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Abstract

Sepsis is a serious disease that can cause death. It is important to evaluate patients’
sepsis risk during diagnostic decisions within the early stages after the detection of
the presence of symptoms that suggest sepsis. The conventional approach to sepsis
diagnosis is blood culture, which may takes several days. The approaches based on
statistics and machine learning for sepsis diagnosis can be cheap, fast, and non-
invasive. There are a wide variety of approaches based on statistics and machine
learning that can be used for sepsis diagnosis, but these approaches have some
issues, e.g. interpretability and overfitting, which may affect their performance in
sepsis diagnosis.

To address some of the issues in the popular approaches to disease diagnosis, we
proposed a new approach, i.e., the rule-based inferential modelling and prediction.
This approach integrates statistical analysis, belief rule-base inference, and
maximum likelihood prediction, and machine learning. The referential-value-based
data discretisation technique used in this approach is closer to reality and better at
reducing information loss and distortion, as well as better at presenting the
characteristics of the data, compared to other data-processing techniques. We can
use the belief rule-base inference to clearly analyse the relationship between
system inputs and outputs. An interdependence index is used in this approach to
quantify the interdependence between input variables. An adapted genetic
algorithm is used in this approach for the bilevel optimisation of models. The
stopping criteria for the training process of the models used in this approach help
us find the optimal structure of the models, which generally achieves balance
between accuracy and complexity.

Compared to the complex classifiers for disease diagnosis, e.g., ensemble, ANN,
and random forest, the classifier based on the maximum likelihood evidential
reasoning (MAKER) framework established by the rule-based inferential modelling
and prediction approach is more interpretable. The performance of the MAKER-
based classifiers constructed by this approach for sepsis diagnosis is generally
better than the majority of alternative models for sepsis diagnosis, and similar to
the performance of ensemble: bagged trees, which is a complex model. The
MAKER-based classifier is an outstanding classifier for classical data sets: the
Banana data set, Haberman’s survival data set, and the Iris data set, and it
generally performs better than other interpretable classifiers, e.g., complex tree,
logistic regression, and naive Bayes.

Keywords: Evidential Reasoning, Data Discretization, Statistical Analysis,

Probabilistic Inference, Machine Learning, Prediction, Decision Making.
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Chapter 1 Introduction

1.1 Background

Sepsis is a type of clinical syndrome associated with infection and inflammation. It

generally results from the host’s systemic inflammatory response to different

external factors, e.g. infection, trauma, etc. Daniels and Nutbeam (2010) argue

that Sepsis is a continuum of different terms, e.g. systemic inflammatory response

syndrome (SIRS), infection, sepsis, severe sepsis, septic shock, multiple organ

dysfunction syndrome (MODS). Table 1.1 provides the definitions for these terms

(Levy et al., 2003), which originated from a consensus conference headed by the

Society of Critical Care Medicine (SCCM) and the American College of Chest

Physicians (ACCP). Figure 1.1 and Figure 1.2 describe the intrinsic relationships

between the different sepsis terms.

Table 1.1 Nomenclature of sepsis

Terms

Definitions?!

SIRS

Systemic inflammatory response syndrome is a non-specific
term used to describe the inflammatory response triggered by
infection, trauma, burns, pancreatitis, etc. The identification of
SIRS requires the presence of at least two of the following
criteria: temperature <36°C or >38.3°C; heart rate >90/min;
respiratory rate >20/min; white cells <4 or >12 x 109/l;
acutely altered mental status; hyperglycaemia (glucose >6.6

mmol/l) (unless diabetic).

Infection

Infection refers to the presence of or the response to the

microorganisms in a sterile body cavity or fluid.

Sepsis

Sepsis is defined as the presence of SIRS and a confirmed

! These definitions are obtained from ‘CHAPTER 2: Defining the Spectrum of Disease’

(Daniels, 2010).

14



infection.

Severe sepsis is defined as the presence of sepsis and signs of
Severe sepsis
organ dysfunction.

Septic shock refers to the persistent evidence of hypoperfusion
Septic shock
in spite of adequate fluid resuscitation.

Multi-organ dysfunction syndrome is defined as the presence of
MODS

altered organ dysfunction in critically ill patients.

From Figure 1.1, it can be seen that both infection and SIRS are not specific to
sepsis (Daniels and Nutbeam, 2010). Infection can be triggered by bacteria, virus,
fungi, parasite, etc., while SIRS may be caused by pancreatitis, trauma, burns, etc.
As mentioned in Table 1.1, the prerequisites of sepsis are infection and SIRS. Hence,
the intersection of infection and SIRS is sepsis, as shown in Figure 1.1. Similarly,
according to the definitions in Table 1.1, severe sepsis is a subset of sepsis and

MODS? is part of severe sepsis, as shown in Figure 1.1.

Infection

Figure 1.1 Schematic of the interrelationships between different sepsis
terms

2 In this context, MODS refers to a specific part of the sepsis continuum.
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Figure 1.2 describes the spectrum or the continuum of sepsis in which different
sepsis terms, e.g. sepsis, severe sepsis, septic shock, etc., are on a scale of
different degrees of characteristics. From left to right in Figure 1.2, the mortalities
caused by different sepsis terms are higher and higher (Daniels and Nutbeam,

2010), which is also shown in Figure 1.3 (Levy, 2010).

The Presence of SIRS

idence for Infection

Figure 1.2 Continuum of sepsis

Sepsis is one of the most serious diseases in the world. Each year, approximately
13 million people suffer from sepsis and around 4 million of these die (Levy, 2010).
In the US, there are approximately 750,000 cases of sepsis per year, resulting in
around 215,000 deaths (Levy, 2010). The financial burden of sepsis on healthcare
is significant and it costs the US government approximately 16.7 billion dollars per
year (Levy, 2010). In Figure 1.4, it is clear that European incidence of severe sepsis
is significantly higher than that of cancers and AIDS. In the UK, it has been
estimated that sepsis causes approximately 37,000 deaths per year (Levy, 2010),

which is higher than the number of deaths caused by cancers (Figure 1.5).
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As mentioned in Table 1.1, sepsis is confirmed by the presence of SIRS and
evidence of infection. To confirm the presence of infection, common practice is to
identify the live pathogens of sepsis from blood samples using culture techniques

(Dark et al., 2014).

In general, it takes several days for blood cultures (Warhurst et al.,, 2014) to
determine whether the specimen is culture positive or negative (at least two days
are required before a negative result is available). Due to the relatively lengthy
process of blood culture and the positive correlation between the delay in
antimicrobial therapy and increased mortality, healthcare practitioners generally
adopt a ‘safety first’ clinical strategy to provide early and persistent delivery of
potent broad-spectrum antibiotics, which are used against probable pathogens for
patients presenting with systemic inflammation (Dark et al., 2014). However, the
safety first strategy inevitably results in unreasonable antibiotic prescription,
accompanied by a series of adverse effects, e.g. clostridium difficile infection,
antimicrobial resistance development, increased acquisition costs, etc., as systemic
inflammation is very common in critical care and may be caused by pancreatitis,

blood transfusion, trauma, etc., in addition to infection (Warhurst et al., 2014).

Therefore, it is important to develop a decision support system to predict patients’
sepsis risk during diagnostic decisions within the early stages after the detection of
the presence of symptoms that may suggest sepsis. With the assessment of a
patient’s sepsis risk, targeted antibiotic therapy can be used in the early stages to

effectively improve the patient’s prospects of survival.

1.2 Research Questions

The research presented in this thesis aims to develop a rule-based inferential
modelling and prediction approach for sepsis diagnosis that could be further

expanded to analyse and infer complex systems in other domains. A series of
18



research questions are raised to facilitate the research in this thesis. The research
questions comprise two levels: the fundamental level of questions to search for an
appropriate research methodology and the advanced level for the selected research

methodology.

To find an appropriate research methodology, the author provides a comprehensive
analysis of the comparison between the present methodologies of data-driven

modelling. The following research questions are designed to guide the analysis:

Q1. What are the most frequently used approaches for disease diagnosis?

Q2. What are the advantages and disadvantages of alternative approaches for

disease diagnosis?

Q3. Can we understand the interrelationship between the inputs and outputs of a

complex numerical system through the alternative approaches to disease diagnosis?

Q4. How do the alternative approaches perform in disease diagnosis?

Following the analysis of the comparison between the present methodologies for
disease diagnosis, the most appropriate approach will be selected for sepsis
diagnosis. The following research questions are designed to address this selected

approach:

Q5. How can we process continuous input data for a complex numerical system for

modelling?

Q6. How can we measure the interdependence between input variables in a

complex numerical system?
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Q7. How can we perform bilevel optimisation for the models?

Q8. How can we identify the optimal structure of the models?

1.3 Research Objectives

To address the research questions formulated in section 1.2, which will facilitate
the research, we have designed a number of research objectives. Corresponding
with the research questions, the research objectives are classified into two groups:
the objectives of identifying the most appropriate approaches for sepsis diagnosis

and the objectives of the selected approach for sepsis diagnosis.

The objectives of identifying the most appropriate approach for sepsis diagnosis

are listed below.

Obj.1. We will find out the popular approaches to disease diagnosis.

Obj.2. We will compare the weaknesses and strengths of popular approaches to

disease diagnosis.

Obj.3. We will understand whether the alternative approaches are interpretable.

Obj.4. We will find out which alternative approaches perform well in the

classification of the datasets.

The objectives of the selected approach to sepsis diagnosis are as follows:

Obj.5. We will transform continuous input data for modelling.

20



Obj.6. We will measure the interdependence between the input variables in a

complex numerical system.

Obj.7. We will apply an algorithm for bilevel optimisation.

Obj.8. We will find the optimal structures for the training of the models.

1.4 Research Contributions

The main contributions of this research are summarised as follows:

o A referential-value-based data discretisation technique is applied to transform
continuous data for modelling. This is one of the innovations in this research.
Compared to other data-processing techniques, this technique is closer to
reality and better at reducing information loss and distortion, as well as better

at presenting the characteristics of the data.

o Stopping criteria are proposed for the training process of the models based on
the maximum likelihood evidential reasoning (MAKER) framework, which is
another innovation in this research. These stopping criteria help us to find the
optimal structure of the models based on the MAKER framework, which

generally achieves balance between accuracy and complexity.

. An adapted single-level genetic algorithm is proposed for the problems of
bilevel optimization of the MAKER-based models. This is an innovative solution
to the bilevel optimization. The function approximation and the classification
experiments show that this adapted genetic algorithm can work effectively to
find the optimised solutions for the referential values and weights (reliabilities)

of the MAKER-based models.
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o The statistical analysis, belief rule-base inference, and prediction and machine
learning are integrated in the approach of rule-based inferential modelling and
prediction, which makes the inference process based on this approach totally
transparent and interpretable. It is an innovative approach of modelling and

prediction.

o A rule-based inferential modelling and prediction approach is applied to
establish the MAKER-based models to identify patients at risk according to the
five patient biomarkers in the sepsis dataset. The performance of the MAKER-
based models is better than the performance of the alternative models,
including complex tree, fine Gaussian support vector machine (SVM), fine k-
nearest neighbour (KNN), weighted KNN, ensemble: subspace KNN, naive
Bayes, and artificial neural networks (ANN): feed-forward backpropagation.
Among these alternative models, complex tree and naive Bayes are
interpretable. In addition, the performance of the MAKER-based models is
similar to the performance of the ensemble: bagged trees, which is a complex
model. Compared to the ensemble: bagged trees, the MAKER-based model is
totally transparent and interpretable. It is essentially a white-box model in
which the relationship between system inputs and outputs can be analysed

clearly.

1.5. Research Significance

The theoretical and practical significance of this research is summarised in the

follow sub-sections.

Theoretical significance:

This research contributes to the analysis, modelling, and prediction of complex

numerical systems by proposing a rule-based inferential modelling and prediction
22



approach that provides a new way of effectively addressing some of the issues in
the analysis, modelling, and prediction of complex numerical systems. Specifically,
the referential-value-based data discretisation technique of this approach reduces
the information loss and distortion to which other data discretisation techniques
lead. The stopping criteria for the training of the models used in this approach
effectively avoid the overfitting of models, which is a common issue in decision tree
models. The belief rule-base inference of this approach is totally transparent and
interpretable, from which we can analyse the relationship between system inputs
and outputs. As a comparison, complex models, e.g. ensembles and artificial neural
networks, are generally difficult to understand. The adapted genetic algorithm used
in this approach provides an effective way of performing bilevel optimisation for
complex numerical systems, while classical algorithms may not work effectively for
bilevel optimisation. Overall, the rule-based inferential modelling and prediction
approach integrates statistical analysis, belief rule-base inference, and maximum
likelihood prediction and machine learning, which enriches the approaches for the

analysis, modelling, and prediction of complex numerical systems.

Practical significance:

This research will benefit healthcare professionals involved in sepsis diagnosis and
diagnosis of other diseases. Healthcare professionals can use the model based on
the MAKER framework established by the selected approach: the rule-based
inferential modelling and prediction approach to improve the efficiency and

accuracy of disease diagnosis.

Specifically, sepsis is a serious disease that may cause death. It is important to
evaluate patients’ sepsis risk during diagnostic decisions within the early stages
after the detection of the presence of symptoms that suggest sepsis. The
conventional approach to sepsis diagnosis is blood culture, which may take several

days. We can use the rule-based inferential modelling and prediction approach to
23



establish a MAKER-based model to evaluate patients’ sepsis risk in the early stages
after the detection of the presence of suspicious symptoms of sepsis, so that
targeted antibiotic therapy can be used in the early stages to prevent patients’
sepsis from becoming worse and to effectively improve patients’ prospects of

survival.

As the MAKER-based model is essentially a white-box model from which the
relationship between system inputs and outputs can be analysed clearly, healthcare
professionals may extract useful patterns from the data on patients’ features to
provide new perspectives in order to provide timely treatment to patients with

suspicious symptoms of a disease to prevent their disease from becoming worse.

1.6 Thesis Structure

The remainder of this thesis is structured in six further chapters. These chapters
are outlined in Figure 1.6. Each chapter is designed for a specific group of research

questions and their relevant research objectives.

Chapter 2 provides a systematic literature review of the popular approaches to
disease diagnosis. Based on the systematic literature review, we perform a critical
analysis of these popular approaches, which shows that there is a need to develop
a new approach to disease diagnosis. Chapter 2 accomplishes research objectives
1 and 2 and addresses research questions 1 and 2, as shown in Figure 1.6. The
systematic literature review in Chapter 2 forms a theoretical basis from which to

address the research questions formulated in this thesis.

Chapter 3 presents the research methodologies used in this thesis. By achieving
Obj.5, Obj.6, and Obj.7, Chapter 3 addresses research questions Q5, Q6, and Q7,
as shown in Figure 1.6. Specifically, we introduce the general research methods,

data collection, evidential rule, and the research methods for the rule-based
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inferential modelling and prediction approach, which is developed to address some

of the issues with the popular approaches to disease diagnosis.

