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Abstract 

The University of Manchester, Doctor of Philosophy 

Chuan Fu Yap 

Accelerated Construction of Kinetic Models for Cell Metabolism 

The use of mathematical models is enriching biological research, as it allows biologists to learn 

how the different components within a biological system interact, leading to a holistic approach to 

research. This is a result of technology improvements that enable the generation of high-

throughput data, and of increased collaboration with mathematicians, physicists and computer 

scientists. There are various methodologies to model a biological system. A dynamic model allows 

users to represent quantitative information and follow the temporal changes of the system, which 

are very important for understanding complex systems.  

 

 The construction of kinetic models is often impeded by incomplete information on kinetic 

data, including the kinetic parameters and rate laws. Additionally, data are frequently collected 

under different conditions. Previously, the software GRaPe was introduced to address these issues 

by automatically generating generic kinetic rate equations and estimating kinetic parameters by 

searching a local solution in the parameter space using only steady state data. This thesis 

introduces an upgraded version of the software that uses convenience kinetics (allowing for 

inclusion of regulatory effects to models) and a global solution of equations for parameter 

estimation, using a genetic algorithm with both time-series and steady state data. 

 

As a proof of concept for the software, the glycolytic network of Saccharomyces cerevisiae 

was modelled using the software, and produced favourable results. Following this, trehalose 

metabolism of Saccharomyces cerevisiae was studied using a model generated with the new tool. 

It confirmed that the increase of flux during heat stress is caused by the positive feedback on 

pyruvate kinase. Additionally, the model was able to determine the best enzymes to overexpress in 

order to increase the yield of trehalose, a commercially valuable product. 

 

 This thesis introduces an intuitive software that will serve as a gateway tool for building 

kinetic models of cell metabolism, aimed at non-expert users that wish to study complex biological 

systems or to generate rapid prototype of models.   
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1. Chapter 1: Introduction 

1.1 Systems Biology 

A system is an assembly of components that interact with one another to complete a job. There is 

no limit to the scale of a system within the biological context. It could be used to refer to the 

ecosystem of a given habitat or it could be the various systems in the human body, such as 

respiratory, nervous and immune system. As all these different parts interact with each other 

functional emergence can occur; emergence is a property that arises from the interactions in a 

system but not from individual parts.  Hence, it is advantageous for them to be studied with a 

holistic approach, instead of a reductionist approach.  

 

In the context of systems biology, systems is often referred to as the networks of genes, 

proteins and metabolites (Hillmer, 2015). A genetic network can be represented as a regulatory 

network coupled with the transcriptional processes of genes into mRNA.  A protein network is often 

a protein-protein interaction network, depicting the interactions of proteins whether they are stable 

or transient. The chain of reactions catalysed by enzymes that allow cells to grow and sustain life 

is represented by the metabolic network, which is an interconnected network of metabolites 

(Machado et al., 2011). Some would argue the field of systems biology came about from trying to 

understand the feedback dynamics of those networks (Wolkenhauer and Mesarović, 2005). One 

thing for certain is that a hallmark of systems biology research is the use of a mathematical or 

computational model in their studies.   

 

 The surge in the field of systems biology was made possible by the recent improvement in 

high-throughput experimental methods, which generated ‘omics’ data. These omics data include 

genomics, transcriptomics, proteomics, metabolomics, fluxomics and lipidomics. These data made 

the reconstruction of various biological networks possible (Yurkovich and Palsson, 2018). The 

collaboration between physicists, mathematicians and computer scientists with biologists was 

another factor in making these fields flourish, as their inputs were valuable in constructing the 

models used for research. With a model, we can better understand how the system functions, as 

well as make in silico experimentation by simulating the biological outcome of a given system after 
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perturbation (i.e. making gene knockouts, knockdowns, overexpression studies), to help 

experimental biologists save time and money by simulating experiments before carrying them out. 

A model’s prediction could also be applied to increase yield of a given compound that could be 

commercially viable or useful for disease treatment; or models can be built to study conditions that 

cannot be easily approached through wet lab studies (Hübner et al., 2011).   

1.1.1 What exactly is a mathematical model and how do we build one? 

A mathematical model is an abstraction of reality, usually represented with equations. As an 

abstraction, not every detail has to be considered and instead assumptions can be made to 

simplify the model. Therefore, there is a fine balancing act involved, omittance of certain details 

might lead to a meaningless model or some would say a ‘spherical cow’, a term that described an 

oversimplified model, which deviated significantly from reality (Azeloglu and Iyengar, 2015). The 

decision to determine what detail to include or omit often comes down to the problem of interest 

that is being investigated. For example, if a compound of interest is being studied, the compound 

and its neighbouring compounds in the network would be important, while pathways that channels 

flux/metabolite towards or away from them can be simplified. Additionally, one of the common 

assumptions to be considered when building models is if the system being studied is isolated (in a 

fixed and controlled environment) or coupled with the dynamic external environment (Klipp et al., 

2009a).   

 

 On top of considering the details and assumptions of a model, depending on the type of 

model, several other types of information are needed. A commonality would be information on the 

reaction pathways or network structure of the system being studied. If it is a kinetic model, 

knowledge of the rate law for each reaction in the pathway, the kinetic parameter values, and if 

necessary, training and validation data for the parameter estimation process are needed. These 

types of information can be obtained through measurement in the lab, or be searched in the vast 

literature that has been accumulated over the years. Another source would be the databases that 

pools these data together, such as ConsensusPathDB (Kamburov et al., 2011), Reactome 

(Fabregat et al., 2018) and KEGG (Ogata et al., 1999) that have pathway information; BRENDA 

(Schomburg et al., 2004), KiMoSys (Costa et al., 2014) and SABIO-RK (Krebs et al., 2007) for 

information on enzyme kinetics; CeCaFDB (Zhang et al., 2015) for fluxomics data; proteomics data 
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can be found in the PRIDE Archive (Vizcaíno et al., 2016), PaxDB (Wang et al., 2015) and 

ProteomicsDB (Schmidt et al., 2018); and for metabolomics data, they can be found on METLIN 

(Guijas et al., 2018), MetaboLights (Haug et al., 2013), The Metabolomics Workbench 

(http://www.metabolomicsworkbench.org).  

 

 After collecting all the information, the next step would be to determine the modelling 

formalism to use and to actually construct the model. For a beginner, this task can be very 

daunting, however with years of research in the field, the community have developed various tools 

to make the process easier as well as standards that makes sharing of information easier. For 

example, there are the Systems Biology Markup Language (Hucka et al., 2003) and CellML (Cuellar 

et al., 2003), both of which are file formats for storage and exchange of computational models of 

biological networks; Systems Biology Graphical Notation (Novere et al., 2009) is a standard for 

visualisation of biological networks; and Systems Biology Ontology (Courtot et al., 2011), which is 

a set of controlled vocabularies commonly found in Systems Biology research in relation to 

modelling. When it comes to the building and simulation of models, there are software available 

for that purpose, such as COPASI (Hoops et al., 2006), CellDesigner (Funahashi and Matsuoka, 

2008), and Virtual Cell (Schaff et al., 2000). 

 

 The remainder of this review will be breaking down some of the modelling formalisms 

employed by systems biologists in their research, followed by a greater focus on the various rate 

functions to model enzymatic reactions. Lastly, the process of parameter estimation is discussed 

along with how some of the algorithms functions.  

  

http://www.metabolomicsworkbench.org/
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1.2 Modelling Frameworks  

A model can be dynamic (commonly represented with a system of differential equation to follow 

temporal changes) or static (qualitative models, such as ones built using graph theory to imitate a 

biological phenomenon). In this section, some of the commonly used modelling frameworks in 

systems biology will be briefly discussed. 

1.2.1 Boolean Networks 

The Boolean network formalism was introduced to model gene regulatory networks by Kauffman 

(Kauffman, 1969). This form of model is a directed graph made up of nodes/vertices of Boolean 

variables (if the node is ‘ON’ or ‘OFF’, in gene regulatory networks it would indicate that the gene 

is expressed or unexpressed respectively, or in signalling networks that it is activated or not). A 

state is a binary vector of all the nodes’ values at a given time. Thus, a model with n number of 

nodes will have 2n possible states (Klipp et al., 2009b). It is also known to some as logic model as 

it makes use of logic rules such as ‘AND’, ‘OR’, and ‘NOT’ to determine the state of the next node. 

Each state in a Boolean network has a deterministic output state that is determined by the inputs. 

This method of modelling is often used to find steady states (in Boolean network terms, it is called 

‘point attractor’ where there is only a single state in the ‘attractor’ which is the final state(s) of the 

network given an input) and analyse robustness of the network (Li et al., 2004). 

1.2.2 Petri Nets 

Petri net was developed by Carl Adam Petri to describe chemical processes (Petri, 1962). It is a 

graphical and mathematical modelling format has been adapted to study biological processes. A 

Petri net is a directed bipartite graph (made up of two sets of nodes), one set is called ‘places’, 

represented graphically with circles, the other set is called ‘transitions’, represented graphically 

with rectangles (Klipp et al., 2009b). In the context of biological models, places represent 

molecules, and transitions represent reactions. Places can hold zero or more ‘tokens’ (describing 

the number of molecules), and they are produced when an incoming transition ‘fires’ (a reaction 

takes place). For this to occur, an input place must have sufficient tokens connected to outgoing 

transitions; when a transition fires, tokens are consumed from the input place. There are 

extensions to petri nets making it a flexible framework to explore different biological networks, 

such as metabolic and signalling (Breitling et al., 2008; Koch et al., 2005; Machado et al., 2011). 

Extensions include ‘Timed Petri nets’ that makes it possible for transitions to have a time delay in 
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the firing step (Zuberek, 1991), and ‘Hierarchical Petri nets’ that introduced modularity, where a 

whole net can be represented as a place or transition (Bernardinello and Cindio, 1992).  

1.2.3 Flux Balance Analysis for Constraint-based models 

Constraint-based models can be built using flux balance analysis, which is a mathematical method 

to determine the flux distribution within a metabolic network (Varma and Palsson, 1994). The first 

step to building this model is to represent the metabolic network as a stoichiometric matrix (S), of 

size m * n (m is the number rows representing compounds and n is the number columns 

representing reactions). The entries in the matrix are their respective stoichiometric coefficients, 

where consumed metabolites are represented with negative coefficients and metabolites produced 

are represented with positive coefficients. An important assumption in constraint-based models is 

that the systems achieves steady-state quickly. Hence, Sv = 0 at steady state, where v is the 

vector of fluxes. We can solve for vector v using linear programming. However, there is no unique 

solution when there are more reactions than compounds. A solution would be to impose 

constraints on the fluxes to reduce the solution space. The types of constraints can be 

thermodynamic, enzyme capacity or upper and lower bounds on the fluxes. Models built using flux 

balance analysis can be used to predict growth of an organism or rate of production of a 

compound. This method has been applied to build various genome-scale metabolic model (Duarte 

et al., 2007; Feist et al., 2007; Forster, 2003; Orth et al., 2011) 
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1.3 Kinetic Modelling Formalisms for Metabolic Models 

The use of kinetic models is preferable over other frameworks as this form is quantitative, allowing 

us quantify the metabolites in the network; kinetic models are dynamic allowing us to follow the 

changes over time instead of specific states, and they allow us to input the regulatory effects 

within the model. These factors also allow us to better understand complex dynamic processes in 

the system (Link et al., 2014). However, this formalism is often challenging to apply as the amount 

of information needed is relatively higher than other methods for a network of similar size. This 

leads to a longer timeline for construction of a model. Additionally, there is an added difficulty in 

metabolic models when it comes to selecting the rate function for a reaction (Costa et al., 2010). 

This section will briefly discuss some of the approximate rate laws developed to simplify the 

mechanisms of enzymatic reactions. Kinetic models are often built using ordinary differential 

equations (ODE), an example of how this is carried out using convenience rate law formalism is 

shown in figure 1.1.  

1.3.1 Michaelis-Menten Kinetics 

Before we dive into approximate rate laws, we should first be acquainted with the enzyme rate law 

that started it all for metabolic models, Michaelis-Menten rate law (Equation 2). The rate law is 

formulated based on the enzyme binding and catalysis mechanism of Equation 1, together with the 

introduction of two assumptions, quasi-equilibrium and quasi-steady state. 

 (Eq. 1) 

The first assumption considers a quasi-equilibrium between free enzymes (E in Eq. 1) and the 

enzyme substrate complex (ES in Eq. 1), such that reversible binding of E+S to ES is faster than 

the catalysis process of ES into E + P, implying a higher kinetic constant value for kf and kr than 

kcat. The second assumption applies only in the event of the substrate concentration being much 

higher than the enzyme concentration. The quasi-steady state assumption is that the concentration 

of the ES complex remains constant throughout the reaction. 

𝑣 =
𝑉𝑚𝑎𝑥𝑆

𝑆+𝐾𝑚
  (Eq. 2) 

v = Rate of reaction/flux 

Vmax = Maximal rate  

S = Substrate concentration 

Km = Michaelis-Menten constant 
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Figure 1.1: Modelling with ordinary differential equation (ODE). A) A simplified 

reaction pathway of glucose entry into the pentose-phosphate-pathway via 6-

phosphogluconolactone. The simplified pathway does not include any cofactors, and is 

modeled in an isolated manner with extracellular glucose and 6-phosphogluconolactone 

acting as external metabolites and are set to have constant concentrations. The simplified 

reaction does include an inhibition on the glucose transport enzyme by glucose-6-

phopsphate. GLCo: extracellular glucose, GLCi: intracellular glucose, G6P: glucose 6-

phosphate, 6PGL: 6-phosphogluconolactone, HXT: glucose transport, HXK: hexokinase, 

G6PDH: B) Example of how ODE modelling is done for cell metabolism, where rate of 

change of metabolite is tracked by following the production of the metabolite (the enzyme 

reaction that generates the metabolite) deducted from the consumption of the metabolite 

(the enzyme reaction that breaks down the metabolite). C) Group of equations modelling 

simplified pathway seen in A, equations used here are using the convenience rate law 

formalism. As concentrations of extracellular glucose and 6-phosphogluconolactone are 

constant, they would not be tracked, only concentrations of intracellular glucose and 

glucose-6-phosphate are tracked. 
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The maximal rate is the highest possible rate achievable when the enzyme is completely saturated 

with substrate; in reference to equation 1 it would be kcat multiplied with total enzyme 

concentration. The Michaelis-Menten constant is the amount of substrate that gives half-maximal 

rate; in reference to equation 1, it is 
𝑘𝑟+𝑘𝑐𝑎𝑡

𝑘𝑓
. Equation 2 is the simplest form of Michaelis-Menten 

kinetics, describing single substrate and product catalysis. As the number of substrates and 

products increase, as well as enzyme activation or inhibition are added, or different binding order 

for substrates is assumed, the equation expands and requires more parameters. However, not all 

of the possible reaction mechanisms for enzyme reactions are known. For reactions with unknown 

rate laws, they can be replaced with the approximate rate laws discussed below. 

