
CALIBRATION OF FINANCIAL
MODELS BASED ON AUTOMATIC

DIFFERENTIATION AND
HIGH-PERFORMANCE COMPUTING

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF MASTER OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2018

By
Grzegorz Kozikowski

School of Computer Science



Contents

Declaration 10

Copyright 11

1 Introduction 15
1.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Literature review 20
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Parallel Monte-Carlo (MC) engine for the first-order sensitivity calcu-

lation and model calibration using the Adjoint . . . . . . . . . . . . . 20
2.3 Heston model calibration using the Adjoint and MC methods on FPGA 26
2.4 Parallel non-linear least-squares optimization framework using Auto-

matic Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Technical context 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Directed Acyclic Graph . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Automatic Differentiation . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Non-linear least-squares optimization . . . . . . . . . . . . . . . . . 36
3.5 Monte-Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 High-Performance Computing . . . . . . . . . . . . . . . . . . . . . 38

3.6.1 OpenMP framework . . . . . . . . . . . . . . . . . . . . . . 38
3.6.3 CUDA technology . . . . . . . . . . . . . . . . . . . . . . . 39
3.6.2 Xeon-Phi framework . . . . . . . . . . . . . . . . . . . . . . 39

2



3.6.4 OpenCL framework . . . . . . . . . . . . . . . . . . . . . . 41
3.6.5 Maxeler technology . . . . . . . . . . . . . . . . . . . . . . 41
3.6.6 OpenMPI framework . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Financial case-studies . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7.1 The Heston Model . . . . . . . . . . . . . . . . . . . . . . . 42
3.7.2 The Heston Model with Jumps . . . . . . . . . . . . . . . . . 43
3.7.3 Heston model with term-structure . . . . . . . . . . . . . . . 43

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 High-Performance frameworks for financial risk management 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Parallel Monte-Carlo engine for the first-order sensitivity calculation

and model calibration using the Adjoint . . . . . . . . . . . . . . . . 47
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.4 Deployment Process . . . . . . . . . . . . . . . . . . . . . . 55
4.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Heston model calibration using the Adjoint and MC methods on FPGA 60
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.3 Architecture – dataflow implementation on Maxeler technology 62
4.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Parallel non-linear least squares optimization framework using Auto-
matic Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.3 Deployment Process . . . . . . . . . . . . . . . . . . . . . . 68
4.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Computational experiments 70
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Parallel Monte-Carlo engine for the first-order sensitivity calculation

and model calibration using the Adjoint . . . . . . . . . . . . . . . . 71
5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.2 Computational Environment . . . . . . . . . . . . . . . . . . 71

3



5.2.3 Market Data . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.4 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.5 Performance results . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.6 Calibration results . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Heston model calibration using the Adjoint and MC methods on FPGA 107
5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.2 Computational Environment . . . . . . . . . . . . . . . . . . 107
5.3.3 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.4 Performance results . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Parallel non-linear least squares optimization framework using Auto-
matic Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.2 Computational Environment . . . . . . . . . . . . . . . . . . 111
5.4.3 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.4 Performance results . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.5 Accuracy results . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.6 Calibration results . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Conclusion 129

Bibliography 132

4



List of Tables

1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Number of arithmetic operations required to evaluate the gradient of
the Black Scholes model . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Resource utilization for the FPGA implementation . . . . . . . . . . 64

5.1 Lower and upper bounds for the Heston model calibration . . . . . . . 72
5.2 Performance comparison of the sequential implementation for the He-

ston model calculation with the QuantLib Library 1.9. Tests have
been performed on an Intel Core i7-4810MQ CPU 2.80GHz with 8GB
RAM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 η – the achieved speedup vs. the maximum theoretical speedup x 100 %. 76
5.4 MC: percentagenodes – the computational percentage cost spent on a

sequential code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 MC: η – the achieved speedup vs. the maximum theoretical speedup x

100 %. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 percentagenodes – the computational percentage cost spent on a se-

quential code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7 Simulation and calibration times during the calibration process for

10000 paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.8 Calibration results for 10000 paths . . . . . . . . . . . . . . . . . . . 80
5.9 Calibration results for 23 call options with 2 maturities – 10000 paths,

100 timesteps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.10 Calibration results for 10000 paths – SPX 500 call options . . . . . . 82
5.11 Calibration results for 10000 paths – SPX 500 put options . . . . . . . 87
5.12 Calibration results for 10000 paths – Dow-Jones Industrial Average

index call options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5



5.13 Calibration results for 10000 paths – Dow-Jones Industrial Average
index put options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.14 Calibration results for 10000 paths – BP call options . . . . . . . . . 100
5.15 Calibration results for 10000 paths – BP put options . . . . . . . . . . 104
5.16 Lower and upper bounds for the Heston model calibration . . . . . . . 108
5.17 Simulation and calibration times during the calibration process for

10000 paths and 300 timesteps . . . . . . . . . . . . . . . . . . . . . 110
5.18 Calibration results for 10000 paths . . . . . . . . . . . . . . . . . . . 110
5.19 Lower and upper bounds for the Heston model calibration . . . . . . . 112
5.20 The computation times of option prices, sensitivities via the Finite Dif-

ference methods and FD. The computational experiments have been
performed on an Intel Core i7 -4810MQ 2.80 GHz with 8 GB RAM. . 112

5.21 η – the achieved speedup vs. the maximum theoretical speedup x 100 %.113
5.22 Execution times for the semi-closed form Heston model calibration

using the Adjoint on HPC . . . . . . . . . . . . . . . . . . . . . . . . 113
5.23 The sensitivity calculation for the semi-closed form Heston model –

DAG size (10653 nodes) . . . . . . . . . . . . . . . . . . . . . . . . 114
5.24 Calibration results for 10000 paths – SPX 500 call options . . . . . . 116
5.25 Calibration results for 10000 paths – Dow-Jones Industrial Average

index call options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.26 Calibration results for 10000 paths – BP call options . . . . . . . . . 124

6



List of Figures

3.1 Chain-rule of the Black-Scholes model as a DAG . . . . . . . . . . . 32

4.1 Architecture – Model Definition . . . . . . . . . . . . . . . . . . . . 50
4.2 DAG processing on HPC platforms . . . . . . . . . . . . . . . . . . . 50
4.3 Architecture – High-Performance Engine for Monte-Carlo simulation

and model calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 HPC Engine for MC simulation – Model Definition . . . . . . . . . . 57
4.5 Architecture – High-Performance Engine for Monte-Carlo simulation

and model calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6 HPC Engine for MC simulation – Parameter definition . . . . . . . . 59
4.7 HPC Engine for MC simulation – Processing flow . . . . . . . . . . . 59
4.8 Architecture – HPC Engine for Monte-Carlo simulation and model cal-

ibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.9 Architecture – HPC Engine for Monte-Carlo simulation and model cal-

ibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.10 DFE graph for the Heston model . . . . . . . . . . . . . . . . . . . . 63
4.11 Architecture – HPC engine for Non-linear least squares optimization . 66
4.12 Non-linear least-squares optimization framework – Objective Function

Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.13 Non-linear least-squares optimization framework – Processing flow . 69

5.1 Performance results – Differentiation vs. Pricing . . . . . . . . . . . 73
5.2 Performance results – OpenCL NVIDIA K40 vs. OMP (a single-

thread implementation) . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Database query for call option price matrix for S&P 500 index . . . . 81
5.4 Implied volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Database query for put option price matrix for S&P 500 index . . . . 86
5.6 Implied volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7



5.7 Database query for call option price matrix for Dow-Jones Industrial
Average index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.8 Implied volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.9 Database query for put option price matrix for Dow-Jones Industrial

Average index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.10 Implied volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.11 Database query for call option price matrix for BP . . . . . . . . . . . 99
5.12 Implied volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.13 Database query for put option price matrix for BP . . . . . . . . . . . 103
5.14 Implied volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.15 Database query for call option price matrix for S&P 500 index . . . . 115
5.16 Database query for call option price matrix for Dow-Jones Industrial

Average index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.17 Database query for call option price matrix for BP . . . . . . . . . . . 123

8



Abstract

CALIBRATION OF FINANCIAL MODELS BASED ON AUTOMATIC

DIFFERENTIATION AND HIGH-PERFORMANCE COMPUTING

Grzegorz Kozikowski
A thesis submitted to the University of Manchester

for the degree of Master of Philosophy, 2018

Stochastic models are commonly used in quantitative finance to describe the dy-
namics of the derivatives market. As the market quotes are constantly changing, the
models need to be calibrated to make real-time investment decisions. This can involve
the sensitivity calculation to support the calibration process and investment portfolio
management. For investment portfolios consisting of thousands of assets and options,
the sensitivity calculation and calibration process are computationally expensive.

This thesis presents a number of approaches to sensitivity calculation and model
calibration utilizing high-performance computing architectures and Automatic Differ-
entiation that improve performance and accuracy in financial modeling when com-
pared to finite differences and pathwise methods. A parallel Monte-Carlo engine has
been developed using the Adjoint methods for the first-order sensitivity calculation
and model calibration This addresses the sensitivity and calibration problem for gen-
eral stochastic differential models. The engine supports multi-/many-core CPU, GPU
and distributed computing architectures. The work utilizes a graph representation and
overloading operators to express general stochastic differential models. The sensitiv-
ities for the model calibration are calculated in parallel via a single simulation by the
Adjoint method with the gradient computation cost being 1.8x that of function evalua-
tion. The computational experiments consider both the Heston model and Heston with
term-structure. These show that the engine improves performance by up to two orders
of magnitude when compared to a sequential version. A hardware implementation has
been developed for the Heston model calibration via the Adjoint on FPGA. The work
also shows performance improvement of up to two orders of magnitude when com-
pared to a sequential implementation. A parallel non-linear least squares optimization
framework using Automatic Differentiation has been developed. This utilizes a graph
representation and overloaded operator techniques to express the general objective and
constraint functions. The framework supports multi-/many-core architectures such as
GPUs and Intel Xeon/Xeon-Phi. The computational experiments consider the semi-
closed form Heston model with the Gauss-Kronrod integration. These show perfor-
mance improvement of 8.4x on GPU (OpenCL) and 7x on (CUDA) vs a sequential
OMP (OpenMP) implementation. A Xeon-Phi implementation improves performance
by 34x when compared to a single-thread implementation.
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Name Description

American Option An option that can be exercised at any time during its life

Arbitrage A trading strategy that takes advantage of two or more securities being mis-

priced relative to each other

Ask Price The price that a dealer is offering to sell an asset

Barrier Option An option whose payoff depends on whether the path of the underlying asset

has reached a barrier (i.e. a certain predetermined level)

Bid Price The price that a dealer is prepared to pay for an asset

Bid-Ask Spread The amount by which the ask price exceeds the bid price

Calibration Method for implying a model’s parameters from the prices of actively traded

assets

Call Option An option to buy an asset at a certain price by a certain date

Derivative An instrument whose price depends on, or is derived from the price of an-

other asset

Discount Rate The annualized dollar return on a Treasury bill or similar instrument ex-

pressed as a percentage of the final face value

Euler-Maruyama

method

A method for the approximate numerical solution of a stochastic differential

equation

European option An option that can be exercised only at the end of its life

Exercise (Strike)

Price

The price at which the underlying asset may be bought or sold in an option

contract

Expiration date The end of life of a contract

Feller condition the condition for which the volatility of the Heston model is strictly positive

Implied volatility Volatility implied from an option price using the Black-Scholes formula

Interest Rate Interest Rate defines the amount of money which is paid to a borrower by

the lender and is a key factor in pricing interest rate derivatives (contracts

whose value depends on the interest rate fluctuations)

Kantorovich

Graph (DAG)

a graph representing chain-rule of the function subsequent operations nec-

essary to evaluate the value of a function

Maturity the end of the life of a contract

Newton-Raphson

Method

An iterative procedure for solving nonlinear equations

Option a contract that gives the right to buy or sell an asset

Payoff The cash realized by the holder of an option or other derivative at the end of

its life

Put Option An option to sell an asset for a certain price by a certain date

RMSE Root Mean Square Error

Strike price the price at which the asset may be bought or sold in an option contract (also

called the exercise price)

Volatility A measure of the uncertainty of the return realized on an asset

Volatility Skew A term used to describe the volatility smile when it is nonsymmetrical

Volatility Smile The variation of implied volatility with strike price

Volatility Surface A table showing the variation of implied volatilities with strike price and

time to maturity

Wiener Process A process where the change in a variable during each short period of time of

length t has a normal distribution with a mean equal to zero and a variance

equal to t

Table 1: Glossary
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List of abbreviations

The following table presents a list of abbreviations used in this thesis.

Name Description

AD Automatic Differentiation

CPU Computational Processing Unit

DAG Directed Acyclic Graph

FFT Fast Fourier Transform

FPGA Field Programming Gateway Array

GPU Graphics Processing Unit

HPC High-Performance Computing

MC Monte-Carlo simulation

OpenCL Open Computing Language

OpenMP Open Multi-Processing

PDE Partial Differential Equation

RMSE Root Mean Square Error

SDE Stochastic Differential Equation

Table 2: List of abbreviations
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Chapter 1

Introduction

This thesis presents approaches to financial derivatives pricing, the Greeks’ calcula-
tion and model calibration using numerical methods such as Automatic Differentia-
tion, Monte-Carlo (MC) methods and High-Performance computing (HPC) platforms
such as FPGA cards, GPUs, multi-core and many-core processors. The presented
approaches utilize overloading operator techniques and graph processing to support
general stochastic models. This combination improves performance and accuracy of
financial option pricing, the Greeks’ calculation and model calibration by up to two
orders of magnitude. The work can find application in real-time risk management
systems and derivatives trading platforms.

Over the last 30 years derivatives – financial instruments whose value depends on
underlying assets such as stocks, stock indices, interest rates, foreign exchange rates
and commodities such as oil, gold, silver – have become increasingly important in
finance. The amount of outstanding derivatives positions was close to $500 trillion by
January 2016 [otc16]. These contracts are traded on the over-the-counter markets. The
fundamental derivatives contract is an option which gives the client the right to buy or
sell the given commodity at a certain time with the price negotiated at the present time.
The negotiated price is called the exercise or strike price. The date of the contract is
known as the expiration date or maturity. There are two types of options: call, which
gives the investor an opportunity to buy the asset, and put, which is to sell the traded
instrument. Further, the call and put options can be sold and purchased.

In addition, there are varieties of options such as American, European, Asian and
barrier options. American options can be exercised at any time until expiration date;
European options can be exercised at the expiration date only; The Asian options de-
pend on the average price of the underlying asset over a certain period of time; the
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barrier options depend on whether the underlying asset has exceed the predetermined
price. When buying a call or put option, a buyer is referred to as having a long position.
When selling a call or put option, a seller is referred to as having a short position. The
derivatives market uses option price makers to ensure market liquidity. Option market
makers quote a bid and ask price – the bid price is the price at which the option mar-
ket maker is prepared to buy an option, the ask price is the price at which, the market
maker is prepared to sell [Hul12].

There are several factors affecting an option price such as: the current stock price,
the strike price, the time to expiration, the volatility of the stock price, the risk-free
interest rate and the dividends. The volatility of the stock price measures a degree of
changes of the stock price over time. Over the last three decades, several models have
been derived to describe the dynamics of options on various underlying assets such
as European options, interest rate options, etc. The simplest approach, binomial tree,
based on constructing a binomial tree was introduced by Cox, Ross and Rubinstein in
1979 [CRR79]. The binomial tree, also known as the lattice model, describes an evo-
lution of the option price in discrete time. This consists of the nodes representing the
stock price and option price. In 1973, Black, Merton and Scholes derived the model
for option pricing based on stochastic calculus [BS73]. The model assumes that the
stock price follows a geometric Brownian motion with the drift µ and the variance rate
σ – the process with log-normal distribution. The European option price is calculated
as the discounted value of the difference between the strike price and the stock price
at expiration date. This model assumes that the volatility of the commodity is con-
stant over time. In risk management, implied volatility is calculated – the volatility for
which the Black-Scholes formula produces the market option price. As the volatility
of commodities is non-constant over-time, the Heston model was introduced, which
assumes that volatility follows a stochastic mean-reverting process [Hes93]. Further,
many derivations were introduced using the Jumps Poisson process to express com-
modity price jumps caused by various events [Gat06]. There are several methods for
solving the Heston model such as Monte-Carlo simulation, finite difference methods
and the maximum likelihood method. Monte-Carlo simulation involves random num-
bers to produce many different paths of the option price. The arithmetic average of
the payoffs is the estimated value of the option price. Finite-difference methods solve
the Partial Differential Equations (PDE) by using the difference equation [Gla04]. The
maximum likelihood method maximizes the likelihood function [MPZ08a]. Further,
the European option price for the Heston model can be derived analytically by using
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the characteristic function of the option price distribution. This involves integration of
a complex formula and can utilize the FFT methods, or quadrature-integration meth-
ods.

One of the investment strategies using options is hedging, which allows financial
institutions to neutralize risks of market movements by contracting commodity price.
Hedging often involves application of mathematical modelling to the derivatives mar-
ket to measure financial risks. The mathematical modelling in the derivatives market
can be used to price options for different maturities and strikes and to calculate the
Greeks – risk sensitivities that measure how the model parameters affect the option
price. Financial institutions use the Greeks to manage and hedge investment portfo-
lios (to compensate loss on the market by gains made on another market and stabilize
portfolio value).

As an example, consider an investor wishing to neutralize his portfolio from further
commodity price movements by delta-hedging [Hul12]. For this purpose, he calculates
the Greek that measures how the change of the underlying asset price affects the op-
tion price (delta). Based on this value, he constantly adjusts his investment positions
to cover further gains (or loss) on the stock market by loss (or gains) on derivatives
market/options. This means that his overall portfolio value will remain constant for a
short time (as option prices and stock prices permanently fluctuate). To mitigate risk of
movements on his portfolio, he must constantly re-calculate the Greeks and rebalance
the positions. For portfolios consisting of thousands of underlying assets and options
traded by banks every day, frequent rebalancing based on the Greeks (via Monte-Carlo
simulation) is computationally demanding.

Further, option pricing and the Greeks’ calculation for a given asset on the market
require the model calibration to the historical market-data. There is need to determine
such a set of model parameters for which the model accurately expresses past market-
quotes. The option model calibration is analytically expensive as this often requires
the gradient calculation the first-order Greeks – the first-order derivatives of the option
payoff with respect to the input parameters) – to fit hundreds of market quotes and
thousands of different underlying assets every day [Hul12]. Most existing solutions
for the Greeks’ calculation are based on the pathwise, likelihood or finite differences
methods, in which computational cost of the gradient is at least proportional to the
number of model parameters x the time of a single Monte-Carlo simulation [Gla04].
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1.1 Aims and Objectives

This thesis aims at:

• performance and accuracy improvement in model computation, sensitivity eval-
uation and model calibration in financial applications by utilizing high-performance
computing platforms and numerical methods such as Automatic Differentiation;

• flexible definition of various models and discretization schemes used in deriva-
tives pricing and hedging. This aims at utilization of overloading operator tech-
niques and graph processing

The work focuses on the Heston model calibration (the Heston with the Feller con-
dition, the Heston model with Jumps, the Heston model with term-structures and the
semi-closed form Heston model solution).

1.2 Contribution

The contribution of this work is performance and accuracy improvement in financial
model calibration and sensitivity calculation. For this purpose, several calibration
frameworks have been implemented that combine numerical methods as Automatic
Differentiation and HPC platforms. The calibration frameworks have been tested with
a financial case-study: Heston-model calibration.

The detailed aspects of the contribution include:

• A parallel MC engine for the first-order sensitivity calculation and model cali-
bration using the Adjoint.

