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Abstract 

Sepsis is a serious disease that can cause death. It is important to evaluate patients’ 

sepsis risk during diagnostic decisions within the early stages after the detection of 

the presence of symptoms that suggest sepsis. The conventional approach to sepsis 

diagnosis is blood culture, which may takes several days. The approaches based on 

statistics and machine learning for sepsis diagnosis can be cheap, fast, and non-

invasive. There are a wide variety of approaches based on statistics and machine 

learning that can be used for sepsis diagnosis, but these approaches have some 

issues, e.g. interpretability and overfitting, which may affect their performance in 

sepsis diagnosis. 

 

To address some of the issues in the popular approaches to disease diagnosis, we 

proposed a new approach, i.e., the rule-based inferential modelling and prediction. 

This approach integrates statistical analysis, belief rule-base inference, and 

maximum likelihood prediction, and machine learning. The referential-value-based 

data discretisation technique used in this approach is closer to reality and better at 

reducing information loss and distortion, as well as better at presenting the 

characteristics of the data, compared to other data-processing techniques. We can 

use the belief rule-base inference to clearly analyse the relationship between 

system inputs and outputs. An interdependence index is used in this approach to 

quantify the interdependence between input variables. An adapted genetic 

algorithm is used in this approach for the bilevel optimisation of models. The 

stopping criteria for the training process of the models used in this approach help 

us find the optimal structure of the models, which generally achieves balance 

between accuracy and complexity. 

 

Compared to the complex classifiers for disease diagnosis, e.g., ensemble, ANN, 

and random forest, the classifier based on the maximum likelihood evidential 

reasoning (MAKER) framework established by the rule-based inferential modelling 

and prediction approach is more interpretable. The performance of the MAKER-

based classifiers constructed by this approach for sepsis diagnosis is generally 

better than the majority of alternative models for sepsis diagnosis, and similar to 

the performance of ensemble: bagged trees, which is a complex model. The 

MAKER-based classifier is an outstanding classifier for classical data sets: the 

Banana data set, Haberman’s survival data set, and the Iris data set, and it 

generally performs better than other interpretable classifiers, e.g., complex tree, 

logistic regression, and naïve Bayes. 

 

Keywords: Evidential Reasoning, Data Discretization, Statistical Analysis, 

Probabilistic Inference, Machine Learning, Prediction, Decision Making. 
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Chapter 1 Introduction 

1.1 Background 

 

Sepsis is a type of clinical syndrome associated with infection and inflammation. It 

generally results from the host’s systemic inflammatory response to different 

external factors, e.g. infection, trauma, etc. Daniels and Nutbeam (2010) argue 

that Sepsis is a continuum of different terms, e.g. systemic inflammatory response 

syndrome (SIRS), infection, sepsis, severe sepsis, septic shock, multiple organ 

dysfunction syndrome (MODS). Table 1.1 provides the definitions for these terms 

(Levy et al., 2003), which originated from a consensus conference headed by the 

Society of Critical Care Medicine (SCCM) and the American College of Chest 

Physicians (ACCP). Figure 1.1 and Figure 1.2 describe the intrinsic relationships 

between the different sepsis terms. 

 

Table 1.1 Nomenclature of sepsis 

Terms Definitions1 

SIRS 

Systemic inflammatory response syndrome is a non-specific 

term used to describe the inflammatory response triggered by 

infection, trauma, burns, pancreatitis, etc. The identification of 

SIRS requires the presence of at least two of the following 

criteria: temperature <36°C or >38.3°C; heart rate >90/min; 

respiratory rate >20/min; white cells <4 or >12 × 109/l; 

acutely altered mental status; hyperglycaemia (glucose >6.6 

mmol/l) (unless diabetic). 

Infection 
Infection refers to the presence of or the response to the 

microorganisms in a sterile body cavity or fluid. 

Sepsis Sepsis is defined as the presence of SIRS and a confirmed 

                                                             
1 These definitions are obtained from ‘CHAPTER 2: Defining the Spectrum of Disease’ 

(Daniels, 2010). 
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infection. 

Severe sepsis 
Severe sepsis is defined as the presence of sepsis and signs of 

organ dysfunction. 

Septic shock 
Septic shock refers to the persistent evidence of hypoperfusion 

in spite of adequate fluid resuscitation. 

MODS 
Multi-organ dysfunction syndrome is defined as the presence of 

altered organ dysfunction in critically ill patients. 

 

From Figure 1.1, it can be seen that both infection and SIRS are not specific to 

sepsis (Daniels and Nutbeam, 2010). Infection can be triggered by bacteria, virus, 

fungi, parasite, etc., while SIRS may be caused by pancreatitis, trauma, burns, etc. 

As mentioned in Table 1.1, the prerequisites of sepsis are infection and SIRS. Hence, 

the intersection of infection and SIRS is sepsis, as shown in Figure 1.1. Similarly, 

according to the definitions in Table 1.1, severe sepsis is a subset of sepsis and 

MODS2 is part of severe sepsis, as shown in Figure 1.1. 

 

 

Figure 1.1 Schematic of the interrelationships between different sepsis 

terms 

 

                                                             
2 In this context, MODS refers to a specific part of the sepsis continuum. 
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Figure 1.2 describes the spectrum or the continuum of sepsis in which different 

sepsis terms, e.g. sepsis, severe sepsis, septic shock, etc., are on a scale of 

different degrees of characteristics. From left to right in Figure 1.2, the mortalities 

caused by different sepsis terms are higher and higher (Daniels and Nutbeam, 

2010), which is also shown in Figure 1.3 (Levy, 2010). 

 

 

Figure 1.2 Continuum of sepsis 

 

Sepsis is one of the most serious diseases in the world. Each year, approximately 

13 million people suffer from sepsis and around 4 million of these die (Levy, 2010). 

In the US, there are approximately 750,000 cases of sepsis per year, resulting in 

around 215,000 deaths (Levy, 2010). The financial burden of sepsis on healthcare 

is significant and it costs the US government approximately 16.7 billion dollars per 

year (Levy, 2010). In Figure 1.4, it is clear that European incidence of severe sepsis 

is significantly higher than that of cancers and AIDS. In the UK, it has been 

estimated that sepsis causes approximately 37,000 deaths per year (Levy, 2010), 

which is higher than the number of deaths caused by cancers (Figure 1.5).
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Figure 1.3 Survival spectrum of 

sepsis continuum 

  

Figure 1.4 Incidence of severe sepsis and 

other diseases in Europe 

Figure 1.5 Annual mortality rates 

for cancers and severe sepsis 
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As mentioned in Table 1.1, sepsis is confirmed by the presence of SIRS and 

evidence of infection. To confirm the presence of infection, common practice is to 

identify the live pathogens of sepsis from blood samples using culture techniques 

(Dark et al., 2014).  

 

In general, it takes several days for blood cultures (Warhurst et al., 2014) to 

determine whether the specimen is culture positive or negative (at least two days 

are required before a negative result is available). Due to the relatively lengthy 

process of blood culture and the positive correlation between the delay in 

antimicrobial therapy and increased mortality, healthcare practitioners generally 

adopt a ‘safety first’ clinical strategy to provide early and persistent delivery of 

potent broad-spectrum antibiotics, which are used against probable pathogens for 

patients presenting with systemic inflammation (Dark et al., 2014). However, the 

safety first strategy inevitably results in unreasonable antibiotic prescription, 

accompanied by a series of adverse effects, e.g. clostridium difficile infection, 

antimicrobial resistance development, increased acquisition costs, etc., as systemic 

inflammation is very common in critical care and may be caused by pancreatitis, 

blood transfusion, trauma, etc., in addition to infection (Warhurst et al., 2014). 

 

Therefore, it is important to develop a decision support system to predict patients’ 

sepsis risk during diagnostic decisions within the early stages after the detection of 

the presence of symptoms that may suggest sepsis. With the assessment of a 

patient’s sepsis risk, targeted antibiotic therapy can be used in the early stages to 

effectively improve the patient’s prospects of survival. 

 

1.2 Research Questions 

 

The research presented in this thesis aims to develop a rule-based inferential 

modelling and prediction approach for sepsis diagnosis that could be further 

expanded to analyse and infer complex systems in other domains. A series of 
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research questions are raised to facilitate the research in this thesis. The research 

questions comprise two levels: the fundamental level of questions to search for an 

appropriate research methodology and the advanced level for the selected research 

methodology. 

 

To find an appropriate research methodology, the author provides a comprehensive 

analysis of the comparison between the present methodologies of data-driven 

modelling. The following research questions are designed to guide the analysis: 

 

Q1. What are the most frequently used approaches for disease diagnosis? 

 

Q2. What are the advantages and disadvantages of alternative approaches for 

disease diagnosis? 

 

Q3. Can we understand the interrelationship between the inputs and outputs of a 

complex numerical system through the alternative approaches to disease diagnosis? 

 

Q4. How do the alternative approaches perform in disease diagnosis? 

 

Following the analysis of the comparison between the present methodologies for 

disease diagnosis, the most appropriate approach will be selected for sepsis 

diagnosis. The following research questions are designed to address this selected 

approach: 

 

Q5. How can we process continuous input data for a complex numerical system for 

modelling? 

 

Q6. How can we measure the interdependence between input variables in a 

complex numerical system? 
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Q7. How can we perform bilevel optimisation for the models? 

 

Q8. How can we identify the optimal structure of the models? 

 

1.3 Research Objectives 

 

To address the research questions formulated in section 1.2, which will facilitate 

the research, we have designed a number of research objectives. Corresponding 

with the research questions, the research objectives are classified into two groups: 

the objectives of identifying the most appropriate approaches for sepsis diagnosis 

and the objectives of the selected approach for sepsis diagnosis. 

 

The objectives of identifying the most appropriate approach for sepsis diagnosis 

are listed below. 

 

Obj.1. We will find out the popular approaches to disease diagnosis. 

 

Obj.2. We will compare the weaknesses and strengths of popular approaches to 

disease diagnosis. 

 

Obj.3. We will understand whether the alternative approaches are interpretable. 

 

Obj.4. We will find out which alternative approaches perform well in the 

classification of the datasets. 

 

The objectives of the selected approach to sepsis diagnosis are as follows: 

 

Obj.5. We will transform continuous input data for modelling. 
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Obj.6. We will measure the interdependence between the input variables in a 

complex numerical system. 

 

Obj.7. We will apply an algorithm for bilevel optimisation. 

 

Obj.8. We will find the optimal structures for the training of the models. 

 

1.4 Research Contributions 

 

The main contributions of this research are summarised as follows: 

 

 A referential-value-based data discretisation technique is applied to transform 

continuous data for modelling. This is one of the innovations in this research. 

Compared to other data-processing techniques, this technique is closer to 

reality and better at reducing information loss and distortion, as well as better 

at presenting the characteristics of the data. 

 

 Stopping criteria are proposed for the training process of the models based on 

the maximum likelihood evidential reasoning (MAKER) framework, which is 

another innovation in this research. These stopping criteria help us to find the 

optimal structure of the models based on the MAKER framework, which 

generally achieves balance between accuracy and complexity. 

 

 An adapted single-level genetic algorithm is proposed for the problems of 

bilevel optimization of the MAKER-based models. This is an innovative solution 

to the bilevel optimization. The function approximation and the classification 

experiments show that this adapted genetic algorithm can work effectively to 

find the optimised solutions for the referential values and weights (reliabilities) 

of the MAKER-based models. 
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 The statistical analysis, belief rule-base inference, and prediction and machine 

learning are integrated in the approach of rule-based inferential modelling and 

prediction, which makes the inference process based on this approach totally 

transparent and interpretable. It is an innovative approach of modelling and 

prediction. 

 

 A rule-based inferential modelling and prediction approach is applied to 

establish the MAKER-based models to identify patients at risk according to the 

five patient biomarkers in the sepsis dataset. The performance of the MAKER-

based models is better than the performance of the alternative models, 

including complex tree, fine Gaussian support vector machine (SVM), fine k-

nearest neighbour (KNN), weighted KNN, ensemble: subspace KNN, naïve 

Bayes, and artificial neural networks (ANN): feed-forward backpropagation. 

Among these alternative models, complex tree and naïve Bayes are 

interpretable. In addition, the performance of the MAKER-based models is 

similar to the performance of the ensemble: bagged trees, which is a complex 

model. Compared to the ensemble: bagged trees, the MAKER-based model is 

totally transparent and interpretable. It is essentially a white-box model in 

which the relationship between system inputs and outputs can be analysed 

clearly. 

 

1.5. Research Significance 

 

The theoretical and practical significance of this research is summarised in the 

follow sub-sections. 

 

Theoretical significance: 

 

This research contributes to the analysis, modelling, and prediction of complex 

numerical systems by proposing a rule-based inferential modelling and prediction 
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approach that provides a new way of effectively addressing some of the issues in 

the analysis, modelling, and prediction of complex numerical systems. Specifically, 

the referential-value-based data discretisation technique of this approach reduces 

the information loss and distortion to which other data discretisation techniques 

lead. The stopping criteria for the training of the models used in this approach 

effectively avoid the overfitting of models, which is a common issue in decision tree 

models. The belief rule-base inference of this approach is totally transparent and 

interpretable, from which we can analyse the relationship between system inputs 

and outputs. As a comparison, complex models, e.g. ensembles and artificial neural 

networks, are generally difficult to understand. The adapted genetic algorithm used 

in this approach provides an effective way of performing bilevel optimisation for 

complex numerical systems, while classical algorithms may not work effectively for 

bilevel optimisation. Overall, the rule-based inferential modelling and prediction 

approach integrates statistical analysis, belief rule-base inference, and maximum 

likelihood prediction and machine learning, which enriches the approaches for the 

analysis, modelling, and prediction of complex numerical systems. 

 

Practical significance: 

 

This research will benefit healthcare professionals involved in sepsis diagnosis and 

diagnosis of other diseases. Healthcare professionals can use the model based on 

the MAKER framework established by the selected approach: the rule-based 

inferential modelling and prediction approach to improve the efficiency and 

accuracy of disease diagnosis. 

 

Specifically, sepsis is a serious disease that may cause death. It is important to 

evaluate patients’ sepsis risk during diagnostic decisions within the early stages 

after the detection of the presence of symptoms that suggest sepsis. The 

conventional approach to sepsis diagnosis is blood culture, which may take several 

days. We can use the rule-based inferential modelling and prediction approach to 
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establish a MAKER-based model to evaluate patients’ sepsis risk in the early stages 

after the detection of the presence of suspicious symptoms of sepsis, so that 

targeted antibiotic therapy can be used in the early stages to prevent patients’ 

sepsis from becoming worse and to effectively improve patients’ prospects of 

survival. 

 

As the MAKER-based model is essentially a white-box model from which the 

relationship between system inputs and outputs can be analysed clearly, healthcare 

professionals may extract useful patterns from the data on patients’ features to 

provide new perspectives in order to provide timely treatment to patients with 

suspicious symptoms of a disease to prevent their disease from becoming worse. 

 

1.6 Thesis Structure 

 

The remainder of this thesis is structured in six further chapters. These chapters 

are outlined in Figure 1.6. Each chapter is designed for a specific group of research 

questions and their relevant research objectives. 

 

Chapter 2 provides a systematic literature review of the popular approaches to 

disease diagnosis. Based on the systematic literature review, we perform a critical 

analysis of these popular approaches, which shows that there is a need to develop 

a new approach to disease diagnosis. Chapter 2 accomplishes research objectives 

1 and 2 and addresses research questions 1 and 2, as shown in Figure 1.6. The 

systematic literature review in Chapter 2 forms a theoretical basis from which to 

address the research questions formulated in this thesis. 

 

Chapter 3 presents the research methodologies used in this thesis. By achieving 

Obj.5, Obj.6, and Obj.7, Chapter 3 addresses research questions Q5, Q6, and Q7, 

as shown in Figure 1.6. Specifically, we introduce the general research methods, 

data collection, evidential rule, and the research methods for the rule-based 
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inferential modelling and prediction approach, which is developed to address some 

of the issues with the popular approaches to disease diagnosis. 

 

Figure 1.6 Structure of the thesis 

 

Chapter 4 is focused on the function approximations. As indicated in Figure 1.6, 

research questions 5, 6, 7, and 8 are addressed in Chapter 4 by fulfilling research 

objectives 5, 6, 7, and 8. These function approximations can be divided into 

univariate function approximations and bivariate function approximation. The 

univariate function approximations take the monotonic power function, monotonic 

logarithmic function, monotonic power function, unimodal power function, and 

bimodal exponential function as examples to validate the capability of the 

approximation of the rule-based inferential modelling and prediction approach. The 
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bivariate function approximation takes a benchmark function-Himmelblau function 

as an example to validate the approximation capability of the rule-based inferential 

modelling and prediction approach. Based on these approximations, stopping 

criteria are proposed to find the optimal model structure for the models to achieve 

balance between accuracy and complexity. 

 

Chapter 5 is dedicated to the rule-based inferential modelling and prediction 

approach from the perspectives of fundamental knowledge, theoretical comparative 

analysis, case study, and performance comparative analysis. Research questions 3, 

4, 5, 6, and 7 are addressed in Chapter 5 by completing objectives 3, 4, 5, 6, and 

7, as shown in Fig 1.6. In this chapter, we first introduce the fundamental 

knowledge of the rule-based inferential modelling and prediction approach from the 

perspectives of statistical analysis, belief rule-base inference, and maximum 

likelihood prediction and machine learning. Then, we perform a comparative 

analysis to emphasise the limitations of the popular modelling and prediction 

approaches, and highlight the advantages of the rule-based inferential modelling 

and prediction approach. Subsequently, we present a case study on how to use the 

rule-based inferential modelling and prediction approach to build a MAKER-based 

classifier with which to perform classification experiments on classical datasets, 

including the Banana dataset, Haberman’s survival dataset, and the Iris dataset. 

Finally, we compare the classification results of the MAKER-based classifiers with 

those of alternative classifiers. 

 

Chapter 6 focuses mainly on the application of the rule-based inferential modelling 

and prediction approach to sepsis diagnosis. Figure 1.6 shows that research 

questions 3, 4, 5, 6, and 7 are addressed in Chapter 6 by fulfilling objectives 3, 4, 

5, 6, and 7. In this chapter, we first present the data preparation for the application 

of the rule-based inferential and modelling approach to sepsis diagnosis. Then, we 

describe how the classifier based on the system of the MAKER framework is built 

by the rule-based inferential modelling and prediction approach. Finally, we conduct 
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a performance comparative analysis between the classification results of the 

MAKER-based classifier and those of alternative classifiers. 

 

Chapter 7 concludes the findings of this research and suggests directions for further 

research. 
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Chapter 2 Literature Review 

 

2.1 Introduction 

 

From the existing literature, it can be seen that a wide variety of approaches have 

been employed for disease diagnosis. This chapter aims to provide a comprehensive 

analysis of the popular approaches to disease diagnosis. The remainder of this 

chapter is organised as follows. Section 2.2 defines disease diagnosis and statistical 

classification, and the relationship between these two concepts. Section 2.3 defines 

machine learning, supervised learning, and the relationship between machine 

learning, supervised learning, and statistical classification. Section 2.4 identifies 

the popular approaches to disease diagnosis. Section 2.5 critically analyses the 

identified popular approaches to disease diagnosis. 

 

2.2 Disease Diagnosis and Statistical Classification 

 

The aim of disease diagnosis is to identify the disease of a sick patient on the basis 

of their characteristics (Hand, 1992). Classification means to arrange things into 

groups of shared characteristics (Cooper and Sartorius, 2013). Therefore, diseases 

diagnosis is essentially classification. In the context of statistics and machine 

learning, classification is the identification of the set of existing categories to which 

a new observation belongs on the basis of training data on observations that have 

known category memberships (Michie, Spiegelhalter and Taylor, 1994). 

 

Different types of disease, observations of patient characteristics, and 

characteristics of patients in the context of diagnosis can be considered as classes 

of output variables, observations, and input variables, respectively, in the context 

of statistics and machine learning. Based the methods of statistics and machine 
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learning, we can build models from the data containing the different types of 

disease and the characteristics of patients for disease diagnosis. 

 

The experience of diagnostic decision was collected and collated subjectively in 

early days, and objective methods of statistics and machine learning have been 

applied in diagnosis in recent decades (Hand, 1992). Apparently, disease diagnosis 

based on methods of statistics and machine learning have some superiority over 

traditional disease diagnosis. Hand (1992) suggests that traditional disease 

diagnosis relies on methods that are expensive (e.g. surgical investigations), slow 

(e.g. bacterial culture), or invasive (bone density measurement in osteoporosis). 

Compared with traditional disease diagnosis, diagnosis based on methods of 

statistics and machine learning is cheap, rapid, and non-invasive. With methods of 

statistics and machine learning, medical diagnostic knowledge can be automatically 

learned from patient records, and the classifiers built from patient records can help 

healthcare professionals to improve diagnostic speed, accuracy, and reliability 

(Kononenko, 2001). 

 

2.3 Machine Learning, Supervised Learning, and Statistical 

Classification 

 

Machine learning is the study of how to build computer programs that improve 

computer performance through experience in relation to certain tasks (Zhang and 

Tsai, 2007). It uses algorithms that can be employed to extract patterns from data 

in order to make inferences or predictions (Alpaydin, 2010). Machine learning 

techniques are divided into supervised and unsupervised (Zimmermann et al., 

2002). Karim and Kaysar (2016) suggest that the tasks in machine learning can be 

divided into three broad categories: supervised learning, unsupervised learning, 

and reinforcement learning, which depends on whether or not a learning signal or 

feedback is available to a learning system. Mohri, Rostamizadeh, and Talwalkar 

(2012) classify common scenarios of machine learning into supervised learning, 
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unsupervised learning, semi-supervised learning, reinforcement learning, active 

learning, etc., on the basis of the types of training data available to the learner, and 

the order and method by which the training data is received and the test data used 

to evaluate the learning algorithm. Table 2.1 summarises the different types of 

machine learning task based on the description presented by Mohri, Rostamizadeh, 

and Talwalkar (2012). 

 

Table 2.1 Classification of machine learning tasks 

Types of machine learning task Description 

Supervised learning 

The learner receives a set of labelled 

examples as training data and makes 

predictions for all unseen points (Mohri, 

Rostamizadeh, and Talwalkar, 2012). 

Unsupervised learning 

The learner exclusively receives 

unlabelled training data and makes 

predictions for all unseen points (Mohri, 

Rostamizadeh, and Talwalkar, 2012). 

Semi-supervised learning 

The learner receives a training sample 

consisting of both labelled and 

unlabelled data and makes predictions 

for all unseen points (Mohri, 

Rostamizadeh, and Talwalkar, 2012). 

Reinforcement learning 

To collect information, the learner 

actively interacts with the 

environment, and affects the 

environment in some cases, and 

receives an immediate reward for each 

action. The objective of the learner is 

to maximize their reward throughout a 

course of actions and iterations with 
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the environment (Mohri, 

Rostamizadeh, and Talwalkar, 2012). 

Active learning 

The learner adaptively or interactively 

collects training examples, typically by 

querying a database to request labels 

for new points. The goal of active 

learning is to achieve a performance 

comparable to the standard supervised 

learning scenario, but with fewer 

labelled examples (Mohri, 

Rostamizadeh, and Talwalkar, 2012). 

 

From the description of supervised learning given by Mohri, Rostamizadeh, and 

Talwalkar (2012), it can be found that supervised learning is a learning task of 

deducing a function from labelled training data. Cord and Cunningham (2008) point 

out that supervised learning entails learning a mapping between input variables 

and output variables and applying this mapping to predict the outputs for unseen 

data. Supervised learning is analogous to human learning from past experience to 

gain new knowledge in order to improve the ability to perform real-world tasks (Liu, 

2007). Supervised learning is considered to be one of the most important areas of 

knowledge discovery (Arikawa and Motoda, 1998) and is one of the most commonly 

used and successful types of machine learning (Müller and Guido, 2016). 

 

According to Karimi (2014), supervised learning is primarily concerned with 

classification, interpolation, and prediction. Suthaharan (2016) suggests that 

supervised learning models can be grouped into predictive models, i.e. regression 

models and classification models. Müller and Guido (2016) conclude that there are 

generally two major supervised machine learning problems, i.e. regression and 

classification. Hackeling (2014) suggests that classification and regression are two 

of the most common supervised machine learning tasks. As mentioned in section 
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2.2, disease diagnosis is essentially classification. Therefore, disease diagnosis 

needs a classification algorithm or a supervised learning algorithm. 

 

2.4 Popular Approaches to Disease Diagnosis 

 

To identify popular approaches to diseases diagnosis employed in the existing 

literatures, it was necessary to conduct a literature search. The search was 

performed using Web of Science (2017). Only papers published in journals from 

this source were taken into consideration. Papers from journals below a certain 

quality standard are not included in Web of Science. Hence, low-quality papers were 

excluded from consideration in the search. Table 2.2 lists the papers relating to 

disease diagnosis using machine learning approaches. 

 

Table 2.2 Papers on disease diagnosis using machine learning approaches 

No. 

Approaches 

employed in the 

paper 

Author(s) Title of paper 

1 

Linear Discriminant 

Analysis, Support 

Vector Machine 

Alam, S., G. R. 

Kwon, et al. 

(2017) 

Alzheimer disease 

classification using KPCA, 

LDA, and multi-kernel 

learning SVM 

2 

Support Vector 

Machine, Artificial 

Neural Network 

Alyami, R., J. 

Alhajjaj, et al. 

(2017) 

Investigating the effect of 

Correlation based Feature 

Selection on breast cancer 

diagnosis using Artificial 

Neural Network and Support 

Vector Machines 

3 
Support Vector 

Machine 

Beheshti, I., H. 

Demirel, et al. 

(2017) 

Classification of Alzheimer's 

disease and prediction of 

mild cognitive impairment-
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to-Alzheimer's conversion 

from structural magnetic 

resource imaging using 

feature ranking and a 

genetic algorithm 

4 
Support Vector 

Machine 

Chen, H. L., L. F. 

Hu, et al. (2017) 

An Effective Machine 

Learning Approach for 

Prognosis of Paraquat 

Poisoning Patients Using 

Blood Routine Indexes 

5 

Support Vector 

Machine, Naive 

Bayes, Random 

Forest, and K-Nearest 

Neighbours 

Chen, Y., Y. Luo, et 

al. (2017) 

Machine-learning-based 

classification of real-time 

tissue elastography for 

hepatic fibrosis in patients 

with chronic hepatitis B 

6 
Support Vector 

Machine 

Chen, Y. Y., M. A. 

Sha, et al. (2017) 

Automated detection of 

pathologic white matter 

alterations in Alzheimer's 

disease using combined 

diffusivity and kurtosis 

method 

7 

Support Vector 

Machine-Quadratic 

Support Vector 

Machine 

Dakappa, P. H., K. 

Prasad, et al. 

(2017) 

A Predictive Model to 

Classify Undifferentiated 

Fever Cases Based on 

Twenty-Four-Hour 

Continuous Tympanic 

Temperature Recording 

8 
Disjunctive Normal 

Form Rule Based 

Deng, C. and M. 

Perkowski (2017) 

A General Data Mining 

Methodology Based on a 
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Method, Decision 

Trees, Naive Bayes, 

and Support Vector 

Machine 

Weighted Hierarchical 

Adaptive Voting Ensemble 

(WHAVE) Machine Learning 

Method 

9 
Support Vector 

Machine 

Ding, J. W. and Q. 

Huang (2017) 

Prediction of MCI to AD 

Conversion Using Laplace 

Eigenmaps Learned from 

FDG and MRI Images of AD 

Patients and Healthy 

Controls 

10 
Support Vector 

Machine 

Drosou, K. and C. 

Koukouvinos 

(2017) 

Proximal support vector 

machine techniques on 

medical prediction outcome 

11 

Support Vector 

Machine (SVM)-

Linear SVM, 

Quadratic SVM, Cubic 

SVM, Medium 

Gaussian SVM, 

Decision Tree, and 

Ensemble Subspace 

Discriminant machine 

learning 

Ekiz, S. and P. 

Erdogmus (2017) 

Comparative Study of Heart 

Disease Classification 

12 
Support Vector 

Machine 

Gatos, I., S. 

Tsantis, et al. 

(2017) 

A Machine-Learning 

Algorithm toward Color 

Analysis for Chronic Liver 

Disease Classification, 

Employing Ultrasound Shear 

Wave Elastography 
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13 
Support Vector 

Machine 

Guo, H., F. Zhang, 

et al. (2017) 

Machine Learning 

Classification Combining 

Multiple Features of A 

Hyper-Network of fMRI Data 

in Alzheimer's Disease 

14 
Support Vector 

Machine 

Hojjati, S. H., A. 

Ebrahimzadeh, et 

al. (2017) 

Predicting conversion from 

MCI to AD using resting-

state fMRI, graph theoretical 

approach and SVM 

15 

Support Vector 

Machine (SVM)-

Linear SVM 

Holler, Y., A. C. 

Bathke, et al. 

(2017) 

Combining SPECT and 

Quantitative EEG Analysis 

for the Automated 

Differential Diagnosis of 

Disorders with Amnestic 

Symptoms 

16 
Support Vector 

Machine 

Iftikhar, S., K. 

Fatima, et al. 

(2017) 

An evolution based hybrid 

approach for heart diseases 

classification and associated 

risk factors identification 

17 
Support Vector 

Machine 

Khedher, L., I. A. 

Illan, et al. (2017) 

Independent Component 

Analysis-Support Vector 

Machine-Based Computer-

Aided Diagnosis System for 

Alzheimer's with Visual 

Support 

18 
Support Vector 

Machine 

Kim, H., H. W. 

Chun, et al. 

(2017) 

Longitudinal Study-Based 

Dementia Prediction for 

Public Health 

19 Support Vector Lee, D., Y. S. Kim, A feasibility study for 
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Machine et al. (2017) automatic lung nodule 

detection in chest digital 

tomosynthesis with machine 

learning based on support 

vector machine 

20 
Support Vector 

Machine 

Maryam, N. A. 

Setiawan, et al. 

(2017) 

A Hybrid Feature Selection 

Method Using Multiclass SVM 

for Diagnosis of Erythemato-

Squamous Disease 

21 
Support Vector 

Machine 

Meyer, S., K. 

Mueller, et al. 

(2017) 

Predicting behavioral variant 

frontotemporal dementia 

with pattern classification in 

multi-center structural MRI 

data 

22 

Support Vector 

Machine and 

Artificial Neural 

Network 

Morabito, F. C., M. 

Campolo, et al. 

(2017) 

Deep Learning 

Representation from 

Electroencephalography of 

Early-Stage Creutzfeldt-

Jakob Disease and Features 

for Differentiation from 

Rapidly Progressive 

Dementia 

23 

Support Vector 

Machine (SVM)-

Linear SVM 

Ogata, Y., A. 

Ozaki, et al. 

(2017) 

Interhemispheric Resting-

State Functional 

Connectivity Predicts 

Severity of Idiopathic 

Normal Pressure 

Hydrocephalus 

24 Support Vector Orimaye, S. O., J. Predicting probable 
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Machine S. M. Wong, et al. 

(2017) 

Alzheimer's disease using 

linguistic deficits and 

biomarkers 

25 
Support Vector 

Machine 

Polat, H., H. D. 

Mehr, et al. (2017) 

Diagnosis of Chronic Kidney 

Disease Based on Support 

Vector Machine by Feature 

Selection Methods 

26 

Support Vector 

Machine (SVM)-

Linear SVM 

Segovia, F., J. M. 

Gorriz, et al. 

(2017) 

Multivariate Analysis of F-

18-DMFP PET Data to Assist 

the Diagnosis of 

Parkinsonism 

27 

Support Vector 

Machine, Decision 

Trees, and Artificial 

Neural Network 

Shrivastava, V. K., 

N. D. Londhe, et 

al. (2017) 

A novel and robust Bayesian 

approach for segmentation 

of psoriasis lesions and its 

risk stratification 

28 
Support Vector 

Machine 

Tan, L. R., X. Y. 

Guo, et al. (2017) 

A Computational Model for 

the Automatic Diagnosis of 

Attention Deficit 

Hyperactivity Disorder Based 

on Functional Brain Volume 

29 

Support Vector 

Machine, and 

Logistic Regression 

Tanaka, H., H. 

Adachi, et al. 

(2017) 

Detecting Dementia Through 

Interactive Computer 

Avatars 

30 
Support Vector 

Machine 

Wen, H. W., Y. Liu, 

et al. (2017) 

Multi-threshold White Matter 

Structural Networks Fusion 

for Accurate Diagnosis of 

Tourette Syndrome Children 

31 
Support Vector 

Machine 

Yahiaoui, A., O. Er, 

et al. (2017) 

A new method of automatic 

recognition for tuberculosis 
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disease diagnosis using 

support vector machines 

32 

Random Forest, K-

Nearest Neighbours, 

and Support Vector 

Machine 

Zhou, W. C., Y. Y. 

Ma, et al. (2017) 

Predictive model for 

inflammation grades of 

chronic hepatitis B: Large-

scale analysis of clinical 

parameters and gene 

expressions 

33 

Random Forest, and 

Support Vector 

Machine 

Lin, T., T. B. Liu, et 

al. (2017) 

Serum levels of chemical 

elements in esophageal 

squamous cell carcinoma in 

Anyang, China: a case-

control study based on 

machine learning methods 

34 

Ensemble Classifier of 

Bagged Decision Tree, 

Support Vector 

Machine, Decision 

Trees, and Artificial 

Neural Network- 

Multilayer Perceptron 

Mohebian, M. R., 

H. R. Marateb, et 

al. (2017) 

A Hybrid Computer-aided-

diagnosis System for 

Prediction of Breast Cancer 

Recurrence (HPBCR) Using 

Optimized Ensemble 

Learning 

35 

Support Vector 

Machine, and 

Artificial Neural 

Network- Multilayer 

Perceptron 

Nalluri, M. R., K. 

Kannan, et al. 

(2017) 

Hybrid Disease Diagnosis 

Using Multiobjective 

Optimization with 

Evolutionary Parameter 

Optimization 

36 
Support Vector 

Machine 

Aboudi, N. L. and 

L. Benhlima 

(2016) 

A New Approach Based on 

PCA and CE-SVM for 

Hepatitis Diagnosis 



 

39 
 

37 

Support Vector 

Machine and Linear 

Discriminant Analysis 

Argerich, S., S. 

Herrera, et al. 

(2016) 

Evaluation of Periodic 

Breathing in Respiratory 

Flow Signal of Elderly 

Patients using SVM and 

Linear Discriminant Analysis 

38 

Support Vector 

Machine, Decision 

Trees, Naive Bayes, 

K-Nearest Neighbours 

Asri, H., H. 

Mousannif, et al. 

(2016) 

Using Machine Learning 

Algorithms for Breast Cancer 

Risk Prediction and 

Diagnosis 

39 

Support Vector 

Machine, and 

Artificial Neural 

Network- Multilayer 

Perceptron, Radial 

Basis Function 

Azzawi, H., J. Y. 

Hou, et al. (2016) 

Lung cancer prediction from 

microarray data by gene 

expression programming 

40 

Support Vector 

Machine, Random 

Forest, and Bayesian 

Network 

Bazazeh, D. and 

R. Shubair (2016) 

Comparative Study of 

Machine Learning Algorithms 

for Breast Cancer Detection 

and Diagnosis 

41 

Naive Bayes, K-

Nearest Neighbours, 

and Support Vector 

Machine 

Begum, S., D. 

Chakraborty, et al. 

(2016) 

Identifying cancer 

biomarkers from leukemia 

data using feature selection 

and supervised learning 

42 

Support Vector 

Machine, Artificial 

Neural Network, 

Naive Bayes, and 

Logistic Regression 

Berikol, G. B., O. 

Yildiz, et al. 

(2016) 

Diagnosis of Acute Coronary 

Syndrome with a Support 

Vector Machine 

43 Support Vector Bokov, P., B. Wheezing recognition 
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Machine Mahut, et al. 

(2016) 

algorithm using recordings 

of respiratory sounds at the 

mouth in a pediatric 

population 

44 
Support Vector 

Machine 

Caicedo-Torres, 

W., A. Paternina, 

et al. (2016) 

Machine Learning Models for 

Early Dengue Severity 

Prediction 

45 

Decision Tree and 

Support Vector 

Machine 

Karimi-Alavijeh, F., 

S. Jalili, et al. 

(2016) 

Predicting metabolic 

syndrome using decision 

tree and support vector 

machine methods 

46 

Logistic Regression, 

Support Vector 

Machines, Decision 

Trees and Naive 

Bayes and Their 

Ensemble 

Kate, R. J., R. M. 

Perez, et al. 

(2016) 

Prediction and detection 

models for acute kidney 

injury in hospitalized older 

adults 

47 

An Ensemble of 

Artificial Neural 

Network- Multilayer 

Perceptron, K-Nearest 

Neighbours and 

Support Vector 

Machine 

Lahijanian, B., F. 

V. Farahani, et al. 

(2016) 

A New Multiple Classifier 

System for Diagnosis of 

Erythemato-Squamous 

Diseases Based on Rough 

Set Feature Selection 

48 
Support Vector 

Machine 

Liu, C., Y. Huang, 

et al. (2016) 

Hierarchical Feature 

Extraction for Nuclear 

Morphometry-Based Cancer 

Diagnosis 

49 K-Nearest Cardenas-Pena, Enhanced Data 
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Neighbours, Support 

Vector Machine, 

and Artificial Neural 

Networks 

D., D. Collazos-

Huertas, et al. 

(2017) 

Representation by Kernel 

Metric Learning for 

Dementia Diagnosis 

50 
Support Vector 

Machine 

Orimaye, S. O., J. 

S. M. Wong, et al. 

(2017) 

Predicting probable 

Alzheimer's disease using 

linguistic deficits and 

biomarkers 

51 

Ensemble Classifiers 

of Support Vector 

Machine, Decision 

Tree-C5.0, and Naive 

Bayes 

Helal, M. E., M. 

Elmogy, et al. 

(2017) 

Hybrid Rough Set and 

Heterogeneous Ensemble 

Classifiers Model for Cancer 

Classification 

52 

Ensemble Classifiers 

of Random Forest, 

Support Vector 

Machine, and 

Artificial Neural 

Network- Extreme 

Learning Machine 

Li, Y. M., L. Y. 

Yang, et al. 

(2017) 

Classification of Parkinson's 

Disease by Decision Tree 

Based Instance Selection 

and Ensemble Learning 

Algorithms 

53 

Artificial Neural 

Network-

Backpropagation 

Neural Network, and 

Support Vector 

Machine 

Singh, B. K., K. 

Verma, et al. 

(2017) 

Risk stratification of 2D 

ultrasound-based breast 

lesions using hybrid feature 

selection in machine 

learning paradigm 

54 
Artificial Neural 

Network 

Alshamrani, B. S. 

and A. H. Osman 

(2017) 

Investigation of Hepatitis 

Disease Diagnosis using 

Different Types of Neural 
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Network Algorithms 

55 
Artificial Neural 

Network 

Arabasadi, Z., R. 

Alizadehsani, et 

al. (2017) 

Computer aided decision 

making for heart disease 

detection using hybrid 

neural network-Genetic 

algorithm 

56 
Artificial Neural 

Network 

Arabasadi, Z., R. 

Alizadehsani, et 

al. (2017) 

Computer aided decision 

making for heart disease 

detection using hybrid 

neural network-Genetic 

algorithm 

57 

Artificial Neural 

Network-Radial 

Basis Function 

Network, Adaptive 

Boosting (Adaboost) 

and Additive Logistic 

Regression 

Aydin, F. and Z. 

Aslan (2017) 

Diagnosis of neuro 

degenerative diseases using 

machine learning methods 

and wavelet transform 

58 
Artificial Neural 

Network 

Azmi, M. H., M. I. 

Saripan, et al. 

(2017) 

F-18-FDG PET brain images 

as features for Alzheimer 

classification 

59 

Artificial Neural 

Network- 

Convolutional Neural 

Network 

Bernal, J., N. 

Tajkbaksh, et al. 

(2017) 

Comparative Validation of 

Polyp Detection Methods in 

Video Colonoscopy: Results 

From the MICCAI 2015 

Endoscopic Vision Challenge 

60 

Artificial Neural 

Network- 

Backpropagation 

Bi, S. S., Q. W. 

Wang, et al. 

(2017) 

Automatic Monolayer 

Identification Based on 

Genetic Neural Network 
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Neural Network 

61 

Artificial Neural 

Network-

Convolutional Neural 

Networks, and 

Random Forests 

Burlina, P., S. 

Billings, et al. 

(2017) 

Automated diagnosis of 

myositis from muscle 

ultrasound: Exploring the 

use of machine learning and 

deep learning methods 

62 
Artificial Neural 

Network 

Choi, E., A. 

Schuetz, et al. 

(2017) 

Using recurrent neural 

network models for early 

detection of heart failure 

onset 

63 
Artificial Neural 

Network 

Choi, J. Y., T. K. 

Yoo, et al. (2017) 

Multi-categorical deep 

learning neural network to 

classify retinal images: A 

pilot study employing small 

database 

64 

Artificial Neural 

Network-Extreme 

Learning Machine 

Cui, G. Q., L. B. 

Xia, et al. (2017) 

Automatic Classification of 

Epileptic 

Electroencephalogram Based 

on Multiscale Entropy and 

Extreme Learning Machine 

65 

Artificial Neural 

Network-Multilayer 

Perceptron 

Iliou, T., C. N. 

Anagnostopoulos, 

et al. (2017) 

A novel data preprocessing 

method for boosting neural 

network performance: A 

case study in osteoporosis 

prediction 

66 

Artificial Neural 

Network-Extreme 

Learning Machine 

Kuppili, V., M. 

Biswas, et al. 

(2017) 

Extreme Learning Machine 

Framework for Risk 

Stratification of Fatty Liver 

Disease Using Ultrasound 
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Tissue Characterization 

67 

Artificial Neural 

Network-Extreme 

Learning Machine 

Lama, R. K., J. 

Gwak, et al. 

(2017) 

Diagnosis of Alzheimer's 

Disease Based on Structural 

MRI Images Using a 

Regularized Extreme 

Learning Machine and PCA 

Features 

68 

Artificial Neural 

Network-Extreme 

Learning Machine 

Lu, S. Y., X. Qiu, 

et al. (2017) 

A Pathological Brain 

Detection System based on 

Extreme Learning Machine 

Optimized by Bat Algorithm 

69 
Artificial Neural 

Network 

Mamuda, M. and 

S. Sathasivam 

(2017) 

The development of 

Adaptive Neuro-Fuzzy 

Inference System model to 

diagnosis diabetes disease 

data set 

70 

Artificial Neural 

Network-Extreme 

Learning Machine 

Wang, Y., A. N. 

Wang, et al. 

(2017) 

An adaptive kernel-based 

weighted extreme learning 

machine approach for 

effective detection of 

Parkinson's disease 

71 

Artificial Neural 

Network-

Backpropagation 

Neural Network 

Zaman, S. and R. 

Toufiq (2017) 

Codon Based Back 

Propagation Neural Network 

Approach to Classify 

Hypertension Gene 

Sequences 

72 

Artificial Neural 

Network-Extreme 

Learning Machine 

Avci, D. (2016) 

An Automatic Diagnosis 

System for Hepatitis 

Diseases Based on Genetic 
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Wavelet Kernel Extreme 

Learning Machine 

73 

Artificial Neural 

Network-

Probabilistic, 

Multilayer Perceptron, 

Radial Basis Function, 

and Alternating 

Decision Tree 

(ADTree) 

Das, D. K., C. 

Chakraborty, et al. 

(2016) 

Automated Screening 

Methodology for Asthma 

Diagnosis that Ensembles 

Clinical and Spirometric 

Information 

74 

Artificial Neural 

Network-Multilayer 

Perceptron, and 

Cascade-forward 

Back Propagation 

Network 

El-Baz, A. H., A. E. 

Hassanien, et al. 

(2016) 

Identification of Diabetes 

Disease Using Committees 

of Neural Network-Based 

Classifiers 

75 

Artificial Neural 

Network-Multilayer 

Perceptron 

Kumari, V. S. R. 

and P. R. Kumar 

(2016) 

Classification of cardiac 

arrhythmia using hybrid 

genetic algorithm 

optimisation for multi-layer 

perceptron neural network 

76 

Artificial Neural 

Networks-

Feedforward Neural 

Network that Uses 

Backpropagation 

Learning Algorithm, 

and Radial Basis 

Function Networks 

Helwan, A., D. U. 

Ozsahin, et al. 

(2017) 

One-Year Survival Prediction 

of Myocardial Infarction 
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77 

Artificial Neural 

Network-

Backpropagation 

Neural Network, and 

Support Vector 

Machine 

Singh, B. K., K. 

Verma, et al. 

(2017) 

Risk stratification of 2D 

ultrasound-based breast 

lesions using hybrid feature 

selection in machine 

learning paradigm 

78 

Artificial Neural 

Network-

Backpropagation 

Neural Network 

Sudha, M. (2017) 

Evolutionary and Neural 

Computing Based Decision 

Support System for Disease 

Diagnosis from Clinical Data 

Sets in Medical Practice 

79 

Support Vector 

Machine, Artificial 

Neural Network 

Alyami, R., J. 

Alhajjaj, et al. 

(2017) 

Investigating the effect of 

Correlation based Feature 

Selection on breast cancer 

diagnosis using Artificial 

Neural Network and Support 

Vector Machines 

80 

Support Vector 

Machine and 

Artificial Neural 

Network 

Morabito, F. C., M. 

Campolo, et al. 

(2017) 

Deep Learning 

Representation from 

Electroencephalography of 

Early-Stage Creutzfeldt-

Jakob Disease and Features 

for Differentiation from 

Rapidly Progressive 

Dementia 

81 

Support Vector 

Machine, Decision 

Trees, and Artificial 

Neural Network 

Shrivastava, V. K., 

N. D. Londhe, et 

al. (2017) 

A novel and robust Bayesian 

approach for segmentation 

of psoriasis lesions and its 

risk stratification 
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82 

Ensemble Classifier of 

Bagged Decision Tree, 

Support Vector 

Machine, Decision 

Trees, and Artificial 

Neural Network-

Multilayer Perceptron 

Mohebian, M. R., 

H. R. Marateb, et 

al. (2017) 

A Hybrid Computer-aided-

diagnosis System for 

Prediction of Breast Cancer 

Recurrence (HPBCR) Using 

Optimized Ensemble 

Learning 

83 

Support Vector 

Machine, and 

Artificial Neural 

Network-Multilayer 

Perceptron 

Nalluri, M. R., K. 

Kannan, et al. 

(2017) 

Hybrid Disease Diagnosis 

Using Multiobjective 

Optimization with 

Evolutionary Parameter 

Optimization 

84 

K-Nearest 

Neighbours, Artificial 

Neural Network-

Radial Basis Function 

Network, Probabilistic 

Neural Network, 

Artificial Neural 

Networks-Multilayer 

Feedforward Neural 

Network 

Ucar, M. K., M. R. 

Bozkurt, et al. 

(2017) 

Automatic detection of 

respiratory arrests in OSA 

patients using PPG and 

machine learning techniques 

85 

Support Vector 

Machine, and 

Artificial Neural 

Network-Multilayer 

Perceptron, Radial 

Basis Function 

Azzawi, H., J. Y. 

Hou, et al. (2016) 

Lung cancer prediction from 

microarray data by gene 

expression programming 

86 Support Vector Berikol, G. B., O. Diagnosis of Acute Coronary 
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Machine, Artificial 

Neural Network, 

Naive Bayes, and 

Logistic Regression 

Yildiz, et al. 

(2016) 

Syndrome with a Support 

Vector Machine 

87 

Naive Bayes, Decision 

Tree, Artificial 

Neural Network-

Multilayer Perceptron, 

Radial Basis Function 

Ionita, I. and L. 

Ionita (2016) 

Prediction of Thyroid Disease 

Using Data Mining 

Techniques 

88 

An Ensemble of 

Artificial Neural 

Network-Multilayer 

Perceptron, K-Nearest 

Neighbours and 

Support Vector 

Machine 

Lahijanian, B., F. 

V. Farahani, et al. 

(2016) 

A New Multiple Classifier 

System for Diagnosis of 

Erythemato-Squamous 

Diseases Based on Rough 

Set Feature Selection 

89 

K-Nearest 

Neighbours, Support 

Vector Machine, and 

Artificial Neural 

Networks 

Cardenas-Pena, 

D., D. Collazos-

Huertas, et al. 

(2017) 

Enhanced Data 

Representation by Kernel 

Metric Learning for 

Dementia Diagnosis 

90 

Ensemble Classifiers 

of Random Forest, 

Support Vector 

Machine, and 

Artificial Neural 

Network- Extreme 

Learning Machine 

Li, Y. M., L. Y. 

Yang, et al. 

(2017) 

Classification of Parkinson's 

Disease by Decision Tree 

Based Instance Selection 

and Ensemble Learning 

Algorithms 

91 K-Nearest Ucar, M. K., M. R. Automatic detection of 
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Neighbours, Artificial 

Neural Networks- 

Multilayer 

Feedforward Neural 

Network, Radial Basis 

Function Neural 

Network, Probabilistic 

Neural Network, and 

ensemble 

classification method 

Bozkurt, et al. 

(2017) 

respiratory arrests in OSA 

patients using PPG and 

machine learning techniques 

92 

Disjunctive Normal 

Form Rule Based 

Method, Decision 

Trees, Naive Bayes, 

and Support Vector 

Machine 

Deng, C. and M. 

Perkowski (2017) 

A General Data Mining 

Methodology Based on a 

Weighted Hierarchical 

Adaptive Voting Ensemble 

(WHAVE) Machine Learning 

Method 

93 

Support Vector 

Machine (SVM)-Linear 

SVM, Quadratic SVM, 

Cubic SVM, Medium 

Gaussian SVM, 

Decision Tree, and 

Ensemble Subspace 

Discriminant machine 

learning 

Ekiz, S. and P. 

Erdogmus (2017) 

Comparative Study of Heart 

Disease Classification 

94 

Support Vector 

Machine, Decision 

Trees, and Artificial 

Neural Network 

Shrivastava, V. K., 

N. D. Londhe, et 

al. (2017) 

A novel and robust Bayesian 

approach for segmentation 

of psoriasis lesions and its 

risk stratification 



 

50 
 

95 

Ensemble Classifier of 

Bagged Decision Tree, 

Support Vector 

Machine, Decision 

Trees, and Artificial 

Neural Network- 

Multilayer Perceptron 

Mohebian, M. R., 

H. R. Marateb, et 

al. (2017) 

A Hybrid Computer-aided-

diagnosis System for 

Prediction of Breast Cancer 

Recurrence (HPBCR) Using 

Optimized Ensemble 

Learning 

96 

Support Vector 

Machine, Decision 

Trees, Naive Bayes, 

K-Nearest Neighbours 

Asri, H., H. 

Mousannif, et al. 

(2016) 

Using Machine Learning 

Algorithms for Breast Cancer 

Risk Prediction and 

Diagnosis 

97 

Decision Tree and 

Support Vector 

Machine 

Karimi-Alavijeh, F., 

S. Jalili, et al. 

(2016) 

Predicting metabolic 

syndrome using decision 

tree and support vector 

machine methods 

98 

Logistic Regression, 

Support Vector 

Machines, Decision 

Trees and Naive 

Bayes and Their 

Ensemble 

Kate, R. J., R. M. 

Perez, et al. 

(2016) 

Prediction and detection 

models for acute kidney 

injury in hospitalized older 

adults 

99 

Naive Bayes, 

Decision Tree, 

Artificial Neural 

Network-Multilayer 

Perceptron, Radial 

Basis Function 

Ionita, I. and L. 

Ionita (2016) 

Prediction of Thyroid Disease 

Using Data Mining 

Techniques 

100 
K-Nearest 

Neighbours, Random 

Amaral, J. L. M., 

A. J. Lopes, et al. 

High-accuracy detection of 

airway obstruction in asthma 
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Forest, AdaBoost with 

Decision Trees, and 

Feature-based 

Dissimilarity Space 

Classifier 

(2017) using machine learning 

algorithms and forced 

oscillation measurements 

101 
Decision Tree and 

K-Nearest Neighbour 

Hashi, E. K., M. S. 

U. Zaman, et al. 

(2017) 

An Expert Clinical Decision 

Support System to Predict 

Disease Using Classification 

Techniques 

102 

Ensemble Classifiers 

of Support Vector 

Machine, Decision 

Tree-C5.0, and Naive 

Bayes 

Helal, M. E., M. 

Elmogy, et al. 

(2017) 

Hybrid Rough Set and 

Heterogeneous Ensemble 

Classifiers Model for Cancer 

Classification 

103 Decision Trees 

Topalovic, M., S. 

Laval, et al. 

(2017) 

Automated Interpretation of 

Pulmonary Function Tests in 

Adults with Respiratory 

Complaints 

104 
Decision Trees, and 

K-Nearest Neighbours 

Hashi, E. K., M. S. 

U. Zaman, et al. 

(2017) 

An Expert Clinical Decision 

Support System to Predict 

Disease Using Classification 

Techniques 

105 Decision Tree 
Balasus, D., M. 

Way, et al. (2016) 

The association of variants 

in PNPLA3 and GRP78 and 

the risk of developing 

hepatocellular carcinoma in 

an Italian population 

106 Random Forest 
Ardekani, B. A., E. 

Bermudez, et al. 

Prediction of Incipient 

Alzheimer's Disease 
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(2017) 

 

Dementia in Patients with 

Mild Cognitive Impairment 

107 Random Forest 

Balakrishna, T., B. 

Narendra, et al. 

(2017) 

Diagnosis of Chronic Kidney 

Disease Using Random 

Forest Classification 

Technique 

108 Random Forest 

Chaganti, S., K. P. 

Nabar, et al. 

(2017) 

Phenotype Analysis of Early 

Risk Factors from Electronic 

Medical Records Improves 

Image-Derived Diagnostic 

Classifiers for Optic Nerve 

Pathology 

109 Random Forest 

Chiappini, F., A. 

Coilly, et al. 

(2017) 

Metabolism dysregulation 

induces a specific lipid 

signature of nonalcoholic 

steatohepatitis in patients 

110 Random Forest 

Chirikov, V. V., F. 

T. Shaya, et al. 

(2017) 

Tree-based Claims Algorithm 

for Measuring Pretreatment 

Quality of Care in Medicare 

Disabled Hepatitis C Patients 

111 

Ensemble Classifiers 

of Random Forest, 

Support Vector 

Machine, and Artificial 

Neural Network- 

Extreme Learning 

Machine 

Li, Y. M., L. Y. 

Yang, et al. 

(2017) 

Classification of Parkinson's 

Disease by Decision Tree 

Based Instance Selection 

and Ensemble Learning 

Algorithms 

112 
Support Vector 

Machine, Random 

Bazazeh, D. and 

R. Shubair (2016) 

Comparative Study of 

Machine Learning Algorithms 
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Forest, and Bayesian 

Network 

for Breast Cancer Detection 

and Diagnosis 

113 

Random Forest, and 

Support Vector 

Machine 

Lin, T., T. B. Liu, et 

al. (2017) 

Serum levels of chemical 

elements in esophageal 

squamous cell carcinoma in 

Anyang, China: a case-

control study based on 

machine learning methods 

114 

Random Forest, K-

Nearest Neighbours, 

and Support Vector 

Machine 

Zhou, W. C., Y. Y. 

