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As new radio telescopes and processing facilities are being built, the amount of data
that has to be processed is growing continuously. This poses significant challenges, es-
pecially if the real-time processing is required, which is important for surveys looking
for poorly understood objects, such as Fast Radio Bursts, where quick detection and
localisation can enable rapid follow-up observations at different frequencies. With the
data rates increasing all the time, new processing techniques using the newest hard-
ware, such as GPUs, have to be developed.

A new pipeline, called PAFINDER, has been developed to process data taken with
a phased array feed, which can generate up to 36 beams on the sky, with data rates of
25 GBps per beam. With the majority of work done on GPUs, the pipeline reaches
real-time performance when generating filterbank files used for offline processing.
The full real-time processing, including single-pulse searches has also been imple-
mented and has been shown to perform well under favourable conditions. The pipeline
was successfully used to record and process data containing observations of RRAT
J1819−1458 and positions on the sky where 3 FRBs have been observed previously,
including the repeating FRB121102. Detailed examination of J1819− 1458 single-
pulse detections revealed a complex emission environment with pulses coming from
three different rotation phase bands and a number of multi-component emissions. No
new FRBs and no repeated bursts from FRB121102 have been detected.

The GMRT High Resolution Southern Sky survey observes the sky at high galactic
latitudes, searching for new pulsars and FRBs. 127 hours of data have been searched
for the presence of any new bursts, with the help of new pipeline developed for this
survey. No new FRBs have been found, which can be the result of bad RFI pollution,
which was not fully removed despite new techniques being developed and combined
with the existing solutions to mitigate these negative effects. Using the best estimates
on the total amount of data that has been processed correctly, obtained using new
single-pulse simulation software, no detections were found to be consistent with the
expected rates for standard candle FRBs with a flat or positive spectrum.
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Chapter 1

Introduction

1.1 Pulsars

When a star reaches the end of the main sequence stage, its ultimate fate is decided
by its mass. The least massive stars, including our Sun are expected to go out in a
relatively uneventful way, leaving a white dwarf behind. More massive stars however
end their lives in a more spectacular fashion - a supernova. What is left behind can be
a black hole, expected to form only when the most massive stars, with masses above
15−20M� collapse. When the initial mass of the star lies somewhere in between the
lightest and the most massive objects, usually between 4 to 10 solar masses, a neutron
star can be formed. In such a scenario, the outer parts of the star are blown away
during the explosion, with only the central core remaining. This core is supported
against collapse by the neutron degeneracy pressure and is not massive enough (1.4−
3M�) to contract down further into a black hole. It is also much smaller than the star
that produced it, and has the diameter of around 20 km (slightly less than the distance
between the Jodrell Bank Centre for Astrophysics and the Jodrell Bank Observatory),
which makes neutron stars one of the densest object in the known Universe. The exact
masses and compositions of neutron stars are dependent on the equation of state, which
is an active area of research at the moment. It is however believed that they are made
out of predominantly neutrons at larger depths and a mixture of electrons, neutrons and
possibly heavy nuclei, such as iron, close to and at the surface.

As the result of the conservation of angular momentum, neutron stars spin up
rapidly while shrinking, and can reach rotation rates up to hundreds times per sec-
ond by the time the collapse stops. Even though the main contributor, the conservation
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16 CHAPTER 1. INTRODUCTION

of angular momentum on its own cannot explain the extent of different pulsar peri-
ods. If all the angular momentum was conserved and no energy-loss mechanisms were
present, the core remaining after the supernova explosion would be expected to have
rotational periods of the order of 1 ms, inconsistent with the observed spin periods of
the ‘ordinary’ pulsars, which are found in the range of 10s – 1000s milliseconds. Part
of the angular momentum can already be lost during the pre-supernova red supergiant
expansion phase, due to emission of strong stellar wind (Cerdá-Durán & Elias-Rosa,
2018). During and right after the supernova explosion, considerable fraction of an-
gular momentum is lost due to neutrino emission and energy radiated in the form of
gravitational waves (Camelio et al., 2016) and the interaction between the neutron star
and the supernova ejecta (Cerdá-Durán & Elias-Rosa, 2018).

1.1.1 Key Discoveries

Neutron stars remained a theoretical concept for more than three decades, since they
were first proposed in 1934 (Baade & Zwicky, 1934). This changed in 1967 with the
discovery of the first pulsar by Antony Hewish and Jocelyn Bell. A year later, in 1968,
a radio source with a period of 33 milliseconds was found inside the Crab Nebula. This
pulsar was also observed in the region close to the well-known supernova, SN 1054
(Reifenstein et al., 1969), confirming the association with the final stages of stellar
evolution. A short observed period confirmed the prediction that pulsars were rotating
neutron stars. Another model, considered at that time, involved white dwarfs as pulsar
progenitors, but the short rotational period meant it was highly unlikely to be the case,
as white dwarfs were expected to have periods of the order of minutes, hours or even
days (Gold, 1968). The number of known pulsars is growing all the time and with
more than 2500 objects discovered until now 1, the theory of rapidly rotating neutron
stars still holds.

In 1974, the first pulsar in a binary system, B1913+ 16, was observed (Hulse &
Taylor, 1975). At the time of the discovery, it was the second fastest spinning pulsar
known, with a period of 59 milliseconds. The evidence for a companion object was
present in the unexpectedly large changes in the pulsar’s rotational period, which was
reported to vary between 58.967 ms and 59.045 ms over the orbital period of 7.752 h
(Hulse & Taylor, 1975). Due to the mass of the neutron star and its companion and
their small separation, these objects were expected to emit gravitational radiation at a

1http://www.atnf.csiro.au/research/pulsar/psrcat



1.1. PULSARS 17

level allowing the measurement of the orbital shrinkage. The orbital period decrease
was measured to be (−2.30± 0.22)× 10−12 ss−1 which was consistent with the pre-
diction from Einstein’s theory of general relativity at (−2.403± 0.005)× 10−12 ss−1

(Taylor & Weisberg, 1982). In 1993, Hulse and Taylor were awarded the Nobel Prize
in Physics “for the discovery of a new type of pulsar, a discovery that has opened up
new possibilities for the study of gravitation" (The Nobel Prize Committee, 1993).

Another breakthrough came in 1982, with the discovery of the first millisecond pul-
sar, B1937+21 (Backer et al., 1982). With a period of just 1.558 ms, it is still the third
fastest spinning pulsar ever discovered (two faster millisecond pulsars: J1748−2446ad
and J0952− 0607 have the approximate periods of 1.39 ms (Hessels et al., 2006) and
1.41 ms (Bassa et al., 2017b) respectively). It became apparent that the original theory
of the neutron star formation and evolution could not account for such a short period
and small period derivative, with an upper limit of 10−15, which was orders of magni-
tude smaller than for pulsars discovered until that point. Such small period derivative
indicates a weak magnetic field strength (see Equation 1.2) associated with old pulsars,
sometimes so old and with field strengths so low that they are expected not to radiate
at all (they are below the so called ‘death line’). Old pulsars are expected to have long
periods, orders of magnitude longer than in the case of fastest millisecond pulsars, it
was therefore proposed that the very fast rotation was a result of spinning up, due to the
accretion of matter from a younger companion star and the transfer of angular momen-
tum (Radhakrishnan & Srinivasan, 1982). Most of the currently known millisecond
pulsars are members of binary systems, which supports this model of pulsar recycling.

1.1.2 Pulsar Model

The most basic model, which explains the observed properties of the pulsar radiation,
includes a rapidly rotating, highly-magnetised neutron star, with the rotation axis in-
clined to the magnetic axis and therefore the radiation beams, as can be seen in Figure
1.1. The observed radiation is the result of the interaction of plasma with the strong
magnetic field. The pulses usually have a low duty cycle (the ratio of the pulsar in the
‘on’ state to the whole period), in the range of a few %, which means that the radiation
has to originate from a relatively small region. This small region, the polar cap, is de-
fined by the position of the last open field line. In the region where the open field lines
leave the surface of the neutron star, the ionised material is lifted from the surface.
Electrons can then be accelerated to very high velocities, following the path of the
curved magnetic field lines. This curvature and acceleration, resulting from the change
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Figure 1.1: A simple pulsar model. A general case with magnetic field axis not aligned with
rotation axis is shown. Different components are not drawn to scale.

in the direction in which the electrons move, allows them to emit curvature radiation
tangential to the open field lines. It is the rapid rotation combined with the inclination
that causes the observed ‘lighthouse effect’, as the signal from the pulsar can only be
detected when the radiation beam crosses the observer’s line of sight. Pulsars are usu-
ally described as extremely stable rotators, meaning the arrival times of the individual
pulses can be accurately predicated on time scales spanning millions of rotations. That
does not mean that they do not evolve and undergo changes. Some of these, such as
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the spindown rate, can be measured regularly and predicted theoretically, while others,
e.g. glitches, are more random in their nature.

The rotational periods of pulsars gradually increase with time and the amount by
which the pulsars slow down can be measured. These are usually very small period
changes, and to be accurately determined, precise timing has to be performed over the
course of months and sometimes years. This slowing down is the result of the constant
loss of the kinetic energy converted into the electromagnetic radiation in the form
of magnetic dipole radiation. Assuming that pulsars behave like strong and massive
dipoles in vacuum, the change in the frequency can be approximated as

d f
dt

= ḟ =−K f n, (1.1)

where f is the rotational frequency, K is a constant and n is the braking index. The
value of the braking index depends on the nature of the energy loss mechanism and n=

3 when pure magnetic dipole braking is assumed (Lorimer & Kramer, 2004). When
the second derivative of frequency is available, it is possible to measure the true value
of the braking index. Pulsars for which such measurements are possible show some
deviation from n = 3, with values of braking index as low as 1.4, suggesting that
pulsars can lose energy via some other mechanisms beyond the simple magnetic dipole
radiation. As the rate of change of frequency depends on the magnetic field strength,
it is possible to obtain an estimate of it from

BS = 3.2×1019

√(
P
s

)(
Ṗ

ss−1

)
G, (1.2)

where P is pulsar period and Ṗ is the first period derivative. This equation holds for
a ‘model pulsar’ with the pure magnetic dipole-induced energy loss mechanism and a
neutron star with a radius of 10 km and the rotation axis at a right angle to the magnetic
axis (Lorimer & Kramer, 2004). The magnetic field line strength has values anywhere
between 1010 G for millisecond pulsars which have the shortest periods and the lowest
period derivatives, up to more than 1015 G in the case of magnetars. Not all pulsars
slow down in a consistent manner though. Some, including the Crab and Vela pulsars,
exhibit a glitching behaviour. During these sporadic glitches, a sudden decrease in the
rotational period is observed, which is then followed by a slow recovery to the initial
state (Radhakrishnan & Manchester, 1969).

The geometry of the radiating region, the emission mechanisms and changes in the
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environment of the neutron star can all be estimated from the regular observations of
pulsars and measured changes in pulse profiles, polarisation and spin periods. Pulse
profiles averaged over multiple rotations can be used to examine the long-period evo-
lution and structure changes and can be used for precise estimates of the pulse arrival
times. Individual pulses can be studied to help us gain insight into changes occur-
ring on shorter time scales. Some pulsars show distinct emission modes, with profile
components changing in amplitude and also originating at different rotational phases.
Sometimes pulsations switch off entirely for a prolonged period of time. The Crab Pul-
sar also undergoes a totally different change, clearly visible during the examination of
individual pulses. It can emit nanosecond-long, energetic bursts, which are few orders
of magnitude greater in intensity than its regular pulses (Hankins et al., 2003). These
so called Giant Pulses have so far been detected in only a handful of pulsars.

1.2 Rotating Radio Transients

Rotating Radio Transients (RRATs) were first found during the reprocessing of data
recorded as part of the Parkes Multibeam Pulsar Survey (McLaughlin et al., 2006),
when a single-pulse search was used instead of the usual periodicity search algorithms.
A number of pulses were found, which did not appear in periodicity searches. Initially
17 such objects emitting only a single burst were discovered, but additional processing
revealed that 6 of those were pulsars previously missed in the periodicity searches.
The origin of 11 single bursts remained unknown. Subsequent observations resulted
in multiple detections of all 11 sources, but even then, these could not be classified
as ordinary pulsars as they could only be detected during the single-pulse searches
and were not detectable in the standard periodicity searches. All of these objects had
different burst rates and single pulses were detected once every few minutes to hours.
The bursts lasted a few milliseconds, meaning that these RRATs had relatively low
duty cycles, as compared to pulsars, and remained in their off state for the majority of
time. Even though the regular periodicity searches cannot usually be used successfully
to detect these objects, the rotation period of RRATs can be estimated by finding the
greatest common denominator of the differences between the pulse arrival times. It
is important to note that it is possible that the period derived in such a way may not
be a true period, but instead an integer multiple of this value. With the increasing
number of detections, the probability of such a situation decreases and the period can
be established with a greater certainty.
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The nature of these new objects was a mystery at the time of their detection and
no definitive explanation has been provided over the last 15 years, although more than
100 RRATs currently known (Bingyi Cui, 2016). The measured periods are found in
the range between hundreds of milliseconds (125ms for J1554− 5209 (Keane et al.,
2010) ) to a few seconds (7.707s for J1652− 4406 (Keane et al., 2011) ). Combined
with burst widths of the order of milliseconds, this implies compact rotating sources,
most likely, rotating neutron stars, as is the case for pulsars. RRATs also tends to clus-
ter within the Galactic plane, similar to the distribution of pulsars. RRATs can there-
fore be regular pulsars that undergo extreme nulling behaviour, with multiple pulses
not detectable due to their low flux or the local environment of the RRAT and the ge-
ometric effects affecting the visibility of the radiation. Is is also possible that RRATs
are distant and faint objects, and we are only capable of discovering occasional, more
energetic outbursts. This theory is supported by the power law distribution of the peak
flux density of the pulses similar to that of the giant pulses from the Crab Pulsar, but
the magnetic field strengths at the light cylinder thousands of times weaker in terms of
RRATs point towards a different emission mechanism (McLaughlin et al., 2006). How-
ever the burst widths for the Crab giant pulses are measured in nanoseconds, which is
not the case for the millisecond-durations RRAT detections. Several theories currently
attempt to explain the behaviour of RRATs, including the disruption of the magnetic
fields caused by material falling onto the neutron star.

1.3 Fast Radio Bursts

At the time of writing just over 30 Fast Radio Bursts have been detected (Petroff et al.,
2016)2, with the vast majority discovered with the Parkes radio telescope, as shown in
Figure 1.2. Naming follows the convention FRByymmdd, where year yy, month mm

and day dd refer to the time when the observation containing the burst had been made,
which can be more than a decade before the discovery. The first FRB, FRB010724,
was detected by Lorimer in 2007 (Lorimer et al., 2007) after the analysis of archival
data taken on 24th July 2001. It was a very bright burst, with an estimated peak flux
of 30±10 Jy, the third brightest FRB discovered to date, belonging to a group of only
5 FRBs that have observed peak fluxes greater than 10 Jy. What was most surprising
about this event, was its lack of any periodicity or repetition - only a single burst was
observed in the 90 h of data.

2http://www.frbcat.org
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Figure 1.2: The distribution of Fast Radio Bursts on the sky. The centre of the Milky Way is in
the middle of the plot at the point (0°, 0°). The size of each marker is proportional to the peak
flux density of the burst. A selection effect is clearly visible, with most of the FRBs detected
so far using radio telescopes in Southern Hemisphere: ASKAP (Macquart et al., 2010), Parkes
(Keith et al., 2010; Keane et al., 2018) and UTMOST (Bailes et al., 2017), with the Northern
Hemisphere detections coming from Arecibo (Cordes et al., 2006) and Green Bank Telescope
(Ransom et al., 2009)

As can be seen in Figure 1.2, all except only a few FRBs have been discovered at
high Galactic latitudes, away from the Galactic plane. At such latitudes, the contribu-
tion from our Galaxy to the total dispersion measure (see Section 1.4 for the detailed
description of dispersion) is relatively small. The largest fractional contribution, as pre-
dicted by NE2001 (Cordes & Lazio, 2002), is for FRB010621, where the Milky Way
adds 533pccm−3 towards the total DM of 746pccm−3. It has been argued (Bannister
& Madsen, 2014), that when considering additional contributions from the diffuse gas,
this Fast Radio Burst can be placed within the Milky Way with a probability of 90%, at
a distance of 14±6 kpc. So far, it is the only FRB that has a non-negligible probability
of being placed inside the Milky Way. The remaining FRBs are most likely outside
our own Galaxy, possibly at cosmological distances.

The existing electron density models are believed to be correct, therefore the ex-
cess in the measured DM values, which ranges from 10s to 1000spccm−3, has to come
from the intergalactic medium (IGM) and/or the host galaxy. Associating dispersion
measure with interactions with the intergalactic medium places these objects at cosmo-
logical distances. Simple distance estimations (Lorimer et al., 2007; Thornton et al.,
2013) assume a uniform IGM distribution and a ΛCDM Universe with all the baryons
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in the IGM ionised, and follow the relationship

z≈ 1
1200

DM
pccm−3 (1.3)

where z is the redshift of the FRB. It was however noted that IGM can be concen-
trated within large scale structures such as galaxy clusters and, at very large distances,
filaments (Dennison, 2014). The FRB host galaxy can also have a substantial con-
tribution to the measured DM if the burst has been emitted close to the centre of the
galaxy or a spiral galaxy is viewed at an inclination close to 90◦ (Thornton et al.,
2013). Lorimer et al. estimated the probability that the FRB host galaxy contributed
more than 100pccm−3 towards the DM was 25%. However, Thornton et al. showed
the probability of viewing a spiral galaxy with i > 87◦ was around 5%, and therefore
any large contribution from a host galaxy for all four FRBs reported in that study was
extremely unlikely.

We still have to take the, sometimes large, uncertainties in the electron density dis-
tribution models into account. This is especially relevant for higher latitudes, where
a smaller number of independent distance measurements, obtained for example from
parallax measurements, exists, as compared to the Galactic plane. The lack of full
understanding of the composition and processes underway in the Galactic halo also
contribute to these uncertainties. Certain corrections and different models have there-
fore been proposed. The most widely used models, such as BM08 (Berkhuijsen, E. M.
& Müller, P., 2008), GBC (Gómez et al., 2001), GMCM08 (Gaensler et al., 2008) and
NE2001 (Cordes & Lazio, 2002) show similar results, different by only a factor of 1.5 –
2 for most lines of sight (Schnitzeler, 2012). It is still worth noting, that in some cases,
models differ significantly from DMs estimated directly using independent methods,
by up to a factor of 15, introduced by features such as the ionised hydrogen regions,
which are not taken into account by earlier and less accurate models. These are how-
ever easy to identify and can be taken into account when analysing FRB observations.
Even if the highest obtained deviation is taken into consideration, the vast majority of
Fast Radio Bursts still reside outside of the Milky Way, by a comfortable margin, and
can therefore be classified as objects originating at cosmological distances.

The inferred cosmological distances, combined with the apparent lack of repetition,
were one of the first signs that a new class of objects might have been discovered. It
is important to note that for some of the RRATs described above, only a single pulse
has been found as well. The main feature that currently allows us to separate the FRB
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population from RRATs is the fact that the modelled Galactic contribution to the DMs
of FRBs is much smaller than what would be required for them to be located in our
Milky Way. There is still a non-negligible, although a small probability that some
non-repeating RRATs have been mislabelled and are indeed FRBs (Keane, 2016) and
relying on the excess DM only underestimates the number of detected FRBs, especially
if they are present in the Milky Way. Further observations are necessary to detect any
possible repeated emission from non-repeating RRATs, that would allow us to fully
separate then from FRBs.

Even though FRBs have initially been thought to burst once only, one of them,
FRB121102, has been observed to repeat (Spitler et al., 2016), complicating the clas-
sification scheme even further. In total, more than several dozen bursts have been ob-
served. The dispersion measures and the associated uncertainties suggest these events
come from the same source. These bursts were not uniformly distributed in time and
were usually observed in clusters, with multiple single-pulse detections during less
than 10 minutes of observation (Spitler et al., 2016) and sometimes no candidates at
all for as long as 5 hours during single pointing (Price et al., 2018b). The repeating
nature of this FRB allowed for more accurate, sub-arcsecond localisation with tar-
geted interferometric observations and coordinated efforts to observe it with multiple
telescopes at different wavelengths (Law et al., 2017). FRB121102 has since been as-
sociated with a persistent radio source, as well as its optical counterpart and its host
galaxy have been identified (Chatterjee et al., 2017; Marcote et al., 2017). It most likely
resides in a star-forming region of its host irregular dwarf galaxy, which supports the
theories of FRBs originating from young and energetic objects, such as strong mag-
netars (Tendulkar et al., 2017; Bassa et al., 2017a). The discovery of repeated bursts
indicates that not all objects are destroyed during cataclysmic events, as the single-
burst nature of most FRBs currently suggests. The inferred distance and a low burst
flux, as compared to the rest of the FRB population, place the luminosity of this FRB
few orders of magnitude below the luminosities of other events, showing that it may
indeed belong to a different class of objects. It is still unknown whether other FRBs
do not really repeat or that their apparent lack of repetition is a result of our inability
to detect weaker bursts or not observing with a high enough cadence.

1.3.1 Current Theories

Giant pulses. Short duration and high flux density makes giant pulses a possible
candidate for the explanation of Fast Radio Bursts. Weaker pulsations might pass
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undetected due to their low signal-to-noise ratio and only the brightest pulses can be
observed. The main argument against this theory applying uniformly to the whole
FRB population is the lack of any repeated events in the follow-up observations for
all bursts except FRB121102, as described above. For FRB010621, the probability of
not seeing any other pulses was estimated to be very low if the emitting object has
characteristics similar to those of the Crab Pulsar (Keane et al., 2012). The theory of
extremely bright radiation from a rotating neutron star also fails to explain Lorimer
Burst in a satisfactory manner, where the inferred distance to the source, combined
with the flux of 30 Jy, would mean very high luminosity, unobserved anywhere else.
It is possible that two classes of FRBs have already been observed, with different
mechanisms producing repeating bursts and the ones that appear once only have their
progenitors destroyed as a result.

Collapsing neutron stars. A rotating neutron star can have a mass above the crit-
ical mass for non-rotating models, as it is supported against the gravitational collapse
by the centrifugal force. Spinning down will cause the centrifugal force to decrease
until a critical moment, when it can no longer balance the gravitational force, causing
the neutron star to collapse. This collapse can occur up to few million years after the
birth of the neutron star, for the lowest-mass objects, so there may be no observable ev-
idence left for the preceding supernova explosion (Falcke & Rezzolla, 2014), making
any association with massive stellar progenitors difficult or even impossible. As the
collapsing parts of the remnant move inside the event horizon on the scales of tens of
milliseconds (Falcke & Rezzolla, 2014), the resulting Gamma Ray Burst (GRB) would
be much shorter than other short GRBs and would therefore be characteristic for this
process. Electromagnetic emission is expected to come from magnetic field lines re-
connecting outside the horizon, as the magnetosphere is far enough from the neutron
star, so that it is not consumed by the event horizon. An assumption that about 3%
of all the neutron stars will collapse, can explain the observed FRB rates. Theoretical
calculations (Ravi & Lasky, 2014; Zhang, 2014) showed that some stars can collapse
much earlier, within seconds to hours after the neutron star formation. Predicted rates
for this class of objects are however around 3 orders of magnitude lower than for FRBs
and therefore they cannot account for all of them. Follow-up observations looking for
radio bursts following the gamma-ray detections were proposed and will be necessary
to help link bursts with this model (Falcke & Rezzolla, 2014).

Merging neutron stars. Neutron stars in binary systems are expected to have
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their orbits shrink due to the gravitational interaction and spiral down towards their
companions. As stars get closer to each other, their strong magnetic fields start to
interact with each other. The main model (Hansen & Lyutikov, 2001) assumes a system
with two components: a rapidly spinning, recycled pulsar, with a weaker magnetic
field of the order of 109− 1012 G and a slowly rotating one, with a much stronger
magnetic field of 1012−1015 G. Interaction of the recycled star with the magnetic field
of the ‘normal’ star produces surface charges, which in turn create a strong electric
field. This field then accelerates charges in a radiation beam. When sufficient energies
are reached, photons and electron-positron pairs are produced. This process extracts
energy from the system, which can then be released in the form of coherent radio
emission. The predicted flux density (Hansen & Lyutikov, 2001; Keane et al., 2012)

S≈ 1
(

ε
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)−2( B
1015 G

) 2
3

mJy, (1.4)

where ε is the efficiency factor, D is the distance to the merging system and B is the
magnetic field strength of the non-recycled neutron star, provides distance estimates
for FRB010621 inconsistent with the dispersion measure obtained using the NE2001
electron density model (Keane et al., 2012). Modification to this model has been pro-
posed, where the emission occurs after the final object formation (Pshirkov & Postnov,
2010). In this scenario the magnetic field strength is amplified as a result of a differ-
ential rotation. The modified model is argued to provide satisfactory explanation for
Fast Radio Bursts emission, for magnetic field strengths amplified to 1013 G (Totani,
2013).

According to some models it is possible that the pair of merging neutron stars
will produce a repeating FRB similar to FRB121102. The merger may leave a stable
neutron star behind, which will sporadically cause bright bursts on the scale of mil-
liseconds. This neutron star would have to be stable enough so it does not collapse
into a black hole on time scales shorter than the time span over which the repeating
FRB has been observed. Depending on the model, the emission may continue over
the course of tens of years and become weaker with time as the remaining neutron star
slows down (Yamasaki et al., 2017).

One of the important questions of the neutron star merger progenitor model is the
rate at which such events occur. There are large uncertainties in the theoretical model
predictions, but the recent discovery of the gravitational waves from the inspiral and
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ultimate collision of two neutron stars, places these rates at 1500+3200
−1220 Gpc−3yr−1 (Ab-

bott et al., 2017). This is at least an order of magnitude lower than the rate required
to observe all FRBs if they were expected to originate solely from the neutron star-
neutron star mergers (Callister et al., 2016).

Non-destructive events. As all but one FRB have been observed only once, most
theories tend to favour cataclysmic events, where the emitting object is destroyed, with
the exception of for example giant pulses, as described above. The detection of the
repeating FRB121102 and association with the host galaxy means it is necessary to
take other scenarios into consideration, at least in the case of this object, if not the
whole FRB family. In case of the FRB121102 it is possible that the spin down of
the neutron star transfers power to a persistent radio source, most likely a Supernova
Remnant (Marcote et al., 2017). Another possibility is that these bursts are caused by
an Active Galactic Nucleus (AGN), or due to its interaction with a nearby neutron star.
It is however difficult to reconcile this theory with the low mass of the host galaxy and
the offset of the persistent radio source from the centre of the galaxy (Tendulkar et al.,
2017).

