)E − gE(f)D + fg[D,E]. (1.4)

Since {x(a) ∂i | a ∈ Nm
0 , 1 ≤ i ≤ m} forms a basis for W (m) and [∂i, ∂j] = 0 for any

1 ≤ i, j ≤ m, it follows from (1.4) that the Lie bracket in W (m) is given by

[x(a) ∂i, x
(b) ∂j] =

(
a+ b− εi

a

)
x(a+b−εi) ∂j −

(
a+ b− εj

b

)
x(a+b−εj) ∂i . (1.5)
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1.4. Graded Lie algebras of Cartan type

Note that W (m) inherits a grading and descending filtration from O(m):

W (m)i :=
m⊕
j=1

O(m)i+1 ∂j, W (m)(i) :=
m⊕
j=1

O(m)(i+1) ∂j

for i ≥ −1. Both are called standard.

For any m-tuple n := (n1, . . . , nm) ∈ Nm, define

O(m;n) := span{x(a) | 0 ≤ ai < pni}.

It is easy to see that O(m;n) is a subalgebra of O(m) invariant under ∂i for all

1 ≤ i ≤ m. Moreover, dimO(m;n) = p|n|. The general Cartan type Lie algebra

W (m;n) is the Lie subalgebra of W (m) which normalizes O(m;n). Since O(m;n) is

a subalgebra of O(m), the grading and filtration on O(m;n) induce a grading and

filtration on W (m;n):

W (m;n)i :=
m⊕
j=1

O(m;n)i+1 ∂j, W (m;n)(i) :=
m⊕
j=1

O(m;n)(i+1) ∂j (1.6)

for i ≥ −1. In particular,

W (m;n) =
s⊕

i=−1

W (m;n)i,

where s = (
∑m

i=1 p
ni)−m− 1; see [31, Proposition 2.2(3), Sec. 4.2, Chap. 4].

Theorem 1.4.2. [31, Proposition 5.9, Sec. 3.5, Chap. 3; Proposition 2.2 and Theorem

2.4, Sec. 4.2, Chap. 4]

(i) W (m;n) is a free O(m;n)-module with basis {∂1, . . . , ∂m}.

(ii) The set {x(a) ∂i | 0 ≤ ai < pni , 1 ≤ i ≤ m} forms a basis for W (m;n). Hence

dimW (m;n) = mp|n|.

(iii) W (m;n) is simple unless m = 1 and p = 2.

(iv) W (m;n) is a subalgebra of the restricted Lie algebra DerO(m;n).

(v) W (m;n) is restricted if and only if n = (1, . . . , 1), and in that case D[p] = Dp

for all D ∈ W (m;n) and the gradation is restricted.
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1.4. Graded Lie algebras of Cartan type

We refer to the Lie algebras W (m) or W (m;n) as Lie algebras of Witt type. In

Chapter 3 we will spell out W (m; 1) in more details. By [31, Lemma 2.1(3), Sec. 4.2,

Chap. 4], we know that O(m; 1) is isomorphic to the truncated polynomial ring

k[X1, . . . , Xm]/(Xp
1 , . . . , X

p
m) in m variables. Hence W (m; 1) ∼= DerO(m; 1), and it

is called the mth Jacobson-Witt algebra. In Chapter 4 we will study the Zassenhaus

algebra W (1;n). Note that if char k = p > 2 and n = 1, then W (1;n) coincides with

the Witt algebra W (1; 1), a simple and restricted Lie algebra. If char k = p > 2 and

n ≥ 2, then W (1;n) provides the first example of a simple, non-restricted Lie algebra.

In this case it is useful to consider its minimal p-envelope.

Let us determine the minimal p-envelope of the simple, non-restricted Witt algebra

W (m;n). Since W (m;n) is simple, it follows from Theorem 1.2.2(iii) that all its

minimal p-envelopes are isomorphic as restricted Lie algebras. Moreover, there is an

embedding W (m;n) ∼= adW (m;n) ↪→ DerW (m;n) via the adjoint representation.

By Remark 1.2.1, the minimal p-envelope of W (m;n), denoted W (m;n)[p], is the

p-subalgebra (adW (m;n))p of DerW (m;n) generated by adW (m;n), i.e.

W (m;n) ∼= adW (m;n) ↪→ W (m;n)[p] = (adW (m;n))p ↪→ DerW (m;n);

see Definition 1.1.3 and Lemma 1.1.3 for notations. In [30, Sec. 7.1 and 7.2], H. Strade

computed W (m;n)[p]. He first proved the following:

Theorem 1.4.3. [30, Theorems 7.1.2(1)]

DerW (m;n) ∼= W (m;n) +
m∑
i=1

∑
0<ji<ni

k ∂p
ji

i .

The isomorphism is given by the adjoint representation, W (m;n) ∼= adW (m;n) ↪→

DerW (m;n).

Then H. Strade computed W (m;n)[p] = (adW (m;n))p. He identified W (m;n)

with adW (m;n). By Theorem 1.4.2(iv), we know that W (m;n) is a subalgebra of

the restricted Lie algebra DerO(m;n). So instead of computing the p-subalgebra

(adW (m;n))p of DerW (m;n) generated by adW (m;n), H. Strade computed the p-

subalgebra (W (m;n))p of DerO(m;n) generated by W (m;n). By Definition 1.1.3 and

Lemma 1.1.3,

(W (m;n))p =
∑
i≥0

〈W (m;n)p
i〉,
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1.4. Graded Lie algebras of Cartan type

where W (m;n)p
i

:= {Dpi |D ∈ W (m;n)} is the image of W (m;n) under the iterated

application of the [p]-th power map of DerO(m;n). H. Strade first observed that

Lemma 1.4.2. [30, Lemma 7.1.1(3)] W (m;n)(0) is a restricted Lie subalgebra of

DerO(m;n).

It follows that W (m;n)[p] = (adW (m;n))p contains W (m;n) and all iterated p-th

powers of the partial derivatives ∂1, . . . , ∂m. Applying Theorem 1.4.3, we get

Theorem 1.4.4. [30, Theorem 7.2.2(1)] The minimal p-envelope W (m;n)[p] of

W (m;n) in DerW (m;n) is given by

W (m;n)[p] = W (m;n) +
m∑
i=1

∑
0<ji<ni

k ∂p
ji

i .

Since W (m;n) is the Lie subalgebra of W (m), the Lie bracket in W (m;n) is given

by (1.5). By (1.4), we have that for any 1 ≤ i, j ≤ m, 0 < r < ni and 0 ≤ ai < pni ,

the brackets [∂p
r

i , x
(a) ∂j] = x(a−prεi) ∂j if ai ≥ pr and 0 otherwise.

It remains to describe special, Hamiltonian and contact Lie algebras of Cartan

type. Consider the divergence map

div : W (m;n)→ O(m;n)

m∑
i=1

fi ∂i 7→
m∑
i=1

∂i(fi).

It is easy to check that div([D,E]) = D(div(E))−E(div(D)) for all D,E ∈ W (m;n).

As a result, the set

S(m;n) :=
{
D ∈ W (m;n) | div(D) = 0

}
(1.7)

is a Lie subalgebra of W (m;n) [31, Lemma 3.1, Sec. 4.3, Chap. 4]. It is not simple.

But its derived subalgebra S(m;n)(1) is simple. We refer to the Lie algebra S(m;n)(1)

as the simple special Lie algebra of Cartan type. More generally, S(m;n) or S(m;n)(1)

is referred to as a special Cartan type Lie algebra.

Let us describe the structure of S(m;n)(1) in more detail. Define

Di,j : O(m;n)→ W (m;n)

f 7→ ∂j(f) ∂i− ∂i(f) ∂j
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1.4. Graded Lie algebras of Cartan type

Theorem 1.4.5. [31, Lemma 3.2, Proposition 3.3, Theorems 3.5 and 3.7, Sec. 4.3,

Chap. 4] Suppose m ≥ 3.

(i) Di,j is a linear map of degree −2 satisfying Di,i = 0 and Di,j = −Dj,i for all

1 ≤ i, j ≤ m.

(ii) Di,j(O(m;n)) ⊂ S(m;n) for all 1 ≤ i, j ≤ m.

(iii) S(m;n)(1) is the subalgebra of S(m;n) generated by

{
Di,j(x

(a)) | 0 ≤ al < pnl for 1 ≤ l ≤ m and 1 ≤ i < j ≤ m
}

.

(iv) S(m;n)(1) is a simple Lie algebra of dimension (m− 1)(p
∑m

i=1 ni − 1).

(v) S(m;n)(1) is a graded subalgebra of W (m;n), i.e.

S(m;n)(1) =

s1⊕
i=−1

(S(m;n)(1))i,

where s1 = (
∑m

i=1 p
ni)−m− 2 and (S(m;n)(1))i = S(m;n)(1) ∩W (m;n)i.

(vi) S(m;n)(1) is restricted if and only if n = (1, . . . , 1), and in that case S(m;n)(1)

is a p-subalgebra of W (m;n) with restricted gradation.

Alternatively, we can define special Lie algebras of Cartan type using differential

forms on O(m;n); see [24, Sec. 3.2] and [30, Sec. 4.2]. Set

Ω0(m;n) := O(m;n), Ω1(m;n) := HomO(m;n)(W (m;n),O(m;n)).

Then Ω1(m;n) admits an O(m;n)-module structure via

(fα)(D) := fα(D) for all f ∈ O(m;n), α ∈ Ω1(m;n), D ∈ W (m;n),

and a W (m;n)-module structure via

(Dα)(E) = D(α(E))− α([D,E]) for all D,E ∈ W (m;n), α ∈ Ω1(m;n).

Since W (m;n) is a free O(m;n)-module with basis ∂1, . . . , ∂m, every α ∈ Ω1(m;n) is

determined by its effects on ∂1, . . . , ∂m. It is easy to check that α =
∑m

i=1 α(∂i)dxi.

This implies that Ω1(m;n) is a free O(m;n)-module with basis dx1, . . . , dxm.
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1.4. Graded Lie algebras of Cartan type

Define d : Ω0(m;n)→ Ω1(m;n) by df(D) = D(f) for all f ∈ O(m;n),

D ∈ W (m;n). Then d is a homomorphism of W (m;n)-modules. Set

Ωr(m;n) :=
r∧

Ω1(m;n),

the r-fold exterior power algebra over O(m;n). It is a free O(m;n)-module with basis

{dxi1 ∧ · · · ∧ dxir | 1 ≤ i1 < · · · < ir ≤ m}. Let

Ω(m;n) :=
⊕

1≤r≤m

Ωr(m;n).

Then elements of Ω(m;n) are called differential forms on O(m;n). We can extend the

above linear operator d to Ω(m;n) by setting

d(α1 ∧ α2) := d(α1) ∧ α2 + (−1)deg(α1)α1 ∧ d(α2)

for all α1, α2 ∈ Ω(m;n). Then d is a linear operator of degree 1 satisfying

d2(α) = 0, D(dα) = dD(α), d(fα) = (df) ∧ α + fd(α), D(df) = dD(f)

for all f ∈ O(m;n), D ∈ W (m;n), α ∈ Ω(m;n). Note that D(fα) = (Df)α + fD(α)

for every D ∈ W (m;n). Hence D extends to a derivation of Ω(m;n).

Recall the volume form

ωS := dx1 ∧ · · · ∧ dxm, m ≥ 3.

Then

{
D ∈ W (m;n) |D(ωS) = 0

}
coincides with S(m;n) (1.7); see [31, p. 161]. The simple special Lie algebra of Cartan

type is the derived subalgebra of S(m;n).

Suppose now char k = p > 2 and m = 2r ≥ 2. The Hamiltonian form

ωH :=
r∑
i=1

dxi ∧ dxi+r, m = 2r ≥ 2

gives rise to a Lie subalgebra

H(2r;n) :=
{
D ∈ W (2r;n) |D(ωH) = 0

}
(1.8)
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ofW (2r;n). The second derived subalgebraH(2r;n)(2) is simple. We refer toH(2r;n)(2)

as the simple Hamiltonian Lie algebra of Cartan type. More generally, H(2r;n) or

H(2r;n)(2) is a Hamiltonian Cartan type Lie algebra.

Alternatively, we can define H(2r;n) using a linear map. Let us first introduce

some notations. Set

σ(j) :=

1 if 1 ≤ j ≤ r,

−1 if r < j ≤ 2r,

(1.9)

j′ :=

j + r if 1 ≤ j ≤ r,

j − r if r < j ≤ 2r.

(1.10)

Consider the set{
D =

2r∑
i=1

fi ∂i ∈ W (2r;n) |σ(i) ∂j′(fi) = σ(j) ∂i′(fj), 1 ≤ i, j ≤ 2r

}
.

One can check that this is equivalent to H(2r;n) (1.8). To describe H(2r;n)(2), we

define

DH : O(2r;n)→ W (2r;n)

f 7→
2r∑
i=1

σ(i) ∂i(f) ∂i′ .

Denote the image of DH by H̃(2r;n). Note that H̃(2r;n) is a proper subset of H(2r;n).

Indeed derivations x
(pnj−1)
j ∂j′ for 1 ≤ j ≤ 2r lie in H(2r;n), but do not lie in H̃(2r;n);

see [31, p. 163].

Theorem 1.4.6. [31, Lemma 4.1, Proposition 4.4 and Theorem 4.5, Sec. 4.4, Chap. 4]

(i) DH is a linear map of degree −2 with KerDH = k.

(ii) [DH(f), DH(g)] = DH(DH(f)(g)) for all f, g ∈ O(2r;n).

(iii) H(2r;n)(1) ⊆ H̃(2r;n).

(iv) H(2r;n)(2) is a simple Lie algebra with basis

{
DH(x(a)) | (0, . . . , 0) < a < (pn1 − 1, . . . , pn2r − 1)

}
.

Hence dimH(2r;n)(2) = p
∑2r

i=1 ni − 2.
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(v) H(2r;n)(2) is a graded subalgebra of W (2r;n), i.e.

H(2r;n)(2) =

s2⊕
i=−1

(H(2r;n)(2))i,

where s2 = (
∑2r

i=1 p
ni)− 2r − 3 and (H(2r;n)(2))i = H(2r;n)(2) ∩W (2r;n)i.

(vi) H(2r;n)(2) is restricted if and only if n = (1, . . . , 1), and in that case H(2r;n)(2)

is a p-subalgebra of W (2r;n) with restricted gradation.

Remark 1.4.1. [31, p. 168] Note that DH defines a Lie bracket on O(2r;n). For any

f, g ∈ O(2r;n), define

{f, g} :=
2r∑
i=1

σ(i) ∂i(f) ∂i′(g) = DH(f)(g).

It follows from Theorem 1.4.6 that (O(2r;n), {, }) is a Lie algebra with centre k, and

(O(2r;n)/k)(1) ∼= H(2r;n)(2); see [1, p. 54]. The Lie bracket {, } is referred to as the

Poisson bracket.

Suppose char k = p > 2 and m = 2r + 1 ≥ 3. Consider the contact form

ωK := dxm +
r∑
i=1

(xidxi+r − xi+rdxi), m = 2r + 1 ≥ 3.

Set {
D ∈ W (2r + 1;n) |D(ωK) ∈ O(2r + 1;n)ωK

}
. (1.11)

This gives a Lie subalgebra of W (2r + 1;n), denoted K(2r + 1;n), called the contact

Cartan type Lie algebra. The derived subalgebra K(2r + 1;n)(1) is simple.

Similarly, we can describe the structure of K(2r + 1;n) using a linear map. Let

σ(j) and j′ be as in (1.9) and (1.10). Define

DK : O(2r + 1;n)→ W (2r + 1;n)

f 7→
2r∑
j=1

(
σ(j) ∂j(f) + xj′ ∂2r+1(f)

)
∂j′

+
(
2f −

2r∑
j=1

xj ∂j(f)
)
∂2r+1 .

Then the image DK(O(2r+1;n)) gives a Lie subalgebra of W (2r+1;n) which coincides

with K(2r + 1;n) (1.11); see [30, p. 189].
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Theorem 1.4.7. [1, Theorem 2.6.2; 31, Proposition 5.3, Theorems 5.5 and 5.6,

Sec. 4.5, Chap. 4]

(i) DK is an injective linear map of degree −2.

(ii) K(2r + 1;n) is graded, i.e.

K(2r + 1;n) =

s3⊕
i=−2

K(2r + 1;n)i,

where s3 = (
∑2r

i=1 p
ni) + 2pn2r+1 − 2r − 3 and

K(2r + 1;n)i = span

{
DK(x(a)) |

2r+1∑
i=1

ai + a2r+1 − 2 = i

}
.

Note that this grading has depth 2.

(iii) K(2r + 1;n)(1) is simple, and

K(2r + 1;n)(1) =

K(2r + 1;n) if 2r + 4 6≡ 0 (mod p),

span
{
DK(x(a)) | 0 ≤ a < τ(n)

}
if 2r + 4 ≡ 0 (mod p),

where τ(n) := (pn1 − 1, . . . , pn2r+1 − 1).Then

dimK(2r + 1;n)(1) =

p
∑2r+1

i=1 ni if 2r + 4 6≡ 0 (mod p),

p
∑2r+1

i=1 ni − 1 if 2r + 4 ≡ 0 (mod p).

(iv) K(2r + 1;n)(1) is restricted if and only if n = (1, . . . , 1), and in that case

K(2r + 1;n)(1) is a p-subalgebra of W (2r + 1;n) with restricted gradation.

Remark 1.4.2. [30, p. 191(4.2.17); 31, p. 172] As in the case of Hamiltonian Lie

algebras, the linear map DK also defines a Lie bracket on O(2r + 1;n). For any

f, g ∈ O(2r + 1;n), define

〈f, g〉 := DK(f)(g)− 2g ∂2r+1(f).

By [31, Proposition 5.2, Sec. 4.5, Chap. 4], DK(〈f, g〉) = [DK(f), DK(g)]. Moreover,

DK is injective. Hence (O(2r + 1;n), 〈, 〉) is a Lie algebra over k, and O(2r + 1;n) ∼=

K(2r + 1;n). The Lie bracket 〈, 〉 is referred to as the contact bracket.

These are the four families of Lie algebras of Cartan type. We finish this section

by emphasizing that

Theorem 1.4.8. [30, Corollary 7.2.3] The simple restricted Lie algebras of Cartan

type are W (m; 1),m ≥ 1, S(m; 1)(1),m ≥ 3, H(2r; 1)(2), r ≥ 1 and K(2r+1; 1)(1), r ≥ 1.
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1.5 Nilpotent varieties

In this section we review Premet’s results on nilpotent variety of any finite dimensional

restricted Lie algebra over k. Then we introduce Premet’s conjecture and discuss what

have been done so far.

Let (g, [p]) be a finite dimensional restricted Lie algebra over k. By Jacobson’s

formula (see Definition 1.1.1(3)), we see that the [p]-th power map is a morphism

given by homogeneous polynomial functions on g of degree p. Recall the nilpotent

variety N (g) which is the set of all x ∈ g such that x[p]N = 0 for N � 0. It is

well known that N (g) is a Zariski closed, conical subset of g. Let gss denote the set

of all semisimple elements of g. By Theorem 1.1.2, it is straightforward to see that

g[p]N = gss for N � 0. Define e = e(g) to be the smallest nonnegative integer such that

W [p]e ⊆ gss for some nonempty Zariski open subset W of g. By [18, Theorem 2], we

know that e = 0 if and only if g possesses a toral Cartan subalgebra. Let s = MT(g)

denote the maximal dimension of tori in g. In Sec. 1.1, we already observed that s = 0

if and only if g coincides with N (g). We present the theorem on N (g) which was

proved by A. Premet.

Theorem 1.5.1. [19, Theorem 2 and Corollary 2; 21, Theorem 4.2] There exist ho-

mogeneous polynomials ψ0, . . . , ψs−1 ∈ k[g] with degψi = pe+s− pe+i such that for any

x ∈ g, x[p]e+s
=
∑s−1

i=0 ψi(x)x[p]e+i
. Moreover, the following are true:

(i) ψi(x
[p]) = ψi(x)p for all x ∈ g and i ≤ s− 1.

(ii) N (g) = Z(ψ0, . . . , ψs−1), the set of all common zeros of ψ0, . . . , ψs−1 in g.

(iii) All irreducible components of N (g) have dimension dim g−s, i.e. N (g) is equidi-

mensional.

(iv) For any x ∈ N (g), x[p]e+s
= 0.

The above theorem gives useful information onN (g) and plays an important role in

Chapters 3 and 4. It is well known that the nilpotent variety of any finite dimensional

algebraic Lie algebra over C is irreducible. Then Premet conjectured that

Conjecture 1. [19, p. 563] For any finite dimensional restricted Lie algebra g over

k the variety N (g) is irreducible.
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This conjecture is still open, but it is known that if g is the Lie algebra of a con-

nected algebraic group G′, and n is the set of nilpotent elements in a Borel subalgebra

of g, then N (g) = {g.n | g ∈ G′, n ∈ n}. Since G′ is connected and n is irreducible,

the variety N (g) is irreducible; see [13, p. 64]. Moreover, this conjecture holds for the

Jacobson-Witt algebras W (n; 1) [20, Lemma 6], for the Special Lie algebras S(n; 1)

and S(n; 1)(1) [34, Theorem A], for the Poisson Lie algebras (O(2n; 1), {, }) [29, Theo-

rem 6.4] and for the Hamiltonian Lie algebras H(2n; 1)(2) [33, Theorem A]. There are

no known counterexamples.

A good understanding of the proof in the case W (n; 1) is important. This is because

some of the results will be used in Sec. 3.2, Chapter 3. Moreover, a similar idea works

for the minimal p-envelope W (1;n)p of the Zassenhaus algebra W (1;n); see Chapter

4. So let us first introduce some notations and state a few preliminary results. Then

we show that N (W (n; 1)) is irreducible.

Let k be an algebraically closed field of characteristic p > 2. Let O(n; 1) =

k[X1, . . . , Xn]/(Xp
1 , . . . , X

p
n) denote the truncated polynomial ring in n variables. Note

that O(n; 1) is a local ring with its unique maximal ideal denoted m. Let W (n; 1)

denote the derivation algebra of O(n; 1). This is a simple restricted Lie algebra.

Moreover, W (n; 1) obtains an O(n; 1)-module structure via (fD)(g) = fD(g) for all

f, g ∈ O(n; 1) and D ∈ W (n; 1). Since each D ∈ W (n; 1) is uniquely determined

by its effects on x1, . . . , xn, it is easy to see that W (n; 1) is a free O(n; 1)-module of

rank n generated by the partial derivatives ∂1, . . . , ∂n such that ∂i(xj) = δij for all

1 ≤ i, j ≤ n. Hence dimW (n; 1) = npn. Note that there is a standard filtration

{W (n; 1)(i)}−1≤i≤m(p−1)−1 defined on W (n; 1); see (1.6). In particular, the subalgebra

W (n; 1)(0) :=

{ n∑
i=1

fi ∂i | fi ∈ m for all i

}
is referred to as the standard maximal subalgebra of W (n; 1). Note that for any

D1 ∈ W (n; 1)(0), the following holds: D1(O(n; 1)) ⊆ m.

Let G denote the automorphism group of O(n; 1). Each σ ∈ G is uniquely de-

termined by its effects on x1, . . . , xn. An assignment σ(xi) = fi extends to an au-

tomorphism of O(n; 1) if and only if fi ∈ m, and the Jacobian Jac(f1, . . . , fn) :=∣∣( ∂ fi
∂ xj

)
1≤i,j≤n

∣∣ /∈ m. It follows that G is a connected algebraic group of dimension

dimW (n; 1)−n. It is well known that any automorphism of W (n; 1) is induced by an
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automorphism of O(n; 1) via the rule Dσ = σ ◦D ◦σ−1 for all σ ∈ G and D ∈ W (n; 1).

So we can identify G with the automorphism group of W (n; 1). Note that for any

f ∈ O(n; 1), D ∈ W (n; 1) and σ ∈ G,

(fD)σ = fσDσ, (1.12)

where fσ = f(σ(x1), . . . , σ(xn)); see [20, p. 154]. It follows from (1.12) that if

D1 =
∑n

i=1 gi ∂i is an element of W (n; 1), then

Dσ
1 =

n∑
i, j=1

gσi

(
∂i
(
σ−1(xj)

))σ
∂j; (1.13)

see [7, Sec. 3]. Note also that G respects the standard filtration of W (n; 1).

It is known that MT(W (n; 1)) = n and e(W (n; 1)) = 0. By Theorem 1.5.1, we

know that dimN (W (n; 1)) = dimW (n; 1)−n and the nilpotency index of any element

in N (W (n; 1)) is at most pn.

We want to show that N (W (n; 1)) is irreducible. Let us start with the following

result:

Lemma 1.5.1. [20, Lemma 3] Let D = ∂1 +xp−1
1 ∂2 + · · ·+ xp−1

1 · · ·xp−1
n−1 ∂n. Then

(i)

Dpl = (−1)l(∂l+1 +xp−1
l+1 ∂l+2 + · · ·+ xp−1

l+1 · · ·x
p−1
n−1 ∂n)

for all 0 ≤ l ≤ n− 1 and Dpn = 0.

(ii) D ,Dp, . . . ,Dpn−1
forms a basis of the O(n; 1)-module W (n; 1).

(iii) Dpn−1(xp−1
1 · · ·xp−1

n ) = (−1)n. Hence the matrix of the endomorphism

D : O(n; 1) → O(n; 1) is similar to a Jordan block of size pn with zeros on the

main diagonal.

(iv) The stabilizer of D in G is trivial.

Sketch of proof. (i) We prove (i) by induction on l. For l = 0, the result is clear.

For l = 1, let D ′ = xp−1
1 ∂2 + · · ·+ xp−1

1 · · ·xp−1
n−1 ∂n. Recall Jacobson’s formula,

(a+ b)p = ap + bp +

p−1∑
i=1

si(a, b),
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where the terms si(a, b) ∈ W (n; 1) are such that

(ad(ta+ b))p−1(a) =

p−1∑
i=1

isi(a, b)t
i−1.

Set a = D ′ and b = ∂1. Then for any s ≤ p− 2,

[a, (ad b)s(a)] = (−1)ss![xp−1
1 ∂2 + · · ·+ xp−1

1 · · ·xp−1
n−1 ∂n,

xp−1−s
1 ∂2 + · · ·+ xp−1−s

1 xp−1
2 · · ·xp−1

n−1 ∂n] = 0.

Hence

Dp = ∂p1 +(D ′)p +

p−1∑
i=1

si(D
′, ∂1) = s1(D ′, ∂1) = (ad ∂1)p−1(D ′)

= −(∂2 +xp−1
2 ∂3 + · · ·+ xp−1

2 · · ·xp−1
n−1 ∂n).

So the result holds for l = 1. Continuing in this way and by induction, one can show

that

Dpl = (−1)l(∂l+1 +xp−1
l+1 ∂l+2 + · · ·+ xp−1

l+1 · · ·x
p−1
n−1 ∂n)

for all 0 ≤ l ≤ n− 1. In particular, Dpn−1
= (−1)n−1 ∂n. Then Dpn = 0. This proves

(i).

(ii) Let M : W (n; 1)→ W (n; 1) be the endomorphism such that M(∂i) = Dpi−1
for

1 ≤ i ≤ n. By (i), it is easy to check that the matrix of M with respect to ∂1, . . . , ∂n

is an upper triangular matrix with 1 or −1 on the diagonal. Hence M is invertible.

Therefore, D ,Dp, . . . ,Dpn−1
forms a basis of the O(n; 1)-module W (n; 1). This proves

(ii).

(iii) By (i), it is easy to check that for 0 ≤ l ≤ n− 2,

(Dpl)p−1(xp−1
l+1 · · ·x

p−1
n )

=
(
(−1)l(∂l+1 +xp−1

l+1 ∂l+2 + · · ·+ xp−1
l+1 · · ·x

p−1
n−1 ∂n)

)p−1
(xp−1

l+1 · · ·x
p−1
n )

=(−1)l(p−1)(−1)xp−1
l+2 · · ·x

p−1
n

=− xp−1
l+2 · · · x

p−1
n .

For l = n− 1,

(Dpn−1

)p−1(xp−1
n ) =

(
(−1)n−1 ∂n

)p−1
(xp−1

n ) = (−1)(n−1)(p−1)(−1) = −1.
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Then

Dpn−1(xp−1
1 · · · xp−1

n ) =Dpn−pDp−1(xp−1
1 · · ·xp−1

n ) = −Dpn−p(xp−1
2 · · · xp−1

n )

=− (Dp)p
n−1−1(xp−1

2 · · · xp−1
n )

=− (Dp)p
n−1−p(Dp)p−1(xp−1

2 · · ·xp−1
n )

=(−1)2(Dp)p
n−1−p(xp−1

3 · · ·xp−1
n )

=(−1)2(Dp2)p
n−2−1(xp−1

3 · · ·xp−1
n )

= · · · = (−1)n−1(Dpn−1

)p−1(xp−1
n ) = (−1)n−1(−1) = (−1)n.

Hence Dpn−1 6= 0. Since Dpn = 0, this implies that the matrix of D is similar to a

Jordan block of size pn with zeros on the diagonal. This proves (iii).

(iv) Let C be the stabilizer of D in G and c ∈ C. By (iii), we know that O(n; 1)

is an indecomposable kD-module, i.e.

O(n; 1) =

pn−1⊕
i=0

kD i(xp−1
1 · · ·xp−1

n ). (1.14)

Since G acts on the straight line kxp−1
1 · · ·xp−1

n , we have that

c(xp−1
1 · · ·xp−1

n ) = λcx
p−1
1 · · ·xp−1

n

for some λc ∈ k∗. Moreover, c commutes with D . Applying (1.14), we get

c
(
D i(xp−1

1 · · ·xp−1
n )

)
= D i

(
c(xp−1

1 · · ·xp−1
n )

)
= λcD

i(xp−1
1 · · ·xp−1

n ).

Hence c = λc Id. Since c(1) = 1, this implies that λc = 1. So c = Id. This proves

(iv).

Set O := G.D . Since G is connected, it follows from the last result that the Zariski

closure of O is an irreducible variety of dimension dimG = dimN (W (n; 1)). Since D

is nilpotent, it follows that O is an irreducible component of N (W (n; 1)). We want to

describe O explicitly. For that, we need the following result:

Lemma 1.5.2. [7, Lemma 6] Let z be an element of W (n; 1) such that z /∈ W (n; 1)(0).

Then z is conjugate under G to z1 = ∂1 +xp−1
1

∑n
i=1 ϕi ∂i, where

ϕi ∈ k[X2, . . . , Xn]/(Xp
2 , . . . , X

p
n) for all i. Moreover, zp1 = −(1 + xp−1

1 ϕ1)
∑n

i=1 ϕi ∂i.
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Sketch of proof. In [7, Sec. 3], S. P. Demushkin used the convention that for any

D ∈ W (n; 1) and Φ ∈ G, DΦ = Φ−1 ◦D ◦Φ. Our convention is that DΦ = Φ◦D ◦Φ−1.

So we need to slightly modify his proof.

Let z =
∑n

i=1 fi ∂i be an element of W (n; 1) such that z /∈ W (n; 1)(0). Then

fµ(0, . . . , 0) 6= 0 for some 1 ≤ µ ≤ n. If µ 6= 1, then we show that z is conjugate under

G to
∑n

i=1 fi ∂i with f1(0, . . . , 0) 6= 0. Let Φ ∈ G be such that Φ(x1) = xµ,Φ(xµ) = x1

and Φ(xj) = xj for j 6= 1, µ. Then Φ−1(x1) = xµ,Φ
−1(xµ) = x1 and Φ−1(xj) = xj for

j 6= 1, µ. By (1.13),

zΦ =
n∑

i, j=1

fΦ
i

(
∂i
(
Φ−1(xj)

))Φ

∂j = fΦ
µ ∂1 +fΦ

1 ∂µ +
∑
i 6=1, µ

fΦ
i ∂i .

Since fΦ
µ (0, . . . , 0) = fµ(0, . . . , 0) 6= 0, we may assume from the beginning that

z =
∑n

i=1 fi ∂i with f1(0, . . . , 0) 6= 0.

Let Φ2 ∈ G be such that Φ2(x1) = f1(0, . . . , 0)x1 and Φ2(xj) = xj for 2 ≤ j ≤ n.

Then Φ−1
2 (x1) = f−1

1 (0, . . . , 0)x1 and Φ−1
2 (xj) = xj for 2 ≤ j ≤ n. Applying Φ2 to z,

we get

zΦ2 =
n∑

i, j=1

fΦ2
i

(
∂i
(
Φ−1

2 (xj)
))Φ2

∂j = fΦ2
1 f−1

1 (0, . . . , 0) ∂1 +
n∑
i=2

fΦ2
i ∂i .

Since fΦ2
1 (0, . . . , 0) = f1(0, . . . , 0), we may assume from the beginning that

z =
∑n

i=1 fi ∂i with f1(0, . . . , 0) = 1.

Let Φ3 ∈ G be such that Φ3(x1) = x1 and Φ3(xj) = xj + αjx1, where αj =

fj(0 . . . , 0) for 2 ≤ j ≤ n. Then Φ−1
3 (x1) = x1 and Φ−1

3 (xj) = xj −αjx1 for 2 ≤ j ≤ n.

Applying Φ3 to z, we get

zΦ3 =
n∑

i, j=1

fΦ3
i

(
∂i
(
Φ−1

3 (xj)
))Φ3

∂j = fΦ3
1 ∂1 +

n∑
i=2

(fΦ3
i − αif

Φ3
1 ) ∂i .

Hence we may assume from the beginning that z =
∑n

i=1 fi ∂i with f1(0, . . . , 0) = 1

and fi(0, . . . , 0) = 0 for all 2 ≤ i ≤ n. Then we can write

f1 = 1 +

m(p−1)∑
l=1

f1,l and fi =

m(p−1)∑
l=1

fi,l (1.15)

for some f1,l, fi,l ∈ m with deg f1,l = deg fi,l = l. Let Φ4 ∈ G be such that Φ−1
4 (xj) =

xj+gj for 1 ≤ j ≤ n, where gj are elements of m with the same degree ν ≥ 2. Applying
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Φ4 to z, we get

zΦ4 =
n∑

i, j=1

fΦ4
i

(
∂i
(
Φ−1

4 (xj)
))Φ4

∂j =
n∑

i, j=1

fΦ4
i

(
∂i
(
xj + gj

))Φ4

∂j . (1.16)

Substituting (1.15) into (1.16) and expanding out, we get

zΦ4 ≡
n∑
i=1

(
fi + ∂1(gi)

)
∂i (modW (n; 1)(ν−1)).

Since fi(0, . . . , 0) = δi1, we can rewrite the above as

zΦ4 ≡ ∂1 +
(
f1 − 1 + ∂1(g1)

)
∂1 +

n∑
i=2

(
fi + ∂1(gi)

)
∂i (modW (n; 1)(ν−1)),

where f1− 1 + ∂1(g1), fi + ∂1(gi) ∈ m with degrees strictly less than ν. It follows that

z is conjugate under G to

z1 = ∂1 +xp−1
1

n∑
i=1

ϕi ∂i,

where ϕi ∈ k[X2, . . . , Xn]/(Xp
2 , . . . , X

p
n).

It remains to show that zp1 = −(1 + xp−1
1 ϕ1)

∑n
i=1 ϕi ∂i. Note that

z1(x1) = 1 + xp−1
1 ϕ1,

z2
1(x1) = (p− 1)xp−2

1 ϕ1,

. . .

zη1(x1) = (p− 1) · · · (p− η + 1)xp−η1 ϕ1 for 2 ≤ η ≤ p− 1, and

zp1(x1) = (p− 1)!(1 + xp−1
1 ϕ1)ϕ1 = −(1 + xp−1

1 ϕ1)ϕ1.

Similarly, one can show that zp1(xi) = −(1 + xp−1
1 ϕ1)ϕi for 2 ≤ i ≤ n. Hence

zp1 = −(1 + xp−1
1 ϕ1)

n∑
i=1

ϕi ∂i .

This completes the sketch of proof.

Recall that D = ∂1 +xp−1
1 ∂2 + · · ·+xp−1

1 · · · xp−1
n−1 ∂n. We can now describeO = G.D

as:

Lemma 1.5.3. [20, Lemma 4]

O =
{
D ∈ N (W (n; 1)) |Dpn−1 6∈ W (n; 1)(0)

}
.
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Sketch of proof. Set S =
{
D ∈ N (W (n; 1)) |Dpn−1 6∈ W (n; 1)(0)

}
. It follows from

Lemma 1.5.1(i) that Dpn = 0 and Dpn−1
= (−1)n−1 ∂n /∈ W (n; 1)(0). Hence O ⊆ S. To

show that S ⊆ O, we proceed by induction on n. Let z be an element of W (n; 1) such

that z /∈ W (n; 1)(0). By Lemma 1.5.2, z is conjugate under G to ∂1 +xp−1
1

∑n
i=1 ϕi ∂i,

where ϕi ∈ k[X2, . . . , Xn]/(Xp
2 , . . . , X

p
n). Moreover,

(
∂1 +xp−1

1

n∑
i=1

ϕi ∂i
)p

= −(1 + xp−1
1 ϕ1)

n∑
i=1

ϕi ∂i .

If zp = 0, then (1 + xp−1
1 ϕ1)ϕi = 0 for all 1 ≤ i ≤ n. Since 1 + xp−1

1 ϕ1 is invertible

in O(n; 1), we have that ϕi = 0 for all 1 ≤ i ≤ n. Hence any D ∈ W (n; 1) with

D 6∈ W (n; 1)(0) and Dp = 0 is conjugate under G to ∂1. Thus, the result is true for

n = 1.

Suppose n > 1. Let y ∈ N (W (n; 1)) be such that yp
n−1 6∈ W (n; 1)(0). Set z = yp

n−1
.

Since z 6∈ W (n; 1)(0) and zp = 0, there exists Φ ∈ G such that ΦzΦ−1 = (ΦyΦ−1)p
n−1

=

∂n. So we may assume that z = yp
n−1

= ∂n. Since [y, yp
n−1

] = 0, we have that

y ∈ cW (n;1)(∂n). One can check that the centralizer cW (n;1)(∂n) is isomorphic to the

semidirect product of W (n− 1; 1) and an abelian ideal J = {fn ∂n | fn ∈ O(n− 1; 1)}.

Hence

y = f1 ∂1 + · · ·+ fn−1 ∂n−1 +fn ∂n

for some fi ∈ O(n − 1; 1). Set y1 = f1 ∂1 + · · · + fn−1 ∂n−1 and y2 = fn ∂n. We show

that y1 is conjugate under G to D0 = ∂1 +xp−1
1 ∂2 + · · · + xp−1

1 · · ·xp−1
n−2 ∂n−1. Since

y1 ∈ cW (n;1)(∂n), it follows from (1.4) and Jacobson’s formula that for any j ≥ 1,

yp
j

= yp
j

1 + yp
j−1

1 (fn) ∂n. In particular,

yp
n−1

= yp
n−1

1 + yp
n−1−1

1 (fn) ∂n .

Since yp
n

= 0, this implies that y1 ∈ N (W (n − 1; 1)). Then yp
n−1

1 = 0 and yp
n−1

=

yp
n−1−1

1 (fn) ∂n. By our assumption, yp
n−1 6∈ W (n; 1)(0). Hence yp

n−1−1
1 (fn) is invertible

in O(n − 1; 1). Note that if D1 ∈ W (n; 1)(0), then D1(O(n; 1)) ⊆ m. It follows

that yp
n−2

1 /∈ W (n − 1; 1)(0). Indeed, if yp
n−2

1 ∈ W (n − 1; 1)(0), then yp
n−1−1

1 (fn) =

(y1)p
n−2

(f ′) ∈ m, a contradiction. So yp
n−2

1 /∈ W (n− 1; 1)(0).