Ma, et al. (2017) 

Predictive model for 

inflammation grades of 

chronic hepatitis B: Large-

scale analysis of clinical 

parameters and gene 

expressions 

115 

Support Vector 

Machine, Naive 

Bayes, Random 

Forest, and K-

Nearest Neighbours 

Chen, Y., Y. Luo, et 

al. (2017) 

Machine-learning-based 

classification of real-time 

tissue elastography for 

hepatic fibrosis in patients 

with chronic hepatitis B 

116 

K-Nearest 

Neighbours, Random 

Forest, AdaBoost 

with Decision Trees, 

and Feature-based 

Dissimilarity Space 

Classifier 

Amaral, J. L. M., 

A. J. Lopes, et al. 

(2017) 

High-accuracy detection of 

airway obstruction in asthma 

using machine learning 

algorithms and forced 

oscillation measurements 

117 

K-Nearest 

Neighbours, Support 

Vector Machine, and 

Cardenas-Pena, 

D., D. Collazos-

Huertas, et al. 

Enhanced Data 

Representation by Kernel 

Metric Learning for 
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Artificial Neural 

Networks 

(2017) Dementia Diagnosis 

118 

Support Vector 

Machine, Naive 

Bayes, Random 

Forest, and K-

Nearest 

Neighbours 

Chen, Y., Y. Luo, et 

al. (2017) 

Machine-learning-based 

classification of real-time 

tissue elastography for 

hepatic fibrosis in patients 

with chronic hepatitis B 

119 

Random Forest, K-

Nearest 

Neighbours, and 

Support Vector 

Machine 

Zhou, W. C., Y. Y. 

Ma, et al. (2017) 

Predictive model for 

inflammation grades of 

chronic hepatitis B: Large-

scale analysis of clinical 

parameters and gene 

expressions 

120 

Support Vector 

Machine, Decision 

Trees, Naive Bayes, 

K-Nearest 

Neighbours 

Asri, H., H. 

Mousannif, et al. 

(2016) 

Using Machine Learning 

Algorithms for Breast Cancer 

Risk Prediction and 

Diagnosis 

121 

Naive Bayes, K-

Nearest 

Neighbours, and 

Support Vector 

Machine 

Begum, S., D. 

Chakraborty, et al. 

(2016) 

Identifying cancer 

biomarkers from leukemia 

data using feature selection 

and supervised learning 

122 

An Ensemble of 

Artificial Neural 

Network- Multilayer 

Perceptron, K-

Nearest 

Lahijanian, B., F. 

V. Farahani, et al. 

(2016) 

A New Multiple Classifier 

System for Diagnosis of 

Erythemato-Squamous 

Diseases Based on Rough 

Set Feature Selection 
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Neighbours and 

Support Vector 

Machine 

123 

K-Nearest 

Neighbours, 

Artificial Neural 

Network-Radial Basis 

Function Network, 

Probabilistic Neural 

Network, Artificial 

Neural Networks- 

Multilayer 

Feedforward Neural 

Network 

Ucar, M. K., M. R. 

Bozkurt, et al. 

(2017) 

Automatic detection of 

respiratory arrests in OSA 

patients using PPG and 

machine learning techniques 

124 

K-Nearest 

Neighbours, 

Random Forest, 

AdaBoost with 

Decision Trees, and 

Feature-based 

Dissimilarity Space 

Classifier 

Amaral, J. L. M., 

A. J. Lopes, et al. 

(2017) 

High-accuracy detection of 

airway obstruction in asthma 

using machine learning 

algorithms and forced 

oscillation measurements 

125 
Decision Tree and K-

Nearest Neighbour 

Hashi, E. K., M. S. 

U. Zaman, et al. 

(2017) 

An Expert Clinical Decision 

Support System to Predict 

Disease Using Classification 

Techniques 

126 

Decision Trees, and 

K-Nearest 

Neighbours 

Hashi, E. K., M. S. 

U. Zaman, et al. 

(2017) 

An Expert Clinical Decision 

Support System to Predict 

Disease Using Classification 
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Techniques 

127 

K-Nearest 

Neighbours, 

Artificial Neural 

Networks- Multilayer 

Feedforward Neural 

Network, Radial Basis 

Function Neural 

Network, Probabilistic 

Neural Network, and 

ensemble 

classification method 

Ucar, M. K., M. R. 

Bozkurt, et al. 

(2017) 

Automatic detection of 

respiratory arrests in OSA 

patients using PPG and 

machine learning techniques 

128 
K-Nearest 

Neighbours 

Cuzzolin, F., M. 

Sapienza, et al. 

(2017) 

Metric learning for 

Parkinsonian identification 

from IMU gait 

measurements 

129 

Ensemble Classifier 

of Bagged Decision 

Tree, Support Vector 

Machine, Decision 

Trees, and Artificial 

Neural Network- 

Multilayer Perceptron 

Mohebian, M. R., 

H. R. Marateb, et 

al. (2017) 

A Hybrid Computer-aided-

diagnosis System for 

Prediction of Breast Cancer 

Recurrence (HPBCR) Using 

Optimized Ensemble 

Learning 

130 

An Ensemble of 

Artificial Neural 

Network- Multilayer 

Perceptron, K-Nearest 

Neighbours and 

Support Vector 

Lahijanian, B., F. 

V. Farahani, et al. 

(2016) 

A New Multiple Classifier 

System for Diagnosis of 

Erythemato-Squamous 

Diseases Based on Rough 

Set Feature Selection 
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Machine 

131 

Ensemble 

Classifiers of 

Support Vector 

Machine, Decision 

Tree-C5.0, and Naive 

Bayes 

Helal, M. E., M. 

Elmogy, et al. 

(2017) 

Hybrid Rough Set and 

Heterogeneous Ensemble 

Classifiers Model for Cancer 

Classification 

132 

Ensemble 

Classifiers of 

Random Forest, 

Support Vector 

Machine, and Artificial 

Neural Network- 

Extreme Learning 

Machine 

Li, Y. M., L. Y. 

Yang, et al. 

(2017) 

Classification of Parkinson's 

Disease by Decision Tree 

Based Instance Selection 

and Ensemble Learning 

Algorithms 

133 

Logistic Regression, 

Support Vector 

Machines, Decision 

Trees and Naive 

Bayes and Their 

Ensemble 

Kate, R. J., R. M. 

Perez, et al. 

(2016) 

Prediction and detection 

models for acute kidney 

injury in hospitalized older 

adults 

134 

K-Nearest 

Neighbours, Artificial 

Neural Networks- 

Multilayer 

Feedforward Neural 

Network, Radial Basis 

Function Neural 

Network, Probabilistic 

Ucar, M. K., M. R. 

Bozkurt, et al. 

(2017) 

Automatic detection of 

respiratory arrests in OSA 

patients using PPG and 

machine learning techniques 
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Neural Network, and 

ensemble 

classification method 

135 

Support Vector 

Machine (SVM)-Linear 

SVM, Quadratic SVM, 

Cubic SVM, Medium 

Gaussian SVM, 

Decision Tree, and 

Ensemble Subspace 

Discriminant machine 

learning 

Ekiz, S. and P. 

Erdogmus (2017) 

Comparative Study of Heart 

Disease Classification 

136 

Support Vector 

Machine, Naive 

Bayes, Random 

Forest, and K-Nearest 

Neighbours 

Chen, Y., Y. Luo, et 

al. (2017) 

Machine-learning-based 

classification of real-time 

tissue elastography for 

hepatic fibrosis in patients 

with chronic hepatitis B 

137 

Disjunctive Normal 

Form Rule Based 

Method, Decision 

Trees, Naive Bayes, 

and Support Vector 

Machine 

Deng, C. and M. 

Perkowski (2017) 

A General Data Mining 

Methodology Based on a 

Weighted Hierarchical 

Adaptive Voting Ensemble 

(WHAVE) Machine Learning 

Method 

138 

Support Vector 

Machine, Decision 

Trees, Naive Bayes, 

K-Nearest Neighbours 

Asri, H., H. 

Mousannif, et al. 

(2016) 

Using Machine Learning 

Algorithms for Breast Cancer 

Risk Prediction and 

Diagnosis 

139 
Naive Bayes, K-

Nearest Neighbours, 

Begum, S., D. 

Chakraborty, et al. 

Identifying cancer 

biomarkers from leukemia 
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and Support Vector 

Machine 

(2016) data using feature selection 

and supervised learning 

140 

Support Vector 

Machine, Artificial 

Neural Network, 

Naive Bayes, and 

Logistic Regression 

Berikol, G. B., O. 

Yildiz, et al. 

(2016) 

Diagnosis of Acute Coronary 

Syndrome with a Support 

Vector Machine 

141 

Logistic Regression, 

Support Vector 

Machines, Decision 

Trees and Naive 

Bayes and Their 

Ensemble 

Kate, R. J., R. M. 

Perez, et al. 

(2016) 

Prediction and detection 

models for acute kidney 

injury in hospitalized older 

adults 

142 

Naive Bayes, 

Decision Tree, 

Artificial Neural 

Network-Multilayer 

Perceptron, Radial 

Basis Function 

Ionita, I. and L. 

Ionita (2016) 

Prediction of Thyroid Disease 

Using Data Mining 

Techniques 

143 

Ensemble Classifiers 

of Support Vector 

Machine, Decision 

Tree-C5.0, and Naive 

Bayes 

Helal, M. E., M. 

Elmogy, et al. 

(2017) 

Hybrid Rough Set and 

Heterogeneous Ensemble 

Classifiers Model for Cancer 

Classification 

144 Bayesian Network 

Somnay, Y. R., M. 

Craven, et al. 

(2017) 

Improving diagnostic 

recognition of primary 

hyperparathyroidism with 

machine learning 

145 Bayesian Network Ye, Y., M. M. A study of the transferability 
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Wagner, et al. 

(2017) 

of influenza case detection 

systems between two large 

healthcare systems 

146 

Support Vector 

Machine, Random 

Forest, and Bayesian 

Network 

Bazazeh, D. and 

R. Shubair (2016) 

Comparative Study of 

Machine Learning Algorithms 

for Breast Cancer Detection 

and Diagnosis 

147 Bayesian Networks 

Guerrero, J. M., R. 

Martinez-Tomas, 

et al. (2016) 

Diagnosis of Cognitive 

Impairment Compatible with 

Early Diagnosis of 

Alzheimer's Disease 

148 

Support Vector 

Machine, and 

Logistic Regression 

Tanaka, H., H. 

Adachi, et al. 

(2017) 

Detecting Dementia Through 

Interactive Computer 

Avatars 

149 

Support Vector 

Machine, Artificial 

Neural Network, 

Naive Bayes, and 

Logistic Regression 

Berikol, G. B., O. 

Yildiz, et al. 

(2016) 

Diagnosis of Acute Coronary 

Syndrome with a Support 

Vector Machine 

150 

Logistic 

Regression, Support 

Vector Machines, 

Decision Trees and 

Naive Bayes and 

Their Ensemble 

Kate, R. J., R. M. 

Perez, et al. 

(2016) 

Prediction and detection 

models for acute kidney 

injury in hospitalized older 

adults 

151 

Artificial Neural 

Network-Radial Basis 

Function Network, 

Adaptive Boosting 

Aydin, F. and Z. 

Aslan (2017) 

Diagnosis of neuro 

degenerative diseases using 

machine learning methods 

and wavelet transform 
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(Adaboost) and 

Additive Logistic 

Regression 

152 
Linear Regression 

Classification 

Chen, Y., Y. Shao, 

et al. (2017) 

A Feature-Free 30-Disease 

Pathological Brain Detection 

System by Linear Regression 

Classifier 

 

As can be observed in Table 2.2, a wide variety of approaches have been used to 

support disease diagnosis. We can analyse the popularity of the approaches to 

disease diagnosis based on the information in Table 2.2. Figure 2.1 presents the 

popularity of the approaches to disease diagnosis. 

 

From Figure 2.1, we can see that, among the approaches to disease diagnosis, the 

support vector machine (SVM) is the most popular, followed by artificial neural 

networks (ANN), decision tree, random forest, k-nearest neighbours, ensemble, 

naïve Bayes, Bayesian network, and logistic regression. 
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For the sepsis diagnosis, a number of researchers have made attempts to use 

machine learning approaches. Mani et al (2014) used support vector machine 

(SVM), naïve Bayes, K-nearest neighbours, decision tree, random forest, logistic 

regression, and etc., to develop non-invasive predictive models for sepsis from off-

the-shelf medical data and electronic medical records. It was found from the 

research of Gultepe et al (2014) that SVM classification can be used to predict 

mortality risk for patients with risk when the measurements of patients are 

summarized by summary statistics. Tang et al (2010) also used the nonlinear SVM 

in the classification of the sepsis continuum into severe sepsis and systemic 

inflammatory response syndrome (SIRS) groups. The study of Taylor et al (2016) 

shows that a machine learning approach using random forest methods 

outperformed clinical decision rules and traditional analytic techniques for 

predicting in-hospital mortality of emergency department patients with sepsis. Kam 

and Kim (2017) used neural networks to develop detection models for the early 

stage of sepsis. 

 
Figure 2.1 Popularity of approaches to disease diagnosis 
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2.5 Critical Analysis of Popular Approaches to Disease 

Diagnosis 

 

In this section, some of the popular approaches to disease diagnosis identified from 

Figure 2.1 will be critically analysed in Table 2.3. 

 

Table 2.3 Advantages and disadvantages of popular approaches to disease 

diagnosis 

Popular approaches 

to disease diagnosis 
Advantages Disadvantages 

Support vector 

machine (SVM) 

1. SVMs have strong 

generalization ability, as 

they are based on structural 

risk minimization principle. 

(Liu et al., 2010) 

 

2. SVMs can be robust, even 

when the training sample 

has some bias (Auria and 

Moro, 2008). 

 

3. The SVM algorithm is 

stable (Liu et al., 2010). 

 

 

4. The SVM classifier has a 

global optimum solution, as 

an SVM can be formulated as 

a quardratic programming 

problem (Abe, 2005). 

 

The extension of SVM to 

multiclass problems is 

not straightforward, as 

SVM uses direct decision 

functions (Abe, 2005). 
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Artificial neural 

networks (ANN) 

 

1. ANNs do not rely on the 

prescribed relationship 

between input and output, 

but rather seek its own 

relationship (Dowla and 

Rogers, 1995). 

 

2. ANN have the capability to 

detect complex nonlinear 

relationship between input 

and output (Tu, 1996). 

 

 

3. ANNs can be relatively 

tolerant to noisy, 

incomplete, or even spurious 

data (Dowla and Rogers, 

1995). 

 

4. The advantages of ANNs 

also include highly parallel 

processing, distributed 

memory, and error-

correction (Graham and 

Milne, 1991). 

 

1. An ANN is a “black 

box” in nature 

(Braspenning, Thuijsman 

and Weijters, 1995). It is 

difficult to interpret the 

ANN solutions. 

 

2. It is difficult to 

incorporate knowledge of 

a given problem 

(Braspenning, Thuijsman 

and Weijters, 1995). 

 

3. The disadvantages of 

ANNs also include 

proneness to overfitting, 

heavy computational 

burden, and empirical 

nature of model 

development (Tu, 1996). 

Decision tree 

1. Decision trees are self-

explanatory and easy to 

follow (Rokach and Maimon, 

1. Decision trees 

generally perform well if 

a few highly relevant 
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2015). 

 

2. Decision trees can deal 

with both nominal and 

numeric input values 

(Rokach and Maimon, 

2015). 

 

3. No assumptions are 

needed for the space 

distribution and the classifier 

structure (Rokach and 

Maimon, 2015). 

input variables exist, but 

less so if many complex 

interactions are present 

between input variables 

(Rokach and Maimon, 

2015). 

 

2. The disadvantages of 

decision trees also 

include over-sensitivity to 

the training set, 

irrelevant input variables, 

and noise (Rokach and 

Maimon, 2015). 

Random Forest 

1. Random forest is more 

robust than just a single 

decision tree (Cole, 2018). 

 

2. Random forest balances 

bias and variance 

(Hodeghatta and Nayak, 

2016). 

 

3. Random forest is more 

efficient to build than other 

models, e.g., SVM 

(Hodeghatta and Nayak, 

2016). 

1. Random forest is 

computationally 

expensive, as the number 

of recommended trees is 

large (Moreira, Carvalho, 

and Horváth, 2018). 

 

2. Random forest is not 

easy to interpret (Gupta, 

2018). 

 

3. If the data consists of 

correlated input 

variables, random forest 

variable importance 
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measure is not reliable 

and can be misleading 

(Gupta, 2018). 

K-nearest neighbours 

(KNN) 

1. KNN is very simple to 

understand and easy to 

implement (Cord and 

Cunningham, 2008). 

 

2. As the process of KNN is 

transparent, KNN is easy to 

debug (Cord and 

Cunningham, 2008). 

 

3. KNN can be effective if an 

analysis of the neighbours is 

useful as explanation in 

situations where an 

explanation of the output of 

the classifier is useful (Cord  

and Cunningham, 2008). 

 

1. KNN is very sensitive 

to irrelevant or redundant 

input variables, as all 

input variables contribute 

to similarity and thus to 

the classification (Cord 

and Cunningham, 2008). 

 

2. KNN may be 

outperformed by the 

classifiers, e.g., SVM and 

ANN (Cord and 

Cunningham, 2008). 

 

Ensemble 

1. The ensemble classifier 

generally produces more 

accurate predictions than 

the base classifiers from 

which the ensemble 

classifier is made (Patil, 

Aghav and Sareen, 2016). 

 

 

The main disadvantages 

of ensemble classifiers 

include the difficulties in 

the interpretation of the 

decisions of the ensemble 

and their extensive 

computational 
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2. The ensemble classifier 

may be more stable and it 

may have a smaller variance 

than base classifiers 

(Homenda and Pedrycz, 

2018) 

requirements (El-Gayar, 

Kittler and Roli, 2010). 

Naïve Bayes 

 

1. The computational 

complexity of naïve Bayes is 

low compared to other 

classifiers, e.g., decision 

trees (Maimon and Rokach, 

2005). 

 

2. Naïve Bayes classifiers are 

simple and easy to 

understand (Maimon and 

Rokach, 2005). 

 

3. Other advantages of 

Naïve Bayes include the easy 

adaptation to the 

incremental learning 

environments and the 

resistance to irrelevant input 

variables (Maimon and 

Rokach, 2005). 

 

 

1. Naïve Bayes assumes 

that the input variables in 

the data set are 

completely independent 

of each other (Mehta, 

2017), which is not 

practical in the real world 

(Nicolas, 2015). 

 

2. Naïve Bayes is limited 

to simplified models, 

which in some cases are 

far from representing the 

complicated nature of the 

problem (Maimon and 

Rokach, 2005). 

Bayesian Network 1. A distinct advantage of 1. The first disadvantage 
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Bayesian networks is the 

capability to incorporate 

domain-specific knowledge 

into the network structure, 

so that the overall joint 

probability distribution is 

represented as a set of 

conditionally independent 

relationships which are 

easier to characterize (Mittal 

and Kassim, 2007). 

 

2. The advantages of 

Bayesian network include 

explicit uncertainty 

characterization, efficient 

computation, easy 

construction, adaptability, 

good generalization with 

limited training data, and 

easy retaining when pruning 

or adding new input 

variables (Mittal and Kassim, 

2007). 

of Bayesian network is 

the computational 

difficulty of exploring a 

previously unknown 

network (Holmes and 

Jain, 2008). 

 

2. The second 

disadvantage is about the 

quality and extent of the 

prior beliefs used in the 

Bayesian network 

(Holmes and Jain, 2008). 

A Bayesian network is 

only useful when the 

prior knowledge is 

reliable (Holmes and 

Jain, 2008). An 

excessively optimistic or 

pessimistic expectation of 

the quality of the prior 

beliefs will distort the 

entire Bayesian network 

and invalidate the results 

(Holmes and Jain, 2008). 

Logistic regression 

 

1. Logistic regression is 

easily interpretable 

(Moreira, Carvalho, and 

1. Logistic regression 

classifiers are restricted 

to linearly separable 

binary classification tasks 
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Horváth, 2018). 

 

2. The conditions of using 

logistic regression are less 

restrictive than those for 

linear discriminant analysis 

(Tuffery, 2011). 

(Moreira, Carvalho, and 

Horváth, 2018). 

 

2. Logistic regression 

classifiers are sensitive to 

correlative input 

variables and outliers 

(Moreira, Carvalho, and 

Horváth, 2018). 

 

From Table 2.3, we can see that there are some issues, e.g., interpretability and 

dependence of input variables in the popular approaches to disease diagnosis. To 

address these issues, we develop a new modelling and prediction approach, i.e., 

the rule-based inferential modelling and prediction approach to disease diagnosis, 

which will be introduced in Chapter 3. 
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Chapter 3 Research Methodologies 

 

3.1 Introduction 

 

In this chapter, the research methodologies of the thesis are introduced briefly from 

the perspective of basic principles. The remainder of the chapter is organised as 

follows. Section 3.2 presents an overview of general research methods. Section 3.3 

justifies the choices of functions in the univariate functions approximation and the 

bivariate functions approximation. In Section 3.4, we briefly introduce the 

evidential reasoning (ER) rule. The research methods for rule-based inferential 

modelling and prediction are presented in Section 3.5. Section 3.6 describes an 

adapted genetic algorithm used for the bilevel optimisation of the maximum 

likelihood evidential reasoning (MAKER)-based models in this research. Section 3.7 

summarises this chapter. 

 

3.2 General Research Methods 

 

Research is concerned with making efforts to develop a better understanding of the 

functioning of the world (Oliver, 2010). Qualitative and quantitative research 

methods are generally two fundamentally different paradigms through which we 

study the world (Brannen, 2005). 

 

Qualitative research is a type of empirical research in which the data are not 

numeric (Punch, 2013). Qualitative research is aimed at studying the social reality 

of individuals, groups, and cultures (McLeod, 2017). A wide variety of methods 

have been developed to understand how people perceive their social realities and 

how they behave in the social world. These methods include diary accounts, 

questionnaires, observations, interviews, and ethnographies. 



 

71 
 

Quantitative research is a type of research where data are gathered in a numerical 

form (McLeod, 2017). The objective of quantitative research is to formulate general 

laws of behaviours and phenomena in different settings. The typical methods to 

obtain quantitative data are experiments, controlled observations, questionnaires, 

and so on. We can use statistics, machine learning, etc., to transform quantitative 

data into useful information for decision-making. All the data used in this research 

are numeric, and we propose a new approach for sepsis diagnosis using 

quantitative data, which is compared with alternative approaches. Hence, the 

research methods in this research are essentially quantitative. 

 

3.3 Data Collection 

 

As discussed in Section 1.6, functions approximation in this thesis is used to explore 

the capacity of models based on the MAKER framework to approximate functions, 

allowing us to achieve a possible compromise between the complexity and accuracy 

of the MAKER-based models. Hence, we need to evaluate the capabilities of MAKER-

based models to approximate different types of functions. In this research, we 

select several types of univariate functions that have different characteristics to 

evaluate the general applicability of the approximation of the MAKER-based models. 

These functions are exponential functions y = 𝑎𝑥, logarithmic functions 𝑦 = log𝑎 𝑥, 

power functions 𝑦 = 𝑥𝑎, function 𝑦 = −(𝑥 − 0.5)2 + 0.25, and function 𝑦 = 𝑒−(𝑥−2)
2
+

0.5𝑒−(𝑥+2)
2
, which represent convex functions, concave functions, functions of which 

the mean curvatures are large, simple non-monotonic univariate functions, and 

complex non-monotonic univariate functions. The functions y = 𝑎𝑥, y = log𝑎 𝑥, and 

y = 𝑥𝑎  are monotonic and have different convexity or mean curvatures. The 

functions y = −(𝑥 − 0.5)2 + 0.25 and y = 𝑒−(𝑥−2)
2
+ 0.5𝑒−(𝑥+2)

2
 are both non-monotonic, 

and they are unimodal and bimodal respectively. The non-monotonic functions are 

generally more complex than monotonic functions. All of these functions are 

selected to check whether the MAKER-based models can well approximate different 

types of univariate functions. 
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To evaluate the capability of the MAKER-based models to approximate more 

complex functions such as bivariate functions, we take the Himmelblau function as 

an example to perform functions approximation. Himmelblau function is a 

commonly used function for testing optimisation techniques (Chen et al., 2011), 

and this function is a multi-modal function. 

 

On the basis of the functions approximation, we move on to the validation of the 

MAKER-based models on classical data sets, including the Banana data set, 

Haberman’s survival data set, and Iris data set. 

 

The Banana data set, which includes 5300 observations, is an artificial data set in 

which the observations belong to several clusters with a banana shape. In the data 

set, there are two input variables, At1 and At2, corresponding to the x-axis and y-

axis respectively. The output variable of the data set has two classes that represent 

two banana shapes. 

 

The Haberman’s survival data set (Haberman, 1976) consists of observations about 

the survival of patients who underwent surgery for breast cancer from a study 

conducted between 1958 and 1970 at the University of Chicago’s Billings Hospital. 

There are a total of 306 observations in the data set. The data set has three input 

variables: age of patient at time of operation, patients’ year of operation, and 

number of positive axillary nodes detected. In the data set, the output variable, 

which is about survival status, contains two classes: the patient survived 5 years 

or longer and the patient died within 5 years. 

 

The Iris data set (Fisher, 1936; 1950) is one of the most famous data sets in the 

field of machine learning. The data set contains 4 input variables: sepal length, 

sepal width, petal length, and petal width. The output variable of the data set is 

composed of three classes: Iris Setosa, Iris Versicolour, and Iris Virginica. Each of 
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these classes contains 50 observations, so there are altogether 150 observations 

in the data set. 

 

All these data sets are selected to check whether the MAKER-based models can 

perform well compared to other models in the classification of these data sets, and 

all these data sets are downloaded from the Knowledge Extraction based on 

Evolutionary Learning (KEEL) data set repository (Alcalá-Fdez et al., 2011) 

available at http://sci2s.ugr.es/keel/category.php?cat=clas. This repository is a 

data set repository of KEEL, which is an open-source Java software tool that can be 

used for a large number of different knowledge data discovery tasks. Each of the 

data sets mentioned above is divided into five folds using distribution optimally 

balanced stratified cross-validation before being downloaded from the KEEL data 

set repository so that the class distribution of the whole data set is reflected in 

separate folds (Aggarwal, 2015). 

 

Based on the functions approximation and classification of classical data sets, we 

apply the inferential modelling and prediction approach to establish a classifier for 

sepsis diagnosis. 

 

The original sepsis data set is collected from several hospitals in Northwest England. 

The data are totally confidential and fully anonymous. Table 3.1 summarises the 

data in this research. 

Table 3.1 Summary of the original sepsis data set 

Items Instances 

Features of Patients 

Identification 

Biomarkers Patient Information Diagnosis 

Core 

None-

core 

Basic 

Hospitalisation 

on Sample 

Day 

Patient 

Outcome 

Patient 

Group 

Others 

Number 922 1 5 6 3 2 3 1 2 

 

http://sci2s.ugr.es/keel/category.php?cat=clas
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In this data set, there are 922 instances and four types of patient features: 

identification, patients’ test results of biomarkers (core and non-core), patient 

information, and patients’ diagnoses. Among them, patients’ test results of 

biomarkers include CRP, IL6, IL10, PCT, and WCC. 

 

Table 3.2 Categories of patients of original sepsis data set 

Categories Explanation of Propositions 

Sepsis-1 

(θ1) 

Patients Are Diagnosed with Sepsis (Pathogens only in Blood). 

Sepsis-2 

(θ2) 

Patients Are Diagnosed with Sepsis (Pathogens in Blood and 

Elsewhere). 

Sepsis-3 

(θ3) 

Patients Are Diagnosed with Sepsis (No Pathogens in Blood, but 

Pathogens Elsewhere). 

Unknown 

(θ4) 

There Are No Sufficient Pieces of Evidence to Support the Diagnosis 

of Sepsis or That of Non-Sepsis (No Pathogens in Blood; No 

Pathogens Elsewhere; but with Clinical Adjudication of Infection). 

Non-sepsis 

(𝜃5) 

Patients Are Diagnosed with Non-Sepsis (No Pathogens in Blood; 

No Pathogens Elsewhere; No Clinical Adjudication of Infection). 

 

Table 3.2 shows the categories of patients of the original data set. Among the 

categories of patients, θ1, θ2, and θ3 indicate that patients have sepsis, whereas θ5 

indicates that patients do not have sepsis. θ4 implies that patients may or may not 

have sepsis on the basis of objective pieces of evidence and clinical adjudication 

for infection. On the basis of the original sepsis data set, we perform the data 

preparation discussed in Section 6.2 to generate a sepsis data set for sepsis 

diagnosis, which is presented in Chapter 6. 
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3.4 Review of Evidential Reasoning Theories 

 

As mentioned in Chapter 2, classification is one of the most common supervised 

machine learning tasks. Classification imprecision is likely due to the fact that the 

values of an input variable of an observation cannot be mapped to a certain class 

explicitly (Zhang et al., 2014; Denoeux, 2000; 1995). Dempster-Shafer evidence 

theory (DST) can be used to deal with classification imprecision. In DST, we should 

first identify a frame of discernment (FoD) to contain all of pre-assigned class 

memberships. Then we can perform basic belief assignment to generate a belief 

distribution (BD) where the belief degrees are used to measure the extent to which 

data fragments of predictor variables point to different classes or subsets of classes. 

The BD of a data fragment of an input variable can be identified as a piece of 

evidence. We can take a number of ways e.g., core sample (Zhang et al., 2014), 

neural network (Denoeux, 2000), k-NN (Denoeux, 1995), and expert system 

(Dymova, Sevastianov and Bartosiewicz, 2010) to generate BDs of data fragments 

of input variables. Finally, we can take Dempster’s combination (DC) rule to 

combine different pieces of evidence among input variables together to make a 

classification decision on combined BDs. 

 

The classification decision process based on DC works well on classification 

imprecision. However, it does not embrace the consideration of inherent properties 

of evidence, i.e., quality of information source and relative importance of evidence. 

Evidential reasoning (ER) rule (Yang and Xu, 2013) was proposed to consider 

quality of information source, i.e., reliability and relative importance i.e., weights 

when we combine evidence. In ER rule, new concepts e.g., weighted evidence (WE), 

and weighted evidence with reliability (WER) were put forward to describe 

characteristics of evidence in complement of BD in DST. The ER rule assimilates 

DST and original ER algorithm, which is revealed in the evidence combination 

process i.e., the orthogonal sum operation on WEs or WERs. One of the most 

compelling characteristics of ER rule is that it makes up a generic process of 
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conjunctive probabilistic reasoning, or a generalized Bayesian process implemented 

on the power set of FoD. 

 

There are some connections between ER rule and DC rule, and ER rule and original 

ER algorithm. The DC rule has been proven to be a special case of ER rule when all 

the evidence is fully reliable. It has also been proven that the original ER algorithm 

is a special case of ER rule when the normalised weights of all the evidence equals 

their respective reliabilities (Yang and Xu, 2013). The ER process inherently 

contains the belief structure to model different types of uncertainty (Yang and Singh, 

1994; Xu, 2011), and the rule-or-utility-based information transformation 

techniques (Yang, 2001). In addition, ER algorithm has been applied in a wide range 

of areas and it has been integrated into traditional if-then-rule-based systems to 

generate the belief rule based (BRB) systems (Chen et al., 2015) which have been 

used for modelling of classification problems (Jiao et al., 2015; Chang et al., 2016; 

Kong et al., 2016). One of the problems that BRB systems have is high 

multiplicative complexity on combination of referential values of input variables in 

the base of belief rule (Chen et al., 2015). 

 

3.5 Outline of Evidential Reasoning Rule 

 

In the framework of the ER rule, 𝛩 =  {ℎ1, … , ℎ𝐾} is a set of mutually exclusive and 

collectively exhaustive hypotheses. 𝛩  is called a frame of discernment (FoD), 

whose power set includes all its subsets. Generally, a piece of evidence is a random 

set profiled by a belief distribution, as displayed in Equation (3.1), 

 

𝑒𝑗 = {(𝜃, 𝑝𝜃,𝑗), ∀𝜃 ⊆ 𝛩,∑ 𝑝𝜃,𝑗 = 1
𝜃⊆𝛩

}                                             (3.1) 

 

where (𝜃, 𝑝𝜃,𝑗)  is an element of evidence 𝑒𝑗 , indicating that the 𝑗𝑡ℎ  piece of 

evidence points to proposition 𝜃 (θ can be any subset of 𝛩 except the empty set) 
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with a probability 𝑝𝜃,𝑗. In the case of the system of the MAKER framework of this 

research, a piece of evidence e𝑗
𝑖, that is, the 𝑗𝑡ℎ piece of evidence from the 𝑖𝑡ℎ input 

variable, refers to the data on the 𝑗𝑡ℎ referential value of the 𝑖𝑡ℎ input variable, 

pointing to different class memberships of the output variable with corresponding 

probabilities. An element of a piece of evidence indicates the data on the 𝑗𝑡ℎ 

referential value of the 𝑖𝑡ℎ input variable that points exactly to the 𝑘𝑡ℎ class of the 

output variable with probability 𝑝𝑖,𝑗
𝑘 .  

 

Additionally, a piece of evidence 𝑒𝑗 is generally associated with reliability 𝑟𝑗 and 

weight 𝑤𝑗. Reliability is the ability or quality of data sources from which evidence 

is generated, and it generally measures the degree of support or opposition from 

evidence to a proposition. The reliability of a piece of evidence is the inherent 

property of that evidence. The weight is used to reflect the relative importance of 

evidence in comparison with other evidence, and the weight can be judged by 

decision makers. The weight can be subjective and different from reliability if 

different pieces of evidence are acquired from different sources and measured in 

different ways (Xu et al., 2017). If all pieces of evidence are measured in a joint 

space (Yang and Xu, 2014) or acquired from a data source, then 𝑤𝑗 = 𝑟𝑗. Further, 

𝑤𝜃,𝑗 = 𝑟𝜃,𝑗, in which 𝑤𝜃,𝑗 and 𝑟𝜃,𝑗 refer to the weight and reliability of an element 

𝑒𝜃,𝑗 of evidence 𝑒𝑗 that points to assertion θ, respectively, if all pieces of evidence 

are acquired from a data source under the MAKER framework. 

 

The predictive power of a single piece of evidence is limited. To achieve greater 

predictive power, it is necessary to combine different pieces of evidence to generate 

a probability distribution of combined evidence under different class memberships 

of the output variable, that is, an belief rule base, using weighted belief distribution 

with reliability, which includes consideration of the aforementioned properties of 

evidence (belief distribution, reliability, and weight). Weighted belief distribution 

with reliability is defined in Equation (3.2),  
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𝑚𝑗 =  {(𝜃, �̃�𝜃,𝑗), ∀𝜃 ⊆ 𝛩, (𝑃(𝛩), �̃�𝑃(𝛩),𝑗) )},                                         (3.2) 

�̃�𝜃,𝑗 = {

0,                      𝜃 = ∅

𝑐𝑟𝑤𝑚𝜃,𝑗 ,         𝜃 ⊆ 𝛩,  𝜃 ≠ ∅,     

𝑐𝑟𝑤,𝑗(1 − 𝑟𝑗),           𝜃 = 𝑃(𝛩)          

 

 

where 𝑚𝜃,𝑗 = 𝑤𝑗𝑝𝜃,𝑗 and �̃�𝜃,𝑗 is used to measure the degree of support from 𝑒𝑗 to 

θ, with consideration of both weight (𝑤𝑗) and reliability (𝑟𝑗), and 𝑐𝑟𝑤,𝑗 =
1

1+𝑤𝑗−𝑟𝑗
, a 

normalisation factor, satisfies ∑ �̃�𝜃,𝑗 + �̃�𝑃(𝛩),𝑗 = 1𝜃⊆𝛩 , if ∑ 𝑝𝜃,𝑗 = 1𝜃⊆𝛩 . 

 

If two pieces of evidence are independent of each other – which means the 

information a piece of evidence carries is not dependent on the other piece of 

evidence and vice versa – the combined degree of belief 𝑝𝜃,𝑒(2) to which the two 

pieces of evidence 𝑒𝑗1  and 𝑒𝑗2 (𝑗1 = 1,… , 𝐽1 𝑎𝑛𝑑 𝑗2 = 1,… , 𝐽2, 𝑗1 ≠ 𝑗2) jointly support 

proposition 𝜃 is given by Equation (3.3), 

 

𝑝𝜃,𝑒(2) = {
0, 𝜃 = ∅

�̂�𝜃,𝑒(2)

∑ �̂�𝐷,𝑒(2)𝐷⊆𝛩
, 𝜃 ⊆ 𝛩, 𝜃 ≠ ∅,                                                (3.3) 

�̂�𝜃,𝑒(2) = [(1 − 𝑟𝑗2)𝑚𝜃,𝑗1 + (1 − 𝑟𝑗1)𝑚𝜃,𝑗2] +  ∑ 𝑚𝐵,𝑗1𝑚𝐶,𝑗2𝐵∩𝐶=𝜃 , ∀𝜃 ⊆ 𝛩,  

 

where 𝑚𝜃,𝑗1
= 𝑤𝜃,𝑗1 ∗ 𝑝𝜃,𝑗1 , and 𝑚𝜃,𝑗2

= 𝑤𝜃,𝑗2 ∗ 𝑝𝜃,𝑗2. 

 

The recursive formulae of the ER rule in Equation (3.3) can be used to combine 

multiple pieces of evidence in any order. It has been proved that Dempster’s rule 

is a special case of the ER rule in Equation (3.3) when evidence is fully reliable. 
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3.6 Research Methods for Rule-based Inferential Modelling 

and Prediction  

 

In this section, we briefly introduce the research methods for rule-based inferential 

modelling and prediction based on the MAKER framework, which will be discussed 

in Chapters 4, 5, and 6. 

 

Suppose in the real world, there is a complex numerical system where a sample 

input-output data set of N instances x(t) =  {𝑥𝑛(𝑡) | 𝑛 = 1,… , 𝑁}  is recorded at 

sampling time t. These instances are identified by variables such as M input 

variables 𝑥𝑛(t) =  {𝑥𝑛,𝑖(𝑡) | 𝑛 = 1,… , 𝑁; 𝑖 = 1,… ,𝑀}  and an output variable y(t) =

 {𝑦𝑛(𝑡) | 𝑛 = 1,… , 𝑁} . These instances need to be classified as one of the class 

memberships in Θ =  {𝑘 | 𝑘 = 1,… , 𝐾}, where an integer is used to represent a class 

membership. That is, a value of a nominal output variable 𝑦𝑛(𝑡) is assigned by a 

class membership in Θ, which means y(t) =  {𝑦𝑛(𝑡) | 𝑦𝑛(𝑡) = 1,… , 𝐾; 𝑛 = 1,… , 𝑁}.  

 

3.6.1 Evidence Acquisition from Data of Input Variables 

 

To construct the system of the MAKER framework, we need to determine referential 

values for each of the input variables. As adjustable parameters, referential values 

can be initially determined by expertise or random rules without prior knowledge 

and subsequently trained using an input-output data set under a certain 

optimisation objective (Xu et al., 2017). With referential values for an input variable, 

we can transform input value 𝑥𝑖,𝑛, of which the corresponding output value 𝑦𝑛 is k 

to the belief distribution of referential value 𝐴𝑗
𝑖, as shown in Equation (3.4). 

 

𝑆𝑖(𝑥𝑛,𝑖) = {(𝐴𝑗
𝑖 , 𝛼𝑛,𝑖,𝑗

𝑘 ), 𝑗 = 1,… , 𝐽𝑖}                                                  (3.4) 
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where 

𝛼𝑛,𝑖,𝑗
𝑘 =

𝐴𝑗+1
𝑖 −𝑥𝑛,𝑖

𝐴𝑗+1
𝑖 −𝐴𝑗

𝑖  and 𝛼𝑛,𝑖,𝑗+1
𝑘 = 1 − 𝛼𝑛,𝑖,𝑗

𝑘 , if 𝐴𝑗
𝑖 ≤ 𝑥𝑛,𝑖  ≤  𝐴𝑗+1

𝑖 , 

𝛼𝑛,𝑖,𝑗′
𝑘 = 0, 𝑓𝑜𝑟 𝑗′ = 1,… , 𝐽𝑖 and 𝑗′ ≠ 𝑗, 𝑗 + 1. 

 

 

In Equation (3.4), 𝛼𝑛,𝑖,𝑗
𝑘  is the similarity degree to which the 𝑛𝑡ℎ input value 𝑥𝑛,𝑖 of 

𝑖𝑡ℎ input variable matches the referential value 𝐴𝑗
𝑖 under the 𝑘𝑡ℎ class membership 

of the output variable. After all the input values are transformed into belief 

distributions of referential values, the similarity degrees are aggregated in terms 

of referential values under different class memberships of the output variable to 

generate the frequencies of the referential values under these different class 

memberships, as shown in Equation (3.5). In the further study, we may also 

consider the non-linear situation in the data transformation or evidence mapping. 

For example, we may explore the possibility of using nonlinear utility functions to 

transform input values to belief distribution of referential value. 

 

𝛼𝑖,𝑗
𝑘 = ∑ 𝛼𝑛,𝑖,𝑗

𝑘 .𝑁
𝑛=1                                                                 (3.5) 

 

Table 3.3 shows all the frequencies of the referential values of an input variable. 

According to Table 1, ∑ ∑ 𝛼𝑖,𝑗
𝑘𝐾

𝑘=1
𝐽𝑖
𝑗=1 = ∑ ∑ 𝛼𝑖,𝑗

𝑘𝐽𝑖
𝑗=1

𝐾
𝑘=1 = 𝑁. Then, the likelihood 𝑐𝑖,𝑗

𝑘 , with 

Table 3.3 Frequencies of referential values of an input variable 

yn\xn,i A1
i  ⋯ Aj

i  ⋯ AJi
i  total 

1 𝛼𝑖,1
1  ⋯ 𝛼𝑖,𝑗

1  ⋯ 𝛼𝑖,𝐽𝑖
1  ∑ 𝛼𝑖,𝑗

1𝐽𝑖
𝑗=1   

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

k 𝛼𝑖,1
𝑘  ⋯ 𝛼𝑖,𝑗

𝑘  ⋯ 𝛼𝑖,𝐽𝑖
𝑘  ∑ 𝛼𝑖,𝑗

𝑘𝐽𝑖
𝑗=1   

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

K 𝛼𝑖,1
𝐾  ⋯ 𝛼𝑖,𝑗

𝐾  ⋯ 𝛼𝑖,𝐽𝑖
𝐾  ∑ 𝛼𝑖,𝑗

𝐾𝐽𝑖
𝑗=1   

total ∑ 𝛼𝑖,1
𝑘𝐾

𝑘=1   ⋯ ∑ 𝛼𝑖,𝑗
𝑘𝐾

𝑘=1   ⋯ ∑ 𝛼𝑖,𝐽𝑖
𝑘𝐾

𝑘=1   N 
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which the 𝑗𝑡ℎ  referential value of the 𝑖𝑡ℎ  input variable is true if the 𝑘𝑡ℎ  class 

membership of output variable is true, is calculated as shown in Equation (3.6). 

 

𝑐𝑖,𝑗
𝑘 =

𝛼𝑖,𝑗
𝑘

∑ 𝛼𝑖,𝑗
𝑘𝐽𝑖

𝑗=1

, 𝑓𝑜𝑟 ∑ 𝛼𝑖,𝑗
𝑘𝐽𝑖

𝑗=1 ≠ 0,                                                   (3.6) 

𝑐𝑖,𝑗
𝑘 = 0, 𝑓𝑜𝑟 ∑ 𝛼𝑖,𝑗

𝑘𝐽𝑖
𝑗=1 = 0. 

 

Table 3.4 displays the likelihoods calculated from the frequencies in Table 3.3. It is 

obvious from Table 3.4 that ∑ ∑ 𝑐𝑖,𝑗
𝑘𝐾

𝑘=1
𝐽𝑖
𝑗=1 = ∑ ∑ 𝑐𝑖,𝑗

𝑘𝐽𝑖
𝑗=1

𝐾
𝑘=1 = 𝐾. Regarding likelihoods, 

the probabilities with which the referential value 𝐴𝑗
𝑖 points to 𝑘𝑡ℎ class membership 

of output variable are given by Equation (3.7). 

 

𝑝𝑖,𝑗
𝑘 =

𝑐𝑖,𝑗
𝑘

∑ 𝑐𝑖,𝑗
𝑘𝐾

𝑘=1

, 𝑓𝑜𝑟 ∑ 𝑐𝑖,𝑗
𝑘 ≠ 0𝐾

𝑘=1 ,                                                   (3.7) 

𝑝𝑖,𝑗
𝑘 = 0, 𝑓𝑜𝑟 ∑ 𝑐𝑖,𝑗

𝑘 = 0𝐾
𝑘=1 .  

 

Table 3.4 Likelihoods of referential values of an input variable 

yn\xn,i A1
i  ⋯ Aj

i  ⋯ AJi
i  total 

1 𝑐𝑖,1
1  ⋯ 𝑐𝑖,𝑗

1  ⋯ 𝑐𝑖,𝐽𝑖
1  ∑ 𝑐𝑖,𝑗

1𝐽𝑖
𝑗=1   

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

k 𝑐𝑖,1
𝑘  ⋯ 𝑐𝑖,𝑗

𝑘  ⋯ 𝑐𝑖,𝐽𝑖
𝑘  ∑ 𝑐𝑖,𝑗

𝑘𝐽𝑖
𝑗=1   

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

K 𝑐𝑖,1
𝐾  ⋯ 𝑐𝑖,𝑗

𝐾  ⋯ 𝑐𝑖,𝐽𝑖
𝐾  ∑ 𝑐𝑖,𝑗

𝐾𝐽𝑖
𝑗=1   

total ∑ 𝑐𝑖,1
𝑘𝐾

𝑘=1   ⋯ ∑ 𝑐𝑖,𝑗
𝑘𝐾

𝑘=1   ⋯ ∑ 𝑐𝑖,𝐽𝑖
𝑘𝐾

𝑘=1   K 
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Table 3.5 exhibits the degrees of belief calculated by the normalisation of the 

likelihoods in Table 3.4. Now a piece of evidence can be defined as a set of degrees 

of belief with which data on referential values point to different class memberships 

of the output variable, as presented in Equation (3.8).  

 

𝑒𝑗
𝑖 = {(𝑘, 𝑝𝑖,𝑗

𝑘 ), ∀𝑘 ⊆ 𝛩,∑ 𝛽𝑖,𝑗
𝑘 = 1

𝜃⊆𝛩
}                                                                                                        (3.8) 

 

Table 3.6 visualises the relationship between evidence 𝑒𝑗
𝑖 and degree of belief 𝛽𝑖,𝑗

𝑘 . 

3.6.2 Interdependence between Pairs of Evidence 

 

If multiple input variables are taken into consideration at the same time, the vector 

of input variables, that is, 𝑥𝑛 = {𝑥𝑖1,𝑛, … , 𝑥𝑖𝑙,𝑛 , … , 𝑥𝑖𝑚,𝑛|𝑛 = 1,… , 𝑁; 𝑖𝑙 = 1,… ,𝑀; 𝑗𝑙 =

Table 3.6 Evidence and degrees of belief of referential values of an input 

variable 

yn\xn,i 
e1
i  

A1
i  

⋯ 

⋯ 

ej
i 

Aj
i  

⋯ 

⋯ 

eJi
i  

AJi
i  

1 𝛽𝑖,1
1  ⋯ 𝛽𝑖,𝑗

1  ⋯ 𝛽𝑖,𝐽𝑖
1  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

k 𝛽𝑖,1
𝑘  ⋯ 𝛽𝑖,𝑗

𝑘  ⋯ 𝛽𝑖,𝐽𝑖
𝑘  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

K 𝛽𝑖,1
𝐾  ⋯ 𝛽𝑖,𝑗

𝐾  ⋯ 𝛽𝑖,𝐽𝑖
𝐾  

 

Table 3.5 The probabilities with which the referential values of the observed 

values of the input variables point to different classes of the output variable 

of a data set 

yn\xn,i A1
i  ⋯ Aj

i  ⋯ AJi
i  

1 𝑝𝑖,1
1  ⋯ 𝑝𝑖,𝑗

1  ⋯ 𝑝𝑖,𝐽𝑖
1  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

k 𝑝𝑖,1
𝑘  ⋯ 𝑝𝑖,𝑗

𝑘  ⋯ 𝑝𝑖,𝐽𝑖
𝑘  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

K 𝑝𝑖,1
𝐾  ⋯ 𝑝𝑖,𝑗

𝐾  ⋯ 𝑝𝑖,𝐽𝑖
𝐾  
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1,… , 𝐽𝑖𝑙; 𝑙 = 1, … ,𝑚;𝑚 = 2,… ,𝑀}, can be transformed to the distribution in Equation 

(3.9) for the combination of referential values 𝐴𝑗1…𝑗𝑙…𝑗𝑚
𝑖1…𝑖𝑙…𝑖𝑚 , 

 

𝑆𝑖1…𝑖𝑙…𝑖𝑚(𝑥𝑖,𝑛) = {(𝐴𝑗1…𝑗𝑙…𝑗𝑚
𝑖1…𝑖𝑙…𝑖𝑚 , 𝛼𝑛,𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚

𝑘 ) |𝑛 = 1,… , 𝑁; 𝑖𝑙 = 1,… ,𝑀; 𝑗𝑙 = 1,… , 𝐽𝑖𝑙 ; 𝑙 =

1, … ,𝑚;𝑚 = 2,… ,𝑀}.                                                            (3.9) 

 

where 

𝐴𝑗1…𝑗𝑙…𝑗𝑚
𝑖1…𝑖𝑙…𝑖𝑚 = {𝐴𝑗1

𝑖1 , … , 𝐴𝑗𝑙
𝑖𝑙 , … , 𝐴𝑗𝑚

𝑖𝑚}, 

𝛼𝑛,𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
𝑘 = 𝛼𝑛,𝑖1,𝑗1

𝑘 ∗ …∗ 𝛼𝑛,𝑖𝑙,𝑗𝑙
𝑘 ∗ … ∗ 𝛼𝑛,𝑖𝑚,𝑗𝑚

𝑘 , 

𝛼𝑛,𝑖𝑙,𝑗𝑙
𝑘 =

𝐴
𝑗𝑙+1

𝑖𝑙 −𝑥𝑛,𝑖𝑙
𝑘

𝐴
𝑗𝑙+1

𝑖𝑙 −𝐴
𝑗𝑙

𝑖𝑙
 and 𝛼𝑛,𝑖𝑙,𝑗𝑙+1

𝑘 = 1 − 𝛼𝑛,𝑖𝑙,𝑗𝑙
𝑘 , if 𝐴𝑗𝑙

𝑖𝑙 ≤  𝑥
𝑛,𝑖𝑙 
𝑘  ≤ 𝐴𝑗𝑙+1

𝑖𝑙 ,  

𝛼
𝑛,𝑖𝑙,𝑗𝑙

′
𝑘

 
= 0,  𝑓𝑜𝑟 𝑗𝑙

′ = 1,… ,  𝐽𝑖𝑙 and 𝑗𝑙
′ ≠ 𝑗𝑙 , 𝑗𝑙 + 1. 

 

𝛼𝑛,𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
𝑘  is the similarity degree to which the 𝑛𝑡ℎ input vector (𝑥𝑛) of the 

input variable matches the combination of referential values, that is, 𝐴𝑗1…𝑗𝑙…𝑗𝑚
𝑖1…𝑖𝑙…𝑖𝑚 , 

under the 𝑘𝑡ℎ class membership of the output variable. Then, we can aggregate 

similarity degrees in terms of combinations of referential values to generate the 

frequencies of combinations of referential values, as expressed in Equation (3.10). 

 

𝛼𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
𝑘 = ∑ 𝛼𝑛,𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚

𝑘 .𝑁
𝑛=1                                         (3.10) 

 

Based on these frequencies, the likelihood 𝑐𝑘,𝑖1…𝑖𝑈,𝑗1…𝑗𝑈 to which the combination of 

referential values 𝐴𝑗1…𝑗𝑙…𝑗𝑚
𝑖1…𝑖𝑙…𝑖𝑚  is expected to occur for the 𝑘𝑡ℎ class membership of 

output variable is given by Equation (3.11). 

 

𝑐𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
𝑘 = 𝑝 (𝐴𝑗1…𝑗𝑙…𝑗𝑚

𝑖1…𝑖𝑙…𝑖𝑚 |𝑦𝑘) =
𝛼𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
𝑘

𝛿𝑘
,                                (3.11) 
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𝛿𝑘 = ∑ ∑ 𝛼𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
𝑘

𝑗1…𝑗𝑙…𝑗𝑚∊𝐻𝑖1…𝑖𝑙…𝑖𝑚∊𝑇

 

 

where T = {𝑖1… 𝑖𝑙 … 𝑖𝑚|𝑖𝑙 = 1,… ,𝑀; 𝑙 = 1,… ,𝑚}  and H = {𝑗1… 𝑗𝑙 …𝑗𝑚|𝑗𝑙 = 1,… , 𝐽𝑖𝑙; 𝑖𝑙 =

1,… ,𝑀; 𝑙 = 1,… ,𝑚}. 

                                                          

The degree of belief 𝑝𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
𝑘  with which the combination of referential values 

𝐴𝑗1…𝑗𝑙…𝑗𝑚
𝑖1…𝑖𝑙…𝑖𝑚  points to the 𝑘𝑡ℎ class is calculated as shown in Equation (3.12). 