RFI. In the years following the discovery of the first FRB, it was not possible to
fully rule out terrestrial origins, especially the man-made Radio Frequency Interfer-
ence (RFI). As most of the RFI signals are found at low-DM values, they are easy to
filter out, but it is important to note that some of the terrestrial signals can undergo
higher than usual dispersion. This was the case when a new class of events called
perytons was reported in 2011 (Burke-Spolaor et al., 2011). They were found at DMs
between 200 and 400pccm−3, a range which included the Lorimer burst with a DM
of 375pccm−3, but unlike usual dispersed signals, they showed only an approximate
f−2 dependence. These pulses were also observed in all of the 13 beams of the Parkes
receiver. A truly astrophysical source should only be found in a small number of adja-
cent beams, which indicated a peryton source located in the vicinity of the telescope.
These were later identified to be caused by microwave ovens located near the observ-
ing site (Petroff et al., 2015). As all of the FRBs found so far, have been observed
in a single or only a couple of spatially coincident beams, this strongly indicates their
extraterrestrial origin. The repeating nature of the FRB 121102 and the identification
of its host galaxy also show that these signals have their origin in astrophysical and not
terrestrial (man-made or natural) processes.

Other possibilities. The theories briefly outlined above are widely considered in
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the available literature, but none currently fully explain the origin of Fast Radio Bursts.
There are a number of other processes that are thought to explain, even partially, the
nature of FRBs. These include, but are not limited to:

• evaporating black holes (Keane et al., 2012);
• superconducting cosmic strings (Yu et al., 2014);
• magnetar flares (Popov & Postnov, 2015);
• asteroids colliding with neutron stars (Geng & Huang, 2015);
• starquakes (Wang et al., 2018);
• transition from black to white holes (Barrau et al., 2014).

1.4 Propagation Effects

As the radiation emitted by a pulsar has to travel large distances before it is reaches
the observer, it undergoes a lot of changes through the interaction with particles found
in the interstellar medium (ISM). These interactions have to be taken into account and
corrected if the correct shaped of the signal is to be recovered. If appropriate correc-
tions are not applied the signal can deteriorate to the point that the signal becomes
indistinguishable from the noise and only the brightest and closes pulsars can be ob-
served. The two major effects for pulsar observations: dispersion and scattering, are
discussed below.

1.4.1 Dispersion

Even though photons themselves do not have electric charge, they can interact with the
ionised matter in the interstellar medium. As charged particles are accelerated in the
electric field generated by moving photons, their movements induce a current inside
the tenuous plasma. Electrons, protons and other ions all undergo acceleration, but
only the current generated by electrons is important when interacting with electromag-
netic waves. The velocity v, which the particles are accelerated to, and therefore the
generated current density, are inversely proportional to the mass of the particle

J =−Nev =
iNe2

mω
E, (1.5)

where ω= 2π f , N is the number of particles under consideration and E is the complex-
valued electric field intensity, as described using Maxwell’s equations. The current
density produced by moving protons has magnitude almost 2000 times smaller than
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the one introduced by electrons and can therefore be neglected as well as any currents
coming from heavier ionised particles.

This interaction causes the plasma to become conductive and introduces the de-
pendency of the group velocity, the velocity at which the electromagnetic waves travel
through the interstellar medium, on the frequency of photons

vg = c

√
1−
(

ωp

ω

)2
, (1.6)

where ωp is the plasma frequency - the frequency below which the electromagnetic
waves are not able to travel through the ionised plasma

ωp = 2π fp = 2

√
πnee2

me
. (1.7)

The velocity of photons is therefore no longer equal to c, but lower and also inversely
proportional to the square of the frequency, which means that waves travelling with
higher frequencies reach the observer first. The time difference, ∆t between signals
arriving across the band can be calculated using

∆t = 4.15×106×
(

1
f 2
b
− 1
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pccm−3

)
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where ft is the frequency of the top channel and fb the frequency of the bottom channel
ft −B, where B is the total system bandwidth, and both frequencies are expressed in
MHz. The number at the front of the above equation is the approximation of the
dispersion constant, D and is defined in CGS units as

D =
e2

2πmec
=

f 2
p

2cne
= 4.148808×103 MHz2 pc−1 cm3 s. (1.9)

The reciprocal of Equation 1.9 is often defined and used as the dispersion constant,
which follows the original definition (Manchester & Taylor, 1972)

K =
1
D

= 2.41×10−4MHz−2 pc cm−3 s−1, (1.10)

The dispersion measure, DM measured in the units of pccm−3 over the distance D
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Figure 1.3: Dispersion comparison for simulated signals with the dispersion measure of
100 pccm−3 with systems operating at centre frequencies of 330 and 1400 MHz. It can be
seen that the dispersion delay becomes more pronounced at lower operational frequencies,
which has implications for the amount of computational resources required to fully dedisperse
the channelised data and the amount of smearing introduced in the incoherently dedispersed
time series. The beginning of the horizontal time axis marks the start of the simulation.

between the pulsar and the observer, is defined as the integral

DM =
∫ D

0
ne(l)dl. (1.11)

It is the column density of electrons along the line of sight towards the pulsar. If the
number density of the ISM is known, it can be used to obtain the distance to the pulsar,
with the value of DM coming from the delay across the receiver bandwidth.

The amount of dispersion smearing per channel of width ∆ f =
B
Nc

, which increases

the width of the pulse with the intrinsic width W, can be derived from Equation 1.8
and approximated by

∆W = 8.3×106× ∆ f
f 3 DMms. (1.12)

This introduces pulse broadening, increasing the width of the dedispersed pulse beyond
its intrinsic width and contributions from the sampling time.
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Figure 1.4: Thin screen approximation of scattering. The radiation from a pulsar at a distance
D from the observer is scattered by a thin a screen containing irregularities in the electron
density distribution with a characteristic scale a. The screen is place halfway between the
pulsar on the observer in this approximation, but can be easily generalised.

The effect of dispersion on the signal can be clearly seen in Figure 1.3, which
shows the comparison of time delays between bursts at a DM of 100 pccm−3 for two
systems: one with a top frequency of 330 MHz and the other at 1400 MHz. Both
signals have been recorded over a bandwidth of 32 MHz. It is clearly visible that the
dispersion delay is much more pronounced at lower frequencies. This has an important
implication in the design and execution of pulsar and transient search systems, as the
larger number of time samples has to be used to recover the original signals at low
frequencies, increasing computational and memory requirements.

1.4.2 Scattering

As signals from a pulsar travel through the turbulent ISM, they encounter irregular-
ities in the electron density distribution ∆ne, which introduce phase difference to a
previously coherent radiation (Scheuer, 1968). When covering the distance D to the
observer and encountering irregularities with a characteristic length of a, the radiation,
on average, has to travel through d/a irregularities. For the radiation with wavelength λ

the root mean square phase variation can then be approximated by (Lorimer & Kramer,
2004)

∆Φ =
√

Daλ∆nere, (1.13)
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where re is the classical electron radius (expressed in the CGS units)

re =
e2

mec2 . (1.14)

In the simplified scattering model, free electrons are assumed to form a single thin
screen, which contains the electron density irregularities, placed halfway between the
pulsar and the observer (Figure 1.4). Equation 1.13 holds for most cases in the above
approximation and θscatt can be calculated

θscatt =
∆Φλ

2πa
=

√
D
a

∆neλ2re

2π
. (1.15)

The difference in arrival times between rays travelling in a straight line and those scat-
tered towards the observer is

τs =
Dθ2

obs
2c

=
Dθ2

scatt
8c

=
D2

a
(∆ne)

2 r2
eλ4

32π2c
s. (1.16)

The most important dependency, from the observational point of view, is that on the
frequency: τs ∝ f−4. This can be observed as a slow, exponential decay of the pulse.

Both dispersion and scattering influence the final form of the observed pulse. All
the contributions to the final pulse width can be accurately approximated by uncorre-
lated random variables and can therefore be added in quadrature as

W =
√

W 2
int + t2

samp +∆W 2
ch + t2

scatt, (1.17)

where Wint is the intrinsic width of the pulse, tsamp is the data sampling interval, ∆Wch

is the dispersion broadening per channel as described by Equation 1.12 and tscatt is the
broadening due to interstellar scattering.
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1.5 Thesis Outline

This thesis is organised in the following manner:
• Chapter 2 describes the techniques used the detect sources described in Chapter

1, including the overview of the radio astronomy techniques as well as different
computational algorithms used to aid the search with the main focus on the GPU
computing.

• Chapter 3 contains a detailed description of the PAFINDER pipeline designed
for the Effelsberg radio telescope Phased Array Feed used for real-time radio
transient detections.

• Chapter 4 discuses the results obtained during the commissioning of the Effels-
berg PAF and the PAFINDER pipeline. The focus is on the ability of the pipeline
to detect single pulses from known sources and then attempting to find new and
redetect known FRBs.

• Chapter 5 describes the single-pulse injection software used to simulate the data
which can later be used to better understand to limits of current and future FRB
surveys.

• Chapter 6 presents the overview of the processing pipeline and FRB search re-
sults for the GMRT High Resolution Southern Sky survey.

• Chapter 7 discuses the conclusions, the extent of work and results achieved and
possible future developments for the work done so far.



Chapter 2

Signal Processing

2.1 Radio Telescope Basics

The simplified view of a single-dish radio telescope receiver system is shown in Figure
2.1. The incoming electromagnetic radiation induces surface currents in the surface
of the reflector upon hitting the antenna. These currents become sources of radiation
with the same frequency as the incoming signal. They can then be collected by the
receiving system placed in the focus of the antenna. The signal arriving at the focus
is usually very weak and therefore has to be amplified. It is important to introduce
as little extra noise as possible in this stage so not to drown the signal even further.
This can be achieved with the use of Low Noise Amplifiers (LNAs), which are often
kept at low temperatures, typically around 20K. Even though components present in
the system after the amplification stage have much larger noise contributions, they can
be effectively neglected due to the large gain of the first LNA. The amplified signal
is then passed through a bandpass filter, which narrows the range of frequencies that
have to be processed in the following stages. This removes some unwanted signals,
such as man-made RFI and prevents aliasing, before further processing. In the next
step, the frequency of the incoming signal is converted to (usually) lower frequency
with the help of mixers. Driven at a frequency fLO from the local oscillator, they
change the incoming frequency, fRF by multiplying the two waveforms. It is practical
to choose a lower output frequency as it is much easier to transmit, due to reduced
losses, and amplify signals at lower frequencies. It is also more cost-effective to build
receiver systems operating at lower frequencies. There are two possible solutions for
a lower output frequency. When fRF > fLO the upper sideband is obtained, and when
fRF < fLO the lower sideband is produced. The mixed signal is then passed through

34
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Figure 2.1: Simple heterodyne receiver system. In modern systems digitisation is usually
present after the first amplification stage and all the other processing stages can be implemented
in software.

another filter that lets only one sideband through. In analogue systems, the square law
detector produces an output which is the square of the input voltage, proportional to
the power. This is then passed to the integrator which averages the power over long
periods of time. At this point only a steady component of power with small variations
is recorded. This data can then be sent to the data recording or processing devices
which depend on the requirements of the project.

In modern systems a different approach is used. The incoming signals, which are
analogue outputs of the receiver system, are digitised, commonly after the first am-
plification stage. This avoids the need to use the analogue components which lack
flexibility and are more sensitive to environmental changes. The input signal is con-
tinuous in both amplitude and time and an Analogue to Digital Converter (ADC) has
to be used to convert it to the digital signal, which is its discrete representation. Am-
plitude quantisation is achieved by representing the amplitude using a finite number
of bits, with N-bit quantisation providing 2N levels, or bins, which can be used to ap-
proximate to original voltage with a finite number of digital values. Systems making
use of a larger number of bits can be used to produce digital signal which more closely
resembles its analogue counterpart. There is however a cost of increasing component
complexity due to the higher number of bits that have to be processed. The incoming
signal, limited to a bandwidth B can be represented exactly (after interpolation) in its
digital form when it is sampled at a Nyquist rate3 of 2B. The highest sampling time

that can be used is therefore
1

2B
. If a smaller sampling rate is used, the signal is then

undersampled, resulting in the introduction of aliasing (e.g. a sine wave sampled one

3Depending on the application, the Nyquist rate can be defined as half of this value, and then the
signal is said to be sampled at twice the Nyquist rate
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every period, can be interpreted as a signal with a constant amplitude, instead of vary-
ing periodically). The final processing stage usually depends on the project require-
ments. In pulsar research, the digital signal usually has to be divided into a number of
channels. This can be achieved by using Digital Autocorrelation Spectrometers, FFT
spectrometers or filterbanks. Currently these steps can all be performed in software,
with dedicated hardware being phased out, with conversion of the signal to its digital
form now present at early stages of processing and not only used as means of storing
the data. This allows for greater flexibility of the system, e.g. sampling time or channel
bandwidth can be easily adjusted, and lowers the development costs as most software
can now run on off-the-shelf hardware and does not require custom-build solutions.

2.2 Candidate Detection

2.2.1 Dedispersion

Before any pulsars or other radio transients can be detected, the effects of dispersion,
described in Section 1.4 have to be removed. The approach to dedispersion can first be
divided into two main categories: coherent and incoherent.

Incoherent dedispersion can be implemented in a number of ways, using the final
channelised signal, with the power in each channel as input. The simplest algorithm
applies the correct delay, calculated using Equation 1.8, at each of the channels and
sums them, resulting in a dedispersed time series, according to the equation

S =
Nc−1

∑
c=0

Fc,t+δt ′, (2.1)

where c is the channel number, Nc is the total number of channels in the file, t is the
time sample at the reference channel and F is the input array representing the chan-
nelised data. δt ′ is the discrete version of Equation 1.8, i.e. it is divided by the sampling
time tsamp and rounded to the nearest integer, to obtain the index in the array where the
value is read from. When looking for new objects, the dispersion measure is not known
beforehand, and therefore a large number of DM values, often counted in thousands,
have to be tried out and the resulting dedispersed time series searched for the presence
of signals of interest. When a simple brute-force approach is used, Equation 2.1 is used
to obtain the time series for each of the DM trials without implementing any optimi-
sations and simplifications that would speed up the execution. It simply relies on the
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raw processing power of the available architecture to achieve the required processing
speed.

A number of algorithms have been developed over the years, that instead of fetch-
ing each time sample and calculating each sum separately for every dispersion measure
trial, implement more efficient data reuse approaches. Inspired by the speed-up offered
by the Fast Fourier Transform algorithm, tree dedispersion was introduced in the 70’s
(Taylor, 1974). It first simplifies the problem by assuming the delay is linearly propor-
tional to the frequency. The dedispersed time series is then obtained by adding linearly
delayed time samples and also reusing the data from previous steps. In its most ba-
sic form, the tree dedispersion has some significant shortcomings. Due to the linear
function of delay, it is ill-suited for processing data recorded over a large bandwidth,
low frequencies and high dispersion measures. This limitation can be overcome in two
ways: the dispersion trail can be approximated by a number of linear segments, or the
frequency coordinates can be changed to make the dispersion curve linear (Manch-
ester et al., 2001). The tree dedispersion implementation allows for the reduction of
the computational complexity from O(NtNDMNc) in the case of the direct algorithm
down to O(NtNDM logNc), where Nt is the number of time samples and NDM is the
number of trial dispersion measures (Barsdell et al., 2012).

Another approach uses the so-called subband dedispersion. It works by first divid-
ing the incoming frequency dimension into a number of subbands. Each subband is
then dedispersed using a reduced number of nominal dispersion measures. With chan-
nels in each subband dedispersed to the highest channel in a given subband, the output
has the form of a small filterbank, with each dedispersed subband contributing a single
channel in the new filterbank. Finally, the resulting subbands are dedispersed around
the nominal DMs using the standard brute-force approach, this time working on data
with significantly lower number of frequency channels. Using a smaller set of nominal
dispersion measures, and approximating the total dispersion, this method introduces
an additional smearing as compared to the brute-force approach. This however can be
limited by carefully selecting the size of the subbands and the separation between the
nominal dispersion measures (Barsdell et al., 2012).

As incoherent dedispersion is performed after the signal detection, all the phase
information is lost and cannot be recovered. This can be avoided by using coherent
dedispersion, which is applied to the original voltage and therefore can make use of the
phase information. In the implementation of incoherent dedispersion, the dispersive
interaction between photons and electrons in the ionised medium can be expressed
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as the modification of the incoming radiation with a transfer function. This transfer
function is a complex-valued, phase-only function that does not change the amplitude
of the Fourier components of the signal, but only their phases, effectively applying a
delay in the time domain. It has the form of

H( f0 + f ) = exp
(

i2πD f 2

( f + f0) f 2
0

DM
)
. (2.2)

The above transfer function depends on the centre frequency f0 and runs for a fre-

quency range
−B
2
≤ f ≤ +B

2
(Hankins & Rickett, 1975). The incoming voltages are

then multiplied by its inverse H−1, which allows for the original, non-dispersed sig-
nal to be recovered. The resulting dedispersed time series has a dispersion smearing

proportional to
1
B

, as coherent dedispersion is run using original voltages and not the
channelised data which has reduced time resolution. This smearing is much smaller
than in the case of the incoherent dedispersion, where the pulse is distorted as described
by Equation 1.12.

Coherent dedispersion is computationally expensive, considerably more than the
incoherent approach. This is caused by the fact that the transfer function has to be gen-
erated for every single dispersion measure trial, which can be as high as a few thousand
for standard pulsar and transient surveys, and it is applied to raw voltages, which have
higher data rates than the channelised and often time and frequency averaged detected
signals. So far, no viable system has been implemented that allows real-time fully-
coherent dedispersion using thousands of DM trials. Any practical applications are
limited to blind searches within a limited DM range or dedispersing signals from a
source with a known DM, previously obtained using the incoherent approach, to im-
prove the resolution of the dedispersed pulse profile.

2.2.2 Periodic Signals Detection

As pulsars emit at regular intervals, a number of techniques exploiting their periodic
nature can be used that allow us to discover these signals. One of the most common
techniques used for periodic signal detection is calculating the Discrete Fourier Trans-
form (DFT). A number of efficient algorithms, collectively called the Fast Fourier
Transform (FFT) algorithms, exist that significantly reduce the time required to ob-
tain the DFT. One of the most commonly used FFT algorithms, is the Cooley-Tukey
algorithm (Cooley & Tukey, 1965).
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Figure 2.2: Stages in the periodic signal detection. From top to bottom: a) time series of pulsar
J1514−4834, with periodic signal not clearly visible; b) power spectrum with fundamental and
first few harmonics marked in green, in red marked 50 and 100 Hz signals from power lines,
the effect of red noise can be seen as the increase of noise power at frequencies lower than
∼10 Hz; c) dereddened and normalised power spectrum; d) first harmonic summing applied.
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In its most basic form, the Discrete Fourier Transform converts the complex-valued
signal of length N samples in the time domain f (t), into a different complex-valued
signal in the frequency domain F (k), by computing

F (k) =
N−1

∑
n=0

f (tn)exp
(
−2πink

N

)
. (2.3)

The ‘fast’ version of this algorithm works by splitting the incoming time series into
smaller portions recursively to reduce the computational complexity. For example,
one of the most commonly used algorithms, Radix-2, recursively splits the input data
sequence in half and therefore works the best for signals that are power-of-2 in length.
The full DFT can then be obtained by reusing the data when combining the halves,
reducing the computational complexity from O

(
N2) to O (N logN) in the best-case

scenario.

The resulting Fourier series can then be further examined in terms of the power
spectrum, Pk =| Fk |2. Figure 2.2 shows the time series, with a periodic signal present
and its corresponding power spectrum. It can be clearly seen that the power spectrum
suffers from increased noise at lower frequencies, so called red noise, arising from the
long-period variations, such as RFI and receiver temperature fluctuations. This can
become problematic during searches for low frequency pulsars. In such a situation, the
signal can be easily buried in the noise, as can be seen in panel b) in Figure 2.2, and
its recovery can be made very difficult if not outright impossible, as any techniques
currently in use can also significantly reduce the power in the first few harmonics
present at low frequencies when removing the effects of red noise. This difficulty in
detecting low-frequency, i.e. long-period pulsars can result in the underestimation of
the pulsar population counts at such low frequencies. Several dereddening techniques
exist, such as median filtering, where a running median is subtracted and the signal is
normalised to zero mean and unit rms. It is however important to note that this only
reduces the amount of red noise and does not eliminate it completely and can also have
a negative effect on the pulsar signal.

When a strong and narrow pulsar is detected, the power is not constrained to its
fundamental frequency only, but is also spread over the multiple harmonics. Harmonic
summing can then be used to increase the signal-to-noise ratio (S/N). The original
power spectrum is stretched by a factor of 2 and added to the original spectrum, there-
fore combining power from fundamental and second harmonics. Summing the noise
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increases its contribution by a factor of
√

2, but more importantly the powers of har-
monics add up as well, resulting in an overall increase in the S/N. When adding two
harmonics of equal power, the resulting signal-to-noise ratio can be

√
2 greater than the

original one. The effect of the harmonic summing can be seen in the bottom panel of
Figure 2.2, where the SNR even after just one iteration of the algorithm is significantly
improved. The signal can be stretched multiple times which results in the fundamental
and lower frequency harmonics being added to the harmonics at higher frequencies,
increasing the S/N even further. It is however important to note that this procedure can
increase the SNR of unwanted signal, especially the 50 Hz RFI, when 100 Hz, 150 Hz
and higher harmonics are added, therefore extra case has to be taken to properly filter
out signals in these regions.

The presence of red noise means that pulsars with long rotational periods can be
missed in the FFT-based periodicity searches, as the signal can be obstructed by the
noise. These destructive effects can be decreased when a different technique, fold-
ing, is used, which is less sensitive to this kind of noise. This makes it possible to
find low-frequency pulsars, allowing us to better understand the constraints on pul-
sar periods in the region that FFT is not sufficiently sensitive. Simply described, the
folding algorithm relies on taking the time series, dividing it into chunks at regular
intervals, corresponding to the pulsar period and adding these chunks to form the final
pulse profile. The process is then repeated for a large number of trial periods, which
allows us to find the period that results in the highest S/N. The folding algorithm is
computationally expensive in its simplest form. There are however a number of im-
plementations, fast folding algorithms, that can reduce the computational time, even at
the cost of increased code complexity necessary to fully-optimise the code and offer a
significant improvement over the standard FFT-based pulsar search methods (Cameron
et al., 2017). They again reuse the data, as certain time samples used for folding at one
period can later be used for folding at different periods.

2.2.3 Single-pulse Detection

A single pulse searching procedure starts similarly to the usual pulsar search - with
dedispersion. As there are no periodicity searches involved, the Discrete Fourier Trans-
form is not calculated and all of the work is performed on the time series. One of the
methods currently used for detecting single pulses is that of matched filtering. This is
achieved by convolving the time series with the shape of the burst. Theoretically, any
shape can be used, but as generalised convolution can be computationally expensive,
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even when run using the FFT of the time series and the shape function, exploiting the
convolution theorem. To reduce computational resources and time required, a simple
boxcar function is convolved with the times series, which can be achieved by using a
simple running sum of the data and subtracting the copies of it, shifted by a distance
corresponding to the width of the boxcar function. As the duration of the pulse is
usually not known before the data has been processed, a number of different boxcar
widths have to be tried. A correct filter width maximises signal-to-noise ratio in the
output and the candidates that are found above a set S/N threshold are selected. A sin-
gle pulse can usually be detected at multiple time samples and DM values close to the
true properties of the burst. The candidates found away from the true DM will usually
be wider, as they are not dedispersed properly - either too much or too little, which
in turn results in a lower S/N of the signal detected in the time series. These multiple
candidates can later be combined into a single candidate, with the true properties es-
timated from the highest S/N results. As the available computing power grows all the
time and new processing techniques are developed, it may soon be viable to use other
shapes in real time than just a simple boxcar function, which should help us to better
match the shapes of true bursts and also identify RFI.

2.3 Phased Array Feeds

In order the increase the number of radio transient discoveries, new radio telescopes
and receiver systems can be built to look deeper into the Universe, allowing us to pick
up fainter objects and to cover larger portions of the sky at any given time, increasing
our chances of detecting rare and unpredictable events, such as FRBs. The survey
speed, SVS, can be approximated by (Fisher et al., 2009)

SVS ∝ NbΩbB
(

Aeff

Tsys

)2

, (2.4)

which depends on the number of beams, Nb, the solid angle covered by a single beam
Ωb, the receiver bandwidth B, the system temperature, Tsys, and the effective collecting
area of the antenna, Aeff, which depends on the geometric area of the antenna and
various efficiency factors. This provides the metric that depends on both the amount
of sky that is covered at any given time and the sensitivity of the system.

To improve the chances of detecting a radio transient, this value should be as high
as possible. To achieve that, we can either increase the instantaneous field of view
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(FOV) or increase the sensitivity and look for fainter objects. Both of these approaches
result in a larger surveyed volume of the Universe, but the usefulness of either of them
depends on the characteristics of the studied objects (e.g. bright objects where the
sensitivity is not that important). Ideally, both the FOV and the sensitivity can be
improved in future radio telescopes, but there are practical limitations on what can be
made better. For an existing antenna it would be impossible to change its collecting
area. Building large radio telescopes is a challenging task and currently only two
fully-steerable telescopes with a diameter equal to or more than 100 m exist in the
world. It is also important to note that although the larger effective area can help to
detect fainter signals, it also means smaller beam size, which has the full width at half
power (FWHP) for the antenna with diameter D, operating at the wavelength λ can be
approximated by

Ωb = π

(
θ

2

)2

= π

(
λ

2D

)2

. (2.5a)

θ≈ λ

D
(2.5b)

FOV = Nb×Ωb (2.5c)

FRBs are relatively bright phenomena and it may therefore be possible to sacrifice
the sensitivity in order to obtain a larger area on the sky. The beam size however
cannot be too large, as it would make any accurate localisation difficult. The bandwidth
can be increased, but this has its practical limitations as well, both in the size of the
receiver systems and cost-effectiveness. The system temperature can be decreased,
especially when a cryocooled system in introduced, but this can also involve significant
investments in terms of development time and costs. There are also limitations on
how much radio astronomy systems can be cooled down and it is not possible to fully
eliminate all the noise components introduced into the receiving system.

