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Nomenclature 

Latin symbols 

𝐴𝑑  Damaged area 

𝐴𝑒  Undamaged reference area 

𝐵  Parameter representing the rate dependency of the cohesive material 

𝐵1  Parameter representing the rate dependency of the cohesive material 

𝐵′1  Parameter representing the rate dependency of the cohesive material 

𝐶   Material parameter that captures the cyclic plasticity 

𝐶𝑅   Rayleigh surface wave speed 

𝐷(𝛿)  Damage 

𝐷𝑐  Cyclic damage 

𝐷𝑠  Static damage 

𝐸  Elastic modulus 

𝐸p  Plastic modulus  

𝑓  Loading frequency 

𝐺c   Total dissipated energy per unit area 

𝐺p  Plastic dissipated energy in the cohesive-zone per unit area 

𝐺𝑝𝑟𝑎𝑡𝑒  Rate-dependent plastic dissipated energy in the cohesive-zone per unit 

area 

𝐺𝑓𝑟  Critical fracture energy  

𝐾  Stress-intensity factor 

𝐾𝐼   Mode I stress-intensity factor 

𝐾𝐼𝐼   Mode II stress-intensity factor 

𝐾𝐼𝐼𝐼   Mode III stress-intensity factor 
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𝐾𝐶   Critical stress-intensity factor 

𝐾𝐼𝐶   Mode I critical stress-intensity factor 

𝐾𝑐𝑜ℎ
   Cohesive stiffness 

∆𝐾  Stress-intensity factor range 

𝑁  Number of cycles  

∆𝑁  Number of cycles in the load envelope 

𝑁𝑢  Number of required damage updates 

𝑟   The distance from the crack tip 

𝑅  load ratio 

𝑢  Displacement in x-direction 

𝜐   Displacement in y-direction 

𝑊e  Elastic strain energy per unit area 

𝑊Γ  Dissipated energy per unit area due to the fracture process  

𝑊p Dissipated energy per unit area due to plastic deformation in the bulk 

material 

𝑊d  Total work done per unit area by the external load  

𝑊D  Dissipated energy per unit area in the dashpot 

𝑊𝑙𝑖𝑚𝑖𝑡
Γrate

   Upper limit on the rate-dependent fracture energy  

Greek symbols 

𝛤𝑜  Critical cohesive energy 

𝛤𝑟𝑎𝑡𝑒                Rate-dependent cohesive energy 

𝛿𝑓𝑐   Rate-independent critical separation 

𝛿𝑐
𝑟𝑎𝑡𝑒  Rate-dependent critical separation 

𝛿𝑜  Instantaneous applied displacement  
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𝛿1  Shape parameter for the linear and trapezoidal model  

𝛿2  Second shape parameter of the trapezoidal model 

𝛿p  Plastic separation 

𝛿e  Elastic separation 

𝛿𝑓  Final separation at fracture  

𝛿coh  Separation in the cohesive element  

𝛿̇  Separation rate 

𝛿̇𝐷  Separation rate at the dashpot 

𝛿𝑐𝑦𝑐  Cyclic displacement 

𝛿
 (𝑁)

𝑐𝑦𝑐(𝑚𝑎𝑥)
 Maximum displacement reached at the loading cycle 

𝛿𝑚𝑎𝑥  The separation at the onset of unloading 

𝛿  Applied separation (plastic separation plus the cyclic displacement) 

𝜀coh   Strain at the cohesive-zone    

𝜀e  Elastic strain 

𝜂  Material viscosity 

𝜃  The angle between r and the crack plain 

𝜆  Fixed crack extension length 

𝜎  Cohesive stress 

𝜎𝑌  Yield stress 

𝜎1, 𝜎2, 𝜎3 Principal stresses for plane stress and plane strain    

𝜎𝐷  Stress at the dashpot 

𝜎𝑐   Rate-independent critical cohesive stress 

σ𝑐
𝑟𝑎𝑡𝑒  Rate-dependent critical stress 

𝜎𝑚𝑎𝑥  The stress at the onset of unloading 
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𝜎𝑙𝑖𝑚𝑖𝑡  Upper limit on the rate-dependent critical stress 

𝜎(𝑓)
𝑐𝑟𝑎𝑡𝑒    Frequency-dependent critical cohesive stress 

𝜗  Poisson’s ratio 

𝜙   Mode-mixture ratio 

Abbreviation  

BCZM        Bilinear cohesive-zone model 

CE        Cohesive element 

CT        Compact tension 

CTOD        Crack tip opening displacement 

CZ        Cohesive-zone 

CZM        Cohesive-zone model 

EDM        Electrical discharge machine 

FEM        Finite element method 

FDCZM       Frequency-dependent cohesive-zone model 

HCF        High-cycle fatigue 

IP        Integration point 

LEFM        Linear elastic fracture mechanics 

LCE        Linear cohesive element 

EPFM        Elastic-plastic fracture mechanics 

PMMA       Pre-strained brittle Polymethyl methacrylate 

TCZM        Trapezoidal cohesive-zone model 

TSL        Traction-separation Law 

UMAT        User-defined material 
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Abstract 

Rate-Dependent Cohesive-Zone Models for Fracture and Fatigue  

Sarmed Abdalrasoul Salih, 2017 

Doctor of Philosophy, The University of Manchester 

 

Despite the phenomena of fracture and fatigue having been the focus of academic research 

for more than 150 years, it remains in effect an empirical science lacking a complete and 

comprehensive set of predictive solutions. In this regard, the focus of the research in this 

thesis is on the development of new cohesive-zone models for fracture and fatigue that 

are afforded an ability to capture strain-rate effects. 

For the case of monotonic fracture in ductile material, different combinations of material 

response are examined with rate effects appearing either in the bulk material or localised 

to the cohesive-zone or in both. The development of a new rate-dependent CZM required 

first an analysis of two existing methods for incorporating rate dependency, i.e.either via 

a temporal critical stress or a temporal critical separation. The analysis revealed 

unrealistic crack behaviour at high loading rates. The new rate-dependent cohesive model 

introduced in the thesis couples the temporal responses of critical stress and critical 

separation and is shown to provide a stable and realistic solution to dynamic fracture. 

For the case of fatigue, a new frequency-dependent cohesive-zone model (FDCZM) has 

been developed for the simulation of both high and low-cycle fatigue-crack growth in 

elasto-plastic material. The developed model provides an alternative approach that 

delivers the accuracy of the loading-unloading hysteresis damage model along with the 

computational efficiency of the equally well-established envelope load-damage model by 

incorporating a fast-track feature.  With the fast-track procedure, a particular damage state 

for one loading cycle is “frozen in” over a predefined number of cycles. Stress and strain 

states are subsequently updated followed by an update on the damage state in the 

representative loading cycle which again is “frozen in” and applied over the same number 

of cycles.  The process is repeated up to failure. The technique is shown to be highly 

efficient in terms of time and cost and is particularly effective when a large number of 

frozen cycles can be applied without significant loss of accuracy.  

To demonstrate the practical worth of the approach, the effect that the frequency has on 

fatigue crack growth in austenitic stainless-steel 304 is analysed. It is found that the crack 

growth rate (𝑑𝑎 𝑑𝑁⁄ ) decreases with increasing frequency up to a frequency of 5 Hz after 

which it levels off.  The behaviour, which can be linked to martensitic phase 

transformation, is shown to be accurately captured by the new FDCZM. 
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Chapter 1: Introduction 
 

1.1 Historical review 

Engineering structures such as bridges, power plants, aeroplanes, trains, cars and others 

have played an important role in human life since the beginning of the industrial 

revolution. However, these structures can suffer from mechanical failures caused by crack 

propagation leading to catastrophic events, which could result in a great loss of human 

life and significant financial cost. Cracks in engineering structures can form as a result of 

material defects, manufacturing defects, design flaws or as a product of cyclic loading. 

The potential cracks will then propagate under the applied load (monotonic or cyclic), 

ultimately leading to failure. 

Fatigue and fracture phenomena have been the subject of research for more than 150 

years. However, complete solutions for these issues have not yet been discovered [1]. In 

the 1900s, many failures were recorded. Since then, many researchers have started to 

investigate these problems such as Wohler, who found that metallic parts could work for 

a very long time if they were subjected to a constant load below the yield point of their 

material, but that they could fail if subjected to cyclic loading, even if it was below the 

yield point of the material. At that time, fatigue was considered a puzzling phenomenon 

because the researchers could not see the damage, and the only indicator of the problem 

was a hidden crack inside the material.  

Over the past century, researchers have developed a greater understanding of the means 

by which fatigue develops. The process of fatigue failure can be divided into three parts: 

crack initiation, crack propagation, and then fast fracture, which leads to the failure [2]. 

The fatigue behaviour of a part could be significantly affected by different factors, which 

may be mechanical, microstructural or environmental. As fatigue failure can occur when 

the applied stress is much smaller than the yield stress of the material, it has become a 

point of interest for many researchers. Great effort has been made to understand and 

evaluate the crack growth behaviour under both monotonic and cyclic loading, and there 

are many mathematical and analytical models to this end in the literature. However, these 

models are still under development and require further research. Most of these models 

suffer from limitations and in some cases fail to predict the experimental evidence. One 

of these cases that has not yet been fully covered is when there is a rate effect. There exist 

many fracture and fatigue models, but they are mainly rate-independent and do not 
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consider the effect of the loading rate on crack growth. This aspect is therefore 

investigated in this study. The cohesive-zone (CZ) model is used as a vehicle to 

investigate the rate effect on the simulation of fracture and fatigue problems. 

 

1.2  Conventional fracture mechanics methods 

The conventional failure criteria, based on the yield stress and the ultimate tensile 

strength, failed to explain the catastrophic fracture failures which occurred in the cargo 

ships and tankers after the Second World War. Therefore, it was established that a new 

design philosophy was needed; this led to the invention of a new discipline known as 

fracture mechanics. Fracture mechanics theories are based on the concept that all 

engineering structures contain initial defects. These defects will propagate when a certain 

load is applied, leading to the final failure of the structure. The main goal of the new 

design strategy is firstly to determine the maximum crack length that the stracture can 

safely sustain; then to understand the relationship between the crack length and the 

material strength; and finally, to identify the critical load that will lead to the failure of 

the structure with a crack of a specific length. 

When the structure contains a sharp crack, the field equations fail to evaluate the stress 

state at the crack tip and yield an unrealistic stress singularity. In 1957, G. Irwin [3] 

introduced a quantity called the stress intensity factor to explain the stress state at the 

crack tip. This quantity has become the controlling parameter for many fracture and 

fatigue models. The range of the stress intensity factor has successfully been used to 

estimate the fatigue crack growth by Paris [4] in his model and all the modified versions 

of this model. However, the ability of these models to make accurate predictions is limited 

to linear elastic fracture mechanics (LEFM) conditions.   

Recently, researchers have shown an increased interest in analysing the fracture process 

from a thermodynamic point of view by relating the crack driving force to the energy 

release rate. The most widely used model to simulate crack propagation is the so-called 

J-integral model, which was first presented by Rice [5]. Although this model is accurate 

for predicting crack initiation as well as crack growth, it can only be applied when the 

material is loaded, so its application is limited to monotonic loading and it fails to simulate 

fatigue crack propagation.  
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1.3  Cohesive-zone model methods 

The limitations of the aforementioned models have increased the need for a cohesive-

zone model (CZM) which is applicable to crack initiation as well as crack growth for any 

type of loading. The original idea of the cohesive-zone model comes from the concept 

that the stress singularity at the crack tip is unrealistic [6]. The original concept of the 

CZM was introduced by Dugdale [7] and Barenblatt [8]. They considered the fracture 

process zone as a small area ahead of the crack tip, where the normal stress perpendicular 

to the crack direction of travel is constant and equal to the yield stress according to 

Dugdale, but decreases with deformation and vanishes at separation according to 

Barenblatt. The CZM gained greater acceptance when Hillerborg et al. [9] numerically 

analysed crack growth in a brittle material using a bilinear cohesive-zone model (BCZM) 

together with the finite element method (FEM). 