1.3.2 Generalized Mass Action kinetics  

Generalized mass action  (Eq 3, Savageau, 1976) is a refined version of mass action kinetics, 

making it the simplest rate function as it hides the enzyme effects, such as the binding between 

enzyme and substrate or the saturation effect of having more substrates than enzymes. The kinetic 

order f can take up any real value, it will have positive values if it is a substrate or activator, and 

negative values for inhibitors.  

𝑣𝑖 = 𝑘𝑖 ∏ 𝑆
𝑗

𝑓𝑖,𝑗
 (Eq. 3) 

v = Rate of reaction/flux 

k = Turnover rate  

S = Concentration of substrate/effector  

f = Kinetic order 

1.3.3 Convenience rate law 

The convenience rate law (Eq. 4, Liebermeister and Klipp, 2006) is a generalized form of Michaelis-

Menten kinetics (Eq. 2) developed to ease the process of parameter estimation. It is able to cover 

all possible stoichiometries by inserting the value into n for the respective compounds. 

 

𝑣 =  𝐸𝑡𝑜𝑡 ∙ 𝑓𝑟𝑒𝑔

𝑘+
𝑐𝑎𝑡Π(

𝑆𝑖
𝐾𝑚,𝑆𝑖

)𝑛𝑖−𝑘−
𝑐𝑎𝑡Π(

𝑃𝑗

𝐾𝑚,𝑃𝑗
)

𝑛𝑗

Π(1+(
𝑆𝑖

𝐾𝑚,𝑆𝑖

)+⋯+(
𝑆𝑖

𝐾𝑚,𝑆𝑖

)

𝑛𝑖

)+Π(1+(
𝑃𝑗

𝐾𝑚,𝑃𝑗
)+ ⋯+(

𝑃𝑗

𝐾𝑚,𝑃𝑗
)

𝑛𝑗

)−1

 (Eq. 4) 

v = Rate of reaction/flux 

Etot = Enzyme concentration 

freg = Regulatory prefactor 

S = Substrate concentration 
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P = Product concentration  

Km = Michaelis-Menten constant 

Kcat
+/- = Forward and reverse turnover rate 

n = stoichiometry value for substrate/product 

 

To describe regulatory effects on enzymes, a regulatory prefactor (Eq. 5/6) is included, if there is 

no regulation it takes a value of 1. The regulatory prefactor are represented in two of the following 

forms: 

1 +
𝑑

𝐾𝐴 (Eq. 5) for activator regulatory effect  

d = Modifier concentration  

KA = Activator constant 

𝐾𝐼

𝐾𝐼+𝑑 
 (Eq. 6) for inhibitory regulatory effect  

KI   = Inhibitor constant 

 

 

The kinetic parameters in this formulation are all comparable to the parameters in Michaelis-

Menten kinetics that are measured in enzyme assays. Km, represents the substrate concentration 

value when the reaction rate at half-maximal velocity. KI and KA represent concentration values at 

which activator or inhibitor gives half-maximal velocity. This rate law assumes random binding 

order for the substrates and all reactions are reversible. Analogous to Michaelis-Menten kinetics it 

is a saturable rate law.  

1.3.4 Linlog Kinetics 

Linlog kinetics (Eq. 7, Visser and Heijnen, 2003) represents flux as a linear combination of 

logarithmic terms. The 0 superscript denotes the reference state of the enzyme, substrate and 

products. The reference state would usually be wild type steady state. 

𝑣 =  𝑣0 𝐸

𝐸0 (1 + ∑ 𝜀𝑆𝑖

0 𝑙𝑜𝑔 (
𝑆𝑖

𝑆𝑖
0)) (Eq. 7) 

v = Rate of reaction/flux 

E = Enzyme concentration 

S = Substrate concentration 

𝜀𝑆 = Substrate elasticity 

 

As it requires a reference state, this rate law would only be able to produce good results close to 

the said state. Additionally, due to the use of logarithmic values, the rate becomes negative for 

small compound concentration. 
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1.3.5 Modular rate laws 

Modular rate laws (Eq.8, Liebermeister et al., 2010) are a family of five different rate laws 

developed to ensure thermodynamic accuracy and numerical stability for all the parameters. The 

five different rate laws are ‘common’ (Eq. 9), ‘direct binding’ (Eq. 10), ‘simultaneous binding’ (Eq. 

11), ‘power-law’ (Eq. 12) and ‘force-dependent’ (Eq. 13) which would take the form of the 

following to be inserted into Dr: 

 

𝑣 =  𝐸𝑡𝑜𝑡 ∙ 𝑓𝑟𝑒𝑔

𝑘+
𝑐𝑎𝑡Π(

𝑆𝑖
𝐾𝑚,𝑆𝑖

)𝑛𝑖−𝑘−
𝑐𝑎𝑡Π(

𝑃𝑗

𝐾𝑚,𝑃𝑗
)

𝑛𝑗

D𝑟+𝐷𝑟
𝑟𝑒𝑔  (Eq. 8) 

v = Rate of reaction/flux 

Etot = Enzyme concentration 

freg = Regulatory prefactor 

S = Substrate concentration 

P = Product concentration  

Km = Michaelis-Menten constant 

Kcat
+/- = Forward and reverse turnover rate 

Dr = Denominator for different rate laws 

𝐷𝑟
𝑟𝑒𝑔

 = Specific regulation 

n = stoichiometry value for substrate/product 

 

Common modular rate law, 

∏ (1 + (
𝑆𝑖

𝐾𝑚,𝑆𝑖

))

𝑛𝑖

+ ∏ (1 + (
𝑃𝑗

𝐾𝑚,𝑃𝑗

))

𝑛𝑗

− 1 (Eq. 9) 

Direct binding modular rate law: 

∏ (
𝑆𝑖

𝐾𝑚,𝑆𝑖

)
𝑛𝑖

+ ∏ (
𝑃𝑗

𝐾𝑚,𝑃𝑗

)

𝑛𝑗

+ 1 (Eq. 10) 

Simultaneous binding modular rate law: 

∏ (1 + (
𝑆𝑖

𝐾𝑚,𝑆𝑖

))

𝑛𝑖

. ∏ (1 + (
𝑃𝑗

𝐾𝑚,𝑃𝑗

))

𝑛𝑗

 (Eq. 11) 

Power-law modular rate law: 

1 (Eq. 12) 

Force-dependent modular rate law: 

√∏ (
𝑆𝑖

𝐾𝑚,𝑆𝑖

)
𝑛𝑖

. ∏ (
𝑃𝑗

𝐾𝑚,𝑃𝑗

)

𝑛𝑗

 (Eq. 13) 
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The regulatory prefactors are represented in the following form: 

∏ (𝑝𝑟𝑗
𝐴 + [1 − 𝑝𝑟𝑗

𝐴 ] (

𝑎

𝐾𝑟𝑗
𝐴

1+
𝑎

𝐾𝑟𝑗
𝐴

))

𝑤𝑗

∏ (𝑝𝑟𝑙
𝐼 + [1 − 𝑝𝑟𝑙

𝐼 ] (
1

1+
𝑖

𝐾𝑟𝑙
𝐼

))

𝑤𝑙

 (Eq. 14) 

PA/I = Relative basal rate 

KI   = Inhibitor constant 

KA = Activator constant 

a = Activator concentration 

i = Inhibitor concentration

 

Specific regulation is represented as:  

∑ (
𝐾𝑟𝑖

𝐴

𝑎
)

𝑤𝑟𝑖
+

+ ∑ (
𝑖

𝐾𝑟𝑖
𝐼 )

𝑤𝑟𝑖
−

 (Eq. 15) 

 

The activator’s relative basal rates within the regulatory prefactor can vary between value of 0 and 

1, which is represented by the ratio of amount activator is absent to saturating levels of activator, 

while the inhibitor’s relative basal rate is defined accordingly. When the basal rates are zero, the 

regulation achieves complete activation or inhibition, else it would be partial activation or 

inhibition. The superscripts w in both regulatory functions are regulation numbers which by default 

is 0 if absent and 1 if present. These rate laws are able to cover any number of stoichiometries and 

different types of regulation with two different regulatory factors. Like convenience kinetics it has a 

lower number of kinetic parameters compared to classic Michaelis-Menten kinetics, as it scales in 

the number of substrates and products. However, at a glance it can be difficult for the uninitiated 

to choose which one of them to apply to the reactions, as the choices depend on the type of 

binding the enzyme/substrate would have (direct-binding, simultaneous-binding, etc.).  
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1.4 Parameter Estimation in Systems Biology 

Parameters make up a major portion of kinetic models used to describe biological phenomena. 

They play a big role in defining model’s behaviour as they describe molecular properties. Typical 

parameters include Michaelis-Menten constants, maximal velocities, biological half-lives, binding 

constants, molecule concentrations and diffusion rates. These parameters can usually be 

determined through experimental studies, or be obtained from literature or databases that collect 

these information such as BRENDA and SABIO-RK (Costa et al., 2014; Krebs et al., 2007; 

Schomburg et al., 2004). However, not all parameters can be measured experimentally (Sun et al., 

2012). To overcome this, we can use computational and/or mathematical methods to estimate 

these missing parameters. If necessary, parameter estimation can also be used to determine all 

the kinetic parameters in a model when given enough data for the estimation process. Parameter 

estimation is argued by some to be the most difficult step in the model building process (Chou and 

Voit, 2009). This section will discuss what is parameter estimation, some of the algorithms and 

some readily available tools to perform parameter estimation for computer models of biological 

systems.  

1.4.1 What is Parameter Estimation? 

Parameter estimation is also known as inverse problem, model fitting and data fitting (Ashyraliyev 

et al., 2009; Klipp et al., 2009a; Sun et al., 2012). Parameter estimation can be viewed as an 

optimization task where the aim is to find a parameter vector (the set of parameters in a model) 

that produces the least difference between the model and a given set of experimental data using a 

metric such as root mean squared error or mean absolute error.  

 

Typically, parameter estimation would start with a random set of parameter values (a pre-

set range can be given) and the values would change over several iterations according to the rules 

of a given algorithm. After each change in values, the model’s output (i.e. flux values, metabolite 

concentrations) would be compared with experimental data (also known as fitting data) and scored 

using the desired metric. In optimization tasks, the scoring function would often be called the 

objective function, where a given algorithm would aim to find the lowest value (or highest if 

desired) of the given objective function. The parameter vector that gives the best score (if an error 
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metric is used the lowest scoring vector is the best) would be deemed the best set of values for 

the model in a given optimization task.  

 

Two general types of data are used in parameter estimation, they are steady-state and 

time series. Steady state is a condition where the metabolic system have reached balanced fluxes 

and constant levels of compound concentrations. A time series is just as the name suggest, a 

series of data following a property of the biological system such as protein concentration as it 

changes over a given time frame. For parameter estimation, the more data provided the better, 

therefore in the case of time series data, higher granularity would lead to better outcome. 

Alternatively, more data can be generated by altering conditions of the experimental settings or 

using knockouts of the model species.  

 

One problem that can arise from parameter estimation is the model may only be able to 

generate outputs that match the fitting data, and unable to reproduce outputs of new data 

previously not used in the fitting process. This phenomenon is known as overfitting and it is caused 

by the parameter estimation process forcing the model’s output to agree with the given data. 

When this occurs, the model will not be able to serve its purpose in biological research of 

predicting new data for hypothesis generation. To overcome this issue, cross-validation can be 

performed to determine if the model is overfitted. This is done by dividing fitting data into training 

and test sets (i.e. one set of data collected under one condition for training and another set for 

test, or in the case of time series data, a later portion of the data can be used as test set), where 

the training set is used for fitting the model, while the test set is used to assess the model’s 

predictive quality after it is fitted. If the fitted model is able to reproduce the values of the 

previously unused test set, the model is considered validated. A validated model can be used for 

reliable predictions in research.  

1.4.2 Parameter Estimation Methods 

Optimization methods are of two broad classes, which are global and local optimizers. This 

distinction comes from the phenomenon that in the parameter search space there exist global and 

local optima (Figure 1.1); local methods are those that converges to a local optimum in 

neighbourhood of the starting point while global methods ideally search the entire parameter 
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space for a global (some call it ‘true’) optimum (Ashyraliyev et al., 2009; Sun et al., 2012). A global 

optimum is defined as the point where no other parameter vector gives a smaller (if looking for 

minimum) or bigger (if looking for maximum) value for the objective function. A local optimum is 

when no other sets of parameter in the vicinity of search space can produce a better objective 

function (Klipp et al., 2009a).  

 

Figure 2.2: Global vs Local optimization. x is the parameter vector and f(x) is the 

objective function 

 For local optimizers, there are two commonly used categories of methods. Direct-search 

methods such as the Hooke and Jeeves method (Hooke and Jeeves, 1961), and the Nelder-Mead 

method (Nelder and Mead, 1965). Direct-search methods search through a limited number of 

candidates and determine if any of them are better than the current one. The other commonly 

used category is gradient-based methods, examples include the Levenberg-Marquadt method 

(Levenberg, 1944) and Newton’s method. Gradient descent makes use of the first derivative of the 

function being solved to determine the direction of descent, and makes a step in that direction, 

with the aim of improving on the objective function.  

 

 Global optimizers are often stochastic search algorithms, as the stochasticity would usually 

allow it to escape local optima as it searches the parameter space. Examples of such algorithms 

include simulated annealing (Kirkpatrick et al., 1983), inspired by the physics phenomenon of slow 

cool down of a solid after heating it up; and other methods inspired by nature such as genetic 

algorithms (Holland, 1962), ant colony optimization (Colorni et al., 1991), particle swarm 

optimization (Kennedy and Eberhart, 1995) and scatter search (Glover, 1977). 
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1.4.2.1 Hooke-Jeeves Method 

This method is done is two steps, an exploratory move followed by a pattern move. In the 

exploratory move, a series of changes is made on the parameter vector, usually one parameter is 

changed in a positive and negative direction. This is done to collect information on the immediate 

parameter space, for any changes that brought an improvement on the objective function the 

value is maintained. After all the parameters have been manipulated and there a decrease/increase 

on the objective function, the algorithm proceeds with the next step, if not, the exploratory move 

is repeated with a decrease in step size (in this context decrease magnitude of parameter value 

manipulation). In the pattern move, information from the previous step is used to determine the 

best direction to take in the parameter search space and move towards it. These two steps will 

repeat until the step size have been reduced to a specified value, and an optimum is assumed to 

have been found.  

1.4.2.2 Levenberg-Marquadt Method 

This method is an interpolation of two minimization methodologies: gradient descent method and 

Gauss-Newton method. In gradient descent, also known as steepest descent, the search direction 

is the opposite of the gradient (‘downhill’) of the objective function. The Gauss-Newton method 

minimizes the sum of squares of the objective function by assuming the function is quadratic, and 

solves for its minimum. Levenberg-Marquadt combines these two methods with a damping factor, 

which is set to a large value initially and decreases as iteration of the algorithm increases. When 

the damping factor is high, it takes advantage of the gradient descent method and vice versa. In 

this manner, it would be using steepest descent when it is far away from the optimum, and the 

Gauss-Newton method as it approaches the optimum. 

