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1 ABSTRACT 

 

In many countries today, cross-laminated timber (CLT) panels are increasingly being 

used in structural applications. CLT has many key advantages such as high strength-to-

weight ratio in comparison to other common construction materials, excellent 

sustainability credentials, easy handling in construction, quick erection time, and good 

thermal and sound insulation.  
 

CLT exhibits complex behaviour; therefore, powerful theories are required to provide a 

better understanding of the mechanical behaviour of CLT panels and to enable their 

efficient and safe application in structural engineering. From that point of view, 

developing theoretical and numerical solutions for the analysis of CLT panels is an 

active research topic.  
 

A CLT panel is a laminated composite panel and, from an engineering design point of 

view, it can be considered as an orthotropic composite material with an elastic 

behaviour. Existing analytical approaches for CLT panels have limitations in 

applicability and accuracy. Hence, the State Space Approach (SSA) has the potential to 

improve the accuracy and range of applicability over these existing methods. The SSA 

provides theoretically accurate three-dimensional solutions that guarantee continuous 

transverse stress distributions across the thickness of the plates. Also, the boundary 

conditions and the continuity at the interfaces are satisfied (Ye, 2003). Thus, the 

research presented in this thesis will investigate CLT panels using the novel application 

of this approach. 

Before focusing on the specific application to CLT, the general SSA is explored for 

simply supported orthotropic composite plates under different types of out-of-plane 

loads. A new analytical solution by using the SSA for the case of a plate with three 

sides simply supported and one free edge under different out-of-plane loads will be 

developed and the derivations for the equations will be shown in detail. Note that this is 

the first time the SSA formulation for this particular boundary condition has been 

developed. For both the aforementioned and fully simply supported boundary 

conditions, the results obtained by using the SSA are compared with existing 

experimental works, various existing analytical approaches and numerical methods. 
 

To provide more knowledge and understanding of this particular application, numerical 

modelling of CLT using the Finite Element Method (FEM) via ABAQUS is conducted. 

Although the FEM is very applicable in understanding the general structural behaviour 

of the panel, it shows discontinuity of the transverse shear stresses at the interfaces of 

each ply of the CLT since, in the case of solid elements, the transverse stresses are 

obtained from the displacement field not from the equilibrium equations. Crucially, the 

SSA overcomes this problem and shows continuous stress distributions between the 

plies. Ultimately, this work shows that, for the boundary conditions examined, the SSA 

provides an accurate and efficient way to capture the structural behaviour of CLT panels 

subject to out-of-plane loads and can outperform some of the existing analytical 

methods commonly used in practice. 
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1 CHAPTER 1 

INTRODUCTION 

 

 

1.1 Introduction and motivation  

Cross-laminated timber (CLT) elements exhibit complex behaviour. Therefore, rigorous 

theories are required to provide a clear understanding of their structural performance 

and enable their efficient and safe application in construction. In view of this, 

developing theoretical and numerical solutions for the analysis of CLT panels is an 

active research topic. 

Concerning theoretical solutions, two-dimensional theories can provide a good 

prediction of some global responses of thin plates. However, as the thickness of the 

plate increases, the accuracy of the results will decrease, and these theories can give 

only inaccurate inter-laminar stresses. Hence, in this research, a 3D approach called the 

State Space Approach (SSA) has been applied to overcome these limitations and give 

more accurate results. 

The SSA provides theoretically accurate three-dimensional solutions that guarantee 

continuous transverse stress distributions across the thickness of the plates. Also, the 

boundary conditions and the continuity at the interfaces are satisfied. In addition, the 

SSA can give a full range of elastic structural behaviour exactly for various thicknesses 

from thin to very thick plates (Sheng and Ye, 2003). 

In this research, the SSA will be adopted and applied to CLT as a structural engineering 

application; there are, however, inherent limitations in the SSA approach, principally 

the fact that the glued joints are ignored. However, even with this simplification, the 

superior ability of the SSA compared to other standard approaches in capturing the 

stress distributions across the range of practical CLT plate span-to-thickness ratios 
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justifies it being a focus of investigation. For practical design purposes, timber is 

considered to be an elastic material. Similarly, since CLT can be described as 

essentially an orthotropic laminated plate, it would seem the SSA is highly applicable.  

1.2 Research impact 

The outcomes from this research have significant application in structural engineering 

and the construction industry. Increased understanding of the behaviour of CLT panels 

under different types of out-of-plane loads and different boundary conditions and an 

increased range of applicability in terms of panel span-to-depth ratio will lead to design 

efficiencies.  

The primary output of this research aims to create a new analytical solution and apply it 

to the CLT panel for more understanding about the effect of the thickness-to-width ratio 

on the structural behaviour.  

Ultimately, it is intended that the SSA (when applied through a user-friendly interface, 

in this case, the software MATHEMATICA) may provide the engineer with an easy 

way to design CLT panels with different types of loads and boundary conditions. Also, 

this approach has the potential to overcome the limitations inherent in commonly used 

design approaches such as the Gamma method in Eurocode 5, as will be discussed in 

chapters 4 and 5. 

1.3 Thesis outline 

This thesis is constructed as follows: 

Chapter 2 introduces the background to CLT panels in structural engineering 

applications, associated material properties and the design guidance currently available 

for CLT. Also, it reviews different existing experimental work, analytical approaches 

and numerical methods applied to CLT panels under different types of load. 
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Chapter 3 reviews the development and the fundamental concepts of the existing two-

dimensional and three-dimensional plate approaches that will be used later in this 

research. 

Chapter 4 presents the concept of the State Space Approach (SSA) for simply 

supported orthotropic composite plates. For the application of the SSA, different case 

studies are analysed by using the SSA for the determination of structural behaviour of 

general composite plates under different types of out-of-plane load. Then, finite element 

method (FEM) models are validated with SSA results. Following this, the SSA is 

extended to consider laminated composite plates, and a comparison between the SSA 

and an existing analytical approach will be shown. 

Chapter 5 applies the SSA to CLT panels as a novel application subjected to out-of-

plane loads to obtain the 3D analytical solutions that satisfy the boundary conditions 

and the continuity conditions between different laminates. Different case studies will be 

included in this chapter; firstly, the SSA and different existing 2D and 3D analytical 

methods will be validated with different existing experimental tests, then the 3D SSA 

will be compared with different existing 2D and 3D methods with the FEM. 

Chapter 6 presents a new analytical solution using the SSA for boundary conditions 

consisting of three sides simply supported and one free edge. In this chapter, the SSA 

together with the state transfer matrix will be presented to investigate general 

homogenous orthotropic composite plate behaviour with the new boundary condition 

and then existing analytical and FEM results will be compared with the SSA. 

Subsequently, the new analytical solution provided by the SSA will be applied to CLT 

panels. Two case studies will be presented. The studies will consider the CLT panels 

under different types of out-of-plane load. 
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Chapter 7 summarises the work carried out in this research, draws the main 

conclusions of this work and gives recommendations for future work. 

1.4 Objectives 

As will be seen from the next chapter, developing theoretical and numerical solutions 

for the analysis of CLT panels is still an important area of research in order to provide a 

better understanding of structural performance and enable efficient and safe application 

in construction. From this point of view, the main objectives of the work presented here 

are: 

1. To investigate and review the prevailing plate theories applied to the CLT panels. 

2. To introduce and develop a 3D analytical approach called the SSA for CLT panels 

with simply supported boundary conditions under different types of loads, and 

analyse and compare the stresses and the displacements with different existing 

experimental works and analytical approaches. Such theories are required to better 

understand the mechanical potential of CLT panels in timber construction and to 

enable their efficient and safe application in structural engineering. 

3. To develop numerical models by using finite element methods via ABAQUS for 

CLT panels, considering the bonding between the plies, and compare the 

performance with the 3D SSA. 

4. To further develop the simply supported boundary conditions by using the SSA 

that has been discussed in the second objective and explore a new analytical 

solution for three sides simply supported and one free edge, and apply the new 

solution to the CLT panels and compare the new solution with existing analytical 

approaches and numerical FEM under different types of loads. 
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Ultimately, these overall objectives of the research will be to apply the SSA to CLT 

panels and compare the predictions against existing test data, current analytical 

approaches and FEM. Various boundary conditions and stress states reflecting real-life 

CLT elements will be explored. 
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2 CHAPTER 2 

BACKGROUND TO STRUCTURAL TIMBER AND CLT 

 

2.1 Background and characteristics of structural timber 

The use of timber as a structural material dates back millennia. In previous centuries, 

those building with timber did so with an intuitive and inherited understanding of the 

material and its capabilities. Advances in structural engineering in the last 150 years 

have resulted in greater understanding of material behaviour; this is driven by the 

increasing performance demands of today’s built environment. In today’s world, the 

environmental credentials afforded by timber have led to an increased interest in this 

natural material. In parallel with this, new manufacturing technologies for engineered 

timber products such as glulam and cross-laminated timber have enabled timber to 

attain greater applicability than ever before, allowing it to compete with concrete and 

steel in many cases.  

Softwood and Hardwood are the two categories for timber as a structural material 

(Ozelton and Baird, 2006). Softwoods are obtained from coniferous trees and are used 

commonly for structural timber for the following reasons: material availability, ease of 

handling, low cost and fast growth rate. In contrast, hardwood is obtained from broad-

leaved trees and normally has superior durability compared to softwood; for that reason, 

it is often used for claddings. Typically, broad-leaved type trees need a very long time 

to grow and the sourcing of hardwood can be less sustainable compared to softwood 

(McKenzie, 2000). 

For context, in the same span and load scenario, softwood timber in terms of weight can 

be up to six times more efficient than concrete panels and three times more efficient 

than lightweight composites such as graphite-fibre composites (Harris, 2015).  
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Timber is considered an elastic orthotropic composite material, which implies that it 

will recover completely from any deformation after the load is removed. Timber 

strength based on the direction of the component cellular fibres is often referred to as 

the grain; normally these run parallel to the growth direction of the parent tree (in the 

case of timber sourced from the trunk). In reference to the grain direction, timber has 

three principal axes: longitudinal axis parallel to the grain, radial and tangential axes, as 

shown in Figure  2-1.  

The strength and stiffness of timber is much greater parallel to the grain than in the 

radial or tangential directions (i.e. the axes perpendicular to the grain) (McKenzie, 

2000). For commonly used softwoods, the tangential stiffness is usually slightly lower 

than the radial stiffness; this varies depending on the species, Dinwoodie (2000). For 

example, typically for spruce timber, the tangential stiffness would be expected to be 

around 60% of the radial stiffness, Dinwoodie (2000). 

In the present research, the timber material within each CLT lamina is treated as 

orthotropic and the mechanical properties in the two perpendicular directions, i.e. radial 

and tangential to the grain, are assumed to be the same as is common in design practice 

(McKenzie, 2000; American Institute of Timber Construction, 2012; Stürzenbecher et 

al., 2010). 

 

 

 

 

Figure 2-1 Timber structure (McKenzie, 2000). 
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Figure  2-2 shows the typical stress-strain curves for tension and compression behaviour 

of timber when the load is parallel and perpendicular to the grain. In this figure, when 

the load is parallel to the grain (as shown in Figure  2-2(a)), timber shows stronger 

behaviour compared with when the load is perpendicular to the grain as shown in Figure 

2-2(b). In tension, timber exhibits an essentially linear behaviour up to rupture in the 

parallel and perpendicular to the grain directions. In compression, timber exhibits some 

softening behaviour characterised by post-peak crushing. 

Due to its elastic behaviour (Dinwoodie, 2000), as shown in Figure  2-2, Hooke’s law 

can be applied to timber, i.e. the deformations induced when subjected to an external 

force will be directly proportional to the magnitude of the applied force (McKenzie, 

2000). 

  

 

 

 

(a) (b) 

Figure 2-2 Typical stress-strain diagram of timber for (a) load parallel to the grain 

and (b) load perpendicular to the grain (McKenzie, 2000). 

 

As a natural material, solid timber exhibits various imperfections such as knots, shakes 

and wanes. Various engineered timber products have been developed as a means of 

creating a more uniform strength and stiffness behaviour as well as reducing the 

frequency and effect of defects, e.g. Glued Laminated Timber (GLT), Oriented Strand 

Board (OSB), Plywood, Particleboard, Medium Density Fibreboard (MDF) and Cross-

Laminated Timber (CLT) (Kutnar and Muthu, 2016).  
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The work presented in this thesis focuses on CLT. By cross-laminating the softwood 

panels, the dimensional stability of boards along the grain stabilises the cross-grain 

movement of boards laid orthogonally, creating a renewable, low-cost panel product of 

remarkable efficiency (Harris, 2015). The material efficiency of a CLT panel can be 

expressed using the equation proposed by Gordon (1988), i.e. √E
3

ρ ⁄ ; where E is the 

modulus of elasticity and ρ is the density. Further detail of CLT characteristics will be 

presented in the following section. 

2.2 Cross-laminated timber (CLT): Background and characteristics 

CLT is a laminated composite panel used in structural engineering applications forming 

walls, floors and roofs, etc. It was first developed in Switzerland and Austria in the mid-

1990s (Harris, 2015).  

The CLT panel consists of at least three plies of boards orthogonally cross-stacked and 

glued together on their wide faces and, in some cases, on the narrow faces too, typically 

in a symmetric layup, as shown in Figure  2-3. In some specific conditions, double plies 

in the same orientation may be used to improve the structural capacity of the CLT 

members, as shown in Figure  2-4. In material terms CLT can be considered as an 

orthotropic composite.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 Schematic of a CLT panel. 
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Figure 2-4 Specific conditions of CLT panel structure. 

 

The principle of CLT is similar to plywood, whereby the natural timber's reduction in 

strength and stiffness perpendicular to the grain compared to parallel to the grain is 

‘evened out’ with successive laminates with alternate grain orientation. Therefore, the 

crossed layers will improve the structural integrity and dimensional stability (Sutton et 

al., 2011). CLT panels differ from regular plywood and similar engineered timber 

products by their size; typically, CLT sections have a comparable thickness to masonry 

or concrete walls. 

Consequently, CLT panels have significant strength and this has allowed timber to 

compete with concrete and steel in multi-storey applications. Currently, CLT buildings 

of nine storeys or more have been constructed (Stauder, 2013). CLT panels may act as 

one- or two-way systems depending on their application, e.g. walls or floor slabs; see 

Figure  2-5. 

The behaviour of CLT panels as one- or two -way systems is dependent on the 

supporting system. If the panel is supported from two opposite ends only then it will 

behave as a one-way spanning system. Two-way action will be derived the panel is 

supported on all four edges (Lewis et al., 2016). Also, in the case of a rectangular panel 

supported on four edges, the degree of two-way action is dependent on the ratio of the 

long to the short edge. 
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Figure 2-5 CLT panels (a) one-way and (b) two-way. 
 

 

The use of CLT panels has increased in the construction sector over the last 10 years 

due to the significant advantages they offer. The high strength-to-weight ratio, ease of 

handling in construction, quick erection time, and good thermal and sound insulation 

are all key advantages of CLT panels that make them ideal for structural engineering 

applications. The dimensions of each board as shown in Figure  2-6 may vary, with 

ranges in thickness (hboard) from 10 mm to 50 mm and width (Wboard) from 60 mm to 240 

mm. Panel sizes can vary according to manufacturers; common ranges of panel widths 

(Wpanel) are from 0.6 m to 3 m, while thicknesses (hpanel) can be up to 400 mm. In 

practice, panel sizes are limited by handling and transportation constraints; typically, 

lengths (lpanel) up to 18 m are possible (FPInnovations, 2013). 

 

 

 

Figure 2-6 Typical dimensions of a CLT panel. 
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As mentioned previously in regards to the advantages of CLT as a structural material, 

the inherent sustainability of the material and the financial benefits mean that CLT 

panels are being used for a large range of buildings (Pearson, 2014). 

2.2.1 Adhesive bonding 

Adhesive bonding plays a very important role in the strength of the CLT panel. For 

CLT panels, two key parts need to be connected using adhesive bonding, the first one is 

between the boards in the same ply, and the second one is the connection between the 

different plies, as shown in Figure  2-7. Although glueing the edges will give a very 

effective and strong CLT panel, many manufacturers avoid doing so due to the extra 

cost this process incurs (FPInnovations, 2013).  

The use of adhesives follows codified approaches which are often based on 

manufacturers’ experience of using CLT over the last 20 years or so, such as BS EN 

386 (2001) and BS EN 15425 (2008). But also, to use the adhesive bonding properly, 

the applied quantity of adhesive, the bonding pressure and the curing procedure need to 

be accurate and consistent; this is normally done in a controlled, factory environment 

(Harris, 2015). 

There are different types of adhesives; two types that are commonly used in CLT 

manufacture will be presented. The first type is One Part Polyurethane (1K-PUR) and 

the second type is Melamine-Urea-Formaldehyde (MUF). Both of them are colourless 

and are resistant to exposure to sunlight and humidity. Generally, 1K-PUR adhesives 

are more flexible but also more vulnerable to higher temperatures (greater than 60°C) if 

not modified properly; temperatures beyond 60°C lead to rapid loss of stiffness and 

strength. In contrast, the MUF adhesive provides higher resistance to high temperatures, 

and also it is used to fill gaps in the CLT (Brandner, 2014). 



31 

 

 

 

 

Figure 2-7 Adhesive bonding layers between the panels and the plies for CLT. 
 

 

2.3 Mechanical characteristics of CLT and strength grading 

To understand the behaviour of the CLT panels, the mechanical properties of CLT will 

be studied in this section. 

Mechanical properties of the CLT panel as whole can be found in one of two ways. The 

first is to determine the properties of the individual plies (the characteristic values are 

known for each particular grade or category of structural timber). Some form of 

equation is then used to predict the property of the CLT composite. The second option 

Adhesive between panels 

Adhesive between plies 
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is more direct and accurate; this consists of testing the full CLT panel itself as opposed 

to individual plies (Brandner et al., 2016).  

For both ways, certain guidance documents are required when designing and 

understanding the CLT mechanical material properties, such as the Canadian CLT 

handbook (FPInnovations, 2013) and national codes such as British Standards/European 

Norm (BS EN 408, 2012; BS EN 384, 2010 and BS EN 338, 2009).  

In the Eurocode approach, timber is classified as a particular strength class or grade in 

accordance with BS EN 338 (2009); each class has specific characteristic properties 

which are used for design.  

To determine the grade properties for timber through BS EN 408 (2012) and BS EN 384 

(2010), strength, stiffness and density are the three key grade-determining properties in 

Europe. Depending on these key properties, two sets can be specified. The first one is 

related to the bending strength, stiffness and density, and it is based on data from the 

bending test. The second one is related to tension strength, stiffness and density, and it 

is based on data from the tension tests. The bending grade is commonly used for general 

construction timber. But the tensile grade is more suitable for grading of lamellas for the 

glued laminated timber beams (Ridley-Ellis et al., 2016). 

The two grades, bending and tension, are not equivalent to each other, and should not be 

combined together. In some cases, if the bending data test is available, the tension 

properties can be estimated conservatively from bending properties and density. Also, if 

the tension data test is available, the bending properties can be estimated from the 

tension properties and density (Ridley-Ellis et al., 2016).  
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The other secondary properties such as tension and compression strength perpendicular 

to the grain, shear strength and shear modulus could be estimated conservatively from 

either one of the two grades bending or tension (Ridley-Ellis et al., 2016). 

Due to the natural uncertainty of the timber as a natural material, the strength and the 

density are defined by a lower 5
th 

percentile value, but the stiffness is defined by a 

mean. Because of that, timber properties exceed those stated in the different guidance 

such as BS EN 338 (2009), especially the secondary properties. Timber strength classes 

are reports of populations not pieces, so the grading does not work on an individual 

piece level. Although certain pieces of timber are assigned to a specific strength class 

they might not all have the same strength and so some pieces may be under the 

requirements of the strength class (Ridley-Ellis et al., 2016).   

As mentioned before, in section  2.1, softwood and hardwood are the two classes of 

timber depending on the strength and the uses of them in the construction field. For 

softwood species, the strength classes are C14, C16, C18, C20, C22, C24, C27, C30, 

C35, C40, C45 and C50. For hardwood species, the strength classes are D18, D24, D30, 

D35, D40, D50, D60 and D70. To make it clear, Table  2-1 shows one example of the 

characteristic strength properties of C24-grade timber; this is the most commonly used 

grade for CLT plies in Europe. In this table, according to BS EN 384 (2010), the 

number of tested specimens in each sample shall be more than 40. For the bending 

strength, the sample depth is 150 mm and the overall span is 18 times the specimen 

depth. For the tensile strength, the sample width should be 150 mm. However, for the 

strength properties of shear, tension and compression perpendicular to the grain, the 

specimen section should be in a position that can be tested and at failure is expected to 

happen (BS EN 384, 2010). 
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If the values of the bending strength and density of the set of timber are equal to or 

greater than the values of the strength class shown in Table  2-1, the set of timber may 

be assigned to this specific strength class, and its mean modulus of elasticity in bending 

is equal to or exceeds the 95
th

 percentile of the value of the specific strength class that 

has been assigned for it.  

 

In the design procedures for CLT, there are three main types of loads that need to be 

considered: the in-plane axial loads, the in-plane shear loads and the out-of-plane loads. 

Also, rolling shear strength and stiffness has a big effect on the behaviour of CLT and 

may control its design since the loads transfer between the different plies of the CLT 

through the rolling shear (Harris, 2015). 

In this research, CLT under out-of-plane loads will be the focus area, and, in the next 

chapter, detailed reviews of different experimental, theoretical and numerical analysis 

for CLT will be presented. 

2.4 Overview of existing plate theories for modelling out-of-plane behaviour 

When a CLT panel is loaded in bending, alternate layers (the parallel and perpendicular) 

are loaded parallel and perpendicular to the grain. As mentioned previously, the elastic 

modulus of the CLT loaded across the grain is small compared to that along the grain, 

so according to that the plies loaded perpendicular to the grain can be assumed to be 

relatively unstressed (Harris, 2015). 

Table 2-1 C24-Grade timber strength properties of CLT in accordance with BS 

EN 338 (2009) and BS EN 14080 (2013) in MPa. 

Bending = 24 

Tension parallel to the grain (σ1t
* ) = 14  

Tension perpendicular to the grain (σ2t
* ) = (σ3t

* ) = 0.4 

Compression parallel to the grain (σ1c
* ) = 21 

Compression perpendicular to the grain (σ2c
* ) = (σ3c

* ) = 2.5 

Shear (τ12
* ) =(τ13

* ) = 4 

Rolling shear (τ23
* ) = 1.2 
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For the safety of the structure, the out-of-plane bending stress resulting from the applied 

load should be checked against the design bending strength. The Eurocodes adopt a 

Limit State Approach to the design of CLT structures, with the two main states being 

Ultimate Limit State (ULS) and Serviceability Limit State (SLS) (Harris, 2015).  

SLS relates to specific in-service requirements for a structure such as deflection and 

vibration. ULS is concerned with ultimate strength and avoiding structural failure 

(McKenzie, 2000). For ULS, the ultimate stress is determined by multiplying the 

characteristic stress by a factor of safety, then comparing it with the ultimate capacity of 

the material itself. 

2.4.1 Existing experimental work on out-plane behaviour of CLT 

To understand CLT itself, a significant number of experimental investigations have 

been undertaken over the last 10 to 15 years. To gain an insight into the accuracy of 

current design approaches, particularly for bending, Hochreiner et al. (2014) focused on 

the global failure mechanisms and the different rupture patterns in CLT panels with 

three and five plies. Also, Czaderski et al. (2007) investigated the mechanical behaviour 

of 3-ply CLT panels with different thickness-to-width ratios from 0.025 to 0.25 under 

three different types of load. The tests aimed to estimate the actual modulus of elasticity 

and the strength of the bonded panels. They also compared their data with existing 

beam and plate methods. Similarly, a detailed plate-bending experiment on CLT panels 

was carried out by O’Dowd et al. (2016).  

O’Dowd et al. (2016) found the bending stiffness of CLT panels experimentally. They 

used three different specimen sizes to develop a detailed understanding of the accurate 

bending stiffness. The CLT panel used in the test consisted of a five-lamina panel. 

Crucially, specimens from each lamina were tested in order to define their properties to 

accuracy greater than the declared standard grade strengths. It was reported that the 
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failure was inclined towards a brittle mode. The bending stiffness obtained 

experimentally was compared with three different theoretical methods: the 

mechanically jointed beam theory (Gamma-method), the composite theory (K-method) 

and shear analogy method. It was concluded that the K-method and shear analogy 

method underestimate the experimental stiffness, although the Gamma method gives 

reliably conservative results compared with the experimental results. A similar trend 

has been reported by other researchers, e.g. Thiel and Schickhofer (2010) and Vilguts et 

al. (2015).  

Using the three theoretical methods investigated by O’Dowd et al. (2016), Sikora et al. 

(2016) studied the effect of the thickness of the CLT panels on the bending and shear 

strength. They found for the three analytical methods that, as the thickness of the CLT 

panel increases, the nominal ultimate bending strength decreases. The same trend was 

also observed for the shear strength. In addition, it was noticed that the bonding process 

used to form the CLT panel and the resulting quality of the bond are influential in the 

type of failure.  

Failure modes are classified into different possible modes; the first one is the tensile 

failure in the longitudinal direction and perpendicular to the grain of the CLT plate. The 

second one is the compressive failure in the longitudinal direction; this failure is usually 

associated with fibre composites. The third one is a tensile failure in the radial 

direction; this one may occur due to shear stress parallel to the grain or rolling shear 

perpendicular to the grain. The fourth type is a tensile failure in the tangential direction. 

This type as a result of the lateral tensile bending stress or rolling shear. The fifth one is 

the shear failure parallel to the grain. The sixth one is the failure of edge glueing and 

the final one is the interface failure between single layers (Hochreiner et al., 2014). 
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Of the three theoretical methods commonly used in design calculations by O’Dowd et 

al. (2016) and Sikora et al. (2016), the first one, the Gamma-method, was introduced by 

Möhler and is derived using simple beam theory (Möhler, 1955); therefore, all its basic 

assumptions are valid. It assumes the normal to the plate remains normal to the 

deformed plate and the normal undergoes no extension or shortening.  

Consequently, transverse shear strains γxz, γyz, and the normal strain in the z-direction εz 

disappear. Also, the mid-plane of the plate undergoes no in-plane deformation, i.e. u(at z 

= 0) = v(at z = 0) are equal to zero.  

Furthermore, the normal out-of-plane stress σz is negligible in comparison with other 

stress components. The gamma method was originally developed for mechanically 

jointed I’beams. In the original method, the gamma factor (connection efficiency factor) 

denoted the degree of fixity and slip associated with the mechanical fasteners (gamma = 

0 for no connection and gamma = 1 for full connectivity). The method has been adapted 

for CLT such that the gamma factor represents the slip associated with the rolling shear 

in the laminae with grains orientated perpendicular to the outer panel grain, typically 

gamma may vary between 0.85 and 1 for CLT (FPInnovations, 2013). The premise of 

the adaptation to CLT is that the longitudinal boards take most of the load, then it could 

be assumed that these boards are connected by imaginary fasteners which have stiffness 

equal to that of the cross layers’ rolling shear stiffness (Zhou et al., 2017). Using the 

gamma factor, an effective bending stiffness (EIeff) can be derived for the CLT panel as 

a whole. In the gamma method, shear deformations are neglected in the longitudinal 

layers of the CLT, however, the shear deformations are included in the cross layers as 

these are equal to the rolling shear deformations. 

With regard to the K-method described by O’Dowd et al. (2016) and Sikora et al. 

(2016), the K-factor depends on loading and panel orientation but does not account for 
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shear deformation in individual boards. The third approach is a shear analogy method 

introduced by Kreuzinger, and it is the most accurate method among the three methods 

for the analysis of CLT panels, as shown in Figure  2-8, because this method takes into 

account the shear deformation of the cross-ply (FPInnovations, 2013). 

By combining different types of experimental tests on the CLT panels, Saavedra Flores 

et al. (2015) obtained different CLT stiffness by applying bending, shear and 

compression loads. For the bending load, the experiment was the same as O’Dowd et 

al. (2016) and its purpose was to determine the bending stiffness of the CLT panels 

parallel to the grain. For the in-plane shear test, the Chilean standard to determine the 

in-plane shear stiffness was adopted (Saavedra Flores et al., 2015). Finally, for the axial 

compression test, they obtained the axial stiffness of CLT panels. 

CLT panels can be manufactured having different combinations of ply grade and 

thickness. Therefore, evaluating the strength of CLT experimentally can be time-

consuming and expensive (Oh et al., 2015). In response to this, numerical and analytical 

models are adopted to define the panel strength.   

 

Figure 2-8 Relative errors for different theoretical methods based on O’Dowd et 

al.'s (2016) experiment. 
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In the following section, various prevalent analytical approaches for CLT will be 

explored and discussed in detail. 

2.4.2 Existing analytical approaches for CLT 

The mathematical description of the structural behaviour of CLT regarding the accurate 

calculation for engineering purposes has not yet been fully developed. Therefore, many 

researchers have used different types of plate theories to analyse CLT, especially 2D 

theories. Due to the limitations of the 2D plate theories, as will be mentioned, 

researchers have started to apply 3D approaches to analyse and fully understand the 

behaviour of CLT (Albostami et al., 2017).  

In an investigation of common existing plate theories for CLT, Sturzenbecher et al. 

(2010) and Sturzenbecher and Hofstetter (2011) applied both 2D and 3D approaches to 

CLT panels, comparing the accuracy of each. 2D theories explored included Classical 

Plate Theory (CPT), First-order Shear Deformation Theory (FSDT) and more advanced 

theories such as those outlined by Ren (1986). The 3D approach utilised what is termed 

as an exact solution as outlined by Pagano (1970). In reference to the Pagano approach, 

the term ‘exact solution’ refers to a solution that captures the entire physics of the 

problem within the context of an idealised, perfectly elastic material (Wolfram 

Research, 2016). Also, Bailey (1976) defines the exact solution as a solution that 

satisfies the equilibrium of the differential equation and the boundary condition 

equation.  

 The accuracy of these theories was evaluated for different laminate layups with three to 

seven layers, having different thickness-to-width ratios from 0.025 to 0.25 under 

different transverse loading conditions. In addition, experimental data by Czaderski et 

al. (2007) was used as a comparison for the various analytical solutions. Unfortunately, 

for thick plates with a thickness-to-width ratio of 0.2 and larger, and for concentrated 
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loads, the 2D theories fail to obtain accurate results in comparisons with results from 

numerical models and analytical solutions. Interestingly, Sturzenbecher et al. (2010) 

and Sturzenbecher and Hofstetter (2011) found that the Ren (Ren, 1986) approach is the 

most efficient and accurate 2D theory in describing the structural behaviour of CLT 

panels. Sturzenbecher and Hofstetter (2011) compared the results from the 2D Ren 

theory with the 3D elasticity solutions given by Pagano (1970) (as shown in Figure  2-9) 

and obtained a good agreement. These approaches will be studied and analysed in 

Chapter 5. However, the approaches implemented by Sturzenbecher et al. (2010) and 

Sturzenbecher and Hofstetter (2011) had limitations; primarily, the effect of the 

transverse normal stress σz is neglected and the deflection w is assumed to be a constant 

across the thickness of the plate. 

Albostami et al. (2017) first applied the State Space Approach to CLT. This is a 3D 

analytical approach which has the potential to overcome some of the shortcomings of 

existing plate theories commonly used for CLT. The basis and formulation of the SSA 

will be discussed in detail in Chapter  4. The SSA results for 5-ply CLT panels under 

different types of load were compared with existing 2D and Pagano’s approach that 

have been studied by Sturzenbecher and Hofstetter (2011). Experimental data from 

Czaderski et al. (2007) was used to validate the SSA results. The SSA approach was 

shown to solve the problem of the existing approaches concerning the thickness 

limitation. 

In the next chapter, more detailed discussion of the plate theories that are commonly 

applied to composite plate will be provided for more understanding about the theories 

themselves.  