 

𝑝𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
𝑘 = {

𝑐𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
𝑘

∑ 𝑐𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
𝑘𝐾

𝑘=1

, ∑ 𝑐𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
𝑘𝐾

𝑘=1 ≠ 0

0,                                    ∑ 𝑐𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
𝑘𝐾

𝑘=1 = 0

                                            (3.12)                                      

 

In the original ER rule, we assume any two pieces of evidence for a combination 

are independent of each other. To enhance the generality of this rule, we introduce 

a new concept, ‘interdependence index’, denoted by ‘α’, to measure the degree of 

interdependence between a pair of evidence. The interdependence index α is 

defined by Equation (3.13), 

 

𝛼𝜃,(𝑖1,𝑗1),(𝑖2,𝑗2) = {

𝑝𝜃,𝑖1𝑖2,𝑗1𝑗2
𝑝𝜃,𝑖1,𝑗1 ∗ 𝑝𝜃,𝑖2,𝑗2

, 𝑖𝑓𝑝𝜃,𝑖1,𝑗1 ≠ 0 𝑎𝑛𝑑 𝑝𝜃,𝑖2,𝑗2 ≠ 0

0,                       𝑖𝑓𝑝𝜃,𝑖1,𝑗1 = 0 𝑜𝑟 𝑝𝜃,𝑖2,𝑗2 = 0

                                                        (3.13) 

𝛼(𝑖1,𝑗1),(𝑖2,𝑗2)
𝑘 = {

𝑝𝑖1𝑖2,𝑗1𝑗2
𝑘

𝑝𝑖1,𝑗1
𝑘 ∗ 𝑝𝑖2,𝑗2

𝑘 , 𝑖𝑓𝑝𝑖1,𝑗1
𝑘 ≠ 0 𝑎𝑛𝑑 𝑝𝑖1,𝑗1

𝑘 ≠ 0

0,            𝑖𝑓𝑝𝑖1,𝑗1
𝑘 = 0 𝑜𝑟 𝑝𝑖1,𝑗1

𝑘 = 0

                                     

 

Where the first equation is the general form of the interdependence index, and the 

second equation is the concrete form of the interdependence index under the new 

data-driven ER modelling approach. 𝑝𝜃,𝑖1𝑖2,𝑗1𝑗2  𝑜𝑟 𝑝𝑖1𝑖2,𝑗1𝑗2
𝑘  is the degree of belief to 

which two pieces of evidence 𝑒𝑗1
𝑖1  and 𝑒𝑗2

𝑖2 jointly support proposition θ or 𝑘𝑡ℎ class 

membership of the output variable. The 𝑝𝜃,𝑖1,𝑗1  𝑜𝑟 𝑝𝑖1,𝑗1
𝑘  is the degree of belief that 

evidence 𝑒𝑗1
𝑖1 points to proposition θ or 𝑘𝑡ℎ class membership of the output variable, 
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and so is 𝑝𝜃,𝑖2,𝑗2  or 𝑝𝑖2,𝑗2
𝑘 . Additionally, 𝛼(𝑖1,𝑗1),(𝑖2,𝑗2)

𝑘  is the interdependence index to 

measure the interdependence between evidence 𝑒𝑗1
𝑖1 and evidence 𝑒𝑗2

𝑖2 under the 

𝑘𝑡ℎ class membership of the output variable. In the current study, the conditional 

independence between input variables is assumed to be true. According to Della 

Riccia, Kruse and Lenz (2014), the conditional independence has the following 

general description. Let X, Y, and Z be three disjoint sets of input variables, and 

both X and Y are nonempty. X is called independent of Y given Z with respect to a 

possibility distribution π on Ω, if for all instants of the input variables in Z, no 

information about the values of the input variables in Y changes probability degrees 

of the tuples over the input variables in X. In the further study, we may also 

consider the conditional dependence between the input variables. 

 

3.6.3 Evidence Combination Based on the MAKER Framework 

 

With consideration of interdependence between a pair of evidence, the combined 

degree of belief 𝑝𝜃,𝑒(2) to which two pieces of evidence 𝑒𝑗1 and 𝑒𝑗2  (𝑗1 𝑎𝑛𝑑 𝑗2  ∈ 𝑍
+, 𝑗1 ≠

𝑗2) jointly support proposition 𝜃 can be calculated by MAKER, as shown in Equation 

(3.14), 

 

𝑝𝜃,𝑒(2) = {
0,             𝜃 = ∅
𝑚𝜃,𝑒(2)

∑ 𝑚𝐶,𝑒(2)𝐶⊆𝛩
, 𝜃 ⊆ 𝛩                                                     (3.14) 

𝑚𝜃,𝑒(2) = [(1 − 𝑟𝑗2)𝑚𝜃,𝑗1
+ (1 − 𝑟𝑗1)𝑚𝜃,𝑗2

] + ∑ 𝛾𝐴,𝐵,𝑗1,𝑗2𝛼𝐴,𝐵,𝑗1,𝑗2𝑚𝐴,𝑗1
𝑚𝐵,𝑗2𝐴∩𝐵=𝜃 .            

where 𝑚𝜃,𝑗1
= 𝑤𝜃,𝑗1 ∗ 𝑝𝜃,𝑗1 = 𝜔𝑗1 ∗ 𝑟𝜃,𝑗1 ∗ 𝑝𝜃,𝑗1, and 𝑚𝜃,𝑗2

= 𝑤𝜃,𝑗2 ∗ 𝑝𝜃,𝑗2 = 𝜔𝑗2 ∗ 𝑟𝜃,𝑗2 ∗ 𝑝𝜃,𝑗2; 

 

𝑟𝑗1 = ∑ 𝑟𝜃,𝑗1𝑝(𝑒𝑗1(𝜃))𝜃⊆𝛩  is the reliability of evidence 𝑒𝑗1; 𝑟𝑗2 = ∑ 𝑟𝜃,𝑗2𝑝(𝑒𝑗2(𝜃))𝜃⊆𝛩  is the 

reliability of evidence 𝑒𝑗2; and 𝛾𝐴,𝐵,𝑗1,𝑗2 is a non-negative parameter reflecting the 

degree of joint support for θ from both evidence 𝑒𝑗1 and evidence 𝑒𝑗2 relative to 

the individual support from evidence 𝑒𝑗1 to proposition A and that from evidence 
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𝑒𝑗2 to proposition B. If all data are measured in a joint space, 𝜔𝑗1 = 1 and 𝜔𝑗2 = 1, 

and 𝑤𝜃,𝑗1 = 𝑟𝜃,𝑗1  and 𝑤𝜃,𝑗2 = 𝑟𝜃,𝑗2 . The parameter 𝛾𝐴,𝐵,𝑗1,𝑗2  can be trained in deep 

learning. 

The concrete form of the evidence combination based on the MAKER rule under 

the rule-based inferential and prediction approach is given in Equation (3.15). 

 

𝑝(𝑖1,𝑗1),(𝑖2,𝑗2)
𝑘 =

{
 
 

 
 

0,                        ∑𝑚(𝑖1,𝑗1),(𝑖2,𝑗2)
𝑘

 𝐾

𝑘=1

= 0

𝑚(𝑖1,𝑗1),(𝑖2,𝑗2)
𝑘

∑ 𝑚(𝑖1,𝑗1),(𝑖2,𝑗2)
𝑘𝐾

𝑘=1

,∑𝑚(𝑖1,𝑗1),(𝑖2,𝑗2)
𝑘

𝐾

𝑘=1

≠ 0

,                                                                     (3.15) 

𝑚(𝑖1,𝑗1),(𝑖2,𝑗2)
𝑘 = [(1 − 𝑟𝑖2,𝑗2)𝑚𝑖1,𝑗1

𝑘 + (1 − 𝑟𝑖1,𝑗1)𝑚𝑖2,𝑗2
𝑘 ] + 𝛾(𝑖1,𝑗1),(𝑖2,𝑗2)

𝑘 𝛼(𝑖1,𝑗1),(𝑖2,𝑗2)
𝑘 𝑚𝑖1,𝑗1

𝑘 𝑚𝑖2,𝑗2
𝑘  

 

where 𝑚𝑖1,𝑗1
𝑘 = 𝑤𝑖1,𝑗1

𝑘 ∗ 𝑝𝑖1,𝑗1
𝑘 = 𝜔𝑖1,𝑗1 ∗ 𝑟𝑖1,𝑗1

𝑘 ∗ 𝑝𝑖1,𝑗1
𝑘 ,  and 𝑚𝑖2,𝑗2

𝑘 = 𝑤𝑖2,𝑗2
𝑘 ∗ 𝑝𝑖2,𝑗2

𝑘 = 𝜔𝑖2,𝑗2 ∗ 𝑟𝑖2,𝑗2
𝑘 ∗

𝑝𝑖2,𝑗2
𝑘 ; 𝑟𝑖1,𝑗1 = ∑ 𝑟𝑖1,𝑗1

𝑘 𝑝(𝑒𝑗1
𝑖1(𝜃))𝜃⊆𝛩  is the reliability of evidence 𝑒𝑗1

𝑖1 ; 𝑟𝑖2,𝑗2 =

∑ 𝑟𝑖2,𝑗2
𝑘 𝑝(𝑒𝑗2

𝑖2(𝜃))𝜃⊆𝛩  is the reliability of evidence 𝑒𝑗2
𝑖2; and 𝛾(𝑖1,𝑗1),(𝑖2,𝑗2)

𝑘  is a non-negative 

parameter reflecting the degree of joint support for 𝑘𝑡ℎ class membership of output 

variable from both evidence 𝑒𝑗1
𝑖1 and evidence 𝑒𝑗2

𝑖2 relative to the individual support 

from evidence 𝑒𝑗1
𝑖1  to 𝑘𝑡ℎ  class membership of output variable and that from 

evidence 𝑒𝑗2
𝑖2 to 𝑘𝑡ℎ class membership of output variable. In studies that include 

the function approximation and cross-validation of classical data sets and the data 

set of sepsis of the new data-driven ER modelling approach, 𝜔𝑖1,𝑗1 = 1 and 𝜔𝑖2,𝑗2 =

1, and we 𝑤𝑖1,𝑗1
𝑘 = 𝑟𝑖1,𝑗1

𝑘  and 𝑤𝑖2,𝑗2
𝑘 = 𝑟𝑖2,𝑗2

𝑘 . The parameter 𝛾(𝑖1,𝑗1),(𝑖2,𝑗2)
𝑘  can be trained in 

deep learning, and it is assumed to be 1 in the numerical examples in this report. 

 

3.6.4 Prediction Scheme Based on the MAKER Framework 

 

On the basis of the belief rule base, we can make predictions about the class 

membership of output variable for each input vector 𝑥𝑛 = {𝑥𝑛,𝑖1 , … , 𝑥𝑖𝑙,𝑛, … , 𝑥𝑖𝑚,𝑛|𝑛 =
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1,… , 𝑁; 𝑖𝑙 = 1,… ,𝑀; 𝑗𝑙 = 1,… , 𝐽𝑖𝑙 ; 𝑙 = 1, … ,𝑚;𝑚 = 2,… ,𝑀} using MAKER. Each value 𝑥𝑖𝑙,𝑛  

of 𝑥𝑛 can be located between a set of adjacent referential values of each input 

variable, and this set of adjacent referential values is therefore activated by 𝑥𝑖𝑙,𝑛. 

Then corresponding similarity degree 𝑆𝑖𝑢,𝑗𝑢,𝑛
′  between 𝑥𝑖𝑢,𝑛  and each of the 

referential values between which 𝑥𝑖𝑢,𝑛 is located can be calculated as displayed in 

Equation (3.16). 

 

𝑆𝑖
′(𝑥𝑛,𝑖) = {(𝐴𝑗

𝑖 , 𝛼𝑛,𝑖,𝑗
′ )|𝑛 = 1,… , 𝑁; 𝑖 = 1,… ,𝑀; 𝑗 = 1,… , 𝐽𝑖}                           (3.16) 

 

where  

𝛼𝑛,𝑖,𝑗
′ =

𝐴𝑗+1
𝑖 −𝑥𝑛,𝑖

𝐴𝑗+1
𝑖 −𝐴𝑗

𝑖  and 𝛼𝑛,𝑖,𝑗+1
′ = 1 − 𝛼𝑛,𝑖,𝑗

′ , if 𝐴𝑗
𝑖 ≤ 𝑥𝑛,𝑖 ≤ 𝐴𝑗+1

𝑖 , 

𝛼𝑛,𝑖,𝑗′
′

 
= 0,  𝑓𝑜𝑟 𝑗′ = 1,… ,  𝐽𝑖 and 𝑗′ ≠ 𝑗, 𝑗 + 1. 

 

Given that we have an input vector 𝑥𝑛 = {𝑥𝑛,𝑖1,, 𝑥𝑛,𝑖2} available and we know 𝐴𝑟
𝑖1 ≤

𝑥𝑛,𝑖1 ≤ 𝐴𝑟+1
𝑖1  and 𝐴𝑡

𝑖2 ≤ 𝑥𝑛,𝑖2 ≤ 𝐴𝑡+1
𝑖2 , we can calculate the joint similarity degrees 

between input vector 𝑥𝑛 and activated combinations of referential values {𝐴𝑟
𝑖1 , 𝐴𝑡

𝑖2}, 

{𝐴𝑟
𝑖1 , 𝐴𝑡+1

𝑖2 }, {𝐴𝑟+1
𝑖1 , 𝐴𝑡

𝑖2}, and {𝐴𝑟+1
𝑖1 , 𝐴𝑡+1

𝑖2 } using Equation (3.17). 

 

𝑆𝑖1…𝑖𝑙…𝑖𝑚
′ (𝑥𝑖,𝑛) = {(𝐴𝑗1…𝑗𝑙…𝑗𝑚

𝑖1…𝑖𝑙…𝑖𝑚 , 𝛼𝑛,𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
′ ) |𝑛 = 1,… , 𝑁; 𝑖𝑙 = 1,… ,𝑀; 𝑗𝑙 = 1,… , 𝐽𝑖𝑙 ; 𝑙 =

1, … ,𝑚;𝑚 = 2,… ,𝑀}.                                                          (3.17) 

 

where 

 

𝐴𝑗1…𝑗𝑙…𝑗𝑚
𝑖1…𝑖𝑙…𝑖𝑚 = {𝐴𝑗1

𝑖1 , … , 𝐴𝑗𝑙
𝑖𝑙 , … , 𝐴𝑗𝑚

𝑖𝑚}, 

𝛼𝑛,𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
′ = 𝛼𝑛,𝑖1,𝑗1

′ ∗ …∗  𝛼𝑛,𝑖𝑙,𝑗𝑙
′ ∗ … ∗ 𝛼𝑛,𝑖𝑚 ,𝑗𝑚

′ . 

 

where 𝛼𝑛,𝑖1…𝑖𝑙…𝑖𝑚,𝑗1…𝑗𝑙…𝑗𝑚
′  is the joint similarity degree to which a given input vector 

𝑥𝑛 matches the combination of referential values, that is, 𝐴𝑗1…𝑗𝑙…𝑗𝑚
𝑖1…𝑖𝑙…𝑖𝑚 . 
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The joint similarity degrees between the input vector and activated combinations 

of referential values indicate to what degree we should invoke activated evidence 

combinations {𝑒𝑟
𝑖1 , 𝑒𝑡

𝑖2}, {𝑒𝑟
𝑖1 , 𝑒𝑡+1

𝑖2 }, {𝑒𝑟+1
𝑖1 , 𝑒𝑡

𝑖2}, and {𝑒𝑟+1
𝑖1 , 𝑒𝑡+1

𝑖2 } to predict the probability 

for each class membership of a given input vector 𝑥𝑛. To apply MAKER rule to 

combine activated evidence for prediction, we still need to know the weight 

(reliability) of each activated evidence combination. From Equation (3.2), we can 

obtain Equation (3.18) as 𝑤𝑒(𝐿) = 𝑟𝑒(𝐿) in this research. 

 

𝑟𝜃,𝑒(𝐿) =

{
 

 
0,                      𝜃 = ∅

𝑚𝜃,𝑒(𝐿)

𝑝𝜃,𝑒(𝐿)
,         𝜃 ⊆ 𝛩,  𝜃 ≠ ∅.     

1 − 𝑚𝜃,𝑒(𝐿),           𝜃 = 𝑃(𝛩)          

                                         (3.18) 

 

With Equation (3.18), it is not difficult to prove Equation (3.19). 

 

𝑟𝜃,𝑒(𝐿) =
𝑚𝜃,𝑒(𝐿)

𝑝𝜃,𝑒(𝐿)
= 𝑟𝑃(𝛩),𝑒(𝐿) = 1 −𝑚𝑃(𝛩),𝑒(𝐿).                                         (3.19) 

 

With Equation (3.19), we can have the weight or reliability for each activated 

evidence combination. On the basis of the joint similarity degrees between the 

input vector and the activated combinations of referential values and the weight or 

reliability for each activated evidence combination, we can have an updated weight 

or reliability for each activated evidence combination considering the degree to 

which we should invoke these pieces of activated evidence to predict the probability 

for each class membership of a given input vector 𝑥𝑛. Then, with the updated 

weight or reliability for each activated evidence combination and the combined 

degrees of belief of each activated evidence combination acquired from the belief 

rule base, we can combine these pieces of activated evidence combinations to 

predict the probability of each class membership of a given input vector 𝑥𝑛 using 

the adapted conjunctive ER rule, as shown in Equations (14) and (15). The 

parameters 𝛾𝐴,𝐵,𝑗1,𝑗2  and 𝛼𝐴,𝐵,𝑗1,𝑗2  in Eq. (14) or 𝛾(𝑖1,𝑗1),(𝑖2,𝑗2)
𝑘  and 𝛼(𝑖1,𝑗1),(𝑖2,𝑗2)

𝑘  in 
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Equation (15) are assumed to be 1 in the numerical examples of this report, but 

they can be trained in deep learning. 

 

If class k, which has the largest probability in the predicted probabilities set �̂�𝑛 =

{�̂�𝑘,𝑛, 𝑘 = 1,2, … , 𝐾, 𝑛 = 1, . . . , 𝑁} for input vector 𝑥𝑛, is the same as the 𝑛𝑡ℎ value y𝑛 

(𝑦𝑛 = 1,… , 𝐾) of the output variable, we can have the judgment that the prediction 

for 𝑥𝑛 is correct. The accuracy, that is, the ratio of the total number of correct 

predictions to the total number of predictions, can be used to represent how the 

classifiers established by the approach of rule-based inferential modelling and 

prediction and other classical classifiers, such as decision trees, discriminant 

analysis, logistic regression, naive Bayes, support vector machine, and neural 

networks, perform in the classification. 

 

In this research, the optimal learning model shown in Equation (3.20) can be 

established based on the minimum mean squared error to train the model 

parameters, such as referential values and weights. The mean squared error (MSE) 

is used to measure the difference between the predicted probabilities and the 

observed values of the classes of the output variable. 

 

min δ =
1

𝑁∗𝐾
∑ ∑ (𝑝𝑘,𝑛 − �̂�𝑘,𝑛)

2𝐾
𝑘=1

𝑁
𝑛=1                                              (3.20) 

𝑠. 𝑡. 𝑟𝑖𝑙,𝑗𝑙
𝑘 , 𝑤𝑖𝑙,𝑗𝑙

𝑘 , 𝛾(𝑖1,𝑗1),(𝑖2,𝑗2)
𝑘 ∊ 𝛺  

 

where �̂�𝑘,𝑛 (k = 1,… , K, n = 1,… , N) is the probability that the assertion pointing to the 

𝑘𝑡ℎ  class membership is true for the 𝑛𝑡ℎ  observation. 𝑝𝑘,𝑛  is the predicted 

probability for the 𝑘𝑡ℎ class membership. Ω is the feasible space of the parameters, 

and all the parameters should satisfy certain constraints included in Ω. Equation 

(3.20) corresponds to Equation (5.9) which is a general form of optimal learning 

model. Numerical examples are given in Sections 5.6 and 6.3 to illustrate how the 
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approach of rule-based inferential modelling and prediction introduced in this 

chapter can be applied for the classification of data sets. 

 

3.7 An Adapted Single-level Genetic Algorithm for Problems of 

Bilevel Optimisation 

 

In the models based on the system of the MAKER framework for classification, there 

are two levels of parameters: the referential values of the observed values of the 

input variables of the data sets for classification, and the weights (reliabilities) of 

these referential values under different classes of observed values of the output 

variables of the data sets. In the models based on the system of the MAKER 

framework for functions approximation, there are two levels of parameters: the 

referential values of the observed values of the data sets for functions 

approximation and the weights (reliabilities) of the referential values of the 

observed values of the input variables of the data sets under different referential 

values of the observed values of the output variables of the data sets. The 

referential values of the observed values of the data sets for functions 

approximation include the referential values of the observed values of the input 

variables of the data sets and the referential values of the observed values of the 

output variables of the data sets. Because the weights (reliabilities) are set up for 

the referential values of input variables under different classes or referential values 

of the output variables, the referential values should be decided before the 

assignment of weights (reliabilities) to build the model. In other words, the 

optimisation of weights is nested within the optimisation of referential values. Such 

kind of optimisation is referred to as bilevel optimisation. According to Sinha, Malo, 

and Deb (2018), bilevel optimisation is a mathematical program in which an 

optimisation problem is nested within another optimisation problem. As stated by 

Sinha, Malo, and Deb (2016), the nested structure of bilevel optimisation may 

introduce some difficulties such as non-convexity, non-linearity, discreteness, and 
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non-differentiability. Because of these difficulties, classical algorithms may not work 

effectively to provide optimal solutions to complex bilevel optimisation problems. 

 

As discussed by Vikhar (2016), an evolutionary algorithm is a subset of 

evolutionary computation and a generic population-based metaheuristic 

optimisation algorithm in the field of artificial intelligence. The most popular type 

of evolutionary algorithm is the genetic algorithm. Gen and Cheng (1997) 

concluded that there are three major advantages to applying the genetic algorithm 

to optimisation problems. First, the genetic algorithm does not have many 

mathematical requirements about optimisation problems, and the genetic 

algorithm can handle any type of objective function and any type of constraint (i.e., 

linear or nonlinear) defined on discrete, continuous, or mixed search spaces. 

Second, the ergodicity of evolution operators makes genetic algorithms very 

effective at performing a global search. Third, genetic algorithms provide us with 

great flexibility to hybridise with domain-dependent heuristics to achieve efficient 

implementation for a specific problem. According to Sinha, Malo, and Deb (2018), 

nested evolutionary algorithms are a popular method to address bilevel 

optimisation problems, where the lower level optimisation problem is solved 

corresponding to each upper level member. Nested strategies are effective but very 

computationally demanding and not suitable for large-scale bilevel optimisation 

problems.  

 

The genetic algorithm, as an evolutionary algorithm, possesses strong robustness 

and good global search capability. For this reason, our solution to the bilevel 

optimisation problem is using an adapted single-level genetic algorithm to offset 

some of the difficulties mentioned previously. In this adapted genetic algorithm for 

the optimisation of the models based on the MAKER framework, the initial 

population of individuals is generated randomly in the ranges of the observed input 

values of the input variables of a data set. The population of individuals 

(chromosomes) is composed of 10 subpopulations, and each subpopulation 
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contains 20 individuals. In the optimisation of the models based on the system of 

the MAKER framework for classification, each individual (chromosome) of the 

population consists of both the referential values of input variables of a data set for 

classification and the weights (reliabilities) of these referential values for different 

classes of the output variables of the data set. Figure 3.1 presents an example of 

such an individual used in the adapted genetic algorithm. 

 

 

 

 

Figure 3.1 The Individual (Chromosome) of the Population Used in the 

Adapted Genetic Algorithm 

 

In Figure 3.1, 𝐴𝑗
𝑖 indicates the 𝑗𝑡ℎ referential value of the 𝑖𝑡ℎ input variable, and 

𝑤𝑖,𝑗
𝑘  represents the weight of the 𝑗𝑡ℎ referential value of the 𝑖𝑡ℎ input variable for 

the 𝑘𝑡ℎ class of the output variable. These parameters are organized in the form 

shown in Figure 3.1 to facilitate parallel implementation of computation which can 

improve computation speed of objective values of individuals. 

 

In the optimisation of the models based on the MAKER framework for functions 

approximation, each individual in the population contains both the referential 

values of the observed values of a data set for functions approximation and the 

weights (reliabilities) of the referential values of the input variables of the data set 

under different referential values of the output variables of the data set. After the 

generation of the initial population, the objective function value is calculated for 

each individual (solution) in the population. It is worth nothing that all the 

calculations of the objective function values in this adapted genetic algorithm are 

implemented using parallel computing. Then, on the basis of the population of the 

individuals stated above, a series of genetic algorithm operations, that is, selection, 

recombination, mutation, reinsertion, and migration, is performed iteratively to 
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obtain an optimised solution for referential values and weights. Specifically, in each 

iteration of the genetic algorithm operations stated above, the individuals (solutions) 

of each subpopulation are ranked in ascending order of the objective function 

values of these individuals. Afterwards, each individual (solution) of each 

subpopulation is assigned a fitness value by the principle that smaller objective 

values would be assigned larger fitness values. Then, the fittest individuals of each 

subpopulation, which have the smallest objective function values, would be 

selected by the method of stochastic universal sampling to breed a new generation 

of population. To generate a new generation of population, discrete recombination 

and real-value mutation are performed successively on the selected individuals. 

After recombination and mutation, the objective function value is calculated for 

each of the selected individuals. Then the best individuals out of the 

abovementioned selected ones by the fitness-based method, which have the 

smallest objective function values, are inserted into the population of the last 

generation to generate a new generation of population. It is noteworthy that elite 

individuals would migrate between subpopulations every 20 iterations. After a fixed 

number (e.g., 200) of iterations, the iterative process of genetic algorithm 

operations, as already stated, would be terminated to obtain an optimised solution. 

Compared with the nested evolutionary algorithm, our proposed adapted genetic 

algorithm, as an evolutionary algorithm, is robust and less computationally 

demanding. Additionally, our proposed adapted genetic algorithm is more suitable 

for large-scale bilevel optimisation problems and parallel computing than nested 

evolutionary algorithms because each individual (chromosome) in the adapted 

genetic algorithm contains both referential values and weights. 

 

Based on the above-mentioned description, the adapted single-level genetic 

algorithm is summarised as follows. 

 

Algorithm 1: The Adapted Single-level Genetic Algorithm 

Input: The initial parameters for the genetic algorithm, e.g., number of referential 
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values, crossover rate, mutation rate, insertion rate, migration rate, number of 

subpopulation, number of individuals in each subpopulation, number of generations 

between migration (miggen), and maximum number of iterations (maxiteration). 

Output: The optimised individual containing both optimised referential values and 

optimised weights. 

1: GENERATE an initial population. 

2: CALCULATE the objective function values of individuals of initial population. 

3: FOR iteration = 1 to maxiteration 

4:     RANK the individuals in each subpopulation based on their objective 

function values. 

5:      ASSIGN the fitness values to these individuals. 

6:      SELECT the individuals according to their fitness values. 

7:      PERFORM discrete recombination over the selected individuals. 

8:      PERFORM real-value mutation over the selected individuals. 

9:      CALCULATE the objective function values of the selected individuals. 

10:    REINSERT the best individuals out of the selected individuals into the 

population of the last generation to generate a new generation of 

population. 

11:    IF REM(iteration, 20)=0 THEN 

12:         Elite individuals MIGRATE between subpopulations. 

13:    ENDIF 

14:ENDFOR 

15:RETURN the best individual. 

 

It is noteworthy that in Algorithm 1, just before each of steps 2, 7, 8, and 9, the 

referential values of each individual are sorted in an ascending order from the 

leftmost position to the rightmost one of the referential values. This is due to two 

reasons: firstly, in the code for the calculation of the objective values of individuals, 

the referential values are designed to be in an ascending order from the leftmost 

position to the rightmost one of the referential values, and secondly, the operations 
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of recombination and mutation may lead to a non-ascending order for the 

referential values, which may affect the normal functioning of the subsequent 

operations. 

 

3.8 Summary 

 

In this chapter, we presented the research methodologies used in Chapters 4, 5, 

and 6 of this thesis. First, we justified the choice of functions used in the functions 

approximation and the choice of the classical data sets for classification and briefly 

introduced the original sepsis data set, which will be processed in Chapter 6 for 

sepsis diagnosis. Then, we briefly described the original ER rule, which is the 

theoretical foundation of the MAKER framework. Subsequently, we elaborated on 

the MAKER framework, which is a major research method employed in Chapters 4, 

5, and 6 of this thesis. Finally, we illustrated the adapted genetic algorithm for 

bilevel optimisation used in the functions approximation and the classification of 

the classical data sets and sepsis data set. 
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Chapter 4  

Referential-value-based Data Discretization Techniques 

 

4.1 Introduction 

 

This chapter is focused on referential-value-based data discretization techniques 

for transforming continuous data. The continuous functions approximations are 

used to check whether the approach of the rule-based inferential modelling and 

prediction based on the referential-value-based data discretization techniques can 

be used to well approximate all kinds of continuous functions. Continuous functions 

approximation is generally connected with classification, and classification can be 

considered as a simplified version of continuous functions approximation. Section 

5.6.1 is focused on the correlation between continuous functions approximation 

and classification. From the continuous functions approximations, we can have the 

knowledge about how many referential values are suitable for an accurate 

approximation using MAKER-based model to a continuous function, in order to avoid 

the problem of underfitting or overfitting. Based on the knowledge, we can develop 

stopping criteria to guide the training process of the MAKER-based model for 

continuous functions approximation. As there is a connection between continuous 

functions approximation and classification, we can further have adapted stopping 

criteria to guide the training process of MAKER-based models for classification, 

according to the ones generated from continuous functions approximations. Hence, 

this chapter lays foundation for Chapters 5 and 6 in which we use the approach of 

rule-based inferential modelling and prediction to establish MAKER-based models 

for classification. 
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The remainder of this chapter is organized as follows. Section 4.2 performs a 

comparative analysis between mainstream data discretization techniques and 

referential-value based data discretization techniques. Sections 4.3 and 4.4 present, 

respectively, the univariate and the bivariate functions approximations using 

MAKER framework. In Section 4.5, new stopping criteria for the model training 

process is proposed. A summary of this chapter is provided in Section 4.6. 

 

4.2 Comparative Analysis between Data Discretization 

Techniques 

 

In general, data can be divided into qualitative data and quantitative data (Maimon 

and Rokach, 2005). Quantitative data can be further divided into two types: 

discrete data and continuous (Maimon and Rokach, 2005). Quantitative data are 

often involved in data mining applications, but learning from quantitative data is 

generally less efficient and less effective than that from qualitative data (Maimon 

and Rokach, 2005). We can use data discretization techniques, often used to 

transform one data type to another, to transform quantitative data to address this 

issue (Maimon and Rokach, 2005). 

 

The data used in this research are mainly ‘continuous data’. A variety of data 

discretization methods exist for transforming continuous data. Most discretization 

methods can be classified into primary and composite (Maimon and Rokach, 2005). 

Primary methods do not rely on any other discretization methods, while composite 

methods are based on primary methods (Maimon and Rokach, 2005). Primary 

discretization methods can be further classified into supervised and unsupervised: 

The former utilizing class information from training observations to determine cut-

off points for discretization, the latter not using such information (Dougherty, 

Kohavi and Sahami, 1995). 
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Typical unsupervised discretization methods include equal-width discretization, 

equal-frequency discretization, and fixed-frequency discretization (Maimon and 

Rokach, 2005). In the equal-width discretization (Catlett, 1991; Kerber, 1992; 

Dougherty, Kohavi and Sahami, 1995), a predefined number k is used to divide the 

observations between the minimum observed value 𝑣𝑚𝑖𝑛  and the maximum 

observed value 𝑣𝑚𝑎𝑥 into k intervals of equal width. Thus, each interval has the 

width 𝑤 =
𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛

𝑘
 and the cut-off points are located at 𝑣𝑚𝑖𝑛 + 𝑤, 𝑣𝑚𝑖𝑛 + 2𝑤,… , 𝑣𝑚𝑖𝑛 +

(𝑘 − 1)𝑤 . In the equal-frequency discretization (Catlett, 1991; Kerber, 1992; 

Dougherty, Kohavi and Sahami, 1995), a predefined number k is used to divide the 

sorted observed values into k intervals so that there is approximately the same 

number of training observations in each interval. In the fixed-frequency 

discretization (Yang and Webb, 2008), a sufficient interval frequency m is set to 

divide the sorted observations into a number of intervals, so that all the intervals 

have approximately the same number m of training observations with adjacent 

values. 

 

As mentioned previously, unlike unsupervised learning, the supervised methods 

involve taking advantage of class information from training observations to 

determine the cut-off points for the discretization (Dougherty, Kohavi and Sahami, 

1995). According to Fayyad and Irani (1993), multi-interval-entropy-minimization 

discretization (MIEMD) is a typical supervised discretization method. In MIEMD, the 

midpoint between each successive pair of sorted observed values is a candidate 

cut-off point for discretizing the observed values of an input variable (Fayyad and 

Irani, 1993). Each candidate cut-off point is used to divide the observed values into 

two intervals and the resulting entropy of the class information is calculated for 

each candidate cut-off point (Fayyad and Irani, 1993). The candidate cut-off point 

for which the entropy is minimal among all the candidates is selected as a cut-off 

point for a binary discretization (Fayyad and Irani, 1993). The binary discretization 
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is applied recursively to pick out optimal cut-off points until a certain criterion is 

satisfied (Fayyad and Irani, 1993). 

 

In contrast to equal-width discretization, equal-frequency discretization, and fixed-

frequency discretization, MIEMD is a form of hierarchical discretization, involving a 

split procedure (Maimon and Rokach, 2005). A merged method of hierarchical 

supervised discretization is ChiMerge, which uses the 𝜒2 statistic to decide whether 

the relative class frequencies of adjacent intervals are significantly different or 

similar enough to be merged into a single interval (Kerber, 1992). The StatDisc 

discretization (Richeldi and Rossotto, 1995), another merged method of 

hierarchical supervised discretization, is an extended version of ChiMerge that 

allows any number of intervals to be merged rather than just two as in the 

discretization method of ChiMerge. InfoMerge (Freitas and Lavington, 1996) is 

another merged method of hierarchical supervised discretization that uses 

information loss to guide the merge procedure. 

 

The above-mentioned discretization methods are the most commonly used in 

research. However, these discretization methods inevitably have limitations. This is 

due to the fact that all of them use cut-off points to discretize training observations 

into intervals, which naturally leads to information loss and distortion. For example, 

according to Reinartz (1999), the major disadvantage of equal-width discretization 

is the possibility of generating imbalanced intervals, some containing many training 

observations and others only a small number. 



 

100 
 

 

Figure 4.1 Comparison between different data discretization techniques 

 

Another example is provided in Figure 4.1 in which (a) shows a probability density 

function curve of the input values between x=0 and x=1, (b) the corresponding 

histogram of the normalized frequencies of the input values based on the equal-

width discretization, and (c) the corresponding probability density function curve 

of the input values based on the referential-value-based discretization. The y-

coordinate values in the subfigures represent the probability densities of the inputs. 

The cut-off point in (b) and the referential value between the minimum and 

maximum input values in (c) are both taken as 0.5. We can see clearly that in (b), 

the probability densities of the bin between x=0 and x=0.5 are all 0.5. In (c), the 

probability densities generated by the referential-value-based discretization 

method for the input values between x=0 and x=0.5 generally change with the 

input values between x=0 and x=0.5. Specifically, if an input value is 0.46, the 

corresponding probability density generated by the equal-width discretization 

method for this input value is 0.97 as shown in (b), and the probability density 

generated by the referential-value-based discretization method for this input value 

is 2.8799 in (c), which is much closer to the frequency density: 3.1108 for this 

input value. 
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Additionally, in the referential-value-based discretization, the referential values 

between the minimum and maximum observed values of each input variable of a 

training data set could be optimized using the adapted genetic algorithm introduced 

in Section 3.4 to minimize the difference between the observed output values of 

the training set and the predicted output values of the MAKER-based model. Hence, 

the referential-value-based data discretization method is essentially a supervised 

discretization method. Overall, from what has been analysed above, it can be 

deduced that the referential-value-based data discretization method is better at 

reducing information loss and distortion, and better at presenting the 

characteristics of data, than the mainstream data discretization methods. 

 

4.3 Univariate Functions Approximations 

 

A Belief Rule Based (BRB) system is generally a distributed approximation process 

(Chen et al., 2013) in which belief rules, belief degrees of consequents of belief 

rules, and rule weights can be trained. The maximum likelihood evidential 

reasoning (MAKER) framework is also a distributed approximation process in which 

the evidence and weight of each evidential element that exactly points to an 

assertion in the state space can be trained. However, in the MAKER framework, the 

belief degree of each evidential element is acquired from statistical analysis on the 

basis of trained evidence rather than being trained by an optimal learning method. 

From the perspective of extracting useful information from data, the MAKER 

framework is more realistic and effective than a BRB system as the former acquires 

belief degrees of evidential elements through statistical analysis from data directly 

while the latter employs the optimal learning method to train the belief degrees of 

consequents of belief rules.  

 

The capability of MAKER framework to approximate functions is explored in the 

following part of this section. We start with univariate functions to demonstrate this 

approximation power.  



 

102 
 

For the approximations of univariate functions, observed input-output data pairs 

need to be generated from functions. For example, given the function y = 2𝑥, for 

an input value (x), e.g., x=0.5, its corresponding output value (y) is 20.5 = 1.4142. 

Thus, x=0.5 and y=1.4142 form a data pair (0.5,1.4142). All other data pairs for 

function approximation can be generated by the same method. All data pairs 

generated by this method then form a data set for function approximation. The 

data set for function approximation includes the observed input values (x) of a 

function and the observed output values (y) of the function. With all of these 

observed input-output data pairs, we can use rule-based inferential Modelling and 

prediction to establish models, and use the adapted single-level genetic algorithm 

to train the parameters, e.g., referential values and weights of the model for 

function approximation based on the MAKER framework, by minimizing the 

differences between the observed output values (y) of the function and the 

predicted output values generated by the model for the function. 

 

The approximation of univariate functions by a MAKER-based model involves two 

stages: initial learning and advanced learning. In the initial learning, the x-

coordinate referential values and the y-coordinate referential values are fixed as 

the minima and maxima of the observed input values (x) and the global extrema 

of the observed output values (y) in the data set, respectively. In the advanced 

learning, the x-coordinate referential values and y-coordinate referential values 

comprise, not only the above minima and maxima, but also the trained referential 

values between the minima and maxima, to improve the model capacity for the 

approximation of complex functions. The advanced learning for each function has 

a group of approximations. Different approximations have different combinations 

of numbers of x-coordinate and y-coordinate referential values. In each 

approximation, we use the approach of rule-based inferential modelling and 

prediction to establish MAKER-based models based on a fixed number of x-

coordinate and y-coordinate referential values, and we use the adapted single-level 

genetic algorithm to train the referential values and the relevant weights. In the 
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process of advanced learning, the number of x-coordinate referential values is 

increased while that of y-coordinate referential values keeps unchanged, and so 

does the number of y-coordinate referential values while that of x-coordinate 

referential values keeps unchanged. After the training of models in each 

approximation is finished, we can obtain a value of MSE (Mean Squared Error) to 

measure the difference between predicted values of a model and observed output 

values of a function. In other words, we can obtain an MSE for each approximation. 

Based on these MSEs, stopping criteria will be developed for terminating the 

process of advanced learning to have a model with a balance between model 

accuracy and model complexity. The stopping criteria will be illustrated in Section 

4.5. 

 

The processes of initial learning and advanced learning are summarized in the 

following groups of steps. It is noteworthy that only the referential values between 

the minima and maxima of observed input or output values of a function are trained 

in the univariate functions approximation including initial learning and advanced 

learning. Therefore, we do not need to train any referential values in the initial 

learning, as the referential values are fixed as the minima and maxima of observed 

input and output values of a function in the initial learning. This is well designed in 

the codes for implementation of initial and advanced learning. 

 

It is also worth noting that the observed input and output values for the prediction 

in both initial learning and advanced learning are the observed input and output 

values of a function mentioned on Page 103 and in each function approximation of 

Sections 4.3.1 and 4.3.2, and the predicted outputs of the MAKER-based models 

are the probabilities of observed input values or x-coordinate referential values for 

different referential values of output variable or y-coordinate referential values 

(equivalent to the classes of output variable in classification). The sum of all the 

referential values of output variable or y-coordinate referential values multiplied 
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with their relevant probabilities can then be used as the predicted output values of 

the MAKER-based models for functions approximation. 

 

The steps of initial learning are displayed in the following part. 

Step 1: Generating the data set for a function approximation. 

Step 2: The x-coordinate and y-coordinate referential values are fixed as the 

minima and maxima of observed input and output values of a function. 

Step 3: Using the approach of rule-based inferential modelling and prediction to 

establish a MAKER-based model on the basis of the referential values for function 

approximation. 

Step 4: Using the single-level adapted genetic algorithm to train the relevant 

weights of referential values to get the optimized referential values and weights. 

Step 5: Generating the predicted output values for a function on the basis of the 

MAKER-based model of optimized referential values and weights. 

Step 6: Calculating the mean squared error (MSE) between the observed and the 

predicted output values for a function. 

 

The steps of advanced learning are shown in the following part. 

Step 1: Generating the data set for a function approximation. 

Step 2: Each group of function approximations of advanced learning consists of a 

number of approximations. Different approximations have different combinations 

of numbers of x-coordinate and y-coordinate referential values, and in each 

approximation, the numbers of x-coordinate and y-coordinate referential values are 

fixed, but the referential values between minima and maxima of observed input or 

output values are not fixed, and they can be trained using adapted genetic 

algorithm. Among all the approximations of a group of function approximations of 

advanced learning, both the numbers of trained x-coordinate and y-coordinate 

referential values (referential values between minima and maxima of observed 

input or output values) can be increased from 0 to a certain number. The number 

of trained x-coordinate or y-coordinate referential values is increased in such a way 
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that the number of one type of the trained x-coordinate and y-coordinate referential 

values is increased from 0 to a certain number while the number of the other type 

keeps unchanged. For example, in the group of function approximations of 

advanced learning for 𝑦 = log6 𝑥, the number of trained y-coordinate referential 

values can be increased from 0 to 4, while the number of trained x-coordinate 

referential values can be kept at 1, as we move along the dimension of number of 

trained y-coordinate referential values. The certain number is the maximum 

number that trained x-coordinate or y-coordinate referential values can be in a 

group of function approximations, and it is designed depending on what the 

function is to check how many referential values are enough to well approximate a 

function. For instance, we select 5 as the maximum number that the trained x-

coordinate referential values can be in the groups of function approximations of 

advanced learning for monotonic functions, i.e., y = 6𝑥, 𝑦 = log6 𝑥, and 𝑦 = 𝑥
1

6, and 

simple non-monotonic function, i.e., 𝑦 = −(𝑥 − 0.5)2 + 0.25 and 4 as the one that the 

corresponding trained y-coordinate referential values can be. This maximum 

number becomes 10 for the trained x-coordinate referential values and 6 for the 

trained y-coordinate referential values respectively, in the group of function 

approximations of advanced learning for complex non-monotonic function, i.e., 𝑦 =

𝑒−(𝑥−2)
2
+ 0.5𝑒−(𝑥+2)

2
. 

Step 3: In each approximation of a group of function approximations of advanced 

learning, we use the referential values and weights of each individual of population 

used in the single-level adapted genetic algorithm to establish a MAKER-based 

model, and use the single-level adapted genetic algorithm to train the referential 

values between minima and maxima of observed input or output values and 

relevant weights of MAKER-based model, to obtain the optimized set of referential 

values and weights. 

Step 4: Generating the predicted output values for a function based on the model 

of optimized referential values and weights for each experiment of a function 

approximation. 
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Step 5: Calculating the mean squared error (MSE) between the observed and the 

predicted output values for a function for each experiment of a function 

approximation. 

 

4.3.1 Initial Learning 

 

For the initial learning, four common types of functions are used as examples to 

demonstrate the approximation capability MAKER-based models framework for 

different types of functions: exponential functions y = 𝑎𝑥, logarithmic functions 𝑦 =

log𝑎 𝑥, power functions 𝑦 = 𝑥𝑎, and the function 𝑦 = −(𝑥 − 0.5)2 + 0.25. Each type of 

function has its own characteristics and is used to represent similar functions. 

Specifically, the four types just listed are used to represent convex functions, 

concave functions, functions whose mean curvatures are large, and non-monotonic 

univariate functions, respectively. 

 

Each type of function, as mentioned above, can present one or more specific 

functions. Each specific function is used to generate a data set of observed input-

output data pairs for the approximation of this specific function. The observed input 

values (x) of a 

function in the data 

sets are distributed 

uniformly and the 

interval between any 

two adjacent 

observed input 

values (x) of a 

function is set to 0.01. 

The values on the x 

axes of Figures 4.2 

 

Figure 4.2 Initial learning for functions 𝐲 = 𝒂𝒙 for 

MAKER-based models 
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through 4.5 illustrating initial learning represent the observed input values (x) and 

the values on the y axes of following figures about initial learning represent both 

the observed output values (y) and the predicted output values of a MAKER-based 

model. The cyan cyan-coloured curves represent the observations of the functions 

and the black dotted curves represent the predictions of the functions made by the 

MAKER-based models. 

 

In Figure 4.2, a collection of exponential functions y = 𝑎𝑥 (a=2, 3, 4, 5, and 6), is 

used to generate data sets to approximate the exponential functions. From these 

data sets, MAKER-based models are built to perform initial learning. The mean 

squared errors (MSEs) between the observed output values and the predicted 

output values are 1.60 ∗ 10−4, 4.91 ∗ 10−4, 7.81 ∗ 10−4, 6.58 ∗ 10−4, and 1.07 ∗ 10−3 for 

the five functions y = 2𝑥 , y = 3𝑥 , y = 4𝑥 , y = 5𝑥 , and y = 6𝑥  respectively. From 

Figure 4.2 and the MSEs, it is evident that the exponential functions y = 𝑎𝑥 are very 

well approximated by the MAKER-based models, whose parameters are optimally 

trained as shown in Figure 4.2. 

 

 

Table 4.1 displays the weights for the x-coordinate referential values for the 

different y-coordinate referential values, for the initial learning of the MAKER-based 

models for functions y = 𝑎𝑥. From Table 4.1, it can be seen that the weights of x-

Table 4.1 Trained weights (w) of x-coordinate referential values (x-rv) 

for different y-coordinate referential values (y-rv) for 𝐲 = 𝒂𝒙 

Approx. 

w of x-rv 0 w of x-rv 1 

under y-rv 

no.1 

(minimum) 

under y-rv 

no.2 

(maximum) 

under y-rv 

no.1 

(minimum) 

under y-rv 

no.2 

(maximum) 

y = 2x 0.5493 0.0388 0.0266 0.4012 

y = 3x 0.5757 0.0337 0.0207 0.3555 

y = 4x 0.5764 0.0263 0.0155 0.3148 

𝑦 = 5x 0.5100 0.0161 0.0084 0.2529 

y = 6x 0.5714 0.0203 0.0083 0.2628 
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coordinate referential values 0 and 1 for the y-coordinate referential values have a 

direct influence on the approximation for functions y = 𝑎𝑥  in the MAKER-based 

model. The weights of x-coordinate referential value 0 for y-coordinate referential 

value no.1 (the minimum of the observed y-coordinate values in the data set) 

fluctuate between 0.5 and 0.6. Meanwhile, the weights of x-coordinate referential 

value 1 for y-coordinate referential value no.2 (the maximum of the observed y-

coordinate values in 

the data set) are 

generally decreasing 

as the function 

approximated by the 

MAKER-based model 

is changed from 𝑦 =

2𝑥  to 𝑦 = 6𝑥 . The 

weights of x-

coordinate 

referential value 0 for 

y-coordinate 

referential value no.2 and those of x-coordinate referential value 1 for y-coordinate 

referential value no.1 play a small role in the approximation of the functions y = 𝑎𝑥, 

as they are generally very close to 0. This suggests that we use only a few 

parameters to train the models to approximate functions y = 𝑎𝑥 with a small error. 

 

In Figure 4.3, observed input-output data pairs for the approximation of logarithmic 

functions 𝑦 = log𝑎 𝑥. Again, MAKER-based models are built to perform the initial 

learning. The MSEs for this collection of functions y = log𝑎 𝑥 (a=2, 3, 4, 5, and 6) 

are 1.07 ∗ 10−4 , 3.37 ∗ 10−5 , 4.13 ∗ 10−5 , 1.65 ∗ 10−5 , and 2.40 ∗ 10−5  respectively. 

Figure 4.3 and the relevant MSEs verify that these MAKER-based models also have 

superior approximation capability for logarithmic functions 𝑦 = log𝑎 𝑥. 

 

Figure 4.3 Initial learning for functions 𝒚 = 𝐥𝐨𝐠𝒂 𝒙 

for MAKER-based models 
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Table 4.2 exhibits the trained parameters, i.e., the weights for the x-coordinate 

referential values for various y-coordinate referential values in the MAKER-based 

models. The ratios of the weights of x-coordinate referential value 1 for y-

coordinate referential value no.1 to the corresponding weights of x-coordinate 

referential value 2 for y-coordinate referential value no.2 in this case, hover around 

0.73, as the shapes of the curves used for the approximation of the functions 𝑦 =

log𝑎 𝑥 are generally similar to each other. At the same time, the weights of x-

coordinate referential value 1 for y-coordinate referential value no.1 and those of 

x-coordinate referential value 2 for y-coordinate referential value no.2 have little 

impact on the approximation, as they generally approach 0. All this indicates that 

we can use a limited number of parameters to train the MAKER-based models to 

approximate functions of the form 𝑦 = log𝑎 𝑥 with high accuracy. 

 

Next, a collection of power functions 𝑦 = 𝑥¼, 𝑦 = 𝑥⅕, and 𝑦 = 𝑥⅙, are used in the 

same way as above in Figure 4.4. The cyan solid curve represent the observations 

of the function and the red solid curve represents the predictions of the MAKER-

based models. The MSEs are 0.001421, 0.001687, and 0.001836 respectively. 

 

Table 4.2 Trained weights (w) of x-coordinate referential values (x-rv) 

for y-coordinate referential values (y-rv) for 𝒚 = 𝐥𝐨𝐠𝒂 𝒙 

Approx. 

w of x-rv 1 w of x-rv 2 

under y-rv 

no.1 

(minimum) 

under y-rv 

no.2 

(maximum) 

under y-rv 

no.1 

(minimum) 

under y-rv 

no.2 

(maximum) 

𝑦 = log2 𝑥 0.2981 0.0166 0.0200 0.4063 

𝑦 = log3 𝑥 0.2629 0.0129 0.0164 0.3608 

𝑦 = log4 𝑥 0.3686 0.0236 0.0348 0.5050 

𝑦 = log5 𝑥 0.2674 0.0131 0.0191 0.3692 

𝑦 = log6 𝑥 0.3647 0.0249 0.0321 0.4963 
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Table 4.3 displays the trained parameters, i.e., the weights for the x-coordinate 

referential values for various y-coordinate referential values, in the initial learning 

for functions 𝑦 = 𝑥𝑎 from the MAKER-based models. The ratios of the weights of x-

coordinate referential value 1 and y-coordinate referential value no.2 to the 

corresponding weights of x-coordinate referential value 0 and y-coordinate 

referential value no.1 are generally diminishing as the function being approximated 

by the MAKER-based models changes from 𝑦 = 𝑥⅙  to 𝑦 = 𝑥¼ , as the mean 

curvatures of those functions is generally diminishing. 

 

From Figures 4.2, 4.3, and 4.4 and the relevant MSEs in Tables 4.1, 4.2, and 4.3, 

it can be observed that the approximations of the power functions 𝑦 = 𝑥𝑎  are 

generally worse than those of both the exponential functions 𝑦 = 𝑎𝑥  and the 

logarithmic functions 𝑦 = log𝑎 𝑥 . This is mainly due to the fact that the mean 

curvatures of the power functions are generally larger than those of the latter two 
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Figure 4.4 Initial learning for functions 𝒚 = 𝒙𝒂 for MAKER-based models 

 

Table 4.3 Trained weights (w) of x-coordinate referential values (x-rv) 

under y-coordinate referential values (y-rv) for 𝒚 = 𝒙𝒂 

Approx. 

w of x-rv 0 w of x-rv 1 

under y-rv 

no.1 

(minimum) 

under y-rv 

no.2 

(maximum) 

under y-rv 

no.1 

(minimum) 

under y-rv 

no.2 

(maximum) 

𝑦 = 𝑥¼ 0.1247 0.0863 0.0672 0.7448 

𝑦 = 𝑥⅕ 0.0732 0.0536 0.0640 0.6713 

𝑦 = 𝑥⅙ 0.0337 0.0236 0.0415 0.4527 
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and the fact that there are only four referential values (i.e., the minimum and the 

maximum of the input values and the global extrema of the output values) of 

functions in the 𝑦 = 𝑥𝑎 case. This suggests more referential values should be used 

to approximate functions with large mean curvatures.  

 

As demonstrated above, the MAKER framework can be used to accurately 

approximate monotonic univariate functions with moderate mean curvatures, e.g., 

exponential functions 𝑦 = 𝑎𝑥 and logarithmic functions 𝑦 = log𝑎 𝑥, even if there are 

only four referential values in the approximation. However, four referential values 

are apparently not enough for the MAKER framework to accurately approximate 

monotonic univariate functions with large mean curvatures, e.g., power functions 

𝑦 = 𝑥𝑎. Extra referential values would be needed in such cases. 

Initial learning for monotonic univariate functions based on the MAKER framework 

has been demonstrated and discussed above in detail. Next, it is necessary to 

address the initial learning for non-monotonic univariate functions. Hence, the 

function 𝑦 = −(𝑥 − 0.5)2 + 0.25 is used as an example. Again, the function is utilized 

to generate a data set of observed input-output data pairs for approximation 

purposes. Using this data set, initial learning is performed by building MAKER-based 

models. The MSE calculated for the data set of this function is 0.0042. 

 

Table 4.4 exhibits the trained parameters, i.e., the weights for the x-coordinate 

referential values and y-coordinate referential values, in the abovementioned initial 

Table 4.4 Trained weights (w) of x-coordinate referential values (x-rv) 

under y-coordinate referential values (y-rv) for 𝒚 = −(𝒙 − 𝟎. 𝟓)𝟐 + 𝟎. 𝟐𝟓 

Approx. 

w of x-rv 0 w of x-rv 1 

under y-rv 

no.1 

(minimum) 

under y-rv 

no.2 

(maximum) 

under y-rv 

no.1 

(minimum) 

under y-rv 

no.2 

(maximum) 

y

= −(x − 0.5)2

+ 0.25 

0.0719 0 0.3326 1 
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learning. From Figure 4.5 and the relevant MSEs in Table 4.4, it can be observed 

that there is a significant difference between the solid cyan curve representing the 

observations of the function 𝑦 = −(𝑥 − 0.5)2 + 0.25  and the red solid curve 

representing the predictions of the MAKER-based model, which suggests the initial 

MAKER-based model with only four referential values (minimum and maximum 

input values and global extrema of output values) is unable to properly approximate 

this non-monotonic univariate function. Therefore, it appears necessary to perform 

advanced learning for non-monotonic univariate functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2 Advanced Learning 

 

As previously mentioned, with the initial learning for monotonic univariate functions 

using MAKER-based models, the x-coordinate and y-coordinate referential values 

are fixed as the minimum and maximum of the observed input values (x) of the 

function in the data set and the global extrema of the observed output values (y) 

 

Figure 4.5 Initial learning for the function 𝒚 = −(𝒙 − 𝟎. 𝟓)𝟐 + 𝟎. 𝟐𝟓 

for MAKER-based model 
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of the function in the data set, respectively, and we only need to train the weights 

of the x-coordinate referential values given each y-coordinate referential value. 

 

With the advanced learning, both the x-coordinate and y-coordinate referential 

values can be trained to further improve the approximation capability of the MAKER 

framework. The advanced learning is applied to each type of functions used to 

present the initial learning above. A typical function is selected from each type of 

functions and it is approximated as an example to demonstrate advanced learning 

for this type of functions. Specifically, the functions y = 6𝑥, 𝑦 = log6 𝑥, 𝑦 = 𝑥
1

6, and 

𝑦 = −(𝑥 − 0.5)2 + 0.25  are approximated as examples of advanced learning for 

exponential functions y = 𝑎𝑥, logarithmic functions 𝑦 = log𝑎 𝑥, power functions 𝑦 =

𝑥𝑎 , and non-monotonic univariate functions 𝑦 = −(𝑥 − 𝑎)2 + 𝑏  respectively. 

Additionally, the approximation of a multi-extremal function 𝑦 = 𝑒−(𝑥−2)
2
+ 0.5𝑒−(𝑥+2)

2
, 

is used as an example of advanced learning for complex non-monotonic univariate 

functions. 

