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Abstract
This research focuses on the development of wall functions suitable for the prediction

of high-speed compressible flows. Wall-functions avoid the need for prohibitively expen-
sive fine near-wall meshes and low-Re models of turbulence which still involve a certain
amount of approximation. The conventional log-law-based wall functions, however, have
limitations in even incompressible cases, which are further compounded when applied to
high-speed compressible flows. The objective of this study is to examine the performance of
an advanced analytical wall-function treatment which has been successfully used in a range
of incompressible flows and explore how compressibility effects could be accounted for in
such approaches.

The starting point was the implementation of the analytical wall function proposed by
Craft et al (2002) in OpenFoam and its subsequent use for the prediction of the impinging
shock interaction and compression corner cases up to a Mach number of 3. The wall pressure
and skin friction results obtained by the original version result in improvements over those
of the standard wall function (log-law based) and are close to those obtained by the low-Re
number modelling for supersonic flows. However, an unphysical behaviour is encountered
when applying it to higher Mach number cases.

A compressible flow version of the analytical wall function is proposed which includes the
following modifications: a)inclusion of thermal dissipation terms in the analytical equation
for the energy variation over the near-wall cells, b) Variable molecular viscosity (due to
temperature variations) over the viscous sub-layer, c) improved variation of the convection
terms in the near-wall cell analytical equations.

The resultant model has been applied to the above flows up to Mach numbers of 9 and
comparisons drawn with experimental data and with predictions from the log-law based
wall functions and from the Low-Re Launder and Sharma model. The present results are
consistently closer to the data than those of other wall functions in some instances even better
than those of the low-Re number. Improvements are especially noticeable in the prediction
of the wall heat flux rates, where the log-law wall function generally predicts too low values
in the shock interaction region, while the low-Re model, predicts too high heat transfer rates
in the highest Mach number cases, as a result of overpredicting turbulence levels where
extremely rapid near-wall temperature variations are found.
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Chapter 1

Introduction

In the design of modern high-speed flight aircraft and re-entry space-exploration vehicles,
aerodynamics in the supersonic (M=1.2-5.0) and hypersonic (M>5.0) regime plays a domi-
nating role. Military supersonic aircraft are under development in many countries, such as
United States, Russia, and China. In recent years, more attention in the military has been
turned to hypersonic flight for the flow characteristics at high-speed and high-altitude which
can result in a decrease of the drag because of the low-density of air. Civil supersonic aircraft,
such as supersonic transports (SST) and business jets, have attracted the interest of many
developed countries because the required fuel consumption is economic.

One of the common occurrences in supersonic and hypersonic flow is shock wave/turbulent
boundary layer interactions (SWTBLIs), which lead to significant changes of temperature,
density, velocity and Mach number near the wall. In order to reduce the cost of experiments
and shorten the research period, the numerical approach, Computational Fluid Dynamics
(CFD), has blossomed in recent decades with the rapid development of computer technology.
In CFD, turbulence modeling is a key element in the aerodynamic design of advanced aircraft,
especially in the complex flow simulations such as those associated with wing-body junctions,
or the inlet of airbreathing propulsion systems for high-speed vehicles, where SWTBLIs
happen. Specifically, there are hundreds of experiments of SWTBLIs, some of which have
been summarized by Settles and Dodson (1994). In the present study, some widely used 2-
and 3- dimensional experiments, including impinging shock, compression corner, supersonic
cavity flow, a cylinder with flare or fin, sharp fin and crossing shock interaction, have been
chosen for the present study, in order for the code validation as well as the testing and
development of advanced modelling practices for handling the near-wall turbulence effects.

Because of the inevitable presence of low-Reynolds-number turbulence in the near-wall
region, turbulence models which are devised for high-Reynolds number turbulence flows
are not applicable and have to be modified for the low-Reynolds-number effects. Normally
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there are two approaches taken in the near wall turbulence modeling, one of which is Low
Reynolds Number models which do explicitly account for viscous and near-wall effects but
require a large number of near-wall nodes to resolve the significant changes within the thin
viscous sublayer. As a result, most of the computation time may be taken up by the viscous
sublayer, even though it may only comprise around 1% of the flow domain. In order to
overcome the cost associated with low Reynolds-number models, a wall function approach,
which has the advantage of eliminating a considerable number of mesh nodes, is widely used
in industrial CFD codes, particularly when simulating flows over complex geometries. Such
approaches use algebraic formulae or other low-cost routes to provide the overall resistance
of the region to heat and momentum transport.

The most of the conventional wall function approaches are based on assumed log-law
profiles for mean velocity and temperature, known as “standard wall functions”. However, in
practice the near-wall flow profiles may depart quite significantly from these, particularly
where there are strong pressure gradients, flow impingement, or separation. In recent years
there has been some development of more advanced schemes, designed to account for near-
wall convection, pressure gradients, and fluid property variations, although the development
and testing of these have been largely restricted to incompressible flows. In this research,
the main aim is to examine the performance of these advanced wall-function treatments in
high-speed flows and explore how compressibility effects could be accounted for in such
approaches. The objective is to utilize these advanced wall-functions to account for the
rapid changes and turbulence properties in the near-wall region of complex supersonic or
hypersonic flowfields with fast convergence rate, robustness, and reasonable accuracy.

In order to implement the wall functions, the open source CFD package OpenFOAM
v2.3.1 and v5.0 are used for the reason that new solvers or utilities can be created by users
in a fairly convenient manner. The mathematical basis is developed by the finite volume
method which is the most widely used approach in most commercial CFD codes. The
convection, diffusion and sources terms of the governing equations are discretized by a
variety of finite-difference-type approximations. This converts the integral equations into a
system of algebraic equations, which can be solved by a variety of methods.

The study begins by testing the original standard wall function and analytical wall
function treatments over a range of 2D supersonic impinging shock and compression corner
cases. Then more advanced modifications and refinements to overcome the spikes in the
calculation of hypersonic flows and the underestimation of wall heat flux after the separation
have been implemented and tested over a range of 2D supersonic and hypersonic cases,
drawing comparisons with existing experimental measurements and DNS data, together with



26

the predictions of the standard wall-function approaches and those from full low-Reynolds-
number models.

This thesis is organized as follows. In Chapter 2, a range of SWBLIs are introduced,
including impinging shock, compression corner, supersonic cavity, a cylinder with flare or
fin, sharp fin interaction and crossing shock interaction. In Chapter 3, RANS turbulence
models are introduced for incompressible flow, and some of the features of compressibility
are discussed towards the end of the chapter. In Chapter 4, the numerical implementation
associated with the compressible solvers in OpenFOAM is presented. In Chapter 5, some
modifications introduced into the original compressible solver ‘rhoCentralFoam’ in the
present work are the flux splitting methods. Some simple supersonic cases are used to validate
this modified solver and the comparison of results from different versions of OpenFoam
are also made. Chapter 6 introduces the standard log-law wall functions, together with the
analytical wall function. The performance of the analytical wall function is tested when
applied to the supersonic impinging shock and compression corner in Chapter 7. The
refinements and modifications introduced in the present study to the analytical wall function
are described in Chapter 8, together with the initial testing and validation of them. Further
tests in supersonic and hypersonic regimes are then reported in Chapter 9 for 2D impinging
shock interaction cases and compression corners in Chapter 10. The main conclusions arising
from the study, and suggestions for future work areas, are included in Chapter 11.



Chapter 2

Shock Wave Turbulent Boundary Layer
Interactions

Supersonic flow and hypersonic flow play a dominant role in the design of modern high-
speed flight aircraft and space-exploration re-entry vehicles. One of the main differences
between them and subsonic flow is that the upstream flowfield cannot be influenced by flow
disturbances downstream since the velocity of the flow stream is greater than the sound speed.
This results in the presence of discontinuities in the flowfield associated with abrupt changes
in all fluid properties, i.e. density, pressure, temperature, velocity, Mach number etc across
them. These discontinuities are referred to as shock waves. In addition to these, other more
complex phenomena happen in hypersonic flows, such as viscous effects, high-entropy and
temperature effects, and low-density effects at high altitude.

One of the common occurrences in supersonic and hypersonic flow is shock wave/turbulent
boundary layer interactions (SWTBLIs), which are associated with the shock-wave deflection
near the wall. SWTBLIs are always dependent on the nature of the incoming flow, such as
Mach number, Reynolds number, the configuration and the source of the shock. In reviewing
these flow features in this chapter, we focus on the mechanisms associated with the various
interactions. Rather than an exhaustive study covering all published papers on high speed
flows, a selection of previous studies will be referenced that help to bring out the above infor-
mation, together with identifying suitable test cases for the present study and highlighting a
number of model performances that have been well-documented.

Firstly, two-dimensional cases are considered, such as impinging shock interaction,
compression corner, and supersonic cavity flow. Then a sharp fin, which is fixed on a
cylinder or plate, and generates a three-dimensional interaction will be considered. Crossing
shock interactions, which include strong shock-shock interaction and SWTBLI, are finally
presented towards the end of this chapter.
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2.1 Impinging Shock Interaction

The interaction between an impinging-oblique shock and turbulent boundary layer embodies
the problems associated with compressibility, flow separation and turbulence, which are all
characteristics of SWTBLIs. In this case, the impinging shock is typically generated by a
flat plate or another obstacle with sharp leading edge, and the oblique shock then impinges
on (and may be reflected from) a flat wall. For relatively weak interaction cases associated
with the incoming Mach number and shock angels (see Fig. 2.1), the boundary layer remains
unseparated, and the interaction is embedded well within the boundary layer. Green (1970)
studied cases at Mach 2.5, Reθ of 4×105, deflection angles of 2◦, 2.5◦ and 5◦, indicating that
the reflected wave is a single shock with equal and opposite reflection angle to the incident
wave.

Figure 2.1: Shock reflection without boundary-layer separation from Delery and Marvin
(1986)

For stronger interactions (see Fig. 2.2), the oblique shock is strong enough to cause
separation of the turbulent boundary layer. An increase of pressure takes place at separation
and generates the leading reflected shock C2. Then shock C2 intersects the oblique shock C1
at point H, from which emanate the two refracted shocks C3 and C4. The point H can be
seen clearly in the Schlieren pictures by Green (1970) at deflection angles of 6.5◦, 8◦, 9.5◦,
and 10.5◦.

Dupont et al. (2006) have studied characteristic time and length scales of the unsteady
reflected shock. Humble et al. (2006) used Particle Image Velocimetry to investigate the
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Figure 2.2: Shock reflection with boundary-layer separation from Delery and Marvin (1986)

interaction at Mach 2.1, Reθ 3360 and 5290. The mean velocity profile and deduced skin
friction coefficient of the undisturbed boundary layer showed good agreement with theory.
Turbulence properties showed the highest turbulence intensity in the region behind the
impingement of the incident shock wave.

More recently Pirozzoli and Bernardini (2011) used DNS to study the impinging shock
interaction which was examined experimentally by Piponniau et al. (2009) at Mach 2.28.
However, the Reynolds number based on momentum thickness was reduced to 2300 from
5100. The global prediction of the flow structure is in good agreement with experiments when
comparing the flow properties of velocity and pressure with the experimental data, and the
database provided is believed to represent a reliable source for the validation of RANS- and
LES-based prediction methods. Jammalamadaka et al. (2014) carried out DNS calculations
for three different impinging angles at Mach 2.75. As expected, the separation zone grew
in size as the shock angle was increased. They also examined the turbulent kinetic energy
budgets, to gain a better understanding of the effect of impinging shock on the turbulence.

Schülein (2004) has studied the impinging shock interaction at Mach number 5.0 and Rel

=37×106/m at the Institute of Fluid Mechanics DLR with the shock-wave generator angles
6◦ to 14◦ corresponding to weak-to-strong interactions. The detail of the experimental results
of wall pressure, skin friction, station number and flowfields can be found in the report by
Schülein (1996). Fedorova and Fedorchenko (2004) performed computations of this case by
using the Wilcox (1988) two-parameter turbulence model. Kussoy and Horstmann (1975)
have conducted the hypersonic axisymmetric impinging shock interaction at Mach number
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7.2 and Rel =10.9×106/m with the generator at either 7.5◦ or 15◦. Another hypersonic
impinging shock interaction at Mach 8.2 has been studied by Kussoy and Horstman (1991).
The details of the surface pressure and heat transfer results for wedge angles of 5◦ to 11◦

were documented. From the oil visualization results, the 5◦ case was attached, the 10◦ case
was separated, while there was incipient separation at 8◦. The computation of these two
hypersonic impinging shock interaction cases, together with other hypersonic cases, was
reported by Horstman (1991) using the two-equation k− ε turbulence model, and also two
modifications of the k− ε turbulence model, which are the two-layer k− ε model by Rodi
(1991) and one arising from the introduction of compressibility effects.

2.2 Compression Corner

Another widely examined SWTBLI model is the 2-dimensional compression corner (see
Fig. 2.3). The experiments carried out by Settles (1979), Kuntz (1987), Smits and Muck
(1987) are highly cited, mainly because all these papers contain well-defined experimental
boundary conditions, adequate documentation data, and a wide range of turning angles.

As an illustration, we consider the experiment at Mach 2.9, Reynolds number 6.3×107/m
by Smits and Muck (1987). Three different corner angles, namely 8◦, 16◦ and 20◦, represent
flow without separation, flow with incipient separation and flow with significant separation
respectively. With the increase of corner angle, the interaction of the incoming boundary
layer and the shock wave causes and reinforces the oscillation of the shock in the streamwise
direction and wrinkles in the spanwise direction. When the shock becomes strong enough,
flow separation occurs, and the unsteadiness becomes increasingly important.

For corner angles under 20◦, the studies mentioned above restrict the Mach number
to around 3, while for corner angles greater than 20◦, unsteady SWTBLIs experiments
have been performed at a higher Mach number of 5 by Dolling and Erengil (1991) for a
28◦ compression corner and a Mach number of 9 by Verma (2003) for a 24◦ compression
corner. At higher Mach numbers, the interaction tends to be laminar, and Bazovkin et al.
(2009) have studied compression corners of 27◦-42◦ in a laminar hypersonic flow (M∞=21,
Re∞=6×105/m). Recently, the flow over an 8◦ ramp has been studied at Mach 8 by Bookey
et al. (2005) and Mach 7.2 by Schreyer et al. (2011).

Kussoy and Horstman (1989) have studied the hypersonic flow over an axisymmetric
cylinder with a 20◦, 30◦, 32.5◦, or 35◦ flare at Mach number 7.2 and Rel =7×106/m. The
experimental data reported includes the surface pressure, heat transfer and limited mean flow
filed surveys in the undisturbed and interaction region. Georgiadis et al. (2015) simulated the
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Figure 2.3: Sketch of the compression corner flow pattern from Adams (2000)

cases with 20◦ and 30◦ flares using the Spalart-Allmaras one-equation model and the Menter
family of k-ω two-equation models based on Wind-US and CLF3D.

2.3 2-D Supersonic Cavity Flow

The study of cavity flow dates back to the 1950’s, mainly for low-speed applications. In
recent decades, the interest in supersonic cavity flow has grown because of the ubiquitous
presence of cavity-type flows in applications. Although geometrically simple, cavity flows
may occur as a desired or undesired feature, such as weapons bays, landing gear walls and
flameholders for scramjets.

Typically, the physical structure of a cavity flow can be classified as closed, open or
transitional, depending on the Length-to-Depth ratio (L/D). A closed cavity (L/D greater than
14) contains three distinct flow regions if the cavity is long enough (see Fig. 2.4). The free
stream flow separates from the leading edge, then attaches on the floor and separates from
the floor, finally re-attaching at the trailing edge. Closed cavities are usually less desirable,
because of the high drag which is due to the low pressure at the leading edge and the high
pressure at the trailing edge. A short and deep open cavity (L/D between 1 and 10) is shown
in Fig. 2.5. The free stream flow separates at the leading edge, then bridges the length of the
cavity and re-attaches at the trailing edge. The time-mean pressure distribution in the cavity
is relatively constant and slightly above the upstream pressure. Transitional cavities, such as
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that shown in Fig. 2.6, occur when the L/D is between 10 and 14 and should be avoided due
to the unsteadiness of the flow alternation between the two patterns described above, which
often occurs in them.

Figure 2.4: Sketch of the closed cavity flow pattern from ESDU (2004)

Figure 2.5: Sketch of the open cavity flow pattern from ESDU (2004)

Figure 2.6: Sketch of the transitional cavity flow pattern from Wilcox (1990)

There is a large database of published papers about cavity flows. Here, we only concen-
trate on cavity flow in supersonic and hypersonic flows. For rectangular cavities, there are
lots of papers which contain measurements of mean and unsteady pressure. Heller and Bliss
(1975) hypothesize that if the open cavity flow is steady in a supersonic regime, then there
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would be a steady wave structure at the leading and trailing edges (see Fig. 2.7). At the rear
bulkhead, the flow stagnates and splits. This will cause the free-stream flow to produce static
pressure variations over the cavity mouth which cannot be balanced within the cavity. This
would suggest that steady flow in a rectangular cavity is difficult to achieve.

Figure 2.7: Sketch of cavity flow problem from Beranek (1975)

However, Zhang and Edwards (1992) point out that linear stability theory shows that the
longitudinal mode of oscillation will not occur beyond Mach 2.7 because the shear layer is
then stable. In their experiments, both interferometry and spark Schlieren indicate that the
flow is stable at both L/D=1 and 3 cavities at Mach number 3.5. Besides the Mach number,
other factors, such as the length-to-depth ratio, upstream boundary layer thickness, and the
Reynolds number, also play an important role in determining the oscillations present in the
cavity.

2.4 Cylinder with Flare or Fin

A cylinder with flare (Fig. 2.8 left) or fin (Fig. 2.8 right) is used to represent the aerodynamics
of vehicles which fly in the supersonic and hypersonic regimes. Marvin and Horstman (1989)
have conducted tests on cylinders incorporation a flare with half angles of 20◦, 30◦, 32.5◦,
and 35◦ at Mach 7.05 and Reynolds number of 3800 based on momentum thickness. From
the results of surface-oil-film and surface pressure at selected axial positions at 90o intervals,
it was concluded that the flow was axisymmetric at the zero angle of attack. Under the same
inflow conditions, the flow over a cylinder with fins of half angles of 10◦, 15◦, and 20◦ was
also investigated.

Dunagan et al. (1986) conducted experiments of the flowfield around a cylinder with flares
at the nominal free-stream Mach number of 2.85. Tunnel total pressures of 1.7 and 3.4 atm
provided Reynolds number values of 1.8×107 and 3.6×107 based on model length. Three
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Figure 2.8: Sketch of a cylinder with flare (left) and fin (right) from Marvin and Horstman
(1989)

cone angles (12.5◦, 20◦ and 30◦) were studied giving negligible, incipient, and large scale
flow separation respectively. Supporting data were obtained using a 2-D laser velocimeter, as
well as mean wall pressure and oil flow measurements. The attached flow case was observed
to be steady, while the separated cases exhibited shock unsteadiness. The model with cone
angle 12.5◦ was insensitive to Reynolds number for the extrapolation of the oil-flow data.
With the increase of model cone angle and decrease of Reynolds number, the extent of the
interaction was seen to increase. CFD simulation results with a k− ε model achieved good
agreement with the experimental data.

Brown et al. (1988) studied the flow of an axisymmetric turbulent boundary layer over a
5.08 cm diameter cylinder that was aligned with the wind tunnel axis, and the sketch map of
this model can be found in Fig. 2.9. The boundary layer was compressed by a 30◦ half-angle
conical flare, with the cone axis inclined at an angle α (=0◦, 5◦, 10◦) to the cylinder axis. The
inflow conditions were Mach 2.85 and Reynolds number per unit length of 1.6×107/m. The
measurements included wall pressures, two-component LDV flowfield data, shadowgraph,
and surface-oil flow visualizations.

The test model used by Jeffrey et al. (1994) was a sting-supported cylinder, aligned with
the free-stream flow, and a 20◦ half-angle conical flare offset 1.27 cm from the cylinder
centerline. The inflow condition was Mach 2.89 and Reynolds number 1.5×107/m. Surface
oil flow, laser light sheet illumination, and Schlieren were used to document the flow topology.
The data includes surface-pressure and skin-friction measurements. A numerical simulation
of this case can be found in Gaitonde et al. (1997) using a two-equation k− ε model. The
numerical results of surface streamline are shown in Fig. 2.10 (left). A range of computational
results was validated by comparing with the experimental data. From the observation of
experimental and numerical flowfields, the separation area covered the entire periphery
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Figure 2.9: Sketch of a general model with non-zero flare from Brown et al. (1988)

upstream of the juncture. A houseshoe-like vortical structure (see Fig. 2.10 right) was formed
at the upper symmetry plane. The legs of this structure wrapped around the juncture and were
switched to streamwise direction around the lower symmetry plane. After interaction with
the displaced oncoming turbulent boundary layer, a dual scroll-like structure was observed.

Figure 2.10: Surface stream structure (left) and sketch map of the principal vortical structure
(right) from Gaitonde et al. (1997)

2.5 Sharp Fin Interaction

The 3-D sharp fin interaction consists of a flat plate with a sharp fin mounted perpendicular
on it (see Fig. 2.11). In practice, this type of shock wave/turbulent boundary layer interaction
occurs on the supersonic compressible inlet or the wing surface of supersonic aircraft.
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Figure 2.11: Sharp fin induced shock wave/boundary-layer interaction from Lee, Settles and
Horstman (1992)

The flowfield generated by a single fin interaction is shown by Hsu and Settles (1992)
in Fig. 2.12 at M∞=4, α=20◦. The results from holographic interferometry were analyzed
to yield flowfield density maps in the crossflow plane. A flow structure is obtained which
consists of a λ -shock bifurcation astride a large vertical separation region. The separation
rolls up the entire incoming boundary layer, forming a low-density vortex core. The rear part
of this interaction is dominated by an impinging jet structure which raises the density at the
surface to a value higher than at any other point in the flowfield.

Knight et al. (1986) have studied the sharp fin interaction at Mach 3 for a fin angle of
20◦, and Reynolds number 9×105 based on boundary layer thickness. The experimental data
include surface pressure profiles, surface streamline patterns, and boundary layer profiles
of pitot pressure and yaw angle. The algebraic turbulent eddy viscosity model of Baldwin
and Lomax and a two-equation model with wall function were used to compute this case.
The experimental and numerical results were quite close, and the flow structure was quite the
same as described above.

Kim et al. (1990) reported a joint experimental and computational study of skin friction
at M=3, α=10◦ and 16◦ and M=4, α=16◦ and 20◦. From the results of Laser Interferometer
Skin Friction (LISF) meter, the peak skin friction occurred at the rear part of the interaction,
where the separated flow attached and rose with the increase of interaction strength. Many
other experiments have been conducted at Mach 2, 3, 4, 5, 8 for different angles ranging from
2◦ to 25◦ by Lee et al. (1992), Rodi et al. (1992), and Kussoy (1991). All these experiments
were designed to generate flows with a variety of shock strength, turbulent boundary layer,
and turning angles. The results of the experiments included surface pressure, skin-friction,
heat transfer distribution, and surface yaw angles from oil-flow visualization pattern. Most of
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Figure 2.12: Shock reflection with boundary-layer separation by Hsu and Settles (1992)

these datasets were, or have subsequently been, used to validate or test computational models
and corrections for supersonic and hypersonic flow.

2.6 Crossing Shock Interaction

Complex 3-D crossing shock interactions play an important role in the design of air-breathing
propulsion system for high-speed vehicles. Poor design may cause extremely high heat
flux in the inlet wall, which will lead to damage of the planes. The geometry contains two
symmetric or asymmetric sharp fins which are mounted on a flat plate.

Knight et al. (2003) pointed out some fundamental features of crossing shock interactions.
In order to clarify the complicated 3-D flowfield, flow patterns based on experimental planar
laser scattering images are plotted at three specific cross-sections in Fig. 2.13, for a case with
two sharp fins at 15◦ angles and Mach number of 4. Cross-section I is located before the
intersection of the two single fin interactions, so the flow structures are the same as single
fin interactions. Cross-section II is just after the intersection. In the vertical plane, which is
assumed to be an inviscid reflection plane, the continuity must be satisfied when the shock
wave that intersects this plane reflects from it. The λ -shock structure in cross-section III is
reflected from the centre plane and remains intact, though somewhat distorted by SWTBLIs
and shock-shock interactions, propagating away from the centre towards the fin surface.

Garrison (1992) studied the flow structure at Mach 3, with fin angles of 7◦ and 11◦ and
Mach 4, with fin angles of 15◦ experimentally and numerically (the unit Reynolds number was
approximately 80 million per metre). The results of a k− ε model showed better agreement
than those from the B-L turbulence model when compared with the experimental data.
However, neither computation fully captured the characteristics of the near-wall phenomenon
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Figure 2.13: Crossing shock interaction geometry (Left) and flowfield map (Right) from
Knight et al. (2003)

in the complex interaction region. From the observation of experimental and numerical
flowfields, there was a complex shock structure overlying a large viscous separated region.
This region included a large amount of low-speed and low-stagnation-pressure fluid.

Narayanswami et al. (1993) combined theoretical and experimental studies of 10◦ ×10◦

at Mach 8.3 (Reynolds number based on the boundary layer thickness was 1.7×105). The B-L
turbulence model gave good results when comparing with the experimental measurements
for surface pressure, flow pattern, pitot pressure, and yaw angle profile. However, the
computational surface heat transfer in the interaction zone was two times that measured in
the experiment. More detail of the flow structures from the summary of the experimental
and numerical flowfields was described and is shown in Fig. 2.15. At location 1, λ -shock
structures were present, as in the single fin interaction. At location 2, two separation shocks
interacted with each other, and a new shock (4) was formed. At locations 3 and 4, the shock
structure (4) was strengthened and moved forward. At location 5, this shock moved even
further outwards, and close to the rear shock. A new shock structure 5 formed over the
interaction central line. At location 6, shocks 3 and 4 crossed each other, and a high-pressure
region resulted. The peak plate pressure happened at the interaction central line here. At
location 7, two primary shocks crossed, two reflected shocks can be observed clearly, and
an expansion region was formed between the reflected shocks and shock structure over the
central line (5).

Kussoy et al. (1993) conducted two symmetric experiments (10◦ and 15◦) for crossing
shock wave/turbulent boundary layer interactions at Mach 8.3, Reynolds number per unit
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Figure 2.14: Sketch map of low structure (left) at different locations (right) from Narayan-
swami et al. (1993)
( 1 – primary shock; 2 – separation shock; 3 – rear shock; 4 and 5 – shocks; 6 – high pressure

region; 7 – reflected shock; 8 – expansion region; )

5.3×106/m. For both cases, the pressure rose quickly to its maximum value, which was
located downstream of the shock crossing point, and then decreased, followed by the ex-
pansion fan from the corner of the fins. The normalized heat transfer exhibited the same
distribution as pressure. However, a small plateau can be observed near the initial rise for both
configurations. Zheltovodov et al. (2001) analyzed symmetric and asymmetric interaction
at the Mach number of 4 (Re=88×106 /m, fin angle: 7◦ ×7◦, 7◦ ×11◦, 15◦ ×15◦) and 5
(36.5×106 /m, fin angle: 23◦ ×23◦). The results of k− ε and k−ω models agreed well
with the main features of their experimental data such as the flowfield topology and pressure
distribution but overpredicted the pressure in the mild and strong interaction areas. It was
concluded that the stronger the interaction, the worse the numerical prediction of heat flux
became.

2.7 Summary

In this chapter, some basic SWTBLI models, including the impinging shock interaction,
compression corner, supersonic cavity flow, 3-D sharp fin or flare mounted on a cylinder,
sharp fin flow and crossing shock interaction, have been introduced. The basic flow structures
of all these cases have been discussed in detail, to provide a good understanding of the
physics of these complex phenomena, and a number of previous studies, both experimental
and computational, have been highlighted.
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RANS Turbulence Modelling

In engineering applications, turbulence is prevalent in the flows of liquids or gases around air-
planes, automobiles, ships, and submarines. One important characteristic of turbulence is its
ability to transport and mix fluid more efficiently than the laminar flow. This is demonstrated
by a famous experiment reported by Reynolds at the University of Manchester in 1883. Later,
Reynolds established that this flow could be characterized by a non-dimensional parame-
ter, now known as the Reynolds number Re =UcLc

/
ν , where Uc and Lc are characteristic

velocity and length scale of the flow, and ν is the kinematic viscosity of the fluid.
The turbulent flow can be characterized by random, unsteady, chaotic, and three-dimensional

phenomena which are hard to describe and predict. At high Reynolds number, there is a
separation of scales, ranging from large-scale motions, which can often be visualized and are
strongly influenced by inflow conditions and flow geometry, down to the small-scale motions.
These small-scale motions are mostly determined by the rates at which they receive energy
from the large scales, and by the viscosity.

Before any further discussion of turbulence modelling, it is useful to introduce the Navier-
Stokes equations for continuous media first, which can be obtained from the principles of
conservation of mass, momentum, and energy.

∂ρ

∂ t
+∇• (uρ) = 0 (3.1)

∂ (ρu)
∂ t

+∇• [u(ρu)]+∇p−∇•σ = 0 (3.2)
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∂ (ρE)
∂ t

+∇• [u(ρE + p)]−∇• (σ •u)+∇•q = 0 (3.3)

where the stress tensor is expressed as σ = µ
[
∇u+∇uT −

(2
3∇•u

)
I
]
, the total specific

energy is E = e+ 1
2 |u|

2, and the heat flux vector as q =−λ∇T . The molecular viscosity is
calculated by the Sutherland (1893) equation:

µ =
As
√

T
1+Ts

/
T

(3.4)

where, for the air flows considered in this study, the Sutherland coefficient is As = 1.458×
10−6kg/m-s, and the Sutherland temperature is Ts = 110.3K.

In order to close the system, the equation of state is applied. When the thermally and
calorically perfect gas assumption is made, this can be taken as

p = ρRT (3.5)

For analyzing turbulent flows, Reynolds (1895) introduced the approach of splitting
all the variables into a sum of mean and fluctuating parts. The instantaneous velocity and
pressure fields, for example, can be decomposed as the sum of a mean, and a fluctuating part,
so that:

ui =Ui +u′i p = P+ p′ (3.6)

Then equations (3.6) are substituted into the continuity and momentum equations, and the
resulting equations averaged (the process is now known as Reynolds Averaging), to obtain
the RANS equation(i = 1,2,3) in incompressible flow:

∂Ui

∂x
= 0 (3.7)

∂Ui

∂ t
+

∂
(
UiU j

)
∂x j

=− 1
ρ

∂ p
∂xi

+
∂

∂x j

(
νSi j −u′iu

′
j

)
(3.8)
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where Si j =
∂Ui
∂x j

+
∂U j
∂xi

is the mean strain-rate tensor. The quantity u′iu
′
j is known as the

Reynolds-stress tensor, and we denote it by:

τi j = ρu′iu
′
j (3.9)

where τi j is a symmetric tensor, and thus has six independent unknown components. For
general three-dimensional flows, there are now four unknown mean-flow properties (pressure
and three velocity components), and six Reynolds-stress components, giving ten unknowns
in total. However, we only have one mass equation (3.7) and three momentum conservation
equations for a grand total of four. Consequently, more equations are needed to close the
system.

Many of the simplest and most widely-used, models for Reynolds stresses fall into the
category of the linear eddy-viscosity models, which employ:

u′iu
′
j = 2

/
3kδi j −νtSi j (3.10)

The quantity k is referred to as specific turbulent kinetic energy, but often just called
turbulent kinetic energy, which is defined as:

k =
1
2

u′iu
′
i =

1
2

(
u′2 + v′2 +w′2

)
(3.11)

There are different models for the turbulent viscosity νt to complete the system, and some
of these will be outlined below.

3.1 Zero-Equation Models

Prandtl (1961) put forth the mixing-length hypothesis after his visualization of simple shear
flow. In such a flow he proposed modelling the turbulent viscosity as:

νt = l2
m

∣∣∣∣∂U
∂y

∣∣∣∣ (3.12)

where lm is the mixing-length, taken to vary linearly with distance from the wall. For wall-
bounded flow, a damping term is needed to account for near-wall viscous effects. Driest



3.2 One-Equation Models 43

(1956) developed a continuous velocity and shear distribution near a smooth wall in order to
account for viscous damping effects, taking:

lm = ky
(
1− exp

(
−y+/26

))
(3.13)

Zero-equation models have the advantage of being very simple in concept and can be quite
numerically stable. However, these models will work well only for simple two-dimensional
shear flow and show weak performance in the more complex flow. The most well-known
zero-equation models are Cebeci-Smith (1974) and Baldwin-Lomax (1978) models.

