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Abstract

Automatic methods for Extracting structures from
3D electron microscope images

Yassar Almutairi
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2018

Recent advances in cellular microscopy show the capability of gathering large

volumes of data for examining small structures in biology. This thesis describes

algorithms for locating, segmenting and measuring structures in microscope im-

ages. Collagen fibres form important structures in tissue, and are essential for

force transmission, scaffolding and cell addition. Each fibre is long and thin, and

large numbers group together into complex networks of bundles, which are little

studied as yet. Serial block-face scanning electron microscopy (SBFSEM) can be

used to image tissues containing the fibres, but analysing the images manually

is almost impossible - there can be over 30,000 fibres in each image slice, and

many hundreds of individual image slices in a volume. In this thesis we describe

a system for automatically identifying and reconstructing the individual fibres,

allowing analysis of their paths, how they form bundles and how individual fibres

weave from one bundle to another. We also describe and evaluate a method for

segmenting cell nuclei from SBFSEM, an important task for many studies. We

use a Convolutional Neural Networks to locate the boundary of the nuclei in each

11



image slice. Geometric constraints are used to discard false matches. The full 3D

shape of each nucleus is reconstructed by linking the boundaries in neighbouring

slices. We demonstrate the system on several large image volumes.
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Chapter 1

Introduction

There are many unanswered questions surrounding the organisation of biological

samples at the cellular and sub-cellular level. For example, still unanswered

questions concerning the formation of collagen fibres were posed at the end of the

19th century. Indeed, one of the great unsolved questions in biology is how cells

generate tissues from collagen fibres [4]. The key to answering these questions lies

in the exploration of small structures ranging in size from a few nanometres to

hundreds of nanometres. An optical microscope cannot capture such structures

because their size is less than the wavelength of light [5]. Electron microscope

(EM) is the only technique capable of capturing structures only a few nanometres

across.

Manually reconstructing the connectivity of an EM image is time consuming. In

some cases, it is not feasible. This is due to the large number of objects in each

slicesuch as neurones, fibres, or nucleiand the fact that slices can number in the

thousands. For example, Helmstaedter et al. [6] calculated that to reconstruct

the neurites of a mouse retina would require approximately 60,000 hours of an-

notation. The time available to the researcher is too valuable to be spent on

such a task. Therefore, a fully automatic reconstruction algorithm that produces

acceptably accurate reconstructions is necessary for the analysis of EM images.

17
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In the last two decades, with rapid improvements in electron microscopy, interest

has grown in building an automatic tool that can extract sub-cellular structures.

Semi-automatic and fully automatic approaches have been devised to model 3D

biological data structures for analysis and visualisation. The semi-automatic

method requires considerable time to produce a model for a single object, due to

the constant need for human intervention to initialise and correct the algorithm.

This limits the number of sub-cellular structures that can be examined. However,

most of the automatic methods are designed to segment specific objects and

do not generalise to other objects. This thesis will focus on two sub-cellular

structures: collagen fibres and nuclei.

1.1 Collagen Fibres

Connective tissues play an important role in the maintenance of bodily structures.

A single group of proteins called collagen makes that maintenance possible on a

large enough scale to keep us fit. In vertebrates, there are 28 different types of

collagen, which are mainly responsible for providing strength on a large scale.

Collagens are the main structural proteins found in connective tissues. They have

many essential functions, including force transmission, scaffolding, cell adhesion,

and cell migration. Collagen fibres appear in ordered bundles in the extracellular

matrix, where they are the major tensile element in vertebrate tissues [7]. They

can be found in skin, tendon, bone, and hollow organs and vary in diameter

between 12 and 500 nanometres [8].

These collagen fibres are closely packed together in curvilinear bundles. When

imaged, there may be over 20,000 fibres in each slice; furthermore, the number

of images in the image stack varies between 1000 and 3000 (see Figure 1.1).
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(a) (b)

Figure 1.1: (a) Stack of images. (b) 3D paths of some of the detected fibres

These fibres need to be identified and tracked through the image stack in order

to reconstruct the 3D shape of each fibre. Little is known about fibre length

in tissue and the interactions between the fibres. The length of fibre is difficult

to measure because the ends or tips of the fibres are rarely observed in cross-

sections [4].

1.2 Nucleus Membrane

The nucleus is the most prominent organelle of the cell and is located in its

centre. It appears as a dense, roughly spherical or irregular, organelle. The

nucleus contains DNA arranged in chromosomes, which constitute most of the

genetic material of the cell. The nucleus occupies approximately 10% of cell

volume. The average diameter of the nucleus is about 6µm [9]. The nucleus is

surrounded by the nuclear envelope (nuclear membrane). The nuclear envelope

is made up of an inner and an outer membrane, which separate chromosomes
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from cytoplasm. However, when the nucleus membrane is imaged by EM, the

two membranes appeared as one.

(a) (b)

Figure 1.2: (a) Stack of images. (b) 3D reconstruction of the nuclei

Our goal is to reconstruct the 3D shape of each nucleus (see Figure 1.2) by finding

the nucleus membrane in each slice of the image stack. Biologists are interested

in studying the nucleus structure in 3D, in qualifying nuclei, and in measuring

their volume, radii, and length. Researchers have found a close relationship dur-

ing embryogenesis between fibres and cell membranes [10]. This has led to an

investigation of their 3D cell shape in order to provide a full understanding of the

interactions between fibres and cell membranes and how each affects the others

development.
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1.3 Aims and Objectives

The aim of this project is to automate the process of identifying and tracking

structures through image volumes, thereby allowing these structures to be mea-

sured and visualised in 3D. The approach we take to reconstructing collagen fibres

and nuclei is to first detect candidates for fibres and nuclei in every image and

then to link candidates between neighbouring images to form extended fibres and

nuclei. The linking stage can yield mistakes, which we attempt to identify and

correct in a third stage. Having tracked all the fibres, we then identify bundles

and lone fibres in order to study the networks they form. We also quantify nuclear

volume, length, and radii. The main objectives are:

1. Create an automatic system that detects fibres in each slice. To do this,

we develop a template matching algorithm and a trained classifier to detect

fibres with different radii.

2. Create an automatic system to link candidate fibres between neighbouring

images to form extended fibres.

3. Create an automatic system to identify bundles and lone fibres and, once

all the fibres have been tracked, to study the networks they form.

4. Measure the fibre length, radii, and curvature.

5. Create an automatic system that detects nuclear membranes in each slice.

6. Create an automatic system to link candidate nuclei between neighbouring

images in order to capture their complete structure.

7. Measure nucleus volume, radii, and length.
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1.4 Contributions

This project developed a fully automatic system to extract structures in SBFSEM

images. This project made the following contributions to knowledge:

• A novel technique to segment collagen fibres and to track thousands of

them per slice in order to reconstruct their shape in 3D, thereby enabling

biologists to make various measurements.

• A fully automated reconstruction system for nuclear membranes that will

allow biologists to analyse 3D shapes and allow them to perform various

measurements.

1.5 Outline of the Thesis

The next chapter provides an overview of the related literature. This overview

describes the extracellular matrix and the intracellular matrix structures, focus-

ing on collagen fibres and nuclei and on microscopy imaging techniques. There

we discuss several approaches to the segmentation of EM images. Chapter 3

demonstrates collagen fibre segmentation and reconstruction in 3D. This chapter

also includes the data set, the experiments, and the evaluation. In Chapter 4, we

demonstrate our approach to the segmentation of nuclei and their reconstruction

in 3D. We conclude in chapter 5 with a summary of our findings and a discussion

of the limitations of this work and of its possible extension.

1.6 Publications

Y. Almutairi, T. F.Cootes, and K. Kadler. Tracking collagen fibres through

image volumes from sbfsem. In T. Lambrou and X. Ye, editors, MIUA, pages

4045. BMVA, 2015. 3, 5,6.
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Y. Almutairi, T. F.Cootes, and K. Kadler. Analysing the Structure of Collagen

Fibres in SBFSEM Images. Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops; 2016.

Y. Almutairi, T.F.Cootes and K.Kadler. Segmenting Nucleus Membranes in SBF-

SEM Volume Data with Deep Neural Networks, MIUA, pages 23-34, Springer,

Cham, 2018 .



Chapter 2

Background

2.1 Electron Microscopy

Any tissue consists of two components: the extracellular matrix and the intracel-

lular matrix. These components may be seen only by Electron Microscopy (EM).

The Extracellular Matrix (ECM) provides structural support in all cells. It is

made of different proteins, collagens, sugars and other components. It is now

known that the ECM influences cellular processes including migration, wound

healing and differentiation [11]. On the other hand, intracellular matrices are

organelles such as the nucleus, mitochondria and the Golgi apparatus. EM tech-

nique has increased the number of studies of cellular structures and its connec-

tivity significantly in the last decade.

High-resolution images with minimum distortion are required for objects with

diameters ranging from a few nanometres to hundreds of nanometres. Small

structures in biological tissues can only be explored in sufficient resolution by

using Electron Microscopy (EM). A light microscope is often used in medical

imaging to analyse small object structures. It uses visible light and lenses to

magnify specimens and their maximum resolution is 200nm. Light microscopes

are unable to capture small objects because their size is less than the wavelength of

24
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visible light (e.g. λ = 400nm to 700nm) [5]. However, EM takes advantage of the

electron’s wavelength ( λ = 0.005nm), which is much shorter than the wavelength

of visible light. Thus, these elements may be explored in unprecedented detail,

which will allow biologists to study their properties.

In EM, biological samples are prepared before imaging through several processes.

Fixation is the first step in order to preserve sample state, remaining as close to

the original state as possible. The sample is dehydrated by replacing water by

ethanol or acetone, and then infiltrated and embedded into a liquid resin. Next,

the sample is sectioned into ultra-thin slices using an ultramicrotome with a glass

or diamond knife [12]. Since most biological materials are almost transparent

under an electron beam, a further and critical step is required to enhance the

contrast between different structures. Staining the sample using heavy metals

such as uranium increases the contrast between different structures [13].

Electron microscope imaging can be broadly categorised into two approaches:

Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy

(SEM). Each method has its own advantages and disadvantages, and the choice

depends on the required resolution and the size of the structures [14].

2.1.1 Transmission Electron Microscopy (TEM)

Historically, Transmission Electron Microscopy (TEM) was the most commonly

used technique for examining ultrastructure biological tissue. The tissue sample

needs to sectioned before imaging. It was developed by Runska and Knoll in 1932.

A beam of electrons is focused on a thin sample to allow electrons to pass through

to create a projection. The projection is captured using an electron-sensitive

detector [14]. TEM can provide 3D datasets for samples using tilt-series-based

tomography [13]. The resolution of TEM can reach 2nm in an image plane, i.e.

in the x and y axis. However, the z axis is limited to 50nm, and it is necessary for
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the slices to be thick enough to avoid damaging them during the process. As a

result it is difficult to match slices through small diameter fibrils from one image

slice to the next.

Serial Section Transmission Electron Microcopy (SSTEM)

SSTEM is a well-established technique [15][16] and has affected many studies

on neuronal circuitry. The sectioning process is critical in SSTEM; this process

is tedious, and those performing it are prone to mistakes. The first step is to

perform fixation to the block (several hundred µm) using some type of aldehyde.

The block is then embedded in a polymeric material with epoxy resin. This

embedded block is serially sectioned by a diamond knife on an ultramicrotome,

producing thin sections. The staining procedure can be performed before this

sectioning occurs, en bloc, or after sectioning. Figure 2.1 illustrates the process

of acquiring an image stack.

A limitation of this technique is that it is time-consuming and needs skilled

labour to section the sample into thin slices. Moreover, it is common during

sample preparation for some slices to be damaged, making the reconstruction

more difficult. In addition, some slices have artefacts generated during sectioning,

such as tears, folds and holes, or the thickness varies from slice to slice. These

artefacts make alignment of the image stack extremely challenging. Thus, the

method is not practical when a large volume needs to be reconstructed.

2.1.2 Scanning Electron Microscopy (SEM)

In Scanning Electron Microscopy (SEM), the sample does not require sectioning

prior to imaging. Instead, the surface of the sample is directly imaged by detect-

ing secondary electrons reflected from that surface (see Fig. 2.1.) and collecting

these electrons on the right and left sides of the sample. The emission of these

electrons, which contain information about the surface topology, is caused by
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inelastic interactions between the primary electron beam and the sample. The

secondary electrons are isolated from backscattered electrons using special detec-

tors, which detect the higher energy of backscattered electrons.

Serial Block-face Scanning Electron Microscopy (SBFSEM)

SBFSEM was introduced by Denk and Horstmann [5] to automate the process of

imaging large volumes. The specimen remains stable during imaging and section-

ing, which enhances the alignment of the image stack significantly compared to

TEM. SBFSEM involves repeatedly removing a thin slice (as thin as 25nm) from

a sample block with a diamond knife then taking an EM image of the remaining

face. The individual slices can be put together into a volume [5], and provide

large 3D datasets. In this technique, the resolution of the image plane may reach

5nm.

Tissue fixation 
and embedding

Serial Section Transmission Electron Microscopy (SSTEM) Workflow

Serial Block-face Scanning Electron Microscopy (SBFSEM) Workflow 

Reconstruction

SEM

TEM

Electron beam

Electron beam

Dimond knife

Thin sectioning Sectioning alignment

>30nm

>50nm

Image volume

Figure 2.1: A diagram of Electron Microscopy acquisition processes of tissue
volume using SSTEM and SBFSEM.
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SBFSEM has several advantages over traditional SSTEM. Since sections are dis-

carded, they may be thinner than in TEM. Furthermore, most of the artefacts

that occur in TEM, including distortion and compression, are avoided because

the block face is imaged, not the cut section. Unlike SSTEM, the sections in

SBFSEM are already aligned, and fully automated analysis techniques are much

easier. Moreover, the alignment of a large volumehundreds or even thousandsof

sequential slices can be imaged without significant operator involvement.

2.2 Structure and Function of Collagen Fibre

Collagens are the main structural protein found in connective tissues. They have

many essential functions including force transmission, scaffolding, cell adhesion

and cell migration. Collagen fibrils appear in ordered bundles in the extracellular

matrix, where they are the major tensile element in vertebrate tissues [7]. They

can be found in skin, tendon, bone and hollow organs and vary in diameter

between 12 and 500 nanometres [8]. These collagen fibrils are closely packed

together in curvilinear bundles. They are not detectable by light microscopy

even if the fibril’s diameter reaches 500 nanometres, because they are crowded in

a bundle. When such a bundle is imaged there may be more than 20,000 fibrils

in each slice, and the number of images in the volume varies between 1000 and

3000. These fibrils need to be identified and tracked through the image stack in

order to reconstruct the 3D shape of each fibril. It is not feasible to track all the

fibrils in the image stack manually.

Trelstad and Hayashi [17] were the first to show the structure of collagen fibrils by

serial section Transmission Electron Microscopy (ssTEM). Twenty-eight different

types of collagens have been identified in vertebrates, which can be divided into

two groups based on their structure: fibrillar and non-fibrillar [18]. Fibrillar

collagens consist of four types and provide mechanical strength in connective
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tissues [19]. In spite of important differences between different fibrillar collagens,

they show similarities in their structure and behaviour. Fibrillar collagens form

elongated triple-helical molecules that aggregate in a highly ordered stagger to

form fibrils. Much is known about the collagen’s genes but fundamental questions

remain unanswered, for example regarding the fibrils’ length, organisation and

assembly [20].

Figure 2.2: Images of mouse-tail tendon through development. The first row is
for newborn where most fibres are grouped into distinct bundles. Second row
shows the fibres after 6 weeks where fibres are larger and bundles have merged.