 

1.4.2.3 Genetic Algorithm 

Genetic algorithm (GA) is a form of search algorithm inspired by the Darwinian evolutionary 

principle. In brief, GA ‘replicates’ the evolutionary process with a population of potential solutions 

(the parameter vectors) that go through multiple generations of mutations, selection and 

reproduction. The potential solutions are evaluated at every generation with a fitness function (this 

is GA terminology for objective function), and the population evolves over generations to produce 

the best solution.  
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 The first step in GA is to initialise a population (a user determined number, a larger 

population might result in a better solution, but also increases computation time) of parameter 

vectors made up of random values, which are traditionally encoded in binary numbers. These 

vectors are usually referred to as chromosome or individuals in GA terminology. Following this, 

each individual is scored with a function that gives them a fitness score.  

 

 With the individuals scored, they undergo a selection process to determine parents for the 

mating (reproduction) process. For the selection process, there are several variations users can 

choose from. All these different options rely on the fitness scores of the individuals, it can be as 

direct as picking the best individuals in an ‘elitist’ manner; or rely on element of randomness to 

avoid the aforementioned ‘elitist’ selection, such as picking several random individuals and 

retaining only the best of the chosen ones in a ‘tournament’ fashion.  

 

 After the parents are chosen, the reproduction or recombination step can take place to 

produce offspring for the next generation. Like the selection step, there are variations for this step. 

If can be as simple as a single point crossover of the binary encoded vectors, where the bits 

(binary values) are swapped at a random point. Another variant is uniform crossover where each 

bit is independently chosen to be exchanged between two parents.  

 

 Mutation is another important step in GA to produce new individuals for the next 

generation. It is done to a random individual, with slight modifications on it. Different approaches 

exist for the mutation step too. One method consists in flipping the bits at random positions with a 

given mutation rate. Alternatively, the chosen individuals’ entire bits get inverted (i.e. 1 becomes 

zero and vice versa). 

 

 New generations produced by mating and mutation are scored, and the process of 

selection, mating, mutation repeats for multiple generations until a termination criterion is met. It 

could be that an optimum is found with one of the individuals, or that the maximum number of 

generations is reached or the best fitness score have reached a plateau (i.e. no new individual is 

able to produce a better fitness score for consecutive generations since the best was found).  
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1.4.2.4 Scatter Search 

Scatter search (SS) is also an iterative population based global optimization algorithm. While the 

general idea is analogous to the previously mentioned GA, it differs in requiring a relatively smaller 

population size, requires lesser degree of randomness (every step in GA potentially has a random 

element, while in SS only the first step has randomness involved), and makes use of a local 

optimization method in one of its steps. Classically, scatter search has a ‘five-methods’ template, 

and like GA they are all flexible in their execution. This section will outline a basic approach to each 

of the methods in SS for parameter estimation.  

  

The five-methods are: 

i) Diversification Generation Method, this is for creating the initial pool of trial solutions 

(parameter vectors), which could be random and/or be generated using prior information 

of good solutions.  

ii) Improvement Method, this is for enhancing the trial solutions, it can be carried out in any 

manner the user sees fit, but a common approach in this context is to use one of the local 

minimization methods for parameter estimation.  

iii) Reference Set Update Method, this is to generate and maintain a reference set for the 

subsequent method, the solutions in this set must have a good objective function score 

and be diverse. Solutions chosen to be in reference set are deleted from the pool of 

solutions.  

iv) Subset Generation Method, from the reference set, subsets are created. The direct 

approach would be to create pairs from all the reference solutions.   

v) Solution Combination Method, using the subsets solutions are combined to create new 

solutions for the pool. It can be by directly swapping elements in the vectors or using 

geometry to search in the neighbourhood space or beyond.  

 

In general, SS is executed in the following manner: the pool of solutions is generated and 

subsequently improved upon using the desired algorithm (they are also scored using the objective 

function of choice). From the pool a reference set is created, which is used to create subsets. New 

solutions are generated from the subsets through the combination method, and they are improved 

upon before being introduced to the pool. Using sets from the pool, the reference set is updated. 
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If an optimum is not found in the new set, subset generation, solution combination and 

improvement methods are repeated until a stopping criterion is reached. The same criteria used by 

GA can be applied here.   

1.4.2.5 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is another iterative, stochastic and population-based 

optimization method. This method was inspired by the social behaviour of flock of birds or school 

of fish. PSO emulates the swarm intelligence of birds when they search for food in a group, the 

strategy employed is for the swarm to follow the bird closest to the food.  

 

PSO follows the GA and SS methodology of initialising a random set of solutions and 

scoring them with an objective function, then they go through multiple iterations of improving until 

an optimum is located. However, unlike GA and SS it does not make use of recombination of the 

parameters to improve on them.  

 

 In PSO, each parameter vector is known as a particle, and information on its position and 

velocity in the parameter space is retained as well as the best solution. Each particle determines its 

velocity using positional information of the locally best particle in its neighbourhood. Its position is 

then updated using the velocity.  

 

The velocity is determined with the following equation: 

v = v + c1 * random * (pbest - present) + c2 * random * (nbest - present)  

and the position is updated with this equation: 

present = present + v  

v = velocity 

c1/c2 = learning factors 

pbest = best scoring parameter vector for 

the particle 

present = present parameter vector  

nbest = parameter vector of the 

neighbourhood best particle 

random = random value between 0 and 1 

 

The process of determining the velocity and updating the position is repeated until a 

stopping criterion is reached, which is the same as in GA and SS. Learning factor is a parameter 

that the user has to calibrate. Another user specified parameter in this algorithm is the maximum 
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velocity, where if the velocity calculated for the particle exceeds maximum velocity, the maximum 

value is used instead. This is to prevent particle from going too far from the search space. 

1.4.3 Software Tools for Parameter Estimation 

As model building is being widely adopted for biological research, multiple tools capable of 

performing parameter estimation for biochemical models have been developed. For example, 

SBML-PET (Zi, 2011; Zi and Klipp, 2006) is a parameter estimation software dedicated to the SBML 

format of models. It performs parameter estimation using a Stochastic Ranking Evolution Strategy. 

In its second iteration of the software, it makes use of a message passing interface protocol to 

parallelize its estimation process, allowing for an increase in speed. SBMLSimulator (Dörr et al., 

2014) is a Java based software with a graphical user interface (GUI). It enables users to simulate 

models in SBML format, as well as to perform parameter estimation with algorithms provided by 

the EvA2 (Kronfeld et al., 2010) optimization framework. EvA2 provides a wide variety of 

algorithms within the evolutionary algorithms’ family such as GA, PSO, Differential Evolution, and 

Population Based Incremental Learning. Another software that packs a variety of parameter 

estimation tools is COPASI (Hoops et al., 2006), this software provides a mix of local and global 

methods such as Hooke and Jeeves, Levenberg-Marquadt, evolutionary programming, simulated 

annealing PSO and GA. 
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1.5 Aims 

The construction of kinetic models of cell metabolism for biologists can be challenging. This is due 

to lack of expertise, or the lack of data needed to generate a model. Despite improvements in 

technology and a high volume of biological data being generated, metabolomics and enzyme 

kinetics data are lacking in comparison to other omics data. Available data for a complete network 

has often been measured in different conditions and/or by different labs. To overcome 

heterogenous data, some labs might opt to generate the kinetics data themselves, which is often 

expensive, labour intensive and time consuming. The combination of these factors presents a 

gatekeeping effect for biologists who are unfamiliar with the world of modelling and the benefits it 

can bring to research. To address this issue a software, GRaPe 2.0 has been developed. This is 

aimed to be a software of intuitive usage and to allow users to build models using heterogenous 

data (metabolomics, fluxomics and proteomics).  

 

In Chapter 2, the software architecture and the framework of kinetic model construction is 

described. The framework in brief is as follows. To overcome the incomplete information on 

enzyme rate laws, a reversible approximate rate law, convenience kinetics, is used to describe all 

enzyme reactions. To fill in the unknown kinetic parameters needed to complete the model, 

parameter estimation can be performed through a genetic algorithm with the software.  

 

In Chapter 3, application of the software is demonstrated with a kinetic model of the 

Saccharomyces cerevisiae glycolytic network. This model was able to reproduce the original values 

for metabolite concentrations and fluxes during steady state, which were used to train the model. 

Additionally, it was able to reproduce the increased flux values typically observed under heat stress 

conditions for S. cerevisiae, which was a separate set of data that was not used in training the 

model. This work showcased the software’s capability in constructing a dynamic metabolic model 

that can be validated. 

 

The construction of a model is a first step in systems biology research, and following this 

process, users should be using the model to generate hypotheses, study biological phenomena 

that can be difficult to measure experimentally, or use it to find the best metabolic engineering 
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target to produce a biotechnology compound of interest. In Chapter 4, a model of S. cerevisiae 

trehalose metabolism was built and validated using quantitative omics data (metabolites, fluxes 

and proteins) and GRaPe 2.0. The completed model was used to study the reason behind the rise 

in glycolytic flux that occurs during heat stress. Trehalose is a compound with commercial value as 

it possesses protective properties that can prolong life of other compounds. With this in mind, the 

model was used to determine the best engineering target to increase yield of trehalose in S. 

cerevisiae. Work in this chapter demonstrates that models generated with GRaPe 2.0 can be easily 

applied to assist bioengineering research.  

 

In Chapter 5, the main outcomes of this work are assessed and discussed, and directions for 

future research are presented. 

 

Overall, this project aims to produce a software that serves as a gateway modelling tool for 

biologists that wish to enter systems biology research.  
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2. Chapter 2: GRaPe 2.0: Gateway for Building Kinetic 

Models of Cell Metabolism 

2.1 Abstract 

As number of biological data in public domain grows it should allow for more computational model 

of biological networks to be built. Size of models should also ideally be increasing in size. 

Unfortunately, this is not often the case for kinetic models of cell metabolism. Several factors 

prevent this from happening, incomplete kinetic data, from rate laws to parameter values, and 

available modelling tools have steep learning curve, presenting a barrier for biologists intending to 

construct models for research.  

 

 To address these challenges, GRaPe 2.0 was developed. GRaPe 2.0 is a software tool that 

does all difficult model building process in the background automatically, requiring only the basic 

information from the users about the network. Information include, metabolites, enzymes and 

reactions of the network. To fill in the missing parameter values, users can provide measured 

metabolomics or fluxomics data, with it the software can run a genetic algorithm to estimate the 

parameters. This software will serve as a gateway modelling tool for biologists.  
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2.2 Introduction 

Over the past decade, applications of computer and mathematics in aiding biological research have 

been growing, especially when it comes to studying biochemical networks. This interdisciplinary 

research spawned a new field, systems biology, which tackles biological problems from a holistic 

approach. As the field grows, so does the number of techniques and software suites developed to 

study biological problems (Bartocci and Lió, 2016).  

 

 For the construction of kinetic models alone, there are various software developed for 

different stages of model building. For example SBMLeditor is a tool for creating and editing 

models down to its minute details (Rodriguez et al., 2007), from determining the substrates, 

reactions, rate laws and every value that is associated with the respective entities. There are also 

tools that support the estimation of missing kinetic parameters in models such as SBML-PET (Zi 

and Klipp, 2006) and SBMLSimulator, which allows for parameter estimation and simulation of 

models (Dörr et al., 2014). CellDesigner lets the users create, visualise and simulate models 

(Funahashi and Matsuoka, 2008), as well as supports plugins for additional functions, such as 

SBMLsqueezer that helps users select rate laws for the reactions (Dräger et al., 2008). COPASI 

allows for creation, parameter estimation and simulation of models (Hoops et al., 2006). On top of 

software tools aimed at kinetic models, some biologists opt for more control over the entire 

modelling process by using programming languages such as MATLAB and Python. 

 

 The variety of software also comes with a varying level of expertise requirements, such as 

the need to have programming background to use the software effectively. Some tools might 

require an extensive reading of the manual or some form of training before being able to dive into 

model building, despite having a graphical user interface. Additionally, the majority of the software 

grants users very detailed control over every part of the model, requiring their input at every step 

of the process. This would increase the complexity of the model building process and the time 

needed for its completion as the model gets bigger, as well as increase the probability of 

introducing errors in the models. All of these hurdles could result in an unwanted gatekeeping 

effect for biologists who want to join the modelling community if they fail to secure bioinformatics 

collaborators. 
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 On top of software tools, another element needed for building models is the information 

necessary for the model. While there are various databases that pool together data needed for 

kinetic models, such as BRENDA (Schomburg et al., 2004), SABIO-RK (Krebs et al., 2007), and 

KEGG (Ogata et al., 1999), there are still either missing data or data from heterogenous 

conditions. The majority of the missing information could be the kinetic rate laws for reactions or 

kinetic parameters.  

 

 The combination of incomplete data and unfamiliar tools can be intimidating and confusing 

for beginners who wants to incorporate modelling into their research. To address this issue, GRaPe 

(Adiamah et al., 2010) was previously developed, which aimed to simplify the process of building 

kinetic models for cell metabolism. It did this by automatically generating rate equations in the 

form of generic Michaelis-Menten equations (King and Altman, 1956) and estimated the missing 

kinetic parameters using either a genetic algorithm (Holland, 1962) or Levenberg–Marquardt 

method  (Nocedal and Wright, 1999).  

 

Here, I present an enhanced version of GRaPe that improves upon the earlier version as 

well as introducing features not found previously. GRaPe 2.0 with its ease of use and the allowance 

for heterogenous data integration aims to be a gateway modelling tool for biologists interested in 

metabolic modelling.  

2.3 Software Features 

The following is a summary of the main features in GRaPe 2.0: 

1. Import and export of models in Systems Biology Markup Language (SBML) format (Hucka et 

al., 2003), a commonly accepted standard for the storage of biochemical reaction models. 

Newly built models are all saved in SBML format, which can then be imported by other 

software that supports this format if desired.  

2. Model construction through a polished and intuitive graphical user interface (Figure 2.2) or 

command line interface (new feature) that parses through tab separated text file. All that is 

necessary for the model construction are the metabolites, reactions involved and the enzymes 

that catalyses them, and if known, the initial concentrations of the metabolite and enzymes. As 
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models are built following the SBML standard, users are allowed to set boundary conditions for 

input and output metabolites of network if desired.  

3. Reactions in the model support up to three substrates and products (previous version was 

limited to two only). It is also possible to include enzyme modifiers, either activators or 

inhibitors, or both if necessary for the reaction (new feature).  

4. Parameter estimation of all the kinetic parameters in the model with a genetic algorithm (GA) 

(Holland, 1962) using steady state or time series data (previous version was limited to steady 

state data). It requires metabolite and/or flux data, even allowing for incomplete information 

where not every metabolite or flux is present, as well as data from different sources obtained 

under different conditions. The previous version estimated the kinetic parameters locally 

(estimating them by individual reaction), the updated version estimates all the parameters 

from a systemwide approach (entire model is solved and estimated together). Additionally, the 

previous version only estimated some of the parameters, giving the remaining parameters a 

value of one, whereas the updated version finds all the kinetic parameters.  

