"In Vitro Investigation of the Role of Human Cytomegalovirus Glycoprotein Polymorphisms in Disease Pathogenesis"

"A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine and Health"

2018

Jawaher A. Abdulhakim

Division of Infection, Immunity and Respiratory Medicine School of Biological Sciences University of Manchester

TABLE OF CONTENTS

TABLE OF CONTENT			
LIST OF TABLES			
LIST OF FIGURES	9		
LIST OF APPENDICES			
LIST OF ABBREVIATIO	NS12		
ABSTRACT			
DECLARATION			
COPYRIGHT STATEMEN	NT20		
ACKNOWLEDGEMENT	21		
DEDICATION .			
CHAPTERS	CHAPTERS		
1. INTRODUCTION			
2. LITERATURE RE	VIEW		
2.1 Human	Cytomegalovirus		
	L History of Cytomegalovirus		
	2 Classification and Prosperities		
2.1.3	3 HCMV Structure		
2.1.4	Genome Organization		
2.1.5	Viral Proteins		
	2.1.5.1 Capsid Proteins		
	2.1.5.2 Tegument Proteins		
	2.1.5.3 Envelope Proteins		
	2.1.5.3.1 Glycoprotein Complex I		
	2.1.5.3.2 Glycoprotein Complex II		
	2.1.5.3.3 Glycoprotein Complex III		

2.1.5.3.4 Other Envelop Glycoproteins	37
2.1.6 Replication	37
2.1.7 Epidemiology	41
2.1.7.1 Prevalence of Human Cytomegalovirus	41
2.1.7.2 Transmission of HCMV Infection	43
2.1.8 Pathogenesis	44
2.1.9 Immune Response	45
2.1.10 Immune Modulation	46
2.1.11 Latency and Reactivation	47
2.1.12 Diseases Associated with Human Cytomegalovirus	48
2.1.12.1 Infection in Immunocompetent Individuals	48
2.1.12.2 Congenital infections	49
2.1.12.3 Infection in Immunocompromised Patients	50
2.1.12.4 Potential Role of Human Cytomegalovirus	
Envelope Glycoproteins in Diseases Outcome	53
2.1.13 Diagnosis and Screening	56
2.1.14 Management	58
2.1.14.1 Antiviral Treatment	58
2.1.14.2 Vaccination	59
2.1.14.3 Prevention	61
2.2 Glycosylation	61
2.2.1 Glycans	61
2.2.2 Protein Glycosylation	62
2.2.3 Methods to Analyse and Detect Glycoproteins	
Glycosylation	66
2.2.4 Lectins	68
3. MATERIAL AND METHODS	69
3.1 MATERIALS	69
3.1.1 Cell Culture and Viral Stocks	69
3.1.2 Viral DNA Extraction	69
3.1.3 Polymerase Chain Reaction (PCR)	70
3.1.4 E-Gel Electrophoresis and Restriction Fragment Length	
Polymorphisms (RFLP)	71
3.1.5 Enzyme Linked Lectin-Sorbent Assay (ELLA)	72
3.2 Methods	75
3.2.1 Cell Culture	75
3.2.1.1 Cell Culture Media Preparation	75
3.2.1.2 Sterility Test	75

3.2.1.3 Cultivation of Cells	76
3.2.1.4 Counting of Cells	76
3.2.1.5 Freezing of HEL (MRC-5) Cells	76
3.2.1.6 Thawing of HEL (MRC-5) Cells	77
3.2.1.7 Infection of MRC-5 Cells	77
3.2.1.8 Harvesting the Virus and Preparing a Stock of	
HCMV	78
3.2.1.9 Virus Infectivity Titration (TCID ₅₀	
Determination)	78
3.2.1.10 Fixation of MRC-5 Cells and MRC-5	
Infected Cells	79
3.2.2 Real Time Polymerase Chain Reaction (PCR)	79
3.2.2.1 Viral DNA Extraction	79
3.2.2.2 Conventional PCR	80
3.2.2.3 Real Time PCR	82
3.2.2.4 PCR Conditions	83
3.2.3. HCMV Growth characteristics	83
3.2.4 E-Gel® Electrophoresis	83
3.2.5 Restriction Fragment Length Polymorphisms (RFLP)	84
3.2.6 Electrophoresis of TBE Gels Using XCell SureLock	
Mini-Cell	85
3.2.7 Enzyme Linked Lectin-Sorbent Assay (ELLA)	86
3.2.8 Samples Information	87
3.2.8.1 Laboratory Strains	87
3.2.8.2 Clinical Samples	88
3.2.9 Ethical Consideration	89
3.2.10 Statistics	90
4. RESULTS AND DATA ANALYSIS	91
4.1 Cultivation of MRC-5 Cells	91
4.2 Infection of MRC-5 Cells	92
4.3 Fixation ofMRC-5 Cells	92
4.4 Determination of Tissue Culture Dose 50% (TCID ₅₀)	93
4.5 Identification of HCMV Glycoprotein Genotypes and their Effect	
on the Virus Distribution	94
4.5.1 Infection Category	94
4.5.1.1 Glycoprotein B	95
4.5.1.2 Glycoprotein H	97
4.5.1.3 Glycoprotein L	98

4.5.1.4 Glycoprotein M100
4.5.1.5 Glycoprotein N102
4.5.1.6 Glycoprotein O104
4.5.2 Specimen Type106
4.5.2.1 Glycoprotein B107
4.5.2.2 Glycoprotein H108
4.5.2.3 Glycoprotein L109
4.5.2.4 Glycoprotein M111
4.5.2.5 Glycoprotein N112
4.5.2.6 Glycoprotein O113
4.5.3 Summary115
4.6 Identification of HCMV Strains Growth Characteristics116
4.6.1 Laboratory Strains Growth Characteristics
4.6.1.1 Laboratory strains Growth Characteristics
Assessed by TCID50 Assay117
4.6.1.2 Laboratory strains Growth Characteristics Using
PCR-Based TCID ₅₀ Assay118
4.6.1.3 Effect of Glycoproteins Genotypes on Laboratory
strains Growth Characteristics
4.6.2 HCMV Growth Characteristics in Clinical Samples121
4.6.2.1 Effect of Glycoprotein Genotypes on Clinical
Strains Growth Characteristics
4.6.3 HCMV Strains Growth Characteristics Infection
Analyse by Patient Infection123
4.6.4 Effect of Specimen Type on HCMV Strains Growth
Characteristics
4.6.5 Summary127
4.7 Analysis of the Relationship Between HCMV Glycoprotein
Genotypes and Glycosylation Patterns127
4.7.1 Laboratory Strains Glycoproteins Glycosylation
4.7.1.1 Glycoprotein Genotypes Effect on Glycosylation
Patterns of Laboratory Strains
4.7.2 Glycoproteins Glycosylation of Clinical Strains
4.7.2.1 Glycoprotein Genotypes Effect on Glycosylation
Patterns of Clinical Samples 134
4.7.3 Effect of the Infection Category on the Glycosylation
Patterns of HCMV Glycoprotein Genotypes 137
4.7.4 Effect of Specimen Types on the Glycosylation
Patterns of HCMV Glycoprotein Genotypes 138
4.7.5 Summary 139

5. DISCUSSION141
5.1 Distribution of HCMV Genotypes in Study Population145
5.2 Growth Characteristics of HCMV Glycoprotein Genotypes156
5.3 Glycosylation Patterns of HCMV Glycoprotein Genotypes
5.4 Summary and conclusion169
5.5 Limitations of the Study175
5.6 Future Work176

REFERENCES	
APPENDICES.	

[FINAL WORD COUNT 41,715 (Excluding declaration, copyright statement, acknowledgment, references, and appendices)]

LIST OF TABLES

1	Oligonucleotide primers sequences used in HCMV PCR reaction.	70
2	Restriction enzymes used in RFLP assay.	72
3	Biotinylated lectins used (20) and their binding specificity.	73
4	PCR Cycling Parameters.	81
5	Restriction enzymes used for each genotype and their specific size.	84
6	The infectious titre of the stocks of different HCMV strains.	93
7	gB distribution among patients with different infection categories.	96
8	gH distribution among patients with different infection categories.	97
9	gL distribution among patients with different infection categories.	99
10	gM distribution among patients with different infection categories.	101
11	gN distribution among patients with different infection categories.	103
12	gO distribution among patients with different infection categories.	105
13	gB distribution among different specimen types.	107
14	gH distribution among different specimen types.	109
15	gL distribution among different specimen types.	110
16	gM distribution among different specimen types.	111
17	gN distribution among different specimen types.	113
18	gO distribution among different specimen types.	114
19	The most common HCMV glycoprotein genotypes among each infection category and specimen type.	115
20	Tracking HCMV laboratory strains growth over 4 weeks using TCID $_{50}$ values.	118
21	HCMV laboratory strains glycoproteins genotyping profile.	121
22	Mean, Standard deviation (SD), and P values of congenital infection samples over 4 weeks post infection.	124
23	Mean, standard deviation (SD), and P values of Urine specimens over 4 weeks post infection.	126
24	Lectins that had a statistically significant difference in their binding profile ($N=9$), before and after laboratory strains HCMV infection.	129
25	Glycoprotein genotypes quantities included in ANOVA analysis for Laboratory strains.	130

26	Mean, standard deviation (SD), and P values of the overall statistical significant lectins binding profiles influenced by some HCMV genotypes in Laboratory strains.	131
27	Lectins that had a statistically significant difference in their binding profile, before and after clinical specimens HCMV infection.	133
28	Glycoprotein genotypes quantities included in ANOVA analysis for clinical samples.	135
29	Mean, standard deviation (SD), and P values of the statistical significant lectins binding profiles influenced by some HCMV genotypes in clinical samples.	136
30	Infection categories and their number of cases, included in ANOVA analysis for clinical samples.	138
31	Mean, standard deviation (SD), and P values of overall statistical significance.	138

LIST of FIGURES

1	Cells with intranuclear inclusions with halo seen by Jesionek and Kiolemenoglou and described as a protozoan- like (Ho, 2008).	26
2	Diagrammatic illustration of a human cytomegalovirus virion (Gaddy, 2009).	29
3	Schematic map of the genome, shows the unique sequences UL and US, bounded by the two sets of inverted repeats TRL/IRL and TRS /IRS (Schleiss, 2011).	30
4	Structure of the four-human cytomegalovirus genomic isomers (Landolfo <i>et al.</i> , 2003).	30
5	The life cycle of HCMV in human cell (Crough and Khanna, 2009). The figure shows the different replication steps of HCMV life cycle, the virus acquires its primary envelope from the nuclear membrane during the nuclear egress.	38
6	Gene expression and function of the viral production during HCMV infection (Landolfo <i>et al.</i> , 2003).	40
7	Structures of O-Linked oligosaccharide and N-Linked oligosaccharide (Lodish <i>et al</i> ., 2000).	64
8	Schematic diagram presenting the method of Enzyme Linked Lectin-Sorbent Assay.	87
9	100 % confluent MRC- cells observed after 72-96 hours of culturing.	91
10	HCMV specific Cytopathic Effect (CPE) on fibroblasts cells, as the cells appear flat, rounded and swollen. Granular intracytoplasmic and intranuclear inclusion bodies appear within these cells in the centre of the picture.	92
11	gB distribution among patients with different infection categories.	96
12	gH distribution among patients with different infection categories.	98
13	gL distribution among patients with different infection categories.	100
14	gM distribution among patients with different infection categories.	102
15	gN distribution among patients with different infection categories.	104
16	gO distribution among patients with different infection categories.	106
17	gB distribution among different specimen types.	108
18	gH distribution among different specimen types.	109
19	gL distribution among different specimen types.	110
20	gM distribution among different specimen types.	112
21	gN distribution among different specimen types.	113

22	gO distribution among different specimen types.	114
23	Percentages of each genotype distribution according to infection category and specimen type analysis.	116
24	Laboratory strains growth characteristics over a 4-week period using TCID $_{50}$ values.	118
25	Standard curve for HCMV real time PCR, seven 1:10 serial dilutions of the standards were used, The Y-axis presents the CT values corresponding to the number of DNA copies of each sample.	119
26	Laboratory strains growth characteristics over 4 weeks assayed by PCR, The Y-axis presents the number of DNA copies of each sample.	120
27	Growth curves of laboratory strains and clinical strains over 4 weeks of HCMV infection using the average of TCID ₅₀ values.	122
28	The effect of the glycoprotein genotypes on HCMV growth over 4 weeks' post infection, using the mean of TCID50 values. No statistically effect has been identified according to ANOVA statistical analysis.	123
29	HCMV strains growth over 4 weeks post infection, according to patient group, using the mean TCID50 values for each week for each infection category.	125
30	Effect of specimen types of on HCMV growth over 4 weeks' post infection, using the mean of TCID ₅₀ values of each week for each specimen type.	126
31	Lectins binding profile comparison between non-infected and HCMV infected cells in laboratory strains.	129
32	The significant effect of gH and gM genotypes on some of the lectins binding profile.	132
33	Lectins binding profile comparison between non-infected and HCMV infected cells in clinical specimens.	134
34	Lectin binding that was significantly affected by HCMV glycoprotein genotypes (ANOVA results).	135
35	Lectins binding profiles that were significantly affected by HCMV glycoprotein genotypes (Bonferroni results).	137
36	"GNL" lectin binding profile that was significantly affected by HCMV specimen type.	139
37	Flowchart presenting the number of samples included in each assay and statistical test analysis.	144

LIST OF APPENDICES

1	Clinical HCMV strains glycoprotein genotypes profile.	198
2	Tracking HCMV clinical strains growth over 4 weeks using TCID $_{50}$ assay.	200
3	Results of One-way ANOVA, the tables below, for each glycoprotein genotype, show that no significant differences between the growth behaviour of HCMV strains in clinical samples and the glycoprotein genotypes.	202
	3.1 Glycoprotein B	202
	3.2 Glycoprotein H	203
	3.3 Glycoprotein L	204
	3.4 Glycoprotein M	206
	3.5 Glycoprotein N	207
	3.6 Glycoprotein O	209
4	Tables of One-way ANOVA results for the relation between HCMV growth behaviour and the sample's infection category.	211
5	Tables of One-way ANOVA results for the relation between HCMV growth behaviour and the sample's specimen type.	215
6	Tables of One-way ANOVA results for the relation between HCMV glycoprotein genotypes and the glycosylation of the glycoproteins.	217
	6.1 Lectins' identification number in the following ANOVA tables.	217
	6.2 Glycoprotein B	217
	6.3 Glycoprotein H	224
	6.4 Glycoprotein L	228
	6.5 Glycoprotein M	238
	6.6 Glycoprotein N	242
	6.7 Glycoprotein O	248
7	Tables of One-way ANOVA results for the relation between HCMV infection category and the glycosylation of the glycoproteins.	253
8	Tables of One-way ANOVA results for the relation between HCMV sample	271

8 Tables of One-way ANOVA results for the relation between HCMV sample 271 type and the glycosylation of the glycoproteins.

LIST of ABBREVIATIONS

HCMV	Human Cytomegalovirus
SNHL	Sensorineural Hearing Loss
NK	Natural Killer
IgM	Immunoglobulin M
IgG	Immunoglobulin G
dsDNA	Double stranded DNA
KbP	Kilobase Pair
gB	Glycoprotein B
gM	Glycoprotein M
gN	Glycoprotein N
gH	Glycoprotein H
gL	Glycoprotein L
gO	Glycoprotein O
ER	Endoplasmic Reticulum
HIV	Human Immunodeficiency Virus
HCV	Hepatitis C Virus
SNHL	Sensorineural Hearing Loss
МСР	Major Capsid Protein
mCP	Minor capsid proteins
SCP	Smallest Capsid Proteins
VZV	Varicella-zoster Virus
EBV	Epstein-Barr virus
RNAs	Ribonucleic acids

ΙE Immediate Early LTP Largest Tegument Protein GC Glycoprotein Complex Wnt Wingless-related integration RFLP Restriction Fragment Length Polymorphism HSPGs Heparin sulphate proteoglycan EGFR Epidermal Growth Factor Receptor MCP Major Capsid Proteins mCP Minor capsid proteins SCP Smallest Capsid Proteins GalNAc N-acetyl-D-galactosamine GlcNAc N-acetyl-D-glucosamine Neu5Ac N-acetylneuraminic acid D-glucose Glc Gal D-galactose Man D-mannose Sialic acids Sia Asn Asparagine residue Threonine Thr Serine Ser GAGs Glycosaminoglycans HSGAGs Heparan Sulphate Glycosaminoglycans

0.D.	Optical Density
Av/Po	Avidin/peroxidase
DMSO	Dimethyl Sulphoxide
MEM	Eagle's Minimum Essential Medium
Sab	Sabouraud
UPDW	Ultra-pure distilled water
SD	Standard deviation
Р	Probability value
ECL	Erythrina cristagalli lectin
WGA	Wheat Germ agglutinin
EBL	Sambucus nigra lectin
GNL	Galanthus nivalis lectin
BPL	Bauhinia purpurea lectin
EEL	Euonymus europaeus lectin
PHA-E	Phaseolus vulgaris erythroagglutinin
PTL	Psophocarpus tetragonolobus lectin
AAL	Aleuria aurantia lectin
PSA	Pisum sativum agglutinin
HSV	Herpes simplex Virus
CID	Cytomegalic inclusion disease
ICTV	International Committee on Taxonomy of Viruses
HH-5	Human Herpesvirus 5

DB	Dense Bodies
NIEPs	Non-Infectious Enveloped Particles
Nm	Nanometer
UL	Unique Long
US	Unique Short
TRL	Terminal Repeat Long
TRS	Terminal Repeat Short
IRL	Internal Repeat Long
IRS	Internal repeat Short
G	Guanine
С	Cytosine
ORFs	Open Reading Frames
Ρ	Protein
gp	Glycoprotein
STAT	Signal Transducer and Activators of Transcription
E	Early Gene Expression
L	Late Gene Expression
APs	Assembly Proteins
ACD	Amino Conserved Domain
PCR	Polymerase Chain Reaction
AIDS	Acquired Immunodeficiency Syndrome
INF	Interferon

INF Interferon

CNS	Central Nervous System
ELISA	Enzyme Linked Immuno-Sorbent Assay
ATP	Adenosine triphosphate
HAART	Highly Active Antiretroviral Therapy
МНС	Major Histocompatibility complex
ACV	Acyclovir
GCV	Ganciclovir
FOS	Foscarnet
Fuc	L-fucose
PNGase F	Peptide -N-Glycosidase F
GBP	Glycan-binding Proteins
ELLA	Enzyme Linked Lectin-sorbent Assay
HEL	Human Embryonic Lung Fibroblasts
ATCC	American Type Culture Collection
CPE	Cytopathic Effect
μg	Microgram
μΙ	Microliter
mМ	Micromolar
М	Molar
TBS	Tris-buffered saline
ТМВ	Tetra MethylBenzidine
FCS	Foetal Calf Serum

TCID ₅₀	50% Tissue Culture Infectious Dose
CaCl	Calcium Chloride
М	Mean
Sig	Significance
SBA	Soybean agglutinin
LCA	Lens culinaris agglutinin
GSL II	Biotinylated Griffonia (Bandeiraea) Simplicifolia Lectin II
PHA-L	Phaseolus vulgaris Leucoagglutinin
LEL	Lycopersicon esculentum lectin
UEA	Ulex europaeus agglutinin
WFA	Wisteria floribunda agglutinin
ALL	Amaranthus caudatus lectin
MAA II	Maackia Amurensis Lectin II

GSL I Griffonia (Bandeiraea) Simplicifolia Lectin I

ABSTRACT

HCMV is a common viral pathogen that infects most of the world's population by early adulthood. It is typically asymptomatic in immunologically healthy individuals but causes severe disease in immunocompromised patients and congenitally infected infants. HCMV glycoproteins are highly polymorphic, and various types of associations have been suggested between glycoprotein types and the pathogenicity of the virus. Several studies on viruses other than HCMV have related the glycosylation of the viral glycoproteins to virulence. This project aimed to determine whether there is a robust relationship between the individual glycoprotein sequence and its glycosylation, how this influences the growth characteristic of the virus and whether this is related to its pathogenicity. Glycosylation patterns of 89 clinical specimens of different infection categories and specimen types were correlated with genetic sequence alterations of the virus glycoproteins (gB, gH, gL, gM, gN, gO), followed by determining whether mutation results in specific changes in glycosylation. The aim was approached using a cell culture model and a quantitative lectin-based assay (ELLA). A significantly increased glycosylation level for the following genotypes: mixed gH, gN4a, gO4, mixed gL was detected. Whereas a decreased pattern was found to be associated with gH1, gH2, gN3a, gO1a and gL2 genotypes (P<0.05). Glycoproteins of strains isolated from respiratory specimens were significantly highly glycosylated compared to the blood and urine samples, and from blood specimens compared to the urine samples (P<0.05). Furthermore, strains from congenitally infected infants and urine samples had a significantly higher growth rate than others tested. No direct association between the virus growth and its virulence was found. These findings demonstrate that glycosylation of glycoproteins in HCMV is affected by the glycoprotein polymorphisms and signifies a potentially important mechanism for avoidance of antibody-mediated neutralization, which, in turn, facilitates HCMV pathogenicity. This phenomenon requires further study and may have application for the selection of novel targets for diagnosis, vaccine development and other preventive measures to combat diseases caused by this virus.

DECLARATION

No portion of the work referred to in the thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.

COPYRIGHT STATEMENT

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the "Copyright") and she has given The University of Manchester certain rights to use such Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other intellectual property (the "Intellectual Property") and any reproductions of copyright works in the thesis, for example graphs and tables ("Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and commercialization of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any relevant Thesis restriction declarations deposited in the University Library, The University Library's regulations (see <u>http://www.library.manchester.ac.uk/</u>about/ regulations/) and in The University's policy on Presentation of Theses.

ACKNOWLEDGEMENT

First, I would like to acknowledge the input and effort of my supervisors, Professors Pam Vallely and Paul Klapper, and express my extreme appreciation for their patience, understanding, guidance and continuous support, professionally and emotionally.

I also would like to extend my most profound gratitude to my beloved family especially, Mum, my husband, and my son for their encouragement, and endless mental and emotional support without which this work may never have been completed.

Also, I would like to thank David Dennington and Yvonne Duxbury for their expert technical assistance. I would like to thank my colleagues for their cooperation, and kind support.

Lastly, for the financial support of my studies, I would like to thank the Ministry of Higher Education in Saudi Arabia.

DEDICATION

This work is dedicated to Mum, may Allah prolong her life and protect her; Dad, may Allah rest his soul in peace; my husband Ayman, my partner and the love of my life; my children (Manar and Mariam), my joy and happiness; and my brothers, who have always been there for me.

CHAPTER 1

Introduction

Human Cytomegalovirus (HCMV)— humanbetaherpesvirus 5 (also referred to as the human herpes virus 5) —is a ubiquitous, double-stranded DNA virus belonging to the Herpesviridae family, subfamily betaherpesvirinae (Puchhammer-Stöckl and Görzer, 2011). The viral genome is packaged as a single, linear, 235 kb dsDNA molecule packaged in a preformed capsid. The mature capsid is an icosahedron and is surrounded by an amorphous layer, the tegument, which is in turn surrounded by a lipid envelope studded with glycoprotein spikes. The virion envelope is essential for virus infectivity. HCMV, as with other betaherpesviridae subfamily, is species-specific and cell-type-specific in culture. The growth cycle is slow, and the virus tends to remain cell-associated. Infection results in a marked increase in cell volume (cytomegalia) and development of prominent and distinctive nuclear and cytoplasmic inclusions. Infection is often clinically non-apparent in immune-competent hosts. Latent infection is established in cells of the myeloid lineage including CD14+ monocytes and their CD34+ progenitor (Brooks *et al.*, 2010; Poole *et al.*, 2014).

HCMV infections can be acquired *in utero* or during the postnatal period via infected maternal breast milk. Maternal-to-foetal viral transmission is facilitated by the altered cytokine profile of pregnancy, resulting in functional immune suppression. During primary maternal infection, reactivated infection or re-infection, the virus can cross the placenta and infect the developing foetus. This subsequently triggers a localised immune response in the form of cytokine release, foetal and transplacental IgM and IgG release and cytotoxic natural killer (NK) cell responses. However, once the virus infiltrates the foetal compartment, underdeveloped foetal CD4+ T-cells are unable to suitably proliferate in response to the viral invasion, impairing the foetal immune response (Schleiss, 2013).

The most common manifestations of infection at parturition include hepatosplenomegaly, thrombocytopenia, cholestatic hepatitis, purpura, retinitis, viremia, and pneumonia. These congenitally-infected infants are particularly susceptible to long-term neurodevelopmental sequelae, the prognosis of which is determined at least partially by the maternal immune status prior to conception, the timing of foetal infection, and whether or not the mother is re-infected with a new strain of HCMV during the pregnancy (Kenneson and Cannon, 2007; Schleiss, 2013).

What is poorly understood is why some infected infants are affected, either at birth or with late sequelae whilst others are completely unaffected. The virulence of the virus and/or the way it interacts with the maternal and/or foetal immune system may have a role. To date, no robust data have been produced to prove or refute this hypothesis.

It is known that there is a large inter-host genomic variability of HCMV amongst congenitally infected infants. HCMV has the largest genome of any human virus; and the virus exhibits considerable sequence variability and exists as a complex mixture of genotypes (Renzette *et al.*, 2011).

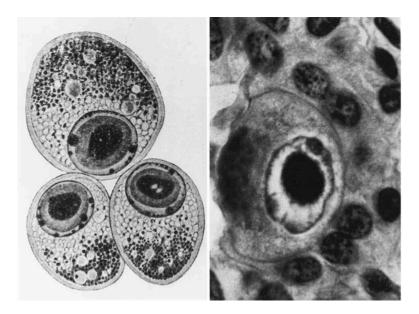
Sequencing and analysis of the HCMV genome have defined around 200 Open Reading Frames (ORFs) including those coding for six envelope glycoproteins (gB, gM, gN, gH, gL and gO). Functional studies subsequently identified ORFs coding for glycoproteins B, H, L, M and N, as being essential for viral replication (Dunn *et al.*, 2003). There is good evidence that alterations in the gene sequence of an individual glycoprotein affect the way it is post-translationally glycosylated and that this, in turn, affects its interactions with the immune system. Little attention has been paid in the literature to the role of the carbohydrate component of the HCMV glycoproteins and the influence these exert on the function of the glycoprotein. HCMV glycoproteins are known to be highly polymorphic, and as mentioned earlier, various associations have been suggested between glycoprotein

type or sub-type and pathogenicity of the virus. A study has reported that the glycosylation of glycoprotein N (gN) of HCMV could contribute to the resistance of the virus to neutralizing antibodies (Kropff *et al.*, 2012; Vulgaris, 2013).

The main aim of this project is to determine whether there is a relationship between the individual glycoprotein sequence and its glycosylation, whether this is true for all the glycoproteins of the virus, and whether this alters the pathogenicity of virus infection. The research question "Does the polymorphic nature of HCMV glycoproteins affect their glycosylation and is this a mechanism that explains the variable disease pathogenesis of the virus?", was answered by investigating the glycosylation pattern of HCMV glycoproteins, using a cell culture model and a quantitative lectin-based assay, Enzyme Linked Immunosorbent Assay (ELLA). RFLP analysis of genomic DNA was carried out to determine the glycoprotein genotype profile for all specimens. TCID₅₀ and PCR assay were used to investigate the growth of virus in culture.

The glycoprotein genotype was compared with the patient sample data (infection category and specimen type), which in turn was associated with the virus growth characteristics to determine whether the observations made *in vitro* correlate with the *in vivo* activity of the virus.

Finally, the glycan profile and glycoprotein genotype were compared to determine whether mutations or combinations of mutations result in changes in glycosylation.


CHAPTER 2

2 Literature review

2.1. Human cytomegalovirus

2.1.1 History of cytomegalovirus

In 1881, Ribbert first observed and recognised the presence of large inclusion-bearing cells in the kidneys of a stillborn infant with syphilis. This observation went unnoticed until twenty-three years later; the first images of these protozoan-like cells in kidneys, liver, and lungs of another stillborn infant were published by Jesionek and Kiolemenoglou (Figure 1) (Ho, 2008). Between 1909 and 1937, similar inclusions were observed and documented by several researchers (Harris and Riley, 1997).

Figure 1: Cells with intranuclear inclusions with halo seen by Jesionek and Kiolemenoglou and described as a protozoan- like (Ho, 2008).

In 1921, Goodpasture and Talbot suggested that these cellular alterations were similar to the ones seen in skin lesions by Tyzzer in 1906. They hypothesised that these 'cytomegalia' might be a result of a viral agent rather than protozoa. In 1950, Wyatt *et al.*, suggested a name "generalized cytomegalic inclusion disease

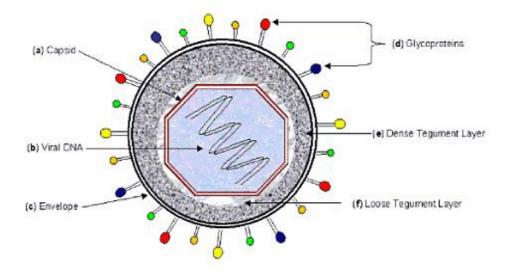
(CID)" for the condition, which was also associated with intranuclear inclusions found in 25 cases of uncommon lethal congenital infection described by Petechiae in 1932. Fetterman achieved the first *intravitum* diagnosis of CID when he used the urine sediment of a premature infant with congenital infection for cytological preparation (Dudgeon, 1971). Following that, Minder used electron microscopy to examine a case of CID and described the causative virus for the first time (Ho, 2008). Smith and Vellios reviewed 69 cases of inclusion disease previously reported, in addition to their series of 20 cases. They believed these inclusion-bearing cells were pathognomonic for the disease, with the majority of cases of generalised infection observed during the first two years of life; and, concluded the infection occurred in utero (Harris and Riley, 1997).

In the succeeding years, Smith in 1955, Rowe *et al.*, in 1956, and Weller *et al.*, in 1957 independently isolated human cytomegalovirus from salivary gland, adenoid tissue and liver biopsy respectively (Baumann, 2011). By 1960, Weller and colleagues recommended the term 'cytomegalovirus' for the virus isolated since the cytomegalic inclusion disease-salivary gland virus disease categorisation, as used earlier, was cumbersome and confusing as the salivary gland is just one of many probable sites of infection (Ho, 2008). Although the importance of cytomegalovirus disease was known at that time, the fact that the disease may occur as a fatal complication either congenitally or after organ transplantation has made the scientific community more interested in studying it. During the 1970s and 1980s, cytomegalovirus was intensely studied and continues to be explored by numerous researchers (Baumann, 2011).

2.1.2 Classification and properties

According to the International Committee on Taxonomy of Viruses (ICTV), Human Cytomegalovirus (HCMV) is categorised into the Herpesvirales order, Herpesviridae family, Betaherpesvirinae subfamily, Cytomegalovirus genus, Human betaherpesvirus five species (ICTV Virus Taxonomy, 2017).

All members of Herpesviridae family were assigned according to the architecture of the virion (a linear double-stranded DNA genome enclosed within an icosahedral capsid). Additionally, they share essential biological properties such as; specification of a large range of enzymes involved in DNA synthesis and protein processing; a nuclear assembly of viral capsids and synthesis of viral DNAs, followed by final processing of the virion in the cytoplasm; establishment of a lifelong persistence after primary infection, and becoming latent within host cells (Pellet and Roizman, 2007).


Herpesviridae are classified into three subfamilies (α , β and γ herpesvirinae) based on genetic content (sequence-based phylogeny). Cytomegalovirus belongs to the β -herpesvirinae subfamily, and its genome is the largest among all Herpesvirales (Lane, 2006). HCMV is characterised by a limited host range, a long and slow replication cycle in cell culture (Rajcani and Durmanova, 2001). It infects various body tissues, but the main sites of latency are cells of the myeloid lineage including CD14+ monocytes and their CD34+ progenitors (Poole *et al.*, 2014).

2.1.3 HCMV structure

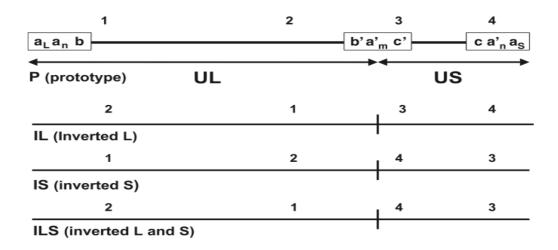
The human cytomegalovirus has a similar structure to other human herpesviruses. Although its genome is about 50% larger than herpes simplex virus type 1 (Gibson, 2008).

The HCMV virion is roughly 200–300 nm in diameter, with an icosahedral nucleocapsid measuring around 125 nm in diameter (Landolfo *et al.*, 2003). The whole infectious virion estimated to have more than 50 viral proteins (Phillips and Bresnahan, 2011). The capsid contains the double-stranded linear DNA genome. Surrounding the capsid is a proteinaceous tegument layer, which is about 50 nm thick (Gibson, 2008), and composed of a minimum of 27 relatively abundant virus encoded proteins. This is then, enclosed by an approximately 10 nm thick outer lipid envelope (Mocarski *et al.*, 2007; Gibson, 2008). Embedded within the lipid envelope are a number of virally encoded glycoproteins (Spaderna *et al.*, 2002)

(Figure 2). Small RNAs, polyamines, phospholipids and some of the host cell proteins are also included in both tegument and envelope layers (Gibson, 2008).

Figure 2: Diagrammatic illustration of a human cytomegalovirus virion (Gaddy, 2009).

Dense bodies (DB) and non-infectious enveloped particles (NIEPs), enveloped A and B-capsids (further explained in section 2.1.5.1), together with the infectious virions are produced in the cell cultures infected with HCMV, the relative percentage of the three forms is dependent on the viral strain and the number of passages in cell culture. Both dense bodies and the envelope particles are noninfectious because they lack some of the essential components that the virion possesses. Assembled nucleocapsid and viral DNA are absent in DB, which consist of tegument proteins, while the enveloped particles have immature capsids that lack DNA (Mocarski *et al.*, 2007; Landolfo *et al.*, 2003). Dense bodies are larger (250-600 nm) than the virion and the NIEPs, and bordered by an envelope that undistinguished from the one surrounding the virion (Gibson, 2008).


2.1.4 Genome organisation

HCMV genome is the largest of all herpesviruses with size around 235 kilobase pair (kbp), encoding more than 200 open reading frames (Phillips and Bresnahan, 2011), and about 50 glycoproteins (Boehme and Compton, 2006;

Isaacson *et al.*, 2008). It comprises 58 % guanine+ cytosine content (G+C). It is a class E genome (Demmler, 2004), divided into two unique sequence regions, unique long (UL) and unique short (US) that are bounded by two sets of inverted repetition sequences: terminal repeat long (TRL) and internal repeat long (IRL), the latter is an inverted repeat of TRL, and terminal repeat short (TRS) and internal repeat short (IRS), the latter is an inverted repeat of TRS (Figure 3). The UL and US segments have the ability to separately invert with respect to one another during infection, resulting in four different genomic isomers (Mach *et al.*, 1989; McVoy, 1994).

Figure 3: Schematic map of the genome, shows the unique sequences UL and US, bounded by the two sets of inverted repeats TRL/IRL and TRS /IRS (Schleiss, 2011).

Figure 4: Structure of the four-human cytomegalovirus genomic isomers (Landolfo *et al.*, 2003).

TRL segment surrounded with (a_n, b) repeats and IRL-IRS segment bounded with (b^{n}, a^{n}, c^{n}) repeats, whereas TRS surrounded with (c, a_n) . Accordingly, the sequence of the repeats will be as follow: $(a_nbb^{n}a^{n}c^{n}ca_n)$. These repeats mediate the inversion of the UL and the US regions. Thus, the HCMV genome isomerisation occurs as a result of the recombination of terminal a_n and internal a_n sequences (Figure 4) (Landolfo *et al.*, 2003; Murphy and Shenk, 2008).

In each region (UL and US) there are a number of predicted open reading frames (ORFs), explained by abbreviations, p for protein, gp for glycoprotein and pp for phosphoprotein, tailed with the region acronym and the sequential number of the ORF, for example, gpUL55 (gB) is the 55th ORF recognized as glycoprotein B in the UL region (Dargan *et al.*, 1997). Differing numbers of ORFs in the HCMV genome have been reported in different studies, from the initial estimation of 208 ORFs in 1990 to recent estimations ranging from a minimum of 165 potentially functional ORFs to a maximum of 252 ORFs (Murphy and Shenk, 2008).

2.1.5 Viral proteins

2.1.5.1 Capsid proteins

The HCMV T=16- icosahedral capsid is composed of 162 capsomeres, 12 pentons and 150 hexons. This consists of five different core proteins: 955 copies of major capsid protein (MCP or pUL86 gene product) forming 11 of the pentons (each has 5 copies of MCP to make up the triangular vertices) and hexons (each has 6 copies of MCP to make up the triangular faces); minor capsid proteins (mCP encoded by UL85) that is linked to the minor capsid binding protein (mC-BP, UL46) creating 320 copies of triplexes (TR1, TR2) located in between the pentons and hexons, thus connecting them; smallest capsid proteins (SCP, UL48/49), which are known to be crucial for the HCMV infection, bind to the MCP hexon subunit tips only, according to a study conducted by Xuekui *et al.*, in 2005 using anti-SCP antibody labelling; and a portal protein (PORT, UL104), which forms a specific single penton, composed of 12 copies of PORT, essential for the viral DNA encapsidation that occurs within the host nucleus (Mocarski *et al.*, 2007; Xuekui *et al.*, 2005).

Various studies looked at the different capsid maturation stages, revealing three stages of capsid maturation in the infected cell nucleus: A-capsid, which is an empty viral shell, B-capsid, which has viral proteins helps in the DNA to be contained inside the capsid, and C-capsid, which is a mature capsid with a dense DNA core. Both A and B capsids have been reported to be seen in the cell nucleus and cytoplasm, and also as cell-free viral particles known as non-infectious extracellular particles (NIEP) (Ryner *et al.*, 2006; Sintorn *et al.*, 2004; Mocarski *et al.*, 2007; Chee *et al.*, 1989) identified the MCP gene of human cytomegalovirus and compared its protein sequence with that of the herpes simplex virus (HSV), varicella-zoster virus (VZV), and Epstein-Barr virus (EBV). Their results showed a homology of 25% to HSV-1, 23% homology with the MCP of varicella-zoster virus, and 29% homology with the Epstein-Barr virus.

2.1.5.2 Tegument proteins

Most of the infectious virion proteins and some cellular and viral RNAs are contained in the tegument layer, which comprises about 40% of the virion's mass. It is assumed that the tegument layer is amorphous with no defined structure; this may be because it is beyond the power of the electron microscope to picture structure in this layer. Physically, it is known to be located between the capsid and the lipid envelope, plus some of its proteins are closely associated with the capsid (Chen *et al.*, 1999; Mocarski *et al.*, 2007).

The HCMV tegument comprises of the following: a lower matrix phosphoprotein (pp65, UL83), which is the most abundant protein, an upper matrix protein (pp71, UL82) that activates immediate-early (IE) gene expression (Tomtishen, 2012), a core virion maturation protein (pp150, UL32), a largest tegument protein (LTP, UL48) that, together with the binding protein UL47, plays a role in the un-coating of the nucleocapsid and releasing of the viral genome at the nuclear pores, and a minor tegument protein that is a viral protein kinase (UL97) (Mocarski *et al.*, 2007; Varnum *et al.*, 2004); plus UL99 (pp28), which is essential for the production of infectious virus when it interacts with another tegument protein (UL94) (Phillips *et al.*, 2012).

According to the study by Kalejta (2008), the integration of proteins into the HCMV tegument is facilitated by the interaction with capsids or tails of envelope proteins, subcellular localisation to the assembly site, and phosphorylation. Although most of the tegument proteins are phosphorylated, the importance of this post-translational modification (phosphorylation) is not yet clear (Kalejta, 2008).

Several tegument proteins are of interest because of their involvement in a broad range of activities and the roles that they play in the replication cycle of human cytomegalovirus. These tegument proteins include pp28, pp65, pp71, and pp150 (Tomtishen, 2012). For example, they have a role in delivering the viral genome to the host nucleus during the entry process, the capsid-associated tegument proteins (UL47 and UL48), pp65 and pp71 are involved in this function, pp65 together with other tegument proteins also play an essential role in the virus immune evasion through inactivation of the cellular defence mechanisms (Kalejta, 2008). Moreover, pp65 has a vital role in HCMV lytic cycle development throughout its localisation to the nucleus in the early stages of the infection (Tomtishen, 2012).

2.1.5.3 Envelope glycoproteins

Aside from the complexity of the virion envelope structure, where most of its proteins have not yet been defined, there are three main disulfide-linked glycoprotein complexes found and characterized in an HCMV phospholipid envelope: Glycoprotein complex 1 (GC-I), glycoprotein complex 2 (GC-II) (Gretch *et al.*, 1988) and glycoprotein complex 3 (GC-III) (Landolfo *et al.*, 2003). According to the existence of these different glycoprotein complexes, the virus can infect most organs of the body and has a broad-spectrum cell tropism. Fibroblasts, dendritic cells, macrophages, smooth muscle cells, hepatocytes, neurons, glial cells, leukocytes, epithelial cells and endothelial cells are some examples of HCMV permissive cells (Sinzger *et al.*, 1995; Theiler and Compton, 2001; Sinzger *et al.*, 2008). In contrast, laboratory strains such as AD169 and Towne are unable to infect most cell types except fibroblasts likely due to a mutation in its ULb[\] genes

such as UL128-131 (Sinzger *et al.*, 2008). Gretch *et al.* in 1988 have reported that these complexes have been designated according to their monoclonal antibody reactivity and biochemical features.

These three envelope glycoprotein complexes are thought to have various functions in the entry of human cytomegalovirus into host cells; it's spread from cell to cell and in virion maturation. Human cytomegalovirus infection commences by the attachment of the virus to host cell heparan sulphate proteoglycans. Both GC-I and the GC-II complex have heparan-binding ability (Sinclair, 2000). The virus fusion requires at least two of the envelope glycoprotein complexes. Also, it is believed that these envelope glycoproteins have the ability to trigger the host immune response by provoking the production of neutralizing antibodies including strain- specific ones (Britt and Mach, 1996).

2.1.5.3.1 Glycoprotein complex I

The glycoprotein complex 1 (GC-I) contains disulfide-linked homodimeric molecules that form the glycoprotein B homologue (gB, gpUL55-116). Gp116 is the surface constituent, while gp55 is the transmembrane part of the complex (Britt and Vugler, 1992). It is the second most abundant envelope glycoprotein, and similar to the one described in HSV and EBV in regard to its structural and functional properties (Gretch *et al.*, 1988; Kari and Gehrz, 1993; Sharma *et al.*, 2013). Glycosylation followed by proteinase cleavage at 461 and 460 codons of a 906 amino acids precursor molecule that forms gB occurs, resulting in the formation of a disulfide-link between gp116 and gp55 subunits. Both the cleavage site and the N-terminus region have been found to have major intragenic variability in the gB gene, while in the C-terminus region only minor variation has been detected (Chou, 1992; Haberland *et al.*, 1999; Sarcinella *et al.*, 2002; Meyer-König *et al.*, 1998). The proteolytic cleavage is dispensable for viral replication and growth (Strive *et al.*, 2002). Due to variability in the cleavage site, four major genotypes of gB have been identified (gB1, gB2, gB3 and gB4), using restriction

fragment length polymorphism (RFLP). This classification was made in order to study epidemiology and the disease outcome of a particular strain. The glycoprotein B is immunogenic (Billstrom and Britt, 1995) and has an essential role in binding of the virus to host cell receptors and in viral penetration and fusion (Landolfo *et al.*, 2003; Isaacson *et al.*, 2008). Heparin sulphate proteoglycan (HSPGs) involvement is crucial to the gB binding process as reported by Boyle and Compton (1998). Also, gB is known to bind to the epidermal growth factor receptor (EGFR) and αvβ3 correceptor, and this is thought to be essential for HCMV entry (Wang *et al.*, 2005).

2.1.5.3.2 Glycoprotein complex II

The second envelope glycoprotein complex 2 (GC-II) is composed of disulfide-linked glycoprotein M (gM, UL100) and glycoprotein N (gN, gpUL73 with 39- 200 KDa molecular masses. Sequence analysis of gN has shown four different genotypes (gN1, gN2, gN3 and gN4) with four subgroups (gN-4a, gN-4b, gN-4c and gN-4d) classification depends on the gene sequence variation at the N-terminus region (Pignatelli *et al.*, 2010, Pignatelli *et al.*, 2001; Rasmussen *et al.*, 2002). Pignatelli *et al.*, (2003) have reported that gN3 is sub-divided into two subgroups (gN3a and gN3b). These gM and gN glycoproteins are distinctive and have no similarity with other herpesvirus glycoproteins (Kari *et al.*, 1992). A study conducted by Varnum *et al.* (2004) analysed the HCMV proteins and proposed that gM and gN are the most abundant glycoproteins in the virus envelope, relatively more than gB (Isaacson *et al.*, 2008).

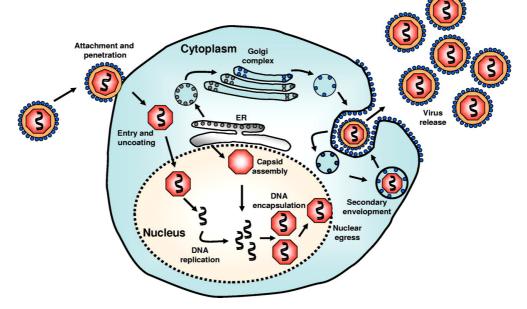
Mach *et al.*, (2000) reported that gM:gN complex formation is required for protein transport from the endoplasmic reticulum to the Golgi and trans-Golgi compartments. Thus, the complex is crucial for HCMV replication (Shimamura *et al.*, 2006; Mocarski *et al.*, 2007). It was reported that gM and gN also interrelate with HSPGs during entry (Kari and Gehrz, 1992). Pati *et al.*, (2012) suggested that gN could stimulate the production of specific neutralizing antibodies that may protect host cells from being re-infected by a different HCMV genotype. Shimamura *et al.*, (2006) showed that the anti-gM/gN antibodies could effectively neutralize the infectious HCMV. On the other hand, a study conducted by Kropff *et al.*, (2012) revealed that the presence of the glycoprotein N could prevent HCMV neutralizing antibody activity.

2.1.5.3.3 Glycoprotein complex III

The third key envelope glycoprotein complex 3 (GC-III), consists of glycoprotein H (gH, gpUL75), which is known as a fusion promoter, glycoprotein L (gL, gpUL115), which acts in complex with gH (gH/gL) and plays an important role in virus fusion with the host cell (Gillet *et al.*, 2007), and glycoprotein O (gO, gpUL74). Several previous studies reported that gO has a role in enhancing the entry process (Huber and Compton, 1998; Isaacson *et al.*, 2008), while a relatively recent study conducted by Ryckman *et al.*, (2010) have proposed that gO serves as a chaperone increasing the export of gH/gL from endoplasmic reticulum. The same study has confirmed that gH/gL together with UL128-131 mediates virus entry into epithelial and endothelial cells *in vivo*. Two different genotypes have been identified for gH (gH1, gH2), which can be distinguished by the N-terminus site variability, and for gL four genotypes (gL1, gL2, gL3, gL4), plus seven for gO (gO1, gO1a, gO1b, gO1c, gO2a, gO2b, gO3 and gO4) (Pingnatelli *et al.*, 2004; Rasmussen *et al.*, 2002).

The disulfide-linked heterooligomer complex (gH/gL/gO) plays an important role in the fusion process in the final stage of entry and has a similar characteristic to the other herpesviruses, except for gO, which is found only in the betaherpesvirinae (Kinzler and Compton, 2005; Gretch *et al.*, 1988; Landolfo *et al.*, 2003; Theiler and Compton, 2001). In contrast to gB, gH and gM the glycoprotein L is the least abundant glycoprotein in the virus envelope (Billstrom and Britt, 1995). In addition to their role in virus fusion, penetration of the host cell membrane, and cell-to-cell spread, the gH/ gL complex is also involved in the production of neutralizing antibodies (Rasmussen *et al.*, 2002). Furthermore, gH alone has been

found to stimulate the antibody response in 100% of individuals included in one study (Urban *et al.*, 1996). It has also been demonstrated that gH binds to EGFR and $\alpha\nu\beta3$ co-receptor (Wang *et al.*, 2005).

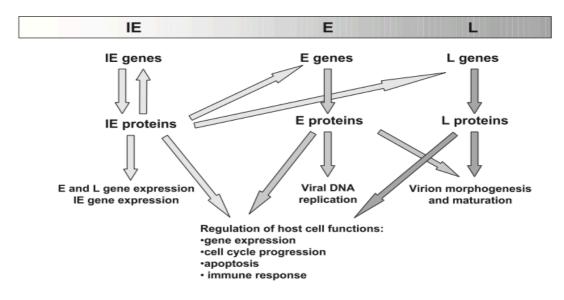

2.1.5.3.4 Other envelope glycoproteins

In addition to the commonly known major envelope glycoproteins (gB, gM, gN, gH and gL and gO), which are conserved among herpesviruses, there are other HCMV specific envelope glycoproteins that have been identified. Recently, a study revealed that UL1 is a novel glycoprotein of HCMV envelope, found in association with gB and another viral protein pp28, expressed and detectable nearly 48 hours post HCMV infection. It was suggested that UL1 has a significant impact on viral growth and cell tropism (Shikhagaie *et al.*, 2012). TRL10 is another immunogenic HCMV envelope glycoprotein found in complex with other viral proteins that have not yet been identified. It was argued that TRL10 requires a complex formation for proper folding and transport to the cell surface (Spaderna *et al.*, 2002). Two years later, Spaderna *et al.* (2004) reported that gpTRL10 is dispensable for virus replication. Likewise, UL4 (gp48), TRL11, TRL12, RL13 (Cortese *et al.*, 2012), US28, US27, UL132 and UL33 have not been found to have an essential role in the HCMV entry to the host cell (Boehme and Compton, 2006).

2.1.6 Replication

HCMV, as compared with other herpesviruses, has a slow replication cycle with early viral release occurring 48–72 hours after infection. It is sequentially regulated during the development of the infection. HCMV has the ability to bind to many different cell types (Compton and Feire, 2007). The replication cycle commences with virus entry, which is initiated by a minimum of five essential viral envelope glycoproteins (gB, gH:gL, gM:gN) attaching to cell-specific receptors. Since HCMV has a broad cellular tropism, this may suggest many different viral cellular receptors exist. For example, gB binding to heparan sulphate proteoglycan

(HSPGs) (Kari and Gehrz, 1993) which are widely present in the extracellular matrix. This is a significant initial step as this confers the virion stability on the cell surface at least until the engagement of other receptors. The entry can be boosted by mediator candidates, such as the co-receptor annexin II that enhances the virus binding and fusion, although cells lacking annexin II are still found to be infected with HCMV (Pietropaolo and Compton, 1999); and aminopeptidase N (CD13), which is located on peripheral blood mononuclear cells, its binding with HCMV is found to prevent the differentiation ability of monocytes into macrophages (Gredmark et al., 2004). The epidermal growth factor receptor (EGFR) is another receptor known as an entry receptor or a signalling receptor; it activates other signalling receptors such as protein kinase-B (Akt) and phosphatidylinositol-3-OH kinase and releases the cellular supply of calcium. A further 92.5 KD gH binding receptor exists, but little is known about it (Mocarski et al., 2007). The entry process continues either by direct fusion between cell plasma membrane and the viral envelope or by receptor-mediated endocytosis. Next, the release of the viral nucleocapsid into the host cell cytoplasm occurs where the cytoplasmic microtubules assist its translocation into the nucleus. After that, interaction with the nuclear pores occurs allowing the viral DNA to be released into the nucleus (Figure 5) (Crough and Khanna, 2009; Mocarski et al., 2007; Detrick et al., 1996).


Figure 5: The life cycle of HCMV in human cell (Crough and Khanna, 2009). The figure shows the different replication steps of HCMV life cycle, the virus acquires its primary envelope from the nuclear membrane during the nuclear egress.

Subsequently, a temporally regulated cascade of the viral genome expression takes place in the cell nucleus. The immediate-early gene expression (IE) (a) that is detectable 0-2 hours after infection and viral protein production, has a vital role in regulating the HCMV gene expression (Pignoloni et al., 2016; Crough and Khanna, 2009; Thrower et al., 1996). During this phase, the expression of a few different regions of the HCMV genome have been detected (Major IE (IE1 (UL123), IE2 (UL122,)), (UL36, UL37), (US3) and (TRS1, IRS1) (Crough and Khanna, 2009; Mocarski et al., 2007; Thrower et al., 1996). Alone or in synergism, the IE proteins autostimulate or transactivate viral genes for subsequent expression. This, has a dynamic impact on the host cell functioning, such as blocking the induction of the potentially antiviral host genes that depends on interaction with the signal transducer and activators of transcription (STAT) proteins by IE1 (Paulus and Nevels, 2009), inhibition of apoptosis by UL36, and down regulation of major histocompatibility complex class-I mediating antigen presentation by US3 (Figure 6), so enhancing infectious virus production (Landolfo et al., 2003; Oduro et al., 2012; Mocarski et al., 2007).

The early gene expression (E) (β) starts after about 6 hours and persist up to 18-24 hours post infection. It requires the presence of IE gene products (IE2-86/IE1-72) in order to generate later gene products. About 23 genes are needed for viral DNA synthesis, alteration of the cell environment to make it appropriate for viral replication or capsid maturation. Some of these gene products are UL112, UL113, which initiate DNA replication, viral DNA polymerase catalytic subunit encoded by UL54 and UL44 performs as a polymerase processivity factor (Mocarski *et al.*, 2007; Detrick *et al.*, 1996; Castillo and Kowalik; Landolfo *et al.*, 2003). In addition, Hobom *et al.*, in 2000 reported a non- essential 48 kd virion envelope glycoprotein encoded by UL4.

Once early genes are expressed, the late gene expression (L) (γ) follows and takes from 24–36 hours post-infection. Most of the important functions such as DNA encapsidation, capsid maturation, virion maturation and egress from the cell is

carried out by late-early or late genes (Figure 6). It is known that transcribed IE genes are not enough for the L genes to be activated, thus other viral genes such as UL 79 (gH), UL87, UL 95, and UL99 (28)) are important for the expression of the L genes (Isomura *et al.*, 2011; Mocarski *et al.*, 2007). Both IE and L phases are further sub-classified into (β_1 , β_2) and (γ_1 , γ_2) respectively, based on timing (Mocarski *et al.*, 2007; Detrick *et al.*, 1996; Castillo and Kowalik, 2004; Crough and Khanna, 2009). By the end of L phase of HCMV infection, the host cell undergoes extensive changes and formation of cytoplasmic inclusions, where the nucleocapsid particles accumulate within the Golgi apparatus.

Figure 6: Gene expression and function of the viral production during HCMV infection (Landolfo *et al.*, 2003).

Several enzymes are needed for DNA replication initiation in the nucleus. HCMV has a conserved lytic replication origin (oriLyt) from where the DNA synthesis begins (Mocarski, 2007). The capsid is assembled primarily with the development of an interior protein scaffold, maturation protein precursor, assemblin, (pUL80a) and assembly protein precursor (pUL80.5), The scaffolding proteins (assembly proteins (APs)) self-interact and interact with each other through the aminoterminus and then interact with the major capsid protein through the carboxylterminus to initiate capsid formation. Also, a disruption of the amino conserved domain (ACD) by a point mutation causes disruption in the scaffolding proteins and their ability to interact with each other, consequently, affecting the assembly of the capsid and the production of the infectious viral particles (Loveland *et al.*, 2007). This interaction of these proteins occurs in the cytoplasm and then translocate into the nucleus. This is followed by hexon and penton formation, which interact with other protein complexes (pIL85/pUL46) to form the capsid shell (B-Capsid) where the genome will be inserted, and APs will be removed, encapsidating the viral DNA (Mocarski, 2007).

Next, nucleocapsids will acquire a primary envelope from the nuclear membrane followed by their de-envelopment in the cytoplasm. The mature virion will acquire its tegument to be enveloped again through budding into Golgi apparatus vesicles (Golgi derived structure); this is followed by the acquisition of the virion envelope glycoproteins. Finally, the infectious virus will be transported to the cell surface for the release out of the host cell at about 72 hours post infection (Figure 5) (Landolfo *et al.*, 2003; Mocarski, 2007; Mocarski *et al.*, 2007).

2.1.7 Epidemiology

2.1.7.1 Prevalence of human cytomegalovirus

HCMV is a common pathogen that infects most of the world's population by early adulthood, 50%-85% of adult individuals are infected by the age of 40 (Selinsky *et al.*, 2005). The incidence of human cytomegalovirus infection in a number of population groups reaches 100% depending on race, age, gender, socioeconomic status, and ethnic background of the population being examined (Gaddy, 2009), with the highest prevalence being in developing countries (Mocarski *et al.*, 2007). Various studies have shown that HCMV infection is common in infants and children day-care centres reflecting the transmission of the virus by close contacts (Ford-Jones *et al.*, 1996).

In a serological survey conducted by Vyse *et al.*, (2009) exploring the epidemiology of cytomegalovirus infections in England and Wales, the authors examined 5,237 sera collected in 1991 and 2002 and screened for HCMV-specific

IgG, representing a complete age range and reflecting the general population. Their results showed antibody prevalence increased with age from about 15% in those children aged one to four years to about 80% of individuals aged 65 years and older. Application to live birth approximations indicates that between 1991 and 2002, 159,996 HCMV infections took place in England and Wales, with an average of 2,133 infections per year affecting pregnant females (Vyse *et al.*, 2009).

The frequency of congenital infection in different countries varies from 0.2% to 2.2% of all live births (Barbi *et al.*, 1998). Of the 35,000 new-borns infected with HCMV in the United States, approximately 8,000 of these experience loss of vision, hearing loss, neurologic abnormalities, mental retardation, or death (Ross *et al.*, 2006). A study by Paixão *et al.*, (2009) suggested that the HCMV congenital infection prevalence in Portugal reaches 1.50% and might be the highest in Europe. Conversely, in 2005, Gaytant *et al.*, reported the lowest prevalence of HCMV infection at birth was observed at a rate of 0.09% of all new-borns, with an overall seroprevalence of mothers at 41% (Gaytant *et al.*, 2005). One lengthy Swedish study revealed 0.5% (76/ 16,474) of new-borns congenitally infected with HCMV, via the virus isolation testing done from 1977 to 1985 (Ahlfors *et al.*, 1999). Also, a meta-analysis, of 55 published articles in MEDLINE database, conducted by Kenneson and Cannon (2007) among foetuses and infants for the period 1966-2006 accounted for a birth prevalence of 0.64% of congenital HCMV.

On the other hand, in Africa, a study claimed a congenital HCMV infection prevalence of 1.4% among 2,032 new-borns, for previously infected mothers, screened for HCMV infection (Schopfer *et al.*, 1978). Whilst two separate studies conducted in the Gambia, West Africa among term infants utilising PCR detection methods revealed a prevalence of 3.9% and 5.4%, respectively (Kaye *et al.*, 2008; Van der Sande *et al.*, 2007). The rates of HCMV infection in these studies were higher when compared to birth prevalence in industrialised countries as described earlier. However, due to asymptomatic characteristics of the infection, the exact

burden of congenital infection remains unclear. Although HCMV congenital infection occurs rarely, this intrauterine infection is still probably the commonest in humans (Vyse *et al.*, 2009).

2.1.7.2 Transmission of HCMV infection

HCMV transmission requires direct contact with body fluids of an infected person. This may occur horizontally or vertically. Body fluids include; urine, faeces, semen, cervical secretions, saliva, tears, breast milk and blood. Sexual contact and close contact with children are two forms of the horizontal transmission (Mocarski *et al.*, 2007). Two specific modes of transmission are particularly important for cytomegalovirus: mother to unborn child transmission (vertical transmission) and organ donor-to-recipient transmission. Meier *et al.*, (2005) stated that the primary reason for pre-natal transmission is the primary infection of the mother whilst the main reason for the post-natal mother-to-child transmission rates range from 58% to 76% (Van der Strate *et al.*, 2001). Van der Strate *et al.*, (2001) also explained that viral load in breast milk is highly correlated with transmission of the virus, although breast milk does contain lactoferrin, an iron-binding glycoprotein that exerts antiviral activities to protect the infants.

Although breast milk plays a role in the postnatal transmission of HCMV from mother to her new-born infant, it rarely results in serious diseases. In contrast, transmission via transplacental and intrapartum routes can cause serious congenital infection (Mocarski *et al.*, 2007). Both primary infection during pregnancy or recurrent infection in the mother can lead to the congenital infection. Confirmation of maternal viremia resulting in uterine infection was provided by a study conducted by Loh *et al.*, (2006). Intrapartum HCMV infection is caused by local shedding of the virus in the mothers' vagina, genital tract or cervical secretions. Transmission via the genital tract is more common in younger women under the age of 30

(50%), while 10% have been found to shed the virus through the vagina or cervix near or at the time of delivery (Mocarski *et al.*, 2007).

The pre-transplant serostatus of both donor and recipient has been identified by several studies to play a significant role in the development of HCMV infection after an organ transplant. A study conducted by Manuel *et al.*, (2009) was one of the largest studies performed to analyse the transmission patterns of donorto-recipient transmission of HCMV. Their data suggest that HCMV transmission has a complex and dynamic pattern, in that transmission of multiple HCMV strains is possible and can be detected simultaneously or sequentially. It was also found that seropositive recipients can either reactivate their own HCMV infection or be superinfected with a strain from the donor.

2.1.8 Pathogenesis

Regardless of its high infection rate, HCMV is an opportunistic pathogen that seldom results in clinical disease among healthy individuals but may promote severe illness in immunocompromised individuals including transplant patients, patients with AIDS. In this situation, most body organs could become infected.

In healthy individuals, the immune response against HCMV is robust and extensive, and even a long period after primary infection, a strong response can still be detected. However, the presence of this robust cellular immunity does not protect from the reinfection by a new HCMV strain, although it does control the infection and reduces the severity of the disease outcome in both immunocompetent individuals and immunocompromised patients (Yamamoto *et al.*, 2010; Ross *et al.*, 2010).

The virus has the ability to disseminate and become latent, even in the presence of active immunity. Reactivation and multiplication of the virus can occur resulting in severe damage (AIDS, allogeneic rejection) in the setting of weakened or suppressed immunity. Under host immune pressure, HCMV has the ability to

evolve and develop different immune modulatory strategies, which allow the virus to escape immune system mechanisms, resulting in a long viral survival time within the host cells. Therefore, these immune modulatory strategies may strongly contribute to the viral pathogenesis (Mocarski *et al.*, 2007; Noriega and Tortorella, 2009).

2.1.9 Immune response

The human immune response includes a combination of two forms of immunities that work in combination to eliminate infections caused by pathogens. The innate immunity offers an immediate non-specific response; it includes interferon (INF), natural killer (NK) cells and macrophages. For the innate immunity to control the infection, cellular transcription factors and interferon regulatory factor, together with the antiviral cellular genes such as the inflammatory cytokines and the interferon stimulated genes are activated in response to the HCMV envelope glycoproteins binding and entry. Natural Killer cells produce cytokines that regulate the development of subsequent adaptive immunity that is crucial for HCMV lifelong control (Isaacson et al., 2008). The adaptive immune response is an antigen-specific immune response, designed to attack a specific antigen and produce memory cells during the response to prevent re-infection and re-activation. It includes humoral immunity mediated by antibody produced by B cells, and cellular immunity mediated by T cells, such as cytotoxic T lymphocytes (CD8⁺) and T helper lymphocytes (CD4⁺) (Mocarski et al., 2007). The role of antibodies in reducing destructive infection is essential. For example, the presence of maternal IgG antibodies following primary infection has a vital role in protecting the foetus from congenital infection (Fowler et al., 1992). Controlling viral production and protection from HCMV disease is mediated by activated HCMV specific CD8⁺T cells, which recognize infected cells and destroy them. It was found that patients who had undergone stem cell transplants who lack CD8⁺ cells experienced more reactivation of HCMV compared to those who had a CD8⁺ response (Avetisyan et al., 2007). HCMV specific CD4⁺ T cells also have an important role in limiting viral

replication through cytokine production that boosts CD8⁺ T lymphocytes and Blymphocytes response to the infection (Jackson *et al.*, 2011; Miller *et al.*, 2001). Jonjic *et al.*, 1989 showed that HCMV persistent replication was associated with depletion of CD4⁺ cells compartment. In HCMV seropositive individuals an enormous specific T cells response (about 10% of CD8⁺ and CD4⁺ memory compartments) was observed and documented by Sylwester *et al.*, (2005).

2.1.10 Immune modulation

The ability of HCMV to escape innate and adaptive immune reactions facilitates virus multiplication to levels that allow it to cause disease. A large proportion of the HCMV genome is used to encode specific glycoproteins that function as immune modulators of the host immune response and make the host cell environment permissive for virus replication and persistence. For instance, upon entry into the uterine wall and/or placenta, HCMV hijacks cellular replication machinery, interfering with cell cycle progression and exploiting host immune responses. In addition, HCMV dysregulates a number of signalling pathways, in particular, the canonical Wnt/ β -catenin pathway (Wnt: Wingless-related integration site), which is implicated in cell cycle control, cellular differentiation, embryonic development, and placentation (Angelova *et al.*, 2012).

HCMV encodes a number of glycoproteins, such as US2, US11, U6, U3, US2 and US3 (Noriega and Tortorella, 2009), that modulate antigenic presentation on the infected cell surface through down regulating the expression of the major histocompatibility class (MHC) molecules that normally play a major role in the destruction of virally infected cells (Noriega and Tortorella, 2009). MHC-I has a significant role in presenting the intracellular antigenic peptides formed by the virus on the infected cell surface for CD8⁺ cells recognition. These antigenic peptide products are generated in the infected cell cytoplasm (by proteasome) and then transported by a transporter-associated antigen processing (TAP) to the endoplasmic reticulum (ER), where the assembly of MHC-I molecules occurs. After

assembly, MHC-I leaves the ER via the Golgi apparatus to be presented on the cell surface (Abele and Tampé, 1999). Down regulation of the MHC-1 molecule by HCMV glycoproteins prevents the viral antigen from being presented on the cell surface and triggering an attack by CD8⁺ cytotoxic cells. However, MHC-I down regulation makes the infected cell vulnerable to NK attack. To counteract this, HCMV proteins with sequence homologue to MHC-I are produced (UI18 and UL40) and expressed on the infected cell preventing the NK activity. Other HCMV encoded proteins (UL16, UL83, UL141 and UL142) are also suppressors of NK activity (Prod'homme et al., 2012). There are other immune mechanisms inhibited by viral processed proteins. For example, down regulation of MHC-II molecules by inhibiting their antigen presentation to CD4⁺ T cells recognition through collaboration of the HCMV gpUS3 and gpUS2 (Miller et al., 2001; Hegde et al., 2002); prevention of apoptosis by the major IE proteins (UL123, UL122) (Yu and Alwine, 2002); and controlling the mitochondrial ATP production needed for the virus production and replication by the HCMV \u03b32.7 RNA (a viral non-coding RNA) that targets the mitochondrion to maintain high levels of ATP production during infection, are other schemes for the HCMV cellular modulation of the immune response (Reeves et al., 2007).

2.1.11 Latency and reactivation

As with the other viruses in the herpes family, HCMV is capable of instituting a lifelong persistent infection. HCMV establishes latency within cells of the infected individual; periodic reactivation leads to sporadic shedding of infectious virions (Sinzger *et al.*, 1995; Drew, 1992). Although the mechanism of the HCMV latency and reactivation is not clearly understood, it is known that latency is established in bone marrow haematopoietic stem cells, mainly within undifferentiated cells of myeloid lineage and monocytes. During latency, it has been found that only IE genes are expressed, while IE and E gene expression was observed in macrophages that differentiated from monocytes. Accordingly, it was concluded that reactivation of the virus and the induction of IE gene expression arises upon differentiation of CD34⁺ hematopoietic progenitors or CD14⁺ monocytes into dendritic cells or macrophages. However, not all differentiated cells carry the viral genome, T lymphocytes, B-lymphocytes and CD33⁺ cells were found to be negative (Sinclair, 2008; Soderberg-Naucler *et al.*, 1997; Reeves *et al.*, 2005). In addition, HCMV reactivation due to specific monocyte-macrophage differentiation was observed, induced by the allogeneic stimulation of T-cells (Soderberg-Naucler *et al.*, 1997). A study by Cicin-Sain *et al.*, 2012 suggested T-cell function may be impaired by the virus latency.

2.1.12 Diseases associated with human cytomegalovirus

2.1.12.1 Infections in immunocompetent individuals

Human cytomegalovirus infection in immunocompetent individuals is asymptomatic in almost 90% of cases (Drew, 1992). The remaining 10% of immunocompetent patients with primary HCMV infection experience a mononucleosis-like syndrome characterised by malaise, fever, lymphocytosis with atypical lymphocytes and abnormal liver function (Friel et al., 2012). However, there are also studies reporting severe cytomegalovirus infection amongst healthy individuals. The quantitative descriptive study conducted by Wreghitt et al., (2003) in the UK reported 124 cases of cytomegalovirus infection out of 7,630 immunocompetent patients with symptoms of HCMV infection. These patients had a higher incidence of abnormal liver function tests, respiratory symptoms, fever, sweats and malaise. Prösch et al., (1998), in their study, revealed that HCMV also causes encephalitis amongst immunocompetent individuals. Cerebrospinal fluid and blood specimens of 35 patients with neurological disorders were tested for HCMV, 11 of these were found to be positive for HCMV, in addition, HCMV encephalitis in a 23-year-old female was proven in the same study. Interestingly, the virus was cleared after three weeks of hospitalisation and remained undetectable for up to 5 months after the infection onset. Maiorana et al., (2003) described gastrointestinal tract infections caused by HCMV in 11 non-immunocompromised patients, infection included the large intestine, stomach and lower oesophagus, in 5 patients atypical

inclusions were found. Also, several cases of hepatitis caused by HCMV were reported by different studies, most of them were cured without the use of antivirals (Al-Mahtab *et al.*, 2009; Azad *et al.*, 2008; Ma *et al.*, 2011). Arthralgia, ulcerative colitis, pneumonitis, aseptic meningitis, myocarditis, splenomegaly and arthritis are also some of the complications that might be seen in immunocompetent patients (Gandhi and Khanna, 2004).

2.1.12.2 Congenital infections

HCMV congenital infection occurs as a result of primary or recurrent maternal infection and is the commonest congenital infection among humans. It is thought that the primary infection has a more serious impact with regard to foetal damage (Fowler *et al.*, 1992), but several more recent studies found that *in utero* CMV infection occurred in over 60% of infants as consequences of a secondary infection. About 1-4% of pregnant women have a high risk of developing a primary infection, 30-40% of these transmit the virus to their foetus especially during the first six months of gestation (Boppana and Britt, 2006; Benshushan *et al.*, 1998; Leung *et al.*, 2003). The virus transmission may occur in three ways: placental infection (intrauterine); ascending infection from the mothers' genital organ secretions to the amniotic fluid (intrapartum); infection of the foetal oropharynx (Ornoy and Diav-Citrin, 2006).

Infants born with the infection are either asymptomatic at birth (about 85-90%) or have symptoms that can be mild or severe such as jaundice (67%), hepatosplenomegaly (60%), petechiae (76%), microcephaly (53%), elevated alanine aminotransferase (83%), conjugated hyperbilirubinemia (81%), thrombocytopenia (77%), chorioretinitis (20%) and seizures (7%). It was reported that 86% of 106 HCMV congenitally infected infants had at least two of the symptoms mentioned (Boppana *et al.*, 1992). However, variable percentages were reported by different studies in regard of symptomatic infants ranging from 10 to 15% (Munro *et al.*, 2005; Kenneson and Cannon, 2007; Boppana *et al.*, 2013;

Crough and Khanna, 2009). Moreover, symptomatic infection in the case of primary infection (5-15%) is higher than in the case of the secondary infection (1-< 2%). Within the first year of life, this may progress to more severe symptoms, such as vision impairment, sensorineural hearing loss, mental retardation and seizure. Furthermore, asymptomatic individuals could progress to have severe symptoms within the first 4 years in life in 5-17% of the cases (Fujikawa *et al.*, 2003; Leung *et al.*, 2003; Ornoy and Diav-Citrin, 2006). Also, about half of the symptomatic infected infants and 10% of the asymptomatic develop sensorineural hearing Loss (SNHL) (Boppana *et al.*, 2013), which is the single most common manifestation of this infection (Leung *et al.*, 2003). However, percentages of mortality were found to be <5% among infants born with HCMV infection (Boppana *et al.*, 2013)).

A seven-year prospective study conducted by Griffiths and Baboonian in 1984 investigated the association between the early HCMV infection during pregnancy and foetal death. They found that the incidence of foetal loss occurred because of early primary infection (15.4%) was higher than that caused as a result of secondary HCMV infection (2.2%). In the same study, at age 2 and 4 children developed moderate and severe global retardation respectively; also, microcephaly at age 4 was identified. The central nervous system damage linked with HCMV infection may be explained by a productive replication of the virus that leads to damage in individual cells (lytic infection) or may be due to immunopathology, indirect damage through the action of the immune system (Scheld *et al.*, 2004).

2.1.12.3 Infections in immunocompromised patients

Although primary HCMV infection is mostly subclinical, the virus remains latent within the host thereafter. However, amongst immunocompromised individuals such as acquired immunodeficiency syndrome (AIDS) patients and transplant recipients on immunosuppressant medications, the latent virus may reactivate and produce a wide variety of diseases.

In most industrialised countries, before the use of highly active antiretroviral therapy (HAART), HCMV disease was observed in about 40% of AIDS patients with CD4+ counts less than 50 cells/ml (Erice et al., 2003). In a study by Verbraak et al., (1999) the impact of the introduction of HAART on HIV patients in relation to HCMV was examined. Increasing CD4+ counts from 34 cells/ml to 194 cells/ml were seen after HAART introduction with a significant decrease in the risk of developing CMV disease. However, several studies reported that HCMV infection in HIV patients continued to be a major problem even after HAART was introduced; HCMV retinitis and other CMV end-organ diseases have been described in HAART recipients (Lilleri et al., 2003; Springer and Weinberg, 2004; Erice et al., 2003; Sugar et al., 2012). Drew (1992) conducted a literature review reporting nonpulmonary diseases in immunocompromised patients caused by HCMV such as retinitis, adrenalitis, colitis, esophagitis, hepatitis, and subacute encephalitis. A study by Spector et al., (1992) also detected HCMV in plasma of AIDS patients during acute visceral disease. Furthermore, HCMV can also cause pneumonitis in patients taking corticosteroids and immunosuppressant drugs which can be expressed by multiple masses in the patient lung, while in AIDS patients complete lung damage may occur (Ayyappan et al., 2006). HCMV could be coupled with Epstein-Barr virus and causes a wide range of neurological disease after reactivation in immunosuppressed patients, such as a cancer chemotherapy population in addition to AIDS and transplant patients (Tselis, 2013). Moreover, HCMV is considered a common source of oral disease in AIDS patients, causing ulceration, canker sores, necrotising gingivitis and periodontal abscess as some examples of these oral infections (Hai et al., 2006).

HCMV infection is also one of the most important viral pathogens affecting solid organ transplant recipients, causing considerable morbidity and mortality. The infection is more severe when a seropositive donor donates his/her organ to a seronegative patient because a host-derived cytomegalovirus-specific immune response toward the primary infection is not present. However, it is less severe in

other cases of a seropositive recipient and a seronegative donor or a seropositive recipient and donor assortments, due to the lower viral load in the transplanted organ. It is ideal for a seronegative recipient to receive an organ from a matching seronegative donor, although this is not always possible (Gandhi and Khanna, 2004). According to Brennan et al., (1997), latent HCMV infection is detectable in 60%-90% of all renal transplant candidates, and 20%-60% of all recipients become symptomatic three months post-transplantation. A study by Courivaud et al., (2013), also performed amongst kidney transplant patients, revealed that human cytomegalovirus exposure contributes to increased risk of developing a cardiovascular disease. The authors attributed this to the ability of the CMV to invade the cardiovascular tissues, stimulate immune responses causing inflammation. Likewise, among immunosuppressed patients, the presence of the HCMV infection activates the lytic replication of Kaposi's sarcoma-associated herpesvirus (Vieira et al., 2001). In general, rejection of an organ, graft dysfunction and secondary fungal and bacterial infections are complaints triggered by HCMV recurrence (Allice et al., 2008). Graft rejection associated with CMV has been investigated in different studies, among renal transplants due to renal artery stenosis, heart transplants due to coronary artery stenosis, among lung transplants due to bronchiolitis obliterans and in liver transplants due to vanishing bile duct syndrome (Gandhi and Khanna, 2004).

Aside from solid organ transplant patients, where HCMV infection is usually organ-specific, allogeneic stem cell transplant patients typically have a systemic infection (Tselis, 2013). The probability of HCMV reactivation in a previously seropositive recipient reaches 80%, while in the case of a seronegative recipient and a seropositive donor it is about 30% due to a primary infection. The best ways to decrease the risk of HCMV infection in hematopoietic stem-cell transplants is by using seronegative blood products with a depleted leucocyte count (Gandhi and Khanna, 2004; Crough and Khanna, 2009). Pneumonitis and enterocolitis associated with significant myelosuppression and consequent fungal and bacterial

infections are most common manifestations of HCMV disease seen in the early period post stem cell transplant (<100 days), while in the late period (>100 days) involvement of lung and gastrointestinal tract, retinitis and encephalitis due to HCMV has been observed. However, the introduction of antivirals and the long-term management of patients after the transplant have decreased the risk of HCMV infections in the early period, but not in the late period (Boeckh *et al.*, 2003).

2.1.12.4 Potential role of human cytomegalovirus envelope

glycoproteins in disease outcome

The availability of a simple test, such as simple restriction-length polymorphism (RFLP) that makes the study of gene strain variation possible, and the availability of the complete sequence of HCMV laboratory strain (AD169) raised interest in studying the variations of HCMV strains and their effect on disease outcome. Even more curiosity was raised in studying the envelope glycoprotein genetic variations and their relationship with disease outcome. As gB is the most common glycoprotein presented on the virus envelope, has a significant role in establishing infection, and is a main target for HCMV neutralizing antibodies, most early studies focused on variation in the gene sequence of gB (Meyer-König *et al.*, 1998; Haberland *et al.*, 1999; Rasmussen *et al.*, 2003).

Rasmussen and colleagues (2003) attempted to determine the variation in glycoprotein genes as a factor in the outcome of HCMV infection. They proposed that intragenic variability is one of the most important factors that could complicate epidemiological studies. Also, the intragenic variability of HCMV strains isolated from clinical specimens indicated that use of gene sequencing unaided is not sufficient in predicting the disease outcome. Thus, identifying strain phenotype might be more significant than the sequence variability as they concluded (Pignatelli *et al.*, 2004). Variation within gB gene frequently occurs due to homologue recombination. This recombination may have generated a higher number of non-prototypic gB strains in addition to the non-prototypic strains gB5,

gB6 and gB7 that have been previously published (Meyer-König *et al.*, 1998; Haberland *et al.*, 1999; Pignatelli *et al.*, 2004; Qian and Jin, 2009).

A large and growing body of literature has investigated the relation of the gB HCMV glycoprotein with disease outcome and so virulence. Shepp et al., (1996) reported an association between gB2 presence in the blood of AIDS patients and the development of HCMV retinitis. Another recent study by Vogel et al., (2013) has supported this finding. Moreover, Woo et al., (1997) claimed that more than half of bone marrow transplant recipients with HCMV disease exhibited gB2 genotype, while gB1 genotype was found in viraemic recipients who did not develop HCMV disease. Also, Fries et al., (1994) found that the majority of bone marrow recipients with gB1 (67%) survived, whereas only 38% of the patients with the same genotype died suffering from pneumonia. Similarly, another study showed that patients with qB1 and qB2 (2.2%) survived, while others with qB3 and qB4 (21.3%)died due to myelosuppression of the patients (Torok-Storb *et al.*, 1997). This may indicate that after bone marrow transplantation gB3 and gB4 genotypes are more virulent than gB1 and gB2. Likewise, a study of HCMV seropositive children showed that either gB1 or gB3 was associated with aminotransferase elevation, plus a significantly longer duration of this elevation was detected with qB1 (Terabe et al., 2004). Another study showed that, among Chinese haematopoietic stem cell transplant recipients, gB1 genotype presence was higher than gB3, but gB3 genotype had a greater risk of reactivation than gB1 (Xia et al., 2012). A study conducted by Coaquette et al., (2004) showed a relation between mixed gB genotypes infection occurred in a high number of transplant patients and the progression of their CMV diseases, such as increasing graft rejection rate and coinfection with other herpesviruses. Moreover, it was proposed that in the case of the ectopic pregnancy, gB1, gB2 and gB3 genotypes were more likely (Qian and Jin, 2009). In addition, gB3 was found to be the most prevalent genotype among congenitally infected symptomatic infants (Gandhoke et al., 2013), while other

study reported that no predominant genotype was presented in the samples of the same patients' category (Ross *et al.*, 2011).