To learn more about tendon development, the exact positions and trajectories

of these fibres need to be examined. During different stages of development
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significant changes occur. For example, for mouse-tail tendons at embryonic day

15.5, fibres have a circular shape and are organised in bundles. At birth their

diameter and radii have increased and their number increased by roughly four

times. After six weeks fibres are larger and have an ellipsoid shape, and bundles

are merged [10] (see Fig. 2.2).

Most fibres are grouped together, forming bundles. However, some of the fibres

leave their bundle and join others, or enter other structures (see Fig. 2.3). The

paths followed by such lone fibres are of interest to biologists. Lone fibres leave

a bundle as a single fibre or as a small group of fibres. They might leave their

bundle and merge with another, or they might return to the original bundle.

Figure 2.3: Stars represent bundles and circles show lone fibres.
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Little is known about fibrils’ length in a tissue and the interaction between fibrils.

The length of the fibrils is difficult to measure because fibrils’ ends or tips are

rarely observed in cross-sections [21]. Moreover, fibrils may leave the boundaries

of the image stack, which makes finding the longest length even harder. It is also

interesting for researchers to study the interaction between fibrils and bundles.

Bundles can merge with other bundles, forming a larger one. A bundle can also

split into two smaller bundles.

2.3 Structure and Function of the Nucleus

The nucleus is the most prominent organelle of the cell and is located in its centre.

There are several other structures inside the cell such as mitochondria and Golgi

complex (see Fig. 2.4). The nucleus appears as a dense, roughly spherical or

irregular organelle. The nucleus contains DNA arranged in chromosomes, which

constitute most of the genetic material of the cell. The nucleus occupies approx-

imately 10% of the cell volume and has an average diameter of about 6µm [17].

The nucleus is surrounded by the nuclear envelope (nuclear membrane), which is

made up of two membranes, an inner and outer membrane, which separate the

chromosomes from the cytoplasm.

The nuclear membrane has thousands of nuclear pores, which are circular hollow

proteins with an outer diameter of roughly 100nm and an inner channel of about

40nm [21]. The nuclear pores work as a transport channel to exchange materials

between the nucleus and the cytoplasm, and they link the inner and the outer

membrane. Any cell goes through a life-cycle, which is a process of growth and

division. The cell cycle is a series of events that occur in a cell resulting in its

division, producing two new daughter cells. Mitosis is one part of the cell cycle,

when replicated chromosomes are separated into two new nuclei.
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Figure 2.4: Example of one cell where the cell membrane is marked with a yellow
line, and showing nucleus, mitochondria and Golgi complex structres

Our interest in nuclei is to reconstruct the 3D shape of each nucleus by finding

the nucleus’ membrane in each slice of the image stack. Biologists are interested

in studying the nucleus’ structure in 3D, quantifying nuclei and measuring their

volume, radii and length. Researchers have found that there is a close relationship

during embryogenesis between fibrils and cell membranes [10]. This has initiated

investigations into the 3D cell shape to fully understand the interactions between

fibrils and cell membranes and how they affect each other in their development.
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2.4 Challenges

2.4.1 The Challenges for Fibre Detection and Reconstruc-

tion

A fully automatic system for locating and tracking fibres is challenging due to

the complexity of the networks that the bundles form and the variation of shape

of fibres within the image volume. Particular challenges include:

• The tortuous morphology of fibres.

• Fibres may disappear and appear again from the side of the image or due

problems in sectioning.

• The large numbers of individual fibres - as many as 20,000 per slice.

• Bundles of fibres may split or merge.

• Some individual fibres may leave one bundle and join another, following

significantly different paths to the majority of the fibres in the bundle -

these are often the most interesting to biologists, but are the hardest to

track.

2.4.2 The Challenges for Nuclei Detection and Recon-

struction

A fully automatic system for segmenting and reconstructing nuclei is challenging

due to the following:

• Structure with low contrast.

• Other cell compartment such as mitochondria and Golgi complex (see Fig. 2.4).

• Membranes of two nuceli may overlap.
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2.5 Machine Learning Techniques

Machine learning methods have the ability to automatically learn from a set

of examples to make a prediction or classify new instances. They are general-

purpose approaches and can successfully classify unseen data. Machine learning

algorithms are often categorised into two categories:

Supervised Learning: The training examples comprise input data (typically a

vector x) and their target labels y (typically a number for class identification).

The model aims to learn a function y = f(x) from pairs of examples such as

(x1,y1), (x2,y2),. . . ,(xn,yn). The typical example for this type of learning is clas-

sification. There are many examples of this type of algorithm, such as support

vector machine, random forests, neural networks and, recently, deep learning. An

example in medical imaging of supervised learning is the segmenting and clas-

sification of cells using a trained random forest classifier [22] or using decision

forests to automatically segment high-grade gliomas in multi-channel MR [23], as

well as more recent work using deep learning [24] to automatically classify human

epithelial type-2 cells.

Unsupervised Learning: The training data comprise input data X (typically

a vector) without any target label y. This type of learning aims to group similar

instances using a distance measure. This can be applied to medical images; for

example, the research presented in [25] incorporated a K-means clustering and

watershed segmentation algorithm. To segment an image, the K-means algorithm

is first applied to cluster the image; this produces a primary segmentation of the

image before the application of the watershed algorithm.
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2.5.1 Random Forest

Decision trees have been used for a long time [26] [27] but suffer from over-fitting

and lack of generalisation. The Random forest was introduced by Breiman [28]

and has become a popular technique in classification. A Random Forest is an

ensemble of trees each trained using a different random subset of the trained set

and features. The result of the forest is obtained by combining the results of

each individual tree (either by averaging or by voting). This is an example of

Bootstrap Aggregation (bagging), which has been shown to improve classification

and reduce overfitting. The training approach encourages each tree to give an

independent estimate of the result- combining these reduces the overall variance.

Random forests can handle large input data and they tend to avoid overfitting.

There are several parameters that affect the random forest construction and pre-

diction:

• The number of trees.

• The maximum depth of each tree.

• The proportion of features considered at each node.

• The choice of features.

Shotton et al. [29] have shown that the accuracy of random forest classifier in-

creases significantly when forest size increases. Later studies have shown that

learning deep trees could lead to over-fitting and how to maintain large amount

of training examples [30]. Random forests are used widely to solve classification

and regression problems.
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2.5.2 Building a Random Forest for Classification

A Random Forest is an ensemble of T trees. Suppose we have a training set

of n examples X = {(xi, ai)} (data vector xi with associated label ai). Each

tree is trained on a different set of data generated by randomly sampling (with

replacement) n examples from the original training set.

Each tree contains a set of decision nodes, leading to a set of final leaf nodes.

Each decision node evaluates one feature (for instance, one element of the feature

vector xi) and sends the sample to one of its two child nodes depending on whether

the feature value is above or below a threshold. Thus the decision node splits

the training set into two parts, X1 and X2. During training a random subset

of possible features and associated thresholds are considered, and the pair that

minimises a suitable cost function is chosen. When training a classifier, the cost

function is usually chosen to ensure that the resulting data subsets are as “pure”

as possible, by measuring their entropy.

Nodes are constructed recursively from the root, stopping either when a particular

depth is reached or when the training samples reaching a node are sufficiently

“pure”. The final leaf nodes record the result to be returned by the tree (for

instance, as a probability of one class or the other). See Fig. 2.5.

Earlier works have demonstrated the power of random forests in image clas-

sification [31] [32] [33]. Random forests have been applied to medical images

successfully where the problem in most cases is treated as binary classification.

Support Vector Machines were the most popular choice to solve a binary clas-

sification problem as they guarantee a maximum margin between two classes.

However, applying Support Vector Machines to classify an input into multiple

classes deteriorates its performance [34]. An empirical evaluation has been done

for random forest with other binary classifiers [35] which showed that random
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Figure 2.5: Example of a tree creates a split of feature space, and each leaf node
contains the class prediction.

forests have overall best performance. It showed also that random forests can

handle high dimensional problems. Random forests have shown robustness to

significant overlaps between classes and noise in the training examples [28]. One

of the challenges in processing medical images is segmentation due to low signal-

to-noise ratio.

Lempitsky et al. [36] use random forest to discriminate automatically delineation

of the myocardium in echo-cardiograms. They extracted a 3D patch and then

trained random forests on these patches and experimented on different number of

trees. This study showed that the performance deteriorated when the number of

trees reduced from 10 to 3. Moreover, unbalanced distribution of classes may have

a detrimental effect on training random forests. This occurs in some applications

such as performing image segmentation to detect object from background. This

problem could be mitigated by resampling training examples so they have roughly

the same uniform training distributions.
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2.5.3 Artificial Neural Networks (ANNs)

The Artificial Neural Networks (ANNs) approach was initially inspired by the

biological neural networks in the brain, which consist of a collection of connected

units or nodes (neurons). ANNs represent one of the better-known methods used

in pattern recognition. ANNs have many advantages over conventional meth-

ods, since ANNs are self-adaptive and do not require manual adjustment; this

makes it suitable for modelling complex problems and for estimating posterior

probabilities [37].

Perceptron

In biological terms, neurons receive a signal using dendrites and the cell body

processes the input by measuring the weight of the signal. Then, it fires a pulse

with known strength and duration along the axon, and the axon sends a signal to

other neurons. In the human brain there are billions of neurons interconnected

with each other to form a network [38].

Figure 2.6: The mathematical representation of a neurone.

Rosenblatt [39] presented the Perceptron which is a probabilistic model of a neural

unit Fig. 2.6 illustrates its structure. The model contains a set of weights w for

the inputs, an adder that sums the input value x weighted by w and an activation

function as a thresholding to produce the final output of the neurone. Formally,
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1- Initialise the weights wij by small random numbers.
2- For T iterations or until the iteration error is less than
a specified user threshold.
3- Calculate the activation using equation 2.5 for each neurons.
4- Update the weights for each neurons using equation 2.6

Table 2.1: Perceptron Algorithm summary

the model has n inputs x, each input is associated with weight w and a bias b

that shifts the decision boundary:

y = g(x ·w + b) = g(h+ b), (2.1)

where

h =
n∑

n=1

wixi (2.2)

The bias is put inside the vector w such that w0 = b, and similarly we add

x0 = 1 inside the vector x. This makes equation 2.1 become:

y = g(x ·w) (2.3)

where the activation function g is given as:

g(x) =

1, if x ≥ 0;

0, otherwise.

(2.4)

The perceptron is a learning algorithm that can classify its input vector x into

two classes. The vector w is the separating hyper-plane such that w · x ≥ 0 the

item is classified as class 1 and w ·x < 0 for class 2. Table 2.1 describes the steps

of the algorithm used to train the weights of a perceptron.
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yj = g(
n∑

n=1

wijxij) =

1, if
∑n

n=1wijxij > 0

0, if
∑n

n=1wijxij ≤ 0

(2.5)

wij ← wij − η(yj − tj) · xi (2.6)

The learning algorithm uses equation 2.5 to compute the activation of the neurons

before computing the error. A simple error function can be formulated to calculate

the error between the output and the target. Given that yi is the algorithm output

and ti is the actual target, an error function can be formulated as (yi − ti).

The perceptron works with a classification problem. However, it works only with

separable data. For example it fails to classify simple classification problem if the

data is not separable such as XOR.

Multi Layer Perceptron

Figure 2.7: Fully connected ANNs showing one input layer, hidden layer and
output layer.
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There are several types of neural networks, but multilayer perceptrons (MLPs)

are the most widely used. They can handle the case of separable data. MLPs

consist of three-layers input, a hidden and an output layer (see Figure 2.7). The

hidden layer may contain many layers. The weights of the network are derived

from a back-propagation error algorithm [40].

In general, the data are fed into the network using the input layer, then the mul-

tiple hidden layers transform the data into a nonlinear form. All neurons in the

hidden layer and in the output layer are connected to the previous layer. The

weighted sum for each neuron is calculated from its inputs. Then, the output of

each neuron is calculated using an activation function. One example of used ac-

tivation function is rectifier linear unit (ReLU) [41]. It can learn faster compared

to other functions such as sigmoid or tanh unit [42].

The number of hidden layers relates to the depth of the network, and width relates

to the number of neurons in one of the hidden layers. With recent technological

advances, especially in GPUs, it has become possible to train networks with a

large number of hidden layers. ANNs with more than two layers are sometimes

called deep networks.

Model representations are captured using the weight between neurons, learned

from the input/output samples. The loss function needs to be minimised through

the learning algorithm by comparing the model output to the target label. Given

the non-convex and high-dimensional nature of the loss function, the minimisation

procedure is challenging. The back-propagation algorithm was invented in the

1970s, but was only fully appreciated in the late 1980s after the publication of

an influential paper by David Rumelhart et al. [40]. They describe ANNs where

back-propagation performs faster than previous methods for learning. The goal
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1- Initialise weights with small random values.
2- For each training sample in a batch:

a) Feed to network to calculate outputs at each layer.
b) Propagate final error back through network to

estimate gradient of cost function with respect to each weight.
3- Update weights using the estimates of the gradients.

Table 2.2: MLP Algorithm summary

of back-propagation is to compute the gradient of the cost function. During

learning, all the edge weights are initially assigned a random number. For every

sample input, the ANNs are activated to calculate the output; then, the output is

compared to the target label. The error is then back-propagated to the previous

layer in the network in order to calculate the gradient of the loss function and the

weights are updated. Once the error falls below a certain threshold the procedure

is terminated. Common used activation functions are:

g(x) = x, Linear (2.7)

g(x) =
1

1 + e−cx
, c > 0, Sigmoid (2.8)

g(x) =
1− e−x

1− e−x
, Hyperbolic tangent (2.9)

g(x) =

0, for x < 0;

x, for x ≥ 0

,Rectified Linear Unit (ReLU) (2.10)

To quantify the error the mean sum-of-square error function is used:

E(t, y) =
1

2

n∑
j=1

(yj − tj)2 (2.11)

where y is the predicted value obtained from the neural network model and t

is the actual value. Table 2.2 summarises the MLP algorithm.
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Several algorithms are used for supervised learning, including gradient descent

and gradient descent with momentum. The reported results have shown that

ANNs with gradient descent with momentum perform best.

2.5.4 Convolutional Neural Networks (CNNs)

The Convolution Neural Network (CNN) share several features with MLP: it has

neurons that have weights and bias, fully connected layers and a loss functions

(see Fig. 2.8). However, CNN is different from MLP in two main aspects. First,

it uses convolutions and fully connected layers. Secondly, it has a pooling layer

(downsampling) to compress representations. CNN can be traced back to the

1990s, where it found some applications in deep learning and image segmentation.

These early attempts were limited in terms of the training size and the depth of

the networks [2].

Figure 2.8: CNN architecture consist of convolutional, pooling layers and two
fully connected layers. followed by one output layer. Each convolutional layer
has several feature maps.

Since 2012, when the results of the ImageNet competition were released, CNNs

have captured the interest of the computer vision community. Krizhevsky et

al. [43] won the competition by a wide margin, developing a CNN architecture

to classify 1.2 million high-resolution images into 1000 different classes. The
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architecture consisted of a deep network with eight layers that was trained on

the pixel intensity. Krizhevsky et al. reported that their network had 60 million

parameters and 650,000 neurons, and the model achieved high accuracy compared

to other methods. In recent years, several architectures have been proposed with

larger and deeper networks, such as [2].

A typical CNN consists of a set of consecutive convolutional and pooling layers

one or more fully connected layers and an output. The output can be a single

class, i.e. a number or a probability map for classes that describe the image.