Therefore, one of the most practical and easily achievable ways of increasing the
survey speed is using a larger number of beams. This exploits the fact that the off-axis
rays are not focused in the same point as on-axis rays, but are instead focused in a
plane around the axis of the dish. In order to observe a larger portion of sky at any
given time, multiple receiving elements can be placed in different parts of the focal
plane, which will then collect the waves arriving at different points (Baars & Swen-
son, 2007). Traditionally, this has been achieved by building receivers with multiple
feed horns. This solution quickly becomes impractical with the increasing number of
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beams, as due to their size and weight, only a limited number of waveguides can be in-
stalled. The most notable multi-beam systems include the Parkes Multibeam receiver
with 13 beams (Staveley-Smith et al., 1996) and Arecibo L-Band Feed Array (ALFA)
capable of generating 7 beams on the sky (Cordes & Goldshith, 2001). The number of
beams is also limited by the loss in gain and various beam aberrations, such as coma
and astigmatism, which tend to increase for beams further away from the axis (Baars &
Swenson, 2007; Padman, 1995). Additionally, the standard feed-horn based receivers
do not provide the flexibility in terms of beam separation or adaptive RFI mitigation,
where the shape of the beam can be changed during the beamforming process to de-
crease the beam response in the direction of known RFI (Landon et al., 2010). Multiple
pointings with small offsets have to be used to form a mosaic with a continuous sky
coverage, as horns cannot be packed more closely than their physical size allows, often
resulting in significant gaps between the beams on the sky.

Phased Array Feeds (PAFs) are an attempt at overcoming these limitations. In-
stead of large horns they use a large number of closely-packed small antennas, e.g.
dipoles, that can fully sample the radiation in the focal plane. All of these elements
see a different portion of the sky and their individual inputs can then be combined to
form multiple beams on the sky. PAFs have been in use for decades now in various
systems including radio communications and radar. Their use in radio astronomy has
been limited due to more stringent requirements, such as lower system noise temper-
ature and large operational bandwidth. The last couple of decades have seen a rapid
development and great improvements in the radio astronomy PAF receiver technology,
mainly thanks to the involvement of multiple large research institutes, such as NRAO
in the USA and CSIRO in Australia. Even after this period of rapid development,
some problems still remain and they will have to be solved before PAFs can fully re-
place the traditional receivers. These drawbacks include the difficulty of developing
a cryogenically cooled system, which can significantly increase the development cost
and the size and weight of the final receiver, but a large amount of research is currently
being invested in this area specifically, with a cryocooled PAF currently being com-
missioned on GBT (Roshi et al., 2015) and new design under development at CSIRO
and JBO (Liu & Grainge, 2017). Recent improvements should soon bring the system
temperature down from 50–75 K, to levels comparable with the feed-horn based re-
ceivers currently in the operation at 20–25 K (Staveley-Smith et al., 1996). The small
spacing of the array elements is also a significant problem, increasing the noise levels
as the thermal radiation from each element leaks into the surrounding elements.
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Figure 2.3: Path of single time sample signal xn. Signals from each element are multiplied by
their corresponding weights wn and summed together, resulting in the beamformed output y.

Despite these problems, Phased Array Feeds already offer a great alternative when
the benefits coming from the increased instantaneous field-of-view outweigh the re-
duced sensitivity. Large projects such as the Australian SKA Pathfinder (ASKAP)
(Johnston et al., 2007), consisting of 36 12 m diameter antennas, each with a PAF
mounted in its focus, are currently surveying the sky to prove that this technology can
be efficiently deployed on larger systems (McConnell et al., 2016). With the first FRB
already discovered with ASKAP (Bannister et al., 2017) it appears that the Phased
Array Feeds will indeed revolutionise radio astronomy by simply increasing the sky
coverage and providing larger snapshots of the sky.

2.3.1 Theoretical Description of Beamforming

As mentioned above, signals originating at each of the receiver elements have to be
properly combined during the beamforming operation to obtain the desired beam foot-
print. The signal at time t recorded by N array elements can be approximated by a
vector

x [t] = vss [t]+n [t] , (2.6)

where vs is the normalised array response to a unit amplitude point source in the far
field direction, s [t] and n [t] are signal and noise vectors respectively, and each of these
vectors have N components - one for each receiving element as shown in Figure 2.3.
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The beamforming procedure requires a vectors of weights to be calculated which are
then multiplied with the incoming signal, resulting in the output

y [t] =wHx [t] , (2.7)

where the superscript H denotes the conjugate transpose of a matrix. One commonly
used beamforming process is applied to determine a set of weights that maximise the
signal-to-noise ratio of the recorded signal. A different approach can also be used that
prioritises the control over the beam pattern, to better accommodate for known RFI
sources, which results in a generally lower sensitivity.

For the case of a stationary random process with zero mean and statistically inde-
pendent signal and noise contributions, the array covariance matrix (ACM) can then
be defined as

R= E {xxH}=Rs +Rn = σ
2
svsv

H
s +σ

2
nI, (2.8)

where E {xxH} denotes the expectation value, Rs and Rn are the signal and noise
covariance matrices respectively, σ

2
s and σ

2
n are the signal and noise powers respec-

tively, and I is the identity matrix. In practice, the estimate of R is calculated over an
L-samples long integration

R̂=
1
L

L−1

∑
t=0

x [t]xH [t] . (2.9)

Depending on the intended use, the integration length can vary. It can be calculated
over the span of seconds in the case of adaptive beamforming, which is used to reduce
the negative effects of rapidly varying RFI by dynamically changing the shape of the
beams on short time scales to decrease the gain in the direction of the offending RFI
source. If such rapid changes are not required, and a more constant and stable beam
pattern is preferred, the integration time can stretch over minutes or even hours at a
time.

Following a rigorous mathematical derivation (Applebaum, 1976; Jeffs et al., 2008),
it can be shown that the optimal weights, resulting in the maximum S/N, can be ob-
tained by computing the ACM while pointing the receiver at a strong source, R̂n+s and
at an empty patch of sky, R̂n and solving for an eigenvalue equation(

R̂n+s− R̂n

)
v̂ = λv̂, (2.10a)
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wk = R̂
−1
n v1k, (2.10b)

where v1k is the dominant solution to the above eigenvalue equation. The number of
weight vectors depends not only on the number of beams, but also on the number of
frequency channels processed by the beamformer, as each coarse channel will have its
own weights. In total, there will be 2×Nb×Nch weight vectors provided, where the
factor of two comes from the fact that 2 polarisations have to be processed separately
for dual-polarisation system. The weight vectors for each pointing then have to be
adjusted to phase changes over the entire band

wp = exp(−iφ)w, (2.11a)

φ = arg
(
wH ·wr

)
, (2.11b)

where wr is the weight vector for a reference channel (McConnell et al., 2016).

2.3.2 Practical Beamforming Procedure

The practical beamforming procedure for PAFs can be summarised as follows:

1. Select the directions of the beams.
2. Obtain R̂n+s by pointing the antenna towards the bright source, for each of the

beam directions.
3. Move the antenna to a cold portion of the sky, preferably in the azimuth, to avoid

changing contributions to noise from the ground, and record the R̂n.
4. Use Equations 2.10a and 2.10b to obtain the weight vectors and modify them

according to Equation 2.11a.
5. Load the resulting weight vectors wp into the beamformer for subsequent obser-

vations.

A bright astronomical source is required to perform reliable beamforming. Even when
no rapid RFI mitigation is being used, it is recommended to repeat the beamforming
process over the course of days or weeks to account for variations such as gain insta-
bility and changes in the receiver electronics systems.

Figure 2.4 shows the example of beam weights in 2.4a. For this particular setup,
only a single beam was generated and is shown in Figure 2.4b. The shape of the beam
was confirmed by scanning a bright point source, in this case quasar 3C268. It is impor-
tant to note that Figure 2.4 shows only a single ‘cross-section’ of the entire frequency
domain, as weights are generated separately for every channels. This in turn results
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in a changing beam pattern, which always changes with changing wavelength, as de-
scribed in Equation 2.5b, but now also depends on the computed beam weights, which
can significantly influence the shape of the beam. This is especially important if the
adaptive RFI mitigation is employed and only certain directions for certain channels
have to be masked. The overall shape of the beam and its variations with frequency
become important when an accurate localisation of detected source is necessary.

2.4 GPU and Parallel Computing

The history of the GPU computing begins with the introduction of the first graphics
chips in the 1970s. At that time, consumers had access only to cheaper and simpler
designs, as chips capable of handling 3D graphics were reserved for professional use
only due to their complexity and resulting high prices. The first affordable 3D graphics
cards were introduced to the PC market in the mid-1990s. At that time, these were
still relatively simple, with a large number of fixed-function stages, each responsible
for performing a single, specific task. Programmers were able to configure certain
parameters, but functions themselves could not be programmed and offered a limited
flexibility. This severely limited the usefulness of GPUs beyond the task of performing
graphics calculations, and the general Central Processing Units (CPUs) were used for
any complex computations. The fixed-function pipelines consisted of a number of
stages, each of them being a task-specific piece of hardware (Kirk & mei Hwu, 2010).

The first programmable functions were introduced in 2001 and 2002 to the vertex
and shader stages respectively. The general idea of a pipeline with each stage devoted
to a specific task however remained unaltered. The first major change came in 2006,
with the introduction of Nvidia GeForce 8800. It was the first GPU which combined
all the stages of the programmable graphics pipeline into a collection of unified pro-
cessors, all with the same capabilities (NVIDIA Corporation, 2006). These have lower
clock speeds than current generation CPUs (up to 1.5 GHz compared to more than
4.2 GHz per core in consumer CPUs), but the strength of GPUs comes in the large
number of parallel cores, greatly exceeding 8, 16 or even 32 present in the high-end
CPUs currently available.

The GPUs of today are massively parallel processing units, with the number of
cores increasing all the time and now exceeding 3000 per GPU. The instructions are
executed and managed on Nvidia GPUs using the Single-Instruction, Multiple-Threads
architecture (SIMT), similar to the more common Single-Instruction, Multiple-Data
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(a) Absolute values of complex beam weights for single polarisa-
tion, calculated using all elements for a single frequency channel at
1340 MHz.

(b) The resulting beam shape obtained by scanning a point source, in
this case a quasar 3C286.

Figure 2.4: Application of the beamforming procedure, with the resulting beam weights used
to form a single beam.
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Figure 2.5: A simplified view of a) a single-CPU, single-GPU system, b) a NUMA system
with two CPUs and two GPUs. Quick Path Interconnect (QPI) or HyperTransport (HT) have
to be used to transfer the data between different CPUs in the NUMA-aware configuration.

(SIMD). In simple terms, SIMT can be thought of as the extension of SIMD, with
the emphasis shifted slightly towards increased flexibility, which incurs a small cost
in efficiency. In SIMD, multiple data points are processed simultaneously in paral-
lel (Multiple-Data), using the same operation (Single-Instruction). SIMT expands on
this idea and incorporates the SIMD model into the massively parallel environment of
GPUs. The instructions are ‘bound’ on a thread-by-thread basis which are then dy-
namically executed in a SIMD fashion. This is especially important when writing code
with branches. In the most recent architecture used by Nvidia, threads are executed
in groups of 32, called warps. If, e.g. an if ...else statement, results in divergent
branches, threads are scheduled to be executed in groups in a SIMD manner, each
group following a given branch, in a sequential manner, i.e. the else branch threads
have to wait for if branch threads to finish first before they are allowed to run. This can
lead to significant losses in performance and it is important to ensure that all threads
within a warp can take the same data path, effectively ensuring a warp-wide SIMD
execution and maximum performance gains.

In most practical applications, the GPU does not have direct access to the host
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RAM as it is treated as a separate device, as seen in Figure 2.5. Even in the advent of
the Unified Memory Addressing, when the memory addresses can be shared between
the host and device memories, the GPU memory is still physically separated from
RAM, and any data flowing in or out of the GPU has to be transferred over the PCI-e
bus. At the time of writing most modern systems use PCI-e 3.0, capable of delivering
the theoretical throughput of 16 GBps for a 16 lane configuration, with the real-life
limits closer to 12 GBps. This can be a problem for certain applications that consume
large amounts of data and do not perform too many complicated operations, especially
when coupled with a relatively small amount of memory available on the GPU (up
to 12 GB at the time of writing). The situation is complicated even further when the
Non-Unified Memory Architecture (NUMA) is in use. Here, the memory can be split
between multiple CPUs within the system and the memory access time depends on
whether the CPU is accessing its local memory. If the memory being accessed is local
to a different CPU, it has to be transferred through the Quick Path Interconnect (QPI)
in terms of Intel and HyperTransport (HT) for AMD processors, directly connecting
the CPUs, which can incur performance penalties. GPUs can also be connected into
different NUMA nodes as seen in Figure 2.5 and the data transfer rates can see a
significant impact when the additional CPU-to-CPU transfer is necessary.

2.4.1 Compute Unified Device Architecture - CUDA

Even after introduction of the unified processing unit architecture, performing scien-
tific calculations on GPUs was still a challenge. All the problems had to be translated
into language of graphics operations which made writing programs long and compli-
cated. CUDA was introduced by NVIDIA in 2007 alongside Tesla C870 - the first
GPU aimed directly at the General-Purpose computing on Graphics Processing Units
(GPGPU). It was the first time when a GPU was treated like a general-purpose pro-
cessor, not just a circuit that can only generate computer graphics. The most popular
version, CUDA C/C++, makes use of the standard C/C++ with added extensions, to
enable GPU programming. In software making use of CUDA, work can be done on
the host, which is a standard CPU, or device, which in this case is a GPU. Execution
on the device is performed by the means of kernel launches. Each kernel can access
the processing cores and memory available on the GPU and use them to run parallel
computations.

The generalised processing path during the concurrent CPU and GPU utilisation
is show in Figure 2.6. The memory is first allocated on the GPU and then copied
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Figure 2.6: The basic workflow for the GPU processing with a concurrent CPU execution.

across from the host memory to the device memory. The kernel then does the work
and is called in the same way as ordinary C++ functions, with the additional kernel
parameters, such as the number of threads and blocks. The kernel launches are asyn-
chronous, which means the control is returned to the CPU as soon the GPU driver is
done with starting the job. This allows for concurrent processing by the GPU and the
CPU, meaning that as the data is being processed by the GPU, the CPU can spend this
time preparing another piece of data for the processing and launching another kernel.
One important performance consideration is that it takes a non-negligible amount of
time to launch a kernel, around 5ms, and this concurrent execution scheme does not
offer any performance benefits if the time it takes to process the data is shorter than
the time required to launch the kernel. In such a scenario, the GPU spends some time
being idle, waiting for another kernel launch. Calls to cudaMemcpy() are implicitly syn-
chronised which ensures that the data will be processed and made available before it is
copied back to the host RAM. Together with CPU/GPU concurrency, modern CUDA
allows for concurrent processing of multiple kernels on the GPU as well. As can be
seen in Figure 2.7 spreading the processing over many kernels makes it possible to
overlap the memory copies and processing, effectively hiding the data transfer latency.
With the current architecture, up to 16 kernels can be run concurrently and this number
will most likely increase in the future.
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Figure 2.7: Multiple GPU kernels (green) can run concurrently, overlapping with host to de-
vice and device to host data transfers (orange).



Chapter 3

PAFINDER - Phased Array Feed FRB
Finder

3.1 PAF at Effelsberg

The phased array feed installed at the Effelsberg radio telescope uses the modified
ASKAP Mark II design. This particular design contains 188 chequerboard feeds
(Brown et al., 2014). The signal is amplified and filtered inside the PAF frontend
and is then transported to the backend for beamforming, with the main components of
these two stages shown in Figure 3.1. The main elements of the backend include the
digital receivers (DRXs) and beamformers (BMFs). The digital receivers are tasked
with channelising the incoming data into 336 oversampled ‘1 MHz’ channels. While
the centres of these channels are separated by 1 MHz, they are sampled at a frequency
of 32/27 MHz. This causes the channels to overlap at the edges of the band, which
provides a flatter frequency response across the band and also reduces the negative
effects of aliasing (Tuthill et al., 2012). This coarse filterbank is then passed into
the beamformer. Each beamformer chassis contains 6 Field Programmable Gate Ar-
rays (FGPAs) and each FPGA receives 7 channels. This means that each beamformer
is responsible for processing 42 ‘1 MHz’ channels and forming all the beams across
this part of frequency band. It is therefore necessary to combine the outputs of all 8
beamformers to obtain the full 336 MHz frequency coverage. The beamformed out-
put is then streamed to a network switch which is responsible for distributing the data
throughout the network and towards the compute nodes.

In total, the Mark II system is capable of generating up to 36 dual-polarisation
beams on the sky. That gives us an instantaneous FOV of 2.06deg2 at the frequency
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Figure 3.1: The overview of PAF frontend and backend.

of 1400 MHz, when the centres of the beams are separated by FWHP which is ∼ 1.15
times the FOV achieved using the 13-beam Parkes Multibeam system. This is the
upper limit on the area that can be covered by 36 beams, and the FOV will be smaller
in practice, as the beams can and usually will overlap, with their centres separated by
less than FWHP.

3.1.1 Processing Facilities

The processing is run on multiple nodes, housing off-the-shelf hardware to allow for
efficient and cost-effective processing. It is important that these facilities meet the
strictest requirements and are able to process and store immense volumes of data from
all the beams in real time. The nodes specification is shown in Table 3.1. With the
current hardware and software implementations of the pipeline, we are capable of pro-
cessing the data from a single beam per NUMA node. As each of the compute nodes
has 2 NUMA nodes, we were therefore capable of running the pipeline over 18 beams,
using 9 compute nodes that were installed and available at the time of the initial com-
missioning.
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CPU 2 × Intel(R) Xeon CPU E5-2630 v4, 2.20 GHz, 10 physical cores
RAM 128 GB, 64 GB per NUMA node
GPU 2 × Titan X (Pascal), 12 GB memory
NIC 2 ×Mellanox 40 Gbps

Table 3.1: Specification of PAF processing nodes.

3.2 PAFINDER Pipeline Design and Implementation

The PAFINDER pipeline has been developed to enable real-time processing of the
PAF data. Even though the main focus is enabling a real-time FRB detection and
localisation, the pipeline has been written in different possible uses in mind, such as
pulsar search, which can have a different set of requirements. Clear separation of
different processing modules and the use of tools, modules and libraries commonly
used in radio transient data processing and searches allows for easier modifications
and upgrades to the existing pipeline.

The work done by the pipeline can be divided into 3 major stages: receiving the
data, creating the filterbank files and searching for single pulses. The generalised work-
flow is shown in Figure 3.2. From this layout it can be seen that most of the work
in creating the actual filterbank file, including unpacking, the FFT, scaling and aver-
aging, is done by the GPU. The CPU is responsible for receiving the data from the
beamformer, managing the pipeline, which includes dispatching the work from inter-
nal buffers to the GPU, monitoring the state of the pipeline and reporting back on any
errors and problems that can occur during the processing.

Due to the limited work done by the CPU on the actual data, the CPU/GPU bound-
ary is crossed only twice and the data stays on the GPU for the majority of the process-
ing and only the final averaged and scaled filterbank product is sent back to RAM to be
saved to disk and sent for further processing. The initial version of the pipeline utilised
a more monolithic approach, where the single pulse processing was embedded into the
pipeline and the data stayed on the GPU the whole time. This approach was however
abandoned to allow for greater flexibility in terms of search backends. This means that
different software can be used to process the data, e.g. a pulsar search software can
now be used instead of the single-pulse search pipeline if needed and if it supports
the data format used by the pipeline. More modular approach also resulted in a less
complex pipeline design, which made it easier to track and fix any possible bugs in the
code.
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Figure 3.2: Basic components of the PAFINDER pipeline. Dashed lines represent boundaries
where the data has to be copied from the host memory to device memory and vice versa.
Single-pulse search part of the pipeline is performed using the first Stokes parameter only - the
absolute power, with the future plans to store raw voltages to enable full polarisation analysis.

Each stage has different processing and memory requirements and has to be care-
fully designed, benchmarked and optimised to achieve enough data throughput that
will allow for FRB surveys to be run in real time. Figure 3.3 shows all the memory
buffers used during the processing, including their memory requirements and whether
they are allocated on the host or GPU device memory. This proved to be one of the
most crucial and challenging steps in the pipeline design process. The size of each
buffer, its role in the processing and the arrangement of the data had to be carefully
considered and implemented to make sure we efficiently used our resources and in-
troduced as little complexity as possible. As the buffers further down the processing
line depend on the input they receive from the earlier parts of the pipeline, it is also
important that we are able to move the data between them in an efficient manner and co-
ordinate all the code execution to prevent the data corruption and stalls caused by data
races. The correct ordering of the data and execution of various parts of the pipeline
is achieved with the help of multiple techniques, depending on the requirements of the
processing stage and described in more details in the following sections.
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Figure 3.4: Header of the CODIF data frame. Highlighted in green are the parts that are crucial
to running the pipeline and recalculated for every packet received. In yellow are parts that are
used during the processing, but do not change during or between the pipeline executions and
are therefore hardcoded. Credit: CSIRO Astronomy and Space Science

3.2.1 Receiving the Data

The data for a single beam arrives on 6 network ports, each receiving channels from 8
FPGAs. A CSIRO Oversampled Data Interchange Format (CODIF) has been designed
and implemented specifically for the task of transporting the data from the ASKAP
Phased Array Feeds. Each packet contains a 64 byte-long header, shown in Figure 3.4,
followed by a data frame containing 128 time samples for each one of the 7 channels,
shown in Figure 3.5. Each time sample contains two polarisations and each polarisa-
tion is composed of two complex parts, resulting in the 32 bits per time sample per
polarisation - 64 bits for a complete time sample that has to be received and processed.
With 6 ports, 8 FPGAs per port and 7 channels per FPGA, we receive the total band-
width of 336 MHz. Together with the high 16 bit sampling, this results in a combined
data rate of 25 Gbps per beam.

Only some information contained in the header is used in the processing, as shown
in green in Figure 3.4. Some fields, shown in yellow, do contain important informa-
tion, but they do not change when running the pipeline as part of the same system and
therefore can be hardcoded, which allows us to skip the explicit calculations of these
values and to speed up the processing. The most important variables that are used and
recalculated for every frame include the reference epoch, the number of seconds from
the reference epoch and the frame number within the current period, which combined
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Figure 3.5: Packing of the data into the CODIF frame. Each of the 128 time samples contains
data from 7 beamformed channels. Including the header, the size of a single data frame is 7232
bytes. Credit: CSIRO Astronomy and Space Science

together give us the absolute time of samples contained in the data block. The fre-
quency order is obtained from the FPGA ID, with each one of the 7 MHz wide blocks
assigned a unique number between 0 and 47 and obtained from the third and fourth
octets of the sender’s IP address. Having the arrival time and frequency of each data
block allows us to place these in the correct order in the receiver buffer. Additionally a
beam number is obtained at the start of the observation, as due to the networking and
compute node issues we cannot guarantee that nodes will receive data from the same
beam every time.

After the packet has been received, and time and frequency offsets have been calcu-
lated, the data are placed in a buffer, where they undergo the preliminary rearrangement
which puts them in the required time and frequency order. At the data receiving stage,
the pipeline uses 6 threads, bound to 3 CPU cores for optimum performance and low-
est possible packet loss. Having multiple threads saving the data to an array shared
between all of them can cause unexpected results to occur when not enough care is
taken to safeguard against the effects of data races. To avoid any problems of this kind,
the position of the data within the buffer is determined from the frame number and
the FPGA ID, which means that each thread uses only the portion of the buffer that
‘belongs’ to it and other threads do not write any data there. This removes the need for
any explicit blocking mechanisms, such as mutexes, which can incur a non-negligible
performance penalty and should be avoided at this crucial stage.
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To avoid too many expensive copies, the data is sent into the GPU memory for pro-
cessing in chunks of 128 or 256 data frames for each FPGA. With 128 time samples
per data frame, each 256 frame-long data chunk spans a time of ≈ 27.6ms. An addi-
tional buffer for keeping the track of received packets is used where each time sample
has a 64 bit atomic variable associated with it. After the data from a given FPGA is
received, the corresponding bit in this variable is set to 1, marking the data as received.
The data chunk is added into the consumer queue after at least 75% of all the FPGAs
have sent their data, i.e. at least 36 out of 48 bits that we consider are set to 1. This
allows the pipeline to work correctly even if large packet loss of 25% is present, which
can happen if the beamformer FPGAs are not initialised properly, but also ensures we
receive the majority of the data, which reduces the possibility of insufficient amount
of data and/or corrupted data. The end of the current buffer and the quarter of the next
buffer is checked for being filled to accommodate for any out-of-order packets. Any
packets that arrive after their buffer has been sent for processing are simply discarded.

After the producer thread which receives the data puts it in the queue, the thread
responsible for running the work on the GPU (‘the worker thread’) is woken up, as
shown in Listing 3.1. Access to the queue is protected by a mutex and a condition
variable. Wrapping the whole operation in a mutex means that only one thread can
modify the data queue at a time - if not protected this can lead to an undefined be-
haviour as the order of operations on the queue cannot be guaranteed. The condition
variable workready_ allows the thread waiting for the data to sleep when the queue is
empty and there is nothing to be done. It can then be woken up by the producing thread
with the workready_.notify_one() call. The working thread then resumes the operations
and checks whether the data has really been added to the queue (unexpected spurious
wakes, even when the queue is empty, are a possibility) and whether the pipeline is still
working (this is necessary to make sure the worker thread does not wait indefinitely
for the data after the processing is finished). The data is then copied into the GPU
memory - this is the last place the data is stored in the host machine’s RAM. The next
time the data ‘leaves’ the GPU and is copied back to the host memory is when the final
filterbank is ready.
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Listing 3.1: Mechanism for sending the data to the GPU for processing using a simple STL

queue protected by a mutex.

1 // Thread consuming the data

2 std::unique_lock <mutex > worklock(workmutex_);

3 workready_.wait(worklock , [this]{return (!workqueue_.empty() ...

|| !working_);});

4

5 if (working_) {

6 bufferinfo = workqueue_.front();

7 workqueue_.pop();

8 worklock.unlock();

9

10 // Thread producing the data

11 workmutex_.lock();

12 workqueue_.push(std::make_pair(hinbuffer_ + istream * ...

inbuffsize_ , refframe));

13 if (workqueue_.size() > 1) {

14 cerr << "WARNING: GPU is not keeping up with the work! (" ...

<< workqueue_.size() << ")" << endl;

15 }

16 workmutex_.unlock();

17 workready_.notify_one();

To avoid unnecessary copies, not the data, but the pointer to the position in the
buffer where the data is stored is placed onto the queue. This is necessary, as copying
the contents of the buffer has been found to be inefficient and did not meet the real-time
requirements during the testing. Passing the pointer instead of the actual data poses a
risk that if the GPU processing slows down, there might be different data in the buffer
by the time the worker thread copies the data to the GPU. To avoid this situation, the
receiver buffer is sufficiently large as to accommodate for a reasonably large stall in the
processing, which during multiple tests have been found to be as large as 0.5 s when
the GPU driver is restarted. The current implementation uses 32 buffers, combined
into one long ring buffer, meaning that the GPU processing can have an instantaneous
lag of more than 880 ms before the data starts being overwritten. During the extensive
testing, we found that in the most exceptional cases, there are less than 20 elements in
the queue at most and larger values (up to a few hundred) occur only during node or
network failure, at which point the processing has to be restarted anyway.
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Figure 3.6: Data representation after the unpacking.