The CZM was introduced in an idealised form of the void growth and coalescence as 

shown in Fig. 1.1 to overcome the unrealistic stress singularity at the crack tip and to 

simplify the complexity of the crack growth process [10]. The CZM is founded on a 

traction separation law (TSL); according to this law, material damage starts when traction 

reaches a critical value called the critical cohesive stress 𝜎𝑐. The crack propagates when 

the displacement jump between the surfaces of the cracked material reaches a critical 

value, 𝛿𝑐, at which point the cohesive stress becomes zero and all the cohesive energy, 

𝛤𝑜, is dissipated.  

 

 

 

 

 

 

 

 

 
Fig. 1.1. Real and ideal representation of the crack growth process along 

with the cohesive-zone modelling [10]. 
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Different types of TSLs are used in the literature, including polynomial, exponential, 

bilinear, and trapezoidal, as shown in Fig. 1.2. A contentious point in the literature is the 

importance of the shape of the traction separation curve underpinning the cohesive-zone 

approach. Some authors claim that the shape hardly influences the fracture simulation 

results [11–13], whilst other investigations demonstrate that the shape does indeed matter 

[14–16]. This issue is revisited in this work by contrasting the trapezoidal cohesive-zone 

model (TCZM) with the bilinear cohesive-zone model (BCZM).  

 

 

 

 

 

 

 

 

 

 

 

 

The advantage of using cohesive-zone models over the other models to simulate crack 

propagation is their ability to predict the initiation and the propagation of the crack. Also, 

it can be applied for both monotonic and cyclic loads. In addition, it requires the 

identification of only two of the main cohesive parameters if the shape of the traction 

separation law is known. It is of interest therefore to further develop the cohesive-zone 

model to be more applicable and reliable for investigating the rate effect on crack 

propagation in elasto-plastic materials both under monotonic and cyclic loads. 

It is well documented that the CZM in its standard (rate-independent) forms provides an 

effective approach for the numerical analysis of the failure of a range of materials.  This 

Fig. 1.2.  The widely used traction separation laws: a) Polynomial, 

b) Exponential, c) Bilinear, d) Trapezoidal [10]. 
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is essentially because of the insensitivity of the crack and certain bulk materials to strain 

rate and crack velocity. This is not true for all materials, however, and rate sensitivity can 

manifest itself in a crack subjected to high strain rate since the fracture process can face 

greater resistance from the surrounding material, coupled with other effects such as crack 

branching. The standard CZM has been found to overestimate crack speeds in the case of 

dynamic fracture [17]. The predicted crack speed can reach the Rayleigh surface-wave 

speed CR of the material, yet experimentally the maximum crack growth speed is 

significantly lower than CR even for very brittle materials [18]. To achieve a better 

representation of the physics, it is necessary to incorporate rate dependency either in the 

CZM or the bulk material, or possibly both. The literature contains examples of research 

with rate-dependent behaviour in the bulk material combined with a rate-independent 

traction separation law under monotonically applied loading. Although this approach has 

been successfully used to represent dynamic fracture problems, as in references [19] and 

[20], it fails to represent experimental results in some cases, as is the case of rate-

dependent crack propagation in brittle materials [17, 21–23]. Therefore, the use of a rate-

dependent CZM is highly recommended [22, 24–26], where the cohesive traction 𝜎 is 

related not just to the crack separation 𝛿, but also to separation rate δ̇, i.e. 𝜎 = 𝑓(𝛿, δ̇) - a 

relationship first pioneered by Glennie [27]. Glennie concluded that the reason for the 

observed reduction in crack speed with increasing strain rate is an increase in stress levels 

in the vicinity of the crack tip. A negative feature of these approaches, however, is the 

unrealistically large values they yield for the stress in the cohesive-zone and the 

associated crack arrest.  

A related but alternative approach to the above method is adopted for the simulation of 

rate-dependent behaviour, in which the critical traction is independent of rate but involves 

temporal changes in fracture energy along with critical separation. It is demonstrated in 

this work, however, that this approach can lead to unrealistic separation values and crack 

tearing ahead of the crack tip. A rate-dependent cohesive-zone model that overcomes the 

previously mentioned limitation on the available rate-dependent CZM for monotonic 

fracture is therefore required. Furthermore, according to the author’s knowledge, there 

are currently no reliable CZMs for the purpose of fatigue investigation; it should also be 

mentioned that all existing fatigue CZMs are still under development and none have the 

ability to capture the rate effect. This is despite the fact that the loading rate has a 
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significant effect on the crack growth rate for some materials like the stainless-steel 304, 

as is proven experimentally in this work.  

 

1.4  Research aim and objectives 

The aim of this study is to develop a rate-dependent cohesive-zone model that can capture 

the strain-rate effect for the case of monotonic and cyclic crack growth in ductile material. 

This involves introducing a rate-dependent TCZM that captures the dynamic crack 

growth more accurately than the available rate-dependent CZMs for the case of 

monotonic loading and a frequency-dependent TCZM for fatigue crack simulation. The 

frequency-dependent TCZM is produced by linking a new loading-unloading hysteresis 

model with fast-track facility with a frequency-dependent critical cohesive stress. 

Although the effect of rate on crack propagation is a vitally significant problem, there are 

very few works concerning this topic in the literature that include an evaluation of the 

effect of rate on the TSL in order to estimate crack propagation.  

The objectives of the work will be as follows: 

• Study different 1-D Maxwell type cohesive models to find the best one that can be 

used to represent the problem of rate dependency. 

• Investigate the benefits of using a cohesive model that captures the plasticity locally, 

such as the trapezoidal model, to simulate the crack growth in an elasto-plastic 

material. 

• Derive a monotonic rate-dependent cohesive law that overcomes the limitation of the 

available models. This law will be used with the finite-element code ABAQUS (via a 

bespoke UMAT subroutine), because it is not available in any commercial finite-

element solver.  

• Validate the law by using it to simulate a monotonic rate-dependent problem, and 

contrast with the results of the simulation by using the available models in the 

literature. 

• Experimentally test the effect of loading frequency on the fatigue behaviour of 

stainless-steel 304 by applying 6 different loading frequencies (0.05, 0.1, 0.5, 5, 30 

and 50 Hz) at loading ratio R = 0 and 3 loading frequencies (0.05, 0.1 and 30 Hz) at 

R = -1.  
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• Derive a cohesive law for fatigue by identifying a cyclic damage mechanism within 

the traction separation law and validate it with the experimental results. 

• Combine the new fatigue model with a new frequency-dependent critical stress to 

produce a frequency-dependent TCZM model that can capture the effect of frequency 

on fatigue simulations. This model will be implemented in the finite-element code 

ABAQUS (via a bespoke UMAT routine).  

• The new law will be validated by simulating the experimental fatigue test procedure 

through finite-element simulation. 

 

1.5  Thesis outline 

After presenting a historical review and the objective of this work in the introductory 

chapter, the structure of the current thesis is as follows.  

Chapter 2 is a review of related work in the literature to identify the limitations, gaps and 

strengths of existing fracture mechanics methods (stress intensity factor methods, the 

energy criteria, and the cohesive-zone model) in order to outline the reasons for the 

selection of the model adopted in this work (i.e. the cohesive-zone model) to produce a 

rate-dependent fracture and fatigue model. 

In Chapter 3 the theoretical background of fracture and fatigue mechanisms is illustrated, 

presenting conventional fracture mechanics theory and the energy balance at the crack 

propagation. Furthermore, information about crack-tip plasticity and its calculation is 

shown there. Finally, the cohesive-zone models are presented and detailed information 

about the model used in this work is shown. 

An experimental investigation of the effect of loading rate on fatigue crack growth is 

performed in Chapter 4. This is achieved by running fatigue tests on a notched specimen 

made of stainless-steel 304 at six different loading frequencies (0.05, 0.1, 0.5, 5, 30 and 

50 Hz) at loading ratio R = 0 and three loading frequencies (0.05, 0.1 and 30 Hz) at 

R = -1.  

In Chapter 5, the rate-dependent CZM is investigated by studying different combinations 

of one-dimensional spring, dashpot, slider and cohesive elements. A new rate-dependent 

model is introduced and tested. At the same time, the effect of the type of TSL and the 

benefits of using the trapezoidal model are illustrated. 
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The focus of Chapter 6 is to introduce a new loading-unloading hysteresis damage model 

containing a fast-track feature that can be used for the analysis of high and low-cycle 

fatigue crack growth. 

Chapter 7 is dedicated to the derivation of the frequency-dependent CZM for fatigue and 

the validation of this model. This is done by combining the CZM for fatigue that is 

introduced in Chapter 6 with a frequency-dependent damage mechanism. The final model 

is validated by simulating the fatigue experiments conducted in Chapter 4. 

Finally, a summary of the interesting findings of this work and recommendations for 

further improvement are detailed in Chapter 8. 
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Chapter 2: Literature review 
 

2.1  Introduction 

In the early nineteenth century, after the Industrial Revolution, a variety of machines with 

rotating or vibrating parts appeared in human life. With the appearance of these machines, 

metal failure as a result of crack propagation was recorded, revealing a significant 

problem that requires the attention of researchers and designers. Since then, a number of 

experiments have been done to understand and predict the crack growth behaviour of 

mechanical parts under monotonic and cyclic loading, but because experimental testing 

is time-consuming and costly, researchers have started to consider using analytical and 

numerical simulation as an alternative way to predict crack growth [2]. Many of the 

conventional fracture methods are based on linear elastic fracture mechanics.  

 

2.2  Linear elastic fracture mechanics approach 

The fundamentals of fracture mechanics were developed in the 1950s when Irwin 

investigated the crack-deriving force and the stress field at the crack tip. In 1957 Irwin 

introduced a parameter that represents the relationship between the nominal stress and the 

crack length to indicate the stress distribution in the vicinity of the crack tip. This 

parameter is called the stress-intensity factor, 𝐾; the crack propagates when 𝐾 reaches a 

critical value, 𝐾𝐶 (fracture toughness), which is a material property. The stress-intensity 

factor can be used to explain the crack process only if the bulk behaviour of the material 

is elastic and the area surrounding the crack tip in which the plastic deformation is 

significantly small (small-scale yielding) when compared to the crack length. This 

observation indicates that the problem comes under the field of linear elastic fracture 

mechanics (LEFM). 

The relationship between the stress-intensity factor range ∆𝐾) and the crack growth rate 

(𝑑𝑎 𝑑𝑁⁄ ) was first outlined by the pioneering work of Paris [4] through a power law, 

which is considered to be the most widely used fatigue model for predicting fatigue life. 

Although this model can match the experimental data successfully, its application is 

limited to specific conditions such as constant load, small-scale yielding, and large cracks 

[28–30]. Considerable work has been done to extend the applicability of the law. For 

example, as pointed out in reference [31], Gilbert et al. [32] and Wheeler [33] studied the 
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effect of load ratio; Drucker and Palgen [34], and Needleman [35] investigated the effect 

of threshold limits; Forman et al. [36] studied the crack closure effect; Willenborg et al. 