In the following section, the existing numerical models for CLT panels will be explored 

and discussed in detail. 
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2.4.3 Existing numerical modelling for CLT 

Several studies have been carried out in this field including some of the analytical 

approaches previously described, but, unfortunately, some of these approaches can be 

cumbersome to use. For that reason, researchers have studied the complex behaviour of 

CLT by using numerical methods like the Finite Element Method (FEM). When using 

FEM, it is important to understand the associated limitations and the sensitivities to 

different factors such as element mesh size and element types. 

In 2015, Shahnewaz et al. validated the numerical model by the experimental data that 

was conducted on CLT beams and walls by FPInnovations (2013) to measure the load 

versus displacement response and to determine the in-plane stiffness behaviour of CLT 

panels. The FEM model was developed using the commercially available software 

ANSYS. As one of the most important considerations when modelling of CLT panels is 

how to represent contact and bond between the panels’ different layers, Shahnewaz et 

al. used contact elements and a high frictional coefficient based on the high stiffness of 

the glue. The FEM model gave accurate results with an approximate 10% difference to 

the experimental data in predicting the elastic stiffness of CLT panels. Using the 

validated model, a parametric study was conducted to explore the effect of panel 

thickness on the in-plane stiffness of CLT panels. Shahnewaz et al. found that, when the 

thickness of the panels is doubled, the stiffness is increased by up to 24%. The resulting 

increase would seem lower than what would be expected from first principles, i.e. 

elastic stiffness is proportional to the cube of the depth. Some of the shortfalls may be 

attributed to the efficiency of the bond between laminae. Serrano and Enquist (2010) 

simulated the experimental compression tests on a square 3-ply CLT panel. The 

compression force was uniformly distributed over the complete top surface. The main 

aim of the tests was to investigate the effect of the load distribution within the test 

specimen. For the FEM model, Serrano and Enquist recommended that the interaction 
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between the individual boards within the specimen be taken into account for more 

accurate results.  

Their tests found that, at low load levels, large strains have already developed at the 

interface between the plies of the CLT. Therefore, in order to fully capture the actual 

response, particularly post-peak behaviour observed in the test, they suggested an 

orthotropic plastic material model. 

Vilguts et al. (2015) simulated via ANSYS an experiment on two CLT panels with a 

total thickness of 95 mm under distributed load. They compared the stresses acting on 

the edge of the plate and the maximum vertical displacement with boundary conditions 

consisting of two simply supported sides with free edges. The comparisons between the 

models and the corresponding experimental results were in reasonable agreement and 

had a maximum observed difference of 20%. As is the case with any FEM model, the 

present research found that a sensitivity investigation (described later) for the model 

should be undertaken as the choice of mesh size and element type will affect the 

simulation results. 

To gain an improved understanding of the behaviour of CLT panels including shear 

failure, 5- and 7-ply CLT panels under centred concentrated loads were studied by 

Bogensperger and Jöbstl (2015). The different parameters that affect the shear 

behaviour, e.g. span-to-thickness ratio, etc., are investigated numerically. Non-linear 

analysis was carried out by using FEM. For simplification in their model, all the stresses 

in the interactions between the layers were neglected. The FEM stress-strain behaviour 

was compared with corresponding experimental data and both the linear elastic and non-

linear parts of the curves were studied. It was found that the agreement between the 

experiment and the FEM results was good with approximate differences less than 20% 

in the linear elastic response, but, for the non-linear stage, the mechanical strength in the 
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experimental specimen was overestimated by a greater margin. The results were 

improved after the softening of the material was added to the model.  

In the same way, Saavedra Flores et al. (2015) investigated the mechanical behaviour of 

CLT panels by FEM within a multi-scale model. Saavedra Flores et al. validated their 

models against a series of experimental tests for bending, in-plane shear and axial 

stiffness properties. The numerical models gave good agreement compared with the data 

from the experiments; in particular, the relative error was around 11%. The work was 

aimed at capturing the natural randomness found in the mechanical properties of the 

timber by introducing uncertainty in the definition of the material itself that was making 

up the CLT panels and to introduce corresponding detailed material properties. To study 

the uncertainty in the material, Saavedra Flores et al. (2015) proposed a specific 

strategy for the simulation modelling that can consider some of the not well-known or 

variable properties when measuring any experiments for the material. In each 

simulation, these parameters are studied one-by-one within a specific range of variation, 

while the other parameters are kept fixed. 

To make it easy to follow the existing numerical studies mentioned before in this 

section, Table  2-2 shows these studies with a summary of the focus area for each one. 

In view of the existing numerical work on modelling CLT via FEM, a comparison of 

the proposed SSA with FEM (both methods conducted by the present author) will be 

presented in chapters 5 and 6 of this thesis. 
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Table 2-2 Existing numerical modelling for CLT. 

Name of the 

researcher 

Year of 

the 

research 

Relative error 

compared to the 

experimental data 

Main focus points 

Serrano and 

Enquist 
2010 - 

 The interaction between the individual boards within the specimen is 

recommended to be taken into account for more accurate results. 

 An orthotropic plastic material model is suggested to fully capture the actual 

response of the CLT panels. 

Shahnewaz et al. 2015 10% 

 Contact elements and a high frictional coefficient based on the high stiffness of 

the glue were used in the model. 

 A parametric study was conducted to explore the effect of panel thickness on the 

in-plane stiffness of CLT panels. 

 The thickness of the panels is doubled when the stiffness is increased by up to 

24%. 

Vilguts et al. 2015 Less than 20% 
 A sensitivity investigation for the model should be undertaken as the choice of 

mesh size and element type will affect the simulation results. 

Bogensperger 

and Jöbstl 
2015 Less than 20% 

 Non-linear analysis was carried out on the CLT model under centred concentrated 

loads. 

 For the non-linear stage, the mechanical strength in the experimental specimen 

was overestimated by a greater margin. The results were improved after the 

softening of the material was added in the model. 

Saavedra Flores 

et al. 
2015 Around 11% 

 Capturing the natural randomness found in the mechanical properties of the 

timber. 
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2.5 Summary 

In this chapter, an overview of structural timber and CLT has been presented. The 

associated material characteristics and behaviour of CLT under different types of loads 

have been discussed. The various available design guides and in particular the 

associated Eurocodes have been introduced. 

Also, an investigation of the existing experimental, analytical and numerical methods 

used to obtain proper and accurate solutions for CLT panel stress states has been 

presented in this chapter. 

A summary of the literature review presented in this chapter is provided in Figure  2-9. 

This figure also provides an overview of the salient work that researchers have carried 

out so far concerning the existing studies on CLT panels and the engineering 

applications. 
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Figure 2-9 Flowchart of a summary of the existing studies of CLT panels.

Experimental Studies 

O’Dowd et al. 

(2016) 

Theoretical Investigations 

2D Approach 

Ren (1986) 

Quasi-3D Approach 

Pagano (1970) 

Sturzenbecher et al. 

(2010) 

Sturzenbecher & Hofstetter 

(2011) 

3D (SSA) 

Albostami et al. 

(2017) 

Hochreiner et al. 

(2014) 

Czaderski et al. 

(2007) 

Thiel & Schickhofer 

(2010) 

Vilguts et al. 

(2015) 

Sikora et al. 

(2016) 
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3 CHAPTER 3 

PLATE THEORIES: REVIEW OF EXISTING THEORIES AND 

APPROACHES 

 

3.1 Introduction 

According to Reddy (2004) and Ghugal and Shimpi (2002), many approaches have been 

used for the analysis of composite plates including Classical Plate Theory (CPT) and 

shear deformation plate theories. However, the accurate behaviour of the composite 

material should be based on 3D rather than 2D approaches due to the limitations of the 

2D theories, as will be discussed later in this chapter. Also, in this chapter, the 

fundamental concepts of the existing 2D and 3D approaches that will be used later in 

the upcoming chapters will be reviewed. 

3.2 General plate theories 

Plate theories are classified as Two-Dimensional (2D) theories, Layerwise theories and 

Three-Dimensional (3D) approaches. In this section, some of the plate theories will be 

discussed in detail. In regards to Two-Dimensional (2D) plate theories, the following 

are explored: Classical Plate Theory (CPT), First-order Shear Deformation Theory 

(FSDT) and Higher-order Shear Deformation Theories (HSDT). Following this, 

Layerwise Theories and, finally, Pagano’s approach and the SSA will be explored as 3D 

plate theories. 

In this research, the 3D SSA will be adopted for the next analysis chapters. 

3.2.1 Two-dimensional (2D) plate theories 

2D plate theories are derived from 3D elasticity formulation theory by making 

appropriate assumptions to reduce 3D to a 2D problem relating to the kinematics of 

deformation or the stress state as a linear combination of unknown functions through the 

thickness coordinate (Reddy, 2004). 
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For laminated structures, the deformations are assumed to be continuous functions of 

the thickness coordinate, as shown in Figure  3-1 and Figure  3-2. As a result of that, the 

resultant transverse strains are continuous too; moreover, the inter-laminar stresses in 

2D plate theories are discontinuous between adjacent layers at the interface of dissimilar 

materials (Han, 2014). 

 

Figure 3-1 Deformation of a transverse normal according to the Classical Plate 

Theory, First-order and Higher-order Shear Deformation Theories (Reddy, 2004). 

 

 

 

 

 

Figure 3-2 Deformation profiles represented by different shear deformation models 

(Kreja, 2011). 

CPT 

Undeformed 

FSDT 

HSDT 

HSDT 
FSDT 
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3.2.1.1 Classical Plate Theory (CPT) 

The CPT, as the first plate theory, which was proposed by Kirchhoff in 1850, is the 

simplest plate theory. The Love-Kirchhoff plate theory is an extension to the CPT for 

composite plates. 

The Love-Kirchhoff plate hypothesis is a generalisation of the plane section assumption 

in the beam theory. It assumes that, firstly, the normal to the plate remains normal to the 

deformed plate and the normal undergoes no extension or shortening. Consequently, 

transverse shear strains γxz, γyz, and the normal strain in the z-direction εz disappear. 

γxz = 1 2⁄ (
∂w

∂x
+ 

∂u

∂z
)= 0 , γyz = 1 2⁄ (

∂w

∂y
+ 

∂v

∂z
)= 0 and εz= 

∂w

∂z
 = 0 ( 3-1) 

 

Where u and v are the in-plane deformations and w is the out-of-plane deformation. 

Also, γxz is the shear strain along the x and z-axes, γyz is the shear strain along the y and 

z-axes and εz is the normal strain along the z-axis. 

Secondly, the mid-plane of the plate undergoes no in-plane deformation, i.e. u(at z = 0) = 

v(at z = 0) are equal to zero. Thirdly, the normal out-of-plane stress σz is negligible in 

comparison with the other stress components. 

In spite of its inaccurate results, CPT is still widely used as a basic analysis method for 

the composite plate. Furthermore, it gives quick predictions for the behaviour of thin 

plates and estimates of the global response such as gross deflection, bending analysis 

and buckling (Han, 2014). 
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3.2.1.2 First-order Shear Deformation Theory (FSDT) 

In order to overcome the limitations of the CPT, another 2D plate theory was proposed 

by Reissner (1945). Reissner’s theory is based on modelling the plate structure as two-

dimensional structures with the assumption of the stress variation through the thickness 

of the plate. The theory takes into account the shear deformation and the transverse 

normal stresses. It is considered as a stress-based shear deformable plate theory. 

Mindlin (1951) proposed a displacement field through the plate thickness to account for 

the effect of shear deformation. Mindlin and Reissner’s theory is called the First-order 

Shear Deformation Theory (FSDT) as it proposes a linear variation of the displacements 

through the plate thickness (Rashed, 2000). The most important feature of the plate 

theories in regard to shear deformation is that they can be used to analyse both thin and 

medium thickness plates (i.e. a thickness-to-width ratio 0.2 and less) (Onate, 1989).  

The FSDT extends the kinematics of the CPT by including a gross transverse shear 

deformation in its kinematics assumptions; the transverse shear strain is assumed to be 

constant through the thickness; it follows that the transverse shear stress will also be 

constant. To adjust the transverse shear stiffness, the shear correction factors are 

required due to a constant shear strain distribution across the plate thickness resulting 

from the linear interpolation of the displacement field in the direction of the plate 

thickness (Kreja, 2011), and it depends on the following factors: the lamination 

parameters, geometry, loading and boundary conditions (Reddy, 2004). 

The accuracy of the results mainly depends on the shear correction factor (Han, 2014). 

In order to analyse and calculate the transverse stresses accurately and to consider other 

complicated boundary conditions, the Higher-order Shear Deformation Theories are 

introduced. 



51 

 

3.2.1.3 Higher-order Shear Deformation Theory (HSDT) 

Second- and Higher-order Shear Plate Theories (HSDT) are based on the same 

assumptions as the CPT and FSDT, except that HSDT considers higher-order 

polynomials in the expansion of the displacement components through the thickness of 

the plate. Levinson (1980) proposed a Third-order Shear Deformation Theory for 

isotropic plates of uniform thickness, and it was found there was no need to use the 

shear correction factor in this theory. In addition, these theories are seen to provide a 

better approximation to the results obtained from FSDT and can give more accurate 

inter-laminar stress distribution. However, they involve higher-order stress resultants 

that are difficult to understand physically and require much more computational effort 

(Reddy, 2004). Moreover, the HSDT does not guarantee the inter-laminar continuity 

(Carrera, 1996). Therefore, such theories should be used only when necessary. 

3.3 Layerwise theories 

The previous 2D theories, defined as Equivalent Single Layer Plate Theories (ESLT), 

show the computational convenience that the number of independent variables does not 

depend on the number of layers. The layerwise theories were developed by assuming 

separate displacement field expansions within each material layer; in this case, each 

layer has the same number of independent variables (Sturzenbecher et al., 2010). In 

these theories, each layer is modelled as an independent plate, and then, at the layer 

interfaces, the compatibility of the displacement component is introduced as a 

polynomial function. Also, the displacement components are assumed to be continuous 

through the laminate thickness, but the derivatives of the displacements with respect to 

the thickness may be discontinuous (Guo et al., 2014). 

Many researchers have studied and reviewed the efficiency of the layerwise theories 

compared to ESLTs, e.g. Noor and Burton (1990) and Reddy (1993). 
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Zigzag behaviour describes the changes in the slope of the displacement and the stresses 

through the thickness. Lekhnitskii (1968) was the first to propose a zigzag theory, which 

was obtained by solving the elasticity problem involving a layered beam. The general 

distribution of the displacements and transverse stresses through the thickness of 1-ply 

and 3-ply composite laminate has been given by Carrera (2003), as shown in Figure  3-3. 

From this figure, the displacements must be continuous for compatibility reasons and 

the layers assumed to be perfectly bonded between each other and the transverse 

stresses are continuous through the thickness due to equilibrium reasons (Carrera, 

1997). 

Based on a new variation principle proposed by Reissner (1984), Murakami (1986) 

achieved an improvement by including a zigzag-shaped function to approximate 

thickness variation of in-plane displacements. Ren (1986) takes into account the 

influence of Poisson’s ratio and the transverse shear stresses and in-plane displacements 

are continuous between layers. Murakami and Ren's methods lead to very accurate 

results for displacements and stresses examined by the 3D analytical solution obtained 

by Pagano (1969). 
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Figure 3-3 General distribution of the displacements and transverse stresses through 

the thickness of (a) one isotropic and (b) multi-layered composite laminate (Carrera, 

2003). 
 

2D plate theories provide an accurate description of global response for thin to 

moderately thick plates (thickness-to-width ratio 0.2 and less) (Onate, 1989). 

Furthermore, the 2D models often inaccurately describe the state of stress and strain at 

the ply level near geometric and material discontinuities or near regions of intense 

loading. In such cases, 3D theories are required (Reddy, 2004). 

3.4 Three-dimensional (3D) plate theories 

To overcome the limitations of the 2D solutions for plates, the 3D solutions take into 

account the constitutive equations of linear 3D elasticity, the kinematic equations and 

the stress equilibrium equations. The boundary conditions and the continuity at the 

interfaces are satisfied. 3D solutions provide detailed investigations into global and 

local responses of plates and give accurate estimates of the mechanical behaviour (Han, 

2014). 
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Two approaches will be explored in this review. The first one is Pagano’s approach and 

the second one is the State Space Approach (SSA). 

3.4.1 Pagano’sapproach 

In this approach, Pagano transferred the three-dimensional partial differential equations 

to a set of ordinary differential equations with respect to the thickness coordinate. The 

ordinary differential equations are then solved analytically. 

Pagano initiated this approach in 1969. He studied the plane strain problem of the 

isotropic and orthotropic laminates under cylindrical bending. For cylindrical bending, 

the boundary conditions and the load can vary only in the x-direction, as the y-direction 

is assumed to be infinite (Jairazbhoy et al., 2008; Nimbolkar and Jain, 2005). As this 

did not include the normal transverse stress in the equilibrium equation, the solution 

was still considered as a quasi-3D solution. However, Pagano did compare his result 

with that from CPT. 

 It was found the CPT solution for stresses and displacements converged to the quasi-

3D solution as span-to-depth ratio increased and the laminates became thinner and 

thinner. This approach was extended to the 3D structural behaviour of rectangular 

bidirectional composites and sandwich plates (Pagano, 1970). 

In Pagano (1970), the in- and- out of plane displacements u, v and w are defined by 

Fourier series, and the accuracy of the solution depends on the number of Fourier series 

terms (m and n). To obtain a 3D solution for a singly-ply orthotropic plate with simply 

supported four edges, a sixth-order differential equation governing the out-of-plane 

displacement wmn was obtained: 

∂
6
wmn

∂z
6 + A

∂
4
wmn

∂z
4 + B

∂
2
wmn

∂z
2  + Cwmn = 0 ( 3-2) 



55 

 

Where A, B and C are constants that can be determined by the number of Fourier series 

terms (m and n) and the material properties of the plate (Pagano, 1970; Han, 2014). 

3.4.2 State Space Approach (SSA) 

The approach that has been introduced here for the 3D plate theory is called the State 

Space Approach (SSA) (Wu et al., 2015). The term ‘state space’ derives from the linear 

control system where the principal concern is the relationship between inputs (or 

source) and outputs (or responses) (Ye, 2003). In general terms, the SSA describes the 

state of the system at a given time or point in space. 

For 3D analysis of laminated plates, after introducing the boundary conditions, the 

displacements and the transverse stresses at the bottom surface of the plate (termed as 

the initial state of the system) are determined. The displacements and stresses at the top 

surface of the plate can be found at any x and y locations; then, any displacements and 

transverse stresses could be found through the thickness of the plate. Once the 

displacements and the transverse stresses are found, the in-plane stresses can be 

calculated directly. For a homogeneous anisotropic plate, the three-dimensional 

equations can be represented by the system of partial differential equations (Ye, 2003) 

as follows: 

∂

∂z
{F}=[G]{F}+{B} ( 3-3) 

Herein, {F} = [u v σz τxz τyz w]
T
 is called the state vector of the plate; [G] is named as the 

system state matrix whose elements are functions of material and geometric constants of 

the plate and also partial differential operators with respect to the other two in-plane 

coordinates; and {B} is a vector associated with initial stresses, strains and 

temperatures. 
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The SSA provides theoretically accurate three-dimensional solutions that guarantee 

continuous transverse stress distributions across the thickness of the plates. Also, the 

boundary conditions and the continuity at the interfaces are satisfied. Additionally, the 

SSA can give a full range of structural behaviour exactly for various thicknesses from 

thin to very thick plates (Sheng and Ye, 2003). 

The SSA considers all displacement and transverse stress components as the primary 

state variables simultaneously. The boundary conditions on the top and the bottom 

surfaces are directly related to them. Initially, the approach originated from Vlasov 

(1957), who stated a state variable equation for the solution of the 3D elasticity by using 

the method of initial functions. Later, it was considered by Bahar (1975) as a state space 

setting for homogeneous and isotropic plates. As one of the pioneering researchers in 

3D elastic theory, Wu (1987) introduced SSA to a 3D thick plate analysis. Fan and Ye 

(1990) presented a theoretically exact solution based on the state space method for 

statics and dynamics of orthotropic thick plates with simply supported edges. All 

fundamental equations of three-dimensional elasticity can be exactly satisfied, and the 

nine elastic constants for orthotropic materials can be considered. In addition, the 

approach extended by Fan and Ye can be applied to the buckling of a thick orthotropic 

plate. Likewise, Wu and Wardenier (1998) achieved a theoretically exact 3D elasticity 

solution for simply supported thick, orthotropic and rectangular plates subjected to 

arbitrary loading. In fact, they obtained a sixth-order differential equation governing the 

transverse displacement for the first time in comparison with the fourth-order 

differential equation that is used in CPT.  

In 2012, Kamis presented the structural behaviour of Fibre-Reinforced Polymer (FRP) 

laminated composites by using the SSA. The investigation focused on the performance 
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of a laminated rectangular plate of length a and width b subjected to different loading 

conditions with fully fixed edges, as shown in Figure  3-4. 

 

 

 

 

Figure 3-4 Fully fixed boundary conditions of a plate. 

 

The 3D SSA solution was derived for the first time and the transfer matrix and the 

recursive solutions were used to produce the analytical solution. The idea to obtain a 

solution for this particular boundary condition is to analyse the fixed edges by applying 

traction to the edges of simply supported by the superposition principle for the in-plane 

displacements (U and V), as shown in the following equations: 

U = U+ f
u
 (3-4) 

V = V+ f
v
 (3-5) 

Where U and V are the in-plane displacements, and f
u
 and f

v
 can be assumed to be any 

function that can satisfy the boundary conditions. In Kamis (2012), these functions are 

assumed to be linear, as per the following equations: 

For f
u
, the functions along the x-axis when x=0 is 1- 

x

a
 and when x=a is 

x

a
 (3-6) 

For f
v
, the functions along the y-axis when y=0 is 1- 

y

b
 and when y=b is 

y

b
 (3-7) 

 
 

This work can be used as a benchmark for further investigation with the same boundary 

conditions. Recently, with different boundary conditions and different material 

application, Han (2014) extended the SSA to the theoretically exact analysis of thick 

Fixed 

Fixed 

Fixed 

Fixed 
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piezoelectric laminates in the application of a Micro-Electro-Mechanical-System 

(MEMS) with simply supported sides and free edges, as shown in Figure  3-5. 

 

 

 

 

Figure 3-5 Simply supported sides with two free edges boundary conditions of a 

plate. 

 

Han (2014) followed the same procedures that Kamis (2012) used to solve the boundary 

condition problem, but adopted different assumptions for the traction functions, as 

shown in the following equations: 

For f
u
, the functions along the y-axis when y=0 is 

b

2
(1- 

y

b
)
2
 and when y=b is 

b

2
(
y

b
)
2
  (3-8) 

For f
v
, the functions along the y-axis when y=0 is 1- 

y

b
 and when y=b is 

y

b
 (3-9) 

 
 

In this research, the SSA is adopted and used to formulate the solution for new 

boundary conditions; these have not been previously derived. Also, this work focuses 

on application to CLT, which is entirely novel. 

3.5 Summary 

An investigation of the existing 2D and 3D approaches that will be used in the 

upcoming chapters for different case studies has been presented in this chapter. 

2D theories can provide a good prediction of some global responses of thin plates. As 

the thickness of the plate increases, the accuracy of the results will decrease, and these 

theories can give only inaccurate inter-laminar stresses. Hence, SSA as a 3D approach 

Free 

Free 
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has been developed to overcome these limitations and give more accurate results. 

Therefore, the SSA will be adopted for the upcoming analysis. 

In Figure  3-6, a summary of the plate theories covered through existing research studies 

is shown. 

In the following chapter of this thesis, as a 3D analytical approach, the SSA will be 

applied to a general composite material for more understanding of the method and its 

capability to capture the behaviour of a composite panel. 
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Figure 3-6 Flowchart of a summary of different plate theories.
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4 CHAPTER 4 

GENERAL APPLICATION OF THE 3D STATE SPACE 

APPROACH TO COMPOSITE PLATES 

 

 
4.1 Introduction 

The State Space Approach (SSA), as mentioned in the previous chapter, is an analytical 

approach based on the application of the equilibrium and compatibility equations, 

together with the stress and strain relations (Hooke’s law) to produce governing 

equations which need to be solved to find all the displacements and stresses. In this 

chapter, the concept equations and procedures of the SSA for a simply supported 

composite plate will be introduced.  

For the application of SSA, in this chapter, different case studies are analysed to 

determine the structural behaviour of simply supported orthotropic composite plates. 

Then, the FEM models are validated with the SSA results. After that, investigation of a 

single-ply composite plate will be extended to a laminated composite plate, and the SSA 

equations will be applied to consider more than one ply. In this part, a case study will be 

explored by the SSA and various existing analytical 2D approaches will be compared 

with the SSA. 

4.2 Formulation of the equation (single-ply plate) 

Consider an elastic homogenous orthotropic rectangular plate of length a, width b and 

uniform thickness h, as shown in Figure  4-1; the elasto-static equilibrium equations of 

the plate (Ye, 2003) – ignoring the body forces – can be written as: 
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Figure 4-1 Geometry of a single-ply plate. 

∂σx

∂x
+ 

∂τxy

∂y
 + 

∂τxz

∂z
 = 0 

∂τxy

∂x
 +

∂σy

∂y
+ 

∂τyz

∂z
 = 0 

∂τxz

∂x
 +

∂τyz

∂y
+ 

∂σz

∂z
 = 0 

(4-1) 

Where σx, σy and σz are normal stresses along x, y and z-axes, and τxy, τyz with respect to 

x-y, y-z and τxz with respect to x-z planes. 

Since Hooke’s law can be applied to elastic materials, the stress-strain relation becomes: 

{
 
 
 

 
 
 

σx

σy

σz

τyz

τxz

τxy}
 
 
 

 
 
 

=

[
 
 
 
 
 
 
 
 
C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66
]
 
 
 
 
 
 
 
 

{
 
 
 

 
 
 

εx

εy

εz

γyz

γxz

γxy}
 
 
 

 
 
 

 
(4-2) 

In equation (4-2), the strain-displacement relations can be written as: 

εx = 

∂u

∂x
, εy = 

∂v

∂y
, εz = 

∂w

∂z
, 

γyz = 

∂v

∂z
+

∂w

∂y
, γxz = 

∂u

∂z
+

∂w

∂x
, γxy = 

∂u

∂y
+

∂v

∂x
 

(4-3) 

and 
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C11 = 
E1(1 - v

23
v

32
)

Q
 C12 = C21 = 

E1(v21 + v31
v

23
)

Q
 

(4-4) 

C22 = 
E2(1 - v

13
v

31
)

Q
 C13 = C31 = 

E1(v31 + v21
v

32
)

Q
 

C33 = 
E3(1 - v

12
v

21
)

Q
 C23 = C32 = 

E2(v32+ v12
v

31
)

Q
 

C44 = G23 C55 = G31 

C66 = G12    

Q = 1-v
12

v
21
-v

23
v

32
-v

31
v

13
-2v

12
v

23
v

31
 

vij

Ei

 = 
vji

Ej

        ( i , j = 1, 2, 3)    

Where E1, E2 and E3 are Young’s moduli of the plate among the material coordinates. 

The subscripts 1, 2 and 3 indicate fibre direction, transverse and perpendicular to the 

plate respectively. G12 is shear moduli with respect to 1-2, G23 with respect to 2-3 and 

G13 with respect to 1-3 planes. v12, v23 and v13 are the Poisson’s ratios correspondingly. 

From equation (4-2), all stress components can be expressed explicitly: 

σx = C11

∂u

∂x
+ C12

∂v

∂y
 + C13

∂w

∂z
 

σy = C12

∂u

∂x
+ C22

∂v

∂y
 + C23

∂w

∂z
 

σz = C13

∂u

∂x
+ C23

∂v

∂y
 + C33

∂w

∂z
 

τyz = C44 (
∂v

∂z
+ 

∂w

∂y
) 

τxz = C55 (
∂u

∂z
+ 

∂w

∂x
) 

τxy = C66 (
∂u

∂y
+ 

∂v

∂x
) 

(4-5) 
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∂u
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τxz
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 - 
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∂x
 

∂v

∂z
 = 

τyz

C44

 - 
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C13
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C33

)
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2

∂x
2

- C66

∂
2
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2
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                                        [(C12 - 
C13C23

C33

) + C66]
∂

2
v

∂x∂y
- 

C13

C33

∂σz

∂x
 

 

∂τyz

∂z
 =-

∂τxy

∂x
 -

∂σy

∂y
= - [(C12 - 

C13C23

C33

) + C66]
∂

2
u

∂x∂y
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                                         [- C66

∂
2

∂x
2

- (C22 - 
C23

2

C33

)
∂

2

∂y
2
]v - 

C23

C33

∂σz
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(4-6) 

 

Three displacements in x-y-z directions, labelled with u, v and w, and the transverse 

stresses σz, τxz and τyz, are solved with respect to the z coordinate directly from the 

equations (4-1), (4-3) and (4-5). 

Denoting: 

C1 = -
C12

C33

 C2 = C11 - 
C12

2

C33

 

(4-7) 

C3 = C12 -
C13C23

C33

 C4 = C22 - 
C23

2

C33

 

C5 = -
C23

C33

 C6 = C66 

C7 = 
1

C33

 C8 = 1

C55

 

C9 = 
1

C44
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and rearranging equation (4-6) leads to a matrix form as: 

∂

∂z
{F}=[G]{F} (4-8) 

Herein, {F}= [u v σz τxz τyz w]
T
 is called the state vector of the plate and [G] is named as 

the system state matrix: 

[G]=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0 C8 0 -

∂

∂x

0 0 0 0 C9 -
∂

∂y

0 0 0 -
∂

∂x
-

∂

∂y
0

-C2

∂
2

∂x
2

-C6

∂
2

∂y
2

-(C3+C6)
∂

2

∂x∂y
C1

∂

∂x
0 0 0

-(C3+C6)
∂

2

∂x∂y
-C6

∂
2

∂x
2

-C4

∂
2

∂y
2

C5

∂

∂y
0 0 0

C1

∂

∂x
C5

∂

∂y
C7 0 0 0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4-9) 

 

Once the state vector containing the three displacements and the transverse stresses 

[σz, τxz, τyz] has been found, the three in-plane stresses in the x-y plane can be calculated 

from equation (4-5) as follows:  

{

σx

σy

τxy

}=

[
 
 
 
 
 
 C2

∂

∂x
C3

∂

∂y
-C1 0 0 0

C3

∂

∂x
C4

∂

∂y
-C5 0 0 0

C6

∂

∂y
C6

∂

∂x
0 0 0 0

]
 
 
 
 
 
 

{
 
 
 

 
 
 

u

v

σz

τxz

τyz

w}
 
 
 

 
 
 

 
(4-10) 

To consider a rectangular plate with the four sides simply supported (SS) (Figure  4-2), 

the following boundary condition should be satisfied: 
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Figure 4-2 Boundary conditions of the plate. 