3.2.2 Unpacking

The data is packed into the CODIF frame as shown in Figure 3.5. It has to be unpacked
and combined into single-precision, floating-point complex numbers, which can later
be passed into and processed by the CUDA cuFFT functions for calculating the FFT.
The data structure has an unfriendly stride of 7 64 bit words between the successive
time samples within the channel. This can cause problems with dividing the work
between the threads and extra care has to be taken to avoid non-coalesced memory
access (please see Section 3.4 for optimisation details of the unpacker kernel).

The single data stream is split into two, one for each polarisation. The data still
resides in a single array, but with each half of the array storing separate polarisation.
It is arranged in the order that maximises the performance of the processing stages
further down the line which allows for easier optimisation and is shown in Figure 3.6.
The data is arranged with the 128 samples from a single data frame, followed by all
the time samples for a single 1 MHz channel for a data buffer containing 256 time
accumulates. This is then repeated for all 336 1 MHz channels and both polarisations.
After the unpacking, the size of the output buffer is twice the size of the input buffer,
as the 16 bit values are cast into 32 bit single-precision floating-point numbers.

3.2.3 Filterbank

The process of creating the filterbank file is split into two stages: first a Fourier Trans-
form in the form of FFT is run on the incoming raw voltage to obtain the channelised
time series and then the data is ‘detected’, i.e. the total power is obtained. The result-
ing filterbank file can then be optionally time and frequency averaged, which decreases
the resolution, but can reduce the output data rate, therefore enabling faster processing
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and using less disk space when the data is stored offline. We run a batched version
of the FFT, where a large number of independent FFTs is run at the same time. A
complex-to-complex 32-point FFT is run on each of the 336 1 MHz channels. This
means that for 32 input values, we receive 32 unique fine channels. The structure of
the unpacking stage output buffer means that after the FFT we now have 4 output time
samples, 32 channels each, for every 128 input time samples next to each other.

The detection kernel is responsible for performing 3 main tasks: it removes the
unnecessary channels (oversampled channels obtained after the FFT of the original
32/27 MHz channels), as well as reducing the final number of output channels to 512)
and changes the frequency ordering, calculates the signal power and scales the data.
In the first step 5 channels are dropped for every 32-point FFT to remove the initial
oversampling. Currently we drop the first 2 and the last 3 channels and these values
can be changed if necessary, but tests have shown that this results in the best frequency
response. It is also necessary to change the frequency ordering in two cases. Firstly,
for the individual 1 MHz channels, the halves of the spectrum have to be swapped, to
place the negative frequencies in the right place. Secondly, after all the averaging is
performed, the original frequency ordering in the data array, with the lowest frequency
stored first, has to be swapped in order to follow the convention of placing the highest
frequency first and using the negative channel bandwidth. The first Stokes parameter,
the total power, is calculated for every time sample and channel - at this stage we lose
all the polarisation information, as two polarisations are combined. An implementation
that calculates all 4 Stokes parameters has been developed and tested in the past, but
it was decided to use only the total power during the commissioning and first science
observations.

A future upgrade to the pipeline has been drafted that will add the ability to store the
raw data in memory as it is originally packed inside the CODIF data frames and save
it when an FRB candidate is detected, making the calculation of all Stokes parameters
unnecessary and making it possible to fully extract polarisation information during the
post-processing. It is however impossible to implement this solution at the moment
because of the RAM constraints, as the 30 s-long raw voltage buffer, the minimum we
need to be able to store 14 s of data and allow for 14 s of processing, requires 180 GB
of RAM for two beams, where only 128 GB is available on each compute node. One
possible solution is to truncate the incoming data from 16 bits per sample down to 8
bits, but this can lead to the considerable loss of signal and will have to be investigated
further, once the changes to the frontend gain levels are finalised and tested.
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In the final step of the detection stage the power is averaged, both in time and
frequency, resulting in the final time resolution of 54µs and the frequency resolution
of 0.59MHz. Having the time samples next to each other, we can easily average in
time first, and then in frequency. The frequency-averaged filterbank has 567 frequency
channels, but that value is truncated to 512 in the final output filterbank. We drop
28 channels at the bottom of the band and 27 at the top, which allows us to discard
frequency channels where the bandpass starts to drop off significantly, as can be seen
in the top left panel of Figure 3.7. Removing 55 channels therefore results in the total
bandwidth reduction from 336MHz down to 303MHz - a close to 10% loss. This is
however necessary, as a lot of processing software has been written and optimised
to work the best with power-of-two number of channels and some can even fail for
various reasons, such us memory alignment requirements, when this condition is not
met.

3.2.4 Scaling

The data has to be then scaled in order to reduce the dynamic range, and fit it into an
8 bit number, which means all of the power values have to be brought down into the
range between 0 and 255. This is achieved by applying a simple scaling operation

xO
c,t =

⌊
xI

c,t− x̄c

σc
×24.0+64.5

⌋
, (3.1)

where xO
c,t and xI

c,t are the output and input values for channel c and time sample t,
x̄c is the mean for the channel c, σc is the standard deviation and b. . .c is the floor
operation. After this scaling is applied, the data has a mean of 64 and a standard
deviation of 24. A number of time samples with values outside the desired range will
always be present. In such a case, they are simply clipped and set to the minimum
or maximum allowed value. The effect of scaling on the bandpass and the range of
input and output values can be seen in Figure 3.7. We can see that both the scaled
and unscaled data values follow an approximate normal distribution, with the unscaled
distribution having a longer tail towards low values caused by the bandpass dropping
off at the edges. The excess of 0’s in the unscaled values’ distribution is caused by
the channels with missing data, which in turn results in a sharp increase in the scaled
values’ distribution around 0, as whenever there is missing data, these channels are
automatically set to 0 in the scaled version. This slightly disturbs the properties of the
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Figure 3.7: The effect of scaling on recorded signal. In the bottom right panel in red are shown
properties of the distribution with missing data channels included and in green with missing
data channels removed.

distribution, as can be seen from a slightly lower mean and higher standard deviation
for when all the 0’s are included compared to when they are removed, when the mean
and standard deviation are closer to the expected values of 24 and 64. The number of
0’s introduced due to clipping of low values is relatively low and corresponds to only
5% of all 0’s in the scaled distribution, meaning that the excessive clipping will not
disturb the data.

The scaling factors σc and x̄c are obtained by calculating the running mean and
variance at the start of the observation, for the amount of time specified by the user
during the startup. In most situations mean and variance can be calculated using a
‘naive’ approach of double-pass algorithm, where the mean of the data is calculated
first and then the variance of the sample of size N is obtained from

σ
2 =

∑
N−1
i=0 (xi− x̄)2

N−1
, (3.2)
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with the standard deviation defined as the positive square root of this value. The
‘double-pass’ nature of the above algorithm means that each data point has to be ac-
cessed twice: first to calculate the mean and then the standard deviation itself and does
not allow for running variance calculation. By expanding the above equation we can
obtain a simple expression for a single-pass algorithm,

σ
2 =

N ∑
N−1
i=0 x2

i −
(

∑
N−1
i=0 xi

)2

N (N−1)
. (3.3)

In this case we can simply accumulate the sum and the sum of squares of the values
in the data as they come in and obtain the final variance when the last required time
sample has been received, removing the need to store all of the data. Even though
mathematically simple, it cannot be used reliably in numerical calculations as it is
prone to catastrophic cancellations where not enough precision is available when sub-
tracting two very similar numbers, especially when these numbers are large. This is
the case for this pipeline, as after the averaging the power is at the level of 109−1011

and the values within the channel are similar. Using this approach can then lead to
unreliable and often mathematically wrong results, such as negative variance - which
by definition should always be a positive number.

As we are dealing with large numbers and the running mean and variance approach
is preferred to achieve the best performance, this stage of the pipeline uses Welford’s
algorithm (Welford, 1962) combined with the generalised pairwise algorithm (Chan
et al., 1982). Welford’s algorithm can be used to calculate the mean and standard
deviation in a single pass and is much less prone to the errors described above. With
both mean and standard deviation set to 0 at the start of the calculations, adding the
nth value from the data set allows us to update new values for the mean, x̄ and standard
deviation σ using

x̄n = x̄n−1 +
xn− x̄n−1

n
, (3.4a)

Sn = Sn−1 +(xn− x̄n−1)× (xn− x̄n) , (3.4b)

σn =

√
xn

n−1
, (3.4c)

for n in the range 1≤ n≤ N−1, where N is the total number of samples.

The parallel generalisation of this algorithm allows for the problem of computing
mean and variance of a large number of samples N to be split into smaller problems,
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using subsets of the original data stream. First, simple sum T and the sum of the square
of differences S for the subset of data between the ath and bth samples are defined as

Ta,b =
b

∑
i=a

xi, (3.5a)

Sa,b =
b

∑
i=a

(
xi−

1
a−b

Ta,b

)2

. (3.5b)

With N then divided into subsets of sizes m and n, where n+m = N, the total mean
and variance can be obtained by combining the partial values for each of the subsets
from

T = T1,m +Tm+1,m+n, (3.6a)

S = S1,m +Sm+1,m+n +
nm
N

(
T1,m

m
−

Tm+1,m+n

n

)2

, (3.6b)

x̄ =
T

m+n
, (3.6c)

σ =

√
S

m+n−1
. (3.6d)

The parallel implementation of the running variance algorithm can have two uses.
Firstly and most importantly, by using it we can easily combine the means and stan-
dard deviations calculated for each data chunk into values covering the N time samples
requested by the user. In this case we simply use the updating formula in Equation 3.6
to combine the mean and standard deviation of the current chunk with the results of
previous computations. This means the scaling factors can be calculated for an ar-
bitrarily large number of time samples without the need to store the whole buffer of
interest, which can span many seconds and use a substantial amount of memory, allow-
ing us to store only the calculated mean and standard deviation after every iteration.
Secondly, if necessary we can use it to speed up the computation of variance and mean
for a chunk of data, distributing the work between the threads on the GPU and then
combining pairs of results, halving the number of threads doing the work after every
iteration.

The scaling factors are used throughout the whole observation, which can have
a negative impact on the data in the presence of the gain drift or ‘corrupted’ scaling
factors if strong RFI is present in the first few seconds of the observation chosen for the
scaling factors calculations. Previous tests, run with offline scaling factors calculations,
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have shown that they do not change dramatically over the course of many hours of
observations when calculated every ∼4 minutes. If necessary, a future update can be
easily implemented that will recalculate the scaling factors in the pipeline every few
minutes and make it more resilient to changing RFI environment.

3.2.5 Detection

As described above, after the filterbank stage the data is copied back from the GPU
into the RAM buffer. The copied buffer has a large number of time samples, typically
217 or 218, which corresponds to 7.1 and 14.2 s of data respectively. This data is copied
into a DADA shared memory buffer4, which can have multiple programs attached to it
that read and process the data. Our pipeline uses the Heimdall single-pulse detection
software5, which relies on the standard boxcar filtering, as described in Section 2.2.3
is used to search the data for any burst candidates. As already mentioned, the use of
the DADA buffer means we can attach any program that supports this kind of data
format to it and efficiently swap the processing backends, e.g. to enable pulsar timing,
if necessary. We also connect the reading software dada_dbdisk, which is used to
save the data from the buffer to the disk in case any additional offline processing is
required.

The single pulse search pipeline generates a number of candidate files, which con-
tain a number of parameters describing the detected events, the most important ones
including the signal-to-noise ratio, the time of the event, the DM for which the S/N
was the highest and the beam number in which the event was detected. This informa-
tion can later be used to correlate the candidate lists from different beams to exclude
events detected in more than a certain beam threshold and therefore reduce the number
of false-positives caused by RFI. An example plot showing data for 13 beams from the
observations of RRAT J1819−1458 (please see Chapter 4 for the details) is shown in
Figure 3.8.

As the vast majority of candidates are false-positives, additional plots are generated
for each of the candidates that help to establish their true nature. There are 4 plots
per candidate generated and these are shown in Figure 3.9. First one is the simple
dedispersed time series, which is usually not enough to establish whether the signal is
a real detection or was caused by RFI. This distinction can be made from the presence
of a dispersion curve and therefore the remaining three plots contain the data that

4http://psrdada.sourceforge.net/
5https://sourceforge.net/projects/heimdall-astro/
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has been not dispersed at all or dispersed only partially. The original filterbank is
first time-averaged, so that the averaged burst has a width of 4 time samples. The
same filterbank is also partially dedispersed into 16 subbands to increase the S/N of
any potential signal. The last plot is the combination of the previous two: partially
dedispersed and time-averaged data. Figure 3.9 illustrates why additional plots have
to be used to examine the candidates with even the highest reported S/N as they can
easily turn out to be caused by RFI. With these plots a more informed decision can be
made on which candidates should be examined further and which can be discarded.

3.3 Deploying on the Cluster

The pipeline is launched and managed on multiple nodes with the help of Bash scripts.
The core processing components are built inside Docker6 images, which allow us to
quickly deploy the software across a large number of compute nodes and efficiently
apply any upgrades or bug fixes by simply rebuilding a single image containing the
new code and distributing it amongst all the processing nodes. The launch procedure
creates a number of configure files which serve as input to the individual pipelines
allowing us to quickly respond to any hardware failures and limit the disruption by
restarting the processing only for the affected beams.

Initially, each individual pipeline was designed to start the receiving and subse-
quent processing as soon as the beam and current reference epoch, seconds from refer-
ence epoch and frame within the period were obtained by one of the receiver threads to
serve as an entry point. This was found to cause problems, as there can be a difference
of up to 10 s between the first and last launched beam processing. This complicated the
coincidence procedure as all of the times in the candidate files had to be offset to start
at the same point in time, causing problems when converting back to the time within
a given filterbank. Rounding errors in both steps could introduce an offset of up to
500ms from where the candidate was originally reported to be, effectively removing
possible candidates in the additional diagnostic plots.

To remove the need for introduction of any inter-node communication, such as
MPI, a much simpler solution was implemented. During the launch procedure, before
any Docker container is started, a Python script is started as a daemon. This supervisor
collects the information saved into a file by each of the pipelines about the time of the
first received frame. After all of the beams report back, the highest common start time

6https://docker.com/
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(a) Dedispersed time series. (b) Time-averaged filterbank.

(c) Filterbank dedispersed into sub-
bands.

(d) Same as (c) but also time-
averaged.

(e) Dedispersed time series. (f) Time-averaged filterbank.

(g) Filterbank dedispersed into sub-
bands.

(h) Same as (g) but also time-
averaged.

Figure 3.9: Additional PAFINDER candidate plots. The top four panels show a candidate
detected at a DM of 545.394pccm−3 , with a S/N of 27.6. Closer examination showed it was
caused by the burst of RFI. The bottom four panels show a confirmed single-pulse detection
with the S/N of 7.8, with a dispersion curve clearly visible in the bottom right panel. This shows
we cannot rely on just the single-pulse detection logfiles and have to examine the candidates
individually. The time samples are on the horizontal axis and the channel numbers on the
vertical, with the highest frequency channel on the top.
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is chosen and a time buffer of 50,000 frames is added, which corresponds to ∼ 5.4s
and the information is saved into a file, which is then read by each of the processing
nodes. The pipeline then waits until that start time is reached and all the beams can
start adding the data to the buffers and processing it at the same frame.

The state of the processing for every beam, including any errors, is saved into
log files. Due to a large volume of information, especially during long observations,
a monitoring software has been written in Python that combines all the information
collected by all the pipelines into single, simple GUI. It allows us to quickly assess the
state of the pipeline and react to any errors that may occur during the processing. An
example output of the monitoring software is shown in Figure 3.10. The information
collected includes the number of warnings generated by each beam processing, which
are raised when the GPU cannot process the data in real time and there is more than one
element present in the producer-consumer queue, and when there are discontinuities
in the time frames of the buffer being sent to disk/further processing, which indicates
large packet loss and problems with the networking. Crucially, information on errors
is also collected, which are always an indication of more severe problems and are
raised on two occasions: when the size of the producer queue exceeds the number of
independent buffers in the receiver ring buffer, meaning the pipeline is overwriting the
data, and when the time between subsequent large filterbank data chunks is longer or
shorter than is should be, which again is usually a sign of severe network problems or
when the processing on the GPU stops completely, which can be caused by someone
else running a computationally-intensive job. When the real-time processing part of the
pipeline is enabled, the user can also get the information on how fast the data is being
processed, with green bars indicating real-time processing, yellow less than 1.1 times
real-time, orange less than 1.25 time real-time and red for all the values above 1.25.
This is crucial information as the amount of time spent on the single-pulse processing
is heavily dependent on the number of candidates detected and can vary significantly
between beams and sources observed, e.g. during pulsar observations, the central beam
is expected to have a larger number of detections and spend more time on processing
than the outer beams or when and empty patch of sky is observed during FRB surveys.
If the real-time processing requirement is not met for long enough, this will eventually
lead to the intermediate DADA buffer not being emptied fast enough and the pipeline
being stalled until next filterbank chunk can be placed into this buffer.
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Figure 3.10: Pipeline monitoring software. The horizontal axis shows NUMA nodes num-
bering, following the convention (compute node ID)_(NUMA node ID). A large number of
errors can be seen on both NUMA nodes of processing node 8 in panels on the left. This was
caused by hardware problems on this node and this output helped us to identify the problem.
A relatively large number of warnings on all nodes is caused by the GPU filterbank processing
slowing down when the single-pulse search algorithm is running and the data queue has more
than one element. In a future software iteration, the warning condition will be relaxed and will
be issued only after the queue size exceeds half of the maximum allowed value.
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3.4 Tests and Benchmarks

All of the benchmarks were run on the same node, with setup as shown in Table 3.1
and using a single GPU only. Various parts of the pipeline were profiled using the same
simulated dataset, simulating 128 data frames for each of the 336 channels. The current
version of the pipeline processes data in chunks of 256 data frames, but the results
of benchmarking apply to a broad range of these values as the execution times were
found to scale linearly within a considered range and therefore the achieved speedup
will remain the same.

3.4.1 GPU Kernels Optimisation

Listing 3.2: The optimised and final version of the unpacking kernel making use of shared

memory to avoid non-coalesced accesses to global memory.

1 \\ Read the data into the shared memory array

2 for (int ichunk = 0; ichunk < 7; ++ichunk) {

3 line = ichunk * blockDim.x + threadIdx.x;

4 chan = line % 7;

5 time = line / 7;

6 accblock[chan * NSAMP_PER_PACKET + time] = in[skip + line];

7 }

8

9 __syncthreads();

10

11 \\ Move data from shared to global memory array

12 for (chan = 0; chan < NCHAN_PER_PACKET; ++chan) {

13 polint = accblock[chan * NSAMP_PER_PACKET + threadIdx.x].y;

14 cpol.x = static_cast <float >(static_cast <short >( ((polint & ...

0xff000000) >> 24) | ((polint & 0xff0000) >> 8) ));

15 cpol.y = static_cast <float >(static_cast <short >( ((polint & ...

0xff00) >> 8) | ((polint & 0xff) << 8) ));

16 out[outskip + threadIdx.x] = cpol;

17 ...

18 }

Unpacking. Initially the unpacking was designed to be run on the CPU. As each
packet contains 108µs of data and signals from 8 FPGAs are sent to a single port,
the whole receiving operation, including reading of the data from the network card,
unpacking it and putting into a buffer, has to take less than 13.5µs. At the early stages



76 CHAPTER 3. PAFINDER - PHASED ARRAY FEED FRB FINDER

of the development, it was the receiving thread that was also responsible for the task
of unpacking and saving the data into the first-stage buffer in the already unpacked
state. This was the only time the unpacking and subsequent benchmarking was done
on per-packet basis and not using the large data buffer described at the start of this
section. Initial tests showed that the unpacking part implemented in such a way could
not be run in real time, with the processing time close to 25µs - almost twice the
required maximum processing time of 13.5µs. This was the case even after the CPU
code was optimised with the help of the Intel vectorisation instruction set. At that point
a decision was made to move the unpacking to the GPU.

As shown in Figure 3.5 the data is packed in such a way that can cause problems
with non-coalesced memory accesses on the GPU. The non-coalesced memory access
occurs when the threads within a warp read from memory addresses that fall into two
separate cache lines. This most commonly happens when two threads access non-
neighbouring memory addresses. The performance hit varies between the GPUs with
different architectures and has been lower in recent years, but it is still advisable to
coalesce the global memory accesses as often as possible. Using the simple approach
either writes or reads to the global memory during the unpacking in a non-coalesced
manner, resulting in the suboptimal performance. To avoid this, the first GPU imple-
mentation was using texture memory and is used as a baseline for our benchmarking
purposes and in Figure 3.11. Texture memory uses the same memory pool as the usual
data stored in the GPU, but different array addressing techniques allow for increased
data locality, but the memory addresses the threads read from are still required be close
together to achieve the best performance. In principle, this could reduce the penalty
imposed by the non-coalesced memory accesses, but the practical limits depend on the
intended use and can vary greatly.

The second implementation removed the texture memory in favour of the shared
memory. Unlike the texture memory, shared memory is separate from global memory
and placed directly on the chip. That means it can offer a much higher bandwidth than
the global memory. However, it comes at a price of reduced size - only 64KB of shared
memory are available on most chips nowadays, compared with multiple GB of global
memory. Shared memory therefore has to be used sparingly and carefully. Its main
benefit in our case is that it does not have the same memory coalescing constraints as
the global memory. The common scheme, used in this kernel optimisation, is to load
the values from the global memory in the coalescing manner into a shared memory ar-
ray, and then save them into the global memory in the coalescing manner again. At any
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of these stages, the neighbouring threads can read from non-neighbouring addresses
in shared memory and all that matters is that they access neighbouring addresses in
the global memory. Even though this generally increases the number of operations,
the penalty they introduce is greatly outweighed by the performance gains from the
properly implemented memory access scheme. The partial implementation of the un-
packing GPU function is shown in Listing 3.2. In the first for loop, the threads read
the 64 bit words from the incoming data buffer in order as they appear in the global
memory array. However, when they are saved into the shared memory array they are
arranged in a uniform order with channels in the outer dimension and time in the inner
dimension. The second for loop is then used to extract the relevant information from
the shared memory array and to save the data into the global memory. In this case, the
threads save to the neighbouring addresses in the global memory. An important feature
is the __syncthreads() call. It is placed to ensure that all threads within the block reach
the second for loop at the same time. As described in Section 2.4 all threads within a
warp with 32 threads run in the SIMD fashion, but not all warps in the block have to do
so and therefore __syncthreads() is used as a barrier to ensure all the threads are done
saving the data into the shared memory array before any reads from it occur. Updating
the processing to use the shared memory shows significant improvements in perfor-
mance, resulting in the code running ∼2.5 times faster than when the texture memory
was used.

Additional optimisations concerned the use of variables passed as function param-
eters versus hardcoded as #define statements and changing the way the input array is
handled. In the original shared memory code, the array was passed using a pointer to
an unsigned char which was later cast to int2 - a 64 bit integer structure with x and
y components for every array element. In the final version of the unpacking kernel,
the array is passed using a pointer to int2 straight away. Together with the hardcoded
values, this results in a negligible increase in performance (2.58 speedup up from 2.57)
that can be attributed to measurement uncertainties. Nevertheless this version of the
optimised kernel is used in the final pipeline implementation.

Filterbank. The part of the code responsible for obtaining the absolute power of
the signal and time and frequency averaging also sees great improvements with the
use of shared memory. The original version was using a stride that was causing a
non-coalesced memory access on either the input or output data. It was also ineffi-
ciently using the data when trying to truncate the fine number of channels, obtained
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Figure 3.11: Unpack kernel benchmarking. 2.5 times improvement is seen when the the tex-
ture memory is replaced with the shared memory, despite the overall increase in the number
of memory operations. Additional optimisations, which allowed us to reduce the number of
variables passed into the kernel did not visibly improve the performance. Black vertical bars
represent errors.
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after running the FFT on the coarse ‘1 MHz’ channel, from 32 to 27. All the improve-
ments allowed for almost 25 time better performance, which put the filterbank part well
within the real-time pipeline requirements. The unoptimised version was not meeting
them and was 3–3.5 times slower than the real-time version should have been. This
was hidden by the use of multiple threads bound to multiple CPU cores and multiple
GPU streams running concurrently as shown in Figure 2.7. This solution introduced
a number of new challenges in the form of processing synchronisation between the
different streams and updating the scaling factors which now had to be protected by
a mutex. The inefficient use of the available power also meant we were causing the
GPU to do more work than necessary and waste the processing cycles. The optimised
version helped us to make better use of the available resources and allowed us to redi-
rect the freed processing cores and memory to other parts of the pipeline, such as the
single-pulse detection.

Another important question was whether the introduction of scaling and reversing
the frequency ordering would introduce any significant penalties (the scaling factors
are stored in the global memory). As can be seen in Figure 3.12, only a marginal
performance hit is observed after the introduction of scaling. Adding the frequency
reversal also does not change the processing time significantly. Using a smaller number
of channels introduces no significant speedup, as for the most part all 567 channels are
processed - it is only the final averaging, which is the least intensive procedure from a
computational and memory use point of view, that is performed on a smaller portion
of the data. Overall, adding additional steps to the optimised filterbank kernel does not
alter the performance in any significant way and they can therefore be used without
loss of the real-time processing capabilities.

Scaling. The main drawback of Welford’s running variance algorithm is the ap-
parent number of division operations for calculating the mean. Equation 3.4a uses
the current number of samples to obtain the estimate of the new mean and subse-
quently standard deviation. In a simple interpretation, this means dividing through
by a new value for every loop iteration, which in the case of the code shown in List-
ing 3.3 will result in 2 * NACCUMULATE (256 or 512, depending on the pipeline setup)
divisions. Floating point division is much slower than multiplication and should gen-
erally be avoided and replaced with multiplication whenever possible. In the case of
this kernel, we use a simple approach of pre-calculating the multiplication factors us-
ing a short GPU function that is run during the pipeline setup and runs concurrently
with the CPU, where normally the GPU would be inactive. We can then replace the
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Figure 3.12: Power kernel benchmarking. This kernels sees the greatest improvement after the
optimisation with almost 25× increase in performance. Additional operations, such as scaling
and reversing and truncating the frequency channels did not results is any detectable perfor-
mance changes and are well within the error bars, meaning they were not as computationally
intensive as the parts optimised at the beginning.
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division with multiplication, as implemented in Listing 3.4. This has a visible effect
as shown in Figure 3.13 with the multiplication-based version running almost 4 times
faster than the one making use of division. Overall, the best performance that we reach
with the double-pass algorithm is almost identical to the single-pass case and we reach
the real-time performance requirements in both cases. In this case there is no clear
benefit of touching the data only once, as the benefits of the lower number of memory
accesses are offset by the increased number of operations performed in order to obtain
the estimate of mean and variance. The running single-pass algorithm is nevertheless
still the best choice, as it allows us to calculate the mean and variance independently
of the number of samples that have been requested and does not require the pipeline
to store any long pieces of data, which would have been required with the use of the
double-pass algorithm and also provides the necessary numerical stability.

