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Abstract

Development of a Discrete Fluid-Structure
Interaction Method for Cardiovascular Applications

Benjamin Joseph Owen
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2019

The interaction between blood and cardiovascular tissue is known to play a signif-

icant role in the development cardiovascular diseases and associated conditions.

With the ever increasing availability and performance of computational resources,

in conjunction with improved understanding of the disease mechanisms, the in-

tegration of numerical analysis into in silico tools has become more prevalent.

Once viewed as emerging technology, these tools are now being routinely utilised

in clinical practice.

However, the majority of these tools consider the fluid or structure in isola-

tion. This is due to the added complexity of coupling the methods and the

computational cost incurred through modelling fluid-structure interaction using

traditional continuum methods. As a result, discretisations of the structure used

in fluid-structure interaction (FSI) methods tend to be simpler representations

and offer limited potential to model complex non-linear material properties and

discrete effects such as rupture.

The purpose of this work is to develop an efficient fluid-structure interaction

method capable of modelling complex phenomena. The inherent parallel per-

formance of discrete numerical methods is explored, with a long-term view to

developing the method for use in clinical tools; where speed, robustness and

adaptability are paramount. In the present work, the fluid is represented via the

lattice Boltzmann method and the structure via the vector-based discrete ele-
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ment method, known as the V-model. These solvers are strongly coupled using

a version of the immersed boundary method based on direct forcing in a block

Gauss-Seidel scheme, where the time step size of the fluid and structure are to

be kept independent.

Validation results for the V-model show good agreement with analytical and nu-

merical solutions for static and dynamic cantilever beam cases with constant

and time-varying external loads. This demonstrates the V-model’s ability to

accurately capture the mechanical response of a material before extending the

method to model more complex physics. GPU implementation of the V-model

demonstrated speed-ups of x50 relative to an optimised serial CPU implementa-

tion. The FSI method demonstrated good agreement with numerical benchmark

data while stochastic modelling of the structure material properties demonstrated

the V-model’s potential to model variation in cardiovascular tissue that occurs

naturally and due to disease.

The major original contributions of this work include the implementation and

elucidation of a recently developed structure model; which is used here for the first

time with a lattice Boltzmann scheme. The work also provides first steps towards

the use of stochastic modelling using the V-model, the first GPU implementation

of the V-model, and development of the first strongly coupled fluid-structure

interaction method to include the V-model.
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Chapter 1

Introduction

1.1 Background & Motivation

In recent years there has been increased interest in the inclusion of numerical

analysis within clinical pipelines for the diagnosis and treatment of cardiovascu-

lar diseases such as coronary artery disease [10], congenital heart diseases [5, 11]

and aneurysms [12]. When coupled with medical imaging, the use of numerical

methods has the potential to offer greater insight into patient-specific conditions

than traditional clinical practice alone. This enables more informed risk assess-

ment, providing clinicians with greater information upon which to base their

treatment decisions. Figure 1.1 shows an example pipeline integrating medical

imaging with patient-specific computational modelling. The first examples of the

use of computational fluid dynamics (CFD) in mainstream clinical medicine are

already here, such as the virtual Fractional Flow Reserve analysis for coronary

artery disease [10].

Numerical methods have also been successfully deployed to model cardiovascu-

lar structures such as aneurysms where rupture risk assessments can be con-

ducted [12]. Again, patient-specific geometries can be included within the analysis

using medical imaging. Many of these methods employ idealised tissue material

models [13] to predict the mechanical response of the tissue to given loading con-

ditions, with the tissue modelled as a continuum. However, recent work on the

development of virtual histology techniques offers a promising route to including

patient-specific material properties in numerical models in the future [14].
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Fluid-structure interaction modelling involves the coupling of numerical methods

for fluids and structures. Strong, or full two-way coupling may not be always nec-

essary in cases where the structure deformation is small or the difference in time

scales between the fluid and structure is large. However, for many cardiovascular

diseases fluid-structure interaction (FSI) plays a key role in the pathogenesis or

effects resulting from the disease due the high deformation levels and the cyclic

nature of the system. It would therefore seem important that this interaction

be modelled in any attempt to develop a digital analogue of the human body.

However, the computational expense of modelling this interaction is not trivial

and has traditionally limited its implementation to simpler representations of the

fluid and structure [15] than in a standalone fluid or structure solver [16]. To

date, the use of FSI has been limited by prohibitively long computational times,

particularly in a clinical framework, where clinicians demand that results are re-

quired within a few hours. While this is most clearly evidenced in the heart itself,

there have been a number of studies which propose that strong fluid-structure

interaction is not essential to the reproduction of clinically observable haemody-

namics in the major vessels of the cardiovascular system [17]. However, in many

cases this assertion is difficult to fully accept on the basis of current medical

imaging technology, where resolution in space and time remains relatively low. It

is also generally the case that this conclusion is made on the basis of quite basic

material and structure models; where linear behaviour and homogeneous prop-

erties are often assumed. It is quite likely that the prominence of fluid-structure

coupling in some processes will rise in the coming years, as more detailed mate-

rial properties are discerned and the availability of advanced FSI algorithms is

more widespread. In addition, many cardiovascular diseases are strongly linked

to local changes in the cardiovascular structure, including the development of de-

fects such as rupture, or remodelling of tissue such as aneurysm growth. In these

cases, an approach which is able to model the associated change in geometry of

the structure seems essential.

Discrete methods, unlike traditional continuum methods, are well suited to mod-

elling local changes within structures since particle connections can be easily

created and broken according to the conditions experienced during a simulation

with little addition treatment required. Examples of bond breaking and bond

creating on-the-fly using the vector-based discrete element method are shown

in Figure 1.2, demonstrating the capability of discrete methods. Furthermore,

discrete methods can easily handle complex geometries. However, in general, dis-

crete methods require far greater resolution than traditionally utilised methods
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Figure 1.1: Example pipeline of numerical analysis in cardiovascular applications.
Adapted from Owen et al. [1].

such as the finite element method, to be able to represent the characteristics

of a structure or fluid accurately. As a result, discrete methods require signifi-

cant and sometimes prohibitive additional computational resources. The use of

high-performance computing clusters and parallelisation techniques has been ex-

ploited to reduce computational times of discrete methods, however traditional

methods can also exploit these benefits to reduce their own computational times.

As a consequence, discrete methods have traditionally been restricted to use at

smaller length scales in cardiovascular applications as shown in Figure 1.3.

The use of graphics processing unit (GPU) architecture in scientific computing

has opened an interesting avenue of research for numerical analysis of cardiovas-

cular diseases. GPUs are an example of throughput-orientated architecture [18].

This type of architecture prioritises maximum throughput by parallelising large

amounts of data across a greater number of processors. The clock speed of a GPU

processor is far slower than that of a CPU processor, however due to a signifi-

cantly larger number of processors, the overall throughput of data can be orders

of magnitude greater. Discrete methods are well suited to GPU architecture since

their governing equations, in general, require explicit and local operations. The

computational speed-up of numerical solution of discrete element methods has al-

ready been demonstrated to be up to two orders of magnitude faster than previous

best CPU implementations [19, 20]. Furthermore simulations can be conducted

using portable and affordable hardware rather than relying on connection to large

high performance computing clusters, perhaps improving the availability of such

analysis [21].

A key motivation for the use of discrete methods involves the material properties
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of cardiovascular structures. The mechanical response of the tissue is difficult to

accurately predict since mechanical testing of the tissue in vivo is not possible.

Continuum based models have been developed through in vitro mechanical testing

on a number of samples of a given tissue, incorporating the hyperelastic and

viscoelastic characteristics observed [13, 16]. However, precise properties will be

patient-specific and will change over time; for instance the tissue is well known

to change in smokers, and in particular where tissue has died. Furthermore, the

variation of mechanical response between samples is relatively large, with recent

studies suggesting that details of the microstructure should be included in future

developments [22]. An alternative way to overcome these challenges is to directly

model variation of material properties using discrete methods, as suggested by

Brocklehurst et al. [23]. The effect of the natural or diseased variation in material

properties can then be explored using stochastic techniques.

In view of this, a strong motivation for this work is to develop an efficient method

Time

Figure 1.2: Structure remodelling examples using the vector-based discrete ele-
ment method. Bonds are broken in a cantilever beam once a specified failure
criterion is met (top). Bonds are created when particles contact, with the new
flexible structure forming (bottom).
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Figure 1.3: Overview of cardiovascular applications modelled using numerical
analysis. The length scale of each application and the type of numerical method
implemented at each scale is considered. Adapted from Owen et al. [2].

capable of facilitating improved representations of cardiovascular structures, in-

clusion of patient-specific geometries and the modelling of the complex mechanical

dynamics that occur in the cardiovascular system. These include phenomena such

as the formation, growth and rupture of aneurysms and atherosclerotic plaques.

In order to maintain reasonable computational times, GPU implementation of

the methods will be evaluated.

1.2 Project Objectives

The overall goal of this thesis is to develop a fluid-structure interaction method

capable of efficient simulation of complex geometries and structural phenomena

with a view to long-term inclusion in diagnostic pipelines for cardiovascular dis-

eases. In order to achieve this goal, a number of objectives must be met, as will

be discussed in this section.

The first objective is to assess existing numerical methods utilised in modelling

cardiovascular applications and to identify opportunities to improve current mod-

elling techniques. A number of studies have been conducted using a variety of
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general purpose, commercial numerical solvers, considering both the fluid and

structure in isolation. The majority of these studies have employed continuum-

based methods, in particular the finite volume and finite element methods. An

application-based study is performed, to gain first hand experience of such solvers,

with the added benefit of collaboration with a team of clinicians so as to gain

insight into their needs and requirements for such a tool.

The second objective is to couple fluid and structure solvers that have the ability

to address shortcomings of numerical analysis traditionally employed for car-

diovascular applications. The use of a partitioned coupling approach will allow

different fluid and structure solvers to be selected based upon their ability to fulfil

the identified modelling requirements. While using a partitioned approach allows

flexibility in the solvers integrated into the FSI method, additional treatment is

required to ensure the conservation of energy at the boundary. This is particu-

larly important in cardiovascular applications since the densities of the fluid and

structure are well within an order magnitude and the effect of the structure on

the fluid is large. Without the additional treatment of a strong coupling scheme,

which can result in additional computational cost, simulations will become inac-

curate and unstable.

The third objective is based upon improving the capability and practicality of

the method specifically for use in a clinical framework. As highlighted previ-

ously, discrete numerical methods can become computationally expensive when

deployed at scale. It is therefore necessary to employ parallelisation procedures

to reduce the computational time of the simulation. It is already well known that

the LBM exhibits strong scaling performance, particularly when implemented on

GPU architecture. The suitability of the FSI method will be explored through

the implementation of the solvers on the GPU architecture and assessment of

the relative speed-up in comparison to CPU architecture. The use of stochastic

modelling of the structure material properties will also be explored, with a view

to develop statistical material models for cardiovascular tissues.

1.3 Research Outputs

This work led to a series of research outputs, in the form of journal publications.

Significant contributions to the following list of papers have been made during
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this PhD program:

1. B. Owen, C. Lowe, N. Ashton, P. Mandal, S. Rogers, W. Wein, C.

McCollum and A. Revell. Computational hemodynamics of ab-

dominal aortic aneurysms: Three-dimensional ultrasound versus

computed tomography. P. I. Mech. Eng. H, 230(3), 2016 [1]

This work assesses the feasibility of using 3D ultrasound generated patient-

specific geometries in numerical analysis of abdominal aortic aneurysm us-

ing a commercial solver based on the finite volume method. This study

served as a pathway into the cardiovascular modelling field, and is a poten-

tial application for the fluid-structure interaction method.

The following contributions were made to the paper by each author: B.

Owen conducted the simulations and lead drafting of the paper. C. Lowe

segmented the geometries and provided clinical insight during analysis as

well as drafting of the paper. N. Ashton assisted with simulation set up and

analysis. P. Mandal provided guidance in simulation analysis. S. Rogers

performed the scans while W. Wein created the segmentation software. C.

McCollum provided clinical insight and was responsible for devising the

project along with A. Revell, who provided extensive guidance in simulation

set up, analysis and drafting of the paper.

2. B. Owen, N. Bojdo, A. Jivkov, B. Keavney and A. Revell. Struc-

tural modelling of the cardiovascular system. Biomech. Model.

Mechan., 17(5), 2018 [2]

This review was a product of the initial literature review conducted in the

early stages of the present work. The review discusses the current state-of-

the-art in structural modelling of the cardiovascular system, providing de-

tails on the numerical methods and material models employed across a range

of temporal and spatial scales. Scientific advancements gained through the

use of numerical modelling in a variety of applications are also discussed

in detail, while a timeline of some of the most significant advancements is

included, highlighting the general trends in field.

The following contributions were made to the paper by each author: B.

Owen conducted the initial literature review and lead drafting of the pa-
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per. N. Bojdo provided guidance on the paper structure and content. A.

Jivkov provided technical guidance in reformulating material models and

governing equations as well as drafting of the paper. B. Keavney gave clin-

ical insight into each application discussed within the paper and identified

areas which are currently under-researched. A. Revell was heavily involved

in the drafting of the paper including content and structure.

3. B. Owen, A. Nasar, A. Harwood, S. Hewitt, N. Bojdo, B. Keavney,

B. Rogers and A. Revell. Vector-based discrete element method

for solid elastic materials. In Review

This work serves as an introduction to the vector-based discrete element

method for elastic bodies, providing details of the methodology and algo-

rithmic implementation. Quasi-static and dynamic validation cases are pre-

sented in comparison to analytical data and numerical benchmarks, while

details of the V-model implementation on GPU architecture with assess-

ment of associated computational speed-up are provided.

The following contributions were made to the paper by each author: B.

Owen performed simulations, implemented the code on both CPU and GPU

and lead drafting of the paper. A Nasar provided simulation guidance as

well as paper content. A. Harwood assisted with GPU implementation while

N. Bojdo guided paper content. B. Keavney helped draft the paper. A.

Revell was heavily involved in all aspects of the paper, particularly guiding

paper content.

4. B. Owen, J. O’Connor, A. Harwood, N. Bojdo, B. Keavney, and

A. Revell. A discrete fluid-structure interaction approach for

highly deformable elastic bodies. In Preparation

This work introduces a novel, strongly coupled fluid-structure interaction

method consisting of the lattice Boltzmann method as the fluid solver,

vector-based discrete element method as the structural solver, coupled using

the immersed boundary method in an iterative block Gauss-Seidel scheme.

Details of the underlying methodology of each method are provided while

the coupling procedure is also discussed. Validation cases for the fluid

and structure solvers in isolation are provided before comparison with the

numerical benchmarking case proposed by Turek and Hron [7] for fluid-
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structure interaction with large deformation.

The following contributions were made to the paper by each author: B.

Owen adapted the fluid-structure interaction scheme developed by J. O’Connor,

to include the V-model and was the lead for paper drafting. J. O’Connor

performed the fluid solver validation while A. Harwood assisted with code

implementation. N. Bojdo and B. Keavney provided guidance with paper

content and structure. A. Revell assisted in the development of the method

and paper drafting.

5. K. McGurk, B. Owen, W. Watson, O. Ryder, B. Keavney and A.

Revell, Heritability and family-based GWAS analyses of turbulent

blood flow and roughness of the thoracic ascending aorta: Novel

measures of cardiovascular health In Preparation

This work investigates the link between two well-known risk factors in car-

diovascular disease; genetic mutations and turbulent blood flow. The her-

itability of turbulent flow in the ascending aorta is calculated from fluidic

metrics obtained by Cardiac Magnetic Resonance (CMR) imaging in a co-

hort of 341 patients from 108 British Caucasian families ascertained for

hypertension, with DNA data available. Positive correlations were found

between the heritability and a number of fluid metrics including Remax and

wall friction estimates. Genome-wide association studies (GWAS) were un-

dertaken to identify the DNA mutations influencing the turbulence metrics

and genes were identified that are involved in barrier function and vascular

smooth muscle development, including actin structural protein. These find-

ings suggest turbulence analysis should be undertaken in future studies of

Alzheimers disease, smoking, cardiac death, and diabetes due to the links

with DNA changes of these diseases.

The following contributions were made to the paper by each author: K.

McGurk performed the GWAS analysis and lead paper drafting. B. Owen

calculated fluid metrics and assisted with paper drafting. W. Watson and

O. Ryder analysed scan results to obtain patient-specific measurements. B.

Keavney collected the cohort and provided guidance in genetic analysis and

paper content. A. Revell assisted with fluid metric calculation, analysis and

paper content.
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1.4 Thesis Structure

The research presented in this thesis has lead to a number of journal publications

as detailed in the previous section. As a result this thesis is in journal format

as permitted by the University of Manchester. The main body of the thesis

will detail the methods used throughout this work and the contributions of each

journal publication to the field. The journal publications are appended to the

thesis. In order to maintain the focus of the thesis, Paper 5 is not included

since it is not directly related to the development of numerical analysis tools for

cardiovascular applications. A description of each chapter is given below:

Chapter 1 introduces the background, motivation and aims of the research pre-

sented.

Chapter 2 provides a review of numerical methods used to model various of

applications in the cardiovascular system.

Chapter 3 describes the fluid solver integrated into the fluid-structure interac-

tion method.

Chapter 4 describes the structural solver integrated into the fluid-structure in-

teraction method.

Chapter 5 describes the coupling method integrated into the fluid-structure in-

teraction method and the implicit coupling scheme used to transfer quan-

tities between the fluid and structural solvers.

Chapter 6 discusses the modelling developments made to the structural solver

and fluid-structure interaction method while validation of each component,

and the fully coupled fluid-structure interaction method are presented.

Chapter 7 provides a concise discussion of the contributions to the field of the

research presented.

Chapter 8 concludes by summarising the main findings and provides sugges-

tions for future research. Also included are details of the current develop-

ment stage of the fluid-structure interaction method towards use in cardio-

vascular applications, including current issues and limitations.
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Appendices contain Papers 1-4, with brief summaries of each provided in Sec-

tion 1.3
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Chapter 2

In Silico Modelling of the

Cardiovascular System

This chapter reviews the current state-of-the-art-of in silico modelling for the

cardiovascular system. A published review article, “Structural modelling of the

cardiovascular system” [2], focusing on relevant structural modelling, appears in

Appendix B as one of the papers resulting from this thesis; where the full range of

material models utilised for cardiovascular modelling are surveyed across a num-

ber of temporal and spatial scales. The paper focusses on structural modelling

alone, and is not repeated here. In the following chapter a review is provided to

focus on the use of CFD methods applied to cardiovascular modelling, for both

rigid wall analysis and fluid-structure interaction methods.

2.1 Overview of In Silico Modelling

The vast body of research in the field of in silico modelling of the cardiovascular

system can be broadly classified into four main areas as shown in Figure 2.1. This

work has already had significant impact, covering many aspects of the cardiovas-

cular system, from medical devices to modelling of vessels and the red blood cells

that flow though them. Figure 2.2 provides a visual summary of some of the

areas to receive a lot attention from the numerical modelling community. While

these areas can be classified as standalone areas, in practice, scientific advance-

ments in each of these areas has lead to significant advancement in others and

therefore are intrinsically linked and numerical models may develop across more
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Figure 2.1: Main areas of research and applications of in silico modelling of the
cardiovascular system

than a single area. The use of fluid-structure interaction methods was initially

intended predominantly for high fidelity modelling of small-scale bio-fluid studies,

with the aim of understanding the mechanisms behind a disease [24]. However,

the increased understanding and user expertise developed via these studies, in

conjunction with the increase in computational power available to engineers, has

enabled FSI methods to be increasingly applied to patient-specific assessment

procedures [25].

Cardiovascular disease research generally requires the highest modelling fidelity,

and focuses on the pathogenesis of a disease in order to aid in the development of

effective treatments and/or preventative measures. In addition, numerical mod-

elling has also been used extensively in the design and development of medical

devices such as left ventricular assist devices (LVADs) [26], prosthetic valves [27]

and stents [28]. In recent times, the use of numerical modelling in conjunction

with patient-specific geometries, obtained using imaging modalities such as Mag-

netic Resonance Imaging (MRI), Computed Tomography (CT) and Ultrasound

(US), has provided surgeons with additional information prior to surgery. As a

result, surgeons are better able to plan surgeries; predicting complications that

may arise and adapting their plans accordingly. The ability to include patient-

specific geometries within numerical analysis has also increased the feasibility of

using numerical analysis as part of non-invasive diagnostic techniques. Arguably

the most advanced of these techniques is HeartFlow [10] which is able to deter-

mine the level of narrowing within the coronary arteries and subsequent branching

vessels and the affect on blood supply to the heart via virtual Fractional Flow
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bicuspid aortic valve (e).  
Bicuspid valve is known to affect flow 
characteristics in the ascending aorta 
and cause remodelling of the artery wall.

Total Cavopulmonary Connection (g). 
Patient only has single ventricle function (left ventricle).  Vena 
Cava are  routed to bypass the right ventricle, directly to the 
pulmonary arteries.  

(a)

(e)

(g)

(l)

Development of atherosclerosis (l)
Atherosclerotic plaque forms in the intima layer of artery 
wall.  As the plaque grows, the artery wall degrades 
until the plaque ruptures which can cause blood clots to 
form. Large plaques also cause stenosis which can 
restrict blood circulation in the body.

Healthy Formation Growth Rupture

Aortic Coarctation (f).
Patient has a narrowing  of the 
aorta which causes blood 
pressure to rise in order for 
enough blood to pass through 
the narrowing.  As a result, the 
left ventricle must work much 
harder.  

(f)

Red Blood Cells
(m)

(n)

(o)

Healthy & diseased red blood cells.  
Healthy RBC of biconcave disk shape 
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causing blockages in small vessels.
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Abdominal Aortic Aneurysm (i)
Aneurysm growth close to the bifurcation of 
the iliac arteries, often with associated 
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grey) and descending  aortic aneurysms (light 
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Virtual Fractional Flow Reserve (vFFR) (h)
In silico modelling of pressure difference across a 
section of coronary artery when a stenosis has 
occurred to evaluate any resulting deprevation of 
oxygen to the heart muscle.

Electro-mechanical devices (c) that replace or 
assist the function of the left ventricle in order to 
pump blood around the circulatory system.
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optimise blood flow characteristics in the 
artery. Often used as treatment for aneurysms 
and stenosed arteries.
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Figure 2.2: Overview of some of the major cardiovascular applications of numer-
ical analysis and in silico modelling. Adapted and extended from Owen et al. [2]
to include additional computational fluid dynamic applications.

Reserve (vFFR) analysis.

The development of the fluid-structure interaction method within this work is fo-

cused towards long-term inclusion within clinical diagnosis toolchains and there-

fore the applications discussed in Section 2.3 will focus on literature in the Non-

Invasive Diagnostics and Surgical Planning applications. However, where appro-

priate, significant studies from other applications of cardiovascular research will

also be discussed.
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2.2 Modelling Approach

2.2.1 Discretisation of Blood

Blood consists of a number of particulates, including red blood cells (RBCs),

white blood cells (WBCs) and platelets, suspended in plasma. For a healthy

adult, a normal RBC count (cells per mm3 of blood) is around 4-5 million. The

spatial scale of the cardiovascular application therefore has a significant effect

on the modelling approach taken and the discretisation methods employed to

represent blood. An overview of the type of numerical methods employed at each

spatial scale is shown in Figure 2.3, also demonstrating the hierarchy of explicitly

modelled characteristics of RBCs which are then used to develop models to be

utilised at larger spatial scales.

At small spatial scales such as flow through capillaries, the deformation of RBCs

Figure 2.3: Numerical methods traditionally implemented at different spatial
scales of the cardiovascular system with each discrete representation of red blood
cells and blood. Arrows indicate the passing of a physical quantity directly mod-
elled at a smaller scale, to a larger scale via a coarse-grained model or constitutive
relationship. Reprinted from Imai et al. [3] Copyright (2015), with permission
from Elsevier.
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has a significant effect on the flow characteristics producing the shear thinning

effect that gives blood its non-Newtonian properties. As a result, in order to

accurately represent blood at this scale, the deformation of RBCs must be con-

sidered either indirectly using a non-Newtonian viscosity model or directly using

a structural solver to model deformation due to the flow with plasma modelled by

a fluid solver. It is worth noting that plasma itself is generally modelled as a New-

tonian fluid [29], although recent experimental tests have indicated a viscoelastic

nature [30]. In order to model the effects of diseased RBCs such as malaria and

sickle cell disease, the deformation of the RBC must be directly considered via

the implementation of fluid-structure interaction methods [31–33]

At large spatial scales, e.g. O(10−3m), blood can be considered as a continuum.

This approximation is appropriate since the shear thinning effect of red blood cells

can be represented via a non-Newtonian fluid model of which a number have been

developed [34] or as is often implemented, a larger approximation as a Newtonian

fluid [17]. As a result, fluid-structure interaction between the red blood cells (and

other particulates) and the plasma is not considered explicitly and the blood is

represented via a fluid solver only. It is worth noting that the computational cost

of representing discrete, deformable RBCs at large spatial scales is prohibitively

large, even using coarse-grained RBC approximations [35].

At even larger spatial scales, e.g. flow through the entire microcirculatory system,

0D and 1D models can be implemented [36,37]. The flow of blood is represented

via a series of resistances, capacitances and inductances in 0D models and via a

reduced constitutive relationship between pressure in the vessel and area in con-

junction with simplified velocity profiles in 1D models. As a result, these models

can provide a computationally inexpensive alternative to 3D fluid-structure in-

teraction models if localised conditions are not of interest.

While these models are able to model extensive networks of vessels, simplified ver-

sions can also provide boundary conditions for CFD models. The most common

of these is the 3-element Windkessel model which provides a boundary condition

representing artery compliance and resistance to blood flow. Although coupling

the FSI method developed within this work to 0D and 1D models could provide

interesting avenues for future research, they are beyond the current scope of the

project and therefore excluded from this review. Furthermore, the constitutive

relationships governing the deformation of RBCs are discussed within the review

article appended to this thesis and therefore are not included here to avoid repe-
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tition. The numerical methods used to model the blood (or components of blood)

as a fluid as well as numerical methods incorporated into fluid-structure methods

to model blood, as discussed in the next section.

2.2.2 Numerical Models

The vast majority of numerical analysis of cardiovascular applications employ

continuum-based numerical methods such as the finite volume method (FVM) or

the finite element method (FEM) to model blood, either at a large spatial scale

where the entirety of blood and its components are modelled as a continuum or

at smaller scales where the particulates are directly modelled and the fluid solver

represents plasma. In many cases, commercial solvers such as ANSYS CFX [38]

and Fluent [39], Star CCM+ [1, 40], and LS-DYNA [41], or general open-source

solvers such as OpenFOAM [42] have been utilised for a variety of cardiovas-

cular applications. However, with the increasing interest in numerical analysis

of cardiovascular flows, a number of solvers have been developed specifically for

cardiovascular flows at large spatial scales.

One such solver is the open-source FEM solver, SimVascular [4] which features

a complete pipeline for patient-specific cardiovascular investigations, including

patient-specific imaging segmentation and geometry preparation procedures as

shown in Figure 2.4. It is also capable of modelling fluid-structure interaction

for large vessels [43]. Another solver developed specifically for cardiovascular flow

modelling is HemeLB [44] which also includes a complete pipeline for cardiovascu-

lar investigations but utilises the lattice Boltzmann method, a mesoscopic method

that is incorporated within the FSI method developed within this work and will

be discussed in Chapter 3. This solver takes advantage of the high parallelisation

performance of the LBM in order to model vessels such as the intracranial arteries

via rigid-wall analysis [45].

When fluid-structure interaction methods are implemented at larger spatial scales,

mesh fitted methods are generally utilised either in a monolithic approach, using

FEM for both the fluid and structure [46, 47], or a partitioned approach where

the fluid is solved via FVM and the structure via FEM [48]. While these meth-

ods have yielded significant insight into cardiovascular diseases, the structural

model employed is generally of reduced complexity than in stand alone struc-

tural solvers. One such example is for artery walls where FSI methods have used
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Figure 2.4: Example pipeline for numerical analysis of patient-specific images.
Reprinted from Updegrove et al. [4] Copyright (2016), with permission from the
Biomedical Engineering Society.

linearly elastic representations [43], despite experimental studies demonstrating

viscoelastic properties [49] and the influence of the microstructure [22] which

have been used to develop state-of-the-art material models [50]. This is due to

the high computational expense of the FSI method and in particular, the mesh

fitted schemes employed.

At smaller spatial scales, where fluid-structure interaction is required to effectively

account for the deformation of RBCs, a larger variety of numerical methods have

been implemented. This is mainly due to the coupling schemes employed at this

scale since the moving-mesh methods employed at larger scales are not appli-

cable to cases where RBCs begin to aggregate. As a result, coupling methods

such as the immersed boundary method (IBM) must be employed, which allows

overlapping and independent meshes for the fluid and structure under considera-

tion. A significant advantage of the IBM is its ability to couple a variety of fluid

and structure solvers, allowing solver selection based upon the applicability to

a case. For simulations of RBCs a number of combinations have been used e.g.

LBM-FEM [32, 51], FVM and combined FEM-DEM [52], and LBM-SN (spring

network) [53].

A number of mesh-free methods have also been employed to represent the small

spatial scale flows, including smoothed particle hydrodynamics (SPH) [54], the

moving particle semi-implicit method (MPS) [55] and dissipative particle dynam-

ics (DPD) [56]. These methods directly impart forces onto a structure such as an

RBC in order to model fluid-structure interaction [3]. This approach, along with

the immersed boundary approach, results in diffusive boundaries which can lead

to loss of accuracy.
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2.2.3 Rigid and Flexible Wall Analysis

A key decision when deciding on a modelling approach for numerical analysis

of a cardiovascular applications is whether deformation should be considered.

For small spatial scales, as previously discussed, the decision is clear since the

deformation of each RBC has a large impact of the flow characteristics. However,

at larger spatial scales the deformation of arteries, while not insignificant, requires

careful assessment based on the application since the additional computational

cost of implementing an FSI method may not provide sufficient value. This has

been highlighted in the case of intracranial vessels [17] and in coronary arteries

[57]. Furthermore, the use of rigid-walled analysis can provide initial and/or

qualitative results that can supplement more complex flexible-walled analysis,

especially if relationships between the two can be identified. One such example

is the over-prediction of the magnitude of Wall Shear Stress (WSS) by rigid-

walled analysis of intracranial aneurysms but the qualitative similarity of the

WSS distribution field between rigid and flexible-walled predictions [58].

Overall however, with the ever increasing performance and availability of com-

putational resources, in conjunction with the increasing maturity of the field, the

general trend is moving towards greater inclusion of FSI in numerical analysis of

cardiovascular applications. The extent to which will be discussed in the next

section for a number of major applications.

2.3 Cardiovascular Applications

As stated in the introduction to this chapter, the focus of the chapter is to

supplement the review article published regarding the structural modelling of the

cardiovascular system that is appended to this thesis. As such, the focus here

will be restricted to fluid solvers in isolation and as part of FSI models.

2.3.1 Congenital Heart Diseases

The use of CFD in congenital heart diseases (CHDs) has a long history, and in

particular in the investigation of the Fontan procedure where the right side of the
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heart is bypassed and the superior and inferior vena cava are connected directly

to the pulmonary artery. Pioneering studies by de Leval and Dubini et al. [59,60]

demonstrated the superior performance of an offset connection due to reduced

energy loss through the avoidance of colliding flows. This demonstration of the

capability of CFD and numerical modelling has lead to further investigations in

the Fontan procedure and other congenital heart diseases, as will be detailed in

this section.

Figure 2.5: Development process of the Fontan Y-graft, from CFD simulations to
surgical implementation and post-surgery analysis. Reprinted from Marsden and
Feinstein [5] Copyright (2015), with permission from Wolters Kluwer Health.

Further numerical studies of the Fontan procedure led to the first simulation-

derived concept for congenital heart diseases, the Fontan Y-graft [61, 62], to be

used in surgery [63] as depicted in Figure 2.5. In addition, the use of mechanical

circulatory support such as the viscous impeller pump [64], as well as the effect

of left and right sides of the heart support has been investigated [65], both using

CFD.

Tetralogy of Fallot can present a number of complex geometry changes that lead

to suboptimal cardiac function. These include mitral valve regurgitation, septal
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defects and pulmonary stenosis, all of which can occur simultaneously. As a

result, it is not surprising that there have been fewer numerical studies of the

disease in comparison to the Fontan procedure, although a recent uptake has

begun to develop. A number of studies have focused on the repair of these

defects [66] and mitral valve regurgitation [67], including the use CFD analysis of

a predicted post-surgery patient-specific geometry [68]. Others have investigated

the type and locations of cardiac shunts placed as an intermediary treatment step

to ensure sufficient flow through the pulmonary system before further repairs can

be completed [69,70].

Coarctation of the aorta has also been modelled extensively using CFD, per-

haps due to the relatively simple geometry in comparison to other CHDs and

the availability of patient-specific geometry and flow measurements via MRI.

Furthermore, the nature of the disease with the narrowing of the aortic arch,

and resulting increase in blood turbulence, means a number of mature numer-

ical method developments such as turbulence models can be translated to this

application [71]. Moreover, FSI has also been used to investigate coarctation re-

pair procedures, showing the Gothic repair to produce more elevated WSS levels

than the Romanesque repair, and therefore recommending increased post-surgery

surveillance for complications for patients with a Gothic repair [72].

2.3.2 Coronary Artery Disease

Coronary artery disease (CAD), where blockages of the coronary arteries result in

myocardial infarction, is the most prevalent cardiovascular disease. The formation

of atherosclerotic plaques in the arteries, resulting in stenosis, is the major factor

its development. The application of numerical analysis to CAD is not trivial

due to the highly curved nature of the coronary arteries in conjunction with

the translation and deformation of the vessel associated with the cardiac cycle.

However, CFD has been successfully applied to CAD in one of two research

directions. The first is the investigation of the development of the provoking

atherosclerotic plaque, while the other focusses on the physiological significance

of the stenosis rather than modelling the plaque itself [73].

Investigation of atherosclerotic plaque development in the coronary artery has

focussed on the haemodynamic metrics that are known to prime the vessel wall

for plaque formation [74] since the exact formation mechanism is unknown. The
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effects of these metrics, such as WSS and its derivatives including Wall Shear

Stress Gradient (WSSG), have been assessed using CFD in conjunction with

patient-specific geometries derived from imaging modalities such as Computed

Tomography (CT) and Intravascular Ultrasound (IVUS). Such studies have iden-

tified significant relationships including a link between high WSS levels and high

levels of strain within plaque structures, suggesting high WSS can destabilise a

plaque and increase the risk of rupture [75].

Studies investigating the physiological significance of the stenosis have been able

to provide computational results for metrics which assess the functional signifi-

cance of the stenosis such as Fractional Flow Reserve (FFR) in good agreement

with invasive clinical procedures such as coronary angiography [10]. This has lead

to arguably the largest use of CFD and numerical analysis in clinical practice, in

the form of virtual FFR provided by HeartFlow which has received F.D.A. ap-

proval in the USA and is currently utilised by a number of healthcare providers

including the National Health Service in the UK.

2.3.3 Ventricular Assist Devices

Ventricular Assist Devices (VADs) can supplement or replace the pumping func-

tion of a ventricle. Fluid-structure interaction has been implemented to model

the deformation of the thin membrane that acts as a blood/air barrier for a

pneumatically driven pulsatile VAD [76]. However, in the vast majority of stud-

ies VADs can be assumed rigid for continuous flow pumps, and therefore CFD

only analysis is required to evaluate the performance of the device [26]. As a

result, the FSI method developed within this work is perhaps not suitable to this

application. However, like many cardiovascular applications, advancements in

modelling methods implemented for VADs can be applied to other applications

more suitable to the FSI method and therefore should be explored.

One such example, shown in Figure 2.6, is the investigation of pre-existing tur-

bulence models applied to blood flow inside a VAD [6], given that experimental

data for blood flow characteristics inside a VAD can be obtained more easily

than in vivo measurements of a ventricle. In addition, both demonstrate transi-

tionally turbulent blood flow properties, and therefore recommendations derived

from VAD models could be applied to in vivo ventricular applications such as

flow through the ascending aorta with or without explicit modelling of the aortic
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Figure 2.6: Assessment of pre-existing turbulence models in CFD analysis in
comparison to the laminar flow assumption and to experimental data. Reprinted
from Al-Azawy et al. [6] Copyright (2015), with permission from Taylor and
Francis.

valve where turbulence models have also been applied [77].

2.3.4 Aneurysms

Aneurysms are the dilation or bulging of a vessel due to weakening of the wall.

Symptoms are generally rare, however rupture of aneurysms can lead to fatal-

ities due to the extent of internal bleeding that occurs. Aneurysms can form

at a number of locations in the cardiovascular system, however those that are

most extensively studied are intracranial aneurysms (ICA) and abdominal aortic

aneurysms (AAA). A significant number of studies have investigated the struc-

tural characteristics of aneurysmal tissue, as discussed in Appendix B. Here, the

focus will be restricted to the modelling of blood flow through aneurysms and

progression to fluid-structure interaction methods.

Steinman et al. [78] investigated the flow characteristics through an intracranial

aneurysm geometry derived from medical imaging for the first time in 2003. Since

then, research in this field as grown significantly, and can be split into two dif-

ferent focuses. The first is identifying haemodynamic risk factors associated with

the formation, progression and rupture of aneurysms, while the second is deter-

mining the performance of medical devices employed to treat the disease. These
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medical devices include flow diverters, stents and coils. The focus here is limited

to identifying haemodynamic risk factors since this is a potential long-term appli-

cation of the FSI method developed in this body of work. However, the review by

Chung and Cebral [79] provides extensive discussion of scientific advancements

in regards to CFD and aneurysm medical devices.

Many risk factors associated with flow characteristics have been proposed, in-

cluding wall shear stress (WSS) [80, 81], oscillatory shear index (OSI) [82, 83],

pressure [80, 84] and flow structure complexity [85, 86]. However, a single metric

has not been demonstrated as a robust indicator of the likelihood of rupture.

Cebral and Meng [87] have linked the high number of reported risk factors with

the complexity of the disease and the unknown mechanisms of formation, growth

and rupture of aneurysms. Despite this, the preliminary results of International

Aneurysm CFD Challenge 2015 [88] demonstrated that experienced CFD En-

gineers were able to be predict aneurysm rupture with greater accuracy than

experienced clinicians where blind assessments were conducted on a series of

aneurysms where the outcome was known.

A number of studies have attempted to clarify the performance sensitivity of

CFD analysis to variations boundary conditions [89] and geometry variation [90],

demonstrating significant differences in risk factors such as WSS and OSI and

the need to obtain long segments of the parent artery. Studies such as these have

indicated the clear need for validation cases and CFD implementation guidelines

to ensure consistent results are output from any numerical analysis.