[37] and Xu et al. [38] added the variable amplitude effect; many other studies have 

followed. However, all Paris-based models are still limited to large crack growth and, in 

general, all the models founded on the stress-intensity factor are limited to small-scale 

yielding. 

If the plastic zone at the crack tip is large, LEFM approaches will fail to represent the 

fracture process, so another approach should be adopted to describe the crack driving 

force. These approaches come under the field of elasto-plastic fracture mechanics 

(EPFM). 

 

2.3  𝑱 -integral method for crack growth prediction 

The line integral, as introduced by Rice [5, 39], is equivalent to the energy-release rate in 

nonlinear elastic materials. It is a path-independent integral, which could be applied to 

any contour starting at the lower face of the crack and ending at the upper face. A 

considerable amount of research has been published on the path-independency of the 𝐽-

Integral; a review of a selection of these studies is reported in [40]. Riemelmoser and 

Pippan [41] investigated the applicability of the 𝐽-Integral method to an interface of 

bimaterials with different yield strengths; they found that 𝐽-Integral is path-independent 

within each material alone, but not at the interface. 𝐽-Integral method is considered as a 

very useful tool to overcome the singularity problem at a crack tip. It can also be used to 

characterise the crack-tip stress and strain fields in nonlinear elastic fracture mechanics 

problems. This has been revealed by Hutchinson [42] and Rice and Rosengren [43] 

(HRR) in two separate works in 1968, the existence of the HRR field was verified at the 

crack tip by many numerical analyses [44]. The HRR theory is an extension to the LEFM 

to account for large-scale yielding and related microscopic fracture mechanisms within 

the plastic zone such as void initiation and coalescence. In this theory the stress and 

displacement fields (HRR singularity) in the 𝐽-dominated region is shown by the HRR 

solution as 

𝜎𝑖𝑗 = 𝜎𝑜 (
𝐽

𝛼𝜎𝑜𝜀𝑜𝐼𝑛𝑟
)
1 (𝑛+1)⁄

𝜎̂𝑖𝑗(𝜃, 𝑛)       (2.1) 
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𝑢𝑖 = 𝛼𝜀𝑜𝛾 (
𝐽

𝛼𝜎𝑜𝜀𝑜𝐼𝑛𝑟
)
𝑛 (𝑛+1)⁄

𝑢̂𝑖(𝜃, 𝑛)       (2.2) 

where 𝐽 is the 𝐽-integral, 𝜎𝑜, 𝜀𝑜 and 𝐼𝑛 are the yield stress, strain and the integration 

constant. Moreover, 𝜃 and 𝑟 are the coordinates from the crack tip, 𝜎̂𝑖𝑗(𝜃, 𝑛) and 𝑢̂𝑖(𝜃, 𝑛) 

are non-dimensional parameters that are determined by an angle 𝜃, which is defined at 

the crack tip by the polar coordinate and the hardening exponent 𝑛. in addition, 𝛼 is a 

material constant that is determined along with the hardening exponent 𝑛 by a Ramberg-

Osgood type relationship as 

𝜀

𝜀𝑜
=

𝜎

𝜎𝑜
+ 𝛼 (

𝜎

𝜎𝑜
)
𝑛

         (2.3) 

where 𝜎 and 𝜀 are the stress and the strain. 

In order to have a stable crack growth, the HRR field concentration at the crack tip region 

is required to be continuous, irreversible and maintain the plastic level to an extent during 

the deformation. This means that the plastic fracture at the crack tip vicinity is 

characterised by the J-integral and the crack tip opening displacement [45]. 

In recent years, there has been an increasing amount of research investigating crack 

growth in ductile materials by using the so-called 𝐽 − R curve or the ductile tearing 

resistance. However the 𝐽 − R curve is not always a material property, and in fact, it is a 

geometry-dependent parameter for large-scale yielding [46–49]. As a result of this fact, 

the 𝐽 − R curve cannot be transposed from one specimen to another; a detailed review 

regarding this problem is reported in [47]. A modified version of the 𝐽 − R curve (or, as 

the author called it, the 𝐷 − R curve) was introduced by Turner [50] to overcome the 

geometry dependency problem by using the total dissipated energy per unit area of the 

crack extension as a function of the crack extension normalised by the ligament length at 

the crack initiation. However, Marie and Chapuliot [46] pointed out that a test result 

shows that the dissipated energy rate (𝑅) introduced by Turner cannot be transferred from 

one test specimen to another. Following this study, a large amount of work has been done 

on similar 𝐽 − R curves, which aimed to find a relationship that could be considered as a 

material property, but none have provided a satisfactory result [46]. Marie and Chapuliot 

studied the behaviour of R and found that it has a high value at initiation, then decreases 

to reach a constant value (𝑅∞) in the steady crack-growth region. They suggest that the 

initiation of the crack happens at a constant initiation toughness, 𝐽𝑖, and the steady crack 
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growth can be simulated by using the stabilised value, 𝑅∞, which they defined as the 

critical local energy-release rate (𝐺c). The model they introduce requires a fine mesh at 

the region near the crack tip; the authors did not discover whether or not the critical local 

energy 𝐺c is a material property. Later the same authors [51] introduced a parameter 

which represents the critical fracture energy, Gfr; this parameter is related to the critical 

local energy, 𝐺c, through the relation 

𝐺𝑐 = 𝜆𝐺𝑓𝑟           (2.4) 

where λ is the dimensionless measure of the fixed crack extension length (λ). Although 

they stated that 𝐺𝑓𝑟  successfully describes the crack growth and is geometry-independent 

as well as a material property, the model has some limitations such as the requirement for 

a fine mesh, restricted to fixed crack extension and the limitation to one-dimensional 

crack-propagation problems only. An attempt to overcome some of these limitations, 

especially the restriction of a fixed crack extension and the limitation to 1D problems, is 

reported in [49].  

The models based on the 𝐽-integral are required to be applied to a loaded crack. Thus, the 

𝐽-integral is considered as a powerful tool to simulate quasi-static crack-growth, but it is 

difficult to use in the simulation of fatigue crack propagation. However, an attempt has 

been made by Klingbeil [52] to use the dissipated energy rate (𝑅) introduced by Turner 

to predict fatigue crack growth in ductile materials. The model that he introduced relates 

the fatigue crack-growth rate 𝑑𝑎 𝑑𝑁⁄  to the rate of change in plastic-dissipated work per 

cycle of load, normalised by the monotonic critical strain energy release rate. The 

approach introduced by Klingbeil is limited to mode I crack propagation and failed to 

simulate the crack-propagation data for several ductile materials [52]. Work has been 

done by Daily [53, 54] to add the mixed-mode effect to Klingbeil’s model. Substantial 

research exists that is aimed at interpreting and predicting fatigue life, but even so, 

presently no reliable models exist to simulate fatigue crack propagation [55]. The 

difficulty of applying 𝐽-integral based method for fatigue investigation comes from the 

unloading part of the cyclic loading. 
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2.4  Cohesive-zone model (CZM) for fracture 

Recently, a method called the cohesive-zone model has become the focus of some 

research in the area of fracture mechanics because it has the ability to capture crack 

initiation, as well as propagation. Also, this model can be used to simulate crack growth 

in both monotonic and cyclic load problems. The initial concept of the CZM was 

introduced by Dugdale [7] and Barenblatt [8]. They considered the fracture-process zone 

as a small area ahead of the crack tip, where the normal stress perpendicular to the 

direction of crack travel is constant and equal to the yield stress according to Dugdale, 

but decreases with deformation and vanishes at separation according to Barenblatt. 

The CZM is founded on a traction-separation law (TSL); according to this law, material 

damage starts when traction reaches a critical value called the critical cohesive stress, 𝜎𝑐. 

The crack propagates when the displacement jump between the cracked-material surfaces 

reaches a critical value, 𝛿𝑐, at which point the cohesive stress becomes zero and all the 

cohesive energy, 𝛤𝑜, is dissipated. From this, it is evident that there are at least three 

parameters representing the traction-separation law. Only two of them are required if the 

shape of the traction-separation law is predefined. The measurement of these parameters 

plays a key role in the CZMs. Generally, there are two methods of determining these 

parameters; the first one is a direct method, in which the parameters are calculated directly 

by experiment, and the second one is an indirect method, in which the parameters are 

determined by numerical fitting of a test result. However, it is preferable to use a 

combination of the two methods by calculating the initial values of the parameters 

experimentally, then tuning them to fit test data by a numerical optimisation procedure 

[10, 56]. Detailed information about the evaluation of the CZM parameters can be found 

in reference [30]. Furthermore, the advantages and limitations of the CZM application to 

different materials are discussed.  

The CZM gained greater acceptance when Hillerborg et al. [9] analysed crack-growth 

numerically in a brittle material using a bilinear cohesive-zone model (BCZM), together 

with the finite element method (FEM). This study was followed by the work of 

Needleman [57], who introduced the polynomial CZM and, subsequently, the exponential 

CZM [58]. Scheider [6] introduced the partly constant CZM, which is similar to 

Needleman’s polynomial model but with a flat region in the middle. The trapezoidal 

cohesive-zone model (TCZM), which is of particular interest in this work, was introduced 

by Tvergaard and Hutchinson [13].  
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A bone of contention in the literature is the importance of the shape of the traction-

separation curve underpinning the cohesive-zone approach. Some authors claim that the 

shape hardly influences fracture-simulation results [11–13], whilst other investigations 

demonstrate that the shape does indeed matter [14–16]. This issue is revisited in this study 

by contrasting the trapezoidal cohesive-zone model (TCZM) with the bilinear cohesive-

zone model (BCZM). It is demonstrated that under the constraint of invariant toughness, 

the shape of the traction-separation curve does indeed have an effect. 

In nonlinear elastic materials (elasto-plastic materials) the fracture process is more 

complicated than in linear elastic materials, because of the plastic deformation associated 

with crack growth. Tvergaard and Hutchinson [13] studied the effect of plastic 

deformation on crack growth (using the concept of void growth and coalescence) in an 

elasto-plastic material under monotonic loading by using a cohesive-zone model. They 

found that the energy dissipated in the fracture process could be divided into two constant 

values: the first one is the energy dissipated at the initiation of the crack, which is equal 

to the cohesive energy; the second is the energy dissipated during steady crack 

propagation, which is larger than the cohesive energy because it equals the dissipated 

energy to form the new plastic zone ahead of the crack tip plus the energy dissipated to 

propagate the crack (cohesive energy). They pointed out that for the trapezoidal model, 

the effect of energy dissipated in the plastic region, only becomes significant compared 

with the cohesive energy when a fully developed plastic zone is formed, which happens 

when the ratio of the cohesive critical stress (𝜎𝑐) to the yield strength (𝜎𝑌) is greater than 

2.5. The limitation of this method is that if 𝜎𝑐 exceeds the specified value for a specific 

hardening exponent (N), the crack will never grow. For example, if N = 0 and 𝜎𝑐  > 2.97𝜎𝑌, 

then crack blunting occurs and the crack growth ceases. The model has been further 

developed to overcome the blunting problem by the same authors [59]; they introduced a 

strain-dependent cohesive-zone model by making the critical cohesive stress a function 

of the plastic strain. In this model, when the plastic strain reaches a critical value, the 

cohesive stress will start to decrease with increasing plastic strain, thus resolving the crack 

tip-blunting problem. 