This work utilizes a graph representation and overloading operators to express
general stochastic models. The sensitivities for the model calibration are cal-
culated in parallel via a single simulation by the Adjoint method with the gra-
dient computation cost being 1.8x that of function evaluation. The framework
supports multi-, many-core and distributed architectures such as GPUs, Intel-
Xeon/Xeon-Phi with the frameworks CUDA, OpenCL, OpenMP with Xeon-Phi
and OpenMPI.

The engine provides an interface that allows a platform-independent model def-
inition. The computational experiments consider the Heston model and Heston
with term-structure. These show that the engine improves performance by up to
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two orders of magnitude when compared to a sequential version. This is pro-
vided as a static and dynamic library.

• Heston model calibration using the Adjoint and MC methods on FPGA - a MC
engine for the expected value computation, the first-order Greeks calculation
and model calibration. The sensitivities are calculated in parallel via a single
simulation by the Adjoint - an Automatic Differentiation method with the gra-
dient computation cost being 1.8 x that of function evaluation. The gradient is
applied to the optimization methods to calibrate the model to market data. The
framework supports FPGA cards with Maxeler technology. The computational
experiments consider a financial case-study: the Heston model calibration.

• Parallel non-linear least squares optimization framework using Automatic Dif-
ferentiation – this work presents a parallel non-linear least squares optimization
framework using Automatic Differentiation. This approach utilizes a graph rep-
resentation and overloaded operator techniques to express the general objective
and constraint functions. The framework computes values and the gradient of
the objective/constraint function at many different points in parallel. The gra-
dient for the non-linear least squares optimization is calculated in parallel with
the computational cost being twice that of function evaluation. The gradient is
applied to the non-linear least squares optimization methods. The framework
supports multi-, many-core architectures such as GPUs, Intel Xeon/Xeon-Phi
with the frameworks CUDA, OpenCL, OpenMP with Xeon-Phi. The computa-
tional experiments consider the semi-closed form Heston model with the Gauss-
Kronrod integration method.

1.3 Structure

The rest of this thesis is structured as follows: Chapter 2 presents a review of related
literature; Chapter 3 presents the technical context of the work; Chapter 4 presents
parallel frameworks for financial sensitivity calculation and model calibration; Chap-
ter 5 presents computational experiments for the Heston model calibration on High-
Performance Computing platforms; Chapter 6 presents conclusions and further work.
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Chapter 2

Literature review

2.1 Introduction

This section provides a literature review concerning Automatic Differentiation, Monte-
Carlo (MC) methods, model calibration and high-performance computing (HPC) in
the context of scientific and industrial applications. This is divided into three sections
corresponding to the contribution areas:

1. Section 2.2 reviews work on Automatic Differentiation (AD), MC simulation
and HPC applied to scientific and industrial applications;

2. Section 2.3 reviews research on financial simulation and model calibration using
FPGA cards;

3. Section 2.4 reviews advances on AD tools and their application in optimization.

2.2 Parallel Monte-Carlo (MC) engine for the first-order
sensitivity calculation and model calibration using
the Adjoint

Monte Carlo (MC) simulation is a procedure for sampling random scenarios for the
input process and evaluating the expected value converging to the correct result. This
method is widely used to solve stochastic models for which the analytical solutions are
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too complex to derive. This is used in finance for pricing and hedging complex deriva-
tives contracts. Unfortunately, MC simulation is computationally expensive when cal-
culating the output result, with the computational cost increasing with the number
of scenarios. Furthermore, the sensitivity and model calibration is computationally
demanding. The calibration can utilize the gradient information to support local opti-
mization methods.

Several differentiation methods can be used with MC simulation to evaluate the
first-order sensitivities to support model calibration. The simplest, the finite difference
(FD) method, requires two MC simulations that differ in a small change in a single
input model parameter [FHP+12]. Based on these MC results, the sensitivity is calcu-
lated as the ratio of the output change to the small change in the input parameter. Un-
fortunately, this method is both computationally expensive (the first-order sensitivities
require (2 x model parameters) x the cost of a single MC simulation) and inaccurate if
the change is too big. The likelihood method utilizes the probability density functions,
therefore, they can be applied to non-smooth models but often produce inaccurate re-
sults with large variance. Pathwise methods are based on AD with the forward order.
They require as many MC simulations as the number of model parameters to evaluate
the sensitivities. The pathwise method for the sensitivities has a computational cost
generally smaller than finite differences. The drawback of this technique is complexity
in the case of models with a large number of independent variables [FHP+12].

Work in [Zha13] presents a HPC engine for the Value at Risk (VaR) computa-
tion using the MapReduce model. The Map function splits the dataset into small data
chunks and distributes these to processing nodes. The Reduce function collects the
results from the nodes and generates the output result. This paradigm is used to paral-
lelize MC simulation for the VaR. Performance experiments have been performed on
a cluster of 4 nodes. The execution time of the sequential MC simulation was around
532 seconds;the parallel MC simulation computes VaR in around 115 seconds.

Work in [Mih15] presents approximations to option sensitivities for stochastic volatil-
ity models. These utilize a sequential MC techniques for the latent state in a Hidden
Markov Model. These techniques are applied to the Greeks’ computation using the
likelihood ratio method. Further, the work develops a modified explicit Euler scheme
for SDEs with non-Lipschitz continuous drift or diffusion.

Work in [Mor06] presents a parallel option pricing framework for interest rate
derivatives via the Hull-White trinomial interest rate lattice model. This applies vec-
torization and data parallelization techniques available in Fortran. The parallel pricing
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includes the classical backward induction and MC simulation. The implementation
supports distributed computing with shared memory.

Work in [Ras16] presents an approach to the Dupire’s deterministic local volatil-
ity function calibration. The work compares performance for five different calibration
methods for the local volatility function. Further, the work presents approaches to eval-
uating the first-order derivatives: complex-step derivative approximation, automatic
differentiation forward mode and reverse mode. These are utilized to calculate the
Greeks for Credit Value Adjustment(CVA) for an interest rate swap. The work utilizes
FADBAD++ – an AD tool for the derivatives calculation. The work does not support
the derivatives calculation on parallel and distributed architectures.

Work in [Doa10] presents a HPC engine for MC simulations for financial pric-
ing applications. This introduces a grid programming framework for derivatives pric-
ing. The framework supports fault-tolerance, load balancing, dynamic task distribution
and deployment mechanism for heterogeneous grid architectures. Further, the work
presents an implementation of a Classification MC algorithm for high-dimensional
American option pricing. This is scaled up to 64 processors in a grid environment.

Work in [PSLvL16] presents application of the automatic differentiation forward
mode to solving mass transfer equations. This applies the Newton method for solv-
ing non-linear equations. AD was combined with block and band compression for
efficiently computing the Jacobian. For the derivatives computation, ADOL-C was
utilized. The work compares the forward AD mode with FD method and analytical
derivations for the first-order derivatives. The approach using the analytical deriva-
tions for the Jacobian was two times faster than the forward AD mode. The work
does not utilize the Adjoint method. This does not support parallel processing on HPC
platforms.

Work in [DZ13] presents an implementation for stochastic volatility model calibra-
tion on a multi-core CPU cluster. The implementation utilizes shared and distributed
packages in Python. The computational experiments consider the Heston and Bates
models. The experiments have been performed on a cluster of 32 dual socket Dell
PowerEdge R410 nodes providing 256 cores. The speed-up achieved is around 139x
against the sequential version. This reduces overall time taken to calibrate 1024 SPX
options by a factor of 37x.

Work in [Cap11] gives an approach to calculating sensitivities of stochastic differ-
ential processes. The underlying idea is an application of the Adjoint to each scenario
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of the MC simulation for solving stochastic differential equations (SDE). The compu-
tational cost of the sensitivity calculation via the Adjoint is independent of the number
of input parameters of the stochastic model. Derivatives are calculated by utilizing the
Adjoint in the rules required to calculate the final result (chain-rule). Considering a
system depending on 60 parameters and providing the SDE solution in 1 minute, this
typically computes the gradient in less than 4 minutes. Unfortunately, this work does
not exploit parallel architecture.

Work in [GHR+16] presents an approach to the gradient calculation using the Ad-
joint techniques on GPU architectures. This utilizes vector and matrix structures to
store intermediate partial derivatives. The work studies performance for four cost func-
tions: sum of sigmoids, linear leasts-squares, maximum entropy models and Cholesky
decomposition. The computational experiments have been performed on an Intel Xeon
e-5-1620 v2 (3.7 GHz) with 64 GB of DDR3 RAM memory and an NVIDIA GeForce
GTX Titan Black. The speedup achieved on GPU cards is around 7.5x±4.4 vs. a se-
quential implementation on CPU. In this implementation, the multiple threads located
on GPU cannot create their own tapes.

Work in [SZAW15] presents parallel approaches to option pricing utilizing the
lattice model and the MC method. The work has been implemented in CUDA and
OpenCL. This utilizes the Black-Scholes model for option pricing. Benchmarks have
been performed for the option pricing via the Black-Scholes model. Computational
experiments have been done on an Intel Dual Core Xeon processor with 3.4GHz with
16GB RAM memory and NVIDIA GeForce GTX 980 with 4GB RAM memory. Pric-
ing of an option with 100000 timesteps on a CPU via the lattice method requires around
23K ms whereas a parallel version computes option prices in around 3.5K ms. The MC
simulation for 1000000 paths and 1000 timesteps takes around 186 seconds on a CPU.
The parallel GPU version of the MC simulation calculates the option prices in around
6 seconds for 1000000 scenarios and 100 timesteps on GPU. The work does not allow
the sensitivity computation and does not support general stochastic models.

Work in [MF12] applies AD to the quadrature – numerical integration to calculate
the sensitivities of the integral. There are included derivations for truncation errors.
The results hold when the integrand is one degree higher continuously differentiable
than the sufficient for convergence of its quadrature. The work is tested with a tetra-
choric correlation estimation example in Matlab. This utilizes rectangle, midpoint and
Simpson’s rule for integration. The work uses forward mode automatic differentiation
for the derivatives calculation. The work does not support automatic differentiation in
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reverse mode.
Work in [JY11a] considers application of the Adjoint to MC simulation for the

gamma matrix computation for multidimensional financial derivatives including Asian
baskets and cancelable swaps. Numerical results show that computation of all n(n+

1)/2 gammas in the LMM takes approximately n/3 times as long as computing the
price.

Work in [JY11b] presents the application of the Adjoint techniques to the Delta
computation of interest rate derivatives. The work studies constant maturity swap rate
market model and co-initial swap-rate market model. The work shows that the com-
putational complexity of the algorithm is proportional to the number of rates x the
number of factors per step.

Work in [CL14] presents an application of automatic differentiation and the Im-
plicit Function Theorem to sensitivity calculation and model calibration for the credit
default swaps and credit default index swaptions. The computational experiments for
the credit default swaps shows performance improvement by up to 50x for 18 spread
tenors and interest rate instruments. The combination of automatic differentiation and
the Implicit Function Theorem allows computation of interest rate and credit spread
risk in 20 % less time than computation cost of option price. The work does not sup-
port processing on parallel architectures.

Work in [LL14] addresses an implementation for pricing Asian Options on an Intel
Xeon-Phi Coprocessor architecture. This utilizes a closed-form analytical solution
for the geometric average Asian option and MC method for the arithmetic average
Asian option. The work was compared with a single-Asian option example included in
CUDA SDK 6.0 on an NVIDIA Tesla K40c. Experimentation shows that the pricing
of a 2-year contract with 252 time steps and 1M scenarios takes around one fifth of a
second on an Intel Xeon-Phi Coprocessor 7210p. The GPU implementation calculates
the Asian option price in around 0.469 second. The work does not support graph
processing to define general stochastic models on a multi-core Xeon-Phi architecture.
Further, this does not support the sensitivity calculation.

Work in [FBI06] applies the Adjoint in seismology. The changes to displacement
field and flow patterns at the surface can be quantified with respect to the changes of
density, viscosity or elastic coefficients. The work derives the equations for the scalar
wave dynamics in two dimensions. A numerical case-study shows that the Adjoint
focuses near to the location of a parameter perturbation at the same rate when the
original wavefront reaches that location and the Adjoint is far more efficient than finite
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difference approximations. This does not rely on the existence of Green’s functions or
transposes of a differential operator. To locate parameter perturbations, the least-square
function with the Adjoint is utilized. The method can be applied to non-linear operators
using the Navier-Stokes equations. Work [DLS10] presents an implementation of the
Adjoint MC method in Geant4 – a toolkit for simulation of the passage of particles
through matter and the GRAS module (Geant4 Radiation Analysis for Space). This
aims at precise computation of space radiation effects on electronic components, solar
panels and optical devices in complex payload and satellite geometry. It compares the
Pathwise forward and the Adjoint methods to analyze two test geometries presenting
the components. The numerical results show that the Adjoint improves performance
by up to four orders of magnitude when considering the sensitive volume size equal to
1 mm.

The Adjoint with MC simulation of the European option was applied to the He-
ston calibration in [KMS09]. For the optimization process, the standard sequential
quadratic programming methods with the Gauss-Newton approximation of the Hessian
were utilized. Tests were performed on a 3 GHz CPU and 2 GB memory. As expected,
the algorithm reduced the number of MC simulations for different partial derivatives
(usually evaluated by FD approximations). The presented approach improves the cali-
bration time for a typical equity market model with time-dependent model parameters
calibrated by the FD method from over three hours (approx 200 minutes) to less than
ten minutes. Unfortunately the sequential solution is strongly dependent on the starting
points as the problem is non-convex, thus it converges to the nearest local minimum.
The accuracy experiments showed that the Adjoint implementation produces the same
result as the FD approach. The implementation was only executed on a single CPU
core, hence, it may be worth investigating parallel computing for the MC-based cali-
bration.

Calibration of the Heston stochastic volatility model using filtering and maximum
likelihood methods is presented in [MPZ08b]. A standard steepest ascent method for a
non-convex maximum likelihood function was utilized to optimize the maximum like-
lihood function. As evaluation of the maximum likelihood function is computationally
demanding, parallel architectures were used to boost performance. The implementa-
tion was tested on a IBM SP4 machine with 32 processors. The speedup factor was
equal to 15x for 16 processors used. The accuracy of the calibration of European
options was about 10−5 (the value of the Root Mean Square Error (RMSE) function).

Previous work by the thesis author [KK13] examines application of the Adjoint
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to evaluation of the first-order Greeks using the standard MC simulation. This uti-
lizes parallel GPU architectures such as NVIDIA CUDA to boost performance. The
first-order Greeks are calculated through the MC simulation for Black-Scholes and the
Heston model. This uses derivations for specific financial models and cannot be ap-
plied to general SDE models. The parallel experiments are compared with a sequential
implementation and run on an NVIDIA Tesla C2070 with 448 cores. They show an
improvement of approximately two orders of magnitude for both the Black-Scholes
and the Heston first-order Greeks.

2.3 Heston model calibration using the Adjoint and MC
methods on FPGA

Work [dSSK+11] presents a hardware implementation of an MC simulation for the
Heston model for European options. The approach developed in VisualHDL on a
Xilinx Virtex-5 doubles performance compared with a CPU equipped with an Intel
Xeon CPU W335 3.07 Ghz and 8 GB RAM. Unfortunately, the implementation does
not support the Greeks calculation and model calibration.

Work [SRMLB+13] explores an FPGA implementation of an MC method to price
Asian options via the Black-Scholes model on an FPGA Altera Stratix-V card. The
approach has been developed in the Impulse C environment supporting floating-point
arithmetic on the FPGA. For generating normal distribution random samples, the Mersenne
Twister with Box-Muller transform has been utilized. The results show performance
improvement of the FPGA implementation by 504x when compared to an execution on
a single-core implementation (Intel i7 850 2.8 Ghz) and approx. 150x when compared
with a 4-core implementation supported by OpenMP. The implementation only inves-
tigates the Black-Scholes model which does not allow risk sensitivities calculation and
model calibration.

Work [TB08] explores an FPGA engine for solving the Black-Scholes model via
MC simulation. This is benchmarked on a Maxwell Supercomputer equipped with 64
FPGA Xilinx Virtex-4 XC4VSX55 cards and compared against a 32 core CPU cluster.
The speed-up achieved was around 750x compared to the CPU cluster. This work only
presents the Black-Scholes model and does not evaluate the Greeks.

Work of [JLT11] addresses a FPGA framework to solve option pricing formulas
via different methodologies: MC, FD, quadrature method and binomial trees. As case
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studies both European and American options are considered. The MC simulation Eu-
ropean options on an FPGA is 41x faster compared with an 8 core Intel Xeon CPU
processor. This work does not allow risk sensitivity calculation and model calibration.

Studies presented in [NAW08] explore a Quasi MC method for option pricing us-
ing Brownian paths. The performance results in a 50x speed-up on an FPGA (Altera
Stratix III EP3SE260-3) compared with an Intel Xeon 3 GHz CPU. This work does
not support more complicated option pricing models, such as the Greeks’ calculation
and calibration to market data.

2.4 Parallel non-linear least-squares optimization frame-
work using Automatic Differentiation

There are several tools that support the gradient calculation via AD. These generally
present two approaches for the recording chain-rule: source-code transformation or
operator overloading.

Work in [WG10] presents an open-source package in C/C++ for AD. The work
supports overloading operator techniques to define differentiable functions. This al-
lows the first and higher-order derivatives calculation in forward and reverse automatic
differentiation mode. This supports MPI and OMP parallel programs. Unfortunately,
this does not support many-core and GPU architectures.

Work in [HP13] presents an AD tool that supports the adjoint derivatives and tan-
gent calculation. The software allows differentiation of function written in C++ and
Fortran. The software does not support differentiation on parallel architectures.

Work in [Hog14] presents an approach to the first-order derivatives calculation in
reverse-mode AD. The work utilizes Expression C++ templates. The work utilizes
overloaded operator techniques to build a graph representation of a model function.
The work has been incorporated into the Adept library. Benchmarks for four differ-
ent numerical algorithms show the performance improvement against other operator-
overloading libraries. ADOL-C is 5-7 times slower than Adept, CppAD is 7-9 times
more expensive and Sacador is 2.6-8 times slower than Adept. The work reduces
memory usage being 1.3-7.7 times more efficient. The work does not support complex
arithmetic and differentiation on parallel computing architectures.

Work in [FSA+12] presents an AD framework for solving statistical parameter es-
timation problems. This contains an optimization module for non-linear models with

27



a large number of parameters. The software provides functionality of analysis of un-
certainty of estimated parameters via a Markov-chain MC method. The framework
utilizes overloading operator techniques to record chain-rule of the model function.
The software transforms the source-code with the model definition into C++. Next,
the C++ code is compiled and linked with the AD library to create a binary program.
Unfortunately, the software does not support differentiation on HPC architectures.

Work in [GHR+16] presents an approach to the gradient calculation utilizing the
Adjoint methods on GPU architectures. this uses vector and matrix data structures to
store intermediate partial derivatives The work studies performance for four cost func-
tions: sum of sigmoids, linear least-squares, maximum entropy models and Cholesky
decomposition. The computational experiments have been performed on an Intel Xeon
e-5-1620 v2 (3.7 GHz) with 64 GB of DDR3 RAM memory and an NVIDIA GeForce
GTX Titan Black. The performance improvement on GPU is around 7.5x± 4.4 vs.
a sequential implementation on CPU. In this implementation, the multiple-threads lo-
cated on GPU cannot create their own tapes – data structures to store intermediate
results and the first-order sensitivities.