Each convolutional layer generates one or more maps of neurons, called feature

maps.

The input of each neuron within a feature map is only connected to a small

neighbourhood among the feature map from the previous layer, called a receptive

field. Each feature map shares parameters with all of its neurons. Since the

feature map moves along the inputs sharing the same parameters, set of weights

and bias, in each layer, different feature maps can detect different features such

as edges in different orientations. Parameter sharing and local connectivity allow

the number of parameters of the network to be reduced. Once the features are

computed, the image is passed to a subsampling layer (pooling layer) to perform

a local averaging of the weights.

The exact location and number of features has limited influence, in most ap-

plications, on the final prediction. Based on this assumption, the pooling layer

calculates the average or the maximum of neighbours’ neurons to summarise their

activity. This smooths the feature representation. The same pooling layer repeats

for smaller patches but shifts by n pixels. This effectively down-samples the input

image. Thus, the model parameters are reduced significantly.
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Fully Convolution Network (FCN)

The Fully Convolution Network (FCN) is trained end-to-end fashion (see Fig.

2.9). The key insight for FCN is that it accepts any input size and produces

correspondingly-sized segmented output. There have been several attempts to

convert typical CNN into FCN by converting the fully connected layers in the

CNN into convolution filters [44][45][46][47]. The convolutional filter has a kernel

size to cover the entire input region. Thus, this technique can process any input

size and produces an output map. However, the output is subsampled because

of the pooling layers involved. This technique is not applicable for semantic

segmentation, the task of labelling each pixel in the image to a predefined class,

as the output map is not the same size as the input as it requires more spatial

information.

Figure 2.9: Trasforming CNN to perform classification task into Fully Convo-
lutional Network (FCN) to make pixel-wise segmentation. Image is taken from
[1]

The bounding-box (sliding window) technique that is used to perform semantic

segmentation reduces the labelling process to annotated data. However, this
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technique is not applicable for medical imaging since the segmented image needs

to be accurate to each pixel. This technique can achieve high accuracy by training

the network on square patches based on the image intensities centred on the

pixel itself. Once the network has finished learning, it classifies each pixel in a

sliding window fashion. For example, Ciresan et al [44] won the ISBI completion

by a large margin using this approach. The limitation of this method is the

classification process is slow since it must run over all the pixels and extract a

square patch for every pixel. Moreover, any change in the patch size will affect

the localisation accuracy since max pooling controls the amount of information

to be processed.

Long et al. [1] proposed a method to convert existing CNN networks into FCN

such as AlexNet [43] VGG nets [48] and the GoogLeNet4 [49]. The fully con-

nected layer converted to a 1×1 convolution layer with two channels (background

and foreground) to predict the class score, and 21 channel dimension to predict

PASCAL classes. The output of each classifier is followed by a deconvolution

(up-convolution) layer to perform bilinear upsampling of the coarse output to

obtain pixel-dense output. Skips are introduced between layers to refine spatial

accuracy and produce detailed segmentation. The skips combine the final layer

with shallow layer appearance information which is learned in an end-to-end way

(see Fig. 2.10).

In [1] the authors found that learning through upsampling combined with a skip

layer is more effective and efficient. Interpolation can be applied to reconstruct

lost signals in the sampling process and to smooth the data. Upsampling is

convolution with a stride 1/f of some integral factor f . Backwards convolutional

(up-convolutional) is the obvious way to perform upsampling with output stride

off . Therefore, the upsampling is learned in the network in an end-to-end by

back-propagation from the pixel wise loss rather than a fixed upsampling.
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Figure 2.10: FCN skip architecture introduced by Long et al. [1]

The limitation of this work is that the network has a fixed receptive field size.

This leads to mislabelling and separating the segmented object into small parts

due to the objects are larger or smaller than the receptive field. Moreover, small

objects may be classified as background [50].

U-Net

Ronneberger et al [2] proposed a CNN approach that won ISBI cell tracking chal-

lenge in 2015 by a large margin. The U-Net architecture consists of a contracting

path which is similar to a typical CNN and an expansive path to create a high

resolution segmentation map (see Fig. 2.11). The network consist of two con-

volutions with a filter size 3×3 followed by a ReLU and for downsampling they

applied a max-pooling layer with filter size 2×2. They double the number of

features at each down sampling step. The expansive path consists of upsampling

of the feature map at every step following a convolution layer (up-convolution )

with 2×2 kernels that reduces the number of feature channels by half. It also

has a concatenation with high resolution feature from the contracting path and

two convolution layers with 3×3 kernels each one followed by ReLU. The final
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layer consists of 1×1 convolution to map the feature vector to the desired class

number.

Figure 2.11: U-Net Architecture. Image is taken from [2]

The U-Net learns segmentation in an end-to-end setting which means a raw image

is fed to the network and a segmented map is output. The architecture of U-Net

allows the network to capture the image context in the contraction path where

the expansion path allows precise localisation. The U-Net is a Fully Connected

Network (FCN) but it differs from a typical FCN in terms of how the upsampling

is achieved.

The recent advances in GPU and efficient implementation of 3D convolution have

made it possible to extend FCN approaches to 3D and allow large amounts of

annotated data to be processed. For example, 3D U-Net [51] has been proposed

recently which is extension of the standard U-Net [2] but all the 2D operations
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are replaced with their 3D counterpart.

2.6 Image Segmentation

Recent technological developments have led to the development of automatic 3D

electron microscopes allowing the acquisition of large voxel volumes. These high-

resolution images have become essential in several fields, such as connectomics,

which aims to reconstruct structures comprehensively using these images. How-

ever, few software packages are available to perform reconstructions, and most

systems require a user to assist in these reconstructions.

Several methods for segmenting objects from the background were developed

in the literature. These methods, such as thresholding, ridge detection and

watershed-based detection, have produced moderate results. For example, the

simplest method for nuclei segmentation is to threshold the image to classify

each pixel into two classes, background and foreground. The threshold value can

be selected automatically by Otsu thresholding [52] which assumes the pixel val-

ues come from two classes and selects a value that minimises intra-class variance.

Those methods pick a single value to threshold the entire image.

Mathematical morphology operators, such as erosion, dilation, opening and clos-

ing, have been applied to segment nuclei. Other basic morphological operators,

like boundary extraction, hole filling, and skeletonization, can be generated from

the previous four operators. For example, Yang et al. [53] presented a method

to locate nucleus markers in fluorescence microscopy images using conditional

erosion.

This section will review the recent work of image segmentation on EM images.
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The segmentation methods can be categorised into semi-automated and auto-

mated segmentation.

2.6.1 Semi-Automated Segmentation Methods on EM Im-

ages

Great interest has been shown in automating reconstruction algorithms to pro-

duce an accurate reconstruction of an EM image stack without substantial human

effort. However, no automated method can produce accurate reconstruction for

different sub-cellular structures. Thus, several works focused on developing semi-

automated methods to reduce human effort and assist manual reconstruction.

This section summarises the semi-automated methods that were developed for

reconstructing EM image stacks.

The concept of interactive segmentation is similar to that of active learning [54].

Incorporating sparse input from the user supplies additional constraints to the

segmentation algorithm. Immediate feedback is given to the user after providing

this additional data. The user interactions may take on several different forms,

such as drawing a general boundary [55], drawing brush strokes [56][57][58] or

outlining the boundary [59] of the object of input.

The interactive learning and segmentation toolkit (ilastik) was developed by Som-

mer et al. [22] to segment biological images. Their work allowed users with

no knowledge of image processing to perform segmentation and classification.

The user graphically provided the ground truth by manually labelling the im-

age. Then, a random forest classifier was trained on these data to produce a

pixel classifier. The user could provide additional data at each iteration of the

pixel classifier if the result was not acceptable by including examples in which

the classifier made mistakes. Andres et al. [60] similarly worked on a design to

segment neural tissues automatically. However, ilastik was interactively designed
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(semi-automatic) to produce a pixel classifier that could automatically segment

images based on user interest.

Another interactive semi-automated reconstruction that used the same concept as

ilastik was built by Straehle et al. [61]. In this reconstruction method, the training

data was provided manually by the user to adjust a graph cut and watershed-

based segmentation algorithms. The segmentation was defined, according to the

work in [62], through labelling of a graph.

Jones et al. [63] presented an approach for sparse labelling, an alternative to it-

erative labelling. In this approach, the image was presented to the user with an

overlaid grid, and the user marked the intersection of the grid with the membrane

location. Although this method reduced the time that was required for annota-

tion, its sensitivity to the penalty parameter might introduce noise. Therefore,

there were several cases that the pixel classifier could not handle. Additionally,

this method could not deal with multiple structures at once.

Carlbom et al. [64] developed an algorithm to segment neurons using active con-

tours (snakes). In this method, the user needed to provide an estimate of the

final contour. The user could also change the parameters of the snake algorithm

to correct errors during the segmentation. However, this method is sensitive to

noise and not applicable to perform automatically on medical images.

Semi-automated segmentation methods reduce the reconstruction time signifi-

cantly compared to manual reconstruction. However, these methods are not scal-

able to large image volumes; a large scale would require years of manual efforts

by experts to reconstruct just 1 mm3.
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2.6.2 Automated Segmentation Methods on EM Images

Poor segmentation results are achieved by general segmentation methods, which

have been suggested for natural image datasets [56]. When dealing with EM

datasets, the global probability boundary [65] and boosted edge learning [60]

perform poorly, despite segmentation performance on natural images as demon-

strated by Jain et al. [66]. Thus, optimisation of a successful method is needed

for segmenting specific structures, such as nuclei or mitochondria, in EM images.

Fully automated segmentation and reconstruction methods of sub-cellular struc-

tures for EM images can be categorised into two general approaches. The first

approach starts by segmenting the sub-cellular structures in 2D slices and then

links consecutive slices to reconstruct the 3D shape. This method was suggested

due to the present anisotropy of most EM image volumes, excluding FIBSEM.

The second approach perform segmentation directly in 3D.

In several studies, the cross-sections were treated as nodes on a graph that link

the cross-sections across the consecutive slices. Nodes in consecutive slices were

connected by edges, and weight was assigned to each edge based on the consis-

tency between pairs of cross-sections. These cross-sections were linked together

by finding a set of minimum-cost paths through graphs [67][65] or by performing

a hierarchical clustering [68].

Unsupervised Learning

Several unsupervised attempts were made in terms of 2D sub-cellular segmen-

tation. Anisotropic directional filtering was applied to segment membranes and

to enhance their continuity [69][67]. Although applying this filtering improved

the membrane continuity, it could not segment the membrane with accuracy and

performed poorly in removing the intra-cellular structures. Kumar et al. [70]
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attempted to remove the intra-cellular structures using a multi-scale contextual

model with radon-like features. However, this model only achieved moderate

performance in suppressing membranes from different sub-cellular structures.

Fok et al. [71] developed a method which used snakes to segment fibres. More-

over, this method did not require any input from the user to initialise the snake

parameters. It roughly estimated the axon centre using the Hough transform

in which the boundaries of the axon were found using an active contour model.

This method is sensitive to initialisation and could not be generalised. An ear-

lier approach by Bertalmio et al. [72] was proposed for object segmentation and

tracking in EM images. The algorithm used a 2D deformable curve model, and

the tracking was achieved by solving partial differential equations.

A more recent study by Frangakis and Hegerl [73] was based on normalised cuts

and extended the work of [62] on image stacks. The segmentation method is

solved by using a generalised eigenvector. However, large numbers of objects and

large image size can cause computational problems for the algorithm. An alter-

native method using graph cuts with texture regions was developed by Chang et

al. [74]. This method assumed that objects of interest could be discriminated from

the textured background. An energy function was defined according to curve evo-

lution, and a graph was constructed and optimised using a graph cut. However,

those methods have the same limitation; finding optimal initialisation parameters

automatically was difficult. Many methods required input for initialisation.

A normalised cuts approach [73] was proposed to segment neurons in EM images.

In [75], a level set was used to segment sub-cellar structures which were limited

to segment one object and were sensitive to initialisation. An active contour base

was applied to segment mitochondria since most were elliptical. However, this

method missed most of the non-elliptical mitochondria, since the algorithm was
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designed to detect elliptical blobs [76]. With the utilisation of a watershed-based

supervoxel segmentation, only local information was taken into consideration by

a convolutional neural network in [60]. Mitochondrial textural features were used

to train a classifier in [77], but shape information was ignored.

Supervised Learning

However, membranes can be detected, and neurons can be segmented into 2D

images with supervised learning methods, which have been proven to give high

accuracy. Jain et al. [78] trained a binary pixel classifier using convolution neural

networks to distinguish membranes; this achieved better results than traditional

approaches. Mishchenko [79] used Hessian eigenspace features to build a sin-

gle perceptron classifier to detect cell boundaries in EM images and achieved

promising results. However, this method still needed further post-processing to

close membrane gaps and remove intra-cellular structures.

Several studies by Jurrus et al. [80] [67] also tracked membranes. In methods

proposed by these studies, multiple MLPs were connected sequentially to recog-

nise the membrane. In the first phase, these networks received an input of the

EM image; in later stages, the outputs of the previous phase were combined with

the current stages image. By combining one phase with the next, each phase was

given greater spatial context.

Recent work by Jurrus et al. [81] tracked multiple axons across large image vol-

umes. The image stack was acquired using the SBFSEM technique, and the

tracking algorithm was built on the Kalman-snakes framework proposed by [82].

The image volume was denoised, and an active contour model was used to detect

axon boundaries. The initial contour was fitted into the first slice where the user

defined the initial parameters or automatically using a watershed filter to detect
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locations. In order to maintain a contour that fit the shape of the axon, a simple

smoothing constraint was applied at every frame. Each subsequent contour was

then tracked using a Kalman filter to predict each point’s location in the next

slice, which was specified by location and velocity. Once the Kalman filter fin-

ished tracking the axons, the user validated the result manually and reinitialised

error prediction when necessary.

Andres et al. [60] proposed a method to segment neural tissue using a hierar-

chical classifier in three stages. In the first stage, a random forest classifier was

trained on manually segmented samples to validate each voxel. The watershed

algorithm was then used in the second phase to evaluate these classifications, pro-

ducing an over-segmentation. Finally, the segments produced by the watershed

algorithm were classified as correct or incorrect by another trained random forest

classifier. To further enhance the segmentation results, other, more complicated

methods were suggested. Closing membrane gaps was improved using a graph cut

framework, which had perceptual grouping constraints [68]. To enhance 2D neu-

ral segmentation, Liu et al. [83] incorporated intersection information, using a

merge forest structure. Vitaladevuni and Basri [84] considered co-clustering pairs

of adjacent sections and expressing them as a quadratic optimisation problem for

3D linking.

Dan et al. [44] proposed a deep artificial neural network to separate pixels into

two classes (membrane or non-membrane). The deep neural network consisted

of convolution, max-pooling and fully connected layers. A classifier was trained

on samples which consisted of square patches annotated manually. The patch

centre was located on the membrane pixel. This method did not require any

post-processing and could be applied on several EM images to segment objects.
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The second approach is performing 2D segmentation and 3D reconstruction si-

multaneously. Supervoxels were merged into segmentations by a reinforcement

learning framework, introduced by Jain et al. [85]. Incorporating both supervoxel

face and boundary curve information for 3D supervoxel merging was proposed

by Andres et al. [86] using a graphical model framework. Multiple 2D segmen-

tation hypotheses were generated and the 3D segmentation fusion was expressed

in a Markov random field framework [87]. Funke et al. [88], represented the 2D

segmentation hypotheses using tree structures and solve an integer linear pro-

gramming problem with constraints to perform segmentation and reconstruction

simultaneously.