Listing 3.3: Running mean with division

1 for (int isamp = 0; isamp < 2 * NACCUMULATE; ++isamp) {

2 val = indata[isamp * nchans + threadIdx.x];

3 diff = val - chmean;

4 chmean += diff / (isamp + 1);

5 chestd += diff * (val - chmean);

6 }

Listing 3.4: Running mean with multiplication

1 for (int isamp = 0; isamp < 2 * NACCUMULATE; ++isamp) {

2 val = indata[isamp * nchans + threadIdx.x];

3 diff = val - chmean;

4 chmean += diff * factors[isamp + 1];

5 chestd += diff * (val - chmean);

6 }

Real-time detection. Once the pipeline was confirmed to produce the data in real
time it was crucial to test the real-time detection capabilities. As mentioned previously,
the pipeline uses Heimdall single-pulse detection software connected to the DADA
buffer for single-pulse searching. Additional software, dada_dbdisk, is also connected
to the same buffer and used to store the data to disk for further examination. The
time spent on the processing is heavily dependent on and increases with the increasing
number of candidates. Two extreme scenarios were therefore tested. First, the data was
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Figure 3.13: Scaling factors kernel benchmarking. A clear performance hit is visible when the
single-pass algorithm is used in its most basic form with division. Using multiplication brings
the performance up back to the original level.

taken when pointing at a bright pulsar. B0355+54 (J0358+5413) was selected as it is
one of the brightest pulsars in the northern hemisphere at the frequency of 1400 MHz
(Teoh, 2015), with a flux density of 23 mJy (Lorimer et al., 1995). This pulsar has a
period of 150 ms, which means that multiple candidates can be expected in every buffer
processed, which can slow the processing down. The example buffer from the DADA
buffer saved to the disk is shown in Figure 3.14. This allows us to validate that there
are no significant missing portions of the data, the buffers are not corrupted/overwritten
and the data is stored in correct order in both time and frequency dimensions.

Figure 3.15 shows the results of tests from two pointings: one with the pulsar in
the field of the central beam and the second one pointing at the empty patch of the
sky. It can be clearly seen that when the pulsar is observed, the number of detected
individual pulses causes the pipeline to slow down significantly and the real-time pro-
cessing constraints are only met for 3 out of 7 beams. Most importantly, the central
beam which, as expected when the correct beam weight are obtained and the observed
source is in or near the middle of the central beam, has most of the detections, lags
behind more than all the other beams from the inner ring and in the best-case scenario
is still around 2 times slower than the real-time requirement. The situation changes
when the receiver is pointed at the empty patch of the sky with no known pulsars that
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Figure 3.14: B0355+54 data as recorded using the real-time pipeline. Six individual pulses
can be seen. Plotted in red are the expected dispersion curves for this pulsar, separated evenly
by the period of the pulsar and placed to the left to the darker dispersed pulses actually recorded
by the pipeline. The separation and shape of the pulses shows that the recorded data is indeed
correct. The white horizontal line close to the middle of the band is caused by the missing data
from one of the FPGAs.
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Figure 3.15: Real-time processing comparison for two pointings: one with a pulsar in the field
of the central beam and the other with all the beams pointed at the empty patch of sky. The
green dashed line represents the processing time limit required for real-time processing - all
of the measured times would ideally be below that line for real-time processing. Real-time
performance can be reached for beams which do not have too many single-pulse candidates.
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would result in a large number of candidates. Although the beams in the inner ring do
not have their data processed much faster - the number of candidates was not expected
to drop significantly, the situation is most improved for the central beam. Now the data
from all of the beams can be processed faster than it is produced, meaning the pipeline
can detect single pulses in real time. It is important to note that even in this case, the
average processing time meets the requirements by a small margin. This means that a
sudden burst of candidate detections, caused for example by bright RFI, can increase
it above the allowed value and eventually bring the pipeline to a halt as it will not be
able to drain the buffer fast enough.

As the pipeline is run as two separate processes, one producing the filterbank data
and the other one running the detection, sharing the same GPU, we can use existing
resources that could have the potential to speed the pipeline up. One such solution,
NVIDIA Multi-Process Service (MPS) enables a better resource management when
different processes are run on the same device, and schedules the device code to be
executed concurrently. Better sharing of the available resources should improve the
processing time, as currently only around 45% of the available processing power is
used when the data production and processing parts run concurrently. The deployment
of the MPS was not possible during the tests described above, as it was not supported
by the NVIDIA Docker software installed on the cluster and will be tested in the future.

Another option is to carefully tune the dedispersion and search parameters. Simply
increasing the step between the trial DM values used during the dedispersion stage can
have a large impact on the processing speed as it reduces the number of the dedispersed
time series that later have to be examined for the presence of any bursts. This however
can come at the cost of decreased accuracy and lowered sensitivity and has to be care-
fully evaluated. The pipeline can also be configured to stop the single-pulse search for
a given time period if the number of candidates exceeds a predetermined value. This
can help to avoid problems where there is an increased presence of RFI in the data, but
if the threshold is too low, this can lead to the genuine candidates being thrown away
as well.

3.4.2 Data Quality Tests

Network performance tests. Receiving the data in full is the most crucial part of the
pipeline. We have to make sure that the data loss due to the insufficient processing
power is kept as low as possible. As mentioned in the description of the unpacking
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Figure 3.16: Network performance tests results. This test is used to detect any problems with
packets loss, as can be seen for port 17103. The use of Mellanox VMA, which is generally
meant to increase the performance of network applications, but is difficult to configure properly
for multi-threaded applications, running on NUMA-aware systems, introduced even greater
packet loss and was abandoned after the testing.

optimisation, this cannot be achieved in real time by the thread responsible for receiv-
ing the data. The amount of work done by the receiving threads has to be limited to
ideally just placing the data in the right buffer. We have run a series of tests to deter-
mine the optimal resource allocation to this first stage of the pipeline. As mentioned
above, we use 6 threads bound to 3 physical CPU cores in order to reach the optimum
resource utilisation and low packet loss. A smaller number of CPU cores, i.e. 2 cores
with 3 threads bound per core, results in significantly increased packet loss. At the
same time, using a larger number of cores does not show any evidence of significant
improvements in the received data rates, meaning they can be assigned to other parts
of the pipeline.

Figure 3.16 shows the results of one of such tests, run during the early design
stages, where the data was delivered across 8 ports. This test, run on the older version
of the network setup revealed a number of problems, such as an uneven performance
depending on the port number (e.g. the dip in the received packet count for port 17003
in Figure 3.16) and the occasional loss of signal from random FPGAs, resulting in the
loss of 7 MHz frequency bands. A number of different techniques that often improve
the network performance were considered. One of them was the Mellanox Messaging
Accelerator (VMA), which implements a kernel bypass to speed up the packet delivery
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Figure 3.17: Tone sweep test results. With the signal moving through single 1 MHz frequency
channels, we can validate the channel ordering and also easily detect any failed FPGAs, mani-
fested as the breaks in the straight black line.

- it removes the relatively slow Linux kernel network packet handling and allows for
the direct access to the data on the network card. It was however found that introducing
the VMA resulted in a much higher and uneven packet loss, close to 80% in certain
situations, as can be seen in Figure 3.16. Further tuning and tests showed that our
pipeline would not benefit from this technology. Another approach considered was the
use of asynchronous processing in the form of the Boost.Asio library. This was caused
by the fact that our software does not see much benefit from concurrent processing
when waiting for the receive operation to complete - we need to receive the data to run
the necessary calculations for putting the data into the buffers.

Tone sweep tests. It is also crucial to confirm the right order of the frequency
channels in the produced filterbank files. This can be difficult if only small errors
are present, which may not be detected during regular pulsar observations. During
the development of the pipeline we used simulated data injected in the beamformers
to validate the correctness of the network setup and the subsequent processing steps.
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The beamformers were injecting strong signal into one 1 MHz channel at a time, for a
period of 1s, sweeping across the entire frequency band over a period of 336 s. This
allowed us to discover problems that otherwise went undetected, such as the need to
swap the positions of negative and positive frequencies in the single-channel FFT. This
kind of test also helps to easily identify any hardware problems, including broken
FPGA connections and networking problems, manifested as the empty bands of data,
as can be seen in Figure 3.17.

Scaling tests. During the initial observations, the filterbank files were saved with
32 bit, floating-point numbers used for every sample. If stored this way, the resulting
files would use 4 times more space than the scaled, 8 bit version and significantly in-
crease the processing requirements. In order to decrease the disk storage requirements,
files were scaled and combined into longer filterbanks outside the pipeline during the
initial commissioning with the help of additional scripts. The solution integrated with
the pipeline was preferred though. The approach to calculating the mean and standard
deviation during the outside processing was different to the one implemented as part
of the pipeline. It used a standard, double-pass algorithm. Such a solution is less than
optimal when used in the pipeline, due to time and memory constrains, as described
in Section 3.2.3. The correctness of the GPU implementation of the parallel algorithm
was tested using the scaled RRAT data. All of the central beam filterbank files were
processed to remove the scaling and restore the original power. At that stage, the un-
scaled data did not exactly match the original 32 bit files, due to errors introduced by
rounding, and underflow and overflow, but was a close approximation. At first, a quick
comparison of mean and standard deviation values obtained using these two solutions
offered a rough estimate of the correctness of the new algorithm. Figure 3.18 shows
the difference in distributions of power values obtained using the different scaling im-
plementations. It can be seen that they match each other, but do not result in perfectly
identical results, which can be expected from the numerical approximations introduced
by the Welford’s algorithm and the fact we were not using the original 32 bit powers.
The differences are however small and are not expected to have a negative effect on
the output data. To verify this, all of the filterbank files with new scaling were then
fed into the single-pulse search pipeline and the detections were compared to those
obtained with the previous implementation. Although small differences can be seen
in Figure 3.19, we were able to verify that both approaches allowed us to detect the
same pulses from the RRAT, with only small differences in the reported S/N, time or
dispersion measure.
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Figure 3.18: Comparison of the scaled data obtained using single-pass and double-pass algo-
rithms. The difference between filterbank files mainly results in small numbers, meaning both
files are scaled to similar values. Small differences can be seen in the averaged bandpass and
can be attributed to the way the scaling factors are calculated and the number of samples used
for these calculations.
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Figure 3.19: Comparison of single-pulse detections using data files obtained with different
scaling techniques. The inset in the upper panel zooms in on a DM region around the DM of
J1819− 1458. It can be seen that single pulses are detected in similar positions, with small
differences present in some places. These are however not expected to have any significant
impact on the performance of the pipeline.



Chapter 4

PAFINDER Observations

After successful confirmation of pipeline performance and data correctness during
multiple off-sky tests and initial commissioning runs, we were able to run a series
of observations with the receiver mounted on the Effelsberg telescope. These were run
between January 19th and 23rd 2018. They allowed us to identify possible problems in
the frontend and backend, which can develop over time. This can happen after main-
tenance and/or updates to both the pipeline code and the PAF management code. We
also developed a comprehensive test suite which can now be run before every observ-
ing run, which helps us to quickly and efficiently identify problems and fix them before
the scientific data has to be recorded. In the following sections we present the results
obtained during these observations, including the search for single pulses from known
sources, such as RRAT J1819−1458 and FRB121102 and looking for new Fast Radio
Bursts.

4.1 Metadata

The positions of the beams used during the observations were recorded in a separate
stream and used during the offline processing. The right ascension and declination of
every beam was saved once every second which enabled a nearly real-time monitoring.
In the event of burst detection we could then use this data to obtain the true position
of the source on the sky. This approach was preferred during the initial testing and
observations for two reasons. First, only the central beam had a constant right ascen-
sion and declination as the other beams are not able to rotate together with the sky and
therefore cross a range of angles - we therefore had to update their positions on a reg-
ular basis in case it was necessary to go back and recalculate them. The second reason
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is directly connected to the first one, as the SIGPROC filterbank file format used for
data storage does not support changing (right ascension / declination) and (azimuth /
elevation) position values, which does not allow us to reliably store these changes in
the file header.

4.2 System Temperature Measurements

To obtain an estimate of the system noise temperature Tsys and better understand the
properties of the receiver, we observed a compact source, quasar 3C286, on January
20th 2018. This allowed us to measure Tsys/η, the system temperature scaled by the
aperture efficiency, which quantifies the losses during the signal recording attributed
to various factors such as the dish illumination pattern and telescope surface errors. As
the efficiency is always less than 1 (it can be anywhere between 0.5 and 0.7 for modern
radio telescope (Baars & Swenson, 2007)), the measured values will be greater than
the true system temperature. Measuring Tsys/η gives us the chance to include all of
the receiver inefficiencies into a single value, which can later be used to calculate other
properties of the system, such as the system equivalent flux density (SEFD). Our source
of choice, 3C286, is found at a redshift of 0.85 and at a high galactic latitude of 80.7◦.

During the observing, a series of 1-minute long observations were performed, that
included all the beams pointed at the source and a reference point at a nearby empty
patch of the sky. Using the ratio of the on-source power Pon, to off-source power Poff

on the channel-by-channel basis and the definition of the Y-factor

Y =
Pon

Poff
, (4.1)

we were able to measure the system temperature Tsys scaled by the aperture efficiency
η over the entire operational band (Chippendale et al., 2015)

Tsys

η
=

AS3C286

2kb (Y −1)
K. (4.2)

In the above equation, A is the geometric area of the antenna (π× 502 ≈ 7854m
for the Effelsberg radio telescope) and S3C286 is the spectral flux density of our cal-
ibration source, 3C286. The positions of the individual beams on the sky have been
verified using the metadata, as described in the previous section. The spectral flux
density, S3C286 was derived using the following fitted equation and coefficients (Perley
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Figure 4.1: Central beam on-source and off-source powers with scaling removed. The ratio of
these two powers measured for every beams is used to obtain the Y-factor and ultimately the
system temperature.

& Butler, 2017)

logS3C286 = a0 +a1 log fG +a2 (log fG)
2 +a3 (log fG)

3 , (4.3a)

a0 = 1.2481,a1 =−0.4507,a2 =−0.1798,a3 = 0.0357, (4.3b)

where fG is the channel frequency expressed in GHz. The modelled spectral flux
density of 3C286 was flat over the range of frequencies covered by the PAF receiver,
with the average value of 15.1 Jy. To obtain a reliable estimate of the on-source and
off-source powers, the scaling had to be removed from the recorded data to recover the
original signal. This step is important as any ratio obtained using Equation 4.1 has to
include powers that have their true 0 at 0, without any offsets introduced. To obtain
a reliable spectrum estimate, the data was accumulated for 30s, half of the total time
spent on the source by each beam. Such a period is long enough to avoid any significant
distortions to the measured power from the bursts of short-lived RFI and also short
enough to provide a margin for errors inside the log files and the metadata, and the
telescope still moving onto the source in the first seconds of the data acquisition. The
example on-source and off-source bandpasses for the central beam with the scaling
removed can be seen in Figure 4.1, with the signal clearly increasing when the beam is
pointing at the source as compared with to reference location.



94 CHAPTER 4. PAFINDER OBSERVATIONS

Figure 4.2: System temperature for the inner (top) and outer (bottom) ring of beams obtained
over our operational bandwidth with observations of quasar 3C286.
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Beam # 0 1 2 3 4 5 6 7 8
80.93 82.27 83.42 82.32 84.97 85.22 84.41 86.16 89.44

T̄sys/η [K] 9 10 11 12 13 14 15 16
88.01 100.38 93.28 94.96 87.54 90.35 88.09 87.93

Beam # 0 1 2 3 4 5 6 7 8
78.85 79.71 81.42 80.17 80.85 81.21 79.80 82.31 85.98

T̃sys/η [K] 9 10 11 12 13 14 15 16
84.78 101.17 89.52 94.91 85.44 87.02 84.88 86.00

Table 4.1: Mean T̄/η and median T̃/η system temperatures for all the 17 beams used during
observations.

The system temperature was then calculated using Equation 4.2 for 17 beams pro-
cessed during our observations, and can be seen in Figure 4.2. 3C286 has a confirmed
measured flat spectrum, therefore the spikes in the obtained system temperature esti-
mates cannot be attributed to inadequate modelling of changes in the flux of the source
across the frequency band itself. As described in Section 2.3.1, the set of beam weights
is generated for each channel separately and then combined ensuring a smooth fre-
quency response. The most probable explanation for the presence of the steep spikes
in the power spectrum and the system temperature values is RFI, which if sufficiently
strong during the beamforming procedure, can cause the set of beam weights to be
created and subsequently used that underestimates the power in some channels. Even
in the presence of these spikes and without removing them, the overall baseline and
trends in the behaviour in the system temperature can be clearly seen. Table 4.1 shows
the derived mean and median system temperature values for all the beams used during
our observations. Using these measured values, it is clear that for most of the beams
we have expected behaviour and the system temperature is consistent for beams in the
inner ring. It is however found to be less consistent for the outer ring of beams (beams
7 and above), with some obvious outliers, especially the beam number 10, which is
the only beam with a measured mean and median system temperature above 100K.
This can be an indication of problems with the beamforming procedure, which can
be affected by RFI, and might be reviewed in the future to provide a more consistent
response for all the beams. Using the average total aperture efficiency of 0.75 (Chip-
pendale et al., 2016), we measure mean system temperatures for all the beams in the
range 60–75 K, which is more than double the system temperature achievable with the
Parkes Multibeam system (Staveley-Smith et al., 1996).

We then use the approximate system temperature of 80 K for the central beam to
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calculate the system equivalent flux density

Ssys =
Tsys

G
=

2kBTsys

ηAg
= 28.13Jy, (4.4)

which is similar to the reported SEFD for the central beam of the Parkes Multibeam
system at 28.6 Jy (Manchester et al., 2001). This can be attributed to the larger collect-
ing area of the Effelsberg antenna (100 m vs 64 m diameter), which just about offsets
the negative effects caused by the higher system temperature.

4.3 RRAT J1819−1458 Observations

The sporadic nature of RRATs makes them perfect candidates for the single-pulse
detection pipeline tests, as for a number of them, multiple detections are expected every
hour, but unlike in the case of pulsars, they do not radiate on the scale of milliseconds
and therefore do not swamp the pipeline with a large number of candidates, which a)
slows the processing down as described previously in Section 3.4.1 and b) increases
the post-processing time if every pulse is examined individually.

To test the ability of the pipeline to detect single pulses, we have therefore chosen to
observe a well-known and bright source that emits sporadically - RRAT J1819−1458.
It is the brightest known RRAT at 1400 MHz, with the peak flux of 3600 mJy. It has a
moderate reported burst rate which varies depending on the period when the observa-
tions were performed. The first reported rate was 17.62h−1 (McLaughlin et al., 2006),
but more recent observations put this as high as 68h−1 (Keane, 2010). In both cases
the burst rates are large enough that we expect to detect a number of single pulses
even during a short observation, but small enough that we are not going to saturate
our processing pipeline due to the high number of candidates, as the single-pulse de-
tection algorithm used for the processing has the execution time increasing with the
number of candidates. The individual pulses of J1819− 1458 have also been found
to undergo changes on short timescales between individual pulses, which gave us a
chance to test out ability to detect the candidates from bursts of varying shapes and
energies. J1819− 1458 spends a limited amount of time above the horizon when ob-
served from Effelsberg due to its low declination. The ability to observe some objects
using the 100 m telescope can also sometimes be limited by the presence of mountains
in the close vicinity of the observatory, which limits the range of elevations to more
than 15− 20◦. Combined with various time constraints during the commissioning, it
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Figure 4.3: Single-pulse detections towards J1819−1458. In blue are all the pulses reported by
the pipeline, with the size of the crosses corresponding to the S/N. In red are pulses confirmed
with additional visual inspection.

meant this object was observed during a single 2 hour-long pointing.

4.3.1 Single-pulse Detections

We have processed all of this data with the single-pulse search pipeline in the offline
mode, looking for detections with the S/N greater than 7.5. In total, we were able to
detect 108 bursts, resulting in an averaged burst rate of 54h−1. Figure 4.3 shows all
of the single-pulse detections within the DM range of 180 and 220 pccm−3. Each
candidate was then inspected separately to reject false-positives by looking at the in-
dividual pulses they were found to correspond to, and the additional plots generated
for each candidate. Figure 4.4 shows a selection of single-pulse detections as seen in
these plots. Using the visual confirmation they provided, we were capable of easily
distinguishing between real detections and RFI, as well as identifying and removing
multiple detections of the same burst at different DM values and time samples. As
can be seen in the bottom 4 panels of Figure 4.4, we were able to detect single pulses
which would not normally significantly stand out above the noise level in the simple
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dedispersed time series plots and could be improperly rejected, and which become vis-
ible when the partially dedispersed and time-averaged dynamic spectrum is examined.
As can be seen in Figure 4.3 and the running burst rate in Figure 4.5, we did not de-
tect any pulses for the first few minutes of the observation and only two bursts were
detected in the first 10 minutes of the data. This unpredictable behaviour can result in
underestimated burst rates if short pointing times are used and happen to occur when
the RRAT is going through its quieter phase.

Using the system equivalent flux density of 28.13Jy as measured previously using
the Equation 4.4, we were able to derive peak flux densities for the detected pules from
the following equation

S = SNR
Ssys√
WnpB

Jy (4.5)

where SNR is the reported signal-to-noise ratio of the detected pulse, W is the width of
the pulse as reported by the pipeline, but limited to the integer power-of-2 boxcar pulse
widths, np is the number of polarisations (2 in our case) and B is the total bandwidth
of the system, 303 MHz when 512 channels are used. The bottom left panel of Figure
4.5 shows that the vast majority of pulses are found below 1000 mJy, but some of them
can be as bright as 2600 mJy. The overall shape of the peak flux density distribution is
consistent with values obtained previously (McLaughlin et al., 2006).

4.3.2 Timing and Profile Evolution

Our burst value of 54h−1 is higher than the values generally reported during differ-
ent observational campaigns. On one previous occasion, the increased burst rate was
found to be associated with a glitch (Keane, 2010). We have therefore checked for any
obvious signs of a recent glitch in our measured arrival times of individual bursts. With
more than 100 pulses detected for J1819−1458, we were able to obtain a good quality
timing solution and residuals. Initial results showed a significant deviation from the
predicted timing solution for some of the pulses, of the order of half of the 4.263 s
period. That was a strong indication that some of the detected pulses were obscured
by strong RFI rather than any systematic errors introduced by the presence of a glitch,
which is expected to introduce the same shift in the predicted arrival time for all of the
pulses. In total, we have identified 11 such pulses from which the RFI was removed by
flagging the offending channels and setting them to 0, and the correct pulse structure
was revealed. The timing residuals obtained after the offending RFI has been cleared
are shown in Figure 4.6. We do not find any evidence of a glitch happening during our
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(a) Dedispersed time series. (b) Time–averaged filterbank.

(c) Filterbank dedispersed into subbands. (d) Same as (c) but also time–averaged.

(e) Dedispersed time series. (f) Time–averaged filterbank.

(g) Filterbank dedispersed into subbands. (h) Same as (g) but also time–averaged.

Figure 4.4: Example of two confirmed single pulse detections with a S/N of 83.12 with two
emission components (top 4 panels) and 9.76 (bottom 4 panels).
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Figure 4.5: Basic properties of J1819− 1458 measured during observations. The burst rate
was significantly lower than the average during the first 10 – 15 minutes of observations.
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Figure 4.6: Timing residuals of RRAT J1819− 1458. Three distinct bands which are an evi-
dence for the presence of different pulse components are clearly visible.

observation. As the timing residuals are close to being uniformly distributed around
0, there is also no evidence of any glitch occurring before the observations, as the
post-glitch ephemeris is found to fit the times of arrival of individual pulses well. It is
important to note that although a single association between glitch and increased burst
rate has been found, another event with increased burst rate, similar to the one reported
here, was identified without a glitch association (Keane, 2010). It is therefore not un-
likely this particular glitch was an one-off event and glitching for this particular RRAT
cannot be associated with an increased bursting rate with a high degree of confidence.

J1819−1458 shows different emission components, which are first manifested by
the timing residuals split into three clearly separate bands, as seen in Figure 4.6. Out
of all the recorded pulses, 46.15% are found in the upper, 33.66% in the middle and
20.19% in the lower band. Our observations show a lower number of bursts originating
from the middle band as compared to other surveys, which found that J1819− 1458
spends more than 50% of time emitting in the middle band (Lyne et al., 2009; Bhat-
tacharyya et al., 2018). A closer examination of individual detections revealed that a
proportion of pulses had not only emission starting at different rotational phases, but
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Figure 4.7: Selection of J1819− 1458 pulses. The triple (top row), double (middle row) and
single-component (bottom row) pulses are shown.

they also had multiple components, which were varying with time. Out of 108 detec-
tions, 39 were found to have two components and another 5 had three components.
A selection of some of the most interesting detections, which show dynamic changes
happening on pulse-by-pulse time scales, is show in Figure 4.7. These best represent
the complex and changing behaviour of J1819− 1458 and its multi-component emis-
sion. For the triple-component pulses, the central peak tends to drift between the other
two components and in some profiles can be found closer to the leading component,
while in others it is found closer to the trailing one. This behaviour can help us to
interpret a larger spread in of the residual values for the central emission component.
What have been classified as single-component pulses also exhibit profile changes,
with varying pulse widths and peak flux densities, as well as emitting in the different
bands, as shown in Figure 4.6.

While most of the pulses with multiple peaks are found in isolation, we have found
a single grouping of multi-component detections in our data, shown in Figure 4.8. Two
triple-component pulses are separated by a double-peak burst and the group starts with
and ends with a single double-peaked pulse. This is the only time when we find two
pulses with three separate components so close to each other and also surrounded by a
group of double-component pulses. This group is also isolated from all other pulses.
The preceding candidate is found 16 periods (∼68.21 s) before the start of the group.
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Figure 4.8: A group of multi-component detections. The additional peaks in the triple-
component detections are found much closer to the central component than usual. The last
double-peaked pulse (number 6 on the plot) is also found with an unusually distant and bright
leading component.
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While the next single-pulse detection is found only 3 periods away, the one following
that is found 73 periods away, which corresponds to more than 310 s from the end of
the group. This is the second longest separation between any individual pulses seen
during our observations and the longest separation for any group with more than one
member. This is not an isolated example, as we were able to find multiple groups of
bursts occurring in close succession, the longest one consisting of 5 single-component
pulses, with separations between the group and the surrounding bursts measured in
tens of rotational periods.