By the induction hypothesis, y1 is conjugate under Aut(W (n − 1; 1)) to D0 =

∂1 +xp−1
1 ∂2 + · · ·+xp−1

1 · · · xp−1
n−2 ∂n−1. Since W (n−1; 1) is a Lie subalgebra of W (n; 1),

we may identify Aut(W (n−1; 1)) with a subgroup of Aut(W (n; 1)) by letting σ(xn) =
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xn for all σ ∈ Aut(W (n− 1; 1)). Hence we may assume that y = D0 + ψ ∂n for some

ψ ∈ O(n− 1; 1) with Dpn−1−1
0 (ψ) invertible in O(n− 1; 1). Since Dpn−1

0 = 0, we have

that Ker(Dpn−1−1
0 |O(n−1;1)) = D0(O(n− 1; 1)). By Lemma 1.5.1(iii), we have that

Dpn−1−1
0 (O(n− 1; 1)) = k and Dpn−1−1

0 (xp−1
1 · · ·xp−1

n−1) = (−1)n−1.

Hence there exist ϕ ∈ O(n− 1; 1) ∩m and α ∈ k∗ such that

ψ = D0(ϕ) + αxp−1
1 · · ·xp−1

n−1.

Next we show that y = D0 + ψ ∂n is conjugate under G to D . Let Φ1 ∈ G be such

that Φ1|O(n−1;1) = Id and Φ1(xn) = xn + ϕ. It is easy to check that Φ−1
1 (xi) = xi for

1 ≤ i ≤ n− 1 and Φ−1
1 (xn) = xn − ϕ. Then for 1 ≤ i ≤ n− 1,

Φ1yΦ−1
1 (xi) = Φ1(D0 + ψ ∂n)(xi) = D0(xi),

and

Φ1yΦ−1
1 (xn) = Φ1(D0 + ψ ∂n)(xn − ϕ) = Φ1

(
−D0(ϕ) + ψ

)
= αxp−1

1 · · ·xp−1
n−1.

So Φ1yΦ−1
1 = D0 + αxp−1

1 · · ·xp−1
n−1 ∂n. Let Φ2 ∈ G be such that Φ2|O(n−1;1) = Id and

Φ2(xn) = αxn. Then one can show that Φ2(Φ1yΦ−1
1 )Φ−1

2 = D . It follows that y ∈ O.

Therefore, we proved by induction that S ⊆ O. As a result, O = S. This completes

the sketch of proof.

Now we consider the complement of O in N (W (n; 1)) and show that this com-

plement has dimension strictly less than dimN (W (n; 1)) = dimW (n; 1) − n; see

Lemma 1.5.5. For that, we need to introduce the notion of admissible n-tuples and

define a lexicographic ordering on them; see also Definition 3.2.3 in Sec. 3.2.1.

Definition 1.5.1. [20, Lemma 5]

(i) We say that an n-tuple A = (a1, . . . , an) ∈ Nn
0 is admissible if 0 ≤ ai ≤ p− 1 for

any 1 ≤ i ≤ n. We write xA := xa11 · · ·xann .

(ii) We define a lexicographic ordering ≺lex on the set of admissible n-tuples by

extending the ordering (1, 0, . . . , 0) ≺lex (0, 1, . . . , 0) ≺lex · · · ≺lex (0, 0, . . . , 1).
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1.5. Nilpotent varieties

Explicitly, for any two non-equal admissible n-tuples A = (a1, . . . , an) and A′ =

(a′1, . . . , a
′
n),

A = (a1, . . . , an) ≺lex (a′1, . . . , a
′
n) = A′ if and only if ai < a′i,

where i is the largest number in {1, . . . , n} for which ai 6= a′i.

Lemma 1.5.4. [20, Lemma 5] The action of D = ∂1 +xp−1
1 ∂2 + · · ·+ xp−1

1 · · ·xp−1
n−1 ∂n

on O(n; 1) is compatible with the lexicographic ordering ≺lex defined in Definition 1.5.1.

Explicitly, for any admissible n-tuple A 6= (0, . . . , 0), we have that D(xA) = λAx
A′,

where λA ∈ k∗ and A′ ≺lex A. It follows from the explicit formulas for A′ in the proof

that if B and C are admissible n-tuples such that B,C 6= (0, . . . , 0) and B ≺lex C,

then B′ ≺lex C
′.

Sketch of proof. Let A = (a1, . . . , an) 6= (0, . . . , 0) be any admissible n-tuple. We

first show that D(xA) = λAx
A′ , where λA ∈ k∗ and A′ ≺lex A. If a1 ≥ 1, then

D(xA) = a1x
a1−1
1 xa22 · · ·xann = a1x

A′ ,

where A′ = (a1 − 1, a2, . . . , an). It is easy to see that

A′ = (a1 − 1, a2, . . . , an) ≺lex (a1, . . . , an) = A.

If a1 = · · · = as−1 = 0 and as ≥ 1, then

D(xA) = asx
p−1
1 xp−1

2 · · ·xp−1
s−1x

as−1
s x

as+1

s+1 · · ·xann = asx
A′ ,

where A′ = (p− 1, . . . , p− 1, as − 1, as+1, . . . , an). It is easy to see that

A′ = (p− 1, . . . , p− 1, as − 1, as+1, . . . , an) ≺lex (0, . . . , 0, as, as+1, . . . , an) = A.

Hence D(xA) = λAx
A′ for some λA ∈ k∗ and A′ ≺lex A. If A′ 6= (0, . . . , 0), then

applying D to xA
′
, we get D(xA

′
) = λA′x

A′′ , where λA′ ∈ k∗ and A′′ ≺lex A
′. It follows

from the explicit formulas for A′ that if B and C are admissible n-tuples such that

B,C 6= (0, . . . , 0) and B ≺lex C, then B′ ≺lex C
′. Hence the action of D is compatible

with the lexicographic ordering ≺lex. This completes the sketch of proof.

Lemma 1.5.5. [20, Lemma 5] Set

N0 :=
{
D ∈ N (W (n; 1)) |Dpn−1 ∈ W (n; 1)(0)

}
.

Then

dimN0 < dimW (n; 1)− n.
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1.5. Nilpotent varieties

Sketch of proof. By Theorem 1.6.8, it is enough to construct an (n+1)-dimensional

subspace V in W (n; 1) such that V ∩ N0 = {0}. Set V := Tn ⊕ kD , where Tn

is a maximal torus in W (n; 1) with basis {x1 ∂1, . . . , xn ∂n}, and D is the nilpotent

element in Lemma 1.5.1. We show that V ∩ N0 = {0}. Suppose the contrary, i.e.

V ∩ N0 6= {0}. Then t + D ∈ N0 for some 0 6= t ∈ Tn. Note that for any admissible

n-tuple A = (a1, . . . , an), the straight line kxA is invariant under Tn and corresponds

to the weight c̄1θ1 + · · · + c̄nθn, where {θ1, . . . , θn} is a basis of T ∗n dual to the basis

{x1 ∂1, . . . , xn ∂n} and c̄i ≡ ci (mod p). By Lemma 1.5.4, we know the action of D on

O(n; 1) is compatible with the lexicographic ordering ≺lex. Hence for the admissible

n-tuple δ = (p− 1, . . . , p− 1), we have that

(t+ D)p
n−1(xδ) = Dpn−1(xδ) +

∑
A�lex(0,...,0)

λAx
A for some λA ∈ k∗.

By Lemma 1.5.1(iii), Dpn−1(xδ) = (−1)n. Hence (t + D)p
n−1(xδ) is invertible in

O(n; 1). But t + D ∈ N0 by our assumption. Hence (t + D)p
n−1 ∈ W (n; 1)(0). Note

that if D1 ∈ W (n; 1)(0), then D1(O(n; 1)) ⊆ m. In particular, (t + D)p
n−1(xδ) ∈ m,

which is not invertible. This is a contradiction. Hence V ∩ N0 = {0}. Applying

Theorem 1.6.8, we get the desired result. This completes the sketch of proof.

We are now ready to prove that

Theorem 1.5.2. [20, Lemma 6] The variety N (W (n; 1)) is irreducible.

Sketch of proof. By Theorem 1.5.1, we know that N (W (n; 1)) is equidimensional of

dimension dimW (n; 1)−n. By Lemma 1.5.1, we know that O = G.D is an irreducible

component of N (W (n; 1)). Let Z1, . . . , Zt be pairwise distinct irreducible components

of N (W (n; 1)), and set Z1 = O. Suppose t ≥ 2. Observe that Z2 ∩ O = ∅. Hence

Z2 ⊆ N (W (n; 1)) \O = N0; see Lemma 1.5.3. Then

dimW (n; 1)− n = dimZ2 ≤ dimN0 < dimW (n; 1)− n

by Lemma 1.5.5. This is a contradiction. Hence t = 1 and N (W (n; 1)) is irreducible.

This completes the sketch of proof.

By a similar argument, the nilpotent variety of S(n; 1) (respectively S(n; 1)(1))

is proved to be irreducible. By Remark 1.4.1, we see that the Poisson Lie algebra
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(O(2n; 1), {, }) is closely related to H(2n; 1)(2). In fact, (O(2n; 1)/k)(1) ∼= H(2n; 1)(2).

So the proof for H(2n; 1)(2) relies heavily on Skryabin’s work for (O(2n; 1), {, }); see

[29, Lemma 1.5 and Theorem 6.4].

1.6 Some useful theorems

We present three Block’s theorems which will be used in Chapter 3. The first one

is useful for part (b) of the sketch proof of Theorem 3.2.2 which characterizes all

regular elements of the mth Jacobson Witt algebra W (m; 1). Let us begin with some

definitions.

Definition 1.6.1. [2, p. 433] Let B be a ring (not necessarily associative or has

a unit element). A derivation of B is an additive mapping d : B → B such that

d(ab) = d(a)b + ad(b) for all a, b ∈ B. Let D be a set of derivations of B. By a

D-ideal of B we mean an ideal of B which is invariant under D. The ring B is called

D-simple ( d-simple if D consists of a single derivation d) if B2 6= 0 and if B has no

proper D-ideals. Also B is called differentiably simple if it is D-simple for some set

of derivations D of B, and hence for the set of all derivations of B.

Note that the above definitions are also used for algebras over a ring C and the

derivations are assumed to be C-linear. Suppose B is a differentiably simple commu-

tative associative ring. At characteristic 0, B is an integral domain. In particular, if

B has a minimal ideal then B is a field; see [2, Sec. 4, p. 441]. Now suppose B has

prime characteristic. The following theorem determines B:

Theorem 1.6.1. [2, Theorem 4.1] Let B be a differentiably simple commutative as-

sociative ring of prime characteristic p, and let R = {x ∈ B |xp = 0}. If Rx = 0 for

some x 6= 0 in B (this will hold, e.g. if B has a minimal ideal), then there is a subfield

E of B and an r ≥ 0 such that B ∼= O(r; 1) as E-algebras. Here E may be taken to

be any maximal subfield of B containing the subfield F of differential constants (i.e.

elements of B which are annihilated by all derivations).

The second theorem describes the derivation algebra of a Lie algebra in the follow-

ing form:
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1.6. Some useful theorems

Theorem 1.6.2. [30, Corollary 3.3.4] Let S be a finite dimensional simple algebra

such that S2 6= (0). Then

Der
(
S ⊗O(m;n)

)
=
(
(DerS)⊗O(m;n)

)
o
(

IdS ⊗DerO(m;n)
)

∼=
(
(DerS)⊗O(m′; 1)

)
o
(

IdS ⊗W (m′; 1)
)

for some m′ ∈ N.

The last line follows from the fact that considered just as an algebra, O(m;n) is

isomorphic to the truncated polynomial ring O(m′; 1) in m′ = n1 + · · ·+nm variables;

see [30, p. 64]. Hence DerO(m;n) ∼= DerO(m′; 1) = W (m′; 1).

The third theorem describes the structure of any finite dimensional semisimple Lie

algebras. Recall the socle of a finite dimensional semisimple Lie algebra L, denoted

Soc(L), is the direct sum ⊕jIj of minimal ideals Ij of L. In particular, these ideals Ij

are irreducible L-modules.

Theorem 1.6.3. [2, Theorem 9.3; 30, Corollary 3.3.6] Let L be a finite dimensional

semisimple Lie algebra. Then there are simple Lie algebras Si and truncated polynomial

rings O(mi; 1) such that Soc(L) =
⊕t

i=1 Si ⊗ O(mi; 1) and L acts faithfully on it.

Moreover,

t⊕
i=1

Si ⊗O(mi; 1) ⊂ L ⊂
t⊕
i=1

(
(DerSi)⊗O(mi; 1)

)
o
(

IdSi
⊗W (mi; 1)

)
.

We will see in Chapter 2 that Premet’s conjecture can be reduced to the case where

the Lie algebra is semisimple. The above theorem leads us to the study of nilpotent

varieties for a particular class of semisimple restricted Lie algebras, namely the ones

that are sandwiched between
t⊕
i=1

Si ⊗O(mi; 1)

and
t⊕
i=1

(
(DerSi)⊗O(mi; 1)

)
o
(

IdSi
⊗W (mi; 1)

)
.

We finish this section with some useful theorems from algebraic geometry.

Definition 1.6.2. [9, p. 91, 3.7] A morphism ψ : V → W of affine varieties is called

dominant if the image ψ(V ) is dense in W , i.e. ψ(V ) = W .
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1.6. Some useful theorems

Given any morphism of irreducible affine varieties, proving directly its dominance

may be difficult. However, we can show its differential map is surjective. More pre-

cisely,

Theorem 1.6.4 (Differential Criterion for Dominance [8, Proposition 1.4.15]).

Let ψ : V → W be a morphism of irreducible affine varieties. Let v be a smooth

point in V such that ψ(v) is a smooth point in W . If the differential of ψ at v,

dvψ : TvV → Tψ(v)W , is surjective, then the morphism ψ is dominant.

Once we know that a morphism is dominant, we can get a nonempty open set from

the image of the morphism. Specifically,

Theorem 1.6.5. [8, Corollary 2.2.8] Let ψ : V → W be a dominant morphism of

irreducible affine varieties. Then the image of any nonempty open subset U ⊆ V

contains a nonempty open subset of W .

Finally, we present some theorems on dimensions. The first two relate to the

dimension of fibres.

Theorem 1.6.6. [6, Sec. 4.4, Chap. 2, II; 28, Theorem 1.25] Let ψ : V → W be a

dominant morphism of irreducible varieties. Suppose that dimV = m and dimW = n.

Then m ≥ n, and

(i) dimF ≥ m− n for any w ∈ W and for any component F of the fibre ψ−1(w);

(ii) there exists a nonempty open subset U ⊂ W such that dimψ−1(u) = m − n for

all u ∈ U .

Theorem 1.6.7 (Chevalley’s Semi-continuity Theorem [6, Sec. 4.5, Chap. 2, II]).

Let ψ : V → W be a morphism of affine varieties. Then for every r ∈ N0, the set

Vr =
{
v ∈ V | dimψ−1(ψ(v)) ≥ r

}
is Zariski closed in V .

The last theorem in this section relates to the dimension of intersections in An.

Theorem 1.6.8 (Affine Dimension Theorem [9, Proposition 7.1, Chap. I]).

Let V,W be varieties of dimensions r, s in An. Then every irreducible component U

of V ∩W has dimension ≥ r + s− n.
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1.7. Overview of results

1.7 Overview of results

Chapter 2. Let k be an algebraically closed field of characteristic p > 0. We start with

Premet’s conjecture which states that the nilpotent variety of any finite dimensional

restricted Lie algebra over k is irreducible. We prove that this conjecture can be

reduced to the semisimple case.

Theorem 1 (see Theorem 2.0.1). Let (g, [p]) be a finite dimensional restricted Lie

algebra over k. Let Rad g denote the radical of g. Then N (g) is irreducible if and only

if N (g/Rad g) is irreducible.

The proof is done by induction on dim g and it relies on a result from algebraic

geometry (see Lemma 2.0.1). Since semisimple Lie algebras are not always direct sums

of simple ideals in prime characteristic, the reduction of Premet’s conjecture to the

simple case is very non-trivial.

Chapter 3. We start to look at a particular class of semisimple restricted Lie

algebras and verify Premet’s conjecture in that case.

By Theorem 1.6.3, we know that any finite dimensional semisimple Lie algebra is

sandwiched between
t⊕
i=1

Si ⊗O(mi; 1)

and
t⊕
i=1

(
(DerSi)⊗O(mi; 1)

)
o
(

IdSi
⊗W (mi; 1)

)
for some simple Lie algebras Si and truncated polynomial rings O(mi; 1) with

DerO(mi; 1) = W (mi; 1). Thus, to verify Premet’s conjecture, we begin with the

simplest example, g = (sl2 ⊗O(1; 1)) o (Idsl2 ⊗k ∂), where sl2 is the special linear Lie

algebra, O(1; 1) is the truncated polynomial ring k[X]/(Xp), and ∂ = d
dx

which acts

on sl2 ⊗O(1; 1) in the natural way. We assume further that char k = p > 2. So sl2 is

a simple restricted Lie algebra over k with all its derivations inner. We prove that the

maximal dimension of tori in g is 1, and the nilpotency index of any element in N (g)

is at most p2. It follows from Theorem 1.5.1 that dimN (g) = 3p. After gathering

these pieces of information, we are ready to prove that

Theorem 2 (see Theorem 3.1.1). The variety N (g) is irreducible.
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We will see that the argument in the proof is quite general. It works if we replace

sl2 by any Lie algebra g2 = Lie(G2), where G2 is a reductive algebraic group. Then

we extend the example g to the semisimple restricted Lie algebra

L := (S ⊗O(m; 1)) o (IdS ⊗D),

where S is a simple restricted Lie algebra over k such that adS = DerS and N (S)

is irreducible, O(m; 1) = k[X1, . . . , Xm]/(Xp
1 , . . . , X

p
m) is the truncated polynomial

ring in m ≥ 2 variables, and D is a restricted transitive subalgebra of W (m; 1) =

DerO(m; 1) such that N (D) is irreducible. We split our study on N (L) into three

sections. In the first section, we study nilpotent elements of D. Then we study

nilpotent elements of L and carry out some calculations using Lemma 1.1.1. We

finally prove that

Theorem 3 (see Theorem 3.2.3). The variety N (L) is irreducible.

As a remark, we see from the above that Premet’s conjecture holds for

t⊕
i=1

(Si ⊗O(mi; 1)) o (IdSi
⊗Di),

where each Si is a simple restricted Lie algebra over k such that adSi = DerSi

and N (Si) is irreducible, O(mi; 1) are truncated polynomial rings, and each Di is

a restricted transitive subalgebra of W (mi; 1) = DerO(mi; 1) such that N (Di) is

irreducible.

Chapter 4. This is our final chapter. It corresponds to a paper [3] of the author

which was published in the Journal of Algebra and Its Applications. We assume that

char k = p > 3 and n ∈ N≥2. Then the Zassenhaus algebra, denoted L = W (1;n),

provides the first example of a simple, non-restricted Lie algebra. We can embed L

into its minimal p-envelope Lp = W (1;n)p. This restricted Lie algebra is semisimple.

By [37, Theorem 4.8(i)], the variety N (L) := N (Lp)∩L is reducible. So investigating

the variety N (Lp) becomes critical.

Let N denote the nilpotent variety of Lp. We split our study on N into three

sections. In the first section, we focus on nilpotent elements of Lp and carry out some

calculations using Jacobson’s formula. This work enables us to identify an irreducible

component Nreg of N . Moreover, we can explicitly describe it as:
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Proposition 1 (see Proposition 4.2.1 and Lemma 4.2.7).

Nreg = G.(∂+k ∂p + · · ·+ k ∂p
n−1

),

where G = Aut(Lp).

In the final section, we show that the complement of Nreg in N , denoted Nsing,

has dimNsing < dimN . The proof is similar to Premet’s proof for the Jacobson-Witt

algebra W (n; 1); see Lemma 1.5.5. But we have to construct a new subspace V of Lp

such that dimV = n + 1 and V ∩ Nsing = {0}; see Proposition 4.2.2. Combining all

these results, we are able to prove the last theorem in the thesis:

Theorem 4 (see Theorem 4.2.1). The variety N = N (Lp) coincides with the Zariski

closure of

Nreg = G.(∂+k ∂p + · · ·+ k ∂p
n−1

)

and hence is irreducible.
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Chapter 2

Reduction of Premet’s conjecture

to the semisimple case

Let (g, [p]) be a finite dimensional restricted Lie algebra over k. Recall Premet’s

conjecture which states that the variety N (g) = {x ∈ g |x[p]N = 0 for N � 0} is

irreducible. In this short chapter we show that this conjecture can be reduced to the

case where g is semisimple. For that, we need the following result from algebraic

geometry. It gives a criterion for a variety to be irreducible.

Lemma 2.0.1. Let ψ : X → Y be a surjective morphism of algebraic varieties such

that

(i) Y is irreducible,

(ii) all fibres of ψ are irreducible and have the same dimension d, and

(iii) X is equidimensional.

Then X is irreducible.

Proof. Let X = X1 ∪ · · · ∪ Xt be the decomposition of X into pairwise distinct

irreducible components Xi. Suppose t ≥ 2. Then for any y ∈ Y ,

ψ−1(y) =
t⋃
i=1

(
ψ−1(y) ∩Xi

)
.

Since ψ−1(y) is irreducible, we have that ψ−1(y) = ψ−1(y) ∩Xi for some i.
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For every i, define Oi := Xi \
⋃
j 6=i(Xi ∩Xj). Then Oi is a nonempty open subset

of Xi. If y ∈ ψ(Oi), then the fibre ψ−1(y) is not contained in ψ−1(y) ∩ Xj for every

j 6= i. Hence for any y ∈ ψ(Oi),

ψ−1(y) = ψ−1(y) ∩Xi. (2.1)

Next we show that there is a unique irreducible component Xj of X such that

Y = ψ(Xj). Since ψ is surjective, we have that Y =
⋃t
i=1 ψ(Xi). But Y is irreducible,

so that Y = ψ(Xj) for some j. By definition of Oj, we also have that Y = ψ(Oj),

i.e. ψ(Oj) is dense in Y . Thus, ψ(Oj) contains a nonempty open subset Z of Y .

By (2.1), we have that for any y ∈ Z, ψ−1(y) = ψ−1(y) ∩ Xj. This means that if

i 6= j, then Xi \ (Xi∩Xj) ⊆ ψ−1(Y \Z). As a result, Xi = Xi \ (Xi ∩Xj) is contained

in ψ−1(Y \ Z). This implies that ψ(Xi) 6= Y for every i 6= j. So there is a unique

irreducible component Xj of X such that Y = ψ(Xj).

We now show that for every i, dimXi = dimψ(Xi) + d. Consider the restriction

of ψ to Xi, ψ : Xi → ψ(Xi). By Theorem 1.6.6, there exists a nonempty open subset

U ⊂ ψ(Xi) such that for every y ∈ U ,

dimXi = dimψ(Xi) + dim(ψ−1(y) ∩Xi).

Since U ∩ ψ(Oi) 6= ∅, then (2.1) implies that for every i,

dimXi = dimψ(Xi) + d. (2.2)

By the previous argument, we know that there is a unique Xj that dominates Y .

So if i 6= j, then ψ(Xi) is a proper subset of Y . This and (2.2) imply that

dimXi = dimψ(Xi) + d < dimY + d = dimψ(Xj) + d = dimXj.

But this contradicts the fact that X is equidimensional. Hence t = 1 and X is

irreducible. This completes the proof.

Theorem 2.0.1. Let (g, [p]) be a finite dimensional restricted Lie algebra over k. We

denote by Rad g the radical of g. Then Conjecture 1 can be reduced to the case where g

is semisimple. Explicitly, N (g) is irreducible if and only if N (g/Rad g) is irreducible.

Proof. We proceed by induction on dim g. If dim g = 0 or 1, the result is trivially true.

Suppose dim g > 1 and “N (g) is irreducible if and only if N (g/Rad g) is irreducible”

45



holds for all g of dimension less than m. Let dim g = m. If g is semisimple, then there

is nothing to prove. If g is not semisimple, i.e. Rad g 6= 0, then there exists a nonzero

abelian ideal. Let R be such a p-ideal.

Case 1 . If R contains a non-nilpotent element, say y, then it follows fromTheo-

rem 1.1.2 that there exist a unique semisimple element ys ∈ g and a unique nilpotent

element yn ∈ g such that y = ys + yn and [ys, yn] = 0. Since y is non-nilpotent, then

ys 6= 0. Replace y by its semisimple part ys. We show that y[p]N lies in the centre z(g)

for N � 0. Indeed, since R is a p-ideal we have that [y[p]N , g] ⊆ R. Moreover, R is

abelian, then [y[p]N , [y[p]N , g]] = 0. Since y is semisimple, so is y[p]N by Lemma 1.1.4(iii).

This implies that [y[p]N , g] = 0. Hence y[p]N ∈ z(g) and z(g) 6= 0.

Let z(g) = zs
⊕

zn, where zs is a subalgebra with a one-to-one [p]-th power map and

zn is the subspace in z(g) consisting of nilpotent elements of z(g). By above, we already

know that y[p]N ∈ zs and so zs 6= 0. We prove that the canonical homomorphism

ψ : g → g/zs, x 7→ x + zs induces a bijective morphism ψ̃ : N (g) → N (g/zs). If

x + zs ∈ N (g/zs), then x[p]N ∈ zs for N � 0. Since the [p]-th power map on zs is

one-to-one, there exists z ∈ zs such that x[p]N = z[p]N . Since z is an element of zs, it

commutes with x. As a result, (x− z)[p]N = 0. This implies that x− z ∈ N (g). So the

morphism ψ̃ is surjective. For injectivity, suppose ψ̃(x) = ψ̃(y) for some x, y ∈ N (g).

Then y = x+ z1 for some z1 ∈ zs. Since x and y are nilpotent, then for N � 0 we get

0 = y[p]N = (x+ z1)[p]N = x[p]N + z
[p]N

1 = z
[p]N

1 .

Since the [p]-th power map on zs is one-to-one, we have that z1 = 0 and so y = x.

Therefore, the morphism ψ̃ is bijective. Next we claim that N (g) is irreducible if and

only if N (g/zs) is irreducible. The “if” part is trivial because surjective morphism

preserves irreducibility. For the “only if” part, suppose N (g/zs) is irreducible. By

Theorem 1.5.1(iii), we know that N (g) is equidimensional. Since ψ̃ is bijective, it

follows that all fibres of ψ̃ are single points. Applying Lemma 2.0.1 with d = 0 we get

N (g) is irreducible.

Case 2 . If R is contained in N (g), then we may assume that R[p]r = 0 for some

r ∈ N. Note that the canonical homomorphism ψ : g→ g/R, x 7→ x = x+ R induces

a surjective mapping ψ̃ : N (g) → N (g/R). We show that N (g) is irreducible if and

only if N (g/R) is irreducible. The “if” part is trivial. For the “only if” part, suppose

N (g/R) is irreducible. We show that N (g) = ψ̃−1
(
N (g/R)

)
, i.e. x is nilpotent in g if
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and only if x + R is nilpotent in g/R. By Jacobson’s formula and that R is a p-ideal

of g, we have that for any v ∈ R,

(x+ v)[p] = x[p] + v1 for some v1 ∈ R.

By Jacobson’s formula again, we have that

(x+ v)[p]N = x[p]N + vN for some vN ∈ R.

If x ∈ N (g), then we can choose N sufficiently large so that (x + v)[p]N = 0. Hence

x + v ∈ N (g/R). Conversely, if x + R ∈ N (g/R), then for N � 0, x[p]N ∈ R.

By our assumption, R[p]r = 0. Hence x[p]N+r
= 0 and so x ∈ N (g). Therefore,

for any x ∈ N (g/R), the fibre ψ̃−1(x) consists of elements of the form x + R. But

x+R ∼= R as an affine space, we conclude that all fibres of ψ̃ are irreducible and have

the same dimension. It follows from Theorem 1.5.1(iii) and Lemma 2.0.1 that N (g) is

irreducible.

To sum up, if Rad g 6= 0, then there exists an abelian p-ideal A, i.e. A = zs or

A = R with R[p]r = 0 for some r ∈ N. We proved that N (g) is irreducible if and only if

N (g/A) is irreducible. Since dim(g/A) < dim g, the induction hypothesis implies that

N (g/A) is irreducible if and only ifN
(
(g/A)/Rad(g/A)

) ∼= N (g/Rad g) is irreducible.

Therefore, we proved that N (g) is irreducible if and only if N (g/Rad g) is irreducible.

This completes the proof.

It is natural to ask if we could reduce Premet’s conjecture to the simple case.

Unfortunately, this is very non-trivial in prime characteristic as semisimple Lie algebras

are not always direct sums of simple ideals. Hence to prove Premet’s conjecture, we

shall focus on the semisimple case.
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Chapter 3

Nipotent varieties of some

semisimple restricted Lie algebras

In this chapter, we assume that char k = p > 2. We prove Premet’s conjecture

holds for a class of semisimple restricted Lie algebras whose socle involves any simple

restricted Lie algebra with all its derivations inner. We start with the semisimple

restricted Lie algebra whose socle involves sl2 tensored by the truncated polynomial

ring k[X]/(Xp). Then we extend it to the semisimple restricted Lie algebra whose

socle involves S ⊗ O(m; 1), where S is any simple restricted Lie algebra such that

adS = DerS and N (S) is irreducible, and O(m; 1) = k[X1, . . . , Xm]/(Xp
1 , . . . , X

p
m) is

the truncated polynomial ring in m ≥ 2 variables.

3.1 Socle involves sl2

By Block’s theorem (Theorem 1.6.3) on finite dimensional semisimple Lie algebras, the

first example (perhaps the easiest one) we shall consider is (sl2⊗O(1; 1))o(Idsl2 ⊗k ∂)1.

Let k be an algebraically closed field of characteristic p > 2. Recall the special linear

Lie algebra sl2 of 2× 2 matrices with trace 0, and its standard basis

e =

0 1

0 0

 , f =

0 0

1 0

 , h =

1 0

0 −1


1This problem was introduced by A. Premet in the workshop Lie Theory and Representation

Theory in Pisa, Italy, January-February 2015. In [23], A. Premet and D. I. Stewart studied semisimple
restricted Lie subalgebras of this type (referred to as exotic semidirect products) in the Lie algebra
g1 = Lie(G1), where G1 is a simple algebraic group of exceptional type over k.
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such that

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

Since p > 2, we know that sl2 is simple and all its derivations are inner [27, Sec. 5,

Chap. V]. By Example 1.1.1 and Corollary 1.1.1, we know that sl2 is a restricted Lie

algebra with the unique [p]-th power map given by p-th power of matrices. An easy

calculation shows that ep = fp = 0 and hp = h. Hence e, f are nilpotent and h is

toral.

Let O(1; 1) denote the p-dimensional truncated polynomial ring k[X]/(Xp). We

write x for the image of X in O(1; 1). Note that O(1; 1) is a local ring. Let m denote

its unique maximal ideal. For every g ∈ O(1; 1), gp = g(0)p. Then gp = 0 for all

g ∈ m.

Consider the algebra sl2 ⊗ O(1; 1). The restricted Lie algebra structure on sl2

induces a restricted Lie algebra structure on sl2 ⊗O(1; 1). Explicitly, the Lie bracket

is given by

[y ⊗ g1, z ⊗ g2] := [y, z]⊗ g1g2,

and the [p]-th power map is given by

(y ⊗ g1)[p] := yp ⊗ gp1

for all y ⊗ g1, z ⊗ g2 ∈ sl2 ⊗O(1; 1). Note that dim(sl2 ⊗O(1; 1)) = 3p.

Let W (1; 1) denote the derivation algebra of O(1; 1). It is known as the Witt

algebra. By Theorem 1.4.2 and Example 1.1.1, we know that W (1; 1) is a simple

restricted Lie algebra with the [p]-th power map given byD[p] = Dp for allD ∈ W (1; 1).

Moreover, W (1; 1) is a free O(1; 1)-module of rank 1 generated by ∂ = d
dx

. Note

that ∂ acts on sl2 ⊗ O(1; 1) by differentiating truncated polynomials in O(1; 1), i.e.

∂(y ⊗ g) = y ⊗ ∂(g) for all y ⊗ g ∈ sl2 ⊗O(1; 1).

Let g := (sl2⊗O(1; 1))o (Idsl2 ⊗k ∂). To ease notation we identify Idsl2 ⊗k ∂ with

k ∂. It is easy to check that g is a (3p+1)-dimensional Lie algebra with the Lie bracket

defined in the natural way:

[y ⊗ g, ∂] := −y ⊗ ∂(g)

for all y⊗ g ∈ sl2⊗O(1; 1). By Theorem 1.6.2, we see that g embeds in the restricted

Lie algebra Der(sl2⊗O(1; 1)) =
(
sl2⊗O(1; 1)

)
o
(

Idsl2 ⊗W (1; 1)
)
. Then g is restricted
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with the [p]-th power map given by p-th power of derivations. Note that ∂p = 0. Let

us look at the structure of g in more detail.

Lemma 3.1.1. (i) [g, g] = sl2 ⊗O(1; 1) which is not semisimple.

(ii) sl2 ⊗O(1; 1) is the unique minimal ideal of g.

(iii) The maximal dimension of tori in sl2 ⊗O(1; 1) is 1, i.e. MT(sl2 ⊗O(1; 1)) = 1.

(iv) All irreducible components of N (sl2 ⊗O(1; 1)) have dimension 3p− 1.

Proof. (i) Write sl2 ⊗ O(1; 1) = (sl2 ⊗ 1) ⊕ (sl2 ⊗ m). Since sl2 is simple, it is easy

to check that [sl2 ⊗ O(1; 1), sl2 ⊗ O(1; 1)] = sl2 ⊗ O(1; 1). As sl2 ⊗ O(1; 1) is a Lie

subalgebra of g, we have that sl2 ⊗O(1; 1) = [sl2 ⊗O(1; 1), sl2 ⊗O(1; 1)] ⊆ [g, g]. On

the other hand,

[y ⊗ g1 + λ1 ∂, z ⊗ g2 + λ2 ∂] = [y, z]⊗ g1g2 + λ1z ⊗ ∂(g2)− λ2y ⊗ ∂(g1)

for all y, z ∈ sl2, g1, g2 ∈ O(1; 1) and λ1, λ2 ∈ k. Clearly, this is an element of

sl2 ⊗O(1; 1). Hence [g, g] ⊆ sl2 ⊗O(1; 1). As a result, [g, g] = sl2 ⊗O(1; 1).

Now suppose sl2 ⊗ O(1; 1) is semisimple. This means the only abelian ideal in

sl2 ⊗O(1; 1) is the zero ideal. Since sl2 is simple, any ideal I of sl2 ⊗O(1; 1) has the

form sl2⊗J for some ideal J of O(1; 1). Take J = (xp−1), the principal ideal generated

by xp−1 in O(1; 1). Then we find a nonzero ideal I = sl2⊗ (xp−1) in sl2⊗O(1; 1) such

that [I, I] = 0, a contradiction. Hence sl2⊗O(1; 1) is not semisimple. This proves (i).

(ii) Observe that if w = y⊗g1 +λ1 ∂ is an element of g such that [w, z⊗g2] = 0 for

all z ⊗ g2 in sl2 ⊗O(1; 1), then we must have that either y = 0 or g1 = 0, and λ1 = 0.

As a result, w = 0. This shows that g acts faithfully on sl2 ⊗ O(1; 1) via the adjoint

representation, and embeds sl2⊗O(1; 1) into its derivation algebra Der(sl2⊗O(1; 1)).

Hence for any nonzero ideal J of g we must have that [J, sl2 ⊗ O(1; 1)] 6= 0. In

particular, for any minimal ideal I of g, [I, sl2 ⊗ O(1; 1)] 6= 0. By (i) of this lemma,

sl2 ⊗ O(1; 1) is an ideal of g, so is [I, sl2 ⊗ O(1; 1)]. Since [I, sl2 ⊗ O(1; 1)] ⊆ I,

the minimality of I implies that [I, sl2 ⊗ O(1; 1)] = I. As I = [I, sl2 ⊗ O(1; 1)] ⊆

I ∩ (sl2 ⊗O(1; 1)), we have that I ⊆ sl2 ⊗O(1; 1).

Let v be any nonzero element of I. Since I ⊆ sl2 ⊗ O(1; 1), we can write v =

y ⊗ (a0 + a1x+ · · ·+ ajx
j + · · ·+ ap−1x

p−1) for some 0 6= y ∈ sl2 and aj ∈ k∗. Then

(ad ∂)j(v) = y ⊗ (j!aj + xg3)
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for some g3 ∈ O(1; 1). This shows that I ∩ (sl2 ⊗ 1) 6= {0}. By the simplicity of sl2,

we have that sl2 ⊗ 1 ⊂ I. Now consider the adjoint endomorphisms from sl2 ⊗ x to

sl2⊗ 1, one can deduce that sl2⊗ x ⊂ I. Continuing in this way and by induction, we

get sl2 ⊗ xl ⊂ I for all 0 ≤ l ≤ p− 1. Hence I = sl2 ⊗O(1; 1). This proves (ii).

(iii) Since any element y⊗g in sl2⊗m satisfies (y⊗g)p = 0, it follows that sl2⊗m is a

p-ideal of sl2⊗O(1; 1) consisting of nilpotent elements. As a results, MT(sl2⊗m) = 0.

By Lemma 1.1.6, we have that MT(sl2⊗O(1; 1)) = MT(sl2⊗ 1). It is known that the

maximal dimension of tori in sl2 is 1. Hence MT(sl2 ⊗O(1; 1)) = 1. This proves (iii).

(iv) By Theorem 1.5.1 and (iii) of this lemma, we know that all irreducible compo-

nents ofN (sl2⊗O(1; 1)) have dimension dim(sl2⊗O(1; 1))−MT(sl2⊗O(1; 1)) = 3p−1.

This proves (iv).

Before we are going to prove a similar result for g, we need to construct some

automorphisms of g.

Lemma 3.1.2. Let y⊗ q be an element of sl2⊗O(1; 1). For any σ ∈ Aut(sl2), define

σ(y ⊗ q) := σ(y)⊗ q. Then σ extends to an automorphism of g.

Proof. We first show that σ extends to an automorphism of sl2 ⊗ O(1; 1). For any

y1 ⊗ g1, y2 ⊗ g2 ∈ sl2 ⊗O(1; 1), we have that

σ([y1 ⊗ g1, y2 ⊗ g2]) = σ([y1, y2]⊗ g1g2) = [σ(y1), σ(y2)]⊗ g1g2.

On the other hand,

[σ(y1 ⊗ g1), σ(y2 ⊗ g2)] = [σ(y1)⊗ g1, σ(y2)⊗ g2] = [σ(y1), σ(y2)]⊗ g1g2.

Hence σ is an automorphism of sl2⊗O(1; 1). Then it induces an automorphism of the

derivation algebra

Der(sl2 ⊗O(1; 1)) =
(
sl2 ⊗O(1; 1)

)
o
(

Idsl2 ⊗W (1; 1)
)

via conjugation. Note that g ⊂ Der(sl2⊗O(1; 1)). It remains to check σ ◦ ∂ ◦σ−1. For

any y1 ⊗ g1 ∈ sl2 ⊗O(1; 1), we have that

σ ◦ ∂ ◦σ−1(y1 ⊗ g1) = σ ◦ ∂
(
σ−1(y1)⊗ g1

)
= σ

(
σ−1(y1)⊗ ∂(g1)

)
= σσ−1(y1)⊗ ∂(g1)

= y1 ⊗ ∂(g1).
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Thus, σ ◦ ∂ ◦σ−1 = ∂. As a result, σ preserves g and it extends to an automorphism

of g. This completes the proof.