 

σx = v = w = 0           (at x = 0, a) 

σy = u = w = 0           (at y = 0, b) 
(4-11) 

In order to satisfy the boundary conditions specified in equation (4-11), the following 

six state variables of the state vector can be expressed by double Fourier series by: 

u (x,y,z) = ∑∑Umn(z) cos(mπx a⁄ ) sin(nπy b⁄ )

n=1m=1

 

(4-12) 

v (x,y,z) = ∑∑Vmn(z) sin(mπx a⁄ ) cos(nπy b⁄ )

n=1m=1

 

w (x,y,z) = ∑∑Wmn(z) sin(mπx a⁄ ) sin(nπy b⁄ )

n=1m=1

 

τxz(x,y,z) = ∑∑Xmn(z) cos(mπx a⁄ ) sin(nπy b⁄ )

n=1m=1

 

τyz(x,y,z) = ∑∑Ymn(z) sin(mπx a⁄ ) cos(nπy b⁄ )

n=1m=1

 

σz(x,y,z) = ∑∑Zmn(z) sin(mπx a⁄ ) sin(nπy b⁄ )

n=1m=1
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Let ζ= mπ a⁄  and 𝜂 = nπ b⁄  where m and n are the number of Fourier series terms of the 

analytical solution in the x and y directions, and substituting equation (4-12) into 

equation (4-8) yields for each combination of m and n: 

d

dz
{Fmn (z)}=[Dmn]{Fmn (z)} 

(4-13) 

Herein, {Fmn(z)} = [Umn(z) Vmn(z) Zmn(z) Xmn(z) Ymn(z) Wmn(z)]
T
 is the state vector of the 

plate with the m-n
th

 and the system matrix is: 

[Dmn]=

[
 
 
 
 
 
 
 
 

0 0 0 C8 0 -ζ

0 0 0 0 C9 -𝜂

0 0 0 ζ 𝜂 0

C2ζ 
2
+C6𝜂

2
(C3+C6)ζ𝜂 C1ζ 0 0 0

(C3+C6)ζ𝜂 C6ζ 
2
+C4𝜂

2
C5𝜂 0 0 0

-C1ζ -C5𝜂 C7 0 0 0 ]
 
 
 
 
 
 
 
 

 
(4-14) 

4.3 Solution of the equation 

By solving the differential equation (4-13) based on the classical solution method of a 

linear differential equation (Stroud, 2013), the solution can be found as: 

{Fmn (z)}=[Gmn(z)]{Fmn (0)} 
(4-15) 

where [Gmn(z)] = exp {[Dmn]z}, and when z = h,   

{Fmn (h)}=[Gmn(h)]{Fmn (0)} 
(4-16) 

{Fmn (0)} and {Fmn (h)} are the values of the state variables on the top (z=0) and bottom 

(z=h) surfaces. They can be determined uniquely based on the load conditions on the top 

and bottom surfaces of the plate. For example, if the plate is subjected to an arbitrarily 

distributed external transverse pressure q(x,y) on the top surface only, the state vectors 

on the top and bottom surfaces of the plate can be expanded into Fourier series, as 

shown in equations (4-17) and (4-18), respectively: 
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{Fmn(0)} = 

{
 
 
 
 

 
 
 
 

Umn(0)

Vmn(0)

4

ab
∫∫ q(x,y) sin(mπx a⁄ ) sin(nπy b⁄ )dxdy

b

0

a

0

0

0

Wmn(0) }
 
 
 
 

 
 
 
 

 
(4-17) 

And: 

{Fmn(h)}
T = [Umn(h)  Vmn(h)  0  0  0 Wmn(h)] 

  

(4-18) 

Further formulation simplification can be used if q(x,y)=q is a constant (e.g. in case of a 

uniformly distributed load), and: 

4

ab
∫ ∫ q(x,y) sin(mπx a⁄ ) sin(nπy b⁄ )

b

0

a

0
dxdy = {

0       (m, n = 2, 4, 6,…..)

-16q

mnπ
2   (m, n = 1, 3, 5,…..)

 
(4-19) 

 

One of the most challenging aspects of the work presented here is the accurate 

calculation of the exponential matrixGmn(z), especially with a high number of Fourier 

series terms (m and n) in thicker plates. To solve this problem, the precision can be 

improved for all elements in the matrix [Dmn] should be adopted before solving the 

corresponding exponential matrix. The computer coding routine used here for the 

exponential matrix function is MatrixExp, which is embedded in the commercially 

available software MATHEMATICA (Wolfram Research, 2016); for the associated 

code, see Appendix A. This can give sufficiently accurate results for thicker plates, as 

will be shown later in section  4.4.3.5 (depending on the element precision in [Dmn]). 

Substituting equations (4-17) and (4-18) into (4-16), all displacement components on 

the top and the bottom surfaces of the plate can be obtained; that is, 

Umn(0), Vmn(0), Wmn(0) and Umn(h), Vmn(h), Wmn(h). 
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After finding all the displacements and the transverse stresses, the in-plane stresses can 

be found by using the following equation: 

{

σx

σy

τxy

}= [

-C2ζ -C3𝜂 -C1 0 0 0

-C3ζ -C4𝜂 -C5 0 0 0

C6𝜂 C6ζ 0 0 0 0

]

{
 
 
 

 
 
 

u

v

σz

τxz

τyz

w}
 
 
 

 
 
 

 
(4-20) 

Although all the stresses and displacements can be calculated by using the SSA, as 

shown in equation (4-12), the six state variables are expressed as a Fourier series and, 

by that, these six states will be continuous and the accuracy will depend on the number 

of Fourier series terms.  

For the next sections, different case studies will explore the capability of the SSA in 

comparison to various analytical and numerical methods. The studies will start with a 

general application of the SSA to composite plate (single ply), and Classical Plate 

Theory (CPT) will be compared with the SSA. Then, different FEM models will be 

validated with the SSA under different types of load. Meanwhile, new findings will be 

explored by using the SSA. 

Finally, the SSA will be extended to consider laminated plates with more than one ply, 

and a comparison between the SSA results with various existing analytical approaches 

will be studied. 

 

 

 

 



70 

 

4.4 SSA application to a general composite single-ply plate 

In this section, three case studies are analysed by using SSA, different existing 

analytical approaches and FEM for the determination of the structural behaviour of 

simply supported orthotropic composite plates under different types of load. For the first 

case, the plate is under sinusoidal load with a maximum magnitude of 1 MPa. The SSA 

will be explored for this study and the CPT results will be compared. The second case 

study is a composite plate under anti-symmetrical half-single sine distributed out-of-

plane load, and, in the third case, the load is uniformly distributed. For the second and 

third case studies, the numerical results from a finite element model developed in 

ABAQUS, for comparison, are provided with those obtained by using the SSA with 

different parametric studies. 

4.4.1  Case Study 1: Orthotropic square single-ply plate under different types of 

load - SSA and CPT comparison 

 The focused-on plate has the same geometry as that examined analytically by Reddy 

(2004). The in-plane dimensions of the plate are a = b = 100 mm and h/a is equal to 

0.01. Here, a is the length of the plate along the x-axis, b is the dimension of the plate 

along the y-axis and h is the total thickness of the plate (z-axis), as shown in Figure  4-3. 

The set of elastic material parameters used and given as shown in Table  4-1 for the 

plies are as per the reference (Reddy, 2004). 

 

 

 

Table 4-1 Elastic material properties of a single-ply composite plate (Reddy, 2004). 

E1/E2 = 25; E3 =E2 

G12 = G13 = 0.5 E2 

G23 = 0.2 E2 

v
12

= v
13
= v

23
= 0.25 
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The plate is simply supported from four sides as per Reddy (2004) and is under two 

types of out-of-plane load, as shown in Figure  4-3. The first load is sinusoidal load 

(SSL) with a maximum magnitude of 1 MPa (q(x,y) = q0 sin(πx a⁄ ) sin(πy b⁄ ) where 

q0= 1 MPa), and the second one is uniformly distributed load (UDL) with q(x,y) = q. 

 

(a) SSL 

 

 

 

 

 

 

 

 

(b) UDL 

Figure 4-3 The geometry of a single-ply orthotropic plate under (a) sinusoidal load 

and (b) uniformly distributed load. 

 

 

4.4.1.1 Analytical comparison 

Table  4-2 shows the theoretical results for the out-of-plane displacement w, the in-plane 

stresses σx, σy and τxy and the transverse shear stress τxz on different locations under two 

types of load. The comparison is between the SSA and CPT results with the thickness-

to-width ratio (h/a) equal to 0.01. 

For SSL, the number of Fourier series terms (m and n) in the SSA is set to equal 1; also, 

for UDL the m and n are set to be equal to 19, as per Reddy (2004). 

q(x,y) = q0 sin(πx a⁄ ) sin(πy b⁄ ) 

 

q(x,y) = q  
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As shown in Table  4-2, the CPT gives lower results compared to the SSA for the out-of-

plane displacement w and the in-plane-stresses σx and σy for both loads, but, in general, 

the results show very good agreement between each other and this is expected as the 

plate is thin. 

Table 4-2 Theoretical results for out-of-plane displacements and 

stresses of the orthotropic plate for a = b and h/a = 0.01. 

(a) SSL 

 (x,y,z) SSA 
CPT 

(Reddy, 2004) 

(WE2h
3
b
4
q
0
)⁄ ×10

2 
(
a

2
,
b

2
,
h

2
) 0.4333 0.4312 

σxh
2
b
2
q
0

⁄  (
a

2
,
b

2
,h) 0.5390 0.5387 

σyh
2
b
2
q
0

⁄  (
a

2
,
b

2
,h) 0.0268 0.0267 

τxyh
2
b
2
q
0

⁄  (a,b,0) 0.0213 0.0213 

τxzh bq
0

⁄  (0,
b

2
,
h

2
) 0.4396 0.4398 

(b) UDL 

(WE2h
3
b
4
q
0
)⁄ ×10

2
 (

a

2
,
b

2
,
h

2
) 0.6527 0.6497 

σxh
2
b
2
q
0

⁄  (
a

2
,
b

2
,h) 0.7870 0.7866 

σyh
2
b
2
q
0

⁄  (
a

2
,
b

2
,h) 0.0245 0.0244 

τxyh
2
b
2
q
0

⁄  (a,b,0) 0.0465 0.0463 

τxzh bq
0

⁄  (0,
b

2
,
h

2
) 0.7746 0.7758 

 

For the upcoming case studies, using ABAQUS, the numerical analysis will be explored 

for different types of loads and models and compared with the SSA; also, the effect of 

the thickness-to-width ratios will be studied by applying the SSA. Before that, a brief 

overview of the FEM approach by ABAQUS will be presented. 
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4.4.2 Introduction to the numerical solution: Finite element method (FEM) by 

ABAQUS  

The FEM is commonly used to solve problems for which analytical solutions are not 

readily available or do not necessarily exist. Also, it can be used to produce satisfactory 

solutions with reasonable accuracy for composite plate and shell structures. The FEM is 

based on the idea of discretising a structure into small elements, describing the 

behaviour of each element in a simple way, then reconnecting elements at nodes (Cook, 

1995). 

In this section, the parameters that affect the FEM modelling will be presented such as 

material properties, element types, boundary conditions and mesh element types. Then, 

the specific parameters for different case studies that will be used in this chapter will be 

specified. Following this, the FEM will be adopted to model different case studies and 

compared with the SSA. 

4.4.2.1 Material properties 

Selecting the appropriate material properties of the composite material is an important 

task. A composite plate has different moduli directions. For the material properties, 

ABAQUS needs to insert the material properties as Isotropic, Engineering Constants 

(which is to define Young’s moduli, Shear moduli and Poisson’s ratios directly related 

to the local coordinates of the plate), Lamina and Orthotropic. 

In this study, the composite plate has been assigned as an elastic material with 

associated input in the FEM model as shown in Table  4-3.  
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4.4.2.2 Element types 

In ABAQUS, a wide range of elements can be used depending on the problem to be 

simulated. The types of element families include continuum (solid), shell, beam, rigid, 

membrane and truss elements. For each of these elements there are more types of 

elements depending on the degrees of freedom, number of nodes, formulation and 

integration (ABAQUS, 2013). The first letter or letters of an element name indicate the 

family to which the element is related; for example, the S in S4R indicates a shell 

element. 

The degrees of freedom are the essential variables evaluated during the analysis in 

ABAQUS; the use of solid elements is limited to 3D elements that have only 

displacement degrees of freedom. On the other hand, conventional shell elements have 

displacement and rotational degrees of freedom at each node. At any other points in the 

element, the displacements are obtained by interpolating from the nodal displacements; 

the interpolation order is determined by the number of nodes used in the element, as 

shown in Figure  4-4. 

   

(a) Linear element 

8-nodes 

(b) Quadratic element   

20-nodes 

(c) Modified second-order 

element 10-nodes 

Figure 4-4 Number of nodes used in each element type (ABAQUS, 2013). 

 

 

Some elements can use full or reduced integration; however, reduced integration uses a 

lower-order integration to form the element stiffness and reduces the running time of the 

module. 
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- Solid element 

The solid elements in ABAQUS include first-order (linear) interpolation elements and 

second-order (quadratic) interpolation elements. The second-order elements provide 

higher accuracy than the first-order ones for simple and smooth problems. When the 

normal stresses cannot be ignored and when the inter-laminar stresses are required, the 

composites with solid elements should be used. 

- Shell element 

For 3D shell elements in ABAQUS, there are three different formulations: general 

purpose, thin-only and thick-only shells. The general purpose shells allow the shell 

thickness to change with the element deformation (ABAQUS, 2013). 

In this study, after an element type sensitivity study, the 3D fully integrated solid 

element with 20 nodes has been assigned for the FEM models, as shown in Table  4-3. 

4.4.2.3 Mesh element size 

Meshing is one of the most important processes since the accuracy of the results may 

depend on the meshing of the assemblies. 

In this research, the shape of the mesh chosen is Quad-dominated type and the optimum 

mesh size will be derived from a mesh sensitivity study detailed in the next section. 
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Table 4-3 Different FEM parameters of ABAQUS. 

FEM parameters ABAQUS options Assigned option 

Material properties 

Isotropic, Engineering 

Constants, Lamina and 

Orthotropic 

Engineering Constants by 

defining Young’s moduli, 

Shear moduli and Poisson’s 

ratios directly related to the 

local coordinates of the plate 

Element type 

Continuum (solid), shell, 

beam, rigid, membrane and 

truss elements 

3D fully integration solid 

element with 20 nodes 

Mesh element type 

and size 
Different mesh sizes 

Quad-dominated type and the 

optimum mesh size 

 

4.4.3 Case Study 2: Orthotropic square plate under anti-symmetrical half single 

sine distributed out-of-plane load - numerical comparison 

In this case, the geometry of the composite plate is a = b = 5 mm and h/a = 0.2, 0.3 and 

0.5. Where a is the length of the plate along the x-axis, b is the width of the plate along 

the y-axis and h is the thickness of the plate along the z-axis, as shown in Figure  4-5. 

The set of elastic material parameters used is given as shown in Table  4-4 as per Wu 

(1987). 

Table 4-4 Elastic material properties of the composite plate (Wu, 1987). 

E1 = 10 E2 = 10 E3 

G12 = G13 = 0.6 E3 

G23 = 0.5 E3 

v
12
= v

13
= v

23
= 0.25 

 

The plate is simply supported for all sides and the load is an anti-symmetrical half-

sinusoidal distributed out-of-plane load 
q

2
sin (

πx

a
) sin (

πy

b
). Hence, Zmn(z) at the top (z = 

0) and the bottom (z = h) surfaces of the plate are equal to -q/2 and q/2, respectively, as 

shown in Figure  4-5. 
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Figure 4-5 The geometry of a single-ply orthotropic plate under anti-symmetrical 

half-sinusoidal distributed out-of-plane load. 

 

In the next section, the numerical results are given by using ABAQUS and the results 

are compared with those from the SSA analytical solution in order to illustrate the 

precision of these methods.  

4.4.3.1 FEM model for Case Study 2: Parametric study 

To provide a fair comparison and illustration of the advantages of the SSA, the 

numerical precision in the FEM model should be as accurate as possible. In order to 

determine an accurate FEM model, different element types and mesh sizes are 

considered first and compared with the SSA results. Then, the effect of thickness-to-

width ratios of the plate on the analytical results can be presented and discussed 

systematically. 

In this section, element type, mesh size and boundary condition sensitivity will be 

studied and explored for the FEM model. The FEM and the SSA results will be 

compared with each other to see the compatibility of the SSA with the FEM. Then, 

since the SSA is theoretically applicable to any thicknesses of plate (from thin to thick 

plates), the thickness-to-width ratio will be explored for SSA and FEM. 

q (x,y) = 
q

2
sin(πx a⁄ ) sin(πy b⁄ ) 

 

 

 

q (x,y) = 
q

2
sin(πx a⁄ ) sin(πy b⁄ ) 
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4.4.3.2 Element type for Case Study 2 

As shown in Figure  4-6 and Table  4-5, four different solid elements have been studied: 

Reduced integrated 3D 8-node linear brick element (C3D8R), Fully integrated 3D 8-

node linear brick element (C3D8), Reduced integrated 3D 20-node linear brick element 

(C3D20R) and Fully integrated 3D 20-node linear brick element (C3D20) (ABAQUS, 

2013) with a mesh composed of elements with a unit length of 0.0625 mm. The mesh 

size sensitivity study will be discussed in detail in a later section. 

The FEM and the SSA results have been compared with each other for the in- and out- 

of plane displacements and stresses. The solid element is used in this chapter instead of 

the shell element because the solid element can capture all the displacements and the 

stresses through the thickness of the plate, as shown in Table  4-5. Also, in this table, the 

in-plane stress σx, σy and τxy for the shell element are less than the FEM solid elements 

and the SSA result. 

  

u.E3/qh at (0,
b

2
,h) v.E3/qh at (

a

2
,0,h) 

 

-1.752

-1.750

-1.748

-1.746

-1.744

-1.742

SSA C3D8R C3D8
C3D20R C3D20

-2.436

-2.432

-2.428

-2.424

-2.420

-2.416

-2.412

SSA C3D8R C3D8
C3D20R C3D20
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w.E3/qh at (
a

2
,
b

2
,h) σx/q at (

a

2
,
b

2
,h) 

  

σy/q at (
a

2
,
b

2
,h) σz/q at (

a

2
,
b

2
,h) 

  

τxz/q at (0,
b

2
,
h

2
) τyz/q at (

a

2
,0,

h

2
) 

 

 

 

 

 

 

 

 

 

 

τxy/q at (0,0,h) 

Figure 4-6 SSA with FEM results for different solid element types (h/a = 0.2). 
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In Table  4-5, the FEM and the SSA results for all the stresses and displacements are 

compared between each other; the negative relative errors mean the FEM gives less 

value than the SSA. From this table, it is apparent that the 8-node models gave more 

relative errors than the 20-node ones, especially for the stresses (in- and out-of-plane), 

although, in general, all the results are within the acceptable error and some of them are 

very close to each other and give an excellent agreement between each other. From this 

quantitative comparison with SSA, the FEM element type that gives more consistent 

results with a minimum relative error between each other is C3D20. On the basis of this 

observation, the numerical model with this element type will be adapted accordingly in 

the following numerical calculations to compare between the SSA and FEM results. 



 

8
1

 

Table 4-5 Relative errors for different element types of a single-ply plate for h/a = 0.2. 

  

  

 

SSA 

C3D8R C3D8 C3D20R C3D20  S8R 

Values  
Relative 

error (%) 
Values  

Relative 

error (%) 
Values  

Relative 

error (%) 
Values  

Relative 

error (%) 
Values 

Relative 

error (%) 

u.E3/qh 

(0,
b

2
,h) 

-1.7463 -1.7508 0.26 -1.7481 0.11 -1.7460 -0.01 -1.7460 -0.01 0.0000 - 

 
          

 
   

v.E3/qh 

(
a

2
,0,h)  

-2.4212 -2.4321 0.45 -2.4286 0.31 -2.4265 0.22 -2.4265 0.22 0.0000 - 

 
          

 
   

w.E3/qh 

(a 2
,b 2

,h
) 

8.8233 8.8655 0.48 8.8556 0.37 8.8492 0.29 8.8492 0.29 9.4761 7.40 

 
            

σx/q 11.5818 10.5554 -8.86 10.8575 -6.25 11.5582 -0.20 11.5827 0.01 9.9759 13.87 

 
            

σy/q 1.9394 1.8080 -6.77 1.8373 -5.26 1.9385 -0.05 1.9401 0.04 1.6730 13.74 

            

σz/q 0.5000 0.4938 -1.23 0.4849 -3.02 0.5020 0.39 0.5030 0.60 0.0000 - 

             

τxz/q 

(0,
b

2
,
h

2
) 

1.8091 1.8080 -0.06 1.8373 1.56 1.8122 0.17 1.8120 0.16 1.0114 44.09 

               

τyz/q 

(
a

2
,0,

h

2
) 

0.5226 0.5200 -0.50 0.5194 -0.62 0.5239 0.25 0.5242 0.30 0.0000 - 

 
          

 
   

τxy/q 

(0,0,h) 
-1.5732 -1.4514 -7.74 -1.5742 0.06 -1.5713 -0.12 -1.5732 0.00 0.0000 - 
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FEM

SSA

4.4.3.3 Mesh size for Case Study 2 

A mesh sensitivity test was performed to check which mesh size from four different 

sizes would be more appropriate for particular cases. The four meshes have lengths 

equal to 0.25, 0.125, 0.0625 and 0.03125 mm. Due to anti-symmetric half-single sine 

distributed out-of-plane load, the numerical results for the out-of-plane stress σz should 

be equal to -q/2 or q/2 on the top and bottom surfaces of the plate. These values can be 

used to confirm the accuracy of the numerical results from FEM, as shown in 

Figure  4-7, Figure  4-8 and Table  4-7. 

For the out-of-plane stress σz results, when the mesh size of the element decreases, its 

relative error with respect to the SSA will be smaller and the results will be more 

accurate. Although the mesh sizes 0.0625 and 0.03125 mm give very close results to 

each other, the mesh size 0.0625 will be used in the current FEM analysis for time-

efficiency, as shown in Table  4-6. 

 

Figure 4-7 Different mesh size results of a single-ply plate for σz/q at z = h for h/a 

= 0.2. 
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u.E3/qh at (0,
b

2
,h) v.E3/qh at (

a

2
,0,h) 

  

w.E3/qh at (
a

2
,
b

2
,h) σx/q at (

a

2
,
b

2
,h) 

  

σy/q at (
a

2
,
b

2
,h) σz/q at (

a

2
,
b

2
,h) 
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τxz/q at (0,
b

2
,
h

2
) τyz/q at (

a

2
,0,

h

2
) 

 

 

τxy/q at (0,0,h)  

Figure 4-8 SSA with FEM results of a single-ply plate for different mesh sizes (h/a = 

0.2). 
 

 

Table 4-6 FEM models’ running time for different mesh sizes for Case Study 2. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 
 0.25 mm 0.125 mm 0.0625 mm 0.03125 mm 

Running time 

(s) 
11 36 2452 3723.54 

1.780

1.800

1.820

1.840

1.860

1.880

SSA Mesh 1 Mesh 2

Mesh 3 Mesh 4

0.500

0.510

0.520

0.530

0.540

0.550

0.560

SSA Mesh 1 Mesh 2

Mesh 3 Mesh 4

-1.5734

-1.5732

-1.5730

-1.5728

-1.5726

-1.5724

-1.5722

SSA Mesh 1 Mesh 2

Mesh 3 Mesh 4
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Table 4-7 Relative errors for different mesh sizes of a single-ply plate for h/a = 0.2. 

  
 

SSA 

Mesh 1  

(0.25×0.25) 

Mesh 2  

(0.125×0.125) 

Mesh 3 

(0.0625×0.0625) 

Mesh 4 

(0.03125×0.03125) 

  
 

Values  
Relative 

error (%) 
Values  

Relative 

error (%) 
Values  

Relative 

error (%) 
Values  

Relative 

error (%) 

u.E3/qh 

(0,
b

2
,h) 

-1.7463 -1.7420 -0.24 -1.7453 -0.05 -1.7460 -0.01 -1.7461 -0.01 

 
   

 
       

v.E3/qh 

(
a

2
,0,h)  

-2.4212 -2.4425 0.88 -2.4255 0.18 -2.4265 0.22 -2.4266 0.23 

 
            

w.E3/qh 

(a 2
,b 2

,h
) 

8.8233 8.8292 0.07 8.8455 0.25 8.8492 0.29 8.8496 0.30 

  
        

σx/q 11.5818 11.5860 0.04 11.5848 0.03 11.5827 0.01 11.5824 0.00 

  
        

σy/q 1.9394 1.9477 0.43 1.9421 0.14 1.9401 0.04 1.9399 0.03 

          

σz/q 0.5000 0.5481 9.63 0.5109 2.17 0.5030 0.60 0.5020 0.39 

           

τxz/q 

(0,
b

2
,
h

2
) 

1.8091 1.8571 2.66 1.8207 0.65 1.8120 0.16 1.8109 0.10 

            

τyz/q 

(
a

2
,0,

h

2
) 

0.5226 0.5481 4.89 0.5290 1.22 0.5242 0.30 0.5236 0.20 

 
           

τxy/q 

(0,0,h) 
-1.5732 -1.5726 -0.04 -1.5732 0.00 -1.5732 0.00 -1.5732 0.00 
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4.4.3.4 Boundary condition sensitivity for Case Study 2 

The boundary conditions occupied a significant role in obtaining accurate FEM results. 

For simply supported edges, ABAQUS gives options to determine the BC. Hence, in 

ABAQUS, as shown in Figure  4-9, there are two options to simulate the simply 

supported edges. To make the same simulation for the boundary conditions as the SSA, 

these boundary conditions are applied over the whole face. For this particular condition, 

one of the limitations of the SSA is that to satisfy the boundary conditions, the whole 

face will need to be satisfied (according to equation 4-11). The first one is BC1, 

whereby U3 is equal to zero along all the edges. The second, BC2, is where U2 and U3 

are equal to zero along the y-axis, and U1 and U3 are equal to zero along the x-axis 

(whereby U is a translation). 

The BC1 structural mechanism is unstable as the movement is not allowed just for the z-

direction, although, as the plate is just under the out-of-plane loading, this mechanism is 

acceptable to simulate in this case study. For the BC2, the structural mechanism is 

statically indeterminate, and it will restrain the elongation of the tension face and the 

shorting of the compression face as it will be applied along the whole face the same as 

the analytical solution to enable a consistent comparison to be made between the FEM 

and the SSA.   
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Figure  4-10 and Table  4-8 show the different options to create simply supported edges 

by using ABAQUS and compare the results with the SSA. It is clear that BC2 is more 

reasonable and it gives better agreement with the SSA as it is the same boundary 

condition as the one used before in the SSA equations. In some cases, it could be easier 

to apply BC1, but, in this chapter, BC2 will be adopted. 

  

u.E3/qh at (0,
b

2
,h) v.E3/qh at (

a

2
,0,h) 
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Figure 4-9 Different options for a simply supported boundary condition for Case 

Study 2. 

 

 

U3 =0 
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w.E3/qh at (
a

2
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b

2
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2
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,h) 

  
σy/q at (
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b

2
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a

2
,
b

2
,h) 

  
τxz/q at (0,

b

2
,
h

2
) τyz/q at (

a

2
,0,

h

2
) 

 

 

τxy/q at (0,0,h)   

Figure 4-10 SSA with FEM results of a single-ply plate for different BCs (h/a = 0.2). 
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Table 4-8 SSA with FEM results of a single-ply plate for different BCs (h/a = 0.2). 

 

(x,y,z) SSA 

*FEM 

BC 1 BC 2 
 

u.E3/qh  (0,
b

2
,h) -1.7463 -1.7909 -1.7460 

      

v.E3/qh  (
a

2
,0,h) -2.4212 -2.2706 -2.4265 

      

w.E3/qh  (
a

2
,
b

2
,h) 8.8233 9.2975 8.8492 

     

σx/q  (
a

2
,
b

2
,h) 11.5818 12.1793 11.5827 

     

σy/q  (
a

2
,
b

2
,h) 1.9394 2.0037 1.9401 

     

σz/q  (
a

2
,
b

2
,h) 0.5000 0.5030 0.5030 

     

τxz/q  (0,
b

2
,
h

2
) 1.8091 1.9895 1.8120 

      

τyz/q  (
a

2
,0,

h

2
) 0.5226 0.8023 0.5242 

     

τxy/q  (0,0,h) -1.5732 -1.2176 -1.5732 

*
All the FEM models are 3D 20-node linear brick element (C3D20) with mesh size 0.0625 mm. 

For detailed in-plane stress distribution σx through the thickness, Figure  4-11 shows σx 

for the two boundary conditions and accordingly with the results of the SSA. From this 

figure, the SSA gives a good distribution through the thickness when compared to both 

boundary condition options by the FEM models, but the SSA is closer to the FEM with 

BC2 than BC1 and that is expected as the BC2 simulates the same boundary conditions 

as the SSA. So, as mentioned before, the BC2 will be adopted. 
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Figure 4-11 The effect of BC sensitivity on the in-plane stress (σx/q) through the 

thickness of a single-ply plate (h/a = 0.2). 

 
 

4.4.3.5 Thickness-to-width ratio (h/a) for Case Study 2 

Since the loading in this study is anti-symmetric, one of the advantages of using the 

SSA is that the capability of this approach to obtain an exact solution is demonstrated. 

This is because all boundary conditions of the six edge surfaces (four sides, together 

with the top and bottom surfaces; each surface has been described by three mixture 

stresses and/or displacements) are satisfied exactly. All equilibrium equations, 

kinematic equations and Hooke’s law of 3D elasticity are fully covered and considered 

without any assumption and omission under the frame of the SSA. It is hence safe to say 

that the solution sought under this case is exact and the effect of the thickness-to-width 

ratios (h/a) on the plate structural behaviour can be determined quantitatively.  

Figure  4-12 shows the effect of h/a on the in-plane stress σx through the half of the 

thickness as the behaviour will be symmetrical for the other half. The non-linear 

behaviour of the stress across the thickness can be observed clearly as h/a increases.  

 



91 

 

0.0

0.1

0.2

0.3

0.4

0.5

-12 -10 -8 -6 -4 -2 0

z/
h

 

σx/q 

SSA h/a = 0.2 FEM h/a=0.2

SSA h/a=0.35 FEM h/a=0.35

SSA h/a=0.5 FEM h/a=0.5

This figure shows that the linear stress distribution assumption through the thickness 

direction in the CPT assumption is inappropriate. From the same figure, it can be seen 

that, for all h/a ratios, there is a good agreement between the FEM (BC2) and the SSA 

including thin, medium and thick plates. 

After the previous case studies, the next study will explore applying the SSA and the 

FEM to an orthotropic thick plate under uniformly distributed load. This section aims to 

show the accuracy of the SSA when high values are set to m and n. 

4.4.4 Case Study 3: Orthotropic square plate under uniformly distributed load - 

numerical comparison 

In this case, the geometry, material properties and the boundary conditions of the plate 

are the same as Case 2 (section  4.4.3). The only difference from Case 2 is that the load 

on the top surface of the plate is uniformly distributed q(x,y) = q and the load on the 

bottom surface of the plate is nil, as shown in Figure  4-13. 

 

 

Figure 4-12 The effect of different h/a on the in-plane stress (σx/q) through the 

thickness (note: data is provided in Appendix B-Table B.1). 
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Figure 4-13 The geometry of a single-ply orthotropic plate under uniformly 

distributed load. 

 

For a uniformly distributed load, to give an accurate analytical solution, Figure  4-14 

shows different values for the number of Fourier series terms m along x/a, and, from 

this figure, as the value of m is higher, the load distribution σz shows more uniformity. 

For this reason, the highest number of Fourier series terms (m and n) in the solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-14 The load at the top ply (z=0) distribution along x/a for Case Study 3. 

 

 

For the same reason as the selection of the element type, as stated in Case 2, the 

precision comparison in this case study would be the element type C3D20 with the 

mesh size 0.06250.6025 mm. Table  4-9 shows the SSA and FEM results for the 

displacements and stresses of the composite plate. The results show that the FEM and 

SSA results are very close to each other, but the FEM has overestimated the results; e.g. 

q(x,y) = q  
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for in-plane stress σx the relative error is around 0.70% between the SSA and the FEM 

results. 

To give the variation of the results between the SSA and the FEM, Figure  4-15 shows 

the distribution of the out-of-plane displacement w through the thickness. Apparently, 

the FEM gives larger values compared to the exact solution. For u, v and τxy, the FEM 

gives the same values for the top and bottom of the plate with different signs, and this is 

a weakness of the FEM program as it should not be the same according to the SSA 

solution. Additionally, the FEM results for τxz at the top and the bottom of the plate, as 

shown in Figure  4-16, are equal to -0.082 and 0.019 respectively. Although these values 

are small, the FEM results are not very precise in this case, as the transverse shear stress 

τxz should be zero at the top and the bottom of the plate. Hence, this problem can be 

reduced by using finer mesh size; however, this means longer computational running 

time by ABAQUS. Note that the average FEM computational running time for this 

particular model was approximately two hours, and this compared to the seconds taken 

when using the SSA code, as shown before in Table  4-6. 

In practice, it is important to control the values of the inter-laminar stresses such as τxz 

as their presence leads to de-lamination if they exceed the shear strength (Ealias and 

Mattam, 2013). 
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Table 4-9 In- and out-of-plane displacements and stresses of Case 3 for h/a = 0.2. 