Work [ABFK11] proposes an approach to the Heston model calibration using global
optimization methods. The Heston model is evaluated by using the Fourier cosine
method on CUDA. The model has been evaluated for many sample points distributed
with quasi-distribution over the parameter space. Further, the Levenberg-Marquardt
method has been applied to the most feasible points (the points for which RMSE is
low). The gradient for optimization was evaluated using the FD method. Performance
studies have been done on a GPU server with two NVIDIA GPU C1060 and one GTX
260. The implementation was benchmarked with a varied number of generated random
samples (from 256 to 65536). The experiments have been carried out for one option set
(256 options). Performance improvement has been achieved for 65536 samples; execu-
tion times on a GPU were 50x times faster than on a CPU. The optimization algorithm
does not utilize differentiation techniques as the Adjoint to improve performance.

Previous work by the thesis author [KK13] presents an application of the Adjoint
techniques to the first-order sensitivity calculation via the standard MC simulation.
This utilizes parallel GPU architectures to improve performance. The first-order sensi-
tivities are calculated through the MC simulation for Black-Scholes and Heston model.
This uses derivations for specific financial models and cannot be applied to general
SDE functions. The parallel experiments are compared with a sequential implemen-
tation and run on an NVIDIA Tesla C2070 with 448 cores. They show performance
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improvement of approximately two orders of magnitude for both the Black-Scholes
and the Heston first-order sensitivity computation.

Previous work by the thesis author in [KK12] presents a parallel approach to eval-
uating the gradient and Hessian with both forward and reverse AD modes. The library
implemented in C++ uses a generic programming paradigm to dynamically parametrize
the data-type. Overloaded operator techniques are used to build a graph representation
for factorable functions. The graph representation is transferred to GPU and further
processed in parallel. Each thread block evaluates and differentiates a single function.
The performance experiments were carried out on an Athlon 2.8 GHz processor with
an NVIDIA GF 9800 GT supporting Tesla architecture. The speed-up is equal to 180x
for functions consisting of 64 nodes (the gradient calculation). The execution times
for the Hessian calculation were 280x faster on a GPU. The implementation supports
interval arithmetic.

2.5 Summary

In this chapter, the literature review has been presented. The section 2.2 focused on ap-
plication of Monte-Carlo simulation, Automatic Differentiation and High-Performance
Computing platforms to various scientific and industrial applications. This showed the
Adjoint technique reduces the cost of the sensitivity calculation when compared to
pathwise forward and finite difference methods. The computational cost of the gradi-
ent calculation via the Adjoint is independent of the number of input parameters for
the stochastic models. The input model for various applications can be represented as
a sequence of elementary arithmetic operations. This can utilize overloading operator
techniques and graph processing to allow the differentiation via AD.

The section 2.4 investigated automatic differentiation frameworks and the semi-
closed form Heston model calibration. The automatic differentiation tools can utilize
two approaches for the chain-rule recording: source-code transformation and over-
loading operator techniques. The work [GHR+16] presented a GPU approach to the
gradient computation. This showed the performance improvement by the factor of
7.5x± 4.4 vs. a sequential implementation. The work [ABFK11] showed that the
GPU cards improve performance of the semi-closed form Heston model calibration
calculated via the FD method by the factor of 50 x.
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Chapter 3

Technical context

3.1 Introduction

This chapter provides overview of technical aspects of this work to contextualise the
developments and contributions of the thesis. This is organized as follows:

• Section 3.2 introduces a directed acyclic graph - graph representation that can be
used to express a composite function

• Section 3.3 presents fundamentals of automatic differentiation for the gradient
computation using Forward and Reverse (the Adjoint) modes.

• Section 3.4 presents fundamentals of non-linear least squares optimization.

• Section 3.5 concerns Monte-Carlo simulation

• Section 3.6 briefly introduces high-performance computing platforms

• Section 3.7 presents financial models: Heston model, Heston model with Jumps,
Heston model with term-structure used as case-studies.

3.2 Directed Acyclic Graph

A Directed Acyclic Graph (DAG) is a data structure formed by a collection of nodes
and directed edges without a directed cycle. Each node is connected to another, such
that there is no way to start at a node v, follow any sequence and end at the same node.
Each task can operate on a vector of input data, process the intermediate results and
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return the output data vector. The DAG structure can represent a topology of arithmetic
operations required to evaluate a function.

3.3 Automatic Differentiation

Background

Automatic Differentiation (AD) is a set of algorithmic routines to accurately and effi-
ciently compute derivatives of a composite function [KK12]. This approach allows the
derivatives computation with machine accuracy 1 [FHP+12].

AD exploits the fact that each composite function can be interpreted as a sequence
(chain-rule) of the elementary operators (as addition, multiplication or exponential,
etc.) required for its evaluation. To explain AD, the Black-Scholes formula is used as
an example [FHP+12].

Example Consider the Black-Scholes model and its recursive dependency of com-
modity price from time t to time t +1.

St+1 = St · (1+ r ·dt +σ ·
√

dt ·Z) (3.1)

Suppose, we want to evaluate the Black-Scholes single path from time t to t + 1. For
this purpose, we derive a sequence (see Table 3.1a) (chain-rule) of elementary opera-
tions needed to evaluate the underlying asset price at time t +1.

f1 = r ·dt
f2 = 1+ f1

f3 =
√

dt
f4 = σ · f3
f5 = f4 ·Z

f6 = f2 + f5
f7 = St · f6

(a) Chain-rule of the Black-Scholes model

This sequence can be expressed graphically using a DAG (see Figure 3.1) [FHP+12].
The edges represent a dependency between subsequent elementary operators or input

1Computational devices use binary systems to represent floating-point arithmetic. The floating-point
number is represented by using three numbers: sign, exponent and mantissa. Due to the finite number
of bits for exponent and mantissa representation, the numbers are rounded to the nearest, toward zero,
toward plus/minus infinity [IEE08]
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Figure 3.1: Chain-rule of the Black-Scholes model as a DAG

parameters; the nodes are identified by fi – intermediate functions to evaluate the fi-
nal result. As can be seen, each fi is dependent on some previously computed f j or
model parameters (i > j). It is worth noting that Black-Scholes requires 7 elemen-
tary operations to evaluate the underlying asset price at time t + 1 from time t with
the forward order. Intuitively, in order to calculate the composite function, we start
computations from independent variables (St ,..., Z) through intermediate operations
( f1,..., f6) to the final operator ( f7). By interpreting such a chain-rule with forward-
order (or reverse) and applying basic differentiation routines for elementary operators,
AD computes derivatives of the composite function. These derivatives are accurately
evaluated and subject only to rounding and not discretization error. This makes AD
particularly attractive when compared to standard numerical differentiation methods,
such as finite-differences [Cap11]. AD has two basic modes: Forward (Pathwise) and
Reverse (the Adjoint) [FHP+12].

Pathwise methods

The pathwise method computes derivatives with the forward order and calls differen-
tiation routines for elementary functions.

Example Let us perform differentiation of the function from f1 to f7 (with the for-
ward order).

First, the derivatives d f1 and d f3 are equal to zero as f1 and f3 are independent
of σ. Next, the derivative of d f4 is dσ · f3 +σ · d f3. because f4 contains σ. Note,
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f1 = r ·dt d f1 = 0
f2 = 1+ f1 d f2 = d f1

f3 =
√

dt d f3 = 0
f4 = σ · f3 d f4 =

dσ · f3 +σ ·d f3
f5 = f4 ·Z d f5 = d f4 ·Z

f6 = f2 + f5 d f6 = d f2 +d f5
f7 = St · f6 d f7 = St ·d f6

(a) Chain-rule of Black-Scholes (Pathwise meth-
ods)

f1 = r ·dt f7 =
d f7
d f7

= 1
f2 = 1+ f1 f6 =

d f7
d f6
· f7 =

St · f7

f3 =
√

dt St =
d f7
dSt
· f7 =

f6 · f7

f4 = σ · f3 f2 =
d f6
d f2
· f6 = f6

f5 = f4 ·Z f5 =
d f6
d f5
· f6 = f6

f6 = f2 + f5 f4 =
d f5
d f4
· f5 =

Z · f5

f7 = St · f6 Z = d f5
dZ · f5 = f5

f3 =
d f4
d f3
· f4 =

σ · f4

σ = d f4
dσ
· f4 =

f3 · f4

dt = d f3
ddt · f3 =

1
2
√

dt
· f3

f1 =
d f2
d f1
· f2 = f2

dt+= d f1
ddt · f1 =

r · f1

r = d f1
dr · f1 =

dt · f1

(b) Chain-rule of Black Scholes (Adjoint meth-
ods)

that this derivation includes previously evaluated and stored d f3. In the next step we
differentiate f5 with respect to f4 (previously evaluated). Processing this sequence, the
final partial derivative of underlying asset price (d f7) is computed with respect to σ

(see Table 3.2a). The gradient computation by the pathwise method is proportional to
the number of independent input parameters.

The Adjoint method

The Adjoint performs computations in a reverse manner starting from the final op-
eration. This approach requires evaluation and storage of the function value and all
intermediate results (DAG nodes).

Consider the following example using the above DAG to evaluate the gradient of
f7.
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Evaluation Pathwise Adjoint
7 45+7 = 52 13+7 = 20

Table 3.1: Number of arithmetic operations required to evaluate the gradient of the
Black Scholes model

Example Let us differentiate the final operation f7 with respect to f7. As expected,
d f7
d f7

is equal to 1. Assuming the values of all intrinsic functions ( f1,..., f6) are known, f7

can be differentiated with respect to St – the left branch and f6 – the right branch of the
DAG graph. The first derivative: d f7

dSt
= d( f6·St)

dSt
= f6 : Analogously: d f7

d f6
= d( f6·St)

dSt
= St

In the next stage, d f6
d f2

and d f6
d f5

are calculated: d f6
d f2

= d( f2+ f5)
d f2

= 1 and d f6
d f5

= d( f2+ f5)
d f5

= 1
By multiplying the above results by the previously evaluated d f7

d f6
we have: d f6

d f2
· d f7

d f6
=

d f7
d f2

= St
d f6
d f5
· d f7

d f6
= d f7

d f5
= St In the third step, we compute derivatives f5 with respect

to f4 and f5 with respect to Z. Then: d f5
d f4

= d( f4·Z)
d f4

= Z and d f5
dZ = d( f4·Z)

dZ = f4 To obtain
d f7
d f4

and d f7
dZ let us multiply the above results by value d f6

d f5
· d f7

d f6
from the previous step,

then: d f5
d f4
· d f6

d f5
· d f7

d f6
= d f7

d f4
= Z · St

d f5
dZ ·

d f6
d f5
· d f7

d f6
= d f7

dZ = f4 · St In the next stage, we
differentiate f4 with respect to σ and f4 with respect to f3 in an analogous manner and
multiply by the above results, giving: d f4

dσ
· d f5

d f4
· d f6

d f5
· d f7

d f6
= d f7

dσ
= Z ·St · f3 = Z ·St ·

√
dt

and d f4
d f3
· d f5

d f4
· d f6

d f5
· d f7

d f6
= d f7

d f3
= σ · Z · St Repeating this processing flow for all DAG

nodes, the gradient of f7 is evaluated.
As can be seen, this procedure requires only one sweep through the chain-rule to

calculate the gradient, thus, involving fewer computations than the Pathwise method
Table 3.2b shows a complete chain-rule for the gradient of the Black-Scholes by

the Adjoint ( fi denotes the partial derivative d f7
d fi

)
Table 3.1 gives the number of necessary arithmetic operations for the Pathwise and

the Adjoint method (including the cost of function evaluation).

Mathematical fundamentals

In order to present the principles of the components of the AD algorithm [FHP+12];
we assume that:

• x1, x2, . . . , xn denote independent variables;

• yi = fi( f i
le f t , f i

right) = f i
le f t ◦ f i

right – a differentiable function fi considered as a
composition of two operands f i

le f t , f i
right where 1≤ le f t,right ≤ i and an intrin-

sic operator ◦ as +, −, ∗, /, etc. If ◦ is an unary operator (sin, cos, ln, etc.) then
fi is only dependent on f i

le f t ;
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• f1, . . . , fk−1 – intermediate intrinsic functions;

• fk – the final intrinsic function required to evaluate f ;

• yi – intermediate results, yi = fi( f i
le f t , f i

right) or yi = fi( f i
le f t) for 1≤ i≤ n.



x1

x2

.

xn

y1

.

yk


=



x1

x2

.

.

xn

f1( f 1
le f t , f 1

right)

.

fk( f k
le f t , f k

right)


(3.2)

Evaluation of the gradient of f relies on differentiation of the subsequent intrinsic
functions with respect to each input variable.

As a result, we have the Jacobian matrix:

J f (x) =
(

∂ fi

∂x j

)
k·n

=


∂ f1
∂x1

. . . ∂ f1
∂xn

· · ·
∂ fk
∂x1

. . . ∂ fk
∂xn

 (3.3)

Forward mode – gradient

Consider the function dependent on one or two functions immediately preceding in the
DAG, we have: ycurr = fcurr( fle f t , fright) or ycurr = fcurr( fle f t)

Differentiating the subsequent functions, we obtain the results defined as follows:

• for binary operators:

fcurr( fle f t , fright) = fle f t op fright , (3.4)
∂ fcurr

∂xi
=

∂ fcurr

∂ fle f t
·

∂ fle f t

∂xi
+

∂ fcurr

∂ fright
·

∂ fright

∂xi
, (3.5)

• for unary operators:
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fcurr( fle f t) = op fle f t ,
∂ fcurr

∂xi
=

∂ fcurr

∂ fle f t
·

∂ fle f t

∂xi
.

Note that:
∂xi

∂xi
= 1 .

Having computed the derivatives of this list, the final result denotes the partial deriva-
tive of the input function.

Reverse mode (the Adjoint method) – gradient The second AD method for the
gradient calculation is known as the Adjoint Mode done in a reverse manner.

This is better suited to functions of many input variables. To explain the Adjoint
method, we consider the relation below:

fcurr =
∂ fcurr

∂ fi
· fcurr , (3.6)

where fi =
∂ fk
∂ fi

and fcurr =
∂ fk

∂ fcurr
. The index curr corresponds to the function which

is directly dependent on the operations denoted by sub-index i (as can be seen in the
DAG 3.1); additionally for curr = k we assume: fcurr =

∂ fcurr
∂ fcurr

= 1 Taking into account
the previous equation, the formulas for left and right partial derivatives can be derived.

∂ fk

∂ fle f t
= ∑

∂ fcurr

∂ fle f t
· ∂ fk

∂ fcurr
,

∂ fk

∂ fright
= ∑

∂ fcurr

∂ fright
· ∂ fk

∂ fcurr
. (3.7)

Having carried out the above operations, the values of the partial derivatives are repre-
sented by nodes of the independent variables. As a result, we evaluate the gradient in
a single DAG sweep.

3.4 Non-linear least-squares optimization

Non-linear least squares optimization is used to determine a set of parameters for which
the function fits the observation data.

Let us define a mean squares error function as:

MSE = f (x) =
1
2

r(x)r(x)T (3.8)
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The general non-linear least squares optimization problem can be formulated as
follows:

min
x∈Rn

1
2

r(V (x),M)r(V (x),M)T

subject to: p(x) = 0

q(x)≤ 0

l ≤ x≤ u

(3.9)

where:

• x = (x1,x2, ...,xK) is a set of K input parameters

• V is the model function vector for N observations: Vi(x)=Vi(x1,x2, ...,xK) where
i = 1, ...,N

• r is a residuum vector: ri(x,Mi) =Vi(x)−Mi for i = 1, ...,N

• p(x) and q(x) are inequality and equality constraint functions

• l and u are lower and upper bounds for the input parameters

The least-squares error function may be non-convex and have multiple local minima.
The gradient-based optimization methods for the non-linear least squares functions
utilize the gradient information Vi with respect to each parameter xk.

3.5 Monte-Carlo simulation

Monte-Carlo (MC) simulation is the most efficient approach to determining the results
of integral functions that are too complicated to be solved analytically, for example
option pricing models. Its computational effort increases approximately linearly with
the number of random samples, while the complexity of analytical solutions tends to
increase exponentially [Hul12].

The key idea of MC simulation is a production of many random different scenarios
(paths) and evaluation of the further expected value converging to the correct results
with the number of paths. For financial models describing the evolution of an under-
lying asset price or volatility, the MC method assumes that each scenario is a sample
payoff calculated and discounted at the interest rate:

Ci = e−rT ·max(ST −K,0) (3.10)
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where Ci is the payoff – the option price along the i-th path, ST is a commodity price
at time T according to the i-th scenario, and K denotes the strike price (the previously
negotiated price at which the commodity is traded at time T ).

The expected value of the option price is equal to the average of all the discounted
payoffs (M denotes the number of different payoff scenarios – paths), as below [Gla04]:

vM = E(Φ(Ci))≈
∑

M
i=0 Φ(Ci)

M
(3.11)

Further, if we perform differentiation operations for the expected value, we must take
into account all sample paths [Gla04]:

dvM

dθ
= E(

dΦ(Ci)

dθ
)≈ ∑

M
i=0

dΦ(Ci)
dθ

M
. (3.12)

These values, known as the Greeks, measure the impact of model factors on the option
price and are fundamental in risk management and hedging.

3.6 High-Performance Computing

High-Performance Computing is the use of parallel processing for running complex
and/or lengthy applications more quickly. This can utilize hardware architectures such
as GPUs, multi-/many-core processors and FPGA cards.

3.6.1 OpenMP framework

OpenMP is an application framework supporting multi-platform programming with
shared memory [Ope13]. It consists of compiler directives, library routines and envi-
ronment variables that allows running vectorized2. code on multi-core architectures.
OpenMP standards uses fork-join model for parallelization. The main thread, termed
the Master, forks into a specified number of threads. Program tasks are assigned to
threads. The runtime environment system assigns threads to different processors lo-
cated on multi-/many-core CPUs. This paradigm is suitable to execute for and while

loops without data-dependency between subsequent iterations. After for loop execu-
tion, threads join back to the main thread. OpenMP supports clauses for data specifi-
cation inside the paralelized loop. The data can be shared within a parallel region – all

2Vectorization is a technique to process a vector of data in a single-clock cycle.
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threads have access to the same data or private data which means all threads process a
local copy of the data [Ope13]. Further, reduction operations are supported. When the
parallelized for loop ends, all private variables can be summed into a global shared
variable. This is particularly useful for embarrassingly parallel problems 3, hence 8
double-precision numbers or 16 single-precision numbers can be processed in a single
clock cycle. Xeon-Phi supports two modes of code execution: native mode, where the
standalone program is directly run on the coprocessor; offload mode, where the code
region is run on the coprocessor. Xeon-Phi technology utilizes OpenMP or OpenCL
framework to run the code on the Xeon-Phi coprocessor. Xeon-Phi provides instruc-
tions to transfer data to/from the coprocessor, offload and native mode configuration
and data-alignment [Int16].

3.6.3 CUDA technology

Introduction

CUDA (Compute Unified Device Architecture) is a parallel computing platform and
programming model supporting general-purpose computations on NVIDIA GPU cards.
This platform is well-suited for embarrassingly parallel problems. To specify a com-
putational problem, CUDA allows kernel function definition. The kernel function is
processed by many threads on different streaming GPU processors. Each streaming
processor operates on a thread-block – a group of 1024 threads sharing memory re-
sources. Hence, performance is scalable with the number of available streaming pro-
cessors. Figure 3.2a shows a sample graph representing execution with 2SMs and
4SMs. Thread-blocks can be identified into one-dimensional, two dimensional or three

3The computation problem that can be split into a number of independent tasks without data depen-
dency and communication between them [HS12] as MC simulation. OpenMP allows using synchro-
nization instructions to indicate the sequential part of the code inside the for loop. This defines atomic
operations (in a multi-threading system, an atomic operation is one that cannot be interrupted during
processing by another thread), critical sections (the critical region is executed by only one thread) and
barrier functions (all threads must wait before any is allowed to proceed). Additionally, for performance
improvement of processing data, the OpenMP defines directives for data vectorization.