In contrast, other studies suggested that there is no association between a certain genotype and the disease outcome. A study conducted by Yamamoto et al., (2007) reported that intrauterine transmission was found to be not influenced by the HCMV gB genetic variability. Similarly, Paradowska et al., (2011) reported no correlation between HCMV genotypes and the disease outcome among congenitally infected newborns. Also, Vilas-Boas et al., (2003) found no relation between CNS diseases caused by HCMV and the HCMV gB genotypes among AIDS patients. Furthermore, among liver transplant patients, there was no correlation between a gB genotype and the development of HCMV disease, and the graft rejection as reported by Sarcinella et al., (2002). Likewise, Barbi et al., (2001) demonstrated that all HCMV gB genotypes could cause congenital infection, yet none appear to be linked with progression and severity of illness. Nonetheless, it was found that gB, gB2 and gB3 are relatively common among liver transplant patients and congenitally infected infants, while gB4 and the mixed genotypes infection were rarely found within the HCMV infected patients (Sarcinella et al., 2002; Barbi et al., 2001; Gandhoke *et al.*, 2013).

Thus, it is still hard to determine whether an association of a specific genotype and HCMV disease severity and progression is present. This might be due to the wide genetic variability of HCMV genotypes and the occurrence of mixed genotype infections, especially among immunocompromised patients. Also, the geographic and demographic status influences the genotype variability and the pathogenicity of the virus. Zipeto *et al.*, (1998) in their study claimed that the gB strain distribution might be affected by the patients geographic and demographic differences, as they found gB2 occurrence in Italian homosexual AIDS patients was higher than AIDS heterosexual drug users in Italy and Zimbabwe, plus the gB4 rate in Italian patients was higher when compared to patients in California. Furthermore, alteration of gB may occur due to the host immune pressure, which may affect the

viral binding ability to the host cell receptors and so the cells tropism and virulence, or it may be simply the differences in the genotype gene sequences that affect the cell tropism. This may explain the discrepant results obtained in regard to the gB genotype variability in HCMV patients and their relation to the disease development and progression.

Other studies have focused on studying the relation between the other glycoproteins such as gH and gN genotypes. In a study conducted by Mujtaba *et al.*, (2016), both genotypes (gH and gN), in addition to the gB genotype, were found to be prevalent among congenitally infected children. Another study by Paradowska *et al.*, (2014) reported that gH may be related to the hearing loss development in congenitally infected children. Also, Madi *et al.* (2011) demonstrated that both gH and gB genotypes and the severity of the HCMV disease are associated.

Furthermore, gN genotypes relation to the severity of the congenital infections at birth and afterwards was investigated in a large study conducted by Pignatelli *et al.*, in 2010, they argued that gN1 and gN3a are significantly correlated with reducing the risk of developing HCMV congenital infections, while gN4 with increasing that risk. Similar findings published by Rossini *et al.*, (2005) among solid transplant patients supporting that gN4 is more virulent as it was associated with the earlier initiation and increasing levels of HCMV antigenemia. Furthermore, Paradowska *et al.*, (2013) have reported that gN genotypes could be associated with the neurological illnesses in HCMV infection new-borns.

2.1.13 Diagnosis and screening

Early detection helps reduce morbidity and mortality amongst patients with HCMV infection. Following a primary or recurrent infection, the virus can be isolated from different body fluids, such as urine, blood, saliva, amniotic and vaginal secretions, or can be recognised in biopsy specimens taken from different infected organs such as liver or lung. There are different methods available to detect, characterise, and monitor the virus (Bieniek *et al.*, 2011).

There is no universal screening protocol for CMV infection in pregnancy. Pregnant women who become infected with CMV are often asymptomatic, but symptoms such as fatigue, lymphadenopathy, and hepatosplenomegaly may be present. Detection of CMV in clinical samples, such as blood, urine and saliva, obtained from the mother and/or infant in the first 2-3 weeks of life, forms the basis of diagnosis (Albanna *et al.*, 2013). When a pregnant woman presents with these symptoms, serological testing such as ELISA for CMV could be performed. Detection of specific IgM antibodies may indicate a primary infection, as they are detectable up to 3-4 months post infection (though in some cases up to 2 years after transplantation) (Kangro *et al.*, 1982). However, the presence of rheumatoid factors may influence test results giving false positive results that reduce test reliability (Revello and Gerna, 2002). Test specificity can be improved through the use of tests that measure HCMV- specific IgG avidity; low HCMV IgG avidity indicates a primary infection and high HCMV IgG avidity implies a recurrent infection (Grangeot-Keros *et al.*, 1997; Lazzarotto *et al.*, 1999).

Currently, most sensitive and rapid clinical results can be provided by the use of molecular methods, such as quantitative polymerase chain reaction (PCR). These techniques allow early detection and monitoring of infection and nucleic acid sequencing for drug resistance testing (Schindele *et al.*, 2010; Härter and Michel, 2012; Ross *et al.*, 2011b). Either PCR for detection of the virus DNA (Brantsaeter *et al.*, 2007) or reverse transcriptase PCR or NASBA (nucleic acid sequence based amplification) for RNA (Revello *et al.*, 2001) have been used.

Diagnosis of the infection in the foetus usually depends on the detection of the virus in the amniotic fluid using PCR; after the 21st week of pregnancy. A sensitivity (80%) and specificity (100%) of detection can be achieved provided that the test is performed at least 6 weeks after the onset of maternal infection. This is

because detectable HCMV DNA only appears in amniotic fluid 5-7 weeks after the virus starts replicating in the foetal kidney (Liesnard *et al.*, 2000).

Cranial ultrasound can also be used for diagnostic purposes in newborns with suspected HCMV and can be a useful prognostic indicator in symptomatic newborns with cerebral abnormalities (Kadambari *et al.*, 2011). The long-term followup and monitoring of children with HCMV include neurodevelopmental, ophthalmological, and audiological assessments on an ongoing basis throughout the child's development (Kadambari *et al.*, 2011).

2.1.14 Management

2.1.14.1 Antiviral treatment

Ganciclovir (GCV), Cidofovir (CDV), Foscarnet (FOS), Letermovir, Maribavir, and Brincidofovir are antivirals used against HCMV; they function by targeting viral DNA polymerase and prevent virus replication (Razonable, 2011; Härter and Michel, 2012). The current mainstay of treatment CMV infection in most patient settings is Ganciclovir, which is highly active against CMV. It is indicated for the initial treatment of CMV infection and treatment of symptomatic congenital CMV infection, administered in the form of an intravenous infusion. Ganciclovir is a potentially toxic drug and should only be prescribed when the potential benefits of treatment outweigh the risks (Biron, 2006). Some of the GCV side effects involve diarrhoea, rash, increase of the liver enzymes, creatinine levels, and bilirubin, and haematologic effects, such as thrombocytopenia, anaemia and neutropenia (Upadhyayula and Michaels, 2013).

Ljungman *et al.*, (2001) investigated CDV efficacy and toxicity in HCMV disease in allogeneic stem cell transplant recipients. More than half of the patients responded well to the therapy, and more than 60% showed no toxicity, while the others developed renal and other toxicities. The study concluded that CDV could be considered as a second line of treatment for HCMV amongst patients who fail to

respond with previous antiviral GCV treatment, especially HIV patients who developed CMV retinitis. CDV side effects include renal dysfunction and nephrotoxicity, in addition to neutropenia, ocular hypotony, and metabolic acidosis (Upadhyayula and Michaels, 2013). FOS as HCMV antiviral drug should be used with caution, especially with patients who suffer even mild renal impairment. It also causes nephrotoxicity, increases the serum creatinine level, and seizures.

There are several drugs that were under clinical development, such as Letermovir, which was approved by the FDA to be used in hematopoietic stem cell transplant patients in 2017, and no resistance was reported among patients in the phase-II clinical trial (Biron, 2006; Härter and Michel, 2012). It has a new mechanism of action interfering with the viral genes that are involved in DNA processing and packaging; Maribavir, which interferes with viral DNA synthesis and nucleocapsid egress from the nucleus to inhibit viral replication, but after considered as promising drug, it has exhibited some limitations in phase III clinical trials maybe because of the too low dosage given to the patients (Snydman, 2011); Brincidofovir, which is a lipid-linked CDV that might be an alternative to the CDV as it has a lower nephrotoxicity.

2.1.14.2 Vaccination

A major goal in HCMV prevention programme is to develop vaccines that can protect seronegative individuals, especially pregnant women (Revello and Gerna, 2002). Considerable attempts have been made to develop efficient HCMV vaccines. CMV live attenuated vaccines were one of the first vaccine types developed using AD196 and Towne strains, the latter showed a significant decrease in disease severity among renal transplant recipients but did not completely prevent the disease (Plotkin *et al.*, 1990; Brennan, 2001). Due to the variation observed in the virus genome, development of recombinant virus vaccines has emerged, where four CMV strains are recombined to induce a virus-specific cellular response (Revello and Gerna, 2002). Other attempts to use subunit vaccines have been made delivering recombinant proteins representing the major antigenic viral components pp65, pp150, gB and gH (Revello and Gerna, 2002).

Considerable effort has been made to develop vaccines against HCMV envelope glycoproteins, due to the role they play in developing the infection. So far, none have proved to be completely effective in preventing infection (Revello and Gerna, 2002). However, a vaccine based on recombinant HCMV glycoprotein B was shown to be about 50% effective in reducing the incidence of maternal and congenital HCMV infection (Pass *et al.*, 2009) and similarly encouraging results were found for the vaccine in organ transplant recipients (Snydman *et al.*, 1993; Griffiths *et al.*, 2013). In humans infected with HCMV, specific neutralizing antibodies to the virus, which react with the HCMV envelope glycoproteins M and N are produced (Shimamura *et al.*, 2006). Immunization of mice with the mouse CMV homologs of glycoproteins M and N as a complex gave complete protection against challenge with mouse CMV (Wang *et al.*, 2013) suggesting that HCMV glycoproteins M and N could potentially also be used as an HCMV vaccine.

At present, no vaccines exist for the prophylaxis of CMV infection in pregnant women. Previous CMV vaccines provoked inadequate immune responses in subjects, possibly due to the lack of the antigenic glycoprotein H (gH) complex, essential for mediating viral entry into the host cell. Current efforts are focused on this pentameric gH construct (gH, gL, UL128, UL130 and UL131 proteins) due to its ability to induce a range of neutralizing antibodies in the host to combat the infection. The gH complex is an ideal vaccine target as it is conserved among clinical isolates, and preliminary *in vivo* studies are generating promising results (Freed *et al.*, 2013; Fu *et al.*, 2012; Genini *et al.*, 2011).

However, the use of HCMV specific hyperimmune globulin prophylaxis, which has neutralizing antibodies activity in pregnant women with primary HCMV infection has proven to reduce the intrauterine CMV transmission and the symptomatic foetal infection as reported by Nigro *et al.*, in 2005 and Buxmann *et al.*, in 2012 and

2017. In contrast, a study conducted by Revello *et al.*, (2014) reported that the hyperimmune globulin has no significant effect on the primary infection during pregnancy.

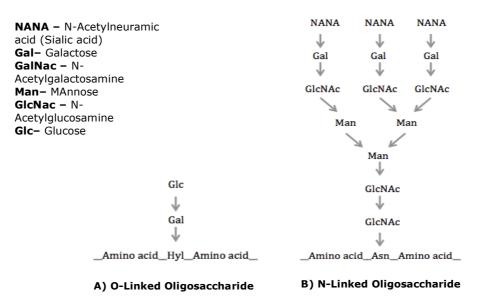
2.1.14.3 Prevention

It is difficult to prevent the spread of HCMV due to its ubiquitous nature in the population; most individuals will come in contact with the virus at some point in their lives. The most common primary source of HCMV infection is young children. In some cases, a woman may acquire the infection from her own children, who may have been exposed to the infection in-group day care. Through adopting simple hygiene measures such as hand washing and avoiding the close contacts with an unknown HCMV serostatus children, as recommended by the Centre for Disease Control and Prevention (CDC), can cut the infection rates in pregnant women dramatically (Cheeran *et al.*, 2009), especially in the case of the seronegative women (Ross *et al.*, 2008). Additionally, awareness and knowledge about HCMV prevention measures should be available to all women by their healthcare providers regardless of their serostatus.

2.2 Glycosylation

2.2.1 Glycans

It is well known that glycans play an important role in the metabolic, functional and the structural properties of biological systems. They are large biological molecules consisting of carbon, hydrogen and oxygen with a general chemical formula of $C_n(H_2O)_n$. They can be classified into several groups according to the number of sugar units: Monosaccharides (the simplest form of sugars), disaccharides (two monosaccharides linked together via a glycosidic bond), oligosaccharides (up to ten monosaccharides linked via glycosidic bonds), and polysaccharides (more than ten monosaccharides). Monosaccharides are classified into aldoses (have an aldehyde group- carbonyl group at the end of the carbon chain) or ketoses (have a ketone group- carbonyl group in the middle of the carbon chain). Monosaccharides are referred to as trioses when they consist of 3 carbon atoms; Tetroses consist of 4 carbon atoms; Pentoses consist of 5 carbon atoms, or hexoses if they consist of 6 carbon atoms. The glycosidic bonds link an anomeric carbon of one monosaccharide to a hydroxyl group of another monosaccharide; it is either an alpha (a) linkage (CH₂OH group is on an opposite side of OH group within the molecule structure- CH2OH on the top and OH on the bottom- of the ring) or a beta (β) linkage (CH2OH group and OH group are on the same side of the molecule structure- top of the ring) (Varki *et al.*, 2009).


There are several common types of glycans present in nature. However, most of them are found in plants, and only limited numbers can be found in humans. Some examples of human glycans are: hexoses such as D-glucose (Glc), D-galactose (Gal), D-mannose (Man); hexosamine such as N-acetyl-D-glucosamine (GlcNAc) and N-acetyl-D-galactosamine (GalNAc); Deoxyhexoses, such as L-fucose (Fuc); Sialic acids (Sia), such as N-acetylneuraminic acid (Neu5Ac). The overall configuration of a monosaccharide is either D, when the OH group is on the right side of the Fischer projection (two-dimensional representation of 3-Dimensional organic molecule), or L when the OH is on the left side (Varki *et al.*, 2009).

2.2.2 Protein glycosylation

After translation and releasing from ribosomes in ER, most proteins undergo post-translational modification (protein glycosylation) to be completely functional. Glycosylation of proteins is an important process in various stages of the virus replication cycle and has a vital role in stability, proper folding (Newrzella and Stoffel, 1996), trafficking, pharmacodynamics, pharmacokinetics and immunogenicity of glycoproteins (Varki *et al.*, 2009; Aebi *et al.*, 2013). The two common types of glycosylation can be accomplished by the action of different enzymes activity called glycosyltransferases, which are specific for targeting

oligosaccharides and adding of sugar residues from a donor to a recipient to form either linear or branched glycan chains (Varki *et al.*, 2009;). N-linked glycosylation takes place in both ER and Golgi apparatus, and is considered as a base for further glycosylation and can be used as an indicator of protein-folding errors. O-linked glycosylation begins after transporting of proteins, via vesicle transport, into the Golgi apparatus using Golgi-specific enzymes such as GalNac transferase that links an N-acetylgalactosamine to a polypeptide hydroxyl group. Around 50% of glycoprotein mass is acquired through this type of glycosylation (Lodish *et al.*, 2000; Lepenies, 2015).

To what extent the protein structure is modified by glycosylation, what class of glycans are attached (via N or O linkages), and which glycosylation-associated cellular enzymes, are used differs considerably. However, most proteins are glycosylated (N-linked through Nor O-linked glycans or O-linked oligosaccharides), with N-linked oligosaccharides being more complex, commonly having several branches that contain mannose and N-acetylglucosamine and terminate with a sialic acid residue. N-linked oligosaccharides are linked to an asparagine residue (Asn) of a polypeptide via the amide nitrogen, in a conserved sequence (Asn-an amino acid-Ser/Thr). In contrast, O-linked oligosaccharides are shorter, frequently containing between one and four sugar residues, with oligosaccharides being linked via N-acetylgalactosamine to the hydroxyl group of threonine (Thr) or serine residues (Ser), or to a hydroxyl group of hydroxylysine (Hyl) residues through galactose as in collagen (Figure 7) (Lodish *et al.*, 2000).

Figure 7: Structures of O-Linked oligosaccharide and N-Linked oligosaccharide (Lodish *et al.*, 2000).

In Herpesviruses, both N and O linked oligosaccharides are found. For example, O-linked oligosaccharides are predominantly found in HSV-2 envelope glycoprotein G (Dall'Olio *et al.*, 1987), whereas N-linked oligosaccharides were demonstrated in the HCMV glycoprotein UL18 (MHC-I homologue) (Griffin *et al.*, 2010). Infrequently, in some cases, viral glycoproteins are glycosylated by attaching to a glycolipid molecule, called glycosylphosphatidylinositol; anchored via their C-terminus site (Protein-Glycan Chain-lipid anchor). One example of such a virus is dengue virus (Jacobs *et al.*, 2000).

The combination of the glycans with other macromolecules to form glycoconjugates, such as glycoproteins, lead to the introduction of significant heterogeneity in the protein composition. As glycans undergo a large number of structural modifications, they consequently have a great impact on protein functions (Aebi *et al.*, 2013). In nature, all cells contain carbohydrates (glycans) that have essential biological roles depending on their physical properties, such as shape, mass and charge. Many of these glycans present on the cells surface, which enable them to play a vital role in the interactions between the cells and the surrounding of matrix, which is essential for the function and development of

complex multicellular organisms, and in the interaction between the two different organisms (Varki *et al.*, 2009).

Glycosaminoglycans (GAGs) are a linear, heterogeneous, complex and highdensity type of glycans (Sugrue, 2007), ubiquitous in nature surrounding all types of cell surfaces and in the intracellular matrix area. They play a critical role in facilitating the interaction between the host cell and the infectious virus during early periods of infection. Thus, understanding of this interaction, how it occurs and whether it influences the viral glycoprotein function is essential. This understanding could open a gate to discover novel carbohydrate-based drug therapies (Kamhi et al., 2013). For instance, heparan sulphate glycosaminoglycans (HSGAGs), the most studied subtype of GAGs, act as receptors of many acceptors, such as HCMV envelope glycoproteins (Kari and Gehrz, 1993). The enzymatic process in which the viral envelope glycoproteins become attached to HSGAGs receptors is a type of glycosylation (Sasisekharan and Myette, 2003). Also, herpes simplex virus type 1 (HSV-1), another herpes family member, binds and enters the cell surface through envelope glycoprotein interaction with the cell surface glycans. Both HSV-1 glycoprotein B and C interact with HSGAGs on the cell surface while glycoprotein D binds to specific HSGAGs sequence to facilitate the virus entry and fusion. This binding needs a specific enzyme for an addition of a specific sulphate molecule and chain of four disaccharides to the glycan chain, cells lacking this enzyme are found not infected (Sasisekharan and Myette, 2003). This confirms the vital role of glycosylation in the virus pathogenicity.

Glycosylation can be inhibited selectively through suppression of specific enzyme activities that mediate the process, for example (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVdU), which was found to inhibit both N- and O-linked oligosaccharide glycosylation reaction in HSV-1 and HSV2 through phosphorylation to its 5'monophosphate (BVdUMP). The BVdUMP, in turn, prohibited the transport of pyrimidine nucleotides through Golgi membrane and thus the sugars incorporation into the virus glycoproteins (Olofsson *et al.*, 1988). Also, benzhydrazone, is a

herpesviruses specific glycosylation inhibitor as described by Serafini-Cessi and Campadelli-Fiume in their report (1981).

Modification of glycosylation could arise through changes on sites where the glycan link to a protein, glycan assembly (branched or unbranched chains and their length), carbohydrate type to which protein will attach, as in the case of the N-linked glycosylation, and/or the glycan molecular mass (increase or decrease) in the O-linked glycosylation (Sugrue, 2007; Patton, 2002).

2.2.3 Methods to analyse and detect glycoprotein glycosylation

There are different generic techniques to detect viral glycoproteins: Radioactive detection, where the infected cells are incubated in a glucose-free medium followed by addition of a radio-labelled monosaccharide. This is a sensitive yet slow, potentially hazardous and expensive technique (Sugrue, 2007; Patton, 2002). Non-radioactive detection includes using conventional stains (Coomassie blue, silver stain) or with different fluorescence stains. This is as sensitive and slow as a radioactive detection method but less expensive. Another divergent technique termed fluorophore-assisted carbohydrate electrophoresis (FACE) is used. In FACE, glycans are labelled with a fluorescence tag after being removed from the proteins and then resolved on a polyacrylamide gel. This procedure is affected by heating and pore size. Amongst these, the radioactive detection has perhaps been the most commonly used method to detect glycoproteins. This method was the strategy implemented by Gretch *et al.*, (1988b) to detect and characterise HCMV GC-I.

Viral glycoproteins are analysed by the use of different enzymes. The most commonly used are glycosidases, which removes the entire glycan chain from the glycoprotein or cleaves it at a specific site. Most of these enzymes process the Nlinked glycans, such as PNGase F (N-Glycosidase F), which removes the complete glycan chain; Endoglycosidase H, which targets N-glycan structure can be used to determine glycan chain complexity, as complex glycans are resistant to it. Further specificity in cleaving the glycan structure is achieved by Endo F1, F2 and F3 or sigma enzymes and fucosidase. Moreover, N-acetyl-hexosaminidase, N-acetylgalactosaminidase, and neuraminidase eliminate terminal N-acetyl-galactosamine, N-acetyl glucosamine, and sialic acid from a glycan chain, respectively. Enzymes targeting O-linked glycan have also been identified, such as endo-a-Nacetylgalactosaminidase that targets the N-acetylgalactosamine linkage (Sugrue, 2007).

O-linked glycosylation can be analysed by mass spectrometry, but due to the considerable diversity of oligosaccharide and proteins, it is a complicated and a time-consuming technique (Peter-Katalinić, 2005), although it is very useful for elucidating the details of carbohydrate structure (Pilobello *et al.*, 2005). Capillary electrophoresis has been combined with mass spectrometry for monitoring of the recombinant glycoproteins. Although some enhancement in the sensitivity of this technique has been attained, it has several drawbacks, such as requiring high sample concentrations and the poor sensitivity of the technique interfaces (Volpi *et al.*, 2009). Also, liquid chromatography and nuclear magnetic resonance are other techniques used for glycosylation detection and analysis; they need expensive special equipment and highly skilled personnel (Thompson *et al.*, 2011; Pilobello and Mahal, 2007).

Techniques based on glycan-binding proteins (GBP), such as lectins, which are known to recognise specific glycans structures, are also available (Pilobello et *al.*, 2005; Varki *et al.*, 2009). Lectin histochemistry has been used to detect and visualise glycan expression and the changes in glycosylation (Leathem and Brooks, 1998; Malkinson *et al.*, 1986). Also, detection and quantification of specific glycans can be achieved using lectin microarray (Fais *et al.*, 2009; Pilobello *et al.*, 2005). Enzyme linked lectin-sorbent assay (ELLA) assay has been recently developed from a previously used technique described in the literature by Leathem and Brooks (1998). It adopts the same principle (protein- glycan binding) but gives quantitative results instead of qualitative data (Phung, 2011; Bala, 2010).

2.2.4 Lectins

Lectins are carbohydrate-binding proteins or glycoproteins that are not induced as a result of an antigenic stimulus within the immune system. The term lectin, which means to select or to pick, acquired from the lectins' capacity to select and bind to specific glycan structures (Cummings and Etzler, 2009; Varki et al., 2009). They are naturally abundant and can be derived from several sources, plant, animals or microbes. Lectins have mainly been classified according to their amino acid sequence homology and biochemical properties, some of these types are: Ctype lectins, which require calcium for recognition,; Galectins, which bind to β galactose- containing glycoconjugates; P-type, which bind to Man-6-P; I-type, which are immunoglobulin members; Siglecs, which recognize sialic acid and consider a subgroup of the immunoglobulin family members (Varki et al., 2009). Moreover, based on their affinity to specific glycans, lectins have been classified into 5 groups, and these are: glucose/mannose, galactose, N-acetyl-Dgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc), L-fucose, and sialic acids. Generally, most of the lectins bind to complex carbohydrates, as they possess two or more glycan-binding sites (Varki et al., 2009; Slifkin and Doyle, 1990). Lectins have different biological roles as adhesions and agglutinations. Microbial lectins play an important role in the host-pathogen interaction, and food lectins, such as the tomato lectin, resist the denaturation caused by some enzymes by binding to mucosal cells. Based on their biological properties, investigators have used lectins in different aspects of research. For example, blood grouping, a study of cell surface structures and functions, acquiring information about the presence of a specific glycan structure and/or the position of specific carbohydrate residues within a polysaccharide molecule (Slifkin and Doyle, 1990).

CHAPTER 3

3 Materials and methods

3.1 Materials

3.1.1 Cells culture and viral Stocks

Minimal Essential Medium (MEM) Glutamine, Penicillin/Streptomycin (10,000 I.U/ml Penicillin/ 10.000 µg/ml Streptomycin), Antibiotic Antimycotic, Phosphate buffered Saline (PBS), Trypsin, Phenol Red, Trypan Blue, Dimethylsulphoxide (DMSO) - All purchased from Sigma-Aldrich, Poole, Dorset, UK.

Fast-Read 102 disposable counting chamber purchased from Immune Systems, UK.

Foetal Calf Serum (FCS) purchased from Biosera, East Sussex, UK.

70% Industrial Methylated Spirit (IMS), Methanol purchased from Fisher Scientific, Loughbrough, UK.

Liquid Nitrogen Freezer, Liquid Nitrogen Ampolues, Nalgene Cryo Freezing Container (special freezing block).

MRC-5 cell line stock from 8/9/2009 (Culture Collections, Public Health England).

75cm² plastic tissue culture flasks piurchased from Greiner Bio -One, UK.

16 X 110 mm screw caped Cell Culture Tubes Nunc[™] purchased from ThermoFisher Scientific, Paisley, UK.

3.1.2 Viral DNA extraction

QAamp MinElute virus spin kit (QIAGEN) contains (QIAamp MinElute columns, collection tubes, Buffer AL, buffer AW1, Buffer AW2, Buffer AVE, Carrier RNA, and QIAGEN protease) purchased from QIAGEN Ltd., Manchester, UK.

Methanol, Ethanol purchased from Fisher Scientific, Loughbrough, UK.

Ultra-Pure Distilled water (UPDW) purchased from Invitrogen by Life Technologies, Paisley, UK.

3.1.3 Polymerase chain reaction (PCR)

Amplitaq Gold 360 Master Mix with Gene Amp 10X PCR buffer, TaqMan[™] Multiplex Master Mix, all purchased from Applied Biosystems by Life Technologies, Warrington, UK.

2X MyTaq HS Mix purchased from Bioline, London, UK.

Oligonucleotide primers and HCMV Probe purchased from Eurofins, UK, (Table 1).

Deoxyribonucleotide triphosphates (dNTPs), E-Gel^{PowerBase} Version 4, E-Gel Agarose Gels, UPDW, Blue juice-loading buffer, 1kb plus DNA ladder- All purchased from Invitrogen, Paisley, UK.

PCR standards for HCMV virus ordered from Eurofins Genomics, Ebersberg, Germany.

Primer	Primer Sequence (5'>3')	Gene	Amplicon Size	Reference
Ρ2	5'-TCGCTGTCTTCGACCGGTGA-3'	PP	194 bp	McElhinney <i>et al.</i> , 1995
724C	5'-AAGAATCCTCACCTGGCTTA-3'			
gB1319	5'-TGGAACTGGAACGTTTGGC-3'	gВ	305 bp	Chou and Dennison,

Table 1: Oligonucleotide primers sequences used in HCMV PCR reaction.

gB1604	5'-GAAACGCGCGGCAATCGG-3'			1991
gM509JE	5'-GCTCAAACCGCGTCGTGA-3'	gМ	1298 bp	Ellis, 2006
gM1801JE	5'-ACGGTCTGCGTGTCTCTT-3'			
gNup	5'-TGGTGTGATGGGTGGAAC-3'	gN	420 bp	Pignatelli <i>et</i> <i>al.,</i> 2003
gNlow	5'-TAGCCTTTGGTGGTGGTTGC-3'			
gH203	5'-CCACCTGGATCACGCCGCTG-3'	gH	215 bp	Chou, 1992
gH172	5'-TGGTGTTTTCACGCAGGAA-3'			
115upout	5'-TTGATGTGCCGCCGCCCGGAT-3'	gL	555 bp	Rasmussen <i>et al</i> ., 2002
115loout	5'-GCACCAGCTCGAAGCCTAAC-3'			
UL74ZB5	5'-CGTTGGAACACCAAATTGTA-3'	gO	840 bp	Buhamad, 2018
UL74ZB3	5'-ACCAAAGGCTATTGAGGGTG-3'			

3.1.4 E-Gel Electrophoresis and Restriction Fragment Length Polymorphisms (RFLP)

Restriction enzymes (RsaI, HinfI, HpaII, StuI, TaqI, SacI, ScalI, and SalI) and their appropriate cut buffers, Ultra-Pure Distilled water (UPDW), purchased from Invitrogen (Table 3).

Restriction enzymes (RsaI, EarI, BfaI, ApoI, BanII and HhaI) and their appropriate cut buffers, Ultra-pure TBE buffer (10X), 1 kb plus DNA ladder, E-Gel[™] Agarose Gels with SYBR[™] Safe DNA Gel Stain, 1.2%, Novex® TBE gels, purchased from ThermoFisher Scientific (Table 2).

25bp Hyper ladder, 50bp Hyper ladder purchased from Bioline.

Gel Red nucleic acid gel stain purchased from Biotium, Cambridge, UK

Table 2: Restriction enzymes used in RFLP assay.

Glycoprotein gene	Enzyme	Reference
gB	RsaI HinfI	Chou and Dennison, 1991
gH	HpaII StuI	Sowmya and Madhavan, 2009
gL	RsaI TaqII	Sowmya and Madhavan, 2009
gM	EarI BfaI	Ellis, 2006; Buhamad, 2018
gN	SacI ScaI SalI	Pignatelli <i>et al.</i> , 2003
gO	ApoI BanII HhaI	Buhamad, 2018

3.1.5 Enzyme linked lectin-sorbent assay (ELLA)

Biotinylated lectins (Table 3), Tween 20%, Tetra MethylBenzidine (TMB) substrate, Hydrogen peroxide, avidin/peroxidase conjugate– All purchased from Sigma-Aldrich, Poole, Dorset, UK. 96-well plate (flat bottomed) purchased from Greiner Bio-One, UK.

ELISA plates washer and reader purchased from BioTek, Swindon, UK.

Tris-buffered saline, HCL purchased from Fisher Scientific, Loughbrough, UK).

Sulphuric acid (H₂So₄) purchased from Sigma-Aldrich.

19 Biotinylated lectins (Table 4), NovaRed (Vector Labs), Methyl Green – All purchased from Vector Labs, UK.

Source of Lectin	Source	Acronym	Sugar Specificity
Soybean agglutinin	Glycine max (soybean) seeds	SBA	α> βGalNAc
Erythrina cristagalli	<i>Erythrina cristagalli</i> (Coral Tree) seeds	ECL	Galβ4GlcNAc
Lens culinaris	<i>Lens culinaris</i> (lentil) seeds	LCA	aMan, aGlc
Wheat Germ	<i>Triticum vulgaris</i> (wheat germ)	WGA	GlcNAc
Griffonia (Bandeiraea) simplicifolia II	<i>Griffonia (Bandeiraea) simplicifolia</i> seeds	GSL-II	a or βGlcNAc
Sambucus nigra	<i>Sambucus nigra</i> (Elderberry) bark	EBL	Neu5Acɑ6Gal/GalNAc

Table 3: Biotinylated lectins used (20) and their binding specificity.

<i>Phaseolus vulgaris</i> Leucoagglutinin	Phaseolus vulgaris (Red Kidney Bean) seeds	PHA-L	Galβ4GlcNAcβ6(GlcNAcβ 2Manα3) Manα3
Galanthus nivalis	<i>Galanthus nivalis</i> (Snowdrop) bulbs	GNL	aMan
Lycopersicon esculentum	<i>Lycopersicon</i> <i>esculentum</i> (Tomato) fruit	LEL	(GlcNAc) 2-4
Bauhinia purpurea	Bauhinia purpurea alba (Camel's Foot Tree) seeds	BPL	Galβ3GalNAc
Ulex europaeus	Ulex europaeus (Furze Gorse) seeds	UEA	aFuc
Euonymus europaeus	Eunonymus europaeus (Spindle Tree) seeds	EEL	Gala3Gal
Wistera floribunda	<i>Wisteria floribunda</i> (Japanese Wisteria) seeds	WFA	GalNAc
<i>Phaseolus vulgaris</i> Erythroagglutinin	Phaseolus vulgaris (Red Kidney Bean) seeds	PHA-E (PVL)	Galβ4GlcNAcβ2Manα6 (GlcNAcβ4) (GlcNAcβ4Manα3) Manβ4
Amaranthus caudatus	<i>Amaranthus caudatus</i> seeds	ALL (ACL)	Galß3GalNAc
Psophocarpus tetragonolobus I	Psophocarpus tetragonolobus (Winged Bean) seeds	PTL-I	GalNAc, Gal
Maackia Amurensis II	<i>Maackia amurensis</i> seeds	MAA-II	Neu5Acα3Galβ4GalNAc
Aleuria aurantia	<i>Aleuria aurantia</i> mushrooms	AAL	Fuca6GlcNAc
Griffonia (Bandeiraea)		GSL-I	aGal, aGalNAc

simplicifolia I	Griffonia (Bandeiraea) simplicifolia seeds		
Pisum sativum	Pisum sativum (Pea) seeds	PSA	aMan, aGlc

Sugar Abbreviations: Fuc: L-Fucose, Gal: D-Galactose, GalNAc: N-Acetylgalactosamine, Glc: D-Glucose, GlcNAc: N-Acetylglucosamine, Man: Mannose, Neu5Ac: N-Acetylneuraminic acid (sialic acid), SA: Sialic Acid (Table of Lectin Properties. Vector Laboratories. (2012)).

3.2 Methods

3.2.1 Cell culture

3.2.1.1 Cell culture media preparation

For growth medium preparation, 500 ml of Eagle's Minimum Essential Medium (MEM) was used, this was supplemented with 10% Foetal Calf Serum (FCS) as a growth factor, 5ml Glutamine, 5 ml of Antibiotic antimycotic solution (100X) stabilized with 10,000 units/ml Penicillin, 10 mg/ml Streptomycin and 25 μ g/ml amphotericin B. For Maintenance Medium preparation the same components were used but FCS was reduced to 2%. Both were stored at +4°C.

3.2.1.2 Sterility test

To test the medium for any indication of microbial growth, a sterility test was done by adding 1 ml of the medium to each of 4 bottles, 2 Brain Heart Infusion (BHI) and 2 Sabouraud (Sab). One bottle of each was incubated at 37°C with CO₂ for 3-4 days and the other two bottles kept at room temperature for several days. All bottles were examined daily.

3.2.1.3 Cultivation of cells

Once a confluent monolayer cell sheet (95%-100% confluence) was formed in a 75cm² plastic tissue culture flask and observed using an inverted microscope, cells were washed and trypsinised twice with 5 ml trypsin in 80 ml of phosphate buffered saline (PBS), and then incubated at 37°C for 3-4 minutes. Once seen under the microscope to be rounded and detached, the cells were suspended in 10 ml of growth medium supplemented with FCS, antibiotics and glutamine. The suspended cells were counted and resuspended with the growth medium in: a 75cm² plastic tissue culture flask (total volume of 25 ml), a 96 wells plate (total volume of 10 ml (0.1 ml for each well), and screw caped cell culture tubes (total volume of 3 ml)). The sub-cultured cells were incubated again at 37°C and left for 3-4 days until a confluent monolayer of the cell was formed again.

3.2.1.4 Counting of cells

Following washing and removing the cells from the flask using trypsin in PBS, cells were resuspended in 10 ml of the growth medium. After that, a dilution of the suspension (0.2 ml) and Trypan blue stain (0.1 ml) was prepared. Then, 0.1 ml of the dilution was filled into one of the chambers of the Fast Read 102 Disposable Counting Chamber using the pipette tip. Using microscope, the cells were counted in the four corner squares (dead cells stained with Trypan blue and were not counted). The total number of cells in all four squares was divided by 4 and multiplied by 10^4 and multiplied further by 3/2 to give the number of cells/ml in the original cell suspension. The cells were seeded at 1×10^5 (flasks) or 2×10^5 cells/ml concentration (Plates).

3.2.1.5 Freezing of HEL (MRC-5) cells

For freezing medium preparation, 10% of dimethyl sulphoxide (DMSO) with FCS was added. Cells were removed from the flask by trypsinisation (as previously described in section 2.1.3). Cells were resuspended in 5ml of growth medium in a 50

ml centrifuge tube. The suspension was centrifuged at 1500 rpm for 5 minutes. The pellet was taken and resuspended in 1 ml of freezing medium and transferred to a special freezing ampoule to be placed inside a special freezing block at 4°C. The freezing block was transferred to -80°C for about 4 hours. Then the ampoule was transferred to the liquid nitrogen freezer at - 196°C for long-term storage.

3.2.1.6 Thawing of HEL (MRC-5) cells

The ampoule was taken from the liquid nitrogen freezer and placed in a beaker of warm water at 37°C for the cells to be thawed. Once thawed, the ampoule was removed from the water and dried using a paper towel. The outside of the ampoule was washed using 70% ethanol before opening. The content was transferred using a plastic Pasteur pipette to a 75cm^2 cell culture flask. Approximately 25 ml of growth medium was added to the flask, which was then incubated at 37° C with 5% CO₂ to be observed daily until a confluent monolayer sheet was formed.

3.2.1.7 Infection MRC-5 cells

Growth medium was discarded from the flask into a plastic waste beaker once the cells were 90% confluent. About 0.5 ml of human cytomegalovirus strain (unknown concentration), was added. The flask (75cm²) was incubated at 37°C with 5% CO₂ for an hour for the virus to be adsorbed and rocked every 15 minutes. 10 ml of the maintenance medium was added. The flask was re-incubated at 37°C with 5% CO₂, with replacing of the maintenance medium every 2-3 days until cytopathic effect (CPE) was observed. Each strain with the known concentrations was used for infecting cells grown in 96 well plates using the same principle. The same process was repeated for infecting the cells with all laboratory strains (AD169, Towne, Toledo, Merlin, and clinical samples. For the clinical samples, the cell culture tubes were used, 3 ml (2X10⁵) of the cells suspension was added until the cells are confluent, 3 ml of the maintenance medium was used, then infected with 10,000 TCID 50 of the viral strain).

77

3.2.1.8 Harvesting the virus and preparing a stock of HCMV

The frozen flask was thawed at room temperature, shaken vigorously, refrozen for 2 hours at -80°C. After being subjected to another 2 cycles of thawingfreezing, the contents of the flask were transferred to a centrifuge tube and centrifuged at 1500 rpm for 5 minutes; the supernatant was transferred to a universal tube and aliquoted into small tubes at 1ml volumes. These were kept frozen at -80°C and then at -196°C until needed for the assays.

3.2.1.9 Virus infectivity titration (Determination of 50% tissue culture infectious dose (TCID₅₀))

Cells were trypsinized and counted and the concentration adjusted to 2×10^5 cells/ml using 10 ml of the growth medium. About 0.1 ml of the cell suspension was added to each well of a 96 well microtiter plate and incubated at 37° C with 5% CO₂. After 24 hours, a confluent monolayer was formed. Using 0.9 ml of maintenance media and 0.1 ml of the HCMV strain, a serial ten-fold dilution series was prepared from 10^{-1} to 10^{-11} in Bijou bottles. The growth medium was discarded from each well using a multichannel pipette. To each well of the 96 well microtitre plate, 0.1 ml of each virus dilution was added (8 wells from A to H per dilution). In the last column (Number 12) of the plate, 0.1 ml of the maintenance media with no virus was added as a control. The plate was incubated at 37° C with 5% CO₂ for several days (3-5) until CPE was observed. For each strain, the number of wells with apparent CPE was recorded and TCID₅₀ was calculated using Spearman–Karber formula (Log₁₀ Median Dose= X₀- (d/2) + d (Σ (r_i/n_i)).

 X_0 is the highest dilution where all the wells are positive d is the difference between the log dilution intervals (1) n_i is the number of wells used for each dilution (8) r_i is the number of the positive wells showing CPE in each dilution r_i/n_i is the proportion of the positive wells (P). The same process was repeated for all viral strains used.

3.2.1.10 Fixation of MRC-5 cells and MRC-5 infected cells

Cells were trypsinized and counted with a concentration adjustment of 2×10⁵ cells/ml using 10 ml of the growth medium. About 0.1 ml of the cell suspension was added to each well of a 96 well microtitre plate and incubated at 37°C with 5% CO₂. After 24 hours, a confluent monolayer was formed. The growth medium was discarded from each well using a multichannel pipette and replaced by 0.1 ml of the virus inoculum of 10,000 TCID₅₀ and incubated at 37°C with 5% CO₂. The plate was incubated at 37°C with 5% CO₂ for several days (3-5) until CPE was observed. The medium was discarded and replaced by 0.1 ml methanol in each well, incubated at room temperature for 1 hour, rinsed with distilled water, and left to dry at room temperature. The same process was repeated for all the strains of HCMV.

3.2.2 Real time polymerase chain reaction (PCR)

3.2.2.1 Viral DNA extraction

The nucleic acid extraction kit (Qiagen) was used as instructed by the manufacturer. Reagents were prepared as follows: 200 μ l of the virus suspension (Stock) was prepared as previously described (section 3.2.1.8). The protease was dissolved by heating at 65°C in 1.4 ml of AVE buffer, 310 μ l of AVE buffer was added to the tube contains 310 μ g lyophilized carrier RNA to have a solution of 1 μ g/ μ l, both were mixed gently to avoid foaming. Then, 6.16 μ l per sample of carrier RNA solution was added to 220 μ l per sample of the AL buffer. The AW1 and AW2 buffers were prepared by adding 25 ml and 30 ml of cold absolute ethanol, respectively, to 19 ml of both buffers and then mixing by shaking. Then, 25 μ l of the protease was added into a 1.5 micro-centrifuge tube, 100 μ l of each virus suspension was added to each tube containing 100 μ l of 0.9% Sodium chloride. Next, 200 μ l of buffer AL (28 μ g/ml of carrier RNA + lysis buffer) was added and mixed well for 15 seconds using a vortex mixer. The mixture was then incubated in a heating block at 65°C for 15

minutes and centrifuged for 1 or 2 minutes to remove any drops present inside the lid. 250 µl of cold Ethanol was added to each sample column, followed by vortexing for 15 seconds, and then incubated at room temperature for 5 minutes. The mixture was transferred to QIAamp MinElute columns (provided with the kit) and centrifuged at 8000 rpm for 1 minute. Then, the columns were placed in clean 2 ml collection tubes, and the ones containing the filtrate were discarded. After that, 500 μ l of buffer AW2 was added to each column, closed and centrifuged at 8000 rpm for 1 minute. Again, the columns were placed in clean 2 ml collection tubes, and the ones containing the filtrate were discarded. Next, 500 µl of cold ethanol was added to each tube, before centrifuging at 14000 rpm for 3 minutes to dry the membrane completely, the columns were placed in clean 2 ml collection tubes, and the ones containing the filtrate were discarded. The columns were transferred to new collection tubes and incubated for 3 minutes in the heating block at 65°C. Then the columns were placed in 1.5 ml sterile microcentrifuge tubes (Eppendorf tubes), 150 µl of buffer AVE was added to each tube and centrifuged at 14000 rpm for 5 minutes. The mixture then was transferred to clean 1.5 ml microcentrifuge tubes and the ones containing the filtrate were discarded. Lastly, the tubes containing the nucleic acid were stored at - 20 °C until needed. The same process was applied to extract the DNA of all HCMV strains.

3.2.2.2 Conventional PCR

PCR mixture was prepared for each genotype of all laboratory strains and clinical specimens by pipetting the following reagents together in a 1.5 ml sterile micro-centrifuge tubes (Eppendorf tube): 25 μ l of AmpliTaq Gold 360 master mix or 2X my taq HS mix in case of gO genotype, 1 μ l of each forward and reverse primers (each genotype with its assigned primers) (Table 5), 18 μ l of sterile distilled water (SDW). 45 μ l of the mixture was aliquoted in each PCR tube needed (depends on the number of samples and genotypes including negative and positive controls). After vortexing, the tubes 5 μ l of the PCR products was added to each tube (each laboratory strain and the clinical specimen has 8 tubes). Then, the PCR reaction was

80

carried out in the PCR thermocycler machine (Gene Amp® PCR system9700) and exposed to specific thermal cycling parameters (Table 4).

Primer	Primer Sequence (5'>3')	Cycling Parameters	Reference	
P2	5'-TCGCTGTCTTCGACCGGTGA-3'	95°C-12 min, 55°C-1 min, 72°C- 1 min	McElhinney	
724C	5'-AAGAATCCTCACCTGGCTTA-3'	(40 cycles): 95°C- 30 sec, 55°C-30 sec, 72°C-30 sec	1995	
gB1319	5'-TGGAACTGGAACGTTTGGC-3'	95°C-12 min, 55°C-1 min, 72°C- 1 min	Chou and Dennison	
gB1604	5'-GAAACGCGCGGCAATCGG-3'	(40 cycles): 95°C- 30 sec, 55°C-30 sec, 72°C-30 sec	1991	
gM509JE	5'-GCTCAAACCGCGTCGTGA-3'	95°C-12 min (40 cycles): 95°C- 45 sec, 55°C-45	Ellis 2006	
gM1801JE	5'-ACGGTCTGCGTGTCTCTT-3'	sec, 72°C-1 min Final extension: 72°C-10 min		
gNup	5'-TGGTGTGATGGGTGGAAC-3'	95°C-12 min, 55°C-1 min, 72°C- 1 min		
gNlow	5'-TAGCCTTTGGTGGTGGTTGC-3'	(35 cycles): 95°C- 1 min, 55°C-1 min, 72°C-1 min Final extension: 72°C-10 min	Pignatelli <i>et</i> <i>al.</i> , 2003	

Table 4: PCR Cycling	Parameters.
----------------------	-------------

gH203	5'-CCACCTGGATCACGCCGCTG- 3'	95°C-12 min, 55°C-1 min, 72°C- 1 min	Chou 1992
gH172	5'-TGGTGTTTTCACGCAGGAA-3'	(40 cycles): 95°C- 30 sec, 55°C-30 sec, 72°C-30 sec	
115upout	5'-TTGATGTGCCGCCGCCCGGAT- 3'	95°C-12 min (40 cycles): 95°C- 15 sec, 55°C-20	Rasmussen
115loout	5'-GCACCAGCTCGAAGCCTAAC- 3'	sec, 72°C-2 min Final extension: 72°C-10 min	<i>et al</i> ., 2002
UL74ZB5	5'-CGTTGGAACACCAAATTGTA-3'	(40 cycles): 95°C-	Buhamad
UL74ZB3	5'-ACCAAAGGCTATTGAGGGTG- 3'	15 sec, 55°C-15 sec, 72°C-10 min	2018

3.2.2.3 Real time PCR

The PCR master mix was prepared by pipetting the following reagents together in a 1.5 ml sterile micro-centrifuge tubes (Eppendorf tube): 10 μ l of TaqMan Fast Universal PCR master mix (2X), 1 ml of each HCMV forward primer (CTGCGTGATATGAACGTGAAGG) (6 μ M), HCMV reverse primer (ACTGCACGTACGAGCTGTTGG) (6 μ M), and probe (CGCCAGGACGCTGCTACTCACGA) (4 μ M), 5 ml of a DNA- free sterile distilled water (per sample), these volumes were multiplied by the number of samples needed. To each well of a fast-thermal cycling reaction strip, 18 μ l of the prepared master mix and 2 μ l of each extracted DNA sample including the positive and the negative controls were aliquoted (the total volume is 20 μ l). The PCR reaction was carried out using the following thermal

cycling parameters: 95°C for 20 sec., 40 cycles of 95°C for 1 sec and 60°C for 20 sec.

3.2.2.4 PCR conditions

Separation of the PCR DNA free room and the DNA preparation room was essential to avoid contamination. The PCR mixture (master mix) was prepared in the DNA free room, where no PCR products or any DNA samples were allowed. The virus DNA was extracted and added to the PCR master mix in the extraction room. No equipment was transferred between rooms, except the prepared master mix. The working cabinets in both rooms were cleaned regularly and kept DNA free by frequent short-wave UV sterilization. In both rooms, gloves and coat were worn at all times and changed if moving between rooms.

3.2.3 HCMV growth characteristics

To assess the viral replication kinetics and characteristic in cell culture, the exact process of the TCID₅₀ assay was used. Stocks of both laboratory strains and clinical samples were prepared. MRC-5 cells ($2X10^5$ cells/ml) were infected at 10,000 TCID₅₀ for each virus (standard) (Multiplicity of infection (MOI)= 0.05). The CPE was observed at specified different time points (7, 14, 21, 28 days' post infection) and the infectious titer was calculated as described previously in section (3.2.1.9). Duplicate wells were used for each virus titer to increase accuracy. Finally, TCID₅₀ values were calculated to plot the growth curves.

3.2.4 E-Gel® electrophoresis

To detect the PCR products E-gel electrophoresis was used. The E-Gel® agarose gel used in this study was a 12-well, single comb gel with SYBR® Safe DNA Gel Stain. Samples were prepared using a 0.5 ml Eppendorf tube as follow: 12 μ l Ultra-Pure Distilled Water (UPDW), 8 μ l of PCR products for each sample. Then the mixture was mixed using a pipette. The 1 kb plus ladder was prepared by adding 2 μ l

of the latter with 18 μ l of UPDW. The E-gel was inserted into the base until the redlight illuminated on the base, and then any button was pressed until the red light turned into green light (pre-running of the E-gel). Then the E-gel was removed and 20 μ l of the ladder and each sample was loaded into the E- gel lanes, and the empty lanes filled with 20 μ l of UPDW. After running the electrophoresis for 30 minutes, the E-Gel cassette was transferred to the UV transilluminator system to visualize the DNA bands.

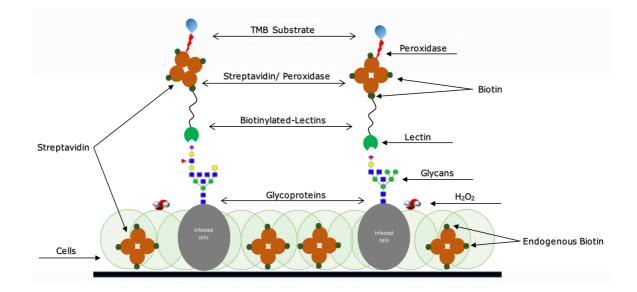
3.2.5 Restriction fragment length polymorphisms (RFLP)

1 or 2 μ l of each restriction enzyme was mixed with 1 or 2 μ l of the restriction enzymes specific buffer, 5 μ l of the DNA being analysed, and 10 or 12 μ l of Sterile Distilled Water, in a 0.5ml Eppendorf tubes (separate tubes for each enzyme, strain and genotype). Tubes were incubated for 1 hour at 37°C or 65°C, allowing the restriction enzyme to cut its recognition site (restriction enzymes and their buffers volumes and the incubation time and its appropriate temperature used according to the manufacturer instructions). Lastly, 2 μ l of the loading buffer was added to each tube to stop the restriction digestion reaction (Table 5).

Glycoproteins	Restriction Enzymes	Genotypes							
		gB1		gB2	gl	33	gB4		
gB	Rsa I	239, 66		239, 63	195, 63, 41		196, 65, 44		
	Hnif I	202, 67, 33 202, 100		202	, 97	203, 67, 35			
		gM1		gM2			gM3		
gM	Ear I	679, 511, 105 1300 (uncut) 679		1300 (uncut)		679, 511, 105			
	Bfa I	1089, 211 1300 (uncut) 1)89, 211 1300 (uncut)		1300 (uncut)			

Table 5: Restriction enzymes used for each genotype and their specific size.

		gN1	gN2	gN3a	gN3b	gN4a	gN4b	gN4c	gN4d
	Sac I	297, 123	299,12 3,65	420 (uncut)	420 (uncut)	291, 123	420 (uncut)	420 (uncut)	420 (uncut)
gN	Sca I	420 (uncut)	420 (uncut)	420 (uncut)	221, 172, 27	221, 166, 27	420 (uncut) or 287, 27	238, 172	239, 145, 27
	Sal I	420 (uncut)	296, 121	420 (uncut)	420 (uncut)	341, 73	341, 73	337, 73	338, 73
			gł	H1			g	H2	
gH	Hpa II		162	, 51			210 ((uncut)	
	Stu I	210 (uncut)					158	3, 52	
		g	L1	g	L2	gl	L3	g	L4
gL	Rsa I	287, 11	7, 96, 50	337,1	17, 96	287, 11	7, 96, 50	337,1	.17, 96
	Taq I	386, 156, 8		386, 156, 8		54:	2, 8	54	2, 8
		gO1a	gO1b	gO1c	gO2a	gO2b	gO3	gO4	gO5
	Аро І	517, 320	370, 311, 147	517, 321	687, 147	517, 320	828 (uncut)	505, 322	370, 321, 147
gO	Ban II	592, 245	592, 236	592, 246	828 (uncu t)	414, 245, 178	583, 245	580, 247	592, 246
	Hha I	613, 225	729, 99	486, 225, 127	370, 239, 126, 99	370, 239, 126, 99	729, 99	375, 224, 126, 102	613, 126, 99


3.2.6 Electrophoresis of TBE gels using the XCell SureLock[®] Mini-Cell

The XCell SureLock® Mini-Cell was assembled according to the manufacturer's instructions. After insertion of the TBE gel cassette into the tank the Gel Tension Wedge was pulled forward and the inner chamber filled with 200 ml of 1X TBE buffer and the outer chamber with 600 ml of 1X TBE buffer. Then about 5 µl

of the 25 bp or 50 bp hyper ladder (dependent on the genotype being analysed), and the samples were loaded into the gel wells. The electrodes were connected to the electrophoresis device and run under TBE gels default settings (200 Volt, 12 mA and 2.0 w for 45 minutes). In small Scott bottle about 30 μ l of gel red stain was mixed with 50 μ l of UPDW. Then, the gel was removed from the cassette, immersed in the stain using a square Petri dish and placed in the shaker for about 15 minutes. Lastly, the gels were visualized on the UV transilluminator.

3.2.7 Enzyme linked lectin-sorbent assay (ELLA)

In this assay, HCMV strain-infected cells with density of 2 \times 10⁵ cells/ml at virus infectious titer of 10^4 TCID50/ml in the 96 well plates were used. Cells with CPE were fixed using methanol as previously described (section 3.2.1.10). Blocking the endogenous biotin before starting the assay was completed in two steps: First, all endogenous biotin moieties were reacted with streptavidin by covering the wells in use with 0.1 mg/ml streptavidin diluted in wash buffer; incubation for 15 minutes at room temperature, then washing three times for 10 minutes each with wash buffer. To ensure blocking of remaining streptavidin biotin-binding sites 0.5 mg/ml of a free biotin dissolved in wash buffer was added, incubated for 30 minutes at room temperature, then washed three times for 10 minutes each with wash buffer. To each well, 150 µl of the prepared biotinylated lectin dilution (2.5 µg/ml in Trisbuffered saline (TBS) +1mM CaCl) was added including the control wells (noninfected cells). Some wells with infected cells were used as controls (lectins were not added). The plate was incubated at room temperature for 30 minutes. Then washed 5 times in TBS + 0.05% Tween 20, using the ELISA washer. Then, 150 μ l of 01% hydrogen peroxide, to block the endogenous peroxidase activity, in TBS was added to all wells including the control wells. The plate was incubated at room temperature for 30 minutes. Then washed 5 times in TBS + 0.05% Tween 20, using the ELISA washer. Next, 150 µl of streptavidin/peroxidase conjugate was added to all wells in use including the control wells (No lectins added only conjugate). The plate was incubated at room temperature for 30 minutes then washed 5 times in TBS + 0.05% Tween 20, using the ELISA washer. Next, 100 μ l of the TMB substrate (3,3',5,5'Tetramethylbenzidine), which is a chromogenic substrate that interacts with the Hydrogen Peroxide (H₂O₂), was added to each well in use, incubated at 37°C for 20 minutes (until colour blue developed). Then the reaction was stopped by adding 10 μ l of 0.5M Sulphuric acid, which is the stop reagent that inhibits the development of the TMB colour by inhibiting the enzymatic activity of the peroxidase, to each well in use (yellow colour developed). Finally, the optical density (O.D.) for each well was determined by reading at 450 nm on ELISA reader. The same method was repeated for the laboratory strains and clinical samples (Figure 8).

Figure 8: Schematic diagram presenting the method of Enzyme Linked Lectin-Sorbent Assay used in this project.

3.2.8 Samples information

3.2.8.1 Laboratory strains

HCMV Laboratory strains used in this project were AD169, Towne, Davis, Toledo and Merlin:

Viral stocks stored in liquid nitrogen in the University of Manchester Virology Laboratory were AD169 (Passage No. 3, lab stock from 12/02/03), Towne (Passage No. 2, laboratory stock from 18/05/00), Davis (Passage No. 2, laboratory stock from 22/05/00). All were purchased from the American Type Culture Collection (ATCC), Middlesex, UK.

Viral laboratory strain Toledo was purchased from the National Collection of Pathogenic Viruses (NCPV), Public Health England, Salisbury, UK.

Viral laboratory strain Merlin was purchased from ATCC.

3.2.8.2 Clinical samples

Clinical samples (N=114) were obtained from the Public Health England, North West Regional Virus Laboratory, Manchester Royal Infirmary, Central Manchester University Hospitals, NHS Foundation Trust, UK., and Nova Medical School, Faculty of Medical Sciences, University of Lisbon, Lisbon, Portugal. All specimens were surplus residual, unlinked and anonymized clinical samples.

An HCMV specific Phosphoprotein PCR was used to confirm positive CMV results for all 114 clinical samples. Prior to handling in different assays, all samples were cultured in MRC-5 cells.

The specimens were classified according to two major groups (Infection category) and (Specimen type) and then each sample was assigned into different sub-groups as follows:

Group 1: Infection category

A: Congenitally or early post-natally infected infants (N=13)
A1: Confirmed congenital (N=12)
A2: Unconfirmed congenital or early post-natal (N=1)
B: Immunocompetent patients with primary infection (N=8)

B₁: Confirmed Primary (N=7)

B₂: Primary/recurrent not defined (N=1)

- C: Immunocompromised patients (N=63)
 C₁: Primary infection (N=26)
 C₂: Recurrent infection (N= 35)
 C₃: Primary/recurrent not defined (N=2)
- **D:** Not known infection (N=5)

Group 2: Specimen type

- A: Blood specimens (N=77)
- **B:** Urine specimens (N=8)
- **C:** Respiratory specimens (N=4)

3.2.9 Ethical considerations

This study was reviewed and approved (15/NW/0368) by The National Research Ethics Services (NREC) committee in North West- Lancaster.

Specimens used are residual, surplus, diagnostic human body fluids, such as blood, saliva and urine. These were unlinked anonymized specimens, and no contact with the patients was required. The anonymized data was handled and stored on a password secured encrypted computers held within locked, controlled access, secure University premises. Data storage computer systems are managed in full compliance with the requirements of the Data Protection Act. Data transported between computers held on a different site (e.g. NHS Hospital premises) was accomplished using password protected and encrypted secure portable data storage devices. All human tissues were discarded according to human tissue act regulations, and the remaining samples after study completion were stored in the human tissue bank in the laboratory. The results of this study were not reported back to the requesting clinician or patient.

3.2.10 Statistical analysis

All the data were analysed using IBM SPSS statistics, version 23.0. Statistical tests used for data analysis included: Cross-tabulation test to determine the distribution of all HCMV glycoprotein genotypes among different infection categories /and specimen types; Chi-square test was used to show whether there is a significant association of any of HCMV genotypes and the infection categories/ specimen types or not. Also, a paired Sample t-test was used to measure the glycosylation differences between non-infected and infected cells. To measure the difference between the same groups (non-infected and infected cells) with regard to a particular variable/measurement (specimen type, category), Paired samples t-test was used. Finally, Analysis of Variance (ANOVA) test to measures the differences between three groups or more, and the independent samples t-test, which is similar to ANOVA but measures the differences between two groups, was used. Finally, the significance of the relationship between variables was determined using Post hoc statistical test (P<0.05 indicates statistically significant results).

CHAPTER 4

4. Results and data analysis

4.1 Cultivation of MRC-5 cells

Laboratory strains and clinical isolates of HCMV were grown in human foetal cells, which were permissive to infection and characterized by their stability and integrity. MRC-5 cells (Human Embryonic Lung Fibroblast cells) were used, which are derived from a 14-week male foetus and known to tolerate environmental changes and attain confluency within 3 days when seeded at 1x10⁵ cells /ml (Jacobs *et al.*, 1970). Cells were successfully cultivated in flasks, 96 well plates and cell culture tubes and a stock of cells was grown and stored frozen to ensure passage number consistency between all assays. Figure 9 shows MRC-5 cells grown in a 75cm² cell culture plastic flask at a seeding concentration of 1x10⁵ cells/ml. After 72-96 hours of incubation, the cells were examined using an inverted microscope and found to be 100% confluent (Figure 9). Cells were also seeded at 2x10⁵ cells/ml in 96 well plates and in cell culture tubes and became 90% confluent after 24- 36 hours of incubation.

Figure 9: 100 % confluent MRC- cells observed after 72-96 hours of culturing.

4.2 Infection of MRC-5 cells

HCMV can induce two distinctive cytopathic effects (CPE): an early CPE, when the infected fibroblasts appear to be rounded and swollen, and a late CPE, when granular intracytoplasmic and intranuclear inclusion bodies appear within these swollen cells.

All 5 lab strains and 114 samples were cultured in MRC5 fibroblast cells as described previously, section (3.2.1.7). All lab strains and 89 of the 114 clinical samples started to show a clear CPE within 3 to 10 days after infection (Figure 10), while the complete CPE was observed 5-28 days after infection. Samples where no CPE was seen (n=25) were excluded from this study.

Figure 10: HCMV specific Cytopathic Effect (CPE) on fibroblasts cells, as the cells appear flat, rounded and swollen. Granular intracytoplasmic and intranuclear inclusion bodies appear within these cells in the centre of the picture.

4.3 Fixation of MRC-5 cells

Efforts to fix the infected cells in the 96 well plates without making them permeable was performed using: 1% formaldehyde in PBS or a formaldehyde-freemethanol, for 20, 30, or 60 minutes. After a first wash, using the ELISA washer, 20% of the fixed cells were washed away and the remaining cells were removed by a second wash. Manual washing of the cells was tried, and the result was similar, but the percentage of cells lost was less (15%). There was no apparent difference in the percentage of cells lost whether the cell sheet was allowed to dry or remained wet after fixation. Fixation of cells without permeabilizing them was thus not achievable. As a compromise, cells were fixed using methanol for 60 minutes (as described in section (3.2.1.10)). This fixation will likely affect cell surface permeability. However, as both internal and external protein glycosylation is important, this was not considered a major setback.

4.4 Determination of 50% tissue culture infectious dose

Several assays are available to quantitate infectious virus including plaque assay and 50 % tissue culture infectious dose (TCID₅₀) assays. In this project, TCID₅₀, which quantitates the number of infectious units of virus per unit volume by looking for the presence of virus-induced cytopathic effect, was used to determine the infectious titre of the different HCMV laboratory strains and clinical isolates. The 50% infectious dose was calculated using the Spearman and Karber method (Flint *et al.*, 2009) (Section 3.2.1.9). The infectious titre determined for each stock is presented in the table below (Table 6).

HCMV strain	The infectious titer		
AD169	10 ^{5.8} TCID ₅₀ / ml		
Towne	10 ⁵ TCID ₅₀ / ml		
Davis	10 ^{3.5} TCID ₅₀ / ml		
Toledo	10 ^{4.6} TCID ₅₀ / ml		
Merlin	10 ^{3.6} TCID ₅₀ / ml		
Clinical samples	Ranging from 10 $^{2.2}$ to 10 $^{6.1}$ TCID ₅₀ / ml		

|--|

4.5 Identification of HCMV glycoprotein genotypes and their effect on the virus distribution

Glycoprotein genotype profiles were identified for all HCMV positive samples. This was done using PCR/RFLP assays to amplify and identify each glycoprotein gene in each sample. A total of 5 lab strains and 87 out of 89 clinical samples were genotyped successfully (although not all glycoprotein genotypes were determined for every sample). Of these 53 specimens were typed as part of this project and the remaining 35 specimens were typed as part of a related project (Buhamad, 2018) and pooled with this data to allow all 89 specimens to be included in the growth characteristics and glycosylation studies. The complete genotyping profile, infection category and specimen type for all HCMV lab strains and clinical samples can be found in Appendix 1.

The specimens were analysed by grouping them in two different ways: by infection category and by specimen type (full classification can be found in section 3.2.8.2).

4.5.1 Infection category

The specimens were divided into 4 sub-groups according to the patient type: A- Congenitally or early post-natally infected infants; B- Immunocompetent patients with primary infection; C- Immunocompromised patients with primary (C₁) / or recurrent infection (C₂); D- Not known infection category.

Although all specimens were typed and used later in the glycosylation studies, the following specimens were excluded from the genotype analysis because they could not be confidently assigned to a patient group, and most importantly, statistical analysis of sub-groups with 4 cases or less was not appropriate (this is discussed in the discussion chapter); undetermined congenital or early post-natal infection (N=1), not defined primary or recurrent infection from immunocompetent patient (N=1), not defined primary or recurrent infection from an

immunocompromised patient (N=2), and unknown infection category (N=4). This resulted in the following numbers in the patient groups; congenitally or early postnatally infected infants (N=12), Immunocompetent patients with primary infection (N=7), Immunocompromised patients with primary/ or recurrent infection (N=61). (Total population for glycoprotein analysis: N=80).

The distribution of each glycoprotein genotype among each group was determined using a cross tabulation statistical test. To determine whether there was a significant correlation between the glycoprotein genotype distribution and the infection group, Pearson chi-squared statistical test was used.

4.5.1.1 Glycoprotein B

A total of 87 of 89 (97.8%) specimens were successfully gB genotyped. Of the 80 specimens included in the study a gB genotype, result was obtained for 79 (88.8%).

All gB genotypes were identified in all patient groups. gB1 was the most common (n=33, 41.8%), the other genotypes were: gB2 (n=15, 19%), gB3 (n=18, 22.8%), gB4 (n=11, 13.9%), and mixed gB genotype (n=2, 2.5%) (Table 7).

When the genotypes were analysed by infection category, gB1 (n=4, 3.3%), gB4 (n=3, 27.3%), gB2 (n=2, 16.7%) and gB3 (n=2, 16.7%) were equally distributed among infants with congenital infections (sub-group A). In the immunocompetent patients with primary infection (sub-group B), gB3 (n=4, 57.1%) was most common with gB1 (n=2, 28.6%) also found. In immunocompromised patients (sub-group C) with primary or recurrent infection (C₁), gB1 was most common (n=12, 48.0%) with gB2 (n=5, 20.5%), gB3 (n=4, 16.0%) and gB4 (n=4, 16.0%). In C₂, immunocompromised patients with recurrent infection, gB1 (n=15, 42.9%) was most common with gB2 (n=8, 22.9%) and gB3 (n=8, 22.9%) equally prevalent and gBb4 (4, 11.4%) least common (Table 7, Figure 11).

95

For all the above, no statistically significant relation was found with any gB genotype distribution and patient group (X^2 (12, N=79) = 15.921), p=0.19).

gB genotypes	Congenital infection N=12	Immuno- compromised Primary infection N=25	Immuno- compromised Recurrent infection N=35	Immuno- competent Primary infection N=7	Total N=79
Mixed gB	8.3%	0.0%	0.0%	14.3%	2.5%
	(n=1)	(n=0)	(n=0)	(n=1)	(n=2)
gB1	33.3%	48.0%	42.9%	28.6%	41.8%
	(n=4)	(n=12)	(n=15)	(n=2)	(n=33)
gB2	16.7%	20.0%	22.9%	0.0%	19.0%
	(n-2)	(n=5)	(n=8)	(n=0)	(n=15)
gB3	16.7%	16.0%	22.9%	57.1%	22.8%
	(n=2)	(n=4)	(n=8)	(n=4)	(n=18)
gB4	27.3%	16.0%	11.4%	0.0%	13.9%
	(n=3)	(n=4)	(n=4)	(n=0)	(n=11)

Table 7: gB distribution among patients with different infection categories.

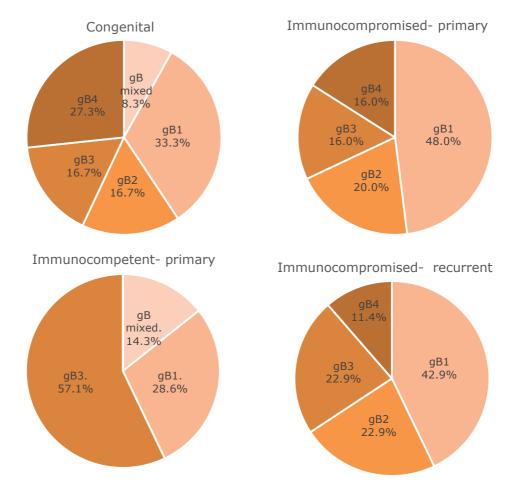


Figure 11: gB distribution among patients with different infection categories.

4.5.1.2 Glycoprotein H

A total of 84 of 89 (94.4%) specimens were successfully gH genotyped. Of the 80 specimens included in the study a gH genotype, result was obtained for 77 (8.5%).

The distribution of the gH types across all samples was as follows: gH1 (n=40, 51.9%) and gH2 (n=33, 42.9%) Mixed gH genotypes (n=4, 5.2%) (Table 8). When analysed by infection group, gH1 was the commonest genotype in subgroup A, among infants with congenital infections (n=9, 81.8%), and immunocompetent patients with primary infections (sub-group B) (n=4, 57.1%), and in immunocompromised patients (sub-group C) with primary HCMV infection (C₁) (n=18, 72.0%). Whilst gH2 was the most prevalent among immunocompromised patients with recurrent infections (C₂) (n=21, 61.8%), (Table 8, Figure 12).

The chi-squared statistical test indicated that there was a statistically significant association between infection category (X^2 (6, N=77) = 24.251), p=0.001) and the distribution of gH genotypes among HCMV patients.

gH genotypes	Congenital infection N=11	Immuno- compromised Primary infection N=25	Immuno- compromised Recurrent infection N=34	Immuno- competent Primary infection N=7	Total N=77
Mixed gH	9.1%	0.0%	2.9%	28.6%	5.2%
	(n=1)	(n=0)	(n=1)	(n=2)	(n=4)
gH1	81.8%	72.0%	35.3%	14.3%	51.9%
	(n=9)	(n=18)	(n=12)	(n=1)	(n=40)
gH2	9.1%	28.0%	61.8%	57.1%	42.9%
	(n=1)	(n=7)	(n=21)	(n=4)	(n=30)

Table 8: gH	distribution	among	patients	with	different	infection	categories.
i abie oi gii	alberibacion	annong	patientes	www.ciii	annerente	meetion	categoricor

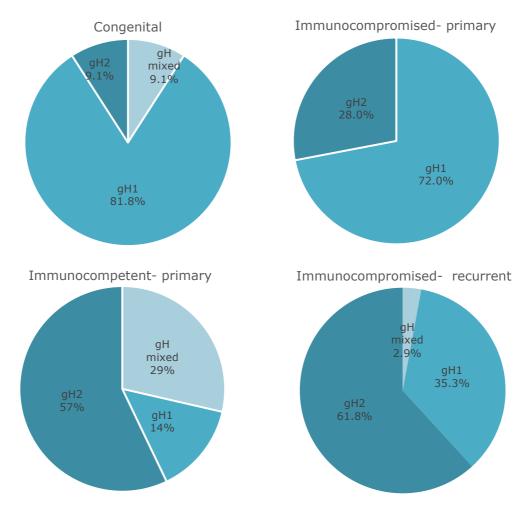


Figure 12: gH distribution among patients with different infection categories.

4.5.1.3 Glycoprotein L

A total of 83 of 89 (93.3%) specimens were successfully gL genotyped. After excluding any group of the infection categories that had 4 cases or less, the total number of gL that could be statistically analysed was reduced to 76 (85.4%).

The distribution of the genotypes among these 76 was as follows: gL1 (n=3, 3.9%), gL2 (n=17, 22.4%), gL3 (n=6, 7.9%), and gL4 (n=36, 47.4%) gL mixed genotypes (n=14, 18.4%), suggesting gL4 was the most prevalent genotype (Table 9).

Analysis of the gL types by patient group showed gL4 was the most widespread genotype among infants with congenital infections (n=7, 58.3%) (sub-group A), and immunocompetent patients (n=4, 57.1%) (sub-group B). Also,

among immunocompromised patients (sub-group C) with primary (C₁) or recurrent infections (C₂), gL4 was the most prevalent (n=12, 48%; n=13, 40.6%, respectively), followed by gL2 (n=6, 24%; n=10, 31.3%, respectively) (Table 9, Figure 13).

However, chi-squared test showed no statistically significant correlation between gL genotype and infection category (X^2 (12, N=76) = 10.556), p=0.56).

gL genotypes	Congenital infection N=12	Immuno- compromised Primary infection N=25	Immuno- compromised Recurrent infection N=32	Immuno- competent Primary infection N=7	Total N=76
Mixed gL	25.0%	8.0%	21.9%	28.6%	18.4%
	(n=3)	(n=2)	(n=7)	(n=2)	(n=14)
gL1	0.0%	8.0%	3.1%	0.0%	3.9%
	(n=0)	(n=2)	(n=1)	(n=0)	(n=3)
gL2	8.3%	24.0%	31.3%	0.0%	22.4%
	(n=1)	(n=6)	(n=10)	(n=0)	(n=17)
gL3	8.3%	12.0%	3.1%	14.3%	7.9%
	(n=1)	(n=3)	(n=1)	(n=1)	(n=6)
gL4	58.3%	48.0%	40.6%	57.1%	47.4%
	(n=7)	(n=12)	(n=13)	(n=4)	(n=36)

Table 9: gL distribution among patients with different infection categories.

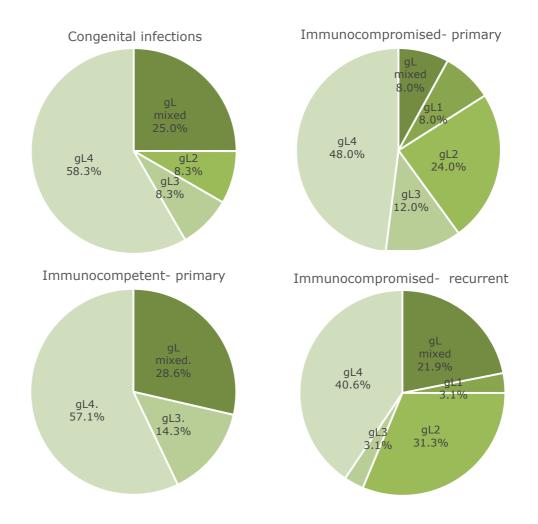


Figure 13: gL distribution among patients with different infection categories.

4.5.1.4 Glycoprotein M

A total of 74 of 89 (83.1%) specimens were successfully gM genotyped. After excluding any group of the infection categories that has 4 cases or less, the total number of gM that could be statistically analysed was reduced to 67 (75.3%).

Distribution of the gM genotypes across these 67 was as follows: gM1 (n=13, 19.4%) and gM2 (n=3, 4.5%), and gM3 (n=50, 74.6%) Mixed gM genotypes (n=1, 1.5%). Noticeably, gM3 was the most prevalent genotype followed by gM2 (Table 10).

Analysis by patient group showed; gM3 was the predominant genotype in the congenitally infected infants (sub-group A) (n=6, 66.7%), and among immunocompetent patients (sub-group B) (n=3, 60.0%) with gM1 (n=2, 40.0%). However, numbers were very low in each type for this patient group. Also, among the immunocompromised patients (sub-group C) for both primary (C₁) (n=19, 82.6%) and recurrent (C₂) (n=22, 73.3%) gM3 was also most common (Table 10, Figure 14).

The chi-squared statistical test indicated no statistically significant association between the infection category (X^2 (3, N=71) = 5.409), p=0.79) and the distribution of gM genotypes among HCMV patients.

gM genotypes	Congenital infection N=9	Immuno- compromised Primary infection N=23	Immuno- compromised Recurrent infection N=30	Immuno- competent Primary infection N=5	Total N=67
Mixed gM	0.0%	0.0%	3.3%	0.0%	1.5%
	(n=0)	(n=0)	(n=1)	(n=0)	(n=1)
gM1	22.2%	17.4%	16.7%	40%	19.4%
	(n=2)	(n=4)	(n=5)	(n=2)	(n=13)
gM2	11.1%	0.0%	6.7%	0.0%	4.5%
	(n=1)	(n=0)	(n=2)	(n=0)	(n=3)
gM3	66.7%	82.6%	73.3%	60%	74.6%
	(n=6)	(n=19)	(n=22)	(n=3)	(n=50)

Table 10: gM distribution among patients with different infection categories

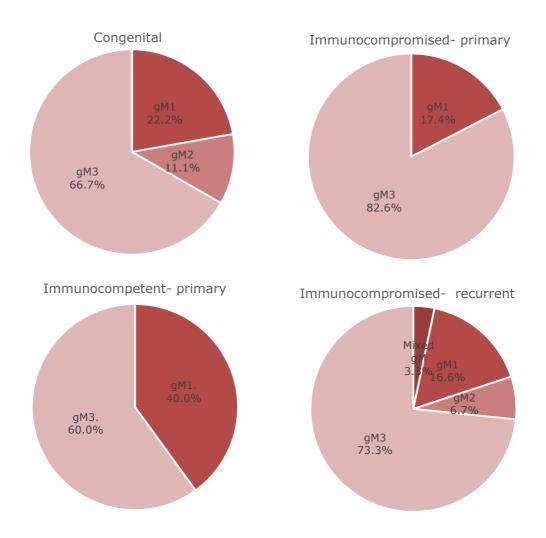


Figure 14: gM distribution among patients with different infection categories.

4.5.1.5 Glycoprotein N

A total of 74 of 89 (83.1%) specimens were successfully gN genotyped. After excluding any group of the infection categories with 4 cases or less, the total number of gN genotype that could be statistically analysed was reduced to 67 (75.3%).

The gN distribution across the whole population was as follows: gN1, n=6, 9.0%), gN3a (n=47, 70.1%), gN4a (n=5, 7.5%), gN4b (n=2, 3.0%), gN4c (n=4, 6.0%) and gN4d (n=3, 4.5%) making gN3a the most commonly found genotype (Table 11).

When differentiated by patient group; gN3a was still the most commonly found type in congenital infections (sub-group A) (n=9, 81.8%), and in immunocompetent patients (sub-group B) (n=4, 60.7%). It was also the most common (n=10, 45.5%) among immunocompromised patients (sub-group C) with primary infections (C₁), although gN1 (n=3, 13.6%), gN4a (n=3, 13.6%), and gN4b (n=2, 9.1%) were also found, but again numbers were low in each type of this group. Also, among immunocompromised patients with recurrent infection (C₂) gN3a was the most common (n= 24, 85.7%) (Table 11, figure 15).