 (x,y) z SSA FEM 

u.E3/qh (0,
b

2
) 

*T 2.8917 2.9010 
*B -2.8001 -2.9010 

     

v.E3/qh (
a

2
,0) 

*T 4.2289 4.4203 
*B -4.4203 -4.4203 

     

w.E3/qh (
a

2
,
b

2
) 

*T 13.7081 13.7169 
*B 13.2274 13.2274 

     

σx/q (
a

2
,
b

2
) 

*T -17.0107 -17.1240 
*B 16.9643 16.9666 

     

σy/q (
a

2
,
b

2
) 

*T -2.4682 -2.5590 
*B 2.4175 2.4837 

     

τxy/q (0,0) 

*T 3.7305 4.0943 
*B -3.0743 -4.0943 

     

τxz/q (0,
b

2
) h/2 3.2006 3.2035 

     

τyz/q (
a

2
,0) h/2 1.3266 1.3518 

*
 Where T and B are the top and bottom of the single-ply plate through the thickness respectively. 

 

 

 

 

Figure 4-15 Out-of-plane displacement (w.E3/qh) distribution through the thickness 

of the plate with h/a = 0.2 (note: data is provided in Appendix B-Table B.2). 
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After applying the SSA to one general composite ply, in the next section, the SSA will 

be extended to include a laminated composite plate. Then, the SSA results will be 

compared with different existing analytical approaches. 

4.5 SSA applied to a general laminated composite plate 

For general laminated plates, as shown in Figure  4-17, if the plate is j-plied laminate, 

equation (4-16) ({Fmn (h)} = [Gmn(h)]{Fmn (0)}) will be applied first to each of the 

individual layers of the plate, where {Fmn (h)} is called the state vector at the bottom of 

the plate, {Fmn (0)} at the top of the plate, and [Gmn(h)] is the system state matrix. 

Equation (4-16) is extended to: 

{Fmn (dj)}j
= [G(dj)]j

{Fmn (0)}
j
 (4-21) 

where j is the number of layers, dj is the thickness of each layer. 

Then, if equation (4-21) is applied for (j+1)
th

 layer; the equation becomes:  

 

Figure 4-16 Transverse shear stress (τxz /q) distribution through the thickness of 

the plate with h/a = 0.2 (note: data is provided in Appendix B-Table B.3). 
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{Fmn (dj+1)}
j+1

=[G(dj+1)]
j+1

{Fmn (0)}
j+1

 (4-22) 

Therefore; {Fmn (0)}
j+1

={Fmn (dj)}j
, then equation (4-22) becomes: 

{Fmn (dj+1)}
j+1

=[G(dj+1)]
j+1
[G(dj)]j

{Fmn (0)}
j
 

(4-23) 

To summarise, equation ( 4-23) can be written as the following equation: 

{Fmn (dj+1)}
j+1

= [П]{Fmn (0)}
j+1

 

Where: 

П=[G(dj+1)]
j+1
[G(dj)]j

 

   ( 4-24) 

 

 

 

 

 

 

 

 

Figure 4-17 Nomenclature of an orthotropic rectangular laminated plate. 

 

In this section, the SSA will be applied to a cross-ply plate as a laminated composite 

plate and different analytical approaches will be compared with the SSA result. 

4.5.1 Antisymmetric cross-ply plate (two plies) comparison with various 

analytical solutions 

The focused-on panel has the same geometry as that examined analytically by Reddy 

(2004). The panel or plate is symmetrical, with two plies of alternate orientation, i.e. [0/ 

90]°, as shown in Figure  4-18. The in-plane dimensions of the plate are a = b = 100 mm 

and h/a is equal to 0.2. Here, a is the length of the plate along the x-axis, b is the 

x, u, 1 
z, w, 3 

y, v, 2 
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dimension of the plate along the y-axis and h is the total thickness of the plate (z-axis), 

as shown in Figure  4-18. The set of elastic material parameters used, as shown in 

Table  4-10, for the plies is as per the reference (Reddy, 2004). 

Table 4-10 Elastic material properties of the composite plate (Reddy, 2004). 

E1/E2 = 25; E3 =E2 

G12 = G13 = 0.5 E2 

G23 = 0.2 E2 

v
12

= v
13
= v

23
= 0.25 

 

The plate is simply supported from four sides as per Reddy (2004) and the load on the 

top surface of the panel is a sinusoidal load, as shown in Figure  4-18. 

 

Figure 4-18 The geometry of the antisymmetric cross-ply plate under sinusoidal 

load and the orientation angles through h.  

 

 

Figure  4-19 and Table  4-11 show the results of the different analytical approaches for 

the out-of-plane displacement w and the in-plane stresses σx and σy of antisymmetric 

cross-ply for a = b and h/a = 0.2 for the simply supported boundary condition.  

The analytical approaches that are used are Classical Laminated Plate Theory (CLPT), 

First-order Shear Deformation Theory (FSDT) and Higher-order Shear Deformation 

Theory (HSDT) and they are validated with the SSA. For more information about each 

approach, see Chapter 3, section  3.2. 

 

θBottom= 90° 

θ Top = 0° 

q (x,y) = q0 sin(πx a⁄ ) sin(πy b⁄ ) 
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The values in Figure  4-19 and Table  4-11 for the out-of-plane displacement w will be at 

the top of the plate, for the in-plane stress σx, the results will be at the top of the plate 

and for σy, they will be at the bottom of the plate, as per Reddy (2004). These locations 

are chosen to find the maximum out-of-plane displacements w and the in-plane stresses 

σx and σy. 

The SSA shows the closest result for the out-of-plane displacement w to the FSDT 

compared to the other approaches. Also, the SSA shows a good agreement with the 

HSDT. Thus, in this case, the CLPT has underpredicted the results compared to the 

other approaches as the plate is considered to be a thick plate (Reddy, 2004).  

For the in-plane stresses σx and σy, the values are the same as here the plate is square 

and the stresses are in the same position due to the plate’s symmetry. The HSDT and 

the SSA are the closest to each other. 
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Figure 4-19 Theoretical results for displacements and in-plane stresses of 

antisymmetric cross-ply for a = b and h/a = 0.2. 
 

Table 4-11 Theoretical results for displacements and in-plane stresses of 

antisymmetric cross-ply for a = b and h/a = 0.2. 

 
(x, y, z) SSA CLPT FSDT HSDT 

WE2h
3

b
4
q
0

×10
2
 (

a

2
,
b

2
,0) 1.725 1.064 1.758 1.667 

- σxh
2

b
2
q
0

×10 (
a

2
,
b

2
,0) 7.894 7.157 7.157 8.385 

-σyh
2

b
2
q
0

×10 (
a

2
,
b

2
,h) 7.894 7.157 7.157 8.385 
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4.6 Concluding Remarks 

An analytical investigation has been carried out for a general composite simply 

supported rectangular plate with two different loading conditions by using 3D SSA. The 

SSA, as a powerful three-dimensional approach, satisfies all the boundary conditions 

and the continuity at the interfaces. The state space method can give theoretically 

precise results for all in- and out-of-plane stresses and displacements for various 

thicknesses from thin to very thick plates. By applying the SSA, it is found that the 

behaviour of the stresses through the thickness becomes non-linear, especially for plates 

with a higher thickness-to-width ratio (h/a). 

Furthermore, for the case studies in this chapter, the finite element models developed in 

ABAQUS overestimate some of the results, such as almost all of the displacement 

components and in-plane normal stresses, while shear stresses in FEM are lower values 

in comparison with those of the SSA. Such accuracy is required when numerical results 

from the FEM are applied for real structural design and behaviour evaluation. 

In the next chapter, the SSA will be extended to consider a laminated composite plate, 

and this material will be Cross-Laminated Timber (CLT). Different case studies 

experimentally, analytically and numerically will be compared with the SSA. 
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5 CHAPTER 5 

APPLICATION OF THE 3D STATE SPACE APPROACH TO 

CLT PANELS 
 

 

5.1 Introduction 

In the previous chapter, the SSA was applied to a generic laminated composite plate. In 

this chapter, the SSA will be applied to Cross-Laminated Timber (CLT) panels. 

In this chapter, Cross-Laminated Timber (CLT) panels are investigated as a novel 

engineering application of the State Space Approach (SSA). The 3D analytical method 

provided by the SSA offers the potential for improved accuracy over existing common 

approaches to the analysis of CLT. The SSA is applied to describe the behaviour of a 

number of CLT panel configurations previously examined experimentally, analytically 

and numerically. In order to demonstrate the capability of the SSA in this application, 

the results are compared with those from various 2D and 3D analytical approaches and 

finite element modelling. Furthermore, different failure criteria are explored to assess 

the ultimate strength and design of the panels compared to the experimental test. The 

SSA method demonstrates its superior capability to the various existing 2D approaches 

in capturing the non-linear distribution of the stresses through the thickness of the CLT 

panels over a range of thicknesses. 

In this chapter, firstly, the SSA is validated with the experimental works by Czaderski 

et al. (2007) for 3-ply CLT panels and Hochreiner et al. (2014) for 5-ply CLT panels 

under different types of loads. Then, different 2D and 3D analytical solutions are 

validated with the SSA for different CLT panels. Subsequently, after all the 

theoretically exact stresses are obtained by the SSA for the experiment undertaken by 

Czaderski et al. (2007), three different failure criteria are studied for 3-ply CLT to 

explore and understand more about the structural behaviour and failure of the CLT used 
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in the experiment. Then, the 3-ply CLT panel is modelled by using the finite element 

program ABAQUS and different types of models are simulated with different element 

types, mesh sizes and simply supported boundary condition options. Then, the FEM 

results are compared with the SSA results. After this, for the final section, an 

experimental work undertaken by O’Dowd et al. (2016) is simulated by FEM followed 

by an associated parametric study. 

For all the following validations and calculations, the CLT panel is considered as an 

orthotropic material with three principal axes: longitudinal axis parallel to the grain, 

radial and tangential axes. The last two axes are treated the same in value and regarded 

as having properties perpendicular to the grain (McKenzie, 2000; Forest Products 

Laboratory, 2010). 

5.2 CLT panel experimental validation 

The following discusses the SSA modelling of 3- and 5-ply CLT panels tested 

experimentally by Czaderski et al. (2007) and Hochreiner et al. (2014). 

5.2.1 Case Study 1: 3-ply CLT panel 

Czaderski et al. (2007) studied a number of 3-ply CLT panels with an h/a ratio of 0.03 

and a total thickness of 70 mm in two layup configurations [10, 50, 10] and [25, 20, 25] 

mm. The plates were simply supported on all four edges under four different types of 

concentrated load (delivered via 150×150 mm
2
 spreader plates). 

In this case study, two concentrated load configurations will be examined; the first load 

configuration is a central point load and the second is based on a quarter point load, as 

shown in Figure  5-1. Each plate is based on the [10, 50, 10] mm layup; corresponding 

material properties including E1, E2 and E3 are shown in Table  5-1 as per the original 

experiment (Czaderski et al., 2007).  
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The modulus of elasticity of each layer of the CLT used in the test is estimated by using 

non-destructive ultrasound testing before bonding is applied between the layers. After 

the CLT plies were bonded, the modulus of elasticity and the strength of the CLT as one 

unit for the parallel and perpendicular to the grain direction of the outer plies were 

derived from beam tests (Czaderski et al., 2007). 

 

(a) 

 

 

 

 

 

 

 (b) 

Figure 5-1 3-ply CLT panel under concentrated loads for (a) centred at the plate mid-

point and (b) quarter point loads. 

 

Deflections at the midpoint and quarter points were measured on the plate’s lower 

surface directly under the load, so the quoted values for the out-of-plane deflection w 

will be at the lower surface. In the SSA models presented here, the number of Fourier 

series terms for the analytical solution, m and n, was set to 25, as per Sturzenbecher et 

al. (2010). 

To ensure that the SSA can be applied in this case study and for comparison reasons, the 

experimental and SSA load-displacement curves for each specimen are shown in 

Figure  5-2. It can be seen that the SSA gives very good agreement with experimental 

results for the out-of-plane displacement w for both loading conditions. 

q (x,y) 

q (x,y) 
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Subsequently, Table  5-1 and Figure  5-3 presents the experimental data along with the 

results from the SSA and other analytical approaches for each specimen at a total load 

of 30kN for the central point loaded plates and 45kN for the quarter point loaded plates. 

It can be observed that the SSA gives a good overall performance in modelling the 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

(b) 

Figure 5-2 Load-displacement curves for the experimental and SSA for (a) central 

point (E1 = 11,500 MPa) and (b) quarter point loads (E1 = 12,000 MPa). 
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composites’ behaviour. In the case of the central point load, the values for the SSA and 

the Pagano approach (as mentioned in detail before, in section  3.4.1) are exactly the 

same and both give good agreement with the experimental data. This demonstrates their 

suitability to deliver reliable output here. In the case of the quarter point load, the SSA 

method provides a closer match with the experimental results than either the Pagano or 

FSDT approaches. 

The level of theoretical accuracy achieved by the SSA should be viewed within the 

context of the natural variation of timber itself. Typically, the co-efficient of variation 

for timber strengths will vary but it is frequently less than 15% (Dinwoodie, 2000). 

Table 5-1 Experimental and theoretical results for displacements (mm) of the 3-ply 

CLT panel at total central load = 30kN, total quarter point loading = 45kN (h/a = 0.03,  

a=b= 2.5m) 

Load 
E1 

(MPa) 

E2 = 

E3(MPa) 

w (mm) at z=h 

Exp. Data  
SSA 

Pagano FSDT 
(Czaderski et al., 2007) Sturzenbecher et al. (2010) 

*Central 

Point 

11,500 575 20.90 20.84 20.84 20.89 

12,500 625 18.20 19.11 19.11 19.16 
 

  
    

*Quarter 

Point 

10,000 500 17.20 17.79 18.48 18.50 

12,000 600 15.00 14.80 15.35 15.34 

*The Poisson’s ratios of the CLT panels for both types of load are v
12
= v

13
= 0.02 and v

23
= 0.3 

 

 

 

 

 

 

 

(a) 
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 (b) 

Figure 5-3 Experimental and theoretical results for displacements (mm) of the 3-ply 

CLT panel (h/a = 0.03) for (a) central point and (b) quarter point loads. 

 

After validating the 3-ply CLT panel as an engineering application and for more thick 

plate application, the 5-ply CLT panel will be validated in the next section. 

5.2.2 Case Study 2: 5-ply CLT panel 

The panel in this study has the same geometry and properties as the experiment tested 

by Hochreiner et al. (2014). The panel is symmetrical with five plies of alternate grain 

orientation, i.e. [0/90/0/90/0]°, under centrally concentrated load acting uniformly on a 

patch area (c, d), as shown in Figure  5-4. Each ply has a thickness of 19 mm, so the total 

plate thickness is 95 mm. The in-plane dimensions of the plate are a = b = 1900 mm and 

h/a is equal to 0.05. Here, a and b are the length of the plate along the x-axis and y-axis 

respectively, and h is the total thickness of the plate (z-axis), as shown in Figure  5-4. 

The set of elastic material parameters used for the timber plies is given in Table 5-2 and 

is as per the reference (Hochreiner et al., 2014). 
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Figure 5-4 The geometry of the 5-ply CLT panel under central concentrated out-

of-plane load. 

 
 

Table 5-2 Elastic material properties for CLT panels (Hochreiner et al., 2014). 

E1 = 11000 MPa; E2 = E3 = 370 MPa 

G12 = G13 = 690 MPa; G23 = 50 MPa 

v
12
= v

13
= 0.44; v

23
= 0.64 

 

As shown in Figure  5-5(a), the SSA gives very good agreement with experimental 

results for the out-of-plane displacement w. From this point of view, the SSA can be 

adopted for this case study and the out-of-plane displacement w can be drawn through 

the thickness of the CLT panel, as shown in Figure  5-5(b). From this figure, the non-

linear behaviour of w is clear. 
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(b) 

Figure 5-5 (a) Load-displacement curves for the experimental and SSA and (b) 

SSA out-of-plane displacement w distribution through the thickness. 

 

As h/a is equal to 0.05, the CLT panel is considered to be a thin plate; however, by 

applying the SSA for this case study, the actual behaviour of the in-plane stresses σx 

through the thickness can be noticed, as shown in Figure  5-6, and the application can 

be extended to thicker plates, where the 2D methods are unable to capture the stresses 

accurately. Also as shown in the same figure, the in-plane stresses σx decrease as the 

thickness of the plate is increased. In addition, in the first layer as the thickness is 

increased the stresses will change the sign from negative to positive. 
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Figure 5-6 The in-plane stress σx by the SSA through the thickness for different 

h/a for Case Study 2 (note: data is provided in Appendix C-Table C.1). 

 

 

As mentioned before, in order to demonstrate the capabilities of the SSA in this 

application, in the next section, the CLT panel will now be analysed using a variety of 

approaches including the SSA. 

5.3 CLT panel detailed comparison with various analytical solutions 

In this section, two case studies are explored analytically. The first one is three plies of 

CLT panel examined analytically by Sturzenbecher and Hofstetter (2011), and the 

second one is five plies of CLT panel examined analytically by Sturzenbecher et al. 

(2010). 

5.3.1 Case Study 3: 3-ply CLT panel 

The focused-on panel has the same geometry as that examined analytically by 

Sturzenbecher and Hofstetter (2011). The panel or plate is symmetrical with three plies 

of alternate grain orientation, i.e. [0/90/0]°, as shown in Figure  5-7.  
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Each board or ply has a thickness of 30 mm so that the total plate thickness is 90 mm. 

The in-plane dimensions of the plate are a = b = 360 mm and h/a is equal to 0.25 as this 

is the thicker plate studied by Sturzenbecher and Hofstetter (2011). Here a is the length 

of the plate along the x-axis, b is the dimension of the plate along the y-axis and h is the 

total thickness of the plate (z-axis), as shown in Figure  5-7. 

The set of elastic material parameters used for the timber plies is the same as per 

Sturzenbecher and Hofstetter (2011) and it is the same as Case 2. All the calculations 

are based on C24-grade timber as the constituent of the CLT boards, in accordance with 

BS EN 338. 

The panel is simply supported on all sides, as per Sturzenbecher and Hofstetter (2011), 

and the load on the top surface of the panel is a sinusoidal load with a maximum 

magnitude of 1 MPa (q(x,y) = q0 sin(πx a⁄ ) sin(πy b⁄ ) where q0= 1 MPa), as shown in 

Figure  5-7. 

 

 

 
 

Figure 5-7 The geometry of the 3-ply CLT panel under sinusoidal load and the 

grain orientation angles through h. 

 
 

Figure  5-8, Figure  5-9 and Table  5-3 show the theoretical results for the displacements 

and the stresses of the 3-ply CLT panel for the case of h/a = 0.25 using the SSA in 

comparison with results from Sturzenbecher and Hofstetter (2011), which utilised the 

previously mentioned 2D Ren approach and the 3D Pagano approach. It can be 

observed that the 3D Pagano approach results closely match that of the SSA; also, the 

2D approach does not give good agreement with the SSA.  

θTop = 0° 
θMiddle= 90° 
θBottom = 0° 

q(x,y) = q0 sin(πx a⁄ ) sin(πy b⁄ ) 
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From the same figures and table, for the mid-plane ply, it is clear there are 

inconsistencies in the values of the inter-laminar stresses (τxz and τyz) between the SSA 

and the 2D approaches. The 2D results overestimated the values of τxz while they 

underestimated the value of τyz. 

As can be noticed from Figure  5-9, the SSA and Pagano approaches match exactly 

through the thickness, although there is a difference between the SSA and the 2D 

approaches used by Sturzenbecher and Hofstetter (2011) with the distribution of out-of-

plane τxz through the thickness of the CLT panel. The maximum value of τxz obtained 

using the 2D approaches occurs in the mid-plane. Using the SSA, the behaviour of the 

stress is continuous across layer interfaces and the maximum value for τxz is not in the 

mid-plane but in the interfaces of the mid-ply locally. 

  

u at (
a

2
,0) 

 

v at (0,
b

2
) 

  

w at (
a

2
,
b

2
) 

 

σx at (
a

2
,
b

2
) 



112 

 

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

Present (SSA) 2D approach
Pagano approach

z = h/2 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5

z/
h

 

τxz (MPa) 

SSA

Pagano

2D Approach

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

Present (SSA) 2D approach
Pagano approach

z/h = 0.5 

 

 

σy at (
a

2
,
b

2
) τyz at (0,

b

2
) 

*Where T and B are the top and bottom of the panel through the thickness respectively. 

Figure 5-8 Theoretical results for displacements (mm) and stress states (MPa) of the 3-

ply CLT panel (h/a = 0.25). 
 

 

 

 

Figure 5-9 Out-of-plane shear stress τxz distribution through the thickness predicted by 

different plate approaches at z/h=0.5. 
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Table 5-3 Theoretical results for displacements (mm) and stress states (MPa) of the 3-

ply CLT panel (h/a = 0.25). 

 
(x,y) z SSA 

Pagano approach 
(Sturzenbecher and 

Hofstetter, 2011) 

2D approach 
(Sturzenbecher and 

Hofstetter, 2011) 

u (
a

2
, 0) 

*T 0.1246 0.1246 0.1360 
*B -0.1240 -0.1240 -0.1360 

      

v (0, 
b

2
) 

*T 0.1870 0.1870 0.2178 
*B -0.2138 -0.2138 -0.2178 

  
 

   

w (
a

2
, 
b

2
) 

*T 0.9943 0.9943 0.9652 
*B 0.9168 0.9168 0.9652 

      

σx (
a

2
, 
b

2
) 

*T -13.0319 -13.0320 -13.4500 
*B 12.2872 12.2870 13.4500 

      

**σy (
a

2
, 
b

2
) 

*T -10.1361 -10.1360 -10.2970 
*B 10.6190 10.6190 10.2970 

      

τxz (
a

2
,0) h/2 0.7242 0.7242 0.7595 

      

τyz (0,
b

2
) h/2 1.0865 1.0865 1.0596 

*
 Where T and B are the top and bottom of the panel through the thickness respectively. 

** 
The values of σy are the top and bottom of the 2

nd
 layer (θ=90°). 

 

Section  2.4.2 mentioned the limitations of the Sturzenbecher and Hofstetter (2011) 

analytical approach; in contrast, by using the SSA, σz is included in the solution. Also, 

there is no assumption for w and it can be calculated at any location through the 

thickness, as shown in Figure  5-10. From the same figure, also all the in- and out-of-

plane stresses and displacements can be mapped by using the SSA. In most existing 

plate theories, the influence of the in-plane shear component is neglected 

(Sturzenbecher and Hofstetter, 2011) while the SSA can calculate τxy through the 

thickness of the plate, thus demonstrating the strength of the method. Furthermore, as 

can be noticed from the same figure, the stresses and the displacements are distributed 

through the thickness of the three plies of the CLT panel depending on ply orientation; 

it can also be observed that the distributions are non-linear through the thickness 

direction.  
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5.3.1.1 Effect of thickness-to-width ratio (h/a) for Case Study 3 

For CLT one of the most challenging issues is to obtain accurate results for thicker 

plates. By using the SSA, a key advantage of this approach can be utilised: its capability 

to provide an accurate solution for different thicknesses of the plate, as shown in 

Figure  5-11. This figure shows the effect of the thickness-to-width ratios (h/a) on the 

in-plane stresses σx. The behaviour of the stresses through the thickness is non-linear as 

h/a increases. Due to the assumptions of the 2D methods, there is always a limitation 

 

  

   

  

 

Figure 5-10 In- and out-of-plane displacements and stress states of the 3-ply CLT panel 

(h/a = 0.25) by the SSA. 
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relating to the maximum thickness of the plates to be analysed, saying h/a is less than 

0.25 in Sturzenbecher and Hofstetter (2011). In contrast, the SSA can be applied to 

much thicker plates, which increases the range of CLT plates that can be studied. 

 

Figure 5-11 The effect of different h/a on the in-plane stress σx through the thickness 

of the 3-ply CLT panel. 

 

 

After the 3-ply CLT panel has been studied analytically, the thicker plate with five plies 

will be explored in the next section. 

5.3.2 Case study 4: 5-ply CLT panel 

For this case study, the panel has the same geometry as that examined analytically by 

Sturzenbecher et al. (2010). The panel is symmetrical with five plies with the same set 

of elastic material parameters used for the timber plies as per section  5.2.2.  

The panel is simply supported on all sides, as per Sturzenbecher et al. (2010), and the 

load on the top surface of the panel is a sinusoidal load with a maximum magnitude of 

0.5 MPa (q(x,y) = q0 sin(πx a⁄ ) sin(πy b⁄ ) where q0= 0.5 MPa), as shown in Figure  5-12. 

Each ply has a thickness of 30 mm, so the total plate thickness is 150 mm. The in-plane 

dimensions of the plate are a = b =1500 mm and h/a is equal to 0.1.  
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Figure 5-12 The geometry of the 5-ply CLT panel under sinusoidal load. 

 

 

In Figure  5-13, the SSA is compared with CLPT and Pagano solutions for the in-plane 

and out-of-plane displacement (u and w). For both scenarios, the SSA gives a perfect 

agreement with the Pagano results. CLPT gives a linear distribution through the 

thickness, as shown in Figure  5-13(a). From Figure  5-13(b), it can be seen that, while 

the SSA and Pagano results have a good agreement, there is a large difference to the 

CLPT results, thus highlighting the limitations of the CLPT method. 
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(b) 

Figure 5-13 Displacement distribution through the thickness of the 5-ply CLT 

panel for (a) in-plane u and (b) out-of-plane w displacements. 

 

 

In this case study, h/a is equal to 0.1. Thus, the plate is considered as a thin CLT panel. 

As the CLT becomes thicker (h/a = 0.5), the SSA is capable of accurately capturing all 

the elastic stresses and the displacement through the thickness, as shown in Figure  5-14. 

From the same figure, the differences between the transverse shear stresses (τxz and τyz) 

for both CLT panel cases (thin and thick) are shown. For τxz, the thin plate shows that 

the maximum value will be in the middle of the third ply (0° ply), and the distribution 

through the other plies will be more linear. On the other hand, for the thicker plate, the 

non-linear behaviour and the distribution are shown through the thickness of the CLT 

panel and the maximum values are at the middle of each 0° ply (1
st
, 3

rd
 and 5

th
 ply). For 

τyz, as the maximum value shown for the thinner plate is at the middle of the 3
rd

 ply 

when the plate becomes thicker, the non-linear behaviour becomes more obvious, and 

the maximum values are at the middle of the 2
nd

 and 4
th

 plies (90° plies). 
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Figure 5-14 In- and out-of-plane displacements and stress states of the 5-ply CLT panel 

(h/a = 0.1 and 0.5) by the SSA. 
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In addition to the SSA method and other analytical solutions previously discussed, a 

simulation of the CLT panel using the commercially available finite element program 

ABAQUS will be presented. 

5.4 FEM model of the CLT panel 

In this section, three different case studies will be explored by using ABAQUS. The 

first two studies are three plies of CLT panel under different types of load. For the last 

study, the FEM model developed will be extended to a 5-ply beam of CLT under 

different boundary conditions and further checked against the corresponding 

experimental work by O’Dowd et al. (2016). Details are shown as follows. 

5.4.1 Case Study 1: 3-ply CLT panel FEM model under sinusoidal load 

To describe the bond connection between different plies, ABAQUS provides more than 

one approach for defining layer contact. Three modelling approaches will be explored 

under sinusoidal load. The first model in ABAQUS will be the composite Layup model. 

The second method is to define the contacted layers as a cohesive element and the last 

method is to define the connection as an interaction contact layer. Before applying these 

approaches for the analysis of the panel, mesh sensitivity, element types and simply 

supported boundary condition options will be explored. 

In this section, the focused-on models have the same geometry (as shown in 

Figure  5-15), elastic material parameters, boundary condition and the types of load as 

that examined analytically by Sturzenbecher and Hofstetter (2011) and described in 

section  5.3.1. 
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Figure  5-15 The geometry of the FEM model of a 3-ply CLT panel. 

 

5.4.1.1 Mesh sensitivity study for Case Study 1 

A mesh sensitivity study was undertaken to check which mesh size would be most 

appropriate for the analysis. Four mesh sizes were investigated comprising of equal-

sided elements with dimensions of 3, 6, 12 and 24 mm. As shown in Figure  5-16, when 

the mesh density increases, the values of the in-plane stress σx with respect to the 

theoretical solution (derived from the SSA) will be more accurate. Although the 3 and 

6 mm mesh sizes are giving close results to each other, and running the FEM model is 

time-consuming, as shown in Table  5-4, the 6 mm mesh size will be used in the current 

FEM analysis. 

 

Figure 5-16 Different mesh size results of a single-ply plate for σx at z = 0.0 for 

h/a = 0.25. 

b a 

h 
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5.4.1.2 Choice of element types for Case Study 1 

As outlined in Figure  5-17 and Table  5-5, two different solid elements have been 

studied (3D 8-node linear brick element (C3D8) and 3D 20-node linear brick element 

(C3D20)) (ABAQUS, 2013) and the results from these have been compared with the 

analytical results. Solid elements were used in this study instead of shell elements 

because of the former’s ability to map all the displacements and stresses through the 

thickness of the plate. The most suitable solid element in terms of accuracy in 

comparison with the analytical solution is C3D20. Accordingly, this was adopted in the 

numerical model. 

5.4.1.3 Boundary condition (BC) sensitivity for Case Study 1 

The boundary conditions occupied a very important role in obtaining accurate FEM 

results. For simply supported edges, the ABAQUS program gives options to determine 

the BC. Figure  5-17 and Table  5-5 show two different options to create simply 

supported edges, as has been mentioned before, in section  4.4.3.4. 

From Figure  5-17 and Table  5-5, the values of the displacements and the stresses are 

nearly the same as the SSA solution for the second boundary condition, BC2.  

Table 5-4 FEM models’ running time for different mesh sizes for Case Study 1. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 
 24 mm 12 mm 6 mm 3 mm 

Running time 

(s) 
54 241 1332 11880 
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2
) τyz at (
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*
 Where T and B are the top and bottom of the panel through the thickness respectively. 

Figure 5-17 SSA with FEM results on the displacements (mm) and stress states (MPa) 

of the 3-ply CLT panel for different element types and BCs (h/a = 0.25). 

 

 

Table 5-5 The effect of the element type and BC sensitivity on the displacements 

(mm) and stresses (MPa) of 3-ply CLT panel (h/a = 0.25). 

 

(x,y) z  SSA 

FEM 

BC 1 

(C3D20) 

BC 2 

(C3D20)  

BC 2 

(C3D8) 

u (
a

2
,0) 

*T 0.1246 0.1251 0.1272 0.1283 
*B -0.1240 -0.1607 -0.1272 -0.1283 

       

v (0,
b

2
) 

*T 0.1870 0.2801 0.2121 0.2148 
*B -0.2138 -0.2520 -0.2121 -0.2148 

  
 

    

w (
a

2
,
b

2
) 

*T 0.9943 1.0753 0.9936 0.9988 
*B 0.9168 0.9935 0.9143 0.9200 

       

σx (
a

2
,
b

2
) 

*T -13.0319 -14.3495 -13.0035 -11.2076 
*B 12.2872 13.7223 12.2756 10.6314 

       

**σy (
a

2
,
b

2
) 

*T -10.1361 -10.9284 -10.0436 -9.8312 
*B 10.6190 11.7134 10.6640 10.5847 

       

τxy (0,0) 
*T 1.8764 1.1808 2.0314 2.0499 
*B -2.0339 -1.1809 -2.0314 -2.0499 

       

τxz (
a

2
,0) h/2 0.7242 0.8756 0.7127 0.7553 

       

τyz (0,
b

2
) h/2 1.0865 1.2238 0.9827 1.0294 

*
 Where T and B are the top and bottom of the panel through the thickness respectively. 

** 
The values of σy are the top and bottom of the 2

nd
 layer (θ=90°). 
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For detailed in-plane stress distribution σx through the thickness, Figure  5-18 shows σx 

for the two boundary conditions and accordingly with the results of the SSA. From this 

figure, both boundary condition options give a good distribution through the thickness 

when compared to the SSA, but BC2 is closer to the SSA distribution than BC1. 