5. Parameter estimation function now accommodates the ability to make use of data gathered 

from multiple conditions; i.e. under different conditions, cells would express a different protein 

make up, possibly resulting in varying metabolite and flux outputs. GRaPe is now able to make 

use of this form of information to impose further constraints on the estimation process and 

create a ‘stiffer’ model if desired.  

6. Through Java’s multithreading feature, users can increase the number of CPUs used during 

parameter estimation step to solve multiple models concurrently and decrease the time needed 

for this process. 
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2.4 Methods 

2.4.1 Kinetic Rate Law for Reactions 

All the enzymatic reactions modelled using GRaPe 2.0 are generated using the convenience 

kinetics rate law (Liebermeister and Klipp, 2006, Equation 1), a generalized Michaelis Menten rate 

law. This rate law assumes a reversible random binding order for all substrates. Convenience 

kinetics is chosen as its simplicity allows for easy addition and removal of substrates and products, 

with a linear scaling in the number of kinetic parameters involved. Additionally, it is able to model 

enzyme regulation without major changes to the equation.  

Equation 1: 

𝑣 =  𝐸𝑡𝑜𝑡 ∙ 𝑓𝑟𝑒𝑔

𝑘+
𝑐𝑎𝑡Π(

𝑆𝑖
𝐾𝑚,𝑆𝑖

)𝑛𝑖 − 𝑘−
𝑐𝑎𝑡Π(

𝑃𝑗

𝐾𝑚,𝑃𝑗

)𝑛𝑗

Π (1 + (
𝑆𝑖

𝐾𝑚,𝑆𝑖

) + ⋯ + (
𝑆𝑖

𝐾𝑚,𝑆𝑖

)
𝑛𝑖

) + Π (1 + (
𝑃𝑗

𝐾𝑚,𝑃𝑗

) + ⋯ + (
𝑃𝑗

𝐾𝑚,𝑃𝑗

)

𝑛𝑗

) − 1

 

 

v = Rate of reaction/flux 

Etot = Enzyme concentration 

freg = Regulatory prefactor 

S = Substrate concentration 

P = Product concentration  

Km = Michaelis-Menten constant 

Kcat
+/- = Forward and reverse turnover rate 

 

The regulatory prefactor are represented in two of the following forms: 

1 +
𝑑

𝐾𝐴 for activator regulatory effect 

d = Modifier concentration  

KA = Activator constant 

𝐾𝐼

𝐾𝐼+𝑑
for inhibitory regulatory effect 

KI   = Inhibitor constant 
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2.4.2 Parameter Estimation or Model Training 

Kinetic parameters (Km, KA
 , KI ) in the models built using GRaPe 2.0 are estimated from data on the 

metabolites and/or fluxes that are either at steady state or time series. This set of information 

(metabolites/fluxes) are known as training data as they are the values the model is expected to 

produce from simulation after the process of parameter estimation (or training the model). Ideally 

there should be a separate set of data for testing or validating the model, whereby the model is 

manipulated in some form to be in a different condition than the one used for training. The model 

manipulation could be that the enzyme concentrations are changed or ‘deleted’ by setting the 

values to zero, and the model’s simulation output is compared with the aforementioned testing 

data. This is done to ensure the model that was trained is not overfitted; overfitting is a 

phenomenon where the model is trained to only generate output for one condition, this would 

make the model not usable to test new hypotheses (Klipp et al., 2009a).  

 

 Parameter estimation in GRaPe 2.0 is done using a genetic algorithm (Figure 2.1), an 

optimization algorithm that was inspired by Darwin’s evolutionary principles. The system would first 

initiate a population made up of different sets of kinetic parameters, each making up a model, also 

known as “chromosome” in the context of GA. From the initial population, the chromosomes would 

undergo multiple generations of crossovers and mutations to finally produce the model that would 

best fit to the training data that was given. To determine the best model, each chromosome’s 

fitness is measured by comparing the simulated values against the training values. The quality of 

fit would be scored using the mean absolute percentage error (MAPE, Equation 2), as it would 

allow for a wider scale of values to be covered, whereas the commonly used root mean squared 

error would emphasize the large errors due to squaring.  

 

Equation 2: 

Σ |
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
| ∙

100%

𝑛
 

 

Observed = Training data’s value for metabolite and/or flux. 

Simulated = Model simulated value for metabolite and/or flux. 

n = Total number of metabolites and fluxes in the model. 
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Figure 2.1: GRaPe 2.0’s genetic algorithm decision flowchart. Diamonds signify 

decision points. Rectangles signify tasks.  

 

2.4.2.1 Details of the Genetic Algorithm Implemented 

1. Initial Population: Initial population of parameter values (chromosomes) are generated 

randomly for the first generation. Unlike most GA, binary encoding is not used for 

chromosomes, instead every single kinetic parameter in the chromosome is encoded as an 

exponent for a base value of 10 (decadic logarithm value). The reason for this encoding is 

that exact values for a kinetic parameter is not a priority, rather the orders of magnitude.  

2. Fitness Evaluation: The kinetic parameter values of each chromosomes are inserted into 

the model, and the model is solved. The output of the model is compared to the fitting 

data, and the fitness value of each chromosome is scored using MAPE. 
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3. Crossover: Next generation is spawned by choosing random chromosomes parents using 

tournament selection; tournament selection is carried out by sampling population at 

random several times (depending on the population size) to select fit parents. After 

parents are selected, crossover is done using uniform crossover to produce offspring for 

the next generation. In this version of uniform crossover, a fixed ratio of parameters is 

exchanged instead of exchange at fixed points.  

Figure 2.2: GRaPe 2.0’s genetic algorithm’s principles visualisation. Only subset of 

kinetic parameters from a model of pentose phosphate pathway is displayed. In the 

mutation step, several parameter values are updated at random. In the plague step, 

Chromosome 2 and Chromosome n are removed from the population as they possess low 

fitness score. In adaptive evolution, every single chromosome is mutated, and fitness 

scores are updated.  

4. Mutation: Following crossover, random chromosomes are chosen to be mutated. 

Mutation is carried out by randomly increasing or decreasing one or several parameters in 

the chromosome.  
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5. Plague: A plague function is also written into this GA, whereby after a set amount of 

generations determined by the user, the population would get reduced to the initial size, 

purging chromosomes with low fitness score.  

6. Adaptive evolution: Users can also set a plateau limit, which is the maximum number of 

generations for when the highest fitness score stays the same. After reaching the plateau 

limit, there is an adaptive function in the GA where every chromosome is mutated to try 

and escape this plateau, 

7. Ending criteria: The ending criteria in a perfect scenario would be when a chromosome 

is able to perfectly replicate the fitting data as its output, resulting in zero error score. GA 

would also come to an end after the user determined number of generations is completed. 

Alternatively, if adaptive evolution fails to improve the fitness value of the fittest individual 

after the plateau, the search comes to an end, spawning a model from the fittest 

chromosome.  

8. Strengths of GA implemented: Use of decadic logarithm value in the kinetic parameter 

value generation allows greater parameter search space to be covered. Number of random 

elements in each operator of the GA is increased by choosing at random how each 

chromosome is processed. The addition adaptive evolution greatly increases the chance of 

escaping local optima of the parameter search space. This is especially useful in building 

large scale kinetic models that contain multiple local optima where most parameter 

estimation methods would be trapped in.  
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2.5 Implementation 

2.5.1 Software Architecture 

 

Figure 2.3: Architecture of GRaPe 2.0. The software is written in a modular nature, 

where each main function is written in separate packages in Java, such as the main ones for 

Model, Genetic Algorithm and Graphical User Interface (GUI). This allows for the 

software to be used via a command line interface (CLI) if preferred. In order for the 

software to work, three Java libraries (Apache Common Maths, JSBML, Java Native 

Access) and three C libraries (SBML Odesolver, SUNDIALS, libSBML) are required.  

I built GRaPe 2.0 using mainly in Java programming language (version 8), with small parts written 

in C. It is written as a modular program, where the interface to the software and the algorithms 

that power it are all in separate packages. It has been tested in both Linux and MacOS.  

 

This new version gives the user the ability to build models and run parameter estimation 

through the command line interface (CLI) if needed, which allows the software to be used on a 
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high-performance computing cluster with ease. To build models through the CLI, users can submit 

a tab separated file according to the format shown in Figure 3  

 

Figure 2.4: Example Tab Separated file for building models with GRaPe 2.0 through 

command line interface. NOTE: this is an example made in a spreadsheet for clarity, it 

should be in a text file. The text is read in row by row by the software.  A ‘#’ sign denotes 

start of a new element being read into the system (metabolites, enzymes, reactions). ‘B.C’ 

stands for boundary condition, a function in SBML that makes a metabolite’s 

concentration fixed if stated to be ‘TRUE’ (and vice versa), becoming either an output or 

input for the system being modelled. The column following either metabolites or enzymes 

are concentrations for the respective compounds. For the reactions, users must first set an 

enzyme that catalyses the reaction, and if needed activators and/or inhibitors for the 

reaction in the proceeding columns. In the following columns, substrates come first, then a 

‘=’ sign to separate them from the products, which comes in the next columns. For 

stoichiometries of reactions, users can add numbers followed by ‘*’ preceding the 

substrates/products (e.g. 2*G6P) 

 

 On top of the CLI, a graphical user interface (GUI) is also built into GRaPe 2.0 for users 

that prefer interaction through a GUI. The GUI is all written using the Java Swing framework. It is 

more polished and compact compared to the previous version, making it more intuitive and 

welcoming for new users.  
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2.5.2 Dependencies  

Models built in GRaPe 2.0 are all in SBML format; for this the software uses JSBML (Dräger et al., 

2011) to import and export SBML data files. Within the software itself is an additional translator to 

allow the data structures to be used in the genetic algorithm. The translator takes advantage of 

the Systems Biology Ontology (Courtot et al., 2011) to identify every compound’s role within a 

reaction, such as it being an enzyme, substrate, inhibitor, etc.  

 

 For the solving of models, GRaPe 2.0 makes use of the SBML ODE Solver Library (SOSlib, 

Machné et al., 2006), which itself relies on libSBML (Bornstein et al., 2008) for parsing the models 

and SUNDIALS (Hindmarsh et al., 2005) for performing integrations. To allow for a C library to 

interface with GRaPe 2.0 that is written in Java, Java Native Access (Fast et al., 2007) is used 

along with a small C shared library written specifically for this purpose.  

 

 The Apache Common Math’s library is also used for performing linear algebra. 

2.5.3 Model processing 

As mentioned earlier, models built using GRaPe 2.0 are made up of three major elements: the 

metabolites or reacting species, the enzymes and the reactions.  

2.5.3.1 Metabolites 

Metabolites are the compounds produced and consumed in a metabolic model. This means their 

values vary as the model is simulated until it reaches a steady state (if there is one). Users are 

allowed to give the metabolites in the model an initial value, else they default to a value of one. As 

allowed by the SBML format, users can determine its boundary condition to be true or false; if set 

to true, its concentration would be fixed independently of internal production or consumption of 

the metabolite, and vice versa. This would usually mean that the metabolite is an input or output 

for the system being modelled. 

2.5.3.2 Enzymes 

Enzymes are the proteins responsible for catalysing metabolic reactions in the model, which are 

usually constants that can be determined by users through their concentration values. In the event 

that their values are not known, they can be set to a value of one, which would result in them not 

having an effect in the equation (a concentration can be left out but an enzyme must still be 
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named). However, if their values are known, they can be correlated to the state of the system 

being modelled; for example, under different conditions such as growth rate, it is possible for the 

cells to express different amounts for certain enzymes. Alternatively, a value of zero can be given 

to the enzymes, to represent a deletion for the associated reactions.  

2.5.3.3 Reactions 

Reactions transform metabolites into each other. Users would have to set an enzyme for every 

reaction; if it is a pseudo reaction, a placeholder enzyme can be used instead. It is also possible to 

associate activator and/or inhibitor modifiers to reactions. Metabolites form either a substrate or a 

product in the reaction. A chain of enzyme catalysed reactions should form a complete network, 

from input metabolite(s) to output metabolite(s).  
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3. Chapter 3: Software Proof of Concept: Glycolytic 

Network in Saccharomyces cerevisiae 

3.1 Abstract 

The construction of kinetic models of metabolic pathways has always been hindered by the limited 

availability of kinetic parameters, in addition to incomplete knowledge of the reaction mechanisms. 

Strategies have been developed to allow the generation of kinetic models with limited information. 

Despite this, not many large-scale dynamic and integrative models have been generated. The aim 

of this research is to streamline the process of generating large-scale metabolic models, while 

using metabolomics and proteomic data to inform parameter values. As a proof of concept, two 

different models of yeast glycolysis were being built using metabolite, flux and protein amounts via 

the software package GRaPe 2.0. We show that our method is capable of generating a dynamic 

model, which accounts for multiple types of data. The resulting models are performed well on 

evaluation. 
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3.2 Introduction 

The development of computer models in the field of biology has been increasing continuously 

(Basta et al., 2014; Blazeck and Alper, 2010; Jamshidi and Palsson, 2008; O’Brien et al., 2013) 

allowing biological systems to be studied from a quantitative and predictive perspective. A 

computational model allows us to understand how all the different parts in a system come 

together, interact and regulate each other, as well as identify emergent properties (Kitano, 2002). 

There are multiple modelling approaches employed to study different biological systems, such as 

Boolean rules (Gupta et al., 2007; Saez-Rodriguez et al., 2007), Petri nets (Koch et al., 2005), 

Bayesian networks (Auliac et al., 2008; Friedman, 2004), constraint-based models (Orth et al., 

2011; Varma and Palsson, 1994) and kinetic models (Jahan et al., 2016; Joshi and Palsson, 1989; 

Khodayari et al., 2014). Kinetic models provide the advantage of studying the quantitative and 

dynamical behaviours often observed in biology. They are among the most precise and versatile 

tools to represent complex biological systems, usually built using ordinary differential equations.  

 

However, the construction of kinetic models is often impeded by limited information 

(Almquist et al., 2014). Whilst metabolic pathway information is readily available in literature and 

databases like KEGG (Ogata et al., 1999), allocating kinetic equations to all the reactions in a 

model is often tedious, provided they are available to begin with. One solution proposed to avoid 

such an issue is to use some generic types of kinetic equations, for example the linlog kinetics for 

model building (Smallbone et al., 2007, 2010; Visser and Heijnen, 2003). Some models make use 

of simple mass action kinetics (Chen et al., 2010, 2012); the Generalized Mass Action system is an 

improvement which allows for greater flexibility by including exponents called kinetic order that 

accounts for either augmenting or diminishing effects (Alvarez-Vasquez et al., 2005; Fonseca et al., 

2011). There are also software packages developed with the idea of simplifying rate law selection 

during the model building process such as SBMLsqueezer (Dräger et al., 2008, 2015) and BISEN 

(Vanlier et al., 2009). After accumulating the necessary information, from pathway to reaction 

kinetics, models can be built, curated and maintained using software such as COPASI (Hoops et 

al., 2006) and CellDesigner (Funahashi and Matsuoka, 2008).  