There was no statistically significant relation between gN genotype distribution for any infection category (X^2 (15, N=67) = 16.525), p=0.35).

gN genotypes	Congenital infection N=11	Immuno- compromised Primary infection N=22	Immuno- compromised Recurrent infection N=28	Immuno- competent Primary infection N=6	Total N=67
gN1	9.1%	13.6%	3.6%	16.7%	9.0%
	(n=1)	(n=3)	(n=1)	(n=1)	(n=6)
gN3a	81.8%	45.5%	85.7%	66.7%	70.1%
	(n=9)	(n=10)	(n=24)	(n=4)	(n=47)
gN4a	0.0%	13.6%	3.6%	16.7%	7.5%
	(n=0)	(n=3)	(n=1)	(n=1)	(n=5)
gN4b	0.0%	9.1%	0.0%	0.0%	3.0%
	(n=0)	(n=2)	(n=0)	(n=0)	(n=2)
gN4c	0.0%	13.6%	3.6%	0.0%	6.0%
	(n=0)	(n=3)	(n=1)	(n=0)	(n=4)
gN4d	9.1%	4.5%	3.6%	0.0%	4.5%
	(n=1)	(n=1)	(n=1)	(n=0)	(n=3)

Table 11: gN distribution among patients with different infection categories.

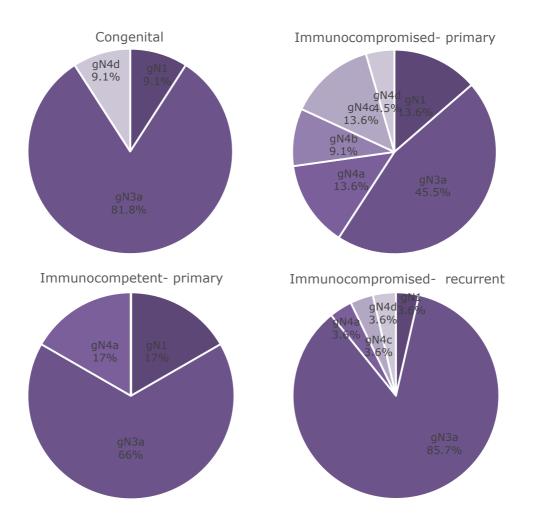


Figure 15: gN distribution among patients with different infection categories.

4.5.1.6 Glycoprotein O

A total of 71 of 89 (79.8%) specimens were successfully gO genotyped. After excluding any group of the infection categories that had 4 cases or fewer, the total number of gO that could be statistically analysed was reduced to 60 (67.4%).

The distribution of the different genotypes of gO across these 60 showed: gO1a (n=15, 25.0%) and gO1c (n=34, 56.7%), gO2a (n=2, 3.3%), gO2b (n=1, 1.7%), gO3 (n=2, 3.3%), and gO4 (n=6, 10%). gO1c was the commonest across all infection categories, followed by gO1a (Table 12).

Analysing the various patient groups showed gO1c was the most prevalent in all patient groups; congenital infections (sub-group A) (n=5, 62.5%); immunocompetent patients with primary infection (sub- group B) (n=3, 75.0%); immunocompromised patients (sub-group C) with primary infections (C₁) ((n=10, 45.5%); and immunocompromised patients with recurrent infection (C₁) (n=19, 63.3%) (Table 12, Figure 16).

However, chi-square showed no statistically significant correlation between any gO genotype and HCMV infection category (X^2 (10, N=60) = 13.412), p=0.20).

gO genotypes	Congenital infection N=8	Immuno- compromised Primary infection N=22	Immuno- compromised Recurrent infection N=30	Total N=60
gO1a	12.5%	36.4%	20.0%	25.0%
	(n=1)	(n=8)	(n=6)	(n=15)
gO1c	62.5%	45.5%	63.3%	56.7%
	(n=5)	(n=10)	(n=19)	(n=34)
gO2a	0.0%	4.5%	3.3%	3.3%
	(n=0)	(n=1)	(n=1)	(n=2)
gO2b	12.5%	0.0%	0.0%	1.7%
	(n=1)	(n=0)	(n=0)	(n=1)
gO3	3.2%	0.0%	3.3%	3.3%
	(n=1)	(n=0)	(n=1)	(n=2)
gO4	0.0%	13.6%	10.0%	10.0%
	(n=0)	(n=3)	(n=3)	(n=6)

Table 12: gO distribution among patients with different infection categories.

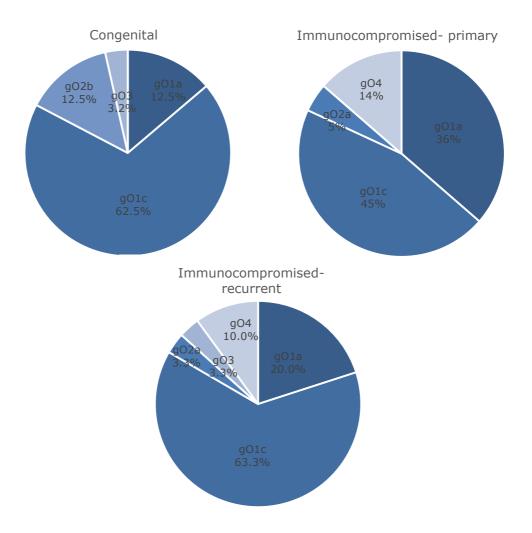


Figure 16: gO distribution among patients with different infection categories.

4.5.2 Specimen type

The distribution of the glycoprotein genotypes, and whether there is any association between HCMV glycoprotein genotypes and the specimen type in which the virus was found was also analysed. Specimens were categorised into one of 3 different sub-groups as described previously in section (3.2.8.2); sub-group A – Blood specimens; sub-group B – Urine specimens; sub-group C – respiratory specimens. However, any specimen type with 4 or fewer cases had to be excluded from the statistical analysis. This meant that respiratory specimens (N=4), which includes: Aspirate (n=1), Sputum (n=1), Saliva (n=1), and throat swab (n=1) was excluded, and only two specimen types were analysed; Blood and Urine.

2.1 Glycoprotein B

A total of 87 of 89 (97.8%) specimens were successfully gB genotyped. After excluding any specimen type with 4 or fewer cases, the total number of specimens analysed for gB was reduced to 83 (93.3%).

The distribution of gB genotypes across all sample types was as follows: gB1 (n=33, 39.8%), gB2 (n=19, 22.9%), gB3 (n=18, 21.7%), gB4 (n=11, 13.3%), mixed gB genotypes (n=2, 2.4%). The most frequent gB genotype was gB1, although the other gB genotypes were also represented (Table 13).

The most common gB genotype in blood samples (sub-group A) was (gB1) (n=31, 41.3%), followed by gB2 (n=18, 24%), gB3 (n=15, 20.0%) and gB4 (n=9, 12%). In urine samples (sub-group B), B3 (n=3, 37.5%) was the most prevalent, although the gB types were fairly evenly distributed (n=2, 25%) (Table 13, Figure 17).

No statistically significant relationship between specimen type and gB genotype was found for any sample type (X^2 (4, N=83) = 3.059), p=0.54).

gB genotypes	Blood	Urine	Total
Mixed gB	2.7% (n=2)	0.0% (n=0)	2.4% (n=2)
gB1	41.3% (n=31)	25.0% (n=2)	39.8% (n=33)
gB2	24.0% (n=18)	12.5% (n=1)	22.9% (n=19)
gB3	20.0% (n=15)	37.5% (n=3)	21.7% (n=18)
gB4	12.0% (n=9)	25.0% (n=2)	13.3% (n=11)

Table 13: gB distribution among different specimen types.

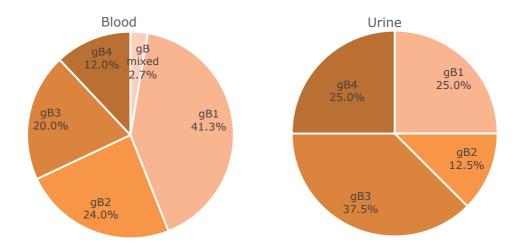


Figure 17: gB distribution among different specimen types.

4.5.2.2 Glycoprotein H

A total of 84 of 89 (94.4%) specimens were successfully gH genotyped. After excluding any specimen types that had 4 cases or less, the total number of gH samples that could be statistically analysed was reduced to 81 (91.0%).

The distribution of gH genotypes was as follows: gH1 (n=43, 53.1%), gH2 (n=34, 42%), mixed gH genotypes (n=4, 4.9%) (Table14). gH1 and gH2 were distributed almost equally among blood specimens (sub-group A) (n=36, 49.3%; n=34, 46.6%, respectively), while gH1 (100%) was the dominant genotype among urine specimens (sub-group B) (Table 14, Figure 18).

The chi-square statistical test indicated that there is a statistically significant association between specimen type (X^2 (2, N=81) = 6.734), p=0.03), and the distribution of gH genotypes among HCMV patients.

gH genotype	Blood	Urine	Total
Mixed gH	4.1% (n=3)	12.5% (n=1)	4.9% (n=4)
gH1	49.3% (n=36)	87.5% (n=7)	53.1% (n=43)
gH2	46.6% (n=34)	0.0% (n=0)	42.0% (n=34)

Table 14: gH distribution among different specimen types.

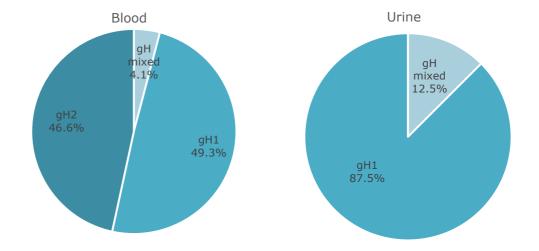


Figure 18: gH distribution among different specimen types.

4.5.2.3 Glycoprotein L

Total of 83 of 89 (93.3%) specimens were successfully gL genotyped. After excluding any group of specimen types that had 4 cases or less, the total number of gL that has been statistically analyzed was reduced to 80 (89.9%).

The distribution of gL genotypes was as follows: gL1 (n=6, 7.5%), gL2 (n=18, 22.5%), gL3 (n=7, 8.8%), gL4 (n=36, 45.0%), mixed gL genotypes (n=13, 16.3%). Thus gL 4 was the most predominant type, but all the other gL genotypes were represented at different percentages (Table 15).

In detail gL4 was most prevalent among both blood (sub-group A) and urine samples (sub-group B) (n=31, 43.1%; n=5, 62.5%, respectively), followed by gL3 (n= 5, 6.9%; n=1, 12.5%) and gL2 (n=17, 23.6; n=1, 12.5%), respectively, which were also present.

However, chi-square showed that there is no statistically significant correlation between gL genotype and specimen type (X^2 (4, N=80) = 5.794), p=0.21) (Table 15, Figure 19).

gL genotypes	Blood Urine		Total
gL mixed	18.1% (n=13)	0.0% (n=0)	16.3% (n=13)
gL1	8.3% (n=6)	0.0% (n=0)	7.5% (n=6)
gL2	23.6% (n=17)	12.5% (n=1)	22.5% (n-18)
gL3	6.9% (n=5)	25% (n=2)	8.8% (n=7)
gL4	43.1% (n=31)	62.5% (n=5)	45.0% (n=36)

Table 15: gL distribution among different specimen types.

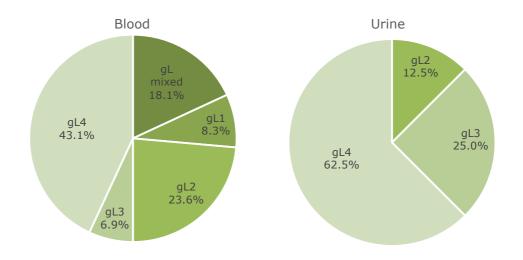


Figure 19: gL distribution among different specimen types.

4.5.2.4 Glycoprotein M

A total of 74 of 89 (83.1%) specimens were successfully gM genotyped. After excluding any group with 4 cases or less, the total number of gM specimens that could be statistically analyzed was reduced to 71 (79.8%).

The distribution of gM genotypes was as follows: gM1 (n=14, 19.7%), gM2 (n=4, 5.6%), and gM3 (n=52, 73.2%), mixed gM genotypes (n=1, 1.4%). gM3 was the most prevalent (Table 16).

Among blood specimens (sub-group A), gM3 (n=49, 77.8%) was the most predominant, followed by gM1 (n=11, 17.5%), while among urine specimens (sub-group B), gM3 and gM1 were equally represented (n=3, 37.5%) (Table 16, Figure 20).

The chi-square statistical test indicated that there is a significant relationship between the specimen type (X^2 (3, N=71) = 9.147), p=0.027), and the distribution of gM genotypes among HCMV patients.

gM genotypes	Blood	Urine	Total	
Mixed gM	1.6% (n=1)	0.0% (n=0)	1.4% (n=1)	
gM1	17.5% (n=11)	37.5% (n=3)	19.7% (n=14)	
gM2	3.2% (n=2)	25% (n=2)	5.6% (n=4)	
gM3	77.8% (n=49)	37.5% (n=3)	73.2% (n=52)	

Table 16: gM distribution among different specimen types.

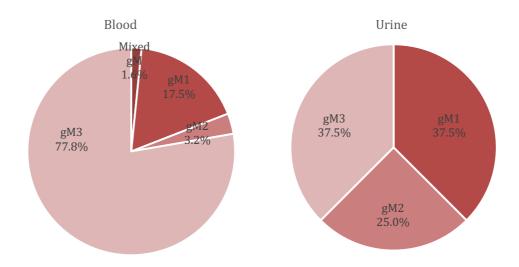


Figure 20: gM distribution among different specimen types.

4.5.2.5 Glycoprotein N

A total of 74 of 89 (83.1%) specimens were successfully gN genotyped. After excluding any group of the specimen type had 4 cases or less, the total number of gN specimens that could be statistically analyzed was reduced to to 71 (79.8%).

The distribution of gN genotypes was as follows: gN1 (n=5, 7.0%), gN3a (n=50, 70.4%), gN4a (n=6, 8.5%), gN4b (n=3, 4.2%), gN4c (n=4, 5.6%), and gN4d (n=3, 4.2%). The most common gN genotype was gN3a. Also, among blood (sub-group A) and urine samples (sub-group B), gN3a was again the most prevalent (n=43, 68.3%; n=7, 87.5%, respectively) (Table 17, Figure 21).

However, there was no statistically significant relation between specimen type and any of the gN genotypes' distribution (X^2 (5, N=71) = 2.453), p=0.78).

gN genotypes	otypes Blood Urine		Total
gN1	7.9% (n=5)	7.9% (n=5) 0.0% (n=0)	
gN3a	68.3% (n=43)	87.5% (n=7)	70.4% (n=50)
gN4a	7.9% (n=5)	12.5% (n=1)	8.5% (n=6)
gN4b	4.8% (n=3)	0.0% (n=0)	4.2% (n=3)
gN4c	6.3% (n=4)	0.0% (n=0)	5.6% (n=4)
gN4d	4.8% (n=3)	0.0% (n=0)	4.2% (n=3)

Table 17: gN distribution among different specimen types.

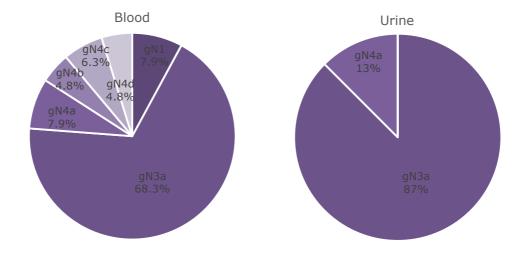


Figure 21: gN distribution among different specimen types.

4.5.2.6 Glycoprotein O

A total of 71 of 89 (79.8%) specimens were successfully gO genotyped. After excluding any group of the specimen type with 4 cases or less, the total number of gO that could be statistically analysed was reduced to 68 (76.4%).

The distribution of gO genotypes was as follows: gO1a (n=16, 23.5%), gO1c (n=41, 60.3%), gO2a (n=2, 2.9%), gO2b (n=1, 1.5%). gO3 (n=2, 2.9%), gO4 (n=5, 7.4%), mixed gO genotypes (n=1, 1.6%). Both gO1c and gO1a were the most prevalent. Also, they were the most common in blood (sub-group A) (n=37,

60.0%- n=14, 22.6%) and urine (sub-group B) (n=4, 66.7%- n=2, 33.3%) samples, respectively. In addition, among blood samples only 5 cases presented with gO4 (8.0%) (Table 18, Figure 22).

However, chi-square showed that there was no statistically significant correlation between any of gO genotypes and specimen type (X^2 (6, N=68) = 1.378), p=0.97).

gO genotypes	Blood Urine		Total
Mixed gO	1.6% (n=1)	1.6% (n=1) 0.0% (n=0)	
gO1a	22.6% (n=14)	6% (n=14) 33.3% (n=2)	
gO1c	59.7% (n=37)	66.7% (n=4)	60.3% (n=41)
gO2a	3.2% (n=2)	0.0% (n=0)	2.9% (n=2)
gO2b	1.6% (n=1)	0.0% (n=0)	1.5% (n=1)
gO3	3.2% (n=2)	0.0% (n=0)	2.9% (n=2)
gO4	8.1% (n=5)	0.0% (n=0)	7.4% (n=5)

Table 18: gO distribution among different specimen types.

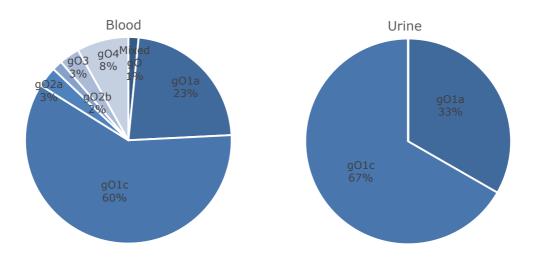


Figure 22: gO distribution among different specimen types

4.5.3 Summary

In summary, from Table 19 below we can see that in each infection category (group 1) and specimen type (group 2) there are some prevalent glycoprotein genotypes. Shared common genotypes among all categories of infection and specimen types were detected.

In general, percentages of each genotype distribution among infection category and specimen type groups are summarized and presented in Figure 23.

However, the distribution of gH was significantly influenced by the infection category type and the specimen types, while the distribution of gM was significantly affected by the specimen types only (P<0.05).

Table 19: The most common HCMV glycoprotein genotypes among each infectioncategory and specimen type.

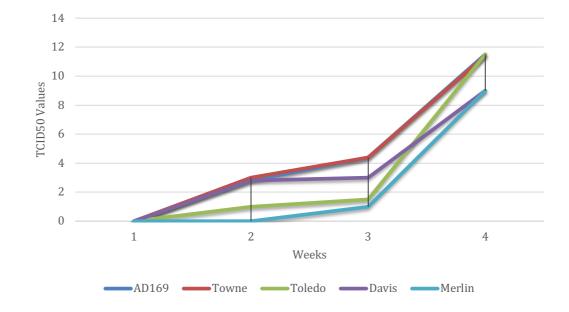
		Specimen types				
Genotypes	Congenital infection	Immuno- compromised Primary infection	Immuno- compromised Recurrent infection	Immuno- competent Primary infection	Blood	Urine
gB	1	1	1	3	1	3
gH	1	1	2	2	1&2	1
gL	4	4	4	4	4	4
gM	3	3	3	3	3	1&3
gN	3a	За	За	За	3a	3a
gO	1a &1c	1a&1c	1a&1c	-	1a&1c	1a&1c

Figure 23: Percentages of each genotype distribution according to infection category and specimen type analysis.

4.6 Identification of HCMV strains growth characteristics

The growth characteristics of each viral strain were assessed in cell culture over a 4-week period post infection. A virus growth curve for all lab strains (N=5) and clinical samples (N=89), was plotted using data obtained from TCID50 assays. To validate these results, real time PCR was additionally performed with the lab strains prior to TCID50, this was not possible with the clinical samples due to the limited volume in each sample. To standardize the conditions, $2X10^5$ cells/ml of MRC-5 cells were infected with virus at 10.000 TCID50/ml (MOI= 0.05). Duplicate wells were used for each virus dilution to increase accuracy.

4.6.1 Laboratory strains growth characteristics


4.6.1.1 Laboratory strains growth characteristics assessed by TCID₅₀ assay

TCID50 was carried out as explained in section (3.2.1.9). Infected wells were monitored for appearance of CPE daily and positive wells were scored at various time points; 7, 14, 21, 24 and 28 days post infection, and recorded. TCID50 values were calculated at the end of each week and the growth curve was plotted using these values.

As shown in Table 20 and Figure 24 below, the cytopathic effect started to appear from day 7 (Second week) and the virus continued to grow during weeks 3 and 4. After the 4th week, CPE was seen in 100% of infected wells and destruction of the cells monolayer was noted. Although 100% CPE was seen for all lab strains by day 28, the rate of growth was faster, and the end titre was higher for AD169 and Towne strains and significantly slower and lower titre for Davis and Merlin strain with Merlin having the lowest growth rate. Toledo strain appeared to have a very low growth rate until week 3 when it then grew to reach the same titre as AD169 and Towne.

Table	20:	Tracking	HCMV	laboratory	strains	growth	over	4	weeks	using	TCID ₅₀
values.											

Laboratory	TCID ₅₀ /ml					
strains	Week 1	Week 2	Week 3	Week 4		
AD169	100	10 ^{2.8}	10 ^{4.4}	10 ^{11.5}		
Towne	100	10 ³	104.4	10 ^{11.4}		
Toledo	100	10 ¹	10 ^{1.5}	10 ^{11.5}		
Davis	10 ⁰	10 ^{2.8}	10 ³	10 ⁹		
Merlin	10 ⁰	10 ⁰	10 ¹	10 ⁹		

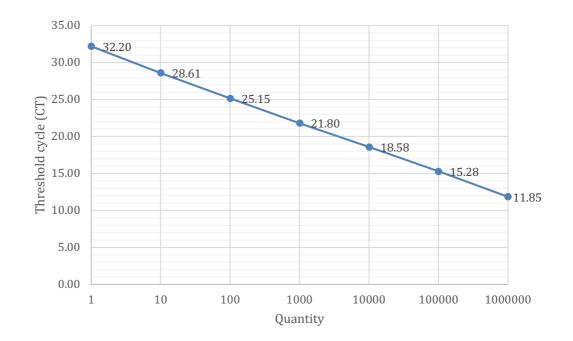
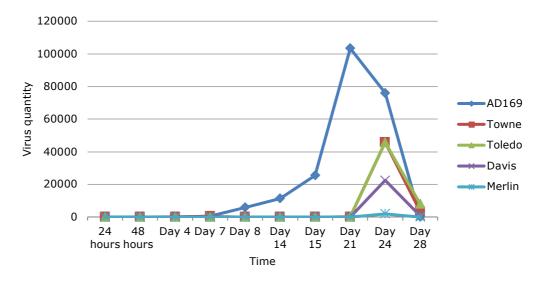


Figure 24: Laboratory strains growth characteristics over a 4-week period using TCID₅₀ values.

4.6.1.2 Laboratory strains growth characteristics using PCR-based TCID₅₀ assay


Real time PCR was performed to confirm the TCID50 results. Duplicate culture plates were set up in parallel with the TCID50 assays, but instead of observing the CPE at the set time points, the supernatants were harvested at; 24 hours, 48 hours, 4, **7**, 8, **14**, 15, **21**, 24, **28** days' post infection and then frozen at -80°C. All samples were thawed at the same time and viral DNA was extracted on

the same day. PCR was performed as described previously in section (3.2.2). For HCMV PCR standards, a 1:10 dilution series with 7 dilution steps was used. CT-values were plotted against the logarithm of the dilution factors (DF) to draw the PCR standard curve, from which the concentration of each sample was determined (Figures 25, 26).

Figure 25: Standard curve for HCMV real time PCR, seven 1:10 serial dilutions of the standards were used, The Y-axis presents the CT values corresponding to the number of DNA copies of each sample.

As shown in Figure 26 below, no growth was seen in the first week of infection (first week). AD169 growth started to appear from day 7 (Second week) and continued to grow during weeks 2 and 3, in the 4th week, the virus DNA concentration was gradually decreasing. Regarding the other lab strains, Towne, Toledo, Davis and Merlin growth characteristics were similar, their viral load started to increase by day 21 (third week) and reached the peak during the fourth week until day 28 when started to decrease again. However, Merlin strain viral load was significantly lower than the others. With the exception of Towne, this pattern mirrors the TCID50 growth curves shown in Figure 24.

Figure 26: Laboratory strains growth characteristics over 4 weeks assayed by PCR, The Y-axis presents the number of DNA copies of each sample.

4.6.1.3 Effect of glycoprotein genotypes on laboratory strains growth characteristics

The association between each glycoprotein genotype and the growth of HCMV lab strains was analysed, however, due to the small number of the samples (N=5) statistical analysis was not possible, therefore, observational data of the virus growth, presented in Table 20 and Figure 24 above, and the genotyping profile of each strain in Table 21 below is presented. As observed, AD169 grows faster and higher, gB2, gL1, gN1 and gO1a are all specific to this strain and could be responsible for its growth characteristic. Also, in case of Merlin strain, which grows slowest; gL4, gN4c and gO5 could all be responsible. However, this has to be confirmed with further analysis of a larger samples size.

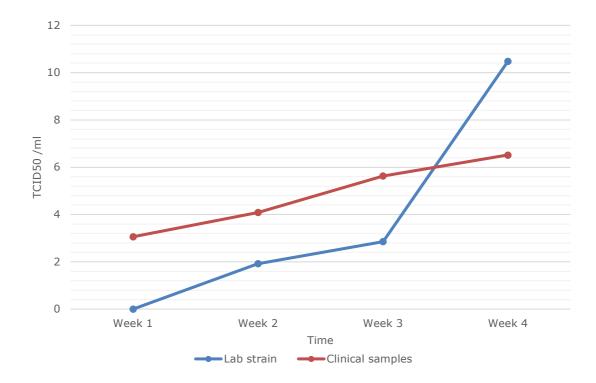
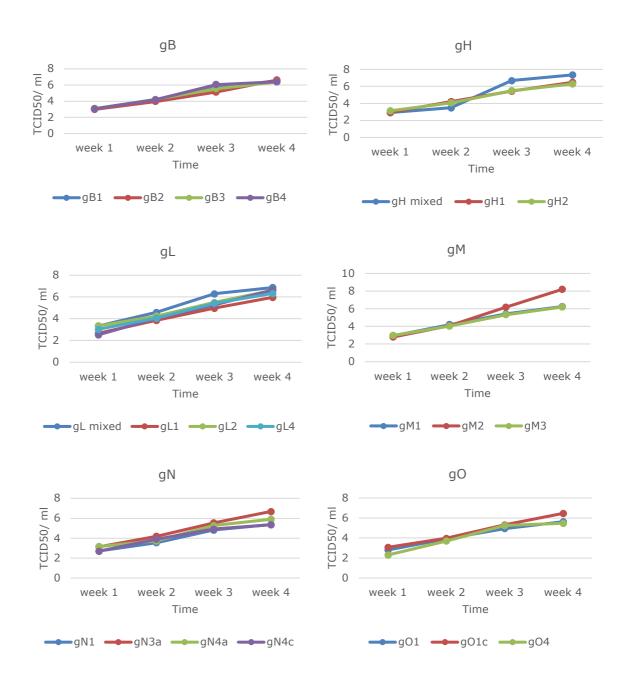

Lab strains	Genotyping Profile						
	gB	gH	gL	gM	gN	gO	
1-AD	2	1	1	1	1	1a	
2-Tn	1	2	2	2	4b	4	
3-Td	3	1	3	2	4d	1c	
4-D	1	1	3	3	3b	2a	
5-M	1	2	4	1	4c	5	

Table 21: HCMV laboratory strains glycoproteins genotyping profile.

4.6.2 HCMV growth characteristics in clinical samples

The large number of clinical samples (N=89) assayed prevented individual analysis. Instead, the mean of the TCID50 values for each week was calculated to acquire a general picture of the virus growth across all clinical samples over 4 weeks of infection. The same calculation was applied to the laboratory strains. A comparison between both groups was done using a line chart to represent the mean of TCID50 values and the standard deviation of the duplicates (Figure 27).

Surprisingly, the clinical samples started to develop CPE a week earlier than the lab strains, which suggests that the eclipse phase for the lab strains was longer than for the clinical samples. However, by the end of the experiment the lab strains had reached a considerably higher average titre than the clinical strains (Figure 27). The complete TCID₅₀ values for clinical strains for 4 in 4 weeks of infection can be found in the appendices section (Appendix 2).


Figure 27: Growth curves of laboratory strains and clinical strains over 4 weeks of HCMV infection using the average of TCID₅₀ values.

4.6.2.1 Effect of glycoprotein genotypes on clinical strains growth characteristics

To determine whether glycoprotein genotype has any effect on viral growth characteristics in culture, an analysis of variance (ANOVA) was conducted for all the clinical strains. The total number of each strain and the number of glycoproteins successfully genotyped is shown in sections 4.5.1 and 4.5.2 above.

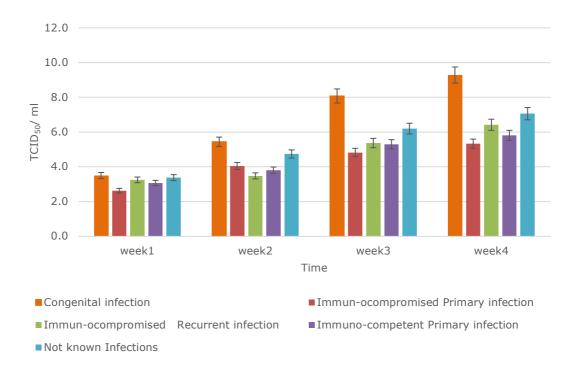
Any subtype that had less than 4 cases was excluded from any further analysis, these were: mixed gB genotypes (n=3), mixed gM genotypes (n=1), gN4b and (n=3), gN4d (n=3), mixed gO genotypes (n=1), gO2a (n=2), gO2b (n=1), and gO3 (n=2).

There were no significant differences between growth curves of each genotype over time as shown in Figure 28 below. This was statistically confirmed by one-way ANOVA test, which showed no statistically significant effect of any of the glycoprotein genotypes on the virus growth across all 4 weeks of the viral infection (P>0.05). Detailed F & P values for each week for all glycoprotein genotypes can be found in the appendices section (Appendix 3).

Figure 28: The effect of the glycoprotein genotypes on HCMV growth over 4 weeks' post infection, using the mean of $TCID_{50}$ values. No statistically effect has been identified according to ANOVA statistical analysis.

4.6.3 HCMV strains growth characteristics analysed by patient group

The growth characteristics of individual virus strains were analysed according to the patient group that they were collected from. One-way ANOVA was


carried out for all clinical samples after excluding samples that belong to infection categories with less than 4 cases (N=85), (the excluded infection categories are: unconfirmed congenital or early post-natal (N=1), not defined primary/recurrent (N=1) and not defined primary/recurrent (N=2)).

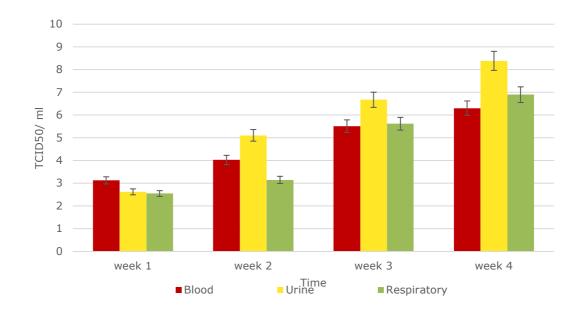
The overall outcomes of one-way ANOVA revealed that there was a statistically significant effect of patient group on the growth of HCMV over the second, third and fourth weeks of infection ((F (4, 80) = 1.402, p = .003), (F (4, 80) = 11.346, p=.000), F (4, 80) = 18.502, p=.000), respectively).

Following the ANOVA test results which showed there was an effect correlated with patient group, the data was subjected to the Bonferroni post hoc test to confirm which specific infection category has a significant effect on the viral growth. It showed that in the second week of infection the growth rate of the viral strains derived from congenitally infected patients was significantly higher than those taken from the immunocompromised patients with primary and recurrent infections. During the 3^{ed} and 4th weeks, the congenital strains had a significantly higher growth rate than the strains derived from any other patient group. (Figure 29, Table 22), complete tables of ANOVA and post hoc results can be found in the appendices section (Appendix 4).

Time	Mean TCID50 for viral strains from congenitally infected patients	SD	Sig. (P value)
week1	3.5	2.63	0.23 (Not significant)
week2	5.44	1.45	0.003 (Significant)
week3	8.08	1.57	0.00 (Significant)
week4	9.28	0.79	0.00 (Significant)

Table 22: Mean, Standard deviation (SD), and P values of congenital infection samples over 4 weeks post infection.

Figure 29: HCMV strains growth over 4 weeks post infection, according to patient group, using the mean TCID50 values for each week for each infection category.


4.6.4 Effect of specimen type on HCMV strains growth characteristics

To study the effect of the specimen type from which the strain was isolated on virus growth over time (4 weeks post infection), the one-way ANOVA test has been used to analyse the data for all clinical samples (N=89), These are: blood specimens (N=89), urine specimens (N=8), and respiratory specimens (N=4).

The outcomes of the one-way ANOVA revealed that there was a statistically significant effect of specimen type on the growth of HCMV over the fourth week of infection only ((F (2, 86) = 5.197, p = 0.007) (Figure 30).

Since the ANOVA test showed an overall significant result, the Bonferroni post hoc test was performed to confirm which specific specimen type had a significant effect on the final stages of the viral growth. This showed that strains isolated from urine specimens had a significantly higher growth rate compared to blood specimens (Table 23). The growth rate for the urine specimens was higher

than for the strains from the respiratory samples as well but this was not statistically significant. Complete tables of ANOVA results can be found in the appendices section (Appendix 5).

Figure 30: Effect of specimen types of on HCMV growth over 4 weeks' post infection, using the mean of TCID₅₀ values of each week for each specimen type.

Table 23: Mean, standard deviation (SD), and P values of Urine specimens over 4 weeks post infection.

Time	Mean	SD	Sig. (P value)
week1	2.63	0.72	0.38
week2	5.11	1.49	0.08
week3	6.68	1.53	0.22
week4	8.39	1.82	0.007

4.6.5 Summary

The results of studying the growth characteristics of the HCMV strains (lab and clinical strains) showed that the clinical samples started to develop CPE a week earlier than the lab strains, which suggests that the eclipse phase for the lab strains was longer than for the clinical samples. However, whilst the lab strains started their growth later in week 2, by the 3rd week their titre was much higher than that for the clinical samples. These results have been confirmed using real time PCR, where similar results were obtained.

Regarding the effect of the glycoprotein genotype on the virus growth, it was observed that in laboratory strains that AD169 grows faster and higher, gB2, gL1, gN1 and gO1a are all specific to this strain and could be responsible for its growth characteristic. Also, in case of Merlin strain, which grows slowest; gL4, gN4c and gO5 could all be responsible for its slow growth. However, this must be confirmed with further analysis of a larger samples size. Moreover, there was no statistically significant effect of any of the glycoprotein genotypes on the virus growth in clinical samples across all 4 weeks of the viral infection (P>0.05) as confirmed by one way ANOVA statistical test.

However, the alternative hypothesis that HCMV infection category and specimen type may influence the viral growth characteristic over time has been accepted and confirmed. ANOVA revealed that both congenital infections and urine specimens has a statistically significant effect of the virus higher growth rate in the last three weeks or only in the last week of infection respectively, (P<0.05).

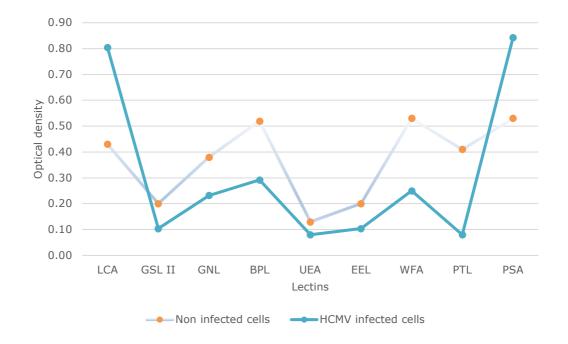
4.7 Analysis of the relationship between HCMV glycoprotein genotypes and glycosylation patterns.

To determine whether the mutations in individual glycoprotein genes that lead to the various glycoprotein types affect and influence the way that the glycoprotein is glycosylated, the laboratory and clinical strains were all tested using ELLA (Enzyme linked-lectin assay). This assay uses a panel of 20 lectins chosen according to their sugar specificity as described previously (Table 3). All laboratory (N=5) and clinical strains (N=89), plus non-infected control cells were tested with each lectin in duplicate to ensure the reliability of the assay. The average optical density (O.D.) for each lectin was calculated and the values for the uninfected controls were subtracted from the virus infected test samples to give a + or – value depending on whether the virus infected cells bound more or less of a particular lectin than the controls.

The effect of HCMV glycoprotein genotype on the virus glycoprotein glycosylation pattern and whether this was statistically significant or not was tested. The data was then analysed by infection category, and specimen type.

4.7.1 Laboratory strains glycoproteins glycosylation

Initially, a paired t test was conducted to test the null hypothesis (H_0) that there is no difference in the lectins binding profile before and after the cells are infected by HCMV. Due to the wide variation of lectin specificities, the null hypothesis was examined for each lectin separately.


The results showed that there was a statistically significant change in (45%, N=9) of the lectins' binding profile between non-infected and infected cells, a significant increase after infection was seen with 2 lectins (22.2%) [LCA (t (4) = 0.498, p=0.43) and UEA (t (4) 15.811, p = 0.000)], and a significant decrease was seen with 7 lectins (77.8%), [GSL-11 (t (4) 4.951, p = 0.008), GNL (t (4) 4.843, p = 0.008), BPL (t (4) 7.306, p = 0.002), EEL (t (4) 14.154, p = 0.000), WFA t (4) 6.957, p = 0.002), PTL (t (4) 60.249, p=0.000), and PSA (t 4) 3.624, p = 0.022. Sugar specificity, mean and standard deviation of these lectins are shown in Table 24 and Figure 31 below. The results for the other lectins was either not statistically

128

significant or there was no change in lectin binding before and after the cells were infected by HCMV.

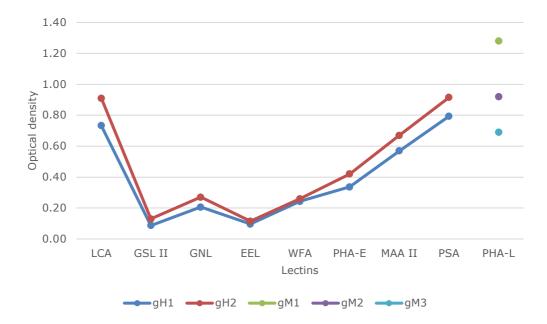
Lectins	Before infection	After infection	Sig (P)	Sugar specificity
LCA	M=0.43, SD=0.00	M=0.80, SD=0.29	0.43	aMan, aGlc
GSL II	M=0.20, SD=0.00	M=0.10, SD=0.04	0.01	a or βGlcNAc
GNL	M=0.38, SD=0.00	M=0.23, SD=0.07	0.01	aMan
BPL	M=0.52, SD=0.00	M=0.29, SD=0.07	0.00	Galβ3GalNAc
UEA	M=0.13, SD=0.00	M=0.80, SD=0.01	0.00	aFuc
EEL	M=0.20, SD=0.00	M=0.10, SD=0.06	0.00	Gala3Gal
WFA	M=0.53, SD=0.00	M=0.25, SD=0.09	0.00	GalNAc
PTL	M=0.41, SD=0.00	M=0.08, SD=0.01	0.00	GalNAc, Gal
PSA	M=0.53, SD=0.00	M=0.84, SD=0.09	0.22	aMan, aGlc

Table 24: Lectins that had a statistically significant difference in their binding profile (N=9), before and after laboratory strains HCMV infection.

Figure 31: Lectins binding profile comparison between non-infected and HCMV infected cells in laboratory strains.

4.7.1.1 Glycoprotein genotypes effect on glycosylation patterns of laboratory strains

Next, to determine if any specific glycoprotein genotype had a significant effect on lectin binding in the HCMV infected cells, an analysis of variance (ANOVA) was conducted for all the genotypes except gH, which had only 2 groups to compare, therefore, independent samples T test was used. The complete glycoprotein genotype profile for all laboratory strains is summarized in Table 21. The genotypes, and the number of cases for each, included in the analysis according to the laboratory strains genotypes profile are presented in the table below (Table 25).


Table 25: Glycoprotein	genotypes	quantities	included	in	ANOVA	analysis	for
Laboratory strains.							

Genotype	N	Genotype	N	Genotype	N	Genotype	N
gB1	3	gM1	2	gL4	1	gN4c	1
gB2	1	gM2	2	gN1	1	gO1a	1
gB3	1	gM3	1	gN4b	1	gO4	1
gH1	3	gL1	1	gN4d	1	gO1c	1
gH2	2	gL2	1	gL4	1	gO2a	1
		gL3	2	gN3	1	gO5	1

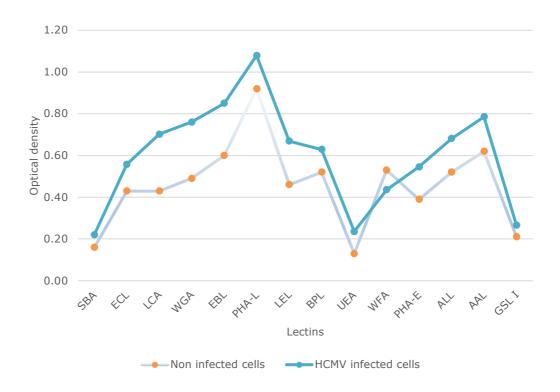
The independent-samples t-test used to compare the effect of gH1 and gH2 on the lectin binding showed a statistically significant effect between gH1 and gH2 genotypes with LCA, GSL II, GNL, EEL, WFA, PHA-E, MAA II, and PSA lectins. It revealed that gH2 was significantly associated with increased binding of the abovementioned lectins, while gH1 with decreased binding (Table 26, Figure 32). In addition, ANOVA results showed that there was a statistically significant association between increased binding of PHA-lectin and gM1 genotype, while gM3 was associated with a decreased binding of the same lectin (F (2, 4) = 34.748, p=0.03) (Table 26, Figure 32). Although ANOVA results were significant, it was not possible to perform the post hoc Bonferroni test, to determine the most significant gM genotype, because at least 1 group of gM has fewer than 2 cases (Table 26).

Table 26: Mean, standard deviation (SD), and P values of the overall statistical significant lectins binding profiles influenced by some HCMV genotypes in Laboratory strains.

Genotypes	Lectins	Mean	SD	Sig. (P value)	Sugar Specificity of lectins
gH1	LCA	0.73	0.19	0.03	aMan, aGlc
gH2	LCA	0.91	0.47	0.03	uman, udic
gH1		0.07	0.01	0.001	
gH2	GSL II	0.13	0.07	0.001	a or βGlcNAc
gH1	GNL	0.21	0.02	0.002	aMan
gH2	GNL	0.27	0.11	0.002	uman
gH1	EEL	.09	0.01	0.005	Gala3Gal
gH2		0.12	0.02	0.005	GalusGal
gH1	WFA	0.24	0.04	0.003	GalNAc
gH2	WIA	0.26	0.17	0.005	Gaillac
gH1	PHA-E	0.34	0.06	0.47	Galβ4GlcNAcβ2Manα6 (GlcNAcβ4)
gH2	FIIA-L	0.42	0.14	0.47	(GlcNAcβ4Mana3) Manβ4
gH1	MAA II	0.57	0.13	0.02	Neu5Aca3Galβ4GalNAc
gH2		0.67	0.44	0.02	NeusAeusouip+ouinAe
gH1	PSA	0.79	0.07	0.002	aMan, aGlc
gH2		0.92	0.35	0.002	
gM1		1.28	0.05		
gM2	PHA-L	0.92	0.07	0.03	Galβ4GlcNAcβ6(GlcNAcβ 2Mana3) Mana3
gM3		0.69			

Figure 32: The significant effect of gH and gM genotypes on some of the lectins binding profile.

4.7.2 Glycoproteins glycosylation of the clinical strains


A paired t-test was performed to examine whether any significant difference in lectin binding occurred following infection of cells with HCMV strains derived from the clinical samples. Again, due to the wide variation of lectin specificities, this was done for each lectin separately.

The results showed that there was a statistically significant change in 70% (N=14) of the lectins binding between non-infected and infected cells. For 13 of these (92.9%), a statistically significant increase in binding was seen [SBA (t (88) 4.92, p=0.000), ECL (t (88) 6.281, p=0.000), LCA (t (88) 10.240, p=0.000), WGA (t (88) 8.318, p=0.000), EBL (t (88) 7.848, p=0.000), PHA-L (t (88) 2.924, p=0004), LEL (t (88) 7.299, p=0.000), BPL (t (88) 4.134, p=0.000), UEA samples (t (88) 8.205, p=0.000), PHA-E (t (88) 6.796, p=0.000), AAL (t (88) 5.830, p=0.000), and GSL-L (t (88) 4.962, p=0.000)] whilst for 1 lectin (7.1%) a statistically significant decrease was seen [WFA (t (88) 3.722, p=0.000. A list of these lectins and their specificities is shown in (Table 27) below. In the other lectins

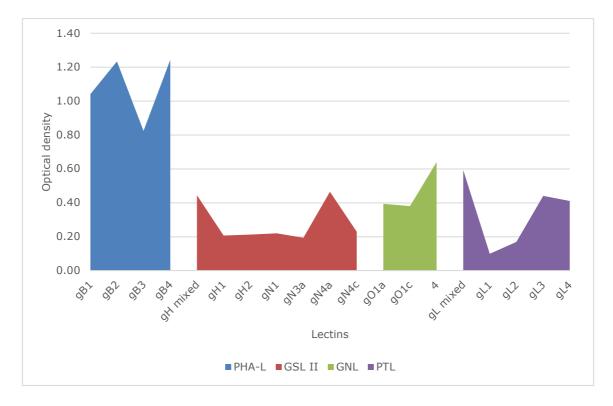
there was either no change in the lectin binding or the change was not statistically significant, (Figure 33).

Lectins	Before infection	After infection	Sig (P)	Sugar Specificity
SBA	M=0.16, SD=0.00	M=0.22, SD=0.12	0.00	α> βGalNAc
ECL	M=0.43, SD=0.00	M=0.56, SD=0.19	0.00	Galβ4GlcNAc
LCA	M=0.43, SD=0.00	M=0.70, SD=0.25	0.00	aMan, aGlc
WGA	M=0.49, SD=0.00	M=0.76, SD=0.31	0.00	GlcNAc
EBL	M=0.60, SD=0.00	M=0.85, SD=0.30	0.00	Neu5Aco6Gal/GalNAc
PHA-L	M=0.92, SD=0.00	M=0.1.08, SD=0.51	0.00	Galβ4GlcNAcβ6(GlcNAc β 2Mana3)Mana3
LEL	M=0.46, SD=0.00	M=0.67, SD=0.27	0.00	(GlcNAc) 2-4
BPL	M=0.52, SD=0.00	M=0.63, SD=0.25	0.00	Galβ3GalNAc
UEA	M=0.13, SD=0.00	M=0.24, SD=0.12	0.00	aFuc
WFA	M=0.53, SD=0.00	M=0.44, SD=0.24	0.00	GalNAc
PHA-E	M=0.39, SD=0.00	M=0.55, SD=0.22	0.00	Galβ4GlcNAcβ2Mana6 (GlcNAcβ4) (GlcNAcβ4Mana3) Manβ4
ALL	M=0.52, SD=0.00	M=0.68, SD=0.26	0.00	Galβ3GalNAc
AAL	M=0.62, SD=0.00	M=0.79, SD=0.29	0.00	Fuca6GlcNAc
GSL I	M=0.21, SD=0.00	M=0.27, SD=0.11	0.00	aGal, aGalNAc

Table 27: Lectins that had a statistically significant difference in their binding profile, before and after clinical specimens HCMV infection.

Figure 33: Lectins binding comparison between non-infected and HCMV infected cells in clinical specimens.

4.7.2.1 Glycoprotein genotypes effect on glycosylation patterns of clinical samples


To determine if any specific glycoprotein genotype had a significant effect on the glycoprotein glycosylation, an analysis of variance (ANOVA) was conducted for all the clinical strains. The total number of each glycoprotein successfully genotyped was stated previously in (Sections 4.5.1 and 4.5.2).

Any subtype that had less than 4 cases was excluded from any further analysis, these were: mixed gB genotypes (n=3), mixed gM genotypes (n=1), gN4b (n=3), gN4d (n=3), mixed gO genotypes (n=1), gO2a (n=2), gO2b (n=1), and gO3 (n=2). The genotypes included in the analysis according to the clinical samples genotypes profile are presented in the table below (Table 28).

The general outcomes of the one-way ANOVA revealed that there was a statistically significant effect of some of the glycoprotein genotypes on binding of some of the lectins, and these were: gB on the PHA-L binding profile (F (3, 80) = 2.754, p=0.048), gH (F (2, 81) =4.136, p=0.019) and gN (F (3, 67)= 5.189, p=0.003) on GSL II binding profile, gL on PTL binding profile (F (4, 78) = 3.608, p=0.009), and gO on GNL binding profile (F (2, 62)= 7.254, p=0.001 (Figure 34).

Table 28: Glycoprotein genotypes quantities included in ANOVA analysis for clinical samples.

Genotype	N	Genotype	N	Genotype	N	Genotype	N
gB1	35	gH2	36	gM1	16	gL4c	4
gB2	19	Mixed gL	14	gM2	4	gO1a	17
gB3	19	gL1	6	gM3	53	gO1c	42
gB4	11	gL2	18	gN1	6	gO4	6
Mixed gH	4	gL3	8	gN3a	52		
gH1	44	gL4	37	gN4a	6		

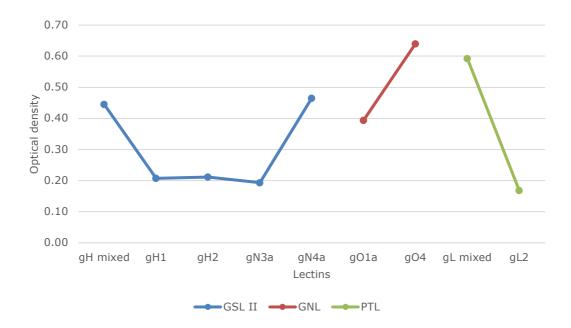


Figure 34: Lectin binding that was significantly affected by HCMV glycoprotein genotypes (ANOVA results)

Since ANOVA analysis showed overall some significant results, Bonferroni test was performed to confirm which genotype/s had a significant effect on the lectin binding. The test showed that although gB3 was associated with a lower glycosylation pattern of PHA-L binding, the association was not statistically significant (p=0.075). Still, the influence of gH mixed genotype was significantly higher compared to gH1 (p=0.017) and gH2 (p=0.02) on GSL II binding profile. Moreover, gN3a was associated significantly with the low binding profile of lectin GSL II (p=0.001), whereas gN4a had a higher binding profile (p=0.001). Also, the effect of gO4, which was associated with the higher binding profile of lectin GNL was significant compared to gO1a (p=0.005) and gO1c (p=0.001). Lastly, the PTL binding was higher and was affected significantly by gL mixed genotype compared to gL2 (p=0.018) (Table 29, Figure 35). Complete tables of ANOVA and post hoc results can be found in the appendices section (Appendix 6).

Genotypes	Lectins	Mean	SD	Sig. (P value)	Sugar Specificity of lectins
Mixed gH		0.45	0.51		
gH1	GSL II	0.21	0.12	0.019	a or βGlcNAc
gH2		0.21	0.14		
gN3a	GSLII	.19	.11	0.003	a or βGlcNAc
gN4a		.47	.43		
gO1a	GNL	.39	.12	0.001	aMan
gO4		.64	.34	0.001	
Mixed gL	PTL	0.59	0.16	0.009	GalNAc, Gal
gL2		0.17	0.16		,

Table 29: Mean, standard deviation (SD), and P values of the statistically significant lectin-binding influenced by HCMV genotypes in clinical samples.

Figure 35: Lectin binding profiles that were significantly affected by HCMV glycoprotein genotypes (Bonferroni results).

4.7.3 Effect of the infection category on the glycosylation patterns of HCMV glycoprotein genotypes

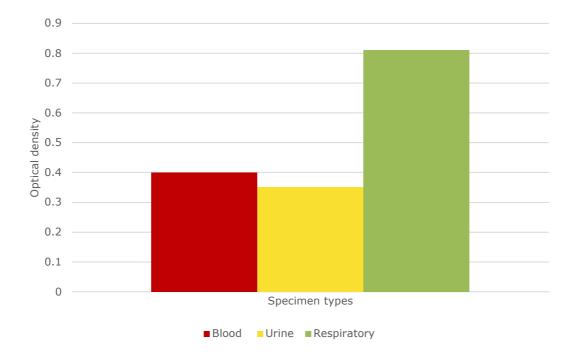
To study the influence of type of HCMV infection on HCMV glycoprotein genotype glycosylation pattern, One-way ANOVA was carried out for all clinical samples after excluding samples that belonged to infection categories with less than 4 cases (N=85) (Table 30), (the excluded infection categories are: unconfirmed congenital or early post-natal (N=1), not defined primary/recurrent (N=1) and not defined primary/recurrent (N=2)).

The Results of one-way ANOVA showed that there was no statistically significant effect of any of the infection categories on the lectin binding profile. Complete tables of ANOVA and post hoc results can be found in (Appendix 7).

Table 30: Infection categories and their number of cases, included in ANOVA analysis for clinical samples.

Infection category	N
congenital infection	12
Not known infection	5
Primary infections from Immunocompetent patients	7
Primary infections from immunocompromised patients	26
Recurrent Infections from immunocompromised patients	35

4.7.4 Effect of specimen types on the glycosylation patterns of HCMV glycoprotein genotypes


To study the effect of the specimen type on the glycosylation pattern of HCMV glycoproteins, One-way ANOVA was done for all clinical samples (N=89), These are: Blood specimens (N=77), urine specimens (N=8), and respiratory specimens (N=4).

The general outcomes of the one-way ANOVA revealed that there was a statistically significant effect of specimen type on GNL lectin binding profile (F (2, 86) = 10.297, p=0.000) (Table 31).

Table 31: Mean, standard deviation (SD), and P values of overall statistical significance.

Specimen type	Mean	SD
Blood	0.39	0.15
Urine	0.35	0.09
Respiratory	0.81	0.59

Since ANOVA analysis showed overall significant results, Bonferroni test was performed to confirm which specimen type had a statistically significant effect on the GNL lectin binding profile. The test showed that the high lectin binding profile was affected by respiratory specimens compared to blood and urine specimens (p=0.000), also blood specimens had a significant effect compared to urine specimens (p=0.000) (Figure 36). Complete tables of ANOVA and post hoc results can be found in the appendices section (Appendix 8).

Figure 36: "GNL" lectin binding profile that was significantly affected by HCMV specimen type.

4.7.5 Summary

Investigating the changes that occur in the glycosylation patterns of HCMV glycoproteins before and after infection, and the effect of the glycoprotein genotypes, infection categories, and specimen types on the pattern of their glycosylation revealed some interesting findings.

First, the results from the laboratory strains showed a significant change in the glycosylation pattern for 9 of the 20 lectins. The glycosylation pattern was increased in 2 of these lectins and decreased in the other 7 suggesting an overall decrease in glycosylation following infection with the lab strains. In contrast, when the same cells were infected with clinical strains of virus, the glycosylation levels increased significantly with 92.9% of the statistically significant lectin-binding showing raised levels.

Second, the effect of the genotypes profile on the glycosylation patterns of the glycoproteins in the laboratory strains, showed that both gH and gM genotypes had a significant effect. gH2 and gM1 were associated with increased glycoprotein glycosylation, while gH1 and gM3 with decreased patterns. Moreover, in the clinical strains, gH, gL, gN and gO genotypes significantly affected the glycosylation patterns; gH mixed genotypes, gL mixed genotypes, gN4a and gO4, were all associated with increased binding and therefore upregulated glycosylation, whereas gH1, gH2, gL2, gN3a and gO3a were associated with the decreased patterns.

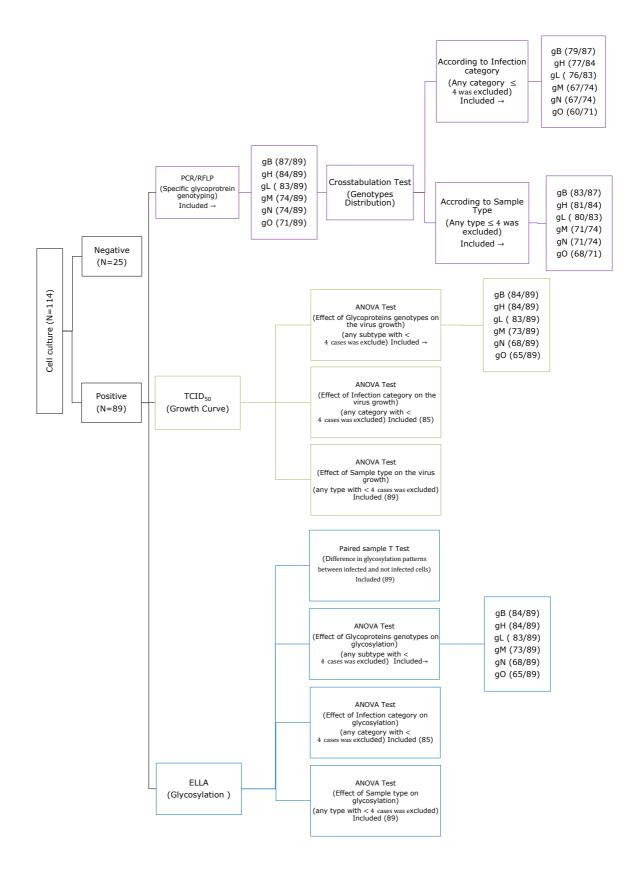
Finally, clinical strains derived from respiratory samples showed a statistically significant increase in glycosylation levels compared to the other specimen types. No difference in glycosylation patterns was seen with strains derived from any patient population (infection category).

Moreover, individual lectins showed significant binding profiles presumably related to their different sugar specificities, this point will be discussed in detail in the discussion chapter.

140

CHAPTER 5

5. Discussion


HCMV envelope glycoproteins (gB, gH, gL, gM, gN and gO) have significant functions in the early communication with, attachment to, and penetration of, the host cell by the virus. They are also implicated in the regulation of the host immune response to infection. The glycoproteins are post-translationally processed and adapted in the secretory section of the host cell, where N-linked and O-linked glycan modifications influence their biological properties (Bagdonaite *et al.*, 2016). Genetic polymorphisms in the HCMV genome frequently occur in about 75% of the strains that are naturally circulating in the population (Sijmons *et al.*, 2015; Renzette *et al.*, 2015). It was reported by Renzette *et al.*, in 2011, that the intrahost genomic variability of HCMV is analogous to that of RNA viruses, which are highly mutable, and this variability is seen at the amino acid level as well as the nucleotide level of the genome.

Although there is little data in the literature concerning the glycosylation of HCMV glycoproteins, it is well established that for many viruses, including herpesviruses, alterations in the glycan of the glycoprotein can substantially alter the functioning of the protein (Sodora *et al.*, 1991). A study conducted by Serafini-Cessi *et al.*, (1983) showed that reduction in HSV glycoprotein glycosylation resulted in low infectivity of HSV-1, and alterations to the ability of the virus to bring about fusion with the host cell membrane. Vigerust and Shepherd, (2007) reviewed the importance of glycosylation in many viruses, such as HIV, HCV and influenza, and discussed its effects on glycoprotein stability and antigenicity, and the subsequent influence on viral virulence and pathogenicity. Also, Medina *et al.*, (2013) and Hartshorn *et al.*, (2008) have revealed that the ability of the influenza virus (H1N1) to escape from the host immune response, its virulence and pathogenicity is influenced by the virus hemagglutinin glycosylation. Moreover, the glycosylation of protein E in New York strain of West Nile virus was found to be the

cause of the virus neuroinvasiveness (Shirato *et al.*, 2004). Additionally, Cook and Lee, (2013) reported that glycosylation of Ebola virus envelope glycoprotein plays an essential role in immune evasion by the virus and disease pathogenesis, as the viral receptor binding sites are hidden under layers of glycans, which makes them difficult to be identified by neutralizing antibodies. In the case of VZV, Yamagishi *et al.*, (2008) reported that glycosylation of the gM protein initiates gene expression at the viral envelope leading to a direct role in the spread of the virus between cells. Recent work by Fontes-Garfias *et al.*, (2017) have proved that the glycosylation of Zika virus envelope protein E is vital for the virus infection. The hypothesis for the current study was prompted by earlier work in this laboratory which suggested that changes in HCMV glycoprotein gene sequences exert reproducible changes in the carbohydrate binding of the glycoprotein as evidenced by lectin staining studies (Abdrhman, 2001; Khodari, 1999).

The aim of this project was to determine whether there was an association between HCMV glycoprotein polymorphisms and their glycosylation patterns, whether mutations or combinations of mutations of glycoproteins resulted in changes in glycosylation, and whether this had any influence on the viral characteristics such as replication and virulence. To investigate these aims, a cell culture model was developed to firstly isolate the virus from patient samples, each isolate was then assayed by TCID₅₀ to measure its growth characteristics in culture. Finally, a quantitative lectin-based assay, Enzyme Linked Immunosorbent Assay (ELLA), was developed and used to study the glycosylation patterns of the virus glycoproteins associated with each strain. In addition, PCR/ RFLP was carried out on each sample before it was put into a culture to identify the individual glycoprotein genotype profile of the viral strain. The *in vitro* data was analysed and correlated with the genotype data, and with the patients' sample data (infection category and specimen type) to identify any significant outcomes. Clinical samples included in this project were obtained from two different sites (Public Health England, North West Regional Virus Laboratory, Manchester Royal Infirmary, Central Manchester University Hospitals, NHS Foundation Trust, UK., and Nova Medical School, Faculty of Medical Sciences, University of Lisbon, Lisbon, Portugal). These samples were unlinked, anonymised and labelled only with the infection category and the sample type. The infection categories involved were immunocompetent, immunocompromised (primary and recurrent) and congenital infections, while the samples types were blood, urine and respiratory specimens (Full categorisation of clinical samples used can be found in section (3.2.8.2)).

All samples (N=114) were confirmed as HCMV positive using phosphoprotein PCR and then stored frozen. All samples were subjected to cell culture and the HCMV-specific cytopathic effect was seen in N=89 samples, however, 22% (N=25) of the samples (Urine specimens) were negative in culture, no CPE was seen within 4 weeks of inoculation. This could be a result of a loss of infectious virus titre, which can result from many factors such as the sample storage and transport conditions. The effect of different storage conditions (4°C and -70°C) on stability of HCMV infectivity in urine samples has been assessed in previous studies which reported that the virus infectivity decreased after each storage interval (Stagno *et al.*, 1980; Ross *et al.*, 2011; Ross *et al.*, 2014). Only those samples for which a positive culture result was obtained were included in the study. The flowchart shown in Figure 37 below details how many samples were included at each stage of the study.

Figure 37: Flowchart presenting the number of samples included in each assay and statistical test analysis.

5.1 Distribution of HCMV genotypes in the study population

Glycoprotein genotype profiles were identified for all culture-positive HCMV samples using PCR/RFLP assays. RFLP is an established technique that can be used to characterise variations in homologous DNA sequences. The DNA sample is digested by restriction enzymes at specific recognition sites along the genome sequence; the resulting restriction fragments are then separated according to size by gel electrophoresis. Where mutations have caused insertions/deletion or alterations in restriction sites along the DNA the resulting fragments will differ in size between glycoproteins carrying different mutations allowing their differentiation. Identification of HCMV glycoprotein genotypes has been studied using RFLP in many epidemiological studies and offers reliable differentiation of the closely related HCMV subpopulations. It is also inexpensive, rapid, and requires limited specialised equipment and skills (Chou et al., 1990, Chou et al., 1992, Pignatelli et al., 2001, Rasmussen et al., 2002, Pignatelli et al., 2003).

Although all 114 clinical samples were reported HCMV positive using a sensitive screening PCR assay directed against the phosphoprotein gene (P2/724 primers), when the samples were tested with the individual specific glycoprotein PCR assays, 22% (25) were negative for all glycoproteins. These samples were excluded. Other samples were negative for one or more of the glycoproteins, but if they gave a positive result with at least one assay, they were included. The number of samples positive with each glycoprotein PCR was as follows: gB (87/89), for gH (84/89), gL (83/89), gM (74/89), gN (74/89), gO (71/89) (Figure 37, Purple). There are several possible explanations for being unable to genotype almost one-quarter of the samples. It is possible that the DNA in the samples had deteriorated between the first screening assay and the glycoprotein testing. This is unlikely, as some samples were retested with the P2/724c primers and gave a positive result (data not shown). A more likely explanation is due to the sensitivity of the PCR assays. Previous data from this lab suggested that the P2/724c assay has approximately 10-fold higher sensitivity than the individual glycoprotein assays.

Thus, the probable reason for non-amplification in the 22% negative samples is that the viral load in these samples was very low and although amplifiable by the screening assay, the viral copy number was below the detection threshold for the glycoprotein assays. This low viral load/copy number explanation is supported by the fact that most of the same samples could not be grown in culture. However, whilst most of the remaining 89 samples could be genotyped for most glycoproteins, some could not be genotyped for all. The individual assay sensitivities are comparable, so this is unlikely to be due to a viral load difference. An alternative explanation for this observation could be unexpected sequence variability that prevented efficient primer binding/amplification of some of the HCMV glycoproteins (Sowmya *et al.*, 2006).

The prevalence of HCMV glycoprotein genotypes among the various infection categories and sample types was determined using a Cross-tabulation statistical test, and the statistical significance was determined using the Pearson chi-square test. The total number of each glycoprotein genotype included in the statistical analysis was determined after excluding any group within the infection categories that had 4 or fewer cases. This was necessary because the chance of detecting a true difference between the groups included in the study is reduced when the sample size is small (Button et al., 2013). Although, there is no a definite minimum number of samples that should be in the statistical analysis, the smaller the sample size, the more considered to be problematic. Therefore, samples with 4 or fewer cases were excluded from the statistical analysis, which helped in obtaining more accurate results. The excluded groups were: unconfirmed congenital infection or early post-natal (N=1), not defined primary or recurrent infection in an immunocompetent patient (N=1), not defined primary or recurrent infection in an immunocompromised patient (N=2), and "Not known" infections (N=4). This gave the following numbers of patients for analysis in each group: congenital infections (N=12), immunocompromised primary and recurrent infections (N=61), and immunocompetent primary infection (N=7). Accordingly, the total number of each genotype involved in the statistical analysis was: gB=79, gH=77, gL=76, gM=67, gN=67, gO=60. Likewise, any group among the sample types that had 4 or fewer cases was excluded. In this case; 4 respiratory specimens (aspirate (n=1), sputum (n=1), saliva (n=1), and throat swab (n=1)) were excluded, but, 8 urines and 77 blood specimens were included. Accordingly, the total number of glycoprotein genotypes included was: gB=83, gH=81, gL=80, gM=71, gN=71, gO=68 (Figure 37, Purple).

The distribution of each glycoprotein genotype within each infection category and specimen type showed that only gH distribution was significantly influenced by both the infection category type and the specimen type, while the distribution of gM was significantly affected by the specimen type only (P<0.05).

gH1 was found to be the most widespread genotype among infants with congenital infections (81.8%) followed by gH2 and mixed gH genotypes, which were equally distributed (9.1%). This finding is in agreement with a study conducted by Mujtaba *et al.*, (2016), where they proposed that gH1 was the most common genotype (63.7%) followed by gH2 (36.3%). By contrast, gH2 was found to be more prevalent than gH1 in about 60% of HCMV positive newborns (Paradowska *et al.*, 2014).

Furthermore, in this project, gH1 was also most prevalent among immunocompromised patients with primary HCMV infection (72.0%) followed by gH2 (28%) with no mixed infections. In contrast, gH2 was most prevalent among immunocompromised patients with recurrent infections (61.8%), followed by gH1 (35.3%) and mixed gH genotypes (2.9%) (Figure 12). Similar results were reported in a recent study by Nahar *et al.*, (2018) in which gH2 (75%) was the most prevalent among immunocompromised patients with ulcerative colitis with HCMV reactivation, followed by gH1 (12.5%).

In the immunocompetent patients with primary infection gH2 was the most common (57%), followed by mixed gH genotypes (29%) and gH1 (14%) (Figure

12). A study conducted by Görzer *et al.*, (2010) looked at gH and gB genotypes in immunocompetent individuals and found that during primary infection, only a single genotype of either of these glycoproteins was present, whereas, in patients with recurrent infection, mixed genotypes were found. They concluded that mixed infections in immunocompetent individuals were a result of serial reinfection rather than primary co-infection with multiple strains. The data obtained in the present study do not accord with this explanation as mixed gH genotypes were found in 29% of patients with a primary infection.

The distribution of gH appeared to correlate with specimen type. Both gH1 and gH2 were found in approximately equal ratios among the blood specimens (49.3%, 46.6%, respectively), in contrast, gH1 was the significantly dominant genotype among urine specimens (87.5%), followed by mixed gH genotypes (12.5%) and in fact no single gH2 genotypes were found in the urine specimens (Figure 18). A study conducted by Li *et al.*, (2015) also found gH1 to be most prevalent (71.43%) in urine samples of children with HCMV infection, although gH2 was found in 27.59% of their samples (Total=203). This is interesting, as in *Li et al.*'s study the samples were taken from children with CMV infections – almost exclusively post-natally acquired, whereas in the present study most samples are from congenitally infected infants. It might be speculated that gH1 is more common in congenital infection although this idea must be treated with caution due to the low number of urine specimens tested in this study (N=8).

Glycoprotein M has not previously been considered in the studies on HCMV glycoprotein distribution, and there is no previous literature to be considered. The reason for this lack of interest in gM is likely to be the highly conserved nature of this glycoprotein which is the most abundant protein in the viral envelope and which forms a complex with glycoprotein N, glycoprotein complex II (gCII). This complex is known to be essential for viral infectivity and is involved in attachment of the virus to the cell and fusion of the cell and viral membranes allowing the viral core to enter the cell. It is thus essential for viral replication and highly conserved.

However, a paper published some time ago by Hayajneh et al., (2001), reported that although the transmembrane and cytosolic portions of gM are remarkably highly conserved the N-glycosylated subdomain did show considerable diversity among primary isolates of the virus, but as this diversity did not appear to alter the overall basic charge of the glycoprotein they concluded that the basic subdomain was not essential for qM function in vivo and little attention has been paid to this glycoprotein since. In this study we report that distinct different types of gM do exist and that gM3 is the predominant genotype among all infection categories: infants with congenital infections (66.7%), immunocompromised patients with primary infection (82.6%), immunocompromised patients with recurrent infection (73.3%), and among immunocompetent post-natal patients (60.0%), (Figure 14). gM3 is also most commonly found among the blood specimens (77.8%) although, in urine specimens, gM3 and gM1 were equally distributed (37.5% each) (Figure 20). The significance of this finding is not clear, but it would be interesting to carry out a more extensive and more detailed study to determine whether gM type correlates with disease severity in any patient group.

gB1 was the most commonly found genotype among congenitally infected patients (33.3%), followed by gB4 (27.3%), and gB2 and gB3 (both 16.7%) (Figure 11). Several previous studies reported similar findings, reporting gB1 to be the predominant genotype found in samples taken from congenitally infected infants (Arista *et al.*, 2003; Barbi *et al.*, 2001; Chen *et al.*, 2016; Mujtaba *et al.*, 2016; Woo *et al.*, 1997; Yamamoto *et al.*, 2007; Zhang *et al.*, 2011). Furthermore, Lukcsi *et al.*, (2001) found that gB1 was not only predominant but was the only genotype present among 12 HCMV positive amniotic fluid samples tested.

Similarly, in this study gB1 was the dominant genotype amongst immunocompromised patients with either primary (48%) or recurrent infection (42.9%), followed by gB2 (20%, 22.9%), gB3 (16%, 22.9%), and gB4 (16%, 11.4%), respectively. The observation that gB1 is the most commonly found genotype in immunocompromised patient populations has been reported many

times: Vilas Boas et al., (2003) found that gB1 was the most common genotype among central nervous system disease in AIDS patients; Coaquette et al., (2004) examined the relationship between the gB genotypes and the incidence of HCMV related disease in immunocompromised patients and found that gB1 was the most common (28.9%) genotype among immunocompromised patients while gB4 was the least common genotype (2%); Fan et al., 2009 found gB1 (63.1%) to be common among immunocompromised patients; Jiang et al., (2017) explored the genetic polymorphisms of HCMV glycoprotein and looked for correlation with viral load in individuals with acquired immunodeficiency syndrome (AIDS). The authors were able to establish that gB1 (87%) was the dominant glycoprotein genotype in HCMV infected individuals with AIDS, but they found no correlation between the gB genotype and viral load; Dieamant et al., (2013) investigated the prevalence of HCMV genotypes in allogeneic hematopoietic stem cell transplantation patients, gB1 was again found to be the most common genotype (39%). Moreover, a very recent study conducted by Nahar et al., (2018) reported that gB1 was the most common type among HCMV positive patients suffering from ulcerative colitis.

In our study, in contrast, immunocompetent individuals with HCMV primary infection gB3 (57.1%) was the commonest genotype, followed by gB1 (28.6%) and mixed gB genotypes (14.3%). There are few reports on CMV genotypes in immunocompetent patients, but a study by Kashiwagi et al., (2002) looked at 19 immunocompetent Japanese patients and found that gB3 was not associated with symptomatic disease, whereas gB1 was (Kashiwagi et al., 2002). Another study from Taiwan found gB1 to be present in both immunocompromised and immunocompetent groups, but significantly associated only with the immunocompromised group, whilst gB3 was found much more commonly in the immunocompetent group (Wu et al., 2011). In a study by Oka et al., in 2015, gB1 was found most commonly (77.8%) in the eye compartment among immunocompetent patients with HCMV endotheliitis and iridocyclitis, while gB3 was found in 22.2% of the patients.

When gB genotype was analysed according to the specimen type, in this study, gB1 (41.3%) was found to be the most common genotype in blood specimens followed by gB2 (24%) and gB3 (20%) then gB4 12%, whilst gB3 (37.5%) was the most common type in urine samples, followed by gB1 (25%) and gB4 (25%), then gB2 (12.5%) (Figure 17). However, these results must be treated with caution as the numbers of urine specimens in each group are very low. As reported above, most of the studies conducted on immunocompromised patients, particularly AIDS patients, that used blood samples found gB1 to be most common in accordance with our findings. In contrast to these results, an earlier study by Gilbert et al., (1999) found gB2 to be the most frequent in blood specimens taken from AIDS patients. In our study, gB3 was more common in urine specimens, whereas in a study by Paca-Uccaralertkun et al., (2013) gB1 was most prevalent in HCMV positive urine samples taken from children aged 1 month to 5 years living in a children's home. The urine specimens we tested although small in number, mostly came from congenitally infected infants, in contrast, the study by Paca-Uccaralertkun tested urine from children living in an orphanage setting. This setting suggests the children were most likely post-natally infected as HCMV is frequently acquired in a childcare environment where the children live in close association.

The gB findings overall are interesting. In summary, gB1 appears to be the most common genotype in immunocompromised and congenital patients whilst gB3 is more common in immunocompetent patients, except in a few cases where gB1 is associated with disease in immunocompetent patients. This finding is seen in our study and many other published studies. gB is an important glycoprotein that is essential for entry into the host cell and cell-cell spread, it is highly conserved between herpes virus species and facilitates entry into the host cell by binding to heparin sulphate receptor and bringing about membrane fusion (Vanarsdall and Johnson 2012). It is interesting to speculate that gB3 is the normally circulating form of the glycoprotein found in the setting of a functioning immune response and that when the immune response is weakened or removed the virus evolves away gB1 from gB3 towards gB1, explaining why common in is more

immunocompromised patient groups. The finding in our study and others that gB1 also predominates in congenitally infected patients may also be explained by a lack of immune surveillance in the foetus and may reflect a change occurring after the virus has crossed from the mother into the foetus rather than being preferentially transmitted over other gB genotypes. However, although interesting, there is little evidence presented in the literature that the gB genotype affects the outcome in any patient group.

Analysis of the gL glycoprotein data shows gL4 was the most prevalent genotype among all patient groups. For congenitally infected infants 58.3% showed the qL4 genotype, followed by mixed qL infection (25%), and qL2 and qL3 (8.3%). Among the immunocompromised patients with either primary or recurrent infections, gL4 was present in 48% and 40.6% respectively, followed by gL2 (24%), gL3 (12%), gL1 (8%) and the mixed gL genotypes (8%), and among immunocompetent post-natal patients with primary infection it was present in 57.1%, followed by mixed gL infection (28.6%) and gL3 (14.3%). (Figure 13). When analysed by specimen type, gL4 was again the most prevalent among blood samples, (43.1%), followed by gL2 (23.6%), mixed gL genotypes (18.1%), gL1 (8.3%), and gL3 (6.9%), and amongst urine samples (62.5%), followed by gL3 (25%) and qL2 (12.5%) (Figure 19). There is almost no other published literature regarding the distribution of gL genotypes. An early study by Rasmussen et al., (2002) looked at gL in clinical isolates of HCMV, and although all 4 genotypes were identified, the study reported very low levels of genome variability between the types (only 2% variation), which may explain the lack of further studies on this glycoprotein. Although our study does not report any significant findings for gL4, it is the first to describe the distribution of gL genotypes among different infection categories and sample types and to show the predominance of this genotype.

For glycoprotein gN, gN3a was by far the most common type in congenital infections (81.8%), followed by gN1 and gN4d, which were equally distributed (9.1%), although this distribution was not statistically significant (Figure 15). This

gN3a genotype has previously been shown among congenitally infected infants but equally distributed with gN3b, gN3c and gN4a (Mujtaba *et al.*, 2016) In the immunocompromised patient group gN3a was also found most commonly, being present in 45.5% of samples from patients with primary infection and 85.7% of patients with recurrent infection. Xia and Zhang, (2011), found similar results among hematopoietic stem cell transplant patients. A study conducted by Nahar *et al.*, (2018) reported that gN3a and gN3b were equally distributed among immunocompromised patients with recurrent HCMV infection. Whilst another study suggested that gN4a was the most common among HCMV positive AIDS patients (Jiang *et al.*, 2017). In our study, gN3a was also the most prevalent among immunocompetent patients (60.7%).

Regarding the distribution of gN glycoprotein genotypes according to sample type, gN3a again was the most prevalent among blood and urine samples. In blood samples, (Figure 21). These results support the results found within the infection categories, where gN3a was constantly found to be prevalent.

Lastly, the gO genotype was the only genotype where distribution was studied for only three infection categories. This was because the immunocompetent patients' category, included only 4 cases, and so was excluded as this made it statistically invalid. Among the three remaining groups; congenitally infected infants; immunocompromised primary; and immunocompromised recurrent infection patients, gO1c was the most prevalent at; 62.5%, 45%, 63.3%, respectively. The gO1a genotype was the second most common in all patient types; 12.5%, 36%, 20% respectively. It is interesting to note that gO3 was present among congenital infections (3.2%) and immunocompromised recurrent infections (3.3%) only, and, gO2b (12.5%) was only present among congenital infections (Figure 16). These findings are not dissimilar to the reports in the literature. A recent study by Jiang *et al.*, (2017) found that gO1a was the most dominant (49.2%) among infected AIDS patients, and Chen *et al.*, in 2016 reported that gO1

was the dominant genotype (37.1%) among a total of 1709 HCMV infected children with respiratory symptoms.

Regarding specimen types, the distribution of gO genotypes was consistent with their distribution within the infection categories. gO1c followed by gO1a were the most prevalent in blood (60%, 23%) and urine (67%, 33%), respectively. In addition, gO4 (8%), gO3 (3%), gO2a (3%), gO2b (2%), and mixed gO genotypes (1%) were all found only among blood samples, but the number of urine specimens was low (Figure 22).

Of relevance to the data reported here is a study published by Görzer et al., in 2015, where it was reported that mixed HCMV genotype variations are hardly ever found in urine samples of congenitally infected newborns, even using very sensitive HCMV genotyping diagnostic methodologies. These researchers tested urine samples collected from 17 congenitally infected neonates and used deep sequencing for gO genotyping and guantitative real-time PCR assays for gB and gH genotyping. No mixed gO genotype was identified for any of the urine specimens, and only one mixed gB genotype and one mixed gH genotype was found. This seems to agree with our data, where although only eight urine samples, (and only 5 of these from congenitally infected infants) were genotyped using PCR/RFLP as previously explained no mixed genotype for gO or gB and only one mixed genotype for gH was found. The same study by Görzer et al., (2015) however, found no predominance of a specific gB, gO or gH type in the urine specimens. This is in contrast to our study where gB3 (37.5%), gO1c (67%), and gH1 (87.5%) were the most prevalent genotypes among urine specimens, with gH1 being the only genotype with a statistically significant prevalence (P<0.05).