The CZM is in some way a mesh-dependent model since for accuracy a specific number 

of elements within the cohesive process zone are required to achieve convergence in the 

predicted result. In addition, the cohesive process zone length is not constant and depends 

on the cohesive parameters. For some materials, this zone is very small; this necessitates 
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a very fine mesh, making the analysis very expensive and time-consuming. Turon et al. 

[60] investigated the effect of mesh size on the CZM. They introduced a method to 

overcome the problem of the very fine mesh by reducing the value of the critical cohesive 

traction while keeping the cohesive energy constant. This led to an increase in the length 

of the process zone and helped to simulate the crack growth with a coarser mesh. They 

used the following equation to relate the cohesive traction to the number of elements in 

the process zone and the zone length  

𝜎𝑐 = √
9𝜋𝐸𝛤𝑜

32𝑁𝑒
0𝑙𝑒

              (2.5)   

where 𝜎𝑐 is the critical cohesive stress, E is the modulus of elasticity, 𝛤𝑜 is the cohesive 

energy, 𝑁𝑒
0 is the number of elements within the process zone, and 𝑙𝑒 is the length of the 

process zone. 

This method facilitates the use of a coarser mesh with the CZM; however, it makes the 

value of the stresses in the vicinity of the crack tip less accurate, so care is required when 

changing the value of the critical traction. Further work on the use of the coarse mesh 

with CZM was carried out by Nguyen and Repetto [31], where they used an adaptive 

meshing method, in which the mesh size is a function of the radial distance from the crack 

tip (𝑟). The element size was set up to be equal to 𝑟3/4, which made the mesh coarser in 

the region furthest from the crack and smaller as it approached the crack, until the value 

of r becomes equal to the cohesive-zone length, 𝑙𝑐𝑧.The mesh size then becomes constant 

(equal to 𝑙𝑐𝑧
3/4

), making the mesh size suitable for the CZM and not too small as 𝑟 

approaches the crack tip. Although this method helps by only requiring a fine mesh in the 

vicinity of the crack tip, remeshing is required to keep the fine mesh around the cohesive 

process zone. 

 

2.5  Rate-dependent cohesive-zone model (CZM) 

It is well documented that the CZM in its standard (rate-independent) forms provides an 

effective approach for the numerical analysis of the failure of a range of materials. This 

is essentially because of the insensitivity of the crack and certain bulk materials to strain 

rate and crack velocity. This is not true for all materials, however, and rate sensitivity can 

manifest itself in a crack at high strain rate facing greater resistance from the surrounding 
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material, along with other effects such as crack branching. The standard CZM has been 

found to overestimate crack speeds in the case of dynamic fracture [17]. The predicted 

crack speed can reach the Rayleigh surface wave speed, 𝐶𝑅, of the material, yet 

experimentally the maximum crack growth speed is significantly lower than 𝐶𝑅, even for 

very brittle materials [18]. As a result, it becomes necessary to incorporate a rate 

dependency in the CZ modelling. Two different methodologies have been used to add a 

rate dependency to the material-separation models: the first involves using a rate-

dependent constitutive behaviour in the bulk material with a rate-independent traction-

separation law. In the second method, the focus is to implement the rate-dependency in 

the traction separation law itself by relating cohesive traction not only to the separation 

but to the separation rate as well [21]. 

 

2.5.1 Rate-Independent CZM with rate-dependent bulk material 

Dynamic fracture is usually associated with additional dissipated energy as a result of 

complicated fracture mechanisms such as crack branching. The literature contains 

examples of research with rate-dependent behaviour in the bulk material combined with 

a rate-independent traction-separation law under monotonically applied loading to 

account for this additional dissipated energy. For example, Ortiz and Pandolfi [61] used 

this approach and demonstrated good agreement with the experimental data. The 

researchers argued that through this approach the CZM captures the rate dependency of 

the failure process. Similarly, Song et al. [23] and Zhou et al. [19] successfully applied 

the approach to asphalt concrete and reinforced aluminium, respectively. Zhou et al. [22] 

pointed out, however, that the success of the study of Ortiz and Pandolfi [61] was limited 

to ductile materials and was successful because of the intrinsic timescale associated with 

ductility. The approach failed to reproduce existing experimental crack-propagation data 

of pre-strained brittle Polymethyl methacrylate (PMMA). Costanzo and Walton [24] 

asserted that the rate-independent CZM is unable to represent the experimental results 

from the literature, regardless of the type of traction-separation law and the fracture 

criterion used. A similar conclusion was reached by Langer and Lobkovsky [26] and, 

again, Costanzo and Walton [25]. 
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2.5.2 Rate-dependent cohesive-zone model    

It is well known that with increasing the crack speed in the case of dynamic loading, the 

value of the dissipated energy increases. This increase in the fracture energy is due to the 

dissipated energy in the surrounding area of the crack tip, caused by crack branching and 

other phenomena. In this case, the cohesive energy can be divided into two parts: the first 

represents the crack driving force, which is the same as the critical cohesive energy in the 

rate-independent cohesive law; the other part represents the energy dissipated in the 

surroundings due to crack speed. Recent investigations (see, for instance, [17, 21, 22, 24–

26] and others) have pointed out that the simulation of dynamic crack growth using the 

standard rate-independent CZM could give unrealistic results; it is therefore highly 

recommended to use a rate-dependent CZM. In the rate-dependent cohesive model, the 

cohesive traction, 𝜎, is related not just to the crack separation, 𝛿, but to the separation 

rate, 𝛿̇, as well, so 𝜎 = 𝑓(𝛿, 𝛿̇). This relation was first pioneered by Glennie [27] when 

he studied the sensitivity of the steel fracture toughness to the strain rate. A relation for 

the dynamic yield stress has been proposed in the form 

𝑌 = 𝑌𝑜 + 𝐹𝜀̇              (2.6) 

where Y is the dynamic yield stress, Yo is the static yield stress, F is a constant, and 𝜀̇ is 

the plastic strain rate. 

Glennie concluded that the reason behind the reduction in crack speed with increasing the 

strain rate is the increasing stress in the vicinity of the crack tip. Freund and Lee [62] 

reviewed Glennie’s work for the dynamic fracture of a Dugdale-type problem, by 

considering the stress in the plastic zone ahead of the crack tip in the same way as the 

dynamic yield stress in the Glennie model and the static yield stress as the rate-

independent critical cohesive traction, 𝜎𝑐, which is equal to the material yield stress, 𝜎𝑦, 

for the Dugdale model. They use the following relationship for the rate-dependent 

cohesive stress 

𝜎(𝛿̇) = 𝜎𝑦 (1 +
𝛿̇
𝛿0̇
⁄ )           (2.7) 

where 𝜎(𝛿̇) is the rate-dependent cohesive stress, 𝜎𝑦 is the flow stress, 𝛿̇ is the separation 

rate in the cohesive-zone, and 𝛿𝑜̇ is a reference separation rate, which is a material 

constant. 
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Costanzo and Walton [25] used a similar model for mode III fracture problems to study 

the dynamic crack growth in elastic materials, using a viscosity coefficient, 𝜂, instead of 

the term 𝜎𝑦 𝛿̇𝑜⁄ . It was found that the crack-tip speed is completely controlled by material 

viscosity; a steady-state crack-tip velocity was observed using this model. Even with a 

very high value of the applied load, the predicted crack speed was less than that predicted 

by the rate-independent model for the same load and boundary conditions.  

Further development of this model was carried out by the same authors [24] by making a 

comparison between the result of the previous model and a model introduced by Xu et al. 

[63], which is in the form 

𝜎(𝛿,𝛿̇) = (𝜎𝑦 + 𝜂𝛿̇) × (1 −
𝛿
𝛿𝑐
⁄ )          (2.8) 

where 𝛿 is the material separation and 𝛿𝑐 is the cohesive critical separation. 

They concluded that the use of both models could result in a very large stress value in the 

cohesive-zone, which is much larger than the yield stress. Thus, this could lead to an 

unrealistic stress field at the crack tip and possibly unrealistic crack arrest. From this 

discovery, it has been concluded that a fracture criterion which can control the value of 

the cohesive traction of these models is crucial to obtain a satisfactory result.  

Relatively similar models were used in [21, 64–67]. To overcome the problem of the 

unrealistic stress field and the possibility of crack arrest, Valoroso et al. [17] and Zhou et 

al. [22] introduced a rate-dependent CZM. In this CZM the critical traction is constant 

(i.e. does not change with the crack speed), while the cohesive energy and the critical 

separation increases with increasing the crack speed. In the former study, the rate-

dependent cohesive energy was calculated using: 

𝐺𝐼𝑐
𝑑𝑦𝑛(𝑎̇) = 𝐺𝐼𝑐(1 + 𝐻(𝑚, 𝜂))                       (2.9) 

𝐻(𝑚, 𝜂) = −𝜂𝑙𝑜𝑔(1 − 𝑚)                   (2.10) 

where 𝐺𝐼𝑐
𝑑𝑦𝑛

 is the rate-dependent critical cohesive energy, 𝐺𝐼𝑐 is the rate-independent 

cohesive energy, m is equal to the crack speed divided by the Rayleigh wave speed of the 

material, and 𝜂 is a dimensionless rate-sensitivity parameter. Conversely, in the latter the 

rate-dependent critical separation is calculated using 
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𝛿𝑐 = 𝛿𝑐𝑜 (1 + (
𝛿̇
𝛿̇𝑜
⁄ )

𝑛

)                   (2.11) 

where 𝛿𝑐 is the rate-dependent critical separation, 𝛿𝑐𝑜 is the rate-independent critical 

separation, 𝛿̇ is the separation rate, 𝛿̇𝑜 is a reference crack-opening rate, and n is the rate-

dependency index.  

In this thesis, both rate-dependent CZ methodologies are investigated and compared to 

discover and highlight their weaknesses and to identify the best way to overcome them.  

 

2.6  Cohesive-zone model (CZM) for fatigue 

It is well known that cyclic load creates more complicated problems because of the 

unloading part of the load cycle and the history-dependence of the crack process. Most of 

the CZM applications are for monotonic crack growth prediction; for instance, all of the 

previously mentioned CZMs are history-independent, so can only be used for monotonic 

crack-propagation simulation. Therefore, to use the CZM in a fatigue crack-growth 

simulation, an irreversible and history-dependent cohesive law is required that can 

capture the damage accumulation associated with cyclic loading. This can be done by 

identifying an additional criterion for the development of the cohesive model’s internal 

variables and combining it with the CZM for monotonic loading. In the literature, there 

are two available methods for identifying this cyclic effect; the first is the envelope-load 

damage model, and the other is the loading-unloading hysteresis damage model. 