 

A major component of kinetic models is the parameters embedded in the rate laws, such 

as the Michaelis-Menten constants, and the association or dissociation constants. Many of these 
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are usually unknown and determining them can be challenging. Teusink and colleagues 

experimentally determined the parameters of the yeast glycolytic system under in vitro conditions 

and demonstrated that this approach is able to reproduce results for in vivo conditions (Teusink et 

al., 2000). However, this approach is very time consuming and expensive for large systems. 

Another approach is to make use of parameters that are found in the literature for model building 

(Alvarez-Vasquez et al., 2005) or to make use of databases such as BRENDA (Schomburg et al., 

2004) and SABIO-RK (Krebs et al., 2007). However, a problem with this method is that the values 

are usually collected in various different experimental conditions, cell types, strains and organisms 

(Costa et al., 2011). Parameter estimation is another method used to acquire the values indirectly. 

This has been done using metabolomics and/or flux data, with software packages such as SBML-

PET (Zi, 2011; Zi and Klipp, 2006), SBMLSimulator (Dörr et al., 2014) and COPASI (Hoops et al., 

2006). 

 

The software mentioned above are all designed to assist in various steps of the model 

construction process, either building the topology, providing help with the setting of the reaction 

kinetics or estimating the missing parameters, but none of them offers an integrated solution to 

simplify the entire process. Additionally, some of these tools require the users to have fluency in 

programming or are in the form of a package attached to commercial software. When a tool has a 

built-in graphical user interface, the complexity of the model building process scales with the size 

of the model as user input is required at every step in many aspects. This can lead to errors and 

long hours in model building. These obstacles would hinder beginners from joining the modelling 

community.   

 

  We previously introduced the GRaPe software (Adiamah et al., 2010) to simplify the 

construction of kinetic models using automatically generated rate equations, and estimating 

parameters from flux values under steady state conditions. In this study, we present GRaPe 2.0 

that addresses several important limitations of the previous version: GRaPe 2.0 uses convenience 

kinetics (Liebermeister and Klipp, 2006) to generate rate equations, enabling modelling of 

reactions containing any number of substrates and products (which was previously limited to only 

two substrates and products); regulatory interactions such as allosteric inhibitions or activations 

can be included in the model, a feature not found previously; moreover, several types of omics 
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data can be used simultaneously in the parameter estimation process; and the estimation is able to 

handle actual time courses of dynamic values, a function that was previously lacking; the user 

interface has also been updated to be more intuitive and compact. This updated version aims to be 

the gateway modelling software for biologists planning to use kinetic models in their research. With 

the simplified process for model building, it would also serve as a rapid prototyping step in 

metabolic model construction before moving forward with their project.  

 

A case study using yeast glycolytic models was built to demonstrate the software’s 

capabilities, where temporal omics data was available to help parameterize the model as well as 

validate it. In this case, the model uses the initial time point’s proteomics data to assign enzyme 

concentrations simulating standard conditions for parameter estimation. Then, the remaining time 

points’ data were used to make predictions on the metabolites and fluxes emulating heat stress 

conditions. From the case study, we show that our procedure enables the construction of 

integrated high-quality kinetic models using several types of omics data and greatly accelerates the 

construction of precise kinetic models of cell metabolism. 

3.3 Methods 

3.3.1 Enzyme Kinetics 

For the construction of models, GRaPe 2.0 makes use of convenience kinetics, a generalised 

reversible Michaelis-Menten equation developed by Liebermeister and Klipp (Liebermeister and 

Klipp, 2006). The idea that specific rate law for all reactions in the system is unnecessary, because 

their importance would be dissipated in a large system, hence the general rate law for all. 

 

𝑣(𝑠𝑢𝑏, 𝑝𝑟𝑜𝑑) = 𝐸𝑡𝑜𝑡𝑎𝑙 . 𝑓𝑟𝑒𝑔
𝑘+

𝑐𝑎𝑡 ∏ 𝑠𝑢𝑏�̃�
𝑛𝑖

𝑖 −𝑘−
𝑐𝑎𝑡 ∏ 𝑝𝑟𝑜𝑑𝑗̃ 𝑛𝑗

𝑗

∏ (1+𝑠𝑢𝑏�̃�𝑖 +⋯+𝑠𝑢𝑏�̃�
𝑛𝑖)+∏ (1+𝑝𝑟𝑜𝑑𝑗̃ +⋯+𝑝𝑟𝑜𝑑𝑗̃ 𝑛𝑗)𝑗 −1

   (1) 

 

Where sub is the substrate concentration; prod is the product concentration; 𝐸𝑡𝑜𝑡𝑎𝑙 is the 

enzyme concentration; 𝑓𝑟𝑒𝑔  is a pre-factor to account for activation (using 1 + d/𝑘𝐴 ), d is the 

activator concentration; 𝑘𝐴  is the activation constant) or inhibition (using  𝑘𝐼  /  𝑘𝐼 +d , d is the 

inhibitor concentration, 𝑘𝐼  is the inhibition constant); 𝑘+/−
𝑐𝑎𝑡  are the forward and reverse turnover 
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rates; 𝑠𝑢�̃� = sub/𝑘𝑠𝑢𝑏
𝑀 ; 𝑝𝑟𝑜�̃� = prod/𝑘𝑝𝑟𝑜𝑑

𝑀 ; 𝑘𝑠𝑢𝑏/𝑝𝑟𝑜𝑑
𝑀  are the Michaelis-Menten constants for either 

substrate or product; n is the stoichiometric coefficient for the reaction.  

 

Convenience kinetics assumes that all reactions in models are reversible and in random 

binding order. It also allows for easy inclusion of enzymatic modifiers in the equation with the 𝑓𝑟𝑒𝑔 

prefactor, and has a lower number of kinetic parameters per equation compared to the original 

Michaelis-Menten equations. All that is needed for the generation of rate equations is knowledge of 

the proteins and metabolites involved and their stoichiometry along with their initial quantities.  

3.3.2 Genetic Algorithm 

After the rate equations are generated, the model can be trained to fit experimental data 

containing either metabolite concentrations, flux values or both. This is done by estimating the 

kinetic parameters in the model. This process is quicker than experimentally measuring every 

single value needed in the model, hence saving a lot of time in the modelling process and speeding 

up development of large-scale kinetic models.  

 

The information needed for parameter estimation is either steady state or time course data 

for the desired model type. The parameter estimation method of choice in GRaPe 2.0 is a genetic 

algorithm, an evolutionary machine learning approach that utilizes Darwinian evolutionary 

principles (Holland, 1962). In this context, a population is evolved over multiple generations and 

produces an individual containing a single set of parameters for the model that can fit the input 

data as closely as possible. The algorithm uses tournament selection for parents, where several 

“tournaments” among few individuals are run, to select the fittest individuals for cross-over; and 

uniform crossover, where a fixed ratio of parameters are exchanged between parents at random, 

rather than fixed points, to form a new individual. GRaPe 2.0 allows the user to determine how 

frequent the least fit individuals are removed from the population (plague function). Fitness of an 

individual is measured by the mean absolute percentage errors between training and simulated 

data. Each parameter value is encoded as decadic logarithm value unlike the classic binary storage 

method.  Mutation is then done by randomly increasing or decreasing one or several parameters in 

the individual by a small percentage.  
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In order to determine the metabolite concentrations at steady state, the non-linear 

systems of equations are solved using the Newton-Raphson algorithm, which is complemented by 

the SBML ODE Solver Library (SOSlib) (Machné et al., 2006). SOSlib is also used for determining 

the objective function when fitting time through data.  

 

The model in this study was estimated with an initial population size of 100, plague 

frequency of every 5 generations, mutation rate of 10% of population at the time, and for the 

process to stop after the fitness value plateaus for 11 generations. 

3.3.3 Software Architecture, Data Structures, and Dependencies 

GRaPe 2.0 was designed with the intention of being platform independent, hence the core of the 

software was written in the Java programming language. GRaPe has a graphical user interface 

generated using Java Swing and implemented as a separate module from the rest of the software. 

The other core modules are an SBML converter to import/export models to Systems Biology 

Markup Language (SBML) file format. The reading and writing of SBML files are done by the JSBML 

library (Dräger et al., 2011). There is a Reaction module within the software for generating 

reactions using information from the Species module that stores substrates, products and enzymes 

data. The Steady State module is dedicated to solving the system of equations using the Newton-

Raphson algorithm, utilizing the Apache Common Maths library for matrix manipulation. This 

module is called by the Genetic Algorithm module when fitting steady state data during the 

parameter estimation step. When the Genetic Algorithm performs an estimation using time series 

data it calls the ODE module which in turn calls SOSlib using Java Native Interface (JNI) powered 

by the Java Native Access (JNA) library. 

3.4 Results 

We present two models of S. cerevisiae glycolysis that have been built using GRaPe with 

automatically generated kinetic equations, without knowledge of the kinetics involved. The first 

model (Model 1) includes enzymatic reactions without regulatory influence; the second (Model 2) 

adds allosteric regulatory effects using modifiers. 

3.4.1 Saccharomyces cerevisiae Glycolytic Pathway Case Study 

Both glycolytic pathway models contain 22 metabolites, of which 6 are external metabolites 

(meaning their concentration is externally regulated and unaffected by changes in the system), 
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and 18 enzymes and reactions (Figure. 3.1). The difference between Model 1 and Model 2 consists 

of the inclusion of enzyme modifiers. The modifiers used are: inhibition of hexokinase by glucose-

6-phosphate, inhibition of phosphofructokinase by adenosine triphosphate (ATP) and activation of 

pyruvate kinase by fructose 1, 6-bisphosphate. 

 

The models are based on those developed by van Eunen et al. (van Eunen et al., 2012). 

Changes from the original van Eunen model are: trehalose is now represented as an external 

metabolite and does not get broken down to glucose; succinate production is now branched off 

from acetaldehyde instead of from pyruvate; an additional reaction has been added, which is the 

production of ATP from ADP for the conservation of ATP within the system. In Model 2, the 

modifiers were kept the same as in the original van Eunen model. 

 

In total, Model 1 has 93 parameters and Model 2 has 96 parameters. Both models were 

generated and stored in the standard Systems Biology Markup Language Format (Hucka et al., 

2003). 
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3.4.2 Omics Data Integration 

Figure 3.1: Glycolysis model used in this study. Everything outside the cell boundary is 

set to boundary condition ‘True’ in the SBML file. Metabolites are in bold whilst enzymes 

are in regular font. The blue lines indicate enzyme modifiers. GLCo: extracellular glucose, 

GLCi: intracellular glucose, G6P: glucose 6-phosphate, F6P: fructose 6-phosphate, F16BP: 

fructose 1,6-bisphosphate, DHAP: dihydroxyacetone phosphate, GAP: glyceraldehyde 3-

phosphate, BPG: 1,3-bisphosphoglycerate, 3PG: 3-phosphoglycerate, 2PG: 2-

phosphoglycerate, PEP: phosphoenolpyruvate, PYR: pyruvate, AcAld: acetaldehyde, 

HXT: glucose transport, HXK: hexokinase, PGI: phosphoglucose isomerase, PFK: 

phosphofructokinase, ALD: aldolase, TPI: triose-phosphate isomerase, GAPDH: 
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glyceraldehyde-3-phosphate dehydrogenase, PGK: 3-phosphoglycerate kinase, GPM: 

phosphoglycerate mutase, ENO: enolase, PYK: pyruvate kinase, PDC: pyruvate 

decarboxylase, ADH: alcohol dehydrogenase. 

3.4.3 Model Evaluation 

For the parameter estimation process, we made use of three types of ‘omics’ data for input. First, 

the in vivo metabolite concentrations collected by Smallbone et al. (Smallbone et al., 2013); since 

only 9 of the 22 metabolites were measured, unmeasured values were taken from their model’s 

output. Second, the flux values generated by Smallbone et al.’s model were used. As a third 

constraint in the estimation process, we used enzyme concentrations determined from a recent 

label-free, mass spectrometry-based proteomics study (Jarnuczak et al., 2018, PRIDE accession: 

PXD006262), where yeast protein abundances were measured over a 240-minute heat stress at 

seven time points; of the seven time points, only the initial time point was used for parameter 

estimation to emulate standard conditions for the model. Absolute abundances were estimated via 

linear regression (Rosenberger et al., 2014) using targeted proteomic data from a QconCAT study 

as internal standards (Lawless et al., 2016), and are provided in Appendix B. The abundances are 

then converted to mmol by using 5 fl as the cytoplasmic volume used by Smallbone et al. 

Additionally, the different isozymes involved in the same reaction were summed up for each 

reaction. The fitted models produced a normalised root mean squared error value of 0.0613 and 

0.0314 respectively for Model 1 and Model 2.  
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Metabolite name Metabolite concentration (mM) Model 1 Model 2 

Cellular Glucose* 6.277 6.169 5.6754 

ATP 3.95147 3.909 5.569 

Glucose 6-phosphate* 0.774 0.00728 0.005505 

ADP 1.73 1.671 0.01087 

Fructose-6-phosphate* 0.235 0.238 0.2438 

Fructose 1,6-bisphosphate* 4.58 4.686 4.6301 

Dihydroacetone Phosphate* 1.16 1.029 1.1702 

Glyceraldehyde Phosphate* 0.316 0.311 0.3139 

NADH 0.179 0.1638 0.1872 

NAD 1.412 1.6296 1.60609 

1,3-Bisphosphoglycerate 0.00165 0.00161 0.001624 

3-Phosphoglycerate 0.455 6.29E-06 0.4655 

2-Phosphoglycerate* 0.083 0.005238 0.08281 

Phosphoenolpyruvate* 0.611 1.35E-05 0.63887 

Pyruvate* 2.11 2.0088 1.953 

Acetaldehyde 3.43 0.00154 4.67E-04 

Table 3.1: Metabolite concentrations for training data and simulated results at steady 

state for both models all values rounded up to the closest 4 s. f. *These are in vivo 

measurements of the metabolites. 

Reaction name Flux (mmol s-1) Model 1 Model 2 

Glucose Transport 1.998 2.127 1.934 

Hexokinase 1.998 2.127 1.934 

Glucose 6-phosphate isomerase 1.887 1.903 1.934 

Trehalose Synthase 0.1107 0.112 -2.05E-06 

Phosphofructosekinase 1.887 1.903 1.934 

Aldolase 1.887 1.903 1.934 

Glycerol 3-phosphate dehydrogenase 0.05358 0.053549 0.0539909 

Triosephosphate isomerase 1.833 1.8498 1.8802 

Glyceraldehye 3-phosphate dehydrogenase 3.721 3.75316 3.81443 

Phosphoglycerate kinase 3.721 3.75316 3.81443 

Phosphoglycerate mutase 3. 721 3.75316 3.81443 

Enolase 3. 721 3.75316 3.81443 

Pyruvate Kinase 3. 721 3.75316 3.81443 

ATPase 3.502 3.3635 3.76045 

Pyruvate Decarboxylase 3. 721 3.75316 3.81443 

Succinate Dehydrogenase 0 9.83E-09 0.013514 

Alcohol Dehydrogenase 3.694 3.72638 3.80095 

Aldehyde Dehydrogenase 0.02679 0.026774 -3.28E-05 

Table 3.2: Flux values for training data and simulated results at steady state for both 

models all values rounded up to the closest 4 s. f. 