 

Figure 5-18 The effect of BC on the 3-ply CLT in-plane σx through the thickness of 

h/a = 0.25 (note: data is provided in Appendix C-Table C.2). 
 

After choosing the optimum mesh size, element types and the suitable boundary 

condition for the simply supported CLT panel, three different options for interfacial 

connection to simulate the CLT panel will be presented in the following subsections. 

5.4.1.4 Model 1: 3-ply CLT panel using the fully bonded model 

In this model, as shown in Figure  5-19, the fully bonded model (Composite Layup) is 

chosen in ABAQUS to simulate three plies perfectly bonded in the CLT panel.  

The fully bonded model (Composite Layup) in ABAQUS is designed to simulate a 

various number of plies in one composite model with perfect bonding between the 

different plies. By using this option in ABAQUS, the number of plies, the region of 
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each ply with the material properties and the fibre orientation angle should be specified 

(ABAQUS, 2013).  

To obtain an accurate result, for CLT, the fibre orientation angle for each ply should be 

specified in a very accurate way and, for the case of CLT, should follow the sequence 

0°, 90°, 0°, as shown in Figure  5-19. Also, the orientation angle should follow the 

reference orientation of the ply. 

5.4.1.5 Model 2: 3-ply CLT panel using the cohesive element 

In this model, the CLT plies will be modelled as separate plies and bonded by using 

cohesive elements such as glue or ties; this is defined as a mesh layer, as shown in 

Figure  5-20. The cohesive element is used to model adhesives between two components 

and to bind different interfaces although they do not have any degree of freedom other 

than that for displacement (ABAQUS, 2013). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-19 The FEM model for the 3-ply CLT panel under sinusoidal load and 

the grain orientation angles for each ply. 
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Figure 5-20 The FEM model for the 3-ply CLT panel with the cohesive element 

layers between the CLT plies. 

 

 

In ABAQUS, three types of cohesive element are available, these being the elements 

for two-dimensional, three-dimensional and axisymmetric analyses (ABAQUS, 2013). 

In this model, the cohesive element to be used is an 8-node three-dimensional cohesive 

element (COH3D8). 

In general, one of the most important factors in using this model is to define the 

cohesive element material property. Currently, the material property for the cohesive 

element is set as linear elastic traction. The elastic behaviour in ABAQUS is related to 

the nominal traction stress t and the strain of the cohesive element layer (the interface), 

as shown in equation (5-1). The nominal traction stress vector t consists of three 

components for a three-dimensional model, tn, ts and tt, which represent the normal 

along the local 3-directions and two shear tractions along 1- and 2-directions. 

 

Cohesive element 

layers 
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{

tn

ts

tt

} = [

Knn Kns Knt

Ksn Kss Kst

Knt Kts Ktt

] {

εn

εs

εt

} 
(5-1) 

 

The elastic matrix [K] provides fully coupled behaviour between the normal and shear 

components. Note that, if the uncoupled behaviour exists, then the off-diagonal in the 

matrix will be equal to zero. 

After defining the material properties of the cohesive element between the plies, the 

cohesive element itself will be defined as a mesh layer between the CLT plies and, for 

that, a section assigned to this element with the cohesive element’s material property is 

assigned to this mesh element. Then, it is necessary to bond the different CLT plies by 

using tie constraints in ABAQUS. By this constraint, ABAQUS gives an option to 

choose one of the different surfaces to be the master and the other to be the slave and, 

by this tie (constraint), the plies will be tied together. In this model, as three plies of 

CLT plies are tied together, then two constraints are used. 

5.4.1.6 Model 3: 3-ply CLT panel using contact interactions 

In this model, the same procedure as used in the previous model is used to define 

different plies and define the bonding (glue) layer between the CLT plies. The difficulty 

in this model is how to define the contact interaction between the different plies, as 

shown in Figure  5-21.  

As per the previous model, the cohesive element is a mesh element layer between the 

CLT plies with special properties (as the glue-type properties). However, for this 

model, the contact interactions between the CLT plies are directly applied and the 

material properties of the interaction can be defined and there is no need to create a 

section for the cohesive layer as in the previous case. 
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Contact interactions 

layers 

5.4.1.7 Comparison of results between the different types of 3-ply CLT models 

For the three models, the same mesh size and element types are used. In Figure  5-22 

and Figure  5-4, the comparison between the three models with the SSA is shown. To 

recap, the first model (Model 1) is CLT with fully bonded model, the second one 

(Model 2) is CLT with the cohesive element and the final one (Model 3) is CLT with 

contact interactions. From this table, it is clear that models 2 and 3 give the same results 

except for the transverse normal shear stresses although they are very close to each 

other. Thus, Model 2 is more accurate than Model 1 in comparison with the SSA.  

The SSA model adopts full connectivity between plies. It would, therefore, be expected 

that the full connectivity assumption of Model 1 would provide a closer match with the 

SSA model (taking SSA to be the benchmark based on its previously discussed 

favourable comparisons with Pagano, etc.). The fact that there is a notable difference 

demonstrates some of the shortcomings of the FEM in capturing the full behaviour of 

the plate; these are not solely attributed to the bond assumptions. 

From the three displacements, the results show that, for Model 1, since full bond is 

assumed between the plies, the structure will be stiffer and the displacement will be less 

than the actual value. On the other hand, in Model 2, when the cohesive element is 

 

 

 

 

 

Figure 5-21 The FEM model for the 3-ply CLT panel with the contact interactions 

layers between the CLT plies. 
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used, the predicted behaviour of the CLT is theoretically more precise, especially for 

the transverse shear stresses τxz and τyz. 

For the reasons mentioned above, Model 2 with cohesive elements between the CLT 

plies will be adopted for the following case study.  
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Figure 5-22 SSA with FEM results for different FEM model approaches for displacements 

(mm) and stress states (MPa) of the 3-ply CLT panel (h/a = 0.25). 

 

Table 5-6 Different types of FEM model and SSA results for displacements (mm) and 

stress states (MPa) of the 3-ply CLT panel (h/a = 0.25; where a = 360 mm). 
 

(x,y) z  SSA 
*** FEM 

Model 1 Model 2 Model 3 

u (
a

2
,0) 

*T 0.1246 0.0871 0.1272 0.1272 
*B -0.1240 -0.0871 -0.1272 -0.1272 

       

v (0,
b

2
) 

*T 0.1870 0.0848 0.2121 0.2120 

*B -0.2138 -0.0848 -0.2121 -0.2121 
  

 
    

w (
a

2
,
b

2
) 

*T 0.9943 0.4523 0.9936 0.9936 

*B 0.9168 0.3772 0.9143 0.9143 
       

σx (
a

2
,
b

2
) 

*T -13.0319 -9.2528 -13.0035 -13.0035 

*B 12.2872 8.5113 12.2756 12.2756 
       

**σy (
a

2
,
b

2
) 

*T -10.1361 -8.3951 -10.0436 -10.0436 

*B 10.6190 8.3277 10.6640 10.6640 
       

τxy (0,0) 

*T 1.8764 1.0335 2.0314 2.0312 

*B -2.0339 -1.0335 -2.0314 -2.0311 
       

τxz (
a

2
,0) h/2 0.7242 0.1208 0.7127 0.7223 

       

τyz (0,
b

2
) h/2 1.0865 1.7858 0.9827 1.1138 

*
 Where T and B are the top and bottom of the panel through the thickness respectively. 

** 
The values of σy are the top and bottom of the 2

nd
 layer (θ=90°). 

***
All the FEM models are 3D 20-node linear brick element (C3D20) with mesh size 6 mm. 
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After all the sensitivity studies for the mesh size, element type and boundary condition 

have been explored, the 3D solid element (C3D20) with the cohesive element 

(COH3D8) with the finer mesh size is chosen. Figure 5-23 shows the comparison 

between the distribution of the in- and out-of-plane displacements along the x and y-

axes for the SSA and FEM results at the top of the CLT panel. As can be observed from 

Figure 5-23, a good agreement is obtained. 
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                     (a)                (b) 

 

 

                      (c)               (d) 

 

 

                       (e)            (f) 

Figure 5-23 The distribution along x and y of the in- and out-of-plane displacements for 

h/a = 0.25 at z=0. (a), (c) and (e) are the SSA values and (b), (d) and (f) are the FEM 

results for u, v and w (mm), respectively. 
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5.4.2 Case Study 2: 3-ply CLT panel under uniformly distributed load 

In this section, the same number of plies and material properties of the 3-ply CLT panel 

are used as in Model 2 (section  5.4.1.5) with different types of load. A uniformly 

distributed load is used at the top of the plate (as shown in Figure  5-24) to show the 

effect of the number of Fourier series terms (m and n) on the SSA solution. As 

mentioned before, increasing the number of terms is one of the challenging points in 

using SSA. In the SSA models presented here, the m and n are chosen after load 

distribution sensitivity was studied, as shown in Figure  5-25. The high number of terms 

of the analytical solution is used for more accurate results. 

 

 

 

 
 

Figure 5-24 The geometry of the 3-ply CLT panel under uniformly distributed load 

and the grain orientation angles through h with the FEM model. 

 
 

θTop = 0° 
θMiddle= 90° 
θBottom = 0° 

q (x,y) = q 
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Figure 5-25 The load at the top ply (z=0) distribution along x/a for Case Study 2. 

 

Table  5-7 shows the comparison between the SSA and the FEM results for all the 

displacements and the stress states for different locations. It can be clearly noticed that 

the FEM gives good agreement with the SSA for the three plies of the CLT. 

For more detailed results through the thickness, Figure  5-26 and Figure  5-27 show the 

in-plane stress σx and the inter-laminar shear stresses τxz and τyz obtained from the SSA 

and the FEM through the thickness of the 3-ply CLT panel. 

From the same table and from Figure  5-27, the FEM results show discontinuity of the 

inter-laminar stresses τxz and τyz at the interaction between the different plies (for 

example, in Table  5-7 and Figure  5-27 the bottom of the 1
st
 ply for the SSA is equal to 

the top of the 2
nd

 ply, but, for the FEM, it is not the case). As mentioned before, this is 

due to the fact that using solid elements in ABAQUS will lead to discontinuity of the 

transverse shear stresses at ply interfaces in the CLT as the transverse stresses are 

obtained from the displacement field not from the equilibrium equations (ABAQUS, 

2013). Furthermore, the values of τxz should be equal to zero at the top and the bottom of 
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the plate, but for the FEM results they are not, and this has been mentioned before, in 

Chapter 4, section  4.4.4.  

Table 5-7 In- and out-of-plane displacements (mm) and stress states (MPa) of the 3-ply 

CLT panel (h/a = 0.25) by SSA and FEM. 

 (x,y) 
# of the 

ply  
z  SSA **FEM 

 

 

(x,y) SSA **FEM 

u (
a

2
,0) 

1
st
 Ply 

*T 0.2512 0.2167 

v (0,
b

2
) 

0.2954 0.3089 
*B -0.1862 -0.2167 0.1811 0.1851 

2
nd

 Ply 
*T -0.1862 -0.1543 0.1811 0.1851 
*B 0.1479 0.1543 -0.2025 -0.1851 

3
rd

 Ply 
*T 0.1479 0.1952 -0.2025 -0.1849 
*B -0.2131 -0.1952 -0.3674 -0.3572 

 
   

      

w (
a

2
,
b

2
) 

1
st
 Ply 

*T 1.9931 1.5113 

σx (
a

2
,
b

2
) 

-18.2685 -18.0570 
*B 1.7317 1.5057 12.0051 12.0933 

2
nd

 Ply 
*T 1.7317 1.5065 -0.2387 -0.2352 
*B 1.6328 1.4721 -0.3774 -0.3708 

3
rd

 Ply 
*T 1.6328 1.4720 -11.8776 -11.6885 
*B 1.5621 1.4248 18.2443 18.1924 

          

σy (
a

2
,
b

2
) 

1
st
 Ply 

*T -1.8828 -1.8396 

τxy (0,0) 

4.1017 4.3203 
*B -0.7354 -0.7281 -0.2632 -0.2424 

2
nd

 Ply 
*T -13.9692 -13.7273 -0.2632 -0.2424 
*B 14.7099 14.8148 -0.3209 -0.2919 

3
rd

 Ply 
*T 0.1310 0.1403 -0.3209 -0.2919 
*B 1.2603 1.2746 -3.6199 -3.6184 

          

τxz (0,
b

2
) 

1
st
 Ply 

*T 0.0000 -0.0604 

τyz (
a

2
,0) 

0.0000 0.0000 
*B 1.1439 1.2216 1.1590 1.1890 

2
nd

 Ply 
*T 1.1439 1.1490 1.1590 1.5002 
*B 1.2696 1.3339 0.6757 0.7091 

3
rd

 Ply 
*T 1.2696 1.3494 0.6757 0.6565 
*B 0.0000 0.0812 0.0000 0.0151 

* 
Where T and B are the top and bottom of the panel through the thickness respectively. 

**
All the FEM models are 3D 20-node linear brick element (C3D20) with mesh size 6 mm. 
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Figure 5-26 The SSA and FEM in-plane stress σx through the thickness of h/a = 0.25. 

  

 

 

Figure 5-27 The SSA and FEM transverse shear stresses τxz and τyz through the 

thickness of the 3-ply CLT panel for h/a = 0.25. 
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After the FEM results have been validated with the SSA for the 3-ply CLT panel and 

the precise model that simulates the CLT in a good way with the suitable mesh size and 

element type has been chosen, the boundary condition for the CLT edges can be 

changed to include the 5-ply CLT beam. In this case study, the FEM model will be 

validated with the existing experiment by O’Dowd et al. (2016). This reference has 

already been mentioned in detail in Chapter 2, section  2.4.1; however, here, the FEM 

model will be validated with it and different parametric studies will be analysed. 

5.4.3  5-ply CLT beam tested by O’Dowdet al. (2016) 

O’Dowd et al. (2016) found the bending stiffness of CLT panels experimentally. They 

used three different specimen sizes to develop a detailed understanding of the accurate 

bending stiffness. The CLT panel examined in the test consisted of a five-lamina panel, 

with specimens from each lamina being removed and tested individually in order to 

define their properties to an accuracy greater than the declared grade strengths, not to 

mention the bias in the grade strength towards underestimating the properties, 

particularly for the non-grade determining properties. The material properties of the 

CLT reported in the experiment are shown in Figure  5-28 and Table  5-8. In this table, 

the modulus of elasticity E is measured by O’Dowd et al. (2016), and the other material 

properties are from BS EN 338 (2009). 

 

Figure 5-28 Timber gradient for each lamina. 

 

Lamina (2) C24 - 90° 

Lamina (1) C24 - 0° 

Lamina (3) C16 - 0° 

Lamina (4) C24 - 90° 

Lamina (5) C24 - 0° 

Y 

Z 
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Table 5-8 Material properties as per O’Dowd et al. (2016). 

Lamina (1) = Lamina (5) 

C24 

Lamina (3)  

C16 

Lamina (2) = Lamina (4) 

C24 

E1 = 11880 MPa E1 = 8980 MPa E1 = 14480 MPa 

E2 = 370 MPa E2 = 270 MPa E2 = 370 MPa 

E3 = 370 MPa E3 = 270 MPa E3 = 370 MPa 

G12 = 690 MPa G12 = 500 MPa G12 = 690 MPa 

G13 = 690 MPa G13 = 500 MPa G13 = 690 MPa 

G23 = 50 MPa G23 = 36 MPa G23 = 50 MPa 

v12 = 0.44 ; v13 = 0.44; v23 = 0.64 (For all the laminas) 
 

In the O’Dowd et al. work, the specimen sizes are as follows: 1700×150 mm, 

1700×200 mm and 1500×200 mm, and the total thickness is equal to 99 mm (each ply is 

19 mm thick, the glue layer is 4 mm thick). In the current comparison study, only the 

first specimen size will be analysed (1700×150 mm). For the adhesive material, 

Polyurethane glue was used to bond the laminae together with the panel under out-of-

plane load (BS EN 15425, 2008). In the experiment, the specimen exhibited 

approximately linear behaviour with the maximum load and corresponding deflection 

recorded being 35.30 kN and 25.83 mm respectively (O’Dowd et al., 2016). 

The test set-up was based on that described in BS EN 408 (2012), as shown in 

Figure  5-29. The point loads are concentrated over a steel plate to minimise the 

localised stresses. The local displacement at the centre of the span is measured. 

 

Figure 5-29 Four-point bending test according to BS EN 408 (2012). 
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For the FEM model in this study, a 3D 20-node element type with a cohesive element 

layer between the CLT plies and an element mesh size of 10.75 mm is used. The 

simulation results are shown in Figure  5-30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-30 Load-displacement curves for the experimental and FEM models with 

different spreader plate sizes. 
 

The dashed lines in Figure  5-30 are the FEM simulation results. Compared with the 

experimental test (solid line in Figure  5-30), the FEM model does give a fairly good 

agreement with the experimental work. Although this figure is showing the elastic load-

displacement curves, the FEM curves are non-linear due to the involvement of the shear 

effect with the bending as the beam is thick. The level of accuracy is comparable with 

FEM models of CLT undertaken by others, as described in section  2.4.3. One source of 

error in the model is the exact geometry of the spreader plates under the load; this was 

estimated from photographs of the experiment. 

As shown in Figure  5-29, BS EN 408 does allow a slight setting tolerance between the 

loading points and supports (note: all these components were steel). In the original 

experiment, the support bearings were rollers; see Figure  5-31. To understand the 

sensitivity of the model results to the estimated spreader plate size, a range of feasible 
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plate sizes were investigated by varying plate width and thickness. Three spreader plate 

sizes were examined, as shown in Figure  5-32.  

  

(a) (b) 

 

 

 

 

 

 

 

 

 

(c) 

Figure 5-32 Three different spreader plate sizes (a) 150×20×10, (b) 150×35×10 mm 

and (c) 150×20×20 mm. 

 

 

Table  5-9 and Figure  5-33 show the relative errors for the maximum displacement for 

different FEM models of spreader plate sizes. The negative values indicate that the FEM 

results underestimated the displacement values compared to the experimental data. 

Hence a stiffer response was predicted. As is shown, when the spreader plate sizes are 

smaller, the relative error becomes more reasonable and the FEM model gives more 

 

 

 

 

 

 

 

 

 

 

Figure 5-31 FEM model for the four-point bending test (note: the model is symmetric 

about the mid-span) (ABAQUS, 2013). 
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accurate results. For the same width, the results are not greatly affected by the thickness 

of the spreader plate. The fact that the results are affected by the width of the plate is 

mainly due to the area change of the loading contact surface. For the case examined, the 

loading distribution is not affected by the thickness of the spreader plates. 

Table 5-9 Relative errors of the spreader plate size on the displacements. 

 
Experimental 
(O’Dowd et al., 

2016) 

FEM 
(different spreader plate sizes) 

(a) Width: 20mm 

Thickness: 10mm 

(b) Width: 35mm 

Thickness: 10mm 

(c) Width: 20mm 

Thickness: 20mm 

Maximum 

displacement 

w (mm) 

25.830 23.808 22.882 23.804 

Relative error (%) 7.83 11.41 7.84 

 

 

Due to the uncertainty of the material properties of timber, upper and lower 5 

percentiles of the modulus of elasticity are simulated in ABAQUS, as shown in 

Figure  5-34. From this figure, when the modulus of elasticity is 5% more, the model 

becomes stiffer within the same percentage of the changes in the modulus of elasticity. 

 

Figure 5-33 Maximum displacement values for the experimental and FEM models 

with different spreader plate sizes under the load. 
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On the other hand, the modulus of elasticity is 5% lower than the experiment; the 

displacement becomes closer to the experimental curve as the model becomes less stiff.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-34 Load-displacement curves for the experimental and FEM models with 

upper and lower 5
th

 percentiles of modulus of elasticity. 

 

5.5 Concluding remarks 

CLT panels were investigated as a novel application of the SSA. Existing analytical 

approaches for CLT panels have limitations in applicability and accuracy. The SSA has 

the potential to improve accuracy and range of applicability over these existing 

methods. Towards that, following validation of the SSA against the existing 

experimental results, an analytical and numerical investigation has been carried out for 

a simply supported orthotropic CLT panel under sinusoidal and uniformly distributed 

loads. In consideration of design, different failure criteria were applied to the CLT 

panels with a view to determining the structural adequacy of the 3-ply CLT panels. It 

was found that: 

- By using the SSA, thicker CLT panels can be modelled and all the stresses and the 

displacements can be analysed at any location along x and y directions and through 

the thickness. 
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- By applying the SSA to the CLT panels, the transverse normal stress σz and the out-

of-plane displacement w can be calculated exactly at any location through the 

thickness while the method used by Sturzenbecher and Hofstetter (2011) neglects σz 

and w is assumed to be constant through the thickness of the plate. 

- The in-plane stresses τxy can be captured and plotted by using the SSA at any location 

along x, y and through the thickness directions of the panel accurately. 

- For 3D analysis, the SSA and Pagano (1970) approaches under the current boundary 

condition give almost the same results for h/a equal to 0.25, as mentioned in 

section  5.3.1. 

- The non-linear behaviour of the in-plane stresses σx through the thickness can be 

observed as the CLT becomes thicker. 

- SSA provides accurate 3D solutions that guarantee continuous transverse stress 

distributions across the thickness of the CLT panels. 

- FEM models were developed for a 3-ply CLT panel and a 5-ply CLT beam under 

different out-of-plane loads. The modelling is able to predict all the in- and out-of-

plane displacements and stresses to a reasonable degree of accuracy. The FEM 

models were compared with the SSA and existing experimental data. 

- The cohesive element mesh layer and the interaction contact models give almost the 

same results. They are more accurate than the fully bonded model compared to the 

SSA results as the benchmark. 

- The FEM results show discontinuity of the inter-laminar stresses τxz and τyz at the 

interaction between the different plies; this problem is avoided with the SSA method.  

- The developed FEM model compared with the existing experimental work by 

O’Dowd et al. (2016) can give a reasonable prediction of the maximum deflection of 

a CLT panel, taking into consideration the spreader plate dimensions. As the spreader 

plate sizes are smaller, the relative error between the experimental result and the 
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FEM model becomes more reasonable. For the same width, the loading distribution is 

not affected by the thickness of the spreader plates.  

 

  



 

145 

 

6 CHAPTER 6 

NEW ANALYTICAL SOLUTIONS BY USING THE SSA AND THE 

APPLICATION TO CLT PANELS 

 

6.1 Introduction 

In the review of the literature discussed in section 3.4.2, it was explained that different 

boundary conditions using the state space approach have been studied by different 

researchers. Also, in the aforementioned chapter, an investigation was carried out on the 

SSA with regard to its potential application to CLT panels. So far, general exploration 

of the SSA method in relation to plates has been undertaken including the analysis of a 

simply supported rectangular plate and a comparison between the analytical results by 

using 3D SSA and the numerical results by using FEM. However, in this chapter; a 

novel analytical solution by using SSA for an orthotropic plate with three sides simply 

supported and one free edge will be covered. This represents the first time the SSA has 

been formulated for this particular boundary condition. In reality, this type of boundary 

condition may occur on CLT slabs supported by walls on three edges and spanning an 

opening on one edge, for example. In this chapter, the SSA together with a state transfer 

matrix using a programming code will be presented to investigate general homogenous 

orthotropic composite plate behaviour with the new boundary condition. All the 

detailed information surrounding formulation for the new boundary condition will be 

discussed.  

The objective of this section is to develop and determine the theoretical solution and to 

satisfy the new boundary condition by analytical analysis.  

For the SSA solution, it will consist of determining the displacements of a rectangular 

laminated plate by setting a general expression for the displacement field according to 

the boundary and loading conditions. Then, the displacement field is introduced to the 
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equations of equilibrium which are then solved. After that, the existing analytical 

solutions with the FEM will be compared with the SSA. 

For a novel application, the new analytical solution will be applied to CLT under 

various types of load. 

6.2 Formulation of the equation 

Consider a homogenous orthotropic plate of length a, width b and uniform thickness h, 

while the boundary conditions for three sides of the plate are simply supported and one 

side is free, as shown in Figure  6-1, then the following boundary condition should be 

satisfied: 

σy = u = w = 0 

σx = v = w = 0 

σx = τxy = τxz = 0 

at y = 0 and b 

at x = 0 

at x = a 

( 6-1) 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1 Boundary conditions of a plate. 
 

In order to satisfy the boundary condition for a free edge at x = a, the in- and out-of-

plane displacements have to be treated in such a way as to satisfy the free edge 

condition. The treatment considers the combination of the bending of a simply 

supported edge subjected to external transverse load and in-plane normal tractions 

along x = a. This traction causes in-plane displacements of the simply supported edges 

u(a)(y,z) 

w(a)(y,z) 

 

Free 
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to be equal to zero. This may have implications for deep plates where a degree of 

moment resistance could be developed at the plate edge. 

To consider that, a function u(a) and w(a)along the free edge will be added and the 

displacement functions of the plate are assumed as: 

U = U+ f
1
(x)u(a) (6-2) 

V = V+ f
2
(x)βu

(a)
 (6-3) 

W = W+ f
3
(x)w(a) (6-4) 

In order to satisfy the boundary conditions specified in equation (6-1), the following six 

state variables of the state vector can be expressed by Fourier series: 

u(x,y,z) = ∑∑Umn(z) cos(ζx) sin(ηy)

n=1m=1

 

(6-5) 

v(x,y,z) = ∑∑Vmn(z) sin(ζx) cos(ηy)

n=1m=1

 

w(x,y,z) = ∑∑Wmn(z) sin(ζx) sin(ηy)

n=1m=1

 

τxz(x,y,z) = ∑∑Xmn(z) cos(ζx) sin(ηy)

n=1m=1

 

τyz(x,y,z) = ∑∑Ymn(z) sin(ζx) cos(ηy)

n=1m=1

 

σz(x,y,z) = ∑∑Zmn(z) sin(ζx) sin(ηy)

n=1m=1

 

 

Here ζ =
mπ

a
 and 𝜂 =

nπ

b
 where m and n are the number of loops of the analytical solution 

in the x and y directions respectively. 

 



 

148 

 

Also, from equation (6-1), the out-of-plane stress τxz when x=a should be equal to zero. 

To satisfy that, τxz will be as the following: 

τxz = τxz+ f
4
(x)x(a) (6-6) 

From the above equations, u(a), w(a)and x(a) are the unknown functions which can be 

determined and they have the following forms: 

u(a)(y, z) =∑ un
(a)(z)sin(ηy)

n

 

w(a)(y, z) =∑wn
(a)(z)sin(ηy)

n

 

x(a)(y, z) =∑ xn
(a)(z)sin(ηy)

n

 

(6-7) 

Also, the three in-plane stresses in the x-y plane can be calculated as follows:  

{

σx

σy

τxy

} =

[
 
 
 
 
 
 C2

∂

∂x
C3

∂

∂y
-C1 0 0 0

C3

∂

∂x
C4

∂

∂y
-C5 0 0 0

C6

∂

∂y
C6

∂

∂x
0 0 0 0

]
 
 
 
 
 
 

{
 
 
 

 
 
 

U

V

σz

τxz

τyz

W}
 
 
 

 
 
 

 
(6-8) 

From equation (6-8), the in-plane stresses: 

σx = C2
∂U

∂x
 + C3

∂V

∂y
 – C1σz 

σx = C2
∂

∂x
 [U+ f

1
(x)u(a)] + C3

∂

∂y
 [V+ f

2
(x)βu

(a)
] – C1σz 

σx = C2[
∂U

∂x
+ 

∂f1(x)

∂x
u(a)] + C3 [

∂V

∂y
+ f

2
(x)β

2
u

(a)
] – C1Z– C1σz 

σx = 

-C2ζ∑ ∑ Umn(z) sin(ζx) sin(ηy)n=1m=1 -C3η∑ ∑ Vmn(z) sin(ζx) sin(ηy)n=1m=1 - 

C1∑ ∑ Zmn(z) sin(ζx) sin(ηy)n=1m=1 + 

C2f
1

 '(x)∑ un
(a)(z)sin(ηy)n -C3η

2f
2
(x)∑ un

(a)(z)sin(ηy)n  

(6-9) 
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σy = C3
∂U

∂x
 + C4

∂V

∂y
 – C5σz 

σy = C3
∂

∂x
 [U+ f

1
(x)u(a)] + C4

∂

∂y
 [V+ f

2
(x)βu

(a)
] – C5σz 

σy = C3[
∂U

∂x
+ 

∂f1(x)

∂x
u(a)] + C4 [

∂V

∂y
+ f

2
(x)β

2
u

(a)
] – C5σz 

σy = 

-C3ζ∑ ∑ Umn(z) sin(ζx) sin(ηy)n=1m=1 -C4η∑ ∑ Vmn(z) sin(ζx) sin(ηy)n=1m=1 -

C5∑ ∑ Zmn(z) sin(ζx) sin(ηy)n=1m=1 + 

C3f
1

 '(x)∑ un
(a)(z)sin(ηy)n -C4η

2f
2
(x)∑ un

(a)(z)sin(ηy)n  

 

(6-10) 

τxy = C6
∂U

∂y
 + C6

∂V

∂x
 

τxy = C6
∂

∂y
 [U+ f

1
(x)u(a)] + C6

∂

∂x
 [V+ f

2
(x)βu

(a)
]  

τxy = C6[
∂U

∂y
+f

1
(x)βu

(a)
] + C6[

∂V

∂x
+ 

∂f2(x)

∂x
βu

(a)
] 

τxy = 

-C6η∑ ∑ Umn(z) cos(ζx) cos(ηy)n=1m=1 +C6ζ∑ ∑ Vmn(z) cos(ζx) cos(ηy)n=1m=1 + 

C6ηf
1
(x)∑ un

(a)(z)cos(ηy)n +C6ηf
2

 '
(x)∑ un

(a)(z)cos(ηy)n  

 

(6-11) 

To find the functions f
1
(x), f

2
(x), f

3
(x) and f

4
(x), equation (6-1) needs to be satisfied, so 

from this equation, at the simply supported edges, the values of σx = v = w = 0 at x=0 

and σy, u and w at y=0, b are equal to zero. Also, at the free edge, the values of σx, τxy 

and τxz are equal to zero.  

6.3 Boundary condition equations 

The following procedures will show the determination of the functions. 