 

2.6.1 Envelope-load damage method 

The maximum load of the loading cycle is the focus of the envelope-load damage model 

rather than a description of the complete cyclic loading behaviour. All variants founded 

on this particular approach formulate a damage rate, 𝑑𝐷 𝑑𝑁⁄ . Although the damage rate 

is written here in the form of a derivative for convenience, it should be well appreciated 

that the damage rate is not in fact a derivative, as 𝐷 is a path-dependent quantity and as 

such is not a function. The damage, 𝐷, is assumed to be composed of a quasi-static 

damage, 𝐷𝑠, and a cyclic damage, 𝐷𝑐, which are considered to be additive to provide the 

total damage, 𝐷 = 𝐷𝑠 + 𝐷𝑐. Thus, the damage rate is mathematically represented as 
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𝑑𝐷

𝑑𝑁
=

𝑑𝐷𝑠

𝑑𝑁
+
𝑑𝐷𝑐

𝑑𝑁
                                         (2.12) 

The damage accumulated, 𝐷(𝑁+∆𝑁), is defined via the integration of damage rate. Thus, 

after a specific number of cycles, 𝑁 + ∆𝑁, damage is determined from the current 

damage, 𝐷(𝑁), plus the integration of the damage rate over the interval [𝑁,𝑁 + ∆𝑁]  and 

explicitly takes the form 

𝐷(𝑁+∆𝑁) = 𝐷(𝑁) + ∫ (𝑑𝐷 𝑑𝑁)⁄ 𝑑𝑁′
𝑁+∆𝑁

𝑁
                (2.13) 

The integration in Eq. (2.13) is typically approximated using the 2-point Newton-Cotes 

quadrature; (see, for example, references [68, 69]) the approximation takes the form 

∫ (𝑑𝐷 𝑑𝑁)⁄ 𝑑𝑁′
𝑁+∆𝑁

𝑁
≈

1

2
((𝑑𝐷 𝑑𝑁)⁄ |𝑁 + (𝑑𝐷 𝑑𝑁)⁄ |𝑁+∆𝑁)∆𝑁                                   (2.14)     

or alternatively with a 1-point Newton-Cotes quadrature, as in references [66–71], which 

takes the form 

∫ (𝑑𝐷 𝑑𝑁)⁄ 𝑑𝑁′′
𝑁+∆𝑁

𝑁

≈ ((𝑑𝐷𝑠 𝑑𝑁)⁄ |𝑁 + (𝑑𝐷𝑐 𝑑𝑁)⁄ |𝑁)∆𝑁 

                                          ≈ (𝑑𝐷𝑐 𝑑𝑁)⁄ |𝑁∆𝑁                      (2.15)                                      

A source of error in Eq. (2.15) is the loss of the quasi-static damage rate, which cannot 

be estimated by means of the 1-point Newton-Cotes quadrature (as explained in reference 

[76]). Different cyclic-damage rate formulations have been adopted in the literature. The 

first was introduced by Robinson et al. [68] for delamination of composite laminates, 

where the cyclic damage rate is evaluated through the formula 

𝑑𝐷𝑐

𝑑𝑁
=

𝐶

1−𝛽
𝑒𝜆𝐷𝛿1+𝛽                    (2.16) 

where 𝛿 is equivalent mixed-mode opening, and 𝐶, 𝛽 and 𝜆 are fitting parameters. 

A particular drawback of this model is the number of material parameters that need to be 

fitted with experimental data for each loading mode and for each mode-mix ratio in the 

case of mixed-mode loading. A further development to the previous model is presented 

in reference [69] and involves the incorporation of a mode-mixture ratio, 𝜙, into the 

damage-rate formulation in order to reduce the number of required experiments. The rate 

equation takes the form 



Chapter Two                                                                                                    Literature Review 

 
   39 

𝑑𝐷𝑐

𝑑𝑁
= 𝐶(𝜙)𝑒

𝐷𝛿𝛽(𝜙)                    (2.17) 

where 𝜙 is the mode-mixture ratio.  

Unlike in Eq. (2.16), the parameters in Eq. (2.17) are only required to be fitted with 

experimental results for each loading mode and only one mixed mode. Reducing the cost 

required for calibrating the parameters of the previous models is achievable by linking 

the damage evolution to a Paris-like model of the form 

𝑑𝐷𝑐

𝑑𝑁
=

1

𝑎𝑐𝑧
′

(𝛿𝑓(1−𝐷)+𝐷𝛿𝜊)
2

𝛿𝑓𝛿𝜊
𝑃(𝑤𝑡𝑜𝑡)                             (2.18) 

where 𝑎𝑐𝑧
′  is the cohesive-zone length, and 𝛿𝑓 and  𝛿𝜊 are the equivalent mixed-mode 

final and onset openings, respectively [71]. 

Note here the implicit link between damage and the length of the cohesive-zone or some 

portion associated with it. Linking damage evolution to a Paris law means no additional 

parameters require calibration other than the standard Paris-law parameter. Simplified 

versions of the Turon et al. model [71] can be found in reference [72] as 

𝑑𝐷𝑐

𝑑𝑁
=

1

𝑎𝑐𝑧
𝑃(𝒢)                                                     (2.19) 

and in reference [73] as 

𝑑𝐷𝑐

𝑑𝑁
=

1−𝐷𝑠−𝐷𝑐,𝑢

𝑎𝑓𝑎𝑡
𝑃(𝑤𝑡𝑜𝑡)                                       (2.20) 

where 𝑎𝑓𝑎𝑡 is the length of the fatigue part of the cohesive-zone, 𝐷𝑠 and 𝐷𝑐,𝑢 are the quasi-

static damage and the cyclic damage in the quasi-static region, and 𝑃(𝑤𝑡𝑜𝑡) and 𝑃(𝒢) are 

Paris’ laws as a function of 𝑤𝑡𝑜𝑡 and 𝒢, respectively. 

Damage rate in Eq. (2.19), which is assumed to be a function of a Paris law founded on 

energy release rate 𝒢 (rather than 𝑤𝑡𝑜𝑡), can be determined by the 𝐽-integral. This 

simplifies the process, with damage rate not depending directly on the current state of 

damage. The predictive accuracy of the methods used in references [70–75] is very much 

influenced by the integration scheme that is adopted to integrate the damage-rate 

equation. An additional contributing factor can be the absence of the component 

describing the quasi-static damage rate. 
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2.6.2 Loading-unloading hysteresis damage model 

Unlike the envelope-load approach, the entire loading-unloading cycle is considered and 

represented in loading-unloading hysteresis damage models. This permits the modelling 

of advanced behaviour at the cohesive interface and surroundings, taking into 

consideration such things as friction and plasticity [76]. Loading-unloading hysteresis 

models are based on the reduction of the interfacial stiffness captured by a cyclic-damage 

variable that evolves or an internal variable that grows. The first successful attempt to use 

a CZM for the simulation of fatigue-crack growth is presented in reference [77], which 

introduces a cyclic damage factor, 𝐷, whose purpose is to quantify the amount of 

dissipated energy in the fracture process divided by the critical fracture energy. Variable 

interfacial stiffness models soon followed this work (see references [31] and [78], for 

example), where traction rate 𝑇̇ is assumed to be a function of incremental stiffnesses, 𝐾− 

and 𝐾+, according to the relationship 

𝑇̇ = {
𝐾−𝛿̇ , 𝑖𝑓  𝛿̇ < 0,

𝐾+𝛿̇ , 𝑖𝑓  𝛿̇ > 0,
                    (2.21) 

where 𝐾+ and 𝐾− are the loading and unloading stiffness, respectively, and 𝛿̇ is the rate 

of change of separation. The value of 𝐾− is constant for each unloading part, but 𝐾+ 

evolves with the number of cycles through a decay factor until complete separation of the 

cohesive element (CE). Alternatively, Yang et al. [78] assumed that both loading and 

unloading stiffness are a function of a damage parameter that evolves both during loading 

and unloading. A particular deficiency with these models is that crack defects are assumed 

to grow no matter how small they might be, which can be unrealistic. To correct for this, 

introduced in reference [79] are two additional parameters, σ𝑓 and 𝛿Σ, which represent a 

fatigue stress limit (below which no crack propagation occurs) and the accumulated 

cohesive length, respectively. If the stress on the element ahead of the crack tip is below 

the fatigue stress limit, the model presents an infinite life (no crack will propagate). If, 

however, the stress on this element is larger than the fatigue stress limit, then material 

separation initiates and grows until it reaches the cohesive length, 𝛿o. Here 𝛿o represents 

the initiation of material separation at the critical cohesive stress, 𝜎𝑐. Subsequently, 

damage accumulates and the critical cohesive stress reduces as a function of the damage, 

giving the current critical cohesive stress. Ongoing damage accumulation results in crack 

extension and failure of the cohesive element, which occurs when the maximum stress in 
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a load cycle reaches the current critical cohesive stress. This model contains all the 

necessary features for the description of fatigue-crack growth. However, as with all the 

previous models, this method remains phenomenological, requiring validation with 

experimental results to check accuracy and to standardise the cohesive-zone parameters. 

Other studies [28, 29] have considered similar approaches, in which damage does not 

accumulate if the stress is lower than a predefined value (the fatigue stress limit). 

Although the loading-unloading hysteresis damage model provides a description of 

fatigue behaviour over each and every time increment, it is relatively expensive in terms 

of the required computational time. Moreover, in practical terms it can be considered 

unfeasible for the simulation of high-cycle fatigue, where a large number of loading 

cycles is involved. To reduce the computational time required for the hysteresis damage 

models, an extrapolation scheme was introduced by De-Andrés [77] to approximate the 

damage state after a pre-defined number of cycles through a two-term Taylor expansion, 

of the form 

𝐷𝑛+1 ≈ 𝐷𝑛 + (𝑑𝐷 𝑑𝑁)⁄ |𝑛(𝑁𝑛+1 − 𝑁𝑛)                (2.22) 

where 𝐷𝑛+1 is the new damage state at 𝑁𝑛+1 cycles and 𝐷𝑛 is the old damage state at 𝑁𝑛 

cycles, 𝑑𝐷 𝑑𝑁⁄  is the damage rate. 

The rate of change of 𝐷 per cycle 𝑑𝐷 𝑑𝑁 ⁄ at 𝑁𝑛, required for the extrapolation, is 

computed by a detailed step-by-step computation of a few loading cycles. A limitation of 

this method is the assumption that the damage rate is constant throughout the crack-

propagation period. In addition, for good accuracy, the cycle increment, 𝑁𝑛+1 − 𝑁𝑛, is 

constrained by the requirement that the damage increment, 𝐷𝑛+1 −𝐷𝑛, is relatively small. 

Similar methods are considered in references [80, 81]. 

In general, fatigue modelling using the cohesive-zone model looks promising, but is still 

in its infancy and requires further development, since there are no mature CZMs that can 

be used for industrial applications yet [76]. In this study, a loading-unloading hysteresis 

damage model containing a fast-track feature is introduced. The model involves an 

internal variable that is evaluated at one loading cycle and applied for a specific number 

of cycles (∆𝑁) to give the stress and the separation state at that specific number of cycle. 

For the subsequent loading cycle, this internal variable is updated to fit the current loading 

point; the new value is applied for the next ∆𝑁 to evaluate the material behaviour after 

(𝑁 + ∆𝑁) cycles. If the cohesive element happens to fail in a number of cycles fewer than 
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(𝑁 + ∆𝑁), then a specific technique is applied within the model to ascertain the precise 

number of cycles at which the element failed. 

 

2.7  Effect of frequency on fatigue behaviour in stainless-steel 304 

The strength of the austenitic stainless steel is affected by the martensitic content. 

Martensite formation depends on the strain amplitude, temperature, grain size and the 

number of loading cycles [82, 83]. The dependence on strain amplitude means that the 

austenitic-martensitic phase transformation is significantly more sensitive in this regard 

to low-cycle fatigue (LCF) as opposed to high-cycle fatigue [83, 84]. However, the 

transformation can occur with high-cycle fatigue (HCF) as a result of plastic-strain 

accumulation [85, 86]. The percentage of martensite in this case however tends to be 

small, and typically no greater than 3% according to reference [87]. Further details on the 

effects of plastic-strain amplitude, temperature and chemical composition on the 

formation of the strain-induced martensite are available in references [83, 84, 86]. Müller-

Bollenhagen et al. [87] contend that the phase transformation in austenitic stainless steel 

depends on the material’s chemical composition and microstructure, the accumulated 

plastic strain and strain rate, and the temperature. The relationship between the number 

of fatigue cycles and the percentage of martensitic transformation has been investigated 

by Kalkhof et al. [88]; they found that the percentage of martensite increases linearly with 

the number of loading cycles, similar to the conclusion found in [85]. Through this linear 

relationship and the fact that the phase transformation is a function of the strain amplitude, 

Kalkhof et al. managed to evaluate the fatigue degradation as a function of the strain 

amplitude. 