Figure 4.9 shows the separation to the preceding and succeeding bursts for various
groups identified in our data. The multi-component group described above is counted
as containing 6 single pulses, adding the very last one separated by 3 periods from
the main group and even though its total separation is not the greatest (the preceding
burst is a modest 68 seconds away), it still stands out as one of the more separated
successive detections. It can be seen that for most of the bursts the separation is of
the order of tens of rotational periods. Although most emission groups have only a
single member, a number of groups can be found, mainly with 3 and more members,
which are mostly separated by more than 100 s from all the other bursts, corresponding
to more than 20 rotational periods. Although no clear correlation between the group
size and its separations from other bursts has been found, Figure 4.9 shows that the
majority of pulses are separated from their neighbours by multiple rotation periods.
Groups with 3 and more components have also been found to have more consistent
large separation. As we were able to identify only a small number of groups with
3 and more components, we recommend similar analysis be performed with a larger
dataset, spanning tens of hours of observations. Only when a larger number of emission
groups is found, a clear correlation (or lack thereof) between the size of the group and
the time between the neighbouring emission can be established. If proven to be correct,
the generally large separation could be an indication of J1819−1458 going through a
period of more violent energy release, followed by a period of relative calmness, when
the RRAT ‘winds up’ and accumulates the energy through still unknown process.

All of the detected pulses were carefully analysed and any RFI contamination has
been removed by masking either offending frequency channels or entire time chunks
in case of broadband RFI. These bursts and variations in the overall shape and the
number of emission components can therefore be classified as being intrinsic to the
pulsar rather than to the local telescope environment. They are also consistent with
recent observations using a range of different radio observatories (Hu et al., 2011;
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Figure 4.9: Single-pulse groups separation for J1819− 1458. The size of each group is indi-
cated as a white number in the middle of each bar. The groups are ordered by the group size
and then by the time of arrival.
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Figure 4.10: The altitude of sources used during the January 2018 commissioning run for the
targeted FRB searches. At least one source was visible on the sky at any given time, allowing
us to, at least in theory, run continuous observations. The dashed black line represent the
elevation limit of the telescope, but this value varies in practice depending on the azimuth,
due to the presence of nearby hills and strong RFI sources that had to be avoided during the
observations.

Bhattacharyya et al., 2018). It is therefore most likely that these changes in the bursting
behaviour are truly the manifestation of the complex and varying emission environment
and mechanism of J1819−1458.

4.4 Fast Radio Bursts Observations

During the commissioning run in January 2018, we observed three positions on the
sky where FRBs have been found previously. These were: FRB110523 - the only FRB
to date discovered at 800 MHz with the Green Bank Telescope (Masui et al., 2015),
FRB121102 - the repeating FRB (Spitler et al., 2016) and FRB130729 - a double-
peaked FRB discovered at Parkes (Champion et al., 2016). Each of these sources was
visible for 8 or more hours, with the repeater visible for more than 12 hours every day.
The selection of sources in principle could have allowed for continuous observations,
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Start time Total hours On-source hours
FRB110523

2018-01-20 09:29:23 8.5 4.62
2018-01-21 11:32:26 5 5
2018-01-22 15:14:41 2.5* 2.5*

Total 16 12.12
FRB121102

2018-01-19 20:22:23 7 5.97
2018-01-20 18:05:18 5 0
2018-01-21 16:38:58 10 5
2018-01-22 17:50:40 9* 9*

Total 31 19.97
FRB130729

2018-01-20 03:23:28 0.25 0.25
2018-01-20 07:23:15 2 2
2018-01-21 04:39:37 5 5
2018-01-22 02:51:30 3 3
2018-01-23 03:12:02 2.5* 2.5*

Total 12.75 12.75

Table 4.2: Pointings and the number of hours spend on each source. *This may not be an
accurate number, as these observation were run after we had lost the metadata stream with
beams position information and the times had to be approximated from the telescope log files.

where at least one of the three sources was visible at any given time, as seen in Fig-
ure 4.10. In total, we have accumulated close to 45 hours of observations with the
telescope on source, divided between the three main sources, as shown in Table 4.2.
With a number of observations, we were not able to run the whole planned observing
schedule due to external circumstances, such as bad weather conditions and telescope
maintenance. For most of the observing we had the pointing information provided by
the metadata stream. However, after the unexpected and undetected loss during the
telescope maintenance, we had to rely on the telescope logs when analysing the data
taken on the last day of observing. These were expected to be accurate, although it
meant we did not have an independent pointing confirmation.

The data was recorded for offline processing, as the real-time detection pipeline
was still under development and not ready for testing during the January run. We
ran the search between the DM values of 0 and 2000 pccm−3 and down to the S/N
of 7.5 for bursts with widths between 0.054 and 221 ms. All of the beams were first
processed individually and later all the candidates were correlated between different
beams, with the detections present in more than 4 beams discarded as RFI. For the
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(a) Dedispersed time series. (b) Time–averaged filterbank.

(c) Filterbank dedispersed into subbands. (d) Same as (c) but also time–averaged.

Figure 4.11: High-S/N FRB121102 candidate, which was found to be RFI. The plot that stands
out the most is the time-averaged one, (b) which is meant to have 4 times samples across the
whole burst width. The entire time series has been averaged to just 11 time samples which
meant a large width (211 samples in this case), a clear indication of RFI.

remaining candidates, additional plots were created similar to those shown previously
in Figure 3.9. As at that point the pipeline was not designed to start the processing at
the same data frame for every beam, the timestamps of candidates had to be adjusted
so that they all had a common starting point. As a result, the MJD of the beam for
which the data was recorded first was chosen as the start of the observation.

4.4.1 FRB121102

Additional processing was run over a smaller DM range between 500 and 600 pccm−3,
with the known DM of FRB121102 sitting almost in the middle at 557 pccm−3. This
was also the dataset that was used to develop the general processing techniques, with
the main goal of reducing the number of candidates that had to be examined by hand
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2018-01-19 2018-01-21 2018-01-22
Original 100420 98449 162629

Errors removed 93226 88695 150939
Beam mask 80863 71883 128911

Width 70508 57292 113628
Members 27945 24748 44974

Total data reduction 72.2% 74.9% 72.3%

Table 4.3: Number of single-pulse candidates during each FRB121102 pointing. The cleaning
procedure designed to remove as many false-positives due to RFI as possible has resulted in
the reduction in the final number of candidates that had to be examined by almost 75% in all
cases.

when running the search across the whole DM range and for other pointings. For the
continuous 9 hour-long pointing, we detected a total of 21823 candidates across all
the beams. With the candidates detected in more than 4 beams discarded as RFI and
additional filtering of erroneous detections, such as a S/N of 0 or infinity, which is a
result of incorrect normalisation, we were able to lower the number of the candidates
by more than 25%, down to 16232, which were later examined individually using the
additional plots. During this examination, 42 candidates were found to have a reported
signal to noise ratio of more than 100. One candidate, with the highest reported S/N of
575.9, is shown in Figure 4.11, which can be classified as a false-positive with a high
degree of confidence. Closer examination revealed that all 42 were caused by RFI and
always had a reported burst width greater than 210, which was found to be one of the
characteristic features of RFI. Upon confirmation using multiple datasets from differ-
ent observations, it was decided the remove the candidates with widths greater than
210 samples from further processing, significantly reducing the number of remaining
candidates by additional 24%, down to 12406. Finally, we removed the candidates
that had only 1 member in the group after the candidates in the neighbouring time
samples and DMs have been merged and classified as a single candidate. Tests run on
the RRAT and pulsar data have shown that the real signals always had single pulses
detected in adjacent DM values and time samples and therefore more than one group
member. At that point, we had only 5322 candidates left, a reduction of 75% from the
original number of candidates - a more easily manageable number.

The same processing procedure was applied to all 3 observations of FRB121102
that had useful data recorded, with the telescope pointing at the source, as shown in
Table 4.2, with the search pipeline run over the entire DM range described previously.
Table 4.3 shows the number of candidates for each pointing after each of the cleaning
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stages has been applied. It is evident that the employed procedure helped to remove a
large number of candidates, with only around a quarter of the original dataset left in all
three cases. Figure 4.12 shows the remaining single-pulse candidates. It can be clearly
seen, that even after the extensive cleaning and removal of obvious false-positives, we
were still left with a large number of candidates, many of which seem to be caused
by bursts of RFI, indicated by the long vertical lines around the same time sample. It
is therefore recommended to use more robust techniques to sift the candidates more
efficiently in the future, such as machine learning, to speed the processing up and
reduce the need for human intervention and examination of the candidates by eye. This
can be achieved by a more efficient removal of RFI-caused candidates and more focus
on the identification of true-positives, rather than just removing the false-positives.

After the data has been cleaned and each candidate has been examined individually,
we report no bursts detected from the direction of the FRB121102 in the nearly 20 h
of data collected during the three observations listed above. We consider 4 different
possible causes of this situation, discussed below in the order of increasing probability:

Less data than expected. As already mentioned, some observations were run
without independent confirmation of beams’ positions from the metadata and were
estimated from the telescope log files only. A 9 hour-long observation of the repeater
was run in such conditions. The probability that the telescope log files were incorrect
is low and additionally separate logs were kept on the pipeline starts and stops, the
sources processed and conditions during the observing. These logs as well as the
telescope logs do not contain any records of the telescope stopping the tracking during
the observations that had no metadata information available. We can therefore safely
conclude that the pointing information we had was correct and that we indeed spent
20 h observing in the field of the repeating FRB.

Burst loss caused by the pipeline. Here we consider the two processing stages
separately. The filterbank stage of the pipeline has been tested extensively and it had
been proven on multiple occasions that the version used during FRB observations was
behaving correctly and not corrupting/missing any important and detectable chunks of
data. The detection side utilises the single-pulse detection software which had been
successfully used in the past to detect the majority of the currently known FRBs, in-
cluding the repeating one. Considering the specific use of our pipeline, we have suc-
cessfully demonstrated we were capable of detecting single pulses from various pulsars
and J1819− 1458. Although it is possible that a single burst could have been missed
in the data, it was considered to be unlikely.
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Figure 4.12: Single-pulse detections towards the position of FRB121102. All of them were
confirmed to be false-positives. Strong RFI can be seen, manifested as vertical lines of candi-
dates across a large range of DM values, concentrated around similar timestamp.
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True-positives removed. As described above, we removed around 75% of the
original candidates using a set of conditions that were found to best describe RFI.
There is a non-negligible probability that the conditions we have selected were too
broad and resulted in the true-positives being removed as well. These conditions were
selected after tests were run using tens of thousands of candidates and were used to
remove the most obvious RFI-caused detections only. Additionally, all of the 21823
candidates detected during the 9 h observing processed with the smaller DM rage were
examined by eye and no detections were confirmed to be real bursts coming from the
FRB121102. We are therefore confident that our selection criteria and the candidate
reduction performed as expected and that only the most extreme cases of RFI were
removed, leaving other, less obviously identifiable false-positive and any possible true-
positives behind.

FRB121102 did not burst in that time period. FRB121102 has been found to
repeat hundreds of times. During some observations multiple detections during a sin-
gle pointing were also observed. Long periods of non-detections have already been
reported though, including the lack of any bursts during continuous 5 and 10 hour-long
observations (Price et al., 2018a). Assuming FRB121102 is like any other FRB, with
the probability of detecting the event independent of any possible burst observed pre-
viously, its behaviour could be modelled successfully as following Poisson statistics.
In such a scenario, the bursts would be expected to show no evidence of clustering and
arrive at random intervals. If that was the case, we should be more likely to detect the
repeating bursts during longer observations, with the total amount of time spent con-
tinuously on the sky being the most important parameter. Recent studies (Oppermann
et al., 2018) have however shown that non-Poissonian statistics are a better fit to the
emitting nature of the repeater. A Weibull distribution has been proposed, that could
be used to better explain the clustering nature of the detected bursts, their irregular
occurrences and no apparent detections during long pointings.

The general result suggests that burst from the FRB121102 are more likely to be
seen in clusters and that long-duration observations with no detections can be common,
much more than if this FRB was to follow Poissonian statistics. Using the derived
parameters of the probability distribution function, with the average repetition rate of
5.7day−1 (Price et al., 2018a), we calculated the probability of not detecting any bursts
during the 9 h observation, where we would expect to see 2.14 bursts on average, to be
0.58. If we were to consider a standard Poisson distribution, with the same repetition
rate, this probability then decreases to 0.12, which is 5 times less than in the case of the
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Weibull distribution. It is important to note that the calculated distribution is not intrin-
sic do the observed object, FRB121102 in this case, but depends only on the detected
bursts. It is therefore highly dependent on the sensitivity of the instrument used to
detect the burst, which means that the parameters derived using the Arecibo telescope
cannot be fully used when considering radiation from other telescopes. The average
repetition rate and the shape parameter described above have also been derived using
only a small sample of bursts, with many more burst detected since then and these
values are expected to change. We cannot therefore conclude that our non-detection of
any repeating bursts, even during our longest, 9-h observations, supports the clustered
distribution. Even when a simple Poisson distribution is considered, which theoreti-
cally favours detections during long, continuous observations, we had more than 10%
chance of not observing any bursts. This argument, combined together with other long
observations taken as part of different surveys that failed to detect any repeated bursts,
suggest that there were truly no detectable events, rather than anything that was missed
during our processing.

4.4.2 FRB110523 and FRB130729

We have followed the same procedure as described above when examining the data
from the positions in the sky where these two FRBs have previously been observed.
In this case, we also found no bursts above the S/N of 7.5. To examine whether
it was an unexpected result, we compare it to the current best estimate of the FRB
rates. In our calculations, we use one of the most recent burst rates of 1.7+1.5

−0.9 ×
103 FRBsky−1 day−1 (Bhandari et al., 2018) at 1400 MHz. Assuming a system equiv-
alent flux density of 28.13 Jy, 7.5σ detection, a burst with a width of 5 ms and an ap-
proximate operational bandwidth of 300 MHz, we are expected to detect 0.0132 FRBs
during the∼ 25h of observations, if we used the beams separated by FWHM. It would
have therefore been unlikely to find any new FRBs during such short observing win-
dow and the lack of any detections is not surprising in this case. In practice, the number
of expected bursts is even lower as our beams are overlapping, effectively reducing the
instantaneous FOV on the sky. We therefore conclude that no detections during our ob-
servations have no statistical significance and does not allow us to draw any additional
conclusions on the FRB burst rates.



Chapter 5

Single Pulse Simulations

5.1 Motivation for Simulating FRBs

With only a few dozen FRBs detected so far, and all but one detected at 1400 MHz,
we have a limited understanding of their behaviour and bursting properties, especially
at the lower end of the frequency spectrum at sub-1000 MHz observing frequencies.
With only a single FRB detected at 800 MHz and none at lower frequencies despite
continuing efforts, this poses a question: is the FRB radiation limited to frequencies
above 800 MHz or are other contributing factors present that make it impossible to de-
tect them with the pipelines that work so well at higher operational frequencies. One
possible cause that could make FRBs undetectable is dispersion. As already discussed
in Section 1.4, the delay between the signals arriving at the top and the bottom of the
band is more prominent at lower frequencies. The amount of smearing within the indi-
vidual channels, after the data has been channelised, is also increased. This means that
bursts are smeared more and have reduced S/N, which can potentially make them more
difficult to detect, especially in the presence of strong RFI. The RFI environment also
changes significantly depending on the observing band used and also on geographical
location of the observatory. Another factor which can possibly lead to the apparent
non-detections and is common at all observing frequencies is the erroneous rejection
of true-positives caused by too stringent selection criteria, such as the required S/N
or the duration of the burst and also the follow-up examination by a human and/or
machine learning.

Simulating our own FRBs can therefore answer a very important question in terms
of non-detections: are we not detecting any viable candidates because there were truly
no events or is our processing strategy simply causing us to miss all of the candidates?

114
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We can also ask a similar question when FRBs are detected: do we see all of them or
are we still missing a significant portion of them due to some incorrect assumptions in
our processing techniques. Increasing the number of events that look like real FRBs
as much as possible will also allow us to have a larger sample (artificial nevertheless)
that can be used to better tune our selection and machine learning algorithms.

5.1.1 Simulation Framework

We therefore propose a framework for injecting simulated burst into single-pulse search
pipelines. This can help to quantify and fix any possible shortcomings within the pro-
cessing chain. Such a unified approach will allow for the whole pipeline to be tested
in full, from the point of the data injection to the final candidates obtained from the
single-pulse search software and confirmed by human and/or machine learning solu-
tions. This has a considerable advantage over testing each stage of the processing sep-
arately as even though the correct output data can be obtained after a single processing
step, independent errors present in different stages can eventually add up and corrupt
the signal to the point that no detections are possible. This was observed for example
during the PAFINDER pipeline tests, where individual simulated datasets were used
to test each processing step independently. Such an approach is helpful during the
initial development phases when potentially critical bugs can be discovered, such as
incorrect memory addressing and when only a particular piece of code has to be opti-
mised. However combining all the elements of the pipeline revealed unexpected errors
as the different stages were either not communicating properly or a cascade of errors
was causing the signal of interest to be corrupted and ultimately fully lost. Eventually
we were able to confirm that the filterbank-generating part was working correctly with
the help of the frequency sweep script. The ability to detect single pulses however
was tested only during live telescope observations. This is not an optimal solution
as any previously undiscovered errors mean that telescope time is lost on bug fixing
and retesting the code, rather than used for scientific observations. The ability to sim-
ulate events is becoming more important every year as telescopes grow bigger and
the accompanying processing systems become more complex, often making use of a
combination of different programming languages and APIs and incorporating robust
algorithms in places where human intervention was required even few years ago, such
as RFI mitigation. With new facilities, such as the SKA, currently being under devel-
opment and coming online in less that a decade, it is important to ensure that these will
be able to deliver useful science from the very first day of operation.
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Our proposed simulation framework would allow for thousands of candidates to be
simulated, including rare, but potentially software-breaking edge cases, and occasional
testing of the fully-operational system during day-to-day operation. The core part is
formed by the single-pulse injection software, which will be discussed in more detail
in following sections. This software is designed to simulate and inject the desired sig-
nal at the earliest possible stage, without having a significant impact on the overall
processing speed. Depending on the use, this could mean creating a fake filterbank file
if only the final detected data products are available, or injecting the simulated voltage
itself and converting to the appropriate data format, such as CODIF when used for
PAF observations or another standard. Initially, the simulated data can be generated in
large volumes to better understand the limits of the telescope in use and the processing
methodology. With the telescope in the operational state it can be used to randomly
inject simulated bursts into the original data to test the ability of the software to pick up
the rare events. This is especially important in the final stages of the processing when,
independent of the techniques used to select true- and false-positives, human interven-
tion is currently required. With sometimes hundreds to thousands of candidates that
have to be examined by eye after single observation, this can lead to real candidates
being lost amongst large volumes of false-positives. After making positive identifi-
cation of the candidates, the user will be informed whether the selected detection has
been simulated or not. The need for human intervention will most probably decrease
in the future, as image recognition and classification algorithms are becoming more
sophisticated, but even in such a scenario a large simulated dataset can be first used to
train these and later evaluate their performance.

When used for evaluation purposes during normal telescope operation, it is impor-
tant to ensure that the simulation software does not disrupt or alter the processing in
any easily detectable way. It is therefore important to reduce the processing time so that
the burst can be simulated and injected in the shortest possible amount of time. The in-
jection software also has to use the smallest possible amount of resources and not save
too much data to the disk. These steps are necessary to ensure that no bias is present
when evaluating the ability to identify events - e.g. if the injection step introduces a
significant increase in the pipeline processing time, a user might know which pointings
should be examined more carefully. Even when no human intervention and accuracy
is meant to be tested, the simulation time has to be as short and resource-efficient as
possible to limit the use of the computational power and allow for the original signal
and the one containing the fake injected burst to be processed concurrently.
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5.2 Simulation Overview

Our single-pulse injection software is the first step towards a fully-operational sim-
ulation framework. The code for this has been developed fully in C++, with the
performance-critical stages utilising the power of GPU computing. The simulation
procedure is designed to be modular, with products after each stage stored indepen-
dently, which makes it easier to modify existing stages and add additional processing
stages as necessary. Having access to intermediate data products allows us to estimate
the effects of each of the processing steps independently and get a better understanding
of which one of them influences our probability of detecting FRBs. The current simu-
lation implementation generates the final products in the form of SIGPROC filterbank
files. As the simulation starts as early as possible in the digital processing chain, with
simulated raw voltages, we have the flexibility to add support for a variety of different
final output formats, including CODIF, which can later be used to simulate FRBs and
check our ability to detect them with the PAFINDER pipeline. The modularity of the
code means that additional steps can be added in the future, such as scattering, that will
better approximate the existing FRB population as the available sample size increases
and our understanding of the nature of FRBs becomes more complete.

5.2.1 Voltage Generation

The voltage is first generated in a way that approximates the white noise present in
all radio-astronomical observations. As we are concerned with the white noise at this
stage, an array of pseudorandom numbers is generated, drawn from a normal distribu-
tion, with zero mean and unit standard deviation. Both the real and imaginary parts are
generated, as we want to simulate complex voltages which are more practical for the
coherent dispersion implementation used at the later stages of the simulation. For this
purpose we used a cuRAND library, which allows us to generate the pseudorandom
numbers directly on the GPU, using the Mersenne Twister engine (MT19937), which
has a large period, larger than any viable voltage series we should ever generate, and is
currently one of the most popular and recommended engines for the purpose of pseu-
dorandom number generation. With a total bandwidth of B, the generated complex
signal has a sampling time of 1/Bs, i.e. we need to generate tens to hundreds of mil-
lions of samples for each second of signal, depending on the bandwidth used during
the observations. It can therefore be seen that memory constraints will be one of the
biggest challenges in running efficient simulations.
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The complex voltage is then multiplied with the envelope of the burst. For the ma-
jority of simulations, bursts are approximated by a Gaussian function with the FWHM
equal to the supplied burst width, described as

f (x) = nexp

(
(x−µ)2

2σ2

)
, (5.1a)

FWHM = 2
√

2ln2σ, (5.1b)

where n is the amplitude of the Gaussian, µ is the position of the centre and σ is the
standard deviation, used to quantify the width of the function. Additional shapes were
considered, in particular the von Mises function, which closely resembles the Gaus-
sian function, but has smaller tails, i.e. it goes to zero faster than the standard Gaussian
function. Additionally, an option for a user-supplied profile was developed at the be-
ginning, but was later removed for the main simulations and will be reinstated in the
future. As the amplitude of the Gaussian is a configurable, user-supplied option, it is
important to ensure that the tails would meet the noise at the correct level without erro-
neous jumps introduced. The burst envelope was therefore generated between points at
what we call the FWUA - Full Width at Unit Amplitude, where the Gaussian function
reaches unity, i.e. 1/n of the amplitude. This value can be derived using the expression
for the Gaussian function as

FWUA = 2
√

2lnnσ = FWHM

√
lnn
ln2
≈ 1.2 ×FWHM

√
lnn. (5.2)

The burst points not included in this range are assigned a value of 1, which returns
the original white noise voltage after the multiplication. The resulting real part of the
burst voltage can be seen in Figure 5.1. This particular burst had the amplitude of the
Gaussian function set to 10.0. It can be seen that when combined with the voltage, it
can go as high as ∼ 40. This is however not surprising as the voltage generated using
Gaussian distribution with the standard deviation of 1 is expected to have ∼ 32% of
values to lie beyond the 1σ boundary. The burst envelope can also be seen to join the
‘noise’ portion of the voltage at a correct level, without any jumps at the boundary.
This is more clearly visible in the zoomed-in portion of the burst, focusing on the
trailing tail joining the voltage.
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Figure 5.1: Simulated FRB voltage. Orange lines shows the burst boundaries and its centre,
red lines and green lines show 1σ and 3σ voltage levels respectively. Inset shows the region
where the burst envelope joins the white noise, showing that there are no jumps introduced and
the transition is smooth at 1σ level.
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5.2.2 Dispersion

We employ two main different dispersion methods: fully coherent and semi-coherent.
The semi-coherent method in turn uses two different approaches, which solve the prob-
lem and disperse the burst in slightly different ways. The basic principle is the same
for all of these methods as the generated voltage, or some part of it, is dispersed with
the help of the phase-only transfer function, which simulates the effects of dispersion.
The transfer function has the same form as Equation 2.2 and is multiplied with the
frequency spectrum of the incoming signal, obtained using the FFT.

5.2.2.1 Fully Coherent Dispersion

The fully coherent dispersion can be considered the most straight-forward approach
that is easy to implement. Here, we have to generate a voltage array long enough to
hold the entire dispersed simulated burst. This ensures that after the final filterbank is
generated, the burst is in one piece and not fragmented. The ‘leakage’ of additional
bursts is caused by the periodicity of the FFT, and it is therefore important to add
sufficient padding to prevent this in the properly dispersed filterbank. As the transfer
function is expressed with respect to the central frequency, the amount of padding
added to the front would generally be different to the amount of padding at the back of
the burst. If we consider only the shorter padding at the front, resulting from the delay
between the top of the band and the centre frequency, the total number of required
samples is equal to

∆s = 2×4.15×103×

((
fcentre

MHz

)−2

−
(

ftop

MHz

)−2
)
×
(

DM
pccm−3

)
×
(

B
Hz

)
, (5.3)

where B is the total bandwidth over which the signal is being recorded and is equal
to the sampling rate as we are generating complex voltage (1/B is the sampling time)
and the factor of 2 at the start reflects the fact we apply the same padding at the start
and at the end of the signal. Assuming an approximate centre frequency of 330 MHz
and a total bandwidth of 32 MHz, we need 220359 time samples per unit DM. Using
two single-precision floating point numbers to express the real and imaginary parts
of the simulated voltage, this corresponds to ∼ 1.76MB of memory used to store the
data. This is not a problem when relatively low dispersion measure values are used,
but the memory requirements increase linearly with the dispersion measure. At a DM
of 1000pccm−3, a region where a lot of known FRBs reside and therefore often used
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during our simulations, the simulation already requires 1.76 GB of memory for the
voltage generation stage alone, which can be a significant proportion of the total mem-
ory available on the GPU (e.g. GeForce GTX 980 has only 4 GB of on-board memory
available, which makes it impossible to simulate bursts with DM≥ 2000pccm−3 using
this direct method). To ensure we have enough datapoints to create a correct output, we
also have to generate a number of samples that is a multiple of the number of channels
in the filterbank obtained at the end of the processing. This also increases the number
of data points, but has a much smaller total contribution to the final number of the
generated voltage samples, as in the worst-case scenario 1023 additional samples are
generated - less than 0.5% of the padding required per unit DM of delay.