To summarise, the genotype findings presented above, gH1 appears to be the most common gH type among congenital and immunocompromised patients with primary infection, whereas, gH2 is most common among immunocompetent and immunocompromised patients with recurrent infections. Also, for the group as

a whole, gH1 and gH2 were almost equally distributed within blood samples, while in urine 62.5% of the specimens were from congenital patients, gH1 was most common. gM3 was consistently the most common genotype among all the infection categories studied. Similarly, gM3 was the most common within the blood specimens followed by gM1, whereas gM1 and gM3 were equally distributed in urine samples (P<0.05). Several previous studies of the distribution of gH genotypes have supported these findings. But regarding gM distribution, this study was the first to report significant results.

It is worth stating that gB1, gL4 gN3a and gO1a/gO1c although not statistically significant, were the most common genotypes identified in all patient groups. Many studies agree with our finding of gB1 predominance although the literature is more divided concerning the gN and gO results, and no previously published research has focused on the distribution of gL or gM genotypes.

All of the above discussion has focused on the individual glycoproteins and their various polymorphic forms. However, as described in chapter 2 (section 2.1.5.3), HCMV glycoproteins exist in three complexes; glycoprotein complex I which consists of qB; glycoprotein complex II, comprising qM and qN; and glycoprotein complex III which exists in two forms; a trimer of gH/gL/gO and a pentameric form where gO is down-regulated/lost and replaced by a trimeric protein complex coded for by UL128-131a (Ryckman et al., 2008). Recently it has been shown that the gH/gL/gO complex is required for entry into fibroblasts whilst gH/gL/UL128-131 is needed for entry into epithelial and endothelial cells (Vanarsdall and Johnson 2012). The laboratory strain AD169 uses the gH/gL/gO form allowing it to grow in fibroblast cell lines but has lost the expression of the pentameric complex gH/gL/UL128-131 which would enable it to infect endothelial and epithelial cells (Ryckman et al., 2008). Although if this complex is artificially reintroduced into AD169, it can infect these cell types. In contrast, clinical isolates of HCMV can express both forms of qCIII. This explains why HCMV is able to infect endothelial, epithelial and myeloid cell types in vivo and the pentamer complex is

thus essential for efficient viral growth and spread in the host. Circulating strains express both forms of gCIII but different strains express different ratios of each and the basis for the type of expression is not yet understood (Zhou *et al.*, 2013). Although we did not test for the presence of the pentameric complex in this study it is worth considering the data when the glycoproteins are grouped as complexes.

The glycoprotein distribution results considered by complex suggest the following combinations are most frequent in congenital infection and in immunocompromised patients with primary infection; gCI (gB1), gCII (gM3/gN3a), gCIII (gH1/gL4/gO1a or gO1c). While for immunocompromised patients with recurrent infection, the first 2 complexes remain the same, but gC III changes to gH2/gL4/gO1a or gO1c. However, these results are not statistically significant.

The main limitation of the data presented here is the relatively low numbers of samples included in some of the groups and whilst it is encouraging to note the broad agreement with previous studies, the main aim of this thesis is to consider the effect that the glycoprotein polymorphisms have on the characteristics of the viral strains. In the next part of the discussion, the results of the glycoprotein distribution will be correlated with the results of assays that measure the growth characteristics and glycoprotein glycosylation patterns of the various glycoprotein types.

5.2 Growth characteristic of HCMV glycoprotein genotypes

The growth of the various HCMV strains in cell culture over four weeks post infection was assessed. This was done for all the laboratory strains (N=5) and any of the clinical samples where HCMV CPE was produced (N=89). Growth was compared using a TCID50 assay. TCID50 measures the infectious virus titre by quantifying the amount of virus required to kill 50% of the infected hosts or to produce a cytopathic effect (CPE) in 50% of inoculated tissue culture cells. Although it is generally considered a labour-intensive and time-consuming assay, due to the necessity for an extended incubation period because of the slow growth of many

HCMV strains, it is widely accepted and has a relatively small error rate of about 35% (Pankaj, 2013; Virocyt, 2013). The visual observation of CPE produced by the laboratory strains was confirmed and validated using PCR-based TCID50, in which the infection was measured using a quantified viral load instead of just visual inspection of the virus CPE in plates. This method has been reported to be easier and more robust than the standard TCID50 assay (Gustafsson *et al.*, 2012). Unfortunately, it was not possible to extend this method to confirm the clinical samples results due to the limited volume available for each sample.

HCMV is never fully eliminated from the body and remains in the latent state for life. In primary infection. HCMV infects epithelial and myeloid (monocyte, macrophage and dendritic) cells, as well as fibroblasts and endothelial cells (Mattes et al., 2000; Knipe and Howley, 2013). This is in contrast to in vitro cell culture, where HCMV only replicates in fibroblasts. As explained above this is due to the loss of the UL128-131a component of gCIII and its replacement with gO which is known to occur in laboratory strains and likely happens after only a few passages in clinical isolates as they adapt to grow in culture. Therefore, in a laboratory setting, HCMV can only be successfully isolated in fibroblasts. The HCMV cytopathic effect (CPE), can typically be detected after 3 to 4 days incubation period, although sometimes this can take much longer (Sinclair, 2000). In the present study, CPE for the laboratory strains started to appear on day 7 (second week post-infection), and the virus continued to grow during weeks 3 and 4 until the cell monolayer was destroyed. In clinical strains, for which CPE started to appear after three days of infection, the maximum growth had typically completed by the end of the fourth week and remained at a steady level or rose very slowly for the remaining time of the growth curve. In contrast, although the laboratory strains took longer to initiate the growth phase, they continued to increase replication rate for the 4 weeks incubation period and rose quicker to much higher titres that the clinical isolates (Figure 27). It was a surprising finding that the growth of the clinical isolates was initially faster than that of the laboratory strains. A study by Wilkinson et al.,

(2015) suggested that the wild type HCMV strains mutate after being passaged in fibroblasts switching from UL128-131a to gO in gCIII. In a follow up study from the same group (Murrell *et al.*,2017), they demonstrated that clinical isolates rapidly mutate in culture and that *in vivo*, HCMV is largely cell associated and is transmitted around its host by moving directly from cell-cell and can infect a variety of cell types. In contrast, laboratory adapted strains of HCMV spread via diffusion of cell free virions and their replication is limited to fibroblasts. In our study, clinical strains were subjected to a maximum of 2 passages, and the comparatively low titre reached by week 4 suggests that although they had likely begun this process of mutation in culture they were not fully adapted.

The association between each envelope glycoprotein genotype and growth in culture was analysed. For the laboratory strains, the analysis was carried out simply by observation of the CPE compared to the individual glycoprotein types know to be carried by each strain. AD169 was the strain that grew fastest and to highest titre, whilst Merlin was the slowest growing and reached the lowest titre. Looking for unique glycoprotein types in these two strains, it can be suggested that as AD169 is the only strain to carry gB2, gL1, gN1 and gO1a that one or a combination of these glycoproteins could be associated with virulent growth in culture. In contrast, Merlin strain carried gL4, gN4c and gO5, raising the possibility that slow/poor growth in culture is associated with these genotypes. It is known that Merlin is the closest laboratory strain to wild type virus (Dolan *et al.*, 2004) and these observations provide a starting point for comparative analysis of the growth characteristics of the clinical strains.

As there were very many more data points for the clinical samples than for the laboratory strains, observational analysis was neither possible nor desirable, and statistical analysis of the results was carried out as follows; after excluding any genotype that had less than 4 cases from the statistical analysis, an analysis of variance (ANOVA) test was used to compare the mean viral titre against genotype. (Figure 37 above (green & blue)). Statistically, there was no significant effect of

any of the glycoprotein genotypes on the virus growth across all four weeks of infection (P>0.05). In addition, when observational results for AD169 and Merlin were tested against the clinical strains, it can be seen from Figure 28 that there is no association in the clinical strains between faster/higher growth with gB2, gL1, gN1 or gO1 and with slower/lower growth and the presence of gL4, gN4c, or gO5 (no gO5 was present in the clinical samples). It can, therefore, be concluded that individual glycoprotein types do not have an effect on viral growth in cell culture. This is not unexpected and is in contrast to the *in vivo* growth characteristic of the virus where it is well known that the virus glycoproteins play an essential role in viral replication and virulence.

The rate of growth in culture was also analysed by infection categories and sample type for all the clinical samples (N=89), (Figure 37 (blue)). Analysis of the results showed that the growth of the virus strains from congenitally infected patients was significantly higher than viral strains from all other infection categories (Figure 29). Moreover, it was shown that strains isolated from urine specimens grew faster than the other strains during the last three weeks of the infection (P<0.05) (Figure 30). It was reported by Ross *et al.*, in 2014 that a significant amount of HCMV was found in urine specimen from congenitally infected babies. This could explain the higher rate of growth from the congenital patients, simply because a higher viral titre was used as the inoculum (Arav-Boger, 2015; Pugel and Cekinovic, 2011).

In this project, no association between a specific glycoprotein and viral growth was seen. The most likely explanation for this is that HCMV reproduction *in vitro* is not representative of the virus replicative process in vivo (Tabata *et al.*, 2015). The recent study mentioned above (Murrell *et al.*, 2017) used bacterial artificial chromosome technology to construct an artificial virus that has the characteristics of wild-type virus but is able to grow in culture. They used this artificial virus to demonstrate that wild-type virus spreads directly from cell-cell, rather than by releasing the virus into the media to infect new cells. In the *in vivo*

situation, the role of the virion glycoproteins in transmission and spread is likely to be quite different from their role in cell culture of the adapted strain. For this reason, it is not valid to make any conclusions from the lack of association between viral glycoprotein types and transmissibility in culture.

5.3 Glycosylation patterns of HCMV glycoprotein genotypes

In recent years, a considerable amount of attention has been given to saccharides found covalently attached to proteins, called glycans. They can have a linear or branched structure and consist of monosaccharide units linked together by glycosidic bonds. These vital biological molecules are abundant, widely present in all living organisms, and have diverse biological functions. Glycans participate in various physiological and pathological processes, including intermolecular and cellcell recognition events, cell cycle, cell differentiation and apoptosis, and hostpathogen interactions and inflammation. They also have a critical role in the maintenance of cells and tissue structure. The mechanism by which glycans perform these diverse functions typically involves interaction with other polymers (e.g., proteins, saccharides, lectins) in an enzymatic process called glycosylation. It is one of the most common post-translational modifications, and it is estimated that approximately 70% to 80% of all human proteins are glycosylated. Glycoproteins, which are products of glycosylation (glycoconjugates), are formed by attaching glycans to proteins. Most molecules involved in the immune response, including cellular receptors, cytokines and antibodies, are glycosylated, and the interaction between an antigen and its ligand whether on an antibody or T cell is influenced by the carbohydrate structure of both. Thus, it is feasible, even probable that alteration of the glycan portion of the viral glycoprotein will have a significant effect on its function including its ability to infect, transmit and cause disease. Two main types of glycosylation occur, O-glycosylation and N-glycosylation depending on the type of glycans being used in the process. N-linked glycans principally act as signals for cell surface recognition phenomena, whilst O-linked glycans confer certain physicochemical properties on proteins. Herpes virus glycoproteins are known to be

glycosylated (Gantt *et al.*, 2015; Dall'Olio *et al.*, 1987; Serafini-Cessi *et al.*, 1983) and glycoprotein B of HCMV has been shown to carry both N-linked (Britt and Vugler 1989) and more recently numerous O-linked glycosylation sites (Bagdonaite *et al.*, 2016).

The major aim of this project was to determine whether the glycoprotein polymorphisms affected the way in which the glycoproteins were glycosylated. If this were shown to be the case, a direct link between the viral genotypes and altered viral characteristics can be made for the first time. As the way that a protein is glycosylated is dependent on the cell in which it is produced, it would not be possible in the culture system used in this project to draw direct assumptions about how the functions may be altered, but showing a direct link between the known glycoprotein types and differences in the way they are glycosylated would provide evidence that the glycoprotein types may confer functional differences on the particular strains.

To investigate this idea, a quantitative lectin-based assay, Enzyme Linked Immunosorbent Assay (ELLA) (Figure 8), which is similar to the standard ELISA assay, but using a panel of 20 lectins in place of antibody, was carried out, to determine whether there is an association between the individual glycoprotein or a combination of glycoprotein polymorphisms and their glycosylation. ELLA has been recently developed from a previously used technique described in the literature by Leathem and Brooks (1998). It adopts the same principle (protein- glycan interaction) but gives quantitative results instead of the qualitative data, which simplifies the interpretation of the data. The method was improved and optimised by the Microbiology/Virology Unit at the University of Manchester under the supervision of Dr Carol Yates (Phung, 2011; Bala, 2010). The fast turnaround time, minimum sample consumption and low cost are some advantages of the assay.

Primarily, all non-infected (control) and HCMV infected cells showed high optical density (OD) readings. To expose the source of the high OD readings, the assay was repeated with the addition of some extra controls: including infected and

non-infected MRC-5 cells, growth medium (MEM) only and some blank wells. Each was tested under four different conditions: addition of biotinylated lectins, avidin/peroxidase (Av/Po) and the TMB substrate, addition of the biotinylated lectins and the TMB substrate only, addition of the conjugate Av/Po only, and lastly, addition of the unaccompanied substrate. The repeated assay showed high O.D readings with the uninfected MRC-5 cells, MEM and the blank wells treated with Av/Po, while the other wells with no conjugate added presented low OD readings. This clearly suggested that the Av/Po conjugate might be being degraded or that nonspecific binding of the avidin- biotin had occurred. Also, due to the presence of biotin (other than the biotin used for biotinylated of lectins) within the cells, the growth medium used was examined and seemed not to contain biotin as reported in the company's catalogue (Sigma-Aldrich) (Leathem and Brooks, 1998; Marttila *et al.*, 2000).

Accordingly, the method was slightly amended to have better results and reach the study goals. First: Streptavidin was used instead of Av/Po. It is isolated from *Streptomyces avidinii*; and lacks glycosylation because there is no carbohydrate within its structure, which is beneficial in reducing the level of the non-specific binding of the conjugate especially with lectins. Second: The endogenous biotin was blocked to reduce the chance of the non-specific binding occurrence. This was done by adding streptavidin and biotin as an additional step before adding the biotinylated lectins.

Moreover, a higher concentration of the Blocking reagent H_2O_2 (1%) was tested because of the low OD readings of 0.3 that had been found with the noninfected and infected cells, which might be due to the non-specific binding of the substrate to the endogenous peroxidase. Using a higher concentration did not show any real differences in the results. However, the other modifications did significantly improve the assay. A schematic diagram presenting the method of ELLA used in this project can be found in section (3.2.7) (Figure 8).

Lectins (from the Latin word 'legere' meaning 'to choose') are a large family of proteins of non-immune origin isolated from natural sources. These carbohydrate-binding proteins are able to bind both free glycans and glycans attached to glycoconjugates, such as glycoproteins. Naturally, glycans and lectins have significant roles in the function of cells and organs, not only in humans and animals but also in viruses. Viral pathogens utilise glycans and lectins that are encoded by their own genome or that of the host cell to undergo duplication and multiplication. Recent progress in glycobiological research suggests that glycans and lectins intervene in vital interactions in the virus-host relationship, controlling viral multiplication and/or launch of the immune system (Van Breedam *et al.*, 2014).

The lectins used in this project were chosen according to their diverse sugar specificity (Table 3) to cover all the protein/glycan sites that could be present within the virus structure. Lectins have complex specificities that can recognise not only different monosaccharides within the glycan chain, such as mannose, Nacetylglucosamine, sialic acid (SA) or galactose, but they can also identify different linkages between saccharide monomers or glycan branching. A good example that shows their high specificity is a glycan terminated in sialic acid (SA) and linked to galactose via either an a2-6 or a2-3 glycosidic bond, in which, lectin sambucus nigra agglutinin (SNA) can recognise only the a2-6 linkage, whereas Maackia amurensis agglutinin (MAA) lectin can recognise only the a2-3-linkage. This selective recognition of lectins plays an important role in the host-species barrier. For instance, selective recognition of the type of linkage between sialic acid (SA) to galactose, explains why the influenza virus which infects humans, does not infect birds, and vice versa. Human influenza virus specifically recognises a2-6-linked SA, while avian influenza recognises only a2-3-linked SA on the surface of the avian tissue, and not a 2-6 linked SA present in human tissues, hence, preventing these viruses from cross-species invasion (Belicky et al., 2016).

Studying the glycosylation patterns of HCMV glycoproteins, then, investigating the effect of the glycoprotein genotype polymorphism on the virus glycosylation was of high importance in this project. This was initiated by finding out if there is a difference in the glycoprotein glycosylation patterns between laboratory strains and clinical samples. These strains were cultured and infected under standard laboratory conditions as previously explained. The results from the laboratory strains were compared with the results of the clinical samples and evaluated using a paired sample T-test. In this case, the paired sample T-test provides an adequate statistical method to compare two independent sets of data with different sample sizes. As a large amount of data was acquired in this study, to make sure that any correlation between the variables did not occur by chance (P<0.05), only statistically significant results were considered.

This comparison of HCMV glycoprotein glycosylation patterns between noninfected and infected cells in both laboratory strains and clinical samples revealed that the glycoprotein glycosylation levels were decreased significantly in cells infected with laboratory strains (77.8%) compared to controls, while in cells infected with clinical samples it was significantly increased (92.9%). The decreased levels of the viral glycosylation induced by the laboratory strains compared to the clinical strains might be explained by two theories; The first is that due to the repeated passage in tissue culture, a reduction in some of the viral glycoprotein synthesis in the laboratory strains could occur and this would have a direct effect on the glycosylation levels. Moffat et al., showed this, in 1998, when they compared the protein synthesis of VZV clinical isolates with a VZV laboratory strain and found that after 21 days of infection the level of viral protein synthesis in the laboratory strain was significantly lower (Moffat *et al.*, 1998). An alternative theory is that as the laboratory strains have adapted to infect and grow within cell culture, the immune pressure that they would have been subjected to in vivo was removed, and as glycoprotein glycosylation forms part of the viral mechanism to evade the immune system and increase virulence, removal of this pressure is likely to lead to

a decreased level of glycosylation. For example, it is well known that N-linked glycans are important elements in the proteins' receptor recognition within the cells (Guseva *et al.*, 2010). Also, some of the most abundant neutralizing antibodies contain N-linked glycan as the main part of their structure (Zhang *et al.*, 2016). Kropff *et al.*, (2012) produced recombinant viruses expressing gN proteins with reduced glycan alteration; they reported that the widespread glycosylation of gN might influence the way the virus avoids neutralization by antiviral antibodies, whereas, the recombinant viruses with under-glycosylated gN were considerably more vulnerable to neutralization by a wide range of antibodies. Immunization of mice with viruses without glycan alterations provoked considerably elevated antibody titres versus the homologous virus; yet, the neutralization titres against the fully glycosylated virions were not enhanced. Thus, as described above, laboratory strains, although they are affordable and convenient, are not representative of wild-type *in vivo* infection.

The lectin panel used in this study was chosen for varying specificity of binding to the glycan sugar moieties. Whether or not a significant change in lectin binding to the cells occurred after infection with the virus was analysed using a paired t-test against the null hypothesis that there was no change due to infection. This analysis showed that for the laboratory strains a significant change in binding occurred with 9 (45%) of the lectins: for 2 of these lectins a significant increase in binding was seen, and for 7 a significant decrease occurred after infection (Figure 31). When the lectin panel was used to test the clinical strains a more marked response to infection was seen with 14 (70%) of the lectins showing an altered binding level and for most of these (13/14) it was a significant increase in binding that was seen (Figure 33).

As we have seen, HCMV carries a number of highly polymorphic, and heavily glycosylated envelope proteins. This study is the first report to describe HCMV glycosylation for the 6 major envelope glycoproteins, the first to show that the

different glycoprotein types differ in the way that they are glycosylated and the first to show that these differences affect the viral characteristics.

The significant results showed that decreased levels of glycosylation in laboratory strains were significantly associated with gH1 and gM3 genotypes, while gH2 and gM1 were associated with increased glycosylation levels (P<0.05). The lectins associated with these results were LCA, GSL II, GNL, EEL, WFA, PHA-E, MAA II, and PSA, in which the glycosylation levels of gH1 were lower than gH2, and PHA-L, in which the glycosylation levels of gM3 was lower than gM1 and gM2 (Figure 32). In the clinical samples, the test showed that although gB2 and gB4 are associated with increased glycosylation patterns, and gB3 was associated with decreased glycosylation levels (Figure 34), the association was not statistically significant (p=0.075). However, the influence of mixed gH genotypes on the glycosylation levels was significantly higher compared to gH1 (p=0.02) and gH2 (p=0.02) with GSL II lectin which binds specifically to the complex type N glycans (Nakamura-Tsuruta et al., 2006). In contrast, gN3a was associated significantly with a lower level binding of lectin GSL II (p=0.001) but gN4a was associated with higher binding of this same lectin (p= 0.001). Similarly, gO4, was associated with significantly higher binding of lectin GNL, which is a mannose binding lectin, compared to qO1a (p=0.005) and qO1c (p=0.001). Lastly, PTL binding, that has specificity to N-acetylgalactosamine, was significantly higher with gL mixed genotypes than with gL2 (p=0.018) which was associated with decreased glycosylation levels (Figure 35).

To conclude, increased glycosylation levels in clinical strains of HCMV were seen with mixed gH genotypes, gN4a, gO4 and mixed gL genotypes. Whilst decreased levels were associated with gH1, gH2, gN3a, gO1a and gL2. In laboratory strains the increased levels of glycosylation were seen with gH2 and gM1, while the decreased levels with gH1 and gM3. The similarity of both the clinical and laboratory strains was only in the case of gH1, which was associated with the decreased glycosylation levels in both cases.

The specific alterations in glycosylation detailed above are not directly translatable to the *in vivo* situation as it is known that the way a protein is glycosylated depends on the cell type in which it is produced. The significant finding from the data presented here is that there are definite and reproducible alterations in glycosylation associated with particular glycoprotein polymorphisms. This shows that the polymorphisms have the potential to cause alterations to the functional characteristics of the virus *in vivo*.

However, although direct comparisons cannot be made, it is interesting to note that the glycosylation patterns found here and associated with gN genotypes are consistent with the previously published literature. A study conducted by Rossini et al., (2005) among solid transplant patients suggested gN4 to be the more virulent form of this glycoprotein as it was associated with earlier initiation and increasing levels of HCMV antigenemia. In support of this, Pignatelli et al., 2010 confirmed that infection with the genotypes gN4a and gN4c resulted in 8x more sequelae than other variants; while there was a decreased sequelae risk for those infected with the gN1, gN3a variants. Likewise, gN1 and gN3 genotypes were proposed by Arcangeletti et al., (2015) to have lower virulence, and gN4 genotypes to have higher virulence. Our finding of increased glycosylation with HCMV gN4a genotype could be associated with virulence and pathogenicity of the virus, whereas the decreased glycosylation of gN3a may be associated with the virus having lower virulence. Burke and Heldwein (2015) reported on the crystal structure of qB and showed that it was extensively glycosylated and that the pattern of this glycosylation affected antibody recognition of the virus. The antigenic domains that elicited neutralizing antibody were the most heavily glycosylated, whereas the domains that were less antigenic were less heavily glycosylated. They suggested that HCMV gB utilises glycans to protect the neutralizing epitopes from antibody whilst revealing non-neutralizing epitopes. This glycosylation pattern has the effect of directing the immune response to generate non-neutralizing antibodies, enabling HCMV to escape clearance. Toriniwa and

Komiya in 2011 also reported that variation in glycoprotein glycosylation has a significant effect on the ability of the virus to escape the host immune response. These findings suggest that glycosylation of HCMV glycoproteins is an important mechanism for avoidance of antibody-mediated neutralization and this, in turn, facilitates HCMV pathogenicity.

As the immune system clearly plays a role in eliciting the glycosylation patterns of viral glycoproteins as illustrated by the HCMV gB example above (Burke and Heldwein 2015), it was interesting to assess whether there were differences in the glycosylation properties of viral isolates taken from different types of patients with differing immune responses. In order to study the glycosylation patterns in regard to infection category, any infection category that had less than 4 cases was excluded from the analysis of the results. Thus, five different infection categories were evaluated: congenital infection (12), primary (26) and recurrent (35) infection from immunocompromised patients, primary infection from immunocompetent patients (7) in addition a category for unknown infection types (5) was included (Total N=85). ANOVA test was performed to identify statistically significant glycosylation patterns taking the averages of each infection category. However, the results showed that there was no statistically significant association between the infection category and the viral glycoproteins glycosylation. This suggests that the significant alterations in glycosylation noted in this study were more likely to be due to the changes associated with the individual viral genotypes rather than a host effect arising in a specific patient group regardless of the glycoprotein type.

As previously discussed, the role of glycosylation mediating cellular processes is well known. Nevertheless, the glycosylation mechanism is not a tight system, and it is controlled by different enzymes. Therefore, the same glycoprotein may have different glycosylation patterns and mediate different interactions depending on the tissue localisation (Zámorová *et al.*, 2017). Thus, it was important to consider whether different glycosylation patterns occurred in isolates from different locations.

This project has also studied the effect of different patients' sample types on the glycosylation pattern of HCMV glycoproteins. ANOVA was done for all clinical samples (N=89), These are: Blood specimens (N=89), urine specimens (N=8), and respiratory specimens (N=4). None of the specimen groups was excluded from the analysis because none has less than 4 cases. The results showed that there was a statistically significant increase in the glycosylation patterns of the strains came from respiratory specimens comparing to the blood and urine specimens (P=0.00); Likewise, blood specimens had a significant increase in the glycosylation patterns compared to urine specimens (p=0.00) (Figure 36). This increase was measured using GNL lectin binding profile. GNL has specificity to bind high-mannose-type glycans, so it recognises terminal mannose residues and was known to have an anti-HIV effect due to its binding to gP120 glycoprotein on HIV envelope (Hoorelbeke et al., 2011). Further investigations with larger sample size are also needed to confirm these results. Moreover, the potential role of the glycosylation pattern of HCMV infection from different sample types of the same patient should be an object of future studies.

5.4 Summary and conclusion

HCMV has the longest and the most complex genome (235 kb) amongst human-specific viruses and has high genetic variability that has been compared to that of an RNA virus. This, together with the clinical importance of HCMV as the most common congenital viral infection has encouraged many researchers to investigate the association between the virus glycoprotein polymorphisms and its pathogenesis. Whether an association exists is still inconclusive, many attempts have been made to try to understand the mechanisms involved in the relationship between the glycoproteins and disease. To our knowledge, this is the first study to concurrently investigate the six major HCMV envelope glycoproteins (gB, gH, gL, gM, gN, and gO), their polymorphic genotypes and their glycosylation patterns in relation to virus virulence and pathogenicity. Also, identification of the glycosylation patterns of these glycoproteins before and after infection in patients with different infection categories and different sample types was first studied in this project.

These envelope glycoproteins are well identified and known as essential mediators for many viral activities including binding, entry into host cells, cell-cell spread and infection. The viral glycans are derived from the host cell, and because of this active cellular participation viral proteins are glycosylated in a similar manner to that of the cellular proteins themselves (Sugrue, 2007).

The data obtained from this study showed that there is a significant alteration of the glycosylation patterns of HCMV glycoprotein on the surface of the infected cells compared to the non-infected cells, this implies firstly that glycosylation of the HCMV glycoproteins plays an important role in the virus virulence and pathogenesis, as has been shown for viruses other than HCMV. We saw significantly reduced levels of glycosylation in cells infected with the laboratory strains after infection and propose that this could be a result of the prolonged absence of immune pressure in the lab-adapted strains as one of the functions of glycans is to protect antigenic sites on the viral glycoprotein from the immune response. An alternative explanation is that some of the glycoproteins are down regulated in the lab strains due to repeated passage and the switch from a cell-cell transmission route to production of large amounts of cell-free virus in the laboratory strains. This might explain why some glycoprotein types were associated with an increase in levels of glycosylation after infection. The overall 78% reduction in the glycosylation levels in the laboratory strains infected cells compared to the non-infected is explained by the virus infection of the cell taking over the host cell machinery and could be explained by either of the hypotheses above. Also, in this project we investigated the effect of the HCMV glycoprotein genotypes on glycosylation and that in contrast to the laboratory strains, glycosylation was significantly increased after infection with the clinical strains (93%). Importantly, distinct and significant differences in the glycoprotein glycosylation were found to be associated with particular glycoprotein genotypes in both laboratory and clinical HCMV strains. Although it is not possible to make direct extrapolations between these data and the *in vivo* situation for reasons already discussed, we propose that viral strains that have these particular glycoprotein types, could be more pathogenic and harmful than others, and that this might be an explanation for the variability of the outcome in HCMV congenitally infected infants.

In the laboratory strains the increased glycosylation patterns after HCMV infection were found to be associated with gH2 and gM1 genotypes, and in clinical samples they were associated with gH mixed genotypes, gN4a, gO4 and mixed gL genotypes; While the decreased glycosylation patterns were associated with gH1 and gM3 in laboratory strains, and in clinical samples with gH1, gH2, gN3a, gO1a and gL2 (P<0.05). In the case of gB, although gB2 and gB4 were associated with increased glycosylation, and gB3 was associated with decreased glycosylation, the association was not statistically significant (p=0.075).

Concerning gN and gB genotypes, the results of glycosylation were found to be supported by a limited number of studies, as it was reported that extensive glycosylation of gN and gB could influence the way the virus avoids neutralization by antiviral antibodies. Also, data from the current project together with what was reported previously confirm that infection with gN4a and gN4c genotypes resulted in sequelae 8x more often than other variants; whilst a decreased sequelae risk was observed in those infected with the gN1, gN3a variant. We suggest that that the increased glycosylation of HCMV gN4a could be associated with the virulence and pathogenicity of the virus, whereas the decreased glycosylation of gN3a is associated with the virus being less virulent. Accordingly, glycosylation of specific HCMV glycoprotein genotypes could have advanced to direct the immune response to generation of non-neutralizing antibodies, therefore, aiding HCMV to escape clearance. These findings demonstrate that glycosylation of glycoprotein in HCMV signifies a potentially essential mechanism for avoidance of antibody-mediated neutralization, which, in turn, facilitates HCMV pathogenicity.

Despite the numerous efforts to develop an effective HCMV vaccine, to date, there is no such vaccine yet available. Opportunely, considering the association found between HCMV specific glycoproteins and their glycosylation in this project, an effort to design a new vaccine with an effective target against these glycoproteins could be a chance to solve this problem. In a study by Hoorelbeke et al., (2011), they found that low glycosylation of gP120 (an HIV envelope glycoprotein), which was analysed by the low affinity of the lectin used (GNL) against the mannose oligomer in the virus glycoprotein was a result of the reduced antiviral activity of this lectin. This proposes that lectins, can be used as antivirals and that they should be considered as putative vaccine targets. Thus, the significantly increased glycosylation of gH mixed genotypes (occurrence of both gH1 and gH2 simultaneously) and gN4a genotype, which was analysed using GSL II lectin indicates the inclusion of the complex type N- glycans in the structure of these glycoproteins. Likewise, the structure of the glycoprotein gO4 comprises of the mannose oligomer indicated by GNL lectin specificity. Also, the existence of the mixed gL genotypes caused a significant increase in their glycosylation levels, which suggests that their structure contains N-acetylgalactosamine glycans. Targeting these sugars molecules could lead to a novel vaccine to be developed. Targeted therapeutic inhibition of glycosylation and subsequent expression of the glycoproteins on the surface of infected cells is an important step in eliminating the virus from the host cell and in expediting recovery from infection. Gantt et al., (2015), for example, reported that the glycosylation of crucial HSV-1 glycoproteins qB and qC which play essential roles in virus maturation and egress stages as a result of glycan-protein triggered intercellular and cell-pathogen interactions, was decreased in the presence of the drug Nelfinavir through a process of aberrant subcellular localization caused by the drug's induction of stress in the endoplasmic reticulum.

Furthermore, it was found that glycoproteins of strains isolated from respiratory specimens were significantly highly glycosylated compared to the blood and urine samples, and from blood specimens compared to the urine samples only. This was analysed using GNL lectin the carbohydrate specificity of which was discussed earlier. Interestingly, only one strain of the four respiratory specimens has gO4 included in its glycoprotein profile, five strains of a total of 77 blood samples, and none of the eight urine samples. This may support the extensive presence of mannose-binding sites within HCMV glycoprotein structure, which would have a considerable impact on the viral infectivity and virulence.

With respect to the results of the glycoprotein glycosylation patterns, which were correlated with that of the virus growth characteristics for the first time in this project, the following observations were revealed: in laboratory strains, the decreased levels of the glycoprotein glycosylation were accompanied by the viral strains' slow growth, while in clinical samples, as expected, the slow growth was accompanied by the increased levels of the glycoproteins' glycosylation.

Furthermore, correlation of the current project results revealed that the disease outcome of HCMV infection could be significantly associated with the glycoprotein genotypes polymorphisms, but this was not according to their prevalence directly; instead it is related to their glycosylation analysis. Consequently, this was related to the pathogenicity of the virus strain. This was suggested as in contrast to the high prevalence of gN3a, gH1, gH2 and gO1a, they all had significantly lower glycosylation levels, which may be associated with their low virulence. The low virulence of some of these glycoprotein types (gN3a) was supported by several other studies as discussed previously. Likewise, the genotypes: mixed gH, gN4a, gO4, and mixed gL genotypes have had a low prevalence, but significantly high glycosylation levels, possibly indicating their high virulence as was discussed earlier. Moreover, gB1 was the most common among all infection categories, but no significantly the most common, but again no significant glycosylation pattern of this genotype was detected.

However, it is also not feasible to relate the virus pathogenicity and virulence to the glycoproteins through studying their growth characteristic in culture. This might be because the monolayer cell cultures have a limited capability to equal the intricate *in vivo* conditions and critical viral gene functions for virus multiplication and pathogenesis *in vivo* so that this remains unobserved *in vitro*. As a result, HCMV reproduction *in vitro* is unlikely to be representative of the virus replicative process *in vivo*.

Despite this, the growth of the virus was higher among congenitally infected infants compared to the HCMV positive immunocompromised and immunocompetent patients. Also, the strains isolated from urine specimen grew significantly better than the ones isolated from blood samples. This could be related to the virus strains being mostly present in urine specimens from congenitally infected babies and contained higher titre of virus perhaps because these strains are more virulent and so grow significantly faster. No significant association between the virus growth, the glycosylation of the virus glycoproteins and virulence of the viral strains was achieved to be able to confirm this suggestion. This study is the first to investigate such a relationship, and further research with larger sample size is needed to explore these observations further.

In conclusion, primarily, the association between HCMV glycoproteins polymorphism and the altered characteristics of the virus has been confirmed in this project. This was done through proving that a reproducible association between the glycoproteins and their glycosylation patterns exists. This is the most significant finding as regardless of the actual changes seen – which will be system dependent, for the first time a link between glycoprotein polymorphisms and the important process of glycosylation has been made. Extending this work and furthering the understanding of the mechanism by which the virus could escape the host immune response, could help to provide new strategies for both diagnosis related to pathogenesis of the different strains, and for an effective HCMV vaccine with a new therapeutic target.

5.5 Limitation of the study

• Although the ELLA method used in this study allowed a quantitative measure of viral glycosylation to be made. It relies on growth of virus in culture the possibility that the viral strains tested have been passaged more than once and mutated means that the ELLA results may differ from the true picture *in vivo*.

As well as the problem associated with culture grown virus, the cell culture is
 a time-consuming, specialised and laborious method for identifying the positive
 HCMV isolates.

• Identifying the strains glycoproteins profile using PCR/RFLP assay caused some difficulties regarding reading some of the bands due to the presence of overlapping ones. Again, a better approach would be to sequence the genomes, but for reasons of cost and availability, this option was not possible at the beginning of this project.

• The exclusion of groups with small numbers of cases (<4) from the statistical analysis was done to reach significant and accurate results of the study. A statistical test such as ANOVA compares the mean of multiple groups and gives a result stating that one group has a significant result (such as gN), without determining which subgroup (such as gN3a) was significant compared to which subgroups of that glycoprotein. However, given that the sample size was already not large this may have masked some observations. Consequently, to have a specific genotype that is significantly related to the virus virulence and pathogenicity, a follow up statistical test (such as Bonferroni post hoc), which does not perform a comparison between subgroups with a low number of cases, had to be carried out.

5.6 Future work

• Further study with larger sample size is certainly needed to support and confirm the attained results. This would allow a larger and wider number of genotypes to be detected increasing the size of the sample groups and give more power to the findings observed in the study.

 Using a more advanced and non-cell culture dependent technique such as sequencing to analyse the virus genome and proteins directly from the clinical samples, could help in avoiding drawbacks of the RFLP method as well as allowing high throughput of samples with detailed sequence results. RFLP is only able to detect the gross mutations, but other changes in the genome were missed with this method.

• Although the use of cell culture here has revealed some interesting results, a major limitation is the inability to directly relate the results to in vivo work, due to the glycosylation being host cell dependent. There are several possibilities to overcome this limitation; firstly, the cell culture system could be adapted to use primary cell lines, e.g. neural cell lines, which may provide data which is closer to the *in vivo* situation. An alternative approach would be to identify the glycoprotein types of interest and express these in an alternative system such as a baculovirus system to produce a protein which can be examined by crystallography and study the effects the mutation has on the protein structure allowing prediction of the glycosylation pattern. Similarly, site directed mutagenesis could be used to introduce specific mutations and create a recombinant virus that displayed the genotypes of interest to see how its characteristics changed as a result of the mutation.

 Designing a prospective study would allow more patient information to be obtained; such as age, sex, clinical manifestations, control the time of specimen collection, and specimen handling to ensure that no confounding factors are introduced to the results.

• The study could be extended by investigating the interaction between the virus glycoprotein polymorphism and the host immune response, for example looking at levels of antibody and cytokine produced in response to infection which could lead to a better understanding of the virus pathogenicity and virulence.

REFERENCES

- Abdrhman, O. (2001). *Cytomegalovirus glycoprotein genotypes and disease pathogenesis.* PhD thesis: University of Manchester.
- Abele, R., & Tampé, R. (1999). Function of the transport complex TAP in cellular immune recognition. *Biochimica et Biophysica Acta*, 1461(2), 405–419.
- Aebi, M., Nasab, F., & Frey, A. (2013). US 2013/0040897 A1. United States: Patent Application Publication.
- Ahlfors, K., Ivarsson, S. a, & Harris, S. (1999). Report on a long-term study of maternal and congenital cytomegalovirus infection in Sweden. Review of prospective studies available in the literature. *Scandinavian Journal of Infectious Diseases*, 31(5), 443–457.
- Al-Mahtab, M., Rahman, S., & Khan, M. (2009). Acute cytomegalovirus hepatitis in immunocompetent host. *Kathamandu University Medical Journal*, 25(7), 79–81.
- Albanna, E. A. E., El-Latif, R. S. A., Sharaf, H. A., Gohar, M. K., & Ibrahim, B. M. (2013). Diagnosis of congenital cytomegalovirus infection in high risk neonates. *Mediterranean Journal of Hematology and Infectious Diseases*, 5(1), 1–7.
- Allice, T., Cerutti, F., Pittaluga, F., Varetto, S., Franchello, A., Salizzoni, M., & Ghisetti, V. (2008). Evaluation of a novel real-time PCR system for cytomegalovirus DNA quantitation on whole blood and correlation with pp65-Antigen test in guiding preemptive antiviral treatment. *Journal of Virological Methods*, 148(1–2), 9–16.
- Angelova, M., Zwezdaryk, K., Ferris, M., Shan, B., Morris, C. A., & Sullivan, D. E. (2012). Human cytomegalovirus infection dysregulates the canonical Wnt/b-catenin signaling pathway. *PLoS Pathogens*, 8(10).
- Arav-Boger, R. (2015). Strain variation and disease severity in congenital CMV infection In search of a viral marker. *Infectious Diseases Clinics of North America*, *3*(29), 401–414.
- Arcangeletti, M.-C., Vasile Simone, R., Rodighiero, I., De Conto, F., Medici, M.-C., Martorana, D., Chezzi, C., Calderaro, A. (2015). Combined genetic variants of human cytomegalovirus envelope glycoproteins as congenital infection markers. *Virology Journal*, 12(1), 202.
- Arista, S., De Grazia, S., Giammanco, G. M., Di Carlo, P., & Iannitto, E. (2003). Human cytomegalovirus Glycoprotein B genotypes in immunocompetent, immunocompromised, and congenitally infected italian populations. *Archives of Virology*, *148*(3), 547–554.
- Avetisyan, G., Aschan, J., Hägglund, H., Ringdén, O., & Ljungman, P. (2007). Evaluation of intervention strategy based on CMV-specific immune responses after allogeneic SCT. *Bone Marrow Transplantation*, 40(9), 865–869.
- Ayyappan, a P., Thomas, R., Kurian, S., Christopher, D. J., & Cherian, R. (2006). Multiple cavitating masses in an immunocompromised host with rheumatoid arthritis-related interstitial lung disease: an unusual expression of cytomegalovirus pneumonitis. *The British Journal of Radiology*, 79(947), e174–e176.
- Azad, A., Ahmed, T., Chowdhury, A., Rahim, M., Mahmud, A., & Rahman, M. (2008). Cytomegalovirus induced hepatitis in an immunocompetent host. *Mymensingh Medical Journal*, 17(2), 104–106.
- Bagdonaite, I., Nordén, R., Joshi, H. J., King, S. L., Vakhrushev, S. Y., Olofsson, S., & Wandall, H. H. (2016). Global mapping of o-glycosylation of varicella zoster virus, human cytomegalovirus, and Epstein Barr virus. *Journal of Biological Chemistry*, 291(23), 12014–12028.

- Bala, T. (2010). Development of a lectin-Based ELISA for analysis of glycan alterations to microvascular endothelium in response to challenge with group B Streptococci. MSc dissertation: University of Manchester.
- Barbi, M., Binda, S., Caroppo, S., Primache, V., Didò, P., Guidotti, P., Corbetta, C., & Melotti, D. (2001). CMV gB genotypes and outcome of vertical transmission: Study on dried blood spots of congenitally infected babies. *Journal of Clinical Virology*, 21(1), 75–79.
- Barbi, M., Binda, S., Primache, V., & Clerici, D. (1998). Congenital cytomegalovirus infection in a northern Italian region. *European Journal of Epidemiology*, *14*(8), 791–796.
- Baumann, G. H. (Ed.). (2011). *Congenital cytomegalovirus infection: Epidemiology, Diagnosis, Therapy.* Germany: Springer-Verlag Wien.
- Belicky, T., Katrlik, J., & Tka, J. (2016). Glycan and lectin biosensors. *Essays in Biochemistry*, 60(1), 37–47.
- Benshushan, A., Brzezinski, A., Ben-David, A., & Nadjari, M. (1998). Early recurrent CMV infection with severe outcome to the fetus. *Acta Obstet Gynecol Scand*, *77*, 694–698.
- Bieniek, R., Kirby, J. E., Cheng, a., Eichelberger, K., & Qian, Q. (2011). Effective use of PCR for the detection of cytomegalovirus viremia and monitoring therapy in immunocompromised patients. *Laboratory Medicine*, 42(6), 339–343.
- Billstrom, M. a, & Britt, W. J. (1995). Postoligomerization folding of human cytomegalovirus gGlycoprotein B: Identification of folding intermediates and importance of disulfide bonding. *Journal of Virology*, 69(11), 7015–7022.
- Biron, K. K. (2006). Antiviral drugs for cytomegalovirus diseases. *Antiviral Research*, 71(2–3), 154–163. https://doi.org/10.1016/j.antiviral.2006.05.002
- Boehme, K., & Compton, T. (2006). Virus entry and activation of innate immunity. In M. Reddehase (Ed.), *Cytomegaloviruses: Molecular Biology and Imunology* (pp. 111–130). Norfolk: Caister Academic Press.
- Boppana, S., & Britt, W. (2006). Cytomegalovirus. In V. Newton & P. Vallely (Eds.), *Infection* and hearing impairment (pp. 67–91). West Sussex: Wiley.
- Boppana, S. B., Pass, R. F., Britt, W. J., Stagno, S., & Alford, C. A. (1992). Symptomatic congenital cytomegalovirus infection: neonatal morbidity and mortality. *The Pediatric Infectious Disease Journal*.
- Boyle, K. a, & Compton, T. (1998). Receptor-binding properties of a soluble form of human cytomegalovirus glycoprotein B. *Journal of Virology*, 72(3), 1826–1833.
- Brantsaeter, A. B., Holberg-Petersen, M., Jeansson, S., Goplen, A. K., & Bruun, J. N. (2007). CMV Quantitative PCR in the diagnosis of CMV disease in patients with HIV-infection - a retrospective autopsy based study. *BMC Infectious Diseases*, 7(127), 1–8.
- Brennan, D. C. (2001). Cytomegalovirus in renal transplantation. *Journal of the American Society of Nephrology*, *12*(4), 848–855.
- Brennan, D., Garlock, K., Lippmann, B., Buller, R., Gaudreault-Keener, M., Lowell, J., Miller, S., Shenoy, S., Howard, T., & Storch, G. (1997). Control of cytomegalovirus-associated transplant patients using intensive preemptive or deferred therapy. *Journal of the American Society of Nephrology*, 8, 118–125.
- Britt, W. J., & Mach, M. (1996). Human cytomegalovirus glycoproteins. *Intervirology*, *39*, 401–412.

- Brooks GF, Carrollm KC, Butel JS, Morse SA, and M. T. (2010). *Jawetz, Melnick and Adelberg's Medical microbiology, 25th edition. McGraw-Hil Publishing Company.* New York.
- Buhamad, Z. (2018). *Cytomegalovirus Glycoprotein Types and Disease Causation*. PhD thesis: University of Manchester.
- Burke, H. G., & Heldwein, E. E. (2015). Crystal structure of the human cytomegalovirus glycoprotein B. *PLoS Pathogens*, *11*(10), 1–14.
- Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. *Nature Reviews Neuroscience*, 14(5), 365–376.
- Buxmann, H., Hamprecht, K., Meyer-Wittkopf, M., & Friese, K. (2017). Primary human cytomegalovirus (HCMV) infection in pregnancy. *Medicine*, *114*, 45–52.
- Buxmann, H., Stackelberg, O. M. V, Schlößer, R. L., Enders, G., Gonser, M., Meyer-Wittkopf, M., ... Enders, M. (2012). Use of cytomegalovirus hyperimmunoglobulin for prevention of congenital cytomegalovirus disease: A retrospective analysis. *Journal of Perinatal Medicine*, 40(4), 439–446.
- Castillo, J. P., & Kowalik, T. F. (2004). HCMV Infection: Modulating the cell cycle and cell death. *International Reviews of Immunology*, 23, 113–139.
- Chee, M., Rudolph, S. a, Plachter, B., Barrell, B., & Jahn, G. (1989). Identification of the major capsid protein gene of human cytomegalovirus. *Journal of Virology*, *63*(3), 1345–1353.
- Cheeran, M. C., Lokensgard, J. R., & Schleiss, M. R. (2009). Neuropathogenesis of congenital cytomegalovirus infection: Disease mechanisms and prospects for intervention. *Clinical Microbiology Reviews*, 22(1), 99–126.
- Chen, D. H., Jiang, H., Lee, M., Liu, F., & Zhou, Z. H. (1999). Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. *Virology*, 260(1), 10–16.
- Chen, J. Y., Zheng, T. L., Zhou, T., Hu, P. W., Huang, M. J., Xu, X., & Pei, X. F. (2016). Human cytomegalovirus prevalence and distribution of glycoprotein B, O genotypes among hospitalized children with respiratory infections in west China, 2009-2014. *Tropical Medicine and International Health*.
- Chou, S. (1992). Comparative analysis of sequence variation in gp116 and gp55 components of glycoprotein B of human cytomegalovirus. *Virology*, *188*(1), 388–390.
- Chou, S., & Dennison, K. M. (1991). Analysis of interstrain variation in cytomegalovirus glycoprotein B sequences encoding neutralization-related epitopes. *Journal of Infectious Diseases*, *163*(6), 1229–1234.
- Cicin-Sain, L., Brien, J. D., Uhrlaub, J. L., Drabig, A., Marandu, T. F., & Nikolich-Zugich, J. (2012). Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. *PLoS Pathogens*, *8*.
- Coaquette, A., Bourgeois, A., Dirand, C., Varin, A., & Chen, W. (2004). Mixed cytomegalovirus glycoprotein B genotypes in immunocompromised patients. *Clinical Infectious Diseases*, *39*(2), 155–161.
- Compton, T., & Feire, A. (2007). Early events entry in human cytomegalovirus infection. In A. Arvin, G. Campadelli-Fiume, E. Mocarski, P. Moore, B. Roizman, R. Whitley, & K. Yamanishi (Eds.), *Human herpesviruses: Biology, therapy, and immunoprophylaxis*. Cambridge: Cambridge University Press.

- Cook, J. D., & Lee, J. E. (2013). The Secret Life of Viral Entry Glycoproteins: Moonlighting in Immune Evasion. PLoS Pathogens, 9(5), e1003258.
- Cortese, M., Calò, S., D'Aurizio, R., Lilja, A., Pacchiani, N., & Merola, M. (2012). Recombinant human cytomegalovirus (HCMV) RL13 Binds Human Immunoglobulin G Fc. *PloS One*, *7*(11).
- Coulibaly, F. S., & Youan, C. B.-B. (2017). Current status of lectin-based cancer diagnosis and therapy. *AIMS Molecular Science*, 4(1), 1–27.
- Courivaud, C., Bamoulid, J., Chalopin, J.-M., Gaiffe, E., Tiberghien, P., Saas, P., & Ducloux, D. (2013). Cytomegalovirus exposure and cardiovascular disease in kidney transplant recipients. *The Journal of Infectious Diseases*, *207*(10), 1569–1575.
- Crough, T., & Khanna, R. (2009). Immunobiology of human cytomegalovirus: From bench to bedside. *Clinical Microbiology Reviews*, 22(1), 76–98.
- Cummings, R., & Etzler, M. (2009). Antibodies and lectins in glycan analysis. In A. Varki, R. Cummings, J. Esko, H. Freeze, C. Bertozzi, & M. Hart, G Etzler (Eds.), *Essentials of glycobiology* (2ed ed.). Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press.
- Dall'Olio, F., Mahgolini, N., Campadelli-Fiume, G., & Serafini-Cessi, F. (1987). Glycosylation pattern of herpes simplex virus type 2 glycoprotein G from precursor species to the mature form. Archives of Virology, 97, 237–249.
- Dargan, D. J., Jamieson, F. E., MacLean, J., Dolan, A., Addison, C., & McGeoch, D. J. (1997). The published DNA sequence of human cytomegalovirus strain AD169 lacks 929 base pairs affecting Genes UL42 and UL43. *Journal of Vrology*, 71(12), 9833–9836.
- Demmler, G. (2004). *Textbook of pediatric infectious diseases*. (R. Feigia, Ed.) (5th ed.). Pennsylvania: Saunders.
- Detrick, B., Rhame, J., Wang, Y., Nagineni, C. N., & Hooks, J. J. (1996). Cytomegalovirus replication in human retinal pigment epithelial cells. Altered expression of viral early proteins. *Investigative Ophthalmology & Visual Science*, 37(5), 814–825.
- Dieamant, D. C., Bonon, S. H. A., Peres, R. M. B., Costa, C. R. C., Albuquerque, D. M., Miranda, E. C. M., Aranha, F. J. P., Oliveira-Duarte, G., Fernandes, V. C. A., Souza, C. A. D., Costa, S. C. B., & Vigorito, A. C. (2013). Cytomegalovirus (CMV) genotype in allogeneic hematopoietic stem cell transplantation. *BMC Infectious Dieseases*, 13(Cmv), 310.
- Diwakar, G., Klump, V., Lazova, R., & Pawelek, J. (2015). Evidence for glycosylation as a regulator of the pigmentary system: Key roles of sialyl (a2-6) gal/GalNAc-terminated glycans in melanin synthesis and transfer. *Glycoconjugate Journal*, *32*(6), 413–420.
- Dolan, A., Cunningham, C., Hector, R. D., Hassan-Walker, A. F., Lee, L., Addison, C., Dargan, D., McGeoch, D., Gatherer, D., Emery, v., Griffiths, P., Sinzger, C., McSharry, B., Wilkinson, G., & Davison, A. J. (2004). Genetic content of wild-type human cytomegalovirus. *Journal of General Virology*, *85*(5), 1301–1312.
- Drew, W. L. (1992). Nonpulmonary manifestations of cytomegalovirus infection in immunocompromised patients. *Clinical Microbiology Reviews*, 5(2), 204–210.
- Dudgeon, J. (1971). Cytomegalovirus infection. *Archives of Disease in Childhood*, *4*6, 581–583.
- Dunn, W., Chou, C., Li, H., Hai, R., Patterson, D., Stolc, V., Zhu, H., & Liu, F. (2003). Functional profiling of a human cytomegalovirus genome. *Proceedings of the National Academy of Sciences of the United States of America*, 100(24), 14223–14228.

- Erice, a, Tierney, C., Hirsch, M., Caliendo, a M., Weinberg, A., Kendall, M. a, & Polsky, B. (2003). Cytomegalovirus (CMV) and human immunodeficiency virus (HIV) burden, CMV end-organ disease, and survival in subjects with advanced HIV infection (AIDS clinical trials group protocol 360). *Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America*, 37(4), 567–578.
- Fais, M., Karamanska, R., Russell, D. a., & Field, R. a. (2009). Lectin and carbohydrate microarrays: New high-throughput methods for glycoprotein, carbohydrate-binding protein and carbohydrate-active enzyme analysis. *Journal of Cereal Science*, 50(3), 306–311.
- Fan, J., Zhang, X., Chen, X. M., Gao, H. N., Yang, M. F., Zhao, H., Hu, J., & Ma, W. H. (2009). Monitoring of human cytomegalovirus glycoprotein B genotypes using real-time quantitative PCR in immunocompromised Chinese patients. *Journal of Virological Methods*, 160(1–2), 74–77.
- Fontes-Garfias, C. R., Shan, C., Luo, H., Muruato, A. E., Medeiros, D. B. A., Mays, E., Wang, T., Weaver, S., & Shi, P. Y. (2017). Functional analysis of glycosylation of Zika virus envelope protein. *Cell Reports*, 21(5), 1180–1190.
- Ford-Jones, E. L., Kitai, I., Davis, L., Corey, M., Farrell, H., Petric, M., Kyle, I., Beach, J., Yaffe, B., Kelly, E., Ryan, G., & Gold, R. (1996). Cytomegalovirus infections in Toronto child-care centers: A prospective study of viral excretion in children and seroconversion among day-care providers. *The Pediatric Infectious Disease Journal*, 15(6), 507–514.
- Fowler, K., Stagno, S., Pass, R., Britt, W., T, B., & Alford, C. (1992). The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. *The New England Journal of Medicine*, 326(10), 663–667.
- Freed, D. C., Tang, Q., Tang, A., Li, F., He, X., Huang, Z., Meng, W., Xia, L., Finnefrock, A., Durr, E., Espeseth, A., Casimiroa, D., Zhang, N., Shiver, J., Wang, D., An, Z., & Fu, T.-M. (2013). Pentameric complex of viral glycoprotein H is the primary target for potent neutralization by a human cytomegalovirus vaccine. *Proceedings of the National Academy of Sciences of the United States of America*, *110*(51), E4997-5005.
- Friel, T., Hirsch, M., & Thorner, A. (2012). Epidemiology, clinical manifestations, and treatment of cytomegalovirus infection in immunocompetent hosts.
- Fries, B. C., Chou, S., Boeckh, M., & Torok-storb, B. (1994). Envelope Glycoprotein Genotypes in Frequency Distribution of Cytomegalovirus Bone Marrow Transplant Recipients. *The Journal of Infectious Diseases*, 169(4), 769–774.
- Fu, T.-M., Wang, D., Freed, D. C., Tang, A., Li, F., He, X., Cole, S., Dubey, S., Finnefrock, A. C., Meulen, J., Shiver, J. W., & Casimiro, D. R. (2012). Restoration of viral epithelial tropism improves immunogenicity in rabbits and rhesus macaques for a whole virion Vaccine of human cytomegalovirus. *Vaccine*, 30(52), 7469–7474.
- Fujikawa, T., Numazaki, K., Asanuma, H., & Tsutsumi, H. (2003). Human cytomegalovirus infection during detection of specific T cells by intracellular pregnancy cytokine staining. *International Journal of Infectious Diseases*, 7(3), 215–221.
- Gaddy, C. (2009). *Human cytomegalovirus infection induces the temporal and spatial*. PhD thesis: The George Washington University.
- Gandhi, M. K., & Khanna, R. (2004). Reviews human cytomegalovirus: Clinical aspects, immune regulation, and emerging treatments. *Infectious Diseases*, *4*, 725–738.
- Gandhoke, I., Hussain, S. A., Pasha, S. T., Chauhan, L. S., & Khare, S. (2013, July). Glycoprotein B genotyping in congenital/perinatal cytomegalovirus infection in symptomatic infants. *Indian Pediatrics*.

- Gantt, S., Gachelet, E., Carlsson, J., Barcy, S., Casper, C., & Lagunoff, M. (2015). Nelfinavir impairs glycosylation of herpes simplex virus 1 envelope proteins and blocks virus maturation. Advances in Virology, 2015.
- Gaytant, M., Galama, J., Semmekrot, B., Melchers, W., Sporken, J., Oosterbaan, H., Dop, P., Huisman, A., Merkus, H., & Steegers, E. (2005). The incidence of congenital cytomegalovirus infections in the Netherlands. *Journal of Medical Virology*, *76*(1), 71– 75.
- Genini, E., Percivalle, E., Sarasini, A., Revello, M. G., Baldanti, F., & Gerna, G. (2011). Serum antibody response to the gH/gL/pUL128–131 five-protein complex of human cytomegalovirus (HCMV) in primary and reactivated HCMV infections. *Journal of Clinical Virology*, *52*(2), 113–118.
- Gibson, W. (2008). Structure and formation of the cytomegalovirus virion. *Current Topics in Microbiology and Immunology*, *325*, 187–204.
- Gilbert, C., Julie, H., Emil, T., Lalonde, R., Bergeron, M. G., & Boivin, G. (1999). Human cytomegalovirus glycoprotein B genotypes in blood of AIDS patients: Lack of association with either the viral DNA load in leukocytes or presence of retinitis. *Journal of Medical Virology*, *59*(1), 98–103.
- Gillet, L., May, J. S., Colaco, S., Philip, G., & Stevenson, P. G. (2007). Glycoprotein L disruption reveals two functional forms of the murine gammaherpesvirus 68 glycoprotein H. *Journal of Virology*, *81*(1), 280–291.
- Görzer, I., Kerschner, H., Redlberger-Fritz, M., & Puchhammer-Stöckl, E. (2010). Human cytomegalovirus (HCMV) genotype populations in immunocompetent individuals during primary HCMV infection. *Journal of Clinical Virology*, *48*(2), 100–103.
- Görzer, I., Trajanoski, S., Popow-kraupp, T., & Puchhammer-stöckl, E. (2015). Analysis of human cytomegalovirus strain populations in urine samples of newborns by Ultra Deep Sequencing. *Journal of Cinical Virology*, 73, 101–104.
- Grangeot-Keros, L., Mayaux, M. J., Lebon, P., Freymuth, F., Eugene, G., Stricker, R., & Dussaix, E. (1997). Value of cytomegalovirus (CMV) IgG avidity index for the diagnosis of primary CMV infection in pregnant women. *The Journal of Infectious Diseases*, *175*(4), 944–946.
- Gredmark, S., Britt, W. B., Xie, X., Lindbom, L., & Söderberg-Nauclér, C. (2004). Human cytomegalovirus induces inhibition of macrophage differentiation by binding to human Aminopeptidase N/CD13. *Journal of Immunology*, *173*(8), 4897–4907.
- Gretch, D. R., Gehrz, R. C., & Stinski, M. F. (1988b). Characterization of a human cytomegalovirus glycoprotein complex (gcI). *The Journal of General Virology*, 69, 1205–1215.
- Gretch, D. R., Kari, B., Rasmussen, L., Gehrz, R. C., & Stinski, M. F. (1988). Identification and characterization of three distinct families of glycoprotein complexes in the envelopes of human cytomegalovirus. *Journal of Virology*, *62*(3), 875–881.
- Griffin, C., Wang, E. C. Y., Mcsharry, B. P., Rickards, C., Browne, H., Wilkinson, G. W. G., & Tomasec, P. (2010). Europe PMC funders group characterization of a highly glycosylated form of the human cytomegalovirus HLA class I homologue gpUL18. *Journal of General Virology*, *86*(Pt 11), 2999–3008.
- Griffiths, P. D., & Baboonian, C. (1984). A prospective study of primary cytomegalovirus infection during pregnancy: Final report. *British Journal of Obstetrics and Gynaecology*, 91(4), 307–315.

- Griffiths, P., Plotkin, S., Mocarski, E., Pass, R., Schleiss, M., Krause, P., & Bialek, S. (2013). Desirability and feasibility of a vaccine against cytomegalovirus. *Vaccine*, *31*(2), 197–203.
- Guseva, N. V., Fullenkamp, C. A., Naumann, P. W., Shey, M. R., Ballas, Z. K., Houtman, J. C. D., Forbes, C. S., Heusel, J. W. (2010). Glycosylation contributes to variability in expression of murine cytomegalovirus m157 and enhances stability of interaction with the NK-cell receptor Ly49H. *European Journal of Immunology*, 40(9), 2618–2631.
- Gustafsson, R. K. L., Engdahl, E. E., & Fogdell-Hahn, A. (2012). Development and validation of a q-PCR based TCID₅₀ method for human herpesvirus 6. *Virology Journal*, 9(1), 1.
- Haberland, M., Meyer-König, U., & Hufert, F. T. (1999). Variation within the glycoprotein B gene of human cytomegalovirus is due to homologous recombination. *The Journal of General Virology*, 80 (Pt 6), 1495–1500.
- Hai, R., Chu, A., Li, H., Umamoto, S., Rider, P., & Liu, F. (2006). Infection of human cytomegalovirus in cultured human gingival tissue. *Virology Journal*, *3*(1), 84.
- Härter, G., & Michel, D. (2012). Antiviral treatment of cytomegalovirus infection: An update. *Expert Opinion on Pharmacotherapy*, *13*(5), 623–627.
- Hartshorn, K. L., Webby, R., White, M. R., Tecle, T., Pan, C., Boucher, S., Moreland, R., Crouch, E., & Scheule, R. K. (2008). Role of viral hemagglutinin glycosylation in antiinfluenza activities of recombinant surfactant protein D. *Respiratory Research*, 9, 1–19.
- Hayajneh, W. A., Contopoulos-Ioannidis, D. G., Lesperance, M. M., Venegas, A. M., & Colberg-Poley, A. M. (2001). The carboxyl terminus of the human cytomegalovirus UL37 immediate-early glycoprotein is conserved in primary strains and is important for transactivation. *Journal of General Virology*, 82(7), 1569–1579.
- Hegde, N. R., Tomazin, R. A., Wisner, T. W., Dunn, C., Boname, J. M., Lewinsohn, D. M., & Johnson, D. C. (2002). Inhibition of HLA-DR assembly, transport, and loading by human cytomegalovirus glycoprotein US3: A novel mechanism for evading major histocompatibility complex class II antigen presentation. *Journal of Virology*, *76*(21), 10929–10941.
- Ho, M. (2008). The history of cytomegalovirus and its diseases. *Medical Microbiology and Immunology*, 197(2), 65–73.
- Hobom, U., Brune, W., Messerle, M., Hahn, G., & Koszinowski, U. H. (2000). Fast screening procedures for random transposon libraries of Ccloned herpesvirus genomes: Mutational analysis of human cytomegalovirus envelope glycoprotein genes. *Journal of Virology*, 74(17), 7720–7729.
- Hoorelbeke, B., Van Damme, E. J. M., Rougé, P., Schols, D., Van Laethem, K., Fouquaert, E., & Balzarini, J. (2011). Differences in the mannose oligomer specificities of the closely related lectins from Galanthus Nivalis and Zea Mays strongly determine their eventual anti-HIV activity. *Retrovirology*, 8, 1–16.
- Huber, M. T., & Compton, T. (1998). The human cytomegalovirus UL74 gene encodes the third component of the glycoprotein H-glycoprotein L-containing envelope complex. *Journal of Virology*, *72*(10), 8191–8197.
- ICTV. (2017). Virus Taxonomy: The classification and nomenclature of viruses the online (10th) Report of the ICTV.
- Isaacson, M. K., Juckem, L. K., & Compton, T. (2008). Virus entry and innate immune activation. *Current Topics in Microbiology and Immunology*, 325, 85–100.
- Isomura, H., Stinski, M. F., Murata, T., Yamashita, Y., Kanda, T., Toyokuni, S., & Tsurumi, T. (2011). The human cytomegalovirus gene products essential for late viral gene

expression assemble into prereplication complexes before viral DNA replication. *Journal of Virology*, *85*(13), 6629–6644.

- Jackson, S. E., Mason, G. M., & Wills, M. R. (2011). Human cytomegalovirus immunity and immune evasion. *Virus Research*, 157(2), 151–160.
- Jacobs, J. P., M., J. C., & Baille, J. P. (1970). Characteristics of a Human Diploid Cell Designated MRC-5. *Nature*, 227(5254), 168–170.
- Jacobs, M. G., Robinson, P. J., Bletchly, C., Mackenzie, J. M., & Young, P. R. (2000). Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. *Federation of American Societies for Experimental Biology*, 14(11), 1603–1610.
- Jiang, X.-J., Zhang, J., Xiong, Y., Jahn, G., Xiong, H. R., Yang, Z. Q., & Liu, Y. Y. (2017). Human cytomegalovirus glycoprotein polymorphisms and increasing viral load in AIDS patients. *PLoS ONE*, 12(5), 1–14.
- Jonjic, S., Mutter, W., Weiland, F., Reddehase, M., & Koszinowskii, U. (1989). Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. *The Journal of Experimental Medicicne*, 169(4), 1199–1212.
- Kadambari, S., Williams, E. J., Luck, S., Griffiths, P. D., & Sharland, M. (2011). Evidence based management guidelines for the detection and treatment of congenital CMV. *Early Human Development*, 87(11), 723–728.
- Kalejta, R. F. (2008). Tegument proteins of human cytomegalovirus. *Microbiology and Molecular Biology Reviews*, 72(2), 249–265.
- Kamhi, E., Joo, E. J., Dordick, J. S., & Linhardt, R. J. (2013). Glycosaminoglycans in infectious disease. *Biological Reviews of The Cambridge Philosophical Society*, 88(4), 928-43.
- Kangro, H. O., Griffiths, P. D., Huber, T. J., & Heath, R. B. (1982). Specific IgM class antibody production following infection with cytomegalovirus. *Journal of Medical Virology*, 10(3), 203–212.
- Kari, B., & Gehrz, R. (1993). Structure, composition and heparin binding properties of a human cytomegalovirus glycoprotein complex designated gC-II. *The Journal of General Virology*, 74, 255–264.
- Kari, B., Radeke, R., & Gehrz, R. (1992). Processing of human cytomegalovirus envelope glycoproteins in and egress of cytomegalovirus from human astrocytoma cells. *The Journal of General Virology*, 73, 253–260.
- Kashiwagi, Y., Kawashima, H., Matsuura, K., Sasamoto, M., Takekuma, K., Hoshika, A., & Nozaki-Renard, J. (2002). Clinical characteristics and gB genotype of cytomegalovirus infection in Japan. *In Vivo*, 16(6), 447–450.
- Kaye, S., Miles, D., Antoine, P., Burny, W., Ojuola, B., Kaye, P., Rowland-Jones, S., Whittle, H., Van der Sande, M. & Marchant, A. (2008). Virological and immunological correlates of mother-to-child transmission of cytomegalovirus in the Gambia. *The Journal of Infectious Disease*, 197(9), 1307–1314.
- Kenneson, A., & Cannon, M. J. (2007). Review and Meta-Analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. *Reviews in Medical Virology*, *17*, 253–276.
- Khodari, Y. (1999). A study of the molecular immunopathogenesis of cytomegalovirus encephalitis and comparison with other encephalitis. PhD thesis: University of Manchester.

- Kinzler, E. R., & Compton, T. (2005). Characterization of human cytomegalovirus glycoprotein-induced cell-cell fusion characterization of human cytomegalovirus glycoprotein-induced cell-cell fusion. *Journal of Virology*, *79*(12), 7827–7837.
- Knipe, D., & Howley, P. (2013). *Fields Virology* (6th ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.
- Kropff, B., Burkhardt, C., Schott, J., Nentwich, J., Fisch, T., Britt, W., & Mach, M. (2012). Glycoprotein N of human cytomegalovirus protects the virus from neutralizing antibodies. *PLoS Pathogens*, 8(10).
- Landolfo, S., Gariglio, M., Gribaudo, G., & Lembo, D. (2003). The human cytomegalovirus. *Pharmacology & Therapeutics*, 98(3), 269–297.
- Lane, T. (2006). *Chemokines and viral Infection*. Germany: Springer-Verlag Berlin Heidelberg.
- Lazzarotto, T., Spezzacatena, P., Varani, S., Gabrielli, L., Pradelli, P., & Guerra, B. (1999). Anticytomegalovirus (Anti-CMV) immunoglobulin G avidity in identification of pregnant women at risk of transmitting congenital CMV infection. *Clinical and Diagnostic Laboratory Immunology*, 6(1), 127–129.
- Leathem, A., & Brooks, S. (1998). Light Microscopy: Overview and basic methods. In J. Rhodes & J. Milton (Eds.), *Methods in Molecular Medicine: Lectin Methods and Protocols* (1–20). London: Humana Press Inc.
- Lepenies, B. (Ed.). (2015). Carbohydrate-based vaccines: Methods and protocols. Carbohydrate-Based vaccines: Methods and protocols (44), 1-255.
- Leung, A. K. C., Sauve, R. S., & Dele Davies, H., (2003). Congenital cytomegalovirus infection. *Journal of The National Medical Association*, 95(3), 213–218.
- Li, W., Tao, R., Zhang, X., Shu, Q., Gao, H. H., Shang, S. Q., Peng, Z., Li, H. M. (2015). Rapid and sensitive identification of glycoprotein H genotypes in clinical human cytomegalovirus samples. *Japanese Journal of Infectious Diseases*. 68(2), 135-137.
- Liesnard, C., Donner, C., Brancart, F., Gosselin, F., Delforge, M. L., & Rodesch, F. (2000). Prenatal diagnosis of congenital cytomegalovirus infection: prospective study of 237 pregnancies at risk. *Obstetrics & Gynecology*, 95(6 Pt 1), 881–888.
- Lilleri, D., Piccinini, G., Baldanti, F., Seminari, E., Galloni, D., & Gerna, G. (2003). Multiple relapses of human cytomegalovirus retinitis during HAART in an AIDS patient with reconstitution of CD4+ T cell count in the absence of HCMV-specific CD4+ T cell response. *Journal of Clinical Virology*, *26*(1), 95–100.
- Ljungman, P., Deliliers, G., Platzbecker, U., Matthes-Martin, S., & Bacigalupo, A. (2001). Cidofovir for cytomegalovirus infection and disease in allogeneic stem cell transplant recipients. *Blood*, *97*(2), 388–392.
- Lodish H, Berk A, Zipursky SL, et al. (2000). Protein glycosylation in the ER and Golgi complex. In *Molecular Cell Biology* (4th ed.). New York: W. H. Freeman.
- Loh, H.-S., Mohd-Lila, M.-A., Abdul-Rahman, S.-O., & Kiew, L.-J. (2006). Pathogenesis and vertical transmission of a transplacental rat cytomegalovirus. *Virology Journal*, 42(3), 1–14.
- Loveland, A. N., Nguyen, N. L., Brignole, E. J., & Gibson, W. (2007). The amino-conserved domain of human cytomegalovirus UL80a proteins is required for key interactions during early stages of capsid formation and virus production. *Journal of Virology*, *81*(2), 620–628.

- Lukcsi, A., Tardi, B., Endreffy, E., Bbinszki, G., Pl, A., & Pusztai, R. (2001). Human cytomegalovirus gB genotype 1 is dominant in congenital infections in South Hungary. *Journal of Medical Virology*, 65(3), 537–542.
- Ma, Y., Feng, J., Qi, Y., & Dou, X. G. (2011). An immunocompetent adult patient with hepatitis and guillain-barré syndrome after cytomegalovirus infection. *Virology Journal*, 8(95), 1–3.
- Mach, M., Kropff, B., Monte, P. D. A. L., & Britt, W. (2000). Complex Formation by Human Cytomegalovirus Glycoproteins M (gpUL100) and N (gpUL73). *Journal of Virology*, 74(24), 11881–11892.
- Mach, M., Stamminger, T., & Jahn, G. (1989). Human Cytomegalovirus: Recent Aspects from Molecular Biology II I IoV I V IPIvI, I A IwI 8 IIIJ otol E2. *Journal of General Virology*, 70, 3117–3146.
- Madi, N., Al-Nakib, W., Pacsa, A., & Saeed, T. (2011). Cytomegalovirus genotypes gB1 and gH1 are the most predominant genotypes among renal transplant recipients in Kuwait. *Transplantation Proceedings*, *43*(5), 1634–1637.
- Maiorana, A., Baccarini, P., Foroni, M., Bellini, N., & Giusti, F. (2003). Human cytomegalovirus infection of the gastrointestinal tract in apparently immunocompetent patients. *Human Pathology*, 34(12), 1331–1336.
- Malkinson, M., Orgad, U., & Becker, Y. (1986). Use of Lectins to Ditect and Differentiate Subtypes of Mark's Disease Virus and Turkey Herpesvirus Glycoproteins in Tissue Culture. *Journal of Virological Methods*, *13*, 129–133.
- Manuel, O., Pang, X. L., Humar, A., Kumar, D., Doucette, K., & Preiksaitis, J. K. (2009). An assessment of donor-to-recipient transmission patterns of human cytomegalovirus by analysis of viral genomic variants. *The Journal of Infectious Diseases*, *199*(11), 1621–1628.
- Marttila, a T., Laitinen, O. H., Airenne, K. J., Kulik, T., Bayer, E. a, Wilchek, M., & Kulomaa, M. S. (2000). Recombinant NeutraLite avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. *FEBS Letters*, 467(1), 31–36.
- Mattes, F. M., McLaughlin, J. E., Emery, V. C., Clark, D. A., & Griffiths, P. D. (2000). Histopathological detection of owl's eye inclusions is still specific for cytomegalovirus in the era of human herpesviruses 6 and 7. *Journal of Clinical Pathology*, 53(8), 612–614.
- McElhinney, L. M., Cooper, R. J., & Morris, D. J. (1995). Multiplex polymerase chain reaction for human. *Journal of Virology*, *53*, 223–233.
- McVoy, M. a, & Adler, S. P. (1994). Human cytomegalovirus DNA replicates after early circularization by concatemer formation, and inversion occurs within the concatemer. *Journal of Virology*, 68(2), 1040–1051.
- Medina, R., Stertz, B., Manicassamy, P., & Zimmermann, X. (2013). Glycosylations in the Globular Head of the Hemagglutinin Protein Modulate the Virulence and Antigenic Properties of the H1N1 Influenza Viruses. *Science Translational Medicine*, *5*(187).
- Meier, J., Lienicke, U., Tschirch, E., Detlev, H., Wauer, R. R., & Prösch, S. (2005). Human Cytomegalovirus Reactivation during Lactation and Mother-to-Child Transmission in Preterm Infants Human Cytomegalovirus Reactivation during Lactation and Mother-to-Child Transmission in Preterm Infants. *Journal of Clinical Microbiology*, 43(3), 1318– 1324.
- Meyer-König, U., Haberland, M., von Laer, D., Haller, O., & Hufert, F. T. (1998). Intragenic variability of human cytomegalovirus glycoprotein B in clinical strains. *The Journal of Infectious Diseases*, *177*(5), 1162–1169.

- Miller, D. M., Cebulla, C. M., Rahill, B. M., & Sedmak, D. D. (2001). Cytomegalovirus and transcriptional down-regulation of major histocompatibility complex class II expression. *Seminars in Immunology*, *13*(1), 11–18.
- Mocarski, E., Shrenk, T., & Pass, R. (2007). *Cytomegaloviruses*. (D. M. Knipe, P. M. Howley, D. Griffin, R. Lamb, M. Martin, B. Roizman, & S. Straus, Eds.) (5th ed., Vol. 100).
 Philadelphia: Lippincott Williams & Williams, Wolter Kluwer.
- Mocarski, J. (2007). Betaherpes viral genes and their functions. In A. Rvin, G. Campadelli-Fiume, E. Mocarski, P. Moore, B. Roizman, R. Whitley, & K. Yamanishi (Eds.), *Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis*. Cambridge: Cambridge University Press.
- Moffat, J. F., Zerboni, L., Kinchington, P. R., Grose, C., Kaneshima, H., & Arvin, A. M. (1998). Attenuation of the vaccine Oka strain of varicella-zoster virus and role of glycoprotein C in alphaherpesvirus virulence demonstrated in the SCID-hu mouse. *Journal of Virology*, *72*(2), 965–974.
- Mujtaba, G., Khurshid, A., Sharif, S., Alam, M. M., Aamir, U. B., Shaukat, S., Angez, M., Rana, M., Umair, M., Shah, A., & Zaidi, S. S. Z. (2016). Distribution of cytomegalovirus genotypes among neonates born to infected mothers in Islamabad, Pakistan. *PLoS ONE*, 11(7), 1–14.
- Munro, S. C., Trincado, D., Hall, B., & Rawlinson, W. D. (2005). Symptomatic infant characteristics of congenital cytomegalovirus disease in Australia. *Journal of Paediatrics and Child Health*, *41*(8), 449–452.
- Murphy, E., & Shenk, T. (2008). Human Cytomegalovirus Genome. *Current Topics in Microbiology and Immunology*, 325, 1–19.
- Murrell, I., Bedford, C., Ladell, K., Miners, K. L., Price, D. A., Tomasec, P., Wilkinson, G. & Stanton, R. J. (2017). The pentameric complex drives immunologically covert cell-cell transmission of wild-type human cytomegalovirus. *Proceedings of the National Academy* of Sciences, 114(23), 6104–6109.
- Nahar, S., Hokama, A., Iraha, A., Ohira T., Kinjo, T., Hirata, T., Kinjo, T., Parrott, G. L., & Jiro Fujita1. (2018). Distribution of cytomegalovirus genotypes among ulcerative colitis patients in Okinawa, Japan Saifun. *Intestinal Research*, *16*(1), 90–98.
- Nakamura-Tsuruta, S., Kominami, J., Kamei, M., Koyama, Y., Suzuki, T., Isemura, M., & Hirabayashi, J. (2006). Comparative analysis by frontal affinity chromatography of oligosaccharide specificity of GlcNAc-binding lectins, Griffonia simplicifolia lectin-II (GSL-II) and Boletopsis leucomelas lectin (BLL). *Journal of Biochemistry*, 140(2), 285– 291.
- Newrzella, D., & Stoffel, W. (1996). Functional Analysis of the Glycosylation of Murine Acid Sphingomyelinase. *Journal of Biological Chemistry*, 271(50), 32089–32095.
- Nigro, G., Adler, S. P., La Torre, R., Best, A. M., & Congenital Cytomegalovirus Collaborating Group. (2005). Passive immunization during pregnancy for congenital cytomegalovirus infection. *The New England Journal of Medicine*, *353*(13), 1350–1362.
- Noriega, V. M., & Tortorella, D. (2009). Human cytomegalovirus-encoded immune modulators partner to downregulate major histocompatibility complex class I molecules. *Journal of Virology*, 83(3), 1359–1367.
- Oduro, J. D., Uecker, R., Hagemeier, C., & Wiebusch, L. (2012). Inhibition of human cytomegalovirus immediate-early gene expression by cyclin A2-dependent kinase activity. *Journal of Virology*, *86*(17), 9369–9383.