Lemma 3.1.3. Let u = y⊗g be an element of sl2⊗m. Then exp(adu) is an automor-

phism of g. Similarly, if v = z ⊗ q is an element of N (sl2) ⊗O(1; 1), then exp(ad v)

is an automorphism of g.

Proof. For any u = y⊗ g ∈ sl2⊗m, we first show that exp(adu) is an automorphism

of sl2⊗O(1; 1). Suppose that L is a Lie algebra over k and D ∈ DerL satisfies Dp = 0.

In order to show that exp(D) =
∑p−1

i=0
1
i!
Di is an automorphism of L it suffices to show

that ∑
0≤i,j≤p, i+j≥p

1

i!j!
[Di(w1), Dj(w2)] = 0

for all w1, w2 ∈ L. Note that adu with u above is a derivation of sl2⊗O(1; 1) such that

(adu)p = adup = ad(yp ⊗ gp) = 0; see Definition 1.1.1(1). Set D = adu = ad(y ⊗ g).

Then for any w1 = y1 ⊗ g1 and w2 = y2 ⊗ g2 in sl2 ⊗O(1; 1), we have that

Di(w1) = (ad y)i(y1)⊗ gig1, and

Dj(w2) = (ad y)j(y2)⊗ gjg2.

Hence ∑
0≤i,j≤p, i+j≥p

1

i!j!
[Di(w1), Dj(w2)]

=
∑

0≤i,j≤p, i+j≥p

1

i!j!
[(ad y)i(y1), (ad y)j(y2)]⊗ gi+jg1g2.

Since g ∈ m and i+ j ≥ p, we have that gi+j = 0. As a result,∑
0≤i,j≤p, i+j≥p

1

i!j!
[Di(w1), Dj(w2)] = 0.

Therefore, exp(adu) is an automorphism of sl2 ⊗ O(1; 1). Then it induces an auto-

morphism of the derivation algebra

Der(sl2 ⊗O(1; 1)) =
(
sl2 ⊗O(1; 1)

)
o
(

Idsl2 ⊗W (1; 1)
)

via conjugation. Note that

g = (sl2 ⊗O(1; 1)) o k ∂ ⊂ Der(sl2 ⊗O(1; 1)).
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To conclude that exp(adu) is an automorphism of g, we need to check that exp(adu)

preserves g, i.e. exp(adu) ◦ ∂ ◦ exp(ad(−u)) ∈ g. Recall that u = y⊗ g ∈ sl2 ⊗m. We

show that for any y1 ⊗ g1 ∈ sl2 ⊗O(1; 1),(
exp(ad(y ⊗ g)) ◦ ∂ ◦ exp(ad(−y ⊗ g))

)
(y1 ⊗ g1)

=y1 ⊗ ∂(g1)−
(

ad
(
y ⊗ ∂(g)

))
(y1 ⊗ g1)−

(
ad
(
yp ⊗ gp−1 ∂(g)

))
(y1 ⊗ g1).

(3.1)

We first compute ∂ ◦ exp(ad(−y ⊗ g))(y1 ⊗ g1). Then we apply exp(ad(y ⊗ g)) to it.

We will use the following in our computations:

(i) Since ∂ is a derivation of O(1; 1), we have that ∂(gig1) = gi ∂(g1) + igi−1 ∂(g)g1

for all 0 ≤ i ≤ p− 1.

(ii) exp(ad(y ⊗ g)) exp(ad(−y ⊗ g)) = Id.

(iii) Since g ∈ m, we have that gp = 0.

(iv) (p− 1)! ≡ −1(mod p).

Let us compute ∂ ◦ exp(ad(−y ⊗ g))(y1 ⊗ g1).

∂ ◦ exp(ad(−y ⊗ g))(y1 ⊗ g1)

= ∂

( p−1∑
i=0

1

i!
(ad(−y))i(y1)⊗ gig1

)

=

p−1∑
i=0

1

i!
(ad(−y))i(y1)⊗

(
gi ∂(g1) + igi−1 ∂(g)g1

)
(by (i))

= exp(ad(−y ⊗ g))(y1 ⊗ ∂(g1)) +

( p−1∑
i=1

1

i!
(ad(−y))i(y1)⊗ igi−1 ∂(g)g1

)

= exp(ad(−y ⊗ g))(y1 ⊗ ∂(g1)) +

( p−1∑
i=1

1

(i− 1)!
(ad(−y))i(y1)⊗ gi−1 ∂(g)g1

)
= exp(ad(−y ⊗ g))(y1 ⊗ ∂(g1))

+

(
ad(−y ⊗ ∂(g))

p−1∑
i=1

1

(i− 1)!
(ad(−y ⊗ g))i−1

)
(y1 ⊗ g1)

= exp(ad(−y ⊗ g))(y1 ⊗ ∂(g1))

+

(
ad(−y ⊗ ∂(g))

(
exp(ad(−y ⊗ g))− 1

(p− 1)!
(ad(−y ⊗ g))p−1

))
(y1 ⊗ g1).
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Applying exp(ad(y ⊗ g)) to the above, we get(
exp(ad(y ⊗ g)) ◦ ∂ ◦ exp(ad(−y ⊗ g))

)
(y1 ⊗ g1)

=y1 ⊗ ∂(g1)

+

(
ad(−y ⊗ ∂(g))

(
Id−

( 1

(p− 1)!
(ad(−y ⊗ g))p−1

)
exp(ad(y ⊗ g))

))
(y1 ⊗ g1)

(by (ii))

=y1 ⊗ ∂(g1) +

(
ad(−y ⊗ ∂(g))

(
Id +(ad(−y ⊗ g))p−1

))
(y1 ⊗ g1) (by (iii) and (iv))

=y1 ⊗ ∂(g1) +

(
ad(−y ⊗ ∂(g)) + (ad(−y ⊗ ∂(g))(ad(−y ⊗ g))p−1

)
(y1 ⊗ g1)

=y1 ⊗ ∂(g1) +
(

ad(−y ⊗ ∂(g))
)
(y1 ⊗ g1) + (ad(−y ⊗ ∂(g))(ad(−y ⊗ g))p−1(y1 ⊗ g1)

=y1 ⊗ ∂(g1)−
(

ad(y ⊗ ∂(g))
)
(y1 ⊗ g1) + (−1)p(ad y)p(y1)⊗ gp−1 ∂(g)(g1)

=y1 ⊗ ∂(g1)−
(

ad
(
y ⊗ ∂(g)

))
(y1 ⊗ g1)−

(
ad
(
yp ⊗ gp−1 ∂(g)

))
(y1 ⊗ g1).

The last line follows from Definition 1.1.1(1) that (ad y)p = ad yp. Hence we get (3.1)

as desired. It follows that

exp(ad(y ⊗ g)) ◦ ∂ ◦ exp(ad(−y ⊗ g))

= ∂− ad
(
y ⊗ ∂(g)

)
− ad

(
yp ⊗ gp−1 ∂(g)

)
= ∂−y ⊗ ∂(g)− yp ⊗ gp−1 ∂(g).

(3.2)

The last line follows from that sl2 ∼= ad(sl2) via the adjoint representation and hence

we may identify y ⊗ ∂(g) (respectively yp ⊗ gp−1 ∂(g)) with its image ad
(
y ⊗ ∂(g)

)
(respectively ad

(
yp⊗gp−1 ∂(g)

)
) in gl(sl2⊗O(1; 1)) under ad. As a result, we see that

exp(ad(y ⊗ g)) ◦ ∂ ◦ exp(ad(−y ⊗ g)) ∈ g. Therefore, exp(ad(y ⊗ g)) preserves g and

it is an automorphism of g.

Now let v = z ⊗ q be an element of N (sl2) ⊗ O(1; 1). Note that sl2 contains a

self-centralizing maximal torus, namely kh. Hence e(sl2) = 0. Also, MT(sl2) = 1. It

follows from Theorem 1.5.1 that any nilpotent element z of sl2 satisfies zp = 0. As a

result, ad v is a derivation of sl2⊗O(1; 1) such that (ad v)p = ad vp = ad(zp⊗ qp) = 0.

Since (ad z)p = 0, one can show similarly that exp(ad v) is an automorphism of

sl2 ⊗O(1; 1). Then it induces an automorphism of the derivation algebra

Der(sl2 ⊗O(1; 1)) via conjugation. By (3.2), we have that

exp(ad(z ⊗ q)) ◦ ∂ ◦ exp(ad(−z ⊗ q)) = ∂−z ⊗ ∂(q) ∈ g.
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Hence exp(ad(z ⊗ q)) preserves g and it is an automorphism of g. This completes the

proof.

Lemma 3.1.4. (i) g is semisimple.

(ii) The maximal dimension of tori in g equals MT(sl2 ⊗O(1; 1)) which is 1.

(iii) Let gss denote the set of all semisimple elements of g. Then

1 = e(g) := min
{
r ∈ Z≥0 |W pr ⊆ gss for some nonempty Zariski open W ⊂ g

}
.

(iv) All irreducible components of N (g) have dimension 3p.

(v) Any a ∈ N (g) satisfies ap
2

= 0.

Proof. (i) By Lemma 3.1.1(ii), if g is not semisimple, then any nonzero abelian

p-ideal would have to contain the unique minimal ideal sl2⊗O(1; 1). But sl2⊗O(1; 1)

is nonabelian, we get a contradiction. This proves (i).

(ii) Since sl2 ⊗ O(1; 1) is a p-ideal of g and ∂p = 0, it follows from Lemma 1.1.6

and Lemma 3.1.1(iii) that MT(g) = MT(sl2 ⊗O(1; 1)) + MT(k ∂) = 1 + 0 = 1. This

proves (ii).

(iii) By Lemma 3.1.3, we know that exp(t ad(z ⊗ q)) is an automorphism of g

for any t ∈ k and z ⊗ q ∈ N (sl2) ⊗ O(1; 1). Let G denote the group generated by

these exp(t ad(z ⊗ q)). Then G is a connected algebraic group. Consider the set

G.(h ⊗ O(1; 1)∗ o k ∂). Here O(1; 1)∗ denotes the set of all invertible elements of

O(1; 1). We want to show that this set contains a nonempty Zariski open subset of g.

This can be done by showing that the morphism

θ : G× (h⊗O(1; 1) o k ∂)→ g

(g̃, v) 7→ g̃(v)

is dominant. Consider the differential of θ at (1G, h⊗ 1)

(dθ)(1G,h⊗1) : Lie(G)⊕ (h⊗O(1; 1) o k ∂)→ g

(X, Y ) 7→ [X, h⊗ 1] + Y.

It is easy to see that Im((dθ)(1G,h⊗1)) contains h⊗O(1; 1)ok ∂ and [Lie(G), h⊗1]. Since

exp(t ad(e⊗q)) is in G for any t ∈ k and q ∈ O(1; 1), we have that e⊗O(1; 1) ⊂ Lie(G).
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Here we identify sl2 ⊗ O(1; 1) with its image in gl(sl2 ⊗ O(1; 1)) under ad. By our

assumption, p > 2. So

[e⊗O(1; 1), h⊗ 1] = −2e⊗O(1; 1) ⊂ [Lie(G), h⊗ 1].

Similarly, one can show that f ⊗ O(1; 1) ⊂ [Lie(G), h ⊗ 1]. Hence Im((dθ)(1G,h⊗1))

contains h⊗O(1; 1)ok ∂+e⊗O(1; 1)+f⊗O(1; 1) which is g. Thus, Im((dθ)(1G,h⊗1)) =

g and so (dθ)(1G,h⊗1) is surjective. It follows from Theorem 1.6.4 that the morphism θ

is dominant.

Note that for any g =
∑p−1

i=0 aix
i ∈ O(1, 1) and λ ∈ k,

(h⊗ g + λ ∂)p = h⊗ (ap0 − λp−1ap−1)

by Jacobson’s formula. It follows that there is a nonempty Zariski open subset U0 =

h⊗O(1, 1)∗ok ∂ in h⊗O(1, 1)ok ∂ consisting of elements u0 such that up0 is semisimple.

By Theorem 1.6.5, G.U0 contains a nonempty Zariski open subset U of g. We have

that up ∈ gss for all u ∈ U . Therefore, e(g) ≤ 1. If e(g) = 0, then it follows from the

definition of e(g) that gss contains a nonempty Zariski open subset V of g. Then there

is an element v ∈ V \ sl2⊗O(1, 1) such that v ∈ span
{
vp

i | i ≥ 1
}

. This is impossible

as wp
i ∈ sl2 ⊗O(1, 1) for all w ∈ g. Hence e(g) = 1. This proves (iii).

(iv) By (ii) of this lemma and Theorem 1.5.1, all irreducible components of N (g)

have dimension dim g−MT(g) = 3p. This proves (iv).

(v) By Theorem 1.5.1 and the fact that e(g) = 1 = MT(g), we have that ap
2

= 0

for all a ∈ N (g). This proves (v).

We need another result which shows that applying suitable automorphisms of g,

some nilpotent elements of g can be reduced to a nice form.

Lemma 3.1.5. Let a = λ ∂+v be an element of g, where λ ∈ k∗ and v ∈ sl2⊗O(1; 1).

Then there exist automorphisms of g such that a is conjugate to a′ = λ ∂+v′, where

v′ ∈ sl2 ⊗ mp−1. Moreover, if a is nilpotent, then v′ = b ⊗ xp−1 for some b ∈ N (sl2)

(possibly 0).

Proof. Let a = λ ∂+v be an element of g, where λ ∈ k∗ and v ∈ sl2 ⊗ O(1; 1).

Suppose v = z1 ⊗
∑p−1

i=0 aix
i for some z1 ∈ sl2 and ai ∈ k. By Lemma 3.1.3, we

know that exp(ad(y ⊗ g)) with y ⊗ g ∈ sl2 ⊗ m is an automorphism of g. Let H
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denote the subgroup of Aut(g) generated by these exp(ad(y ⊗ g)). Then H is a

connected algebraic group. We show that choosing suitable element y ⊗ g ∈ sl2 ⊗ m,(
exp(ad(y⊗g))

)
(a) = λ ∂+v1 for some v1 ∈ sl2⊗m. If a0 = 0, then a is of the desired

form and there is nothing to do. Suppose a0 6= 0. By (3.2),

(
exp(ad(y ⊗ g))

)
(a) = exp(ad(y ⊗ g)) ◦ λ ∂ ◦ exp(ad(−y ⊗ g)) +

(
exp(ad(y ⊗ g))

)
(v)

=λ ∂−λy ⊗ ∂(g)− λyp ⊗ gp−1 ∂(g)

+ z1 ⊗
p−1∑
i=0

aix
i +

p−1∑
j=1

1

j!
(ad y)j(z1)⊗ gj

p−1∑
i=0

aix
i.

Choose y = z1/λ ∈ sl2 and g = a0x ∈ m. Then

−λy ⊗ ∂(g) + z1 ⊗ a0 = −z1 ⊗ a0 + z1 ⊗ a0 = 0,

−λyp ⊗ gp−1 ∂(g) = −λyp ⊗ ap0xp−1,

and
p−1∑
j=1

1

j!
(ad y)j(z1)⊗ gj

p−1∑
i=0

aix
i = 0.

Hence

(
exp(ad(y ⊗ g))

)
(a) = λ ∂−λyp ⊗ ap0xp−1 + z1 ⊗

p−1∑
i=1

aix
i.

Since −λyp ⊗ ap0xp−1 + z1 ⊗
∑p−1

i=1 aix
i ∈ sl2 ⊗ m, we see that

(
exp(ad(y ⊗ g))

)
(a) =

λ ∂+v1 for some v1 ∈ sl2 ⊗ m. Continuing in this way and by induction we get a is

conjugate under H to λ ∂+vp−2 for some vp−2 ∈ sl2 ⊗mp−2. Suppose

vp−2 = zp−2 ⊗ (ap−2x
p−2 + ap−1x

p−1)

for some zp−2 ∈ sl2 and ap−2, ap−1 ∈ k. If ap−2 = 0, then vp−2 ∈ sl2 ⊗ mp−1 and there

is nothing to do. Suppose ap−2 6= 0. Then for any exp(ad(y ⊗ g)) ∈ H, we have that

(
exp(ad(y ⊗ g))

)
(λ ∂+vp−2)

= exp(ad(y ⊗ g)) ◦ λ ∂ ◦ exp(ad(−y ⊗ g)) +
(

exp(ad(y ⊗ g))
)
(vp−2)

=λ ∂−λy ⊗ ∂(g)− λyp ⊗ gp−1 ∂(g)

+ zp−2 ⊗ (ap−2x
p−2 + ap−1x

p−1) +

p−1∑
j=1

1

j!
(ad y)j(zp−2)⊗ gj(ap−2x

p−2 + ap−1x
p−1).
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Choose y = zp−2/λ ∈ sl2 and g = ap−2x
p−1/(p− 1) ∈ m. Then

−λy ⊗ ∂(g) + zp−2 ⊗ ap−2x
p−2 = −zp−2 ⊗ ap−2x

p−2 + zp−2 ⊗ ap−2x
p−2 = 0.

Moreover, −λyp ⊗ gp−1 ∂(g) = 0, and

p−1∑
j=1

1

j!
(ad y)j(zp−2)⊗ gj(ap−2x

p−2 + ap−1x
p−1) = 0.

Hence (
exp(ad(y ⊗ g))

)
(λ ∂+vp−2) = λ ∂+zp−2 ⊗ ap−1x

p−1.

Therefore, we proved that if a = λ ∂+v ∈ g with λ ∈ k∗ and v ∈ sl2 ⊗O(1; 1), then a

is conjugate under H to a′ = λ ∂+v′, where v′ ∈ sl2 ⊗mp−1.

By above, we may assume that a = λ ∂+b ⊗ xp−1 for some λ ∈ k∗ and b ∈ sl2.

If a is nilpotent, then Lemma 3.1.4(v) implies that ap
2

= 0. By Jacobson’s formula,

ap = (p − 1)!λp−1b. So ap
2

= 0 implies that bp = 0. As a result, b ∈ N (sl2). This

completes the proof.

We are now ready to prove that

Theorem 3.1.1. The variety N (g) is irreducible.

Proof. Let X be any irreducible component of N (g). Put X0 := X ∩ (sl2 ⊗O(1; 1)).

Then X0 ⊂ N (sl2⊗O(1; 1)). By Lemma 3.1.1(iv) and Lemma 3.1.4(iv), we have that

dimN (sl2 ⊗O(1; 1)) = 3p− 1 and dimX = 3p. It follows that X0 is a proper Zariski

closed subset of X. Then the complement X \X0 is Zariski open and nonempty in X.

As a result, X equals the Zariski closure of X \X0.

Let us describe X\X0 explicitly. If a ∈ X\X0, then a = λ ∂+v for some λ ∈ k∗ and

v ∈ sl2⊗O(1; 1). By Lemma 3.1.5, we know that there exists a subgroup H of Aut(g)

generated by all exp(adu) with u ∈ sl2⊗m such that a is H-conjugate to λ ∂+b⊗xp−1

for some b ∈ N (sl2) (possibly 0). Since dimH = dim Lie(H) = dim(sl2⊗m) = 3(p−1),

X\X0 is not contained in the union of H.(λ ∂). As a result, there are some λ ∂+b⊗xp−1

with b 6= 0 in X \X0.

Let G̃ = Aut(sl2)H. Note that H is a normal subgroup of G̃ and G̃ ⊂ Aut(g)

is connected. Moreover, it is known that all nonzero nilpotent elements of sl2 are

conjugate under Aut(sl2). By Lemma 3.1.2, we know that Aut(sl2) fixes ∂. Hence any
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a ∈ X \X0 is conjugate under G̃ to λ ∂+µe⊗ xp−1 for some λ ∈ k∗ and µ ∈ k. This

shows that X \X0 ⊆ G̃.(λ ∂+µe⊗ xp−1 |λ ∈ k∗, µ ∈ k). It is clear that G̃.(λ ∂+µe⊗

xp−1 |λ ∈ k∗, µ ∈ k) ⊆ X \X0. Thus X \X0 = G̃.(λ ∂+µe⊗xp−1 |λ ∈ k∗, µ ∈ k). This

quasi-affine variety is the image of a morphism from the irreducible variety G̃×k∗×k,

hence X \X0 is irreducible.

The above result holds for any irreducible component X of N (g) and shows that

X \X0 is independent of the choice of X. Therefore, there is only one X and so N (g)

is irreducible. This completes the proof.

Remark 3.1.1. 1. We see that the above proof relies heavily on the structure and

automorphisms of g, and Premet’s theorem on N (g) (Theorem 1.5.1). Since we

are familiar with the special linear Lie algebra sl2 and the truncated polynomial

ring O(1; 1), it is easy to do calculations using Jacobson’s formula and construct

such a proof. But for other semisimple restricted Lie algebras with little known

structural information, it may be more difficult to verify Premet’s conjecture.

2. Another useful thing to point out is that the above proof works if we replace sl2

by any Lie algebra g2 = Lie(G2), where G2 is a reductive algebraic group. This

is because

(i) g2 is a restricted Lie algebra by Example 1.1.1, so is (g2 ⊗O(1; 1)) o k ∂.

(ii) One can show similarly that MT(g2⊗O(1; 1)) = MT
(
(g2⊗O(1; 1))ok ∂

)
.

Hence dimN (g2 ⊗O(1; 1)) < dimN
(
(g2 ⊗O(1; 1)) o k ∂

)
.

(iii) We know that N (g2) is irreducible and it is the Zariski closure of a single

nilpotent G2-orbit. Hence all nonzero nilpotent elements of g2 are conjugate

under G2; see [13, Theorem 1, Sec. 2.8 and Sec. 6.3-6.4].

3.2 Socle involves S

We would like to extend the previous example by replacing O(1; 1) with the trun-

cated polynomial ring O(m; 1) in m variables. Then we need to replace ∂. A recent

result proved by A. Premet and D. I. Stewart shows that ∂ is one of the representa-

tives of transitive subalgebras of the derivation algebra DerO(1; 1) under the action
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of Aut(O(1; 1)); see [23, Lemma 2.1]. This suggests that a transitive subalgebra of

DerO(m; 1) will do the job. Let us properly explain the set up.

Assume that k is an algebraically closed field of characteristic p > 2. Suppose

m ≥ 2. Let O(m; 1) = k[X1, . . . , Xm]/(Xp
1 , . . . , X

p
m) denote the truncated polynomial

ring in m variables. We write xi for the image of Xi in O(m; 1). Note that O(m; 1)

is a local ring with dimO(m; 1) = pm. The degree function on the polynomial ring

k[X1, . . . , Xm] induces a grading on O(m; 1). For each i ∈ N0, set

O(m; 1)i := {f ∈ O(m; 1) | deg f = i}. (3.3)

Then O(m; 1) =
⊕m(p−1)

i=0 O(m; 1)i. For each j ∈ N0, set

O(m; 1)(j) :=
⊕
i≥j

O(m; 1)i = {f ∈ O(m; 1) | deg f ≥ j}.

Then the Z-grading on O(m; 1) induces a descending filtration on O(m; 1). Note that

each O(m; 1)(j) is an ideal of O(m; 1). If j > m(p − 1), then O(m; 1)(j) = 0. The

unique maximal ideal of O(m; 1), denoted m, is O(m; 1)(1). Since fp = f(0)p for any

f ∈ O(m; 1), we have that fp = 0 for all f ∈ m.

LetW (m; 1) denote the derivation algebra ofO(m; 1). It is called themth Jacobson-

Witt algebra. By Theorem 1.4.2, this restricted Lie algebra is simple. Note that any

derivation D of O(m; 1) is uniquely determined by its effects on x1, . . . , xm. It is easy

to see that W (m; 1) is a free O(m; 1)-module of rank m generated by the partial deriva-

tives ∂1, . . . , ∂m such that ∂i(xj) = δij for all 1 ≤ i, j ≤ m. Hence dimW (m; 1) = mpm.

Put

W (m; 1)l :=
m∑
i=1

O(m; 1)l+1 ∂i (3.4)

for −1 ≤ l ≤ m(p − 1) − 1. Then the Z-grading on O(m; 1) induces a Z-grading on

W (m; 1), i.e.

W (m; 1) = W (m; 1)−1 ⊕W (m; 1)0 ⊕ · · · ⊕W (m; 1)m(p−1)−1.

Note that W (m; 1)−1 =
∑m

i=1 k ∂i. Similarly, put

W (m; 1)(l) :=
m∑
i=1

O(m; 1)(l+1) ∂i (3.5)
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for −1 ≤ l ≤ m(p−1)−1. Then the natural filtration on O(m; 1) induces a descending

filtration on W (m; 1), i.e.

W (m; 1) = W (m; 1)(−1) ⊃ W (m; 1)(0) ⊃ · · · ⊃ W (m; 1)(m(p−1)−1) ⊃ 0.

It is called the standard filtration; see Definition 1.3.4. Note that each W (m; 1)(l) is a

Lie subalgebra of W (m; 1). The subalgebra W (m; 1)(0) =
∑m

i=1 m ∂i is often referred to

as the standard maximal subalgebra of W (m; 1). This is because it can be characterized

as the unique proper subalgebra of smallest codimension in W (m; 1). By Lemma 1.4.2,

we know that W (m; 1)(0) is a restricted subalgebra of W (m; 1). Moreover, for any

D1 ∈ W (m; 1)(0), it is easy to check that D1(O(m; 1)) ⊆ m. It is also easy to see that

W (m; 1)(1) =
∑m

i=1 m
2 ∂i is the nilradical of W (m; 1)(0).

A restricted subalgebra Q′ of W (m; 1) is called transitive if it does not preserve

any proper nonzero ideals of O(m; 1). Equivalently, Q′ + W (m; 1)(0) = W (m; 1); see

[23, Sec. 2.1] and [30, Definition 2.3.1].

Let G denote the automorphism group of O(m; 1). Each σ ∈ G is uniquely de-

termined by its effects on x1, . . . , xm. An assignment σ(xi) = fi extends to an au-

tomorphism of O(m; 1) if and only if fi ∈ m, and the Jacobian Jac(f1, . . . , fm) :=∣∣( ∂ fi
∂ xj

)
1≤i,j≤m

∣∣ /∈ m. It follows that G is a connected algebraic group of dimension

mpm − m. By [11, Theorem 10], every automorphism of W (m; 1) is induced by a

unique automorphism of O(m; 1) via the rule Dσ = σ ◦ D ◦ σ−1 for all σ ∈ G and

D ∈ W (m; 1). So we can identify G with the automorphism group of W (m; 1). Note

that for any f ∈ O(m; 1), D ∈W (m; 1) and σ ∈ G,

(fD)σ = fσDσ,

where fσ = f(σ(x1), . . . , σ(xm)); see (1.12) in Sec. 1.5. It follows that if D2 =∑m
i=1 gi ∂i ∈ W (m; 1), then

Dσ2 =
m∑

i, j=1

gσi

(
∂i
(
σ−1(xj)

))σ
∂j;

see (1.13) in Sec. 1.5. Note also that G respects the standard filtration of W (m; 1),

and Lie(G) = W (m; 1)(0).

Let us introduce the Lie algebra that we are going to work with. Let D be any

restricted transitive subalgebra of W (m; 1) such that N (D) is irreducible. Let S be
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any simple restricted Lie algebra over k such that all its derivations are inner. We

assume further that N (S) is irreducible. It is natural to form the semidirect product

L := (S ⊗O(m; 1)) o (IdS ⊗D).

Then L is known to be a semisimple restricted Lie algebra over k; see also [23, Sec. 2.1].

To ease notation we identify IdS ⊗D with D.

Let us explain the reason that we assumed that D is a transitive subalgebra of

W (m; 1). Note that if D is not transitive, then O(m; 1) contains a proper nonzero

D-invariant ideal, say n. Since O(m; 1) is a local ring, this ideal is contained in the

maximal ideal m of O(m; 1). Hence fp = 0 for all f ∈ n. Now consider S⊗n, a nonzero

subspace of L. Since O(m; 1)n ⊆ n, we have that [S ⊗O(m; 1), S ⊗ n] ⊆ S ⊗ n. Since

n is D-invariant, it follows that S ⊗ n is a nonzero ideal of L consisting of nilpotent

elements of L. Hence L is not semisimple and we are not interested in such L in this

chapter. Therefore, for L to be semisimple, it is necessary that D is transitive. This is

the reason that we assumed that D is transitive when we introduced the Lie algebra

L.

We want to prove Theorem 3.2.3 which states that the variety N (L) is irreducible.

We will consider the surjective morphism ψ̃ : N (L) → N (D) and need some prelimi-

nary results. Let us outline these results in each section.

In Sec. 3.2.1 we consider nilpotent elements of D. Since D is a restricted transitive

subalgebra of W (m; 1), there exists d ∈ D such that d /∈ W (m; 1)(0). If d is also

nilpotent, then we show that d is conjugate under G = Aut(W (m; 1)) to an element in

a nice form. For that, we need a few results. Thanks to Lemma 1.5.2 in Sec. 1.5 and

Lemma 3.2.1 which state that any z ∈ W (m; 1) such that z /∈ W (m; 1)(0) is conjugate

under G to an element in a nice form. Then we show that any such nilpotent element

z is conjugate under G to d0 + u, where d0 = ∂1 +xp−1
1 ∂2 + · · ·+ xp−1

1 · · ·xp−1
s−1 ∂s with

1 ≤ s ≤ m, u ∈ (I ∂1 + · · ·+I ∂m)∩W (m; 1)(p−1) and I is the ideal ofO(m; 1) generated

by xs+1, . . . , xm; see Lemma 3.2.7 for notations. For the proof, we need Theorem 3.2.2

which was proved by A. Premet in [22]. Then we show that (d0+u)p
s ∈ W (m; 1)(0); see

Lemma 3.2.8. We show in Lemma 3.2.9 that any d ∈ N (D) such that d /∈ W (m; 1)(0)

is conjugate under G to d0 +u. Moreover, dp
s ∈ W (m; 1)(0) by Lemma 3.2.8. We shall

denote d0 + u ∈ N (D) by z.
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Next we define a monomial ordering DegLex on O(m; 1); see Definition 3.2.4. Then

we consider the subspace

M = I + z(m),

where m is the maximal ideal of O(m; 1), I is the ideal of O(m; 1) generated by

xs+1, . . . , xm with s ≥ 1, and z = d0 + u as above. We show M has the property that

M ⊕ kxp−1
1 · · ·xp−1

s = O(m; 1); see Lemma 3.2.10 and Lemma 3.2.11.

In Sec. 3.2.2 we consider nilpotent elements of L. Let D′ =
∑m(p−1)

i=0 si ⊗ fi + d

be an element of L, where si ∈ S, fi ∈ O(m; 1) with deg fi = i, and d ∈ N (D)

with d ∈ W (m; 1)(0). In Lemma 3.2.12, we compute p-th powers of D′ and show that

D′ ∈ N (L) if and only if s0 ∈ N (S).

We want to prove a similar result for the element D =
∑m(p−1)

i=0 si ⊗ fi + z of L,

where si ∈ S, fi ∈ O(m; 1) with deg fi = i, and z = d0 + u ∈ N (D) as above. We first

construct some automorphisms of L, i.e. we show that exp(ad(s̃⊗f)) with s̃⊗f ∈ S⊗m

is an automorphism of L; see Lemma 3.2.13. Let H denote the subgroup of Aut(L)

generated by these exp(ad(s̃ ⊗ f)). Then we show that D =
∑m(p−1)

i=0 si ⊗ fi + z is

conjugate under H to

D1 = s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′ + z,

where s′0 ∈ S (possibly 0), v′ ∈ S⊗I, I is the ideal ofO(m; 1) generated by xs+1, . . . , xm

with s ≥ 1, and z = d0 + u ∈ N (D) as above; see Lemma 3.2.14. Then D is nilpotent

if and only if D1 is nilpotent. In Lemma 3.2.15, we show that D1 ∈ N (L) if and only

if s′0 ∈ N (S).

In Sec. 3.2.3, we prove that the variety N (L) is irreducible.

3.2.1 Nilpotent elements of D

Since D is a restricted transitive subalgebra of W (m; 1), there are elements in D which

are not in W (m; 1)(0). In this section we consider these elements. If they are nilpotent,

we show that they are conjugate under G = Aut(W (m; 1)) to an element in a nice

form; see Lemma 3.2.9. For that, we start with elements of W (m; 1) which are not in

W (m; 1)(0).
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Lemma 3.2.1. [20, p. 154, line 17] Let z be an element of W (m; 1) such that

z /∈ W (m; 1)(0). Then there exists an 1 ≤ s ≤ m such that z is conjugate under G to

s∑
i=1

xp−1
1 · · ·xp−1

i−1 (1 + xp−1
i ψi) ∂i +x

p−1
1 · · ·xp−1

s

m∑
i=s+1

ψi ∂i,

where ψi ∈ k[Xi+1, . . . , Xm]/(Xp
i+1, . . . , X

p
m) for 1 ≤ i ≤ s and ψi ∈ mm−s, the maximal

ideal of k[Xs+1, . . . , Xm]/(Xp
s+1, . . . , X

p
m), for s+ 1 ≤ i ≤ m.

Sketch of proof. Recall that if σ ∈ G and D =
∑m

i=1 gi ∂i ∈ W (m; 1), then

Dσ = σ ◦ D ◦ σ−1 =
m∑

i, j=1

gσi
(
∂i(σ

−1(xj))
)σ
∂j, (3.6)

where gσi = gi(σ(x1), . . . , σ(xm)); see (1.12) and (1.13) in Sec. 1.5.

Let z be an element of W (m; 1) such that z /∈ W (m; 1)(0). By Lemma 1.5.2, there

exists Φ1 ∈ G such that

zΦ1 = ∂1 +xp−1
1

m∑
i=1

ϕi ∂i = (1 + xp−1
1 ϕ1) ∂1 +xp−1

1

m∑
i=2

ϕi ∂i,

where ϕi ∈ k[X2, . . . , Xm]/(Xp
2 , . . . , X

p
m) for all 1 ≤ i ≤ m. Set z2 =

∑m
i=2 ϕi ∂i.

If z2 ∈ W (m; 1)(0), then we find an s = 1 such that zΦ1 is of the desired form. If

z2 /∈ W (m; 1)(0), then Lemma 1.5.2 implies that there exists Φ2 ∈ G such that

zΦ2
2 = (1 + xp−1

2 ϕ′2) ∂2 +xp−1
2

m∑
i=3

ϕ′i ∂i,

where ϕ′i ∈ k[X3, . . . , Xm]/(Xp
3 , . . . , X

p
m) for all 2 ≤ i ≤ m. Here we may assume that

Φ2(x1) = x1 and Φ2(xj) ∈ k[X2, . . . , Xm]/(Xp
2 , . . . , X

p
m) ∩ m, i.e. the intersection of

k[X2, . . . , Xm]/(Xp
2 , . . . , X

p
m) with the maximal ideal m of O(m; 1), for 2 ≤ j ≤ m. By

(3.6), it is easy to check that

zΦ1Φ2 = (zΦ1)Φ2 = (1 + xp−1
1 ϕΦ2

1 ) ∂1 +xp−1
1 (1 + xp−1

2 ϕ′2) ∂2 +xp−1
1 xp−1

2

m∑
i=3

ϕ′i ∂i .

Set z3 =
∑m

i=3 ϕ
′
i ∂i. If z3 ∈ W (m; 1)(0), then we find an s = 2 such that zΦ1Φ2 is of the

desired form. If z3 /∈ W (m; 1)(0), then Lemma 1.5.2 implies that there exists Φ3 ∈ G

such that

zΦ3
3 = (1 + xp−1

3 ϕ′′3) ∂3 +xp−1
3

m∑
i=4

ϕ′′i ∂i,
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where ϕ′′i ∈ k[X4, . . . , Xm]/(Xp
4 , . . . , X

p
m) for all 3 ≤ i ≤ m. Here we may assume

that Φ3(x1) = x1, Φ3(x2) = x2 and Φ3(xj) ∈ k[X3, . . . , Xm]/(Xp
3 , . . . , X

p
m) ∩ m for

3 ≤ j ≤ m. By (3.6), it is easy to check that

zΦ1Φ2Φ3 = (zΦ1Φ2)Φ3 =(1 + xp−1
1 (ϕΦ2

1 )Φ3) ∂1 +xp−1
1 (1 + xp−1

2 (ϕ′2)Φ3) ∂2

+ xp−1
1 xp−1

2 (1 + xp−1
3 ϕ′′3) ∂3 +xp−1

1 xp−1
2 xp−1

3

m∑
i=4

ϕ′′i ∂i .

Continue doing the above process until we find an 1 ≤ s ≤ m and Φ1, . . . ,Φs ∈ G such

that

zΦ1Φ2Φ3...Φs =(1 + xp−1
1 ψ1) ∂1 +xp−1

1 (1 + xp−1
2 ψ2) ∂2 +xp−1

1 xp−1
2 (1 + xp−1

3 ψ3) ∂3 + . . .

+ xp−1
1 · · ·xp−1

s−1(1 + xp−1
s ψs) ∂s +xp−1

1 · · ·xp−1
s

m∑
i=s+1

ψi ∂i

=
s∑
i=1

xp−1
1 · · ·xp−1

i−1 (1 + xp−1
i ψi) ∂i +x

p−1
1 · · · xp−1

s

m∑
i=s+1

ψi ∂i,

where ψi ∈ k[Xi+1, . . . , Xm]/(Xp
i+1, . . . , X

p
m) for 1 ≤ i ≤ s and ψi ∈ mm−s, the maximal

ideal of k[Xs+1, . . . , Xm]/(Xp
s+1, . . . , X

p
m), for s+ 1 ≤ i ≤ m. Note that if s = m, then

the above process shows that z is G-conjugate to
∑m

i=1 x
p−1
1 · · ·xp−1

i−1 (1 + xp−1
i ψi) ∂i,

where ψi ∈ k[Xi+1, . . . , Xm]/(Xp
i+1, . . . , X

p
m) for 1 ≤ i ≤ m. Note that ψm = 0. This

completes the sketch of proof.

Next we assume that z is a nilpotent element of W (m; 1) such that z /∈ W (m; 1)(0).

We want to prove that z is conjugate under G to an element in a nicer form; see

Lemma 3.2.7. For that, we need Theorem 3.2.2 which was proved by A. Premet

in [22]. This theorem characterizes all regular elements of W (m; 1). To state that

theorem, we need to introduce some notations used in [22, Sec. 2 and 3]. Then we

state a few preliminary results and give a sketch proof of that theorem.

Let g be any finite dimensional restricted Lie algebra over k. Given x ∈ g, let

g0
x denote the set of all y ∈ g for which (adx)N(y) = 0, where N � 0. It is known

that g0
x is a restricted subalgebra of g containing the centralizer cg(x). Define rk(g) :=

minx∈g dim g0
x. We say that x ∈ g is regular if its centralizer cg(x) has the smallest

possible dimension. Note that dim g0
x = rk(g) if and only if x is regular and in this

case g0
x is a Cartan subalgebra of minimal dimension in g. It is known that the set of

all regular elements of g is Zariski open in g. We consider the restricted Lie algebra

W (m; 1). In [20], A. Premet proved that
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Lemma 3.2.2. [20, Lemma 9] The set of singular elements of N (W (m; 1)) coincides

with

N0 = {D1 ∈ N (W (m; 1)) | Dp
m−1

1 ∈ W (m; 1)(0)};

see also Lemma 1.5.5.

In [22], A. Premet characterized all regular elements of W (m; 1). The following

result on tori will be used in part (a) of the proof.

Theorem 3.2.1. [30, Theorem 7.5.1] Let t ⊂ W (m; 1) be a torus and set t0 :=

t∩W (m; 1)(0). Let t1, . . . , ts be toral elements of t linearly independent (mod t0). Then

there exists Φ ∈ G = Aut(W (m; 1)) such that Φ(ti) = (1 + xi) ∂i for 1 ≤ i ≤ s and

Φ(t0) ⊂
∑m

i=s+1 kxi ∂i.

