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Abstract 
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Faculty of Engineering and Physical Sciences 

 

PhD Thesis 

Static and Dynamic State Estimation of Power Systems 

 

 Zhaoyang Jin 

December, 2017. 

 

Power system state estimation has been playing a core part in the energy management 

system (EMS) utilised by power system operators since its establishment in the 1970s. The 

state estimator is responsible for providing accurate information (e.g. voltage magnitudes and 

angles of all buses in the network) for the EMS so that its security assessment functions can be 

deployed reliably. Recently, the power system is experiencing unprecedented evolution of 

complexity due to the increasing injection of renewable energy, increasing usage of power 

electronic devices and the increasing number of HVDC links in the network. One of the 

solutions to such challenges is to deploy Wide Area Monitoring System (WAMS) supported by 

the Synchronised Measurement Technology (SMT). 

Prior to state estimation, an observability analysis must be performed to make sure the 

measurements (e.g. power injection and flow measurements) received can support the normal 

functioning of the state estimator. If the measurements cannot provide full observability of the 

network, the observability analysis function identifies the observable islands where state 

estimation can still be performed within the observable islands. In this thesis it is shown that 

the existing method may not correctly identify the observable islands in the so called 

pathological cases; the thesis proposes a new method for observability analysis that overcomes 

this problem. Furthermore the execution time of the proposed method is shorter than existing 

methods. To support the deployment of the SMT in state estimation, the thesis also proposes a 

new method for including the synchronised measurements in the observability analysis 

function. 

The synchronised measurements provided by phasor measurement units (PMUs) have 

significantly higher accuracy and sampling rate than conventional measurements. However, the 

widespread installation of PMUs is limited by its high costs. A more feasible method that takes 

advantage of SMT is to use a hybrid state estimator (HSE). It uses a combination of PMU 

measurements and the existing conventional methods. To support the observability of the HSE, 

the thesis first proposes a new method for optimal PMU placement in the presence of 

conventional measurements. Then, the thesis performs simulations in the IEEE 14 and 118 Bus 

Test Systems comparing the performance of five different HSEs. It is found that even a small 

number of PMUs in a large network can significantly improve the estimation accuracy of the 

HSE compared to the conventional state estimator. Furthermore, the rectangular current type 

HSE has the best performance in terms of estimation accuracy, execution time and 

convergence. These conclusions are rigorously validated by mathematical analysis. 
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The final work presented in this thesis is the development of a new algorithm for a dynamic 

state estimator (DSE) supported by SMT. The new method applies the Cubature Kalman Filter 

which is demonstrated to be more efficient but more sensitive to the anomalies compared to the 

DSEs using other nonlinear filters. Thus, the new algorithm also involves new methods that 

can accurately detect and identify three different types of anomaly, including bad data, sudden 

change of load, and sudden change of topology due to fault, to mitigate the impact of this 

sensitivity.  
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Chapter 1 Introduction 

 

 

Before the employment of energy management systems (EMS), the power system operator was 

in charge of conducting many real-time control centre functions, including, scheduling 

generation and interchange, scheduling frequency and time corrections, monitoring outages, 

coordinating bias settings, and emergency restoration of the system [1]-[4]. All of these real-

time functions were conducted using the estimations from a large number of load flows that 

were performed at the planning stage. However, such a monitoring and control scheme can 

only cover a limited number of scenarios for any operation condition, and thus the system 

could be vulnerable to unexpected events. In addition, it was recognized that the planning load 

flows did not meet the exact needs of the operator because of the random variation nature of 

the loads. These problems were first recognized and subsequently addressed by Fred 

Schweppe, who first proposed the idea of power system state estimation formulated in 1969 

[6]-[8]. The first state estimator which was proposed in [6]-[8] was formulated as a weighted 

least square problem. The state estimator provides estimations of all parameters in the power 

system based on real-time measurements collected from the network, which is reliable enough 

to guarantee the normal operation of all control centre functions. The state estimator, therefore, 

forms the main part of EMS and the key component in power system. 

 

The state estimator, supported by the conventional techniques, has been proved effective in 

monitoring the power network. However, the evolving complexity of the power network and 

thus the emerging development of smart grids are the main drivers of deeper and more 

extensive research into state estimation [9]. The challenges include: 

 Growing penetration of renewable energy such as wind plant and solar panels, which are 

characterized by their intermittent generation and decentralized distribution [10]. 

 The need to monitor and control power system over wide area as a result of increased size 

of power networks and interconnections between the power networks, and thus the 

challenge of the central operator to manage large amount of data from different areas [11]. 

 The challenge to integrate Synchronised Measurement Technology (SMT) into the power 
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system, which is technically more reliable, but limited by the high cost of infrastructure 

investment [12].  

 The need for further development of the dynamic state estimator (DSE) and its 

applications because the high sampling rate provided by SMT have made it possible for 

DSE to reveal electromechanical responses [13]. 

 

In order to deal with the abovementioned challenges, it is necessary to develop new methods 

and algorithms in state estimation and its related functions to minimise the impact of the 

increasing complexity of the power system and maximize the benefits brought by the new 

measurement technology. 

 

1.1 Research background 

1.1.1 Static State Estimation 

 

Static state estimation is deemed as the procedure for determining the voltage magnitudes and 

angles of all buses in the power system at a given moment in time [1]. It is a basic module and 

the enabler of the EMS: the advanced applications of EMS cannot work using the raw data 

collected from the network without being processed by the state estimator [4]. The reason for 

this is that such an approach would be vulnerable to missing data, bad data and errors in 

measurements, parameters and network topology [5]-[8]. The state estimation procedure is 

responsible for filtering out these errors and finding an optimal estimate using a redundant set 

of measurements. It is assumed that the measurements of the quantities are taken at the same 

time. However, this is practically impossible due to data transmission delays and a lack of 

common measurement time tag. Therefore, a certain amount of time skew will also exist 

between the measurements. Nevertheless, this assumption is valid since in normal conditions 

the power system operates in a quasi-steady state, i.e. the change in the operation conditions of 

the power system is very slow in comparison to the time skews between the measurements. It 

is also assumed that the topology and the network parameters including line impedance, shunt 

impedance and circuit breaker positions are already known prior to state estimation, and that 

the number of measurements is adequate to guarantee a unique estimate of the states. These 
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assumptions are also valid since the state estimator is supported by a series of auxiliary 

functions that work in sequence with the state estimator, as shown in Figure 1.1:  

 

Information about any change in the network topology and the estimate of the states will be 

sent to the topology-processor [14], an internal functional block of the state estimator, to 

update the network topology. Based on the topology of the network and the measurements 

received, the observability analysis function determines if the number of measurements is 

enough for the estimation of the full network. After the topology and observability of the 

network are determined, the main function of the state estimator can then calculate the optimal 

estimates from the measurements and the network model. However, this estimate, usually 

based on the measurements only, is vulnerable to gross errors and network parameter errors. 

Hence, it must be further processed by functions of bad data detection and parameter and 

structural error detection. 

 

Topology Processor
State Estimation 

Solution
Observability Analysis

Parameter and 

Structural Error 

Processing

Bad Data Processing

 

Figure 1-1: Flow Chart of the State Estimation Functions 

 

With the advent of synchronised measurement technology (SMT), the conventional 

measurements obtained from the remote terminal units (RTUs), including the measurements of 

voltage magnitudes, active and reactive power injections and flows, are challenged by the 

synchronised measurements obtained from the phasor measurement units (PMUs) that provide 

direct measurement of voltage and current phasors. According to the different types of 

measurement inputs, state estimators can be classified into three categories: 

 

• Conventional State Estimator (CSE) [6]-[8], [15]-[17] 

• Linear State Estimator (LSE) [1], [18]-[20] 

• Hybrid State Estimator (HSE) [21]-[25] 

 

As suggested by their names, the CSE uses only the conventional measurements for state 

estimation; the LSE uses only the PMU measurements, and the HSE uses both types of the 
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measurements. Since the measurements for the LSE consist of only voltage and current 

phasors, the estimate of the states can be calculated directly. In comparison, the CSE and HSE 

require recursive estimation techniques, such as weighted least squares (WLS), to ensure the 

minimum-variance unbiased estimate of the states. 

 

The state estimators can also be designed in various formulations that serves different 

purposes, such as incorporating synchronised measurements with conventional measurements 

in HSEs, addressing some problems discovered in the real power system such as the angle bias 

errors of the PMUs, estimation of the states of generators, HVDC components, or any other 

states except for the voltage phasors of the network buses. 

 

1.1.2 Network Observability 

 

Prior to the state estimation, observability analysis determines whether or not a unique solution 

can be found with the given network topology and measurements available [26]. Observability 

analysis may be carried out off-line, to determine the adequacy of the measurements at the 

initial stage of state estimator installation [4]. If the measurements are insufficient to support 

state estimation in the network, additional measurements would have to be placed at particular 

locations. Observability analysis is also required online, to check the observability of the 

network, i.e. to make sure that any changes in measurements due to telecommunication or 

meter failures do not affect the unique estimation of the states. When the network is 

unobservable, the system will contain several observable islands. Each observable island 

contains one or several connected substations sharing a common reference angle that is 

independent to that of other islands. In such cases, observability analysis identifies all 

observable islands so that the following state estimation can still be performed with multiple 

reference angles. 

 

There are two categories of different methods for network observability analysis. The first 

category includes different types of topological method [27]-[32]. It is based on the graph 

theory where observability is determined through logical operations according to the topology 
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of the network and the type and location of the measurements. The second category includes 

different types of numerical methods [26], [32]-[42]. The numerical methods allow faster and 

more flexible identification of network observability based on the decoupled DC state 

estimation model and the measurement Jacobian matrix. However, the current numerical 

methods are vulnerable to some special network topology and measurements that are known as 

pathological cases, and are limited to the analysis of conventional measurements. The thesis 

presents a thorough study into these pathological cases and proposes two new methods for 

observability analysis that enable the pathological cases to be avoided, and a new strategy for 

including the PMU measurements into observability analysis.  

 

1.1.3 Synchronised Measurement Technology 

 

Synchronised Measurement Technology (SMT) [12] [43]-[46] is the base line and enabler of 

Wide-Area Monitoring Systems (WAMS). The history and functionality of SMT and how it 

could control and monitor modern power system are discussed in this sub-section. 

 

The idea of phasor measurement unit (PMU) was first proposed in early 1980s [47], and the 

first PMU was invented in 1988 by Prof A. Phadke and Prof J. Thorp at Virginia Tech, USA 

[48]. Until then, the power system has used the conventional measurements from the 

Supervisory Control and Data Acquisition (SCADA) system. Limited by a lack of a common 

reference, the SCADA system cannot directly measure the angle of the voltage. Thus, the 

voltage magnitude, power flow and injection measurements are used to indirectly monitor the 

system states (voltage magnitudes and angles). What is more, its slow reporting rate of 0.2 to 

0.5 Hz further limits the capability of the system operator to monitor the network in real-time. 

The invention of the PMU has completely changed the system operator’s practice in power 

system monitoring, and started a new trend of control centre applications [12]. Synchronised 

by a common time tag provided by the Global Positioning System (GPS), the PMU is able to 

directly measure the voltage and current phasors, creating the potential of a linear solution of   

power system state estimation. The PMU is also featured by its fast reporting rate from 50 to 

100 Hz [12], which is about 100 times faster than that provided by the SCADA system. This 
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enables the real-time monitoring of the power system and even the monitoring of the transients 

of the system. In addition, the PMUs also provide the measurements of frequency and rate of 

change of frequency (ROCOF) [49]. Although they might not be used in state estimation, these 

measurements are key information for power system security assessment. With the 

abovementioned advantages, the SMT technology and PMUs are expected to bring the 

following evolutionary changes to power systems [12]: 

 

 Significantly improving the reliability of the power system by reducing the number of 

system blackouts; 

 Enabling the cost-efficient operation of the power system; 

 Allowing a considerable increase in the penetration of renewable energy in the power 

network 

 

To maximally exploit the benefits of the PMUs, three major investments are required [12]. 

First, the old instrument transformers should be replaced with high accuracy instrument 

transformers so that the errors of the PMU measurements can be minimised. Second, the 

communication infrastructure and the related communication technology should be improved 

to satisfy the real-time reporting rate of the PMUs. Lastly, to manage and process the huge 

amount of data from a large network with high reporting rates, big data technology, such as 

distributed file stores and data integration, and possibly a cloud super computer should be 

applied. Hence, the overall cost of installing a PMU that is fully functioning may be very 

expensive. So, further studies should concentrate on how to exploit the benefits of the PMUs 

while minimising the costs. The related focus topics in literature include optimal PMU 

placement, hybrid state estimation and dynamic state estimation. The background and related 

research into these three topics will be discussed in detail in later chapters in this thesis. 

 

1.1.4 Hybrid State Estimation 

 

The advent of the SMT sheds light on real-time monitoring of the power system with 

significantly increased reliability. The accurate measurement of the phases / angles of the 
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voltages and currents not only remarkably reduces the skew errors caused by the asynchrony of 

the measurements, but also makes it possible to linearly solve the state estimation problem. 

However, as it requires all buses to be observed by PMUs, the deployment of a linear state 

estimator (LSE) in a large network is still far from being realised due to the very high costs. A 

more viable and economically sound method to exploit the benefits brought by the PMUs is to 

use a hybrid state estimator (HSE) that combines both the conventional measurements from the 

SCADA and the synchronised measurements from the PMUs.  

 

The first of the three topics involves the idea of integrating the synchronised measurements 

into the hybrid state estimation problem and was first proposed in [21]. In this paper, a post-

processing (PP) HSE is proposed: a preliminary result is produced using the conventional 

measurements in a Classical State Estimator (CSE), and the preliminary result is then corrected 

using the PMU measurements in a LSE. The advantage of this type of HSE is that the existing 

CSE is preserved while the LSE can be applied in advance, making it a smoother transition 

from CSE to LSE. However, separating the state estimation process into separate stages would 

result in a reduction in measurement redundancy. Particularly on the CSE side, the estimator is 

required to be fully observable with only the conventional measurements. 

 

To overcome the observability problem and potential loss of accuracy of the PP HSE, the 

integrated HSE was proposed in [21], in which the PMU measurements and conventional 

measurements are processed in a single state estimator. The challenge of implementing an 

integrated HSE is that the derivatives of the current measurements in polar form might be 

singular, which would eventually lead to non-convergence. In [22], the rectangular current 

(RC) integrated HSE is proposed, where current phasor measurements are separated into real 

and imaginary parts, whose derivatives are free of singular points. Several other formulations 

of the integrated HSE are also identified in literature. They overcome the convergence problem 

by transforming the current phasor measurements into alternative forms, including pseudo flow 

(PF) [23], pseudo voltage (PV) [24] and constrained formulation (CF) [25]. 

 

Apart from the first topic of finding methods for combining the PMU measurements and 

conventional measurements into a HSE, the research topics of HSE have now been extended to 
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alternative methods for (hybrid) state estimation itself (i.e. not a weighted least squares 

procedure) and the applications of HSE. Examples of the alternative state estimation methods 

include HSE using the multi-agent system combined with cubature Kalman filter [50], HSE in 

distributed system using hybrid particle swarm optimisation [51]，decentralised HSE [52]-[58] 

and HSE using Taguchi differential evolution algorithm [59].  

 

The third topic is the applications of HSE.: the HSE has been found to be beneficial for 

dynamic state estimation [61]-[63], HSE for tracking the transients states of the system [64], 

distributed state estimation [65], and state estimation and control in the presence of HVDC 

links [66]-[68]. 

 

In this thesis, the focus of the HSE research is on the first topic, and a comprehensive 

simulation study is conducted to assess the performance of the five abovementioned HSEs in 

both IEEE 14 and 118 Bus Test Systems. Furthermore, underlying reasons for results from the 

simulations are explained using mathematical derivations. 

 

1.1.5 Dynamic State Estimation 

 

The static state estimator (SSE), which has been widely used in power networks around the 

world since it was introduced in 1970, uses a redundant set of measurements to produce the 

estimate of the states. As an improved algorithm that might be used in the future, dynamic state 

estimator (DSE) performs state estimation using not only the measurements received at the 

current time instant but also the predictions of the states, based on the dynamic model and the 

estimate at the previous time instant. This allows the system operator more time to make 

decisions such as economic dispatch, security assessment, or other related functions [70].  

 

The idea of dynamic state estimation was proposed in the same year that the concepts of SSE 

were established [71]-[75]. However, limited by computation capabilities of the control centre 

and a lack of accurate dynamic models, the DSE was not developed as the SSE. Recently, with 

the development of the information and communication technology the deployment of the DSE 
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has become possible in large networks. In addition, the predictions of the load and hence the 

states have become much more accurate since nowadays open access to the operation of the 

transmission network is allowed. Hence, the potential of the DSE is becoming increasingly 

attractive in modern power systems. Especially under the panorama of the WAMS, the real-

time monitoring of the power system provided by the SMT technology is giving the DSE more 

edge over the SSE. 

 

One aspect of in the field of dynamic state estimation is the use of the DSE to detect anomalies. 

By comparing the residuals of the measurements, the SSE is able to detect and identify bad 

data. With the additional prediction data the DSE is capable of detecting other types of 

anomaly, such as bad data and sudden load change. In [69] varying weighting factors are 

assigned to the predictions and measurements so that the specific predictions of states and the 

specific measurements that have large errors are given less weights and the magnitude of errors 

can be reduced. However, using this method to reduce the risk of bad data and wrong 

predictions might not be as effective compared to the direct rejection of bad data, and the effect 

of reduced weights takes effect at the next time step making it unable to detect the anomalies in 

a timely manner. It is pointed out in [76]-[77] that these anomalies can be detected using the 

normalised innovations of the measurements. However, the methods for identifying the 

anomalies are not given, and there is no specific scheme about how to set the thresholds and 

discriminate different types of anomalies under different scenarios. 

 

Another popular aspect of dynamic state estimation concerns the applications of the DSE: In 

[50], [78]-[79], the DSE is used to improve the performance of the hybrid state estimation 

problem; in [80]-[82], the DSE is applied to distribution system state estimation to improve the 

estimator’s tracking ability during disturbance. With its unique state tracking ability and the 

real-time measurements provided by the PMUs, the DSEs are also applied to the estimation of 

the generator parameters [83]-[87], and the estimation of the unknown inputs (the mechanical 

power and the field electromotive force) to the generator [88]-[89]. Other topics related to 

dynamic state estimation include observability analysis of the DSEs [90], optimal PMU 

placement for DSE [91], distributed DSE [92], the applications of DSEs [93] etc. 
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1.2 Objectives 

 

 To improve the reliability of state estimation, making sure enough measurements are 

placed at the right locations so that state estimation and its related functions such as bad 

data detection and parameter estimation can operate normally. 

 To propose a convenient and effective method for finding the optimal location of the 

PMUs to guarantee the observability of state estimation. 

 To comprehensively investigate the methods to include the synchronised measurements 

in state estimation, and propose philosophies for designing the new methods that can 

maximise the estimation accuracy and minimise the convergence time. 

 To propose a new algorithm for dynamic state estimation so that it can achieve higher 

estimation accuracy, and more precisely and effectively deal with the different types of 

anomaly. 

 

1.3 Thesis Structure 

 

Chapter 2 – Review of Static State Estimation Methods 

This chapter provides a review of the fundamental theories of state estimation including the 

formulation of the weighted least square estimator, network observability analysis and bad data 

detection. The basic network model, as well as the formulations of the power flows and power 

injections in the network, are discussed. The basic concepts introduced in this chapter will be 

used as the basis for the development of new theories, methods and algorithms which will be 

discussed in later chapters. 

 

Chapter 3 – Numerical Observability Analysis 

In this chapter, the existing methods for numerical observability analysis are re-examined. The 

theory which supports the existing method is revised following the identification of its flaw. 

This leads to the proposition of a new fully iterative method for observability analysis. To 

improve the efficiency of observability analysis, an iteration screening law and a direct method 
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for observability analysis are proposed. The chapter also presents a new method that integrates 

the PMU measurements into observability analysis, explores the possibility of improving the 

execution speed of observability analysis in other aspects, and discusses the feasibility of using 

alternative methods that can ensure the correctness of the result without using the methods 

proposed in this thesis. 

 

Chapter 4 – Optimal PMU Placement 

This chapter proposes a new method for optimal PMU placement in the presence of 

conventional methods. The new method ensures the correctness of the PMU placement, and 

reduces the occurrence of sub-optimal solutions compared to the existing methods based on 

new network observability criteria and a new network transformation scheme as given in this 

chapter. 

 

Chapter 5 – Hybrid State Estimation 

This chapter compares the performance of five different formulations of hybrid state estimators 

(HSEs) in three aspects of estimation accuracy, execution time and convergence. The 

comparison was initially made in a small network of the IEEE 14 Bus Test System considering 

all possible PMU placements. The conclusions are then validated in the IEEE 118 Bus Test 

System testing a number of optimally selected sets of PMU placements. After this, the 

underlying reasons for these results are explained by mathematical analysis. Apart from the 

cases where the HSEs are only affected by the Gaussian measurement errors, this chapter also 

presents the research results regarding the performance of the HSEs in the cases where the 

HSEs are also affected by gross measurement errors and parameter errors.  

  

Chapter 6 – Dynamic State Estimation 

In this chapter, a new algorithm for dynamic state estimation is presented based on the 

Cubature Kalman Filter (CKF). It is demonstrated through simulations that the CKF based 

dynamic state estimator (DSE) is significantly more accurate but also more affected by the 

anomalies in comparison to the DSEs that use other nonlinear filters. Thus, a set of new 

methods is proposed that can precisely detect, discriminate different types of anomaly 
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according to the normalised innovations and the skewness of the measurements. In addition, 

two new methods are proposed for identifying two types of anomaly, i.e. sudden change of 

load and sudden change of topology due to fault. 

 

Chapter 7 – Thesis Summary 

This chapter summarises the research results and contributions presented in the thesis. It also 

provides discussions on the limits of the presented research, and thus proposes some possible 

opportunities and ideas for further development of the presented research.  

 

1.4 Contribution of this Research 

 

The research presented in this thesis focuses on proposing new algorithms to improve the 

performance of power system state estimation. The contributions of this thesis can be divided 

into four parts: 

1. Observability Analysis (Paper [A.1]) 

2. Optimal PMU Placement (Papers [A.2], [A.3], [A.7]) 

3. Hybrid State Estimation (Papers [A.2], [A.4], [A.7]) 

4. Dynamic State Estimation (Paper [A.5]) 

 

Details of these parts are given as follows. 

 

1. New algorithms and theories for numerical observability analysis. 

a. Proposition of a fully-iterative method for numerical observability analysis, 

which can guarantee the correct identification of observable islands, after 

identifying and revising the flaw in the theory of the existing numerical method 

for observability analysis. 

b. Proposition of the convergence theorem for numerical observability analysis 

which proves the definite convergence of observability analysis. 

c. Proposition of the pathological case identification rule (PCIR) which can 

precisely distinguish normal cases and pathological cases. 
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d. Proposition of the direct observable island identification method that identifies 

the observable islands in only one step. 

e. Proposition of a new algorithm for numerical observability analysis based on 

the PCIR and the direct observable island identification method. 

f. Proposition of a new method for integrating the PMU measurements into the 

algorithm of numerical observability analysis. 

2. A new algorithm for optimal PMU placement in the presence of conventional 

measurements. 

a. Proposition of a new global network observability criterion. 

b. Proposition of a new network transformation scheme. 

c. Proposition of a new algorithm for optimal PMU placement in the presence of 

conventional measurements, which can ensure correct PMU placement with less 

sub-optimal problems compared to the existing methods, based on the new 

global network observability criterion and the new network transformation 

scheme. 

3. A comprehensive analysis of the impact of estimator formulations on the performance 

of the hybrid state estimator (HSEs) taking the Gaussian measurement errors, gross 

measurement errors and parameter errors into account. 

a.  Identification of the accuracy curves of five different formulations 

characterized by the knee point, which clearly indicates the benefits of using 

HSE compared to the conventional state estimator (CSE); that is to say, even 

with a small number of PMUs the state estimation accuracy can be significantly 

improved compared to the CSE. 

b. Identification of the relative estimation accuracy of the five different HSEs in 

the IEEE 14 Bus Test System. Before the knee point: Rectangular Current (RC) 

> Pseudo Flow (PF) ≈ Constrained Formulation (CF) ≈ Pseudo Voltage (PV) > 

Post-processing (PP); after the knee point: RC > PF ≈ CF > PP > PV. 

c. Validation of the knee point characteristic of the HSE accuracy curves and the 

relative estimation accuracy of the HSEs using simulations in the IEEE 118 Bus 

Test System and mathematical analysis. 
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d. Setting out the reasons why the RC HSE is the most accurate while the PP HSE 

and PV HSE are the least accurate using mathematical analysis. 

e. Comparison of the execution time and convergence of the five HSE, and 

establishing that the CF HSE and PV HSE have poor performance in these two 

aspects. 

f. Recommendation of the RC HSE as the HSE to be implemented in the power 

system based on the comparison of the HSEs in terms of estimation accuracy, 

execution time and convergence. 

g. Discovering that the PMU placement can significantly affect the performance of 

the HSEs in the presence of gross measurement errors and parameter errors. 

4. New algorithms for dynamic state estimation. 

a. Proposition of a new algorithm for detecting different types of anomaly. 

b. Proposition of the pseudo injection method for identifying the anomaly of 

sudden change of load. 

c. Proposition of the branch power flow variation ratio method for identifying the 

anomaly of a sudden change of topology due to fault. 

d. Proposition of a new algorithm for dynamic state estimation based on the 

Cubature Kalman Filter and the proposed anomaly detection and identification 

methods. 

 

A list of publications (Papers [A.1]-[A.7]) produced during the PhD is presented in Appendix 

E. 
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Chapter 2 Review of Static State Estimation Methods 

 

 

State estimation is responsible for constantly monitoring the power system to help guarantee 

that it operates in a normal and secure state. It uses a redundant set of measurements to produce 

the optimal estimate of the system’s current operating state. The state estimator plays a key role 

in the Energy Management Systems (EMS), which are equipped with various other 

applications. Figure 2-1 shows an example of how the state estimator functions with various 

applications involved in the online static security assessment procedure. As detailed in the 

introduction, the function of the state estimator is supported by functions that include topology 

processor, observability analysis and bad data detection. Based on the estimate of the voltage 

angle and magnitudes of all the buses in the network, one of the three states is determined: 

emergency, restorative and normal. If the system is determined to be operating in emergency 

state or restorative state, the corresponding emergency control or restorative control will be 

activated. If the system is found to be in a normal state, it is assessed using a contingency 

analysis application to further check the security of the system. In the case of insecurity state, 

while the system is at risk of some contingencies, the preventive actions need to be planned 

after running the security constrained optimal power flow.  

 

Although the DSEs have shown their advantages with the advent of SMT, the static state 

estimator (SSE) has formed the heart of nearly all modern network control systems since its 

establishment in the early 1970s. The SSE obtains the voltage phasors at a given point in time 

using the Weighted Least Square (WLS) method. The WLS method is derived under the 

Gaussian error assumption and the maximum likelihood estimation (MLE) theory. It 

guarantees that the estimate is the most likely state of the system based on the measurements 

received. Although it is suggested that some robust estimators, such as weighted least absolute 

value (WLAV) estimators and M-estimators, are less vulnerable to outliers (the measurements 

whose errors have large influence on the estimate of states) than the WLS method, they have 

not been adopted by the control centres because of their heavy computational burden. 
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In the following sections, the algorithm of the WLS method for static state estimation, and the 

existing methods for observability analysis and bad data detection are presented. In the later 

chapters, new methods are proposed based on the basic theory presented here. 

 

 

Figure 2-1: Online Static Security Assessment: Functional Diagram 

2.1 Weighted Least Square Estimator 

 

In this subsection, a general introduction about stochastic process and random variables and 

detailed discussion about the weighted least square (WLS) state estimator, including the 

measurement functions, the WLS objective function and its optimal solution, the measurement 

Jacobian matrix and the WLS state estimation algorithm, are presented. 
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2.1.1 Stochastic Process and Random Variables 

 

In probability theory and related fields, a stochastic or random process is a mathematical object 

usually defined as a collection of random variables [94], and a random variable is defined as a 

variable whose possible values are numerical outcomes of a random phenomenon [95]. In 

power systems, the measurements received from the measurement devices installed across the 

network are affected by a series of random errors including device measurement errors, 

telecommunication errors, skew errors, loss of data. Thus, the process of measurement 

collection, transmission and reception is a stochastic process, and the measurements are 

random variables, which are commonly accepted in literature to follow the Gaussian 

distribution. The probability density function (p.d.f.) of the standard Gaussian distributed 

variable is illustrated in Figure 2-2. 

 

 

Figure 2-2: Probability Density Function of the Standard Gaussian Distribution 

Since the measurements contain a certain amount of errors, a redundant set of measurements 

are used to monitor the states of the system. For example, the air temperature in the room is 

27 °C, and is simultaneously monitored by five thermometers. The readings of the five 

thermometers are 27.3 °C, 26.5 °C, 27.2 °C, 26.9 °C and 27.2 °C, respectively. Since all of the 

five thermometers are affected by random errors, the most likely temperature is the average of 

the five numbers, 27.02 °C, which is very close to the true temperature in the room. Here, the 
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room is the system, the room temperature is the state of system, the average value of the 

readings of the five thermometers is the estimate of states, and the average function is the 

estimator. In general, an estimator can be defined as the function or application that provide the 

most likely estimate of the states based on observations / measurements that are affected by 

random errors. There are various types of estimators created for different purposes, such as 

weighted least square (WLS) estimator [1], least absolute value (LAV) estimator [1], M- 

estimator [1], Kalman filters [164]-[167] and so on. In static state estimation for power 

systems, the most widely used estimator is the WLS estimator. In the following subsections, a 

detailed discussion of the WLS estimator will be given, as well as the measurement functions 

(Section 2.1.2), the objective function and the optimal solution (Section 2.1.3), the expressions 

of the elements of its measurement Jacobian matrix (Section 2.1.4), and the algorithm of the 

WLS estimator (Section 2.1.5).  

 

2.1.2 The Measurement Functions 

 

A generalized formulation of the static state estimator using the WLS method utilizes five 

different types of conventional measurements for estimating the state of the system. The 

structure of the measurement vector, z, is given below: 

 

inj
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 (2.1) 

 

where Pinj, Qinj, Pflow, Qflow are the vectors of active and reactive injection measurements and 

flow measurements, and V is the vector of voltage magnitude measurements. The conventional 

measurements are related to the states using a set of nonlinear functions as given in (2.2): 

 

  z h x e  (2.2) 
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where x is the state vector that consists of voltage angles and magnitudes of all buses in the 

network, h is the vector of nonlinear functions relating the measurements and the states, and e 

is the vector of Gaussian errors. Note that since the conventional measurements are not 

synchronised like the PMU measurements, the slack bus is set usually as the reference bus. The 

angle of the reference bus is set at 0, and it is excluded from the state vector. Assuming the 

network parameters are known, the measurement equations for the five types of conventional 

measurement are based on the network structure in Figure 2-3 and are expressed as follows: 

 

 Real and reactive power injection measurements 

 

1

( cos sin )
N

i i j ij ij ij ij

j

P V V G B 


   (2.3) 

1

( sin cos )
N

i i j ij ij ij ij

j

Q V V G B 


   (2.4) 

 Real and reactive power flow measurements 

 

2

2
( ) ( cos sin )

i ji
ij si ij ij ij ij ij

ij ij

VVV
P g g g b

a a
      (2.5) 

2

2
( ) ( sin cos )

i ji
ij si ij ij ij ij ij

ij ij

VVV
Q b b g b

a a
       (2.6) 

2 ( ) ( cos sin )
j i

ji j sj ij ij ji ij ji

ij

V V
P V g g g b

a
      (2.7) 

2 ( ) ( sin cos )
j i

ji j sj ij ij ji ij ji

ij

V V
Q V b b g b

a
       (2.8) 

 Voltage magnitude measurements 

 

i iV V  (2.9) 

 

where Gij and Bij are the real and imaginary parts of the ij
th

 element of the network admittance 

matrix, respectively, gij and bij are the conductance and susceptance of the transmission line, 
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respectively, gsi and bsi are the shunt conductance and shunt susceptance of the shunt branch, 

respectively, and aij is the tap ratio of the transformer connecting Bus i and Bus j. 

i

1
g jb

ij ija
ij

 
 

 

 1 1
1 g jb

si sia a
ij ij

 
  
  
 

1
1 g jb

sj sja
ij

 
       

 

j

 

Figure 2-3: Transmission Line Represented in Pi Equivalent Model 

 

2.1.3 The WLS Objective Function and Its Optimal Solution 

 

According to the MLE theory, the optimal estimate of the state from the measurement equation 

(2.2) is achieved when the following WLS objective function is minimised: 

 

   -1( ) ( ) ( )
T

J  x = z -h x R z -h x  (2.10) 

 

where R is the covariance matrix of the error vector, e. The minimum of the objective function 

is found when its first derivative is zero: 

 

 

   

2 ( )

( )

T
T

T

J
  



  

-1

-1

(x)
= H R z - h x 0

x

m x H R z - h x 0

 (2.11) 

 

where H is the Jacobian matrix of the measurement to state function, h. Since the derived 

objective function, m(x), is still nonlinear, it has to be iteratively solved using the Newton-

Raphson method. The iteration steps are derived as given in (2.12) and (2.13). 
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  1

T

T 


  


m x
M H R H

x
 (2.12) 

     

 

1
1 1 1

1

( )k k T T

k k


  



   

 
 

x M g x H R H H R z - h x

G x t

 (2.13) 

     1
T

k k kG x H x R H x  (2.14) 

 1k T k k  
 

t H R z -h x  (2.15) 

 k k k G x x t  (2.16) 

 

where G(x
k
)  is the Gain Matrix, Δx

k
 = x

k+1
- x

k
 is the difference of the state estimate between 

iterations, and (2.16) is referred to as the Normal Equations. The iteration terminates when 

Δx
k+1

 is below a pre-defined threshold.  

 

The gain matrix can be used for observability analysis of the network, and it is crucial for static 

state estimation as its inversion is the most computational demanding part. According to [4], 

the gain matrix has the following properties: 

 

 It is structurally and numerically symmetric. 

 It is sparse, yet less sparse compared to H. 

 In general it is a non-negative definite matrix, i.e. all of its eigenvalues are non-

negative. It is positive definite for fully observable networks. 

 

The sparsity of the gain matrix can be exploited to improve the computational efficiency and 

reduce the memory requirement. Details of the technique are given in [4]. 

 

2.1.4 The Measurement Jacobian Matrix 

 

The measurement Jacobian matrix, H, as defined after (2.11) has the following structure: 
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θ V

P P
z

θ V
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θ V

V
0
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 (2.17) 

 

Based on the transmission line model shown in Figure 2-3, the expressions for each partition 

are given below: 

 

1. Jacobian elements of the real power injection measurements: 

2

1

( sin cos )
N

i
i j ij ij ij ij i ii

ji

P
V V G B V B 

 
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
  


  (2.20) 

( cos sin )i
i ij ij ij ij

j

P
V G B

V
 


 


 (2.21) 

2. Jacobian elements of the reactive power injection measurements: 

2

1

( cos sin )
N

i
i j ij ij ij ij i ii

ji
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V V G B V G 
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3. Jacobian elements of the active power flow measurements: 

 

( sin cos )
ij i j

ij ij ij ij

i ij

P VV
g b

a
 




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4. Jacobian elements of the reactive power flow measurements: 
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5. Jacobian elements of the voltage magnitude measurements: 

 

1i

i

V
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
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2.1.5 The WLS State Estimation Algorithm 

 

Based on the network model and the mathematical models given in the previous sub-sections, 

the algorithm for WLS state estimation is outlined as follows [4]: 

 

1. Start iterations, set the iteration index k = 0. 

2. Initialize the state vector x
k
, typically as a flat start (all voltage angles equal to 0, and all 

voltage magnitudes equal to 1). 