- Oka, N., Suzuki, T., Inoue, T., Kobayashi, T., & Ohashi, Y. (2015). Polymorphisms in cytomegalovirus genotype in immunocompetent patients with corneal endotheliitis or iridocyclitis. *Journal of Medical Virology*, 87(8), 1441–1445.
- Olofsson, S., Milla, M., Hirschberg, C., De Clercq, E., & Datema, R. (1988). Inhibition of terminal N- and O-glycosylation specific for herpesvirus-infected cells: mechanism of an inhibitor of sugar nucleotide transport across Golgi membranes. *Virology*, 166(2), 440– 450.
- Ornoy, A., & Diav-Citrin, O. (2006). Fetal effects of primary and secondary cytomegalovirus infection in pregnancy. *Reproductive Toxicology*, 21(4), 399–409.
- Paca-Uccaralertkun, S., Hiatt, R., Leecharoen, R., Tan-Ariya, P., Mungthin, M., & Pongphong, S. (2013). Human cytomegalovirus gB1 genotypes among children who live at the Phayathai Babies' home in Nonthaburi, Thailand. *The Southeast Asian Journal of Tropical Medicine and Public Health*, 44(4), 636–640.
- Paixão, P., Almeida, S., Gouveia, P., Vilarinho, L., & Osório, R. V. (2009). Prevalence of human cytomegalovirus congenital infection in Portugese newborns. *Euro Survrillance*, 14(9).
- Pankaj, K. (2013). Methods for Rapid Virus Identification and Quantification. *Labome*, 3(207), 1–7.
- Paradowska, E., Studzińska, M., Nowakowska, D., Wilczyński, J., Rycel, M., Suski, P., Gaj, Z., Kaczmarek, B., Zbróg, Z., & Leśnikowski, Z. J. (2011). Distribution of UL144, US28 and UL55 genotypes in Polish newborns with congenital cytomegalovirus infections. *European Journal of Clinical Microbiology & Infectious Diseases*, 31(7), 1335–1345.
- Paradowska, E., Jablońska, A., Studzińska, M., Kasztelewicz, B., Zawilińska, B., Wiśniewska-Ligier, M., Dzierżanowska-Fangrat, K., Woźniakowska-Gęsicka, T., Kosz-Vnenchak, Ma., & Leśnikowski, Z. J. (2014). Cytomegalovirus glycoprotein H genotype distribution and the relationship with hearing loss in children. *Journal of Medical Virology*, 86(8), 1421– 1427.
- Paradowska, E., Woźniakowska-gęsicka, T., Czech-kowalska, J., Lipka, B., Kornacka, M., & Pawlik, D. (2013). Distribution of cytomegalovirus gN variants and associated clinical sequelae in infants. *Journal of Clinical Virology*, 58(1), 271–275.
- Pass, R. F., Zhang, C., Evans, A., Simpson, T., Andrews, W., Huang, M.-L., Corey, L., Hill, J., Davis, E., Flanigan, C., & Cloud, G. (2009). Vaccine prevention of maternal cytomegalovirus infection. *The New England Journal of Medicine*, 360(12), 1191–1199.
- Pati, S. K., Novak, Z., Purser, M., Arora, N., Mach, M., Britt, W. J., & Boppana, S. B. (2012). Strain-specific neutralizing antibody responses against human cytomegalovirus envelope glycoprotein N. *Clinical and Vaccine Immunology*, 19(6), 909–913.
- Patton, W. F. (2002). Detection technologies in proteome analysis. *Journal of Chromatography*, 771(1–2), 3–31.
- Paulus, C., & Nevels, M. (2009). The Human Cytomegalovirus Major Immediate-Early Proteins as Antagonists of Intrinsic and Innate Antiviral Host Responses. *Viruses*, (1), 760–779.
- Pellet, P. E., & Roizman, B. (2007). The Family Herpesviridae: A Brief Introduction. In D. M. Knipe, P. M. Howley, D. Griffin, R. Lamb, M. Martin, B. Roizman, & S. Straus (Eds.) (5th ed., pp. 2479–2485). Philadelphia: Lippincott Williams & Williams, Wolter Kluwer.
- Peter-Katalinić, J. (2005). Methods in enzymology: O-glycosylation of proteins. *Methods in Enzymology*, 405(5), 139–171.

- Phillips, S. L., Cygnar, D., Thomas, A., & Bresnahan, W. a. (2012). Interaction between the human cytomegalovirus tegument proteins UL94 and UL99 is essential for virus replication. *Journal of Virology*, 86(18), 9995–10005.
- Phung, L. (2011). The Optimization and Use of Lectin Assay in the Detection of Glycan Expression in Staphylococcal Biofilms. MSc dissertation: University of Manchester.
- Pietropaolo, R., & Compton, T. (1999). Interference with annexin II has no effect on entry of human cytomegalovirus into fibroblast cells. *The Journal of General Virology*, 80 (Pt 7), 1807–1816.
- Pignatelli, S., Dal Monte, P., & Landini, M. P. (2001). gpUL73 (gN) genomic variants of human cytomegalovirus isolates are clustered into four distinct genotypes. *The Journal* of General Virology, 82, 2777–2784.
- Pignatelli, S. (2003). Human cytomegalovirus glycoprotein N (gpUL73-gN) genomic variants: identification of a novel subgroup, geographical distribution and evidence of positive selective pressure. *Journal of General Virology*, *84*(3), 647–655.
- Pignatelli, S., Dal Monte, P., Rossini, G., & Landini, M. P. (2004). Genetic polymorphisms among human cytomegalovirus (HCMV) wild-type strains. *Reviews in Medical Virology*, 14(6), 383–410.
- Pignatelli, S., Lazzarotto, T., Gatto, M. R., Dal Monte, P., Landini, M. P., Faldella, G., & Lanari, M. (2010). Cytomegalovirus gN genotypes distribution among congenitally infected newborns and their relationship with symptoms at birth and sequelae. *Clinical Infectious Diseases*, *51*(1), 33–41.
- Pignoloni, B., Fionda, C., Dell'Oste, V., Luganini, A., Cippitelli, M., Zingoni, A., Landolfo, S., Gribaudo, G., Santoni, A., & Cerboni, C. (2016). Distinct Roles for Human Cytomegalovirus Immediate Early Proteins IE1 and IE2 in the Transcriptional Regulation of MICA and PVR/CD155 Expression. *The Journal of Immunology*, 197(10), 4066–4078.
- Pilobello, K. T., Krishnamoorthy, L., Slawek, D., & Mahal, L. K. (2005). Development of a lectin microarray for the rapid analysis of protein glycopatterns. *Chembiochem: A European Journal of Chemical Biology*, 6(6), 985–989.
- Pilobello, K. T., & Mahal, L. K. (2007). Deciphering the glycocode: the complexity and analytical challenge of glycomics. *Current Opinion in Chemical Biology*, 11(3), 300–305.
- Plotkin, S. a, Starr, S. E., Friedman, H. M., Gonczol, E., & Brayman, K. (1990). Vaccines for the prevention of human cytomegalovirus infection. *Reviews of Infectious Diseases*, 12(7), 827–838.
- Poole, E., Wills, M., & Sinclair, J. (2014). Human Cytomegalovirus Latency: Targeting differences in the latently infected cell with a view to clearing latent infection. *New Journal of Science*, 1-10.
- Prod'homme, V., Tomasec, P., Cunningham, C., Lemberg, M. K., Davison, A. J., Braud, V. M., & Wilkinson, G. W. G. (2012). Europe PMC funders group human cytomegalovirus UL40 signal peptide regulates cell surface expression of the natural killer cell ligands HLA-E and gpUL18. *Journal of Immunology*, 188(6), 2794–2804.
- Prösch, S., Schielke, E., Reip, A., Meisel, H., Volk, H. D., Einhäupl, K. M., & Krüger, D. H. (1998). Human cytomegalovirus (HCMV) encephalitis in an immunocompetent young person and diagnostic reliability of HCMV DNA PCR using cerebrospinal fluid of nonimmunosuppressed patients. *Journal of Clinical Microbiology*, *36*(12), 3636–3640.
- Puchhammer-Stöck, E., & Görzer, I. (2011). Human Cytomegalovirus: An enormous variety of strains and their possible clinical significance in the human host. *Future Virology.*, 6(2), 259–271.

- Pugel, E. P., & Cekinovic, D. (2011). Pathogenesis of congenital cytomegalovirus infection of the central nervous system. *Periodicum Biologorum*, 113(1), 51–60.
- Qian, H.-L., Cai, T., & Jin, H.-M. (2009). Human Cytomegalovirus Glycoprotein Genotypes in the Genital Tract Tissue of Tubal Pregnancy Patients. *Journal of International Medical Research*, 37(2), 385–391.
- Rajcani, J., & Durmanova, V. (2001). Mechanisms of replication of alpha- and betaherpesviruses and their pathogenesis. *Bratisl Lek Listy*, *102*(11), 505–514.
- Rasmussen, L., Geissler, A., Cowan, C., Chase, A., & Winters, M. (2002). The genes encoding the gCIII complex of human cytomegalovirus exist in highly diverse combinations in clinical isolates. *Journal of Virology*, *76*(21), 10841–10848.
- Rasmussen, L., Geissler, A., & Winters, M. (2003). Inter-and intragenic variations complicate of human molecular epidemiology of human cytomegalovirus. *The Journal of Infectious Diseases*, *187*(5), 809–819.
- Razonable, R. R. (2011). Antiviral drugs for viruses other than human immunodeficiency virus. *Mayo Clinic Proceedings*, *86*(10), 1009–1026.
- Reeves, M. B., Macary, P. A., Lehner, P. J., Sissons, J. G. P., & Sinclair, J. H. (2005). Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. *PNAS*, *102*(11), 4140–4145.
- Reeves, M. B., Davies, A. a, McSharry, B. P., Wilkinson, G. W., & Sinclair, J. H. (2007). Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. *Science*, 316(5829), 1345–1348.
- Renzette, N., Bhattacharjee, B., Jensen, J. D., Gibson, L., & Kowalik, T. F. (2011). Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants. *PLoS Pathogens*, 7(5).
- Renzette, N., Pokalyuk, C., Gibson, L., Bhattacharjee, B., Schleiss, M. R., Hamprecht, K., Yamamoto A., Mussi-Pinhata, M., Britt, W., Jensen, J., & Kowalik, T. (2015). Limits and patterns of cytomegalovirus genomic diversity in humans. *Proceedings of the National Academy of Sciences*, *112*(30), E4120–E4128.
- Revello, M. G., Lilleri, D., Zavattoni, M., Stronati, M., Bollani, L., Middeldorp, J. M., & Gerna, G. (2001). Human cytomegalovirus immediate-early messenger RNA in blood of pregnant women with primary infection and of congenitally infected newborns. *The Journal of Infectious Diseases*, 184(8), 1078–1081.
- Revello, M. G., & Gerna, G. (2002). Diagnosis and Management of Human Cytomegalovirus Infection in the Mother, Fetus, and Newborn Infant. *Clinical and Diagnostic Laboratory Immunology*, 15(4), 680–715.
- Revello, M. G., Lazzarotto, T., Guerra, B., Spinillo, A., Ferrazzi, E., Kustermann, A., Guaschino, S., Vergani, P., Todros, T., Frusca, T., Arossa, A., Furione, M., Rognoni, V., Rizzo, N., Gabrielli, L., Klersy, C., Gerna, G. (2014). A randomized trial of hyperimmune globulin to prevent congenital cytomegalovirus. *Obstetrical and Gynecological Survey*, 69(7), 388–390.
- Ross, D., Dollard, S., Victor, M., Sumartojo, E., & Cannon, M. (2006). The epidemiology and prevention of congenital cytomegalovirus infection and disease: Activities of the centers for disease control and prevention workgroup. *Journal of Women's Health*, *15*(3), 224–229.
- Ross, D. S., Victor, M., Sumartojo, E., & Cannon, M. J. (2008). Women's knowledge of congenital cytomegalovirus: Results from the 2005 HealthStyles[™] Survey. *Journal of Women's Health*, *17*(5), 849–858.

- Ross, S., Arora, N., Novak, Z., Flower, K., Britt, W., & Boppana, S. (2010). Cytomegalovirus (CMV) reinfections in healthy seroimmune women. *Journal of Infectious Diseases*, 201(3), 386–389.
- Ross, S. A., Ahmed, A., Palmer, A. L., Michaels, M. G., Sanchez, P. J., Bernstein, D. I., Tolan, R. W., Novak, Z., Chowdhury, N., Fowler, K. B., & Boppana, S. B. (2014). Detection of congenital cytomegalovirus infection by real-time polymerase chain reaction analysis of saliva or urine specimens. *Journal of Infectious Diseases*, 210(9), 1415–1418.
- Ross, S.A.; Novak, Z.; Pati, S.; Boppana, S. B. (2011b). Diagnosis of cytomegalovirus infections. *Infect Disord Drug Journal*, 11(5), 466–474.
- Ross, S. A, Novak, Z., Pati, S., Patro, R. K., Blumenthal, J., Danthuluri, V. R., Ahmed, A., Michaels, M., Sánchez, P., Bernstein, D., Tolan, R., Palmer, A., Britt, W., Fowler, K., & Boppana, S. B. (2011). Mixed infection and strain diversity in congenital cytomegalovirus infection. *The Journal of Infectious Diseases*, 204(7), 1003–1007.
- Rossini, G., Pignatelli, S., Dal Monte, P., Camozzi, D., Lazzarotto, T., Gabrielli, L., Gatto, M. R., & Landini, M. P. (2005). Monitoring for human cytomegalovirus infection in solid organ transplant recipients through antigenemia and glycoprotein N (gN) variants: evidence of correlation and potential prognostic value of gN genotypes. *Microbes and Infection / Institut Pasteur*, 7(5–6), 890–896.
- Ryckman, B. J., Rainish, B. L., Chase, M. C., Borton, J. A., Nelson, J. A., Jarvis, M. A., & Johnson, D. C. (2008). Characterization of the Human Cytomegalovirus gH/gL/UL128-131 Complex That Mediates Entry into Epithelial and Endothelial Cells. *Journal of Virology*, 82(1), 60–70.
- Ryckman, B. J., Chase, M. C., & Johnson, D. C. (2010). Human cytomegalovirus TR strain glycoprotein O acts as a chaperone promoting gH/gL incorporation into virions but is not present in virions. *Journal of Virology*, 84(5), 2597–2609.
- Ryner, M., Strömberg, J.-O., Söderberg-Nauclér, C., & Homman-Loudiyi, M. (2006). Identification and classification of human cytomegalovirus capsids in textured electron micrographs using deformed template matching. *Virology Journal*, *3*(57), 1–12.
- Sarcinella, L., Mazzulli, T., Willey, B., & Humar, A. (2002). Cytomegalovirus glycoprotein B genotype does not correlate with outcomes in liver transplant patients. *Journal of Clinical Virology*, 24, 99–105.
- Sasisekharan, R., & Myette, J. (2003). The sweet science of glycobiology. *American Scientist*, 91(5), 432–441.
- Scheld, M., Whitley, R. J., & Marra, C. M. (2004). *Infections of the central nervous system* (4th ed.). Philadelphia, PA: Lippincott Williams & Williams, Wolter Kluwer.
- Schindele, B., Apelt, L., Nitsche, A., Michel, D., Voigt, S., Mertens, T., & Ehlers, B. (2010). Improved detection of mutated human cytomegalovirus UL97 by pyrosequencing. *Antimicrobial Agents and Chemotherapy*, *54*(12), 5234–52451.
- Schleiss, M. R. (2011). Congenital cytomegalovirus infection: Molecular mechanisms mediating viral pathogenesis. *Infectious Disorders Drug Targets*, *11*(5), 449–465.
- Schleiss, M. R. (2013). Review article cytomegalovirus in the neonate: Immune correlates of infection and protection. *Clinical and Developmental Immunology*, 1–14.
- Schopfer, K., Lauber, E., & Krech, U. (1978). Congenital cytomegalovirus infection in newborn infants of mothers infected before pregnancy. *Archives of Dsease in Childhood*, 53(7), 536–539.

- Selinsky, C., Luke, C., Wloch, M., Geall, A., Hermanson, G., Kaslow, D., & Evans, T. (2005). A DNA-based vaccine for the prevention of human cytomegalovirus- Associated diseases. *Human Vaccines*, 1(1), 16–23.
- Serafini-Cessi, F., & Campadelli-Fiume, G. (1981). Studies on benzhydrazone, a specific inhibitor of herpesvirus glycoprotein synthesis. Size distribution of glycopeptides and endo-beta-N-acetylglucosaminidase-H treatment. *Archives of Virology*, *70*(4), 331–343.
- Serafini-Cessi, F., Dall'olio, F., Svannavini, M., & Campadelli-Fiume, G. (1983). Processing of herpes simplex virus-1 glycans in cells defective in glycosyl transferases of the Golgi system: Relationship to cell fusion and virion egress. *Virology*, 131(1), 59–70.
- Sharma, S., Wisner, T. W., Johnson, D. C., & Heldwein, E. E. (2013). HCMV gB shares structural and functional properties with gB proteins from other herpesviruses. *Virology*, *435*(2), 239–249.
- Shepp, D. H., Match, M. E., Ashraf, a B., Lipson, S. M., Millan, C., & Pergolizzi, R. (1996). Cytomegalovirus glycoprotein B groups associated with retinitis in AIDS. *The Journal of Infectious Diseases*, 174(1), 184–187.
- Shikhagaie, M., Mercé-Maldonado, E., Isern, E., Muntasell, A., Albà, M. M., López-Botet, M., Hangel, H., & Angulo, A. (2012). The human cytomegalovirus-specific UL1 gene encodes a late-phase glycoprotein incorporated in the virion envelope. *Journal of Virology*, 86(8), 4091–4101.
- Shimamura, M., Mach, M., & Britt, W. J. (2006). Human cytomegalovirus infection elicits a glycoprotein M (gM)/ gN-Specific virus-neutralizing antibody response. *Journal of Virology*, 80(9), 4591–4600.
- Shirato, K., Miyoshi, H., Goto, A., Ako, Y., Ueki, T., Kariwa, H., & Takashima, I. (2004). Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. *Journal of General Virology*, 85(12), 3637–3645.
- Sijmons, S., Thys, K., Ngwese, M., Damme, E. Van, Dvorak, J., Loock, M. Van, & Li, G. (2015). High-throughput analysis of human cytomegalovirus genome diversity highlights the widespread occurrence of genedisrupting. *Journal of Virology*, *89*(15), 7673–7695.
- Sinclair, J. (Ed.). (2000). Cytomegalovirus protocols. Totowa, New Jersy: Humana Press Inc.
- Sinclair, J. (2008). Human cytomegalovirus: Latency and reactivation in the myeloid lineage. *Journal of Cinical Virology*, 41(3), 180–185.
- Sintorn, I.-M., Homman-Loudiyi, M., Söderberg-Nauclér, C., & Borgefors, G. (2004). A refined circular template matching method for classification of human cytomegalovirus capsids in TEM images. *Computer Methods and Programs in Biomedicine*, *76*(2), 95–102.
- Sinzger, C., Digel, M., & Jahn, G. (2008). Cytomegalovirus cell tropism. *Current Topics in Microbiology and Immunology*, *325*, 63–83.
- Sinzger, C., Grefte, A., Plachter, B., Gouw, a S., The, T. H., & Jahn, G. (1995). Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. *The Journal of General Virology*, *76*, 741–750.
- Slifkin, M., & Doyle, R. J. (1990). Lectins and their application to clinical microbiology. *Clinical Microbiology Reviews*, 3(3), 197–218.
- Snydman, D. R. (2011). Why did maribavir fail in stem-cell transplants? *The Lancet Infectious Diseases*, *11*(4), 255–257.

- Snydman, D., Werner, B., Dougherty, N., Griffith, J., Rubin, R., Dienstag, J., Rohrer, R., Freeman, R., Jenkins, R., Lewis, W., Hammer, S., O'Rourke, E., Grady, G., Fawaz, K., Kaplan, M., Hoffman, M., & Katz, A. (1993). Cytomegalovirus immune globulin prophylaxis in liver transplantation. A randomized, double-blind, placebo-controlled trial. *Annals of Internal Medicine*, *119*(10), 984–991.
- Soderberg-Naucler, C., Fish, K., & Nelson, J. (1997). Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells, *91*, 119–126.
- Sodora, D. L., Cohen, G. H., Muggeridge, M. I., & Eisenberg, R. J. (1991). From glycoprotein D of herpes simplex virus type 1 results in a structurally altered but absence of asparagine-linked oligosaccharides from glycoprotein D of herpes simplex virus type 1 results in a structurally altered but biologically active protein. *Journal of Virology*, 65(8), 4424–4431.
- Sowmya, P and Madhavan, H. (2009). A clinically relevant, syngeneic model of spontaneous, highly metastatic B16 mouse melanoma. *Journal of Medical Virology*, *81*, 861–869.
- Sowmya, P., Madhavan, H. N., & Therese, K. L. (2006). Failure to genotype human cytomegalovirus by PCR-RFLP method due to sequence variation within the primer binding site. *Journal of Virological Methods*, 134(1–2), 250–251.
- Spaderna, S., Blessing, H., Bogner, E., Britt, W., & Mach, M. (2002). Identification of glycoprotein gpTRL10 as a structural component of human cytomegalovirus. *Journal of Virology*, 76(3), 1450–1460.
- Spaderna, S., Hahn, G., & Mach, M. (2004). Glycoprotein gPTRL10 of human cytomegalovirus is dispensable for virus replication in human fibroblasts. *Archives of Virology*, *149*, 495–506.
- Spector, S. A., Merrill, R., Wolf, D., & Dankner, W. M. (1992). Detection of human cytomegalovirus in plasma of AIDS patients during acute visceral disease by DNA amplification. *Journal of Clinical Microbiology*, 30(9), 2359–2365.
- Springer, K. L., & Weinberg, A. (2004). Cytomegalovirus infection in the era of HAART: Fewer reactivations and more immunity. *The Journal of Antimicrobial Chemotherapy*, 54(3), 582–586.
- Stagno, S., Pass, R. F., Reynolds, D. W., Moore, M. A., Nahmias, A. J., & Alford, C. A. (1980). Comparative study of diagnostic procedures for congenital cytomegalovirus infection. *Pediatrics*, 65(2), 251–257.
- Strive, T., Borst, E., Messerle, M., & Radsak, K. (2002). Proteolytic processing of human cytomegalovirus glycoprotein B is dispensable for viral growth in culture. *Journal of Virology*, 76(3), 1252–1264.
- Sugar, E. a, Jabs, D. a, Ahuja, A., Thorne, J. E., Danis, R. P., & Meinert, C. L. (2012). Incidence of cytomegalovirus retinitis in the era of highly active antiretroviral therapy. *American Journal of Ophthalmology*, *153*(6), 1016–1024.
- Sugrue, R. (2007). Viruses and glycosylation: an overview. In *Method in Molecular Biology, Glycovirology Protocols* (379), 1–14.
- Sylwester, A. W., Mitchell, B. L., Edgar, J. B., Taormina, C., Pelte, C., Ruchti, F., Sleath P., Grabstein, K., Hosken, N., Kern, F., Nelson, J., & Picker, L. J. (2005). Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. *The Journal of Experimental Medicine*, 202(5), 673– 685.
- Tabata, T., Petitt, M., Zydek, M., Fang-Hoover, J., Larocque, N., Tsuge, M., Gormley, M., Kauvar, L., & Pereira, L. (2015). Human cytomegalovirus infection interferes with the

maintenance and differentiation of trophoblast progenitor cells of the human placenta. *Journal of Virology*, *89*(9), 5134–5147.

- Table of Lectin Properties. Vector Laboratories. (2012). Retrieved January 10, 2013, from http://docs.vectorlabs.com/protocols/K4-K7.pdf
- Terabe, K., Sugiyama, K., Goto, K., Mizutani, F., Wada, Y., Yokoyama, T., & Ando, Y. (2004). Relationship between human cytomegalovirus glycoprotein B genotype and serum alanine aminotransferase elevation in infants. *The Tohoku Journal of Experimental Medicine*, 203(4), 339–344.
- Theiler, R. N., & Compton, T. (2001). Characterization of the signal peptide processing and membrane association of human cytomegalovirus glycoprotein O. *The Journal of Biological Chemistry*, 276(42), 39226–39231.
- Thompson, R., Creavin, A., O'Connell, M., O'Connor, B., & Clarke, P. (2011). Optimization of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis. *Analytical Biochemistry*, *413*(2), 114–122.
- Thrower, A. R., Bullock, G. C., & Bissell, J. E. (1996). Regulation of a human cytomegalovirus immediate-early gene (US3) by a silencer-enhancer combination. *Journal of Virology*, *70*(1), 91–100.
- Tomtishen, J. P. (2012). Human cytomegalovirus tegument proteins (pp65, pp71, pp150, pp28). *Virology Journal*, 9(22).
- Toriniwa, H., & Komiya, T. (2011). Comparison of viral glycosylation using lectin blotting with vero cell-derived and mouse brain-derived Japanese encephalitis vaccines. *Vaccine*, 29(10), 1859–1862.
- Torok-Storb, B., Boeckh, M., Hoy, C., Leisenring, W., Myerson, D., & Gooley, T. (1997). Association of specific cytomegalovirus genotypes with death from myelosuppression after marrow transplantation. *Blood*, *90*(5), 2097–2102.
- Tselis, A. (2013). Epstein-Barr virus and cytomegalovirus infections. In A. C. Jackson (Ed.), Viral Infections of the Human Nervous System. Basel: Springer Basel.
- Upadhyayula, S., & Michaels, M. G. (2013). Ganciclovir, foscarnet, and cidofovir: Antiviral drugs not just for cytomegalovirus. *Journal of the Pediatric Infectious Diseases Society*, 2(3), 286–290.
- Urban, M., Klein, M., Britt, W. J., Habfurther, E., Mach, M., & Virologie, N. (1996). Glycoprotein H of human cytomegalovirus is a major antigen for the neutralizing humoral immune response. *Journal of General Virology*, 77, 1537–1547.
- Van Breedam, W., Pöhlmann, S., Favoreel, H. W., de Groot, R. J., & Nauwynck, H. J. (2014). Bitter-sweet symphony: Glycan-lectin interactions in virus biology. *FEMS Microbiology Reviews*, 38(4), 598–632.
- Van der Sande, M. a B., Kaye, S., Miles, D. J. C., Waight, P., Jeffries, D. J., Ojuola, O. O., Palmero, M., Pinder, M., Ismaili, J., Flanagan, K., Aveika, A., Zaman, A., Rowland-Jones, S., McConkey, S., Whittle, H., & Marchant, A. (2007). Risk factors for and clinical outcome of congenital cytomegalovirus infection in a peri-urban West-African birth cohort. *PloS One*, 2(6).
- Van der Strate, B., Harmsen, M., Schafer, P., Swart, P., The, T., Jahn, G., Speer, C., Meijer, D., & Hamprecht, K. (2001). Viral load in breast milk correlates with transmission of human cytomegalovirus to preterm neonates, but lactoferrin concentrations do not. *Clinical and Diagnostic Laboratory Immunology*, 8(4), 818–821.

- Vanarsdall, A., & Johnson, D. (2012). Human Cytomegalovirus entry into cell. *Current* Opinion in Virologypinion in Virology, 2(1), 1–12.
- Varki A, Cummings RD, Esko JD, et al. (Ed.). (2009). *Essentials of Gglycobiology* (2ed ed.). ColdSpring Harbor (NY): Cold Spring Harbor Laboratory Press.
- Varnum, S. M., Streblow, D. N., Monroe, M. E., Smith, P., Auberry, K. J., Pasa-Tolic, L., Wang, D., Camp II, D., Rodland, K., Wiley, S., Britt, W., Shenk, T., Smith, R., & Nelson, J. A. (2004). Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. *Journal of Virology*, *78*(20), 10960–10966.
- Verbraak, F. D., Boom, R., Wertheim-van Dillen, P. M., van den Horn, G. J., Kijlstra, A., & de Smet, M. D. (1999). Influence of highly active antiretroviral therapy on the development of CMV disease in HIV positive patients at high risk for CMV disease. *The British Journal of Ophthalmology*, 83(10), 1186–11189.
- Vieira, J., Hearn, P. O., Kimball, L., Corey, L., & Chandran, B. (2001). Activation of kaposi's sarcoma-associated herpesvirus (Human Herpesvirus 8) lytic replication by human cytomegalovirus. *Journal of Virology*, 75(3), 1378–1386.
- Vigerust, D. J., & Shepherd, V. L. (2007). Virus glycosylation: Role in virulence and immune interactions. *Trends in Microbiology*, *15*(5), 211–218.
- Vilas Boas, L. S., de Souza, V. a U. F., Penalva de Oliveira, A. C., Rodriguez Viso, A. T., Nascimento Filho, A. M., Nascimento, M. C., & Pannuti, C. S. (2003). Cytomegalovirus glycoprotein B genotypes and central nervous system disease in AIDS patients. *Journal* of Medical Virology, 71(3), 404–407.
- Virocyt. (2013). An Overview of Virus Quantification Techniques. Axiomathes, 1–7.
- Vogel, J. U., Otte, J., Koch, F., Gümbel, H., Doerr, H. W., & Cinatl, J. (2013). Role of human cytomegalovirus genotype polymorphisms in AIDS patients with cytomegalovirus retinitis. *Medical Microbiology and Immunology*, 202(1), 37–47.
- Volpi, N., Maccari, F., & Linhardt, R. J. (2009). NIH Public Access. *Biological Chemistry*, 29(15), 3095–3106.
- Vulgaris, A. (2013). New Insights for the Healthcare Professional: 2013 Edition: ScholarlyBrief (Google eBook).
- Vyse, J., Hesketh, L. M., & Pebody, R. G. (2009). The Burden of Infection with cytomegalovirus in England and Wales: how many women are infected in pregnancy? *Epidemiology and Infection*, 137(4), 526–533.
- Wang, H., Yao, Y., Huang, C., Chen, Q., Chen, J., & Chen, Z. (2013). Immunization with cytomegalovirus envelope glycoprotein M and glycoprotein N DNA vaccines can provide mice with complete protection against a lethal murine cytomegalovirus challenge. *Virologica Sinica*, 28(3), 174–182.
- Wang, X., Huang, D., Huong, S., & Huang, E. (2005). Integrin avβ3 is a coreceptor for Human cytomegalovirus infection. *Natural Medicine*, *11*(5), 515–521.
- Wilkinson, G. W. G., Davison, A. J., Tomasec, P., Fielding, C. A., Aicheler, R., Murrell, I., Seirafian, S., Wang, E., Weekes, M., Lehner, P., Wilkie, G., & Stanton, R. J. (2015). Human cytomegalovirus: Taking the strain. *Medical Microbiology and Immunology*, 204(3), 273–284.
- Woo, P. C., Lo, C. Y., Lo, S. K., Siau, H., Peiris, J. S., Wong, S. S., Luk, W. K., Chan, T. M., Lim, W. W., & Yuen, K. Y. (1997). Distinct genotypic distributions of cytomegalovirus (CMV) envelope glycoprotein in bone marrow and renal transplant recipients with CMV disease. *Clinical and Diagnostic Laboratory Immunology*, 4(5), 515–518.

- Wreghitt, T. G., Teare, E. L., Sule, O., Devi, R., & Rice, P. (2003). Cytomegalovirus infection in immunocompetent patients. *Clinical Infectious Diseases*, *37*(12), 1603–1606.
- Wu, K. G., Hung, M. C., Chang, Y. T., Chen, C. J., Yang, S. P., Liu, C. Y., Ho, D. M. T., & Chan, Y. J. (2011). Occurrence of human cytomegalovirus glycoprotein B genotypes in immunocompetent and immunosuppressed Taiwanese patients. *Intervirology*, 54(4), 196–201.
- Xia, C.-S., Zhao, X.-T., Sun, Y.-Y., & Zhang, Z. (2012). Human cytomegalovirus glycoprotein B genotypes in Chinese hematopoietic stem cell transplant recipients. *Intervirology*, 55(5), 342–348.
- Xia, C., & Zhang, Z. (2011). Analysis of human cytomegalovirus glycoprotein N genotypes in Chinese hematopoietic stem cell transplant recipients. *Archives of Virology Virol*, 156(1), 17–23.
- Yamagishi, Y., Sadaoka, T., Yoshii, H., Somboonthum, P., Imazawa, T., Nagaike, K., Ozono, K., Yamanishi, K., & Mori, Y. (2008). Varicella-Zoster virus glycoprotein M homolog is glycosylated, is expressed on the viral envelope, and functions in virus cell-to-cell spread. *Journal of Virology*, 82(2), 795–804.
- Yamamoto, A. Y., Mussi-Pinhata, M. M., Boppana, S. B., Novak, Z., Wagatsuma, V. M., Oliveira, P. D. F., Duarte, G., & Britt, W. J. (2010). Human cytomegalovirus reinfection is associated with intrauterine transmission in a highly cytomegalovirus-immune maternal population. *American Journal of Obstetrics and Gynecology*, 202(3), 297.e1-297.e8.
- Yamamoto, A. Y., Mussi-Pinhata, M. M., Wagatsuma, V. M. D. D., Marin, L. J., Duarte, G., & Figueiredo, L. T. M. (2007). Human cytomegalovirus glycoprotein B genotypes in Brazilian mothers and their congenitally infected infants. *Journal of Medical Virology*, 79(8), 1164–1168.
- Yu, X., Shah, S., Atanasov, I., Lo, P., Liu, F., Britt, W. J., & Zhou, Z. H. (2005). Threedimensional localization of the smallest capsid protein in the human cytomegalovirus capsid. *Journal of Virology*, 79(2), 1327–1332.
- Zámorová, M., Holazová, A., Miljuš, G., Robajac, D., Šunderić, M., Malenković, V., Dukanovic, B., Gemeiner, P., Katrlik, J., & Nedić, O. (2017). Analysis of changes in the glycan composition of serum, cytosol and membrane glycoprotein biomarkers of colorectal cancer using a lectin-based protein microarray. *Analytical Methods*, 9(18), 2660–2666.
- Zhang, M. G., Wang, H. B., Wang, Y. Z., & Pan, Q. (2011). Human cytomegalovirus glycoprotein B genotypes in congenitally infected neonates. *Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi*, 25(4), 262–264.
- Zhang, P., Woen, S., Wang, T., Liau, B., Zhao, S., Chen, C., Yang, Y., Song, Z., Woemald, M. R., Yu, C., & Rudd, P. M. (2016). Challenges of glycosylation analysis and control: An integrated approach to producing optimal and consistent therapeutic drugs. *Drug Discovery Today*, 21(5), 740–765.
- Zipeto, D., Hong, C., Gerna, G., Zavattoni, M., Katzenstein, D., Merigan, T. C., & Rasmussen, L. (1998). Geographic and demographic differences in the frequency of human cytomegalovirus gB genotypes 1-4 in immunocompromised patients. *AIDS Research and Human Retroviruses*, 14(6), 533–536.

APPENDICES

Sample		Gen	otyping P	Profile			Specimen type	Specimen Category	
No.	gB	gH	gL	gM	gN	gO			
1	4	1	4	1	3a	1c	Urine		
10	1	2	4	3	3a	1c	Blood EDTA	_	
17	3	1	4	3	3a	1c	Urine	_	
19	1	1	2	1	3a	1c	Urine		
40	4	1	4	3	3a	1c	Urine		
				-		10		Congenital infection	
66	3	1	3	2	3a		Urine		
76	Mixed	Mixed	4		3a		Blood EDTA	_	
79	4	1	Mixed	3	4d		Blood EDTA	_	
84	2	1	Mixed	3	3a		Blood EDTA	_	
85	1	1	4			2b	Blood EDTA	_	
86	1	1	4	3	1	1a	Throat swab	_	
87	2		Mixed		3a	3	Blood		
70	Mixed						Saliva	Unconfirmed congenital of early post-natal infection	
27	3	1	4	1	3a		Blood EDTA		
32	3	Mixed	4	3	4a	1a	Urine	_	
41	Mixed	Mixed	Mixed		3a		Blood Clot	Immunocompetent	
42	3	2	4	3	3a	1c	Blood EDTA	primary	
53	1	2	4	3	1	1c	Blood EDTA	infections	
61	1	2	Mixed				Blood EDTA		
67	3	2	3	1	3a	1c	aspirate		
21	2	1	1	1	3a	1c	Blood EDTA	Immunocompetent, not defined Primary or recurrent infection	
5	4	2	2	1	1	1c	Blood EDTA		
9	1	1	4	3	4a	1c	Blood EDTA	_	
16	1	2	3	3	3a	1c	Blood EDTA		
18	1	1	4	3	3a	1c	Blood EDTA		
22	3	1	4	3	4c	1a	Blood EDTA		
23	2	1	1	3	3a	1a	Blood EDTA		
24	1	1	4	3	4b	1c	Blood EDTA		
25	2	1	2	3	3a	1a	Blood EDTA		
28	1	2	4	1	3a	1a	Blood EDTA	_	
31	1	2	Mixed	3	4c	4	Blood EDTA	_	
33	3	1	2	3	3a	1a	Blood EDTA	_	
37	2	1	4				Blood EDTA	_	
46	1	2	2	3	4d	1c	Blood EDTA	Immunocompromised	
47	1	1	4	3	4b	4	Blood Clot	Primary infection	
50	4	1	1	3	3a	1a	Blood EDTA	_	
51	1	2	Mixed	3		4	Blood EDTA		
52	1	1	4	3	1	1a	Blood EDTA		
54	4	1	2	3	3a	1c	Blood EDTA		
55	3	1	2	3	4a	1c	Blood EDTA		
58	2		4	2	2-	4 -	Blood Clot		
59	2	2	4	3	3a	1c	Blood EDTA		
60	4	1	4	1	4a	1c	Blood EDTA		
64	3	1	4		4c		Blood EDTA		
74	2	1	4	1	3a		Urine		
78 80	1	1	3	3	1	1a	Blood EDTA		
	1	1	3	3		2a	Blood EDTA		

	4	2	4	4	4 -	1-		recurrent infection
4	4	2	4	1	4c	1a	Blood EDTA	
6	3	1	2	3	3a	1c	Blood EDTA	
7	4	2	1	1	3a	1a	Blood Clot	
8	3	2	2	3	3a	1c	Blood EDTA	
11	2	2	2	2	3a	1c	Blood EDTA	
12	3	1	4	3	3a	1c	Blood EDTA	
13	3	1	2	3	3a	1c	Blood EDTA	
15	3	1	2	3	3a	1c	Blood EDTA	
20	3	2	4	2	3a	1c	Blood EDTA	
29	1	2	Mixed	3	4a	1a	Blood EDTA	
30	1	2					Blood EDTA	
36	1	2	4	1	3a	1c	Blood EDTA	
38	1	2	4	3	3a	1c	Blood EDTA	
39	2	2	2	3	3a	2a	Blood EDTA	
43	4	2					Blood EDTA	
44	3	1	Mixed	3	3a	1c	Blood EDTA	
45	3	1	2	1	3a	1c	Blood EDTA	
49	2	1	3	3	3a	1c	Blood EDTA	
56	2	1	2	3	3a	1a	Blood EDTA	
57	2	2	4	3	3a	1c	Blood Clot	
62	4	1	4	3	3a	1c	Blood EDTA	
63	2	2	Mixed		3a		Blood EDTA	
65	1	2	4	3		4	Blood Clot	
68	1	1	2	3	3a	1a	Blood EDTA	
69	1	2	4	3	3a	1c	Blood EDTA	
71	1	1	4	3	4d	1c	Blood EDTA	
72	2	2	4	3	3a	1c	Blood EDTA	
73	1						Blood Clot	
75	1	2	Mixed		3a		Blood EDTA	
77	1	Mixed	2	Mix ed	3a	1c	Blood EDTA	
81	2	2	Mixed	3		3	Blood EDTA	
82	1	2	4	3		1c	Blood Clot	
88	1	2	4	3		4	Blood Clot	
89	1	2	Mixed	1	3a	4	Sputum	
26	1	2	3	1	4b	Mixe d	Blood EDTA	Immunocompromised, not defined Primary or
35	2	2	2	1	3a	1c	Blood EDTA	recurrent infection
2	1	1	3	2	3a	1a	Urine	
14	2	2	4	3	4a	1c	Plasma	
34	3	1	1	3	3a	1c	Blood EDTA	Not known
48	2	1	1	3	3a	1c	Blood EDTA	
83							Blood EDTA	

.			т	CID₅₀/ml (L	.og 10×)	
Sample No.	Week 1	Week 2	Week3	Week 4	Specimen type	Specimen category
1	2.8	6.1	9.5	9.5	Urine	
10	5.5	5.8	8.4	9.5	Blood EDTA	
17	2.8	8.1	7.3	10.4	Urine	
19	3.3	4.6	6.4	9.5	Urine	
40	0.9	4.5	5	7	Urine	
66	2.8	4.8	8.1	9.4	Urine	Congenital infection
76	5	5.1	9.4	9	Blood EDTA	
79	2.1	5.1	10.4	9.5	Blood EDTA	
84	3.3	5.3	6.3	9.1	Blood EDTA	
85	6.1	7.4	8.4	9.5	Blood EDTA	
86	2.1	2.4	8.4	9.5	Blood	
87	5.4	6.1	9.4	9.5	Blood	
70	2.1	2.3	4.8	6.8	Saliva	Unconfirmed congenita or early post-natal infection
27	3.8	5.4	5.9	5.4	Blood EDTA	intection
32	2.8	2.9	6.1	5.9	Urine	
41	1.1	2	4.9	5	Blood Clot	
42	2	2.9	4	6	Blood EDTA	Immunocompetent po -natal patients
53	4.4	4.8	5.9	6	Blood EDTA	
61	3.3	5.1	6.5	6.6	Blood EDTA	
67	4.1	3.5	3.8	5.8	aspirate	
21	1.3	2.1	3.3	8.8	Blood EDTA	Immunocompetent, no defined Primary or recurrent infection
5	2.5	3.4	4.4	4.4	Blood EDTA	
9	2.8	2.1	3.8	5.1	Blood EDTA	
16	2.1	1.8	6.1	6.1	Blood EDTA	
18	4.4	3.4	5.9	5.1	Blood EDTA	
22	1.9	3.6	4.4	4.1	Blood EDTA	
23	1.9	3.9	4.4	4.4	Blood EDTA	
24	4	6	6	6.3	Blood EDTA	
25	1.8	2.8	2.1	4.4	Blood EDTA	
28	1.9	3	4.4	4.6	Blood EDTA	
31	2.2	3.4	5.4	5.5	Blood EDTA	
33	1.9	2.1	6.4	5.5	Blood EDTA	
37	1.8	2.3	3.3	4.8	Blood EDTA	
46	3.8	5.9	6.8	6.8	Blood EDTA	Immunocompromised
47	2.8	3.4	6	7	Blood Clot	Primary infection
50	2.3	4.1	5.6	6	Blood EDTA	
51	2.8	2.8	4.4	4.4	Blood EDTA	
52	1.4	1.5	1.5	3.5	Blood EDTA	-
54	5.5	5	6.4	6.5	Blood EDTA	
55 58	3.3 2.4	2.5 2.1	3.4 6.4	5.5	Blood EDTA Blood Clot	
58	2.4	3.3	5.1	5.4	Blood Clot Blood EDTA	
60	4.1	4.9	4.9	5.4	Blood EDTA	
64	2.8	4.9	5.5	6.3	Blood EDTA	
74			5.5	5.9		
74	2.8 2.4	4.8 5.1	4.4	4.4	Urine Blood EDTA	
80	1.6	2.8	2.9	4.4	Blood EDTA	
3	3.5	4.1	4.3	4.9	Blood EDTA	Immunocompromised

Appendix 2: Tracking HCMV clinical strains growth over 4 weeks using TCID₅₀ assay.

4	3.9	4.1	4.4	5.5	Blood EDTA	recurrent infection
6	5.6	5.8	6.6	9.5	Blood EDTA	
7	4.8	3.9	4	4.1	Blood Clot	
8	2.4	3	5.1	5.4	Blood EDTA	
11	2.1	2.8	6.6	7.1	Blood EDTA	
12	5.1	5.5	5.8	5.6	Blood EDTA	
13	3.3	5.9	6.3	7	Blood EDTA	
15	2.4	3	6.3	6.6	Blood EDTA	
20	3.5	3.6	4.6	6.8	Blood EDTA	
29	2.6	6.4	7.6	7.8	Blood EDTA	
30	1.9	2.5	4.5	4.6	Blood EDTA	
36	1.8	2	5.4	6.6	Blood EDTA	
38	1.4	2	2.6	3.4	Blood EDTA	
39	4.8	6.8	5.9	9.5	Blood EDTA	
43	2.8	2.8	8.1	7.5	Blood EDTA	
44	2.8	2.8	3.9	4.3	Blood EDTA	
45	2	3.3	5	5.3	Blood EDTA	
49	1.5	2.1	2.1	3.5	Blood EDTA	
56	5.1	5.8	5.1	6.1	Blood EDTA	
57	3	4.6	6.3	8	Blood Clot	
62	2.1	2.1	3.9	5.3	Blood EDTA	
63	5.1	6.6	7	7.1	Blood EDTA	
65	2	3.3	5.3	5.3	Blood Clot	
68	4.4	5.4	5.4	5.9	Blood EDTA	
69	4.4	4.4	3.4	4.5	Blood EDTA	
71	3	4.6	4.9	7	Blood EDTA	
72	2.8	3	2.8	7.3	Blood EDTA	
73	2.8	2.1	9.5	9.5	Blood Clot	
75	6.1	6.1	6.1	9.5	Blood EDTA	
77	2.8	3.9	6.3	9.5	Blood EDTA	
81	4.5	4.1	6.5	7.9	Blood EDTA	
82	3.5	4.1	6	6.8	Blood Clot	
88	2.1	4.9	4.9	5.1	Blood Clot	
89	1.9	4.4	5.5	5.5	Sputum	
26	2.9	7.1	9.5	9.5	Blood EDTA	Immunocompromised,
35	3.2	4.5	4.5	4.5	Blood EDTA	not defined Primary or recurrent infection
2	2.8	5.1	5.4	9.5	Urine	
14	3.4	3.6	5.8	6	Plasma	
34	3.3	6.8	6.9	6.4	Blood EDTA	Not known
48	2.4	2.3	5.6	6.1	Blood EDTA	
83	5	5.9	7.3	7.3	Blood EDTA	

Appendix 3: Results of One-way ANOVA, the Tables below, for each glycoprotein genotype, show that no significant differences between the growth behaviour of HCMV strains in clinical samples and the glycoprotein genotypes.

3.1 Glycoprotein B

We	eeks N		N Mean r		Std. Std. Deviation Error		95% Confidence Interval for Mean		
				Deviation	EIIO	Lower Bound	Upper Bound		
	1.00	35	3.0514	1.24295	.21010	2.6245	3.4784	1.40	
1	2.00	19	3.0316	1.36180	.31242	2.3752	3.6879	1.30	
1	3.00	19	3.0842	1.02049	.23412	2.5923	3.5761	1.90	
	4.00	11	3.0727	1.35284	.40790	2.1639	3.9816	.90	
	Total	84	3.0571	1.21727	.13282	2.7930	3.3213	.90	
	1.00	35	4.1057	1.59483	.26958	3.5579	4.6536	1.50	
	2.00	19	4.0421	1.54032	.35337	3.2997	4.7845	2.10	
2	3.00	19	4.2105	1.64212	.37673	3.4191	5.0020	2.10	
	4.00	11	4.1818	1.12944	.34054	3.4230	4.9406	2.10	
	Total	84	4.1250	1.51617	.16543	3.7960	4.4540	1.50	
	1.00	35	5.6629	1.81482	.30676	5.0394	6.2863	1.50	
_	2.00	19	5.1421	1.84701	.42373	4.2519	6.0323	2.10	
3	3.00	19	5.5474	1.29887	.29798	4.9213	6.1734	3.40	
	4.00	11	6.0545	2.28139	.68786	4.5219	7.5872	3.90	
	Total	84	5.5702	1.77729	.19392	5.1845	5.9559	1.50	
	1.00	35	6.5343	2.02266	.34189	5.8395	7.2291	3.40	
	2.00	19	6.6000	1.86011	.42674	5.7035	7.4965	3.50	
4	3.00	19	6.3789	1.68509	.38659	5.5668	7.1911	4.10	
	4.00	11	6.4000	1.84282	.55563	5.1620	7.6380	4.10	
	Total	84	6.4964	1.85975	.20292	6.0928	6.9000	3.40	

			ANOVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	.030	3	.010	.007	.999
1	Within Groups	122.956	80	1.537		
	Total	122.986	83			
	Between Groups	.318	3	.106	.045	.987
2	Within Groups	190.479	80	2.381		
	Total	190.797	83			
	Between Groups	6.373	3	2.124	.664	.576
3	Within Groups	255.803	80	3.198		
	Total	262.176	83			
	Between Groups	.618	3	.206	.058	.982
4	Within Groups	286.450	80	3.581		
	Total	287.069	83			

			Multiple Co	omparisons			
			Post hoc tes	t: Bonferron	i		
Dependent	(I)	(L)	Mean	Std.		95% Confide	nce Interva
Variable	gB.r	gB.r Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound	
		2.00	.01985	.35328	1.000	9359	.9756
	1.00	3.00	03278	.35328	1.000	9886	.9230
		4.00	02130	.42853	1.000	-1.1807	1.1381
	2.00	1.00	01985	.35328	1.000	9756	.9359
		3.00	05263	.40222	1.000	-1.1408	1.0356
Week1		4.00	04115	.46970	1.000	-1.3119	1.2296
	3.00	1.00	.03278	.35328	1.000	9230	.9886
		2.00	.05263	.40222	1.000	-1.0356	1.1408
		4.00	.01148	.46970	1.000	-1.2593	1.2822
		1.00	.02130	.42853	1.000	-1.1381	1.1807
	4.00	2.00	.04115	.46970	1.000	-1.2296	1.3119
		3.00	01148	.46970	1.000	-1.2822	1.2593
		2.00	.06361	.43971	1.000	-1.1260	1.2532
Week2	1.00	3.00	10481	.43971	1.000	-1.2944	1.0848
		4.00	07610	.53337	1.000	-1.5191	1.3669
		1.00	06361	.43971	1.000	-1.2532	1.1260
	2.00	3.00	16842	.50063	1.000	-1.5228	1.1860
		4.00	13971	.58461	1.000	-1.7213	1.4419

		3.00	.02105	.71691	1.000	-1.9185	1.9606
	4.00	2.00	20000	.71691	1.000	-2.1396	1.7396
		1.00	13429	.65408	1.000	-1.9039	1.6353
		4.00	02105	.71691	1.000	-1.9606	1.9185
WCCK4	3.00	2.00	22105	.61393	1.000	-1.8820	1.4399
Week4		1.00	15534	.53922	1.000	-1.6142	1.3035
		4.00	.20000	.71691	1.000	-1.7396	2.1396
	2.00	3.00	.22105	.61393	1.000	-1.4399	1.8820
		1.00	.06571	.53922	1.000	-1.3931	1.5245
		4.00	.13429	.65408	1.000	-1.6353	1.9039
	1.00	3.00	.15534	.53922	1.000	-1.3035	1.6142
		2.00	06571	.53922	1.000	-1.5245	1.3931
		3.00	.50718	.67748	1.000	-1.3257	2.3401
	4.00	2.00	.91244	.67748	1.000	9204	2.7453
		1.00	.39169	.61810	1.000	-1.2805	2.0639
	5.00	4.00	50718	.67748	1.000	-2.3401	1.3257
	3.00	2.00	.40526	.58016	1.000	-1.1643	1.9748
Weeks		1.00	11549	.50956	1.000	-1.4941	1.2631
Week3	2.00	4.00	91244	.67748	1.000	-2.7453	.9204
	2.00	3.00	40526	.58016	1.000	-1.9748	1.1643
		1.00	52075	.50956	1.000	-1.8993	.8578
		4.00	39169	.61810	1.000	-2.0639	1.2805
	1.00	2.00	.52075	.50956	1.000	8578	1.8993 1.4941
	4.00	3.00	02871	.58461	1.000	-1.6103	1.5529
	4.00	2.00	.13971	.58461	1.000	-1.4419	1.7213
		1.00	.02871	.53337	1.000	-1.3669	1.5191
	5.00	4.00	.02871	.58461	1.000	-1.5529	1.6103
	3.00	1.00 2.00	.10481 .16842	.43971	1.000	-1.0848 -1.1860	1.2944

3.2 Glycoprotein H

w	/eeks	N	Mean	Std. Deviation	Std. Error		nfidence for Mean	Minimu	
				Deviation	LIIG	Lower Bound	Upper Bound		
	Mixed	4	2.9250	1.59870	.79935	.3811	5.4689	1.10	
1	1.00	44	2.9568	1.22729	.18502	2.5837	3.3299	.90	
	2.00	36	3.1361	1.21729	.20288	2.7242	3.5480	1.40	
	Total	84	3.0321	1.22712	.13389	2.7658	3.2984	.90	
	Mixed	4	3.4750	1.33260	.66630	1.3545	5.5955	2.00	
2	1.00	44	4.2091	1.60085	.24134	3.7224	4.6958	1.50	
-	2.00	36	4.0639	1.42029	.23672	3.5833	4.5444	1.80	
	Total	84	4.1119	1.50600	.16432	3.7851	4.4387	1.50	
	Mixed	4	6.6750	1.91898	.95949	3.6215	9.7285	4.90	
3	1.00	44	5.4318	1.86482	.28113	4.8649	5.9988	1.50	
	2.00	36	5.4889	1.51785	.25298	4.9753	6.0025	2.60	
	Total	84	5.5155	1.72484	.18820	5.1412	5.8898	1.50	
	Mixed	4	7.3500	2.23383	1.11692	3.7955	10.9045	5.00	
	1.00	44	6.4750	1.96186	.29576	5.8785	7.0715	3.50	
.4	2.00	36	6.2889	1.62635	.27106	5.7386	6.8392	3.40	
	Total	84	6.4369	1.82762	.19941	6.0403	6.8335	3.40	

		AN	OVA			
	Weeks	Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	.685	2	.342	.223	.801
1	Within Groups	124.299	81	1.535		
	Total	124.983	83			
	Between Groups	2.121	2	1.061	.462	.632
2	Within Groups	186.127	81	2.298		
	Total	188.248	83			
	Between Groups	5.711	2	2.856	.959	.388
3	Within Groups	241.219	81	2.978		
	Total	246.930	83			
	Between Groups	4.188	2	2.094	.621	.540
4	Within Groups	273.048	81	3.371		
	Total	277.236	83			

			Multiple Co	mparisons			
			Post hoc test	: Bonferroni			
Dependent	(I)	(L)	Mean Difference	Std.	Sig.	95% Con Inter	
Variable	gH	gH	(I-J)	Error	Sig.	Lower Bound	Upper Bound
	Mixe	1.00	03182	.64693	1.000	-1.6134	1.5497
	d	2.00	21111	.65289	1.000	-1.8072	1.3850
1	1.00	Mixe d	.03182	.64693	1.000	-1.5497	1.6134
-		2.00	17929	.27839	1.000	8599	.5013
	2.00	Mixe d	.21111	.65289	1.000	-1.3850	1.8072
		1.00	.17929	.27839	1.000	5013	.8599
	Mixe	1.00	73409	.79164	1.000	-2.6694	1.2012
	d	2.00	58889	.79893	1.000	-2.5421	1.3643
2	1.00	Mixe d	.73409	.79164	1.000	-1.2012	2.6694
-		2.00	.14520	.34067	1.000	6876	.9780
	2.00	Mixe d	.58889	.79893	1.000	-1.3643	2.5421
		1.00	14520	.34067	1.000	9780	.6876
	Mixe	1.00	1.24318	.90121	.515	9600	3.4464
	d	2.00	1.18611	.90952	.588	-1.0374	3.4096
3	1.00	Mixe d	-1.24318	.90121	.515	-3.4464	.9600
		2.00	05707	.38782	1.000	-1.0052	.8910
	2.00	Mixe d	-1.18611	.90952	.588	-3.4096	1.0374
		1.00	.05707	.38782	1.000	8910	1.0052
	Mixe	1.00	.87500	.95883	1.000	-1.4691	3.2191
4	d	2.00	1.06111	.96767	.828	-1.3046	3.4268
	1.00	Mixe d	87500	.95883	1.000	-3.2191	1.4691
		2.00	.18611	.41261	1.000	8226	1.1948
	2.00	Mixe d	-1.06111	.96767	.828	-3.4268	1.3046
		1.00	18611	.41261	1.000	-1.1948	.8226

3.3 Glycoprotein L

w	eeks	N	Mean	Std. Deviation	Std. Error	95% Cor Interval		Minimu
						Lower Bound	Upper Bound	
	Mixed	14	3.3357	1.45158	.38795	2.4976	4.1738	1.10
	1.00	6	2.6667	1.23396	.50376	1.3717	3.9616	1.30
1	2.00	18	3.3444	1.25802	.29652	2.7188	3.9700	1.80
	3.00	8	2.5250	.83452	.29505	1.8273	3.2227	1.50
	4.00	37	3.0351	1.25349	.20607	2.6172	3.4531	.90
	Total	83	3.0771	1.25468	.13772	2.8031	3.3511	.90
	Mixed	14	4.5929	1.46627	.39188	3.7463	5.4395	2.00
	1.00	6	3.8500	1.68731	.68884	2.0793	5.6207	2.10
2	2.00	18	4.2500	1.44680	.34101	3.5305	4.9695	2.10
-	3.00	8	4.0375	1.80471	.63806	2.5287	5.5463	1.80
	4.00	37	4.0541	1.51979	.24985	3.5473	4.5608	1.50
	Total	83	4.1711	1.51251	.16602	3.8408	4.5014	1.50
	Mixed	14	6.3000	1.87083	.50000	5.2198	7.3802	3.90
	1.00	6	4.9667	1.30945	.53458	3.5925	6.3409	3.30
3	2.00	18	5.5000	1.26909	.29913	4.8689	6.1311	2.10
	3.00	8	5.2875	2.54077	.89830	3.1634	7.4116	2.10
	4.00	37	5.4270	1.79917	.29578	4.8272	6.0269	1.50
	Total	83	5.5434	1.76083	.19328	5.1589	5.9279	1.50
	Mixed	14	6.8643	2.03493	.54386	5.6894	8.0392	4.30
	1.00	6	5.9667	1.68365	.68735	4.1998	7.7335	4.10
4	2.00	18	6.6111	1.79013	.42194	5.7209	7.5013	4.40
· ·	3.00	8	6.6375	2.47498	.87504	4.5684	8.7066	3.50
	4.00	37	6.3270	1.76031	.28939	5.7401	6.9139	3.40
	Total	83	6.4831	1.85425	.20353	6.0782	6.8880	3.40

	ΑΝΟΥΑ											
		Sum of Squares	df	Mean Square	F	Sig.						
	Between Groups	5.737	4	1.434	.907	.464						
1	Within Groups	123.349	78	1.581								
	Total	129.087	82									
	Between Groups	3.871	4	.968	.411	.800						
2	Within Groups	183.720	78	2.355								
	Total	187.591	82									
	Between Groups	11.069	4	2.767	.888	.475						
3	Within Groups	243.175	78	3.118								
	Total	254.244	82									
	Between Groups	5.021	4	1.255	.354	.841						
4	Within Groups	276.915	78	3.550								
	Total	281.936	82									

			Post hoc tes	t: Bonferroni	l		
			Mean			95% Confide	nce Interva
Dependent Variable	(I) gL	(J) gL	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
		1.00	.66905	.61362	1.000	-1.1037	2.4418
	Mixe	2.00	00873	.44812	1.000	-1.3034	1.2859
	d	3.00	.81071	.55734	1.000	7995	2.4209
		4.00	.30058	.39459	1.000	8394	1.4406
		Mixe d	66905	.61362	1.000	-2.4418	1.1037
	1.00	2.00	67778	.59281	1.000	-2.3904	1.0349
		3.00	.14167	.67915	1.000	-1.8204	2.1038
		4.00	36847	.55345	1.000	-1.9674	1.2305
		Mixe d	.00873	.44812	1.000	-1.2859	1.3034
1	2.00	1.00	.67778	.59281	1.000	-1.0349	2.3904
-	2.00	3.00	.81944	.53435	1.000	7243	2.3632
		4.00	.30931	.36138	1.000	7347	1.3534
		Mixe d	81071	.55734	1.000	-2.4209	.7995
	3.00	1.00	14167	.67915	1.000	-2.1038	1.8204
	5.00	2.00	81944	.53435	1.000	-2.3632	.7243
		4.00	51014	.49032	1.000	-1.9267	.9064
		Mixe d	30058	.39459	1.000	-1.4406	.8394
	4.00	1.00	.36847	.55345	1.000	-1.2305	1.9674
	4.00	2.00	30931	.36138	1.000	-1.3534	.7347
		3.00	.51014	.49032	1.000	9064	1.9267
		1.00	.74286	.74887	1.000	-1.4207	2.9064
	Mixe	2.00	.34286	.54690	1.000	-1.2372	1.9229
	d	3.00	.55536	.68019	1.000	-1.4098	2.5205
		4.00	.53880	.48156	1.000	8525	1.9301
		Mixe d	74286	.74887	1.000	-2.9064	1.4207
	1.00	2.00	40000	.72348	1.000	-2.4902	1.6902
		3.00	18750	.82885	1.000	-2.5821	2.2071
		4.00	20405	.67544	1.000	-2.1555	1.7474
		Mixe d	34286	.54690	1.000	-1.9229	1.2372
2	2.00	1.00	.40000	.72348	1.000	-1.6902	2.4902
-		3.00	.21250	.65213	1.000	-1.6716	2.0966
		4.00	.19595	.44104	1.000	-1.0782	1.4701
		Mixe d	55536	.68019	1.000	-2.5205	1.4098
	3.00	1.00	.18750	.82885	1.000	-2.2071	2.5821
		2.00	21250	.65213	1.000	-2.0966	1.6716
		4.00	01655	.59840	1.000	-1.7454	1.7123
		Mixe d	53880	.48156	1.000	-1.9301	.8525
	4.00	1.00	.20405	.67544	1.000	-1.7474	2.1555
		2.00	19595	.44104	1.000	-1.4701	1.0782
		3.00	.01655	.59840	1.000	-1.7123	1.7454
	M:	1.00	1.33333	.86156	1.000	-1.1558	3.8225
	Mixe	2.00	.80000	.62920	1.000	-1.0178	2.6178
	d	3.00	1.01250	.78255	1.000	-1.2484	3.2734
3		4.00	.87297	.55403	1.000	7277	2.4736
	1.00	Mixe d	-1.33333	.86156	1.000	-3.8225	1.1558
	1.00	2.00	53333	.83235	1.000	-2.9381	1.8714
	1	3.00	32083	.95358	1.000	-3.0758	2.4341

		4.00	46036	.77709	1.000	-2.7054	1,7847
		Mixe					-
		d	80000	.62920	1.000	-2.6178	1.0178
	2.00	1.00	.53333	.83235	1.000	-1.8714	2.9381
		3.00	.21250	.75027	1.000	-1.9551	2.3801
		4.00	.07297	.50741	1.000	-1.3930	1.5389
		Mixe d	-1.01250	.78255	1.000	-3.2734	1.2484
	3.00	1.00	.32083	.95358	1.000	-2.4341	3.0758
		2.00	21250	.75027	1.000	-2.3801	1.9551
		4.00	13953	.68845	1.000	-2.1285	1.8495
		Mixe d	87297	.55403	1.000	-2.4736	.7277
	4.00	1.00	.46036	.77709	1.000	-1.7847	2.7054
		2.00	07297	.50741	1.000	-1.5389	1.3930
		3.00	.13953	.68845	1.000	-1.8495	2.1285
		1.00	.89762	.91939	1.000	-1.7586	3.5538
	Mixe	2.00	.25317	.67143	1.000	-1.6866	2.1930
	d	3.00	.22679	.83508	1.000	-2.1858	2.6394
		4.00	.53726	.59122	1.000	-1.1708	2.2453
		Mixe d	89762	.91939	1.000	-3.5538	1.7586
	1.00	2.00	64444	.88822	1.000	-3.2106	1.9217
		3.00	67083	1.01758	1.000	-3.6107	2.2690
		4.00	36036	.82925	1.000	-2.7561	2.0354
		Mixe d	25317	.67143	1.000	-2.1930	1.6866
4	2.00	1.00	.64444	.88822	1.000	-1.9217	3.2106
		3.00	02639	.80063	1.000	-2.3395	2.2867
		4.00	.28408	.54146	1.000	-1.2802	1.8484
		Mixe d	22679	.83508	1.000	-2.6394	2.1858
	3.00	1.00	.67083	1.01758	1.000	-2.2690	3.6107
		2.00	.02639	.80063	1.000	-2.2867	2.3395
		4.00	.31047	.73466	1.000	-1.8120	2.4330
		Mixe d	53726	.59122	1.000	-2.2453	1.1708
	4.00	1.00	.36036	.82925	1.000	-2.0354	2.7561
		2.00	28408	.54146	1.000	-1.8484	1.2802
		3.00	31047	.73466	1.000	-2.4330	1.8120

3.4 Glycoprotein M

W	eeks	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minim	Minimum
						Lower Bound	Upper Bound		
	1.00	16	2.9437	1.00927	.25232	2.4059	3.4816	1.30	
1	2.00	4	2.8000	.57155	.28577	1.8905	3.7095	2.10	
	3.00	53	2.9736	1.19665	.16437	2.6437	3.3034	.90	
	Total	73	2.9575	1.12323	.13146	2.6955	3.2196	.90	
	1.00	16	4.1938	1.34980	.33745	3.4745	4.9130	2.00	
2	2.00	4	4.0750	1.06888	.53444	2.3742	5.7758	2.80	
	3.00	53	4.0321	1.53093	.21029	3.6101	4.4541	1.50	
	Total	73	4.0699	1.45752	.17059	3.7298	4.4099	1.50	
	1.00	16	5.4062	1.79015	.44754	4.4523	6.3602	3.30	
3	2.00	4	6.1750	1.52398	.76199	3.7500	8.6000	4.60	
	3.00	53	5.3226	1.68393	.23131	4.8585	5.7868	1.50	
	Total	73	5.3877	1.68819	.19759	4.9938	5.7816	1.50	
	1.00	16	6.2500	1.94148	.48537	5.2155	7.2845	4.10	
	2.00	4	8.2000	1.44914	.72457	5.8941	10.5059	6.80	
4	3.00	53	6.1981	1.72052	.23633	5.7239	6.6723	3.40	
	Total	73	6.3192	1.79418	.20999	5.9006	6.7378	3.40	

			ANOVA			
	Weeks	Sum of Squares	df	Mean Square	F	Sig.
1	Between Groups	.116	2	.058	.045	.956
	Within Groups	90.722	70	1.296		

	Total	90.838	72			
2	Between Groups	.321	2	.161	.074	.929
2	Within Groups	152.632	70	2.180		
	Total	152.954	72			
3	Between Groups	2.709	2	1.355	.468	.628
3	Within Groups	202.490	70	2.893		
	Total	205.199	72			
	Between Groups	15.003	2	7.502	2.422	.096
4	Within Groups	216.770	70	3.097		
	Total	231.773	72			

			Multiple Co	mparisons			
Post hoc test: E	Bonferroni						
Dependent Variable	(I) gM.r	(J) gM.r	Mean Difference	Std. Error	Sig.	95% Confider	nce Interval
	_	5	(I-J)			Lower Bound	Upper Bound
	1.00	2.00	.14375	.63640	1.000	-1.4173	1.7048
		3.00	02983	.32474	1.000	8264	.7667
Week1	2.00	1.00	14375	.63640	1.000	-1.7048	1.4173
		3.00	17358	.59031	1.000	-1.6215	1.2744
	3.00	1.00	.02983	.32474	1.000	7667	.8264
		2.00	.17358	.59031	1.000	-1.2744	1.6215
	1.00	2.00	.11875	.82547	1.000	-1.9060	2.1435
		3.00	.16167	.42121	1.000	8715	1.1949
Week2	2.00	1.00	11875	.82547	1.000	-2.1435	1.9060
		3.00	.04292	.76567	1.000	-1.8352	1.9210
	3.00	1.00	16167	.42121	1.000	-1.1949	.8715
		2.00	04292	.76567	1.000	-1.9210	1.8352
	1.00	2.00	76875	.95077	1.000	-3.1009	1.5634
		3.00	.08361	.48515	1.000	-1.1064	1.2736
Week3	2.00	1.00	.76875	.95077	1.000	-1.5634	3.1009
		3.00	.85236	.88191	1.000	-1.3108	3.0156
	3.00	1.00	08361	.48515	1.000	-1.2736	1.1064
		2.00	85236	.88191	1.000	-3.0156	1.3108
	1.00	2.00	-1.95000	.98373	.154	-4.3630	.4630
		3.00	.05189	.50197	1.000	-1.1794	1.2832
Week4	2.00	1.00	1.95000	.98373	.154	4630	4.3630
		3.00	2.00189	.91247	.095	2363	4.2401
	3.00	1.00	05189	.50197	1.000	-1.2832	1.1794
		2.00	-2.00189	.91247	.095	-4.2401	.2363

3.5 Glycoprotein N

w	leeks	N	Mean	Std. Deviation	Std. Error	95% Con Interval f		Minimum
						Lower Bound	Upper Bound	
	1	6	2.7167	1.06849	.43621	1.5954	3.8380	1.40
	3a	52	3.1346	1.38690	.19233	2.7485	3.5207	.90
1	4a	6	3.1667	.55377	.22608	2.5855	3.7478	2.60
	4c	4	2.7000	.88318	.44159	1.2947	4.1053	1.90
	Total	68	3.0750	1.27693	.15485	2.7659	3.3841	.90
	1	6	3.5500	1.40107	.57198	2.0797	5.0203	1.50
_	3a	52	4.1923	1.55599	.21578	3.7591	4.6255	1.80
2	4a	6	3.7333	1.63544	.66767	2.0170	5.4496	2.10
	4c	4	3.9000	.49666	.24833	3.1097	4.6903	3.40
	Total	68	4.0779	1.49924	.18181	3.7150	4.4408	1.50
	1	6	4.8167	2.26399	.92427	2.4408	7.1926	1.50
3	3a	52	5.5404	1.68328	.23343	5.0718	6.0090	2.10
	4a	6	5.2667	1.56162	.63753	3.6278	6.9055	3.40
	4c	4	4.9250	.60759	.30380	3.9582	5.8918	4.40

	Total	68	5.4162	1.67284	.20286	5.0113	5.8211	1.50
	1	6	5.3667	2.18052	.89019	3.0784	7.6550	3.50
	3a	52	6.6865	1.93371	.26816	6.1482	7.2249	3.40
4	4a	6	5.9000	1.00598	.41069	4.8443	6.9557	5.10
	4c	4	5.3500	.91469	.45735	3.8945	6.8055	4.10
	Total	68	6.4221	1.88710	.22884	5.9653	6.8788	3.40

	ANOVA											
	Weeks	Sum of Squares	df	Mean Square	F	Sig.						
Week	Between Groups	1.568	3	.523	.311	.818						
1	Within Groups	107.679	64	1.682								
-	Total	109.247	67									
Week	Between Groups	3.192	3	1.064	.462	.710						
2	Within Groups	147.405	64	2.303								
	Total	150.597	67									
Week	Between Groups	4.058	3	1.353	.472	.703						
3	Within Groups	183.434	64	2.866								
-	Total	187.492	67									
Week	Between Groups	16.553	3	5.518	1.590	.200						
4	Within Groups	222.044	64	3.469								
-	Total	238.597	67									

Multiple Comparisons

Dependent	(I)	(L)	Mean	Std.		95% Confide	nce Interva
Variable	gN.r	gN.r	Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
		3a	41795	.55926	1.000	-1.9407	1.1048
	1	4a	45000	.74889	1.000	-2.4890	1.5890
	За	4c	.01667	.83728	1.000	-2.2630	2.2964
		1	.41795	.55926	1.000	-1.1048	1.9407
	3a	4a	03205	.55926	1.000	-1.5548	1.4907
Week1		4c	.43462	.67304	1.000	-1.3979	2.2671
		1	.45000	.74889	1.000	-1.5890	2.4890
	4a	3a	.03205	.55926	1.000	-1.4907	1.5548
		4c	.46667	.83728	1.000	-1.8130	2.7464
		1	01667	.83728	1.000	-2.2964	2.2630
	4c	3a	43462	.67304	1.000	-2.2671	1.3979
		4a	46667	.83728	1.000	-2.7464	1.8130
		3a	64231	.65434	1.000	-2.4239	1.1393
	1	4a	18333	.87621	1.000	-2.5690	2.2023
		4c	35000	.97963	1.000	-3.0173	2.3173
		1	.64231	.65434	1.000	-1.1393	2.4239
	3a	4a	.45897	.65434	1.000	-1.3226	2.2406
Week2		4c	.29231	.78746	1.000	-1.8517	2.4364
WCCRE	4a	1	.18333	.87621	1.000	-2.2023	2.5690
		3a	45897	.65434	1.000	-2.2406	1.3226
		4c	16667	.97963	1.000	-2.8339	2.5006
		1	.35000	.97963	1.000	-2.3173	3.0173
	4c	3a	29231	.78746	1.000	-2.4364	1.8517
		4a	.16667	.97963	1.000	-2.5006	2.8339
	1	3a	72372	.72994	1.000	-2.7112	1.2637
	1	4a	45000	.97744	1.000	-3.1113	2.2113
		4c	10833	1.09281	1.000	-3.0838	2.8671
	_	1	.72372	.72994	1.000	-1.2637	2.7112
	3a	4a	.27372	.72994	1.000	-1.7137	2.2612
Week3		4c	.61538	.87844	1.000	-1.7764	3.0072
		1	.45000	.97744	1.000	-2.2113	3.1113
	4a	3a	27372	.72994	1.000	-2.2612	1.7137
		4c	.34167	1.09281	1.000	-2.6338	3.3171
		1	.10833	1.09281	1.000	-2.8671	3.0838
	4c	3a	61538	.87844	1.000	-3.0072	1.7764
		4a 3a	34167	1.09281	1.000	-3.3171	2.6338
	1	3a 4a	-1.31987	.80309	.631	-3.5065	.8667
Maska		4a 4c	53333	1.07540	1.000	-3.4614	2.3947
Week4		4C	.01667	1.20233 .80309	1.000 .631	-3.2570	3.2903 3.5065
	3a	 4a	.78654	.80309			2.9732
	58	4a 4c	1.33654	.96648	1.000	-1.4001 -1.2949	3.9680

	1	.53333	1.07540	1.000	-2.3947	3.4
4a	3a	78654	.80309	1.000	-2.9732	1.4
	4c	.55000	1.20233	1.000	-2.7236	3.8
	1	01667	1.20233	1.000	-3.2903	3.2
4c	3a	-1.33654	.96648	1.000	-3.9680	1.2
	4a	55000	1.20233	1.000	-3.8236	2.7

3.6 Glycoprotein O

We	eks	N	Mean	Std. Deviation	Std. Error	95% Confider Interval for M		Minimum
				Deviation	LIIOI	Lower Bound	Upper Bound	
	1a	17	2.7941	1.13714	.27580	2.2095	3.3788	1.40
	1c	42	3.0667	1.17487	.18129	2.7006	3.4328	.90
1	4	6	2.3000	.40000	.16330	1.8802	2.7198	1.90
	Tot al	65	2.9246	1.12889	.14002	2.6449	3.2043	.90
	1a	17	3.8941	1.35714	.32916	3.1963	4.5919	1.50
2	1c	42	3.9619	1.52171	.23480	3.4877	4.4361	1.80
2	4	6	3.7000	.78486	.32042	2.8763	4.5237	2.80
	Tot al	65	3.9200	1.41346	.17532	3.5698	4.2702	1.50
	1a	17	4.9353	1.69667	.41150	4.0629	5.8076	1.50
3	1c	42	5.3119	1.53356	.23663	4.8340	5.7898	2.10
3	4	6	5.2500	.54681	.22323	4.6762	5.8238	4.40
	Tot al	65	5.2077	1.50886	.18715	4.8338	5.5816	1.50
	1a	17	5.6235	1.79462	.43526	4.7008	6.5462	3.50
	1c	42	6.4595	1.71209	.26418	5.9260	6.9930	3.40
4	4	6	5.4667	.85479	.34897	4.5696	6.3637	4.40
	Tot al	65	6.1492	1.70890	.21196	5.7258	6.5727	3.40

ANOVA										
	Weeks	Sum of Squares	df	Mean Square	F	Sig				
	Between Groups	3.478	2	1.739	1.381	.259				
1	Within Groups	78.083	62	1.259						
	Total	81.561	64							
-	Between Groups	.376	2	.188	.091	.913				
2	Within Groups	127.488	62	2.056						
	Total	127.864	64							
_	Between Groups	1.728	2	.864	.372	.691				
3	Within Groups	143.978	62	2.322						
	Total	145.706	64							
	Between Groups	11.537	2	5.769	2.040	.139				
4	Within Groups	175.365	62	2.828						
	Total	186.902	64							

			Multiple Co	mparisons								
	Post hoc test: Bonferroni											
Dependent	(I)	(L)	Mean	Std.		95% Confide	nce Interval					
Variable	gO.r	gO.r	Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound					
		1c	27255	.32260	1.000	-1.0664	.5213					
	1a	4	.49412	.53290	1.000	8172	1.8054					
Weeld		1a	.27255	.32260	1.000	5213	1.0664					
Week1	1c	4	.76667	.48978	.368	4385	1.9719					
		1a	49412	.53290	1.000	-1.8054	.8172					
	4	1c	76667	.48978	.368	-1.9719	.4385					
Week2	1a	1c	06779	.41221	1.000	-1.0821	.9465					
W EEKZ	1d	4	.19412	.68093	1.000	-1.4814	1.8697					

	1c	1a	.06779	.41221	1.000	9465	1.0821
	10	4	.26190	.62584	1.000	-1.2781	1.8019
	4	1a	19412	.68093	1.000	-1.8697	1.4814
	4	1c	26190	.62584	1.000	-1.8019	1.2781
	10	1c	37661	.43806	1.000	-1.4545	.7013
	1a	4	31471	.72363	1.000	-2.0953	1.4659
Week3	10	1a	.37661	.43806	1.000	7013	1.4545
weeks	1c	4	.06190	.66508	1.000	-1.5746	1.6984
	4	1a	.31471	.72363	1.000	-1.4659	2.0953
	4	1c	06190	.66508	1.000	-1.6984	1.5746
		1c	83599	.48345	.266	-2.0256	.3536
	1a	4	.15686	.79862	1.000	-1.8083	2.1220
		1a	.83599	.48345	.266	3536	2.0256
Week4	1c	4	.99286	.73400	.543	8133	2.7990
		1a	15686	.79862	1.000	-2.1220	1.8083
	4	1c	99286	.73400	.543	-2.7990	.8133

Appendix 4: Tables of One-way ANOVA results for the relation between HCMV growth behaviour and the sample's infection category.