3.4.4 Metabolites Prediction under Heat Stress using Proteomics Data 

We used both completed models to make predictions of yeast glycolytic metabolite concentrations 

and fluxes under heat stress conditions. We inserted the remaining unseen quantitative proteomic 
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data from the heat stress time course experiment into the model (this is done by inserting the 

measured enzyme values into the model, instead of the original values measured at time-point 

zero) to simulate an elevated temperature at their respective time points and validate the model. 

The models were then run in COPASI, with each time-point’s enzyme values inserted into the 

model and run up to steady state. Time course solving was also performed using CellDesigner, 

where the enzyme values were varied over time (not shown), but the results did not differ from 

the solving at steady state; results from COPASI alone are shown for consistency in this work. 

Simulation results are shown in Figure. 3.2-3.5.  

 

In Model 1, the prediction indicates there is a drop in metabolite and flux levels. As for 

Model 2, a rise in flux was predicted and minimal changes were observed on the majority of the 

metabolites. The noticeable changes are a drop in glucose concentration and an initial drop for 

fructose-6-phosphate, before going back up to slightly higher than initial values by the end of heat 

stress. 
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 Figure 3.2: Time course prediction results on yeast glycolytic metabolites for Model 

1. The heat stress last for 240 minutes 

Figure 3.3: Time course prediction results on yeast glycolytic fluxes for Model 1. The 

heat stress last for 240 minutes. 
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Figure 3.4: Time course prediction results on yeast glycolytic metabolites for Model 2. 

The heat stress last for 240 minutes. 

Figure 3.5: Time course prediction results on yeast glycolytic fluxes for Model 2. The 

heat stress last for 240 minutes. 
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3.5 Discussion 

This study demonstrates that the modelling approach employed by GRaPe 2.0 is able to 

successfully integrate omics data alongside all the components involved in a system, such as 

metabolite quantities, fluxes and changes through a time course. At the same time GRaPe 2.0 

simplifies the process for any would-be user seeking to manage the complex process of building an 

omic-integrated kinetic model and estimating its kinetic parameters, by integrating these tasks into 

a straightforward software suite.  

 

The kinetic models obtained from the parameter estimation were relatively accurate, 

producing good solutions with lower normalised root mean squared errors than comparable models 

(0.312 for Smallbone’s model, Smallbone et al., 2013). This was all done using experimentally 

measured data available in the public domain instead of using artificially generated data. This 

choice was made to avoid introducing a bias in the parameter values estimated, as the goal is to 

eventually explore a novel biological problem using the heat stress protein dataset. For the 

glycolytic test system evaluated here, the best fit is found for the flux values; the concentration fit 

was seen to be more heterogeneous with most metabolites reasonably fitting well until it reached 

the glyceraldehyde phosphate break down branch. Notably, in Model 2, it was predicted that the 

flux for trehalose production would be negative (Table 3.2); this was also observed by Teusink et 

al. (Teusink et al., 2000) for the first 20 minutes in their experiments (in pH 7 and  at 30oC) and by 

van Eunen et al. across four different conditions (non-starved cells with dilution rate D=0.1 h-1 for 

glucose; nitrogen starved for 4 hours with dilution rate D=0.1 h-1 for glucose; non-starved cells 

with dilution rate D=0.35 h-1 for glucose; 4 hours nitrogen-starved cells with dilution rate D=0.35 

h-1 for glucose, all under 30oC). This would indicate that inclusion of enzyme modifiers substantially 

improves modelling of this aspect of the biological system. 

 

Additionally, altered trehalose metabolism is a significant hallmark of heat stress in yeast, 

and a fundamental aim for the construction of kinetic models is for them to be capable of 

describing in vivo cell metabolism and to predict changes of behaviour under different conditions. 

Heat stress refers to the situation when yeast is moved to a temperature of around 37oC from 30oC 

(unlike more extreme heat shock, which is around 45oC). It has been known that when yeast 

undergoes heat stress, several changes occur within the cell to allow it to adapt to the heat. One 
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of the changes is increased trehalose production; trehalose is a small molecule that provides a 

myriad of protective functions for the cell, such as protection from denaturation and adaptation to 

stress in synergy with chaperones (Piper, 1993). During heat stress, intracellular glucose dropped 

significantly in both models (Figure. 3.2 & 3.4), as glucose is the energy source needed to adapt to 

this change in physiological condition (Thammavongsa et al., 2013, Vilaprinyo et al., 2006). In 

chorus, the protein needed for the synthesis of trehalose increased by 220% (Appendix B: Table 1 

& 2), which should also result in increased flux towards trehalose.  

 

In model 2 the flux towards trehalose was negative and further decreased during heat 

stress, while flux in all other pathways increased. A negative flux means that the reaction is going 

in the reverse direction (in this case, trehalose is broken down). This could be the result of an 

oversimplification of the trehalose synthesis pathway. The complete trehalose synthesis pathway 

includes conversion of glucose 6-phosphate to trehalose 6-phosphate or glucose 1-phosphate, 

which is then converted to urine diphosphate glucose. Urine diphosphate glucose can be converted 

to either glycogen or trehalose 6-phosphate, a trehalose precursor. Additionally, there is regulation 

in this pathway, where glucose 6-phosphate activates production of trehalose 6-phosphate, which 

at the same time is inhibited by glucose molecules. This negative flux could also be the result of 

not accounting for the effects of temperature on enzyme activity. It was determined that an 

increase in temperature would result in increased activity for enzymes involved in the synthesis of 

trehalose, and at the same time in decreased activity for trehalase, the enzyme responsible for 

trehalose degradation (Neves and François, 1992).  

 

When compared to measured fluxes under heat stress (Mensonides et al., 2002; Postmus et 

al., 2008), Model 2 was able to predict an increase in glycolytic flux, validating the success of this 

model. While Model 1 predicted the opposite, along with a dip in metabolite levels, suggesting 

overfitting has occurred for this model as it has failed to replicate the metabolic phenomenon 

during heat stress. Results of this modelling study therefore strongly suggest that metabolic 

regulation is important for the construction of accurate and informative kinetic models of cell 

metabolism, as well as that it plays an important role in the cellular stress response. 
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3.6 Conclusion 

GRaPe 2.0 can accelerate the construction of kinetic models using just reaction pathways and 

training data of steady state or time courses. This technique can be employed for the creation of 

large-scale kinetic models of cell metabolism and be used to make predictions under varying 

conditions. All of these can then be translated towards finding bioengineering targets. The ease of 

use and swift model building process should enable more biologists to join in the modelling 

community. 
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4. Chapter 4: Kinetic Model Parameterization with 

Quantitative Proteomics: Case Study with Trehalose 

Metabolism in Saccharomyces cerevisiae 

4.1 Abstract 

GRaPe 2.0 is a software built to accelerate construction of kinetic models of cell metabolism. It 

uses a combination of convenience kinetics and a genetic algorithm to achieve rapid model 

generation for hypothesis testing. The software was used to build a kinetic model of the trehalose 

metabolism in Saccharomyces cerevisiae. Model was parameterized with quantitative omics under 

standard conditions, and validated using data under heat stress conditions. The completed model 

was used to investigate factors related to the rise in flux during heat stress and the production of 

trehalose, a compound valued for its protective properties. The model found that feedforward 

activation of pyruvate kinase by fructose 1,6-bisphosphate during heat stress contributes to the 

increase in metabolic flux. Model was also able to demonstrate that overexpression of enzymes 

involved in production and degradation of trehalose can lead to higher trehalose yield in the cell.  
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4.2 Introduction 

The development of mathematical models for aiding in metabolic engineering is not an uncommon 

activity for biologists nowadays, with various frameworks and approaches available for building the 

models (Almquist et al., 2014; Costa et al., 2016). However kinetic models are often limited to 

small or medium sized models due to the amount of information needed to construct them, 

ranging from rate laws for the reactions to the kinetic parameters. In order to circumvent this, 

GRaPe 2.0 was developed (Yap et al 2018, submitted). It uses a generalized Michaelis-Menten 

equation in the form of convenience kinetics (Liebermeister and Klipp, 2006) and parameter 

estimation to fill in the missing kinetic parameters. Kinetic parameters, which forms a vital part of 

kinetic models are constant values in the equations. They can be measured experimentally in the 

laboratory, and some are stored in databases such as BRENDA (Schomburg et al., 2004) and 

SABIO-RK (Krebs et al., 2007). GRaPe 2.0 provides users the option to circumvent the process of 

determining individual kinetic parameters by wet lab experiments.  

 

In this study, a kinetic model consisting of trehalose metabolism in Saccharomyces 

cerevisiae as well as the upper portion of glycolysis was developed (Figure 4.1), using only 

convenience kinetics to form the rate equations. This model was fitted to steady state data of 

metabolites and fluxes. On top of that, the model uses quantitative proteomics data collected 

under two different conditions, for training and validation. Protein data from standard conditions 

were used to parameterize the model, while separate data collected under 37oC were used to help 

simulate the biological condition of heat stress and validate the model. Not to be confused with the 

more extreme heat shock, heat stress is at a more physiological temperature of approximately 

37oC. Trehalose was a focus of this study as it is often associated with baker yeast during heat 

stress, as the microbe would accumulate high concentration of this protective molecule for survival 

(Mensonides et al., 2002; Parrou et al., 1997; Strassburg et al., 2010). Additionally, owing to its 

protective properties, trehalose has commercial value as it is used in various industries from 

pharmaceuticals to food and cosmetics (Paiva and Panek, 1996; Roser, 1991; Schiraldi et al., 

2002). Its production in the industry have been relying on the use of enzymes from extremophiles 

expressed in other microbes (Schiraldi et al., 2002).  
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Another phenomenon observed during heat stress adaptation in S. cerevisiae is the increase 

in glycolytic flux (Mensonides et al., 2002; Postmus et al., 2008). Postmus et al. set out to 

investigate the possible factors that could contribute to the increase of flux, including gene 

expression, enzyme activity, protein expression, and metabolites profile. Interestingly, their data 

indicated minimal changes in gene and protein expression, but extensive changes in metabolic 

profile. Therefore, they attributed the changes in flux to the augmentations in the metabolic 

environment of the enzymes, such as the close to 10-fold increase of fructose 1,6-bisphosphate 

and 20-fold increase of pyruvate. Additionally, they postulated that the maintenance of the high 

flux is a result of the feedback activation of phosphofructokinase by fructose 2,6-bisphosphate and 

feedforward activation on pyruvate kinase by fructose 1,6-bisphosphate.  

 

To investigate if the regulatory effects in the glycolytic system play a role in increasing the 

flux during heat stress, a kinetic model of trehalose metabolism in S. cerevisiae was constructed. 

This model should also help to determine the best way to produce trehalose without the need for 

temperature increase. The model was built using metabolomics, fluxomics and proteomics data 

collected under standard conditions, and subsequently validated using metabolomics and 

proteomics data collected under heat stress condition. The completed model was subjected to in 

silico regulation analysis and overexpression study. It was found that activation of pyruvate kinase 

does contribute slightly to the control of flux in the trehalose cycle and glycolysis, and that 

regulatory effects on enzymes involved in glucose entry play a significant role in affecting flux 

within the system. The model additionally predicted that the overexpression of enzymes directly 

involved in the production and degradation of trehalose would lead to an increase in its 

concentration in the system. 
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4.3 Methods 

4.3.1 Model Construction 

The model was built using GRaPe 2.0 (Yap et al. 2018, submitted), which uses convenience 

kinetics (Liebermeister and Klipp, 2006) to build the rate equations. GRaPe 2.0 is a tool for building 

kinetic models for cell metabolism, requiring input from the users on the substrates and products 

involved in the metabolic reactions and the enzymes that catalyse the reactions, which are then 

translated into rate equations automatically. The convenience kinetics assumes that all the 

reactions are reversible and have a random binding order. Models built in GRaPe use the Systems 

Biology Markup Language format (Le Novère et al., 2008).  

4.3.2 Parameter Estimation 

After establishing the system's network of reactions, the kinetic parameters are needed to 

complete the model. All the kinetic parameters of the model were estimated using a genetic 

algorithm (Holland, 1962) that uses tournament selection for choosing parents for the reproductive 

step and plague feature to remove individuals with low fitness values. The fitness of the individuals 

is measured using mean absolute percentage error between fitting data and simulated data.  

 

The fitting data for the metabolites were obtained from two separate studies, one on S. 

cerevisiae in normal conditions measured using mass spectrometry (Smallbone et al., 2013) and 

another measured using nuclear magnetic resonance (Puig-Castellví et al., 2015). Although the 

work done by Puig-Castellví et al. used arbitrary units for the metabolites, the values of shared 

metabolites were not too dissimilar from those measured by Smallbone et al, so they were treated 

as mM. The fluxes were obtained from data from the reference strain measured by Blank and 

colleagues (Blank et al., 2005). All of the data used for parameter estimation were values 

measured during steady state.  

 

The protein concentrations used in the model (for both parameter estimation and 

validation) were obtained from a quantitative and temporal study on S. cerevisiae’s proteins 

undergoing heat stress (Jarnuczak et al., 2018). 
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4.3.3 Manipulation and Simulation of Model 

The validated model was modified using the JSBML library (Dräger et al., 2011) and Java code to 

make the changes needed for regulation analysis and overexpression model interrogation; the 

changes include altering concentration values of the enzymes, changes to the equations and 

kinetic parameters involved, and in the case of regulation analysis removal of activator and 

inhibitor constants. The simulation of the models up to steady state was done using the SBML ODE 

Solver Library (SOSLib, Machné et al., 2006). 

4.4 Results 

A kinetic model focusing on trehalose metabolism parameterized with quantitative metabolite 

concentrations, flux, and protein data collected before heat stress was applied to the cells, is 

presented here. The model was validated using a separate set of quantitative proteomics from the 

same study, but collected from cells undergoing heat stress, allowing the model to simulate heat 

stress. The validated model was used to study the possible causes of flux increase during heat 

stress as well as ways of increasing trehalose production in S. cerevisiae without the need for an 

increase in temperature.  