3. Formulate the Jacobian matrix, H, according to (2.17) to (2.35). 

4. Calculate the gain matrix, G(x
k
), using (2.14). 

5. Calculate the estimated measurements based on x
k
, h(x

k
), according to (2.1) to (2.9). 

6. Calculate the right hand side t
k
 using (2.15). 

7. Decompose G(x
k
) and solve for Δx

k
  using (2.13). 

8. Test for convergence, max (| Δx
k
 |)≤ε ?  

9. If Step 8 is not satisfied, update x
k+1

 = x
k
 + Δx

k
, k = k + 1, and go to Step 3. Else stop 

and output the state estimate. 

 

2.2 Observability Analysis 

 

Prior to state estimation, it must be guaranteed that a unique solution can be found with 

measurements received. The observability analysis is established for this purpose. The 

observability of the network can be defined on two levels. The first level is topological 

observability. A network is said to be topologically observable as long as enough 

measurements are placed at the right locations for a given network topology. The second level 

is numerical observability. The numerical observability requires the gain matrix as defined in 

(2.14) to be non-singular, i.e. invertible. This not only requires the network to be topologically 

observable, but also free of outliers and gross measurement errors. As such cases are not likely 

to happen and could be easily prevented by checking the robustness of the state estimator and 

bad data analysis, only the topological observability is required and thus analysed for state 



Chapter 2 – Review of Static State Estimation Methods 

 

45 

estimation. In the following parts of the thesis, observability or network observability refers to 

topological observability for the sake of convenience. 

 

In the case where the measurements available are not enough to support observability of the 

system, the network is divided into several Observable Islands separated by unobserved 

branches. Each of the observable islands has its individual reference angle, and the state 

estimation might still be performed within the observable islands. The observability analysis is 

also responsible for identifying the observable islands and finding measurements to restore the 

network observability.  

 

As detailed in the Introduction, (topological) observability analysis can be carried out directly 

with the topological method that is based on the graphical theory, or using the numerical 

method based on the decoupled DC state estimation model and the measurement Jacobian 

matrix / the gain matrix.  

 

The numerical observability analysis was first proposed in [26], where the theory behind 

observability analysis was presented, and the decoupled DC state estimation model was 

proposed for observability analysis. The observable islands and the unobserved branches are 

identified by partitioning the gain matrix and testing the observability of the sub-networks 

iteratively. The authors of [26] later improved the matrix partitioning process by using 

triangular factorisation [33]. Several methods based on the gain matrix have been proposed in 

[32], [34]-[35]. The other methods, which use alternative methods instead of analysing the gain 

matrix [36]-[37], include Hachtel’s augmented matrix method [38]-[40], the gram matrix 

method and binary arithmetic [41]. 

 

It is reported in [42] that the classical method for observability analysis as proposed in [33] 

might incorrectly integrate the buses that belong to different observable islands into the same 

observable island. The cases in which the particular network topology and measurement 

placement would lead to misidentification of the observable islands are termed as pathological 

cases. It is stated in [42] that the pathological cases can be avoided by using the inverse 
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triangular factors of the gain matrix instead of using the gain matrix directly, and the 

observable islands can be identified without iteration using the new method. 

 

However, it is found that the method proposed in [42] still cannot prevent all pathological 

cases. In this section, a review of the classical method proposed in [33], and the improved 

method proposed in [42] is presented. A new method is proposed in this thesis, which is 

completely free of pathological cases and significantly faster than the existing methods, will be 

discussed in detail in Chapter 3. 

 

2.2.1 Decoupled DC Model for Numerical Observability Analysis 

 

The decoupled DC model was proposed in [96] as the simplified network model for 

observability analysis in state estimation. A linear relationship between the active power 

measurements and the states of voltage angle is assumed. As it is recognized that PV and Qθ 

are weakly coupled, while Pθ and QV are strongly coupled, only the equations related to active 

power measurements and voltage angle states are considered to further simplify the model. The 

decoupled DC model is helpful for numerical observability analysis because of its 

simplification in calculations without loss of topological information of the network. By 

neglecting the positions of the circuit breaker position, the observability of the network is not 

affected by the branch parameters and the values of the states. So, the decoupled DC model can 

be applied for simplifying observability analysis without introducing any error in terms of 

topological observability. 

 

Using the decoupled DC model, the measurement equation as defined in (2.2) can be 

simplified as follows: 

 

 z Hθ e  (2.36) 

where z is the measurement vector containing the power injection and flow measurements 

only,  H denotes the DC measurement Jacobian, θ is the state vector of voltage angles, and e is 

the error vector.  



Chapter 2 – Review of Static State Estimation Methods 

 

47 

As the value of the state estimate does not affect the network topology and measurement 

locations, and thus the network observability, the measurement error covariance matrix (R) as 

defined after (2.10) can be assumed to be an identity matrix and this process does not introduce 

any errors. The gain matrix can then be simplified as follows: 

 

TG H H  (2.37) 

 

With unity branch reactance, the derivative of the power flow measurement is 1 for element 

corresponding to the sending bus, -1 for the receiving bus, and 0 for the other buses. As the 

power injection is the sum of the power flows into that bus, the derivative of the power 

injection measurement is N for the incident bus, -1 for the other ends of connected branches, 

and 0 for the other buses, where N is the number of the connecting branches of the incident 

bus. Examples of a power flow measurement and a power injection measurement are shown in 

(2.38) and (2.39), respectively. 

 

 0 0 0 0 1 1 h  (2.38) 

 1 1 0 0 1 0 0N   h  (2.39) 

 

2.2.2 Factorisation of the Gain Matrix 

 

In numerical observability analysis, a network can be seen as a combination of N observable 

islands (N=1 for fully observable case, N>1 for not fully observable case), each of the islands 

having their own reference angle. Thus, the gain matrix is always singular, and is required to 

be factorised in order to find information about the reference angles. In the classical method 

and the direct method presented in this section,  Cholesky factorisation is used since the gain 

matrix is symmetrical. However, the prerequisite for  Cholesky factorisation is that the matrix 

to be factorised must be positive definite. This problem is countered by skipping the zero pivot, 

and adding 0 into the corresponding diagonal element of the resulting diagonal matrix. For 

example, consider the case when the first zero pivot is encountered during factorisation as 

shown in (2.40). 
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 
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0

0 G

 (2.40) 

 

where Di is the semi-factorised diagonal matrix whose first i elements have been factorised, di 

is the i
th

 diagonal element, Gi is the sub-matrix to be factorised in the i
th

 step, and Li is the 

Cholesky factor during the i
th

 step, whose structure is given in (2.41): 

 

1i

i

 
 


 
  

I

L

l I

 (2.41) 

1, ,

T

i i i N iL L
   l  (2.42) 

 

where N is the number of buses in the system, I denotes identity matrix of arbitrary size, li is a 

nonzero sub-vector under the element of 1 in the i
 th

 column (size of (N-i-1)*1).  

 

In this case, the factorisation process is continued by setting the i+1
th

 element of the diagonal 

matrix to be zero and i
th

 Cholesky factor to be an identity matrix (2.43)-(2.44). In such a way, 

the factorisation at the i
th

 step is skipped, and the process may continue to factorise Gi+1. 

 

1 0id    (2.43) 

1i L I  (2.44) 

Using this method for every zero pivot encountered, the resulting diagonal matrix can be 

expressed as follows: 

 

1 1 1

1 1

T T T

N N

      D L L GL L L GL  (2.45) 
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where D is the resulting singular diagonal matrix, and L is the resulting lower triangular 

Cholesky factor. For analysis purposes, the zero pivots can be moved to the bottom of the D 

after proper matrix permutations (2.46); correspondingly the structure of L is given by (2.47): 

1

N k

k

d

d 

 
 
 
 
 
 

D

0

 (2.46) 

1

1

1

N k k

 
 
 
 
 
 

L

l l I

 (2.47) 

Both D and L contain observability information of the network. How these matrices are used to 

identify the unobservable branches and the observable islands by the classical method and the 

direct method for observability analysis are described in detail in the following subsections. 

Details of each step of  Cholesky factorisation are given in Appendix A.  

 

2.2.3 The Classical Numerical Method for Observability Analysis 

 

The classical numerical method for observability analysis is based on analysing the gain 

matrix. The network is observable if all branches are identified to be observable, or the 

observable islands are identified after the unobservable branches have been removed. The 

derivation of the classical model is given as follows [4]: 

 

Consider the normal equation (2.16) expressed in the decouple DC model with all power flows 

set at 0: 

 Gθ t 0  (2.48) 

As the angle of the reference bus is also included in the state vector, the gain matrix, G, is still 

singular even for the fully observable case. Thus, it is possible to partition the gain matrix after 

permuting the rows and columns properly: 
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11 12 1

21 22 2

     
     
    

G G θ 0

G G θ 0
 (2.49) 

22 G 0  (2.50) 

where G11 is the maximum size non-singular submatrix within G. The sub state vector, θ2, is 

free to change its values as it is proved in [33] that its corresponding submatrix of the gain 

matrix is always a zero matrix (2.50). Thus the value of θ1 can also be determined by assigning 

arbitrary but different values to θ2 as 
2θ : 

 

1

1 11 12 2
ˆ  θ G G θ  (2.51) 

Then the power flows of all branches with the solution can be calculated: 

 

*

1 2
ˆ ˆ

T
T T

branch
   
 

A θ θ Aθ P  (2.52) 

where A is the branch to bus incident matrix. Since it is assumed that all power flows in the 

network are equal to 0, the corresponding branches of the zero elements in Pbranch are identified 

as the unobservable branches.  

 

As it is difficult to find G11, 
*
θ̂ can be solved using an alternative method, i.e.  Cholesky 

factorisation of the gain matrix, G. The zero pivots in the resulting singular diagonal matrix, D, 

are replaced with 1’s so that the gain matrix becomes invertible, and the corresponding 

elements of t are assigned with arbitrary but distinct values. The estimate of the state can be 

found using (2.53), and the values of t  are typically set as 0 for elements corresponding to 

positive pivots, and natural numbers starting from 1, as is shown in (2.54): 

 

 
1

*ˆ T


θ LDL t  (2.53) 

0 0 1T

zpN   t  (2.54) 

 

where Nzp is the number of zero pivots.  
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The unobservable branches identified that follow the above procedure might not include all 

unobservable branches. This is because the identification might be affected by the irrelevant 

injection measurements, the injection measurements incident to the unobservable branches. 

Thus, it is necessary to repeatedly identify the unobservable branches, eliminating the 

irrelevant injection measurements at the end of each time, until no more irrelevant injection 

measurements are identified.  

 

Based on the methods introduced in this sub-section, the algorithm for classical numerical 

observability analysis is presented as follows: 

 

1. Set the iteration number k = 1. 

2. Form the gain matrix in decoupled DC model using (2.48). 

3. Perform Cholesky factorisation on the gain matrix, substitute the zero pivots with 1, 

and assign natural numbers to the vector, t. If k = 1 and only one zero pivot is 

identified, stop the program, the network is fully observable. Else if k = 1 and more 

than one zero pivot is identified, go to Step 4, the network is not fully observable. 

4. Identify the unobservable branches using (2.52) and (2.53), and the irrelevant injection 

measurements separated by the unobservable branches. 

5. If no more unobservable branches are identified, then identify the observable islands 

separated by the unobservable branches. Else, k = k +1, go to Step 2. 

 

2.2.4 The Direct Numerical Method for Observability Analysis 

 

As suggested in [42], the classical method for observability analysis may incorrectly identify 

buses that belong to different observable islands in the same observable island. Consider a 

network with its gain matrix expressed by (2.55), the estimated angles can be derived as given 

in (2.56). 

 



Chapter 2 – Review of Static State Estimation Methods 

52 

1 1

1

1 1

1 1

T

T

T
N k N k

N k k k k

d

d  



    
    
     
    
    
      

l

G LDL
l

l l I I I

 (2.55) 

 
1

*

1

1 1

1

1

1

1 1

1 1

ˆ

1 01

1 01

01

01

1

1

T

T

T

N k N k

N k k kk k

T

T

N k

kk

T T

T T

N k N k

T

N k

k

d

d







 





   





       
       
       
       
       
          

   
   
   
   
   
    

 
 
 




 

θ LDL t

m

m

m m I nI I

m

m

nI

u w

u w

w

I

1

0

0

k

T

k

T

N k k

k



 
 
 

  
  
  
   

 
 
 
 
 
  

n

w n

w n

n

 

(2.56) 

 

where mi is the sub-vector under the diagonal element of the i
th

 column of the matrix, L
-1

, wi is 

the sub-vector of mi corresponding to the zero pivots, and ui is the sub-vector of wi that 

consists of the remaining elements, and nk is a vector of natural numbers as given by (2.57). 

 

 1 2T

k kn  (2.57) 

It can be seen from (2.56) that, although the values of the wi’s can be different, the results of 

the product might be the same. As will be proved in the next chapter, one of the properties of 

the wi is that its sum of elements is always 1. Thus, it can be easily proved that for k > 2, such 
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pathological cases might happen as multiple solutions can be found for wi because its elements 

are only constrained by two equations. 

 

,

1

N

i k

k

kw C


  (2.58) 

,

1

1
N

i k

k

w


  (2.59) 

where C is any real constant. 

 

The above derivation also reveals that the sub-vectors, wi’s, might be the very key factors that 

contain information about observable islands. In [42], these sub-vectors and the bottom identity 

matrix are grouped together as the Test Matrix (2.60), and it is defined as the sub-matrix of the 

inverse of the Cholesky factor corresponding to the zero pivots. Note that, generally, the zero 

pivots might appear at any place on the diagonal matrix, D, and the columns of Ik might appear 

in any column in the test matrix. 

 

 1 2 N k kW w w w I  (2.60) 

According to [42], the test matrix has the following two properties: 

 

Property 1: The columns of W corresponding to buses that belong to the same observable 

island will have the same numerical values. 

 

Property 2: The columns of W corresponding to buses that belong to different observable 

islands will have different numerical values, as long as these buses are connected 

by a common branch. If the buses are topologically separated, then their 

corresponding column vectors might be the same even though they belong to 

different observable islands. 

 

Property 2 suggests that the observable islands might not be correctly identified even by 

directly comparing the column vectors of the test matrix. However, the identification of the 
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unobservable branches can be directly identified using (2.61): the branches corresponding to 

non-zero row vectors are unobservable branches. 

 

TC AW  (2.61) 

 

where A is the branch to bus incident matrix. 

 

Based on the two properties as proved in [42], the algorithm for the direct numerical 

observability analysis is presented as follows: 

 

1. Form the gain matrix in decoupled DC model using (2.48). 

2. Perform Cholesky factorisation on the gain matrix. If there is only one zero pivot, stop 

the program, the network is fully observable. Else, calculate the inverse matrix of the 

Cholesky factor and obtain the test matrix, W. 

3. Calculate C using (2.61), find the non-zero row vectors of C, their corresponding 

branches are unobservable branches. 

4. Identify the observable island separated by the unobservable branches. 

 

2.2.5 Measurement Replacement 

 

After the observable islands are identified, additional measurements should be replaced in 

order to restore the observability of the network. The candidate measurements include the 

power injection measurements incident to the border buses of the observable islands, and the 

power flow measurements that connect two observable islands. These candidate measurements 

can be expressed in a single matrix, Hc. 

 

Now consider the new gain matrix after all candidate measurements have been added into the 

network as expressed in (2.62).  
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 (2.62) 

 

where D  is the maximum non-singular submatrix of the singular diagonal matrix, D, L is the 

Cholesky factor, W is the test matrix, and U is the remaining part of L
-1

 except for the test 

matrix. 

 

In order to analyse the observability of the new gain matrix, the following elementary 

transformations are performed for the middle matrix of the final expression, E. 

 

1. Subtract UW
-1

 times the second row from the first row: 

 

T T T T

c c c c

T T T TT T T T

c c c cc c c c

   
    

  

D 0D UH H U UH H W
E

WH H U WH H WWH H U WH H W
 (2.63) 

2. Subtract 1 T T

c c


D WH H U  times the first row from the second row 

 

 
TT T T T T

c c c c c

  
  
    

D 0D 0
E

WH H U WH 0 H W H W
 (2.64) 

 

As D  and L are positive definite and rank(A)  = rank(A
T
A), the new gain matrix will be 

observable, or it is 1 rank less than its dimension, as long as the matrix B as defined in (2.65) is 

observable. Since it is always more than enough to include all candidate measurements to 

restore network observability, only parts of them are required to be replaced. The selection of 

the necessary measurements can be done by computing the reduced echelon form Be of B. The 
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measurements corresponding to the linearly independent rows of Be are the necessary 

measurements to be replaced. 

 

T

cB H W  (2.65) 

 

Assuming the identification of observable islands have been done before the measurement 

replacement process, the algorithm for measurement replacement can be summarised as 

follows: 

 

1. Find a list of candidate measurements, including the power flow and injection 

measurements incident to the observable islands that have been identified in the 

previous steps of observability analysis. 

2. Form the candidate measurement Jacobian matrix, Hc. 

3. Assuming the test matrix W has already been calculated while identifying the 

observable islands, calculate B using (2.65), and its reduced echelon, Be. The 

measurements corresponding to the linearly independent rows of Be are the minimum 

number of measurements that can restore the network observability. 

 

2.2.6 Redundancy analysis 

 

After observability analysis a unique solution can be guaranteed with the measurements 

available. However, it is possible that some of the measurements might be lost due to 

telecommunication errors or failure of the measurement device. If a state is observed by only 

one measurement, then the loss of this measurement would make the system unobservable. In 

redundancy analysis, these measurements are termed as critical measurements, and the other 

type of measurements are termed as redundant measurements which can be removed without 

affecting the observability of the network [98]. 

 

Measurement redundancy is important for state estimation because it not only improves the 

reliability of state estimation, but also allows one of the essential functions of bad data 
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detection. As will be discussed in detail in the next section, bad data detection uses 

measurement residuals to evaluate the magnitude of measurement errors. However, the residual 

of the critical measurement is always 0, making it impossible to detect any error in the critical 

measurements even if in the presence of large errors.  

 

The redundant measurements can also be classified into different redundancy levels, including 

critical pairs, critical trios, and critical k-tuples, k = 4, 5, 6 … They are respectively defined as 

a set of two, three, and k measurements whose simultaneous removal from the measurement set 

would make the system unobservable. After the critical measurements are eliminated, the 

measurement redundancy level of the network could be enhanced by reducing the number of 

critical pairs, critical trios and critical k-tuples. 

 

Assuming the network is fully observable after observability analysis, the reduced 

measurement Jacobian matrix, Hr, with the column corresponding to the reference angle 

removed can be decomposed as expressed in (2.66) [98].  

 

11 N

d r

red

  
   

 

I
H L H

K
 (2.66) 

 

where IN-1 is the identity matrix of size N-1, and Kred is the matrix of redundant measurements 

[99]. 

 

After the decomposition, the columns of Hd still correspond to the buses, and the rows of Hd 

still correspond to the measurements. The measurements corresponding to the identity matrix 

IN-1 are the selected set of basic of measurements that can make the system fully observable. If 

the elements of a column of Kred are all zeros, the corresponding state is a critical state, and the 

only measurement observing it, as indicated in the identity matrix, is a critical measurement. If 

a column of Kred contains k-1 nonzero elements, then the corresponding state of this column is 

a redundant state, and the basic measurement and the associated k-1 measurement form a 

critical k-tuple. 
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Extra measurements can be placed to eliminate the critical measurements and improve the 

measurement redundancy level. Similar to measurement replacement for network 

observability, the first step of redundancy improvement is to find a list of candidate 

measurements and form a reduced measurement Jacobian matrix Hcr excluding the reference 

angle. Hcr is combined to the bottom of Hr, and the same triangular decomposition is 

performed for the augmented matrix as shown in (2.67): 
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 (2.67) 

 

where Had is the decomposed augmented measurement Jacobian matrix, and Kc is the matrix of 

candidate redundant measurements . 

 

From IN-1, Kred and Kc, a critical state to candidate measurement incident matrix R can be 

formed. The optimal placement of the measurements that eliminates the critical measurements 

can be found using integer linear programming (ILP) as stated below: 

 

minimize 

subject to 

T



c X

RX 1
 (2.68) 

where c is a vector of costs for installing the measurements, 1 denotes a vector whose elements 

are all equal to 1, X is the vector consisting of binary decision variables xi that is defined as: 

 

1if Measurement  is included      

0 if Measurement  is not included
i

i
x

i


 


 (2.69) 

 

Similar methods can be developed for improving the measurement redundancy to higher levels 

so as to eliminate the critical pairs, critical trios and so on by forming different incident 

matrices according to the redundancy level required.  
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2.3 Bad Data Detection and Identification 

 

Measurements used in state estimation are constantly exposed to errors caused by different 

reasons, including the finite accuracy capability of the meters and the telecommunication 

medium. One of the most important functions of state estimation is to detect, identify and 

eliminate these errors. It is expected that a state estimator can filter out large errors, or bad 

data, as long as sufficient measurement redundancy is guaranteed.   

 

The detection of the presence of data can be carried out using the statistical method of chi-

squared distribution test, which will be discussed in Section 2.3.1. The following step of 

identification of the data that contains large errors using the normalised residual method is 

described further in Section 2.3.2. 

 

Gross measurement errors can also be caused by meter wrong connections, telecommunication 

system failure, or topology and line parameter errors. Such errors are more complex, and must 

be handled by means of topology estimation. Details of topology estimation will not be given 

in this work; readers can find them in [4], [100]. 

 

2.3.1 Bad Data Detection Using Chi-squared Distribution 

 

Consider a vector x consisting of M random independent variables, in which every element xi 

follows the standard normal distribution [4], [101]: 

 

 ~ 0,1ix N  (2.70) 

Then, a new random variable y following the chi-squared distribution of N degrees of freedom 

can be defined as: 

 

2 2

1

~
N

i N

i

y x 


  (2.71) 
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The degree of freedom M is decided by the number of independent random variables. Thus, if 

these variables are constrained by N independent equations, the degree of freedom would be 

reduced to M-N.  

 

To illustrate the characteristics of chi-squared distribution, the chi-squared probability density 

function (p.d.f.) with 10 degrees of freedom is shown in Figure 2-4. The area under the p.d.f. is 

the probability of y having the value within the corresponding range. Since the tail of the curve 

is decaying, a threshold yt can be set so that there is only a slight chance that the value of y will 

be greater than yt. For example, in Figure 2-4 the threshold that divides the curve into the 95% 

region and 5% region is found at 18.3 for chi-squared distribution with 10 degrees of freedom. 

If the value of y is greater than this threshold, it is suspected that bad data exists in x.  

 

 

Figure 2-4: Chi-Squared Probability Density Function 

 

Based on the assumption that measurement errors follow a Gaussian distribution, it can be 

found that the objective function as defined in (2.10) follows the chi-squared distribution with 

the degree of M-N: 
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( )r z -h x  (2.73) 

 

where M is the number of measurements, N is the number of states, r is defined as the residual 

vector consisting of ri’s,  i = 1, 2, … M, and the covariance matrix R is assumed to be diagonal 

and Rii is its i
th

 diagonal element. 

 

The degree of freedom of J(x) is M-N because the measurement equations must follow the N 

power balance equations. Thus, a threshold can be set according to the degree of freedom and 

the confidence level. The confidence level is usually set to be 95%, or it can be set to any 

number as required. The measurements are determined to be free of errors if J(x) is smaller 

than the threshold, or the existence of at least one set of bad data is detected.  

 

2.3.2 Bad Data Identification with Largest Normalised Residual Test 

 

The direct use of the objective function for chi-squared test might be inaccurate since the 

measurement error covariance matrix, R, is used to approximate the covariance of the 

measurement residuals, Ω. Consider the linearised measurement equation as given in (2.74). 

Using the WLS method, the estimate of Δx can be expressed as given in (2.75), and the 

estimate of Δz can be calculated as given in (2.76). The measurement residual can then be 

expressed as given in (2.77), and the exact expression of Ω is derived as given in (2.78). 

 

   z H x e  (2.74) 

 
1

1 1ˆ T T


   x H R H H R z  (2.75) 

 
1

1 1ˆ ˆ T T


    z H x H H R H H R  (2.76) 
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 cov T  Ω r SRS SR  (2.78) 

 

where I is the identity matrix, ˆx  and ˆz  denote the estimate of Δx and Δz, respectively, and 

the matrix S=I-K is defined as the Residual Sensitivity Matrix [4].  

 

Given the expression of Ω, the normalised residuals are defined as follows: 

 

i iN

i

ii ii ii

r r
r

S R
 


 (2.79) 

where ii  is the diagonal element of Ω and N

ir  is the normalised residual of the i
th

 element, 

which follows the Standard Normal Distribution: 

 

 ~ 0,1N

ir N  (2.80) 

One of the most important properties of the normalised residuals is that the largest normalised 

residual will always correspond to the bad data. Consider the case where a large error is 

introduced in Measurement i: e i≠ 0, while the errors existing in all of the other measurements 

are negligible: ej=0, j ≠ i. It is shown in (2.81) that the normalised residual of the bad data, 

which is Measurement k in this case, is always the largest among the normalised residuals of 

all measurements [4]. 
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This property can be used to identify bad data for any other types of redundant measurements 

except for critical measurements and critical pairs [102]. This is because, for the critical 

measurements, the normalised residual will always be 0, while for the critical pairs, the 

corresponding columns of Ω will be linearly dependant. The linear dependency can be 

expressed as given in (2.82), and it can be straightforwardly derived that the inequality in 

(2.81) becomes strict equality. 

 

2
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 (2.82) 

 

Based on the properties of the normalised residuals described above, the algorithm for bad data 

identification can be summarised in the following steps: 

 

1. Calculate the measurement residuals using (2.73). 

2. Calculate the normalised residuals using (2.79). 

3. Find the largest normalised residual 
max

Nr . 

4. If 
max

Nr C , then the corresponding measurement is identified as bad data, else stop the 

program, no bad data is detected, where C is the threshold usually set to 3. 

5. Eliminate or replace the erroneous measurement identified, and go back to Step1. 
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2.4 Summary 

 

This chapter has given an overview of the classical state estimator that is realised by the WLS 

method, observability analysis and bad data detection and identification. In the following 

chapters, the network model, power flow equations as well as the WLS method will also be 

applied for constructing hybrid state estimators and dynamic state estimators. Based on the 

existing methods described in this chapter, new methods for numerical observability analysis 

are developed, and a new scheme for bad data detection and identification for dynamic state 

estimation is established.  
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Chapter 3 Numerical Observability Analysis 

 

 

This chapter presents a novel method for numerical observability analysis. The proposed 

method is guaranteed to correctly identify the observable islands, in contrast to the existing 

methods that may produce incorrect identification results for the so called pathological cases. 

The proposed method is also faster than the existing method in terms of execution speed. This 

novel method was published in [A.1]. In addition to the novel method published in [A.1], this 

thesis also proposes a new scheme that allows observability analysis to be performed in 

networks with synchronised measurements.  

 

3.1 Introduction 

 

As an essential function of state estimation, observability analysis determines if it is possible to 

find a unique solution with the measurements available. If the network is not fully observable, 

the network is separated into a number of observable islands. Each of the observable islands 

can be estimated with reference to their own reference angles. The identification of observable 

islands is important since it provides information for the following steps of measurement 

replacement for restoring the network observability and redundant analysis as well as the 

function of optimal PMU placement in the presence of existing measurements. This process 

could be achieved by using either the topological methods or the numerical methods. Although 

both categories of these methods were proposed at almost the same time, the numerical 

methods have received the most attention because of their higher computational efficiency, and 

better compatibility with other related state estimation functions.   

 

There have been plenty of methods for numerical observability analysis, which can be roughly 

divided into three categories: the gain matrix method [26], [32], [34], [35],  the gram matrix 

method [103]-[105], and the test matrix method [42], [106]-[110]. All of these methods are 

based on the decoupled DC model as introduced in Chapter 2. The gain matrix method is the 
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first type of method proposed for numerical observability analysis, in which the gain matrix is 

used directly for identifying the observable islands. In numerical observability analysis, the 

gram matrix can be expressed as given in (3.1). Since the measurement Jacobian matrix H 

might not be a square matrix, the gram matrix is usually different from the transpose of the 

gain matrix as given in (2.37). Apart from the dimension, a significant difference in the gram 

matrix in comparison to the gain matrix is that its diagonal pivots correspond to the 

measurements, while those of the gain matrix correspond to the states. This gives the gram 

matrix method an edge in measurement replacement for restoring network observability and 

improving measurement redundancy. However, in terms of identifying observable islands, the 

gram matrix method is essentially the same as the gain matrix method. As discussed in Chapter 

2, the test matrix method is an improved method developed from the gain matrix method. 

Instead of applying the gain matrix directly, the test matrix method obtains the test matrix from 

the inverse matrix of the lower triangular matrix of the gain matrix, and uses the test matrix to 

directly identify the observable islands. 

 

T

gram A HH  (3.1) 

As demonstrated in Section 2.2.4, the identification of the observable islands by the gain 

matrix method might be incorrect in the so called pathological cases. It is stated in [42] that the 

pathological cases can be avoided by using the test matrix instead of the gain matrix, and thus 

the identification of the observable islands can be finished without any iteration. However, it is 

discovered in this PhD that the observable islands identified by the test matrix method might 

still be incorrect in certain cases. The research shows that pathological cases can be further 

classified into two different categories: 

 

1. Pathological cases where there is no pathological branch in the network 

2. Pathological cases where some observable islands are connected by pathological 

branches 

 

A pathological branch is defined as an unobservable branch that is incorrectly identified as the 

observable branch in numerical observability analysis. The test matrix method can successfully 

prevent Type 1 pathological cases that might occur in the gain matrix method. However, it is 



Chapter 3 – Numerical Observability Analysis 

 

67 

unable to detect the pathological branches, and thus it may cause incorrect results due to Type 

2 pathological cases. In [106]-[110], several improved methods have been proposed based on 

the triangular factorisation of the gain matrix. But the major contributions of these papers are 

concerned with the improvement of the factorising procedure as the final resulting matrices are 

effectively the same as the test matrix. Hence, these methods might still incorrectly identify the 

observable islands due to Type 2 pathological cases. 

 

It was reported in [110] that a correct identification of the observable islands can be guaranteed 

by using the iterations. However, there is no proof to support this statement. Following this 

discovery, this PhD work develops an iteration based method for observability analysis 

according to the corrected properties of the test matrix. It was mathematically proven that all 

pathological cases can be avoided if the network does not possess any irrelevant injection 

measurements. Thus, the iteration based method will always find the correct solution if all the 

irrelevant injection measurements can be removed through the iterations. However, the 

iteration procedure could significantly slow down the execution speed, which would 

undermine the overall functionality of observability analysis when applied online. To address 

this problem, a pathological case identification rule (PCIR) was proposed that can precisely 

discriminate pathological cases and normal cases. If a pathological case is identified at a 

certain round of iteration, an additional round of iteration will be required after the removal of 

the irrelevant injection measurements. Or, if a normal case is identified, the program can be 

terminated in advance, and it is guaranteed that the identified observable islands are correct 

even if in the existence of irrelevant injection measurements. 

 

To avoid Type 1 pathological cases, the test matrix methods must identify the observable 

islands in two steps. With the help of PCIR, the new iterative method proposed here is allowed 

to directly identify the observable islands from the test matrix. Thus, in the majority of cases 

the new iterative method is even faster than the existing test matrix methods that do not require 

iterations. 

 

In the following sections of this chapter, the flaws in the properties of the test proposed in [42] 

will be discussed in Section 3.2; the revised property of the test matrix and a fully iterative 
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method for numerical observability analysis will be proposed in Section 3.3; a novel 

pathological case identification rule will be proposed in Section 3.4; some examples of the 

pathological cases will be given in Section 3.5; a direct island identification method and the 

proposed method for numerical observability analysis will be discussed in Section  3.6; the 

simulation results will be given in Section 3.7; a new scheme for including the synchronised 

measurements in observability analysis will be proposed in Section 3.8; some alternative 

methods for Cholesky factorisation will be discussed in Section 3.9; the effect of branch 

reactance on observability analysis will be discussed in Section 3.10; and  finally Section 3.11 

will summarise the chapter. 

 

3.2 Flaws in the Properties of the Test Matrix  

 

As it was discovered that the test matrix method might not identify the observable islands 

correctly, the test matrix properties, which form the theoretic foundation of the test matrix 

method, are re-examined. Two test matrix properties are proposed in [42] as presented in 

Section 2.2.4.  Property 1 has been successfully proven in [42] by using a contradiction 

method. However, there are flawed arguments in the proof for Property 2 that uses a similar 

method. It is stated in the proof that when any pseudo measurement hk incident to multiple 

observable islands is added, the rank of the gain matrix increases by 1. This statement might be 

wrong in certain cases. For example, consider the six-bus system with the measurement 

placements as shown in Figure 3-1. 

 

1 2 3

456

 

Figure 3-1: The Six Bus System and the Measurement Placements 

 

The measurement Jacobian matrix can be expressed as given in (3.2): 
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2

5

23

25

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6

1 4 1 1 1 0

1 1 0 1 4 1

0 1 1 0 0 0

0 1 0 0 1 0

p

p

p

p

    
     
 
 
 

 

H  (3.2) 

 

Following the steps given in Section 2.2.4, the test matrix and the matrix C are calculated as 

given in (3.4). 

 

1 0 0 1 0 0

2 1 1 0 1 1

 
  
 

W  (3.3) 

1 1 Branch 1-2

1 1 Branch 1-5

0 0 Branch 2-3

1 1 Branch 2-4

0 0 Branch 2-5

1 1 Branch 4-5

0 0 Branch 5-6

T

 
 

 
 
 

  
 
 

 
 
 

C AW

 (3.4) 

 

where A is the branch to bus incident matrix whose values are given and explained  in  (3.5): 

 

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6

1 1 0 0 0 0 Branch 1-2

1 0 0 0 1 0 Branch 1-5

0 1 1 0 0 0 Branch 2-3

0 1 0 1 0 0 Branch 2-4

0 1 0 0 1 0 Branch 2-5

0 0 0 1 1 0 Branch 4-5

0 0 0 0 1 1 Branch 5-6

 
 


 
 

  
 

 
 

 
  

A  (3.5) 

Because their corresponding rows in C are not zero vectors, Branch 1-2, Branch 1-5, Branch 2-

4, Branch 4-5 are identified as the unobservable branches. After removing these unobservable 
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branches, the network is separated into 3 observable islands: {1}, {2; 3; 5; 6}, {4}. However, 

for the subnetwork {2; 3; 5; 6} the incident measurements p23, p25 and p5 are not able to make 

it observable. This is because the injection measurement p5 is incident to two buses outside the 

subnetwork, making it an irrelevant injection measurement with respect to the subnetwork.  

After removing p5, Bus 6 is separated from the subnetwork, and Branch 5-6 is identified to be 

an unobservable branch. The unobservable branches like Branch 5-6 that cannot be identified 

are called pathological branches. Now an additional pseudo flow measurement hk from Bus 5 

to Bus 6 is added which can be expressed by: 

  

 0 0 0 0 1 1k  h  (3.6) 

hk can be linearly expressed by the existing measurements as follows: 

 

2 5 23 254k p p p p   h  (3.7) 

Thus, the addition of hk will not change the rank of the measurement Jacobian matrix. So, it is 

demonstrated that the proof for Property 2 is flawed.  

 

3.3 Revised Property of the Test Matrix  

and the Fully Iterative Method 

 

This PhD has revised Property 2 of the test matrix as follows: 

Property 2': The columns of W corresponding to buses in different observable islands will have 

different numerical values if the network does not possess irrelevant injection 

measurements. 

 

Proof for Property 2’: 

 

For any network consisting of n observable islands, the measurement Jacobian matrix H can be 

divided as expressed in (3.8): 
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1

n

irr

 
 
 
 
 
 

H

H
H

H

 (3.8) 

where the rows containing H1, …, Hn correspond to the measurements relevant to the n 

observable islands, and Hirr is formulated by the irrelevant injection measurements. Since each 

observable island contains and only contains one reference angle, the rank deficiency for any 

Hi is equal to 1. So, if the network does not have an irrelevant injection measurement, Rd(H) = 

nOI, where Rd(H) represents the rank deficiency of the measurement Jacobian matrix, while nOI 

represents the number of observable islands. Because rank(G) = rank(H
T
H) = rank (H), we 

have Rd(G) = Rd(H)= nOI when nII = 0, Where Rd(G) represents the rank deficiency of the gain 

matrix and nII represents the number of irrelevant injection measurements. 