3.6.2 Xeon-Phi framework
Xeon-Phi is a many-core hardware architecture designed for embarrassingly parallel problems . A par-
allelized program is run on an Intel Xeon-Phi Coprocessor providing up to 61 cores that simultaneously
compute 244 tasks (threads), with a performance peak of about 1.2 teraFLOPS (1.2 ·1012 FLOPs). Each
core is based on an Intel Pentium 3 architecture. Xeon-Phi technology supports 512-bt SIMD (Single
Instruction-Multiple Data) instructions [Int16]
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dimensional indexes. These can be utilized when processing large data of vectors, ma-
trices or volumes. Figure 3.2b shows the thread hierarchy. The total number of threads
is a number of threads per block times the number of thread-blocks [NVI16].

(a) NVIDIA CUDA technology— Scalability with
the number of streaming processors

(b) NVIDIA CUDA technology— Thread-
hierarchy

Synchronization methods within threads

CUDA technology supports synchronization instructions to avoid race conditions or
hazards while reading from or writing to memory.

• a local barrier for threads within a single thread-block

• a global barrier within all threads located on the thread grid

These instructions can find applications in a sequential part of the code such as reduc-
tion of the vector elements.

Memory model

CUDA allows access to several memory spaces located on GPU cards. Each thread has
access to its own memory located in registers. Further, thread blocks can operate on
the shared-memory located close-to-chip. The size of the shared-memory depends on
the compute capability of a device (SM version). For the SM 2.1, the shared memory
size is 64kB per thread-block. All threads have access to global memory space located
in the GPU memory.
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Execution model

CUDA differentiates code run on the CPU from the code executed on the GPU. The
program run on the CPU is termed the host; the kernel program performed on GPU
is termed the device. CUDS supports an asynchronous execution on multiple devices
by using streams. The streams allow asynchronous data transfer to/from device and
kernel calls.

3.6.4 OpenCL framework

OpenCL (Open Computing Language) is a framework designed to simplify cross-
platform programming, providing a common low-level API for many-core architec-
tures, GPUs and FPGAs [Khr16]. OpenCL specifies a programming language based
on C99.

3.6.5 Maxeler technology

The Maxeler perating system (MaxelerOS) is a computational framework supporting
processing on FPGA cards developed by vendors such as Xilinx. This offers an ap-
proach to parallelism known as multi-scale dataflow processing [max14].

In this paradigm, the application is considered as a dataflow graph that consists of
elementary nodes corresponding to the arithmetic operations and variables. The graph
is processed from the independent nodes through intermediate nodes ending up at the
final node. Each node contains a data corresponding to a single-arithmetic operation.
The dataflow graph is computed by a reconfigurable Dataflow Engine (DFE) consisting
of thousands of cores [max14]. Each node is processed by a single dataflow core. Max-
eler multi-scale (pipeline) extensions allow processing arrays/vectors of nodes to op-
timally utilize FPGA capacity. The pipelining strategy supports loop level parallelism
of vectors via spatial and pipelined processing. Flexible definition of primitive data
types as floating-point or fixed-number types [max14] is supported. The floating-point
data can be defined by using various range of bits for exponent and mantissa (8 bits for
mantissa and 24 bits for the exponent corresponds to the single-precision floating-point
type; 11 bits for mantissa and 53 for the exponent represent double-precision floating-
point numbers). These bits are further mapped to a host CPU application written in
C. Fixed-point types are specified by the number of bits to represent integer numbers.
Accelerated Maxeler applications consist of three components:
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• Kernel – describes computation flow structurally by DAGS. DAGS consist of
several types of node, such as arithmetic operations, values, stream offsets, mul-
tiplexers (condition instructions, counters, input/output operations). The kernel
graphs are directly mapped to hardware and computed by dataflow engines.

• Manager configuration – interconnects a host CPU to an FPGA card. This in-
cludes input output stream information and memory accessing. The Manager
usually calls the Kernel instantiation.

• Host application – the host CPU application that calls the FPGA configuration
and transfers data from RAM to FPGA memory. The host application is also
responsible for data streams between CPU and FPGA.

This overall application is managed by the MaxelerOS. Additionally, multiple dataflow
engines are connected to linearly scale the problem with the number of available DFEs
[max14].

3.6.6 OpenMPI framework

OpenMPI (Open Message Passing Interface) is a message passing interface supporting
distributed computing. This defines an API that allows inter-process communication
within the nodes in a cluster. The API offers point-to-point communication function-
ality, message broadcasting [ope16].

3.7 Financial case-studies

3.7.1 The Heston Model

The model forecasting behaviour of commodity prices is often expressed as a stochas-
tic process (changes of the value are uncertain over time and are dependent on some
probability factor). Besides the commodity price, this process allows prediction of the
further volatility of the asset. This is called the stochastic volatility model [Gat06].

The Heston model is an extension of the Black-Scholes model that proposes the
underlying asset price follows the various volatilities (observable on the market) over
time (Vt is a stochastic process) [AWVdS13]. The commodity price of Heston satisfies
the following stochastic equation [Gat06]

dSt+1 = (r−q)Stdt +
√

VtSt ·W 1
t . (3.13)
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where r−q is its expected rate of return, Vt denotes a volatility and W (t) is a Wiener
process (the Brownian motion - a stochastic process whose increments over time have
normal distribution and are independent of the previous process evolution). The non-
constant volatility is expressed as a mean-reverting stochastic process of the form
[AWVdS13]:

dVt+1 = κ · (θ−Vt) ·dt +σ ·
√

VtdW 2
t . (3.14)

where κ denotes the mean reversion of volatility, θ the long-term variance, σ the
volatility of volatility and V0 the initial volatility. dW 1

t and dW 2
t are correlated ran-

dom variables with normal distribution (the correlation factor is equal to ρ). To ensure
positive volatility, the Feller condition needs to be taken into account [Gat06].

2 ·κ ·θ−σ
2 > 0 (3.15)

3.7.2 The Heston Model with Jumps

The Heston model can be extended (on the Poisson processes) to express more ac-
curately the market quotes [Gat06]. In the Heston model with jumps, the SDE is as
follows:

dSt+1 = (r−q−λµJ)Stdt +
√

VtSt ·W 1
t + JtdNt . (3.16)

where N = Nt , t ≥ 0 is an independent Poisson process with the intensity parameter
λ > 0, Jt is the percentage jump size that is lognormally distributed over time with
unconditional mean µJ . The standard deviation of log(1+ Jt) is σJ:

log(1+ Jt)∼ Normal(log(1+µJ)−
σ2

J
2
,σ2

J) (3.17)

3.7.3 Heston model with term-structure

The Heston model with term structure assumes that the time-dependent parameters
are piecewise constant [Li09]. This model expresses options with different maturities
more accurately. The stock price SDE for the Heston model with term structure is as
follows:

dSt+1 = (r−q)Stdt +σt

√
V T S

t St ·W 1
t . (3.18)

and the volatility SDE is:

dV T S
t+1 = λt(1−V T S

t )dt +αt

√
V T S

t St ·W 1
t . (3.19)
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The parameters λt , αt and σt are retrieved from the standard Heston model by using
the formulas: σt =

√
θ, αt =

Vt√
θ
, V T S

t = Vt
θ

The semi-closed form for the Heston model

The semi-closed form of the Heston model for European call options is given as
[Gat06]:

C(St ,Vt , t,T ) = StP1−Ke−r(T−t)P2 (3.20)

where the value of P1 and P2 is calculated by equation

Pj(x,Vt ,T,K) =
1
2
+

1
π

∫
∞

0
Re

(
e−iφ ln(K) f j(x,Vt ,T,φ)

iφ

)
dφ (3.21)

x = ln(St)

f j(x,Vt ,T,φ) = exp{C(T − t,φ)+D(T − t,φ)Vt + iφx}

C(T − t,φ) = rφiτ+
a

η2

[
(b j−ρηφi+d j)τ−2ln

(
1−ged jτ

1−g

)]

D(T − t,φ) =
b j−ρηφi+d j

η2

(
1− ed jτ

1−ged jτ

)
g =

b j−ρηφi+d j

b j−ρηφi−d j

d j =
√
(ρηφi−b j)2−σ2(2u jφi−φ2)

u1 =
1
2
, u2 =−

1
2
, a = kθ, b1 = k+λ−ρη, b2 = k+λ

for j=1,2, where,

u1 =
1
2
, u2 =−

1
2
, a = kθ, b1 = k+λ−ρη, b2 = k+λ

The parameter λ can be eliminated under the risk neutral measure, i.e., underEMMQ,

dVt = κ
∗(θ∗−Vt)dt +σ

√
VtdW 2

t (3.22)
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where,

κ
∗=

κ+λ, θ
∗ =

κθ

κ+λ

therefore, the parameters in the close-form solution can be expressed as:

a = κ
∗
θ
∗, b1 = κ

∗−ρη, b2 = κ
∗

Financial sensitivity calculation

For risk management and hedging investment portfolios, traders evaluate the Greeks
to measure how the model parameters affect future commodity price and option price.
The impact on the option value is evaluated to quantify the different aspects of risk.
When risk is acceptable, no adjustment is made to the investment portfolio; if it is
unacceptable, an appropriate position for either the underlying asset or option contract
is taken.

For risk management and hedging investment portfolios, traders evaluate the Greeks
to measure how the model parameters affect future commodity price and the option
price [Hul12].

The impact on the option value is evaluated to quantify the different aspects of risk.
When risk is acceptable, no adjustment is made to the investment portfolio; if risk is
unacceptable, an appropriate position for either the underlying asset or option contract
is taken.

The underlying concept of the Greeks’ calculation combines symbolic differentia-
tion and the Adjoint.

Considering the first-order Greeks, the recursive formulas (along each scenario via
MC simulation) must be derived.

St+1 = Ft(St ,µ,Vt) = Ste(r−
1
2Vt)dt+

√
Vtdt ·Z1 (3.23)

Vt+1 = Gt(κ,θ,σ,Vt) =Vt +κ · (θ−Vt)dt +σ ·
√

VtdtZ2 (3.24)

Table 3.2a shows the recursive formulas for the first-order Greeks through a single path
of the Heston model.

As can be observed, the Greeks at time t +1 are dependent on the previously eval-
uated Greeks at time t and the partial derivatives of G and F .

Based on these recursive dependencies of underlying commodity price and volatil-
ity, the Adjoint can be utilized to calculate the partial derivatives of F and G. Further,
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The Greek Recursive equation (the first-order)
dSt+1
dS0

dFt(St)
dSt
· dSt

dS0
dSt+1

dr
dFt(St)

dSt
· dSt

dr + dFt(r)
dr

dSt+1
dVt

dFt(Vt)
dVt
· dVt

dV0
+ dFt(St)

dSt
· dSt

dV0
dSt+1

dκ

dFt(Vt)
dVt
· dVt

dκ
+ dFt(St)

dSt
· dSt

dκ

(a) Formulas for first-order Greeks of the underlying asset

these results are used to update the final first-order Greeks.

3.8 Summary

In this chapter, the technical context of the work has been presented. This focused on
DAG – directed acyclic graph representation used to represent a composite function.
Further, the Automatic Differentiation methods with the forward and reverse mode
for the gradient calculation have been presented. Next the non-linear least squares
optimization is presented. Further, the Monte-Carlo method has been presented. Next,
the non-linear least squares optimization has been introduced. Further, the overview of
High-Performance technologies has been presented. Further, the financial-case studies:
the Heston model, the Heston model with Jumps, the Heston model with term-structure
have been introduced. In the next chapter, there are presented parallel frameworks for
financial sensitivity calculation and model calibration.
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Chapter 4

High-Performance frameworks for
financial risk management

4.1 Introduction

This chapter presents high-performance approaches for financial risk management.
This includes:

• Parallel Monte-Carlo engine for the first-order sensitivity calculation and model
calibration using the Adjoint

• Heston model calibration using the Adjoint and Monte-Carlo methods on FPGA

• Parallel non-linear least squares optimization framework using Automatic Dif-
ferentiation

4.2 Parallel Monte-Carlo engine for the first-order sen-
sitivity calculation and model calibration using the
Adjoint

4.2.1 Introduction

Monte-Carlo (MC) simulation is a widely used method to solve processes that involve
uncertainty or that are too complex to solve analytically [Cha13]. When using MC
simulation, the sensitivity and calibration analysis of the models needs to be mea-
sured: how is the model sensitive to changes, what and how do the model parameters
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affect output, and how far is the model is from the real answer. This process is com-
putationally expensive when solving models with millions of different scenarios. The
models are usually expressed as analytical recursive equations in which the solution at
time t+1 depends on the model parameters and the state at time t [Cha13]. The model
parameters need to be determined by calibrating the model to observations. There-
fore, the model can be generalized as a function of input parameters and the previous
solution. This function can be expressed as a sequence of operations with specified de-
pendencies and graphically represented as a Directed Acyclic Graph (DAG)[FHP+12].
The graph nodes represent the variables or intermediate and final operators, whereas
the edges represent their dependencies. This abstraction can be effectively used with
parallel and distributed architectures to represent general models.

This section presents a parallel engine for Monte-Carlo (MC) for the expected
value computation, the first-order sensitivity calculation and the model calibration us-
ing a Directed Acyclic Graph (DAG) representation. This supports overloaded opera-
tor techniques, polymorphism and objected oriented design to ensure a flexible model
definition. Additionally, the DAG abstraction allows a cross-platform definition that
is independent of particular high-performance architectures. User code for specific
application can be run on high-performance platforms without modification and re-
compilation.

The sensitivities are calculated on parallel and distributed platforms via a single
simulation of the Adjoint – an Automatic Differentiation method with the gradient
computation cost being 1.8x times that of function evaluation. The gradient is further
used in unconstrained and constrained optimization methods to calibrate the model to
the observed data. The engine supports multi-/many-core and distributed computing
architectures such as GPUs and Intel-Xeon-Phi with the frameworks OpenMP, CUDA,
OpenCL, OpenMP with Xeon-Phi. Further this includes an OpenMPI module that
allows simulation with the above architectures over the cloud. A static and dynamic
library are provided.

The engine is demonstrated using a financial case-study: the first-order sensitivity
calculation and model calibration for the Heston model, the Heston model with Jumps
and the Heston model with term-structure for derivatives pricing and hedging. The
Heston model is considered with constraints to ensure the positive volatility calcula-
tion. The computational cost of the gradient calculation is reduced by a factor of 16x
when compared to the Finite Difference methods. Further, use of parallel/distributed
architectures improves performance by approx. 100x on two GPU NVIDIA K40 cards
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vs. a single-thread implementation on an Intel Xeon X5650.

4.2.2 Overview

The parallel engine for MC simulation using DAG processing consists of the following
modules:

• An integration module with DAG components that integrates the HPC compo-
nents with the model definitions and calls MC functions on a specific architec-
ture;

• A HPC module supporting multi-/many-core architectures via OpenMP, OpenMP
with Xeon-Phi, CUDA, OpenCL framework for MC simulation and AD process-
ing using DAGs;

• A distributing computing module supporting OpenMPI functions that enables
parallel simulation and calibration on a cluster;

• A calibration module supporting constrained and unconstrained optimization us-
ing AD;

• A market-data module that connects to the SQL database to fetch observations
for the calibration process 1;

• A test-suite module that allows performance, calibration benchmarks and tex-
report generation.

The engine is compiled as a shared/static library. This provides an API that allows a
platform-independent model definition and execution on parallel/distributed comput-
ing. The HPC module is designed according to the SIMD (Single Instruction Mul-
tiple Data) paradigm. This means that a single graph representation 2 is utilized by
many threads and cores available on multi-/many-core architectures. Additionally,
each thread/core operates on the Path – the separate data structure located in the close-
to-chip memory to produce the intermediate partial results. The path contains the
intermediate model results and the first-order derivatives. The functions processing a
single DAG representation with the forward and reverse order utilize vectorization and
multi-threading.

1The market-data module uses SQLite for the connection and database query execution [sql16]
2a single DAG contains a set of instructions required to evaluate the specific stochastic model
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Figure 4.1: Architecture – Model Definition
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Figure 4.2: DAG processing on HPC platforms
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4.2.3 Architecture

Directed Acyclic Graph (DAG) representation

The objective of the parallel DAG library for MC simulation is a flexible definition
of various graphs representing process models with processing on HPC architectures.
This requires an appropriate data model design compatible with the parallel frame-
works and architectures. To allow a flexible definition and execution on parallel/dis-
tributed platforms the objected-oriented paradigm and generic design have been uti-
lized. The software is additionally integrated with external functions to process DAG
operations for specific applications (DAG differentiation, DAG reduction). This ap-
proach allows a DAG definition by using:

• String representation – a sequence of characters to formulate the model;

• Expression representation – data structures representing the DAG nodes; these
additionally utilize overloaded operator techniques to define the model and its
constraints.

DAG as a String This data model enables integration with external languages and
software for mathematical modelling. The first stage is a definition of elementary
algebra functions such as binary and unary operators: addition, multiplication, sin, cos
and their relative priorities. The priority array with the supported functions is further
utilized to interpret the DAG – a string passed by the user. The function parsing the
graph model recognizes elementary algebra operators, left and right brackets and adds
the lexemes 3. The lexeme expresses a node of a DAG. For execution, memory is
allocated to build a DAG; then the array of all the lexemes expressing operators and
nodes is processed by the function – createDAG. In this phase, the Expression, a data
structure, is utilized to build a graph.

DAG as a set of expressions The model utilizing expression structures allows inte-
gration with C++ software. The underlying concept is to employ overloaded operator
techniques and polymorphism to define a DAG. The specific graph definition class in-
herits from the base class – Model, that is responsible for memory allocation. The
nodes are represented by objects of the class – Expression, and intermediate algebra

3A lexeme is an abstract unit of dictionary[Alf06] which can be used in the context of language or
algebra definition
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functions. The overloaded operator techniques allow the graph to be interpreted at run-
time. Figure 4.1 presents a data model and a sample graph definition for the Heston
model.

Numerical inputs/outputs and hardware configuration To properly process DAGs
on parallel architectures, an appropriate connection of numerical values with nodes of
the graph is required. For this purpose, the class Path is implemented. This contains a
set of numerical values referring to a single node. The Path is processed in parallel by
multiple threads and cores located on the multi-/many-core architectures 4 The library
supports different HPC platforms and their parameters are configured via the class
HardwareParameters. This contains a set of parameters such as the number of threads,
the number of machines, and the device id or the number of block per thread grid. The
class OutputParameters is initialized with the results of the DAG processing, such as
estimatedValue, firstSensitivities etc.

DAG interface – evaluation and automatic differentiation functions processing
DAGs

The library provides a set of functions to process DAGs. These are applied in the
context of the first-order sensitivity calculation. The functions processing DAGs are
implemented on the device and are optimized in terms of performance and memory
usage. They utilize vectorization and multi-threading techniques. Figure 4.2 shows a
DAG interface model and a sample definition of the function processing DAGs.