Research
Significance

Reseach
Methodologies

N
e Chapter 1: Introduction
J/

e Chapter 2: Literature Review R

eResearch Questions: Q1, and Q2

eResearch Objectives: Obj.1, and Obj.2
 Chapter 3: Research Methodologies

eResearch Questions: Q5, Q6, and Q7

eResearch Objectives: Obj.5, Obj.6, and Obj.7 /

Research
Experiments

Research
Conclusions

e Chapter 4: Referential-value-based Data Discretisation Techniques\
eResearch Questions: Q5, Q6, Q7, Q8
*Research Objectives: 0bj.5, Obj.6, Obj.7, Obj.8
 Chapter 5: Rule-based Inferential Modelling and Prediction
eResearch Questions: Q3, Q4, Q5, Q6, Q7
eResearch Objectives: Obj.3, Obj.4, Obj.5, Obj.6, Obj.7
 Chapter 6: Application to Sepsis Diagnosis
eResearch Questions: Q3, Q4, Q5, Q6, Q7
«Research Objectives: Obj.3, Obj.4, Obj.5, Obj.6, Obj.7 -/

e Chapter 7: Conclusions and Further Study

Figure 1.6 Structure of the thesis

Chapter 4 is focused on the function approximations. As indicated in Figure 1.6,

research questions 5, 6, 7, and 8 are addressed in Chapter 4 by fulfilling research

objectives 5, 6, 7, and 8. These function approximations can be divided into

univariate function approximations and bivariate function approximation. The

univariate function approximations take the monotonic power function, monotonic

logarithmic function, monotonic power function, unimodal power function, and

bimodal exponential function as examples to validate the capability of the

approximation of the rule-based inferential modelling and prediction approach. The
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bivariate function approximation takes a benchmark function-Himmelblau function
as an example to validate the approximation capability of the rule-based inferential
modelling and prediction approach. Based on these approximations, stopping
criteria are proposed to find the optimal model structure for the models to achieve

balance between accuracy and complexity.

Chapter 5 is dedicated to the rule-based inferential modelling and prediction
approach from the perspectives of fundamental knowledge, theoretical comparative
analysis, case study, and performance comparative analysis. Research questions 3,
4,5, 6, and 7 are addressed in Chapter 5 by completing objectives 3, 4, 5, 6, and
7, as shown in Fig 1.6. In this chapter, we first introduce the fundamental
knowledge of the rule-based inferential modelling and prediction approach from the
perspectives of statistical analysis, belief rule-base inference, and maximum
likelihood prediction and machine learning. Then, we perform a comparative
analysis to emphasise the limitations of the popular modelling and prediction
approaches, and highlight the advantages of the rule-based inferential modelling
and prediction approach. Subsequently, we present a case study on how to use the
rule-based inferential modelling and prediction approach to build a MAKER-based
classifier with which to perform classification experiments on classical datasets,
including the Banana dataset, Haberman’s survival dataset, and the Iris dataset.
Finally, we compare the classification results of the MAKER-based classifiers with

those of alternative classifiers.

Chapter 6 focuses mainly on the application of the rule-based inferential modelling
and prediction approach to sepsis diagnosis. Figure 1.6 shows that research
questions 3, 4, 5, 6, and 7 are addressed in Chapter 6 by fulfilling objectives 3, 4,
5, 6, and 7. In this chapter, we first present the data preparation for the application
of the rule-based inferential and modelling approach to sepsis diagnosis. Then, we
describe how the classifier based on the system of the MAKER framework is built

by the rule-based inferential modelling and prediction approach. Finally, we conduct
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a performance comparative analysis between the classification results of the

MAKER-based classifier and those of alternative classifiers.

Chapter 7 concludes the findings of this research and suggests directions for further

research.
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Chapter 2 Literature Review

2.1 Introduction

From the existing literature, it can be seen that a wide variety of approaches have
been employed for disease diagnosis. This chapter aims to provide a comprehensive
analysis of the popular approaches to disease diagnosis. The remainder of this
chapter is organised as follows. Section 2.2 defines disease diagnosis and statistical
classification, and the relationship between these two concepts. Section 2.3 defines
machine learning, supervised learning, and the relationship between machine
learning, supervised learning, and statistical classification. Section 2.4 identifies
the popular approaches to disease diagnosis. Section 2.5 critically analyses the

identified popular approaches to disease diagnosis.

2.2 Disease Diagnosis and Statistical Classification

The aim of disease diagnosis is to identify the disease of a sick patient on the basis
of their characteristics (Hand, 1992). Classification means to arrange things into
groups of shared characteristics (Cooper and Sartorius, 2013). Therefore, diseases
diagnosis is essentially classification. In the context of statistics and machine
learning, classification is the identification of the set of existing categories to which
a new observation belongs on the basis of training data on observations that have

known category memberships (Michie, Spiegelhalter and Taylor, 1994).

Different types of disease, observations of patient characteristics, and
characteristics of patients in the context of diagnosis can be considered as classes
of output variables, observations, and input variables, respectively, in the context

of statistics and machine learning. Based the methods of statistics and machine
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learning, we can build models from the data containing the different types of

disease and the characteristics of patients for disease diagnosis.

The experience of diagnostic decision was collected and collated subjectively in
early days, and objective methods of statistics and machine learning have been
applied in diagnosis in recent decades (Hand, 1992). Apparently, disease diagnosis
based on methods of statistics and machine learning have some superiority over
traditional disease diagnosis. Hand (1992) suggests that traditional disease
diagnosis relies on methods that are expensive (e.g. surgical investigations), slow
(e.g. bacterial culture), or invasive (bone density measurement in osteoporosis).
Compared with traditional disease diagnosis, diagnosis based on methods of
statistics and machine learning is cheap, rapid, and non-invasive. With methods of
statistics and machine learning, medical diagnostic knowledge can be automatically
learned from patient records, and the classifiers built from patient records can help
healthcare professionals to improve diagnostic speed, accuracy, and reliability

(Kononenko, 2001).

2.3 Machine Learning, Supervised Learning, and Statistical

Classification

Machine learning is the study of how to build computer programs that improve
computer performance through experience in relation to certain tasks (Zhang and
Tsai, 2007). It uses algorithms that can be employed to extract patterns from data
in order to make inferences or predictions (Alpaydin, 2010). Machine learning
techniques are divided into supervised and unsupervised (Zimmermann et al.,,
2002). Karim and Kaysar (2016) suggest that the tasks in machine learning can be
divided into three broad categories: supervised learning, unsupervised learning,
and reinforcement learning, which depends on whether or not a learning signal or
feedback is available to a learning system. Mohri, Rostamizadeh, and Talwalkar

(2012) classify common scenarios of machine learning into supervised learning,
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unsupervised learning, semi-supervised learning, reinforcement learning, active

learning, etc., on the basis of the types of training data available to the learner, and

the order and method by which the training data is received and the test data used

to evaluate the learning algorithm. Table 2.1 summarises the different types of

machine learning task based on the description presented by Mohri, Rostamizadeh,

and Talwalkar (2012).

Table 2.1 Classification of machine learning tasks

Types of machine learning task

Description

Supervised learning

The learner receives a set of labelled
examples as training data and makes
predictions for all unseen points (Mohri,

Rostamizadeh, and Talwalkar, 2012).

Unsupervised learning

The learner exclusively receives
unlabelled training data and makes
predictions for all unseen points (Mohri,

Rostamizadeh, and Talwalkar, 2012).

Semi-supervised learning

The learner receives a training sample
consisting of both Ilabelled and
unlabelled data and makes predictions
for all unseen points (Mohri,

Rostamizadeh, and Talwalkar, 2012).

Reinforcement learning

To collect information, the learner
actively interacts with the
environment, and affects the
environment in some cases, and
receives an immediate reward for each
action. The objective of the learner is
to maximize their reward throughout a

course of actions and iterations with
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the environment (Mohri,

Rostamizadeh, and Talwalkar, 2012).

The learner adaptively or interactively
collects training examples, typically by
querying a database to request labels
for new points. The goal of active
Active learning learning is to achieve a performance
comparable to the standard supervised
learning scenario, but with fewer

labelled examples (Mohri,

Rostamizadeh, and Talwalkar, 2012).

From the description of supervised learning given by Mohri, Rostamizadeh, and
Talwalkar (2012), it can be found that supervised learning is a learning task of
deducing a function from labelled training data. Cord and Cunningham (2008) point
out that supervised learning entails learning a mapping between input variables
and output variables and applying this mapping to predict the outputs for unseen
data. Supervised learning is analogous to human learning from past experience to
gain new knowledge in order to improve the ability to perform real-world tasks (Liu,
2007). Supervised learning is considered to be one of the most important areas of
knowledge discovery (Arikawa and Motoda, 1998) and is one of the most commonly

used and successful types of machine learning (Miller and Guido, 2016).

According to Karimi (2014), supervised learning is primarily concerned with
classification, interpolation, and prediction. Suthaharan (2016) suggests that
supervised learning models can be grouped into predictive models, i.e. regression
models and classification models. Miller and Guido (2016) conclude that there are
generally two major supervised machine learning problems, i.e. regression and
classification. Hackeling (2014) suggests that classification and regression are two

of the most common supervised machine learning tasks. As mentioned in section
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2.2, disease diagnosis is essentially classification. Therefore, disease diagnosis

needs a classification algorithm or a supervised learning algorithm.

—2.4 Popular Approaches to Disease Diagnosis

To identify popular approaches to diseases diagnosis employed in the existing

literatures, it was necessary to conduct a literature search. The search was

performed using Web of Science (2017). Only papers published in journals from

this source were taken into consideration. Papers from journals below a certain

quality standard are not included in Web of Science. Hence, low-quality papers were

excluded from consideration in the search. Table 2.2 lists the papers relating to

disease diagnosis using machine learning approaches.

Table 2.2 Papers on disease diagnosis using machine learning approaches

Approaches
No. employed in the Author(s) Title of paper
paper

Alzheimer disease

Linear Discriminant Alam, S., G. R.
classification using KPCA,

1 | Analysis, Support Kwon, et al.

LDA, and multi-kernel

Vector Machine (2017)
learning SVM
Investigating the effect of
Correlation based Feature

Support Vector Alyami, R., J.

2 | Machine, Artificial

Neural Network

Alhajjaj, et al.

(2017)

Selection on breast cancer
diagnosis using Artificial
Neural Network and Support

Vector Machines

Support Vector

Machine

Beheshti, I., H.
Demirel, et al.

(2017)

Classification of Alzheimer's
disease and prediction of

mild cognitive impairment-
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to-Alzheimer's conversion
from structural magnetic
resource imaging using
feature ranking and a

genetic algorithm

Support Vector

Machine

Chen, H. L., L. F.

Hu, et al. (2017)

An Effective Machine
Learning Approach for
Prognosis of Paraquat
Poisoning Patients Using

Blood Routine Indexes

Support Vector
Machine, Naive
Bayes, Random
Forest, and K-Nearest

Neighbours

Chen, Y., Y. Luo, et

al. (2017)

Machine-learning-based
classification of real-time
tissue elastography for
hepatic fibrosis in patients

with chronic hepatitis B

Support Vector

Machine

Chen, Y. Y., M. A.

Sha, et al. (2017)

Automated detection of
pathologic white matter
alterations in Alzheimer's
disease using combined
diffusivity and kurtosis

method

Support Vector
Machine-Quadratic
Support Vector

Machine

Dakappa, P. H., K.
Prasad, et al.

(2017)

A Predictive Model to
Classify Undifferentiated
Fever Cases Based on
Twenty-Four-Hour
Continuous Tympanic

Temperature Recording

Disjunctive Normal

Form Rule Based

Deng, C. and M.

Perkowski (2017)

A General Data Mining

Methodology Based on a
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Method, Decision
Trees, Naive Bayes,
and Support Vector

Machine

Weighted Hierarchical
Adaptive Voting Ensemble
(WHAVE) Machine Learning

Method

Support Vector

Ding, J. W. and Q.

Prediction of MCI to AD
Conversion Using Laplace

Eigenmaps Learned from

9
Machine Huang (2017) FDG and MRI Images of AD
Patients and Healthy
Controls
Drosou, K. and C.  Proximal support vector
Support Vector
10 Koukouvinos machine techniques on
Machine
(2017) medical prediction outcome
Support Vector
Machine (SVM)-
Linear SVM,
Quadratic SVM, Cubic
SVM, Medium Ekiz, S. and P. Comparative Study of Heart
11
Gaussian SVM, Erdogmus (2017)  Disease Classification
Decision Tree, and
Ensemble Subspace
Discriminant machine
learning
A Machine-Learning
Algorithm toward Color
Gatos, I., S.
Support Vector Analysis for Chronic Liver
12 Tsantis, et al.

Machine

(2017)

Disease Classification,
Employing Ultrasound Shear

Wave Elastography
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Support Vector

Guo, H., F. Zhang,

Machine Learning

Classification Combining

13 Multiple Features of A
Machine et al. (2017)
................................. Hyper-Network of fMRI Data
in Alzheimer's Disease
Predicting conversion from
Hojjati, S. H., A.
Support Vector MCI to AD using resting-
14 Ebrahimzadeh, et
Machine state fMRI, graph theoretical
al. (2017)
approach and SVM
Combining SPECT and
Quantitative EEG Analysis
Support Vector Holler, Y., A. C.
for the Automated
15  Machine (SVM)- Bathke, et al.
Differential Diagnosis of
Linear SVM (2017)
Disorders with Amnestic
Symptoms
An evolution based hybrid
Iftikhar, S., K.
Support Vector approach for heart diseases
16 Fatima, et al.
Machine classification and associated
(2017)
risk factors identification
Independent Component
Analysis-Support Vector
Support Vector Khedher, L., I. A. Machine-Based Computer-
17
Machine Illan, et al. (2017) Aided Diagnosis System for
Alzheimer's with Visual
Support
Kim, H., H. W. Longitudinal Study-Based
Support Vector
18 Chun, et al. Dementia Prediction for
Machine
(2017) Public Health
19 Support Vector Lee, D., Y. S. Kim, A feasibility study for
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Machine

et al. (2017)

automatic lung nodule
detection in chest digital
tomosynthesis with machine
learning based on support

vector machine

Support Vector

Maryam, N. A.