Numerical analysis of patient-specific aneurysms has also been extended to con-

sider wall motion, either through enforced motion of the wall [91] or through

coupling of fluid and structure solvers [92]. However, the benefits of the added

model complexity are not clear given that patient-specific wall properties such as

wall thickness, are not easily extracted from medical imaging while systematic

differences in risk factors have also been shown in the case of the overprediction

of WSS [91].

A further extension of numerical analysis is the development of Fluid-Solid-

Growth frameworks (FSG) [93, 94]. These frameworks use an FSI method to

predict short-term cyclic loads applied to the aneurysm and then remodel the

aneurysm geometry via user-defined criteria based on the short-term characteris-

tics predicted. The short-term FSI method is then applied to the new aneurysm
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geometry to predict the new conditions experienced by the aneurysm. While vali-

dation of these frameworks is difficult, they have the potential to greatly improve

understanding of aneurysm progression and rupture.

2.4 Conclusions

As a result of this review, in conjunction with the review article appended to this

thesis, key observations can be made with regards to in silico modelling of the

cardiovascular system:

1. In general, modelling of both the fluid and structure is required for appli-

cations where the cardiovascular structure is highly deformable.

2. Numerical models, and in particular structural models, incorporated into

fluid-structure interaction methods, have reduced complexity than models

that are used when only the fluid or structure is considered in isolation.

3. The use of discrete structural methods has been well explored at small

spatial scales, coupled with both continuum and discrete fluid methods.

4. At large spatial scales, the use of discrete structural methods has not been

extensively explored, mainly due to computational constraints.

5. New developments in soft tissue material models have begun to include

details of the microstructure into continuum models.

6. High computational speed is required in order to translate numerical anal-

ysis into clinical medicine.

Based on these observations, there is a clear need for the development of a fluid-

structure interaction method that is capable of modelling high levels of defor-

mation, in minimal computational time utilising high performance computing

(HPC) or otherwise. It is also clear that the accurate representation of the ma-

terial properties of cardiovascular tissue has the potential to vastly improve the

feasibility of including numerical analysis in clinical practice. Discrete methods

for fluid dynamics, in the form of the lattice Boltzmann method, have already
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demonstrated their applicability to cardiovascular flows as well as excellent scal-

ing performance. Discrete structural methods have been utilised at small spatial

scales however, their use at larger scales is yet to be fully realised, despite recent

studies demonstrating their capability.
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Chapter 3

Lattice Boltzmann Method

The fluid solver in the novel fluid-structure interaction method developed in this

work is based on the lattice Boltzmann method; an increasingly popular alterna-

tive to traditional Navier-Stokes based solvers such as the Finite Volume Method

(FVM). Within this chapter, the underlying theory, discretisation methods and

implementation approaches are detailed while the method selection rational is

discussed.

3.1 Overview of the Lattice Boltzmann Method

In fluid dynamic modelling, traditionally there have been two fundamental ap-

proaches, macroscale and microscale. The selection of either approach has been

highly dependent on the spatial and temporal scale of the fluid in question as

shown in Figure 3.1. Microscopic methods are more suited to small scales as they

directly model individual particles or molecules via Newton’s equations of motion

which results in prohibitively large computational costs using current computer

hardware for large scale problems. In contrast, macroscopic methods treat the

fluid as a continuum, assuming the ratio between the molecular mean free path

(the average distance travelled by a moving particle) and the characteristic length

scale, known as the Knudsen number, is much smaller than one.

Macroscopic methods employ the Navier-Stokes and continuity equations, usu-

ally solved numerically through an iterative system of matrices, to determine the

characteristics of the flow. Macroscopic methods are more computationally effi-
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Figure 3.1: Discretisation methods: representation of a fluid using microscopic,
mesoscopic and macroscopic methods

cient at large scales, in part due the reduced resolution required in comparison

to microscopic methods, however implementation of complex fluid phenomena

such as multiphase flows is non-trivial. Furthermore, the iterative and non-local

nature of the method means that while research is being done to utilise GPU

acceleration to reduce computational times, the method itself is not naturally

suited to such hardware.

Mesoscale methods, the classification of method to which the LBM belongs, at-

tempt to bridge the divide between the two traditional classifications, combining

the advantages of each. Underpinned by kinetic theory, the macroscopic proper-

ties of a fluid are described through the microscopic motion of it’s molecules via

a distribution function. As a result, individual molecules do not have to be con-

sidered directly, significantly reducing the computational requirement to model

a fluid in a given space. Furthermore, the local nature of the method and the

discretised volume in the form of a uniform lattice (discussed further within this

chapter) greatly eases parallelisation resulting in vastly reduced computational

times with little additional treatment in comparison to Navier-Stokes based meth-

ods. In addition, the LBM’s use of explicit time integration schemes means they

are well suited to GPU acceleration since the fluid properties calculated in the

current time step are only dependent on values from previous time steps. As a
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result, the update of a given variable can be completed independent of variables

being updated on other parallel processors. While explicit Navier-Stokes based

methods exist, the majority are implicit.

3.2 Discretisation

3.2.1 Boltzmann Equation

As previously stated, the LBM is based upon kinetic theory which in turn utilises

the Boltzmann equation:

∂f

∂t
+ ξ · ∇f = Ω(f) (3.1)

where f is the distribution function, ξ is the molecular velocity and Ω(f) is the

collision operator. The distribution function, also commonly denoted as f(x, ξ, t),

represents the probability of particles or molecules at position x with molecular

velocity ξ at time t. Equation 3.1 governs the evolution of the distribution func-

tion in contrast to the Navier-Stokes equations which evaluate macroscopic quan-

tities directly. As a result, when using the LBM an additional step is required

to obtain the macroscopic quantities of fluid density ρ(x, t), velocity u(x, t) and

specific energy E(x, t):

ρ(x, t) =

∫
f(x, ξ, t) dξ (3.2)

ρu(x, t) =

∫
ξf(x, ξ, t) dξ (3.3)

ρE(x, t) =
1

2

∫
|ξ|2f(x, ξ, t) dξ (3.4)

Equation 3.1 has 7 independent variables, each of which are continuous. As a

result, this equation must be discretised in time, spatial and velocity space, in or-
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der to reduce the computational requirements of the method. The velocity space

can be discretised by restricting the motion of the particles along discrete veloc-

ity links. This discretisation results in the semi-discrete form of the Boltzmann

equation:

∂fi
∂t

+ ci · ∇fi = Ω(fi) (3.5)

where ci is the velocity model discussed in the next section. This discretisation

can be performed through a small Mach number approximation [95] or Hermite

series expansion [96]. The Hermite expansion permits approximations of the

Boltzmann equation up to any arbitrary order, even those not captured by the

Navier-Stokes equations [97].

3.2.2 Velocity Model

When selecting a suitable velocity model (sometimes referred to as a velocity set)

a compromise occurs between reducing the memory and computational require-

ments of the solver by limiting the number of discrete velocities, while ensuring

that sufficient accuracy is retained in order to represent the problem effectively.

The velocity model implemented in this work, the most popular model for two-

dimensional fluid flows, is known as D2Q9 (two dimensions and nine velocities)

and is depicted in Figure 3.2. This velocity model is symmetrical and has suf-

ficient discrete velocities to ensure isotropy, essential in recovering the Navier-

Stokes equations via expansion [98]. The velocities included within the model

along with their weighting wi, which can be calculated using the Gauss-Hermite

quadrature rule [99], and lattice speed of sound cs are defined by:

c =

[
0 1 −1 0 0 1 −1 1 −1

0 0 0 1 −1 1 −1 −1 1

]
∆x

∆t
(3.6)

wi =





4/9 i = 0

1/9 i = 1, 2, 3, 4

1/36 i = 5, 6, 7, 8
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Figure 3.2: Discrete velocity model: D2Q9

cs =
∆x

∆t

1√
3

(3.7)

where ∆t and ∆x are the time step size and lattice spacing. These can be of

any unit such as SI units, however for ease lattice units are generally used giving

∆t = ∆x = 1.

3.2.3 Space and Time Discretisation

The semi-discrete form of the Boltzmann equation can be further discretised

through space and time via the Method of Characteristics [99] to provide the

lattice Boltzmann equation, the governing equation for the LBM implementation

in this work:

fi(x+ ci∆t, t+ ∆t)− fi(x, t) =

∫ ∆t

0

Ω(x+ ciξ, t+ ξ) dξ (3.8)

where ξ parametrises a trajectory in space. The left-hand side of Equation 3.8

governs the propagation of the distribution function through space while the

right-hand side governs the collisions (local) which can be replaced via a first

order approximation using a single point to give:

fi(x+ ci∆t, t+ ∆t)− fi(x, t) = ∆tΩi(x, t) (3.9)
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Higher order approximations have been developed [99] however the first order

example above is the most commonly implemented since in fact it produces the

same form as the second order approximation [99]. As a result, the LBM can be

considered second order accurate. The collision operator itself will be defined in

Section 3.2.5.

3.2.4 Equilibrium Distribution Function

The equilibrium of fluids is central to kinetic theory and therefore is also integral

to the LBM. The Maxwell-Boltzmann distribution (Equation 3.10) states that for

a gas with no external forces applied to it will tend to evenly distribute molecular

velocities around a mean macroscopic velocity over time. This is due to collisions

between the molecules. This state is known as the equilibrium distribution, f eq.

f eq(ρ, T, ξ,u) =
ρ

(2πRT )d/2
e−|ξ−u|

2/(2RT ) (3.10)

Equation 3.10 can be discretised in velocity space, again using Hermite series

expansion [99], so that it is dependant only on the local macroscopic values and

velocity model factors ci, weighting factor wi and lattice speed of sound cs:

f eq(x, t) = wiρ(1 +
ci · u
c2
s

+
(ci · u)2

2c4
s

− u · u
2c2
s

) (3.11)

The macroscopic fluid density (Equation 3.2) and velocity (Equation 3.3) can also

be discretised:

ρ(x, t) =
∑

i

fi(x, t) (3.12)

ρu(x, t) =
∑

i

cifi(x, t) (3.13)

Furthermore the pressure can be defined according to the equation of state for
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the isothermal LBM implementation as described here:

p = c2
sρ (3.14)

As a result, the Poisson equation does not need to be solved to evaluate the

pressure field.

3.2.5 Collision Operator

The Boltzmann collision operator is highly non-linear and difficult to solve. As

a result, alternative collision operators have been developed, the most popular of

which is the Bhatnagar-Gross-Krook (BGK) approximation:

Ωi(x, t) =
1

τ
[f eqi (x, t)− fi(x, t)] (3.15)

where τ is the relaxation time. The BGK approximation reduces the complexity

of the collision operator by assuming a single relaxation time. This is valid for any

fluid since Equation 3.15 will relax towards local equilibrium, while f eq contains

the non-linearity required to recover macroscopic quantities of the fluid. More

advanced collision operators have been developed with two or multiple relaxation

times that are able to increase the stability of a simulation, particularly at high

Reynolds number [99]. However, for the work here a single relaxation time is

sufficient. The relaxation time is calculated with respect to the fluid viscosity ν

via:

τ =
ν

c2
s

+
∆t

2
(3.16)

Rearranging Equation 3.16 for fluid viscosity as in Equation 3.17 highlights re-

laxation time limits, namely that the relaxation time must be greater than 0.5

in order for the fluid viscosity to be positive as is physical. Numerical stability

issues can also occur for values close to this boundary while the accuracy of the
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simulation can decrease for values greater than 1 [100].

ν = (τ − ∆t

2
)c2
s (3.17)

By substituting the BGK collision operator into Equation 3.8, the final form of

the implemented governing equation can be obtained:

fi(x+ ci∆t, t+ ∆t)− fi(x, t) =
∆t

τ
[f eqi (x, t)− fi(x, t)] (3.18)

This equation highlights the advantages of the LBM, demonstrating its explicit

and linear nature in terms of the distribution function. As stated previously, non-

linearity is instead contained within the local equilibrium function. This allows

the macroscopic properties of a flow to be calculated from a relatively simple

transport equation.

3.2.6 Forcing Scheme

A number of forcing schemes have been developed in order to include external

forces e.g. gravity, in fluid flows modelled via the LBM and are compared in [101].

These schemes are also able to provide the no-slip condition requirement on the

surface of the structure at the fluid interface, allowing accurate representation of

fluid-structure interaction. The forcing scheme implemented within this work was

developed by Guo et al. [101] and provides an additional term to the discretised

LBM equation (Equation 3.1) as follows:

fi(x+ ci∆t, t+ ∆t)− fi(x, t) =
∆t

τ
[f eqi (x, t)− fi(x, t)] + ∆tFi(x, t) (3.19)

where Fi(x, t) is the discretised force density f(x, t) and can be evaluated via:

Fi(x, t) = wi(1−
1

2τ
)(
ci − u
c2
s

+
ci · u
c4
s

ci) · f(x, t) (3.20)
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An additional term is also required to calculate the macroscopic quantities cor-

rectly:

ρ(x, t) =
∑

i

fi(x, t) (3.21)

ρu(x, t) =
∑

i

cifi(x, t) +
∆t

2
f(x, t) (3.22)

3.3 Initial and Boundary Conditions

Selecting and correctly imposing initial and boundary conditions has always been

a challenging proposition for computational fluid dynamicists. However, when us-

ing the LBM this becomes even more difficult since traditional approaches devel-

oped for Navier-Stokes based methods have been developed in terms of the macro-

scopic quantities of the flow. Since the transport equation for the LBM instead

describes the change in the probability distribution function, initial and bound-

ary conditions must be developed in terms of the distribution function. This is

not trivial since the translation from macroscale to mesoscale is undetermined

given there are more degrees of freedom in the mesoscopic system (distribution

function components) than in the macroscopic system (macroscopic moments)

and therefore boundary closure conditions are required.

3.3.1 Immersed Boundary

The boundary conditions described in the remainder of this chapter are all utilised

for stationary boundaries in this work. In order to model not just moving bound-

aries but also non-rigid boundaries, i.e. fluid-structure interaction, the immersed

boundary is implemented. This will be discussed in detail after the structural

solver has been introduced in Chapter 5 since it also acts as the coupling method

between the fluid and structural solvers.

67



Pre-Streaming Step Post-Streaming Step

Non-boundary 
lattice site

Boundary 
lattice site

Figure 3.3: Distribution function components pre and post-stream for a non-
boundary lattice site and a boundary lattice site without the appropriate bound-
ary condition. Note that the boundary lattice site has an incomplete distribution
function set since no lattice sites exist beyond the boundary (black) to provide the
missing distribution function components required to satisfy conservation laws.

3.3.2 Periodic Boundary Conditions

Boundary conditions are required in order to fill the distribution function com-

ponents for all velocity directions at a given boundary, specifically the velocity

directions not filled during the streaming step as shown in Figure 3.3. These

components will be referred to as unknown components from here onwards.

Periodic boundary conditions are commonly known as the simplest to implement

and can be be used in a variety of cases where a repeating flow pattern occurs.

In this work, this is true of venous valves when the idealised geometry is consid-

ered. The condition is implemented by passing any outgoing distribution function

components at the periodic boundary to it’s corresponding boundary as shown

visually in Figure 3.4 and algebraically as:

f̂ı(x, y, t) = fi(x+ L− ci∆t, y, t) x = 0 (3.23)
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Post-Streaming StepPre-Streaming Step

Figure 3.4: Visual representation of periodic boundary conditions for a simplified
channel flow of lattice resolution 5x3 where the periodic boundary is represented
by a dashed line.

f̂ı(x, y, t) = fi(x− L− ci∆t, y, t) x = L (3.24)

where f̂ı(x, y, t) are the unknown components of the distribution function at the

boundary and L is the length of the domain. Since the distribution function

components leaving the domain are re-entering at the opposite side, mass and

momentum are always conserved.

3.3.3 Bounceback Boundary Conditions

The no-slip velocity boundary condition is the most implemented fluid-solid inter-

face condition. The bounceback boundary condition ensures the no-slip condition

is imposed at the surface of an object in contact with the fluid by reflecting the

outgoing distribution function components back to where they came from in the

opposite direction. Two main implementations of this boundary condition have

been developed, full-way bounceback and half-way bounceback, both of which

locate the boundary midway between two lattice points. The difference between

the two is the point in time at which the distribution function components are

bounced back as shown in Figure 3.5.

In the fullway bounceback scheme, the distribution function components are con-

sidered to stream fully to the lattice point beyond the boundary before the direc-

tion of the component is reflected in the collision step. The reflected component is

then streamed back to its original lattice point in the next time step. As a result,

while this boundary condition is suitable for steady conditions, the time delay
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reduces the time accuracy of transient flows (first-order accurate). In addition,

the scheme requires solid lattice nodes to be included in the domain in order to

store outgoing distribution function components until they are bounced back at

the next time step.

The halfway bounceback scheme completes the boundary condition within a sin-

gle time step, improving time accuracy (second-order accurate) and therefore

is preferential for time dependent flows. In addition, it does not require solid

nodes.

While bounceback has a number of advantages, including ease of implementation,

stability of simulation and mass conservation, it does have significant disadvan-

tages. Firstly, modelling of curved surfaces is not possible without additional

treatment [102] which subsequently degrades the ease of implementation. In-

stead, curved surfaces are represented by a “staircase” of resolution equal to that

of the lattice. Secondly, the location of the no-slip boundary provided via the

bounceback scheme is viscosity dependent when the BGK collision operator is

also used. This can result in different flow dynamics for a given Reynolds number

when the viscosities are different which is not physical. This can be overcome by

using alternative collision models such as MRT [103].

Pre-Streaming Step Post-Streaming/
Pre-Collision Step Post-Collision Step Post-Streaming Step

t t+Δt

Pre-Streaming Step Post-Streaming Step

t

Mid-Streaming Step

Fullway 
Bounceback

Halfway 
Bounceback

Figure 3.5: Visual representation of fullway and halfway bounceback boundary
conditions: f4 becomes f3 according to the velocity model in Figure 3.2.
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Pre-Streaming Step Post-Streaming Step

Figure 3.6: Visual representation of regularised boundary conditions where light
grey lattice points are beyond the domain and included for visual purposes only.
The distribution function components that contribute to each of the density com-
ponents defined in Eqn 3.25 are shown, where ρ0 are blue, ρ+ are green and ρ−
are red. Note the values of each component are recalculated using the regularised
boundary condition.

3.3.4 Regularised Boundary Conditions

The regularised boundary condition, developed by Latt et al. [104] is able to im-

pose no-slip conditions as well as velocity and pressure boundaries. Unlike the

periodic and bounceback boundary conditions, the regularised boundary condi-

tion calculates and replaces the full set of distribution function components at

a boundary node. This is achieved by reconstructing each component using the

stress tensor which in turn is calculated through the known macroscopic quanti-

ties.

In order to understand which macroscopic quantities are known, it is important

to consider the macroscopic density in component form:

ρ = ρ0 + ρ+ + ρ− (3.25)

where ρ0 is the density component referring to the distribution function compo-

nents that are planar to the boundary, ρ+ is the density component referring to

the distribution function components that are streaming outside the boundary

and ρ− is the density component referring to the distribution function compo-

nents that are streaming inside the boundary. These are known as the zero,
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outer-normal and inner-normal densities and are calculated via:

ρ0 =
∑

i|cik=0

fi (3.26)

ρ+ =
∑

i|cik=n

fi (3.27)

ρ− =
∑

i|cik=−n
fi (3.28)

where n is the normal vector on the boundary in question pointing into the

domain and k is the dimension of the discretised velocity model ci along which

the normal is directed. Substituting these density components into Eqn. 3.13

gives the macroscopic velocity in terms of the density components:

ρuk = ρ+ − ρ− (3.29)

From Figure 3.6 it can be seen that the outer-normal densities are unknown and

can be eliminated by substituting Eqn. 3.25 into Eqn. 3.29 and rearranging for

the desired macroscopic quantity at the boundary, e.g. for a velocity boundary

in Eqn. 3.30 and a pressure boundary in Eqn. 3.31:

ρ =
1

1− uk
(2ρ− + ρ0) (3.30)

uk = 1− 2ρ− + ρ0

ρ
(3.31)

Given all the unknown macroscopic quantities have been calculated, the distri-

bution function components can be evaluated using the stress tensor. This is

done by first calculating intermediate values of the unknown distribution func-
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tion components via the non-equilibrium bounceback assumption [105]:

fneqi = fneqj (3.32)

where fneqi = fi − f eqi and j is the opposite direction to i in the velocity model

depicted in Figure 3.2. The first-order terms of the intermediate distribution

function values can be obtained via power series expansion:

fi = f
(0)
i + εf

(1)
i +O(ε2) (3.33)

where ε is the Knudsen number and f
(0)
i = f eqi . The first-order terms are then

used to calculate the first-order components of the stress tensor:

Π(1) =
∑

i

ci ⊗ cif (1)
i (3.34)

The components of the distribution function can all then be reconstructed using

the first-order stress tensor through contraction with the tensor Qi:

fi = f eqi +
wi
2c4
s

Qi : Π(1) (3.35)

where:

Qi = ci ⊗ ci − c2
sI (3.36)

and I is an identity matrix.

3.3.5 Initial Conditions

In the present work, uniform density and zero-velocity are set in order to ensure

the macroscopic and mesoscopic conditions are consistent at initialisation.
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3.3.6 Immersed Boundary

The previously described boundary conditions are all utilised for stationary bound-

aries in this work. In order to model not just moving boundaries but also non-

rigid boundaries, i.e. fluid-structure interaction, the immersed boundary is im-

plemented. This will be discussed in detail after the structural solver has been

introduced in Chapter 5 since it also acts as the coupling method between the

fluid and structural solvers.

3.4 Summary

This chapter has introduced the fluid solver implemented within the fluid-structure

interaction method, the LBM. The underlying governing equations have been dis-

cussed with details of their discretisation from kinetic theory, while discretisation

of the velocity space and collisions specific to this implementation have also been

detailed. Initial and boundary conditions that are commonly implemented in the

work conducted have been included. The next chapter introduces the structural

solver in the FSI method.

74



Chapter 4

Vector-based Discrete Element

Method

This chapter introduces the structural solver integrated into the fluid-structure

interaction method. The vector-based discrete element method, known as the

V-model, is a variant of the discrete element method proposed by Kuzkin and

Asonov [106]. The method implemented here develops the work of Nasar et

al. [107] where the V-model has been adapted for elastic materials rather than

granular materials as the original model was intended. A journal article introduc-

ing the method, “Vector-based discrete element method for solid elastic bodies”

is included in Appendix C, describing the discretised equations, their implemen-

tation on both CPU and GPU architecture and validation results using static and

dynamic cases. Within this chapter, the foundations of the method will be de-

scribed including the formulation and discretisation of the governing equations.

4.1 Overview of DEMs for Elastic Bodies

The discrete element method, also known as the distinct element method, was

originally proposed by Cundall et al. [108] for rock mechanics and associated

applications. For a given material and body, a structure is discretised into a

collection of particles that interact with one another as they contact. The de-

formation of the contacts are directly considered and evolve continuously. A key

capability of the method is its ability to model internal forces within a body while

also considering collisions with other bodies with little additional treatment re-
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quired in the solver. Furthermore, the real material properties such as particle

morphology e.g. shape and size, joints, orientation and state can be exactly rep-

resented [109]. As a result, the method has been used extensively in sedimentary

flows such as soil [110] and sand [111], and in flows where particles are suspended

in a fluid [112].

n

t

n

t

n

t

Figure 4.1: Normal (n) and tangential (t) spring connections between two parti-
cles.

For DEM representations of continuous materials, the particles are connected

using fixed connections. The most simple form of these connections are linear

springs. These can be arranged to model normal and tangential forces as shown

in Figure 4.1. This has given rise to the use of DEMs in elastic body applications

[113,114] including anisotropic materials [115]. By modelling such materials using

DEMs, the additional capabilities of the method such as the ability to break or

create connections during a simulation can be utilised. As a result, complex

physical effects such as cracking or rupture can be more readily modelled than

equivalent continuum methods such as FEM [9].

However, due to the relatively high number of particles required to discretise a

body with high fidelity in comparison with FEM, the required computational

resource can increase dramatically for large spatial or temporal domains. Fortu-

nately, the method is local in nature for elastic body applications and therefore

well suited to parallelisation, particularly via GPU hardware. However, a DEM

simulation of a continuous body would not be expected to be faster than an

FEM simulation of the same body. Instead, GPU acceleration allows DEM simu-

lations to be performed in time frames within an order of magnitude of the FEM

simulation while also modelling complex physical effects.

The V-model discretises a structure into a collection of particles connected by

elastic bonds. In this implementation, the bonds are rigidly attached to the

particles therefore preventing remodelling of the structure during a simulation.

In the next section, the formulation of the governing equations will be detailed.
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4.2 V-model Formulation

4.2.1 Bond Forces and Moments

In order to derive the governing equations for the V-model, consider two particles i

and j connected via flexible bonds which is rigidly attached to each of the particle

centres. From Newton’s Third Law it is known that the forces F and moments

M exerted on each particle, by the other particle must be equal and opposite:

Fij = −Fji (4.1)

Mij +Mji − rij × Fij = 0 (4.2)

where rij = rj − ri is the relative position vector between particles i and j. An

energy balance for the rate of change of internal energy U̇ in the system can be

written as:

U̇ = Fij · ṙij −Mij · ωi −Mji · ωj (4.3)

where ωi and ωj are the angular velocities for particles i and j respectively. By

defining a set of co-rotating vectors nk1i and nk2j (where k1 is the coordinate

system for particle i and k2 is the coordinate system for particle j) that are

attached rigidly to the surface of each particle as shown in Figure 4.2.

ni
ni

ni nj

nj

nj
1

2

1

2

3 3

Figure 4.2: Orientation vector sets nk1i and nk2j rigidly attached to the surface of
each particle.

Assuming that particle interactions are not dependent on the relative velocities

77



between particles, the internal energy can be defined as a function of the relative

particle positions rij and orientations nk1i and nk2j :

U = U(rij,n
k1
i ,n

k2
j ) (4.4)

By differentiating Equation 4.4 with respect to time and using the chain rule, the

rate of change in internal energy can be defined in terms of vectors rij, n
k1
i and

nk2j :

U̇(rij,n
k1
i ,n

k2
j ) =

∂U

∂rij
· ṙij +

∑

k1

∂U

∂nk1i
· ṅk1i +

∑

k2

∂U

∂nk2j
· ṅk2j (4.5)

By using a series of transformation matrices and chain rule manipulations as

originally proposed by Price et al. [116] for fluids, and adapted for solids by

Kuzkin and Asonov [117], the second and third terms on the RHS of Equation

4.5 can be expressed as:

∑

k1

∂U

∂nk1i
· ṅk1i = −

(∑

k1

∂U

∂nk1i
× nk1i

)
· ωi (4.6)

∑

k2

∂U

∂nk2j
· ṅk2j = −

(∑

k2

∂U

∂nk2j
× nk2j

)
· ωj (4.7)

Substituting Equation 4.6 and 4.7 into Equation 4.5 gives:

U̇(rij,n
k1
i ,n

k2
j ) =

∂U

∂rij
·ṙij−

(∑

k1

∂U

∂nk1i
×nk1i

)
·ωi−

(∑

k2

∂U

∂nk2j
×nk2j

)
·ωj (4.8)

Comparing Equation 4.3 and 4.8 allows the forces and moments applied by one

particle on another to be calculated in terms of the internal energy, distance
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vectors between the particles, and the orientation vectors of each particle:

Fij = −Fji =
∂U

∂rij
(4.9)

Mij =
∑

k1

∂U

∂nk1i
× nk1i (4.10)

Mji =
∑

k2

∂U

∂nk2j
× nk2j (4.11)

A set of vector dot products that are invariant with respect to rigid body rotation

can be defined:

rij eij · nk1i eji · nk2j nk1i · nk2j (4.12)

where rij = |rij| and eij = rij/rij, namely the distance and unit vector between

and particles i and j respectively. The internal energy of the system can be

expressed as functions of these invariants:

U = U(rij, eij · nk1i , eji · nk2j ,nk1i · nk2j ) (4.13)

These arguments can be separated based upon the mode of deformation they

govern, allowing relationships between the material properties and model stiff-

ness parameters to be derived. This procedure is discussed in Section 4.3. Two

different approaches have been taken to separating the arguments, with the key

difference between them being their treatment of torsional and bending defor-

mations. In the first approach [106] the torsional and bending deformation are

described by independent terms whereas in the second approach [118] they are de-

pendent. The approach of [118] implemented within this work defines the internal
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energy of a given bond as:

U =
B1

2
(rij−a)2 +

B2

2
(n1

j −n1
i ) ·eij +B3(n1

i ·n1
j)−

B4

2
(n2

i ·n2
j +n3

i ·n3
j) (4.14)

where a is the free equilibrium length of the bond andB1, B2, B3 andB4 are model

stiffness coefficients for axial, shear, bending and torsional bond deformation,

derivable from constitutive relationships and macroscopic material properties.

These will be discussed in Section 4.3. Substituting Equation 4.14 into Equation

4.9, 4.10 and 4.11 allows the forces and moments in each bond to be defined as:

Fij = B1(rij − a) +
B2

2rij
(n1

j − n1
i ) · (E − eijeij) (4.15)

Mij = Rin
1
i × Fij +

B2

2
eij × n1

i +B3n
1
j × n1

i −
B4

2
(n2

j × n2
i + n3

j × n3
i ) (4.16)

Mji = Rjn
1
j × Fji +

B2

2
eij ×n1

j −B3n
1
j ×n1

i +
B4

2
(n2

j ×n2
i +n3

j ×n3
i ) (4.17)

where E is an identity matrix and Ri and Rj are the radii of particle i and

j. Since the V-model is restricted to 2D in this implementation, no torsional

deformation is modelled and n2
i,j and n3

i,j are not required. In addition, for a

continuous material, the bonds are attached at the centres of each connecting

particle and therefore Ri and Rj are zero. As a result, Equation 4.16 and 4.17

can be reduced to:

Mij =
B2

2
eij × n1

i +B3n
1
j × n1

i (4.18)

Mji =
B2

2
eij × n1

j −B3n
1
j × n1

i (4.19)
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Fji , Mji

Fij , Mij

Fi , Mi

Figure 4.3: Forces and moments calculated in each bond are passed to their re-
spective connecting particle.

Equation 4.15, 4.18 and 4.19 are the governing equations used to calculate forces

and moments in the solver implemented in this work. The Section 4.3 will detail

how the model stiffness coefficients are calibrated for a given material.

4.2.2 Updating Particle Positions and Orientations

Once the forces and moments have been calculated in all the bonds within a

system and passed to each connecting particle, the resultant forces and moments

of each particle can be calculated:

Fi =
∑

p

Fij +
∑

q

Fji (4.20)

Mi =
∑

p

Mij +
∑

q

Mji (4.21)

where p and q refer to the number of bonds connected to the particle which con-

siders that particle to be particle i or particle j respectively. In the configuration

shown in Figure 4.3, p and q are both equal to one. The resultant forces and

moments are used to update the position and orientation of the particles using

a numerical integration scheme via Newton’s 2nd Law. This is applied to both

translational and rotational motion to find their translational ai and angular αi

accelerations for each particle:

ai =
Fi
mi

(4.22)

81



αi =
Mi

Ii
(4.23)

where mi and Ii are the mass and moment of inertia of particle i.

4.3 Constitutive Relationships

For a given external load, a constitutive relationship is required to govern the

extent of the resulting deformation through the calculation of material stiffness

coefficients, taking into account macroscopic material properties such as Young’s

modulus E and Poisson’s ratio ν. Mesh independent relationships must be used

in order to relate the model stiffness coefficients B1−4 to the material stiffness

coefficients for axial CA, shear CD, bending CB and torsion CT . This is done

by considering pure deformation modes, i.e. where only one of axial compres-

sion/tension, shear, bending or torsion exist.

External 
Load

a

rij

Figure 4.4: Pure axial deformation of a two particle system due to an external
load.

Consider two particles connected by a single bond, where one particle has an ex-

ternal load imparted on it in the same direction as the direction vector connecting

the particles as shown in Figure 4.4. The resulting deformation is pure axial com-

pression or extension. In this case, Equation 4.15, 4.18 and 4.19 governing the

forces and moments present in bond, are reduced to:

Fij = B1(rij − a) (4.24)

Mij = Mji = 0 (4.25)
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By comparing Equation 4.24 with the Hooke’s law for a single degree of freedom

elastic body:

CA =
F

∆x
(4.26)

where ∆x is the displacement and is equal to rij − a, it can seen that B1 =

CA. By using the same procedure for the remaining pure deformation modes,

relationships between the remaining model and material stiffness coefficients can

also be found:

CD =
B2

a2
CB =

B2

4
+B3 +

B4

2
CT = B4 (4.27)

7 disk model 9 disk model2 disk model

Figure 4.5: Structured particle arrangements commonly used to represent elastic
bodies via discrete element methods.

The now defined material stiffness coefficients can also be defined in terms of

macroscopic material properties such as Young’s modulus E and Poisson’s ratio

ν via various constitutive models. Many of these models are developed for a given

particle arrangement, 2-disk, 7-disk or 9-disk arrangements as shown in Figure

4.5. The most extensively implemented model to represent elastic bodies using

DEMs was proposed by Griffiths and Mustoe [119] for the 7-disk arrangement,

sometimes referred to as the triangular arrangement [107]. In this model, CA and

CD are derived by comparing the stiffness matrix of a 2D beam finite element

with that of two bonded discrete elements (particles) and then extending this

procedure to three bonded particles in a triangular arrangement. Derivations of

this procedure can be found in [9]. The model defines the axial and shear stiffness
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coefficients as:

CA =
E√

3(1− ν)
(4.28)

CD =
E(1− 3ν)√

3(1− ν2)
(4.29)

However, this formulation was derived for a discrete element method that does not

directly consider bending unlike the V-model. As a result, a further constitutive

relationship is required for the bending stiffness coefficient. The work by Nasar

[107] produced well-validated results for static and dynamic beam bending using

the following relationship:

CB =
EIb
a

(4.30)

where Ib is the moment of inertia of the bond which has a rectangular cross

section. Since the V-model is restricted to 2D in this implementation, torsional

deformation is not considered and therefore a relationship between material prop-

erties and CT is not required. However, a number of relationships exist with

details found in [106].

4.4 Time Integration Scheme

Given that the resultant forces and moments on each particle can be calculated

via the governing equations and associated constitutive relationships previously

discussed, an appropriate numerical time integration scheme must be employed to

update the positions and orientations of each particle, via their linear and angular

accelerations and velocities, at the end of each discrete time step. For discrete

element methods, a number of schemes are commonly implemented. These can

be classified as single time step methods such as the first order accurate leapfrog

scheme to the second order accurate central difference discretisation scheme (the

most commonly implemented scheme) [120,121] and multi-step methods such as

predictor-corrector schemes [122]. A comprehensive review of time integration
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methods for discrete element methods, assessing accuracy and computational

expense was conducted by Kruggel-Emden et al. [121].

In this work the scheme known as Beeman’s algorithm [123], is implemented

having been shown to produce the optimal results in comparison to the Leapfrog

algorithm and predictor-corrector methods for the V-model [107]. Using this

scheme the translational u and angular ω velocities are calculated via:

ut+∆t
i = uti +

1

6
(2at+∆t

i + 5ati + at−∆t
i )∆t (4.31)

ωt+∆t
i = ωti +

1

6
(2αt+∆t

i + 5αti +αt−∆t
i )∆t (4.32)

where t is the current time and ∆t is the time step size. The translational and

angular velocities are subsequently used to find updated particle positions x and

orientations θ:

xt+∆t
i = xti + ut+∆t

i ∆t+
1

6
(4ati − at−∆t

i )∆t2 (4.33)

θt+∆t
i = θti + ωt+∆t

i ∆t+
1

6
(4αti −αt−∆t

i )∆t2 (4.34)

4.5 Determining the Critical Time Step Size

The critical time step of a DEM is the time step size judged to be the limit of

stability within a simulation. These instabilities tend to accumulate over time,

for example over a number of oscillations of an excited beam, and therefore their

presence is not always obvious, yet may affect transient characteristics of a struc-

ture, such as deformation, significantly. Currently, a universal criterion does not

exist. However a number of works have proposed models to estimate its size,

based on upon empirical data and Gerschgorins theorem, that contain variables

that are case dependent [120, 124, 125]. Many of these criteria relate the criti-

cal time step size to the smallest period of oscillation resulting from the highest
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natural frequency:

∆tcrit =
2

ωmax
(4.35)

and are functions of minimum particle mass, particle connection stiffness coeffi-

cients and the number of connections per particle, known as the “coordination

number”. However, these criteria include a safety factor less than 1 in order to

ensure stability of the simulation and are recommended as estimates rather than

definitive criteria. Defining a robust critical time step size for DEMs is still an

active area of research within the community [125].

The critical time step formulation implemented here can be defined as:

∆tcrit = β

√
mi

k
(4.36)

where mi is the mass of a particle i and k is equal to the largest material stiffness

coefficient, usually CA. For the purposes of this work a conservative safety factor,

β = 0.05 has been used to ensure stability of the method and robustness of vali-

dation results. This factor is smaller than those defined by literature, however for

longer timescale problems, such as the validation case in Section 6.4, numerical

instabilities were observed to build up over time cause the simulation to crash

using those defined by literature. This conservative safety factor is also in agree-

ment with a general estimation for the time step size of FEM simulations; 1/20th

of the period of oscillation that should be captured [126].

4.6 Summary

This chapter describes the method used to model the deformation of structures,

namely the vector-based discrete element method, that is integrated into the fluid-

structure interaction method. The formulation of the governing equations from

the internal energy of a system is detailed along with an outline of its numerical

implementation. Discussion of particle arrangement and time step considerations

are also included. The next chapter introduces the method used to couple the
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fluid and structure solvers, the immersed boundary method, along with details of

the full fluid-structure interaction method implementation in algorithm form.
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Chapter 5

Immersed Boundary Method

This chapter describes the method, known as the immersed boundary method

(IBM), used to couple the fluid and structural solvers so the fluid-structure inter-

action can be modelled. Details of the formulation, including the interpolation

and spreading procedures, are provided. Furthermore, its integration into a cou-

pling scheme, both weakly and strongly coupled, are discussed. Algorithms of

a complete, coupled time step for each coupling scheme are provided, where the

time step size of the structure solver is smaller than that of the fluid. A novel

force mapping approach between the IBM and the V-model that allows indepen-

dence of the fluid and structure resolution is presented. The chapter begins with

the rationale behind the choice of coupling approach.

5.1 Coupling Approach Rationale

Fluid-structure interaction methods can be classified into two main groups through

the coupling approach employed; monolithic or partitioned. A key difference be-

tween these approaches is how they ensure the kinematic and dynamic interface

conditions are satisfied at the boundary between the fluid and structure. A

monolithic approach will automatically ensure these conditions are satisfied due

to solving the governing equations of the fluid and the structure synchronously.