 

The gain matrix G can be factorised using Cholesky factorisation for singular matrices 

according to the steps described in Section 2.2.2. According to [111] and by grouping the 

columns corresponding to the zero pivots together and by row permutations, the Cholesky 

factor L can be expressed as: 

 

NZ 
  
 

L
L

M I
 (3.9) 

where LNZ is the lower triangular matrix whose columns correspond to the nonzero pivots, M is 

a rectangular matrix, and I represents an identity matrix with the same size as G. The inverse 

matrix of L and the test matrix can then be calculated as given in (3.10) and (3.11), 

respectively. 

 

1

1

1 NZ

NZ










 
 
 

L
L

ML I
 (3.10) 

1

NZ


   W ML I  (3.11) 

Since the dimension of I is equal to that of the gain matrix, it can be derived that nUC ≥ Rd(G), 

where nUC is the abbreviation of the number of unique columns of W.  Supposing nII = 0, the 

numerical values of the two columns of the test matrix that belong to different observable 
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islands happen to be the same. Then it follows that nUC < nOI = Rd(G), where a contradiction 

can be drawn since it is assumed that nUC ≥ Rd(G). So, if the network does not have an 

irrelevant injection measurement, it is impossible for numerical values of the columns of the 

test matrix that belong to different observable islands to be the same, and Property 2’ is proved. 

 

End of the Proof 

 

The identify matrix of the test matrix corresponds to the reference buses of the n observable 

islands. In fact, nUC = Rd(G) = nOI when nII = 0, which forces every column of the remaining 

part of the test matrix to be a singleton vector (a vector whose elements are equal to 0 except 

for one element equal to 1). Although in most cases the measurement set does include the 

irrelevant injection measurements, these measurements can be removed without changing the 

observability of the network. This can be explained by the fact that an irrelevant injection 

measurement measures the sum of power injections into multiple observable islands, making it  

an incorrect injection measurement of its incident observable island. So, in order to identify all 

the observable islands correctly, the observability analysis algorithm has to iteratively remove 

all irrelevant injection measurements.  

 

A fully iterative algorithm for numerical observability analysis is proposed based on the 

revised properties of the test matrix (Property 1 and Property 2’) [112]:  

 

1. Create the measurement Jacobian matrix H and then the gain matrix G according to the 

decoupled DC model, and perform Cholesky factorisation. 

2. If the resulting diagonal matrix D possesses one zero pivot, the network is observable. 

Else obtain the test matrix W from the Cholesky factor L. 

3.  Find the candidate observable islands: Group the buses into an observable island if the 

numerical values of their corresponding columns in the test matrix are the same. 

4. Find the irrelevant injection measurements that are incident to multiple observable 

islands. If the network does not have any irrelevant injection measurements, go to the 

next step. Else go back to Step 1. 

5. Output the observable islands identified and stop the program. 
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3.4 Pathological Case Identification Rule 

 

The fully iterative method developed based on the corrected properties of the test matrix 

guarantees a correct solution of the observable islands. However, the introduction of iteration 

significantly increases the execution time. As a matter of fact, in normal cases where nUC =nOI, 

the observable islands can be found directly as it follows that nUC = nOI= Rd(G) according to 

Property 1. In this case if nII ≠ 0 the fully iterative method would enter extra unnecessary 

iterations. Hence, a “pathological case identification rule” (PCIR) is proposed that can 

precisely distinguish pathological cases and normal cases, and thereby allow the accurate 

identification of observable islands without wasting computational resources: 

 

 d III UCPCIR R G n n    (3.12) 

where nIII is the number of identifiable irrelevant injection measurements, where the attribute 

“identifiable” specifically refers to “identifiable from analysing the test matrix”. The properties 

of the test matrix are presented as follows: 

 

0   for pathological cases (iterations are required)

0   for normal cases (no iterations required)         
PCIR





 (3.13) 

The formal definition of PCIR is given in (3.14). The PCIRformal also has the properties as 

given in (3.13). 

 

formal
PCIR NOI NUC   (3.14) 

The PCIR is proposed instead of PCIRformal because of the difficulty in calculating nOI, which 

can be expressed as: 

 OI d CIIn R n G  (3.15) 

where nCII is the abbreviation of the number of critical irrelevant injection measurements, 

which refers to the maximum number of linearly independent injection measurements. 

 

Proof for (3.15) [112]: 
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In the case nCII = 0, nII = 0 This is because the power flow measurements cannot express the 

redundant irrelevant injection measurements, and if there is any irrelevant injection 

measurements, one of these measurements must be critical.  So (3.15) holds when nCII =0 

according to the proof for Property 2’ given in the previous section. From its definition, the 

critical injection measurements cannot be linearly expressed by other measurements. In other 

words, every critical irrelevant injection measurement increases the rank of gain matrix by 1, or 

reduces the value of Rd(G) by 1. Thus the sum of nCII and Rd(G) is unchanged, and is equal to 

nOI. 

 

End of the Proof 

 

Since the test matrix rows correspond to the zero pivots of the gain matrix, Rd(G) can be 

obtained by just counting the number of test matrix rows; while nUC can be obtained by 

counting the number of unique columns according to its definition. However, it might be that 

nCII cannot be calculated due to two obstacles: The first obstacle is that in some special 

pathological cases there might be some unidentifiable irrelevant injection measurements. The 

second obstacle is that it is difficult to identify the critical measurements from the test matrix 

or any other variable available. So, nIII is used in placement of nCII in (3.15), which leads to the 

expression of PCIR as given in (3.12). 

 

Since nIII might be different from nCII, PCIR’s value might also be different from PCIRformal. 

Nevertheless, the property of PCIR and PCIRformal for distinguishing normal and pathological 

cases as given by (3.13) is the same. This conclusion can be derived from the relationships 

between nII, nIII and nCII as presented in Lemma 3.1, Lemma 3.2 and Theorem 3.1 [112]. 

 

Lemma 3.1: In normal cases nIII = nII = nCII. 

 

Proof for Lemma 3.1: 

 

For an arbitrary irrelevant injection measurement which can be expressed as a linear 

combination of other measurements, the expression can be generalised as given in (3.16): 
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i j k
j k

J F P    (3.16) 

where Ji denotes an arbitrary irrelevant injection measurement, Fj represents an arbitrary power 

flow measurement, and Pk is the sum of pseudo flow measurements incident to the 

unobservable branches which are incident to Ji, as such Pk cannot be linearly expressed by 

other measurements for any k given. 

 

If there is only one element in the sum for Pk, by definition the unobservable branch it is 

incident to will be a pathological branch. This is not possible because in normal cases the 

pathological branch will cause the incorrect identification of its connected observable islands 

as one observable island. Now consider the case where the sum of Pk contains two pseudo flow 

measurements, as shown in Figure 3-2. 

Island k

Island jIsland i

 

Figure 3-2: Power System Containing Three Observable Islands  

and One Irrelevant Injection Measurement 

If there is no direct connection between the buses in Island i and the buses in Island j, as 

denoted by the dashed line in Figure 3-2, it would be impossible to express Pk without a 

pathological branch. If any bus in Island i and any bus in Island j is connected by a branch, it is 

possible to express Pk as given in (3.17). However, Island i, Island j and Island k will still be 

wrongly identified as one observable island because the rank deficiency of the gain matrix of 

the subnetwork containing the three observable islands has dropped to 1 after the two sums of 

pseudo flow measurements are added: (pik+pij) and (pji+pjk). 
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   k ik ij ji jkP p p p p 
 

      (3.17) 

where pij represents the pseudo power flow measurement incident to the branch connecting 

Island i and Island j, and in the same way pik represents Island i and Island k,  pji Island j and 

Island i, pjk  Island j and Island k. 

 

Therefore, Pk cannot be linearly expressed by two pseudo flow measurements in normal cases 

either. The same conclusion can be drawn for Pk which is linearly represented by any number 

of pseudo flow measurements using mathematical induction. 

 

So, the criterion for the existence of redundant measurements is not fulfilled in the normal 

case: nII = nCII. By definition, every observable island, and thus every irrelevant injection 

measurement is identifiable in the normal case: nIII = nII = nCII. 

 

End of the Proof 

 

Lemma 5.2:  nII ≥ nCII in pathological cases, and the equality is established if the network does 

not have a pathological branch. 

 

Proof for Lemma 5.2: 

 

If the network does not have a pathological branch, all unobservable branches can still be 

found even in the pathological case: nIII = nII. As the critical irrelevant injection measurements 

are a subset of irrelevant injection measurements, it follows that nII ≥ nCII.  nII > nCII is possible 

since the criterion for the presence of redundant irrelevant injection measurement is fulfilled in 

pathological cases. 

 

End of Proof 

 

Theorem 3.1 (the Theorem of Convergence): If the network has pathological branches at least 

one irrelevant injection measurement that incidents to one of the pathological branches is 

identifiable [112]. 
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Proof for Theorem 3.1: 

 

Suppose in an arbitrary network, Nx = {S1, S2,…, Snsub} (nsub>1), with measurement set, M, and 

topology, T, there is a subnetwork, Sy consisting of a number of observable islands, Sy = 

{Oy1,  … , Oyn}. All of these observable islands in Sy are connected by pathological branches 

Py
M

 = {py1
M

,…,pynpath
M

}, and Py
M

≠∅. Hence, a set of irrelevant injection measurements can be 

found in Sy, Jy
M

={ jy1
M

, jy2
M

,… jynj
M

}. This set can be divided into two mutually exclusive sets, 

including a set containing identifiable elements Iy and a set containing unidentifiable elements 

Uy with Jy= Iy ∪Uy, and Iy∩Uy=∅. Two functions are defined as follows: 

 

1. gA(B, C): for a given topology of network, A, a given set of buses, B, and a given set of 

branches, C, the function returns the subset of B containing elements incident to any of 

the elements of C according to topology A. 

2. hA(B): for a given network topology, A, bus set, B, the function returns a set where the 

union of B and a set consisting of all neighbouring buses of B’s elements in the network 

with topology, A. 

 

The statement of this theorem can be interpreted as given in (3.18): 

 

  h g , if ,  M M M

T T y y y yJ P S P    (3.18) 

 

Since the subnetwork is not fully observable, the following equations can be derived: 

 

 h M

T y yJ S   (3.19) 

 h M

T y yU S  (3.20) 

From (3.19) and (3.20) and the definition that Jy= Iy ∪Uy, and Iy ∩ Uy = ∅, we can deduce the 

relationship given in (3.21): 

 

 h M

T y yI S   (3.21) 
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Moreover, divide Iy
M

 into two sets, I1y
M

 and I2y
M

, according to whether their elements are 

incident to pathological branches: 

 

  1 : ,g ,M M M

y y T yI a a I a P    (3.22) 

  2 : ,g ,M M M

y y T yI a a I a P    (3.23) 

According to (3.22), Equation (3.18) can be re-written as given in (3.24): 

 

1 ,  if M M

y yI P   (3.24) 

Suppose I1y
M

 = ∅ for M, then ∃ M’ such that, M’ ⊂ M, I1y
M’

  =  ∅, I2y
M’

 = ∅, and Py
M’

 = Py
M

 ≠∅. 

It is possible to find such M’, since removing elements from I1y
M

 does not change Py
M

, due to 

the assumption that I1y
M

 = ∅. Then, a new relation can be derived as follows: 

 

     ' ' '

1 2h h hM M M

T y y T y y y T yI S I I S S       (3.25) 

It can be seen that (3.25) contradicts (3.21), and thus (3.24) has to be true. Since the network, 

its topology and the measurement set are arbitrarily given, (3.24) holds true for any network 

not fully observable and any measurement placement, and thus Theorem 3.1 is proved. 

 

End of the Proof 

 

Lemma 3.1 guarantees that PCIR = 0 in the normal cases as shown below: 

 

    0III d UC CII d UCn R n n R n     G G  (3.26) 

In the pathological case where some observable islands that are separate in locations but share 

the same numerical values in the test matrix (Type 1 pathological case), Lemma 3.2 guarantees 

that PCIR > 0, as demonstrated in (3.27): 

 

    0III d UC CII d UCn R n n R n     G G  (3.27) 
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In the pathological case where some directly connected observable islands have the same 

numerical values in the test matrix (Type 2 pathological case), Theorem 3.1 ensures that PCIR > 

0, as is shown in (3.28): 

 

 

 

     

  

 

III d UC

II d UC UII

CII UC UII

CII UCII RII URII d UC

CII d UC UCII

PC UCII

PB UCII

UCII iPBi
i

n R n

n R n n

n NRII n n

n n n n R n

n R n n

n n

n n

n n

 

   

   

     

   

 

 

 

G

G

G

G
 

(3.28) 

where nPC is the abbreviation of the number of pathological connections, NUII is the 

abbreviation of  the number of unidentifiable irrelevant injection measurements, which refers 

to the irrelevant injection measurement that cannot be identified from the test matrix, nPB is the 

abbreviation of the number of pathological branches, and index i denotes the i
th

 subnetwork, 

nUCII is the abbreviation of the number of unidentifiable critical irrelevant injection 

measurements,  nRII is the abbreviation of the number of redundant irrelevant injection 

measurements, nURII is the abbreviation of the number of unidentifiable redundant irrelevant 

injection measurements. 

 

For any subnetwork consisting of k observable islands that are connected by pathological 

branches, only k-1 pathological branches are counted, i.e. nPBi=k-1. This is because any 

additional pathological branches can be linearly expressed with the pseudo measurements 

across the pathological branch and the other available measurements. In addition, only the 

critical injection measurements that are incident to the pathological branches are accounted for. 

Thus, nCIIi ≤ k-1, or the subnetwork considered will become observable. Theorem 3.1 makes 

sure that nUCIIi  <  nCIIi, and it can be directly derived that the expression of (3.28) is greater 

than 0: 
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 

  0

i i
i

i i
i

NPB NUCII

NPB NCII



  




 (3.29) 

 

From (3.26), (3.27) and (3.29) it is demonstrated that the PCIR has the same properties as the 

PCIRformal. 

 

As well as deriving one of the properties of PCIR, another significant meaning of Theorem 3.1 

is that it demonstrates that, after a sufficient number of iterations, all irrelevant injection 

measurements can be identified, and thus the test matrix method based numerical observability 

analysis can always converge to the correct identification result after a finite number of 

iterations. Hence, Theorem 3.1 is also named here as the convergence theorem for numerical 

observability.  

 

3.5 Examples of the Pathological Cases 

 

Examples of using the PCIR for observability analysis for both types of pathological cases are 

given in this section. The examples below show the existence of the new concepts and 

variables proposed in the previous sections, such as the pseudo connection, critical and 

redundant irrelevant injection measurements, and identifiable and unidentifiable irrelevant 

injection measurements. 

 

3.5.1 Type 1 Pathological Case (without pathological branch) 

 

Consider a five-bus network with the measurement placement shown in Figure 3-3: 
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1 2 3

45

 

Figure 3-3 Five Bus Test System and the Measurement Placement   

 

The measurement Jacobian matrix according to the DC decoupled model is given in (3.30): 

 

2 1 0 0 1

0 1 2 1 0

0 0 0 1 1

  
 

  
 
  

H  (3.30) 

The corresponding test matrix is given by (3.31): 

 

1 2 1 0 0

0 1 0 1 1

 
  

 
W  (3.31) 

By directly grouping the columns in W that have the same numerical values as one observable 

island, the following observable islands are identified: {1;3}, {2}, {4;5}. The identified 

irrelevant injection measurements are the injection measurements incident to Bus 1 and Bus 3 

since they are incident to multiple observable islands. PCIR = Rd(G) + nIII – nUC = 2 + 2 – 3 = 1 

> 0, which suggests the result is a pathological case, and the algorithm has to enter another 

round of iteration in order to find the correct identification result. After eliminating the 

identified irrelevant injection measurements, the new measurement Jacobian matrix and test 

matrix are calculated as given in (3.32): 

 

 0 0 0 1 1 H  (3.32) 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

 
 
 
 
 
 

W  (3.33) 
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From the new test matrix, four observable islands are found: {1}, {2}, {3}, {4;5}. In the 

previous iteration, Bus 1 and Bus 3, which form two separated observable islands, are 

incorrectly identified in one observable island. In the Type 1 pathological case, a pseudo 

connection between the observable islands, whose numerical values in the test matrix are the 

same, can be represented by the available measurements. In this example, the pseudo 

connection between Island {1} and Island {3} is expressed as: 

 

 

 
1 3 45 / 2

1 0 1 0 0

k p p p  

 

h
 (3.34) 

 

3.5.2 Type 2 Pathological Case (With pathological branches) 

 

In Type 2 pathological cases, there might be some unidentifiable irrelevant injection 

measurements in the first few rounds of iteration, which are termed as the unidentifiable 

irrelevant injection measurements in the previous sections. To demonstrate the validity of this 

concept and the existence of such variables, consider a thirteen-bus system with the 

measurement placement, as shown in Figure 3-4. 

 

3 4 5

1 2

6

7

8

9

10

11

12

13

 

Figure 3-4: Thirteen Bus Test System and the Measurement Placement 

 

The measurement Jacobian matrix and the corresponding test matrix are expressed as: 
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4 1 1 1 0 0 0 1 0 0 0 0 0

1 4 0 1 1 0 0 0 0 1 0 0 0

1 1 1 4 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 3 1 1 0 0 0 0

1 0 0 0 0 1 1 4 1 0 0 0 0

0 1 0 0 0 0 0 0 0 4 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 3

1 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1

    
 
   
 
    
 

   
    


    
   



 

 


 

H










 
(3.35) 
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 
 
  

W  (3.36) 

The following observable islands are found in the first iteration: {1; 2; 3;4;5;7;8;10;13}, {6}, 

{9}, {11} and {12}. According to their definitions, four irrelevant injection measurements are 

found: the injection measurements incident to Buses 7, 8, 10 and 13. PCIR = Rd(G) + nIII – nUC 

= 3 + 4 – 5 = 2 > 0, indicating that the result is a pathological case, which must be removed 

using iterations. After the irrelevant injection measurements are removed, the updated 

measurement Jacobian matrix and test matrix are computed as given in (3.37) and (3.38) 

respectively. 

4 1 1 1 0 0 0 0 0 0 0 0 0

1 4 0 1 1 0 0 0 0 1 0 0 0

1 1 1 4 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1
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H  (3.37) 
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0.5 0.5 1 0.5 0 0 0 0 0 1 0 0 1
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(3.38) 
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The updated observable islands in the second round of iteration includes {1, 2, 4}, {3, 10, 13}, 

{5, 7, 8}, {6}, {9}, {11} and {12}. According to this result, the remaining irrelevant injection 

measurements placed at Bus 1, Bus 2 and Bus 4 are also found to be irrelevant injection 

measurements. These measurements are not identifiable in the first round of iteration, and thus 

the existence of unidentifiable irrelevant injection measurements is demonstrated. PCIR = 

Rd(G) + nIII – nUC = 6 + 3 – 7 = 2 > 0, indicating that the result is still pathological, and the 

algorithm has to enter an additional round of iteration. Since all injection measurements have 

been removed, the observable islands identified after the third iteration are the final result, 

which are listed as follows: {1, 2, 4}, {3}, {5}, {6}, {7, 8}, {9}, {10, 13}, {11}, {12}. 

 

The other two new concepts proposed in this thesis for observability analysis are the critical 

and redundant irrelevant injection measurements. In this example, the irrelevant injection 

measurements placed at Bus 1, Bus 2, Bus 7, Bus 8, Bus 10 and Bus 13 can be chosen to be the 

set of critical irrelevant injection measurements, then the remaining one incident to Bus 4 is 

redundant. The redundancy of this irrelevant injection measurement can be demonstrated as it 

can be linearly represented by the set of critical measurements and other available 

measurements: 

  

 
1 2 7 8 10 13 1 4 2 4 8 7 10 133 3 4 4

1 1 1 4 1 0 0 0 0 0 0 0 0

k p p p p p p p p p p            

    

h
 (3.39) 

where pi denotes the power injection measurement at Bus i, and pi-j denotes the flow 

measurement connecting Bus i and Bus j. 

 

Finally, the validity of (3.15) is also demonstrated: 9 = nOI = Rd(G) + nCII = 3 + 6. The example 

presented here uses a symmetrical network with the measurements also placed at the 

symmetrical locations. This is for the purpose of demonstrating how to use the PCIR to 

identify the observable islands and of explaining the related new concepts using the shortest 

possible mathematical expressions. Another Type 2 pathological case example is given in 

Appendix B, where only the identification results in each round of iteration are presented, 

while the mathematical expressions and the analysis are disregarded. 
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3.6 The Direct Island Identification Method  

and the Proposed Algorithm 

 

The previous methods for observability analysis, including the classical method, the test 

method as well as the gram matrix method, use the Direct Branch (DB) method to identify the 

observable islands in two steps: 

 

1. Find the unobservable branches: calculate the matrix C using (2.61), the corresponding 

branches of the nonzero rows of C are the unobservable branches. 

2. Remove the unobservable branches from the network, and identify the observable 

islands. 

 

This PhD has proposed a direct island method (DI) that identifies the observable islands 

directly from the test matrix in only one step: 

 

1. Identify the observable islands according to the numerical values of the columns of the 

test matrix: the buses are grouped into one observable island if their corresponding 

columns are the same. 

 

The benefit of DI is that it has a faster execution speed compared to DB as it only requires one 

step for identifying the observable islands, and the second step of DB usually needs iterations. 

However, DI has not been adopted by the previous numerical observability analysis methods 

since it cannot avoid the Type 1 pathological case. With the help of the PCIR, both DI and DB 

can detect and identify the pathological cases and thus correctly identify the observable islands.  

 

Based on the PCIR and its associated theory, and the DI method, a novel algorithm for 

numerical observability analysis is proposed as follows: 

 

The Proposed Algorithm: 
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1. Create the measurement Jacobian matrix H and calculate the gain matrix G according 

to (2.37). Perform  Cholesky factorisation on G, and obtain the singular diagonal matrix 

D and the Cholesky factor L. 

2. Check the number of zero pivots of D. If the number of zero pivots is one, the network 

is fully observable, stop the program. Else obtain the test matrix W from the inverse of 

L. 

3. Use the DI method to identify the candidate observable islands from W. 

4. Find the irrelevant injection measurements incident to multiple candidate observable 

islands. If no irrelevant injection measurement is found, go to Step 5. Else compute the 

PCIR using (3.12). If PCIR = 0, go to Step 5. Else if PCIR > 0, remove the irrelevant 

injection measurements found from the network and go back to Step 1. 

5. Output the candidate observable islands identified as the final result, and stop the 

program. 

 

3.7 Simulation Results 

In this section, the simulation results and analysis of the execution time of both of the island 

identification methods, the DI method and DB method, are presented. The simulation results of 

the frequency of both types of pathological case in the IEEE 14 and 300 Bus Test Systems are 

also presented. 

3.7.1 Execution Time of the Island Identification Methods 

 

To demonstrate the speed advantage of the proposed direct island (DI) method, extensive 

simulations have been conducted on the execution time of both the DI and the direct branch 

(DB) method that has been widely adopted by the previous numerical observability analysis 

methods. For both island identification methods, the PCIR based iterative algorithm is adopted.  

In small networks such as the IEEE 14, 39, 57, 118 and 300 Bus Test Systems [113] the 

execution time tests are conducted with the number of measurements equal to the number of 

states in the system, and the number ratio of injection measurements to flow measurements is 

1:4. For each network, the tests are conducted for both the DB method and the DI method. In 

addition, the execution time obtained for each test is the average of the results of 100 Monte 
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Carlo simulations. Furthermore, for each Monte Carlo simulation the execution time is 

recorded from the beginning to the end of the observability analysis program using the “start 

stopwatch timer” function in MATLAB. 

 

The results of the execution time for each network and both types of identification method are 

shown in Table 3-1, which clearly indicate that the DI method is about 3 times faster than the 

DB method. 

 

Table 3-1: Execution Time Test Results for Different Networks (milliseconds) 

 IEEE 300 IEEE 118 IEEE 57 IEEE 39 IEEE 14 

time(DB) 250.9 57.2 47.5 24.1 6. 9 

time(DI) 84.9 22.0 15.6 9.7 2.5 

time(DB)/time(DI) 3.0 2.6 3.1 2.5 2.8 

 

 

The execution time test has also been conducted in a large network of the IEEE 2736 Bus Test 

System [113]. In these tests, two cases with different measurement configurations are 

considered: 1) the number ratio of injection measurements to flow measurements is 1:4 and 2) 

the number ratio of injection measurements to flow measurements is 4:1. In both cases the 

measurements are randomly added (while keeping the number ratio of the two types of 

measurements) from 0 to 3000 measurements, and each result is the average of 100 Monte 

Carlo simulations. The simulation results for case 1) and case 2) are presented in Figure 3-5 

and Figure 3-6, respectively. 
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Figure 3-5: Execution Time Using DI and DB methods in the IEEE 2736 Bus Test System 

for Case 1) 

 

 

Figure 3-6: Execution Time when Using DI and DB Methods in the IEEE 2736 Bus Test 

System for Case 2) 

 

It can be observed from Figure 3-5 and Figure 3-6 that DI is about 2 to 3 times faster than DB. 

In addition, the execution time of DI is almost the same for different numbers of measurements, 

while the execution time of DB increases significantly with the number of measurements. Such 

stability in execution time is desirable for the system operator in terms of knowing for sure 

how long the observability will take. As shown in both of the figures the execution time of DB 

is the least when there is no measurement and increases gradually when more measurements 

are added. The increasing trend becomes a decreasing trend when the number of measurements 

is about 2000 in case 1). This is due to the fact that when more measurements are added, the 

increased execution time, caused by the increased size of the measurement Jacobian matrix, 

becomes smaller than the time saving brought about by a smaller number of observable islands. 
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This phenomenon is only observed in case 1) since in this case the flow measurements 

constitute the majority of the measurements and the buses are more likely to form observable 

islands, while in Case 2) the injection measurements constitute the majority of the 

measurements, which are less likely to form observable islands. When the number of 

measurements is further increased, a peak in execution time can also be seen in Case 2). 

However, these cases might not be the ideal measurement placements. 

 

As well as the number and the composition of the measurements, the value of the branch 

reactance affects the execution time. To investigate the impact of the branch reactance, 500 

simulations are conducted for two cases respectively: case a) unit branch reactance is used, and 

case b) the real branch reactance is used. The average execution time for case a) is 80.3 s, and 

that for case b) is 97.8 s. This result shows that a simpler data of branch reactance could also 

reduce the amount of time for executing observability analysis. Thus the unit branch reactance 

is adopted in the two algorithms proposed in this thesis.  

 

3.7.2 Frequency of Pathological Cases 

 

Setting all the branch reactance equal to 1 p.u., the number of both Type 1 and Type 2 

pathological cases are found for both the IEEE 14 Bus Test System and IEEE 2736 bus test 

system as given in Table 3-2. In the IEEE 14 Bus Test System, all possible placements of the 

flow and injection measurements are considered, while in the large network of the IEEE 2736 

bus test system, 500 random placements are selected for the simulation. 

 

Table 3-2 indicates that when the size of the network is small, the frequency of having 

pathological cases is low (less than 2%), and the occurrence of Type 1 pathological cases is 

about 6.4 times that of the other type. In comparison, in the 2736 bus network the percentage 

of pathological cases has increased to the significant number of 31%, while the ratio of Type 1 

to Type 2 pathological cases remains almost the same (6.23 times more Type 1 cases). The 

reasons for the higher frequency of pathological cases in larger networks are the increased 

network topology complexity and increased number of measurements in large networks. 
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Table 3-2: Number of Pathological Cases Identified in the IEEE 14 Bus Test System and 

IEEE 2736 Bus Test System 

Test System IEEE 2736 Bus Test System IEEE 14 Bus Test System 

Number of 

Simulations 
500 2,605,911 

Pathological Case 

Type 
Type 1 Type 2 Type 1 Type 2 

Pathological Cases 

Identified 
134 21 29,068 4553 

Ratio 26.80% 4.20% 1.115% 0.175% 

 

3.8 Inclusion of Synchronised Measurements 

 

The increasing development of Wide Area Monitoring Systems (WAMS) [43], [97] means that 

modern power system observability analysis methods must be able to deal with synchronised 

measurements from Phasor Measurement Units (PMUs). In this section, a new method to 

include PMU measurements into conventional observability analysis methods without 

changing the formulation of the measurement Jacobian matrix is presented. 

 

A PMU can measure both the voltage phasor of the bus where it is placed and the current 

phasors of the incident branches [98]. As shown in (3.40) I i k  is equivalent to Pik and Qik in 

the DC model, as in the decoupled DC model the reactive variables are neglected. 

 

 
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(3.40) 



Chapter 3 – Numerical Observability Analysis 

 

91 

Thus, for the purposes of observability analysis, I i k  becomes equivalent to Pik. This 

equivalence between I i k  and Pik holds even if both Vi and Vk are unknown. This is because, 

when assessing the observability between two buses, it must be determined if the relative 

voltage magnitude between the buses can be calculated (i.e. ΔVik) and not if the absolute 

voltage magnitude of the buses can be calculated. 

 

For conventional measurements the rows of the measurement Jacobian matrix, H, have two 

standard forms: the flow form and the injection form. The flow form is shown in (3.41), the 

injection form is the sum of several row vectors in flow form. An example of the injection 

form is given in (3.42): 

 

 0 0 1 0 0 1 0 0 h  (3.41) 

 1 1 0 0 1 0 0N   h  (3.42) 

Using the approximation stated above, current measurements are readily available in flow 

form. However, the corresponding row in H for the voltage PMU measurements is in the form 

given in (3.43), which is neither of the two standard forms. 

 

0 1 0

i

i



   

 (3.43) 

 

In order to convert the rows that correspond to complex voltage measurements into one of the 

standard forms, the following scheme is used: 

 

If there is only one PMU measurement, the complex voltage is regarded as one voltage 

magnitude measurement. The angle measurement is treated as the reference angle. If 

there is more than one PMU measurement, then the other complex voltage 

measurements can be regarded as fictional flow measurements between those buses and 

the reference bus since all angles measured by PMUs are synchronised using a common 

time signal (e.g. GPS). For example, although Bus i and Bus j are not connected by a 



Chapter 3 – Numerical Observability Analysis 

92 

branch, the corresponding row can be written as shown in (3.44), provided that PMUs 

are placed at Bus i and Bus j. 

 

1 1

i j

i

 



 
  


 
  

H
 (3.44) 

 

3.8.1 Inclusion of Current Phasor Measurements without Voltage Phasor 

Measurements at the Sending and Receiving Ends 

 

The above analysis assumed that for any current phasor measurement there is always a voltage 

phasor measurement at its sending end. However, the voltage phasor measurement might be 

lost due to device damage or telecommunication errors. In these cases, the current phasor 

measurements cannot be simply regarded as power flow measurements since the voltages at 

both ends of the branch are unknown.  

 

Consider the current between two buses, I i k  . I i k  can be calculated using Ohm’s law as 

given by (3.45), and the equation could be decomposed into real and imaginary parts, as given 

by (3.46) and (3.47). 

 

i k ik ikV V Z I   (3.45) 

 cos cos Rei i k k ik ikV V Z I    (3.46) 

 sin sin Imi i k k ik ikV V Z I    (3.47) 

 

To solve (3.46) and (3.47), two of the four variables, Vi, Vk, θi and θk, should be known. Thus, 

the problem is discussed according to four different possible measurement placement cases as 

given in Table 3-3. 
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Table 3-3: Measurement Placement Cases for a Current Phasor Measurement 

Case Measurement Placement  Variable(s) Known 

1 Bus i and Bus k are in the same observable island Vi, θi  − θk  

2 

Two voltage magnitude measurements, one at the 

sending end and the other at the receiving end of the 

current phasor measurement  

Vi, Vk 

3 
One voltage magnitude measurement at the sending or 

receiving end of the current phasor measurement 
Vi  

4 

The current phasor measurement is between two 

observable islands and no voltage magnitude 

measurement is available at either end 

All of the four 

variables are unknown 

 

 

In the first two cases, all four voltage variables of the two buses can be solved from (3.46) and 

(3.47), and they are all synchronised to the GPS reference bus. Thus, the current phasor 

measurement in these two cases is equivalent to a flow measurement between Bus i and Bus k, 

and a voltage phasor measurement at Bus i.  

 

Equations (3.46) and (3.47) can be solved for Case 3 and Case 4, provided that a reference 

angle is available for Bus i in Case 3 and a reference voltage magnitude and a reference angle 

are available in Case 4. These requirements are exactly the same as those imposed when 

analysing the observability of two buses connected by a flow measurement. So, in these two 

cases, the current phasor measurement could also be treated as a power flow measurement 

when determining the observability.  

 

Hence, two observable islands will form an observable island as long as they are connected by 

a current phasor measurement. However, the level of observability is different in different 

cases. The different observability levels in different cases and their characteristics are 

summarised in Table 3-4. 
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Table 3-4: Observability Levels and Their Characteristics. 

Measurement Type Case Obser. Level Characteristics 

Current Phasor 

Measurements 

1&2 3 
The observable island is globally observable 

synchronised by the PMUs. 

3 2 
The observable island is locally observable 

with its own reference angle. 

4 1 

The observable island is locally observable 

with its own reference voltage angle and 

reference voltage magnitude. 

Flow Measurements  2 
The observable island is locally observable 

with its own reference angle. 

 

In conclusion, if it is not guaranteed that there is a voltage phasor measurement at the sending 

end of the current phasor measurement, it is necessary to identify different levels of 

observability. In these cases, the algorithm proposed in Section 3.6 can be revised as follows: 

 

The Algorithm Considering Special Current Phasor Measurements: 

 

1. Form the measurement Jacobian matrix H in the decoupled DC model and calculate the 

gain matrix G according to (2.37). Perform  Cholesky factorisation on G, and obtain the 

singular diagonal matrix D and the Cholesky factor L. Label the current phasor 

measurements without voltage measurements at the sending end. 

2. Check the number of zero pivots of D. If D only has one zero pivot, the network is fully 

observable, stop the program. Else obtain the test matrix W from L
-1

. 

3. Identify the candidate observable islands from W directly using the DI method. 

4. Check if the labelled current phasor measurements are within one observable island or 

connecting two observable islands that have voltage magnitude measurements at both 

ends of the branch. If yes, merge the observable islands into the observable island that 

possesses the GPS bus. Else if there is a voltage magnitude measurement at either the 

sending end or receiving end, merge the observable islands into one observable island 

labelled as Level 2. Else merge the observable islands into a Level 1 observable island. 
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5. Identify the irrelevant injection measurements that are incident to more than one 

candidate observable island. If there is no irrelevant injection measurement, go to Step 

6. Else compute the PCIR using (3.12). If PCIR = 0, go to Step 6. Else if PCIR > 0, 

remove the identified observable island from the network and go back to Step 1. 

6. Output the candidate observable islands identified as the final result, and stop the 

program. 

3.9 Alternative Methods for Cholesky Factorisation 

 

The test matrix contains direct information about the observable islands, and constitutes the 

key component of the theory of the test matrix based numerical observability analysis methods. 

The test matrix can be derived from the inverse of the Cholesky factor according to its 

definition. However, Cholesky factorisation requires every pivot to be factorised in which 

vector multiplication is needed. This is time consuming especially in large networks such as 

the IEEE 2736 Bus Test System. In literature, several alternative methods are available for 

obtaining observable islands instead of Cholesky factorisation [107]-[109]. In [107], an integer 

arithmetic method for Cholesky factorisation is proposed. Using this method the elements of 

the obtained Cholesky factor are guaranteed to be integers. However, all pivots of the gain 

matrix still need to be factorised, and the Cholesky factor still needs to be inversed in order to 

obtain the test matrix. In [108]-[109], the null-space method is proposed as it can calculate the 

test matrix directly by only processing the nonzero pivots. This method is briefly introduced in 

the following subsection. 