To perform segmentation directly in 3D would require the data to be isotropic to

obtain acceptable performance. As of now, there are limitations in acquiring im-

ages with isotropic resolution even the emergence of new EM imaging techniques,

such as FIBSEM image volume that can be generated is currently limited [89].

Therefore, the algorithms that directly segment in 3D may not be appropriate

for most of the current data sets, as they are anisotropic.

2.7 Basic Methodology

2.7.1 Template Matching

The template matching technique is widely used for object detection It uses a

predefined template for an object and computes the correlation between that

template and the detected object. There are two types of template matching

technique: a rigid and deformable template [90]. Exact matching rarely occurs

due to noise, size and object orientation. A common method is to normalise the

candidate region to the template size to obtain a more accurate estimate. The

conventional method is to compute the correlation between the template for every

pixel in the original image. Therefore, this process is time consuming; however,
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the number of candidate pixels can be reduced using thresholding or alternative

techniques.

Orientation does not cause a problem when finding fibrils in an image, because

the fibrils have a roughly circular shape. Thus, a template can be produced based

on average fibrils. The similarity between the template and image is calculated

using a normalised cross correlation for an image f and template t of size N×N

as follows [91]:

γ(u,v) =

∑
x,y(f(u+ x, v + y)− f̄u,v)(t(x, y)− t̄)√∑

x,y(f(u+ x, v + y)− f̄u,v)2
∑

x,y(t(x, y)− t̄)2
(2.12)

Where f(x, y) is the pixel’s value at the point (x, y). f̄u,v is the mean of f(x, y)

within area of t shifted to (u, v) which is computed by the following equation:

f̄u,v =
1

NxNy

u+Nx−1∑
x=u

v+Ny−1∑
y=v

f(x, y) (2.13)

Rigid objects can be localised robustly by the normalised cross correlation with

the presence of noise and occlusion.

2.7.2 Kalman Filter

Kalman Filter (KF) is a recursive algorithm used to estimate process state by re-

cursively updating and estimating. KF can be used in any system with uncertain

information about any dynamic system. There are many applications for Kalman

Filter, such as video surveillance, robotics and surgery. KF was first developed

in 1960 and is described as a linear system as follows:

xk+1 = Fkxk + wk, (2.14)
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yk = Hkxk + vk, (2.15)

where xk+1 is the state vector (e.g. position, velocity) at time k + 1 and yk is

the vector of measurements. F is the state transition matrix and H is the trans-

formation matrix that maps the state vector parameters into the measurement

domain. wk and vk are random variables with covariance Qk and Rk, respectively,

initialised by x̂1|0 = E(x0) and P1|0 = Cov(x0),.

KF measurement and time updates together give a recursive solution to the prob-

lem. Measurement update is applied as follows:

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1) (2.16)

Pk|k = Pk|k−1 −KkHkPk|k−1 (2.17)

where

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1 (2.18)

and time update is given as follows:

x̂k+1|k = Fk+1x̂k|k (2.19)

P̂k+1|k = Qk + Fk+1Pk|kF
T
k+1 (2.20)

The measurement and time updates are then repeated.

2.8 Summary

There are many questions in biology that have not been answered yet, such as:

How long are the fibres? What is the relationship between fibres and cells? Re-

cent advances in EM have led to large amounts of images of biological samples.

This has allowed biologists to capture unprecedented details of sub-cellular struc-

tures such as nuclei, collagen fibres and mitochondria. There are two different



CHAPTER 2. BACKGROUND 59

techniques for accruing images using EM, TEM and SEM. TEM requires the sam-

ple to be sectioned prior to imaging, whereas SEM takes an image of the surface

sample and then sections it. However, to analyse these structures, each object in

every image needs to be segmented and linked to its corresponding object in the

subsequent slice.

There is active research in the area of semi-automatic segmentation to assist

biologists with performing segmentation and reconstruction of image volumes.

However, when reconstructing a large volume, these approaches would require

tedious work from an expert to initialise the algorithm. Moreover, an expert’s

time is too valuable to be spent on such a task. Therefore, there is a great

demand for automatic segmentation and reconstruction algorithms in large-scale

image volumes. The number of images in an image volume can be more than

1,000, and the number of objects can be more than 20,000 per image.

General automatic segmentation methods developed for natural images have

achieved great accuracy. However, when they are applied to EM images, they

perform poorly. This is due to the nature of images and the presence of low-

contrast structures, and to the fact that different objects may share the same

appearance, such as nucleus and mitochondria membranes. These algorithms

need to be fine-tuned in order to obtain acceptable accuracy. We reviewed sev-

eral automatic methods that have been applied to EM images. Most of these

methods are designed for specific structures and cannot be generalised to handle

multiple structures. We have not found any work for segmenting and reconstruct-

ing collagen fibres or nuclei that performed on a similar level to our images that

were acquired by SBFSEM.

The project developed a fully automatic method based on template-matching

and Random Forest classifiers to detect fibres. We then developed a tracking
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algorithm to reconstruct the fibres and analyse their complex paths. We used a

deep-learning approach to segment nucleus membranes and to reconstruct their

3D shapes.



Chapter 3

Fibre Detection and

Reconstruction

In this work we propose a fibre detection and tracking approach. Image slices

are roughly orthogonal to the fibres, so each fibre appears as a small disk or

ellipsoid. A circle is sufficient to represent the fibre cross-section since biologists

are more interested in the paths of the fibres than details of their cross-section.

We demonstrate our method for segmenting fibres and tracking each individual

fibre through the image stack. Finally we generate a detailed reconstruction of

fibres in 3D.

It was found to be sufficient to use template matching to identify candidates

for approximately circular fibres. However, fibres with polygonal shapes were

located using a trained classifier. False template matches were eliminated using

a Random Forest classifier. Candidates in each slice were then linked to identify

extended fibres.

61
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3.1 Fibre Representation

We focused on image volumes from SBFSEM, which were gathered so that the

image planes are roughly orthogonal to the direction of the fibres of interest. In

samples from early stage of development each fibre appears as a small disk or

ellipsoid diameter in the range 2 to 25 pixels. During late development, fibres

have a more polygonal shape in the range of 20 to 70 pixels.

A collagen fibril could be modelled as a sequence of points (see Fig. 3.1). For

such a fibre track we use the notation X(p) = {x(p)
1 , ...,x

(p)

n(p)} where p ∈ {1, ..., Nf}

denotes the fibril number with Nf representing the total number of fibrils, and

n(p) is the number of points that form the pth fibril.

Figure 3.1: A sequence of points representing fibril x(p). δ is the distance between
any two adjacent image slices which is fixed to be a constant, and referred to as
the step length.

3.2 Fibre Detection Algorithm

3.2.1 Template Matching Approach for Locating Fibres

Each fibre has a roughly circular shape which may vary from slice to slice due to

sectioning. We developed our method based on template matching. We defined

multiple models each trained to locate fibres at a particular radius. Each model

focuses on locating fibres with radii within a narrow range. These are then used

to generate samples (at a range of scales).
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An image pyramid consists of a set of scaled (lower resolution) copies of the base.

A typical case is where the copies are each a factor of two smaller than the next

lower image in the pyramid. The biggest image is at level 0 and the next lower

resolution image at level 1 and so on.

The assumption is that there is an optimal size (in pixels) for detecting particular

objects, say 10 pixels radius. Thus a model trained for 10 radius can be used to

detect objects at 10, 20, 40 etc. radius by running on different pyramid levels.

Models looking for smaller than optimal size will only be run on the base level

(highest resolution) image of a pyramid, such as when the radius is 3, 4, 5, 8.

Table 3.1 shows an example of our model design.

Target Radius Image Level Model Radius
3 0 0
5 0 5
8 0 8
10 0 10
12 0 12
16 1 8
20 1 10
...

...
...

32 2 8

Table 3.1: Models used to search for fibrils at given radii.

Each individual template is constructed as the mean of a set of training examples

centred on fibres with a particular range of radii (see Fig. 3.2). Table 3.2 shows

the number of samples for each template. We manually annotate fibres in a

training set, drawing a circle around each fibre of interest. We then divide up the

training set by radius to train a range of templates. The template for a fibre of

radius r is of size (2r+ 3) x (2r+ 3) - allowing a small border around each disk.
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(a) (b) (c) (d) (e) (f)

Figure 3.2: Templates constructed with different sizes and mean radius such as
(a) 9×9, with mean radius 3 (b) 11×11, with mean radius 5 (c) 15×15, with
mean radius 7 (d) 17×17, with mean radius 8 (e) 19×19, with mean radius 9 (f)
23×23, with mean radius 11.

Template Number of Samples
A 288
B 432
C 720
D 648
E 722
F 691

Table 3.2: Template statistics.

We use normalised cross-correlation (NCC) to search each image with the given

template. As can be seen from Figure 3.4 (top), there are also many false posi-

tives, non-fibre patches. Since different sized templates will give different ranges

of NCC output at the correct location, we apply a linear correction factor to the

output,rq. The fit value returned for each result will be f = (q− q̂)/σ, where q is

the normalised dot product between kernel and image patch, q̂ is the median of q

when measured at the correct position in a verification set and σ is the standard

deviation of q over the verification set.

Orientation does not cause any problem when finding fibrils in an image, because

the fibril has a roughly circular shape. The similarity between the template

and image is calculated using a normalised cross correlation as explained in sec-

tion 2.7.1.
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By searching with templates at different scales, and choosing local maxima in the

response, f , in both position and scale, we locate both the position and radius of

good candidates - see for instance Figure 3.4 - which have responses which pass

a threshold on f . Any false positives will be removed in the next phase using a

Random Forest classifier.

3.2.2 Random Forests Approach for Locating Fibres

We extended the detection algorithm by training Random Forest to detect non-

circular shapes. Eight Random Forest classifiers have been trained, each designed

to deal with a different (narrow) range of radii of fibres, centred on r̂. To obtain

training examples we annotate fibres manually over a set of images by drawing

circles around fibres. Thus, we have a set of circles defining the centre and radius

of each fibre.

To increase the training data we rotated each patch four times with different scal-

ing. False examples are generated automatically by displacing the circle around

the centre of a fibre’s patch at different scales (see Fig.3.3). Each Random Forest

was then trained on image patches around all the samples which fell within its

radii range.

Image patches of size 2r̂+3 were taken, centred on the centre of the circle defining

the candidate. The features used to make decisions at each node of each tree in

the forest were based on the difference between intensities in two randomly chosen

pixels within the patch. We experimented with other features such as Haar-like

features but did not obtain any significant improvement.
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Figure 3.3: Fibre annotation to train classifier for detecting non-circular fibres :
Positive example (green circle) and negative examples (red circles)

3.2.3 Random Forests for Eliminating False Matches

To eliminate the large number of false matches that are produced using NCC

approach for detecting circular fibres, we trained another binary Random Forest

classifier to distinguish fibres from non-fibre patches. Similarly we trained eight

Random Forest classifiers each designed to deal with a different range of radii of

fibres. However, the training samples were collected in a different way by running

the NCC models (as described above) over a set of images with low threshold to

minimise the number of false negatives (missed fibres). We then manually marked

each circle as fibre or non-fibre.

To remove the false positives we evaluated all the candidates that were produced

using the template matching approach. We extracted the relevant features for

each sample and then the RF to make predictions whether is it fibre or not. Fig-

ure 3.4 shows the result of detecting fibres using template matching (Top), and

after removing these false positives using RF classifiers (bottom).
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Figure 3.4: Fibre detection using normalised cross correlation result (top); and
Fibre candidates after removing false positives using RF classifiers (bottom).

3.3 Fibre Tracking Algorithm

After running the detection stage on every frame we have a set of candidate disks,

each of which is likely to be from a fibre. Let disk i in plane z have centre ~pi,z

and radius ri,z, i = 1..nz, nz is the number of candidates in plane z. Each fibre

appears as a sequence of candidate disks of similar radii in consecutive frames.

The simplest approach to tracking would be to extend each fibre with the nearest

candidate disk of the correct radius in the next slice, if it was within a suitable

threshold distance. In practise this does not work well for fibres in bundles, as the

‘drift’ of the bundle between frames can be larger than the separation between

nearby fibres. This leads to ambiguity in matching the candidates to the fibres
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and thus incorrect linking.

To reduce the chances of this we take account of the drift (the movement of

the fibre bundle from one frame to the next) and assume each fibre only moves

small amounts relative to its neighbours in the bundle when locating suitable

candidates in the next frame.

We assume all candidate disks in the first frame are the start of a fibre, creating

n1 fibres each containing a single disk. We then process the subsequent frames

one at a time, using the candidate disks to either extend an existing fibre, or to

create new fibres if there is no match in the previous frame.

When processing a frame, the first step is to group the ends of fibres in the

previous frame in order to identify bundles. This is done by a clustering algorithm,

in which each fibre is added to an existing bundle if its disk at slice (z − 1) has

a centre within a radius rc of any other fibre centre in the cluster. The radius rc

was determined through extensive experiments across several datasets to find the

optimal value. We evaluated different values of rc between 3 to 30, and measure

the tracking algorithm performance against our ground truth. We found that the

optimal value for rc is 9.

We then estimate the ‘drift’ of each bundle as the translation of all fibres which

minimises the distance of their centres to the centres of candidates on the next

slice. In particular, let Dz(x) be the distance transform of the centres of disks in

image z

Dz(x) = mini|pi,z − x| (3.1)

Let {xb,j} be the centres of the n fibres identified in a bundle b on frame (z− 1).
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The movement of the bundle is then the translation t̂b which minimises

Sb(t) =
∑
j

Dz(xb,j + t) (3.2)

Let x′b,j = xb,j + t̂b be the estimated centre of each fibre from frame z−1 projected

onto frame z, and rb,j be the radius of the disk for that fibre in frame (z − 1).

We now consider every candidate disk {pi,z, ri,z} in turn. If |pi,z − x′b,j| < dt and

| log(ri,z/rb,j)| < log(1.25), then the disk (i, z) is used to extend fibre j in bundle

b, otherwise the disk is used to start a new fibre. Fibres are assumed to have

ended if no match is found in the next frame.

The constraint threshold dt is the maximum amount of movement allowed for a

particular fibre to move from one frame to another. To find the optimal value for

this parameter we manually annotated 70 fibres across 50 slices. We analysed the

movement of each fibre by finding the min, max and the average movement. We

found that max movement for the smallest radii is 4 pixels (the smallest radius

of fibre is 3). However, fibres with large radius can move more than 4 pixels.

We evaluated several values to determine the movement of fibres with large radii

between 0.40 to 0.80 ×ri,z, and measure the tracking algorithm performance.

Thus, we found that the optimal value for dt to be 4 for fibres with small radii

(between 3 and 7 radius) and 0.6×ri,z for fibres with large radii (for larger than

7).

The other constraint we have is when to extend fibre from one frame to subsequent

frame. The two disks should satisfy the constraint | log(ri,z/rb,j)| < log(1.25).

This is because the fibre radius may differ slightly from one slice to another.

To find the maximum change we use our annotated data and calculated the

| log(ri,z/rb,j)|. We found that the proportion is less than log(1.25).
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At the end of the process we have identified a large number of fibres, each running

through some subset of the available frames. By comparing the disks at the ends

of fibres we can identify and correct small gaps caused by detection failures. Short

fibres (for instance, those visible in fewer than 10 frames) can be rejected as they

are typically cause by false detections and are unlikely to be collagen fibres, which

usually pass through many frames.