3.2 One-Equation Models

Kolmogorov (1942) introduced the idea that the dissipation rate could be related, via a model
coefficient CD, to the turbulent kinetic energy and a prescribed lengthscale, in order to close
the turbulent kinetic energy equation. The turbulence dissipation and viscosity are then:

ε =CDk3/2/l (3.14)

νt = k1/2l =CD
k2

ε
(3.15)

where CD = 0.08. In a typical one-equation model, a transport equation for the turbulent
kinetic energy is

∂k
∂ t

+U j
∂k
∂x j

= Pk − ε +
∂

∂x j

[(
ν +νt

/
σk
) ∂k

∂x j

]
(3.16)

where the first term on the right-hand side of equation (3.16) is the production rate of
kinetic energy and is given by Pk =−uiu j∂Ui

/
∂x j. The dissipation rate ε , which is defined

as ε = ν
∂u′i
∂x′j

∂u′j
∂x′i

is modelled by equation (3.14). The last term is related to the diffusive
processes.

Baldwin & Barth (1990) and Spalart & Allmaras (1992) have proposed other one-equation
models. These two models have shown improved predictive capability for a limited number
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of flows with separation. However, when it comes to the complex flows, generally, the
one-equation models are not greatly superior to zero-equation models.

Given all these facts, the need for more-nearly universal models, especially for flow with
separation, should be reached by seeking a model which takes account of transport effects on
the turbulence length scale.

3.3 Two-Equation Models

Two-equation models include not only the computation of k via a transport equation but
also effectively of the turbulence length-scale. These models complete and can be used to
simulate the flow without prior knowledge of the turbulence structure. The dissipation rate
ε or the specific dissipation rate ω is the choice of the second variable to solve a transport
equation for in most widely used turbulence models.

3.3.1 Standard k− ε Model

The standard k−ε model, usually referenced to Jones and Launder (1972), is a high Reynolds
number model in which an equation is solved for ε of the form:

∂ε

∂ t
+U j

∂ε

∂x j
=Cε1

ε

k
Pk −Cε2

ε2

k
+

∂

∂x j

[(
ν +νt

/
σε

) ∂ε

∂xi

]
(3.17)

The turbulent viscosity is then modelled as

νt =Cµk2/
ε (3.18)

All the closure coefficients are

Cε1 = 1.44 Cε2 = 1.92 Cµ = 0.09 σε = 1.3 σk = 1 (3.19)

3.3.2 k− ε Model of Launder and Sharma

The standard k− ε model described above is only valid for fully developed turbulent flow.
For flows involving solid walls, the local Reynolds number (=k1/2l

/
ν , where l = k3/2/ε)

can be small enough that viscous effects cannot be neglected. Launder and Sharma (1974)
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employed damping functions dependent on Rt , and some additional modelled terms in the
transport equations, for the resolution of near-wall turbulent length scales. The transport
equations for k and ε are taken as

∂

∂ t
(ρk)+

∂

∂x j

[
ρkU j −

(
µ +

µt

σk

)
∂k
∂x j

]
= P−ρε −ρD (3.20)

∂

∂ t
(ρε)+

∂

∂x j

[
ρεU j −

(
µ +

µt

σε

)
∂ε

∂x j

]
= (Cε1P−Cε2 f2ρε)

ε

k
+ρE (3.21)

where

µt =Cµ fµρ
k2

ε
(3.22)

where Cε1, Cε2, Cµ , σε , and σk are constant values which are the same as in the standard
k− ε model. The proposed damping term functions are,

fµ = exp
−3.4(

1+Rt
/

50
)2 (3.23)

f2 = 1.0−0.3exp
(
−R2

t
)

(3.24)

where Rt = k2/(νε) is the turbulent Reynolds number, and the extra source terms D and E
are:

D = 2ν

(
∂
√

k
∂y

)2

(3.25)

E = 2ννt

(
∂ 2U
∂y2

)2

(3.26)
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In separated flow, the above ε equation tends to return overly high levels of near-wall
turbulence. In order to address this problem, Yap (1987) added an extra source term YC to
modify the ε equation:

YC = max

0.83
ε2

k

(
k3/2/ε

2.55Y
−1

)(
k3/2/ε

2.55Y

)2

,0

 (3.27)

where Y is the distance from the wall.

3.3.3 k−ω SST Model

The Shear Stress Transport model of Menter (1994) combines the k-ω model which is used
in the inner boundary layer and the k-ε in the outer region or in the free shear flow. The
original k-ω equation is multiplied by F1 and the transformed k-ε equation is multiplied by
(1−F1), then these two forms are added together to give the SST model:

∂

∂ t
(ρk)+

∂

∂x j

(
ρu jk

)
=−ρu′iu

′
j
∂ui

∂x j
−β

∗
ρωk+

∂

∂x j

[
(µ +σkµt)

∂k
∂x j

]
(3.28)

∂

∂ t
(ρω)+

∂

∂x j

(
ρu jω

)
=

γρ

µt

(
−ρu′iu

′
j
∂ui

∂x j

)
−βρω

2 +
∂

∂x j

[
(µ +σω µt)

∂ω

∂x j

]
+2(1−F1)

ρσω2

ω

∂k
∂x j

∂w
∂x j

(3.29)

where

µt =
ρk

max
(
ω,F2 ∥S∥

/
a1
) (3.30)

where ∥S∥ =
√

Si jSi j
/

2 is the magnitude of the mean-strain rate tensor. The auxiliary
function F2 is defined as,

F2 = tanh

max

(
2

√
k

0.09ωy
,

500µ

ρy2ω

)2
 (3.31)
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Table 3.1: Coefficients of SST model

γ1γ1 a1 β ∗ κ σk1 σω1

β1
/

β ∗−σω1κ2
/√

β ∗ 0.31 0.09 0.41 0.85 0.5

γ2 σk2 σω2 β2 β1

β2
/

β ∗−σω2κ2
/√

β ∗ 1.0 0.856 0.0828 0.075

where y is the wall distance. If the original k-ω model coefficients are presented as
φ1 (σk1, · · ·), and the transformed k-ε ones as φ2 (σk2, · · ·), then the coefficients in the fi-
nal SST model, φ (σk, · · ·), are defined as

φ = F1φ1 +(1−F1)φ2 (3.32)

The auxiliary function F1 is effectively a blending function between the model forms:

F1 = tanh
(
arg4

1
)

(3.33)

arg1 = min

[
max

( √
k

0.09ωy
,

500µ

ρy2ω

)
,
4ρσω2k
CDkωy2

]
(3.34)

CDkω = max
(

2ρσω2

ω

∂k
∂x j

∂ω

∂x j
,10−20

)
(3.35)

The model coefficients are given in Table. 3.1.

3.4 Non-linear Eddy Viscosity Models

It should be noticed that the linear eddy viscosity models (EVM) discussed above are very
unlikely to perform universal in turbulent flow and can exhibit inaccurate predictions in the
non-equilibrium flows. Non-linear eddy viscosity models (NLEVM) have been developed
by calculating an algebraic formula which includes linear, quadratic or even higher order
combination of strain rate. Pope (1975) introduced non-linear strain terms into the turbulent
stress-strain relation as
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ai j = u′iu
′
j

/
k− 2

3
δi j (3.36)

Craft et al. (1996) introduced the cubic terms into the equation for the quadratic stress-
strain relalation, and the equation of anisotropic stress tensor is:

ai j = u′iu′ j
/

k− 2
3

δi j =−νt

k
Si j+c1

νt

ε̃

(
SikS jk −1

/
3SklSklδi j

)
+c2

νt

ε̃

(
ΩikS jk +Ω jkSik

)
+c3

νt

ε̃

(
ΩikΩ jk −1

/
3ΩklΩklδi j

)
+c4

νtk
ε̃2

(
SkiΩl j +Sk jΩli

)
Skl

+c5
νtk
ε̃2

(
ΩilΩlmSm j +SilΩlmΩm j −

2
3

SlmΩmnΩnlδi j

)
+c6

νtk
ε̃2 Si jSklSkl

+c7
νtk
ε̃2 Si jΩklΩkl

(3.37)
where the strain-rate and vorticity tensors in the above equation is as follows:

Si j =
∂Ui

∂x j
+

∂U j

∂xi
(3.38)

Ωi j =
∂Ui

∂x j
−

∂U j

∂xi
(3.39)

The isotropic dissipation rate ε̃ is defined as:

ε̃ = ε −2ν

(
∂k1/2

/
∂x j

)2
(3.40)

This model has been used to homogeneous shear flow, straight and curved channel flow,
impinging flow and a rotating pipe flow. The comparisons show that this model performs
better than a linear eddy-viscosity scheme. In addition to the cubic form of the stress-strain
relation, Suga (1995) also developed a formulation for cµ which is depend on the local mean
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strain rate. This formulation was found to be numerical unstable for the flow around a sharp
corner with separation. An alternative formulation for cµ is proposed by Craft et al. (2000),
together with the improvement in the implementation of the non-linear model, to remove this
weakness.

3.5 Reynolds Stress Models

Another higher-level turbulence models are the Reynolds stress models (RSM) or second
moment closures which solve a separate transport equation for each individual Reynolds
stress. The stress transport equation is written as:

∂u′iu′ j

∂ t
+Uk

∂u′iu′ j

∂k
=Pi j − εi j +φi j +dv

i j +dt
i j

=−
(

u′iu′k
∂U j

∂xk
+u′ ju′k

∂Ui

∂xk

)
+2ν

∂u′i
∂xk

∂u′ j

∂xk
+

p′

p

(
∂u′i
∂xk

+
∂u′ j

∂xk

)
+ν

∂ 2u′iu′ j

∂xk∂xk
− ∂

∂xk

[
u′iu′ ju′k + p′u′i

/
ρδ jk + p′u′ j

/
ρδik

]
(3.41)

where Pi j denotes the term for stress production, εi j denotes the viscous dissipation rate, φi j

denotes the pressure strain term, dv
i j denotes the viscous diffusion term, and dt

i j denotes the
turbulence diffusion. The production terms Pi j are directly expressed in terms of Reynolds
stresses and mean velocity derivatives and do not require any modelling. The similar situation
is true for the viscous diffusion terms dv

i j. An assumption of isotropy of the small dissipative
scales in high Reynolds number flows is made, and the dissipation rate is normally modelled
as εi j =

(
2
/

3
)

εδi j. Therefore, the transport equation for ε (or for ω) is normally similar
to the one in the k-ε (or k-ω) model. Turbulence diffusion terms dv

i j and the pressure strain
terms φi j need to be modelled. The Generalised Gradient Diffusion Hypothesis (GGDH) of
Daly and Harlow (1970) is used to approximated the turbulence diffusion terms dt

i j as:

∂

∂xk

[
cs

k
ε

u′ku′l
∂u′iu

′
j

∂xl

]
(3.42)

which normally show good performance over simple gradient diffusion models when the
the Reynolds stresses are predicted accurately. Normally the most important term requiring
modelling is the pressure strain term φi j. Various models for pressure strain term have been
developed, for example the high Reynolds number LRR model of Launder, Reece, and Rodi
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(1975), the high Reynolds number SSG model of Speziale, Sarkar, and Gatski (1991), the
rapid pressure-strain model of Johansson and Hallbäck (1994), the low-Reynolds number
Two Component Limit (TCL) model of Craft (1998) and the single-point pressure strain
correlation of Mishra and Girimaji (2017).

3.6 Effects of Compressibility

With the rapid development of aircraft and space programs, compressible turbulent flows,
in which density varies significantly due to the pressure and temperature variations, have
become important, and in modelling these one must take the density fluctuations into account.
For compressible flow, the averaging procedure outlined above is defined relative to density-
weighted variables. Favre (1965) introduced the Favre, or mass, average to avoid additional
terms in the equations. The Favre-average of a variable f̃ is defined as

f̃ = ρ f
/

ρ̄ (3.43)

where overbar denotes Reynolds averaging. Thus the instantaneous value can be decomposed
as

f = f̃ + f ′′ (3.44)

where the double prime denotes the fluctuating part with respect to Favre averaging. Wilcox
(1993) and Gatski and Bonnet (2013) derive and describe the compressible Favre-averaged
Navier-Stokes equations. All flow variables are decomposed as follows:

ui = ũi +u′′i ρ = ρ̄ +ρ
′ p = P+ p′

h = h̃+h′′ e = ẽ+ e′′ T = T̃ +T ′′ q j = qL j +q′j
(3.45)

where p, ρ and q j are decompsed in terms of conventional mean and fluctuating parts.
Substituting Equation (3.45) into the original Navier-Stokes equations, and performing the
Favre averaging operations, then the Favre-averaged Navier-Stokes equations are obtained:
Conservation of the mas

∂ ρ̄

∂ t
+

∂

∂xi
(ρ̄ ũi) = 0 (3.46)
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Conservation of the momentum

∂

∂ t
(ρ̄ ũi)+

∂

∂x j

(
ρ̄ ũ jũi

)
=−∂P

∂xi
+

∂

∂x j

(
σ ji + τ ji

)
(3.47)

Conservation of energy

∂

∂ t
(ρ̄E)+

∂

∂x j

(
ρ̄ ũ jH

)
=

∂

∂x j

(
−qL j −qT j +σ ′

jiu
′
i −ρu′′j

1
2

u′′i u′′i

)
+

∂

∂x j

[
ũi
(
σi j + τi j

)]
(3.48)

The turbulent kinetic energy equation

∂

∂ t
(ρ̄k)+

∂

∂x j

(
ρ̄ ũ jk

)
=τi j

∂ ũi

∂x j
− ρ̄ε +

∂

∂x j

[
σi ju′′i −ρu′′ j

1
2

u′′iu′′i − p′u′′ j

]
−u′′i

∂P
∂xi

+ p′
∂u′′i
∂xi

(3.49)

where the total energy E and total enthalpy include the kinetic energy and are defined as:

E = ẽ+
1
2

ũiũi and H = h̃+
1
2

ũiũi (3.50)

The kinetic energy per unit volume of the turbulent fluctuations is defined as

ρk =
1
2

ρu′′i u′′i (3.51)

Normally for one- and two-equation models, the Reynolds-stress tensor is modelled by
the Boussinesq approximation for compressible flows, by taking

τi j =−ρu′′i u′′j = µtSi j −
2
3

ρ̄kδi j (3.52)

where Si j is the Favre-averaged strain-rate tensor, which is

Si j =

(
∂ ũi

∂x j
+

∂ ũ j

∂xi

)
− 2

3
δi j

∂ ũk

∂xk
(3.53)
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Next, the molecular transport of heat is modelled in analogy to the molecular one as:

qT j = ρu′′j h′′ =−
µTCp

PrT

∂ T̃
∂x j

=− µT

PrT

∂ h̃
∂x j

(3.54)

where PrT is the turbulence Prandtl number. The Favre-averaged dissipation rate is given by

ρ̄ε = σ ji
∂u′′i
∂x j

(3.55)

The dissipation rate is then obtained from a modelled ε equation (in the context of k-ε
model, for example). The molecular diffusion σi ju′′i and turbulent transport ρu′′j

1
2u′′i u′′i in the

energy equation can be neglected especially in supersonic regime. In the turbulent kinetic
energy equation, the most commonly used approximation is:

σ ′
jiu

′
i −ρu′′j

1
2

u′′i u′′i =

(
µ +

µT

σk

)
∂k
∂x j

(3.56)

The pressure diffusion term p′u′′j is simply ignored, as it is in the incompressible flows.

The pressure-dilatation term, p′ ∂u′′i
∂xi

, and pressure work term, u′′ ∂ p̄
∂xi

, are also normally ne-
glected. This is valid at least in the case of a supersonic turbulent boundary layer Guarini
et al., (2000), a supersonic channel flow Huang et al. (1995) and an impinging shock flow
Pirozzoli and Bernardini (2011).

3.7 Summary

At the beginning of this section, the Navier-Stokes equations are introduced. Then, the
Reynolds averaged equations was introduced, as the most widely-used approach for dealing
with industrial turbulent flows. Some of the most widely-used models for representing
the Reynolds stresses have been reviewed, concentrating on the particular eddy-viscosity
forms. Finally, the effects of compressibility have been considered by introducing the Favre-
averaging approach employed in such flows and the effects on the averaged equations and
turbulence models.



Chapter 4

Numerical Implementation

In this chapter, the mathematical basis for compressible OpenFOAM solvers is developed,
which is based on the finite volume method that is used in most general-purpose CFD codes.

4.1 Finite Volume Method

The purpose of the finite volume method (FVM) is to approximate the differential equations
by a set of algebraic equations linking nodal values of the flow variables. The first step of the
FVM is to divide the computation domain into a number of control volumes (CV), and then
integrate the differential form of the governing equation over each CV. A typical CV, which
is shown in Fig. 4.1, does not overlap with its neighbors, and the entire collection of them
fills the computational domain. The centroid P of the CV is defined by

∫
VP

(x− xP)dV = 0 (4.1)

The internal face area vector is constructed for each face and points outwards from the
cell. The owner and the neighbour cell centres, as shown in Figure 4.1, are denoted with P
and N, and the surface vector S f points to the control volume N.

All transport equations, including the Navier-Stokes equations, can be expressed in the
general form as

∂φ

∂ t
+∇• [uφ ]−∇•

(
Γφ ∇φ

)
= Sφ (φ) (4.2)
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Figure 4.1: Control volume

where φ = φ (x, t) is the transported variable. The first term in equation (4.2) is the unsteady
term, the second term is the convection term, whose precise treatment becomes very important
when flow fields include discontinuities, the third term is the diffusion term, and the last term
is the source term. All these terms will be introduced respectively in the following sections.
Before that, temporal and spatial integration of equation (4.2) is applied

∫ t+∆t

t

[
∂

∂ t

∫
VP

φdV +
∫

VP

∇•
(
uφ −Γφ ∇φ

)
dV
]

dt =
∫ t+∆t

t

(∫
VP

Sφ (φ)dV
)

dt (4.3)

and using the Gauss theorem (
∫

VP
∇•AdV =

∫
SP

A•dS), then

∫ t+∆t

t

[
∂

∂ t

∫
VP

φdV +
∫

SP

(
uφ −Γφ ∇φ

)
•dS

]
dt =

∫ t+∆t

t

(∫
VP

Sφ (φ)dV
)

dt (4.4)

where SP is the closed surface that bounds the CV.

4.2 Discretization of the Transport Equation

4.2.1 Unsteady Term

The first term in equation (4.4) is the unsteady term which can be written as
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∫ t+∆t

t

[
∂

∂ t

∫
VP

φ (x, t)dV
]

dt =
∫

VP

φ (x, t +∆t)dV −
∫

VP

φ (x, t)dV (4.5)

The volume integral can be approximated as

∫
VP

φdV = φPVP (4.6)

where φP = φ (xP) which is equivalent to assuming a linear variation of φ across the CV, and
can be shown (for example by using Taylor series expansion) to be second-order accurate.
Assuming that VP is constant in time, the unsteady term is thus approximated as

∫ t+∆t

t

[
∂

∂ t

∫
VP

φ (x, t)dV
]

dt = (φ n
P −φ

o
P)VP (4.7)

where superscripts n and o stand for the new and old-time levels. The accuracy of time
discretization and solution stability depends highly on the time level at which the other terms
in the Navier-Stokes equations are evaluated. In a fully explicit scheme, all the remaining
terms are evaluated at the old-time level, while in a fully implicit scheme they are all evaluated
at the new time level, such as the first order accurate backward Euler implicit method. The
Crank-Nicolson method uses an equally weighted combination of the new and old-time level
values and can guarantee second-order accuracy in time.

4.2.2 Convection Term

The discretization of the convection term is obtained as

∫
SP

(uφ)•dS ≈ ∑
f

S f •u f φ f = ∑
f

Ff φ f (4.8)

where the subscript f means the value of a variable in the centre of a face, ∑ f means summa-
tion over all the faces of a CV, and Ff = S f •u f is the volumetric flux through a face f . This
approximation is of second-order accuracy if the assumption of the linear variation of φ on a
face is made. The face value of the variable is obtained from neighbouring cell centre values
using one of several available convection differencing schemes. Some of these alternatives
are outlined below.
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1. First Order Upwind Differencing (UD)

φ f is evaluated using a backward- or forward- differencing according to the direction of
the flow

φ f =

{
φP Ff ≥ 0
φN Ff ≤ 0

(4.9)

The UD scheme is unconditionally bounded, so does not produce over or undershoots
(see Patankar, 1980), though it is only first-order accurate from the Taylor series.

2. Central Differencing (CD)

For unstructured grids, the linear variation of φ between the centroids of P and N can be
written as

φ f = ω f φP +
(
1−ω f

)
φN (4.10)

where the weighting factor is defined as

ω f =

∣∣S f •d f N
∣∣∣∣S f •dPN
∣∣ (4.11)

where dPN denotes the vector from P to N. Ferziger and Perić (2002) show that this approxi-
mation is second order accuracy on uniform and non-uniform grids. However, this scheme
may produce unphysical oscillations, as is often found with schemes of higher than first
order, and is not typically used in RANS-based simulations.

3. Blended Differencing (BD)

The BD scheme combines linearly the UD and CD schemes as

φ f = (1− γ)
(
φ f
)

UD + γ
(
φ f
)

CD (4.12)

or
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φ f =
[
(1− γ)max

(
sgn
(
Ff
)
,0
)
+ γω f

]
φP

+
[
(1− γ)min

(
sgn
(
Ff
)
,0
)
+ γ
(
1−ω f

)]
φN

(4.13)

The blending factor γ decides the characteristic of boundedness and accuracy of the
solution. When γ=1, the BD scheme has second-order accuracy and the same property
as central differencing. When γ=0, the BD scheme has first-order accuracy and the same
property as unwind differencing.

• TVD scheme

Another way to compromise between boundedness and accuracy is by using a flux limiter,
which is a procedure that obtains higher than first-order accuracy, but without the oscillation
associated with the CD (or some other high order) scheme. Following Sweby (1984), φ f is
evaluated in the flux limiting scheme as

φ f =
(
φ f
)

UD +Ψ(r)
[(

φ f
)

HO −
(
φ f
)

UD

]
(4.14)

where
(
φ f
)

HO means the face value φ of a high-order scheme, Ψ(r) is the flux limiter
function and r is the ratio of successive gradients of φ . Greenshields et al. (2009) introduce r
in the case of an unstructured grid as

r = 2
d• (∇φ)P
(∇dφ) f

−1 (4.15)

where (∇φ)P =
(

1
VP

∑ f S f φ f

)
is the gradient calculated at the centre of the CV, and (∇dφ) f =

φN −φP is the face gradient in the direction of the area vector S f , multiplied by |d|. In most
cases, the CD scheme takes the place of HO in equation (4.14), and the flux-limited scheme
is written as

φ f =
[
1−Ψ

(
1−ω f

)]
φP +Ψ

(
1−ω f

)
φN (4.16)

Harten (1983) introduces the Total Variation Diminishing (TVD) approach to satisfy the
boundedness criteria. The total variation, TV (φ n), is defined as
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TV (φ n) = ∑
f
|φ n

N −φ
n
P| (4.17)

At each time step, the TVD schemes satisfy the following condition Sweby (1984)

TV
(
φ

n+1)≤ TV (φ n) (4.18)

In order for the above flux limited convection scheme to satisfy the TVD condition in
equation (4.18), it can be shown that one needs:

0 ≤ Ψ(r)≤ min(2r,2) for r ≥ 0 (4.19)

Ψ(r) = 0 for r < 0 (4.20)

The following are some common limiters

1. the limiter of Van Leer (1973)

Ψ(r) =
r+ |r|
1+ r

(4.21)

2. the MUSCL limiter of Van Leer

Ψ(r) = max
[

0,min
(

2r,
r+1

2
,2
)]

(4.22)

3. The limiter of Van Albada (1997)

Ψ(r) =
r2 + r
r2 +1

(4.23)

4. the Minmod limiter of Roe (1986)
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Ψ(r) = max [0,min(r,1)] (4.24)

An extended discussion of TVD schemes can be found in Waterson and Deconinck
(2007).

• Flux-Splitting (FS) scheme

(1) KNT method
When using the FS scheme, the face interpolation is divided into inward and outward

contributions across the face. Kurganov and Tadmor (2000) and Kurganov et al. (2001) FS
schemes for unstructured mesh are included in Greenshields et al. (2009). The convection
term can be written as

(
Ff φ f

)
FS = αFf+φ f++(1−α)Ff−φ f−+ω f

(
φ f−−φ f+

)
(4.25)

where the symbols + and - denote the direction of S f . The third term is used only for the
convection term of the momentum equation as numerical diffusion. The diffusive volumetric
flux is

ω f = max
(
ψ f+,ψ f−

)
KT method (4.26)

ω f = a(1−a)
(
ψ f++ψ f−

)
KNT method (4.27)

The weighting factor is

a =

{
1/2 KT Method

ψ f+
ψ f++ψ f−

KNT Method
(4.28)

The volumetric fluxes which are related to the local speeds of propagation are

ψ f+ = max
(
c f+

∣∣S f
∣∣+φ f+,c f−

∣∣S f
∣∣+φ f−,0

)
(4.29)

ψ f− = max
(
c f+

∣∣S f
∣∣−φ f+,c f−

∣∣S f
∣∣−φ f−,0

)
(4.30)

where c f± =
√

γRTf± are the local sound speeds at the face.
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(2) Roe–Pike method
In equation (4.4), the inviscid flux vector is defined as:

F = uφ (4.31)

This flux vector contains the characteristic information propagating through the control
volume surface with speed and direction according to the eigenvalues of the system. By
splitting F into parts, each of which contains the information in a particular direction,
and applying upwind differencing in consistence with their corresponding eigenvalues, the
following expressions are obtained at each face:

Fi+ 1
2
= FL + ∑

λ̃i≤0

α̂iλ̃iK̂(i) (4.32)

Fi+ 1
2
= FR − ∑

λ̃i≥0

α̂iλ̃iK̂(i) (4.33)

Alternatively, we can also write the numerical flux as:

Fi+ 1
2
=

1
2
(FL +FR)−

1
2

m

∑
i=1

α̂iλ̃iK̂(i) (4.34)

where the eigenvalues are

λ̂1 = û− â λ̂2 = λ̂3 = λ̂4 = û λ̂5 = û+ â (4.35)

The right eigenvectors are:

K̂(1) =


1

û− â
v̂
ŵ

Ĥ − ûâ

 K̂(2) =


1
û
v̂
ŵ

1
2V̂ 2

 K̂(3) =


0
0
1
0
v̂

 (4.36)
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K̂(4) =


0
0
0
1
ŵ

 K̂(5) =


1

û+ â
v̂
ŵ

Ĥ + ûâ


The wave strengths are:

α̂1 =
1

2â2 [∆p− ρ̂ â∆u]
α̂2 = ∆ρ −∆p

/
â2

α̂3 = ρ̂∆v
α̂4 = ρ̂∆w
α̂5 =

1
2â2 [∆p+ ρ̂ â∆u]


(4.37)

The Roe average values are:

ρ̃ =
√

ρLρR

ũ =
√

ρLuL+
√

ρRuR√
ρL+

√
ρR

ṽ =
√

ρLvL+
√

ρRvR√
ρL+

√
ρR

w̃ =
√

ρLwL+
√

ρRwR√
ρL+

√
ρR

H̃ =
√

ρLHL+
√

ρRHR√
ρL+

√
ρR

ã =
(
(γ −1)

(
H̃ − 1

2Ṽ 2))0.5


(4.38)

where Ṽ 2 = ũ2 + ṽ2 + w̃2.
For a linearized Riemann problem, only discontinuous jumps are involved, and the

Roe-Pike method is a good approximation for contacts and shocks. On the other hand,
rarefaction waves carry a continuous change in flow variables, and they tend to spread as time
increases. Clearly, the linearized approximation via discontinuous jumps is incorrect, but for
the computation setup, only when the rarefaction wave is transonic or sonic the linearized
approximations give difficulties with the numerical results exhibiting unphysical and entropy
violating discontinuous waves. A general entropy fix is introduced by Harten (1983), and the
expression is:
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λi =

{
λ 2

i +δ 2

2δ
λi < δ

λi elsewhere
i = 1,2,5 (4.39)

where δ has different formulations, in this report δ = χ max(λi).

(3) AUSM+ method
An alternative way to compute the numerical flux F is called the Advection Upstream

Splitting Method (AUSM), which is a flux-vector splitting method. This method was first
introduced by Liou and Steffen in 1991. This method defines a cell surface Mach number
based on characteristic speeds from the neighboring cells. The surface Mach number is used
to determine the upwind extrapolation for the convective part of the inviscid fluxes. The
pressure term uses another way of splitting. First, the numerical flux is separated to two
parts:

F j+1/2 = Fc
j+1/2 + p j+1/2=ṁ1/2ψ

±+ p j+1/2 (4.40)

where ψ± is calculated in an upwind fashion:

ψ
± =

{
ψ+ if ṁ1/2 > 0
ψ− otherwise

(4.41)

Clearly, the tasks of ASUM-family methods are to define mass and pressure fluxes; below,
these are introduced separately

(1) Mass flux
The mass flux at the cell surface can be written as:

ṁ1/2 = u1/2ρ
± = a1/2M1/2ρ

± = a1/2M1/2

{
ρ+ if M1/2 > 0
ρ− otherwise

(4.42)

Using the numerical speed of sound, a pair of ‘left’ and ‘right’ Mach numbers can be defined
as:
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ML/R =
uL/R

a1/2
(4.43)

The cell surface Mach number now can be written as:

M1/2 = M+
(m) (ML)+M−

(m) (ML) (4.44)

The split Mach numbers M±
(m)

are a polynomial function of degree m(= 1,2,4), as:

M±
(1) (M) =

1
2
(M±|M|) (4.45)

M±
(2) (M) =±1

4
(M±1)2 (4.46)

and

M±
(4) (M) =

 M±
(1) if |M| ≥ 1

M±
(2)

(
1∓16βM∓

(2)

)
otherwise

(4.47)

(2) Pressure flux
A general pressure flux is used as:

p1/2 = P+
(n) (ML)+P−

(n) (ML) (4.48)

where n = 1,3, or 5 corresponds to the degree of polynomials P±, as in M±. For an accurate
solution, fifth-degree polynomials are preferred, and described as:

P±
(5) (M) =


1
M M±

(1) if |M| ≥ 1

M±
(2)

(
(±2−M)∓16αM∓

(2)

)
otherwise

(4.49)

Notice that the parameters α , β are set to be 3/16, 1/8 respectively.
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4.2.3 Diffusion Term

The diffusion term can be discretized broadly in the same way as the convection term one:

∫
SP

(
Γφ ∇φ

)
•dS = ∑

f
Γφ f S f • (∇φ) f (4.50)

where Γφ denotes the diffusivity and (∇φ) f is the face gradient of φ . If the mesh is orthogonal,
it is possible to use the following approximation:

S f • (∇φ) f =
∣∣S f
∣∣ φN −φP

|d|
(4.51)

This approximation uses the two values of φ , one either side of the face, and obtains
second-order accuracy. If the mesh is non-orthogonal, the accuracy of equation (4.51) would
be diminished, for the area vector S f , and the vector d are then not parallel. In order to
maintain second-order accuracy, an alternative is to split the term into two parts

S f • (∇φ) f = ∆• (∇φ) f︸ ︷︷ ︸
orthogonal contribution

+ k• (∇φ) f︸ ︷︷ ︸
non−orthogonal correction

(4.52)

and the following condition should be satisfied

S f = ∆+k (4.53)

where vector ∆ means the orthogonal contribution which is parallel with d, k is the correction
term which is chosen to satisfy the equation (4.53). The equation (4.51) is used to calculate
the orthogonal part in equation (4.52). One of the many decomposition methods is the
minimum correction approach, which is included in Jasak (1996), where the vector parallel
to d is taken as

∆ =
S f •d
d•d

d (4.54)

and then k is calculated using equation (4.53). As the contribution from φP and φN decreases,
the non-orthogonality increases.
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Another approach to calculating the correction term k is called the orthogonal-correction
approach, which maintains the contribution from φP and φN the same as on the orthogonal
mesh irrespective of the non-orthogonality, where

∆ =
d
|d|
∣∣S f
∣∣ (4.55)

An alternative approach is an over-relaxed approach, in which the importance of φP and
φN would increase with the increase of non-orthogonality.

∆ =
d

d•S f

∣∣S f
∣∣2 (4.56)

Further discussion about their accuracy and stability, when used on non-orthogonal grids,
can be found in Jasak (1996).

4.2.4 Source Term

The source term Sφ (φ) can be a general function of φ . To improve the stability of the solution
this term can often be linearized, and more detail is given by Patankar (1980). A simple
procedure is explained here, in which the source term is split into two parts and written as

Sφ = Su +Spφ (4.57)

where Su and Sp can also be functions of φ . Using equation (4.2), the volume integral is
approximated as

∫
VP

Sφ dV = SuVP +SpφPVP (4.58)

Sp should be chosen to be less than zero, allowing this part of the term to be treated
implicitly, improving the diagonal dominance of the system matrix, which is strongly related
to the convergence rate and stability of the solution.
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4.3 Summary

In this chapter, the finite volume method for the discretization of each term in the Navier-
Stokes equations has been introduced. Especially for the convection term, a variety of
schemes have been described including the flux-limited and flux-splitting methods.