HPC module

The concept of the HPC module for the first-order sensitivities is a combination of
numerical methods, such as the MC method and the Adjoint, and HPC systems to im-
prove the performance and accuracy of the MC simulation, its sensitivity calculation
and model calibration. The first-order sensitivities via MC are parallelized with respect
to the number of scenarios. Each scenario is calculated and differentiated through the
Adjoint method on a single core on GPU or thread on a multi-core architecture. The
MC simulation module supports definition of various financial models, various dis-
cretization schemes and different data types by using a DAG representation. The first

4The Xeon-Phi implementation utilizes vectorization functions that simultaneously process either 8
or 16 paths in offload mode. The parallelized part of code is copied to the Xeon-Phi coprocessor. The
GPU implementation processes each warp – a set of 32 threads simultaneously operating 32 paths.
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stage is recording the discretization scheme (Euler or Milstein) by using expressions or
string representations. At this stage, the overloaded operators at a high level call low-
level routines that create the DAG representing the processing flow inputs/intermediate
variables/outputs and their data-dependency (nodes). This graph representation of dis-
crete models is transferred to the HPC platforms to enable the symbolic differentiation
(the Adjoint). The next step is the model parameter initialization with numeric values
(the numeric values are assigned to appropriate graph nodes). Further, the number of
paths and steps per single simulation and the input/output model arguments are passed
to the main function running MC simulation and the sensitivity computation. The first
stage of parallel scenario processing by core or thread is the uniform random genera-
tion. The implementation supports various random number generators (pseudo/quasi
generators) and libraries such as NAG [Gro15], CURAND [NVI13], MKL [Int16],
and MW64X [Tho14]. The second step is DAG evaluation (calculation of the next MC
step). Then, the reverse sweep via Adjoint can be utilized on the DAG to calculate
the partial first-sensitivities. After, the partial sensitivities can be updated to produce
the final derivatives at the timestep. When the MC simulation is completed, the partial
results and sensitivities are collected to calculate the estimated value. The graph 4.3
presents the processing flow on HPC architectures.

CUDA & OpenCL The MC simulation on GPU is performed by calling kernel rou-
tines 1. The kernel function takes the DAG graph representing the discretization model,
its size, and the total number of paths and the number of steps as parameters. This pro-
duces the final result, and the first-order sensitivities. Each thread calculates a single
MC scenario and first-order sensitivities via the Adjoint. The GPU thread iterates the
DAG calculation and differentiation sequence until the final step. Next, the inner loops
process the DAG with the forward order (evaluation) and the backward order (the Ad-
joint) to produce the first-order sensitivities. After this, the final first-order sensitivities
can be updated. The final stage is collection (reduction) of the partial results and eval-
uation of the estimated values. This utilizes synchronization and barrier methods. The
pseudocode 1 shows a parallel algorithm on GPU.

Xeon-Phi The Xeon-Phi implementation utilizes OpenMP (OMP) and Xeon-Phi in-
structions to parallelize DAG processing. Each thread exploits vectorization tech-
niques to evaluate and differentiate 16 or 8 scenarios at once represented by single
or double-precision numbers respectively. The outer loop uses OMP pragmas and
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Algorithm 1 GPU Kernel implementation
Require: DAG, dagSize, numPaths, numSteps, numOptions, inputDataVector, out-

putDataVector
Ensure: outputDataVector contains model results and the first-order sensitivities

1: pathId← getNumberOfThread()
2: . DAG initialization
3: for step← 1, numSteps do
4: for graphId← 1, dagSize do
5: EvaluateDAG(DAG, graphId)
6: end for
7: for graphId← dagSize, 1 do
8: AdjointDAG(DAG, graphId)
9: end for

10: . Update the first-order sensitivities using recursive formulas
11: end for
12: . Reduction within thread block

iterates through a number of scenarios. The next iteration is to process a single sce-
nario through evolution time. Two inner loops iterate the DAG to produce the results
(forward order) and sensitivities (reverse order). The results are stored in 8 double-
precision or 16 single-precision number vectors. This approach maximizes perfor-
mance on Xeon-Phi Coprocessor 5. The pseudocode 2 shows the parallel algorithm for
the Xeon-Phi Coprocessor.

OpenMPI The OpenMPI module integrates the modules supporting parallel pro-
cessing. This allows distributed simulation and model calibration in a cluster. This
consists of the master node and the computation nodes. The master node sets ini-
tial values such as the total number of paths, the number of steps, and MC mode and
hardware configuration for the model and distributes them to the nodes. Each node
computes the number of paths divided by the total number of nodes available. Each
node then sends the output results back to the master node. The master node then
calculates the overall expected value result. The listing 4.5 shows the processing flow
for the option pricing via OpenMPI. The listing 4.8 shows the processing flow for the
model calibration using OpenMPI.

5Intel Xeon-Phi Coprocessor maximizes performance when vectors consisting of 8 or 16 elements
are processed at once [Int16]
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Algorithm 2 Xeon-Phi implementation
Require: DAG, dagSize, numPaths, numSteps, numOptions, inputDataVector, out-

putDataVector
Ensure: outputDataVector contains model results and the first-order sensitivities

1: . DAG initialization
2: . pragma omp parallel for
3: for pathId← 1, numPaths do
4: for step← 1, numSteps do
5: for graphId← 1, dagSize do
6: . the for loop vectorized
7: for vectorId← 1, 8 do
8: EvaluateDAG(DAG, graphId)
9: end for

10: end for
11: for graphId← dagSize, 1 do
12: . the for loop vectorized
13: for vectorId← 1, 8 do
14: AdjointDAG(DAG, graphId)
15: end for
16: end for
17: . Update the first-order sensitivities using recursive formulas
18: end for
19: end for
20: . Reduction within thread block

4.2.4 Deployment Process

The engine provides functionality that allows a platform-independent model definition
and execution on HPC without the core re-compilation process. User code with the
model definition and processing flow is linked with shared/dynamic libraries. The
external code should include the model definition: its constraints, boundary conditions
and processing flow. The user’s class with the model inherits from the base class –
Model. The class Model initializes DAG structures. During user code compilation the
model is transformed into the DAG representation. The listing 5.17 presents a sample
model definition. The listing 4.6 shows the parameter definition. The listing 4.7 shows
the processing flow for the model calibration.
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Figure 4.3: Architecture – High-Performance Engine for Monte-Carlo simulation and
model calibration

4.2.5 Summary

In this section, the architecture of the Parallel Monte-Carlo engine for the first-order
sensitivity calculation and model calibration using the Adjoint has been presented. The
work utilizes overloading operator and graph processing to support general stochastic
differential models. The work can be applied to various industrial and scientific appli-
cations. Computational experiments for the Parallel Monte-Carlo engine for the first-
order sensitivities calculation and model calibration using the Adjoint are presented in
Chapter 5.
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/ / i m p o r t h e a d e r s from t h e SDK l i b r a r y
# i n c l u d e <Model . h>
/ / Hes ton model −− d e f i n i t i o n
c l a s s HestonModel : p u b l i c Model
{
p u b l i c :
Key key ;
E x p r e s s i o n S t ;
. . .
E x p r e s s i o n c o n s t r a i n t ;
void i n i t M o d e l ( )
{
/ / Record ing E x p r e s s i o n s and b u i l d i n g a graph s t r u c t u r e
t h i s−>s t a r t R e c o r d ( ) ;
E x p r e s s i o n : : V a r i a b l e ( Zs ) ;
. . .
n e x t S t = S t ∗ exp ( ( ( r a t e − q ) − f a c t o r ∗ V t t ) ∗ d t + s q r t

( V t t ∗ d t ) ∗ Zs ) ;
/ / c o n s t r a i n t d e f i n i t i o n
c o n s t r a i n t = 2 ∗ kappa ∗ t h e t a − s igma ∗ s igma ;
t h i s−>endRecord ( ) ;
}
} ;

Figure 4.4: HPC Engine for MC simulation – Model Definition
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Figure 4.5: Architecture – High-Performance Engine for Monte-Carlo simulation and
model calibration
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/ / i m p o r t h e a d e r s from t h e SDK l i b r a r y
# i n c l u d e <Model . h>
/ / Hes ton model −− d e f i n i t i o n
c l a s s HestonModel : p u b l i c Model
{
p u b l i c :
Key key ;
. . .
void i n i t P a r a m e t e r s ( )
{
/ / C a l i b r a t i o n parame te r i n i t i a l i z a t i o n
key . nodeId = sigma . i d x ;
v a l u e s [ key ] . v a l u e = 0 . 3 ;
v a l u e s [ key ] . i s C a l i b r a t e d = t rue ;
v a l u e s [ key ] . numEquat ion = VOLATILITY EQUATION ;
bounds [ key ] . l b = 0 . 1 ;
bounds [ key ] . ub = 1 . 0 ;
v a r i a b l e N a m e s [ key ] = ” sigma ” ;
. . .
}
} ;

Figure 4.6: HPC Engine for MC simulation – Parameter definition

/ / i m p o r t h e a d e r s from t h e SDK l i b r a r y
# i n c l u d e <HPCEngine . h>
# i n c l u d e ” HestonModel . h ”
/ / a v a i l a b l e t y p e s : double , Dual , HyperDual , I n t e r v a l
d e f i n e DATA TYPE double ;
main ( )
{
HestonModel hes tonModel ;
MCEngine mcEngine ;
DiffMode di f fMode = A d j o i n t ;
H a r d w a r e P a r a m e t e r s h a r d w a r e P a r a m e t e r s ;
/ / OpenMP , OpenMPI , Xeon−Phi , FPGA, GPU
h a r d w a r e P a r a m e t e r s . p l a t f o r m = H CUDA;
. . .
/ / Op t ion P r i c e / I m p l i e d V o l a t i l i t y Ma t r i x
O p t i o n P r i c e D a t a o p t i o n P r i c e D a t a ( ” d a t a / d a t a . t x t ” ) ;
/ / t h e Greeks ’ c a l c u l a t i o n
mcEngine . r u n S i m u l a t i o n ( hes tonModel , mcMode , d i f fMode ) ;
/ / c a l i b r a t i o n
mcEngine . r u n C a l i b r a t i o n ( hes tonModel , o p t i o n P r i c e D a t a ) ;
/ / r e p o r t
r e p o r t T e x ( ” r e p o r t / r e p o r t . t e x ” ) ;
} ;

Figure 4.7: HPC Engine for MC simulation – Processing flow
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Figure 4.8: Architecture – HPC Engine for Monte-Carlo simulation and model cali-
bration

4.3 Heston model calibration using the Adjoint and MC
methods on FPGA

4.3.1 Introduction

Pricing derivatives, calculating the Greeks and calibrating the models to market data
are computationally-demanding problems in the financial and insurance sector [Gla04].
To manage investment portfolios, financial institutions need to solve complex stochas-
tic differential models via Monte-Carlo (MC) simulation. When using MC simulation,
pricing, sensitivity calculation and model calibration via simulation is computationally
expensive. Furthermore, the output results are burdened by numerical error if finite-
differences and likelihood methods are used. This section presents a Monte-Carlo
(MC) engine for the expected value computation, the first-order Greeks’ calculation
and model calibration using FPGA cards. The sensitivities are calculated in parallel
via a single simulation by the Adjoint – an Automatic Differentiation method with
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the gradient computation cost being 1.8 times that of function evaluation. The gradi-
ent is applied to the optimization methods to calibrate the model to the market data.
The framework supports FPGA cards with Maxeler technology. The computational
experiments consider a financial case study: the Heston model calibration.

4.3.2 Overview

The FPGA engine for the financial option pricing, sensitivity calculation and model
calibration via MC simulation consists of the host module written in C++, the hard-
ware Maxeler application with Kernel and the Manager configuration. The hardware
implementation is written in the MaxJ language [max14]. The FPGA implementation
uses hand-coded routines for option pricing and the model gradient evaluation.
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Algorithm 4 FPGA kernel implementation
1: procedure HESTONMODELKERNEL

2: DFEVector carriedSt← newInstance()
3: DFEVector carrieddStGreek← newInstance()
4: DFEVector carriedAccSt← newInstance()
5: DFEVector previousSt← init(control, carriedSt)
6: DFEVector previousdStGreek← init(control, carrieddStGreek)
7: DFEVector previousAccSt← init(control,
8: carriedAccSt)
9: . Evaluation and differnentiation of the chain-rule

10: inputs.St← previousSt
11: DFECVector newSt← nextStockPrice(inputs, chainrule, Zvar)
12: AdjointStockPrice(inputs, chainrule, derchainrule, greeks)
13: DFEVector newPrice← Payoff(control, newSt, Strike)
14: DFEVector newGreekSt← greeks.St * previousdStGreek
15: DFEVector newAccSt← previousAccSt + (control.lastPoint ? carriedAccSt :

0)
16: carriedSt← stream.offset(newSt, -bsdeLoopLength)
17: carrieddStGreek← stream.offset(newGreekSt, -bsdeLoopLength)
18: carriedAccSt← stream.offset(newAccSt, -bsdeLoopLength)
19: end procedure

4.3.3 Architecture – dataflow implementation on Maxeler technol-
ogy

The idea of the dataflow implementation is to utilize a recursive equation for the sce-
nario evolution from time t to time t +1. The recursive equation can be differentiated
in the Adjoint mode to calculate the partial sensitivities from time t to time t +1. The
hand-coded routines are included in the Kernel function. The kernel function presents
processing flow. Based on the kernel code, a DFE graph is produced. This is further
replicated based on the number of pipelines and clocks. The computation and differen-
tiation of a scenario from time t to time t +1 requires multiple clock ticks to produce
the intermediate output at t +1 step. This number of clock ticks is termed the pipeline
depth. The pipeline depth needs to be set as an offset in order to refer to the next
iteration in a stream.

The algorithm 4 shows the concepts of the kernel implementation for the Heston
model. Figure 4.10 presents the DFE graph for the option pricing and sensitivity com-
putation for the Heston model. This graph is iteratively processed by DFE cores. Table
4.1 shows the resource utilization after the compilation process on an FPGA.
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Figure 4.10: DFE graph for the Heston model
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Model FPGA (2 pipes) FPGA (4 pipes)
Logic utilization: 110119 / 262400

(41.97%)
207380 / 262400

(79.03%)
Primary FFs: 212034 / 524800

(40.40%)
402153 / 524800

(76.63%)
Secondary FFs: 9214 / 524800 (1.76%) 16947 / 524800 (3.23%)

Multipliers (18x18): 940 / 3926 (23.94%) 1866 / 3926 (47.53%)
DSP blocks: 534 / 1963 (27.20%) 1060 / 1963 (54.00%)

Block memory: 1091 / 2567 (42.50%) 2099 / 2567 (81.77%)

Table 4.1: Resource utilization for the FPGA implementation

4.3.4 Summary

In this section the architecture of the Heston model calibration on FPGA has been
presented. The work utilizes the differentiation routines for the Heston-model. This
can find application in option pricing and hedging of investment portfolios consisting
of thousands of options in real-time. The computational experiments are presented in
Chapter 5.

4.4 Parallel non-linear least squares optimization frame-
work using Automatic Differentiation

4.4.1 Introduction

The dynamics of real-time processes can be simplified and expressed as mathematical
functions depending on several factors. The mathematical models need to be fitted to
the observed data to determine the model parameters for which the model accurately
expresses reality. For this purpose, the least squares error function can be used. The
least squares function is expressed as a sum of the squared differences between the
model function and observation data. The optimization process – minimization of the
least-squares function – can utilize the gradient information. This is computationally
expensive and involves the function value and gradient computation for many different
input parameters.

This section proposes a parallel non-linear least-squares optimization framework
using Automatic Differentiation (AD) methods. This approach utilizes a graph rep-
resentation and overloaded operator techniques to express the general objective and
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constraint functions. The engine allows the objective/constraint function value calcu-
lation and the gradient computation for many different points in parallel. The gradient
is calculated on parallel architectures via the Adjoint method with the cost being 2x
of that of function evaluation. The gradient is applied to the non-linear least squares
optimization methods. The framework supports multi-/many-core architectures such
as GPUs, Intel Xeon/Xeon-Phi with the frameworks CUDA, OpenCL, OpenMP with
Xeon-Phi.

The non-linear least squares optimization framework is benchmarked using a finan-
cial case-study: a semi-closed form Heston model calibration using the Gauss-Kronrod
integration method.

4.4.2 Architecture

The parallel non-linear least-squares optimization engine using AD consists of the
following modules:

• A module that records operations for the input objective and constraint function
and builds a graph representation;

• An optimization module supporting constrained and unconstrained optimization;
this calls HPC functions with the DAGs representing objective and constraint
functions;

• A HPC module supporting AD computation on multi-/many-core architectures
via OpenMP, OpenMP with Xeon-Phi, CUDA, OpenCL

• A market data module that connects to the SQL database to fetch observations
for the calibration process 6

The first stage is an objective and constraint function definition as a template function.
Further, the objective and constraint functions are called with the Expression structure.
During the programme execution, the Expression structure using overloading opera-
tor techniques records all arithmetic operations. These operations are stored in the
DAG structure. Further, there is memory allocated for the Tape data structure – a data
structure to store intermediate results and the first-order sensitivities.

6The market data module uses the SQLite library for database connection and query exectution.
[sql16]
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The optimization engine is compiled as a shared library. This provides an API that
allows a platform-independent function definition and execution on parallel computing
architectures.

AD Engine – evaluation and differentiation functions

The framework provides functions to process DAGs: evaluateDAG to calculate the
function value and reverseDAG with automatic differentiation routines to evaluate the
gradient. They utilize vectorization and multi-threading techniques.

Calibration 
parameters 

Input objective and 
constraint function as a 

template function 

DAG representing an 
objective and constraint 

function 

Transfer a DAG 
representation and many 
copies of Tape into many 

cores 

Parallel Automatic 
Differentiation Engine 

Function Values 
Gradient 

Model calibration 

Input model 
parameters 

Multi/many-core architectures: 

Calibration results 

Tape storing all intermediate 
results and derivatives 

Figure 4.11: Architecture – HPC engine for Non-linear least squares optimization

CUDA & OpenCL

The GPU kernel function takes the DAG representing an objective function, the size
of graph, and the number of options. Each thread calculates an the objective function
value and the gradient for a single option. Each thread operates on its own Tape.
A Tape with the intermediate results is stored in global memory. The pseudocode 5
describes a parallel algorithm on GPU.
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Algorithm 5 GPU Kernel implementation
Require: DAG, dagSize, tape, numOptions
Ensure: f, fjac

optionIdx← getNumberOfThread() + blockDimX * blockIdx . DAG
initialization;
for graphId← 1, dagSize do

EvaluateDAG(DAG, tape[optionIdx], graphId)
end for
for graphId← dagSize, 1 do

AdjointDAG(DAG, tape[optionIdx], graphId)
end for . Update f on the model results . Update fjac on the gradient results

Algorithm 6 Xeon-Phi implementation
Require: DAG, dagSize, tape, numOptions
Ensure: f, fjac

for optionIdx = 0, optionIdx ¡ numOptions do . DAG initialization;
for graphId← 1, dagSize do

EvaluateDAG(DAG, tape[optionIdx], graphId)
end for
for graphId← dagSize, 1 do

AdjointDAG(DAG, tape[optionIdx], graphId)
end for

end for . Update f on the model results . Update fjac on the gradient results
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Xeon-Phi

The Xeon-Phi implementation utilizes OpenMP (OMP) and Xeon-Phi instructions to
parallelize DAG processing. The outer loop uses OMP pragmas and iterates through
the number of options. Two inner loops iterate the DAG to produce the objective
function value (forward order) and the gradient (reverse order). The results are stored
in 8 double-precision or 16 single precision number vectors. The pseudocode 6 shows
a parallel code for Xeon-Phi Coprocessor.

4.4.3 Deployment Process

The optimization engine provides functionality that allows a platform-independent ob-
jective and constraint function definition and execution on HPC without re-compilation.
The user code with the objective and constraint function definition is linked with shared
libraries. The external code should include the objective and constraint function defi-
nitions using templates, boundary conditions and processing flow. The generic objec-
tive and constraint functions are used with the Expression structure. This is used to
record all intrinsic operations. During user code compilation the objective and con-
straint functions are transformed to the DAG representation. The listing 5.17 presents
a sample function definition. The listing 4.13 shows the processing flow.