When y = 0 and b 

σy = [-C3ζ∑ ∑ Umn(z) sin(ζx)n=1m=1 - C4η∑ ∑ Vmn(z) sin(ζx)n=1m=1 – 

C5∑ ∑ Zmn(z) sin(ζx)n=1m=1 + C3f1
 '
(x)∑ un

(a)(z)n -C4η
2f

2
(x)∑ un

(a)(z)n  = 0 
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U = U+ f
1
(x)u(a) 

U = ∑ ∑ Umn(z) cos(ζx) sin(ηy)n=1m=1  + f
1
(x)∑ un

(a)(z)n sin(ηy) 

U = [∑ ∑ Umn(z) cos(ζx)n=1m=1  + f
1
(x)∑ un

(a)(z)n ] sin(η(0)) = 0 

 

W = W+ f
3
(x)w(a) 

W = ∑ ∑ Wmn(z) sin(ζx) sin(ηy)n=1m=1  + f
3
(x)∑ wn

(a)(z)n sin(ηy) 

W = [∑ ∑ Wmn(z) sin(ζx)n=1m=1  + f
3
(x)∑ wn

(a)(z)n ] sin(η(0)) = 0 

 

When x = 0 

σx = [-C2ζ∑ ∑ Umn(z) sin(ηy)n=1m=1 - C3η∑ ∑ Vmn(z) sin(ηy)n=1m=1 -

C1∑ ∑ Zmn(z) sin(ηy)n=1m=1 ]sin(ζ(0))+ [C2f1
 '
(x)∑ un

(a)(z)n -C3η
2f

2
(x)∑ un

(a)(z)n ] sin(ηy) 

= 0 

[C2f1
 '
(x=0)∑ un

(a)(z)n -C3η
2f

2
(x=0)∑ un

(a)(z)n ] sin(ηy) = 0 (6-12) 

V = V+ f
2
(x)βu

(a)
 

V = ∑ ∑ Vmn(z) sin(ζx) cos(ηy)n=1m=1  + f
2
(x)η∑ un

(a)(z)n cos(ηy) 

V = ∑ ∑ Vmn(z) sin(ζx)(0)n=1m=1  + f
2
(x)η∑ un

(a)(z)n cos(ηy)= 0 

f
2
(x=0)∑ un

(a)(z)n cos(ηy)= 0 (6-13) 

W = W+ f
3
(x)w(a) 

W = ∑ ∑ Wmn(z) sin(ζx) sin(ηy)n=1m=1  + f
3
(x)∑ wn

(a)(z)n sin(ηy) 

W = ∑ ∑ Wmn(z) sin(ζ(0)) sin(ηy)n=1m=1  + f
3
(x)∑ wn

(a)(z)n sin(ηy)= 0 

f
3
(x=0)∑ wn

(a)(z)n sin(ηy)= 0 (6-14) 
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When x = a 

σx = 

[-C2ζ∑ ∑ Umn(z) sin(ηy)n=1m=1 - C3η∑ ∑ Vmn(z) sin(ηy)n=1m=1 -C1

∑ ∑ Zmn(z) sin(ηy)n=1m=1 ]sin(mπ)+ [C2f1
 '
(x)∑ un

(a)(z)n -C3η
2f

2
(x)∑ un

(a)(z)n ] sin(ηy) = 0 

[C2f1
 '
(x=a)∑ un

(a)(z)n -C3η
2f

2
(x=a)∑ un

(a)(z)n ] sin(ηy) = 0 (6-15) 

τxy = C6η∑ ∑ Umn(z) cos(ζx) cos(ηy)n=1m=1 + C6ζ∑ ∑ Vmn(z) cos(ζx) cos(ηy)n=1m=1 + 

C6ηf
1
(x)∑ un

(a)(z)cos(ηy)n +C6ηf
2

 '
(x)∑ un

(a)(z)cos(ηy)n  = 0 

τxy =  [η∑ ∑ Umn(z) cos(ζx)n=1m=1 + ζ∑ ∑ Vmn(z) cos(ζx)n=1m=1 + 

ηf
1
(x)∑ un

(a)(z)n +ηf
2

 '
(x)∑ un

(a)(z)]n C6cos(ηy)= 0 

 

[((η∑ ∑ Umn(z)n=1m=1 + ζ∑ ∑ Vmn(z))(-1)
m

)n=1m=1 + 

(f
1
(x=a)∑ un

(a)(z)n +f
2

 '
(x=a)∑ un

(a)(z))n η]C6cos(ηy)= 0 

(6-16) 

τxz= ∑ ∑ Xmn(z) cos(ζx) sin(ηy)n=1m=1  + f
4
(x)∑ xn

(a)(z)n sin(ηy) = 0 

∑ ∑ Xmn(z) cos(ma) sin(ηy)n=1m=1  + f
4
(x=a)∑ xn

(a)(z)n sin(ηy) = 0 (6-17) 

From equations (5-12) to (5-17), the summarised equations can be written as the 

following: 

C2f1
 '
(x=0)-C3η

2f
2
(x=0) = 0 ( 6-18) 

f
2
(x=0)= 0 ( 6-19) 

f
3
(x=0) = 0 ( 6-20) 

C2f1
 '
(x=a)-C3η

2f
2
(x=a) = 0 ( 6-21) 

((η∑ ∑ Umn(z)n=1m=1 + ζ∑ ∑ Vmn(z))(-1)
m

)n=1m=1 + 

(f
1
(x=a)∑ un

(a)(z)n +f
2

 '
(x=a)∑ un

(a)(z))n η= 0 

( 6-22) 
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[∑ ∑ Xmn(z)(-1)
m

n=1m=1  + f
4
(x=a)∑ xn

(a)(z))n ] sin(ηy) = 0 ( 6-23) 

To satisfy all the conditions in equations (6-18) to (6-23), the following functions are 

chosen: 

f
1
(x) =

C3η
2

C2

a

2
(ae(x/a)-x) 

( 6-24) 

f
2
(x) = 

a

2
(e(x/a)-1) ( 6-25) 

f
3
(x) = e(x/a)-1 ( 6-26) 

For f
4
(x), when x=0,  f

4
(x) should be equal to zero but when x=a,  f

4
(x) ≠ 0. 

f
4
(x) = e(x/a)-1 (6-27) 

Also, the unknown functions can be calculated as the following: 

un
(a)(z) = 

(η∑ ∑ Umn(z)n=1m=1  + ζ∑ ∑ Vmn(z)) (-1)
m

)n=1m=1

(f
1
(x=a)+f

2

 ′(x=a))η
 

( 6-28) 

wn
(a)(z) = Wmn(z) ( 6-29) 

xn
(a)(z) = 

∑ ∑ Xmn(z)(-1)
m

n=1m=1

f
4
(x=a)

 
( 6-30) 

After finding all the functions, the following displacements can be found: 

U = ∑ ∑ Umn(z) cos(ζx) sin(ηy)n=1m=1  + 
C3η

2

C2

a

2
(ae(x/a)-x)∑ un

(a)(z)n sin(ηy) ( 6-31) 

V = ∑ ∑ Vmn(z) sin(ζx) cos(ηy)n=1m=1  +
a

2
(e(x/a)-1)η∑ un

(a)(z)n cos(ηy) ( 6-32) 

W = ∑ ∑ Wmn(z) sin(ζx) sin(ηy)n=1m=1  + (e
(x/a)

-1)∑ wn
(a)(z)n sin(ηy) ( 6-33) 

τxz= ∑ ∑ Xmn(z) cos(ζx) sin(ηy)n=1m=1  + (e
(x/a)

-1)∑ xn
(a)(z)n sin(ηy) ( 6-34) 

Once the displacements are found, the in-plane and out-of-plane stresses can be 

calculated. 
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6.4 Solution of the equation 

After satisfying all the boundary conditions, the governing equation needs to be checked 

and to be satisfied as the following: 

∂

∂z

{
 
 
 

 
 
 

U

V

Z

X

Y

W}
 
 
 

 
 
 

= 

[
 
 
 
 
 
 
 
 

0 0 0 C8 0 -α

0 0 0 0 C9 -β

0 0 0 -α -β 0

-C2α
2-C6β

2
-(C3+C6)αβ C1α 0 0 0

-(C3+C6)αβ -C6α
2-C4β

2
C5β 0 0 0

C1α C5β C7 0 0 0 ]
 
 
 
 
 
 
 
 

{
 
 
 

 
 
 

U

V

Z

X

Y

W}
 
 
 

 
 
 

 (6-35) 

U = U+ f
1
(x)u(a) 

∂U

∂z
 = 

∂U

∂z
+ 

∂u(a)

∂z
f
1
(x) = C8[X+ f

4
(x)x(a)]- α[W+ f

3
(x)w(a)] 

∂U

∂z
=C8X- αW- 

∂u(a)

∂z
f
1
(x) + C8f4(x)x(a)- f

3

 '
(x)w(a) 

( 6-36) 

V = V+ f
2
(x)βu

(a)
 

∂V

∂z
 = 

∂V

∂z
+

∂[βu
(a)

]

∂z
f
2
(x) = C9Y - β[W+ f

3
(x)w(a)] 

∂V

∂z
=C9Y - βW-

∂[βu
(a)

]

∂z
f
2
(x) - f

3
(x)w(a) 

( 6-37) 

∂Z

∂z
 = -αX -βY= -α[X+ f

4
(x)x(a)]-βY=-αX-βY- f

4

 '
(x)x(a) 

( 6-38) 

X = X+ f
4
(x)x(a) 

∂X

∂z
 = 

∂X

∂z
+ 

∂x(a)

∂z
f
4
(x) 

∂X

∂z
 = (-C2α

2-C6β
2
)U -(C3+C6)αβV + C1αZ-

∂x(a)

∂z
f
4
(x) 

∂X

∂z
 = (-C2α

2-C6 β
2
)[U+ f

1
(x)u(a)] -(C3+C6)αβ[V+ g

1
(x)βu

(a)
]  

+ C1αZ-
∂x(a)

∂z
f
4
(x) 

∂X

∂z
 = (-C2α

2-C6 β
2)[U] -(C3+C6)αβ [V] + C1αZ + (-C2α

2-C6 β
2)f

1
(x)u(a)- 

∂x(a)

∂z
f
4
(x) 

( 6-39) 
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Rearranging equations (6-36) to (6-41) in a matrix form gives, 

∂

∂z

{
 
 
 
 

 
 
 
 U

V

Z

X

Y

W}
 
 
 
 

 
 
 
 

= 

[
 
 
 
 
 
 
 
 

0 0 0 C8 0 -α

0 0 0 0 C9 -β

0 0 0 -α -β 0

-C2α
2-C6β

2
-(C3+C6)αβ C1α 0 0 0

-(C3+C6)αβ -C6α
2-C4β

2
C5β 0 0 0

C1α C5β C7 0 0 0 ]
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 Umn(z) cos(ζx) sin(ηy)

Vmn(z) sin(ζx) cos(ηy)

Zmn(z) sin(ζx) sin(ηy)

Xmn(z) cos(ζx) sin(ηy)

Ymn(z) sin(ζx) cos(ηy)

Wmn(z) sin(ζx) sin(ηy)}
 
 
 
 

 
 
 
 

+ 

{
 
 
 
 
 

 
 
 
 
 - 

∂u(a)

∂z
f
1
(x) + C8f4(x)x(a)- f

3

 '
(x)w(a)

-
∂[βu

(a)
]

∂z
f
2
(x) - f

3
(x)w(a)

- f
4

 '
(x)x(a)

(-C2α
2-C6 β

2)f
1
(x)u(a)-

∂x(a)

∂z
f
4
(x)

- (C3+C6)f1
 '
(x)βu(a)+ (-C6α

2-C4β
2
)g

1
(x)βu

(a)

C1f1
 '
(x)u(a) +C5 f2(x)β

2
u

(a)
-
∂w(a)

∂z
f
3
(x) }

 
 
 
 
 

 
 
 
 
 

 

(6-42) 

 

The above expression in equation (6-42) can be simplified as: 

∂Y

∂z
 = -(C3+C6)αβU +(-C6α

2-C4 β
2
)V + C5 β Z 

∂Y

∂z
 = -(C3+C6)αβ[U+ f

1
(x)u(a)] +(-C6α

2-C4β
2
)[V+ g

1
(x)βu

(a)
] + C5 β Z 

∂Y

∂z
 = -(C3+C6)αβ[U] +(-C6α

2-C4 β
2
)[V] + C5 β Z - (C3+C6)f1

 '
(x)βu(a)+  

(-C6α
2-C4β

2
)g

1
(x)βu

(a)
 

( 6-40) 

∂W

∂z
 = C1αU +C5 βV + C7Z 

∂W

∂z
 = 

∂W

∂z
+ 

∂w(a)

∂z
f
3
(x) = C1α[U+ f

1
(x)u(a)]+C5 β[V+ g

1
(x)βu

(a)
] + C7Z 

∂W

∂z
 = C1α[U] +C5 β[V] + C7Z +C1f1

 '
(x)u(a) +C5 g1

(x)β
2
u

(a)
-
∂w(a)

∂z
f
3
(x) 

(6-41) 
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The following first-order non-homogeneous ordinary differential equation of j
th

 can be 

determined for each combination of m and n: 

d

dz
{Rmn(z)}

j
=Dj {Rmn(z)}

j
+ {Bmn(z)}

j
 (6-44)    

 

where 

{Rmn(z)}
j
= 

{
 
 
 
 

 
 
 
 Umn(z)

Vmn(z)

Zmn(z)

Xmn(z)

Ymn(z)

Wmn(z)}
 
 
 
 

 
 
 
 

j

; Dj = 

[
 
 
 
 
 
 
 
 0 0 0 C8 0 -ζ

0 0 0 0 C9 -η

0 0 0 ζ η 0

C2ζ 
2
+C6η

2
(C3+C6)ζη C1ζ 0 0 0

(C3+C6)ζη C6ζ 
2
+C4η

2
C5η 0 0 0

-C1ζ -C5η C7 0 0 0 ]
 
 
 
 
 
 
 
 

 

After solving all the above displacements and out-of-plane stresses, the in-plane 

stresses can be solved. 

Once all the in- and out-of-plane displacements and stresses have been derived and 

solved by using the SSA, the results will be compared with different existing 

approaches.  

 

 

∂

∂z

{
 
 
 
 

 
 
 
 U

V

Z

X

Y

W}
 
 
 
 

 
 
 
 

= [G].

{
 
 
 
 

 
 
 
 U

V

Z

X

Y

W}
 
 
 
 

 
 
 
 

+ B (6-43) 
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6.5 Case Study 1: Antisymmetric cross-ply plate (two plies) 

In the first part of this section, the new analytical solution results will be compared with 

different existing analytical solutions for different boundary conditions; this will 

include the existing 2D approaches that were examined analytically by Reddy (2004). 

Then, the FEM model will be simulated for the cross-ply 2-ply plate and the results will 

be compared with various analytical approaches. 

6.5.1 Comparison with various analytical solutions 

The focused-on panel has the same geometry as that examined analytically by Reddy 

(2004). The panel or plate is symmetrical with two plies of alternate orientation, i.e. [0/ 

90]°, as shown in Figure  6-2. The in-plane dimensions of the plate are a = b = 100 mm 

and h/a is equal to 0.2. Here, a is the length of the plate along the x-axis, b is the 

dimension of the plate along the y-axis and h is the total thickness of the plate (z-axis), 

as shown in Figure  6-2. The set of elastic material parameters used for the plies is given 

as shown in Table  6-1, as per the reference (Reddy, 2004). 

Table 6-1 Elastic material properties of the antisymmetric cross-ply plate (Reddy, 

2004). 

E1/E2 = 25 

G12 = G13 = 0.5 E2 

G23 = 0.2 E2 

v
12

= v
13
= v

23
= 0.25 

 

Three sides of the plate are simply supported and there is one free edge, as per Reddy 

(2004), and the load on the top surface of the panel is a sinusoidal load, as shown in 

Figure  6-2. 
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Figure 6-2 The geometry of the antisymmetric cross-ply plate under sinusoidal load 

and the orientation angles through h. 

 

 

The different analytical approaches that are used here for comparison are Classical 

Laminated Plate Theory (CLPT), First-Shear Deformation Theory (FSDT) and Higher-

Shear Deformation Theory (HSDT), and they are validated with the SSA. These 

theories are considered to be 2D plate theories, as mentioned before in Chapter  3 

(section  3.2) in detail. 

Table  6-3 shows the dimensionless results of different analytical approaches for the out-

of-plane displacement w and the in-plane stresses σx and σy of the antisymmetric cross-

ply for a = b and h/a = 0.2. The values in Table  6-3 for the out-of-plane displacement w 

and in-plane stress σx will be at the top of the plate, and, for the in-plane stress σy, the 

resultant values will be at the bottom of the plate, as per Reddy (2004). 

For w, σx and σy, the SSA results show good agreement with the existing 2D 

approaches, although, for w, the SSA shows higher values than the 2D approaches and 

the result is closer to the FSDT with a 7.5% relative error. Also, for the σx result, the 

SSA is closer to the CLPT with a 4.6% relative error. But, for the σy result, the SSA is 

closer to HSDT with a 3.5% relative error. 

 

 

q(x,y) = q0 sin(πx a⁄ ) sin(πy b⁄ ) 

θBottom= 90° 

θ Top = 0° 
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Table 6-2 Theoretical dimensionless results for displacements and stresses of the 

antisymmetric cross-ply for a = b and h/a = 0.2. 

 
SSA CLPT FSDT HSDT 

WE2h
3

b
4
q
0

×10
2
 2.526 1.471 2.335 2.211 

σxh
2

b
2
q
0

×10 -5.113 -5.349 -4.430 -4.442 

σyh
2

b
2
q
0

×10 -10.943 -9.837 -9.848 -11.324 

Where E2 is the modulus of elasticity along the y-axis, b is the dimension of the plate along the y-axis, 

h is the total thickness of the plate (z-axis) and q
0
 is the out-of-plane load.  

 

6.5.2 Antisymmetric cross-ply plate FEM results 

In addition to the SSA method and other analytical solutions previously discussed, a 

simulation of the antisymmetric cross-ply plate using the commercially available finite 

element program ABAQUS is now presented. This section aims to compare the FEM 

results with the SSA results to provide more contexts for the SSA’s capability in this 

application. The same plate as described in the previous section will be used for the 

numerical model. In the FEM model, the 3D 20-node linear brick element (C3D20) 

with the 8-node 3D cohesive element (COH3D8) (ABAQUS, 2013) between the 

antisymmetric cross-ply will be used, as shown in Figure  6-3. In terms of the mesh size, 

elements with a leading dimension of 0.125 mm were adopted.  
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Figure 6-3 The FEM model of the antisymmetric cross-ply plate under sinusoidal 

load. 

 

For the FEM results for the 2
nd

 ply (90°), ABAQUS shows the results related to the 

local coordinate of each ply, as shown in Figure  6-4.  

 

 

Figure 6-4 CLT 90° ply global and local coordinates. 

 

 

In Figure  6-5 and Table  6-3, the FEM results are compared with the SSA and the other 

analytical results. The FEM results are very comparable with the SSA and the other 

analytical solutions and show the closest results to the SSA with a 4% relative error for 

the out-of-plane displacement w, 2% for σx and 0.5% for σy. Hence, to make a 

comparison with the SSA and the other analytical approaches, the FEM results for the 

second ply (90°) should be transferred to global coordinates, and then the stress 

distribution can be drawn, as shown in Figure  6-6. This figure shows the capability of 

the SSA and FEM to capture the in-plane stress σx through the thickness of the 

antisymmetric cross-ply plate. 

y 

x 

1  

2 

Cohesive 

element 

h 

U1 =U3 =0 

U1 =U3 =0 U2 =U3 =0 

θBottom= 90° 

θ Top = 0° 
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(a) 
WE2h

3

b
4
q
0

×10
2
 

 

(b) 
σxh

2

b
2
q
0

×10 

 

(c) 
σyh

2

b
2
q
0

×10 

Figure 6-5 Theoretical and FEM results for out-of-plane displacements and in-plane 

stresses of the antisymmetric cross-ply for a = b and h/a = 0.2. 
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(σxh
2)×10/(b2 q0) 

SSA

FEM

Table 6-3 Theoretical dimensionless results for displacements and stresses of the 

antisymmetric cross-ply for a = b and h/a = 0.2. 

 
SSA CLPT FSDT HSDT FEM 

WE2h
3

b
4
q
0

×10
2
 2.526 1.471 2.335 2.211 2.427 

σxh
2

b
2
q
0

×10 -5.113 -5.349 -4.430 -4.442 -5.010 

σyh
2

b
2
q
0

×10 -10.943 -9.837 -9.848 -11.324 -10.884 

Where E2 is the modulus of elasticity along the y-axis, b is the dimension of the plate along the y-axis, 

h is the total thickness of the plate (z-axis) and q
0
 is the out-of-plane load. 

 

 

 

 

 

 

 

Figure 6-6 The SSA and FEM in-plane stress σx through the thickness of the 

antisymmetric cross-ply plate for h/a = 0.2. 

 

 

After introducing the new analytical solution by using the SSA for a panel with three 

sides that are simply supported and one free edge in the previous section, and the results 

compared with the FEM, the SSA will be applied to CLT under different types of loads 

in the next section. Also, as the FEM results showed good agreement with the SSA, the 

θBottom= 90° 

θ Top = 0° 
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FEM will be adopted for the next section to model the CLT and for more comparison 

with the SSA results.  

6.6 SSA applied to a CLT panel with three sides simply supported and one free 

edge 

In this section, two case studies are explored. The first one is a 3-ply CLT panel under 

out-of-plane sinusoidal load; the plate in the second study has the same geometry but is 

under a transverse uniformly distributed load.  

In this section, the two types of loads are chosen to show the effect of the number of 

Fourier series terms (m and n) on the SSA results. As for the sinusoidal load, m and n in 

the SSA solution are equal to 1, but for the uniformly distributed load, adding more 

Fourier series terms (m and n) will make the solution more theoretically accurate. 

The panel in this section for the different case studies has three sides simply supported 

at x=0, y =0 and b and the free edge ts at x=a (as shown in Figure  6-7). 

 

 

 
 

 

 

 

Figure 6-7 The geometry of the 3-ply CLT with three sides simply supported and a 

free edge.  

 

 

From the previous chapter, the FEM results were compared with different existing 

analytical methods and were found to be in good agreement with them. Hence, from 

this point of view, after applying the SSA to the case studies, FEM simulation for each 

θTop = 0° 

θMiddle= 90° 

θBottom = 0° 

Y X 

Z 
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case will be modelled and the results will be compared to check the accuracy of the 

SSA compared to the FEM. 

6.6.1 FEM model of 3-ply CLT panels with three sides simply supported and a 

free edge 

In this section, the FEM models will be the same as Chapter 4 with the same element 

type, mesh size and the types of model (the cohesive element layer between the CLT 

plies). The FEM models are a 3D 20-node linear brick element (C3D20) with mesh size 

24 mm and an 8-node three-dimensional cohesive element (COH3D8) with three sides 

simply supported and a free edge. 

6.6.1.1 Case Study 1: 3-ply CLT panel under sinusoidal load 

The focused-on plate has the same geometry and the same material properties for the 

timber plies as that examined before, in section  5.3.1. The panel is symmetrical with 

three plies of alternate grain orientation, i.e. [0/90/0]°, as shown in Figure  6-8. 

Each board or ply has a thickness of 30 mm so that the total plate thickness is 90 mm. 

The in-plane dimensions of the plate are a = b = 360 mm and h/a is equal to 0.25 as this 

is the thicker plate studied by Sturzenbecher and Hofstetter (2011). Here, a is the length 

of the plate along the x-axis, b is the dimension of the plate along the y-axis and h is the 

total thickness of the plate (z-axis), as shown in Figure  6-8. 

The panel has three sides simply supported at x=0, y =0 and b and a free edge at x=a (as 

shown in Figure  6-8) and the load on the top surface of the panel is a sinusoidal load 

with a maximum magnitude of 1 MPa (q(x,y) = q0 sin(πx a⁄ ) sin(πy b⁄ ) where q0= 1 

MPa), as shown in Figure  6-8. 
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Figure 6-8 The geometry of the 3-ply CLT panel (three sides simply supported and a 

free edge) with the FEM models under sinusoidal load. 

 

Table  6-4 shows the comparison between the SSA and the FEM results for all the in- 

and out-of-plane displacements and stresses for the 3-ply CLT panel under sinusoidal 

load.  

In general, the SSA results give higher values than the FEM results for all the 

displacements and the stresses but still the results are very comparable to each other. 

From the same table, the FEM shows discontinuity in the transverse shear stresses τxz 

and τyz between the plies. On the other hand, the SSA shows the continuity of the 

transverse shear stresses between the plies. 

 

 

 

q(x,y) = q0 sin(πx a⁄ ) sin(πy b⁄ ) 

θTop = 0° 
θMiddle= 90° 
θBottom = 0° 
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6.6.1.2 Case Study 2: 3-ply CLT panel under Uniformly Distributed Load 

In this section, the same geometry and the same material properties for the timber ply 

are used in the previous section with different types of load. 

The plate is under uniformly distributed load, as shown in Figure  6-9, and all the in-

plane and out-of-plane stresses and displacements will be shown and explored through 

the thickness of the three plies of CLT. 

Table 6-4 In- and out- of plane displacements (mm) and stress states (MPa) of the 3-ply 

CLT panel (h/a = 0.25) by SSA and FEM under sinusoidal load. 

 (x,y) 
# of the 

ply  
z  SSA **FEM 

 

 

(x,y) SSA **FEM 

u (0, 
b

2
) 

1
st
 Ply 

*T 0.2458 0.2432 

v (a,0) 

0.5786 0.5732 
*B -0.0970 -0.0791 0.2452 -0.2450 

2
nd

 Ply 
*T -0.0970 -0.0791 0.2452 0.2450 
*B 0.0830 0.0719 -0.2294 -0.2262 

3
rd

 Ply 
*T 0.0830 0.0719 -0.2294 -0.2262 
*B -0.2398 -0.2373 -0.5525 -0.5489 

 
   

      

w (a,
b

2
) 

1
st
 Ply 

*T 2.1364 2.1174 

σx (
a

2
,
b

2
) 

-9.4205 -9.2012 
*B 2.0978 2.0614 6.8563 6.6015 

2
nd

 Ply 
*T 2.0978 2.0614 -0.5742 -0.5730 
*B 2.0902 2.0562 0.4647 0.4734 

3
rd

 Ply 
*T 2.0902 2.0562 -6.1605 -5.9002 
*B 2.0617 2.0517 8.6928 8.5826 

          

σy (a,
b

2
) 

1
st
 Ply 

*T -2.3705 -2.3310 

τxy (0,0) 

3.4633 3.4270 
*B -1.0488 -1.0314 0.42820 0.4000 

2
nd

 Ply 
*T -21.9300 -22.7521 -0.4820 -0.4000 
*B 24.3113 23.6217 0.5483 0.5392 

3
rd

 Ply 
*T 0.7333 0.7316 -0.5483 -0.5392 
*B 1.9334 1.8996 -3.7150 -3.5900 

          

τxz (0,
b

2
) 

1
st
 Ply 

*T 0.0000 0.0237 

τyz (
a

2
,0) 

0.0000 0.0177 
*B 0.8334 0.8086 0.4640 0.4114 

2
nd

 Ply 
*T 0.8334 0.7745 0.4640 0.5258 
*B 0.8921 0.8613 0.3695 0.3750 

3
rd

 Ply 
*T 0.8921 0.8774 0.3695 0.3642 
*B 0.0000 0.0364 0.0000 0.0032 

* 
Where T and B are the top and bottom of the panel through the thickness respectively. 

**
The FEM models are 3D 20-node linear brick element (C3D20) with mesh element size 6 mm. 
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Figure 6-9 The geometry of the 3-ply CLT panel (three sides simply supported 

and a free edge) with the FEM models under uniformly distributed load. 

 

From Table  6-5, all the in-plane and out-of-plane displacements and stresses are 

explored by using the SSA and FEM through the three plies of CLT. In general, the 

SSA results are higher than the FEM results, but still are very close to each other and 

give good agreement. Additionally, the values of the displacements and the stresses for 

the uniformly distributed load are approximate twice the values of the sinusoidal load 

from Table  6-4. 

As mentioned before, in section  5.4.2, the same trends as the previous case study, the 

FEM shows discontinuity in the transverse shear stresses in between the plies; on the 

other hand, the SSA shows the continuity of the transverse shear stresses between the 

plies. 

 

 

q(x,y) = q 
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To show the capability of the SSA to capture the stress distribution through the 

thickness of the 3-ply CLT panel, Figure  6-10 shows the in-plane stress σx distribution 

through the thickness of the CLT panel by using the SSA and the FEM. The distribution 

of the SSA and the FEM shows very good agreement through the thickness. 

Table 6-5 In- and out- of plane displacements (mm) and stress states (MPa) of the 3-ply 

CLT panel (h/a = 0.25) by SSA and FEM under uniformly distributed load. 

 (x,y) 
# of the 

ply  
z  SSA **FEM 

 

 

(x,y) SSA **FEM 

u (0,
b

2
) 

1
st
 Ply 

*T 0.4651 0.4618 

v (a,0) 

1.1404 1.1259 
*B -0.1602 -0.1203 0.5581 0.5567 

2
nd

 Ply 
*T -0.1602 -0.1203 0.5581 0.5567 
*B 0.1125 0.1010 -0.4589 -0.4568 

3
rd

 Ply 
*T 0.1125 0.1010 -0.4589 -0.4568 
*B -0.4492 -0.4492 -1.0868 -1.0713 

 
   

      

w (a,
b

2
) 

1
st
 Ply 

*T 4.5258 4.4845 

σx (
a

2
,
b

2
) 

-10.8941 -10.8707 
*B 4.4804 4.4283 5.0770 4.4411 

2
nd

 Ply 
*T 4.4804 4.4283 -1.0180 -0.9961 
*B 4.3894 4.4141 0.4485 0.4267 

3
rd

 Ply 
*T 4.3894 4.4141 -5.3133 -4.4411 
*B 4.3890 4.3400 10.5695 10.8675 

          

σy (a,
b

2
) 

1
st
 Ply 

*T -4.2652 -4.2241 

τxy (0,0) 

7.6243 7.5607 
*B -1.9857 -1.9811 0.5445 0.5410 

2
nd

 Ply 
*T -46.2344 -46.0482 -0.5445 -0.5410 
*B 47.5175 47.5051 1.1608 1.1466 

3
rd

 Ply 
*T 1.3747 1.3369 -1.1608 -1.1466 
*B 3.7774 3.6138 -7.0645 -6.9494 

          

τxz (0,
b

2
) 

1
st
 Ply 

*T 0.0000 -0.0825 

τyz (
a

2
,0) 

0.0000 0.0000 
*B 1.4299 1.3969 1.1590 1.1890 

2
nd

 Ply 

*T 1.4299 1.2766 1.1590 1.5002 
*B 1.5870 1.4984 0.6757 0.7091 

3
rd

 Ply 

*T 1.5870 1.5286 0.6757 0.6565 
*B 0.0000 0.0836 0.0000 0.0151 

* 
Where T and B are the top and bottom of the panel through the thickness respectively. 

**
The FEM models are 3D 20-node linear brick element (C3D20) with mesh element size 6 mm. 
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Figure 6-10 The SSA and FEM in-plane stress σx through the thickness of the CLT 

panel for h/a = 0.25 (note: data is provided in Appendix D-Table D.1). 

 
 

6.7 Concluding remarks 

In this chapter, a new analytical solution by the SSA for a plate with three sides simply 

supported and one free edge is derived; this solution takes into account all the 

independent elastic constants and satisfies all the governing and boundary condition 

equations (equations 6-5, 6-31 to 6-34 and 6-42). The new solution guarantees the 

continuity conditions of all inter-laminar stresses across interfaces between different 

layers and traction-free boundary conditions at the free edges. 

For this new analytical solution by using the SSA, the MATHEMATICA code is an 

extension of the simply supported case in the previous chapters, as shown in Appendix 

A. Also, the code that has been developed can be applied to different material 

properties with different loading types. 

Different analytical solutions for a generic composite material plate with the FEM 

model are compared with the new SSA solution, and the SSA results show good 

agreements with the other solutions with an overall relative error less than 10%. 
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After that, the new analytical solution was applied to the CLT panel under different 

types of loads and the FEM results gave good agreement with the SSA results, although 

the FEM underestimated the in- and out-of-plane stresses and displacement. Also, the 

continuity of the inter-laminar stresses across interfaces between the different CLT plies 

was shown using the SSA; on the other hand, the FEM showed the discontinuity of 

these stresses across the plies. 
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7 CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

STUDY 

 

From the investigation of the existing experimental, analytical and numerical methods 

used to obtain accurate solutions for CLT panels in the literature review, the existing 

analytical approaches still have a need for improvement to overcome their limitations 

and to obtain more accurate results for thicker plates. Based on that, developing a new 

analytical solution is an active research topic. In this research, by using the SSA applied 

to CLT panels a more precise representation of the structural behaviour is obtained 

compared to the existing experimental, analytical and numerical methods. The 

comparison proved that the SSA is a good approach and gives good agreement for 

different boundary conditions under different out-of-plane loads for CLT and composite 

plates. 

This chapter presents a summary of the main conclusions from the analytical and 

numerical investigations carried out in this work. Recommendations for future work are 

also given. 

7.1 Analytical investigation for general composite simply supported plates 

An analytical investigation has been carried out on a general composite simply 

supported rectangular plate with two types of loads by using 3D SSA. The SSA is a 

powerful three-dimensional approach and satisfies all the boundary conditions and the 

continuity at the interfaces. The analysis started with 1-ply under two different types of 

out-of-plane loading, and the results of the SSA and the Classical Plate Theory were 

compared and showed very good agreement. Then, by applying the SSA, it is found that 

the behaviour of the stresses through the thickness becomes non-linear, especially for 

plates with a higher thickness-to-width ratio (h/a). Furthermore, the finite element 
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models developed in ABAQUS give good agreement with the SSA after undertaking a 

parametric study for the element type, mesh size and the same boundary condition as 

the one used in the analytical solution. Although the SSA and the FEM results are 

comparable to each other, still more caution is required when using numerical results 

from the FEM when applied to real structural design and behaviour evaluation. The 

SSA solution was extended to more than one ply, and the SSA results were compared 

with different existing 2D approaches and found to give good agreement. 