Chapter 5

Introduction to Compressible OpenFoam
Solvers

OpenFOAM (Open source Field Operation And Manipulation) is an open source CFD
software package including a variety of numerical solvers, and Pre/Psot processing utilities.
Here, we only focus on a compressible solver which is a density-based solver, named
rhoCentralFoam, which has been employed in the present study.

5.1 RhoCentralFoam

This is a density-based algorithm and the convection term is discretized with the flux-splitting
KT and KNP schemes as outlined in section 4.2.2. The procedure is described as follows:

1. Initialization of all the variables

2. Start of time loop

3. The continuity equation is solved for density

ρn
P −ρo

P
∆t

−∑
f

(
Ff ρ f

)o
FS = 0 (5.1)

4. Solve the momentum equation without the diffusion terms, and obtain an intermediate
estimate of (ρu)imd
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(ρu)imd
P − (ρu)o

P
∆t

+∑
f

(
Ff (ρu) f

)o

FS
+∑

f
S f
(

p f
)o

FS = 0 (5.2)

5. Update uimd = (ρu)imd
/

ρn

6. Solve the momentum equation with the diffusion term to obtain un:

ρn
Pun

P−ρn
Puimd

P
∆t − ρn

Puimd
P −ρo

Puo
P

∆t −∑ f µo
f S f • (∇u)n

f

−∑ f µo
f S f •

[
(∇u)T − 2

3∇•uI
]o

f
= 0

(5.3)

7. Update (ρu)n = ρnun

8. Solve the energy equation for (ρE)imd without conductive heat flux:

(ρE)imd
P −(ρE)o

P
∆t +∑ f

[
Ff (ρE) f

]o

FS
−∑ f µo

f S f • (∇u)n
f •
(
u f
)o

FS

+∑ f
[
Ff p f

]o
FS−∑ f µo

f S f •
[
(∇u)T − 2

3∇•uI
]o

f
•
(
u f
)o

FS = 0
(5.4)

9. Update eimd = (ρE)imd
/

ρn − 0.5(un •un), T imd = eimd/Cv, µ imd (T imd)(such as

Sutherland’s Equation), and λ imd =Cpµ imd/Pr

10. Solve the energy equation for en with the conductive heat flux:

ρn
Pen

P −ρn
Peimd

P
∆t

− ρn
Peimd

P −ρo
Peo

P
∆t

−∑
f

λ
imd
f S f • (∇T )imd

f = 0 (5.5)

11. Update T n (en), µn (T n),(ρE)n = ρn [en +0.5(un •un)] and pn from the state equation
p = ρRT .

12. If the turbulence model is involved in the calculation, for example the k-ε model, the ε

and k equations are solved:
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ρn
Pεn

P −ρn
Pεo

P
∆t

+∑
f

[
Ff (ρε) f

]o

FS
−∑

f

(
ν +νt

/
σε

)
f S f • (∇ε)n

f =Cε1

[
ε

k
Pk

]o

P
−Cε2

[
ε

k

]o

P
ε

n
P

(5.6)
ρn

Pkn
P −ρn

Pko
P

∆t
+∑

f

[
Ff (ρk) f

]o

FS
−∑

f

(
ν +νt

/
σk
)

f S f • (∇k)n
f = [Pk]

o
P −
[
ρ

ε

k

]o

P
kn

P (5.7)

The turbulence coefficients in equation (5.6) and (5.7) are listed in equation (3.19).

13. The turbulence viscosity and thermal conductivity are calculated:

µt = ρCµ

k2

ε
λt =Cp

µt

Prt
(5.8)

The effective viscosity and thermal conductivity in the momentum and energy equations are
obtained as: µe f f = µ +µt and λe f f = λ +λt .

14. End of the loop.

5.2 Modification Introduced to the RhoCentralFoam Solver

The official version of rhoCentralFoam, which is implemented by Greenshields et al. (2009),
is as described above, comprises semi-discrete, non-staggered central schemes and is vali-
dated against an analytical solution of the one dimensional shock tube case, two dimensional
forward facing step at transient and supersonic flows, a supersonic jet from a circular nozzle
and hypersonic flow over a 25◦-55◦ biconic without turbulence. All the cases in this paper is
restricted to run at CFL=0.2, and in the OpenFOAM tutorial cases, CFL=0.35. A 4th-order
Runge-Kutta method has been introduced to the solver in OpenFoam V2.3.1 for the temporal
derivative as part of the present work. Although the original solver employed the KT and
KNP flux splitting schemes, in order to explore the performance of these and others in some
of the present cases some alternatives have also been introduced into the solver, namely the
Roe-Pike and AUSM+ methods, described in Section 4.2.2.

5.3 Solver Validation

Before we explore the potential of wall functions, three simple cases are chosen to validate
the developed solver, and in order to select an appropriate numerical setup for the main
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calculations of this project. Therefore, the solver described above with different flux splitting
methods and limiters introduced in Section 4, are compared in three different cases.

5.3.1 Initial Shock Tube Test

The shock tube test, which is available in the tutorial of OpenFoam V2.3.1, is a well-
recognised case to test the accuracy of numerical methods in high speed flows. In this case,
three different discontinuities are involved simultaneously, namely the expansion fan, the
contact discontinuity and shock wave. Here the Sod (1978) shock tube is used, the initial
condition is shown in Fig. 5.1, and 100 points are used in the x-direction.

Figure 5.1: Initial conditions for shock tube test

Figure 5.2 (left) shows a comparison of different flux-splitting methods, AUSM+, KNT,
and Roe, using the van Leer limiter. The numerical results are compared with the analytical
results Anderson (2003) at time 7ms. The three methods all give no oscillatory solution
and show similar results. Figure 5.2 (left) displays a comparison of two different limiters,

Figure 5.2: Comparison of different flux-splitting methods (left) using van Leer limiter and
different limiters (right) using Roe method
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Minmod and van Leer, using the Roe method. The results of the van Leer limiter show less
dissipation and are closer to the analytical solution. From this case, the van Leer limiter is
recommended for the construction of flux-splitting methods.

5.3.2 Flat Plate Flow

For a M=2.25 supersonic flow over a sharp thin flat plate at zero incidence angle at low
Reynolds number, a turbulent boundary layer will develop in the near wall region, and a
weak shock will be generated at the leading edge of the flat plate as shown in Fig. 5.3.

Figure 5.3: Inflow conditions and pressure contours for flow over a plate flat

Figure 5.4 displays the comparison of skin friction using three different flux-splitting
methods and three different limiters described in section 4.2, predicted by the Launder-
Shamma k-ε turbulence model, with Yap correction, as described in section 3.3.2. The
methods of AUSM+ and Roe-Pike with three different limiters give very similar results,
while the results of the KNT method vary with different limiters, with the Minmod limiter
giving much higher skin-friction than the van Albada and van Leer limiters.

5.3.3 Low-Re Impinging Shock Interaction

When a shock wave interacts with a boundary layer, the main effect is a sudden retardation
of the flow with subsequent thickness change of the boundary layer and, depending on
conditions, separation of the turbulent boundary layer, which is called impinging shock
interaction. The iso-lines of mean pressure superimposed on contours of Mach number of
low-Re impinging shock interaction is shown in Fig. 5.5. A 200 × 120 mesh is used by
Launder-Shamma k-ε turbulence model with Yap correction, and the non-dimensional near
wall cell distance is around 0.6 at the upstream. The detail of case setup will be introduced in
Chapter 7.2.
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Figure 5.4: Surface skin friction comparison using different flux-splitting methods and
limiters

Figure 5.6 shows the skin-friction comparison using different flux-splitting methods
and limiters. From the results, all three flux splitting methods give some difference in the
interaction zone, while for the AUSM+ and Roe methods, with little influence in the upstream
of the interaction domain. The KNT flux-splitting method is quite sensitive to the limiters
throughout the most computation domain.

Figure 5.5: Iso-lines of mean pressure superimposed on contours of Mach number for low-Re
impinging shock interaction by using Roe-Pike flux-splitting method with van Leer limiter
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Figure 5.6: Surface pressure (right) and skin friction (left)comparison of impinging shock
interaction using different limiters to construct AUSM+ (top), KNT (middle) and Roe
(bottom)
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5.4 Code Version Comparison

At the beginning of the research, OpenFOAM v2.3.1 was tested and developed as described
above. Since then, this open source CFD toolbox has released many versions of OpenFoam.
Version 5.0 was a snapshot of the OpenFOAM development that appeared in 2017, and the
differences between this and the earlier version that had been used were explored. Figs. 5.6,
5.7 and 5.8 show comparisons of surface pressure, skin friction and wall heat transfer in
the impinging shock interaction case for three different Mach numbers, using the Launder-
Sharma turbulence model as described above in each case. The results from the two code
versions can be seen to be in close agreement with each other. One shortcoming of version
2.3.1 for complex supersonic and hypersonic flows is that when the computation is restarted at
a fixed time (not time zero folder), it fails when revolving the energy equation for some cases,
while version 5 does not have such a problem. As it is inevitable to restart the computation for
the complex cases using Low-Re models, and the convergence of two versions are same as
described, the comparison of wall function approach with the Low-Re models is executable.
Since it is often beneficial to be able to stop and restart computations in complex cases, and
when testing a variety of modelling approaches, most of the subsequent calculations have
been performed using version 5.0 of OpenFOAM, as it gave the same results as the earlier
version but was rather more robust when restarting cases.

5.5 Summary

In this chapter, the rhoCentralFoam solver has been introduced, and the modifications that
have been introduced to it explained. Three different cases have been used to validate the
solver. From the results, the van Leer and van Albada limiters show less dissipation and
will be used for the calculations reported in subsequent chapters. The KNT method is
quite sensitive to limiters, so it is not recommended in the calculation of complex turbulent
flow. Towards the end of the chapter, the Low-Re models result in two different versions of
OpenFoam have been compared for different Mach number impinging shock interaction, and
the results were found in close agreement with each other.
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Figure 5.7: Surface pressure (left), surface skin friction (middle) and wall heat transfer (right)
of Ma=3 impinging shock interaction comparison by using different versions of OpenFOAM

Figure 5.8: Surface pressure (left), surface skin friction (middle) and wall heat transfer (right)
of Ma=5 impinging shock interaction comparison by using different versions of OpenFOAM

Figure 5.9: Surface pressure (left), surface skin friction (middle) and wall heat transfer
(right) of Ma=7.2 impinging shock interaction comparison by using different versions of
OpenFOAM



Chapter 6

Wall Functions

The accuracy of numerical results highly depends on the choice of turbulence model, wall-
function, numerical method, and other assumptions. Among all these factors, the treatment
of the viscous sublayer, which is very close to the solid wall, plays an important role, since
molecular diffusion here results in a significant transport of heat and momentum. There are
two broad strategies to the near wall turbulence modelling, one of which is based on the use
of Low-Reynolds-Number models which require the use of fine near-wall meshes to resolve
the significant changes within the sublayer. As a result, much of the computation time is
utilized in the resolution of the near-wall region, which may only be a small region, with
the sublayer possibly covering only around 1% computation domain. In order to overcome
this expense, and sometimes convergence difficulties associated with very high aspect ratio
near-wall cells, the wall-function approach is widely used in advanced CFD codes because
of its robustness, fast convergence rate, and reasonable accuracy in a number of situations,
which are the main factors when computing complex geometries.

There are different types of wall functions to bridge the gap between the wall and the
fully turbulent area. However, most existing wall functions are based on the log-law under
local-equilibrium flow conditions. In the section below, the standard wall function is first
introduced, because of its wide application in CFD solvers. Some refinements have been
made to improve aspects of its near-wall ability, such as two-layer and three-layer wall
functions. Besides the log-law type wall functions, some more advanced ones have also been
proposed, which do not involve so many assumptions, and the form that has been tested will
be described in Section 6.2 and Section 6.3 which have been successively applied for the
incompressible flows. The wall functions including the effect of compressibility and heat
transfer are introduced in Section 6.4. It is worth to noticed that all the approaches below
will be described in the context of the k-ε model since it is widely used, although most can
also be applied with other more advanced models as well. Other wall approaches, such
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as non-overlapping domain decomposition (NDD) method by Utyuzhnikov (2005), which
decomposes the computational domain into an inner region and the outer region, will not
include in this paper.

6.1 Standard Wall Function

This section introduces the log-law velocity and temperature profiles. In the local equilibrium
turbulent boundary layer, the law of the wall holds by experimental observations. We can
write this symbolically as:

U+ =
1
κ

log
(
Ey+

)
when y+ > y+ν

U+ = y+ when y+ ≤ y+ν
(6.1)

with U+ = U
/(

τw
/

ρ
)1/2 and y+ =

(
τw
/

ρ
)1/2 y

/
ν . In the above equation y+ν ∼= 11, E is

related to y+ν as:

y+ν =
1
κ

log
(
Ey+ν

)
(6.2)

Normally, in the near-wall sublayer, momentum transfer is dominated by molecular
viscosity and heat transfer by conductivity. The temperature log law can be expressed
similarly to that for U+ as:

T+ =
1
κ

Prt log
(
Fy+

)
when y+ > y+T

T+ = Pry+ when y+ ≤ y+T

(6.3)

Figure 6.1: Near-wall grid

where T+ = (Tw −T )ρCp
(
τw
/

ρ
)1/2
/

qw is the
non-dimensional temperature, Pr is the molecular
Prandtl number, and F must satisfy:

Pry+T =
1
κ

Prt log
(
Fy+T

)
(6.4)

One drawback of the above form is that the
use of τw in non-dimensionalising U+ and y+

leads to problems in regions where the wall
shear stress vanishes, or is very small (including,
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for example, stagnation points, and flow separa-
tion/reattachment regions). To avoid this, based on the standard log-law described above, an
improved version of log-law based wall function, which is widely used in many commercial
CFD software, can be described as:

U∗ =
1

κ∗ log(E∗y∗) (6.5)

with U∗ =Uk1/2
v

/(
τw
/

ρ
)
, y∗ = yk1/2

v

/
v, kv is the turbulent kinetic energy at the edge of the

viscous sublayer, and the von Kármán constant κ∗ = 0.4178, empirical constant E∗=9.793.
Normally, k is assumed to be constant across the near-wall fully turbulent region, so kv is the
same as kP (see Fig. 6.1). For a given wall heat flux, the wall temperature is obtained by:

T ∗ =
(Tw −TP)ρCpC1/4

µ k1/2
P

qw
=

{
PrC1/4

µ y∗ (y∗ < y∗v)

Prt

[
1
κ

ln
(

E∗C1/4
µ y∗

)
+P
]

(y∗ > y∗v)
(6.6)

where qw is the heat flux. P is a function related to the resistance to heat transfer in the
viscous sublayer. The P-function by Jayatilleke (1966) and Launder and Spalding (1974) are
widely used as shown in equation (6.7) and (6.8) respectively. In this thesis, the equation
(6.7) is used in the thermal standard wall function.

P = 9.24

[(
Pr
Prt

)3/4

−1

][
1+0.28e−0.007Pr/Prt

]
(6.7)

P = 9.0
[(

Pr
Prt

)
−1
](

Prt

Pr

)1/4

(6.8)

In order to get the turbulent kinetic energy at point P, the transport equation of k should
be solved in the near-wall cell. Since the production and dissipation of k can both vary
significantly in this region, suitable approximations should be made for the cell-averaged
source and sink terms:

P̄k =
1
yn

∫ yn

0
Pkdy ε̄ =

1
yn

∫ yn

0
εdy (6.9)
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P̄k and ε̄ are then used in discretizing the kinetic energy equation. Using assumptions based
on those above, of a simple boundary layer in local equilibrium, the cell-averaged generation
and dissipation rates of k over the near-wall cell can be approximated as:

P̄k =
τ2

w

κc1/4
µ ρk1/2

p yn

log
(
yn
/

yv
)

(6.10)

ε̄ =
1
yn

[
2kp

yv
/

v
+

k3/2
p

cl
log
(
yn
/

yv
)]

(6.11)

Typically, y∗v = yvk1/2
v

/
ν is taken as 20.

The wall shear stress is evaluated at the near-wall node P from the log-law equation (6.5) as:

τw =
ρκ∗UPkP
log(E∗y∗P)

(6.12)

The cell-averaged production and dissipation rates were calculated by assuming constant
shear stress and a linear turbulence length scale variation across the near-wall cell.

The main disadvantage of standard wall functions is grid-dependence of the near wall
cell, especially when the near wall cell lies within the viscous sublayer. To force the usage of
the log law in conjunction with the standard wall functions approach, Grotjans and Menter
(1998) recommend to the scalable wall function by introducing a limiter in the calculation of
y∗ as:

y∗s = max(y∗,y∗v) (6.13)

The use of scalable wall functions is straightforward by replacing the y∗ in the standard
wall functions.

6.2 Simple Analytical Wall Function

All the forms of wall functions described above are strongly linked to the log-laws of velocity
and temperature in the near-wall region. Smith (1990) developed a novel wall function for the
two-equation k− kl model and used this approach to simulate compressible flow involving
shock and boundary layer interaction and separation. Boyer and Laurence (2002) proposed
a new approach to bridge the gap between low- and high-Reynolds number turbulence
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modelling. The shape functions, which consisted of the Reichard law for velocity and profiles
to match channel-flow DNS, were used to approximate the distribution of velocity, kinetic
energy, and dissipation rate of kinetic energy in the near-wall region. But more complex
flows are needed to test this approach.

Iacovides et al. (1984) developed The Parabolic Sublayer (PSL) approach which em-
ployed a low-Reynolds-number model on a fine grid but assumed that the static pressure
stayed constant in a thin layer near the wall. The wall-normal velocity was thus calculated
from continuity instead of employing the pressure correction in this region. More advanced
wall functions, not based on the assumption of log-laws, have been developed by Gerasimov
(2004) and Gant (2003), and these are referred to as the Analytical Wall Function (AWF) and
Subgrid-Based Wall Function UMIST-N respectively. The AWF is the approach that has been
tested in the present work, and is therefore described in detail below. In Chapter 8 specific
refinements that have been developed within the present project to extent the approach to
compressible flows will be described.

6.2.1 Assumptions of Analytical Wall Function (AWF)

The AWF is based on the analytical solution of the simplified Reynolds equations and
takes convection and pressure gradients into account. In the near wall region, the transport
equations are simplified by the boundary layer assumptions, which are

1. Diffusion of momentum in the direction normal to the wall is significantly greater than
that parallel to the wall, so the latter term is neglected from the transport equation.

2. The pressure gradient parallel to the wall is constant across the near-wall cells.

Then the simplified momentum and temperature Reynolds equations for a forced convec-
tion flow in the near wall x-y plane can be written as:

∂ (ρUU)

∂x
+

∂ (ρVU)

∂y
=−dP

dx
+

∂

∂y

[
(µ +µt)

∂U
∂y

]
(6.14)

∂ (ρUT )
∂x

+
∂ (ρV T )

∂y
=

∂

∂y

[(
µ

Pr
+

µt

Prt

)
∂T
∂y

]
(6.15)

Two additional assumptions are made to solve the above equations analytically:

1. A simple variation of the turbulent viscosity is prescribed.
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Figure 6.2: Sketch map of turbulent viscosity

2. The convection terms, which are normal and parallel to the wall, are approximated
from nodal variable values (and initially assumed to be constant across the near-wall
control volume).

A simple prescription of turbulent viscosity is shown in Fig. 6.2, and can be expressed as:

µt = 0 when y < yv (6.16)

µt = µα (y∗− y∗v) = µcµcl (y∗− y∗v) when yn > y > yv (6.17)

where cµ and cl are the same as described in the one-equation turbulence model, so
α = cµcl = 0.2295. The dimensionless wall distance is defined as y∗ = yk1/2

P /ν . The
simplification assumptions described above make it possible to solve the momentum and
energy equation analytically. Here we only focus on the non-buoyant flow, although the
original proposal of Gerasimov (2004) did consider the application to buoyancy-affected
flows.

6.2.2 Simple Hydrodynamic Analytical Wall Function

Equation (6.14) can be rewritten using the dimensionless wall distance, y∗ as:
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∂

∂y∗

[
(µ +µt)

∂U
∂y∗

]
=C (6.18)

where

C =
µ2

ρ2kP

[
∂ (ρUU)

∂x
+

∂ (ρVU)

∂y
+

dP
dx

]
(6.19)

C is the term which includes the effect of the pressure gradient and convection.
Thus in the viscous sublayer (y∗ < y∗v), the first integration of equation (6.18) using

equation (6.16) is:

µ
∂U1

∂y∗
=C1y∗+A1 (6.20)

where

C1 =
µ2

ρ2kP

[
∂ (ρUU)

∂x
+

∂ (ρVU)

∂y
+

dP
dx

]
(6.21)

The second integration of equation (6.18) gives the final expression of the velocity within the
inner sublayer:

µU1 =
C1

2
y∗2 +A1y∗+B1 (6.22)

In the fully turbulent region (y∗ > y∗v), after the first integration the derivative of velocity
is given as:

µ
∂U2

∂y∗
=

C2y∗+A2

Y
(6.23)

where
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Y = 1+α (y∗− y∗v) (6.24)

C2 =
µ2

ρ2kP

[
∂ (ρUU)

∂x
+

∂ (ρVU)

∂y
+

dP
dx

]
(6.25)

A second integration gives the final expression of the velocity in the fully turbulent
region:

µU2 =
C2

α

[
y∗−

(
1
α
− y∗v

)
lnY
]
+

A2

α
lnY +B2 (6.26)

In order to obtain the integration constants A1, A2, B1 and B2, it is reasonable to assume
that:

1. U1 is zero at the wall;

2. U2 is equal to Un at the edge of the near-wall cell;

3. At the edge of viscous sublayer, the following continuity conditions should be guaran-
teed

U1|y∗=y∗v
= U2|y∗=y∗v

(6.27)

∂U1

∂y∗

∣∣∣∣
y∗=y∗v

=
∂U2

∂y∗

∣∣∣∣
y∗=y∗v

(6.28)

Applying these conditions, the constants of integration are obtained as

A1 =
µvUn −N[
lnYn

α
+ y∗v

] (6.29)

B1 = 0 (6.30)

A2 = (C1 −C2)y∗v +A1 (6.31)

B2 = y∗v

(
C1

2
y∗v −

C2

α

)
+A1y∗v (6.32)

where
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N =
C2

α

[
y∗n −

(
1
α
− y∗v

)
lnYn

]
+

(C1 −C2)

α
y∗v lnYn +

(
C1

2
y∗v −

C2

α

)
y∗v (6.33)

with

Yn = 1+α (y∗n − y∗v) (6.34)

Finally, the wall shear stress can be obtained

τwall = −µ
∂U
∂y

∣∣∣∣
y=0

=−ρ
√

kP

µ

[
µ

∂U
∂y∗

]
y∗=0

=−ρ
√

kP

µ
A1 (6.35)

An approximation for the cell-averaged production of turbulence kinetic energy can be
obtained by

Pk =− 1
yn

∫
uv

∂U
∂y

dy =− 1
yn

ρ
√

kP

µ

∫ y∗n

y∗v
µα (y∗− y∗v)

(
∂U2

∂y∗

)2

dy∗ (6.36)

This term is needed for the kinetic energy transport equation to represent the production of
the kinetic energy in a consistent way.

6.2.3 The Expression for the Mean Dissipation Rates

The expression of mean dissipation rate across the cell has been also modified. Jones and
Launder (1972) assumed the kinetic energy k is varied with a proportion to y2 within the
viscous sublayer, where it decreases to zero at the wall and increases to kP at the edge of
viscous sublayer. In the fully turbulent region, k is assumed to be constant as the nodal value
kP. Unlike the kinetic energy, the dissipation rate of turbulence energy is not zero at the wall.
In the viscous sublayer, Chieng and Launder (1980) had assumed:

ε = 2ν

(
∂k1/2

∂y

)2

≈ 2νk
y2 =

2νkP

y2
v

(6.37)

In the fully turbulent region, the dissipation rate is evaluated by:
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ε =
k3/2

cly
(6.38)

A universal constant cl is equal to 2.55. Thus the expression for the total average
dissipation rate integrates as equation (6.11) for the standard wall function.

In order to avoid the discontinuity of dissipation rate of turbulence kinetic energy in
Fig. 6.3 (a), a position is selected as in Fig. 6.3 (b) to make ε continuous at the surface.

k3/2
P

clyd
=

2νkP

y2
d

or y∗d = 2cl = 5.1 (6.39)

The mean dissipation rate can then be obtained by integrating this two-part variation to
obtain:

ε̄ =
1
yn

[
2k3/2

P
y∗d

+
k3/2

P
2.55

ln
(

yn

yd

)]
(6.40)

There is now only one remaining constant, namely the non-dimensional viscosity sublayer
thickness y∗v . From the numerical experiments for fully developed pipe flow, this value is
determined as 10.1.

Figure 6.3: Sketch map of ε for (a) the standard and (b) the proposed wall function
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6.2.4 Simple Thermal Analytical Wall Function

Equation (6.15) can be rewritten using the dimensionless wall distance:

∂

∂y∗

[(
µ

Pr
+

µt

Prt

)
∂T
∂y∗

]
=Cth (6.41)

where

Cth =
µ2

ρ2kP

[
∂ (ρUT )

∂x
+

∂ (ρV T )
∂y

]
(6.42)

The same procedure is then carried out as in the case of the momentum equation, and the
following equations can be obtained:

In the viscous sublayer y∗ < y∗v

T1 =
Pr
µ

[
Cth1y∗2

2
+Ath1y∗

]
+Twall (6.43)

where

Cth1 =
µ2

ρ2kP

[
∂ (ρUT )

∂x

]
(6.44)

and

Ath1 =−qwall

cp

µ2

ρ
√

kP
(6.45)

In the fully turbulent region y∗ > y∗v

T2 =
Pr

µαt
Cth2 (y∗− y∗v)+

Pr
µαt

[
Ath1 +Cth1y∗v −

Cth2

αt

]
lnYT +

Pry∗v
µ

[
Cth1

2
y∗v +Ath1

]
+Twall

(6.46)
where
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YT = 1+αt (y∗− y∗v) ; αt =
α Pr
Prt

(6.47)

Cth2 =
µ2

ρ2kP

[
∂ (ρUT )

∂x

]
(6.48)

The wall temperature, needed to complete the thermal wall function, can be obtained
from the above as:

Twall = Tn −
Prv

µv

[
Cth2

αt
(y∗n − y∗v)+

lnYT n

αt

(
Ath1 +Cth1y∗v −

Cth2

αt

)
+ y∗v

(
Cth1

2
y∗v +Ath1

)]
(6.49)

and the wall heat flux is related to the wall temperature by following expression:

qwall =−
ρcp

√
kP

µ
Ath1 (6.50)

where

Ath1 =
(Tn −Twall)

µ

Pr −
1
αt

Cth2 (y∗n − y∗v)− 1
αt

(
Cth1y∗v −

Cth2
αt

)
lnYT n − Cth2

2 y∗2
v

1
αt

YT n + y∗v
(6.51)

and

YT n = 1+αt (y∗n − y∗v) (6.52)

The AWF has been applied to simulate the forced, mixed and natural convection flows
by Gerasimov (2004) with the extension of the AWF to buoyant flows. Comparing with
the conventional Low-Re models, the computation time is significantly reduced, and its
accuracy is generally better than when using standard log-law based wall functions. K. Suga,
Craft, and Iacovides (2006) extended the AWF approach to the flows with attachment and
separation over smooth and rough walls.
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Figure 6.4: Subgrid arrangement within near-wall main-grid control volume

6.3 Subgrid-Based Wall Function (UMIST-N)

This new wall function does not use any assumed profiles of velocity or length scale, in
contrast to the log-law based wall functions. Instead, a fine ‘subgrid’ covering the wall-
adjacent control volume (see Figure 6.4) is used to obtain the mean and turbulence parameters
by solving simplified boundary-layer-type transport equations. This treatment decouples the
numerical solution of the near wall region from that of the main region, and the pressure-
correction equation over the subgrid is avoided. So the low convergence problems sometimes
associated with the use of very high aspect ratio cells with low Reynolds number models are
avoided.

The convection (both parallel and normal to the wall), pressure gradient, diffusion
normal to the wall and source terms are taken into account, and the transport equations are
solved by the wall function across the subgrid. Gant (2003) tested both a linear and a non-
linear k-ε model applied across the subgrid, combined with equations for the wall-parallel
velocity components and temperature (where a thermal field is solved). In each main-
grid iteration, one subgrid interaction was performed, then the average of production and
dissipation of kinetic energy, the wall shear stress and the wall heat flux (or wall temperature)
were calculated. The subgrid wall function is called UMIS-N: Unified Modelling through
Integrated Sublayer Treatment – a Numerical approach.

In order to simplify the transport equations, assumptions are applied within the subgrid:

1. Only the momentum equations parallel to the wall are solved;
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2. The diffusion parallel to the wall is negligible compared to that normal to the wall;

3. The pressure gradient is assumed to be constant across the near-wall main-grid cell.

For illustration, the simplified 2-dimensional low-Re transport equations in Cartesian
tensor form can be expressed below, where y is the wall-normal direction.
Wall parallel U-momentum

ρU
∂U
∂x

+ρV
∂U
∂y

=−dP
dx

+
∂

∂y

[
µ

∂U
∂y

−ρuv
]

(6.53)

Turbulent kinetic energy k

ρU
∂k
∂x

+ρV
∂k
∂y

=
∂

∂y

[(
µ +

µt

σk

)
∂k
∂y

]
+Pk −ρε (6.54)

Isotropic dissipation rate

ρU
∂ ε̃

∂x
+ρV

∂ ε̃

∂y
=

∂

∂y

[(
µ +

µt

σk

)
∂ ε̃

∂y

]
+ cε1 f1Pk

ε̃

k
− cε2 f2ρ

ε̃2

k
+ρYc +Pε3 (6.55)

Temperature T

ρU
∂T
∂x

+ρV
∂T
∂y

=
∂

∂y

[(
µ

σ
+

µt

σk

)
∂k
∂y

]
(6.56)

The production of turbulent kinetic energy, used in equations (6.54) and (6.55), can be
given without buoyancy or other fluctuating force fields by:

Pk =−ρuiu j
∂Ui

∂x j
=−ρuv

(
∂U
∂y

+
∂V
∂x

)
−ρu2 ∂U

∂x
−ρv2 ∂V

∂y
(6.57)

6.3.1 Lauder-Sharma k-ε model

The Reynolds stress is assumed to be a linear function of the mean strain rate:

−uiu j +
2
3

kδi j = νtSi j (6.58)
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where the strain-rate tensor is given by:

Si j =
∂Ui

∂x j
+

∂U j

∂xi
(6.59)

and the kinetic eddy-viscosity is

νt = cµ fµ

k2

ε̃
(6.60)

Substituting these two expressions into equation (6.53), we can obtain:

ρU
∂U
∂x

+ρV
∂U
∂y

=−dP
dx

+
∂

∂y

[
(µ +µt)

∂U
∂y

]
(6.61)

The gradient production term in equation (6.55) is simplified:

Pε3 = 2µνt

(
∂ 2Ui

∂x j∂xk

)2

≈ 2µνt

(
∂ 2U
∂y2

)2

(6.62)

6.3.2 Non-Linear k-ε model

Gant (2003) tested the UMIST-N procedure in conjunction with the two-equation NLEVM
of Craft et al. (2000) have prescribed this turbulence model to obtain the maximum of the
numerical stability, which lead to the following expression for the subgrid U-momentum

ρU
∂U
∂x

+ρV
∂U
∂y

=−dP′

dx
+

∂

∂y

[(
µ +µt

′) ∂U
∂y

−ρuv
]

(6.63)

where µt
′ is the modified eddy-viscosity

More details about the implementation and test case could be found in Gant (2003) and
Craft et al. (2004). From the numerical tests of impinging jet and rotation disc flows, this new
wall-function showed good agreements with the results of Low-Re turbulence models, while
the computation time was an order of magnitude less than the standard Low-Re treatments.
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6.4 Wall Functions for Compressible Flows

For the compressible flows, the most widely-used wall function is the standard wall function
by considering the variation of density which is adopted in FLUENT software. The uncoupled
thermal log-law of wall function is commonly used in the compressible solvers which neglect
the coupling effect of velocity and temperature. Therefore, errors happen especially for the
complex hypersonic flows where the temperature increases significantly in a thin region near
the wall. Nichols and Nelson (2004) developed a wall function with the consideration of the
coupled velocity and temperature profiles based on the six fundamental assumptions:

1. Analytical expressions of velocity and temperature are available in the lower part of
the boundary layer.

2. Analytical expressions of the turbulent transport variables are available at the first cell
off the wall.

3. The pressure gradient normal to the wall is equal to zero.

4. The shear stress is constant in the lower part of the boundary layer.

5. The wall heat flux is constant in the lower part of the boundary layer.

6. There is no chemical reaction in the lower part of the boundary layer.

When applying the standard wall function, it is necessary to avoid the near wall cell
falling into the viscous sublayer. Spalding (1961) suggested a unified form for the viscous
sublayer and fully turbulent region, which is:

y+ = u++ e−κu+eκu+ − e−κB(1+κu++
(κu+)2

2
+

(κu+)3

2
) (6.64)

where the constants κ and B is taken as 0.4 and 5.5.
Nichols intrduced the compressible velocity law of the wall by White and Christoph

(1971) to consider compressibility and heat transfer effects in high-speed flows:

u+ = (1/2Γ)

{
β +Qsin

[
φ +

√
Γ

κ
ln
(

y+

y+0

)]}
(6.65)

where
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Γ =
ru2

τ

2cpTw
,β =

qwµw

ρwTwkwuτ

,φ = sin−1
(
−β

Q

)
,Q = (β 2 +4Γ)1/2,y+0 = e−κB

and r = (Pr)1/3 is the recovery factor.
Nichols replaced the incompressible factor e−κu+eκu+ in equation (6.63) by equation

(6.64), and the unified wall function including the effects of compressiblity and heat transfer
can be obtained as:

y+ = u++ y+white − e−κB(1+κu++
(κu+)2

2
+

(κu+)3

2
) (6.66)

where

y+white = exp
(
(κ/

√
Γ)
{

sin−1 [(2Γu+−β
)
/Q
]
−φ
})

× e−κB (6.67)

The temperature equation is given by Crocco-Busemann equation as described by White
and Christoph [1971], which is:

T = Tw[1+βu+−Γ(u+)2] (6.68)

For the adiabatic wall boundary conditions, qw = 0 and β = 0, then the Crocco-Busemann
equation reduces to

T = Tw − ru2

2cp
(6.69)

This new wall function includes the effect of compressibility and heat transfer, which
makes it possible to obtain wall shear stress and heat transfer in high-speed flows. Afterward,
some researchers, such as Nichols and Nelson (2004) and Lee and Stephen (2007), have
applied this wall function in the calculation of 2-D high-speed flows.