	Washe		M	Std.	Std. Error	95% Con Interval f		Minimu
	Weeks	N	Mean	Deviatio n	Error	Lower Bound	Upper Bound	m
	congenital infection	12	3.508 3	1.61946	.46750	2.4794	4.5373	.90
	Not known infection	5	3.380 0	.99096	.44317	2.1496	4.6104	2.40
	Primary from Immunocomp etent	7	3.071 4	1.19124	.45025	1.9697	4.1731	1.10
1	Primary from immunoc ompromised	26	2.638 5	1.01314	.19869	2.2292	3.0477	1.40
	Recurrent Infections	35	3.251 4	1.28186	.21667	2.8111	3.6918	1.40
	Total	85	3.092 9	1.25146	.13574	2.8230	3.3629	.90
	congenital infection	12	5.441 7	1.45880	.42112	4.5148	6.3685	2.40
	Not known infection	5	4.740 0	1.80083	.80536	2.5040	6.9760	2.30
_	Primary from Immunocomp etent	7	3.800 0	1.30384	.49281	2.5941	5.0059	2.00
2	Primary from immunocompr omized	26	3.480 8	1.24901	.24495	2.9763	3.9853	1.50
	Recurrent Infections	35	4.051 4	1.43923	.24327	3.5570	4.5458	2.00
	Total	85	4.092 9	1.50529	.16327	3.7683	4.4176	1.50
	congenital infection	12	8.083 3	1.57471	.45458	7.0828	9.0839	5.00
	Not known infection	5	6.200 0	.84558	.37815	5.1501	7.2499	5.40
3	Primary from Immunocomp etent	7	5.300 0	1.07238	.40532	4.3082	6.2918	3.80
3	Primary from immune compromised	26	4.826 9	1.38031	.27070	4.2694	5.3844	1.50
	Recurrent Infections	35	5.371 4	1.53902	.26014	4.8428	5.9001	2.10
	Total	85	5.630 6	1.75567	.19043	5.2519	6.0093	1.50
4	congenital infection	12	9.283 3	.79296	.22891	8.7795	9.7872	7.00

Not known infection	5	7.060 0	1.45705	.65161	5.2508	8.8692	6.00
Primary from Immunocomp etent	7	5.814 3	.50474	.19077	5.3475	6.2811	5.00
Primary from immunocompr omized	26	5.330 8	.92985	.18236	4.9552	5.7063	3.50
Recurrent Infections	35	6.422 9	1.76403	.29818	5.8169	7.0288	3.40
Total	85	6.480 0	1.81887	.19728	6.0877	6.8723	3.40

ANOVA										
	Weeks	Sum of Squares	df	Mean Square	F	Sig.				
Week	Between Groups	8.735	4	2.184	1.422	.234				
1	Within Groups	122.820	80	1.535						
	Total	131.556	84							
Week	Between Groups	34.327	4	8.582	4.401	.003				
2	Within Groups	156.009	80	1.950						
	Total	190.336	84							
Week	Between Groups	93.721	4	23.430	11.346	.000				
3	Within Groups	165.199	80	2.065						
	Total	258.920	84							
Week	Between Groups	133.542	4	33.385	18.502	.000				
4	Within Groups	144.354	80	1.804						
	Total	277.896	84							

Multiple Comparisons

		Post ho	oc test: Bonfe	erroni			
Dependen	(I) infectiontyp	(J) infectiontyp	Mean Differen	Std.	Sig.	Inte	nfidence erval
t Variable	ewithnotkn own.r	ewithnotkn own.r	ce (I-J)	Error	-	Lower Bound	Upper Bound
		Not known infection	.12833	.6595 4	1.00 0	-1.7757	2.0324
	congenital	Primary from Immunocom petent	.43690	.5892 9	1.00 0	-1.2644	2.1382
	infection	Primary from immunocomp romized	.86987	.4324 2	.476	3785	2.1183
		Recurrent Infections	.25690	.4144 9	1.00 0	9397	1.4535
		congenital infection	12833	.6595 4	1.00 0	-2.0324	1.7757
	Not known infection	Primary from Immunocom petent	.30857	.7255 2	1.00 0	-1.7860	2.4031
Week1		Primary from immunocomp romized	.74154	.6050 6	1.00 0	-1.0053	2.4883
		Recurrent Infections	.12857	.5923 8	1.00 0	-1.5816	1.8388
		congenital infection	43690	.5892 9	1.00 0	-2.1382	1.2644
	Primary from	Not known infection	30857	.7255 2	1.00 0	-2.4031	1.7860
	Immunocom petent	Primary from immunocomp romized	.43297	.5276 1	1.00 0	-1.0902	1.9562
		Recurrent Infections	18000	.5130 2	1.00 0	-1.6611	1.3011
	Primary from immunocomp	congenital infection	86987	.4324 2	.476	-2.1183	.3785
	romized	Not known	74154	.6050	1.00	-2.4883	1.0053

		infection		6	0		
		Primary from Immunocom petent	43297	.5276 1	1.00 0	-1.9562	1.0902
		Recurrent	61297	.3208 0	.596	-1.5391	.3132
		congenital infection	25690	.4144 9	1.00 0	-1.4535	.9397
		Not known infection	12857	.5923 8	1.00 0	-1.8388	1.5816
	Recurrent Infections	Primary from Immunocom petent	.18000	.5130 2	1.00 0	-1.3011	1.6611
		Primary from immunocomp romized	.61297	.3208 0	.596	3132	1.5391
		Not known infection	.70167	.7433 2	1.00 0	-1.4443	2.8476
	congenital	Primary from Immunocom petent	1.64167	.6641 5	.156	2757	3.5591
	infection	Primary from immunocomp romized	1.96090*	.4873 5	.001	.5539	3.3679
		Recurrent Infections	1.39024*	.4671 5	.039	.0416	2.7389
		congenital infection	70167	.7433 2	1.00 0	-2.8476	1.4443
	Not known	Primary from Immunocom petent	.94000	.8176 9	1.00 0	-1.4206	3.3006
	infection	Primary from immunocomp romized	1.25923	.6819 3	.685	7095	3.2279
		Recurrent Infections	.68857	.6676 4	1.00 0	-1.2389	2.6160
		congenital infection	-1.64167	.6641 5	.156	-3.5591	.2757
W	Primary from	Not known infection	94000	.8176 9	1.00 0	-3.3006	1.4206
Week2	Immunocom petent	Primary from immunocomp romized	.31923	.5946 4	1.00 0	-1.3975	2.0359
		Recurrent Infections	25143	.5781 9	1.00 0	-1.9207	1.4178
		congenital infection	- 1.96090*	.4873 5	.001	-3.3679	5539
	Primary from	Not known infection	-1.25923	.6819 3	.685	-3.2279	.7095
	immunocomp romized	Primary from Immunocom petent	31923	.5946 4	1.00 0	-2.0359	1.3975
		Recurrent Infections	57066	.3615 5	1.00 0	-1.6145	.4731
		congenital infection	- 1.39024*	.4671 5	.039	-2.7389	0416
		Not known infection	68857	.6676 4	1.00 0	-2.6160	1.2389
	Recurrent Infections	Primary from Immunocom petent	.25143	.5781 9	1.00 0	-1.4178	1.9207
		Primary from immunocomp romized	.57066	.3615 5	1.00 0	4731	1.6145
		Not known infection	1.88333	.7649 1	.160	3249	4.0916
	congenital	Primary from Immunocom petent	2.78333*	.6834 3	.001	.8103	4.7564
	infection	Primary from immunocomp romized	3.25641*	.5015 0	.000	1.8086	4.7042
Week3		Recurrent Infections	2.71190*	.4807 1	.000	1.3241	4.0997
		congenital infection	-1.88333	.7649 1	.160	-4.0916	.3249
	Not known infection	Primary from Immunocom petent	.90000	.8414 3	1.00 0	-1.5292	3.3292
		Primary from immunocomp romized	1.37308	.7017 3	.539	6528	3.3989
		Recurrent	.82857	.6870	1.00	-1.1548	2.8120

		Infections		2	0		
		congenital infection	- 2.78333*	.6834 3	.001	-4.7564	8103
	Primary from	Not known infection	90000	.8414 3	1.00 0	-3.3292	1.5292
	Immunocom petent	Primary from immunocomp romized	.47308	.6119 0	1.00 0	-1.2935	2.2396
		Recurrent Infections	07143	.5949 8	1.00 0	-1.7891	1.6463
		congenital infection	- 3.25641*	.5015 0	.000	-4.7042	-1.8086
	Primary from	Not known infection	-1.37308	.7017	.539	-3.3989	.6528
	immunocomp romized	Primary from Immunocom petent	47308	.6119 0	1.00 0	-2.2396	1.2935
		Recurrent Infections	54451	.3720 5	1.00 0	-1.6186	.5296
		congenital infection	- 2.71190*	.4807 1	.000	-4.0997	-1.3241
		Not known infection	82857	.6870 2	1.00 0	-2.8120	1.1548
	Recurrent Infections	Primary from Immunocom petent	.07143	.5949 8	1.00 0	-1.6463	1.7891
		Primary from immunocomp romized	.54451	.3720 5	1.00 0	5296	1.6186
		Not known infection	2.22333*	.7150 2	.026	.1591	4.2876
	congenital infection	Primary from Immunocom petent	3.46905*	.6388 6	.000	1.6247	5.3134
		Primary from immunocomp romized	3.95256*	.4688 0	.000	2.5992	5.3060
		Recurrent Infections	2.86048*	.4493 6	.000	1.5632	4.1578
	Not known infection	congenital infection	- 2.22333*	.7150 2	.026	-4.2876	1591
		Primary from Immunocom petent	1.24571	.7865 5	1.00 0	-1.0250	3.5165
		Primary from immunocomp romized	1.72923	.6559 6	.101	1645	3.6230
		Recurrent Infections	.63714	.6422 2	1.00 0	-1.2169	2.4912
		congenital infection	- 3.46905*	.6388 6	.000	-5.3134	-1.6247
	Primary from	Not known infection	-1.24571	.7865 5	1.00 0	-3.5165	1.0250
Week4	Immunocom petent	Primary from immunocomp romized	.48352	.5719 9	1.00 0	-1.1678	2.1348
		Recurrent Infections	60857	.5561 8	1.00 0	-2.2142	.9971
		congenital infection	- 3.95256*	.4688 0	.000	-5.3060	-2.5992
	Primary from	Not known infection	-1.72923	.6559 6	.101	-3.6230	.1645
	immunocomp romized	Primary from Immunocom petent	48352	.5719 9	1.00 0	-2.1348	1.1678
		Recurrent Infections	- 1.09209*	.3477 9	.024	-2.0961	0880
		congenital infection	- 2.86048*	.4493 6	.000	-4.1578	-1.5632
		Not known infection	63714	.6422 2	1.00 0	-2.4912	1.2169
	Recurrent	Primary from Immunocom petent	.60857	.5561 8	1.00 0	9971	2.2142
	Infections	Primary from immunocomp romized	1.09209*	.3477 9	.024	.0880	2.0961

Appendix 5: Tables of One-way ANOVA results for the relation between HCMV growth behaviour and the sample's specimen type.

Dependent Variable	(I) spec.type.r	(J) spec.type.r	Mean Difference (I-J)	Std. Error	Sig.	95% Confidenc e Interval Lower
			(1-)			Bound
	respiratory	blood	58247	.63715	1.000	-2.1382
	respiratory	Urine	07500	.76083	1.000	-1.9327
Week1	blood - Urine -	respiratory	.58247	.63715	1.000	9733
WCCKI		Urine	.50747	.46152	.824	6194
		respiratory	.07500	.76083	1.000	-1.7827
		blood	50747	.46152	.824	-1.6344
	respiratory	blood	88117	.77135	.769	-2.7646
	respiratory	Urine	-1.96250	.92108	.108	-4.2115
Week2	blood	respiratory	.88117	.77135	.769	-1.0022
Weekz	DIOOD	Urine	-1.08133	.55873	.169	-2.4456
	Urine	respiratory	1.96250	.92108	.108	2865
	Unite	blood	1.08133	.55873	.169	2829
		blood	.10812	.91130	1.000	-2.1170
	respiratory	Urine	-1.05000	1.08820	1.000	-3.7071
Week3	blood	respiratory	10812	.91130	1.000	-2.3332
Weeks	DIOOD	Urine	-1.15812	.66010	.249	-2.7699
	Urine	respiratory	1.05000	1.08820	1.000	-1.6071
	Unite	blood	1.15812	.66010	.249	4537
	rospiratory	blood	.59221	.89906	1.000	-1.6030
Week4	respiratory	Urine	-1.48750	1.07358	.508	-4.1089
	h la a d	respiratory	59221	.89906	1.000	-2.7874
Week4	blood	Urine	-2.07971 [*]	.65124	.006	-3.6698
	Urine	respiratory	1.48750	1.07358	.508	-1.1339
	Urine	blood	2.07971*	.65124	.006	.4896

ANOVA								
	Weeks	Sum of Squares	df	Mean Square	F	Sig.		
	Between Groups	2.959	2	1.479	.958	.388		
1	Within Groups	132.754	86	1.544				
	Total	135.712	88					
2	Between Groups	12.165	2	6.082	2.689	.074		
	Within Groups	194.564	86	2.262				
	Total	206.729	88					
3	Between Groups	9.720	2	4.860	1.539	.220		
3	Within Groups	271.571	86	3.158				
	Total	281.291	88					
4	Between Groups	31.945	2	15.973	5.197	.007		
	Within Groups	264.324	86	3.074				
	Total	296.269	88					

Post hoc test: Bonferroni

Dependent Variable	(I) spec.type.r	(J) spec.type.r	Mean Difference (I-J)	Std. Error	Sig.	95% Confidenc e Interval Lower Bound
	respiratory	blood	58247	.63715	1.000	-2.1382
		Urine	07500	.76083	1.000	-1.9327
Week1	blood	respiratory	.58247	.63715	1.000	9733
WEEKI		Urine	.50747	.46152	.824	6194
	Urine	respiratory	.07500	.76083	1.000	-1.7827
		blood	50747	.46152	.824	-1.6344
	respiratory	blood	88117	.77135	.769	-2.7646
		Urine	-1.96250	.92108	.108	-4.2115
Week2	blood	respiratory	.88117	.77135	.769	-1.0022
WEERZ		Urine	-1.08133	.55873	.169	-2.4456
	Urine	respiratory	1.96250	.92108	.108	2865
		blood	1.08133	.55873	.169	2829
	respiratory	blood	.10812	.91130	1.000	-2.1170
Week3		Urine	-1.05000	1.08820	1.000	-3.7071
	blood	respiratory	10812	.91130	1.000	-2.3332

		Urine	-1.15812	.66010	.249	-2.7699
	Urine	respiratory	1.05000	1.08820	1.000	-1.6071
		blood	1.15812	.66010	.249	4537
	respiratory	blood	.59221	.89906	1.000	-1.6030
	respiratory	Urine	-1.48750	1.07358	.508	-4.1089
Week4	blood	respiratory	59221	.89906	1.000	-2.7874
WCCR4		Urine	-2.07971*	.65124	.006	-3.6698
	Urine	respiratory	1.48750	1.07358	.508	-1.1339
		blood	2.07971*	.65124	.006	.4896

Appendix 6: Tables of One-way ANOVA results for the relation between HCMV glycoprotein genotypes and the glycosylation of the glycoproteins.

Lectins order	Lectins Abbreviation
Lectin 1	SBA
Lectin 2	ECL
Lectin 3	LCA
Lectin 4	WGA
Lectin 5	GSL II
Lectin 6	EBL
Lectin 7	PHA-L
Lectin 8	GNL
Lectin 9	LEL
Lectin 10	BPL
Lectin 11	UEA
Lectin 12	EEL
Lectin 13	WFA
Lectin 14	PHA-E
Lectin 15	ALL
Lectin 16	PTL
Lectin 17	MAA II
Lectin 18	AAL
Lectin 19	GSL-I
Lectin 20	PSA

6.1 Lectins' identification number in the following ANOVA Tables

6.2 Glycoprotein B

				D	escriptive				
				aut		95% Confidence Interval for Mean			
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	– Minimu m	Maximu m
	1.00	35	.2154	.08396	.01419	.1866	.2443	.10	.45
	2.00	19	.2111	.09746	.02236	.1641	.2580	.09	.42
Lectin1b	3.00	19	.2116	.17836	.04092	.1256	.2975	.09	.88
	4.00	11	.2636	.11775	.03550	.1845	.3427	.11	.42
	Total	84	.2199	.11753	.01282	.1944	.2454	.09	.88
	1.00	35	.5751	.21116	.03569	.5026	.6477	.33	1.17
L s sti s Ob	2.00	19	.5700	.17211	.03948	.4870	.6530	.33	1.01
Lectin2b	3.00	19	.4995	.14860	.03409	.4278	.5711	.29	.80
	4.00	11	.5609	.23956	.07223	.4000	.7218	.20	1.01

	Tatal	0.1	5550	10220	00100	F101	5060	20	4 4 7
	Total	84	.5550	.19320	.02108	.5131	.5969	.20	1.17
	1.00	35	.6903	.18163	.03070	.6279	.7527	.34	1.08
	2.00	19	.7232	.25353	.05816	.6010	.8454	.32	1.22
Lectin3b	3.00	19	.6263	.27562	.06323	.4935	.7592	.35	1.48
	4.00	11	.8000	.38709	.11671	.5399	1.0601	.39	1.47
	Total	84	.6976	.25438	.02775	.6424	.7528	.32	1.48
	1.00	35	.7483	.24571	.04153	.6639	.8327	.36	1.40
	2.00	19	.7821	.28936	.06638	.6426	.9216	.40	1.20
Lectin4b	3.00	19	.7163	.42759	.09810	.5102	.9224	.30	2.27
	4.00	11	.7882	.33283	.10035	.5646	1.0118	.41	1.48
	Total	84	.7539	.31074	.03390	.6865	.8214	.30	2.27
	1.00	35	.2360	.14093	.02382	.1876	.2844	.08	.78
	2.00	19	.1711	.06082	.01395	.1417	.2004	.09	.31
Lectin5b	3.00	19	.2547	.27573	.06326	.1218	.3876	.07	1.20
	4.00	11	.2082	.09704	.02926	.1430	.2734	.08	.32
	Total	84	.2219	.16585	.01810	.1859	.2579	.07	1.20
	1.00	35	.8360	.27021	.04567	.7432	.9288	.43	1.57
	2.00	19	.8884	.31707	.07274	.7356	1.0412	.44	1.44
Lectin6b	3.00	19	.8068	.35774	.08207	.6344	.9793	.35	1.57
	4.00	11	.8236	.26526	.07998	.6454	1.0018	.50	1.25
	Total	84	.8396	.29795	.03251	.7750	.9043	.35	1.57
	1.00	35	1.0409	.45644	.07715	.8841	1.1976	.17	1.78
	2.00	19	1.2332	.55710	.12781	.9646	1.5017	.37	2.50
Lectin7b	3.00	19	.8232	.44608	.10234	.6082	1.0382	.18	1.91
	4.00	11	1.2436	.57423	.17314	.8579	1.6294	.64	2.41
	Total	84	1.0617	.50976	.05562	.9510	1.1723	.17	2.50
	1.00	35	.4337	.20037	.03387	.3649	.5025	.15	1.14
	2.00	19	.3779	.13256	.03041	.3140	.4418	.16	.58
Lectin8b	3.00	19	.3542	.13696	.03142	.2882	.4202	.12	.63
	4.00	11	.4273	.12305	.03710	.3446	.5099	.24	.64
	Total	84	.4023	.16527	.01803	.3664	.4381	.12	1.14
	1.00	35	.6331	.20665	.03493	.5622	.7041	.34	1.20
	2.00	19	.7374	.31425	.07209	.5859	.8888	.36	1.54
Lectin9b	3.00	19	.6711	.32195	.07386	.5159	.8262	.32	1.71
Leetingb	4.00	11	.6836	.32647	.09844	.4643	.9030	.35	1.35
	Total	84	.6719	.27543	.03005	.6121	.7317	.32	1.71
	1.00 2.00	10	.6077	.24747	.04183	.5227	.6927	.15	1.26 .96
Lectin10b	3.00	19	.6368	.19227	.04411	.5442	.7295	.26	
LecunitOD	4.00	19	.6609	.25123	.05764	.4536	.6958	.27	1.11
		11			.07439		.8267		
	Total	84	.6138	.23432	.02557	.5630	.6647	.15	1.26
Lectin11b	1.00	35	.2400	.13309	.02250	.1943	.2857	.12	.62
	2.00	19	.2268	.09328	.02140	.1819	.2718	.08	.46

	3.00	19	.2116	.11644	.02671	.1555	.2677	.09	.47
	4.00	11	.2782	.15138	.04564	.1765	.3799	.10	.58
	Total	84	.2356	.12346	.01347	.2088	.2624	.08	.62
	1.00	35	.1900	.12412	.02098	.1474	.2326	.07	.71
	2.00	19	.1589	.05311	.01219	.1333	.1845	.10	.26
Lectin12b	3.00	19	.1968	.29460	.06759	.0548	.3388	.07	1.39
	4.00	11	.1791	.08479	.02556	.1221	.2361	.09	.32
	Total	84	.1831	.16374	.01787	.1476	.2186	.07	1.39
	1.00	35	.4263	.13534	.02288	.3798	.4728	.24	.84
	2.00	19	.4068	.10889	.02498	.3544	.4593	.17	.65
Lectin13b	3.00	19	.4747	.46520	.10673	.2505	.6990	.23	2.35
	4.00	11	.4255	.11835	.03568	.3459	.5050	.29	.68
	Total	84	.4327	.24347	.02656	.3799	.4856	.17	2.35
	1.00	35	.5354	.19820	.03350	.4673	.6035	.26	.98
	2.00	19	.5442	.19219	.04409	.4516	.6368	.21	1.02
Lectin14b	3.00	19	.4958	.25994	.05963	.3705	.6211	.26	1.39
	4.00	11	.6164	.21082	.06356	.4747	.7580	.37	1.10
	Total	84	.5390	.21294	.02323	.4928	.5853	.21	1.39
	1.00	35	.6823	.29545	.04994	.5808	.7838	.11	1.30
	2.00	19	.6753	.18611	.04270	.5856	.7650	.39	1.06
Lectin15b	3.00	19	.6505	.26547	.06090	.5226	.7785	.33	1.47
	4.00	11	.7127	.27583	.08317	.5274	.8980	.39	1.31
	Total	84	.6775	.26088	.02846	.6209	.7341	.11	1.47
	1.00	35	.4017	.33969	.05742	.2850	.5184	.08	1.40
	2.00	19	.4363	.59946	.13753	.1474	.7252	.07	2.41
Lectin16b	3.00	19	.3084	.27540	.06318	.1757	.4412	.07	.79
	4.00	11	.2355	.23602	.07116	.0769	.3940	.07	.88
	Total	84	.3667	.39121	.04269	.2818	.4516	.07	2.41
	1.00	35	.7871	.22373	.03782	.7103	.8640	.40	1.20
	2.00	19	.9247	.34784	.07980	.7571	1.0924	.38	1.52
Lectin17b	3.00	19	.8568	.39169	.08986	.6681	1.0456	.41	2.15
	4.00	11	.8855	.29005	.08745	.6906	1.0803	.46	1.36
	Total	84	.8469	.30539	.03332	.7806	.9132	.38	2.15
	1.00	35	.7549	.30087	.05086	.6515	.8582	.22	1.91
	2.00	19	.8668	.30381	.06970	.7204	1.0133	.42	1.51
Lectin18b	3.00	19	.6842	.21337	.04895	.5814	.7871	.31	1.19
	4.00	11	.8982	.30948	.09331	.6903	1.1061	.46	1.44
	Total	84	.7830	.29059	.03171	.7199	.8460	.22	1.91
	1.00	35	.2751	.11014	.01862	.2373	.3130	.12	.57
	2.00	19	.2553	.07784	.01786	.2177	.2928	.11	.41
Lectin19b	3.00	19	.2621	.13049	.02994	.1992	.3250	.08	.57
	4.00	11	.2609	.11104	.03348	.1863	.3355	.12	.46

	Total	84	.2658	.10738	.01172	.2425	.2891	.08	.57
	1.00	35	.4971	.15487	.02618	.4439	.5503	.14	.84
	2.00	19	.5589	.22306	.05117	.4514	.6665	.25	1.14
Lectin20b	3.00	19	.4911	.27610	.06334	.3580	.6241	.15	1.44
	4.00	11	.5764	.19906	.06002	.4426	.7101	.32	1.00
	Total	84	.5201	.20761	.02265	.4751	.5652	.14	1.44

			ΙΟΥΑ			
		Sum of Squares	df	Mean Square	F	Sig.
Lectin1b	Between Groups	.025	3	.008	.583	.628
	Within Groups	1.122	80	.014		
	Total	1.146	83			
Lectin2b	Between Groups	.077	3	.026	.684	.565
	Within Groups	3.021	80	.038		
	Total	3.098	83			
Lectin3b	Between Groups	.226	3	.075	1.172	.326
	Within Groups	5.145	80	.064		
	Total	5.371	83			
Lectin4b	Between Groups	.056	3	.019	.188	.905
	Within Groups	7.959	80	.099		
	Total	8.015	83			
Lectin5b	Between Groups	.079	3	.026	.951	.420
	Within Groups	2.204	80	.028		
Leader Cl	Total	2.283	83			
Lectin6b	Between Groups	.069	3	.023	.252	.860
	Within Groups	7.299	80	.091		
	Total	7.368	83			
Lectin7b	Between Groups	2.019	3	.673	2.754	.048
	Within Groups	19.549	80	.244		
	Total	21.568	83			
Lectin8b	Between Groups	.097	3	.032	1.188	.320
	Within Groups	2.170	80	.027		
L a attin Oh	Total	2.267	83			
Lectin9b	Between Groups	.136	3	.045	.587	.626
	Within Groups	6.161	80	.077		
Lestin 10h	Total	6.297	83			
Lectin10b	Between Groups	.065	3	.022	.385	.764
	Within Groups	4.492	80	.056		
	Total	4.557	83			
Lectin11b	Between Groups	.033	3	.011	.715	.546
	Within Groups	1.232	80	.015		
	Total	1.265	83			
Lectin12b	Between Groups	.017	3	.006	.199	.897
	Within Groups	2.209	80	.028		
Lectin13b	Total Between Groups	2.225	83	016	264	051
	Within Groups	.048	3 80	.016	.264	.851
	Total	4.920	83			
Lectin14b	Between Groups	.102	3	.034	.745	.528
	Within Groups	3.661	80	.046		
	Total	3.764	83			
Lectin15b	Between Groups	.028	3	.009	.135	.939
	Within Groups	5.621	80	.070		
	Total	5.649	83			
Lectin16b	Between Groups	.389	3	.130	.842	.475
	Within Groups	12.314	80	.154		
	Total	12.703	83			

Lectin17b	Between Groups	.258	3	.086	.921	.435
	Within Groups	7.483	80	.094		
	Total	7.741	83			
Lectin18b	Between Groups	.493	3	.164	2.016	.118
	Within Groups	6.516	80	.081		
	Total	7.009	83			
Lectin19b	Between Groups	.006	3	.002	.159	.923
	Within Groups	.951	80	.012		
	Total	.957	83			
Lectin20b	Between Groups	.098	3	.033	.751	.525
	Within Groups	3.480	80	.043		
	Total	3.577	83			

			Multiple Com Post hoc test:				
Dependent	(I)	(J) gB.r	Mean Difference (I-	Std. Error	Sig.	95% Confi Interv	
Variable	gB.r	(J) 9B.I	J)	Stu. Ellor	Sig.	Lower Bound	Uppe Bound
Lectin1b	1.00	2.00	.00438	.03375	1.000	0869	.0957
		3.00	.00385	.03375	1.000	0874	.0951
		4.00	04821	.04093	1.000	1590	.0625
	2.00	1.00	00438	.03375	1.000	0957	.0869
		3.00	00053	.03842	1.000	1045	.1034
		4.00	05258	.04487	1.000	1740	.0688
	3.00	1.00	00385	.03375	1.000	0951	.0874
		2.00	.00053	.03842	1.000	1034	.1045
		4.00	05206	.04487	1.000	1734	.0693
	4.00	1.00	.04821	.04093	1.000	0625	.1590
		2.00	.05258	.04487	1.000	0688	.1740
		3.00	.05206	.04487	1.000	0693	.1734
Lectin2b	1.00	2.00	.00514	.05537	1.000	1447	.1549
		3.00	.07567	.05537	1.000	0741	.2255
		4.00	.01423	.06717	1.000	1675	.1959
	2.00	1.00	00514	.05537	1.000	1549	.1447
		3.00	.07053	.06304	1.000	1000	.2411
		4.00	.00909	.07362	1.000	1901	.2083
	3.00	1.00	07567	.05537	1.000	2255	.0741
		2.00	07053	.06304	1.000	2411	.1000
		4.00	06144	.07362	1.000	2606	.1377
	4.00	1.00	01423	.06717	1.000	1959	.1675
		2.00	00909	.07362	1.000	2083	.1901
		3.00	.06144	.07362	1.000	1377	.2606
Lectin3b	1.00	2.00	03287	.07226	1.000	2284	.1626
		3.00	.06397	.07226	1.000	1315	.2595
		4.00	10971	.08766	1.000	3469	.1274
	2.00	1.00	.03287	.07226	1.000	1626	.2284
		3.00	.09684	.08227	1.000	1257	.3194
		4.00	07684	.09608	1.000	3368	.1831
	3.00	1.00	06397	.07226	1.000	2595	.1315
		2.00	09684	.08227	1.000	3194	.1257
	1.00	4.00	17368	.09608	.446	4336	.0862
	4.00	1.00	.10971	.08766	1.000	1274	.3469
		2.00	.07684	.09608	1.000	1831	.3368
L a abi a Ala	1.00	3.00	.17368	.09608	.446	0862	.4336
Lectin4b	1.00	2.00	03382	.08988	1.000	2770	.2093
		3.00	.03197	.08988	1.000	2112	.2751
	2.00	4.00	03990	.10902	1.000	3349	.2551
	2.00	3.00	.03382	.08988		2093 2111	.2770
		4.00	.06579	.10233 .11950	1.000		.3420
	3.00		00608			3294	
	5.00	1.00 2.00	03197 06579	.08988 .10233	1.000	2751 3426	.2112
		4.00	07187	.10233	1.000	3952	.2514
	4.00	1.00	.03990	.11950	1.000	2551	.3349
	00	2.00	.00608	.11950	1.000	3172	.3294
		3.00	.07187	.11950	1.000	2514	.3952
Lectin5b	1.00	2.00	.06495	.04730	1.000	0630	.1929
Lecting	1.00	3.00	01874	.04730	1.000	1467	.1929
		4.00	.02782	.04730	1.000	1274	.1831
	2.00	1.00	06495	.03730	1.000	1929	.0630
	2.00	3.00	08368	.04730	.745	2294	.0620
	1	4.00	03713	.06289	1.000	2073	.1330

	3.00	1.00	.01874	.04730	1.000	1092	.1467
	5.00	2.00	.08368	.04730	.745	0620	.2294
		4.00	.04656	.06289	1.000	1236	.225
	4.00	1.00	02782	.05738	1.000	1831	.1274
	4.00	2.00	.03713	.06289	1.000	1330	.2073
		3.00	04656	.06289	1.000	2167	.1236
Lectin6b	1.00	2.00	05242	.08608	1.000	2853	.1250
Lectinop	1.00	3.00	.02916	.08608	1.000	2037	.2620
		4.00	.01236	.10441	1.000	2701	.2020
	2.00			1			-
	2.00	1.00	.05242	.08608	1.000	1805	.2853
		3.00	.08158	.09800	1.000	1836	.3467
	2.00	4.00	.06478	.11444	1.000	2448	.3744
	3.00	1.00	02916	.08608	1.000	2620	.2037
		2.00	08158	.09800	1.000	3467	.1836
		4.00	01679	.11444	1.000	3264	.2928
	4.00	1.00	01236	.10441	1.000	2948	.2701
		2.00	06478	.11444	1.000	3744	.2448
		3.00	.01679	.11444	1.000	2928	.3264
Lectin7b	1.00	2.00	19230	.14087	1.000	5734	.1888
		3.00	.21770	.14087	.757	1634	.5988
		4.00	20278	.17087	1.000	6651	.2595
	2.00	1.00	.19230	.14087	1.000	1888	.5734
		3.00	.41000	.16038	.075	0239	.8439
		4.00	01048	.18729	1.000	5172	.4962
	3.00	1.00	21770	.14087	.757	5988	.1634
		2.00	41000	.16038	.075	8439	.0239
		4.00	42048	.18729	.165	9272	.025
	4.00	1.00	.20278	.17087	1.000	2595	.6651
	7.00	2.00	.01048	.18729	1.000	4962	.5172
		3.00		1	.165		.9272
LastinQh	1.00		.42048	.18729		0862	
Lectin8b	1.00	2.00	.05582	.04694	1.000	0712	.1828
		3.00	.07950	.04694	.565	0475	.2065
		4.00	.00644	.05693	1.000	1476	.1605
	2.00	1.00	05582	.04694	1.000	1828	.0712
		3.00	.02368	.05344	1.000	1209	.1683
		4.00	04938	.06240	1.000	2182	.1195
	3.00	1.00	07950	.04694	.565	2065	.0475
		2.00	02368	.05344	1.000	1683	.1209
		4.00	07306	.06240	1.000	2419	.0958
	4.00	1.00	00644	.05693	1.000	1605	.1476
		2.00	.04938	.06240	1.000	1195	.2182
		3.00	.07306	.06240	1.000	0958	.2419
Lectin9b	1.00	2.00	10423	.07908	1.000	3182	.1097
		3.00	03791	.07908	1.000	2519	.1760
		4.00	05049	.09593	1.000	3100	.2090
		1 00	10100	.07908	1.000	1097	
	2.00	1.00	.10423	.07900			.3182
	2.00						
	2.00	3.00	.06632	.09004	1.000 1.000	1773	.3099
		3.00 4.00	.06632 .05373	.09004 .10514	1.000 1.000	1773 2307	.3099
	2.00	3.00 4.00 1.00	.06632 .05373 .03791	.09004 .10514 .07908	1.000 1.000 1.000	1773 2307 1760	.3099 .3382 .2519
		3.00 4.00 1.00 2.00	.06632 .05373 .03791 06632	.09004 .10514 .07908 .09004	1.000 1.000 1.000 1.000	1773 2307 1760 3099	.3099 .3382 .2519 .1773
	3.00	3.00 4.00 1.00 2.00 4.00	.06632 .05373 .03791 06632 01258	.09004 .10514 .07908 .09004 .10514	1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970	.3099 .3382 .2519 .1773 .2719
		3.00 4.00 1.00 2.00 4.00 1.00	.06632 .05373 .03791 06632 01258 .05049	.09004 .10514 .07908 .09004 .10514 .09593	1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090	.3099 .3382 .2519 .1773 .2719 .3100
	3.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00	.06632 .05373 .03791 06632 01258 .05049 05373	.09004 .10514 .07908 .09004 .10514 .09593 .10514	1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382	.3099 .3382 .2519 .1773 .2719 .3100 .2307
Lection 10h	3.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719	.3099 .3382 .2519 .1773 .2719 .3100 .2307 .2970
Lectin10b	3.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .06753	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118	.3099 .3382 .2519 .1772 .2719 .3100 .2307 .2970 .1530
Lectin10b	3.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 2.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .06753 .06753	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497	.3099 .3382 .2519 .1772 .2719 .3100 .2307 .2970 .1536 .2157
Lectin10b	3.00 4.00 1.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .06753 .06753 .08191	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748	.3099 .3382 .2519 .1773 .2719 .3100 .2307 .2970 .1536 .2155 .1684
Lectin10b	3.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 1.00 2.00 3.00 4.00 1.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .06753 .06753 .08191 .06753	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536	.3099 .3382 .2519 .1773 .2719 .3100 .2307 .2970 .1536 .2155 .1684 .2118
Lectin10b	3.00 4.00 1.00	3.00 4.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .02913 .02913	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .06753 .06753 .08191 .06753 .07688	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459	.3099 .3382 .2519 .1773 .2719 .3100 .2307 .1536 .2155 .1684 .2118 .2701
Lectin10b	3.00 4.00 1.00 2.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .02913 .02913 .06211 02407	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .06753 .06753 .08191 .06753 .07688 .08978	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670	.3099 .3382 .2519 .1772 .2719 .3100 .2307 .2970 .1536 .2155 .1684 .2118 .2701 .2188
Lectin10b	3.00 4.00 1.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .02913 .02913 .02913 .02913 .02913 .06211 02407 03298	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .06753 .06753 .08191 .06753 .07688 .08978 .06753	$\begin{array}{c} 1.000\\ 1.$	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157	.3099 .3382 .2519 .1772 .2719 .3100 .2307 .2970 .1536 .2157 .1684 .2118 .2700 .2188 .1497
Lectin10b	3.00 4.00 1.00 2.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00 2.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .10514 .06753 .06753 .07688 .08978 .06753 .07688	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2701	.3099 .3382 .2519 .1772 .2719 .3100 .2307 .2970 .1536 .2157 .1684 .2118 .2700 .2188 .1497 .1459
Lectin10b	3.00 4.00 1.00 2.00 3.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00 2.00 4.00 1.00 2.00 4.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211 06211 08617	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .06753 .06753 .07688 .08978 .06753 .07688 .08978	1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2701 2701 3291	.3099 .3382 .2519 .1772 .2719 .3100 .2307 .2970 .1536 .2157 .2158 .2118 .2701 .2188 .1497 .1459 .1459 .1567
Lectin10b	3.00 4.00 1.00 2.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 2.00 3.00 4.00 1.00 2.00 4.00 1.00 2.00 4.00 1.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .10514 .06753 .06753 .07688 .08978 .06753 .07688	1.000 1.0000 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2701 3291 3291 1684	.3099 .3382 .2519 .1772 .2719 .3100 .2307 .2970 .1536 .2158 .2158 .2118 .2701 .2188 .1497 .1459 .1459 .1567 .2748
Lectin10b	3.00 4.00 1.00 2.00 3.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00 2.00 4.00 1.00 2.00 4.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211 06211 08617	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .06753 .06753 .07688 .08978 .06753 .07688 .08978	1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2701 2701 3291	.3099 .3382 .2519 .1772 .2719 .3100 .2307 .2970 .1536 .2158 .2158 .2118 .2701 .2188 .1497 .1459 .1459 .1567 .2748
Lectin10b	3.00 4.00 1.00 2.00 3.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 2.00 4.00 1.00 2.00 4.00 1.00 2.00 4.00 1.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211 08617 .05319	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .06753 .06753 .07688 .08978 .06753 .07688 .08978 .06753	1.000 1.0000 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2701 3291 3291 1684	.3099 .3382 .2519 .1773 .2719 .3100 .2307 .2970 .1536 .2158 .2158 .2168 .2701 .2188 .2701 .2188 .1459 .1459 .1459 .2748 .2748
Lectin10b	3.00 4.00 1.00 2.00 3.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 2.00 4.00 1.00 2.00 4.00 1.00 2.00 4.00 1.00 2.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211 08617 .05319 .02407	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .06753 .06753 .06753 .07688 .08978 .06753 .07688 .08978 .08978 .08978 .08191 .08978	1.000 1.0000 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2670 2157 2701 3291 1684 2188	.3099 .3382 .2519 .1773 .2719 .3100 .2307 .2970 .1536 .2157 .1684 .2118 .2118 .2707 .2188 .1459 .1459 .1459 .1459 .1567 .2748 .2670 .3293
	3.00 4.00 1.00 2.00 3.00 4.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 2.00 3.00 4.00 1.00 2.00 4.00 1.00 2.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211 08617 .05319 .02407 .02407 .032407	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .06753 .06753 .06753 .07688 .08978 .06753 .07688 .08978 .08978 .08978 .08978 .08978	1.000 1.0000 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2701 3291 3291 1684 2188 1567	.3099 .3382 .2519 .1773 .2719 .3100 .2307 .2970 .1536 .2157 .1684 .2118 .2118 .2707 .2188 .1459 .1459 .1459 .1459 .1567 .2748 .2670 .3299 .1088
	3.00 4.00 1.00 2.00 3.00 4.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 2.00 4.00 1.00 2.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 2.00 3.00 2.00 3.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211 08617 .05319 .02407 .05319 .02407 .05319 .02407 .08617 .08617 .01316 .02842	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .06753 .06753 .06753 .07688 .08978 .06753 .07688 .08978 .08978 .08978 .08978 .08978 .08978 .08978 .08978 .08978 .08978	1.000 1.	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2701 3291 1684 2188 1567 0825 0673	.3099 .3382 .2519 .1772 .2719 .3100 .2307 .2970 .1536 .2157 .1684 .2118 .2700 .1497 .1450 .1567 .2748 .2670 .3299 .1088 .124
	3.00 4.00 1.00 2.00 3.00 4.00 1.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 2.00 3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 2.00 3.00 2.00 3.00 2.00 3.00 2.00 3.00 2.00 3.00 2.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211 08617 .05319 .02407 .08617 .01316 .02842 03818	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .06753 .06753 .06753 .07688 .08978 .06753 .07688 .08978 .06753 .07688 .08978 .08978 .08978 .08978 .08978 .08978 .03536 .03536 .04290	1.000 1.0000 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2701 3291 1684 2188 1567 0825 0673 1542	.3099 .3382 .2519 .1773 .2719 .3100 .2307 .1536 .2155 .1684 .2118 .2700 .2188 .1684 .2118 .2700 .2188 .1495 .1455 .2748 .2748 .2748 .2676 .3295 .1088 .1241 .0779
	3.00 4.00 1.00 2.00 3.00 4.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00 2.00 3.00 2.00 3.00 2.00 3.00 2.00 3.00 4.00 1.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211 08617 .05319 .02407 .05319 .02407 .05319 .02407 .01316 .02842 03818 01316	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .06753 .06753 .06753 .07688 .08978 .06753 .07688 .08978 .06753 .07688 .08978 .08978 .08191 .08978 .08978 .03536 .03536 .04290 .03536	1.000 1.	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2670 2157 2701 3291 1684 1567 0825 0673 1542 1088	.3182 .3099 .3382 .2519 .1773 .2719 .3100 .2307 .2307 .2307 .2307 .2307 .2155 .1684 .2118 .2701 .2188 .1497 .1455 .1567 .2748 .1497 .1456 .2748 .2670 .3299 .1088 .1247 .0829 .1247
	3.00 4.00 1.00 2.00 3.00 4.00 1.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 4.00 1.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211 08617 .05319 .02407 .05319 .02407 .05319 .02407 .038617 .01316 .02842 03818 01316 .01526	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .06753 .06753 .06753 .07688 .08978 .06753 .07688 .08978 .06753 .07688 .08978 .08978 .08978 .08978 .08978 .08978 .03536 .03536 .04290 .03536 .04026	1.000 1.	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2670 2157 2701 3291 1684 2188 1567 0825 0673 1542 1088 0937	.3099 .3382 .2519 .1772 .2719 .3100 .2307 .2970 .1536 .2155 .1684 .2118 .2709 .2188 .1497 .1456 .2748 .2670 .3299 .1088 .1242 .0779 .0829 .1242
	3.00 4.00 1.00 2.00 3.00 4.00 1.00 2.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00 2.00 3.00 4.00 1.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211 08617 .05319 .02407 .08617 .01316 .02842 03818 01316 .01526 05134	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .10514 .06753 .06753 .07688 .08978 .06753 .07688 .08978 .06753 .07688 .08978 .06753 .07688 .08978 .06753 .07688 .08978 .08978 .03536 .03536 .03536 .04290 .03536 .04026 .04702	1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2670 2157 2701 3291 1684 2188 1567 0825 0673 1542 1088 0937 1785	.3099 .3382 .2519 .1772 .2719 .3100 .2307 .2970 .1536 .2157 .1684 .2118 .2709 .2188 .1497 .1456 .2748 .2670 .3299 .1088 .1249 .0759 .0829 .1244 .0759
	3.00 4.00 1.00 2.00 3.00 4.00 1.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00 2.00 3.00 2.00 3.00 2.00 3.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211 08617 .05319 .02407 .08617 .01316 .02842 03818 01316 .01526 05134 02842	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .10514 .06753 .06753 .07688 .08978 .06753 .07688 .08978 .06753 .07688 .08978 .08978 .08978 .08978 .08978 .08978 .03536 .03536 .04290 .03536 .04026 .04702 .03536	1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2670 2157 2701 3291 1684 2188 1567 0825 0673 1542 1088 0937 1785 1241	.3099 .3382 .2519 .1772 .2719 .3100 .2307 .2970 .1536 .2157 .1684 .2157 .1684 .2170 .2188 .1497 .1459 .1459 .1459 .1459 .1248 .2670 .3299 .1088 .1241 .0779 .0829 .1244 .0759 .0672
	3.00 4.00 1.00 2.00 3.00 4.00 1.00 2.00	3.00 4.00 1.00 2.00 4.00 1.00 2.00 3.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00 2.00 3.00 4.00 1.00 2.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00 3.00 4.00 1.00	.06632 .05373 .03791 06632 01258 .05049 05373 .01258 02913 .03298 05319 .02913 .06211 02407 03298 06211 08617 .05319 .02407 .08617 .01316 .02842 03818 01316 .01526 05134	.09004 .10514 .07908 .09004 .10514 .09593 .10514 .10514 .10514 .06753 .06753 .07688 .08978 .06753 .07688 .08978 .06753 .07688 .08978 .06753 .07688 .08978 .06753 .07688 .08978 .08978 .03536 .03536 .03536 .04290 .03536 .04026 .04702	1.000 1.000	1773 2307 1760 3099 2970 2090 3382 2719 2118 1497 2748 1536 1459 2670 2157 2670 2157 2701 3291 1684 2188 1567 0825 0673 1542 1088 0937 1785	.3099 .3382 .2519 .1772 .2719 .3100 .2307 .2970 .1536 .2157 .1684 .2118 .2709 .2188 .1497 .1456 .2748 .2670 .3299 .1088 .1249 .0759 .0829 .1244 .0759

		2.00	.05134	.04702	1.000	0759	.17
		3.00	.06660	.04702	.963	0606	.19
Lectin12b	1.00	2.00	.03105	.04735	1.000	0970	.15
		3.00	00684	.04735	1.000	1349	.12
		4.00	.01091	.05743	1.000	1445	.16
	2.00	1.00	03105	.04735	1.000	1592	.09
		3.00	03789	.05391	1.000	1837	.10
		4.00	02014	.06295	1.000	1905	.15
	3.00	1.00	.00684	.04735	1.000	1213	.13
		2.00	.03789	.05391	1.000	1080	.18
		4.00	.01775	.06295	1.000	1526	.18
	4.00	1.00	01091	.05743	1.000	1663	.14
		2.00	.02014	.06295	1.000	1502	.19
		3.00	01775	.06295	1.000	1881	.15
Lectin13b	1.00	2.00	.01944	.07032	1.000	1708	.20
		3.00	04845	.07032	1.000	2387	.14
		4.00	.00083	.08530	1.000	2299	.23
	2.00	1.00	01944	.07032	1.000	2097	.17
		3.00	06789	.08006	1.000	2845	.14
		4.00	01861	.09349	1.000	2716	.23
	3.00	1.00	.04845	.07032	1.000	1418	.23
		2.00	.06789	.08006	1.000	1487	.28
	4.50	4.00	.04928	.09349	1.000	2037	.30
	4.00	1.00	00083	.08530	1.000	2316	.22
		2.00	.01861	.09349	1.000	2343	.27
Loctin 1 4	1.00	3.00	04928	.09349	1.000	3022	.20
Lectin14b	1.00	2.00	00878	.06096	1.000	1737	.15
		3.00	.03964	.06096	1.000	1253	.20
		4.00	08094	.07395	1.000	2810	.11
	2.00	1.00	.00878	.06096	1.000	1561	.17
		3.00	.04842	.06941	1.000	1394	.23
		4.00	07215	.08105	1.000	2914	.14
	3.00	1.00	03964	.06096	1.000	2046	.12
		2.00	04842	.06941	1.000	2362	.13
		4.00	12057	.08105	.845	3399	.09
	4.00	1.00	.08094	.07395	1.000	1191	.28
		2.00	.07215	.08105	1.000	1471	.29
Loctint Ft	1.00	3.00	.12057	.08105	.845	0987	.33
Lectin15b	1.00	2.00	.00702	.07553	1.000	1973	.21
		3.00	.03176	.07553	1.000	1726	.23
	2.00	4.00	03044 00702	.09162	1.000	2783 2114	.21
	2.00	3.00	.02474	.07553	1.000	2079	.19
		4.00	03746	.10042	1.000	3092	.25
	3.00	1.00	03176	.07553	1.000	2361	.23
	5.00	2.00	02474	.07555	1.000	2574	.20
		4.00	06220	.10042	1.000	3339	.20
	4.00	1.00	.03044	.09162	1.000	2174	.20
		2.00	.03746	.10042	1.000	2342	.30
		3.00	.06220	.10042	1.000	2095	.33
Lectin16b	1.00	2.00	03460	.11180	1.000	3371	.26
		3.00	.09329	.11180	1.000	2092	.39
		4.00	.16626	.13561	1.000	2006	.53
	2.00	1.00	.03460	.11180	1.000	2679	.33
		3.00	.12789	.12729	1.000	2165	.47
		4.00	.20086	.14864	1.000	2013	.60
	3.00	1.00	09329	.11180	1.000	3958	.20
		2.00	12789	.12729	1.000	4723	.21
		4.00	.07297	.14864	1.000	3292	.47
	4.00	1.00	16626	.13561	1.000	5332	.20
		2.00	20086	.14864	1.000	6030	.20
		3.00	07297	.14864	1.000	4751	.32
Lectin17b	1.00	2.00	13759	.08715	.710	3734	.09
		3.00	06970	.08715	1.000	3055	.16
		4.00	09831	.10571	1.000	3843	.18
	2.00	1.00	.13759	.08715	.710	0982	.37
		3.00	.06789	.09923	1.000	2006	.33
		4.00	.03928	.11587	1.000	2742	.35
	3.00	1.00	.06970	.08715	1.000	1661	.30
		2.00	06789	.09923	1.000	3363	.20
		4.00	02861	.11587	1.000	3421	.28
	4.00	1.00	.09831	.10571	1.000	1877	.38
		2.00	03928	.11587	1.000	3528	.274
		3.00	.02861	.11587	1.000	2849	.34

Lectin18b	1.00	2.00	11198	.08133	1.000	3320	.1080
		3.00	.07065	.08133	1.000	1494	.2907
		4.00	14332	.09865	.901	4102	.1236
	2.00	1.00	.11198	.08133	1.000	1080	.3320
		3.00	.18263	.09260	.312	0679	.4331
		4.00	03134	.10813	1.000	3239	.2612
	3.00	1.00	07065	.08133	1.000	2907	.1494
		2.00	18263	.09260	.312	4331	.0679
		4.00	21397	.10813	.308	5065	.0786
	4.00	1.00	.14332	.09865	.901	1236	.4102
		2.00	.03134	.10813	1.000	2612	.3239
		3.00	.21397	.10813	.308	0786	.5065
Lectin19b	1.00	2.00	.01988	.03108	1.000	0642	.1040
		3.00	.01304	.03108	1.000	0710	.0971
		4.00	.01423	.03769	1.000	0877	.1162
	2.00	1.00	01988	.03108	1.000	1040	.0642
		3.00	00684	.03538	1.000	1026	.0889
		4.00	00565	.04132	1.000	1174	.1061
	3.00	1.00	01304	.03108	1.000	0971	.0710
		2.00	.00684	.03538	1.000	0889	.1026
		4.00	.00120	.04132	1.000	1106	.1130
	4.00	1.00	01423	.03769	1.000	1162	.0877
		2.00	.00565	.04132	1.000	1061	.1174
		3.00	00120	.04132	1.000	1130	.1106
Lectin20b	1.00	2.00	06180	.05943	1.000	2226	.0990
		3.00	.00609	.05943	1.000	1547	.1669
		4.00	07922	.07209	1.000	2743	.1158
	2.00	1.00	.06180	.05943	1.000	0990	.2226
		3.00	.06789	.06766	1.000	1152	.2510
		4.00	01742	.07901	1.000	2312	.1964
	3.00	1.00	00609	.05943	1.000	1669	.1547
		2.00	06789	.06766	1.000	2510	.1152
		4.00	08531	.07901	1.000	2991	.1285
	4.00	1.00	.07922	.07209	1.000	1158	.2743
		2.00	.01742	.07901	1.000	1964	.2312
		3.00	.08531	.07901	1.000	1285	.2991

6.3 Glycoprotein H

				Des	scriptives				
				Std.	Std.	Interval	nfidence for Mean	Minim	Maxim
Lectin1	Mixed	<u>N</u>	Mean	Deviation	Error	Lower Bound		um	um
b	. inted	4	.1700	.02449	.01225	.1310	.2090	.14	.19
	1.00	44	.2241	.13939	.02101	.1817	.2665	.09	.88
	2.00	36	.2108	.08709	.01452	.1814	.2403	.09	.42
	Total	84	.2158	.11591	.01265	.1907	.2410	.09	.88
Lectin2 b	Mixed	4	.6725	.27281	.13640	.2384	1.1066	.51	1.08
5	1.00	44	.5627	.22912	.03454	.4931	.6324	.20	1.17
	2.00	36	.5314	.12401	.02067	.4894	.5733	.33	.83
	Total	84	.5545	.19316	.02108	.5126	.5964	.20	1.17
Lectin3 b	Mixed	4	.7600	.18601	.09301	.4640	1.0560	.56	1.01
	1.00	44	.6811	.26241	.03956	.6014	.7609	.34	1.48
	2.00	36	.7203	.25920	.04320	.6326	.8080	.32	1.47
	Total	84	.7017	.25650	.02799	.6460	.7573	.32	1.48
Lectin4 b	Mixed	4	.8975	.34558	.17279	.3476	1.4474	.61	1.40
	1.00	44	.7761	.35726	.05386	.6675	.8848	.36	2.27
	2.00	36	.7072	.23658	.03943	.6272	.7873	.30	1.20
	Total	84	.7524	.31023	.03385	.6851	.8197	.30	2.27
Lectin5 b	Mixed	4	.4450	.51131	.25565	3686	1.2586	.12	1.20
-	1.00	44	.2075	.12221	.01842	.1703	.2447	.08	.74
	2.00	36	.2114	.13624	.02271	.1653	.2575	.07	.78
	Total	84	.2205	.16604	.01812	.1844	.2565	.07	1.20
Lectin6 b	Mixed	4	1.1125	.31532	.15766	.6108	1.6142	.65	1.36
-	1.00	44	.7950	.29985	.04520	.7038	.8862	.35	1.57
	2.00	36	.8675	.28446	.04741	.7713	.9637	.44	1.51
	Total	84	.8412	.29879	.03260	.7763	.9060	.35	1.57

Lectin7	Mixed	4	1.1800	.86753	.43376	2004	2.5604	.35	2.08
b	1.00	44		.48147	.07258	.9234		.18	2.00
	1.00		1.0698	-			1.2162		
	2.00	36	1.0503	.53985	.08997	.8676	1.2329	.17	2.50
Lectin8	Total Mixed	84	1.0667	.52051	.05679	.9537	1.1796	.17	2.50
b	Mixeu	4	.3125	.06702	.03351	.2059	.4191	.26	.41
	1.00	44	.3982	.13258	.01999	.3579	.4385	.16	.75
	2.00	36	.4056	.20565	.03428	.3360	.4751	.12	1.14
	Total	84	.3973	.16577	.01809	.3613	.4332	.12	1.14
Lectin9 b	Mixed	4	.6300	.16432	.08216	.3685	.8915	.50	.87
	1.00	44	.6693	.31003	.04674	.5751	.7636	.32	1.71
	2.00	36	.6822	.24135	.04023	.6006	.7639	.36	1.54
	Total	84	.6730	.27472	.02997	.6134	.7326	.32	1.71
Lectin1 0b	Mixed	4	.6875	.40343	.20172	.0455	1.3295	.34	1.26
00	1.00	44	.6445	.26160	.03944	.5650	.7241	.15	1.12
	2.00	36	.5647	.16838	.02806	.5078	.6217	.27	.95
	Total	84	.6124	.23473	.02561	.5614	.6633	.15	1.26
Lectin1 1b	Mixed	4	.2600	.20083	.10042	0596	.5796	.10	.54
10	1.00	44	.2457	.12496	.01884	.2077	.2837	.08	.59
	2.00	36	.2181	.11600	.01933	.1788	.2573	.09	.62
	Total	84	.2345	.12425	.01356	.2076	.2615	.08	.62
Lectin1	Mixed	4	.1750	.13102	.06551	0335	.3835	.09	.37
2b	1.00	44	.2095	.21167	.03191	.1452	.2739	.08	1.39
	2.00	36	.1472	.07094	.01182	.1232	.1712	.00	.38
	Total	84	.1812	.16396	.01789	.1456	.2168	.07	1.39
Lectin1	Mixed	4	.4850	.23979	.11990	.1034	.8666	.33	.84
3b	1.00	44	.4573	.31756	.04787	.3607	.5538	.17	2.35
	2.00	36	.3939	.09667	.01611	.3612	.4266	.24	.63
	Total	84	.4314	.24365	.02658	.3786	.4843	.17	2.35
Lectin1 4b	Mixed	4	.5550	.29490	.14745	.0857	1.0243	.30	.98
40	1.00	44	.5616	.23604	.03558	.4898	.6334	.21	1.39
	2.00	36	.5036	.17147	.02858	.4456	.5616	.26	.96
	Total	84	.5364	.21266	.02320	.4903	.5826	.21	1.39
Lectin1 5b	Mixed	4	.7725	.35920	.17960	.2009	1.3441	.54	1.30
50	1.00	44	.6930	.27282	.04113	.6100	.7759	.11	1.47
	2.00	36	.6378	.23188	.03865	.5593	.7162	.22	1.16
	Total	84	.6731	.25908	.02827	.6169	.7293	.11	1.47
Lectin1 6b	Mixed	4	.3900	.35412	.17706	1735	.9535	.08	.74
00	1.00	44	.3691	.35984	.05425	.2597	.4785	.07	1.46
	2.00	36	.2950	.26446	.04408	.2055	.3845	.07	.81
	Total	84	.3383	.32024	.03494	.2688	.4078	.07	1.46
Lectin1	Mixed	4	.7600	.30452	.15226	.2754	1.2446	.50	1.20
7b	1.00	44	.8455	.33471	.05046	.7437	.9472	.38	2.15
	2.00	36	.8333	.25518	.04253	.7470	.9197	.45	1.52
	Total	84	.8362	.29863	.03258	.7714	.9010	.38	2.15
Lectin1	Mixed	4	.8275	.31160	.15580	.3317	1.3233	.59	1.27
8b	1.00	44	.7693	.26414	.03982	.6890	.8496	.22	1.44
	2.00	36	.7831	.32399	.05400	.6734	.8927	.31	1.91
	Total	84	.7780	.28998	.03164	.7150	.8409	.22	1.91
Lectin1 9b	Mixed	4	.3025	.20320	.10160	0208	.6258	.13	.57
90	1.00	44	.2700	.10090	.01521	.2393	.3007	.11	.51
	2.00	36	.2550	.10670	.01778	.2189	.2911	.08	.57
	Total	84	.2651	.10813	.01180	.2417	.2886	.08	.57
Lectin2 0b	Mixed	4	.6325	.16317	.08159	.3729	.8921	.45	.78
00	1.00	44	.5234	.22754	.03430	.4542	.5926	.14	1.44
	2.00	36	.5100	.19171	.03195	.4451	.5749	.15	1.14
	Total	84	.5229	.20961	.02287	.4774	.5683	.14	1.44

		AN	AVOI			
		Sum of Squares	df	Mean Square	F	Sig.
L	Between Groups	.012	2	.006	.452	.638
Lectin1b	Within Groups	1.103	81	.014		
	Total	1.115	83			

L a ati a Dh	Between Groups	.078	2	.039	1.045	.356
Lectin2b	Within Groups Total	3.019 3.097	81 83	.037		
	Between Groups	.045	2	.022	.334	.717
Lectin3b	Within Groups	5.416	81	.067		
	Total	5.461	83			
Lectin4b	Between Groups	.182	2	.091	.947	.392
Lectinab	Within Groups Total	7.806 7.988	81 83	.096		
	Between Groups	.212	2	.106	4.136	.019
Lectin5b	Within Groups	2.076	81	.026		
	Total	2.288	83			
Lectin6b	Between Groups	.413	2	.207	2.392	.098
Lecunob	Within Groups Total	6.996 7.410	81 83	.086		
	Between Groups	.061	2	.031	.111	.895
Lectin7b					.111	.095
-	Within Groups Total	22.426 22.487	81 83	.277		
	Between Groups	.031	2	.016	.563	.572
Lectin8b	Within Groups	2.250	81	.028		
	Total	2.281	83			
	Between Groups	.011	2	.006	.072	.931
Lectin9b	Within Groups	6.253	81	.077		
	Total	6.264	83			
	Between Groups	.150	2	.075	1.372	.259
Lectin10b	Within Groups	4.423	81	.055		
	Total	4.573	83			
Lectin11b	Between Groups	.018	2	.009	.572	.567
Lectiniii	Within Groups Total	1.263	81 83	.016		
	Between Groups	.077	2	.039	1.449	.241
Lectin12b	Within Groups	2.154	81	.027	_	
	Total	2.231	83			
	Between Groups	.092	2	.046	.767	.468
Lectin13b	Within Groups	4.836	81	.060		
	Total	4.927	83			
Lectin14b	Between Groups	.068	2	.034	.747	.477
Lecumite	Within Groups Total	3.686	81	.046		
		3.754	83	051	754	474
Lectin15b	Between Groups	.102	2	.051	.754	.474
-	Within Groups Total	5.469 5.571	81 83	.068		
	Between Groups	.120	2	.060	.579	.563
Lectin16b	Within Groups	8.392	81	.104		
	Total	8.512	83			
Lectin17b	Between Groups	.027	2	.014	.150	.861
	Within Groups Total	7.374 7.402	81 83	.091		
	Between Groups	.014	2	.007	.082	.922
Lectin18b	Within Groups	6.965	81	.086		
	Total	6.979	83			
Lectin19b	Between Groups	.010	2	.005	.435	.648
20001130	Within Groups	.960	81	.012		
	Total Between Groups	.970	83	.027	.609	.546
Lectin20b	Within Groups	3.593	81	.044		
-	Total	3.647	83			

			· ·	omparisons			
			Post hoc te Mean	st: Bonferron	I	95% Confiden	co Intorva
Dependent Variable	(I) gH	(J) gH	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
Lectin1b	Mixed	1.00	05409	.06093	1.000	2031	.0949
		2.00	04083	.06150	1.000	1912	.1095
	1.00	Mixed	.05409	.06093	1.000	0949	.2031
		2.00	.01326	.02622	1.000	0508	.0774
	2.00	Mixed	.04083	.06150	1.000	1095	.1912
		1.00	01326	.02622	1.000	0774	.0508
Lectin2b	Mixed	1.00	.10977	.10082	.838	1367	.3562
		2.00	.14111	.10175	.508	1076	.3899
	1.00	Mixed	10977	.10082	.838	3562	.1367
		2.00	.03134	.04339	1.000	0747	.1374
	2.00	Mixed	14111	.10175	.508	3899	.1076
		1.00	03134	.04339	1.000	1374	.0747
Lectin3b	Mixed	1.00	.07886	.13504	1.000	2513	.4090
		2.00	.03972	.13629	1.000	2935	.3729
	1.00	Mixed	07886	.13504	1.000	4090	.2513
		2.00	03914	.05811	1.000	1812	.1029
	2.00	Mixed	03972	.13629	1.000	3729	.2935
		1.00	.03914	.05811	1.000	1029	.1812
Lectin4b	Mixed	1.00	.12136	.16212	1.000	2750	.5177
		2.00	.19028	.16361	.745	2097	.5903
	1.00	Mixed	12136	.16212	1.000	5177	.2750
		2.00	.06891	.06976	.979	1016	.2395
	2.00	Mixed	19028	.16361	.745	5903	.2097
		1.00	06891	.06976	.979	2395	.1016
Lectin5b	Mixed	1.00	.23750*	.08361	.017	.0331	.4419
2000.000		2.00	.23361*	.08438	.021	.0273	.4399
	1.00	Mixed	23750*	.08361	.017	4419	0331
	1.00	2.00	00389	.03598	1.000	0918	.0841
	2.00	Mixed	23361*	.08438	.021	4399	0273
	2.00	1.00	.00389	.03598	1.000	0841	.0918
Lectin6b	Mixed	1.00					
Lectinob	Tixed	1.00	.31750	.15348	.125	0577	.6927
		2.00	.24500	.15490	.353	1337	.6237
	1.00	Mixed	31750	.15348	.125	6927	.0577
		2.00	07250	.06605	.827	2340	.0890
	2.00	Mixed	24500	.15490	.353	6237	.1337
		1.00	.07250	.06605	.827	0890	.2340
Lectin7b	Mixed	1.00	.11023	.27479	1.000	5616	.7820
		2.00	.12972	.27732	1.000	5482	.8077
	1.00	Mixed	11023	.27479	1.000	7820	.5616
		2.00	.01949	.11825	1.000	2696	.3086
	2.00	Mixed	12972	.27732	1.000	8077	.5482
		1.00	01949	.11825	1.000	3086	.2696
Lectin8b	Mixed	1.00	08568	.08703	.983	2984	.1271
		2.00	09306	.08783	.878	3078	.1217
	1.00	Mixed	.08568	.08703	.983	1271	.2984
		2.00	00737	.03745	1.000	0989	.0842
	2.00	Mixed	.09306	.08783	.878	1217	.3078
		1.00	.00737	.03745	1.000	0842	.0989
Lectin9b	Mixed	1.00	03932	.14510	1.000	3940	.3154
		2.00	05222	.14644	1.000	4102	.3058
	1.00	Mixed	.03932	.14510	1.000	3154	.3940
		2.00	01290	.06244	1.000	1656	.1397
	2.00	Mixed	.05222	.14644	1.000	3058	.4102
		1.00	.01290	.06244	1.000	1397	.1656
Lectin10b	Mixed	1.00	.04295	.12204	1.000	2554	.3413
		2.00	.12278	.12316	.965	1783	.4239
	1.00	Mixed	04295	.12204	1.000	3413	.2554
		2.00	.07982	.05252	.397	0486	.2082
	2.00	Mixed	12278	.12316	.965	4239	.1783
		1.00	07982	.05252	.397	2082	.0486
Lectin11b	Mixed	1.00	.01432	.06522	1.000	1451	.1738
		2.00	.04194	.06582	1.000	1190	.2029
	1.00	Mixed	01432	.06522	1.000	1738	.1451
	1.00	2.00	.02763	.02807	.984	0410	.0962
	2.00	Mixed	04194	.02807	1.000	2029	.1190

		1.00	02763	.02807	.984	0962	.0410
Lectin12b	Mixed	1.00	03455	.08517	1.000	2428	.1737
		2.00	.02778	.08595	1.000	1823	.2379
	1.00	Mixed	.03455	.08517	1.000	1737	.2428
		2.00	.06232	.03665	.279	0273	.1519
	2.00	Mixed	02778	.08595	1.000	2379	.1823
		1.00	06232	.03665	.279	1519	.0273
Lectin13b	Mixed	1.00	.02773	.12760	1.000	2842	.3397
		2.00	.09111	.12878	1.000	2237	.4059
	1.00	Mixed	02773	.12760	1.000	3397	.2842
		2.00	.06338	.05491	.755	0709	.1976
	2.00	Mixed	09111	.12878	1.000	4059	.2237
		1.00	06338	.05491	.755	1976	.0709
Lectin14b	Mixed	1.00	00659	.11140	1.000	2789	.2657
		2.00	.05139	.11243	1.000	2235	.3262
	1.00	Mixed	.00659	.11140	1.000	2657	.2789
		2.00	.05798	.04794	.690	0592	.1752
	2.00	Mixed	05139	.11243	1.000	3262	.2235
		1.00	05798	.04794	.690	1752	.0592
Lectin15b	Mixed	1.00	.07955	.13570	1.000	2522	.4113
		2.00	.13472	.13695	.985	2001	.4695
	1.00	Mixed	07955	.13570	1.000	4113	.2522
		2.00	.05518	.05840	1.000	0876	.1979
	2.00	Mixed	13472	.13695	.985	4695	.2001
		1.00	05518	.05840	1.000	1979	.0876
Lectin16b	Mixed	1.00	.02091	.16809	1.000	3900	.4318
		2.00	.09500	.16964	1.000	3197	.5097
	1.00	Mixed	02091	.16809	1.000	4318	.3900
	1.00	2.00	.07409	.07234	.926	1027	.2509
	2.00	Mixed	09500	.16964	1.000	5097	.3197
	2.00	1.00	07409	.07234	.926	2509	.1027
Lectin17b	Mixed	1.00	08545	.15758	1.000	4707	.2998
		2.00	07333	.15903	1.000	4621	.3154
	1.00	Mixed	.08545	.15758	1.000	2998	.4707
	1.00	2.00	.01212	.06781	1.000	1537	.1779
	2.00	Mixed	.07333	.15903	1.000	3154	.4621
	2.00	1.00	01212	.06781	1.000	1779	.1537
Lectin18b	Mixed	1.00	.05818	.15314	1.000	3162	.4326
		2.00	.04444	.15455	1.000	3334	.4223
	1.00	Mixed	05818	.15455	1.000	4326	.4223
	1.00	2.00	01374	.06590	1.000	1748	.1474
	2.00	Mixed	04444	.15455	1.000	4223	.3334
	2.00	1.00	.01374	.06590	1.000	1474	.1748
Lectin19b	Mixed	1.00	.03250	.05686	1.000	1065	.1715
		2.00	.04750	.05738	1.000	0928	.1878
	1.00	Mixed	03250	.05686	1.000	1715	.1065
	1.00	2.00	.01500	.02447	1.000	0448	.0748
	2.00	Mixed	04750	.05738	1.000	1878	.0928
	2.00	1.00	01500	.02447	1.000	0748	.0448
Lectin20b	Mixed	1.00	.10909	.10998	.973	1598	.3780
		2.00	.12250	.11100	.819	1489	.3939
	1.00	Mixed	10909	.10998	.973	3780	.1598
		2.00	.01341	.04733	1.000	1023	.1291
	2.00	Mixed	12250	.11100	.819	3939	.1489
	1	1.00	01341	.04733	1.000	1291	.1023

6.4 Glycoprotein L

				D	escriptives	5			
		N	N Mean Std. Std. Interval for Me			Minimu	Maximu		
		N	Mean	Deviation	Error	Lower Bound	Upper Bound	m	m
	Mixed	14	.2543	.19821	.05297	.1398	.3687	.09	.88
	1.00	6	.1950	.07396	.03019	.1174	.2726	.14	.33
Lectin1	2.00	18	.2194	.10597	.02498	.1667	.2721	.11	.44
b	3.00	8	.2262	.06093	.02154	.1753	.2772	.15	.34
	4.00	37	.2070	.10124	.01664	.1733	.2408	.09	.45
	Total	83	.2187	.11845	.01300	.1928	.2445	.09	.88
Lectin2	Mixed	14	.5464	.13843	.03700	.4665	.6264	.33	.80

b	1.00	6	.4700	.09960	.04066	.3655	.5745	.36	.64
U	2.00	18	.5911	.24217	.04000	.4707	.7115	.30	1.04
	3.00	8	.6575	.25905	.09159	.4409	.8741	.34	1.17
	4.00	37	.5286	.17794	.02925	.4693	.5880	.20	1.14
	Total	83	.5534	.19389	.02128	.5110	.5957	.20	1.17
	Mixed	14	.7543	.28164	.07527	.5917	.9169	.45	1.48
	1.00	6	.5817	.18324	.07481	.3894	.7740	.35	.82
Lectin3 b	2.00 3.00	18 8	.6722 .6775	.25965	.06120 .06894	.5431 .5145	.8013 .8405	.32	1.23 1.07
5	4.00	37	.6895	.23365	.03841	.6116	.7674	.34	1.37
	Total	83	.6877	.23970	.02631	.6354	.7401	.32	1.48
	Mixed	14	.8264	.45099	.12053	.5660	1.0868	.50	2.27
	1.00	6	.6267	.18886	.07710	.4285	.8249	.40	.94
Lectin4 b	2.00	18	.8089	.32033	.07550	.6496	.9682	.37	1.48
U	3.00 4.00	8 37	.8262 .7138	.33239 .25223	.11752 .04147	.5484 .6297	1.1041 .7979	.46	1.31 1.24
	Total	83	.7580	.31148	.03419	.6899	.8260	.30	2.27
	Mixed	14	.2671	.21931	.05861	.1405	.3938	.09	.78
	1.00	6	.1900	.10621	.04336	.0785	.3015	.12	.40
Lectin5	2.00	18	.1944	.07430	.01751	.1575	.2314	.10	.32
b	3.00 4.00	8 37	.2200	.09457 .19344	.03343 .03180	.1409 .1490	.2991 .2780	.13	.42
	Total	83	.2133	.16507	.01812	.1813	.2534	.07	1.20
	Mixed	14	.8843	.31917	.08530	.7000	1.0686	.44	1.57
	1.00	6	.6600	.21679	.08851	.4325	.8875	.35	.91
Lectin6	2.00	18	.7894	.29566	.06969	.6424	.9365	.44	1.39
b	3.00	8	.7800	.26398	.09333	.5593	1.0007	.48	1.12
	4.00	37	.8914	.31442	.05169	.7865	.9962	.43	1.57
	Total	83	.8406	.30216	.03317	.7746	.9066	.35	1.57
	Mixed	14	1.0907	.49169	.13141	.8068	1.3746	.33	2.08
	1.00	6	.9233	.52064	.21255	.3770	1.4697	.18	1.50
Lectin7 b	2.00	18	1.0628	.47984	.11310	.8242	1.3014	.30	2.07
5	3.00	8	.9588	.46557	.16460	.5695	1.3480	.21	1.62
	4.00	37	1.1427	.57377	.09433	.9514	1.3340	.17	2.50
	Total	83	1.0830	.52029	.05711	.9694	1.1966	.17	2.50
	Mixed	14	.4871	.27170	.07262	.3303	.6440	.18	1.14
	1.00	6	.3933	.09070	.03703	.2981	.4885	.27	.54
Lectin8 b	2.00	18	.3400	.12742	.03003	.2766	.4034	.15	.58
5	3.00	8	.4488	.16234	.05740	.3130	.5845	.24	.75
	4.00	37	.3895	.13199	.02170	.3455	.4335	.12	.70
	Total	83	.4012	.16685	.01831	.3648	.4376	.12	1.14
	Mixed	14	.6593	.31604	.08447	.4768	.8418	.42	1.71
	1.00	6	.5867	.19582	.07994	.3812	.7922	.36	.92
Lectin9 b	2.00	18	.7094	.29505	.06954	.5627	.8562	.32	1.35
-	3.00	8	.7250	.29573	.10456	.4778	.9722	.42	1.27
	4.00	37	.6549	.26668	.04384	.5659	.7438	.34	1.54
	Total	83	.6693	.27600	.03030	.6090	.7295	.32	1.71
	Mixed	14	.6164	.23575	.06301	.4803	.7525	.15	1.11
Lectin1	1.00	6	.5250	.17627	.07196	.3400	.7100	.31	.78
Ob	2.00	18	.6289	.22927	.05404	.5149	.7429	.34	1.26
	3.00	8	.7000	.28224	.09979	.4640	.9360	.29	1.02
	4.00	37	.6084	.23923	.03933	.5286	.6881	.26	1.12

	Total	83	.6170	.23427	.02572	.5658	.6681	.15	1.26
	Mixed	14	.2507	.15005	.04010	.1641	.3374	.10	.62
	1.00	6	.1967	.03933	.01606	.1554	.2379	.15	.25
Lectin1 1b	2.00	18	.2511	.15107	.03561	.1760	.3262	.11	.58
-	3.00	8	.2700	.09577	.03386	.1899	.3501	.14	.42
	4.00	37	.2251	.11541	.01897	.1867	.2636	.08	.59
	Total	83	.2373	.12406	.01362	.2103	.2644	.08	.62
	Mixed	14	.2593	.33525	.08960	.0657	.4529	.09	1.39
	1.00	6	.1217	.03061	.01249	.0895	.1538	.08	.17
Lectin1	2.00	18	.1794	.09000	.02121	.1347	.2242	.10	.37
2b	3.00	8	.1863	.06368	.02251	.1330	.2395	.07	.25
	4.00	37	.1659	.11536	.01897	.1275	.2044	.07	.71
	Total	83	.1834	.16476	.01809	.1474	.2194	.07	1.39
	Mixed	14	.5464	.52352	.13992	.2442	.8487	.32	2.35
	1.00	6	.3433	.04719	.01926	.2938	.3929	.28	.42
Lectin1	2.00	18	.4250	.14565	.03433	.3526	.4974	.24	.84
3b	3.00	8	.4313	.12541	.04434	.3264	.5361	.30	.59
	4.00	37	.4108	.13118	.02157	.3671	.4545	.17	.68
	Total	83	.4339	.24475	.02686	.3804	.4873	.17	2.35
	Mixed	14	.5743	.26503	.07083	.4213	.7273	.33	1.39
	1.00	6	.4450	.11380	.04646	.3256	.5644	.27	.57
Lectin1	2.00	18	.5367	.22319	.05261	.4257	.6477	.27	1.02
4b	3.00	8	.5000	.16423	.05806	.3627	.6373	.26	.75
	4.00	37	.5557	.21243	.03492	.4848	.6265	.21	1.10
	Total	83	.5413	.21329	.02341	.4948	.5879	.21	1.39
	Mixed	14	.7136	.32872	.08785	.5238	.9034	.11	1.47
	1.00	6	.5300	.14100	.05756	.3820	.6780	.33	.68
	2.00	18	.6728	.24600	.05798	.5504	.7951	.43	1.30
Lectin1 5b	3.00	8	.6463	.22633	.08002	.4570	.8355	.32	.92
	4.00	37	.7146	.25063	.04120	.6310	.7982	.37	1.31
	Total	83	.6854	.25556	.02805	.6296	.7412	.11	1.47
	Mixed	14	.5929	.59630	.15937	.2486	.9372	.08	2.41
	1.00	6	.0983	.02858	.01167	.0683	.1283	.00	.15
Lectin1 6b	2.00	18	.1683	.15629	.03684	.0906	.2461	.07	.74
	3.00	8	.4413	.36459	.12890	.1364	.7461	.08	1.02
	4.00	37	.4100	.36034	.05924	.2899	.5301	.07	1.46
	Total	83	.3689	.39225	.04306	.2833	.4546	.07	2.41
	Mixed	14	.9064	.45329	.12115	.6447	1.1681	.48	2.15
Loctin1	1.00	6	.7250	.24337	.09936	.4696	.9804	.38	1.02
Lectin1 7b	2.00	18	.9228	.29919	.07052	.7740	1.0716	.54	1.52
	3.00	8	.8475	.27820	.09836	.6149	1.0801	.52	1.31
	4.00	37	.7897	.25370	.04171	.7051	.8743	.40	1.31

	Total	83	.8392	.30656	.03365	.7722	.9061	.38	2.15
	Mixed	14	.7521	.24055	.06429	.6133	.8910	.22	1.19
	1.00	6	.6483	.26393	.10775	.3714	.9253	.42	1.13
Lectin1	2.00	18	.8122	.30562	.07204	.6602	.9642	.42	1.44
8b	3.00	8	.7488	.27000	.09546	.5230	.9745	.43	1.20
	4.00	37	.7995	.31672	.05207	.6939	.9051	.31	1.91
	Total	83	.7784	.29145	.03199	.7148	.8421	.22	1.91
	Mixed	14	.2843	.10610	.02836	.2230	.3455	.15	.51
	1.00	6	.2100	.06066	.02477	.1463	.2737	.12	.29
Lectin1	2.00	18	.2928	.11192	.02638	.2371	.3484	.15	.57
9b	3.00	8	.2463	.08943	.03162	.1715	.3210	.12	.39
	4.00	37	.2608	.11526	.01895	.2224	.2992	.08	.57
	Total	83	.2666	.10777	.01183	.2431	.2902	.08	.57
	Mixed	14	.5721	.30803	.08232	.3943	.7500	.14	1.44
	1.00	6	.5117	.20203	.08248	.2996	.7237	.25	.72
Lectin2	2.00	18	.5344	.23640	.05572	.4169	.6520	.25	1.14
Ob	3.00	8	.5225	.16663	.05891	.3832	.6618	.35	.88
	4.00	37	.4943	.16540	.02719	.4392	.5495	.15	1.00
	Total	83	.5201	.21050	.02311	.4742	.5661	.14	1.44

		ANC	AVA			
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	.027	4	.007	.462	.764
Lectin1b	Within Groups	1.124	78	.014		
	Total	1.151	82			
	Between Groups	.177	4	.044	1.191	.322
Lectin2b	Within Groups	2.905	78	.037		
	Total	3.083	82			
	Between Groups	.135	4	.034	.574	.682
Lectin3b	Within Groups	4.577	78	.059		
	Total	4.711	82			
	Between Groups	.325	4	.081	.831	.509
Lectin4b	Within Groups	7.630	78	.098		
	Total	7.956	82			
	Between Groups	.049	4	.012	.439	.780
Lectin5b	Within Groups	2.185	78	.028		
	Total	2.234	82			
	Between Groups	.394	4	.099	1.084	.370
Lectin6b	Within Groups	7.092	78	.091		
	Total	7.486	82			
	Between Groups	.417	4	.104	.373	.827
Lectin7b	Within Groups	21.781	78	.279		
	Total	22.198	82			
	Between Groups	.194	4	.049	1.815	.134
Lectin8b	Within Groups	2.088	78	.027		
	Total	2.283	82			
	Between Groups	.104	4	.026	.330	.857
Lectin9b	Within Groups	6.143	78	.079		
	Total	6.247	82			
Lectin10b	Between Groups	.111	4	.028	.494	.740
	Within Groups	4.389	78	.056		