 

3.9.1 The Null-space Method 

 

Using the DC decoupled model described in Subsection 2.2.1, the algorithm of the null-space 

method is shown as follows: 

1. Set matrix L to be In (an identity matrix whose dimension is equal to the number of 

buses in the network n), N to be 0n, and the iteration number to be 1. 
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2. Calculate the vector ti = hi
T
L, where hi is the i

th
 row of the measurement Jacobian 

matrix. 

3. Find the first positive element in ti, in the p
th

 position, ti
p
, and set the p

th
 element of N, 

Np = i. If no positive element can be found in ti, go to Step 6. 

4. Divide the p
th

 column of L by ti
p
. 

5. For k =1 to n, k ≠ p, ti
p
 ≠ 0 do, lk = lk - ti

j
 lp, where lk and lp are the k

th
 and p

th
 column of 

L, respectively. Go to Step 2. 

6. Set the test matrix W = N
T
 and output W. 

 

To illustrate the algorithm, an example that uses the null-space method to calculate the test 

matrix is given. The network and measurement placement is the same as the example given in 

Section 3.2 as shown in Figure 3-1. The iteration steps of this method are given below: 

 

1

1

Iteration 1

0 0 0 0 0 0

1 1 0 0 0 0

4 0 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

0 0 0 0 0 1

1 4 1 1 1 0









   

h

0

1

0

0

0

0

t

 (3.48) 

2

2

Iteration 2

0 1 0 0 0 0

1 1 0 0 0 0

1 1 1 1
1 0

4 4 4 4

0 0 0 1 0 0

1 0 0 0 1 0

4 0 0 0 0 0

1 0 0 0 0 1

5 1 1 5 15
1

4 4 4 4 4









    

h

0

1

4

0

0

1

0

t

 

(3.49) 
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3

3

Iteration 3

0 1 0 0 2 0

0 1 0 0 0 0

1 4 1 1 1
1

3 15 3 15 15

1 0 1 0 0 0

0 0 0 1 0 0

1 1 1 4 4
0

3 15 3 15 15

0 0 0 0 0 1

1 4 11 1 1 1

3 15 15 3 15 15





h

0

4

15

0

0

1

15

0

t

 
(3.50) 

4

4

Iteration 4

3 1 0 0 2 0

0 3 0.8 1 0.2 0.2

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

1 1 0.2 0 0.2 0.2

0 0 0 0 0 1

0 0.2 0.2 1 0.2 0.2

   

 

  

h

2.2

1

1

0

0.8

0

t

 
(3.51) 

Final Table

3 1 4 0 2 0

3 3 11 1 2 2

1 1 5 0 1 1

0 1 5 0 1 1

0 0 0 1 0 0

1 1 4 0 1 1

0 0 0 0 0 1

 







 (3.52) 

 

The corresponding null space matrix, L, is given by (3.53). 

 

1 0 0 1 0 0

2 1 1 0 1 1

T
  

  
 

L  (3.53) 
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It can be verified that L
T
 = W as given in (3.3). It is also shown that only the columns 

corresponding to the nonzero pivots are processed. Thus, the null-space method may be used to 

improve the efficiency in calculating the test matrix in observability analysis. 

 

3.10  Discussion: Effect of Branch Reactance on Numerical Observability 

Analysis 

 

In numerical observability analysis, the DC decoupled model and unit branch reactance are 

widely adopted for simplification of expressions and improvement of calculation efficiency. 

However, it has been discovered by the author during the research in observability analysis that 

the choice of the branch reactance does affect the values of the test matrix and thus the 

identification of observable islands (examples will be given in the following sections). It might 

be suggested by readers that it is not compulsory to correctly identify observable islands by 

using the proposed method based on the PCIR. These comments are given based on the fact 

that the measurement Jacobian matrix, the test matrix and thus the identified observable islands 

will be different if different values of branch reactance are used. There are two major concerns 

about the effect of branch reactance in numerical observability analysis: using alternative 

branch reactance and using real branch reactance to avoid pathological cases. It will be shown 

in the following subsections that both of the suggested methods cannot totally avoid both types 

of pathological case. 

 

3.10.1 Alternative Branch Reactance for Numerical Observability Analysis 

 

One of the major alternative methods for avoiding pathological cases is to use alternative / 

arbitrary branch reactance for building up the network model. However, after conducting 

extensive simulations for the IEEE 14 Bus Test System, it was concluded that varying the 

branch reactances could remove pathological cases for a certain scenario but could then result 

in different sets of pathological cases. As such, changing the branch reactances cannot 

guarantee that the existence of pathological cases is excluded. To demonstrate this, an example 
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is given below where the use of an alternative branch reactance can lead to a pathological case 

while the use of unit branch reactance can correctly identify observable islands: 

 

Consider a six bus network and its measurement placement shown in Figure 3-7. 

1 2 3

456

 

Figure 3-7: Six Bus System and the Measurement Placement 

 

The measurement Jacobian matrix is given in (3.54) with all branch reactances equal to 1 per 

unit except for that of Branch 4-5, which is set to 2 per unit.  

 

1 4 1 1 1 1

1 1 0 2 5 1

0 0 1 1 0 0

0 0 0 0 1 1

     
 
   
 
 
 

 

H  (3.54) 

 

The corresponding test matrix is given by (3.55): 

 

2 0 1 1 0 0

3 1 0 0 1 1

 
  
 

W  (3.55) 

 

The identified observable islands are as follows: {1}, {2, 5, 6}, {3, 4}, and both of the injection 

measurements are determined to be irrelevant injection measurements. Thus, PCIR = Rd(G) + 

nIII – nUC = 2+2-3=1>0, indicating that this is a pathological case. After removing all irrelevant 

injection measurements, it is easy to find the 4 observable islands since there are only flow 

measurements: {1}, {2}, {3, 4}, {5, 6}. This implies that Branch 2-5 is a pathological branch. 

In contrast, when unit reactances are used for every branch, all 4 observable islands could be 
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successfully identified without iterations. The measurement Jacobian matrix and the test matrix 

for the unit branch reactance case are given in (3.56) and (3.57) respectively. 

 

1 4 1 1 1 1

1 1 0 1 4 1

0 0 1 1 0 0

0 0 0 0 1 1

     
 
   
 
 
 

 

H  (3.56) 

  

1.2 0.2 1 1 0 0

2.2 0.8 0 0 1 1

 
  
 

W  (3.57) 

3.10.2 Actual Branch Reactance for Numerical Observability Analysis 

 

The other alternative method for preventing pathological cases in the test matrix based 

observability analysis is to use actual branch reactances. However, when actual reactances are 

used, it is still possible to have pathological cases and pathological branches because of the 

coincidence of linear combinations.  

 

Although intuitively it seems impossible to have such coincidences, since the branch 

reactances are almost random (with precision to 10
-6

), it is still possible to find a number of 

pathological cases in the very simple IEEE 14 Bus Test system such as given in the example 

below: 

 

The diagram of the IEEE 14 Bus Test System and the measurement placement are shown in 

Figure 3-8. 
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Figure 3-8: IEEE 14 Bus Test System and the Measurement Placement 

The reactances of the branches in the IEEE 14 Bus Test System are given in the table below: 

 

Table 3-5: Branch reactance for IEEE 14 Bus Test System 

Branch # From Bus # To Bus # Reactance (per unit) 

1 1 2 0.05917 

2 1 5 0.22304 

3 2 3 0.19797 

4 2 4 0.17632 

5 2 5 0.17388 

6 3 4 0.17103 

7 4 5 0.04211 

8 4 7 0.20912 

9 4 9 0.55618 

10 5 6 0.25202 

11 6 11 0.19890 

12 6 12 0.25581 

13 6 13 0.13027 

14 7 8 0.17615 

15 7 9 0.11001 

16 9 10 0.08450 

17 9 14 0.27038 

18 10 11 0.19207 

19 12 13 0.19988 

20 13 14 0.34802 
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3.10.2.1 Results When Actual Branch Reactances Are Used 

 

When actual branch reactances are used, the measurement Jacobian matrix is calculated and is 

given by: 

 

0 -0.19797 0.369 -0.17103 0 0 0 0 0 0 0 0 0 0

0 -0.17632 -0.17103 1.15476 -0.04211 0 -0.20912 0 -0.55618 0 0 0 0 0

-0.22304 -0.17388 0 -0.04211 0.69105 -0.25202 0 0 0 0 0 0 0 0

0 0 0 0 -0.25202 0.837 0 0 0 0 -0.1989 -0.25581 -0.13027 0

0 0 0 0 0 0 -0.17615 0.17

H

615 0 0 0 0 0 0

0 0 0 -0.55618 0 0 -0.11001 0 1.02107 -0.0845 0 0 -0.27038 0

0 0 0 0 0 -0.1989 0 0 0 -0.19207 0.39097 0 0 0

0 0 0 0 0 0 0 0 -0.27038 0 0 0 -0.34802 0.6184

0.22304 0 0 0 -0.22304 0 0 0 0 0 0 0 0 0

0 0 0 0.20912 0 0 -0.20912 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.0845 -0.0845 0 0 0 0

0 0 0 0 0 0 0 0 0.27038 0 0 0 0 -0.27038

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

(3.58) 

 

According to its definition, the test matrix is calculated as given in (3.59): 

0.21421835 -0.03364963 0.01805316 0 0.21421835 0.42102742 0 0 0 0 0.21421835 1 0 0

0.78578165 1.03364963 1.01805316 1 0.78578165 0.57897258 1 1 1 1 0.78578165 0 1 1

 
  
 

W

 

(3.59) 

By grouping the buses whose columns in the test matrix are the same as one observable island, 

the following observable islands are identified: {1, 5, 11}, {2}, {3}, {4, 7, 8, 9, 10, 13, 14}, 

{6} and {12} (which are incorrect). The irrelevant injection measurements in this case are the 

injection measurements located at Buses 3, 4, 5, 6 and 11. Thus, PCIR = Rd(G) + nIII – nUC =  

2+5-6 = 1 > 0, indicating this is a pathological case. After removing the irrelevant injection 

measurements from the measurement set, the new measurement Jacobian matrix is formed as 

given by (3.60): 

 

0 0 0 0 0 0 -0.17615 0.17615 0 0 0 0 0 0

0 0 0 -0.55618 0 0 -0.11001 0 1.02107 -0.0845 0 0 0 -0.27038

0 0 0 0 0 0 0 0 -0.27038 0 0 0 -0.34802 0.6184

0.22304 0 0 0 -0.22304 0 0 0 0 0 0 0 0 0

0 0 0 0.20912 0 0 -0.20912 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.0845 -0.0845 0 0 0 0

0 0 0 0 0 0 0 0 0.27

H

038 0 0 0 0 -0.27038

 
 
 
 
 
 
 
 
 
 
 

 

(3.60) 

 

The new test matrix is given by： 
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0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 1 1 1 1 0 0 1 1

 
 
 
 
 

  
 
 
 
 
 

W  (3.61) 

From the new test matrix, a different set of observable islands is identified: {1, 5}, {2}, {3}, 

{4, 7, 8, 9, 10, 13, 14}, {6}, {11} and {12}. Since there is no irrelevant injection measurement, 

the observable islands identified after this iteration are correct according to Property 2’ of the 

test matrix as proposed in the manuscript. This can also be verified with PCIR: PCIR = Rd(G) 

+ nIII – nUC = C = 7+0-7 = 0. 

 

3.10.2.2 Results When Branch Reactances Are 1 Per Unit 

 

When the reactance of all branches is changed to 1 per unit, the corresponding measurement 

Jacobian matrix is given by: 

 

0 -1 2 -1 0 0 0 0 0 0 0 0 0 0

0 -1 -1 5 -1 0 -1 0 -1 0 0 0 0 0

-1 -1 0 -1 4 -1 0 0 0 0 0 0 0 0

0 0 0 0 -1 4 0 0 0 0 -1 -1 -1 0

0 0 0 0 0 0 -1 1 0 0 0 0 0 0

0 0 0 -1 0 0 -1 0 4 -1 0 0 -1 0

0 0 0 0 0 -1 0 0 0 -1 2 0 0 0

0 0 0 0 0 0 0 0 -1 0 0 0 -1 2

1 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 -1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 -1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 -1







H


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(3.62) 
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The test matrix in this case is given by: 

 

0.08450704 -0.05633803 -0.02816901 0 0.08450704 0.30985915 0 0 0 0 0.15492958 1 0 0

0.91549296 1.05633803 1.02816901 1 0.91549296 0.69014085 1 1 1 1 0.84507042 0 1 1

 
  
 

W

 

(3.63) 

Observing the columns of the test matrix, the identified observable islands are: {1, 5}, {2}, 

{3}, {4, 7, 8, 9, 10, 13, 14}, {6}, {11} and {12}. This is the correct solution and is the same as 

that of the previous case. The irrelevant injection measurements are the injection measurements 

at Buses 3, 4, 5, 6 and 11. Thus, it is verified that the identification result using unit reactances 

is correct: PCIR = Rd(G) + nIII – nUC = 7+0-7 = 0. 

 

In conclusion, if all possible pathological cases are expressed as a certain set of branch 

reactances, say Set k, as the set Pk, then the following three sets, Pk, Pi -Pk and Pk –Pi, are not 

all guaranteed to be empty sets, regardless of the choice of branch reactances, especially for 

large systems with more complex topologies. The most reliable and convenient way to identify 

pathological cases is to use PCIR, as it can guarantee the removal of pathological cases, 

regardless of the chosen branch reactances. 

 

3.11  Summary  

 

In this chapter, a new numerical method for observability analysis has been proposed based on 

the pathological case identification rule (PCIR). The existing numerical method for 

observability analysis is found to be flawed and may cause incorrect results of identified 

observable islands in some certain cases that are named pathological cases. The underlying 

theorem of the existing numerical method is revised, and a new fully iterative method for 

numerical observability analysis has been proposed that guarantees the correct identification of 

observable islands. However, unnecessary iterations drastically slow down the execution speed, 

and affect the observability analysis when it is applied online. For this purpose, a screening 

rule, PCIR, is proposed that is capable of sifting out normal cases while giving extra iterations 

for pathological cases. In addition, with the help of PCIR, observable islands can be identified 

directly from the test matrix using the direct island (DI) method. The simulation results 
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demonstrate that the proposed iterative algorithm that combines the PCIR based screening rule 

and the DI method is 2 to 3 times faster than the direct branch (DB) method which is widely 

adopted by the existing numerical methods in multiple networks ranging from IEEE 14 Bus 

Test System to 2736 bus test system. The limitations of the existing numerical observability 

methods are taken into account as well as the limitations of the proposed method that is 

designed for networks with only conventional measurements. Thus, a new scheme for 

including the synchronised measurements from the PMUs is also proposed.  A highly efficient 

alternative method for Cholesky factorisation is also presented, and some discussions are given 

about the effect of branch reactance in numerical observability analysis and the reasons why 

pathological cases cannot be avoided by changing the values of branch reactance. 
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Chapter 4 Optimal Phasor Measurement Unit Placement 

 

 

This chapter presents a new method for optimal Phasor Measurement Unit (PMU) placement in 

the presence of conventional measurements. The proposed method can guarantee that the PMU 

placement found can support full network observability in networks with existing conventional 

measurements. It also reduces the occurrence of suboptimal solutions compared to the existing 

methods. 

 

4.1 Introduction 

 

As the core and enabler of the Wide Area Monitoring System (WAMS) Synchronised 

Measurement Technology (SMT) is closely associated with the development of a range of 

processes including economic evaluation, feasibility and gap analyses, implementation 

schedule planning and system studies. Thus, research into optimal PMU placement could 

benefit a large number of SMT applications such as open and closed loop control, post-

disturbance event analysis, protection, situational awareness, system model validation, 

visualisation and early warning systems.  

 

The methodologies of optimal PMU placement must consider two different types of criteria, 

the application criteria and infrastructure criteria as listed below: 

 

 Application Criteria 

 Angular Separations 

 Black Start 

 Critical Paths 

 FACTS Controls 

 Islanding, Separation and Restoration 

 Major Generation and Load 
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 Oscillations 

 Renewable Integration 

 State Estimation 

 Tie Line Flows 

 Infrastructure Criteria 

 Aggregate Sites 

 Automated P&C Systems 

 NERC PRC – 002 

 Security 

 

The application criteria are based on the application to be used. In addition, the effectiveness of 

the PMU is highly dependent on the used application it will support. Thus, it is possible that, 

with the one placement, the PMU placement will be highly efficient for one application but 

inefficiently for another application. In this thesis, only the application criterion for state 

estimation, which is network observability, is considered. Thus, objective the optimal PMU 

placement considered in this Thesis is to minimise the number of PMUs placed in the network 

while ensuring network observability. The effects of the locations of the PMUs on other 

application criteria will not be considered. 

 

There is extensive literature on optimal PMU placement for network observability that 

considers different constraints, optimisation algorithms and scenarios (such as loss of branch 

and loss of PMUs). Integer linear programming (ILP) is the most popular optimisation 

algorithm because of its high accuracy, ease of implementation and flexibility. In 2012 a 

taxonomy [114] of the optimal PMU placement methods classified the existing methods into 

six categories according to the scenarios considered: single branch loss contingency [115]-

[125], PMU outage contingency [116]-[119], [122]-[126], single line outage or single PMU 

loss contingency [116], [118]-[121], [127]  the limits of PMU channel capacity (the maximum 

number of current phasor measurements that can be measured by the PMU) [116], [128]-[129], 

the effect of virtual measurements such as zero injection measurements [115]-[117], [126], 

[128], [130]-[146], and the effect imposed by the conventional measurements [118]-[119], 

[126], [134], [140], [143]-[150]. Recently, research on optimal PMU placement has given 
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increasing attention to solving the problem in the presence of conventional measurements. This 

is mainly because of the interest in developing hybrid state estimators that use a mixture of 

conventional measurements and PMU measurements. In addition, zero injection 

measurements, which have the same effect in observability analysis as the injection 

measurement, can be assumed for any bus that has neither generation nor load. These 

measurements do not provide direct observability of the buses in the network, but they allow 

fewer PMUs to be placed if the PMUs are properly placed. 

 

Most of the algorithms for optimal PMU placement in the presence of conventional 

measurements are developed based on Kirchhoff’s Current Law (KCL) [117]-[120]. According 

to KCL, a group of buses will be fully observable if one of the buses has an injection 

measurement or is neighbouring to a bus incident with an injection measurement, and the rest 

of the buses are observed by the PMUs, then all of these buses will be observable. However, 

the KCL based method can only guarantee optimal PMU placement when no bus incident with 

an injection measurement neighbours to another bus incident with an injection measurement, 

which is quite unrealistic in real networks. If this condition is not satisfied, the KCL based 

method might not give correct placements, the placements that can ensure full observability of 

the network. There are also some other methods that are developed based on observability 

analysis of the network [120], [134]. The observable islands identified in the observability 

analysis are regarded as individual buses in the new network. It is also assumed that there is no 

existing conventional measurement in the new reduced network. However, this assumption 

might not always hold. As mentioned in the previous chapter there might be irrelevant injection 

measurements that are incident to multiple observable islands, which means that they will 

increase the rank of the gain matrix, and must not be neglected when finding the optimal PMU 

placement. 

 

In this thesis, an efficient method is proposed that overcomes the problems of the existing 

methods by using a network transformation scheme and a novel global observability criterion. 

The network transformation scheme creates a reduced network model that contains only 

injection measurements. It is also based on the observability analysis, but it also considers the 

effect of irrelevant injection measurements, while the other measurements which do not affect 
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the observability of the network are discarded. The network transformation scheme is required 

for the algorithm because it is difficult to find a global observability criterion for a network 

with multiple types of conventional measurement, and it will be difficult to implement it with 

ILP even if such an observability criterion exists. A global observability criterion is thus 

designed for networks that only possess irrelevant injection measurements. Global 

observability means that it considers the observability of the entire network rather than that of a 

group of buses near a particular injection measurement. Hence, the proposed algorithm can 

offer better placement solutions than the existing two types of method for the following two 

reasons, respectively.  

1  The proposed method can guarantee that the PMU placement solution can always 

support network observability, while the KCL based methods might give the wrong 

solutions that cannot make the system observable due to its local observability criterion 

used.  

2  The proposed method considers the effects of the irrelevant injection measurements 

while the observability analysis based method does not take these measurements into 

consideration. Furthermore, the proposed method can also reduce the execution time 

due to the reduced size of the network especially in cases where the number of 

observable islands is much smaller than the number of buses in the network. 

 

Regarding the later sections of this chapter, a new network transformation scheme will be 

presented in Section 4.2, a new network observability criterion will be proposed in Section 4.3, 

the proposed algorithm will be presented in Section 4.4, the advantages of the proposed 

method compared to the existing methods will be discussed in Section 4.5, the simulation 

results will be presented in Section 4.6, and a summary of this chapter will be given in Section 

4.7. 

4.2 The Network Transformation Scheme 

 

The network transformation scheme is proposed as follows: 
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1. Identify the observable islands and irrelevant injection measurements using 

observability analysis. 

2. Create a reduced network, where the buses are the observable islands in the original 

network, and the injection measurements that measure the power flow injected from 

parts of its connected branches are the irrelevant injection measurements in the original 

network. 

3. Form the bus to placement incident matrix, A. 

 

The aim of the network transformation scheme is to transform the network, which consists of 

multiple types of conventional measurements, into a reduced network that only has injection 

measurements. This makes it possible to use the global observability criterion proposed in the 

next section. An example of using the network transformation in the IEEE 14 Bus Test System 

is presented below: 

 

Consider the IEEE 14 Bus Test System with the measurements shown in Figure 4-1, five 

observable islands are identified after observability analysis: {1;2;3;4;5}, {6;12;13;14}, {7;8}, 

{9;10} and {11}, and the injection measurements incident to Bus 4, Bus 9, Bus 11 are 

identified to be irrelevant injection measurements. As discussed in the previous chapter, the 

irrelevant injection measurements are defined as the injection measurements incident to 

multiple observable islands [110]. Following the steps set out above, the network is 

transformed into a network of reduced size as shown in Figure 4-2.  

 

Since in the transformed network every bus represents an observable island in the original 

network, a PMU placed in the transformed network might not be able to measure the current 

phasors of all the branches connected. For example a PMU placed at Bus 5 of Island 1 (Bus 1 

in the transformed network) can only measure the current phasor incident to Island 2 (Bus 2 in 

the transformed network). Here placement is defined as a PMU placed at a given bus 

measuring the current phasors incident to given branches. Thus, a bus can have multiple 

placements, and each placement is unique. The bus to placement incident matrix is expressed 

and explained in (4.1) and (4.2) respectively. 
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1 1 1 0 1 1 0 0

0 1 1 1 0 1 0 1

1 0 0 0 1 1 0 0

1 0 0 1 1 1 1 1

0 0 1 0 0 0 1 1

 
 
 
 
 
 
  

A  (4.1) 

0  if Bus  is not measured by PMU with Placement 

1  if Bus  is measured by PMU with Placement      
ij

i j

i j


 


A  (4.2) 
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Figure 4-1: IEEE 14 Bus Test System and the Measurement Placement 
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Figure 4-2: Transformed Five Bus Network and the Measurement Placement 

 

Eight placements are found in the transformed network, as summarised in Table 4-1. Each 

placement in the transformed network represents a PMU placement in the original network that 
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connects two observable islands. For example, Placement 1 that only measures the current 

phasor of the branch connecting Bus 2 in the transformed network represents a PMU placed at 

Bus 5 in Observable Island 1 in the original network, while Placement 2 that measures that 

connecting Bus 3 and Bus 4, represents a PMU placed at Bus 4. The irrelevant injection 

measurements incident to Bus 4, Bus 5 and Bus 11 are represented as injection measurements 

incident to their corresponding placements in the transformed network, as shown in Table 4-1. 

The placements incident with the injection measurements will be treated differently from the 

other placements and this will be explained in the next section. 

 

Table 4-1: Placement Available in the Transformed Network 

 At Bus # To Bus # With injection measurement? 

Placement 1 1 2 No 

Placement 2 1 3,4 Yes 

Placement 3 2 1,5 No 

Placement 4 2 4 No 

Placement 5 3 4 No 

Placement 6 4 1,2,3 No 

Placement 7 4 5 Yes 

Placement 8 5 2,4 Yes 

 

4.3 Network Observability Criterion 

 

For any network that only has injection measurements (including the zero injection 

measurements), the optimal PMU placement can be found following the observability criterion 

presented below: 

 

Theorem 4.1:  A network with q buses incident with injection measurements will be fully 

observable if the remaining p buses that are not incident with injection measurements are 

observed by the PMUs. 
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Proof for Theorem 4.1: 

Define matrix C as the network connection matrix. The definition of the entries of C is given 

in (4.3): 

1  Bus  is the sending bus of Branch 

1  Bus  is the receiving bus of Branch 

0  Otherwise                                        

ik

k i

C k i




 



 (4.3) 

Define matrix Cq as the sub-matrix of C consisting of the columns corresponding to the q 

buses incident with injection measurements. Then, the sub-matrix of the measurement Jacobian 

matrix corresponding to the placements with the q injection measurements, Hq, can be 

expressed as given in (4.4): 

 

T

q q qH C C  (4.4) 

 

After a number of row eliminations and matrix permutations, the measurement Jacobian 

matrix, H, of all measurements including the injection measurements and the newly placed 

PMU measurements are given in (4.5): 

 

p

T

q q

 
  
 

I 0
H

0 C C
 (4.5) 

 

H is of full rank because Cq is of full rank, and for any vector or matrix, x, rank(x) = rank(x
T
x). 

After a number of row eliminations and matrix permutations, any C can be expressed by (4.6): 

 

1 1

1 1

 
 
 
 
 
 

C

R

 (4.6) 

 

where R represents the redundant part of C. rank(C)=rank(Cp+q-1) = p+q-1 because the sum of 

each row of c is 0 and an identity matrix of dimension p+q-1 can be obtained after deleting one 
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column from C and performing Gaussian elimination. Since Cp+q-1 is of full rank, the matrix 

composed by any columns of Cp+q-1 is also of full rank. So Cq has full rank. 

 

End of the Proof 

 

The observability criterion proposed above can be easily implemented with ILP as expressed in 

(4.7) and (4.8): 

 

min T
c x  (4.7) 

. .s t Ax b  (4.8) 

where c is the placement cost coefficient vector, x is the vector of placements, A is the bus to 

placement incidence matrix, and b is the vector consisting of linear equality constraints, in 

which the elements corresponding to placements incident with injection measurements are set 

to be 0 and the other elements are set to be 1. Since the elements of A and x can are non-

negative the zero constraints in b are released constraints. In other words, the constraints 

corresponding to the buses incident with injection measurements could be removed without 

changing the final result of PMU placement. 

4.4 The Proposed Algorithm 

 

Based on the network transformation scheme presented in Section 4.2 and the new 

observability criterion proposed in Section 4.3, A new algorithm for optimal PMU placement 

taking the presence of conventional measurement into account is described as follows: 

1. Transform the network into a reduced form following the steps as described in Sections 

4.2. 

2. Obtain the optimal placement in the transformed network using ILP according to the 

optimisation function and constraints given in (4.7) and (4.8), respectively. 

3. Obtain the optimal PMU placement in the original network. 

 

The steps presented above can be summarised in Figure 4-3. 
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Figure 4-3: Block Diagram of the Proposed Algorithm for Optimal PMU Placement 

4.5 Advantages of the Proposed Method Compared to the Existing Methods 

4.5.1 KCL Based Methods: Possible Failure for Correct Placement Solution 

 

The major problem of the KCL based methods (algorithm given in Appendix D.1) is that its 

PMU placement results can fail to make the network observable. The basic aspects of the KCL 

based method are given below: 

 

If a bus is placed with a PMU or directly neighbouring a bus placed with a PMU, this bus is 

said to be reached by PMU. Define the number of times of Bus i reached by PMUs, yi. To 

ensure observability, for buses not incident with any conventional measurements, yi should be 

not less than 1, while for a group of n buses associated with conventional measurements they 

should obey the following constraint: 

 

1 2 1i i iny y y n      (4.9) 

According to KCL, n buses that are incident with an injection measurement or that neighbour a 

bus incident with an injection measurement will be observable if any n-1 of them are observed 

by PMUs. This condition is not always true with the constraint expressed by (4.9), since it is 

possible that yi > 1. For example, let yi1 = 2, yi2 = 0, yi3 = 0, and yi = 1, for i > 4, the inequality 

constraint shown by (4.9) still holds but 2 of the n buses are not observed by PMUs. In these 

cases the PMU placement obtained with the KCL method might fail to make the system fully 

observable. 

 

Simulations have been conducted in the IEEE 14 Bus Test System to check the correctness of 

both the proposed method and the KCL based methods. All 2
14

 possible placements of 
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injection measurements without the presence of other types of conventional measurement are 

investigated in the simulations. The simulation results are summarised in Table 4-2 and Table 

4-3. 

 

 

Table 4-2: Correct Placement Found 

 
KCL based 

method 

Proposed 

method 

Correct 

Solutions 

Found 

96.71% 100% 

 

Table 4-3:  Examples of Failed PMU Placements Using the KCL Method 

 Injection 

measurements 

placed at Buses 

PMU placement at 

Buses 

Case 1 3, 11 5, 7, 13 

Case 2 3, 5 6, 7, 9 

Case 3 2, 11 5, 7, 13 

 

4.5.2 Sub-Optimal Solutions of KCL Based Methods and Observability Analysis Based 

Methods 

 

The placement given by the KCL based methods might not restore the observability of the 

network with the minimum number of PMUs. This is shown with an example given below: 

 

Consider a six bus network with the measurement placement shown in Figure 4-4. 

 



Chapter 4 – Optimal Phasor Measurement Unit Placement 

118 

53 421 6

   :P,Q injection  

 

Figure 4-4: Six Bus Network and the Measurement Placement 

 

According to Theorem 1, the network will be fully observable by placing a PMU at either Bus 

1, Bus 2, Bus 5 or Bus 6. This can be easily validated by checking the rank of the measurement 

Jacobian matrix that consists of both the conventional measurements and the added PMU 

measurements. The constraints of the proposed method are given by: 

 

1

6

1

1

y

y





 (4.10) 

In comparison, the KCL based method has the following constraints: 

 

1 2 3

2 3 4

53 4

54 6

2

2

2

2

y y y

y y y

y y y

y y y


 



 

 

 

 

 

 (4.11) 

It can be observed that it is impossible to satisfy every constraint given in (4.11) with only one 

PMU because a PMU at the given six-bus network can only reach three buses at most. Thus, 

the KCL based method suggests that two PMUs are placed in the network to restore system 

observability.  

 

As mentioned in the previous sections, the obvious flaw of the observability analysis based 

method (algorithm given in Appendix D.2) in finding the optimal PMU placement is that the 

effects of the irrelevant injection measurements are neglected. In the example in Section 4.2, 

the constraints of the proposed method in the transformed network and the observability 

analysis based method are given in (4.12) and (4.13) respectively. 
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x x x x x

x x x

x x x x x x

x x x
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

    
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  
      


  

 (4.12) 

2 3 4 6 8

1 5 6

1

1

x x x x x

x x x

    


  
 (4.13) 

where xi constitutes the placement decision vector, x, xi = 1 means that the i
th

 placement is 

placed with a PMU, and xi = 0 means that it is not. It can be observed that at least two PMUs 

are needed to satisfy the five constraints given by (4.12), while only one PMU in Placement 6, 

which in the original network corresponds to Bus 9, is required to satisfy the constraints given 

in (4.13).  

4.6 Simulation Results 

 

In this section, the results of two simulations are presented, which are conducted for the IEEE 

14 and 57 Bus Test Systems [151], respectively. The integer linear programming function in 

MATLAB is applied to solve the optimisation problem. 

4.6.1 IEEE 14 Bus Test System 

 

In this simulation both flow measurements and injection measurements are considered. Details 

of the measurement placement and the result of PMU placement are included in Table 4-4 and 

the network topology of the IEEE 14 Bus Test System (data sheets given in Appendix C.1) is 

shown in Figure 4-1.  

 

It was also discovered in the simulations that the execution time of the proposed method and 

the existing methods change significantly with different placements of conventional 

measurements. The conclusion is that the observability analysis based method and the 

proposed method require less time to identify the optimal placement for networks with fewer  

observable islands, and vice versa. 
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Table 4-4: Details of the Simulation in the IEEE 14 Bus Test System 

Injection measurement at Bus# 1, 6, 7, 8, 9, 11, 13 

Flow measurement From Bus# to Bus# 4-5, 10-11, 13-6 

PMU suggested to be placed at Bus# (Proposed method) 4, 13 

PMU suggested to be placed at Bus# (KCL based method) 3, 6, 9 

PMU suggested to be placed at Bus# (Observability 

analysis based method) 
2, 6, 9 

4.6.2 IEEE 57 Bus Test System 

 

The simulation in the IEEE 57 Bus Test System (network diagram given in Appendix C.3) 

[113] involves 50 conventional measurements, including 40 power flow measurements and 10 

injection measurements. The measurement placement and the PMU placement results are given 

in Table 4-5 and the topology of the IEEE 57 Bus Test System is shown in Figure 4-5: 

 

Table 4-5: Details of the Simulation in the IEEE 57 Bus Test System 

Injection measurement at Bus# 23, 26, 31, 33, 34, 36, 38, 48, 55, 57 

Flow measurement at Branch # 

1, 2, 6, 8, 11, 12, 14, 16, 17, 18, 19, 21, 24, 25, 28, 

30, 32, 38, 40, 42, 44, 46, 50, 51, 53, 56, 59, 60, 64, 

65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 

PMU suggested to be placed at 

Bus# (Proposed method) 
12, 15, 19, 24, 29, 33, 34 

PMU suggested to be placed at 

Bus# (KCL based method) 
3, 7, 10, 15, 21, 24, 34, 37, 41, 47, 53 

PMU suggested to be placed at 

Bus# (Observability analysis 

based method) 

19, 24, 29, 32, 36, 38, 49, 57 
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Figure 4-5: IEEE 57 Bus Test System 

 

4.7 Summary 

 

In this chapter, a new method for optimal PMU placement in the presence of conventional 

measurements is proposed. The proposed method is used to solve the problem of optimal PMU 

placement for both IEEE 14 and 57 Bus Test Systems using integer linear programming (ILP) 

implemented in MATLAB. It is shown that the two types of existing method in literature, 

Kirchoff Law Current (KCL) based methods and observability analysis based methods, are 
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susceptible to sub-optimal problems, i.e. they might not give the placement that can restore 

network observability with the least number of PMUs. The sub-optimal problem of the 

observable analysis based method is solved with a network transformation scheme, while that 

of the KCL based method is tackled by proposing a global observability criterion which 

considers the eligible PMU placements that might be neglected by the KCL based methods. 

The global observability criterion is proved mathematically, and demonstrated with simulations 

in the IEEE 14 Bus Test System, taking into consideration all possible existing placements of 

injection measurements. The shortcoming of the proposed method is that it might also omit 

some eligible PMU placements. Thus, it is possible that in certain cases the proposed method 

has sub-optimal problems while the KCL based method can obtain the right solution. 