In contrast, partitioned approaches must directly ensure these conditions are met

since the governing equations are solved sequentially [127]. Many simpler parti-

tioned approaches do not strictly satisfy these conditions which is known as weak

coupling and will be discussed later in this section.
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The kinematic condition is the no-slip condition, stating that the fluid velocity u

at the boundary must be equal to that of the boundary itself and can be defined

as:

u(X) =
dX

dt
(5.1)

whereX is the position at the boundary where the fluid velocity is measured. The

dynamic interface condition states that the traction T of the fluid and structure

on either side of the interface must be equal:

Ts(t) + Tf (t) = 0 (5.2)

where the traction of the structure and fluid can be defined in terms of the fluid

and structure stress at the interface σf,s and the interface normal vectors nf,s:

Ts = σs · ns Tf = σf · nf (5.3)

Satisfying Equations 5.1 and 5.2 infers that momentum and energy have been

conserved across the interface [128].

Further differences exist between monolithic and partitioned approaches which

result in them being more advantageous in certain applications. Monolithic

methods are more stable and provide greater accuracy than partitioned ap-

proaches [127] however they can be difficult to implement for large deformations

where the interface is difficult to discretise. Furthermore, since the same numer-

ical method must be used for both the fluid and the structure, this can lead to

serious constraints if the same method is not suitable for both. Different nu-

merical methods that are suitable for the fluid and the structure can be coupled

together using partitioned approaches [129, 130]. However, since they are solved

in a staggered arrangement, accuracy and stability issues can become apparent

without careful treatment, especially if the interface conditions are not met. More

complex coupling schemes can improve accuracy and stability but are inherently

more computationally expensive and more difficult to implement [131]. Taking

these advantages and disadvantages into account, a partitioned approach was
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deemed the most optimal for this work, given that the focus is to provide a tool

that can be translated into clinical practice.

One of the key criteria for selection of the fluid and structure solvers, the LBM and

V-model, is computational speed. This can be achieved through GPU acceleration

or otherwise. Grid generation in CFD is computationally expensive, especially for

moving boundaries between the fluid and structure where remeshing must occur

at regular intervals to account for the moving boundary. As a result it must be

restricted to minimal occurrences in order for the FSI method to maintain the

speed of computation of fluid and structure solvers.

Non-conforming methods, such as the IBM, are able to remove the need to re-

mesh the fluid, even with a moving boundary, by decoupling the fluid governing

equations from the boundary representation through independent overlapping

meshes for the structure and fluid. In spite of this, the necessary boundary

conditions on the surface of the structure are imposed as will be discussed in

this chapter. This is particularly important for complex and highly deformable

geometries which, when using body-conforming coupling methods such as Arbi-

trary Lagrangian-Eulerian approach (ALE) [132], can produce poor quality cells

at the interface between the fluid and structure due to the structural deforma-

tion and/or require the domain to be remeshed at regular intervals. Using a non

body-conforming method results in no additional treatment or computational

load regardless of the magnitude of deformation or geometry complexity, assum-

ing the spatial and temporal resolutions are equal. Figure 5.1 illustrates the

differences between the body conforming and non-conforming approaches for an

arbitrary geometry.

Figure 5.1: Fluid domain discretisation for conforming (left) and non-conforming
(right) boundary conditions.
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5.2 Immersed Boundary Method

The IBM was originally proposed by Peskin to model blood flow through the

aortic valve by imposing the motion of the valve leaflets [133]. However, the

IBM is able to replicate the effect of the boundary whether it be stationary or

moving, rigid or flexible, by adding a source term to the fluid governing equations

that imposes the kinematic constraint. As a result, the fluid grid (Eulerian) and

structure boundary (Lagrangian) are free to move over one another, with the only

interaction between the two via the IBM forces applied to impose the boundary

condition. Since this is the only interaction between the solvers, forces need to be

accurately transferred between grids via adjacent grid points using interpolation

and extrapolation procedures which are discussed in the next section.

Since the original immersed boundary method was proposed, a number of develop-

ments have been made. A comprehensive review of these methods was conducted

by Mittal and Iaccarino [134] for the interested reader. The next section describes

the immersed boundary method variant that is implemented in this work, an im-

plicit direct forcing method proposed by Pinelli et al. [135] and extended by Li

and Favier [131].

Figure 5.2: Support stencil (blue) around a given Lagrangian immersed boundary
marker (purple) which in turn is placed on the boundary (black). Fluid points
within the support stencil for the marker being considered, are included within
the interpolation and spreading procedures.
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5.2.1 Interpolation and Spreading

Given that the IBM allows forces at the boundary to be passed from one mesh

(Eulerian) to another mesh (Lagrangian), in both directions, the information

must be interpolated and spread since the locations of mesh points of each mesh

in the vicinity of the boundary will not coincide as shown in Figure 5.2. The

interpolation procedure, passes a force f in the Eulerian reference frame, denoted

by lower-case notation, to the Lagrangian reference frame F , denoted by upper-

case notation, and in continuous form is defined as:

F (X) =

∫

Ω

f(x)δ(x−X)dx (5.4)

where x is the position in the Eulerian reference frame Ω, X is the position in the

Lagrangian reference frame Γ and δ is the Dirac Delta function which is discussed

later. As can seen in Figure 5.2, the Eulerian components that contribute to the

interpolation procedure are located at discrete points rather than a continuous

contribution. As a result, Equation 5.4 is discretised as:

F (X) =
∑

Ω

f(x)δ̂(x−X)∆x∆y∆z (5.5)

where x, y, z are Eulerian coordinates and δ̂ is the discrete form of the Dirac

Delta function.

The spreading procedure does the opposite, passing a force F in the Lagrangian

reference frame to the Eulerian reference frame f , in continuous form:

f(x) =

∫

Γ

F (X)δ(x−X)dX (5.6)

which like the interpolation procedure, is discretised in two dimensions as:

f(x) =
∑

Γ

F (X)δ̂(x−X)ε∆q∆r∆s (5.7)
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where q, r, s are Lagrangian coordinates and ε is a scaling factor developed for

the specific implicit immersed boundary method used in this work, which will be

discussed in Section 5.2.3.

The discretised interpolation procedure (Equation 5.5) and the discretised spread-

ing procedure (Equation 5.7) will be referred to for the remainder of this chapter

using the shorthand notation:

F (X) = I[f(x)] f(x) = S[F (X)]

5.2.2 The Dirac Delta Function

The Dirac delta function is a weighting function used to define the support sten-

cil and the contributions of a quantity at a given location within the stencil.

Given that it is used to transfer quantities between the Eulerian and Lagrangian

reference frames, it must be defined in the same way for both the interpolation

and spreading procedures in order to ensure quantities such as linear and angular

momentum are conserved [136]. The Dirac delta function used within this work

was originally proposed by Roma et al. [137] and has been used extensively by

the immersed boundary community [138–140]. It has been chosen due to its rela-

tively small stencil which reduces the computational resource required, i.e. fewer

lattice points are included within the interpolation and spreading procedures. It

also adequately suppresses the lattice within these procedures, providing a con-

tinuous variation in a given quantity. The four point stencil proposed by Peskin

et al. [136] has the advantages listed above for the 3-point stencil while also pro-

ducing a smoother field, however requires larger computational resource due to

the additional lattice sites within the stencil. Figure 5.3 demonstrates the varia-

tion of the function across the 3-point stencil region in one and two-dimensions

while it can be expressed algebraically in discrete form as:

δ̂(r) =





1
3
(1 +

√
−3r2 + 1 |r| ≤ 0.5

1
6
(5− 3|r| −

√
−3(1− |r|)2 + 1 0.5 ≥ |r| ≤ 1.5

0 otherwise

(5.8)
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where r is the distance in lattice units between the lattice point inside the stencil

and the immersed boundary marker under consideration.

Figure 5.3: Discrete Dirac delta function for 3 point stencil implemented in this
work in (left) one dimension and (right) two dimensions.

5.2.3 Scaling Factor

The addition of a scaling factor within the method was proposed by Pinelli et

al. [135] to solve the issue where a lattice point can be included within multiple

stencils since they can overlap. As a result, the no-slip condition cannot be

strictly enforced since during the spreading procedure the lattice points receive

contributions from different immersed boundary markers. Using the proposed

scaling factor ensures that the force spread back to the Eulerian frame is equal

to that of the interpolation. This can be shown by considering again the discrete

form of the interpolation procedure (Eqn 5.5):

F (X) =
∑

Ω

f(x)δ̂(x−X)∆x∆y

Substituting f(x) for the discrete form of the spreading procedure (Eqn 5.7)

yields:

F (X) =
∑

Ω

δ̂(x−X)∆x∆y
∑

Γ

F (X)δ̂(x−X)ε∆q∆r (5.9)
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By defining An,m as product of the lattice point weightings within a stencil using

the discrete form of the Dirac delta function multiplied by the size of the stencil:

Ak,l = ∆s
∑

Ω

δ̂(x−Xk)δ̂(x−Xl) (5.10)

Substituting 5.10 into 5.9 and rearranging yields:

F (Xk) =
N∑

l=1

Ak,lεmF (Xl) (5.11)

which can be expressed in matrix form as:

Aε = 1 (5.12)

5.3 Coupling with the LBM

The coupling procedure implemented between the LBM and the IBM in this work

was proposed by Li et al. [131] which itself was an advancement on the procedure

developed by Favier et al. [138]. The advancement of the method comes in the

form of abolishing the requirement to calculate the fluid field twice within a

single time step by including the forces calculated by the IBM as an immediate

correction to the fluid velocity field. As a result, the computational efficiency of

the coupling procedure is significantly improved. For a rigid body, the procedure

over a single time step can be summarised at a high level as:

1. calculate fluid density and predicted fluid velocity (and subsequent momen-

tum) fields via LBM governing equations

2. interpolate the predicted momentum and density field onto the immersed

boundary markers

3. calculate the corrective force in the Lagrangian frame
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4. spread the corrective force back to the Eulerian grid

5. correct the predicted velocity field with the force density

In order to calculate the fluid density, the LBM governing equations can be used

without any additional treatment as stated in Section 3.2. However, to calcu-

late the predicted velocity field and dependent momentum field, the macroscopic

velocity (Eqn 3.22) must be decomposed into a predicted velocity field and a

force-correction term:

ρu(x, t) = ρu∗(x, t) +
∆t

2
f(x, t) (5.13)

where u∗ is the predicted velocity. The fluid velocity at the boundary and the

structure velocity at the boundary Us must be equal, therefore using the previ-

ously defined interpolation procedure yields:

Us = I[u] (5.14)

Transforming Eqn 5.13 into the Lagrangian frame using the interpolation proce-

dure and substituting u(x) via Eqn 5.14 gives:

I[ρ(x, t)]Us(X, t) = I[ρu∗(x, t)] +
∆t

2
F (X, t) (5.15)

Rearranging for the corrective force in the Lagrangian frame F (X, t):

F (X, t) = 2
I[ρ(x, t)]Us(X, t)− I[ρu∗(x, t)]

∆t
(5.16)

Given that the boundary velocity is known, the corrective force can be trans-

formed to the Eulerian reference frame and spread onto the lattice:

f(x, t) = S[F (X, t)] (5.17)
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The velocity field can then be updated through the addition of the corrective

force using Eqn 5.13. Additional steps in the algorithm are required for a moving

boundary as discussed in the next section.

5.4 Coupling with the V-model

In the previous work where the V-model has been included within an FSI method,

via IBM to a SPH fluid solver by Nasar et al. [130], the immersed boundary

markers must be located on the V-model particle centres in a 1:1 ratio. Since the

FSI method developed within this work models fluid via the LBM, the restriction

of the ratio between immersed boundary markers and V-model particles can cause

significant problems because the LBM resolution must therefore be equal to that

of the V-model. If the markers are too far apart a leaky boundary can occur

while additional and unnecessary computational cost occurs if the markers are

too close [135]. As a result, if an increase in resolution of the LBM solver is

required, the V-model resolution must also be increased, often unnecessarily. As

a consequence, the computational efficiency of the method is reduced since the

critical time step of the V-model is generally at least an order of magnitude smaller

than that of the LBM. The issue of differing time steps is partially overcome

using a smaller time step for the V-model and will be discussed in Section 5.5.1.

However, the ratio of fluid and structure time steps is restricted for fast-moving

and highly deformable bodies since the immersed boundary force is calculated

at the fluid time step and creating a lag and reducing accuracy. As a result, a

method to relax the 1:1 ratio between V-model particles and immersed boundary

markers has been developed as presented in Section 5.4.1.

5.4.1 Force Mapping

The immersed boundary method applies a force density to the structure surface.

This can be modelled as a uniform distributed load, and therefore discretised as

a point load acting at the same point as the immersed boundary marker location

of magnitude equal to the force density multiplied by the distance it acts over.

This point force is then split into components based on the relative position of

the immersed boundary marker between the nearest two V-model particles at the
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boundary (in contact with the fluid) as shown in Figure 5.4.

Δs

z 

 

i

j

Immersed boundary marker

0

1

Figure 5.4: Immersed boundary markers (blue) placed along a bond (red) connect-
ing two particles at the fluid-structure interface. Note that the particle diameters
have been significantly reduced and the aspect ratio of the bonds increased in
order to improve clarity of the immersed boundary marker placement.

Here, a linear interpolation procedure to evaluate the split of components that

should be passed to each particle, is implemented. The variation of contribution

over the bond is shown in Figure 5.5 and is defined as follows:

FIBM,i = 1− ζ FIBM,j = ζ (5.18)

where ζ is the relative distance between the particles in the range 0 to 1. Vali-

dation of this procedure is included in Section 6.5 where excellent agreement is

presented for a case where a uniform distributed load is discretised directly to

the V-model particle centres and through the linear interpolation procedure.

5.4.2 Velocity and Position Update

The procedure to update the velocity us and position xs of the immersed bound-

ary markers at the boundary of the deforming structure also makes use of the

relative position of the marker between the two nearest V-model particles on the

boundary and can be evaluated via:

us(ζ) = ui + ζ(uj − ui) (5.19)

xs(ζ) = xi + ζ(xj − xi) (5.20)
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Figure 5.5: Linear shape function used to interpolate immersed boundary forces
onto nearest boundary V-model particles.

5.5 Fluid-Structure Coupling

The fluid-structure interaction coupling framework used within this body of work

was originally implemented by O’Connor [141] for a fluid-structure interaction

method consisting of a lattice Boltzmann fluid solver, finite element structural

solver, coupled together using the immersed boundary method presented in this

section. Here, the finite element structural solver has been replaced by the V-

model, highlighting a significant advantage of the partitioned approach to cou-

pling, namely the modularity and the ability to substitute solvers based on their

suitability to an application. The scheme makes use of both weak and strong

coupling procedures as will be described in this section, while the time-stepping

setup required modification as will be now described.

5.5.1 Fluid and Structure Time Step Ratio

In Section 4.5, the critical time step for the V-model, using an explicit time

integration scheme, was defined. This time step is in general significantly smaller

than that of the LBM solver for a sensible lattice resolution and stable lattice

viscosity. As a result, in order to reduce the time step size of the LBM, the lattice
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resolution must be increased, over-resolving the domain, in order to maintain

stability within the method. The increase in resolution results in an excessive

computational resource requirement or computational time, compounded by the

fact that the resource requirement scales with the square of the increase in spatial

resolution. In order to overcome this, the ratio of fluid time steps to structure

time steps can be de-constrained, allowing multiple structure time steps to be

modelled for each fluid time step as shown in Figure 5.6. The ratio of fluid and

structure time steps R is given by:

R =
∆tf
∆ts

(5.21)

where ∆tf is the fluid time step size and ∆ts is the structure time step size. In

this implementation R is restricted to integer values to ensure interaction between

the solvers occurs when each solver is at the same point in time.
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Figure 5.6: Schematic of the fluid-structure coupling highlighting the interaction
between the solvers and the smaller time steps executed by the structural solver.

5.5.2 Weak Coupling

As previously discussed, partitioned fluid-structure interaction approaches are

required to directly ensure that the kinematic and dynamic interface conditions

are satisfied. However, reasonable approximations can be obtained for problems

where the kinematic condition is not strictly satisfied, usually when the densities

of the fluid and the structure are at least an order of magnitude apart, i.e. for
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heavy structures in comparison to the fluid. This is known as weak coupling.

The strong coupling scheme discussed in the next section, is an advancement of

the weak scheme so it is included here for completeness.

Conventional Staggered Scheme

The most widely implemented weak coupling scheme is the Conventional Stag-

gered Scheme (CSS). Its popularity lies mainly in its ease of implementation and

efficiency. The fluid and structure governing equations are solved in series within

a single time step with no iteration, resulting in a lag between the fluid force

applied to the structure as shown in Figure 5.7. This lag causes the interface

conditions to not be strictly met. As a result, artificial energy is created at the

interface which not only can significantly distort interaction characteristics but

also create stability problems in the method.
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Figure 5.7: Schematic of the weakly coupled Conventional Staggered Scheme.

For cardiovascular applications, the density ratios between the fluid and structure

are generally well within an order of magnitude, causing the added-mass effect

instability and therefore weak coupling is not suitable. However, for other appli-

cations including one of the fluid-structure interaction validation cases, included

in Section 6.4, it can be implemented without significant accuracy or stability

concerns.
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Algorithm

The weakly coupled algorithm for fluid-structure interaction implemented in this

work can be summarised as:

1. Execute the LBM solver to obtain predicted fluid velocity field

2. Interpolate forces from the fluid to the boundary

3. Calculate correction force required for no slip condition

4. Spread force back to fluid and correct predicted velocity field

5. Execute the V-model solver, updating particle positions based on IBM force

6. Advance to the next time step

5.5.3 Strong Coupling

For partitioned fluid-structure interaction coupling schemes, when the interface

conditions are satisfied directly by the coupling scheme, the fluid and structure

solvers are said to be strongly coupled. A number of schemes have been developed

to ensure the interface conditions are met [142,143]. Here the block Gauss-Seidel

approach is implemented.

Block Gauss-Seidel Scheme

The block Gauss-Seidel scheme (BGSS) is an implicit method that solves the fluid

and structure governing equations sequentially. The forces and displacements

calculated by the solvers are passed back to the start of the time step to the

other solver through iteration as shown in Figure 5.8. A number of iterations can

be conducted, only moving onto the next time step once the interface conditions

have been met using the following stopping criteria:

rk = Uf,k −Us,k ≈ 0 (5.22)
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where rk is the residual of a given iteration, Uf,k and Us,k are the velocities at the

boundary (located at the immersed boundary markers) calculated via the fluid

and structural solvers respectively.

As a result of the iterative procedure, the BGSS has improved accuracy and

stability characteristics in comparison to the CSS, especially for problems where

added-mass features prominently. A potential drawback of the method is the

number of iterations required for convergence to be achieved can increase the

computational expense significantly. However, additional treatments can be em-

ployed to reduce the required number of iterations as will be discussed.
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Figure 5.8: Schematic of the strongly coupled block Gauss-Seidel Scheme. Itera-
tive procedure is indicated through the black dashed box.

Aitken’s Method

Convergence acceleration of the implicit procedure can be achieved by relaxing

the displacement of the boundary U t
s through the use of the displacement of the

previous time step U t−1
s :

U t
s = ωU ∗s + (1− ω)U t−1

s (5.23)

where U ∗s is the unrelaxed boundary displacement calculated by the V-model

solver and ω is the relaxation parameter of value between zero and unity. The

choice of relaxation parameter value can have a large effect on the stability and
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rate of convergence of the iterative scheme with small values usually resulting in

high stability but slow rate of convergence while large values increase the rate of

convergence but incur stability issues. The optimal parameter is case and time

dependent within a specific case due to its reliance on the level of interaction

between the fluid and structure.

Algorithm

The strongly coupled algorithm for fluid-structure interaction implemented in

this work can be summarised as:

1. Execute the LBM solver to obtain predicted fluid velocity field

2. Interpolate forces from the fluid to the boundary

3. Calculate correction force required for no slip condition

4. Spread force back to fluid and correct predicted velocity field

5. Execute the V-model solver, updating particle positions based on IBM force

6. Calculate the interface velocity residual

7. if converged, advance to Step 9

8. else relax the boundary displacement and return to Step 2

9. Advance to the next time step

5.6 Summary

This chapter details the method used to couple the fluid and structural solver,

namely the immersed boundary method. The rationale behind its choice and

details of the underlying formulation are included. The procedures used to couple

the method to the fluid and structure solvers are discussed, where the novel

structure coupling has been developed during the this work to allow independent
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fluid and structure resolutions. Finally, basic algorithms of its implementation

in weakly and strongly coupled form are included. The next chapter will provide

details of the fluid-structure interaction method developments and the validation

of its components.
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Chapter 6

Method Development and

Validation

The previous three chapters have provided details of the fluid and structure solvers

implemented within the fluid-structure interaction (FSI) method along with the

coupling approach. This chapter will highlight the development of each model,

first individually and then integrated within the FSI method, including their

implementation on different computing architectures. A series of test cases are

presented that incrementally validate each aspect of the model.

6.1 V-model Development and Validation

The V-model was originally proposed by Kuzkin and Asonov [106] for granular

materials and extended by [107] for elastic bodies. A journal paper serving as

an introduction to the V-model, detailing implementation and validation of the

method is included in the Appendix C. In the paper, validation cases are pre-

sented for problems under constant and time dependent loading. Furthermore,

an example case for stochastic modelling of material properties is included. So as

to avoid unnecessary repetition, the cases included in the paper are not included

within this section. Focus is instead restricted to additional cases and more de-

tailed analysis than would be appropriate for inclusion in the paper itself.

The V-model implementation within this work builds upon that of Nasar [107],

who translated and applied the approach to work with smoothed particle hydro-
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dynamics. The present work extends the novelty of this method by considering

for the first time implementation and optimisation on GPU and the capability

to model material variation within a structure. In addition, a bespoke discreti-

sation algorithm has been developed for non-orthogonal arbitrary geometries,

based upon a seed-filling approach which is referred to as the V-model particle

generator.

6.1.1 Validation: Cantilever Beam under Gravity

The well known computational benchmark for fluid-structure interaction meth-

ods proposed by Turek and Hron [7] also includes validation case proposals for

the structural solver in isolation and is presented here. This case consists of a

homogeneous beam with material properties stated in Table 6.1, under a reduced

gravitational load of 2 m/s2 as shown in Figure 6.1.

0.35 m

0.02 m

Figure 6.1: Schematic of a homogeneous cantilever beam under gravitational load.
Blue arrows indicate gravitational load acting on each V-model particle.

Table 6.1: Material properties of cantilever beam in dynamic validation case.

Material Property Value (Units)

Young’s modulus 1.4 (MPa)

Poisson’s ratio 0.4

Density 1000 (kg/m3)

The constitutive model used primarily in the validation cases presented in Ap-

pendix C, proposed by Griffiths and Mustoe [119], is limited to Poisson’s ratio

of less than 1/3. This is due to the formulation of the shear stiffness coefficient

(Eqn 4.29) providing a non-physical negative coefficient for larger Poisson’s ra-

tio values. In order to represent the material properties of the beam accurately,
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specifically the Poisson’s ratio of the beam, the constitutive model employed by

the V-model must be modified. As a result, the constitutive model proposed

by Gaeini et al. [144] was also explored. For this model, the axial and bending

stiffness coefficients remain the same as the previously implemented model (Eqn

4.28 and 4.30) but the shear stiffness coefficient is replaced by:

CD =
E

4(1 + ν)
(6.1)

Results are presented using this constitutive model. The tip deflection time his-

tories for the V-model at different resolutions are compared with results obtained

using a validated in-house, non-linear FEM solver [141] in Figure 6.2. As the

resolution of the V-model increases, convergence towards the FEM solution can

be seen. Furthermore, close agreement with validation data can be seen regard-

ing the predicted frequency of the beam while the maximum tip deflection is in

excellent agreement with validated data as described by Table 6.2.
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Figure 6.2: Tip defection time history of the V-model at increasing resolution
compared to a non-linear FEM solution for the structure only validation case
proposed by Turek and Hron [7]
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Table 6.2: Tip deflection results in the y-direction

Solver (Resolution) Equilibrium Position Amplitude Frequency

Turek & Hron [7] 0.0636 0.0652 1.100

O’Connor [141] 0.0642 0.0643 1.099

V-model (144 particles) 0.0698 0.0697 1.053

V-model (1870 particles) 0.0665 0.0665 1.087

V-model (5529 particles) 0.0650 0.0649 1.094

6.1.2 Development: V-model on GPU Architecture

As previously explained, a key motivation for the use of the V-model as the struc-

tural solver implemented in the fluid-structure interaction method is its local and

linear underlying governing equations. These are solved via simple operations

which are well suited to GPU architecture. The V-model was first implemented

on CPU architecture in order to gain experience with the method before devel-

oping a GPU-based solver. The CPU solver was able to serve as an effective

debugging tool. In addition, once optimised it was able to serve as a benchmark

to evaluate the speed up gained using GPU architecture. Details of the GPU

solver implementation will be discussed in this section along with the relative

GPU acceleration.

Implementation and Data Structure

The V-model GPU solver was implemented using NVIDIA CUDA API. When

using GPU architecture, two copies of each dataset must exist, one in the host

memory (CPU) and one on the device (GPU) since any data input and output

from the GPU must be via the CPU. This is because the CPU and the GPU

have separate address spaces for memory. Processes running on each can only

access their own address space therefore data must be copied from one address

space to the other in order for respective processes to access it. The data stored

in device memory was structured in 1-D arrays for each of the bond and particle

properties e.g. particle position in the x-direction, where the index of array refers

to the bond or particle ID. Structuring the data in this way has a number of
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benefits such as dispensing with the need to flatten higher-dimensional indices.

Memory requirements are also reduced by reducing the need for memory padding,

maximising cache memory usage and increasing instruction-level parallelism. The

algorithm assumes a thread per particle (or bond) structure where a thread is

responsible for all the operations on a single particle (or bond) within a kernel

launch. The kernel launch itself has an associated overhead and therefore have

been combined where possible to improve performance.

Threads

Register

Shared Memory Level 1 Cache

Level 2 Cache

DRAM

Access Tim
e

Figure 6.3: GPU memory organisation with distance from the threads indicating
memory access speed and area of block indicating storage capacity.

An important performance feature to consider when using GPU architecture is

that, in general, reading data from memory takes much longer than performing

operations on the data. Unlike data copied from the host, variables declared at

runtime store data in registers where possible. Data stored in registers have high

access speeds, however registers have limited storage capacity and therefore once

full, data will be stored in higher levels of cache before being stored in DRAM

(dynamic random-access memory) once all levels of cache are full. The hierarchy

is shown in Figure 6.3. Given that the threads are arranged in warps that are

able to share cache memory, it is crucial to optimise cache coherence, whereby the

data required for a thread, has been stored in cache by a previous thread in the

same warp. Furthermore, given the performance benefits of accessing registers,

any variables created locally should be stored in register memory. However, if
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a number of threads are creating local variables with the same value, the vari-

able can be stored in shared memory in order to maximise data storage in the

registers.

Streaming 
Multiprocessor Block BlockBlockBlockBlockBlock

Streaming 
Multiprocessor Block BlockBlockBlockBlockBlock

Streaming 
Multiprocessor Block BlockBlockBlockBlockBlock

Block

…
Thread

(0,0)
Thread

(1,0)
Thread

(2,0)
Thread
(125,0)

Thread
(126,0)

Thread
(127,0)

Figure 6.4: Schematic of GPU architecture where the grid layout and block di-
mensions are governed by the kernel launch parameters.

Code that is run on the device is arranged into kernels. Each kernel is launched

in turn, parallelising the code as specified by the user in the kernel launch pa-

rameters. These parameters arrange the threads into warps and blocks (which

have shared memory) with specified dimensions and pass these to the streaming

multiprocessors as shown in Figure 6.4. For maximum efficiency, threads should

be spawned in complete warps and therefore the number of V-model particles and

bonds should match the block dimensions. On development of the GPU V-model

solver, it was found that kernel launch parameters of four warps per block, with

32 threads per warp should be used where possible to hide any latency; where

a thread can be used to compute operations for a different particle while it is

effectively waiting for instructions for its original particle.

Benchmarking GPU performance

In order to assess the relative speed-up using GPU architecture, the dynamic

cantilever beam under gravity case presented in Section 6.1.1, where the results

were obtained using the CPU solver, is run using the GPU solver. This was
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done first to ensure the results were identical using the different architectures

and second to evaluate the relative speed-up using the GPU. The tests were

run on two different GPUs, a GTX1060 with 6GB of RAM and a GTX1080Ti

with 11GB of RAM while the CPU solver was run on a Intel Core i7-7700HQ

2.8GHz/3.80 GHz with 16GB of RAM. It is worth noting that the CPU solver is

run in serial. There have been relatively few prior studies of the GPU acceleration

of DEMs [145,146]. Zhang et al. [147] calculated the speed-up relative to a serial

CPU solver and will serve as a comparison here.

While the GPU implementation has been implemented according to CUDA pro-

gramming best practises, algorithm optimisation represents future work in this

study and as a result further speed-up may be possible. This issue is discussed

in detail in Appendix C including the use of single and double precision calcu-

lations with appropriate GPU hardware; the current implementation is double

precision.
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Figure 6.5: (Left) Computational time required per time step for different resolu-
tions using V-model solver implemented on CPU and GPU hardware (GTX1060
and GTX1080Ti). (Right) Relative speed up using the GTX1060 and GTX
1080Ti in comparison to the serial CPU solver.

The maximum relative speed-up was measured to be around 25 using the GTX

1060 GPU and around 52 using the GTX 1080Ti, both when using the highest

resolution of the V-model tested (≈1.4×105 particles) as shown in Figure 6.5.

Both speed-ups compare well with previous GPU accelerations of DEMs [147].

The CPU solver exhibits a quadratic increase in computational time with reso-
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lution as expected given the sequential nature of the solver and the increase in

length of any loops in the solver resulting from the increase in resolution. In

contrast, both GPU implementations initially demonstrate minimal increase in

computational time per time step as the resolution increases due to the thread

per particle structure of the algorithm. When the resolution is low, the number

of particles representing a geometry is smaller than the number of particles that

can be efficiently parallelised at one time. This is roughly equal to the optimum

number of threads per block multiplied by the number of streaming multipro-

cessors, multiplied by two since the CUDA runtime is able to reassign CUDA

cores on the fly to a different block when the CUDA cores in a block are idle. As

a result, at least two blocks should be assigned to each streaming processor for

optimum performance.
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Figure 6.6: Computational time required per time step per particle for differ-
ent resolutions using V-model solver implemented on CPU and GPU hardware
(GTX1060 and GTX1080Ti).

Once the resolution of the V-model is larger than the full-parallelisation resolu-

tion, both GPU implementations begin to exhibit quadratic increase in compu-

tational time with resolution, again as expected once threads perform operations

on multiple particles sequentially per kernel launch. This observation is further

highlighted in Figure 6.6, showing the computational time required per time step

for a single particle. For the CPU solver, the time per particle remains almost

constant as the resolution increases resulting in the second order increase in com-

putational time observed earlier. Both GPU implementations exhibit an initial

decrease in time per particle with a decreasing rate, tending towards a constant
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time per particle. For the GTX 1080Ti implementation, the decrease in time per

particle is at a lower rate, indicating the higher number of particles the hardware

is able to handle before saturation (full parallelisation) occurs.

The GPU accelerations measured here provide encouragement for further develop-

ment of the V-model, especially when extending the V-model in three dimensions,

as planned in future work, the computational resource requirement will increase

significantly. Further details of the V-model GPU implementation are included

within the journal article in Appendix C including algorithm design and pseudo

code.

6.2 IB - LBM Validation

The immersed boundary and lattice Boltzmann (IB-LBM) solver are tested for

a rigid boundary in order to verify the coupling between the fluid and bound-

ary. The IB-LBM implementation included within the FSI method was originally

developed by O’Connor [141] who presented validation of the IB-LBM imple-

mentation via flow around a rigid cylinder. This test was rerun to ensure code

development had not altered the solution and is included here for completeness.

Note that the LBM solver has also been validated by O’Connor [141] and is

included within the journal article in Appendix D.
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Figure 6.7: Schematic of flow around a rigid cylinder case. Solid black lines denote
no-slip boundaries.

The case was originally presented by Schäfer et al [8], and consists of a rigid

cylinder subjected to flow with parabolic velocity inlet, fixed pressure outlet, and

no-slip walls at the top and bottom of the domain as shown in Figure 6.7 and

with properties given in Table 6.3.

115



Table 6.3: Rigid cylinder validation case properties.

Fluid Property Value (Units) Structure Property Value (Units)

Density 1 (kg/m3) Diameter 0.1 (m)

Inlet velocity 1 (m/s)

Reynolds number 100

The flow is initially at rest throughout the domain, and the parabolic inlet con-

dition ramped according to:

ux(t) =




uinx (t)1−cos(πt/2)

2
t ≤ 2

uinx (t) t > 2
(6.2)

As the inlet velocity is ramped, an unsteady von Kármán street forms aft of

the cylinder resulting in time varying lift and drag coefficients of the cylinder.

Validation data for this case incorporates this variation, in the form of maximum

lift and drag coefficients and the Strouhal number of the flow.

Figure 6.8 shows the time variation of the drag and lift coefficients in compar-

ison with the upper and lower bounds of the maximum coefficient value from

the validated data. It can be seen that the lift coefficient is within the bounds

and therefore in good agreement with the validation data. However, the drag

coefficient is over-predicted. This over-prediction has been attributed to the use

of the immersed boundary method by O’Connor [141] and the blurred boundary

created by the support stencil used effectively increasing the diameter of the cir-

cle. It is not thought to effect the lift coefficient since the blurred boundary is

present at both the top and bottom of the cylinder. This observation was also

present in additional studies of this case where the immersed boundary was im-

plemented demonstrating the correct behaviour of the present method relative to

prior studies [148,149].
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Figure 6.8: Coefficients of drag (left) and lift (right) over time for the flow around
a rigid cylinder case with upper and lower bounds for the maximum value of each
coefficient from numerical benchmark data [8].

6.3 IB - V-model Development and Validation

In order to validate the interpolation procedure developed in Section 5.4 to al-

low multiple immersed boundary markers to act on a V-model particle, i.e. allow

higher resolution of the fluid than the structure, a test case was designed whereby

a cantilever beam is subject to a distributed load on it’s top surface. The dis-

tributed load is then discretised and applied directly to the V-model particles to

provide validation results.
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Figure 6.9: Cantilever beam deflection under distributed load. (Left) Load is dis-
cretised through dummy immersed boundary markers located along the blue line
on the top surface of the beam. (Right) Zoom highlights exact marker locations
along the boundaries, independent of particle centre locations.
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Figure 6.9 shows the beam deflection with the distributed load applied through

the dummy immersed boundary markers located on the top surface of the beam

in comparison to the load applied directly to the V-model particles. It can be

seen in Figure 6.10 that as the dummy immersed boundary marker resolution

is increased, the resulting tip deflection tends towards the direct loading case.

However, it does not match this result exactly due to the discretisation of the

load on the last particle at the tip of the beam. This particle receives loads

through the dummy immersed boundary markers from one side and therefore

has half the load as the other particles. While this causes a difference between

the direct loading and immersed boundary loading results, it can be described

as discretisation decision as opposed to an error, while the magnitude of the

difference decreases with increasing resolution.

0 2 4 6 8 10
Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ti
p 

de
fle

ct
io

n 
in

 th
e 

y 
di

re
ct

io
n 

(m
)

V-model (direct)
IBM, dx = 0.01 m
IBM, dx = 0.001 m

1.2 1.4 1.6 1.8 2 2.2
Time (s)

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4

Ti
p 

de
fle

ct
io

n 
in

 th
e 

y 
di

re
ct

io
n 

(m
)

Figure 6.10: Tip deflection time histories for a cantilever beam under a uniform
distributed load where load is discretised directly onto the V-model particles
and via dummy immersed boundary particles at different resolutions using a
linear interpolation method. (Left) Entire time history. (Right) Zoomed area
corresponding to dashed box on left figure.
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6.4 Fluid-structure Interaction Development

and Validation

6.4.1 Validation: Flexible Beam in a Tank

This case was originally proposed by Gluck et al. [150] and has been further

investigated in additional studies [132,149]. The numerical methods implemented

in each study are included in Table 6.4 along with the domain size modelled. The

case consists of a flexible plate (beam in two dimensions) within a tank where

the fluid is initially at rest. A time-dependent distributed load of 75 N/m is then

applied to the beam according to:

F (t) =





75.0 t ≤ 0.5

0.0 t > 0.5
(6.3)

Once the load has been removed, the beam is allowed to oscillate around its

equilibrium position with the viscosity of the fluid damping the amplitude of the

oscillation. The effect of viscosity variation is tested using viscosities of 0.2, 1 and

5 Pa.s (referred to as low, medium and high viscosities throughout the analysis)

and the time history of the beam tip deflection recorded and compared against

that of previous studies.

Table 6.4: Summary of numerical methods and domain set-up, employed by pre-
vious works. FVM = finite volume method, FEM = finite element method, LBM
= lattice Boltzmann method, ALE = arbitrary Lagrangian Eulerian, IBM =
immersed boundary.

Article Fluid Structure Coupling Domain Size

Gluck et al. [150] FVM FEM ALE unspecified

Namkoong et al. [132] FEM FEM ALE 6m × 50m

Lee and Lee [149] LBM FEM IBM 5m × 20m
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Table 6.5: Flexible beam in a tank validation case properties.

Fluid Property Value (Units) Structure Property Value (Units)

Density 1 (kg/m3) Length 1.0 (m)

Viscosity 0.2, 1.0, 5.0 (Pa.s) Width 0.06 (m)

Density 2550 (kg/m3)

Young’s Modulus 2.5 (MPa)

Poisson’s ratio 0.33

Figure 6.11 is a schematic of the case while Table 6.5 contains the fluid and

structure material properties. Note that the originally proposed case was in three

dimensions with a depth of 0.4m and a distributed load of 30 N/m2. In order

to convert the case to two dimensions, a distributed load of 75 N/m is instead

applied. In addition, it is worth noting that this validation case could be carried

out with nondimensional parameters. However, the case definition proposed by

Gluck et at. [150] is followed here.

0.06 m

20 m

1 m

5 m

75 N/m

Figure 6.11: Schematic of the cantilever beam in a tank case.

From the tip deflection time histories shown in Figure 6.12, excellent agreement

with results from previous researchers can be seen for the low and medium fluid

viscosity cases. However, for the high viscosity case over damping of the struc-

ture can be seen. Table 6.6 contains the damping ratio for each of the viscosities

in comparison to those calculated from previous studies, calculated via the log-

arithmic decrement method. This method is accurate for damping ratios in the

under-damped region such as those presented in this case. It can be seen that

the discrete FSI method developed here is within the range of damping ratios for

both the low and medium viscosity cases, however a much larger damping ratio

is predicted for the high viscosity case resulting in the over-damping and reduced
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Table 6.6: Damping ratio for the discrete FSI method (LBM-IBM-V-Model) for
each fluid viscosity in comparison with validation data.