A Hybrid Feature Selection

Method Using Multiclass SVM

20 Setiawan, et al.
Machine for Diagnosis of Erythemato-
(2017)
Squamous Disease
Predicting behavioral variant
Meyer, S., K. frontotemporal dementia
Support Vector
21 Mueller, et al. with pattern classification in
Machine
(2017) multi-center structural MRI
data
Deep Learning
Representation from
Support Vector Electroencephalography of
Morabito, F. C., M.
Machine and Early-Stage Creutzfeldt-
22 Campolo, et al.
Artificial Neural Jakob Disease and Features
(2017)
Network for Differentiation from
Rapidly Progressive
Dementia
Interhemispheric Resting-
State Functional
Support Vector Ogata, Y., A.
Connectivity Predicts
23 Machine (SVM)- Ozaki, et al.
Severity of Idiopathic
Linear SVM (2017)
Normal Pressure
Hydrocephalus
24 Support Vector Orimaye, S. O., J. | Predicting probable
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Machine S. M. Wong, et al. = Alzheimer's disease using
(2017) linguistic deficits and
biomarkers
................................. Diagnosis of Chronic Kidney
Support Vector Polat, H., H. D. Disease Based on Support
25
Machine Mehr, et al. (2017) Vector Machine by Feature
Selection Methods
Multivariate Analysis of F-
Support Vector Segovia, F., J. M.
18-DMFP PET Data to Assist
26 | Machine (SVM)- Gorriz, et al.
the Diagnosis of
Linear SVM (2017)
Parkinsonism
Support Vector A novel and robust Bayesian
Shrivastava, V. K.,
Machine, Decision approach for segmentation
27 N. D. Londhe, et
Trees, and Artificial of psoriasis lesions and its
al. (2017)
Neural Network risk stratification
A Computational Model for
the Automatic Diagnosis of
Support Vector Tan, L. R, X. Y.
28 Attention Deficit
Machine Guo, et al. (2017)
Hyperactivity Disorder Based
on Functional Brain Volume
Support Vector Tanaka, H., H. Detecting Dementia Through
29 Machine, and Adachi, et al. Interactive Computer
Logistic Regression (2017) Avatars
Multi-threshold White Matter
Support Vector Wen, H. W., Y. Liu, | Structural Networks Fusion
30
Machine et al. (2017) for Accurate Diagnosis of
Tourette Syndrome Children
Support Vector Yahiaoui, A., O. Er, A new method of automatic
31

Machine

et al. (2017)

recognition for tuberculosis
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disease diagnosis using

support vector machines

Random Forest, K-

Nearest Neighbours,

Zhou, W. C,, Y. VY.

Predictive model for
inflammation grades of

chronic hepatitis B: Large-

32
and Support Vector Ma, et al. (2017) scale analysis of clinical
Machine parameters and gene
expressions
Serum levels of chemical
elements in esophageal
Random Forest, and
Lin, T., T. B. Liu, et . squamous cell carcinoma in
33 Support Vector
al. (2017) Anyang, China: a case-
Machine
control study based on
machine learning methods
Ensemble Classifier of
A Hybrid Computer-aided-
Bagged Decision Tree,
diagnosis System for
Support Vector Mohebian, M. R,
Prediction of Breast Cancer
34 Machine, Decision H. R. Marateb, et
Recurrence (HPBCR) Using
Trees, and Artificial al. (2017)
Optimized Ensemble
Neural Network-
Learning
Multilayer Perceptron
Support Vector Hybrid Disease Diagnosis
Machine, and Nalluri, M. R,, K, Using Multiobjective
35 | Artificial Neural Kannan, et al. Optimization with
Network- Multilayer (2017) Evolutionary Parameter
Perceptron Optimization
Aboudi, N. L. and | A New Approach Based on
Support Vector
36 L. Benhlima PCA and CE-SVM for
Machine
(2016) Hepatitis Diagnosis
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Support Vector

Argerich, S., S.

Evaluation of Periodic

Breathing in Respiratory

37 | Machine and Linear Herrera, et al. Flow Signal of Elderly
"""""""""""""""""" Discriminant Analysis | (2016) Patients using SVM and
Linear Discriminant Analysis
Support Vector Using Machine Learning
Asri, H., H.
Machine, Decision Algorithms for Breast Cancer
38 Mousannif, et al.
Trees, Naive Bayes, Risk Prediction and
(2016)
K-Nearest Neighbours Diagnosis
Support Vector
Machine, and
Lung cancer prediction from
Artificial Neural Azzawi, H., 1. Y.
39 microarray data by gene
Network- Multilayer Hou, et al. (2016)
expression programming
Perceptron, Radial
Basis Function
Support Vector Comparative Study of
Machine, Random Bazazeh, D. and Machine Learning Algorithms
40
Forest, and Bayesian R. Shubair (2016) for Breast Cancer Detection
Network and Diagnosis
Naive Bayes, K- Identifying cancer
Begum, S., D.
Nearest Neighbours, biomarkers from leukemia
41 Chakraborty, et al.
and Support Vector data using feature selection
(2016)
Machine and supervised learning
Support Vector
Machine, Artificial Berikol, G. B., O. Diagnosis of Acute Coronary
42 | Neural Network, Yildiz, et al. Syndrome with a Support
Naive Bayes, and (2016) Vector Machine
Logistic Regression
43  Support Vector Bokov, P., B. Wheezing recognition
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Machine

Mahut, et al.

(2016)

algorithm using recordings
of respiratory sounds at the
mouth in a pediatric

population

Support Vector

Caicedo-Torres,

Machine Learning Models for

44 W., A. Paternina, Early Dengue Severity
Machine
et al. (2016) Prediction
Predicting metabolic
Decision Tree and Karimi-Alavijeh, F,,
syndrome using decision
45 | Support Vector S. Jalili, et al.
tree and support vector
Machine (2016)
machine methods
Logistic Regression,
Support Vector Prediction and detection
Kate, R. J., R. M.
Machines, Decision models for acute kidney
46 Perez, et al.
Trees and Naive injury in hospitalized older
(2016)
Bayes and Their adults
Ensemble
An Ensemble of
Artificial Neural A New Multiple Classifier
Network- Multilayer Lahijanian, B., F. System for Diagnosis of
47 | Perceptron, K-Nearest @ V. Farahani, et al. Erythemato-Squamous
Neighbours and (2016) Diseases Based on Rough
Support Vector Set Feature Selection
Machine
Hierarchical Feature
Support Vector Liu, C., Y. Huang, Extraction for Nuclear
48
Machine et al. (2016) Morphometry-Based Cancer
Diagnosis
49 K-Nearest Cardenas-Pena, Enhanced Data
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Neighbours, Support
Vector Machine,
and Artificial Neural

Networks

D., D. Collazos-
Huertas, et al.

(2017)

Representation by Kernel
Metric Learning for

Dementia Diagnosis

Support Vector

Orimaye, S. O., 1.

Predicting probable

Alzheimer's disease using

50 S. M. Wong, et al.
Machine linguistic deficits and
(2017)
biomarkers
Ensemble Classifiers
Hybrid Rough Set and
of Support Vector Helal, M. E., M.
Heterogeneous Ensemble
51 Machine, Decision Elmogy, et al.
Classifiers Model for Cancer
Tree-C5.0, and Naive | (2017)
Classification
Bayes
Ensemble Classifiers
of Random Forest, Classification of Parkinson's
Support Vector Li, Y. M., L. Y. Disease by Decision Tree
52 | Machine, and Yang, et al. Based Instance Selection
Artificial Neural (2017) and Ensemble Learning
Network- Extreme Algorithms
Learning Machine
Artificial Neural
Risk stratification of 2D
Network-
Singh, B. K., K. ultrasound-based breast
Backpropagation
53 Verma, et al. lesions using hybrid feature
Neural Network, and
(2017) selection in machine
Support Vector
learning paradigm
Machine
Alshamrani, B. S. Investigation of Hepatitis
Artificial Neural
54 and A. H. Osman Disease Diagnosis using

Network

(2017)

Different Types of Neural
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Network Algorithms

Artificial Neural

Arabasadi, Z., R.

Computer aided decision

making for heart disease

55 Alizadehsani, et detection using hybrid
Network
al. (2017) neural network-Genetic
algorithm
Computer aided decision
Arabasadi, Z., R. making for heart disease
Artificial Neural
56 Alizadehsani, et detection using hybrid
Network
al. (2017) neural network-Genetic
algorithm
Artificial Neural
Network-Radial
Diagnosis of neuro
Basis Function
Aydin, F. and Z. degenerative diseases using
57 Network, Adaptive
Aslan (2017) machine learning methods
Boosting (Adaboost)
and wavelet transform
and Additive Logistic
Regression
Azmi, M. H., M. 1. F-18-FDG PET brain images
Artificial Neural
58 Saripan, et al. as features for Alzheimer
Network
(2017) classification
Comparative Validation of
Artificial Neural
Bernal, J., N. Polyp Detection Methods in
Network-
59 Tajkbaksh, et al. Video Colonoscopy: Results
Convolutional Neural
(2017) From the MICCAI 2015
Network
Endoscopic Vision Challenge
Artificial Neural Bi, S. S., Q. W. Automatic Monolayer
60  Network- Wang, et al. Identification Based on
Backpropagation (2017) Genetic Neural Network
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Neural Network

Artificial Neural

Automated diagnosis of

Network- Burlina, P, S. myositis from muscle
""""""""""""""""" 61 Convolutional Neural  Billings, et al. ultrasound: Exploring the
Networks, and (2017) use of machine learning and
Random Forests deep learning methods
Using recurrent neural
Choi, E., A.
Artificial Neural network models for early
62 Schuetz, et al.
Network detection of heart failure
(2017)
onset
Multi-categorical deep
learning neural network to
Artificial Neural Choi, 1. Y., T. K.
63 classify retinal images: A
Network Yoo, et al. (2017)
pilot study employing small
database
Automatic Classification of
Artificial Neural Epileptic
Cui, G. Q., L. B.
64  Network-Extreme Electroencephalogram Based
Xia, et al. (2017)
Learning Machine on Multiscale Entropy and
Extreme Learning Machine
A novel data preprocessing
Artificial Neural Iliou, T., C. N. method for boosting neural
65 ' Network-Multilayer Anagnostopoulos, | network performance: A
Perceptron et al. (2017) case study in osteoporosis
prediction
Extreme Learning Machine
Artificial Neural Kuppili, V., M.
Framework for Risk
66 = Network-Extreme Biswas, et al.

Learning Machine

(2017)

Stratification of Fatty Liver

Disease Using Ultrasound
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Tissue Characterization

Diagnosis of Alzheimer's

Disease Based on Structural

Artificial Neural Lama, R. K., J.
................................. MRI Images Using a
67  Network-Extreme Gwak, et al.
Regularized Extreme
Learning Machine (2017)
Learning Machine and PCA
Features
A Pathological Brain
Artificial Neural
Lu, S. Y, X. Qiu, Detection System based on
68 ' Network-Extreme
et al. (2017) Extreme Learning Machine
Learning Machine
Optimized by Bat Algorithm
The development of
Mamuda, M. and Adaptive Neuro-Fuzzy
Artificial Neural
69 S. Sathasivam Inference System model to
Network
(2017) diagnosis diabetes disease
data set
An adaptive kernel-based
Artificial Neural Wang, Y., A. N. weighted extreme learning
70 | Network-Extreme Wang, et al. machine approach for
Learning Machine (2017) effective detection of
Parkinson's disease
Codon Based Back
Artificial Neural
Propagation Neural Network
Network- Zaman, S. and R.
71 Approach to Classify
Backpropagation Toufig (2017)
Hypertension Gene
Neural Network
Sequences
Artificial Neural An Automatic Diagnosis
72 Network-Extreme Avci, D. (2016) System for Hepatitis

Learning Machine

Diseases Based on Genetic
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Wavelet Kernel Extreme

Learning Machine

Artificial Neural
Network-
Probabilistic,

Multilayer Perceptron,

Das, D. K., C.

Automated Screening

Methodology for Asthma

73 Chakraborty, et al. | Diagnosis that Ensembles
Radial Basis Function,
(2016) Clinical and Spirometric
and Alternating
Information
Decision Tree
(ADTree)
Artificial Neural
Network-Multilayer Identification of Diabetes
El-Baz, A. H., A. E.
Perceptron, and Disease Using Committees
74 Hassanien, et al.
Cascade-forward of Neural Network-Based
(2016)
Back Propagation Classifiers
Network
Classification of cardiac
Artificial Neural Kumari, V. S. R. arrhythmia using hybrid
75 | Network-Multilayer and P. R. Kumar genetic algorithm
Perceptron (2016) optimisation for multi-layer
perceptron neural network
Artificial Neural
Networks-
Feedforward Neural
Helwan, A., D. U.
Network that Uses One-Year Survival Prediction
76 Ozsahin, et al.

Backpropagation
Learning Algorithm,
and Radial Basis

Function Networks

(2017)

of Myocardial Infarction
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Artificial Neural

Network-

Risk stratification of 2D

Singh, B. K., K. ultrasound-based breast
Backpropagation
77 Verma, et al. lesions using hybrid feature
................................. Neural Network, and
(2017) selection in machine
Support Vector
learning paradigm
Machine
Evolutionary and Neural
Artificial Neural
Computing Based Decision
Network-
78 Sudha, M. (2017)  Support System for Disease
Backpropagation
Diagnosis from Clinical Data
Neural Network
Sets in Medical Practice
Investigating the effect of
Correlation based Feature
Support Vector Alyami, R., J.
Selection on breast cancer
79 Machine, Artificial Alhajjaj, et al.
diagnosis using Artificial
Neural Network (2017)
Neural Network and Support
Vector Machines
Deep Learning
Representation from
Support Vector Electroencephalography of
Morabito, F. C., M.
Machine and Early-Stage Creutzfeldt-
80 Campolo, et al.
Artificial Neural Jakob Disease and Features
(2017)
Network for Differentiation from
Rapidly Progressive
Dementia
Support Vector A novel and robust Bayesian
Shrivastava, V. K.,
Machine, Decision approach for segmentation
81 N. D. Londhe, et

Trees, and Artificial

Neural Network

al. (2017)

of psoriasis lesions and its

risk stratification
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Ensemble Classifier of
Bagged Decision Tree,

Support Vector

Mohebian, M. R.,

A Hybrid Computer-aided-
diagnosis System for

Prediction of Breast Cancer

............................... 82  Machine, Decision H. R. Marateb, et
Recurrence (HPBCR) Using
Trees, and Artificial al. (2017)
Optimized Ensemble
Neural Network-
Learning
Multilayer Perceptron
Support Vector Hybrid Disease Diagnosis
Machine, and Nalluri, M. R., K. Using Multiobjective
83 | Artificial Neural Kannan, et al. Optimization with
Network-Multilayer (2017) Evolutionary Parameter
Perceptron Optimization
K-Nearest
Neighbours, Artificial
Neural Network-
Radial Basis Function Automatic detection of
Ucar, M. K., M. R.
Network, Probabilistic respiratory arrests in OSA
84 Bozkurt, et al.
Neural Network, patients using PPG and
(2017)
Artificial Neural machine learning techniques
Networks-Multilayer
Feedforward Neural
Network
Support Vector
Machine, and
Lung cancer prediction from
Artificial Neural Azzawi, H., J. Y.
85 microarray data by gene
Network-Multilayer Hou, et al. (2016)
expression programming
Perceptron, Radial
Basis Function
86 | Support Vector Berikol, G. B., O. Diagnosis of Acute Coronary
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Machine, Artificial
Neural Network,
Naive Bayes, and

Logistic Regression

Yildiz, et al.