4.4.4 Summary

In this section, the architecture of the parallel non-linear least squares optimization
framework using the Adjoint has been presented. The work utilizes overloading op-
erator techniques to build a graph structure for the objective and constraint functions.
The computational experiments are presented in Chapter 5.
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/ / O b j e c t i v e F u n c t i o n
template<c l a s s Value>
c l a s s HestonFormula
{
p u b l i c :
Complex<Value> H e s t f ( ComplexType<Value> &phi , . . . , i n t t y p e ) ;
Value H e s t o n P I n t e g r a n d ( Value phi , Value ∗params , i n t t y p e ) ;
Value HestonP ( i n t type , Value& kappa , . . . , Value &K)
{
I n t e g r a l <Value> i n t e g r a l ;
. . .
Value a r e a = i n t e g r a l . G e t I n t e g r a t i o n R e s u l t ( params , t y p e ) ;
}

Value Hes tonCal lQuad ( Value &kappa , . . . , Value &K)
{
Value r e s u l t ;
re turn r e s u l t
}
} ;

Figure 4.12: Non-linear least-squares optimization framework – Objective Function
Definition

# i n c l u d e <ADEngine . h>
# i n c l u d e <O p t i m i z a t i o n E n g i n e . h>
# i n c l u d e ” HestonModel . h ”
main ( )
{
O p t i m i z a t i o n E n g i n e o p t i m i z a t i o n E n g i n e ;
O p t i o n P r i c e D a t a m a r k e t O p t i o n P r i c e D a t a ;
HestonFormula<E x p r e s s i o n> h e s t o n F o r m u l a ;
O b j e c t i v e F u n c t i o n o b j F u n c t i o n ( 1 0 0 0 0 ) ;
o b j F u n c t i o n . s t a r t R e c o r d ( ) ;
E x p r e s s i o n x [ 5 ] ;
x [ 0 ] . s e t C a l i b r a t i o n ( ) ;
. . .
x [ 4 ] . s e t C a l i b r a t i o n ( ) ;
x [ 0 ] = 0 . 4 ;
. . .
x [ 4 ] = 0 . 0 2 ;
Bound bounds [ 6 ] ;
bounds [ 0 ] . l b = 0 ;
bounds [ 5 ] . ub = 1 ;
E x p r e s s i o n m a t u r i t y ;
. . .
m a t u r i t y = 1 . 0 ;
E x p r e s s i o n f ;
f = h e s t o n F o r m u l a . Hes tonCal lQuad ( x [ 0 ] , . . . , s t r i k e ) ;
o p t i m i z a t i o n E n g i n e . r u n C a l i b r a t i o n (& o b j F u n c t i o n , x , bounds , f ,
s t r i k e , m a t u r i t y , &m a r k e t O p t i o n P r i c e D a t a , i s D i f f e r e n t i a t i o n ,
A d j o i n t , &e x e c u t i o n T i m e ) ;
}

Figure 4.13: Non-linear least-squares optimization framework – Processing flow
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Chapter 5

Computational experiments

5.1 Introduction

This chapter presents computational experiments for the Heston model calibration on
HPC. This is divided into the following sections:

• Section 5.2.3 provides a description of the market data used for the Heston model
calibration;

• Section 5.2 presents performance, accuracy and calibration results for the Par-
allel Monte-Carlo engine for the first-order sensitivity calculation and model
calibration using the Adjoint;

• Section 5.3 presents computational experiments for the FPGA implementation
of the Heston model calibration using the Adjoint for the sensitivity calculation;

• Section 5.4 presents both performance and calibration results for the semi-closed
form Heston model calibration using a parallel non-linear least squares optimiza-
tion framework;

• Section 5.5 summarises the computational experiments;
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5.2 Parallel Monte-Carlo engine for the first-order sen-
sitivity calculation and model calibration using the
Adjoint

5.2.1 Overview

In this section, there are presented the computational results for the Parallel Monte-
Carlo engine for the first-order sensitivity calculation and model calibration using the
Adjoint. This includes a computational environment and market-data description. Fur-
ther, there are presented the input data for the calibration process. Next, there are
presented performance results for multi-/many-core and distributed architectures. Fur-
ther, there are presented the calibration results for the Heston model.

5.2.2 Computational Environment

Studies have evaluated option pricing/first-order derivatives and model calibration via
the Heston model computed by MC methods. These compare the Adjoint techniques
with Finite Differences. Computational experiments have been performed on the fol-
lowing system configurations:

1. OpenMP & OpenMPI: 32x Intel Xeon X5650 2.66 Ghz with 6 cores supporting
execution of 12 threads with 48 GB RAM

2. OpenMP with Xeon-Phi & OpenMPI: 2x Intel Xeon-Phi Coprocessor 7120p

3. CUDA and OpenCL: 2x NVIDIA Kepler K40 with 2880 cores

4. an Intel Core i7-4810MQ CPU 2.80GHz with 8GB RAM memory

Total speedup Stotal is measured as follows:

Stotal = Snodes ·SHPC ·Smethod (5.1)

where Snodes is speedup achieved by using a cluster of HPC devices, SHPC denotes
speedup on a HPC platform and Smethod is speedup from applying the numerical method.
The computational experiments consider performance comparison with the QuantLib
Library 1.9 [qua16].
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V0 κ θ σ ρ l µ
Value 0.02 0.4 0.1 0.3 0.3 0.1 0.1
Lower
bound

10−16 10−3 10−3 10−16 -0.99 0.001 0.001

Upper
bound

2.0 10.0 1.0 1.0 0.99 1.0 1.0

Table 5.1: Lower and upper bounds for the Heston model calibration

5.2.3 Market Data

For the financial case-study, the calibration experiments consider datasets representing
options on stock assets and equity indices. The option prices are published on Yahoo
Finance 1 Each dataset considers call/put options with different strikes and expiration
dates. The dataset module extracts the option market data and inserts it into a database.
The observation data is a mid-price between the ask and bid option prices. For the
calibration process, the dataset module loads the option-price matrix into a vector that
is used in the optimization process. The experimentation considers the market option
matrix for the following indexes and commodities:

• S&P 500 index

• Dow Jones Industrial Average index

• BP

Based on the option price matrix, the following implied volatility has been obtained
[Hul12].

5.2.4 Input Data

The input parameters for the Heston model are: S0 = 100, r=0.005, q = 0. The model
calibration via MC simulation has been tested with the following configuration: 300
timesteps, 10000 paths. Table 5.1 shows the input values, lower and upper bounds for
the optimization.

The computational experiments for the QuantLib and the implementation for the
Heston model calculation using OpenMP are as follows: S0=1.0, V0=0.01, κ=0.4,
θ=0.1, σ=0.3, ρ=0.3, r=0.005, K= 0.5 and maturity=1.0.

1Option market data source – Yahoo Finance http://finance.yahoo.com.
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Figure 5.1: Performance results – Differentiation vs. Pricing

5.2.5 Performance results

Figure 5.1 shows the results from comparing the Adjoint and Finite differences meth-
ods for the first-order sensitivity calculation with pricing via MC simulation. As ex-
pected, the Adjoint improves gradient calculation performance: the finite difference
method requires around 30x the time for option pricing simulation whereas the gradi-
ent is calculated in 1.8x that of the function evaluation. The Adjoint improves perfor-
mance of the sensitivity calculation by 16x for the Heston model when compared to
differentiation via FD.

The Monte-Carlo simulation is an embarrassingly parallel computation problem.
The theoretical speedup is proportional to the number of processors utilized when there
is no communication between the processors.

Snodes
theoretical = nprocessors (5.2)

where nprocessors is the number of processors utilized.
The presented work contains a sequential part of code required for calculating the

sum of option prices and the sensitivities. Therefore the speedup is less than the factor
nprocessors. The performance analysis includes the comparison of the achieved speedups
with the maximum theoretical Monte-Carlo speedups on a different number of cores/n-
odes utilized. The percentage:

η =
Snodes

Snodes
theoretical

·100% (5.3)

measures the speedup vs. the theoretical maximum speedup.
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The computational percentage cost spent on a sequential code is calculated as be-
low:

percentagenodes =
tnodes− t1node

Snodes
theoretical

tnodes
·100%

= (1− t1node

tnodes
· 1

Snodes
theoretical

) ·100%

= (1−Snodes ·
1

Snodes
theoretical

·100%

= (1− Snodes

Snodes
theoretical

) ·100%

These metrics are used to analyse performance of parallel implementations using
multi-core and distributed computing architectures.

Multi-core architectures (OpenMP)

Figure 5.2a compares the speedup of the OpenMP implementation with different num-
ber of threads vs. a single-thread implementation. The performance for the imple-
mentations using from 2 to 12 threads increases with the number of threads utilized.
2 The maximum speedup can be observed for the implementation using 12 threads as
the Intel Xeons X5650 supports up to 12 thread execution at once. The speedup for 12
threads is around 11x for a range from 40000 paths to 300000 paths. With a greater
number of threads (16 and 32), the performance decreases as there is more threads
used than 12. The table 5.3 presents the ratio of the achieved speedup vs. the maxi-
mum theoretical speedup. This shows that for the number of threads varying from 2
to 12 and the number of paths over 100 000 the performance achieves over 90% of
the maximum theoretical speedup. For a greater number of threads, the η decreases
as there is more threads than available cores. The table 5.4 shows the percentage cost
spent on a sequential code, etc. The figure 5.2b presents the performance results for
OpenMPI implementation using 2, 4 and 8 nodes vs a single-node implementation.
The performance for the implementation using 8 nodes is around 7x. The table shows
the ratio of the achieved speedup vs. the maximum theoretical speedup. For the imple-
mentation using 2 and 4 nodes and the number of paths over 100000, the performance
achieves over 90% of the maximum theoretical speedup. The OpenMPI execution time

2The OpenMP code includes a sequential part of code required for calculating the sum of option
prices and the sensitivities. Therefore, the speedup is less than the factor of 1x the number of threads.
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Number
of paths

QuantLib Execution
Time
(ms)

MC (1
thread)

Execution
Time
(ms)

Speedup

10000 0.501176 16467 0.501833 1334 12.34x
20000 0.501205 32789 0.503463 2569 12.76x
30000 0.502282 48981 0.503326 4000 12.25x
40000 0.501915 65412 0.502969 5202 12.57x
50000 0.502064 81656 0.502887 6530 12.50x
100000 0.502567 165286 0.502953 13004 12.71x

Table 5.2: Performance comparison of the sequential implementation for the Heston
model calculation with the QuantLib Library 1.9. Tests have been performed on an
Intel Core i7-4810MQ CPU 2.80GHz with 8GB RAM memory

measurements include times required for message passing to the nodes and receiving
collected results from the nodes. The table presents 5.2 the performance comparison
with the QuantLib library 1.9.
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GPU (CUDA & OpenCL)

Figure 5.2a shows performance results for the gradient calculation of the Heston model
on an NVIDIA K40 card compared with an OMP version (a single thread implementa-
tion). The maximum speed-up achieved is 58x for 20000 paths. Figure 5.2b compares
results on 2 GPUs vs 1 GPU. Speedup increases with the number of scenarios starting
from 50000; speed-up is 1.9x for 150000 scenarios. Figure 5.2 shows results for the
OpenCL implementation. The speedup for the OpenCL implementation is around 58x
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Number
of paths

OMP 2
threads

OMP 4
threads

OMP 8
threads

OMP 12
threads

OMP 16
threads

OMP 32
threads

10000 93.79 87.66 75.77 46.54 44.17 6.81
20000 97.97 94.76 93.27 53.89 54.15 6.94
30000 95.82 94.38 93.01 81.18 54.54 6.62
40000 98.14 95.07 94.07 89.68 55.89 6.66
50000 97.93 94.49 92.48 89.98 56.49 6.16

100000 98.34 96.96 95.12 91.77 60.52 6.53
150000 99.04 95.31 94.69 91.15 59.12 6.5
200000 98.61 96.18 95.35 91.93 60.29 6.45
250000 98.09 94.06 94.23 90.62 62.09 6.41
300000 99.68 96.64 95.45 91.92 60.78 5.86

Table 5.3: η – the achieved speedup vs. the maximum theoretical speedup x 100 %.

Number
of paths

OMP 2
threads

OMP 4
threads

OMP 8
threads

OMP 12
threads

OMP 16
threads

OMP 32
threads

10000 6.21 12.34 24.23 53.46 55.83 93.19
20000 2.03 5.24 6.73 46.11 45.85 93.06
30000 4.18 5.62 6.99 18.82 45.46 93.38
40000 1.86 4.93 5.93 10.32 44.11 93.34
50000 2.07 5.51 7.52 10.02 43.51 93.84

100000 1.66 3.04 4.88 8.23 39.48 93.47
150000 0.96 4.69 5.31 8.85 40.88 93.50
200000 1.39 3.82 4.65 8.07 39.71 93.55
250000 1.91 5.94 5.77 9.38 37.91 93.59
300000 0.32 3.36 4.55 8.08 39.22 94.14

Table 5.4: MC: percentagenodes – the computational percentage cost spent on a se-
quential code
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Number
of paths

OMPI 2
nodes

OMPI 4
nodes

OMPI 8
nodes

10000 76.59 67.19 27.15
20000 94.84 79.87 46.88
30000 92.31 89.78 56.88
40000 96.85 87.61 61.30
50000 94.17 89.91 66.91

100000 98.26 95.14 86.20
150000 97.77 93.56 77.49
200000 99.27 94.71 83.55
250000 99.38 96.28 89.17
300000 99.57 95.64 81.41

Table 5.5: MC: η – the achieved speedup vs. the maximum theoretical speedup x 100
%.

Number
of paths

OMPI 2
nodes

OMPI 4
nodes

OMPI 8
nodes

10000 23.41 32.81 72.85
20000 5.16 20.13 53.12
30000 7.69 10.22 43.12
40000 3.15 12.39 38.70
50000 5.83 10.09 33.09

100000 1.74 4.86 13.80
150000 2.23 6.44 22.51
200000 0.73 5.29 16.45
250000 0.62 3.72 10.83
300000 0.43 4.36 18.59

Table 5.6: percentagenodes – the computational percentage cost spent on a sequential
code
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for 150000 paths.
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Many-core architectures (Xeon-Phi)

Figure 5.3a shows the performance results for the Xeon-Phi version. 3 The maximum
speed-up is 22x for the implementation using 32 threads. Figure 5.3b presents results
for the Xeon-Phi implementation with OpenMPI.

3The Xeon-Phi contains a sequential part of code that is for calculating the sum of option prices and
the sensitivities. Therefore, the speedup is less than the factor of 1x the number of threads.
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Figure 5.2: Performance results – OpenCL NVIDIA K40 vs. OMP (a single-thread
implementation)
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5.2.6 Calibration results

Table 5.7 presents the execution times in milliseconds for the Heston model calibration
on different HPC platforms; in the brackets are the number of major iterations and
minor iterations during optimization. Table 5.8 shows the calibration results for a
single-thread implementation. Table 5.9 presents calibration results for the Heston
model and Heston model with term-structure. The Heston volatility matrix is retrieved
via the Newton-Raphson method from the model prices.
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Model OpenMP
(1

thread)
–

Simu-
lation

OpenMP
(1

thread)
– Cali-

bra-
tion

OpenMP
(8

threads)
–

Simu-
lation

OpenMP
(8

threads)
– Cali-

bra-
tion

Xeon-
Phi
(32

threads)
–

Simu-
lation

Xeon-
Phi
(32

threads)
– Cali-

bra-
tion

GPU
(CUDA

–
K40)

–
Simu-
lation

GPU
(CUDA

–
K40)

– Cali-
bra-
tion

Heston
model

229255 229289
(17,
37)

79455 79479
(10,
20)

125635 125652
(4, 11)

6747 17256
(6, 21)

Heston
model
with
con-

straints

186243 186271
(11,
33)

91555 91581
(8, 23)

194338 194359
(4, 15)

6155 15869
(7, 27)

Heston
with

Jumps

192442 192464
(7, 32)

124853 124886
(11,
46)

218180 218213
(4, 11)

– –

Table 5.7: Simulation and calibration times during the calibration process for 10000
paths

Parameters Heston
model

Heston
model with
constraints

Heston
model with

Jumps

Heston
model with
Jumps with
constraints

V0 0.013234 0.01459 0.0126333 0.0144067
κ 10 0.00100863 1.08172 5.00904
θ 0.0185984 0.225559 0.00139981 0.018675
σ 0.400961 0.292118 0.664814 0.366409
ρ -0.995326 -0.856153 -0.999982 -0.964993
l – – 0.0274284 0.0810467
µ – – 0.19921 0.016398

RMSE
(volatility)

1.90948 1.89477 3.51522 1.95436

RMSE (option
price)

0.404118 0.501432 0.628826 0.424208

Number of
major/minor

iterations

17/37 11/33 7/32 34/131

Table 5.8: Calibration results for 10000 paths
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Parameter Value
V0 1.00614e-16
λ 0.001
α 0.001
σt 1.11022e-16
ρ -1

RMSE
(volatility)

2.39836

RMSE
(option
price)

0.12457

Number of
major

iterations

3

Number of
minor

iterations

13

(a) Heston model

Maturity 0.00273973 0.0219178
V0 1.00149 1
λ 0.540665 0.540665
α 0.662946 0.0134989
σt 0.225595 0
ρ -0.122158 -0.122108

RMSE
(volatility)

0.406747 0.406747

RMSE
(option
price)

0.0844884 0.0844884

Number of
major

iterations

4 4

Number of
minor

iterations

30 30

(b) Heston model with term structure

Table 5.9: Calibration results for 23 call options with 2 maturities – 10000 paths, 100
timesteps

SPX 500 index – Call options

Table 5.10 shows the calibration results for the Heston model, the Heston model with
the Feller condition, the Heston model with Jumps and the Heston model with Jumps
and the Feller condition.

The computational experiments include the RMSE (Root-Mean Square Error) for
the Heston model volatility and the Heston model option price. The computational ex-
periments consider the calibration to 123 call S&P options with 10 maturities selected
by the following database query. The Heston model has been calculated via MC sim-

SELECT SPOT , MATURITY, STRIKE , OPTION TYPE , OPTION PRICE ,
IMPLIED VOLATILITY , MATURITY ID FROM MARKETDATA WHERE
COMMODITY NAME= ’SPY’ AND IMPLIED VOLATILITY > 0 AND

OPTION TYPE=0 AND MATURITY < 1 . 0 AND OPTION PRICE > 0
AND MATURITY ID < 10 ORDER BY OPTION TYPE , MATURITY,
STRIKE ASC

Figure 5.3: Database query for call option price matrix for S&P 500 index
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Parameters Heston
model

Heston
model with
constraints

Heston
model with

Jumps

Heston
model with
Jumps with
constraints

V0 0.0102997 0.00993562 0.00934736 0.00964807
κ 0.0941267 0.146015 1.97319 0.277915
θ 0.385344 0.0170663 0.0384247 0.175766
σ 0.266227 0.425135 0.544621 0.485939
ρ -0.941072 -0.867355 -0.679457 -0.707878
l – – 0.0419667 0.620926
µ – – 0.0524088 0.00391578

RMSE
(volatility)

1.25921 1.22782 1.23759 1.23969

RMSE (option
price)

0.389978 0.538844 0.359756 0.3673

Number of
major/minor

iterations

20/52 29/47 26/89 12/42

Simulation
time

150297 131371 265713 248769

Calibration
time

150347 131415 265777 248823

Table 5.10: Calibration results for 10000 paths – SPX 500 call options

ulation with 100 timesteps. The best fitting to the option matrix for the S&P index is
for the Heston model with Jumps. The RMSE error for the Heston model with Jumps
is 0.359756. The best volatility fitting to the implied volatility for the S&P index is for
the Heston model with the Feller condition. The RMSE volatility error for the Heston
model with the Feller condition is equal to 1.122782. The figures 5.4a, 5.4b, 5.4c, 5.4d,
5.4e, 5.4f, 5.4g, 5.4h, 5.4a, 5.4b show the volatility slices for the Heston model, the
Heston model with the Feller condition, the Heston model with Jumps and the Heston
model with Jumps and the Feller condition. Figure 5.4 presents the implied volatility
surface for the S&P index for the call options. Figures 5.5a, 5.5b, 5.5c, 5.5d presents
the model volatility surfaces after the calibration process.
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(a) SPY 500 call options, maturity: 0.00273973
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(b) SPY 500 call options, maturity: 0.0219178
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(c) SPY 500 call options, maturity: 0.0410959
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(d) SPY 500 call options, maturity: 0.060274
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(e) SPY 500 call options, maturity: 0.0767123
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(f) SPY 500 call options, maturity: 0.0794521
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(g) SPY 500 call options, maturity: 0.0986301
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(h) SPY 500 call options, maturity: 0.117808
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(a) SPY 500 call options, maturity: 0.213699
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(b) SPY 500 call options, maturity: 0.290411
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Figure 5.4: Implied volatility
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(b) Heston model volatility with constraint
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(c) Heston model with Jumps
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(d) Heston model with Jumps and constraint
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SPX 500 index – Put options

Table 5.11 presents the calibration results for the Heston model, the Heston model with
the Feller condition, the Heston model with Jumps and the Heston model with Jumps
and the Feller condition.