Let t be any torus in W (m; 1). We denote by (ttor)∗ the set of all linear functions

α : t → k such that α(t) ∈ Fp for all toral elements t ∈ t. It is known that (ttor)∗ is

an Fp-form of the dual space t∗ with Card((ttor)∗) = pl, where l = dim t. Note that

O(m; 1) is tautologically a W (m; 1)-module. Then O(m; 1) decomposes as

O(m; 1) =
⊕

λ∈t∗ O(m; 1)λ, where

O(m; 1)λ = {f ∈ O(m; 1) | t.f = λ(t)f for all t ∈ t}.

If O(m; 1)λ 6= {0}, then we say that λ ∈ t∗ is a weight of O(m; 1) with respect to t

or a t-weight. We denote the set of all t-weights of O(m; 1) by Λ(O(m; 1)). Note that

Λ(O(m; 1)) ⊆ (ttor)∗.

Lemma 3.2.3. [22, Lemma 1] Let t be an r-dimensional torus in W (m; 1). Then

Λ(O(m; 1)) = (ttor)∗ and dimO(m; 1)λ = pm−r for all λ ∈ Λ(O(m; 1)).

Next we consider a particular torus tD which is defined as follows: for any D ∈

W (m; 1), there exist a unique semisimple element Ds and a unique nilpotent element

Dn such that D = Ds + Dn and [Ds,Dn] = 0; see Theorem 1.1.2. Let tD denote the

torus of W (m; 1) generated by the semisimple part Ds of D. For any D ∈W (m; 1), we

also know that there exist homogeneous polynomials ϕ0, . . . , ϕm−1 in k[W (m; 1)] with

degϕi = pm − pi such that Dpm +
∑m−1

i=0 ϕi(D)Dpi = 0; see Theorem 1.5.1. Define

r = r(D) := min{0 ≤ i ≤ m− 1 |ϕi(D) 6= 0} for D /∈ N (W (m; 1)), and

r = r(D) := m for D ∈ N (W (m; 1)).
(3.7)

Then the following hold:
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Lemma 3.2.4. [22, Lemma 2(i)] dim tD = m− r(D) = m− r and Dprn = 0.

In [22, Sec 3.3], A. Premet first observed that

Lemma 3.2.5. [22, Remark 1] If D is a regular element of W (m; 1) and r = r(D),

then (adD)p
r−1 maps W (m; 1)0

D = {D1 ∈ W (m; 1) | (adD)N(D1) = 0 for N � 0} onto

the centralizer cW (m;1)(D) =
∑m−1

i=0 kDpi, and the derivations D,Dp, . . . ,Dpm−1
are

linearly independent.

Then A. Premet proved the following theorem which characterizes all regular ele-

ments of W (m; 1). We will use (ii) and (iii) in the proof of Lemma 3.2.7.

Theorem 3.2.2. [22, Theorem 2] Suppose D ∈ W (m; 1) and let r = r(D) be defined

as in (3.7). Then the following are equivalent:

(i) D is a regular element of W (m; 1).

(ii) The kernel of D on O(m; 1) is k1 which is 1-dimensional.

(iii) There exist zr+1, . . . , zm ∈ {εi+xi | r+1 ≤ i ≤ m} for some εi ∈ {0, 1} and σ ∈ G

such that Dσs =
∑m

i=r+1 λi(zi ∂i) for some λi ∈ k, the torus (tD)σ is spanned by

zr+1 ∂r+1, . . . , zm ∂m, and Dσn = ∂1 +xp−1
1 ∂2 + · · ·+ xp−1

1 · · · xp−1
r−1 ∂r.

(iv) All Jordan blocks of Dn have size pr.

Sketch of proof. We prove the above statements are equivalent in the following or-

der: (a) (i) implies (ii), (b) (ii) implies (iii), (c) (iii) implies (iv), (d) (iv) implies (ii)

and finally (e) (ii) implies (i).

(a) Suppose D is a regular element of W (m; 1). We prove by contradiction that

KerD = k1. Suppose dim KerD ≥ 2. Then there exists a nonzero f ∈ KerD ∩ m.

Since p > 2, it is easy to see that if f ∈ m \ m2, then f 2 6= 0. Hence we may assume

that f ∈ m2. Note that fD ∈ cW (m;1)(D) and (fD)p = fpDp = 0. It follows from

Lemma 3.2.5 and Lemma 3.2.4 that fD = λDpr−1

n for some λ ∈ k.

We split the proof into two cases: D /∈ W (m; 1)(0) and D ∈ W (m; 1)(0). Suppose

D /∈ W (m; 1)(0). Then fD 6= 0 and we may assume that fD = Dpr−1

n . It follows that

Dpr−1

n ∈ W (m; 1)(1). As adD|W (m;1)0D
= adDn|W (m;1)0D

, it follows from Lemma 3.2.5
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that there exists some y ∈ W (m; 1)0
D such that (adDn)p

r−1(y) = D. Since p > 2, we

have that

D =(adDpr−1

n )p−1((adDn)p
r−1−1(y))

∈[W (m; 1)(1), [W (m; 1)(1),W (m; 1)]] ⊆ W (m; 1)(1).
(3.8)

This contradicts our assumption that D /∈ W (m; 1)(0). So this case cannot occur.

Suppose D ∈W (m; 1)(0). By Theorem 3.2.1, we may assume that tD ⊆ Tm, where

Tm is a maximal torus in W (m; 1) with basis {x1 ∂1, . . . , xm ∂m}. Let {θ1, . . . , θm} be

the corresponding dual basis in T ∗m. Let νi denote the restriction of θi to tD. Let ad−1

denote the representation of W (m; 1)0 in gl(W (m; 1)−1) induced by the adjoint action

of W (m; 1)0 to W (m; 1)−1; see (3.4) for the Z-grading on W (m; 1). Then the set of

tD-weights on W (m; 1)−1 coincides with Λ := {−ν1, . . . ,−νm}. By Lemma 3.2.4, we

know that dim tD = m− r. Since Λ spans t∗D, we have that Card(Λ) ≥ m− r.

For ν ∈ Λ, set η(ν) := dimW (m; 1)ν−1. Then η(ν) ≥ 1 and
∑

ν∈Λ η(ν) = m. Set

η := maxν∈Λ η(ν). Then one can show that

η ≤ r + 1. (3.9)

Write Dn =
∑

i≥0Dn,i, where Dn,i ∈ W (m; 1)i; see (3.4) for notations. Since tD ⊆ Tm,

we have that Dn,i ∈ cW (m;1)(tD) for all i. In particular, each weight space W (m; 1)ν−1

is invariant under ad−1(Dn,0). As Dn is nilpotent, we get

(ad−1(Dn,0))η = 0. (3.10)

Since W (m; 1)(1) is a p-ideal of W (m; 1)(0), then one can show using Jacobson’s formula

that

DpKn −D
pK

n,0 ∈ W (m; 1)(1) (3.11)

for all K ≥ 0.

Suppose r ≥ 2. Then one can show that pr−1 ≥ r + 1. By (3.9) and (3.10),

we have that ad−1(Dp
r−1

n,0 ) = 0. Since ad−1 is a faithful representation of W (m; 1)0,

we get Dp
r−1

n,0 = 0. By (3.11), we get Dpr−1

n ∈ W (m; 1)(1). Applying (3.8), we get

D ∈ W (m; 1)(1). In particular, D is nilpotent. By our assumption, D is regular. This

contradicts Lemma 3.2.2.

Suppose r = 1. Then Card(Λ) = m−1 or m. If Card(Λ) = m, then
∑

ν∈Λ η(ν) = m

implies that η = 1. By (3.10), we have that ad−1(Dn,0) = 0. This again gives that
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Dpr−1

n ∈ W (m; 1)(1). Arguing as above, we get a contradiction. If Card(Λ) = m − 1,

then one can show that η = 2. Since dim tD = m − 1, we may assume that tD is

spanned by elements ti = xi ∂i +ci(xm ∂m), 1 ≤ i ≤ m − 1, for some ci ∈ Fp. Note

that ν1, . . . , νm−1 are linearly independent and νm = c1ν1 + · · · + cm−1νm−1. Since

Card(Λ) = m−1, we may assume that νm = νm−1, Dn,0 = λ(xm−1 ∂m) for some λ ∈ k,

and

Ds =
m−2∑
i=1

αi(xi ∂i) + αm−1(xm−1 ∂m−1 +xm ∂m)

for some αi ∈ k∗. Then cW (m;1)(tD) ⊂ W (m; 1)(0). If λ = 0, then Dn ∈ W (m; 1)(1).

Applying (3.8) with r = 1, we get D ∈ W (m; 1)(1). By our assumption, D is regular.

This contradicts Lemma 3.2.2. If λ 6= 0, then Dn /∈ W (m; 1)(1). Then one can

show that cW (m;1)(D) ∩W (m; 1)(1) 6= {0}. By Lemma 3.2.5, any nilpotent element of

cW (m;1)(D) is a scalar multiple of Dn. Since Dn /∈ W (m; 1)(1), this is a contradiction.

So this case cannot occur.

If r = 0, then Dn = 0 and tD = Tm. Hence KerD = k1, the zero weight space of

Tm in O(m; 1). This shows that (i) implies (ii).

(b) Suppose (ii) holds for D, i.e. KerD = k1. We show that (ii) implies (iii).

Let B denote the zero weight space of tD in O(m; 1). By Lemma 3.2.3, dimB = pr.

Note that the restriction of D to B, denoted D|B, is a nilpotent derivation of B. Let

mB = B ∩m be the maximal ideal of the local ring B. By our assumption, mB is not

D-stable. Hence B is differentiably simple; see Definition 1.6.1. By Theorem 1.6.1,

B ∼= O(r; 1) as k-algebras. Since D|B is a nilpotent derivation of B and KerD|B = k1,

it follows from Lemma 1.5.1 and Theorem 1.5.2 that there exist y1, . . . , yr ∈ mB whose

cosets in mB/m
2
B are linearly independent such that

D|B =
∂

∂ y1

+ yp−1
1

∂

∂ y2

+ · · ·+ yp−1
1 · · · yp−1

r−1

∂

∂ yr
.

By Lemma 1.5.1(ii), DerB is a free B-module with basis D|B, . . .Dp
r−1

|B . Hence there

exists {bi,j | 0 ≤ i, j ≤ r − 1} ⊂ B such that

∂

∂ yi
=

( r−1∑
j=0

bi,jDp
j

n

)
|B

for 1 ≤ i ≤ r. This show that the set of partial derivatives { ∂
∂ yi
| 1 ≤ i ≤ r} ⊂ DerB

can be lifted to a system of commuting derivations of O(m; 1).
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Since each derivation ∂
∂ yi

of O(m; 1) maps B ∩m2 to mB = B ∩m, it follows that

m2
B = B∩m2. Then mB/m

2
B embeds into m/m2. As a result, there exist y′r+1, . . . , y

′
m ∈

m such that the cosets of y1, . . . , yr, y
′
r+1, . . . , y

′
m in m/m2 are linearly independent.

Since dim tD = m − r and tD acts semisimply on O(m; 1)/k1, we may assume that

there exist γr+1, . . . , γm ∈ (ttor
D )∗ such that y′i + k1 ∈ (O(m; 1)/k1)γi . Since B =

O(m; 1)0, then {γr+1, . . . , γm} forms a basis of the dual space t∗D. It follows that

t(y′i) = γi(t)y
′
i + γ′i(t)1 for all t ∈ tD, where γ′i : tD → k is a linear function. Then

one can show that γ′i is proportional to γi. So for each i ≥ r + 1, there exists εi ∈ k

such that t(y′i + εi) = γi(t)(y
′
i + εi). Rescaling the y′i’s if need be, we may assume that

εi ∈ {0, 1}. Set yi := y′i + εi for r + 1 ≤ i ≤ m.

By our choice of y1, . . . , ym, there is a unique σ ∈ Aut(O(m; 1)) such that σ−1(xi) =

yi for 1 ≤ i ≤ r and σ−1(xi) = yi − εi for r + 1 ≤ i ≤ m. Then

Dσn = σ ◦ Dn ◦ σ−1 = ∂1 +xp−1
1 ∂2 + · · ·+ xp−1

1 · · · xp−1
r−1 ∂r, and

Dσs = σ ◦ Ds ◦ σ−1 =
m∑

i=r+1

λi(εi + xi) ∂i

for some λi ∈ k. Since dim tD = m − r and each (εi + xi) ∂i is toral, it is easy to see

that (tD)σ is spanned by (εr+1 + xr+1) ∂r+1, . . . , (εm + xm) ∂m. This shows that (ii)

implies (iii).

(c) Suppose (iii) holds for D and adapt the notations introduced in (b). Let

γ =
∑m

i=r+1 αiγi ∈ (ttor
D )∗. Then αi ∈ Fp. By Lemma 3.2.3, the weight space O(m; 1)γ

is a free B-module of rank 1 generated by yγ = y
αr+1

r+1 · · · yαm
m . Moreover, (D|B)p

r−1 6= 0.

Since Dn(yγ) = 0, then Dn acts on each O(m; 1)γ as a Jordan block of size pr. This

shows that (iii) implies (iv).

(d) Suppose (iv) holds for D. Consider the zero weight space O(m; 1)0 of tD. By

Lemma 3.2.3, we see that Dn acts on O(m; 1)0 for tD as a single Jordan block of size

pr. Since KerD ⊆ O(m; 1)0, we must have that KerD = k1. This shows that (iv)

implies (ii).

(e) Suppose (ii) holds for D. We show that (ii) implies (i). Since we have shown

in (b) that (ii) implies (iii), we get an explicit description of D. So we may assume

that D = Ds + Dn, where Ds =
∑m

i=r+1 λizi ∂i for some λi ∈ k and zi = εi + xi as in

statement (iii), and Dn = ∂1 +xp−1
1 ∂2 + · · ·+xp−1

1 · · ·xp−1
r−1 ∂r. Due to the form of D, it

is easy to see that D preserves each direct summand
⊕m

K=1O(r; 1)z
ar+1

r+1 · · · zamm ∂K of
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W (m; 1), where 0 ≤ ai ≤ p− 1 are fixed. Note that there are pm−r of such summands.

Moreover, D acts on each summand as a direct sum of Jordan blocks of size pr with

eigenvalue (ar+1λr+1 + · · ·+ amλm)− λK . Since the λi’s are linearly independent over

the prime field Fp, this eigenvalue is zero if and only if either K ≤ r and ai = 0 for

all r + 1 ≤ i ≤ m or K ≥ r + 1, aK = 1 and ai = 0 for all r + 1 ≤ i ≤ m except

for i = K. Due to the form of Dn, this implies that the kernel of adD has dimension

r+ (m− r) = m. Hence D is regular and (ii) implies (i). This completes the sketch of

proof.

Now we want to state Lemma 3.2.7. But we need to define W and understand the

following:

Lemma 3.2.6. Let I be the ideal of O(m; 1) generated by xs+1, . . . , xm, where s ≥ 1.

Define

W := I ∂1 + · · ·+ I ∂m .

Let d0 = ∂1 +xp−1
1 ∂2 + · · · + xp−1

1 · · ·xp−1
s−1 ∂s be the derivation of O(s; 1). Then W is

an ad d0-invariant restricted Lie subalgebra of W (m; 1) contained in W (m; 1)(0).

Proof. Since I is an ideal ofO(m; 1) and W (m; 1) =
∑m

j=1O(m; 1) ∂j, we can describe

W as IW (m; 1), i.e. the set of all fD with f ∈ I and D ∈ W (m; 1). Let fD, gE be

any elements of W , where f, g ∈ I and D, E ∈ W (m; 1). By (1.4), we have that

[fD, gE] = fD(g)E − gE(f)D + fg[D, E].

Since f, g ∈ I and I is an ideal of O(m; 1), it is easy to see that [fD, gE] ∈ W . Hence

W is a Lie subalgebra of W (m; 1). Since O(m; 1) is a local ring, the ideal I is contained

in the maximal ideal m of O(m; 1). It follows that W ⊂ W (m; 1)(0).

Next we show that W is ad d0-invariant. Let fD be any element of W , where f ∈ I

and D ∈ W (m; 1). Note that I is d0-invariant. Then d0(f) ∈ I. By (1.4) again, we

have that

[d0, fD] = d0(f)D + f [d0,D] ∈ ID + fW (m; 1) ⊆ IW (m; 1) = W.

Hence W is ad d0-invariant.

It remains to show that W is restricted. Let D′ be any element of W (m; 1). Note

that D′ ∈ W if and only if D′(xi) ∈ I for all 1 ≤ i ≤ m. Let D1 ∈ W . Then D1(xi) ∈ I
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for all 1 ≤ i ≤ m and D1 preserves I. It follows that Dn1 preserves I for all n ∈ Z>0.

Hence

Dp1(xi) = Dp−1
1 (D1(xi)) ∈ Dp−1

1 (I) ⊆ I

for all 1 ≤ i ≤ m. Therefore, Dp1 ∈ W and W is restricted.

It follows from the above that W is an ad d0-invariant restricted Lie subalgebra of

W (m; 1) contained in W (m; 1)(0). This completes the proof.

Lemma 3.2.7. Let z be a nilpotent element of W (m; 1) such that z /∈ W (m; 1)(0).

Then z is conjugate under G to d0 + u, where

d0 = ∂1 +xp−1
1 ∂2 + · · ·+ xp−1

1 · · ·xp−1
s−1 ∂s

with 1 ≤ s ≤ m and u ∈ W ∩W (m; 1)(p−1); see Lemma 3.2.6 for W = I ∂1 + · · ·+I ∂m

and (3.5) for W (m; 1)(p−1) = {
∑m

j=1 fj ∂j | deg fj ≥ p for all j} the component of the

standard filtration of W (m; 1).

Proof. Let z be a nilpotent element of W (m; 1) such that z /∈ W (m; 1)(0). By

Lemma 3.2.1, we may assume that

z =
s∑
i=1

xp−1
1 · · ·xp−1

i−1 (1 + xp−1
i ψi) ∂i +x

p−1
1 · · ·xp−1

s

m∑
i=s+1

ψi ∂i

=d0 +
s∑
i=1

xp−1
1 · · ·xp−1

i ψi ∂i +x
p−1
1 · · ·xp−1

s

m∑
i=s+1

ψi ∂i,

where 1 ≤ s ≤ m, d0 = ∂1 +xp−1
1 ∂2 + · · ·+ xp−1

1 · · ·xp−1
s−1 ∂s,

ψi ∈ k[Xi+1, . . . , Xm]/(Xp
i+1, . . . , X

p
m) for 1 ≤ i ≤ s and ψi ∈ mm−s, the maximal ideal

of k[Xs+1, . . . , Xm]/(Xp
s+1, . . . , X

p
m), for s+ 1 ≤ i ≤ m.

Let I be the ideal of O(m; 1) generated by xs+1, . . . , xm. Since ψi ∈ mm−s for all

s + 1 ≤ i ≤ m, it is easy to see that z preserves the ideal I. Note that the factor

ring O(m; 1)/I is isomorphic to O(s; 1) = k[X1, . . . , Xs]/(X
p
1 , . . . , X

p
s ), and z acts on

O(s; 1) as a derivation. This derivation, call it y, has the same form as z except that

we forget the last summand xp−1
1 · · ·xp−1

s

∑m
i=s+1 ψi ∂i and replace ψi, 1 ≤ i ≤ s, by

their images ψ̄i in O(s; 1), i.e. ψi = ψ̄i + ψ′i with ψ′i ∈ I, and

y = d0 +
s∑
i=1

xp−1
1 · · · xp−1

i ψ̄i ∂i .
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Note also that

s∑
i=1

xp−1
1 · · ·xp−1

i ψ′i ∂i +x
p−1
1 · · ·xp−1

s

m∑
i=s+1

ψi ∂i ∈ W (m; 1)(p−1). (3.12)

We show that the kernel of y on O(s; 1) is 1-dimensional, i.e. Ker y = k1. Suppose

the contrary. Then there exists a nonzero f ∈ Ker y with f(0) = 0. We want to show

that y(f) 6= 0. Hence we get a contradiction. Note that f is a linear combination

of monomials xA = xa11 · · · xass , where 0 ≤ ai ≤ p − 1 and
∑s

i=1 ai > 0. We want

to look at the “smallest” monomial involved in f . Note that the standard degree of

monomials is not a good choice. This is because y = d0 +
∑s

i=1 x
p−1
1 · · · xp−1

i ψ̄i ∂i and

applying d0 = ∂1 +xp−1
1 ∂2 + · · ·+xp−1

1 · · ·xp−1
s−1 ∂s to xA in f , the standard degree either

decreases or increases; see (3.15) and (3.16) below. So it is difficult to compare d0(xA)

with
(∑s

i=1 x
p−1
1 · · ·xp−1

i ψ̄i ∂i
)
(xA) and the effects of y on the other monomials in f .

This means that we cannot easily deduce that y(f) 6= 0. Hence we are going to use

a monomial ordering introduced later; see Definition 3.2.42. Let xA
′′

= x
a′′1
1 · · ·x

a′′s
s be

any monomial in O(s; 1). Define the | |p-degree of xA
′′

by

|A′′|p :=
s∑
i=1

a′′i p
i−1 = a′′1 + a′′2p+ · · ·+ a′′sp

s−1,

i.e. the p-adic expansion of nonnegative integers with digits a′′i . It is known that for a

fixed prime number p, every nonnegative integer has a unique p-adic expansion. Hence

for l = 0, 1, . . . , ps− 1, there is a unique xA
′′ ∈ O(s; 1) with |A′′|p = l. Note that if the

product of two monomials is nonzero, then the | |p-degree of this product is given by

the sum of | |p-degrees of the monomials; see Remark 3.2.2(iii) and (iv)(a) later.

Consider d0 = ∂1 +xp−1
1 ∂2 + · · ·+ xp−1

1 · · · xp−1
s−1 ∂s in y. By Lemma 3.2.10 later, we

know that applying d0 to any xA in f , we get

d0(xA) = αxA
′
, (3.13)

where 1 ≤ α ≤ p− 1 and xA
′ ∈ O(s; 1) with |A′|p = |A|p − 1.

Consider
∑s

i=1 x
p−1
1 · · ·xp−1

i ψ̄i ∂i in y. We first show that all nonzero summands

in
∑s

i=1 x
p−1
1 · · · xp−1

i ψ̄i ∂i have positive | |p-degrees. Since ψ̄i ∈ O(s; 1), it is a linear

2Note that this monomial ordering was defined after we have proved this lemma. Due to the forms
of d0 and u, we defined the | |p-degree of monomials as in Definition 3.2.4; see Example 3.2.1(2) and
(3) later for the reasons. Here we are working with the subring O(s; 1) of O(m; 1) and the | |p-degree
is the first part

∑s
i=1 a

′′
i p

i−1.
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combination of monomials in O(s; 1). Then we can write

ψ̄i =
∑
A′′

λA′′x
A′′ ,

where λA′′ ∈ k and xA
′′ ∈ O(s; 1) with |A′′|p = l ≥ 0. Hence

s∑
i=1

xp−1
1 · · ·xp−1

i ψ̄i ∂i =
s∑
i=1

∑
A′′

λA′′x
p−1
1 · · ·xp−1

i xA
′′
∂i .

Consider each summand xp−1
1 · · ·xp−1

i xA
′′
∂i. By Example 3.2.1(1) later, we know

that for 1 ≤ i ≤ s, ∂i has | |p-degree −pi−1. If xp−1
1 · · ·xp−1

i xA
′′
∂i 6= 0, then Re-

mark 3.2.2(iii) implies that xp−1
1 · · ·xp−1

i xA
′′
∂i has | |p-degree(

(p− 1) + (p− 1)p+ · · ·+ (p− 1)pi−1
)

+ l − pi−1

=(pi − 1) + l − pi−1

=(pi − pi−1) + (l − 1).

By our assumption, p ≥ 3. Since 1 ≤ i ≤ s, an easy induction on i shows that

pi − pi−1 ≥ p− p0 = p− 1 ≥ 2. Since l ≥ 0, we have that l − 1 ≥ −1. It follows that(
(p− 1) + (p− 1)p+ · · ·+ (p− 1)pi−1

)
+ l − pi−1

=(pi − pi−1) + (l − 1) ≥ 2 + (−1) = 1 > 0.

Hence all nonzero summands xp−1
1 · · ·xp−1

i xA
′′
∂i in

∑s
i=1 x

p−1
1 · · ·xp−1

i ψ̄i ∂i have posi-

tive | |p-degrees. Then applying
∑s

i=1 x
p−1
1 · · ·xp−1

i ψ̄i ∂i to any xA in f , we get( s∑
i=1

xp−1
1 · · ·xp−1

i ψ̄i ∂i

)
(xA) =

∑
A′′′

µA′′′x
A′′′ , (3.14)

where µA′′′ ∈ k and xA
′′′ ∈ O(s; 1) with |A′′′|p > |A|p. By (3.13), |A′|p = |A|p − 1.

Hence |A′′′|p > |A′|p.

Now we look at f and take the monomial of smallest | |p-degree with nonzero

coefficient, say it is xA1 = xa11 · · ·xass , where 0 ≤ ai ≤ p−1 and
∑s

i=1 ai > 0. Rescaling

f if need be, we may assume that the coefficient of xA1 is 1. If a1 6= 0, then

d0(xA1) = a1x
A′1 = a1x

a1−1
1 · · ·xass . (3.15)

By our choice of xA1 and (3.13)-(3.14), we have that

y(f) = d0(xA1) +
∑
A2

γA2x
A2 = a1x

A′1 +
∑
A2

γA2x
A2 ,
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where γA2 ∈ k and xA2 ∈ O(s; 1) with |A2|p > |A′1|p. Since all xA2 in y(f) have

|A2|p > |A′1|p, they do not cancel xA
′
1 . As a1x

A′1 6= 0, we have that y(f) 6= 0. If

a1 = · · · = aK−1 = 0 and aK 6= 0, then xA1 = xaKK x
aK+1

K+1 · · ·xass and

d0(xA1) = aKx
A′1 = aKx

p−1
1 · · ·xp−1

K−1x
aK−1
K x

aK+1

K+1 · · ·x
as
s . (3.16)

Hence

y(f) = d0(xA1) +
∑
A3

γA3x
A3 = aKx

A′1 +
∑
A3

γA3x
A3 ,

where γA3 ∈ k and xA3 ∈ O(s; 1) with |A3|p > |A′1|p. Arguing similarly as above, we

get y(f) 6= 0. So f /∈ Ker y. This is a contradiction. Hence Ker y = k1.

Note that since z is nilpotent so is y. Since Ker y = k1, it follows from Theo-

rem 3.2.2(i) and (ii) that y is a regular element of W (s; 1). Then Theorem 3.2.2(iii)

implies that y is conjugate under Aut(W (s; 1)) to

d0 = ∂1 +xp−1
1 ∂2 + · · ·+ xp−1

1 · · · xp−1
s−1 ∂s .

Since W (s; 1) is a Lie subalgebra of W (m; 1), we may identify Aut(W (s; 1)) with

a subgroup of G = Aut(W (m; 1)) by letting σ(xi) = xi for all σ ∈ Aut(W (s; 1))

and s + 1 ≤ i ≤ m. Since yσ = σyσ−1 = d0 for some σ ∈ Aut(W (s; 1)), then

zσ = σzσ−1 = d0 +u, where u ∈ W ∩W (m; 1)(p−1) = (I ∂1 + · · ·+I ∂m)∩W (m; 1)(p−1).

Note that u ∈ W (m; 1)(p−1) follows from (3.12) and that G preserves the standard

filtration of W (m; 1), in particular, G preserves the component W (m; 1)(p−1). This

completes the proof.

Lemma 3.2.8. Let z = d0 + u be as in Lemma 3.2.7. Then zp
s ∈ W (m; 1)(0).

Proof. Recall that z = d0 + u, where d0 = ∂1 +xp−1
1 ∂2 + · · · + xp−1

1 · · · xp−1
s−1 ∂s and

u ∈ W ∩W (m; 1)(p−1); see Lemma 3.2.6 for W . By Lemma 1.1.1,

zp
s

= dp
s

0 + up
s

+
s−1∑
l=0

vp
l

l ,

where vl is a linear combination of commutators in d0 and u. By Jacobi identity, we

can rearrange each vl so that vl is in the span of [wt, [wt−1, [. . . , [w2, [w1, u] . . . ], where

t = ps−l − 1 and each wα, 1 ≤ α ≤ t, is equal to d0 or to u.
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We show that [wt, [wt−1, [. . . , [w2, [w1, u] . . . ] ∈ W and so vl ∈ W . By Lemma 3.2.6,

W is an ad d0-invariant restricted Lie subalgebra of W (m; 1) contained in W (m; 1)(0).

Since u ∈ W , it follows that [d0, u] ∈ W . It is clear that [u, u] = 0 ∈ W . This

shows that [w1, u] ∈ W . Consider w2. If w2 = d0, then by the same reason, we get

[d0, [d0, u]] ∈ W . If w2 = u, then W is a Lie subalgebra of W (m; 1) implies that

[u, [d0, u]] ∈ W . This shows that [w2, [w1, u]] ∈ W . Continuing in this way and using

the same reasons, we get [wt, [wt−1, [. . . , [w2, [w1, u] . . . ] ∈ W and so vl ∈ W for all

0 ≤ l ≤ s − 1. Since W is a restricted Lie subalgebra of W (m; 1), we have that

vp
l

l ∈ W for all 1 ≤ l ≤ s − 1. Hence
∑s−1

l=0 v
pl

l ∈ W ⊂ W (m; 1)(0). Similarly, since

u ∈ W and W is restricted, we have that up
s ∈ W ⊂ W (m; 1)(0). By Lemma 1.5.1(i),

we know that dp
s

0 = 0. Hence

zp
s

= up
s

+
s−1∑
l=0

vp
l

l ∈ W (m; 1)(0).

This completes the proof.

Now we consider the restricted transitive subalgebra D of W (m; 1) and show the

last two results hold for any d ∈ N (D) such that d /∈ W (m; 1)(0).

Lemma 3.2.9. Let d be any element of N (D) such that d /∈ W (m; 1)(0). Then d is

conjugate under G to d0 + u, where d0 + u is the element in Lemma 3.2.7. Moreover,

dp
s ∈ W (m; 1)(0).

Proof. Let d be any element of N (D) such that d /∈ W (m; 1)(0). By Lemma 3.2.7, we

know that d is conjugate under G to d0 + u. Here we want to point out that the use

of the group action does not suppose that D or N (D) is G-stable, it is only used to

bring elements of N (D) to a nice form. Since d is conjugate under G to d0 + u, there

exists σ ∈ G such that d = σ(d0 + u)σ−1. Then

dp
s

=
(
σ(d0 + u)σ−1

)ps
= σ(d0 + u)p

s

σ−1.

By Lemma 3.2.8, (d0 + u)p
s ∈ W (m; 1)(0). Since σ ∈ G, it preserves the standard

filtration of W (m; 1). Hence dp
s ∈ W (m; 1)(0). This completes the proof.

Remark 3.2.1. Let us denote d0 +u ∈ N (D) by z. Note that zp
s ∈ W (m; 1)(0) implies

that zp
s

preserves the maximal ideal m of O(m; 1). This will be used in the proof of

Lemma 3.2.15; see step 2.
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Define

M := I + z(m)

to be the subspace of O(m; 1), where m is the maximal ideal of O(m; 1), I is the ideal

ofO(m; 1) generated by xs+1, . . . , xm with s ≥ 1, and z = d0+u as in Lemma 3.2.7. We

are aiming for Lemma 3.2.11 which showsM has the property thatM⊕kxp−1
1 · · · xp−1

s =

O(m; 1). To prove that result, we need to consider the image of m under z = d0 + u.

In the proof of Lemma 3.2.7, we have seen that applying d0 to any monomial in m, the

standard degree of monomials either decreases or increases. It is difficult to get much

useful information. Therefore, we need to define a monomial ordering on O(m; 1). Let

us first recall the definitions of total ordering and monomial ordering.

Definition 3.2.1. [5, p. 55] A binary relation ≤ is a total ordering on a set X if the

following hold for all a, b, c ∈ X:

(i) Antisymmetry: if a ≤ b and b ≤ a, then a = b.

(ii) Transitivity: if a ≤ b and b ≤ c, then a ≤ c.

(iii) Comparability: either a ≤ b or b ≤ a.

Consider the polynomial ring k[X1, . . . , Xm]. Note that there is a natural bijection

between Zm≥0 and the set of monomials in k[X1, . . . , Xm] given by

(α1, . . . , αm)←→ xα1
1 · · ·xαm

m ,

and addition in Zm≥0 corresponds to multiplication of monomials in k[X1, . . . , Xm]. So

if ≺ is an ordering on Zm≥0, then it gives an ordering on monomials: if (α1, . . . , αm) ≺

(β1, . . . , βm), then xα1
1 · · ·xαm

m ≺ xβ11 · · ·xβmm . Recall that

Definition 3.2.2. [5, Definition 1, Sec. 2 and Corollary 6, Sec. 4, Chap. 2] A mono-

mial ordering on k[X1, . . . , Xm] is a relation ≺ on Zm≥0, or equivalently, a relation ≺

on the set of monomials xα1
1 · · ·xαm

m , (α1, . . . , αm) ∈ Zm≥0, satisfying:

(i) ≺ is a total ordering on Zm≥0.

(ii) If (α1, . . . , αm) ≺ (β1, . . . , βm) and (γ1, . . . , γm) ∈ Zm≥0, then

(α1 + γ1, . . . , αm + γm) ≺ (β1 + γ1, . . . , βm + γm).
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(iii) ≺ is a well-ordering on Zm≥0, i.e. every nonempty subset of Zm≥0 has a smallest el-

ement under ≺. This is equivalent to the condition that (0, . . . , 0) ≺ (α1, . . . , αm)

for every (α1, . . . , αm) 6= (0, . . . , 0).

It follows from the above definition that (0, . . . , 0) (or 1) is the smallest element in

Zm≥0 (or k[X1, . . . , Xm]) under any monomial ordering.

We are interested in O(m; 1) = k[X1, . . . , Xm]/(Xp
1 , . . . , X

p
m), where every mono-

mial xa11 · · · xamm in O(m; 1) has 0 ≤ ai ≤ p − 1 for all 1 ≤ i ≤ m. There are many

monomial orderings on O(m; 1). In particular, the following is an example.

Definition 3.2.3. [5, Definition 3 and Proposition 4, Sec. 2, Chap. 2] The lexico-

graphic ordering ≺lex on O(m; 1) with

x1 ≺lex x2 ≺lex · · · ≺lex xm

is defined as follows: for any two non-equal monomials xa11 · · ·xamm and x
a′1
1 · · ·x

a′m
m ,

xa11 · · · xamm ≺lex x
a′1
1 · · ·xa

′
m
m if and only if ai < a′i,

where i is the largest number in {1, . . . ,m} for which ai 6= a′i.

Next we define the | |p-degree of monomials inO(m; 1). Then it induces a monomial

ordering on O(m; 1).

Definition 3.2.4. Let A = (a1, . . . , as, as+1, . . . , am), where 0 ≤ ai ≤ p− 1. Set

xA := xa11 · · ·xass x
as+1

s+1 · · ·xamm .

Define the | |p-degree of xA by

|A|p :=
s∑
i=1

aip
i−1 + ps

m∑
i=s+1

ai.

Then we have a version of the total ordering called DegLex:

if A = (a1, . . . , as, as+1, . . . , am) and A′ = (a′1, . . . , a
′
s, a
′
s+1, . . . , a

′
m) with 0 ≤ ai, a

′
i ≤

p − 1, then we say that A ≺DegLex A
′ if either |A|p < |A′|p or |A|p = |A′|p and A

precedes A′ in the lexicographic ordering ≺lex defined in Definition 3.2.3.

Remark 3.2.2. (i) Note that 0 ≤ ai ≤ p− 1 are well defined nonnegative integers,

and the first summand
∑s

i=1 aip
i−1 = a1 + a2p+ · · ·+ asp

s−1 in |A|p is the p-adic

expansion of nonnegative integers with digits ai. It is well known that for a fixed

prime number p, every nonnegative integer has a unique p-adic expansion.
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(ii) It is easy to check that DegLex is a monomial ordering on O(m; 1). Moreover,

we see that DegLex first orders monomials by the | |p-degree, then it uses the

lexicographic ordering to break ties.

(iii) Let xA and xA
′

be any monomials in O(m; 1). If xAxA
′
= xA

′′ 6= 0, i.e. all expo-

nents of x1, . . . , xm are strictly less than p, then it follows from Definition 3.2.4

that

|A′′|p = |A|p + |A′|p.

(iv) Let xA = xa11 · · · xass x
as+1

s+1 · · · xamm be any monomial in O(m; 1). Then

|A|p = a1 + a2p+ · · ·+ asp
s−1 + ps

m∑
i=s+1

ai.

Let

Q0 = (p− 1) + (p− 1)p+ · · ·+ (p− 1)ps−1 = ps − 1,

and

Q = Q0 + ps((m− s)(p− 1)).

(a) If 0 ≤ |A|p ≤ Q0, then we must have that
∑m

i=s+1 ai = 0. Indeed, if∑m
i=s+1 ai ≥ 1, then |A|p ≥ ps > Q0, a contradiction. Hence xA = xa11 · · ·xass

with |A|p = a1 + a2p+ · · ·+ asp
s−1. By (i), we know that for a fixed prime

p, the p-adic expansion of any nonnegative integer is unique. Hence for

l = 0, 1, . . . , Q0, there is a unique monomial xA = xa11 · · ·xass with |A|p = l.

(b) If ps = Q0 + 1 ≤ |A|p ≤ Q, then 1 ≤
∑m

i=s+1 ai ≤ (m − s)(p − 1) and

0 ≤
∑s

i=1 ai ≤ s(p−1) by (a). Note that in this case, we could have distinct

monomials with the same | |p-degree and such monomials are easy to con-

struct. We could simply fix a1, . . . , as and choose as+1, . . . , am so that they

have the same
∑m

i=s+1 ai. For example, the monomials xp−1
1 · · ·xp−1

s xs+1

and xp−1
1 · · ·xp−1

s xs+2 have the same | |p-degree which is Q0 + ps. By Defi-

nition 3.2.3, we have that xp−1
1 · · ·xp−1

s xs+1 ≺lex xp−1
1 · · ·xp−1

s xs+2.

(v) Let us describe O(m; 1) using the | |p-degree. Keeping in mind the numbers Q0

and Q introduced in (iv). Since O(m; 1) is spanned by monomials

xA = xa11 · · ·xamm , 0 ≤ ai ≤ p− 1,
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we can describe O(m; 1) as

O(m; 1) = span{xA | 0 ≤ |A|p ≤ Q}.

Let I be the ideal of O(m; 1) generated by xs+1, . . . , xm, where s ≥ 1. Let f be

any polynomial in O(m; 1). Then f is a linear combination of monomials xA in

O(m; 1). Since O(m; 1) = I ⊕ O(s; 1), these monomials xA are either in I or

in O(s; 1). If xA ∈ I, then A = (a1, . . . , as, as+1, . . . , am), where 0 ≤
∑s

i=1 ai ≤

s(p − 1) and 1 ≤
∑m

i=s+1 ai ≤ (m − s)(p − 1). It follows that ps ≤ |A|p ≤ Q. If

xA /∈ I, i.e. xA ∈ O(s; 1), then A = (a1, . . . , as, 0, . . . , 0), where 0 ≤
∑s

i=1 ai ≤

s(p− 1). It follows that 0 ≤ |A|p ≤ Q0. By (iv)(a), we can write f as

f =

Q0∑
l=0

λAl
xAl + g,

where λAl
∈ k, xAl = xa11 · · ·xass ∈ O(s; 1) with |Al|p = l, and g ∈ I. We will

come back to this in Lemma 3.2.14, Sec. 3.2.2.