3.3.1 Filling Gaps in Fibres

Occasionally a candidate disk for a fibre is not detected in an image, either due to

the failure of the detector, or because some image slices are corrupted by ’tearing’

the surface of the block when the diamond knife cuts the slice. Such missing disks

cause a long fibre to be split into two (or more) shorter fibres. To detect and

correct small gaps caused by such detection failures we use a linear prediction of

the fibre’s location at frame z. We identify the end of every fibre at frame z − 1

and estimate their center projected onto frame z. Similarly, we identify every

fibre starting at frame z + 1 and estimate their center projected onto frame z,

then we link fibres that satisfy a constraint according to the following procedure:

Let disk i in plane z have centre ~pi,z and radius ri,z, i = 1..nz, nz is the number

of candidates in plane z. For every fibre i ending at frame z − 1 we estimate the

centre of the fibre at frame z as

~pi,z = pi,z−1 + (pi,z−1 − pi,z−2) (3.3)

For every fibre j starting at frame z + 1 we estimate

~pj,z = pj,z+1 − (pj,z+2 − pj,z+1) (3.4)

Then, we link fibre i to j if |pi,z −pj,z| < (ri,z + rj,z)/2 This is to ensure that the
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difference between the predicted fibre that ends at frame z− 1 and the fibre that

starts at frame z + 1 is less than the mean radii of the two fibres. The second

constraint is that the two fibres radii ratio should satisfy 0.7 ≤ |ri,z/rj,z| ≤ 1.5.

This is to ensure that the two fibres’ radii have similar radius.

3.3.2 Correcting Misconnections

When two fibres approach closely or a fibre changes direction, the connection al-

gorithm above can create mis-matches or lose track. This is particularly common

for lone fibres (which leave one bundle and join another) or when two bundles

split or merge. Because of their stiffness, fibres tend to be fairly straight and

thus the position of their centre point in a slice varies smoothly from one slice to

another. We use a Kalman Filter (KF) framework to predict the position of the

fibre centre in sequential frames, and thus identify when a mismatch may have

occurred.

Each fibre is associated with its own KF. The filter is initialised by the first five

slices using a fibre’s centre location. In subsequent slices we use the Kalman

equations to predict the fibre’s location in the next slice and compare it against

that produced by the original linking algorithm. Where it finds a discrepancy,

that position is recorded and the filter is re-initialised on the next 5 slices.

Each discrepancy is then re-visited, and corrected where necessary using Algo-

rithms 1 and 2. There are several cases to deal with, including gaps caused by

missing detections, two fibres which have been incorrectly swapped when they

are close and cases where one fibre has terminated.

The algorithm is run forward and then backward through the volume to locate

as many such cases as possible.
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Algorithm 1: Correcting Misconnections

Input: Fibre fibresn; // list of fibres where n is number of

fibres; each fibre consist of set of disks.

Disk disk1, disk2 // Disk is an object that has centre x,y and

slice number z, all initialised by -1

for i = 1 ← to n do
disk1 = FindDiscrepancyUsingKalman(fibrei);
if (disk1.z()! = −1) then

fibre1 = RetrieveFibre(disk1);// retrieve fibre that has

disk1

disk2 = FindDiscrepancyUsingKalman(fibre1);
if (disk2.z()! = −1) then

fibre2 = RetrieveFibre(disk2);
if (fibrei == fibre2) then

// kalman has agreed that there is a problem in

the two fibres at slice z

BreakFibres(fibrei, fibre1, disk1.z()); // break the

two fibres and swap them at slice z

Algorithm 2: Find Discrepancy Using Kalman

Input: Fibre fibren; // fibre where n is the length of fibre.

Disk disksz // load all the disks for each slice where z is the

slice number.

Disk KDisk // disk suggested by kalman, x,y,z initialised by -1

for i = 1 ← to n do
if (i < 6) then

// initialise kalman filter using fibre centre location

of the first 5 slices

UpdateKalmanMeasurement(fibrei);

else
// predict next disk at slice fibrei.z().
disk = PredictNextDisk();
if (isTwoDisksMatched(fibrei, disk)) then

UpdateKalmanMeasurement(fibrei);
else

if (isDiskMatchedWithAnyFibre(disk, disksfibrei.z())) then

KDisk = disk;

return KDisk
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3.3.3 Lone Fibres

Most fibres are grouped together forming bundles. However, some of the fibres

leave their bundle and join others, or enter other structures. Biologists are in-

terested in the path of such lone fibres. Lone fibres leave a bundle as a single

fibre or as a small group of fibres. They might leave their bundle and merge with

another or they might return to the original bundle. Examples of such fibres are

shown in Figure 3.5. The challeges in identifying lone fibres:

• Fibre start and exit from image boundary.

• Image (slice) corruption by ’tearing’ the surface of the block.

• Number of neighbours for lone fibre might be more than one.

To identify such fibres we scan each fibre and count the number of neighbouring

fibres within a range of rL within each slice. We set the rL radius to 20 pixels,

and the number of neighbouring fibres within that radius should be at most 3 for

a lone fibre.

Figure 3.5: Lone fibre moving from bundle 1 to bundle 2.
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Any fibre which has more than two slices satisfying our constraints with no other

neighbours (excluding those close to the image boundaries) is labelled as a lone

fibre. These constraints are set by biologists to identify lone fibres that are mov-

ing a small distance from their bundles of far away. The procedure for identifying

lone fibres can be seen in Algorithm 3.

Algorithm 3: Lone Fibres Identification

Input: Fibre fibresnm; // list of fibres where n is number of

fibres and m is the length of fibre; each fibre consist of

set of disks.

Define a circle cx,y with radius rL
// the radius is set to 20

for i = 1 ← to n do
for j = 1 ← to m do

cx,y ← fibersij(x,y) // assign the center of fibre fi at slice

j to the center of circle c
numberOfNeighbours ← countNumberOfFibres(fibresnm,cx,y)

// function to count number of fibres that center

falls inside the circle cx,y with the radii of rL at

slice j

if (numberOfNeighbours < T ) then
// T is a fixed threshold set by biologist to 3

loneFibre.add(fi)
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3.4 Experimental Results

3.4.1 Data

We use images from three different datasets; (i) an embryonic 16.5 day wild type

mouse tail sample used as a control for an MT1 knock out protease that cleaves

collagen molecules (among other things), (ii) an embryonic 17.5 day wild type

mouse tail sample used as a control for a collagen mutation that protects the

fibrils from cleavage, (iii) an embryonic wild type mouse close to 17.5 day used

as a control for a collagen receptor knock-down mouse. The other datasets were

collected from wild type mouse tail in different timinig and ages (seet Table 3.3).

The datasets were collected by a SBFSEM system [5] under the brand name

3View. The images were created by collecting the back scattered electrons before

an in-chamber ultramicrotome removes a section [7] with the assistance of Gatan

DigitalMicrograph software.

Dataset Number of Images Resolution
1 182 4096×4096
2 510 1000×1000
3 500 966×876
4 500 4096×4096
5 695 4096×4096
6 700 4096×4096
7 1400 4096×4096
8 700 4096×4096
9 500 4096×4096
10 520 4096×4096
11 510 4096×4096
12 500 4096×4096
13 500 4096×4096
14 510 4096×4096
15 800 4096×4096
16 876 4096×4096

Table 3.3: Our data consists of 16 different datasets.
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Annotated Data To quantitatively assess the performance of the tracking algo-

rithm we manually annotated random fibres across several slices. We chose the

first slice randomly from the image stack. The location of the centre of each fibre

was recorded on each image in a sequence.

Several fibres may exit the image boundary or simply end before we reach the

last slice. Thus, not all fibres are visible in all the slices (see Table 3.4).

Dataset # of Annotated fibres # of Images # of Points
1 209 102 21019
2 64 30 1920
3 83 30 2447
4 87 20 1740
5 54 30 1620
6 103 30 2725
7 59 30 1770
8 83 30 2223
9 48 30 1440
10 60 30 1611
11 72 30 1896
12 62 30 1734
13 44 30 1320
14 47 30 1410
15 51 30 1530
16 48 30 1440

Table 3.4: The ground truth for each dataset.

3.4.2 Reconstruction Evaluation Measure

To quantitatively assess the performance of the algorithm we defined the following

metric. Let mj(z) define the position of the marker for jth fibre at the zth slice.

The tracking for fibre i at slice z is defined as correct if mi(z) falls inside the

circle that is identified by the detection and tracking algorithm for the outline
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of that fibre. We also report mismatched errors that occur when two fibres are

swapped as they pass close to each other. Then we consider whether the fibre is

correctly tracked after the error correction algorithm (see Figure 3.6).

Figure 3.6: Evaluation measure criteria.

3.4.3 Evaluating 3D Reconstruction

In these experiments we only report the true positive rate since there are over

20000 fibres in the image - we cannot identify false positives (other positives may

correspond to correct but unannotated fibres). The algorithm tested against the

ground truth in Table 3.4. Table 3.5 summarises the algorithm reconstruction

performance for each dataset after applying gap filling and correcting misconnec-

tion. The average accuracy score over all of the datasets is 94%.
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Dataset Accuracy
1 99%
2 96%
3 99%
4 88%
5 95%
6 94%
7 91%
8 92%
9 87%
10 90%
11 97%
12 98%
13 93%
14 96%
15 95%
16 96%

Table 3.5: The algorithm performance on each dataset

3.4.4 Evaluating Gap Filling and Kalman-Filter

The tracking algorithm result tested against the ground truth. We excluded the

false positives since there are over 20000 fibres in the image in several datasets.

The gap filling algorithm aims to correct missed fibres where the Kalman-Filter

aims to correct mismatched as describe in section 3.4.2. We selected five datasets

randomly to show the two algorithms’ performance. Tables 3.6 - 3.11 shows the

tracking performance, with gap filling and with Kalman-Filter based correction.

The gap filling algorithm corrects over 60% on Dataset 1 as shown in Table 3.6,

where it corrects over 79% of the miss errors on Dataset 3 as shown in Table 3.7.

The gap filling performance on other datasets were not significant because the

failures at detection stage were high compared to those in Dataset 1 and 3.

On the other hand, the Kalman-Filter based method corrects over 70% of the

matching errors on Dataset 1 as shown in Table 3.6 and between 63% to 69% on
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the other datasets. However, on Dataset 4 we have not identified any mismatches

as shown in Table 3.8 since fibres in this dataset are collected from an adult

mouse. Thus, fibres become more straight at this stage unlike fibres in embryonic

or newborns where they are more curvy.

Method
Basic system with Gap Filling with Kalman Filter

Correctly Tracked 20835 20949 20951
Miss 184 70 68

Mismatched 289 289 82

Table 3.6: Improvements given by Gap Filling and Kalman-Filter based correction
on dataset 1.

Method
Basic system with Gap Filling with Kalman Filter

Correctly Tracked 2404 2438 2442
Miss 43 9 5

Mismatched 62 62 23

Table 3.7: Improvements given by Gap Filling and Kalman-Filter based correction
on dataset 3.

Method
Basic system with Gap Filling with Kalman Filter

Correctly Tracked 1450 1532 1537
Miss 290 208 203

Mismatched 0 0 0

Table 3.8: Improvements given by Gap Filling and Kalman-Filter based correction
on dataset 4.

We have performed two experiments on two data sets to show the tracking per-

formance with and without gap filling on the full depth of the block. Figure 3.7
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Method
Basic system with Gap Filling with Kalman Filter

Correctly Tracked 2490 2532 2584
Miss 235 193 141

Mismatched 42 42 13

Table 3.9: Improvements given by Gap Filling and Kalman-Filter based correction
on dataset 6.

Method
Basic system with Gap Filling with Kalman Filter

Correctly Tracked 1094 1142 1231
Miss 226 178 89

Mismatched 93 93 31

Table 3.10: Improvements given by Gap Filling and Kalman-Filter based correc-
tion on dataset 13.

Method
Basic system with Gap Filling with Kalman Filter

Correctly Tracked 1291 1328 1388
Miss 149 112 52

Mismatched 39 39 14

Table 3.11: Improvements given by Gap Filling and Kalman-Filter based correc-
tion on dataset 16.

shows a histogram of the number of fibres with particular lengths (number of

consecutive frames in which they are located) when analysing a block of images.

As can be seen from the figures many more longer fibres are tracked when gap

filling is applied. The first experiment shows the number of fibres with a length

183 (the full depth of the block ) was about 200. However, after applying gap

filling the number increased to 4800. In the second experiment the number of

fibres at the length of 150 and 200 were very small number about 10, but after

applying gap filling the number of fibres increased to 200.
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Figure 3.7: Histograms of the number of fibres with particular lengths on dataset
1 (top) and dataset 2 (bottom), with and without gap-filling. It demonstrates
that the gap filling significantly increases the number of longer fibres detected.
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Similarly we have performed three experiments on three datasets to show the

tracking performance with gap filling after applying Kalman-Filter based cor-

rection. Figure 3.8 shows a histogram of the number of fibres with particular

lengths (number of consecutive frames in which they are located) when analysing

a block of images.

As can be seen from all the figures, many more longer fibres are tracked when

the Kalman Filter is applied. The first experiment shows the number of fibres

with a length 183 (the full depth of the block) were about 5000. However, after

applying the Kalman based error correction the number increased to 6600. On

the second experiment the number of fibres at length 220 and 290 the number of

fibres increased about 100, and at the length 240 the number of fibres increased

about 200. The third experiment showed that the number of fibres have increased

after applying Kalman at length 500 from 8300 to 13500.
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Figure 3.8: Histograms of the number of fibres with particular lengths on three
data sets, with gap-filling and with Kalman correction, performed on Dataset
1 (above), Dataset 2 (middle) and Dataset 3 (bottom). It demonstrates that
Kalman significantly increases the number of longer fibres detected.
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3.4.5 Evaluating Random Forest for Eliminating False Matches

We performed experiments to evaluate how well the random forest classifiers

could discriminate between fibres and non-fibre candidates found by the NCC-

based models. Manual annotation of the output of the NCC models on a set of

images gave 53480 true fibre candidates and 47022 non-fibre candidates, which

were used for training and testing the classifier. We randomly split the examples

into two sets where 70% of the examples are used for training and the remainder

for testing.

We trained eight RF classifiers, each consisting of 20 trees, on samples with

mean radii of 4, 5, 7, 11, 13, 15, 17 and 19 pixels. Figure 3.9 shows classifiers

performance for each radius.
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Figure 3.9: ROC for Random Forest classification performance for models of
different radii.
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3.4.6 Evaluating Random Forest for Fibre Detection

We performed experiments to evaluate how well the random forest classifiers could

discriminate between fibres and non-fibre patches. Manual annotation on a set

of images gave 952 true fibre candidates and 3808 nearby non-fibre candidates,

which were used for training and testing the classifier. The testing data consists

of 363 true fibres and 1452 non-fibres. To increase the training and testing data

we performed rotation and scaling on the data.

We train eight RF classifiers, each consisting of 10 trees, with mean radii of 4, 5,

7, 9, 11, 13, 15 and 17 pixels. Figure 3.10 shows the Random Forest performance

for each radius.
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Figure 3.10: ROC for Random Forest classification performance for models of
different radii.
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To compare our detection algorithm using RF with [92] (based on NCC). we

manually annotated 531 fibres across four images from Dataset 4. Fibres at this

dataset have a more polygonal shape rather than a circular shape.