The large number of samples also increases the processing time, mainly during
the FFT, where the voltage is changed from time to frequency space in order to be
multiplied by the transfer function and also requires the transfer function to span the
entire frequency spectrum. After the dispersion has been applied, the inverse Fourier
Transform is used to bring the signal back into the time domain. A filterbank file is
then created by dividing the signal into Nt , Nc-channel wide chunks and running the
forward FFT for each chunk, where Nc×Nt =N - the total number of generated voltage
samples. It is at this stage that our choice of the number of samples being a multiple
of Nc becomes important - we require that Nt is an integer. The signal is then detected,
which combines the real and imaginary parts of the voltage into the total power, and
stored according to the SIGPROC filterbank file format specification. As we are using
complex voltage in our simulations, the series of Nc-point FFTs results in a file with
Nc channels and Nt time samples. Using fully coherent dispersion has an advantage
over the other methods described below in that using a single multiplication of signal
in the frequency domain with the transfer function fully disperses the burst, including
the intrachannel smearing in the channelised data product as well as the interchannel
dispersion delay. However the large memory requirements and long processing time
make it impractical to use in a system where a large number of bursts have to be
simulated in a short period of time, especially when using older graphics cards.

5.2.2.2 Semi-coherent Dispersion

The semi-coherent approach uses both the coherent and incoherent dispersion to fully
disperse the signal. The coherent part is used to apply the smearing to the individual
filterbank channels, so that the burst is correctly widened. The incoherent dispersion is
then applied to delay the arrival time of the burst across the whole band, with respect
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to the top channel. We have chosen the highest frequency channel in this approach
as the dedispersion algorithm we use as part of our single-pulse detection pipeline
dedisperses the signal with respect to the highest frequency channel, and therefore the
burst arrival time is approximately equal to the burst start time in that highest channel.
The two different methods mentioned above use different approaches to the coherent
part of the dispersion process. They both however allow us to reduce the number of
samples required to generate the burst as they do not require as much padding as the
fully coherent approach.

The first variant of the semi-coherent method is used to create the filterbank file
of the non-dispersed burst immediately after the burst voltage generation. Similar to
the procedure described above, we divide the simulated, but not yet dispersed burst
voltage into Nc-point long chunks and run the forward FFT on each one of them. This
time however, the signal is not detected, which means we leave the data in its complex
form, therefore preserving the phase information required for coherent dispersion. We
then run a series of Nc, Nt-point forward Fourier transforms, which effectively provides
us with a finer channelisation for each of the Nc original filterbank channels. At this
stage we can run the coherent part of the dispersion algorithm. Each of the frequency
spectra is multiplied by the corresponding transfer function, adjusted to the centre fre-
quency and bandwidth of the individual filterbank channels. Dispersing each channel
individually smears the pulse within the channel, but the interchannel dispersion is not
performed, which means we can now use a much smaller padding. The amount of
extra samples that have to be generated is now dictated by the amount of smearing in
the lowest frequency channel, where the effects of dispersion are the greatest, and the
increase in width is given by Equation 1.12. Using the same example as above, with
a central frequency and bandwidth of 330 MHz and 32 MHz respectively, for the 1024
channel filterbank requires less than 300 additional samples per unit DM, a significant
reduction from the 220359 required for the fully-coherent approach. After the burst
is widened, the inverse Fourier transform is run to return to the time domain in the
individual filterbank channels. The signal is also detected at this stage. The resulting
filterbank containing the total power can later be incoherently dispersed by delaying
the individual channels to obtain the fully dispersed burst.

An example of the application of the first stage of this semi-coherent method used
to widen the bursts is shown in Figure 5.2. In this case we simulated a 5 ms duration
burst at a DM of 3000pccm−3. It can be clearly seen that this method does not require a
large amount of padding in order to apply the intrachannel dispersion. By comparison,
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a fully-coherent approach would result in more than 4 million output time samples
of padding. The red line on the bottom plot shows the theoretical boundary of the
smeared burst, as calculated using Equation 1.12. It can be seen that the burst is indeed
wider than the original one and that its broadening follows the theoretical expectations,
meaning that the semi-coherent method can provide us with accurate results, even
though it is an approximation of the fully-coherent approach.

The second approach to the semi-coherent dispersion is a modified version of the
method described above. Similar to the fully-coherent approach, we start by perform-
ing the Fourier Transform of the whole original burst voltage. This time the padding
again has to accommodate only for the smearing in the lowest final frequency channel
and not the whole dispersed burst, like in the fully-coherent approach. After the FFT,
we divide the frequency spectrum into Nc chunks, each with Nt spectral points. Each
chunks is then multiplied by the transfer function, adjusted to the central frequency of
the spectral chunk being processed. After the dispersion transformation, each chunk
undergoes an inverse Fourier transform, moving it back to the time domain. The result
is a filterbank with Nc channels with Nt time samples each, with a properly widened
burst inside. The incoherent dispersion and detection is run in the same way as with
the first semi-coherent method. The comparison of the intermediate dispersion stage
(before the incoherent dispersion) between this approach and the previous one, shown
in Figure 5.3, indicates that both methods result in a correctly smeared pulse which
follows the theoretical calculations. This is also the method that has been used in the
majority of our simulations, as if offers all the advantages of the semi-coherent dis-
persion and uses less intermediate steps and short Fourier Transforms than the first
semi-coherent method described above, which can all have a negative impact on per-
formance and increase algorithm complexity.

The implementation of all three dispersion methods is summarised in Figure 5.4.
This visual representation makes it clearer that the semi-coherent methods are more
complex and involve more steps to achieve the same result of simulating the fully
dispersed burst. Even though additional steps are introduced in the form of multiple
forward and inverse Fourier Transforms, both semi-coherent dispersion methods per-
form much better and they are considerably faster than the fully-coherent approach.
Initial tests have shown that at large dispersion measures, the fully-coherent approach
could take up to 30 minutes to simulate the burst, while any of the semi-coherent meth-
ods can complete the same task in less than a minute due to the significantly reduced
size of the input signal.
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Figure 5.2: Example of the semi-coherent dispersion. The original signal in the top panel is a
5 ms FWHM Gaussian burst. The application of semi-coherent dispersion correctly smears the
pulse across the filterbank channels and the increase in width closely matches the theoretical
expectations.
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Figure 5.3: Semi-coherent dispersion burst comparison. It can be seen that for both of the
methods used in our simulations, the resulting burst is properly widened.
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Figure 5.4: Dispersion methods workflow. The semi-coherent methods use more intermediate
steps to obtain the same result as the fully-coherent approach. The increase in the processing
speed of the order of 10 × is achieved despite the increased complexity, due to the lower total
data volume.
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5.2.3 Burst Injection

The last stage of the simulation process concerns the injection of the generated burst
into the existing filterbank file. In our simulations we have chosen to save the bursts
into real data recorded during observations rather than simulating all the observation
data as well. This allows us to examine the effect of RFI and various other signals,
such as the presence of pulsars, on our capabilities of detecting the burst. Even though
this approach means we had no control over the characteristics of noise in the data, this
greatly simplified the simulation process as it removed the need to generate synthetic,
realistic-looking RFI.

As we are dealing with real data which has already undergone some degree of
processing (e.g. raw voltage to filterbank conversion) at the time of the burst injection,
we have to make sure that our generated signal covers the same range of values as the
data it is meant to be injected into. We therefore have to scale the burst data so that,
when injected, no significant deviations in terms of signal mean and standard deviation
are introduced and the general shape of the bandpass is preserved. As the bandpass can
vary in the original data file, we have to make sure our scaling takes this into account
and includes fluctuations consistent with the changes in the bandpass. We achieve this
using the scaling operation previously described in Section 3.2.4, this time divided
into two stages. First, we individually scale each channel of the burst filterbank such
that they all have µ = 0 and σ = 1. We then multiply these scaled values with the
standard deviation of the corresponding channel in the original data. After this final
scaling stage, the scaled burst data is added on top of the input filterbank file, with the
incoherent dispersion applied at this stage in the case of the semi-coherent algorithms.
This is achieved by simply saving the individual burst channels with the correct shift
introduced corresponding to the interchannel dispersion delay. After the burst data is
added, the resulting filterbank file is saved to the disk for further processing.



Chapter 6

GHRSS survey

6.1 Survey Description

The Giant Metrewave Radio Telescope is an array of 30 parabolic dishes, each with a
diameter of 45 m located in Western India (Ananthakrishnan & Pramesh Rao, 2002).
They are spread in an approximate ‘Y’ configuration, with 12 antennas distributed
semi-randomly in the central area of 1 km2 and the rest placed uniformly in three arms.
The longest possible baseline between antennas is 25 km. Observations are possible in
six frequency bands in the range 50–1420 MHz, with the software backend providing
support for a bandwidth up to 32 MHz.

GHRSS, the GMRT High Resolution Southern Sky survey, is making use of the
GMRT capabilities to detect new radio transients, including regular and millisecond
pulsars, and Fast Radio Bursts. The survey operates at a centre frequency of 322 MHz,
which provides good system temperature and a large size of the primary beam from the
range of available parameters (Ananthakrishnan, 2005), providing an increased instan-
taneous field of view. The survey makes use of both coherent and incoherent beams,
with the incoherent beam used during the search phase, when the largest possible field
of view is desired. Coherent beam is used for the follow-up observations of new can-
didates.

Two ranges of galactic latitudes are observed, with longer integration times used
for regions closer to the galactic plane, as shown in Table 6.1, due to the increased
sky temperature contributions in these regions of the Milky Way. The choice of the
sky coverage partially fills the gap in the southern sky coverage currently not observed
by other surveys operating at similar frequencies, such as the Green Bank Northern
Celestial Cap survey, which can cover declination down to −40◦ (Stovall et al., 2014).

128
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Mid–galactic latitude High galactic latitude
Galactic latitude 5◦ < |b|< 20◦ |b|> 20◦

Declination −54 < dec <−40 −54 < dec <−40
Integration time 20 min 15 min
Sampling time 61.44 µs 30.72 µs

Bandwidth 33.3 MHz 33.3 MHz
Number of channels 2048 1024
Number of pointings 682 911

Data per pointing 37 GB 28 GB
Total data 25 TB 25 TB

Table 6.1: GHRSS survey parameters.

The GHRSS survey also covers portions of the sky that were last time scanned at lower
frequencies more than two decades ago, with the most recent one, The Parks Southern
Sky Survey operating at 436 MHz, completed in the mid-1990’s (Manchester et al.,
1996).

Depending on the operational mode, the data can be recorded with 1024 or 2048
channels across the entire frequency band. With sampling times of 30.72 µs and 61.44 µs
respectively and 8 bit sampling, the survey produces 2 GB of data per minute of obser-
vation. As can be seen in Table 6.1, the amount of data per pointing is high, approach-
ing 40 GB at mid-galactic latitudes and in individual cases can reach up to 60 GB when
longer observations of known pulsars are performed. Additionally, visibilities data are
recorded every 2 s which will allow better localisation of any pulsars or FRBs discov-
ered during the survey.

As has been highlighted before, it is especially important to process the data in
real-time or near-real-time when searching for Fast Radio Bursts, as these detections
are necessary for any possible follow-up observations. In the case of the GHRSS
survey however, our focus was not on the real-time capabilities of the system as the
processing was not done on the data as it was being recorded by the telescope, but was
run weeks or even months after the initial observation, after the data has been shipped
and copied to our processing facilities. Our focus was therefore shifted towards more
thorough identification of possible candidates and development of new and improve-
ment of existing algorithms that would allow us the better understand the effects of
RFI and various processing and post-processing stages that could theoretically impact
our ability to detect any new transient phenomena.
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6.1.1 Survey Limits

Operating at a centre frequency of 322 MHz, we benefit from a lower receiver temper-
ature and sky temperature at higher galactic latitudes, estimated to be 53 K and 40 K
respectively. Combined with the contributions from the ground temperature, the to-
tal system temperature, Ttot is 106K (NCRA, 2006). We can use this to estimate the
minimum detectable flux from a pulsar as

Smin =
σTtot

G
√

BNpNat

√
w

P−w
, (6.1)

where σ is the required S/N, G is the antenna gain, 0.32 K/Jy at 322 MHz, B is the
total operational bandwidth, Np is the number of polarisations, Na is the number of
antennas combined incoherently, t is the integration time, P is the pulsar period and w

is the pulse width. In our calculations we use σ = 5.0, B = 32 MHz, Np = 2, Na = 30,
t = 900 s and a duty cycle of 10%. Using a simple constant width approximation we
obtain a minimum obtainable survey sensitivity of 0.42 mJy. This value will however
depend of the amount of dispersion and scattering smearing and will increase with the
dispersion measure. We therefore include the dependence of the burst width on the
dispersion, increasing the pulse width according to Equation 1.12. Pulse broadening
due to scattering over a DM range, τs expressed in milliseconds, is derived from (Bhat
et al., 2004)

logτs = a+b logDM+ c(logDM)2−α log( fG), (6.2a)

a =−6.46,b = 0.154,c = 1.07,α = 3.86, (6.2b)

where fG is the centre frequency expressed in GHz.

Figure 6.1 shows the results of our calculations for pulsars with 8 different periods
between 2 ms and 1 s. The duty cycle is kept the same in all cases at 10%. We can
see that our approximate value of 0.42 mJy can be used reliably at low dispersion mea-
sures, up to about 25pccm−3 for all considered pulsar periods and becomes increas-
ingly inaccurate with the increasing dispersion measure, mainly due to the broadening
caused by scattering. We can now make a more informed decision on the allocation of
computational resources and significantly lower the upper limit of the processed DM
range when searching for millisecond pulsars and ordinary pulsars. It is clear that even
for the highest considered period of 1000 ms, the pulse is sufficiently broadened so
that the total smearing exceeds the pulse period close to 400pccm−3, which is only
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Figure 6.1: GHRSS pulsar sensitivity as a function of dispersion measure, for pulsars with
different periods and a constant 10% duty cycle. Effects of dispersion and scattering on pulse
broadening are included. The dashed line represents the minimum sensitivity for a burst with a
constant width at 0.42 mJy.
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Figure 6.2: GHRSS survey sensitivity to FRBs with different widths used for matched-filter
boxcar function and following power laws with different spectral index values. FRBs are as-
sumed to be standard candles in the universe described by ΛCDM cosmology.

20% of the total covered DM range. The DM range is further reduced when search-
ing for millisecond pulsars, where the broadening limits our useful search space down
to dispersion measures lower than 200pccm−3, which is only 10% of the total space
processed.

We can perform similar analysis when considering single-pulse detections which
are important from the point of view of the FRB survey. We use the following rela-
tionships to describe the dependence of peak flux density on the FRB spectral index α,
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redshift z and the comoving distance D(z) (Lorimer et al., 2013):

S =
L(1+ z)α−1

4πD(z)2
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) ( f α+1
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)
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D(z) =
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, (6.3b)

fhigh = 10GHz, flow = 10MHz, (6.3c)

Ωm = 0.32,ΩΛ = 0.68,H0 = 68kms−1 Mpc−1, (6.3d)

where the relationship between the redshift and the dispersion measure is approximated
using Equation 1.3. We assume a simplified model where the contributions from the
Milky Way and FRB host galaxy ISM to the measured DM values are negligible, and
the dispersion is dominated by the Intergalactic Medium. To obtain the correct rela-
tionship between flux and redshift, the luminosity has to be scaled as a function of
the spectral index. This assumes a peak flux density of 1 Jy at 1.4 GHz and reference
redshift of 0.75 (Lorimer et al., 2013).

Figure 6.2 shows simulated FRB peak flux density assuming that they are standard
candles and universe is described by the ΛCDM cosmology with the matter, Ωm and
dark energy, ΩΛ total energy densities, as given by Equation 6.3d. The dashed hor-
izontal lines represent the sensitivity limits of our survey calculated for pulse widths
between 121µs and 123ms, which are the practical lower and upper limits used for
the data recorded using 2048 channels and sampling time of 61.44 µs. As the spectral
index of FRBs is currently unknown, we consider different scenarios, with α = −1.4
being the current best estimate for the mean pulsar spectral index (Bates et al., 2013).
It can be seen that our ability to detect bursts with the assumed positive spectral index
decreases the most rapidly, with all burst widths searched for during processing unde-
tectable at redshifts greater than 0.6. If FRBs were to have a large positive spectral
index, such as α = +3.0, we are expected to observe only the closest ones, with less
than 10% of the entire DM range detectable for bursts with widths less than approxi-
mately 4 ms. With the median width of all FRBs reported so far at 4 ms, we can assume
that all FRBs are of a similar width. In such a case, the GHRSS survey is sensitive to
bursts across most of the probed redshift range only if they were to have negative, i.e.
similar to pulsars and lower spectral index, with α = −1.4 and α = −3.0 being the
only values under consideration that would allow us the fully search the entire DM
rage for bursts with widths less than 4 ms. We use conservative values of the expected
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CPU 2 × Intel(R) Xeon CPU E5-2620 v2, 2.10 GHz, 6 physical cores
RAM 128 GB
GPU 4 × GTX 980, 4 GB memory

Table 6.2: Specification of GHRSS processing nodes.

spectral index, but it is important to note that for the bursts which had values of α mea-
sured (currently only FRB121102 and FRB150807 have been reported to have reliable
spectral index measurements), show a large spread. FRB121102 is the most prominent
example, where the measured spectral index values for repeated bursts span a range
−10.4 ≤ α ≤ +13.6 (Spitler et al., 2016), which can have significant impact on the
predicted survey limits and expected event rates.

6.2 Processing Pipeline

The data was processed using a GPU-enabled pipeline, capable of efficiently using
multiple GPUs at one. Additionally the data are stored externally on multiple hard
drives connected directly to the head cluster node and have to be transferred to the
compute nodes before the processing. The hardware configuration is shown in Table
6.2, with 5 identical nodes used for the processing.

6.2.1 Preprocessing and Distribution on the Cluster

A number of steps have to be taken in order to prepare the data before a single-pulse
or a pulsar search can be run. These include downloading the raw voltages into the
compute node, creating a filterbank file and performing the zero-DM filtering. Com-
bined together, these steps can take up to 2 h to complete when processing the largest
of the files and only after that time can the pulsar and single pulse searches begin. It is
therefore important to efficiently use and share the available resources and keep vari-
ous processing stages idle for the shortest periods of time possible and process the data
concurrently.

Two approaches were considered for the data processing which minimise the time
spent on preparing the data. They both rely on splitting the preprocessing and single-
pulse/pulsar search phase and executing them concurrently. The first considered solu-
tion would allow for the full utilisation of available GPU resources with 4 files pro-
cessed at the same time and another file being prepared for the processing. If this
processing mode was to be used, with the largest files being 40 GB in size, we would
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Figure 6.3: GHRSS pipeline workflow for a single job submitted to the node. In orange are the
parts of the pipeline run solely or mainly on the CPU, while the green parts run primarily on the
GPU. The post-processing phase where the data is combined and various plots are generated is
optional.

then require at least 160 GB when processing the data and another 40–80 GB for a file
in the preparation stage, meaning a machine with 256 GB of RAM would be a ne-
cessity. Having only 128 GB available per node means we are limited in the number
of operations that can be run in parallel. We have therefore chosen to use a scaled-
down approach and work on only two files at the same time: one being prepared for
the processing and one being searched for radio transients. In the search stage, all
of the GPUs do as much work as possible on a single file, which in our case means
splitting the dedispersion, which is the most time consuming part, across all 4 GPUs.
The single-pulse search part however still uses a single-GPU implementation, with the
remaining 3 kept idle.

The pipeline structure currently in use is shown in Figure 6.3. Splitting the pro-
cessing into two separate phases means we have to make sure only a single instance
of each stage is being executed at the same time on every node. With one file being
copied at a time, other jobs are required to wait until the file preparation phase is over.
The same is true for file that is being processed - we can only run the search using the
data from one pointing at a time, and therefore preprocessed files have to wait for their
turn.

The main skeleton of the pipeline is written in Bash to ease the development and en-
sure compatibility between different Linux workstations, with jobs submitted to nodes
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through a job scheduler. Unlike many programming languages, such as Python or C++,
Bash lacks explicit support for mutex/semaphore behaviour in its most basic from and
additional features were not available to us in our node configuration. We have there-
fore selected an approach that can simulate the desired locking behaviour, protecting
different pipeline processing stages. As our requirements are not too stringent, i.e. we
do not require the level of protection that multi-threaded applications usually do, the
intended semaphore-like behaviour is achieved by creating a directory, which serves as
a mutex, as shown in Listing 6.1, as the mkdir is an atomic operation. After the direc-
tory is created, if another job tries to create it again, the operation is unsuccessful and
the job is required to wait for a given amount of time, which in this case was chosen to
be 2 minutes.

When the job is in the preparation stage, the necessary raw data files are copied and
converted to the SIGPROC filterbank file format and the zero-DM filtering is applied,
which is used to remove low-DM RFI contamination by calculating the mean of all the
frequency channels for every time sample and later subtracting this mean from every
channel for that time sample (Eatough et al., 2009). When completed, all temporary
files are removed, leaving only the final filterbank product, reducing the disk space
usage, which is especially important when multiple files are waiting for processing
(with the available disk space, we can have up to 10 prepared filterbank files maximum
waiting). The lock directory is then removed, enabling another job to move to the file
preparation stage when woken up.

The same approach has been used for the files waiting after the preprocessing stage.
In this case, the job that is running the single-pulse search is responsible for creating the
locking directory and removing it after the processing has been finished. The sleeping
processes do not use any CPU resources, so it is therefore safe to have more than
one. Using this simplified solution and not fully-fledged semaphore means that we
cannot guarantee the order of completion, i.e. whichever job wakes up and creates the
directory first can proceed further, no matter its position in the job scheduler queue.
We also do not wake the sleeping processes up if the processing is finished before the
2 minute long sleep period is over. This can lead to a situation where the files which
have been sent to the processing at the beginning of the queue can be processed further
down the line or in the most extreme cases at the very end. This mechanism also means
we have to be especially careful when the jobs are cancelled for whatever reason, be
it erroneous code execution or problems with the cluster hardware and software. If
the job is terminated before it manages to remove the blocking directory, it then has
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to be removed manually from each node, otherwise all future jobs will not be able to
progress beyond that block and will wait until cancelled.

Listing 6.1: A simple semaphore-like mechanism for locking the access to different parts of

the pipeline.

1 while ! mkdir lock_file_prep &>> lock.log

2 do

3 sleep 1m

4 done

Even though we are not capable of processing 4 files at the same time and fully
utilising the available GPU resources, there is still a benefit of computational time
reduction as GPUs do not stay fully inactive when the file is being prepared. The only
time when some GPUs do not do any work is during single pulse searches, which leads
to underutilisation of GPUs for a short period of time. The amount of time required
for the processing of one file lies between 30 to 60 minutes on average, depending
on the file size, which, including file preparation stage, gives between 1 and 2 h total.
Overlapping the preprocessing and processing stages means we can effectively hide
the time ‘wasted’ on preparing the data and receive the final data products every hour
or so, instead of every 2 h in the worst case scenario if we employed a fully-sequential
execution.

6.3 Bifrost Code Overview

The Bifrost code combines the separate pulsar and single-pulse detection pipelines
into single one, which helps us to streamline the search methodology. Using Heimdall
for single-pulse and peasoup7 for pulsar search, using the standard FFT approach, as
described in Section 2.2.2, allows us to combine the common execution steps, as both
of these pipelines make use of the same input data products and use the same libraries
and algorithms for some parts of the execution, e.g. dedispersion. They where also
both designed to make use of GPUs, which means we were able to reduce to number
of intermediate data products and expensive device↔host copies. Both codebases have
also been modified with the GHRSS survey in mind to better fit our needs and reduce
the code complexity required if the pipeline had to be flexible enough to be run with a
number of different surveys. Bifrost is also a stage that is marked green in Figure 6.3

7https://github.com/ewanbarr/peasoup
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- with the most critical parts run on the GPU and responsible for producing the FRB
and pulsar candidates.

6.3.1 Dedispersion

The theoretical framework for the dedispersion implementation has been discussed in
Section 2.2.1. Bifrost processing uses the dedisp8 library, which is a fast GPU im-
plementation of the brute force dedispersion algorithm. As mentioned previously, it
enables splitting of the processing and running the dedispersion concurrently across
multiple GPUs and we can therefore use all our available GPUs to significantly reduce
the processing time of this computationally intensive part of the pipeline. For every file
we run the dedispersion over more than 3000 DM trials between 0 and 2000pccm−3.
2000pccm−3 is also the upper limit for the pipeline dedispersion stage, enforced by the
GPU memory constraints. As shown in Figure 1.3, the dispersion delay is much more
prominent at the centre frequencies used in the GHRSS survey than, for example, any
survey run using Parkes radio telescope, operating close to 1400 MHz. The dedisper-
sion library used as a part of the pipeline makes certain assumptions about the length
of the data chunk necessary to fully dedisperse the signal. The dedispersion is then
performed with the help of the texture memory which, for the architecture used in the
GPUs that were installed in the cluster, imposed a data size limit which did not allow
us to dedisperse signals using higher DM values unless a significant time averaging is
introduced.

During the initial testing, dedispersion was found to be the most crucial step of the
processing, where all the candidate information can be lost if the final dedispersed time
series is not processed properly. The input filterbank files for the GHRSS survey are
stored with 8 bits per sample and the same value was also chosen for the dedispersed
time series output, stored as an unsigned integer, to minimise the memory requirements
and reduce the time spent on copying the data. This means that the output data had to
be scaled down. We use the same approach as described in Section 3.2.4 to fit the
dedispersed time series into an 8 bit number, but this time with the final standard
deviation set to 32.

The original approach was to again calculate the mean and standard deviation of
the first few thousand time samples only, and use the same values for the scaling of
all the other time samples, the same approach used during the PAF processing. This

8https://github.com/ewanbarr/dedisp
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approach heavily relied on the assumption that the mean and standard deviation did not
deviate significantly from their initial values during the observation. This was found
not to be the case for the majority of the observations as the dynamic RFI environment,
changing rapidly over a period as short as few seconds, has a large effect on the quality
and levels of the data and did not improve considerably with the application of the
zero-DM filtering. If we measured the mean and standard deviation using a ‘clean’
portion of the observation only, it would generally result in overflows, truncated to
the maximum value of 255, in parts with excessive RFI. If, however, the opposite took
place - with strong RFI at the start of the observation, the pipeline would return the data
with a large number of underflows set to 0 in the clean parts as we were subtracting
mean that was too high.