To get familiar with the | |p-degree defined in Definition 3.2.4, let us look at some

examples. Moreover, we want to explain the reason that we define | |p-degree as |A|p =∑s
i=1 aip

i−1 + ps
∑m

i=s+1 ai. Initially, we want to compute z(xA), where z = d0 + u

and xA is any monomial in the maximal ideal m of O(m; 1). Due to the form of d0,

the standard degree of monomials is not useful. Hence we want to define a monomial

ordering so that d0 decreases the “degree” of the monomial, i.e. | |p-degree, whereas

u increases the | |p-degree of the monomial; see Example 3.2.1(2) and (3) below. As

a result, z(xA) is nonzero. Then we want to use these results to show the subspace

M = I + z(m) has the property that M ⊕ kxp−1
1 · · ·xp−1

s = O(m; 1). But later we

realize there is an alternative way to prove this and we only need to do computations

for d0; see Lemma 3.2.10 and Lemma 3.2.11. However, the | |p-degree of monomials is

still useful for the proof of Lemma 3.2.14 as we may lost of control if we are using the

standard degree of monomials.

Example 3.2.1. (1) Let xA = xa11 · · ·xass x
as+1

s+1 · · ·xamm ∈ O(m; 1). Let

|A| := a1 + · · ·+ as + as+1 + · · ·+ am

be the standard degree of xA. Suppose |A| > 0. Consider the partial derivatives

∂1, . . . , ∂m. Note that for 1 ≤ j ≤ m, if aj 6= 0, then

∂j(x
A) = ajx

a1
1 · · · x

aj−1
j · · ·xamm .
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Hence the degree of ∂j with respect to the standard degree of monomials is −1.

Consider the | |p-degree. Since

|A|p = a1 + a2p+ · · ·+ ajp
j−1 + · · ·+ asp

s−1 + ps
m∑

j=s+1

aj,

we see that for 1 ≤ j ≤ s, the degree of ∂j with respect to | |p is −pj−1, and for

s+ 1 ≤ j ≤ m, the degree of ∂j with respect to | |p is −ps.

(2) Consider xA(xi ∂j), where xA ∈ O(m; 1) with |A| > 0, s+ 1 ≤ i ≤ m and

1 ≤ j ≤ m. Suppose xAxi 6= 0. By (1), we know that the degree of xA(xi ∂j) with

respect to the standard degree of monomials is

|A|+ (1− 1) = |A| > 0.

Consider the | |p-degree. By Remark 3.2.2(iii) and (1), we know that for 1 ≤ j ≤ s,

the degree of xA(xi ∂j) with respect to | |p is

|A|p + (ps − pj−1).

Since |A| > 0, we have that |A|p > 0. Since 1 ≤ j ≤ s, we have that ps−pj−1 > 0.

Hence |A|p + (ps − pj−1) > 0. By (1) again, we know that for s+ 1 ≤ j ≤ m, the

degree of xA(xi ∂j) with respect to | |p is

|A|p + (ps − ps) = |A|p,

which is positive, too. Recall that u ∈ (
∑m

j=1 I ∂j) ∩W (m; 1)(p−1), where I is the

ideal of O(m; 1) generated by xs+1, . . . , xm with s ≥ 1, and

W (m; 1)(p−1) =

{ m∑
j=1

fj ∂j | deg fj ≥ p for all j

}
.

Then u is a linear combination of xA(xi ∂j), where xAxi, s + 1 ≤ i ≤ m, is a

monomial in I with p ≤ |A|+ 1 ≤ m(p− 1), and 1 ≤ j ≤ m. By above, we know

that each xA(xi ∂j) has degree |A| with respect to the standard degree of monomials.

Hence applying xA(xi ∂j) to any xA
′

= x
a′1
1 · · ·x

a′m
m ∈ m with a′j 6= 0, the standard

degree increases by |A| ≥ p− 1, and the | |p-degree increases by at least |A|p > 0.

Since xAxi ∈ I and I is an ideal of O(m; 1), it follows that
(
xA(xi ∂j)

)
(xA

′
) ∈ I

and so

u(xA
′
) =

∑
A′′

λA′′x
A′′ ,
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where λA′′ ∈ k and xA
′′ ∈ I with p − 1 ≤ |A| = |A′′| − |A′| ≤ m(p − 1) − 1 and

|A′′|p − |A′|p ≥ |A|p > 0.

(3) Consider xp−1
1 · · · xp−1

r−1 ∂r, where 1 ≤ r ≤ s. By (1), the degree of xp−1
1 · · ·xp−1

r−1 ∂r

with respect to | |p is

(
(p− 1) + (p− 1)p+ · · ·+ (p− 1)pr−2

)
− pr−1 = (pr−1 − 1)− pr−1 = −1.

Since d0 = ∂1 +xp−1
1 ∂2 + · · · + xp−1

1 · · ·xp−1
s−1 ∂s and each summand has | |p-degree

−1, it follows that d0 has | |p-degree −1.

Now we consider the action of z = d0 +u on the maximal ideal m of O(m; 1). Note

that m = ms⊕I, where ms is the maximal ideal of O(s; 1) and I is the ideal of O(m; 1)

generated by xs+1, . . . , xm with s ≥ 1. Since d0 = ∂1 +xp−1
1 ∂2 + · · · + xp−1

1 · · ·xp−1
s−1 ∂s

is a derivation of O(s; 1), we first consider d0(ms).

Lemma 3.2.10. Let d0 = ∂1 +xp−1
1 ∂2 + · · · + xp−1

1 · · ·xp−1
s−1 ∂s be the derivation of

O(s; 1). Let ms be the maximal ideal of O(s; 1). Let xA1 = xarr x
ar+1

r+1 · · ·xass be any

monomial in ms, where 1 ≤ r ≤ s is the smallest index such that 1 ≤ ar ≤ p− 1, and

0 ≤ ai ≤ p− 1 for r + 1 ≤ i ≤ s. Then

d0(xA1) = arx
A2 = arx

p−1
1 · · ·xp−1

r−1x
ar−1
r x

ar+1

r+1 · · · xass

with |A2|p = |A1|p−1. Hence d0(ms) is spanned by all monomials xA2 ∈ O(s; 1) except

xp−1
1 · · ·xp−1

s . In particular, dim d0(ms) = ps − 1.

Proof. Let xA1 = xarr x
ar+1

r+1 · · ·xass be any monomial in ms, where 1 ≤ r ≤ s is the

smallest index such that 1 ≤ ar ≤ p− 1, and 0 ≤ ai ≤ p− 1 for r + 1 ≤ i ≤ s. Since

d0 = ∂1 +xp−1
1 ∂2 + · · ·+ xp−1

1 · · ·xp−1
r−1 ∂r +xp−1

1 · · ·xp−1
r ∂r+1 + · · ·+ xp−1

1 · · ·xp−1
s−1 ∂s,

we have that

d0(xA1) = arx
p−1
1 · · ·xp−1

r−1x
ar−1
r x

ar+1

r+1 · · · xass = arx
A2 .

Since 0 ≤ ar−1 ≤ p−2 < p−1, we see that xA2 6= xp−1
1 · · ·xp−1

s . By Example 3.2.1(3),

we know that the degree of d0 with respect to | |p is −1. Hence |A2|p = |A1|p − 1. By

Lemma 1.5.1(iii), we know that d0 acts on O(s; 1) as a single Jordan block of size ps
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with zeros on the main diagonal. So dim d0(O(s; 1)) = ps − 1. Since O(s; 1) = ms ⊕ k

and d0(c) = 0 for all c ∈ k, we have that dim d0(ms) = ps−1. It follows from the above

calculation that d0(ms) is spanned by all monomials xA2 ∈ O(s; 1) except xp−1
1 · · ·xp−1

s .

Indeed, since A2 = (p− 1, . . . , p− 1, ar − 1, ar+1, . . . , as) with 0 ≤ ar − 1 ≤ p− 2 and

0 ≤ ai ≤ p − 1 for r + 1 ≤ i ≤ s, we see that as r varies from 1 to s, there are∑s
r=1(p − 1)ps−r = ps − 1 different possibilities for A2 except (p − 1, . . . , p − 1) (i.e.

p − 1 appears s times). So there are ps − 1 distinct monomials xA2 ∈ O(s; 1) except

xp−1
1 · · ·xp−1

s . This completes the proof.

Lemma 3.2.11. Let z = d0 + u be as in Lemma 3.2.7. Let

M = I + z(m)

be the subspace of O(m; 1), where m is the maximal ideal of O(m; 1) and I is the ideal

of O(m; 1) generated by xs+1, . . . , xm with s ≥ 1. Then M is spanned by all monomials

xA = xa11 · · ·xamm ∈ O(m; 1) except xp−1
1 · · · xp−1

s . In particular, dimM = pm − 1.

Proof. Let M = I + z(m) be the subspace of O(m; 1), where m is the maximal

ideal of O(m; 1) and I is the ideal of O(m; 1) generated by xs+1, . . . , xm with s ≥ 1.

Recall that z = d0 + u, where d0 = ∂1 +xp−1
1 ∂2 + · · · + xp−1

1 · · · xp−1
s−1 ∂s is a derivation

of O(s; 1) and u ∈ (
∑m

i=1 I ∂i) ∩ W (m; 1)(p−1). Note that d0 preserves the ideal I.

Since u ∈
∑m

i=1 I ∂i and I is an ideal of O(m; 1), we have that u(m) ⊆ I. Hence

M = I + z(m) = I + d0(m). Consider d0(m). Note that m = ms ⊕ I, where ms is the

maximal ideal of O(s; 1). Since d0(ms) ⊂ O(s; 1), d0(I) ⊆ I and O(s; 1)∩ I = {0}, we

have that d0(m) = d0(ms)⊕ d0(I). Since d0(I) ⊆ I, we have that

M = I + z(m) = I + d0(m) = I ⊕ d0(ms). (3.17)

Since I is the ideal of O(m; 1) generated by xs+1, . . . , xm with s ≥ 1, then I is spanned

by all monomials xa11 · · ·xass x
as+1

s+1 · · ·xamm , where 0 ≤
∑s

i=1 ai ≤ s(p− 1) and

1 ≤
∑m

i=s+1 ai ≤ (m−s)(p−1). So dim I = ps(pm−s−1) = pm−ps. By Lemma 3.2.10,

d0(ms) is spanned by all monomials xa11 · · · xass ∈ O(s; 1) except xp−1
1 · · ·xp−1

s and so

dim d0(ms) = ps − 1. Therefore, M = I ⊕ d0(ms) is spanned by all monomials xA =

xa11 · · · xamm ∈ O(m; 1) except xp−1
1 · · ·xp−1

s . In particular, dimM = (pm−ps)+(ps−1) =

pm − 1. This completes the proof.
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3.2.2 Nilpotent elements of L

In the last section we have obtained all the results required for nilpotent elements of

D. Now let us consider nilpotent elements of L = (S ⊗O(m; 1)) o D.

Lemma 3.2.12. Let D′ =
∑m(p−1)

i=0 si ⊗ fi + d be an element of L, where si ∈ S,

fi ∈ O(m; 1) with deg fi = i, and d ∈ N (D) with d ∈ W (m; 1)(0). Then D′ ∈ N (L) if

and only if s0 ∈ N (S).

Proof. Let D′ =
∑m(p−1)

i=0 si⊗ fi + d be as in the lemma. We first show that for every

N ≥ 1,

(D′)p
N

= dp
N

+ (sp
N

0 ⊗ f
pN

0 ) + (other terms in S ⊗m). (3.18)

By Lemma 1.1.1,

(D′)p
N

= dp
N

+

(m(p−1)∑
i=0

si ⊗ fi
)pN

+
N−1∑
l=0

vp
l

l ,

where vl is a linear combination of commutators in
∑m(p−1)

i=0 si ⊗ fi and d. By Jacobi

identity, we can rearrange each vl so that vl is in the span of[
wt,

[
wt−1,

[
. . . ,

[
w2,

[
w1,

m(p−1)∑
i=0

si ⊗ fi
]
. . .

]
,

where t = pN−l − 1 and each wα, 1 ≤ α ≤ t, is equal to
∑m(p−1)

i=0 si ⊗ fi or to d.

We show that [wt, [wt−1, [. . . , [w2, [w1,
∑m(p−1)

i=0 si ⊗ fi] . . . ] ∈ S ⊗ m. If w1 =∑m(p−1)
i=0 si ⊗ fi, then [w1,

∑m(p−1)
i=0 si ⊗ fi] = 0. Suppose w1 = d. By our assump-

tion, d ∈ W (m; 1)(0) =
∑m

j=1 m ∂j. It is easy to see that d(O(m; 1)) ⊆ m. Hence

[
d,

m(p−1)∑
i=0

si ⊗ fi
]

=

m(p−1)∑
i=0

si ⊗ d(fi) ∈ S ⊗m.

This shows that [w1,
∑m(p−1)

i=0 si ⊗ fi] ∈ S ⊗ m. Consider [w2, [w1,
∑m(p−1)

i=0 si ⊗ fi]].

If w2 = d, then [d, [w1,
∑m(p−1)

i=0 si ⊗ fi]] ∈ [d, S ⊗ m] = S ⊗ d(m) ⊆ S ⊗ m. If

w2 =
∑m(p−1)

i=0 si ⊗ fi, then[m(p−1)∑
i=0

si ⊗ fi,
[
w1,

m(p−1)∑
i=0

si ⊗ fi
]]
∈ [S ⊗O(m; 1), S ⊗m] ⊆ S ⊗m.

This shows that [w2, [w1,
∑m(p−1)

i=0 si ⊗ fi]] ∈ S ⊗m. Continuing in this way, i.e. using

that d preserves S ⊗m and S ⊗m is an ideal of S ⊗O(m; 1), we eventually get
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[wt, [wt−1, [. . . , [w2, [w1,
∑m(p−1)

i=0 si ⊗ fi] . . . ] ∈ S ⊗ m. Since each vl is a linear combi-

nation of these commutators, we have that vl ∈ S⊗m for all 0 ≤ l ≤ N − 1. Consider

vp
l

l , where 0 < l ≤ N − 1. Since vl is a linear combination of elements in S ⊗ m, it

follows from Lemma 1.1.1 and [S ⊗ m, S ⊗ m] ⊆ S ⊗ m that vpl ∈ S ⊗ m. Continuing

in this way, we get vp
l

l ∈ S ⊗m for all 0 < l ≤ N − 1. Therefore,

N−1∑
l=0

vp
l

l ∈ S ⊗m. (3.19)

We consider
(∑m(p−1)

i=0 si ⊗ fi
)pN

and show that(m(p−1)∑
i=0

si ⊗ fi
)pN

= (sp
N

0 ⊗ f
pN

0 ) + (other terms in S ⊗m). (3.20)

Since fi ∈ m for 0 < i ≤ m(p− 1), we have that fp
N

i = 0. It follows from Lemma 1.1.1

that (m(p−1)∑
i=0

si ⊗ fi
)pN

=

m(p−1)∑
i=0

sp
N

i ⊗ f
pN

i +
N−1∑
l=0

up
l

l = (sp
N

0 ⊗ f
pN

0 ) +
N−1∑
l=0

up
l

l ,

where ul is a linear combination of commutators in si ⊗ fi, 0 ≤ i ≤ m(p − 1). By

Jacobi identity, we can rearrange each ul so that ul is in the span of

[ηt, [ηt−1, [. . . , [η2, [η1, s0 ⊗ f0] . . . ],

where t = pN−l − 1 and each ηα, 1 ≤ α ≤ t, is equal to some si ⊗ fi, 0 ≤ i ≤

m(p − 1). Since S ⊗ m is an ideal of S ⊗ O(m; 1), one can show similarly that

[ηt, [ηt−1, [. . . , [η2, [η1, s0⊗f0] . . . ] ∈ S⊗m. Hence ul ∈ S⊗m for all 0 ≤ l ≤ N −1 and

up
l

l ∈ S ⊗m for all 0 < l ≤ N − 1. Therefore,
∑N−1

l=0 up
l

l ∈ S ⊗m. This gives (3.20) as

desired.

It follows from (3.20) and (3.19) that for every N ≥ 1, the p-th powers of D′ is

given by

(D′)p
N

= dp
N

+

(m(p−1)∑
i=0

si ⊗ fi
)pN

+
N−1∑
l=0

vp
l

l

= dp
N

+ (sp
N

0 ⊗ f
pN

0 ) + (other terms in S ⊗m).

By our assumption, d is a nilpotent element of D such that d ∈ W (m; 1)(0). Hence d

preserves S ⊗ m. Therefore, for N � 0, D′ is a nilpotent element of L if and only if

s0 is a nilpotent element of S. This completes the proof.
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Next we consider elements of the form D =
∑m(p−1)

i=0 si ⊗ fi + z, where si ∈ S,

fi ∈ O(m; 1) with deg fi = i, and z = d0 + u ∈ N (D) as in Lemma 3.2.7. We first

construct some automorphisms of L; see Lemma 3.2.13. Then we show that D can be

reduced to an element in a nice form; see Lemma 3.2.14.

Lemma 3.2.13. Let s̃ ⊗ f be an element of S ⊗ m. Then exp(ad(s̃ ⊗ f)) is an

automorphism of L.

Proof. The proof is similar to Lemma 3.1.3 in Sec. 3.1. Let s̃ ⊗ f be an element of

S ⊗m. We first show that exp(ad(s̃⊗ f)) is an automorphism of S ⊗O(m; 1). Since

f ∈ m, we have that fp = 0. Hence (ad(s̃ ⊗ f))p = ad(s̃p ⊗ fp) = 0. Moreover, it is

easy to check that for any w1, w2 ∈ S ⊗O(m; 1),∑
0≤i,j≤p, i+j≥p

1

i!j!

[
(ad(s̃⊗ f))i(w1), (ad(s̃⊗ f))j(w2)

]
= 0.

Hence exp(ad(s̃ ⊗ f)) is an automorphism of S ⊗ O(m; 1). Then it induces an auto-

morphism of the derivation algebra

Der(S ⊗O(m; 1)) =
(
S ⊗O(m; 1)

)
o
(

IdS ⊗W (m; 1)
)

via conjugation. Note that

L = (S ⊗O(m; 1)) o D ⊂ Der(S ⊗O(m; 1)).

To conclude that exp(ad(s̃ ⊗ f)) is an automorphism of L, we need to check that

exp(ad(s̃⊗ f)) preserves L. Explicitly, we need to show that for any d1 ∈ D,

exp(ad(s̃ ⊗ f)) ◦ d1 ◦ exp(ad(−s̃ ⊗ f)) ∈ L. In the proof of Lemma 3.1.3 (see (3.2)),

we did a similar computation. By the same computational method and the following

reasons:

(i) d1 is a derivation of O(m; 1),

(ii) exp(ad(s̃⊗ f)) exp(ad(−s̃⊗ f)) = Id,

(iii) fp = 0,

(iv) (p− 1)! ≡ −1(mod p), and

(v) S ∼= adS via the adjoint representation and hence we may identify S ⊗O(m; 1)

with its image in gl(S ⊗O(m; 1)) under ad,
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one can show that

exp(ad(s̃⊗ f)) ◦ d1 ◦ exp(ad(−s̃⊗ f)) = d1 − s̃⊗ d1(f)− s̃p ⊗ fp−1d1(f). (3.21)

It is clear that exp(ad(s̃ ⊗ f)) ◦ d1 ◦ exp(ad(−s̃ ⊗ f)) ∈ L. Hence exp(ad(s̃ ⊗ f))

preserves L and it is an automorphism of L. This completes the proof.

Let H denote the subgroup of Aut(L) generated by exp(ad(s̃⊗ f)), where s̃⊗ f ∈

S ⊗ m. Then H is a connected algebraic group with S ⊗ m ⊆ Lie(H). We show

that applying suitable elements of H, the following element of L can be reduced to an

element in a nice form.

Lemma 3.2.14. Let D =
∑m(p−1)

i=0 si ⊗ fi + z be an element of L, where si ∈ S,

fi ∈ O(m; 1) with deg fi = i, and z = d0 + u ∈ N (D) as in Lemma 3.2.7. Then D is

conjugate under H to

D1 = s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′ + z,

where s′0 ∈ S (possibly 0), v′ ∈ S⊗I, I is the ideal of O(m; 1) generated by xs+1, . . . , xm

with s ≥ 1, and z = d0 + u ∈ N (D) as in Lemma 3.2.7.

Strategy of the proof. Step 1 . Let D be as in the lemma. By Remark 3.2.2(v),

we can rewrite D as

D =

Q0∑
l=0

sAl
⊗ xAl + v + z,

where sAl
∈ S, xAl = xa11 · · ·xass ∈ O(s; 1) with 0 ≤ |Al|p = l ≤ Q0 = ps−1, v ∈ S⊗ I,

and z = d0 + u ∈ N (D) as in Lemma 3.2.7. We want to show that D is conjugate

under H = 〈exp(ad(s̃ ⊗ f)) | s̃ ⊗ f ∈ S ⊗ m〉 to D1 = s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′ + z for

some s′0 ∈ S (possibly 0) and v′ ∈ S ⊗ I. We first observe that for any exp(ad(s̃⊗ f))

in H, exp(ad(s̃ ⊗ f))(v + u) = u + v3 for some v3 = v3(s̃, f) ∈ S ⊗ I. Note that

(S⊗ I)∩ (S⊗O(s; 1)) = {0}. Moreover, all xAl are in O(s; 1) and d0 is a derivation of

O(s; 1). Hence to show that D is conjugate under H to D1, we just need to show that∑Q0

l=0 sAl
⊗ xAl + d0 is conjugate under H to s′0 ⊗ x

p−1
1 · · ·xp−1

s + d0 for some s′0 ∈ S

(possibly 0). For that, we only need to apply automorphisms exp(ad(s̃ ⊗ f)) with

s̃⊗ f ∈ S ⊗ms. Here ms denotes the maximal ideal of O(s; 1).

Step 2 . Let D0 =
∑Q0

l=0 sAl
⊗xAl + d0. We show that D0 is conjugate under H to

s′0 ⊗ x
p−1
1 · · ·xp−1

s + d0 for some s′0 ∈ S (possibly 0). If sAl
= 0 for all l, then D0 is of
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the desired form. If not all sAl
are zero, then we look at xAl ’s with sAl

6= 0 and take

the one with the smallest | |p-degree, say it is xAK with |AK |p = K. Then

D0 =

Q0∑
l=K

sAl
⊗ xAl + d0.

If xAK = xp−1
1 · · ·xp−1

s , then |AK |p = K = Q0 and D0 is of the desired form. If xAK =

xa11 · · ·xass 6= xp−1
1 · · ·xp−1

s , then 0 ≤ |AK |p = K < Q0 and there exist 0 ≤ ai < p − 1

for some 1 ≤ i ≤ s. Let 1 ≤ r ≤ s be the smallest index such that 0 ≤ ar < p − 1.

Then xAK = xp−1
1 . . . xp−1

r−1x
ar
r x

ar+1

r+1 · · ·xass . Let f = xÃK = xar+1
r x

ar+1

r+1 · · ·xass ∈ ms and

s̃ = (ar + 1)−1sAK
∈ S. It follows from Lemma 3.2.10 that applying exp(ad(s̃⊗ f)) to

D0, we may assume that

D0 =

Q0∑
l=K+1

s′Al
⊗ xAl + d0,

where s′Al
∈ S, xAl = xa11 · · · xass ∈ O(s; 1) with |Al|p = l. Continue doing the above

until we get D0 is conjugate under H to s′0⊗x
p−1
1 · · ·xp−1

s +d0 for some s′0 ∈ S (possibly

0). It follows that D is conjugate under H to D1.

Proof. Step 1 . Let D =
∑m(p−1)

i=0 si ⊗ fi + z be as in the lemma. Let I be the ideal

of O(m; 1) generated by xs+1, . . . , xm, where s ≥ 1. Since fi ∈ O(m; 1), it follows from

Remark 3.2.2(v) that we can write

fi =

Q0∑
l=0

λAl,ix
Al + gi,

where λAl,i ∈ k, xAl = xa11 · · ·xass ∈ O(s; 1) with 0 ≤ |Al|p = l ≤ Q0 = ps − 1, and

gi ∈ I. Then we can rewrite D as

D =

Q0∑
l=0

sAl
⊗ xAl + v + z, (3.22)

where sAl
∈ S, xAl = xa11 · · ·xass ∈ O(s; 1) with 0 ≤ |Al|p = l ≤ Q0 = ps−1, v ∈ S⊗ I,

and z = d0 + u ∈ N (D) as in Lemma 3.2.7. We want to show that D is conjugate

under H = 〈exp(ad(s̃ ⊗ f)) | s̃ ⊗ f ∈ S ⊗ m〉 to D1 = s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′ + z for

some s′0 ∈ S (possibly 0) and v′ ∈ S ⊗ I. We claim that this problem can be reduced

to show that
∑Q0

l=0 sAl
⊗ xAl + d0 is conjugate under H to s′0 ⊗ x

p−1
1 · · ·xp−1

s + d0 for

some s′0 ∈ S (possibly 0). Take D as in (3.22) and let exp(ad(s̃⊗ f)) be any element
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in H. By Lemma 3.2.13 (see (3.21)),

exp(ad(s̃⊗ f))(D) = exp(ad(s̃⊗ f))

( Q0∑
l=0

sAl
⊗ xAl + d0

)
+ exp(ad(s̃⊗ f))(v + u)

=

Q0∑
l=0

sAl
⊗ xAl +

p−1∑
j=1

Q0∑
l=0

1

j!
(ad s̃)j(sAl

)⊗ f jxAl

+ d0 − s̃⊗ d0(f)− s̃p ⊗ fp−1d0(f) + exp(ad(s̃⊗ f))(v + u).

We show that exp(ad(s̃⊗ f))(v + u) = u+ v3 for some v3 = v3(s̃, f) ∈ S ⊗ I. Since I

is an ideal of O(m; 1), this implies that S ⊗ I is an ideal of S ⊗O(m; 1). Hence S ⊗ I

is stabilized by all exp(ad(s̃⊗ f)) in H. In particular, exp(ad(s̃⊗ f))(v) = v1 for some

v1 = v1(s̃, f) ∈ S ⊗ I. By Lemma 3.2.13 (see (3.21)) again,

exp(ad(s̃⊗ f))(u) = u− s̃⊗ u(f)− s̃p ⊗ fp−1u(f).

Since u ∈ (I ∂1 + · · · + I ∂m), we have that u(m) ⊆ I. In particular, u(f) ∈ I.

Hence exp(ad(s̃ ⊗ f))(u) = u + v2 for some v2 = v2(s̃, f) ∈ S ⊗ I. It follows that

exp(ad(s̃ ⊗ f))(v + u) = u + v3 for some v3 = v3(s̃, f) = v1(s̃, f) + v2(s̃, f) ∈ S ⊗ I.

Hence for any exp(ad(s̃⊗ f)) ∈ H,

exp(ad(s̃⊗ f))(D) = exp(ad(s̃⊗ f))

( Q0∑
l=0

sAl
⊗ xAl + d0

)
+ (u+ v3)

=

Q0∑
l=0

sAl
⊗ xAl +

p−1∑
j=1

Q0∑
l=0

1

j!
(ad s̃)j(sAl

)⊗ f jxAl

+ d0 − s̃⊗ d0(f)− s̃p ⊗ fp−1d0(f) + (u+ v3).

Applying another element exp(ad(s̃1 ⊗ f ′)) ∈ H to the above, we still get

exp(ad(s̃1 ⊗ f ′))(u + v3) = u + v4 for some v4 = v4(s̃1, f
′) ∈ S ⊗ I. Note that

(S ⊗ I) ∩ (S ⊗O(s; 1)) = {0}. Moreover, all xAl are in O(s; 1) and d0 is a derivation

of O(s; 1). Hence to show that D =
∑Q0

l=0 sAl
⊗ xAl + v + d0 + u is H-conjugate to

D1 = s′0⊗ x
p−1
1 · · ·xp−1

s + v′+ d0 + u, we just need to show that
∑Q0

l=0 sAl
⊗xAl + d0 is

H-conjugate to s′0⊗x
p−1
1 · · ·xp−1

s +d0. For that, we only need to apply automorphisms

exp(ad(s̃⊗f)) with s̃⊗f ∈ S⊗ms and do computations in O(s; 1) and W (s; 1). Here

ms denotes the maximal ideal of O(s; 1).

Step 2 . Let D0 =
∑Q0

l=0 sAl
⊗ xAl + d0. We show that D0 is H-conjugate to

s′0 ⊗ x
p−1
1 · · · xp−1

s + d0 for some s′0 ∈ S (possibly 0). If sAl
= 0 for all l, then D0 is of
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the desired form. If not all sAl
are zero, then we look at xAl ’s with sAl

6= 0 and take

the one with the smallest | |p-degree, say it is xAK with |AK |p = K. Then

D0 =

Q0∑
l=K

sAl
⊗ xAl + d0.

If xAK = xp−1
1 · · ·xp−1

s , then |AK |p = K = Q0 and D0 is of the desired form. If

xAK 6= xp−1
1 · · ·xp−1

s , then 0 ≤ |AK |p = K < Q0 and we need to apply exp(ad(s̃⊗ f))

to D0 and clear sAK
⊗ xAK . By Lemma 3.2.13 (see (3.21)), we know that for any

exp(ad(s̃⊗ f)) ∈ H,

exp(ad(s̃⊗ f))(D0) =

Q0∑
l=K

sAl
⊗ xAl +

p−1∑
j=1

Q0∑
l=K

1

j!
(ad s̃)j(sAl

)⊗ f jxAl

+ d0 − s̃⊗ d0(f)− s̃p ⊗ fp−1d0(f).

(3.23)

Let AK = (a1, . . . , as). Since xAK 6= xp−1
1 · · ·xp−1

s , there exist 0 ≤ ai < p− 1 for some

1 ≤ i ≤ s. Note that if |AK |p = 0, then ai = 0 for all 1 ≤ i ≤ s. Let 1 ≤ r ≤ s be the

smallest index such that 0 ≤ ar < p− 1. Then

xAK = xp−1
1 . . . xp−1

r−1x
ar
r x

ar+1

r+1 · · ·xass .

Let f = xÃK = xar+1
r x

ar+1

r+1 · · ·xass ∈ ms. By Lemma 3.2.10,

d0(f) = d0(xÃK ) = (ar + 1)xAK

with |AK |p = |ÃK |p − 1. Let s̃ = (ar + 1)−1sAK
∈ S. Substituting s̃ and f into (3.23),

we get

exp(ad(s̃⊗ f))(D0) =

Q0∑
l=K+1

sAl
⊗ xAl

+

p−1∑
j=1

Q0∑
l=K+1

1

j!
(ar + 1)−j(ad sAK

)j(sAl
)⊗ (xÃK )jxAl

+ d0 − (ar + 1)−p+1spAK
⊗ (xÃK )p−1xAK .

(3.24)

We want to show that exp(ad(s̃⊗ f))(D0) =
∑Q0

l=K+1 s
′
Al
⊗xAl + d0, where s′Al

∈ S

and xAl = xa11 · · ·xass ∈ O(s; 1) with |Al|p = l. Look at the second and the last

summands in (3.24). Since xÃK ∈ ms and ms is an ideal of O(s; 1), we see that

these two summands are in S ⊗ms. This implies that every nonzero monomial xA in
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these two summands has |A|p ≤ Q0. Moreover, we show that every nonzero monomial

xA in these two summands has |A|p > K + 1. We start with the second summand.

By Remark 3.2.2(iii), we know that for any monomials xA
′

and xA
′′

in O(s; 1), if

xA
′
xA
′′

= xA
′′′ 6= 0, then |A′′′|p = |A′|p + |A′′|p. Consider (xÃK )j, where 1 ≤ j ≤ p− 1.

By our choice, xÃK ∈ ms with |ÃK |p = |AK |p + 1 = K + 1. Hence for 2 ≤ j ≤ p− 1, if

(xÃK )j 6= 0, then (xÃK )j ∈ ms with | |p-degree j|ÃK |p ≥ 2(K + 1) > K + 1. Now look

at (xÃK )jxAl in the second summand. Since l ≥ K + 1 ≥ 1, every monomial xAl is

in ms and has |Al|p = l ≥ K + 1. If (xÃK )jxAl 6= 0, then (xÃK )jxAl is in ms and has

| |p-degree j|ÃK |p + |Al|p ≥ |ÃK |p + |Al|p ≥ (K + 1) + (K + 1) > K + 1.

Look at (xÃK )p−1xAK in the last summand. By above, if (xÃK )p−1 6= 0, then

(xÃK )p−1 is in ms and has | |p-degree > K + 1. Note that xAK ∈ O(s; 1) and has

|AK |p = K ≥ 0. So if (xÃK )p−1xAK 6= 0, then (xÃK )p−1xAK is in ms and has | |p-

degree (p− 1)|ÃK |p + |AK |p > (K + 1) +K ≥ K + 1.

Hence every nonzero monomial xA in the second and the last summands hasK+1 <

|A|p ≤ Q0. Therefore, applying exp(ad(s̃⊗ f)) to D0, we may assume that

D0 =

Q0∑
l=K+1

s′Al
⊗ xAl + d0

for some s′Al
∈ S and xAl = xa11 · · ·xass ∈ O(s; 1) with |Al|p = l.

Now look at D0 and repeat the above process, i.e. take xAl with the smallest

| |p-degree for which s′Al
6= 0. If Al = (a1, . . . , as) = (p − 1, . . . , p − 1), then D0 is of

the desired form. If not, then applying a similar automorphism exp(ad(s̃⊗ f)) to D0

and clear s′Al
⊗ xAl . Continuing in this way, we eventually get D0 is H-conjugate to

s′0 ⊗ x
p−1
1 · · · xp−1

s + d0 for some s′0 ∈ S (possibly 0). Therefore, D = D0 + v + u is

H-conjugate to D1 = s′0 ⊗ x
p−1
1 · · ·xp−1

s + d0 + v′ + u for some s′0 ∈ S (possibly 0) and

v′ ∈ S ⊗ I. This completes the proof.

Lemma 3.2.15. Let D1 = s′0 ⊗ xp−1
1 · · · xp−1

s + v′ + z be an element of L, where

s′0 ∈ S, v′ ∈ S⊗ I, I is the ideal of O(m; 1) generated by xs+1, . . . , xm with s ≥ 1, and

z = d0 + u ∈ N (D) as in Lemma 3.2.7. Then D1 ∈ N (L) if and only if s′0 ∈ N (S).

Strategy of the proof. This is a computational proof with the following key steps:

Step 1 . Let D1 = s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′ + z be as in the lemma. We show that

Dps

1 = zp
s

+ (s′0 ⊗ (−1)s) + (other terms in S ⊗m).
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Set w = s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′. By Lemma 1.1.1,

Dps

1 = zp
s

+ wp
s

+
s−1∑
r=0

up
r

r , (3.25)

where ur is a linear combination of commutators in z and w. We first show that

wp
s ∈ S ⊗ m. Then we consider

∑s−1
r=0 u

pr

r . By Jacobi identity, we can rearrange each

ur so that ur is in the span of [wt, [wt−1, [. . . , [w2, [w1, w] . . . ], where t = ps−r − 1 and

each wα, 1 ≤ α ≤ t, is equal to z or to w. We consider all such iterated commutators

[wt, [wt−1, [. . . , [w2, [w1, w] . . . ] and show that

u0 = (ad z)p
s−1(w) = (s′0 ⊗ (−1)s) + (other terms in S ⊗m),

and for p− 1 ≤ t = ps−r − 1 ≤ ps−1 − 1,

[wt, [wt−1, [. . . , [w2, [w1, w] . . . ] ∈ S ⊗m.

Hence for 1 ≤ r ≤ s− 1, ur ∈ S ⊗m and up
r

r ∈ S ⊗m.

Note that [z, w] = s′0 ⊗ z(xp−1
1 · · · xp−1

s ) + [z, v′]. To show the above claims, we

need to consider the action of z = d0 + u on xp−1
1 · · ·xp−1

s ; see parts (i)-(iii). Then we

consider commutators in z and w; see parts (iv)-(vi).

(i) We show that for any 0 < l < ps− 1, 0 6= dl0(xp−1
1 · · ·xp−1

s ) ∈ ms, where ms is the

maximal ideal of O(s; 1).

(ii) We show by induction that for any 0 < l < ps − 1,

zl(xp−1
1 · · ·xp−1

s ) = dl0(xp−1
1 · · ·xp−1

s ) + (other terms in I) ∈ ms ⊕ I.

(iii) We show that zp
s−1(xp−1

1 · · · xp−1
s ) = (−1)s + (other terms in I).

(iv) We show that for any 0 < l < ps − 1, (ad z)l(w) ∈ (S ⊗ms)⊕ (S ⊗ I), and

(ad z)p
s−1(w) = (s′0 ⊗ (−1)s) + (other terms in S ⊗m).

(v) We show that for any 0 < l < ps − 1, [w, (ad z)l(w)] ∈ S ⊗ I.

(vi) We show that for p− 1 ≤ t = ps−r − 1 ≤ ps−1 − 1,

[wt, [wt−1, [. . . , [w2, [w1, w] . . . ] ∈ S ⊗m,

where each wα, 1 ≤ α ≤ t, is equal to z or to w. Hence for 1 ≤ r ≤ s − 1,

ur ∈ S ⊗m and up
r

r ∈ S ⊗m.
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It follows from the above that Dps

1 = zp
s

+ (s′0 ⊗ (−1)s) + (other terms in S ⊗m).

Step 2 . We show that D1 ∈ N (L) if and only if s′0 ∈ N (S). By the last

step, Dps

1 = zp
s

+ (s′0 ⊗ (−1)s) + (other terms in S ⊗m). By our assumption, z is

nilpotent. By Lemma 3.2.8, zp
s ∈ W (m; 1)(0). Hence zp

s
preserves S ⊗ m. Applying

Lemma 3.2.12 with D′ = Dps

1 , d = zp
s
, s0 = s′0 and f0 = (−1)s, we get for N ≥ 1 (see

(3.18)),

Dps+N

1 = zp
s+N

+ ((s′0)p
N ⊗ (−1)sp

N

) + (other terms in S ⊗m).

Hence for s+N � 0, D1 ∈ N (L) if and only if s′0 ∈ N (S).

Proof. Step 1 . Let D1 = s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′ + z be as in the lemma. We show

that

Dps

1 = zp
s

+ (s′0 ⊗ (−1)s) + (other terms in S ⊗m).

Set w = s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′. By Lemma 1.1.1,

Dps

1 = zp
s

+ wp
s

+
s−1∑
r=0

up
r

r , (3.26)

where ur is a linear combination of commutators in z and w. We first show that

wp
s ∈ S ⊗m. Since xp−1

1 · · ·xp−1
s ∈ m, then (xp−1

1 · · ·xp−1
s )p

s
= 0. By Lemma 1.1.1,

wp
s

= (v′)p
s

+
s−1∑
r=0

ηr
pr ,

where ηr is a linear combination of commutators in s′0⊗x
p−1
1 · · ·xp−1

s and v′. We show

that (v′)p
s ∈ S⊗I. Since v′ ∈ S⊗I, we can write v′ =

∑n
i=1 s̃i⊗gi for some s̃i ∈ S and

gi ∈ I. Since O(m; 1) is a local ring, the ideal I is contained in the maximal ideal m

of O(m; 1). Hence gpi = 0 for all i. Moreover, [S⊗ I, S⊗ I] ⊆ S⊗ I. By Lemma 1.1.1,

we have that that (v′)p ∈ S ⊗ I. Continuing in this way, we get (v′)p
s ∈ S ⊗ I. Next

we show that
∑s−1

r=0 ηr
pr ∈ S ⊗ I. Since I ⊂ m, we have that mI ⊆ m ∩ I = I. Since

s′0 ⊗ x
p−1
1 · · ·xp−1

s ∈ S ⊗m and v′ ∈ S ⊗ I, we have that

[s′0 ⊗ x
p−1
1 · · ·xp−1

s , v′] ∈ [S ⊗m, S ⊗ I] ⊆ S ⊗mI ⊆ S ⊗ I.