We performed an experiment to compare Random Forest classifier for locating

fibres with the NCC based template search. We compute the precision and recall,

where we define recall = TP/(TP+FN) and precision = TP/(TP+FP), where TP

is the number of true positives, FN is the number of false negatives and FP is

the number of false positives. We summarise the precision-recall in single number

using the F1 score:

F1 =
2 ·Recall · Precision
Recall + Precision

(3.5)

The F1 score for finding fibres using template matching achieved 62% where

the Random Forest classifier achieved 96%.

3.5 Fibre Analysis

We performed several quantitative analyses of collagen fibres on each dataset.

Biologists are interested in quantifying the fibre’s length, radius, deviation and

curvature, as these measurements will assist them in studying and analysing the

structures and behaviours of fibres. As may be seen in Figs. 3.7 and 3.8 in

Section 3.4.4, a large number of fibres start from the top of the image stack

and continue to the end of the volume. The short fibres end because the fibres

may reach their end or exit the image boundaries or because an error occurs in

the detection or tracking phase. These data require analysis by an expert in the

field in order to compare the fibres’ lengths across samples collected at various

times. We also quantify the distribution of the fibres’ radii across each dataset

(see Fig. 3.11). This will allow experts to study the growth of the fibres and

the contribution of small and large fibres to maintaining the tissue’s strength.

For example, the fibres’ radii in datasets 1 and 2 are almost identical, while in

datasets 3 and 4 the fibres’ radii range over three distinct categories.
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Figure 3.11: Fibres radius distribution of Dataset 4,6,7,10,13,14,15 and 16.
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3.5.1 Large Scale Curvature

To measure the curvature for each cluster, we divide fibres into 3 clusters based

on their radii. Suppose that a fibre runs from slice z0 to slice z1, with position

p0 = (x0, y0) at z0 and p1 = (x1, y1) at slice z1. If we draw a straight line between

the ends, then that passes through slice z at position:

L(z) = (1− a)× p0 + a× p1, where a = (z − z0)/(z1 − z0) (3.6)

If the fibre has a disk centred at p(z) in slice z, then the deviation from the

line is given by:

d(z) = |p(z)− L(z)|/(z1 − z0) (3.7)

We calculate the statistics of d(z) over the length of the fibre - its mean and max.

We create a histogram of the number of fibres with each deviation (using 100

bins), then normalise to create a PDF (so that the area under the curve is 1).
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Figure 3.12: Mean (left) and max (right) fibres large scale deviation of Dataset
1.

Figure 3.12 and 3.13 shows the mean and the max deviation for dataset 1 and

7. The data shows that the fibres with small radii have slightly higher deviation

though the difference is not big (fibres with small radii are not as long as fibres
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with large radii). However, in dataset 16 the difference between the three fibres’

radii is more obvious (see Fig. 3.14).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5  6  7

F
re

q
u
e
n
c
y

Deviation

# Fibres: 32390 M Leng: 20.4011 M Rad: 6.71141 M Dev: 2.26928 M STD: 0.866596
# Fibres: 158724 M Leng: 27.2951 M Rad: 12.0769 M Dev: 2.4173 M STD: 0.805587
# Fibres: 23337 M Leng: 34.8616 M Rad: 16.8993 M Dev: 2.65256 M STD: 0.865612

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5  6  7

F
re

q
u
e
n
c
y

Deviation

# Fibres: 32390 M Leng: 20.4011 M Rad: 6.71141 M Dev: 2.26928 M STD: 0.866596
# Fibres: 158724 M Leng: 27.2951 M Rad: 12.0769 M Dev: 2.4173 M STD: 0.805587
# Fibres: 23337 M Leng: 34.8616 M Rad: 16.8993 M Dev: 2.65256 M STD: 0.865612

Figure 3.13: Mean (left) and max (right) fibres large scale deviation of Dataset
7.
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Figure 3.14: Mean (left) and max (right) fibres large scale deviation of Dataset
16.

3.5.2 Fibre Curvuture

Each fibre consists of a set of disks and each disk has centre p(i) on slice i and

radius r. We divide fibres into K clusters based on their radii so biologists can

compare the curvature of fibres with different radii. Then we compute the mean

curvature for every fibre at slice i:
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Curvi =
|pi − 1

2
× (pi−S + pi+S)|

S
(3.8)

Curvi =
N−S∑
s

Curvi
N − 2× S

(3.9)

where S is the step size and N is the fibre length. We create a histogram of the

number of fibres using step size S = 15 with each curvature (using 50 bins), then

normalise to create a PDF (so that the area under the curve is 1). Figure 3.15

shows the curvature of different datasets where we divide the fibres into 3 clusters

with different radii. It shows that more of the fibres with small radii have large

mean curvature, compared to those with large radii, though the difference is not

big.
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3.6 Discussion and Conclusions

We have demonstrated a fully automatic system for detecting fibres and tracking

them across image volumes. The detection system involves finding candidates by

using template matching and then discarding false matches by using a random

forest classifier. We constructed multiple models, each trained to locate fibres

of particular radii (see Fig. 3.16). The training samples collected to train the

RF classifier were gathered after locating candidate fibres by using a template-

matching approach. The training samples of true fibres and false fibres numbered

in the thousands and were equally balanced.

During the late development of fibres, their shape becomes more polygonal, and,

when we used the previous model, it failed to locate fibres and produced a large

number of false positives. To improve the accuracy, we designed a new model for

this specific shape by training a RF classifier to locate those fibres. We annotated

the fibres by drawing a circle around the fibres and, to address false matching,

we drew circles by displacing the true circle around the fibre. We then defined

multiples models, each trained to locate fibres of particular radii (see Fig. 3.17).

The tracking algorithm, which takes account of the movement of fibre bundles,

was found to be effective for linking the detected disks together into extended

fibres. We applied a gap-filling algorithm to correct small gaps, as there were

candidate disks for a fibre that was not detected due to failures in the detection

stage or because some image slices were corrupted by tearing. However, when

two fibres move toward each other from different directions, the algorithm may

swap them or even do that when a fibre changes its direction suddenly. We used

a Kalman filter to predict the location of a fibre in the next slice, based on the

previous information about the fibres location. Each discrepancy between the

tracker and the Kalman filter was re-visited and corrected when necessary. The

gap-filling algorithm was designed to fix broken links, whereas the Kalman filter
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was designed to deal with mismatched fibres. The two algorithms were able to

increase the fibres lengths significantly.

The algorithm is able to track thousands of fibres across hundreds of slices (see

Fig. 3.16). Figure 3.19 shows that the lone fibres follow complex paths through

the tissue as compared to the fibres in bundles (shown in Fig. 3.20). We also

visualise all fibres from datasets 4 and 11, where the number of fibres is more

than 30,000 (see Fig. 3.21).

We evaluated the random forest classifier for eliminating false positives and for

locating fibres. The experiments showed that the RF classifier was able to remove

false positive fibres and locate fibres with high accuracy.

We evaluated our tracking algorithm against our ground truth, and we also eval-

uated the tracker after applying gap-filling and Kalman-filterbased correction.

We showed the number of fixed broken links using gap filling and the number of

corrected mismatched fibres using the Kalman filter. We showed histograms of a

number of fibres of particular lengths on the full depth of the block of our tracker

and compared the lengths after applying gap-filing and Kalman-based correction.

From these experiments, we demonstrated how the tracker improved and how the

fibres’ lengths increased.

There are two main limitations of the current approach for reconstructing fibres.

The first occurs in the detection phase, when the fibres are closely packed and

overlapped. Moreover, the fibres took irregular shapes in some cases, due to errors

that occurred when acquiring the image volume (see the first and second row in

Fig. 3.18). These failures dramatically affect the tracking algorithms performance.

The second limitation results from the fact that some fibres move faster than

most of the fibres in the consecutive slices because they are perpendicular to
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the surface of the sample. Those fibres leave their bundles for a certain time,

and our algorithm assumed that all fibres in a bundle move in roughly the same

way. However, in some cases, the whole bundle may move faster than is normal

because it becomes oriented far from the normal to the surface (see the last row

in Fig. 3.18).

In comparing our results to studies in general, a comparison of different ap-

proaches to reconstructing ultra-structures from EM images presents challenges

for several reasons. These fall into three categories: tissue staining, imaging

method and tissue type (we discuss these issues in detail in Chapter 5). However,

we have not found any work or benchmark that is similar to our work in order to

make a comparison.
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Figure 3.16: Images of tracked fibres from dataset 2, 11 and 15 (colours are given
to fibres based on their radius).
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Figure 3.17: Example of Random Forest detection on dataset 3, 5 and 7.
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Figure 3.18: Images of failed detection of fibres in dataset 4, 8 and 10.



CHAPTER 3. FIBRE DETECTION AND RECONSTRUCTION 97

Figure 3.19: Visualisation of lone fibres found by the tracking algorithm on
Dataset 1.

Figure 3.20: Visualisation of all fibres found by the tracking algorithm on Dataset
1.
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Figure 3.21: Visualisation of all fibres found by the tracking algorithm on Dataset
4 and 11.



Chapter 4

Nuclei Segmentation and

Reconstruction

The reliable segmentation of nuclei from microscopic images is an important task

in many biological studies. Studies on nuclei analysis can be dated back six

decades [93]. The segmentation of cells has been analysed in a large number of

research papers covering several domains, such as cell counting, cell types and

phases, and cell migration and interaction. In general, there is a significant com-

plexity and variability in cell image data, which makes segmenting cells from

other objects a problem. Thus, different approaches are often used with different

data sets. Most methods that are used in the literature for cell segmentation use

a pipeline of segmentation based on filtering steps and mathematical operations

combined with a few basic segmentation techniques, such as intensity thresh-

olding, feature detection, morphological filtering, watershed transformation, or

deformable model fitting [93].

The motivation for this work arose from certain processes within the field of

biomedical imaging, such as detecting and tracking nuclei and mitochondria in

a complex subcellular environment. This chapter introduces our approach for

segmenting nuclei and reconstructing them from large image stacks that were

99
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acquired using the SBFSEM technique.

4.1 Introduction

In recent years, automatic methods have achieved great success in nucleus seg-

mentation. In the literature, several works on nucleus segmentation have been

published [94]. It should be noted, however, that although these approaches

might work efficiently on the authors’ data sets, their clinical application is not

yet viable. In [95], smoothing is applied to strengthen the nucleus’ border and

maintain the low contrast between background and cytoplasm. The edges are

then enhanced by applying a gradient direction edge enhancement operator to

obtain a better performance. Finally, the nuclear membrane is refined using a nu-

cleus intensity threshold. Their approach was designed for isolated cells, however,

not multiple cells.

The traditional approaches deal with only a single nucleus. It is more challenging

to address more than one nucleus due to the uneven illumination. Thus, it is

essential to develop a new automatic tool for segmenting nuclei for biologists to

study nuclei shapes in 3D. This would allow them to perform measurements on

the nuclei, such as their length, radii, and volume, and to study their structure.

For nucleus detection, most of the existing work in literature on EM images

was performed to detect nuclei centroids. Xu et al. [96] used stacked sparse

auto-encoder on high-resolution histopathological images for nuclei detection by

learning high level features of nuclei using pixel intensity. Recently a structural

regression CNN [97] has been proposed which learn a proximity map of nucleus.

They modify the typical CNN by replacing the last layer with structured regres-

sion layer to encode topological information.
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We use a multistage approach to segment nuclei in a complex environment in

microscopic image data. The method processes each slice (as a 2D image) to find

the boundaries of the nuclei, then tracks them and links each nucleus across the

slices. In the first step, we train a classifier that can classify each pixel according

to whether it belongs to a nucleus membrane or not. Once we classify every pixel

in the image, a binary image is produced showing the nuclei membranes and the

boundaries of other objects, such as mitochondria and Golgi apparatus. These

objects’ membranes share some features of nuclei membranes and need to be

eliminated. The next process identifies the nuclei membranes and eliminates the

other objects’ membranes using post-processing methods that involve analysing

every connected component and performing morphological operations, such as

erosion and dilation.

In the final stage, we reconstruct every nucleus through the image stack. The

nuclei radii in SBFSEM range from 200 pixels to 900 pixels. Finding the centre

of gravity for each nucleus in the first frame and their matches in the next frame

is sufficient to link them. This approach is easy to implement, relatively fast,

and efficient at segmenting, quantifying, and tracking nuclei. Experiments on

manually annotated data were also performed to measure the accuracy of the

approach in terms of segmentation and the creation of a 3D structure.

4.2 Method

The aim of this chapter is to automate the process of identifying nuclei on each

slice and reconstructing their 3D shape, allowing the nuclei structures to be mea-

sured and visualised in 3D. Biologists are interested in the shape, volume, length

and radii of nuclei. The approach we take is to first detect candidates for nu-

clei in every image, then link the candidates across neighbouring images to form

extended nuclei. The detection stage can make mistakes, which we attempt to
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identify and correct in the linking stage.

Our solution for segmenting nuclei is to use deep learning. We used two ap-

proaches; (1) a pixel classification approach using a CNN scanned over the image

with a sliding window, and (2) a U-Net which estimates the boundary pixels in

one pass. The probability of a pixel being a nuclear membrane is computed by

the two appraoches. Our models were trained on a different stack that shared

similar characteristics, and the nuclear membranes were manually annotated.

4.2.1 Convolutional Neural Network Architecture

Our segmentation algorithm is based on training a CNN to perform pixel binary

classification. The architecture of the network consists of six layers, four convolu-

tional layers, and two fully connected layers, as shown in Figure 4.1. The output

of the network is the probability that a pixel belongs to a nuclear membrane. To

train the CNN, we extracted a local window N×N (we choose N = 64 as this

provides a sufficient trade-off between the local information to be extracted and

memory usage) and fed it into the network.

Several structures were tested using an input image (16×16) and (32×32) but

the performance for each one was visually poor. However when we used (64×64)

with different structures the performance was acceptable. To find the optimal

structures we evaluated each structure against 15 images from our ground truth

(Table 4.1 shows the accuracy obtained from each structure).

Network layer1 layer2 layer3 layer4 layer5 layer6 layer7 layer8 layer9 layer10 layer11 Accuracy

1
conv
(7x7)

maxp
(2x2)

conv
(5x5)

maxp
(2x2)

conv
(3x3)

maxp
(2x2)

FC FC output 91%

1
conv
(5x5)

maxp
(2x2)

conv
(5x5)

maxp
(2x2)

FC output 87%

2
conv
(7x7)

maxp
(2x2)

conv
(5x5)

maxp
(2x2)

conv
(4x4)

maxp
(2x2)

conv
(3x3)

maxp
(2x2)

FC FC output 98%

4
conv
(5x5)

maxp
(2x2)

conv
(4x4)

maxp
(2x2)

conv
(3x3)

conv
(3x3)

max
(2x2)

conv
(3x3)

maxp
(2x2)

FC output 94%

Table 4.1: Accuracy obtained from different structures.
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Our architecture is similar to [44], but our network includes a dropout layer to

prevent overfitting [98]. Moreover, the kernel size and number of output maps

is larger in the first convolutional layers to capture more information about vari-

ability in the low-level features. The output of the last fully connected layer is

fed into a binary softmax to produce the probability of class label.

Figure 4.1: CNN architecture consisting of four convolutional layers and two fully
connected layers.

Each layer of convolution is followed by Rectified Linear Units (ReLU). Max

pooling is applied to the output of each convolutional layer to prevent overfitting

and down-samples by a factor of 2. The second-to-last fully connected layer is

followed by a drop out layer.