7.1.1 Experimental, analytical and numerical investigation of CLT panels 

The SSA has been extended to consider laminated composite plates, and it is applied to 

Cross-Laminated Timber (CLT) as a laminated composite plate. Different case studies 

(3- and 5-ply CLT panels) are compared with the SSA experimentally, analytically and 

numerically, and the following conclusions can be drawn: 

- Crucially, thicker CLT panels can be modelled and all the stresses and the 

displacements can be analysed at any location along x and y directions and through 

the thickness. 

 

- The transverse-normal stress σz and the out-of-plane displacement w can be 

calculated exactly at any location through the thickness while the method used by 

Sturzenbecher and Hofstetter (2011) neglects σz and assumes w to be constant 

through the thickness of the plate. 

 

- The in-plane stresses τxy can be accurately captured and plotted by using the SSA at 

any location along x, y and through the thickness directions of the panel.  

 

- The SSA and Pagano (1970) approaches under all the simply supported boundary 

condition edges examined in this work give almost the same results for h/a equal to 

0.25. 
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- The non-linear behaviour of the in-plane stresses σx through the thickness can be 

observed as the CLT becomes thicker. 

 

- The SSA provides accurate 3D solutions that guarantee continuous transverse stress 

distributions across the thickness of the plates. Additionally, the state space method 

can give theoretically precise results for all in- and out-of-plane stresses and 

displacements for various thicknesses, from thin to very thick plates. 

 

- Finite element modelling using ABAQUS shows the capability of the FEM to obtain 

a good agreement when compared with the SSA results for all the stresses and 

displacements of 3- and 5-ply CLT panels, although the FEM results for the plies 

using solid elements in ABAQUS will lead to discontinuity of the transverse shear 

stresses at ply interfaces (ABAQUS, 2013). Furthermore, the values of τxz should be 

equal to zero at the top and the bottom of the plate, but, for the FEM results, they are 

not. For the top of the plate the calculated error for the FEM results was 0.05 of the 

maximum value of τxz, and for the bottom of the plate, it was 0.07. 

7.1.2 New analytical solutions by using the SSA and the application to CLT 

panels 

A new analytical solution by SSA for a plate with three sides simply supported and a 

free edge is derived and explored to take into account all the independent elastic 

constants and satisfying all the governing and boundary condition equations as a novel 

work. The new solution guarantees the continuity conditions of all inter-laminar 

stresses across interfaces between different layers and traction-free boundary conditions 

at the free edges. 
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The different analytical solutions such as Classical Plate Theory (CLPT), First-order 

Shear Deformation Theory (FSDT) and Higher-order Shear Deformation Theory 

(HSDT) with the FEM model for a general composite plate with three sides simply 

supported and one free edge were compared with the new analytical solution by the 

SSA, and the results were comparable and gave good agreement, especially with the 

FEM. Also, the new analytical solution was applied to CLT with different types of 

loads. In addition to that, FEM models were developed and the results compared with 

the SSA.  

7.2 Limitations of the research 

The SSA in this application shows promise. Since the elastic behaviour and stress 

response of the CLT panels have been fully characterised, failure criteria and prediction 

of the load capacity for practical CLT panels can be assessed easily. However, there are 

a few associated limitations. The panel material properties have been considered as 

idealised elastic, as mentioned before, in section  2.1 (which from a design point of view 

is a reasonable approximation for timber). The present study focused on particular 

boundary conditions, i.e. all simply supported edges and three sides simply supported 

with a free edge. Although the SSA can be extended for other boundary conditions such 

as free and fixed supports, this requires more complex expressions and further 

refinement of the solution process for the governing state equation. As to the solution 

itself, theoretical precision of the SSA solution can be improved further by increasing 

the number of Fourier series terms (m and n) in the series expressions of the solution, as 

shown before, in sections 4.4.4 and 5.4.2. 

Another limitation is that the SSA and the other existing analytical approaches used in 

this research assume full bond between the plies of the CLT panel and full bond 

between the boards in each ply. Although by using SSA, the bonding layers between 
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different plies could be considered, this requires further development. Also, this 

research does not consider the CLT behaviour for the long term, as both timber and the 

glues exhibit long-term visco-elastic behaviour under a sustained load as opposed to an 

instantaneous load. 

7.3 Recommendations for future research 

The following lists recommendations for future research that could be undertaken in the 

following areas: 

- Since this research focuses on two different boundary conditions such as simply 

supported for all sides and three sides simply supported with a free edge for CLT 

panels, further investigation should be performed for other boundary conditions like 

three sides free with a clamped edge. In addition, other loading conditions could be 

considered. 

- As previously stated, the SSA model presented in this work assumes full connectivity 

between plies. To understand the behaviour of the adhesive glue and the effect of it on 

the CLT plate behaviour, more detailed analysis of the bond between the CLT plies 

should be undertaken, taking into consideration the cohesive material between each 

board that forms the CLT panel. 

- This research focused on out-of-plane behaviour. In-plane loads could be incorporated 

into the SSA formulation and buckling behaviour could be included. In parallel, 

boundary conditions simulating a CLT wall panel could also be formulated. 

- CLT panels incorporating openings are necessary for practical structures; this could be 

further incorporated into the SSA formulation.   



 

175 

 

8 REFERENCES 
 

ABAQUS, 2013. ABAQUS User’s Manual, Version 6.13, Dassault Systémes Simulia 

Corp., Providence, Rhode. 

Albostami, A., Wu, ZJ. and Cunningham, L.S. 2017. Structural behaviour of cross-

laminated timber panels by the state space approach, International Journal of 

Computational Methods and Experimental Measurements, 8(4), 1-13. 

American Institute of Timber Construction. 2012. Timber construction manual. John 

Wiley & Sons, Inc., New Jersy. 

Bahar, L.Y. 1975. A state space approach to elasticity. Journal of the Franklin Institute, 

299(1), 33-41. 

Barlow, P. 1817. An Essay on the strength and stress of timber, 3
rd

 edition, J. Taylor, 

London. 

Bogensperger, T. and Jöbstl, R.A. 2015. Concentrated load introduction in CLT 

elements perpendicular to plane. International Council for Research and Innovation in 

Building and Construction Working Commission W18 - Timber Structures Cib-W18, 1-

16. 

Brandner, R. 2014. Production and technology of Cross-Laminated Timber (CLT): A 

state-of-the-art Report. Focus Solid Timber Solutions - European Conference on Cross 

Laminated Timber (CLT), 3-36. 

Brandner, R., Dietsch, P., Dröscher, J., Schulte-Wrede, M., Kreuzinger, H., Sieder, M., 

Schickhofer, G. and Winter S. 2015. Shear properties of cross laminated timber (CLT) 

under in plane load: test configuration and experimental study. Proc-Cib, 1-20. 

BSI 2013. BS EN 14080:2013: Timber structures - glued laminated timber and glued 

solid timber- requirements, Milton Keynes, UK. 

BSI 2008. BS EN 15425:2008: Adhesives - one component polyurethane for load 

bearing timber structures- classification and performance requirements, 3, Milton 

Keynes, UK. 

BSI 2015. BS EN 16351:2015: Timber structure - cross laminated timber-requirements, 

Milton Keynes, UK. 

BSI 2008. BS EN EN 1995-1-1 :2004+A: Eurocode 5: Design of timber structures - 

Part 1-1: general - common rules and rules for buildings, Milton Keynes, UK. 

BSI 2010. BS EN 384:2009: Structural timber-determination of characteristic values of 

mechanical properties and density, Milton Keynes, UK. 

BSI 2001. BS EN 386:2001: Glued-laminated timber performance requirements and 

minimum production requirements, (1109), Milton Keynes, UK. 

BSI 2009. BS EN 338:2009: Structural timber-strength classes, 3, Milton Keynes, UK. 

BSI 2012. BS EN 408:2010+A1: Timber structures-structural timber and glued 

laminated timber-Determination of some physical and mechanical properties, Milton 

Keynes, UK. 



 

176 

 

Carrera, E. 1996. C
0
 Reissner-Midlin multilayered plate elements including zig-zag and 

interlaminar stress continuity. International Journal for Numerical Methods in 

Engineering, 39, 1797–1820. 

Carrera, E. 1997. C
0

z requirements-models for the two dimensional analysis of 

multilayered structures. Composite Structures, 37(314), 373-383. 

Carrera, E. 2003. Historical review of zig-zag theories for multilayered plates and 

shells. Applied Mechanics Reviews, 56(3), 287. 

Cook, R. D. 1995. Finite Element Modeling for Stress Analysis, John Wiley &Sons Inc. 

Czaderski, C., Steiger, R., Howald, M., Olia, S., Gülzow, A. and Niemz, P. 2007. 

Versuche und Berechnungen an Allseitig Gelagerten 3-Schichtigen 

Brettsperrholzplatten. Holz als Roh - und Werkstoff, 65(5), 383-402. 

Ealias, J. and Mattam, J. 2013. Study of inter-laminar shear stress of composite 

structures. International Journal of Emerging Technology and Advanced Engineering, 

3(8), 543-552. 

Dinwoodie, J.M. 2000. Timber: Its Nature and Behaviour. 2
nd

 edition, Taylor and 

Francis, London & New York. 

Ealias, J. and Mattam, J. 2013. Study of Inter-laminar shear stress of composite 

structures. International Journal of Emerging Technology and Advanced Engineering, 

3(8), 543-552. 

Fan, J. and Ye, J. 1990. An exact solution for the statics and dynamics of laminated 

thick plates with orthotropic layers. International Journal of Solids and Structures, 

26(7), 655-662. 

FPInnovations 2013. CLT handbook canadian edition. Journal of Chemical Information 

and Modeling, 53, Canada. 

Ghugal Y. M. and Shimpi R. P. 2002. A review of refined shear deformation theories of 

isotropic and anisotropic laminated plates. Journal of Reinforced Plastics and 

Composites, 21(9), 775. 

Gordon, J.E. 1988. The Science of Structures and Materials. Scientific American 

Library, New York. 

Guo, Y., Nagy, A.P. and Gürdal, Z. 2014. A layerwise theory for laminated composites 

in the framework of isogeometric analysis. Composite Structures, 107, 447-457. 

Han, C. 2014. 3D State space analysis and free- edge effect of piezoelectric laminated 

thick plates, PhD thesis, University of Manchester. 

Harris, R. 2015. Cross laminated timber, Wood Composites. Elsevier Ltd. 

Hochreiner, G., Fussl, J. and Eberhardsteiner, J. 2014. Cross-laminated timber plates 

subjected to concentrated loading: experimental identification of failure mechanisms. 

Strain, 50(1), 68-81. 

Jairazbhoy, V.A., Petukhov, P. and Qu, J. 2008. Large deflection of thin plates in 

cylindrical bending -Non-unique solutions. International Journal of Solids and 

Structures, 45(11-12), 3203-3218. 



 

177 

 

Kamis, E. 2012. Reinforced Polymer Laminated Composites, PhD thesis, University of 

Manchester. 

Kirchhoff, G. 1850. Uber das Gleichgewicht und die Bewegung einer elastischen 

Scheibe. Journal f¨ur die reine und angewandte Mathematik, 40, 51–88. 

Kreja, I. 2011. A literature review on computational models for laminated composite 

and sandwich panels. Central European Journal of Engineering, 1(1), 59-80. 

Kutnar, A. and Muthu, S. 2016. Environmental impacts of traditional and innovative 

forest-based bioproducts, Hong Kong. 

Forest Products Laboratory. 2010. Wood handbook. Madison, Wisconsin: Forest 

Products Laboratory. 

Lekhnitskii, S. (1968), Anisotropic Plates, 2
nd

 edition, Translated from the 2
nd

 Russian 

Edited by SW Tsai and Cheron, Bordon and Breach. 

Levinson, M. 1980. An accurate, simple theory of the statics and dynamics of elastic 

plates. Mechanics research communications, 7(6), 343-350. 

Lewis, K., Basaglia, B., Shrestha, R. and Crews, K. 2016. The Use of Cross Laminated 

Timber for Long Span Flooring in Commercial Buildings. World Conference on Timber 

Engineering, 4-5. 

McKenzie. 2000. Design of structural timber, MACMILLAN Press LTD, London. 

Mindlin, R. 1951. Influence of rotatory inertia and shear on flexural motions of 

isotropic, elastic plates. Journal of Applied Mechanics, 18, 31-38. 

 

Möhler, K. 1955. Über das Tragverhalten von Biegeträger und Druckstäben mit 

zusamengestzten Querschnitten und nachgiebigen Verbindungsmitteln. Technische 

Hochschule, Karlsruhe. 

Murakami, H. 1986. Laminated composite plate theory with improved in-plane 

response. Applied Mechanics Reviews, 53, 661-666. 

Nimbolkar, P. V. and Jain, I.M. 2015. Cylindrical Bending of Elastic Plates. Procedia 

Materials Science, 10, 793-802. 

Noor, A.K. and Burton, W. 1990. Assessment of computational models for multilayered 

composite shells. Applied Mechanics Reviews, 43(4), 67-97. 

O’Dowd, B., Cunningham, L. and Nedwell, P. 2016. Briefing : experimental and 

theoretical bending stiffness of Cross-Laminated Timber panels. Proceedings of the 

Institution of Civil Engineers - Construction Materials, 169(6), 277-281. 

Oh, J.K., Lee, J.J. and Hong, J.P. 2015. Prediction of compressive strength of cross-

laminated timber panel. Journal of Wood Science, 61(1), 28-34. 

Onate, E. 1989. Structural Analysis with the Finite Element Method - Linear Statics, 

Lecture Notes on Numerical Methods in Engineering and Sciences. Dordrecht: Springer 

Netherlands. 

Ozelton, E.C. and Baird, J.A. 2006. Timber Designers Manual. (Science, B.,Ed.), 

Blackwell Science. 



 

178 

 

Pagano, N.J. 1969. Exact solutions for composite laminates in cylindrical bending. 

Composite Materials, 3, 398-411. 

Pagano, N.J. 1970. Exact solutions for rectangular bidirectional and sandwich plates. 

Composite Materials, 4, 20-34. 

Pearson, H.R. 2014. Cross-laminated timber panels incorporating angular material 

properties, PhD thesis, University of Bath. 

Rashed, Y.F. 2000. Boundary element formulations for thick plates, WIT press. 

Reddy, J.N. 1993. An evaluation of equivalent-single-layer and layerwise theories of 

composite laminates. Composite Structures, 25(1-4), 21-35. 

Reddy, J.N. 2004. Mechanics of laminated composite plates and shells: theory and 

analysis. CRC press. 

Reissner, E. 1945. The effect of transverse shear deformation on the bending of elastic 

plates. Journal of Applied Mechanics, 12, 68-77. 

Ren, J.G. 1986. Bending theory of laminated plate, Composites Science and 

Technology, 27(3), 225-248. 

Ridley-Ellis, D., Stapel, P. and Bano, V. 2016. Strength grading of sawn timber in 

Europe: an explanation for engineers and researchers. European Journal of Wood and 

Wood Products, 74(3), 291-306. 

Ritter, M. A. 1990. Timber bridges: design, construction, inspection and maintenance, 

(Service, F.,Ed.) Book, Washington. 

Saavedra Flores, E.I., Dayyani, I., Ajaj, R.M., Castro-Triguero, R., DiazDelao, F.A., 

Das, R. and González Soto, P. 2015. Analysis of cross-laminated timber by 

computational homogenisation and experimental validation. Composite Structures, 121, 

386-394. 

Serrano, E. and Enquist, B. 2010. Compression strength perpendicular to grain in Cross-

Laminated Timber (CLT), WCTE, 1-8. 

Shahnewaz, M., Tannert, T., Alam, M.S. and Popovski, M. 2015. Experimental and 

finite element analysis of Cross Laminated Timber (CLT) panels. First International 

Conference on Advances in Civil Infrastructure and Construction Materials. 

Sheng, H.Y. and Ye, J.Q. 2003. A three-dimensional state space finite element solution 

for laminated composite cylindrical shells. Computer Methods in Applied Mechanics 

and Engineering, 192(22-24), 2441-2459. 

Sikora, K.S., McPolin, D.O. and Harte, A.M. 2016. Effects of the thickness of Cross-

Laminated Timber (CLT) panels made from Irish Sitka spruce on mechanical 

performance in bending and shear. Construction and Building Materials , 116, 141-150. 

Stauder, C. 2013. Cross-Laminated Timber: an analysis of the Austrian industry and 

ideas for fostering its development in America, Austria. 

Stroud, K.A. 2013. Engineering mathematics. 7
th

 edition, Industrial Press Inc., New 

York. 

 



 

179 

 

Sturzenbecher, R. and Hofstetter, K. 2011. Bending of cross-ply laminated composites: 

An accurate and efficient plate theory based upon models of Lekhnitskii and Ren. 

Composite Structures, 93(3), 1078-1088. 

Sturzenbecher, R., Hofstetter, K. and Eberhardsteiner, J. 2010. Structural design of 

cross laminated timber (CLT) by advanced plate theories. Composites Science and 

Technology, 70(9), 1368-1379. 

Sutton, A., Black, D. and Walker, P. 2011. Cross-Laminated Timber An introduction to 

low-impact building materials, BRE publications. 

Thiel, A. and Schickhofer, G. 2010. CLTdesigner - A software tool for designing cross 

laminated timber elements: 1D-plate-design, 11
th

 World Conference on Timber 

Engineering, 2, 1742-1747. 

Van De Kuilen, J.W.G., Ceccotti, A., Xia, Z. and He, M. 2011. Very tall wooden 

buildings with Cross-Laminated Timber. Procedia Engineering. 14, 1621-1628. 

Vilguts, O.A., Serdjuks, D. and Pakrastins, L. 2015. Design methods of elements from 

Cross-Laminated Timber subjected to flexure. Procedia Engineering, 117(1), 10-19. 

Vlasov, V. 1957. Method of initial functions in problems of theory of thick plates and 

shells. Proceedings 9th of the International Congresses on Theoretical and Applied 

Mechanics, Brussels, 321. 

Wolfram Research 2016. Mathematica tutorial. Champaign, Illinois. 

Wu, Z.J., Han, C. and Niu, Z. 2015. A 3D exact analysis of the boundary layer effect of 

asymmetric piezoelectric laminates with electromechanical coupling. International 

Journal of Solids and Structures, Elsevier Ltd, 72, 118-129. 

Wu, Z.J. 1987. Exact solution of orthotropic simply-supported rectangular plates under 

arbitrary loadings, University of Hefei Technology, Hefei, China. 

Wu, Z.J. and Wardenier, J. 1998. Further investigation on the exact elasticity solution 

for anisotropic thick rectangular plates. International Journal of Solids and Structures, 

35(7-8), 747–758. 

Xu, X., Sun, L. and Fan, X. 1995, Stress concentration of finite composite laminates 

weakened by multiple elliptical holes. International Journal of Solids and Structures, 

32(20), 3001-3014. 

Ye, J. 2003. Laminated Composite Plates and Shells. Springer London, London. 

Zhou, J., Chui, Y.H., Gong, M. and Hu, L. 2017. Elastic properties of full-size mass 

timber panels: Characterization using modal testing and comparison with model 

predictions. Composites Part B: Engineering, 112, 203-212. 

 

 

 

 



 

180 

 

8 Appendix A 
 

A.1 MATHEMATICA code for a single-ply orthotropic fully simply supported 

under uniformly distributed load (Case Study 3 - section 4.4.4) 
 

E2=E3;E1=10*E3; 

G12=0.6*E3;G23=0.5*E3;G13=G12; 

v12=0.25;v13=0.25;v23=0.25;v21=v12*E2/E1;v32=v23*E3/E2;v31=

v13*E3/E1; 

Q=1-v12*v21-v23*v32-v31*v13-2*v12*v23*v31; 

 

C11=SetPrecision[E1*(1-

v23*v32)/Q,50];C12=SetPrecision[E1*(v21+v31*v23)/Q,50];C22=S

etPrecision[E2*(1-v13*v31)/Q,50]; 

C13=SetPrecision[E1*(v31+v21*v32)/Q,50];C33=SetPrecision[E3*

(1-v12*v21)/Q,50];C23=SetPrecision[E2*(v32+v12*v31)/Q,50]; 

C44=SetPrecision[G23,50];C55=SetPrecision[G13,50];C66=SetPrec

ision[G12,50]; 

C1=-(C13/C33);C2=C11- /C33;C3=C12-(C13 C23)/C33;C4=C22-

Subscript[C, 23]
2
/C33;C5=-

(C23/C33);C6=C66;C7=1/C33;C8=1/C55;C9=1/C44; 

 

Clear[E3,a,b,q,z0,h,z1]; 

 

U0 = 0;Uz= 0;V0= 0;Vz= 0;W0= 0;Wz= 0; 

X Top= 0;X z= 0;Y Top= 0;Y z= 0;XY Top= 0;XY z= 0;ZTop 
= 0;Zz = 0;Xg = 0;Yz = 0; 

 

SumU0 = 0;SumUz= 0;SumV0= 0;SumVz= 0;SumW0= 0;SumWz= 0; 

SumX Top= 0;SumX z= 0;SumY Top= 0;SumY z= 0;SumXY Top= 
0;SumXY z= 0;SumZz = 0;SumXg= 0;SumYz = 0; 
Sumu02 =0;Sumuz2=0;Sumv02 =0;Sumvz2=0;Sumw02 =0;Sumwz2=0; 

SumzTop = 0;Sumzz = 0 ;Sumxz z = 0;Sumyz z =0; 
 

a=5;b =5;q=1;E3=1;h=1; 

z0 =SetPrecision[1,50]; z1 =SetPrecision[h,50];x =0;y=0; 

 

I6=SetPrecision[IdentityMatrix[6],50]; 

 

For[i=1, i <39,i+=2,m=i; 

 For[ii=1, ii <39,ii+=2,n=ii; 

  ZTop = SetPrecision[-((16 q)/(m n 2)),50]; LTop = 
SetPrecision[(_{{ZTop},{0}, {0}}_),50]; LBottom = 

SetPrecision[(_{{0},{0},{0}}_),50];=SetPrecision[(m*)/a,5
0];=SetPrecision[(n*)/b,50]; 
 

D01=(_{{0, 0, 0, C8E3, 0, -},{0, 0, 0, 0, C9E3, -},{0, 0, 
0, , , 0},{(C2 2+C6 2)/E3, (C3+C6)*/E3, C1, 0, 0, 0}, 
{(C3+C6)*/E3, (C6 2+C4 2)/E3, C5, 0, 0, 0},{-C1, -C5, 
C7E3, 0, 0, 0}}_);D0 = SetPrecision[D01,50]; 

C13
2
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eDz0=SetPrecision[MatrixExp[D0*z0],50]; 

   

L1=(_{{eDz0[[3,1]], eDz0[[3,2]], eDz0[[3,6]]}, 

     {eDz0[[4,1]], eDz0[[4,2]], eDz0[[4,6]] }, 

     {eDz0[[5,1]], eDz0[[5,2]], eDz0[[5,6]]} }_); 
 

L2= (_{{eDz0[[3,3]], eDz0[[3,4]], eDz0[[3,5]]}, 
     {eDz0[[4,3]], eDz0[[4,4]], eDz0[[4,5]] }, 

     {eDz0[[5,3]], eDz0[[5,4]], eDz0[[5,5]]} }_); 

 

XTop = SetPrecision[LinearSolve[L1,(LBottom - L2.LTop)],50] ; 

U0 = XTop[[1,1]]; 

V0 = XTop[[2,1]]; 

W0 = XTop[[3,1]]; 

   

eDz1=SetPrecision[MatrixExp[D0*(z1/h)],50]; 

Xz =  

SetPrecision[eDz1.(_{{U0},{V0},{ZTop},{0},{0},{W0}}_),50]; 
 

Uz = Xz[[1,1]]; 

Vz =  Xz[[2,1]]; 

Zz =  Xz[[3,1]]; 

Xg =  Xz[[4,1]];  

Yz =  Xz[[5,1]]; 

Wz =  Xz[[6,1]]; 

   

u02= SetPrecision[Cos[m Pi x/a] Sin[n Pi y/b]U0 ,50]; 

uz2=SetPrecision[Cos[m Pi x/a] Sin[n Pi y/b] Uz ,50]; 

v02= SetPrecision[Sin[m Pi x/a] Cos[n Pi y/b]V0 ,50]; 

vz2=SetPrecision[Sin[m Pi x/a] Cos[n Pi y/b] Vz ,50]; 

w02= SetPrecision[Sin[m Pi x/a] Sin[n Pi y/b]W0,50]; 

wz2=SetPrecision[Sin[m Pi x/a] Sin[n Pi y/b] Wz ,50]; 

zTop =SetPrecision[Sin[m Pi x/a] Sin[n Pi y/b] ZTop,50]; 
zz = SetPrecision[Sin[m Pi x/a] Sin[n Pi y/b] Zz ,50]; 
xz z =SetPrecision[Cos[m Pi x/a] Sin[n Pi y/b]Xg ,50]; 
yz z =SetPrecision[Sin[m Pi x/a] Cos[n Pi y/b]Yz ,50]; 
   

X Top =SetPrecision[(-C2/E3)(Sin[m Pi x/a] Sin[n Pi 
y/b]U0)+(-C3/E3)(Sin[m Pi x/a] Sin[n Pi y/b]V0)-C1 
zTop,50]; 
Y Top=SetPrecision[(-C3/E3)(Sin[m Pi x/a] Sin[n Pi 
y/b]U0)+(-C4/E3)(Sin[m Pi x/a] Sin[n Pi y/b]V0)-C5 
zTop,50]; 
XY Top =SetPrecision[(C6/E3)(Cos[m Pi x/a] Cos[n Pi 
y/b]U0)+(C6/E3)(Cos[m Pi x/a] Cos[n Pi y/b]V0),50]; 
  

X z =SetPrecision[(-C2/E3)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz)+(-C3/E3)(Sin[m Pi x/a] Sin[n Pi y/b]Vz)-C1 zz,50]; 
Y z=SetPrecision[(-C3/E3)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz)+(-C4/E3)(Sin[m Pi x/a] Sin[n Pi y/b]Vz)-C5 zz,50]; 



 

182 

 

XY z =SetPrecision[(C6/E3)(Cos[m Pi x/a] Cos[n Pi 
y/b]Uz)+(C6/E3)(Cos[m Pi x/a] Cos[n Pi y/b]Vz),50]; 
   

SumU0 = SetPrecision[SumU0 +U0,50];SumUz= SetPrecision[SumUz 

+ Uz,50]; 

SumV0= SetPrecision[SumV0 + V0,50];SumVz= SetPrecision[SumVz 

+ Vz,50]; 

SumW0= SetPrecision[SumW0 + W0,50];SumWz= SetPrecision[SumWz 

+ Wz,50]; 

SumZz = SetPrecision[SumZz + Zz,50]; 

SumXg=SetPrecision[SumXg+Xg,50]; 

SumYz = SetPrecision[SumYz +Yz ,50]; 

   

Sumu02=SetPrecision[Sumu02+u02,50];Sumuz2=SetPrecision[Sumuz2+

uz2,50]; 

Sumv02=SetPrecision[Sumv02+v02,50];Sumvz2=SetPrecision[Sumvz2+

vz2,50]; 

Sumw02=SetPrecision[Sumw02+w02,50];Sumwz2=SetPrecision[Sumwz2+

wz2,50]; 

SumzTop = SetPrecision[SumzTop+zTop,50]; 
Sumzz = SetPrecision[Sumzz +zz ,50]; 
Sumxz z = SetPrecision[Sumxz z+xz z,50]; 
Sumyz z =SetPrecision[Sumyz z+yz z,50]; 
SumX Top= SetPrecision[SumX Top + X Top,50]; 
SumX z= SetPrecision[SumX z + X z,50]; 
SumY Top= SetPrecision[SumY Top + Y Top,50]; 
SumY z= SetPrecision[SumY z + Y z,50]; 
SumXY Top= SetPrecision[SumXY Top + XY Top,50]; 
SumXYz=SetPrecision[SumXY z + XY z,50];]] 
 

Sumu02; 

Sumuz2; 

Sumv02; 

Sumvz2; 

Sumw02; 

Sumwz2; 

Sumzz; 
Sumxz z; 
Sumyz z; 
SumX Top; 
SumX z; 
SumY Top; 
SumY z; 
SumXY Top 
SumXY z 
SumXg; 

SumYz; 
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A.2 MATHEMATICA code for a 3-ply CLT fully simply supported 

under uniformly distributed load (Case Study 2 - section 5.4.2) 
 

E1=11000;E2=370;E3=370; 

G12=690;G13=690;G23=50; 

v12=0.44;v13=0.44;v23=0.64;v21=v12*E2/E1;v32=v23*E3/E2;v31=

v13*E3/E1; 

 

Q=1-v12*v21-v23*v32-v31*v13-2*v12*v23*v31; 

C11=SetPrecision[E1*(1-

v23*v32)/Q,50];C12=SetPrecision[E1*(v21+v31*v23)/Q,50];C22=S

etPrecision[E2*(1-v13*v31)/Q,50]; 

C13=SetPrecision[E1*(v31+v21*v32)/Q,50];C33=SetPrecision[E3*

(1-v12*v21)/Q,50];C23=SetPrecision[E2*(v32+v12*v31)/Q,50]; 

C44=SetPrecision[G23,50];C55=SetPrecision[G13,50];C66=SetPrec

ision[G12,50]; 

 

C1=-(C13/C33);C2=C11- /C33;C3=C12-(C13 C23)/C33;C4=C22-

Subscript[C, 23]
2
/C33;C5=-

(C23/C33);C6=C66;C7=1/C33;C8=1/C55;C9=1/C44; 

C190=-(C23/C33);C290=C22- /C33;C390=C12-(C13 C23)/C33;C490=C11-

Subscript[C, 13]
2
/C33;C590=-

(C13/C33);C690=C66;C790=1/C33;C890=1/C44;C990=1/C55; 

 

Clear[a,b,q,z0,z1 ]; 

 

sumUz30=0;sumVz30=0;sumWz30=0;sumZz30=0;sumXz130=0;sumYz30=0;sum
Xz30=0;sumyz30=0;sumXY30=0;sumzz30=0;sumxzz30=0;sumyzz
30=0;sumUz60=0;sumVz60=0;sumWz60=0;sumZz60=0;sumzz60=0;sumXz160
=0;sumxzz60=0;sumYz60=0;sumyzz60=0;sumXz60=0;sumyz60=0;s
umXYz60=0;sumUz90=0;sumVz90=0;sumWz90=0;sumZz60=0;sumzz90=0;s
umXz190=0;sumYz90=0;sumxzz90=0;sumyzz90=0;sumXz90=0;sumyz
90=0;sumXYz90=0; 
 

a=360;b=360;z0=30;z1=30;q=1; 

x =a/2;y=b/2; 

 

I6=SetPrecision[IdentityMatrix[6],50]; 

 

For[i=1, i <39,i+=2,m=i; 

 For[ii=1, ii <39,ii+=2,n=ii; 

ZTop=SetPrecision[-((16 q)/(m n 2)),50]; 
LTop=SetPrecision[(_{{ZTop},{0},{0}}_),50];     

LBottom=SetPrecision[(_{{0},{0},{0}}_),50]; 
 

=SetPrecision[(m*)/a,50];=SetPrecision[(n*)/b,50]; 
  

 

 

C13
2

C23
2
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D01=(_{{0, 0, 0, C8, 0, -},{0, 0, 0, 0, C9, -},{0, 0, 0, 
, , 0},{C2 2+C6 2, (C3+C6)*, C1, 0, 0, 0},{(C3+C6)*, 
C6 2+C4 2, C5, 0, 0, 0},{-C1, -C5, C7, 0, 0, 0}}_); 
D0=SetPrecision[D01,50]; 

    