 

Each of these typical functions is utilized to generate a data set of observed input-

output data pairs. In these data sets, the observed input values (x) of the function 

are generated uniformly with the interval between any two adjacent observed input 

values set to 0.01 (0.05 for the function 𝑦 = 𝑒−(𝑥−2)
2
+ 0.5𝑒−(𝑥+2)

2
). From the data set 

of observed input-output data pairs, advanced learning is performed by building 

MAKER-based models. 

 

With the advanced learning of MAKER-based models, the referential values of the 

observed input values (x-coordinates) include the minimum and maximum values 

in the data set, and the values between the minimum and maximum. The 

referential values of the observed output values (y-coordinates) encompass the 

global extrema and the values between them. 
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In the Figures 4.6 through 4.10 that illustrates advanced learning, the values on 

the x-axes represent the observed input values (x) of the functions in the data sets 

and the values on the y-axes represent the observed output values (y) and the 

predicted output values of the MAKER-based models. The solid cyan curves and the 

solid red curves represent the observations and the predictions respectively. The 

red points on the y-axes and magenta points on the x-axes indicate the trained y-

coordinate and x-coordinate referential values respectively. 

 

Tables 4.5 through 4.9 show the MSEs for the advanced-learning MAKER 

approximations with different numbers of trained x-coordinate and y-coordinate 

referential values. The ‘trained x-coordinate referential values’ and the ‘trained y-

coordinate referential values’ used in the following part of this section are short for 

the trained referential values of observed input values (x) between the minimum 

and the maximum of the observed input values (x) of the function in the data set 

and the trained referential values of observed output values (y) between the global 

extrema of observed output values (y) of the function in the data set respectively. 

 

 

 

 

 

 

 

 

 

Table 4.5 MSEs for approximations with different numbers of trained x-

coordinate (nrvx) and y-coordinate (nrvy) referential values (advanced 

learning case) for 𝐲 = 𝟔𝒙 

nrvy\nrvx 0 1 2 3 4 5 

0 0.001067 0.001635 0.002931 0.000724 0.000826 0.001005 

1 0.000886 0.000956 0.000860 0.000876 0.000887 0.000696 

2 0.000784 0.000912 0.000827 0.000811 0.000799 0.000646 

3 0.000602 0.000796 0.001047 0.000941 0.000926 0.000575 

4 0.000225 0.001057 0.000528 0.000593 0.000659 0.000531 
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Figure 4.6 exhibits the advanced learning for the exponential function y = 6𝑥 and 

Table 4.5 shows the corresponding MSEs for different numbers of trained x-

coordinate and y-coordinate referential values. We find that no matter how many 

trained x-coordinate and y-coordinate referential values there are, and where they 

are located in the approximations, the solid red and cyan curves generally match 

each other well in all subfigures. In Table 4.5, it can be observed that there is little 

difference between the MSE for the approximation with zero trained x-coordinate 

referential values and zero trained y-coordinate referential values, and the MSEs 

for the approximations with more-than-zero of each. Both suggest there is no need 

to have extra referential values in addition to the four boundary referential values 

(minimum and maximum of x values and global extrema of observed y values) 

approximating the function y = 6𝑥 using the MAKER framework. 

 

Figure 4.7 reveals the advanced learning for the logarithmic function 𝑦 = log6 𝑥 and 

Table 4.6 displays the corresponding MSEs. It is clear from Figure 4.6 that the solid 

red curves coincide well with the solid cyan curves in all subfigures, no matter how 

many trained x-coordinate and y-coordinate referential values there are and where 

they are located in the approximations. 

 

 

 

 

Table 4.6 MSEs for approximations with different numbers of trained x-

coordinate (nrvx) and y-coordinate (nrvy) (advanced learning case) for 𝒚 =

𝐥𝐨𝐠𝟔 𝒙 

nrvy\nrvx 0 1 2 3 4 5 

0 2.40 ∗ 10−5 1.38 ∗ 10−5 1.07 ∗ 10−5 8.44 ∗ 10−6 7.23 ∗ 10−6 8.32 ∗ 10−6 

1 1.25 ∗ 10−5 6.4 ∗ 10−6 7.13 ∗ 10−6 3.39 ∗ 10−6 7.34 ∗ 10−6 4.34 ∗ 10−6 

2 3.75 ∗ 10−6 4.69 ∗ 10−6 9.56 ∗ 10−6 6.83 ∗ 10−6 4.96 ∗ 10−6 4.72 ∗ 10−6 

3 6.28 ∗ 10−6 4.32 ∗ 10−6 7.42 ∗ 10−6 8.19 ∗ 10−6 6.57 ∗ 10−6 4.56 ∗ 10−6 

4 7.62 ∗ 10−6 7.24 ∗ 10−6 8.19 ∗ 10−6 4.99 ∗ 10−6 4.77 ∗ 10−6 3.48 ∗ 10−6 

 



117 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 nrvy & 0 nrvx 

 

0 nrvy & 1 nrvx 

 

0 nrvy & 2 nrvx 

 

0 nrvy & 3 nrvx 

 

0 nrvy & 4 nrvx 

 

0 nrvy & 5 nrvx 

      

      

      

      

Figure 4.7 Advanced learning for the logarithmic function 𝒚 = 𝐥𝐨𝐠𝟔 𝒙 for MAKER-based model 
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It is apparent from Table 4.6 that there is little difference between the MSE for the 

approximation with zero trained x-coordinate and zero trained y-coordinate 

referential values, and the MSEs for the approximations with more-than-zero of 

each and the MSE of the latter are slightly smaller. Although there is a slight 

improvement in the accuracy of the models with more-than-four referential values 

compared to the models with four, the slight improvement in accuracy is achieved 

at the cost of increased model complexity. This leads us to consider the possible 

trade-off between accuracy and complexity in the MAKER-based models. 

 

Overall, taking all the findings mentioned above from Figure 4.7 and Table 4.6 into 

consideration, we can conclude that four referential values (minimum and 

maximum of x and the global extrema of observed y are enough for the MAKER-

based model to accurately approximate the function 𝑦 = log6 𝑥. 

 

Figure 4.8 depicts the advanced learning for the power function 𝑦 = 𝑥
1

6 and Table 

4.7 provides the corresponding MSEs. It is noteworthy that the mean curvature of 

power function 𝑦 = 𝑥
1

6 between x=0 and x=1 is relatively large compared to that of 

the exponential function y = 6𝑥 between x=0 and x=1 and that of the logarithmic 

function 𝑦 = log6 𝑥 between x=1 and x=2. 

 

 

Table 4.7 MSEs for approximations with different numbers of trained x-

coordinate (nrvx) and y-coordinate (nrvy) referential values (advanced 

learning case) for 𝒚 = 𝒙
𝟏

𝟔 

nrvy\nrvx 0 1 2 3 4 5 

0 1.84 ∗ 10−3 1.42 ∗ 10−4 8.00 ∗ 10−5 3.88 ∗ 10−5 2.67 ∗ 10−5 2.69 ∗ 10−5 

1 1.85 ∗ 10−3 7.66 ∗ 10−5 3.14 ∗ 10−5 2.2 ∗ 10−5 2.17 ∗ 10−5 9.97 ∗ 10−6 

2 1.80 ∗ 10−3 9.76 ∗ 10−5 4.16 ∗ 10−5 1.43 ∗ 10−5 1.05 ∗ 10−5 1.16 ∗ 10−5 

3 1.79 ∗ 10−3 8.08 ∗ 10−5 4.47 ∗ 10−5 1.26 ∗ 10−5 1.17 ∗ 10−5 1.32 ∗ 10−5 

4 1.86 ∗ 10−3 1.11 ∗ 10−4 2.62 ∗ 10−5 1.51 ∗ 10−5 1.58 ∗ 10−5 8.86 ∗ 10−6 
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0 nrvy & 0 nrvx 

 

0 nrvy & 1 nrvx 

 

0 nrvy & 2 nrvx 

 

0 nrvy & 3 nrvx 

 

0 nrvy & 4 nrvx 

 

0 nrvy & 5 nrvx 

      

      

      

      

Figure 4.8 Advanced learning for the power function 𝒚 = 𝒙
𝟏

𝟔 for MAKER-based model 
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It is clear from Table 4.7 that no significant changes in MSEs occur as the number 

of trained y-coordinate referential values is increased in the approximations of 𝑦 =

𝑥
1

6 . By scrutinizing the subfigures of the approximations with zero trained x-

coordinate referential values, we can see that the shapes of the red solid curves 

representing the predictions of MAKER-based models with more-than-zero trained 

y-coordinate referential values are almost the same as the shape of that with zero 

trained y-coordinate referential values, even as the number of trained y-coordinate 

referential values increased from one to four and despite these trained y-coordinate 

referential values being distributed in different locations of the y-axis. Thus, it can 

be deduced that the number and locations of trained y-coordinate referential values 

have no significant effect on the accuracy of the MAKER-based model 

approximations 

 

From Table 4.7, we can easily observe a significant drop from the MSEs of 

approximations with zero trained x-coordinate referential values to the MSEs of the 

approximations with one trained x-coordinate referential value, and a slight 

reduction in the MSEs. Hence, it can be inferred that more-than-zero trained x-

coordinate referential values is more appropriate for the MAKER-based model 

approximations of the function 𝑦 = 𝑥
1

6. 

 

From Figure 4.8, we can see clearly that the solid red curves in the subfigures for 

the approximations with more-than-zero trained x-coordinate referential values 

provide a better fit to the solid cyan curves than those in the subfigures for zero 

trained x-coordinate referential values, especially in the range between x=0 and 

x=0.4, where the mean curvature is large. Furthermore, it can be observed from 

Figure 4.7 that, compared to the approximations with zero trained x-coordinate 

referential values, the approximations with one trained x-coordinate referential 

value all have an extra trained x-coordinate referential value located between x=0 

and x=0.2 where the mean curvature is large. This explains why the 
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approximations with one trained x-coordinate referential value provide a better fit 

to 𝑦 = 𝑥
1

6 than those with zero trained x-coordinate referential values. 

 

In addition to this, Figure 4.8 shows that, when there is more than one trained x-

coordinate referential value, one of them is always located between x=0 and x=0.2. 

Besides this, as mentioned previously, the MSEs of the approximations with more-

than-zero trained x-coordinate referential values fall slightly as the number of the 

trained x-coordinate referential values change from one to five, and this slight 

reduction is not as significant as that observed when moving from zero to one 

trained x-coordinate referential value. From the analysis above, we can reach the 

conclusion that the trained x-coordinate referential value located within the range 

of the function with large mean curvature plays a significant role in improving the 

accuracy of the MAKER-based model approximations when the function being 

approximated has large mean curvature. 

 

From the above analysis of the MAKER-based model approximations for the 

functions y = 6𝑥, 𝑦 = log6 𝑥, and 𝑦 = 𝑥
1

6, we can reasonably conclude that only four 

referential values i.e., the minimum and maximum input values of the function and 

global extrema of the output values of the function, are enough to enable the 

MAKER-based models to provide accurate approximations to the monotonic 

univariate functions with moderate mean curvatures, e.g., y = 6𝑥 and 𝑦 = log6 𝑥, 

but that it is necessary to have more-than-zero trained x-coordinate referential 

values to gain an adequate fit to monotonic univariate functions with large mean 

curvatures, e.g., 𝑦 = 𝑥⅙. 
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0 nrvy & 0 nrvx 

 

0 nrvy & 1 nrvx 

 

0 nrvy & 2 nrvx 

 

0 nrvy & 3 nrvx 

 

0 nrvy & 4 nrvx 

 

0 nrvy & 5 nrvx 

      

      

      

      

Figure 4.9 Advanced learning for the power function 𝒚 = −(𝒙 − 𝟎. 𝟓)𝟐 + 𝟎. 𝟐𝟓 for MAKER-based model 
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Figure 4.9 shows the advanced learning for the basic non-monotonic univariate 

function 𝑦 = −(𝑥 − 0.5)2 + 0.25  and Table 4.8 the relevant MSEs for different 

numbers of trained x-coordinate and y-coordinate referential values. In Table 4.8, 

we can identify no noticeable change in MSE as the number of trained y-coordinate 

referential values increases. Taking a closer look at the subfigures with 0 trained x-

coordinate referential values in Figure 4.8, we can see that, no matter how many 

trained y-coordinate referential values there are and where they are located in the 

approximations, the solid red curves representing the predictions of the MAKER 

models are all monotonic curves. Thus, it can be concluded that the number and 

locations of the trained y-coordinate referential values do not significantly impact 

the accuracy of the MAKER model approximations. 

 

As Table 4.8 shows, the MSEs drop substantially when the number of trained x-

coordinate referential values moves from zero to one and then generally remain 

level with slight fluctuations as the number increases to five. This leads us to 

conclude that more than zero trained x-coordinate referential values enable the 

MAKER models to provide more accurate approximations to the monotonic 

univariate function 𝑦 = −(𝑥 − 0.5)2 + 0.25. 

 

As Figure 4.9 shows, the solid red curves in the subfigures based on zero trained 

x-coordinate referential values are just monotonic curves, which are obviously 

unable to effectively approximate the solid cyan curves, while the red curves in the 

subfigures based on more than zero trained x-coordinate referential values match 

Table 4.8 MSEs for approximations with different numbers of trained x-

coordinate (nrvx) and y-coordinate (nrvy) referential values (advanced learning 

case) for 𝒚 = −(𝒙 − 𝟎. 𝟓)𝟐 + 𝟎. 𝟐𝟓 

nrvy\nrvx 0 1 2 3 4 5 

0 4.242 ∗ 10−3 2.49 ∗ 10−6 3.00 ∗ 10−6 1.96 ∗ 10−6 3.76 ∗ 10−6 5.56 ∗ 10−6 

1 4.21 ∗ 10−3 2.14 ∗ 10−6 1.76 ∗ 10−6 1.46 ∗ 10−6 3.58 ∗ 10−6 2.45 ∗ 10−6 

2 4.194 ∗ 10−3 2.23 ∗ 10−6 2.26 ∗ 10−6 3.03 ∗ 10−6 2.12 ∗ 10−6 3.88 ∗ 10−6 

3 4.184 ∗ 10−3 2.17 ∗ 10−6 2.03 ∗ 10−6 3.79 ∗ 10−6 2.72 ∗ 10−6 3.3 ∗ 10−6 

4 4.177 ∗ 10−3 2.31 ∗ 10−6 1.28 ∗ 10−6 3.2 ∗ 10−6 3.66 ∗ 10−6 3.1 ∗ 10−6 
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the cyan curves well. From Figure 4.9, it can also be observed that, in each of the 

approximations with one trained x-coordinate referential value, that value is located 

at x=0.5, i.e., the x-coordinate of the critical point on the curve of 𝑦 = −(𝑥 − 0.5)2 +

0.25. Moreover, we can see clearly from Figure 4.9 that the trained x-coordinate 

referential values in the approximations with more than one such value all include 

one located at x=0.5. 

 

Combining the locations of the trained x-coordinate referential values and how the 

red solid curves match the solid cyan curves in Figure 4.9 with the pattern of MSEs 

displayed in Table 4.8, we can safely conclude that one trained x-coordinate 

referential value is enough for the MAKER model to accurately approximate the 

basic non-monotonic univariate function 𝑦 = −(𝑥 − 0.5)2 + 0.25 with only one critical 

point and hence two monotone intervals. Also, this trained x-coordinate referential 

value is generally located at the x-coordinate of the critical point of the function, 

minimizing the difference between the predicted and observed output values. 

 

When coupled with the approximations for the monotonic univariate functions (y =

6𝑥, 𝑦 = log6 𝑥, and 𝑦 = 𝑥⅙), those for the non-monotonic univariate function 𝑦 =

−(𝑥 − 0.5)2 + 0.25  naturally lead us to conclude that two adjacent x-coordinate 

referential values can only be used to approximate monotonic curves, while we 

need at least one trained x-coordinate referential value to approximate non-

monotonic univariate functions using MAKER models. 

 

The approximation for 𝑦 = −(𝑥 − 0.5)2 + 0.25  provides a perspective on MAKER 

model approximations for basic non-monotonic univariate functions. For the more 

general case, i.e., complex non-monotonic univariate functions, as mentioned 

previously, we use a multi-extremal function, 𝑦 = 𝑒−(𝑥−2)
2
+ 0.5𝑒−(𝑥+2)

2
. This function 

has three extrema, i.e., a local minimum at x=0, a local maximum at x=-2, and a 

global maximum at x=2, and hence four monotone intervals. Furthermore, this 

function has four inflection points, which are located at approximately x=-2.71, x=-
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1.29, x=1.29, and x=2.71 respectively. With the data set of observed input-output 

data pairs, advanced learning is performed for this function by again building 

MAKER models. 

 

Figure 4.10 illustrates the advanced learning for this function and Table 4.9 shows 

the MSEs for different numbers of trained x-coordinate and y-coordinate referential 

values. Figure 4.11 then visualizes the MSEs from Table 4.9 to provide a more 

intuitive display of how the MSEs change with the number of trained x-coordinate 

and y-coordinate referential values. 

 

From Table 4.10 and Figure 4.11, it can be observed that there are significant drops 

in the MSEs of the approximations as we move from zero to one, to two, and finally 

to three trained x-coordinate referential values. The MSEs generally then remain 

stable, experiencing only slight fluctuations, as we move from three to ten trained 

x-coordinate referential values. Meanwhile, no significant changes in the MSEs can 

be observed as the number of trained y-coordinate referential values changes. 
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Figure 4.10 Advanced learning for the power function 𝒚 = 𝒆−(𝒙−𝟐)
𝟐
+ 𝟎. 𝟓𝒆−(𝒙+𝟐)

𝟐
 for MAKER-based model 
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Figure 4.10 Advanced learning for the power function 𝒚 = 𝒆−(𝒙−𝟐)
𝟐
+ 𝟎. 𝟓𝒆−(𝒙+𝟐)
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Table 4.9 MSEs for approximations with different numbers of trained x-coordinate (nrvx) and y-coordinate (nrvy) 

referential values (advanced learning case) for 𝒚 = 𝒆−(𝒙−𝟐)
𝟐
+ 𝟎. 𝟓𝒆−(𝒙+𝟐)

𝟐
 

nrvy\nr

vx 
0 1 2 3 4 5 6 7 8 9 10 

0 7.52 ∗ 10−2 2.50 ∗ 10−2 1.68 ∗ 10−2 2.32 ∗ 10−3 3.42 ∗ 10−3 3.04 ∗ 10−4 1.04 ∗ 10−4 1.47 ∗ 10−4 5.41 ∗ 10−5 4.45 ∗ 10−5 5.73 ∗ 10−5 

1 7.55 ∗ 10−2 2.50 ∗ 10−2 1.49 ∗ 10−2 1.68 ∗ 10−3 4.74 ∗ 10−4 3.54 ∗ 10−4 1.33 ∗ 10−4 4.06 ∗ 10−5 3.59 ∗ 10−5 1.13 ∗ 10−5 4.43 ∗ 10−5 

2 7.51 ∗ 10−2 2.50 ∗ 10−2 1.52 ∗ 10−2 1.69 ∗ 10−3 3.73 ∗ 10−4 2.13 ∗ 10−4 1.03 ∗ 10−4 2.50 ∗ 10−5 3.43 ∗ 10−5 5.56 ∗ 10−5 6.01 ∗ 10−5 

3 7.51 ∗ 10−2 2.50 ∗ 10−2 1.49 ∗ 10−2 1.82 ∗ 10−3 3.97 ∗ 10−4 3.46 ∗ 10−4 8.17 ∗ 10−5 1.06 ∗ 10−4 6.06 ∗ 10−5 7.65 ∗ 10−5 6.46 ∗ 10−5 

4 7.51 ∗ 10−2 2.50 ∗ 10−2 1.51 ∗ 10−2 1.56 ∗ 10−3 4.94 ∗ 10−4 3.45 ∗ 10−4 3.98 ∗ 10−4 5.22 ∗ 10−5 3.18 ∗ 10−5 5.78 ∗ 10−5 4.01 ∗ 10−5 

5 7.51 ∗ 10−2 2.50 ∗ 10−2 1.51 ∗ 10−2 1.69 ∗ 10−3 4.42 ∗ 10−4 4.52 ∗ 10−4 1.31 ∗ 10−4 1.52 ∗ 10−4 9.83 ∗ 10−5 3.90 ∗ 10−5 2.47 ∗ 10−5 

6 7.51 ∗ 10−2 2.50 ∗ 10−2 1.52 ∗ 10−2 1.32 ∗ 10−2 4.55 ∗ 10−4 3.10 ∗ 10−4 1.18 ∗ 10−4 5.26 ∗ 10−5 5.43 ∗ 10−5 6.87 ∗ 10−5 1.01 ∗ 10−4 

 



129 
 

Combining the locations of the trained x-coordinate and y-coordinate referential 

values displayed in Figure 4.10 with Figure 4.11, we can conclude that significant 

changes in MSEs are highly associated with the number and locations of the trained 

x-coordinate referential values. 

 

 

Specifically, a significant drop in MSEs is observed in the approximations with only 

one trained x-coordinate referential value that is located approximately at the x-

coordinate of the global maximum of the function (i.e., x=2) relative to the 

approximations with zero trained x-coordinate referential values. In the 

approximations with two trained x-coordinate referential values located close to the 

x-coordinate of the local minimum of the function (i.e., x=0) and the x-coordinate 

of the global maximum (i.e., x=2) respectively, we can see clearly that a significant 

drop occurs in the MSEs relative to the approximations with only one trained x-

 

Figure 4.11 Surface plot of MSEs for approximations with different 

numbers of trained x-coordinate (nrvx) and y-coordinate (nrvy) 

referential values in the advanced learning for 𝒚 = 𝒆−(𝒙−𝟐)
𝟐
+ 𝟎. 𝟓𝒆−(𝒙+𝟐)

𝟐
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coordinate referential value. Similar significant drops in MSEs can be observed 

when we move from the approximations with two trained x-coordinate referential 

values to those with three trained x-coordinate referential values located close to 

the x-coordinate of the local maximum of the function (i.e., x=-2), the x-coordinate 

of the local minimum of the function (i.e., x=0), and the x-coordinate of the global 

maximum of the function (i.e., x=2) respectively. 

 

From Table 4.9, Figure 4.10, and Figure 4.11, we can also see that, as we move 

from the approximations with three trained x-coordinate referential values to those 

with ten, although the number of trained x-coordinate referential values increases, 

the MSEs generally remain level with only slight fluctuations. Also, from Figure 4.10, 

there are significant differences between the solid red curves representing the 

predictions of the MAKER models and the corresponding solid cyan curves 

representing the observations of the function in the subfigures corresponding to 

one and two trained x-coordinate referential values, while in those with three 

trained x-coordinate referential values, the solid red curves basically match the 

solid cyan curves. 

 

Taking all the findings from Table 4.9, Figure 4.10, and Figure 4.11 into 

consideration, we naturally come to the conclusion that three trained x-coordinate 

referential values are enough for the MAKER framework to provide an adequate fit 

to the function 𝑦 = 𝑒−(𝑥−2)
2
+ 0.5𝑒−(𝑥+2)

2
 which has a local minimum at x=0, a local 

maximum at x=-2, and a global maximum at x=2 and hence four monotone 

intervals, and that, through optimization, the trained x-coordinate referential 

values of the approximations are generally located around the x-coordinates of the 

extrema of the function. 

 

By scrutinizing the second column (with the header ‘0’) of Table 4.9 and the 

subfigures with zero trained x-coordinate referential values in Figure 4.10, we can 

observe that increasing the number of trained y-coordinate referential values does 
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not improve the MAKER model approximations of the multi-extremal function 𝑦 =

𝑒−(𝑥−2)
2
+ 0.5𝑒−(𝑥+2)

2
 and there is no significant relationship between the number and 

locations of the trained y-coordinate referential values and the accuracy of the 

approximations. Taking a closer look at the subfigures corresponding to more than 

three trained x-coordinate referential values in Figure 4.9, we can observe that 

these MAKER models provide a better fit to the multi-extremal function than those 

based on just three trained x-coordinate referential values, as these 

approximations feature extra trained x-coordinate referential values located 

between adjacent trained x-coordinate referential values that are situated 

approximately at the endpoints of the monotone intervals of the function. 

 

For instance, as can be seen from Figure 4.10, that shows the approximations with 

one trained y-coordinate referential value, the approximation with four trained x-

coordinate referential values has an extra trained x-coordinate referential value 

located between the global maximum (i.e., x=2) and the maximum of the observed 

input values (i.e., x=5) of the multi-extremal function, relative to the 

approximation with three trained x-coordinate referential values, giving the 

approximation with four trained x-coordinate referential values a closer fit to the 

multi-extremal function in the range between x=2 and x=5. 

 

This is mainly because of the inflection point on the multi-extremal function at 

about x=2.71, which divides the curve between x=2 and x=5 into two segments, 

i.e. that between x=2 and x=2.71 which is concave downward and that between 

x=2.71 and x=5 which is convex downward. Moreover, the initial learning for 

exponential functions y = 𝑎𝑥 and logarithmic functions 𝑦 = log𝑎 𝑥 showed that the 

MAKER framework can accurately approximate these two types of function using 

only two adjacent x-coordinate referential values and two adjacent y-coordinate 

referential values. For these two reasons, an extra trained x-coordinate referential 

value between two adjacent x-coordinate referential values could lead to a better 

approximation to a segment of a function that has both convexity and concavity. 
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Similarly, the approximation with five trained x-coordinate referential values has 

an extra one at approximately x=1.29 i.e., the x-coordinate of the inflection point 

between x=0 and x=2, relative to the approximation with four such values. In 

addition, this extra trained x-coordinate referential value is situated between that 

at about x=0 (local minimum of the function) and that at about x=2 (global 

maximum of the function). 

 

Without doubt, this extra trained x-coordinate referential value leads to the 

approximation with five trained x-coordinate referential values having a closer fit 

to the curve of the extremal function in the range between x=0 and x=2. With a 

better fit to the segment between x=0 and x=2 and a better fit between x=2 and 

x=5, the approximation with five trained x-coordinate referential values naturally 

provides a better fit to the critical point of the multi-extremal function at x=2, and 

its vicinity, than the approximation with four trained x-coordinate referential values, 

which can be observed from Figure 4.10. 

 

As previously mentioned, an extra trained x-coordinate referential value close to 

the x-coordinate of the point at which a function has large curvature, between 

adjacent x-coordinate referential values, can be used to effectively improve the 

MAKER model approximation of the curved segment of a function with large mean 

curvature. Thus, by comparing the approximation based on four trained x-

coordinate referential values to that based on seven, we can see that, between x=2 

and x=5, both approximations have trained x-coordinate referential values close to 

x=2, i.e., at a critical point of the multi-extremal function, and close to x=2.71, at 

an inflection point of the function, and that the approximation based on seven 

trained x-coordinate referential values has an extra one close to x=4, where the 

multi-extremal function has large curvature, which leads to that one providing a 

better fit to the curve of the multi-extremal function between x=3 and x=5. 
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As shown in the subfigure of Figure 4.11 for nine trained x-coordinate referential 

values, the solid red curve representing the predictions of the MAKER model 

generally coincides very well with the solid cyan curve representing the 

observations of the multi-extremal function. This is mainly due to the fact that each 

of the important points, i.e., the critical points and the inflection points of the multi-

extremal function, has a corresponding trained x-coordinate referential value. In 

addition to this, the monotonic curve segments of the multi-extremal function 

between x=-5 and x=-3 and between x=3 and x=5 have large mean curvatures 

and corresponding trained x-coordinate referential values located near to x=-4 and 

x=4 respectively. 

 

4.4 Bivariate Function Approximations 

 

The approximations of univariate functions elucidated in Section 4.3 have 

preliminarily indicated the great approximation capability of MAKER models. In this 

section, approximations of a bivariate function, namely the Himmelblau function 

(Himmelblau, 1972), are used as an example to illustrate the approximation 

capability of MAKER models for more complex cases, i.e., bivariate functions. The 

Himmelblau function is a benchmark function used to test optimization techniques. 

It is displayed in Equation (4.1) (Andrei, 2008). It has one local maximum, 𝑧 =

181.616, at the point (-0.270844, -0.923038), and four identical local minima, 𝑧 =

0, at the points (3.0, 2.0), (3.584428, -1.848126), (-2.805118, 3.131312), and (-

3.779310, -3.283186). A three-dimensional surface plot of the Himmelblau 

function is presented in Figure 4.12. 

 

𝑧 = (𝑥2 + 𝑦 − 11)2 + (𝑥 + 𝑦2 − 7)2, −6 ≤ 𝑥, 𝑦 ≤ 6                          (4.1) 
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In this study, we use the Himmelblau function to generate observed input-output 

data pairs. For instance, for an observed input value of the variables x and y, e.g. 

x=1.0 and y=1.6, the corresponding observed output value of the Himmelblau 

function can be 

derived (z=82.3936). 

Thus, x=1.0, y=1.6, 

and z=82.3936 form 

a data record (1.0, 

1.6, 82.3936). Using 

the same method, we 

can generate other 

data records to form 

a data set for 

approximation of the 

Himmelblau function. 

 

In the data set for the approximation, the observed input values of variables x and 

y are distributed uniformly, and the interval between any two adjacent x or y values 

is set to 0.2. Moreover, the data set for the approximation also includes the 

observed output values of the Himmelblau function, which are represented by the 

z-coordinate values in Figure 4.12. With this data set, MAKER models are built to 

approximate the Himmelblau function. 

 

The parameters of the models, i.e., the x-coordinate, y-coordinate, and z-

coordinate referential values, and the weights, are acquired by minimizing the 

differences between the observed z-coordinate values of the Himmelblau function 

and the predicted z-coordinate values generated by the models using the adapted 

genetic algorithm. The numbers of trained x-coordinate and y-coordinate 

referential values range from 1 to 16. The number of trained z-coordinate 

referential values ranges from 1 to 6. It is noteworthy that the ‘trained x-coordinate 

 

Figure 4.12 The three-dimensional surface plot of 

Himmelblau function 
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referential values’ and the ‘trained y-coordinate referential values’ are short for the 

trained referential values of observed input values of the variable x of the 

Himmelblau function and the trained referential values of observed input values of 

the variable y of the Himmelblau function respectively. Both the trained x-

coordinate and y-coordinate referential values are located between the minimum 

and the maximum of the observed input x and y values respectively. Similarly, the 

‘trained z-coordinate referential values’ is short for the trained referential values of 

observed output values between the minimum and the maximum of observed 

output values of the Himmelblau function. 

 

Figure 4.13 exhibits the approximations of the MAKER models for the Himmelblau 

function. In the subfigures of Figure 4.13, the red points on the x-axes, y-axes, 

and z-axes indicate the trained x-coordinate, y-coordinate, and z-coordinate 

referential values respectively. The blue points in the subfigures indicate the 

predictions generated by the MAKER models and the semitransparent cyan surface 

denotes the surface generated by the observations of the Himmelblau function. 

 

The primary means of evaluating the accuracy of the Himmelblau function 

approximations provided by the MAKER models is to check the normalized MSEs 

for the approximations and determine whether the surfaces of the blue points 

representing the predictions generated by the models fit into the semitransparent 

cyan surfaces representing the observations of the Himmelblau function. 

Additionally, the local maxima and minima can be identified from the predicted z-

coordinate values generated by the models, and these extrema generated by the 

models can then be compared to those generated by the observed output values 

of the Himmelblau function to find out whether the locations of the two are close 

to one another, as a further accuracy check. 
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Figure 4.13 Advanced learning for the Himmelblau function for MAKER-based model 
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Figure 4.13 Advanced learning for the Himmelblau function for MAKER-based model 
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Figure 4.13 Advanced learning for the Himmelblau function for MAKER-based model 
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4.4.1 Normalized Mean Squared Error (MSE) 

 

In line with what has been stated above, we start with the MSEs of the MAKER 

model approximations of the Himmelblau function to evaluate their accuracy. Table 

4.10 displays the normalized MSEs for different numbers of trained x-coordinate, 

y-coordinate, and z-coordinate referential values. The main reason for using the 

normalized MSEs to evaluate the accuracy of the approximations, according to 

Lughofer (2013), is that different ranges of different output values could cause 

completely different MSE values, although the quality of the models might be the 

same, which means the MSE could be quite uninterpretable as it can be an isolated 

measure of model accuracy. To address this issue, we can either normalize the data 

or use a normalized error measure. The normalized error measure is preferable to 

data normalization in that data within the original ranges are better understood by 

the experts than normalized data. Thus, as a normalized error measure, the 

normalized MSE is defined as in Equation (4.2), where �̂� indicates the predicted 

output values generated by the model and z indicates the observed output values 

of the Himmelblau function. 

 

𝑚𝑠𝑒𝑛𝑜𝑟𝑚 =
1

𝑁
∑

(�̂�(𝑛) − 𝑧(𝑛))2

(max(𝑧) −min(𝑧))2

𝑁

𝑛=1

                                          (4.2) 

 

Figure 4.14 provides a visualization of the MSEs exhibited in Table 4.10, as a more 

intuitive display of how the MSEs change with the number of trained x-coordinate, 

y-coordinate, and z-coordinate referential values. From Table 4.10 and Figure 4.13, 

it can be observed that there are significant drops in the MSEs as we move from 

the approximations with one trained x-coordinate referential value and one trained 

y-coordinate referential value to those with two of each, and again as we move to 

those with three of each. Additionally, it can be seen from Table 4.10 and Figure 

4.13 that the MSEs generally remain stable with just slight fluctuations as we move 
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from the approximations with three to those with sixteen trained x-coordinate and 

y-coordinate referential values. Finally, we can identify no significant changes in 

the MSEs as the number of trained z-coordinate referential values increases.  

 

4.4.2 Surface Fitting 

 

By integrating the 

locations of the trained x-

coordinate, y-coordinate, 

and z-coordinate 

referential values 

exhibited in Figure 4.13 

with the pattern of MSEs 

presented in Table 4.10 

and Figure 4.14, we can 

observe a strong association between the significant changes in the MSEs and the 

number and locations of trained referential values. 

 

Specifically speaking, compared to the approximations with one trained referential 

value in either the x- or y-coordinate, the approximations with two trained 

referential values in either the x- or y-coordinate have a trained x-coordinate 

referential value located around -3.779310 and a trained y-coordinate referential 

value located around -3.283186, which correspond to the x- and y-coordinates (-

3.779310, -3.283186) of a local minimum at which z=0. These referential values 

are similar to those of the approximations with one trained x-coordinate referential 

value and one trained y-coordinate referential value. 

 

 

Figure 4.14 Surface plot of MSEs for 

approximations with different numbers of 

trained x-coordinate (nrvx), y-coordinate 

(nrvy), and z-coordiante referential values in 

the advanced learning for Himmelblau 

Function 
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Moreover, the approximations with two trained x-coordinate and two trained y-

coordinate referential values have an extra one of each, which are generally located 

at around x=3.584428, i.e., the x-coordinate of a local minimum (z=0) at 

(3.584428, -1.848126) and y=3.131312, i.e., the y-coordinate of a local minimum 

(z=0) at (-2.805118, 3.131312), respectively, which leads to a significant drop in 

the MSEs of these approximations compared to those of the approximations with 

one trained x-coordinate and one trained y-coordinate referential value. 

 

As previously mentioned, a similar significant drop in MSEs can be observed when 

we move from the approximations with two trained x-coordinate and two trained 

y-coordinate referential values to those with three of each. Both approximations 

have trained x-coordinate referential values located near to -3.779310, i.e., the x-

coordinate of a local minimum (z=0) at (-3.779310, -3.283186) and 3.584428, i.e., 

the x-coordinate of a local minimum (z=0) at (3.584428, -1.848126), respectively, 

and trained y-coordinate referential values located near to -3.283186, i.e., the y-

coordinate of a local minimum (z=0) at (-3.779310, -3.283186) and 3.131312, i.e., 

the y-coordinate of a local minimum (z=0) at (-2.805118, 3.131312) respectively. 

 

Compared to the approximations with two trained x-coordinate and two trained y-

coordinate referential values, those with three of each have an extra one near to -

0.270844, i.e., the x-coordinate of a local maximum z=181.616 at (-0.270844, -

0.923038) and near to 2.0, i.e., the y-coordinate of a local minimum (z=0) at (3.0, 

2.0) respectively. This leads to a significant drop in the MSEs. 

 

In addition to the patterns observed in Table 4.10, Figure 4.13, and Figure 4.14, as 

previously stated, we can evaluate the accuracy of the MAKER model 

approximations by checking whether the surfaces of the blue points indicating the 

predictions of the models provide a good fit to the semitransparent cyan surfaces 

indicating the observations of the Himmelblau function. 



142 
 

 

 

Table 4.10 Normalized MSEs for approximations with different numbers of trained x-coordinate (nrvx), y-coordinate 

(nrvy), and z-coordinate (nrvz) referential values, for the Himmelblau function 

nrvx & nrvy\nrvz 1 2 3 4 5 6 

1 & 1 4.01 ∗ 10−3 3.97 ∗ 10−3 4.04 ∗ 10−3 4.33 ∗ 10−3 4.24 ∗ 10−3 5.20 ∗ 10−3 

2 & 2 1.23 ∗ 10−3 1.19 ∗ 10−3 1.17 ∗ 10−3 1.23 ∗ 10−3 1.19 ∗ 10−3 1.22 ∗ 10−3 

3 & 3 7.49 ∗ 10−4 6.96 ∗ 10−4 7.72 ∗ 10−4 8.31 ∗ 10−4 7.09 ∗ 10−4 7.74 ∗ 10−4 

4 & 4 7.28 ∗ 10−4 6.87 ∗ 10−4 7.40 ∗ 10−4 5.58 ∗ 10−4 6.52 ∗ 10−4 7.01 ∗ 10−4 

5 & 5 5.36 ∗ 10−4 5.85 ∗ 10−4 5.60 ∗ 10−4 5.31 ∗ 10−4 5.80 ∗ 10−4 5.92 ∗ 10−4 

6 & 6 5.42 ∗ 10−4 4.37 ∗ 10−4 4.59 ∗ 10−4 5.50 ∗ 10−4 5.08 ∗ 10−4 5.55 ∗ 10−4 

7 & 7 5.65 ∗ 10−4 4.81 ∗ 10−4 4.66 ∗ 10−4 4.25 ∗ 10−4 5.23 ∗ 10−4 4.94 ∗ 10−4 

8 & 8 6.14 ∗ 10−4 4.24 ∗ 10−4 4.60 ∗ 10−4 5.10 ∗ 10−4 5.20 ∗ 10−4 4.92 ∗ 10−4 

9 & 9 5.05 ∗ 10−4 5.84 ∗ 10−4 3.95 ∗ 10−4 4.35 ∗ 10−4 4.74 ∗ 10−4 4.23 ∗ 10−4 

10 & 10 5.43 ∗ 10−4 4.09 ∗ 10−4 5.41 ∗ 10−4 4.94 ∗ 10−4 5.45 ∗ 10−4 5.88 ∗ 10−4 

11 & 11 5.97 ∗ 10−4 4.54 ∗ 10−4 5.67 ∗ 10−4 4.80 ∗ 10−4 4.52 ∗ 10−4 4.30 ∗ 10−4 

12 & 12 6.89 ∗ 10−4 4.80 ∗ 10−4 5.54 ∗ 10−4 6.57 ∗ 10−4 6.01 ∗ 10−4 4.63 ∗ 10−4 

13 & 13 6.40 ∗ 10−4 6.61 ∗ 10−4 5.57 ∗ 10−4 4.50 ∗ 10−4 4.98 ∗ 10−4 4.71 ∗ 10−4 

14 & 14 7.67 ∗ 10−4 4.93 ∗ 10−4 5.87 ∗ 10−4 6.91 ∗ 10−4 5.56 ∗ 10−4 6.15 ∗ 10−4 

15 & 15 6.13 ∗ 10−4 6.09 ∗ 10−4 5.60 ∗ 10−4 4.27 ∗ 10−4 6.94 ∗ 10−4 6.57 ∗ 10−4 

16 & 16 7.69 ∗ 10−4 6.29 ∗ 10−4 5.11 ∗ 10−4 6.29 ∗ 10−4 5.32 ∗ 10−4 5.55 ∗ 10−4 
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Taking a closer look at Figure 4.13, we can observe that, in the subfigures for the 

approximations with one trained x-coordinate and one trained y-coordinate 

referential value, there are severe discrepancies between the surfaces of the model 

predictions and the semitransparent cyan surfaces of the function observations. 

The only trained x-coordinate referential value located near to -3.779310, i.e., the 

x-coordinate of the local minimum (-3.779310, -3.283186), and the only trained 

y-coordinate referential values located near to -3.283186, i.e., the y-coordinate of 

local minimum (-3.779310, -3.283186), help the models provide a reasonable fit 

to the observations of the Himmelblau function in the area between x=-5 and x=-

6 and y=-5 and y=-6, while the models do not provide a suitable fit to the 

observations in the other areas, as there are insufficient trained referential values 

in the corresponding ranges of the x-axis and y-axis. This suggests that one trained 

x-coordinate referential value and one trained y-coordinate referential value are 

obviously not enough for the models to provide an adequate fit to the Himmelblau 

function. 

 

From the subfigures of Figure 4.13 showing the approximations based on two 

trained x-coordinate referential values and two trained y-coordinate referential 

values, it can be seen there is an extra trained x-coordinate referential value and 

an extra trained y-coordinate referential value, which are generally located near to 

3.584428, i.e., the x-coordinate of local minimum (3.584428, -1.848126) and 

3.131312, i.e., the y-coordinate of local minimum (-2.805118, 3.131312) 

respectively. 

 

This significantly improves the fit of the models to the Himmelblau function, 

although the surfaces of the model predictions in the approximations with two 

trained x-coordinate referential values and two trained y-coordinate referential 

values are generally flatter than the semitransparent cyan surfaces of observations 

of the Himmelblau function, and there are significant discrepancies between the 

surfaces of predictions and surfaces of observations. 
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As shown in the subfigures illustrating the approximations with two trained x-

coordinate and two trained y-coordinate referential values, and those with three of 

each, both of these have trained x-coordinate referential values situated near to 

the local minima at (-3.779310, -3.283186) and (3.584428, -1.848126) 

respectively and trained y-coordinate referential values situated near to the local 

minima at (-3.779310, -3.283186) and (-2.805118, 3.131312) respectively. 

 

Additionally, compared to the approximations with two trained x-coordinate and 

two trained y-coordinate referential values, those with three have an extra trained 

x-coordinate referential value and an extra trained y-coordinate referential value 

which are generally located near to the local maxima (where z=181.616) at (-

0.270844, -0.923038) and (-0.270844, -0.923038) respectively. 

 

As a result of these extra trained referential values, the surfaces of the predictions 

of the models based on three trained x-coordinate and three trained y-coordinate 

referential values are more curved and hence have a closer fit to the 

semitransparent cyan surfaces of observations of the Himmelblau function than 

those with two of each. 

 

Likewise, the approximations with three trained x-coordinate and three trained y-

coordinate referential values and those with four of each share a number of trained 

referential values at similar locations near the extrema of the Himmelblau function. 

Compared with the approximations with three, those with four trained x-coordinate 

and four trained y-coordinate referential values have an additional trained x-

coordinate referential value located near to a local minimum z=0 at (3.0, 2.0) and 

an additional trained y-coordinate referential value located near to a local minimum 

z=0 at (3.584428, -1.848126), which leads to the models providing a better fit to 

the corresponding parts of the surface generated by the observations of the 

Himmelblau function. 
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In a like manner, by comparing the approximations with four and five trained x-

coordinate and y-coordinate referential values, we find both have a number of 

trained referential values at similar locations near the x-coordinates or y-

coordinates of the extrema of the Himmelblau function. In addition, the 

approximations with five of each have an extra trained x-coordinate referential 

value located near to local minimum (-2.805118, 3.131312) and an extra trained 

y-coordinate referential value located near to local minimum (3.0, 2.0). 

 

Due to the existence of these extra trained referential values, the models in the 

approximations with five trained x-coordinate and five trained y-coordinate 

referential values provide a better fit to the corresponding parts of the surface 

generated by the observations of the Himmelblau function than those with four of 

each. 

 

Furthermore, as indicated in Figure 4.13, there are no significant changes on the 

surfaces of the predictions of the models in the approximations with more than five 

trained x-coordinate and more than five trained y-coordinate referential values, 

compared to those with five of each, despite the fact that the extra trained 

referential values improve the fit of the models to some parts of the surface 

generated by the observations of the Himmelblau function. 

 

From the above analysis, it can safely be concluded that five trained x-coordinate 

referential values and five trained y-coordinate referential values are the minimum 

requirements for the MAKER models to provide a good fit to the Himmelblau 

function, as the function has four local minima and one local maximum and each 

of these extrema has a corresponding trained x-coordinate referential value located 

near to the x-coordinate of this extremum and a corresponding trained y-coordinate 

referential value located near to the y-coordinate of this extremum. Additionally, 

through optimization, these trained referential values are generally located near to 

the x-coordinates or the y-coordinates of the extrema of the Himmelblau function. 
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4.4.3 Local Minima and Maxima 

 

As stated previously, in order to evaluate the accuracy of the MAKER model 

approximations to the Himmelblau function, the local minima and local maxima can 

be identified from the predicted z-coordinate values generated by the models and 

we can compare these extrema to those generated by the observed output values 

of the Himmelblau function to find out whether their locations are close to each 

other. 

 

Table 4.11 displays the coordinates of the extrema of the predicted z-coordinate 

values generated by the models, which are closest to the corresponding extrema 

generated by the Himmelblau function among the relevant extrema of the models. 

We can observe that no local maximum located near to (-0.270844, -0.923038), 

i.e., the coordinates of the local maximum of the surface generated by the observed 

output values of the Himmelblau function, can be found from the surface generated 

by the predicted output values of the MAKER model approximations based on less 

than three trained x-coordinate referential values and less than three trained y-

coordinate referential values. In these approximations, only a local minimum could 

be identified from the surface made up of the predicted output values from the 

models. 

 

From those predicted output values in some of the approximations with three 

trained x-coordinate referential values and three trained y-coordinate referential 

values, we can identify not only two local minima but also a local maximum, located 

near to (-0.270844, -0.923038), i.e., the local maximum of the Himmelblau 

function. 

 

This is generally due to the fact that both the approximations with two trained x-

coordinate referential values and two trained y-coordinate referential values and 
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those with three of each have trained x-coordinate referential values located near 

to the local minima (z=0) at (-3.779310, -3.283186) and (3.584428, -1.848126) 

respectively and trained y-coordinate referential values located near to the local 

minima (z=0) at (-3.779310, -3.283186) and (-2.805118, 3.131312) respectively. 

 

Despite the similarities of the trained referential values of these two approximations, 

compared to the approximations with two trained x-coordinate referential values 

and two trained y-coordinate referential values, those with three of each have extra 

ones located near local maxima (z=181.616) at (-0.270844, -0.923038) and (-

0.270844, -0.923038) respectively. In addition, Table 4.11 shows there are four 

local minima near to (3.0, 2.0), (3.584428, -1.848126), (-2.805118, 3.131312), 

and (-3.779310, -3.283186), respectively, which are the coordinates of the local 

minima of the Himmelblau function. 

 

A local maximum located near to (-0.270844, -0.923038), i.e., the coordinates of 

the local maximum of the Himmelblau function, can be identified from the predicted 

output values of the models in some of the approximations with five trained x-

coordinate referential values and five trained y-coordinate referential values. This 

can be explained by the fact that the approximations with five of each have trained 

x-coordinate referential values located near to 3.0, 3.584428, -2.805118, -

3.779310, and -0.270844, respectively, which are the x-coordinates of the extrema 

(both local minima and local maxima) of the Himmelblau function, and trained y-

coordinate referential values located near to 2.0, -1.848126, 3.131312, -3.283186, 

and -0.923038, respectively, which are the y-coordinates of the extrema of the 

Himmelblau function. 
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 Table 4.11 The extrema of the predicted output values of the models in 

the approximations with different numbers of trained x-coordinate 

(nrvx), y-coordinate (nrvy), and z-coordinate (nrvz) referential values, 

which are closest to the corresponding extrema of the Himmelblau 

function among the relevant extrema of the models 

nrvx & nrvy & 

nrvz\extremums 

local 

minimum 

1 at (3.0, 

2.0) 

local 

minimum 

2 at about 

(3.6, -

1.8) 

local 

minimum 

3 at about 

(-2.8, 

3.1) 

local 

minimum 

4 at about 

(-3.8, -

3.3) 

local 

maximum 

at about 

(-0.3, -

0.9) 

1 & 1 & 1 (-3.2, -3.0) (-3.2, -3.0) (-3.2, -3.0) (-3.2, -3.0) (-6.0, -6.0) 

2 & 2 & 1 (-4.2, -0.4) (-4.2, -0.4) (-4.2, -0.4) (-4.2, -0.4) (-6.0, -6.0) 

3 & 3 & 1 (4.2, -0.2) (4.2, -0.2) (-4.0, 1.4) (-4.0, -1.6) (-0.4, -0.2) 

4 & 4 & 1 (2.8, 1.4) (3.6, -3.0) (-4.2, 2.6) (-4.2, -2.6) (0.4, -0.6) 

5 & 5 & 1 (3.6, 0.8) (3.6, -2.2) (-3.8, 3.2) (-3.8, -2.4) (0.0, -0.4) 

6 & 6 & 1 (3.8, 0.8) (3.8, -1.6) (-2.4, 3.6) (-3.6, -2.8) (-0.4, -0.4) 

7 & 7 & 1 (3.2, 1.2) (3.4, -1.8) (-3.2, 1.4) (-3.2, -2.0) (-0.2, 0.0) 

8 & 8 & 1 (3.2, 1.6) (2.6, -2.2) (-3.2, 3.4) (-4.4, -3.0) (-1.0, -1.0) 

9 & 9 & 1 (3.2, 2.0) (3.2, -2.4) (-3.4, 2.4) (-3.4, -2.2) (0.4, -0.8) 

10 & 10 & 1 (2.4, 2.4) (3.0, -2.4) (-3.0, 2.2) (-3.4, -2.8) (0.0, -1.6) 

11 & 11 & 1 (3.6, 2.4) (3.6, -2.4) (-2.8, 2.6) (-3.6, -2.6) (-0.6, -0.6) 

12 & 12 & 1 (3.6, 2.0) (3.6, -1.0) (-3.2, 2.6) (-3.6, -2.6) (0.0, 0.6) 

13 & 13 & 1 (3.0, 1.8) (3.0, -2.4) (-3.0, 1.8) (-3.6, -3.2) (-0.2, -0.8) 

14 & 14 & 1 (2.4, 2.2) (3.2, -1.8) (-3.4, 3.8) (-4.0, -3.2) (-0.4, -0.4) 

15 & 15 & 1 (2.8, 1.8) (3.0, -2.6) (-3.2, 2.4) (-3.8, -3.8) (0.0, -0.6) 

16 & 16 & 1 (3.0, 1.8) (4.2, -1.4) (-3.4, 2.4) (-3.8, -3.4) (-0.8, -0.8) 

1 & 1 & 2 (-3.8, -2.8) (-3.8, -2.8) (-3.8, -2.8) (-3.8, -2.8) (-6.0, -6.0) 

2 & 2 & 2 (-2.6, 3.8) (-2.6, 3.8) (-2.6, 3.8) (-2.6, 3.8) (-6.0, -6.0) 

3 & 3 & 2 (4.2, 2.4) (4.2, -2.2) (-4.0, 3.2) (-4.0, -2.6) (-0.2, 0.2) 

4 & 4 & 2 (4.0, -0.2) (4.0, -0.2) (-3.4, 3.2) (-3.4, 3.2) (1.4, -6.0) 

5 & 5 & 2 (4.0, 3.0) (4.0, -0.4) (-3.4, 3.4) (-3.6, -3.2) (0.0, 0.8) 

6 & 6 & 2 (3.2, 2.6) (3.2, -1.4) (-3.2, 3.0) (-3.2, -2.6) (0.2, 0.4) 

7 & 7 & 2 (3.6, 2.6) (3.6, -2.4) (-2.8, 3.0) (-3.0, -2.6) (0.6, -1.4) 

8 & 8 & 2 (3.0, 2.0) (3.0, -2.0) (-3.4, 2.6) (-3.6, -3.0) (0.2, 0.2) 

9 & 9 & 2 (3.2, 2.0) (3.2, -1.2) (-2.6, 2.2) (-3.6, -3.4) (-0.6, 0.2) 

10 & 10 & 2 (2.8, 1.6) (3.8, -2.2) (-2.8, 2.8) (-3.4, -2.8) (-0.2, -0.6) 

11 & 11 & 2 (2.8, 1.6) (3.4, -2.0) (-1.8, 2.8) (-3.6, -3.0) (-0.8, -0.4) 

12 & 12 & 2 (3.0, 2.0) (3.2, -2.4) (-3.2, 2.6) (-3.6, -2.4) (-0.6, -1.4) 

13 & 13 & 2 (2.2, 2.6) (4.0, -2.0) (-2.6, 2.2) (-3.8, -3.0) (-0.2, 0.0) 

14 & 14 & 2 (3.4, 1.8) (3.4, -2.0) (-2.6, 2.4) (-3.8, -3.0) (-1.2, -0.2) 

15 & 15 & 2 (3.0, 2.4) (3.4, -2.2) (-3.0, 3.0) (-3.4, -3.0) (-0.2, -0.8) 

16 & 16 & 2 (3.6, 2.6) (3.6, -1.0) (-2.8, 2.8) (-3.8, -3.0) (0.2, -0.4) 

1 & 1 & 3 (-4.2, -2.8) (-4.2, -2.8) (-4.2, -2.8) (-4.2, -2.8) (-6.0, -6.0) 

2 & 2 & 3 (-2.0, 3.6) (-2.0, 3.6) (-2.0, 3.6) (-2.0, 3.6) (-6.0, -6.0) 

Continued on the next page 
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Continued from the previous page 

nrvx & nrvy & 

nrvz\extremums 

local 

minimum 

1 at (3.0, 

2.0) 

local 

minimum 

2 at 

about 

(3.6, -

1.8) 

local 

minimum 

3 at 

about (-

2.8, 3.1) 

local 

minimum 

4 at 

about (-

3.8, -3.3) 

local 

maximum 

at about 

(-0.3, -

0.9) 

3 & 3 & 3 (4.2, -0.4) (4.2, -0.4) (-4.0, 3.0) (-4.0, -2.0) (-0.2, 2.2) 

4 & 4 & 3 (4.0, 0.8) (4.0, -1.0) (-4.0, 2.8) (-4.0, -3.8) (0.2, 0.0) 

5 & 5 & 3 (3.8, 2.2) (3.8, -1.4) (-3.2, 3.0) (-3.2, -1.6) (-0.2, -0.4) 

6 & 6 & 3 (3.6, 2.2) (3.6, -1.8) (-2.6, 3.0) (-2.8, -2.4) (0.2, 0.2) 

7 & 7 & 3 (3.4, 1.6) (3.6, -1.6) (-3.4, 3.2) (-3.6, -3.0) (0.0, 0.0) 

8 & 8 & 3 (3.2, 1.0) (3.2, -2.4) (-2.2, 2.8) (-3.8, -3.4) (0.0, -0.4) 

9 & 9 & 3 (3.4, 1.0) (3.6, -2.0) (-3.0, 2.6) (-3.6, -3.4) (0.2, -1.0) 

10 & 10 & 3 (3.0, 2.0) (3.4, -2.2) (-2.2, 2.6) (-3.6, -2.4) (0.0, -0.4) 