Nevertheless, the biggest problem of the KCL based method is that it cannot guarantee that the 

placement solution can restore the network observability. The simulation results show that the 

KCL based method will obtain erroneous solutions for 3.29% of the possible injection 

measurement placements in the IEEE 14 Bus Test System, while the proposed method can 

always guarantee a correct placement solution. This number is quite high since ensuring 

observability is the substantial task of optimal PMU placement. So, it is concluded that the 

method proposed in this chapter provides better overall results than the two types of existing 

methods for optimal PMU placement in the presence of conventional measurements. The 

future work on this topic would focus on defining the value of the PMUs placing at each of the 

buses, and thus finding the best solution from all eligible PMU placements. 
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Chapter 5 Hybrid State Estimation 

 

 

The existing open literature offers a number of solutions for designing hybrid state estimators 

(HSEs) and it is not clear which one and why can be considered as more appropriate for 

practical applications. That is why such an assessment has a particular value, particularly for 

electrical power industry, keen to design as efficient as possible Energy Management Systems 

(EMS). So, this chapter provides a comparison of the performance of five different 

formulations of in terms of their estimation accuracy, execution time and convergence. A 

comprehensive simulation study was conducted for the IEEE 14 Bus Test System considering 

all possible PMU placements. The conclusions drawn in this simulation study are then verified 

using further simulations for the IEEE 118 Bus Test System. Furthermore, the conclusions 

regarding the estimation accuracies of the HSEs are then verified and explained using 

mathematical derivations. In addition to this, this chapter also presents research results about 

the performance of the HSEs in the presence of gross errors and model errors.  

 

5.1 Introduction 

 

The development of Synchronised Measurement Technology (SMT) has received much 

attention in recent years [152]-[153]. One of the applications in the EMS that directly benefits 

from SMT is state estimation. This is because the PMU measurements are reported at a rate of 

50 to 100 Hz and these measurements (voltage phasors and current phasors) are linearly related 

to the states [154]. Therefore, provided a power system is completely observable using PMUs, 

a linear state estimator can solve the system state using a non-iterative procedure [155]-[156]. 

LSE greatly reduces the calculation load of the online state estimation process. In addition, the 

high sampling rate of the PMU measurements (100 times faster than that provided by the 

RTUs) allows real-time monitoring of the system. However, the high cost of installing the 

PMUs is a barrier to implementing LSE in the near future [157]. In response to this, the 

concept of hybrid state estimators (HSEs), which use both conventional and synchronised 
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measurements, began to be developed. An HSE uses existing state estimation resources (e.g. 

monitoring and communication assets) and new resources (e.g. PMUs and new computational 

assets) that may one day support LSE. Therefore, it is now more realistic and economically 

sound to exploit the advantages of both PMUs and the existing SCADA system by using a 

HSE that may serve as a transition from classical SE to LSE.  

 

Current research into hybrid state estimation can be classified into three categories: 

 

1. New methods for state estimation instead of the weighted least square method, 

2. The applications for HSE, and 

3. Methods of how to optimally integrating the conventional and synchronised 

measurements into the HSE. 

 

As mentioned in the Introduction, the alternative methods for state estimation include HSE 

applying the Taguchi differential evolution algorithm and HSE using Cubature Kalman Filter 

in a multi-agent system. The HSE has also been applied to enhance the performance of 

dynamic state estimation, and state estimation in the presence of HVDC links. Finally, in 

literature there are four different types of methods for integrating the synchronised 

measurements into a HSE, including the post-processing (PP) HSE, integrated HSE, fusion 

HSE [158], and distributed HSE [159].  

 

The aim of this chapter is to provide a comprehensive analysis of the different formulations of 

HSEs, including the estimation accuracy under Gaussian errors, parameter errors and gross 

errors, as well as the execution time and convergence property. 

 

In the following sections of this chapter, an overview of the HSEs will be presented in Section 

5.2, a comparison of HSE performance using exhaustive simulations in the IEEE 14 Bus Test 

System will be provided in Section 5.3, validation of the results using the IEEE 118 Bus Test 

System will be given in Section 5.4, mathematical analyses of the results regarding estimation 

accuracy will be provided in Section 5.5, the effect of gross errors and parameter errors will be 
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discussed in Section 5.6, and the summary of the research results presented in this chapter will 

be provided in Section 5.7. 

5.2 Overview of Hybrid State Estimators 

 

In this section, the structure and mathematical formulations of the abovementioned HSEs are 

presented. 

5.2.1 Post Processing HSE 

 

A post processing hybrid state estimator is composed of a classical state estimator and a linear 

state estimator that are executed in sequence. The output of the classical state estimator, the 

operation of which is unchanged by the HSE, is combined with the available PMU 

measurements to create a linear state estimator, see in Figure 5-1. 

 

Conventional State 

Estimator
Linear State Estimator

SCADA

Data
Existing State 

Estimate

Hybrid State 

Estimate

PMU Data

 

Figure 5-1: Post Processing Hybrid State Estimator 

 

The obvious advantage of a post processing HSE is that it continues to make use of the existing 

conventional state estimator. This should mean that a post processing HSE should be less 

complex / expensive to develop than other HSEs, as the LSE required for post processing is 

less complex than the new estimators required by integrated HSE. Furthermore, it does not 

require full observability from synchronised measurements, as a fusion estimator does, nor 

does it entail a shift away from centralised calculation. 

 

An operational advantage of leaving the conventional state estimator unchanged may be that it 

reduces the impact of any failures during the initial deployment of any post processing HSE, as 

the existing state estimate will still be available. However, the use of two stages of estimation 
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makes the post processing HSE more computationally complex than other HSEs. A 

disadvantage of using a post processing HSE in the long term is that the conventional state 

estimator, using measurements from RTUs, must have complete observability of the system. In 

the short term this will not be an issue, as the existing conventional state estimator will already 

have complete observability with a significant degree of redundancy. However, in the long 

term, as RTUs begin to age and fail, this complete observability may no longer be available 

and PMUs will be unable to compensate for this, as the conventional estimator will be unable 

to incorporate their measurements directly. Therefore, it may be necessary to invest in new 

RTUs, at a time when they have become an obsolete technology, to preserve the operation of 

the HSE until the system is able to gradually undergo the transition to a LSE. 

 

As the classical state estimator has been discussed in Chapter 2, in the remainder of this sub-

section, the formulation of a LSE and, how a classical state estimator and a LSE form a post 

processing HSE, are discussed in detail. 

 

5.2.1.1 Linear State Estimator 

 

If the input to an estimator solely consists of PMU data then the problems of time skew are 

avoided. The PMU data is time-tagged using the global positioning system (GPS) and updated 

at a rate that is approximately 100 times faster than that of the remote terminal units (RTUs) 

used in the existing SCADA system. A linear state estimator (LSE) is so named because of the 

linear relationship between the measurements and the states. The linearity of the estimator 

eliminates the need for iterations. It will be shown in the later part of this section that the 

estimation of LSE is only a single step matrix multiplication, although this step does depend on 

the results of some previous off-line calculations.  

 

The equations for a LSE will now be given, with reference to the pi equivalent circuit shown in 

Figure 5-2 [1], [160]-[162].  
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Figure 5-2: Pi Equivalent Circuit  

 

The linear relationship between the voltage and current measurements and the states are given 

as: 

 

0

0

1 0

0 1

p

q p

pq pq p pq q

qp pq pq q

V

V V

I y y y V

I y y y
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            
   

       

 (5.1) 

Define the incident matrix, A , whose elements are 1 for the transmitting bus of a current, -1 

for the receiving bus of a current, an 0 for unrelated buses. In the case shown by Figure 5-2 the 

incident matrix 
1 1

1 1

 
  

 
A . Define two vectors: the admittance vector, y, whose elements 

are the admittance that the currents are incident to; and the shunt admittance vector, ys, whose 

elements are the shunt admittance that the buses are incident to. Here 
T

pq pqy y   y  and 

0 0

T

s p qy y   y . Now, define 
T

p q pq qpV V I I   z as the measurement vector and 

T

p qV V   x as the states. From this, the following relationship can be discovered: 

 

s

 
  

 

I
z x

yA y
 (5.2) 
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where I  is the identity matrix. Since any complex electric circuit can be regarded as an 

assembly of many pi equivalent circuits, (5.2) is deduced from this simple pi equivalent circuit 

and can be extended for any power network without changing its matrix form. The only 

difference is that some voltage measurements might be missing, since not all buses will have 

their voltage phasors directly measured. In this case, matrix II, an identity matrix from which 

rows corresponding to missing bus voltages are removed, is used instead of I. Define 

s

 
  

 

II
B

yA y
 and the linear equation set is shown in (5.3): 

 

z Bx  (5.3) 

 

Equation (5.3) is also a set of over-determined equations. Similar to the classical state 

estimator, the estimate of the states can be obtained using the WLS method as given by (5.4): 

 

 
1

1 1ˆ T T


  x B R B B R z Mz  (5.4) 

 

Since the placement of measurement units is fixed at the time of the state estimate, the matrix 

M  can be calculated off-line and saved as a constant for calculating the states directly in the 

later state estimations if the topology of the system does not change.  

 

The variance of the magnitudes and angles of the voltages and the magnitudes and angles of 

the currents are usually given separately for classical state estimators. However, the states are 

all in rectangular form for the linear estimator. So, a problem is faced when representing the 

variance of the measurements in the LSE in a compatible way. This can be overcome by 

defining an area in the complex number space that is based on the standard deviations of the 

magnitude and angle of the measurements, as shown in Figure 5-3. 
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Figure 5-3: Standard Deviation of a Complex Number 

 

According to Figure 5-3, the standard deviation of a complex voltage is defined as: 

   
2 2

2 2 8C a m m a m m m a mV V V           . Similarly, the standard deviation of a 

complex current is defined as: 8C m a mI   . Because the variances are only used for 

weightings, dividing them by a common factor does not affect the final estimate. So, the 

variance of the complex voltages and currents are as given in (5.5) and (5.6): 

 

2 2 2 2

C m a mV    (5.5) 

2 2 2 2

C m a mI    (5.6) 

 

5.2.1.2 Integration of Classical SE and Linear SE 

 

A post-processing HSE uses the output of a classical SE and PMU data as the input to a LSE. 

However, whilst the LSE uses a rectangular form to describe the complex voltages, both the 

PMUs and classical SE use a polar form. Therefore, the measurements from the PMUs and the 

output of the classical SE must be transformed from polar form into rectangular form before 

they can be used by the LSE. The variance of the voltage magnitudes and angles are given by 

(5.7): 

 
1

 1 T -1
P G H R H  (5.7) 

 

(5.7) 
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Assuming that there is no correlation between these pseudo voltage measurements, the off-

diagonal elements are all replaced by 0 and the diagonal elements of P  are the variance of the 

voltage magnitudes and angles of all buses in the system. Combining this with (5.5) allows the 

variances of the complex voltages to be obtained. These variances of the pseudo voltages are 

then combined with those of the PMU measurements to construct a new variance matrix, 'P . 

 

Once transformed, the pseudo voltage measurements from the classical SE and the voltage and 

current phasor measurements from the PMUs are combined together to form the input of the 

LSE. The measurement-to-state equation for the LSE in a post processing HSE is given in 

(5.8):  

 

' '

 
 

 
 
  s

I

z II x B x

yA y

 (5.8) 

The final estimation is given by (5.9): 

 

 
1

1 1ˆ ' ' ' ' ' ' ' 'T T


  x B P B B P z M z  (5.9) 

5.2.2 Challenge of Including Current Phasor Measurements 

 

The various forms of integrated HSE described in the following section were all developed in 

an attempt to find the best way to address the challenge of including the phasor measurements 

of current into the HSE formulation. The inclusion of these current phasor measurements into 

the problem formulation is challenging because the partial derivatives of polar form variables 

(i.e. vector variables defined by a magnitude and angle 𝐼 ̅ = 𝐼∠φ) are vulnerable to singular 

points, see Figure 5-4 and Figure 5-7. These partial derivatives form the elements of the 

Jacobian matrix H and, as such, are integral to ensuring the proper behaviour of the state 

estimator. If singular points appear in the Jacobian matrix then the convergence and accuracy 

of the state estimator will be jeopardised. In contrast, if the current phasors are expressed in 

rectangular form then no singular points will appear, see Figure 5-8 – Figure 5-11. 
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Figure 5-4: Variation of Jacobian element  θij/ θi with 

respect to small changes of θi and Vi 
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Figure 5-5: Variation of Jacobian element  Iij/ θi  with 

respect to small changes of θi and Vi 
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Figure 5-6: Variation of Jacobian element  θij/ Vi  with 

respect to small changes of θi and Vi 
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Figure 5-7: Variation of Jacobian element  Iij/ Vi  with 

respect to small changes of θi and Vi 
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Figure 5-8: Variation of Jacobian element  IijR/ θi  with 

respect to small changes of θi and Vi 
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Figure 5-9: Variation of Jacobian element  IijI/ θi  with 

respect to small changes of θi and Vi 
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Figure 5-10: Variation of Jacobian Element  IijR/  Vi  

with Respect to Small Changes of θi and Vi 
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Figure 5-11: Variation of Jacobian Element  IijI/  Vi 

with Respect to Small Changes of θi and Vi 
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5.2.3 Integrated Hybrid State Estimator 

 

An integrated hybrid state estimator is so called because it combines (integrates) the SCADA 

data and PMU data into a single, iterative estimation process, as shown in Figure 5-12. 

 

RTU

Data

PMU Data

Hybrid State 

Estimate
Hybrid State 

Estimator

Combination of RTU and PMU 

data must  provide full observability 

 

Figure 5-12: Generic Diagram of an Integrated Hybrid State Estimator 

 

The common advantages of all forms of integrated HSE are reduced execution time, as only a 

single stage of calculation is required and the fact that both PMUs and RTUs can contribute to 

ensuring the state estimator has full observability. This will avoid the issues of ensuring 

observability in the long term that are faced by post processing HSEs. However, a common 

disadvantage is that completely new state estimator software must be developed. This software 

will be more complex than the new LSE software required by post processing and fusion HSEs 

and its development may prove quite expensive and may initially entail significant risk due to 

the introduction into a normal operation of a radically different state estimator.  

 

Furthermore, while a variety of methods have been proposed, the inherent complexity involved 

in combining dissimilar measurements into a single calculation will mean that the 

computational complexity of this type of HSE will be relatively high. 

 

The challenge of integrating polar form measurements into the state estimation procedure has 

resulted in a variety of integrated HSEs being proposed, each of which attempts to address this 

challenge in a different way. They exist in two groups: those methods that transform the 

current measurements into another form of measurement (e.g. rectangular current, power flow 

and voltage) or those that change the formulation of the HSE to accommodate the current 

phasors in their polar form. These variations are: 
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 Rectangular Current (RC) 

 Pseudo Flow (PF) 

 Pseudo Voltage (PV) 

 Constrained Formulation (CF) 

 

5.2.4 Rectangular Current HSE 

 

A simple idea for integrating the current measurements into the estimation procedure is to 

transform them from their original polar form into a rectangular form, which can be expressed 

alongside the states (voltage magnitudes and angles) in very simple mathematical expressions.  

 

A generalised formulation of the measurement vector, z , including the injection measurements 

and flow measurements from SCADA and the voltage and current measurements from PMUs 

is: 

 

T
T T T T T T T T

flow flow inj inj Vpmu Vpmu real imag
   z P Q P Q θ V I I  (5.10) 

 

where the state vector, x , is identical to the one used for classical state estimation. The 

transformation of the RC HSE can be expressed as: 

 

Re cosik al ik IikI I   (5.11) 

Im sinik ag ik IikI I   (5.12) 

The relationship between the currents and the system states is given by (5.13) and (5.14): 

 

   Re cos cos sin sin sin cosij al ij i i j j ij i i j j si i i si i iI g V V b V V b V g V            (5.13) 

   Im sin sin cos cos cos sinij ag ij i i j j ij i i j j si i i si i iI g V V b V V b V g V            (5.14) 

 

The corresponding Jacobian Matrix elements are given in Table 5-1. 
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Table 5-1: Elements of Jacobian Matrix corresponding to rectangular currents 

  ijReal

i

sin cos cos sinij i i ij i i si i i si i i

I
g V b V b V g V   




    


  

ijReal

i

cos sin sin cosij i ij i si i si i

I
g b b g

V
   


   


 

ijReal

j

sin cosij j j ij j j

I
g V b V 




 


 

ijReal

j

cos sinij j ij j

I
g b

V
 


  


 

ijImag

i

cos sin sin cosij i i ij i i si i i si i i

I
g V b V b V g V   




   


 

ijImag

i

sin cos cos sinij i ij i si i si i

I
g b b g

V
   


   


 

ijImag

j

cos sinij j j ij j j

I
g V b V 




  


  ijImag

j

sin cosij j ij j

I
g b

V
 


  


 

 

5.2.4.1 Propagation of Uncertainty 

 

When a random variable is transformed from one form to another form, or it is a function of 

other variables, the uncertainty in this variable will be propagated through this transformation. 

The uncertainty in measurements is often expressed as the variance of these measurements (σ). 

The variance of the transformed measurements must be calculated because their reciprocals are 

used as the weightings in WLS and they are usually different from those of the original 

measurements. 

 

The propagation of uncertainty from polar form to rectangular form is given by:  

 

2 2 2 2 2 2cos sinreal mag mag      (5.15) 

2 2 2 2 2 2sin cosimag mag mag      (5.16) 
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5.2.5 Pseudo Flow HSE 

 

The Pseudo Flow HSE integrates the current measurements into the HSE formulation by 

transforming them into pseudo flow measurements. The corresponding measurement vector, z, 

is: 

 

, ,

T
T T T T T T T T

flow flow inj inj pmu pmu flow pseudo flow pseudo
   z P Q P Q θ V P Q  (5.17) 

 

The elements in h(x)  that correspond to the pseudo flow measurements are: 

 

 , cosij pseudo i ij i ijP V I     (5.18) 

 , sinij pseudo i ij i ijQ V I     (5.19) 

 

The Jacobian Matrix elements that correspond to the pseudo flow measurements are calculated 

in the same way as they are for the conventional flow measurements, which is given in (2.26) - 

(2.33) . 

The calculation of the elements in h(x)  is much simpler, from a direct mathematical point of 

view, for the pseudo flow integrated HSE than it is for the pseudo voltage HSE. However, the 

corresponding rows in the Jacobian Matrix of the pseudo flows type are more complicated. In 

other words, the level of nonlinearity of the Jacobian matrix of the pseudo flows type is higher 

than that of the pseudo voltage type. 

 

5.2.5.1 Propagation of uncertainty 

 

The propagation of uncertainty from current measurements to pseudo flows measurements is 

shown in (5.20) and (5.21): 
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      
4

22

, ,

1

/ij pseudo ij pseudo

k

P P k k 


         p p  (5.20) 

      
4

22

, ,

1

/ij pseudo ij pseudo

k

Q Q k k 


         p p  (5.21) 

where   i i ij ijk V I    p ,     denotes the standard deviation of the variable specified. 

 

5.2.6 Pseudo Voltage HSE 

 

The pseudo voltage type of integrated HSE handles the current measurements by transforming 

them into pseudo voltage measurements of the adjacent buses. For this HSE, the formulation of 

the measurement vector, z, becomes: 

 

T
T T T T T T T T

flow flow inj inj pmu pmu pseudo pseudo
   z P Q P Q θ V θ V  (5.22) 

i k
ik ik

g jb

si si
g jb sk sk

g jb

 

Figure 5-13: Pi Equivalent Circuit of a Transmission Line 

 

With reference to Figure 5-13, assuming that Bus i  has a PMU installed and Bus k  does not, 

the voltage magnitude and angle of Bus i  are known, as it can be assumed they are directly 

measured by the PMU. Although Bus k  is not directly monitored by the PMU, its voltage 

magnitude and angle can be calculated using the voltage phasor from Bus i , the current phasor 

between the two buses, and the line parameters shown in Figure 5-13 using this expression: 

 

( )i si si ik ik ik

k

ik ik

V g jb g jb I
V

g jb

   



 (5.23) 
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where iV  and kV  are the voltage phasors of Bus i  and Bus k ; ikI  is the current phasor between 

the two buses measured by the PMU at Bus i ; ( )si sig jb  is the shunt admittance connected at 

Bus i , and ( )ik ikg jb is the admittance of the transmission line from Bus i  to Bus k . For 

simplification of the expressions, three parameters are defined as in (5.24) and (5.25):  

 

( )( )si si ik ik ik ika jb g jb g jb g jb       (5.24) 

2 2

ik ikc g b   (5.25) 

Equation (5.24) is separated into the real part and imaginary part, which are expressed in (5.26) 

and (5.27): 

( ) ( )ik si ik ik si ika g g g b b b     (5.26) 

( ) ( )ik si ik ik si ikb g b b b g g     (5.27) 

kRV  and 
kIV  can then be calculated by: 

 

( cos sin cos sin ) /kR i i i i ik ik ik ik ik ikV aV bV g I b I c        (5.28) 

( cos sin cos sin ) /kI i i i i ik ik ik ik ik ikV bV aV b I g I c        (5.29) 

The magnitude and angle of kV  can be obtained from its real part and imaginary part in 

rectangular form as is shown in (5.30) and (5.31): 

 

2 2

,k pseudo kR kIV V V   (5.30) 

1

, tan kI

k pseudo

kR

V

V
   

  
 

 (5.31) 

Although it seems quite complicated to calculate the pseudo voltages, this method has great 

advantages during the iterative procedure because the corresponding Jacobian elements of the 

pseudo voltages are very simple, as shown in Table 5-2. 

 

Table 5-2: Elements of the Jacobian Matrix Corresponding to the Pseudo Voltages 
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5.2.6.1 Propagation of Uncertainty 

 

The equations for the propagation of uncertainty for the PV HSE are: 

 

      
4

22

1

/kR kR

k

V V k k 


         p p  (5.32) 

      
4

22

kI kI

1

/
k

V V k k 


        p p  (5.33) 

where   i i ij ijk V I    p ,     denotes the standard deviation of the variable specified. 

 

5.2.7 Constrained Formulation HSE 

 

The constrained formulation of integrated HSE was proposed in [25]. Unlike the other 

Integrated HSEs which are described above, and which transform the current measurements 

into other forms, the constrained formulation integrates them directly into the state vector, x, 

and this compensates for the increase in the number of states by introducing a set of equality 

constraints. The newly defined state vector is: 

 

[ , ]new aux Tx x x  (5.34) 

in which, 

[ , , , , , ]aux T
ij ijlk lkI I x  (5.35) 

where: 

i,…,l are PMU buses 

j,…,k are buses adjacent to PMU buses. 

 

The auxiliary states cannot only express the current magnitudes and angles directly in polar 

form but they also participate in the expressions of the constraints and the voltage-current 

relationship between the adjacent buses. The measurement vector, z, and the measurement-to-

state function, h(x)  , are given in (5.36) and (5.37) respectively:  
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T
T T T T T T T T

flow flow inj inj Vpmu Vpmu Ipmu Ipmu
   z P Q P Q θ V θ V  (5.36) 

T
T T T T T

conv I
   h(x) h (x) θ V θ I  (5.37) 

where Ipmuθ  and pmuI  are current angles and magnitudes measured by PMUs and Iθ  and I  are 

defined as the auxiliary state variables as shown in (5.35). 

 

The increase in the number of states requires the same number of additional measurements or 

additional constraints, or the observability of the estimator will be compromised. Furthermore, 

although the current measurements can now be expressed directly, adding the current 

magnitudes and angles into the state vector has caused the current measurements and voltage 

states to become unrelated. These two problems are solved simultaneously by exploiting the 

voltage-current relationship between the two adjacent buses whose currents are measured by 

PMUs. These relationships are expressed as the equality constraints shown in (5.38) and (5.39). 

Obviously, the number of equality constraints is equal to the number of states. Thus, the 

problem introduced by the increased number of states is resolved (via an increase in the 

number of constraints) and these constraints reintroduce the relationship between current 

measurements and voltage states. 

 

, 0k k pseudoV V   (5.38) 

, 0k k pseudo    (5.39) 

 

where 
kV  and 

k are the voltage state variables corresponding to Bus k . ,k pseudoV  and ,k pseudo  are 

a set of pseudo voltage measurements expressed by the adjacent voltage states and the 

corresponding current states in the way given by (5.28) to (5.31). These equality constraint 

equations are combined in a new vector t, and the optimisation problem should be subject to 

the following equality constraint (5.40): 

 

( )new
t x = 0  (5.40) 
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5.2.7.1 Propagation of Uncertainty 

 

There is no propagation of uncertainty in the constrained integrated HSE, as there is no 

transformation of current measurements into other forms or other types of measurements. 

 

5.2.7.2 Constrained State Estimation 

 

Constrained state estimation has been used to deal in the presence of null injection 

measurements. Null injection measurements are used to describe buses where the power 

injections are known to be zero, as these buses have no generation or load. Null injection 

measurements, when correctly identified, are extremely accurate because they are determined 

rigorously by analysis of the system rather than being measured by equipment. Thus they are 

always included in state estimation as equality constraints, or the state estimator’s robustness 

will be impaired. 

 

The same method could be applied for the constrained formulation form of integrated HSE 

described in this section. The optimisation problem (as defined for the classical state estimator) 

is now subject to a set of equality constraints. Lagrange multipliers are used to express the 

constraints and the performance index in only one expression: 

 

T -1 T1
( , ) ( ) ( ) ( )

2
L x λ = [z -h x ] R [z -h x ] λ t x  (5.41) 

where λ is the Lagrange multiplier vector. The partial derivative of ( , )L x λ  with respect to x  

and λ can be calculated for the original optimisation problem given by (2.10). The difference in 

the k
th

 iteration, k
Δx and 1k

λ  is given in (5.42): 

 

-1
1 1

1

( ( ))

( )

T Tk T k

x x x x

k k

x



    
    

    

- -H R H TΔx H R z -h x
=

T 0λ t x
 (5.42) 

where 
xH  is the derivative of ( )h x  with respect to x , and 

xT  is the derivative of ( )t x  with 

respect to x . Note that the derivative of T -11
( ) ( )

2
[z - h x ] R [z - h x ]  with respect to λ is 0 , and the 

derivative of T ( )λ t x  with respect to λ is ( )t x . 
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Combining the performance index in (5.41), the iteration difference given in (5.42) and the 

variables and functions specified for the original the state estimation problem, allows the states 

of this constrained problem to be solved. 

 

5.3 Comparison of HSE Performance Using  

Exhaustive Simulations in the IEEE 14 Bus Test System 

 

This section presents the results of exhaustive simulations in the IEEE 14 Bus Test System that 

were used to investigate the performance of the different HSEs. Performance is observed 

through the accuracy of the state estimates, the execution time and convergence for each bus. 

 

5.3.1 Simulation Settings 

 

The simulations test all possible PMU placements (2
14

=16384 in total) using a fixed redundant 

set of conventional measurements in the IEEE 14 Bus Test System (data sheets given in 

Appendix C.1) as illustrated in Figure 5-14. Full redundancy is required to enable all functions 

of the HSEs, including bad data detection.  

 

In the simulations, random Gaussian errors are included in both conventional and PMU 

measurements noise, the standard deviation of any error is set to be the value of the 

measurement times a coefficient factor according to the different types of measurement defined 

as follows: 

 

 SCADA: P, Q measurements (0.02) and V (0.002) 

 PMU: 0.0002 for magnitudes, and 0.01 for angles 
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Figure 5-14: IEEE 14 Bus Test System and the Measurement Placement 

 

The HSEs were simulated for 100 Monte Carlo trials for every possible PMU placement, and 

the average of the absolute values of the errors of the estimates at each bus, the execution time 

and the condition number are recorded. Here, the condition number is the measurement of HSE 

convergence, whose definition will be given in Section 5.3.6. Note that the time skew errors 

exist in the conventional measurements, but not in the PMU measurements due to their 

synchronisation nature. Thus, the conventional measurements are assigned with errors of larger 

magnitude compared to the PMU measurements. 

 

5.3.2 Best Accuracy 

 

Having simulated every possible PMU placement for every number of PMUs, it was possible 

to select the best accuracy that could be achieved by each HSE for each PMU number, where 

accuracy is described in terms of the variance of all of the states as defined in (5.43) and the 

lower the variance the better the accuracy. This best accuracy for each HSE is plotted in Figure 

5-15. 
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   
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(5.43) 

where ˆ
iV  and true

iV are the estimate and the true value of the magnitude of the voltage at Bus i, 

respectively, ˆ
i  and true

i  are the estimate and the true value of the angle of the voltage at Bus i, 

respectively, and n is the number of buses in the network. 

 

Figure 5-15: Best Accuracy for each HSE as the PMU number is varied 

 

Figure 5-15 shows that the Rectangular Current HSE (RC) offers the best accuracy, but it is 

only marginally better than the Constrained Formulation HSE (CF), which is in turn marginally 

better than the Pseudo Flow HSE (PF). However, the Pseudo Voltage HSE (PV) is noticeably 

less accurate and as the PMU number increases it becomes less accurate than the Post 

Processing HSE (PP).  

 

In general, Figure 5-15 shows that, as the number of PMUs is increased, the accuracy of the 

HSEs increases. This increase is characterised by a knee point, where the first PMU leads to a 

significant increase in accuracy over the classical state estimator (which has an accuracy of 

approximately 10
-5

) and after this the improvement offered by each PMU is reduced, until 

approximately four PMUs where the increase becomes negligible. This knee point exists 

because the accuracy of the HSEs when estimating the state of a bus is improved if the bus is 

observed by a PMU (i.e. if a PMU is placed at that bus or a neighbouring bus) and the 

minimum number of PMUs required to make the system fully observable is four. After four 
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PMUs have been placed and the system is fully observable for the best case placement, any 

further PMU can obviously not make more buses observed and so offers a reduced benefit. 

This knee point is most distinct for the post processing HSE, as after four PMUs have been 

placed its accuracy approaches that of the RC, CF, PF HSEs and it outperforms the PV HSE. 

While the first four PMUs offer a significant improvement in accuracy, as they make new 

buses PMU observable, the 5
th

 to 7
th

 PMUs to be added offer noticeably more benefit than the 

8
th

 to 14
th

 PMUs to be added. This is because these PMUs enable buses to be observed by two 

PMUs, which helps to mitigate the impact of the Gaussian noise and, given the random nature 

of this noise, it is unlikely that two measurements will both contain the same random error, so 

making the bus observable by a third PMU offers little benefit. Based on this, the benefit 

offered by a PMU can be separated into three stages: 

 

1. Significant benefit – until full observability is achieved; 

2. Marginal benefit – until all buses are observed by two PMUs (redundant observability); 

3. Minimal benefit. 

The results show that, in terms of accuracy in the presence of Gaussian noise, the PV HSE 

make poorer use of the PMU measurements than the other integrated HSEs when the number 

of PMUs increases. This is because the PV HSE cannot use the current phasor measurements 

and the equations derived from the network structure to increase the estimation accuracy as the 

other HSEs. This limitation of the PV HSE results in only a small loss of performance of one to 

two PMUs, but as the PMU number increases the difference in accuracy increases quickly, as 

the other HSEs are able to use combinations of other measurements to improve their accuracy 

(compensating for the Gaussian errors in the measurements) while the PV HSE must still 

depend on the accuracy of individual measurements. Note that eventually the difference in 

performance stops increasing as the PMU number does (at the 7
th

 PMU), because little to no 

new information is added by the further PMUs. 

5.3.3 HSE Performance for each Bus for Different Placements 

 

This section uses the error in the bus angle estimates for different PMU placements to 

demonstrate the impact on accuracy of a bus being observable using a PMU and why the PP 

HSE is the most sensitive to this observability. The placements considered are: 
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 Bus 2 and Bus 9, and thus all buses are observed by PMUs except for Buses 6, 8 11 and 

12, 

 Buses 2, 6 and 9 making all buses except Bus 8 observed by PMUs, and 

 Buses 2, 6, 7 and 9, which ensures full network observability from PMUs.  

Figure 5-16, Figure 5-17 and Figure 5-18 show the bus voltage angle residues for each HSE for 

these placements. Note that these figures include two different approaches for implementing 

the PV HSE (i.e. direct derivation and unscented transform); these were included to verify the 

conclusion that the PV error arises from the fundamental properties of its measurement 

Jacobian and not the implementation used. 

 

It can be observed that the estimation accuracy of all of the states (the same results can be 

achieved for the voltage magnitudes) are improved for integrated HSEs even for those buses 

that are not directly observed by PMUs. For the PP HSE the residuals of the states of the buses 

observed by PMUs are almost as small as those of the integrated HSEs, but the residuals of the 

states of the buses not observed by PMUs are much larger. In addition, it can be seen that when 

all buses are observable with PMUs the residuals of the PP HSE are smaller than those of the 

PV integrated HSE but larger than those of the other integrated HSEs.  

 

This behaviour causes the average estimation accuracy of the PP HSE to be worse than the 

integrated HSEs, when the number of PMUs is small, due to the very large residuals of the 

buses not observed by PMUs. However, as the number of buses observed by PMUs increases, 

the average accuracy of the PP HSE will exceed that of the PV integrated HSE and approach 

that of the other integrated HSEs, as the likelihood of full system observability by PMUs 

increases as the number of PMUs is increased. This property of the PP HSE means that it is 

more sensitive to the placement than the integrated HSEs. 
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Figure 5-16: Voltage Angle Residuals of the HSEs with PMUs at Bus 2 and Bus 9. All 

buses are observed by PMUs except for Buses 6, 8, 11, 12 and 13 

 

Figure 5-17: Voltage Angle Residuals of the HSEs with the PMUs Placed at Bus 2, 6 and 

9. All buses are observed by PMUs except for Bus 8 

 

Figure 5-18: Voltage Angle Residuals of the HSEs with the PMUs Placed at Bus 2, 6, 7 

and 9. All buses are observed by PMUs 
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5.3.4 Distribution of Error with PMU Placement 

 

The best accuracy that was presented in Section 5.3.2 is useful for understanding the 

performance of the HSEs when they have the optimal PMU placement, but does not give any 

insight into their performance of a sub-optimal or even random PMU placement. 

 

In this section histograms are used to study the distribution of the HSE accuracy when four, 

seven and twelve PMUs are placed in the system. These results are shown in Figure 5-19 for 

all five HSEs. 

 

These histograms demonstrate that, in addition to being the most accurate HSE, the RC HSE 

offers the most reliable accuracy for a large number of PMUs. Furthermore, these distributions 

show significantly poorer accuracy of the PV HSE and its less efficient use of the PMU data. 

Note that the performance of the PV HSE for twelve PMUs is lower than the performance of 

the other integrated HSEs for the majority of the seven PMU placements. This can be 

interpreted as follows: a PP HSE equipped with the optimal placement of twelve PMUs will 

usually perform more poorly than other types of integrated HSE that has a random placement 

of seven PMUs. 

 

The wide variation seen for four PMUs further demonstrates the importance of the accuracy 

improvement offered by HSEs when a bus is observed by a PMU. The best cases for four 

PMUs are fully observable, while the worst cases have as few as five of the fourteen buses 

observed by PMUs. This is further supported by the ‘tail’ observed in the placements for seven 

PMUs, as many types of seven-PMU placements do not offer full observability. The HSE 

performance becomes more reliable as the number of PMUs is increased to twelve. This means 

that optimal placement becomes less relevant as the number of PMUs increases, which is not 

surprising. However, for smaller PMU numbers optimal placement can improve performance 

by two orders of magnitude. 

 

Furthermore, the large split in the distribution of seven PMU cases for the PP HSE is due to the 

issue of observability. The PP HSE requires that a bus be observed by a PMU to offer a 
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significant improvement in the estimation of the state of that bus. The nature of Bus 8 (only 

connected to Bus 7) in the IEEE 14 Bus Test System means that only placements that include 

either Bus 7 or Bus 8 can offer observability of Bus 8. This means that any placement that does 

not include Bus 7 or Bus 8 will have a poor average variance for the PP HSE. This also 

explains the very poor performance seen for a 12 PMU case for the PP HSE (these isolated 

points are also observed for the integrated HSEs but they are far less severe). Figure 5-20 

shows these outlying cases more clearly. The impact of this is less severe for the integrated 

HSEs due to their ability to improve the state estimation at buses that are not directly observed. 

Indeed, this property of the PP HSE makes it particularly poorly suited for state estimation in 

systems with significant radial sections. 