Viscosity Model Damping ratio

0.2

Gluck 0.01241
Namkoong 0.00734
Lee and Lee 0.01004
LBM-IBM-V-Model 0.00931

1

Gluck 0.02530
Namkoong 0.02531
Lee and Lee 0.02850
LBM-IBM-V-Model 0.02806

5

Gluck 0.10444
Namkoong 0.07066
Lee and Lee 0.09563
LBM-IBM-V-Model 0.12770

tip deflection observed in Figure 6.12. It is worth noting the range in results from

previous researchers has been attributed to the different methods employed by

each and the domain dimensions of the tank used [107]. It is also worth noting

that in the high viscosity case, the viscosity is significantly larger than the vis-

cosity of blood and therefore the method performs well in the viscosity range of

concern.

6.4.2 Validation: Laminar Flow around a Rigid Cylinder

and Attached Flexible Flag

The benchmark validation case for highly deformable structures in laminar flow

conditions was proposed by Turek and Hron [7] and has been used extensively by

the fluid-structure interaction community [127, 151, 152]. This case consists of a

flag which is excited due to the vortex shedding from a proceeding cylinder. The

results are included within a journal article, “A discrete fluid-structure interaction

approach for highly deformable elastic bodies” in Appendix D and therefore are

not repeated here.
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Figure 6.12: Tip deflection time histories for a flexible beam with initial dis-
tributed load oscillating in a tank of stationary fluid where the viscosity of the
fluid damps the amplitude of oscillation.

6.5 Time Step Ratio Validation

As previously described in Section 5.5.1 there is a significant difference between

the operational time steps of the LBM and V-model solvers i.e. the fluid will be

spatially over-resolved in order to reduce its time step size to match that of the

structural solver. Using smaller sub time steps for the V-model allows for more

efficient computation but can lead to error accumulation when employing the

weakly coupled scheme described in Section 5.5.2 since the immersed boundary
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force applied to the structure is not updated until the next fluid time step. This

error accumulation is greater when the magnitude of the time gradient of the

immersed boundary forces is large. This error does not occur when using the

strongly coupled scheme due to the iterative nature of the scheme, however it

may lead to slower convergence.

Using the validation case presented in Section 6.4, simulations are configured

using different ratios between time steps R ranging from 1 to 20. The spatial

resolution remains constant for all configurations, enabling direct comparison

of the relative accuracy and computational times between the configurations.

However, the resolution of the discretised structure is reduced due to the increased

computational cost of using the same time step size for the fluid and structure.

This increase is prohibitively large using the resolution used in the validation

study.

Table 6.7: Maximum tip deflection, damping ratio and frequency error (%) for
each time step ratio.

Time step ratio Maximum tip deflection Damping ratio Frequency

2 0.0113 0.241 <0.01

5 0.0451 0.930 <0.01

10 0.118 2.132 <0.01

20 0.231 4.499 <0.01

The maximum tip deflections, frequency and damping ratios of each case are in-

cluded in Table 6.7 and while the tip deflection time history is shown in Figure

6.13. It can be seen that using different ratios has minimal effect on the frequency

of beam oscillation. This is to be expected since the frequency of oscillation is

dominated by beam stiffness rather than the flow characteristics and while the

damping ratio has some effect on the frequency, the relatively small variation in

damping ratio results in <0.01% difference in the predicted frequency. The am-

plitude of oscillation is initially in good agreement for each of the configurations,

however the cumulative effect of the damping ratio error results in significant

differences in amplitude after 5 oscillations when using large time step ratios as

shown in Figure 6.13. Given the cyclic nature of cardiovascular flows, and the

general rule of thumb to allow 3 cycles to occur for transient simulations before

flow field measurements should be taken, these results indicate care should taken
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Figure 6.13: Tip deflection time histories for the 1 Pa.s viscosity case presented in
Section 6.4 using different fluid to structure time step ratios. (Left) Entire time
history. (Right) Zoomed area corresponding to dashed box on left figure.

when utilising large time step ratios.

The objective of introducing time step ratios between fluid and structure solvers

is to reduce the computational time required to model a given problem. For

each of the time step ratio configurations, the total computational time and the

computational time per time step is presented in Figure 6.14. It can be seen that

as the time step ratio is increased, the total computational time reduces as a result

of the reduced number of fluid time steps that are modelled. Correspondingly,

the computational time per time step increases due to the increased number of

loops of the V-model solver that occur per fluid time step.

6.6 Software Development

As part of this body of work, a number of pieces of software have been devel-

oped or adapted in order to implement the fluid-structure interaction method

presented. These are summarised in Table 6.8 with indication of the current

development status including whether the code as been validated.
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Figure 6.14: Normalised computational time to simulate the full time domain
and computational time per time step for each of the fluid to structure time step
ratios.

Table 6.8: Summary of software developed during this PhD

Code Development Process Validation Status

V-model (CPU) Bespoke Validated

V-model (GPU) Bespoke Validated

FSI (CPU) Development of O’Connor [141] Validated

FSI (CPU + GPU) Development of O’Connor [141] Ongoing

Bespoke V-model solvers were written for both CPU and GPU architectures

in C++ and CUDA C respectively. Version control was also utilised during the

development process via Git. Both codes are currently unlicensed, however future

work will consist of publishing the codes in relevant journals such as Software X

along with open-source licences.

The fluid-structure interaction method involved adapting a pre-existing C++

code developed by O’Connor [141], replacing the nonlinear FEM solver with the

V-model. This code exploits the object orientated nature of C++ allowing the

modularity of the structural solver; the FEM and V-model solvers can be inter-

changed as appropriate. The adapted FSI code is unlicensed (as is the original

FSI code) but again future work will look to publish this code with an open-source
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license.

6.7 Summary

This chapter serves as a concise summary of the model developments undertaken

during this work in order to facilitate the research output in the form of journal

articles appended to this thesis. Furthermore, validation for each of the develop-

ments has been included, along with validation of the solvers in isolation and as

a fully coupled fluid-structure interaction method. The next chapter, in keeping

with a journal format thesis, summarises the significance and contributions to the

field of each the research outputs generated from this work, the journal articles

appended to this thesis.
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Chapter 7

Contributions to the Field

Detailed results are presented in the form of four journal papers that are appended

to this thesis. The present chapter outlines the major contributions of each

with their relevance to the three main objectives of the PhD; repeated here for

clarity:

1. Establish current best practice

Assess current literature and undertake initial evaluation of traditionally

employed numerical methods via a brief application-based study; to gain

greater understanding of the field and to identify opportunities to improve

upon current best practice.

2. Development of LBM-DEM FSI method

Integrate the best candidate discrete element solver into a partitioned FSI

scheme. The selected methods will have the ability to meet challenges

identified in the first objective.

3. Preparing the FSI method for cardiovascular applications

The developed FSI method must be able to provide clinicians with analysis

within short timeframes. In order to do this, many core parallelisation of

the method is implemented. Furthermore, the capability of the structural

solver to include stochastic material models is investigated.
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7.1 Establish Current Best Practice

In order to effectively assess numerical methods that are often utilised for cardio-

vascular applications, a short application based study involving computational

fluid dynamics analysis of abdominal aortic aneurysms (AAA) was conducted.

This study lead to a publication in the form of Paper 1, and involved collabo-

ration with clinicians. This work compared CFD studies of geometries extracted

from both 3D ultrasound (3DUS), and high-resolution CT imaging, in particular

to assess the potential of 3DUS - a much cheaper and less invasive approach.

Important patient-specific haemodynamic metrics linked to the risk of aneurysm

rupture were computed and compared. The flow was modelled using the FVM

based commercial solver, STAR CCM+, a tool commonly used for cardiovascular

applications.

Comparison of the 3DUS and CT derived geometries demonstrated a good degree

of qualitative similarity between the two. In particular, both imaging modalities

were able to capture the presence of an intraluminal thrombus and the associated

reduction in lumen volume at the front of the aneurysm. This high-level analysis

provided confidence to proceed with numerical analysis of the geometries.

The geometry preparation procedure was evaluated through the comparison of

geometry quality, measured by face aspect ratio and volume shrinkage, resulting

from commonly implemented smoothing algorithms; basic Laplacian, HC Lapla-

cian (extended Laplacian) and the Taubin low-pass filter. As a result of this in-

vestigation, it was clear that the basic Laplacian algorithm provided geometries

of lesser quality than that of the extended Laplacian and Taubin low-pass filter.

It was therefore excluded from the remaining analysis. The Taubin low-pass filter

produced the highest quality geometries, however since the improvement against

the HC Laplacian was minor, CFD analysis was performed using both geometries

in order to explore the sensitivity of smoothing algorithm with associated geome-

try quality to such analysis. Wall shear stress (WSS), a metric strongly associated

with the formation, growth and rupture of AAAs, was selected as the sensitivity

parameter. It was demonstrated that the observed difference due to the smooth-

ing algorithms was minimal, with both able to capture the main characteristics

of the WSS distribution, even in areas of flow recirculation.

While the WSS distributions predicted by CT and 3DUS had quantitative differ-
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ences, both geometries identified the same area of minimum WSS, an indicator

of location likely to rupture. Discussion with clinicians corroborated the pre-

dicted site of rupture - the area at the neck of the artery - as a likely location.

This result demonstrates the feasibility of using 3DUS generated geometries in

future numerical analysis to the community and led to the initiation of an addi-

tional PhD project at the University of Manchester to investigate the feasibility

of modelling fluid-structure interaction via 3DUS generated geometries.

The evaluation of CFD methodologies applied to cardiovascular applications was

intended to be supplemented by a traditional literature review in the early stages

of the PhD program. During this survey however, it became apparent that a num-

ber of high-quality, CFD-focussed cardiovascular modelling review papers were

already available in the literature, while an equivalent application-specific review

across scales and applications for structural modelling had yet to be conducted.

The purpose of Paper 2 is to fill this gap and act as an accessible introduction

to newcomers to the cardiovascular modelling field.

A major contribution from this paper is the summary of general modelling con-

siderations that are undertaken when approaching this field. For newcomers, this

is not always intuitive and in many published studies, this level of detail is often

assumed. By explicitly providing an overview of these considerations, it increases

the accessibility of other studies to a wider audience. In addition, a comparison of

discrete and continuum modelling approaches is provided with details of underly-

ing assumptions and governing equations as well as advantages and disadvantages

of each. Again, this side-by-side comparison is often assumed knowledge by jour-

nal publications in the field and therefore through this comparison, accessibility

to literature is increased.

Details of material models commonly implemented in a range of cardiovascular

applications are also included within this paper. These methods range from gen-

eral purpose models such as the neo-Hookean, to re-purposed models such as

the Mooney-Rivlin, to tissue specific models such as that proposed by Holzapfel

et al. [13] for coronary arteries. A key contribution here is the reformulation

of each model to ensure consistency between each. This demonstrates the rela-

tionships between them and clarifies the additional terms introduced by models

representing more complex physical characteristics such as viscoelasticity.

After discussing the methodologies implemented in cardiovascular applications,
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the paper explores the scientific advancements produced through their utilisa-

tion in a number of major applications including the heart, vessels, aneurysms,

atherosclerotic plaques and red blood cells (RBCs). While a number of applica-

tion specific review papers already exist, e.g. entirely focussed on modelling of

intracranial aneurysms, this work was intended to be more holistic. By reviewing

the field as a whole, general trends in developments independent of application

were identified, suggesting that developments in one application could be trans-

lated to others relatively quickly. The paper concludes with a timeline of some

of the major advancements in the different applications which can provide the

reader with starting points to conduct their own literature reviews.

7.2 Development of an LBM-DEM FSI method

Given the opportunity identified in the first objective to implement discrete meth-

ods in cardiovascular applications, it was first necessary to assess the capability

and performance of these methods. The lattice Boltzmann method, used as the

fluid solver, is relatively mature in the field demonstrating both accuracy and

the capability to integrate complex physics [32, 153]. However, the vector-based

discrete element method (V-model) is much less mature having been recently

proposed by Kuzkin and Asonov [106] for granular materials. Furthermore, its

application to elastic bodies is even more recent [107] and therefore formally es-

tablishing its ability to represent the dynamics of elastic bodies accurately and

the potential to incorporate complex physics is essential. This forms a key con-

tribution in the form of Paper 3. The V-model is validated for quasi-static and

dynamic validation cases under a variety of external loads. The performance of

the method is compared against analytical solutions and numerical results ob-

tained via a commercial non-linear FEM solver (ABAQUS 2017). In particular,

the validation of a time-varying load represents the first dynamic validation of

the V-model for such a case.

In addition, the order of convergence of the V-model was robustly measured

to be first order, using the constant load dynamic case and ensuring constant

beam aspect ratio. This is the first published assessment for the V-model and

one of the first for any discrete element method representation of an elastic body.

Analysis such as this is common place for more mature methods, and therefore by

conducting these investigations it provides other researchers with more confidence
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in the method should they decide to implement it themselves.

A further key contribution from Paper 3 is the extensive discussion of numerical

implementation details. A pseudo-code algorithm is included outlining the initial

set-up of vectors and matrices containing particle properties such as position,

velocity and acceleration. The importance of the matrix containing the bond

connectivity is emphasised; where the particle ID of the two particles connected

by the bond is stored. This matrix forms the main loop for the algorithm of the

basic implementation presented in the paper and as such is fundamental to the

solver. As a result of the in-depth discussion of the numerical implementation, the

reader should be able to easily reproduce the solver for their own investigations.

Paper 4 presents the coupled FSI solver using the LBM fluid solver and the V-

model structural solver coupled via the IBM. Formulation details of each method

are provided, including details and rationale behind the inclusion of developments

from other studies such as the three-point stencil used to couple the LBM and

IBM. In this paper, each of the solvers is validated in isolation to demonstrate the

robustness of the fully-coupled FSI solver validation results. In particular, the

V-model validation case was proposed by Turek and Hron [7] as an intermediary

step towards the FSI validation case. Here, the flexible flag of the FSI case

is subjected to a reduced gravitational force with the tip deflection validated

against the numerical benchmark. This case is significant for a two reasons.

Firstly, excellent agreement is observed with the numerical benchmark results

with less than 1% error between the tip deflection predicted using the V-model

and the validation data. Secondly, this represents the first published validation

case using the V-model to model an elastic material with a Poisson ratio greater

that 1/3 using a constitutive model. Previous studies have directly enforced a

shear coefficient [130] rather than via a constitutive model due to the restriction

imposed by the previously implemented constitutive model [119].

Validation of the FSI method was conducted by incorporating the validated flex-

ible flag, with the new constitutive model capable of modelling higher Poisson

ratios, into the FSI validation case. Good agreement was demonstrated for the tip

deflection against the numerical benchmark data (<5%). This is in spite of the

variation in coupling approach between benchmark data and the present work.

The numerical benchmark results were produced using a monolithic solver, where

the fluid and structure governing equations are solved simultaneously. This type

of approach is well known to produce highly accurate results in comparison to the
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partitioned approach implemented within the presented FSI method where the

governing equations are solved sequentially [127]. As a result of this validation,

the coupling of the solvers can be considered correct, and further developments

can be made to the method by the community.

7.3 Development of the FSI method towards

cardiovascular applications

One of the key motivations behind the use of the V-model is its capability to model

complex phenomena. This is explored in Paper 3 where stochastic modelling of

the structure material properties is implemented. As an example case, two values

of bond Young’s modulus are distributed throughout the discretised structure

where the ratio between the two Young’s moduli (E1,E2) is 5:1. 100 random

distributions were simulated with different relative contributions of each Young’s

modulus, ranging from 90%/10% through to 10%/90%, in order to demonstrate

the sensitivity of mechanical response to the distribution. The tip deflection of

the associated homogeneous beams (where all bond stiffnesses are set to either

E1 or E2) were used to indicate boundaries in which the tip response of the

different distributions should lie between. The results of this case demonstrated

a large range in response due to the distribution but in a consistent manner for

each combination of stiffnesses and within the bounds of the homogeneous beams.

This highlights the V-model’s ability to capture this variation, especially given

that little additional treatment of the solver was necessary and no additional

computational resource was required. Using a similar stochastic variation with

cardiovascular material models has the potential to improve our understanding

of the effect of the natural variation in mechanical properties of cardiovascular

tissue as well as its changes through disease.

A drawback generally quoted in the use of discrete element methods such as the

V-model is the computational cost. On discussion with clinicians, it has emerged

that computational times for numerical analysis within a clinical setting should

not exceed more than a few hours. As a result, the implementation of the FSI

method must be further developed in order to reduce the computational time.

The LBM and the V-model are well suited to parallelisation through the use of

GPUs. Extensive work has been published with regard to GPU acceleration of

132



LBM solvers [20, 21, 154] however this is not the case for the V-model. Paper

3 details the first implementation of a GPU-based V-model solver, discussing its

implementation in relation to that of a CPU-based solver. Acceleration testing

of the solvers demonstrated the GPU-based solver to be around 20 times faster

than that of the serial CPU-based solver despite using modest GPU hardware,

a GeForce GTX1060 6Gb card (∼£200 at the time of writing). As stated in

the paper, further acceleration is expected using so called general-purpose GPUs

(GPGPU) which have been designed with scientific computing in mind.

The GPU-based V-model solver also allowed the resolution of V-model particles

to be drastically increased in the validation cases presented in the paper. To

the best of the author’s knowledge, the number of particles that were simulated

were at least an order of magnitude larger than in previously published results.

As a result of this increased resolution, the V-model is able to more accurately

capture the dynamics of the problem. Furthermore, additional data points for the

convergence rate assessment could be obtained given that in order to maintain

the aspect ratio of the structure using the implemented particle arrangement,

the number of particles across the width of the beam must be doubled for each

increase in resolution.

With regards to developing the FSI method specifically, details of an iterative,

strongly coupled scheme are included within Paper 4. This is the first strongly

coupled FSI method to include the V-model and has a significant impact on

the ability of the FSI method to model cardiovascular conditions. Since the

density of cardiovascular structures and blood are very similar, approximately

2:1, there is a strong added-mass effect which reduces accuracy and stability of

the model. Without the iterative coupling scheme presented in Paper 4 ensuring

the interface conditions are satisfied at the boundaries, the FSI method is unable

to be applied to cardiovascular applications. In addition, the paper demonstrates

the ability to implement different time step sizes for the fluid and structure solvers,

while maintaining accuracy in the solution. This coupling scheme could therefore

be applied to any fluid or structure solver where the difference between the critical

timesteps are large. This often occurs when using discrete methods are coupled.
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7.4 Summary

In line with the University of Manchester regulations for a Journal Format Thesis,

this chapter summarises the main contributions of the journal papers output from

the research presented in this body of work. The contributions are grouped in

relation to the objectives of the project, demonstrating both the significance of

the research output and the fulfilment of the project aims.
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Chapter 8

Summary and Future Work

8.1 Summary

The PhD project presented in this thesis has focussed on the development and im-

plementation of a novel fluid-structure interaction method incorporating discrete

numerical methods capable of modelling complex physics with the long-term aim

of applying the method to cardiovascular problems. This thesis is in journal for-

mat, as is permitted by the University of Manchester, with the research outputs

in the form of journal papers appended to the thesis.

The main body of the thesis begins by introducing the motivation behind this

work, namely improving the clinical treatment of cardiovascular diseases in Chap-

ter 1. This can be done by providing clinicians with additional information

upon which to based their decisions through numerical analysis and in particular

through modelling the interaction between blood and cardiovascular structures.

Examples of numerical analysis in clinical settings already exist and have proven

effective, for example the virtual Fractional Flow Reserve analysis (vFFR) which

is able to replace angiograms in a number of instances [10].

The opportunity to utilise discrete numerical methods was identified through a

survey of literature in the field in Chapter 2 and Appendix B, supplemented by

a brief application-based study of abdominal aortic aneurysms using commercial

numerical solvers in Appendix A. Discrete numerical methods are more readily

able to model complex physics that occur in many diseases such as rupture and

aggregation, than continuum methods that have been traditionally used in nu-
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merical analysis of large scale cardiovascular applications. However, the compu-

tational cost of discrete methods is significantly higher that continuum methods

due to the increased resolution required to accurately represent a problem and

therefore their use has been restricted severely at large scales. The use of high

performance computing (HPC) to massively parallelise simulations has tempered

this limitation, however access to such facilities is not always possible and can

be expensive financially. Graphics Processing Units (GPUs) can offer signifi-

cant reductions in computational time, again through large scale parallelisation,

with smaller hardware requirements. The discrete numerical methods, the lattice

Boltzmann method (LBM) and vector-based discrete element method (V-model),

integrated into the FSI method are well suited to GPU architecture due to the

local nature of the methods. As a result, their use at large scales O(10−2m) for

cardiovascular applications is feasible.

Discussion of the underlying methodologies for the LBM, V-model and the cou-

pling method, the immersed boundary method (IBM), are included in Chapters

3, 4 and 5. In addition, details of the strong coupling scheme, the block Gauss-

Seidel scheme (BGSS) are included. The FSI method is strongly coupled due to

the conditions experience in the majority of cardiovascular applications; the den-

sity of blood and the cardiovascular structure under investigation are well within

an order of magnitude and therefore a large added-mass effect exists, reducing

the accuracy and stability of weakly coupled schemes.

A detailed summary of model developments that facilitated the research included

in the journal papers is included as a standalone chapter in Chapter 6. Significant

modelling developments include the development of the first GPU V-model solver,

a coupling scheme capable of integrating different time steps between the LBM

and V-model and a linear interpolation procedure between the IBM and V-model

allowing independent resolutions of the fluid and structure to be modelled.

The main body of the thesis concludes with a detailed discussion of the contri-

butions to the field made by the journal publications appended to the thesis.

The major contributions include the development of a novel, strongly coupled

fluid-structure interaction method incorporating the V-model and the first GPU

implementation of the V-model.
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8.2 Future Work: Development for

Cardiovascular Applications

The FSI method presented in this thesis will be further developed during an EP-

SRC Doctoral Prize Fellowship immediately following this work. This section

summarises the current development status of the validated FSI method towards

cardiovascular applications with details of on-going work that will be completed

during the fellowship. Furthermore current issues and limitations will be dis-

cussed in conjunction with potential method developments to resolve them.

Figure 8.1: Realistic venous valve case setup using the FSI method. Valve and
vessel walls discretised using the V-model particle generator with 10,000 particles.

8.2.1 Overview of Current Development Progress

Since the FSI model has been validated for structures undergoing high levels of

deformation in Chapter 6 and Appendix D, it can be applied to realistic valve

geometries such as that shown in Figure 8.1. The geometry has been discretised

with ∼30,000 particles using the V-model particle generator which will be dis-

cussed in Section 8.2.2. While this level of discretisation should be sufficient to

capture the dynamics of the structure, further development of the FSI method

is required in order to effectively model this type of geometry and its interaction

with a fluid. In particular, these developments are required in order to reduce the

computational time of any simulation and to increase the stability of the method.
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An overview of the numerical method development currently on-going to achieve

these aims is shown in Figure 8.2. Each of these developments will be discussed

individually in this chapter.

Validated FSI 
model

GPU structural solver 
in FSI model

2-way, smoothed IBM 
to V-model 

interpolation
Dynamic relaxation 

parameter

Unstructured particle 
arrangements

Figure 8.2: Numerical modelling developments in progress in order to improve
the stability and computational speed of the FSI method.

8.2.2 V-model Particle Generator

In the validation cases presented in this work, the structure has been rectangular

in shape in the form of beams and flags. For the structured particle arrangements

of the V-model, either in the 7-disk (triangular) or 9-disk (rectangular) config-

urations, discretising these geometries via robust algorithms is straightforward.

However, since the long-term aim of this work is to apply the FSI method to

patient-specific cardiovascular geometries, the development of a V-model parti-

cle generator capable of discretising any geometry, irrespective of complexity, is

critical.

The method developed here for geometry discretisation is able to fill a given

area defined by a boundary in Cartesian coordinates with V-model particles us-

ing a seed-fill algorithm. This process is shown in Figure 8.3 for an idealised
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Seed particle placed

Seed particle surrounded in
 structured arrangement

Particles fill entire area but 
do not cross the boundary

Multiple loops

Multiple loops

Figure 8.3: Progression of the seed filling algorithm used to generate structure
arrangements of V-model particles within a boundary. Initial seed particle (top)
is then surrounded by further particles (middle) until the boundary is reached
and the area is filled (bottom).

atherosclerotic plaque geometry at low resolution for visualisation purposes. Once

the particles have been created, the bonds between them are identified using a

nearest neighbour search. For FSI applications, the immersed boundary markers

are placed along the boundary bonds, therefore requiring identification of both

the boundary particles and corresponding bonds. This procedure is completed

through identifying particles with incomplete particle connections, i.e. particles

with less than six attached bonds in the triangular structured arrangement, and

eliminating particles that are located at the edge of the computational domain

for both the fluid and the structure e.g. located at an inlet or outlet. The fi-

nal step is to identify particles upon which boundary conditions will act such as

clamped particles via identifying particles located in user defined clamped areas.

The algorithm can be summarised as follows:

1. Define geometry area with boundary Cartesian coordinates

2. Fill geometry area with V-model particles in structured arrangement using

seed-fill algorithm

3. Create bonds between particles

4. Identify boundary particles and bonds

5. Identify particles on which boundary conditions act

139



6. Export data to file to be read by V-model or FSI solver

The algorithm developed here is restricted to two dimensions although extension

into three dimensions should be straightforward along with alternative structured

arrangements [155]. On extension of the V-model for unstructured particle ar-

rangements, more sophisticated packing algorithms are required. The current

procedure has been used to create the realistic venous valve case geometry in

Section 8.2.1 and is applicable to 2-D patient-specific geometries.

8.2.3 Coupling Scheme Relaxation Parameter

A constant relaxation parameter is currently implemented in the iterative cou-

pling scheme as described in Section 5.5.3. The relaxation parameter is set to a

constant value in the range of 0 to 1. In general, values closer to zero increase the

stability of the scheme but require more iterations. As a result, an optimum value

should be implemented in order to ensure stability but not increase the computa-

tional resource requirement unnecessarily. However, this value is often case and

time dependent. In addition, the coupling between the solvers is currently less

stable than would be expected and therefore lower relaxation parameter values

are required to maintain stability particularly when the structure deformation is

large. The computational time is therefore larger than would be expected also.

By using a dynamic relaxation parameter scheme such as Aitken’s Delta Squared

method [141], the relaxation parameter can be optimised throughout the simula-

tion and reduce the number of iterations required. The relaxation parameter is

updated via:

ωk = −ωk−1 (rk−1)T (rk − rk−1)

|rk − rk−1|2
(8.1)

where ω is the relaxation parameter, r is the residual relating to the difference

between the velocity of the fluid and structure at the boundary and k is the

iteration number. Aitken’s Delta Squared method is one of the most popular

approaches for accelerating implicit coupling schemes due to ease of implementa-

tion and convergence efficiency. Previous studies have shown decreases in overall

computational time using this method [156].
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8.2.4 Integration of GPU V-model Solver into FSI

Method

Work is currently in progress to integrate the GPU-based V-model solver, pre-

sented in Section 6.1.2 and Appendix C, into the FSI method. Due to the differ-

ence in critical time steps between the LBM and V-model, a smaller structural

time step is used in the FSI coupling scheme as shown in Figure 5.8. These ad-

ditional time steps for the structure increase the computational resource require-

ment for the method, although the increase is small in the case of the validation

case presented in Section 6.4 and Appendix D. However, due to the small density

ratio of blood and cardiovascular tissue, the time step ratios required for the ve-

nous valve case are an order of magnitude larger than in the validation cases. This

has little effect on the accuracy of the method since the strong coupling scheme

is iterative. However, it severely restricts the resolution of the V-model parti-

cles that can be modelled using the CPU-based solver since the computational

resource requirement is drastically larger.

The GPU-based V-model solver has demonstrated computational speed-ups of

around 50 times that of the serial CPU-based solver when used in isolation. As

a result, its implementation with the current FSI solver will have a significant

impact, decreasing the computational time required to model cases such as the

realistic valve case depicted in Figure 8.1. Furthermore, the integration of the

GPU-based V-model solver will serve as a useful intermediary stage in the long-

term development of a fully GPU-based FSI solver.

8.2.5 Interpolation between IBM and V-model

The interpolation procedure between the immersed boundary method and the

V-model developed during this PhD has been used to produce good agreement

with the numerical benchmarking case proposed by Turek and Hron [7]. This

case features large deformation over short time periods and as such is considered

a robust test of an FSI method. However, the geometry of the flexible flag is eas-

ily discretised using the structured triangular arrangement of V-model particles.

Consequentially, the boundary between the fluid and structure created by the

immersed boundary markers, which follow the path between the centres of the

V-model particles, represents the geometry of the flexible flag accurately. Some
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error does exist since the immersed boundary discretised beam is effectively one

particle thinner that the V-model discretised beam as shown in Figure 8.4. How-

ever, this error decreases with increasing V-model resolution since the particle

diameter also decreases and is further reduced by the diffusive boundary created

by the IBM.

Figure 8.4: V-model particle discretisation of a beam (left) and an arbitrary shape
(right) where the black line signifies the geometry boundary and the blue line
signifies the path on which the immersed boundary markers lie.

On extension of the FSI method towards cardiovascular applications where patient-

specific geometries will be used, it became clear that for bodies with boundaries

with high curvature, the structured particle arrangement can struggle to accu-

rately represent the boundary. This is especially true at low resolutions. Since

the immersed boundary markers still follow the centres of the V-model particles

at the boundary, this discretisation is also a less accurate representation of the ge-

ometry, often demonstrating a jagged boundary as shown in Figure 8.4. This can

cause instabilities at the boundary, causing simulations to fail. Work is currently

in progress to develop an interpolation procedure that will allow the immersed

boundary markers to be placed along the edge of the V-model particles, with the

immersed boundary force interpolated on to the centre of the V-model particles

as shown in Figure 8.5.

Figure 8.5: Alternative path for the immersed boundary markers, following the
outermost edge of the boundary V-model particles as opposed to the centres of
the V-model particles as shown in Figure 8.4.
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8.2.6 V-model Particle Arrangement

An alternative solution to the issue described in the previous section is to imple-

ment an unstructured particle arrangement that is able to accurately resolve the

boundary. Previous work by Tavarez et al. [9] has implemented an unstructured

particle arrangement for a traditional DEM as shown in Figure 8.6. Using the

unstructured particle arrangement, they were able to demonstrate good reten-

tion in accuracy in comparison to an FEM solution when modelling the dynamic

response of a cantilever beam.

Structured arrangement

Unstructured arrangement

Figure 8.6: Structured (top left) and unstructured (bottom left) particle arrange-
ments for DEM simulation of cantilever beam subject to time-varying load. Un-
structured tip deflection time history in comparison to FEM solution. Adapted
from [9].

Initial work on this development has demonstrated accuracy of the V-model is

retained when loosening the structured arrangement by around 2% of the bond

length of the equivalent structured arrangement. However, for larger variation in

the arrangement the method becomes unstable. As a result, it may be necessary

to remove the condition that particles are the same size in order to effectively

model the unstructured arrangement. This will require reformulation of the un-

derlying governing equations as described by Kuzkin and Asonov [106].

8.2.7 Long-term Future Work

In addition to the on-going work, extension of the FSI method into three di-

mensions will be necessary to capture the geometric variation of cardiovascular

143



structures. GPU implementation of the full FSI method will reduce computa-

tional times and will facilitate the 3D development given its associated increase

in computational resource requirement.
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Abstract

The current criterion for surgical intervention in Abdominal Aortic Aneurysms, based upon a
maximal aortic diameter, is considered conservative due to the high mortality rate in case of rupture.
The research community is actively investigating the use of computational mechanics tools combined
with patient specific imaging to help identify more accurate criteria. Widespread uptake of a successful
metric will however be limited by the need for Computed Tomography, which is at present the primary
image extraction method on account of the location and complex shape of the aneurysms. The use of
3D UltraSound (3D US) as the scanning method is more attractive on account of increased availability,
reduced cost and reduced risk to patients. The suitability of 3D US is assessed for this purpose in
the present work; Computational Fluid Dynamics simulations were performed on geometries obtained
from the same patient using both Ultrasound and Computed Tomography. The influence of different
smoothing algorithms is investigated in the geometry preparation stage and the Taubin Low-Pass
Filter was found to best preserve geometry features. Laminar, Newtonian, steady-state simulation
analysis identified hemodynamic characteristics to be qualitatively similar in terms of Wall Shear
Stress, Velocity and Vorticity. The study demonstrates the potential for 3D US to be integrated into
a more accessible patient specific modelling tool able to identify the need for surgical intervention of
Abdominal Aortic Aneurysms.

Keywords: Abdominal Aortic Aneurysms, Computational Fluid Dynamics, 3D Ultrasound, Patient
Specific

1. Introduction

The pathogenesis of abdominal aortic aneurysms is complex. Inflammatory and proteolytic pro-
cesses appear to be the dominant mechanisms controlling aneurysm expansion, acting in conjunction
with other less well characterized mechanisms, including hemodynamic stress, infection and autoimmu-
nity [1]. The Risk factors for AAA are well established - male sex, advanced age, smoking and a family
history in first-degree male relatives [2, 3, 4, 5]. Rupture of an AAA is catastrophic with an overall
mortality of 90% [6, 7] and is the cause of over 6000 deaths per year in the UK [8]. The growth rate
and rupture risk of AAAs is unpredictable; only smoking (increases growth, doubles rupture risk) and
diabetes (slows growth) have been proven as patient-specific factors. The cause of rupture is thought
to be due to a number of factors [9], one of which being low Wall Shear Stress (WSS) in specific areas
of the aneurysm.

Based on population studies, a maximal aortic diameter of 5.5cm for men and 5.0cm for women,
is considered the threshold for elective repair [10] equating to the point at which risk of rupture is
thought to outweigh the risk of surgery. This is clearly not an individualised approach and means that
the timing of surgery may not be optimal - currently around 10 AAA repairs are performed to prevent



Figure 1: Tool Chain employed for the present study.

one rupture [11]. There is clearly a need for more patient-specific growth and rupture risk prediction
to identify AAA patients at high rupture risk [12].

Recent attempts to improve this criterion have involved the use of Computed Tomography (CT)
scans to obtain 3D models of patient specific geometry, often in conjunction with the application of
Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) to predict WSS in the
aneurysm [10, 13, 14, 15, 16, 17]. These attempts have demonstrated the potential benefits of patient
specific geometry in the prediction of rupture for AAAs, as the characterisation of aneurysmal flow
patterns is most sensitive to aneurysm geometry over other variables [18]. However, this technique has
not been widely implemented clinically as CT scanning is expensive, delivers a significant radiation dose
and requires iodinated intravenous contrast, which is associated with cumulative nephrotoxity [19]. 3D
Ultrasound (3D US) is a novel imaging modality that has the potential to overcome these issues and be
applied to a wide patient population given that US is already used as the preliminary tool to identify
AAAs in patients [20]. Given this, 3D US systems that are readily available at point of care would
reduce waiting times. The techniques used for the generation of patient specific geometry (such as those
presented in this paper) involve the use of 3D freehand ultrasound with external magnetic tracking,
and interactive segmentation software. This system incorporates a graphical user interface (Vascular
Suite ImFusion, Munich) which is suitable to be operated by bedside clinicians. This significantly
reduces the time-line in the patient specific tool chain.

In the current work, additional smoothing is required to prepare the geometry for CFD simulation.
A number of different algorithms have been identified as suitable for smoothing of patient specific
geometries [21]. We here focus on a paired CT-US data set, both of which are smoothed using
each algorithm in turn (Laplacian, HC Laplacian and Taubin Low-Pass Filter) in order to assess the
importance and effects of geometry smoothing on fluid simulations. In this work, the accuracy of the
simulation results using 3D US geometries will be compared against those obtained through CT scans
in order to validate this technique. While most patient-specific approaches reported in previous studies
have focussed on structural analysis of the aneurysm wall using FEA, there is an identified need to
incorporate effects of the blood flow in order to improve accuracy of rupture prediction and ultimately
a coupled fluid-structure approach is sought [1, 22, 11]. In general, WSS induced by flow simulations
will be more sensitive to geometric resolution and inlet/outlet effects than wall stresses obtained by
structural analysis alone, whereby loading pressures are generally imposed to be constant. A more
stringent test of the potential of 3D US versus CT scan is thus identified in the comparison of CFD
predictions from each source, which forms the focus of the present work.

2. Methods

Figure 1 represents the tool chain for each of the two scanning techniques used in the present study.
The current study is limited to a single paired dataset in order to demonstrate the potential and the
limitations of using 3D US approach, while future and ongoing work will aim to quantify this across
a wider range of paired datasets. Patients undergoing CT angiography for planning of AAA repair at
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Figure 2: Geometry Preparation from CT and 3D US Data

University Hospital South Manchester were identified via the radiology department and gave informed
consent. Ethical approval was granted by the National Research Ethics Committee (13/NW/0468).

In the following we provide details of the independent steps in the process, from imaging through to
diagnosis, as represented by Figure 1. Steps are categorised as either image acquisition or simulation
& analysis, while diagnosis is regarded as a separate process here. We differentiate between image
segmentation and geometry preparation since the former requires physiological knowledge and the
latter is associated with facilitation of the simulations.

CT scanning. CT angiography was performed using a 128-slice Siemens SOMATOM Perspective scan-
ner (Siemens Medical, Munich, Germany). Patients were positioned supine and images at 1mm slices
were acquired from the aortic arch to the femoral heads. Arterial phase images were acquired us-
ing a bolus dose of 100 mL of the iodinated contrast medium Omnipaque 240 (GE Healthcare, UK)
administered at a flow rate of 3 mL/s.

3D US scanning. 3D US data was acquired using a Phillips IU22 ultrasound console (Phillips, Am-
sterdam, Netherlands) using a C5-1 curved array transducer. An electromagnetic tracking system
(Ascension, Vermont, USA) comprising of a field generator and two tracking sensors that attach to the
ultrasound probe, is used together with a 3D guidance software. The positional information generated
by the movement of the sensors in the magnetic field allows the system to orientate the US probe in
time and space. This positional data allows the 2D US frames to be assembled into a 3D volume.

Segmentation. CT and 3D US data were exported to prototype analysis software able to perform seg-
mentation on both datasets (ImFusion Suite, ImFusion GmbH, Munich). An interactive segmentation
algorithm was used where the operator briefly places seeds inside and outside the lumen in a number
of images slices. The ‘inside’ and ‘outside’ regions are then propagated and defused in the whole
image, defining the lumen from the surrounding aortic wall or thrombus [23]. Other structures of the
AAA (e.g. wall, thrombus) can also be segmented in the same way. Errors in the segmentation were
corrected by the user and the algorithm re-run to increase accuracy. The ImFusion software then uses
a marching cube algorithm to convert the contours generated by the segmentation into a surface mesh
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[24] that can be exported as a stereolithography file. Segmentation took less than 10 minutes for CT
and less than 20 minutes for 3D US.

Geometry Preparation. Before smoothing each geometry, smaller arteries that branch from the de-
scending aorta were removed, in this case flow from the lumen into a patent lumbar artery, as seen
in Figure 2. By removing these smaller branches, the complexity of the simulation could be reduced.
This decision was taken since the error associated with excluding these branches was deemed to be
smaller than the effect from the simple simulation set up for this preliminary study. However, it should
be noted that both imaging techniques were able to identify this artery in the same location.