11 & 11 & 3 (3.4, 1.8) (3.4, -1.8) (-2.6, 2.6) (-3.6, -2.8) (-1.8, -0.8) 

12 & 12 & 3 (2.8, 2.2) (2.8, -1.4) (-3.0, 3.0) (-3.4, -3.0) (-0.4, -0.6) 

13 & 13 & 3 (3.2, 2.0) (3.2, -1.2) (-3.2, 2.6) (-3.6, -2.6) (-0.6, -0.2) 

14 & 14 & 3 (2.8, 1.2) (2.8, -1.2) (-3.0, 2.6) (-3.8, -3.4) (-1.0, -0.4) 

15 & 15 & 3 (3.0, 2.6) (3.0, -2.4) (-3.8, 3.4) (-3.8, -2.8) (-0.8, -1.6) 

16 & 16 & 3 (2.6, 1.8) (3.8, -1.8) (-3.0, 3.2) (-3.4, -2.4) (0.2, 0.4) 

1 & 1 & 4 (-4.0, -3.2) (-4.0, -3.2) (-4.0, -3.2) (-4.0, -3.2) (-6.0, -6.0) 

2 & 2 & 4 (2.4, 3.8) (2.4, 3.8) (2.4, 3.8) (2.4, 3.8) (-6.0, -6.0) 

3 & 3 & 4 (4.0, 0.0) (4.0, 0.0) (-3.4, 3.4) (-4.0, 0.4) (-6.0, -6.0) 

4 & 4 & 4 (4.0, 2.2) (4.0, 2.2) (-3.2, 1.4) (-3.2, 1.4) (-6.0, -6.0) 

5 & 5 & 4 (3.2, 2.4) (3.2, -2.0) (-4.2, 3.0) (-4.2, -3.2) (-0.8, 0.4) 

6 & 6 & 4 (2.8, 0.8) (3.0, -0.8) (-2.8, 3.0) (-3.2, -3.6) (-1.0, -6.0) 

7 & 7 & 4 (2.8, 1.2) (3.4, -0.8) (-2.6, 3.2) (-3.8, -3.2) (-0.4, -0.6) 

8 & 8 & 4 (3.8, 2.2) (3.8, -1.6) (-2.8, 3.0) (-3.4, -3.2) (0.0, 0.0) 

9 & 9 & 4 (3.4, 2.0) (3.6, -2.2) (-3.0, 2.8) (-3.6, -3.0) (-0.4, -1.0) 

10 & 10 & 4 (3.0, 1.8) (3.8, -3.0) (-3.6, 3.0) (-3.6, -3.0) (-0.2, 0.8) 

11 & 11 & 4 (2.6, 2.2) (3.4, -1.8) (-3.0, 2.4) (-3.8, -3.0) (0.2, -1.4) 

12 & 12 & 4 (3.0, 2.0) (3.6, -2.4) (-2.4, 2.0) (-2.8, -2.4) (-0.4, -0.8) 

13 & 13 & 4 (3.2, 1.6) (3.6, -1.8) (-2.8, 3.0) (-3.4, -3.2) (-0.6, -1.4) 

14 & 14 & 4 (2.8, 2.2) (3.2, -1.8) (-3.0, 2.6) (-3.4, -3.4) (0.0, -0.6) 

15 & 15 & 4 (3.0, 1.8) (3.4, -2.6) (-3.0, 2.2) (-3.8, -3.2) (0.0, -0.6) 

16 & 16 & 4 (3.0, 1.6) (3.0, -1.6) (-3.2, 3.0) (-3.2, -3.0) (0.0, -1.2) 

1 & 1 & 5 (-4.2, -3.0) (-4.2, -3.0) (-4.2, -3.0) (-4.2, -3.0) (-6.0, -6.0) 

2 & 2 & 5 (-3.2, 3.8) (-3.2, 3.8) (-3.2, 3.8) (-3.2, 3.8) (-6.0, -6.0) 

3 & 3 & 5 (4.0, -1.2) (4.0, -1.2) (-4.0, -2.6) (-4.0, -2.6) (-6.0, -6.0) 

4 & 4 & 5 (4.0, -1.0) (4.0, -1.0) (-3.2, 3.2) (-3.2, -0.4) (-6.0, -6.0) 

5 & 5 & 5 (2.8, 0.4) (4.4, -1.8) (-3.6, 3.0) (-3.6, -2.8) (-6.0, -6.0) 

6 & 6 & 5 (3.8, 1.4) (3.8, -0.4) (-3.2, 2.4) (-3.2, -3.2) (-0.2, 0.6) 

7 & 7 & 5 (3.4, 2.4) (3.8, -2.0) (-3.0, 2.4) (-3.4, -3.0) (0.2, 0.2) 

8 & 8 & 5 (3.2, 1.6) (3.2, -2.2) (-2.8, 2.8) (-3.2, -2.8) (0, -0.2) 

Continued on the next page 
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The previous analysis suggests that increasing the number of trained referential 

values in the models could effectively improve the accuracy of the MAKER model 

approximations to the Himmelblau function. From Table 4.11, we can see that the 

extrema generated by the models in the approximations with more than five trained 

x-coordinate referential values and more than five trained y-coordinate referential 

values, which are nearest to their counterparts for the Himmelblau function among 

the relevant extrema of the models, are generally closer to the corresponding 

Continued from the previous page 

nrvx & nrvy & 

nrvz\extremums 

local 

minimum 

1 at (3.0, 

2.0) 

local 

minimum 

2 at 

about 

(3.6, -

1.8) 

local 

minimum 

3 at 

about (-

2.8, 3.1) 

local 

minimum 

4 at 

about (-

3.8, -3.3) 

local 

maximum 

at about 

(-0.3, -

0.9) 

9 & 9 & 5 (2.8, 2.0) (2.6, -1.8) (-2.6, 2.0) (-3.2, -2.8) (-1.4, -1.2) 

10 & 10 & 5 (3.2, 1.8) (3.4, -2.8) (-2.8, 2.8) (-3.2, -2.8) (-0.8, -0.2) 

11 & 11 & 5 (2.8, 2.0) (3.4, -2.0) (-2.8, 2.8) (-3.8, -3.2) (-0.8, -1.4) 

12 & 12 & 5 (3.0, 2.2) (4.0, -2.8) (-2.4, 3.2) (-3.4, -3.0) (-0.4, -1.0) 

13 & 13 & 5 (3.2, 0.6) (3.4, -2.2) (-2.6, 3.0) (-3.6, -3.2) (-1.2, -0.8) 

14 & 14 & 5 (3.4, 1.6) (3.4, -1.4) (-3.0, 2.6) (-3.6, -3.0) (-1.0, -1.0) 

15 & 15 & 5 (2.0, 3.0) (3.4, -2.6) (-3.4, 3.0) (-3.4, -2.8) (0.2, -1.6) 

16 & 16 & 5 (3.6, 0.8) (3.6, -2.0) (-3.0, 2.6) (-3.6, -3.4) (0.0, -0.6) 

1 & 1 & 6 (3.2, -2.4) (3.2, -2.4) (3.2, -2.4) (3.2, -2.4) (6.0, -6.0) 

2 & 2 & 6 (-4.2, 3.8) (-4.2, 3.8) (-4.2, 3.8) (-4.2, 3.8) (-5.8, -6.0) 

3 & 3 & 6 (4.0, -2.6) (4.0, -2.6) (-4.0, 0.0) (-4.0, 0.0) (-6.0, -6.0) 

4 & 4 & 6 (4.2, 1.4) (4.2, -0.6) (-3.4, 3.8) (-3.6, -3.0) (-4.0, -6.0) 

5 & 5 & 6 (3.0, 0.2) (3.0, 0.2) (-3.4, 2.8) (-3.4, -2.0) (0.2, -6.0) 

6 & 6 & 6 (2.4, 2.6) (3.6, -0.8) (-2.2, 2.6) (-4.2, -3.4) (1.0, 0.0) 

7 & 7 & 6 (3.4, 1.6) (3.4, 0.6) (-3.2, 3.0) (-3.6, -2.4) (-0.4, 1.2) 

8 & 8 & 6 (3.0, 1.8) (3.0, -2.4) (-3.4, 2.0) (-3.6, -2.8) (-0.4, 0.2) 

9 & 9 & 6 (3.0, 2.4) (3.2, -1.6) (-3.2, 3.2) (-4.0, -3.4) (-1.2, -0.6) 

10 & 10 & 6 (3.2, 0.8) (3.4, -1.8) (-3.2, 2.4) (-3.8, -3.0) (0.0, -0.2) 

11 & 11 & 6 (2.6, 2.6) (3.4, -1.8) (-3.4, 3.6) (-3.6, -2.8) (0.0, -1.4) 

12 & 12 & 6 (3.0, 2.4) (3.0, -2.4) (-2.6, 3.0) (-3.6, -3.0) (-0.2, -1.6) 

13 & 13 & 6 (2.8, 2.4) (3.2, -2.2) (-2.6, 3.0) (-3.4, -2.8) (0.2, -1.4) 

14 & 14 & 6 (3.2, 1.6) (3.2, -2.0) (-3.4, 3.0) (-3.4, -3.0) (0.6, 0.4) 

15 & 15 & 6 (2.6, 2.6) (2.8, -1.6) (-3.0, 3.0) (-3.4, -3.0) (0.2, -0.8) 

16 & 16 & 6 (2.8, 1.4) (2.8, -2.0) (-3.4, 3.0) (-3.4, -3.0) (-0.2, -1.6) 
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extrema of the Himmelblau function than the extrema generated by the models in 

the approximations with five of each, which are nearest to their counterparts for 

the Himmelblau among the relevant extrema of the model. 

 

Table 4.12 exhibits some of the extrema generated by the models in the 

approximations with more than five trained x-coordinate and y-coordinate 

referential values, which are nearest to their counterparts for the Himmelblau 

function among the relevant extrema of the models. In Table 4.12, nrvx, nrvy, and 

nrvz stand for number of the trained x-coordinate, y-coordinate, and z-coordinate 

referential values respectively. 

 

From Table 4.12, we can clearly see that some of the extrema generated by the 

models in the approximations with more than five trained x-coordinate referential 

values and more than five trained y-coordinate referential values, which are nearest 

to their counterparts for the Himmelblau function among the relevant extrema of 

the models, are generally close to the corresponding extrema of the Himmelblau 

function. 

 

Table 4.12 Some of the extrema of the predicted output values of the 

models in the approximations with more than five trained x-coordinate, 

y-coordinate, and z-coordinate referential values, which are closest to 

the corresponding extrema of the Himmelblau function 

nrvx & nrvy & 

nrvz\extremums 

local 

minimum 

1 at (3.0, 

2.0) 

local 

minimum 

2 at 

about 

(3.6, -

1.8) 

local 

minimum 

3 at 

about (-

2.8, 3.1) 

local 

minimum 

4 at 

about (-

3.8, -3.3) 

local 

maximum 

at about 

(-0.3, -

0.9) 

11 & 11 & 1 (3.6, 2.4) (3.6, -2.4) (-2.8, 2.6) (-3.6, -2.6) (-0.6, -0.6) 

15 & 15 & 2 (3.0, 2.4) (3.4, -2.2) (-3.0, 3.0) (-3.4, -3.0) (-0.2, -0.8) 

12 & 12 & 3 (2.8, 2.2) (2.8, -1.4) (-3.0, 3.0) (-3.4, -3.0) (-0.4, -0.6) 

13 & 13 & 4 (3.2, 1.6) (3.6, -1.8) (-2.8, 3.0) (-3.4, -3.2) (-0.6, -1.4) 

11 & 11 & 5 (2.8, 2.0) (3.4, -2.0) (-2.8, 2.8) (-3.8, -3.2) (-0.8, -1.4) 

12 & 12 & 6 (3.0, 2.4) (3.0, -2.4) (-2.6, 3.0) (-3.6, -3.0) (-0.2, -1.6) 
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As the intervals between any two adjacent x-coordinate values or any two y-

coordinate values of the data set for the approximations are set to 0.2, the accuracy 

of the MAKER model approximations to the Himmelblau function could be improved 

even further if the intervals were made smaller than 0.2. This is because smaller 

intervals would lead to more data pairs in the data set for the approximations, 

which could lead to more accurate approximations to the Himmelblau function. As 

a result, the extrema generated by the models in the approximations, which are 

nearest to their counterparts for the Himmelblau function among the relevant 

extrema of the models, could be even closer to the corresponding extrema of the 

Himmelblau function. 

 

4.5 Stopping Criteria for the Training of the Models 

 

Generally speaking, the higher the complexity of a model is, the more accurate its 

approximation will be (Coello Coello, Hernández Aguirre and Zitzler, 2005). However, 

overly complex models will lead to overfitting (Matignon, 2005). Although an 

overfitted model may have a small error (or bias), the error will be heavily 

dependent on the data, as an overfitted model reflects noise in data (Hanrahan, 

2009). In other words, the error of an overfitted model has high variance (Hanrahan, 

2009), which indicates that it might not be generalizable. On the contrary, a model 

with a large error will be less sensitive to the data and hence have reduced variance 

(Hanrahan, 2009), which means it could be more generalizable than one with a 

small error. However, a model with a large error cannot provide sufficiently accurate 

predictions for the data. Ideally, the optimal model will have a low error and a low 

variance, but this is often not the case for statistical models based on a finite 

sample of noisy data (Hanrahan, 2009). This kind of dilemma between underfitting 

and overfitting is referred to as the bias-variance dilemma (Geman, Bienenstock 

and Doursat, 1992). Therefore, we need to take the trade-off between model 

accuracy and model complexity into consideration in selecting a model with enough 

complexity to achieve the best generalization (Matignon, 2005).  
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In this research, taking that trade-off into account means we need to stop training 

the MAKER models once the training results satisfy some given criteria. In the 

following part of this section, we will summarize the findings for the univariate 

function MAKER model approximations to obtain some criteria for stopping training 

the models. 

 

4.5.1 Exponential Function 

 

We start from the advanced learning approximations for the exponential function 

y = 6𝑥. As mentioned previously, from Fig 4.5, we can see that the solid red curves 

representing the predictions of the MAKER models and the solid cyan curves 

representing the observations of the function generally match well in all subfigures, 

regardless of the number of trained x-coordinate and y-coordinate referential 

values, and the locations of these trained referential values. From Table 4.5, which 

shows the MSEs for the advanced learning approximations to y = 6𝑥 , we can 

observe that there is little difference between the MSE for the approximation based 

on zero trained x-coordinate and zero trained y-coordinate referential values, and 

the MSE for the approximations with more than zero of each. Thus, we can conclude 

that there is no need to include extra referential values in addition to the four 

boundary referential values (i.e. the minimum and the maximum of the observed 

input values (x) of the function and the global extrema of the observed output 

values (y) of the function) when approximating the function y = 6𝑥 using MAKER 

models.  

 

To provide a more intuitive picture of the findings from the approximations to the 

function y = 6𝑥, we can take advantage of the ratios between the moving averages 

of the MSEs for different approximations, in the advanced learning case. The 

moving average is simply the average of several successive data values (Jani, 
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2014). The series of moving averages of the original observations is smoother than 

the series of original observations (Wegner, 2010). A moving average removes the 

effect of irregular fluctuations in the original observations (Wegner, 2010). It helps 

the decision maker to focus more on the general trend of changes in the 

observations, without the obscuring effect of noise (Wegner, 2010). Thus, we can 

use the ratios of moving averages to describe the relative changes in the MSEs for 

the advanced learning approximations to y = 6𝑥, to reflect the findings from the 

approximations. 

 

On the basis of Table 4.5, which shows the MSEs for the advanced learning 

approximations for y = 6𝑥, we can generate Tables 4.13 and 4.14, which show the 

3-elements moving averages as we move along the dimension of number of trained 

x-coordinate or y-coordinate referential values (nrvx) of MSEs for approximations 

Table 4.13 The 3-elements moving averages as we move along the 

dimension of number of trained x-coordinate referential values (nrvx) of 

MSEs for approximations with different numbers of trained x-coordinate 

(nrvx) and y-coordinate (nrvy) referential values in the advanced learning 

for 𝐲 = 𝟔𝒙 

nrvy\nrvx 0 1 2 3 4 5 

0 0.001351 0.001878 0.001763 0.001494 0.000852 0.000916 

1 0.000921 0.000901 0.000897 0.000874 0.000820 0.000792 

2 0.000848 0.000841 0.000850 0.000812 0.000752 0.000723 

3 0.000699 0.000815 0.000928 0.000971 0.000814 0.000751 

4 0.000641 0.000603 0.000726 0.000593 0.000594 0.000595 

 

Table 4.14 The 3-elements moving averages as we move along the 

dimension of number of trained y-coordinate referential values (nrvy) of 

MSEs for approximations with different numbers of trained x-coordinate 

(nrvx) and y-coordinate (nrvy) referential values in the advanced learning 

for 𝐲 = 𝟔𝒙 

nrvy\nrvx 0 1 2 3 4 5 

0 0.000977 0.001296 0.001896 0.000800 0.000857 0.000851 

1 0.000912 0.001168 0.001539 0.000804 0.000837 0.000782 

2 0.000757 0.000888 0.000911 0.000876 0.000871 0.000639 

3 0.000537 0.000922 0.000801 0.000782 0.000795 0.000584 

4 0.000414 0.000927 0.000788 0.000767 0.000793 0.000553 
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with different numbers of trained x-coordinate (nrvx) and y-coordinate (nrvy) 

referential values in the advanced learning for y = 6𝑥. It should be noted that, when 

there are less than three elements (values) in the window for the computation of a 

geometric moving average, at the endpoints of Table 4.5, we just take the 

geometric average over the elements (values) that are available. 

 

With the moving averages in Tables 4.13 and 4.14, we can further calculate the 

ratios of moving averages along the dimension of the number of trained x-

coordinate or y-coordinate referential values, to describe the trend of changes in 

these moving averages in detail. Tables 4.15 and 4.16 present the ratios of the 

moving averages of the MSEs for the advanced learning approximations based on 

different numbers of trained x-coordinate (nrvx) and y-coordinate (nrvy) referential 

values for y = 6𝑥, to those for the approximations with one less x-coordinate or y-

coordinate referential value 

 

From Table 4.15, it can be seen that the ratios in Table 4.14 as we move along the 

dimension of the number of trained x-coordinate referential values (nrvx) generally 

fluctuate between 0.8 and 1.2. From Table 4.16, we can see that the ratios of the 

ratios in Table 4.15 as we move along the dimension of the number of trained y-

coordinate referential values (nrvy) generally lie between 0.8 and 1.2. 
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Combining the findings from Tables 4.15 and 4.16 with the findings from Figure 4.5 

and Table 4.5 as previously mentioned, we can conclude that, if the ratios of moving 

averages of MSEs from Table 4.15 along the dimension of the number of trained x-

coordinate or y-coordinate referential values is between 0.8 and 1.2, there is no 

need to include extra referential values in addition to the available referential values 

for the MAKER model approximations to y = 6𝑥. 

 

For example, as can be seen from Table 4.15, the ratio of the moving average of 

the MSEs for the approximation with two trained x-coordinate referential values 

(xrv) and zero trained y-coordinate referential values (yrv) to that for the 

approximation with one less x-coordinate referential value is 0.939109, which is 

between 0.8 and 1.2. The ratio of the moving average of the MSEs for the 

approximation with three trained xrv and zero trained yrv to that for the 

Table 4.15 The ratios of the moving averages of the MSEs for the 

advanced learning approximations based on different numbers of trained 

x-coordinate (nrvx) and y-coordinate (nrvy) referential values for 𝐲 = 𝟔𝒙, 

to those for the approximations with one less x-coordinate referential 

value 

nrvy\nrvx 1 to 0 2 to 1 3 to 2 4 to 3 5 to 4 

0 1.389835 0.939109 0.847070 0.570185 1.074951 

1 0.977923 0.996299 0.974368 0.937476 0.965636 

2 0.991745 1.010702 0.955686 0.925728 0.960771 

3 1.165951 1.138650 1.046695 0.838023 0.921990 

4 0.941238 1.203315 0.817264 1.001685 1.001122 

 

Table 4.16 The ratios of the moving averages of the MSEs for the advanced learning 

approximations based on different numbers of trained x-coordinate (nrvx) and y-

coordinate (nrvy) referential values for 𝐲 = 𝟔𝒙, to those for the approximations with 

one less y-coordinate referential value 

nrvy\nrvx 0 1 2 3 4 5 

1 to 0 0.934289 0.901325 0.812099 1.004583 0.977622 0.919851 

2 to 1 0.830106 0.760491 0.592031 1.090004 1.039809 0.816787 

3 to 2 0.709067 1.037913 0.878566 0.892314 0.912711 0.913928 

4 to 3 0.770019 1.005244 0.983555 0.981237 0.997273 0.946918 
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approximation with one less xrv is 0.847070, which is still between 0.8 and 1.2. 

Hence, we can just stop training the models along the dimension of the number of 

trained x-coordinate referential values at the model with one trained x-coordinate 

referential values and zero trained y-coordinate referential values. From Table 4.16, 

we can clearly see that the ratio of moving average of the MSEs for the 

approximation with zero xrv and one yrv to that for the approximation with one 

less yrv is 0.934289, which is between 0.8 and 1.2, and the ratio of moving average 

of the MSEs for the approximation with zero xrv and two yrv to that for the 

approximation with one less yrv is 0.830106, which is still between 0.8 and 1.2. 

Thus, we can stop training the models along the dimension of the number of trained 

y-coordinate referential values at the model with zero trained x-coordinate 

referential values and zero trained y-coordinate referential values. 

 

4.5.2 Logarithmic Function 

 

The next group of approximations we focus on is the advanced learning 

approximations for the logarithmic function 𝑦 = log6 𝑥. As previously stated, from 

Figure 4.6, it is clear that the solid red curves representing the predictions of the 

MAKER models generally coincide well with the solid cyan curves representing the 

observations of the function, in all subfigures, regardless of the number of trained 

x-coordinate and y-coordinate referential values, and their locations. From Table 

4.6, it can be observed that there is little difference between the MSE for the 

approximation with zero trained x-coordinate and y-coordinate referential values 

and those for approximations with more than zero of them, with the MSEs of the 

latter being slightly smaller than the MSE of the former. However, this slight 

improvement in the accuracy of the models is achieved at the cost of increased 

model complexity. Hence, we need to consider the trade-off between the models’ 

accuracy and complexity. 
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Similarly, we use the moving averages of the MSEs for the advanced learning 

approximations for the logarithmic function 𝑦 = log6 𝑥 to more precisely describe 

the trend in the changes in the MSEs of the approximations, from which we can 

observe the relationship between the accuracy and complexity of the models. 

Tables 4.17 and 4.18 show these moving averages for the advanced learning 

approximations for 𝑦 = log6 𝑥 as we move along the dimension of the number of 

trained x-coordinate or y-coordinate referential values. 

 

On the basis of these ratios in Table 4.17 and Table 4.18, we can generate the ratios 

of moving averages of MSEs for the advanced learning approximations for 𝑦 = log6 𝑥 

to describe the trend in the changes in these moving averages specifically, as shown 

in Tables 4.19 and 4.20. Tables 4.19 and 4.20 displays the ratios of the moving 

averages of the MSEs for the advanced learning approximations based on different 

numbers of trained x-coordinate (nrvx) and y-coordinate (nrvy) referential values 

Table 4.17 The 3-elements moving averages as we move along the dimension of 

number of trained x-coordinate referential values (nrvx) of MSEs for 

approximations with different numbers of trained x-coordinate (nrvx) and y-

coordinate (nrvy) referential values in the advanced learning for 𝒚 = 𝐥𝐨𝐠𝟔 𝒙 

nrvy\nrvx 0 1 2 3 4 5 

0 1.89∗ 10−5 1.62∗ 10−5 1.10∗ 10−5 8.79∗ 10−6 8.00∗ 10−6 7.78∗ 10−6 

1 9.45∗ 10−6 8.68∗ 10−6 5.64∗ 10−6 5.95∗ 10−6 5.02∗ 10−6 5.84∗ 10−6 

2 4.22∗ 10−6 6.00∗ 10−6 7.03∗ 10−6 7.12∗ 10−6 5.50∗ 10−6 4.84∗ 10−6 

3 5.30∗ 10−6 6.01∗ 10−6 6.64∗ 10−6 7.39∗ 10−6 6.44∗ 10−6 5.57∗ 10−6 

4 7.43∗ 10−6 7.68∗ 10−6 6.81∗ 10−6 5.98∗ 10−6 4.41∗ 10−6 4.13∗ 10−6 

 

Table 4.18 The 3-elements moving averages as we move along the dimension of 

number of trained y-coordinate referential values (nrvy) of MSEs for 

approximations with different numbers of trained x-coordinate (nrvx) and y-

coordinate (nrvy) referential values in the advanced learning for 𝒚 = 𝐥𝐨𝐠𝟔 𝒙 

nrvy\nrvx 0 1 2 3 4 5 

0 1.83∗ 10−5 1.01∗ 10−5 8.92∗ 10−6 5.92∗ 10−6 7.29∗ 10−6 6.33∗ 10−6 

1 1.34∗ 10−5 8.30∗ 10−6 9.13∗ 10−6 6.22∗ 10−6 6.51∗ 10−6 5.79∗ 10−6 

2 7.51∗ 10−6 5.14∗ 10−6 8.04∗ 10−6 6.14∗ 10−6 6.29∗ 10−6 4.54∗ 10−6 

3 5.88∗ 10−6 5.42∗ 10−6 8.39∗ 10−6 6.67∗ 10−6 5.43∗ 10−6 4.25∗ 10−6 

4 6.95∗ 10−6 5.78∗ 10−6 7.81∗ 10−6 6.59∗ 10−6 5.67∗ 10−6 4.02∗ 10−6 

 

 



 

159 
 

for 𝑦 = log6 𝑥, to those for the approximations with one less x-coordinate or y-

coordinate referential value 

 

From Table 4.19, we can see that the ratios of moving averages of MSEs in Table 

4.17 along the dimension of the number of trained x-coordinate referential values 

(nrvx) generally range between 0.8 and 1.2. From Table 4.20, it can be seen that 

the ratios of moving averages of MSEs in Table 4.18 along the dimension of the 

number of trained y-coordinate referential values (nrvy) are generally between 0.8 

and 1.2. 

 

By integrating the findings from Tables 4.19 and 4.20 with the findings from Figure 

4.6 and Table 4.6, it can be concluded that, if the ratios of moving averages of the 

MSEs from Tables 4.19 or 4.20 as we move along the dimension of the number of 

trained x-coordinate or y-coordinate referential values are between 0.55 and 1.2, 

we do not need to use extra referential values in addition to the available referential 

values when approximating the function 𝑦 = log6 𝑥 using the MAKER framework. 

 

For instance, as shown in Table 4.19, the ratio of moving average of the MSEs for 

the approximation with one trained x-coordinate referential value (xrv) and zero 

trained y-coordinate referential values (yrv) to that for the approximation with one 

less x-coordinate referential value is 0.855379, which is between 0.55 and 1.2. The 

ratio of moving average of the MSEs for the approximation with two trained xrv and 

zero trained yrv to that for the approximation with one less yrv is 0.679175, and it 

is between 0.55 and 1.2. Hence, the training of the models along the dimension of 

the number of trained x-coordinate referential values can be stopped at the model 

with zero trained x-coordinate and zero trained y-coordinate referential values. 
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From Table 4.20, we can observe that the ratio of the moving average of the MSEs 

for the approximation with zero trained x-coordinate referential value (xrv) and one 

trained y-coordinate referential values (yrv) to that for the approximation with one 

less y-coordinate referential value is 0.735160, which is between 0.55 and 1.2. The 

ratio of the moving average of the MSEs for the approximation with zero trained 

xrv and two trained yrv to that for the approximation with one less trained yrv is 

0.559752, which is still between 0.55 and 1.2. Thus, the training of the models 

along the dimension of the number of trained y-coordinate referential values can 

be terminated at the model with zero trained x-coordinate referential values and 

zero trained y-coordinate referential value. 

 

 

 

Table 4.19 The ratios of the moving averages of the MSEs for the advanced 

learning approximations based on different numbers of trained x-

coordinate (nrvx) and y-coordinate (nrvy) referential values for 𝒚 = 𝐥𝐨𝐠𝟔 𝒙, 

to those for the approximations with one less x-coordinate referential 

value 

nrvy\nrvx 1 to 0 2 to 1 3 to 2 4 to 3 5 to 4 

0 0.855379 0.679175 0.800546 0.909746 0.972280 

1 0.918166 0.650019 1.055556 0.843785 1.162575 

2 1.421801 1.171111 1.012808 0.773302 0.879467 

3 1.133333 1.105993 1.112895 0.871055 0.864130 

4 1.034096 0.885900 0.879040 0.737604 0.934668 

 

Table 4.20 The ratios of the moving averages of the MSEs for the advanced 

learning approximations based on different numbers of trained x-coordinate 

(nrvx) and y-coordinate (nrvy) referential values for 𝒚 = 𝐥𝐨𝐠𝟔 𝒙, to those for the 

approximations with one less y-coordinate referential value 

nrvy\nrvx 0 1 2 3 4 5 

1 to 0 0.735160 0.821452 1.024117 1.051564 0.893617 0.915219 

2 to 1 0.559752 0.619124 0.880248 0.986602 0.966206 0.783659 

3 to 2 0.783400 1.054510 1.043965 1.086909 0.863805 0.936858 

4 to 3 1.181303 1.067077 0.930274 0.988006 1.043558 0.945141 
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4.5.3 Power Function 

 

Now, we turn to the advanced learning approximations for the power function 𝑦 =

𝑥
1

6. As described previously, from the analysis of Figure 4.7, we can deduce that the 

number and locations of trained y-coordinate referential values do not have a 

significant effect on the accuracy of the MAKER-based model approximations. From 

the analysis of Table 4.7 and Figure 4.7, we can conclude that a trained x-coordinate 

referential value located in the range where the function has a large mean curvature 

is very important in improving the accuracy of MAKER-based model approximations 

to functions with large mean curvature. 

 

Table 4.21 The 3-elements moving averages as we move along the dimension 

of number of trained x-coordinate referential values (nrvx) of MSEs for 

approximations with numbers of trained x-coordinate (nrvx) and y-coordinate 

(nrvy) referential values in the advanced learning for 𝒚 = 𝒙
𝟏

𝟔 

nrvy\nrvx 0 1 2 3 4 5 

0 9.89∗ 10−4 6.86∗ 10−4 8.69∗ 10−5 4.85∗ 10−5 3.08∗ 10−5 2.68∗ 10−5 

1 9.64∗ 10−4 6.53∗ 10−4 4.33∗ 10−5 2.50∗ 10−5 1.79∗ 10−5 1.58∗ 10−5 

2 9.47∗ 10−4 6.45∗ 10−4 5.12∗ 10−5 2.21∗ 10−5 1.21∗ 10−5 1.11∗ 10−5 

3 9.33∗ 10−4 6.37∗ 10−4 4.60∗ 10−5 2.30∗ 10−5 1.25∗ 10−5 1.25∗ 10−5 

4 9.85∗ 10−4 6.65∗ 10−4 5.08∗ 10−5 1.90∗ 10−5 1.33∗ 10−5 1.23∗ 10−5 

 

 
Table 4.22 The 3-elements moving averages of MSEs as we move along the 

dimension of number of trained y-coordinate referential values (nrvy) for 

approximations with different numbers of trained x-coordinate (nrvx) and y-

coordinate (nrvy) referential values in the advanced learning for 𝒚 = 𝒙
𝟏

𝟔 

nrvy\nrvx 0 1 2 3 4 5 

0 1.84∗ 10−3 1.09∗ 10−4 5.57∗ 10−5 3.04∗ 10−5 2.42∗ 10−5 1.84∗ 10−5 

1 1.83∗ 10−3 1.05∗ 10−4 5.10∗ 10−5 2.50∗ 10−5 1.96∗ 10−5 1.62∗ 10−5 

2 1.81∗ 10−3 8.50∗ 10−5 3.92∗ 10−5 1.63∗ 10−5 1.46∗ 10−5 1.16∗ 10−5 

3 1.81∗ 10−3 9.65∗ 10−5 3.75∗ 10−5 1.40∗ 10−5 1.27∗ 10−5 1.12∗ 10−5 

4 1.82∗ 10−3 9.59∗ 10−5 3.55∗ 10−5 1.39∗ 10−5 1.38∗ 10−5 1.10∗ 10−5 
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In order to identify the trade-off between the accuracy and the complexity of the 

models, we again use the moving averages of the MSEs for the advanced learning 

for the power function 𝑦 = 𝑥
1

6 to describe in detail the trend in the changes in the 

MSEs for the approximations. Tables 4.21 and 4.22 shows the moving averages of 

MSEs as we move along the dimension of number of trained x-coordinate or y-

coordinate referential values of MSEs for approximations with different numbers of 

trained x-coordinate and y-coordinate referential values in the advanced learning 

for 𝑦 = 𝑥
1

6. 

 

Table 4.23 The ratios of the moving averages of the MSEs for the advanced 

learning approximations based on different numbers of trained x-coordinate 

(nrvx) and y-coordinate (nrvy) referential values for 𝒚 = 𝒙
𝟏

𝟔, to those for the 

approximations with one less x-coordinate referential value 

nrvy\nrvx 1 to 0 2 to 1 3 to 2 4 to 3 5 to 4 

0 0.693630 0.126725 0.557899 0.635052 0.870130 

1 0.677521 0.066327 0.577692 0.714647 0.885131 

2 0.681305 0.079279 0.432573 0.548193 0.910714 

3 0.682638 0.072285 0.499638 0.543478 0.996000 

4 0.675533 0.076295 0.374918 0.696322 0.930332 

 

 

Table 4.24 The ratios of the moving averages of the MSEs for the advanced 

learning approximations based on different numbers of trained x-coordinate 

(nrvx) and y-coordinate (nrvy) referential values for 𝒚 = 𝒙
𝟏

𝟔, to those for the 

approximations with one less y-coordinate referential value 

nrvy\nrvx 0 1 2 3 4 5 

1 to 0 0.991504 0.964318 0.915619 0.823465 0.811295 0.876413 

2 to 1 0.990702 0.806452 0.769281 0.651132 0.745331 0.717351 

3 to 2 1.001288 1.134902 0.955820 0.858896 0.865604 0.968076 

4 to 3 1.004595 0.994126 0.945333 0.989286 1.085526 0.983066 
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Based on these moving averages in Table 4.21 and Table 4.22, we can generate 

the corresponding ratios of moving averages of MSEs as we did with the other 

functions. These are shown in Tables 4.23 and 4.24 respectively. 

 

From Table 4.23, it can be observed that the ratios of the moving averages of MSEs 

in Table 4.21 as we move along the dimension of the number of trained x-coordinate 

referential values decrease from about 0.68 to about 0.10, and then increase to 

about 0.5 and keep increasing before reaching about 0.90 which is for the ratios of 

the moving averages of the MSEs for the approximations with five trained x-

coordinate referential values, to those for the approximations with one less x-

coordinate referential value. From Table 4.24, we can observe that the ratios of 

moving averages of MSEs in Table 4.22 along the dimension of the number of 

trained y-coordinate referential values (nrvy) generally range between 0.8 and 1.2. 

 

By incorporating the findings from Tables 4.23 and 4.24 with the findings from 

Figure 4.7 and Table 4.7, we can reach the conclusion that, if a ratio of the moving 

averages of the MSEs from Table 4.23 or Table 4.24 and its next corresponding 

ratio as we move along the dimension of the number of trained x-coordinate or y-

coordinate referential values (nrvx) are both between 0.6 and 1.2, we do not need 

extra referential values in addition to the available referential values when 

approximating the function 𝑦 = 𝑥
1

6 using the MAKER framework. 

 

For example, as can be found from Table 4.23, the ratio of the moving average of 

the MSEs for the approximation with four trained x-coordinate referential value (rvx) 

and zero trained y-coordinate referential values (rvy) to that for the approximation 

with one less trained x-coordinate referential values is 0.635052, and the next ratio 

as we move along the dimension of number of trained x-coordinate referential 

values is 0.870130, which are both between 0.6 and 1.2. Hence, the training of the 

models along the dimension of the number of trained x-coordinate referential 
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values can be stopped at the model with three trained x-coordinate referential 

values and zero trained y-coordinate referential values. 

 

From Table 4.24, it is clear that the ratio of the moving average of the MSEs for the 

approximation with zero trained x-coordinate referential value (xrv) and one 

trained y-coordinate referential values (yrv) to that for the approximation with one 

less trained y-coordinate referential value is 0.991504, and the next ratio as we 

move along the dimension of number of trained y-coordinate referential values is 

0.990702, which are both between 0.6 and 1.2. Thus, the training of the models 

along the dimension of the number of trained y-coordinate referential values can 

be terminated at the model with zero trained xrv and zero trained yrv. 

 

4.5.4 Basic Non-monotonic Function 

 

In the previous parts of this section, we have summarized the findings from the 

monotonic univariate functions, i.e., y = 6𝑥, 𝑦 = log6 𝑥, and 𝑦 = 𝑥
1

6. We now proceed 

to the advanced learning approximations for the basic non-monotonic univariate 

function 𝑦 = −(𝑥 − 0.5)2 + 0.25. As previously stated, from the analysis of Table 4.8 

and Figure 4.8, we can draw the conclusion that the number and locations of trained 

y-coordinate referential values do not have a significant impact on the accuracy of 

the MAKER model approximations. From the analysis of Table 4.8 and Figure 4.8, 

it can be concluded that one trained x-coordinate referential value is sufficient for 

the MAKER-based models to accurately approximate the basic non-monotonic 

univariate function 𝑦 = −(𝑥 − 0.5)2 + 0.25 which has only one critical point and hence 

two monotone intervals, and that this trained x-coordinate referential value must 

generally be located at the x-coordinate of the critical point of the function in order 

to minimize the difference between the predicted output values of the model and 

the observed output values of the function. 
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In order to quantify the findings from the aforementioned tables and figures, we 

once again take advantage of the moving averages of the MSEs for the advanced 

learning approximations for the basic non-monotonic univariate function 𝑦 =

−(𝑥 − 0.5)2 + 0.25  to describe the trend in the changes in the MSEs of the 

approximations. Tables 4.25 and 4.26 present these moving averages as we move 

along the dimension of the number of trained x-coordinate or y-coordinate 

referential values. 

 

On the basis of the moving averages of the MSEs in Tables 4.25 and 4.26, we can 

generate the ratios of the moving averages of the MSEs to reveal the trend in the 

changes in these ratios specifically. Tables 4.27 and 4.28 show these ratios as we 

move along the dimension of the number of trained x-coordinate or y-coordinate 

referential values. 

Table 4.25 The 3-elements moving averages of MSEs as we move along the 

dimension of number of trained x-coordinate referential values (nrvx) for 

approximations with different numbers of trained x-coordinate (nrvx) and y-

coordinate (nrvy) referential values in the advanced learning for 𝒚 =

−(𝒙 − 𝟎. 𝟓)𝟐 + 𝟎. 𝟐𝟓 

nrvy\nrvx 0 1 2 3 4 5 

0 2.12∗ 10−3 1.42∗ 10−3 2.48∗ 10−6 2.91∗ 10−6 3.76∗ 10−6 4.66∗ 10−6 

1 2.11∗ 10−3 1.41∗ 10−3 1.79∗ 10−6 2.27∗ 10−6 2.50∗ 10−6 3.02∗ 10−6 

2 2.10∗ 10−3 1.40∗ 10−3 2.51∗ 10−6 2.47∗ 10−6 3.01∗ 10−6 3.00∗ 10−6 

3 2.09∗ 10−3 1.40∗ 10−3 2.66∗ 10−6 2.85∗ 10−6 3.27∗ 10−6 3.01∗ 10−6 

4 2.09∗ 10−3 1.39∗ 10−3 2.26∗ 10−6 2.71∗ 10−6 3.32∗ 10−6 3.38∗ 10−6 

 

Table 4.26 The 3-elements moving averages of MSEs as we move along the 

dimension of number of trained y-coordinate referential values (nrvy) for 

approximations with different combinations of number of trained x-

coordinate referential values (nrvx) and number of trained y-coordinate 

referential values (nrvy) in the advanced learning for 𝒚 = −(𝒙 − 𝟎. 𝟓)𝟐 + 𝟎. 𝟐𝟓 

nrvy\nrvx 0 1 2 3 4 5 

0 4.23∗ 10−3 2.32∗ 10−6 2.38∗ 10−6 1.71∗ 10−6 3.67∗ 10−6 4.01∗ 10−6 

1 4.22∗ 10−3 2.29∗ 10−6 2.34∗ 10−6 2.15∗ 10−6 3.15∗ 10−6 3.96∗ 10−6 

2 4.20∗ 10−3 2.18∗ 10−6 2.02∗ 10−6 2.76∗ 10−6 2.81∗ 10−6 3.21∗ 10−6 

3 4.19∗ 10−3 2.24∗ 10−6 1.86∗ 10−6 3.34∗ 10−6 2.83∗ 10−6 3.43∗ 10−6 

4 4.18∗ 10−3 2.24∗ 10−6 1.66∗ 10−6 3.50∗ 10−6 3.19∗ 10−6 3.20∗ 10−6 
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From Table 4.27, it can be observed that the ratios of the moving averages of the 

MSEs in Table 4.25 as we move along the dimension of the number of trained x-

coordinate referential values first decrease from about 0.66 to about 0.0016, and 

then increase to about 1 and remain stable. From Table 4.28, it can be seen that 

the ratios of the moving averages of the MSEs in Table 4.26 as we move along the 

dimension of the number of trained y-coordinate referential values (nrvy) generally 

fluctuate between 0.8 and 1.3. 

 

 

Combining the findings from Tables 4.27 and 4.28 with those from Figure 4.8 and 

Table 4.8, we can conclude that, if a ratio of the moving averages of the MSEs from 

Table 4.27 or Table 4.28 and its next corresponding ratio as we move along the 

dimension of the number of trained x-coordinate or y-coordinate referential values 

(nrvx) are both between 0.8 and 1.3, we do not need extra referential values in 

Table 4.27 The ratios of the moving averages of the MSEs for the 

advanced learning approximations based on different numbers of trained 

x-coordinate (nrvx) and y-coordinate (nrvy) referential values for 𝒚 =

−(𝒙 − 𝟎. 𝟓)𝟐 + 𝟎. 𝟐𝟓 , to those for the approximations with one less x-

coordinate referential value 

nrvy\nrvx 1 to 0 2 to 1 3 to 2 4 to 3 5 to 4 

0 0.667138 0.001754 1.170470 1.293578 1.239362 

1 0.666945 0.001272 1.268657 1.101471 1.207610 

2 0.667026 0.001791 0.985372 1.218623 0.996678 

3 0.666990 0.001908 1.068836 1.148712 0.920489 

4 0.666871 0.001624 1.198822 1.223587 1.018072 

 

Table 4.28 The ratios of the moving averages of the MSEs for the 

advanced learning approximations based on different numbers of trained 

x-coordinate (nrvx) and y-coordinate (nrvy) referential values for 𝒚 =

−(𝒙 − 𝟎. 𝟓)𝟐 + 𝟎. 𝟐𝟓 , to those for the approximations with one less y-

coordinate referential value 

nrvy\nrvx 0 1 2 3 4 5 

1 to 0 0.997476 0.987761 0.983193 1.257310 0.859219 0.989596 

2 to 1 0.995414 0.953353 0.861823 1.283721 0.890063 0.809924 

3 to 2 0.997378 1.025994 0.920661 1.210145 1.009501 1.067497 

4 to 3 0.998925 1.001490 0.891382 1.046407 1.125882 0.933852 
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addition to the available referential values when approximating the function 𝑦 =

−(𝑥 − 0.5)2 + 0.25 using the MAKER framework. 

 

For instance, as shown in Table 4.27, the ratio of the moving average of the MSEs 

for the approximation with three trained x-coordinate referential value and zero 

trained y-coordinate referential values to that for the approximation with one less 

trained x-coordinate referential value is 1.170470, and the next ratio as we move 

along the dimension of number of trained x-coordinate referential values is 

1.293578, which are both between 0.8 and 1.3. Hence, the training of the models 

along the dimension of the number of trained x-coordinate referential values can 

be stopped at the model with two trained x-coordinate referential values and zero 

trained y-coordinate referential values. 

 

From Table 4.28, we can see clearly that the ratio of the moving average of the 

MSEs for the approximation with zero trained x-coordinate referential value and 

one trained y-coordinate referential values to that for the approximation with one 

less trained y-coordinate referential value is 0.997476, and the next ratio as we 

move along the dimension of number of trained y-coordinate referential values is 

0.995414, which are both between 0.8 and 1.3. Thus, the training of the models 

along the dimension of the number of trained y-coordinate referential values can 

be terminated at the model with zero trained x-coordinate referential values and 

zero trained y-coordinate referential values. 
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4.5.5 Complex Non-monotonic Function 

 

On the basis of the summary of the findings for the basic non-monotonic univariate 

function 𝑦 = −(𝑥 − 0.5)2 + 0.25 , we move on to the advanced learning 

approximations for the complex non-monotonic univariate function 𝑦 = 𝑒−(𝑥−2)
2
+

0.5𝑒−(𝑥+2)
2
 which has three critical points and hence four monotone intervals. As 

mentioned previously, from the analysis for Table 4.9, Figure 4.9, and Figure 4.10, 

we can conclude that there is no significant relationship between the number and 

the locations of the trained y-coordinate referential values and the accuracy of the 

MAKER model approximations. From the analysis for Table 4.9, Figure 4.9, Figure 

4.10, and Figure 4.11, it can be deduced that six or seven trained x-coordinate 

referential values is sufficient for the MAKER-based models to accurately 

approximate the complex non-monotonic univariate function 𝑦 = 𝑒−(𝑥−2)
2
+

0.5𝑒−(𝑥+2)
2
. 

 

For the purpose of quantifying the findings from Table 4.9, Figure 4.10, and Figure 

4.11, in the same way, we take advantage of the moving averages of the MSEs for 

the advanced learning approximations for the function 𝑦 = 𝑒−(𝑥−2)
2
+ 0.5𝑒−(𝑥+2)

2
 to 

describe the trend in the changes in the MSEs for the approximations. Tables 4.29 

and 4.30 show these moving averages as we move along the dimension of the 

number of trained x-coordinate or y-coordinate referential values. 

 

Based on the moving averages in Tables 4.29 and 4.30, we can calculate the ratios 

of the moving averages of the MSEs to reflect the trend in the changes in these 

ratios in detail. Tables 4.31 and 4.32 exhibit these ratios as we move along the 

dimension of the number of trained x-coordinate or y-coordinate referential values. 

 

From Table 4.31, we can see that the ratios of the moving averages of the MSEs in 

Table 4.29 as we move along the dimension of the number of trained x-coordinate 
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referential values fluctuate between 0.1 and 0.8, and then increase to about 0.5 

and keep increasing before reaching about 1.0 which is for the ratios of the moving 

averages of the MSEs for the approximations with ten trained x-coordinate 

referential values, to those for the approximations with one less x-coordinate 

referential value. From Table 4.32, it can be seen that the ratios of the moving 

averages of the MSEs in Table 4.30 as we move along the dimension of the number 

of trained y-coordinate referential values (nrvy) generally fluctuate between 0.8 

and 1.2. 

 

By integrating the findings from Tables 4.31 and 4.32 with those from Table 4.9, 

Figure 4.9, Figure 4.10, and Figure 4.11, we can conclude that, if a ratio of the 

moving averages of the MSEs from Table 4.29 or Table 4.30 and its next 

corresponding ratio as we move along the dimension of the number of trained x-

coordinate or y-coordinate referential values are both between 0.6 and 1.2, we do 

not need extra referential values in addition to the available referential values when 

approximating the function 𝑦 = 𝑒−(𝑥−2)
2
+ 0.5𝑒−(𝑥+2)

2
 using the MAKER framework. 

 

For example, from Table 4.31, we can see clearly that the ratio of the moving 

average of the MSEs for the approximation with eight trained x-coordinate 

referential value and zero trained y-coordinate referential values to that for the 

approximation with one less trained x-coordinate referential value is 0.805792, and 

the next ratio as we move along the dimension of number of trained x-coordinate 

referential values is 0.635225, which are both between 0.6 and 1.2. Hence, the 

training of the models along the dimension of the number of trained x-coordinate 

referential values can be stopped at the model with seven trained x-coordinate 

referential values and zero trained y-coordinate referential values. 
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Table 4.29 The 3-elements moving averages of MSEs as we move along the dimension of number of trained x-coordinate 

referential values (nrvx) for approximations with different combinations of number of trained x-coordinate referential values 

(nrvx) and number of trained y-coordinate referential values (nrvy) in the advanced learning for 𝒚 = 𝒆−(𝒙−𝟐)
𝟐
+ 𝟎. 𝟓𝒆−(𝒙+𝟐)

𝟐
 

nrvy\nrvx 0 1 2 3 4 5 6 7 8 9 10 

0 5.01∗ 10−2 3.90∗ 10−2 1.47∗ 10−2 7.53∗ 10−3 2.02∗ 10−3 1.28∗ 10−3 1.85∗ 10−4 1.02∗ 10−4 8.18∗ 10−5 5.20∗ 10−5 5.09∗ 10−5 

1 5.01∗ 10−2 3.83∗ 10−2 1.37∗ 10−2 5.70∗ 10−3 8.35∗ 10−4 3.20∗ 10−4 1.76∗ 10−4 6.98∗ 10−5 2.93∗ 10−5 3.05∗ 10−5 2.78∗ 10−5 

2 4.98∗ 10−2 3.83∗ 10−2 1.38∗ 10−2 5.75∗ 10−3 7.57∗ 10−4 2.30∗ 10−4 1.14∗ 10−4 5.41∗ 10−5 3.83∗ 10−5 5.00∗ 10−5 5.79∗ 10−5 

3 4.98∗ 10−2 3.82∗ 10−2 1.38∗ 10−2 5.71∗ 10−3 8.53∗ 10−4 2.75∗ 10−4 1.78∗ 10−4 8.28∗ 10−5 8.10∗ 10−5 6.72∗ 10−5 7.06∗ 10−5 

4 4.98∗ 10−2 3.82∗ 10−2 1.37∗ 10−2 5.71∗ 10−3 7.99∗ 10−4 4.12∗ 10−4 2.65∗ 10−4 1.61∗ 10−4 4.73∗ 10−5 4.32∗ 10−5 4.90∗ 10−5 

5 4.98∗ 10−2 3.82∗ 10−2 1.38∗ 10−2 5.75∗ 10−3 8.62∗ 10−4 3.42∗ 10−4 2.45∗ 10−4 1.27∗ 10−4 9.64∗ 10−5 5.40∗ 10−5 3.19∗ 10−5 

6 4.98∗ 10−2 3.83∗ 10−2 1.77∗ 10−2 9.62∗ 10−3 4.66∗ 10−3 2.94∗ 10−4 1.60∗ 10−4 7.50∗ 10−5 5.85∗ 10−5 7.47∗ 10−5 8.49∗ 10−5 

 

Table 4.30 The 3-elements moving averages of MSEs as we move along the dimension of number of trained y-coordinate 

referential values (nrvy) for approximations with different combinations of number of trained x-coordinate referential values 

(nrvx) and number of trained y-coordinate referential values (nrvy) in the advanced learning for 𝒚 = 𝒆−(𝒙−𝟐)
𝟐
+ 𝟎. 𝟓𝒆−(𝒙+𝟐)

𝟐
 

nrvy\nrvx 0 1 2 3 4 5 6 7 8 9 10 

0 7.53∗ 10−2 2.48∗ 10−2 1.59∗ 10−2 2.00∗ 10−3 1.95∗ 10−3 3.29∗ 10−4 1.18∗ 10−4 9.37∗ 10−5 4.50∗ 10−5 2.79∗ 10−5 5.08∗ 10−5 

1 7.53∗ 10−2 2.47∗ 10−2 1.57∗ 10−2 1.90∗ 10−3 1.42∗ 10−3 2.90∗ 10−4 1.13∗ 10−4 7.08∗ 10−5 4.14∗ 10−5 3.71∗ 10−5 5.39∗ 10−5 

2 7.52∗ 10−2 2.45∗ 10−2 1.50∗ 10−2 1.73∗ 10−3 4.15∗ 10−4 3.04∗ 10−4 1.06∗ 10−4 5.72∗ 10−5 4.36∗ 10−5 4.78∗ 10−5 5.63∗ 10−5 

3 7.51∗ 10−2 2.45∗ 10−2 1.51∗ 10−2 1.69∗ 10−3 4.21∗ 10−4 3.01∗ 10−4 1.94∗ 10−4 6.11∗ 10−5 4.22∗ 10−5 6.33∗ 10−5 5.49∗ 10−5 

4 7.51∗ 10−2 2.46∗ 10−2 1.50∗ 10−2 1.69∗ 10−3 4.44∗ 10−4 3.81∗ 10−4 2.04∗ 10−4 1.03∗ 10−4 6.36∗ 10−5 5.78∗ 10−5 4.31∗ 10−5 

5 7.51∗ 10−2 2.46∗ 10−2 1.51∗ 10−2 5.49∗ 10−3 4.64∗ 10−4 3.69∗ 10−4 2.16∗ 10−4 8.56∗ 10−5 6.15∗ 10−5 5.52∗ 10−5 5.53∗ 10−5 

6 7.51∗ 10−2 2.46∗ 10−2 1.52∗ 10−2 7.45∗ 10−3 4.49∗ 10−4 3.81∗ 10−4 1.25∗ 10−4 1.02∗ 10−4 7.63∗ 10−5 5.39∗ 10−5 6.29∗ 10−5 
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As can be observed from Table 4.32, the ratio of the moving average of the MSEs 

for the approximation with zero trained x-coordinate referential value and one 

trained y-coordinate referential values to that for the approximation with one less 

trained y-coordinate referential value is 0.999082, and the next ratio as we move 

along the dimension of number of trained y-coordinate referential values is 

0.999628, which are both between 0.6 and 1.2. Thus, the training of the models 

along the dimension of the number of trained y-coordinate referential values can 

be terminated at the model with zero trained x-coordinate referential values and 

zero trained y-coordinate referential values. 
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Table 4.31 The ratios of the moving averages of the MSEs for the advanced learning approximations based on different 

numbers of trained x-coordinate (nrvx) and y-coordinate (nrvy) referential values for 𝒚 = 𝒆−(𝒙−𝟐)
𝟐
+ 𝟎. 𝟓𝒆−(𝒙+𝟐)

𝟐
, to those for 

the approximations with one less x-coordinate referential value 

nrvy\nrvx 1 to 0 2 to 1 3 to 2 4 to 3 5 to 4 6 to 5 7 to 6 8 to 7 9 to 8 10 to 9 

0 0.778770 0.377738 0.510935 0.267592 0.632768 0.144864 0.549635 0.805792 0.635225 0.979474 

1 0.766181 0.358108 0.414879 0.146493 0.383786 0.549011 0.397081 0.419093 1.042141 0.911475 

2 0.768257 0.360420 0.416636 0.131748 0.303257 0.494920 0.475953 0.707948 1.305483 1.157000 

3 0.766526 0.360299 0.415180 0.149311 0.322400 0.647144 0.465243 0.979058 0.829700 1.049331 

4 0.767606 0.359233 0.415813 0.139798 0.516277 0.642846 0.606137 0.294191 0.914669 1.132228 

5 0.767741 0.360426 0.416868 0.150000 0.396365 0.717073 0.518776 0.758720 0.559972 0.589815 

6 0.768296 0.461350 0.544535 0.484197 0.063198 0.544281 0.467957 0.780791 1.275626 1.136384 

 

 

Table 4.32 The ratios of the moving averages of the MSEs for the advanced learning approximations based on different 

numbers of trained x-coordinate (nrvx) and y-coordinate (nrvy) referential values for 𝒚 = 𝒆−(𝒙−𝟐)
𝟐
+ 𝟎. 𝟓𝒆−(𝒙+𝟐)

𝟐
, to those for 

the approximations with one less y-coordinate referential value 

nrvy\nrvx 0 1 2 3 4 5 6 7 8 9 10 

1 to 0 0.999082 0.996068 0.985104 0.947690 0.730559 0.882582 0.956827 0.755591 0.920741 1.330944 1.061024 

2 to 1 0.999628 0.993076 0.958922 0.910535 0.291680 1.048623 0.935372 0.807815 1.052293 1.287253 1.045145 

3 to 2 0.998020 0.999891 1.003219 0.977014 1.016077 0.990142 1.834120 1.067599 0.968654 1.324268 0.975148 

4 to 3 0.999743 1.000530 0.998230 1.001186 1.054589 1.264381 1.048052 1.693231 1.505130 0.912586 0.785194 

5 to 4 1.000000 1.000842 1.006074 3.249605 1.043511 0.968504 1.059440 0.827853 0.966964 0.954991 1.281298 

6 to 5 1.000000 1.000020 1.001366 1.358076 0.967290 1.032520 0.577280 1.195093 1.241323 0.976133 1.137214 
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4.5.5 Stopping Criteria 

 

According to Schweitzer (2002), stopping criteria are used to avoid overfitting and 

very slow convergence of the training of models. Once the stopping criteria are 

satisfied, the training of models will be terminated (Schweitzer, 2002). Taking all 

the summaries of findings from the univariate function approximations presented 

previously into consideration, we can obtain the stopping criterion for the training 

of the MAKER-based models for the univariate function approximations, Criterion 

(4.3): 

 

If 0.8 ≤ 𝑟𝑖,𝑖+1 ≤ 1.2 and 0.8 ≤ 𝑟𝑖+1,𝑖+2 ≤ 1.2 (0 ≤ 𝑖 ≤ 𝑁), then the training process of the 

MAKER-based models along the dimension of the number of trained x-coordinate 

or y-coordinate referential values is stopped at the MAKER-based model which has 

i trained x-coordinate or y-coordinate referential values.                                                                       

(4.3) 

 

In Criterion (4.3), 𝑟𝑖,𝑖+1 =
𝑀𝐴𝑀𝑆𝐸𝑖+1

𝑀𝐴𝑀𝑆𝐸𝑖
, 𝑟𝑖,𝑖+1 represents the ratio of 𝑀𝐴𝑀𝑆𝐸𝑖+1 to 𝑀𝐴𝑀𝑆𝐸𝑖. 