(2016)

Syndrome with a Support

Vector Machine

Naive Bayes, Decision

Tree, Artificial

Ionita, I. and L.

Prediction of Thyroid Disease

87  Neural Network- Using Data Mining
Ionita (2016)
Multilayer Perceptron, Techniques
Radial Basis Function
An Ensemble of
Artificial Neural A New Multiple Classifier
Network-Multilayer Lahijanian, B., F. System for Diagnosis of
88  Perceptron, K-Nearest V. Farahani, et al. Erythemato-Squamous
Neighbours and (2016) Diseases Based on Rough
Support Vector Set Feature Selection
Machine
K-Nearest
Cardenas-Pena, Enhanced Data
Neighbours, Support
D., D. Collazos- Representation by Kernel
89 | Vector Machine, and
Huertas, et al. Metric Learning for
Artificial Neural
(2017) Dementia Diagnosis
Networks
Ensemble Classifiers
of Random Forest, Classification of Parkinson's
Support Vector Li, Y. M., L. Y. Disease by Decision Tree
90 | Machine, and Yang, et al. Based Instance Selection
Artificial Neural (2017) and Ensemble Learning
Network- Extreme Algorithms
Learning Machine
91 | K-Nearest Ucar, M. K., M. R. Automatic detection of
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Neighbours, Artificial
Neural Networks-
Multilayer
Feedforward Neural
Network, Radial Basis
Function Neural
Network, Probabilistic
Neural Network, and
ensemble

classification method

Bozkurt, et al.

(2017)

respiratory arrests in OSA
patients using PPG and

machine learning techniques

Disjunctive Normal
Form Rule Based

Method, Decision

Deng, C. and M.

A General Data Mining
Methodology Based on a

Weighted Hierarchical

92
Trees, Naive Bayes, Perkowski (2017)  Adaptive Voting Ensemble
and Support Vector (WHAVE) Machine Learning
Machine Method
Support Vector
Machine (SVM)-Linear
SVM, Quadratic SVM,
Cubic SVM, Medium
Ekiz, S. and P. Comparative Study of Heart
93 | Gaussian SVM,
Erdogmus (2017)  Disease Classification
Decision Tree, and
Ensemble Subspace
Discriminant machine
learning
Support Vector A novel and robust Bayesian
Shrivastava, V. K.,
Machine, Decision approach for segmentation
94 N. D. Londhe, et

Trees, and Artificial

Neural Network

al. (2017)

of psoriasis lesions and its

risk stratification
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Ensemble Classifier of
Bagged Decision Tree,

Support Vector

Mohebian, M. R.,

A Hybrid Computer-aided-
diagnosis System for

Prediction of Breast Cancer

............................... 95  Machine, Decision H. R. Marateb, et
Recurrence (HPBCR) Using
Trees, and Artificial al. (2017)
Optimized Ensemble
Neural Network-
Learning
Multilayer Perceptron
Support Vector Using Machine Learning
Asri, H., H.
Machine, Decision Algorithms for Breast Cancer
96 Mousannif, et al.
Trees, Naive Bayes, Risk Prediction and
(2016)
K-Nearest Neighbours Diagnosis
Predicting metabolic
Decision Tree and Karimi-Alavijeh, F,,
syndrome using decision
97 | Support Vector S. Jalili, et al.
tree and support vector
Machine (2016)
machine methods
Logistic Regression,
Support Vector Prediction and detection
Kate, R. J., R. M.
Machines, Decision models for acute kidney
98 Perez, et al.
Trees and Naive injury in hospitalized older
(2016)
Bayes and Their adults
Ensemble
Naive Bayes,
Decision Tree,
Prediction of Thyroid Disease
Artificial Neural Ionita, I. and L.
99 Using Data Mining
Network-Multilayer Ionita (2016)
Techniques
Perceptron, Radial
Basis Function
K-Nearest Amaral, J. L. M., High-accuracy detection of
100

Neighbours, Random

A. J. Lopes, et al.

airway obstruction in asthma
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Forest, AdaBoost with
Decision Trees, and
Feature-based
Dissimilarity Space

Classifier

(2017)

using machine learning
algorithms and forced

oscillation measurements

Decision Tree and

Hashi, E. K., M. S.

An Expert Clinical Decision

Support System to Predict

101 U. Zaman, et al.
K-Nearest Neighbour Disease Using Classification
(2017)
Techniques
Ensemble Classifiers
Hybrid Rough Set and
of Support Vector Helal, M. E., M.
Heterogeneous Ensemble
102 | Machine, Decision Elmogy, et al.
Classifiers Model for Cancer
Tree-C5.0, and Naive | (2017)
Classification
Bayes
Automated Interpretation of
Topalovic, M., S.
Pulmonary Function Tests in
103  Decision Trees Laval, et al.
Adults with Respiratory
(2017)
Complaints
An Expert Clinical Decision
Hashi, E. K., M. S.
Decision Trees, and Support System to Predict
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Regression
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Pathological Brain Detection
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As can be observed in Table 2.2, a wide variety of approaches have been used to

support disease diagnosis. We can analyse the popularity of the approaches to

disease diagnosis based on the information in Table 2.2. Figure 2.1 presents the

popularity of the approaches to disease diagnosis.

From Figure 2.1, we can see that, among the approaches to disease diagnosis, the

support vector machine (SVM) is the most popular, followed by artificial neural

networks (ANN), decision tree, random forest, k-nearest neighbours, ensemble,

naive Bayes, Bayesian network, and logistic regression.
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Figure 2.1 Popularity of approaches to disease diagnosis

For the sepsis diagnosis, a number of researchers have made attempts to use
machine learning approaches. Mani et al (2014) used support vector machine
(SVM), naive Bayes, K-nearest neighbours, decision tree, random forest, logistic
regression, and etc., to develop non-invasive predictive models for sepsis from off-
the-shelf medical data and electronic medical records. It was found from the
research of Gultepe et al (2014) that SVM classification can be used to predict
mortality risk for patients with risk when the measurements of patients are
summarized by summary statistics. Tang et al (2010) also used the nonlinear SVM
in the classification of the sepsis continuum into severe sepsis and systemic
inflammatory response syndrome (SIRS) groups. The study of Taylor et al (2016)
shows that a machine learning approach using random forest methods
outperformed clinical decision rules and traditional analytic techniques for
predicting in-hospital mortality of emergency department patients with sepsis. Kam
and Kim (2017) used neural networks to develop detection models for the early

stage of sepsis.
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2.5 Critical Analysis of Popular Approaches to Disease

Diagnosis

Figure 2.1 will be critically analysed in Table 2.3.

Table 2.3 Advantages and disadvantages of popular approaches to disease

diagnosis

Popular approaches

to disease diagnosis

Advantages

Disadvantages

Support vector

machine (SVM)

1. SVMs have strong
generalization ability, as
they are based on structural
risk minimization principle.

(Liu et al., 2010)

2. SVMs can be robust, even
when the training sample
has some bias (Auria and

Moro, 2008).

3. The SVM algorithm is

stable (Liu et al., 2010).

4. The SVM classifier has a
global optimum solution, as
an SVM can be formulated as
a quardratic programming

problem (Abe, 2005).

The extension of SVM to
multiclass problems is
not straightforward, as
SVM uses direct decision

functions (Abe, 2005).
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Artificial neural

networks (ANN)

1. ANNs do not rely on the
prescribed relationship
between input and output,
its own

but rather seek

relationship (Dowla and

Rogers, 1995).

2. ANN have the capability to

detect complex nonlinear

relationship between input

and output (Tu, 1996).

3. ANNs can be relatively
tolerant to noisy,
incomplete, or even spurious

data (Dowla and Rogers,

1995).

4. The advantages of ANNs

also include highly parallel

processing, distributed
memory, and error-
correction (Graham and
Milne, 1991).

1. An ANN is a "“black

n

box in nature
(Braspenning, Thuijsman
and Weijters, 1995). It is
difficult to interpret the

ANN solutions.

2. It is (difficult to
incorporate knowledge of
a given problem

(Braspenning, Thuijsman

and Weijters, 1995).

3. The disadvantages of

ANNSs also include

proneness to overfitting,

heavy computational
burden, and empirical
nature of model

development (Tu, 1996).

Decision tree

1. Decision trees are self-
explanatory and easy to

follow (Rokach and Maimon,

1. Decision trees
generally perform well if

a few highly relevant
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2015).

2. Decision trees can deal

with both nominal and

numeric input values

(Rokach and Maimon,
2015).
3. No assumptions are
needed for the space
distribution and the classifier
structure (Rokach and

Maimon, 2015).

input variables exist, but
less so if many complex
interactions are present
between input variables
and Maimon,

(Rokach

2015).

2. The disadvantages of

decision trees also
include over-sensitivity to
the training set,
irrelevant input variables,
and noise (Rokach and

Maimon, 2015).

Random Forest

1. Random forest is more
robust than just a single

decision tree (Cole, 2018).

2. Random forest balances

bias and variance

(Hodeghatta and Nayak,

2016).

3. Random forest is more
efficient to build than other

models, SVM

e.g.,
(Hodeghatta and Nayak,

2016).

1. Random forest is
computationally

expensive, as the number
of recommended trees is

large (Moreira, Carvalho,

and Horvath, 2018).

2. Random forest is not
easy to interpret (Gupta,

2018).

3. If the data consists of
correlated input
variables, random forest

variable importance
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measure is not reliable
and can be misleading

(Gupta, 2018).

K-nearest neighbours

1. KNN is very simple to

understand and easy to

implement (Cord and

Cunningham, 2008).

2. As the process of KNN is
transparent, KNN is easy to
and

debug (Cord

Cunningham, 2008).

1. KNN is very sensitive
to irrelevant or redundant
input variables, as all
input variables contribute
to similarity and thus to

the classification (Cord

and Cunningham, 2008).

(KNN)

3. KNN can be effective if an = 2. KNN may be
analysis of the neighbours is  outperformed by the
useful as explanation in classifiers, e.g., SVM and
situations where an : ANN (Cord and
explanation of the output of Cunningham, 2008).
the classifier is useful (Cord
and Cunningham, 2008).
1. The ensemble classifier
generally produces more The main disadvantages
accurate predictions than @ of ensemble classifiers
the base classifiers from | include the difficulties in

Ensemble

which the ensemble

classifier is made (Patil,

Aghav and Sareen, 2016).

the interpretation of the
decisions of the ensemble
their

and extensive

computational
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2. The ensemble classifier
may be more stable and it

may have a smaller variance

requirements (El-Gayar,

Kittler and Roli, 2010).

Naive Bayes

than base classifiers
(Homenda and Pedrycz,
2018)

1. The computational

complexity of naive Bayes is

low compared to other

classifiers, decision

e.g.,
trees (Maimon and Rokach,

2005).

2. Naive Bayes classifiers are

simple and easy to

understand (Maimon and

Rokach, 2005).
3. Other advantages of

Naive Bayes include the easy

adaptation to the
incremental learning
environments and the

resistance to irrelevant input

variables (Maimon and

Rokach, 2005).

1. Naive Bayes assumes
that the input variables in
the data

set are

completely independent
of each other (Mehta,

2017), which is not
practical in the real world

(Nicolas, 2015).

2. Naive Bayes is limited
to simplified models,
which in some cases are
far from representing the
complicated nature of the
and

problem (Maimon

Rokach, 2005).

Bayesian Network

1. A distinct advantage of

1. The first disadvantage
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Bayesian networks is the

capability to incorporate
domain-specific knowledge
into the network structure,
so that the overall joint
probability distribution is
represented as a set of
conditionally  independent
relationships  which  are
easier to characterize (Mittal
and Kassim, 2007).

2. The advantages of

Bayesian network include

explicit uncertainty
characterization, efficient
computation, easy
construction, adaptability,
good generalization with
limited training data, and
easy retaining when pruning
or adding

new input

variables (Mittal and Kassim,

of Bayesian network is
the computational

difficulty of exploring a

previously unknown
network (Holmes and
Jain, 2008).

2. The second

disadvantage is about the
quality and extent of the
prior beliefs used in the
Bayesian network

(Holmes and Jain, 2008).

A Bayesian network is

only useful when the
prior knowledge is
reliable (Holmes and
Jain, 2008). An

excessively optimistic or
pessimistic expectation of
the quality of the prior
beliefs will distort the

entire Bayesian network

2007). and invalidate the results
(Holmes and Jain, 2008).
1. Logistic regression
1. Logistic regression is : classifiers are restricted
Logistic regression
easily interpretable to linearly separable
(Moreira, Carvalho, and binary classification tasks
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Horvath, 2018).

2. The conditions of using
logistic regression are less
restrictive than those for
linear discriminant analysis

(Tuffery, 2011).

(Moreira, Carvalho, and

Horvath, 2018).

2. Logistic regression
classifiers are sensitive to
correlative input
variables and outliers
(Moreira, Carvalho, and

Horvath, 2018).

From Table 2.3, we can see that there are some issues, e.g., interpretability and

dependence of input variables in the popular approaches to disease diagnosis. To

address these issues, we develop a new modelling and prediction approach, i.e.,

the rule-based inferential modelling and prediction approach to disease diagnosis,

which will be introduced in Chapter 3.
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Chapter 3 Research Methodologies

3.1 Introduction

In this chapter, the research methodologies of the thesis are introduced briefly from
the perspective of basic principles. The remainder of the chapter is organised as
follows. Section 3.2 presents an overview of general research methods. Section 3.3
justifies the choices of functions in the univariate functions approximation and the
bivariate functions approximation. In Section 3.4, we briefly introduce the
evidential reasoning (ER) rule. The research methods for rule-based inferential
modelling and prediction are presented in Section 3.5. Section 3.6 describes an
adapted genetic algorithm used for the bilevel optimisation of the maximum
likelihood evidential reasoning (MAKER)-based models in this research. Section 3.7

summarises this chapter.

3.2 General Research Methods

Research is concerned with making efforts to develop a better understanding of the
functioning of the world (Oliver, 2010). Qualitative and quantitative research
methods are generally two fundamentally different paradigms through which we

study the world (Brannen, 2005).

Qualitative research is a type of empirical research in which the data are not
numeric (Punch, 2013). Qualitative research is aimed at studying the social reality
of individuals, groups, and cultures (McLeod, 2017). A wide variety of methods
have been developed to understand how people perceive their social realities and
how they behave in the social world. These methods include diary accounts,

questionnaires, observations, interviews, and ethnographies.
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Quantitative research is a type of research where data are gathered in a numerical
form (McLeod, 2017). The objective of quantitative research is to formulate general
laws of behaviours and phenomena in different settings. The typical methods to
obtain quantitative data are experiments, controlled observations, questionnaires,
and so on. We can use statistics, machine learning, etc., to transform quantitative
data into useful information for decision-making. All the data used in this research
are numeric, and we propose a new approach for sepsis diagnosis using
quantitative data, which is compared with alternative approaches. Hence, the

research methods in this research are essentially quantitative.