Abdol-Hamid et al. (1995) took another simple approach of wall function for the
compressible flow in the prediction of wall pressure and wall skin friction. This approach
modified the turbulent viscosity at the wall only and was applied on a coarse grid with
30 < y+ < 200, which is adopted by the commercial software, CFL3D.
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6.5 Summary

All the wall functions mentioned above construct a solution in the near wall cells to transfer
the wall boundary condition to an interface boundary as summarized by Utyuzhnikov (2005).
The standard wall functions, which belong to the log-law type, have been introduced first.
The scalable wall function is also introduced in order to reduce the grid dependence. A
more advanced wall function, which is based on the simplified Reynolds equations including
contributions from the convection and pressure gradient terms, have then been described,
namely the Analytical Wall Function (AWF). Another advanced wall function does not
involve so many assumptions is also introduced, which is the Subgrid-based wall function
(UMIST-N). The dependent variables across the near wall region are determined by solving
simplified transport equations in a subgrid construsted across the near wall cell. Although
the subgrid wall function is belived to be more accurate than the analytical wall function,
it suffers from stability problems especially in the calculation of complex flows. All these
two advanced approaches have mainly been developed for incompressible flows, and the
main emphasis of the present work has thus been to test the analytical wall function in
compressible SWTBLI flows and propose suitable refinements for such flows. Finally, a
wall function designed for the compressible flows is introduced, which includes the effect of
compressibility and heat transfer.



Chapter 7

Results of 2D Supersonic Flows

In this chapter, the standard wall function and AWF formulations described above have
been applied to a number of 2D SWTBLI flows. Results are compared with those from
the Low-Reynolds-number Launder-Sharma k-ε model, and available experimental/DNS
data, in order to assess their performance prior to considering any further refinements of
the AWF for high speed flows. The experimental test case of an impinging shock has been
reported by Reda and Murphy (1973), and is used here to test the wall function treatments
and their implementation in OpenFOAM v2.3.1. The shock turning angles are 13o, 10o,
and 7◦, to obtain different separation zones depending on the impinging shock strength.
This case is at an incoming Mach number of 2.9 and Reθ of 47000, and will be referred
to here as the High-Reynolds-number (HR) case. Another case will be referred to as the
Low-Reynolds-number (LR) case from the DNS of Pirozzoli and Grasso (2006) at an Mach
number of 2.25, the turning angle 8◦ and Reθ of 3725, and the experiment data at Reθ of
5350 by Deleuze (1995) and Laurent (1996).

As a second set of cases considered here, the compression corner is a widely used case of
shock wave/turbulent boundary layer interaction for validation of RANS models. It consists
of a flat plate, followed by a ramp inclined at an angle. The study of Settles and Dodson
(1994), for example, considered ramp angles of 16, 20, and 24 at an incoming Mach number
of 2.85. For inviscid supersonic flow, the compression corner only generates a single oblique
shock at the corner due to flow compression, while for viscous flow, this shock will interact
with the upstream turbulence boundary layer, and flow separation will happen when the
shock is strong enough.
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7.1 Results of High-Reynolds-Number Impinging Shock

The working medium is assumed to be a perfect gas, and air properties, such as the gas con-
stant R=287.06m2S−2K−1, specific heat coefficients for constant pressure Cp=1004.06J/ (kgK)
and molecular Prandtl number Pr=0.7 are used in the calculation. Sutherland’s law, µ =
1.458 × 10 −6 T 3/2 /(T+110.3), is used to evaluate the dynamic viscosity. The computational
domains and a sample grid are shown in Fig. 7.1, where LR denotes the low-Re case and HR
denotes the high-Re case.

Figure 7.1: Computational domains for 2-D supersonic impinging shock interaction from
Asproulias (2014)

The lower part of inlet boundary profiles is a developed turbulent boundary layer from
the calculation of flat plate flow at momentum thickness θ 0=0.082cm with 1.5% freestream
turbulence intensity and a ratio of µt /µ=10. In the upper part of the inlet boundary which
is listed in Table 7.1, the inviscid oblique shock relation equations in Anderson (2010) are
used to calculate the flow variables downstream of the shock for the given turning angle 13◦,
10◦, and 7◦, and the results are listed in Table 7.2. At the wall, an isothermal no-slip wall
boundary condition is used, and the wall temperature is fixed at 271K. At top and outlet
boundaries, Neumann conditions are used for all components.

To test the grid independence, Fig. 7.2 shows results obtained with both wall function
approaches on grids ranging from 100×50 to 200×100, with the near-wall size 1.0×10− 4m.
The dimensionless wall distance y+ is about 15 at the upstream to guarantee the near-wall cell
out of the viscous sublayer. The results indicate that the used meshes give grid-independent
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Table 7.1: Inflow conditions for the high-Re case

M∞ Reθ0 θ0, cm δ0, cm pt0, N/m2 Tt0, K Tw, K
2.9 47000 0.082 1.69 689010 291 271

Table 7.2: After oblique shock elements for the high-Re case

β (◦) M2 u2x, m/s u2y, m/s p2, N/m2 T2, K
13 2.28 531.79 122.77 53069 142.73
10 2.42 553.34 97.57 43929 133.85
7 2.56 571.99 70.28 36023 125.69

solutions. For the Low-Re Launder-Sharma model, a 200×90 mesh is used with the first cell
size about 4.0×10−6m and the y+ around 0.6 at the upstream.

Figure 7.2: Grid independency study for the high Reynolds number 13◦ impinging shock
interaction using k − ε model with Standard Wall Function (SWF) and Analytical Wall
Function (AWF)

Figure 7.5 shows iso-lines of mean pressure superimposed on contours of Mach number
at impinging angles of 13◦, 10◦ and 7◦ by the k-ε model with standard wall function on the
finest grid. As the shock angle increases, the shock strength and size of the separation bubble
increase, the thickness of the boundary layer due to the SWBLI is enhanced, and the structure
of the reflected shock is shifted further upstream of the inviscid impingement point, which is
related to the angle of shock generator.

For a quantitative assessment of the wall-functions, Figure 7.6 compares the numerical
results of wall pressure and skin friction with experiment. For the 7◦ case, the wall pressure
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predicted by all models agrees well with the experimental measurements. There is no
separation from the numerical or experimental results indicated by the skin friction C f . The
results of the k-ε model with standard wall function have the weakest interaction strength,
which is indicated by the minimum point of skin friction, while the results of the k-ε model
with analytical wall function have a stronger interaction strength, which is closer to the
experimental data.

For the 10◦ case, all the models return similar wall pressure, which fits the experimental
data well. From the skin friction results, the numerical and experimental data show that
there is a small separation zone near the inviscid impingement point. The results of the
Lauder-Sharma (LS) model are in good agreement with the experiment, the results of the
k-ε model with analytical wall function are close to the results of the low-Re number model
(LS), and the standard wall function approach tends to underestimate the skin friction in the
interaction zone.

For the 13◦ case, generally, all the models give a good prediction of the wall pressure, but
slight differences are present near the beginning of the interaction. The LS model tends to
predict the start point of interaction closer to the experiment than the wall function approaches.
The standard wall function approach gives slightly closer results to the LS model than the
analytical wall function approach, but the two different wall function approaches do not show
much difference. From the skin friction, the results of all the tested near-wall treatments
fit the experiment well, and bigger separation bubble is predicted by the LS model, while
the wall function approaches give similar size to each other. From all the comparisons, the
skin friction of the analytical wall function approach tends to give closer results to the LS
model, and is closer to the experiment, while the standard wall function approach tends to
underestimate the strength of interaction.

Figure 7.7 displays comparisons of the mean velocity profiles at eight different streamwise
locations for the 13◦ case. In general, all the models give good predictions at most locations.
Locations 1 and 8 are located outside of the separation zone, and similar velocity results are
predicted. At location 2, the LS model predicts the flow has separated, while the results of
the wall function approaches and experiment still show unseparated flow. At locations 3, 4
and 5, the numerical results tend to underestimate the streamwise velocity, while at locations
6 and 7, they tend to overestimate it. Figure 7.8 shows the corresponding comparison of the
streamwise Reynolds stress at the same eight different streamwise locations as in Figure 7.7.
From the results, the numerical treatments underestimate the Reynolds streamwise stress at all
eight locations, especially in the middle of the separation zone. In the EVMs, the streamwise
Reynolds stress is obtained by ũ′′u′′=(2/3)k for most of these flow locations, where the flow
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is shear-dominated. The underestimates of the streamwise stress in a boundary-layer type
flow is usually because that the normal stresses will not be isotropic.

7.2 Results of Low-Reynolds-Number Impinging Shock

The DNS inflow conditions for this case are listed in Table 7.3. The oblique shock relation
equations were again used to calculate the elements after the impinging shock, and the results
are listed in Table 7.4. As in the previous case, these were used in the upper part of the
inlet boundary, and the lower part of the inlet boundary profiles were a developed turbulent
boundary layer from the calculation of flat plate flow at momentum thickness θ 0=0.147mm
with 1.5% freestream turbulence intensity and a ratio of µ t /µ=10.

Table 7.3: Inflow conditions for the low-Re case

M∞ Reθ0 θ0, cm δ0, cm p∞, N/m2 T∞, K
2.25 3725 0.147 2 23813 169.4

The computational domain was shown in Figure 7.1. Structured grids were again used,
similar to those of the previous case, but with the near-wall grid adjusted to account for the
much lower Reynolds number. Near-wall grid cell spacings were around y+=15 for the high-
Re k-ε model with wall function approaches, and y+=0.6 for the LS model. The boundary
conditions are similar to those applied for the high Reynolds impinging shock interaction,
except an adiabatic condition is used for the wall temperature. The grid-independence studies
in Figure 7.9 show that the k-ε model using analytical wall function and standard wall
function converge when the grid number increases.

Figure 7.10 displays the Mach number and turbulent kinetic energy contours from the
high-Re k-ε model using the analytical wall function (AWF) and standard wall function
(SWF) and the LS k-ε model with the Yap correction (LS). The main structure of the
flowfields, which contain an impinging shock, a reflected shock and a small separation
bubble in between, has no obvious difference between all three models. The LS model tends
to give larger interaction region.

Figures 7.11 and 7.12 display the wall pressure and skin friction comparison with the
DNS results and experiment. The LS predicts the wall pressure at the start of interaction well

Table 7.4: After oblique shock elements for the low-Re case

M2 u2x, m/s u2y, m/s p2, N/m2 T2, K
1.94 536.97 76.28 37984 193.8
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with the DNS and experiment and returns the similar results as the wall function approaches
at the downstream. The SWF approach fails to predict a separation zone, while the LS
model returns a larger separation zone than the DNS results, and the AWF approach returns a
slightly smaller zone than the DNS, although the beginning of the interaction and separated
flow region is located a little downstream of the DNS results, as can be seen in both the wall
pressure and skin friction plots. However, the reattachment point of the AWF fits well with
the LS and both appear to be fairly close to the experimental results. Downstream from the
interaction zone, all the three models capture the recovery of skin-friction, and the AWF
and LS are in good agreement with the DNS results, though they are a bit further from the
experimental results.

Figure 7.13 shows the contours of mean streamwise velocity predicted by the k-ε model
with AWF and SWF and the LS k-ε model with the Yap correction (LS), and the locations
of six lines at which profiles will be compared in the following figures. xI is the inviscid
impinging point, xs is the start of separation, and xR is the reattachment point. Figure 7.14
displays comparisons of mean streamwise velocity profiles for the low Reynolds number
impinging shock at these six locations. At location 1, which is located upstream of the
interaction zone, the undisturbed turbulent boundary layers by using the RANS models are in
good agreement with the DNS one. At locations 4 and 6, downstream of the separation point,
the LS model predicts a thicker boundary layer, while the AWF and SWF give a comparable
thickness to the DNS one. At location 9, the velocity distribution is quite similar to location
6. At locations 10 and 13, downstream of the reattachment point, the boundary layer relaxes
to its equilibrium state, and all three models are in good agreement with the DNS data.

Figure 7.15 displays a comparison of kinetic energy profiles at the above six locations.
At locations 1 and 13, all three models return the similar profiles to each other. Within or
near the separation (locations 4, 6, 9, 10), the AWF is closer to the results of the LS model.
Figure 7.16 displays the dissipation rate ε at six locations. From the comparison, all three
models fit each other well, and the AWF is closer to the LS model, compared with the SWF.

7.3 Results of 2D Compression Corner

A perfect gas is assumed as the working medium. The inflow conditions by Smits and Muck
(1987) are summarized in Table 7.5. Structured grids are used for this simple geometry,
refined to the corner in the streamwise direction and refined normal to the wall, and the value
of y+ at the near-wall cell centres is around 15 for the high-Re turbulence model with wall
functions, and 0.6 for the low-Re turbulence model. The computational domain and a sample
grid are shown in Fig. 7.3 .
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Table 7.5: Inflow conditions for compression corner

β M∞ Reθ0 θ0, cm δ0, cm pt∞,N
/

m2 U∞,m/s T∞, K Tw, K
16◦ 2.85 81900 0.13 2.6 2.29×104 576 102.1 282
20◦ 2.85 81900 0.13 2.5 2.32×104 562 98.3 274
24◦ 2.84 75600 0.12 2.3 2.36×104 569 100.3 276

Figure 7.3: Computational domains for 2-D Compression Corner

The inlet boundary profiles are those of developed boundary, obtained from a separate
flat plate calculation, at momentum thickness θ 0=0.082cm with 1.5% freestream turbulence
intensity and a ratio of µ t /µ=10. At the wall, an isothermal no-slip wall boundary condition
is used, and the wall temperature is fixed as shown in Table 7.5. At top and outlet boundaries,
Neumann conditions are used for all components.

Figure 7.4 shows grid-independence studies for the high-Re k-ε with analytical wall
function and standard wall function on grids ranging from 60×40 to 140×80, with the
near-wall size 1.5×10− 4m. The dimensionless wall distance y+ is about 15 at the upstream
to guarantee the near-wall cell out of the viscous sublayer. The results indicate that the used
meshes give grid-independent solutions. For the Low-Re Launder-Sharma model, a 280×250
mesh is used with the first cell size about 3.5×10− 6m and the y+ around 0.6 at the upstream.

Figure 7.17 displays iso-lines of mean pressure superimposed on contours of Mach
number at ramp angles 16◦, 20◦ and 24◦ by the LS model. As the ramp angle increases, the
shock strength and size of separation bubble increase, the thickness of boundary layer due to
the SWBLI is enhanced, and the separation shock is shifted further upstream.
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Figure 7.4: Grid independency study for 24◦ compression corner from Asproulias (2014)

Figure 7.18 displays the comparison of wall pressure and skin friction predicted by the
RANS models with the experimental measurements. For the 24◦ case, in general, the results
of wall pressure by the wall function approaches and LS model are in good agreement with
experiment, except for a slight difference near the beginning of the interaction. The start
position of interaction predicted by the AWF is a bit downstream than the results of the SWF
approach and the LS model, which are closer to the experiment. From the skin friction, the
results by all models fit the experimental data reasonably well. The LS model gives the
slightly larger separation bubble, while both wall function approaches give similar size to
each other.

For the 20◦ case, all the models predict wall pressure reasonably well when compared
with the experiment, but the point at which the pressure starts to increase, which can be
defined as the start of the interaction, falls a bit downstream than that measured in the
experiments. The LS model tends to predict the start of interaction slightly closer to the
experiment as the 24◦ case. From the skin friction results, the numerical and experimental
data show that the size of separation zone is much smaller than the 24◦ case. It is quite
obvious that the drop in skin friction, associated with flow separation, occurs a little more
upstream with the LS model and the AWF approach than with the standard wall function, in
both the 24◦ and 20◦ cases.

For the 16◦ case, the wall pressure predicted by all three models fits the experiment well.
The skin friction profile shows that both the low-Re model and the AWF approach predict a
small separation zone, although it is not so clear from the experimental data whether such a
feature should be present
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Figure 7.19 displays mean velocity comparisons at eight different locations for the ramp
angle of 24◦. Location 1 is located outside of the separation zone, and similar velocity results
are predicted by all three approaches. Location 2 is the start of the separation zone, and the
AWF results return a thinner boundary layer than the experiment since at this location the
flow is still undisturbed by the AWF approach. Locations 3 and 4 are both located in the
separation bubble and have negative values of streamwise velocity. The reattachment point of
the experiment is located upstream of the numerical predictions as seen in Figure 7.18, and
this is confirmed in the velocity profile at location 5, where the experimental data shows only
positive velocity values, while the numerical results still have negative values. Locations 6, 7
and 8 are all located downstream of the separation bubble, and the numerical results tend to
underestimate the mean velocity, as a result of having reattached rather too late.

Figure 7.20 shows mean velocity comparisons at eight different locations for the ramp
angle of 20◦. Locations 1 and 8 are located outside of the separation zone, and similar
velocity results with experiment are predicted. At locations 2, 3 and 4, the numerical methods
tend to overestimate the mean velocity. At location 5, negative velocity is predicted in the
near wall region by both the experimental data and all three near-wall modelling treatment.
At locations 6, 7 and 8, the numerical results fit the experimental data well.

7.4 Summary

In this Chapter, the LS model, and the high-Re k-ε model with standard wall function and
analytical wall function have been tested in supersonic impinging shock interaction flows at
two different Reynolds numbers and in compression corners. The main conclusions are:

For the high-Re impinging shock interaction case:

1. When the impinging shock is strong enough, the interaction zone has a separation
bubble, whose size increases as the impinging angle grows. For the 7◦ case, there is no
separation from the numerical or experimental results.

2. The wall pressure, predicted by the LS model, the high-Re k-ε model with standard
wall function (SWF) and analytical wall function (AWF), is in good agreement with
the experiment.

3. For the skin friction results, the skin friction of analytical wall function approach tends
to give closer results to the LS model, and is close to the experiment, while the standard
wall function approach tends to underestimate the strength of interaction.
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4. From the mean velocity comparison, all the models give good predictions to the
experiment at all eight locations generally, especially at locations 1 and 8, which are
located outside of the separation zone.

5. From the streamwise Reynolds stress comparison, the numerical methods underesti-
mate the Reynolds streamwise stress at eight all locations, especially in the middle
of the separation zone. In the EVMs, the streamwise Reynolds stress is obtained
by ũ′′u′′=(2/3)k for most of these flow locations, where the flow is shear-dominated.
The underestimates of the streamwise stress in a boundary-layer type flow is usually
because that the normal stresses are not isotropic.

For the low-Re impinging shock interaction case:

1. From the skin friction comparison, the SWF underestimates the SWTBLI and fails to
reproduce the separation bubble in the near wall area, while the LS model returns a
larger separation zone. The AWF approach gives a smaller zone than the DNS results,
since the beginning of the interaction zone predicted by the AWF lies a bit downstream
to that of the DNS data. However, the reattachment point of the AWF fits well with the
LS and experimental results.

2. From the mean streamwise velocity comparison, the results from using the RANS mod-
els are in good agreement with the DNS results, especially upstream and downstream
of the interaction zone.

3. From the turbulent kinetic energy and dissipation rate comparison, all three models
give the similar profiles to each other at the upstream and downstream of the interaction
zone. Within or near the separation, the AWF is closer to the results of the LS model.

For the compression corner case:

1. The LS model predicts that there is a separation bubble near the corner in all three
cases, with the size of the bubble increasing with ramp angle. The SWF approach tends
to underestimate the SWTBLI, and for the 16◦ case it fails to reproduce the separation
bubble.

2. The wall pressure, predicted by all three models, is in good agreement with the
experimental data, except at the start of the interaction zone, which the AWF tends
to predict as being a little further downstream than the other near-wall modelling
treatments.
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3. For the skin friction results, the standard wall function approach tends to underestimate
the strength of interaction, especially when the separation is weak.

4. From the mean velocity comparison for the ramp angles 24◦ and 20◦, all the models
give good prediction at all locations, especially where the locations are outside of the
separation zone.

Figure 7.5: Iso-lines of mean pressure superimposed on contours of Mach number for
high-Re impinging shock interaction
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Figure 7.6: Mean wall pressure (right) and skin-friction (left) distribution at different imping-
ing angles 13◦ (top), 10◦ (middle) and 7◦ (bottom)
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Figure 7.7: Comparison of mean velocity profiles for the 13◦ High-Re impinging shock
interaction at eight streamwise locations. AWF (blue solid line), SWF (red dashed line), LS
model (block dashed-dot-dot line) and experiment (black circle)
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Figure 7.8: Comparison of Reynolds streamwise stress for the High-Re impinging shock
interaction at eight streamwise locations. AWF (blue solid line), SWF (red dashed line), LS
model (block dashed-dot-dot line) and experiment (black circle)
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Figure 7.9: Grid independency study for the low Reynolds number 13◦ impinging shock
interaction

Figure 7.10: Mach (left) and kinetic energy (right) contours of low-Re impinging shock
interaction using k− ε model with analytical wall function (top) and standard wall function
(middle) and LS k− ε model (bottom)
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Figure 7.11: Mean wall pressure comparison with DNS results and experiment for low-Re
impinging shock interaction

Figure 7.12: Skin-friction distribution comparison with DNS results and experiment for
low-Re impinging shock interaction
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Figure 7.13: Streamwise velocity contour and a sketch of probe locations for low-Re imping-
ing shock interaction

Figure 7.14: Comparison of mean streamwise velocity profiles for the low Reynolds number
impinging shock at six streamwise locations, AWF (blue dashed) SWF (red dashed-dot-dot)
LS (black solid) and DNS results (block circle)
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Figure 7.15: Comparison of turbulent kinetic energy for the low Reynolds number impinging
shock at six streamwise locations, AWF (blue dashed) SWF (red dashed-dot-dot) and LS
(black solid)
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Figure 7.16: Comparison of turbulent dissipation rate for the low Reynolds number impinging
shock at six streamwise locations, AWF (blue dashed) SWF (red dashed-dot-dot) and LS
(black solid)
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Figure 7.17: Iso-lines of mean pressure superimposed on contours of Mach number for
compression corner at different ramp angles
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Figure 7.18: Mean wall pressure (right) and skin-friction (left) distribution at different ramp
angles 16◦ (top), 20◦ (middle) and 24◦ (bottom)
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Figure 7.19: Comparison of mean velocity profiles for the 24◦ compression corner at eight
streamwise locations. AWF (blue solid line), SWF (red dashed line), LS model (black
dashed-dot-dot line) and experiment (black circle)
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Figure 7.20: Comparison of mean velocity profiles for the 20◦ compression corner at eight
streamwise locations. AWF (blue solid line), SWF (red dashed line), LS model (black
dashed-dot-dot line) and experiment (black circle)



Chapter 8

Modifications to AWF

The analytical wall function described above uses the simplified momentum and energy
equations and turbulence viscosity assumption to obtain analytical profiles of the mean
velocity and temperature, as a function of y∗, across the near-wall control volume, and
hence to calculate the wall shear stress, the cell-averaged production and dissipation rates
of turbulent kinetic energy, and the wall temperature or wall heat (depending on thermal
boundary condition) . One of the main simplifications introduced to the momentum and
energy equations is that the convection terms (and the pressure gradient term in the momentum
equation) are treated as constants in the near-wall cell, and approximated using nodal values
as described in Section 6.2. As one might expect, the approximation of these terms (and
particularly the convection ones) can have a significant effect on the analytical solutions
in complex flows. Some methods of approximating these terms have been explored by
Gerasimov (2004) and others, mainly in the context of buoyancy-influenced flows. In the
current work, some further refinements to these have been developed, particularly considering
compressible flows. Some additional features have also been introduced to the model, such
as the inclusion of a viscous dissipation term in the simplified energy equation, and these
developments are reported in this chapter.

8.1 Modifications to Convection Term in AWF (MAWF)

8.1.1 Modifications to the Momentum Convection Term

Although the Analytical Wall function as described in Chapter 6 works well for the Mach=3
cases, there is some unphysical behaviour encountered when applying it to higher Mach
number cases. As an example, Fig. 8.1 shows results from an impinging shock interaction



8.1 Modifications to Convection Term in AWF (MAWF) 118

Figure 8.1: Wall properties of Ma=5 impinging shock interaction using AWF

case at Mach 5, with shock deflection angle of 14◦. Large spikes can be seen in both skin
friction and wall heat flux when the form of AWF described in Chapter 6 is employed. These
spikes were found to mainly occur as a result of the strong velocity gradients at the start of
separation feeding into the convection terms, and this is confirmed by the red line in Fig. 8.1,
which shows no such spikes when the convection terms were simply not included in the AWF
formulation.

Figure 8.2: Convection terms and pressure gradient in the wall-parallel momentum equation
near the start of separation

(-X represents ρU∂U/∂x ; -Y represents ρV ∂U/∂y ; -XY represents
ρU∂U/∂x+ρV ∂U/∂y; -p represents ∂ p/∂x;)
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In the initial implementation of AWF, the convection terms are constants across each
separation region of the near wall cells. To explore how appropriate such an approximation
is, Fig. 8.2 shows profiles of the wall-parallel momentum convection terms, (and the pressure
gradient) calculated from the LS models, across the near-wall flow at a location close to the
start of separation. At the wall, as might be expected, both the wall-normal and wall-parallel
convection contributions are zero, and they then increase in magnitude as one moves away
from the wall. This might suggest that taking the above approximation of convection terms
being constant in the near-wall region would lead to an overestimation of their influence
very close to the wall. In order to try improving the near-wall modelling of the convection
terms we can note that immediately adjacent to the wall one should expect them to increase
quadratically with wall distance (since U∼y and V∼y2 immediately adjacent to the wall). To
account for this, a parabolic expression has therefore been taken to represent the convection
terms in the near wall momentum equation, so the equation (6.13) is rewritten as:

∂
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and the convection terms are approximated across the two regions 0 < y∗ < y∗v and y∗ > y∗v .
In the viscous sublayer (0 < y∗ < y∗v), the first integration of equation (8.1) now yields:
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The second integration gives:
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In the fully turbulent layer (y∗ > y∗v), the first integration of equation is:
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The second integration gives:
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From the near wall cell boundary condition, the coefficients in the above equations are:
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The coefficient N in (8.9) is defined by:
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The wall shear stress is:
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and the cell-averaged production of turbulence kinetic energy is:
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where ∂U2/∂y∗ is now given by equation (8.6).

8.1.2 Modifications to the Energy Convection Term

a. Linear Assumption
For the convection terms in the energy equation, Figure 8.3 shows the near-wall variation

of these from the LS model at the same locations as those shown in Fig. 8.2. Again the terms
go to zero at the wall. To account for this, a similar treatment to that adopted above for the
momentum equation has been followed, except that in this case the convection terms are
taken to vary linearly near the wall (since U∼y, and T is assumed to be O(1)):
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Figure 8.3: Convection terms in the energy equation near the start of separation
(-X represents ρU∂T/∂x ; -Y represents ρV ∂T/∂y ; -XY represents

ρU∂T/∂x+ρV ∂T/∂y;)

In the viscous sublayer (y∗ < y∗v), the first integration of equation (8.14) gives:
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The coefficient in (8.16) can be obtained by the definition of wall heat flux:
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The second integration gives:
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In the fully turbulent region (y∗ > y∗v), the first integration of (8.14) gives:

(
µv

Pr
+

µt

Prt

)
∂T2

∂y∗
=

Dth2

2
y∗2 +Ath2 (8.19)



8.1 Modifications to Convection Term in AWF (MAWF) 123
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The second integration gives:
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t

[
αt

2
y∗2 − (1−αty∗v)y∗+(1−αty∗v)

2 1
αt

lnYT

]
+

Ath2

αt
lnYT +Bth2

}
(8.21)

The coefficients are:

Bth2 = Ath1y∗v +BT +
µv

Pr
Tw (8.22)

Ath2 =

(
Dth1

2
− Dth2

2

)
y∗2

v +Ath1 (8.23)

where BT in (8.22) represents:

BT =
Dth1

6
y∗3

v − Dth2

2
1

α2
t

[
αt

2
y∗2

v − (1−αty∗v)y∗v
]

Then substituting (8.22) and (8.23) into (8.21):

T2 =
Pr
µw

{
Dth2

2
1

α2
t

[
αt

2
y∗2 − (1−αty∗v)y∗+(1−αty∗v)

2 1
αt

lnYT

]
+Ath1y∗v +BT +

lnYT

αt

((
Dth1

2
− Dth2

2

)
y∗2

v +Ath1

)}
+Tw

(8.24)

When y∗ = y∗n, and T2=Tn:

T2 =
Pr
µw

{
Dth2

2
1

α2
t

[
αt

2
y∗2 − (1−αty∗v)y∗+(1−αty∗v)

2 1
αt

lnYT

]
+Ath1y∗v +BT +

lnYT

αt

((
Dth1

2
− Dth2

2

)
y∗2

v +Ath1

)}
+Tw

(8.25)

For the isothermal wall boundary conditions, the wall heat flux is then given by:
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qwall =−
ρvCp

√
kP

µv
Ath1 (8.26)

where Ath1 can be obtained from (8.25)

Ath1 =
1

lnYT n
αt

+ y∗v

{
µv

Pr
(Tn −Tw)−

Dth2

2
1

α2
t

[
αt

2
y∗2

n − (1−αty∗v)y∗n +(1−αty∗v)
2 1

αt
lnYT n

]
−BT − lnYT n

αt

(
Dth1

2
− Dth2

2

)
y∗2

v

}
(8.27)

b. Parabolic Assumption
The attempt of the parabolic assumption also applies to the convection term in the

simplified energy equation (since U∼y, and ∂T/∂x is assumed to be O(y)):

∂

∂y∗

[(
µ

Pr
+

µt

Prt

)
∂T
∂y∗

]
= Dthy∗2 (8.28)

In the viscous sublayer (y∗ < y∗v), the first integration gives:

∂

∂y∗

[(
µ

Pr
+

µt

Prt

)
∂T
∂y∗

]
= Dthy∗2 (8.29)

where

Dth1 =
µ2

w
ρ2

wkP

1
y∗2

v

(
ρU

∂T
∂x

+ρV
∂T
∂y

)
(8.30)

The second integration gives:

T1 =
Pr
µw

(
Dth1

12
y∗4 +Ath1y∗

)
+Tw (8.31)

In the fully turbulent region (y∗ > y∗v), the first integration of the simplified energy equation
gives:



8.1 Modifications to Convection Term in AWF (MAWF) 125

(
µ

Pr
+

µt

Prt

)
∂T2

∂y∗
=

Dth2

3
y∗3 +Ath2 (8.32)

where:

Dth2 =
µ2

v
ρ2

v kP

1
y∗2

n

(
ρU

∂T
∂x

+ρV
∂T
∂y

)
(8.33)

The second integration gives:

T2 =
Pr
µw

{
Dth2

3
1

α3
t

[
α2

t
3

y∗3 − αt (1−αty∗v)
2

y∗2 +(1−αty∗v)
2 y∗− (1−αty∗v)

3 1
αt

lnYT

]
+

Ath2

αt
lnYT +Bth2

}
(8.34)

The coefficients are:

Bth2 = Ath1y∗v +BT +
µv

Pr
Tw (8.35)

Ath2 = (Dth1 −Dth2)
y∗3

v
3

+Ath1 (8.36)

where

BT =
Dth1

12
y∗4 − Dth2

3
1

α3
t

[
α2

t
3

y∗3
v − αt (1−αty∗v)

2
y∗2

v +(1−αty∗v)
2 y∗v

]
Then substituting (8.35) and (8.36) into (8.34):

T2 =
Pr
µw

{
Dth2

3
1

α3
t

[
α2

t
3

y∗3 − αt (1−αty∗v)
2

y∗2 +(1−αty∗v)
2 y∗− (1−αty∗v)

3 1
αt

lnYT

]
+Ath1y∗v +BT +

lnYT

αt

(
(Dth1 −Dth2)

y∗3
v
3

+Ath1

)}
+Tw

(8.37)
When y∗ = y∗n, and T2=Tn:
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Tw = Tn −
Pr
µv

{
Dth2

3
1

α3
t

[
α2

t
3

y∗3
n − αt (1−αty∗v)

2
y∗2

n +(1−αty∗v)
2 y∗n − (1−αty∗v)

3 1
αt

lnYT n

]
+Ath1y∗v +BT +

lnYT n

αt

((
Dth1

3
− Dth2

3

)
y∗3

v +Ath1

)}
(8.38)

For the isothermal wall boundary conditions, the wall heat flux is obtained from equation
(8.26), where Ath1 can be obtained from (8.38) as

Ath1 =
1

lnYT n
αt

+ y∗v

{
µv

Pr
(Tn −Tw)−BT − lnYT n

αt

((
Dth1

3
− Dth2

3

)
y∗3

v +(Cth1 −Cth2)y∗v

)
−Dth2

3
1

α3
t

[
α2

t
3

y∗3
n − αt (1−αty∗v)

2
y∗2

n +(1−αty∗v)
2 y∗n − (1−αty∗v)

3 1
αt

lnYT n

]}
(8.39)

To illustrate the impact of the above changes to the convection term modelling, Fig. 8.4
shows the predictions of skin friction and wall heat flux for the Ma=5 impinging shock
case. The modified AWF (labelled as MAWF) does clearly reduce the spikes seen from the
original AWF formulation. The MAWF with parabolic assumptions in the convection terms
in the energy equation returns more smooth wall heat flux results than the MAWF with linear
assumption.