The computational experiments consider the calibration to 197 put S&P options
with 10 maturities selected from the database with option market data by the following
database query:

The Heston model has been computed via MC simulation with 100 timesteps. The
best fitting to the option matrix for the S&P index is for the Heston model with Jumps.
The RMSE error for the Heston model with Jumps is equal to 43.598. The best volatil-
ity fitting to the implied volatility for the S&P index is for the Heston model with the
Feller condition. The RMSE volatility error for the Heston model with the Feller con-
dition is equal to 3.83677. Figures 5.6a, 5.6b, 5.6c, 5.6d, 5.6e, 5.6f, 5.6g, 5.6h, 5.6a,
5.6b present the volatility slices for the Heston mode, the Heston model with the Feller
condition, the Heston model with Jumps and the Heston model with Jumps and the
Feller condition respectively. Figure 5.6 shows the implied volatility surfaces for the
S&P index for the put options. Figures 5.7a, 5.7b, 5.7c, 5.7d show the model volatility
surfaces after the calibration process.

SELECT SPOT , MATURITY, STRIKE , OPTION TYPE , OPTION PRICE ,
IMPLIED VOLATILITY , MATURITY ID FROM MARKETDATA WHERE
COMMODITY NAME= ’SPY’ AND IMPLIED VOLATILITY > 0 AND

OPTION TYPE=1 AND MATURITY < 1 . 0 AND OPTION PRICE > 0
AND MATURITY ID < 10 ORDER BY OPTION TYPE , MATURITY,
STRIKE ASC

Figure 5.5: Database query for put option price matrix for S&P 500 index
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Parameters Heston
model

Heston
model with
constraints

Heston
model with

Jumps

Heston
model with
Jumps with
constraints

V0 0.138201 0.163232 0.137632 0.0572952
κ 0.00100255 0.00227608 0.001 2.77897
θ 0.00281572 0.760289 0.001 0.457629
σ 1 0.997356 1 0.99869
ρ 0.986304 0.725009 0.979791 0.734252
l – – 1 0.0543364
µ – – 0.001 0.190406

RMSE
(volatility)

4.07049 3.83677 4.06867 3.93335

RMSE (option
price)

43.6379 44.6466 43.598 45.4714

Number of
major/minor

iterations

12/29 3/14 5/15 7/25

Simulation
time

123457 60812 98342 432041

Calibration
time

123495 60834 98372 432102

Table 5.11: Calibration results for 10000 paths – SPX 500 put options
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(a) SPY 500 put options, maturity: 0.00273973
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(b) SPY 500 put options, maturity: 0.0219178
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(c) SPY 500 put options, maturity: 0.0410959
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(d) SPY 500 put options, maturity: 0.060274
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(e) SPY 500 put options, maturity: 0.0767123
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(f) SPY 500 put options, maturity: 0.0794521
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(g) SPY 500 put options, maturity: 0.0986301
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(h) SPY 500 put options, maturity: 0.117808
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(a) SPY 500 put options, maturity: 0.213699
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(b) SPY 500 put options, maturity: 0.290411
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Figure 5.6: Implied volatility
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(a) Heston model volatility
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(b) Heston model volatility with constraint
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(c) Heston model with Jumps
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(d) Heston model with Jumps and constraint
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Dow-Jones Industrial Average index – Call options

Table 5.12 shows the calibration results for the Heston model, the Heston model with
the Feller condition, the Heston model with Jumps and the Heston model with Jumps
and the Feller condition.

The computational experiments consider the calibration to 91 call Dow-Jones In-
dustrial Average options with 8 maturities selected by the following database query:
The Heston model has been calculated via MC simulation with 100 timesteps. The

best option price and the volatility fitting is for the Heston model without the Feller
condition. The RMSE error for the Heston model without the Feller condition is equal
to 4.23393. The RMSE volatility error is equal to 2.1095. Figures 5.8a, 5.8b, 5.8c,
5.8d, 5.8e, 5.8f, 5.8g, 5.8h present the volatility slices for the models. Figure 5.8
shows the implied volatility surface for the Dow-Jones Industrial Average index for
the call options. Figures 5.9a, 5.9b, 5.9c, 5.9d show the model volatility surfaces after
the calibration.

SELECT SPOT , MATURITY, STRIKE , OPTION TYPE , OPTION PRICE ,
IMPLIED VOLATILITY , MATURITY ID FROM MARKETDATA WHERE
COMMODITY NAME= ’DXJ’ AND IMPLIED VOLATILITY > 0 AND

OPTION TYPE=0 AND MATURITY < 1 . 0 AND OPTION PRICE > 0
AND MATURITY ID < 8 ORDER BY OPTION TYPE , MATURITY,
STRIKE ASC

Figure 5.7: Database query for call option price matrix for Dow-Jones Industrial Av-
erage index
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Parameters Heston
model

Heston
model with
constraints

Heston
model with

Jumps

Heston
model with
Jumps with
constraints

V0 0.0806155 0.0762379 0.0668164 0.0521738
κ 0.001 0.001 1.61214 2.03301
θ 0.00100253 0.001 1 0.35412
σ 1 0.9994 0.3149 1
ρ -0.960712 -1 -1 -0.999515
l – – 0.001 0.001
µ – – 0.001 0.001

RMSE
(volatility)

2.1095 2.12821 2.15412 2.35541

RMSE (option
price)

4.23393 4.2479 4.27255 4.27849

Number of
major/minor

iterations

18/39 8/16 8/39 8/27

Simulation
time

151377 70779 71178 251238

Calibration
time

151424 70806 71203 251282

Table 5.12: Calibration results for 10000 paths – Dow-Jones Industrial Average index
call options
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Figure 5.8: Implied volatility
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(a) Heston model volatility
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(b) Heston model volatility with constraint
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(c) Heston model with Jumps
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Dow-Jones Industrial Average index – Put options

Table 5.13 presents the calibration results for the Heston model, the Heston model with
the Feller condition, the Heston model with Jumps and the Heston model with Jumps
and the Feller condition.

The computational experiments consider the calibration to 84 put Dow-Jones In-
dustrial Average options with 8 maturities selected by the following database query:
The Heston model has been computed via MC simulation with 100 timesteps. The

best option price and volatility fitting for the Dow-Jones Industrial Average index is
for the Heston model without the Feller condition. In this case, the RMSE option price
error is 3.99134 and the RMSE volatility error is 2.04302. Figures 5.10a, 5.10b, 5.10c,
5.10d, 5.10e, 5.10f, 5.10g, 5.10h show the volatility slices for the Heston model, the
Heston model with the Feller condition, the Heston model with Jumps and the Hes-
ton model with Jumps and the Feller condition repsectively. Figure 5.10 presents the
implied volatility surface for Dow-Jones Industrial Average index for the put options.
Figures 5.11a, 5.11b, 5.11c, 5.11d present the model volatility surfaces.

SELECT SPOT , MATURITY, STRIKE , OPTION TYPE , OPTION PRICE ,
IMPLIED VOLATILITY , MATURITY ID FROM MARKETDATA WHERE
COMMODITY NAME= ’DXJ’ AND IMPLIED VOLATILITY > 0 AND

OPTION TYPE=1 AND MATURITY < 1 . 0 AND OPTION PRICE > 0
AND MATURITY ID < 8 ORDER BY OPTION TYPE , MATURITY,
STRIKE ASC”

Figure 5.9: Database query for put option price matrix for Dow-Jones Industrial Aver-
age index
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Parameters Heston
model

Heston
model with
constraints

Heston
model with

Jumps

Heston
model with
Jumps with
constraints

V0 0.127332 0.12559 0.0744969 0.124055
κ 0.142927 0.00362353 0.001 0.264662
θ 0.0861626 0.002271 0.291645 0.323881
σ 1 0.658093 1 1
ρ -0.380209 -0.516055 0.300063 -0.382532
l – – 0.001 0.001
µ – – 0.001 0.001

RMSE
(volatility)

2.04302 2.08609 2.7641 2.05014

RMSE (option
price)

3.99134 4.01513 4.38301 3.99476

Number of
major/minor

iterations

14/44 8/36 2/11 12/42

Simulation
time

85755 49021 32809 140431

Calibration
time

85787 49044 32824 140483

Table 5.13: Calibration results for 10000 paths – Dow-Jones Industrial Average index
put options
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Figure 5.10: Implied volatility
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(c) Heston model with Jumps
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BP – Call options

Table 5.14 shows the calibration results for the Heston model, the Heston model with
the Feller condition, the Heston model with Jumps and the Heston model with Jumps
and the Feller condition.

The computational experiments consider the calibration to 44 call BP options with
7 maturities selected by the following database query: The best option price fitting
is for the Heston model without the Feller condition. In this case, the RMSE error is
0.896763. The best volatility fitting is for the Heston with the Feller condition. The
RMSE volatility error is 1.0649. Figures 5.12a, 5.12b, 5.12c, 5.12d, 5.12e, 5.12f, 5.12g
show the volatility slices. Figure 5.12, shows the implied volatility for the BP call
options. Figures show 5.13a, 5.13b, 5.13c, 5.13d show the model volatility surfaces.
44 options, 8 maturities 100 steps

SELECT SPOT , MATURITY, STRIKE , OPTION TYPE , OPTION PRICE ,
IMPLIED VOLATILITY , MATURITY ID FROM MARKETDATA WHERE
COMMODITY NAME= ’BP’ AND IMPLIED VOLATILITY > 0 AND

OPTION TYPE=0 AND MATURITY < 1 . 0 AND OPTION PRICE > 0
AND MATURITY ID < 8 ORDER BY OPTION TYPE , MATURITY,
STRIKE ASC”

Figure 5.11: Database query for call option price matrix for BP
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Parameters Heston
model

Heston
model with
constraints

Heston
model with

Jumps

Heston
model with
Jumps with
constraints

V0 0.190154 0.192258 0.116731 0.15636
κ 6.26606 9.25539 0.001 1.56702
θ 0.001 0.0463328 0.00100049 0.0178398
σ 1 1 0.52634 1
ρ -1 -0.999077 -0.999998 -1
l – – 0.001 0.132913
µ – – 0.00100076 0.001

RMSE
(volatility)

1.1 1.0649 1.26031 1.1514

RMSE (option
price)

0.896763 0.91674 1.16979 0.951865

Number of
major/minor

iterations

15/44 24/67 3/16 8/34

Simulation
time

119851 140776 38743 166898

Calibration
time

119888 140820 38764 166950

Table 5.14: Calibration results for 10000 paths – BP call options

100



 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 30  31  32  33  34  35  36

V
ol

at
ili

ty

Moneyness

Legend
Option Market Data

Heston model
Heston model constraint

Heston model with Jumps

(a) BP call options, maturity: 0.0219178

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 26  28  30  32  34  36  38  40

V
ol

at
ili

ty

Moneyness

Legend
Option Market Data

Heston model
Heston model constraint

Heston model with Jumps

(b) BP call options, maturity: 0.0410959

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 34.4  34.6  34.8  35  35.2  35.4  35.6  35.8  36

V
ol

at
ili

ty

Moneyness

Legend
Option Market Data

Heston model
Heston model constraint

Heston model with Jumps

(c) BP call options, maturity: 0.060274

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 34  34.5  35  35.5  36  36.5  37

V
ol

at
ili

ty

Moneyness

Legend
Option Market Data

Heston model
Heston model constraint

Heston model with Jumps

(d) BP call options, maturity: 0.0794521

 0.34

 0.345

 0.35

 0.355

 0.36

 0.365

 0.37

 0.375

 0.38

 0.385

 0.39

 0.395

 32.5  32.6  32.7  32.8  32.9  33

V
ol

at
ili

ty

Moneyness

Legend
Option Market Data

Heston model
Heston model constraint

Heston model with Jumps

(e) BP call options, maturity: 0.0986301

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20  25  30  35  40  45  50

V
ol

at
ili

ty

Moneyness

Legend
Option Market Data

Heston model
Heston model constraint

Heston model with Jumps

(f) BP call options, maturity: 0.117808

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 28  30  32  34  36  38  40  42  44

V
ol

at
ili

ty

Moneyness

Legend
Option Market Data

Heston model
Heston model constraint

Heston model with Jumps

(g) BP call options, maturity: 0.213699

101



 20
 25

 30
 35

 40
 45

 50

 0.02
 0.04

 0.06
 0.08

 0.1
 0.12

 0.14
 0.16

 0.18
 0.2

 0.22

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Volatility

Implied Volatility Surface

Strike

Maturity

Volatility

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

Figure 5.12: Implied volatility
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(b) Heston model volatility with constraint
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BP – Put options

The calibration results are presented in Table 5.15. The best fitting is for the Heston
without the Feller condition. In this case, the RMSE error is 1.52412. The best volatil-
ity fitting is for the Heston model with the Feller condition. The RMSE volatility error
is 2.26233. Figures 5.14a, 5.14b, 5.14c, 5.14d, 5.14e, 5.14f, 5.14g present the volatil-
ity slices for the models. Figure 5.14 presents the implied volatility for the BP put
options. Figures 5.15a, 5.15b, 5.15c, 5.15d present the model volatility surfaces. The
experiments consider 42 BP put options with 7 maturities selected by the following
database query:

SELECT SPOT , MATURITY, STRIKE , OPTION TYPE , OPTION PRICE ,
IMPLIED VOLATILITY , MATURITY ID FROM MARKETDATA WHERE
COMMODITY NAME= ’BP’ AND IMPLIED VOLATILITY > 0 AND

OPTION TYPE=1 AND MATURITY < 1 . 0 AND OPTION PRICE > 0
AND MATURITY ID < 8 ORDER BY OPTION TYPE , MATURITY,
STRIKE ASC”

Figure 5.13: Database query for put option price matrix for BP
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Parameters Heston
model

Heston
model with
constraints

Heston
model with

Jumps

Heston
model with
Jumps with
constraints

V0 0.0198473 0.0126823 0.012435 0.00859615
κ 0.340051 0.78193 0.997242 1.13231
θ 1 0.654892 0.500051 0.524023
σ 1 1 0.68194 0.987115
ρ 0.0782293 -0.0485706 0.212111 -0.0863248
l – – 0.001 0.001
µ – – 0.001 0.001

RMSE
(volatility)

2.27855 2.26233 2.36248 2.26803

RMSE (option
price)

1.52412 1.52484 1.54388 1.52668

Number of
major/minor

iterations

48/90 10/34 9/27 17/39

Simulation
time

317892 65671 155068 377065

Calibration
time

317983 65692 155105 377157

Table 5.15: Calibration results for 10000 paths – BP put options
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Figure 5.14: Implied volatility
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(b) Heston model volatility with constraint
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(c) Heston model with Jumps
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(d) Heston model with Jumps and constraint
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5.2.7 Summary

Computational experiments show that the first-order sensitivity are calculated via the
Adjoint in 1.8x that of the function evaluation for the Heston model. The Adjoint
method improves the sensitivity calculation by the factor of 16x vs. finite difference
methods. The maximum speedup for the OpenMP implementation is around 11x for
12 threads. The GPU implementation improves performance by the factor of 58x vs.
a single-thread OMP implementation. The multi-GPU version improves performance
by two orders of magnitude vs. a single-thread OMP implementation.

5.3 Heston model calibration using the Adjoint and MC
methods on FPGA

5.3.1 Overview

In this section, the computational results for the Heston model calibration on FPGA
are presented. This include a computational environment and input data description.

5.3.2 Computational Environment

Experiments have evaluated the MC simulation for the Heston model evaluation/first-
order sensitivities and model calibration. These compare the Adjoint methods with
Finite Differences. Tests were performed on the following hardware configurations:

1. OpenMP: Intel Xeon X5650 2.66 Ghz with 48 GB RAM

2. FPGA: Maxeler MAIA technology with an Xilinx Virtex FPGA card

Total speedup Stotal is measured as follows

Stotal = SHPC ·Smethod (5.4)

where SHPC denotes the speedup on a HPC platform. Smethod is the speedup from
applying the numerical method.

5.3.3 Input Data

The performance benchmarks for the Greeks’ calculation have been done for the fol-
lowing input parameters for the Heston model: S0 = 100, r=0.005, q = 0. The Heston
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V0 κ θ σ ρ l µ
Value 0.02 0.4 0.1 0.3 0.3 0.1 0.1
Lower
bound

10−16 10−3 10−3 10−16 -0.99 0.001 0.001

Upper
bound

2.0 10.0 1.0 1.0 0.99 1.0 1.0

Table 5.16: Lower and upper bounds for the Heston model calibration

model calibration has been tested with the following configurations: 300 timesteps,
10000 paths. Table 5.16 presents the input values, lower and upper bounds for the
optimization.

5.3.4 Performance results

Figure 5.15a presents a performance comparison for the Adjoint and Finite Difference
methods for the first-order sensitivities compared with pricing via MC simulation. The
Adjoint improves the gradient calculation. The gradient computation cost via the Ad-
joint is calculated at around 1.8x the time required for option pricing; the gradient via
Finite Difference methods requires around 30x the time required for option pricing.
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The execution times on FPGA have been compared with a single-thread implemen-
tation presented in the previous section.
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Maxeler FPGA cards

Figure 5.15b shows the performance results for the FPGA implementation using 2 and
4 pipes. For the 2 pipeline implementation, the maximum speedup is 180x for 300,000
paths when compared to a single-thread implementation using OMP. The 4-pipelined
implementation improves performance by up to 330x compared with a single-thread
implementation using OMP.

Calibration results

Table 5.17 shows the execution times in milliseconds for the Heston model calibration
on multi-core and FPGA architectures; in the brackets the number of major and minor
iterations during the optimization are given. Table 5.18 shows the calibration results for
the Heston model to 101 call SPX options. The Heston model volatility is retrieved via
the Newton-Raphson method from the model prices. Calibration using OMP utilizes
a single MC simulation for the entire option matrix. Calibration using FPGA uses a
single MC simulation per single option.