James [89] pointed out that at elevated temperature the crack-growth rate in the stainless 

steel 304 increases with decreasing frequency, as a result of additional mechanisms such 

as creep and oxidation, but not because of martensitic content. It is recognised that the 

phase transformation is inhibited at higher temperatures. It is of interest to inquire whether 

the loading frequency has an effect at ambient temperature, particularly if the material 

under consideration possesses good corrosion resistance in air and has a relatively high 

melting point, which makes it unlikely for corrosion and creep to occur. Related to this, 

Nikitin and Besel [90] investigated the effect of frequency on crack growth in AISI 304 

stainless-steel at room temperature and at a fixed temperature of 25°C. They found that, 
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if an isothermal condition is applied at room temperature, the crack grew more slowly at 

a high frequency as a result of the presence of martensite. Otherwise the crack grows 

faster at high frequency as a consequence of self-heating (as the authors suggested). 

Although self-heating of the material can increase the temperature of the specimen, the 

authors of this work argued that cracks grow faster at high frequency because of the 

material self-heating. A different result is reported here, in direct contradiction with the 

conclusion of reference [90]. Although material temperatures can be expected to increase, 

this can be shown to occur gradually, and it is only when the temperature is sufficiently 

high that the phase transformation will be inhibited. This conclusion was drawn in 

references [85, 87], where it was concluded that higher strain rates occur at higher 

frequencies, leading to a higher plastic strain, hence a higher percentage of martensite. 

These studies did however find that for a fully reversed cyclic loading, the specimen 

temperature increases with increasing the strain amplitude and the loading frequency. 

Müller-Bollenhagen et al. [87] did not find any difference in the fatigue behaviour when 

frequencies of 90Hz and 20KHz were applied. This supports the findings of this study, as 

the frequencies used in [87] are relatively high and the martensitic content reaches its 

saturation limit for the specific temperature despite plastic strain increasing, so any 

changes in frequency will have little effect on crack-growth speeds.     

The effect that the frequency has on fatigue-crack growth in austenitic stainless steel 304 

under sinusoidal cyclic load with the stress ratio (𝑅 = 0 and 𝑅 = −1) and a maximum 

load of 10 kN applied in an air environment at room temperature is the focus of this work. 

These conditions have been selected as the effect of frequency on fatigue behaviour at 

ambient temperature has not been fully covered in the literature.  

 

2.8  Summary 

The high cost and the time-consuming nature of experimental fracture-testing have given 

rise to the need to find an effective and accurate numerical method to simulate the fracture 

problem. The J-integral was the first successful method and remains important, and is 

heavily used in industry in conjunction with the finite-element method to simulate 

fracture problems. However, the limitations of this method in the analysis of stationary 

crack problems have encouraged researchers to look for alternative analysis methods that 

can predict crack initiation as well as crack propagation, and that can be applied to 

monotonic and dynamic crack problems. From the literature, it can be seen that the CZM 
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could be considered as the most feasible and powerful model when used with the finite-

element methods to simulate fracture and fatigue problems; nevertheless, an optimum 

CZM that can simulate any kind of crack-growth problem remains undiscovered. 

Although there are a lot of CZMs in the literature that accurately represent the 

experimental data of monotonic crack growth, few have the ability to capture the effects 

of rate. The rate-dependent CZMs in the literature are not fully developed and require 

further investigation. In this study, these existing rate-dependent models are tested and 

compared to form the basis for the introduction of a new rate-dependent CZM that 

overcomes their particular limitations. 

The application of the CZM to the simulation of fatigue-crack growth has gained 

researchers’ interest recently, but this field is still in its infancy since very few quantitative 

and qualitative studies exist on the use of CZM to simulate fatigue-crack growth 

problems. Furthermore, existing CZMs do not account for loading rates. Mechanical parts 

can be subject to different loading rates in service, and consequently, cracks can behave 

differently for the same material under the same value of applied load. To capture this 

phenomenon, attention in this thesis is focused on the development of a rate-dependent 

trapezoidal cohesive-zone model that overcome the limitations of existing rate-dependent 

CZMs for monotonic crack growth and to develop a new frequency-dependent TCZM for 

fatigue. According to the author’s knowledge, there is no or very little work on using a 

rate-dependent CZM to simulate fatigue-crack problems. In this work, a new CZM for 

fatigue-crack simulation will be introduced and linked to a frequency-dependent critical 

cohesive stress to give it the ability to capture the effect of frequency on fatigue-crack 

growth.  
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Chapter 3: Fracture mechanics and fatigue 
 

3.1 Elastic fracture mechanics 

 

3.1.1 Introduction 

The main hypothesis underpinning fracture mechanics is that all material parts contain 

microcracks due to their production process, the presence of these cracks lead to a stress 

concentration, which initiates the material failure. It is well known that when load is 

applied to a cracked part, there will be a specific amount of plasticity in the vicinity of 

the crack tip. The size of this plastic zone identifies the fracture mechanics method which 

is adequate to deal with the problem. For example, if the size of the plastic zone is very 

small compared with the crack length and the part dimensions, then linear elastic fracture 

mechanics (LEFM) theory can be applied to find the stress distribution. Otherwise, if the 

plastic zone is large, the LEFM theory fails to address the stress distribution and it is 

required to use nonlinear theories [91].  

 

3.1.2 Loading modes and crack tip stress field 

There are three types of loading, which could be applied individually to the material or a 

combination of all or two of them could be applied. The first mode is the opening mode 

(mode I), see Fig. 3.1(a). This mode is found to be dominant in most fracture problems. 

The second mode is the sliding mode (mode II) called the in-plane mode, see Fig. 3.1(b). 

Finally, the tearing mode (mode III), the out-of-plane mode is depicted in Fig. 3.1(c).  

 

 

 

 

 

 

 

a c b 

Fig. 3.1.  Type of loading [112]: (a) Mode I (Opening mode), (b) Mode II 

(Sliding mode), (c) Mode II (Tearing mode).  
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Fig. 3.2.  Stresses at the vicinity of the crack tip [45]. 

The relation between stress and displacement around the crack tip is very important 

because it governs crack growth behaviour. The crack tip stress field is shown in 

Fig. 3.2, a brief description of it for each fracture mode will be presented [91]. 

 

 

 

 

 

 

 

 

 

 

• Mode I  

In the Opening mode, the stresses and the displacements at the vicinity of the crack tip 

are given by the following equations for elastic behaviour:  

The crack tip stress field is:  

𝜎𝑥𝑥 ≈
𝐾𝐼

√2𝜋𝑟
𝑐𝑜𝑠

𝜃

2
(1 − 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
)  

𝜎𝑦𝑦 ≈
𝐾𝐼

√2𝜋𝑟
𝑐𝑜𝑠

𝜃

2
(1 + 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
)               (3.1) 

𝜏𝑥𝑦 ≈
𝐾𝐼

√2𝜋𝑟
𝑐𝑜𝑠

𝜃

2
𝑠𝑖𝑛

𝜃

2
𝑐𝑜𝑠

3𝜃

2
  

as 𝑟 → 0, where 

𝐾𝐼 = 𝜎√𝜋𝑎 for an infinite plate with a central crack     (3.2) 

and where 𝐾𝐼 is mode I stress intensity factor, 𝜎 and 𝜏 are the applied normal and shear 

stress respectively, 𝑎 is the crack length, r is the distance from the crack tip and 𝜃 is the 

angle. 
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The crack tip displacement field is υ, 𝑢 

𝑢 ≈
𝐾𝐼

2𝜇
√

𝑟

2𝜋
𝑐𝑜𝑠

𝜃

2
(𝜅 − 𝑐𝑜𝑠𝜃)  

𝜐 ≈
𝐾𝐼

2𝜇
√

𝑟

2𝜋
𝑠𝑖𝑛

𝜃

2
(𝜅 − 𝑐𝑜𝑠𝜃)             (3.3) 

as 𝑟 → 0, where 𝜅 is equal to (3-4𝜗) for plane strain and (3-𝜗)/(1+𝜗) for plane stress. 

Eqs. (3.1) and (3.3) represent the stress and displacement field for plane stress and plane 

strain conditions. The out-of-plane normal component of 𝜎𝑧𝑧 for plane stress is assumed 

to be zero whereas for plane strain it exists and equals 

𝜎𝑧𝑧 = 𝜗(𝜎𝑥𝑥 + 𝜎𝑦𝑦)                      (3.4) 

where 𝜗 is Poisson’s ratio.  

The singular principal stresses for plane stress and plane strain are 

𝜎1 ≈
𝐾𝐼

√2𝜋𝑟
𝑐𝑜𝑠

𝜃

2
(1 + 𝑠𝑖𝑛

𝜃

2
)                 (3.5) 

𝜎2 ≈
𝐾𝐼

√2𝜋𝑟
𝑐𝑜𝑠

𝜃

2
(1 − 𝑠𝑖𝑛

𝜃

2
)              (3.6) 

𝜎3 ≈
2𝜗𝐾𝐼

√2𝜋𝑟
𝑐𝑜𝑠

𝜃

2
         (𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛)                                                                (3.7) 

𝜎3 = 0                         (𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠)                    (3.8) 

• Mode II 

In the sliding mode and in Cartesian coordinates the stress at the vicinity of the crack tip 

(i.e the crack tip stress field) is given by the following equations: 

𝜎𝑥𝑥 ≈
𝐾𝐼𝐼

√2𝜋𝑟
𝑠𝑖𝑛

𝜃

2
(2 + 𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

3𝜃

2
)  

𝜎𝑦𝑦 ≈
𝐾𝐼𝐼

√2𝜋𝑟
𝑠𝑖𝑛

𝜃

2
𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

3𝜃

2
                    (3.9) 

𝜏𝑥𝑦 ≈
𝐾𝐼𝐼

√2𝜋𝑟
𝑐𝑜𝑠

𝜃

2
(1 − 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
)  

as 𝑟 → 0, where 

𝐾𝐼𝐼 = 𝜏√𝜋𝑎 for an infinite plate with a central crack    (3.10) 
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and where 𝐾𝐼𝐼 is the mode II stress intensity factor. 

The crack tip displacement field is 

𝑢 ≈
𝐾𝐼𝐼

2𝜇
√

𝑟

2𝜋
𝑠𝑖𝑛

𝜃

2
(2 + 𝜅 + 𝑐𝑜𝑠𝜃)  

𝜐 ≈
𝐾𝐼𝐼

2𝜇
√

𝑟

2𝜋
𝑐𝑜𝑠

𝜃

2
(2 − 𝜅 − 𝑐𝑜𝑠𝜃)                               (3.11) 

as 𝑟 → 0. 

• Mode III 

Similarly, in the tearing mode the stress (i.e the crack tip stress field) is given by the 

following equations:  

𝜏𝑥𝑧 ≈ −
𝐾𝐼𝐼𝐼

√2𝜋𝑟
𝑠𝑖𝑛

𝜃

2
  

𝜏𝑦𝑧 ≈
𝐾𝐼𝐼𝐼

√2𝜋𝑟
𝑐𝑜𝑠

𝜃

2
                                      (3.12) 

as 𝑟 → 0, where 

𝐾𝐼𝐼𝐼 = 𝜏√𝜋𝑎 for an infinite plate with a central crack    (3.13) 

and where 𝐾𝐼𝐼𝐼 is the mode III stress intensity factor. 