Figure 8.4: Wall skin friction and heat flux for Ma=5 impinging shock interaction using
MAWF with linear and parabolic assumptions for the convection terms in the energy equation
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8.2 The Compressibility in the Thermal MAWF (CMAWF)

Although the MAWF with the parabolic assumption for convection terms both in momentum
equation and energy equation in Chapter 8.1 performs well for the calculation of surface
pressure and skin friction, while in Fig. 8.4, it does not reproduce the wall heat flux as the LS
results, especially the downstream, where there is a much larger difference. The AWF above
is based on the simplified Reynolds equations (Equ. 6.13 and 6.14) which take into account
the important effects, such as pressure gradients and convective transport. Such simplification
works well for low-speed flows as described in Gerasimov (2004) and Gant (2003). However,
the simplified form employed for the energy equation may neglect some important terms
for the high-speed near-wall flows. Figure 8.4 shows the temperature distribution in the
undisturbed near-wall region at different Mach numbers. The hypersonic Ma=8 case shows
that it increases first and then drops to the inflow temperature, which returns the positive wall
heat flux, while for the supersonic flows, the temperature drops from the wall temperature to
inflow temperature gradually, which will return the negative wall heat flux. The differences
shown in the profiles imply about that the simplified energy equation might be a weakness in
the AWF and some other terms might play an important role in the near wall region for the
high-speed flows, especially for the hypersonic flows.

Figure 8.5: The undisturbed temperature distribution in the near wall region at Ma=3 by
Smits and Muck (1987), Ma=5 by Schülein et al. (2015) and Ma=8 by Kussoy and Horstman
(1991)
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8.2.1 Simplification of the Energy Equation

The original AWF employed a simplified form of the internal energy equation. As described
in Chapter 6.2, the energy equation in compressible solvers is based on the total energy
equation:

∂ (ρE)
∂ t

+∇• [u(ρE + p)]−∇• (σ •u)+∇•q = 0 (8.40)

In order to be consistent with the main code, it is better to work with a simplified form
of this total energy equation when dealing with highly compressible cases. In the original
thermal AWF, only the thermal convection terms in (8.40) are involved. In order to examine
the relative size of various terms in the energy equation, Figure 8.6 compares thermal
convection terms, the pressure gradient and viscous dissipation terms using k-ε model with
AWF wall function at Ma=3, 5 and 8.2 impinging shock interaction cases. From the figure,
the dissipation term plays a dominant role in the near wall region for high-speed flow.

Figure 8.6: Comparison of terms in the energy equation at Ma=3 (left), 5 (middle) and 8.2
(right) impinging shock interaction cases

When the viscous dissipation term ∇• (σ •u) is expanded, it can be seen to contain a
large number of velocity related terms:

∇• (σ •u) = µ



2
3

[(
∂u
∂x −

∂v
∂y

)2
+
(

∂v
∂y −

∂w
∂ z

)2
+
(

∂u
∂x −

∂w
∂ z

)2
]

+
(

∂u
∂y +

∂v
∂x

)2
+
(

∂u
∂ z +

∂w
∂x

)2
+
(

∂v
∂ z +

∂w
∂y

)2

+
[

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 +

1
3

∂

∂x

(
∂u
∂x +

∂v
∂y +

∂w
∂ z

)]
u

+
[

∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2v
∂ z2 +

1
3

∂

∂y

(
∂u
∂x +

∂v
∂y +

∂w
∂ z

)]
v

+
[

∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2w
∂ z2 + 1

3
∂

∂ z

(
∂u
∂x +

∂v
∂y +

∂w
∂ z

)]
w


(8.41)
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In order to introduce a simplified form of this into the near-wall energy equation for the
AWF the comparison has been made when velocity is equal to (u,0,0) and (u,v,w) along the
near wall cells at Mach=3, 5 and 8.2 impinging shock interaction cases in Fig. 8.7. From the
comparison, two lines are close to each other, which means that the wall-parallel velocity
plays a dominant role in the calculation of the dissipation term for 2D flows. As the AWF is
developed for the supersonic and hypersonic 2D flows, let u =(u,0), and take it to the shear
stress:

σ = µ

[
∇u+∇uT −

(
2
3

∇•u
)

I
]
= µ

∣∣∣∣∣ ∂u
∂x 0
∂u
∂y 0

∣∣∣∣∣+µ

∣∣∣∣∣ 1
3

∂u
∂x

∂u
∂y

0 −2
3

∂u
∂x

∣∣∣∣∣= σ1 +σ2 (8.42)

where the shear stress is separated into two parts. The dissipation term in energy equation is
calculated separately as ∇• (σ •u)=∇• (σ1 •u)+∇• (σ2 •u), which are convenient forms
to evaluate by the OpenFoam solver.

Figure 8.7: Dissipation comparison at different Mach number at Ma=3 (left), 5 (middle) and
8.2 (right) impinging shock interaction cases

∇• (σ1 •u) = µ

[(
∂u
∂x

)2

+

(
∂u
∂y

)2

+

[
∂ 2u
∂x2 +

∂ 2u
∂y2

]
u

]
+

(
∂u
∂x

∂ µ

∂x
+

∂u
∂y

∂ µ

∂y

)
u (8.43)

∇• (σ2 •u) = µ

[
1
3

(
∂u
∂x

)2

+

[
1
3

∂ 2u
∂x2

]
u

]
+

(
1
3

∂u
∂x

∂ µ

∂x

)
u (8.44)

As we can expect that the velocity gradient in the wall normal direction is much more
significant than it in the wall parallel direction, ∇• (σ1 •u)−3∇• (σ2 •u) represents the
viscous dissipation term in the wall normal direction.
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∇• (σ1 •u)−3∇• (σ2 •u) =
(

∂u
∂y

)2

+
∂ 2u
∂y2 u+u

∂u
∂y

∂ µ

∂y
=

∂

∂y

(
µ

∂u
∂y

u
)

(8.45)

In Fig. 8.8, T1 represents equation (8.43), T2 represents equation (8.44), T1+T2 represents
the whole dissipation term by the shear stress (8.42), and T1-3×T2 is equal to equation
(8.45). From the comparison, equation (8.44) is negligible compared to equation (8.43),
which means that equation (8.43) plays a dominant role to represent the dissipation in the
near wall region at high-speed flows. For high-speed flows, the speed drops to zero quickly
in the near wall region, which implies that the viscous dissipation terms in the wall normal
direction may be more important even than the convection terms in the near-wall layers.
The simplified energy equation is better to include the viscous dissipation terms in the wall
normal direction as equation (8.45).

Figure 8.8: Different parts of the dissipation at Ma=3 (left), 5 (middle) and 8.2 (right)
impinging shock interaction cases

8.2.2 The Thermal AWF with a Dissipation Term (CMAWF)

In order to take the viscous dissipation into account within the AWF framework, one addi-
tional term as equation (8.45) has been added in the thermal AWF, and the simplified energy
equation in the near wall region can then be written as:

∂ (ρUE +U p)
∂x

+
∂ (ρV E +V p)

∂y
− ∂

∂y

(
µU

∂U
∂y

)
=

∂

∂y

[
λ

∂T
∂y

]
(8.46)

where the thermal conductivity is:

λ =Cp

(
µ

Pr
+

µt

Prt

)
(8.47)
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Equation (8.46) can be rewritten as:

1
Cp

[
∂ (ρUE +U p)

∂x
+

∂ (ρV E +V p)
∂y

]
− 1

Cp

∂

∂y

(
µU

∂U
∂y

)
=

∂

∂y

[(
µ

Pr
+

µt

Prt

)
∂T
∂y

]
(8.48)

In the previous section, the representation of the thermal convection terms that assumed a
parabolic variation for them near the wall gave slightly better results than those using the
linear variation, so that has been retained in the present treatment of them (tests with a linear
form employed within the approach outlined below again gave similar conclusions to those
drawn above). To derive the CMAWF, the same broad integration procedure has been used
as previously. In the viscous sublayer (y∗ < y∗v), where µt =0, equation (8.48) becomes:

∂

∂y∗

(
µ

Pr
∂T1

∂y∗

)
= Dth1y∗2 − 1

Cp

∂

∂y∗

(
µvU1

∂U1

∂y∗

)
(8.49)

where

Dth1 =
µ2

v
Cpρ2

v kP

1
y∗2

v

(
∂ (ρUE +U p)

∂x
+

∂ (ρV E +V p)
∂y

)
(8.50)

The first integration of (8.49) gives:

µw

Pr
∂T1

∂y∗
=

Dth1

3
y∗3 +Ath1 −

1
Cp

µvU1
∂U1

∂y∗
(8.51)

In order to approximate the final term in equation (8.51), the expressions obtained for the
analytical velocity profile and its gradient are used (equations (8.3) and (8.5) ). Substituting
these into equation (8.51) and rearranging results in:

∂T1

∂y∗
=

Pr
µw

{
Dth1

3
y∗3 +Ath1 −

(
N7y∗7 +N5y∗5 +N4y∗4 +N3y∗3 +N2y∗2 +N1y∗

)}
(8.52)

where
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N7 =
1

Cpµw

D2
1

36
N5 =

1
Cpµw

C1D1

4
N4 =

1
Cpµw

5
12

A1D1

N3 =
1

Cpµw

C2
1

2
N2 =

1
Cpµw

3A1C1

2
N1 =

1
Cpµw

A2
1

The second integration then gives:

T1 =
Pr
µw

(
Dth1

12
y∗4 +Ath1y∗−

(
N7

8
y∗8 +

N5

6
y∗6 +

N4

5
y∗5 +

N3

4
y∗4 +

N2

3
y∗3 +

N1

2
y∗2
))

+Tw

(8.53)

In the fully turbulent region (y∗ > y∗v), equation (8.48) can be rewritten as:

∂

∂y∗

(
µ

Pr
∂T2

∂y∗

)
= Dth2y∗2 − 1

Cp

∂

∂y∗

(
µvU2

∂U2

∂y∗

)
(8.54)

where:

Dth2 =
µ2

v
Cpρ2

v kP

1
y∗2

n

(
∂ (ρUE +U p)

∂x
+

∂ (ρV E +V p)
∂y

)
(8.55)

The first integration of (8.53) gives:

(
µv

Pr
+

µt

Prt

)
∂T2

∂y∗
=

Dth2

3
y∗3 +Ath2 −

1
Cp

µvYU2
∂U2

∂y∗

This equation can be rewritten as:

∂T2

∂y∗
=

Pr
µv

(
Dth2

3
y∗3

YT
+Cth2

y∗

YT
+Ath2 −

1
Cp

1
YT

µvYU2
∂U2

∂y∗

)
(8.56)

The second integration gives:
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T2 =
Pr
µv

{
Dth2

3
1

α3
t

[
α2

t
3

y∗3 − αt (1−αty∗v)
2

y∗2 +(1−αty∗v)
2 y∗− (1−αty∗v)

3 1
αt

lnYT

]
+

Ath2

αt
lnYT +Bth2 −

1
µvCp

∫ y∗

y∗v

1
YT

µvU2

(
µvY

∂U2

∂y∗

)
dy∗
}

(8.57)
Substituting the analytical velocity and the analytical velocity wall-normal gradient equations
(8.6) and (8.8) into the viscous dissipation term in equation (8.57), then:

∫ y∗

y∗v

1
YT

µvU2

(
µvY

∂U2

∂y∗

)
dy∗

=
1

YT

{
D2

3
1

α3

[
α2

3
y∗3 − α (1−αy∗v)

2
y∗2 +(1−αy∗v)

2y∗− (1−αy∗v)
3 1

α
lnY
]

+C2
1
α

[
y∗− (1−αy∗v)

1
α

lnY
]
+A2

1
α

lnY +B2

{(
D2

3
y∗3 +C2y∗+A2

)
dy∗

As noted that the above equation is hard to integrate explicitly, in the code, this term is
integrated numerically. The coefficients Bth2 and Ath2 in equation (8.57) are:

Bth2 = Ath1y∗+BT +
µv

Pr
Tw (8.58)

Ath2 =

(
Dth1

3
− Dth2

3

)
y∗3

v +Ath1 (8.59)

where

BT =
Dth1

12
y∗4

v +
Cth1

2
y∗2

v −
(

N7

8
y∗8

v +
N5

6
y∗6

v +
N4

5
y∗5

v +
N3

4
y∗4

v +
N2

3
y∗3

v +
N1

2
y∗2

v

)
−Dth2

3
1

α3
t

[
α2

t
3

y∗3
v − αt (1−αty∗v)

2
y∗2

v +(1−αty∗v)
2 y∗v

]
− 1

αt
Cth2y∗v

Substituting (8.58) and (8.59) into (8.57), then:
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T2 =
Pr
µv

{
Dth2

3
1

α3
t

[
α2

t
3

y∗3 − αt (1−αty∗v)
2

y∗2 +(1−αty∗v)
2 y∗− (1−αty∗v)

3 1
αt

lnYT

]
+

lnYT

αt
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Dth1

3
− Dth2

3

)
y∗3

v +Ath1

]
+Ath1y∗v

+BT − 1
µvCp

∫ y∗

y∗v

1
YT

µvU2

(
µvY

∂U2

∂y∗

)
dy∗
}
+Tw

(8.60)
When y∗ = y∗n, and T2 = Tn:

Tw = Tn −
Pr
µv

{
Dth2

3
1

α3
t

[
α2

t
3

y∗3
n − αt (1−αty∗v)

2
y∗2

n +(1−αty∗v)
2 y∗n − (1−αty∗v)

3 1
αt

lnYT n

]
+

lnYT n

αt

[(
Dth1

3
− Dth2

3

)
y∗3

v +Ath1

]
+Ath1y∗v +BT − 1

µvCp

∫ y∗n

y∗v

1
YT

µvU2

(
µvY

∂U2

∂y∗

)
dy∗
}

(8.61)
For the isothermal wall boundary conditions:

qwall =−
ρvCp

√
kP

µv
Ath1 (8.62)

where Ath1 can be obtained from (8.61) as:

Ath1 =
1

lnYT n
αt

+ y∗v

{
µv

Pr
(Tn −Tw)

−Dth2

3
1

α3
t

[
α2

t
3

y∗3
n − αt (1−αty∗v)

2
y∗2

n +(1−αty∗v)
2 y∗n − (1−αty∗v)

3 1
αt

lnYT n

]
− lnYT n

αt

(
Dth1

3
− Dth2

3

)
y∗3

v −BT +
1

µvCp

∫ y∗n

y∗v

1
YT

µvU2

(
µvY

∂U2

∂y∗

)
dy∗
} (8.63)

8.2.3 The Modification to the Dissipation Terms in the Main Code

From section 8.2.1 it became apparent that the viscous dissipation term in the energy equation
can play an important role in the near-wall region, and in Section 8.2.2 an approximation for
the term has been introduced into the analytical temperature profile within the AWF approach.
The other place where the term does, potentially need accounting for is when considering
the discretized energy equation over the near-wall cell. In the standard discretization the
term will be evaluated at the cell centre, and then multiplied by the cell volume. However,
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because of the rapid variation of velocity gradients across the region covered by the near-wall
cell, such an approach is likely to lead to an inaccurate representation of it. The approach
taken here has therefore been to develop a cell-averaged value for the term, based on the
analytical profiles for the velocity and its gradient across the near-wall cell. This can then
be used as a source term within the discretized energy equation for the near-wall cell. The
viscous dissipation terms in the near wall region are constructed as:

∂

∂y

(
µ

∂U
∂y

U
)
=

ρ2kP

µ2
w

[
µ

(
∂U
∂y∗

)2

+U
∂

∂y∗

(
µ

∂U
∂y∗

)]

To obtain a cell averaged value for the term, it is integrated over the two regions (0 < y∗ < y∗v
and y∗ > y∗v), to yield:

∂

∂y

(
µ

∂U
∂y

U
)
=

ρ2kP

µ2
w

1
y∗n

[∫ y∗v

0
µw

(
∂U1

∂y∗

)2

dy∗+
∫ y∗v

0
µwU1

∂ 2U1

∂y∗2 dy∗

+
∫ y∗n

y∗v
µwY

(
∂U2

∂y∗

)2

dy∗+
∫ y∗n

y∗v
U2

∂

∂y∗

(
µ

∂U2

∂y∗

)
dy∗
] (8.64)

The equations of the analytical velocity and the analytical velocity gradient (8.3) and
(8.5) in the viscous sublayer, and (8.6) and (8.8) in the fully turbulent layer are substituted
into equation (8.64) to obtain the cell-averaged viscous dissipation for AWF. In principle,
a similar treatment could be applied to form a cell-averaged expression for use with the
standard wall-function in the near-wall cells. In this case, of course, the velocity profile
approximations would come from an assumed linear and log-law profile shape (0 < y∗ < y∗v
and y∗ > y∗v respectively). This term could then be evaluated as:

∂

∂y

(
µ

∂U
∂y

U
)
=

τ2
w

µw

1
y∗n

[
y∗v +

1
κ2E2

(
1
y∗v

− 1
y∗n

)
− 1

κ2E

∫ y∗n

y∗v
ln(Ey∗)

1
y∗2 dy∗

]
(8.65)

To illustrate the effect that the above modifications have on the model predictions,
Fig. 8.9 shows wall pressure, skin friction and heat flux results for the Mach 5 impinging
shock interaction case, with shock deflection angle of 14◦. The results labelled CMAWF are
those including the viscous dissipation term in the analytical temperature equation, whilst
those labelled CMAWF-D also include the cell-averaged viscous dissipation term in the
near-wall-cell discretized equation, as described above. Similarly, the SWF-D results include
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Figure 8.9: Wall properties comparison for Ma=5 impinging shock interaction case using
CMAWF (left) and SWF (right) approaches
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the equivalent term in the standard wall function. Then you can start describing the changes
seen in the predictions. The main things are to note are that the addition of the viscous
dissipation in only the analytical temperature expression leads to later separation (and only
a small recirculation zone). Including the contributions in both the analytical profile and
the main discretized equations give wall pressure and skin friction results fairly close to
the MAWF ones but leads to the wall heat flux levels downstream of reattachment that is
significantly closer to the LS ones than the original MAWF predicted.

For the comparison of SWF in Figure 8.9 (right), the addition of an approximated cell-
averaged viscous dissipation term in the near-wall discretized equation does not appear to
improve the predictions. This is likely due to a combination of the fact that the term is based
on the assumed log-law velocity profile (which is unlikely to be accurate around the shock
interaction region), and the simple nature of the other assumptions built into the SWF. In
the later simulations, the standard wall function is therefore applied in its original form, as
described in Chapter 6, without the above modification to account for viscous dissipation.

8.3 Accounting for the Variation in Fluid Properties

In the formulations of the AWF considered above, the transport properties such as the density,
temperature, and pressure have been treated as constant across the near wall cells. In practice,
for the hypersonic flows, the fluid properties vary significantly, especially where the strong
SWBLIs happen, and strong temperature gradients always occur in the near wall region.

To illustrate the effect of the variation in molecular viscosity near the wall, Figure 8.10
shows predicted results using the LS model with the Yap correction for an impinging shock
at Ma=5 and at Ma=8.2. Results are shown both with a constant value used for the viscosity
and with Sutherland’s law employed to give a temperature-dependent viscosity. At the lower
Mach number, there are only rather minor differences in the predicted skin friction and wall
heat flux, whilst these become rather larger in the higher Mach number case, as a result of
the stronger near-wall temperature variation in hypersonic flows.

The variable properties accounted in the AWF involves two parts. One is deciding where
to evaluate the viscosity and density values used in the definition of y∗ and also in the model
of µt , while the other is accounting for the variation of µ when integrating the simplified
transport equations across the near-wall layer. Figure 8.11 shows the velocity and temperature
distribution in the near wall region at the upstream, separation zone and downstream for
M=8.2 impinging shock interaction. From the comparison, the velocity variation in the near
wall region increases gradually, while the un-dimensional temperature decreases first and then
increase to the inflow temperature, which means that the temperature variation has strong
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gradient in the near wall region for the hypersonic SWBLIs, especially in the interaction
region where the gradient of velocity and temperature gradients in the wall parallel direction
and wall-normal direction become significant. Also, the variation of molecular viscosity at
the separation zone and downstream have a difference with the constant values, which is
consistent with the skin-friction and wall heat flux in Fig. 8.12.

Figure 8.10: Wall properties comparison using LS model with the Yap correction with
constant molecular viscosity or Sutherland’s Law for the Ma=5 (left) and Ma=8.2 (right)
impinging shock interactions

In the previous sections, the non-dimensional distance y∗ for the near wall cells is defined
using the wall properties on the wall and the kinetic energy at cell P, as the kinetic energy is
assumed as constant in the near wall cells.

y∗ =
y
√

kP

µw
ρw (8.66)

For some early studies of analytical wall functions, the fluid properties at node P are used
for the definition of wall non-dimensional distance.
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Figure 8.11: Velocity (top) and temperature (bottom) distribution at the upstream(left),
separation zone (middle) and downstream (right) of the flowfield

y∗ =
y
√

kP

µP
ρP (8.67)

Also for the expression of turbulence viscosity is using the nodal value of viscosity:

µt = µPα (y∗− y∗v) (8.68)

In the calculations, the above evaluations of y∗ and µt , the numerical results are grid-
dependence because the fluid properties might change rapidly with the distance from the
wall. Gerasimov (2004) decides to evaluate these values at the edge of viscosity sublayers.
The temperature at the edge of viscosity sublayer Tv is calculated from the thermal analytical
wall function, and ρv and µv are obtained from Tv. Given that the best evaluation of kinetic
energy is the nodal value, the non-dimensional distance is evaluated by:

y∗ =
y
√

kP

µv
ρv (8.69)

Accordingly, the turbulence viscosity is obtained by:
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µt = µvα (y∗− y∗v) (8.70)

In order to represent the strong gradients of temperature, the variation of the fluid
molecular viscosity is taken into account for the analytical wall functions. Gerasimov (2004)
did explore the use of linear, hyperbolic and parabolic variation assumptions for the molecular
viscosity across the near-wall viscous layer, as show in Figure 8.12 and detailed in equations
(8.71), (8.72) and (8.73) respectively.

µ=µv +bµ (y∗− y∗v) where bµ=
µv −µw

y∗v
(8.71)

µ=
µv

1+bµ (y∗− y∗v)
where bµ=

µw −µv

µwy∗v
(8.72)

µ=
µw

1+bµy∗ (y∗−2y∗v)
where bµ=

1
y∗2

v

(
1− µw

µv

)
(8.73)

Figure 8.12: Variation of molecular viscosity in the near wall cell using linear (left), hyper-
bolic (middle) and parabolic (right) assumptions

These same formulations have been considered in the present work, for application in the
high-speed flows considered here. For the linear assumption, when taken to the simplified
momentum and energy equations, it is impossible to obtain a stable numerical solution after
second integration. In order to make the derivatives easier, it is better to place the variation of
dimensionless distance on the denominator. In this section, only the parabolic and hyperbolic
assumptions are considered.
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8.3.1 Parabolic Assumption

a. Hydrodynamic Analytical Wall Function
The simplified momentum equation is

∂ (ρUU)

∂x
+

∂ (ρVU)

∂y
=−dP

dx
+

∂

∂y

[
(µ +µt)

∂U
∂y

]
(8.74)

which can be rewritten as:

∂

∂y∗

[
(µ +µt)

∂U
∂y∗

]
= Dy∗2 +C (8.75)

where

D =
µ2

ρ2kP

1
y∗2

n

[
ρU

∂U
∂x

+ρV
∂U
∂y

]
C =

µ2

ρ2kP

dP
dx

(8.76)

In the viscous sublayer (y∗ < y∗v), the first integration of equation (8.75), where µt=0, leads
to:

µ
∂U1

∂y∗
=

D1y∗3

3
+C1y∗+A1 (8.77)

where

D1 =
µ2

v
ρ2

v kP

1
y∗2

v

[
ρPU1

∂U
∂x

+ρPV1
∂U
∂y

]
C1 =

µ2
v

ρ2
v kP

dP
dx

(8.78)

Using the parabolic formulation for the molecular viscosity across the sublayer gives:

µ=
µw

1+bµy∗ (y∗−2y∗v)
where bµ=

1
y∗2

v

(
1− µw

µv

)
Equation (8.77) can then be rewritten as:

∂U1

∂y∗
=

1
µw

[
1+bµy∗ (y∗−2y∗v)

][D1y∗3

3
+C1y∗+A1

]
(8.79)
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The second integration gives:

U1 =
1

µw

[
D1y∗4

12
+

C1y∗2

2
+A1y∗

+bµ

(
D1

18
y∗6 − 2D1

15
y∗vy∗5 +

C1

4
y∗4 +

(A1 −2C1y∗v)
3

y∗3 −A1y∗vy∗2
)] (8.80)

In the fully turbulent layer (y∗ > y∗v), the first integration of the simplified momentum equation
is:

∂U2

∂y∗
=

1
µv

[
D2

3
y∗3

Y
+C2

y∗

Y
+

A2

Y

]
(8.81)

where:

D2 =
µ2

v
ρ2

v kP

1
y∗2

n

[
ρPU2

∂U
∂x

+ρPV2
∂U
∂y

]
C2 =

µ2
v

ρ2
v kP

dP
dx

Y = 1+α (y∗− y∗v)

The second integration gives:

U2 =
1
µv

{
D2

3
1

α3

[
α2

3
y∗3 − α (1−αy∗v)

2
y∗2 +(1−αy∗v)

2 y∗− (1−αy∗v)
3 1

α
lnY
]

+C2
1
α

[
y∗− (1−αy∗v)

1
α

lnY
]
+A2

1
α

lnY +B2

} (8.82)

From the near wall cell boundary conditions, the coefficients in the above equations are:

A1 =
µvUn −N

1
α

lnYn +
µv
µw

y∗v −
2µv
3µw

bµy∗3
v

(8.83)

A2=(D1 −D2)
y∗3

v
3

+(C1 −C2)y∗v +A1 (8.84)

B2 =
µv
µw

[
D1y∗4

v
12 +

C1y∗2
v

2 +A1y∗v −bµy∗3
v
( 7

90D1y∗3
v + 5

12C1y∗v +
2
3A1
)]

−
[

D2
3

1
α3

[
α2

3 y∗3
v − α(1−αy∗v)

2 y∗2
v +(1−αy∗v)

2 y∗v
]
+C2

1
α

y∗v
] (8.85)

The coefficient N in (8.83) represents:
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N =
D2

3
1

α3
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α2

3
y∗3

n − α (1−αy∗v)
2

y∗2
n +(1−αy∗v)

2 y∗n − (1−αy∗v)
3 1

α
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]
+C2
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α
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1
α
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+

1
α
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1
3

y∗3
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+
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[
D1y∗4

v
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v
2
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v
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7
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5
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−
[
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3
1
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[
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3
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v − α (1−αy∗v)
2

y∗2
v +(1−αy∗v)

2 y∗v

]
+C2

1
α

y∗v

]
(8.86)

b. Thermal Analytical Wall Function
The energy equation with the thermal dissipation terms in the near wall cell is:

∂ (ρUE)
∂x

+
∂ (ρV E)

∂y
+

∂ (U p)
∂x

+
∂ (V p)

∂y
− ∂

∂y

(
µU

∂U
∂y

)
=

∂

∂y

[
λ

∂T
∂y

]
(8.87)

which can be written as:

∂

∂y∗

[(
µ

Pr
+

µt

Prt

)
∂T
∂y∗

]
= Dthy∗2 − 1

Cp

∂

∂y∗

(
µU

∂U
∂y∗

)
(8.88)

Thus in the viscous sublayer (y∗ < y∗v), where µt=0, equation (8.87) can be rewritten as:

∂

∂y∗

(
µ

Pr
∂T1

∂y∗

)
= Dth1y∗2 − 1

Cp

∂

∂y∗

(
µU1

∂U1

∂y∗

)
(8.89)

where

Dth1 =
µ2

v
Cpρ2

v kP

1
y∗2

v

(
ρPU1

∂E
∂x

+ρPV1
∂E
∂y

+
∂ (U p)

∂x
+

∂ (V p)
∂y

)
(8.90)

The first integration of (8.89) gives:

µ

Pr
∂T1

∂y∗
=

Dth1

3
y∗3 +Ath1 −

1
Cp

µU1
∂U1

∂y∗
(8.91)

which, with the assumed parabolic formulation for µ , can be rewritten as:
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µw

Pr
∂T1

∂y∗
=
[
1+bµy∗ (y∗−2y∗v)

][Dth1

3
y∗3 +Ath1

]
− 1

Cp
µ

∂U1

∂y∗
U1
[
1+bµy∗ (y∗−2y∗v)

]
(8.92)

The coefficient in (8.92) can be obtained from the definition of wall heat flux:

Ath1 =−qwall

cp

µv

ρv
√

kP

The second integration gives:

T1 =
Pr
µw


Dth1y∗4

12 +Ath1y∗+bµ
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µ

∂U1
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1+bµy∗ (y∗−2y∗v)

]
dy∗

+Tw (8.93)

The integration of the thermal dissipation term is calculated numerically, using the
analytical expressions for U1 and its derivative from equations (8.79) and (8.80).
In the fully turbulent region (y∗ > y∗v), equation (8.87) can be rewritten as:

∂

∂y∗

[(
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+
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)
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∂y∗

]
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where:
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∂E
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+ρPV2
∂E
∂y

+
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∂x
+

∂ (V p)
∂y

)
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The first integration of (8.94) gives:

∂T2

∂y∗
=

Pr
µv

(
Dth2

3
y∗3

YT
+

Ath2

YT
− 1

Cp

1
YT

µvYU2
∂U2
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)
(8.96)

The second integration gives:
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T2 =
Pr
µv
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t
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(8.97)

where the thermal dissipation term again integrated numerically, this time using the analytical
expressions for U2 and its derivative from equations (8.81) and (8.82). The coefficients in
equation (8.97) are:

Bth2 =
µv

µw

(
y∗v −

2
3

bµy∗3
v

)
Ath1 +BT +

µv

Pr
Tw (8.98)

Ath2 =

(
Dth1

3
− Dth2

3

)
y∗3

v +Ath1 (8.99)

where:
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Then take (8.98) and (8.99) into (8.97):
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(8.100)

When y∗ = y∗n, and T2 = Tn:
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Tw = Tn −
Pr
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(8.101)

For the isothermal wall boundary conditions:

qwall =−
ρvCp

√
kP

µv
Ath1 (8.102)

where Ath1 can be obtained from (8.101) as:
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(8.103)

8.3.2 Hyperbolic Assumption

a. Hydrodynamic Analytical Wall Function
In the viscous sublayer (y∗ < y∗v), the first integration of equation (8.74), where µt=0, is:

µ
∂U1

∂y∗
=

D1y∗3

3
+C1y∗+A1 (8.104)

where
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dP
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(8.105)
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Substituting the hyperbolic assumption of equation (8.72) into (8.104):

∂U1

∂y∗
=

1
µv

[(
D1y∗3

3
+C1y∗+A1

)
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The second integration gives:
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In the fully turbulent layer (y∗ > y∗v), the first integration of the simplified momentum equation
gives:
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[
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+
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The second integration gives:
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From the near wall cell boundary conditions, the coefficients in the above equations are:

A1 =
µvUn −N
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α
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v
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α
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The coefficient N in (8.110) represents:
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b. Thermal Analytical Wall Function
The simplified energy equation can be rewritten as:
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where
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Thus in the viscous sublayer (y∗ < y∗v), where µt=0, equation (8.114) can be rewritten as:
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The first integration of (8.116) gives:
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Again, substituting the viscosity variation from equation (8.72) into (8.118) now gives:
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The second integration gives:
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In the fully turbulent region (y∗ > y∗v), the simplified energy equation can be rewritten as:
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where:
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The first integration of equation (8.121) gives:
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The second integration gives:
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The coefficients are:
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Then take (8.125) and (8.126) into (8.124):
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In order to complete the thermal wall function, the final expression for the wall tempera-
ture needs to be substituted into the code for prescribed heat-flux boundary conditions. From
equation (8.127), when y∗ = y∗n, and T2 = Tn:
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For the isothermal wall boundary conditions:

qwall =−
ρvcp

√
kP

µv
Ath1 (8.129)

where Ath1 can be obtained from (8.128) as:
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In order to test the effect of the above formulations, Figure 8.13 shows predicted results
using them, and the CMAWF with constant viscosity, for Mach 3, 5 and 8.2 impinging
shock cases. For the Mach number 3 case, the molecular viscosity variation has virtually no
influence on the near wall properties, mainly because the analytical temperature, and only
very slight differences in predictions between the approaches are seen around the interactions
region. Slight difference only happens in the interaction region where the temperature
gradient is much stronger than the upstream and downstream region. For the Mach number 5
case, the differences in the model predictions are more obvious than for the Mach 3 case, but
still fairly small. However, at a Mach number of 8.2 the differences between the predictions
using a constant viscosity and those using a variable form are quite significant, because of
the stronger near-wall temperature gradients present in this case. Overall, the modelling
of the variable viscosity decreases the predictions of wall skin friction and wall heat flux,
bringing the latter much closer to the experimental data. As the inflow Mach increases, the
assumptions become more important. For both assumptions, the numerical results show little
difference at lower Mach numbers. Between the two forms adopted for the viscosity variation
(parabolic and hyperbolic) there is little difference in the results. The hyperbolic one returns
very slightly lower skin friction and wall heat flux levels, arguably slightly closer to the
measured data, but the difference is quite marginal. In the calculations, both forms are used
and compared. From the analytical molecular viscosity variation, the parabolic assumption
gives closer prediction to the LS results, and it is recommended in the applications.