The first convolutional layer takes the input image (64×64) and filters it with 125

kernels of size 7×7 with a stride of 1 pixel. The output of the first convolutional

layer is fed into a max-pooling layer that down-samples the data by a factor of

2. The max-pooling layer output is then fed to the second convolutional layer to

filter it with 100 kernels of size 5×5. The third convolutional layer has 75 kernels

of size 4×4 , and filters the output of max pooling. The final convolutional layer

has 50 kernels of size 3×3.
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Training Examples

The training examples for nuclei segmentation were collected from a stack of im-

ages consisting of 157 slices with a resolution of 966×876. We chose 16 images

randomly, and annotated the nuclear membranes by marking them with a curve.

Other objects’ membranes, such as Golgi and mitochondrial cytoplasm mem-

branes, were annotated in the same way (see Figure 4.2a). As the convolutional

network requires a large number of training examples, we generated points based

on the annotated curve to increase the number of examples, as shown in Figure

4.2b. We then extracted patches with a size of 64×64 centred on each annotated

point.

We employed data augmentation to increase our sample by applying rotation,

scaling and reflection. We used eight different rotations and three different scal-

ing for each sample. As we trained a binary classifier, we have two classes, namely,

membrane or not-membrane. The total number of examples for each class after

applying data augmentation was 600,000 samples, and 1.2 million training exam-

ples in total.

(a) Manual annotation. (b) generated points.

Figure 4.2: (a) Manual annotation around the nuclear membrane. (b) generated
points based on the manual annotation
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4.2.2 U-Net

We used U-Net (described in section 2.5.3) which is a multi-scale convolutional

network. To train the networks we use the pixel-wise cross-entropy as a loss

function with Stochastic gradient descent optimiser where the initial learning

rate is set to 0.0001. The networks were trained for 30 epochs with batch size

of 4. The input images and their corresponding segmentation map size were

512×512.

We train the networks on 24 images, each image annotated manually as can be

seen in Figure 4.3. The images were selected randomly from 4 different datasets.

The output mask was a pixel-by-pixel mask where each pixel either belonged to

a nucleus’ membrane or the background.

Figure 4.3: Original image (left). Segmentation map (right).

4.2.3 Post Processing

The segmentation results that we obtained from applying our classifier to classify

each pixel as either foreground or background contained noise (see Figure 4.4b)
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that would affect our nuclei segmentation and tracking in the next phase. There-

fore, a post-processing stage was needed to eliminate the noise in the image. It

is essential to separate the nuclear membranes from other objects’ membranes,

especially mitochondrial membranes as their membranes share some visual fea-

tures with nuclear membranes. We applied post-processing on the two approaches

(CNN results and U-Net results).

To achieve our goal of removing the noise and separating the nuclear membranes

from other objects, we measured the width of the nuclear membranes in pixels

to perform a series of iterations of erosion. The erosion process is performed by

convolving the image with a kernel in order to isolate individual elements. We

found that the average resulting membrane width was about 15 pixels. Therefore,

we performed erosion three times (see Figure 4.4c).

Once we removed the noise, we analysed each connected component label to

remove the remaining noise. The connected components labelling algorithm scans

a binary image and groups its pixels into objects based on their connectivity.

First, we measured the smallest nucleus size in a different image stack, and found

that the smallest one had a radius of about 75 pixels. Therefore, we analysed each

connected component and removed any connected component that was smaller

than 75 pixels in height or width. The resulting image after removing the small

connected components contained only the nuclear membranes. Figure 4.4d shows

the nucleus after removing small connected components. The next step is to find

the contour of the nucleus.

4.3 Nuclei Detection and Reconstruction

By this stage, only the nuclear membranes are present in the image. To find

the nuclear membrane we just find the contour of every connected component.
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(a) (b)

(c) (d)

Figure 4.4: (a) Original image. (b) Nucleus segmentation result. (c) Resulting
image after applying erosion. (d) Resulting image after eliminating the small
connected components.

Figure 4.5 shows the original image with a contour around a nuclear membrane.

Not all nuclear membranes contours are continuous, however, and some have

broken links between them. This issue occurs for two reasons: firstly, during

tissue preparation errors can occur, especially when slicing the sample. Secondly,

the classifier can fail to detect the nuclear membranes during the segmentation

process. To address this issue, we merged three neighbouring slices together by

averaging them as the movement of the nuclei between slices is relatively low.
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Thus, if a nuclear membrane is broken, it will be fixed by merging the previous

and subsequent slice (see Figure 4.6). We then found the external contour for

each nucleus.

(a) (b)

Figure 4.5: (a) Original Image it has only one nucleus. (b) Nucleus with contour
on its membrane.

Figure 4.6: A sequence of three slices (z-1), (z), (z+1), and all combined.

As each nucleus in our datasets exhibited slight drifting between slices and the

distance between nuclei was relatively large, we used a simple approach that

tracks nuclei and links each nucleus to its match in the next slice. We fitted a disk

according to the set of points obtained from the nucleus contours, similar to the

method in [99]. In the linking of each nucleus to its match in the succeeding slice,

we matched the disk centres from the previous frame and determined whether

each previous disk centre was within the radius of any of the disks in the next
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frame.

The reconstruction algorithm starts from the first slice and assumes all candidate

disks to be the start of a nucleus. Then, it creates n nuclei, each containing a

single disk. Subsequent slices are processed one by one, with each candidate disk

compared with an existing one. If the compared disks’ radii overlap, then the

nucleus will be extended; if no match is found in the previous frame, then a new

nucleus will be created.

4.4 Experimental Results for Nuclei Segmenta-

tion

We applied our model to four different datasets, each consisting of hundreds of

images that were acquired using the SBFSEM technique (see Table 4.2). The

images contained nuclei, mitochondria, and Golgi apparatus. Most of the nu-

clei had roughly circular or elliptical cross-sections, whereas the mitochondria

had a mostly circular shape. Golgi and mitochondrial membranes share several

features and they look the same, but the mitochondrial inner body has parallel

lines due to the folding of the inner membrane. The outer membrane of mito-

chondria, however, sometimes appear as thick as those of nuclei, and share the

same appearance as nuclei. This led our system to classify mitochondrial outer

membranes as nuclei.

4.4.1 Dataset

We ran our model for segmenting and tracking nuclei on four datasets. Each

dataset consisted of hundreds of images with different resolutions, meaning that

the nuclei differed in appearance across these datasets. All of our datasets were

collected using the SBFSEM technique. Table 4.2 shows the number of images

and the resolution size of all our datasets.
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Dataset Number of Images Resolution
Dataset 1 1000 3000×3000
Dataset 2 700 4096×4096
Dataset 3 603 4096×4096
Dataset 4 157 966×876

Table 4.2: Our data consists of four different datasets.

4.4.2 Evaluation Criteria

For quantitative assessment, the ground truth and segmenting results are given

by filled closed contours. The foreground objects (nuclei) are shown as white

pixels and the background is shown as black pixels. To evaluate a binary seg-

mentation, we selected the Precision, Recall, Accuracy, and Dice coefficients [100]

as performance measures. These metrics are calculated as follows:

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

Accuracy =
TP + TN

TP + FP + FN + TN
(4.3)

Dice =
2 · TP

2 · TP + FP + FN
(4.4)

Where (TP) is true positives, (TN) is true negatives, (FP) is false positives, and

(FN) is false negatives of the classified pixels. Table 4.3 summarise the output of

comparing the actual result against the ground truth. A perfect segmentation is

obtained when Precision and Recall are 1. When Precision is low, this indicates

over-segmentation, and when Recall is low, it indicates under-segmentation.
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GT
Result

0 1

0 TN FP
1 FN TP

Table 4.3: Representation of confusion matrix.

Accuracy is the proportion of the true positives and true negatives among the

total number of pixels. To assess the accuracy of image segmentation, the Dice

coefficient is used to measure the spatial overlap. The Dice coefficient value ranges

from 0 to 1, where 0 indicates no spatial overlap between two binary images and

1 indicates a complete overlap [100].

Selected qualitative segmentation results are shown in Figure 4.7 from the four

datasets obtained by CNN. Figure 4.8 shows the segmentation results obtained

by UNet. These figures show the original image, the manually annotated nuclei,

and the segmentation results that we obtained from our model.

To quantitatively assess our algorithm, we calculated the Precision, Recall, Dice,

and Accuracy coefficients for the nuclear membrane position comparing the seg-

mentation results and the ground truth. We annotated 120 images manually,

Table 4.4 shows the number of annotated images per dataset. In the first three

datasets each image contains 10 nuclei, the last one contains only two nuclei. The

results show the Dice, Recall, Precision and Accuracy performance of our method

in the four datasets per image.

The Dice, Recall, Precision, and Accuracy performance of CNN method in the

four datasets per image can be seen Figure 4.9. Similarly Figure 4.10 shows the

performance of U-Net. The two methods achieved high accuracy in finding the

nuclei membranes. However, U-Net performed better and produces fewer false
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(a) Original image. (b) Ground truth. (c) CNN segmentation.

Figure 4.7: Random image were selected from each dataset. First row from
Dataset 1, second row from Dataset 2, thrid row from Dataset 3 and fourth row
from Dataset 4.
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(a) Original image. (b) Ground truth. (c) U-Net segmentation.

Figure 4.8: Results of U-Net segmentation on example images. First row from
Dataset 1, second row from Dataset 2, thrid row from Dataset 3 and fourth row
from Dataset 4.
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Dataset Number of Annotated Images
Dataset 1 40
Dataset 2 20
Dataset 3 20
Dataset 4 40

Table 4.4: Number of annotated images per dataset.

positives.

The average accuracy of CNN is above 96% for dataset 1, 96.5% for dataset 2,

97% for dataset 3, and 95.5% for dataset 4. On the other hand, the average

accuracy of U-Net is 96.5% for dataset 1, 97.3% for dataset 2, 97.2% for dataset

3, and 96.7% for dataset 4.
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Figure 4.9: Quantitative nuclei segmentation results for the four datasets using
CNN.
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Figure 4.10: Quantitative nuclei segmentation results for the four datasets using
U-Net.

4.5 Discussion and Conclusions

We demonstrated a method that can segment and reconstruct nuclei from large

image volumes, and our images were collected using the SBFSEM technique.

We trained a pixel classifier using a CNN to classify each pixel to a nucleus

membrane or non-membrane. CNN have recently achieved considerable success

owing to their capability to learn hierarchically abstracted features. However, an

accurate model was needed for handling overfitting because of the limited training

samples. We thus employed data augmentation to increase the number of samples.

We adopted common methods, including rotation, scaling and flipping.



CHAPTER 4. NUCLEI SEGMENTATION AND RECONSTRUCTION 116

The pixel classifier scanned each image and produced a probability map of each

pixel stating whether the pixel was below a membrane or not. Then, we applied

post-processing to the resulting image using such techniques as erosion, dilation

and removal of small connected components to extract the nucleus membranes.

This step was necessary since the nucleus and mitochondrial membranes looked

similar. The only difference was that the mitochondrial membrane was not as

thick or wide as the nucleus membrane. Therefore, performing erosion with a

large kernel could remove only the mitochondrial membrane.

To reconstruct nuclei in 3D, we linked each nucleus to its correspondence in the

subsequent slice. We fitted a disk on each nucleus and then matched the disk

centre from the previous frame. If the previous disk centre was within the radius

of any of the disks in the next frame, then we extended that nucleus. Disks

with no matches were used to create new nuclei. This approach was found to

be effective in reconstructing nuclei since the nucleus radius was large and the

movement of each nucleus between slices was small.

We evaluated our segmentation method against our ground truth. We selected

random images from four datasets, and we manually marked the nucleus mem-

brane. The total number of images was 120, the average number of nuclei in three

datasets was about 8 and one dataset contained only 2 nuclei. The experiments

showed that the average accuracy of both the CNN and Unet exceeded 95% for all

the datasets. However, Unet performed better and produced less false positives

than did the typical CNN.

Biologists are interested in quantifying nuclei on the basis of their lengths, radii

and volumes. We therefore measured the length, average radius and volume of

each nucleus for each dataset. Figure 4.12 shows a histogram of nuclei with a

particular length on the four datasets. The nucleus length is the number of slices.
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Figure 4.13 shows a histogram of nuclei with a particular radius. To measure the

radius of each nucleus, we fitted a circle according to the nucleus membrane

contour points for each slice and then calculated the mean radius. Figure 4.14

shows a histogram of nuclei with a particular volume. The volume is the total

number of pixels inside the nucleus membrane for each slice. The software IMOD

was used to perform 3D visualisations of the four datasets, and random colour

was given to each nucleus. Figures 4.15 4.16 4.17 4.18 show the 3D reconstruction

of each nucleus.

The main limitation of the current approach occurs when two nucleus membranes

overlap (see Fig. 4.11a). This affects the linking algorithm in that the two nuclei

are merged as one nucleus for several slices and subsequently split (as the two

nucleus membranes split in the original image). This can be solved by either

identification of the overlapped nuclei using 2D information or incorporation of

the prior and subsequent slices. However, another failure occurs when the image

volume contains slices corrupted by tearing on the block surface (see Fig. 4.11b).

A comparison of our work with previous studies reveals that there is no existing

dataset that is similar to ours. There are several datasets for cell segmentation,

but they differ from ours in terms of tissue staining, imaging method and tissue

type (see discussion in Chapter 5.).
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(a) (b)

Figure 4.11: (a) Two nuclei membranes overlapped. (b) corrupted slice caused
by tearing the surface of the block.
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Figure 4.12: Quantitative analysis of nuclei length for the four datasets.
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Figure 4.13: Quantitative analysis of nuclei radii for the four datasets.
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Figure 4.14: Quantitative analysis of nuclei volume for the four datasets.
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Figure 4.15: Visualisation of all nuclei of Dataset 1 found by the algorithm.

Figure 4.16: Visualisation of all nuclei of Dataset 2 found by the algorithm.
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Figure 4.17: Visualisation of all nuclei of Dataset 3 found by the algorithm.

Figure 4.18: Visualisation of all nuclei of Dataset 4 found by the algorithm.



Chapter 5

Discussion and Future Work

This project has demonstrated a fully automatic system that detects and recon-

structs collagen fibres across an image volume. The detection system involves

finding candidates by using template matching to detect fibres that have a cir-

cular shape. In the case of fibres with a polygonal shape, we train a random

forest classifier to locate them. Both techniques produce a large number of false

positives. We discard these false matches using a random forest.

The linking algorithm accounts for the movement of fibre bundles between slices

and was found to be effective in linking the detected disks together into extended

fibres. Occasionally, a candidate disk for a fibre is not detected in an image, either

because of a failure of the detector or because some image slices are corrupted

by tearing the surface of the block. Such missing disks cause a long fibre to be

split into two (or more) shorter fibres. To find and correct the small gaps caused

by such detection failures, we use a linear prediction for gap filling. Moreover,

some errors occur when two fibres almost touch. To identify such errors, we use

a Kalman filter to look for inconsistencies. Each discrepancy is then revisited

and corrected where necessary. The algorithm is able to track thousands of fibres

across hundreds of slices, showing that fibres follow complex paths through the

tissue.

122
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The system is able to reconstruct the collagen fibres in 3D, allowing biologists to

study and measure the network that they form. Another interest for biologists

is finding lone fibres those fibres that leave their bundle to analyse them and

identify their role. The most interesting measurements for biologists are the

length, radii and curvature of fibres. The experiment demonstrated that our

approach achieved high accuracy in detecting and tracking fibres through the

image volume.

Another contribution of this project is a multistage approach for segmenting

nuclei in a complex environment in image data. The proposed method processes

each slice (as a 2D image) to find the boundaries of the nuclei and then tracks

them and links each nucleus across the slices. We train a CNN to classify each

pixel according to whether or not it belongs to a nucleus membrane. A further

post-processing step is performed to eliminate other objects, such as mitochondria

and Golgi apparatus, as they share some of the nuclei membranes features.