3.3 Data Collection

As discussed in Section 1.6, functions approximation in this thesis is used to explore
the capacity of models based on the MAKER framework to approximate functions,
allowing us to achieve a possible compromise between the complexity and accuracy
of the MAKER-based models. Hence, we need to evaluate the capabilities of MAKER-
based models to approximate different types of functions. In this research, we
select several types of univariate functions that have different characteristics to
evaluate the general applicability of the approximation of the MAKER-based models.
These functions are exponential functions y = a*, logarithmic functions y =log, x,
power functions y = x%, function y = —(x — 0.5)2 + 0.25, and function y = e-®2* 4
0.5e~(+2* 'which represent convex functions, concave functions, functions of which
the mean curvatures are large, simple non-monotonic univariate functions, and
complex non-monotonic univariate functions. The functions y = a*, y =log, x, and
y =x* are monotonic and have different convexity or mean curvatures. The
functions y = —(x — 0.5)2 + 0.25 and y = e-®=2” 4+ 0.5e-®*2” are both non-monotonic,
and they are unimodal and bimodal respectively. The non-monotonic functions are
generally more complex than monotonic functions. All of these functions are
selected to check whether the MAKER-based models can well approximate different

types of univariate functions.
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To evaluate the capability of the MAKER-based models to approximate more
complex functions such as bivariate functions, we take the Himmelblau function as
an example to perform functions approximation. Himmelblau function is a
commonly used function for testing optimisation techniques (Chen et al., 2011),

and this function is a multi-modal function.

On the basis of the functions approximation, we move on to the validation of the
MAKER-based models on classical data sets, including the Banana data set,

Haberman’s survival data set, and Iris data set.

The Banana data set, which includes 5300 observations, is an artificial data set in
which the observations belong to several clusters with a banana shape. In the data
set, there are two input variables, Atl and At2, corresponding to the x-axis and y-
axis respectively. The output variable of the data set has two classes that represent

two banana shapes.

The Haberman’s survival data set (Haberman, 1976) consists of observations about
the survival of patients who underwent surgery for breast cancer from a study
conducted between 1958 and 1970 at the University of Chicago’s Billings Hospital.
There are a total of 306 observations in the data set. The data set has three input
variables: age of patient at time of operation, patients’ year of operation, and
number of positive axillary nodes detected. In the data set, the output variable,
which is about survival status, contains two classes: the patient survived 5 years

or longer and the patient died within 5 years.

The Iris data set (Fisher, 1936; 1950) is one of the most famous data sets in the
field of machine learning. The data set contains 4 input variables: sepal length,
sepal width, petal length, and petal width. The output variable of the data set is

composed of three classes: Iris Setosa, Iris Versicolour, and Iris Virginica. Each of
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these classes contains 50 observations, so there are altogether 150 observations

in the data set.

All these data sets are selected to check whether the MAKER-based models can
perform well compared to other models in the classification of these data sets, and
all these data sets are downloaded from the Knowledge Extraction based on
Evolutionary Learning (KEEL) data set repository (Alcala-Fdez et al.,, 2011)

available at http://sci2s.ugr.es/keel/category.php?cat=clas. This repository is a

data set repository of KEEL, which is an open-source Java software tool that can be
used for a large number of different knowledge data discovery tasks. Each of the
data sets mentioned above is divided into five folds using distribution optimally
balanced stratified cross-validation before being downloaded from the KEEL data
set repository so that the class distribution of the whole data set is reflected in

separate folds (Aggarwal, 2015).

Based on the functions approximation and classification of classical data sets, we
apply the inferential modelling and prediction approach to establish a classifier for

sepsis diagnosis.

The original sepsis data set is collected from several hospitals in Northwest England.
The data are totally confidential and fully anonymous. Table 3.1 summarises the

data in this research.

Table 3.1 Summary of the original sepsis data set

Features of Patients
Biomarkers Patient Information Diagnosis
Items Instances Hospitalisation
Identification None- Patient Patient
Core Basic | on Sample Others
core Outcome | Group
Day

Number 922 1 5 6 3 2 3 1 2
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In this data set, there are 922 instances and four types of patient features:
identification, patients’ test results of biomarkers (core and non-core), patient
information, and patients’ diagnoses. Among them, patients’ test results of

biomarkers include CRP, IL6, IL10, PCT, and WCC.

Table 3.2 Categories of patients of original sepsis data set

Categories Explanation of Propositions

Sepsis-1 Patients Are Diagnosed with Sepsis (Pathogens only in Blood).
(6,)

Sepsis-2 Patients Are Diagnosed with Sepsis (Pathogens in Blood and
(62) Elsewhere).

Sepsis-3 Patients Are Diagnosed with Sepsis (No Pathogens in Blood, but
(63) Pathogens Elsewhere).

There Are No Sufficient Pieces of Evidence to Support the Diagnosis
Unknown

(64)

of Sepsis or That of Non-Sepsis (No Pathogens in Blood; No

Pathogens Elsewhere; but with Clinical Adjudication of Infection).

Non-sepsis  Patients Are Diagnosed with Non-Sepsis (No Pathogens in Blood;

(65) No Pathogens Elsewhere; No Clinical Adjudication of Infection).

Table 3.2 shows the categories of patients of the original data set. Among the
categories of patients, 6,, 8,, and 85 indicate that patients have sepsis, whereas 6.
indicates that patients do not have sepsis. 0, implies that patients may or may not
have sepsis on the basis of objective pieces of evidence and clinical adjudication
for infection. On the basis of the original sepsis data set, we perform the data
preparation discussed in Section 6.2 to generate a sepsis data set for sepsis

diagnosis, which is presented in Chapter 6.
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3.4 Review of Evidential Reasoning Theories

As mentioned in Chapter 2, classification is one of the most common supervised
machine learning tasks. Classification imprecision is likely due to the fact that the
values of an input variable of an observation cannot be mapped to a certain class
explicitly (Zhang et al., 2014; Denoeux, 2000; 1995). Dempster-Shafer evidence
theory (DST) can be used to deal with classification imprecision. In DST, we should
first identify a frame of discernment (FoD) to contain all of pre-assigned class
memberships. Then we can perform basic belief assignment to generate a belief
distribution (BD) where the belief degrees are used to measure the extent to which
data fragments of predictor variables point to different classes or subsets of classes.
The BD of a data fragment of an input variable can be identified as a piece of
evidence. We can take a number of ways e.g., core sample (Zhang et al., 2014),
neural network (Denoeux, 2000), k-NN (Denoeux, 1995), and expert system
(Dymova, Sevastianov and Bartosiewicz, 2010) to generate BDs of data fragments
of input variables. Finally, we can take Dempster's combination (DC) rule to
combine different pieces of evidence among input variables together to make a

classification decision on combined BDs.

The classification decision process based on DC works well on classification
imprecision. However, it does not embrace the consideration of inherent properties
of evidence, i.e., quality of information source and relative importance of evidence.
Evidential reasoning (ER) rule (Yang and Xu, 2013) was proposed to consider
quality of information source, i.e., reliability and relative importance i.e., weights
when we combine evidence. In ER rule, hew concepts e.g., weighted evidence (WE),
and weighted evidence with reliability (WER) were put forward to describe
characteristics of evidence in complement of BD in DST. The ER rule assimilates
DST and original ER algorithm, which is revealed in the evidence combination
process i.e., the orthogonal sum operation on WEs or WERs. One of the most

compelling characteristics of ER rule is that it makes up a generic process of
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conjunctive probabilistic reasoning, or a generalized Bayesian process implemented

on the power set of FoD.

There are some connections between ER rule and DC rule, and ER rule and original
ER algorithm. The DC rule has been proven to be a special case of ER rule when all
the evidence is fully reliable. It has also been proven that the original ER algorithm
is a special case of ER rule when the normalised weights of all the evidence equals
their respective reliabilities (Yang and Xu, 2013). The ER process inherently
contains the belief structure to model different types of uncertainty (Yang and Singh,
1994; Xu, 2011), and the rule-or-utility-based information transformation
techniques (Yang, 2001). In addition, ER algorithm has been applied in a wide range
of areas and it has been integrated into traditional if-then-rule-based systems to
generate the belief rule based (BRB) systems (Chen et al., 2015) which have been
used for modelling of classification problems (Jiao et al., 2015; Chang et al., 2016;
Kong et al.,, 2016). One of the problems that BRB systems have is high
multiplicative complexity on combination of referential values of input variables in

the base of belief rule (Chen et al., 2015).

3.5 Outline of Evidential Reasoning Rule

In the framework of the ER rule, ©® = {h,,...,hx} is a set of mutually exclusive and
collectively exhaustive hypotheses. 0 is called a frame of discernment (FoD),
whose power set includes all its subsets. Generally, a piece of evidence is a random

set profiled by a belief distribution, as displayed in Equation (3.1),

ej = {(e,p‘g’}),ve c Q,ZBC@ p@,j = 1} (31)

where (0,}79']') is an element of evidence ¢;, indicating that the ;* piece of

evidence points to proposition 6 (6 can be any subset of ® except the empty set)
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with a probability py ;. In the case of the system of the MAKER framework of this
research, a piece of evidence e}i, that s, the j** piece of evidence from the i** input
variable, refers to the data on the j'* referential value of the i*" input variable,
pointing to different class memberships of the output variable with corresponding
probabilities. An element of a piece of evidence indicates the data on the ;"
referential value of the i*" input variable that points exactly to the k% class of the

output variable with probability pj;.

Additionally, a piece of evidence e; is generally associated with reliability », and
weight w;. Reliability is the ability or quality of data sources from which evidence
is generated, and it generally measures the degree of support or opposition from
evidence to a proposition. The reliability of a piece of evidence is the inherent
property of that evidence. The weight is used to reflect the relative importance of
evidence in comparison with other evidence, and the weight can be judged by
decision makers. The weight can be subjective and different from reliability if
different pieces of evidence are acquired from different sources and measured in
different ways (Xu et al., 2017). If all pieces of evidence are measured in a joint
space (Yang and Xu, 2014) or acquired from a data source, then w; = r;. Further,
wy,; = 719, iNn Which wy; and ry; refer to the weight and reliability of an element
eg; Of evidence e; that points to assertion 8, respectively, if all pieces of evidence

are acquired from a data source under the MAKER framework.

The predictive power of a single piece of evidence is limited. To achieve greater
predictive power, it is necessary to combine different pieces of evidence to generate
a probability distribution of combined evidence under different class memberships
of the output variable, that is, an belief rule base, using weighted belief distribution
with reliability, which includes consideration of the aforementioned properties of
evidence (belief distribution, reliability, and weight). Weighted belief distribution

with reliability is defined in Equation (3.2),
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m; = {(6,g,)), V60 € 0,(P(6),ipo);) )}, (3.2)

0, 0=0
mg’j = Crwmg’j, 6 c 0, 0 + @,

crw,j(1=19), 6 = P(O)

where my; = wjps; and iy ; is used to measure the degree of support from e; to

1

8, with consideration of both weight (w;) and reliability (r;), and c,,,; =
W]'—T'j

normalisation factor, satisfies Ygco g ; + Mip@); = 1, if Xgcops; = 1.

If two pieces of evidence are independent of each other - which means the
information a piece of evidence carries is not dependent on the other piece of
evidence and vice versa - the combined degree of belief py ., to which the two
pieces of evidence e; and e, (j; =1,..,Jyand j, = 1,..,],,j; # j,) jointly support

proposition 6 is given by Equation (3.3),

0,6=0
Poe) =)_T0@  gcggxp =)

YpcoMpe(2)

7?19:9(2) = [(1 - sz)mg‘h + (1 - 7}'1)m9‘j2] + ZBnC=9 Mp,j,Mc,jy1 ve c o,
Where Trlg'j1 = Wg‘j1 * pg‘jl,and mg‘jz = Wg.jz * pg'jz.
The recursive formulae of the ER rule in Equation (3.3) can be used to combine

multiple pieces of evidence in any order. It has been proved that Dempster’s rule

is a special case of the ER rule in Equation (3.3) when evidence is fully reliable.
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3.6 Research Methods for Rule-based Inferential Modelling

and Prediction

In this section, we briefly introduce the research methods for rule-based inferential
modelling and prediction based on the MAKER framework, which will be discussed

in Chapters 4, 5, and 6.

Suppose in the real world, there is a complex numerical system where a sample
input-output data set of N instances x(t) = {x,(t)|n=1,..,N} is recorded at
sampling time t. These instances are identified by variables such as M input
variables x,(t) = {x,;(t)|n=1,..,N;i=1,..,M} and an output variable y(t)=
{y.®)|n=1,..,N}. These instances need to be classified as one of the class
memberships in ® = {k|k=1,..,K}, where an integer is used to represent a class
membership. That is, a value of a nominal output variable y,(t) is assigned by a

class membership in 6, which means y(t) = {y,(t) | y.(t) =1,..,K;n=1,..,N}.

3.6.1 Evidence Acquisition from Data of Input Variables

To construct the system of the MAKER framework, we need to determine referential
values for each of the input variables. As adjustable parameters, referential values
can be initially determined by expertise or random rules without prior knowledge
and subsequently trained using an input-output data set under a certain
optimisation objective (Xu et al., 2017). With referential values for an input variable,
we can transform input value x;,, of which the corresponding output value y, is k

to the belief distribution of referential value AJ"-, as shown in Equation (3.4).

Si(ni) = {(4), anii) i =1, Ji} (3.4)
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where

Ai- —Xni . .
k — j+1 "t k — k H i i
Unij = and an; = 1= an;;, if 45 < x,; < Ajyy,
j+174]
k _ o .y ..
a,, =0 forj =1,..,J; and j' #j,j+1.

In Equation (3.4), a,’f,i,j is the similarity degree to which the n** input value x,; of
it" input variable matches the referential value A} under the k" class membership
of the output variable. After all the input values are transformed into belief
distributions of referential values, the similarity degrees are aggregated in terms
of referential values under different class memberships of the output variable to
generate the frequencies of the referential values under these different class
memberships, as shown in Equation (3.5). In the further study, we may also
consider the non-linear situation in the data transformation or evidence mapping.
For example, we may explore the possibility of using nonlinear utility functions to
transform input values to belief distribution of referential value.

“fj =Yn-gan (3.5)

nij:

Table 3.3 Frequencies of referential values of an input variable

Yo \Xn i Al v A e I total

1 1 1 Ji 1

1 iy i @, Yji1 i

k k Ji k

k aiq aj; ai,]i z:j=1 a;j

K K K Ji K

K @i a;j @i Dy

K k K k K k
total Dk=1%1 D=1 k=1, N

Table 3.3 shows all the frequencies of the referential values of an input variable.

According to Table 1, Zfi@ﬁ:lafj = Zf:@filafj = N. Then, the likelihood cf;, with
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which the j* referential value of the i*" input variable is true if the k' class
membership of output variable is true, is calculated as shown in Equation (3.6).
k af

- J Ji  _k
Cij =37 ak',for Y aij #0, (3.6)
j=1%1j

cfj=0,for Z§i=1 af; = 0.