8.4 Summary of Modified Wall Functions

The development of the wall functions is implemented based on the structured finite-volume
flow solver based on OpenFoam2.3 and 5.0. The wall shear stress and the wall heat flux for
isothermal boundary condition (or wall temperature for adiabatic wall boundary condition)
are replaced using the wall functions equation described above. For the turbulence parameters,
the k-equation is solved in the near wall cell with the modified P̄k and ε̄ . Many modifications
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Figure 8.13: Wall properties comparison using hyperbolic and parabolic assumptions for
Ma=3 (top) Ma=5 (middle) and Ma=8.2 (bottom) impinging shock interactions
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have been made compared to the original AWF as described in this Chapter. In order to give a
general idea of the implementation of all the wall functions in this report, a short introduction
to each method is given below.

8.4.1 Standard Wall Function (SWF)

The standard wall function is mainly described in chapter 6.1 based on the log-law velocity
and temperature profiles. The wall shear stress is obtained from equation (6.12). The cell-
averaged generation and dissipation rates of k are obtained from equation (6.10) and (6.11).
The wall heat flux or wall temperature is obtained from equation (6.6) for the isothermal or
adiabatic wall boundary condition.

8.4.2 Analytical Wall Function (AWF)

The original AWF was introduced in Chapter 6 in detail. The wall shear stress is obtained
from Equation (6.34) with A1 by equation (6.28), or by equation (A.2) when y∗n < y∗v . The
cell-averaged production of k is obtained by equation (6.35). The mean dissipation rate of k
is described in chapter 6.2.3 and is obtained by equation (6.39). The thermal analytical wall
function is applied, depending on the thermal wall boundary conditions, as:

Adiabatic wall boundary condition:
When y∗n > y∗v , Twall is obtained from equation (6.48).
When y∗n < y∗v , Twall is obtained from equation (A.4).

Isothermal wall boundary condition:
When y∗n > y∗v , qwall is obtained from Equation (6.49) with Ath1 by equation (6.50).
When y∗n < y∗v , qwall is obtained from Equation (A.5) with Ath1 by equation (A.6).

8.4.3 Modified Analytical Wall Function (MAWF)

The modified analytical wall function was described in Section 8.1, with the parabolic
assumption for the convection terms in the simplified momentum equation, and parabolic
assumption for the convection terms in the simplified energy equation. The mean dissipation
rate of k is calculated with the same equations as in the AWF. The wall shear stress is obtained
from Equation (8.12) with A1 by equation (8.9), or by equation (B.2) when y∗n < y∗v . The
thermal analytical wall function depends on the wall boundary conditions:
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Adiabatic wall boundary condition:
When y∗n > y∗v , Twall is obtained from equation (8.37).
When y∗n < y∗v , Twall is obtained from equation (B.7).

Adiabatic wall boundary condition:
When y∗n > y∗v , qwall is obtained from equation (8.63) with equation (8.39).
When y∗n < y∗v , qwall is obtained from equation (8.63) with equation (B.8).

From the comparison of MAWF-linear and MAWF-para at the end of Chapter 8.1,
MAWF-para, which means parabolic assumptions are used for both convection terms in
momentum and energy equations, is recommended in the future computation.

8.4.4 Compressibility in the thermal MAWF (CMAWF)

The CMAWF was introduced in Section 8.2 by adding thermal dissipation terms in the
simplified energy equation to overcome the underestimation of wall heat flux by the MAWF.
The wall shear stress and the mean dissipation rate of k are calculated with the same equations
as in the MAWF. The thermal analytical wall function with the energy dissipation term is
used is applied, depending on the wall boundary conditions, as:

Adiabatic wall boundary condition:
When y∗n > y∗v , Twall is obtained from equation (8.61).
When y∗n < y∗v , Twall is obtained from equation (C. 2).

Adiabatic wall boundary condition:
When y∗n > y∗v , qwall is obtained from equation (8.62) with Ath1 by equation (8.63).
When y∗n < y∗v , qwall is obtained from equation (8.62) with Ath1 by equation (C.3).

The viscous dissipation term in the discretized energy equation for the near-wall cell is
also replaced by a cell-averaged value calculated from the analytical solution by equation
(8.64).

8.4.5 CMAWF with Assumptions for Molecular Viscosity

The CMAWF with hyperbolic or parabolic assumptions for molecular viscosity was intro-
duced in Section 8.3.
a. Parabolic Assumption (para-CMAWF)
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The wall shear stress is obtained from Equation (8.12) with A1 by equation (8.83), or by
equation (D.3) when y∗n < y∗v , and the production of k is calculated by the analytical velocity
gradient in the fully turbulent layer as (8.81). The mean dissipation rate of k is calculated
with the same equations as MAWF. The thermal analytical wall function with the energy
dissipation term is applied, depending on the wall boundary conditions, as:

Adiabatic wall boundary condition:
When y∗n > y∗v , Twall is obtained from equation (8.101).
When y∗n < y∗v , Twall is obtained from equation (D. 5).

Adiabatic wall boundary condition:
When y∗n > y∗v , qwall is obtained from equation (8.102) with Ath1 by equation (8.103).
When y∗n < y∗v , qwall is obtained from equation (8.102) with Ath1 by equation (D.6).

b. Hyperbolic Assumption (hyper-CMAWF)
The wall shear stress is obtained from Equation (8.11) with A1 by equation (8.110), or by

equation (E.1) when y∗n < y∗v , and the production of k is calculated by the analytical velocity
gradient in the fully turbulence layer as (8.108). The mean dissipation rate of k is calculated
with the same equations as MAWF. The thermal analytical wall function with the energy
dissipation term is applied , depending on the wall boundary conditions, as:

Adiabatic wall boundary condition:
When y∗n > y∗v , Twall is obtained from equation (8.128).
When y∗n < y∗v , Twall is obtained from equation (E. 2).

Adiabatic wall boundary condition:
When y∗n > y∗v , qwall is obtained from equation (8.129) with Ath1 by equation (8.130).
When y∗n < y∗v , qwall is obtained from equation (8.129) with Ath1 by equation (E.3).

All these two assumptions are taken forward in the calculations of hypersonic cases, since
for the supersonic flows the effect on the wall skin-friction and wall heat flux is negligible
from the comparison in Section 8.3.

8.5 Summary

In this Chapter, a number of refinements have been explored and tested in the wall functions.
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The first refinement is an approximation of the convection terms, in order to reduce the
spikes that were seen around the shock interaction zone predicted by the original AWF. By
assuming a near-wall parabolic variation in these terms the spikes were significantly reduced
(or eliminated in some cases), which is named as MAWF.

As noticed that the MAWF does not reproduce the wall heat flux as the LS results,
especially in the downstream region. The near wall terms in the energy equation are compared,
and the thermal dissipation terms are significantly important for compressible flows. A
simplified energy equation from the total energy equation with the thermal dissipation terms
is used to obtain the analytical temperature in the near wall cell, together with the replacement
of the thermal dissipation terms by the analytical solution in the main code, which is named
as CMAWF.

For the hypersonic flows, where the temperature gradient is stronger than the supersonic
flows, the molecular viscosity with hypersonic and parabolic assumptions is made in order
to account for the effect of the strong gradients, referred to as hyper-CMAWF and para-
CMAWF.

All the wall functions described above have been tested and implemented in the Open-
FOAM v5.0. The CMAWF is recommended for supersonic flows, and para-CMAWF or
hyper-CMAWF is recommended for the hypersonic flows.



Chapter 9

2D and Axisymmetric Impinging Shock
Interaction

In this chapter, a number of the 2D and axisymmetric impinging shock interaction cases from
supersonic to hypersonic are selected to evaluate the wall functions described above under
OpenFoam v5.0. From the conclusion of Chapter 8 the most advanced CMAWF described in
section 8.4.5 is used, but for simplicity, this will just be referred to as the AWF in the present
chapter. The initial study by Settles and Dodson (1991) examined more than one hundred
experimental studies of shock wave interaction with boundary layers from Mach number 3
to 13. High-quality data of hypersonic and supersonic SWBLIs for turbulence modelling
are extremely scarce, and only 5 hypersonic experiments and 7 supersonic experiments
are considered as acceptable. An updated version has been examined and summarized by
Settles and Dodson (1994). Another useful summary for hypersonic flows is a result of
deliberations with AGAED WG 18. The summary of all these acceptable results from all the
sources mentioned above can be found in the experimental report of Ma=5 impinging shock
interaction by Schülein et al. (2005). Four acceptable supersonic and hypersonic experiments
have been selected from the references to be considered in the present study, which are listed
in Table 9.1.

9.1 Case Setup

The freestream static temperature for all these four cases is quite low because the high
enthalpy environments in the wind tunnels are hard to reproduce. In addition, all the test
gas is air, so the working medium is assumed as a perfect gas, and air properties, such
as the gas constant R=287.06m2S−2K−1, specific heat coefficients for constant pressure
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Table 9.1: Inflow conditions for impinging shock interaction cases

Cp=1004.06J/ (kgK), molecular Prandtl number Pr=0.7 are used in the calculations, and
Sutherland’s law, µ=1.458×10−6T3/2/(T+110.3), is used to evaluate the dynamic viscosity.

Structured grids are used for all four cases, because of the simple geometries. All grids
are uniform in the streamwise direction and refined normal to the wall, and the value of y+
is about 25 for the high-Reynolds-number turbulence model with wall function approaches,
and 0.6 for the low-Reynolds-number turbulence models.

The high Reynolds number k-ε model with wall functions and the low Reynolds number
Lauder-Shamma (LS) model with the Yap correction are used for all four cases. The
specification of a freestream turbulence intensity (I) is used to calculate the upstream turbulent
kinetic energy from

k =
3
2
(|U | I)2 (9.1)

where I=1.5% for all 2-D impinging shock interaction cases. The dissipation of k is often
determined by an assumed value for the ratio of turbulent to laminar viscosity µ t /µ:

ε =Cµ

ρk2

µ

(
µt

µ

)−1

=Cµ

Re∞k2

|U |

(
µt

µ

)−1

(9.2)

where µt /µ=10. For the axisymmetric case, µ t /µ is taken equal to 100, in order to obtain
an early transition from laminar to turbulent flow. Craft, Launder, and Suga (1997) suggest
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that the freestream intensity has little effect on the surface properties in the fully developed
turbulent region, at least in the case of low-speed flows. For the supersonic and hypersonic
flows, it is expected that there should be little effect of freestream turbulence levels on the
near wall properties in the fully turbulent region where the shock wave/turbulent boundary
layer interactions happen.

9.1.1 Ma=3 Impinging Shock Interaction

For the Ma=3 impinging shock interaction, the case is as described in Section 7.2. The mesh
and boundary condition are as shown in figure 7.1, the freestream flow condition is listed
in Table 7.1, and the flow properties across the oblique shock are listed in table 7.2. For
the LS model with the Yap correction, the non-dimensional wall distance of the near wall
node the upstream of separation is y+≈0.6, while for the wall function approach, y+≈25,
which is much coarser than the grids in Chapter 7. The grid-independence study results for
the Mach=3.0 impinging shock interaction are shown in Fig. 9.1 and 9.2 using the LS model
or k-ε model with wall function approaches. Overall, grid-independent results are obtained
for all methods. The 200 × 90 grid is used for the LS model, while the 150 × 60 grid is used
for wall function approaches.

Figure 9.1: Grid-independence study for the Mach=3.0 13o impinging shock interaction
predicted by the LS model with the Yap correction

9.1.2 Ma=5 Impinging Shock Interaction

For the Ma=5 impinging shock interaction, Schülein (2004) has obtained the surface pressure,
skin-friction and wall heat flux as well as flow visualizations. The freestream flow condition
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Figure 9.2: Grid-independence study for the Mach=3.0 13◦ impinging shock interaction
predicted by the k− ε model with AWF (left) and SWF (right)

is listed in Table 9.2, and the flow properties across the oblique shock are listed in Table 9.3
using the oblique shock relationships.

Table 9.2: Inflow conditions for Ma=5 impinging shock interaction

M∞ Reθ0 θ0, mm δ0, mm pt∞, (MPa) Tt∞, K Tw, K
5.0 5920 0.16 3.8 2.12 410 300

The computation mesh is similar to the Ma=3 impinging shock interaction case, ex-
cept that the oblique shock elements are applied on the top boundary (Instead of the inlet
boundary), in order to get the impinging interaction region at the required location. The
inlet profiles, such as the velocity, pressure, and temperature are obtained from the flat plate
computation under the same conditions as in Table 9.2 at the momentum thickness 16mm.

Grid-independence test results are shown in Fig. 9.3 and 9.4 for all methods. For the
further computations and comparisons, the 240 × 80 grid is used for the LS model with the
Yap correction, while the 120 × 45 grid is used for the wall function approaches.
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Table 9.3: After oblique shock elements for Ma=5 impinging shock interaction

β (◦) M2 u2x, m/s u2y, m/s p2, N
/

m2 T2, K
14 3.60 748.02 186.50 17605 113.97
10 4.00 779.93 137.52 12200 97.60
6 4.39 804.26 84.53 8080 84.28

Figure 9.3: Grid-independence study for the Mach=5.0 14◦ impinging shock interaction
predicted by the LS model with the Yap correction

Figure 9.4: Grid-independence study for Mach=5.0 14◦ impinging shock interaction predicted
by the k-ε model with AWF (left) or SWF (right)

9.1.3 Ma=7.2 Axisymmetric Impinging Shock Interaction

For the Ma=7.2 axisymmetric impinging shock interaction, the experiment geometry is
shown in Fig. 9.4. The experimental instruments included pressure taps, transient thin-skin
technique (surface heat transfer), surface shear, survey mechanism, pitot pressure probes,
static pressure probes, and total temperature probes. This experiment was conducted in the
Ames 3.5-Foot Hypersonic Wind Tunnel. The nominal free-stream test conditions were: total
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Figure 9.5: Experimental configuration by Kussoy and Horstmann (1975)

temperature = 695K, total pressure = 34 atm, free-stream unit Reynolds number = 10.9×106

m−1, free-stream Mach number = 7.2. The local free-stream conditions ahead of the incident
shock are listed in Table 9.4 for shock generator angles of 7.5◦ and 15◦. The undisturbed
boundary layer information is listed in Table 9.5.

As noticed in Fig. 9.5, the experimental configuration is an axisymmetric cylinder with
an axisymmetric shock generator. The wedge type is used for the front and back boundaries
as suggested in the OpenFOAM tutorial, and the wedge angle is restricted to below 5◦. In
this case, the shock generator is included in the computation, and the mesh used for the

Table 9.4: Local freestream conditions for Ma=7.2 impinging shock interaction

β (◦) M∞ P∞ T∞ Tw ρ∞ U∞ To
7.5◦ 6.71 607 70.6 300 0.03 1129 695
15◦ 6.86 607 67.8 300 0.0312 1132 695
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Table 9.5: The undisturbed boundary layer information for Ma=7.2 impinging shock interac-
tion

β (◦) x cm δ δ * θ τ w N/m 2 qwW/m2

7.5◦ 42 3.3 1.237 0.125 16.7 6240
15◦ 20 2.7 1.393 0.096 16.7 6240

Figure 9.6: Computation domains for the Ma=7.2 β=15◦ impinging shock interaction

Figure 9.7: Grid-independence study for the Mach=7.2 15◦ impinging shock interaction
predicted by the LS model with the Yap correction

wall function approach is shown in Figure 9.6. From the experimental report by Kussoy
and Horstmann (1975), the flowfields near the shock generator are still laminar. In order
to generate the impinging shock and expansion wave near the fin angle, a coarse mesh is
used near the shock generator with y+=40 at the tip, while a fine mesh is used upstream of
separation with y+=0.5. The mesh is refined towards the cylinder and generator from the
mid-line of the computation domain as shown in Fig. 9.6. For the grid-independence study
for the LS model with the Yap correction, as shown in Fig. 9.7, the mesh in the y-direction
from the mid-line to the upper boundaries is fixed for all three meshes, and the number in the
y-direction refers only to the mesh from the mid-line to the flat wall. From the comparison
of the three meshes, the numerical results become converged as the grid number increases.
For the later comparisons, the medium mesh, 420 × 105, is used for the shock generator
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Figure 9.8: Grid-independence study for the Mach=7.2 15◦ impinging shock interaction
predicted by the k− ε model with AWF (left) and SWF (right)

angles 7.5◦ and 15◦. The grid-independence study results for the wall-function are shown in
Fig. 9.8. The numerical results of the AWF are more grid-independent than the results of
SWF, particularly since the SWF method fails to reproduce the separation region when using
a coarse mesh. Overall, the 280 × 40 grid is used for the computation with wall function
approaches, and this does reproduce a separated flow region using both the AWF and SWF
methods.

9.1.4 Ma=8.2 Impinging Shock Interaction

Both the impinging shock interaction and double fin interaction at Mach number 8 were
tested in the NASA Ames Research Center 3.5-ft hypersonic wind tunnel. The test bed is a
sharp flat plate, 76cm wide, 220cm long and 10cm thick. A 2-D sketch of the experimental
configuration is shown in Fig. 9.9 (top and middle), and the red region is the numerical
simulation domain with a developed boundary layer. The entire test bed was water-cooled,
and a constant surface temperature of 300K was maintained during a run. At 187cm from
the leading edge, pitot pressure, static pressure and total temperature surveys were taken for
the undisturbed boundary layer. The natural transition occurred between 50cm to 100cm
from the leading edge. The impinging shock interacts with the fully developed turbulent
boundary layer on the flat plate. From the experimental observation, separation happens
when the wedge-shock generator angle is 10◦, but not for the 5◦ case. The experimental data
include surface pressure and heat transfer. The nominal free-stream test conditions were:
total temperature 1166K, total pressure 60atm, and Mach number 8.2, and the detail of the
freestream conditions are listed in Table 9.6. The mesh employed for the LS model is similar
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Table 9.6: Freestream conditions for Ma=8.18 impinging shock interaction

M∞ P∞(Pa) T∞(K) Tw(K) U∞(m/s) δ (cm) δ *(cm) θ (cm)
8.18 430 81 300 1476 3.7 1.59 0.094

to that used in the Mach=7.2 impinging shock case, with refinements around both the shock
generator wall and flat plate wall as shown in Fig. 9.9 (bottom).

Figure 9.9: Experimental configuration of 5◦ (top) and 10◦ (middle) by Kussoy and Horstman
(1991) and the grid (bottom) for the Ma=8.2 10◦ impinging shock interaction

Figure 9.10 shows the grid-independence study for the LS model with the Yap correction,
where the mesh in the y-direction from the mid-line to the upper boundaries is fixed for all
three meshes, and the number in the y-direction refers only to the mesh from the mid-line
to the flat wall. From the comparison, the numerical results become converged as the grid
number increases. To illustrate the effect of y+ in the interaction region, two finer near-wall
meshes were generated with y+=0.2 and y+=0.1 at the upstream. Figure 9.11 shows the
y+ distribution along the wall and wall heat flux results for the Ma=8.2 impinging shock
interaction using a 480×105 mesh. The numerical results show good grid independent. For
the further computations, the medium mesh, 320×70, is used for the shock generator angles
of 5◦ and 10◦ using the LS model with the Yap correction. Figure 9.12 shows the grid
independence for the wall function approaches, and the 160×60 mesh is used for the further
computations.
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Figure 9.10: Grid-independence study for Mach=8.2 impinging shock interaction at shock
generator angles of 5◦ (left) and 10◦ (right) predicted by the LS model with the Yap correction

Figure 9.11: The y+ distribution (left) and wall heat flux (right) for the Ma=8 impinging
shock interaction using a 480×105 mesh

Figure 9.12: Grid-independence study for Mach=8.2 impinging shock interaction at shock
generator angle of 10◦ with AWF (left) and SWF (right)
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9.2 Results

9.2.1 Ma=3 Impinging Shock Interaction

Figure 9.13 displays the Mach number contours for shock generator angles of 7◦, 10◦ and
13◦ by the LS model with the Yap correction on 200×90 grid. As the shock generator angles
increase, the impinging shock becomes stronger, the size of the separation zone increases, and
the separation point is shifted further upstream. From the Mach number contours predicted
by AWF and SWF in Fig. 9.14, both wall function approaches can capture the SWTBLIs
in the near wall region, and the flow structures are similar to the sketch of shock impinging
shock interaction in Fig. 2.2. However, the SWF predicts a bigger separation zone than the
AWF results and LS results, which will become obvious from the later comparison.

Figure 9.14 compares the numerical results of wall pressure, skin friction and wall heat
flux with experiments. For the 7◦ case, there is no flow separation seen in either the numerical
or experimental results. The pressure distribution by both wall function approaches is close
to the LS and experimental results. For the skin friction, the SWF returns the lowest values
in the upstream and downstream regions. For the wall heat flux, the prediction by SWF is
much lower than the results of LS and AWF, even upstream of the interaction. For the AWF
results, they match the LS results well in the upstream region, while they are lower than the
LS results in the downstream of the interaction region. This is much better than the previous
version of AWF as shown in the comparison of Chapter 8.

For the 10◦ case, all approaches return the same pressure and fit the experimental results
well. For the skin friction, the wall function approaches return less separation than the LS
results, which is obviously different from the numerical results in Chapter 7, in which the
vanLeer limiter and a 200×100 mesh, are used in the computation. It is mainly because of
the limiter difference since the vanAlbada limiter is used in this chapter and produce more
dissipation than the vanLeer limiter. For the wall heat flux, the SWF returns totally different
results to those of the LS results, while the AWF results are much closer to the low-Re model
results.

For the 13◦ case the pressure contours how that the start of separation predicted by the
SWF is earlier than the that of the LS model and AWF, while the LS model predicts that
reattachment occurs later than the SWF and AWF. Broadly the same conclusion can be seen
from the wall heat flux, but in this case, the SWF predicts very different results from the
other modelling approaches. Overall, all three methods give a good prediction of the pressure
with slight differences around the start of separation.

Figure 9.16 displays predicted and measured near-wall velocity profiles at eight different
streamwise locations. Overall, all the approaches return good predictions at all eight locations.
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At location 2, the SWF and LS predict the flow has separated, while the AWF is still
unseparated. In the separation zone, locations 3-5, the numerical results tend to underestimate
the mean velocity, while in the downstream region, locations 6-8, they tend to overestimate the
mean velocity. The equivalent non-dimensional predicted temperature profiles are compared
in Fig. 9.17. At location 1, the AWF returns a similar temperature distribution as the LS
model, while the SWF returns lower unidimensional temperature than the others. At location
2, the SWF has already separated, and returns negative near wall unidimensional temperature,
meaning that the wall heat flux becomes positive. At locations 3-8, all methods predict a
negative unidimensional temperature, with the AWF being in general closer agreement with
the LS results, particularly in the downstream region.

The analytical velocity and temperature profiles are obtained by the AWF in the near-wall
cells, compared to the LS profiles, in the upstream and downstream regions are shown in Fig.
9.18. These two locations are x=0.116m and 0.4m which, from the Mach number contour
plots of Fig. 9.13 can be seen to be far from the flow separation region. From the comparison,
the analytical temperature and velocity fit the LS results perfectly in the upstream location.
In the downstream location, the temperature and velocity at the edge of the first cell have
slight differences, but in the near wall region the analytical solution has a similar gradient
to the LS approach. Especially for the temperature distributions in the near wall region, the
gradient is close to zero for this case, and the analytical solution can reproduce such gradient
perfectly. On the other hand, the thermal SWF, which follows the log-law distribution, would
not be expected to fit the distributions of temperature in the supersonic flow, at least for this
Mach=3.0 case.

9.2.2 Ma=5 Impinging Shock Interaction

Figure 9.19 displays the Mach number contour and iso-lines of mean pressure at Mach 5, for
shock generator angles β=6◦, 10◦ and 14◦ predicted by LS model with the Yap correction on
420×105 grid.

From the Mach number contours, there is no separation for the 6◦ and 10◦ cases, while
for the 14◦ case, flow separation does occur, as it did in the Mach 3.0 β=13◦ case. When we
compare Fig. 9.19 with Fig. 9.13 at β=10◦ with different Mach numbers, it becomes apparent
that the impinging shock angle increases as the inflow Mach number increases. In Fig. 9.20,
the near wall temperature and velocity are compared between the LS model and wall function
approaches at the same momentum thickness. From the near wall velocity comparison, the
streamwise velocity at the near-wall cell predicted by AWF is closer to the LS model and
experimental results. For the wall temperature distribution, the non-dimensional temperature
is negative at the wall and then increases gradually with wall distance, which means that the
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wall heat flux is positive at the upstream location. The AWF approach predicts the similar
near-wall cell temperature as the LS model and experimental results, while the SWF approach
tends to underpredict the wall temperature at the upstream location.

In Fig. 9.21, the Mach number contours from the wall function approaches and low-Re
model approaches show that the SWF predicts a larger flow separation region than the AWF
and LS model, as was also seen in the Mach 3 case. From the surface pressure, skin-friction
and wall heat flux comparison in Fig 9.22, the numerical results underestimate the separation
when compared with the experimental data. To compare these results with predictions
reported by others, Ali Pasha and Sinha (2008) reported results of the same case using a
standard k-ω model, and with the addition of an empirical term, nominally developed to
account for shock unsteadiness. Their results are also included in Fig. 9.22(c). In general,
the standard k-ω model returns a small separation bubble and high skin friction in the
downstream region, while the modified k-ω model improved the size of separation bubble,
but returned a downstream skin friction values much lower than those from the LS model or
experiments. In this section, the Stanton number is also compared, which is calculated by:

St =
h

ρ∞U∞Cp
=

qw

ρ∞U∞Cp(T∞ −Tw)

which means that the Stanton number represents the wall heat flux. From the comparison at
different shock generator angles, the AWF and SWF return different signs of wall heat flux,
which is the same as seen in the Mach 3 case. Overall, the AWF approach returns the similar
wall heat flux as that predicted by the LS model, while the SWF approach fails to predict the
wall heat flux in upstream and downstream regions.

In Fig. 9.23a, the near velocity comparison for β=6◦ shows that the velocity in the
downstream region by all approaches fit the experiment well, although the SWF returns
slightly lower values than the AWF, leading to the slightly lower skin friction in Fig 9.22.
The non-dimensional temperature variation by LS model decrease to negative values first
and increase to the downstream temperature after the reflected shock. From Fig 9.22, the
AWF and LS have the same sign of wall heat flux, which means that the analytical near-
wall temperature should show a similar tendency to the LS profile. In Fig 9.23b, the near
temperature for β=6◦ by AWF is closer to that of the LS model and experiments than the
SWF, which returns a positive non-dimensional temperature which means that the SWF
predicts a negative wall heat flux at all three downstream locations. For the comparison
at β=10◦ in Fig. 9.24, the four locations are all downstream of separation region, and the
same conclusions can be drawn as in the β=6◦ case. For the strong separation at β=14◦ in
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Fig. 9.25, the first-cell temperature by the SWF and AWF at x-xI=26cm is close to the wall
temperature, but have opposite signs to each other.

The analytical near-wall solution in the upstream and downstream regions is compared
in Fig 9.26 for the β=14◦ case. For the velocity profile, the analytical solution of AWF is
close to the LS results, leading to the skin friction predictions also being similar. For the
temperature, similar profiles from the AWF and LS are also noticed. For this Mach 5 case,
the non-dimensional temperature decreases to negative values first and then increases as
the inlet or post-reflected shock temperatures. Overall, the AWF can reproduce the drop
of temperature in the viscous sublayer and predict broadly the similar wall heat flux as LS
model, while the log-law based thermal SWF fails to predict the wall heat flux accurately.

9.2.3 Ma=7.2 Axisymmetric Impinging Shock Interaction

Figure 9.27 displays the Mach number contours and iso-lines of mean pressure at Mach
7.2, for shock generator angles of 7.5◦ and 15◦ by LS model with the Yap correction on
240×80 grid. The shock generator is included in the computation domain in this case because
now both the shock generated and the expansion fan produced from the corner of the shock
generator interact with the incoming boundary layer. The expansion wave can be expected to
reduce the pressure, skin-friction and wall heat flux when compared with the previous two
cases.

Figure 9.28 shows the pressure contours for the 7.5◦ case predicted by the AWF, SWF,
and LS approaches, respectively. The start of separation is between 48cm and 54cm from the
leading point of the shock generator, and the AWF predicts the earliest separation, followed
by the SWF and then the LS. Six locations are selected to compare the near wall velocity
and temperature, as shown in Figs. 9.29 and 9.30 respectively. For the velocity comparison,
the first cell velocity predicted by the SWF is slightly lower than that from the AWF and
LS approaches in the upstream locations. The para-AWF and hyper-AWF in the figures
denote the AWF approach with the parabolic or hyperbolic assumptions to the molecular
viscosity as described in Section 8.3. Overall, the para-AWF and hyper-AWF return the
same near wall velocity distribution, which also fit the LS results well. The SWF predicts
a lower velocity in all six locations. The near wall gradient suggested by the experimental
measurements is larger than all the numerical results at locations x=42, 48, 54 and 60cm. For
the temperature comparison in Fig. 9.30, the measured non-dimensional temperature at all
locations first decreases as one moves away from the wall, and then increases at a slower rate
at all locations from the experimental data. The temperature predicted by the LS fits well
with the experiments in the upstream and downstream locations. In the interaction region, the
numerical results from all three modelling approaches underpredict the near wall gradient.
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The analytical near-wall solution is compared in Figs. 9.31 and 9.32 at an upstream
location and a downstream location for the β=7.5◦ case. From the comparison, the analytical
solution in the near wall cell fits well with the experimental data and LS results. Especially
for the temperature variation, the analytical solution reproduces the sharp gradient in the
near-wall region and returns a similar near-wall temperature variation to the LS results.