The resolution of each geometry was then increased further via the application of the Butterfly
Subdivision algorithm [25]. Each geometry was imported into MeshMixer [26] to prepare the inlet and
outlets of each aneurysm for fluid simulation. Due to the high acoustic impedance of bone, US does
not pass well through the rib cage and the image can also be obscured by other features such as bowel
gas; resulting in difficulty obtaining large portions of the upstream aorta geometry. Furthermore,
the aneurysm outlet arteries (iliac arteries), tend to follow the downward curvature of the pelvis,
increasing the distance between the skin and the artery; which makes it challenging to obtain the
downstream geometry using US. In an attempt to mitigate these restrictions we restricted our focus
on the aneurysm itself, and assumed approximate constant cross-section in both up and downstream
directions by extruding planar cuts of the available data as shown in Figure 2.

The aneurysm lumen geometries were then smoothed in MeshLab [27] using Laplacian [28], HC
Laplacian [29] and Taubin Low-Pass Filter [30]. The Laplacian algorithm is widely used for a number
of applications [31] and is available in most commercial software packages [32]. However, the Laplacian
is known is suffer from shrinkage [33]. Previous research has indicated HC Laplacian and Taubin Low-
Pass Filter are better optimized for medical applications in general [21] however, it was crucial that
this be validated for AAA geometries from 3D US scans.

CFD Preprocessing. The inlet plane was extruded upstream by a distance of around three times the
diameter of the abdominal aorta and an analytical profile was applied at the inlet, as defined by Eqn 1,
where umean is the mean velocity corresponding to a mean Reynolds number of 660[34], r is the radial
distance from the centre of the vessel and rmax is the vessel radius. This procedure enables the inlet
section to be shortened in order to minimise the effects of boundary conditions, and thereby represent
a more realistic blood flow profile in the region of the aneurysm [35, 36].

uinlet = umean

(
1 −

(
r

rmax

)2
)

(1)

The outlets were also extended in a similar manner in order to prevent backflow from affecting the
fluid characteristics inside the aneurysm. It was found that the process to prepare the 3D segmented
geometry for simulation could be completed by an experienced user in under 10 minutes.

The computational grid was generated using 10 layers of prism cells with sufficient resolution
to adequately resolve the boundary layer and polyhedral cells used in the remaining domain. A grid
refinement study was conducted on a single geometry based on meshes generated with 3 cross-sectional
resolutions corresponding to total cell counts of 0.5, 1.7 and 5 million polyhedral cells. It was found
that mesh convergence was reached by the second mesh containing 1.7M cells, for which a view of
the cross-section is displayed in Figure 3.

CFD Simulation. All simulations were conducted using the commercial finite-volume code, STAR
CCM+. For the purpose of this pilot study, a steady segregated incompressible solver was employed,
assuming Newtonian laminar flow. A second-order upwind scheme was used to discretise the convective
terms of the momentum equations. Since no patient specific flow velocity data was available, the
Reynolds number was assumed to be 660 based upon the average inflow velocity and inlet diameter.
The fluid’s viscosity was set to 0.004kg/ms to represent a Newtonian blood flow and the density was
set to 1050kg/m3. A Poiseuille Flow was used at the inlet to represent a more realistic blood flow
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Figure 3: Mesh used in the CFD analysis (top) full domain, (btm) cross sectional detail.

Metric Laplacian HC Laplacian Taubin Low-Pass Filter
No. of faces 38 894 39 728 39 614
No. of vertices 19 449 20 010 19 882
Shrinkage % 98.27 99.11 99.85
Mean Aspect Ratio 0.670 0.768 0.778

Table 1: Mesh Quality Assessment of Smoothing Algorithms

profile [35] while enabling a shortening of the inlet section as described above. The cases were run
on 64 cores for 1,700,000 cells ( 30,000 cells per core). Time per iteration was around 0.5s and the
calculation continued until residuals dropped below 1x10−6; on average this required a total of 5,500
iterations, amounting to a simulation time of 45 minutes.

CFD Postprocessing. The resulting WSS was extracted and compared for both smoothing algorithms
to assess the sensitivity of the flow simulation to different smoothing algorithms. The WSS charac-
teristics of the CT and 3D US scans were then compared to determine the potential viability of 3D
US scans as a basis for surgical intervention for AAAs. The internal flow field was also assessed via a
combination of streamlines and contours of both flow velocity and vorticity.

3. Results

3.1. Assessment of smoothing algorithms

The geometry from the segmentation stage remains unsuitable for CFD analysis, on account of
remaining protrusions and tight internal corners. As such additional smoothing was undertaken using
several common approaches employed in the literature and for each algorithm applied, we assessed
the quality of the resulting surface mesh. The quality metrics, summarised in Table 1 include the
number of faces and vertices, rate of shrinkage and the mean aspect ratios of faces. As mentioned
previously, the Laplacian smoothing algorithm is known to suffer from shrinkage [29]. This results
in the geometry converging to a single point if applied excessively. Even small amounts of shrinkage
can cause geometry detail levels to be significantly reduced as well as artificially reducing the patient
specific Reynolds number through the reduction of the characteristic distance, in this case the aorta
diameter.

The face aspect ratio profile of geometries is of particular importance when creating the mesh for
CFD analysis. Low aspect ratios can cause mesh distortion resulting in inaccurate solutions and slow
convergence. Figure 4 shows the distribution of face aspect ratio for each algorithm when applied to
the geometry output from the segmentation stage. The Laplacian smoothing is shown to result in a
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Figure 4: Histogram of Face Aspect Ratio for Laplacian, HC Laplacian and Taubin Low-Pass Filter

greater number of faces which have a lower value value aspect ratio. Indeed a smearing effect is in
evidence. In contrast, the HC Laplacian algorithm and Taubin Low-Pass Filter retain a superior level
of aspect ratio over the entire mesh; both exhibiting a modal face value of around 0.75.

The HC Laplacian algorithm and Taubin Low-Pass Filter were identified as suitable for CFD
analysis based upon the superior quality of the resulting smoothed mesh and in the subsequent section
we compare the impact of selecting either one or other of these approaches.

3.2. Analysis of Wall Shear Stress

In terms of providing evidence to assess the risk of aneurysm rupture, WSS levels are often deemed
to play a crucial role, as reported in the introductory sections. Figure 5 provides a comparison of
WSS distribution for the selected combinations of image sources and smoothing algorithms. It can
been that the differences between geometries resulting from the two smoothing algorithms are minimal
when compared to the those differences arising from the two methods of scanning. Negative axial WSS
is shown in various locations indicating areas of flow recirculation. Encouragingly there are qualitative
similarities between the predicted WSS distributions arising from both the CT and 3D US data. Areas
of lowest WSS are identified in similar locations for both scanning methods and smoothing algorithms,
as demonstrated by the minimum points located in the top right of the aneurysm wall in the front
view and located at the top of the side view. In the clinical experience of the authors, the site of AAA
rupture is highly variable but has been observed at sites similar to the region of low WSS identified
in this simulation. It is therefore feasible to suggest this region may ultimately be the site of rupture
and notable that it is unrelated to the site of maximal aortic diameter.

Figure 6 provides the means for a closer inspection of WSS levels. The axial WSS, τwall, is plotted
along the artery walls along a probe in both a vertical plane (dark blue) and a horizontal plane (light
blue) for all combinations of imaging technique and smoothing algorithm. It can be seen that the
range of results all follow a trend, picking up maxima and minima at similar locations. In the vertical
plane (on the left of Figure 6 and corresponding to the dark blue plane), there is an initial rise at a
distance of 0.02m from the inlet, followed by a drop and a plateau in the region 0.03 < x < 0.08.
Beyond this point, the variation of WSS is heavily influenced by the exit and bifurcation region; giving
rise to a large negative value corresponding to a flow recirculation. While the qualitative trends are
similar, values arising from the 3D US derived data are higher by a factor of between 1.5 and 2 than
values from the CT data. Differences are expected to be more pronounced at the start and end of
the aneurysm, on account of the non-linear influence of small geometric variations in these regions.
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View
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Figure 5: Wall Shear Stress (Pa) for each combination of image source and smoothing algorithm

Figure 6: Axial Wall Shear Stress for each scanning technique

Nevertheless, away from these locations the agreement is observed to be within 10%. Oscillations in
the magnitude of WSS can be seen around the exit of the aneurysm. This is partly caused by the
irregularity of the cross sectional area of the aneurysm geometry in this region and also the increased
complexity of the flow due to the bifurcation of the aorta into the iliac arteries and the wall between
the branches.

The axial WSS profiles obtained in the horizontal (light blue) plane indicate a somewhat broader
variation. Again, the agreement between CT and 3D US derived simulations is reasonably close.
Peak values are once again predicted at around 0.02m from the inlet, but there is a difference in the
subsequent predicted variation in that 3D US predictions indicate an earlier minima than that from CT
simulations. This corresponds to variations in the profile of the aneurysm geometry and the associated
distribution of the WSS as seen in Figure 5 (Front Views).
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Figure 7: Streamlines and Contours of Velocity (m/s) and Vorticity (1/s) for Taubin Low-Pass Filter smoothed CT (left)
and 3D US (right) geometries

3.3. Analysis of predicted flow field

Switching our attention to the internal flow field, we consider here a comparison between CT and
US geometries smoothed using the Taubin Low-Pass Filter only, on account of small details reported
in the previous section. Figure 7 displays streamlines of velocity and contours of vorticity plotted at
various cross-planes. The streamlines demonstrate once again that the overall bulk flow is comparable
between simulations derived from both CT and US sources; with the majority of the flow identified
as high velocity bulk flow passing through the middle of the aneurysm. There are notable differences
which occur in the lower velocity (blue) streamlines, in the vicinity of the aneurysm walls where
geometric inconsistencies are more pronounced. Fortunately, the predicted levels of WSS don’t appear
to be overly sensitive to these differences.

This pattern is also demonstrated in the vorticity contour plots. The flow is observed to become
more complex as it reaches the aneurysm outlets, with counter rotating vortices forming inside the
aneurysm (shown in vorticity image 1 and 2). These vortices then breakdown as the flow approaches
the outlets of the aneurysm resulting in non-uniform flow properties along the aneurysm wall. This
results in the variation in the WSS across the wall that were previously identified.

4. Discussion

Steady CFD simulations of AAA patient specific geometries obtained from a single patient through
CT and 3D US scans were performed and analysis of the derived hemodynamic conditions conducted.
In addition, the effects of commercially available smoothing algorithms were assessed with the aim of
identifying an optimum algorithm in the fluid simulation of AAAs.

It was found that the basic Laplacian smoothing algorithm was not suitable for AAA applications,
creating meshes with higher rates of shrinkage and lower average aspect ratios than the HC Laplacian
and Taubin Low-Pass Filter. The Taubin Low-Pass Filter provided the highest quality meshes causing
no shrinkage to the geometry, the least reduction in visual detail and the highest quality average aspect
ratio.

The Taubin Low-Pass Filter and HC Laplacian methods were then selected for CFD simulation.
From the results it could be seen that there was little variation quantitatively in the hemodynamic
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characteristics between the smoothing algorithms. However, given that the HC-Laplacian algorithm
causes higher levels of mesh shrinkage, for future simulations incorporating a patient specific inlet
velocity profile, the flow Reynolds number will be artificially reduced using the HC-Laplacian algorithm.

The hemodynamic characteristics exhibited a larger dependence on imaging source, as can be
expected. However, it is noted that these geometric differences were not so great as to significantly
impact the predicted distribution of wall shear stress, which is commonly understood to be one of the
most important metrics in computational hemodynamic analysis of Aneurysm rupture. Predictions
resulting from the 3D US derived data identified broadly the same locations of minimum WSS as those
from CT scans, with predicted values remaining close across the majority of the flow. In addition, the
axial WSS profiles obtained through both scanning techniques indicated very similar qualitative flow
characteristics in terms of flow recirculation and the presence of bifurcation. The velocity streamlines
and cross sectional contours were again qualitatively similar.

The tool chain for patient-specific geometries obtained through 3D US methods is more efficient
than its CT counterpart, and more practical; and it’s usage would radically broaden accessibility
of patient specific computational hemodynamics analysis. Geometries obtained through CT scan
require more outsourced steps in the tool chain, therefore increasing the time before a decision for
surgical intervention can take place. Additionally, given the cost and risk to the patient, CT cannot
be performed on multiple occasions if the aneurysm grows. This leads to a conservative criterion for
surgical intervention given the mortality rate of an aneurysm rupture. In contrast, the 3D US technique
can be performed as and when necessary given the availability and relatively small cost in comparison
to CT scanning. This also allows the 3D US scan to be iterated if the quality of the geometry is not
sufficient after the segmentation and smoothing stages.

The research presented in this paper demonstrates the potential for 3D Ultrasound to be used as an
alternative to CT scanned patient specific geometries in the decision to surgically intervene for AAAs.
The hemodynamic characteristics have been shown to be quantitatively similar for a relatively simple
CFD simulation. Additionally, the tool chain for the technique incorporating 3D Ultrasound scanning
was found to be more favourable to clinicians, allowing more of the method to be conducted bedside
and iterated due to the low cost and high availability relative to CT scanning.

Mesh quality analysis found the Taubin Low-Pass Filter to be the most optimal commercially
available smoothing algorithm producing high quality faces and preventing shrinkage of the geometry
during smoothing iterations. The HC-Laplacian smoothing algorithm also performed favourably.

It should be emphasised that the research presented here is preliminary in nature, and aims only
to demonstrate the potential of the 3D Ultrasound technique as a viable alternative to CT derived
geometry. To this end, it has been shown that careful execution of the segmentation, image smoothing
and CFD preprocessing stages can enable comparable analysis under the conditions of steady, laminar
and Newtonian flow. Ongoing work will endeavour to repeat simulations for a number of additional
pairs of CT and 3D US derived geometries to understand limitations and the sensitivity to different
body types and aneurysm forms. Furthermore, analysis will incorporate increasing complexity in
order to push towards more realistic simulation. Work will continue by assessing the impact on wall
shear stress prediction when using a pulsatile velocity inlet condition, with patient-specific profiles
obtained through Doppler ultrasound, as well as a non-Newtonian model for blood. We also plan
to incorporate Finite Element Analysis of the artery wall, as well as the thrombus if present. The
aorta itself undergoes a periodic motion related to the cardiac cycle, combining both translation and
deformation. The precise details of this motion are not trivial and are undoubtedly patient-specific, but
current assumptions of a rigid wall will most likely have an influence on the predicted rupture location.
Future work could try to investigate the impact of these effects by employing recent developments in
CFD which utilise mesh deformation and translation techniques such as Arbitrary-Lagrangian-Eulerian
and Overset Mesh methods [37, 38]. By increasing the complexity of the simulation, we expect the
differences between the imaging techniques to highlighted in greater detail and therefore provide a more
meaningful answer to whether 3D Ultrasound can be used as a more accurate and efficient metric to
indicate risk of rupture.
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Abstract

Computational modelling of the cardiovascular system offers much promise, but represents a truly
interdisciplinary challenge, requiring knowledge of physiology, mechanics of materials, fluid dynamics
and biochemistry. This paper aims to provide a summary of the recent advances in cardiovascu-
lar structural modelling, including the numerical methods, main constitutive models and modelling
procedures developed to represent cardiovascular structures and pathologies across a broad range of
length and time scales; serving as an accessible point of reference to newcomers to the field. The class
of so-called hyperelastic materials provide the theoretical foundation for the modelling of how these
materials deform under load, and so an overview of these models is provided; comparing classical to
application-specific phenomenological models. The physiology is split into components and pathologies
of the cardiovascular system and linked back to constitutive modelling developments, identifying cur-
rent state-of-the-art in modelling procedures from both clinical and engineering sources. Models which
have originally been derived for one application and scale are shown to be used for an increasing range
and for similar applications. The trend for such approaches is discussed in the context of increasing
availability of high performance computing resources, where in some cases computer hardware can
impact the choice of modelling approach used.

Keywords: Cardiovascular Structure, Continuum, Modelling, Discrete

1. Introduction

Modelling the cardiovascular system in the human body necessitates a complex interplay of strongly
coupled multi-scale and multi-physics mechanisms and effects. In the past four decades, computational
models have advanced significantly from what were once quite basic tools and methods, to what today
have the potential to become integral components of clinical practise. Accurate and reliable in silico
modelling has clear advantages over both in vivo and in vitro experiments; including repeatability of
testing, a risk-free non-invasive testing and analysis, and the potential to isolate and understand key
physiological mechanisms.

Previous studies have generally focused on a single application, from understanding the deformation
characteristics and phase transitions of red blood cells [1] to the rupture of aneurysmal walls [2] and
associated intraluminal thrombus [3].

Despite significant progress in the past few decades many challenges remain. One of the most
prominent of these is ‘fluid-structure interaction’, refering to the strong coupling between the un-
steady haemodynamics and the structure of the cardiovascular system components, including vessel
walls, valves and the blood cells themselves. Fluid-structure interaction (FSI) is a central topic in
computational cardiovascular modelling, and in recent years, interest and an increased ability to inves-
tigate these effects has enabled it to emerge from being a peripheral topic of modelling and simulation
to a core aspect of biomedical simulation across a number of scales from individual cells [4] to the
heart [5].

The purpose of this paper is to provide an overview of the different structural models employed
in computational modelling of the cardiovascular system, primarily as part of a coupled fluid-solid
approach but also as standalone models.



Section 2 discusses considerations that must be taken when deciding the modelling procedures and
methods that should be implemented for a given application while Section 3 briefly describes and
contrasts the two main families of modelling methods employed: continuum and discrete. An overview
of material models is also given in this section, to highlight differences in how models determine the
deformation of the structure for a given loading condition. Section 4 discusses application to various
cardiovascular structures and pathologies organised in relation to characteristic length scale, in each
case providing both a mechanical description of the physiology and a review of the related modelling
work, summarising aspects of the structural models employed. The review concludes with a discussion
of the direction of travel for this field. Particular attention is given to the choice between high-fidelity
models that can aid our understanding of disease progression, and faster but low-order accuracy models
that can be incorporated into clinical tools in the foreseeable future.

2. General modelling considerations

Vascular systems encompass a broad range of length scales: from the pumping heart (order
0.1m) and reducing five orders of magnitude further to the diameter of a single red blood cell (or-
der 1× 10−6m). Quite naturally then, a range of numerical models and methods have been developed
and adapted to the specific physical effects and prevalent dynamics at each scale. The dynamics of
a single red blood cell, while pertinent to developing an understanding of certain pathologies, has
negligible contribution to the deformation of the walls of large vessels. While the quasi-continuum
motion of a million such cells is certainly of consequence and therefore requires careful consideration.
The computational modeller will generally limit their focus to a domain representing two or possibly
three orders of magnitude, broadly to strike a compromise between reasonable computational resource
requirements and sufficient precision to provide insight into the mechanics of the particular question
at hand.

This practice of limiting the scope of the simulation has further practical motivation, since many
aspects of the cardiovascular system warrant different modelling approaches, based on what one hy-
pothesises to be the prevailing dynamics. In the case of blood, it may either be modelled as a set of
flexible structures suspended within a fluid, or at larger scales simply as a continuum fluid with little or
no semi-empirical representation of ‘non-Newtonian’ behaviour. While incompressible fluid mechanics
are governed by the Navier-Stokes equations and approximations thereof, the modelling imparted to
represent the structural components tends to depend more on the nature and the relevance of their
motion. As scales change, so does the most relevant model for the job at hand, although with a wealth
of related studies in the literature, the choice is far from simple.

It has become clear that many diseases and disorders are comprised of mechanisms and factors
that occur across a number of time and length scales. As such, recent studies have begun to explore
the potential to develop methods that are able to perform multiple-scale simulations in both time and
length, in order to investigate how changes at smaller length and time scales can lead to variability at
larger scales [6, 7]. With the focus of the present review limited to the structural models rather than
the frameworks for multiscale simulation, of which structural models are a component, we refer the
reader to recent reviews of multiscale modelling in the cardiovascular system [8, 9].

At the structural level, representation methods can be classified into two families: Continuous
and Discrete. An overview of each is given in Section 3 along with basic algorithms and extensions
to the methods that have been developed. Discrete, or ‘particle-based’ methods are generally more
inherently able to capture defects that might occur to a localised region of a structure, i.e. by offering
the potential for modelling the solid as an inhomongeneous or heterogeneous continuum. By virtue of
this, discrete methods generally require significantly greater computational resource to model a unit of
domain than continuum methods; the latter are almost always employed where the spatial domain of
interest is large [10, 11, 12]. Discrete methods come into their own where the aim is to examine effects
which involve smaller scales [13, 14, 15]. With improvements in computational power [16, 17] and the
increased use of novel hardware such as graphical processing units (GPU) - an architecture which is

2



naturally well suited to discrete methods [18, 19] - the boundaries between these methodologies are
shifting [15].

Improvements in the capability of computational fluid-structure interaction modelling will increase
the feasibility of such methods being integrated into diagnostic tools used in clinical practice - for
example as a means of assessing rupture risk of abdominal aortic aneurysms [20]. In such cases the
key driver for a numerical method is not accuracy alone, but also speed and robustness. Speed, since
a fast simulation can enable diagnostic procedures to be completed bedside in a clinical environment.
Robustness, since the quality of the patient-specific information at hand will vary tremendously, and
the selected numerical methods should be able to cope with this without significant loss of accuracy. It
is then of importance to note that in order to achieve speeds of practical use in the clinical environment,
there will need to be a compromise with accuracy. Such a trade-off is not only practical but also entirely
sensible, in order to supply the ‘clinical indicator’ needed to summarise the condition, with the proviso
that the reduction in accuracy is quantified such that it can be considered appropriately.

For larger structures such as the heart or blood vessels, the tissues are comprised of layers with
differing material properties, each of which plays a different role in its function. Given that these
layers can be numerous and/or thick compared to the dimensions of their constituent cells, materials
at this scale are generally modelled as a continuum, taking average properties across each layer. At
smaller scales, structures are smaller, more homogeneous and permit use of particle based methods.
Recently, hybrid approaches have been developed in modelling cardiovascular problems, in an attempt
to merge the strengths of each. However, these hybrid approaches have generally involved coupling
a continuum fluid solver and a discrete structural solver or vice versa in a fluid-structure interaction
method [21, 22]. A hybrid structural solver [23] for cardiovascular applications has the potential to
increase the feasibility of modelling localised defects, such as aneurysm rupture, at larger length scales
than using a discrete method alone.

3. Modelling approach: computational implementation

Both continuum and discrete methods solve the same governing equation, Eqn. 1 relating an
external force F to the resultant displacement X and its derivatives where M, C and K are global
matrices for mass, damping and stiffness.

MẌ + CẊ + KX = F (1)

The attraction of continuum approaches is that they use the well-established governing equations of
continuum mechanics, the solutions of which are performed with well-established numerical schemes. In
the context of structural modelling, the majority of continuum approaches use the finite element (FE)
method to discretise the structure and involve one of the material models, such as those included in
Figure 1 and Table 1, as constitutive equations to describe the specific behaviour and characteristics
of the structural component under consideration. The FE method is widely used to model both
fluids [32, 33] and solids [34]. A drawback of the continuum approaches is that representing localised
phenomena, such as damage or rupture of material, requires the introduction of special, often non-
physical, measures. A number of developments to tackle this deficiency have been made over the years,
such as the extended FE method (X-FEM) [35] and immersed FE method [36]. Despite promising
advances, in this regard the continuum approach remains inferior to discrete methods, which allow for
natural evolution of localised processes.

3.1. Implementation of continuum approaches

The first step of continuum methods is to create a discretised representation of the continuous
medium; generally by defining a set of component elements in the form of a mesh. The number of
elements required is determined by the accuracy and the level of approximation within each cell. The
specific type of element and the nature of the approximation therein depend on the details of the
structure that they represent. Each element will contain a number of nodes as shown in Figure 1,
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Figure 1: Structural models used in vascular applications with popular material models and discretisation methods,
classified with respect to length scale and the applications to which they have been applied. Hashed lines indicate scales
where material models have been used but not commonly.
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Figure 2: Stress-stretch profiles for some commonly implemented material models for small deformations (inset left)
and large deformations (left). Each model can be adjusted through varying constants in the strain energy distribution
function given in Table 1 (middle). Each is adapted via a least-squares regression algorithm and compared to the
Raghavan stress-stretch profile, whose coefficients have been fitted to experimental results [25] (right).
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Table 1: Strain energy distribution functions for a selection of major material models used in cardiovascular structural
modelling: a brief description of each is provided with the original target application.

Neo-Hookean (simple hyperelasticity)

W = µ
2

(I1 − 3) − µlnJ + λ
2

(lnJ)2

Linear elasticity and the neo-Hookean model provide similar deformation
profiles at small strains. However, for larger strains the neo-Hookean model
provides increasingly better description of deformation and is shown to be
suitable where strains are up to 20% [24]. In many cases, cardiovascular
tissues are considered as incompressible (J=1) reducing the strain energy
function to the first term only.

λ, µ are Lame constants of linear elasticity. µ also known as shear modulus.

Mooney-Rivlin (incompressible)

W = µ
2

(I1 − 3) + µ1(I2 − 3)

The incompressible Mooney-Rivlin model contains an additional term de-
pendent on the second invariant of the deformation tensors. Originally
developed for rubber like materials, it has been used as a simple rep-
resentation of many cardiovascular structures across a number of scales,
especially in scenarios where the deformation of healthy tissue may not
be of primary concern, e.g. the development of various diseases. Second
order formulations have also been used for a number of applications.

µ1 is a material constant requiring calibration against stress-strain data.

Abdominal aortic aneurysm model

W = µ
2

(I1 − 3) + µ2(I1 − 3)2

Raghavan et al. [25] developed one of the first models specific to abdominal
aortic aneurysmal tissue. Based upon a higher order Mooney-Rivlin model,
the first term is retained from the neo-Hookean model while the second
term is also a function of the first invariant since the model assumes tissue
is stress-free in principle stretch directions 2 and 3 while material constants
µ and µ2 are estimated through fitting to uniaxial tensile experimental
data.

µ = 17.4N/m2; µ2 = 188.1N/m2

Fung-type anisotropic coronary artery
model

W =
µ

2
(I1 − 3)

+
k1

k2
(exp(k2[(1 − ρ)(I1 − 3)2

+ ρ(I4 − 1)2]) − 1)

Holzapfel et al. [26] extended a previously developed multi-layer arterial
wall model [27] for coronary arteries. The model includes an exponential
isotropic term as proposed by Fung [28] and an anisotropic term relating
to I4 which contributes according to the angle between fibre reinforcement
and circumferential direction in each layer.

k1 is a stress-like parameter; k2, ρ are dimensionless parameters
I4 = λ2θ cos2 φ+ λ2z sin2 φ

Fung-type viscoelastic anisotropic
myocardium model

W =
a

2b
exp(b(I1 − 3))

+
∑

i=f,s

ai

2bi
(exp(bi(I4i − 1)2) − 1)

+
afs

2bfs
(exp(bfsI

2
8fs) − 1)

+
1

2

∑

i=f,s,n

µi(εi − αi)
2

Cansiz et al. [29] incorporated the anisotropic hyperelastic model pro-
posed by Holzapfel & Ogden [30] (first 3 terms) which modelled the or-
thogonal nature of the myocardium in the fibre, sheet and sheet normal
directions. The model was extended to reflect the viscoelastic nature of
the myocardium with an additional term (final term) relating to the strain-
rate dependence of material response.

a, b, af , bf , as, bs, afs, bfs are material constants.
f, s, n are fibre, sheet and sheet normal directions.
I4i = i0 · C̄i0, I8fs = f0 · C̄s0 where i0 is a unit vector in given direction.
µi, εi, αi are non-equilibrium shear moduli, logarithmic strains and strain-
like internal variables

Red blood cell model

W = a
4

(
1
2
I21 + I1 − I2

)
+ b

8
I22

Skalak et al. developed a 2D stored energy potential for RBC membranes
[31]. The first term provides the typically smaller stress caused by
deformation with constant area, while the second term gives the typically
large isotropic stress which is dependent on area change.

redefined I1 = λ21 + λ22 − 2 and I2 = λ21λ
2
2 − 1. Equivalent to

making I1 = 0 in absence of in-plane deformation, and I2 = 0 in absence
of in-plane area change
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Figure 3: Two discrete particles connected via spring-dashpot system for normal (n) and tangential (t) components of
bond deformation. Variations of the method can neglect damping but may use nonlinear springs to better represent
the properties of a given material. Similar models can also be used for contact dynamics between distinct bodies that
collide.

whose motion due to a given load F is governed by Eqn. 1 where X contains the nodal displacements
for each degree of freedom. Within the FE settings, the gradient of nodal displacements provides the
strain tensor within the element, the constitutive relation provides elemental stress tensor from strain
tensor, and the divergence of elemental stresses provides nodal forces F.

3.2. Implementation of discrete approaches

Discrete approaches use a set of points that form 2D or 3D networks representative of a surface
or a volume, conceptually similar to modelling in molecular dynamics. These networks are usually of
triangular arrangement for biological tissues, as studies have shown it to be the most representative
[37]. Each particle is connected within the framework to other particles via springs or bonds as shown
in Figures 1 & 3. By changing the constitutive relation between load and deformation, the material
properties of the object can be modelled. Additional connections can be added between faces (created
by three particles) to replicate bending resistance [15]. In addition, contact forces between unconnected
particles that collide can be included, providing the capability to model interaction between separate
solid bodies such as valve leaflets [38].

By modelling individual particles, these models can capture small defects within the system to a
greater extent than a continuum method. This capability lends itself particularly well to investigation
of disease progression in a range of applications such as malaria [39]. However, since even a small
object such as a red blood cell consists of a very high number of particles, discrete methods can in
general have prohibitively high computational power requirements for all but the smallest of objects.
So called coarse-graining of these high resolution models has allowed objects to be represented via
a smaller number of particles which in turns enables larger objects to be modelled using reasonable
computational resources. However, a trade off occurs in the level of coarse-graining required to reduce
computational resource requirement and the ability to model the same full resolution behaviour.

3.3. Material Models

The deformation of biomaterials is represented predominantly by models with reversible behaviour
to reflect the periodic nature of the cardiac cycle. These include the simplest linear or Hookean elas-
ticity used in early cardiovascular structure models, the simplest nonlinear or neo-Hookean elasticity,
and a number of tailored nonlinear elasticity models, such as Mooney-Rivlin, Fung [28] and Skalak
[31]. Such models are applied to particular structure, e.g. red blood cell membrane, artery wall, etc.,
to calculate its deformation under given load conditions.

Notably, the linear elasticity is attractive due to its simplicity of implementation and computational
speed, but its application is limited to very small deformations.1 This is not sufficient for representing
deformation of a biological material in most cases, hence the development and use of more suitable
constitutive relationships.

1It can be demonstrated that the accuracy in calculating the strain using a linear elastic model is equal to that of
the accuracy in approximating ln(1 + x) with x, the larger the strain or x, the larger the error.
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The class of nonlinear elasticity models used for deformation of biological tissue is known as hyper-
elastic materials. For these, the stress-strain relationship is nonlinear but irreversible processes such
as plastic deformation are prohibited, restricting the modelling capability to pre-growth and rupture
phenomena. Physically, this means that an increase in stress does not produce the same increase in
strain, but on removal of stress the material returns to the initial configuration. The stress-strain
relationship of hyperelastic materials are derived from a stored energy potential, which in the most
general case is a function of the deformation gradient.

Many cardiovascular structures demonstrate anisotropic properties due to their structure, i.e. fibre
dispersion through the tissue. It is widely accepted that these properties must be included within
any material model in order to provide an accurate representation of the structure. However in some
studies where the deformation of the structure is not the focus such as medical device evaluation,
isotropic models can be implemented as a first step for simplicity.

Through experimentation is has been demonstrated that some cardiovascular structures such as the
myocardium are viscoelastic in nature [40]. However, the significance of this property is debated due
to the increased complexity of the model and the relative contribution of viscous effects to the overall
deformation of the structure. As a results models incorporating strain-rate dependence have only
recently been regularly included in studies where the viscoelastic nature of the cardiovascular structure
isn’t the main focus. It is also acknowledged that additional experimental testing of phenomena such
as hysteresis and creep to validate viscoelastic models is needed but poses a significant problem due
to the change in characteristics of tissue samples in vitro [29].

A number of material models have been developed and integrated into computational modelling
procedures of the cardiovascular system. Some have been adapted from models developed for other
applications while some have been specifically developed from experimental testing of biological tissues.
Figure 1 summarises the range of length scales and applications that the major material models have
been used while Table 1 defines a selection of these models in terms of strain energy distribution
functions and invariants, giving in turn a brief description and the intended application. Figure 2
compares the stress-stretch relationship for each of the models and demonstrates how they can be
adapted based on the parameter values chosen to fit a given dataset [25]. Details of stress-strain
energy function derivation can be found in Bonet & Wood [41].

3.3.1. Fluid-Solid-Growth Models

Recently there has been increasing interest in simulating remodelling of cardiovascular structures
through the use of fluid-solid-growth models (FSG). In order to overcome the issue of concurrently
accounting for effects occuring over disparate time-periods, these models incorporate multiple time
scales. A small time scale, of the order of seconds, employs a fluid-structure interaction model to
predict remodelling stimuli metrics such as tensile stress and wall shear stress. These values then
are fed into growth and remodelling models which operate on much longer time scale, of the order of
months [6]. FSG models redefine geometry, initial conditions and material properties that are then
used in the short time scale FSI model. Applications where FSGs have been implemented are discussed
later in Section 4.3.1, although specific details are beyond the scope of this review. For further details
readers are directed to the following reviews [42, 43] and major studies [44, 6, 45, 46].

4. Review of Structural Modelling

This section provides an in-depth review of the application of different structural mechanics models
to different components of the cardiovascular system and pathologies. These components occupy a
broad range of physical scales and therefore it is not surprising to see a variety of modelling methods
applied. Each of the strands examined has in general evolved independently of others, reflecting the
tendency of a researcher or group to focus on one of these topics in relative isolation. As such, the
simultaneous review of these factors provides the reader with the opportunity to identify common
challenges and solutions; offering the potential for knowledge transfer from one area to another.

7



Congenital Heart Diseases & Valves Vessels & Atherosclerosis

Normal tricuspid (a) and abnormal 
bicuspid aortic valve (b).  
Bicuspid valve is known to affect flow 
characteristics in the ascending aorta 
and cause remodelling of the artery 
wall.

Total Cavopulmonary Connection (c). 
Patient only has single ventricle 
function (left ventricle).  Vena Cava are  
routed to bypass the right ventricle, 
directly to the pulmonary arteries.  

(a) (b)

(c)

(e)

(f)

Layers of large artery walls (e)
1) Adventitia layer (maroon) 
    - consists of connective tissue, collagen and elastic 
      fibres.
    - moderately responsive to cyclic wall stretch/stress.
2) Media layer (purple) 
    - consists of smooth muscle and elastic fibres.
    - highly responsive to cyclic wall stretch/stress,  
      moderately responsive to transmural interstitial 
      flow.
3) Intima layer (pink) 
    - consists of elastic membrane and endothelial cells.
    - highly responsive to all shear stress moderately 
      responsive to cyclic stretching. 
  

Development of atherosclerosis (f)
Atherosclerotic plaque forms in the 
intima layer of artery wall.  As the 
plaque grows, the artery wall degrades 
until the plaque ruptures which can 
cause blood clots to form.

Healthy Formation Growth RuptureAortic Coarctation (d).
Patient has a narrowing  of the aorta 
which causes blood pressure to rise in 
order for enough blood to pass through 
the narrowing.  As a result, the left 
ventricle must work much harder.  

(d)

Application specific 
reviews 

Rausch et al. 2013        , Sun et al. 2014        ,       
Marsden & Feinstein 2015        , 
Kheradvar et al. 2015        , Chabiniok et al. 2016        .

Application specific 
reviews 

Taylor 2000        , Steinman et al. 2003        ,
Assemat & Hourigan 2013        , Walsh et al. 2014        , 
Holzapfel et al. 2014        .

Red Blood Cells

(j)

(k)

(l)

(m) (n)

Healthy & diseased red blood cells.  
Healthy RBC of biconcave disk shape (j), 
sickled cell with elongated shape (k) and 
malaria-infected cell (l).

Bilipid layer and cytoskeleton (m,n).  
Constituents of cell membrane (m): bilipid 
layer (top) and cytoskeleton (btm) and 
contains the cytosol that is of fixed volume. 
Cytoskeleton is of triangular topology.

Red blood cells are biconcave disks made of two main structural components, plasma 
and cytoskeleton. Plasma similar to vesicle, resists surface area changes. Cytoskeleton 
acts like triangular network of springs, provides resistance to changes in volume.

Application specific 
reviews 

Liu & Liu 2006        , Lee & Smith 2008        ,
Omori et al. 2011        , Fedosov et al. 2014        .

Saccular aneurysm: 
- commonly found in the Circle of Willis.
- characterised by an outpouching nature. 
- generally occur at bifurcation points, due to 
  weakness of the vessel wall (true aneurysms). 
Fusiform aneurysm: 
- occur due to rare forms of atherosclerosis, 
  causes damage to media layer leading to arterial 
  stretching and elongation. 
- intraluminal thrombus formation can occur.
Dissecting aneurysm: 
- occur in thoracic aorta due to blood accumulation  
  from a tear in the inner layers of the vessel wall. 

Aneurysms & Remodelling

(g)

(i)

(h)

Abdominal Aortic Aneurysm (g)
Aneurysm growth often accompanied by 
intraluminal thrombus formation (purple) and/
or plaque formation (yellow).

Thoracic Aortic Aneurysm (i) 
Can occur as ascending aortic 
aneurysms (dark grey) and 
descending  aortic aneurysms 
(light grey) or combinations of 
both. Can also combine with 
abdominal aortic aneurysms 

Intracranial Aneurysm (h)
Mostly saccular shaped but can occur in a 
number of locations within the Circle of Willis.  

Application specific 
reviews 

Brisman 2006        , Taylor & Figueroa 2009        , 
Humphrey & Holzapfel 2012        .    
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Figure 4: Overview of cardiovascular applications included within this review: applications are classified within each
subheading in Section 4 and an basic description of the physiology of the application is given in each case. Previously
published reviews that are specific to a given application are highlighted for each classification.

An overview of the four areas considered is given in Figure 4, providing also basic physiology in
order to supplement details of modelling method progression. Given the broad scope of this review, it
has not been practical to evaluate each area in exhaustive detail. Instead we refer the interested reader
to a series of more focused reviews, which are listed in Figure 4. In turn, these papers can provide
greater insight into the specific modelling developments in each area.

4.1. Heart

Efficient heart function is dependent on a number of factors, including the performance of the left
ventricle walls in ejecting high velocity flow through the aorta. Subtle changes in the flow within the
chamber can strongly influence changes in the structure of the chamber walls, for example hypertrophic
cardiomyopathy, which can reduce the efficiency of ejection of blood from the left ventricle due to the
enlargement of the heart wall.