𝑀𝐴𝑀𝑆𝐸𝑖 =

{
 
 

 
 
𝑀𝑆𝐸𝑖+𝑀𝑆𝐸𝑖+1

2
,                         𝑖 = 0

𝑀𝑆𝐸𝑖−1+𝑀𝑆𝐸𝑖+𝑀𝑆𝐸𝑖+1

3
,   0 < 𝑖 < 𝑀

𝑀𝑆𝐸𝑖−1+𝑀𝑆𝐸𝑖

2
,                         𝑖 = 𝑀

. 𝑀𝐴𝑀𝑆𝐸𝑖 denotes a moving average of MSEs 

for the approximations centred on the approximation of the MAKER-based model 

which has i trained x-coordinate or y-coordinate referential values. 𝑀𝑆𝐸𝑖 indicates 

the MSE for the approximation of the MAKER-based model which has i trained x-

coordinate or y-coordinate referential values. As indicated in Section 4.5.1, there 

are several reasons to use moving averages in the stopping criteria. One is that the 

moving averages of the original observations are smoother than the original 

observations (Wegner, 2010). In addition, the moving averages remove the effect 

of irregular fluctuations in the original observations, and help the decision makers 
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focus more on the general changes in the observations than the obscuring of noise 

(Wegner, 2010). Hence, the ratios of moving averages can be used to describe the 

relative changes of the MSEs for the advanced learning approximations, from which 

we obtained the Criterion (4.3). 

 

As there is a connection between continuous functions approximations and 

classification, which is mentioned in both Sections 4.1 and 5.6.1, Criterion (4.3) 

can be adapted to Criterion (4.4) applied to the classification of the data sets which 

will be shown in Chapters 5 and 6. 

 

If 0.8 ≤ 𝑟𝑖,𝑖+1 ≤ 1.2 and 0.8 ≤ 𝑟𝑖+1,𝑖+2 ≤ 1.2 (𝑖 ≥ 1), then the training process of the 

MAKER-based models is stopped at the MAKER-based models which all have i 

trained referential values for each of the input variables of cross-validated data sets.                                                                          

(4.4) 

 

In Criterion (4.4), 𝑟𝑖,𝑖+1 =
𝑀𝐴𝑀𝑆𝐸𝑖+1

𝑀𝐴𝑀𝑆𝐸𝑖
. 𝑟𝑖,𝑖+1 represents the ratio of 𝑀𝐴𝑀𝑆𝐸𝑖+1 to 𝑀𝐴𝑀𝑆𝐸𝑖. 

𝑀𝐴𝑀𝑆𝐸𝑖 =
𝑀𝑆𝐸𝑖+𝑀𝑆𝐸𝑖+1

2
. 𝑀𝐴𝑀𝑆𝐸𝑖 denotes a moving average of the average MSEs for 

the classification experiments of the MAKER-based models which have same 

number of trained referential values for each of the input variables. This moving 

average of the average MSEs is centred on the classification experiments of the 

MAKER-based models which all have i trained referential values for each of the input 

variables. 

 

4.6 Summary 

 

In this chapter, we have presented the referential-value-based data discretization 

techniques for transforming continuous data, one of the major contributions of this 

research. At the beginning of this chapter, we compared the referential-value-based 

data discretization method with mainstream data discretization methods, i.e., 
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equal-width, equal-frequency, and multi-interval-entropy-minimization 

discretization to highlight the advantages of the referential-value-based data 

discretization method, which are related to reducing information loss and distortion, 

and we presented the characteristics of data. Then we used the MAKER-based 

models constructed by the referential-value-based data discretization method to 

approximate univariate functions and a bivariate function. From the MAKER-based 

model approximations, it was evident that the MAKER-based models approximated 

the functions well. From the findings, we obtained some stopping criteria for the 

training of the MAKER-based models to guide the experimental classification of data 

sets in the subsequent chapters. 
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Chapter 5  

Rule-based Inferential Modelling and Prediction 

 

5.1 Introduction 

 

This chapter is dedicated to the rule-based inferential modelling and prediction 

approach based on the MAKER framework, which integrates statistical analysis, 

belief-rule-based inference, and machine learning. Interpretability is the most 

important characteristic of this approach. We take the classification of classical data 

sets as a case study to demonstrate how the MAKER-based classifier is constructed 

through rule-based inferential modelling and prediction, and compare the MAKER-

based classifier to other modelling and prediction approaches. The rest of the 

chapter is divided into seven sections. Statistical analysis, belief-rule-based 

inference, and prediction and machine learning, which are the fundamental aspects 

of the rule-based inferential modelling and prediction approach, are introduced in 

Sections 5.2, 5.3, and 5.4 respectively. In Section 5.5, a comparative analysis is 

performed to identify the limitations of mainstream modelling and prediction 

approaches, and highlight the advantages of rule-based inferential modelling and 

prediction. Section 5.6 presents a case study in using rule-based inferential 

modelling and prediction to build a MAKER-based classifier for performing 

classification experiments on classical data sets, including the Banana data set, the 

Haberman’s survival data set, and the Iris data set. Also, the classification results 

of the MAKER-based classifiers are compared to those of alternative classifiers, 

which are shown in Section 5.7. A summary of the chapter is provided in Section 

5.8. 

 

 



 

177 
 

5.2 Statistical Analysis 

 

According to Yang and Xu (2017), inference is a systematic process used to predict 

the outputs of a system from its inputs, in which correlation, dependence, and 

interaction among the inputs and between the inputs and outputs of the system 

are taken into account. If there is an explicit functional relationship between the 

inputs and outputs of a system, which is known a priori, inferences can be made 

by directly using the function to calculate the outputs for a given set of inputs (Yang 

and Xu, 2017). Otherwise, it is necessary to collect judgements or data about the 

behaviour of a system to generate inferences (Yang and Xu, 2017). 

 

As stated by Yang and Xu (2017), the MAKER framework is a process of making 

data-driven inferences from inputs about outputs, under uncertainty. The MAKER 

framework involves two types of models, the state space model (SSM) and the 

evidence space model (ESM), and a conjunctive rule of evidential reasoning (Yang 

and Xu, 2017). 

 

In an SSM, an output variable contains a number of states which comprise a system 

state space (Yang and Xu, 2017). In an SSM, it is assumed that a state space is 

composed of a finite number of states (Yang and Xu, 2017). The original thinking 

of Dempster (2008) on state spaces is the foundation of the SSM. 

 

Here, following Yang and Xu (2017), we use 𝐻𝑛 to represent a system state and 

suppose that a system state space has at least N disjoint states which are denoted 

by 𝛩 = {𝐻1⋯𝐻𝑛⋯𝐻𝑁⋯} under the condition that 𝐻𝑖 ∩ 𝐻𝑗 = ∅ 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖 ≠ 𝑗. We can 

assign a probability to a subset of system states. The collection of all subsets is 

known as the power set of Θ, which is denoted by P(Θ) or 2𝛩 (Yang and Xu, 2017). 

The full power set of Θ consists of the empty set ∅ and the full state space Θ (Yang 

and Xu, 2017). 
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As stated by Yang and Xu (2017), the output of a system can be modelled by a 

unique set function, which is referred to as a basic probability function. It is defined 

as an ordinary discrete probability distribution over the nonempty subsets of Θ 

(Yang and Xu, 2017), as shown in Definition 5.1. 

 

Definition 5.1 (Basic probability function): A set function 𝑝: 2𝛩 → [0,1]  is 

referred to as a basic probability function, if conditions (5.1), (5.2), and (5.3) are 

satisfied. 

0 ≤ 𝑝(𝜃) ≤ 1 ∀𝜃 ⊆ 𝛩                                                           (5.1) 

∑ 𝑝(𝜃) = 1                                                                 (5.2)
𝜃⊆𝛩

 

𝑝(∅) = 0                                                                       (5.3) 

 

According to Yang and Xu (2017), in conditions (5.1), (5.2), and (5.3), θ is a subset 

of states, which is called an assertion. 𝑝(𝜃) is the basic probability of assertion θ 

being true. 𝑝(𝜃) is assigned exactly to assertion θ and it cannot be decomposed 

into pieces which are assigned to the subsets of θ (Yang and Xu, 2017). 

 

The definition of system output is given by Definition 5.2. 

Definition 5.2 (System output): A system output of y is defined as a probability 

distribution as shown in Equation (5.4). 

𝑦 = {(𝜃, 𝑝(𝜃)), ∀𝜃 ⊆ 𝛩 𝑎𝑛𝑑 ∑ 𝑝(𝜃) = 1
𝜃⊑𝛩

}                                 (5.4) 

In Equation (5.4), 𝑝(𝜃) is generated from the inputs of the system using Equations 

(3.14) and (3.15). As stated by Yang and Xu (2017), θ is referred to as the focal 

element of y, if p(θ)>0. 

Besides this, according to Dempster (2008), an assertion can be profiled by three 

nonnegative probabilities, i.e., 𝑝𝑡 , 𝑝𝑓 , 𝑎𝑛𝑑 𝑝𝑢, which are assigned to ‘true’, ‘false’, and 

‘unknown’ and termed the triad of an assertion. In an SSM, as previously stated, 
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an output can be described by a basic probability function, while each member of 

the power set in the output of the system can be profiled by a triplet of 𝑝𝑡 , 𝑝𝑓 , 𝑎𝑛𝑑 𝑝𝑢 

more specifically (Yang and Xu, 2017). 

How likely an assertion in the state space is to be true relies on the degree to which 

it is supported by evidence (Yang and Xu, 2017). An evidence space is a space 

derived from data (Yang and Xu, 2017). In the evidence space, each piece of 

evidence is acquired from data and each piece of evidence can be partitioned into 

evidential elements (Yang and Xu, 2017). Each evidential element points exactly to 

an element in the power set of the system states or an assertion in the state space 

(Yang and Xu, 2017). 

The process of evidence acquisition from data for a single input variable is 

established based on the likelihood principle and the Bayesian principle (Yang and 

Xu, 2017). According to Welsh (1996), likelihood contains all the information in the 

data. Hence, if two likelihoods for a parameter θ are proportional, the inferences 

should be identical for θ regardless of which likelihood we use (Welsh, 1996). This 

is formally known as the likelihood principle (Welsh, 1996). A concept highly related 

to the likelihood principle is the likelihood function. According to Held and Sabanés 

Bové (2014), the likelihood function L(θ) or simply the likelihood is the probability 

mass or the density function of the observed data x, which is viewed as a function 

of the unknown parameter θ. The Bayesian principle in this research is that the 

combination of the evidence and the prior distribution of the system states leads 

to the posterior probability (Yang and Xu, 2014). 

Through evidence acquisition, we can construct a one-dimensional ESM for each 

input variable. For the sake of clarity, in the following part of this section, we use 

ei,l to represent the ith piece of evidence from the lth input variable xl and ei,l(θ) 

to represent an element of ei,l  which points exactly to assertion θ. The basic 

probability of evidence ei,l pointing to assertion θ is represented by pθ,i,l = pl(ei,l(θ)) 

and we use cθ,i,l  to represent the likelihood of the ith  value of xl  pointing to 
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assertion θ (Yang and Xu, 2017). In order to generate probabilistic inference, pθ,i,l 

needs to be acquired from the normalized likelihood as shown in Equation (5.5), 

which was illustrated in Equation (3.7). 

𝑝𝜃,𝑖,𝑙 =
𝑐𝜃,𝑖,𝑙

∑ 𝑐𝐴,𝑖,𝑙𝐴⊆𝛩

 ∀𝜃 ⊆ 𝛩                                                      (5.5) 

Given probability 𝑝θ,𝑖,𝑙 which is acquired from input variable 𝑥𝑙 for each assertion 

θ, we can use 𝑒𝑖,𝑙 as a system input, which is defined as a probability distribution 

as shown in Definition 5.3. 

Definition 5.3 (System input): A system input is a basic probability distribution 

as exhibited in Equation (5.6). 

𝑒𝑖,𝑙 = {(𝑒𝑖,𝑙(𝜃), 𝑝𝜃,𝑖,𝑙), ∀𝜃 ⊆ 𝛩 𝑎𝑛𝑑 ∑ 𝑝𝜃,𝑖,𝑙 = 1
𝜃⊆𝛩

}                                 (5.6) 

According to Yang and Xu (2017), in Equation (5.6), 𝑝𝜃,𝑖,𝑗 is derived from input 

variable 𝑥𝑙  using Equation (5.5). The evidential elements 𝑒𝑖,𝑙(𝐻𝑛) for all 𝐻𝑛 ∈ 𝛩 

form the subspace for the 𝑖𝑡ℎ value of 𝑥𝑙. In this research, 𝑥𝑙 is continuous. Hence, 

we can use the method introduced in Section 3.5.1 to discretize 𝑥𝑙 and follow the 

above-mentioned procedure. 

Based on the likelihood principle and the Bayesian principle, we can acquire the 

joint basic probability from the joint likelihood function to generate an 

interdependence index to analyse the statistical interdependence between two 

pieces of evidence, as was elaborated in Section 3.5.2. 

 

 

 

 

 



 

181 
 

5.3 Belief Rule-Base Inference 

 

According to Jackson (1998), an expert system is a computer system which mimics 

the decision-making ability of a human expert in the field of artificial intelligence. 

Expert systems are designed to solve complex problems using reasoning and 

knowledge (Pattnaik, Swetapadma and Sarraf, 2018). Among a wide range of 

alternative means of knowledge representation, rules are one of the most common 

forms and are used to express various types of knowledge for a number of reasons 

(Sun, 1995). It has been argued by some researchers (Hayes, 1977; Chomsky, 

1980; Nilsson, 1984) that other knowledge representation methods can be 

transformed into logic (rule)-based methods. As stated by Grosan and Abraham 

(2011), a rule-based system, in which the definitions depend almost entirely on 

expert systems, is a way of encoding human experts’ knowledge in a narrow area 

into an automated system, using rules to represent and code the knowledge. The 

rules of a rule-based system are expressed as a set of IF-THEN rules, which are a 

set of facts, and some interpreters controlling the application of the rules according 

to the facts (Grosan and Abraham, 2011). Rule-based systems, as very simple 

models, can be adapted and applied to a large number of problems (Grosan and 

Abraham, 2011). A rule-based system is generally composed of two essential parts, 

namely a knowledge base and an inference engine, which are combined to infer 

useful conclusions from observed facts provided by users and rules established by 

experts (Yang et al., 2006). 

According to Tang et al. (2011), a conventional rule base of a rule-based system is 

composed of simple IF-THEN rules. The 𝑘𝑡ℎ rule can be written in the following 

form: 

𝑅𝑘: 𝑖𝑓𝐴1
𝑘 ∧ 𝐴2

𝑘 ∧ …∧ 𝐴𝑇𝑘
𝑘 , 𝑡ℎ𝑒𝑛 𝐷𝑘                                                   (5.7) 
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In (5.7), 𝐴𝑖
𝑘(𝑖 = 1,2, … , 𝑇𝑘) is a referential value of the 𝑖𝑡ℎ antecedent attribute in the 

𝑘𝑡ℎ rule. The referential value can take different types of values. 𝑇𝑘 is the number 

of antecedent attributes used in the 𝑘𝑡ℎ rule. 𝐷𝑘 is the consequence of the 𝑘𝑡ℎ rule. 

The symbol ∧ indicates the relationship ‘AND’ between the antecedent attributes. 

The general form of rule displayed in (5.7) is simple, as it does not take account of 

the distribution of consequences, the relative importance of each antecedent, or 

the relative importance of rules in the rule base (Tang et al., 2011). 

To take these aspects into account, three concepts, i.e., degree of belief in the 

consequence, attribute weight, and rule weight, are used.  

Degree of belief in the consequence: In complex cases, it is possible that the 

consequence of a rule could take a number of values with different degrees of belief, 

in order to express the viewpoints of experts on the extent to which a certain 

consequence may be true (Tang et al., 2011). Suppose the consequence D of a rule 

has N different values, i.e., 𝐷1, 𝐷2, ... , 𝐷𝑁, and the degree of belief in 𝐷𝑖 is denoted 

by 𝛽𝑖 (i=1,2,...,N). Then, the consequence of a rule with that belief structure could 

be represented by (𝐷1, 𝛽1), (𝐷2, 𝛽2), … , (𝐷𝑁 , 𝛽𝑁).  

Attribute weight: As indicated by Yang et al. (2006), the relative importance of an 

attribute to the consequence of a rule is important in rule-based inference. Hence, 

a weight is assigned to each attribute to describe this (Yang et al., 2006). 

Rule weight: The relative importance of a rule to the whole rule base plays an 

important role in rule-based inference (Yang et al., 2006). Therefore, a weight is 

assigned to each rule to describe this (Yang et al., 2006). 

On the basis of these concepts, according to Yang et al. (2006), the simple rule 

displayed in (5.7) can be extended to the following: 
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𝑅𝑘: 𝑖𝑓𝐴1
𝑘 ∧ 𝐴2

𝑘 ∧ …∧ 𝐴𝑇𝑘
𝑘 , 𝑡ℎ𝑒𝑛 {(𝐷1 , 𝛽1𝑘), (𝐷2, 𝛽2𝑘), … , (𝐷𝑁 , 𝛽𝑁𝑘)},  

∑𝛽𝑖𝑘 ≤ 1,

𝑁

𝑖=1

 𝑤𝑖𝑡ℎ 𝑎 𝑟𝑢𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝜃𝑘  𝑎𝑛𝑑 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝛿𝑘1, 𝛿𝑘2, … , 𝛿𝑘𝑇𝑘 , 

𝑘 ∈ {1, 2, … , 𝐿}                                                                                                                                                      (5.8) 

As stated by Yang et al. (2006), in (5.8), 𝐴𝑖
𝑘(𝑖 = 1, 2, … , 𝑇𝑘) indicates the referential 

value of the 𝑖𝑡ℎ  antecedent attribute in the 𝑘𝑡ℎ  rule and 𝑇𝑘  is the number of 

antecedent attributes used in the 𝑘𝑡ℎ rule. 𝛽𝑖𝑘(𝑖 ∈ {1, 2, … , 𝑇𝑘}) is the degree of belief 

that 𝐷𝑖  is the consequence, given that, in the 𝑘𝑡ℎ  rule, the input satisfies the 

packet antecedents 𝐴𝑘 = {𝐴1
𝑘 , 𝐴2

𝑘, … , 𝐴𝑇𝑘
𝑘 }. L is the number of rules in the rule base. 

𝜃𝑘 is the relative weight of the 𝑘𝑡ℎ rule and 𝛿𝑘1, 𝛿𝑘2, … , 𝛿𝑘𝑇𝑘 represent the relative 

weights of the antecedent attributes used in the 𝑘𝑡ℎ rule (Yang et al., 2006). If 

∑ 𝛽𝑖𝑘 = 1
𝑁
𝑖=1 , the 𝑘𝑡ℎ rule is said to be complete; otherwise, it is said to be incomplete 

(Yang et al., 2006). In addition, according to Yang et al. (2006), ∑ 𝛽𝑖𝑘 = 0𝑁
𝑖=1  

indicates total ignorance about the output, given the input in the 𝑘𝑡ℎ rule. If a rule 

is expressed in the form displayed in (5.2), it is referred to as a belief rule. If a rule 

base is composed of belief rules, the rule base is referred to as belief rule base. 

In this research, we use the methods introduced in Section 3.5 to acquire evidence 

from data and combine evidence from different input variables to generate the 

probability of each class for each combination of pieces of evidence from different 

input variables. Here, the probability of each class and each combination of pieces 

of evidence from different input variables correspond to the degree of belief in each 

value of the consequence of a rule and the ‘if’ part of a belief rule. In this way, we 

can generate a belief rule for each combination of pieces of evidence from different 

input variables. Thus, we can generate a belief rule base for inference. 

In a BRB, the consequence of a rule takes the form of a distribution (Yang et al., 

2006). Thus, any difference in antecedent attributes can be clearly reflected in the 

consequence (Yang et al., 2006). As a comparison, different antecedents may lead 
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to the same consequence in a conventional rule base (Yang et al., 2006). Due to 

the introduction of attribute weights and rule weights, expert knowledge can be 

modelled more precisely and the BRB model can be brought closer to reality (Yang 

et al., 2006). Overall, a belief rule as previously defined can represent a functional 

mapping between antecedent inputs and outputs, possibly with uncertainties (Chen 

et al., 2013). A belief rule can provide a more informative and realistic scheme than 

a conventional IF-THEN rule (Chen et al., 2013). Once a belief rule base is set up, 

the knowledge embedded in all the belief rules can be applied to infer something 

for a specific input vector (Chen et al., 2013). 

 

5.4 Prediction and Machine Learning 

 

According to Yang and Xu (2017), we need to assign values to the parameters of 

Equation (3.14), i.e., 𝑟𝜃,𝑖,𝑙 , 𝑤𝜃,𝑖,𝑙 , 𝑟𝜃,𝑗,𝑚, 𝑤𝜃,𝑗,𝑚, 𝑎𝑛𝑑 𝛾𝐴,𝐵,𝑖,𝑗 in order to make an inference. 

We can use the adapted genetic algorithm introduced in Section 3.6 to train the 

values of these parameters based on input-output data sets. Then, we can use the 

model with the trained parameters to predict system outputs from given system 

inputs. 

 

In order to train the parameters of the model, we need to establish a general least 

squares optimization model, which is shown in Equation (5.9). 

 

min 𝛿 =
1

2𝑆
∑∑(𝑝(𝜃) − �̂�(𝑠)(𝜃))

2

𝜃⊆𝛩

𝑆

𝑠=1

                                                                                                          (5.9) 

𝑠. 𝑡.  𝑟𝜃,𝑖,𝑙 , 𝑤𝜃,𝑖,𝑙 , 𝛾𝐴,𝐵,𝑖,𝑗 ∈ 𝛺 

 

In Equation (5.9), �̂�(𝑠)(𝜃) is the probability that assertion θ is true for the 𝑠𝑡ℎ 

observation. The objective of the optimization model is to minimise the difference 



 

185 
 

between the observed outputs of a system and the corresponding predicted outputs 

of a model, which is measured by mean squared error (MSE). Ω is the feasible 

space of parameters, which refers to the constraints on the parameters of the 

optimization model (Yang and Xu, 2017). 

 

Based on the minimum mean squared error, we can use the single-level adapted 

genetic algorithm presented in Section 3.6 to train the parameters of the 

optimization model. 

 

Based on the illustration of Chapter 3 and Sections 5.2 through 5.4, we can use 

the flow charts in Figure 5.1 to visualise all the steps of the approach of rule-based 

inferential modelling and prediction, those of the adapted single-level genetic 

algorithm, and the connections between the approach and the algorithm. 
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Figure 5.1 The Flow Diagrams of the Approach of Rule-based Inferential 

Modelling and Prediction and the Adapted Single-level Genetic Algorithm 
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5.5 Comparative Analysis of Modelling and Prediction 

Approach 

 

In this section, the modelling kernel and the inference mechanisms of the rule-

based inferential modelling and prediction approach based on the MAKER 

framework is presented analytically and graphically, first of all. Then this approach 

is compared to alternative modelling and prediction approaches, to highlight the 

advantages of the former. 

 

Based on the method introduced in Section 3.5.1, the multi-model decomposition 

of input space based on the referential-value-based discretization is applied in the 

rule-based inferential 

modelling and prediction 

approach. This method of 

decomposition discretizes 

continuous data from an input 

space to generate evidence for 

inference. It helps decision 

makers acquire evidence 

directly from data using 

sample statistics and it requires few assumptions about the specific statistical 

distributions of the input data and the relationships between the input variables 

and the output variable. 

 

To construct an inference system in the rule-based inferential modelling and 

prediction approach, as stated in Section 3.5.1, we need to define a number of 

referential values, indicated by 𝐴𝑗
𝑖  (i = 1,… ,M; j = 1,… , 𝐽𝑖 ), for each of the input 

variables. With the referential values, the input space U can be decomposed into a 

number of local regions, which are represented by the hyperspace [𝐴1
1, 𝐴𝐽1

1 ] × ∙∙∙ ×

[𝐴1
𝑀, 𝐴𝐽𝑀

𝑀 ]. For example, a two-dimensional input space 𝑥1 × 𝑥2 can be decomposed 

 
Figure 5.2 Decomposition of 2-D Input 

Space  
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into (𝐽1-1) × (𝐽2-1) = 4 * 4 = 16 rectangular local regions as displayed in Figure 

5.2, while a three-dimensional input space 𝑥1 × 𝑥2 × 𝑥3 can be decomposed into 

(𝐽1-1) × (𝐽2-1) × (𝐽3-1) = 2 * 2 * 2 = 8 cubic local regions as presented in Figure 

5.3. Each data point of the input vector i.e., 𝑥𝑛 = {𝑥𝑛,𝑖1 , … , 𝑥𝑛,𝑖𝑀}  for the input 

variables can then be located within a local region determined by the intersections 

of the referential values. 

 

Through the calculations displayed in Section 3.5.1, each intersection of referential 

values will be given a degree of belief or probability indicating how likely it is that 

the input vector composed of these referential values would be present under a 

certain class of output variable. This is the process used to generate a belief rule 

base for inference, as mentioned in Section 5.3. Meanwhile, the similarity degrees 

mentioned in Equation (3.4) can be 

used to measure the proximity of 

the data point of an input vector to 

the intersections of the referential 

values. Thus, based on the 

referential values and similarity 

degrees, we can provide a complete 

description of the relative location 

of the data point of an input vector 

𝑥𝑛  in the input space U. Naturally, the granularity and interpretability of local 

regions are generally decided by the number of referential values. It is evident that 

the greater the number of referential values, the more accurate the location of the 

data point of an input vector 𝑥𝑛 will be. In most cases, inputs which lead to high 

volatility of outputs require more referential values than others. 

 

Under the above-described structure, the inference system of this referential-value-

based inferential modelling and prediction approach is essentially a multi-model 

approximator combining decomposed sub-models represented by local regions to 

 
Figure 5.3 Decomposition of 3-D Input 

Space  
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describe the general pattern of a numerical system. For each sub-model, i.e., local 

region, we can formulate the relationship between the input variables and the 

output variable using the inference system demonstrated in Section 3.5.1. 

 

On the basis of the intersections of the referential values and their corresponding 

probabilities, i.e., the belief rule base, and the degrees of similarity between the 

data point of the input vector and the relevant intersections of the referential values, 

we can activate relevant belief rules from the belief rule base and then use 

Equations (3.14) to (3.19) to combine these belief rules to generate a combined 

probability for an input vector pointing to each class of output variable. As 

previously stated, we can use the adapted genetic algorithm presented in Section 

3.4 to train the parameters of the optimization model to maximize the likelihood of 

the true state. Thus, from the above analysis, we can see that the rule-based 

inferential modelling and prediction approach is uniquely interpretable, making it 

an objective, rigorous, and reliable inference method for a data-driven system. 

 

The above analysis shows that the application of the rule-based inferential 

modelling and prediction approach can acquire evidence directly from data using 

statistical analysis. Combining multiple pieces of evidence from different input 

variables of data generates a belief rule base for inference. With the belief rule base, 

the relationship between input and output can be formulated by the unified 

inference scheme described in Section 3.5. For any given inputs, an inference can 

be made about the corresponding output using the belief rule base and maximum 

likelihood prediction. With the algorithm of machine learning, the parameters of the 

inference model can be optimised to make the predicted probability of the output 

become as close as possible to the probability of the true state of the output. The 

inference process, based on the rule-based inferential modelling and prediction 

approach, is totally transparent and interpretable. Such a unique interpretability 

makes the rule-based inference modelling and prediction approach an effective, 
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rigorous, and reliable inference method for a numerical system. This kind of unique 

interpretability is illustrated by the example shown in Sections 6.3.4 and 5.6.6. 

 

Interpretability is very important in science. According to Zhou and Chen (2018), 

it is defined as ‘explaining or presenting in understandable terms’. One of the 

hallmarks of good science is understanding and trusting models and their results 

(Hall and Gill, 2018). The models and their results are essentially the representation 

of knowledge. Scientists want to know what kind of knowledge, learned by models 

from data, leads to the output the models generate. This may lead to possible 

associations between inputs and output, which can guide further research. 

 

Researchers, engineers, and medical experts generally have a need to understand 

and trust models and their results (Hall and Gill, 2018). It is particularly important 

to understand interpretability in disease diagnosis using machine learning methods. 

With machine learning methods, medical experts can establish a model to predict 

patients’ risk for diseases. In addition to the predicted results, the medical experts 

may also want to know the possible relationship between the patients’ features and 

their diagnoses. This would allow medical experts to judge whether the predicted 

results of the models are meaningful, based on medical knowledge and experience, 

and allow the use of effective models to improve the accuracy and efficiency of 

disease diagnosis. 

 

If a model is uninterpretable, the application of the model in different domains may 

be restricted by insufficient information provided by the model. For example, if 

neural networks are used to classify two images which are almost the same, yet 

slightly different, completely different classifications can result for these two 

images. However, it is very difficult to tell what difference between the two images 

leads to the two different classifications. Unlike uninterpretable models, we can use 

interpretable models to track and locate the difference in inputs which lead to 

different classification results. For example, the difference in the parameters of 
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inputs of linear regression models, which lead to different classification results, can 

be found easily. 

 

Generally speaking, there is a compromise between accuracy and interpretability 

of models (Hall and Gill, 2018). Higher accuracy always comes at the expense of 

interpretability (Hall and Gill, 2018). Some classifiers (e.g. artificial neural networks 

(ANN), ensembles, and random forests) may have a very high accuracy for the 

classification of data sets, but what makes them accurate is what makes their 

predictions hard to understand (Hall and Gill, 2018). On the one hand, the complex 

and inscrutable inner-workings enable these models to have a tremendous 

capability for classification but, on the other hand, this also renders these models 

difficult to understand. 

 

Conversely, compared to the classifiers which are hard to understand, other 

classifiers (e.g. decision tree, logistic regression, and naïve Bayes) generally have 

a lower accuracy for the classification of data sets, but they are easier to 

understand. 

 

According to Rokach and Maimon (2015), decision tree classifiers divide the input 

space into a number of mutually exclusive regions to represent one concept. All the 

data points of inputs in the same region are assigned a same output, which is 

simplistic. Similar to the decision tree, MAKER-based models divide the input space 

into mutually exclusive regions as well. However, as already shown in this section, 

MAKER-based models use the probabilities of the intersections of the referential 

values (splits) and the similarities between the data points of inputs and the 

intersections of the referential values to generate the outputs of the given data 

point of inputs, which is closer to reality. 

 

Another disadvantage to the decision tree is over-sensitivity (Rokach and Maimon, 

2015) to the training set, which makes decision tree classifiers very unstable. A 
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small change in one split which is close to the root can change the entire subtree 

(Rokach and Maimon, 2015). Compared to decision tree classifiers, MAKER-based 

classifiers are generally more stable. A small change in the referential values (splits) 

will not significantly change the outputs of MAKER-based classifiers for the inputs, 

as each input will activate a number of rules and these belief rules and relevant 

similarities can be used to generate the output for a given input. 

 

As stated by Moreira, Carvalho and Horváth (2018), logistic regression classifiers 

are restricted to linearly separable binary classification tasks. MAKER-based 

classifiers are not restricted to linearly separable binary classification tasks. MAKER-

based classifiers can be applied to nonlinear separable binary classification tasks 

and multiple classification tasks. In addition, logistic regression classifiers are 

sensitive to correlative input variables and outliers (Moreira, Carvalho and Horváth, 

2018). As introduced in Section 3.5, MAKER-based classifiers take into 

consideration the interdependence between input variables, as MAKER-based 

classifiers use an interdependence index to measure the interdependence between 

input variables. In addition, MAKER-based classifiers use sample statistics to 

generate evidence for inference. Hence, MAKER-based classifiers are less sensitive 

to the outliers than logistic regression classifiers. 

 

Naïve Bayes classifiers assume that all input variables are independent from each 

other (Nicolas, 2015) and naïve Bayes classifiers are generally dependent on the 

prior distribution. According to Yang and Xu (2017), MAKER-based classifiers do not 

depend on prior distribution but admits unknown prior by default. The prior 

distribution is treated as an independent piece of evidence which is added to the 

evidence set of the evidence space model, as mentioned in Section 5.2 (Yang and 

Xu, 2017). 
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5.6 A Case Study of Classification of the Iris Data Set 

 

5.6.1 Correlation between Classification and Functions 

Approximations 

 

There is a correlation between classification and continuous functions 

approximations. Indeed, classification can be regarded as a simplified version of 

continuous functions approximation. This is due to the fact that the observed 

outputs of data sets in continuous functions approximation are continuous values 

and the observed outputs of the data sets in classification are generally categorical. 

If the categorical observed outputs of the data sets in the classification are 

represented by discretized values, the observed outputs of data sets in 

classification can just be considered as a number of values of the observed outputs 

of data sets in continuous functions approximation. Equation (5.10) exhibits a 

continuous univariate function that can be used to describe the relationship 

between the inputs and the outputs of a data set for continuous function 

approximation and Equation (5.11) displays a piecewise function that can be used 

to describe the relationship between the inputs and the outputs of a data set that 

has only 1 input variable for classification. 

 

𝑓(𝑥) = 𝑥
1
2,        0 ≤ 𝑥 ≤ 9                                                        (5.10) 

𝑔(𝑥) = {
1, 0 ≤ 𝑥 < 3
2, 3 ≤ 𝑥 < 8
3, 8 ≤ 𝑥 ≤ 9

                                                       (5.11) 
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Figure 5.4 visualizes the functions exhibited in both Equation (5.10) and Equation 

(5.11), which provides a more intuitive display of the relationship between 

continuous functions approximation and classification. It is noteworthy that in the 

approximations for continuous functions presented in Chapter 4, the predicted 

outputs of the models based on the system of MAKER framework are actually the 

probabilities for the referential values of observed output values of functions of the 

data sets. Then, the sums of the products generated by the referential values of 

the observed output values of the functions and their corresponding probabilities 

yielded by the models can be used as the predicted values for the observed output 

values of the functions in the approximations for continuous functions. In the 

classification of classical data sets presented in this chapter, the predicted outputs 

of the models based on the system of the MAKER framework are just the 

probabilities for different classes of the observed outputs of the data sets for 

classification. Then the class with the highest probability would be taken as the 

predicted class of the model for each observation of a data set in classification. 

 

 

Figure 5.4 A continuous function about continuous functions approximation and a 

piecewise function about classification 
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5.6.2 Data Sets 

 

The functions approximation presented in Chapter 4 has shown the remarkable 

approximation capability of the models based on the system of the MAKER 

framework, which provides a solid foundation to apply the rule-based inferential 

modelling and prediction approach based on the system of the MAKER framework 

to the classification of data sets. In this section, as mentioned previously, we would 

take the classification of classical data sets as a case study to compare the rule-

based inferential modelling and prediction approach based on the system of the 

MAKER framework and other alternative modelling and prediction approaches. The 

classical data sets as stated above include the Banana data set, the Haberman’s 

survival data set, and the Iris data set, which were briefly introduced in Section 

3.3. Each of these data sets had already been divided into five folds using 

 

Figure 5.5 Parallel coordinates plot of distribution of observations of 

different classes across four input variables of the training set of the 

first fold of the Iris data set and the trained referential values of the 

input variables of the Iris data set 



 

196 
 

distribution optimally balanced stratified cross-validation (Alcalá-Fdez et al., 2011) 

before they were downloaded from the KEEL-dataset repository, so that the class 

distribution of the whole data set is reflected in separate folds (Aggarwal, 2015). 

 

In order to illustrate how the rule-based inferential modelling and prediction 

approach can be used to build a MAKER-based classifier for the classification of a 

data set, a numerical study using the iris data set is presented in the remainder of 

this section. As previously mentioned, the Iris data set has four input variables (i.e., 

sepal length, sepal width, petal length, and petal width) and a categorical output 

variable (i.e., species with three classes, i.e., Iris setosa, Iris versicolor, and Iris 

virginica). As stated previously, the Iris data set has been divided into five folds for 

cross-validated classification and the class distribution of the whole data set is 

reflected in these separate folds, which means the observations of all these 

separate folds have similar class distributions. Thus, we can just take the training 

set of the first fold of the Iris data set as an example to demonstrate how to use 

the rule-based inferential modelling and prediction approach to establish a MAKER-

based classifier for the classification of the Iris data set. 

 

Figure 5.5 exhibits the parallel coordinates plot about the general distribution of 

the observations of different classes across four input variables of the training set 

of the first fold of the sepsis data set and the locations of the trained referential 

values of each input variable of the data set. As is indicated in Figure 5.5, the blue 

solid lines, the red solid lines, and the green solid lines represent the observations 

of Iris setosa, Iris versicolor, and Iris virginica respectively. The four vertical axes 

in Figure 5.5 from left to right represent the input variables: sepal length, sepal 

width, petal length, and petal width, respectively. The red nodes with yellow edges 

on the axes of Figure 5.5 denote the trained referential values of the input variables 

of the Iris data set. 
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From Figure 5.5, it can be observed that the distributions of observations of 

different classes in the different input variables of the Iris data set can have 

different patterns. Specifically, in the input variable of sepal length, the observed 

input values of Iris virginica represented by the green solid lines are generally the 

largest, and the observed input values of Iris versicolor represented by the red solid 

lines are generally smaller than those of Iris virginica, and the observed input 

values of Iris setosa represented by blue solid lines are generally the smallest. In 

the input variable of sepal width, the observed input values of Iris virginica and 

those of Iris versicolor are generally smaller than those of Iris setosa, and the 

observed input values of Iris versicolor are generally smaller than those of Iris 

virginica. The distribution of observations of different classes in the input variable 

of petal length is similar to that in the input variable of petal width. In the input 

variables: petal length and petal width, the observed input values of Iris virginica 

are generally the largest, and the observed input values of Iris versicolor are 

generally smaller than those of Iris virginica, and the observed input values of Iris 

setosa are generally the smallest. 

 

5.6.3 The Optimised Referential Values of the Model 

 

As introduced in Chapter 3, we can use the adapted genetic algorithm to optimize 

the parameters, i.e., the referential values and the weights of the models based on 

the system of the MAKER framework for functions approximation or classification. 

In the adapted genetic algorithm for the optimization of the MAKER-based models 

of sepsis diagnosis, the initial population of individuals (chromosomes) includes 10 

subpopulations, each of which comprises 20 individuals (chromosomes). Each 

individual of a population contains both the referential values of the observed 

values of the input variables of a training set of the Iris data set and the weights 

(reliabilities) of these referential values under different classes of the output 

variable of the data set. After the initial population has been generated, the 
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objective value, i.e., MSE is calculated for each individual (solution) of a population. 

Then, on the basis of a population of the individuals as stated above, a group of 

genetic algorithm operations, e.g., selection, recombination, mutation, reinsertion, 

and migration, is performed for 200 iterations to obtain an optimized solution for 

referential values and weights. 

 

The target of the optimization of a MAKER-based model of sepsis diagnosis is to 

maximize the predicted outputs, i.e., predicted probabilities, of the model for the 

true observed outputs of a training set of the Iris data set to minimize the MSE that 

is used to measure the difference between the observed outputs and the predicted 

outputs. Thus, it can reasonably be inferred that, through optimization, the trained 

referential values of each input variable will generally be located around critical 

observed values that divide the observed values of this input variable into several 

parts, in each of which the observations of a given class are in the majority. 

 

This is supported by Figures 5.6 and 5.7, which present the distribution of trained 

referential values obtained from the optimization of the MAKER-based models for 

the classification of the Iris data set. The MAKER-based models of Figure 5.6 all 

have one trained referential value for each input variable of the training set, and 

those of Figure 5.7 all have two trained referential values for each input variable of 

the training set. It is worth noting that the ‘trained referential values’ refer to the 

trained referential values of observed values of an input variable of a data set 

between the minimum and maximum of those observed values. From Figures 5.6 

and 5.7, we can clearly see that the trained referential values for the input variables 

obtained from the optimization of the MAKER-based models are generally located 

around the separation point between the clusters of species (Iris setosa, Iris 

versicolor, and Iris virginica). For example, in the first subfigure of Figure 5.5, the 

trained referential value for the input variable: petal width (the rightmost vertical 

axis of the subfigure) is located around the separation point between the cluster of 

Iris versicolor and the cluster of Iris virginica. 
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As already mentioned in this section, the training set of the first fold of the Iris data 

set (henceforth the ‘training set’) is taken as an example to illustrate how a MAKER-

based classifier is established through the rule-based inferential modelling and 

prediction approach for the classification of the Iris data set. Hence, we just use 

the optimized solution of the MAKER-based classifier for the training set to construct 

a classifier for the purpose of illustration. The optimized solution includes optimized 

referential values and optimized weights obtained from the optimization of the 

MAKER-based model, which has one optimized referential value for each of the 

input variables of the training set. The ‘optimized referential values’ refer to the 

optimized referential values of the observed values of an input variable of a data 

set, which lie between the minimum and maximum of the observed values of this 

input variable. 

 

In the following part of this section, we will show how to apply the rule-based 

inferential modelling and prediction approach to build the MAKER-based classifier 

for the training set from four aspects: evidence acquisition from data, analysis of 

evidence independence, belief rule-base inference, and maximum likelihood 

prediction and machine learning. 
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Figure 5.6 The distribution of trained referential values obtained from the 

optimization of MAKER-based models for the classification of the Iris data set which 

all have one Trained referential value for each of the input variables of the training 

set 
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Figure 5.7 The distribution of trained referential values obtained from the 

optimization of MAKER-based models for the classification of the Iris data set which 

all have two trained referential value for each of the input variables of the training 

set 
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5.6.4 Evidence Acquisition from Data 

 

As introduced in Section 3.5, the first step in establishing a MAKER-based classifier 

is to acquire evidence from data. In order to acquire evidence from a data set, we 

need to decide on referential values for each of the input variables of the data set. 

Referential values, as adjustable parameters, can initially be determined by 

expertise or random rule without prior knowledge and can subsequently be trained 

using an input-output data set under a certain optimization objective (Xu et al., 

2017). 

 

As previously stated, in this section, for the purpose of illustration, we use the 

optimized solution of the MAKER-based classifier for the training set. This includes 

optimized referential values and optimized weights obtained from the optimization 

of the MAKER-based classifier, which has one optimized referential value for each 

of the input variables of the training set. Thus, we just use the optimized referential 

values obtained from the above-mentioned optimization of the MAKER-based 

classifier to acquire evidence from the training set. 

 

 

Table 5.1 The referential values obtained from the optimization of the 

MAKER-based classifier for the training set of the first fold of the Iris data 

set 

Input variables sepal length sepal width petal length petal width 

Boundary 

referential 

values (minima) 

4.3000 2 1 0.1000 

Optimized 

referential 

values 

4.9991 2.8969 4.4044 1.3389 

Boundary 

referential 

values (maxima) 

7.7000 4.4000 6.7000 2.5000 
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Table 5.1 displays the referential values including the boundary referential values 

and the optimized referential values used to acquire evidence from data. The 

boundary referential values are the minima and maxima of the observed values of 

the input variables of the data set. On the basis of the optimized referential values 

displayed in Table 5.1 and the boundary referential values as stated above, we can 

use Equation (3.4) from Section 3.5.1 to transform each observed value of each 

input variable of the training set into the belief distributions of the two adjacent 

referential values between which this observed value is located. After all the 

observed values of the input variables are transformed into belief distributions of 

referential values, we will use Equation (3.5) to aggregate similarity degrees of 

belief distributions according to the referential values under different classes of the 

output variable of the training set. In this way, we will generate the frequencies of 

the referential values under different classes of the output variable displayed in the 

form of Table 3.3. Table 5.2 shows the frequencies of the referential values: 4.3, 

4.9991, and 7.7 of the input variable: sepal length. 

 

Next, using Equation (3.6), we calculate the likelihood of a referential value of an 

input variable being true given that a class of the output variable of the training set 

is true, for all the referential values of the input variables under different classes of 

the output variable, displayed in the form of Table 3.4. Table 5.3 presents the 

likelihoods of the referential values: 4.3, 4.9991, and 7.7 of the input variable of 

sepal length being different species. With these likelihoods, the probability of a 

referential value of an input variable pointing to a class of the output variable of 

Table 5.2 The frequencies of the referential values of the input variable 

of sepal length of the training set of the first fold of the Iris data set 

under different species 

class/referential 

value 
4.3000 4.9991 7.7000 

Iris setosa 7.5588 30.3599 2.0812 

Iris versicolor 0 26.2507 13.7493 

Iris virginica 0.1417 17.0017 22.8566 

 



 

204 
 

the training set can be obtained from Equation (3.7) for all the referential values 

of the input variables under different classes of output variable, shown in the form 

of Table 3.5. 

 

Tables 5.4 and 5.5 exhibit the probabilities of the referential values of the observed 

values of the input variables of sepal length and sepal width, respectively, pointing 

to different classes of the output variable of the training set. It is worth noting that 

the referential values displayed in Tables 5.4 and 5.5 include not only the previously 

defined boundary referential values, i.e., 4.3000, 7.7000, 2, and 4.4000, but also 

the previously defined optimized referential values, i.e., 4.9991 and 2.8969. 

 

Table 5.3 The likelihoods of the referential values of the input variable 

of sepal length of the training set of the first fold of the Iris data set 

being different species 

class/referential 

value 
4.3000 4.9991 7.7000 

Iris setosa 0.1890 0.7590 0.0520 

Iris versicolor 0 0.6563 0.3437 

Iris virginica 0.0035 0.4250 0.5714 

 

Table 5.4 The probabilities with which the referential values of the 

observed values of the input variable of sepal length point to different 

classes of the output variable of the training set of the first fold of the 

Iris data set 

class/referential value 4.3000 4.9991 7.7000 

Iris setosa 0.9816 0.4124 0.0538 

Iris versicolor 0 0.3566 0.3554 

Iris virginica 0.0184 0.2310 0.5908 

 

Table 5.5 The probabilities with which the referential values of the 

observed values of the input variable of sepal width point to different 

classes of the output variable of the training set of the first fold of the 

Iris data set 

class/referential value 2 2.8969 4.4000 

Iris setosa 0 0.3019 0.7055 

Iris versicolor 0.7011 0.3324 0.0847 

Iris virginica 0.2989 0.3657 0.2098 
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From the probabilities of the referential values of the observed values of the input 

variables of the training set pointing to different classes of the output variable of 

the training set, partly shown in Tables 5.4 and 5.5, we can acquire a number of 

pieces of evidence. For example, as shown in Table 5.9, the probabilities: 0.9816 

and 0.0184, under boundary referential values: 4.3000, indicate that if the sepal 

length is 4.3000 cm, the probability of this flower being Iris setosa is 0.9816, and 

the probability of this flower being Iris versicolor is 0, and the probability of this 

flower being Iris virginica is 0.0184. Thus, we can acquire a piece of evidence from 

the sepal length of 4.3000 cm, in that it points to the Iris setosa with a probability 

of 0.9816, and points to the Iris versicolor with a probability of 0, and points to the 

Iris virginica with a probability of 0.0184. 

 

5.6.5 Analysis of Evidence Independence 

 

As stated previously, there are four input variables: sepal length, sepal width, petal 

length, and petal width in the Iris data set, and the output variable, i.e., species of 

the Iris data set contains three classes: Iris setosa, Iris versicolor, and Iris virginica. 

Without doubt, the predictive power of a single piece of evidence is limited. In order 

to achieve greater predictive power, it is necessary to combine multiple pieces of 

evidence to make a prediction for a patient. In the original evidential reasoning (ER) 

rule, any two pieces of evidence to be combined are assumed to be independent 

from each other, which is simplistic. Under the MAKER framework, the 

interdependence between two pieces of evidence is taken into consideration 

through the introduction of an interdependence index ‘α’ which is defined in 

Equation (3.13). To generate the interdependence index between each pair of 

evidential elements, we need to estimate the joint probabilities for these two pieces 

of evidence according to Equation (3.12) in advance. Table 5.11 displays the joint 

probabilities for all the combinations of the referential values of pieces of evidence 
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from the input variables: sepal length and sepal width, each of which points to 

different classes of output variable of the training set. 

 

In Table 5.6, the first and second numbers of each combination of referential values 

represent the referential value of a piece of evidence from the input variable of CRP 

of the training set and that from the input variable of IL6 respectively. On the basis 

of the probabilities displayed in Table 5.4, Table 5.5, and Table 5.6, we can use 

Equation (3.13) to generate the interdependence indices between a piece of 

evidence from the input variable of CRP and a piece from the input variable of IL6 

which are exhibited in Table 5.7. From Table 5.7, it is evident that the sepal length 

and sepal width are generally moderately independent from each other, as the 

majority of the independence indices displayed in Table 5.7 are between 1 and 7, 

although there are several exceptional independence indices, e.g., 0 and 181.8097. 

For example, the interdependence between the sepal length: 4.9991 cm and the 

sepal width: 4.4 cm is moderate, as the interdependence index between the sepal 

length: 4.9991 cm and the sepal width: 4.4 cm under Iris setosa is 2.8891, and 

that under Iris versicolor is 2.1496, and that under Iris virginica is 1.9491. The 

sepal length: 4.3 cm and the sepal width: 2 cm are highly independent from each 

other under Iris virginica, as the corresponding interdependence index is 181.8097. 
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Table 5.6 The joint probabilities with which different combinations of the referential values of pieces of evidence from the 

input variables: sepal length and sepal width point to different classes of the output variable of the training set of the first 

fold of the sepsis data set 

class/combination 

of referential 

values 

{4.3, 2} {4.3, 2.8969} {4.3, 4.4} {4.9991, 2} 
{4.9991, 

2.8969} 
{4.9991, 4.4} {7.7, 2} {7.7, 2.8969} {7.7, 4.4} 

Iris setosa 0 0.9876 1 0 0.3777 0.8406 0 0.0284 0.2558 

Iris versicolor 0 0 0 0.7462 0.3602 0.0649 0.6003 0.3556 0.1615 

Iris virginica 1 0.0124 0 0.2538 0.2621 0.0945 0.3997 0.6160 0.5826 

 

Table 5.7 The interdependence indices between a piece of evidence from the input variable of sepal length of the training set 

of the first fold of the Iris data set and that from the input variable of sepal width of the training set 

referential 

value of sepal 

length 

4.3 4.3 4.3 4.9991 4.9991 4.9991 7.7 7.7 7.7 

class/referentia

l value of sepal 

length 

2 2.8969 4.4 2 2.8969 4.4 2 2.8969 4.4 

Iris setosa 0 3.3328 1.4441 0 3.0340 2.8891 0 1.7463 6.7411 

Iris versicolor 0 0 0 2.9846 3.0388 2.1496 2.4091 3.0103 5.3646 

Iris virginica 181.8097 1.8426 0 3.6764 3.1024 1.9491 2.2636 2.8510 4.7003 
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5.6.6 Belief Rule-base Inference 

 

As we have acquired a number of pieces of evidence from the input variables of the 

training set, and we have analysed the interdependence between two pieces of 

evidence, we are now in a position to construct a belief rule base for inferring the 

likelihood of a flower being Iris setosa, Iris versicolor, or Iris virginica on the basis 

of their sepal length, sepal width, petal length, and petal width. According to the 

belief rule described in (5.8) of Section 5.3, the antecedent of the belief rule, which 

is expressed in the form of ‘𝑖𝑓𝐴1
𝑘 ∧ 𝐴2

𝑘 ∧ …∧ 𝐴𝑇𝑘
𝑘 ’ in (5.8), should be expressed in this 

case study of the Iris data set as ‘if the value of each feature of a flower is just 

equal to a referential value of the observed values of this feature’. The 

corresponding consequent of the belief rule, which is expressed in the form of 

‘𝑡ℎ𝑒𝑛 {(𝐷1, 𝛽1𝑘), (𝐷2, 𝛽2𝑘), … , (𝐷𝑁 , 𝛽𝑁𝑘)}’ in (5.8), should then be expressed in this case 

study of the Iris data set as ‘the probability of the flower being each of the species: 

Iris setosa, Iris versicolor, or Iris virginica is equal to a value. 

 

To obtain the probability of a flower being each of the species: Iris setosa, Iris 

versicolor, and Iris virginica in the consequent of a belief rule of this case study, 

we need to combine four pieces of evidence from the different features using the 

MAKER rule as described in Section 3.5.3. As stated previously, the optimized 

solution used in this case study, including optimized referential values and 

optimized weights, is obtained from the optimization of the MAKER-based classifier 

for the training set, which has one optimized referential value for each of the 

features. We use this optimized solution to construct a MAKER-based classifier on 

the training set for the purpose of illustration. Thus, there are a total of three 

referential values, namely the boundary referential values as stated previously and 



 

209 
 

an optimized referential value, for each of the four input variables of the training 

set in this case study. 