	Total	4.501	82			
	Between Groups	.030	4	.007	.473	.755
Lectin11b	Within Groups	1.232	78	.016		
	Total	1.262	82			
	Between Groups	.115	4	.029	1.063	.380
Lectin12b	Within Groups	2.111	78	.027		
	Total	2.226	82			
	Between Groups	.248	4	.062	1.036	.394
Lectin13b	Within Groups	4.664	78	.060		
	Total	4.912	82			
	Between Groups	.093	4	.023	.496	.739
Lectin14b	Within Groups	3.638	78	.047		
	Total	3.731	82			
	Between Groups	.203	4	.051	.767	.550
Lectin15b	Within Groups	5.153	78	.066		
	Total	5.355	82			
	Between Groups	1.970	4	.492	3.608	.009
Lectin16b	Within Groups	10.647	78	.136		
	Total	12.617	82			
	Between Groups	.358	4	.090	.951	.439
Lectin17b	Within Groups	7.348	78	.094		
	Total	7.706	82			
	Between Groups	.155	4	.039	.444	.776
Lectin18b	Within Groups	6.810	78	.087		
	Total	6.965	82			
	Between Groups	.040	4	.010	.866	.488
Lectin19b	Within Groups	.912	78	.012		
	Total	.952	82			
	Between Groups	.067	4	.017	.365	.833
Lectin20b	Within Groups	3.567	78	.046		
	Total	3.633	82			

			Multiple Co				
			Post hoc test	: Bonferroni			
Dependent	(I) gL	(J) gL	Mean Difference (I-	Std. Error	Sig.	95% Confidenc	e Interva Upper
Variable	(1) 92	(5) 92	J)	Stu: Error	Sig.	Lower Bound	Bound
		1.00	.05929	.05857	1.000	1099	.2285
	Minud	2.00	.03484	.04278	1.000	0887	.1584
	Mixed	3.00	.02804	.05320	1.000	1257	.1817
		4.00	.04726	.03767	1.000	0616	.1561
		Mixed	05929	.05857	1.000	2285	.1099
		2.00	02444	.05659	1.000	1879	.1390
	1.00	3.00	03125	.06483	1.000	2185	.1560
		4.00	01203	.05283	1.000	1647	.1406
		Mixed	03484	.04278	1.000	1584	.0887
La altrada		1.00	.02444	.05659	1.000	1390	.1879
Lectin1b	2.00	3.00	00681	.05101	1.000	1542	.1406
		4.00	.01242	.03450	1.000	0872	.1121
		Mixed	02804	.05320	1.000	1817	.1257
		1.00	.03125	.06483	1.000	1560	.2185
	3.00	2.00	.00681	.05101	1.000	1406	.1542
		4.00	.01922	.04680	1.000	1160	.1544
		Mixed	04726	.03767	1.000	1561	.0616
		1.00	.01203	.05283	1.000	1406	.1647
	4.00	2.00	01242	.03450	1.000	1121	.0872
		3.00	01922	.04680	1.000	1544	.1160
		1.00	.07643	.09417	1.000	1956	.3485
		2.00	04468	.06877	1.000	2434	.1540
	Mixed	3.00	11107	.08554	1.000	3582	.1360
		4.00	.01778	.06056	1.000	1572	.1927
Lectin2b		Mixed	07643	.09417	1.000	3485	.1956
	1 00	2.00	12111	.09098	1.000	3840	.1417
	1.00	3.00	18750	.10423	.759	4886	.1136
		4.00	05865	.08494	1.000	3040	.1867
	2.00	Mixed	.04468	.06877	1.000	1540	.2434

		1.00	.12111	.09098	1.000	1417	.384
		3.00	06639	.08201	1.000	3033	.170
		4.00	.06246	.05546	1.000	0978	.222
		Mixed	.11107	.08554	1.000	1360	.358
	3.00	1.00	.18750	.10423	.759	1136	.488
	5.50	2.00	.06639	.08201	1.000	1705	.303
		4.00	.12885	.07525	.908	0886	.346
		Mixed	01778	.06056	1.000	1927	.157
	4.00	1.00	.05865	.08494	1.000	1867	.304
	4.00	2.00	06246	.05546	1.000	2227	.097
		3.00	12885	.07525	.908	3463	.088
		1.00	.17262	.11820	1.000	1689	.514
	Mixed	2.00	.08206	.08632	1.000	1673	.331
	Plixed	3.00	.07679	.10736	1.000	2334	.386
		4.00	.06483	.07601	1.000	1548	.284
		Mixed	17262	.11820	1.000	5141	.168
	1.00	2.00	09056	.11419	1.000	4205	.239
	1.00	3.00	09583	.13082	1.000	4738	.282
		4.00	10779	.10661	1.000	4158	.200
		Mixed	08206	.08632	1.000	3314	.167
Lectin3b	2.00	1.00	.09056	.11419	1.000	2393	.420
Lecuitod	2.00	3.00	00528	.10293	1.000	3026	.292
		4.00	01724	.06961	1.000	2183	.183
		Mixed	07679	.10736	1.000	3869	.233
	2 00	1.00	.09583	.13082	1.000	2821	.473
	3.00	2.00	.00528	.10293	1.000	2921	.302
		4.00	01196	.09445	1.000	2848	.260
		Mixed	06483	.07601	1.000	2844	.154
	4.00	1.00	.10779	.10661	1.000	2002	.415
	4.00	2.00	.01724	.06961	1.000	1839	.218
		3.00	.01196	.09445	1.000	2609	.284
		1.00	.19976	.15262	1.000	2412	.640
		2.00	.01754	.11146	1.000	3045	.339
	Mixed	3.00	.00018	.13862	1.000	4003	.400
		4.00	.11264	.09814	1.000	1709	.396
		Mixed	19976	.15262	1.000	6407	.241
	1.00	2.00	18222	.14744	1.000	6082	.243
	1.00	3.00	19958	.16892	1.000	6876	.288
		4.00	08712	.13765	1.000	4848	.310
		Mixed	01754	.11146	1.000	3395	.304
1 41		1.00	.18222	.14744	1.000	2438	.608
Lectin4b	2.00	3.00	01736	.13290	1.000	4013	.366
		4.00	.09511	.08988	1.000	1646	.354
		Mixed	00018	.13862	1.000	4007	.400
	2.00	1.00	.19958	.16892	1.000	2884	.687
	3.00	2.00	.01736	.13290	1.000	3666	.401
		4.00	.11247	.12195	1.000	2399	.464
		Mixed	11264	.09814	1.000	3962	.170
		1.00	.08712	.13765	1.000	3106	.484
	4.00	2.00	09511	.08988	1.000	3548	.164
		3.00	11247	.12195	1.000	4648	.239
		1.00	.07714	.08167	1.000	1588	.313
		2.00	.07270	.05964	1.000	0996	.245
	Mixed	3.00	.04714	.07418	1.000	1672	.261
		4.00	.05363	.05252	1.000	0981	.201
		Mixed	-,07714			3131	
		Mixed 2.00	07714 00444	.08167	1.000	3131 2324	.158
	1.00	2.00	00444	.08167 .07890	1.000 1.000	2324	.158 .223
	1.00	2.00 3.00	00444 03000	.08167 .07890 .09039	1.000 1.000 1.000	2324 2912	.158 .223 .231
	1.00	2.00 3.00 4.00	00444 03000 02351	.08167 .07890 .09039 .07366	1.000 1.000 1.000 1.000	2324 2912 2363	.158 .223 .231 .189
		2.00 3.00 4.00 Mixed	00444 03000 02351 07270	.08167 .07890 .09039 .07366 .05964	1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450	.158 .223 .231 .189 .099
Lectin5b	1.00	2.00 3.00 4.00 Mixed 1.00	00444 03000 02351 07270 .00444	.08167 .07890 .09039 .07366 .05964 .07890	1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235	.158 .223 .231 .189 .099 .232
Lectin5b		2.00 3.00 4.00 Mixed 1.00 3.00	00444 03000 02351 07270 .00444 02556	.08167 .07890 .09039 .07366 .05964 .07890 .07112	1.000 1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235 2310	.158 .223 .231 .189 .099 .232 .179
Lectin5b		2.00 3.00 4.00 Mixed 1.00 3.00 4.00	00444 03000 02351 07270 .00444 02556 01907	.08167 .07890 .09039 .07366 .05964 .07890 .07112 .04810	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235 2310 1580	.158 .223 .231 .189 .099 .232 .179 .119
Lectin5b		2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed	00444 03000 02351 07270 .00444 02556 01907 04714	.08167 .07890 .09039 .07366 .05964 .07890 .07112 .04810 .07418	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235 2310 1580 2615	.158 .223 .231 .189 .099 .232 .179 .119 .167
Lectin5b		2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00	00444 03000 02351 07270 .00444 02556 01907 04714 .03000	.08167 .07890 .09039 .07366 .05964 .07890 .07112 .04810 .07418 .09039	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235 2310 1580 2615 2312	.158 .223 .231 .189 .099 .232 .179 .119 .167 .291
Lectin5b	2.00	2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00	00444 03000 02351 07270 .00444 02556 01907 04714 .03000 .02556	.08167 .07890 .09039 .07366 .05964 .07890 .07112 .04810 .07418 .09039 .07112	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235 2310 1580 2615 2312 1799	.158 .223 .231 .189 .099 .232 .179 .119 .167 .291 .231
Lectin5b	2.00	2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00	00444 03000 02351 07270 .00444 02556 01907 04714 .03000 .02556 .00649	.08167 .07890 .09039 .07366 .05964 .07890 .07112 .04810 .07418 .09039 .07112 .06526	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235 2310 1580 2615 2312 1799 1821	.158 .223 .231 .189 .099 .232 .179 .119 .167 .291 .231 .231 .195
Lectin5b	2.00	2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed	00444 03000 02351 07270 .00444 02556 01907 04714 .03000 .02556 .00649 05363	.08167 .07890 .09039 .07366 .05964 .07890 .07112 .04810 .07418 .09039 .07112 .06526 .05252	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235 2310 1580 2615 2312 1799 1821 2054	.158 .223 .231 .189 .099 .232 .179 .119 .167 .291 .231 .195 .098
Lectin5b	2.00	2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00	00444 03000 02351 07270 .00444 02556 01907 04714 .03000 .02556 .00649 05363 .02351	.08167 .07890 .09039 .07366 .05964 .07890 .07112 .04810 .07418 .09039 .07112 .06526 .05252 .07366	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235 2310 1580 2615 2312 1799 1821 2054 1893	.158 .223 .231 .189 .099 .232 .179 .119 .167 .291 .231 .195 .098 .236
Lectin5b	2.00	2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00	00444 03000 02351 07270 .00444 02556 01907 04714 .03000 .02556 .00649 05363 .02351 .01907	.08167 .07890 .09039 .07366 .05964 .07890 .07112 .04810 .07418 .09039 .07112 .06526 .05252 .07366 .04810	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235 2310 1580 2615 2312 1799 1821 2054 2054 1893 1199	.158 .223 .231 .189 .099 .232 .179 .119 .197 .291 .231 .195 .098 .236 .158
Lectin5b	2.00	2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 Mixed 1.00 2.00 3.00	00444 03000 02351 07270 .00444 02556 01907 04714 .03000 .02556 .00649 05363 .02351 .01907 00649	.08167 .07890 .09039 .07366 .05964 .07890 .07112 .04810 .07418 .09039 .07112 .06526 .05252 .07366 .04810 .06526	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235 2310 1580 2615 2312 1799 1821 2054 1893 1199 1950	.158 .223 .231 .189 .099 .232 .179 .119 .167 .291 .231 .195 .098 .236 .158 .182
Lectin5b	2.00	2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 3.00 1.00	00444 03000 02351 07270 .00444 02556 01907 04714 .03000 .02556 .00649 05363 .02351 .01907 00649 .22429	.08167 .07890 .09039 .07366 .05964 .07890 .07112 .04810 .07418 .09039 .07112 .06526 .05252 .07366 .04810 .06526 .14714	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235 2310 1580 2615 2312 1799 1821 2054 1893 1199 1950 2008	.158 .223 .231 .189 .099 .232 .179 .119 .167 .291 .231 .195 .098 .236 .158 .182 .649
	2.00 3.00 4.00	2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 Mixed 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00	00444 03000 02351 07270 .00444 02556 01907 04714 .03000 .02556 .00649 05363 .02351 .01907 00649 .22429 .09484	.08167 .07890 .09039 .07366 .05964 .07890 .07112 .04810 .07418 .09039 .07112 .06526 .05252 .07366 .04810 .06526 .14714 .10745	1.000 1.0000 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235 2310 1580 2615 2312 1799 1821 2054 1893 1199 1950 2008 2008 2156	.158 .223 .231 .189 .099 .232 .179 .119 .167 .291 .195 .098 .236 .158 .182 .649 .405
Lectin5b Lectin6b	2.00	2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 3.00 1.00	00444 03000 02351 07270 .00444 02556 01907 04714 .03000 .02556 .00649 05363 .02351 .01907 00649 .22429	.08167 .07890 .09039 .07366 .05964 .07890 .07112 .04810 .07418 .09039 .07112 .06526 .05252 .07366 .04810 .06526 .14714	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	2324 2912 2363 2450 2235 2310 1580 2615 2312 1799 1821 2054 1893 1199 1950 2008	.158 .223 .231 .189 .099 .232 .179 .119 .167 .291 .231 .195 .098 .236 .158 .182 .649 .490 .266

		2.00	- 120//	1/715	1 000	- 5401	201
			12944	.14215	1.000	5401 5905	.281
		3.00	12000	.16285	1.000		-
		4.00	23135	.13271	.852	6148	.152
		Mixed	09484	.10745	1.000	4053	.215
	2.00	1.00	.12944	.14215	1.000	2812	.540
		3.00	.00944	.12813	1.000	3607	.379
		4.00	10191	.08665	1.000	3523	.148
		Mixed	10429	.13364	1.000	4904	.28
	2.00	1.00	.12000	.16285	1.000	3505	.590
	3.00	2.00	00944	.12813	1.000	3796	.360
		4.00	11135	.11757	1.000	4510	.228
		Mixed	.00707	.09462	1.000	2663	.280
		1.00	.23135	.13271	.852	1521	.614
	4.00	2.00	.10191	.08665	1.000	1484	.352
		3.00	.11135	.11757	1.000	2283	.45
		1.00	.16738	.25785	1.000	5776	.912
		2.00	.02794	.18831	1.000	5161	.572
	Mixed			-			-
		3.00	.13196	.23421	1.000	5447	.808
		4.00	05199	.16581	1.000	5310	.42
		Mixed	16738	.25785	1.000	9123	.57
	1.00	2.00	13944	.24911	1.000	8591	.580
	1.00	3.00	03542	.28539	1.000	8599	.78
		4.00	21937	.23257	1.000	8913	.452
		Mixed	02794	.18831	1.000	5720	.516
Lectin7b	2.00	1.00	.13944	.24911	1.000	5803	.859
Lecuit/D	2.00	3.00	.10403	.22454	1.000	5447	.75
		4.00	07992	.15186	1.000	5187	.358
		Mixed	13196	.23421	1.000	8086	.544
		1.00	.03542	.28539	1.000	7891	.859
	3.00	2.00	10403	.22454	1.000	7528	.544
		4.00	18395	.20604	1.000	7792	.41
		Mixed	.05199	.16581	1.000	4271	.53
		1.00	.21937	.23257	1.000	4525	.89
	4.00	2.00	.07992	.15186	1.000	3588	.518
				1			-
		3.00	.18395	.20604	1.000	4113	.77
		1.00	.09381	.07984	1.000	1369	.324
	Mixed	2.00	.14714	.05831	.137	0213	.31
		3.00	.03839	.07252	1.000	1711	.24
		4.00	.09768	.05134	.608	0507	.24
		Mixed	09381	.07984	1.000	3245	.136
	1.00	2.00	.05333	.07714	1.000	1695	.276
	1.00	3.00	05542	.08837	1.000	3107	.199
		4.00	.00387	.07202	1.000	2042	.21
		Mixed	14714	.05831	.137	3156	.02
Lectin8b	2.00	1.00	05333	.07714	1.000	2762	.169
Lectinop	2.00	3.00	10875	.06953	1.000	3096	.092
		4.00	04946	.04702	1.000	1853	.086
		Mixed	03839	.07252	1.000	2479	.17
		1.00	.05542	.08837	1.000	1999	.31
	3.00	2.00	.10875	.06953	1.000	0921	.30
		4.00	.05929	.06380	1.000	1250	.243
		Mixed	09768	.05134	.608	2460	.050
		1.00	00387	.07202	1.000	2119	.204
	4.00	2.00	.04946	.07202	1.000	0864	.18
				1		2436	
	_	3.00	05929	.06380	1.000		.12
		1.00	.07262	.13693	1.000	3230	.46
	Mixed	2.00	05016	.10000	1.000	3391	.238
		3.00	06571	.12437	1.000	4250	.293
		4.00	.00442	.08805	1.000	2500	.258
		Mixed	07262	.13693	1.000	4682	.32
	1.00	2.00	12278	.13229	1.000	5050	.259
	1.00	3.00	13833	.15156	1.000	5762	.29
		4.00	06820	.12351	1.000	4250	.288
		Mixed	.05016	.10000	1.000	2388	.339
		1.00	.12278	.13229	1.000	2594	.50
Lectin9b	2.00	3.00	01556	.11924	1.000	3601	.328
		4.00	.05458	.08064	1.000	1784	.28
		Mixed	.06571	.12437	1.000	2936	.42
		1.00	.13833	.12437	1.000	2936	.42
	3.00						
		2.00	.01556	.11924	1.000	3289	.360
		4.00	.07014	.10942	1.000	2460	.380
		Mixed	00442	.08805	1.000	2588	.25
	4.00	1.00	.06820	.12351	1.000	2886	.42
	4.00	2.00	05458	.08064	1.000	2876	.178
		3.00	07014	.10942	1.000	3863	.246

		2.00	01246	.08453	1.000	2567	.2318
		3.00	08357	.10514	1.000	3873	.2202
		4.00	.00805	.07443	1.000	2070	.2231
		Mixed	09143	.11575	1.000	4258	.2430
	1 00	2.00	10389	.11183	1.000	4270	.2192
	1.00	3.00	17500	.12811	1.000	5451	.1951
		4.00	08338	.10440	1.000	3850	.2182
		Mixed	.01246	.08453	1.000	2318	.2567
		1.00	.10389	.11183	1.000	2192	.4270
	2.00						-
		3.00	07111	.10080	1.000	3623	.2201
		4.00	.02051	.06817	1.000	1764	.2175
		Mixed	.08357	.10514	1.000	2202	.3873
	3.00	1.00	.17500	.12811	1.000	1951	.5451
	5.00	2.00	.07111	.10080	1.000	2201	.3623
		4.00	.09162	.09249	1.000	1756	.3588
		Mixed	00805	.07443	1.000	2231	.2070
		1.00	.08338	.10440	1.000	2182	.3850
	4.00	2.00	02051	.06817	1.000	2175	.1764
		3.00	09162	.09249	1.000	3588	.1756
		1.00	.05405	.06133	1.000	1231	.2312
	Mixed	2.00	00040	.04479	1.000	1298	.1290
	. inted	3.00	01929	.05570	1.000	1802	.1416
		4.00	.02558	.03944	1.000	0884	.1395
		Mixed	05405	.06133	1.000	2312	.1231
	1.00	2.00	05444	.05925	1.000	2256	.1167
	1.00	3.00	07333	.06788	1.000	2694	.1228
		4.00	02847	.05531	1.000	1883	.1313
		Mixed	.00040	.04479	1.000	1290	.1298
		1.00	.05444	.05925	1.000	1167	.2256
Lectin11b	2.00						
		3.00	01889	.05341	1.000	1732	.1354
		4.00	.02598	.03612	1.000	0784	.1303
		Mixed	.01929	.05570	1.000	1416	.1802
	3.00	1.00	.07333	.06788	1.000	1228	.2694
	5.00	2.00	.01889	.05341	1.000	1354	.1732
		4.00	.04486	.04901	1.000	0967	.1864
		Mixed	02558	.03944	1.000	1395	.0884
		1.00	.02847	.05531	1.000	1313	.1883
	4.00	2.00	02598	.03612	1.000	1303	.0784
		3.00	04486	.04901	1.000	1864	.0967
		1.00	.13762	.08027	.904	0943	.3695
	Mixed	2.00	.07984	.05862	1.000	0895	.2492
		3.00	.07304	.07291	1.000	1376	.2837
		4.00	.09334	.05162	.744	0558	.2425
		Mixed	13762	.08027	.904	3695	.0943
	1.00	2.00	05778	.07755	1.000	2818	.1663
	1.00	3.00	06458	.08885	1.000	3213	.1921
		4.00	04428	.07240	1.000	2535	.1649
		Mixed	07984	.05862	1.000	2492	.0895
		1.00	.05778	.07755	1.000	1663	.2818
Lectin12b	2.00	3.00	00681	.06990	1.000	2088	.1952
		4.00	.01350	.06990	1.000	1231	.1952
		Mixed	07304	.07291	1.000	2837	.1376
	3.00	1.00	.06458	.08885	1.000	1921	.3213
		2.00	.00681	.06990	1.000	1952	.2088
		4.00	.02030	.06414	1.000	1650	.2056
		Mixed	09334	.05162	.744	2425	.0558
	4.00	1.00	.04428	.07240	1.000	1649	.2535
	4.00	2.00	01350	.04728	1.000	1501	.1231
		3.00	02030	.06414	1.000	2056	.1650
		1.00	.20310	.11932	.927	1416	.5478
		2.00	.12143	.08714	1.000	1303	.3732
	Mixed				1.000	1979	
		3.00	.11518	.10838			.4283
		4.00	.13562	.07673	.811	0861	.3573
		Mixed	20310	.11932	.927	5478	.1416
	1.00	2.00	08167	.11528	1.000	4147	.2514
	1.00	3.00	08792	.13207	1.000	4695	.2936
		4.00	06748	.10762	1.000	3784	.2435
Lectin13b		Mixed	12143	.08714	1.000	3732	.1303
		1.00	.08167	.11528	1.000	2514	.4147
	2.00	3.00	00625	.10391	1.000	3064	.2939
		4.00	.01419	.07027	1.000	1888	.295
		Mixed	11518	.10838	1.000	4283	.1979
	3.00	1.00	.08792	.13207	1.000	2936	.4695
	0.00	2.00	.00625	.10391	1.000	2939	.3064
		4.00	.02044	.09535	1.000	2550	.2959

		1.00	.06748	.10762	1.000	2435	.378
		2.00	01419	.07027	1.000	2172	.188
		3.00	02044	.09535	1.000	2959	.255
		1.00	.12929	.10538	1.000	1752	.433
		2.00	.03762	.07696	1.000	1847	.260
	Mixed	3.00	.07429	.09572	1.000	2022	.350
		4.00	.01861	.06776	1.000	1772	.214
		Mixed	12929	.10538	1.000	4337	.175
		2.00	09167	.10338	1.000	3858	.202
	1.00			-			-
		3.00	05500	.11663	1.000	3920	.282
		4.00	11068	.09505	1.000	3853	.163
		Mixed	03762	.07696	1.000	2600	.184
Lectin14b	2.00	1.00	.09167	.10181	1.000	2025	.385
Lectini ib	2.00	3.00	.03667	.09177	1.000	2285	.301
		4.00	01901	.06206	1.000	1983	.160
		Mixed	07429	.09572	1.000	3508	.202
	3.00	1.00	.05500	.11663	1.000	2820	.392
	5.00	2.00	03667	.09177	1.000	3018	.228
		4.00	05568	.08421	1.000	2990	.187
		Mixed	01861	.06776	1.000	2144	.177
		1.00	.11068	.09505	1.000	1639	.385
	4.00	2.00	.01901	.06206	1.000	1603	.198
		3.00	.05568				-
				.08421	1.000	1876	.299
		1.00	.18357	.12541	1.000	1788	.545
	Mixed	2.00	.04079	.09159	1.000	2238	.305
		3.00	.06732	.11391	1.000	2618	.396
		4.00	00102	.08065	1.000	2340	.232
		Mixed	18357	.12541	1.000	5459	.178
	1.00	2.00	14278	.12116	1.000	4928	.207
	1.00	3.00	11625	.13881	1.000	5173	.284
		4.00	18459	.11312	1.000	5114	.142
		Mixed	04079	.09159	1.000	3054	.223
		1.00	.14278	.12116	1.000	2073	.492
Lectin15b	2.00	3.00	.02653	.10921	1.000	2890	.342
		4.00	04182	.07386	1.000	2552	.171
		Mixed	06732	.11391	1.000	3964	.261
	3.00	1.00	.11625	.13881	1.000	2848	.517
		2.00	02653	.10921	1.000	3421	.289
		4.00	06834	.10022	1.000	3579	.221
		Mixed	.00102	.08065	1.000	2320	.234
	4.00	1.00	.18459	.11312	1.000	1422	.511
	4.00	2.00	.04182	.07386	1.000	1716	.255
		3.00	.06834	.10022	1.000	2212	.357
		1.00	.49452	.18028	.075	0263	1.015
	Mixed	2.00	.42452*	.13165	.018	.0442	.804
	Tixed	3.00	.15161	.16374	1.000	3215	.624
				.103/7	1.000		
				11507	1 000	- 1521	
		4.00	.18286	.11593	1.000	1521	.517
		4.00 Mixed	.18286 49452	.18028	.075	-1.0154	.517
	1.00	4.00 Mixed 2.00	.18286 49452 07000	.18028 .17416	.075 1.000	-1.0154 5732	.517 .026 .433
	1.00	4.00 Mixed 2.00 3.00	.18286 49452 07000 34292	.18028 .17416 .19953	.075 1.000 .896	-1.0154 5732 9194	.517 .026 .433 .233
	1.00	4.00 Mixed 2.00 3.00 4.00	.18286 49452 07000 34292 31167	.18028 .17416 .19953 .16260	.075 1.000 .896 .589	-1.0154 5732 9194 7814	.517 .026 .433 .233 .158
	1.00	4.00 Mixed 2.00 3.00 4.00 Mixed	.18286 49452 07000 34292 31167 42452*	.18028 .17416 .19953 .16260 .13165	.075 1.000 .896 .589 .018	-1.0154 5732 9194 7814 8049	.517 .026 .433 .233 .158 044
Lectin16b		4.00 Mixed 2.00 3.00 4.00 Mixed 1.00	.18286 49452 07000 34292 31167 42452* .07000	.18028 .17416 .19953 .16260 .13165 .17416	.075 1.000 .896 .589 .018 1.000	-1.0154 5732 9194 7814 8049 4332	.517 .026 .433 .233 .158 044
Lectin16b	1.00	4.00 Mixed 2.00 3.00 4.00 Mixed	.18286 49452 07000 34292 31167 42452*	.18028 .17416 .19953 .16260 .13165	.075 1.000 .896 .589 .018	-1.0154 5732 9194 7814 8049	.517 .026 .433
Lectin16b		4.00 Mixed 2.00 3.00 4.00 Mixed 1.00	.18286 49452 07000 34292 31167 42452* .07000	.18028 .17416 .19953 .16260 .13165 .17416	.075 1.000 .896 .589 .018 1.000	-1.0154 5732 9194 7814 8049 4332	.517 .026 .433 .233 .158 044 .573 .180
Lectin16b		4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00	.18286 49452 07000 34292 31167 42452* .07000 27292	.18028 .17416 .19953 .16260 .13165 .17416 .15699	.075 1.000 .896 .589 .018 1.000 .861	-1.0154 5732 9194 7814 8049 4332 7265	.517 .026 .433 .233 .158 044 .573
Lectin16b	2.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 Mixed	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247	.517 .026 .433 .233 .158 044 .573 .180 .065 .321
Lectin16b		4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 3.00 4.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .896	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919
Lectin16b	2.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .896 .861	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726
Lectin16b	2.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .896 .861 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447
Lectin16b	2.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .896 .861 1.000 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152
Lectin16b	2.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286 .31167	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260	.075 1.000 .896 .589 .018 1.000 .861 2.56 1.000 .896 .861 1.000 1.000 .589	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781
Lectin16b	2.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286 .31167 .24167	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260 .10617	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .896 .861 1.000 1.000 .589 .256	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581 0651	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781 .548
Lectin16b	2.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286 .31167	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260	.075 1.000 .896 .589 .018 1.000 .861 2.56 1.000 .896 .861 1.000 1.000 .589	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781
Lectin16b	2.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286 .31167 .24167	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260 .10617	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .896 .861 1.000 1.000 .589 .256	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581 0651	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781 .548
Lectin16b	2.00 3.00 4.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 3.00 1.00 2.00 3.00 1.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286 .31167 .24167 03125 .18143	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260 .10617 .14405 .14976	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .896 .861 1.000 1.000 .589 .256 1.000 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581 0651 4474 2513	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781 .548 .384 .384
Lectin16b	2.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286 .31167 .24167 03125 .18143 01635	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260 .10617 .14405 .14976 .10937	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .896 .861 1.000 1.000 .589 .256 1.000 1.000 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581 0651 4474 2513 323	.517 .026 .433 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781 .548 .384 .384 .614
Lectin16b	2.00 3.00 4.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 3.00 1.00 2.00 3.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286 .31167 .24167 03125 .18143 01635 .05893	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260 .10617 .14405 .14405 .14976 .10937 .13603	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .896 .861 1.000 1.000 1.000 1.000 1.000 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581 0651 4474 2513 323 3341	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781 .548 .384 .384 .614 .299 .451
Lectin16b	2.00 3.00 4.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 3.00 1.00 2.00 3.00 4.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286 .31167 .24167 03125 .18143 01635 .05893 .11670	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260 .10617 .14405 .14405 .14976 .10937 .13603 .09631	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .896 .861 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581 0651 4474 2513 3323 3341 1615	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781 .548 .384 .614 .299 .451 .394
Lectin16b	2.00 3.00 4.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 3.00 1.00 2.00 3.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286 .31167 .24167 03125 .18143 01635 .05893	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260 .10617 .14405 .14405 .14976 .10937 .13603	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .896 .861 1.000 1.000 1.000 1.000 1.000 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581 0651 4474 2513 323 3341	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781 .548 .384 .614 .299 .451 .394
Lectin16b	2.00 3.00 4.00 Mixed	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 3.00 1.00 2.00 3.00 4.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286 .31167 .24167 03125 .18143 01635 .05893 .11670	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260 .10617 .14405 .14405 .14976 .10937 .13603 .09631	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .896 .861 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581 0651 4474 2513 3323 3341 1615	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781 .548 .384 .614 .299 .451 .394 .251
	2.00 3.00 4.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 3.00 1.00 2.00 3.00 4.00 Mixed	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286 .31167 .24167 03125 .18143 01635 .05893 .11670 18143	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260 .10617 .14405 .10937 .13603 .09631 .14976	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 1.000 .589 .256 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581 0651 4474 2513 3323 3341 1615 6141	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .726 .447 .152 .781 .548 .384 .614 .299 .451 .394 .251 .220
	2.00 3.00 4.00 Mixed	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 3.00 1.00 2.00 3.00 4.00 Mixed 2.00 3.00 4.00 Mixed 2.00 3.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286 .31167 .24167 03125 .18143 01635 .05893 .11670 18143 19778 12250	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260 .10617 .14405 .10937 .13603 .09631 .14976 .14469 .16576	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 1.000 .589 .256 1.0000 1.000 1.000 1.000 1.000 1.000 1.0000 1.0000 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581 0651 4474 2513 3323 3341 1615 6141 6158 6014	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781 .548 .384 .614 .299 .451 .394 .251 .220 .356
	2.00 3.00 4.00 Mixed	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 3.00 1.00 2.00 3.00 4.00 Mixed 2.00 3.00 4.00 Mixed 2.00 3.00 4.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .03125 18286 .31167 .24167 03125 .18143 01635 .05893 .11670 18143 19778 12250 06473	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260 .10617 .14405 .10937 .13603 .09631 .14976 .14469 .16576 .13508	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .881 1.000 .896 .861 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581 0651 4474 2513 3323 3341 1615 6141 6158 6014 4550	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781 .548 .384 .614 .299 .451 .394 .251 .220 .356 .325
	2.00 3.00 4.00 Mixed 1.00	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 3.00 4.00 Mixed 1.00 2.00 3.00 4.00 Mixed 2.00 3.00 4.00 Mixed 2.00 3.00 4.00 Mixed 2.00 3.00 4.00 Mixed	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .27292 .03125 18286 .31167 .24167 03125 .18143 01635 .05893 .11670 18143 19778 12250 06473 .01635	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260 .10617 .14405 .10937 .13603 .09631 .14976 .14469 .16576 .13508 .10937	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .896 .861 1.000 .896 .861 1.000 1.000 .589 .256 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581 0651 4474 2513 3323 3341 1615 6141 6158 6014 4550 2996	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781 .548 .384 .614 .299 .451 .394 .251 .220 .356 .325 .332
	2.00 3.00 4.00 Mixed	4.00 Mixed 2.00 3.00 4.00 Mixed 1.00 3.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 4.00 Mixed 1.00 2.00 3.00 1.00 2.00 3.00 4.00 Mixed 2.00 3.00 4.00 Mixed 2.00 3.00 4.00	.18286 49452 07000 34292 31167 42452* .07000 27292 24167 15161 .34292 .03125 18286 .31167 .24167 03125 .18143 01635 .05893 .11670 18143 19778 12250 06473	.18028 .17416 .19953 .16260 .13165 .17416 .15699 .10617 .16374 .19953 .15699 .14405 .11593 .16260 .10617 .14405 .10937 .13603 .09631 .14976 .14469 .16576 .13508	.075 1.000 .896 .589 .018 1.000 .861 .256 1.000 .881 1.000 .896 .861 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	-1.0154 5732 9194 7814 8049 4332 7265 5484 6247 2335 1806 3849 5178 1581 0651 4474 2513 3323 3341 1615 6141 6158 6014 4550	.517 .026 .433 .233 .158 044 .573 .180 .065 .321 .919 .726 .447 .152 .781 .548 .384

		Mixed	05893	.13603	1.000	4519	.334
	3.00	1.00	.12250	.16576	1.000	3564	.601
	5.00	2.00	07528	.13042	1.000	4521	.301
		4.00	.05777	.11967	1.000	2880	.403
		Mixed	11670	.09631	1.000	3949	.161
		1.00	.06473	.13508	1.000	3255	.455
	4.00	2.00	13305	.08820	1.000	3879	.121
		3.00	05777	.11967	1.000	4035	.288
		1.00	.10381	.14418	1.000	3127	.520
	Mixed	2.00	06008	.10529	1.000	3643	.244
		3.00	.00339	.13096	1.000	3749	.381
		4.00	04732	.09271	1.000	3152	.220
		Mixed	10381	.14418	1.000	5204	.312
		2.00	16389	.13929	1.000	5663	.238
	1.00	3.00	10042	.15958	1.000	5614	.360
		4.00	15113	.13004	1.000	5268	.224
		Mixed	.06008	.10529	1.000	2441	.364
Loctin 19h		1.00	.16389	.13929	1.000	2385	.566
Lectin18b	2.00	3.00	.06347	.12555	1.000	2993	.426
		4.00	.01276	.08491	1.000	2326	.258
		Mixed	00339	.13096	1.000	3817	.374
	3.00	1.00	.10042	.15958	1.000	3606	.561
	2.00	2.00	06347	.12555	1.000	4262	.299
		4.00	05071	.11521	1.000	3836	.282
		Mixed	.04732	.09271	1.000	2205	.315
	4.00	1.00	.15113	.13004	1.000	2246	.526
	4.00	2.00	01276	.08491	1.000	2581	.232
		3.00	.05071	.11521	1.000	2821	.383
		1.00	.07429	.05276	1.000	0781	.226
		2.00	00840	02052	1.000	1198	103
	Mixed	2.00	00849	.03853	1.000		.102
		3.00	.03804	.04792	1.000	1004	.176
		4.00	.02347	.03393	1.000	0745	.121
		Mixed	07429	.05276	1.000	2267	.078
	1.00	2.00	08278	.05097	1.000	2300	.064
	1.00	3.00	03625	.05840	1.000	2050	.132
		4.00	05081	.04759	1.000	1883	.086
		Mixed	.00849	.03853	1.000	1028	.119
Lectin19b	2.00	1.00	.08278	.05097	1.000	0645	.230
	2.00	3.00	.04653	.04595	1.000	0862	.179
		4.00	.03197	.03107	1.000	0578	.121
		Mixed	03804	.04792	1.000	1765	.100
		1.00	.03625	.05840	1.000	1325	.205
	3.00	2.00	04653	.04595	1.000	1793	.086
		4.00		.04355			-
		4.00 Mixed	01456	.03393	1.000	1364 1215	.107
						-	.074
	4.00	1.00	.05081	.04759	1.000	0867	.188
		2.00	03197	.03107	1.000	1217	.057
		3.00	.01456	.04216	1.000	1072	.136
		1.00	.06048	.10434	1.000	2410	.361
	Mixed	2.00	.03770	.07620	1.000	1825	.257
		3.00	.04964	.09478	1.000	2242	.323
		4.00	.07782	.06710	1.000	1160	.271
		Mixed	06048	.10434	1.000	3619	.241
		2.00	02278	.10081	1.000	3140	.268
	1.00	3.00	01083	.11549	1.000	3445	.322
		4.00	.01734	.09411	1.000	2546	.289
		Mixed	03770	.07620	1.000	2579	.182
Lectin20b	2.00	1.00	.02278	.10081	1.000	2685	.314
		3.00	.01194	.09087	1.000	2506	.274
		4.00	.04012	.06145	1.000	1374	.217
		Mixed	04964	.09478	1.000	3235	.224
	2.00	1.00	.01083	.11549	1.000	3228	.344
	3.00	2.00	01194	.09087	1.000	2745	.250
		4.00	.02818	.08338	1.000	2127	.269
		Mixed	07782	.06710	1.000	2717	.116
		1.00	01734	.09411	1.000	2892	.254
	4.00				1		1
		2.00	04012 02818	.06145	1.000	2177	.137
		· · · · · · · · · · · · · · · · · · ·	10010	.08338	1.000	2691	.212

6.5 Glycoprotein M

					escriptives				
							ence Interval Jean		
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimu m	Maxim um
Lectin1	1.00	16	.2200	.08959	.02240	.1723	.2677	.13	.42
b	2.00	4	.2125	.09946	.04973	.0542	.3708	.13	.35
	3.00	53	.2125	.13135	.01804	.1906	.2630	.13	.35
	Total	73	.2245	.12067	.01412	.1964	.2527	.09	.88
Lectin2	1.00								
b		16	.5306	.13626	.03406	.4580	.6032	.28	.79
	2.00	4	.5175	.21469	.10734	.1759	.8591	.33	.75
	3.00	53	.5636	.20717	.02846	.5065	.6207	.20	1.17
Loctin2	Total	73	.5538	.19248	.02253	.5089	.5987	.20	1.17
Lectin3 b	1.00	16	.6606	.19379	.04845	.5574	.7639	.35	1.06
	2.00	4	.5900	.24590	.12295	.1987	.9813	.32	.89
	3.00 Total	53	.7045	.26273	.03609	.6321	.7769	.34	1.48
Lectin4	1.00	73	.6886	.24718	.02893	.6310	.7463	.32	1.48
b	1.00	16	.6556	.20176	.05044	.5481	.7631	.40	1.16
2	2.00	4	.6625	.35046	.17523	.1048	1.2202	.41	1.18
	3.00	53	.7975	.33991	.04669	.7039	.8912	.30	2.27
	Total	73	.7590	.31785	.03720	.6849	.8332	.30	2.27
Lectin5 b	1.00	16	.2000	.09940	.02485	.1470	.2530	.09	.42
	2.00	4	.1800	.07789	.03894	.0561	.3039	.12	.29
	3.00	53	.2383	.19286	.02649	.1851	.2915	.07	1.20
	Total	73	.2267	.17191	.02012	.1866	.2668	.07	1.20
Lectin6 b	1.00	16	.7838	.28378	.07095	.6325	.9350	.48	1.39
2	2.00	4	.8000	.48888	.24444	.0221	1.5779	.44	1.51
	3.00	53	.8589	.29486	.04050	.7776	.9401	.35	1.57
	Total	73	.8392	.30096	.03523	.7690	.9094	.35	1.57
Lectin7 b	1.00	16	.9150	.44288	.11072	.6790	1.1510	.17	1.58
	2.00	4	.9750	.62979	.31489	0271	1.9771	.55	1.91
	3.00	53	1.1209	.52880	.07264	.9752	1.2667	.18	2.50
	Total	73	1.0678	.51681	.06049	.9472	1.1884	.17	2.50
Lectin8 b	1.00	16	.4494	.22398	.05599	.3300	.5687	.21	1.14
	2.00	4	.3700	.14491	.07246	.1394	.6006	.24	.51
	3.00	53	.4070	.15493	.02128	.3643	.4497	.12	.95
L s stin O	Total	73	.4142	.17054	.01996	.3745	.4540	.12	1.14
Lectin9 b	1.00	16	.6556	.22663	.05666	.5349	.7764	.36	1.07
U	2.00	4	.5625	.27765	.13883	.1207	1.0043	.36	.97
	3.00	53	.6960	.30894	.04244	.6109	.7812	.32	1.71
	Total	73	.6799	.28971	.03391	.6123	.7475	.32	1.71
Lectin1	1.00	16	.5488	.18439	.04610	.4505	.6470	.27	.95
0b	2.00	4	.5300	.18815	.09407	.2306	.8294	.38	.78
	3.00	53	.6402	.24189	.03323	.5735	.7069	.15	1.12
	Total	73	.6141	.22947	.02686	.5606	.6676	.15	1.12
Lectin1	1.00	16	.2363	.11313	.02828	.1760	.2965	.11	.48
1b	2.00	4	.2175	.08098	.04049	.0886	.3464	.14	.31
	3.00	53	.2432	.13094	.01799	.2071	.2793	.09	.62
	Total	73	.2403	.12394	.01451	.2114	.2692	.09	.62
Lectin1	1.00	16	.1544	.08246	.02061	.1104	.1983	.07	.38
2b	2.00	4	.1625	.04573	.02287	.0897	.2353	.11	.22
	3.00	53	.1025	.19684	.02207	.1444	.2529	.07	1.39
	Total	73	.1870	.17279	.02022	.1467	.2273	.07	1.39
Lectin1	1.00	16	.3675	.09609	.02402	.3163	.4187	.23	.59
3b	2.00	4	.3650	.07594	.03797	.2442	.4858	.30	.47
	3.00	53	.4638	.28796	.03955	.3844	.5431	.24	2.35
	Total	73	.4373	.25286	.02960	.3783	.4963	.23	2.35
Lectin1	1.00	16	.4594	.15906	.03976	.3746	.5441	.26	.72
4b									
	2.00	4	.4875	.16070	.08035	.2318	.7432	.36	.71
	3.00	53	.5791	.22638 .21452	.03110	.5167	.6415	.26	1.39
	Total	12							
Lectin1	Total 1.00	73 16	.5478	.19975	.02511	.4978	.7339	.26	1.39 1.04

	3.00	53	.7136	.27085	.03720	.6389	.7882	.11	1.47
	Total	73	.6885	.25376	.02970	.6293	.7477	.11	1.47
Lectin1 6b	1.00	16	.3081	.36830	.09207	.1119	.5044	.07	1.46
00	2.00	4	.3800	.33635	.16818	1552	.9152	.09	.75
	3.00	53	.3328	.31864	.04377	.2450	.4207	.07	1.40
	Total	73	.3300	.32642	.03820	.2538	.4062	.07	1.46
Lectin1 7b	1.00	16	.7831	.26902	.06725	.6398	.9265	.38	1.20
70	2.00	4	.6500	.14283	.07141	.4227	.8773	.54	.86
	3.00	53	.8798	.31880	.04379	.7919	.9677	.40	2.15
	Total	73	.8460	.30526	.03573	.7748	.9173	.38	2.15
Lectin1 8b	1.00	16	.6956	.21945	.05486	.5787	.8126	.33	1.01
00	2.00	4	.6100	.19799	.09899	.2950	.9250	.43	.81
	3.00	53	.8079	.32169	.04419	.7193	.8966	.22	1.91
	Total	73	.7725	.30018	.03513	.7024	.8425	.22	1.91
Lectin1 9b	1.00	16	.2388	.08943	.02236	.1911	.2864	.11	.40
50	2.00	4	.2825	.19190	.09595	0229	.5879	.18	.57
	3.00	53	.2745	.10246	.01407	.2463	.3028	.08	.51
	Total	73	.2671	.10495	.01228	.2426	.2916	.08	.57
Lectin2 0b	1.00	16	.4975	.16715	.04179	.4084	.5866	.25	.81
00	2.00	4	.3900	.10165	.05083	.2282	.5518	.25	.47
	3.00	53	.5340	.23365	.03209	.4696	.5984	.14	1.44
	Total	73	.5181	.21650	.02534	.4676	.5686	.14	1.44

		Α	NOVA			
		Sum of Squares	df	Mean Square	F	Sig.
Lectin1b	Between Groups	.001	2	.001	.039	.961
	Within Groups	1.047	70	.015		
	Total	1.048	72			
Lectin2b	Between Groups	.019	2	.009	.250	.779
	Within Groups	2.649	70	.038		
	Total	2.668	72			
Lectin3b	Between Groups	.065	2	.032	.524	.595
	Within Groups	4.334	70	.062		
	Total	4.399	72			
Lectin4b	Between Groups	.287	2	.143	1.438	.244
	Within Groups	6.987	70	.100		
	Total	7.274	72			
Lectin5b	Between Groups	.027	2	.014	.454	.637
	Within Groups	2.101	70	.030		
	Total	2.128	72			
Lectin6b	Between Groups	.076	2	.038	.412	.664
	Within Groups	6.446	70	.092		
	Total	6.522	72			
Lectin7b	Between Groups	.558	2	.279	1.045	.357
	Within Groups	18.673	70	.267		
	Total	19.230	72			
Lectin8b	Between Groups	.030	2	.015	.515	.600
	Within Groups	2.064	70	.029		
	Total	2.094	72			
Lectin9b	Between Groups	.078	2	.039	.460	.633
	Within Groups	5.965	70	.085		
	Total	6.043	72			
Lectin10b	Between Groups	.133	2	.066	1.269	.287
	Within Groups	3.659	70	.052		
	Total	3.791	72			
Lectin11b	Between Groups	.003	2	.001	.089	.915
	Within Groups	1.103	70	.016		
	Total	1.106	72			
Lectin12b	Between Groups	.027	2	.013	.440	.646
	Within Groups	2.123	70	.030		
F	Total	2.150	72			

Lectin13b	Between Groups	.136	2	.068	1.065	.350
-	Within Groups	4.468	70	.064		
-	Total	4.604	72			
Lectin14b	Between Groups	.191	2	.096	2.146	.125
-	Within Groups	3.122	70	.045		
	Total	3.313	72			
Lectin15b	Between Groups	.124	2	.062	.963	.387
-	Within Groups	4.512	70	.064		
	Total	4.637	72			
Lectin16b	Between Groups	.018	2	.009	.083	.921
	Within Groups	7.654	70	.109		
	Total	7.672	72			
Lectin17b	Between Groups	.278	2	.139	1.510	.228
	Within Groups	6.432	70	.092		
	Total	6.709	72			
Lectin18b	Between Groups	.267	2	.133	1.500	.230
	Within Groups	6.221	70	.089		
	Total	6.488	72			
Lectin19b	Between Groups	.017	2	.008	.754	.474
-	Within Groups	.776	70	.011		
-	Total	.793	72			
Lectin20b	Between Groups	.086	2	.043	.913	.406
-	Within Groups	3.289	70	.047		
	Total	3.375	72			

			Multiple C	omparisons			
			Post hoc tes	st: Bonferroni	i		
Dependent	(I)	(L)	Mean Difference	Chd. Ewron	Sig.	95% Confide	ence Interva
Variable	gM.r	gM.r	(I-J)	Std. Error	3ig.	Lower Bound	Upper Bound
	1.00	2.00	.00750	.06837	1.000	1602	.1752
		3.00	00679	.03489	1.000	0924	.0788
Lectin1b	2.00	1.00	00750	.06837	1.000	1752	.1602
	2.00	3.00	01429	.06342	1.000	1699	.1413
	3.00	1.00	.00679	.03489	1.000	0788	.0924
	5.00	2.00	.01429	.06342	1.000	1413	.1699
	1.00	2.00	.01313	.10874	1.000	2536	.2798
		3.00	03296	.05549	1.000	1691	.1031
Lectin2b	2.00	1.00	01313	.10874	1.000	2798	.2536
	2.00	3.00	04608	.10086	1.000	2935	.2013
	3.00	1.00	.03296	.05549	1.000	1031	.1691
		2.00	.04608	.10086	1.000	2013	.2935
	1.00	2.00	.07062	.13910	1.000	2706	.4118
		3.00	04390	.07098	1.000	2180	.1302
Lectin3b	2.00	1.00	07062	.13910	1.000	4118	.2706
	2.00	3.00	11453	.12903	1.000	4310	.2020
	2.00	1.00	.04390	.07098	1.000	1302	.2180
	3.00	2.00	.11453	.12903	1.000	2020	.4310
	1.00	2.00	00687	.17661	1.000	4401	.4263
	2.00	3.00	14192	.09012	.359	3630	.0791
Lectin4b	2.00	1.00	.00687	.17661	1.000	4263	.4401
	2.00	3.00	13505	.16382	1.000	5369	.2668
	2.00	1.00	.14192	.09012	.359	0791	.3630
	3.00	2.00	.13505	.16382	1.000	2668	.5369
	1.00	2.00	.02000	.09684	1.000	2175	.2575
		3.00	03830	.04941	1.000	1595	.0829
Lectin5b	2.00	1.00	02000	.09684	1.000	2575	.2175
	2.00	3.00	05830	.08982	1.000	2786	.1620
		1.00	.03830	.04941	1.000	0829	.1595
	3.00	2.00	.05830	.08982	1.000	1620	.2786
	1.00	2.00	01625	.16964	1.000	4323	.3998
Lectin6b		3.00	07512	.08656	1.000	2874	.1372
	2.00	1.00	.01625	.16964	1.000	3998	.4323

		3.00	05887	.15735	1.000	4448	.3271
	3.00	1.00	.07512	.08656	1.000	1372	.2874
	5.00	2.00	.05887	.15735	1.000	3271	.4448
	1.00	2.00	06000	.28872	1.000	7682	.6482
	1.00	3.00	20594	.14733	.500	5673	.1554
Lectin7b		1.00	.06000	.14733	1.000	6482	.7682
LecuityD	2.00	3.00	14594	.26781	1.000	8028	.5110
		1.00	.20594	.14733	.500	1554	.5673
	3.00	2.00	.14594	.26781	1.000	5110	.8028
	1		.07937				
	1.00	2.00	.07937	.09598	1.000	1561	.3148
		3.00	.04239	.04898	1.000	0777	.1625
Lectin8b	2.00	1.00	07937	.09598	1.000	3148	.1561
	2.00	3.00	03698	.08903	1.000	2554	.1814
	3.00	1.00	04239	.04898	1.000	1625	.0777
		2.00	.03698	.08903	1.000	1814	.2554
	1.00	2.00	.09313	.16318	1.000	3071	.4934
	1.00	3.00	04041	.08327	1.000	2447	.1638
Lectin9b		1.00	09313	.16318	1.000	4934	.3071
Lectinob	2.00	3.00	13354	.15136	1.000	5048	.2377
	2.02	1.00	.04041	.08327	1.000	1638	.2447
	3.00	2.00	.13354	.15136	1.000	2377	.5048
		2.00	.01875	.12780	1.000	2947	.3322
	1.00						
		3.00	09144	.06521	.496	2514	.0685
Lectin10b	2.00	1.00	01875	.12780	1.000	3322	.2947
		3.00	11019	.11854	1.000	4010	.1806
	3.00	1.00	.09144	.06521	.496	0685	.2514
		2.00	.11019	.11854	1.000	1806	.4010
	1.00	2.00	.01875	.07018	1.000	1534	.1909
	1.00	3.00	00696	.03581	1.000	0948	.0809
Lectin11b	2.00	1.00	01875	.07018	1.000	1909	.1534
	2.00	3.00	02571	.06510	1.000	1854	.1340
	3.00	1.00	.00696	.03581	1.000	0809	.0948
	5.00	2.00	.02571	.06510	1.000	1340	.1854
		2.00	00812	.09736	1.000	2469	.2307
	1.00						
		3.00	04430	.04968	1.000	1662	.0775
Lectin12b	2.00	1.00 3.00	.00812	.09736	1.000	2307 2577	.2469
		1.00	.04430	.09030	1.000	0775	.1653
	3.00	2.00	.03618	.09030	1.000	1853	.1002
				1			
	1.00	2.00	.00250	.14123	1.000	3439	.3489
		3.00	09627	.07206	.558	2730	.0805
Lectin13b	2.00	1.00	00250	.14123	1.000	3489	.3439
		3.00	09877	.13100	1.000	4201	.2225
	3.00	1.00	.09627	.07206	.558	0805	.2730
		2.00	.09877	.13100	1.000	2225	.4201
	1.00	2.00	02813	.11805	1.000	3177	.2614
		3.00	11968	.06024	.153	2674	.0281
Lectin14b	2.00	1.00	.02813	.11805	1.000	2614	.3177
-	2.00	3.00	09156	.10950	1.000	3602	.1770
	3.00	1.00	.11968	.06024	.153	0281	.2674
	5.00	2.00	.09156	.10950	1.000	1770	.3602
	1.00	2.00	.02750	.14193	1.000	3206	.3756
	1.00	3.00	08608	.07242	.716	2637	.0916
Lectin15b		1.00	02750	.14193	1.000	3756	.3206
Lecuniton	2.00	3.00	11358	.13165	1.000	4365	.2093
		1.00	.08608	.07242	.716	0916	.2637
	3.00	2.00	.11358	.13165	1.000	2093	.4365
		2.00	07188	.18484	1.000	5253	.3815
	1.00						
		3.00	02471	.09432	1.000	2561	.2067
Lectin16b	2.00	1.00	.07188	.18484	1.000	3815	.5253
		3.00	.04717	.17146	1.000	3734	.4677
	3.00	1.00	.02471	.09432	1.000	2067	.2561
		2.00	04717	.17146	1.000	4677	.3734
	1.00	2.00	.13313	.16945	1.000	2825	.5488
Lectin17b	1.00	3.00	09669	.08647	.802	3088	.1154
LCCUTT/D		1.00	13313	.16945	1.002	5488	.2825
	2.00	3.00	22981	.15718	.445	6153	.1557

	3.00	1.00	.09669	.08647	.802	1154	.3088
	3.00	2.00	.22981	.15718	.445	1557	.6153
	1.00	2.00	.08562	.16665	1.000	3232	.4944
		3.00	11230	.08504	.573	3209	.0963
Lectin18b	2.00	1.00	08562	.16665	1.000	4944	.3232
	2.00	3.00	19792	.15458	.614	5771	.1812
	3.00	1.00	.11230	.08504	.573	0963	.3209
	5.00	2.00	.19792	.15458	.614	1812	.5771
	1.00	2.00	04375	.05887	1.000	1882	.1007
		3.00	03578	.03004	.713	1095	.0379
Lectin19b	2.00	1.00	.04375	.05887	1.000	1007	.1882
	2.00	3.00	.00797	.05461	1.000	1260	.1419
	3.00	1.00	.03578	.03004	.713	0379	.1095
	5.00	2.00	00797	.05461	1.000	1419	.1260
	1.00	2.00	.10750	.12117	1.000	1897	.4047
		3.00	03646	.06183	1.000	1881	.1152
Lectin20b	2.00	1.00	10750	.12117	1.000	4047	.1897
	2.00	3.00	14396	.11240	.613	4197	.1317
	3.00	1.00	.03646	.06183	1.000	1152	.1881
	3.00	2.00	.14396	.11240	.613	1317	.4197

6.6 Glycoprotein N

					escriptives	95% Coi	ofidence	Minimu	
				Std.	Std.	Interval		m	Maximu
		N	Mean	Deviation	Error	Lower Bound	Upper Bound		m
	1	6	.2600	.04817	.01966	.2095	.3105	.19	.32
	3a	52	.2200	.13408	.01859	.1827	.2573	.09	.88
Lectin1 b	4a	6	.2000	.08343	.03406	.1124	.2876	.13	.36
D	4c	4	.2700	.12675	.06338	.0683	.4717	.16	.42
	Total	68	.2247	.12410	.01505	.1947	.2547	.09	.88
	1	6	.5700	.17504	.07146	.3863	.7537	.33	.84
Lectin2	3a	52	.5431	.19168	.02658	.4897	.5964	.20	1.08
b	4a	6	.5217	.10265	.04191	.4139	.6294	.39	.68
	4c	4	.5300	.11804	.05902	.3422	.7178	.36	.63
	Total	68	.5428	.17827	.02162	.4996	.5859	.20	1.08
	1	6	.6983	.18946	.07735	.4995	.8972	.46	.96
Lectin3	3a	52	.6810	.27634	.03832	.6040	.7579	.32	1.48
b	4a	6	.6533	.20829	.08504	.4347	.8719	.34	.93
	4c	4	.7200	.19983	.09992	.4020	1.0380	.47	.94
	Total	68	.6824	.25693	.03116	.6202	.7445	.32	1.48
	1	6	.8617	.24095	.09837	.6088	1.1145	.57	1.15
Lectin4	3a	52	.7567	.35741	.04956	.6572	.8562	.30	2.27
b	4a	6	.6433	.16293	.06652	.4723	.8143	.36	.79
	4c	4	.5975	.09106	.04553	.4526	.7424	.50	.68
	Total	68	.7466	.32783	.03975	.6673	.8260	.30	2.27
	1	6	.2200	.08462	.03454	.1312	.3088	.14	.37
Lectin5	3a	52	.1933	.11160	.01548	.1622	.2243	.07	.74
b	4a	6	.4650	.43071	.17584	.0130	.9170	.14	1.20
	4c	4	.2300	.10893	.05447	.0567	.4033	.10	.32
	Total	68	.2218	.17413	.02112	.1796	.2639	.07	1.20
	1	6	.7617	.20817	.08499	.5432	.9801	.52	1.02
Lectin6	3a	52	.8562	.31980	.04435	.7671	.9452	.35	1.57
b	4a	6	.7850	.31533	.12873	.4541	1.1159	.43	1.22
	4c	4	.7700	.25206	.12603	.3689	1.1711	.52	1.11
	Total	68	.8365	.30438	.03691	.7628	.9101	.35	1.57
	1	6	1.2350	.29304	.11963	.9275	1.5425	.82	1.53
Lectin7	3a	52	1.0960	.57505	.07974	.9359	1.2561	.17	2.50
b	4a	6	.8333	.54394	.22206	.2625	1.4042	.33	1.47
	4c	4	1.1025	.40525	.20262	.4577	1.7473	.72	1.51
	Total	68	1.0854	.54346	.06590	.9539	1.2170	.17	2.50
	1	6	.3917	.06853	.02798	.3197	.4636	.28	.49
Lectin8	3a	52	.3829	.15991	.02217	.3384	.4274	.12	1.14
b	4a	6	.3733	.13277	.05420	.2340	.5127	.18	.53
	4c	4	.4950	.16663	.08332	.2298	.7602	.27	.64
	Total	68	.3894	.15197	.01843	.3526	.4262	.12	1.14
Lectin9	1	6	.6933	.28479	.11627	.3945	.9922	.41	1.20

b	3a	52	.6933	.31691	.04395	.6050	.7815	.32	1.71
	4a	6	.5267	.12242	.04998	.3982	.6551	.34	.72
	4c	4	.6750	.10878	.05439	.5019	.8481	.56	.82
	Total	68	.6775	.29394	.03565	.6064	.7486	.32	1.71
	1	6	.6100	.26803	.10942	.3287	.8913	.15	.90
Lectin1	3a	52	.6262	.22956	.03183	.5622	.6901	.27	1.26
0b	4a	6	.4717	.16654	.06799	.2969	.6464	.34	.80
00	4c	4	.6375	.22794	.11397	.2748	1.0002	.41	.94
	Total	68	.6118	.22766	.02761	.5567	.6669	.15	1.26
	1	6	.2150	.07259	.02964	.1388	.2912	.14	.34
Lectin1	- 3a	52	.2379	.12372	.01716	.2034	.2723	.09	.58
1b	4a	6	.2183	.08727	.03563	.1267	.3099	.13	.37
10	4c	4	.3200	.20314	.10157	0032	.6432	.19	.62
	Total	68	.2390	.12224	.01482	.2094	.2686	.09	.62
	1	6	.1933	.07501	.03062	.1146	.2721	.11	.31
Loctin 1	3a	52	.1852	.18676	.02590	.1332	.2372	.07	1.39
Lectin1 2b	4a	6	.1617	.06401	.02550	.0945	.2288	.11	.27
20	4c	4	.1900	.10231	.05115	.0272	.3528	.10	.27
	Total	68	.1841	.16674	.02022	.1438	.2245	.07	1.39
	1	6	.4333	.07789	.03180	.3516	.5151	.37	.58
	- 3a	52	.4465	.29608	.04106	.3641	.5290	.23	2.35
Lectin1 3b	- 3a - 4a	6	.3800	.07899	.04100	.2971	.4629	.25	.48
20	4c	4	.3000	.11518	.05759	.2367	.6033	.20	.52
	Total	68	.4379	.26195	.03177	.3745	.5013	.23	2.35
	1	6	.6150	.19149	.07818	.4140	.8160	.38	.96
		-				-			
Lectin1	3a 4a	52 6	.5490	.22942	.03181	.4852 .2895	.6129 .6371	.26	1.39 .72
4b	4a 4c	4	.4635	.16561	.07375	.2695	.6972	.28	.72
	Total	68	.5422	.21741	.02637	.4896	.5948	.35	1.39
	1	6	.7233	.35229	.14382	.3536	1.0930	.11	1.16
		-							
Lectin1	3a	52	.6792	.25776	.03575	.6075	.7510	.33	1.47
5b	4a 4c	6	.6000	.17697	.07225	.4143 .4218	.7857 .8832	.37 .48	.88 .80
	Total	68	.6746	.14500	.07230	.6134	.7357	.40	1.47
	1	6	.5283	.50261	.20519	.0009	1.0558	.11	1.47
		-							
Lectin1	3a	52	.3417	.41287	.05725	.2268	.4567	.07	2.41
6b	4a	6	.1267	.09543	.03896	.0265	.2268	.08	.32
	4c Total	4 68	.4425	.22515 .39926	.11257	.0842	.8008 .4418	.21	.72 2.41
	1	6	.8167	.23192	.04842	.5733	1.0601	.52	1.03
		-	.8769	.34520	.04787	.7808	.9730	.32	2.15
Lectin1 7b	3a 4a	52 6	.6983	.18236	.04787	.5070	.8897	.38	.92
70	4c	4	.7025	.29736	.14868	.2293	1.1757	.40	1.04
	Total	68	.8456	.32429	.03933	.7671	.9241	.38	2.15
	1	6	.8850	.55497	.22656	.3026	1.4674	.22	1.91
l a abi - 1	- 3a	52	.7863	.29393	.04076	.7045	.8682	.31	1.51
Lectin1 8b	- 3a - 4a	<u> </u>	.7863	.19426	.04076	.4278	.8682	.31	.93
00	4a 4c	4	.6950	.219420	.10958	.3463	1.0437	.32	.93
	Total	68	.7760	.31164	.03779	.7006	.8515	.43	1.91
	1	6	.3183	.08448	.03449	.2297	.4070	.20	.44
Loctin 1	- 3a	52	.2713	.11305	.01568	.2399	.3028	.08	.57
Lectin1 9b	4a	6	.2250	.07092	.01308	.1506	.2994	.08	.37
50	4c	4	.3125	.10563	.05282	.1444	.4806	.15	.30
	Total	68	.2738	.10780	.01307	.2477	.2999	.08	.57
	1	6	.4617	.20331	.08300	.2483	.6750	.14	.74
	- 3a	52	.5294	.23926	.03318	.4628	.5960		1.44
Lectin2	4a	6	.4250	.13383	.05464	.2846	.5654	.15 .22	.60
0b	4c	4	.5025	.16256	.08128	.2438	.7612	.31	.70
		68	.5126	.22433	.02720	.4583	.5669		
	Total	DQ	.3120	.22433	.02720	.4303	.5009	.14	1.44

		Sum of Squares	df	Mean Square	F	Sig.
Lectin1b	Between Groups	.020	3	.007	.432	.731
	Within Groups	1.011	64	.016		
Lectin2b	Total	1.032	67			
Lecuitzb	Between Groups	.008	3	.003	.078	.972
-	Within Groups	2.121	64	.033		
Lectin3b	Total Between Groups	2.129	67			
Localitor		.012	3	.004	.060	.981
-	Within Groups Total	4.411 4.423	64 67	.069		
Lectin4b	Between Groups		3	.079	720	.539
		.238	-		.728	.539
-	Within Groups Total	6.963 7.201	64 67	.109		
Lectin5b	Between Groups	.397	3	.132	5.189	.003
-	Within Current		-		5.109	.005
-	Within Groups Total	1.634 2.032	64 67	.026		
Lectin6b	Between Groups	.087	3	.029	.304	.822
-	Within Groups	6.120	64	.025	.507	.022
	Total	6.208	67	.090		
Lectin7b	Between Groups	.522	3	.174	.579	.631
-	Within Groups	19.266	64	.301		
	Total	19.788	67			
Lectin8b	Between Groups	.048	3	.016	.689	.562
	Within Groups	1.499	64	.023		
	Total	1.547	67			
Lectin9b	Between Groups	.151	3	.050	.571	.636
	Within Groups	5.638	64	.088		
	Total	5.789	67			
Lectin10b	Between Groups	.131	3	.044	.838	.478
	Within Groups	3.341	64	.052		
	Total	3.473	67			
Lectin11b	Between Groups	.032	3	.011	.712	.549
	Within Groups	.969	64	.015		
Lectin12b	Total Between Groups	1.001	67			
Lecumizo		.004	3	.001	.043	.988
	Within Groups	1.859	64	.029		
Lectin13b	Total Between Groups	1.863	67			
Lectimist	•	.025	3	.008	.119	.949
-	Within Groups	4.572	64	.071		
Lectin14b	Total Between Groups	4.598	67	022	C74	F 7 4
		.097	3	.032	.674	.571
-	Within Groups Total	3.070 3.167	64 67	.048		
Lectin15b	Between Groups	.051	3	.017	.256	.857
	Within Groups	4.229		.066	.200	.057
	Total	4.229	64 67	.000		
Lectin16b	Between Groups	.526	3	.175	1.106	.353
-	Within Groups	10.154	64	.159		.555
	Total	10.134	67	.153		
Lectin17b	Between Groups	.268	3	.089	.844	.475
-	Within Groups	6.778	64	.106		
	Total	7.046	67	.100		
Lectin18b	Between Groups	.228	3	.076	.775	.512
-	Within Groups	6.279	64	.098	-	
	Total	6.507	67			
Lectin19b	Between Groups	.032	3	.011	.929	.432
-	Within Groups	.746	64	.012		
-	Total	.779	67			

Lectin20b	Between Groups	.077	3	.026	.497	.686
	Within Groups	3.295	64	.051		
	Total	3.372	67			

				Comparisons st: Bonferror	ni		
D			Mean			95% Confid	ence Interval
Dependent Variable	(I) gN.r	(J) gN.r	Difference (I-	Std. Error	Sig.	Lower Bound	Upper Boun
		3a	J) .04000	.05420	1.000	1076	.1876
	1	4a	.06000	.07258	1.000	1376	.2576
	-	4c	01000	.08115	1.000	2309	.2109
		1	04000	.05420	1.000	1876	.1076
	3a	4a	.02000	.05420	1.000	1276	.1676
	54	4c	05000	.06523	1.000	2276	.1276
Lectin1b		1	06000	.07258	1.000	2576	.1376
	4a	3a	02000	.05420	1.000	1676	.1276
		4c	07000	.08115	1.000	2909	.1509
		1	.01000	.08115	1.000	2109	.2309
	4c	 3a	.05000	.06523	1.000	1276	.2276
		4a	.07000	.08115	1.000	1509	.2909
			.02692	.07850	1.000	1868	.2407
	1	4a	.04833	.10511	1.000	2379	.3345
	1	4c	.04000	.11752	1.000	2800	.3600
		40 1	02692	.07850	1.000	2407	.1868
	20						
	3a	4a 4c	.02141	.07850	1.000	1923 2441	.2351 .2703
Lectin2b		4C	.01308 04833				.2703
	1-			.10511	1.000	3345	
	4a	3a	02141	.07850	1.000	2351	.1923
		4c	00833	.11752	1.000	3283	.3116
	1.	1	04000	.11752	1.000	3600	.2800
	4c	3a	01308	.09447	1.000	2703	.2441
		4a	.00833	.11752	1.000	3116	.3283
		3a	.01737	.11319	1.000	2908	.3256
	1	4a	.04500	.15157	1.000	3677	.4577
		4c	02167	.16946	1.000	4831	.4397
		1	01737	.11319	1.000	3256	.2908
	3a	4a	.02763	.11319	1.000	2806	.3358
Lectin3b		4c	03904	.13621	1.000	4099	.3318
Lectinob	4a	1	04500	.15157	1.000	4577	.3677
		3a	02763	.11319	1.000	3358	.2806
		4c	06667	.16946	1.000	5281	.3947
		1	.02167	.16946	1.000	4397	.4831
	4c	3a	.03904	.13621	1.000	3318	.4099
		4a	.06667	.16946	1.000	3947	.5281
		3a	.10494	.14221	1.000	2823	.4921
	1	4a	.21833	.19043	1.000	3002	.7368
		4c	.26417	.21291	1.000	3155	.8439
		1	10494	.14221	1.000	4921	.2823
	3a	4a	.11340	.14221	1.000	2738	.5006
Loctin 4h		4c	.15923	.17115	1.000	3068	.6252
Lectin4b		1	21833	.19043	1.000	7368	.3002
	4a	3a	11340	.14221	1.000	5006	.2738
		4c	.04583	.21291	1.000	5339	.6255
		1	26417	.21291	1.000	8439	.3155
	4c	3a	15923	.17115	1.000	6252	.3068
		4a	04583	.21291	1.000	6255	.5339
		3a	.02673	.06889	1.000	1609	.2143
	1	4a	24500	.09225	.060	4962	.0062
		4c	01000	.10314	1.000	2908	.2708
		1	02673	.06889	1.000	2143	.1609
	3a	4a	27173*	.06889	.001	4593	0841
:		4c	03673	.08291	1.000	2625	.1890
Lectin5b		1	.24500	.09225	.060	0062	.4962
	4a		.27173*	.06889	.001	.0841	.4593
		4c	.23500	.10314	.156	0458	.5158
		1	.01000	.10314	1.000	2708	.2908
	4c	- I 3a	.03673	.08291	1.000	1890	.2625
	+0	4a	23500	.10314	.156	5158	.0458
		4a 3a	09449	.13333	1.000	4575	.0458
	1	3a 4a	02333	.13333	1.000	4575	.2685
Lectin6b	1						
	1	4c	00833	.19961	1.000	5518	.5352

		4a	.07115	.13333	1.000	2919	.4342
		4c	.08615	.16046	1.000	3507	.5230
		1	.02333	.17854	1.000	4628	.5095
	4a	3a	07115	.13333	1.000	4342	.2919
		4c	.01500	.19961	1.000	5285	.5585
		1	.00833	.19961	1.000	5352	.5518
	4c	3a	08615	.16046	1.000	5230	.3507
		4a	01500	.19961	1.000	5585	.5285
		3a	.13904	.23656	1.000	5051	.7831
	1	4a	.40167	.31677	1.000	4608	1.2642
		4c	.13250	.35416	1.000	8318	1.0968
		1	13904	.23656	1.000	7831	.5051
	3a	4a	.26263	.23656	1.000	3815	.9067
		4c	00654	.28469	1.000	7817	.7686
Lectin7b		1	40167	.31677	1.000	-1.2642	.4608
	4a	3a	26263	.23656	1.000	9067	.3815
		4c	26917	.35416	1.000	-1.2335	.6951
		1	13250	.35416	1.000	-1.0968	.8318
	4c	3a	.00654	.28469	1.000	7686	.7817
		4a	.26917	.35416	1.000	6951	1.2335
		2-	00070		1 000	1700	1004
		3a	.00878	.06598	1.000	1709	.1884
	1	4a	.01833	.08836	1.000	2222	.2589
		4c	10333	.09879	1.000	3723	.1656
		1	00878	.06598	1.000	1884	.1709
	3a	4a	.00955	.06598	1.000	1701	.1892
Lectin8b		4c	11212	.07941	.977	3283	.1041
		1	01833	.08836	1.000	2589	.2222
	4a	3a	00955	.06598	1.000	1892	.1701
		4c	12167	.09879	1.000	3906	.1473
		1	.10333	.09879	1.000	1656	.3723
	4c	3a	.11212	.07941	.977	1041	.3283
		4a	.12167	.09879	1.000	1473	.3906
		20		12707	1 000	2404	
		3a	.00006	.12797	1.000	3484	.3485
	1	4a	.16667	.17136	1.000	2999	.6332
		4c	.01833	.19159	1.000	5033	.5400
		1	00006	.12797	1.000	3485	.3484
	3a	4a	.16660	.12797	1.000	1818	.5150
Lectin9b	3a 4a	4c	.01827	.15400	1.000	4010	.4376
		1	16667	.17136	1.000	6332	.2999
	4a	3a	16660	.12797	1.000	5150	.1818
		4c	14833	.19159	1.000	6700	.3733
		1	01833	.19159	1.000	5400	.5033
	4c	3a	01827	.15400	1.000	4376	.4010
		4a	.14833	.19159	1.000	3733	.6700
		32	- 01615	00852	1 000	- 2844	2521
	1	3a	01615	.09852	1.000	2844	.2521
	L 1	4a	.13833	.13192	1.000	2209	.4975
		4c	02750	.14749	1.000	4291	.3741
		1	.01615	.09852	1.000	2521	.2844
	3a	4a	.15449	.09852	.731	1137	.4227
Lectin10b		4c	01135	.11856	1.000	3342	.3115
		1	13833	.13192	1.000	4975	.2209
	4a	3a	15449	.09852	.731	4227	.1137
		4c	16583	.14749	1.000	5674	.2357
		1	.02750	.14749	1.000	3741	.4291
	4c	3a	.01135	.11856	1.000	3115	.3342
		4a	.16583	.14749	1.000	2357	.5674
		3a	02288	.05305	1.000	1673	.1216
	1						
		4a	00333	.07104	1.000	1968	.1901
		4c	10500	.07942	1.000	3212	.1112
		1	.02288	.05305	1.000	1216	.1673
	3a	4a	.01955	.05305	1.000	1249	.1640
Lectin11b		4c	08212	.06384	1.000	2559	.0917
		1	.00333	.07104	1.000	1901	.1968
	4a	3a	01955	.05305	1.000	1640	.1249
		4c	10167	.07942	1.000	3179	.1146
		1	.10500	.07942	1.000	1112	.3212
	4c	3a	.08212	.06384	1.000	0917	.2559
		4a	.10167	.07942	1.000	1146	.3179
			.00814	.07348	1.000	1919	.2082
	1	3a					
Lectin12b	1	4a	.03167	.09840	1.000	2362	.2996
		4c	.00333	.11001	1.000	2962	.3029
	3a	1	00814	.07348	1.000	2082	.1919

		4a	.02353	.07348	1.000	1765	.2236
		4c	00481	.08843	1.000	2456	.2360
		1	03167	.09840	1.000	2996	.2362
	4a	3a	02353	.07348	1.000	2236	.1765
		4c	02833	.11001	1.000	3279	.2712
		1	00333	.11001	1.000	3029	.2962
	4c	3a	.00481	.08843	1.000	2360	.2456
		4a	.02833	.11001	1.000	2712	.3279
		3a	01321	.11524	1.000	3270	.3006
	1	4a	.05333	.15431	1.000	3668	.4735
		4c	.01333	.17253	1.000	4564	.4831
		1	.01321	.11524	1.000	3006	.3270
	3a	4a	.06654	.11524	1.000	2472	.3803
Lectin13b		4c	.02654	.13869	1.000	3511	.4041
		1	05333	.15431	1.000	4735	.3668
	4a	3a	06654	.11524	1.000	3803	.2472
		4c	04000	.17253	1.000	5098	.4298
		1	01333	.17253	1.000	4831	.4564
	4c	3a	02654	.13869	1.000	4041	.3511
		4a	.04000	.17253	1.000	4298	.5098
	1	3a	.06596	.09443	1.000	1912	.3231
	1	4a	.15167	.12645	1.000	1926	.4960
		4c	.15250	.14138	1.000	2324	.5374
		1	06596	.09443	1.000	3231	.1912
	3a	4a	.08571	.09443	1.000	1714	.3428
Lectin14b		4c	.08654	.11364	1.000	2229	.3960
-		1	15167	.12645	1.000	4960	.1926
	4a	3a	08571	.09443	1.000	3428	.1714
		4c	.00083	.14138	1.000	3841	.3858
		1	15250	.14138	1.000	5374	.2324
	4c	3a	08654	.11364	1.000	3960	.2229
		4a	00083	.14138	1.000	3858	.3841
		3a	.04410	.11083	1.000	2577	.3459
	1	4a	.12333	.14841	1.000	2807	.5274
		4c	.07083	.16592	1.000	3809	.5226
		1	04410	.11083	1.000	3459	.2577
	3a	4a	.07923	.11083	1.000	2225	.3810
Lectin15b		4c	.02673	.13338	1.000	3364	.3899
		1	12333	.14841	1.000	5274	.2807
	4a	3a	07923	.11083	1.000	3810	.2225
		4c	05250	.16592	1.000	5043	.3993
		1	07083	.16592	1.000	5226	.3809
	4c	3a	02673	.13338	1.000	3899	.3364
		4a	.05250	.16592	1.000	3993	.5043
		3a	.18660	.17174	1.000	2810	.6542
	1	4a	.40167	.22997	.513	2245	1.0278
				1	1.000	6142	
		4c	.08583 18660	.25711 .17174	1.000	6142	.7859 .2810
	2-			.17174		0542	
Leading 1 Cl	3a	4a	.21506		1.000		.6827
Lectin16b		4c	10077	.20668	1.000	6635	.4620
	4-	1	40167	.22997	.513	-1.0278	.2245
	4a	3a 4c	21506	.17174	1.000	6827	.2525
		4c	31583	.25711	1.000	-1.0159	.3842
	4-	1	08583	.25711	1.000	7859	.6142
	4c	3a	.10077	.20668	1.000	4620	.6635
		4a	.31583	.25711	1.000	3842	1.0159
	1	3a	06026	.14031	1.000	4423	.3218
	L 1	4a	.11833	.18789	1.000	3932	.6299
		4c	.11417	.21006	1.000	4578	.6861
		1	.06026	.14031	1.000	3218	.4423
	3a	4a	.17859	.14031	1.000	2034	.5606
Lectin17b		4c	.17442	.16886	1.000	2853	.6342
		1	11833	.18789	1.000	6299	.3932
	4a	3a	17859	.14031	1.000	5606	.2034
		4c	00417	.21006	1.000	5761	.5678
		1	11417	.21006	1.000	6861	.4578
	4c	- 3a	17442	.16886	1.000	6342	.2853
		4a	.00417	.21006	1.000	5678	.5761
	1						
lactin 1 8h	1	3a	.09865	.13505	1.000	2690	.4664
Lectin18b	1	4a	.25333	.18084	.996	2390	.7457
	1	4c	.19000	.20218	1.000	3605	.7405

		1	09865	.13505	1.000	4664	.2690
	3a	4a	.15468	.13505	1.000	2130	.5224
		4c	.09135	.16252	1.000	3512	.5338
		1	25333	.18084	.996	7457	.2390
	4a	3a	15468	.13505	1.000	5224	.2130
		4c	06333	.20218	1.000	6138	.4872
		1	19000	.20218	1.000	7405	.3605
	4c	3a	09135	.16252	1.000	5338	.3512
		4a	.06333	.20218	1.000	4872	.6138
		3a	.04699	.04655	1.000	0798	.1737
	1	4a	.09333	.06234	.836	0764	.2631
		4c	.00583	.06970	1.000	1839	.1956
		1	04699	.04655	1.000	1737	.0798
	3a	4a	.04635	.04655	1.000	0804	.1731
Lectin19b		4c	04115	.05602	1.000	1937	.1114
	4a	1	09333	.06234	.836	2631	.0764
		3a	04635	.04655	1.000	1731	.0804
		4c	08750	.06970	1.000	2773	.1023
		1	00583	.06970	1.000	1956	.1839
	4c	3a	.04115	.05602	1.000	1114	.1937
		4a	.08750	.06970	1.000	1023	.2773
		3a	06776	.09783	1.000	3341	.1986
	1	4a	.03667	.13100	1.000	3200	.3934
		4c	04083	.14646	1.000	4396	.3580
		1	.06776	.09783	1.000	1986	.3341
	3a	4a	.10442	.09783	1.000	1619	.3708
Lectin20b		4c	.02692	.11773	1.000	2936	.3475
	4a	1	03667	.13100	1.000	3934	.3200
		3a	10442	.09783	1.000	3708	.1619
		4c	07750	.14646	1.000	4763	.3213
		1	.04083	.14646	1.000	3580	.4396
	4c	3a	02692	.11773	1.000	3475	.2936
		4a	.07750	.14646	1.000	3213	.4763