The heart undergoes a strong cyclic deformation driven by electrophysiological actuation, whereby
muscle walls are effectively forced and valves are somewhat passive - in that they are actuated as a
result of proximal pressure differential. As a result, much of the recent research focus has been placed on
developing electro-mechanical methods (rather than FSI methods) capable of accurately reproducing
deformation profiles during the cardiac cycle [61]. This usually consists of a passive myocardium model
and an active contraction model. A detailed review of these models was conducted by Trayanova [62].
Here the focus will be the modelling of passive mechanical properties.
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4.1.1. Myocardium

The walls of the heart consist of three different layers; endocardium, myocardium and epicardium.
Both the endocardium, the inner most layer, and the epicardium, the outer most layer, are thin
membranes and therefore generally not modelled directly, although their contribution to residual stress
is often included [30]. As a result, the attention of the structural modeller is focused on the myocardium
which is made up of sheets of parallel myocytes in which the majority direction of fibres varies from

Later, shear experimental testing of porcine [40] and human [63] myocardium, found the pas-
sive mechanical properties of myocardium can be classified as nonlinear, orthotropic and viscoelastic.
Holzapfel & Odgen [30] developed a constitutive relationship that replicated the orthotropic nature of
the material based of the directions of the fibre, sheet (perpendicular to the fibre) and sheet normal.
This model was able to closely replicate the results from shear tests conducted by Dokos et al. [40],
whereas transversely isotropic models had been unable to match. However, it neglected viscous effects
resulting from blood flow through the myocardium, stating that they could be neglected due to the
short time frame of the cardiac cycle.

Later studies extended the Holzapfel & Odgen model to include viscoelastic effects identifying its
contribution to applications such pacemaker lead penetration of ventricular walls [64, 65]. In these
studies, the authors focused on developing a framework for viscoelastic models to be implemented
rather than a specific model. Cansiz et al. [29] coupled the hyperelastic Holzapfel & Ogden model in
parallel to a viscous model. The resulting constitutive model showed excellent agreement with the shear
tests of Dokos et al. and also when used to model a generic biventricular heart model, this approach
demonstrated a marked difference compared to using the hyperelastic model alone; demonstrating the
necessity of including viscous effects.

Patient-specific geometries have been modelled using MRI and CT scans [66]. Krishnamurthy et al.
[67] used CT scans to create an end-diastole geometry of the left ventricle for a specific patient before
using MRI data from a donor heart to include fibre orientation details within the model. This semi-
automated method was tested for five patients and was shown to give good agreement in parameters
such as ejection fraction and peak cavity pressures.

The vast majority of studies have employed finite element methods to model the heart walls, and
have been integrated into various multiphysics models [61, 51]. However, a recent study has modelled
human atrial tissue using a discrete element model integrated into an electro-mechanical method
citing the limitations of modelling the tissue as a continuous medium and therefore neglecting cell
arrangement [68]. By clumping particles together to represent a cell as showing in Figure 5, changes
in cell arrangement can be investigated. The use of discrete methods at such large spatial scales
demonstrates the potential of using these methods in other large scale cardiovascular applications.

4.1.2. Congenital Heart Disease

Fluid-structure interaction is well known to be a critical factor in a number of congenital heart
diseases. Congenital heart disease refers to a group of heart defects that occur at birth. These
include incorrect function of a single ventricle, tetralogy of Fallot (a hole between the ventricles),
aortic coarctation (a narrowing of the aorta), and transposition of the great vessels. All of these
defects have been studied numerically from a haemodynamic perspective [69, 70, 71], but fewer studies
have been conducted using FSI methods. However, such studies has been proven to have a major role
in simulating and preventing the development of subsequent structural defects and recent reviews have
begun to explore the implementation of numerical modelling in clinical practise of CHDs [72, 73].

Single ventricle patients are treated using a procedure independently developed by Fontan and
Kreutzer, known as a total cavopulmonary connection (TCPC) [74]. It involves routing the superior
and inferior vena cava directly to the pulmonary arteries, bypassing the heart therefore requiring only
a single ventricle to provide the energy for the entire system. Initial FSI studies of TCPCs used
idealised geometries with the hyperelastic Ogden model [75] for arterial wall stiffness [76, 77]. It was
found that the use of flexible arterial walls instead of rigid walls results in significant differences between
power efficiencies, a key metric in determining the suitability of circuit design and therefore the ability
of the adapted cardiovascular system to operate appropriately. Further studies have extended the
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Figure 5: A discrete element method approach to modelling human atrial tissue using clumping of particles to create
cells. Clumps are treated as rigid during each timestep, therefore the position and velocity of a clump is affected by
surrounding clumps. The deformation of a single clump is modified prior to each timestep according to the electrical
and mechanical behaviour of a single cell. Simulation results were able to capture local effects caused by varying cell
alignment within the tissue [68].

capabilities of CHD modelling, including patient-specific geometries [78], variable wall properties [79]
and hyperelastic stiffnesses. In particular, the integration of variable wall thickness by Long et al. [79]
via a model based upon measured thickness at the inlet and outlets of the geometry and applying
Laplace’s equation to determine the thickness of the interior, is of particular interest since the issue of
wall thickness exists across a number of cardiovascular applications including that of aneurysms.

Aortic coarctation has been investigated extensively using numerical modelling. However, the
majority of these studies have focused solely on the haemodynamics of the problem [80, 69]. Some
studies have included the structural response in an aortic coarctation [81] but the application has not
been the full focus of the investigation, rather the modelling procedure.

4.1.3. Heart Valves

Heart valve defects are another common congenital heart disease. The most extensively investigated
using numerical methods are those in the left side of the heart; the mitral and the aortic valves [82].
The aortic valve can sometimes develop as bicuspid rather than tricuspid as is usual. This can cause
abnormal flow patterns to be ejected from the left ventricle, resulting in undesirable flow characteristics
downstream and remodelling of the aortic wall to occur [83]

Since the main function of valves is to control the flow of blood, it is inherently a fluid-structure
interaction problem. However, many studies looking at artificial valves model the valve leaflets as rigid
since they are made from stiff materials and instead focus on the haemodynamic effects [84, 85] or
have described the behaviour of the valve and neglected the interaction with blood [86, 87]. In order to
simulate the characteristics of heart valves under various conditions, constitutive relations have been
developed [88, 89]. May-Newman et al. developed a relation specific to the mitral valve while Billiar
et al. presented a relation specific to the aortic valve [90]. Both relations describe large deformations
and nonlinear behaviour of the cusps. However, the mitral valve relation describes the material as
transversely isotropic and the aortic valve relation describes the material as highly anisotropic, caused
by the fibre arrangement with each valve. The techniques used to develop these constitutive relations
are different. May-Newman et al. used a method proposed by Humphrey et al. [91, 92] where the
relationship is derived from experimental data whereas the method used by Billiar et al. developed
the relationship from the characteristics of individual components of the tissue which then combine to
give the properties of the material [93, 94].
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Through the development of these models, the performance of bioprosthetic and mechanical valves
can be improved. In addition, greater understanding of the pathogenesis and effects of various diseases
of heart valves can also be obtained.

4.2. Vessels

The primary motivation for simulating large arteries is to study various diseases that develop within
their structure, including atherosclerosis and various types of aneurysms (discussed in detail in Section
4.3). In order to model these diseases accurately, a model of a healthy vessel must first be defined. The
modelling of large vessels has traditionally been restricted to utilisation of continuum methods. This is
due to high computational demand of particle based methods that has been unattainable for efficient
simulation using reasonable resources for a large number of particles required at such scales. With the
use of parallelisation methods and ever improving computational resources, the use of particle methods
has become less limited and may in the future be used to simulate the mechanics of defects in large
arteries.

Artery walls are anisotropic in nature. However, isotropic models much as the neo-Hookean and
Mooney-Rivlin have been shown to give reasonable representations. Anisotropic models such as those
proposed by Holzapfel et al. [27, 26] require details of the arrangement of fibres within the wall which
has traditionally been obtained in-vitro with varying degrees of difficulty depending on the artery
location. However, recent improvements in imaging fidelity (MRI) have allowed fibre orientation to be
identified via an automated process [95, 96, 97].

The model developed by Holzapfel et al. consisted of a 3D two layer framework for modelling
a healthy aorta [27] to simulate passive time-dependent stress and deformation states under various
loading conditions. The process included viscoelastic, nonlinear mechanics, suited to an FE method,
and allowed material properties to to be modified for a specific mechanically relevant arterial layer.
This model was developed further via a new constitutive relationship describing the passive mechanical
response of arterial tissue [98].

A strain energy function developed specifically for aged arteries found that arterial stiffening with
age is caused by changes in the collagen arrangement in the artery wall rather than changes in elastic
properties of the arterial wall as previously thought [99].

4.2.1. Atherosclerosis

It is widely accepted that arterial stiffening is the first key stage in the development of atherosclerosis
[100]. This results from the response of white blood cells (WBC) to inflammation caused within the
inner artery wall through the accumulation of lipids under the endothelium layer [54]. The presence
of atherosclerotic lesions has previously been linked to the formation of intraluminal thrombus due to
the disruption of the fibrous cap allowing blood flow to interact with the thromobogenic plaque core
[101] and thought to play a role in the pathogenesis of aneurysms [102]. The formation of intraluminal
thrombus and atherosclerotic lesions, known as stenosis, obstructs flow within the lumen and can reduce
the oxygen supply to downstream tissue. This can lead to angina and in extreme cases, myocardial
infarctions. The rupture of atherosclerotic plaques is also known to cause heart attacks and strokes
[103]. Although the mechanism under which rupture occurs is not fully understood, mechanical forces
and vessel surface conditions are believed to be significant factors [103].

The material properties of atherosclerotic plaques are difficult to measure in-vivo. Consequently,
models used to simulate these material properties have been developed using in-vitro measurements
by removing plaques from the vascular system and treating them as a homogeneous material [54]. In
addition to this, many studies use mechanical models developed from in-vitro atherosclerotic plaques
from one location in the cardiovascular system and apply them to another [104]. This is widely regarded
as an oversimplified assumption given that the response of atherosclerotic plaques in differing locations
have potentially different characteristics in the given physiological conditions of the location as well
as differing responses to interventional procedures such as the placement of stents [105]. Holzapfel
et al. [56] has stated the need for an in-silico procedure to preoperatively measure the mechanical
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properties of atherosclerotic plaques in the carotid artery of patients in order to develop constitutive
models specific to the carotid artery and to the patient in particular.

Early computational analysis used 2D geometries, both idealised [104] and patient-specific [106],
identifying concentrations of circumferential stress in the plaque as playing an important role in plaque
rupture. 3D patient-specific geometries were included via a number of imaging modalities e.g. MRI
[107], Ultrasound [108] and Computed Tomography [109] after it was found that stresses within the
plaque were 3D in nature [103]. External pressure was identified as a key parameter in the rupture
of plaque in an early 3D study [110] while the inclusion of residual stress, providing the circumfer-
ential stresses in the artery wall (tensile in the outer layer, compressive in the inner [111]) led to
the identification of many additional factors such as external loading, geometrical configuration and
intra plaque stresses [112]. Residual stresses are difficult to measure experimentally as they must be
recorded in-vivo. One method to model the residual stress proposed by Huang et al. [113] is to use an
approximation of the initial stresses.

Atherosclerotic plaques have been readily represented using generic hyperelastic models such as
neo-Hookean [114, 115] and Mooney-Rivlin [116, 117]. Through such studies, our understanding of the
mechanics of plaque rupture has improved. The thickness of the fibrous cap and the size of the lipid
core of the plaque are known to determine the risk of plaque rupture [104] however, mechanical stresses
and remodelling the vascular structure are also factors. Blood induced stresses have been shown to
be more influential in the formation of atherosclerotic lesions in certain locations within a vascular
geometry [118].

A popular criteria for rupture of an atherosclerotic plaque is a threshold tissue stress of 300kPa
with many studies suggesting structural stress has more influence on the risk of rupture than that
induced from blood flow (e.g. wall shear stress). However, experimental studies on human arteries
have shown this value to vary significantly [119, 120, 121].

A number of FSI models have attempted to simulate the conditions under which a plaque will
rupture taking into account mechanical stresses, intraplaque haemorrhages [122], micro-calcifications
in the plaque [123] and variations in fibrous caps [124]. It is expected that these models will improve
significantly given the recent advancements in obtaining patient-specific data (e.g. experimentally,
imaging).

4.2.2. Coronary Arteries

The myocardium is supplied with oxygen rich blood by the coronary arteries; the left coronary
artery (LCA) supplying left atrium and left ventricle, while the right coronary artery (RCA) supplies
the right atrium and right ventricle along with the atrioventricular and sinoatrial nodes. These arteries
are of interest since they are a location prone to development of atherosclerotic plaques, which can
reduce heart function.

Modelling of the coronary arteries is not straightforward since they follow the motion of the my-
ocardium during the cardiac cycle. The contraction of the individual heart chambers during the cycle
also affects the curvature of the coronary arteries [125] while artery wall compliance has been found
in a number of studies comparing rigid wall CFD to flexible wall FSI, to significantly affect wall shear
stress distributions and magnitudes.

The coronary arteries are known to be highly anisotropic and nonlinear in character. Holzapfel et
al. [26] proposed a three-layer constitutive model specific to coronary arteries based upon the two-layer
framework proposed by the same group [27]. This model includes an anisotropic term that contributes
only when fibre orientation relative to the circumferential direction is sufficient. This provides a good
representative general model for coronary arteries when patient specific data for fibre orientation within
the tissue is unavailable.

However, very few models specific to the coronary arteries have attempted to include anisotropic
properties, instead implementing isotropic hyperelastic models. This is perhaps due to the focus of
many structural investigations of coronary arteries being the development and treatment of atheroscle-
rotic plaques present in the artery. In particular, the deployment of intraluminal stents and their
interaction with the vessel wall has been well studied as reviewed by Martin et al. [126]. Isotropic
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Figure 6: Idealised venous valve study using a vector-based discrete element method as structural solver for flexible
leaflets (top right). Deformation profile of the valve compared favourably with experimental observations and was able
to match opening, equilibrium and closing phases of the valve cycle (top left). One example of a discrete element method
implemented at large cardiovascular length scale [38].

hyperelastic models implemented include variants of reduced polynomial [127, 128] and Mooney-Rivlin
models [129].

In studies of stent deployment, the deformation of the stent is also considered, usually via finite
element analysis [130, 129]. By modelling the interaction between the stent and vessel, the risk of
restenosis of the vessel can be assessed - a significant issue post stent deployment. Patient-specific
geometries have been included through the use of intravascular ultrasound [131].

4.2.3. Venous valves

Venous valves are bicuspid in nature and are located to divide veins into smaller segments, allowing
blood to be transported back to the heart despite gravitational forces. This is especially important
in large veins located in the legs. Here, the two leaflets are attached at the vein wall and have free
edges located in the lumen. A sinus region aft of the valve leaflets allows flow that has detached from
the valve leaflets to reattach to the vein wall [132]. The structural properties of veins differ from
that of arteries, with veins able to experience large deformations, allowing the vein to collapse under
external forces supplied by the surrounding muscles and to distend under internal pressures [133]. The
sinus region in turn has different structural properties than the rest of the vein wall, allowing larger
deformations under pressures experienced during normal function.

The mechanism of valve opening and closing has been studied in-vivo using B-flow ultrasound
that allows the visualisation of the valve cusps while details of blood flow characteristics can also be
captured [134]. Using these imaging techniques, the mechanism for valve opening and closing has been
split into four distinct phases [132].
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Blood clots can form in areas of recirculation behind the leaflets of venous valves. In deep veins,
commonly the legs, this can lead to Deep Vein thrombosis. Given complications of deep vein thrombosis
are potentially life threatening very few numerical studies have investigated the disease using structural
modelling of the valve. Those that have have mainly focussed on the fluid characteristics with a rigid
valve [135] or on the clot formation [136]. Figure 6 shows one such FSI study with flexible idealised
valve leaflets using a discrete element structural solver [38]. Results from this study replicated the
cyclic deformation profile seen during experimental observations while also producing the stationary
flow behind the valve known as the proximal pocket.

Since there are a significant number of studies of heart valve characteristics, one potential avenue
for future investigation is to adapt these models to venous valve applications.

4.2.4. Resistance vessels

The components of the cardiovascular system that have been discussed in preceding sections have
involved the heart, buffer vessels (aorta and other large arteries) and metabolic vessels (capillaries and
red blood cells). These structures have, in general, been extensively studied numerically. However,
while they contribute significant amount to the system, there are other less studied structures that
will require study in the future, resistance vessels and capacitance vessels.

These are muscular arterioles that regulate blood pressure and temperature through changing the
diameter of the lumen. Stenosis can cause improper function of the vessel, causing vascular remodelling
which may not always operate efficiently leading to diseases such as hypertension. No computational
studies have been found during the literature search conducted in this review. Given the link between
these vessels and hypertension, this may be a interesting avenue for future research.

4.3. Aneurysms

Aneurysms are the dilation of an artery wall due to the degradation of elastic fibres and loss of
smooth muscle function which also contributes to the expansion of aneurysm diameter [137]. Within
the human body, three main types of aneurysm commonly occur, abdominal aortic aneurysms, thoracic
aneurysms and intracranial aneurysms. It is widely accepted that all three share the same pathogenesis
of degradation of elastic fibres in formation. However, some key factors that have been linked to the
cause of AAAs are known not to be a cause of other types of aneurysms. The presence of atherosclerosis
is an example; while it has been repeatedly reported as a cause of AAAs [138], it is thought to occur
as a consequence of intercranial aneurysms [42]. In spite of this, due to the relative similarity in
pathogenesis, advances in the modelling of each type of aneurysm should be considered for their
potential general benefit when studying an individual type [137].

4.3.1. Abdominal Aortic Aneursysms & Associated Thrombus

Abdominal Aortic Aneurysms (AAA) occur when the maximum diameter of the abdominal aorta
increases by 50% or the diameter is greater than 3.0cm. Computational haemodynamic studies have
suggested that the infrarenal aorta experiences reversed flow due to the bifurcation of the aorta into the
iliac arteries and has been linked to the dilation of the aorta wall [139]. Around 75% of AAA contain an
intraluminal thrombus (ILT) [140] although the contribution of thrombus to aneurysm rupture risk is
debated. Some studies suggest it can reduce the thickness of the artery wall in that area [141, 142] while
others have claimed the thrombus provides a stress-shield wall [143, 144]. Alternatively, other studies
have suggested the presence of ILT can reduce stresses on the aneurysm wall without significantly
effecting the location that maximum stress occurs [145]. However, it is widely accepted that the
presence of a thrombus increases inflammation which is recognised as a key role in the mechanics of
AAA formation [42].

Mechanical properties of AAAs have been measured experimentally in a number of studies in order
to improve the accuracy of material models under structural analysis. It was reported that aneurysmal
wall tissue is stiffer than that of healthy tissue [146] and biaxial tests were conducted on a large cohort
of AAAs (n>25) to develop an appropriate constitutive equation [147]. The mechanical properties of
intraluminal thrombus have been less studied. The most extensive experimental study tested a number
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of thrombus samples (n=14) uniaxially and determined that the deformation response of the material
is nonlinear over large strains and can be described as quasi-isotropic, but highly non-homogeneous
with stiffer material located in the luminal region of the thrombus than at its centre [148].

Initial numerical studies used a linearly elastic material model in conjunction with FEM and ide-
alised geometries [149, 150]. Although linear elasticity is considered a crude approximation, these stud-
ies were able to establish a number of key factors in rupture risk such as wall thickness. One important
development of this procedure was to include hyperleastic material models specific to aneurysmal tissue
such as that discussed in Section 3.3. Additional developments include a two-layer model framework
proposed by Holzapfel et al. [27] in which the constitutive relationship can be modified depending
on the artery in question. These model developments have been incorporated into a number of more
recent studies of aneurysmal wall mechanics [145, 151].

Patient-specific geometries have also been included within the analysis using CT scans [152, 2].
These models still include many assumptions such as a uniformly thin wall that will need to be
excluded in future studies. However, a major finding in these studies was the correlation between a
peak normal stress greater than 440kPa and the rupture potential, demonstrating the potential of the
computational analysis in this application.

Given that reversed flow phenomena in the abdominal aorta is thought to be a major factor in
the formation and growth of AAAs [153], there has been a push towards developing fluid-structure
interaction models capable of simulating the complex conditions for this application. However, the
focus here will remain primarily on the structural analysis models that are coupled to the fluid solvers.
The majority of developed structural models incorporated into FSI methods are more simple than
those used in standalone structural analysis of the aneurysm wall due to computational power restric-
tions and limitations. Generally, early models have represented the aneurysm wall as linearly elastic,
homogeneous, isotropic and with properties that do not change with time [154, 155].

More recent FSI studies [156] have continued to employ similar material models as previous studies,
representing the artery wall as a two-layer, isotropic and orthotropic material [27, 152]. The inclusion
of patient-specific geometries from non-invasive imaging techniques such as computed tomography
(CT) [156] scans and 3D ultrasound (3D US) [157] greatly increases the potential. Using CT scans in
particular allows separation of the various components of the structure (artery wall, lumen, thrombus,
areas of calcification) which can then be assigned appropriate mechanical properties individually which
can then be analysed as a single component or as a system in both fluid-solid interaction and fluid-
solid-growth methods. However, many limitations still exist, such as the assumption of uniform wall
thickness of 2mm of the aneurysm while it has been found from experimental studies [158] that wall
thickness can vary from 0.26mm in location of rupture to 4.26mm in areas of calcification.

Humphrey et al. [42, 137] identify that in order to correctly account for structural variations during
aneurysm growth, it is necessary to develop a class of fluid-solid-growth models which are capable of
accounting for disparate time-scale effects in a concurrent approach. Here, traditional FSI methods
are incorporated within the FSG framework to predict the long term effects of disease based upon
short-term predictions from a modelled cardiac cycle; i.e. the simulation becomes multi-scale. In this
framework a mathematical model was developed by [44] based on a two-layered, cylindrical membrane
using nonlinear elasticity and the constitutive model developed by Holzapfel et al. [27] to describe
the stress-strain relationship. The approach was used to demonstrate formation of an aneurysm in an
initially healty aorta via structural remodelling equations employing a prescribed degradation of elastic
within the structure wall. While the model omitted a number of key features, such as the presence
of ILT or calcification, and was limited to idealised geometries, it provided an important proof-of-
concept. Fluid-solid-growth models are currently a topic of active development within a number of
areas [6, 159, 160], having evolved somewhat further than the original method. To date they generally
assume the artery wall to be a uniformly thin structure (membrane), limiting somewhat the scope of
the model, although Grytsan et al. [46] have developed a more sophisticated method wherein a thick
walled FE aneurysm model [161] is coupled to the FSG framework.
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(a) (b)

Figure 7: Comparison of (a) linear elastic and (b) nonlinear elastic constitutive relationships for the total deformation
magnitude of a patient specific intracranial aneurysm. Profiles are qualitatively similar demonstrating the capability
of linear elastic models given the easier implementation. However, the magnitude of maximum displacement of the
nonlinear model was found to be 36% lower than the linear elastic model highlighting that for high-fidelity studies,
nonlinear models should be used and the high significance of the constitutive model implemented [162].

4.3.2. Thoracic Aneurysms

While Thoracic aortic aneurysms (TAA) are relatively rare - with around 0.006% of a given popu-
lation each year [163] - they can be catastrophic, with a 5 year survival rate less than 20% [164].

Statistical approaches were initially used when investigating the biomechanics of TAAs. Rizzo et
al. [165] used clinical measurements to develop growth rate estimates using an approach known as
instrumental variables estimations, an improvement upon conventional methods which were susceptible
to a number of measurement errors. These methods have also been applied to other types of aneurysms
[166] however, they cannot provide a patient-specific decision for surgical intervention and therefore
numerical models have become increasingly popular.

Since TAAs are not as common as other types of aneurysm, they have not been as extensively
researched. However, given that they occur in the aorta like AAAs, many of the same computational
models can be adapted for TAA use.

Experimental studies on the mechanical properties of TAAs have compared aneurysmal and non-
aneurysmal ascending aortic tissues, concluding that formation of the aneurysm is linked to the stiff-
ening and weakening of the aortic wall [167]. Techniques have also been developed to produce patient-
specific geometries from various imaging modalities [168]. Borghi et al. [169] proposed a new method
of combining patient images obtained through MR with different levels of detail and resolutions in
order to obtain good representations of all the important cardiovascular structures e.g. lumen, throm-
bus and wall. The geometries generated through this method were compared against those obtained
from a single dataset with higher stresses found in coarser models. This method was used in further
studies [20, 170] including a fluid-structure interaction, finite element study of three patient-specific
geometries using a commercial solver, ADINA and a thrombus material model [148] . Results from
these studies demonstrated that aneurysm shape and thrombus distribution have a significant effect
on wall stress distribution and magnitude and that aneurysm diameter and maximum wall stress are
not related.

An additional cardiovascular defect associated with TAAs is aortic dissection. This occurs when
the haemodynamic loading on the aneurysmal wall is greater than the adhesive forces between the
artery wall layers. Similarly to TAAs, aortic dissection is a relatively rare defect, however a strong
link has been made between the congenital heart defect, bicuspid aortic valve (rather than tricuspid),
and aortic dissection [171]. Numerical modelling of this defect has found that the difference in valve
morphology and the elastic material properties leads to abnormal flow conditions and discontinuous
high wall stress resulting in defects between arterial layers [172].
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4.3.3. Intracranial Aneurysms

Intracranial aneurysms are commonly of the saccular type and therefore known as intracranial
saccular aneurysms (ISAs). Mechanical risk factors are generally accepted as playing key roles in the
pathogenesis of ISAs. Since arteries in this area do not have the external elastic lamina of larger arteries
and they have less perivascular tissue supporting them, there is increased risk of local weakening
of the artery wall under non-ideal haemodynamic conditions. This issue is exacerbated further by
the irregularity of the bifurcation region. The rupture of an intracranial aneurysm can be simply
summarised as the presence of mechanical stress greater than that of the strength of the vascular wall.
In practice, evaluating the critical stress is not straight forward since the distribution and magnitude
is affected by three key factors: geometry, material properties of tissue in the aneurysmal region and
the applied loads.

ISA walls were initially modelled mathematically as well as their associated hemodynamics [173,
174], which were validated experimentally via glass tubes [175, 176]. These mathematical models
included representation of the aneurysm wall via electrical circuits [173]. Results from these studies
include the estimation of a critical atherosclerotic lesion diameter [174] and the identification of two
geometric parameters relating to orifice size affecting rupture potential [177]. These mathematical
models also identified daughter aneurysms as a significant rupture risk factor in intracranial aneurysms
but had severe limitations including the inability to model material elasticity and restricted to idealised
spherical geometries as a result of utilising the Law of Laplace [178, 177].

Early numerical approaches were also hindered by oversimplified assumptions such as linearly elastic
behaviour of the artery walls. These assumptions were removed through the use of nonlinear FEM
[179, 180] which implemented the constitutive relationship developed by Humphrey et al [181] that is
generic to biomembranes. These studies used an idealised axisymmetric representation and like many
methods where an idealised geometry is used, while they can provide validation and qualitative results
in order to improve understanding of the problem, they cannot be used to model the most complex
characterisations. However, these models did highlight the shortcomings of a critical lesion diameter,
identifying the shape of the aneurysm rather than the size as a critical risk factor. In particular, they
found that smaller lesions with a large neck to height ratio have much greater stresses than large lesions
with a small neck to height ratio. [182, 183].

Two main material models are implemented, Fung-type strain energy density functions [184] devel-
oped for artery applications and Skalak-type strain energy functions [31] developed originally for red
blood cell membranes. However, some studies also implemented the Mooney-Rivlin model [185]. Torii
et al [162] compared the relative performance of linearly elastic and hyperelastic models in modelling
artery and aneurysm walls as part of FSI methods as shown in Figure 4.3.1. It was found that the
hyperelastic model produced structural deformations up to 36% smaller than linearly elastic models.
However, the areas where maximum deformation occurred were consistent in each case suggesting that
both types of wall models can be implemented.

In recent years, similar to modelling of AAAs, patient-specific geometries have been obtained
through CT [186, 187] and MRI scans [188]. However, while these studies provide useful insight into
the conditions experienced in an aneurysm, the computational and financial cost have significantly
limited its use in clinical practice for monitoring aneurysm development through in silico methods.
Research has also focused on the modelling of artificial devices placed within aneurysms such as stents
and coils [189, 190]. Minimally invasive aneurysm repairs such as endovascular grafts (EVG) also
known as stent-grafts have applications in AAAs and the thoracic aorta as well as in intercranial
aneurysms [172, 191]. The stent can be either ballon expandable or self-expandable and is generally
modelled as a linearly elastic material whereby the material properties such as Young’s modulus, are
measured experimentally [172]. For balloon expandable stents in particular, modelling the material as
linearly elastic can be an oversimplification since they are often plastically deformed by the balloon
once expanded.

The family of fluid-solid-growth models described in sections 3.3.1 and 4.3.1 have also been applied
to cerebral aneurysms, under similar assumtions and hypotheses as for the AAA cases [192, 45]. Given
the predictive potential of such approaches to quantify risk prior to aneurysm formation, this can be
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Figure 8: Coarse-grained worm-like chain model (discrete) representation of multiple RBCs subjected to various flow
conditions. Method reproduced disk, parachute and slipper shapes observed experimentally (left) when flow velocity
and fluid density was modified (right) [60].

considered to be an important area for ongoing study, and indeed a number of research groups currently
work on refinement of FSG models for cerebral applications. It should however be understood that
these approaches remain quite conceptual as their validation is particularly challenging given the long
time-scales involved.

4.4. Red Blood Cells

The red blood cell is of particular interest for study for a number of reasons. Firstly, it has a
relatively simple structure in comparison to other cells [193]; it is nucleus free, the cytosol contained
within the membrane is of fixed volume and known viscosity [13]. This allows the mechanism of
how the cell membrane converts mechanical forces to biological responses to be studied along with
how structural, chemical and biological signals affect the response of the cell membrane. It also
has a relatively simple shape and is axisymmetric when undeformed, allowing the development of
computational models [194]. In terms of contribution to fluid characteristics, RBC are the most
abundant constituent in plasma by volume and it is the deformation of the RBC that provides the
shear-thinning of blood and it’s non-Newtonian property [4].

An in depth review of the current state of the art for RBC modelling applications was published
by Fedosov et al. [60], including the fluid solvers used in various numerical studies and the significance
of findings from each. Here focus is maintained on the structural models. Red blood cells belong to
a group of structures known as deformable particles. Deformable particles can be divided into three
main groups: capsules, vesicles and red blood cells [195].

Capsules and vesicles are often modelled as a simple representation of the red blood cell. Compar-
ison of results obtained using all three types of deformable particle allow improved evaluation of the
importance of various cell material properties to flow characteristics. Initial attempts to model the
deformation of a RBC were analytical using a capsule model [196] or axisymmetric shape [197]. These
solutions could therefore only provide qualitative characteristics to problems, but since accurate RBC
membrane rheology could be integrated, they can also be used to validate computational models [198].

According to Fedosov et al. [60], in order to realistically model the mechanics of a red blood cell,
the membrane viscoelasticity (viscous contribution from lipid bilayer and elastic contribution from the
spectrin network) and bending resistance must be accounted for along with the individual viscosities
of the external (plasma) and internal (cytosol) viscosities. RBC structure has been modelled using
both continuum and discrete methods. Continuum methods treat the lipid bilayer, cytoskeleton and
cytosol as homogeneous materials using membrane and viscous stresses to determine RBC motion and
deformation. In contrast, discrete based methods generally represent the cytoskeleton with a set of
points that form a 2D or 3D triangular network. These points are related via various spring models
to govern the deformation of the RBC.
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4.4.1. Single Red Blood Cell

Evans et al. [199] proposed a 2D linear continuum model for the red blood cell membrane to study
the deformation of an axisymmetric cell in response to flow. Using this model, the teardrop formation
of an attached RBC was reproduced. An improved continuum model represented the RBC structure
as a 2D shell (zero thickness) via finite elements [200]. Within this model, the constitutive relationship
could be changed to suit the given application although neo-Hookean was used most commonly due
to its simplicity [201].

Early discrete models focused on the structure of the cytoskeleton, modelling the surface of the
cell using a triangular mesh with each vertex a six-fold junction [202, 203] connected via a Hookean or
neo-Hookean springs. The triangular mesh assumption was based upon observations from a number
of studies on the general structure of the cytoskeleton [37]. The topology of diseased or ageing cells is
less consistent with four and five fold junctions present and therefore limited studies to healthy cells.

Improvements to the modelling of the mechanical characteristics of the cytoskeleton and in par-
ticular the behaviour of the spectrin network, involved the replacement of springs with a chain and
bead network [203]. The chain and bead model prevented the cytoskeleton from extending unbounded
as was possible with the linear spring models, through constraining the distance between beads. The
model agreed qualitatively with experimental data for some shear modulus measurements. However,
again the network was strictly six-fold and therefore was unable to provide results for diseased cells
given the variation in topology of diseased cells.

The worm-like chain (WLC) model was an extension of the chain and bead model [204]. The
WLC method had previously been used extensively in the study of DNA and other proteins since is its
proposal by Marko & Siggia [205]. This approach includes the effect of a random spectrin network (not
strictly six-fold) and the curvature of the lipid bilayer and gave close agreement with experimental data.
Through coarse-graining this model, deformation of an entire 3D RBC cytoskeleton to be simulated
with 100,000 spectrin in the network, consistent with microscopy observations [206] using a single
desktop computer [14].

4.4.2. Multiple Red Blood Cells and Disease

Numerical study of RBCs tended to either model a single cell in high detail or multiple cells as
highly simplified representations, often with little or no deformability [207]. However, coarse graining
of high-fidelity models as well as an increase in obtainable computational power has resulted in rise in
studies of multiple cells. This has enabled the effects of diseased cells to also be studied via numerical
methods and the design and validation of microfluidic devices that can give further insight into various
diseases [22]. One such example of coarse-graining existing models was developed by Pan et al. [208]
based upon the original model of Fedosov et al. [13]. These methods have also been used to study
RBC aggregation and the study the different deformation phases of multiple RBCs when subjected to
various flow conditions as shown in Figure 8.

Many types of haematological disorders include the stiffening of RBC membrane. In order to
accurately model the effect of diseased cells within a population of healthy RBCs, the multiphase
nature of blood must be accounted for.

Sickle cell disease is a group of genetic disorders caused by sickle haemoglobin in the red blood
cell [209]. The sickle haemoglobin causes the cell to deoxygenate, known as hypoxia, resulting in the
change of shape associated with the disease. This shape change can damage the membrane of the cell,
causing it to rupture. Multiple sickle shaped cells are unable to flow as readily as the healthy biconcave
shape, leading to blockages in smaller vessels such as microcapillaries. These blockages can result in
vasoocclusion and organ damage. Sickled RBCs have significantly larger shear moduli than healthy
RBCs [210]. Lei et al. [211, 212] developed the first 3D multiscale model of sickled RBCs to capture
heterogeneous nature of both realistic cell shapes and haemodynamics. The shape of the sickled RBC
was developed using images taken using scanning electron microscopy. A surface tension was applied
to the healthy RBC model, distorting the shape until it matched that obtained via imaging and a new
equilibrium shape was defined for the model. Results of this study found that the cell morphology
influences the shear viscosity with the granular shape increasing viscosity the most.
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It has been shown that malaria infected RBCs have membranes that are stiffer than those of healthy
RBCs. The invasion of the parasite plasomodium falciparum into RBCs occurs in the majority of
malaria patients and causes the shear modulus to increase by an order of magnitude [213]. This limits
their ability to deform in narrow capillaries, leading to reduced flow, clot formation and can cause
complete blockages of the vessel lumen. The computational requirement of diseased RBC simulation is
relatively high due to the low numbers of diseased RBCs within an RBC population. As a result, a large
number of cells must be modelled in order to accurately represent the interaction between the majority
of healthy RBCs and the minority of infected RBCs [214]. The effect of including the parasite structure
within the RBC membrane has also been studied [215] and found that early ring stage malaria infected
RBCs behaved similarly to healthy RBCs, flowing through vessels with diameter less than their own
through deformation, while later stage infected RBCs could not, causing flow occlusion. However, the
parasite structure was modelled as a rigid body and the author suggested a deformable representation
of the parasite would improve the model. Some numerical studies of malaria infected RBCs have been
motivated by the need to validate experimental devices that can be used to separate diseased cells
from healthy ones [216, 22] based upon the changes in flow path with increased membrane rigidity.

5. Summary and Discussion

The purpose of this review is to provide an introduction to the field of cardiovascular structural
modelling through an overview of the material models and discretisation methods implemented to
numerically investigate various cardiovascular applications. A synopsis of the key modelling develop-
ments has been conducted, providing a basic understanding to each of these fields in order to improve
reader access to specialised literature. A selection of the most important studies in each of the areas
considered are summarised in Figure 9 as a timeline demonstrating the progression of cardiovascular
structural modelling. The figure portrays an evolution in complexity of modelling of the cardiovascular
system over the past 20 years and evidences an increasing trend towards FSI modelling.

The majority of studies employ continuum methods, particularly for larger length scales such as
vessels and heart applications. For simulations of physical structures at larger scales, the efficiency
of particle-based methods is generally much lower than continuum methods, due to the number of
particles required to represent a given structure. There are a few exceptions to the rule such as venous
valves [38] and atrial tissue [68] where simple discrete models have been implemented. In addition,
coarse-graining of DEM models has allowed a larger number of structures to be represented in a single
simulation. However, discrete methods require significant development from their current state in
order to capture the properties of different layers and fibre orientations within the tissues.

In general, it appears that the majority of structural models incorporated into FSI methods are more
simple than those used in standalone structural analysis of vascular structures due to computational
power restrictions and limitations. However this trend is starting to shift, as partly evidenced by
Figure 9; increasingly multiple material models and possibly also a combination of DEM and FEM
will be needed to more efficiently and accurately model processes in the cardiovascular system.

In Section 3.3, the strain energy density functions of many commonly used material models are
shown to be extensions of the incompressible neo-Hookean model. A comparison study has shown
that in the case of aneurysm wall shear stress, changing the material model has minimal effect [162]
as shown in Figure 5. This is perhaps due to the relatively low levels of deformation and therefore
small differences caused by changing the material model. However, this may not be the case for all
applications such as RBC deformation where larger deformations occur. The modeller therefore must
make an assessment in order to find a suitable compromise between ease of implementation and the
required level of detail for their specific application.