4.4.1 Model of Trehalose Cycle & Upper Glycolysis 

The completed model in this study included S. cerevisiae’s upper portion of glycolysis, and 

trehalose metabolism (Figure 4.1). Metabolism of trehalose is a cycle that branches off from 

glucose-6-phosphate of glycolysis and re-enters glycolysis as trehalose is broken down into two 

glucose molecules. In total the model contains 23 metabolites (6 external metabolites, boundary 

condition true in SBML), 20 enzymes and reactions. Within the reaction network there are 3 

activation regulatory effects, 4 inhibitory effects (Voit, 2003). All these summed up to 106 kinetic 

parameters in the model that are fitted using omics data.  
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Figure 4.3: Trehalose metabolism model, with lower glycolysis simplified to a singular 

reaction from glyceraldehyde 3-phosphate to pyruvate, as well as skipping production of 

acetaldehyde to ethanol. GlcO: extracellular glucose, GlcI: intracellular glucose, G6P: 

glucose 6-phosphate, F6P: fructose 6-phosphate, F16BP: fructose 1,6-bisphosphate, 

DHAP: dihydroxyacetone phosphate, GAP: glyceraldehyde 3-phosphate, G1P: glucose 1-

phosphate , UDPG: urine diphosphate glucose, T6P: trehalose 6-phosphate, GLT: glucose 

transport, HXK: hexokinase, PGI: phosphoglucose isomerase, PFK: phosphofructokinase, 

ALD: aldolase, TPI: triose-phosphate isomerase, PYK: pyruvate kinase, PYC: pyruvate 

carboxylase, ADH: alcohol dehydrogenase, PGM: phosphoglucomutase, UDPGP: UDPG 

phosphorylase, GSY: glycogen synthase, GPH: glycogen phosphorylase, T6PP: trehalose 

phosphatase, T6PS: trehalose-phosphate synthase, G6PDH: glucose 6-phosphate 

dehydrogenase.  
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4.4.2 Model Fitting and Validation 

Metabolites 

(mmol l-1) 

Fitting 

Data 

30oC 37oC 

GlcI* 6.277 6.39 1.76 

G6P* 0.774 0.74 0.14 

F6P* 0.235 0.23 1.19 

F16P* 4.583 4.52 7.81 

DHAP* 1.162 1.15 0.99 

GAP* 0.316 0.31 0.36 

Pyruvate* 2.107 2.01 4.23 

G1P  10.34 5.24 

UDPG  0.01 0.01 

T6P  0.05 0.07 

Trehalose** 0.33 0.33 1.91 

ATP** 3.2 5.58 5.57 

ADP  0.004 0.01 

UDP  0.81 0.97 

UTP  0.58 0.42 

NAD  1.57 1.62 

NADH  0.22 0.17 

 

 

 

 

Fluxes (mmol hr-1) Fitting 

Data 

30oC 37oC 

GLT 16.7 15.52 21.71 

HXK 16.7 15.93 22.29 

PGI 14.2 13.23 21.44 

PFK 14.2 13.23 21.44 

ALD 15.2 13.23 21.44 

TPI 13.5 11.68 10.87 

G6PDH 1.8 1.75 0.12 

GlycerolDH 1.7 1.55 10.57 

PYK 28.6 24.91 32.30 

ADH 23.6 18.30 21.58 

PYC 5.0 6.62 10.72 

PGM 0.8 0.75 0.44 

UDPGP  0.85 1.41 

GSY  0.65 1.12 

GPH 0.10 0.10 0.96 

T6PS 0.20 0.20 0.29 

T6PP 0.20 0.20 0.29 

Trehalase 0.20 0.20 0.29 

ATPSyn  5.10 12.83 

UDPtoUTP  0.85 1.41 

 

Table 4.1: Metabolites and fluxes in the trehalose metabolism model. Fitting data were 

the values used to generate the model at standard conditions (30oC). Values in the 30oC 

and 37oC columns are values generated by the model when the model is using enzyme 

concentration from the respective temperatures.  Blanks means the values were not fitted as 

they were not available. *metabolites uses data from Smallbone et al. (Smallbone et al., 

2013). **metabolites (along with ethanol, glycerol and TCA cycle represented by their by-

product succinate and citrate, for the external metabolites) uses data from (Puig-Castellví 

et al., 2015). Flux data are from (Blank et al., 2005). 
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Figure 4.2: Log2 fold changes of metabolites from 30oC to 37oC generated by the 

trehalose metabolism model. With comparison from data measured experimentally by 

Puig-Castellví et al. (Puig-Castellví et al., 2015) for intracellular glucose (GlcI), trehalose 

adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide (NAD) at 37oC and 

Postmus et al. (Postmus et al., 2008) for glucose-6-phosphate (G6P), fructose-6-phosphate 

(F6P), fructose-1,6-bisphosphate (F16P), trehalose-6-phosphate (T6P), and adenosine 

diphosphate (ADP) 38oC. Remaining metabolites had no reference experimental data for 

comparison.  

  



94 

 

The model was fitted with heterogeneous data for metabolites and fluxes values (sources 

discussed in Methods 4.2.2) to obtain the kinetic parameters. Following the parameter estimation 

step, the enzyme concentrations in the model were all replaced with those measured under heat 

stress condition to simulate the condition. A single source for protein values was used; values 

measured under 30oC were used for fitting, while those measured under 37oC were used for 

validation. The model was able to successfully replicate the metabolic responses observed in heat 

stress for S. cerevisiae (Fonseca et al., 2011; Mensonides et al., 2002; Postmus et al., 2008; Puig-

Castellví et al., 2015; Voit, 2003), namely increase in overall fluxes in the network and high 

accumulation of trehalose (Table 4.1).  

 

The root-mean-square error of the model’s simulated values and fitting data at 30oC is 1.56, with 

the majority of the deviations contributed by fluxes (Table 4.1, right). The differences between 

simulated and experimentally measured values for fluxes at 30oC are all below 13% except for 

alcohol dehydrogenase with a deviation of 22%. For the metabolites, only ATP deviated 

significantly (Table 4.1, left). Qualitatively, changes in the direction for the metabolites are in the 

right direction for a majority of the metabolites, with the exception of trehalose-6-phosphate 

(T6P), glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P) (Figure 4.2).  



95 

 

4.4.3 Regulation Analysis 

 

Figure 4.3: Heat map showing fold changes for fluxes between the original model and 

a series of modified models where modifiers in reactions are removed. Each column 

represents one modified model, each row represents one reaction flux. All these results 

were generated with the models undergoing heat stress. 

In order to determine if modifiers play a role in increasing the overall fluxes during heat stress, 

regulation analysis was performed on the validated model. This was done by removing individual 

or groups of enzyme modifiers in the network of reactions while maintaining everything else and 

simulating the model until it reached a steady state. Data for removal of glucose transport 

inhibition is not shown because its removal leads to an unstable model that is unable to achieve 

steady state. 

 

Of all the reactions investigated, the removal of modifiers involved in the upper glycolysis 

caused significant changes in fluxes relative to the original model’s flux values when protein 

concentrations collected under 37oC were used (Figure 4.3). When there is no inhibition in upper 
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glycolysis, the trehalose cycle’s fluxes see a drop, along with a massive decrease in the reaction 

where glycogen is broken down into glucose-1-phosphate, catalysed by glycogen phosphorylase 

(GPH), and with a huge increase in flux towards the pentose phosphate pathway. When the 

activation of pyruvate kinase is removed, there is a slight increase in flux within the trehalose 

cycle, but with drops observed in the entry to the trehalose cycle and lower glycolysis.  

 

4.4.4 Theoretical Overexpression and its Yields 

To determine the best target for metabolic engineering in S. cerevisiae in order to achieve higher 

trehalose production, theoretical overexpressions (doubling the enzymes’ concentration) were 

performed with the model. In order to narrow down the search of enzymes to overexpress, 

metabolic control analysis (Heinrich and Rapoport, 1974; Kacser and Burns, 1973) was performed. 

It suggested that UDP-glucose phosphorylase and trehalose-6-phosphate synthase increase would 

result in higher trehalose accumulation. That was proved incorrect for UDP-glucose phosphorylase 

(Figure 4.4), but true for trehalose-6-phosphate synthase. However, overexpression for the trio of 

enzymes involved in trehalose production and degradation of trehalose delivered the best results in 

trehalose accumulation with 10000% increase in yield (Figure 4.4).  

 

Figure 4.4: Theoretical percentage increase in mol trehalose per mol glucose. 

Enzymes here are overexpressed two-fold 
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4.5 Discussion 

The development of kinetic models studying trehalose metabolism in S. cerevisiae is not a novel 

venture (Fonseca et al., 2011; Voit, 2003). Voit’s work was used to determine metabolic regulation 

involved in the trehalose metabolism, while Fonseca and colleagues developed a model using time 

series of metabolic profiles to predict changes in protein levels. 

 

  Our model used quantitative protein data to inform kinetic parameters as well as to 

emulate heat stress. The use of proteomics over transcriptomics is the better approach for heat 

stress simulation as it was found that transcription changes are mostly transient for stress 

adaptations in S. cerevisiae (Gasch et al., 2000) but proteins remain longer in steady state to 

adapt to environmental stress (Jarnuczak et al., 2018).  

 

The combination of convenience kinetics with heterogeneous sources of fitting data have 

been proven an effective modeling method here, as it produced a model with a good fit to the 

training data. The model is also capable of reproducing the metabolic phenomenon commonly 

observed during heat stress adaptation (Table 4.1). When S. cerevisiae is challenged with high 

temperature, it is commonly observed that fluxes would increase (Mensonides et al., 2002; 

Postmus et al., 2008) and trehalose would accumulate (Fonseca et al., 2011; Parrou et al., 1997; 

Puig-Castellví et al., 2015). When protein amounts collected during heat stress were input, the 

model was able to reproduce the increase in flux generated during heat stress, albeit to a lesser 

degree than those experimentally measured (Table 4.1). Additionally, it reproduced increased 

glucose consumption, which is indicated by the drop in glucose level and increased flux in glucose 

transport (Mensonides et al., 2002), as the cell would need to spend more energy to cope with the 

stress. Minimal changes in trehalose 6-phosphate were also predicted by the model, which is 

expected as this compound is toxic for the cell in high concentration (Fonseca et al., 2012). It is 

worth noting though that predictions for glucose 6-phosphate, fructose 6-phosphate and trehalose-

6-phosphate were in the opposite direction of those measured by Postmus et al. The increase of 

flux as a result of heat stress is at least 5 fold. (Postmus et al., 2008), however our model only 

predicted a 40% increase in flux for most of the reactions. This discrepancy might be the result of 

difference in the experimental conditions between the Postmus et al. study, which measured the 
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flux values, and the Jarnuczak et al. study, which determined the protein concentrations used in 

this study. Postmus et al. used naïve cells grown to stationary phase to measure fluxes, while 

Jarnuzack et al. used heat adapted cells to measure protein concentrations, which were generated 

by moving them to 37C during the mid-exponential growth phase. This results in different genomic 

changes in the cells to better adapt to the increased temperature (Fonseca et al., 2011).  

 

The model was additionally used to test the hypothesis that regulatory effects in the 

metabolic network contributes to flux increase. While our model did not include the activation of 

phosphofructokinase by fructose 2,6-bisphosphate, it included the feedforward activation on 

pyruvate kinase by fructose 1,6-bisphosphate. The removal of this activation on pyruvate kinase 

resulted in a slight drop of flux in lower glycolysis (Figure 4.3), confirming the hypothesis in silico. 

However, this also resulted in a slight increase in flux in the trehalose cycle, channeling flux from 

glycogen instead of upper glycolysis. The regulatory interactions that have the highest impact on 

fluxes of glycolysis and trehalose cycle are in upper glycolysis. When all three inhibitions on the 

upper glycolysis (glucose transport, hexokinase and phosphofructokinase) were removed, this 

resulted in a drop in flux within the trehalose cycle; instead, a higher flux was channeled towards 

the pentose phosphate pathway. 

 

 The prediction made in the enzyme overexpression investigation leads to a high increase in 

percentage yield of trehalose production (Figure 4.4), which was also observed experimentally. In 

the work done by Fonseca et al (Fonseca et al., 2011) it was shown that heat adapted yeast cells 

have trehalose concentrations that increased from 4mM up to 100mM.  

4.6 Conclusion 

Our work shows that the use of convenience kinetic for metabolic modelling is a good solution for 

rapid prototyping of metabolic models for hypothesis generation. This methodology allows the use 

a single set of multi-omics data for parameter estimation. Subsequently, the model’s enzyme 

concentrations can be updated with quantitative proteomics collected from a different condition 

such as heat stress, which then allows the model to simulate this new condition. The output can 

then be compared with a different set of multi-omics data, constituting the validation step of the 

model. Following this approach, we were able to make in silico predictions to engineer a strain of 
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S. cerevisiae that accumulates trehalose without an increase in temperature. This has potential 

industrial applications as trehalose is a valuable commercial product for its protective properties.  
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5. Chapter 5: Discussion, Future Work and Conclusion 

5.1 Discussion 

The field of systems biology has spawned out of the explosion of ‘omics’ data made possible with 

the massive improvement in high-throughput experiment methods (Jamshidi and Palsson, 2008; 

Kitano, 2002). Within this growing field, various modelling techniques to study biology at a system 

level were introduced, and as a result multiple models were generated. Not all methods provide 

the same level of understanding of the system though; there are static models that provide the 

qualitative information on the final state of a system and there are kinetic models that inform the 

users how the state is reached dynamically and quantitatively.  

 

Outputs of kinetic models are advantageous relative to static models as they allow users to 

understand the dynamic processes and the impact of regulatory effects in a biological system, 

which is typically not possible with static models (Link et al., 2014). Despite the advantages they 

offer, dynamic models that study cell metabolism are  not favoured by biologists (Smallbone et al., 

2010). The development of kinetic metabolic models is impeded by the incomprehensiveness of 

metabolic data in comparison to other omics data (Viant et al., 2017); kinetic data such as 

parameters and rate laws are incomplete; metabolomics data are missing or measured under 

variable conditions. Additionally, not every biologist is equipped with know-how on building kinetic 

models as it can be overwhelming to dive into a new computational technique. While software 

tools for the process of model building exist, they often require a certain level of expertise before 

users can take advantage of the features they offer.  

 

 To encourage more biologists to utilise dynamic models in their research, GRaPe 2.0 was 

developed. GRaPe 2.0 is a software that simplifies the kinetic model building process for users that 

wish to study cell metabolism. It offers an intuitive user interface, automated equation generation, 

and parameter estimation to fill in missing kinetic parameters. On top of its graphical user 

interface, it offers a format that biologists are familiar with, tab separated spreadsheet to build 

models. It solves the problem of incomplete rate laws for most of enzymatic reactions by using 

convenience kinetics (Liebermeister and Klipp, 2006) for all the reactions. Convenience kinetics is 
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an approximate rate law for describing enzymatic reactions, it is a direct generalisation of the 

classic Michaelis-Menten kinetics following similar assumptions. As a generalisation, it is reversible, 

has fewer parameters, is saturable, and allows for inclusion of activators and inhibitors, which is 

useful as feedback dynamics is an important feature in biological processes to model (Link et al., 

2014; Wolkenhauer and Mesarović, 2005). Use of an approximate rate law is a good substitute for 

enzymatic reactions that are well studied (Costa et al., 2010). Additionally when it is applied to an 

entire metabolic network, it is still able to produce results close to a true model that uses well 

studied rate laws and measured kinetic parameters (Du et al., 2016). For the parameter estimation 

process, a genetic algorithm was implemented in the software. This algorithm was chosen as it is a 

global optimization algorithm that explores multiple minima, and with its random elements in each 

step, it typically escapes local minima of the search space better than other algorithms if it is able 

to maintain the diversity in the group of candidate parameter sets throughout the process.   