Figure 9.33 displays the pressure contours for the 15◦ case by AWF, SWF and LS
approaches, respectively and the interaction region starts around x=35.5cm. Six locations
are selected, spinning from the upstream to the downstream regions, at which to compare
the near wall properties. For the velocity comparison in Fig. 9.34, the numerical results
have a slight difference from the experimental data, except the location x=35.5, where the
flow is separated. The LS results are closer to the experimental data in most locations, and
the para-AWF and hyper-AWF tend to improve it compared to the AWF results and tend to
return the similar results as the LS results. At x=35.5cm, the LS returns negative velocity
in the near wall region, which means the flow separation has begun by this location, while
the AWF results return positive velocity which is close to the experimental results. For the
temperature comparison in Fig. 9.35, a strong gradient of temperature variation exists in
the near wall region in the experimental data, and the LS results can obtain such a strong
gradient in all locations. The first cell temperature by wall function approaches varies from
model to model. At most locations, the AWF results tend to predict the similar temperature
as the experimental data, while the SWF seems to have the similar tendency as the LS results.

In order to validate whether the AWF can reproduce the near wall gradients of velocity
and temperature, three locations, x=20cm, 35.5cm and 65cm, are chosen at which to compare
the analytical results with the LS and experimental results. As noticed above, the parabolic
and hyperbolic assumption return quite similar results to each other, so for clarity only the
para-AWF results are included in Fig. 9.36 (at x=20cm), 9.37 (at x=35.5cm) and 9.38 (at
x=65cm). At the upstream location x=20cm, the AWF produces similar near-wall gradients
of velocity and temperature to the LS results, which means that the wall shear stress and
wall heat flux predicted by the two models are also similar. At x=35.5cm, the para-AWF fits
the experiment better than the LS. At x=65cm, the velocity by the numerical calculation is
similar to each other but smaller than the experimental values, and the LS shows that the
non-dimensional temperature drops first and increase in the near wall region. The AWF can
reproduce this tendency and fits the experiment better than the LS.

The surface pressure, skin-friction and wall heat flux are compared by different ap-
proaches in Fig 9.39. For the 7.5◦ case, the numerical approaches all predict the similar
peak pressure that matches the experimental value well. For the skin-friction, the para- and
hyper-AWF have some fluctuations in the interaction region, and they predict smaller peak
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skin-friction than the AWF and LS results. The SWF and para- (hyper-) AWF predict the
similar peak skin-friction to each other, which is closer to the experiment. For the wall heat
flux, the parabolic (or hyperbolic) assumptions of molecular viscosity decrease the peak wall
heat flux and make the peak value closer to the experiment. The SWF underpredicts the wall
heat flux in both the upstream and the downstream regions.

For the 15◦ case, Roy and Blottner (2006) have presented results from a number of other
workers who used the k-ε Launder-Sharma, k-ε Jones-Launder, k-ε Rodi, and k-ω Wilcox.
These numerical results are also included in Fig 9.39(b) for reference. The AWF tends to give
higher peak pressure than the LS and SWF results. The LS results by Huang and Coakley
(1993) tend to overpredict the wall pressure in the upstream region, and overpredict the peak
value by 30%, while the JL model by Horstman (1991) obtains the same upstream pressure
as the LS results by Huang and Coakley (1993) and overpredict the peak value by 20%. For
the skin-friction, the AWF tends to give similar peak value as the LS results, while the SWF
tends to underpredict the peak value compared to the LS results. All numerical approaches
overpredict the peak experimental values by a factor of two. For the wall heat flux, the para-
(or hyper-) AWF tend to return lower peak values of AWF. The LS method in this report
is used with the Yap correction and tends to give more accurate results than the LS model
without the lengthscale correction. Overall, the numerical results return higher values of
peak pressure, skin-friction, and wall heat flux than the experimental results. The AWFs have
some fluctuations in the interaction region, and the para- (hyper-) AWF tends to decrease
the peak values. The SWF tends to predict the lowest wall heat flux values throughout the
computation domain as was also seen in the Ma=3 and Ma=5 cases.

9.2.4 Ma=8.2 Impinging Shock Interaction

In this case, the shock generator is again included in the computation geometry, as it was
in the Mach 7.2 case, in order to produce both the impinging shock from its leading edge
and the expansion fan from its corner. Figure 9.40 displays the Mach number contours and
iso-lines of mean pressure at Mach 8.2, shock generator angles of 5◦ and 10◦ predicted by the
LS model with the Yap correction on a 320×70 grid. On the flat plate, there is no separation
for these two cases. Figure 9.41 displays Mach number contours of the 10◦ case predicted by
the different wall function approaches. All methods can capture the interaction at the bottom
wall and show little difference between their flowfields.

Figure 9.42 displays the near-wall velocity and temperature comparison for the Ma=8.2
flat plate upstream boundary layer at momentum thickness θ=0.094cm. The first cell velocity
by SWF is lower than LS results, while the para- (or hyper-) AWF returns higher velocity
than the LS results. However, all approaches obtain a fairly similar near-wall velocity profile.
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For the temperature distribution, the non-dimensional temperature decreases to negative
values first and then increases to the far-field temperature. The first cell temperature by SWF
is much lower than the LS and experimental results. The AWFs tend to return values similar
to those of the LS and experimental measurements.

Figure 9.43a displays the comparison of surface results for the Ma=8.2 impinging shock
interaction at the shock generator angle of 5◦. For the surface pressure, all approaches
return similar results to the experimental values, although the SWF tends to overpredict it
in the downstream region. For the skin-friction, the AWF with hyperbolic and parabolic
assumptions for the molecular viscosity tend to return smaller values than the AWF. The
AWF and SWF obtain the similar skin-friction to each other and cannot capture the drop of
skin-friction predicted by the LS. For wall heat flux, the hyper- (or para-) AWF obtains lower
values than the LS and AWF results, and the values are much closer to the experimental
measurements, especially in the downstream region. The SWF, although it overpredicts the
near-wall temperature, returns a similar wall heat flux as the experimental measurements.
From the thermal SWF Equ. (6.6), the wall heat flux is mainly decided by the first cell
temperature. In the previous case, it was noted that the SWF obtained a similar near-wall cell
temperature to the experimental values, but significantly underpredicted the wall heat flux.
In this case, however, the non-dimensional temperature is significantly underpredicted while
the corresponding wall heat flux is close to the experimental measurements.

Figure 9.43b displays the wall surface results for the shock generator angle of 10◦, this
time also including numerical results reported by Horstman (1991) using k-ε Rodi (1991) and
Smith (1996) using the k-l model. For the wall pressure, the k-ε Rodi tends to underestimate
the peak pressure compared to the other models and wall function approaches. The SWF
tends to get the highest peak value among all the methods. For the skin-friction, the SWF
and AWF return similar results to the LS results, while the AWF cannot reproduce the
separation predicted by the LS, and the SWF separation begins further upstream than the
LS results. The AWF with parabolic or hyperbolic assumption returns lower skin-friction in
the interaction region while returning similar values to the LS model in the upstream and
downstream regions. They also return a similar separation region to the LS. For the wall heat
flux, the various models return different peak values. The AWF returns the highest values
which are close to the LS results. Among all methods, the AWF with parabolic or hyperbolic
assumption fits the experimental measurements well throughout the domain length. The k-ε
Rodi predicts a similar wall heat flux as the experimental measurements in the upstream
and interaction regions but underestimates it in the downstream region by up to 20% as
summarised by Roy and Blottner (2006).
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Figure 9.44 shows near-wall velocity and temperature comparisons at different locations
for the 10◦ shock generator case. Overall, the first cell velocity by wall function approaches is
similar to the velocity distribution predicted by the LS model and experimental measurements.
The near wall velocity by the SWF is lower than the LS, while the AWF is higher at all four
locations. For the near-wall temperature, the SWF returns much lower values at all locations
than the LS results. The AWF returns similar value to the LS in the upstream regions, lower
values than the LS at around x=35mm, and higher values than the LS further downstream.

Figure 9.45 shows the analytical solution compared with the LS results for the 10◦ case.
In the upstream region, the analytical velocity and temperature gradients by the AWF are
larger than the LS results, while the hyper- (or para-) AWF fit the LS well. As a result,
the AWF underestimates the wall heat flux and skin-friction in the upstream region. In the
downstream region, the same tendency happens as the upstream. At location x=35cm, the
hyper- (or para-) AWF have lower gradients of velocity and non-dimensional temperature
than the LS results and returns the lowest wall heat flux and skin-friction compared to AWF
and LS results.

Figure 9.46 displays the analytical molecular viscosity and turbulent viscosity in the
near wall cells at different locations. For the AWF, the molecular viscosity is assumed to
be constant in the near wall cell, while the para-AWF and hyper-AWF mean the viscosity
has a parabolic or hyperbolic variation in the viscous sublayer as described in Section 8.3.
From the comparison, the para-AWF is much closer to the LS results at all sampled locations.
For the turbulent viscosity, the para-AWF and hyper-AWF predict similar results to the LS
results. In the interaction region, the temperature rises quickly, and as a consequence so does
the near-wall molecular viscosity. The para-AWF and hyper-AWF can capture this feature
via their analytical expressions for the molecular viscosity. The molecular viscosity, which is
calculated by the analytical temperature at the edge of viscosity sublayer, is used to evaluate
the turbulence viscosity by equation (8.68). The rapid change of temperature in the near-wall
region will affect the turbulence viscosity as described in Section 8.3 via the assumption of
molecular viscosity and turbulence viscosity. The LS model has to model the rapid change
of temperature to the damping terms via the molecular viscosity and then goes to the k and ε

equations. The resolution of Lauder-Sharma k-ε is then used to construct the µt by equation
(3.22). It seems that the LS response slowly to the sudden change of temperature in the near
wall region, which will result in the overpredict of wall heat flux as shown in Figure 9.43.

9.2.5 Further Discussion of Numerical Results

It is obvious from the observation of the impinging shock interaction cases that the tempera-
ture variation in the near-wall region varies at different Mach numbers. In order to understand
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the difference between supersonic and hypersonic flows, some of the near wall properties are
compared at different Mach numbers with the largest shock generator angles of each case,
as displayed in Fig. 9.47. In the upstream and downstream regions, the non-dimensional
temperature tends to drop to lower negative values as the Mach number increases from the
LS results. For the SWF, the wall heat flux is obtained from the assumption of a log-law in
the near wall region, and the accuracy of the first cell temperature will decide the accuracy
of the wall heat flux as shown from the wall heat flux equation (6.6). For the AWF, the
analytical temperature at different Mach number have shown more accurate prediction as
the LS results, especially the at the upstream and downstream locations as displayed in the
previous four sections.

9.3 Summary

In this section, the modified analytical wall function as described in Chapter 8 has been eval-
uated in supersonic and hypersonic impinging shock interaction flows. The main conclusions
are:

1. The increase of shock angle will produce a stronger impinging shock. When the
impinging shock is strong enough, a separation bubble develops, such as in the Ma=3
β=13◦, Ma=5 β=13◦ and Ma=7.2 β=15◦ cases.

2. The wall pressure, predicted by the LS model, the k-ε model with AWF (para- and
hyper- AWF for hypersonic cases) and SWF, fit the experimental data well, except in
the case of the axisymmetric impinging shock interaction at Ma=7.2 and β=15◦.

3. The skin friction for the Ma=3 case and Ma=5 case by the LS model fit the experimental
data well across the range from strong to weak interactions. In the upstream region, the
AWF is closer to the LS results. The SWF separates earlier than the LS and re-attaches
also earlier than LS, while the AWF separates later and re-attaches earlier than LS.
However, the SWF fails to reproduce the separation of the weak interactions. For the
axisymmetric Ma=7.2 case, all the approaches over-predict the peak skin-friction, but
in the upstream and downstream regions, all give good predictions. The AWF with
hyperbolic and parabolic assumptions to the molecular viscosity tends to decrease the
peak values of skin-friction for both Ma=7.2 and Ma=8 cases, which makes it closer to
the experimental data compared to the AWF with constant molecular viscosity.

4. The wall heat flux by SWF is mainly decided by the near wall cell temperature from
the thermal SWF equation (6.6). For the Ma=3, 5 and 7.2 cases, the SWF fails to
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predict the wall heat flux over the entire plate length. For the Ma=8.2 case, the SWF
does not predict non-dimensional temperature accurately when compared with the
experimental data in the upstream region but fits the experimental wall heat flux well.
Overall, the modified AWF in Section 8.2 returns good agreement with the experiment
wall heat flux for Ma=3 and Ma=5 case. For the hypersonic cases, the AWF with
the parabolic and hyperbolic assumption for the molecular viscosity as described in
Section 8.3 decrease the peak wall heat flux and fit the experiment well.

5. The numerical results of mean velocity in the near-wall region from all the modelling
approaches generally match the experimental well, especially in the upstream and
downstream locations. As the start locations of the interaction are predicted differently
by different approaches, the predicted mean velocity in this region does show greater
differences between the different models.

6. For the near-wall non-dimensional temperature, the AWF give closer results with the
LS than the SWF for Ma=3 and 5 cases in general. Especially in the upstream and
downstream regions, the AWF fits the LS and experiment perfectly, since there is no
separation and interaction. For the hypersonic cases, the AWFs fit the experimental
data and LS well in the upstream and downstream region. In the interaction region, the
AWFs fit the experimental data better than the SWF at most locations.

7. For the near wall analytical velocity at Ma=3.0 and 5.0, the AWF returns similar near-
wall velocity gradient to the LS in the upstream and downstream regions, which means
that the wall shear stress also closely matches that of the LS model. For hypersonic
cases, the AWFs fit the LS and experimental data well in the upstream and downstream
regions, while in the interaction region, the para- (or hyper-) AWFs is closer to the
experimental data than the LS. For the Ma=8.2 case, the para- (hyper-) AWF capture
the sharp near wall velocity gradient, which is close to the LS in the upstream and
downstream regions. In the interaction region, the para- (hyper-) AWF return smaller
gradients than the LS, which means they also return lower wall shear stress values by
para- (hyper-) AWF, as shown by the skin-friction comparison.

8. For the near wall analytical temperature, the non-dimensional temperature gradient
is close to zero in the near wall region at Ma=3.0, which agrees well with the LS
model results. For hypersonic flows, the gradients at the wall are negative and then
turn to positive at all locations. Overall, the AWFs return a negative gradient at the
wall. For Ma=7.2 and 8.2 cases, para- (hyper-) AWF show differences from the AWF
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with constant molecular viscosity, since there are significant temperature variations
across the near-wall region.

Overall, all methods return good wall pressure predictions and show good agreement
with the experiment except in the Ma=7.2 β=15◦ case. the AWFs predict the wall heat
flux accurately compared to the experiments for the Ma=3.0, 5.0 and 8.2 cases. For the
axisymmetric Ma=7.2 case, all numerical approaches, including those reported in previous
studies, overestimate the peak wall heat flux. The thermal SWF is based on the log-law
assumption and fails to predict the wall heat flux at all locations for Ma=3.0, 5.0 and 7.2
cases. For the Ma=8.2 case, it returns much smaller near wall cell temperature than the
experimental measurements in the upstream region, but returns similar wall heat flux as the
experiments.
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Figure 9.13: Iso-lines of mean pressure superimposed on Mach number contours for Ma=3
impinging shock interaction with shock generator angles of β=7◦ (top), β=10◦ (middle),
β=13◦ (bottom) predicted by the LS model with the Yap correction
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Figure 9.14: Mach number contours for Ma=3 impinging shock interaction with shock
generator angle of 13◦ predicted by the k− ε model with AWF (top) and SWF (bottom)

Figure 9.15: Surface distributions of of wall pressure (top), skin-friction (middle) and wall
heat flux (bottom) comparison at different locations for Ma=3 impinging shock interaction
with shock generator angles of 7◦ (left), 10◦ (middle) and 13◦ (right)
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Figure 9.16: Near-wall velocity comparison at different locations for Ma=3 impinging shock
interaction with shock generator angle β=13◦
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Figure 9.17: Near-wall temperature comparison at different locations for Ma=3 impinging
shock interaction with shock generator angle β=13◦
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Figure 9.18: The analytical velocity and temperature comparison at the upstream (top),
separation region (middle) and downstream (bottom) of Ma=3 impinging shock interaction
with shock generator angle β=13◦
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Figure 9.19: Iso-lines of mean pressure superimposed on the contours of Mach number Ma=5
impinging shock interaction with shock generator β=6◦ (top), β=10◦,(middle), and β=14◦

(bottom) using LS model with the Yap correction

Figure 9.20: Near-wall velocity (right) and temperature (left) comparison in the upstream
boundary layer of the Ma=5 flat plate
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Figure 9.21: The Mach number contour for Ma=5 impinging shock interaction with shock
generator β=14◦ by k− ε model with AWF (top) and SWF (bottom)

Figure 9.22: Near-wall pressure (top), skin-friction (middle) and wall heat flux (bottom)
comparison for Ma=5 impinging shock interaction with shock generator β=6◦ (left) β=10◦

(middle) and β=14◦(right)



9.3 Summary 185

Figure 9.23: Near-wall velocity (left) and temperature (right) comparison at different loca-
tions for Ma=5 impinging shock interaction with shock generator angle β=6◦
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Figure 9.24: Near-wall velocity (left) and temperature (left) comparison at different locations
for Ma=5 impinging shock interaction with shock generator angle β=10◦
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Figure 9.25: Near-wall velocity (left) and temperature (right) comparison at different loca-
tions for Ma=5 impinging shock interaction using LS model with the Yap correction with
shock generator angle β=14◦
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Figure 9.26: Analytical velocity (left) and temperature (right) comparison at selected up-
stream and downstream locations for the Ma=5 β=14◦ impinging shock interaction

Figure 9.27: Iso-lines of mean pressure superimposed on the contours of Mach number for
Ma=7.2 impinging shock interaction using LS model with the Yap correction with shock
generator angle β=7.5◦ (top) and β=15◦ (bottom)
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Figure 9.28: Pressure contours of Ma=7.2 impinging shock interaction with shock generator
angle β=15◦ predicted by the LS model with the Yap correction (bottom) and k− ε model
with SWF (middle) and AWF (top)
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Figure 9.29: Near-wall velocity comparison at different locations for the Ma=7.2 β=7.5◦

impinging shock interaction
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Figure 9.30: Near-wall temperature comparison at different locations for the Ma=7.2 β=7.5◦

impinging shock interaction

Figure 9.31: The analytical velocity (left) and temperature (right) comparison at an upstream
location for the Ma=7.2 β=7.5◦ impinging shock interaction
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Figure 9.32: The analytical velocity (left) and temperature (right) comparison at a downstream
location for the Ma=7.2 β=7.5◦ impinging shock interaction

Figure 9.33: Pressure contours of Ma=7.2 impinging shock interaction with shock generator
angle β=15◦ predicted by the LS model with the Yap correction (bottom) and k− ε model
with SWF (middle) and AWF (top)
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Figure 9.34: Near-wall velocity comparison at different locations for the Ma=7.2 β=15◦

impinging shock interaction
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Figure 9.35: Near-wall temperature comparison at different locations for the Ma=7.2 β=15◦

impinging shock interaction
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Figure 9.36: The analytical velocity (left) and temperature (right) comparison at x=20cm for
the Ma=7.2 β=15◦ impinging shock interaction

Figure 9.37: The analytical velocity (left) and temperature (right) comparison at x=35.5cm
for the Ma=7.2 β=15◦ impinging shock interaction

Figure 9.38: The analytical velocity (left) and temperature (right) comparison at x=65cm for
the Ma=7.2 β=15◦ impinging shock interaction
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Figure 9.39: Surface distributions of of wall pressure (top), skin-friction (middle) and wall
heat flux (bottom) comparison for the Ma=7.2 impinging shock interaction with shock
generator angles β=7.5◦ (left) and β=15◦ (right)
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Figure 9.40: Iso-lines of mean pressure superimposed on Mach number contours for Ma=8.2
impinging shock interaction with shock generator angles β=5◦ (top) and β=10◦ (bottom)
predicted by the LS model with the Yap correction

Figure 9.41: Iso-lines of mean pressure superimposed on Mach number contours for Ma=8.2
impinging shock interaction with shock generator angles β=10◦ (bottom) predicted by the
AWF (top), para-AWF (top middle), hyper-AWF (bottom middle) and SWF (bottom)
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Figure 9.42: Near-wall velocity (left) and temperature (right) comparison at boundary layer
momentum thickness of 0.094cm for the Ma=8.2 flat plate computation

Figure 9.43: Surface distributions of of wall pressure (top), skin-friction (middle) and wall
heat flux (bottom) comparison for the Ma=8.2 impinging shock interaction with shock
generator angles β=5◦ (right) and β=10◦ (left)
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Figure 9.44: Near-wall velocity (left) and temperature (right) comparison at different loca-
tions for the Ma=8.2 β=10◦ impinging shock interaction
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Figure 9.45: The analytical velocity (left) and temperature (right) comparison at different
locations for the Ma=8.2 β=10◦ impinging shock interaction



9.3 Summary 201

Figure 9.46: The molecular viscosity (right) and turbulent viscosity (right) in the near wall
cell at different locations for the Ma=8.2 β=10◦ impinging shock interaction
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Figure 9.47: The temperature comparison in the upstream (left) and downstream (right)
regions at different Mach number predicted by the k − ε model with SWF (top), AWF
(middle) and LS model (bottom)



Chapter 10

2D and Axisymmetric Compression
Corner

In this chapter, the 2D and axisymmetric compression corner cases, ranging from supersonic
to hypersonic flow conditions, are selected to evaluate the wall functions described above,
using OpenFoam v5.0. The most advanced AWF in Chapter 8, CMAWF, which include the
modifications to the convection terms in both simplified momentum and energy equations,
and the inclusion of the thermal dissipation terms both in the main code and thermal wall
function code, is evaluated by comparison with the Low-Re Launder-Sharma model and
experimental data. The cases in this section are mainly from the reports by Settles and
Dodson (1994) and by Schülein et al. (2015). Three suitable compression corner experiments
have been selected from the references and listed in Table 10.1.

10.1 Case Setup

The case setup of the Ma=3 and Ma=7.2 compression corner is similar to that described in
Section 9.1. However, in the Ma=9.2 case the test gas is nitrogen, which is taken as a perfect
gas with properties of gas constant R=296.8m2S−2K−1, specific heat coefficients for constant
pressure Cp=1039J/ (kgK). The molecular Prandtl number Pr is 0.7, which is the same as air
since the molecular weight is the same as air. The version of Sutherland’s law in OpenFoam
is taken from the books by Crane (1988) and CRC (2014), as µ=1.406×10−6T3/2/(T+111).
Structured grids are used for all three cases, and the grids are refined normal to the wall
and the ramp corner. The non-dimensional near-wall cell sizes are similar to Chapter 9,
namely y+ values of around 25 for the high-Reynolds-number turbulence model with wall
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Table 10.1: Inflow conditions for compression corner cases

function approaches and 0.6 for the low-Reynolds-number turbulence models. The freestream
turbulence quantities are evaluated in the same way as described in Section 9.1.

10.1.1 Ma=3 Compression Corner

For the supersonic compression corner, the freestream conditions are listed in Table 7.5, and
the computation domain and boundary conditions are the same as shown in Fig. 7.2. For the
LS model with the Yap correction, the non-dimensional wall distance of the near wall node
at upstream of separation is y+≈0.6, while for the wall function approach, y+≈25, which
is much coarser than the grids in Chapter 7. The results of a grid independence study for
the Mach=3.0 compression corner are displayed in Fig. 10.1 and 10.2 using LS model or
k-ε model with wall function approaches. Overall, essentially grid independence results are
obtained for both models. In subsequent comparisons the 280 × 250 grid is used for the LS
model, while the 100 × 60 grid is used for the wall function approaches.

10.1.2 Ma=7 Axisymmetric Compression Corner

The Ma=7 axisymmetric compression corner measurements were conducted by Kussoy and
Horstman (1989) in a 3.5-Foot Hypersonic Wind Tunnel with the experiment geometry as
shown in Fig. 10.3. The experimental data include the surface pressure, wall heat-transfer
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Figure 10.1: Grid-independence study for 24◦ compression corner at Mach=3.0 predicted by
the LS model with the Yap correction

Figure 10.2: Grid-independence study for 24◦ compression corner at Mach=3.0 predicted by
the k− ε model with AWF (left) and SWF (right)

distributions and some flowfield properties in the undisturbed and the interaction region. The
nominal free-stream test conditions were: total temperature = 900K, total pressure = 34 atm,
free-stream unit Reynolds number = 7×106 m−1, and free-stream Mach number = 7.2. Four
flares were tested with angles of 20◦, 30◦ 32.5◦ and 35◦. From the oil-flow visualization
technique, the flowfiled of flare angle 20◦ is un-separated, while separated for other three
flare angles. In this report, the cased with the flare angles of 20◦ and 30◦ are chosen for the
numerical tests.

Table 10.2: Local freestream conditions for Ma=7 axisymmetric compression corner

Ma∞ Po(KPa) To(K) P∞(Pa) T∞(K) U∞(m/s) Tw(K)
7.11 2515 888.9 550.13 80.0 1274.7 311
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Figure 10.3: Experimental configuration by Kussoy and Horstman (1989)

Georgiadis and Rumsey (2015) has compared the full-geometry case and no-cone geome-
try with a straight inflow section to match the boundary layer thickness in the experiments.
From the numerical results, these two approaches revealed some differences, but the sim-
plified no-cone geometry is deemed to be sufficient. The computation starts at x=-75cm
upstream of the ramp corner. The inflow condition is adjusted slightly as in Table 9.2 with
the boundary conditions as shown in Fig 10.4. A fine mesh is used for the low-Re models
with refinement to the ramp wall so that the y+ on the ramp is lower than 1.0 as shown
in Fig.4. For the wall function approaches, a simple mesh with uniform grid ratio is used
and the y+ in the upstream region is around 25. To handle the axisymmetric geometry in
OpenFoam, the grid shown in Fig.10.4 is extruded by rotating it through a 2-deg angle to
form a small wedge shape, with OpenFoam’s "wedge" boundary conditions applied on the
periodic faces.

Figure 10.4: Computation domains for Ma=7 axisymmetric compression corner
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Figure 10.5: Grid-independence study for 20◦ (right) and 30◦ (left) axisymmetric compres-
sion corner at Mach=7 with LS model with the Yap correction

Figure 10.6: Grid-independence study for 20◦ axisymmetric compression corner at Mach=7
using the k− ε model with AWF (left) and SWF(right)

From the results of the grid-independence study for the LS model with the Yap correction
in Fig. 10.5, the numerical results show great gird independence. For the wall function
approaches, the numerical results of skin-friction show that it is largely grid-independent,
except for some sharp spikes that appear around the ramp corner in the case of the AWF. These
arise mainly because the convection terms near the corner show much bigger fluctuation
when refined the mesh to the corner. For the subsequent comparisons the 300×120 grid is
used for the Low-Re model computation, while the 100×50 grid is used for the wall function
approaches.

Table 10.3 compares the displacement thickness and momentum thickness from the
experiments by Kussoy and Horstman (1989) and numerical predictions by Georgiadis and
Rumsey (2015) to those of these computations. The momentum thickness predicted by
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Georgiadis and Rumsey (2015) is about 21% lower than the experiment, while the LS returns
closer results with only 5% underprediction.

Table 10.3: Comparison of inflow boundary layer thickness at s=-6cm

Case δ ∗ (cm) θ0 (cm)
Experimental Data 0.735 0.0642
SA by Georgiadis and Rumsey (2015) 0.793 0.0526
SST-V by Georgiadis and Rumsey (2015) 0.762 0.0502
LS with the Yap correction 0.771 0.0612

10.1.3 Ma=9.2 Compression Corner

The experiments by Coleman and Stollery (1972) were conducted at a Mach number of 9.22
in the Imperial College no. 2 Gun Tunnel using nitrogen as the test gas and the experimental
configuration is shown in Fig. 10.7. The free stream and surface temperatures were 64.5K
and 295K, respectively. The free stream Reynolds number was 0.47×106/cm. The inflow
conditions are listed in Table 10.4.

Figure 10.7: Experimental configuration by Coleman and Stollery (1972)

The experimental gas is nitrogen, and the gas properties are similar to air, and have been
listed towards the beginning of this section. The numerical setup of nitrogen is described
at the beginning of this section. The computation meshes for the corner angles of 15◦ and
34◦ are shown in Fig. 10.8. The boundary conditions are similar to those of the previous
case, although since this is a 2D planar geometry the ‘wedge’ arrangement and boundary
conditions are not employed.

Table 10.4: Local freestream conditions for Ma=9.22 compression corner

M∞ P∞(Pa) T∞(K) Tw(K) U∞(m/s) ρ ∞(kg/m3) β (◦)
9.22 2473.8 64.5 295 1509.4 0.129 15, 26, 32, 34, 38

The grid-independence study results for the LS model with the Yap correction in Fig.
10.9 shows that there is little difference in results when refined the mesh in the x- and
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y-directions. For the wall function approaches, when the number of mesh cells is doubled to
80 in the y-direction, the numerical results show little difference between meshes, as shown
in Fig. 10.10. For the later comparison the 240 × 150 grid is used for the Low-Re model
computation, while the 180 × 80 grid is used for the wall function approaches.

Figure 10.8: The computation domain and mesh for the Ma=9.2 compression corners at
β=15◦ (top) and β=34◦ (bottom) for the Low-Re models

Figure 10.9: Grid-independence study for the Mach=9.2 compression corners at β=15◦

(right) and β=34◦ (left) predicted by the LS model with the Yap correction
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Figure 10.10: Grid-independence study for the Mach=9.2 β=38◦ compression corner pre-
dicted by th k− ε model with AWF (right) and SWF (left)

10.2 Results

10.2.1 Ma=3 Compression Corner

Figure 10.11 displays the iso-lines of mean pressure superimposed on Mach number contour
at ramp angles of 16◦, 20◦ and 24◦ by the LS model with the Yap correction on the 280×250
grid. As the ramp angles increase, the separation bubbles move further upstream. Figure
10.12 shows the Mach number contours for β=24◦ case predicted by using the AWF and
SWF. Both wall function approaches do capture the ramp shock and separation bubble clearly.
Obviously, the SWF returns larger separation bubbles compared with the AWF and LS.

Figure 10.13 compares the numerical results of wall pressure, skin friction and wall heat
flux with experiments. For the wall pressure, all the numerical approaches fit the experimental
data well. The SWF returns a larger interaction region than the AWF and LS for the β=20◦

and 24◦ cases, but while it agrees well with the experimental measurements for the β=20◦

case, the AWF and LS fit the experimental data better in the β=24◦ case.
For the skin friction, all numerical approaches predict a similar distribution of the skin-

friction in general. The AWF agrees with the LS for all ramp angles. For the β=16◦ and 20◦

cases, the separation region is much smaller than the β=24◦ case. The SWF returns smaller
skin-friction than that predicted by the LS upstream and downstream of the interaction region.
In the downstream region the SWF is closer to the experiment results, while upstream of
the interaction zone the AWF and LS are closer to the experiment. For the β=24◦ case, all
the numerical approaches overestimate the skin-friction in the downstream region beyond
s=4cm.
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The wall heat flux predicted by the AWF is closer to that predicted by the LS, while the
SWF results are very different to the two other approaches, for all ramp angles, as was also
seen in the cases in the previous chapter.

Figure 10.14 displays the near wall velocity comparison with experiments at eight
different streamwise locations for the β=24◦ case. In the upstream region, all numerical
approaches return the similar results as the experiment. In the upstream region, around
s=-3.3cm, the SWF predicts larger near wall velocity than the AWF and LS, while the AWF
fits the LS well throughout the flow domain, and both are closer to the experimental data than
the SWF results are. From the comparison at location s=1.016cm, it can be concluded that
the experimental results show the flow reattaches earlier than the numerical models predict,
since the measurements show no reversed flow here, whilst the models still do. Figure 10.15
shows the near wall temperature comparison with experiments at eight different streamwise
locations for the β=24◦ case. The AWF fits the LS results well at all locations, while the
SWF underestimates the non-dimensional temperature at all locations, even in the upstream
region.

Figure 10.16 displays the near wall velocity comparison for the β=20◦ case. The SWF
predicts the interaction region to start further upstream than the other two models do, and the
skin friction comparison of Fig. 10.13 showed this to broadly agree with the experimental
location. At s=-1.11cm and s=-0.635cm, the SWF predicts that the flow has already separated,
and the near-wall velocity profile it predicts is closer to the experimental measurements
than the LS and AWF results are. At the downstream locations beyond s=1.27cm, the SWF
overestimate the near wall velocity as the β=20◦ case. Figure 10.17 displays the near wall
temperature comparison for the β=20◦ case. Overall, the similar conclusion can be made
as the β=24◦ case. The SWF returns smaller non-dimensional wall temperature than that
predicted by the AWF and LS, which agree with each other well at all locations.