The crack tip displacement field is 

𝑤 ≈
𝐾𝐼𝐼𝐼

𝜇
√

𝑟

2𝜋
𝑠𝑖𝑛

𝜃

2
                                (3.14) 

as 𝑟 → 0. 

For the three fracture modes, it is clear that there is a stress and strain singularity at the 

crack tip of the order of an inverse square root. 

 

 

 

 

 



Chapter Three                                                                           Fracture Mechanics and Fatigue 

 
   49 

3.2 Crack tip plasticity 

 

3.2.1 Plastic zone shapes [45] 

The stress field from linear elastic fracture mechanics (equations presented above) is 

unbounded at the crack tip, i.e., as the distance from the crack tip (𝑟) approaches zero 

there is no bound on the values attained by these stresses. However, infinite stresses do 

not occur in nature, and in reality, the material deforms plastically, so limiting the 

magnitude of the stress levels attained. In the region local to the crack tip, stress is 

constrained by a yield criterion appropriate to the material undergoing loading. If the size 

of this plastic region is very small compared to the crack length and the other dimensions, 

i.e. 𝑟 ≪ 𝑎 (small scale yielding), then LEFM still can be applied. But if the size of the 

plastic zone is large 𝑟 ≫ 𝑎 (large scale yielding), LEFM is no longer applicable and the 

EPFM should be applied. The size and the shape of the plastic zone can be derived by 

applying the singular principal stresses from Eqs (3.5) to (3.8) in one of the yielding 

criteria. Fig. 3.3 shows the plastic zone shape and size for mode I plane stress and plane 

strain.  

 

 

 

 

 

 

 

 

 

 

(b) Shape of plastic zone in plane stress 

and plane strain for mode I. 

 

(a) 3D shape of the plastic 

zone. 

 

Fig. 3.3.  Plastic zone shape [45].  
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This theory is derived from the maximum distortion energy theory. In this theory, the 

stresses at yield in the mechanical part are represented by the principal stresses as it is 

defined in the following mathematical formula: 

(𝜎1 − 𝜎2)
2 + (𝜎1 − 𝜎3)

2 + (𝜎3 − 𝜎1)
2 = 2𝜎𝑌

2                 (3.15) 

where, 𝜎1, 𝜎2, 𝜎3 are the principal stresses and 𝜎𝑌 is the material yield stress.  

By substituting Eq. (3.5) through (3.8) into (3.15) the von Mises yielding criterion can be 

expressed for mode I as 

𝐾𝐼
2

2𝜋𝑟
(
3

2
𝑠𝑖𝑛2𝜃 + ℎ(1 + 𝑐𝑜𝑠𝜃)) ≈ 2𝜎𝑌

2                  (3.16) 

From Eq. (3.16) the size of the plastic zone 𝑟𝑝 as it shown in Fig. 3.3(b) can be easily 

found: 

𝑟𝑝 ≈
1

4𝜋
(
𝐾𝐼

𝜎𝑌
)
2

(
3

2
𝑠𝑖𝑛2𝜃 + ℎ(1 + 𝑐𝑜𝑠𝜃))                (3.17) 

where ℎ =  1 for plane stress and ℎ =  (1 −  2𝜗)2 for plane strain. 

Setting 𝜃 =  0 gives the size of the plastic zone along the x-axis, which can be expressed 

as 

𝑟𝑝 ≈
ℎ

2𝜋
(
𝐾𝐼

𝜎𝑌
)
2

                    (3.18) 

 

3.2.2 Dugdale’s approximation [45, 91] 

A strip yield model in the plane stress condition was suggested by Dugdale [7] to estimate 

the plastic zone size. In this model, the plastic zone ahead of the crack tip is assumed to 

be a narrow strip of a length 𝑟. In the strip, the stress is assumed constant and has a value 

equal to the yield stress 𝜎𝑌 as shown in Fig. 3.4. The length of the plastic zone according 

to this assumption can be found by 

𝑟 =
𝜋

8
(
𝐾𝐼

𝜎𝑌
)
2

                    (3.19) 

with 

𝑎𝑒 = 𝑎 + 𝑟                    (3.20) 
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3.2.3 Crack tip opening displacement [45] 

If the size of the plastic zone is relatively large, then the use of linear elastic fracture 

mechanics is invalid, and a single material parameter 𝐾𝐼𝐶 is insufficient to describe the 

fracture process.  Nonlinear fracture mechanics is required, and one approach is the crack 

tip opening displacement (CTOD) model.  This approach makes use of the CTOD 𝛿𝑡 

along with the concept of a critical CTOD 𝛿𝑐, (a material parameter) which is relatable to 

fracture toughness. 

It is shown above that one possible way to reflect the effect of plasticity on a crack is by 

means of the effective-crack length 𝑎𝑒.  This approach is also applicable to a CTOD 

model in the form illustrated in Fig. 3.5. The elastic crack opening displacement 𝛿 is 

related to the displacement of the upper and lower face of the crack and can be 

approximated by 

𝛿 =
4𝜎

𝐸
√𝑎2 − 𝑥2                      (𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑)               (3.21) 

or more correctly 

𝛿 =
4𝜎

𝐸
√(𝑎 + 𝑟)2 − 𝑥2           (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑)                (3.22) 

where 𝛿 is the crack tip opening displacement,  𝜎 is the normal stress, 𝐸 is the elastic 

modulus. Finally, 𝑎, 𝑥 and 𝑟 are the crack length, the distance between the loading point 

and the centre of the crack, and the plastic zone length respectively. 

Fig. 3.4.  Dugdale plastic zone approximation [45]. 
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At the crack tip (𝑥 = 𝑎) the CTOD 𝛿𝑡 is defined and on setting 𝛿 = 𝛿𝑡 in Eq. (3.22) gives 

𝛿𝑡 =
4𝜎

𝐸
√(𝑎 + 𝑟)2 − 𝑎2 ≈

4𝜎

𝐸
√2𝑎𝑟                 (3.23) 

By applying the value of r from Eqs. (3.19) in Eq. (3.23) the CTOD defined for plane 

stress is 

𝛿𝑡 =
2𝐾𝐼

2

𝐸𝜎𝑌
           ( 𝐷𝑢𝑔𝑑𝑎𝑙𝑒′𝑠 𝑚𝑜𝑑𝑒𝑙)                 (3.24) 

Alternative mathematical models for 𝛿𝑡 exist (see [45]) and two popular models founded 

on Dugdale’s theory are  

𝛿𝑡 =
𝐾𝐼
2

𝐸𝜎𝑌
                        (𝐵𝑢𝑟𝑑𝑒𝑘𝑖𝑛)                  (3.25) 

and 

𝛿𝑡 =
(𝜅+1)(1+𝜗)𝐾𝐼

2

4𝜋𝐸𝜎𝑌
         (𝑅𝑖𝑐𝑒)                  (3.26) 

CTOD models gained traction in recent times because to a certain extent they overcame 

some of the limitations of the single parameter 𝐾𝐼 approach.  Moreover, as mentioned 

above, 𝛿𝑡 ( 𝛿𝑐 in the case of the cohesive model) can be related to the fracture toughness 

and plays a significant role in cohesive models, which are discussed in the following 

chapter.  

 

Fig. 3.5.  CTOD according to the virtual crack length criterion [45]. 
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3.3 Dynamic fracture 

It has been indicated by the elastodynamic fracture analysis that the stresses and 

displacements in a material loaded dynamically can differ greatly from the stresses and 

displacements when the material loaded statically. Dynamic loading results in higher 

stress levels in the vicinity of cracks and fracture can take place quickly providing 

insufficient time for yielding to develop. In most material, with dynamic loading the 

mechanical properties of the material such as the yield stress and the ultimate tensile 

strength increase with increasing the loading rate [91].  

 

3.3.1  Effect of strain rate [92] 

As the mechanical properties for some materials are highly affected by the loading rate, 

the stress-strain curve is significantly influenced by applied strain rate (see Fig. 3.6). From 

the figure it is apparent that with increasing rate some materials like mild steel become 

stronger since the flow stress is increasing. However the rupture strain decreases reducing 

the ductility of the material. Strain rate sensitivity is an important mechanical property to 

be determined, since it influences the dynamic behaviour of the material. The effect of 

strain rate on the material parameters that defines the stress-strain curve have been widely 

investigated; this includes the yield and tensile strength, rupture strain, energy dissipation 

and also the work hardening strength and coefficient. According to Larour [93] the true 

stress and not the engineering stress should be used to define the stress sensitivity and 

because of that only the yield stress can be directly used. However there are many 

attempts to investigate the strain rate sensitivity of the tensile strength for many materials, 

for example by using the concept of a dynamic increase factor (DIF) which represents the 

ratio between the dynamic and the quasi-static values of both the yield stress and the 

tensile strength [94]. 

The dependence of the flow stress on strain rate for some materials can be represented by 

[92] 

𝜎(𝜀̇) = 𝐶𝜀̇𝑚                    (3.27) 

where 𝜎(𝜀̇) is the rate dependent flow stress, C is the coefficient of strain hardening and 

m is strain rate sensitivity, which is typically a function of temperature in metals. 
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The rate of strain is defined as the derivative of the strain with respect to time, and it is 

measured in s-1. The flow stress of the material increases with increasing the strain rate. 

It is observed that at lower plastic strains the tensile strength is less affected by rate than 

flow stress and yield stress. The strain rate can be expressed in terms of the crosshead 

velocity. 

Then the engineering strain rate can be expressed as 

𝑒̇ =
𝑑𝑒

𝑑𝑡
=

𝑑

𝑑𝑡

(𝑙−𝑙𝑜)

𝑙𝑜
=

1

𝑙𝑜

𝑑𝑙

𝑑𝑡
=

𝜈

𝑙𝑜
                  (3.28) 

where 𝑒̇ is the engineering strain rate, e is the engineering strain, 𝑙 is the true length, 𝑙o is 

the original length and 𝜈 is the crosshead velocity.  

The true strain rate is 

𝜀̇ =
𝑑𝜀

𝑑𝑡
=

𝜈

𝑙
                    (3.29) 

The crosshead velocity is defined as 

𝜈 =
𝑑𝑙

𝑑𝑡
                     (3.30) 

 

 

 

 

 

 

 

 

 

 
Fig. 3.6.  Effect of strain rate on engineering stress-strain curve of mild steel [113]. 
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3.3.2 Material constitutive relationships at high strain rate 

The relations between stress and strain is described by constitutive equations in terms of 

the instantaneous values of strain, strain rate and temperature[92]. A mathematical 

equation is usually used to describe the flow behaviour; this equation has a number of 

material parameters that are required to be fed to the finite element solver to numerically 

simulate the material behaviour under a high loading rate [95]. There are two types of 

constitutive equations used in the literature to describe the flow behaviour of the materials 

under different applied strain rate and temperatures; the first one is based on the physical 

behaviour of the material. Although this method is more accurate, it requires the 

determination of a large number of material constants which is quite complicated. The 

second method is a phenomenological one which is based on experience and the 

experimental observations of the material behaviour. The phenomenologically based 

constitutive equations require fewer constants and is widely used in commercial finite 

element solvers [96], [97].  They are less flexible however because their constants are 

specific to the particular material and boundary conditions (applied strain rate and 

temperature ranges). 