6.7 Glycoprotein O

				[Descriptive	S			
						95% Confide for N			
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimu m	Maximu m
Lectin1 b	1a	17	.2400	.08993	.02181	.1938	.2862	.14	.44
5	1c	42	.2331	.14304	.02207	.1885	.2777	.09	.88
	4	6	.1783	.07885	.03219	.0956	.2611	.10	.33
	Total	65	.2298	.12609	.01564	.1986	.2611	.09	.88
Lectin2 b	1a	17	.5482	.18719	.04540	.4520	.6445	.33	1.01
	1c	42	.5619	.20918	.03228	.4967	.6271	.20	1.14
	4	6	.4850	.10913	.04455	.3705	.5995	.36	.67
	Total	65	.5512	.19548	.02425	.5028	.5997	.20	1.14
Lectin3 b	1a	17	.6600	.16688	.04048	.5742	.7458	.35	.93
	1c	42	.7005	.29487	.04550	.6086	.7924	.32	1.48
	4	6	.6967	.15449	.06307	.5345	.8588	.52	.94
	Total	65	.6895	.25465	.03159	.6264	.7526	.32	1.48
Lectin4 b	1a	17	.7124	.22706	.05507	.5956	.8291	.37	1.18
5	1c	42	.8100	.37948	.05855	.6917	.9283	.30	2.27
	4	6	.6667	.15016	.06130	.5091	.8242	.50	.90
	Total	65	.7712	.33142	.04111	.6891	.8534	.30	2.27
Lectin5 b	1a	17	.3212	.27027	.06555	.1822	.4601	.13	1.20
	1c	42	.2045	.12675	.01956	.1650	.2440	.07	.74
	4	6	.1917	.09347	.03816	.0936	.2898	.08	.32
	Total	65	.2338	.17887	.02219	.1895	.2782	.07	1.20
Lectin6 b	1a	17	.7924	.23931	.05804	.6693	.9154	.44	1.22
-	1c	42	.9012	.35384	.05460	.7909	1.0115	.35	1.57
	4	6	.7767	.15782	.06443	.6110	.9423	.54	.94
	Total	65	.8612	.31536	.03912	.7831	.9394	.35	1.57
Lectin7 b	1a	17	1.0241	.52975	.12848	.7517	1.2965	.17	1.81
-	1c	42	1.1726	.55587	.08577	.9994	1.3458	.18	2.50
	4	6	1.0350	.31150	.12717	.7081	1.3619	.70	1.52

	Total	65	1.1211	.52974	.06571	.9898	1.2523	.17	2.50
Lectin8	1a	17	.3941	.12400	.03007	.3304	.4579	.18	.64
b	1c	42	.3807	.13243	.02043	.3394	.4220	.12	.70
	4	6	.6400	.33544	.13694	.2880	.9920	.12	1.14
	Total	65	.4082	.17163	.02129	.3656	.4507	.20	1.14
Lectin9 b	1a	17	.6282	.22600	.05481	.5120	.7444	.36	1.25
D	1c	42	.7388	.33846	.05223	.6333	.8443	.32	1.71
	4	6	.5600	.09839	.03223	.4567	.6633	.45	.68
	Total	65	.6934	.30177	.03743	.6186	.7682	.32	1.71
Lectin1 0b	1a	17	.5682	.24775	.06009	.4409	.6956	.15	.96
0.5	1c	42	.6617	.24049	.03711	.5867	.7366	.28	1.26
	4	6	.5100	.13251	.05410	.3709	.6491	.31	.68
	Total	65	.6232	.23820	.02955	.5642	.6823	.15	1.26
Lectin1 1b	1a	17	.2235	.08624	.02092	.1792	.2679	.13	.46
	1c	42	.2552	.13897	.02144	.2119	.2985	.09	.59
	4	6	.2367	.18960	.07740	.0377	.4356	.12	.62
	Total	65	.2452	.13129	.01628	.2127	.2778	.09	.62
Lectin1 2b	1a	17	.1753	.06746	.01636	.1406	.2100	.09	.31
	1c	42	.2064	.22078	.03407	.1376	.2752	.07	1.39
	4	6	.1450	.09225	.03766	.0482	.2418	.08	.33
	Total	65	.1926	.18289	.02268	.1473	.2379	.07	1.39
Lectin1 3b	1a	17	.4159	.09663	.02344	.3662	.4656	.31	.65
	1c	42	.4724	.32778	.05058	.3702	.5745	.24	2.35
	4	6	.3833	.09626	.03930	.2823	.4844	.25	.52
	Total	65	.4494	.27007	.03350	.3825	.5163	.24	2.35
Lectin1 4b	1a	17	.5341	.18080	.04385	.4412	.6271	.27	1.02
	1c	42	.5783	.25462	.03929	.4990	.6577	.26	1.39
	4	6	.5300	.15033	.06137	.3722	.6878	.33	.66
	Total	65	.5623	.22792	.02827	.5058	.6188	.26	1.39
Lectin1 5b	1a	17	.6482	.22935	.05563	.5303	.7662	.11	1.06
	1c	42	.7236	.29305	.04522	.6323	.8149	.33	1.47
	4	6	.7733	.25137	.10262	.5095	1.0371	.49	1.04
	Total	65	.7085	.27315	.03388	.6408	.7761	.11	1.47
Lectin1 6b	1a	17	.3165	.35826	.08689	.1323	.5007	.07	1.40
	1c	42	.2600	.24588	.03794	.1834	.3366	.07	.79
	4	6	.3967	.29609	.12088	.0859	.7074	.08	.69
Lootin 1	Total	65	.2874	.28196	.03497	.2175	.3573	.07	1.40
Lectin1 7b	1a	17	.7894	.23610	.05726	.6680	.9108	.45	1.17
	1c	42	.8952	.33340	.05145	.7913	.9991	.38	2.15
	4 Total	6	.7783	.26739	.10916	.4977	1.0589	.50	1.13
Lectin1	Total 1a	65 17	.8568	.30575	.03792	.7810	.9325	.38	2.15 1.02
8b	1c	42	.8352	.34760	.05364	.7269	.9436	.31	1.91
	4	6	.6767	.16379	.06687	.5048	.8486	.45	.93
	Total	65	.7822	.31055	.03852	.7052	.8591	.22	1.91
Lectin1 9b	1a	17	.2812	.10283	.02494	.2283	.3340	.13	.44
	1c	42	.2845	.12011	.01853	.2471	.3220	.08	.57
	4	6	.2350	.07662	.03128	.1546	.3154	.17	.36
	Total	65	.2791	.11201	.01389	.2513	.3068	.08	.50
Lectin2 0b	1a	17	.4894	.14571	.03534	.4145	.5643	.14	.70
00	1c	42	.5195	.24611	.03798	.4428	.5962	.15	1.44
	4	6	.5533	.18435	.07526	.3599	.7468	.35	.84
	Total	65	.5148	.21700	.02692	.4610	.5685	.14	1.44

ANOVA											
		Sum of Squares	df	Mean Square	F	Sig.					
Lectin1b	Between Groups	.018	2	.009	.562	.573					
	Within Groups	.999	62	.016							
	Total	1.017	64								
Lectin2b	Between Groups	.031	2	.016	.401	.671					
	Within Groups	2.414	62	.039							
	Total	2.446	64								

Lectin3b	Between Groups	.020	2	.010	.151	.860
-	Within Groups	4.130	62	.067		
	Total	4.150	64			
Lectin4b	Between Groups	.188	2	.094	.850	.432
-	Within Groups Total	6.842 7.030	62 64	.110		
Lectin5b	Between Groups	.176	2	.088	2.923	.061
-	Within Groups	1.871	62	.030		
	Total	2.048	64			
Lectin6b	Between Groups	.191	2	.095	.957	.390
	Within Groups	6.174	62	.100		
	Total	6.365	64			
Lectin7b	Between Groups	.316	2	.158	.555	.577
_	Within Groups	17.644	62	.285		
Lootin Of	Total	17.960	64			
Lectin8b	Between Groups	.357	2	.179	7.254	.001
-	Within Groups	1.528	62	.025		
Lectin9b	Total Botwoon Groups	1.885	64		+	
LECUIIAD	Between Groups	.266	2	.133	1.480	.236
-	Within Groups	5.562	62	.090		
Lectin10b	Total Between Groups	5.828	64		+	
_ectin10b		.190	2	.095	1.715	.188
	Within Groups	3.441	62	.056		
La abie 4 d'	Total	3.631	64			
Lectin11b	Between Groups	.013	2	.006	.360	.699
	Within Groups	1.091	62	.018		
	Total	1.103	64			
Lectin12b	Between Groups	.027	2	.013	.392	.677
	Within Groups	2.114	62	.034		
	Total	2.141	64			
Lectin13b	Between Groups	.067	2	.034	.455	.637
	Within Groups	4.601	62	.074		
	Total	4.668	64			
Lectin14b	Between Groups	.031	2	.015	.288	.751
	Within Groups	3.294	62	.053		
	Total	3.325	64			
Lectin15b	Between Groups	.097	2	.048	.639	.531
-	Within Groups	4.679	62	.075		
Lectin16b	Total	4.775	64		+	
LecuiitoD	Between Groups	.118	2	.059	.733	.485
-	Within Groups Total	4.971 5.088	62 64	.080	+	
Lectin17b	Between Groups	.176	2	.088	.941	.396
-	Within Groups	5.807	62	.094	+	
-	Total	5.983	64	.094	+	
Lectin18b	Between Groups	.335	2	.168	1.779	.177
-	Within Groups	5.837	62	.094		
-	Total	6.172	64	.0,4	+ +	
Lectin19b	Between Groups	.013	2	.006	.509	.603
-	Within Groups	.790	62	.013		
-	Total	.803	64	.010	+	
Lectin20b	Between Groups	.021	2	.010	.215	.807
-	Within Groups	2.993	62	.048		
_						

Multiple Comparisons									
	Post hoc test: Bonferroni								
Dependent			Mean			95% Confidence Interval			
Variable	(I) gO.r	(J) gO.r	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound		
Lectin1b	1a	1c	.00690	.03650	1.000	0829	.0967		
		4	.06167	.06029	.931	0867	.2100		

	1c	1a	00690	.03650	1.000	0967	.0829
		4	.05476	.05541	.981	0816	.1911
	4	1a	06167	.06029	.931	2100	.0867
		1c	05476	.05541	.981	1911	.0816
Lectin2b	1a	1c	01367	.05672	1.000	1533	.1259
		4	.06324	.09370	1.000	1673	.2938
	1c	1a	.01367	.05672	1.000	1259	.1533
		4	.07690	.08612	1.000	1350	.2888
	4	1a	06324	.09370	1.000	2938	.1673
		1c	07690	.08612	1.000	2888	.1350
Lectin3b	1a	1c	04048	.07419	1.000	2230	.1421
		4	03667	.12256	1.000	3382	.2649
	1c	1a	.04048	.07419	1.000	1421	.2230
		4	.00381	.11264	1.000	2734	.2810
	4	1a	.03667	.12256	1.000	2649	.3382
		1c	00381	.11264	1.000	2810	.2734
Lectin4b	1a	1c	09765	.09549	.931	3326	.1373
		4	.04569	.15774	1.000	3425	.4338
	1c	1a	.09765	.09549	.931	1373	.3326
		4	.14333	.14498	.980	2134	.5001
	4	1a	04569	.15774	1.000	4338	.3425
	· · · · · ·	1c	14333	.14498	.980	5001	.2134
Lectin5b	1a	1c	.11665	.04994	.068	0062	.2395
	<u> </u>	4	.12951	.08249	.365	0735	.3325
	1c	1a	11665	.04994	.068	2395	.0062
		4	.01286	.07582	1.000	1737	.1994
	4	1a	12951	.08249	.365	3325	.0735
		1c	01286	.07582	1.000	1994	.1737
Lectin6b	1a	1c	10884	.09071	.704	3321	.1144
		4	.01569	.14985	1.000	3530	.3844
	1c	1a	.10884	.09071	.704	1144	.3321
		4	.12452	.13773	1.000	2144	.4634
	4	1a	01569	.14985	1.000	3844	.3530
		1c	12452	.13773	1.000	4634	.2144
Lectin7b	1a	1c	14850	.15335	1.000	5258	.2288
		4	01088	.25332	1.000	6342	.6125
	1c	1a	.14850	.15335	1.000	2288	.5258
		4	.13762	.23282	1.000	4353	.7105
	4	1a	.01088	.25332	1.000	6125	.6342
	· · · · · ·	1c	13762	.23282	1.000	7105	.4353
Lectin8b	1a	1c	.01340	.04512	1.000	0976	.1244
	1.	4	24588*	.07454	.005	4293	0625
	1c	1a	01340	.04512	1.000	1244	.0976
		4	25929*	.06851	.001	4279	0907
	4	1a	.24588*	.07454	.005	.0625	.4293
L a ati a Oh	1-	1c	.25929*	.06851	.001	.0907	.4279
Lectin9b	1a	1c 4	11057	.08610	.612	3224	.1013
	1		.06824	.14223	1.000	2818	.4182
	1c	1a	.11057	.08610	.612	1013	.3224
	4	4 1a	.17881 06824	.13073	.529 1.000	1429 4182	.5005
	*				.529	4182	
Lectin10b	15	1c 1c	17881 09343	.13073	.529	2601	.1429
Lecuitob	1a	4	.05824	.11187	1.000	2170	.3335
	10	4 1a	.09343	.06772	.518	0732	.2601
	1c	4	.15167	.10282	.436	1013	.4047
	4	4 1a	05824	.11187	1.000	3335	.2170
	⁻	1a 1c	15167	.10282	.436	4047	.1013
Lectin11b	1a	1c	03171	.03812	1.000	1255	.0621
Lectin11b	10	4	01314	.06298	1.000	1681	.1418
	1c	4 1a	.03171	.08298	1.000	0621	.1418
		4	.01857	.05788	1.000	1239	.1255
	4	4 1a	.01314	.06298	1.000	1418	.1610
	"	1a 1c	01857	.05788	1.000	1418	.1001
Lectin12b	15	1c	03113	.05788	1.000	1617	.0995
	1a	4	.03029	.05308	1.000	1817	.2461
	1c	4 1a	.03029	.05308	1.000	0995	.1617
		4	.06143	.05308	1.000	1369	.1617
	4		03029	.08059	1.000	1369	.1855
	4	1a 1c	03029	.08768	1.000	2461	.1855
Lectin13h	1a	1c		.08059	1.000	2597	.1369
Lectin13b	L T d	4	05650				
			.03255	.12935	1.000	2857	.3508
	1c	1a	.05650	.07831	1.000	1362	.2492
		4	.08905	.11889	1.000	2035 3508	.3816
	4	1a	03255	.12935			

Lectin14b	1a	1c	04422	.06626	1.000	2073	.1188
	10	4	.00412	.10946	1.000	2652	.2735
	1c	1a 4	.04422 .04833	.06626	1.000 1.000	1188 1992	.2073
	4		00412	.10000	1.000	2735	.2652
		1c	04833	.10060	1.000	2959	.1992
Lectin15b	1a	1c	07534	.07897	1.000	2696	.1190
		4	12510	.13044	1.000	4461	.1959
	1c	1a	.07534	.07897	1.000	1190	.2696
		4	04976	.11989	1.000	3448	.2452
	4	1a	.12510	.13044	1.000	1959	.4461
		1c	.04976	.11989	1.000	2452	.3448
Lectin16b	1a	1c	.05647	.08139	1.000	1438	.2568
		4	08020	.13446	1.000	4110	.2507
	1c	1a	05647	.08139	1.000	2568	.1438
		4	13667	.12358	.819	4407	.1674
	4	1a	.08020	.13446	1.000	2507	.4110
		1c	.13667	.12358	.819	1674	.4407
Lectin17b	1a	1c	10583	.08797	.701	3223	.1106
		4	.01108	.14532	1.000	3465	.3687
	1c	1a	.10583	.08797	.701	1106	.3223
		4	.11690	.13357	1.000	2118	.4456
	4	1a	01108	.14532	1.000	3687	.3465
		1c	11690	.13357	1.000	4456	.2118
Lectin18b	1a	1c	14700	.08820	.302	3640	.0700
		4	.01157	.14570	1.000	3470	.3701
	1c	1a	.14700	.08820	.302	0700	.3640
		4	.15857	.13391	.723	1709	.4881
	4	1a	01157	.14570	1.000	3701	.3470
		1c	15857	.13391	.723	4881	.1709
Lectin19b	1a	1c	00335	.03245	1.000	0832	.0765
		4	.04618	.05360	1.000	0857	.1781
	1c	1a	.00335	.03245	1.000	0765	.0832
		4	.04952	.04926	.956	0717	.1707
	4	1a	04618	.05360	1.000	1781	.0857
		1c	04952	.04926	.956	1707	.0717
Lectin20b	1a	1c	03011	.06316	1.000	1855	.1253
		4	06392	.10433	1.000	3207	.1928
	1c	1a	.03011	.06316	1.000	1253	.1855
		4	03381	.09589	1.000	2698	.2021
	4	1a	.06392	.10433	1.000	1928	.3207
	1	1c					

Appendix 7: Tables of One-way ANOVA results for the relation between HCMV infection category and the glycosylation of the glycoproteins.

			Maria	Descript Std.	Std.		nfidence for Mean	Minimu	Max
		N	Mean	Deviation	Error	Lower Bound	Upper Bound	m	mun
	congenital	12	.2017	.09861	.02847	.1390	.2643	.11	.42
	infection	12	.2017	.09601	.02047	.1390	.2043	.11	.42
	Not known infection	5	.2340	.07893	.03530	.1360	.3320	.15	.33
Lectin1b	Primary from Immunoco mpetent	7	.1886	.07290	.02755	.1212	.2560	.09	.29
	Primary from immunoco mpromized	26	.2238	.09475	.01858	.1856	.2621	.09	.45
	Recurrent Infections	35	.2306	.14828	.02506	.1796	.2815	.09	.88
	Total	85	.2212	.11710	.01270	.1959	.2464	.09	.88
	congenital	12	.5342	.16059	.04636	.4321	.6362	.20	.71
	infection	12	.3342	.10055	.04030	.4521	.0502	.20	./1
	Not known infection	5	.4640	.08142	.03641	.3629	.5651	.34	.55
Lectin2b	Primary from Immunoco mpetent	7	.4786	.09459	.03575	.3911	.5661	.35	.58
	Primary from immunoco mpromized	26	.5827	.25029	.04909	.4816	.6838	.34	1.17
	Recurrent Infections	35	.5614	.17043	.02881	.5029	.6200	.29	1.08
	Total	85	.5515	.18978	.02058	.5106	.5925	.20	1.17
	congenital	12	.5950	.10379	.02996	.5291	.6609	.40	.75
	infection Not known	5	.6280	.14096	.06304	.4530	.8030	.48	.82
Lectin3b	infection Primary from Immunoco mpetent	7	.7443	.23042	.08709	.5312	.9574	.39	1.0
	Primary from immunoco mpromized	26	.7077	.21068	.04132	.6226	.7928	.34	1.2
	Recurrent Infections	35	.7391	.32099	.05426	.6289	.8494	.32	1.4
	Total	85	.7031	.25250	.02739	.6486	.7575	.32	1.4
	congenital infection	12	.6842	.17650	.05095	.5720	.7963	.41	1.0
	Not known infection	5	.7960	.36842	.16476	.3386	1.2534	.50	1.3
Lectin4b	Primary from Immunoco mpetent	7	.7414	.28257	.10680	.4801	1.0028	.30	1.1
	Primary from immunoco mpromized	26	.7738	.29754	.05835	.6537	.8940	.36	1.48
	Recurrent Infections	35	.7777	.36269	.06131	.6531	.9023	.41	2.2
	Total	85	.7614	.31138	.03377	.6942	.8286	.30	2.2
	congenital infection	12	.1758	.09491	.02740	.1155	.2361	.08	.37
	Not known infection	5	.2880	.16285	.07283	.0858	.4902	.16	.52
Lectin5b	Primary from Immunoco mpetent	7	.2757	.40898	.15458	1025	.6540	.07	1.2
	Primary from immunoco mpromized	26	.2046	.07850	.01539	.1729	.2363	.10	.42

	Recurrent Infections	35	.2314	.16223	.02742	.1757	.2872	.08	.78
	Total	85	.2224	.16677	.01809	.1864	.2583	.07	1.20
	congenital infection	12	.7975	.22872	.06602	.6522	.9428	.50	1.29
	Not known	5	.7900	.34037	.15222	.3674	1.2126	.35	1.15
Lectin6b	infection Primary from Immunoco mpetent	7	.9929	.25824	.09761	.7540	1.2317	.68	1.36
	Primary from immunoco mpromized	26	.8173	.30364	.05955	.6947	.9400	.43	1.5
	Recurrent Infections	35	.8640	.31190	.05272	.7569	.9711	.43	1.5
	Total	85	.8466	.29437	.03193	.7831	.9101	.35	1.5
	congenital infection	12	.9908	.32318	.09329	.7855	1.1962	.53	1.5
	Not known infection	5	1.0040	.55797	.24953	.3112	1.6968	.18	1.4
Lectin7b	Primary from Immunoco mpetent	7	1.1500	.69632	.26319	.5060	1.7940	.35	2.08
	Primary from immunoco mpromized	26	1.1631	.54500	.10688	.9429	1.3832	.17	2.5
	Recurrent Infections	35	1.0660	.51491	.08704	.8891	1.2429	.33	2.4
	Total	85	1.0884	.51273	.05561	.9778	1.1989	.17	2.5
	congenital infection	12	.3583	.09456	.02730	.2982	.4184	.24	.54
	Not known infection	5	.4720	.13936	.06232	.2990	.6450	.27	.65
Lectin8b	Primary from Immunoco mpetent	7	.3386	.13533	.05115	.2134	.4637	.12	.56
	Primary from immunoco mpromized	26	.4400	.18564	.03641	.3650	.5150	.15	.95
	Recurrent Infections	35	.3891	.17406	.02942	.3294	.4489	.18	1.14
	Total	85	.4011	.16534	.01793	.3654	.4367	.12	1.14
	congenital infection	12	.5283	.11527	.03328	.4551	.6016	.35	.74
	Not known infection	5	.6100	.19339	.08649	.3699	.8501	.42	.92
Lectin9b	Primary from Immunoco mpetent	7	.7314	.25680	.09706	.4939	.9689	.48	1.20
	Primary from immunoco mpromized	26	.6538	.24736	.04851	.5539	.7538	.34	1.3
	Recurrent Infections	35	.7169	.33036	.05584	.6034	.8303	.32	1.7
	Total	85	.6659	.27385	.02970	.6068	.7249	.32	1.7
	congenital infection	12	.6642	.17916	.05172	.5503	.7780	.36	.92
	Not known infection	5	.5300	.22226	.09940	.2540	.8060	.31	.84
	Primary from Immunoco mpetent	7	.5314	.25790	.09748	.2929	.7699	.27	.95
	Primary from immunoco mpromized	26	.6446	.25439	.04989	.5419	.7474	.26	1.0
	Recurrent Infections	35	.6283	.23814	.04025	.5465	.7101	.15	1.2
	Total	85	.6246	.23480	.02547	.5739	.6752	.15	1.2
Lectin11b	congenital infection	12	.2250	.09140	.02639	.1669	.2831	.10	.43

	Not known infection	5	.2100	.05339	.02387	.1437	.2763	.15	.27
	Primary from Immunoco mpetent	7	.1686	.11481	.04339	.0624	.2748	.09	.42
	Primary from immunoco mpromized	26	.2719	.14541	.02852	.2132	.3307	.08	.62
	Recurrent	35	.2323	.11941	.02018	.1913	.2733	.11	.54
	Infections Total	85	.2368	.12279	.01332	.2103	.2633	.08	.62
	congenital infection	12	.1633	.06315	.01823	.1232	.2035	.09	.26
	Not known infection	5	.1460	.04506	.02015	.0901	.2019	.08	.20
Lectin12b	Primary from Immunoco mpetent	7	.1171	.04572	.01728	.0749	.1594	.07	.21
	Primary from immunoco mpromized	26	.1865	.12753	.02501	.1350	.2380	.09	.71
	Recurrent Infections	35	.2066	.22295	.03768	.1300	.2832	.08	1.39
	Total	85	.1834	.16267	.01764	.1483	.2185	.07	1.39
	congenital infection	12	.4267	.07703	.02224	.3777	.4756	.29	.54
	Not known infection	5	.4000	.08888	.03975	.2896	.5104	.32	.53
Lectin13b	Primary from Immunoco mpetent	7	.3586	.12034	.04548	.2473	.4699	.23	.59
	Primary from immunoco mpromized	26	.4038	.12384	.02429	.3538	.4539	.17	.67
	Recurrent Infections	35	.4826	.35077	.05929	.3621	.6031	.24	2.35
	Total	85	.4355	.24159	.02620	.3834	.4876	.17	2.35
	congenital infection	12	.5408	.12369	.03571	.4622	.6194	.28	.73
	Not known infection	5	.4680	.14957	.06689	.2823	.6537	.27	.66
Lectin14b	Primary from Immunoco mpetent	7	.4986	.24162	.09132	.2751	.7220	.26	.96
	Primary from immunoco mpromized	26	.5331	.18992	.03725	.4564	.6098	.21	1.02
	Recurrent Infections	35	.5780	.24632	.04164	.4934	.6626	.27	1.39
	Total	85	.5460	.20872	.02264	.5010	.5910	.21	1.39
	congenital infection	12	.6775	.19127	.05521	.5560	.7990	.41	1.02
	Not known infection	5	.5760	.17757	.07941	.3555	.7965	.33	.78
Lectin15b	Primary from Immunoco mpetent	7	.6971	.23078	.08722	.4837	.9106	.48	1.16
	Primary from immunoco mpromized	26	.6715	.20474	.04015	.5888	.7542	.37	1.06
	Recurrent Infections	35	.7043	.32297	.05459	.5933	.8152	.11	1.47
	Total	85	.6824	.25636	.02781	.6271	.7376	.11	1.47

	congenital	12	.7175	.66102	.19082	.2975	1.1375	.08	2.41
	infection Not known	5							
Lectin16b	infection Primary from Immunoco mpetent	7	.6420	1.20670 .22353	.53965 .08449	8563 .0333	2.1403 .4467	.08	2.80 .65
	Primary from immunoco mpromized	26	.3069	.34635	.06792	.1670	.4468	.07	1.46
	Recurrent Infections	35	.3626	.27819	.04702	.2670	.4581	.07	.81
	Total	85	.4020	.46951	.05093	.3007	.5033	.07	2.80
	congenital infection	12	.8275	.29564	.08534	.6397	1.0153	.46	1.49
	Not known infection	5	.8380	.19189	.08581	.5997	1.0763	.54	1.02
Lectin17b	Primary from Immunoco mpetent	7	.7443	.15263	.05769	.6031	.8854	.53	1.01
	Primary from immunoco mpromized	26	.8288	.29269	.05740	.7106	.9471	.40	1.36
	Recurrent Infections	35	.8889	.34770	.05877	.7694	1.0083	.48	2.15
	Total	85	.8469	.30177	.03273	.7819	.9120	.40	2.15
	congenital infection	12	.7750	.13318	.03845	.6904	.8596	.59	1.04
	Not known infection	5	.7380	.30752	.13753	.3562	1.1198	.43	1.13
Lectin18b	Primary from Immunoco mpetent	7	.8586	.51454	.19448	.3827	1.3344	.31	1.91
	Primary from immunoco mpromised	26	.7492	.24764	.04857	.6492	.8493	.32	1.44
	Recurrent	35	.8126	.29771	.05032	.7103	.9148	.22	1.51
	Infections Total	85	.7873	.28490	.03090	.7258	.8487	.22	1.91
	congenital infection	12	.2492	.08816	.02545	.1932	.3052	.12	.43
	Not known infection	5	.2160	.07092	.03172	.1279	.3041	.12	.31
Lectin19b	Primary from Immunoco mpetent	7	.2143	.12660	.04785	.0972	.3314	.08	.39
	Primary from immunoco mpromised	26	.2612	.09301	.01824	.2236	.2987	.11	.46
	Recurrent Infections	35	.2989	.11641	.01968	.2589	.3388	.13	.57
	Total	85	.2685	.10642	.01154	.2455	.2914	.08	.57
	congenital infection	12	.4483	.06043	.01744	.4099	.4867	.32	.54
	Not known infection	5	.5260	.15962	.07139	.3278	.7242	.37	.72
Lectin20b	Primary from Immunoco mpetent	7	.5557	.22127	.08363	.3511	.7604	.15	.78
	Primary from immunoco mpromized	26	.5208	.14832	.02909	.4609	.5807	.22	.84

Recurrent Infections	35	.5426	.26912	.04549	.4501	.6350	.14	1.44
Total	85	.5227	.20518	.02225	.4784	.5670	.14	1.44

Lectin1b		I		1		
Lectin1b	1	Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	.016	4	.004	.284	.888
	Within Groups	1.136	80	.014		
Lectin2b	Total Between Groups	1.152	84			
Lectinzb		.108	4	.027	.739	.568
	Within Groups Total	2.918 3.026	80 84	.036		
Lectin3b	Between Groups			057	007	470
		.226	4	.057	.882	.478
	Within Groups Total	5.129 5.356	80 84	.064		
Lectin4b	Between Groups	.094	4	.023	.233	.919
	Within Groups	8.051	80	.101		
	Total	8.144	84			
Lectin5b	Between Groups	.079	4	.020	.696	.597
	Within Groups	2.258	80	.028		
	Total	2.336	84			
Lectin6b	Between Groups	.228	4	.057	.646	.632
	Within Groups	7.052	80	.088		
	Total	7.279	84			
Lectin7b	Between Groups	.339	4	.085	.312	.869
	Within Groups	21.744	80	.272		
	Total	22.083	84			
Lectin8b	Between Groups	.119	4	.030	1.091	.367
	Within Groups	2.178	80	.027		
L a ati a Oh	Total	2.296	84			
Lectin9b	Between Groups	.367	4	.092	1.239	.301
	Within Groups	5.932	80	.074		
Lectin10b	Total Between Groups	6.299	84			
Lectiniob		.135	4	.034	.601	.663
	Within Groups Total	4.496	80	.056		
Lectin11b	Between Groups	4.631	84	010	1 101	225
		.071	4	.018	1.181	.325
	Within Groups Total	1.196 1.266	80 84	.015		
Lectin12b	Between Groups	.062	4	.015	.570	.685
	Within Groups	2.161	80	.027	.570	.005
	Total	2.223	84	.027		
Lectin13b	Between Groups	.152	4	.038	.641	.635
	Within Groups	4.750	80	.059		
	Total	4.903	84			
Lectin14b	Between Groups	.087	4	.022	.485	.747
	Within Groups	3.573	80	.045		
	Total	3.659	84			
Lectin15b	Between Groups	.078	4	.020	.288	.885
	Within Groups	5.442	80	.068		
loctin16h	Total Between Groups	5.521	84			
Lectin16b	Between Groups	1.956	4	.489	2.362	.060
	Within Groups	16.561	80	.207		
Lectin17b	Total Between Groups	18.517	84	000	207	
		.149	4	.037	.397	.811
	Within Groups Total	7.501 7.649	80 84	.094		
Lectin18b	Between Groups		4	.027	277	050
_ectin18b		.110 6.709	4 80	.027	.327	.859
	Within Groups					

Lectin19b	Between Groups	.072	4	.018	1.650	.170
	Within Groups	.879	80	.011		
	Total	.951	84			
Lectin20b	Between Groups	.088	4	.022	.510	.728
	Within Groups	3.448	80	.043		
	Total	3.536	84			

			le Compariso test: Bonferr				
		(J) (I)				95% Co	
Dependent	(I) Infection type with not	Infection type with not	Mean Difference	Std.		Inte Lower	Upper
Variable Lectin1b	known.r congenital	known.r Not known	(I-J)	Error	Sig.	Bound	Bound
LecuiiiD	infection	infection	03233	.06342	1.000	2154	.1508
		Primary from Immunocompet ent	.01310	.05667	1.000	1505	.1767
		Primary from immunocompro mized	02218	.04158	1.000	1422	.0979
		Recurrent Infections	02890	.03986	1.000	1440	.0862
	Not known infection	congenital infection	.03233	.06342	1.000	1508	.2154
		Primary from Immunocompet ent	.04543	.06977	1.000	1560	.2468
		Primary from immunocompro mized	.01015	.05818	1.000	1578	.1781
		Recurrent Infections	.00343	.05697	1.000	1610	.1679
	Primary from Immunocompet	congenital infection	01310	.05667	1.000	1767	.1505
	ent	Not known infection	04543	.06977	1.000	2468	.1560
		Primary from immunocompro mized	03527	.05074	1.000	1818	.1112
	Primary from	Recurrent Infections	04200	.04933	1.000	1844	.1004
	immunocompro	congenital infection	.02218	.04158	1.000	0979	.1422
	mized	Not known infection	01015	.05818	1.000	1781	.1578
		Primary from Immunocompet ent	.03527	.05074	1.000	1112	.1818
		Recurrent Infections	00673	.03085	1.000	0958	.0823
	Recurrent Infections	congenital infection	.02890	.03986	1.000	0862	.1440
		Not known infection	00343	.05697	1.000	1679	.1610
		Primary from Immunocompet ent	.04200	.04933	1.000	1004	.1844
		Primary from immunocompro mized	.00673	.03085	1.000	0823	.0958
Lectin2b	congenital infection	Not known infection	.07017	.10165	1.000	2233	.3636
		Primary from Immunocompet ent	.05560	.09083	1.000	2066	.3178
		Primary from immunocompro mized	04853	.06665	1.000	2409	.1439
		Recurrent Infections	02726	.06388	1.000	2117	.1572
	Not known infection	congenital infection	07017	.10165	1.000	3636	.2233
		Primary from Immunocompet ent	01457	.11182	1.000	3374	.3083

		Primary from immunocompro	11869	.09326	1.000	3879	.1505
		mized					
	Primary from	Infections congenital	09743	.09130	1.000	3610	.1662
	Immunocompet ent	infection Not known	05560	.09083	1.000	3178	.2066
		infection Primary from	.01457	.11182	1.000	3083	.3374
		immunocompro mized	10412	.08132	1.000	3389	.1306
		Recurrent Infections	08286	.07907	1.000	3111	.1454
	Primary from immunocompro mized	congenital infection	.04853	.06665	1.000	1439	.2409
	mizeu	Not known infection	.11869	.09326	1.000	1505	.3879
		Primary from Immunocompet ent	.10412	.08132	1.000	1306	.3389
		Recurrent Infections	.02126	.04944	1.000	1215	.1640
	Recurrent Infections	congenital infection	.02726	.06388	1.000	1572	.2117
		Not known infection	.09743	.09130	1.000	1662	.3610
		Primary from Immunocompet ent	.08286	.07907	1.000	1454	.3111
		Primary from immunocompro mized	02126	.04944	1.000	1640	.1215
Lectin3b	congenital infection	Not known infection	03300	.13478	1.000	4221	.3561
		Primary from Immunocompet ent	14929	.12043	1.000	4970	.1984
		Primary from immunocompro mized	11269	.08837	1.000	3678	.1424
		Recurrent Infections	14414	.08470	.927	3887	.1004
	Not known infection	congenital infection	.03300	.13478	1.000	3561	.4221
		Primary from Immunocompet ent	11629	.14827	1.000	5443	.3118
		Primary from immunocompro mized	07969	.12365	1.000	4367	.2773
		Recurrent Infections	11114	.12106	1.000	4606	.2383
	Primary from Immunocompet	congenital infection	.14929	.12043	1.000	1984	.4970
	ent	Not known infection	.11629	.14827	1.000	3118	.5443
		Primary from immunocompro mized	.03659	.10782	1.000	2747	.3479
		Recurrent Infections	.00514	.10484	1.000	2975	.3078
	Primary from immunocompro	congenital infection	.11269	.08837	1.000	1424	.3678
	mized	Not known infection	.07969	.12365	1.000	2773	.4367
	Recurrent Infections	Primary from Immunocompet ent	03659	.10782	1.000	3479	.2747
		Recurrent Infections	03145	.06556	1.000	2207	.1578
		congenital infection	.14414	.08470	.927	1004	.3887
		Not known infection	.11114	.12106	1.000	2383	.4606
	-	Primary from Immunocompet ent	00514	.10484	1.000	3078	.2975
		Primary from immunocompro mized	.03145	.06556	1.000	1578	.2207

Lectin4b	congenital infection	Not known infection	11183	.16886	1.000	5993	.3756
		Primary from Immunocompet ent	05726	.15087	1.000	4928	.3783
		Primary from immunocompro mized	08968	.11071	1.000	4093	.2299
		Recurrent Infections	09355	.10612	1.000	3999	.2128
	Not known infection	congenital infection	.11183	.16886	1.000	3756	.5993
		Primary from Immunocompet ent	.05457	.18575	1.000	4817	.5908
		Primary from immunocompro mized	.02215	.15491	1.000	4251	.4694
		Recurrent Infections	.01829	.15166	1.000	4196	.4561
	Primary from Immunocompet	congenital infection	.05726	.15087	1.000	3783	.4928
	ent	Not known infection	05457	.18575	1.000	5908	.4817
		Primary from immunocompro mized	03242	.13508	1.000	4224	.3576
		Recurrent Infections	03629	.13134	1.000	4155	.3429
	Primary from immunocompro	congenital infection	.08968	.11071	1.000	2299	.4093
	mized	Not known infection	02215	.15491	1.000	4694	.4251
		Primary from Immunocompet ent	.03242	.13508	1.000	3576	.4224
		Recurrent Infections	00387	.08213	1.000	2410	.2332
	Recurrent Infections	congenital infection	.09355	.10612	1.000	2128	.3999
		Not known infection	01829	.15166	1.000	4561	.4196
		Primary from Immunocompet ent	.03629	.13134	1.000	3429	.4155
		Primary from immunocompro mized	.00387	.08213	1.000	2332	.2410
Lectin5b	congenital infection	Not known infection	11217	.08942	1.000	3703	.1460
		Primary from Immunocompet ent	09988	.07989	1.000	3305	.1308
		Primary from immunocompro mized	02878	.05863	1.000	1980	.1405
		Recurrent Infections	05560	.05620	1.000	2178	.1066
	Not known infection	congenital infection	.11217	.08942	1.000	1460	.3703
		Primary from Immunocompet ent	.01229	.09836	1.000	2717	.2963
		Primary from immunocompro mized	.08338	.08203	1.000	1534	.3202
		Recurrent Infections	.05657	.08031	1.000	1753	.2884
	Primary from Immunocompet	congenital infection	.09988	.07989	1.000	1308	.3305
	ent	Not known infection	01229	.09836	1.000	2963	.2717
		Primary from immunocompro mized	.07110	.07153	1.000	1354	.2776
		Recurrent Infections	.04429	.06955	1.000	1565	.2451
	Primary from immunocompro	congenital infection	.02878	.05863	1.000	1405	.1980
	mized	Not known infection	08338	.08203	1.000	3202	.1534

		Primary from Immunocompet ent	07110	.07153	1.000	2776	.1354
		Recurrent Infections	02681	.04349	1.000	1524	.098
	Recurrent Infections	congenital infection	.05560	.05620	1.000	1066	.217
		Not known infection	05657	.08031	1.000	2884	.175
		Primary from Immunocompet ent	04429	.06955	1.000	2451	.156
		Primary from immunocompro mized	.02681	.04349	1.000	0988	.152
Lectin6b	congenital infection	Not known infection	.00750	.15803	1.000	4487	.463
		Primary from Immunocompet ent	19536	.14120	1.000	6030	.212
		Primary from immunocompro mized	01981	.10361	1.000	3189	.279
		Recurrent Infections	06650	.09932	1.000	3532	.220
	Not known infection	congenital infection	00750	.15803	1.000	4637	.448
		Primary from Immunocompet ent	20286	.17384	1.000	7047	.299
		Primary from immunocompro mized	02731	.14498	1.000	4459	.391
		Recurrent Infections	07400	.14194	1.000	4838	.335
	Primary from Immunocompet ent	congenital infection	.19536	.14120	1.000	2123	.603
		Not known infection	.20286	.17384	1.000	2990	.704
		Primary from immunocompro mized	.17555	.12642	1.000	1894	.540
		Recurrent Infections	.12886	.12292	1.000	2260	.483
	Primary from immunocompro	congenital infection	.01981	.10361	1.000	2793	.318
	mized	Not known infection	.02731	.14498	1.000	3912	.445
		Primary from Immunocompet ent	17555	.12642	1.000	5405	.189
		Recurrent Infections	04669	.07687	1.000	2686	.175
	Recurrent Infections	congenital infection	.06650	.09932	1.000	2202	.353
		Not known infection	.07400	.14194	1.000	3358	.483
		Primary from Immunocompet ent	12886	.12292	1.000	4837	.226
		Primary from immunocompro mized	.04669	.07687	1.000	1752	.268
Lectin7b	congenital infection	Not known infection	01317	.27751	1.000	8143	.788
	Not known infection	Primary from Immunocompet ent	15917	.24795	1.000	8750	.556
		Primary from immunocompro mized	17224	.18194	1.000	6975	.353
		Recurrent Infections	07517	.17440	1.000	5787	.428
		congenital infection	.01317	.27751	1.000	7880	.814
		Primary from Immunocompet ent	14600	.30527	1.000	-1.0273	.735
	Primary from immunocompro mized	15908	.25458	1.000	8941	.575	

		Recurrent Infections	06200	.24925	1.000	7816	.6576
	Primary from Immunocompet	congenital	.15917	.24795	1.000	5567	.8750
	ent	Not known infection	.14600	.30527	1.000	7353	1.027
		Primary from immunocompro mized	01308	.22200	1.000	6540	.6278
		Recurrent Infections	.08400	.21586	1.000	5392	.7072
	Primary from immunocompro	congenital infection	.17224	.18194	1.000	3530	.6975
	mized	Not known infection	.15908	.25458	1.000	5759	.8941
		Primary from Immunocompet ent	.01308	.22200	1.000	6278	.6540
		Recurrent Infections	.09708	.13498	1.000	2926	.4868
	Recurrent Infections	congenital infection	.07517	.17440	1.000	4283	.5787
		Not known infection	.06200	.24925	1.000	6576	.7816
		Primary from Immunocompet ent	08400	.21586	1.000	7072	.5392
		Primary from immunocompro mized	09708	.13498	1.000	4868	.2926
Lectin8b	congenital infection	Not known infection	11367	.08782	1.000	3672	.1399
		Primary from Immunocompet ent	.01976	.07847	1.000	2068	.2463
		Primary from immunocompro mized	08167	.05758	1.000	2479	.0846
		Recurrent Infections	03081	.05519	1.000	1901	.1285
	Not known infection	congenital infection	.11367	.08782	1.000	1399	.3672
		Primary from Immunocompet ent	.13343	.09661	1.000	1455	.4123
		Primary from immunocompro mized	.03200	.08057	1.000	2006	.2646
		Recurrent Infections	.08286	.07888	1.000	1449	.3106
	Primary from Immunocompet	congenital infection	01976	.07847	1.000	2463	.2068
	ent	Not known infection	13343	.09661	1.000	4123	.1455
		Primary from immunocompro mized	10143	.07025	1.000	3042	.1014
		Recurrent Infections	05057	.06831	1.000	2478	.1466
	Primary from immunocompro	congenital infection	.08167	.05758	1.000	0846	.2479
	mized	Not known infection	03200	.08057	1.000	2646	.2006
		Primary from Immunocompet ent	.10143	.07025	1.000	1014	.3042
		Recurrent Infections	.05086	.04272	1.000	0725	.1742
	I	congenital infection	.03081	.05519	1.000	1285	.1901
		Not known infection	08286	.07888	1.000	3106	.1449
		Primary from Immunocompet ent	.05057	.06831	1.000	1466	.2478
		Primary from immunocompro mized	05086	.04272	1.000	1742	.0725
Lectin9b	congenital infection	Not known infection	08167	.14494	1.000	5001	.3368

		Primary from					
		Immunocompet ent	20310	.12950	1.000	5770	.1708
		Primary from immunocompro mized	12551	.09503	1.000	3999	.1488
		Recurrent Infections	18852	.09109	.417	4515	.0745
	Not known infection	congenital infection	.08167	.14494	1.000	3368	.5001
		Primary from Immunocompet ent	12143	.15944	1.000	5817	.3389
		Primary from immunocompro mized	04385	.13297	1.000	4277	.3400
		Recurrent Infections	10686	.13018	1.000	4827	.2690
	Primary from Immunocompet	congenital infection	.20310	.12950	1.000	1708	.5770
	ent	Not known infection	.12143	.15944	1.000	3389	.5817
		Primary from immunocompro mized	.07758	.11595	1.000	2572	.4123
		Recurrent Infections	.01457	.11274	1.000	3109	.3401
	Primary from immunocompro	congenital infection	.12551	.09503	1.000	1488	.3999
	mized	Not known infection	.04385	.13297	1.000	3400	.4277
		Primary from Immunocompet ent	07758	.11595	1.000	4123	.2572
		Recurrent Infections	06301	.07050	1.000	2665	.1405
	Recurrent Infections	congenital infection	.18852	.09109	.417	0745	.4515
		Not known infection	.10686	.13018	1.000	2690	.4827
		Primary from Immunocompet ent	01457	.11274	1.000	3401	.3109
		Primary from immunocompro mized	.06301	.07050	1.000	1405	.2665
Lectin10b	congenital infection	Not known infection	.13417	.12618	1.000	2301	.4985
		Primary from Immunocompet ent	.13274	.11274	1.000	1927	.4582
		Primary from immunocompro mized	.01955	.08273	1.000	2193	.2584
		Recurrent Infections	.03588	.07930	1.000	1931	.2648
	Not known infection	congenital infection	13417	.12618	1.000	4985	.2301
		Primary from Immunocompet ent	00143	.13881	1.000	4022	.3993
	Primary from Immunocompet ent	Primary from immunocompro mized	11462	.11576	1.000	4488	.2196
		Recurrent Infections	09829	.11334	1.000	4255	.2289
		congenital infection	13274	.11274	1.000	4582	.1927
		Not known infection	.00143	.13881	1.000	3993	.4022
		Primary from immunocompro mized	11319	.10094	1.000	4046	.1782
		Recurrent Infections	09686	.09815	1.000	3802	.1865
	Primary from immunocompro	congenital infection	01955	.08273	1.000	2584	.2193
	mized	Not known infection	.11462	.11576	1.000	2196	.4488

		Primary from					
		Immunocompet ent	.11319	.10094	1.000	1782	.4046
	Desument	Recurrent Infections	.01633	.06138	1.000	1609	.1935
	Recurrent Infections	congenital infection Not known	03588	.07930	1.000	2648	.1931
		infection	.09829	.11334	1.000	2289	.4255
		Primary from Immunocompet ent	.09686	.09815	1.000	1865	.3802
		Primary from immunocompro mized	01633	.06138	1.000	1935	.1609
Lectin11b	congenital infection	Not known infection	.01500	.06508	1.000	1729	.2029
		Primary from Immunocompet ent	.05643	.05815	1.000	1114	.2243
		Primary from immunocompro mized	04692	.04267	1.000	1701	.0763
		Recurrent Infections	00729	.04090	1.000	1254	.1108
	Not known infection	congenital infection	01500	.06508	1.000	2029	.1729
		Primary from Immunocompet ent	.04143	.07159	1.000	1652	.2481
	Primary from Immunocompet ent	Primary from immunocompro mized	06192	.05970	1.000	2343	.1104
		Recurrent Infections	02229	.05845	1.000	1910	.1465
		congenital infection	05643	.05815	1.000	2243	.1114
		Not known infection	04143	.07159	1.000	2481	.1652
		Primary from immunocompro mized	10335	.05206	.505	2536	.0469
		Recurrent Infections	06371	.05062	1.000	2099	.0824
	Primary from immunocompro	congenital infection	.04692	.04267	1.000	0763	.1701
	mized	Not known infection	.06192	.05970	1.000	1104	.2343
		Primary from Immunocompet ent	.10335	.05206	.505	0469	.2536
		Recurrent Infections	.03964	.03165	1.000	0517	.1310
	Recurrent Infections	congenital infection	.00729	.04090	1.000	1108	.1254
		Not known infection	.02229	.05845	1.000	1465	.1910
		Primary from Immunocompet ent	.06371	.05062	1.000	0824	.2099
		Primary from immunocompro mized	03964	.03165	1.000	1310	.0517
Lectin12b	congenital infection	Not known infection	.01733	.08749	1.000	2352	.2699
		Primary from Immunocompet ent	.04619	.07817	1.000	1795	.2719
		Primary from immunocompro mized	02321	.05736	1.000	1888	.1424
		Recurrent Infections	04324	.05498	1.000	2020	.1155
	Not known infection	congenital infection	01733	.08749	1.000	2699	.2352
		Primary from Immunocompet ent	.02886	.09624	1.000	2490	.3067
		Primary from immunocompro mized	04054	.08026	1.000	2722	.1912

		Recurrent Infections	06057	.07858	1.000	2874	.1663
	Primary from	congenital	04619	.07817	1.000	2719	.1795
	Immunocompet ent	infection Not known infection	02886	.09624	1.000	3067	.2490
		Primary from immunocompro mized	06940	.06999	1.000	2714	.1327
		Recurrent Infections	08943	.06805	1.000	2859	.1070
	Primary from immunocompro	congenital infection	.02321	.05736	1.000	1424	.1888
	mized	Not known infection	.04054	.08026	1.000	1912	.2722
		Primary from Immunocompet ent	.06940	.06999	1.000	1327	.2714
		Recurrent Infections	02003	.04255	1.000	1429	.1028
	Recurrent Infections	congenital infection	.04324	.05498	1.000	1155	.2020
		Not known infection	.06057	.07858	1.000	1663	.2874
		Primary from Immunocompet ent	.08943	.06805	1.000	1070	.2859
		Primary from immunocompro mized	.02003	.04255	1.000	1028	.1429
Lectin13b	congenital infection	Not known infection	.02667	.12971	1.000	3478	.4011
		Primary from Immunocompet ent	.06810	.11589	1.000	2665	.4027
		Primary from immunocompro mized	.02282	.08504	1.000	2227	.2683
		Recurrent Infections	05590	.08152	1.000	2912	.1794
	Not known infection	congenital infection	02667	.12971	1.000	4011	.3478
		Primary from Immunocompet ent	.04143	.14269	1.000	3705	.4534
		Primary from immunocompro mized	00385	.11900	1.000	3474	.3397
		Recurrent Infections	08257	.11650	1.000	4189	.2538
	Primary from Immunocompet	congenital infection	06810	.11589	1.000	4027	.2665
	ent	Not known infection	04143	.14269	1.000	4534	.3705
		Primary from immunocompro mized	04527	.10376	1.000	3448	.2543
		Recurrent Infections	12400	.10089	1.000	4153	.1673
	Primary from immunocompro	congenital infection	02282	.08504	1.000	2683	.2227
	mized	Not known infection	.00385	.11900	1.000	3397	.3474
		Primary from Immunocompet ent	.04527	.10376	1.000	2543	.3448
		Recurrent Infections	07873	.06309	1.000	2609	.1034
	Recurrent Infections	congenital infection	.05590	.08152	1.000	1794	.2912
		Not known infection	.08257	.11650	1.000	2538	.4189
		Primary from Immunocompet ent	.12400	.10089	1.000	1673	.4153
		Primary from immunocompro mized	.07873	.06309	1.000	1034	.2609
Lectin14b	congenital infection	Not known infection	.07283	.11249	1.000	2519	.3976

		Primary from					
		Immunocompet ent	.04226	.10051	1.000	2479	.3324
		Primary from immunocompro mized	.00776	.07375	1.000	2052	.2207
		Recurrent Infections	03717	.07069	1.000	2413	.1669
	Not known infection	congenital infection	07283	.11249	1.000	3976	.2519
		Primary from Immunocompet ent	03057	.12374	1.000	3878	.3267
		Primary from immunocompro mized	06508	.10320	1.000	3630	.2328
		Recurrent Infections	11000	.10103	1.000	4017	.1817
	Primary from Immunocompet	congenital infection	04226	.10051	1.000	3324	.2479
	ent	Not known infection	.03057	.12374	1.000	3267	.3878
		Primary from immunocompro mized	03451	.08999	1.000	2943	.2253
		Recurrent Infections	07943	.08750	1.000	3320	.1732
	Primary from immunocompro	congenital infection	00776	.07375	1.000	2207	.2052
	mized	Not known infection	.06508	.10320	1.000	2328	.3630
		Primary from Immunocompet ent	.03451	.08999	1.000	2253	.2943
		Recurrent Infections	04492	.05471	1.000	2029	.1130
	Recurrent Infections	congenital infection	.03717	.07069	1.000	1669	.2413
		Not known infection	.11000	.10103	1.000	1817	.4017
		Primary from Immunocompet ent	.07943	.08750	1.000	1732	.3320
		Primary from immunocompro mized	.04492	.05471	1.000	1130	.2029
Lectin15b	congenital infection	Not known infection	.10150	.13884	1.000	2993	.5023
		Primary from Immunocompet ent	01964	.12405	1.000	3778	.3385
		Primary from immunocompro mized	.00596	.09103	1.000	2568	.2688
		Recurrent Infections	02679	.08725	1.000	2787	.2251
	Not known infection	congenital infection	10150	.13884	1.000	5023	.2993
	Primary from Immunocompet ent	Primary from Immunocompet ent	12114	.15273	1.000	5621	.3198
		Primary from immunocompro mized	09554	.12737	1.000	4632	.2722
		Recurrent Infections	12829	.12470	1.000	4883	.2317
		congenital infection	.01964	.12405	1.000	3385	.3778
		Not known infection	.12114	.15273	1.000	3198	.5621
		Primary from immunocompro mized	.02560	.11106	1.000	2950	.3462
		Recurrent Infections	00714	.10799	1.000	3189	.3046
	Primary from immunocompro	congenital infection	00596	.09103	1.000	2688	.2568
	mized	Not known infection	.09554	.12737	1.000	2722	.4632

		Primary from Immunocompet ent	02560	.11106	1.000	3462	.2950
		Recurrent	03275	.06753	1.000	2277	.1622
	Recurrent Infections	congenital infection	.02679	.08725	1.000	2251	.2787
		Not known infection	.12829	.12470	1.000	2317	.4883
		Primary from Immunocompet ent	.00714	.10799	1.000	3046	.3189
		Primary from immunocompro mized	.03275	.06753	1.000	1622	.2277
Lectin16b	congenital infection	Not known infection	.07550	.24218	1.000	6237	.7747
		Primary from Immunocompet ent	.47750	.21639	.302	1472	1.102
		Primary from immunocompro mized	.41058	.15879	.115	0478	.8690
		Recurrent Infections	.35493	.15220	.222	0845	.7943
	Not known infection	congenital infection	07550	.24218	1.000	7747	.6237
		Primary from Immunocompet ent	.40200	.26641	1.000	3671	1.171
		Primary from immunocompro mized	.33508	.22218	1.000	3064	.9765
	Primary from Immunocompet ent	Recurrent Infections	.27943	.21752	1.000	3486	.9074
		congenital infection	47750	.21639	.302	-1.1022	.1472
		Not known infection	40200	.26641	1.000	-1.1711	.3671
		Primary from immunocompro mized	06692	.19374	1.000	6262	.4924
		Recurrent Infections	12257	.18838	1.000	6664	.4213
	Primary from immunocompro	congenital infection	41058	.15879	.115	8690	.0478
	mized	Not known infection	33508	.22218	1.000	9765	.3064
		Primary from Immunocompet ent	.06692	.19374	1.000	4924	.6262
		Recurrent Infections	05565	.11780	1.000	3957	.2844
	Recurrent Infections	congenital infection	35493	.15220	.222	7943	.0845
		Not known infection	27943	.21752	1.000	9074	.3486
		Primary from Immunocompet ent	.12257	.18838	1.000	4213	.6664
		Primary from immunocompro mized	.05565	.11780	1.000	2844	.3957
Lectin17b	congenital infection	Not known infection	01050	.16299	1.000	4810	.4600
		Primary from Immunocompet ent	.08321	.14563	1.000	3372	.5036
		Primary from immunocompro mized	00135	.10686	1.000	3099	.3072
		Recurrent Infections	06136	.10243	1.000	3571	.2344
	Not known infection	congenital infection	.01050	.16299	1.000	4600	.4810
		Primary from Immunocompet ent	.09371	.17929	1.000	4239	.6113
		Primary from immunocompro mized	.00915	.14953	1.000	4225	.4408

		Recurrent	05086	.14639	1.000	4735	.3718
	Primary from	Infections congenital					
	Immunocompet ent	infection Not known	08321	.14563	1.000	5036	.3372
		infection Primary from immunocompro	08456	.13038	1.000	4610	.2919
		mized Recurrent	14457	.12678	1.000	5106	.2214
	Primary from immunocompro	Infections congenital infection	.00135	.10686	1.000	3072	.3099
	mized	Not known infection	00915	.14953	1.000	4408	.4225
		Primary from Immunocompet ent	.08456	.13038	1.000	2919	.4610
		Recurrent Infections	06001	.07928	1.000	2889	.1689
	Recurrent Infections	congenital infection	.06136	.10243	1.000	2344	.3571
		Not known infection	.05086	.14639	1.000	3718	.4735
		Primary from Immunocompet ent	.14457	.12678	1.000	2214	.5106
		Primary from immunocompro mized	.06001	.07928	1.000	1689	.2889
Lectin18b	congenital infection	Not known infection	.03700	.15414	1.000	4080	.4820
		Primary from Immunocompet ent	08357	.13772	1.000	4812	.3140
	Not known	Primary from immunocompro mized	.02577	.10106	1.000	2660	.3175
		Recurrent Infections	03757	.09687	1.000	3172	.2421
	Not known infection	congenital infection	03700	.15414	1.000	4820	.4080
		Primary from Immunocompet ent	12057	.16956	1.000	6101	.3689
		Primary from immunocompro mized	01123	.14141	1.000	4195	.3970
		Recurrent Infections	07457	.13845	1.000	4743	.3251
	Primary from Immunocompet	congenital infection	.08357	.13772	1.000	3140	.4812
	ent	Not known infection	.12057	.16956	1.000	3689	.6101
		Primary from immunocompro mized	.10934	.12331	1.000	2466	.4653
		Recurrent Infections	.04600	.11990	1.000	3001	.3921
	Primary from immunocompro	congenital infection	02577	.10106	1.000	3175	.2660
	mized	Not known infection Primary from	.01123	.14141	1.000	3970	.4195
		Immunocompet ent	10934	.12331	1.000	4653	.2466
	Desument	Recurrent Infections	06334	.07497	1.000	2798	.1531
	Recurrent Infections	congenital infection Not known	.03757	.09687	1.000	2421	.3172
		infection Primary from	.07457	.13845	1.000	3251	.4743
		Immunocompet ent	04600	.11990	1.000	3921	.3001
		Primary from immunocompro mized	.06334	.07497	1.000	1531	.2798

Lectin19b	congenital infection	Not known infection	.03317	.05579	1.000	1279	.1942
		Primary from Immunocompet ent	.03488	.04985	1.000	1090	.1788
		Primary from immunocompro mized	01199	.03658	1.000	1176	.0936
		Recurrent Infections	04969	.03506	1.000	1509	.0515
	Not known infection	congenital infection	03317	.05579	1.000	1942	.1279
		Primary from Immunocompet ent	.00171	.06137	1.000	1755	.1789
		Primary from immunocompro mized	04515	.05118	1.000	1929	.1026
		Recurrent Infections	08286	.05011	1.000	2275	.0618
	Primary from Immunocompet ent	congenital infection	03488	.04985	1.000	1788	.1090
	ent	Not known infection	00171	.06137	1.000	1789	.1755
	Primary from immunocompro	Primary from immunocompro mized	04687	.04463	1.000	1757	.0820
		Recurrent Infections	08457	.04340	.548	2099	.0407
		congenital infection	.01199	.03658	1.000	0936	.1176
	mized	Not known infection	.04515	.05118	1.000	1026	.1929
		Primary from Immunocompet ent	.04687	.04463	1.000	0820	.1757
		Recurrent Infections	03770	.02714	1.000	1160	.0406
	Recurrent Infections	congenital infection	.04969	.03506	1.000	0515	.1509
		Not known infection	.08286	.05011	1.000	0618	.2275
		Primary from Immunocompet ent	.08457	.04340	.548	0407	.2099
		Primary from immunocompro mized	.03770	.02714	1.000	0406	.1160
Lectin20b	congenital infection	Not known infection	07767	.11051	1.000	3967	.2414
		Primary from Immunocompet ent	10738	.09874	1.000	3924	.1777
		Primary from immunocompro mized	07244	.07246	1.000	2816	.1367
		Recurrent Infections	09424	.06945	1.000	2947	.1063
	Not known infection	congenital infection	.07767	.11051	1.000	2414	.3967
		Primary from Immunocompet ent	02971	.12157	1.000	3807	.3212
		Primary from immunocompro mized	.00523	.10138	1.000	2875	.2979
		Recurrent Infections	01657	.09926	1.000	3031	.2700
	Primary from Immunocompet	congenital infection	.10738	.09874	1.000	1777	.3924
	ent	Not known infection	.02971	.12157	1.000	3212	.3807
		Primary from immunocompro mized	.03495	.08841	1.000	2203	.2902
		Recurrent Infections	.01314	.08596	1.000	2350	.2613

Primary from immunocompro	congenital infection	.07244	.07246	1.000	1367	.2816
mized	Not known infection	00523	.10138	1.000	2979	.2875
	Primary from Immunocompet ent	03495	.08841	1.000	2902	.2203
	Recurrent Infections	02180	.05375	1.000	1770	.1334
Recurrent Infections	congenital infection	.09424	.06945	1.000	1063	.2947
	Not known infection	.01657	.09926	1.000	2700	.3031
	Primary from Immunocompet ent	01314	.08596	1.000	2613	.2350
	Primary from immunocompro mized	.02180	.05375	1.000	1334	.1770

Appendix 8: Tables of One-way ANOVA results for the relation between HCMV sample type and the glycosylation of the glycoproteins.

							nfidence for Mean		
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimu m	Maximum
Lectin1b	respiratory	4	.2400	.04320	.02160	.1713	.3087	.18	.28
	blood	77	.2247	.12159	.01386	.1971	.2523	.09	.88
	Urine	8	.1662	.04033	.01426	.1325	.2000	.11	.22
	Total	89	.2201	.11515	.01221	.1959	.2444	.09	.88
Lectin2b	respiratory	4	.5950	.21237	.10618	.2571	.9329	.45	.90
	blood	77	.5677	.19179	.02186	.5241	.6112	.29	1.17
	Urine	8	.4413	.15851	.05604	.3087	.5738	.20	.65
	Total	89	.5575	.19154	.02030	.5172	.5979	.20	1.17
Lectin3b	respiratory	4	.6200	.06880	.03440	.5105	.7295	.57	.72
	blood	77	.7218	.26023	.02966	.6628	.7809	.32	1.48
	Urine	8	.5462	.11463	.04053	.4504	.6421	.40	.74
	Total	89	.7015	.25009	.02651	.6488	.7541	.32	1.48
Lectin4b	respiratory	4	.8175	.14385	.07192	.5886	1.0464	.72	1.03
	blood	77	.7813	.32442	.03697	.7077	.8549	.30	2.27
	Urine	8	.5725	.13090	.04628	.4631	.6819	.41	.79
	Total	89	.7642	.31095	.03296	.6987	.8297	.30	2.27
Lectin5b	respiratory	4	.3425	.15861	.07931	.0901	.5949	.18	.55
	blood	77	.2158	.13293	.01515	.1857	.2460	.07	.78
	Urine	8							
	Total		.2663	.37925	.13408	0508	.5833	.08	1.20
Lectin6b	respiratory	89	.2261	.16856	.01787	.1906	.2616	.07	1.20
Lectinob	blood	4	.9875	.27195	.13598	.5548	1.4202	.63	1.26
	Urine	77	.8542	.30495	.03475	.7849	.9234	.35	1.57
		8	.7425	.26623	.09413	.5199	.9651	.50	1.22
	Total	89	.8501	.30066	.03187	.7868	.9134	.35	1.57
Lectin7b	respiratory	4	1.1875	.29680	.14840	.7152	1.6598	.82	1.52
	blood	77	1.1008	.53266	.06070	.9799	1.2217	.17	2.50
	Urine	8	.8200	.34472	.12188	.5318	1.1082	.35	1.55
	Total	89	1.0794	.51434	.05452	.9711	1.1878	.17	2.50
Lectin8b	respiratory	4	.8100	.58793	.29397	1255	1.7455	.28	1.47
	blood	77	.3991	.15105	.01721	.3648	.4334	.12	.95
	Urine	8	.3513	.08560	.03026	.2797	.4228	.24	.48
	Total	89	.4133	.19938	.02113	.3713	.4553	.12	1.47
Lectin9b	respiratory	4	.7325	.24514	.12257	.3424	1.1226	.41	.96
	blood	77	.6852	.27734	.03161	.6222	.7481	.32	1.71
	Urine	8	.4788	.08871	.03136	.4046	.5529	.35	.64
	Total	89							
Lectin10	respiratory		.6688	.26982	.02860	.6119	.7256	.32	1.71
b	blood	4	.8550	.44792	.22396	.1423	1.5677	.49	1.45
	Urine	77	.6290	.23833	.02716	.5749	.6831	.15	1.26
		8	.5150	.17105	.06047	.3720	.6580	.34	.84
	Total	89	.6289	.24844	.02633	.5765	.6812	.15	1.45

Lectin11	respiratory	4	.2800	.11195	.05598	.1019	.4581	.18	.42
b	blood	77	.2381	.12431	.01417	.2098	.2663	.08	.62
	Urine	8	.1875	.08730	.03087	.1145	.2605	.10	.37
	Total	89	.2354	.12118	.01284	.2099	.2609	.08	.62
Lectin12	respiratory	4	.1825	.04500	.02250	.1109	.2541	.12	.22
b	blood	77	.1848	.17049	.01943	.1461	.2235	.07	1.39
	Urine	8	.1463	.04984	.01762	.1046	.1879	.09	.22
	Total	89	.1812	.15966	.01692	.1476	.2149	.07	1.39
Lectin13	respiratory	4	.5375	.18025	.09013	.2507	.8243	.39	.77
b	blood	77	.4384	.25260	.02879	.3811	.4958	.17	2.35
	Urine	8	.3550	.05237	.01852	.3112	.3988	.29	.47
	Total	89	.4354	.23980	.02542	.3849	.4859	.17	2.35
Lectin14	respiratory	4	.7375	.24019	.12010	.3553	1.1197	.55	1.09
b	blood	77	.5458	.21672	.02470	.4967	.5950	.21	1.39
	Urine	8	.4438	.12872	.04551	.3361	.5514	.28	.67
	Total	89	.5453	.21556	.02285	.4999	.5907	.21	1.39
Lectin15	respiratory	4	.9275	.25474	.12737	.5222	1.3328	.64	1.22
b	blood	77	.6774	.26212	.02987	.6179	.7369	.11	1.47
	Urine	8	.5950	.19647	.06946	.4307	.7593	.41	1.02
	Total	89	.6812	.26090	.02766	.6263	.7362	.11	1.47
Lectin16	respiratory	4	.8625	.35994	.17997	.2898	1.4352	.65	1.40
b	blood	77	.3695	.45600	.05197	.2660	.4730	.07	2.80
	Urine	8	.4088	.50632	.17901	0145	.8320	.08	1.46
	Total	89	.3952	.46359	.04914	.2975	.4928	.07	2.80
Lectin17	respiratory	4	1.1450	.21810	.10905	.7980	1.4920	1.01	1.47
b	blood	77	.8560	.30855	.03516	.7859	.9260	.38	2.15
	Urine	8	.6600	.20543	.07263	.4883	.8317	.46	1.14
	Total	89	.8513	.30735	.03258	.7866	.9161	.38	2.15
Lectin18	respiratory	4	.8925	.15586	.07793	.6445	1.1405	.71	1.09
b	blood	77	.7932	.30036	.03423	.7251	.8614	.22	1.91
	Urine	8	.6550	.11439	.04044	.5594	.7506	.43	.76
	Total	89	.7853	.28619	.03034	.7250	.8456	.45	1.91
Lectin19	respiratory	89 4	.7853	.05831	.03034	.2372	.4228	.22	.39
b	blood								
	Urine	77	.2696	.10878	.01240	.2449	.2943	.08	.57
	Total	8	.1975	.06274	.02218	.1451	.2499	.12	.29
Lectin20	respiratory	89	.2658	.10617	.01125	.2435	.2882	.08	.57
b	blood	4	.4450	.04041	.02021	.3807	.5093	.41	.50
	Urine	77 8	.5373 .4188	.21435 .06578	.02443	.4886	.5859 .4737	.14	1.44 .54
	Total	8 89	.5225	.20377	.02326	.3638	.5654	.32	.54
		09	.3223	.20377	.02100	.=/35	.5054	.14	1.44

			ΙΟΥΑ			
		Sum of Squares	df	Mean Square	F	Sig.
Lectin1b	Between Groups	.026	2	.013	.995	.374
_	Within Groups	1.141	86	.013		
-	Total	1.167	88			
Lectin2b	Between Groups	.122	2	.061	1.684	.192
-	Within Groups	3.107	86	.036		
_	Total	3.228	88			
Lectin3b	Between Groups	.251	2	.126	2.056	.134
-	Within Groups	5.253	86	.061		
-	Total	5.504	88			
Lectin4b	Between Groups	.328	2	.164	1.723	.185
=	Within Groups	8.181	86	.095	-	
-	Total	8.509	88			
Lectin5b	Between Groups	.075	2	.038	1.333	.269
-	Within Groups		86		1.555	.209
-	Total	2.425		.028		
Lectin6b	Between Groups	2.500	88	205	0.7.6	200
_	Within Groups	.169	2	.085	.936	.396
-	Total	7.786	86	.091		
Lectin7b	Between Groups	7.955	88	210		212
-	Within Groups	.620	2	.310	1.177	.313
_	Total	22.659	86	.263		
Lectin8h	Between Groups	23.280	88			
Lectin8b	Within Groups	.676	2	.338	10.297	.000
-		2.822	86	.033		
	Total	3.498	88			
Lectin9b	Between Groups	.326	2	.163	2.304	.106
	Within Groups	6.081	86	.071		
	Total	6.407	88			
ectin10b	Between Groups	.308	2	.154	2.587	.081
-	Within Groups	5.123	86	.060		
-	Total	5.432	88			
ectin11b	Between Groups	.027	2	.013	.913	.405
=	Within Groups	1.265	86	.015		
-	Total	1.292	88			
ectin12b	Between Groups	.011	2	.005	.208	.813
=	Within Groups	2.233	86	.026		
-	Total	2.243	88			

Lectin13b	Between Groups	.094	2	.047	.815	.446
-	Within Groups	4.966	86	.058		
-	Total	5.060	88			
Lectin14b	Between Groups	.230	2	.115	2.566	.083
-	Within Groups	3.859	86	.045		
-	Total	4.089	88			
Lectin15b	Between Groups	.303	2	.152	2.293	.107
	Within Groups	5.687	86	.066		
	Total	5.990	88			
Lectin16b	Between Groups	.926	2	.463	2.214	.116
_	Within Groups	17.986	86	.209		
	Total	18.912	88			
Lectin17b	Between Groups	.639	2	.320	3.583	.032
	Within Groups	7.674	86	.089		
	Total	8.313	88			
Lectin18b	Between Groups	.187	2	.093	1.143	.324
-	Within Groups	7.021	86	.082		
-	Total	7.208	88			
Lectin19b	Between Groups	.055	2	.027	2.520	.086
-	Within Groups	.937	86	.011		
-	Total	.992	88			
ectin20b	Between Groups	.127	2	.063	1.548	.219
=	Within Groups	3.527	86	.041		
-	Total	3.654	88			

	Multiple Comparisons								
Bonferroni									
Dependent Variable	(I) spec.type.r	(J) spec.type.r	Mean Difference (I-J)	Std. Error	Sig.	95% Confide Lower Bound	ence Interva Upper Bound		
Lectin1b	respiratory	blood	.01532	.05906	1.000	1289	.1595		
		Urine	.07375	.07052	.896	0984	.2459		
	blood	respiratory	01532	.05906	1.000	1595	.1289		
		Urine	.05843	.04278	.527	0460	.1629		
	Urine	respiratory	07375	.07052	.896	2459	.0984		
		blood	05843	.04278	.527	1629	.0460		
Lectin2b	respiratory	blood	.02734	.09747	1.000	2107	.2653		
		Urine	.15375	.11639	.570	1304	.4379		
	blood	respiratory	02734	.09747	1.000	2653	.2107		
		Urine	.12641	.07060	.231	0460	.2988		
	Urine	respiratory	15375	.11639	.570	4379	.1304		
		blood	12641	.07060	.231	2988	.0460		

Lectin3b	respiratory	blood	10192	12674	1 000	4112	2076
Lectings	,	Urine	10182	.12674	1.000	4113	.2076
	blood	respiratory	.07375	.15134	1.000	2958	.4433
		Urine	.10182	.12674	1.000	2076	.4113
	Urine	respiratory	.17557	.09181	.177	0486	.3997
		blood	07375	.15134	1.000	4433	.2958
Lectin4b	respiratory	blood	17557	.09181	.177	3997	.0486
Lectinab		Urine	.03620	.15817	1.000	3500	.4224
			.24500	.18887	.594	2162	.7062
	blood	respiratory	03620	.15817	1.000	4224	.3500
		Urine	.20880	.11457	.216	0710	.4885
	Urine	respiratory	24500	.18887	.594	7062	.2162
		blood	20880	.11457	.216	4885	.0710
Lectin5b	respiratory	blood	.12666	.08612	.435	0836	.3369
		Urine	.07625	.10283	1.000	1748	.3273
	blood	respiratory	12666	.08612	.435	3369	.0836
		Urine	05041	.06238	1.000	2027	.1019
	Urine	respiratory					
		blood	07625	.10283	1.000	3273	.1748
Lectin6b	· · ·	blood	.05041	.06238	1.000	1019	.2027
Lectinop	respiratory		.13334	.15430	1.000	2434	.5101
	bland	Urine	.24500	.18425	.561	2049	.6949
	blood	respiratory	13334	.15430	1.000	5101	.2434
		Urine	.11166	.11177	.962	1612	.3846
	Urine	respiratory	24500	.18425	.561	6949	.2049
		blood	11166	.11177	.962	3846	.1612
Lectin7b	respiratory	blood	.08672	.26323	1.000	5560	.7295
		Urine	.36750	.31433	.737	4000	1.135
	blood	respiratory	08672	.26323	1.000	7295	.5560
		Urine	.28078	.19068	.434	1848	.7464
	Urine	respiratory	36750	.31433	.737	-1.1350	.4000
		blood	28078	.19068	.434	7464	.1848
Lectin8b	respiratory	blood	.41091*	.09290	.000	.1841	.6377
		Urine	.45875*	.11094	.000	.1879	.7296
	blood	respiratory	41091*	.09290	.000	6377	184:
		Urine	.04784	.06729	1.000	1165	.2122
	Urine	respiratory	45875*	.11094	.000	7296	1879
		blood	04784	.06729	1.000	2122	.1165
Lectin9b	respiratory	blood	.04731	.13636	1.000	2857	.3803
		Urine					
	blood	respiratory	.25375	.16284	.368	1438	.6513
	5,000	Urine	04731	.13636	1.000	3803	.2857
	I luin -		.20644	.09878	.119	0347	.4476
	Urine	respiratory	25375	.16284	.368	6513	.1438
		blood	20644	.09878	.119	4476	.0347
Lectin10b	respiratory	blood	.22604	.12517	.223	0796	.5317
		Urine	.34000	.14947	.076	0250	.7050

	blood	rocpiratory					
	blood	respiratory	22604	.12517	.223	5317	.0796
	Liste e	Urine	.11396	.09067	.637	1074	.3353
	Urine	respiratory	34000	.14947	.076	7050	.0250
		blood	11396	.09067	.637	3353	.1074
Lectin11b	respiratory	blood	.04195	.06220	1.000	1099	.1938
		Urine	.09250	.07428	.649	0889	.2739
	blood	respiratory	04195	.06220	1.000	1938	.1099
		Urine	.05055	.04506	.795	0595	.1606
	Urine	respiratory	09250	.07428	.649	2739	.0889
		blood	05055	.04506	.795	1606	.0595
Lectin12b	respiratory	blood	00231	.08263	1.000	2041	.1994
		Urine	.03625	.09867	1.000	2047	.2772
	blood	respiratory	.00231	.08263	1.000	1994	.2041
		Urine	.03856	.05985	1.000	1076	.1847
	Urine	respiratory	03625	.09867	1.000	2772	.2047
		blood	03856	.05985	1.000	1847	.1076
Lectin13b	respiratory	blood	.09906		1.000	2018	.4000
		Urine		.12323			
	blood	respiratory	.18250	.14715	.655	1768	.5418
	Dioou	Urine	09906	.12323	1.000	4000	.2018
	Urine		.08344	.08926	1.000	1345	.3014
		respiratory	18250	.14715	.655	5418	.1768
		blood	08344	.08926	1.000	3014	.1345
Lectin14b	respiratory	blood	.19166	.10863	.244	0736	.4569
		Urine	.29375	.12971	.078	0230	.6105
	blood	respiratory	19166	.10863	.244	4569	.0736
		Urine	.10209	.07869	.594	0900	.2942
	Urine	respiratory	29375	.12971	.078	6105	.0230
		blood	10209	.07869	.594	2942	.0900
Lectin15b	respiratory	blood	.25010	.13187	.184	0719	.5721
		Urine	.33250	.15747	.113	0520	.7170
	blood	respiratory	25010	.13187	.184	5721	.0719
		Urine	.08240	.09552	1.000	1508	.3156
	Urine	respiratory	33250	.15747	.113	7170	.0520
		blood	08240	.09552	1.000	3156	.1508
Lectin16b	respiratory	blood					
Lectifion	,,	Urine	.49302	.23453	.115	0796	1.0657
	blood	respiratory	.45375	.28005	.327	2301	1.1376
		Urine	49302	.23453	.115	-1.0657	.0796
	Urine	respiratory	03927	.16988	1.000	4541	.3755
		blood	45375	.28005	.327	-1.1376	.2301
Lectin17b	respiratory	blood	.03927	.16988	1.000	3755	.4541
	. copiratory	Urine	.28903	.15318	.188	0850	.6631
	hlas -		.48500*	.18292	.029	.0384	.9316
	blood	respiratory	28903	.15318	.188	6631	.0850
		Urine	.19597	.11096	.243	0750	.4669

	Urine	respiratory	48500*	.18292	.029	9316	0384
		blood	19597	.11096	.243	4669	.0750
Lectin18b	respiratory	blood	.09925	.14653	1.000	2585	.4570
		Urine	.23750	.17497	.535	1897	.6647
	blood	respiratory	09925	.14653	1.000	4570	.2585
		Urine	.13825	.10614	.589	1209	.3974
	Urine	respiratory	23750	.17497	.535	6647	.1897
		blood	13825	.10614	.589	3974	.1209
Lectin19b	respiratory	blood	.06039	.05353	.787	0703	.1911
		Urine	.13250	.06392	.124	0236	.2886
	blood	respiratory	06039	.05353	.787	1911	.0703
		Urine	.07211	.03877	.199	0226	.1668
	Urine	respiratory	13250	.06392	.124	2886	.0236
		blood	07211	.03877	.199	1668	.0226
Lectin20b	respiratory	blood	09227	.10385	1.000	3458	.1613
		Urine	.02625	.12401	1.000	2766	.3291
	blood	respiratory	.09227	.10385	1.000	1613	.3458
		Urine	.11852	.07523	.356	0652	.3022
	Urine	respiratory	02625	.12401	1.000	3291	.2766
		blood	11852	.07523	.356	3022	.0652