 

Further, each piece of evidence contains a referential value from different input 

variables of the training set. There are three referential values in each of the four 

input variables of the training set for this case study. Hence, there are altogether 

81 combinations of four pieces of evidence that can be used to construct the belief 

rule base in this case study of the Iris data set. In other words, there are a total of 

81 combinations of four pieces of evidence, i.e., 81 belief rules for the belief rule 

base in this case study. On the basis of the previously mentioned optimized weights 

obtained from the optimization, we use Equation (3.14) to combine four pieces of 

evidence from different input variables of the training set to generate the 

probabilities of the species (Iris setosa, Iris versicolor, and Iris virginica) for each 

of the 81 combinations of four pieces of evidence. For instance, through calculation, 

we can obtain a probability: 0.0066 of Iris setosa, and a probability: 0.0015 of Iris 

versicolor, and a probability: 0.9919 of Iris virginica for the following combination 

of pieces of evidence: {7.7, 4.4, 6.7, 2.5}. 

 

Each observation of the training set will activate 16 belief rules out of the total 81 

belief rules of the belief rule base in this case study. This is because each observed 

value of each observation of the training set will activate two adjacent referential 

values, each of which belongs to a piece of evidence, of observed values of an input 

variable of the training set between which this observed value is located, and there 

are four input variables: sepal length, sepal width, petal length, and petal width in 

the training set. Hence, each observation of the training set activates 24 = 16 

combinations of four pieces of evidence, i.e., belief rules of the belief rule base in 

this case study. 
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Here we take an observation: {5, 2.3, 3.3, 1} from the training set as an example 

to demonstrate how an observation activates 16 belief rules from this case study’s 

belief rule base for inference. Based on Table 5.1, the referential values activated 

by this observation in terms of the input variables, are displayed in Table 5.8. Then, 

these activated referential values are used to generate the combinations of 

referential values for the 16 belief rules from this case study’s belief rule base that 

are activated by the same observation. These combinations of activated referential 

values are presented in Table 5.9. According to the 16 belief rules activated by each 

observation of the training set, we can find the corresponding probability of each 

class of the output variable of the training set that follows from each of these 16 

belief rules. This can be used to predict the probability of each class of each 

observation. 

 

5.6.7 Maximum Likelihood Prediction and Machine Learning 

 

As already mentioned, each observation of the training set will activate 16 belief 

rules from this case study’s belief rule base that can be used to predict the 

probabilities of the classes of this observation. On the basis of these 16 belief rules, 

we need to calculate the similarity degree between each observed value of this 

observation and each of the referential values between which this observed value 

is located, using Equation (3.16) from Section 3.5.4. The similarity degree indicates 

how closely each observed value matches each of those referential values. For 

Table 5.8 The referential values of the input variables of the training set 

of the first fold of the Iris data set activated by the observation: {5, 2.3, 

3.3, 1} 

Input variable sepal length sepal width petal length petal width 

Activated 

referential 

values 

4.9991, 7.7 2, 2.8969 1, 4.4044 0.1, 1.3389 
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example, 5 is an observed value of the observation: {5, 2.3, 3.3, 1}, and according 

to Table 5.11, the referential values of the input variable: sepal length activated by 

the observed value: 5 are 4.9991 and 7.7. On the basis of Equation (3.16), the 

similarity degree between 5 and 4.9991 is calculated as 
7.7−5

7.7−4.9991
≈ 0.9997 and that 

between 5 and 7.7 is calculated as 1 −
7.7−5

7.7−4.9991
≈ 0.0003, which indicates that the 

observed value: 5 matches the referential value: 4.9991 to a high degree and 

referential value: 7.7 to a low degree. In this way, we can calculate the similarity 

degree between each observed value of the observation: {5, 2.3, 3.3, 1} and each 

of the referential values activated by this observed value. With these similarity 

degrees, we can use Equation (3.17) to calculate the joint similarity degree 

between the observation: {5, 2.3, 3.3, 1} and the combination of referential values 

of each belief rule activated by this observation. The joint similarity degree 

indicates the degree to which we should invoke the belief rules activated by an 

observation to predict the probability of each class of the output variable for this 

observation.  

 

Having generated this joint similarity degree, we are now in a position to combine 

these belief rules activated by the observation: {5, 2.3, 3.3, 1} to predict the 

probability of each class of the output variable, i.e., the species for this observation. 

In order to combine these belief rules, we need their weights. Using Equation (3.19), 

we can generate their weights from the probability mass 𝑚𝜃,𝑒(𝐿) (𝜃 ⊆ 𝛩,  𝜃 ≠ ∅) and 

the probability 𝑝𝜃,𝑒(𝐿) (𝜃 ⊆ 𝛩,  𝜃 ≠ ∅) or just the probability mass 𝑚𝑃(𝛩),𝑒(𝐿), which are 

shown in both Equations (3.18) and (3.19). 

 

As we use the weights of four pieces of evidence to combine four pieces of evidence 

from different input variables of the training set to generate the probability mass 

𝑚𝜃,𝑒(𝐿) (𝜃 ⊆ 𝛩,  𝜃 ≠ ∅), the probability 𝑝𝜃,𝑒(𝐿) (𝜃 ⊆ 𝛩,  𝜃 ≠ ∅), and the probability mass 

𝑚𝑃(𝛩),𝑒(𝐿) for each belief rule in this case study’s belief rule base, and we use the 



 

212 
 

relevant probability masses and relevant probability to generate the weight for each 

belief rule activated by the observation: {5, 2.3, 3.3, 1}, we can conclude that the 

weights of the four pieces of evidence have an effect on the weights of each belief 

rule activated by this observation. 

 

On the basis of the joint similarity degrees between the observation and activated 

belief rules, and the weight of each activated belief rule, we can generate the 

updated weight of each activated belief rule for the observation, which considers 

the degree to which we should invoke these activated belief rules in predicting the 

probability of each class of the observation. As the weights of the four pieces of 

evidence from the different input variables have an effect on the weight of each 

belief rule activated by this observation, and since we use the joint similarity 

degrees between the observation and the activated belief rules, and the weight for 

each activated belief rule to generate the updated weight of each activated belief 

rule for the observation, we can draw the conclusion that the weights of the four 

pieces of evidence from the different input variables have an impact on the updated 

weight of each activated belief rule for the observation. With the belief rules 

activated by the observation: {5, 2.3, 3.3, 1} and the updated weight for each of 

these activated belief rules, we can combine these belief rules activated by the 

observation to predict the probability of each class of the output variable of the 

observation, using the conjunctive MAKER rule which is shown in Equations (3.14) 

and (3.15).  
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On the basis of the predictions for all the observations of the training set, we can 

generate the MSE for the set of parameters including the referential values and the 

weights used to establish a classifier for the training set. This set of parameters is 

referred to as an individual of the population in the adapted genetic algorithm 

described in Section 3.6. The MSE is calculated for all the individuals of the 

population. The individuals of the population and their MSEs are used in the adapted 

genetic algorithm, which helps to achieve the target of optimizing a MAKER-based 

classifier for the Iris data set, which in turn maximizes the predicted outputs, i.e., 

predicted probabilities, of the classifier for the true observed outputs of the training 

set to minimize the MSE for the training set. 

 

 

Table 5.9 The combinations of referential values of the input variables of 

the training set of the first fold of the Iris data set activated by the 

observation: {5, 2.3, 3.3, 1} 

combination of activated 

referential values/input variable 
sepal length sepal width petal length petal width 

combination 1 4.9991 2 1 0.1 

combination 2 4.9991 2 1 1.3389 

combination 3 4.9991 2 4.4044 0.1 

combination 4 4.9991 2 4.4044 1.3389 

combination 5 4.9991 2.8969 1 0.1 

combination 6 4.9991 2.8969 1 1.3389 

combination 7 4.9991 2.8969 4.4044 0.1 

combination 8 4.9991 2.8969 4.4044 1.3389 

combination 9 7.7 2 1 0.1 

combination 10 7.7 2 1 1.3389 

combination 11 7.7 2 4.4044 0.1 

combination 12 7.7 2 4.4044 1.3389 

combination 13 7.7 2.8969 1 0.1 

combination 14 7.7 2.8969 1 1.3389 

combination 15 7.7 2.8969 4.4044 0.1 

combination 16 7.7 2.8969 4.4044 1.3389 
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As stated previously, an individual of the population in the adapted genetic 

algorithm is composed of the referential values of the four input variables and the 

weights of the evidential elements of all pieces of evidence, each of which contains 

a referential value, of the four input variables. Among the weights of the individuals 

of population in the adapted genetic algorithm, the weights of evidential elements 

of the four pieces of evidence from the different input variables have an impact on 

the updated weight of each activated belief rule for an observation used to predict 

the probabilities of the classes of this observation. Thus, we can maximize the 

predicted outputs, i.e., predicted probabilities, of the classifier for the true observed 

outputs of the training set to minimize the MSE for the training set by optimizing 

the referential values of the four input variables and the weights of the evidential 

elements. The optimal individual (solution) of the population acquired from the 

optimization based on the adapted genetic algorithm of a MAKER-based classifier 

for the Iris data set can make the predicted outputs, i.e., predicted probabilities, of 

the classifier as close to the true observed outputs of the training set as possible. 

 

In this case study of the Iris data set, as mentioned previously, the optimized 

individual (solution) of the population used in this case study of the Iris data set, 

is obtained from the optimization of the MAKER-based classifier, which has one 

optimized referential value for each of the input variables of the training set. We 

use this optimized individual (solution) to construct a MAKER-based classifier for 

the purpose of illustration. Based on the referential values and weights acquired 

from this optimized individual (solution), we can use the MAKER-based classifier 

established by the process described earlier in this section to make a prediction 

about the observation: {5, 2.3, 3.3, 1}. The predicted probability of the class of 

Iris setosa for this observation is 0.1079, and that of the class of Iris versicolor for 

this observation is 0.8288, and that of the class of Iris virginica is 0.0632. In other 

words, if the sepal length, sepal width, petal length, and petal width of a flower are 
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5, 2.3, 3.3, and 1 respectively, the probability of this flower being Iris setosa is 

0.1079, and that of this flower being Iris versicolor is 0.8288, and that of this flower 

being Iris virginica is 0.0632. From the process used to establish the MAKER-based 

classifier for this case study of the Iris data set, it is evident that the rule-based 

inferential modelling and prediction approach used to do this is an interpretable 

approach integrating statistical analysis, belief rule-base inference, and maximum 

likelihood prediction and machine learning. 

 

5.7 Performance Comparative Analysis for Classical Data Sets 

 

In this section, we will carry out a performance comparative analysis on the three 

classical datasets: the Bananas data set, the Haberman’s survival dataset, and the 

Iris data set. On one side of the comparison is the MAKER-based classifier 

constructed using a rule-based, inferential modelling and prediction approach; on 

the other side are the traditional classifiers including classification trees, 

discriminant analysis, logistic regression, support vector machines (SVM), k-

nearest neighbors (KNN), ensembles, and Naïve Bayes. 

 

As mentioned in Section 3.3, before being downloaded from the KEEL-dataset 

repository, each of the three classical data sets had already been divided into five 

folds using optimally balanced stratified cross-validation (Alcalá-Fdez, et al., 2011). 

This ensured all the separate folds have a similar class distribution, equal to that 

of the entire dataset (Aggarwal, 2015). As usual in cross validation, the data in 

each successive fold represents test data for the training data in the other folds. 
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For each classifier variant listed in the central column of Table 5.10, a model was 

constructed using each training set of the three classical datasets: Bananas, 

Haberman’s and Iris. We selected the classifier variant with the highest average 

accuracy against the training sets as the chosen representative of this classifier 

type. Table 5.10 lists the alternative variants and the selected variant of each 

alternative classifier for each classical dataset in this case study. 

 

In addition, according to the stopping criterion introduced in Section 4.5, all the 

training for the MAKER-based classifiers was stopped when there were five trained 

referential values for each of the input variables of the training sets. For the Banana 

data set, we selected the MAKER-based classifiers with five trained referential 

Classifier Variants of Classifier Selected Variant of 

Classifier 

decision trees simple tree, medium tree, and 

complex tree 

complex tree 

discriminant 

analysis 

linear discriminant and quadratic 

discriminant 

quadratic discriminant 

logistic 

regression 

logistic regression logistic regression 

support vector 

machine (SVM) 

linear SVM, quadratic SVM, cubic 

SVM, fine Gaussian SVM, medium 

Gaussian SVM, and coarse 

Gaussian SVM 

fine Gaussian SVM 

k-nearest 

neighbour 

(KNN) 

fine KNN, medium KNN, coarse 

KNN, cosine KNN, cubic KNN, and 

weighted KNN 

fine KNN and weighted KNN 

ensembles boosted trees, bagged trees, 

subspace discriminant, subspace 

KNN, and RUSBoosted trees 

bagged trees and subspace 

KNN 

Naïve Bayes Naïve Bayes Naïve Bayes 

 

Table 5.10 The alternative variants of the classifiers except the MAKER-based 

classifiers for the classical datasets 
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values for each input variable. For the Haberman’s survival data set and the Iris 

data set, we selected the MAKER-based classifiers with one trained referential value 

for each input variable. Each of these selected MAKER-based classifiers are 

compared with other alternative classifiers for the corresponding classical dataset, 

as each of these MAKER-based classifiers with the same number of trained 

referential values for each input variable have the highest average diagnostic 

accuracy among all the trained MAKER-based classifiers with different numbers 

trained referential values for each input variable for the corresponding classical 

data set. 

 

To compare the MAKER-based classifiers with other alternative classifiers, we need 

measures of performance. These can include sensitivity, specificity, diagnostic 

accuracy, and the area under the receiver operating characteristic curve (AUC). 

According to Ling, Huang and Zhang (2003), accuracy is a widely-used measure 

for comparing the predictive capability of different classifiers. Most classifiers 

generate probability estimations of the classification, but they are completely 

ignored in the accuracy (Ling, Huang and Zhang, 2003). Ling, Huang and Zhang 

(2003) present arguments emphasising that AUC provides a better measure than 

the accuracy, with higher numbers up to a maximum of 1.0 being best. 

 

In the following part of this section, we will present the Receiver Operating 

Characteristics (ROC) curve of the MAKER-based classifier in comparison with the 

alternative classifier with the optimal AUC. Figure 5.9 shows the comparisons for 

the Banana dataset; Figure 5.10 shows the equivalent results for Haberman’s 

survival dataset, and Figure 5.11 shows the Iris dataset. We will display the AUC 

of each classifier for each test set of the Banana data set in Table 5.11, for that of 

the Haberman’s survival data set in Table 5.12, and for that of the Iris data set in 
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Table 5.13. The average AUCs of classifiers over the five test sets will be calculated 

for each classical data set and we will present them in the above-mentioned tables. 

 

From Table 5.11, we can observe that the average AUC of the MAKER-based 

classifiers over the five test sets is 0.95968, highlighted in bold, the second largest 

AUC among all the AUCs of the ten classifiers for the Banana data set. According 

to Smithson and Merkle (2014), a general rule of thumb for using AUC to judge the 

classification capability of a classifier is that an AUC between 0.7 and 0.8 is 

considered acceptable, between 0.8 and 0.9 indicates excellent discrimination, and 

larger than 0.9 implies outstanding discrimination. As the average AUC of the 

MAKER-based classifiers is 0.95968, the MAKER-based classifiers for the Banana 

dataset can be considered outstanding. 

 

The average AUC of the MAKER-based classifiers over the five test sets is surpassed 

only by that of the weighted KNN over five test sets. In addition, both the logistic 

Classifiers/Measures 
AUC 

Test1 Test2 Test3 Test4 Test5 Avg. 

MAKER 0.95158 0.96072 0.96254 0.9606 0.96296 0.95968 

Complex tree 0.93494 0.93956 0.93735 0.94741 0.94917 0.941686 

Quadratic discriminant 0.64853 0.6471 0.65017 0.6516 0.65386 0.650252 

Logistic regression 0.54892 0.54909 0.54775 0.5495 0.55027 0.549106 

Fine Gaussian SVM 0.94302 0.95581 0.96107 0.95938 0.96611 0.957078 

Fine KNN 0.87788 0.89556 0.89293 0.86254 0.86118 0.878018 

Weighted KNN 0.95471 0.96592 0.96757 0.959 0.96363 0.962166 

Ensemble: bagged 

trees 
0.94867 0.96139 0.96088 0.9591 0.96396 0.9588 

Ensemble: subspace 

KNN 
0.63064 0.60058 0.62289 0.60923 0.62424 0.617516 

Naïve Bayes 0.66185 0.66148 0.66561 0.6677 0.67017 0.665362 

 

Table 5.11 The area under the receiver operating characteristic (ROC) curve 

(AUC) of each of the classifiers for the Banana dataset 
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regression classifiers and the naïve Bayes classifiers are capable of meaningful 

interpretation, but their average AUCs over the five test sets are much lower than 

the MAKER-based classifiers. Furthermore, the average AUC of the complex tree 

classifiers over the five test sets is slightly lower than that of the MAKER-based 

classifiers. This suggests that the simple interpretable classifiers (e.g. logistic 

regression and Naïve Bayes) cannot work as well in the Banana data set as the 

complex interpretable classifiers, e.g. complex tree, whose performance is similar 

to that of the MAKER-based classifiers. This is because the Banana data set is 

complex (as shown graphically in Figure 5.8). 

 

 

 
Figure 5.8 The scatter plot of the Banana data set 
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MAKER for the 1st test set 

 

MAKER for the 2nd test set 

 

MAKER for the 3rd test set 

 

MAKER for the 4th test set 

 

MAKER for the 5th test set 

 

Weighted KNN for the 1st test set 

 

Weighted KNN for the 2nd test set 

 

Weighted KNN for the 3rd test set 

 

Fine Gaussian SVM for the 4th test set 

 

Fine Gaussian SVM for the 5th test set 

Figure 5.9 The ROC curve of the Maker-based classifier and that of the 

classifier with the optimal AUC among all the alternative classifiers for 

the test sets of the Banana dataset 
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MAKER for the 1st test set 

 
 

MAKER for the 2nd test set 

 

 

MAKER for the 3rd test set 

 
 

MAKER for the 4th test set 

 
 

MAKER for the 5th test set 

 

 

Ensemble: bagged trees for the 1st 

test set 
 

Quadratic discriminant for the 2nd 

test set 

 

Logistic regression for the 3rd test set 

 
 

Fine Gaussian SVM for the 4th test set 

 
 

Weighted KNN for the 5th test set 

 

Figure 5.10 The ROC curve of the MAKER-based classifier and that of the 

classifier with the optimal AUC among all the alternative classifiers for the 

test sets of the Haberman’s survival dataset 
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From Table 5.12, we can find that the average AUC of the MAKER-based classifiers 

for the Haberman’s survival dataset is 0.690566, highlighted in bold, the second 

largest AUC among all the AUCs of the ten classifiers. As the Haberman’s survival 

dataset is an imbalanced dataset of which the ratio of the number of positive 

observations to that of negative observations is about 1:3, the performance of the 

MAKER-based classifiers is generally acceptable. In addition to this, the MAKER-

based classifier performs better in terms of the average AUC over the five test sets 

than other interpretable classifiers, the complex tree and logistic regression 

classifiers. From what has been analysed above, we can conclude that the MAKER-

based classifier is a good classifier for the Haberman’s survival dataset. 

 

As mentioned in Section 3.3, the output variable of the Iris dataset is composed of 

three classes, the three species of Iris. Hence, the logistic regression classifier is 

not applicable to the Iris dataset since it can only split data into one of two classes. 

In the Iris dataset, we can take the class Iris Versicolor as the positive class and 

take both Iris Setosa and Iris Virginica as the combined negative class to plot the 

Classifiers/Measures 
AUC 

Test1 Test2 Test3 Test4 Test5 Avg. 

MAKER 0.61046 0.77778 0.74028 0.65139 0.67292 0.690566 

Complex tree 0.53464 0.62361 0.59931 0.50069 0.56597 0.564844 

Quadratic discriminant 0.71634 0.73333 0.62222 0.6875 0.80069 0.712016 

Logistic regression 0.67843 0.71806 0.64583 0.6375 0.73542 0.683048 

Fine Gaussian SVM 0.71503 0.65694 0.56528 0.71528 0.71736 0.673978 

Fine KNN 0.59869 0.57639 0.56528 0.62986 0.56528 0.5871 

Weighted KNN 0.69673 0.64236 0.62778 0.69306 0.77569 0.687124 

Ensemble: bagged 

trees 
0.73464 0.67014 0.62361 0.66806 0.68819 0.676928 

Ensemble: subspace 

KNN 
0.55948 0.66806 0.63611 0.625 0.58333 0.614396 

Naïve Bayes 0.69542 0.70139 0.62222 0.58333 0.69097 0.658666 

 

Table 5.12 The area under the receiver operating characteristic (ROC) curve 

(AUC) of each of the classifiers for the Haberman’s survival dataset 
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figure of ROC curve and calculate the AUC for each classifier. From Table 5.13, we 

can see that the average AUC of the MAKER-based classifiers over the five test sets 

of the Iris data set is 0.9955, highlighted in bold, which is very close to 1, i.e., the 

AUC of the perfect classifier and is the second largest AUC among all the AUCs of 

the ten classifiers for the Iris data set. The average AUCs of other alternative 

classifiers are also very close to 1. Thus, it can be concluded that the MAKER-based 

classifier is an outstanding classifier for the Iris data set. Overall, taking all the 

above-mentioned results of AUC into consideration, we can conclude that the 

MAKER-based classifier is an outstanding classifier for the classical data sets: the 

Banana data set, the Haberman’s survival data set, and the Iris data set, and it 

generally performs better than other interpretable classifiers, e.g. complex tree, 

logistic regression, and Naïve Bayes. 

 

 

 

 

 

Classifiers/Measures 
AUC 

Test1 Test2 Test3 Test4 Test5 Avg. 

MAKER 0.99 1 0.9925 1 0.995 0.9955 

Complex tree 0.9 0.975 0.9725 0.975 0.9175 0.948 

Quadratic discriminant 1 1 1 1 1 1 

Fine Gaussian SVM 0.995 0.99 0.995 1 0.95 0.986 

Fine KNN 0.95 0.975 0.95 0.95 0.875 0.94 

Weighted KNN 1 0.995 1 1 0.985 0.996 

Ensemble: bagged 

trees 
0.995 1 0.995 1 0.965 0.991 

Ensemble: subspace 

KNN 
1 1 0.9925 0.9875 0.9725 0.9905 

Naïve Bayes 0.995 0.995 0.995 0.99 0.99 0.993 

 

Table 5.13 The area under the receiver operating characteristic (ROC) curve 

(AUC) of each of the classifiers for the Iris dataset 
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MAKER for the 1st test set 

 

MAKER for the 2nd test set 

 

MAKER for the 3rd test set 

 

MAKER for the 4th test set 

 

MAKER for the 5th test set 

 

Quadratic discriminant for the 1st test 

set 

 

Quadratic discriminant for the 2nd test 

set 

 

Quadratic discriminant for the 3rd test 

set 

 

Quadratic discriminant for the 4th test 

set 

 

Quadratic discriminant for the 5th test 

set 

Figure 5.11 The ROC curve of the MAKER-based classifier and that of the 

classifier with the optimal AUC among all the alternative classifiers for the 

test sets of the Iris dataset 
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5.8 Summary 

 

This chapter presents the rule-based inferential modelling and prediction approach 

from the perspectives of: fundamental knowledge, theoretical comparative analysis, 

case study, and performance comparative analysis. It begins by describing the 

fundamental knowledge of this approach from the perspectives of: statistical 

analysis, belief rule-base inference, and maximum likelihood prediction and 

machine learning. Next, the modelling kernel and the inference mechanisms of the 

rule-based inferential modelling and prediction approach are presented, 

emphasising the unique interpretability of this approach. Subsequently, the 

importance of interpretability is highlighted, and MAKER-based classifiers 

constructed by this approach are compared theoretically to other alternative 

classifiers. MAKER-based classifiers have the unique interpretability that the 

complex classifiers (e.g. ensembles, artificial neural networks, and random forests) 

do not have. In addition, MAKER-based classifiers are generally better than other 

interpretable classifiers (e.g. decision tree, logistic regression, and naïve Bayes). 

Next, a case study is used to demonstrate how to build a MAKER-based classifier 

with the rule-based inferential modelling and prediction approach, from the 

perspectives of: evidence acquisition from data, analysis of evidence independence, 

belief rule-base inference, and maximum likelihood prediction and machine 

learning. Finally, a performance comparative analysis is conducted between the 

MAKER-based classifier and other alternative classifiers for classical data sets, 

including: the Banana data set, the Haberman’s survival data set, and the Iris data 

set. The performance comparative analysis shows that the MAKER-based classifier 

is an outstanding classifier for the classical data sets and it generally performs 

better than other interpretable classifiers (e.g. complex tree, logistic regression, 

and Naïve Bayes). 
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Chapter 6 Application to Sepsis Diagnosis 

 

6.1 Introduction 

 

This chapter reports on the application of the rule-based inferential modelling and 

prediction approach based on the MAKER framework to sepsis diagnosis. The rest 

of this chapter is organized as follows. Section 6.2 presents the data preparation 

for this application of the rule-based inferential and modelling approach, which 

mainly comprises data cleaning, data transformation, and data partitioning. Section 

6.3 describes how the classifier based on the MAKER framework is built on the basis 

of the rule-based inferential modelling and prediction approach. In Section 6.4, a 

performance comparative analysis is performed between the classification results 

of the MAKER-based classifier and those of alternative classifiers. Section 6.5 

provides a summary of Chapter 6. 

 

6.2 Data Preparation 

 

Data preparation comprises the techniques used to transform raw data into quality 

usable data, including data integration, data transformation, data cleaning, data 

reduction and others (Zhang, Zhang and Yang, 2003). Data in the real world may 

be incomplete, noisy, and inconsistent, which could disguise useful patterns (Zhang, 

Zhang and Yang, 2003). Hence, it is necessary to prepare the raw data before 

beginning modelling and prediction.  

 

For this research, the data preparation mainly consisted of data cleaning, data 

transformation, and data partitioning. Data cleaning is a process that is used to 

identify imprecise, incomplete, and unreasonable data and then to improve the 

quality of the data by deleting any errors and omissions (Chapman, 2005). In the 
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original sepsis data set, values of ‘99999’ are considered as missing values and any 

observations with these values were completely deleted prior to modelling and 

prediction.  

 

Data transformation, which is a key concept of data preparation, consists of 

transforming or merging data into a form in which learning can be applied (Dua 

and Chowriappa, 2013). Data generalization is one of the strategies of data 

transformation and is applied when abstraction of data is needed (Dua and 

Chowriappa, 2013).  

 

As is indicated in Section 3.3, the output variable of the original sepsis data set, 

i.e., the patient groups, include five classes i.e., sepsis-1, sepsis-2, sepsis-3, 

unknown, and non-sepsis. Among these classes, sepsis-1, sepsis-2, and sepsis-3 

indicate that the patient has sepsis, while non-sepsis indicates that the patient does 

not. Unknown implies that the patient may or may not have sepsis. 

 

The sepsis data set used in this research does not include the class of ‘unknown’, 

and in the future study, on the basis of the data set containing the class of 

‘unknown’, we will use the approach of rule-based inferential modelling and 

prediction to predict how likely the patients with the records of ‘unknown’ will get 

sepsis. In this future study, the classes of ‘unknown’, ‘sepsis’, and ‘non-sepsis’ are 

treated equally. We will follow the similar research steps to acquire evidence from 

the data set containing the class of ‘unknown’, analyse interdependence between 

pairs of evidence, combine multiple pieces of evidence, perform maximum 

likelihood prediction, and etc. The difference is in the step of evidence combination, 

and we will use a slightly different way to calculate the joint support of two pieces 

of evidence pointing to different classes in Equation (3.14) or (3.15). We will use 

the training data set containing the class of ‘unknown’ to train a MAKER-based 

model. This model will be used to predict the probabilities of the patients with 

records of ‘unknown’ in the test data set having sepsis or not. 
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Due to the fact that there are only a few observations in sepsis-1 and sepsis-2, and 

sepsis-1, sepsis-2, and sepsis-3 all indicate that patients have sepsis, we can just 

consolidate sepsis-1, sepsis-2, and sepsis-3 into one class, i.e., sepsis, which 

indicates that the patient has sepsis, so that there are plenty of observations in this 

class. We can then divide the sepsis class into a number of folds for cross-validation 

of models of sepsis diagnosis.  

 

In data partitioning, the data are divided into training sets and test sets (Olson and 

Delen, 2008). Data partitioning can be as complicated as partitioning data into k 

disjoint subsets (a.k.a. k-fold cross-validation) of which each subset has one or 

more variables used as strata to maintain the proportional representations of 

different subgroups for stratified random sampling. Each subset is used as the test 

set and the remaining subsets are used as training sets (Olson and Delen, 2008). 

In this method of data partitioning, we can train and test classifiers repeatedly on 

different subsets of data to make near-optimal use of the available data (Molinaro, 

Simon and Pfeiffer, 2005).  

 

In this research, we employed a method based on stratified random sampling to 

partition the sepsis data set into four folds for cross-validation of models of sepsis 

diagnosis. Specifically, we partitioned the observations in each class of the sepsis 

data set into a number of bins according to breakpoints in each input variable of 

the sepsis data set. The breakpoints for the partitions were optimized so as to make 

each bin with more than three observations contain as many observations as 

possible. Then we performed random sampling in each bin with more than three 

observations to obtain four sets of observations. In this way, the sepsis data set 

was partitioned into four folds, all having similar class distributions, and with 

observations belonging to the same class having similar probability density 

functions. 
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6.3 New Models for Classification of the Sepsis Data Sets 

 

In order to demonstrate how the rule-based inferential modelling and prediction 

approach can be used to build classifiers based on the system of the MAKER 

framework for the classification of sepsis data sets, a numerical study using the 

sepsis data set is presented in the remainder of this section. As previously stated, 

there are five input variables, CRP, IL6, IL10, PCT, and WCC, in the sepsis data set. 

The output variable, diagnosis, contains two classes, sepsis and non-sepsis. In 

addition, the sepsis data set has been partitioned into four folds, all having similar 

class distributions and with observations belonging to the same class having similar 

probability density functions. Hence, we can take the training set of the first fold of 

the sepsis data set as an example to illustrate how we use the rule-based inferential 

modelling and prediction approach to establish the classifiers based on the system 

of the MAKER framework to classify the data sets generated from the sepsis data 

set.  

 

Figure 6.1 Parallel Coordinates Plot of Distribution of Observations of Different 

Classes across Five Input Variables of the Training Set of the First Fold of the 

Sepsis Data Set and the Trained Referential Values of the Input Variables of the 

Data Set 
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Figure 6.1 exhibits the parallel coordinates plot of the general distribution of 

observations of different classes across five input variables of the training set of 

the first fold of the sepsis data set and the locations of the trained referential values 

of each input variable of the data set. The red solid lines indicate the sepsis 

observations and the blue solid lines the non-sepsis observations. The five vertical 

axes in Figure 6.1 from left to right represent CRP, IL6, IL10, PCT, and WCC, 

respectively, which are all the input variables of the data set. The red nodes with 

yellow edges on the axes of Figure 6.1 denote the trained referential values of the 

input variables. It can be found from Figure 6.1 that the distributions of the 

observations of different classes across the five input variables have different 

patterns. For CRP and WCC, we can see that the observations of both the sepsis 

and the non-sepsis class are generally distributed in the same range. For IL6, IL10, 

and PCT, the majority of the observations of the non-sepsis class are concentrated 

close to the respective minimum values and the observations of the sepsis class 

are generally distributed over a larger range of values than those of the non-sepsis 

class. 

 

6.3.1 The Optimised Referential Values of the Model 

 

As introduced in Chapter 3, we can use the adapted genetic algorithm to optimize 

the parameters, i.e., the referential values and weights of the models based on the 

system of the MAKER framework for function approximation or classification. In the 

adapted genetic algorithm for the optimization of the MAKER-based models of 

sepsis diagnosis, the initial population of individuals (chromosomes) includes 10 

subpopulations, each of which comprises 20 individuals (chromosomes). Each 

individual of a population contains both the referential values of observed values of 

input variables of a training set generated from the sepsis data set, and the weight
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Figure 6.2 

The Distribution of Trained Referential Values Obtained from the 

Optimization of MAKER-based Models on Sepsis Diagnosis Which All 

Have 1 Trained Referential Value in Each of the Input Variables of A 

Training Set Generated from the Sepsis Data Set 
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(reliabilities) of these referential values under different classes of the output 

variable of the data set. After the initial population has been generated, the 

objective value, i.e., mean squared error (MSE) is calculated for each individual 

(solution) of a population. Then, on the basis of a population of the individuals as 

stated above, a group of genetic algorithm operations, e.g., selection, 

recombination, mutation, reinsertion, and migration, is performed for 200 

iterations to obtain an optimized solution for referential values and weights.  

 

The target of the optimization of a MAKER-based model of sepsis diagnosis is to 

maximize the predicted outputs, i.e., predicted degrees of belief, of the model for 

the true observed outputs of a training set generated from the sepsis data set, so 

as to minimize the MSE, which is used to measure the difference between the 

observed outputs and the predicted outputs. Thus, it can reasonably be inferred 

that, through optimization, trained referential values of each input variable will 

generally be located around critical observed values that divide the observed values 

of this input variable into several parts, in each of which the observations of a given 

class are in the majority.  

 

This is supported by Figure 6.2, which presents the distribution of trained 

referential values obtained from the optimization of the MAKER-based models of 

sepsis diagnosis, all of which have one trained referential value for each input 

variable of a training set generated from the sepsis data set. It is worth noting that 

the ‘trained referential values’ refer to the observed values of an input variable of 

a data set, between the minimum and maximum of those observed values. From 

Figure 6.2, we can see clearly that each of the trained referential values obtained 

from optimization for the input variables IL6, IL10, and PCT is generally located 

around the respective critical value that divides the observed values of the 

corresponding input variable into two parts, where in one part sepsis observations 

are in the majority and in the other part non-sepsis observations are in the majority.  
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As stated at the beginning of Section 6.3, the training set of the first fold of the 

sepsis data set is taken as an example to illustrate how the MAKER-based classifiers 

are established for the sepsis data set. Hence, we just use the optimized solution 

obtained from the optimization of the MAKER-based classifier (model) for the 

training set of the first fold of the sepsis data set to establish a MAKER-based 

classifier on the training set for the purpose of illustration. The optimized solution 

includes optimized referential values and optimized weights, and the optimization 

generating this optimized solution has one optimized referential value for each of 

the input variables of the training set. The ‘optimized referential values’ have the 

same meaning with the ‘trained referential values’ stated in Page 230.  

 

In the following part of this section, we will show how to apply the rule-based 

inferential modelling and prediction approach to build the MAKER-based classifier 

for the training set of the first fold of the sepsis data set (henceforth the ‘training 

set’) from four aspects: evidence acquisition from data, analysis of evidence 

independence, belief rule-base inference, and maximum likelihood prediction and 

machine learning. The complete above-mentioned training set is provided in 

Appendix A. 
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6.3.2 Evidence Acquisition from Data 

 

As introduced in Section 3.3, the first step in establishing a MAKER-based classifier 

is to acquire evidence from data. In order to acquire evidence from a data set, we 

need to decide on referential values for each of the input variables of the data set. 

Referential values, as adjustable parameters, can initially be determined by 

expertise, or by a random rule without prior knowledge, and can subsequently be 

trained using an input-output data set under a certain optimization objective (Xu 

et al., 2017).  

 

Based on what has been mentioned in Page 231 of Section 6.3.1, we just use the 

optimized referential values obtained from the optimization of the MAKER-based 

classifier for the ‘training set’ of the sepsis data set, to acquire evidence from that 

training set. 

 

Table 6.1 The referential values obtained from the optimization of the 

MAKER-based classifier for the training set of the first fold of the sepsis 

data set 

Input 

variables 
CRP IL6 IL10 PCT WCC 

Boundary 

referential 

values 

(minima) 

2.9000 0.8200 0.1400 0.0500 0 

Optimized 

referential 

values 

190.2799 101.9637 97.6625 9.8923 5.7066 

Boundary 

referential 

values 

(maxima) 

690.0000 20971.0100 4563.8700 200.0000 66.0000 
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Table 6.1 displays the referential values, including the boundary referential values 

and the optimized referential values, used to acquire evidence from the data. The 

boundary referential values are the minima and maxima of the observed values of 

the input variables of the data set. On the basis of the optimized referential values 

displayed in Table 6.1 and the boundary referential values as stated above, we can 

use Equation (3.4) from Section 3.5.1 to transform each observed value of each 

input variable of the training set into the belief distributions of the two adjacent 

referential values between which this observed value is located. After all the 

observed values of the input variables are transformed into belief distributions of 

referential values, we will use Equation (3.5) to aggregate similarity degrees of 

belief distributions according to the referential values under different classes of the 

output variable of the training set. In this way, we will generate the frequencies of 

the referential values under different classes of the output variable, displayed in 

the form of Table 3.3.  

 

Then, using Equation (3.6), we calculate the likelihood of a referential value of an 

input variable being true given that a class of the output variable of the training set 

is true, for all the referential values of input variables under different classes of 

output variable, displayed in the form of Table 3.4. With these likelihoods, the 

Table 6.2 The probabilities with which the referential values of the observed 

values of the input variable of CRP point to different classes of the output 

variable of the training set of the first fold of the sepsis data set 

class/referential 

value 
2.9000 190.2799 690.0000 

sepsis 0.2274 0.5657 0.6488 

non-sepsis 0.7726 0.4343 0.3512 

 

Table 6.3 The probabilities with which the referential values of the observed 

values of the input variable of IL6 point to different classes of the output 

variable of the training set of the first fold of the sepsis data set 

class/referential value 0.8200 101.9637 20971.0100 

sepsis 0.1270 0.6150 0.8432 

non-sepsis 0.8730 0.3850 0.1568 
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probability of a referential value of an input variable pointing to a class of the output 

variable of the training set can be obtained from Equation (3.7) for all the 

referential values of input variables under different classes of output variable, 

shown in the form of Table 3.5.  

 

Tables 6.2 and 6.3 exhibit the probabilities of the referential values of the observed 

values of the input variables CRP and IL6, respectively, pointing to different classes 

of the output variable of the training set. It is worth noting that the referential 

values displayed in Tables 6.2 and 6.3 include not only the boundary referential 

values as previously defined, i.e., 2.9000, 690.0000, 0.8200, and 20971.0100, but 

also the optimized referential values as previously defined, i.e., 190.2799 and 

101.9637. From the probabilities of the referential values of the observed values of 

the input variables of the training set pointing to different classes of the output 

variable of the training set, partly shown in Tables 6.2 and 6.3, we can acquire a 

number of pieces of evidence. For example, as shown in Table 6.2, the probabilities 

0.2274 and 0.7726, under boundary referential value 2.9000, indicate that, if the 

CRP test result for a patient is 2.9000, the probability of this patient having sepsis 

is 0.2274 and the probability of this patient not having sepsis is 0.7726. Thus, we 

can acquire a piece of evidence from the CRP test result of 2.9000, in that it points 

to the sepsis class with a probability of 0.2274 and points to the non-sepsis class 

with a probability of 0.7726. 

 

6.3.3 Analysis of Evidence Interdependence 

 

As stated previously, there are five input variables, i.e., CRP, IL6, IL10, PCT, and 

WCC, in the sepsis data set and the output variable, diagnosis, contains two classes, 

sepsis and non-sepsis. Obviously, the predictive power of a single piece of evidence 

is limited. In order to achieve greater predictive power, it is necessary to combine 
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multiple pieces of evidence to make a prediction for a patient. In the original 

evidential reasoning (ER) rule, any two pieces of evidence to be combined are 

assumed to be independent from each other, which is simplistic. Under the MAKER 

framework, the interdependence between two pieces of evidence is taken into 

consideration through the introduction of an interdependence index ‘α’ which is 

defined in Equation (3.13). To generate the interdependence index between each 

pair of pieces of evidence, we need to estimate the joint probabilities for these two 

pieces of evidence according to Equation (3.12) in advance. Table 6.4 displays the 

joint probabilities for all combinations of referential values of pieces of evidence 

from the input variables CRP and IL6, each of which points to different classes of 

output variable of the training set.  

 

In Table 6.4, the first and second numbers of each combination of referential values 

represent the referential value of a piece of evidence from CRP and IL6 input 

variables of the training set respectively. On the basis of the probabilities displayed 

in Tables 6.2, 6.3, and 6.4, we can use Equation (3.13) to generate the 

interdependence indices between a piece of evidence from the input variable CRP 

and a piece from the input variable IL6, which are exhibited in Table 6.5. From 

Table 6.5, it is clear that the test results for CRP and IL6 are moderately 

independent from each other, as the independence indices displayed in Table 6.5 

are between 1 and 5. For instance, the interdependence between CRP test result 

of 190.2799 and the IL6 test result of 101.9637 is moderate, as the 

interdependence index under the class of sepsis is 1.8679 and that under the class 

of non-sepsis is 2.0941. 
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Table 6.4 The joint probabilities of different combinations of the referential value of a piece of evidence 

from the CRP input variable and that from the IL6 input variable pointing to different classes of the 

output variable of the training set of the first fold of the sepsis data set 

class/combina

tion of 

referential 

values 

{2.9000, 

0.8200} 

{2.9000, 

101.9637} 

{2.9000, 

20971.01} 

{190.279

9, 0.8200} 

{190.2799, 

101.9637} 

{190.2799, 

20971.01} 

{690.0000

, 0.8200} 

{690.0000, 

101.9637} 

{690.0000, 

20971.01} 

sepsis 0.0596 0.3922 0.8109 0.1810 0.6498 0.8312 0.2615 0.6614 0.9089 

non-sepsis 0.9404 0.6078 0.1891 0.8190 0.3502 0.1688 0.7385 0.3386 0.0911 

 

Table 6.5 The interdependence indices between pieces of evidence from the CRP and IL6 input variables 

of the training set of the first fold of the sepsis data set 

referential 

value of CRP 
2.9000 2.9000 2.9000 190.2799 190.2799 190.2799 690.0000 690.0000 690.0000 

class/referential 

value of IL6 
0.8200 101.9637 20971.0100 0.8200 101.9637 20971.0100 0.8200 101.9637 20971.0100 

sepsis 2.0634 2.8052 4.2298 2.5186 1.8679 1.7425 3.1723 1.6578 1.6614 

non-sepsis 1.3943 2.0430 1.5610 2.1602 2.0941 2.4792 2.4087 2.5038 1.6542 

 

Table 6.6 The referential values of the input variables of the training set of the first fold of the sepsis 

data set activated by the observation {158.0000, 619.4500, 120.1000, 123.8600, 32.5000} 

input variable CRP IL6 IL10 PCT WCC 

activated referential 

values 
2.9000, 190.2799 

101.9637, 

20971.0100 

97.6625, 

4563.8700 
9.8923, 200.0000 5.7066, 66.0000 
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6.3.4 Belief Rule-base Inference 

 

As we have acquired a number of pieces of evidence from the input variables of the 

training set, and we have analysed the interdependence between two pieces of 

evidence, we are now in a position to construct a belief rule base for inferring the 

likelihood of a patient having sepsis on the basis of their test results for the 

biomarkers CRP, IL6, IL10, PCT, and WCC. According to the belief rule described in 

(5.2) of Section 5.3, the antecedent of the belief rule, which is expressed in the 

form of ‘𝑖𝑓𝐴1
𝑘 ∧ 𝐴2

𝑘 ∧ …∧ 𝐴𝑇𝑘
𝑘 ’ in (5.2), in this case study of sepsis diagnosis should be 

expressed as ‘if the test result of each biomarker of a patient is just equal to a 

referential value of the observed values of this biomarker’. The corresponding 

consequent of the belief rule, which is expressed in the form of 

‘𝑡ℎ𝑒𝑛 {(𝐷1, 𝛽1𝑘), (𝐷2, 𝛽2𝑘), … , (𝐷𝑁 , 𝛽𝑁𝑘)}’ in (5.2), in this case study of sepsis diagnosis 

should then be expressed as ‘the probability of this patient having sepsis is equal 

to a value and that of this patient not having sepsis is equal to a value’.  

 

To obtain the probability of a patient having sepsis and that of a patient not having 

sepsis in the consequent of a belief rule for this case study, we need to combine 

five pieces of evidence from the different biomarkers using the MAKER rule as 

described in Section 3.5.3. As stated previously, we use the optimized solution, 

including optimized referential values and optimized weights, with one optimized 

referential value for each of the input variables (biomarkers), to construct a MAKER-

based classifier on the training set for the purpose of illustration. Thus, there are a 

total of three referential values, namely the boundary referential values as stated 

previously and an optimized referential value, for each of the five input variables 

of the training set. 

 

Further, there are altogether 243 combinations of five pieces of evidence, each of 

which contains a referential value from different input variables of the training set, 
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that can be used to construct the belief rule base in this case study of sepsis 

diagnosis, as there are three referential values for each of the five input variables 

of the training set for this case study. In other words, there are 243 possible belief 

rules in the belief rule-base for the numerical example in this section. This complete 

belief rule-base is provided in Appendix B. On the basis of the previously mentioned 

optimized weights obtained from the optimization, we use Equation (3.14) to 

combine five pieces of evidence from different input variables of the training set to 

generate the probabilities of the sepsis and non-sepsis classes for each of the 243 

combinations of five pieces of evidence. For example, through calculation, we can 

obtain a probability 0.0086 of sepsis and a probability 0.9914 of non-sepsis for the 

following combination of pieces of evidence:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.7 The combinations of referential values of the input variables of the 

training set of the first fold of the sepsis data set activated by the observation 

{158.0000, 619.4500, 120.1000, 123.8600, 32.5000} 

combination of activated 

referential values/input 

variable 

CRP IL6 IL10 PCT WCC 

combination 1 2.9000 101.9637 97.6625 9.8923 5.7066 

combination 2 2.9000 101.9637 97.6625 9.8923 66.0000 

combination 3 2.9000 101.9637 97.6625 200.0000 5.7066 

combination 4 2.9000 101.9637 97.6625 200.0000 66.0000 

combination 5 2.9000 101.9637 4563.8700 9.8923 5.7066 

combination 6 2.9000 101.9637 4563.8700 9.8923 66.0000 

combination 7 2.9000 101.9637 4563.8700 200.0000 5.7066 

combination 8 2.9000 101.9637 4563.8700 200.0000 66.0000 

combination 9 2.9000 20971.0100 97.6625 9.8923 5.7066 

combination 10 2.9000 20971.0100 97.6625 9.8923 66.0000 

combination 11 2.9000 20971.0100 97.6625 200.0000 5.7066 

combination 12 2.9000 20971.0100 97.6625 200.0000 66.0000 

combination 13 2.9000 20971.0100 4563.8700 9.8923 5.7066 

combination 14 2.9000 20971.0100 4563.8700 9.8923 66.0000 

combination 15 2.9000 20971.0100 4563.8700 200.0000 5.7066 

combination 16 2.9000 20971.0100 4563.8700 200.0000 66.0000 

combination 17 190.2799 101.9637 97.6625 9.8923 5.7066 

combination 18 190.2799 101.9637 97.6625 9.8923 66.0000 

Continued on the next page 
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{2.9000, 0.8200, 0.1400, 0.0500, 66.0000}. Each observation of the training set 

will activate 32 belief rules out of the entire 243 belief rules in this case study. This 

is due to the fact that each observed value of the training set will activate two 

adjacent referential values, each of which belongs to a piece of evidence, of 

observed values of an input variable of the training set, between which this 

observed value is located, and there are five input variables, i.e., CRP, IL6, IL10, 

PCT, and WCC, in the training set. Hence, each observation of the training set 

activates 25 = 32 combinations of five pieces of evidence, i.e., belief rules of the 

rule base in this case study. 

 

Here, we take an observation {158.0000, 619.4500, 120.1000, 123.8600, 32.5000} 

from the training set as an example to demonstrate how an observation activates 

32 rules from this case study’s belief rule base for inference. Based on Table 6.1, 

the referential values activated by this observation, in terms of the input variables, 

are displayed in Table 6.6. Then, these activated referential values are used to 

generate the combinations of referential values for the 32 rules from this case 

Continued from the previous page 

combination of activated 

referential values/input 

variable 

CRP IL6 IL10 PCT WCC 

combination 19 190.2799 101.9637 97.6625 200.0000 5.7066 

combination 20 190.2799 101.9637 97.6625 200.0000 66.0000 

combination 21 190.2799 101.9637 4563.8700 9.8923 5.7066 

combination 22 190.2799 101.9637 4563.8700 9.8923 66.0000 

combination 23 190.2799 101.9637 4563.8700 200.0000 5.7066 

combination 24 190.2799 101.9637 4563.8700 200.0000 66.0000 

combination 25 190.2799 20971.0100 97.6625 9.8923 5.7066 

combination 26 190.2799 20971.0100 97.6625 9.8923 66.0000 

combination 27 190.2799 20971.0100 97.6625 200.0000 5.7066 

combination 28 190.2799 20971.0100 97.6625 200.0000 66.0000 

combination 29 190.2799 20971.0100 4563.8700 9.8923 5.7066 

combination 30 190.2799 20971.0100 4563.8700 9.8923 66.0000 

combination 31 190.2799 20971.0100 4563.8700 200.0000 5.7066 

combination 32 190.2799 20971.0100 4563.8700 200.0000 66.0000 
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study’s belief rule base that are activated by this same observation. These 

combinations of activated referential values are presented in Table 6.7. According 

to the 32 belief rules activated by each observation of the training set, we could 

find the corresponding probability of each class of the output variable of the training 

set that follows from each of these 32 belief rules. This could be used for the 

predicted probabilities of each observation. 

 

6.3.5 Maximum Likelihood Prediction and Machine Learning 

 

As already mentioned, each observation of the training set will activate 32 belief 

rules from this sepsis diagnosis case study’s belief rule base that can be used to 

predict this observation. On the basis of these 32 belief rules, we need to calculate 

the degree of similarity between each observed value of this observation and each 

of the referential values between which this observed value is located, using 

Equation (3.16) presented in Section 3.5.4. The degree of similarity indicates how 

closely each observed value matches each of those referential values. For example, 

158.0000 is an observed value of the observation {158.0000, 619.4500, 120.1000, 

123.8600, 32.5000}, and according to Table 6.6, the referential values of the input 

variable CRP activated by the observed value 158.0000 are 2.9000 and 190.2799. 

On the basis of Equation (3.16), the degree of similarity between 158.0000 and 

2.9000 is calculated as 
190.2799−158.0000

190.2799−2.9000
≈ 0.1723  and that between 158.0000 and 

190.2799 is calculated as 1 −
190.2799−158.0000

190.2799−2.9000
≈ 0.8277 , which indicates that the 

observed value 158.0000 matches referential value 190.2799 to a high degree and 

referential value 2.9000 to a low degree. In this way, we can calculate the degree 

of similarity between each observed value of the observation {158.0000, 619.4500, 

120.1000, 123.8600, 32.5000} and each of the referential values activated by this 

observed value. With these degrees of similarity, we can use Equation (3.17) to 

calculate the joint degree of similarity between the observation {158.0000, 
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619.4500, 120.1000, 123.8600, 32.5000} and the combination of referential 

values of each belief rule activated by this observation. This joint degree of 

similarity indicates the degree to which we should invoke the belief rules activated 

by an observation to predict the probability of each class of the output variable for 

this observation.  

 

Having generated this joint degree of similarity, we are now in a position to combine 

the belief rules activated by the observation {158.0000, 619.4500, 120.1000, 

123.8600, 32.5000} to predict the probability of each class of the output variable, 

i.e., the diagnosis for this observation. In order to combine these belief rules, we 

need their weights. Using Equation (3.19), we can generate their weights from the 

probability mass 𝑚𝜃,𝑒(𝐿) (θ ⊆ Θ,  θ ≠ ∅) and the probability 𝑝𝜃,𝑒(𝐿)  (𝜃 ⊆ 𝛩,  𝜃 ≠ ∅) or 

just the probability mass 𝑚𝑃(𝛩),𝑒(𝐿), which are shown in Equations (3.18) and (3.19).  

 

As we use the weights of five pieces of evidence from different input variables of 

the training set to generate the probability mass 𝑚𝜃,𝑒(𝐿)  ( 𝜃 ⊆ 𝛩,  𝜃 ≠ ∅ ), the 

probability 𝑝𝜃,𝑒(𝐿) (𝜃 ⊆ 𝛩,  𝜃 ≠ ∅), and the probability mass 𝑚𝑃(𝛩),𝑒(𝐿) for each belief 

rule in this case study’s belief rule base, and we use the relevant probability masses 

and relevant probability to generate the weight for each belief rule activated by the 

observation {158.0000, 619.4500, 120.1000, 123.8600, 32.5000}, we can 

conclude that the weights of the five pieces of evidence have an effect on the 

weights of each belief rule activated by this observation. On the basis of the joint 

degree of similarity between the observation and the activated belief rules, and the 

weight of each activated rule, we can generate the updated weight of each activated 

belief rule for the observation, which considers the degree to which we should 

invoke these activated belief rules in predicting the probability of each class of the 

observation. As the weights of the five pieces of evidence from the different input 

variables have an effect on the weight of each belief rule activated by this 

observation, and since we use the joint degree of similarity between the 

observation and the activated belief rules, and the weight for each activated rule 
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to generate the updated weight of each activated belief rule for the observation, 

we can draw the conclusion that the weights of the five pieces of evidence from the 

different input variables have an impact on the updated weight of each activated 

belief rule for the observation. With the belief rules activated by the observation 

{158.0000, 619.4500, 120.1000, 123.8600, 32.5000} and the updated weight for 

each of these activated rules, we can combine these belief rules activated by the 

observation to predict the probability of each class of the output variable of the 

observation, using the conjunctive MAKER rule which is shown in Equations (3.14) 

and (3.15).  

 

On the basis of the predictions for all the observations of the training set, we can 

generate the MSE for the set of parameters including the referential values and the 

weights used to establish a classifier for the training set. This set of parameters is 

referred to as an individual of the population in the adapted genetic algorithm 

described in Section 3.4. The MSE is calculated for all individuals of the population. 

The individuals of the population and their MSEs are used in the adapted genetic 

algorithm, which helps to achieve the target of optimizing a MAKER-based classifier 

for sepsis diagnosis, which maximizes the predicted outputs, i.e., predicted 

probabilities, of the classifier for the true observed outputs of the training set to 

minimize the MSE for the training set.  

 

As stated previously, an individual of the population in the adapted genetic 

algorithm is composed of the referential values of five input variables and the 

weights of the evidential elements of all pieces of evidence, each of which contains 

a referential value, of the five input variables. Among the weights of the individuals 

of the population in the adapted genetic algorithm, the weights of the evidential 

elements of the five pieces of evidence from the different input variables have an 

impact on the updated weight of each activated belief rule for an observation used 

to predict this observation. Thus, we can maximize the predicted outputs, i.e., 

predicted probabilities, of the classifier for the true observed outputs of the training 
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set to minimize the MSE for the training set by optimizing the referential values of 

the five input variables and the weights of the evidential elements. The optimal 

individual (solution) of the population acquired from the optimization based on the 

adapted genetic algorithm of a MAKER-based classifier for the sepsis diagnosis can 

make the predicted outputs, i.e., predicted probabilities, of the classifier as close 

to the true observed outputs of the training set as possible.  