5.3.5 Summary

The computational experiments show that the FPGA implementation using 4 pipes
improves performance of the sensitivity calculation by the factor of 331x vs. a single-
thread implementation. For the version using 2 pipes, the speedup is around 181x vs a
single-thread implementation.
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Model OpenMP
(1

thread)
–

Simu-
lation

OpenMP
(1

thread)
– Cali-

bra-
tion

OpenMP
(8

threads)
–

Simu-
lation

OpenMP
(8

threads)
– Cali-

bra-
tion

FPGA
(2

pipes)–

Simu-
lation

FPGA
(2

pipes)–

Cali-
bra-
tion

FPGA
(4

pipes)
–

Simu-
lation

FPGA
(4

pipes)
– Cali-

bra-
tion

Heston
model

183468
(9, 20)

183495
(9, 20)

101506
(14,
32)

101537
(14,
32)

91431
(3, 9)

91442
(3, 9)

38031
(2, 9)

38037
(2, 9)

Heston
model
with
con-

straints

178535
(13,
32)

178562
(13,
32)

44842
(10,
34)

44860
(10,
34)

140379
(4, 18)

140397
(4, 18)

33527
(2, 12)

33534
(2, 12)

Table 5.17: Simulation and calibration times during the calibration process for 10000
paths and 300 timesteps

Parameters Heston model Heston model with
constraints

V0 0.012286 0.0200341
κ 0.001 10
θ 0.001 0.00299607
σ 0.436461 0.357109
ρ -1 -0.987813

RMSE (volatility) 2.16467 2.08891
RMSE (option price) 0.396623 0.28162

Number of major
iterations

9 13

Number of minor
iterations

20 32

Table 5.18: Calibration results for 10000 paths
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5.4 Parallel non-linear least squares optimization frame-
work using Automatic Differentiation

5.4.1 Overview

In this section, the computational results for the parallel non-linear least squares op-
timization framework using Automatic Differentiation are included. This contains a
computational environment and input data description. Further, there are presented
performance results. Next, the accuracy results for the sensitivity calculation are in-
cluded. Further, there are presented the calibration results.

5.4.2 Computational Environment

The parallel nonlinear least-squares optimization framework has been tested with a
financial case study – the Heston model calibration. Experimentation was performed
on the following hardware configurations:

1. OpenMP: Intel Xeon X5650 2.66 Ghz with 6 cores supporting execution of 12
threads with 48 GB RAM

2. OpenMP with Xeon-Phi & OpenMPI: Intel Xeon-Phi Coprocessor 7120p

3. CUDA and OpenCL: NVIDIA Kepler K40 with 2880 cores

4. Intel Core i7 -4810MQ 2.80 GHz with 8 GB RAM

5.4.3 Input Data

The input parameters for the Heston model calibration are: S0 = 100, r=0.005, q = 0.
The sensitivity calculation has been performed for the following input parameters: V0

= 0.01, κ = 0.4, θ = 0.1, σ = 0.2, ρ = 0.3, S0 = 50, K=50, r=0.005, q = 0, maturity =
0.5. Table 5.19 shows the input values, lower and upper bounds for the optimization.
The DAG size for the semi-closed form Heston model is 10653 nodes. For the integral
computation in the semi-closed form Heston model, the Gauss Kronrod integration
method has been used.
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V0 κ θ σ ρ

Value 0.02 0.4 0.1 0.2 0.3
Lower bound 102 10−2 10−2 10−2 -0.99
Upper bound 2.0 5.0 1.0 1.0 0.99

Table 5.19: Lower and upper bounds for the Heston model calibration

Number of
options

NAG
(Heston
model)

NAG (FD) Optimization
Framework

(Heston
model)

Optimization
Framework

(FD)

Optimization
Framework

(AD)

100 13.5 172.75 62.5 422.75 126.75
200 29 355.5 132.75 866.5 263.5
300 43 532 205 1332 397.5
400 57.5 705.75 272 1785.25 542.5
500 72.25 883.5 328.75 2255.75 652.25

1000 145 1765.5 657.25 4414.75 1308.5

Table 5.20: The computation times of option prices, sensitivities via the Finite Dif-
ference methods and FD. The computational experiments have been performed on an
Intel Core i7 -4810MQ 2.80 GHz with 8 GB RAM.

5.4.4 Performance results

Figure 5.15a compares the gradient computation via the Adjoint and Finite Differences
with pricing for the semi-closed form Heston model. The gradient calculation cost via
the Adjoint method is around 2x of that of function evaluation.

Multi-core architectures (OpenMP)

Performance experiments on HPC platforms consider the gradient calculation with
different numbers of options. Figure 5.15b presents the speedup of the OpenMP im-
plementation with a different number of threads vs. a single-thread implementation.
The maximum speedup is around 9x for the implementation using 12 threads. With a
greater number of threads the speedup decreases, as there is more threads than avail-
able cores. Table 5.21 shows the ratio of the achieved speedup vs. the maximum
theoretical speedup.

GPU (CUDA & OpenCL)

Figure 5.15a shows performance results for the gradient calculation for a different
number of options on GPU compared with a single-thread CPU implementation. The
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Number
of options

OMP 2
threads

OMP 4
threads

OMP 8
threads

OMP 12
threads

OMP 16
threads

OMP 32
threads

10000 80.25 77.12 66.43 50.75 34.65 14.30
20000 85.74 83.97 80.19 74.43 43.27 22.77
30000 85.22 82.02 76.43 73.12 44.04 26.40
40000 86.80 83.88 80.01 74.94 44.61 25.38
50000 84.60 81.52 78.72 72.64 44.11 27.04

Table 5.21: η – the achieved speedup vs. the maximum theoretical speedup x 100 %.

Model OpenMP (1
thread)

OpenMP (8
threads)

Xeon-Phi (32
threads)

GPU (CUDA
)

Heston model 1261 (12, 42) 410 (12, 42) 1904 (12, 42) 9027 (12, 42)
Heston model

with
constraints

2752 (23, 52) 772 (23, 52) 5184 (23, 52) 26180 (24,
53)

Table 5.22: Execution times for the semi-closed form Heston model calibration using
the Adjoint on HPC

maximum speedup achieved for the CUDA implementation is 8.3x. The OpenCL ver-
sion improves performance by around 9.6x.

Many-core architectures (Xeon-Phi)

Figure 5.15b shows the performance results for the Xeon-Phi implementation. Maxi-
mum speed-up is around 34x for the implementation using 64 threads.
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Parameters Adjoint FD NAG (FD)
C 1.91932 1.91932 1.90982
dC
κ

1.0895 1.0895 1.0883
dC
θ

5.09296 5.09296 5.08076
dC
σ

-0.528465 -0.528463 -0.578122
dC
ρ

0.00570983 0.00571134 -0.0310216
dC
dV0

47.4117 47.4117 47.0814
dC
dS0

0.504303 0.504303 0.504299
Execution
Time (ms)

1 5 2

Table 5.23: The sensitivity calculation for the semi-closed form Heston model – DAG
size (10653 nodes)

5.4.5 Accuracy results

Table 5.23 shows the option prices and the Greeks’ values calculated via the Adjoint
and Finite Difference methods for the implemented semi-closed form Heston model.
This is compared with the Greeks and option price computed via the NAG library. The
Adjoint improves performance of the Greeks’ computation by 5x when compared to
finite differences.

5.4.6 Calibration results

Table 5.22 shows the execution times in microseconds for the Heston model calibra-
tion on different HPC platforms for the S&P call options; in the brackets the number

1Tests performed on Intel Core i7 4810MQ 2.80 GHz with 8 GB RAM
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SELECT SPOT , MATURITY, STRIKE , OPTION TYPE , OPTION PRICE ,
IMPLIED VOLATILITY , MATURITY ID FROM MARKETDATA WHERE
COMMODITY NAME= ’SPY’ AND IMPLIED VOLATILITY > 0 AND

OPTION TYPE=0 AND MATURITY < 1 . 0 AND MATURITY ID < 10
AND OPTION PRICE > 0 ORDER BY OPTION TYPE , MATURITY,
STRIKE ASC”

Figure 5.15: Database query for call option price matrix for S&P 500 index

of major iterations and minor iterations during the calibration are given. Tables 5.24,
5.25, 5.26 present the calibration results for the Heston model calibration. The perfor-
mance experiments for the calibration process consider the S&P option matrix from
02/06/2016 with 128 call options.

The calibration results for the semi-closed form Heston model have been compared
to the Heston model solution via MC simulation.

SPX 500 index – call options

The computational experiments for the S&P index consider 123 options with 10 ma-
turities. The option market data was selected by the following database query. The
MC simulation for the Heston model has been performed with 100 timesteps. Fig-
ures 5.16a, 5.16b, 5.16c, 5.16d, 5.16e, 5.16f, 5.16g, 5.16h, 5.16a, 5.16b present the
volatility slices for the call S&P options with 10 maturities. Figure 5.16a shows the
implied volatility for the S&P index. Figure 5.16b presents the Heston model volatil-
ity (MC). Figures 5.16c, 5.16d show the implied volatility surfaces for the semi-closed
form Heston model solutions.
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Parameters Heston
model (MC)

Heston
model

Heston
model with
constraints

V0 0.0102997 0.0197162 0.0197156
κ 0.0941267 5 5
θ 0.385344 0.01 0.01
σ 0.266227 0.269685 0.269633
ρ -0.941072 -0.99 -0.99

RMSE
(volatility)

1.25921 1.73922 1.73922

RMSE (option
price)

0.389978 1.17 1.17

Number of
major/minor

iterations

20/52 21/44 33/74

Simulation
time

150297 – –

Calibration
time

150347 2529 5622

Table 5.24: Calibration results for 10000 paths – SPX 500 call options
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(b) SPY 500 call options, maturity: 0.0219178
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(c) SPY 500 call options, maturity: 0.0410959

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 195  200  205  210  215  220  225  230  235  240

V
ol

at
ili

ty

Moneyness

Legend
Option Market Data
Heston model (MC)

Heston model
Heston model constraint

(d) SPY 500 call options, maturity: 0.060274
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(f) SPY 500 call options, maturity: 0.0794521
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(g) SPY 500 call options, maturity: 0.0986301
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(h) SPY 500 call options, maturity: 0.117808

117



 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 170  180  190  200  210  220  230  240  250

V
ol

at
ili

ty

Moneyness

Legend
Option Market Data
Heston model (MC)

Heston model
Heston model constraint

(a) SPY 500 call options, maturity: 0.213699
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(b) SPY 500 call options, maturity: 0.290411
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Dow-Jones Industrial Average index – call options

The computational experiments consider the Dow-Jones Industrial Average index with
91 call options with 8 maturities selected by the following database query: The
MC simulation for the Heston model has been performed with 100 timesteps. Figures
5.17a, 5.17b, 5.17c, 5.17d, 5.17e, 5.17f, 5.17g, 5.17h present the volatility slices for the
call Dow-Jones Industrial Average options with 8 maturities. Figure 5.17a presents the
implied volatility surface for the Dow-Jones Industrial Average. Figure 5.17b presents
the Heston model volatility (MC). Figures 5.17c, 5.17d present the implied volatility
surfaces for the semi-closed form Heston model solutions.

SELECT SPOT , MATURITY, STRIKE , OPTION TYPE , OPTION PRICE ,
IMPLIED VOLATILITY , MATURITY ID FROM MARKETDATA WHERE
COMMODITY NAME= ’DXJ’ AND IMPLIED VOLATILITY > 0 AND

OPTION TYPE=0 AND MATURITY < 1 . 0 AND MATURITY ID < 8
AND OPTION PRICE > 0 ORDER BY OPTION TYPE , MATURITY,
STRIKE ASC”

Figure 5.16: Database query for call option price matrix for Dow-Jones Industrial
Average index
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Parameters Heston
model (MC)

Heston
model

Heston
model with
constraints

V0 0.0806155 0.0724245 0.0718856
κ 0.001 0.487275 0.5
θ 0.00100253 1 1
σ 1 1 1
ρ -0.960712 -0.724728 -0.727632

RMSE
(volatility)

2.1095 2.93628 2.9353

RMSE (option
price)

4.23393 4.37652 4.37651

Number of
major/minor

iterations

18/39 8/21 17/62

Simulation
time

151377 – –

Calibration
time

151424 835 1412

Table 5.25: Calibration results for 10000 paths – Dow-Jones Industrial Average index
call options
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(b) Dow-Jones Industrial Average call options, maturity:
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(c) Dow-Jones Industrial Average call options, maturity:
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(d) Dow-Jones Industrial Average call options, maturity:
0.060274

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 39  40  41  42  43  44  45  46  47

V
ol

at
ili

ty

Moneyness

Legend
Option Market Data
Heston model (MC)

Heston model
Heston model constraint

(e) Dow-Jones Industrial Average call options, maturity:
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(f) Dow-Jones Industrial Average call options, maturity:
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BP – call options

The computational experiments consider 44 BP call options with 7 maturities selected
by the following database query: The MC simulation for the Heston model uses 100
timesteps. Figures Figures 5.18a, 5.18b, 5.18c, 5.18d, 5.18e, 5.18f, 5.18g present the
volatility slices for the call BP options with 7 maturities. Figure 5.18a shows the im-
plied volatility surface for BP options. Figure 5.18b shows the Heston model volatility
(MC). Figures 5.18c, 5.18d show the implied volatility surfaces for the semi-closed
form Heston model solutions. The calibration results for the semi-closed form Heston
model calibration to BP call options were performed on an Intel Core i7-4810MQ CPU
2.80GHz with 8GB RAM memory.

5.4.7 Summary

The computational experiments show that OpenMP implementation using 12 threads
improves performance by around 9x vs a single-thread version. The CUDA version
boosts performance of the sensitivity calculation by 8.3x. The OpenCL version im-
proves performance by around 9.6x. The Adjoint technique reduces the gradient cal-
culation cost by the factor of 5x when compared to finite difference methods.

SELECT SPOT , MATURITY, STRIKE , OPTION TYPE , OPTION PRICE ,
IMPLIED VOLATILITY , MATURITY ID FROM MARKETDATA WHERE
COMMODITY NAME= ’BP’ AND IMPLIED VOLATILITY > 0 AND

OPTION TYPE=0 AND MATURITY < 1 . 0 AND MATURITY ID < 8
AND OPTION PRICE > 0 ORDER BY OPTION TYPE , MATURITY,
STRIKE ASC”

Figure 5.17: Database query for call option price matrix for BP
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Parameters Heston
model (MC)

Heston
model

Heston
model with
constraints

V0 0.190154 0.234736 0.206194
κ 6.26606 5 5
θ 0.001 0.01 0.0963658
σ 1 1 0.981661
ρ -1 -0.856951 -0.893393

RMSE
(volatility)

1.1 1.43475 1.43301

RMSE (option
price)

0.896763 1.14301 1.18815

Number of
major/minor

iterations

15/44 12/31 16/44

Simulation
time

119851 – –

Calibration
time

119888 1706 1871

Table 5.26: Calibration results for 10000 paths – BP call options
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(b) BP call options, maturity: 0.0410959
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(c) BP call options, maturity: 0.060274
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(d) BP call options, maturity: 0.0794521
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5.5 Summary

This chapter presented computational results for the Heston model, the Heston model
with the Feller condition, the Heston model with Jumps, the Heston model with Jumps
and the Feller condition, the Heston model with the term-structure. The Heston model
was calculated by using the semi-closed form solution and Monte-Carlo simulation.
The performance experimentation in 5.2 shows that:

1. Parallel Monte-Carlo engine for the first-order sensitivity calculation and model
calibration using the Adjoint:

• The first-order sensitivities are calculated via the Adjoint in 1.8x that of the
function evaluation for the Heston model;

• The Adjoint improves the sensitivity calculation by 16x when compared
with the Finite Difference methods for the Heston model;

• The performance improvement for the OpenMP implementation increases
with the number of threads utilized (η for the parallel implementation is
over 90% for the number of paths greater than 100000 and the number of
threads 2-12;

• The performance improvement for the OpenMPI implementation increases
with the number of nodes utilized (η for the Open MPI implementation is
over 90% for the number of paths greater than 100000 and the number of
nodes 2-4);

• The CUDA implementation improves the performance of the sensitivity
calculation by up to of 58x for 20000 paths on a single GPU when com-
pared with a single-thread OMP implementation;

• The multi-GPU version improves performance around by up to 100x on
2 GPUs when compared with a single-thread OMP implementation on a
single node;

• The sequential implementation of the Monte-Carlo simulation for the Hes-
ton model computes option prices 12 x faster than the QuantLib library 1.9
on an Intel Core i7-4810MQ CPU 2.80GHz with 8GB RAM memory;

2. Heston model calibration using the Adjoint and MC methods on FPGA:
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• The FPGA implementation improves the performance of the Greeks’ com-
putation by two orders of magnitude. when compared to a sequential ver-
sion on a CPU;

3. Parallel non-linear least squares optimization framework using Automatic Dif-
ferentiation:

• The performance for the OpenMP implementation increases with the num-
ber of threads varying from 2-12 (η for the implementation using from 2-8
threads is over 80% for 40000 calculating option prices);

• The speedup achieved on a multi-core CPU is around 9x when compared
with a single-thread OMP version;

• The CUDA version boosts performance by 7.3 x when compared to a
single-thread OMP version;

• The OpenCL version improves performance by 8.49x when compared to a
single-thread OMP version;

• The Adjoint reduces the sensitivity calculation cost by 5x when compared
to finite difference methods;
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Chapter 6

Conclusion

This thesis has presented parallel frameworks that contribute to the performance and
accuracy improvement in financial sensitivity computation and model calibration by
utilizing high-performance computing platforms, numerical methods as Automatic
Differentiation and Monte-Carlo methods. There have been introduced the following
approaches:

1. A parallel MC engine for the first-order sensitivity calculation and model cali-
bration using the Adjoint;

2. A hardware implementation of the Heston model calibration using the Adjoint
techniques and Monte-Carlo (MC) method was presented;

3. A parallel non-linear least squares optimization framework using Automatic Dif-
ferentiation;

The developed techniques have been investigated using financial case-studies: the
Heston model, the Heston model with Jumps, the Heston model with term-structure
for the equity option pricing. The parallel frameworks have been presented in Chapter
4.

• In section 4.1, there has been presented a HPC engine for MC simulation, sen-
sitivity calculation and model calibration using DAG processing and AD. This
utilizes graph processing and overloaded operator techniques to support general
SDE models. The experiments show that the combination of the Adjoint and
graph representation with parallel/distributed systems improves performance and
accuracy of model evaluation, sensitivity calculation and calibration process.
The performance of the gradient calculation for SDE models is improved by

129



two orders of magnitude with the Adjoint on 2 GPUs (104x) when compared
with the Adjoint on a sequential machine. Furthermore, the Adjoint techniques
improve performance by up to 16x when compared to finite differences. The
library provides a platform-independent API for a flexible model definition and
processing flow configuration. This work can more widely be applied to solve
various scientific and industrial models.

• In section 4.2, there has been presented an FPGA engine for MC simulation
for the Heston model sensitivity calculation and model calibration using the
Adjoint methods. This is compared with the OpenMP version; model calibra-
tion using OpenMP utilizes a single MC simulation for the entire option matrix.
The FPGA implementation uses a single MC simulation per single option. The
computational experiments show that the FPGA implementation improve the
Greeks’ calculation via the Adjoint by up to 330x compared with a single-thread
implementation using the OMP framework. Furthermore, the Adjoint methods
improve the gradient calculation performance by up to 16x when compared to
finite difference methods. This work offers potential for improved performance
in managing and hedging investment portfolios consisting of thousands of un-
derlying assets.

• In section 4.4, there has been presented a parallel framework for non-linear least-
squares optimization using AD. The framework provides a platform-independent
API for flexible objective and constraint function definition. The computational
experiments show significant performance improvement of the objective func-
tion gradient calculation on parallel architectures when compared to sequential
CPU architectures. The speedup achieved for multi-core CPUs is around 9x
when compared with a single-thread OMP version; the OpenCL implementa-
tion improves performance by 8.49x when compared with a single-thread OMP
implementation.; the CUDA version improves performance by 7.3x when com-
pared to a single-thread OMP implementation. Further, the Adjoint reduces a
computational cost of the sensitivity calculation by the factor of 5x when com-
pared to finite difference methods.

The work demonstrates performance and accuracy improvement via a combination
of HPC platforms, numerical methods such as AD and MC methods with software de-
velopment techniques such as graph processing and overloaded operator techniques.
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The work can be applied in real-time risk management systems, in replicating portfo-
lio systems to support investment decisions involving equity option and interest rate
derivatives trading, which can be useful in managing and hedging investment portfo-
lios.
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