 

PMU placements that observe the same number of buses do not always have the same 

performance. This is due to the benefits of multiple PMUs observing the same bus. As 

discussed in previous sections, this significantly reduces the impact of the Gaussian noise that 

is added to the measurement. This contributes to the particularly wide distribution seen for four 

PMUS. The variation of placement is less significant for the PV HSE, which offers the most 

reliable performance for a given number of PMUs. The PV HSE is less sensitive to the 

placement, as it does not use the virtual measurements effectively. The reasons and the 

definition of the virtual measurements will be discussed in Section 5.5. So, the performance 

will vary less for placements with the same observable buses for the PV HSE than they will for 

the other integrated HSEs. 
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Figure 5-19: Histogram of Variation in HSE Accuracy for Different PMU Numbers and 

All Placements 
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Figure 5-20: Focused View of Histograms of Variation in HSE Accuracy for Different PMU 

Placements. The Outliers are Placements with High/Low Numbers of Observable Buses. 
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5.3.5 Execution Time 

 

The convergence of an HSE is described in two aspects: the overall execution time and the 

possibility to encounter divergence. The execution time must be considered when evaluating 

the performance of an HSE since a long execution time would mean that the HSE is not 

applicable in real practice. The other aspect will be quantified using the condition number 

discussed in the next sub-section. 

 

In the case of the PP HSE, it can be observed that the convergence time does not vary with the 

number of PMUs. This is unsurprising as the classical SE in the PP HSE will not be affected in 

any way by the PMU number and the LSE does not use iterations, so no matrix inversion is 

required. 

 

As shown in Figure 5-21, for all four integrated HSEs the average convergence time increases 

as more PMUs are added. This is because the gain matrix becomes less sparse when more 

PMU measurements are integrated into the HSE and, as such, the length of time required for 

executing the required matrix inversion and multiplication becomes greater. However, the CF 

integrated HSE, which uses an augmented state vector with current phasors, is the most 

sensitive to the increase in the number of PMUs because the size of its state vector increases 

with the number of PMU measurements. Furthermore, the PV HSE shows a more significant 

increase in execution time than the other integrated HSEs. 

 

 

Figure 5-21: Average Convergence Time as PMU Number is Increased 
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5.3.6 Condition Number 

 

Apart from the execution time, the convergence of an HSE can also be described by the HSE’s 

possibility to diverge, which is quantified by the condition number of the gain matrix in this 

PhD. A high condition number of the gain matrix indicates that the gain matrix is ill-

conditioned, and the HSE is likely to diverge. If a matrix, A, is non-singular, its condition 

number is defined by (5.44). Since the gain matrix is always normal due to its definition, the 

definition can also be expressed as given in (5.45). 

 

  1cond A A A  (5.44) 

  max min
cond

A A
 A  (5.45) 

In the exhaustive simulation in the IEEE 14 Bus Test System, the condition numbers for each 

PMU placement and each HSE are recorded, which are expressed in log 10 scale (CNlog10) in 

the plot against the number of PMUs (Figure 5-22). The figure shows that CNlog10 of the PP, 

PF and RC HSE are around the value of 5, while CNlog10 of the PV HSE decreases from 5 to 

about 1 when the number of PMUs increases. Thus, the PP, PF, RC and PV HSE are not likely 

to experience divergence due to bad data. However, the CNlog10 is significantly larger than 

the other HSEs, which is about 13 for 0 PMUs and increases to about 20 when all 14 buses are 

placed with PMUs. This might also be explained by the augmented state vector of the CF HSE, 

which increases the size of the gain matrix where the ratio of the largest and least eigenvalues 

becomes larger. Note that for PP HSE, only CNlog10 of the CSE part is presented in the figure 

since the LSE does not use iterations to estimate the states. 

 

In general, in spite of the CF HSE that uses augmented state vector, the PMUs improve the 

estimation accuracy of the HSEs at the cost of less estimation stability: the RC and PF HSE 

have better estimation accuracy but less resistance to bad data, the PV HSE has less accurate 

estimate but a smaller condition number. 
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Figure 5-22: Condition Number in Log 10 Scale as the PMU Number is Increased 

 

5.4 Validation of the Results Using IEEE 118 Bus Test System 

 

In this section, the conclusions drawn for the best accuracy, execution time and condition 

number in the previous section are validated using the IEEE 118 Bus Test System [113]. 

 

5.4.1 Simulation Settings 

 

With reference to the topology of the IEEE 118 Bus Test System as shown in Figure 5-23, the 

simulation presented in this section also uses a fixed set of conventional measurements as 

given in Table 5-3. These conventional measurements also ensure fully redundant network 

observability. 

 

 



Chapter 5 – Hybrid State Estimation 

154 

 

Figure 5-23:  Network Diagram for IEEE 118 Bus Test System 

 

 

Table 5-3: Conventional Measurement Placement in the IEEE 118 Bus Test System 

Injection meas.at  

Bus # 

2;5;7;10;12;15;16;17;19;23;25;27;31;33;34;39;44;45;47;49;51;52;

59;61;64;66;69;71;72;74;75;77;80;85;90;93;96;101;102;105;110;1

11;113;115;116 

Flow  

meas.at Branch # 

1;5;7;10;15;16;19;24;25;27;31;33;37;43;45;46;49;51;53;56;57;61;

66;71;72;75;80;81;84;87;92;95;100;102;104;110;111;114;116;118

;119;126;131;134;135;137;140;142;144;147;149;152;158;159;163

;165;169;172;174;177;179;182;184 

Voltage magnitude 

meas. at Bus # 
1;4;7 … 115;118 (with common difference of 3) 

 

 

In the IEEE 118 Bus Test System, it is no longer possible to run exhaustive simulations for 

every possible PMU placement due to the large number of simulations required (2
118

=3.3*10
35
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in total) and increased execution time for each simulation. Thus, a set of measurements 

including an approximate best placement (in terms of estimation accuracy), 99 suboptimal 

placements and 100 random placements are used for each number of PMUs instead. To further 

reduce the number of simulations, only 15 selected PMU numbers are tested (0, 1, 2, 5, 10, 20, 

25, 30, 35, 40, 45, 60, 80, 100, 118).  

 

Based on empirical observations from the results of the exhausted simulation in the IEEE 14 

Bus Test System, a simple optimisation algorithm was developed to find the best placement of 

the PMUs in terms of HSE estimation accuracy. The best placement is found at the point where 

the number of observable branches and the number of observable buses are maximised subject 

to a given number of PMUs as shown in (5.46) and (5.47). The proposed method does not 

ensure that the result will allow the HSEs to estimate the best accuracy due to the method’s 

simple and empirical based nature; however, the result will be a close approximation to the best 

estimate. Further research will be needed to establish a complete method for optimal PMU 

placement for HSE estimation accuracy; however, the result is sufficient in terms of meeting 

the needs of this PhD. 

 

max 
obr ob

N MN  (5.46) 

PMUs t N N. .    (5.47) 

 

where Nobr is the number of branches observable by PMUs, M is a large positive number 

(M=10 here) to enforce the priority of observable buses, Nob is the number of observable buses 

by PMUs, NPMU is the number of PMUs to be placed, and N is the number of PMUs required to 

be placed. 

 

The suboptimal placements are found by including an additional constraint: 

 

maxobr ob
N MN f k    (5.48) 

 

where fmax is the maximised optimisation goal solved from (5.46) and (5.47), and k is the 

number of the sub-optimal case, which ranges from 1 to 99 here. 
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5.4.2 Simulation Results 

 

Figure 5-24, Figure 5-25 and Figure 5-26 present the simulation results of best accuracy, 

execution time and condition number in the IEEE 118 Bus Test System, respectively. It is 

shown in Figure 5-24 that all the characteristics of the curves are the same as those presented in 

Figure 5-15, including a clear knee point as the number of PMUs is increased, RC HSE being 

the most accurate, PF being the least accurate before the knee point and PV being the least 

accurate after the knee point. As illustrated in Figure 5-25 the conclusions drawn for HSE 

execution time are also validated except that the PV HSE becomes slower than CF HSE when 

the number of PMUs is large. Similar characteristics of the curves are also observed in the 

condition number test as shown in Figure 5-26. The difference is that CNlog10 of the CF HSE 

approaches the steady state with a smaller number of PMUs; thus, the condition number of the 

CF HSE is large for almost any number of PMUs – CNlog10 is 20 when only 5 PMUs are 

placed. 
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Figure 5-24: Best Accuracy of the HSEs against the number of PMUs in the IEEE 118 

Bus Test System 

 

 

Figure 5-25: Execution Time of the HSEs against the Number of PMUs in the IEEE 118 

Bus Test System 

 

 

Figure 5-26: Condition Number in Log 10 Scale of the HSEs against the Number of 

PMUs in the IEEE 118 Bus Test System 
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5.5 Mathematical Analyses 

 

This section presents the mathematical analysis to explain and further validate the important 

characteristics regarding the best accuracy of the HSEs shown in both the IEEE 14 and 118 

Bus Test Systems. The first subsection will explain the small difference in accuracy between 

the RC, PF and PP HSEs and the reason why RC HSE has the best accuracy. The second 

subsection will explain the large difference in accuracy between the PV HSE and the other 

HSEs after the knee point and the large difference in accuracy between the PP HSE and the 

integrated HSEs before the knee point.  

5.5.1 Analysis of RC, PF and CF Accuracy 

 

The analysis considers the case where the PMU measurements decide the estimation accuracy 

of the HSEs. A two bus network with a single PMU as shown in Figure 5-27 is used to 

simplify the analysis for large networks. This simplification is valid if the following two 

assumptions can be made. First, at the sending end of a current phasor measurement there is 

always a voltage phasor measurement [163]. Second, the error-free equations (such as 

measurement equations for zero injection measurements and the slack bus) that are derived 

from the structure of the network are excluded from the measurement set. Based on the above 

assumptions and the fact that PMU measurements are more accurate than the conventional 

measurements, any network can be divided into a number of two bus networks, in which the 

current between the two buses can be expressed as given in (5.49): 

 

   1 2 1 2/ 10 /I V V jX V V j     (5.49) 

Bus 1 Bus 2

 

Figure 5-27: Two Bus Network with j0.1 Branch Reactance 
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To simplify the expression, let Inormalised=I/10, Xnormalised=1 p.u., and (5.49) is transformed as 

given in (5.50). In the following part of this section, the subscript “normalised” will be dropped 

for brevity. The normalised current angle is the same as the original current angle, but the 

normalised current magnitude becomes 1/10 of its original value, making it much smaller than 

the voltage magnitudes. Note that the variance of the current magnitude measurement is still 

the same since the transformation only simplifies its expression but not the measurement itself. 

 

   1 2 1 2/ /normalised normalisedI V V jX V V j     (5.50) 

 

The voltage phasor measurement at Bus 1 can be directly expressed as given by (5.51) and 

(5.52). The current phasor measurement at Bus 2 must be transformed into alternative forms 

according to different types of integrated HSEs used as listed from (5.53) to (5.60). In addition, 

the CF HSE requires two equality constraints to be satisfied, as expressed by (5.61) and (5.62). 

 

1 1 1z e   (5.51) 

2 1 1Vz V e 
 

(5.52) 

3, 1 1 2 2 3,cos sin sinRC I RCz I V V e     
 (5.53) 

4, 1 1 2 2 4,sin cos cosRC I RCz I V V e      
 (5.54) 

   3, 1 1 1 2 1 2 3,
ˆˆ cos sinPF I PFz V I VV e       

 
(5.55) 

   2

4, 1 1 1 1 2 1 2 4,
ˆsin cosPF I PFz V I V VV e        

 
(5.56) 

1 1 1 1
3, 2 3,

1 1

sin cos
tan tan

cos sin

kI I
PV PV

kR I

V V I
z e

V V I

 


 

    
      

  
 (5.57) 

 2 2 2 2

4, 1 1 2 4,2 sinPV kR kI I PVz V V V I VI V e        
 

(5.58) 

3,CF I Iz e 
 (5.59) 

4,CF Iz I e 
 

(5.60) 

1 1 1
1 2

1 1

sin cos
tan 0

cos sin

I

I

V I
t

V I

 


 

  
   

 
 

(5.61) 

 2 2

2 1 1 1 22 sin 0It V I V I V      
 

(5.62) 
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Take the partial derivative of the measurement equations from (5.53) to (5.58) which 

corresponds to the RC, PF and PV HSEs with respect to the state vector, x=[θ1 V1 θ2 V2]
T
, and 

also take the partial derivative of the measurement equations of (5.59) and (5.60) and the 

equality constraint equations of (5.61) and (5.62), the measurement Jacobian matrices of the 

measurement equations and constraints of the HSEs are obtained as given in (5.63) to (5.67): 

 

1 1 2 2 1 2

1 1 2 2 1 2

1 0 0 0

0 0 1 0

cos cos sin sin

sin sin cos cos

RC
V V

V V

   

   

 
 
 
  
 

  

H  (5.63) 

1 2 12 1 2 12 2 12 1 12

1 2 12 1 2 12 1 2 12 1 12

1 0 0 0

0 0 1 0

cos cos sin sin

sin sin 2 cos cos

PF
VV VV V V

VV VV V V V

   

   

 
 
 
 
 

   

H
 

(5.64) 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

PV

 
 
 
 
 
 

H
 

(5.65) 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

CF

 
 
 
 
 
 

H
 

(5.66) 

   
   

2 2 2 2 2sin 1 , cos , 1,0, sin , cos

cos ,     sin 1 ,0, 1, cos ,       sin

I I I I

I I I I

I c I c I I c c

I c I c I c I c

   

   

     
 
     

T

 

(5.67) 

where c is a constant defined by: 

 

 2 2

1 12 sin 1Ic V I VI        (5.68) 

Assuming the uncertainties of the original measurements, θ1, V1, θI and I, are known to be σ
2

θ1, 

σ
2

V1, σ
2
θI and σ

2
I, respectively. The uncertainty of the transformed measurements can be 

obtained by propagating the original measurements through the equation by assuming that θ1≈0 

and V1≈1. Thus, the calculated variances of the transformed measurements are given in (5.70) 

to (5.75), and the residual matrix of the HSEs can be expressed by (5.76) to (5.79). 
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      
2

1
var var

n

tran trank
z z k k


        z z  (5.69) 

  2 2 2 2 2

3,var sin cosRC I I I Iz I      
 

(5.70) 

  2 2 2 2 2

4,var cos sinRC I I I Iz I      
 

(5.71) 

  2 2 2 2 2 2 2 2 2 2 2

3, 1 1var sin cos sin cosPF I I I I I I Ve I I I            
 

(5.72) 

  2 2 2 2 2 2 2 2 2 2

4, 1 1var cos sin cos sinPF I I I I I I Vz I I            
 

(5.73) 

     
22 2 2 2 2 2 2 2 2

3, 1 1

2var [ 1 sin cos sin cos /]PV I I V I I I Iz I I I I c             
 

(5.74) 

     
2 22 2 2 2 2 2 2 2

4, 1 1var [ cos 1 sin cos sin ]/PV I I V I I I Iz I I I I c             
 

(5.75) 

    2 2

1 1 3, 4,diag var varRC V RC RCR e e      
(5.76) 

    2 2

1 1 3, 4,diag var varPF V PF PFR e e      
(5.77) 

    2 2

1 1 3, 4,diag var varPV V PV PVR e e      
(5.78) 

 2 2 2 2

1 1diagCF V i IR          
(5.79) 

where ztran represents a transformed measurement of z3 or z4, e denotes the error of a 

measurement, the subscripts 3 and 4 are the measurement numbers. 

 

The variance of the estimated states of any WLS state estimator is given by (5.80) [4], while 

that of a constrained formulation state estimator can be derived as shown in (5.81) and (5.82). 

Applying these general equations, the variances of the estimated states of the integrated HSEs 

are summarised in Table 5-4. 

 

   
1

1ˆcov T


x H R H  (5.80) 

1T T

aug

 
 
  

-H R H T
H =

T 0  
(5.81) 

  1ˆcov T

CF

Tx PH R HP
 

(5.82) 
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where P is a matrix consisting of the rows taken from the inverse of Haug corresponding to the 

state vector, x. 

Table 5-4: HSE Estimate Covariance in Two Bus Network with Single PMU at Bus 1 

 
Voltage 

Angle 1 

Voltage 

Mag. 1 
Voltage Angle 2 Voltage Mag. 2 

RC 
2

1  2

1V  2 2 2 2 2 2

1 sin cosI I I II        2 2 2 2 2 2

1 cos sinV I I I II        

PF 
2

1  2

1V  
 2 2 2 2 2 2

1 1

2 2 2 2 2

1 sin cos

sin cos

I I V

I I I I

I I

I





   

   

 

 
 

 2 2 2 2 2 2

1 1

2 2 2 2 2

cos 1 sin

cos sin

I I V

I I I I

I I

I





   

   

 

 
 

PV 
2

1  2

1V  
 

 

2 2 2 2 2

1 1

2
2 2 2 2

1 sin cos

sin cos

I I V

I I I I

I I

I I





   

   

 

  
 

 

 

22 2 2 2

1 1

22 2 2 2

cos 1 sin

cos sin

I I V

I I I I

I I

I I





   

   

 

  
 

CF 
2

1  2

1V  
 

 

2 2 2 2 2

1 1

2
2 2 2 2

1 sin cos

sin cos

I I V

I I I I

I I

I I





   

   

 

  
 

 

 

22 2 2 2

1 1

22 2 2 2

cos 1 sin

cos sin

I I V

I I I I

I I

I I





   

   

 

  
 

 

It can be easily observed from the left side of Table 5-4 that the transformation of the current 

phasor measurement does not affect the estimation accuracy of the state at Bus 1, where the 

variance of the states is only determined by the uncertainty of the incident voltage phasor 

measurement. In comparison, the error of the state estimate for Bus 2 is determined by both the 

voltage phasor measurement at Bus 1 and the current phasor measurement connecting the two 

buses. What is more, the RC HSE has the least error for the estimates at Bus 2 compared to the 

other integrated HSEs. This is because it does not use the states at Bus 1 for transforming the 

current phasor measurement like the other integrated HSEs, which brings extra errors as shown 

in the corresponding expressions in Table 5-4. However, the estimation errors among the 

different integrated HSEs are small if only the effects of the PMU measurements are accounted 

for. The relative magnitudes of the estimate errors of the four integrated HSEs, for states at Bus 

2 quantified by variance, are given in (5.83) and (5.84). 

 

       2, 2, 2, 2,
ˆ ˆ ˆ ˆcov cov cov covRC PF PV CF       (5.83) 

       2, 2, 2, 2,
ˆ ˆ ˆ ˆcov cov cov covRC PF PV CFV V V V  

 
(5.84) 
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5.5.2 Analysis of PV and PP HSE Accuracy 

 

As well as the real measurements collected from the measurement units such as the 

conventional measurements and the PMU measurements, the measurement set used for state 

estimation involves the virtual measurements that are mathematically derived from the 

topology of the network. For example, if a bus is known to have no generation or load a zero 

injection measurement can be assumed for this bus. A virtual measurement can also be 

assumed for the reference angle of the slack bus, which is usually set to be always 0 regardless 

of the changing states of the network. The real measurements contain a certain degree of errors 

due to the accuracy limit of the measurement device, telecommunication errors and loss of 

data; the virtual measurements are free of errors and are usually treated as equality constraints. 

In this analysis, the effect of virtual measurements is represented as a voltage phasor 

measurement at Bus 2 with a fundamentally lesser degree of error than that of the PMU 

measurements, as shown in Figure 5-28. 

 

Bus 1 Bus 2

 

Figure 5-28: Two Bus Network with a Virtual Voltage Phasor Measurement 

 

Following the same procedure described in the previous subsection, the variance of the state 

estimate of the four integrated HSEs is calculated as summarised in Table 5-4. Because of the 

complexity of the original expressions, the expressions listed are obtained after substituting I≈0 

(I is much smaller than V1) and making other approximations based on the magnitude 

difference between the variables. 
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Table 5-5: HSE Estimate Variance in Two Bus Network with a PMU at Bus 1 and a 

Virtual Voltage Phasor Measurement at Bus 2 

 
Voltage  

Angle 1 

Voltage  

Mag. 1 

Voltage  

Angle 2 

Voltage 

Mag.2 

RC 
2 2 2

2 cos I I    
2 2

1
2 2

1

I V

I V

 
 

 2

2  2

2V  

PF 
2 2 2

2 cos I I    
2 2

1
2 2

1

I V

I V

 
 

 2

2  2

2V  

PV 
2

1  2

1V  2

2  2

2V  

CF 
2 2 2

2 cos I I    
2 2

1
2 2

1

I V

I V

 
 

 2

2  2

2V  

 

Table 5-5 shows that after the inclusion of the virtual voltage phasor measurement at Bus 2, the 

approximated expressions of the variance of the state estimate at Bus 2 are all the same. This 

result is expected since the virtual measurements are fundamentally more accurate than the 

PMU measurements, and thus their very small uncertainty will dominate the estimate accuracy 

of their incident buses. In terms of the variance of the state estimates at Bus 1, the left two 

columns of Table 5-5 show that the variance of the RC, PF and CF HSE have been reduced 

significantly to about the same values, while the variance of the PV HSE has the same value as 

it was before the inclusion of the virtual measurement. To summarise these results, the RC, PF 

and PV HSE are able to “propagate” the accuracy of the virtual measurements to the 

neighbouring buses with the help of current phasor measurements, while the PV HSE 

obviously does not have this important capability. In large networks accurate measurements 

improve the accuracy of the state estimates of the neighbouring buses, and gradually propagate 

the enhanced accuracy through the network.  

 

The accuracy propagation mechanism is not just limited to the virtual measurements and the 

PMU measurements; it also applies to the PMU measurements and the conventional 

measurements as the former is also fundamentally more accurate than the latter. When the 

number of PMUs is small, most of the states are monitored by conventional measurements, and 

only a small proportion of the states are monitored by the PMUs. In this case, the estimation 
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accuracies of the different HSEs are mainly affected by the accuracy gap between the PMU 

measurements and the conventional measurements. As most of the conventional measurements 

are power flow or power injection measurements, the integrated HSEs that make direct use of 

them are said to use the conventional measurements in the “flow form”. Similar to the full 

PMU observability case where the PF HSE can make use of the virtual measurements to 

improve its estimation accuracy, the integrated HSEs are found, through mathematical 

derivation, to be capable of utilizing the PMU measurements to enhance their estimation 

accuracies.  In comparison, the PP HSE transforms these measurements into “voltage phasor 

form” by using the CSE in the first stage. Therefore, by depriving itself of the ability to use 

these flow measurements to propagate accuracy of the PMU measurements, the PP HSE will 

have poorer estimation accuracy, unless the network is fully observable by PMUs. 

 

5.6 The Effect of Gross Errors and Parameter Errors 

 

The general errors caused by the accuracy limit of the meters, time skew errors and 

telecommunication errors are commonly modelled as Gaussian errors. As well as the general 

errors, the HSEs might also be affected by gross errors and parameter errors. The effects of 

these two types of error on the HSEs will be discussed in detail according to the exhausted 

simulation in the IEEE 14 Bus Test System. The simulations use the same setting as introduced 

in Section 5.3.1 except for the new errors included. 

 

5.6.1 Including Gross Measurement Errors 

 

In this subsection, the performance of the HSEs is studied when gross measurement errors are 

integrated into the conventional measurements for the IEEE 14 Bus Test System. While state 

estimators do have bad data detection capabilities that will usually prevent gross errors from 

entering the state estimator, it is useful to determine if any of the HSEs are inherently more 

resilient against gross errors that may be included in the estimation procedure, either through 
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misfortune or malicious actions. The test setup is the same as in Section 5.3.1 and two cases 

are considered: 

 

1  A single Conventional Measurement is set to Zero 

2  A single Conventional Measurement is set to Two thirds of its True Value 

The results for the Case 1 are given in Figure 5-29 and the results for Case 2 are given in 

Figure 5-30. Both of these cases returned similar results in terms of the trends observed, 

although the two thirds case led to smaller errors for most placements. These results show that 

the gross errors are capable of severely undermining the accuracy of the HSEs. However, if the 

voltage magnitude cases are neglected, these outliers are on a par with the performance of the 

conventional state estimator with only Gaussian noise. 

 

Furthermore, for the integrated HSEs it can be seen that some placements can make the HSE 

resilient to gross error. However, the placements that make the HSE resilient to one error do 

not make it resilient to all of the others. The errors of the estimated results from the integrated 

HSE can, for the most part, be characterised as possessing accuracy that is nearly equivalent to 

the base case (without gross errors) with a few outliers with poor or very poor accuracy. This is 

supported by the median accuracy of the data points, where the outliers distort the mean. This 

contrasts to the PP HSE, for which the errors can be described as primarily poor or very poor 

with a few outliers that approach the accuracy of the base case, as in previous cases this is due 

to the ability of the PP HSE to improve a state estimate being dependent on the bus being 

observable by a PMU.  

 

Some cases do not have outliers; this is because the significance of the gross errors considered 

are not all equal, e.g. setting the power flow of a lightly loaded line to zero is not an equivalent 

error to setting the power flow of a heavily loaded branch to zero.  

 

In general, errors in voltage magnitude measurements are clearly the most significant. It is 

expected that this is because these measurements are more directly connected to the states. The 

PV HSE is noticeably more resilient to the gross errors in voltage magnitude. This trend needs 

further investigation. Indeed, further analysis of these results (e.g. to determine why some 
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placements are better than others) requires more detailed study of the cases. Furthermore, this 

study will likely require the development of new tools for studying the HSEs and their 

performance, as it is a complex interaction between the conventional measurement placements, 

the PMU placement, the system properties (e.g. topology and power flow) and the error in 

question. At this time, participation factors appear to be the best avenue to pursue when 

creating these new tools. 
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Figure 5-29: Figures for Gross Error in Case 1 
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Figure 5-30: Figures for Gross Errors in Case 2 
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5.6.2 Parameter Errors – Branch Impedance 

 

In this subsection the performance of the HSEs is studied when errors are introduced into the 

branch impedances of the IEEE 14 Bus Test System. These errors must be considered as 

network models can use outdated impedance estimates that do not reflect the changing nature 

of line impedance (particularly as they age), it is useful to determine if any of the HSEs are 

inherently more resilient against these parameter errors. The test setup is the same as in Section 

3.2 and a Gaussian error with a standard deviation of 10% of the branch impedance is added to 

one branch at a time. 

 

The results of this test are presented in Figure 5-31. The errors seen for this case have a very 

different distribution to those observed in the gross error case. The worst case is far more 

severe and the distribution of errors is more uniform (no clear outliers in most cases) and the 

median is skewed toward the worst case (for gross errors the integrated HSEs had the median 

skewed toward the best case). This suggests that parameter errors have a more significant 

impact than gross errors; however, it should be noted that some PMU placements allow the 

HSEs to perform as well as in the base case, despite the branch impedance error. 

 

Integrated HSEs, except PV, are consistently poor for Branch 14. While the PV and PP HSEs 

do not exhibit any particular behaviour for this branch, the lack of sensitivity to PMU 

placement for the RC, CF and PF HSEs make this case a candidate for further investigation. To 

this end, the correlation coefficients between the HSE error and the branch properties of 

impedance magnitude, impedance angle, current magnitude and current angle were calculated 

as given in Table 5-6 and plotted in Figure 5-32. These results show that the HSE accuracy in a 

case with a branch impedance error is largely independent of these parameters, with only a 

small positive correlation to current magnitude and an even smaller positive correlation to 

impedance angle.  

Table 5-6: Pearson Correlation Coefficients for Rectangular Current 

Impedance Impedance Angle Current Current Angle 

0.0008 0.1378 0.3397 0.0046 
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Figure 5-31: Impact of Errors in Branch Impedance on HSEs  
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Figure 5-32: Examples of Low Correlation between Variance and Branch Properties (the 

Points for Branch 14 are Marked in Red) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10

-10

10
-8

10
-6

10
-4

V
a
ri

a
n

c
e
 (

p
.u

.)

Impedance of Branch with Model Error

Rectangular Current - Model Errors

 

 

0 0.5 1 1.5
10

-10

10
-8

10
-6

10
-4

V
a
ri

a
n

c
e
 (

p
.u

.)

Current Magnitude on Branch with Model Error

Rectangular Current - Model Errors

 

 

40 45 50 55 60 65 70 75 80 85 90
10

-10

10
-8

10
-6

10
-4

V
a
ri

a
n

c
e
 (

p
.u

.)

Impedance angle of Branch with Model Error

Rectangular Current - Model Errors

 

 

-4 -3 -2 -1 0 1 2 3 4
10

-10

10
-8

10
-6

10
-4

V
a
ri

a
n

c
e
 (

p
.u

.)

Current Angle on Branch with Model Error

Rectangular Current - Model Errors

 

 



Chapter 5 – Hybrid State Estimation 

 

173 

As in the gross error case, it would appear that further study will depend upon developing new 

tools for defining HSE performance, due to the complex interaction between the conventional 

measurement placements, the PMU placement, the system properties (e.g. topology and power 

flow) and the error in question. 

 

5.7 Summary 

 

This chapter has provided comparisons and an analysis of five hybrid state estimators (HSEs). 

A post processing hybrid state estimator and four integrated hybrid state estimators have been 

identified in literature, which are: 

 

 Rectangular Current (RC) 

 Pseudo Flow (PF) 

 Pseudo Voltage (PV) 

 Constrained Formulation (CF) 

The performance of the HSEs is studied in terms of their accuracy, execution time and 

condition number using mathematical analysis and simulations in both the IEEE 14 and 118 

Bus Test Systems. Cases studied include Gaussian errors, gross measurement errors and 

parameter errors. 

 

In general, the results of this comparison show that the accuracy of the HSEs is greater than the 

conventional state estimator by up to several orders of magnitude, and it increases with the 

number of PMUs and will saturate after a knee point.  The knee point is about the same as the 

number of PMUs required to make the system fully observable. 

 

The exhaustive simulation in the IEEE 14 Bus Test System show that the RC HSE is the most 

accurate HSE, the PF and CF HSE have slightly worse estimation accuracy, while the PP and 

PV HSE have the least estimation accuracy when the number of PMUs is smaller and larger 

than the knee point, respectively. These conclusions are validated in the IEEE 118 Bus Test 

System using a selected set of PMU placements obtained from an optimal and suboptimal 
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PMU placement method proposed in Section 5.4.1. The conclusions are further demonstrated 

and explained by mathematical analysis. It is concluded from the analysis that the RC HSE has 

the best estimation accuracy because the direct transformation of its current phasor 

measurements, without the help of other variables, introduces less error compared to the other 

HSEs. The PP and PV HSE have very poor estimation accuracy because they cannot use the 

PMU measurements and virtual measurements to improve the accuracy of their state estimates. 

 

The simulations for execution time and condition number clearly show that the CF HSE will 

require a longer execution time and be vulnerable to convergence problems, especially when 

more PMUs are placed in the network. These problems can be explained by its augmented state 

vector, which resulted in a large and ill-conditioned gain matrix. 

 

The study of sensitivity to PMU placement in Section 5.3.4 shows that the optimal placement 

becomes less relevant as the number of PMUs increases, which is not surprising. However, for 

smaller PMU numbers (e.g. four in the fourteen bus system) optimal placement can improve 

performance by two orders of magnitude. This sensitivity is most pronounced for the PP HSE, 

which means it will perform far more poorly than the integrated HSEs if a random or 

unplanned PMU placement is used. The PV HSE is the least sensitive to the PMU placement, 

as it makes poor use of the phasor data. In other words, a PV HSE equipped with the optimal 

placement of twelve PMUs will usually perform more poorly than other types of integrated 

HSE that have a random placement of seven PMUs. 

 

Studies of gross measurement errors in the form of severely erroneous conventional 

measurements and parameter errors in the form of branch impedance errors are presented in 

Sections 5.6.1 and 5.6.2, respectively. The results have shown that parameter errors will have a 

more severe impact on HSE performance than gross errors and that gross errors in voltage 

magnitude are the most severe form of conventional measurement error. These results also 

show that, whilst gross and parameter errors can cause the HSE to perform poorly, the proper 

PMU placement can allow them to offer accuracy that is close to the base cases (Gaussian 

errors but no gross/model error). Furthermore, the poor performance that is observed as outliers 

in the gross error case is equivalent to the performance of the conventional state estimator in 
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the base case. However, further study that may reveal exactly why some placements are 

advantageous and why errors in certain measurement and branches have a more severe impact 

will require the development of new tools for studying HSE performance. 
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Chapter 6 Dynamic State Estimation 

 

 

This chapter presents a new algorithm for dynamic state estimation using Cubature Kalman 

Filter (CKF). It is demonstrated that the proposed dynamic state estimator (DSE) using CKF is 

more accurate than other DSEs that use different nonlinear filters, which are in turn more 

accurate than the static state estimator (SSE). However, it was also discovered that CKF is 

more vulnerable to anomalies, including bad data, sudden changes of load, and sudden changes 

of network topology due to faults. Thus, the algorithm also includes a new scheme with a set of 

methods that can accurately detect, discriminate and identify the different types of anomaly.  

 

6.1 Introduction 

 

To ensure secure and economic operation, power systems need real-time monitoring of the 

states, the voltage magnitudes and angles, of all substations in the network. This important 

function has been performed using the static state estimator (SSE) since the establishment of 

state estimation in the early 1970s. However, the SSE requires a single redundant set of 

measurements to enable all of its functions, including state estimation solution and bad data 

detection. In addition, the SSE can only perform state estimation after receiving the 

measurements. The dynamic state estimator (DSE), which uses not only the measurements but 

also the predictions based on state estimates of previous time steps, provides a possible 

solution to the problems of using the SSE. However, although the DSE was also proposed in 

the early 1970s, it was not developed and widely deployed as the SSE because of the limit of 

computation capability of the control centre at that time. Nowadays, the barrier of computation 

capability has been surmounted with the advancements of information and communication 

technology. In addition, recently with the open access to the operation of transmission network 

the prediction of power generation and load has become much more accurate. Therefore, the 

pilot application of the DSE in power systems has been shown especially with the development 

of a wide area monitoring system (WAMS) [43], [97]. 
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The DSE uses the Kalman Filter to estimate the states from the measurements and the 

predicted measurements based on the information of the previous time instant. The Kalman 

Filter must be linearized in order to be applied to dynamic state estimation since the power 

system is a nonlinear system. The most popular solutions for linearizing the Kalman Filter in 

literature are the Extended Kalman Filter (EKF) [164] and the Unscented Kalman Filter (UKF) 

[165]. However, the EKF linearizes the equations by only keeping the first order term of the 

Taylor Expansion, which limits its estimation accuracy especially in large power networks that 

are highly nonlinear. To overcome this drawback, the Iterated Extend Kalman Filter (IEKF) 

[166] and Second-order Kalman Filter (SKF) [167] have been proposed which might improve 

the estimation accuracy by iterations and including the second order term of the Taylor 

Expansion. The UKF simulates the process of uncertainty propagation using a set of sigma 

points and thus the error will be smaller than that introduced during the linearization process of 

EKF. However, the UKF is still susceptible to problems including numerical inaccuracy and 

unavailability of a square root solution due to negatively weighted sigma points. Thus, the 

Cubature Kalman Filter (CKF) that optimally chooses the locations of the sigma point is 

proposed in this paper to enhance the performance of dynamic state estimation. 

 

Besides the selection of nonlinear filters, the performance of the DSE is also significantly 

affected by a sudden change of loads [172]. In normal conditions, the power system is assumed 

to be in a quasi-steady state. In other words, the variation of the state of the system is slow in 

comparison to the update rate of state estimation. However, this assumption might not be 

satisfied in the cases where there is a sudden change of load(s), or a removal of a branch to 

clear the fault. In these cases, the prediction which is made based on the normal operating 

condition will be erroneous, and will significantly degrade the performance of the DSE. Apart 

from the sudden change of load which results in the wrong prediction of the states, the 

measurements might also be smeared (i.e. the quality of the measurements is degraded) due to 

the existence of bad data. So, it is crucial for the DSEs to accurately detect, discriminate and 

identify these anomalies. Reference [69] assigns different weighting factors for the predictions 

and measurements so that those containing large errors are depressed after they are given 

smaller weightings. The drawback of this method is that not all predictions are rejected when a 
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sudden change of states happens, and the varied weightings only take effect at the next iteration 

making it difficult to detect and minimize the effect of the anomalies. It is pointed out in [76] 

and [77] that the anomalies can be detected and identified using normalised innovations of the 

measurements. However, methods are not given for identifying the anomalies, and there is no 

further study or assessment of different scenarios. 