It is clear that [S⊗I, S⊗I] ⊆ S⊗I. So any iterated commutators in s′0⊗x
p−1
1 · · ·xp−1

s

and v′ are in S ⊗ I. Since ηr is a linear combination of these commutators, we have
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that ηr ∈ S ⊗ I for all 0 ≤ r ≤ s − 1. By a similar argument as above, one can

show that ηr
pr ∈ S ⊗ I for all 0 < r ≤ s − 1. Hence

∑s−1
r=0 ηr

pr ∈ S ⊗ I. Therefore,

wp
s

= (v′)p
s

+
∑s−1

r=0 ηr
pr ∈ S ⊗ I ⊂ S ⊗m.

Now we consider
∑s−1

r=0 u
pr

r in (3.26), where ur is a linear combination of commu-

tators in z and w. By Jacobi identity, we can rearrange each ur so that ur is in the

span of [wt, [wt−1, [. . . , [w2, [w1, w] . . . ], where t = ps−r − 1 and each wα, 1 ≤ α ≤ t, is

equal to z or to w. We consider all such iterated commutators and show that

u0 = (ad z)p
s−1(w) = (s′0 ⊗ (−1)s) + (other terms in S ⊗m), (3.27)

and for p− 1 ≤ t = ps−r − 1 ≤ ps−1 − 1,

[wt, [wt−1, [. . . , [w2, [w1, w] . . . ] ∈ S ⊗m. (3.28)

Hence for 1 ≤ r ≤ s− 1, ur ∈ S ⊗m and up
r

r ∈ S ⊗m.

Recall that z = d0+u, where d0 = ∂1 +xp−1
1 ∂2 + · · ·+xp−1

1 · · · xp−1
s−1 ∂s is a derivation

of O(s; 1) and u ∈ (I ∂1 + · · · + I ∂m) ∩W (m; 1)(p−1); see Lemma 3.2.7 for notations.

Note that [z, w] = s′0 ⊗ z(xp−1
1 · · ·xp−1

s ) + [z, v′]. Since d0 preserves the ideal I and so

does z, we have that [z, v′] ∈ [z, S ⊗ I] = S ⊗ z(I) ⊆ S ⊗ I. Hence to show (3.27) and

(3.28), we need to consider the action of z on xp−1
1 · · · xp−1

s . We split our work into the

following parts (i)-(vi):

(i) We show that for any 0 < l < ps − 1, 0 6= dl0(xp−1
1 · · ·xp−1

s ) ∈ ms, where ms is

the maximal ideal of O(s; 1).

There are two ways to prove this result: (a) using the | |p-degree of monomials or

(b) using the standard degree of monomials and some results on d0. Let us do both

ways and see the difference.

(a) Let xA = xa11 · · ·xass be any monomial in O(s; 1). Note that xA ∈ ms if and only

if |A|p > 0. Consider xp−1
1 · · ·xp−1

s , where A = (p− 1, . . . , p− 1). Then |A|p = ps − 1.

By Example 3.2.1(3), we know that the degree of d0 with respect to | |p is −1. Hence

for any 0 < l < ps − 1, dl0(xp−1
1 · · ·xp−1

s ) is a monomial in O(s; 1) with | |p-degree

ps − 1− l > 0. Therefore, 0 6= dl0(xp−1
1 · · · xp−1

s ) ∈ ms.

(b) By Lemma 1.5.1(i) and (iii), we know that

dp
K

0 = (−1)K(∂K+1 +xp−1
K+1 ∂K+2 + · · ·+ xp−1

K+1 · · ·x
p−1
s−1 ∂s)

94



3.2. Socle involves S

for all 0 ≤ K ≤ s − 1 and dp
s

0 = 0. Moreover, dp
s−1

0 (xp−1
1 · · · xp−1

s ) = (−1)s. Hence

dl0(xp−1
1 · · ·xp−1

s ) 6= 0 for any 0 < l < ps − 1. We show that dl0(xp−1
1 · · ·xp−1

s ) ∈ ms.

Here we use a similar argument given in [20, p. 151, line -8 and p. 153, line 4]. By

(3.3), O(s; 1) is a graded W (s; 1)-module, i.e.

O(s; 1) = O(s; 1)0 ⊕O(s; 1)1 ⊕ · · · ⊕ O(s; 1)s(p−1).

It is easy to see that O(s; 1)η ⊆ mη
s for any η ≥ 1. Hence xp−1

1 · · ·xp−1
s ∈ m

s(p−1)
s . Recall

that W (s; 1) is a free O(s; 1)-module with basis ∂1, . . . , ∂s. Then for any D ∈W (s; 1)

and 0 < c < s(p− 1), we have that

Dc(xp−1
1 · · · xp−1

s ) ∈ ms(p−1)−c
s . (3.29)

Since l < ps−1 =
∑s−1

K=0(p−1)pK , we have that l =
∑s−1

K=0 aKp
K , where 0 ≤ aK ≤ p−1

and
∑s−1

K=0 aK < s(p− 1). Then

dl0(xp−1
1 · · ·xp−1

s ) =

( s−1∏
K=0

(
dp

K

0

)aK)
(xp−1

1 · · ·xp−1
s ).

Applying (3.29) with D = dp
K

0 and c = aK for 0 ≤ K ≤ s− 1, we get

dl0(xp−1
1 · · ·xp−1

s ) =

( s−1∏
K=0

(dp
K

0 )
aK
)

(xp−1
1 · · ·xp−1

s ) ∈ m
s(p−1)−

∑s−1
K=0 aK

s ⊆ ms.

This proves (i).

(ii) We show by induction that for any 0 < l < ps − 1,

zl(xp−1
1 · · ·xp−1

s ) = dl0(xp−1
1 · · ·xp−1

s ) + (other terms in I) ∈ ms ⊕ I.

For l = 1, we have that z(xp−1
1 · · ·xp−1

s ) = d0(xp−1
1 · · ·xp−1

s ) + u(xp−1
1 · · ·xp−1

s ).

By (i), we know that d0(xp−1
1 · · · xp−1

s ) ∈ ms. Since u ∈
∑m

j=1 I ∂j and I is an

ideal of O(m; 1), we have that u(xp−1
1 · · · xp−1

s ) ∈ I. It is clear that ms ∩ I = {0}.

Hence the result holds for l = 1. Suppose the result holds for l = r1 < ps − 2, i.e.

zr1(xp−1
1 · · ·xp−1

s ) = dr10 (xp−1
1 · · · xp−1

s ) + g for some g ∈ I. Applying z again, we get

zr1+1(xp−1
1 · · ·xp−1

s ) = dr1+1
0 (xp−1

1 · · ·xp−1
s ) + d0(g) + u

(
dr10 (xp−1

1 · · · xp−1
s )

)
+ u(g).

It is clear that u
(
dr10 (xp−1

1 · · ·xp−1
s )

)
+ u(g) ∈ I. Since d0 preserves I, we have that

d0(g) ∈ I. Since r1 + 1 < ps − 1, it follows from (i) that dr1+1
0 (xp−1

1 · · ·xp−1
s ) ∈ ms.
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Hence the result holds for l = r1 + 1. Therefore, for any 0 < l < ps − 1, the result

holds. This proves (ii).

(iii) We show that zp
s−1(xp−1

1 · · ·xp−1
s ) = (−1)s + (other terms in I).

By (ii), we know that zp
s−2(xp−1

1 · · ·xp−1
s ) = dp

s−2
0 (xp−1

1 · · ·xp−1
s )+g for some g ∈ I.

Applying z again and using a similar argument as in (ii), we get

zp
s−1(xp−1

1 · · · xp−1
s ) = dp

s−1
0 (xp−1

1 · · ·xp−1
s ) + g′

for some g′ ∈ I. By Lemma 1.5.1(iii), we know that dp
s−1

0 (xp−1
1 · · · xp−1

s ) = (−1)s.

Hence zp
s−1(xp−1

1 · · ·xp−1
s ) = (−1)s + g′ as desired. This proves (iii).

Now we consider commutators in z and w.

(iv) We show that for any 0 < l < ps − 1, (ad z)l(w) ∈ (S ⊗ms)⊕ (S ⊗ I), and

(ad z)p
s−1(w) = (s′0 ⊗ (−1)s) + (other terms in S ⊗m).

Note that for any 0 < l < ps − 1, (ad z)l(w) = s′0 ⊗ zl(x
p−1
1 · · ·xp−1

s ) + (ad z)l(v′).

Since v′ ∈ S⊗ I and z preserves I, we have that [z, v′] ∈ [z, S⊗ I] = S⊗ z(I) ⊆ S⊗ I.

Then an easy induction on l shows that (ad z)l(v′) ∈ S ⊗ I. By (ii), we know that

zl(xp−1
1 · · ·xp−1

s ) ∈ ms ⊕ I. Hence

(ad z)l(w) = s′0⊗zl(x
p−1
1 · · ·xp−1

s )+(ad z)l(v′) ∈ s′0⊗(ms⊕I)+S⊗I ⊆ (S⊗ms)⊕(S⊗I).

Similarly,

(ad z)p
s−1(w) = s′0 ⊗ zp

s−1(xp−1
1 · · ·xp−1

s ) + (ad z)p
s−1(v′).

Arguing as above, one can show that (ad z)p
s−1(v′) ∈ S ⊗ I. By (iii), we know that

zp
s−1(xp−1

1 · · ·xp−1
s ) = (−1)s + (other terms in I). Since I ⊂ m, we have that

(ad z)p
s−1(w) = (s′0 ⊗ (−1)s) + (other terms in S ⊗m).

This proves (iv) and (3.27).

(v) We show that for any 0 < l < ps − 1, [w, (ad z)l(w)] ∈ S ⊗ I.

By (iv), we know that (ad z)l(w) ∈ (S ⊗ms)⊕ (S ⊗ I). Then

[w, (ad z)l(w)] =[s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′, (ad z)l(w)]

∈[s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′, (S ⊗ms)⊕ (S ⊗ I)] ⊆ S ⊗ I.

This proves (v).
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(vi) We show that for p− 1 ≤ t = ps−r − 1 ≤ ps−1 − 1,

[wt, [wt−1, [. . . , [w2, [w1, w] . . . ] ∈ S ⊗m,

where each wα, 1 ≤ α ≤ t, is equal to z or to w. Hence for 1 ≤ r ≤ s− 1, ur ∈ S ⊗m

and up
r

r ∈ S ⊗m.

Let us consider all such iterated commutators [wt, [wt−1, [. . . , [w2, [w1, w] . . . ]. If

w1 = w, then [w1, w] = 0. If w1 = · · · = wt = z, then (iv) implies that

(ad z)t(w) ∈ (S ⊗ms)⊕ (S ⊗ I) = S ⊗m.

Hence we need to consider commutators (adw)β(ad z)γ(w), where 1 ≤ γ < t and

β > 0. By (v), we know that [w, (ad z)γ(w)] ∈ S ⊗ I. Since w ∈ S ⊗m, we have that

[w, [w, (ad z)γ(w)]] ∈ [S ⊗m, S ⊗ I] ⊆ [S, S]⊗mI ⊆ S ⊗ I.

Continuing in this way, we get (adw)β(ad z)γ(w) ∈ S ⊗ I. If β + γ = t, then we are

done. If β + γ < t, then we need to consider [wα, (adw)β(ad z)γ(w)], where wα = z or

w. If wα = z, then z preserves the ideal I. Hence

[z, (adw)β(ad z)γ(w)] ∈ [z, S ⊗ I] = S ⊗ z(I) ⊆ S ⊗ I.

If wα = w ∈ S ⊗m, then by the same reason as above, we get

[w, (adw)β(ad z)γ(w)] ∈ S ⊗ I.

Hence [wα, (adw)β(ad z)γ(w)] ∈ S ⊗ I. If 1 + β + γ = t, then we are done. If

1 + β + γ < t, then we need to consider [wν , [wα, (adw)β(ad z)γ(w)]], where wν = z

or w. Arguing similarly, we get [wν , [wα, (adw)β(ad z)γ(w)]] ∈ S ⊗ I. Continuing in

this way, we eventually get [wt, [wt−1, [. . . , [w2, [w1, w] . . . ] ∈ S ⊗m for all p− 1 ≤ t =

ps−r − 1 ≤ ps−1 − 1.

Since ur, 1 ≤ r ≤ s − 1, is in the span of [wt, [wt−1, [. . . , [w2, [w1, w] . . . ], we have

that ur ∈ S ⊗m for all 1 ≤ r ≤ s− 1. By Lemma 1.1.1 and [S ⊗m, S ⊗m] ⊆ S ⊗m,

one can show that up
r

r ∈ S ⊗m for all 1 ≤ r ≤ s− 1. This proves (vi) and (3.28).

It follows from (3.27) and (3.28) that

Dps

1 =zp
s

+ wp
s

+
s−1∑
r=0

up
r

r = zp
s

+ wp
s

+ (ad z)p
s−1(w) +

s−1∑
r=1

up
r

r

=zp
s

+ (s′0 ⊗ (−1)s) + (other terms in S ⊗m).
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Step 2 . We show that D1 is a nilpotent element of L if and only if s′0 is a nilpotent

element of S. By step 1, we know that

Dps

1 = zp
s

+ (s′0 ⊗ (−1)s) + (other terms in S ⊗m).

By our assumption, z is nilpotent. By Lemma 3.2.8, we know that zp
s ∈ W (m; 1)(0).

Hence zp
s

preserves S ⊗ m. Applying Lemma 3.2.12 with D′ = Dps

1 , d = zp
s
, s0 = s′0

and f0 = (−1)s, we get for N ≥ 1 (see (3.18)),

Dps+N

1 = zp
s+N

+ ((s′0)p
N ⊗ (−1)sp

N

) + (other terms in S ⊗m).

Hence for s + N � 0, D1 is a nilpotent element of L if and only if s′0 is a nilpotent

element of S. This completes the proof.

3.2.3 The irreducibility of N (L)

We are now ready to prove that the nilpotent variety of L = (S ⊗ O(m; 1)) o D is

irreducible. Recall our assumptions that D is a restricted transitive subalgebra of

W (m; 1) such that N (D) is irreducible, S is a simple restricted Lie algebra such that

all its derivations are inner and N (S) is irreducible.

Theorem 3.2.3. The variety N (L) is irreducible.

Proof. Let D be an element of L = (S ⊗O(m; 1)) o D. Then we can write

D =

m(p−1)∑
i=0

si ⊗ fi + d, (3.30)

where si ∈ S, fi ∈ O(m; 1) with deg fi = i, and d ∈ D. Note that the surjective Lie

algebra homomorphism ψ : L → D, D 7→ d induces a surjective morphism

ψ̃ : N (L)→ N (D).

By our assumption, N (D) is irreducible. By Theorem 1.5.1, N (L) is equidimensional.

If we can prove that all fibres of ψ̃ are irreducible and have the same dimension, then

the irreducibility of N (L) follows from Lemma 2.0.1.

Since D is a restricted transitive subalgebra of W (m; 1), i.e. D + W (m; 1)(0) =

W (m; 1), there exist elements in D which are not in W (m; 1)(0). Hence for d ∈ N (D),
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we have two cases to consider: either d ∈ W (m; 1)(0) or d /∈ W (m; 1)(0). Let us

compute ψ̃−1(d) in each case.

Case 1 : d ∈ N (D) and d ∈ W (m; 1)(0). Let D =
∑m(p−1)

i=0 si⊗fi+d be an element

of L such that ψ̃(D) = d; see (3.30) for notations. By Lemma 3.2.12, we know that

D ∈ N (L) if and only if s0 ∈ N (S). As a result,

ψ̃−1(d) = N (S)⊗ 1 + S ⊗m + d ∼= N (S)⊗ 1 + S ⊗m.

Since S ⊗ m is irreducible and N (S) is irreducible by our assumption, it follows that

all fibres ψ̃−1(d) are irreducible. Moreover,

dim ψ̃−1(d) = dim(N (S)⊗ 1) + dim(S ⊗m)

=
(

dim(S ⊗ 1)−MT(S)
)

+ dim(S ⊗m) (by Theorem 1.5.1(iii))

= dim(S ⊗O(m; 1))−MT(S)

= pm dimS −MT(S).

Case 2 : d ∈ N (D) and d /∈ W (m; 1)(0).

Step 1 . We compute ψ̃−1(d) for all d ∈ N (D) with d /∈ W (m; 1)(0). Then we

deduce that they are irreducible. By Lemma 3.2.7 and Lemma 3.2.9, we may assume

that

d = d0 + u, (3.31)

where

d0 = ∂1 +xp−1
1 ∂2 + · · ·+ xp−1

1 · · ·xp−1
s−1 ∂s

with 1 ≤ s ≤ m, u ∈ (I ∂1 + · · · + I ∂m) ∩W (m; 1)(p−1) and I is the ideal of O(m; 1)

generated by xs+1, . . . , xm.

Let D =
∑m(p−1)

i=0 si ⊗ fi + d be an element of L such that ψ̃(D) = d; see (3.30)

and (3.31) for notations. Recall the subgroup H of Aut(L) which is generated by all

exp(ad(s̃⊗ f)), where s̃⊗ f ∈ S ⊗m; see Lemma 3.2.13. Note that H is a connected

algebraic group with S ⊗ m ⊆ Lie(H). Since exp(ad(s̃ ⊗ f)) =
∑p−1

j=0
1
j!

(ad(s̃ ⊗ f))j

and D is of the form (3.30), it is easy to see that H stabilizes the fibres of ψ̃. By

Lemma 3.2.14, we know that D is conjugate under H to

D1 = s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′ + d,
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where s′0 ∈ S (possibly 0), v′ ∈ S⊗ I and d = d0 + u as in (3.31). Then D is nilpotent

if and only if D1 is nilpotent. By Lemma 3.2.15, we know that D1 ∈ N (L) if and only

if s′0 ∈ N (S). Hence all fibres of ψ̃ have the form

H.
(
N (S)⊗ xp−1

1 · · ·xp−1
s + S ⊗ I + d

) ∼= H.
(
N (S)⊗ xp−1

1 · · ·xp−1
s + S ⊗ I

)
.

Since H is connected, N (S) and S ⊗ I are irreducible, it follows that all fibres ψ̃−1(d)

are irreducible.

Step 2 . We show that all fibres of ψ̃ have the same dimension. By case 1, we

know that dim ψ̃−1(d) = pm dimS −MT(S) for all d ∈ N (D) with d ∈ W (m; 1)(0). In

particular,

dim ψ̃−1(0) = pm dimS −MT(S). (3.32)

To finish the proof we just need to show that

dim ψ̃−1(d) = dim ψ̃−1(0)

for all d ∈ N (D) with d /∈ W (m; 1)(0).

Step 2(i). We first show that

dim ψ̃−1(0) ≥ dim ψ̃−1(d)

for all d ∈ N (D) with d /∈ W (m; 1)(0). Suppose the contrary, i.e. dim ψ̃−1(0) <

dim ψ̃−1(d) for some d ∈ N (D) with d /∈ W (m; 1)(0). By Theorem 1.6.7, the set

W1 =
{
x ∈ N (L) | dim ψ̃−1(ψ̃(x)) ≥ r

}
is Zariski closed in N (L) for every r ∈ N0. We now take r = dim ψ̃−1(0) + 1. If W1

is empty, then we are done. If W1 is nonempty, then it contains w + d ∈ N (L) with

w ∈ S ⊗m such that dim ψ̃−1(ψ̃(w + d)) ≥ r. Note that for all λ ∈ k∗,

ψ̃(λ(w + d)) = λψ̃(w + d).

Then

ψ̃−1
(
ψ̃(λ(w + d))

)
= λψ̃−1

(
ψ̃(w + d)

)
.

So W1 is k∗-stable. Since W1 is Zariski closed, it contains 0. But this contradicts our

choice of r. As a result,

dim ψ̃−1(0) ≥ dim ψ̃−1(d) (3.33)
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for all d ∈ N (D) with d /∈ W (m; 1)(0).

Step 2(ii). Next we show that

dim ψ̃−1(0) ≤ dim ψ̃−1(d)

for all d ∈ N (D) with d /∈ W (m; 1)(0). Consider the morphism

θ : H ×
(
N (S)⊗ xp−1

1 · · ·xp−1
s + S ⊗ I + d

)
→ ψ̃−1(d)

(h,D1) 7→ h(D1).

By the work in step 1, we know that any point in the fibre ψ̃−1(d) has the form

θ
(
h, s′0 ⊗ x

p−1
1 · · ·xp−1

s + v′ + d
)

for some h ∈ H, s′0 ∈ N (S) and v′ ∈ S⊗ I. As H acts on the fibre it preserves smooth

points. Hence we may assume that h = 1. Instead of computing dim ψ̃−1(d) which

is difficult, we can compute the differential of θ at a smooth point of the fibre with

h = 1. Since N (S) is irreducible, the set of smooth points in N (S) is nonempty. Let

s′0 be a smooth point of N (S). Then dim Ts′0
(N (S)) = dimN (S). Take

D1 = s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′ + d ∈ ψ̃−1(d).

Then the differential of θ at (1, D1) is

(dθ)(1,D1) : Lie(H)⊕
(
Ts′0

(N (S))⊗ xp−1
1 · · ·xp−1

s + S ⊗ I
)
→ TD1(ψ̃

−1(d))

(X, Y ) 7→ [X,D1] + Y.

Since D1 is a smooth point, this implies that dim TD1(ψ̃
−1(d)) = dim ψ̃−1(d). In order

to show that dim ψ̃−1(0) ≤ dim ψ̃−1(d), we just need to show that

dim ψ̃−1(0) ≤ dim TD1(ψ̃
−1(d)).

It is clear that

Ts′0
(N (S))⊗ xp−1

1 · · ·xp−1
s + S ⊗ I ⊆ Im((dθ)(1,D1)). (3.34)

Moreover, [Lie(H), D1] ⊆ Im((dθ)(1,D1)). Since S ⊗m ⊆ Lie(H), we have that

[S ⊗m, D1] = [S ⊗m, s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′ + d] ⊆ Im((dθ)(1,D1)) (3.35)

Observe (3.34) and (3.35) carefully. We see that Im((dθ)(1,D1)) contains the follow-

ing subspaces:
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(1) Ts′0
(N (S))⊗ xp−1

1 · · ·xp−1
s which has dimension equal to dimN (S).

(2) S ⊗ I.

(3) [S ⊗m, s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′ + d].

Look at the last two subspaces. Note that m = ms⊕ I, where ms is the maximal ideal

of O(s; 1). Moreover, mI ⊆ I. Since S ⊗ I is in Im((dθ)(1,D1)),

[S ⊗m, s′0 ⊗ x
p−1
1 · · ·xp−1

s ] = [S ⊗ (ms ⊕ I), s′0 ⊗ x
p−1
1 · · ·xp−1

s ] ⊆ S ⊗ I,

and

[S ⊗m, v′] ⊆ [S ⊗m, S ⊗ I] ⊆ S ⊗mI ⊆ S ⊗ I,

we see that Im((dθ)(1,D1)) contains

S ⊗ I + [S ⊗m, s′0 ⊗ x
p−1
1 · · ·xp−1

s + v′ + d]

=S ⊗ I + [S ⊗m, d]

=S ⊗ I + S ⊗ d(m).

Recall (3.31) that d = d0 + u, where d0 = ∂1 +xp−1
1 ∂2 + · · · + xp−1

1 · · ·xp−1
s−1 ∂s is a

derivation of O(s; 1) and u ∈ (I ∂1 + · · · + I ∂m) ∩W (m; 1)(p−1). Since u(m) ⊆ I, we

have that S⊗ I +S⊗ d(m) = S⊗ I +S⊗ d0(m). Since m = ms⊕ I, d0(ms) ⊂ O(s; 1),

d0(I) ⊆ I and O(s; 1)∩I = {0}, we have that d0(m) = d0(ms)⊕d0(I). Since d0(I) ⊆ I,

we have that

S⊗I+S⊗d(m) = S⊗I+S⊗d0(m) = (S⊗I)⊕(S⊗d0(ms)) ∼= S⊗(I⊕d0(ms)). (3.36)

By Lemma 3.2.11 (see (3.17)), we know the subspaceM = I+d(m) = I⊕d0(ms) has the

property that M⊕kxp−1
1 · · ·xp−1

s = O(m; 1). By (3.36), we see that the sum of the last

two subspaces equals S ⊗M . This subspace of dimension (pm − 1) dimS is contained

in Im((dθ)(1,D1)) and the complement of the first subspace Ts′0
(N (S))⊗ xp−1

1 · · ·xp−1
s .

Therefore,

dim Im((dθ)(1,D1)) ≥ dim(Ts′0
(N (S))⊗ xp−1

1 · · · xp−1
s ) + dim(S ⊗M)

= dimN (S) + (pm − 1) dimS

= (dimS −MT(S)) + (pm − 1) dimS

= pm dimS −MT(S)

= dim ψ̃−1(0) (see (3.32)).
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Since Im((dθ)(1,D1)) ⊆ TD1(ψ̃
−1(d)) we have that

dim ψ̃−1(0) ≤ dim TD1(ψ̃
−1(d)) = dim ψ̃−1(d). (3.37)

It follows from (3.33) and (3.37) that all fibres of ψ̃ have the same dimension.

By case 1 and 2, we see that all fibres of ψ̃ are irreducible and have the same

dimension. Hence N (L) is irreducible by Lemma 2.0.1. This completes the proof.

Remark 3.2.3. 1. We verified Premet’s conjecture for a class of semisimple re-

stricted Lie algebras L = (S ⊗O(m; 1)) o D under the assumptions that S is a

simple restricted Lie algebra over k with adS = DerS and N (S) is irreducible,

D is a restricted transitive subalgebra of W (m; 1) with N (D) is irreducible.

2. A similar argument works for
⊕t

i=1(Si ⊗O(mi; 1)) o (IdSi
⊗Di), where

(i) each Si is a simple restricted Lie algebra such that adSi = DerSi and N (Si)

is irreducible, and

(ii) each Di is a restricted transitive subalgebra of W (mi; 1) such that N (Di) is

irreducible.

3. There are further cases to consider such as adS ( DerS and other semisimple

restricted Lie algebras which are not of the form given in Theorem 1.6.3. It is

unclear to the author how to tackle these problems.
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Chapter 4

The nilpotent variety of W (1;n)p is

irreducible

In this chapter we assume that k is an algebraically closed field of characteristic p > 3,

and n ∈ N≥2. We are interested in the minimal p-envelope W (1;n)p of the Zassen-

haus algebra W (1;n). This restricted Lie algebra is semisimple. Recent studies have

shown that the variety N (W (1;n)) := N (W (1;n)p) ∩W (1;n) is reducible [37, The-

orem 4.8(i)]. So investigating the variety N (W (1;n)p) becomes critical for verifying

Premet’s conjecture. Note that this chapter contains the main result of the research

paper [3] written by the author of this thesis.

This chapter is organized as follows. We first recall some basic results on W (1;n)

and W (1;n)p. Then we study some nilpotent elements of W (1;n)p and identify an irre-

ducible component of N (W (1;n)p). Finally, we prove that N (W (1;n)p) is irreducible.

The proof is similar to Premet’s proof for the Jacobson-Witt algebra W (n; 1); see The-

orem 1.5.2. But the (n + 1)-dimensional subspace V used in W (n; 1) has no obvious

analogue for W (1;n)p. Therefore, a new V is constructed using the original definition

of W (1;n) due to H. Zassenhaus. In general, constructing analogues of V for the min-

imal p-envelopes of W (n;m), where m = (m1, . . . ,mn) and mi > 1 for some i, would

enable one to check Premet’s conjecture for this class of restricted Lie algebras.
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4.1 Preliminaries

4.1.1 W (1;n) and W (1;n)p

Let k be an algebraically closed field of characteristic p > 3 and n ∈ N. The divided

power algebra O(1;n) has a k-basis {x(a) = 1
a!
xa | 0 ≤ a ≤ pn− 1}, and the product in

O(1;n) is given by x(a)x(b) =
(
a+b
a

)
x(a+b) if 0 ≤ a+ b ≤ pn − 1 and 0 otherwise. In the

following, we write x(1) as x. It is straightforward to see that O(1;n) is a local algebra

with the unique maximal ideal m spanned by all x(a) such that a ≥ 1. A system of

divided powers is defined on m, f 7→ f (r) ∈ O(1;n), where r ≥ 0; see Definition 1.4.2.

A derivation D of O(1;n) is called special if D(x(a)) = x(a−1)D(x) for 1 ≤ a ≤ pn−1

and 0 otherwise; see Definition 1.4.3. The set of all special derivations of O(1;n)

forms a Lie subalgebra of DerO(1;n) denoted L = W (1;n) and called the Zassenhaus

algebra. When n = 1, L coincides with the Witt algebra W (1; 1) := DerO(1; 1),

a simple and restricted Lie algebra. When n ≥ 2, L provides the first example of a

simple, non-restricted Lie algebra; see Theorem 1.4.2. From now on, we always assume

that n ≥ 2.

The Zassenhaus algebra L admits an O(1;n)-module structure via (fD)(x) =

fD(x) for all f ∈ O(1;n) and D ∈ L. Since each D ∈ L is uniquely determined by

its effect on x, it is easy to see that L is a free O(1;n)-module of rank 1 generated

by the special derivation ∂ such that ∂(x(a)) = x(a−1) if 1 ≤ a ≤ pn − 1 and 0

otherwise; see Theorem 1.4.2. Hence the Lie bracket in L is given by [x(i) ∂, x(j) ∂] =((
i+j−1
i

)
−
(
i+j−1
j

))
x(i+j−1) ∂ if 1 ≤ i+ j ≤ pn and 0 otherwise; see formula (1.4).

There is a Z-grading on L, i.e. L =
⊕pn−2

i=−1 kdi with di := x(i+1)∂. Put L(i) :=⊕pn−2
j≥i kdj for −1 ≤ i ≤ pn − 2. Then this Z-grading induces a natural filtration

L = L(−1) ⊃ L(0) ⊃ L(1) ⊃ · · · ⊃ L(pn−2) ⊃ 0 (4.1)

on L. It is known that for i ≥ 0,

dpi =


di, if i = 0,

dpi, if i = pt − 1 for some 1 ≤ t ≤ n− 1,

0, otherwise.

(4.2)

In particular, L(0) is a restricted Lie subalgebra of DerO(1;n) and L(1) = nil (L(0));

see [37, p. 3]. We show that this implies that all nonzero tori in L(0) have dimension 1.
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Consider the surjective map π : L(0) � L(0)/L(1). Let t be any nonzero torus in L(0).

Let π|t be the restriction of π to t. Then Kerπ|t ⊂ L(1). Since L(1) is a nilpotent p-ideal

of L(0), we have that Ker π|t = 0. Hence any nonzero torus t in L(0) has dimension 1;

see [32, Sec. 2]. As an example, kd0 = kx ∂ is a 1-dimensional torus in L(0).

Note that the Zassenhaus algebra L has another presentation. Let q = pn and let

Fq ⊂ k be the set of all roots of xq−x = 0. This is a finite field with q elements. Then

L has a k-basis {eα |α ∈ Fq} with the Lie bracket given by [eα, eβ] = (β − α)eα+β [30,

Theorem 7.6.3(1)]. We will use this presentation in Sec. 4.2.3.

It is also useful to mention that there is an embedding from L into the Jacobson-

Witt algebra W (n; 1); see [37, Lemma 3.1 and Proposition 4.3]. Recall that W (n; 1) is

the derivation algebra of O(n; 1), where O(n; 1) = k[X1, . . . , Xn]/(Xp
1 , . . . , X

p
n) is the

truncated polynomial ring in n variables. For each 1 ≤ i ≤ n, we write xi for the image

of Xi in O(n; 1). Note that W (n; 1) is a free O(n; 1)-module of rank n generated by

the partial derivatives ∂1, . . . , ∂n such that ∂i(xj) = δij for all 1 ≤ i, j ≤ n; see Sec. 1.5

for details. The Zassenhaus algebra L is the set of all special derivations of the divided

power algebra O(1;n). Note that O(1;n) has a k-basis {x(a) | 0 ≤ a ≤ pn − 1}. For

each 0 ≤ a ≤ pn − 1, let a =
∑n−1

K=0 aKp
K , 0 ≤ aK ≤ p− 1, be the p-adic expansion of

a. Define

φ : O(1;n)→ O(n; 1)

x(a) 7→
n∏
i=1

x
ai−1

i

ai−1!
;

(4.3)

see [37, (3.1.1)]. Then φ is an algebra isomorphism and it induces the following Lie

algebra isomorphism:

ϕ : DerO(1;n)
∼−→ W (n; 1) = DerO(n; 1)

D 7→ ϕ(D),
(4.4)

where (ϕ(D))(u) = φ
(
D(φ−1(u))

)
for all u ∈ O(n; 1). Moreover, ϕ(Dp) = ϕ(D)p for

all D ∈ DerO(1;n); see [37, (3.1.2)]. Since L is a Lie subalgebra of DerO(1;n), the

above ϕ induces an embedding

ι = ϕ|L : L ↪→ W (n; 1); (4.5)

see [37, (4.3.2)]. More precisely, ι is induced by φ defined in (4.3). By a direct
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computation, we have that

ι(∂) = D1 = ∂1 +
n−1∑
l=1

(−1)lxp−1
1 · · ·xp−1

l ∂l+1 .

Note that D1 has a similar expression to D in Lemma 1.5.1. We will use the above

embedding ι in the sketch proof of Lemma 4.2.2.

Let Lp = W (1;n)p denote the p-envelope of L ∼= adL in DerL. This semisimple

restricted Lie algebra is referred to as the minimal p-envelope of L; see Remark 1.2.1.

By Theorem 1.4.4, we have that Lp = L +
∑n−1

i=1 k∂
pi . Here we identify L with

adL ⊂ DerL and regard ∂p
n

as 0. Then dimLp = pn + (n− 1). By formula (1.4), we

have that for any 1 ≤ i ≤ n−1 and 0 ≤ a ≤ pn−1, the brackets [∂p
i

, x(a) ∂] = x(a−pi) ∂

if a ≥ pi and 0 otherwise.

Let N denote the variety of nilpotent elements in Lp. It is well known that N is

Zariski closed in Lp. One should note that the maximal dimension of toral subalgebras

in Lp equals n [30, Theorem 7.6.3(2)]. Moreover, Lp possesses a toral Cartan subalge-

bra; see [19, p. 555]. Hence the set of all semisimple elements of Lp is Zariski dense in

Lp; see [18, Theorem 2]. It follows from these facts and Theorem 1.5.1 that there exist

nonzero homogeneous polynomial functions ϕ0, . . . , ϕn−1 on Lp such that N coincides

with the set of all common zeros of ϕ0, . . . , ϕn−1. The variety N is equidimensional of

dimension pn − 1. Furthermore, any D ∈ N satisfies

Dpn = 0. (4.6)

4.1.2 The automorphism group G

An automorphism Φ of O(1;n) is called admissible if Φ(f (r)) = Φ(f)(r) for all f ∈ m

and r ≥ 0. By [36, Lemma 8], this is equivalent to the condition that Φ(x(pj)) =

Φ(x)(pj) for any 1 ≤ j ≤ n−1. Let G denote the group of all admissible automorphisms

of O(1;n). It is well known that G is a connected algebraic group, and each Φ ∈ G

is uniquely determined by its effect on x. By [36, Theorem 2], an assignment Φ(x) :=∑pn−1
i=1 αix

(i) with αi ∈ k such that α1 6= 0 and αpj = 0 for 1 ≤ j ≤ n−1 extends to an

admissible automorphism of O(1;n). Conversely, if Φ is an admissible automorphism

of O(1;n), then Φ(x) has to be of this form. Hence dimG = pn − n.

Any automorphism of the Zassenhaus algebra L is induced by a unique admissible
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automorphism Φ of O(1;n) via the rule DΦ = Φ ◦ D ◦ Φ−1, where D ∈ L [26, Theo-

rem 12.8]. So from now on, we shall identify G with the automorphism group of L.

It is known that G respects the natural filtration of L. In [32, Sec. 1], Tyurin stated

explicitly that if Φ ∈ G is such that Φ(x) = y, then Φ(g(x)∂) = (y′)−1g(y)∂ for any

g(x) ∈ O(1;n). Extend this by defining Φ(∂p
i

) = Φ(∂)p
i

for 1 ≤ i ≤ n − 1, one gets

an automorphism of Lp.

It follows from the above description of G that Lie(G) ⊆ L(0). More precisely,

Lemma 4.1.1. The set {di = x(i+1)∂ | 0 ≤ i ≤ pn − 2 and i 6= pl − 1 for 1 ≤ l ≤ n− 1}

forms a k-basis of Lie(G).

Proof. Let ψ : A1 → G be the map defined by t 7→ (x 7→ x + tx(i+1)), where

0 ≤ i ≤ pn − 2 and i 6= pl − 1 for 1 ≤ l ≤ n − 1. It is easy to check that ψ is a

morphism of algebraic varieties. Note that ψ(0) = Id. So the differential of ψ at 0 is

the map d0ψ : k → Lie(G). Hence d0ψ(k) ⊆ Lie(G).

Let us compute d0ψ(k). The morphism ψ sends A1 to the set of admissible auto-

morphisms X = {Φt | t ∈ A1}, where

Φt(x) = x+ tx(i+1).

Since Φt is uniquely determined by its effect on x and “admissible” is equivalent to

the condition that Φt(x
(pj)) = Φt(x)(pj) for all 1 ≤ j ≤ n− 1 (see Sec. 4.1.2), we have

that

Φt(x
(pj)) = (x+ tx(i+1))(pj) = x(pj) + tx(pj−1)x(i+1) + terms of higher degree in t

for all 1 ≤ j ≤ n − 1; see Definition 1.4.2(iv). Now consider d0ψ : k → TId(X).

Since X ⊂ G is closed in G, we have that TId(X) ⊆ Lie(G). Passing to TId(X), i.e.

calculating ∂
∂ t

(Φt(x))|t=0 and ∂
∂ t

(Φt(x
(pj)))|t=0, we get

x 7→ x(i+1),

x(pj) 7→ x(pj−1)x(i+1).

The above results are the same for di = x(i+1) ∂ acting on x and x(pj), respectively.

Hence di ∈ TId(X) ⊆ Lie(G). Note that the set

{di = x(i+1)∂ | 0 ≤ i ≤ pn − 2 and i 6= pl − 1 for 1 ≤ l ≤ n− 1}

consists of pn − n linearly independent vectors. Since dim Lie(G) = dimG = pn − n,

they form a basis of Lie(G). This completes the proof.
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4.2 The variety N

4.2.1 Some elements in N

In Sec. 4.1.1, we observed that any elements of L(1) are nilpotent, but they do not tell

us much information about N . The interesting nilpotent elements are contained in the

complement of L(1) inN , denotedN\L(1). They are of the form
∑n−1

i=0 αi∂
pi+f(x)∂ for

some f(x) ∈ m and αi ∈ k with at least one αi 6= 0. In this section, we study elements

of this form in the following way: take D =
∑n−1

i=0 αi∂
pi + f(x)∂ (not necessarily

nilpotent) and we show that D is conjugate under G to an element in a nice form; see

Lemma 4.2.1 and Lemma 4.2.4. Then we assume that D is nilpotent, i.e. Dpn = 0 by

(4.6). We do some calculations to check if Dpn−1 ∈ L(0). If Dpn−1
/∈ L(0), then we show

further that D is conjugate under G to an element in a nicer form; see Lemma 4.2.2,

Lemma 4.2.5 and Corollary 4.2.1. In doing this, we get the results required to prove

Proposition 4.2.1 in the next section, i.e.{
D ∈ N |Dpn−1

/∈ L(0)

}
= G.(∂+k ∂p + · · ·+ k ∂p

n−1

).