D090=(_{{0, 0, 0, C890, 0, -},{0, 0, 0, 0, C990, -},{0, 0, 
0, , , 0},{C290 2+C690 2, (C390+C690)*, C190, 0, 0, 0}, 
{(C390+C690)*, C690 2+C490 2, C590, 0, 0, 0},{-C190, -C590, 
C790, 0, 0, 0}}_); 
D90=SetPrecision[D090,50]; 

   

eDz0=SetPrecision[MatrixExp[D0*z0],50];eDz90=SetPrecision[M

atrixExp[D90*z1],50]; 

    

pie1=SetPrecision[eDz90.eDz0,50];pie=SetPrecision[eDz0.eDz9

0.eDz0,50];  

    

L1=(_{{pie[[3,1]], pie[[3,2]], pie[[3,6]]}, 
     {pie[[4,1]], pie[[4,2]], pie[[4,6]]}, 

     {pie[[5,1]], pie[[5,2]], pie[[5,6]]}}_); 

L2 = (_{{pie[[3,3]], pie[[3,4]], pie[[3,5]]}, 
     {pie[[4,3]], pie[[4,4]], pie[[4,5]] }, 

     {pie[[5,3]], pie[[5,4]], pie[[5,5]]} }_); 

   

XTop=SetPrecision[LinearSolve[L1,(LBottom - L2.LTop)],50] ; 

U0=XTop[[1,1]];V0=XTop[[2,1]];W0=XTop[[3,1]]; 

 

Xz30=SetPrecision[SetPrecision[MatrixExp[D0*0],50].(_{       

{U0},{V0},{ZTop},{0},{0},{W0}}_),50]; 
  

Uz30=Xz30[[1,1]];Vz30=Xz30[[2,1]];Zz30=Xz30[[3,1]];Xz130=Xz30[[4,1]

;Yz30=Xz30[[5,1]];Wz30=Xz30[[6,1]]; 

   

Xz30=SetPrecision[(-C2)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz30)+(-C3)(Sin[m Pi x/a] Sin[n Pi y/b]Vz30)-C1(Sin[m Pi 
x/a] Sin[n Pi y/b]Zz30),50]; 

yz30=SetPrecision[(-C3)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz30)+(-C4)(Sin[m Pi x/a] Sin[n Pi y/b]Vz30)-C5(Sin[m Pi 
x/a] Sin[n Pi y/b]Zz30),50]; 

XY30=SetPrecision[(C6)(Cos[m Pi x/a] Cos[n Pi 
y/b]Uz30)+(C6)(Cos[m Pi x/a] Cos[n Pi y/b]Vz30),50]; 
   

zz30=SetPrecision[Sin[m Pi x/a] Sin[n Pi y/b] Zz30,50]; 
xzz30=SetPrecision[Cos[m Pi x/a] Sin[n Pi y/b] Xz130,50]; 
yzz30=SetPrecision[Sin[m Pi x/a] Cos[n Pi y/b]Yz30,50]; 
   

Xz60=SetPrecision[SetPrecision[MatrixExp[D90*0].eDz0,50].(_{ 

{U0},{V0},{ZTop},{0},{0},{W0}}_),50]; 
  

Uz60=Xz60[[1,1]];Vz60=Xz60[[2,1]];Zz60=Xz60[[3,1]];Xz160=Xz60[[4,1]

];Yz60=Xz60[[5,1]];Wz60=Xz60[[6,1]];  
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Xz60=SetPrecision[(-C290)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz60)+(-C390)(Sin[m Pi x/a] Sin[n Pi y/b]Vz60)-C190(Sin[m 
Pi x/a] Sin[n Pi y/b]Zz60),50]; 

yz60=SetPrecision[(-C390)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz60)+(-C490)(Sin[m Pi x/a] Sin[n Pi y/b]Vz60)-C590(Sin[m 
Pi x/a] Sin[n Pi y/b]Zz60),50]; 

XYz60=SetPrecision[(C690)(Cos[m Pi x/a] Cos[n Pi 
y/b]Uz60)+(C690)(Cos[m Pi x/a] Cos[n Pi y/b]Vz60),50]; 
zz60=SetPrecision[Sin[m Pi x/a] Sin[n Pi y/b]Zz60,50]; 
xzz60=SetPrecision[Cos[m Pi x/a] Sin[n Pi y/b] Xz160,50]; 
yzz60=SetPrecision[Sin[m Pi x/a] Cos[n Pi y/b]Yz60,50]; 
   

Xz90=SetPrecision[SetPrecision[MatrixExp[D0*0].eDz90.eDz0,5]

.(_{ {U0},{V0},{ZTop},{0},{0},{W0}}_),50]; 
 

Uz90=Xz90[[1,1]];Vz90=Xz90[[2,1]];Zz90=Xz90[[3,1]];Xz190=Xz90[[4,1]

];Yz90=Xz90[[5,1]];Wz90=Xz90[[6,1]]; 

   

Xz90 =SetPrecision[(-C2)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz90)+(-C3)(Sin[m Pi x/a] Sin[n Pi y/b]Vz90)-C1(Sin[m Pi 
x/a] Sin[n Pi y/b]Zz90),50]; 

yz90 =SetPrecision[(-C3)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz90)+(-C4)(Sin[m Pi x/a] Sin[n Pi y/b]Vz90)-C5(Sin[m Pi 
x/a] Sin[n Pi y/b]Zz90),50]; 

XYz90 =SetPrecision[(C6)(Cos[m Pi x/a] Cos[n Pi 
y/b]Uz90)+(C6)(Cos[m Pi x/a] Cos[n Pi y/b]Vz90),50]; 
   

zz90= SetPrecision[Sin[m Pi x/a] Sin[n Pi y/b] Zz90,50]; 
xzz90=SetPrecision[Cos[m Pi x/a] Sin[n Pi y/b] Xz190,50]; 
yzz90=SetPrecision[Sin[m Pi x/a] Cos[n Pi y/b]Yz90,50]; 
   

Xz=SetPrecision[pie.(_{{U0},{V0},{ZTop},{0},{0},{W0}}_),50]; 

Uz = 

Xz[[1,1]];Vz=Xz[[2,1]];Zz=Xz[[3,1]];Xz1=Xz[[4,1]];Yz=Xz[[5,1]]

;Wz=Xz[[6,1]]; 

    

sumUz30=Uz30+sumUz30;sumVz30=Vz30+sumVz30;sumWz30=Wz30+sumWz30;sumZz

30=Zz30+sumZz30;sumXz130=Xz130+sumXz130;sumYz30=Yz30+sumYz30;sumXz3
0=Xz30+sumXz30;sumyz30=yz30+sumyz30;sumXY30=XY30+sum
XY30;sumzz30=zz30+sumzz30;sumxzz30=xzz30+sumxzz30;su
myzz30=yzz30+sumyzz30;sumUz60=Uz60+sumUz60;sumVz60=Vz60+sumVz
60;sumWz60=Wz60+sumWz60;sumZz60=Zz60+sumZz60;sumzz60=zz60+sumz
z60;sumXz160=Xz160+sumXz160;sumxzz60=xzz60+sumxzz60;sumYz60=Y

z60+sumYz60;sumyzz60=yzz60+sumyzz60;sumXz60=Xz60+sumXz6
0;sumyz60=yz60+sumyz60;sumXYz60=XYz60+sumXYz60;sumUz90
=Uz90+sumUz90;sumVz90=Vz90+sumVz90;sumWz90=Wz90+sumWz90;sumZz60=Zz60+

sumZz60;sumzz90=zz90+sumzz90;sumXz190=Xz190+sumXz190;sumYz90=Y

z90+sumYz90;sumxzz90=xzz90+sumxzz90;sumyzz90=yzz90+sumy
zz90;sumXz90=Xz90+sumXz90;sumyz90=yz90+sumyz90;sumXY
z90=XYz90+sumXYz90;]] 
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sumUz30; 

sumVz30; 

sumWz30 

sumZz30; 

sumzz30; 
sumXz130; 

sumxzz30; 
sumYz30; 

sumyzz30; 
sumXz30; 
sumyz30; 
sumXY30; 
 

sumUz60; 

sumVz60; 

sumWz60; 

sumZz60; 

sumzz60; 
sumXz160; 

sumxzz60; 
sumYz60; 

sumyzz60; 
sumXz60; 
sumyz60; 
sumXYz60; 
 

sumUz90; 

sumVz90; 

sumWz90; 

sumZz60; 

sumzz90; 
sumXz190; 

sumxzz90; 
sumYz90; 

sumyzz90; 
sumXz90; 
sumyz90; 
sumXYz90; 
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A.3 MATHEMATICA code for a 3-ply CLT three sides simply 

supported with a free edge under sinusoidal load (Case Study 1 – 

section 6.6.1.1) 
 

E1=11000;E2=370;E3=370; 

G12=690;G13=690;G23=50; 

v12=0.44;v13=0.44;v23=0.64;v21=v12*E2/E1;v32=v23*E3/E2;v31=

v13*E3/E1; 

 

Q=1-v12*v21-v23*v32-v31*v13-2*v12*v23*v31; 

C11=SetPrecision[E1*(1-

v23*v32)/Q,50];C12=SetPrecision[E1*(v21+v31*v23)/Q,50];C22=S

etPrecision[E2*(1-v13*v31)/Q,50]; 

C13=SetPrecision[E1*(v31+v21*v32)/Q,50];C33=SetPrecision[E3*

(1-v12*v21)/Q,50];C23=SetPrecision[E2*(v32+v12*v31)/Q,50]; 

C44=SetPrecision[G23,50];C55=SetPrecision[G13,50];C66=SetPrec

ision[G12,50]; 

 

C1=-(C13/C33);C2=C11- /C33;C3=C12-(C13 C23)/C33;C4=C22-

Subscript[C, 23]
2
/C33;C5=-

(C23/C33);C6=C66;C7=1/C33;C8=1/C55;C9=1/C44; 

C190=-(C23/C33);C290=C22- /C33;C390=C12-(C13 C23)/C33;C490=C11-

Subscript[C, 13]
2
/C33;C590=-

(C13/C33);C690=C66;C790=1/C33;C890=1/C44;C990=1/C55; 

 

Clear[a,b,q,z0,z1 ]; 

 

a=360;b=360;z0=30;z1=30;q=1; 

x =0;y=b/2; 

 

I6=SetPrecision[IdentityMatrix[6],50]; 

 

m=1;n=1; 

ZTop=SetPrecision[-1,50]; 

LTop=SetPrecision[(_{{ZTop},{0},{0}}_),50]; 

LBottom=SetPrecision[(_{{0},{0},{0}}_),50]; 

=SetPrecision[(m*)/a,50];=SetPrecision[(n*)/b,50]; 
D01=(_{{0, 0, 0, C8, 0, -},{0, 0, 0, 0, C9, -},{0, 0, 0, 
, , 0},{C2 2+C6 2, (C3+C6)*, C1, 0, 0, 0},{(C3+C6)*, 
C6 2+C4 2, C5, 0, 0, 0},{-C1, -C5, C7, 0, 0, 0}}_); 
D0=SetPrecision[D01,50]; 

D090=(_{{0, 0, 0, C890, 0, -},{0, 0, 0, 0, C990, -},{0, 0, 
0, , , 0}, {C290 2+C690 2, (C390+C690)*, C190, 0, 0, 0},   
{(C390+C690)*, C690 2+C490 2, C590, 0, 0, 0},{-C190, -C590, 
C790, 0, 0, 0}}_); 

D90=SetPrecision[D090,50]; 

 

eDz0=SetPrecision[MatrixExp[D0*z0],50];eDz90=SetPrecision[M

atrixExp[D90*z1],50]; 

 

C13
2

C23
2
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pie1=SetPrecision[eDz90.eDz0,50];pie=SetPrecision[eDz0.eDz9

0.eDz0,50];  

 

L1=(_{{pie[[3,1]], pie[[3,2]], pie[[3,6]]},{pie[[4,1]], 

pie[[4,2]], pie[[4,6]]},{pie[[5,1]], 

pie[[5,2]],pie[[5,6]]}}_); 

L2 = (_{pie[[3,3]], pie[[3,4]], pie[[3,5]]},{pie[[4,3]], 

pie[[4,4]], pie[[4,5]]},{pie[[5,3]], 

pie[[5,4]],pie[[5,5]]}}_); 
 

XTop=SetPrecision[LinearSolve[L1,(LBottom - L2.LTop)],50] 

;U0=XTop[[1,1]];V0=XTop[[2,1]];W0=XTop[[3,1]]; 

 

Xz30=SetPrecision[SetPrecision[MatrixExp[D0*0],50].(_{      

{U0},{V0},{ZTop},{0},{0},{W0}}_),50]; 
 

Uz30SS=Xz30[[1,1]];Vz30SS=Xz30[[2,1]];Zz30SS=Xz30[[3,1]];Xz130SS=Xz30[

[4,1]];Yz30SS=Xz30[[5,1]];Wz30SS=Xz30[[6,1]]; 

 

Xz30SS=SetPrecision[(-C2)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz30SS)+(-C3)(Sin[m Pi x/a] Sin[n Pi y/b]Vz30SS)-C1(Sin[m 
Pi x/a] Sin[n Pi y/b]Zz30SS),50]; 

yz30SS=SetPrecision[(-C3)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz30SS)+(-C4)(Sin[m Pi x/a] Sin[n Pi y/b]Vz30SS)-C5(Sin[m 
Pi x/a] Sin[n Pi y/b]Zz30SS),50]; 

XY30SS=SetPrecision[(C6)(Cos[m Pi x/a] Cos[n Pi 
y/b]Uz30SS)+(C6)(Cos[m Pi x/a] Cos[n Pi y/b]Vz30SS),50]; 
zz30SS=SetPrecision[Sin[m Pi x/a] Sin[n Pi y/b] Zz30SS,50]; 
xzz30SS=SetPrecision[Cos[m Pi x/a] Sin[n Pi y/b]Xz130SS,50]; 
yzz30SS=SetPrecision[Sin[m Pi x/a] Cos[n Pi y/b]Yz30SS,50]; 
 

Un30=SetPrecision[(-(*Uz30SS+*Vz30SS)*-1
m
)/(((C3 2 a(a 

Exp[a/a]-a))/(2C2)+(Exp[a/a]/2))*),50]; 
Wn30=SetPrecision[Wz30SS,50]; 

Xn30=SetPrecision[(-Xz130SS*-1
m
)/(Exp[a/a]-1),50]; 

 

Uz30=SetPrecision[((Uz30SSCos[ x])1+((C3 2 a((a* Exp[x/a])-
x))/(2C2)*Un30))*Sin[ y],50] 
 

Vz30= SetPrecision[((Vz30SS Sin[ x])+(a/2 ((Exp[x/a]-
1))*Un30*))*Cos[ y],50]; 
 

Wz30= SetPrecision[((Wz30SSSin[ x])+((Exp[x/a]-
1)*Wn30))*Sin[ y],50]; 
 

xz30=SetPrecision[(-C2)(Sin[ x] Sin[ y]Uz30SS)+(-
C3)(Sin[ x] Sin[ y]Vz30SS)-C1Sin[ x] Sin[ y]Zz30SS+(C2(C3 
2 a((Exp[x/a])-1))/(2C2)*Un30*Sin[ y])-(C3*(a/2*(Exp[x/a]-
1))*(2)*Un30*Sin[ y]),50]; 
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yz30=SetPrecision[(-C3)(Sin[ x] Sin[ y]Uz30SS)+(- 
C4)(Sin[ x] Sin[ y]Vz30SS)-C5Sin[ x] Sin[ y]Zz30SS+(C3(C3 
2 a((Exp[x/a])-1))/(2C2)*Un30*Sin[ y])-(C4 
*(a/2*(Exp[x/a]-1))*(2)*Un30*Sin[ y]),50]; 
  

XYz30=SetPrecision[((C6)(Cos[ x] Cos[ 
y]Uz30SS))+((C6)(Cos[ x] Cos[ y]Vz30SS))+((C6((C3 2 a((a 
Exp[x/a])-x))/(2C2)))(Un30*Cos[ y]))+((C6 
Exp[x/a]/2)(Un30*Cos[ y])),50]; 
 

XZz30=SetPrecision[((Xz130SS Cos[ x])+((Exp[x/a]-
1)*Xn30))*Sin[ y],50]; 
 

Xz60=SetPrecision[SetPrecision[MatrixExp[D90*0].eDz0,50].(_{

{U0},{V0},{ZTop},{0},{0},{W0}}_),50]; 
 

Uz60SS=Xz60[[1,1]];Vz60SS=Xz60[[2,1]];Zz60SS=Xz60[[3,1]];Xz160SS=Xz60[

[4,1]];Yz60SS=Xz60[[5,1]];Wz60SS=Xz60[[6,1]]; 

 

Xz60SS=SetPrecision[(-C290)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz60SS)+(-C390)(Sin[m Pi x/a] Sin[n Pi y/b]Vz60SS)-
C190(Sin[m Pi x/a] Sin[n Pi y/b]Zz60SS),50]; 

yz60SS=SetPrecision[(-C390)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz60SS)+(-C490)(Sin[m Pi x/a] Sin[n Pi y/b]Vz60SS)-
C590(Sin[m Pi x/a] Sin[n Pi y/b]Zz60SS),50]; 

XYz60SS=SetPrecision[(C690)(Cos[m Pi x/a] Cos[n Pi 
y/b]Uz60SS)+(C690)(Cos[m Pi x/a] Cos[n Pi y/b]Vz60SS),50]; 
zz60SS=SetPrecision[Sin[m Pi x/a] Sin[n Pi y/b]Zz60SS,50]; 
xzz60SS=SetPrecision[Cos[m Pi x/a] Sin[n Pi y/b] 
Xz160SS,50]; 

yzz60SS=SetPrecision[Sin[m Pi x/a] Cos[n Pi y/b]Yz60SS,50]; 
 

Un60=SetPrecision[(-(*Uz60SS+*Vz60SS)*-1
m
)/(((C390 2 a((a* 

Exp[a/a])-a))/(2C290)+(Exp[a/a]/2))*),50]; 
Wn60=SetPrecision[Wz60SS,50]; 

Xn60=SetPrecision[(-Xz160SS*-1
m
)/(Exp[a/a]-1),50]; 

 

Uz60=SetPrecision[((Uz60SSCos[ x])+((C390 2 a((a* Exp[x/a])-
x))/(2C290)*Un60))*Sin[ y],50]; 
 

Vz60=SetPrecision[((Vz60SS Sin[ x])+(a/2 ((Exp[x/a]-
1))*Un60*))*Cos[ y],50]; 
 

Wz60=SetPrecision[(Wz60SSSin[ x]+((Exp[x/a]-1)*Wn60))*Sin[ 
y],50]; 

 

xz60=SetPrecision[(-C290)(Sin[ x] Sin[ y]Uz60SS)+(-
C390)(Sin[ x] Sin[ y]Vz60SS)-C190Sin[ x] Sin[ y]Zz60SS+(C290 
(C390 2 a((Exp[x/a])-1))/(2C290)*Un60*Sin[ y])-
(C390*(a/2*(Exp[x/a]-1))*2*Un60*Sin[ y]),50]; 
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yz60=SetPrecision[(-C390)(Sin[ x] Sin[ y]Uz60SS)+(- 
C490)(Sin[ x]Sin[ y]Vz60SS)-C590Sin[ x] Sin[ y] 
Zz60SS+(C390(C390 2 a((Exp[x/a])-1))/(2C290)*Un60*Sin[ y])-
(C490*(a/2*(Exp[x/a]-1))*2*Un60*Sin[ y]),50]; 
 

XYz60=SetPrecision[((C690)(Cos[ x] Cos[ 
y]Uz60SS))+((C690)(Cos[ x] Cos[ y]Vz60SS ))+((C690 ((C390 2 
a((a Exp[x/a])-x))/(2C290)))(Un60*Cos[ y]))+((C690 
Exp[x/a]/2)(Un60*Cos[ y])),50]; 
 

XZz60=SetPrecision[((Xz160SS Cos[ x])+((Exp[x/a]-
1)*Xn60))*Sin[ y],50]; 
 

Xz90=SetPrecision[SetPrecision[MatrixExp[D0*0].eDz90.eDz0,50

].(_{{U0},{V0},{ZTop},{0},{0},{W0}}_),50]; 
       

Uz90SS=Xz90[[1,1]];Vz90SS=Xz90[[2,1]];Zz90SS=Xz90[[3,1]];Xz190SS=Xz90[

[4,1]];Yz90SS=Xz90[[5,1]];Wz90SS=Xz90[[6,1]]; 

 

Xz90SS =SetPrecision[(-C2)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz90)+(-C3)(Sin[m Pi x/a] Sin[n Pi y/b]Vz90)-C1(Sin[m Pi 
x/a] Sin[n Pi y/b]Zz90),50]; 

yz90SS =SetPrecision[(-C3)(Sin[m Pi x/a] Sin[n Pi 
y/b]Uz90)+(-C4)(Sin[m Pi x/a] Sin[n Pi y/b]Vz90)-C5(Sin[m Pi 
x/a] Sin[n Pi y/b]Zz90),50]; 

XYz90SS =SetPrecision[(C6)(Cos[m Pi x/a] Cos[n Pi 
y/b]Uz90)+(C6)(Cos[m Pi x/a] Cos[n Pi y/b]Vz90),50]; 
zz90SS= SetPrecision[Sin[m Pi x/a] Sin[n Pi y/b] Zz90,50]; 
xzz90SS=SetPrecision[Cos[m Pi x/a] Sin[n Pi y/b] Xz190,50]; 
yzz90SS=SetPrecision[Sin[m Pi x/a] Cos[n Pi y/b]Yz90,50]; 
 

Un90=SetPrecision[(-(*Uz90SS+*Vz90SS)*-1
m
)/(((C3 2 a(a 

Exp[a/a]-a))/(2C2)+(Exp[a/a]/2))*),50]; 
Wn90=SetPrecision[Wz90SS,50]; 

Xn90=SetPrecision[(-Xz190SS*-1
m
)/(Exp[a/a]-1),50]; 

 

Uz90=SetPrecision[((Uz90SSCos[ x])+((C3 2 a((a* Exp[x/a])-
x))/(2C2)*Un90))*Sin[ y],50]; 
 

Vz90= SetPrecision[((Vz90SS Sin[ x])+(a/2((Exp[x/a]-
1))*Un90*))*Cos[ y],50]; 
 

Wz90= SetPrecision[((Wz90SSSin[ x])+((Exp[x/a]-
1)*Wn90))*Sin[ y],50]; 
 

xz90=SetPrecision[(-C2)(Sin[ x] Sin[ y]Uz90SS)+(-
C3)(Sin[ x] Sin[ y]Vz90SS)-C1Sin[ x] Sin[ y] Zz90SS+(C2 
(C3 2 a((Exp[x/a])-1))/(2C2)*Un90*Sin[ y])-(C3 
*(a/2*(Exp[x/a]-1))*(2)*Un90*Sin[ y]),50]; 
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yz90=SetPrecision[(-C3)(Sin[ x] Sin[ y]Uz90SS)+(-
C4)(Sin[ x] Sin[ y]Vz90SS)-C5Sin[ x] Sin[ y] Zz90SS+(C3 
(C3 2 a((Exp[x/a])-1))/(2C2)*Un90*Sin[ y])-(C4 
*(a/2*(Exp[x/a]-1))*(2)*Un90*Sin[ y]),50]; 

XYz90=SetPrecision[((C6)(Cos[ x] Cos[ 
y]Uz90SS))+((C6)(Cos[ x] Cos[ y]Vz90SS))+((C6((C3 2 a((a 
Exp[x/a])-x))/(2C2)))(Un90*Cos[ y]))+((C6 
Exp[x/a]/2)(Un90*Cos[ y])),50]; 
 

XZz90=SetPrecision[((Xz190SS Cos[ x])+((Exp[x/a]-

1)*Xn90))*Sin[ y],50]; 
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9 Appendix B 

 

B.1 The effect of different h/a on the in-plane stress (σx/q) through the 

thickness in Figure 4-12. 

  

Table B.1 SSA and FEM results for different h/a on the in-plane stress (σx/q) 

through the thickness in Figure  4-12. 

σx/q 

z/h 
h/a = 0.2 

SSA FEM 

0.00 -11.5818 -11.5783 

0.07 -9.4761 -9.4888 

0.13 -7.6747 -7.6724 

0.19 -6.0681 -6.0783 

0.25 -4.6628 -4.6614 

0.32 -3.3722 -3.3810 

0.38 -2.2007 -2.2001 

0.44 -1.0756 -1.0840 

0.50 0.0000 0.0000 
   

 h/a = 0.35 

0.00 -4.1271 -4.1275 

0.04 -3.4448 -3.4454 

0.07 -2.8679 -2.8687 

0.11 -2.3804 -2.3812 

0.14 -1.9682 -1.9692 

0.18 -1.6196 -1.6206 

0.21 -1.3240 -1.3251 

0.25 -1.0728 -1.0739 

0.29 -0.8581 -0.8593 

0.32 -0.6730 -0.6742 

0.36 -0.5116 -0.5129 

0.39 -0.3684 -0.3697 

0.43 -0.2385 -0.2398 

0.46 -0.1172 -0.1186 

0.50 -0.0000 0.0000 



 

193 

 

 

 

 

 

 

  

σx/q 

z/h  
h/a = 0.5 

SSA FEM 

0.00 -2.3629 -2.3631 

0.02 -1.9777 -1.9569 

0.05 -1.6507 -1.6213 

0.07 -1.3734 -1.3362 

0.10 -1.1387 -1.0970 

0.12 -0.9405 -0.8968 

0.14 -0.7736 -0.7297 

0.17 -0.6334 -0.5906 

0.19 -0.5159 -0.4753 

0.21 -0.4179 -0.3802 

0.24 -0.3364 -0.3019 

0.26 -0.2689 -0.2379 

0.29 -0.2133 -0.1858 

0.31 -0.1677 -0.1436 

0.33 -0.1305 -0.1095 

0.36 -0.1001 -0.1095 

0.38 -0.0754 -0.0820 

0.40 -0.0552 -0.0598 

0.43 -0.0385 -0.0417 

0.45 -0.0243 -0.0265 

0.48 -0.0117 -0.0132 

0.50 0.0000 0.0000 



 

194 

 

10 B.2 Out-of-plane displacement w distribution through the thickness 

of the plate with h/a = 0.2 in Figure 4-15 

  

Table B.2 SSA and FEM results for out-of-plane displacement w distribution 

through the thickness of the plate with h/a = 0.2 in Figure  4-15. 

w.E3/qh 

z/h SSA FEM 

0.00 13.7081 13.7163 

0.11 13.7052 13.7152 

0.21 13.6821 13.7062 

0.30 13.6512 13.6909 

0.38 13.6179 13.6709 

0.45 13.5843 13.6473 

0.52 13.5511 13.6209 

0.59 13.5180 13.5926 

0.65 13.4849 13.5626 

0.71 13.4515 13.5312 

0.76 13.4173 13.4982 

0.82 13.3827 13.4632 

0.86 13.3481 13.4257 

0.91 13.3143 13.3847 

0.94 13.2831 13.3390 

0.97 13.2550 13.2871 

1.00 13.2275 13.2274 
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11 B.3 Transverse shear stress τxz distribution through the thickness of 

the plate with h/a = 0.2 in Figure 4-16 
 

 

 

  

Table B.3 SSA and FEM results for transverse shear stress τxz distribution 

through the thickness of the plate with h/a = 0.2 in Figure  4-16. 

τxz/q 

z/h SSA FEM 

0.00 0.0000 -0.0821 

0.06 1.4712 1.4525 

0.13 2.0784 2.0478 

0.19 2.4912 2.4715 

0.25 2.7928 2.7799 

0.31 3.0067 2.9984 

0.38 3.1429 3.1375 

0.44 3.2067 3.2035 

0.50 3.2006 3.1990 

0.56 3.1249 3.1243 

0.63 2.9763 2.9772 

0.69 2.7508 2.7531 

0.75 2.4403 2.4443 

0.81 2.0330 2.0391 

0.88 1.51123 1.5204 

0.94 0.8483 0.8624 

1.00 0.0000 0.0193 
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12 Appendix C 

 

C.1 The in-plane stress σx by the SSA through the thickness for 

different h/a for Case Study 2 in Figure 5-6 

 

 

 

  

Table C.1 The in-plane stress σx distribution through the thickness of different h/a for 

Case Study 2 by the SSA in Figure  5-6. 

z/h Ply # 
h/a 

0.1 0.3 0.5 

0.00 

1
st 

ply 

-25.1230 -4.7848 -3.1036 

0.05 -20.7819 -2.8880 -1.5669 

0.10 -16.5276 -1.1199 -0.2455 

0.15 -12.3431 0.5833 0.9940 

0.20 -8.2116 2.2831 2.2756 

0.20 

2
nd 

ply 

-0.5472 -0.1922 -0.1786 

0.25 -0.5272 -0.2145 -0.1865 

0.30 -0.5077 -0.2376 -0.1970 

0.35 -0.4891 -0.2640 -0.2145 

0.40 -0.4716 -0.2963 -0.2443 

0.40 

3
rd 

ply 

-8.0092 -2.9560 -1.8734 

0.45 -3.9594 -1.3910 -0.8309 

0.50 0.0735 0.1157 0.1052 

0.55 4.1057 1.6168 1.0272 

0.60 8.1530 3.1648 2.0255 

0.60 

4
th 

ply 

0.1632 -0.0038 -0.0377 

0.65 0.1811 -0.0297 -0.0512 

0.70 0.1996 -0.0542 -0.0628 

0.75 0.2183 -0.0796 -0.0768 

0.80 0.2371 -0.1085 -0.0975 

0.80 

5
th 

ply 

8.3098 -1.9910 -1.6082 

0.85 12.4250 -0.4345 -0.6593 

0.90 16.5912 1.1195 0.2264 

0.95 20.8252 2.7185 1.1386 

1.00 25.1441 4.4204 2.1698 
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C.2 The effect of BC sensitivity on the 3-ply CLT in-plane σx through 

the thickness of h/a = 0.25 in Figure 5-18 

 

 
 

  

Table C.2 The in-plane stress σx distribution through 3-ply CLT thickness for 

different BC for h/a = 0.25 in Figure  5-18. 

z/h Ply # SSA BC (1) BC (2) 

0.00 

1
st 

ply 

-13.0319 -14.3495 -13.0035 

0.09 -6.5675 -7.9704 -7.0386 

0.18 -0.7688 -2.1886 -1.6680 

0.27 4.8556 3.3595 3.4837 

0.33 8.7339 9.0228 8.7759 

0.33 

2
nd 

ply 

-0.2852 -0.2951 -0.2932 

0.36 -0.2838 -0.2859 -0.2863 

0.45 -0.2779 -0.2748 -0.2768 

0.55 -0.2763 -0.2701 -0.2772 

0.64 -0.2889 -0.2803 -0.2925 

0.67 -0.2981 -0.2803 -0.2778 

0.67 

3
rd 

ply 

-8.1988 -8.2530 -8.1202 

0.73 -4.4698 -2.8074 -3.0584 

0.82 0.8704 2.4423 1.8032 

0.91 6.3045 7.8411 6.7995 

1.00 12.2872 13.7223 12.2756 
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13 Appendix D 

 

D.1 The SSA and FEM in-plane stress σx through the thickness of the 

CLT panel for h/a = 0.25 in Figure 6-10 

 

 

 

 

 

Table D.1 The SSA and FEM results for in-plane stress σx distribution through 3-ply 

CLT thickness for h/a = 0.25 in Figure  6-10. 

z/h Ply # SSA FEM 

 0.00 

1
st 

ply 

-10.8941 -10.8707 

0.08 -6.5081 -7.0000 

0.17 -2.5293 -3.0000 

0.25 1.2859 1.1342 

0.33 5.0770 4.4411 

0.33 

2
nd 

ply 

-1.0180 -0.9961 

0.42 -0.6690 -0.6472 

0.50 -0.2854 -0.2636 

0.58 0.1038 0.0819 

0.67 0.4485 0.4267 

0.67 

3
rd 

ply 

-5.3133 -4.4411 

0.75 -1.2568 -1.1342 

0.83 2.2909 2.8051 

0.92 6.5322 6.7570 

1.00 10.5695 10.8675 