 

 This framework that combines convenience kinetics and genetic algorithm was applied to 

study the glycolytic network in Saccharomyces cerevisiae with two separate models, one that 

included enzyme regulatory effects and one that did not. The models’ kinetic parameters were 

fitted using steady state quantitative metabolite, flux and protein data measured under standard 

conditions. One of the resulting models was successfully validated as it was able to generate 

increased flux phenomena that occurs during heat stress condition, after the model’s protein 

values were replaced with those measured under heat stress condition. The validated model was 

one that included feedback regulations in it; a separate fitted model that did not include enzyme 

modifiers was unable to produce the increased flux. This work here demonstrates the importance 

of enzyme regulatory effects in kinetic models as well as the application of GRaPe 2.0 as a tool for 

model building, the models generated provide an easy way for users to validate the models.  

     

   A computational model is a very useful tool for biologists in research, it can aid in planning 

experiments by determining the best target to manipulate in a system. Models generated by 

GRaPe 2.0 can be used for this purpose with ease, as the models built are exported in SBML 

format, they can be imported by supported tools for manipulation and analysis. An example of this 

process was shown with a model built to study trehalose metabolism in S. cerevisiae. This model 

was fitted and validated using quantitative metabolomics, fluxomics and proteomics data. The 
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parameterization of the model was done using protein values collected under 30oC. Subsequently, 

to simulate heat stress, the protein values were substituted with those collected under 37oC (heat 

stress condition). During heat stress, S. cerevisiae’s glycolytic flux is known to increase. A reason 

for this increase was speculated to be the feedforward activation of pyruvate kinase by fructose 

1,6-bisphosphate. Our model confirmed this hypothesis, as its simulation under heat stress without 

the activator effect in pyruvate kinase shows a decrease in flux compared to an unmodified model 

under heat stress. Additionally, to determine the best metabolic engineering target to produce 

higher amount of trehalose (a commercially valuable product), an overexpression study was 

carried out. This was done by doubling the protein values in the model for the respective enzymes 

of interest, and it led to finding specific enzymes for overexpression that can result in higher 

trehalose yield per glucose. While this work performed with our framework demonstrated the 

effects of overexpression studies and removal of regulatory effects, it can just be as easily applied 

to study knockouts or knockdowns in the system by manipulating the enzyme values in the model 

with the right approach; i.e. setting the initial enzyme values to zero creates a knockout effect; 

similarly to achieve a knockdown effect, users can use tools like CellDesigner (Funahashi and 

Matsuoka, 2008) to make enzyme values zero at a given timeframe in a simulation.    

5.2 Future work 

While this study has shown some of the capabilities and work that can be carried out with our 

software, there is more that can be done to improve the software as well as more applications that 

can be carried out. The work that can be done to improve the software and further applications 

are discussed in this section.   

5.2.1 Hybrid Parameter Estimation 

One of the assets of the genetic algorithm methodology is its flexibility. This flexibility allows for a 

myriad of variations in its operators. To further improve on the genetic algorithm in the software, it 

can be hybridised it with other optimization methods, which is a common practice to reduce 

computation time or to produce better results (Chelouah and Siarry, 2003; Park and Froment, 

1998; Yen et al., 1998). There are several ways to approach this, a direct method consists in 

running a local optimizer on the set of parameters found by the genetic algorithm to refine the 

results within the local search space. Alternatively, a local search can be performed on each set of 

new parameters in the genetic algorithm similar to a scatter search, while still maintaining 
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operators used in genetic algorithms. However, this approach would be computationally expensive, 

a balance would be to select a diverse set of parameter sets and running local search methods on 

them; this combination of global and local search algorithms would theoretically explore most of 

the minima in the search space. Another approach is to reduce computation time by applying a 

local search method in each generation of genetic algorithm only on select fittest individuals, 

increasing the convergence rate.   

5.2.2 Use of GPU to solve Ordinary Differential Equations 

The main bottleneck in the parameter estimation process is solving the objective function for each 

parameter set, which mainly comes down to solving the ordinary differential equations (ODE) of 

the model that are needed for the objective function evaluation. To reduce this bottleneck, a 

solution is to make use of the computational power of modern GPUs (Ahnert et al., 2014). 

Currently the ODEs are solved in GRaPe 2.0 using the SUNDIALS library that runs on CPU; 

replacing it with appropriate libraries that run on GPU such as odeint (www.odeint.com) would 

allow for a decrease in computation time when running the parameter estimation step.  

5.2.3 Central Carbon Metabolism Model in Saccharomyces cerevisiae 

As a model scales so do the number of parameters within it. This results in a higher volume of 

information necessary to better constraint the parameter estimation step. Having more data during 

fitting is important to reduce the number of unidentifiable parameters. For Escherichia coli data, 

there was a landmark paper that generated multiple perturbation data sets for metabolites, RNA 

and protein levels (Ishii et al., 2007). Data from this paper have been used to build kinetic models 

of varying sizes (Khodayari and Maranas, 2016; Khodayari et al., 2014). Unfortunately, there isn’t a 

similar level of information available for Saccharomyces cerevisiae, although there is quantitative 

flux and protein data of central carbon metabolism collected for multiple S. cerevisiae mutants 

(Blank et al., 2005; Matsuda et al., 2017). The combination of these two datasets provides enough 

information for parameterization of a model as well as its validation using the GRaPe 2.0 software.  

5.2.4 Extended Model Upstream of the Metabolic Model  

Models built here have been done with the assumption that the system is enclosed, isolated from 

other dynamic processes. However, the reality is not generally isolated, therefore one method to 

improve on models studying metabolic systems would be to include interactions with other 

dynamic systems. One level above the metabolic system would be proteins, which are controlled 

http://www.odeint.com/
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by gene expression, which is subsequently controlled by signalling processes. This can be done in 

a stepwise process by first including a model of protein production and degradation, which is to be 

coupled with the metabolic model. Following that a model of gene expression can be added, and 

finally a signalling network on top of it. This requires a multiscale modelling format that uses 

different formalisms for each level of the model. For example, for signalling networks, agent-based 

models can be applied, and generalized mass action kinetics can be applied to both gene 

expression and protein models.  

5.3 Conclusion 

Computational models are an extremely useful tool for research, they can help direct experiments, 

saving time and money for researchers. However, the adoption rate of kinetic models is low 

despite the increasing amount of biological data found in the public domain. To address this, 

GRaPe 2.0 was introduced, a tool that simplifies and accelerates the construction of kinetic models 

for cell metabolism. It does this with an intuitive user interface, automated approximate rate 

equation generation, and parameter estimation to fill in the gaps of missing and heterogenous 

data. Its effectiveness was demonstrated with two separate investigations, one as a proof of 

concept of the framework, another on the its application as a model in aiding biological research. 

GRaPe 2.0’s ease of use that hides away the complex modelling processes will serve as a gateway 

tool for scientists that want to make use of kinetic models in their research. 
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Appendix A: GRaPe 2.0 Source Code 

The source code of the software as well as the compiled software is available electronically on the 

DVD. For the genetic algorithm to run properly, users are required to compile the necessary 

libraries in the right directory, for users on Linux, the directory would normally be “/usr/local/lib”.  

 

It is important that the necessary libraries are needed for the software to run, from the Java 

libraries to the C libraries (even the shared libraries). For the C shared library, it may be necessary 

to recompile it. Before the recompilation, it is important to make the changes to configurations.xml 

and Makefile-Debug.mk within the nbproject folder before compiling, this is to ensure the library 

know where to the prerequisite libraries are located. 

 

On top of the source code and program, sample Toy Model is available for testing.  
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Appendix B: Supplementary Data for Chapter 3  

 

 

mm
ol/l 

0 
minutes 

10 
minutes 

30 
minutes 

60 
minutes 

120 
minutes 

240 
minutes 

Glucose 
Transport E1 

0.00206
694 

0.00184
489 

0.00179
696 

0.00147
943 

0.00145
959 

0.00142
133 

Hexokinase E2 

0.01304
457 

0.01489
337 

0.01683
076 

0.01753
665 

0.02043
178 

0.02505
539 

Glucose 
phosphate 
isomerase E3 

0.01503
592 

0.01635
902 

0.01846
131 

0.01995
669 

0.02105
563 

0.02436
216 

Trehalose 
synthase E4 

0.00256
135 

0.00269
138 

0.00344
178 

0.00386
471 

0.00554
248 

0.00819
933 

Phosphofructose
kinase E5 

0.01599
541 

0.01747
348 

0.01750
436 

0.02116
473 

0.02018
877 

0.02182
754 

Aldolase E6 

0.01319
835 

0.01455
592 

0.01714
946 

0.01582
394 

0.01443
258 

0.01458
597 

Glycerol 
phosphate 
dehydrogenase E7 

0.01753
296 

0.01861
877 

0.01774
078 

0.02029
782 

0.02433
73 

0.02638
715 

Triose 
phosphate 
Isomerase E8 

0.00992
828 

0.01027
433 

0.01275
739 

0.01496
328 

0.01285
81 

0.01239
997 

Glyceraldehyde-
3-phosphate 
dehydrogenase E9 

0.11907
9 

0.13343
662 

0.15598
313 

0.19034
017 

0.17734
509 

0.21143
739 

Phosphoglycerat
e kinase E10 

0.02042
608 

0.02250
027 

0.02455
869 

0.02879
076 

0.02691
297 

0.02753
256 

Phosphoglycero
mutase E11 

0.00619
993 

0.00664
331 

0.00760
563 

0.00786
648 

0.00906
558 

0.01094
958 

Enolase E12 

0.03434
487 

0.04168
71 

0.04894
869 

0.05174
404 

0.04726
277 

0.05471
189 

Pyruvate Kinase E13 

0.12397
888 

0.13756
031 

0.14720
304 

0.14310
765 

0.11722
709 

0.11684
261 

Pyruvate 
Decarboxylase E15 

0.03369
734 

0.03480
904 

0.03612
466 

0.04109
938 

0.04248
587 

0.04632
455 

Alcohol 
Dehydrogenase E17 

0.05953
937 

0.05647
566 

0.05488
353 

0.06172
011 

0.06153
019 

0.05305
157 

Aldehyde 
Dehydrogenase E18 

0.05235
646 

0.05356
178 

0.05589
662 

0.05557
215 

0.05980
883 

0.06398
089 

 

Supplementary Table 1: Time course data of glycolytic proteins.  

These data are gathered under heat stress condition over 7 different time points, this table 

uses mmol/l unit for the proteins measured.  
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cp
c 

0 
minutes 

10 
minutes 

30 
minutes 

60 
minutes 

120 
minutes 

240 
minutes 

Glucose 
Transport E1 

6223.69
56 

5555.09
047 

5410.76
095 

4454.67
649 

4394.92
214 

4279.72
13 

Hexokinase E2 

39278.1
199 

44844.9
97 

50678.6
052 

52804.1
002 

61521.5
279 

75443.5
345 

Glucose 
phosphate 
isomerase E3 

45274.2
252 

49258.1
543 

55588.2
926 

60090.9
874 

63399.9
947 

73356.1
842 

Trehalose 
synthase E4 

7712.39
513 

8103.93
096 

10363.4
294 

11636.9
255 

16688.8
036 

24688.7
62 

Phosphofructose
kinase E5 

48163.3
098 

52613.8
857 

52706.8
544 

63728.4
848 

60789.8
126 

65724.2
505 

Aldolase E6 

39741.1
615 

43828.9
05 

51638.2
212 

47646.9
975 

43457.5
103 

43919.3
976 

Glycerol 
phosphate 
dehydrogenase E7 

52792.9
901 

56062.4
353 

53418.7
263 

61118.1
556 

73281.3
128 

79453.5
635 

Triose phosphate 
Isomerase E8 

29894.7
497 

30936.7
386 

38413.3
93 

45055.4
956 

38716.6
42 

37337.1
76 

Glyceraldehyde-
3-phosphate 
dehydrogenas E9 

358555.
251 

401787.
065 

469676.
202 

573127.
646 

533998.
566 

636652.
88 

Phosphoglycerat
e kinase 

E1
0 

61504.3
55 

67749.9
032 

73947.9
497 

86691.0
006 

81036.8
372 

82902.4
792 

Phosphoglycero
mutase 

E1
1 

104208.
704 

98386.4
461 

114551.
852 

119190.
079 

107105.
729 

93286.5
719 

Enolase 

E1
2 

103414.
823 

125522.
788 

147387.
952 

155804.
944 

142311.
53 

164741.
365 

Pyruvate Kinase 

E1
3 

373309.
127 

414203.
767 

443238.
734 

430907.
199 

352979.
034 

351821.
329 

Pyruvate 
Decarboxylase 

E1
5 

101465.
052 

104812.
473 

108773.
904 

123753.
137 

127927.
935 

139486.
468 

Alcohol 
Dehydrogenase 

E1
7 

179277.
246 

170052.
204 

165258.
169 

185843.
592 

185271.
727 

159742.
016 

Aldehyde 
Dehydrogenase 

E1
8 

157648.
994 

161278.
303 

168308.
659 

167331.
645 

180088.
588 

192650.
981 

Supplementary Table 2: Time course data of glycolytic proteins. 

These data are gathered under heat stress condition over 7 different time points, this table 

uses counts per cell (cpc) unit for the proteins measured.  

 

The resulting models of this chapter are available electronically on the CD. 

  



124 

 

Appendix C: Supplementary Data for Chapter 4 

Mmol/l 30oC 37oC 

GLT 0.002067 0.001421 

HXK 0.013045 0.025055 

PGI 0.015036 0.024362 

PFK 0.015995 0.021828 

ALD 0.013198 0.014586 

TPI 0.009928 0.0124 

G6PDH 0.004896 0.006393 

Glycerol 0.017533 0.026387 

PYK 0.123979 0.116843 

ADH 0.063677 0.061078 

PYC 0.015471 0.012254 

PGM 0.0062 0.01095 

UDPGP 0.002838 0.006523 

GSY 0.002264 0.004246 

GPH 0.003608 0.00636 

T6PS 0.002561 0.008199 

T6PP 0.001947 0.004378 

Trehalase 0.002518 0.004924 
ATP 
Synthesis 1 1 
UDP 
conversion 
to UTP 1 1 

Supplementary Table 3: Data for protein involved in Trehalose Metabolism. 

They are gathered under two different conditions, 30oC and 37oC, recorded as mmol/l.  

 

The resulting model of this chapter are available electronically on the CD. 

 

 
 