Table 3.4 Likelihoods of referential values of an input variable

i i i
Yn \Xn,i A} oo Aj .- Ji total
1 1 1 Ji 1
1 Cin Cij Cig; 2t Ci
K K K Ji Lk
k Ci,l . Ci,j vee Ci,]i Zj:l Ci,j
K K K Ji K
K Ci1 Cij Cij; Yji1Ciy
K Lk K Kk K Lk
total k=1Ci1 k=1Ci,; Lk=1Ciy, K

Table 3.4 displays the likelihoods calculated from the frequencies in Table 3.3. It is

obvious from Table 3.4 that /L ¥K_, ck; = 3K , ¥/t ck; = K. Regarding likelihoods,

the probabilities with which the referential value A} points to k™ class membership

of output variable are given by Equation (3.7).

k

i
Pl = sl for Yoy cfy # 0, (3.7)

K
Z:k=1 Ci,]

k k
pi,j = O,fOT Zlk(=1 Ci,j = 0.
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Table 3.5 The probabilities with which the referential values of the observed
values of the input variables point to different classes of the output variable

of a data set

Vn \Xn,i Al1 ves A; ves Al]l
1 Pia = Pi = PL;
: o, o a

Table 3.5 exhibits the degrees of belief calculated by the normalisation of the
likelihoods in Table 3.4. Now a piece of evidence can be defined as a set of degrees
of belief with which data on referential values point to different class memberships

of the output variable, as presented in Equation (3.8).

{(k,Pfff)’Vk = @»Zgggﬁi’,‘j = 1} (3.8)

i
i

Table 3.6 visualises the relationship between evidence e} and degree of belief ﬁi’fj.

Table 3.6 Evidence and degrees of belief of referential values of an input

variable . _
A B

1 Bi1 B B,

K B . BY . g,

3.6.2 Interdependence between Pairs of Evidence

If multiple input variables are taken into consideration at the same time, the vector

of input variables, that is, «x,= {xil'n, e X o X pIt = 1,0, N i =1, , My iy =
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,omm =2, ..,

Lo Jygl=1

(3.9) for the combination

M}, can be transformed to the distribution in Equation

11...11...Lm

of referential vaIuesA i

iipim K _ i R L] =
511---11---lm(xt n) {(Ajl...jl...jm' n,i1...il...im,jl...jl...jm) n=1..,N;i;=1,...M;j; =1, ---Jil'l =
1,..,mm=2, M} (3.9)
where
igedpim [ gi1 iy im
pdtim {Ah, o AL ...,Ajm},
k — k k k
Ay gyt e podim — Cmig s * iy * o * Ay s
i —xk-
k _ T oy ll i
Ui = 3 Y and a’“lll+1 1- nll]l’ if A nll Ajl”'
Ji+1r
k . . P
an,il,jl’ = 0’ fOT]l’ = 1, ey ]il and ]l’ #:]l']l + 1-
k . .. . - th :
Aniy g imjijinjm 1S the similarity degree to which the n®input vector (x,) of the

input variable matches the combination of referential values, that is, 4;

i1.dfdim
J1eJiedm?

under the k" class membership of the output variable. Then, we can aggregate

similarity degrees in terms of combinations of referential values to generate the

frequencies of combinations of referential values, as expressed in Equation (3.10).

k
i ey el dm =

N k

a; n= 1an11

(3.10)

Apedmuf1e e dm”

Based on these frequencies, the likelihood c;, i, ), ., to which the combination of

referential values A“_‘_‘_’jll '''''' l]’”

is expected to occur for the k' class membership of

output variable is given by Equation (3.11).

k
ST TIN S S S

=p(,4

iq.i]onim
Lol dm Yk

ok
i1 i iy 1 o

= (3.11)

)

)_
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k k
6" = Z Z T .

i1.nigdm€T jiojijmeH

where T = (i i inli=1..,M;l=1,..,m} and H = {jiwjiwimli =1 Jii =

1., M;l=1,..,m}.

The degree of belief pf ; with which the combination of referential values

TN SO DU SO0

Aji:::]i.’l '''''' L]’; points to the k" class is calculated as shown in Equation (3.12).

o
i1.d]dm1J]-Jm

£0

O
Zlk(_lcgcl . ) k=1 "%iq..0..im,J1 - J1Jm
=170 mJ1-Ji--Jm

K k —
0, Lie=1Ciy ipiomjyofodm = 0

(3.12)

k _
Piy ipimjidiodm —

In the original ER rule, we assume any two pieces of evidence for a combination
are independent of each other. To enhance the generality of this rule, we introduce
a new concept, ‘interdependence index’, denoted by ‘a’, to measure the degree of
interdependence between a pair of evidence. The interdependence index a is
defined by Equation (3.13),

Po,i1iz.j1jz .
———————ifPpg,,j, # 0and py,,;, # 0

@6,(i1,j1)(iz.f2) = | PO * POtz (3.13)
0’ lfpe.i1.j1 =0or p@,iz,jz =0
p.
l1l2,]J1)2 . k k
" I B Jifpij, #0andpg ;, #0
(i jiziz) = Pivir * Pizja
ek _ Kk _
0, lfpi1.f1 =0or Pij, = 0

Where the first equation is the general form of the interdependence index, and the
second equation is the concrete form of the interdependence index under the new

data-driven ER modelling approach. pg; ;, ;,j, 0" plklizd'ljz is the degree of belief to
which two pieces of evidence e].il1 and e].iz2 jointly support proposition 8 or k‘* class
membership of the output variable. The py; ; or pi"lJ1 is the degree of belief that

evidence e].il1 points to proposition 6 or k" class membership of the output variable,
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and so is pg,, orpg;,z. Additionally, “51.1'1),(1'2,1'2) is the interdependence index to

measure the interdependence between evidence ejill and evidence e].i; under the

k™ class membership of the output variable. In the current study, the conditional
independence between input variables is assumed to be true. According to Della
Riccia, Kruse and Lenz (2014), the conditional independence has the following
general description. Let X, Y, and Z be three disjoint sets of input variables, and
both X and Y are nonempty. X is called independent of Y given Z with respect to a
possibility distribution m on Q, if for all instants of the input variables in Z, no
information about the values of the input variables in Y changes probability degrees
of the tuples over the input variables in X. In the further study, we may also

consider the conditional dependence between the input variables.

3.6.3 Evidence Combination Based on the MAKER Framework

With consideration of interdependence between a pair of evidence, the combined
degree of belief py.;) to which two pieces of evidence e;, and e;, (j; and j, € Z*,j; #

Jj») jointly support proposition 6 can be calculated by MAKER, as shown in Equation

(3.14),
0, 6=0
Poe2) =)@ g c g (3.14)
YccoMee(z)’

Mooy = [(1 =13, )me i, + (1 =13,)me ), ] + Zans=6 Ya5,j1.js@a5,j1,j;Ma j, M8 jo-

where mgj, = wg j, * Dgj, = @, * T, * Pgj,, AN My j, =W j, * Dg j, = Wj, * Ty j, * Do j,;

1, = YgcaTs,j,P(ej,(0)) is the reliability of evidence e; ; 1, = Yoco19,,p(e;,(6)) is the
reliability of evidence e;,; and y,5j,;, IS @ non-negative parameter reflecting the
degree of joint support for 8 from both evidence e; and evidence e;, relative to

the individual support from evidence e; to proposition A and that from evidence
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e;, to proposition B. If all data are measured in a joint space, w;, =1 and w;, =1,
and wy; =71p; and wy; =1y, . The parameter y,p; ;, can be trained in deep
learning.

The concrete form of the evidence combination based on the MAKER rule under

the rule-based inferential and prediction approach is given in Equation (3.15).

( S
| 0, Z My, i) Gizg2) = 0
k frd =
Pliy i iz i) = k=t , (3.15)

mk X
(i1,j1),(i2,j2) k
(55, mk : E LLOWNCHARSY
k=1""%(i1,j1),(i2,J2) }=1

ke = —r . ke - k- k k ko mk .
m(il.jl).(iz.jz) - [(1 rlz.]z)mlph + (1 rllvh)mlzdz] + y(i1.j1).(i2,j2)a(i1.j1).(iz,jz)ml1.]1mlzJZ

k k

— k k k
inj1 = Wina i

ko = . ko k =wk . k= k.
where m * pi1J1 - wl1,]1 * rl1;]1 * pl1J1’ and mlsz le-]z * plz.]z wlz,]z * rlz‘]z *

k . — k i ; iahili i i1 . -
Piyj, 1 Tijy = ZeceTi, ;,P(e1(0)) is the reliability of evidence ¢! ; 1, =

i1,J1 J1
Yoco i ;,p(e2(6)) is the reliability of evidence e?; and v ;). iS @ non-negative
parameter reflecting the degree of joint support for k" class membership of output

variable from both evidence ejil1 and evidence ejiz2 relative to the individual support

from evidence ejil1 to k" class membership of output variable and that from

evidence e].iz2 to k" class membership of output variable. In studies that include

the function approximation and cross-validation of classical data sets and the data
set of sepsis of the new data-driven ER modelling approach, w; ; =1 and w;,;, =

kK _ .k Kk _ .k
1, and we W =T and Wi, =T

. The parameter y{ ;). ;) can be trained in

deep learning, and it is assumed to be 1 in the numerical examples in this report.

3.6.4 Prediction Scheme Based on the MAKER Framework

On the basis of the belief rule base, we can make predictions about the class

membership of output variable for each input vector x, = {x,;,, .., Xjn o Xipn I =
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L,.,Ni=1.,M;j,=1,..,J;l=1,.,mm=2,.,M} using MAKER. Each value x;,
of x, can be located between a set of adjacent referential values of each input
variable, and this set of adjacent referential values is therefore activated by x;, .
Then corresponding similarity degree S; ; , between x; , and each of the
referential values between which x; , is located can be calculated as displayed in

Equation (3.16).

Si(xni) ={(ALan;)in=1,..,N;i=1,..,M;j =1,...J;} (3.16)
where
, i. _xnl . .
An,i,j ;ij'—l _Ab and an11+1 =1- nz]/ if A]l = Xn,i < A]l'+1'
J+1 7y
an” =0, forj'=1,..,J; and j #j,j+ 1

Given that we have an input vector x, = {x,;,,%,;,} available and we know Al <

Xn,i, _Al,trl and Aiz < Xni, < AZ we can calculate the joint similarity degrees

t+17/

between input vector x, and activated combinations of referential values {A‘1 A‘2

{Al, A2 3, {4, A2}, and {4%,,, 4%} using Equation (3.17).

7 il---il---im ! — P J— 7 = . —
Si ...1,...lm(xz n) {(Ajl...j,...jm'“n.i1---iz---im.h---jz---jm) In=1,.. . N;i=1..,Mj =1, ""]iz'l

1., mym= 2,...,M}. (3.17)

where

A = L4, AL LAY

J1eJleJm J17 g T Im )

/ — 12 ! ]
Oty cdpimofaofpodm — Engin gy * oo Oy gy * o ® Ay i
where ap; i oo iim 1S the joint similarity degree to which a given input vector

x, matches the combination of referential values, that is, A‘l:jll '''''' ‘Jm
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The joint similarity degrees between the input vector and activated combinations
of referential values indicate to what degree we should invoke activated evidence
combinations {e*,e2}, {er,e2,}, {e,,e2}, and {el 2.} to predict the probability
for each class membership of a given input vector x,. To apply MAKER rule to
combine activated evidence for prediction, we still need to know the weight

(reliability) of each activated evidence combination. From Equation (3.2), we can

obtain Equation (3.18) as w,(, = 1, in this research.

0, 0=0
me e(L)
Toe) = —Pe,e(L) , 6co,0=+0. (3.18)
kl - mgle(L), 6= P(@)

With Equation (3.18), it is not difficult to prove Equation (3.19).

me,e(L)

Toer) = =Tpoyew) = 1 — Mp@o)ew)- (3.19)

Po,e(L)

With Equation (3.19), we can have the weight or reliability for each activated
evidence combination. On the basis of the joint similarity degrees between the
input vector and the activated combinations of referential values and the weight or
reliability for each activated evidence combination, we can have an updated weight
or reliability for each activated evidence combination considering the degree to
which we should invoke these pieces of activated evidence to predict the probability
for each class membership of a given input vector x,. Then, with the updated
weight or reliability for each activated evidence combination and the combined
degrees of belief of each activated evidence combination acquired from the belief
rule base, we can combine these pieces of activated evidence combinations to
predict the probability of each class membership of a given input vector x, using
the adapted conjunctive ER rule, as shown in Equations (14) and (15). The

- k k -
parameters yup; ;, and a,pj ;, i Eq. (14) or v iva,j» a@nd ag g 1N
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Equation (15) are assumed to be 1 in the numerical examples of this report, but

they can be trained in deep learning.

If class k, which has the largest probability in the predicted probabilities set P, =
{Prn k =12,..,K,n=1,...,N} for input vector x,, is the same as the n‘* value y,
(y, = 1,..,K) of the output variable, we can have the judgment that the prediction
for x, is correct. The accuracy, that is, the ratio of the total nhumber of correct
predictions to the total number of predictions, can be used to represent how the
classifiers established by the approach of rule-based inferential modelling and
prediction and other classical classifiers, such as decision trees, discriminant
analysis, logistic regression, naive Bayes, support vector machine, and neural

networks, perform in the classification.

In this research, the optimal learning model shown in Equation (3.20) can be
established based on the minimum mean squared error to train the model
parameters, such as referential values and weights. The mean squared error (MSE)
is used to measure the difference between the predicted probabilities and the

observed values of the classes of the output variable.

min 8 = — S0, 7K (Pien — Prn)? (3.20)

k k k
S 8T 1 Wi Vi, i) Gz g) € 2

where p,, (k=1,..,K,n=1,..,N) is the probability that the assertion pointing to the
k'™ class membership is true for the n'* observation. p,, is the predicted
probability for the k" class membership. Q is the feasible space of the parameters,
and all the parameters should satisfy certain constraints included in Q. Equation
(3.20) corresponds to Equation (5.9) which is a general form of optimal learning

model. Numerical examples are given in Sections 5.6 and 6.3 to illustrate how the

89



approach of rule-based inferential modelling and prediction introduced in this

chapter can be applied for the classification of data sets.