An ideal solution would be to clean all the files by hand, but our main goal was to
find a viable algorithmic solution that could be applied not only to the data that we have
already collected, but also for future observations performed as part of the GHRSS
survey which is still underway. The rapidly changing characteristics of the RFI also
meant that we were not able to suppress it using standard techniques to a level allowing
for smooth RFI reduction and more sophisticated algorithms were not available to us at
the time of processing. A different approach was therefore designed in which the data
is split into a number of chunks with the mean and standard deviation calculated for
each chunk separately and the correct values used during the scaling procedure. Each
chunk has the same size as the portion of the dedispersed time series being processed
during the single-pulse search. This size is small enough that large fluctuations caused
by bursts of RFI are not fully flattened out and large enough so that if any signal of
interest was present in the data, it would not significantly alter the calculated values.
Figure 6.4 shows an example for one of the observations, where the mean and standard
deviation are indeed relatively constant for the first 300 seconds of observations, but
both sharply increase afterwards and continue to fluctuate until the end of the data - the
change that would result in corrupted output if not taken into account properly when
using only the start of the observation to estimate the signal levels and its variations.

The obtained values of mean and standard deviation cannot be used directly during
scaling. Rapid changes of large magnitude should generally be avoided, as they can
introduce additional data corruption, especially when two neighbouring dedispersed
time chunks, scaled using different parameters are examined for the presence of single
pulses. Both values have to be smoothed before they can be used. Figure 6.4 also shows
the comparison between the unsmoothed and smoothed standard deviation values. In
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Figure 6.4: Mean sum and sum standard deviation for 1024 dedispersed time series chunks for
one observation. The mean sum and standard deviation remain relatively constant at the start
of the observation due to the zero-DM filtering applied before the processing.

this case, the smoothing has been done by using a simple moving average of width 32.
After the smoothing, rapid fluctuations have been removed and the sharp increase of
standard deviation, which originally occurred over one chunk, has been spread over
the neighbouring chunks.

This process can be computationally expensive if applied to each dispersion mea-
sure trial separately. Instead, it was chosen to be run using a single representative DM
value and apply the same scaling to all of the dedispersed time series for a given point-
ing. As the application of zero-DM algorithm changes the statistics of the signal and
in most cases we are interested in finding signals at high dispersion measures, it was
important to use a higher dispersion measure that would result in the best distribution
of the final values across all DM trials. We have run a number of tests using a selection
of observations which showed various degrees of RFI affecting the data quality. As can
be seen in Figure 6.5, the dedispersed time series at a DM of 0pccm−3 experiences
more rapid and greater variations, even after the application of the algorithm meant to
reduce the amount of zero-DM RFI. Even though the mean has a similar level at all
DM values, the standard deviation is much greater at a DM of 0pccm−3 than at all of
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the other DMs. This means that if we were to use these values, we would overestimate
the variations of our signal levels, which would result in an incorrect scaling and the
distribution of the output values would not fit into the desired range.

This effect can be clearly seen in Figure 6.6, showing the results of the analysis
for one of the pointings. Even though using µ and σ obtained at the lowest dispersion
measure results in all the values being within the desired range, large signal variance
and therefore standard deviation means the resulting distribution is highly concen-
trated around the mean value, with all of the differences in the dedispersed time series
smoothed out, which can result in a fully removed signal of interest. Using the mean
and standard deviation obtained from dedispersing the data to different dispersion mea-
sures results in a more spread out and correct distribution for all but the lowest DM. In
this case we have a very large spread and only around 35% of all the values are found
in the desired range. This behaviour however disappears relatively fast and the distri-
bution returns to normal at a DM of ∼ 50pccm−3, leaving the range of the DM values
of interest for FRB surveys properly dedispersed. Out of all the DM values and tests
run over the subset of 15 pointings, showing a varying degrees of RFI contamination,
∼ 1000pccm−3 was marginally better than all other large DM values, and this is the
value we use for all of our observations.

6.3.2 Pulsar Search

The Bifrost pulsar detection stage follows the same scheme as described in Section
2.2.2. The vast majority of the pipeline was kept the same as in the original code-
base. Small changes were introduced, mainly to allow the testing of different GPUs in
different configurations and include the option to choose which GPUs the pipeline is
meant to run on, not just their number, and additional timing and logging code. The file
reading code has been changed to include time averaging, in order to decrease the total
number of time samples and reduce the amount of the GPU memory used during the
processing. This halves the amount of RAM used to store the original data and also al-
lows us to reduce the computational time. The pulsar search was initially run for DMs
and accelerations in the range 0–2000pccm−3 and −250 to +250ms−2 respectively,
for candidates with S/N grater than 5.0.
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Figure 6.5: Comparison of properties of dedispersed time series using different DM values.
Top: the sum of first 1024 fully-dedispersed time samples. Middle: mean dedispersed sum
within a time chunk with 16384 time samples. Bottom: standard deviation of the sum within
the time chunk. The signal dedispersed to ∼ 0pccm−3 does not have the same properties as
when using other DM values, which is most evident in the differences in the dedispersed time
series, which in turn results in a much larger standard deviation.
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Figure 6.6: Scaled dedispersed time series values distribution with the mean and standard
deviation obtained at different DM values. Each subplot corresponds to a different DM value
at which the µ and σ have been obtained. Different histograms within the subplot show the
resulting distribution after the scaling has been applied to data dedispersed to a given DM.
The values next to each legend entry show the percentage of datapoints lying within the 0–255
range.
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6.3.2.1 Post-processing

A vast number of candidates had to be examined to reject the false-positives and further
process any promising candidates. To achieve this in a reasonable amount of time, an
automated post-processing stage was introduced. First, a script is used to compile a ta-
ble of necessary information, such as candidate ID, period, DM, acceleration, for each
candidate detected during a given observation. It is then used to create candidate files,
one file per candidate, which are later fed into the software responsible for folding the
data using the provided candidate parameters. A number of candidates can be folded
at the same time, with resulting output files saved in separate directories. These out-
put files contain 10-second long sub-integrations which have to be combined to cover
the entire period of observations before further analysis. The resulting archives are
scrunched in the frequency dimension into groups of 64 channels. The main advantage
is the considerable reduction of the data size, which results in a shorter computational
time and lower total disk space usage. The obvious disadvantage is the loss of finer fre-
quency information and any possible insight into pulse profile changes with frequency.
However, as the main focus at this stage is to confirm any possible candidates, this
resolution loss can be accepted and the non-scrunched data can be used during fur-
ther examination, after the pulsar has been confirmed. The post-processing PostScript
files used for quick visual inspection of the most promising candidates with the highest
SNR are generated at the end from the frequency scrunched archives.

Figure 6.7 shows two folded profiles obtained using the post-processing pipeline,
each reported as a high-S/N Bifrost pulsar candidate. It can be clearly seen that only
one set of parameters results in a clearly visible pulse. Surprisingly, the candidate that
cannot be seen has the higher S/N out of the two as indicated by the pulsar search code.
This shows that signal-to-noise ratio cannot be used as the only deciding factor in the
candidate selection and the additional analysis described above is indeed required. The
candidate with a clearly visible pulse has a period of 0.4548 s and DM of 49.3pccm−3,
which is consistent with the reported values for B1510−48.

6.3.3 Single-pulse Search

The single-pulse search is executed after the pulsar detection, if both of them are re-
quested. The original Heimdall code has therefore been modified to make use of the
already dedispersed time series, instead of unnecessarily reading the original filterbank
file and dedispersing it again. Other small modifications included optimising the code



6.4. RESULTS 145

Figure 6.7: Comparison of folded profiles for two pulsar candidates: one with a S/N of 48 (left)
and the other with a S/N of 38 (right). Even though the pulsar present in the field of view has
been rediscovered with a relatively high signal-to-noise ratio, this shows that some candidates
with a higher S/N can clearly be false positives. Different pulse resolutions are the result of
different pulse periods, with the plot spanning the entire pulsar rotations, and the false-positive
having much shorter period that the true detected pulsar radiation.

for the files with 8 bits per sample, as used in the GHRSS data files, resulting in a
shorter and less complex code, making it easier to track and fix bugs.

The dedispersed time series is processed in chunks corresponding to roughly 24 s
of observation. Some files contain a large number of false candidates, which can be
caused by RFI, problems with dedispersed time series scaling or problems with the
telescope hardware. The candidate detection stage is much shorter than the candidate
grouping one and with a reasonable number of candidates, they both take less than a
minute per chunk to complete. However, this time can increase to up to 10 minutes
per chunk when the number of candidates exceeds tens of thousands. A threshold of
250000 on the acceptable number of candidates per minute is therefore used. If it is
exceeded, the processing is halted and no candidates are printed out for a given data
chunk.

6.4 Results

During the initial commissioning, we used both the pulsar and single-pulse search
paths of the pipeline. It was later decided to use a different method for pulsar searches
and the Bifrost pipeline was moved to fully single-pulse operations. Here we present
the results of this processing, with the main focus on FRB searches and the results
from the single-pulse simulations described in Section 5.
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6.4.1 Known Sources Detections

The pulsar search pipeline has been used to process the first round of observations,
which included around 50 pointings. We were able to confirm the ability to discover
pulsars by detecting signals from known objects. Figure 6.8 shows two redetections
from the dataset of known pulsars processed with the Bifrost pipeline. The top panel
shows the redetection of J1514−4834, an ordinary pulsar with a period of 0.4584 s and
a DM of 51.5pccm−3 (Newton et al., 1981). It was detected by the pipeline with a S/N
of 32.2, a period of 0.4548 s and a DM of 49.70pccm−3. The bottom panel shows the
redetection of one of the 10 GHRSS survey pulsars discovered so far (Bhattacharyya
et al., 2016), first detected using an alternative method, J1559− 44. It is located next
to the previously-know pulsar J1559− 4438. In fact, most of the candidates were
coming from this well known pulsar, with multiple redetections at different periods,
indicating a relatively bright pulsar, which was further confirmed by clear single-pulse
detections seen in Figure 6.9. The new pulsar was detected after a careful examination
of weaker candidates and was found at a S/N of 8.1 (for comparison, the strongest
J1559− 4438 candidate had a S/N of 346.8). Detected by the Bifrost pipeline at a
period of 1169.80 ms and a DM of 117.39pccm−3, this is consistent with the officially
confirmed detection at 1169.80 ms and 122.0pccm−3 (Bhattacharyya et al., 2016) and
has been confirmed to indeed be a different pulsar and not another signal coming from
the previously discovered J1559−4438.

We have also used known pulsars as a test dataset for the single-pulse detection
part of the pipeline. Initially, none of them were found or had large chunks of the
candidate output data missing. This was found to be caused by problems with the
final dedispersion scaling, as described above. The data was later reprocessed after
the improved scaling solution had been implemented. As can be seen in Figure 6.9,
we were able to redetect them with a varying degree of success. Some of the pulsars
were clearly visible, like J1559−4438 in panel c). In the case of J1143−5158, only
a small number of single pulses was detected, but it can be seen that there are vertical
bands of missing data, e.g. a large gap between the 500 and 575 s marks, caused by
a large number of candidates and the pipeline stopping the chunk processing (a small
gap can also be seen in the J1559− 4438 detection plot). For other pulsars, such as
J1514−4834 and J1822−4209, we were not able to identify any detections that could
be classified as coming from these objects. This was an indication of a problem with
our ability to detect single pulses, which could have serious consequences when trying
to find FRBs, possibly causing us miss events that were buried in the noisier parts of
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the data and therefore not fully processed or simply missed due to their low S/Ns. To
better understand our detection capabilities, we injected the simulated single pulses as
described in Section 5, which was expected to provide more useful information than
the periodic pulsar signals.

6.4.2 Simulation Results

As has been already described, the number of candidates was expected to increase as
the RFI gets worse, but after a certain threshold for the number of detections per unit
time is reached, the search for a given data chunk will stop and no candidates will
be saved. We therefore wanted to better understand the influence this would have on
the fraction of the data processed properly and therefore the predicted FRB rates. For
this series of tests we have chosen this threshold to again be 250000 candidates per
minute, the same as for all of the original processing. Strong RFI was present in most
observations. However, its exact nature and time span varied between individual point-
ings. The negative effect of RFI was sometimes sufficient that the candidate threshold
was reached for every chunk and no candidates were returned for the whole observa-
tion. Using our simulation software also helped us to better quantify the limits of our
pipeline, including the sensitivity to bursts of different widths and at various dispersion
measures.

In total, we have injected simulated data into 216 pointings, more than 50% of all
the processed data, with 76 pointings coming from earlier observations run between
May–September 2014, and the remaining 140 taken between January 2015 and May
2016. The more recent data has been recorded mainly using 2048 instead of 1024
channels, although some 1024 channel data is still present. As the same total band-
width has been used in both cases, that means the 2048–channel data has an improved
frequency resolution at the cost of the time resolution, which is two times lower than
for the observations using 1024 channels. All of the datasets have been prepared and
processed in the same way, so that all differences can be attributed to the data in the
files themselves rather than different processing methodology.

The earlier dataset has been observed to experience substantial RFI contamination,
which is reflected in the simulation results. Out of 76 simulated events, we were able
to successfully detect only 31, meaning we lost the information on around 59% of
possible detections. Out of the non-detected 45 events, 42 had processing halted early
due to a high candidate rate and the remaining 3 had no candidate detected, even though
the corresponding time chunk was fully processed. Even though the final percentage
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Figure 6.8: J1514−4834 and J1559−44 redetections obtained using the pulsar search part of
the pipeline.
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Figure 6.9: Single pulse detection outputs for known pulsars present in the available dataset.
From the top: a) J1514−4834, b) J1143−5158, c) J1559−4438, d) J1822−4209. J1559−
4438 is clearly visible in the plot, whereas J1143−5158 has only some pulses detected, but a
large number of data chunks are missing from the output. Pulses for the two other pulsars were
not detected, most probably due to their low S/Ns.
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Figure 6.10: Simulated FRBs detected by the pipeline. We generally recover the correct DM
and start time of the pulse. Small variations of the recovered DM from the injected values are
present, but the ‘true’ DM is usually obtained during additional post-processing stages.
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Figure 6.11: GHRSS pointings in Galactic coordinates.

of recovered bursts was low, it represented an improvement over earlier simulations,
without proper post-processing applied to the dedispersed time series, where up to
90% of injected candidates were lost. As show in Figure 6.10, single pulses were
generated over a small DM region, between 600 and 1000pccm−3 in this particular
dataset. This was chosen to represent the population of known FRBs at the time when
this particular simulation was run. It was also restricted due to the fully-coherent mode
used at that time which, as described in Section 5.2.2.1, takes a lot of time and uses a
lot of resources to disperse bursts at higher DM values. Nevertheless it allowed us to
assess our ability to recover bursts and improve it.

The situation improved when the newer dataset was used. In this case, we were able
to detect 115 out of 141 simulated single pulses - close to an 82% recovery rate. The
new dataset has been found to experience much lower levels of RFI causing dropped
processing. This simulation run used a more uniform DM distribution, starting at
350pccm−3 up to the practical maximum achievable limit with the current pipeline
configuration of 2000pccm−3. As we have detected all of the pulses that have been
fully processed, we can conclude that out pipeline is sensitive enough to detect bursts
over a wide range of dispersion measures where the majority of known FRBs have been
found before and that the increased smearing at large DM values does not negatively
impact its performance.
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6.4.3 FRB Search Results

In total, we have processed data from 396 pointings, spanning 127 hours, for pointings
ranging between 5 and 20 minutes in duration. Figure 6.11 shows their positions on
the sky, as projected in the Galactic coordinate system. In this time period we have
not detected any events that, after closer examination, could be classified as Fast Radio
Bursts. As discussed previously, estimating the expected rates is complicated by the
fact that out ability to process the data and therefore detect candidates is severely in-
fluenced and hindered by the presence of strong RFI. Our theoretical calculations and
simulations have shown that if processed correctly we should be able to detect, even
though bright, a large portion of events. This is also confirmed by the single-pulse
detections from known pulsars, with some examples shown in Figure 6.9.

The number of expected events is highly dependent on the FRBs’ spectral index,
which is currently unknown. This causes the estimates of the expected number of
events at low frequencies be highly dependent on this value, as the most accurate and
up-to-date rates are obtained with surveys operating at 1400 MHz. Using our peak
flux density model, as described in Section 6.1.1, we can obtain an estimate of the
expected number of events, depending on the spectral index of the FRB population. We
consider the limiting peak flux density of 1.2 Jy for bursts with width of 3.9 ms. With
each pointing covering an area of 1.8◦ on the sky, we calculate the survey metric to be
228.6deg2 hr. Assuming a flat spectrum with α= 0.0, we expect to see a single FRB in
our dataset. This however assumes that all of the 127 h have been fully processed. As
has been shown in Section 6.4.2, this is not true, as in certain cases we can miss more
than 50% of the data. Taking a moderate total data loss across all of the pointings of
25% into account, we do not expect to see any FRBs in the processed dataset and the
percentage of the data that has been processed properly is most likely less than 75%.
We can therefore conclude that no detections in 127 h of data were expected and more
good quality data obtained in the future as part of the GHRSS survey will have to be
processed, which will hopefully allow us to obtain better constraints on the FRB rates
at 322 MHz.

As the burst rates are highly dependent on the value of the spectral index, negative
spectral index values are expected to result in a higher number of FRBs detectable
at lower operational frequencies. The positive values considered in our calculation
would however result in no detections for bursts above redshifts of 0.2, corresponding
to a DM of 240pccm−3, which is lower than any of the currently reported dispersion
measure values for all of the FRBs discovered so far. If FRBs were to follow a power
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Figure 6.12: Modelled FRB burst rate. Pink line represents the estimated upper limit on the
burst rate from the GHRSS survey, the green line is the redshift where our burst rate crosses
the modelled burst rate and the blue lines indicate redshift limits when considering errors on
the Thornton burst rate. The white cross marks the Thornton rate of 10000sky−1 day−1 at the
redshift of 0.75.

law with spectral index similar to that of pulsars, at α = −1.4, we would expect to
observe at least 7 FRBs, with that number increasing to 16 if the spectral index was to
have the lowest considered value of −3.0.

To obtain a better estimate on the spectral index, we follow an analysis similar to
one performed for the ARTEMIS project (Karastergiou et al., 2015), operating at a
frequency of 145 MHz. We can estimate an upper limit on the FRB rate at 322 MHz
as 5775sky−1 day−1, assuming 75% of the available data was processed correctly. Us-
ing the burst rate scaling with the expected probed maximum redshift (Lorimer et al.,
2013), as shown in Figure 6.12, we can estimate the maximum redshift our survey was
sensitive to. With the maximum redshift limit we are expected to search to set to 0.59
from the burst rates estimates, we can now proceed to get a better estimate on the FRB
spectral index. Using a smaller range of the spectral index values, which cause the peak
flux density for go below the limit of 1.2 Jy for bursts with width of 3.9 ms around the
limiting redshift, as shown in Figure 6.13 allows us the estimate the minimum spectral
index α = 0.18+0.12

−0.39, which is consistent with the results obtained previously at a fre-
quency of 145 MHz (Karastergiou et al., 2015). With that in mind, we can conclude
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Figure 6.13: Predicted spectral index values assuming the limiting redshifts derived from the
expected burst rates. Using the different peak flux curves crossing our limit of 1.2 Jy for bursts
with width of 3.9 ms, we can estimate the spectral index of α = 0.18.

that in the light of no discoveries in our data, the FRBs are most likely to follow a flat
power spectrum or close to it. This result however still depends on the expected burst
rates and is expected to change as they are updated thanks to new surveys and that
the rate of 10000sky−1 day−1 can currently be considered one of the larger burst rate
estimates.
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Conclusions

7.1 New GPU Processing Pipeline for Effelsberg PAF

The PAFINDER single-pulse search pipeline has been successfully commissioned and
is now being used for scientific observations with the Effelsberg radio telescope phased
array feed. This new software has been developed from scratch and the optimised GPU
code allows us to process large volumes of data and create filterbank data products in
real time. Initial tests and scientific observations showed our ability to record and
detect single pulses from various sources, including multiple detections from RRAT
J1819−1458 using offline processing. We have also successfully proved the capability
to send the output data products to single-pulse search software. However, this part
is not currently run in real time when a large number of candidates is present, for
example, with a pulsar present in one of the beams. Real-time performance is however
met when processing data from an empty patch of sky, which is usually the case when
searching for new radio transients. With the use of a DADA buffer as the final product,
we have expanded the functionality of the pipeline beyond the initially planned single-
pulse search and enabled different processing steps, such as a pulsar search, using
software supporting DADA buffers.

Our observations of J1819− 1458 revealed that this RRAT was undergoing a pe-
riod of increased bursting, with a burst rate of 54h−1 measured over a 2 hour long
observation period, which is greater than the often reported bursting rate of around
20h−1. Previously, the increased burst rate has been linked to the presence of glitch in
the timing data on a single occasion. We did not find any evidence of a recent glitch
after fitting the post-glitch ephemeris. Fitting for timing residuals, however, revealed a
complex emission environment, with J1819−1458 emitting primarily in three separate
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bands with the upper and lower bands separated from the centre emission component
by around 0.04 and 0.05 s respectively. Closer examination of all of the 108 single-
pulse detections revealed a complex and changing structure of individual bursts. We
were able to identify pulses with multiple components, with 39 having two and 5 hav-
ing three separate emission peaks. We have also found a single grouping of multi-
component bursts, with two triple-component and three double-component detections.
This groups has been found to be isolated from other detections by more than 68 s and
310 s to the previous and next burst respectively, which is the largest separation for any
of the groups identified in our dataset. This could be an evidence for the existence of a
period of more violent outbursts that are later followed by less energetic or no emission
at all. No clear correlation between the size of groups and their separation from other
detections has been found though and we therefore recommend repeating this study
with a larger dataset spanning more than 2 hours to identify any possible correlations.

We have also re-observed positions of three FRBs discovered in the past, with
one field containing the repeating FRB121102. We were not able to detect any new
bursts. With no detections in a continuous 9-hour long observation of FRB121102,
this is one of the longest periods in which the repeater has been observed and no bursts
have been detected. We use this to estimate the probability of no detections and find
compelling evidence that the behaviour of this particular FRB can be better described
by the Weibull distribution, which unlike the Poisson distribution, allows for burst
clustering and makes the probability of detecting repeating burst dependent on bursts
observed previously. When estimated using the Weibull distribution, the probability
of not seeing any repeated bursts is almost 5 times greater than if FRB121102 was to
follow Poissonian statistics. Even though we were not able to detect any new burst, we
have developed new processing techniques to aid future observations and significantly
reduce the total number of candidates that have to be examined by hand by removing
up to 75% of false-positives caused by RFI.

7.2 Fast Radio Bursts Simulations

We have designed a framework for simulating and injecting Fast Radio Bursts into ob-
servational data. This approach can be used with current surveys to better understand
the detection limits. It can also be useful when designing and developing new process-
ing pipelines. Designed to be injected as early as possible into the processing stream,
it offers the possibility to test the entire detection chain, which at the later stages of
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the development provides more useful information than separate tests of individual
elements, often using different datasets.

New software has been developed which currently simulates a burst approximated
by a Gaussian curve and disperses it either fully-coherently or semi-coherently, de-
pending on the project needs and the available computational resources. It currently
supports a small number of input parameters and the propagation effects are limited to
dispersion only, and the SIGPROC filterbank is the only file format supported which
can have bursts injected into. The modular design, however, means that adding new
processing steps is relatively easy and will provide the required level of flexibility to
test different emission models and processing setups.

7.3 GHRSS Survey

The Bifrost pipeline has been developed which combines the ability to run single-pulse
and pulsar searches in a single codebase, simplifying and speeding up the processing
by reusing common steps such as initial time averaging and dedispersion. It has been
used as part of the GHRSS survey, with the main focus of discovering new FRBs. We
have developed a number of processing techniques that try to mitigate the negative ef-
fects of RFI. Our single-pulse simulation software was used to inject the data into more
than half of all the pointings processed so far. We have found that in the worst case
scenario, we can lose information on more than 50% of candidates due to the detec-
tion thresholds being exceeded, caused by the presence of strong RFI. Even though we
were able to recover less than 50% of candidate information using one dataset, it repre-
sented a significant improvement over more than 90% of the data not being processed
correctly when our RFI mitigation techniques were not in place. Using a second, newer
dataset, we are able to fully process more than 80% of the available data, indicating a
much more stable and significantly improved RFI environment.

After processing 127 hours and a survey metric of 228.6deg2 hr with our single-
pulse search pipeline, did not detect any new FRBs. This is not an unexpected result,
as we expect to observe a single FRB and only when the entire 127 h of data is fully
processed, which was shown to not be the case. By treating FRBs as standard can-
dles and considering power laws with different spectral indices, we were able to find
evidence for FRBs following a different spectrum to pulsars. If they were to follow a
spectrum with α close to -1.4 or less, we would expect to observe around 10 FRBs,
and the lack of any detections disfavours values in this range. By considering the upper
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limit on the FRB burst rate of 5775sky−1 day−1 obtained for our survey, we are able
to obtain an independent estimate of the spectral index of α = 0.18+0.12

−0.39.

7.4 Future Work

The main challenge for the PAFINDER pipeline is the ability to run single-pulse search
software in real time. The current execution procedure does not allow for efficient re-
source sharing between different processes running on the GPU and alternative meth-
ods will have to be investigated. The processing workload can also be reduced by
changing the processing parameters, such as the dispersion range, the allowed smear-
ing and the detection threshold. These will have be tested and tuned carefully to ensure
the best possible compromise between the computational speed and the achieved sensi-
tivity. An important development will have to involve the investigation of the feasibil-
ity of implementing a raw data buffer which will be saved to disk only in the case of a
probable single-pulse detection. This can give us access to the polarisation information
and will allow us to study any possible new FRBs in greater detail than possible with
the current implementation, using a final detected output only. A more robust can-
didate classification approach can also be implemented, using machine learning that
will allow for more effective sifting and identification of true-positives and rejection of
false-positives.

The current single-pulse simulation and injection software can be considered a sin-
gle module in what will eventually become the universal framework for testing the
detection capabilities of various telescopes and pipelines. Additional modules are cur-
rently being developed that will introduce different propagation and emission effects
besides dispersion, such as scattering and spectral index. Support for other file formats,
besides SIGPROC filterbank is currently being developed as well, with the CODIF for-
mat as the main target, which will make it easier to develop, test and fully benchmark
new processing steps for the PAFINDER pipeline without the need to use on-sky tele-
scope time. A new digitisation and injection procedure will also be developed, which
will eliminate problems with final bursts having similar reported S/Ns, independently
of the amplitude of the original Gaussian envelope.
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