Figures 10.18 and 10.19 show the analytical velocity and temperature comparison at three
locations (one upstream of the interaction, one around the separation region, and one further
downstream) for the β=24◦ case and the β=20◦ case respectively. The analytical velocity
and temperature predicted by the AWF are similar near wall gradients to these predicted by
the LS in the first near wall cell at all three locations.

10.2.2 Ma=7 Axisymmetric Compression Corner

Figure 10.20 shows Mach number contours for ramp angles of 20o and 30◦ predicted by the
LS model with the Yap correction on the 300×120 grid. As the ramp angles increase, there
is a small separation near the ramp corner. Figure 10.21 shows Mach number contours at
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β=30◦ predicted by the AWF and SWF. Both wall function approaches do capture the ramp
shock but fail to reproduce the small separation bubble seen in the LS results.

Figure 10.21 compares the numerical results of wall pressure, skin friction and wall heat
flux with experiments at β=20◦ and 30◦. Results are also shown from simulation reported
by Georgiadis and Rumsey (2015) using the one-equation Spalart-Allmaras (SA) and k-ω
SST model. The wall function approaches using a high-Re turbulence model with coarser
near-wall grid cells return lower wall pressures than the low-Re approaches in the interaction
region. For the β=20◦ case, all the numerical results underestimate the wall pressure. For
the β=30◦ case, the SST results show a peak pressure which is almost 20% higher than the
experiment, while all the other methods return lower wall pressure than the experiment.

For the skin friction, all the numerical approaches return similar skin friction levels
in the upstream region of the flow domain. There is a small separation region around the
compression corner visible in the LS results for both ramp angles. The AWFs also predict a
flow recirculation around the corner, but return a rather more negative skin friction in the
revered flow region than the LS model. The SWF does not predict any separation in either
ramp angle case. Downstream of the interaction zone, the AWF and SWF return the same
values as each other, while the para-AWF and hyper-AWF return lower skin friction than
the AWF, as was also seen in the hypersonic impinging shock interactions at Chapter 9.
Overall, the skin friction predicted by the AWF with the hyperbolic and parabolic variation
of molecular viscosity is closer to the LS results for both the 30◦ case in the downstream
region.

For the wall heat flux, the SWF underestimates it, while other approaches fit the ex-
perimental data well in the upstream region for both ramp angles. For the β=20◦ case,
the SA, SST, and AWF return similar wall heat flux to each other which is larger than the
experimental data. The para- and hyper- AWF also return a similar wall heat flux to each
other, which is closer to the LS results and the experimental data in the downstream region.
The SWF returns much lower wall heat flux than other approaches. For the β=30◦ case, the
SST returns a peak wall heat flux which is almost double the value measured experimentally.
The wall heat flux predicted by the AWF is larger than the experimental data, as it was in
the β=20◦ case, while the SA obtains a smaller value than the experiment. The wall heat
flux by para- and hyper- AWF is a bit lower than the experimental measurements, again as
was found in the β=20◦ case. Overall, the LS predicts precious wall heat flux downstream of
both ramp angles. The SWF fails to predict the wall heat flux accurately throughout most of
the flow domain. The wall heat fluxes predicted by the para- and hyper- AWF are similar to
the experimental data for both cases.
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Figure 10.23 displays the near wall velocity and temperature comparison with experiments
at four different streamwise locations for the β=20◦ case. Upstream location s=-6cm, the
para- and hyper- AWF return larger first-cell velocity, while the SWF returns a lower value
than the LS. Generally, all numerical approaches return similar results to the experimental
measurements. The first-cell temperate predicted by the SWF is much larger than the LS
and experiment. The AWFs return similar values to the experimental data. On the ramp, the
numerical approaches return high gradients of velocity and temperature. For the velocity,
the LS results fit the experimental data well, while the para- and hyper-AWF tend to close
the LS data at the first cell. For the near-wall temperature, all the numerical approaches
tend to overestimate the near-wall temperature. The wall function approaches return similar
temperature distribution to each other at three different locations on the ramp. For these
three locations, the numerical approaches return quite similar profiles at each of the three
locations, while the wall temperature in the experiment varies from location to location. The
wall heat flux from the experiment at these three locations is more or less the same, while the
temperature distribution in the experiment suggests that the near-wall temperature gradient
should be different at each location. This would not appear to be entirely consistent with the
reported wall heat flux being nearly constant across the three locations.

Figure 10.24 shows the analytical velocity and temperature comparison with the LS data
at four locations for the β=20◦ case. The analytical velocity and temperature profiles are
close to the LS predicted behaviour in the first near-wall cell at all four locations. In particular,
the analytical temperature on the ramp does capture the sharp gradient of temperature seen in
the low-Re model results.

10.2.3 Ma=9.2 Compression Corner

Figure 10.25 shows Mach number contours at ramp angles of 15◦, 26◦, 32◦ and 38◦ by
the LS model with the Yap correction on the 240×150 grid. Flow separation is only seen
in the ramp corner β=38◦.The increased grid non-orthogonality is what causes the slight
irregularities in the contours seen around the shock over the ramp in the highest angle case.
Figure 10.26 shows Mach number contours at β=15◦ and β=38◦ obtained by using the AWF
and SWF. Both wall function approaches do capture the ramp shock and the AWF returns a
smaller interaction region than that seen in the SWF and LS results. For the strong interaction
case, the ramp shock by the wall function approaches is also wavy as the LS results, and the
post-shock region seems irregular.

Figure 10.21 compares the numerical results of wall pressure, skin friction and wall
heat flux with experiments at ramp angles of β=15 o, 26◦, 32◦ 34◦ and 38◦. Also included
in the figure are results for the 15◦ case from Huang and Coakley (1993), using the k-ε
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Launder-Sharma without Yap correction and k-ω Wilcox models. All three low-Re models
return a good prediction of surface pressure with slight underestimation at the ramp by
k-ε LS and k-ω Wilcox. The high-Re k-ε model with wall function approaches tends to
underestimate the wall pressure in the interaction region at the ramp. For the skin-friction,
the AWF tends to predict higher values than the LS models in the upstream region. The para-
and hyper- AWF tend to return lower skin-friction than the AWF, giving values closer to the
LS results in the upstream and downstream regions. For the wall heat flux, the LS with the
Yap correction fits the experimental data well, while the LS results by Huang and Coakley
(1993) yields wall heat transfer almost 25% higher than the experiment. The para- and hyper-
AWF return lower wall heat flux values than the AWF with constant viscosity, agreeing well
with the LS results in the regions upstream and downstream of the corner. However, they
tend to underestimate the wall heat flux by around 8% in the interaction region. The SWF
returns lower wall heat flux along the whole wall length, underestimating it by around 50% in
the downstream region. For the β=26◦ case, the interaction is not strong enough to separate
the flow around the corner. The same conclusions can be made as in the β=15◦ case, except
that the wall heat flux predicted by the SWF is close to the hyper-AWF results.

For the β=32◦ case, the start of interaction region moves forward to the flat plate. The LS
model returns an accurate wall pressure when compared to the experimental measurements,
while the wall function approaches underestimate the peak pressure in the interaction region,
as they did in the β=15◦ case. The LS model returns the lowest values, as it did in the previous
two cases. Introducing the parabolic or hyperbolic viscosity variation with temperature into
the AWF again results in a reduction in wall skin friction, particularly in the downstream
region. For the Wall heat flux, the LS model predicts higher value than the experimental
data, as it overpredicted the value in the β=15◦ case. The para- and hyper- AWF returns
closer heat flux to the experimental data, which are more accurate than the LS results in the
downstream region.

For the β=34◦ case, the numerical results by Horstman (1991) and Huang and Coakley
(1993) are also included in the comparison. Rodi k-ε model gives the accurate wall pressure
compared to the experimental measurements, while the other methods fail to capture the
peak pressure. The wall skin-friction is similar to the previous case. The peak wall heat
flux by the k-ε LS model (without the Yap correction) is almost two times higher than the
experiment, and the k-ε Rodi model overpredicts the peak value by around 25%, while the
LS model overpredicts the peak value within 5%. In the downstream region, para- and hyper-
AWF predict the heat flux in good agreement with the experimental measurements.

For the β=38◦ case, there is obvious separation around the ramp corner. The LS model
underpredicts the extent of separation but gives accurate peak pressure compared to the
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experimental measurements. The wall function approaches fail to predict the peak pressure
accurately, as was also found in the β=34◦ case. From the skin-friction, it can be seen that
the SWF returns a larger separation region than the AWFs, and reruns higher peak skin
friction with more than 50% overprediction than that predicted by other wall functions. In
the downstream region, the para- and hyper AWF give lower skin friction as the LS model,
which is the same as the previous cases, while the AWF and SWF return the similar skin
friction as the LS results. For the wall heat flux, the SWF shows the opposite tendency to that
seen in the lower ramp angle cases and returns wall heat flux values 40% higher than in the
experiment. The LS returns much higher peak wall heat flux as the experiment at a location
a bit further upstream, which is also seen from the LS model results of 34◦ case by Huang
and Coakley (1993). The sudden increase of peak wall heat flux by the LS model with the
Yap correction might be because of the large separation at this ramp angle, or because the LS
model tends to give a higher wall heat flux near the flow re-attachment region as described
by Huang and Coakley (1993). The para- and hyper-AWF fit the experiment better than other
approaches in the downstream region, and tend to underestimate the wall heat flux by around
15%.

Figure 10.28 displays the near wall velocity and temperature comparison at three different
streamwise locations for the β=15◦ case. At the upstream, s=-5cm location, the para- and
hyper- AWF fit the LS profiles better than the AWF or SWF do in the near-wall region. The
SWF gives much larger near-wall temperature than the LS model, while the AWFs gives
lower values. At the ramp corner, s=0cm, the velocity distribution is similar to that seen
further upstream. The non-dimensional temperature by the SWF is larger than that predicted
by the LS in the upstream region, while the AWFs tend to give results similar to those of
the LS. The same conclusion can also be drawn from the results at the further downstream
locations.

Figure 10.29 displays the near wall velocity and temperature comparison at three different
streamwise locations for the β=38◦ case. At the upstream, s=-5cm location, the flow stays
undisturbed and similar near-wall velocity and temperature are obtained as in the previous
β=15◦ case. At s=0cm, the flow is separated and the size of separation region predicted by
the SWF is close to that shown in the LS results, so it is not surprising that the near-wall
velocity shows that the SWF results fit the LS ones better than the AWFs results do. The
same tendency is also seen in the temperature comparison. In the downstream region, the
distribution of velocity and temperature show some fluctuations, as noted when discussing
the Mach number contours of Fig. 10.25. Similar results are seen from all wall function
approaches.
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Figures 10.30 and 10.31 show the analytical velocity and temperature comparison with
the LS data at three locations for the β=15◦ and 38◦ cases. The analytical velocity and
temperature return similar near-wall gradients and fit the LS results well in the first near
wall cell, except for the analytical velocity by para- and hyper- AWF at s=0cm in the β=15◦

case, where they return negative skin friction as shown in Fig. 10.27. Generally speaking, all
analytical solutions do capture the sharp gradients of velocity and temperature near the wall,
and the AWF with hyperbolic or parabolic variations for the molecular viscosity fit the LS
better than the AWF with a constant molecular viscosity in most positions.

10.3 Summary

Predictions from the modified analytical wall function in Chapter 8, in addition to those
from the LS model with the Yap correction, have been compared with several supersonic
and hypersonic compression corner interaction flows. The available data for comparison
includes surface pressure, skin-friction, heat transfer and some mean near wall properties
such as velocity and temperature. The main conclusions are:

1. The increase of ramp angle will produce stronger ramp shock, and flow separation
happens near the ramp corner when the ramp shock is strong enough. The separation
happens for Ma=3 compression corner angles of β=16◦, 20◦, and 24◦, Ma=7 axisym-
metric compression corner angles of β=20◦, and 30◦, and Ma=9.2 compression corner
angles of β=32◦, 34◦, and 38◦.

2. For the Ma=3 compression Corner, the LS model returns accurate wall pressure
compared to the experimental data at all ramp angles. The SWF predicts a larger
interaction region and agrees with the experimental data well for the β=20◦ case, while
the AWF and LS fit the experimental measurements better for the β=24◦ case. For the
Ma=7 and Ma=9.2 cases, the wall function approaches fit the LS well in the upstream
and downstream regions. For the Ma=7 cases, all the numerical models underpredict
the wall pressure compared with the experiments.

3. The skin friction for the Ma=3 case predicted the LS model fits the experimental data
well from strong to weak interactions. The AWF approaches are close to the LS results
while the SWF predicts a larger interaction region. For the axisymmetric Ma=7 and
Ma=9.2 cases, all the approaches return similar skin friction upstream of the interaction
region, while the para- and hyper- AWF tend to be similar to the LS results in the
downstream region, and the AWF and SWF overestimate the skin-friction.
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4. As mentioned in the previous chapter, the wall heat flux by the thermal SWF is
evaluated by Equ. (6.6) based on the log-law. For all the cases, the SWF fails to predict
the wall heat flux accurately throughout the domain. Overall, the modified AWF in
Chapter 8.2 returns a good agreement with the experimental data for the Ma=3 case.
For two hypersonic cases, the AWF with the parabolic and hyperbolic assumption or
the molecular viscosity as described in Chapter 8.3 decreases the peak wall heat flux
and fits the experiment well.

5. Generally speaking, the numerical results of mean velocity in the near-wall region, from
all the models, approach the experimental measurements, especially in the upstream
and downstream locations. The accuracy of the extent of interaction will result in some
differences of mean velocity distributions in the interaction region. The AWFs give
closer non-dimensional temperature to that predicted by the LS than the SWF for all
supersonic and hypersonic cases, especially in the upstream and downstream regions.

6. The AWFs capture the sharp gradients of velocity and temperature in the near wall
region for all cases and predict the closer wall skin-friction and wall heat flux to the
experimental data for almost all cases. For the hypersonic cases, the analytical solution
of para- (hyper-) AWF improves the near wall velocity and temperature distributions by
compared to those returned by the AWF, and approach the LS results at most locations.

For the compression corner interactions, all numerical methods show accurate wall
pressure, except approximately 20% underestimation for the Ma=7.0 axisymmetric compres-
sion corner. For the hypersonic flows, the modifications to the AWF, such as the parabolic
assumptions to the convection terms in the simplified momentum and energy equations,
the dissipations term in the thermal AWF and parabolic or hyperbolic assumptions to the
molecular viscosity, give better predictions of skin-friction and wall heat flux. The analytical
solution in the near wall region does capture the rapid gradients of velocity and temperature
as these by the LS model.
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Figure 10.11: Iso-lines of mean pressure superimposed on Mach number contours for Ma=3
compression corner with ramp angle β=16◦ (top), 20◦ (middle) and 24◦ (bottom) predicted
by the LS model with the Yap correction
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Figure 10.12: Iso-lines of mean pressure superimposed on Mach number contours for Ma=3
β=24◦ compression corner predicted by the k− ε model with AWF (top) and SWF (bottom)

Figure 10.13: Surface distribution of wall pressure (top), skin-friction (middle) and wall heat
flux (bottom) comparison for Ma=3 compression corner with ramp angles β=16◦ (left), 20◦

(middle) and 24◦ (right)
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Figure 10.14: Near-wall velocity comparison at different locations for the Ma=3 compression
corner with a ramp angle β=24◦
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Figure 10.15: Near-wall temperature comparison at different locations for the Ma=3 com-
pression corner with a ramp angle β=24◦
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Figure 10.16: Near-wall velocity comparison at different locations for the Ma=3 compression
corner with a ramp angle β=20◦
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Figure 10.17: Near-wall temperature comparison at different locations for the Ma=3 com-
pression corner with a ramp angle β=20◦
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Figure 10.18: Analytical velocity (left) and temperature (right) comparison at different
locations for the Ma=3 compression corner with a ramp angle β=24◦
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Figure 10.19: Analytical velocity (left) and temperature (right) comparison at different
locations for the Ma=3 compression corner with a ramp angle β=20◦

Figure 10.20: Mach number contours for Ma=7 axisymmetric compression corner with ramp
angles β=20◦ (left) and β=30◦ (right) predicted by the LS model with the Yap correction
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Figure 10.21: Mach number contours for Ma=7 axisymmetric compression corner with ramp
angles β=20◦ (left) and β=30◦ (right) predicted by the k− ε model with AWF (left) and
SWF (right)

Figure 10.22: Surface distribution of wall pressure (top), skin-friction (middle) and wall heat
flux (bottom) comparison for the Ma=7 axisymmetric compression corner with ramp angles
β=20◦ (right) and β=30◦ (left)



10.3 Summary 227

Figure 10.23: The near wall velocity (left) and temperature (right) comparison for the Ma=7
axisymmetric compression corner with a ramp angle β=20◦
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Figure 10.24: The analytical velocity (left) and temperature (right) comparison for the Ma=7
axisymmetric compression corner with a ramp angle β=20◦
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Figure 10.25: Mach number contours for the Ma=9.22 compression corner with ramp angles
β=15◦(top left), 26◦(top right), 32◦(bottom left) and 38◦(bottom right) predicted by the LS
model with the Yap correction

Figure 10.26: Mach number contours for the Ma=9.22 compression corner with ramp angles
β=15◦(top) and 38◦(bottom) predicted by the k− ε model with SWF (left) and AWF (right)
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Figure 10.27: Surface distribution of wall pressure (left), skin-friction (middle) and wall heat
flux (right) comparison for the Ma=9.22 compression corner with ramp angles β=15◦ (row
1), 26◦ (row 2), 32◦ (row 3), 34◦ (row 4) and 38◦ (row 5)
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Figure 10.28: The near wall velocity (left) and temperature (right) comparison for the
Ma=9.22 compression corner with a ramp angle β=15◦
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Figure 10.29: The near wall velocity (left) and temperature (right) comparison for the
Ma=9.22 compression corner with a ramp angle β=34◦
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Figure 10.30: The analytical velocity (left) and temperature (right) comparison for the
Ma=9.22 compression corner with a ramp angle β=15◦
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Figure 10.31: The analytical velocity (left) and temperature (right) comparison for the
Ma=9.22 compression corner with a ramp angle β=34◦



Chapter 11

Conclusion & Future Work

11.1 Preliminary Remark

There are two approaches taken in the near wall turbulence modelling, which are Low
Reynolds Number models and High-Reynolds k-ε model with wall function approaches, to
account for the influence of low-Reynolds-number effects on the flow near the wall. The main
aim of this project is to examine the performance of wall-function treatments which have
been successfully used in a range of incompressible flows and explore how compressibility
effects could be accounted for in such approaches. An advanced analytical wall-function is
modified to account for the rapid changes of velocity and temperature in the near-wall region
of complex supersonic or hypersonic flow fields with fast convergence rate, robustness, and
reasonable accuracy.

For high-speed flow applications, the Reynolds number may be much higher than that in
many incompressible flows, which results in very thin near-wall viscous layers. Especially
for the shock wave turbulent boundary layer interaction, all fluid properties, such as density,
pressure, temperature, velocity, Mach number etc, change a lot in the interaction zone, so
modifications and corrections are introduced to the original analytical wall function, such
as the continuity of convection terms and thermal dissipation terms in energy equations as
describe in Chapter 8.

The open source CFD package OpenFoam v2.3.1 and v5.0 are used in the present work
for the reason that new solvers or utilities can be created by users in a fairly convenient
manner. The mathematical basis is developed by the finite volume method which is the
most widely used approach in most commercial CFD codes. The convection, diffusion and
sources terms of the governing equations are discretized by a variety of finite-difference-type
approximations. This converts the integral equations into a system of algebraic equations,
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which can be solved by a variety of methods. In order to assess the performance of the wall
functions, the effort has been made in the scope of 2-D supersonic and hypersonic cases.

11.2 Conclusions

This report has described the evaluation of the performance of the standard wall function
approach and analytical wall function approach, both implemented within OpenFoam V2.3.1
and subsequently V5, by predicting the 2-D impinging shock interaction and compression
corner. The Launder-Sharma k-ε model with the Yap correction is used to compare with the
results of the high-Re k-ε model with the wall function approaches. Prior to the modelling
explorations the effectiveness of the convective discretisation schemes within OpenFoam was
also tested for the models and cases relevant to this investigation. The tests with different grids
indicated that the used meshes gave grid-independent solutions, and the main conclusions
are:

1. Some modifications have been made to rhoCentralFoam solver, such as the Roe-Pike
and AUSM+ flux-splitting methods in the construction of convection term. Three
different cases have been used to validate the solver. From the results, the Roe-
Pike method with van Albada limiter is recommended in the calculation of complex
turbulence flow. The Low-Re model results in the two different versions of OpenFoam
show good agreement with each other.

2. For the high-Re impinging shock interaction case, the current simulations predict that
when the impinging shock is strong enough, the interaction zone has a separation
bubble, whose size increases as the impinging angle grows, in agreement with what
has been reported experimentally.

3. For the low-Re impinging shock interaction case, the SWF approach underestimates
the SWTBLI and fails to reproduce the separation bubble in the near wall region.

4. From the results of compression corner by using the LS model, all three cases, namely
the 16◦, 20◦, and 24◦, have a separation bubble near the corner, and the size increases
with the ramp angle. The SWF approach tends to underestimate the SWTBLI, espe-
cially for the 16◦ case, it fails to reproduce the separation bubble.

5. In all cases the wall pressure, predicted by all three models, namely the LS model and
the high-Re k-ε model with SWF and AWF, is in good agreement with the experiment.
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6. From the mean velocity comparisons in all cases, all three models generally result in
good predictions at different locations, especially where the locations are outside of
the separation zone.

The overall picture that emerges from the above comparisons is as follows. First all three
models display a good prediction of wall pressure. However, the SWF approach tends to
underestimate the SWTBLI, and for the 16◦ compression corner and low-Re impinging shock
interaction case, where small separation happens, it fails to reproduce the separation bubble.
The analytical wall function of Craft et al (2002) on the other hand, is able to reproduce the
shock-induced flow separation and returns predictions similar to those of the low-Re model.

The original analytical wall function described in Chapter 6 uses the simplified momen-
tum and energy equations and turbulence viscosity assumption to calculate the wall shear
stress, the production of the turbulent kinetic energy, the wall temperature under isothermal
conditions, or the wall heat under adiabatic conditions. When applied to the hypersonic
cases, the original AWF resulted in severe oscillations near the interaction and larger wall
heat flux than expected. This was traced to the assumption of spatially constant convection
in the simplified analytical momentum and energy equations. It was subsequently corrected
by imposing a parabolic variation of the convection terms with wall distance.

Another predictive flaw of the original AWF was the under-prediction of wall heat flux for
cases with Mach number higher than 5. This was found to be caused by the analytical energy
equation omitted the effects of viscous dissipation. This was addresses by the inclusion of a
simplified form of the viscous dissipation term (which only includes velocity gradients in the
wall-normal direction).

Finally, a further predictive weakness of the AWF at the highest Mach numbers was the
over prediction of the wall heat flux. The cause of this was very strong near-wall temperature
variations, resulting in strong near-wall molecular viscosity variations, not taken into account
in the original AWF. This was addressed by the inclusion of a variable molecular viscosity
across the viscous-sub-layer, based on the analytical temperature variation over this region.

The predictions resulting from the inclusion of all the above modifications to the AWF
are found to be in close agreement with both the experimental data and the Lauder-Sharma
model predictions and in fact for the very high Mach numbers (7-9) the present predictions
are even closer to the experimental data than those of the Low-Re model.

11.3 Future Work

The SWTBLI cases in Chapter 2 were reported as a group of flows with different and
important features to be modelled. There are experimental and DNS cases reported of such
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flows with abrupt changes, such as the unsteadiness of the shock system in the compression
corner by Dolling and Murphy (1983) and the 3-D sharp fin interaction by Hsu and Settles
(1992). For all these cases, the turbulent boundary layer interacts with the shock and
causes separation, reattachment, expansion, and reflected shocks, which result in a rather
complicated interaction and lag between the mean and turbulent flowfields, so the standard
wall functions are not expected to perform all that well. As noted above, in some cases, the
standard wall function is believed to be able to accurately predict the surface pressure but
fails to predict the wall heat flux and reproduce the separation for some cases. It will be
informative to apply the compressible form of the AWF proposed here to these cases as well.

Although the analytical wall function approach performs better than the standard wall
function so far, it will also be beneficial to test other forms of advanced wall function
approach, called subgrid-based wall function by Gant (2002).

Besides the two equation models used in this thesis, other low-Re number models enable
accurate CFD computations for a range of difficult flows, such as non-linear eddy-viscosity
models and second-moment closures. In order to overcome the inevitable high computational
cost, it is recommended to use this new AWF with these advanced RANS models for the
compressible flows.

It is believed that the work proposal above involves a lot of extensive challenging work
(which thus characterizes a Ph.D. course) and has the ability to generate results and findings
that will be of relevance and use in predicting high-speed turbulent flows in an industrial
context.
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Appendix A

AWF Approach When y∗n < y∗v

a. Hydrodynamic Analytical Wall Function
After the second integration of the simplified momentum equation, the analytical velocity

in the near wall region is

µU1 =
C1

2
y∗2 +A1y∗ (A.1)

The continuity condition U1|y∗=y∗n
= Un|y∗=y∗n

is applied, and the coefficient A1 is calculated
by:

A1 =
1
y∗n

(
µwUn −

C1

2
y∗2

n

)
(A.2)

The wall shear stress is obtained by the definition as equation (6.32), and the production of k
is equal to zero since the turbulence viscosity is assumed to zero in the viscous sublayer.

b. Thermal Analytical Wall Function
After the second integration of the simplified energy equation, the analytical temperature

in the near wall region is

T1 =
Pr
µw

(
Cth1y∗2

2
+Ath1y∗

)
+Twall (A.3)

When y∗ = y∗n, T1 = Tn. The wall temperature can be obtained from the above as:
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Tw = Tn −
Pr
µw

(
Cth1y∗2

n
2

+Ath1y∗n

)
(A.4)

and the wall heat flux is related to the wall temperature by following expression:

qwall =−
ρcp

√
kP

µ
Ath1 (A.5)

where

Ath1 =
1
y∗n

(
µw

Pr
(Tn −Twall)−

Cth1y∗2
n

2

)
(A.6)



Appendix B

MAWF Approach When y∗n < y∗v

a. Hydrodynamic Analytical Wall Function
When y∗n < y∗v , the analytical velocity in the near wall region is

U1 =
1

µw

(
D1y∗4

12
+

C1y∗2

2
+A1y∗

)
(B.1)

From the near wall cell boundary condition, the unknown coefficient in the above equations
is:

A1 =
µw

y∗n
Un −

C1

2
y∗n −

D1y∗3
n

12
(B.2)

b. Thermal Analytical Wall Function with linear assumption
When y∗n < y∗v , the analytical temperature in the near wall region is

T1 =
Pr
µw

(
Dth1

6
y∗3 +

Cth1

2
y∗2 +Ath1y∗

)
+Tw (B.3)

When y∗ = y∗n

Tw = Tn −
Pr
µw

(
Dth1

6
y∗3

n +
Cth1

2
y∗2 +Ath1y∗n

)
(B.4)

Or for the isothermal wall condition:
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Ath1 =
µw

Pry∗n
(Tn −Tw)−

Dth1

6
y∗2

n − Cth1

2
y∗ (B.5)

c. Thermal Analytical Wall Function with parabolic assumption
When y∗n < y∗v , the analytical temperature in the near wall region is

T1 =
Pr
µw

(
Dth1

12
y∗4 +

Cth1

2
y∗2 +Ath1y∗

)
+Tw (B.6)

When y∗ = y∗n

Tw = Tn −
Pr
µw

(
Dth1

12
y∗4

n +
Cth1

2
y∗2 +Ath1y∗n

)
(B.7)

Or for the isothermal wall condition:

Ath1 =
µw

Pry∗n
(Tn −Tw)−

Dth1

12
y∗3

n − Cth1

2
y∗ (B.8)



Appendix C

CMAWF Approach When y∗n < y∗v

In the case of y∗n < y∗v , the analytical temperature can be obtained from the simplified energy
equation with thermal dissipation terms:

T1 =
Pr
µw

( Dth1
12 y∗4 + Cth1

2 y∗2 +Ath1y∗

−
(

N7
8 y∗8 + N5

6 y∗6 + N4
5 y∗5 + N3

4 y∗4 + N2
3 y∗3 + N1

2 y∗2
) )+Tw (C.1)

When y∗ = y∗n

Tw = Tn −
Pr
µw

(
Dth1

12
y∗4

n +
Cth1

2
y∗2 +Ath1y∗n −

(
N7

8
y∗8

n +
N5

6
y∗6

n +
N4

5
y∗5

n +
N3

4
y∗4

n +
N2

3
y∗3

n +
N1

2
y∗2

n

))
(C.2)

Or for the isothermal wall condition:

Ath1 =
µv

Pry∗n
(Tn −Tw)−

Dth1

12
y∗3

n − Cth1

2
y∗n +

(
N7

8
y∗7

n +
N5

6
y∗5

n +
N4

5
y∗4

n +
N3

4
y∗3

n +
N2

3
y∗2

n +
N1

2
y∗1

n

)
(C.3)



Appendix D

Para-CMAWF Approach When y∗n < y∗v

When y∗n < y∗v , the molecular viscosity with parabolic assumption is:

µ=
µw

1+bµy∗ (y∗−2y∗n)
where bµ=

1
y∗2

n

(
1− µw

µn

)
(D.1)

a. Hydrodynamic Analytical Wall Function
After the second integration, the analytical velocity is obtained as:

U1 =
1

µw

 D1y∗4

12 + C1y∗2

2 +A1y∗

+bµ

(
D1
18 y∗6 − 2D1

15 y∗ny∗5 + C1
4 y∗4 +

(A1−2C1y∗n)
3 y∗3 −A1y∗ny∗2

)  (D.2)

When y∗=y∗n, U1=Un

A1 =
1

y∗n −bµ
2
3y∗3

n

[
µwUn −

D1y∗4
n

12
− C1y∗2

n
2

+bµ

(
7D1

90
y∗6

n +
5C1

12
y∗4

n

)]
(D.3)

b. Thermal Analytical Wall Function
When y∗n < y∗v , the analytical temperature is obtained after the second integration:
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T1 =
Pr
µw


Dth1y∗4

12 + Cth1y∗2

2 +Ath1y∗

+bµ

(
Dth1
18 y∗6 − 2Dth1

15 y∗ny∗5 + Cth1
4 y∗4 +

(Ath1−2Cth1y∗n)
3 y∗3 −Ath1y∗ny∗2

)
−
∫ y∗

0
1

Cp
µ

∂U1
∂y∗ U1

[
1+bµy∗ (y∗−2y∗n)

]
dy∗

+Tw

(D.4)

When y∗ = y∗n and T1 = Tn, for adiabatic wall condition, the wall temperature is:

Tw = Tn −
Pr
µw


Dth1y∗4

n
12 +

Cth1y∗2
n

2 +Ath1y∗n
+bµ

(
Dth1
18 y∗6

n − 2Dth1
15 y∗ny∗5
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4 y∗4

n +
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n −Ath1y∗ny∗2

n
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−
∫ y∗n

0
1

Cp
µ

∂U1
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]
dy∗


(D.5)

Or for the isothermal wall condition:

Ath1 =
1

y∗n − 2
3bµy∗3

n

µw

Pr
(Tn −Tw)−

 Dth1y∗4
n

12 +
Cth1y∗2

n
2 −bµy∗4

n
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12
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0
1
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Appendix E

Hyper-CMAWF Approach When y∗n < y∗v

When y∗n < y∗v , the molecular viscosity with hyperbolic assumption can be written as:

µ=
µn

1+bµ (y∗− y∗n)
where bµ=

µw −µn

µwy∗n
(E.1)

a. Hydrodynamic Analytical Wall Function

A1 =
1

y∗n − 1
2bµy∗2

n

[
µnU1 −

(
D1y∗4

n
12

+
C1

2
y∗2

n −bµy∗3
n

(
D1y∗2

n
60

+
C1

6

))]
(E.2)

b. Thermal Analytical Wall Function
When y∗ = y∗n and T1 = Tn, for adiabatic wall condition, the wall temperature is:

Tw = Tn −
Pr
µn

 Dth1y∗4
n

12 + Cth1
2 y∗2

n +Ath1y∗n −bµy∗2
n

(
Dth1y∗3

n
60 + Cth1

6 y∗n +
1
2Ath1

)
−
∫ y∗n

0
1

Cp

(
1+bµ (y∗− y∗n)

)
µU1

∂U1
∂y∗ dy∗

 (E.3)

For the isothermal wall boundary conditions,Ath1 is:

Ath1 =
1

y∗n −
bµ

2 y∗2
n


µn
Pr (Tn −Tw)−

(
Dth1y∗4

n
12 + Cth1

2 y∗2
n

)
+bµy∗2

n

(
Dth1y∗3

n
60 + Cth1

6 y∗n
)

+
∫ y∗n

0
1

Cp

(
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µU1
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