 

In this chapter, a new algorithm for dynamic state estimation based on the CKF using the 

normalised innovation of the measurements and the skewness for accurately detecting and 

identifying the anomalies, is proposed. The proposed algorithm would detect, discriminate and 

take different actions for the three different types of anomaly: reject the prediction for sudden 

change of load, identify the removed branch and update the topology after the fault, and reject 

the identified bad data. The simulation also compares the performance of CKF and other 

nonlinear filters including EKF, IEKF, SKF and UKF. It is demonstrated that the CKF has 

better performance in terms of estimation accuracy, and higher sensitivity for detecting 

anomalies. 

 

In the following sections of this chapter, system dynamic models will be firstly discussed in 

Section 6.3, five different types of nonlinear filter will then be discussed in Section 6.4, then 

methods for anomaly identification will be presented in Section 6.5, then the proposed 

algorithm for dynamic state estimation will be presented in Section 6.6, then simulation 

settings will be presented in Section 6.7, after that simulation results and analysis will be 

discussed in Section 6.8, finally this chapter will be summarised in Section 6.9. 

 

6.2 Dynamic State Estimators 

 

While the SSE only uses the measurements to produce the state estimate, the DSE estimates 

the states of the system based on both the measurements but also the changing / dynamic 

behaviour of the states. Since state estimation is performed discontinuously at an interval of a 

few minutes, a discrete DSE is used in Thesis. A general structure of the discrete DSE is 

illustrated in Figure 6-1. The structure can be divided into two parts. The first part is a dynamic 
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model. It describes the dynamic behaviour by a set of state transition functions, which can be 

used to calculate the predicted state at Time k (
kx ) based on the input at Time k (

ku ) and the 

estimate at Time k-1 ( 1
ˆ

kx ). Details about the dynamic models will be discussed in Section 6.3, 

and the expression of the state transition function will be given in (6.1). The second part of the 

DSE is a nonlinear filter. It is capable of calculating an unbiased estimate of the states ( ˆ
kx ) 

combining the predictions (
kx ) and the measurements (

kz ). A detailed description of five 

nonlinear filters available for power system DSE will be given in Section 6.4.  

kx-1
ˆ

kx

Filtering

Dynamic 

Model

ˆ
kx

kz

ku

 

Figure 6-1: General Structure of the Discrete DSE 

6.3 System Dynamic Models 

 

This section introduces the dynamic model used in the DSEs, based on which the prediction of 

the states is made.  

The first question which must be answered for developing a dynamic model is what kind of 

dynamics of the system should be considered, or what kind of dynamics are relevant for the 

purpose of power system state estimation. As introduced at the beginning of Chapter 2, the 

power system operates in either normal state or in emergency state when perturbations happen. 

Although the dynamics of the voltage and other variables such as the angle of the internal emf, 

δ, and the rotor angular speed ωm, of the perturbed bus can be described by a set of dynamic 

equations, only a small proportion of the perturbations can be perceived by the system operator 

through the measurement system. In addition, security analysis needs records of the operation 

conditions of the power system as a reference base case. Furthermore, the power system 

operates in quasi steady states. In other words, the changing of the states is very slow in 

comparison to the update rate of state estimators. Thus, it is reasonable to model the dynamics 

of the power system as a succession of correlated steady states. Therefore, the aim of the 
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dynamic model for power system state estimation should be to track the trend of changes rather 

than track the dynamic responses of the states to the random disturbances. It is true that in 

literature some new DSEs have been proposed that use dynamic models considering the 

dynamics of the generator [170]-[171]. However, these methods only consider the states and 

parameters of a single bus that is connected to a generator. So, this PhD work adopted a 

prediction model named Holt’s Linear Exponential Smoothing technique [171] as the dynamic 

model for DSE, which predicts the states based on the trend indicated by the previous states 

and parameters. The mathematical expressions of this dynamic model are described below:   

 

The discrete state transition function can be generally represented by a difference equation 

given by (6.1): 

 

 

1k k k k k   x F x g q  (6.1) 

where x is the state vector, F is the state transition matrix, g is the input vector, q is the process 

error vector, and the subscript represents the number of the time instant. 

 

The parameters, F and g, are derived as given in (6.2)-(6.3): 

 

(1 )k k k   F I  (6.2) 

1 1(1 )(1 ) (1 )k k k k k k k k   

      g x a b
 

(6.3) 

where I is the identity matrix of the size of the state vector, and αk and βk are two scaler 

parameters in the range from 0 to 1, xk
-
 is the state of predicted states at time k, and parameter 

vectors a and b at time k can be obtained according to (6.4)-(6.5): 

 

(1 )k k k k k    a x x  (6.4) 

-1 -1( ) (1 )k k k k k k    b a a b
 

(6.5) 

In the simulations presented in this chapter, αk = 0.8, βk = 0.5 for k = 1, 2, 3 … The choice of 

these parameters are explained in [171]. 
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6.4 Nonlinear Filters 

 

This section discusses the mathematical formulations of the five nonlinear Kalman Filters 

introduced at the beginning of this chapter. All of the nonlinear Kalman Filters are capable of 

solving the dynamic state estimation problem as expressed in (6.6)-(6.9): 

 

 1 1, 1k k kk   x f x q  (6.6) 

 ,k k kk z h x r
 

(6.7) 

 1 1

2
k k  q Q  (6.8) 

 1 1

2
k k  r R  (6.9) 

where f is the general expression for the system state transition matrix as detailed in (6.1)-(6.5), 

q is a vector consisting of the zero-mean Gaussian errors, z is the measurement vector, h is the 

nonlinear measurement function, and r is the vector consisting of measurement errors. 

 

6.4.1 Extended Kalman Filter 

 

The estimation process of Extended Kalman Filter (EKF) can be roughly divided into two steps 

of prediction and correction as shown in the equations below: 

 

Prediction: 

 k 1, 1k k

 x f x  (6.10) 

1 1

T

k k k k k



  P F P F Q
 

(6.11) 

Correction: 

 
1

T T

k k k k k k k


  K P H H P H R  (6.12) 

 k k k k k

     
 

x x K z h x  (6.13) 

 k k k k

  P I K H P  (6.14) 
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where Pk
-
 is the covariance matrix of xk

-
, F is the Jacobian matrix of f with respect to x, H is 

the Jacobian matrix of h with respect to x, Kk is the Kalman gain, zk is the measurement vector, 

xk
+
 is the final estimate of the states after correction, I is the identity matrix, and Pk

+
 is the 

covariance matrix of xk
+
. 

 

6.4.2 Iterated Extend Kalman Filter 

 

In highly nonlinear systems, the estimate given by the EKF may not be accurate due to its 

practice of first order approximation of the Taylor Expansion of the equations, one of the 

methods that could improve the estimate, xk, given by (6.13) is to iteratively calculate xk until 

the difference between xk,i and xk,i-1 is within a given threshold, where the subscript i denotes 

the number of iteration. Thus, this alternative form of the EKF is called Iterated Extended 

Kalman Filter (IEKF). The IEKF can also be divided in the prediction and correction stages, 

and the expressions are given as: 

 

Prediction  

 k 1, 1k k

 x f x  (6.15) 

1 1

T

k k k k k



  P F P F Q
 

(6.16) 

 

Correction 

 

 
1

, , , ,

T T

k i k k i k i k k i k


  K P H H P H R  (6.17) 

   , 1 , , 1 , , 1k i k k i k k i k i k k i

    

  
     
 

x x K z h x H x x
 

(6.18) 

 , 1 , ,k i k i k i k



  P I K H P  (6.19) 

,0k k

 x x  (6.20) 

6.4.3 Second-order Extend Kalman Filter 
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Another way to reduce the estimation error of the EKF during linearization is to introduce 

higher order terms of the Taylor Expansion of the measurement function. The most widely 

used high-order EKF is the second-order EKF (SKF). 

 

Prediction: 

 k 1, 1k k

 x f x  (6.21) 

1 1

T

k k k k k



  P F P F Q
 

(6.22) 

Correction: 

 
1

T T

k k k k k k k k


   K P H H P H R A  (6.23) 

   2

1

1
,

2
k k k k k k k

   



 
     

 
x x K z h x h P  (6.24) 

 k k k k

  P I K H P  (6.25) 

where  2
, f B is the second-order term operator, for any function f(x) and any matrix, B, 

whose i
th

 term is defined as given in (6.26) and the matrix, Ak, is defined in (6.27). 

 

 2
2

, trace i
i T

f 
   

  
f B B

x x
 (6.26) 

     

   

2 2

2 2

1
E , ,

4

1
E , ,

4

T
T T

k k k k k k

T

k k k k

k
   

 

 
   

 

   
  

A h x x h x x

h P h P
 

(6.27) 

where fi is the i
th

 element of f, E is the expectation function, and 
k


x  is the predicted state 

residual vector as given by (6.28): 

 

,k k true k

  x x x  (6.28) 

The ij
th

 element of Ak , ak,ij,can be approximated by (6.29). To avoid massive loop calculations, 

ak,ij can be expressed in a compact way as given in (6.30): 
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 
2 2

, ,

, , , , ,

, , ,

1

4

k i k i

k ij k pm k qn k pn k qm

p q m n p q m n

h h
a p p p p

x x x x

  
  

     
  (6.29) 

        , , , , ,

1
.* .*

4

T T

k ij k i k k j k k i k k j ka sum      
  

H P H P H P H P
 

(6.30) 

 

where hk,i is the i
th

 element of hk, pk,ij is the ij
th

 element of Pk
-
, the operator .* denotes element-

wise multiplication, the function sum obtains the sum of all elements in the matrix, and 
,k i

H  is 

defined in (6.31): 

 

2

,

,

k i

k i T

h

 

H
x x

 (6.31) 

6.4.4 Unscented Kalman Filter 

 

The Unscented Kalman Filter (UKF) is developed based on the Unscented Transform (UT) 

theory. Instead of using the Taylor expansion to linearize the measurement function the UKF 

propagates a set of sigma points generated according to the statistical distribution of the states 

through nonlinear functions. Thus, the UKF does not need to calculate the Jacobian matrices to 

estimate the states and the covariance. Therefore, the UKF could improve the performance of 

the DSE in terms of both accuracy and execution speed especially for the highly nonlinear 

systems. The procedure of the UKF involves four steps of sigma point generation, state 

prediction, measurement prediction, and correction. Each of the steps is formulated as follows: 

 

Sigma Point Generation: 

The first step of UKF is to generate a set of 2n+1 (n is the number of states) sigma points, 

which can be expressed in a compact form as shown in (6.32): 

 

k-1 0 2

1 1 1 1

[ ]

[ ] 3[ ]

n

k k k k

   

   



  

X χ χ

x x 0 P P
 (6.32) 

 

State Prediction: 
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-1( , 1)k k k  X f X  (6.33) 

ˆ
k k m

 x X ω  (6.34) 

  1

T

k k k k

  

 P X W X Q  (6.35) 

0 2( [ ]) ( )

( [ ])

c c

m m n

T

m m

diag W W  

 

W I ω ω

I ω ω
 (6.36) 

where Xk
-
 is the prediction of Xk, W is the weighting matrix, the definitions of the weighting 

vector, ωm, and W0
c
 … W2n

c
 are defined below: 

 

0 1 2[ ]m m m T

m nW W Wω  (6.37) 

0 1 / 3mW n   (6.38) 

1/ 6, 1,2,...,2m

iW i n   (6.39) 

0 3 / 3cW n   (6.40) 

1/ 6, 1,2,...,2c

iW i n   (6.41) 

Measurement Prediction: 

 

( , )k k k Γ h X  (6.42) 

k k m

 z Γ ω  (6.43) 

 ,

T

z k k k k

   P Γ W Γ R  (6.44) 

 ,

T

xz k k k

  P X W Γ  (6.45) 

 

where 
k


Γ  is the resulting matrix after propagating 

k


X  through h, zk

-
 is the predicted 

measurement vector, 
,z k


P is the covariance of the predicted measurements, and 

,xz k


P is the 

covariance between the predicted states and the predicted measurements.  

 

Correction: 

 
1

, ,k xz k z k


 K P P  (6.46) 
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 k k k k k

    x x K z z  (6.47) 

,k k k xz k

   P P K P  (6.48) 

 

6.4.5 Cubature Kalman Filter 

 

The Cubature Kalman Filter (CKF) is a new accurate and highly efficient nonlinear filter 

proposed in 2009 [172]. It was developed based on the spherical-radial cubature rule which 

allows the CKF to quickly and accurately calculate multivariate moment integrals within the 

Bayesian filtering paradigm. In contrast to the other nonlinear filters, the CKF requires the 

process noises and measurement noises to be Gaussian noises to ensure an accurate estimate of 

the states. Thus, under the common assumption of Gaussian noises, the estimation process of 

the CKF is expressed in three steps as follows: 

 

State Prediction: 

 

   k 1 1 1 1 1, 1 ; ,
n k k k k kk N d  

     x f x x x P x  (6.49) 

   

   

1 1

1 1 1 1

, 1, 1

; ,

n

T

k k k

T

k k k k k k

kk

N d



 

   

   

 

 

P f x f x

x x P x x x
 (6.50) 

where N(x;μ,P) represents the Gaussian density for variable x with the mean value of  μ, and 

covariance of P,  

 

Measurement Prediction: 

 

   
R

, ; ,
nk k k k k kk N d   z h x x x P x  (6.51) 

       ,
R

, , ; ,
n

T
T

z k k k k k k k k kk k N d     P h x h x x x P x z z  (6.52) 

     ,
R

, ; ,
n

T
T

xz k k k k k k k k kk N d     P x h x x x P x x z  (6.53) 

Correction: 
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 
1

, ,k xz k z k


 K P P  (6.54) 

[ ]k k k k k

    x x K z z  (6.55) 

,k k k xz k

   P P K P  (6.56) 

Because of the difficulty in directly calculating the multivariate integrals as listed in (6.51)-

(6.56), they can be very accurately approximated using the spherical-radial cubature rule, and 

the procedures are given in (6.57)-(6.59). 

 

     

 
2

1

; ,
nN

n

i i

i

I N d

 




 





f f x x μ P x

f μ P
 (6.57) 

for 1,...,

for 1,..., 2

  

  

i

i

i n

ne i n

ne i n n




 
 

 


 (6.58) 

1
, 1,..., 2

2
i i n

n
    (6.59) 

where ei is a singleton vector where all of its elements are 0’s except for its i
th

 element being 1, 

ξi, i=1, ... 2n, are the cubature points, ωi, i=1, ... 2n, are the weightings of the cubature points.  

 

The cubature points can be generated in a similar way to the way in which the sigma points are 

generated in the UKF. However, they choose different locations for the cubature / sigma points 

with different weightings. For instance, the cubature points (6.60) and sigma points (6.62) and 

their corresponding weightings ((6.61) and (6.63) respectively) of a four-state vector with 0 

mean and unity covariance can be expressed as follows. Apart from the clear difference seen 

between the cubature points and the sigma points, it can also be observed that one element of 

the weighting vector of the sigma points is less than 0, which may result in a non-positive 

covariance matrix and eventually lead to non-convergence of the DSE. 

 

   1 2 8 4 4 4 4      ξ I I  (6.60) 

 1 2 8

1 1 1

8 8 8
  

 
  
 

 (6.61) 
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   0 1 2 8 4 1 4 4 4 43     X χ χ χ χ 0 I I  (6.62) 

 0 1 2 8

1 1 1 1

3 6 6 6
W W W W

 
  
 

 (6.63) 

6.5 Anomaly Identification 

 

In this section, new methods for detection, discrimination and identification of the three 

different types of anomalies including sudden change of load, sudden change of topology after 

the clearance of fault and bad data, will be discussed. The purpose of identifying the anomalies 

is that the existence of these anomalies will severely degrade the estimation accuracy of the 

DSEs, which will be demonstrated in Section 6.8. 

6.5.1 Anomaly Detection and Discrimination 

 

The anomalies of different types are detected and identified based on their different impacts on 

the estimation errors of the different measurements. Since the true values of the measurements 

are unknown, the absolute values of the errors of the measurements are also unknown. Thus, 

the normalised innovations (NIs), which is defined as the normalised difference between the 

measurements and the predicted measurements, are used to quantify the magnitude of the 

errors instead. The NIs can be obtained from the normalised innovation vector, which can be 

calculated following (6.64). 

 

  ,/k k k z k

  τ z z P  (6.64) 

where the definition of the predicted measurement 
k


z , and its covariance, 

,z k


P , of the UKF and 

the CKF have already been given in (6.43)-(6.44) and (6.51)-(6.52) respectively, and that of the 

EKF, IEKF and SKF are given in (6.65) and (6.66) respectively. 

 

 k k

 z h x  (6.65) 

,

T

z k k k k k

  P H P H R  (6.66) 
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All three types of anomalies could significantly increase the NIs. As well as this, they could 

affect the distribution of the elements in the normalised innovation vector. The skewness of the 

normalised innovation vector is introduced to quantify the asymmetry of the affected 

distribution as defined in (6.67)-(6.69). 

 

   
.*3 .*2 3

3, E 3 E 2k k k k kM v v     
   
τ τ  (6.67) 

 
.*22 2Ek k kv   

 
τ  (6.68) 

 Ek kv  τ  (6.69) 

where the operator, .*n, denotes elementwise exponential calculation with the exponent n. 

 

It is assumed that the anomalies happen very rarely and even when they do, at most only one 

anomaly happens at any time. Assuming that the anomaly happens at time instant k, the 

impacts of the anomalies on the normalised innovation and its skewness are summarised in 

Table 6-1. 

 

Table 6-1: The Effects of Different Types of Anomalies 

 on Normalised Innovations and Skewness 

Anomalies Normalised Innovation Skewness 

Bad Data 
Single NI much greater than the 
normal value 

Skewness at Time k much greater 
than the normal value 

Sudden Load 
Change 

Multiple NIs greater than the 
normal value 

No skewness beyond the normal 
value, or the skewness at Time k 
slightly greater than the normal value 

Fault 
Multiple NIs much greater than the 
normal value 

The skewness at and  after Time k all 
greater than the normal value 

 

Bad data can only affect a single measurement at a given time instant; thus only the NI of the 

measurement smeared by the bad data and only the skewness at that time instant will be greater 

than their normal values. In comparison, the sudden change of load will change the overall 

power flow in the network, and thus many states and many predicted measurements will be 

affected. This results in multiple NIs greater than the normal values. Its impact on the skewness 

of the NIs is affected by the size of the network: if the size of the network is small, the 

skewness of the NIs will stay more or less the same since almost all states are evenly affected 
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by the sudden change of load; if the size of the network is large, then the skewness of the NIs 

will be slightly more than the normal value, since states will be affected differently by the 

sudden change of load according to their distance to the load.  

 

The clearance of the fault can be done by removing one of the branches in the network. If such 

an action is not reported to the state estimator in time, then errors will happen persistently at 

both stages of state prediction and measurement prediction. This is because the measurements 

are made from the network with new topology, while the predictions of states and 

measurements are based on the old topology. So, both NI and its skewness at and after time 

instant k will be greater than their normal values. Based on the different responses of NI and 

the skewness to the different anomalies, a unified algorithm is proposed as shown in Figure 

6-2. Note Ckth1 and Ckth2 are two thresholds for the skewness at Time k, and Ckth1 < Ckth2. 

These two thresholds are set to identify sudden load change in small networks and large 

networks, respectively. 
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6.5.2 Identification of the Anomalies 

 

It was shown in Section 2.3 that bad data identification for SSE have been realised by using the 

largest normalised residual test method. Based on this method, the bad data identification for 

DSE can be done easily using a similar method of the largest normalised residual test: the 

measurement that has the largest NI is identified as the bad data since in this case only one NI 

will be greater than the normal value. However, the location where a sudden change of load or 

topology change cannot be identified directly because these events will cause multiple NIs 

Figure 6-2: Algorithm for Anomaly Identification 
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greater than their normal values. Two methods are proposed below to identify the location of 

the latter two types of anomalies. 

 

6.5.2.1 Identification of Sudden Load Change Bus 

 

A pseudo power injection method for the CKF is proposed below for identification of the bus 

that experienced sudden load change: 

 

Step a.  Identify the buses that possess load and calculate the average load of these buses, 

select the buses whose load is larger than 10% of the average load. 

Step b.  Compute the predicted active power injection measurements of the selected buses , 

zl
-，and the corresponding covariance matrix, Pl

-
, as shown in (6.70): 

   
R

, ; ,
nl k k k k k

l
k N d   z h x x x P x  (6.70) 

where hl consists of functions of the active power injection  incident to the selected 

buses in Step a. 

Step c.  Compute the updated active power injection measurements,  zl
+
, as given in (6.71): 

   
R

, ; ,
nl k k k k k

l
k N d   z h x x x P x  (6.71) 

Step d.  Compute the mutual covariance between zl
-
 and zl

+
, Pl: 

       
R

, , ; ,
n

T
T

l l k l k k k k k l lk k N d    P h x h x x x P x z z  (6.72) 

Step e.  Compute the normalised innovation vector of the pseudo power injection 

measurements, τl. 

/l l l l

  τ z z P  (6.73) 

Step f.  Find the largest NI, or the largest element of τl, its corresponding bus is identified at 

the bus where sudden load change happens. 

 

 

6.5.2.2 Identification of the Removed Branch after Fault Clearance 
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The branch removed after the fault clearance can be identified before the update of the 

topology of the network if the power flows and currents in all branches are monitored. The 

procedures are shown in the following steps: 

 

Step A.  Select a set of uni-direct power flow measurements that cover all branches of the 

network, M. 

Step B.  Store the measurements received at time instant k ∈  M into a vector, mk. 

Step C.  If a fault is detected at time instant k, calculate the variation ratio, rm, according to 

(6.74). Find the largest element of rm, its corresponding branch is identified to be 

the removed branch. 

 1ln /m k km mr  (6.74) 

 

6.6 Dynamic State Estimation Using the Cubature Kalman Filter 

 

Based on the new algorithm for anomaly detection and identification presented in the previous 

section and the cubature spherical rule, a novel dynamic state estimation algorithm applying 

the CKF is proposed as follows: 

 

Begin: Calculate fk and Qk according to (6.1)-(6.7), and hk and Rk according to (6.8)-(6.9), 

respectively. a0 = x-1, b0 = 0, x0
+ 

= x0
- 
= x0, Pk0

+
 = Q0. Set k = 1, stop = 0, and define 

kmax 

 

While (stop = 0) 

{ 

Step 1.  Generate the cubature points and the weightings as described in (6.58) and (6.59). 

Step 2.  Predict the states according to (6.49)-(6.50). 

Step 3.  Predict the measurements according to (6.51)-(6.53). 

Step 4.  Calculate the Kalman estimate according to (6.54)-(6.56). 

Step 5.  Detect and discriminate the anomaly using the algorithm shown in Figure 6-2. 
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Step 6.  According to the type of anomaly detected in Step 5, use the normalised 

innovation method to identify the bad data, the pseudo power injection method to 

identify the sudden load change bus following Step a to Step f , and follow Step A 

to Step C to identify the removed bus after fault if possible. 

Step 7.  Reject the bad data and go back to Step 5 if the bad data is identified, reject the 

prediction and calculate the new state estimate using static state estimator if the 

sudden load change is identified, and update the network topology and use static 

state estimator to find the new state estimate if the removed branch is identified. 

Step 8.  Output xk
+
 and Pk

+
. Set k = k+1. 

Step 9.  If a stop signal is received or k = kmax, set stop = 1.｝ 

 

6.7 Simulation Settings 

 

The objective of the simulations in the research is to demonstrate the advantage of the CKF 

based dynamic state estimator over the other nonlinear filters presented in Section 6.4, and how 

to use the anomaly identification algorithm to detect, discriminate and identify different types 

of anomaly.  

 

In order to enable the function of bad data detection, a redundant set of conventional 

measurements and a redundant set of PMU measurements are chosen for the simulations in the 

IEEE 14 and 39 Bus Test Systems as shown in Table 6-2 and Table 6-3 respectively.  

 

Table 6-2: Measurement Placement for the IEEE 14 Bus Test System 

Voltage Magnitude at Bus # 2;3;8;10;12 

Power Injection at Bus # 1;3;6;7;8;9;11;13;14 

Power Flow # 1;2;4;5;6;7;13;18;19;34 

PMU Voltage Phasor at Bus # 1;4 

PMU Current Phasor at Branch # 1;2;7;8;9;24;26 
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Table 6-3: Measurement Placement for the IEEE 39 Bus Test System 

Voltage Magnitude at Bus # 3;5;6;8;12;14;16;17;19;22;25;26;30;31;32;34;36;38;39 

Power Injection at Bus # 
3;4;7;8;12;15;16;18;20;21;23;24;25;28;29;30;31;32;33;34;36;

37;38;39 

Power Flow # 

2;3;5;10;11;13;14;15;16;17;18;21;25;26;28;29;30;31;36;40;47 

;50;52;53;54;55;58;65;66;68;69;73;78;79;80;81;87;88;89;90; 

91;92 

PMU Voltage Phasor at Bus # 2;6;9;12;14;17;22;23;29;32;33;34;37 

PMU Current Phasor # 
3;4;11;12;15;19;25;26;28;29;35;36;38;39;43;44;46;47;54;55; 

60;64;67;73;74;79;80;83;87;88;91 

 

Note that in the IEEE 14 Bus Test System, there are 20 branches in the network. Thus, in Table 

6-2 a power flow number or PMU current phasor number, k, which is not larger than 20, 

indicates the forward direction of Branch k defined in the test system. If the number, k, is larger 

than 20, it indicates the reversed power flow / current flow direction of Branch k-20. This 

notation also applies to the numbering of the power flow and current measurements in the 

IEEE 39 Bus Test System in Table 6-3, where the number of branches in the network is 46. 

 

The assumption of a quasi-static state is represented by a gradual linear increase in some 

chosen loads by 20% over 50 time steps. To simulate the small fluctuations existing in the 

load, a random walk with a standard deviation of 3% of the magnitude of the load change is 

assigned to the load. It is also assumed that the generators will respond to the load increase by 

generating more power according to their participation factors, i.e.  the proportion of power 

generations before the change of load. 

 

The DSE is affected by two types of error, the process errors and measurement errors, which 

exist in the prediction stage and update stage respectively. The process error, Q, is assumed to 

be Gaussian error, and its covariance is set to be 1e10
-6

*I in this research, where I is an identity 

matrix. The measurement errors are also assumed to be Gaussian errors, and each of their 

standard deviations is set to be the values of the magnitude of the measurement times a 

coefficient according to different types of measurement as shown below: 
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 SCADA: P, Q measurements (0.02) and V (0.002) 

 PMU: 0.002 for magnitudes, and 0.01 for angles 

 

To initialise Holt’s method, it is assumed that the previous two states before the first state to be 

estimated by the DSE (x-1 and x0) are known. The performance index as defined in (6.75) is 

used to assess the performance of the DSE: 

 

,

,

k k true

k

k k true

J

 







z z

z z
 (6.75) 

 

The simulations consider four different cases, including the normal operation case, the 

presence of bad data, the presence of sudden load change, and the presence of a fault. The 

simulation settings stated above are applied to all of the four cases. At time instant 25, the 

corresponding anomalies are introduced for the last three cases respectively. 

 

6.8 Simulation Results and Analysis 

 

In this section, the simulation results and the analysis of the four cases as mentioned in the 

previous section are given.  

 

6.8.1 Normal Operation Case 

 

This subsection presents the simulation results for the normal case in the IEEE 14 Bus Test 

System (data sheets given in Appendix C.1). Figure 6-3 shows the OPIs of the five DSEs and 

the steady state estimator (SSE) over the 50 time steps. It is shown that all five DSEs have 

smaller OPI than the SSE. This demonstrates the effectiveness of Holt’s method and higher 

estimation accuracy of the DSEs over the SSE in a quasi-steady state. It is also demonstrated 

that the CKF has the most accurate estimation accuracy among the five DSEs with the lowest 

average OPI at about 0.16. This is followed by the UKF with an OPI at about 0.20. What is 

notable is that the OPIs of the EKF, IEKF and the SKF have the same average value at about 
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0.22. This might because in the simulation case studied, the nonlinearity of the system is still 

not high enough to cause a significant difference among the three DSEs that are all based on 

Taylor Expansions of the equations. Since the same measurements are used for the DSEs, such 

estimation accuracy improvements offered by the CKF is significant. Figure 6-4 shows that the 

CKF also has the least skewness, while the UKF has the largest skewness among the DSEs. 

However, the differences in the skewness of the DSEs are small, and are all below the 

threshold of 3. As in the normal case, all measurements and predictions are basically accurate; 

it is shown in Figure 6-5 the NIs of all the DSEs over the 50 time instant are all well below the 

threshold of 3.  
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Figure 6-3: OPIs of the DSEs and the SSE in Normal Operation Case in the IEEE 14 Bus 

Test System 

 

Figure 6-4: Skewness of the DSEs and the SSE in Normal Operation Case in the IEEE 14 

Bus Test System 

 

Figure 6-5: Normalised Innovations of the DSEs and the SSE in Normal Operation Case 

in the IEEE 14 Bus Test System 
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6.8.2 Presence of Bad Data 

 

This section gives the simulation results in the case of bad data. A gross error (the 

measurement is set to 0) is introduced in the active power flow measurement connecting Bus 2 

and Bus 4 at Time 25.  

 

In Figure 6-6 a severe drop can be seen in the OPI curves of all DSEs and the SSE. This can be 

explained by the nature of the state estimation that errors existing in the measurements will be 

averaged out so that the overall error after the estimation will be smaller than that before the 

estimation. This effect will become more significant if any one of the measurements has 

significantly larger errors than the other measurements. However, the quality of the state 

estimate in this case is much worse than that in the normal operation case since the OPI 

quantifies the improvement of the data quality, but not the absolute size of the errors. So, the 

bad data has to be detected and identified in time.  

 

As can be seen in Figure 6-7 and Figure 6-8, a single skewness and a single NI of a 

measurement become much larger than their normal values. According to the anomaly 

identification algorithm presented in Figure 6-2, the anomaly is identified to be bad data, and 

bad data exists in Measurement 21, which is the active power flow measurement between Bus 

2 and Bus 4. 
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Figure 6-6 : OPIs of the DSEs and the SSE in the Presence of Bad Data in the IEEE 14 

Bus Test System 

 

 

Figure 6-7: Skewness of the DSEs and the SSE in the Presence of Bad Data in the IEEE 

14 Bus Test System 

 

 

Figure 6-8: Normalised Innovations of the DSEs and the SSE in the Presence of Bad Data 

in the IEEE 14 Bus Test System 
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6.8.3 Presence of Sudden Load Change 

6.8.3.1 IEEE 14 Bus Test System 

 

This subsection discusses the simulation results of the third simulation case where a sudden 

load change of a 40% load reduction is introduced at the load at Bus 2 at Time 25 in the IEEE 

14 Bus Test System. As shown in the previous subsection, the bad data have almost the same 

effect on the performance (OPI) of the DSEs and the SSE. In contrast, the sudden change of 

load affects and the DSEs and the SSE differently. As shown in Figure 6-9, the OPI of the CKF 

is the most sensitive to a nonlinear filter with its peak at about 0.7; the OPI of the UKF is also 

significantly affected, but its peak value is lower at about 0.5, the OPIs of EKF family (EKF, 

IEKF and SKF) at time Time 25 also increase, but the change is not obvious; the SSE is not 

affected by the sudden load change since it does not use the prediction of the states to produce 

the state estimate. This result of the relative OPI values of the DSEs and SSE is exactly the 

opposite to that in the normal operation case. That is to say, the more efficient a nonlinear filter 

is the more susceptible it is to the sudden change of load. Hence, in order to make use of the 

highly efficient nonlinear filters to improve the performance of the DSE it is crucial to 

accurately detect and identify the sudden change of load and make correct responses in time.  

 

It is shown in Figure 6-10 that the skewness of the DSEs increases slightly at time Time 25 but 

is still within the threshold of 3. This is because in a small network such as the IEEE 14 Bus 

Test System the sudden change of load affects the states of all buses to more or less the same 

extent. Thus, the distribution of the normalised innovations does not change very much. The 

difference compared to the normal case is that several NIs are larger than the threshold of 3 as 

can be seen in Figure 6-11. According to Criteria 3 given in Figure 6-2, the anomaly is detected 

to be sudden change of load. Although the five measurements greater than 3, V4, Ireal,1-2, Ireal1-5, 

Iimag,1-2 and Iimag,2-4, are near Bus 2, it is not obvious to directly identify the bus when the 

sudden change of load happens. Following Step a to Step f of the pseudo injection method 

given in Section 6.5.2.1, the normalised innovation vector of the pseudo injection 

measurements, τl, for the CKF is computed and summarised in Table 6-1. The results show that 

Load 1 at Bus 2 has much larger τl than any other loads, which clearly indicates that the sudden 

change of load happens at Bus 2.  
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Figure 6-9: OPIs of the DSEs and the SSE in the Presence of Sudden Load Change in the 

IEEE 14 Bus Test System 

 

 

Figure 6-10: Skewness of the DSEs and the SSE in the Presence of Sudden Load Change 

in the IEEE 14 Bus Test System 

 

 

Figure 6-11: Normalised Innovation of the DSEs and the SSE in the Presence of Sudden 

Load Change in the IEEE 14 Bus Test System 
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Table 6-4: Normalise Innovation Vector of the Pseudo Injection Measurements 

Load 1 2 3 4 5 6 7 8 9 10 11 

Bus 2 3 4 5 6 9 10 11 12 13 14 

τl 1.25 0058 0.026 0.103 0.160 0.257 0.704 0.114 0.075 0.123 0.200 

 

 

6.8.3.2 IEEE 39 Bus Test System 

 

In this subsection, the simulation is conducted again in the IEEE 39 Bus Test System (data 

sheets given in Appendix C.2). A 10% load reduction is introduced at Bus 27 at Time 25. In 

general, the OPIs of the DSEs increase significantly at Time 25 although the change of load is 

less severe compared to the 40% load reduction, as can be seen in Figure 6-12. In the previous 

simulation for sudden change of load in the IEEE 14 Bus Test System, two characteristics of 

the results are shown: multiple NIs are greater than the normal values, and the all skewness 

over the time is within the normal value.  In the IEEE 39 Bus Test System, these characteristics 

become less obvious; rather, the effect of sudden change of load becomes similar to the effect 

of bad data. First, there is a significant increase in the value of skewness at Time 25 when the 

anomaly happens, but the peak value at about 3.5 is significantly smaller than the peak value of 

the skewness at about 7.5 in the bad data case. Second, there are multiple NIs greater than the 

threshold of 3, but the largest NI is much larger than the others making the shapes of the curves 

more similar to those of the bad data case. The reason for the differences compared to the 14 

bus case and the similarities to the bad data case is that in a larger network, only a small 

proportion of the states are significantly affected by the sudden change of load, while most of 

the states are weakly or basically unaffected. The detection of the sudden change of load can 

still be realised according to Criteria 5 of the algorithm shown in Figure 6-2 as long as the 

thresholds of skewness, Ck,th1 and Ck,th2, are properly selected, for example 3 and 5 respectively 

in this case. Identification of the anomaly can be carried out following the same procedure as 

given in the previous subsection, and thus is not discussed here.  



Chapter 6 – Dynamic State Estimation 

 

205 

 

Figure 6-12: OPIs of the DSEs and the SSE in the Presence of Sudden Load Change in 

the IEEE 39 Bus Test System 

 

 

Figure 6-13: Skewness of the DSEs and the SSE in the Presence of Sudden Load Change 

in the IEEE 39 Bus Test System 

 

 

 

Figure 6-14: Normalised Innovations of the DSEs and the SSE in the Presence of Sudden 

Load Change in the IEEE 39 Bus Test System 
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6.8.4 Presence of a Fault in the Network 

 

The final case studied in this chapter is in the presence of a single fault in the grid. It is 

assumed that the state estimator always receives the measurements of the power system in a 

steady state after the fault. This is because the transient response of the network to the fault is 

much faster than the update rate of the state estimator. It is also assumed that the fault is 

cleared by removing one of the branches. The scope of this study is to investigate the effect of 

such a topology change on the DSEs and how this type of anomaly can be detected and 

identified before the topology change is updated. 