Another interesting development is the impact that emerging computer hardware such as GPUs
is having on model development. Access to and use of GPUs has increased dramatically over the
past decade, and discrete method algorithms are well suited to GPU acceleration since they contain
a high number of simple calculations rather than the complex algorithm of continuum methods. The
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- predominantly 2D
- limited scope
- steady analysis
- simple models

- starting to be 3D
- in-vivo measured 
   properties

- patient specific
- FSI multimaterial

- GPUs
- Multiscale

1990 2000 20101980

Evolution of computational structural models for the cardiovascular system 

Material Model Patient-Specific Geometry Fluid-Structure Interaction Application Outcome Numerical Modelling Progression

Cells

1980 - Early effort 
modelling flow dependent 
membrane deformation.  
Used lubrication theory 
and axisymmetric cell 
representation.

1985 - Modelled fluid 
filled capsules with 
large deformations 
using Stokes flow 
and boundary 
integrals.

1973 - 2D non-linear 
continuum model 
developed for RBC 
membrane.  Used in 
many future studies 
to the present.

1994 - Polymer chain model of 
spectrin network allowed estimation 
of elasticity modulii of RBC.  Identified 
importance of interchain interaction 
and between chains and bilayer to 
overall network properties.

2010 - Plugin RBC 
structural model 
developed for use in 
various methods e.g. 
lattice Boltzmann, 
Brownian dynamics.

2005 - Worm-like chain 
model able to model 
cytoskeleton with ~100,000 
spectrin with treatment for 
lipid bilayer and cytosol on a 
single desktop.

2007 - RBC model using 
500 nodes, able to 
model 102 cells which 
maintains membrane 
dynamics for accurate 
rheology.

2007 - First 
simulation to 
consider large 
number of RBC and 
deformability 
simultaneously.

1997 - Worm-like chain model 
integrated into polymer chain 
models.  Force extension 
relationship gives max extension 
of chain.  Compared favourably 
with experimental data.  

2013 - 
Deformation and 
aggregation 
modelled for 
~50,000 healthy 
RBCs.

Vessels &
Atherosclerosis

1967 & 1972 - Initial 
attempts at developing 
a non-linear stress-
strain relationship for 
biological soft tissues.  

1983 - 3D constitutive 
relationship proposed for artery 
wall based upon experimental 
data from rabbit arteries.  
Constitutive relation still in use 
in current models.

2000 - Two layer 
constitutive relation 
proposed for arterial 
wall mechanics: 
regularly used in 
future studies.

1998 - Numerical study 
investigating locations of 
likely atherosclerotic 
plaque formation in the 
abdominal aorta compared 
to the thoracic aorta. 

1994 - Numerical study compared levels of 
thrombogenicity when different components of 
atherosclerotic plaques are exposed to blood flow.  
Concluded atherosclerotic core is most 
thrombogenic therefore plaques with large cores are 
most at risk of coronary disease after rupture.

2008 -Generalised meshless 
finite difference method to 
track atherosclerotic plaque 
progression based upon 
patient-specific MRI 
images.

2012 - 3D parametric study of 
atherosclerotic plaque rupture identified 
fibrous cap thickness and lipid core length 
as factors.  Initial stress recommended 
within model to improve accuracy of 
plaque rupture risk assessment.

2005 - 3D FSI model and 
parameter study quantifies 
effect of plaque structure 
and material properties on 
stress distributions in 
atherosclerotic plaques.

Aneurysms

2000 - Constitutive 
relation framework 
developed for AAA wall.  
Model was isotropic 
only but was integrated 
into further models.

1972 - Risk factors 
identified in the growth 
and rupture of 
intracranial aneurysms 
including size, pressure 
and wall thickness.

2006 - Constitutive 
relation framework developed 
for AAA wall including 
anisotropic terms, replicating 
experimentally observed 
aneurysmal behaviour.

2001 - Strain 
constitutive relation 
developed for intra-
luminal thrombus in 
AAA.

1987 - Finite element 
method used to 
determine variation of 
wall shear stress in 
AAA due to geometry. 

1996 - Computational 
modelling finds lesion 
shape, material properties 
and loading conditions 
also factors in aneurysm 
rupture risk.

1997 - Intra-luminal 
thrombus found to 
reduce maximum 
wall stress in AAA 
and therefore reduce 
rupture risk.

2011 - FSI study of stented 
and non-stented TAAs.  Models 
included varying thrombus 
formation.  Identified cardiac 
cycle and thrombus volume as 
key to TAA compliance.  

2004 - Fluid Solid 
Growth model proposed 
to simulate growth of 
AAAs. Multi timescale 
framework, also applied 
to other aneurysms.

2008 - Material models 
compared for displacement 
fields of cerebral 
aneurysms.  Found that 
model choice has very small 
effect on displacement.

Congenital
Heart Disease

& Valves

1998 - Constitutive relation 
developed for mitral valve 
tissue. Capable of 
accurately replicating high 
deformations experienced 
during cardiac cycle.

1983 - Constitutive relations 
developed for fibrous connective 
tissues using structural theory for 
homogeneous biaxial stress-
strain relationships, used in many 
further studies. 

2012 - First FSI model 
of TCPC to include 
variable elastic wall 
properties for different 
areas of TCPC (valve, 
arterial wall etc).

1996 - First model 
to couple fluid 
solver with a 
mechanical model 
of vascular system 
for TCPC.

1991 - 3D FE model of 
bioprosthetic bicuspid heart 
valve using non-linear elasticity. 
Identified bending stresses in 
leaflets as major contributors of 
deformation. 

2009 - First FSI model of 
TCPC that includes patient-
specific geometries.  
Investigated rest and exercise 
conditions.  Included variable 
vessel wall thickness. 

2010 - 3D FSI model 
used for comparison 
study of mechanical 
heart valve and venous 
valve using commercial 
codes.

2004 - FSI model of TCPC, 
included non-linear compliance 
of wall. Compared FSI model 
with rigid model and found 
difference in power efficiency 
between the models.

2009 - Orthotropic constitutive 
relation of myocardium 
developed based upon fibre 
orientation within the tissue. 
Regularly implemented in 
recent studies.[94] [89] [217] [30]

[218] [219] [76] [220] [79]

[28, 221] [101] [107] [222]

[184] [32] [27] [112]

[176] [143] [25] [147] [223]

[149] [179]

[148]

[44] [162]

[199] [196] [204] [195] [13]

[224] [203] [14] [225] [226]

Figure 9: Timeline of a selected major studies published progressing the state of the art of cardiovascular structural
modelling. Key features of each study are highlighted including the inclusion of patient-specific geometries and fluid-
structure interaction methods.
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prevalence of GPU and many-core compute looks likely to play an important role in extending the
range of use of discrete methods [68].

Within this review, it has been demonstrated that numerical modelling has been able to improve our
understanding of cardiovascular disease, both in terms of pathogenesis and treatment. By investigating
the significant developments across a number applications, it has been shown that often the same
modelling limitations have affected many applications. Therefore any advancement in the modelling
of one application can be adapted to many others, or at least inspire future developments.

Recently the development of multi-scale models, such as the model for aneurysm growth [44], has
been identified as critical to improving the understanding of cardiovascular structures and in particular
disease progression. While multiscale methods are undoubtedly key, it would seem sensible here to
reiterate the importance of developing models that can be included within clinical environments for
patient diagnostics and assessment. These models will almost certainly have to be of lower fidelity in
order to operate within the time constraints of practical modern medicine. Presently there are many
examples of software developments for cardiovascular modelling intended to provide faster insight by
trading accuracy with efficiency [227, 145]. In many cases even modest predictive insight may be
considerably better than the standard practise.
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Abstract

This paper presents the vector-based discrete element method applied to elastic continua, including
details of formulation, its implementation on graphics processing units (GPUs) for accelerating sim-
ulations and validation cases. Simulation of elastic continua has traditionally been realised through
continuum-mechanics based methods such as finite elements while using discrete element methods
have been restricted to small spatial and temporal scales due to the relatively high computational
cost. The vector-based discrete element method, or V-model, overcomes the limitations of both tradi-
tional continuum-based mechanics and discrete element approaches to enable the possibility to model
additional physics such as cracking, remodelling and rupture. However, for real applications, hardware
acceleration of the simulations is required such as the successful execution of discrete methods on
GPUs increases the feasibility of larger scale modelling. This paper presents the first implementation
of the V-model on GPUs to model elastic continua. Implementations are developed and compared
for both CPU and GPU with both static and dynamic validation studies to assess the performance
of the method. Results demonstrate the ability of the method to model linear deformation within
1% of the analytical solution and provide qualitative representation of non-linear deformation. This
highlights the need for future work to incorporate non-linear constitutive models to improve fidelity
in these cases. The spatial rate of convergence with decreasing particle size is demonstrated to be
approximately first order with a methodology to clarify selection of critical timesteps for a number of
cases presented. The GPU implementation also demonstrates a 20x speed-up over the CPU imple-
mentation. The capabilities of the elastic V-model on a GPU is demonstrated by applying it to the
stochastic modelling of material properties in a deforming beam.

Keywords: discrete element method, GPU acceleration, stochastic modelling

1. Introduction

Over the past 30 years, the use of numerical methods in the field of solid mechanics has vastly in-
creased, modelling a range of applications including geological [1], energy generation [2], and biomedical
[3]. Generally, these numerical methods belong to the continuum class whereby the solid is treated as a
continuous mass rather than as a collection of discrete particles. The most common continuum-based
method is the finite element method (FEM), utilised extensively in both academic and industrial ap-
plications, where the domain is discretised into a number of elements which have a specified number
of nodes. The displacement of these nodes due to the effects of applied loads is dictated by an inter-
polation function known as a shape function. The combination of node and shape function specify
the element type. The collection of nodal displacement thus gives the deformation of the discretised
body. Several variants exist such as X-FEM which extends the governing differential equations to in-
clude discontinuous functions [4], allowing phenomena such as cracks and fractures to be more readily
modelled without the need for remeshing of the domain as the feature develops.

Continuum methods are able to satisfy conservation laws and provide highly accurate results at
large length scales for problems where material heterogeneity is well defined. However, at smaller scales,
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Figure 1: Mass and moment of inertia discretisation schematics of basic components of popular solid mechanics methods
a) discrete element method (homogeneous, structured, connected at particle centre) b) finite element method (beam
element), c) mass-spring model

the assumption of a continuous mass, neglecting the existence of space between particles within the
solid, is questionable. Furthermore, when empty space or material heterogeneity is explicitly modelled
with continuum-based methods dynamic contact variations and sliding introduce non-linearity to the
governing equations thereby hindering convergence and stability [5].

At length scales for a given classification of material where its heterogeneity is important, the
interface between volumes of material adjacent to voids or volumes of other materials must be clearly
defined. A number of methods are inherently applicable to these problems such as molecular dynamics
[6], lattice spring models [7] and discrete element methods [8]. These methods have traditionally been
restricted to small length scales O(10−3) due to the need for a large number of particles and hence a
large computational cost. However, advances in computational architecture and the implementation of
modelling techniques such as coarse graining [9], where the resolution of the model is reduced but the
physics remain accurately represented, have resulted in the restrictions of spatial scales being relaxed.
Furthermore, these methods are often based on local particle-particle relationships and explicit time
integration procedures making them well-suited to parallelisation on both traditional architectures and
more recent novel architectures such as Graphics Processing Units (GPUs).

A significant difference between various continuum and discrete approaches to modelling solid
mechanics is the discretisation of the solid and the representation of mass, as shown in Figure 1. The
simplest model, the mass-spring model, discretises the solid into a collection of point masses connected
via springs. Usually only translational degrees of freedom are considered to reduce computational
cost. Discrete element methods also discretise the solid into a collection of masses but additionally
incorporate rotational degrees of freedom by modelling each mass as a particle of finite, non-zero size,
to account for the moment of inertia. The commonly-implemented finite element method, on the other

7 disk model 9 disk model

Figure 2: Structured discrete element arrangements commonly implemented for elastic continuous bodies. Left: 7-disk
model. Right: 9-disk model. Constitutive models must be modified depending on implemented arrangement.
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Figure 3: Bond connected to particle centres where bond length and particle diameter are equal.

hand, models the mass as a continuum and distributes it evenly across each element. Various element
types exist that can model translational and rotational degrees of freedom as required, comparable to
mass-spring models and discrete element methods.

The discrete element method (DEM), was originally proposed by Cundall in 1971 [10] for rock
mechanics modelling and has since been utilised in a number of loose and bound granular material
applications, to predict/simulate phenomena such as deformation [11], creep [12] and sintering [13].
More recently, a number of researchers have explored the possibility of using this method for elastic
materials that have traditionally been modelled by continuum methods. The advantages include the
ability to implement additional physics, such as fracture and aggregation, more readily within the
model. This has made the technique attractive for complex multi-physics problems such as fluid-
structure interaction [14] and electrically-induced structural deformation [8]. DEMs can represent
elastic bodies by replacing contact forces between particles with bonds or connections that deform
according to an elastic constitutive model.

However, developing constitutive models that are able to represent material properties that are
mesh independent, such as Young’s modulus and Poisson’s ratio, is not trivial. Many constitutive
models that have been developed are specific to a given particle arrangement such as the 7-disk and
9-disk arrangements shown in Figure 2, where the central element is connected to 6 and 8 surrounding
elements respectively. The force and moments calculated between adjacent particles are generally split
into normal and shear components and have been formulated for anisotropic [15] and non-linear [16]
materials.

Here, a recent development of the discrete element method, known as the vector-based discrete
element method (or V-model) is presented. Originally proposed by Kuzkin and Asonov [17], the
method was further developed by Nasar et al. [14] for two dimensional representation of elastic solids.
The V-model calculates forces and torques acting between bonded particles from a potential energy
function, guaranteeing that the forces and torques are conservative and the bonds are perfectly elastic,
while also being able to consider deformations due to longitudinal, shear, bending, and torsional loads.
Furthermore, all displacements (translational and angular) are evaluated as total displacements in each
degree of freedom using as single relationship. This ensures rotations are correctly evaluated for 3-D
applications in comparison to DEMs where incremental updates are used.

In engineering applications, O(108) DEM particles are generally required. This is infeasible with
highly simplified codes that run on a single core and single thread since simulation results are required
within a few days or less for many industrial applications. As a result, parallelisation of discrete element
methods and in particular, implementation on GPU hardware due to the low cost in comparison to
scientific computing grade CPU hardware, has become increasingly popular [18, 19]. In game physics,
the key criterion is modelling in real-time, allowing some fidelity to be sacrificed in order to achieve
this, while ensuring the deformation looks realistic to the user. Thanks to continuing performance
improvements in computational hardware, the fidelity of models employed in games physics has greatly
improved. As a result, DEM researchers have explored the possibility of using these models directly or
exploiting the game physics optimisation procedures for their own discrete methods and applications
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Figure 4: Flowchart of basic steps in V-model solver implemented on CPU architecture.

[20, 21]. Exploiting the computational acceleration of GPUs presents specific challenges including
modification of solvers in order to leverage the massive throughput of data offered by GPUs. Herein,
the V-model is implemented on a GPU for the first time.

This paper is structured as follows. First the methodology of the V-model is presented to enable
the simulation of elastic continua. Then the numerical implementation of the two-dimensional model
are explained in detail. Results are presented for static and dynamic validation cases to demonstrate
the accuracy of the method and its suitability to model elastic continua. In particular, an investigation
of the method’s rate of convergence using standard procedures is the first of its kind for the V-model
and allows comparison with traditional methods. This is followed by the implementation on GPU
architecture and subsequent acceleration of computation. The GPU-accelerated elastic V-model is
then applied to a deforming beam where stochastic variation of the material properties can be included.
The paper finishes with conclusions and recommendations.

2. Methodology

2.1. Governing Equations

The discrete element method and its variants use Newton’s second law to relate forces and moments
within a system to particle positions and orientations as given in Eqns 1 and 2:

Fi = miai (1)

Mi = Iiαi (2)

where: Fi and Mi are the resultant force and moment on particle i; mi and Ii are the mass and
moment of inertia of particle i; and ai and αi are the resulting translational and angular accelerations
of particle i.

Discrete methods in macroscopic simulations consider forces and moments from a number of sources,
both internal and external, including friction, contact forces between particles, body forces and attrac-
tive potentials. These are included in the governing equations:

Fi = F ext
i +

∑
F int
i (3)

where F ext and F int are external and contact forces.
Discrete element methods at larger spatial scales (x > 10−2m) have generally been applied to

granular solids whereby the contact forces are modelled using collision models [22]. However, for
elastic materials these contact forces can be modelled using constitutive relationships such as those
provided by Griffiths and Mustoe for the 7 disk arrangement [23] and Liu and Liu for the 9 disk model
[15]. For the work in this paper we use the method proposed by Griffiths and Mustoe.
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The V-model, like many other DEM models, discretises the solid into a number of particles con-
nected via bonds. While contact forces between particles not connected via a bond are not required
for the tests in this paper, a number of contact models have been developed for cases where particle
interactions between distinct bodies are under consideration [24].

In this method, bonds are modelled as if they were connected to particle centres, thus giving a bond
length equal to the diameter of each particle as seen in Figure 3. V-model bond stiffness parameters,
Bn, can be derived to represent the structural properties of a given material via its axial stiffness CA,
shear stiffness CD and bending stiffness CB . Kuzkin and Krivtsov [25] show that the relationship
between the Bn parameters and the bond stiffnesses may be written as:

B1 = CA (4)

B2 = CDL
2 (5)

B3 = CB −
B2

4
(6)

Using the constitutive relationships derived by Griffiths and Mustoe for 2-D cases with plane stress,
bond stiffnesses are defined as:

CA =
E√

3(1− ν)
(7)

CD =
E(1− 3ν)√

3(1− ν2)
(8)

CB =
EIb
l

(9)

where E is Young’s modulus, ν is Poisson’s ratio and Ib is the bond moment of inertia.
The forces and moments in the bonds are calculated in response to translational and rotational

movement of particles i and j attached to each bond with respect to their initial configuration relative
to each other. The governing equations are written as [17]:

Fij = B1(rij − a)rij +
B2

2rij
(nj − ni) · (I − eijeij) (10)

Fji = −Fij (11)

Mij = −B2

2
eij × ni +B3nj × ni (12)

Mji =
B2

2
eij × nj −B3nj × ni (13)

Vectors n are used to evaluate the relative orientation of bonded particles at each instance of
time. These vectors are rigidly attached to the particles at the point where the bond and particle are
connected as shown in Figure 3 and follow the angular and translational displacement of the particle.
rij is the position vector between particles i and j, rij = rj − ri, rij = |rij |, eij =

rij

rij
and I is

the identity matrix. From Eqns. 10-13 it is clear that the forces and moments are a function not
only of the relative orientation of bonded particles but also the relative orientation of the particles
with respect to the bond connecting them. Detailed derivations of Eqns. 10-13 can be found in [17].
Once the forces and moments in each bond have been calculated and applied to particles i and j, the
resultant forces and moments on each particle are calculated using:
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Fi =

b∑

k=1

Fij −
c∑

k=1

Fji (14)

Mi =
b∑

k=1

Mij −
c∑

k=1

Mji (15)

where limits b and c are the number of bonds where the particle under consideration is assigned as
particle i and particle j respectively. Note that the sum of b and c is equal to the total number of bonds
connected to the particle under consideration, which in this implementation is 6 except for particles
located at the boundary of the geometry where fewer bonds are formed.

Our applications of the V-model consist primarily of fluid-structure interaction problems and hence
our solver is being designed to integrate with the LUMA flow solver [26] where damping due to fluid
viscosity will dominate. As a result, damping within the structure is not implemented within the
model for the dynamic validation cases. However, in order to obtain quasi-static results in our isolated
validation case, a simple viscous damping model proportional to the relative velocity of the V-model
particles and a mesh dependent damping coefficient, η, is used as an artificial damping source defined
as:

η = 2
√
miCA (16)

where the V-model differs from traditional DEMs is that forces and moments within the bond are
calculated not only as a function of the particles connected together, but also with respect to the
orientation of the bond itself. This distinction is important for some cases. Consider a case where two
connected particles are rotated equally in the same direction without any translational displacement.
Using traditional DEM, calculating forces and moments as a function of orientation with respect to
the connected particles only, results in no forces and moments since there has been no displacement
relative to the other particle where as the V-model calculates the force and moment with respect to
the bond and therefore provides a force within the system.

3. Numerical implementation

In order to carry out a simulation, Eqns. 10-13 need to be calculated at discrete points in time
given a set of initial conditions for the particles and bonds. Computed forces and moments are then
integrated over the time step to allow updating of the positions and orientations of bonds. Figure
4 illustrates the simulation steps with Algorithm 1 providing a description of the steps involved in
performing the updates. Algorithm 1 may be adapted during implementation to allow optimisation
for a given architecture as discussed in Section 6.

The basic premise of the algorithm is to set up vectors containing particle positions and orientations
in a decomposed 2-D Cartesian coordinate system, one vector per axis is created to store particle
positions in each Cartesian coordinate and a vector is created to represent orientation, whereby the
indices of the vectors correspond to particle identification (ID) numbers. A matrix of dimension [2
× number of bonds] stores pairs of IDs for particle i and particle j attached to each end of a bond.
The algorithm loops over this bond matrix, calculating the forces and moment in each bond via Eqns
10-13 and applying them to particles i and j via Eqns 14 and 15. Once the total forces and moments
acting on each particle have been calculated, Eqns 1 and 2 are used to evaluate the translational, a
and angular, α accelerations. An explicit numerical time integration scheme is then used to update the
position x and orientation θ of each particle via their linear u and angular ω velocities. The numerical
time integration scheme implemented in this article is commonly known as Beeman’s method [27, 28]
and is defined in Eqns 17-20:

ut+∆t
i = ut

i +
1

6
(2at+∆t

i + 5at
i + at−∆t

i )∆t (17)

6



xt+∆t
i = xt

i + ut+∆t
i ∆t+

1

6
(4at

i − at−∆t
i )∆t2 (18)

ωt+∆t
i = ωt

i +
1

6
(2αt+∆t

i + 5αt
i +αt−∆t

i )∆t (19)

θt+∆t
i = θti + ωt+∆t

i ∆t+
1

6
(4αt

i −αt−∆t
i )∆t2 (20)

where t is the current time and ∆t is the size of the time step. Once the orientations of the particles
have been updated, vector n can be updated for each bond the particle is connected to using its initial
value, n0, and the updated particle orientation via a rotation matrix:

[
nt+∆t

i,x

nt+∆t
i,y

]
=

[
cosθt+∆t

i −sinθt+∆t
i

sinθt+∆t
i cosθt+∆t

i

] [
n0

i,x

n0
i,y

]
(21)

A key modification in this algorithm from traditional discrete element implementations is that
the creation of bonds only occurs once, during the initialisation stage of the model rather than once
per timestep. Given that in an elastic body, particles are robustly connected (assuming that they
remain elastic hence avoiding modelling fracture, cracking or aggregation) one can assume that these
connections are independent of time and therefore a nearest neighbour search to find each connection
is unnecessary, improving the computational efficiency of the method.

Algorithm 1 V-model Solver - psuedocode syntax. Algorithm includes time dependent solver com-
ponents only as indicated by the dashed box in Figure 4

1: for No. of Timesteps do
2: for No. of Bonds do
3: Calculate Fij and Mij using Eqn 10 & 12 and add to Fi and Mi

4: Calculate Fji and Mji using Eqn 11 & 13 and add to Fj and Mj

5: end for
6: for No. of Particles do
7: Apply external loads to each particle
8: end for
9: for No. of Particles do

10: Calculate linear and angular accelerations of each particle using Newton’s 2nd law using Eqn
1 & 2

11: Update linear and angular velocities of particles via time integration scheme using Eqn 17 &
19

12: Update position and orientation of particles via time integration scheme using Eqn 18 & 20
13: end for
14: for No. of Particles do
15: Apply boundary conditions
16: end for
17: for No. of Bonds do
18: Update particle vectors ni, nj using initial particle vectors and updated orientations using

Eqn. 21
19: end for
20: for No. of Particles do
21: Update values stored for particle properties at t−∆t and t using the values currently stored

for t and t+ ∆t respectively
22: end for
23: end for
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3.1. Critical timestep

Using the explicit time stepping scheme presented in Section 3, if the timestep size is too large, the
simulation will be numerically unstable causing significant errors to occur. The value between a stable
and unstable timestep size is known as the critical time step. Critical time steps are much smaller for
DEMs, which rely on explicit time integration schemes, than for traditional continuum methods such
as FEM where implicit schemes are more common.

A number of previous works have proposed various criteria for defining a critical timestep based
upon empirical data and Gerschgorin’s theorem [29, 30]. Many of these criteria relate the critical
timestep size to the smallest period of oscillation resulting from the highest natural frequency [31]
and are functions of minimum particle mass, particle connection stiffness coefficients and the number
of connections per particle, known as coordination number. However, these criteria include a safety
factor less than 1 in order to ensure stability of the simulation and are recommended as estimates
rather than definitive criteria. The critical timestep ∆tcrit used for the work in this article is given as:

∆tcrit = β

√
mi

k
(22)

where mi is the mass of a particle i and k is equal to the largest material stiffness coefficient, CA.
For the purposes of this work a conservative factor, β = 0.05 has been used to ensure stability of the
method and robustness of validation results. Values of β lower than 0.05 can be implemented but will
produce the same results and require greater computational resource.

4. Validation Cases

4.1. Quasi-static cantilever beam

To demonstrate the ability of the V-model to represent macroscopic problems, the well-studied
tip-loaded cantilever beam test is chosen as a validation case and the results predicted by the V-model
solver are compared against the analytical solution proposed by Wang et al. [32]. The cantilever
beam studied has a length of 1m and width of 0.0683 m as shown in Figure 5. The dimensions of the
beam were chosen so that the aspect ratio of the discretised beam remains constant when discretised
into a structured triangular arrangement (7-disk) and the resolution is increased by a factor of two.
In addition, the aspect ratio of the beam is chosen to be large enough to provide the opportunity
to test the solver for linear and non-linear deformation. With the structural analysis restricted to
two-dimensions, the beam has unit depth perpendicular to the 2-D plane. The material properties of
the beam are given in Table 1, and loads between 100 and 500N were applied in 100N increments.

To find the static equilibrium position of the beam for a given load, viscous damping was applied
to the V-model particles using Eqn 16. Tip deflection time histories for the under-damped, critically
damped and over-damped cases shown in Figure 6. In each case, the beam tip settles to the same equi-
librium position as shown in Figure 7. For the quasi-static validation presented, the beam is critically

1.0 m

0.0683 m

Figure 5: Schematic of validation case (left) with V-model particle discretisation (right). Beam dimensions chosen to
ensure that as resolution is doubled, aspect ratio of the beam remains constant.
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Figure 6: Cantilever beam test - tip deflection time history for 3 cases using different values for η.

damped for each load and resolution case and results are presented in terms of non-dimensionalised
(ND) loads and tip deflections.

Results shown in Figure 8 for the error are in good agreement with the analytical solution, especially
at lower deflections (<20% of beam length) where at the highest resolution an error of < 1% is observed.
At higher deflections, the V-model does not perform as well. However, this is to be expected since the
governing equations do not account for geometric non-linearity in bond deformation; the derivations
of Kuzkin and Asonov [17] and Griffiths and Mustoe [23] both assume bonds undergo small deflections
since the cross-sections of the bonds are not updated while undergoing deformation. Still, resolution
refinement improves the results since the deflection experienced by each bond becomes smaller with
refinement. The development and implementation of constitutive relationships capable of capturing
this geometric non-linearity is currently ongoing.

When the condition of constant aspect ratio is not imposed to the discretisation of the beam, as
resolution increases fluctuations in the tip deflection error occur despite a general trend of reducing
error as shown in Figure 9. Here, the resolution has been increased by adding an extra particle across
the beam width, effectively adding a row of particles each increment, without the requirement of aspect
ratio remaining exact. The error for each resolution is defined as:

error =
xV−model
max − xanalyticalmax

xanalyticalmax

(23)

Reduction in error is larger in the low deformation case since this is in the linear geometric region

Property Value

Beam Dimensions

Length (m) 1
Width (m) 0.0683
Depth (m) 1

Material Properties

Density (kgm−3) 100
Young’s modulus (Pa) 107

Poisson’s ratio 0.33

Table 1: Dimensions and material properties of the beam under investigation in the quasi-static tip loaded cantilever
beam case.
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Figure 7: Particle positions at static equilibrium using highest resolution model: 117024 particles (96 particles across
beam width).

in which the constitutive model is valid where as in the high deformation case it is highly non-linear.
These fluctuations are caused due to inconsistencies discretising geometries using structured particle
arrangements; it may not be possible to discretise the geometry exactly although in the validation cases
presented here, the geometric dimensions of the beam have been chosen to allow exact discretisation.

4.2. Dynamic cantilever beam

The ability of the model to predict transient behaviour with high fidelity, is critical in applications
such as fluid-structure interaction. In order to assess the capabilities of the method, a cantilever beam
with the same properties as the quasi-static case, is subjected to a constant tip load of 100N. The

0 0.5 1 1.5 2

Non-dimensional tip load

0

0.1

0.2

0.3

0.4

0.5

N
o

n
-d

im
e

n
s
io

n
a

l 
ti
p

 d
e

fl
e

c
ti
o

n

Analytical

474 particles

1860 particles

7368 particles

29328 particles

117024 particles

1.5 1.6 1.7 1.8 1.9

0.42

0.44

0.46

0.48

0.5

0.52

10 3 10 4 10 5

Number of particles

0

1

2

3

4

5

6

7

E
rr

o
r 

re
la

ti
v
e
 t
o
 a

n
a
ly

ti
c
a
l 
s
o
lu

ti
o
n
 (

%
)

100N load

200N load

300N load

400N load

500N load

Figure 8: Quasi-static tip loaded cantilever beam. Left: Comparison of analytical solution and V-model results for
tip deflection with increasing non-dimensionalised load. Right: Tip deflection error at static equilibrium for V-model
resolutions relative to analytical solution with increasing spatial resolution for different non-dimensionalised loads.
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Figure 9: Quasi-static tip loaded cantilever beam test. Errors relative to analytical solution for low and high deformations
corresponding to the lowest and highest loads shown in Figure 8.

tip deflection profile time history is recorded with no viscous damping within the system. Again, the
resolution of the V-model was increased and the results compared with a grid independent solution
obtained through a commercial non-linear FEM solver (ABAQUS 17).

From tip deflection time histories shown in Figure 10, it can be seen that the V-model provides
excellent agreement in terms of amplitude and phase with the non-linear FEM solution, even where
the level of deformation is non-linear. Furthermore, the V-model is able to capture higher-order modes
of vibration. These modes of vibration are evident even when the resolution of the V-model is very
low, demonstrating the robustness of the method.

The final case replaces the constant load with a time dependent load (Fext = 100 cos(40t)), rep-
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Figure 10: Left: Comparison of non-linear FEM solution (ABAQUS 17) and increasing V-model resolution results for
tip deflection of constant tip loaded cantilever beam with. Right: Convergence rate with increasing spatial resolution
(number of particle across beam width) for the dynamic tip-loaded cantilever beam case.
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Figure 11: Left: Forced vibration case: Tip deflection for beam with increasing V-model resolution. Right: Power
spectrum for forced vibration case with increasing V-model resolution.

resenting a forcing frequency. Tip deflection time histories shown in Figure 11 demonstrate good
convergence despite the complex nature of the case. A power spectrum of the tip deflection time his-
tory shows the first harmonic is modelled well even at low resolutions, meaning that any differences in
the tip deflection are a result of the differences in the second natural frequency which exhibits greater
dependence on resolution. Also worth noting is that the desired forcing frequency is accurately mod-
elled despite being applied to a single particle at the tip whose properties, including position, mass
and moment of inertia, are dependent on resolution.

Although these cases demonstrate that the V-model is capable of achieving a high degree of accu-
racy, it is worth noting that for high resolutions the computational time required by the V-model is
not insignificant with the highest resolution V-model case using GPU architecture requiring an order
of magnitude higher computational time than that for the non-linear FEM solver.

4.3. Rate of Convergence

There have been few studies of convergence properties in discrete element methods due to the
difficulty in identifying a factor to base the rate of convergence on. Tavarez & Plesha [33] reported
the first convergence rates for DEMs in elastic bodies. However, it was stated that the validity was
restricted to relatively high resolutions i.e. low resolutions would not provide a constant rate of
convergence. This phenomenon was independently observed by the authors, also observed in 9. The
fluctuation in relative accuracy decreases with increasing resolution defined by the number of particles
across the beam in the y direction. Interestingly, it can be seen that resolutions with an odd number
of particles across the beam are consistently more accurate than those that are even with similar
resolution.

A convergence study was performed by comparing the maximum tip deflection predicted by the
V-model for the dynamic tip loaded cantilever to that predicted by the non-linear FEM solver. The
error was evaluated for 5 resolutions using Eqn 24:

error =
xV−model
max − xFEM

max

xFEM
max

(24)

In order to avoid the fluctuations in error seen in Figure 9 the resolution is doubled across the width
of the beam, ensuring the aspect ratio of the beam remains constant. An order of convergence of ≈ 0.95
can be observed in Figure 10 which is in approximate agreement with the first-order convergence of
[33].
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Figure 12: Example Young’s Modulus distribution in a beam where 90% of the bonds are E1 (blue) and 10% are E2

(red).

5. Stochastic Modelling of Material Properties

A significant advantage of the V-model is its ability to include variation in material properties with
no additional mathematical treatment required within the solver or increase in computational load.
The possibility to integrate stochastic material properties is thus straightforward. Within this section,
the constant load validation case presented in Section 4.2 is used to investigate two stochastic material
property cases.

The first, with applications in additive manufacturing, consists of a beam made up of two different
materials (represented by different Young’s modulus values) randomly dispersed within the structure.
The distribution of the two materials is random. This case is representative of 3-D printing composites
where the structure of the composite is not uniform, for example, in 3-D printed graphene where
graphene flakes are dispersed within a polymer [34]. Homogeneous beams with Young’s Modulus
values of E1 = 10 MPa and E2 = 50 MPa are used as validated reference results, acting as likely
bounds to stochastic results. One hundred random distributions of bond stiffnesses within this range
are used to generate test cases. An example distribution is shown in Figure 12.

Instantaneous tip deflection for each test beam (distribution of the combinations) is presented
in Figure 13 along with the mean deflection for a set of test beams. A linear trend towards the
homogeneous E2 beam can be seen for the mean deflection as the component of E2 is increased, as
is expected. However, this case highlights the requirement to test multiple distributions given the

Figure 13: Non-dimensional tip deflection for sets of beam containing bonds of two different Young’s moduli. 100
distributions are modelled for each configuration (grey) where the labelled percentage refers to the proportion of the E2

material. Mean tip deflection time histories (black dashed) for each set are presented.
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Figure 14: Overview of code architecture for CPU (top) and GPU (bottom) implementation. All code is executed on
the CPU in the CPU-based solver whereas in the GPU-based solver, set-up and initialisation of the method remains on
CPU, while Algorithm 1 (Figure 4) is passed to device memory and is executed by the GPU. Output for post-processing
occurs at specified time intervals.

large variation in the tip deflection for the same quantity of each component material, illustrating the
sensitivity to material and therefore stiffness distribution.

6. GPU implementation

Implementation of numerical analysis on GPU architecture can lead to significant reductions in
computational times in comparison to CPU architecture and has been applied to fluid mechanics [35]
as well as discrete element methods [18]. Given the spatially local and explicit nature of the V-model,
it is well suited to implementation on GPU architecture where the relatively simple instructions can be
parallelised across a greater number of GPU threads compared to parallelised CPU architecture. Here
the GPU solver is implemented using the NVIDIA CUDA API [36] and tests are run on a GTX1060
GPU with 6GB of RAM while the serial CPU solver was run on an Intel Core i7-7700HQ 2.8GHz/3.80
GHz with 16GB of RAM. Figure 15 shows the execution time per timestep and relative speed-up
between CPU and GPU implementations.

Data layout has a critical role to play in the performance of GPU applications given the relatively
high cost for compute threads to access data stored in global memory (DRAM). Our solver arranges
data in 1-D arrays where each position in the array corresponds to bonds or particles depending on
the variable and its usage pattern in the related kernel.

The GPU implementation is developed by modifying Algorithm 1 such that outer loops may be
removed and replaced with many-thread parallelisation. Furthermore, the layout of data in the GPU
memory is designed to keep costly memory transactions to a minimum. Data is initialised first using
the CPU-based (host) application thread and stored in system memory (host memory) before being
copied to GPU memory (device memory). The process is depicted in Figure 14. Time stepping is
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Kernel ID Thread Count Lines

1 Bonds 3,4
2 Particles 7
3 Particles 10-12
4 Particles 15
5 Bonds 18
6 Particles 21

Table 2: Thread count parameter and corresponding lines of pseudo-code in Algorithm 1 for each kernel launched by
GPU solver.

then carried out by the GPU on the device through launching a number of kernels each time step with
details of each provided in Table 2.

Given the data organisation, the GPU spawns parallel computing threads such that one thread
is capable of calculating the forces and moments in a single bond. In order to output data for post-
processing, time dependent particle properties must be copied back to host memory. This process can
be costly in terms of computational time and therefore takes place at specified intervals only.

The GPU implementation of the V-model can be summarised as follows:

1. Create vectors of size equal to the total numbers of particles/bonds for each particle/bond prop-
erty in host memory

2. Create space on GPU in global memory for each of vector using cudaMalloc()

3. Pass contents of each vector to GPU global memory using cudaMemcpy(cudaMemcpyHostToDevice)

4. Calculate number of blocks required for each kernel launch based on thread counts in Table 2.

5. Launch kernels 1-6 sequentially, repeating the desired number of timesteps

6. Pass required particle/bond properties back to host global memory at specified intervals for
output using cudaMemcpy(cudaMemcpyDeviceToHost)

Figure 15 (left) shows the computational time required for a single timestep at different resolutions
using the V-model solver implemented on each architecture type. At low resolutions, the CPU solver
performance is greater than that of the GPU solver due to the associated overheads of data copying
and thread creation when using GPUs. In addition, at these low resolutions, there are fewer particles
and bonds than can be parallelised by the GPU simultaneously and therefore the GPU is not fully
utilised. This is highlighted by the small increase in computational time per timestep when using GPU
hardware up to particle resolutions of O(103) where the GPU is reaches the point of full parallelisation.
A second order increase in computational time per timestep for the serial CPU solver can be seen, as
expected, while the GPU solver also exhibits this behaviour beyond the point of full parallelisation.
However, as the resolution is increased, GPU solution time is shown to drop to approximately 1/20
of the time required by the CPU solver for the test with resolution of > 100, 000 particles. This is
due to the significant reduction in computational time required to complete 1 time step per particle
using the GPU while it remains relatively constant using the CPU as shown in Figure 15 (middle).
Further reduction should be possible through the use of the GPUs specifically designed for scientific
computing rather than graphics rendering such as the NVIDIA Tesla series. The reason for this is that
owing to the small particle rotations, the V-model is currently reliant on double precision calculations.
Consumer-grade GPU processors are designed and optimised for single precision calculations, leading
to sub-optimal performance in this application.