In the final stage, we link every nucleus with its match in the next slice through

the image volume. We found that the nucleis radii range from 200 to 900 pixels in

SBFSEM images. Using this assumption, we found that determining the centre

of gravity of each nucleus in one slice and matching it with the nucleus in the

next slice is sufficient to link them. The system is able to segment, reconstruct

and quantify nuclei across hundreds of slices. For any given dataset, the system

is automatically able to reconstruct nuclei, visualise them in a 3D viewer and

quantify each nucleus based on its volume, radius and length. Experiments have

been done to evaluate our approach in various datasets, and we obtained high

accuracy in segmenting nuclei.
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5.1 Comparing Results across Different Studies

Comparing different studies on the techniques used for reconstructing cellular

structures from EM images can be challenging for a variety of reasons. Certain

problems, including the selection of similarity measurements and the density of

the reconstruction, can create even more difficulties when one is attempting to

compare the different methods within one study.

5.1.1 Tissue staining

There are two principal kinds of staining that are used for generating EM images

of connective tissue, the first being the traditional intracellular stain. This ap-

proach stains all the interior and exterior cellular membranes with heavy metals,

rendering them darker in the resulting images. This method of staining facilitates

the observation of intracellular structures, such as the vesicles and post-synaptic

densities, that distinguish the synaptic linkages among membranes. Neverthe-

less, as both the exterior and interior membranes are stained identically, it can

be challenging to determine one from the other, while the existence of intracellu-

lar clutter creates additional challenges when one attempts to divide membrane

cross-sections reliably.

The second method is extracellular staining, which involves staining only the out-

side membrane. In this method, the lack of intracellular clutter facilitates the

process of segmentation. In the majority of neural tissues, however, the absence

of intracellular staining of the membrane increases the difficulties of clearly iden-

tifying the linkages among membranes. It is probable that most segmentation

methods will exhibit improved performance on datasets that utilise the extra-

cellular stain. Hence, an effective comparison of the reconstruction techniques

demonstrated in various studies is fundamentally impracticable.
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5.1.2 Imaging Method

There are two elements of imaging that can affect the performance of segmenta-

tion techniques: (i) whether the slicing happens before or after imaging (serial

block-face microscopy or serial section) and (ii) whether the imaging process uses

transmitted or reflected electrons (scanning microscopy or transmission). Imaging

techniques that extract a section of the sample before it is imaged (serial-section

imaging) are constrained in terms of the minimum z-resolution that it is possible

to achieve, as the section removed must be sufficiently thick to be handled. This

generally restricts the z-resolution to approximately 50 nm. However, the cell

membranes can also experience significant blurring in the neurites that run at an

angle to the plane of the segment in transmission imaging technique.

5.1.3 Tissue Type

Collagen fibres have different appearances in tissues from different locations. For

example, tissues from normal skin follow specific patterns in which bundles are

aligned in different directions to resist forces from multiple axes (see the top

left image in Fig. 5.1). On the other hand, tissues from the cornea have different

patterns, in which the fibres are mostly in orthogonal arrays to allow for maximum

transparency (see the top right area in Fig. 5.1).

The normal collagen fibres in connective tissues are uniform in terms of size and

spacing. However, fibres from patients with diseases or disorders can change their

shapes, sizes and distribution (see the bottom left image in Fig. 5.1). Mao and

Bristow [3] have shown how fibres are affected by certain diseases in their shapes

and distributions. For example, in patients with dermatosparaxis, the fibre no

longer has a circular shape, and its morphology undergoes dramatic alterations

(see the bottom right image in Fig. 5.1). This disease results in severe effects on

the tensile strength of connective tissues.
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Figure 5.1: Normal collagen fibres (top left image). Fibres in cornea (top right
image). Fibre in normal skin follow specific patterns (bottom left image). A
dramatic alterations in fibres caused by dermatosparaxis disease (bottom right).
images are taken from [3].
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5.2 Future Work

• During the acquisition using SBFSEM several artifacts may produced in

the image volume. The most notable are discontinuities along the section

axis. This is due to variation in section thickness, sample derogation and

error in sectioning. These artifacts need to be corrected to obtain more

robust reconstruction.

• The current approach for tracking fibres assumes that fibres are in a bundle.

Further work needs to be carried out to examine and enhance the algorithm

to correctly track those fibres. Potentially this can be corrected by a multi-

pass approach.

• Bundles can split and then merge with another which makes the algorithm

mis-track the fibres, since the fibres change. This could be solved by iden-

tifying the split and merging of bundles that occurs in the image volume

and perform a second pass to correct such errors.

• Nuclei in the image volume can become close to each other in some slice.

Thus, their membrane can be touching and makes the segmentation very

challenging. Further work is needed to identify the case and split them.

• Mitochondria and Golgi membranes share several features of the nucleus

membranes. In order to segment and reconstruct them different features

need to be extracted to train pixel-wise classifier.

• Automatic segmentation of other structures, such as mitochondria and

Golgi complexes.
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[61] C. N. Straehle, U. Köthe, G. Knott, and F. A. Hamprecht. Carving: Scal-

able interactive segmentation of neural volume electron microscopy images.

In Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), volume 6891

LNCS, pages 653–660, 2011.

[62] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,

22(8):888–905, 2000.

[63] Cory Jones, Ting Liu, Mark Ellisman, and Tolga Tasdizen. Semi-automatic

neuron segmentation in electron microscopy images via sparse labeling. In

Proceedings - International Symposium on Biomedical Imaging, pages 1304–

1307, 2013.

[64] Ingrid Carlbom, Demetri Terzopoulos, and Kristen M. Harris. Computer-

Assisted Registration, Segmentation, and 3D Reconstruction from Images

of Neuronal Tissue Sections. IEEE Transactions on Medical Imaging,

13(2):351–362, 1994.

[65] Elizabeth Jurrus, Shigeki Watanabe, Richard J. Giuly, Antonio R.C. Paiva,

Mark H. Ellisman, Erik M. Jorgensen, and Tolga Tasdizen. Semi-automated

neuron boundary detection and nonbranching process segmentation in elec-

tron microscopy images. Neuroinformatics, 11(1):5–29, 2013.

[66] Viren Jain, Benjamin Bollmann, Mark Richardson, Daniel R. Berger,

Moritz N. Helmstaedter, Kevin L. Briggman, Winfried Denk, Jared B.



BIBLIOGRAPHY 137

Bowden, John M. Mendenhall, Wickliffe C. Abraham, Kristen M. Har-

ris, Narayanan Kasthuri, Ken J. Hayworth, Richard Schalek, Juan Car-

los Tapia, Jeff W. Lichtman, and H. Sebastian Seung. Boundary learning

by optimization with topological constraints. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recogni-

tion, pages 2488–2495, 2010.

[67] Elizabeth Jurrus, Ross Whitaker, Bryan W. Jones, Robert Marc, and Tolga

Tasdizen. An optimal-path approach for neural circuit reconstruction. In

2008 5th IEEE International Symposium on Biomedical Imaging: From

Nano to Macro, Proceedings, ISBI, pages 1609–1612, 2008.

[68] Verena Kaynig, Thomas J. Fuchs, and Joachim M. Buhmann. Geometri-

cal consistent 3D tracing of neuronal processes in ssTEM data. In Lecture

Notes in Computer Science (including subseries Lecture Notes in Artifi-

cial Intelligence and Lecture Notes in Bioinformatics), volume 6362 LNCS,

pages 209–216, 2010.

[69] Tolga Tasdizen, Ross Whitaker, Robert Marc, and Bryan Jones. Enhance-

ment of cell boundaries in transmission electron microscopy images. In Pro-

ceedings - International Conference on Image Processing, ICIP, volume 2,

pages 129–132, 2005.

[70] Ritwik Kumar, Amelio Vázquez-Reina, and Hanspeter Pfister. Radon-like

features and their application to connectomics. In 2010 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition - Work-

shops, CVPRW 2010, pages 186–193, 2010.

[71] Ying-Lun Fok, J.C.K. Chan, and R.T. Chin. Automated analysis of nerve-

cell images using active contour models. IEEE Transactions on Medical

Imaging, 15(3):353–368, 1996.



BIBLIOGRAPHY 138

[72] M. Bertalmio, G. Sapiro, and G. Randall. Morphing active contours: a geo-

metric approach to topology-independent image segmentation and tracking.

Image Processing, 1998. ICIP 98. Proceedings. 1998 International Confer-

ence on, 3:318 – 322, 1998.

[73] Achilleas S. Frangakis and Reiner Hegerl. Segmentation of biomedical

images with eigenvectors. In Proceedings - International Symposium on

Biomedical Imaging, volume 2002-Janua, pages 90–93, 2002.

[74] Chang Hang, Yang Qing, Manfred Auer, and Bahram Parvin. Modeling of

front evolution with graph cut optimization. In Proceedings - International

Conference on Image Processing, ICIP, volume 1, pages 45–52, 2006.

[75] Amelio Vazquez-Reina, Eric Miller, and Hanspeter Pfister. Multiphase ge-

ometric couplings for the segmentation of neural processes. In 2009 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

Workshops, CVPR Workshops 2009, volume 2009 IEEE, pages 2020–2027,

2009.

[76] Philippe Thevenaz, Ricard Delgado-Gonzalo, and Michael Unser. The ovus-

cule. IEEE Transactions on Pattern Analysis and Machine Intelligence,

33(2):382–393, 2011.

[77] Rajesh Narasimha, Hua Ouyang, Alexander Gray, Steven W. McLaughlin,

and Sriram Subramaniam. Automatic joint classification and segmentation

of whole cell 3D images. Pattern Recognition, 42(6):1067–1079, 2009.

[78] Viren Jain, Joseph F. Murray, Fabian Roth, Srinivas Turaga, Valentin

Zhigulin, Kevin L. Briggman, Moritz N. Helmstaedter, Winfried Denk,

and H. Sebastian Seung. Supervised Learning of Image Restoration with

Convolutional Networks. In 2007 IEEE 11th International Conference on

Computer Vision, pages 1–8, 2007.



BIBLIOGRAPHY 139

[79] Yuriy Mishchenko. Automation of 3D reconstruction of neural tissue from

large volume of conventional serial section transmission electron micro-

graphs. Journal of Neuroscience Methods, 176(2):276–289, 2009.

[80] Elizabeth Jurrus, Antonio R.C. Paiva, Shigeki Watanabe, James R. An-

derson, Bryan W. Jones, Ross T. Whitaker, Erik M. Jorgensen, Robert E.

Marc, and Tolga Tasdizen. Detection of neuron membranes in electron mi-

croscopy images using a serial neural network architecture. Medical Image

Analysis, 14(6):770–783, 2010.

[81] Elizabeth Jurrus, Melissa Hardy, Tolga Tasdizen, P. Thomas Fletcher, Pavel

Koshevoy, Chi Bin Chien, Winfried Denk, and Ross Whitaker. Axon track-

ing in serial block-face scanning electron microscopy. Medical Image Anal-

ysis, 13(1):180–188, 2009.

[82] John Aloimonos, Isaac Weiss, and Amit Bandyopadhyay. Active vision.

International Journal of Computer Vision, 1(4):333–356, 1988.

[83] Ting Liu, Mojtaba Seyedhosseini, Mark Ellisman, and Tolga Tasdizen. Wa-

tershed merge forest classification for electron microscopy image stack seg-

mentation. In 2013 IEEE International Conference on Image Processing,

ICIP 2013 - Proceedings, pages 4069–4073, 2013.

[84] Shiv N. Vitaladevuni and Ronen Basri. Co-clustering of image segments

using convex optimization applied to EM neuronal reconstruction. In Pro-

ceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, pages 2203–2210, 2010.

[85] Viren Jain, Srinivas C Turaga, K Briggman, Moritz N Helmstaedter, Win-

fried Denk, and H Sebastian Seung. Learning to Agglomerate Superpixel

Hierarchies. Advances in Neural Information Processing Systems, pages

648–656, 2011.



BIBLIOGRAPHY 140

[86] Bjoern Andres, Ullrich Koethe, Thorben Kroeger, Moritz Helmstaedter,

Kevin L. Briggman, Winfried Denk, and Fred A. Hamprecht. 3D segmen-

tation of SBFSEM images of neuropil by a graphical model over supervoxel

boundaries. Medical Image Analysis, 16(4):796–805, 2012.

[87] Amelio Vázquez-Reina, Michael Gelbart, Daniel Huang, Jeff Lichtman, Eric

Miller, and Hanspeter Pfister. Segmentation fusion for connectomics. In

Proceedings of the IEEE International Conference on Computer Vision,

pages 177–184, 2011.

[88] Jan Funke, Bjoern Andres, Fred A. Hamprecht, Albert Cardona, and

Matthew Cook. Efficient automatic 3D-reconstruction of branching neurons

from em data. In Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pages 1004–1011, 2012.

[89] Graham Knott, Herschel Marchman, David Wall, and Ben Lich. Serial

Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused

Ion Beam Milling. Journal of Neuroscience, 28(12):2959–2964, 2008.

[90] A.K. Jain, Yu Zhong, and Sridhar Lakshmanan. Object matching using de-

formable templates. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 18(3):267–278, 1996.

[91] Kai Briechle and Uwe D. Hanebeck. Template matching using fast normal-

ized cross correlation. In Proceedings of SPIE, pages 95–102, 2001.

[92] Yassar Almutairi, Timothy F. Cootes, and Karl Kadler. Tracking colla-

gen fibres through image volumes from sbfsem. In Tryphon Lambrou and

Xujiong Ye, editors, MIUA, pages 40–45. BMVA, 2015.

[93] Erik Meijering. Cell segmentation: 50 Years down the road. IEEE Signal

Processing Magazine, 29(5):140–145, 2012.



BIBLIOGRAPHY 141

[94] Humayun Irshad, Antoine Veillard, Ludovic Roux, and Daniel Racoceanu.

Methods for nuclei detection, segmentation, and classification in digital

histopathology: A review-current status and future potential. IEEE Re-

views in Biomedical Engineering, 7:97–114, 2014.

[95] Shys Fan Yang-Mao, Yung Kuan Chan, and Yen Ping Chu. Edge en-

hancement nucleus and cytoplast contour detector of cervical smear images.

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-

ics, 38(2):353–366, 2008.

[96] Jun Xu, Lei Xiang, Qingshan Liu, Hannah Gilmore, Jianzhong Wu, Jinghai

Tang, and Anant Madabhushi. Stacked sparse autoencoder (SSAE) for

nuclei detection on breast cancer histopathology images. IEEE Transactions

on Medical Imaging, 35(1):119–130, 2016.

[97] Yuanpu Xie, Fuyong Xing, Xiangfei Kong, Hai Su, and Lin Yang. Be-

yond classification: Structured regression for robust cell detection using

convolutional neural network. In Lecture Notes in Computer Science (in-

cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), volume 9351, pages 358–365, 2015.

[98] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Net-

works from Overfitting. Journal of Machine Learning Research, 15:929–

1958, 2014.

[99] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial In-

telligence and Lecture Notes in Bioinformatics), volume 555 LNCS, pages

359–370, 1991.

[100] Kelly H Zou, Simon K Warfield, Aditya Bharatha, Clare M.C. Tempany,

Michael R Kaus, Steven J Haker, William M Wells, Ferenc A Jolesz, and



BIBLIOGRAPHY 142

Ron Kikinis. Statistical Validation of Image Segmentation Quality Based

on a Spatial Overlap Index. Academic Radiology, 11(2):178–189, 2004.