 

In this case study of sepsis diagnosis, as mentioned previously, we have used the 

optimized individual (solution) of the population obtained from the optimization, 

which has one optimized referential value. On the basis of the referential values 

and weights acquired from this optimized individual (solution), we can use the 

MAKER-based classifier established by the process described earlier in this section 

to make a prediction about the observation {158.0000, 619.4500, 120.1000, 

123.8600, 32.5000}. The predicted probability of the sepsis class for this 

observation is 0.9553 and that of the non-sepsis class is 0.0447. In other words, if 

a patient’s test results for CRP, IL6, IL10, PCT, and WCC are 158.0000, 619.4500, 

120.1000, 123.8600, and 32.5000 respectively, the probability this patient has 

sepsis is 0.9553 and the probability this patient does not have sepsis is 0.0447. 

From the process used to establish the MAKER-based classifier for this case study 

of sepsis diagnosis, it is evident the rule-based inferential modelling and prediction 

approach used to do this is an interpretable approach integrating statistical analysis, 

belief rule-based inference, and machine learning. 

 

6.4 Performance Comparative Analysis 

 

In this section, a performance comparative analysis on the sepsis data set is carried 

out between the MAKER-based classifier constructed using the rule-based 

inferential modelling and prediction approach, and alternative classifiers including 

classification trees, discriminant analysis, logistic regression, the support vector 

machine (SVM), k-nearest neighbours (KNN), ensembles, naïve Bayes, and artificial 
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neural networks (ANN). As mentioned previously, the sepsis data set was 

partitioned into four folds for cross-validation. All of the four folds of the sepsis data 

set have similar class distributions, and observations belonging to the same class 

have similar probability density functions. Four training sets and their 

corresponding test sets were generated based on the four folds of the sepsis data 

set. We calculated the performance measures for each of the classifiers constructed 

on each training set as stated above. The performance measures include sensitivity 

(SEN), specificity (SPC), diagnostic accuracy (ACC), and the area under the receiver 

operating characteristic (ROC) curve (AUC). The SEN, SPC, and ACC were 

determined from the threshold value 0.5, if the predicted outputs of the classifier 

were probabilities. The SEN, SPC, and ACC were determined from the threshold 

value 0, if the predicted outputs were generated by the SVM classifiers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.8 Alternative variants of the classifiers other than the MAKER-based 

classifiers for the sepsis diagnosis 

Classifier Variants of classifier Selected variant of classifier 

decision trees simple tree, medium tree, and 

complex tree 

complex tree 

discriminant 

analysis 

linear discriminant and quadratic 

discriminant 

quadratic discriminant 

logistic 

regression 

logistic regression logistic regression 

support vector 

machine (SVM) 

linear SVM, quadratic SVM, cubic 

SVM, fine Gaussian SVM, medium 

Gaussian SVM, and coarse 

Gaussian SVM 

fine Gaussian SVM 

k-nearest 

neighbor (KNN) 

fine KNN, medium KNN, coarse 

KNN, cosine KNN, cubic KNN, and 

weighted KNN 

fine KNN and weighted KNN 

ensembles boosted trees, bagged trees, 

subspace discriminant, subspace 

KNN, and RUSBoosted trees 

bagged trees and subspace 

KNN 

naïve Bayes naïve Bayes naïve Bayes 

artificial neural 

networks (ANN) 

feed-forward backpropagation feed-forward 

backpropagation 
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The reason for using these threshold values was that all the classifiers for the sepsis 

diagnosis in this case study are binary classifiers. 

 

On the basis of these performance measures calculated for each test set of the 

sepsis data set, we generated the average measures for each of the above 

classifiers to provide a comprehensive evaluation of each one’s performance. It is 

worth noting that a number of alternative variants of each classifier were 

constructed based on each training set of the sepsis data set. According to the 

training accuracies of the variants, we selected the variant with the highest average 

accuracy for the classification of the training sets to represent each classifier.  

 

Table 6.8 lists the alternative variants and the selected variant for each classifier 

except the MAKER-based classifiers, used for the sepsis diagnosis in this case study. 

In addition, according to the stopping criterion introduced in Section 4.5, the 

training for the MAKER-based classifier was stopped when there were five trained 

referential values for each of the input variables of the training sets generated from 

the sepsis data set. Among the trained MAKER-based classifiers used for the sepsis 

diagnosis, we selected the MAKER-based classifiers with one trained referential 

value for each of the input variables to represent the MAKER-based classifiers in 

the comparison with the alternative classifiers, as these MAKER-based classifiers 

had the highest average diagnostic accuracy among all the trained MAKER-based 

classifiers, for sepsis diagnosis. The performance measures of each of the classifiers 

selected are reported in Table 6.9. 

 

From Table 6.9, it is clear that, although the MAKER-based classifiers do not 

produce the optimal performance measures among the alternative classifiers for 

the sepsis diagnosis, they are generally near-optimal or near to the average (across 

all alternatives) performance measure. Specifically, the average sensitivity of the 

MAKER-based classifiers over the four test sets generated from the sepsis data set 

is 45.12%, which is above the average sensitivity of 41.29% across all the 
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classifiers and over the four test sets. The average specificity of the MAKER-based 

classifiers over the four test sets is 90%, which is very close to the average 

specificity of 90.87% across all classifiers over the four test sets. The average 

accuracy of the MAKER-based classifiers over the four test sets is 77.34%, which 

is close to the optimal accuracy of 80.67%. This suggests that the performance of 

the MAKER-based classifiers for the sepsis diagnosis is similar to that of alternative 

classifiers if we take the threshold values of 0.5 and 0 to generate the performance 

measures for the classifiers. The sensitivities, specificities, and accuracies 

presented in Table 6.9 were determined from those threshold values, and we could 

use other threshold values instead. 

 

According to Ling, Huang and Zhang (2003), accuracy is a widely used measure for 

comparing the predictive capability of different classifiers. Most classifiers generate 

probability estimations of the classification, but they are completely ignored in the 

calculation of the accuracy (Ling, Huang and Zhang, 2003). Ling, Huang and Zhang 

(2003) present arguments emphasizing that the AUC provides a better measure 

than the accuracy. In the following part of this section, we present the ROC curve 

of the MAKER-based classifier and that of the classifier with the optimal AUC among 

all the alternative classifiers, for each of the test sets generated from the sepsis 

data set in Figure 6.3. We display the AUC of each classifier for each of the test 

sets, and the average AUC of each classifier over the four test sets, in Table 6.10. 

From Table 6.10, it can be observed that the average AUC of the MAKER-based 

classifiers over the four test sets is 0.8127, which is the fourth largest AUC among 

all the AUCs of the 11 classifiers for the sepsis diagnosis. 

 

 

 

 

 

 



249 
 

 

 

 

 

Table 6.9 Performance measures of the classifiers for the sepsis diagnosis 

classifiers/measures 
SEN (%) SPC (%) ACC (%) 

tsts1 tsts2 tsts3 tsts4 avg. tsts1 tsts2 tsts3 tsts4 avg. tsts1 tsts2 tsts3 tsts4 avg. 

MAKER 56 36 50 38.46 45.12 92.31 84.62 87.69 95.38 90 82.22 71.11 76.92 79.12 77.34 

complex tree 72 60 53.85 65.38 62.81 83.08 83.08 83.08 83.08 83.08 80 76.67 74.73 78.02 77.36 

quadratic 

discriminant 
36 28 42.31 30.77 34.27 95.38 98.46 93.85 96.92 96.15 78.89 78.89 79.12 78.02 78.73 

logistic regression 36 28 50 42.31 39.08 93.85 95.38 92.31 95.38 94.23 77.78 76.67 80.22 80.22 78.72 

fine Gaussian SVM 8 36 11.54 30.77 21.58 96.92 90.77 98.46 95.38 95.38 72.22 75.56 73.63 76.92 74.58 

fine KNN 52 52 34.62 50 47.16 83.08 86.15 84.62 81.54 83.85 74.44 76.67 70.33 72.53 73.49 

weighted KNN 36 40 34.62 30.77 35.35 89.23 93.85 92.31 87.69 90.77 74.44 78.89 75.82 71.43 75.15 

ensemble: bagged 

trees 
56 52 46.15 50 51.04 89.23 86.15 90.77 93.85 90 80 76.67 78.02 81.32 79.00 

ensemble: 

subspace KNN 
64 36 50 50 50 87.69 87.69 81.54 84.62 85.39 81.11 73.33 72.53 74.73 75.43 

naïve Bayes 44 28 42.31 30.77 36.27 98.46 98.46 98.46 96.92 98.08 83.33 78.89 82.42 78.02 80.67 

ANN: feed-forward 

backpropagation 
48 32 19.23 26.92 31.54 92.31 86.15 96.92 95.38 92.69 80 71.11 74.73 75.82 75.42 
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The ROC curve of MAKER classifier for the 1st test set 

  

The ROC curve of the classifier of ensemble: bagged 

trees for the 1st test set 

 

The ROC curve of MAKER classifier for the 2nd test set 

 

The ROC curve of the classifier of ensemble: bagged 

trees for the 2nd test set 

 

The ROC curve of MAKER classifier for the 3rd test set 

 

The ROC curve of MAKER classifier for the 4th test set 

 

The ROC curve of the classifier of ensemble: bagged 

trees for the 3rd test set 

 

The ROC curve of the classifier of ensemble: bagged 

trees for the 4th test set 

Figure 6.3 The ROC curve of the MAKER-based classifier and that of the classifier 

which has the optimal AUC among all of the classifiers except the MAKER-based 

classifier for each of the test sets generated from the sepsis data set 
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According to Smithson and Merkle (2014), a general rule of thumb for using AUC 

to judge the classification capability of a classifier is that an AUC between 0.7 and 

0.8 is considered acceptable, an AUC between 0.8 and 0.9 indicates excellent 

discrimination, and an AUC larger than 0.9 implies outstanding discrimination. As 

the average AUC of the MAKER-based classifiers as stated above is 0.8127, the 

MAKER-based classifiers for sepsis diagnosis can be considered excellent. The 

average AUC of the quadratic discriminant classifier over the four test sets is slightly 

larger than that of the MAKER-based classifier over the four test sets. In addition, 

the average AUC of the MAKER-based classifier is close to the average AUC of 

0.8311 of the logistic regression classifiers over the four test sets and the average 

AUC of 0.8523 of the ensembles of bagged trees over the four test sets. 

 

Thus, we can conclude that the performance of the MAKER-based classifiers for 

sepsis diagnosis is similar to that of the mainstream classifiers for sepsis diagnosis, 

e.g., naïve Bayes, quadratic discriminant, logistic regression, and ensemble: 

bagged trees, and the MAKER-based classifiers perform better than the complex 

tree, fine Gaussian SVM, fine KNN, weighted KNN, ensemble: subspace KNN, and 

Table 6.10 The area under the receiver operating characteristic (ROC) curve 

(AUC) of each of the classifiers for the sepsis diagnosis 

classifiers/measures 
AUC 

tsts1 tsts2 tsts3 tsts4 avg. 

MAKER 0.8332 0.7342 0.8325 0.8509 0.8127 

complex tree 0.8129 0.7674 0.6962 0.7997 0.7690 

quadratic discriminant 0.8486 0.7905 0.8284 0.7894 0.8142 

logistic regression 0.8295 0.8462 0.8396 0.8089 0.8311 

fine Gaussian SVM 0.7655 0.7508 0.7781 0.8284 0.7807 

fine KNN 0.6754 0.6908 0.5962 0.6577 0.6550 

weighted KNN 0.7828 0.7443 0.7651 0.7101 0.7506 

ensemble: bagged trees 0.8831 0.8151 0.8435 0.8675 0.8523 

ensemble: subspace KNN 0.8323 0.7120 0.8284 0.7902 0.7907 

naïve Bayes 0.8452 0.7923 0.8249 0.7852 0.8119 

ANN: feed-forward 

backpropagation 
0.8782 0.7840 0.8095 0.7675 0.8098 
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ANN: feed-forward backpropagation. As the MAKER-based classifiers are based on 

the belief rule-based inference and integrate statistical analysis, belief rule-based 

inference, and machine learning to generate predictions for sepsis diagnosis, they 

are essentially interpretable and hence a recommended tool to help doctors make 

reasonable diagnostic decisions about sepsis in their patients. 

 

6.5 Summary 

In summary, this chapter presents the application of the rule-based inferential 

modelling and prediction approach based on the system of the MAKER framework 

to sepsis diagnosis. At the beginning of this chapter, we introduced the data 

preparation, including data cleaning, data transformation, and data partition, for 

the cross-validation of the alternative classifiers on the sepsis data set. Then, from 

the perspectives of evidence acquisition from data, analysis of evidence 

independence, belief rule-based inference, and maximum likelihood prediction and 

machine learning, we described how the rule-based inferential modelling and 

prediction approach can be used to construct MAKER-based classifiers for sepsis 

diagnosis. Afterwards, we calculated the performance measures of sensitivity (SEN), 

specificity (SPC), diagnostic accuracy (ACC), and the area under the receiver 

operating characteristic (ROC) curve (AUC) for each classifier, for sepsis diagnosis, 

and we used these performance measures to compare the performance of the 

different classifiers in sepsis diagnosis. The results of the comparison show that the 

MAKER-based classifiers outperform 7 out of 10 alternative classifiers in sepsis 

diagnosis, and the performance of the MAKER-based classifiers is near-optimal, as 

the average AUC of the MAKER-based classifiers over the four test sets generated 

from the sepsis data set is close to that for the ensemble: bagged trees classifier 

over the four test sets, which is the optimal average AUC among all of the average 

AUCs of the alternative classifiers. Based on the analysis in this chapter, the MAKER-

based classifier constructed using the rule-based inferential modelling and 

prediction approach, as an interpretable classifier, is a recommended tool for sepsis 

diagnosis. 
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Chapter 7 Conclusions and Further Study 

 

7.1 Conclusions 

 

Sepsis is a serious disease that can cause death. It is important to evaluate patients’ 

sepsis risk during diagnostic decisions within the early stages after the detection of 

the presence of symptoms that suggest sepsis. With the assessment of patients’ 

sepsis risk, targeted antibiotic therapy can be used in the early stages to prevent 

sepsis from becoming worse and to effectively improve patients’ prospects of 

survival. The conventional approach to sepsis diagnosis is blood culture, which may 

take several days. The approaches based on statistics and machine learning for 

sepsis diagnosis can be cheap, fast, and non-invasive. Hence, we can use these 

approaches to evaluate patients’ sepsis risk in the early stages after the presence 

of suspicious symptoms of sepsis has been established. There are a wide variety of 

approaches based on statistics and machine learning that can be used for sepsis 

diagnosis, but these approaches have some issues, e.g. interpretability and 

overfitting, which may affect their performance in sepsis diagnosis. 

 

In this research, we proposed a new approach, i.e. rule-based inferential modelling 

and prediction, to address some of the issues in the popular approaches to disease 

diagnosis. By applying the rule-based inferential modelling and prediction approach, 

we can acquire evidence directly from the data using statistical analysis, and 

combine multiple pieces of evidence from different input variables within the data 

to generate a belief rule base for inference. With the belief rule base, we can 

formulate the relationship between inputs and outputs using a unified inference 

scheme. For any given inputs, we can make an inference about the corresponding 

output of the inputs using the belief rule base and maximum likelihood prediction. 

With the algorithm of machine learning, we can optimise the parameters of the 
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inference model to ensure that the predicted probability of the output is as close to 

the probability of the true state of the output as possible. The findings for this 

approach are summarised as follows: 

 

 By comparing the alternative approaches to disease diagnosis theoretically, we 

achieved research objective 3. The belief rule-base inference of the rule-based 

inferential modelling and prediction approach is totally transparent. Compared 

to the complex classifiers for disease diagnosis, e.g. ensemble, ANN, and 

random forest, the MAKER-based classifier established by the rule-based 

inferential modelling and prediction approach is more interpretable. It is 

essentially a white-box model in which the relationship between system inputs 

and outputs can be analysed clearly. In addition, the MAKER-based classifier 

is generally better than other interpretable classifiers, e.g. decision tree, 

logistic regression, and naïve Bayes. 

 

 By comparing the performance of alternative approaches to sepsis diagnosis, 

we achieved research objective 4. The performance of the MAKER-based 

classifiers constructed by the rule-based inferential modelling and prediction 

approach for sepsis diagnosis is generally better than the majority of 

alternative models for sepsis diagnosis, and similar to the performance of 

ensemble: bagged trees, which is a complex model. The MAKER-based 

classifier is an outstanding classifier for classical data sets: the Banana data 

set, Haberman’s survival data set, and the Iris data set, and it generally 

performs better than other interpretable classifiers, e.g. complex tree, logistic 

regression, and naïve Bayes. In addition, when it comes to the implications 

and research insights in the field of healthcare, as shown in Section 6.3.3, we 

can calculate the interdependence indices to find how input variables, i.e., CRP, 

IL6, IL10, PCT, and WCC, in the sepsis data set are dependent from each other. 

It has been shown in Section 6.3.5 that we can evaluate patients’ sepsis risk 

based on the predicted probabilities generated from the MAKER-based models. 
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 By applying a referential-value-based data discretisation technique in the rule-

based inferential modelling and prediction approach, we achieved research 

objective 5. Compared to other data-processing techniques, the referential-

value-based data discretisation technique is closer to reality and better at 

reducing information loss and distortion, as well as better at presenting the 

characteristics of the data. The advantages of this data discretisation 

technique were shown in the function approximations (Chapter 4) and the 

classification experiments (Chapters 5 and 6). 

 

 By applying the interdependence index in the rule-based inferential modelling 

and prediction approach, we achieved research objective 6. The MAKER-based 

models use an interdependence index to quantify the interdependence 

between input variables, while the naïve Bayes models assume that all input 

variables are independent of each other. 

 

 By proposing an adapted genetic algorithm for the bilevel optimisation of the 

MAKER-based models, we achieved research objective 7. The function 

approximations in Chapter 4 and the classification experiments in Chapters 5 

and 6 showed that this adapted genetic algorithm can work effectively to find 

the optimised solutions for the referential values and weights (reliabilities) of 

the MAKER-based models. 

 

 By proposing the stopping criteria for the training process of the MAKER-based 

models, we achieved research objective 8. The functions approximations in 

Chapter 4 and the classification experiments in Chapters 5 and 6 showed that 

these stopping criteria can help us to find the optimal structure of the models 

based on the MAKER framework, which generally achieves balance between 

accuracy and complexity. 
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7.2 Further Study 

 

Suggested directions of further study are summarised as follows: 

 

The belief rule-base inference ensures that the MAKER-based models established 

by the rule-based inferential modelling and prediction approach are totally 

transparent and interpretable. However, the belief rule-base inference has a 

problem in terms of the high multiplicative complexity of the number of referential 

values of input variables in the belief rule base (Xu et al., 2017). In other words, 

the number of rules increases exponentially with the number of input variables and 

the number of referential values of each input variable (Yang and Xu, 2017). Thus, 

the number of parameters needed to training the model will increase exponentially 

(Yang and Xu, 2017), which will make the model extremely complex. A potential 

direction for further study on this issue could be to use hierarchical rule-base 

inference based on a hierarchical knowledge base composed of sub-rule bases. 

 

As mentioned in section 4.4, in the bivariate function approximations of the MAKER-

based models, the intervals between any two adjacent x-coordinate referential 

values or any two y-coordinate referential values in the data set for the 

approximations are set to 0.2. To improve the accuracy of the approximations of 

the MAKER-based models to the Himmelblau function, the abovementioned 

intervals can be narrowed to less than 0.2. 

 

The results of the MAKER-based models for the classification experiments of the 

imbalanced data sets, i.e. the sepsis data set and Haberman’s survival data set in 

this research, show that the sensitivity values of classification are generally much 

less than the specificity values of classification. This is partly due to the fact that 

the use of global performance measures guiding the learning process, such as the 

mean squared error (MSE), may provide an advantage to the majority class. One 

of the potential directions for further study on this issue could be to improve the 
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global performance measures, e.g. MSE guiding the learning process so as to treat 

all classes equally in the learning process. 

 

In terms of the implications and research insights in the field of healthcare, further 

research will be focused on the combination of the approach of the rule-based 

inferential modelling and prediction and the medical knowledge. For example, we 

may extract the most frequent belief rules activated by the patients’ records from 

the belief rule-base, and associate these activated belief rules with relevant medical 

knowledge to help healthcare professionals acquire a deeper understanding and 

more specific knowledge of disease diagnosis. 
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Appendices 

 

Appendix A:  

The Training Set of the First Fold of the Sepsis Data Set 

 

No. CRP IL6 IL10 PCT WCC Diagnosis 

1 80 17.66 4.1 0.12 13.2 1 

2 58 724.73 63.41 1.26 15.09 1 

3 86 173.19 139.13 1.13 12.2 1 

4 193 43.27 10.28 2.15 1.9 1 

5 217 122.79 4.03 0.34 12.2 1 

6 374 260.54 4.62 7.18 9.3 1 

7 516 1306.84 6.2 3.29 20.3 1 

8 306 110.54 4.19 2.24 17.3 1 

9 131 391.79 15.24 0.24 13.4 1 

10 139 631.3 24.03 2.54 0.2 1 

11 457 690.82 47.36 2.53 6.6 1 

12 302 306.42 9.94 3.97 10.1 1 

13 189 129.52 7.88 0.88 19.2 1 

14 157.8 121.72 7.18 2.14 12.5 1 

15 157 275.63 11.81 2.92 29.1 1 

16 389 109.71 11.16 26.42 3 1 

17 176 2134.32 33.13 8.45 9.3 1 

18 305 796.35 31.38 15.86 24 1 

19 458 210.31 13.68 16.15 12.7 1 

20 201 226 12.41 20.84 16.7 1 

21 206 217.99 20.38 7.68 35.8 1 

22 135 815.49 53.16 0.79 0.5 1 

23 267 101.9 345.81 3.52 6 1 

24 176 403.8 99.51 0.55 12.3 1 

25 158 619.45 120.1 123.86 32.5 1 

26 287 544.91 88.17 163.22 13.2 1 

27 30 27.36 1.94 0.29 5.4 2 

28 21 2.72 1.64 0.17 4.4 2 

29 13 7.7 3.37 0.05 9.9 2 

30 11 19.78 6.28 0.45 10.6 2 

31 10 4.04 1.8 0.41 19 2 

32 35 4 12.48 0.05 3 2 

33 31 13.13 10.02 0.06 9.8 2 

34 22 5676.78 26.84 4.58 20.9 2 
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35 89 22.07 0.73 0.34 5.3 2 

36 60 45.85 5.17 0.17 1 2 

37 117 37.58 2.72 0.32 6.98 2 

38 92 22.76 3.87 0.15 8.7 2 

39 82 32.18 3.8 0.15 8.3 2 

40 106.6 30.78 1 0.05 13.9 2 

41 83 45.95 1.31 0.09 18.9 2 

42 89 37.51 0.16 0.28 17.1 2 

43 95 8.3 2.58 3.61 2.9 2 

44 120 23.79 5.06 0.67 10.5 2 

45 72 29.15 6.73 1.84 16 2 

46 46 17.65 3.94 0.71 20.2 2 

47 55 64.76 3.705 0.83 18.1 2 

48 106 58.15 12.31 0.05 0.4 2 

49 55 67.85 7.31 0.11 3.5 2 

50 119.3 46.21 8.97 0.08 7.9 2 

51 91 11.08 10.57 0.2 13.4 2 

52 101 19.67 10.67 0.05 13.2 2 

53 47 24.87 8.26 4.04 5.3 2 

54 124 11.36 11.94 1.61 28.8 2 

55 95 22.43 17.9 5.53 11.4 2 

56 60 639.72 35.95 5.59 8.9 2 

57 66 555.11 43.86 0.72 14.5 2 

58 435 66.19 5.13 0.18 9.4 2 

59 163 39.81 3.22 0.19 9.1 2 

60 184.6 12.54 0.55 0.3 27.8 2 

61 178 22.27 3.99 0.34 15.9 2 

62 422 38.97 1.66 3.13 25.8 2 

63 359 34.41 3.13 2.45 15.5 2 

64 338 64.88 0.87 3.22 16.6 2 

65 160 67.25 5.43 0.89 49.8 2 

66 194 26.07 2.34 1.03 14.7 2 

67 180 55.59 11.95 0.1 7.6 2 

68 204.8 14.88 11.7 0.08 18.1 2 

69 194 33.47 15.94 2.35 8.5 2 

70 170 38.95 15.23 6.15 15.6 2 

71 143 65.79 12.48 1.1 16.2 2 

72 248 110.52 6.21 0.19 9.9 2 

73 177 399.76 5.08 0.4 14.1 2 

74 131 123.4 2.53 0.49 5.2 2 

75 323 357.67 3.783 0.99 9.2 2 

76 280 133.86 2.96 1.62 8.7 2 

77 149 130.85 6.54 1.24 6.5 2 
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78 222.4 154.64 3.42 0.68 14.5 2 

79 204 124.44 2.57 1.63 29 2 

80 195 138.57 31.36 0.21 12.9 2 

81 522 243.27 10.23 4.67 7.4 2 

82 326 112.63 9.72 1.79 6 2 

83 229 128.29 8.93 6.86 13 2 

84 224 222.06 12.03 4.08 16.6 2 

85 274 130.43 8.33 0.84 17.2 2 

86 253 560.92 14.98 2.41 12.6 2 

87 290 185.56 20.45 2.07 12.9 2 

88 326 374.6 10.38 0.73 15.7 2 

89 215 14124.19 45.05 38.44 2.2 2 

90 364 163.76 12.55 17.34 35.2 2 

91 690 153.5 13.468 46.62 20.7 2 

92 125 19.82 2.04 0.17 15.6 1 

93 66 5986.39 1230.3 7.63 22.8 1 

94 46 4817.98 62.85 1.35 15.4 1 

95 384 48.54 18.93 0.72 0.9 1 

96 276 90.17 5.51 0.22 17 1 

97 333 629.22 6.75 2.68 6.4 1 

98 311 88.3 2.7 0.97 17.5 1 

99 196 89.38 11.14 0.23 15.29 1 

100 299 284.82 9.68 0.19 16.3 1 

101 193 152.68 51.38 1.79 5.6 1 

102 174 106.13 15.4 1.85 9.2 1 

103 306 97.37 11.47 1.36 15.8 1 

104 381 5533.12 24.88 4.45 27.7 1 

105 133 325.22 8.83 0.8 19.6 1 

106 229 286.43 10.3 0.93 12.3 1 

107 404 293.95 30.02 69.47 3.6 1 

108 128 3481.21 37.48 12.97 9.7 1 

109 209 1751.1 42.89 8.4 14.1 1 

110 230 394.52 9.08 10.04 22.4 1 

111 275 7344.2 21.57 62.45 13.7 1 

112 372 208 4563.87 0.65 0.1 1 

113 271 1408.45 86.07 3.96 7.9 1 

114 144 102.14 75.33 1.19 6.2 1 

115 457 594.38 60.87 3.21 31.8 1 

116 275 5038.86 366.85 200 17.63 1 

117 336 193.61 120.57 10.24 12.4 1 

118 2.9 8.93 5.27 0.33 0.1 2 

119 11 0.82 0.19 0.05 5.4 2 

120 39 25.38 5.41 0.13 7.6 2 



 

269 
 

121 40 2.42 3.8 0.05 9.4 2 

122 4.2 14.73 0.87 0.08 14.5 2 

123 5.7 6.49 6.03 0.14 14.5 2 

124 31 36.15 8.88 0.05 1 2 

125 20 71.89 13.07 0.47 9.6 2 

126 16 262.79 16.92 0.75 17.4 2 

127 70 18.37 3.23 0.15 1.7 2 

128 47 42.83 5.76 0.05 0.3 2 

129 61 20.29 3.66 0.27 6.7 2 

130 60 29.57 2.62 0.22 6.6 2 

131 107 58.64 1.61 0.33 23.5 2 

132 116 3.98 2.02 0.37 14.4 2 

133 41 5.27 2.96 0.45 18.9 2 

134 68 13.98 6.59 0.77 5.7 2 

135 68 7.03 5.28 0.48 8.9 2 

136 76 21.22 3.37 2.21 13 2 

137 118 17.33 1.79 0.56 15.4 2 

138 52 5.81 3.53 1.47 31 2 

139 64 67.24 7.7 0.26 0.2 2 

140 76 22.11 7.29 0.31 7 2 

141 65 67.09 8.7 0.27 21.77 2 

142 103 70.68 14.96 0.08 11.6 2 

143 87 66.64 46.61 1.35 5.9 2 

144 71 33.48 10.62 0.49 0.3 2 

145 110 39.9 48.09 1.14 11.7 2 

146 47 314 25.54 1.08 9.9 2 

147 52 179.06 9.46 1 15.3 2 

148 125 155.98 18.63 1.43 13.5 2 

149 138 29.23 3.406 0.19 9.5 2 

150 245 14.42 1.33 0.45 20.6 2 

151 241 69.99 2.275 0.18 18.4 2 

152 194 31.05 4.004 0.34 19.1 2 

153 143 41 1.87 1.73 16.2 2 

154 206 23.95 1.87 0.72 12 2 

155 154 51.46 3.5 4.23 13.9 2 

156 314 44.08 4.71 3.39 16.1 2 

157 129 63.07 4.381 2.12 11.7 2 

158 147 23.66 8.29 0.18 7.7 2 

159 234 66.93 7.36 0.28 18 2 

160 305 13.81 17.74 0.91 6.4 2 

161 270 70.51 16.42 1.14 12.7 2 

162 328 71.25 38.7 2.38 22.5 2 

163 376 99.53 1.68 0.24 9.6 2 
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164 307 369.12 4.381 0.37 12.9 2 

165 318 142.8 2.33 1.29 0.2 2 

166 273 147.38 4.86 1.82 9.9 2 

167 220 111.27 2.353 2.86 10.2 2 

168 196 147.25 2.43 1.44 8.8 2 

169 348 435.27 3.82 4.31 22 2 

170 428 106.6 4.07 2.08 24.1 2 

171 207.5 392.57 9.54 0.39 17.2 2 

172 200 265.31 8.69 0.62 8.4 2 

173 197 139.49 15.72 0.49 9.7 2 

174 246 265.91 45.05 4.77 20.6 2 

175 436 1592.32 10.35 3.13 14.4 2 

176 147 103.46 21.21 5.44 19.7 2 

177 140 228.75 6.87 0.85 22.2 2 

178 365 638.41 12.01 0.96 16.8 2 

179 267 462.83 14.14 126.79 5.7 2 

180 298 154.44 13.23 12.22 11.3 2 

181 262 429.5 18.78 11.84 11.9 2 

182 361 125.28 10.06 22.66 15.5 2 

183 124 20.46 4.83 0.44 11 1 

184 56 608.57 105.03 1.23 17.2 1 

185 190 20.21 32.47 0.76 0.1 1 

186 244 360.16 4.09 0.29 11.9 1 

187 440 145.18 1.11 0.7 9 1 

188 382 656.67 5.69 2.33 8.9 1 

189 318 241.74 3.12 6.8 11.6 1 

190 225.6 440.76 7.85 0.27 13.5 1 

191 264 174.34 14.31 0.33 15.1 1 

192 237 205.64 16.04 1.32 0 1 

193 289 148.61 12.35 1.65 8 1 

194 292 153.09 7.76 2.89 18.6 1 

195 263 127.12 14.4 0.9 12.1 1 

196 210 136.23 10.25 1.71 20.7 1 

197 197 116.22 20.99 5.52 11.5 1 

198 164 6256.87 27.35 16.7 0.1 1 

199 356 1506.66 16.85 22.68 6.6 1 

200 216 104.23 7.24 47.5 39.7 1 

201 257 93.3 10.84 15.68 18.2 1 

202 262 111.1 8.06 13.26 19.8 1 

203 164 485.74 63.01 3.68 0.5 1 

204 144 208 4489.32 4.28 10.9 1 

205 243 113.7 308.96 1.35 16.2 1 

206 229 1745.77 2593.81 6.25 28.1 1 
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207 403 20971.01 2640.79 41.44 31.1 1 

208 6.4 9.55 0.87 0.05 2.8 2 

209 29 11.74 2.97 0.14 7.3 2 

210 28 7.1 5.16 0.05 7.1 2 

211 6 0.9 0.14 0.05 8.3 2 

212 19 8.42 1.13 0.05 53.9 2 

213 11 24.29 2.09 0.12 13.6 2 

214 39 32.29 29.97 0.05 0.9 2 

215 9 12.14 12.47 0.23 8.5 2 

216 3.1 86.97 11.81 3.47 17.9 2 

217 61 67.51 5.2 0.05 0.3 2 

218 43 59.18 4.22 0.07 1 2 

219 83 58.79 2.07 0.1 9.5 2 

220 90 66.86 2.12 0.22 10.4 2 

221 123 70.72 3.51 0.26 9.5 2 

222 122 15.62 4.08 0.05 66 2 

223 92 20.14 4.51 0.42 11.1 2 

224 110 23.97 2.22 0.34 20.5 2 

225 48 35.17 3.69 2.05 0.4 2 

226 120 23.2 4.21 0.5 7 2 

227 84 29.29 2.21 1.6 19.9 2 

228 127 18.77 3.62 0.85 44.9 2 

229 70 22.21 0.43 0.54 15.2 2 

230 87 69.6 13.28 0.23 4.9 2 

231 84 55.11 23.98 0.4 10.1 2 

232 86 21.08 7.08 0.17 19 2 

233 68 15.95 19.67 0.21 12.5 2 

234 50 54.02 16.55 0.54 5.4 2 

235 100 48.01 12.96 6.35 18.5 2 

236 114 43.87 6.88 4.46 14.7 2 

237 113 234.53 26.871 1.18 7.4 2 

238 92 525.27 23.95 4.12 13.6 2 

239 247 15.84 1.638 0.17 8.5 2 

240 153 51.65 0.96 0.35 8.1 2 

241 138 10.18 0.43 0.19 22.3 2 

242 238 72.36 6.04 0.36 25.6 2 

243 159 61.19 6.54 0.22 25.4 2 

244 183 52.92 3.99 0.9 12.9 2 

245 335 18.6 2.25 0.79 18.9 2 

246 165 35.88 2.21 2.89 31.5 2 

247 253 34.07 3.76 1.6 13.4 2 

248 169 48.75 10.91 0.05 6.6 2 

249 146 43.74 8.7 0.38 8.3 2 
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250 239 25.93 6.87 0.42 13.5 2 

251 173 41.15 10.01 0.51 9.2 2 

252 195 10.96 7.29 3.46 16.9 2 

253 465 109.93 4.01 0.31 7.4 2 

254 147 1001.76 2.57 0.23 7.6 2 

255 273 628.5 5.668 0.19 14.5 2 

256 315 446.24 5.99 1.16 2.8 2 

257 208 738.43 6.162 0.96 8.8 2 

258 203 313.81 4.28 3.95 7 2 

259 349 592.78 1.91 0.57 9.9 2 

260 236 106.46 6.12 1.24 13.6 2 

261 137 192.4 31.67 0.34 23.8 2 

262 251 189.09 10.51 0.24 26.7 2 

263 173 110.04 35.31 2.64 7.9 2 

264 217 141.26 8.3 0.51 7.1 2 

265 265 194.95 7.59 0.73 11.2 2 

266 343.4 271.56 43.42 4.79 11.1 2 

267 468 235.68 7.56 3.08 15.3 2 

268 372 906.38 11.43 1.44 11.2 2 

269 431 362.32 9.2 7.55 29.3 2 

270 240 2093.44 36.25 17.2 1.2 2 

271 450 1057.01 28.32 200 12 2 

272 256 1390.89 13.7 29.26 13.4 2 
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Appendix B:  

The Belief Rule-base (the MAKER-based Model)  

for the Numerical Example in Chapter 6 

 

Rule 

No. 

If the Values of Biomarkers of A Patient Are 

Then the Probabilities 

of the Patient Having 

Sepsis or Not Are 

CRP IL6 IL10 PCT WCC Sepsis 
Non-

sepsis 

1 2.9 0.82 0.14 0.05 0 0.000385 0.999615 

2 2.9 0.82 0.14 0.05 5.7066 0.005642 0.994358 

3 2.9 0.82 0.14 0.05 66 0.008642 0.991358 

4 2.9 0.82 0.14 9.8923 0 0.000152 0.999848 

5 2.9 0.82 0.14 9.8923 5.7066 0.003131 0.996869 

6 2.9 0.82 0.14 9.8923 66 0.004038 0.995962 

7 2.9 0.82 0.14 200 0 0.587278 0.412722 

8 2.9 0.82 0.14 200 5.7066 0.011127 0.988873 

9 2.9 0.82 0.14 200 66 0.010971 0.989029 

10 2.9 0.82 97.6625 0.05 0 0.004377 0.995623 

11 2.9 0.82 97.6625 0.05 5.7066 0.051408 0.948592 

12 2.9 0.82 97.6625 0.05 66 0.088019 0.911981 

13 2.9 0.82 97.6625 9.8923 0 0.019699 0.980301 

14 2.9 0.82 97.6625 9.8923 5.7066 0.019467 0.980533 

15 2.9 0.82 97.6625 9.8923 66 0.027037 0.972963 

16 2.9 0.82 97.6625 200 0 0.587593 0.412407 

17 2.9 0.82 97.6625 200 5.7066 0.089497 0.910503 

18 2.9 0.82 97.6625 200 66 0.089451 0.910549 

19 2.9 0.82 4563.87 0.05 0 0.587674 0.412326 

20 2.9 0.82 4563.87 0.05 5.7066 0.046369 0.953631 

21 2.9 0.82 4563.87 0.05 66 0.046056 0.953944 

22 2.9 0.82 4563.87 9.8923 0 0.587679 0.412321 

23 2.9 0.82 4563.87 9.8923 5.7066 0.120671 0.879329 

24 2.9 0.82 4563.87 9.8923 66 0.120759 0.879241 

25 2.9 0.82 4563.87 200 0 0.587674 0.412326 

26 2.9 0.82 4563.87 200 5.7066 0.045716 0.954284 

27 2.9 0.82 4563.87 200 66 0.045398 0.954602 

28 2.9 101.9637 0.14 0.05 0 0.072852 0.927148 

29 2.9 101.9637 0.14 0.05 5.7066 0.045814 0.954186 

30 2.9 101.9637 0.14 0.05 66 0.085296 0.914704 

31 2.9 101.9637 0.14 9.8923 0 0.63938 0.36062 

32 2.9 101.9637 0.14 9.8923 5.7066 0.116665 0.883335 

33 2.9 101.9637 0.14 9.8923 66 0.16096 0.83904 
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34 2.9 101.9637 0.14 200 0 0.972972 0.027028 

35 2.9 101.9637 0.14 200 5.7066 0.251805 0.748195 

36 2.9 101.9637 0.14 200 66 0.225665 0.774335 

37 2.9 101.9637 97.6625 0.05 0 0.691537 0.308463 

38 2.9 101.9637 97.6625 0.05 5.7066 0.612189 0.387811 

39 2.9 101.9637 97.6625 0.05 66 0.75006 0.24994 

40 2.9 101.9637 97.6625 9.8923 0 0.983879 0.016121 

41 2.9 101.9637 97.6625 9.8923 5.7066 0.743109 0.256891 

42 2.9 101.9637 97.6625 9.8923 66 0.870792 0.129208 

43 2.9 101.9637 97.6625 200 0 0.997178 0.002822 

44 2.9 101.9637 97.6625 200 5.7066 0.914343 0.085657 

45 2.9 101.9637 97.6625 200 66 0.904247 0.095753 

46 2.9 101.9637 4563.87 0.05 0 0.587886 0.412114 

47 2.9 101.9637 4563.87 0.05 5.7066 0.934717 0.065283 

48 2.9 101.9637 4563.87 0.05 66 0.927295 0.072705 

49 2.9 101.9637 4563.87 9.8923 0 0.58954 0.41046 

50 2.9 101.9637 4563.87 9.8923 5.7066 0.996344 0.003656 

51 2.9 101.9637 4563.87 9.8923 66 0.995868 0.004132 

52 2.9 101.9637 4563.87 200 0 0.587862 0.412138 

53 2.9 101.9637 4563.87 200 5.7066 0.907343 0.092657 

54 2.9 101.9637 4563.87 200 66 0.897179 0.102821 

55 2.9 20971.01 0.14 0.05 0 0.972525 0.027475 

56 2.9 20971.01 0.14 0.05 5.7066 0.066417 0.933583 

57 2.9 20971.01 0.14 0.05 66 0.087319 0.912681 

58 2.9 20971.01 0.14 9.8923 0 0.99926 0.00074 

59 2.9 20971.01 0.14 9.8923 5.7066 0.101359 0.898641 

60 2.9 20971.01 0.14 9.8923 66 0.083837 0.916163 

61 2.9 20971.01 0.14 200 0 0.968595 0.031405 

62 2.9 20971.01 0.14 200 5.7066 0.341026 0.658974 

63 2.9 20971.01 0.14 200 66 0.311119 0.688881 

64 2.9 20971.01 97.6625 0.05 0 0.996807 0.003193 

65 2.9 20971.01 97.6625 0.05 5.7066 0.680134 0.319866 

66 2.9 20971.01 97.6625 0.05 66 0.75491 0.24509 

67 2.9 20971.01 97.6625 9.8923 0 0.999864 0.000136 

68 2.9 20971.01 97.6625 9.8923 5.7066 0.781121 0.218879 

69 2.9 20971.01 97.6625 9.8923 66 0.858802 0.141198 

70 2.9 20971.01 97.6625 200 0 0.994926 0.005074 

71 2.9 20971.01 97.6625 200 5.7066 0.931557 0.068443 

72 2.9 20971.01 97.6625 200 66 0.926228 0.073772 

73 2.9 20971.01 4563.87 0.05 0 0.587861 0.412139 

74 2.9 20971.01 4563.87 0.05 5.7066 0.940885 0.059115 

75 2.9 20971.01 4563.87 0.05 66 0.9372 0.0628 

76 2.9 20971.01 4563.87 9.8923 0 0.588664 0.411336 
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77 2.9 20971.01 4563.87 9.8923 5.7066 0.995915 0.004085 

78 2.9 20971.01 4563.87 9.8923 66 0.995503 0.004497 

79 2.9 20971.01 4563.87 200 0 0.587849 0.412151 

80 2.9 20971.01 4563.87 200 5.7066 0.91665 0.08335 

81 2.9 20971.01 4563.87 200 66 0.911737 0.088263 

82 190.2799 0.82 0.14 0.05 0 0.345411 0.654589 

83 190.2799 0.82 0.14 0.05 5.7066 0.036552 0.963448 

84 190.2799 0.82 0.14 0.05 66 0.049088 0.950912 

85 190.2799 0.82 0.14 9.8923 0 0.580788 0.419212 

86 190.2799 0.82 0.14 9.8923 5.7066 0.044226 0.955774 

87 190.2799 0.82 0.14 9.8923 66 0.060472 0.939528 

88 190.2799 0.82 0.14 200 0 0.587786 0.412214 

89 190.2799 0.82 0.14 200 5.7066 0.231375 0.768625 

90 190.2799 0.82 0.14 200 66 0.2079 0.7921 

91 190.2799 0.82 97.6625 0.05 0 0.949546 0.050454 

92 190.2799 0.82 97.6625 0.05 5.7066 0.314671 0.685329 

93 190.2799 0.82 97.6625 0.05 66 0.41478 0.58522 

94 190.2799 0.82 97.6625 9.8923 0 0.987971 0.012029 

95 190.2799 0.82 97.6625 9.8923 5.7066 0.374288 0.625712 

96 190.2799 0.82 97.6625 9.8923 66 0.485895 0.514105 

97 190.2799 0.82 97.6625 200 0 0.587844 0.412156 

98 190.2799 0.82 97.6625 200 5.7066 0.863237 0.136763 

99 190.2799 0.82 97.6625 200 66 0.849029 0.150971 

100 190.2799 0.82 4563.87 0.05 0 0.587894 0.412106 

101 190.2799 0.82 4563.87 0.05 5.7066 0.954234 0.045766 

102 190.2799 0.82 4563.87 0.05 66 0.949694 0.050306 

103 190.2799 0.82 4563.87 9.8923 0 0.589592 0.410408 

104 190.2799 0.82 4563.87 9.8923 5.7066 0.997286 0.002714 

105 190.2799 0.82 4563.87 9.8923 66 0.996962 0.003038 

106 190.2799 0.82 4563.87 200 0 0.58787 0.41213 

107 190.2799 0.82 4563.87 200 5.7066 0.820472 0.179528 

108 190.2799 0.82 4563.87 200 66 0.828215 0.171785 

109 190.2799 101.9637 0.14 0.05 0 0.607755 0.392245 

110 190.2799 101.9637 0.14 0.05 5.7066 0.305586 0.694414 

111 190.2799 101.9637 0.14 0.05 66 0.428551 0.571449 

112 190.2799 101.9637 0.14 9.8923 0 0.798377 0.201623 

113 190.2799 101.9637 0.14 9.8923 5.7066 0.568648 0.431352 

114 190.2799 101.9637 0.14 9.8923 66 0.714976 0.285024 

115 190.2799 101.9637 0.14 200 0 0.65311 0.34689 

116 190.2799 101.9637 0.14 200 5.7066 0.207195 0.792805 

117 190.2799 101.9637 0.14 200 66 0.499783 0.500217 

118 190.2799 101.9637 97.6625 0.05 0 0.983723 0.016277 

119 190.2799 101.9637 97.6625 0.05 5.7066 0.903934 0.096066 
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120 190.2799 101.9637 97.6625 0.05 66 0.935093 0.064907 

121 190.2799 101.9637 97.6625 9.8923 0 0.96002 0.03998 

122 190.2799 101.9637 97.6625 9.8923 5.7066 0.95534 0.04466 

123 190.2799 101.9637 97.6625 9.8923 66 0.974974 0.025026 

124 190.2799 101.9637 97.6625 200 0 0.777835 0.222165 

125 190.2799 101.9637 97.6625 200 5.7066 0.904929 0.095071 

126 190.2799 101.9637 97.6625 200 66 0.967355 0.032645 

127 190.2799 101.9637 4563.87 0.05 0 0.993686 0.006314 

128 190.2799 101.9637 4563.87 0.05 5.7066 0.979319 0.020681 

129 190.2799 101.9637 4563.87 0.05 66 0.983169 0.016831 

130 190.2799 101.9637 4563.87 9.8923 0 0.99973 0.00027 

131 190.2799 101.9637 4563.87 9.8923 5.7066 0.997387 0.002613 

132 190.2799 101.9637 4563.87 9.8923 66 0.99727 0.00273 

133 190.2799 101.9637 4563.87 200 0 0.587852 0.412148 

134 190.2799 101.9637 4563.87 200 5.7066 0.97173 0.02827 

135 190.2799 101.9637 4563.87 200 66 0.977654 0.022346 

136 190.2799 20971.01 0.14 0.05 0 0.805105 0.194895 

137 190.2799 20971.01 0.14 0.05 5.7066 0.336976 0.663024 

138 190.2799 20971.01 0.14 0.05 66 0.551817 0.448183 

139 190.2799 20971.01 0.14 9.8923 0 0.543805 0.456195 

140 190.2799 20971.01 0.14 9.8923 5.7066 0.600541 0.399459 

141 190.2799 20971.01 0.14 9.8923 66 0.77827 0.22173 

142 190.2799 20971.01 0.14 200 0 0.136863 0.863137 

143 190.2799 20971.01 0.14 200 5.7066 0.318533 0.681467 

144 190.2799 20971.01 0.14 200 66 0.547879 0.452121 

145 190.2799 20971.01 97.6625 0.05 0 0.990087 0.009913 

146 190.2799 20971.01 97.6625 0.05 5.7066 0.931917 0.068083 

147 190.2799 20971.01 97.6625 0.05 66 0.965597 0.034403 

148 190.2799 20971.01 97.6625 9.8923 0 0.861349 0.138651 

149 190.2799 20971.01 97.6625 9.8923 5.7066 0.960368 0.039632 

150 190.2799 20971.01 97.6625 9.8923 66 0.987335 0.012665 

151 190.2799 20971.01 97.6625 200 0 0.307991 0.692009 

152 190.2799 20971.01 97.6625 200 5.7066 0.935368 0.064632 

153 190.2799 20971.01 97.6625 200 66 0.974648 0.025352 

154 190.2799 20971.01 4563.87 0.05 0 0.988476 0.011524 

155 190.2799 20971.01 4563.87 0.05 5.7066 0.972522 0.027478 

156 190.2799 20971.01 4563.87 0.05 66 0.98123 0.01877 

157 190.2799 20971.01 4563.87 9.8923 0 0.999507 0.000493 

158 190.2799 20971.01 4563.87 9.8923 5.7066 0.995673 0.004327 

159 190.2799 20971.01 4563.87 9.8923 66 0.995534 0.004466 

160 190.2799 20971.01 4563.87 200 0 0.587844 0.412156 

161 190.2799 20971.01 4563.87 200 5.7066 0.963471 0.036529 

162 190.2799 20971.01 4563.87 200 66 0.976728 0.023272 



 

277 
 

163 690 0.82 0.14 0.05 0 0.994237 0.005763 

164 690 0.82 0.14 0.05 5.7066 0.015692 0.984308 

165 690 0.82 0.14 0.05 66 0.023481 0.976519 

166 690 0.82 0.14 9.8923 0 0.999771 0.000229 

167 690 0.82 0.14 9.8923 5.7066 0.021153 0.978847 

168 690 0.82 0.14 9.8923 66 0.030448 0.969552 

169 690 0.82 0.14 200 0 0.587701 0.412299 

170 690 0.82 0.14 200 5.7066 0.152895 0.847105 

171 690 0.82 0.14 200 66 0.134767 0.865233 

172 690 0.82 97.6625 0.05 0 0.998851 0.001149 

173 690 0.82 97.6625 0.05 5.7066 0.208573 0.791427 

174 690 0.82 97.6625 0.05 66 0.255116 0.744884 

175 690 0.82 97.6625 9.8923 0 0.999952 4.78E-05 

176 690 0.82 97.6625 9.8923 5.7066 0.270409 0.729591 

177 690 0.82 97.6625 9.8923 66 0.351452 0.648548 

178 690 0.82 97.6625 200 0 0.587831 0.412169 

179 690 0.82 97.6625 200 5.7066 0.806365 0.193635 

180 690 0.82 97.6625 200 66 0.783847 0.216153 

181 690 0.82 4563.87 0.05 0 0.587881 0.412119 

182 690 0.82 4563.87 0.05 5.7066 0.904612 0.095388 

183 690 0.82 4563.87 0.05 66 0.892555 0.107445 

184 690 0.82 4563.87 9.8923 0 0.589831 0.410169 

185 690 0.82 4563.87 9.8923 5.7066 0.994947 0.005053 

186 690 0.82 4563.87 9.8923 66 0.994221 0.005779 

187 690 0.82 4563.87 200 0 0.587853 0.412147 

188 690 0.82 4563.87 200 5.7066 0.673492 0.326508 

189 690 0.82 4563.87 200 66 0.677878 0.322122 

190 690 101.9637 0.14 0.05 0 0.295757 0.704243 

191 690 101.9637 0.14 0.05 5.7066 0.185142 0.814858 

192 690 101.9637 0.14 0.05 66 0.27664 0.72336 

193 690 101.9637 0.14 9.8923 0 0.715158 0.284842 

194 690 101.9637 0.14 9.8923 5.7066 0.327258 0.672742 

195 690 101.9637 0.14 9.8923 66 0.36346 0.63654 

196 690 101.9637 0.14 200 0 0.899136 0.100864 

197 690 101.9637 0.14 200 5.7066 0.090682 0.909318 

198 690 101.9637 0.14 200 66 0.110602 0.889398 

199 690 101.9637 97.6625 0.05 0 0.946372 0.053628 

200 690 101.9637 97.6625 0.05 5.7066 0.815642 0.184358 

201 690 101.9637 97.6625 0.05 66 0.892554 0.107446 

202 690 101.9637 97.6625 9.8923 0 0.925821 0.074179 

203 690 101.9637 97.6625 9.8923 5.7066 0.895763 0.104237 

204 690 101.9637 97.6625 9.8923 66 0.917381 0.082619 

205 690 101.9637 97.6625 200 0 0.961594 0.038406 
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206 690 101.9637 97.6625 200 5.7066 0.729681 0.270319 

207 690 101.9637 97.6625 200 66 0.832643 0.167357 

208 690 101.9637 4563.87 0.05 0 0.994804 0.005196 

209 690 101.9637 4563.87 0.05 5.7066 0.969331 0.030669 

210 690 101.9637 4563.87 0.05 66 0.970189 0.029811 

211 690 101.9637 4563.87 9.8923 0 0.999778 0.000222 

212 690 101.9637 4563.87 9.8923 5.7066 0.997247 0.002753 

213 690 101.9637 4563.87 9.8923 66 0.997051 0.002949 

214 690 101.9637 4563.87 200 0 0.587854 0.412146 

215 690 101.9637 4563.87 200 5.7066 0.956968 0.043032 

216 690 101.9637 4563.87 200 66 0.958458 0.041542 

217 690 20971.01 0.14 0.05 0 0.055135 0.944865 

218 690 20971.01 0.14 0.05 5.7066 0.183821 0.816179 

219 690 20971.01 0.14 0.05 66 0.36706 0.63294 

220 690 20971.01 0.14 9.8923 0 0.024516 0.975484 

221 690 20971.01 0.14 9.8923 5.7066 0.3919 0.6081 

222 690 20971.01 0.14 9.8923 66 0.550473 0.449527 

223 690 20971.01 0.14 200 0 0.049723 0.950277 

224 690 20971.01 0.14 200 5.7066 0.102182 0.897818 

225 690 20971.01 0.14 200 66 0.174508 0.825492 

226 690 20971.01 97.6625 0.05 0 0.571554 0.428446 

227 690 20971.01 97.6625 0.05 5.7066 0.840769 0.159231 

228 690 20971.01 97.6625 0.05 66 0.929877 0.070123 

229 690 20971.01 97.6625 9.8923 0 0.06993 0.93007 

230 690 20971.01 97.6625 9.8923 5.7066 0.9435 0.0565 

231 690 20971.01 97.6625 9.8923 66 0.98077 0.01923 

232 690 20971.01 97.6625 200 0 0.095133 0.904867 

233 690 20971.01 97.6625 200 5.7066 0.818333 0.181667 

234 690 20971.01 97.6625 200 66 0.932999 0.067001 

235 690 20971.01 4563.87 0.05 0 0.990379 0.009621 

236 690 20971.01 4563.87 0.05 5.7066 0.968364 0.031636 

237 690 20971.01 4563.87 0.05 66 0.974095 0.025905 

238 690 20971.01 4563.87 9.8923 0 0.999588 0.000412 

239 690 20971.01 4563.87 9.8923 5.7066 0.996005 0.003995 

240 690 20971.01 4563.87 9.8923 66 0.995825 0.004175 

241 690 20971.01 4563.87 200 0 0.587845 0.412155 

242 690 20971.01 4563.87 200 5.7066 0.956892 0.043108 

243 690 20971.01 4563.87 200 66 0.965653 0.034347 

 