3.7 An Adapted Single-level Genetic Algorithm for Problems of

Bilevel Optimisation

In the models based on the system of the MAKER framework for classification, there
are two levels of parameters: the referential values of the observed values of the
input variables of the data sets for classification, and the weights (reliabilities) of
these referential values under different classes of observed values of the output
variables of the data sets. In the models based on the system of the MAKER
framework for functions approximation, there are two levels of parameters: the
referential values of the observed values of the data sets for functions
approximation and the weights (reliabilities) of the referential values of the
observed values of the input variables of the data sets under different referential
values of the observed values of the output variables of the data sets. The
referential values of the observed values of the data sets for functions
approximation include the referential values of the observed values of the input
variables of the data sets and the referential values of the observed values of the
output variables of the data sets. Because the weights (reliabilities) are set up for
the referential values of input variables under different classes or referential values
of the output variables, the referential values should be decided before the
assignment of weights (reliabilities) to build the model. In other words, the
optimisation of weights is nested within the optimisation of referential values. Such
kind of optimisation is referred to as bilevel optimisation. According to Sinha, Malo,
and Deb (2018), bilevel optimisation is a mathematical program in which an
optimisation problem is nested within another optimisation problem. As stated by
Sinha, Malo, and Deb (2016), the nested structure of bilevel optimisation may

introduce some difficulties such as non-convexity, non-linearity, discreteness, and

90



non-differentiability. Because of these difficulties, classical algorithms may not work

effectively to provide optimal solutions to complex bilevel optimisation problems.

As discussed by Vikhar (2016), an evolutionary algorithm is a subset of
evolutionary computation and a generic population-based metaheuristic
optimisation algorithm in the field of artificial intelligence. The most popular type
of evolutionary algorithm is the genetic algorithm. Gen and Cheng (1997)
concluded that there are three major advantages to applying the genetic algorithm
to optimisation problems. First, the genetic algorithm does not have many
mathematical requirements about optimisation problems, and the genetic
algorithm can handle any type of objective function and any type of constraint (i.e.,
linear or nonlinear) defined on discrete, continuous, or mixed search spaces.
Second, the ergodicity of evolution operators makes genetic algorithms very
effective at performing a global search. Third, genetic algorithms provide us with
great flexibility to hybridise with domain-dependent heuristics to achieve efficient
implementation for a specific problem. According to Sinha, Malo, and Deb (2018),
nested evolutionary algorithms are a popular method to address bilevel
optimisation problems, where the lower level optimisation problem is solved
corresponding to each upper level member. Nested strategies are effective but very
computationally demanding and not suitable for large-scale bilevel optimisation

problems.

The genetic algorithm, as an evolutionary algorithm, possesses strong robustness
and good global search capability. For this reason, our solution to the bilevel
optimisation problem is using an adapted single-level genetic algorithm to offset
some of the difficulties mentioned previously. In this adapted genetic algorithm for
the optimisation of the models based on the MAKER framework, the initial
population of individuals is generated randomly in the ranges of the observed input
values of the input variables of a data set. The population of individuals

(chromosomes) is composed of 10 subpopulations, and each subpopulation
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contains 20 individuals. In the optimisation of the models based on the system of
the MAKER framework for classification, each individual (chromosome) of the
population consists of both the referential values of input variables of a data set for
classification and the weights (reliabilities) of these referential values for different
classes of the output variables of the data set. Figure 3.1 presents an example of

such an individual used in the adapted genetic algorithm.

The Referential Values of The Weights of Each Referential Value for
Each Input Variable Classes of Output Variable
| |
| 1
A} A} 4) A Aj-l AT, e A}:,u wl w) wh W Wi Wy wi u Wy w Wiy W Wi |

Figure 3.1 The Individual (Chromosome) of the Population Used in the

Adapted Genetic Algorithm

In Figure 3.1, A} indicates the j** referential value of the i** input variable, and

wi’fj represents the weight of the j* referential value of the i*"* input variable for
the k" class of the output variable. These parameters are organized in the form
shown in Figure 3.1 to facilitate parallel implementation of computation which can

improve computation speed of objective values of individuals.

In the optimisation of the models based on the MAKER framework for functions
approximation, each individual in the population contains both the referential
values of the observed values of a data set for functions approximation and the
weights (reliabilities) of the referential values of the input variables of the data set
under different referential values of the output variables of the data set. After the
generation of the initial population, the objective function value is calculated for
each individual (solution) in the population. It is worth nothing that all the
calculations of the objective function values in this adapted genetic algorithm are
implemented using parallel computing. Then, on the basis of the population of the
individuals stated above, a series of genetic algorithm operations, that is, selection,

recombination, mutation, reinsertion, and migration, is performed iteratively to
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obtain an optimised solution for referential values and weights. Specifically, in each
iteration of the genetic algorithm operations stated above, the individuals (solutions)
of each subpopulation are ranked in ascending order of the objective function
values of these individuals. Afterwards, each individual (solution) of each
subpopulation is assigned a fitness value by the principle that smaller objective
values would be assigned larger fitness values. Then, the fittest individuals of each
subpopulation, which have the smallest objective function values, would be
selected by the method of stochastic universal sampling to breed a new generation
of population. To generate a new generation of population, discrete recombination
and real-value mutation are performed successively on the selected individuals.
After recombination and mutation, the objective function value is calculated for
each of the selected individuals. Then the best individuals out of the
abovementioned selected ones by the fitness-based method, which have the
smallest objective function values, are inserted into the population of the last
generation to generate a new generation of population. It is noteworthy that elite
individuals would migrate between subpopulations every 20 iterations. After a fixed
number (e.g., 200) of iterations, the iterative process of genetic algorithm
operations, as already stated, would be terminated to obtain an optimised solution.
Compared with the nested evolutionary algorithm, our proposed adapted genetic
algorithm, as an evolutionary algorithm, is robust and less computationally
demanding. Additionally, our proposed adapted genetic algorithm is more suitable
for large-scale bilevel optimisation problems and parallel computing than nested
evolutionary algorithms because each individual (chromosome) in the adapted

genetic algorithm contains both referential values and weights.

Based on the above-mentioned description, the adapted single-level genetic

algorithm is summarised as follows.

Algorithm 1: The Adapted Single-level Genetic Algorithm

Input: The initial parameters for the genetic algorithm, e.g., number of referential
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values, crossover rate, mutation rate, insertion rate, migration rate, number of
subpopulation, number of individuals in each subpopulation, number of generations
between migration (miggen), and maximum number of iterations (maxiteration).
Output: The optimised individual containing both optimised referential values and
optimised weights.

1: GENERATE an initial population.

2: CALCULATE the objective function values of individuals of initial population.

3: FOR iteration = 1 to maxiteration

4: RANK the individuals in each subpopulation based on their objective

function values.

5: ASSIGN the fitness values to these individuals.

6: SELECT the individuals according to their fitness values.

7: PERFORM discrete recombination over the selected individuals.

8: PERFORM real-value mutation over the selected individuals.

9: CALCULATE the objective function values of the selected individuals.

10: REINSERT the best individuals out of the selected individuals into the
population of the last generation to generate a new generation of
population.

11: IF REM(iteration, 20)=0 THEN

12: Elite individuals MIGRATE between subpopulations.
13: ENDIF
14:ENDFOR

15:RETURN the best individual.

It is noteworthy that in Algorithm 1, just before each of steps 2, 7, 8, and 9, the
referential values of each individual are sorted in an ascending order from the
leftmost position to the rightmost one of the referential values. This is due to two
reasons: firstly, in the code for the calculation of the objective values of individuals,
the referential values are designed to be in an ascending order from the leftmost

position to the rightmost one of the referential values, and secondly, the operations
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of recombination and mutation may lead to a non-ascending order for the
referential values, which may affect the normal functioning of the subsequent

operations.

3.8 Summary

In this chapter, we presented the research methodologies used in Chapters 4, 5,
and 6 of this thesis. First, we justified the choice of functions used in the functions
approximation and the choice of the classical data sets for classification and briefly
introduced the original sepsis data set, which will be processed in Chapter 6 for
sepsis diagnosis. Then, we briefly described the original ER rule, which is the
theoretical foundation of the MAKER framework. Subsequently, we elaborated on
the MAKER framework, which is a major research method employed in Chapters 4,
5, and 6 of this thesis. Finally, we illustrated the adapted genetic algorithm for
bilevel optimisation used in the functions approximation and the classification of

the classical data sets and sepsis data set.
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Chapter 4

Referential-value-based Data Discretization Techniques

4.1 Introduction

This chapter is focused on referential-value-based data discretization techniques
for transforming continuous data. The continuous functions approximations are
used to check whether the approach of the rule-based inferential modelling and
prediction based on the referential-value-based data discretization techniques can
be used to well approximate all kinds of continuous functions. Continuous functions
approximation is generally connected with classification, and classification can be
considered as a simplified version of continuous functions approximation. Section
5.6.1 is focused on the correlation between continuous functions approximation
and classification. From the continuous functions approximations, we can have the
knowledge about how many referential values are suitable for an accurate
approximation using MAKER-based model to a continuous function, in order to avoid
the problem of underfitting or overfitting. Based on the knowledge, we can develop
stopping criteria to guide the training process of the MAKER-based model for
continuous functions approximation. As there is a connection between continuous
functions approximation and classification, we can further have adapted stopping
criteria to guide the training process of MAKER-based models for classification,
according to the ones generated from continuous functions approximations. Hence,
this chapter lays foundation for Chapters 5 and 6 in which we use the approach of
rule-based inferential modelling and prediction to establish MAKER-based models

for classification.
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The remainder of this chapter is organized as follows. Section 4.2 performs a
comparative analysis between mainstream data discretization techniques and
referential-value based data discretization techniques. Sections 4.3 and 4.4 present,
respectively, the univariate and the bivariate functions approximations using
MAKER framework. In Section 4.5, new stopping criteria for the model training

process is proposed. A summary of this chapter is provided in Section 4.6.

4.2 Comparative Analysis between Data Discretization

Techniques

In general, data can be divided into qualitative data and quantitative data (Maimon
and Rokach, 2005). Quantitative data can be further divided into two types:
discrete data and continuous (Maimon and Rokach, 2005). Quantitative data are
often involved in data mining applications, but learning from quantitative data is
generally less efficient and less effective than that from qualitative data (Maimon
and Rokach, 2005). We can use data discretization techniques, often used to
transform one data type to another, to transform quantitative data to address this

issue (Maimon and Rokach, 2005).

The data used in this research are mainly ‘continuous data’. A variety of data
discretization methods exist for transforming continuous data. Most discretization
methods can be classified into primary and composite (Maimon and Rokach, 2005).
Primary methods do not rely on any other discretization methods, while composite
methods are based on primary methods (Maimon and Rokach, 2005). Primary
discretization methods can be further classified into supervised and unsupervised:
The former utilizing class information from training observations to determine cut-
off points for discretization, the latter not using such information (Dougherty,

Kohavi and Sahami, 1995).
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Typical unsupervised discretization methods include equal-width discretization,
equal-frequency discretization, and fixed-frequency discretization (Maimon and
Rokach, 2005). In the equal-width discretization (Catlett, 1991; Kerber, 1992;
Dougherty, Kohavi and Sahami, 1995), a predefined number k is used to divide the
observations between the minimum observed value v,; and the maximum

observed value v,,,, into k intervals of equal width. Thus, each interval has the

width w = w and the cut-off points are located at v, + W, Vpmin + 2W, ..., Vpin +

(k—Dw. In the equal-frequency discretization (Catlett, 1991; Kerber, 1992;
Dougherty, Kohavi and Sahami, 1995), a predefined number k is used to divide the
sorted observed values into k intervals so that there is approximately the same
number of training observations in each interval. In the fixed-frequency
discretization (Yang and Webb, 2008), a sufficient interval frequency m is set to
divide the sorted observations into a number of intervals, so that all the intervals
have approximately the same number m of training observations with adjacent

values.

As mentioned previously, unlike unsupervised learning, the supervised methods
involve taking advantage of class information from training observations to
determine the cut-off points for the discretization (Dougherty, Kohavi and Sahami,
1995). According to Fayyad and Irani (1993), multi-interval-entropy-minimization
discretization (MIEMD) is a typical supervised discretization method. In MIEMD, the
midpoint between each successive pair of sorted observed values is a candidate
cut-off point for discretizing the observed values of an input variable (Fayyad and
Irani, 1993). Each candidate cut-off point is used to divide the observed values into
two intervals and the resulting entropy of the class information is calculated for
each candidate cut-off point (Fayyad and Irani, 1993). The candidate cut-off point
for which the entropy is minimal among all the candidates is selected as a cut-off

point for a binary discretization (Fayyad and Irani, 1993). The binary discretization
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is applied recursively to pick out optimal cut-off points until a certain criterion is

satisfied (Fayyad and Irani, 1993).

In contrast to equal-width discretization, equal-frequency discretization, and fixed-
frequency discretization, MIEMD is a form of hierarchical discretization, involving a
split procedure (Maimon and Rokach, 2005). A merged method of hierarchical
supervised discretization is ChiMerge, which uses the y? statistic to decide whether
the relative class frequencies of adjacent intervals are significantly different or
similar enough to be merged into a single interval (Kerber, 1992). The StatDisc
discretization (Richeldi and Rossotto, 1995), another merged method of
hierarchical supervised discretization, is an extended version of ChiMerge that
allows any number of intervals to be merged rather than just two as in the
discretization method of ChiMerge. InfoMerge (Freitas and Lavington, 1996) is
another merged method of hierarchical supervised discretization that uses

information loss to guide the merge procedure.

The above-mentioned discretization methods are the most commonly used in
research. However, these discretization methods inevitably have limitations. This is
due to the fact that all of them use cut-off points to discretize training observations
into intervals, which naturally leads to information loss and distortion. For example,
according to Reinartz (1999), the major disadvantage of equal-width discretization
is the possibility of generating imbalanced intervals, some containing many training

observations and others only a small number.
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Figure 4.1 Comparison between different data discretization techniques

Another example is provided in Figure 4.1 in which (a) shows a probability density
function curve of the input values between x=0 and x=1, (b) the corresponding
histogram of the normalized frequencies of the input values based on the equal-
width discretization, and (c) the corresponding probability density function curve
of the input values based on the referential-value-based discretization. The y-
coordinate values in the subfigures represent the probability densities of the inputs.
The cut-off point in (b) and the referential value between the minimum and
maximum input values in (c) are both taken as 0.5. We can see clearly that in (b),
the probability densities of the bin between x=0 and x=0.5 are all 0.5. In (c), the
probability densities generated by the referential-value-based discretization
method for the input values between x=0 and x=0.5 generally change with the
input values between x=0 and x=0.5. Specifically, if an input value is 0.46, the
corresponding probability density generated by the equal-width discretization
method for this input value is 0.97 as shown in (b), and the probability density
generated by the referential-value-based discretization method for this input value
is 2.8799 in (c), which is much closer to the frequency density: 3.1108 for this

input value.
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Additionally, in the referential-value-based discretization, the referential values
between the minimum and maximum observed values of each input variable of a
training data set could be optimized using the adapted genetic algorithm introduced
in Section 3.4 to minimize the difference between the observed output values of
the training set and the predicted output values of the MAKER-based model. Hence,
the referential-value-based data discretization method is essentially a supervised
discretization method. Overall, from what has been analysed above, it can be
deduced that the referential-value-based data discretization method is better at
reducing information loss and distortion, and better at presenting the

characteristics of data, than the mainstream data discretization methods.