Let us begin with elements of the form α0 ∂+f(x) ∂, where α0 6= 0 and f(x) ∈ m.

In [37], Y.-F. Yao and B. Shu proved the following:

Lemma 4.2.1. [37, Proposition 4.1] Let D = α0 ∂+f(x) ∂ be an element of L ⊂ Lp,

where α0 6= 0 and f(x) ∈ m. Then D is conjugate under G to ∂+
∑n

i=1 lix
(pi−1) ∂ for

some li ∈ k.

Sketch of proof. Take D as in the lemma. Then we can write D =
∑pn−1

i=0 αix
(i) ∂

for some αi ∈ k with α0 6= 0. Let Φ ∈ G be such that Φ(x) = α0x. Then

Φ(D) = ∂+

pn−1∑
i=1

αi−1
0 αix

(i) ∂ .

So we may assume that

D = ∂+

pn−1∑
i=1

βix
(i) ∂ = ∂+β1x ∂+β2x

(2) ∂+ · · ·+ βpn−1x
(pn−1) ∂

for some βi ∈ k. Let Φ0 ∈ G be such that Φ0(x) = x + β1x
(2). Then one can check

that

Φ0(D) = Φ0

(
∂+

pn−1∑
i=1

βix
(i) ∂

)
= ∂+β′2x

(2) ∂+β′3x
(3) ∂+ · · ·+ β′pn−1x

(pn−1) ∂
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for some β′2, . . . , β
′
pn−1 ∈ k. In general, if

Φi−1 · · ·Φ0(D) = ∂+µi+1x
(i+1) ∂+µi+2x

(i+2) ∂+ · · ·+ µpn−1x
(pn−1) ∂

for 1 ≤ i ≤ p − 3, then take Φi ∈ G with Φi(x) = x + µi+1x
(i+2). Applying Φi to the

above, we get

ΦiΦi−1 · · ·Φ0(D) = ∂+µ′i+2x
(i+2) ∂+µ′i+3x

(i+3) ∂+ · · ·+ µ′pn−1x
(pn−1) ∂

for some µ′i+2, . . . , µ
′
pn−1 ∈ k. Consequently, we get

Φp−3Φp−4 · · ·Φ0(D) = ∂+νp−1x
(p−1) ∂+νpx

(p) ∂+ · · ·+ νpn−1x
(pn−1) ∂

for some νp−1, . . . νpn−1 ∈ k. Set Φp−2 = Id and take Φp−1 ∈ G with Φp−1(x) =

x+ νpx
(p+1). Then one can check that

Φp−1Φp−2Φp−3 · · ·Φ0(D) = ∂+νp−1x
(p−1) ∂+ν ′p+1x

(p+1) ∂+ · · ·+ ν ′pn−1x
(pn−1) ∂

for some νp−1, ν
′
p+1, . . . , ν

′
pn−1 ∈ k. Continuing in this way, we finally get

Φpn−3Φpn−4 · · ·Φ0(D) = ∂+
n∑
i=1

lix
(pi−1) ∂

for some li ∈ k. This completes the sketch of proof.

Then Y.-F Yao and B. Shu assumed that D is nilpotent and they proved that

Lemma 4.2.2. [37, Proposition 4.3] Let D = α0 ∂+f(x) ∂ be a nilpotent element of

L ⊂ Lp, where α0 6= 0 and f(x) ∈ m. Then

(i) Dpn−1
/∈ L(0).

(ii) D is conjugate under G to ∂.

Sketch of proof. (i) Take D as in the lemma. Then we can write D =
∑pn−1

i=0 αix
(i) ∂

for some αi ∈ k with α0 6= 0. By Jacobson’s formula, one can show that

Dpn−1

= αp
n−1

0 ∂p
n−1

+
n−2∑
j=0

α′j ∂
pj +w

for some α′j ∈ k and w ∈ L(0). Since α0 6= 0, this implies that Dpn−1 6∈ L(0). This

proves (i).
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(ii) The proof splits into three steps:

Step 1 . Take D as in the lemma. By Lemma 4.2.1, D is conjugate under G to

∂+
∑n

i=1 lix
(pi−1) ∂ for some li ∈ k. Since D is nilpotent, it follows from (4.6) that

(
∂+

n∑
i=1

lix
(pi−1) ∂

)pn
= 0.

We show that this implies that ∂+
∑n

i=1 lix
(pi−1) ∂ is conjugate under G to ∂. Here we

will embed the Zassenhaus algebra L into the Jacobson-Witt algebra W (n; 1) and use

A. Premet’s results on N (W (n; 1)). In Sec. 4.1.1, we have described the construction

process of this embedding. Recall the algebra isomorphism

φ : O(1;n)→ O(n; 1) = k[X1, . . . , Xn]/(Xp
1 , . . . , X

p
n)

and the induced Lie algebra isomorphism

ϕ : DerO(1;n)
∼−→ W (n; 1) = DerO(n; 1);

see (4.3) and (4.4) for their definitions. Then ϕ gives rise to the following embedding:

ι = ϕ|L : L ↪→ W (n; 1);

see (4.5). It follows from the definition of φ that

ι(∂) = D1 = ∂1 +
n−1∑
l=1

(−1)lxp−1
1 · · ·xp−1

l ∂l+1, and

ι
(
∂+

n∑
i=1

lix
(pi−1) ∂

)
= D1 +

n∑
i=1

(−1)ilix
p−1
1 · · ·xp−1

i ∂1 .

(4.7)

Note that D1 has a similar expression to D in Lemma 1.5.1. Since ϕ(Dp) = ϕ(D)p for

all D ∈ DerO(1;n), we have that

ϕ
(
(∂+

n∑
i=1

lix
(pi−1) ∂)p

n)
=
(
D1 +

n∑
i=1

(−1)ilix
p−1
1 · · · xp−1

i ∂1

)pn
.

Since
(
∂+

∑n
i=1 lix

(pi−1) ∂
)pn

= 0, the above implies that

(
D1 +

n∑
i=1

(−1)ilix
p−1
1 · · ·xp−1

i ∂1

)pn
= 0,

i.e. D1 +
∑n

i=1(−1)ilix
p−1
1 · · ·xp−1

i ∂1 is a nilpotent element of W (n; 1).
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Step 2 . Set

D(n) = D1 +
n∑
i=1

(−1)ilix
p−1
1 · · ·xp−1

i ∂1 .

We show that D(n)p
n

= 0 implies that D(n) is conjugate under Aut(W (n; 1)) to D1.

For n = 1, D1 = ∂1 and D(1) = ∂1−l1xp−1
1 ∂1. By considering D(1)p(x1), it is easy to

show that D(1)p = l1(1− l1xp−1
1 ) ∂1. By our assumption, D(1)p = 0. Since 1− l1xp−1

1

is invertible in O(n; 1), this implies that l1 = 0. Hence D(1) = ∂1 = Id(D1). Suppose

now n ≥ 2. Then one can check that

D(n)p
n−1

(xn) =D(n)p
n−1−1((−1)n−1xp−1

1 · · ·xp−1
n−1)

≡(∂1−xp−1
1 ∂2 + · · ·+ (−1)n−2xp−1

1 · · · xp−1
n−2 ∂n−1)p

n−1−1

· ((−1)n−1xp−1
1 · · ·xp−1

n−1) (modM)

≡± 1 (modM) (by Lemma 1.5.1(iii)).

Here M denotes the unique maximal ideal ofO(n; 1) generated by x1, . . . , xn. It follows

that D(n)p
n−1

/∈ W (n; 1)(0) = {
∑n

i=1 fi ∂i | fi ∈M for all i}. Since D(n)p
n

= 0 and

D(n)p
n−1

/∈ W (n; 1)(0), it follows from Lemma 1.5.3 that D(n) ∈ Aut(W (n; 1)).D1.

Step 3 . Let u1, u2 ∈ L. Then [37, Lemma A.3] states that u1, u2 are in the

same G-orbit if and only if ι(u1), ι(u2) are in the same Aut(W (n; 1))-orbit. Set u1 =

∂+
∑n

i=1 lix
(pi−1) ∂. By (4.7), ι(u1) = D(n). Set u2 = ∂. By (4.7), ι(u2) = D1. Since

D(n) ∈ Aut(W (n; 1)).D1, the above result implies that ∂+
∑n

i=1 lix
(pi−1) ∂ ∈ G. ∂.

This proves (ii).

Now we consider the other elements of N \ L(1), i.e. elements of the form

∂p
t

+
∑t−1

i=0 βi ∂
pi +g(x) ∂, where 1 ≤ t ≤ n − 1, βi ∈ k and g(x) ∈ m. We want to

show that they are conjugate under G to elements in nice forms. For that, we need

a result proved by S. Tyurin which tells us how admissible automorphisms of O(1;n)

with identical linear part act on these elements.

Lemma 4.2.3. [32, Theorem 1] Let Φ ∈ G be such that Φ(x) = y = x+
∑pn−1

j=2 νjx
(j),

where νj ∈ k with νpi = 0 for 1 ≤ i ≤ n− 1. Then

Φ(∂) = (y′)−1 ∂ ≡ ∂ (modL(0)), and

Φ(∂p
i

) = ∂p
i −(y′)−1(∂p

i

y) ∂ ≡ ∂p
i

(modL(0)) for 1 ≤ i ≤ n− 1.
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Hence for any D = ∂p
t

+
∑t−1

i=0 βi∂
pi + g(x)∂ ∈ Lp with 1 ≤ t ≤ n − 1, βi ∈ k and

g(x) ∈ m,

Φ(D) = ∂p
t

+
t−1∑
i=1

βi∂
pi + (y′)−1

(
β0 + Φ(g(x))−

t−1∑
i=1

βi∂
piy − ∂pty

)
∂.

Sketch of proof. Recall from Sec. 4.1.2 that if Φ is any admissible automorphism of

O(1;n) with Φ(x) = y (not necessarily with identical linear part), then

Φ(q(x) ∂) = (y′)−1Φ(q(x))∂ for any q(x) ∈ O(1;n), (4.8)

and

Φ(∂p
i

) = Φ(∂)p
i

for 1 ≤ i ≤ n− 1. (4.9)

In this lemma, we only consider admissible automorphisms of O(1;n) with identical

linear part, i.e. Φ ∈ G with Φ(x) = y = x +
∑pn−1

j=2 νjx
(j), where νj ∈ k with

νpi = 0 for 1 ≤ i ≤ n − 1. By (4.8), we have that Φ(∂) = (y′)−1 ∂. We show that

Φ(∂) ≡ ∂ (modL(0)). This is equivalent to show that

(y′)−1 ∂− ∂ ∈ L(0). (4.10)

Note that y′ = 1 +
∑pn−1

j=2 νjx
(j−1) which is invertible in O(1;n). Since L(0) is invariant

under multiplication of invertible elements of O(1;n), we can multiply both sides of

(4.10) by y′ and show that (1− y′) ∂ ∈ L(0). This is clearly true. Hence

Φ(∂) = (y′)−1 ∂ ≡ ∂ (modL(0)).

It remains to compute Φ(∂p
i

) for 1 ≤ i ≤ n−1. Since Φ(∂) ≡ ∂ (modL(0)), we may

write Φ(∂) = ∂+φ0(x) ∂ for some φ0(x) ∈ m. By (4.9), Φ(∂p) = Φ(∂)p. By Jacobson’s

formula (Definition 1.1.1(3)) and the fact that L(0) is a restricted Lie subalgebra of

DerO(1;n), we get Φ(∂p) = ∂p +φ1(x) ∂ for some φ1(x) ∈ O(1;n). Since ∂p x = 0, it

follows that

0 = Φ(∂p x) = Φ(∂p)y = (∂p +φ1(x) ∂)y = ∂p y + φ1(x)y′.

Hence φ1(x) = −(y′)−1(∂p y) and so Φ(∂p) = ∂p−(y′)−1(∂p y) ∂. We show that Φ(∂p) ≡

∂p (modL(0)). This is equivalent to show that −(y′)−1(∂p y) ∂ ∈ L(0). By the same

reason as above, we can multiply both sides by −y′ and show that (∂p y) ∂ ∈ L(0). Due

to the form of y, i.e. νp = 0, this is clearly true. Hence

Φ(∂p) = ∂p−(y′)−1(∂p y) ∂ ≡ ∂p (modL(0)).
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In a similar way, one can show that

Φ(∂p
i

) = ∂p
i −(y′)−1(∂p

i

y) ∂ ≡ ∂p
i

(modL(0)) for 2 ≤ i ≤ n− 1.

Let D = ∂p
t
+
∑t−1

i=0 βi∂
pi + g(x)∂ be an element of Lp, where 1 ≤ t ≤ n− 1, βi ∈ k

and g(x) ∈ m. It follows from (4.8) and the above that

Φ(D) = ∂p
t

+
t−1∑
i=1

βi∂
pi + (y′)−1

(
β0 + Φ(g(x))−

t−1∑
i=1

βi∂
piy − ∂pty

)
∂.

This completes the sketch of proof.

Lemma 4.2.4. [32, Theorem 1] Let D = ∂p
t

+
∑t−1

i=0 βi∂
pi + g(x)∂ be an element of

Lp, where 1 ≤ t ≤ n− 1, βi ∈ k and g(x) ∈ m. Then D is conjugate under G to

∂p
t

+
t−1∑
i=0

βi∂
pi + x(pn−pt)h(x)∂

for some h(x) =
∑pt−1

η=0 µηx
(η) with µη ∈ k.

Strategy of the proof. The proof splits into two parts. The first part (a) was proved

by S. Tyurin; see [32, Theorem 1, p. 68, line -8]. The second part (b) follows from (a)

and Corollary 1.4.1. Explicitly, we prove the following:

(a) Take D as in the lemma. We show that for 1 ≤ j ≤ pn − pt − 1, if g(x) ∂ ≡

γjx
(j) ∂ (modL(j)) for some γj ∈ k and Φj ∈ G is such that Φj(x) = yj = x+ γjx

(pt+j),

then

Φj(D) ≡ ∂p
t

+
t−1∑
i=0

βi ∂
pi (modL(j)).

We start with j = 1 and continue checking the above equivalence until we get D is

conjugate under G to

∂p
t

+
t−1∑
i=0

βi ∂
pi (modL(pn−pt−1)).

(b) By part (a), we may assume that

D = ∂p
t

+
t−1∑
i=0

βi∂
pi +

pt−1∑
η=0

µηx
(pn−pt+η) ∂

for some µη ∈ k. Note that for any 0 ≤ η ≤ pt − 1,

x(pn−pt)x(η) =

(
pn − pt + η

pn − pt

)
x(pn−pt+η).
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The result then follows from Corollary 1.4.1 which states that for any 0 ≤ η ≤ pt − 1,

the following congruence holds:(
pn − pt + η

pn − pt

)
≡ 1 (mod p).

Proof. (a) Take D = ∂p
t
+
∑t−1

i=0 βi∂
pi + g(x)∂ as in the lemma. By Lemma 4.2.3, we

know that if Φ(x) = y is any admissible automorphism of O(1;n) with identical linear

part, then

Φ(D) = ∂p
t

+
t−1∑
i=1

βi∂
pi + (y′)−1

(
β0 + Φ(g(x))−

t−1∑
i=1

βi∂
piy − ∂pty

)
∂.

If g(x)∂ ≡ γ1x∂ (modL(1)) for some γ1 ∈ k and Φ1 ∈ G is such that Φ1(x) = y1 =

x+ γ1x
(pt+1), then we show that

Φ1(D) ≡ ∂p
t

+
t−1∑
i=0

βi∂
pi (modL(1)).

If γ1 = 0, then g(x)∂ ∈ L(1) and the result is clear. If γ1 6= 0, then we show this

congruence by proving that Φ1(D)− ∂pt −
∑t−1

i=0 βi∂
pi ∈ L(1), i.e.

(y′1)−1

(
β0 + Φ1(g(x))−

t−1∑
i=1

βi∂
piy1 − ∂p

t

y1

)
∂−β0 ∂ ∈ L(1). (4.11)

Note that y′1 = 1 + γ1x
(pt) which is invertible in O(1;n). Since L(1) is invariant under

multiplication of invertible elements of O(1;n), we can multiply both sides of (4.11)

by y′1 and show that(
β0 + Φ1(g(x))−

t−1∑
i=1

βi∂
piy1 − ∂p

t

y1

)
∂−β0y

′
1 ∂ ∈ L(1).

Since g(x)∂ ≡ γ1x∂ (modL(1)) and Φ1 preserves the natural filtration of L, in partic-

ular, it preserves L(1), hence(
β0 + Φ1(g(x))−

t−1∑
i=1

βi∂
piy1 − ∂p

t

y1

)
∂−β0y

′
1 ∂

≡
(
β0 + γ1(x+ γ1x

(pt+1))−
t−1∑
i=1

βiγ1x
(pt−pi+1) − γ1x

)
∂

− β0(1 + γ1x
(pt)) ∂

≡0 (modL(1)).

115



4.2. The variety N

Here we used our assumption that p > 3, i.e. pt−pi ≥ pt−pt−1 ≥ p−1 > 2. Therefore,

D is conjugate to ∂p
t

+
∑t−1

i=0 βi∂
pi (modL(1)).

In general, if l < pn − pt − 1 and D ≡ ∂p
t

+
∑t−1

i=0 βi∂
pi + γlx

(l) ∂ (modL(l)) for

some γl ∈ k, i.e. D = ∂p
t
+
∑t−1

i=0 βi∂
pi + gl(x) ∂ with gl(x) ∂ ≡ γlx

(l) ∂ (modL(l)), then

applying Φl ∈ G with Φl(x) = yl = x+ γlx
(pt+l) to D, we get

Φl(D) = ∂p
t

+
t−1∑
i=1

βi∂
pi + (y′l)

−1

(
β0 + Φl(gl(x))−

t−1∑
i=1

βi∂
piyl − ∂p

t

yl

)
∂.

We show that

Φl(D) ≡ ∂p
t

+
t−1∑
i=0

βi∂
pi (modL(l)).

If γl = 0, then gl(x) ∂ ∈ L(l) and the result is clear. If γl 6= 0, then we show this

congruence by proving that

(y′l)
−1

(
β0 + Φl(gl(x))−

t−1∑
i=1

βi∂
piyl − ∂p

t

yl

)
∂ − β0 ∂ ∈ L(l). (4.12)

By the same reason as before, we can multiply both sides of (4.12) by y′l and show

that (
β0 + Φl(gl(x))−

t−1∑
i=1

βi∂
piyl − ∂p

t

yl

)
∂−β0y

′
l ∂ ∈ L(l).

Indeed, since Φl preserves L(l), we have that(
β0 + Φl(gl(x))−

t−1∑
i=1

βi∂
piyl − ∂p

t

yl

)
∂−β0y

′
l ∂

≡
(
β0 + γl(x+ γlx

(pt+l))(l) −
t−1∑
i=1

βiγlx
(pt−pi+l) − γlx(l)

)
∂

− β0(1 + γlx
(pt+l−1)) ∂

≡0 (modL(l)).

Hence D is conjugate to ∂p
t
+
∑t−1

i=0 βi∂
pi (modL(l)). Then

D ≡ ∂p
t

+
t−1∑
i=0

βi∂
pi + γl+1x

(l+1)∂ (modL(l+1))

for some γl+1 ∈ k. If γl+1 6= 0, then applying Φl+1 ∈ G with Φl+1(x) = yl+1 =

x+γl+1x
(pt+l+1) to D we can show that D is conjugate to ∂p

t
+
∑t−1

i=0 βi∂
pi (modL(l+1)).
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Continue doing this until we get D is conjugate to ∂p
t

+
∑t−1

i=0 βi∂
pi (modL(pn−pt−1)).

Then

D ≡ ∂p
t

+
t−1∑
i=0

βi∂
pi + γpn−ptx

(pn−pt) ∂ (modL(pn−pt))

for some γpn−pt ∈ k. If γpn−pt 6= 0, then we were supposed to apply Φpn−pt ∈ G

with Φpn−pt(x) = x + γpn−ptx
(pn) to D. But since x(j) = 0 for j ≥ pn in O(1;n), the

automorphism Φpn−pt is the identity automorphism and we stop here. Therefore, D is

conjugate under G to

∂p
t

+
t−1∑
i=0

βi∂
pi (modL(pn−pt−1)).

(b) By part (a), we may assume that

D = ∂p
t

+
t−1∑
i=0

βi∂
pi +

pt−1∑
η=0

µηx
(pn−pt+η) ∂

for some µη ∈ k. Note that for 0 ≤ η ≤ pt − 1,

x(pn−pt)x(η) =

(
pn − pt + η

pn − pt

)
x(pn−pt+η) ≡ x(pn−pt+η) (mod p)

by Corollary 1.4.1. As a result,

D ≡ ∂p
t

+
t−1∑
i=0

βi∂
pi +

pt−1∑
η=0

µηx
(pn−pt)x(η) ∂ (mod p)

= ∂p
t

+
t−1∑
i=0

βi∂
pi + x(pn−pt)

pt−1∑
η=0

µηx
(η) ∂ .

Set h(x) =
∑pt−1

η=0 µηx
(η), we get the desired result. This completes the proof.

Next we assume that D = ∂p
t

+
∑t−1

i=0 βi∂
pi + x(pn−pt)∑pt−1

η=0 µηx
(η) ∂ is nilpotent.

We check that if Dpn−1 ∈ L(0). Let us first consider the case t = n− 1.

Lemma 4.2.5. Let D = ∂p
n−1

+
∑n−2

i=0 βi∂
pi +x(pn−pn−1)

∑pn−1−1
η=0 µηx

(η)∂ be a nilpotent

element of Lp.

(i) If βi = 0 for all i, then µ0 = µ1 = 0 and Dpn−1 ∈ L(1).

(ii) (a) Let j ≥ 0 be the smallest index such that βj 6= 0. Then µ0 = 0 and Dpn−1−j

is conjugate under G to

∂p
n−1

+x(pn−pn−1)

pn−1−1∑
η=2

νηx
(η) ∂

for some νη ∈ k. Hence Dpn−1 ∈ L(1) if j ≥ 1.
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(b) In particular, if β0 6= 0, then Dpn−1
is conjugate under G to ∂p

n−1

. Hence

D = ∂p
n−1

+
∑n−2

i=0 γi ∂
pi for some γi ∈ k with γ0 6= 0.

The proof is long as it involves many calculations. Let us first explain the strategy

of the proof.

Strategy of the proof. This is a computational proof and the following steps are

crucial:

Step 1 . Take D = ∂p
n−1

+
∑n−2

i=0 βi∂
pi +x(pn−pn−1)

∑pn−1−1
η=0 µηx

(η)∂ as in the lemma.

Since D is nilpotent, then Dpn = 0 by (4.6). We first calculate Dp which will be used

in step 2. Set D1 = x(pn−pn−1)
∑pn−1−1

η=0 µηx
(η)∂ and D2 = ∂p

n−1
+
∑n−2

i=0 βi∂
pi . By

Jacobson’s formula,

Dp =
n−2∑
i=0

βpi ∂
pi+1

+ (adD2)p−1(D1) + µ(1)x
(pn−1)∂

for some µ(1) ∈ k; see (4.14) in the proof.

Step 2 . We consider the scalars βi in the following two cases and prove statements

(i) and (ii) in the lemma.

Step 2(i). Suppose βi = 0 for all i. Then D = ∂p
n−1

+ x(pn−pn−1)
∑pn−1−1

η=0 µηx
(η)∂.

We show that µ0 = µ1 = 0 and Dpn−1 ∈ L(1). By the calculation in step 1, we have

that Dp =
∑pn−1−1

η=0 µηx
(η) ∂+µ(1)x

(pn−1)∂; see (4.15). We show that if µ0 6= 0, then

Dpn 6= 0, a contradiction. Hence µ0 = 0. Similarly, we show that µ1 = 0. As a result,

Dp ∈ L(1). Since L(1) is restricted, we get Dpn−1 ∈ L(1) as desired.

Step 2(ii)(a). Let j ≥ 0 be the smallest index such that βj 6= 0, and let l be the

largest index such that βl 6= 0, i.e. 0 ≤ j ≤ l ≤ n− 2 and

D = ∂p
n−1

+
l∑
i=j

βi∂
pi + x(pn−pn−1)

pn−1−1∑
η=0

µηx
(η)∂.

We show that µ0 = 0 and Dpn−1−j
is conjugate under G to

∂p
n−1

+x(pn−pn−1)

pn−1−1∑
η=2

νηx
(η) ∂

for some νη ∈ k. Let us start with the special case j = l. We prove by induction that

for any 1 ≤ r ≤ n− 1− j, Dpr is conjugate under G to

∂p
j+r

+ βp
r−1

0,(1) ∂
pr−1

+x(pn−pj+r)

pj+r−1∑
η=0

µη,(r)x
(η) ∂
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for some β0,(1) ∈ k∗µ0 and µη,(r) ∈ k. Here we will use Jacobson’s formula and

Lemma 4.2.4. In particular, Dpn−1−j
is conjugate under G to

∂p
n−1

+ βp
n−2−j

0,(1) ∂p
n−2−j

+x(pn−pn−1)

pn−1−1∑
η=0

µη,(n−1−j)x
(η) ∂;

see (4.16). Then we calculate Dpn and use Dpn = 0 to show that β0,(1) = µ0 = 0 and

µ0,(n−1−j) = µ1,(n−1−j) = 0. This gives the desired result in this case.

For the general case, j < l, one can show similarly that Dpn−1−j
is conjugate under

G to

∂p
n−1

+ λ ∂p
n−2−j

+

n−3−j∑
i=0

λi ∂
pi +x(pn−pn−1)

pn−1−1∑
η=0

νηx
(η) ∂

for some λ ∈ k∗µ0 and λi, νη ∈ k; see (4.18). Then we show similarly that Dpn = 0

implies that λ = µ0 = 0, λi = 0 for 0 ≤ i ≤ n− 3− j and ν0 = ν1 = 0. This gives the

desired result.

Suppose now j ≥ 1. We show that (∂p
n−1

+x(pn−pn−1)
∑pn−1−1

η=2 νηx
(η) ∂)p ∈ L(1); see

(4.19). Since Dpn−1−j
is conjugate under G to ∂p

n−1

+x(pn−pn−1)
∑pn−1−1

η=2 νηx
(η) ∂ and

G preserves L(1), we have that Dpn−j ∈ L(1). As L(1) is restricted, we get Dpn−1 ∈ L(1)

as desired.

Step 2(ii)(b). Suppose β0 6= 0. By step 2(ii)(a), Dpn−1
is conjugate under G to

∂p
n−1

+x(pn−pn−1)
∑pn−1−1

η=2 νηx
(η) ∂ for some νη ∈ k. We show that Dpn = 0 implies that

νη = 0 for all η. Hence Dpn−1
is conjugate to ∂p

n−1

. Then we find an expression for D.

Let

S :=

{
D ∈

(
∂p

n−1

+
n−2∑
i=1

k ∂p
i

+L
)
∩N |Dpn−1

is conjugate under G to ∂p
n−1

}
.

Note that S is a subset of the centralizer cLp(∂p
n−1

). Then we consider elements of

cLp(∂p
n−1

) and show that any D in S has the form D = ∂p
n−1

+
∑n−2

i=0 γi ∂
pi for some

γi ∈ k with γ0 6= 0.

Proof. Step 1 . Let D = ∂p
n−1

+
∑n−2

i=0 βi∂
pi + x(pn−pn−1)

∑pn−1−1
η=0 µηx

(η)∂ be a nilpo-

tent element of Lp. Then Dpn = 0 by (4.6). Let us first calculate Dp. Recall Jacobson’s

formula,

(D1 +D2)p = Dp1 +Dp2 +

p−1∑
i=1

si(D1,D2) (4.13)
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for all D1,D2 ∈ Lp, and si(D1,D2) can be computed by the formula

ad(tD1 +D2)p−1(D1) =

p−1∑
i=1

isi(D1,D2)ti−1,

where t is a variable. Set

D1 = x(pn−pn−1)

pn−1−1∑
η=0

µηx
(η)∂

and

D2 = ∂p
n−1

+
n−2∑
i=0

βi∂
pi .

We first show that Dp1 = 0. By Corollary 1.4.1, x(pn−pn−1)x(η) ≡ x(pn−pn−1+η) (mod p).

Then D1 =
∑pn−1−1

η=0 µηx
(pn−pn−1+η)∂. By Lemma 1.1.1,

Dp1 =

pn−1−1∑
η=0

(
µηx

(pn−pn−1+η)∂
)p

+ w,

where w is a linear combination of commutators in µηx
(pn−pn−1+η)∂, 0 ≤ η ≤ pn−1− 1.

By Jacobi identity, we can rearrange w so that w is in the span of commutators

[wp−1, [wp−2, [. . . , [w2, [w1, w0] . . . ], where each wν , 0 ≤ ν ≤ p− 1, is equal to some

µηx
(pn−pn−1+η)∂, 0 ≤ η ≤ pn−1 − 1. We show that such iterated commutator equals 0

and so w = 0. Recall (4.1) the natural filtration {L(α)}α≥−1 of L, where L(α) = 0 for

all α > pn−2. Since 0 ≤ η ≤ pn−1−1, we have that µηx
(pn−pn−1+η)∂ ∈ L(pn−pn−1−1) for

all η. Then [wp−1, [wp−2, [. . . , [w2, [w1, w0] . . . ] ∈ L(p(pn−pn−1−1)) by Definition 1.3.3(ii).

We show that L(p(pn−pn−1−1)) = 0, i.e. p(pn − pn−1 − 1) > pn − 2. Note that

p(pn − pn−1 − 1) > pn − 2 ⇐⇒ pn+1 − pn − p > pn − 2 ⇐⇒ pn+1 − p+ 2 > 2pn.

We consider the p-adic expansions of these two numbers. By our assumption, p > 3.

Then p− 1 > 2. So 2pn + 0pn−1 + · · ·+ 0p+ 0 is the p-adic expansion of 2pn. By (1.2)

in Corollary 1.4.1, the p-adic expansion of pn+1 − p+ 2 is

pn+1 − p+ 2 =
n∑

j′=1

(p− 1)pj
′
+ 2 = (p− 1)pn + (p− 1)pn−1 + · · ·+ (p− 1)p+ 2.

Since p − 1 > 2, it is clear that pn+1 − p + 2 > 2pn. Hence L(p(pn−pn−1−1)) = 0 and

so [wp−1, [wp−2, [. . . , [w2, [w1, w0] . . . ] = 0. As a result, w = 0. By (4.2), we have that(
µηx

(pn−pn−1+η)∂
)p

= 0 for all 0 ≤ η ≤ pn−1 − 1. Therefore, Dp1 = 0.
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By Lemma 1.1.1 again, we get Dp2 =
∑n−2

i=0 β
p
i ∂

pi+1
. By (4.1) the natural filtration

of L, we have that for any 1 ≤ s ≤ p− 2,

[D1, (adD2)s(D1)] ∈ [L(pn−pn−1−1),L(pn−(s+1)pn−1−1)]

⊆ [L(pn−pn−1−1),L(pn−1−1)]

⊆ L(pn−2) = span{x(pn−1)∂}.

This last term will appear if and only if s = p− 2. So

Dp =
n−2∑
i=0

βpi ∂
pi+1

+ (adD2)p−1(D1) + µ(1)x
(pn−1)∂ (4.14)

for some µ(1) ∈ k.

Step 2 . We consider the scalars βi in the following two cases.

Step 2(i). If βi = 0 for all i, then D2 = ∂p
n−1

. By (4.14),

Dp = (ad ∂p
n−1

)p−1(D1) + µ(1)x
(pn−1)∂.

Since ∂p
n−1

is a derivation of L and ∂p
n−1

(
∑pn−1−1

η=0 µηx
(η)) = 0, we have that

Dp =

pn−1−1∑
η=0

µηx
(η) ∂+µ(1)x

(pn−1)∂. (4.15)

If µ0 6= 0, then Dp ≡ µ0∂ (modL(0)). By Lemma 1.1.1,

Dpn ≡ µp
n−1

0 ∂p
n−1

+
n−2∑
i=0

µ′i ∂
pi (modL(0))

for some µ′i ∈ k. As µ0 6= 0, this implies that Dpn 6≡ 0 (modL(0)) and so it is not

equal to 0. This contradicts that D is nilpotent. Hence µ0 = 0. Similarly, if µ1 6= 0

then Dp ≡ µ1x∂ (modL(1)). But Dpn ≡ µp
n−1

1 x∂ 6≡ 0 (modL(1)), a contradiction. Thus

µ1 = 0. Therefore, Dp is an element of L(1). Since L(1) is restricted we have that

Dpn−1 ∈ L(1). This proves (i).

Step 2(ii)(a). Let j ≥ 0 be the smallest index such that βj 6= 0, and let l be the

largest index such that βl 6= 0, i.e. 0 ≤ j ≤ l ≤ n− 2 and

D = ∂p
n−1

+
l∑
i=j

βi∂
pi + x(pn−pn−1)

pn−1−1∑
η=0

µηx
(η)∂.

We first consider the special case j = l, i.e.

D = ∂p
n−1

+ βj∂
pj + x(pn−pn−1)

pn−1−1∑
η=0

µηx
(η)∂.
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We prove by induction that for any 1 ≤ r ≤ n− 1− j, Dpr is conjugate under G to

∂p
j+r

+ βp
r−1

0,(1) ∂
pr−1

+x(pn−pj+r)

pj+r−1∑
η=0

µη,(r)x
(η) ∂

for some β0,(1) ∈ k∗µ0 and µη,(r) ∈ k. For r = 1, the previous calculation (4.14) gives

Dp = βpj ∂
pj+1

+ ad
(
∂p

n−1

+ βj∂
pj
)p−1

(
x(pn−pn−1)

pn−1−1∑
η=0

µηx
(η)∂

)
+ µ(1)x

(pn−1)∂.

Note that

ad

(
∂p

n−1

+ βj∂
pj
)p−1(

x(pn−pn−1)

pn−1−1∑
η=0

µηx
(η)∂

)

= ad

( p−1∑
m=0

(−1)mβp−1−m
j ∂mp

n−1+(p−1−m)pj
)( pn−1−1∑

η=0

µηx
(pn−pn−1+η)∂

)

=

pn−1−1∑
η=0

µηx
(η)∂ − βj

pn−1−1∑
η=0

µηx
(pn−1−pj+η)∂ + . . .

+ βp−1
j

pn−1−1∑
η=0

µηx
(pn−pn−1−(p−1)pj+η)∂.

The above result can be rewritten as µ0 ∂+g(x) ∂ for some g(x) ∈ m. Hence

Dp = βpj ∂
pj+1

+ µ0 ∂+g(x) ∂+µ(1)x
(pn−1)∂.

Then the automorphism Φ(x) = αx with αp
j+1

= βpj reduces Dp to the form

Dp = ∂p
j+1

+ β0,(1) ∂+f1(x) ∂,

where β0,(1) ∈ k∗µ0 and f1(x) ∈ m. Then Lemma 4.2.4 implies that Dp is conjugate

under G to

∂p
j+1

+ β0,(1) ∂+x(pn−pj+1)

pj+1−1∑
η=0

µη,(1)x
(η) ∂

for some µη,(1) ∈ k. Thus, the result is true for r = 1. Suppose the result is true for

r = K − 1 < n− 1− j, i.e. DpK−1
is conjugate under G to

∂p
j+K−1

+ βp
K−2

0,(1) ∂
pK−2

+x(pn−pj+K−1)

pj+K−1−1∑
η=0

µη,(K−1)x
(η) ∂
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for some β0,(1) ∈ k∗µ0 and µη,(K−1) ∈ k. Let us calculate DpK . Set

D1 = x(pn−pj+K−1)

pj+K−1−1∑
η=0

µη,(K−1)x
(η) ∂

and

D2 = ∂p
j+K−1

+ βp
K−2

0,(1) ∂
pK−2

in the Jacobson’s formula (4.13). Then Dp1 ∈ L(1) and Dp2 = ∂p
j+K

+ βp
K−1

0,(1) ∂
pK−1

. By

(4.1) the natural filtration of L, we have that

(adD2)p−1(D1) ∈ L(pn−pj+K−1) ⊆ L(1).

Similarly, for any 1 ≤ s ≤ p− 2,

[D1, (adD2)s(D1)] ∈ [L(pn−pj+K−1−1),L(pn−(s+1)pj+K−1−1)]

⊆ [L(1),L(pn−(s+1)pj+K−1−1)]

⊆ L(pn−(s+1)pj+K−1),

⊆ L(pn−(p−1)pj+K−1),

⊆ L(pn−(p−1)pn−2) (since j +K − 1 ≤ n− 2)

⊆ L(1).

Hence DpK = ∂p
j+K

+ βp
K−1

0,(1) ∂
pK−1

+fK(x) ∂ for some fK(x) ∈ m with fK(x) ∂ ∈ L(1).

By Lemma 4.2.4, DpK is conjugate under G to

∂p
j+K

+ βp
K−1

0,(1) ∂
pK−1

+x(pn−pj+K)

pj+K−1∑
η=0

µη,(K)x
(η) ∂

for some µη,(K) ∈ k, i.e. the result is true for r = K. Therefore, we proved by induction

that for any 1 ≤ r ≤ n− 1− j, Dpr is conjugate under G to

∂p
j+r

+ βp
r−1

0,(1) ∂
pr−1

+x(pn−pj+r)

pj+r−1∑
η=0

µη,(r)x
(η) ∂

for some β0,(1) ∈ k∗µ0 and µη,(r) ∈ k. In particular, Dpn−1−j
is conjugate under G to

∂p
n−1

+ βp
n−2−j

0,(1) ∂p
n−2−j

+x(pn−pn−1)

pn−1−1∑
η=0

µη,(n−1−j)x
(η) ∂ . (4.16)
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By Jacobson’s formula,

Dpn−j

= βp
n−1−j

0,(1) ∂p
n−1−j

+

pn−1−1∑
η=0

µη,(n−1−j)x
(η) ∂+fn−j(x) ∂+µ(n−j)x

(pn−1) ∂ (4.17)

for some fn−j(x) ∂ ∈ L(1) and µ(n−j) ∈ k. Then

Dpn ≡ βp
n−1

0,(1) ∂
pn−1

+µp
j

0,(n−1−j) ∂
pj +

j−1∑
i=0

µ′′i ∂
pi (modL(0))

for some µ′′i ∈ k. But Dpn = 0, this implies that β0,(1) = 0. Since β0,(1) ∈ k∗µ0, we have

that µ0 = 0. We must also have that µ0,(n−1−j) = 0 and µ′′i = 0 for all i. Substituting

these into (4.17), we get

Dpn−j

=

pn−1−1∑
η=1

µη,(n−1−j)x
(η) ∂+fn−j(x) ∂+µ(n−j)x

(pn−1) ∂

≡ µ1,(n−1−j)x ∂ (modL(1)).

Then one can show similarly that µ1,(n−1−j) = 0. Hence Dpn−1−j
(4.16) is conjugate

under G to

∂p
n−1

+ x(pn−pn−1)

pn−1−1∑
η=2

µη,(n−1−j)x
(η) ∂ .

If j < l, i.e. D = ∂p
n−1

+
∑l

i=j βi∂
pi + x(pn−pn−1)

∑pn−1−1
η=0 µηx

(η)∂, then one can

show similarly that Dpn−1−j
is conjugate under G to

∂p
n−1

+ λ ∂p
n−2−j

+

n−3−j∑
i=0

λi ∂
pi +x(pn−pn−1)

pn−1−1∑
η=0

νηx
(η) ∂ (4.18)

for some λ ∈ k∗µ0 and λi, νη ∈ k. Then by the same arguments as above, one can

show that λ = µ0 = 0, λi = 0 for 0 ≤ i ≤ n − 3 − j and ν0 = ν1 = 0. As a result,

Dpn−1−j
is conjugate under G to

∂p
n−1

+ x(pn−pn−1)

pn−1−1∑
η=2

νηx
(η)∂.