 

The simulation in this case is performed in the IEEE 14 Bus Test System where a topology 

change happens at Time 25 when the branch connecting Bus 3 and Bus 4 is removed. The 

topology change is not updated after Time 25 in order to clearly show its persistent impact on 

the DSE. As shown in Figure 6-15 the OPIs of all DSEs and the SSE have become much larger 

than the 1 after the topology change happens at Time 25, which indicates that the estimation is 

even worse than the measurements.  

 

The topology change after the fault imposes persistent impact on not only the OPI but also on 

the skewness and the NIs, which can be used to detect and identify the anomaly. As shown in 

Figure 6-16, the skewness surges from the normal operation case value of around 2 to about 

3.5 at Time 25, and continues to increase until a steady value of about 5 is reached at Time 30. 

In Figure 6-17 and Figure 6-18 it is shown that multiple NIs are greater than the normal value 

at Time 25, and this phenomenon still exists at Time 26. According to Criteria 5 of the 

anomaly detection algorithm shown in Figure 6-2, a topology change is detected at Time 25 

that might be caused after the fault is cleared. 

 

The removed branch can be identified following Step A to Step C given in Section 6.5.2.2; the 

variation ratios of the branches at Time 25 are computed as summarised in Table 6-5. Since its 

corresponding rm is the largest, Branch 6 is identified to be the removed branch. 
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Figure 6-15: OPIs of the DSEs and the SSE in the Presence of Fault in the IEEE 14 Bus 

Test System 

 

 

Figure 6-16: Skewness of the DSEs and the SSE in the Presence of Fault in the IEEE 14 

Bus Test System 

 

 

Figure 6-17: Normalised Innovations of the DSEs and the SSE in the Presence of Fault in 

the IEEE 14 Bus Test System at Time Instant 25 
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Figure 6-18: Normalised Innovations of the DSEs and the SSE in the Presence of Fault in 

the IEEE 14 Bus Test System at Time Instant 26 

 

Table 6-5：Variation Ratios of the Branches 

 After the Fault in the IEEE 14 Bus Test System 

Branch 1 2 3 4 5 6 7 8 9 10 

rm 0.0116 0.0124 0.0121 0.0120 0.0068 1.4350 0.0063 0.0435 0.0323 0.0002 

Branch 11 12 13 14 15 16 17 18 19 20 

rm 0.0345 0.0561 0.0169 0.7173 0.0374 0.0129 0.0208 0.0088 0.0105 0.0305 

 

6.9 Summary 

 

The development of the IT technology, SMT technology and the open access to the operation 

of transmission networks makes it feasible to develop a DSE in power systems in the future. 

The ability of the DSE to use the prediction for state estimation gives it advantages over the 

SSE in bad data detection and estimation of the branch parameters and generator parameters. 

 

The performance of DSEs is mainly limited by two aspects; the efficiency of the nonlinear 

filter and the sudden change of states.  This chapter proposed a new DSE algorithm using the 

Cubature Kalman Filter (CKF) as the nonlinear filter. The proposed algorithm is also capable 

of detecting, discriminating and identifying three types of anomaly, including bad data, sudden 

change of load and fault, where the latter two types are the reasons that can cause the sudden 



Chapter 6 – Dynamic State Estimation 

 

209 

change of states. Four other nonlinear filters that are often used in DSEs are also introduced in 

order to demonstrate the high efficiency of the CKF. 

 

From the simulation results, it was found that in the normal operation case the estimation 

accuracy of the CKF is significantly higher than that of the other nonlinear filters with the same 

measurements. However, it was found that the high efficiency nonlinear filters, such as the 

CKF and UKF, are also more susceptible to anomalies. Thus, a novel anomaly detection 

algorithm is proposed based on the different responses of the normalised innovations of the 

measurements and their skewness to anomalies. In addition, anomaly identification methods 

are proposed for different anomalies: bad data can be identified using the existing largest 

normalised innovation method, the load that experiences sudden change can be identified using 

the pseudo injection measurement method. On the other hand, the removed branch after the 

fault can be identified using the branch power flow variation ratio method if all branch power 

flows or currents are monitored. So, the performance of DSE can be significantly improved 

with the algorithm proposed based on the CKF with the help of anomaly detection and 

identification methods. 
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Chapter 7 Thesis Summary 

 

 

This chapter summarises the conclusions drawn from the results presented in the thesis 

(Chapter 7.1), the contributions achieved in this research (Chapter 7.2) and provides some 

suggestions for future work (Chapter 7.3). 

 

7.1 Conclusions 

 

This PhD thesis has discussed new algorithms to enhance the practice of power system state 

estimation considering the possible improvements for static state estimation (Section 7.1.1), the 

opportunities and challenges provided by synchronised measurement technology  (Section 

7.1.2 and Section 7.1.3) and future developments of dynamic state estimation (Section 7.1.4). 

 

7.1.1 Observability Analysis 

 

The first research topic of this thesis is observability analysis, a necessary function prior to the 

main function of state estimation. Observability analysis can be performed using either a 

numerical method or a topological method.  The research of this thesis focuses on the 

numerical method because of its popularity in literature and its capability to analyse large 

networks.  

 

The functions of observability analysis include checking network observability (if a unique 

solution can be found), identification of observable islands and measurement replacement. The 

existing numerical method for observability analysis can be classified into the gain matrix 

method, the gram matrix method and the test matrix method. It is demonstrated in this thesis 

that all of these methods may not correctly identify the observable islands in the so-called 

pathological cases. This thesis has established that, apart from the common pathological case 
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(Type 1 pathological case) recognised in literature where the observable islands are 

topologically separated, there is another type of pathological case (Type 2 pathological case) 

where some of the observable islands can be directly connected by branches. The gain matrix 

method and the gram matrix method are vulnerable to both types of pathological cases, while 

the test matrix method is vulnerable to Type 2 pathological case. The thesis identified the flaw 

in the theory of the test matrix method, revised the theory, and proposed a new fully iterative 

numerical method for observability analysis. However, the iterations can slow down the 

execution speed of observability analysis, and they are found to be unnecessary in most cases. 

To avoid unnecessary iterations and improve the efficiency of observability analysis, a 

pathological case identification rule (PCIR) is proposed that can precisely discriminate normal 

cases where iterations are not needed and pathological cases where iterations are needed.  

 

The PCIR also allows observable islands to be identified directly from the test matrix. Such an 

observable island identification approach is called the direct island method, while the 

algorithms presented in literature use the direct branch method, which identifies observable 

islands in two steps. The simulations demonstrate that the direct island method assisted by the 

PCIR is up to 3 times faster than the direct branch method. Hence, the proposed method based 

on the PCIR and the direct island identification method not only guarantees accurate 

observable island identification but is also much faster execution than the existing numerical 

observability analysis methods in terms of execution speed. 

 

Another major drawback of the existing numerical methods for observability analysis is that 

they cannot analyse network observability in the presence of PMU measurements since they 

are designed only to consider the conventional methods.  The thesis considers all possible types 

of conventional and PMU measurement placements, studies the observability they provide, and 

proposes a new method to numerically express them in the same format used in existing 

observability analysis methods so that the PMU measurements can be included in the existing 

methods without the need to fundamentally change them. 

 

The thesis also points out that the execution speed of the observability analysis can be further 

improved using highly efficient factorisation method instead of the widely used Cholesky 
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factorisation, and that the proposed method for numerical observability analysis based on the 

PCIR cannot be substituted by the other methods such as the methods using alternative or 

actual branch reactance. 

 

7.1.2 Optimal PMU Placement 

 

The second research topic in the thesis is optimal PMU placement. While the research topic of 

optimal PMU placement has been thoroughly studied in literature considering different 

optimisation algorithms, constraints and scenarios, the focus of this thesis is on optimal PMU 

placement in the presence of conventional measurements using integer linear programming 

(ILP). The purpose of this research is to find the minimum number of PMUs that can support 

the observability of the hybrid state estimators in the presence of existing conventional 

measurements. 

 

There are two major types of methods for optimal PMU placement in the presence of 

conventional measurements, the Kirchoff Current Law (KCL) based methods and the 

observability analysis based methods. It is found in the research that both of these methods 

may give sub-optimal solutions, i.e. there are better PMU placements that can ensure network 

observability with a smaller number of PMUs. In addition, the KCL based methods may also 

obtain wrong placements that cannot make the system observable. A new method is proposed 

in the thesis based on a novel network transformation scheme and a new global network 

observability criterion. The new method is guaranteed to always obtain correct PMU 

placements, and it is demonstrated through simulations that it gives less sub-optimal solutions 

than the existing KCL and observability analysis based methods. The drawback of the 

proposed method is that it is still susceptible to the problem of sub-optimal solution. 

Nevertheless, the proposed method is still valuable for two reasons: first, the PMU placement 

obtained by this method can ensure network observability; second, the simplicity of the method 

gives it advantages in terms of execution time and allows it to be easily implemented with ILP. 
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7.1.3 Hybrid State Estimation 

 

The third research topic in the thesis is hybrid state estimation. Hybrid state estimator (HSE) 

was proposed as a transitional product between the conventional state estimator (CSE) and the 

linear state estimator (LSE) due to the high costs to install a sufficient amount of PMUs to 

support LSE. There are three major research topics for HSE: improving the performance of the 

state estimator, exploring new applications of HSE and methods for optimally integrating the 

conventional measurements and PMU measurements into the HSE. The research presented in 

this thesis focuses on the third topic listed above. 

 

The problem of directly using both types of measurements in HSE comes from the current 

phasor measurement. The current phasor measurements provided by the PMUs are in polar 

form, whose derivatives with respect to the states might be singular for certain values of states. 

Thus, the direct use of the polar current phasor measurements might result in non-convergence. 

Five different formulations of HSEs have been identified in literature that overcomes this 

problem, including the post-processing (PP) HSE and four integrated HSEs: rectangular 

current (RC) HSE, pseudo flow (PF) HSE, pseudo voltage (PV) HSE and constrained 

formulation (CF) HSE.  Although in literature each of these methods has shown its advantage 

in comparison to the CSE, it is unknown yet which formulation can optimally use the PMU 

measurements to improve the performance of the HSE. 

 

The thesis compares the performance of the HSEs in three aspects: the estimation accuracy, 

execution time and convergence. An exhaustive simulation of all possible PMU placements in 

the IEEE 14 bus test system was executed for this purpose. It is found that in general the 

placement of every additional PMU would significantly increase the estimation accuracy of the 

HSEs from 0 PMU, which is effectively a CSE, until a knee point, the minimum number of 

PMUs that can make the system fully observable. After the knee point, the accuracy 

improvement brought by placing an additional PMU becomes significantly smaller. In 

particular, after the point where the number of PMUs can make the network fully redundant the 

improvement in accuracy becomes negligible. In terms of the relative estimation accuracy of 

the HSEs, it is found that the RC HSE is the most accurate HSE, the PF HSE and CF HSE have 
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comparable estimation accuracy, but they are less accurate than the RC HSE, the PP HSE and 

PV HSE have the least estimation accuracy when the number of PMUs are smaller and larger 

than the knee point respectively. These conclusions are perfectly validated in the IEEE 118 Bus 

Test System. In addition, the conclusions are further proved by mathematical analysis, through 

which it is shown the reasons for these conclusions. The reason why the RC HSE is the most 

accurate is that it uses the simplest measurement transformation, and the reasons why PP HSE 

and PV HSE are the least accurate are that they cannot make good use of the PMU 

measurements and the virtual measurements, respectively. 

 

As for the execution time and convergence, it is shown in the simulation results in both the 

IEEE 14 and 39 Bus Test Systems that the CF HSE and PV HSE take much more execution 

time than the other HSEs, and that the CF HSE is much less stable than the other HSEs. This 

result is explained by the characteristics of augmented state vector, whose length is up to more 

than 5 times the length of the other HSEs.  

 

Apart from simulations with Gaussian errors in the measurements, the thesis also performed 

additional simulations with gross measurement errors and parameter errors. The results show 

that parameter errors will have more severe impact on the estimation accuracy of the HSEs 

than gross errors. It is also concluded that the PMU placement can significantly affect the 

impact of these two types of errors: a poor estimation accuracy of an HSE could be as low as 

that of a CSE, while a good estimation of an HSE could approach the base case (the case 

without being affected by parameter errors or gross errors). However, there is still not a clear 

conclusion on which PMU placements are more resilient to gross errors and parameter errors, 

and the reasons why they are more advantageous than the other placements. The answer to 

these questions would require the development of new tools and more research on HSE in the 

future. 

7.1.4 Dynamic State Estimation 

 

The fourth and final research topic in the thesis is on dynamic state estimation. In contrast to 

the static state estimator (SSE) that produces the state estimate using only measurements, 
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dynamic state estimator (DSE) estimates the states using both the measurements and 

predictions based on the information of the previous state estimate. The tasks of creating the 

prediction and estimating the states in DSE are undertaken by the dynamic model of the system 

and a nonlinear recursive filter, respectively. Thus, the challenge of the DSE is to ensure a 

correct and accurate prediction of the states and choose the most efficient nonlinear recursive 

filter. In literature, most DSEs choose extended Kalman filter (EKF) or unscented Kalman 

filter (UKF) as their nonlinear filters. However, the EKF is limited by its inaccurate estimation 

in highly nonlinear systems, while the UKF is vulnerable to convergence problems. It is also 

widely recognised in literature that the sudden change of states could lead to wrong predictions 

and significantly degrade the performance of the DSE. However, there is not an algorithm yet 

which can detect, discriminate and identify different types of anomaly in different scenarios. 

 

To solve the abovementioned problems, the thesis proposes a new algorithm for DSE using the 

cubature Kalman filter (CKF) as the nonlinear recursive filter, which can systematically detect, 

discriminate and identify three different types of anomaly considered in the thesis, namely bad 

data, sudden change of load, and sudden change of topology due to a fault. The simulation 

results show that in normal operation cases the CKF is significantly more accurate than the 

UKF, the EKF and two revised formulations of the EKF (iterated EKF and second-order EKF), 

which are more accurate than the SSE. Although it is also shown that the CKF is more affected 

by the anomalies, a set of anomaly detection criteria is proposed to solve this problem 

according to the different responses of the normalised innovations of the estimation and their 

skewness. While bad data identification can be carried out using the existing largest normalised 

innovation method, a pseudo injection method and a branch power flow variation ratio method 

are proposed to identify the location of sudden change of load and the location of the sudden 

change of topology. All of these anomaly detection and identification methods have been 

demonstrated in different case studies in the IEEE 14 and / or 39 Bus Test Systems.  

 

 

 

 



Chapter 7 – Thesis Summary 

 

217 

7.2 Thesis Contributions 

 

The research presented in this thesis focuses on proposing new algorithms to improve the 

performance of power system state estimation. The contributions of this thesis can be divided 

into four parts: 

1. Observability Analysis (Paper [A.1]) 

2. Optimal PMU Placement (Papers [A.2], [A.3], [A.7]) 

3. Hybrid State Estimation (Papers [A.2], [A.4], [A.7]) 

4. Dynamic State Estimation (Paper [A.5]) 

 

Details of these parts are given as follows. 

 

1. New algorithms and theories for numerical observability analysis. 

a. Proposition of a fully-iterative method for numerical observability analysis, 

which can guarantee the correct identification of observable islands, after 

identifying and revising the flaw in the theory of the existing numerical method 

for observability analysis. 

b. Proposition of the convergence theorem for numerical observability analysis 

which proves the definite convergence of observability analysis. 

c. Proposition of the pathological case identification rule (PCIR) which can 

precisely distinguish normal cases and pathological cases. 

d. Proposition of the direct observable island identification method that identifies 

the observable islands in only one step. 

e. Proposition of a new algorithm for numerical observability analysis based on 

the PCIR and the direct observable island identification method. 

f. Proposition of a new method for integrating the PMU measurements into the 

algorithm of numerical observability analysis. 

2. A new algorithm for optimal PMU placement in the presence of conventional 

measurements. 

a. Proposition of a new global network observability criterion. 

b. Proposition of a new network transformation scheme. 
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c. Proposition of a new algorithm for optimal PMU placement in the presence of 

conventional measurements, which can ensure correct PMU placement with less 

sub-optimal problems compared to the existing methods, based on the new 

global network observability criterion and the new network transformation 

scheme. 

3. A comprehensive analysis of the impact of estimator formulations on the performance 

of the hybrid state estimator (HSEs) taking the Gaussian measurement errors, gross 

measurement errors and parameter errors into account. 

a.  Identification of the accuracy curves of five different formulations 

characterized by the knee point, which clearly indicates the benefits of using 

HSE compared to the conventional state estimator (CSE); that is to say, even 

with a small number of PMUs the state estimation accuracy can be significantly 

improved compared to the CSE. 

b. Identification of the relative estimation accuracy of the five different HSEs in 

the IEEE 14 Bus Test System. Before the knee point: Rectangular Current (RC) 

> Pseudo Flow (PF) ≈ Constrained Formulation (CF) ≈ Pseudo Voltage (PV) > 

Post-processing (PP); after the knee point: RC > PF ≈ CF > PP > PV. 

c. Validation of the knee point characteristic of the HSE accuracy curves and the 

relative estimation accuracy of the HSEs using simulations in the IEEE 118 Bus 

Test System and mathematical analysis. 

d. Setting out the reasons why the RC HSE is the most accurate while the PP HSE 

and PV HSE are the least accurate using mathematical analysis. 

e. Comparison of the execution time and convergence of the five HSE, and 

establishing that the CF HSE and PV HSE have poor performance in these two 

aspects. 

f. Recommendation of the RC HSE as the HSE to be implemented in the power 

system based on the comparison of the HSEs in terms of estimation accuracy, 

execution time and convergence. 

g. Discovering that the PMU placement can significantly affect the performance of 

the HSEs in the presence of gross measurement errors and parameter errors. 

4. New algorithms for dynamic state estimation. 
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a. Proposition of a new algorithm for detecting different types of anomaly. 

b. Proposition of the pseudo injection method for identifying the anomaly of 

sudden change of load. 

c. Proposition of the branch power flow variation ratio method for identifying the 

anomaly of a sudden change of topology due to fault. 

d. Proposition of a new algorithm for dynamic state estimation based on the 

Cubature Kalman Filter and the proposed anomaly detection and identification 

methods. 

 

7.3 Future Work 

 

This thesis has described an accurate and efficient method for observability analysis that is 

suitable for both conventional measurements, synchronised measurements and a combination 

of both measurements. This work can be further extended considering multi-area state 

estimation, and state estimation, and the presence of HVDC links.  

  

Although the topic of optimal PMU placement has been extensively researched with a wide 

range of available literature, there has been little literature about how the PMU placement can 

affect the performance (especially accuracy) of the HSEs, and thus how to optimally place the 

PMUs. Although the simple optimal PMU placement method as discussed in Section 5.4, 

which aims to maximize the number of observed branches, successfully finds the PMU 

placements close to the optimal solution, it has not been rigorously proved and tested in other 

networks and considered all possible scenarios. In addition, it has been shown in Section 5.6.2 

that the PMU placement determines the estimation accuracy level (the level of the HSE in 

normal cases and the level of CSE) of the HSE in the presence of gross measurement errors 

and parameter errors. However, it is still unknown how to optimally place the PMUs so that the 

effects of these two types of errors are minimised. One of the possible solutions is to derive 

and carry out a sensitivity analysis of the participation factors that describe the relationship 

between the states and the measurements and model parameters. These participation factors 

would enhance our understanding of the HSEs and their performance in different scenarios, 
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and thus help to develop optimal PMU placement strategies that are dedicated for each HSE 

and move beyond the benefits of observability that were established in the research presented 

in the thesis. 

 

The thesis also shows the high sensitivity of the Cubature Kalman Filter (CKF) to the sudden 

change of states although it has a significant advantage in terms of estimation accuracy 

compared to the other nonlinear filters. Although anomalies can be detected and identified 

according to the response of the normalised innovations and the skewness of them, the actions 

are always taken after the execution of state estimation. Thus, new methods should be designed 

so that pre-emptive actions are taken before the anomaly can affect the estimate of the states. 

 

The prediction step in the DSEs presented in this thesis uses Holt’s linear smoothing technique 

based on the assumption that the states of the system progresses much more slowly than the 

updating rate of state estimation. However, this assumption limits the DSE’s capability to track 

the transient behaviour of the power system. Thus, a more accurate and sophisticated dynamic 

model of the network will be required. It is expected that in the future the DSE will not only be 

able to precisely estimate the states during the transient period after disturbance but also to 

estimate the transient parameters of the generators and even the rate of change of frequency of 

any bus in the network. 
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Appendices 

 

Appendix A: The Chokesky Factorisation 

 

Consider a positive definite symmetric matrix, G. The symmetry of the matrix allows it to be 

decomposed into a product of three matrices including a lower triangular matrix and its 

transposed matrix (A.1)-(A.2): 
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For the following steps, i=1…N, the factorisation process can be induced as follows: 
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(A.3) 

In the end, the symmetric matrix, G, can be factorised into a diagonal matrix left and right 

multiplied by a lower triangular matrix and its transposed matrix, respectively: 
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Appendix B: Type 2 Pathological Case in the IEEE 118 Bus Test System 

 

In this section, a Type 2 pathological case in the standard IEEE 118 Bus Test System that 

required multiple iterations is presented. The placement of the power injection measurements 

and the power flow measurements are given in Table A-1, while the results including the 

observable islands identified and the irrelevant injection measurements in the three iterations 

are presented in Table A-2. In the three iterations, the rank deficiency of the gain matrix, Rd(G), 

is equal to 54, 56 and 77, and the corresponding calculated PCIRs are 1, 1 and 0, respectively.  

 

Table A-1: Measurement Placement in the IEEE 118 Bus Test System 

Power injection 

measurements at Bus # 

5;8;11;12;16;17;18;19;25;26;27;30;31;32;34;43;44;45;49;65;66;

68;77;80;81   

Power flow measurements 

from at Branch # 

5;7;11;13;14;15;16;18;19;25;26;35;40;41;43;49;50;54;62;65;66;

69;70;71;75;76;97;98;99;100;103;107;118;119;120;122;123;124

;149;151;152;153;179;182;183 

 

 

Table A-2: Observable Islands and Irrelevant Injection Measurements Identified in the 

Three Iterations  

Iteration 1  

(55 observable islands 

that are expressed by 

{Bus #} and  

2 irrelevant injection 

measurements at 

Bus#) 

{1};{10};{21};{22};{24};{33};{35};{39};{40};{41};{52};{53};{5

5};{56;{57};{58};{59};{60};{61};{63};{70};{71};{72};{73};{74} 

;{83};{84};{85};{86};{87};{88};{89};{90};{91};{92};{93};{94};{

95};{100};{101};{102};{103};{104};{105};{106};{107};{108};{1

09};{110};{111};{112};{118};{2;3;4;5;6;7;8;9;11;12;13;14;15;16;1

7;18;19;20;23;25;26;27;28;29;30;31;32;34;36;37;38;42;43;44;45;46;

47;48;49;50;51;54;62;64;65;66;67;68;69;75;76;77;80;81;97;98;99;1

13;114;115;116;117};{78;79};{82;96} 

77;80 
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Iteration 2  

(76 observable islands 

that are expressed by 

{Bus #} and  

21 irrelevant injection 

measurements at 

Bus#) 

{1};{4};{10};{16};{17};{18};{21};{22};{24};{33};{35};{39};{40

};{41};{43};{44};{52};{53};{55};{56};{57};{58};{59};{60};{61};

{63};{70};{71};{72};{73};{74};{81};{83};{84};{85};{86};{87};{

88};{89};{90};{91};{92};{93};{94};{95};{100};{101};{102};{103

};{104};{105};{106};{107};{108};{109};{110};{111};{112};{117

};{118};{2;3;5;6;7;11;12};{8;9};{13;14;15};{19;20};{23;25;26;27;

30;32;38;113};{28;29;31};{34;36;37};{45;46};{42;47;48;49;50;51;

54};{64;65};{62;66;67};{68;116};{69;75;76;77;80;97;98;99};{78;7

9};{82;96};{114;115} 

5;8;11;12;16;17;18;19;27;30;31;32;34;43;44;45;49;65;66;68;81 

Iteration 3  

(79 observable islands 

that are expressed by 

{Bus #} and  

2 irrelevant injection 

measurements at 

Bus#) 

{1};{4};{10};{16};{17};{18};{21};{22};{24};{25};{26};{33};{35

};{39};{40};{41};{43};{44};{52};{53};{55};{56};{57};{58};{59};

{60};{61};{63};{70};{71};{72};{73};{74};{81};{83};{84};{85};{

86};{87};{88};{89};{90};{91};{92};{93};{94};{95};{100};{101};

{102};{103};{104};{105};{106};{107};{108};{109};{110};{111};

{112};{117};{118};{2;3;5;6;7;11;12};{8;9};{13;14;15};{19;20};{2

3;27;32;113};{28;29;31};{34;36;37};{30;38};{45;46};{42;47;48;49

;50;51;54};{64;65};{62;66;67};{68;116};{69;75;76;77;80;97;98;99

};{78;79};{82;96};{114;115} 

25;26 
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Appendix C: Data Sheets for IEEE Test Systems 

Appendix C.1: Data Sheets for IEEE 14 Bus Test System 

Bus 1

Bus 2

Bus 3

Bus 4

Bus 5

Bus 6

Bus 7

Bus 8

Bus 9

Bus 10

Bus 11

Bus 12

Bus 13

Bus 14

 

Figure A-1: Network Diagram for IEEE 14 Bus Test System 

Table A-3: Bus Data for IEEE 14 Bus Test System 

Bus Voltage Generation Demand Shunt Elements 

# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) Gs (MW) Bs (MVAr.) 

1 1.060 0.000 232.39 -16.55 - - - - 

2 1.045 -4.983 40.00 43.56 21.70 12.70 - - 

3 1.010 -12.725 0.00 25.08 94.20 19.00 - - 

4 1.018 -10.313 - - 47.80 -3.90 - - 

5 1.020 -8.774 - - 7.60 1.60 - - 

6 1.070 -14.221 0.00 12.73 11.20 7.50 - - 

7 1.062 -13.360 - - - - - - 

8 1.090 -13.360 0.00 17.62 - - - - 

9 1.056 -14.939 - - 29.50 16.60 - - 

10 1.051 -15.097 - - 9.00 5.80 - - 

11 1.057 -14.791 - - 3.50 1.80 - - 

12 1.055 -15.076 - - 6.10 1.60 - - 
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13 1.050 -15.156 - - 13.50 5.80 - - 

14 1.036 -16.034 - - 14.90 5.00 - - 

 

 

Table A-4: Branch Data for IEEE 14 Bus Test System 

From To R  X B Tap  

Bus Bus p.u. p.u. p.u. p.u. 

1 2 0.01938 0.05917 0.05280 1.0000 

1 5 0.05403 0.22304 0.04920 1.0000 

2 3 0.04699 0.19797 0.04380 1.0000 

2 4 0.05811 0.17632 0.03400 1.0000 

2 5 0.05695 0.17388 0.03460 1.0000 

3 4 0.06701 0.17103 0.01280 1.0000 

4 5 0.01335 0.04211 0.00000 1.0000 

4 7 0.00000 0.20912 0.00000 0.9780 

4 9 0.00000 0.55618 0.00000 0.9690 

5 6 0.00000 0.25202 0.00000 0.9320 

6 11 0.09498 0.19890 0.00000 1.0000 

6 12 0.12291 0.25581 0.00000 1.0000 

6 13 0.06615 0.13027 0.00000 1.0000 

7 8 0.00000 0.17615 0.00000 1.0000 

7 9 0.00000 0.11001 0.00000 1.0000 

9 10 0.03181 0.08450 0.00000 1.0000 

9 14 0.12711 0.27038 0.00000 1.0000 

10 11 0.08205 0.19207 0.00000 1.0000 

12 13 0.22092 0.19988 0.00000 1.0000 

13 14 0.17093 0.34802 0.00000 1.0000 
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Appendix C.2: Data Sheets for IEEE 39 Bus Test System 

 

 

Figure A-2: Network Diagram for IEEE 39 Bus Test System 

 

Table A-5:  Bus Data for IEEE 39 Bus Test System 

Bus Voltage Generation Demand Shunt Elements 

# Mag(pu) Ang(deg) 
P 

(MW) 
Q 

(MVAr) 
P 

(MW) 
Q 

(MVAr) 
Gs 

(MW) 
Bs 

(MVAr) 

1 1 0 - - - - - - 

2 1 0 - - - - - - 

3 1 0 - - 322 2.4 - - 

4 1 0 - - 500 184 - - 

5 1 0 - - - - - - 

6 1 0 - - - - - - 

7 1 0 - - 233.8 84 - - 
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8 1 0 - - 522 176.6 - - 

9 1 0 - - - - - - 

10 1 0 - - - - - - 

11 1 0 - - - - - - 

12 1 0 - - 8.5 88 - - 

13 1 0 - - - - - - 

14 1 0 - - - - - - 

15 1 0 - - 320 153 - - 

16 1 0 - - 329.4 32.3 - - 

17 1 0 - - - - - - 

18 1 0 - - 158 30 - - 

19 1 0 - - - - - - 

20 1 0 - - 680 103 - - 

21 1 0 - - 274 115 - - 

22 1 0 - - - - - - 

23 1 0 - - 247.5 84.6 - - 

24 1 0 - - 308.6 -92.2 - - 

25 1 0 - - 224 47.2 - - 

26 1 0 - - 139 17 - - 

27 1 0 - - 281 75.5 - - 

28 1 0 - - 206 27.6 - - 

29 1 0 - - 283.5 26.9 - - 

30 1.0475 0 250 0 - - - - 

31 0.982 0 0 0 9.2 4.6 - - 

32 0.9831 0 650 0 - - - - 

33 0.9972 0 632 0 - - - - 

34 1.0123 0 508 0 - - - - 

35 1.0493 0 650 0 - - - - 

36 1.0635 0 560 0 - - - - 

37 1.0278 0 540 0 - - - - 

38 1.0265 0 830 0 - - - - 

39 1.03 0 1000 0 1104 250 - - 

 

 

Table A-6:  Branch Data for IEEE 39 Bus Test System 

From To R X B Tap 

Bus Bus p.u. p.u. p.u. p.u. 

1 2 0.0035 0.0411 0.6987 1 

1 39 0.001 0.025 0.75 1 
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2 3 0.0013 0.0151 0.2572 1 

2 25 0.007 0.0086 0.146 1 

3 4 0.0013 0.0213 0.2214 1 

3 18 0.0011 0.0133 0.2138 1 

4 5 0.0008 0.0128 0.1342 1 

4 14 0.0008 0.0129 0.1382 1 

5 6 0.0002 0.0026 0.0434 1 

5 8 0.0008 0.0112 0.1476 1 

6 7 0.0006 0.0092 0.113 1 

6 11 0.0007 0.0082 0.1389 1 

7 8 0.0004 0.0046 0.078 1 

8 9 0.0023 0.0363 0.3804 1 

9 39 0.001 0.025 1.2 1 

10 11 0.0004 0.0043 0.0729 1 

10 13 0.0004 0.0043 0.0729 1 

13 14 0.0009 0.0101 0.1723 1 

14 15 0.0018 0.0217 0.366 1 

15 16 0.0009 0.0094 0.171 1 

16 17 0.0007 0.0089 0.1342 1 

16 19 0.0016 0.0195 0.304 1 

16 21 0.0008 0.0135 0.2548 1 

16 24 0.0003 0.0059 0.068 1 

17 18 0.0007 0.0082 0.1319 1 

17 27 0.0013 0.0173 0.3216 1 

21 22 0.0008 0.014 0.2565 1 

22 23 0.0006 0.0096 0.1846 1 

23 24 0.0022 0.035 0.361 1 

25 26 0.0032 0.0323 0.513 1 

26 27 0.0014 0.0147 0.2396 1 

26 28 0.0043 0.0474 0.7802 1 

26 29 0.0057 0.0625 1.029 1 

28 29 0.0014 0.0151 0.249 1 

2 30 0 0.0181 0 1.025 

6 31 0 0.025 0 1.07 

10 32 0 0.02 0 1.07 

12 11 0.0016 0.0435 0 1.006 

12 13 0.0016 0.0435 0 1.006 

19 20 0.0007 0.0138 0 1.06 

19 33 0.0007 0.0142 0 1.07 

20 34 0.0009 0.018 0 1.009 
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22 35 0 0.0143 0 1.025 

23 36 0.0005 0.0272 0 1 

25 37 0.0006 0.0232 0 1.025 

29 38 0.0008 0.0156 0 1.025 
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Appendix C.3: Data Sheets for IEEE 57 Bus Test System 
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Figure A-3: Network Diagram for IEEE 57 Bus Test System 

 

All data of the IEEE 57 Bus System can be found in [113]. 

 



Appendices 

 

245 

Appendix C.4: Data Sheets for IEEE 118 Bus Test System 

 

1 2

3

4

117
33

12

11

5

6 7
13

14

15

19

18

17

30
113

16

8

9

10

29

27

32
114

26

25

23

22

21

2031

35

34

36

73

72

24

74

75

83

84

85

86

88 89

82

90 91
87

95 94

93
92

102

101

112

111

110
103

109

108
107

105

106

104

100

99

81
79

96

80

78

76

77

118

70

71

116

6869

38

41
37

43

45
48

46

47

39

40 42 54

52

53

56

59

55

58

51 60

64

61
49

67

66

62

65

63

50

115

44

57

98

97

28

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS GS

GS

GS

GS

GS

GS

GS

GS

 

Figure A-4: Network Diagram for IEEE 118 Bus Test System 

 

All data of the IEEE 118 Bus System can be found in [113]. 
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Appendix D: Existing Algorithms for Optimal PMU Placement in the Presence 

of Conventional Measurements 

Appendix D.1: Algorithm for the KCL Based Method 

 

Step 1.  Identify the power injection measurements, list the constrains imposed by each 

power injection measurement according to the KCL as given in (A.5).  

Step 2.  Identify the power flow measurements, list the constrains imposed by each power 

flow measurement as given in (A.6) 

Step 3.  These constrains can be written in a compact form as expressed by (A.7). 

Step 4.  Form the branch-bus admittance matrix, A, according to the topology of the 

network. 

Step 5.  Find the optimal placement by solving the optimisation problem defined in (A.8) 

and (A.9). 

 

1
j

i j

i N

y k


   
(A.5) 

where yi is the number of times of a bus observed by PMUs, Nj is a set including Bus j and the 

buses directly neighbouring to Bus j, and kj is the number of elements of Nj. 

 

1l my y   (A.6) 

where the subscript l and m represents the sending and receiving bus of the considered power 

flow measurement. 

 

By b  (A.7) 

where y is the vector consisting of  yi’s, B is the coefficient matrix, and b is the vector 

consisting of  kj’s. 

  

min T
c x  (A.8) 

. .s t ABx b  (A.9) 
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where c is the cost coefficient vector, and x is the vector consisting of binary decision variables 

(A.10), which relates with y as shown in (A.11), and b is a vector whose elements are all 1’s. 

 






otherwise0

busatplacedisPMUf1 ii
xi  (A.10) 

y Ax  (A.11) 

 

Appendix D.2: Algorithm for Observability Analysis Based Method 

 

Step 1.  Perform observability analysis and identify the observable islands. 

Step 2.  Identify the buses that are incident to multiple observable islands, group these buses 

in Set M. 

Step 3.  Form the partial branch-bus admittance matrix, AM, the branches considered are the 

unobservable branches and the buses considered are those from Set M. 

Step 4.  Find the optimal placement by solving the optimisation problem defined in (A.12) 

and (A.13). 

 

 

min T

M Mc x  (A.12) 

. . M M Ms t A x b  (A.13) 

where cM is the cost coefficient vector corresponding to Set M, and xM is the vector consisting 

of binary decision variables corresponding to Set M, and bM is a vector whose elements are all 

1’s. 
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