4.3 Univariate Functions Approximations

A Belief Rule Based (BRB) system is generally a distributed approximation process
(Chen et al., 2013) in which belief rules, belief degrees of consequents of belief
rules, and rule weights can be trained. The maximum likelihood evidential
reasoning (MAKER) framework is also a distributed approximation process in which
the evidence and weight of each evidential element that exactly points to an
assertion in the state space can be trained. However, in the MAKER framework, the
belief degree of each evidential element is acquired from statistical analysis on the
basis of trained evidence rather than being trained by an optimal learning method.
From the perspective of extracting useful information from data, the MAKER
framework is more realistic and effective than a BRB system as the former acquires
belief degrees of evidential elements through statistical analysis from data directly
while the latter employs the optimal learning method to train the belief degrees of

consequents of belief rules.

The capability of MAKER framework to approximate functions is explored in the
following part of this section. We start with univariate functions to demonstrate this

approximation power.
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For the approximations of univariate functions, observed input-output data pairs
need to be generated from functions. For example, given the function y = 2%, for
an input value (x), e.g., x=0.5, its corresponding output value (y) is 2%% = 1.4142,
Thus, x=0.5 and y=1.4142 form a data pair (0.5,1.4142). All other data pairs for
function approximation can be generated by the same method. All data pairs
generated by this method then form a data set for function approximation. The
data set for function approximation includes the observed input values (x) of a
function and the observed output values (y) of the function. With all of these
observed input-output data pairs, we can use rule-based inferential Modelling and
prediction to establish models, and use the adapted single-level genetic algorithm
to train the parameters, e.g., referential values and weights of the model for
function approximation based on the MAKER framework, by minimizing the
differences between the observed output values (y) of the function and the

predicted output values generated by the model for the function.

The approximation of univariate functions by a MAKER-based model involves two
stages: initial learning and advanced learning. In the initial learning, the x-
coordinate referential values and the y-coordinate referential values are fixed as
the minima and maxima of the observed input values (x) and the global extrema
of the observed output values (y) in the data set, respectively. In the advanced
learning, the x-coordinate referential values and y-coordinate referential values
comprise, not only the above minima and maxima, but also the trained referential
values between the minima and maxima, to improve the model capacity for the
approximation of complex functions. The advanced learning for each function has
a group of approximations. Different approximations have different combinations
of numbers of x-coordinate and y-coordinate referential values. In each
approximation, we use the approach of rule-based inferential modelling and
prediction to establish MAKER-based models based on a fixed number of x-
coordinate and y-coordinate referential values, and we use the adapted single-level

genetic algorithm to train the referential values and the relevant weights. In the
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process of advanced learning, the number of x-coordinate referential values is
increased while that of y-coordinate referential values keeps unchanged, and so
does the number of y-coordinate referential values while that of x-coordinate
referential values keeps unchanged. After the training of models in each
approximation is finished, we can obtain a value of MSE (Mean Squared Error) to
measure the difference between predicted values of a model and observed output
values of a function. In other words, we can obtain an MSE for each approximation.
Based on these MSEs, stopping criteria will be developed for terminating the
process of advanced learning to have a model with a balance between model
accuracy and model complexity. The stopping criteria will be illustrated in Section

4.5.

The processes of initial learning and advanced learning are summarized in the
following groups of steps. It is noteworthy that only the referential values between
the minima and maxima of observed input or output values of a function are trained
in the univariate functions approximation including initial learning and advanced
learning. Therefore, we do not need to train any referential values in the initial
learning, as the referential values are fixed as the minima and maxima of observed
input and output values of a function in the initial learning. This is well designed in

the codes for implementation of initial and advanced learning.

It is also worth noting that the observed input and output values for the prediction
in both initial learning and advanced learning are the observed input and output
values of a function mentioned on Page 103 and in each function approximation of
Sections 4.3.1 and 4.3.2, and the predicted outputs of the MAKER-based models
are the probabilities of observed input values or x-coordinate referential values for
different referential values of output variable or y-coordinate referential values
(equivalent to the classes of output variable in classification). The sum of all the

referential values of output variable or y-coordinate referential values multiplied
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with their relevant probabilities can then be used as the predicted output values of

the MAKER-based models for functions approximation.

The steps of initial learning are displayed in the following part.

Step 1: Generating the data set for a function approximation.

Step 2: The x-coordinate and y-coordinate referential values are fixed as the
minima and maxima of observed input and output values of a function.

Step 3: Using the approach of rule-based inferential modelling and prediction to
establish a MAKER-based model on the basis of the referential values for function
approximation.

Step 4: Using the single-level adapted genetic algorithm to train the relevant
weights of referential values to get the optimized referential values and weights.
Step 5: Generating the predicted output values for a function on the basis of the
MAKER-based model of optimized referential values and weights.

Step 6: Calculating the mean squared error (MSE) between the observed and the

predicted output values for a function.

The steps of advanced learning are shown in the following part.

Step 1: Generating the data set for a function approximation.

Step 2: Each group of function approximations of advanced learning consists of a
number of approximations. Different approximations have different combinations
of numbers of x-coordinate and y-coordinate referential values, and in each
approximation, the numbers of x-coordinate and y-coordinate referential values are
fixed, but the referential values between minima and maxima of observed input or
output values are not fixed, and they can be trained using adapted genetic
algorithm. Among all the approximations of a group of function approximations of
advanced learning, both the numbers of trained x-coordinate and y-coordinate
referential values (referential values between minima and maxima of observed
input or output values) can be increased from 0 to a certain number. The number

of trained x-coordinate or y-coordinate referential values is increased in such a way
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that the number of one type of the trained x-coordinate and y-coordinate referential
values is increased from 0 to a certain number while the number of the other type
keeps unchanged. For example, in the group of function approximations of
advanced learning for y =log,x, the number of trained y-coordinate referential
values can be increased from 0 to 4, while the number of trained x-coordinate
referential values can be kept at 1, as we move along the dimension of number of
trained y-coordinate referential values. The certain number is the maximum
number that trained x-coordinate or y-coordinate referential values can be in a
group of function approximations, and it is designed depending on what the
function is to check how many referential values are enough to well approximate a
function. For instance, we select 5 as the maximum number that the trained x-

coordinate referential values can be in the groups of function approximations of

1
advanced learning for monotonic functions, i.e., y = 6%, y =log,x, and y = xs, and

simple non-monotonic function, i.e., y = —(x — 0.5)? + 0.25 and 4 as the one that the
corresponding trained y-coordinate referential values can be. This maximum
number becomes 10 for the trained x-coordinate referential values and 6 for the
trained y-coordinate referential values respectively, in the group of function
approximations of advanced learning for complex non-monotonic function, i.e., y =
e~ (=2 4 0.5~ (+2)?,

Step 3: In each approximation of a group of function approximations of advanced
learning, we use the referential values and weights of each individual of population
used in the single-level adapted genetic algorithm to establish a MAKER-based
model, and use the single-level adapted genetic algorithm to train the referential
values between minima and maxima of observed input or output values and
relevant weights of MAKER-based model, to obtain the optimized set of referential
values and weights.

Step 4: Generating the predicted output values for a function based on the model
of optimized referential values and weights for each experiment of a function

approximation.
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Step 5: Calculating the mean squared error (MSE) between the observed and the
predicted output values for a function for each experiment of a function

approximation.

4.3.1 Initial Learning

For the initial learning, four common types of functions are used as examples to
demonstrate the approximation capability MAKER-based models framework for
different types of functions: exponential functions y = a*, logarithmic functions y =
log, x, power functions y = x4, and the function y = —(x — 0.5)? + 0.25. Each type of
function has its own characteristics and is used to represent similar functions.
Specifically, the four types just listed are used to represent convex functions,
concave functions, functions whose mean curvatures are large, and non-monotonic

univariate functions, respectively.

Each type of function, as mentioned above, can present one or more specific
functions. Each specific function is used to generate a data set of observed input-
output data pairs for the approximation of this specific function. The observed input
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through 4.5 illustrating initial learning represent the observed input values (x) and
the values on the y axes of following figures about initial learning represent both
the observed output values (y) and the predicted output values of a MAKER-based
model. The cyan cyan-coloured curves represent the observations of the functions
and the black dotted curves represent the predictions of the functions made by the

MAKER-based models.

In Figure 4.2, a collection of exponential functions y =a* (a=2, 3, 4, 5, and 6), is
used to generate data sets to approximate the exponential functions. From these
data sets, MAKER-based models are built to perform initial learning. The mean
squared errors (MSEs) between the observed output values and the predicted
output values are 1.60 x107%,4.91 «107*, 7.81x107*, 6.58*107%, and 1.07 = 10~3 for
the five functions y=2%*, y=3%, y=4*, y=5%, and y=6* respectively. From
Figure 4.2 and the MSEs, it is evident that the exponential functions y = a* are very
well approximated by the MAKER-based models, whose parameters are optimally

trained as shown in Figure 4.2.

Table 4.1 Trained weights (w) of x-coordinate referential values (x-rv)
for different y-coordinate referential values (y-rv) for y = a*

w of x-rv 0 w of x-rv 1
Approx. under y-rv under y-rv under y-rv under y-rv
no.1 no.2 no.1 no.2

(minimum) (maximum) (minimum) (maximum)
y = 2% 0.5493 0.0388 0.0266 0.4012
y = 3% 0.5757 0.0337 0.0207 0.3555
y = 4% 0.5764 0.0263 0.0155 0.3148
y = 5% 0.5100 0.0161 0.0084 0.2529
y = 6% 0.5714 0.0203 0.0083 0.2628

Table 4.1 displays the weights for the x-coordinate referential values for the
different y-coordinate referential values, for the initial learning of the MAKER-based

models for functions y = a*. From Table 4.1, it can be seen that the weights of x-
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coordinate referential values 0 and 1 for the y-coordinate referential values have a
direct influence on the approximation for functions y = a* in the MAKER-based
model. The weights of x-coordinate referential value 0 for y-coordinate referential
value no.1 (the minimum of the observed y-coordinate values in the data set)
fluctuate between 0.5 and 0.6. Meanwhile, the weights of x-coordinate referential
value 1 for y-coordinate referential value no.2 (the maximum of the observed y-

coordinate values in
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y-coordinate

referential value no.2 and those of x-coordinate referential value 1 for y-coordinate

referential value no.1 play a small role in the approximation of the functions y = a*,

as they are generally very close to 0. This suggests that we use only a few

parameters to train the models to approximate functions y = a* with a small error.

In Figure 4.3, observed input-output data pairs for the approximation of logarithmic
functions y =log, x. Again, MAKER-based models are built to perform the initial
learning. The MSEs for this collection of functions y =log,x (a=2, 3, 4, 5, and 6)
are 1.07+107*, 3.37%1075, 4.13%107%, 1.65%1075, and 2.40%* 1075 respectively.
Figure 4.3 and the relevant MSEs verify that these MAKER-based models also have

superior approximation capability for logarithmic functions y = log, x.
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Table 4.2 Trained weights (w) of x-coordinate referential values (x-rv)
for y-coordinate referential values (y-rv) for y =log, x

w of x-rv 1 w of x-rv 2

under y-rv under y-rv under y-rv under y-rv

Approx.
no.1 no.2 no.1 no.2

(minimum) (maximum) (minimum) (maximum)
y =log, x 0.2981 0.0166 0.0200 0.4063
y =logs x 0.2629 0.0129 0.0164 0.3608
y =log, x 0.3686 0.0236 0.0348 0.5050
y = logs x 0.2674 0.0131 0.0191 0.3692
y = logg x 0.3647 0.0249 0.0321 0.4963

Table 4.2 exhibits the trained parameters, i.e., the weights for the x-coordinate
referential values for various y-coordinate referential values in the MAKER-based
models. The ratios of the weights of x-coordinate referential value 1 for y-
coordinate referential value no.1 to the corresponding weights of x-coordinate
referential value 2 for y-coordinate referential value no.2 in this case, hover around
0.73, as the shapes of the curves used for the approximation of the functions y =
log, x are generally similar to each other. At the same time, the weights of x-
coordinate referential value 1 for y-coordinate referential value no.1 and those of
x-coordinate referential value 2 for y-coordinate referential value no.2 have little
impact on the approximation, as they generally approach 0. All this indicates that
we can use a limited number of parameters to train the MAKER-based models to

approximate functions of the form y =log, x with high accuracy.

Next, a collection of power functions y = x%, y =x", and y = x%, are used in the
same way as above in Figure 4.4. The cyan solid curve represent the observations
of the function and the red solid curve represents the predictions of the MAKER-

based models. The MSEs are 0.001421, 0.001687, and 0.001836 respectively.
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Figure 4.4 Initial learning for functions y = x* for MAKER-based models

Table 4.3 displays the trained parameters, i.e., the weights for the x-coordinate
referential values for various y-coordinate referential values, in the initial learning
for functions y = x* from the MAKER-based models. The ratios of the weights of x-
coordinate referential value 1 and y-coordinate referential value no.2 to the
corresponding weights of x-coordinate referential value 0 and y-coordinate
referential value no.1 are generally diminishing as the function being approximated
by the MAKER-based models changes from y=x% to y=x", as the mean

curvatures of those functions is generally diminishing.

Table 4.3 Trained weights (w) of x-coordinate referential values (x-rv)
under y-coordinate referential values (y-rv) for y = x*

w of x-rv 0 w of x-rv 1
Approx. under y-rv under y-rv under y-rv under y-rv
no.1 no.2 no.1 no.2
(minimum) (maximum) (minimum) (maximum)
=x"* 0.1247 0.0863 0.0672 0.7448
y=x"% 0.0732 0.0536 0.0640 0.6713
y=x"% 0.0337 0.0236 0.0415 0.4527

From Figures 4.2, 4.3, and 4.4 and the relevant MSEs in Tables 4.1, 4.2, and 4.3,
it can be observed that the approximations of the power functions y =x® are
generally worse than those of both the exponential functions y =a* and the
logarithmic functions y =log,x. This is mainly due to the fact that the mean

curvatures of the power functions are generally larger than those of the latter two
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and the fact that there are only four referential values (i.e., the minimum and the
maximum of the input values and the global extrema of the output values) of
functions in the y = x* case. This suggests more referential values should be used

to approximate functions with large mean curvatures.

As demonstrated above, the MAKER framework can be used to accurately
approximate monotonic univariate functions with moderate mean curvatures, e.g.,
exponential functions y = a®* and logarithmic functions y = log, x, even if there are
only four referential values in the approximation. However, four referential values
are apparently not enough for the MAKER framework to accurately approximate
monotonic univariate functions with large mean curvatures, e.g., power functions

y = x%. Extra referential values would be needed in such cases.

Table 4.4 Trained weights (w) of x-coordinate referential values (x-rv)
under y-coordinate referential values (y-rv) for y = —(x — 0.5)2 + 0.25

w of x-rv 0 w of x-rv 1
Approx. under y-rv under y-rv under y-rv under y-rv
no.1 no.2 no.1 no.2
(minimum) (maximum) (minimum) (maximum)
y
= —(x—0.5)2 0.0719 0 0.3326 1
+0.25

Initial learning for monotonic univariate functions based on the MAKER framework
has been