Suppose now j ≥ 1. By a similar calculation as in (4.14) and (4.15), we get

(
∂p

n−1

+ x(pn−pn−1)

pn−1−1∑
η=2

νηx
(η)∂
)p

=

pn−1−1∑
η=2

νηx
(η)∂ + µ(n−j)x

(pn−1) ∂ (4.19)
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for some µ(n−j) ∈ k. This is an element of L(1). Since Dpn−1−j
is conjugate under G

to ∂p
n−1

+ x(pn−pn−1)
∑pn−1−1

η=2 νηx
(η)∂ and G preserves L(1), we have that Dpn−j ∈ L(1).

As L(1) is restricted, we have that Dpn−1 ∈ L(1). This proves (ii)(a).

Step 2(ii)(b). If β0 6= 0, then (ii)(a) implies that Dpn−1
is conjugate under G to

∂p
n−1

+ x(pn−pn−1)

pn−1−1∑
η=2

νηx
(η) ∂

for some νη ∈ k. If q is the smallest index such that νq 6= 0, then

Dpn =

pn−1−1∑
η=q

νηx
(η) ∂+µ(n)x

(pn−1) ∂

for some µ(n) ∈ k. As νq 6= 0, this implies that Dpn 6= 0, a contradiction. Hence νη = 0

for all η. Therefore, we are interested in the set

S :=

{
D ∈

(
∂p

n−1

+
n−2∑
i=1

k ∂p
i

+L
)
∩N |Dpn−1

is conjugate under G to ∂p
n−1

}
.

Since [D,Dpn−1
] = 0, the above set S is a subset of the centralizer cLp(∂p

n−1

). It is easy

to verify that cLp(∂p
n−1

) is spanned by ∂p
n−1

and W (1, n− 1)p. Since W (1, n− 1)p is a

restricted Lie subalgebra of Lp, we may regard the automorphism group of W (1, n−1)p

as a subgroup of G. Let D = ∂p
n−1

+
∑n−2

i=1 γi ∂
pi +v be an element of cLp(∂p

n−1

), where

γi ∈ k and v ∈ W (1, n− 1). If v = 0, then Dpn−1
= 0 which is not conjugate to ∂p

n−1

.

So v 6= 0. If v 6∈ W (1, n − 1)(0), then v = γ0 ∂ for some γ0 6= 0. It is easy to see that

Dpn−1
is conjugate under G to ∂p

n−1

. If v ∈ W (1, n− 1)(0), then v =
∑pn−1−1

i=1 λix
(i) ∂

with λi 6= 0 for some i. It follows from Lemma 4.2.4 that D is conjugate under G to

∂p
n−1

+
n−2∑
i=1

γi ∂
pi +x(pn−pn−1)

pn−1−1∑
η=0

λ′ηx
(η) ∂

for some λ′η ∈ k. If γi = 0 for all i, then (i) of this lemma implies that Dpn−1 ∈ L(1)

which is not conjugate to ∂p
n−1

. Similarly, if j ≥ 1 is the smallest index such that

γj 6= 0, then (ii)(a) of this lemma implies thatDpn−1 ∈ L(1) which is again not conjugate

to ∂p
n−1

. Therefore, the set S consists of elements of the form D = ∂p
n−1

+
∑n−2

i=0 γi ∂
pi ,

where γi ∈ k with γ0 6= 0. This proves (ii)(b).

We see that the last proof involves calculations using Jacobson’s formula and ap-

plications of Lemma 4.2.4. The only property of D that we used is Dpn = 0. Hence
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using the same arguments, we can prove a very similar result for nilpotent elements

∂p
m

+
∑m−1

i=0 αi∂
pi + x(pn−pm)

∑pm−1
η=0 µηx

(η) ∂, where 1 ≤ m ≤ n− 2.

Corollary 4.2.1. Let E = ∂p
m

+
∑m−1

i=0 αi∂
pi +x(pn−pm)

∑pm−1
η=0 µηx

(η) ∂ with 1 ≤ m ≤

n− 2 be a nilpotent element of Lp.

(i) If αi = 0 for all i, then Epn−1 ∈ L(1).

(ii) (a) Let q ≥ 0 be the smallest index such that αq 6= 0. Then Epn−1−q
is conjugate

under G to

∂p
n−1

+x(pn−pn−1)

pn−1−1∑
η=2

νηx
(η) ∂

for some νη ∈ k. Hence Epn−1 ∈ L(1) if q ≥ 1.

(b) In particular, if α0 6= 0, then Epn−1
is conjugate under G to ∂p

n−1

. Hence

E = ∂p
m

+
∑m−1

i=0 γi ∂
pi for some γi ∈ k with γ0 6= 0.

Strategy of the proof. By a similar argument as in step 2(ii)(a) of Lemma 4.2.5,

one can show that Epn−1−m
is conjugate under G to

D1 = ∂p
n−1

+
m−1∑
i=0

αp
n−1−m

i ∂p
i+n−1−m

+x(pn−pn−1)

pn−1−1∑
η=0

µη,(n−1−m)x
(η) ∂

for some µη,(n−1−m) ∈ k. Note that D1 has a similar expression to D in Lemma 4.2.5.

Applying that lemma to D1, we get most of the desired results. The other results such

as showing that Epn−1 ∈ L(1) in (i) and finding an expression for E in (ii)(b) follow

from the same arguments as in the proof of that lemma.

Proof. Take E = ∂p
m

+
∑m−1

i=0 αi∂
pi + x(pn−pm)

∑pm−1
η=0 µηx

(η) ∂ as in the corollary. By

a similar argument as in step 2(ii)(a) of Lemma 4.2.5, i.e. using induction on r, one

can show that for any 1 ≤ r ≤ n− 1−m, Epr is conjugate under G to

∂p
m+r

+
m−1∑
i=0

αp
r

i ∂p
i+r

+x(pn−pm+r)

pm+r−1∑
η=0

µη,(r)x
(η) ∂

for some µη,(r) ∈ k. In particular, Epn−1−m
is conjugate under G to

D1 = ∂p
n−1

+
m−1∑
i=0

αp
n−1−m

i ∂p
i+n−1−m

+x(pn−pn−1)

pn−1−1∑
η=0

µη,(n−1−m)x
(η) ∂ .
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Note that D1 has a similar expression to D in Lemma 4.2.5. Since E is nilpotent, we

have that Epn = 0 by (4.6). As Epn−1−m
is conjugate under G to D1, this implies that

Dp
m+1

1 = 0.

(i) Suppose αi = 0 for all i. Applying Lemma 4.2.5(i) to D1, we get µ0,(n−1−m) =

µ1,(n−1−m) = 0. Then (4.15) in step 2(i) of Lemma 4.2.5 gives

Dp1 =

pn−1−1∑
η=2

µη,(n−1−m)x
(η) ∂+µ(1)x

(pn−1)∂

for some µ(1) ∈ k. Hence Dp1 ∈ L(1). Since G preserves L(1), we have that Epn−m ∈ L(1).

As L(1) is restricted, we have that Epn−1 ∈ L(1). This proves (i).

(ii)(a) Let q ≥ 0 be the smallest index such that αq 6= 0. Then Epn−1−m
is conjugate

under G to

D1 = ∂p
n−1

+
m−1∑
i=q

αp
n−1−m

i ∂p
i+n−1−m

+x(pn−pn−1)

pn−1−1∑
η=0

µη,(n−1−m)x
(η) ∂ .

Applying Lemma 4.2.5(ii)(a) to D1, we get µ0,(n−1−m) = 0 and Dp
m−q

1 is conjugate

under G to

∂p
n−1

+x(pn−pn−1)

pn−1−1∑
η=2

νηx
(η) ∂

for some νη ∈ k. Hence (Epn−1−m
)p

m−q
= Epn−1−q

is conjugate under G to the above

element. It follows from Lemma 4.2.5(ii)(a) that Epn−1 ∈ L(1) if q ≥ 1. This proves

(ii)(a).

(b) If α0 6= 0, then it follows from the above and Lemma 4.2.5(ii)(b) that Epn−1
is

conjugate under G to ∂p
n−1

. Here we used that Epn = 0. By the same arguments as

in step 2(ii)(b) of Lemma 4.2.5, one can show that E = ∂p
m

+
∑m−1

i=0 γi ∂
pi for some

γi ∈ k with γ0 6= 0. This proves (ii)(b).

4.2.2 An irreducible component of N

The results in the last section enable us to prove the following:

Proposition 4.2.1. Define Nreg :=
{
D ∈ N |Dpn−1

/∈ L(0)

}
. Then

Nreg = G.(∂+k ∂p + · · ·+ k ∂p
n−1

).
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Proof. Since (∂+
∑n−1

i=1 αi ∂
pi)p

n
= 0 and (∂+

∑n−1
i=1 αi ∂

pi)p
n−1

= ∂p
n−1

, this shows

that any elements which are conjugate under G to ∂+
∑n−1

i=1 αi ∂
pi are contained

in Nreg. So G.(∂+k ∂p + · · · + k ∂p
n−1

) ⊆ Nreg. To show that Nreg is a subset of

G.(∂+k ∂p + · · · + k ∂p
n−1

), we observe that if D1 ∈ L(1), then D1 is nilpotent and

Dp
n−1

1 ∈ L(1) ⊂ L(0). Hence D1 6∈ Nreg. As a result, Nreg ⊆ N \ L(1).

Let D ∈ Nreg. Note that elements of N \ L(1) have the form

n−1∑
i=0

αi∂
pi + f(x)∂,

where f(x) ∈ m and αi ∈ k with at least one αi 6= 0. If α0 6= 0 and αi = 0 for all

i ≥ 1, then (α0 ∂+f(x) ∂)p
n−1 6∈ L(0) by Lemma 4.2.2(i). Hence α0 ∂+f(x) ∂ ∈ Nreg.

Take D to be such an element. It follows from Lemma 4.2.2(ii) that D is conjugate

under G to ∂. Thus D ∈ G.(∂+k ∂p + · · ·+ k ∂p
n−1

) in this case.

For the other elements of N \L(1), let 1 ≤ t ≤ n− 1 be the largest index such that

αt 6= 0, i.e. we consider elements of the form
∑t

i=0 αi∂
pi + f(x)∂. Let Φ ∈ G be such

that Φ(x) = αx, where αp
t

= αt. Then Φ reduces
∑t

i=0 αi∂
pi + f(x)∂ to

∂p
t

+
t−1∑
i=0

βi∂
pi + g(x) ∂

for some βi ∈ k∗αi and g(x) ∈ m. By Lemma 4.2.4, ∂p
t

+
∑t−1

i=0 βi∂
pi + g(x) ∂ is

conjugate under G to

∂p
t

+
t−1∑
i=0

βi∂
pi + x(pn−pt)

pt−1∑
η=0

µηx
(η) ∂

for some µη ∈ k. If βi = 0 for all i, then Lemma 4.2.5 and Corollary 4.2.1(i) imply

that (
∂p

t

+x(pn−pt)
pt−1∑
η=0

µηx
(η) ∂

)pn−1

∈ L(1) ⊂ L(0),

and so elements of this form are not in Nreg. Now let j ≥ 1 be the smallest index such

that βj 6= 0. Then Lemma 4.2.5 and Corollary 4.2.1(ii)(a) imply that

(
∂p

t

+
t−1∑
i=j

βi∂
pi + x(pn−pt)

pt−1∑
η=0

µηx
(η) ∂

)pn−1

∈ L(1) ⊂ L(0),

and so elements of this form are not in Nreg. But if β0 6= 0, then it is easy to see that

(
∂p

t

+
t−1∑
i=0

βi∂
pi + x(pn−pt)

pt−1∑
η=0

µηx
(η) ∂

)pn−1

6∈ L(0),
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and so elements of this form are in Nreg. Take D to be such an element. It follows from

Lemma 4.2.5 and Corollary 4.2.1(ii)(b) that D = ∂p
t

+
∑t−1

i=0 γi ∂
pi for some γi ∈ k with

γ0 6= 0. Let Φ1 ∈ G be such that Φ1(x) = γ0x. Applying Φ1 to D, we get Φ1(D) =

∂+
∑t−1

i=1 γ
′
i ∂

pi +(γ0)−p
t
∂p

t

for some γ′i ∈ k∗γi. Hence D ∈ G.(∂+k ∂p + · · ·+ k ∂p
n−1

)

in this case. Since we have exhausted all elements ofNreg, this completes the proof.

Before we proceed to show that the Zariski closure of Nreg is an irreducible com-

ponent of N , we need the following results:

Lemma 4.2.6. Let D = ∂+
∑n−1

i=1 λi ∂
pi with λi ∈ k and denote by cL(D) (respectively

cLp(D)) the centralizer of D in L (respectively Lp). Then

(i) cL(D) = span{∂}.

(ii) cLp(D) = span{∂, ∂p, . . . , ∂pn−1}.

(iii) cL(D) ∩ Lie(G) = {0}.

Proof. (i) Clearly, span{∂} ⊆ cL(D). Since (adD)p
n−1 6= 0 and (adD)p

n
= 0, the

theory of canonical Jordan normal form says that there exists a basis B of L such that

the matrix of adD with respect to B is a single Jordan block of size pn with zeros on the

main diagonal. Hence the matrix of adD has rank pn−1. This implies that Ker(adD)

has dimension 1. By definition, Ker(adD) = cL(D). Hence cL(D) = span{∂}.

(ii) It is clear that span{∂, ∂p, . . . , ∂pn−1} ⊆ cLp(D). Suppose v ∈ cLp(D). Then

we can write v =
∑n−1

i=0 αi ∂
pi +v1 for some v1 ∈ L(0). Since

∑n−1
i=0 αi ∂

pi ∈ cLp(D), we

must have that v1 ∈ cLp(D). By (i), the centralizer of D in L is k ∂ which is not in

L(0). Hence v1 = 0 and cLp(D) = span{∂, ∂p, . . . , ∂pn−1}.

(iii) It follows from (i) and Lemma 4.1.1. This completes the proof.

Lemma 4.2.7. The Zariski closure of Nreg is an irreducible component of N .

Proof. By Proposition 4.2.1, it suffices to show that the Zariski closure of

G.(∂+k ∂p + · · ·+ k ∂p
n−1

) is an irreducible component of N . Set

X = ∂+X0,

where X0 = k ∂p + · · · + k ∂p
n−1

. Note that X ∼= X0
∼= An−1. So X is irreducible.

Moreover, G is a connected algebraic group and so G.X is an irreducible variety
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contained in N . Hence dimG.X ≤ dimN . If dimG.X ≥ dimN , then we get the

desired result.

Define Ψ to be the morphism

Ψ : G×X → G.X

(g,D) 7→ g.D

Since G.X is dense in G.X, it contains smooth points of G.X. As the set of smooth

points is G-invariant, there exists D ∈ X such that Ψ(1,D) = D is a smooth point in

G.X. We may assume that D = ∂+
∑n−1

i=1 λi ∂
pi for some λi ∈ k. Then TD(X) = X0

and the differential of Ψ at the smooth point (1,D) is the map

(dΨ)(1,D) : Lie(G)⊕X0 → TD(G.X)

(Y, Z) 7→ [Y,D] + Z.

Since dim TD(G.X) = dimG.X, it is enough to show that dim TD(G.X) ≥ dimN =

pn − 1. This can be done by showing that (dΨ)(1,D) is injective. By Lemma 4.1.1,

we know that any Y ∈ Lie(G) has the form Y =
∑pn−1

j=1 µjx
(j) ∂, where µj ∈ k with

µpl = 0 for all 1 ≤ l ≤ n− 1. By (1.4),

[Y,D] =

[ pn−1∑
j=1

µjx
(j) ∂, ∂+

n−1∑
i=1

λi ∂
pi
]

= −
pn−1∑
j=1

µjx
(j−1) ∂−

n−1∑
i=1

pn−1∑
j=pi+1

λiµjx
(j−pi) ∂ .

Hence [Y,D] ∈ L for all Y ∈ Lie(G). As L ∩X0 = {0}, we have that

Ker((dΨ)(1,D)) ∼= cLie(G)(D).

By Lemma 4.2.6(iii), cLie(G)(D) = {0}. Hence Ker((dΨ)(1,D)) = 0 and (dΨ)(1,D) is

injective. As a result,

dim TD(G.X) ≥ dim Im((dΨ)(1,D))

= dim Lie(G) + dimX0

= (pn − n) + (n− 1) = pn − 1 = dimN .

This completes the proof.
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4.2.3 The irreducibility of N

Our goal is to prove the irreducibility of the variety N . To achieve this, we need the

following result:

Proposition 4.2.2. Define Nsing := N \Nreg =
{
D ∈ N |Dpn−1 ∈ L(0)

}
. Then

dimNsing < dimN .

Clearly, Nsing is Zariski closed inN . To prove this proposition, we need to construct

an (n + 1)-dimensional subspace V in Lp such that V ∩ Nsing = {0}. Then the

result follows from Theorem 1.6.8; see Lemma 1.5.5 for a similar proof. The way

V is constructed relies on the original definition of L due to H. Zassenhaus and the

following lemmas. Recall that L has a k-basis {eα |α ∈ Fq} with the Lie bracket given

by [eα, eβ] = (β − α)eα+β. Here Fq ⊂ k is a finite field with q = pn elements. The

multiplicative group F∗q of Fq is cyclic of order pn − 1 with generator ξ; see Sec. 4.1.1

for detail. Since L is simple, it follows from Theorem 1.2.2(iii) that all its minimal p-

envelopes are isomorphic as restricted Lie algebras. Moreover, L ∼= adL via the adjoint

representation. It follows from Remark 1.2.1 that the minimal p-envelope Lp = (adL)p

is the p-subalgebra of DerL generated by adL. We identify L with adL. Since L is a

subalgebra of the restricted Lie algebra DerO(1;n) and {eα |α ∈ Fq} is a basis of L,

it follows from Lemma 1.1.3 that

Lp =
∑

α∈Fq ,i≥0

kep
i

α , (4.20)

i.e. Lp consists of all iterated p-th powers of eα and L.

Lemma 4.2.8. (i) Let σ ∈ GL(L) be such that σ(eα) := ξ−1eξα for any α ∈ Fq.

Then σ is a diagonalizable automorphism of L.

(ii) Let σ be as in (i). Define σ(ep
i

α ) := ξ−p
i
ep

i

ξα for any i ≥ 1 and α ∈ Fq. Then σ

extends to an automorphism of Lp.

Proof. (i) By definition,

[σ(eα), σ(eβ)] = [ξ−1eξα, ξ
−1eξβ] = ξ−2(ξβ − ξα)eξα+ξβ = ξ−1(β − α)eξ(α+β)

= σ([eα, eβ])
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for any α, β ∈ Fq. So the endomorphism σ is an automorphism of L. Since ξp
n−1 = 1,

we have that σp
n−1 = Id. As k is an algebraically closed field, the automorphism σ is

diagonalizable. This proves (i).

(ii) Define σ(ep
i

α ) := ξ−p
i
ep

i

ξα for any i ≥ 1 and α ∈ Fq. We show that σ extends to

an automorphism of Lp. By definition,

[σ(ep
i

α ), σ(ep
j

β )] = [ξ−p
i

ep
i

ξα, ξ
−pjep

j

ξβ]

for any i, j ≥ 1 and α, β ∈ Fq. On the other hand, it follows from Definition 1.1.1(1)

that

[ep
i

α , e
pj

β ] = −(ad eα)p
i−1 ◦ (ad eβ)p

j

(eα).

Since σ is an automorphism of L such that σ(eα) = ξ−1eξα for any α ∈ Fq, we have

that

σ[ep
i

α , e
pj

β ] = σ
(
− (ad eα)p

i−1 ◦ (ad eβ)p
j

(eα)
)

= −ξ−piξ−pj(ad eξα)p
i−1 ◦ (ad eξβ)p

j

(eξα)

= [ξ−p
i

ep
i

ξα, ξ
−pjep

j

ξβ]

= [σ(ep
i

α ), σ(ep
j

β )].

Hence σ extends to an automorphism of Lp. This proves (ii).

Note that [e0, eβ] = βeβ for any β ∈ Fq. So ad e0 is a semisimple endomorphism of

L. Since adL ∼= L, then e0 generates a torus under the [p]-th power map.

Lemma 4.2.9. Let T denote the p-envelope (ke0)p in Lp. Then T is an n-dimensional

torus of Lp such that T ∩ L = ke0.

Proof. Let T denote the p-envelope (ke0)p in Lp. Then T =
∑

i≥0 ke
pi

0 is the p-

subalgebra of Lp generated by ke0; see Definition 1.1.3 and Lemma 1.1.3. We first

show that T is a torus of Lp. By Definition 1.1.1(1),

[ep
i

0 , e
pj

0 ] = −(ad e0)p
i−1 ◦ (ad e0)p

j

(e0) = 0

for any i, j ≥ 0. Hence T is an abelian p-subalgebra of Lp. Then we show that T

consists of semisimple elements. By Lemma 1.1.4(iii), it is enough to show that e0 is

semisimple. By Lemma 4.2.8, we know that σ acts on T as

σ(ep
i

0 ) = ξ−p
i

ep
i

0 (4.21)
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for all i ≥ 0. Since ξp
n−1 = 1, we see that ξ−1, ξ−p, . . . , ξ−p

n−1
are the eigenvalues

of σ on T . Moreover, σ(e0) = ξ−1e0 and σ(ep
n

0 ) = ξ−p
n
ep

n

0 = ξ−1ep
n

0 . So e0 and ep
n

0

correspond to the same eigenvalue ξ−1 and they are in the same eigenspace. We show

that e0 and ep
n

0 are linearly dependent with e0 = ep
n

0 . Recall that for any α, β ∈ Fq,

the Lie bracket of L is given by [eα, eβ] = (β−α)eα+β. Then for any α ∈ Fq and i > 0,

we have that

[e0 − ep
n

0 , e
pi

α ] = [e0, e
pi

α ]− [ep
n

0 , e
pi

α ]

= −(ad eα)p
i

(e0) + (ad e0)p
n−1 ◦ (ad eα)p

i

(e0)

= 0 + 0 = 0.

Similarly, for any α ∈ Fq and i = 0, we have that

[e0 − ep
n

0 , eα] = [e0, eα]− (ad e0)p
n

(eα) = αeα − αp
n

eα = αeα − αeα = 0.

We show the above calculations imply that e0 − ep
n

0 ∈ z(Lp). By (4.20), the minimal

p-envelope Lp of L is given by Lp =
∑

α∈Fq ,i≥0 ke
pi

α , i.e. Lp consists of all iterated p-th

powers of eα and L. It follows from the above calculations that e0− ep
n

0 ∈ z(Lp). Since

L is simple, it follows from Theorem 1.2.2(iii) that Lp is semisimple. Since z(Lp) is

an abelian p-ideal of Lp, we must have that z(Lp) = 0. As a result, e0 = ep
n

0 . This

implies that e0 is semisimple. By Lemma 1.1.4(iii), ep
i

0 is semisimple for every i ≥ 1

and t is semisimple for every t ∈ (ke0)p = T . Hence T is an abelian p-subalgebra of

Lp consisting of semisimple elements, i.e. T is a torus of Lp.

Next we show that dimk T = n. Since e0 = ep
n

0 , this implies that the [p]-th

power map on T is periodic, i.e. ep
i

0 = ep
n+i

0 for all i ≥ 0. Hence any t ∈ T has

the form t =
∑n−1

i=0 µie
pi

0 for some µi ∈ k. Thus {e0, e
p
0, . . . , e

pn−1

0 } spans T . More-

over, it follows from (4.21) that the eigenvectors e0, e
p
0, . . . , e

pn−1

0 correspond to dis-

tinct eigenvalues ξ−1, ξ−p, . . . , ξ−p
n−1

. Hence they are linearly independent. Therefore,

{e0, e
p
0, . . . , e

pn−1

0 } is a basis for T and dimk T = n.

It remains to show that T ∩ L = ke0. Note that e0 /∈ L(0). Indeed, if e0 ∈ L(0),

then T is contained in L(0) as L(0) is restricted. But this contradicts that any nonzero

torus of L(0) has dimension 1; see (4.2) in Sec. 4.1.1. Therefore, e0 /∈ L(0). Since e0 is

semisimple, we may assume that e0 = ∂+z0 for some 0 6= z0 ∈ L(0). Let us compute

ep
i

0 for 1 ≤ i ≤ n − 1. By Jacobson’s formula, ep0 = ∂p +α1,0 ∂+z1 for some α1,0 ∈ k
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and 0 6= z1 ∈ L(0) (otherwise ep0 is nilpotent). Continue doing this, one can show that

for 1 ≤ i ≤ n− 1,

ep
i

0 = ∂p
i

+
i−1∑
j=0

αi,j ∂
pj +zi

for some αi,j ∈ k and 0 6= zi ∈ L(0) (otherwise ep
i

0 is nilpotent). It is clear that ep
i

0 /∈ L

for all 1 ≤ i ≤ n− 1. Hence T ∩ L = ke0. This completes the proof.

Remark 4.2.1. It follows from Lemma 4.2.8 and the last proof that ep
i

0 with i ≥ 0

satisfies the following:

(i) σ(ep
i

0 ) = ξ−p
i
ep

i

0 for all i ≥ 0.

(ii) ep
i

0 is semisimple with ep
i

0 = ep
n+i

0 for all i ≥ 0.

(iii) e0 is an element of L = L(−1) such that e0 /∈ L(0). Hence for any 0 ≤ i ≤ n− 1,

we may assume that

ep
i

0 = ∂p
i

+
i−1∑
j=0

αi,j ∂
pj +zi

for some αi,j ∈ k and 0 6= zi ∈ L(0). Note that ep
i

0 /∈ L for all 1 ≤ i ≤

n − 1. Moreover, {e0, e
p
0, . . . , e

pn−1

0 } forms a basis for the n-dimensional torus

T = (ke0)p.

Since we have proved in Lemma 4.2.8 that σ is an automorphism of L, then it

preserves the natural filtration {L(i)}i≥−1 of L. Moreover, we can prove the following:

Lemma 4.2.10. For −1 ≤ i ≤ pn−2, the automorphism σ acts on each 1-dimensional

vector space L(i)/L(i+1) as ξi Id.

Proof. We prove this result by induction on i. For i = −1, consider the surjective

map π−1 : L(−1) � L(−1)/L(0). By Remark 4.2.1(iii), we know that e0 is an element of

L(−1) such that e0 /∈ L(0). Then the vector space L(−1)/L(0) is spanned by π(e0). This

implies that σ acts on L(−1)/L(0) as ξ−1 Id. Hence the result holds for i = −1.

Suppose the result holds for −1 ≤ i = j ≤ pn−3, i.e. σ acts on L(j)/L(j+1) as ξj Id.

We want to show the result holds for i = j+ 1 ≤ pn− 2, i.e. σ acts on L(j+1)/L(j+2) as

ξj+1 Id. Since L = L(0) + ke0 and [L,L(i+1)] = L(i), we have that [e0,L(i+1)] * L(i+1).

So we can find for each i ∈ {0, . . . , pn − 2} a ui ∈ L(i) such that [e0, ui] /∈ L(i). By

writing ui as a sum of σ-eigenvectors corresponding to the same eigenvalue, we see

134



4.2. The variety N

that we may assume that each ui is a σ-eigenvector corresponding to an eigenvalue,

say λi. Then

σ[e0, ui] = [σ(e0), σ(ui)] = [ξ−1e0, λiui] = ξ−1λi[e0, ui].

So ξ−1λi is the eigenvalue of σ on L(i−1)/L(i). Since i ∈ {0, . . . , pn − 2}, then i − 1 ∈

{−1, . . . , pn − 3}. By the induction hypothesis, σ acts on L(i−1)/L(i) as ξi−1 Id. So

we must have that ξ−1λi = ξi−1 and hence λi = ξi. Now consider the surjective map

πi : L(i) � L(i)/L(i+1). Since ui ∈ L(i) is such that [e0, ui] /∈ L(i), i.e. ui /∈ L(i+1), then

the vector space L(i)/L(i+1) is spanned by πi(ui). It follows that σ acts on L(i)/L(i+1)

as ξi Id. Therefore, we proved by induction that for −1 ≤ i ≤ pn − 2, σ acts on each

1-dimensional vector space L(i)/L(i+1) as ξi Id. This completes the proof.

Lemma 4.2.11. Let u denote the element u0 in the last proof. Then ku is a 1-

dimensional torus in L(0).

Proof. Recall from the last proof that u ∈ L(0) is such that [e0, u] /∈ L(0). Moreover,

u is a σ-eigenvector corresponding to the eigenvalue ξ0 = 1, i.e. σ(u) = u. We

want to show that ku is a 1-dimensional torus in L(0). We first show that u is not

nilpotent. Note that u /∈ L(1). Indeed, if u ∈ L(1), then Remark 4.2.1(iii) implies

that [e0, u] ∈ [L(−1),L(1)] ⊆ L(0). But this contradicts that [e0, u] /∈ L(0). Hence

u ∈ L(0) is such that u /∈ L(1). If u is nilpotent, then L(0) would be p-nilpotent. But

this contradicts (4.2). Hence u is not nilpotent. Next we show that up is a multiple

of u. Since u ∈ L(0) and L(0) is restricted, we have that up ∈ L(0). Since σ is an

automorphism of the restricted Lie algebra L(0), we have that σ(up) = σ(u)p = up. So

up is σ-fixed. By Lemma 4.2.10, the eigenvalues of σ on L(0) are ξ0 = 1, ξ, . . . , ξp
n−3

and ξp
n−2 = ξ−1, and they all have multiplicity 1. Since both u and up are σ-fixed, it

follows that up is a multiple of u. Therefore, ku is a 1-dimensional torus in L(0). This

completes the proof.

Let us summarize what we know so far.

Remark 4.2.2. It follows from Lemma 4.2.10 that

(i) the eigenvalues of σ on L = span{∂, x ∂, x(2) ∂, . . . , x(pn−2) ∂, x(pn−1) ∂} are ξ−1,

ξ0 = 1, ξ, . . . , ξp
n−3 and ξp

n−2 = ξ−1. All have multiplicity 1 except ξ−1 which has

multiplicity 2;
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(ii) the eigenvalues of σ on L(0) = span{x ∂, x(2) ∂, . . . , x(pn−2) ∂, x(pn−1) ∂} are ξ0 =

1, ξ, . . . , ξp
n−3 and ξp

n−2 = ξ−1. All have multiplicity 1;

(iii) the eigenspace L[i] := {D ∈ L |σ(D) = ξiD} corresponding to the eigenvalue ξi,

where 0 ≤ i ≤ pn−3, has dimension 1. In particular, the eigenspace L[0] = ku is

a 1-dimensional torus in L(0); see Lemma 4.2.11. Since any torus in a restricted

Lie algebra has a basis consisting of toral elements (see Lemma 1.1.5), we may

assume that u is toral, i.e. up = u;

(iv) the eigenspace L[−1] = span{e0, v | v ∈ L(pn−2)} and it has dimension 2; see Re-

mark 4.2.1(i) and (iii).

We are now ready to prove Proposition 4.2.2 which states that

Nsing := N \Nreg =
{
D ∈ N |Dpn−1 ∈ L(0)

}
has dimNsing < dimN .

Proof of Proposition 4.2.2. Recall the n-dimensional torus T =
∑n−1

i=0 ke
pi

0 in Lp

and the 1-dimensional torus ku in L(0); see Lemma 4.2.9 and Lemma 4.2.11. Put

V := T ⊕ ku. We want to show that V ∩ Nsing = {0}. Then the result follows from

Theorem 1.6.8. Suppose for contradiction that V ∩Nsing 6= {0}. Then take a nonzero

element y in V ∩Nsing, we can write

y =
n−1∑
i=0

λie
pi

0 + µu

for some λi, µ ∈ k with at least one λi 6= 0.

Case 1 . Suppose λ0 6= 0. We want to show this implies that yp
n−1

/∈ L(0). But

y ∈ Nsing by our assumption, this contradicts the definition of Nsing.

By Lemma 1.1.1 and the facts that ep
n

0 = e0 and up = u (see Remark 4.2.1(ii) and

Remark 4.2.2(iii)), we have that

yp
n−1

=

( n−1∑
i=0

λie
pi

0 + µu

)pn−1

=λp
n−1

0 ep
n−1

0 + λp
n−1

n−1 e
pn−2

0 + λp
n−1

n−2 e
pn−3

0 + · · ·+ λp
n−1

2 ep0 + λp
n−1

1 e0

+ µp
n−1

u+
n−2∑
r=0

up
r

r ,

(4.22)

where ur is a linear combination of commutators in u and ep
i

0 , 0 ≤ i ≤ n − 1. We

show that ur ∈ L for all 0 ≤ r ≤ n − 2. By Lemma 4.2.11, u ∈ L(0) ⊂ L. By Re-

mark 4.2.1(iii), for any 0 ≤ i ≤ n−1, we may assume that ep
i

0 = ∂p
i

+
∑i−1

j=0 αi,j ∂
pj +zi
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for some αi,j ∈ k and 0 6= zi ∈ L(0). So e0 ∈ L is such that e0 /∈ L(0) and for

1 ≤ i ≤ n − 1, ep
i

0 ∈ Lp is such that ep
i

0 /∈ L. Since L is an ideal in Lp and the ∂p
i

,

0 ≤ i ≤ n − 1, commute amongst each other, it follows immediately that ur ∈ L for

all 0 ≤ r ≤ n− 2.

Next we show that
∑n−2

r=0 u
pr

r ∈ k ∂p
n−2

+k ∂p
n−3

+ · · ·+k ∂p +L. By Theorem 1.4.2,

L = span{x(γ) ∂ | 0 ≤ γ ≤ pn − 1} is a subalgebra of the restricted Lie algebra

DerO(1;n). By Definition 1.1.3(ii), Lp
r

:= {Dpr | D ∈ L}. Since ur ∈ L for all

0 ≤ r ≤ n− 2, we have that up
r

r ∈ Lp
r
. Hence

∑n−2
r=0 u

pr

r ∈
∑n−2

r=0 L
pr . By Lemma 1.1.3

and the fact that L(0) ⊂ L is a restricted subalgebra of DerO(1;n), we get

n−2∑
r=0

Lp
r

= k ∂p
n−2

+k ∂p
n−3

+ · · ·+ k ∂p +L.

Hence
∑n−2

r=0 u
pr

r ∈ k ∂p
n−2

+k ∂p
n−3

+ · · ·+ k ∂p +L as desired.

Now look at µp
n−1
u in (4.22). Since u ∈ L(0), it follows from the above that we can

write

µp
n−1

u+
n−2∑
r=0

up
r

r =
n−2∑
i=0

λ′i ∂
pi +z

for some λ′i ∈ k and z ∈ L(0). Substituting this and ep
i

0 = ∂p
i

+
∑i−1

j=0 αi,j ∂
pj +zi

(0 ≤ i ≤ n− 1) into (4.22), we get

yp
n−1

= λp
n−1

0 ∂p
n−1

+
n−2∑
i=0

λ′′i ∂
pi +z̃ (4.23)

for some λ′′i ∈ k and z̃ ∈ L(0). Since λ0 6= 0, this shows that yp
n−1

/∈ L(0). But

y ∈ Nsing =
{
D ∈ N |Dpn−1 ∈ L(0)

}
, this contradicts the definition of Nsing.

Case 2 . Suppose now λ0 = 0 and let 1 ≤ s ≤ n− 1 be the largest index such that

λs 6= 0. Then

y =
s∑
i=1

λie
pi

0 + µu.

We want to show this implies that yp
2n−s−1 6= 0. But y ∈ Nsing, in particular, y is

nilpotent with yp
n

= 0. As 2n− s− 1 ≥ n, this contradicts that y is nilpotent.

By Lemma 1.1.1 and the facts that ep
n

0 = e0 and up = u (see Remark 4.2.1(ii) and

Remark 4.2.2(iii)), we have that

yp
n−s

= λp
n−s

s e0 + λp
n−s

s−1 e
pn−1

0 + λp
n−s

s−2 e
pn−2

0 + · · ·+ λp
n−s

1 ep
n−s+1

0 + µp
n−s

u+
n−s−1∑
l=0

vp
l

l ,
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where vl is a linear combination of commutators in u and ep
i

0 , 1 ≤ i ≤ s. By Jacobi

identity, we can rearrange each vl so that vl is in the span of [wt, [wt−1, [. . . , [w1, u] . . . ],

where t = pn−s−l − 1 and each wν , 1 ≤ ν ≤ t, is equal to u or to some ep
i

0 , 1 ≤ i ≤ s.

Arguing similarly as in case 1, one can show that [wt, [wt−1, [. . . , [w1, u] . . . ] ∈ L.

More precisely, we show that [wt, [wt−1, [. . . , [w1, u] . . . ] ∈ L(0). Since σ(u) = u and

σ(ep
i

0 ) = ξ−p
i
ep

i

0 for 1 ≤ i ≤ s (see Remark 4.2.1(i) and Remark 4.2.2(iii)), the σ-

eigenvalue of each such iterated commutator is ξ−a, where

1 < p ≤ a ≤ tps = pn−l − ps ≤ pn − p < pn − 2.

So this eigenvalue is not equal to ξ−1. Then [wt, [wt−1, [. . . , [w1, u] . . . ] ∈ L(0)\L(pn−2) ⊂

L(0); see Remark 4.2.2. Hence vl ∈ L(0). Since L(0) is restricted, we have that vp
l

l ∈ L(0)

and so
∑n−s−1

l=0 vp
l

l ∈ L(0). Therefore,

yp
n−s

= λp
n−s

s e0 + γn−1e
pn−1

0 + γn−2e
pn−2

0 + · · ·+ γn−s+1e
pn−s+1

0 + f1

for some γi ∈ k, λs 6= 0 and f1 ∈ L(0). Note that yp
n−s

has a similar expression to y in

case 1. By Lemma 1.1.1 and a similar argument as in case 1, one can show that

(yp
n−s

)p
n−1

= yp
2n−s−1

= λp
2n−s−1

s ∂p
n−1

+
n−2∑
i=0

γ′i ∂
pi +f̃

for some γ′i ∈ k and f̃ ∈ L(0); see (4.23). Since λs 6= 0, this shows that yp
2n−s−1 6= 0.

But y ∈ Nsing, in particular, y is nilpotent and yp
n

= 0 by (4.6). Since 2n− s− 1 ≥ n,

the above contradicts that y is nilpotent. Therefore, we proved by contradiction that

V ∩ Nsing = {0}. Then the result follows from Theorem 1.6.8. This completes the

proof.

Theorem 4.2.1. The variety N coincides with the Zariski closure of

Nreg = G.(∂+k ∂p + · · ·+ k ∂p
n−1

)

and hence is irreducible.

Proof. By Theorem 1.5.1, we know that the varietyN is equidimensional of dimension

pn − 1. The ideal defining N is homogeneous, hence any irreducible component of N

contains 0. It follows from Lemma 4.2.7 that the Zariski closure ofNreg is an irreducible

component of N . Let Z1, . . . , Zt be pairwise distinct irreducible components of N , and
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set Z1 = Nreg. Suppose t ≥ 2. Then Z2\Z1 is contained inNsing, which is Zariski closed

in N with dimNsing < dimN by Proposition 4.2.2. Since Z2 \ Z1 = Z2 \ (Z1 ∩ Z2),

this set is Zariski dense in Z2. Then its closure Z2 is also contained in Nsing, i.e.

dimZ2 = dimN ≤ dimNsing. This is a contradiction. Hence t = 1 and the variety N

is irreducible. This completes the proof.
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