In the current implementation of the V-model solver, particle and bond properties are stored in
individual vectors whereby the index of the vector corresponds to the particle or bond ID. Alternative
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Figure 15: Left: Comparison of computational time between serial CPU V-model and GPU V-model solvers. Right:
Contribution of each kernel launch within the GPU algorithm to the total time per timestep. Details of each kernel are
provided in Table 2.

data arrangements are possible with the potential for both positive and negative effects on compu-
tational performance. A comparison of possible implementations will be explored in a future article
with the aim of reducing the number of kernels launched per timestep and in particular reducing the
computational cost of kernels 1 and 5 (calculating forces and moments in the bonds, and updating
bond orientations). Both kernels have thread counts governed by the number of bonds in the model
and their computational cost significantly increases when the resolution increases as shown in Figure
15.

It is also worth noting that, while the V-model solver is currently restricted to 2-D problems, future
work will focus on extending the solver to three dimensions in which the computational load will be
far greater and therefore significantly increase the necessity of using GPUs for execution.

7. Conclusions

A detailed description of the governing equations and numerical implementation of the modified
vector-based discrete element method, known as the V-model, for elastic body applications has been
presented. The method has been validated for static and dynamic cases with excellent quantitative
agreement in linear geometrical deformation regions and qualitative agreement in non-linear deforma-
tion regions. A numerical convergence study has shown that the method is approximately first-order
accurate. However it has been demonstrated that care must be taken when discretising the geometry
at low resolution given the structured arrangement of the particles and the variation in discretised
geometry this can cause. To the best of the authors’ knowledge, this is one of the first reported rates
of convergence for a discrete element method representation of an elastic body.

The method has been implemented on GPU architecture. Comparison with a serial CPU imple-
mentation has shown significant reductions in computational time, approximately 20x. This is due to
the explicit and local nature of the method. Future work will focus on investigation of different imple-
mentations of the method for GPU architecture which may lead to higher speed-ups, implementation of
non-linear constitutive relationships between connected particles and the development of unstructured
particle arrangements for complex geometries. With these developments implemented, the V-model
has the potential to directly model additional physics such as cracking, rupture, aggregation, growth
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and remodelling in elastic materials which have traditionally been modelled using FEM while also mod-
elling heterogeneous materials such as biological tissue without the need for representative macroscale
material models.
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[4] T. Crump, G. Ferté, A. Jivkov, P. Mummery, V. X. Tran, Dynamic fracture analysis by explicit solid
dynamics and implicit crack propagation, International Journal of Solids and Structures 110-111 (2017)
113–126. doi:10.1016/j.ijsolstr.2017.01.035.

[5] H. Kim, M. P. Wagoner, W. G. Buttlar, Simulation of Fracture Behavior in Asphalt Concrete Using a
Heterogeneous Cohesive Zone Discrete Element Model, Journal of Materials in Civil Engineering 20 (8)
(2008) 552–563. doi:10.1061/(ASCE)0899-1561(2008)20:8(552).

[6] I. B. Petsche, G. S. Grest, Molecular dynamics simulations of the structure of closed tethered membranes,
Journal de physique. I 3 (8) (1993) 1741–1755. doi:10.1051/jp1:1993213.

[7] D. A. Fedosov, B. Caswell, G. E. Karniadakis, A Multiscale Red Blood Cell Model with Accurate Mechan-
ics, Rheology, and Dynamics, Biophysical Journal 98 (10) (2010) 2215–2225. doi:10.1016/j.bpj.2010.02.002.

[8] P. Brocklehurst, I. Adeniran, D. Yang, Y. Sheng, H. Zhang, J. Ye, A 2D electromechanical model of
human atrial tissue using the discrete element method, BioMed Research International 2015 (2015) 854953.
doi:10.1155/2015/854953.

[9] D. A. Fedosov, B. Caswell, G. E. Karniadakis, Systematic coarse-graining of spectrin-level red blood
cell models, Computer Methods in Applied Mechanics and Engineering 199 (29-32) (2010) 1937–1948.
arXiv:NIHMS150003, doi:10.1016/j.cma.2010.02.001.

[10] P. Cundall, A Computer Model for Simulating Progressive, Large-scale Movement in Blocky Rock System,
in: Proceedings of the International Symposium on Rock Mechanics, Nancy, 1971, pp. 129–136.

[11] T. M. Evans, J. D. Frost, Multiscale investigation of shear bands in sand: Physical and numerical experi-
ments, International Journal for Numerical and Analytical Methods in Geomechanics 34 (2010) 1634–1650.
arXiv:nag.2347, doi:10.1002/nag.

[12] Y. Wang, D. Xu, K. Tsui, Discrete element modeling of contact creep and aging in sand,
Journal of Geotechnical and Geoenvironmental Engineering 134 (September) (2008) 1407–1411.
doi:10.1061/(ASCE)1090-0241(2008)134:9(1407).

[13] C. L. Martin, H. Camacho-Montes, L. Olmos, D. Bouvard, R. K. Bordia, Evolution of defects during
sintering: Discrete element simulations, Journal of the American Ceramic Society 92 (7) (2009) 1435–
1441. doi:10.1111/j.1551-2916.2009.03014.x.

17



[14] A. M. Nasar, Eulerian and Lagrangian Smoothed Particle Hydrodynamics as Models for the Interaction
of Fluids and Flexible Structures in Biomedical Flows, Ph.D. thesis, University of Manchester (2016).

[15] K. Liu, W. Liu, Application of discrete element method for continuum dynamic problems, Archive of
Applied Mechanics 76 (3-4) (2006) 229–243. doi:10.1007/s00419-006-0018-8.
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Abstract

A novel fluid-structure interaction (FSI) method is presented based on discrete numerical methods,
where the lattice Boltzmann method models the fluid, the vector-based discrete element method (V-
model) represents the structure and the immersed boundary method provides a strong coupling via
a block Gauss-Seidel scheme. Each solver is first validated in isolation before the full approach is
validated against the well known numerical benchmarking case proposed by Turek and Hron. for the
first time the material properties of the structure in this case are modelled directly using a constitutive
model in the V-model. The lattice Boltzmann fluid solver is shown to be second order accurate in
isolation, while the V-model compares well (<2%) with numerical benchmark data. This represents
the first time the V-model has been validated with elastic bodies with large Poisson’s ratio (> 1/3).
Validation of the full approach demonstrates good agreement with the numerical benchmark data
with approximately 5% error for the tip deflection Strouhal number. The use of discrete methods
allows complex phenomena such as fracture and aggregation to be more readily incorporated in future
developments of the presented FSI method.

Keywords: lattice Boltzmann, V-model, FSI, immersed boundary

1. Introduction

The interaction between fluids and structures plays a key role in the dynamics of many complex
engineering applications including biomedical flows [1], wind-energy harvesting [2] and aerodynamic
flow control [3]. Traditionally, modelling this interaction has required large computational resources
for realistic geometries, and has therefore been restricted to simplified representations of problems.
However, with the ever increasing power and availability of computational resources, in conjunction
with advancements in numerical methods, the complexity of problems modelled by so-called fluid-
structure interaction (FSI) methods is increasing rapidly.

The FSI method presented here has been developed for cardiovascular applications. These appli-
cations are notoriously difficult to model since they incorporate high levels of deformation and a large
added-mass effect due to the similarity of the fluid and structure densities. Despite this, a number of
studies have effectively modelled applications across a range of length and time scales, from the flow
characteristics of red blood cells through capillaries [4] to the haemodynamics through abdominal aor-
tic aneurysms [5]. In the smaller scale applications, discrete and continuum numerical methods have
been used to model cardiovascular structures. However, at larger scales such as aneurysms, continuum
methods have generally been used due to the prohibitive computational cost of discrete methods at
such scales. However, discrete methods are able to model complex phenomena such as fracture and
agglomeration more readily than continuum methods. These complex phenomena often occur in car-
diovascular diseases in the form of growth and rupture of atherosclerotic plaques and aneurysms and
as a result, developing the ability to efficiently represent these via discrete methods has the potential
to significantly improve our understanding of such diseases. However, before representation of such



complex phenomena is possible, careful assessment of the discrete methods should be made to ensure
comparative fidelity with currently implemented continuum-based methods.

There are two main approaches to developing FSI methods; known as monolithic and partitioned
respectively. The monolithic approach solves the governing equations of the fluid and structure simul-
taneously, and in general produces highly accurate results since it naturally satisfies the kinematic and
dynamic interface conditions between the fluid and structure [6]. In contrast, the partitioned approach
solves the governing equations of the fluid and structure sequentially. This can lead to a lag between
the fluid and structure dynamics [7]. For problems with a high density ratio between the fluid and
structure, this may not pose a large issue. However, for fluid and structure densities within the same
order of magnitude, the lag can result in significant energy generation at the boundary which can not
only reduce accuracy of the method, but also reduce the stability of the simulation to the point of
failure [8]. This type of coupling can be referred to as weak coupling. The issues associated with the lag
in partitioned approaches can be overcome using an iterative technique to directly ensure the interface
conditions are satisfied before moving onto the next timestep [9]. When the interface conditions are
directly satisfied the method can be classified as strongly coupled. Given the motivation behind the
development of the FSI solver presented here is cardiovascular applications where density ratios are
much less than 10, a strongly coupled approach has been implemented as will be discussed.

For large temporal and spatial scales, the finite volume (FVM) or finite element (FEM) method
has generally been employed to model fluids and structures due to their accuracy and computational
efficiency at such scales. The use of discrete methods such as the discrete element method (DEM) at
such scales has often required prohibitive computational expense. However, the rapid advancement of
Graphics Processing Units (GPUs) to which explicit, discrete methods are well suited, has relaxed the
limitation of scale somewhat. The lattice Boltzmann method (LBM), which is incorporated here as
the fluid solver, uses a structured, uniform grid where operations are local which allows for excellent
parallelisation performance [10], particularly on GPUs [11], while the vector-based discrete element
method (V-model) has also demonstrated good scalability on GPU architecture [12].

While the computational performance of these methods may not exceed those of traditional meth-
ods, their ability to more readily include complex phenomena such as fracture and aggregation, makes
them attractive modelling techniques. These phenomena occur in many cardiovascular diseases such
as atherosclerotic plaques and aneurysms. However, the ability of the FSI method presented here
to accurately model the dynamic interaction between the fluid and structure must be demonstrated
before extending the method to included additional physical effects in future work.

In this article, a novel FSI method is presented consisting of an LBM fluid solver, V-model structural
solver, coupled using the immersed boundary method in an iterative block Gauss-Seidel scheme. In
Section 2 details of these methods are included alongside discussion of the coupling algorithm. Section
3 presents validation cases for the fluid and structure solver in isolation, before validation of the fully-
coupled FSI solver before discussion of future work and conclusions including extending the model into
three dimensions.

2. Methodology

2.1. Lattice Boltzmann method

The lattice Boltzmann method (LBM) is a mesoscale method capable of modelling fluid flow via
the Boltzmann transport equation, as opposed to the traditional Navier-Stokes equations. In recent
years, there has been a increasing trend towards the use of the LBM in part due to its superior
parallelisation performance to Navier-Stokes solvers such as the Finite Element and Finite Volume
methods. As part of the FSI method developed within this work, the ease of coupling with the
immersed boundary method (IBM), which a significant number of studies have also utilised [13, 14], as
well as its parallelisation performance, in particular in conjunction with GPUs [15], makes it an ideal
choice. Here a brief overview of the method implemented within this work is provided, however the
interested reader is directed to [16] for more in-depth details of the method as well as discussion of its
programming implementation.
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Figure 1: Discrete velocity set for LBM implemented in this work. Numbering corresponds to columns in Eqn 6.

In order to allow for efficient computational calculation, the Boltzmann transport equation is
discretised in velocity space via Hermite series expansion [17] and a reduced set of velocities i, is
enforced, ensuring that the distribution function components are located at a lattice point on the
uniform grid at the end of each timestep. This results in the discrete lattice Boltzmann equation
(LBE) which governs the evolution of the flow:

fi(x + ci∆t, t+ ∆t)− fi(x, t) = Ωi (1)

where ci is the discrete lattice velocity, ∆t is the timestep size, Ωi is the collision operator and fi(x, t)
is a probability distribution function representing the proportion of particles at lattice site x and
time t with velocity i. It is this use of the probability distribution function as a representation of a
number of fluid particles that classifies the LBM as a mesoscale method, somewhere between particle
or continuum methods.

The collision operator, difficult to solve in its original double integral form, is simplified via the
BGK approximation [18]; the most commonly implemented approximation:

Ωi =
1

τ
(feqi − fi) (2)

where τ is the relaxation time and feqi is the local equilibrium distribution function, which is dependent
on the local macroscopic flow properties only and is defined as:

feq(x, t) = wiρ(1 +
ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s
) (3)

where wi are the weights associated with the lattice model which is discussed later in this section. The
BGK approximation reduces the complexity of the collision operator by assuming a single relaxation
time and is valid for any fluid since Eqn. 2 will relax towards local equilibrium, while feq contains the
non-linearity required to recover macroscopic quantities of the fluid. The relaxation time is calculated
with respect to the fluid viscosity ν via:

τ =
ν

c2s
+

∆t

2
(4)

The use of the BGK approximation leads to what is commonly referred to as the lattice BGK (LBGK)
model:

fi(x+ ci∆t, t+ ∆t)− fi(x, t) =
∆t

τ
[feqi (x, t)− fi(x, t)] (5)
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Within this LBM implementation, the D2Q9 lattice model was adopted defining values for the discre-
tised lattice velocities ci (Figure 1), lattice speed of sound cs and weights wi as:

c =

[
0 1 −1 0 0 1 −1 1 −1
0 0 0 1 −1 1 −1 −1 1

]
∆x

∆t
(6)

wi =





4/9 i = 0

1/9 i = 1, 2, 3, 4

1/36 i = 5, 6, 7, 8

cs =
∆x

∆t

1√
3

(7)

where ∆t and ∆x are the timestep size and lattice spacing in lattice units, therefore ∆t = ∆x = 1.
The macroscopic density and velocity are evaluated at each lattice point through the sum of mo-

ments of each component of the probability distribution function:

ρ(x, t) =
8∑

i=0

fi(x, t) (8)

ρu(x, t) =
8∑

i=0

cifi(x, t) (9)

An additional force is applied to the flow through the immersed boundary coupling, in the form of
body force, F . A discretised force Fi is calculated using the method proposed by Guo et al. [19]:

Fi = wi(1−
1

2τ
)(
ci − u
c2s

+
ci · u
c4s

ci) · F (10)

This term is added to Eqn 5 to give:

fi(x+ ci∆t, t+ ∆t)− fi(x, t) =
∆t

τ
[feqi (x, t)− fi(x, t)] + Fi (11)

and also results in modified macroscopic quantity relationships:

ρ(x, t) =
8∑

i=0

fi(x, t) (12)

ρu(x, t) =
8∑

i=0

cifi(x, t) +
∆t

2
F (13)
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Figure 2: Bond connected to particle centres where bond length and particle diameter are equal.

2.2. Vector-based discrete element method

The vector-based discrete element model, or V-model, is a variant of the Discrete Element Method
(DEM) originally proposed by Kuzkin and Asanov [20]. The method was further developed by Nasar
et al. for elastic bodies [21]. The basic premise of the V-model, like any DEM applied to elastic
bodies, is to discretise a geometry into a collection of particles connected via rigidly attached flexible
bonds. Where the V-model differs from conventional DEMs is that displacements are evaluated as total
displacements as opposed to an incremental approach. This is significant since the approximation
that the sum of incremental displacements is equal to the total displacement of a particle is only
appropriate in 2D for small deflections. As a result, on extension of DEMs into 3D, errors can occur
in the evaluation of the rotational displacements due to their reliance on the order in which the
displacements are evaluated [22]. In contrast the V-model evaluates all displacements, including both
translational and angular, as total displacements using one relationship based on the potential energy
of the bond which leads to a single total displacement in each degree of freedom. An additional
advantage of this approach is the V- model does not suffer from the additional time step limitations
required for conventional DEMs.

Once a body has been discretised into a collection of bonded V-model particles, a number of vectors,
denoted by n, are rigidly attached to each particle that indicate the orientation of the particle in global
space and co-rotate with the particle. The number of vectors that exist is governed by the number of
particles connected to the particle under consideration. For each connection, one particle is denoted
particle i with an orientation vector ni while the other is particle j with an orientation vector nj and
when the body is in an equilibrium state, are opposite vectors.

The forces and moments within each bond due to the displacement and/or rotation of its connecting
particle resulting from an external load are calculated using Eqns. 14-16. Derivation of the governing
equations through potential energy of the bond can be found in [20]. Here, the bonds are assumed to
connect at the centre of each particle as shown in Figure 2:

Fij = B1(rij − a) +
B2

2rij
(n1

j − n1
i ) · (E − eijeij) (14)

Mij =
B2

2
eij × n1

i +B3n
1
j × n1

i (15)

Mji =
B2

2
eij × n1

j −B3n
1
j × n1

i (16)

where Fij is the force exerted on particle i by particle j and the opposing force exerted on particle j
by particle i, Fji = −Fij . Model stiffness coefficients B1−3 are related to the macroscopic material
stiffness coefficients through analysis of Eqns 14-16 under pure axial, shear and bending deformations
as follows:

5



B1 = CA (17)

B2 = CDa
2 (18)

B3 = CB −
B2

4
(19)

where CA, CD and CB are the axial, shear and bending material stiffness coefficients. A number
of constitutive relationships can be used to calculate the material stiffness coefficients in relation to
the material properties of the body such as Young’s Modulus E and Poisson’s Ratio ν. Kuzkin and
Asonov proposed the use of Euler-Bernoulli and Timoschenko beam theory for granular materials
while the relationship developed by Griffiths and Mustoe for 2D implementations of DEMs [23] has
been utilised for V-model applications with excellent agreement with analytical results for static and
dynamic validation cases and shown first order convergence [24, 12]. However, this model is limited
to Poisson ratio’s of less than 1/3, else a negative shear coefficient will occur. In the validation cases
presented here for the FSI method, the flexible flag has a Poisson’s ratio of 0.4 and therefore an
alternative constitutive relationship with no Poisson ratio limitation, proposed by Gaeini et al [25], is
utilised. This model relates the material stiffness coefficients to the material properties via:

CA =
E√

3(1− ν)
(20)

CD =
E

4(1 + ν)
(21)

This model was derived for a discrete element method that does not directly consider bending unlike
the V-model and therefore an addition relationship is utilised to relate the bending coefficient to the
material properties as proposed by Nasar [24]:

CB =
EIb
a

(22)

where Ib is the moment of inertia of the bond which has a rectangular cross section and a is the
equilibrium length of the bond.

Once the forces and moments have been calculated in each of the bonds, the resultant forces Fi
and moments Mi can be evaluated on each particle:

Fi =
∑

Ni

Fij +
∑

Nj

Fji (23)

Mi =
∑

Ni

Mij +
∑

Nj

Mji (24)

where Ni and Nj refers to the number of bonds connected to the particle which considers that particle
to be particle i or particle j. The translational ai and angular αi acceleration of each particle are
calculated using Newton’s 2nd Law:

ai =
Fi
mi

(25)

αi =
Mi

Ii
(26)
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Figure 3: Independent Eulerian (fluid) and Lagrangian (structure) grids, coupled via immersed boundary markers
(purple) with associated stencil (blue) spreading required force for no slip condition at the boundary, onto the fluid.

where mi and Ii are the mass and moment of inertia of particle i. The positions and orientations of
each particle are updated at the end of each timestep using Beeman’s explicit time integration scheme
[26]. Before the algorithm moves on to the next timestep, the vectors ni,j on each particle are updated
using a 2D rotation matrix with respect to the new orientation of the particle calculated from the time
integration scheme.

2.3. Immersed boundary method

The immersed boundary method (IBM), originally proposed by Peskin [27], interpolates forces between
fluid (Eulerian) and structure (Lagrangian) grids that remain independent of each other. This dispenses
the need for remeshing due to the deformation of the structure as is required by other coupling
methods such as the arbitrary Lagrangian-Eulerian (ALE), which reduces the computational resource
requirements of the method.

The IBM implemented here uses Lagrangian markers located along the fluid-structure boundary to
interpolate and spread forces between the Eulerian (lower-case notation) and Lagrangian grids (upper-
case notation) using the procedure proposed by [28]. The LBM-IBM coupling employs a three point
stencil as shown in Figure 3 which will be discussed later in this section. The predicted Eulerian
velocity field up (where the flow is calculated without consideration of the structure) is interpolated
from the Eulerian lattice sites x within the stencil onto the Lagrangian marker position X to predict
the velocity at the boundary in Lagrange space using the interpolation function:

Φ(X) =
∑

Ω

φ(x)δ̃(x−X)∆x∆y∆z (27)

where φ and Φ are the same quantity in the Eulerian and Lagrangian frames, x = (x, y, z), Ω is the
computational domain on the Eulerian grid and δ̃ is the discrete Dirac delta function which will be
discussed later in the section. The shorthand notation I[φ(x)] will be used for the interpolation func-
tion. Once the LBM step has been completed without consideration of the structure, the macroscopic
fluid velocity is defined using Eqn 13 as:

ρu(x, t) = ρup(x, t) +
∆t

2
fib(x, t) (28)

where the corrective force fib, is the force required to impose a no-slip velocity u at the boundary.
As a result of the no-slip condition, the fluid velocity at the boundary must be equal to that of the
boundary U b, converting Eqn. 28 into the Lagrangian frame yields:
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I[ρ(x, t)]U b(X, t) = I[ρup(x, t)] +
∆t

2
Fib(X, t) (29)

The velocity of the boundary is known therefore the above can be rearranged and solved for the
corrective force in the Lagrangian frame, which is then spread back to the lattice sites within the
stencil using the spreading function:

φ(x) =
∑

Γ

Φ(X)δ̃(x−X)ε∆q∆r∆s (30)

where x = (x, y, z), Γ is the length along the boundary over which the marker acts and ε is a scaling
factor that ensures reciprocity between the interpolation and spreading functions. The velocity field
of the fluid in the vicinity of the boundary can then updated using the corrective force.

The discrete Dirac Delta function δ̃ is a weighting function used to define the support stencil and
the contributions of a quantity at a given location within the stencil. The version of δ̃ used within this
implementation of the immersed boundary method is the three-point version proposed by Roma et al.
[29]:

δ̂(r) =





1
3 (1 +

√
−3r2 + 1 |r| ≤ 0.5

1
6 (5− 3|r| −

√
−3(1− |r|)2 + 1 0.5 ≥ |r| ≤ 1.5

0 otherwise

(31)

2.4. Coupling scheme

The FSI method proposed here is known as a partitioned approach, since the governing equations of the
fluid and structure are solver sequentially. While partitioned approaches have a number of advantages
over monolithic approaches (where the governing equations are solved simultaneously) such as the
ability to use different numerical methods for the fluid and structure, partitioned approaches must
explicitly satisfy the kinematic and dynamic conditions at the boundary or else suffer from a reduction
in accuracy due to the generation of the energy at the boundary [6].
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For a problem under investigation has a large difference in density ratios between the fluid and
structure, the issue of energy generation at the boundary is not significant and a weakly coupled scheme,
whereby the kinematic and dynamic conditions are not explicitly satisfied, is often sufficient to gain
reasonable accuracy. However, for problems where the densities are within an order of magnitude, such
as blood and cardiovascular structures, a strongly coupled scheme is essential to ensure both accuracy
and stability. The strongly coupled scheme employed here is known as the block Gauss-Seidel scheme
and is an iterative approach as shown in Figure 4, which ensures that the velocity of the fluid at
the location of the immersed boundary markers, and the velocity of the immersed boundary markers
themselves, are equal to within a user-specified tolerance before moving on the next timestep. The full
algorithm for a the FSI coupling scheme can summarised as follows:

1. Execute the LBM solver to obtain predicted fluid velocity field

2. Interpolate forces from the fluid to the boundary

3. Calculate correction force required for no slip condition

4. Spread force back to fluid and correct predicted velocity field

5. Execute the V-model solver, updating particle positions based on IBM force

6. Calculate the interface velocity residual

7. if converged, advance to Step 9

8. else relax the boundary displacement and return to Step 2

9. Advance to the next timestep

3. Validation

3.1. Lattice Boltzmann method

The LBM is validated for a simple Poiseuille flow as an intermediary step towards the fully coupled
FSI validation. The purpose of the validation is to ensure the LBM solver is able to model the correct
velocity profile across the channel, in comparison to the analytical solution, and exhibits the second-
order convergence in line with LBM theory when using appropriate boundary conditions.

The case presented here considers a pressure-driven flow between two parallel plates represented
using the second-order accurate regularised technique to enforce the no-slip boundary condition [30].
The plates can be consider infinitely long using periodic boundary conditions at the left and right
boundaries. The flow, initially at rest, is subject to a pressure gradient in the form of a body force
using the method proposed by Guo et al. [19]. The analytical solution to this problem provides a
parabolic velocity profile defined by:

ux(y) = −dp
dx

1

2ρν
y(H − y) (32)

where x and y are the streamwise and transverse coordinates respectively, ux is the streamwise velocity,
dp
dx is the pressure gradient, ρ is the fluid density, ν is the kinematic viscosity, and H is the channel
height. The analytical and computed velocity profiles are compared in Figure 5, showing excellent
agreement.

In order to test the order of convergence of the LBM solver, the error relative to the analytical
solution at the centreline (y = H/2) is evaluated for a range of grid resolutions. To assess the order
of convergence correctly, the compressible error term O(Ma2 ∝ ∆t2/∆x2) must scale with resolution,
known as diffusive scaling. As a result, as the grid resolution increases, the timestep size scales
according to ∆t ∝ ∆x2. The relative error at the centreline of the channel is compared in Figure 5
and demonstrates second-order rate of convergence.
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Figure 5: Comparison of the simulated normalised velocity profile of the flow in a channel with the analytical solution
(left). Relative error of the simulated centreline velocity in comparison to the analytical solution with increasing grid
resolution (right).

3.2. Vector-based discrete element

As part of the numerical benchmarking case used for FSI validation, a preceding case was proposed
to validate the structure solver in isolation for the flexible flag included in the FSI case discussed in
Section 3.3. The flexible flag, of same dimensions but with density an order of magnitude smaller than
the FSI case, is subjected to a reduced gravitational load of 2 m/s2 while being clamped at one end,
analogous to a cantilever beam. The material properties of the flag are provided in Table 1.

Table 1: Material properties of flexible flag in structure validation case.

Material Property Value (Units)

Young’s Modulus 1.4 (MPa)
Poisson’s Ratio 0.4
Density 103 (kg/m3)

The maximum and minimum tip deflections for increasing spatial resolutions of the V-model are
compared against the benchmark validation data and the results of other studies [8] validated using
this case in Table 2. As the resolution of the V-model is increased, the agreement with the benchmark
results also improves with the amplitude and frequency of oscillation in close agreement. However,
a small difference exists between the equilibrium position of the oscillation. This could indicate that
some of the higher order modes of oscillation are not captured by the V-model since the tip deflection
does not move beyond the initial position, as is the case with the benchmark and previous study
results.
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Table 2: Tip deflection results in the y-direction

Solver (Resolution) Equilibrium Position Amplitude Frequency

Turek & Hron [31] 0.0636 0.0652 1.100
O’Connor [8] 0.0642 0.0643 1.099
V-model (144 particles) 0.0698 0.0697 1.053
V-model (1870 particles) 0.0665 0.0665 1.087
V-model (5529 particles) 0.0650 0.0649 1.094

Figure 6 shows tip deflection time history of the V-model at each resolution compared against the non-
linear FEM solver implemented in [8]. Here, it is clear that while the highest resolution of V-model
provides accurate tip deflections, when the V-model is under-resolved the amplitude of oscillation is
over-predicted and the frequency under-predicted. These results are in keeping with previous studies
of the V-model [12].

0 0.5 1 1.5 2
Time (s)

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

T
ip

 d
ef

le
ct

io
n 

in
 y

-d
ire

ct
io

n

FEM
V-model (144 particles)
V-model (1870 particles)
V-model (5529 particles)

Figure 6: Tip deflection time history of the V-model solver at increasing resolution in comparison to a non-linear FEM
solver.

3.3. Fluid-structure interaction

The numerical benchmarking case proposed by Turek and Hron [31] is used to assess the performance
of the discrete FSI model presented in this work. The case consists of a rigid cylinder with a flexible
flag attached aft of the cylinder, placed in a laminar channel flow as shown in Figure 7. The flexible
flag oscillates due to the vortex shedding induced by the flow around the rigid cylinder, eventually
reaching a self-sustaining flapping motion.
A parabolic velocity profile is set at the inlet which is ramped over the first two seconds of the simulation
according to Eqn 33, while zero-velocity initial conditions are set throughout the domain.

ux(t) =

{
uinx (t) 1−cos(πt/2

2 t ≤ 2

uinx (t) t > 2
(33)
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Figure 7: Schematic of the laminar flow around a rigid cylinder with flexible flag in a channel case. Solid lines indicate
no-slip boundary conditions.

No-slip conditions are imposed on the walls of the channel using the regularised technique also used in
the validation of the LBM solver in isolation presented in Section 3.1. A fixed pressure/density is set
at the outlet, where the value is equal to the initial conditions. The material properties of the fluid
and structure are included in Table 3.

The rigid cylinder and flexible flag are both discretised into V-model particles. The flexible flag is
discretised in the same way as the highest resolution configuration in the V-model only validation case
with 5529 particles. Clamped V-model particles are used for the cylinder bringing the total particles
to 6543. An example discretisation of the geometry is shown in Figure 8 with reduced resolution of
approximately 2000 particles for visualisation purpose.

Figure 8: Discretisation of the rigid cylinder and flexible flag into approximately 2000 V-model particles.

Table 3: Laminar flow around a rigid cylinder with flexible flag in a channel case properties.

Fluid Property Value (Units) Structure Property Value (Units)

Density 103 (kg/m3) Density 104 (kg/m3)
Viscosity 10−3 (Pa.s) Poison’s Ratio 0.4
Mean Inlet Velocity 1 (m/s) Young’s Modulus 1.4 (MPa)

The velocity field around the oscillating flag is shown in Figure 9 when the tip is at maximum deflection.
The time history of the flexible flag tip deflection is compared to that of the benchmark results of the
original study in Figure 10 showing reasonable agreement. The amplitude is over-predicted and the
frequency under-predicted, demonstrating similar characteristics to the under-resolved V-model in the
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structure only validation case. These characteristics have also been seen in validation cases for the
V-model presented in prior studies [21, 12].

Figure 9: Velocity field around the rigid cylinder and flexible flag when the tip deflection of the flag is at its maximum.
V-model resolution of 183 particle shown for visualisation purposes.

Comparison of the Strouhal numbers in Table 4 shows good agreement with the benchmark data as
well as results from prior studies using immersed boundary coupling [32, 8]. It is worth noting that
in each of these studies used for comparison here, a non-linear finite element solver has been utilised
to represent the structure. Since the deflection of the flexible flag is within the geometrically non-
linear region (∆x > 20%), it is to expected that a non-linear finite element solver performs well. The
V-model does not account for the non-linearity directly, since the cross-section of the bonds are not
strain dependent and instead relies on increased resolution to capture the correct response. Despite
this, the V-model integrated in to the FSI method developed here, performs remarkably well.
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Figure 10: Transverse and axial tip deflection time histories of the V-model in comparison to benchmark data from
Turek and Hron [31]

4. Conclusions

A novel fluid-structure interaction method has been developed consisting of discrete numerical meth-
ods, namely the lattice Boltzmann method as the fluid solver, the vector-based discrete element method
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Table 4: Strouhal numbers of tip deflection in comparison with benchmark data from Turek and Hron [31].

Method (Units) St (axial) St (transverse)

Turek and Hron [31] 0.384 0.192
Bhardwaj and Mittal [32] 0.380 0.190
O’Connor [8] 0.370 0.185
Present 0.364 0.182

as the structural solver, strongly coupled using the immersed boundary method using a iterative block
Gauss-Siedel scheme. The fluid and structure solver have demonstrated excellent agreement with vali-
dation data in isolation, while good agreement has been found with the classic numerical benchmarking
case proposed by Turek and Hron [31] for large deformation of a flexible flag induced by laminar flow
around a rigid cylinder. The discrete methods employed, and the vector-based discrete element method
in particular, present the possibility for the FSI method to include complex phenomena such as fracture
and aggregation in future development of the method. Furthermore, each of the numerical methods
incorporated into the FSI method, is well suited to implementation on GPU architecture, having been
implemented in isolation on such hardware previously [11, 12]. Implementation of the FSI method
presented here on GPU architecture presents the next stage in development of this work.
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[16] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E. M. Viggen, The Lattice Boltzmann
Method: Principles and Practice, Springer Nature, 2017.

[17] X. Shan, X. He, Discretization of the velocity space in the solution of the boltzmann equation, Physical
Review Letters 80 (1) (1998) 65–68. doi:10.1103/PhysRevLett.80.65.

[18] P. Bhathagar, E. Gross, M. Krook, A model for collision processes in gases, Physical Review 94 (3) (1954)
515–525. doi:10.1103/PhysRev.94.511.

[19] Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method,
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 65 (4)
(2002) 6. doi:10.1103/PhysRevE.65.046308.

[20] V. A. Kuzkin, I. E. Asonov, Vector-based model of elastic bonds for DEM simulation of solids, Mechanical
Engineering 86 (5) (2012) 1–10.

[21] A. M. A. Nasar, B. D. Rogers, A. Revell, P. K. Stansby, Flexible slender body fluid interaction: Vector-
based discrete element method with Eulerian smoothed particle hydrodynamics, Computers and Fluids
179 (2019) 563–578. doi:10.1016/j.compfluid.2018.11.024.

[22] Y. Wang, A new algorithm to model the dynamics of 3-D bonded rigid bodies with rotations, Acta
Geotechnica 4 (2) (2009) 117–127. doi:10.1007/s11440-008-0072-1.

[23] D. V. Griffiths, G. G. W. Mustoe, Modelling of elastic continua using a grillage of structural elements
based on discete element concepts, International Journal for Numerical Methods in Engineering 50 (7)
(2001) 1759–1775.

[24] A. M. A. Nasar, Eulerian and Lagrangian Smoothed Particle Hydrodynamics as Models for the Interaction
of Fluids and Flexible Structures in Biomedical Flows, Ph.D. thesis, University of Manchester (2016).

[25] M. Gaeini, S. Mihradi, H. Homma, Discrete Element Model for Continuum Dynamic Problems, Journal
of Solid Mechanics and Materials Engineering 2 (12) (2008) 1478–1486. doi:10.1299/jmmp.2.1478.

15



[26] D. Beeman, Some multistep methods for use in molecular dynamics calculations, Journal of Computational
Physics 20 (2) (1976) 130–139. doi:10.1016/0021-9991(76)90059-0.

[27] C. S. Peskin, Flow patterns around heart valves: A numerical method, Journal of Computational Physics
10 (2) (1972) 252–271.

[28] Z. Li, J. Favier, A non-staggered coupling of finite element and lattice Boltzmann methods via an
immersed boundary scheme for fluid-structure interaction, Computers and Fluids 143 (2017) 90–102.
doi:10.1016/j.compfluid.2016.11.008.

[29] A. M. Roma, C. S. Peskin, M. J. Berger, An Adaptive Version of the Immersed Boundary Method, Journal
of Computational Physics 153 (2) (1999) 509–534. doi:10.1006/jcph.1999.6293.

[30] J. Latt, B. Chopard, O. Malaspinas, M. Deville, A. Michler, Straight velocity boundaries in the lattice
Boltzmann method, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 77 (5) (2008)
1–16. doi:10.1103/PhysRevE.77.056703.

[31] S. Turek, J. Hron, Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic
Object and Laminar Incompressible Flow, Fluid-Structure Interaction (2007) 371–385doi:10.1007/3-540-
34596-5-15.

[32] R. Bhardwaj, R. Mittal, Benchmarking a Coupled Immersed-Boundary-Finite-Element Solver for Large-
Scale Flow-Induced Deformation, AIAA Journal 50 (7) (2012) 1638–1642. doi:10.2514/1.j051621.

16


	Contents
	List of Tables
	List of Figures
	Nomenclature
	List of Publications & Awards 
	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Background & Motivation
	Project Objectives
	Research Outputs
	Thesis Structure

	In Silico Modelling of the Cardiovascular System
	Overview of In Silico Modelling
	Modelling Approach
	Discretisation of Blood
	Numerical Models
	Rigid and Flexible Wall Analysis

	Cardiovascular Applications
	Congenital Heart Diseases
	Coronary Artery Disease
	Ventricular Assist Devices
	Aneurysms

	Conclusions

	Lattice Boltzmann Method
	Overview of the Lattice Boltzmann Method
	Discretisation
	Boltzmann Equation
	Velocity Model
	Space and Time Discretisation
	Equilibrium Distribution Function
	Collision Operator
	Forcing Scheme

	Initial and Boundary Conditions
	Immersed Boundary
	Periodic Boundary Conditions
	Bounceback Boundary Conditions
	Regularised Boundary Conditions
	Initial Conditions
	Immersed Boundary

	Summary

	Vector-based Discrete Element Method
	Overview of DEMs for Elastic Bodies
	V-model Formulation
	Bond Forces and Moments
	Updating Particle Positions and Orientations

	Constitutive Relationships
	Time Integration Scheme
	Determining the Critical Time Step Size
	Summary

	Immersed Boundary Method
	Coupling Approach Rationale
	Immersed Boundary Method
	Interpolation and Spreading
	The Dirac Delta Function
	Scaling Factor

	Coupling with the LBM
	Coupling with the V-model
	Force Mapping
	Velocity and Position Update

	Fluid-Structure Coupling
	Fluid and Structure Time Step Ratio
	Weak Coupling
	Strong Coupling

	Summary

	Method Development and Validation
	V-model Development and Validation
	Validation: Cantilever Beam under Gravity
	Development: V-model on GPU Architecture

	IB - LBM Validation
	IB - V-model Development and Validation
	Fluid-structure Interaction Development and Validation
	Validation: Flexible Beam in a Tank
	Validation: Laminar Flow around a Rigid Cylinder and Attached Flexible Flag

	Time Step Ratio Validation
	Software Development
	Summary

	Contributions to the Field
	Establish Current Best Practice
	Development of an LBM-DEM FSI method
	Development of the FSI method towards cardiovascular applications
	Summary

	Summary and Future Work
	Summary
	Future Work: Development for Cardiovascular Applications
	Overview of Current Development Progress
	V-model Particle Generator
	Coupling Scheme Relaxation Parameter
	Integration of GPU V-model Solver into FSI Method
	Interpolation between IBM and V-model
	V-model Particle Arrangement
	Long-term Future Work


	References
	Appendices
	Paper I - Computational hemodynamics of abdominal aortic aneurysms: Three-dimensional ultrasound versus computed tomography
	Paper II - Structural Modelling of the Cardiovascular System
	Paper III - Vector-based discrete element method for solid elastic materials
	Paper IV - A novel, discrete fluid-structure interaction method: the lattice Boltzmann method, vector-based discrete element method and immersed boundary method.