In the literature, there are many constitutive models that have been used to simulate the 

loading rate effect on a wide range of materials and their results acceptably fit the 

experimental data. A review of the most common model will be illustrated here:   

The Cowper-Symonds [98] constitutive model can be considered among the simplest 

model that addressing the strain rate sensitivity in metallic alloys. However, it does not 

account for strain hardening and temperature effects.  This model is represented 

mathematically as 

𝜎𝑑𝑦𝑛

𝜎𝑠𝑡𝑎𝑡
= 1 + (

𝜀̇

𝐷
)

1

𝑞
         (3.31) 

where 𝜎𝑑𝑦𝑛 and 𝜎𝑠𝑡𝑎𝑡 are the dynamic and static yield stress, respectively; 𝜀̇ is the strain 

rate, 𝐷 and 𝑞 are material parameters obtained from tuning with experimental result.  

Second is the empirical model introduced by Johnson Cook [99] that relates the dynamic 

stress to the strain hardening, strain rate hardening and thermal softening, which is widely 

used in finite element solvers due to its simplicity. The model is represented 

mathematically as 



Chapter Three                                                                           Fracture Mechanics and Fatigue 

 
   56 

𝜎 = (𝐴 + 𝐵𝜀𝑝
𝑛)(1 + 𝐶 ln 𝜀̇∗)(1 − 𝑇∗𝑚)                     (3.32) 

𝜀̇∗ =
𝜀̇𝑝

𝜀̇𝑜
           (3.33) 

𝑇∗ =
𝑇−𝑇𝑟𝑜𝑜𝑚

𝑇𝑚𝑒𝑙𝑡−𝑇𝑟𝑜𝑜𝑚
                               (3.34) 

where 𝐴 is the yield stress at a reference strain rate, 𝐵, 𝐶, 𝑛 and 𝑚 are the strain hardening 

constant, the strain rate strengthening coefficient, the strain hardening coefficient and the 

temperature softening coefficient, 𝜀𝑝 is the accumulated plastic strain, 𝜀̇∗ is a 

dimensionless strain rate, 𝜀𝑜̇ is a reference strain rate and 𝑇, 𝑇𝑟𝑜𝑜𝑚 and 𝑇𝑚𝑒𝑙𝑡 are the 

working , room and melting temperatures, respectively. 

The Zerilli-Armstrong model [100, 101] is an example of a Physical model that is based 

on dislocation mechanics. This model has two forms depending on the material structure, 

one for the metals with a face centered cubic (fcc) structure and the other is for the metals 

with the body centered cubic (bcc) structure. 

The model for fcc metals is present as 

𝜎 = 𝐶𝑜 + 𝐶2𝜀
1 2⁄ exp (−𝐶3𝑇 + 𝐶4𝑇 ln 𝜀̇)      (3.35) 

While the relationship for the bcc metals is given as 

𝜎 = 𝐶𝑜 + 𝐶1 exp(−𝐶3𝑇 + 𝐶4𝑇 ln 𝜀̇) + 𝐶5𝜀
𝑛      (3.36) 

where 𝜀, 𝜀̇, 𝑇, are equivalent plastic strain, equivalent strain rate, absolute temperature 

respectively. 𝐶𝑜, 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5 and n are material constants. 

Some limitations on applying the previously mentioned equations (physical and 

phenomenological) to dynamic crack growth have been reported in the literature see [97, 

102–105]. 

 

3.4  Energy balance at the crack propagation [45, 91] 

Crack growth can be represented thermodynamically by investigating the energy balance 

of a crack growing at a slow rate. Consider a body containing an embedded crack 

subjected to external loading, which does a work on the body. As a result the change of 

this work will cause a change in the internal, kinetic and fracture energies of the body. 

The energy balance of such a body can be indicated from the energy conservation law as: 
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𝑊̇ = 𝐸̇ + 𝐾̇ + 𝛤̇                     (3.37) 

where 𝑊̇ is the rate of change in the work done by the applied forces with the change in 

the crack’s area, 𝐸̇, 𝐾̇ and 𝛤̇  are the rates of change in the internal, kinetic and fracture 

energies respectively, with the change in the crack’s area.  

In a ductile material, the internal energy can be divided into elastic stored energy 𝑈𝑒 and 

the dissipated energy as a result of plastic deformation 𝑈𝑝. So 

𝐸 = 𝑈𝑒 + 𝑈𝑝 → 𝐸̇ = 𝑈𝑒̇ + 𝑈𝑝̇                 (3.38) 

where 𝑈𝑒̇  and 𝑈𝑝̇ are the rate of change in the elastic energy and the dissipated energy 

in the plastic deformation, respectively. 

By substituting Eq. (3.38) in (3.37) we get 

𝑊̇ = 𝑈𝑒̇ + 𝐾̇ + 𝑈𝑝̇ + 𝛤̇                 (3.39) 

Eq. (3.39) indicates that the supplied work rate to the body is equal to the rate of change 

of stored elastic strain energy plus the change in kinetic energy plus the change in 

dissipated energy in plasticity and the formation of new surfaces. For slow crack 

propagation, the rate of change in the kinetic energy could be neglected so Eq. (3.39) 

takes the following form 

𝑊̇ − 𝑈𝑒̇ = 𝑈𝑝̇ + 𝛤̇                   (3.40) 

The right-hand side of Eq. (3.40) represent the rate of dissipated energy in the fracture 

process or it can be found in the literature as the fracture resistance 𝐺𝑖𝑐, while the left-

hand side depicts the energy release rate 𝐺𝑖 (where 𝑖 reffere to the loading mode I, II, III).  

𝐺𝑖 = 𝑊̇ − 𝑈𝑒̇                     (3.41) 

Griffith has found that the energy release rate 𝐺𝑖 that is required to form two sides of the 

crack surface in an elastic material is equal to material resistance to fracture 𝐺𝑖𝑐, 

mathematically speaking: 

𝐺𝑖𝑐 = 𝛤̇ = 2𝛾                      (3.42) 

In this case, the crack propagates when the energy release rate reaches this critical value 

𝐺𝑖𝑐, the condition for crack propagation is 

𝐺𝑖 ≥ 𝐺𝑖𝑐                               (3.43) 
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Eq. (3.42) represent the material resistance to fracture, which is a material property. The 

relation between the global strain energy release rate 𝐺𝑖 and the local stress intensity 

factor 𝐾𝑖, is significantly important. This relation for mode I crack growth can be formed 

as: 

𝐺𝐼 =
𝐾𝐼
2

𝐸
                   (𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠)                 (3.44) 

𝐺𝐼 =
(1−𝜗2)𝐾𝐼

2

𝐸
        (𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛)                 (3.45) 

Where: 𝐺𝐼 and 𝐾𝐼 are the mode I strain energy release rate and stress intensity factor 

respectively, 𝐸 is the modulus of elasticity, and 𝜗 is Poisson’s ratio. 

 

3.5  Cohesive-zone model (CZM) 

The cohesive model was proposed in an idealized form to overcome the unrealistic stress 

singularity at the crack tip and to simplify the process of complex crack growth. A CZM 

can be used to simulate damage and fracture in different types of material such as: metals, 

concrete, polymers and a lot of other materials [10, 106]. Simply, this model suggests that 

there is a cohesive-zone ahead of the crack tip, which is controlled by a cohesive force. 

The crack is simulated by means of two adjoined surfaces and a cohesive traction whose 

magnitude is controlled by a displacement discontinuity (i.e. a separation) through a 

traction separation law. When an external tensile load is applied to a body it will attempt 

to separate these surfaces and once the traction in the cohesive-zone reaches the value of 

the critical cohesive traction 𝜎𝑐, damage begins and a complete failure of the element 

happens when the separation between the two surfaces reaches a critical value 𝛿𝑐.  

The idea of the cohesive-zone dates back to the 1960s when Dugdale [7] introduced his 

strip-yield model as shown on the left side of Fig. 3.7. In this model, the stresses at the 

cohesive-zone were assumed constant and equal to the material yield strength 𝜎𝑌 and the 

material behaviour is assumed to be elastic-perfectly plastic. However, in reality, most 

materials used in industry have an elasto-plastic behaviour and the stresses at the 

cohesive-zone are much larger than the yield strength. Two years later, Barenblatt [8] 

studied the crack behaviour in brittle fracture, he used a cohesive law, which acts in a 

process zone, to represent the cohesive traction rather than a constant yield stress. In this 

cohesive law, the traction is related to the distance from the physical crack tip as shown 



Chapter Three                                                                           Fracture Mechanics and Fatigue 

 
   59 

on the right side of Fig. 3.7.  Cohesive laws subsequent to Barenblatt’s work relate 

traction to separation between the cohesive surfaces rather than the distance from the 

crack tip. In both previous models the critical traction in the process zone along the crack 

direction is a material property and is not dependent on the shape of the body or the type 

of the applied loads [10].  

 

 

 

 

 

 

 

 

The first application of the cohesive model as an embedded element in a finite element 

model was carried out by Hillerborg et al.[9] in his brittle fracture study. He proposed 

traction separation law in which the stress at the process zone is a function of separation, 

which formed the genesis of different type of TSLs that followed. 

3.6  Traction separation law (TSL) 

Many different types of TSLs can be found in the literature, examples of which are the 

polynomial, exponential, bilinear, and trapezoidal laws depicted in Fig. 3.8. The cohesive 

model is not a physical material model, but it is a phenomenological law that tries to 

capture the physics of the fracture process. Therefore, there is no physical evidence of the 

typical shape of the function that relates the traction to the separation. Generally, in all 

the traction separation laws the traction increases from zero with increasing displacement 

until it reaches the critical cohesive traction beyond which permanent material separation 

takes place. Separation increases up to final failure, which occurs at a prescribed critical 

separation value. 

 

 

Fig. 3.7.  Cohesive representation of crack: left hand side is Dugdale model, 

right hand side is Barenblatt model [6]. 
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The trapezoidal cohesive-zone model (TCZM) that is illustrated in Fig. 3.9 is adopted for 

this study because it provides reasonable flexibility arising from the extended parameter 

set {𝛿1, 𝛿2, 𝛿𝑐, 𝜎𝑐}.  This can be used for example to arrive at the linear cohesive-zone 

model (LCZM) on setting 𝛿1 = 𝛿2 = 0 or the bilinear cohesive-zone model (BCZM) with 

𝛿1 = 𝛿2 ≠ 0 and thus facilitates investigations into the influences of different traction 

separation curves. 

 

 

 

   

 

 

 

 

 
Fig. 3.9.  Standard trapezoidal traction-separation law. 

 

Fig. 3.8.  The widely used traction separation laws. 

 



Chapter Three                                                                           Fracture Mechanics and Fatigue 

 
   61 

For a pre-defined traction separation law (TSL), two cohesive parameters are usually 

sufficient to simulate the fracture process.  The most frequently used parameters in the 

literature are the cohesive-energy or toughness 𝐺𝑐 and critical cohesive traction 𝜎𝑐. The 

critical separation 𝛿𝑐 can be used in place of 𝐺𝑐 but does suffer the disadvantage of not 

being directly measurable.  It is important to appreciate that the cohesive approach is an 

approach that represents damage as a single-tearing crack, so 𝛿𝑐 is generally not 

physically observable.  The area under the traction separation curve represents the total 

dissipated energy (per unit area) and typically accounts for energy dissipated due to local 

plasticity and the energy that is required to form new surface.  The ability of the cohesive-

zone element to represent the local dissipation mechanism of plasticity is a particular 

advantage of the approach.  It provides for example elasto-plastic fracture-mechanics 

analysis for an elastic-bulk material with the assumption that plasticity is localised at the 

crack tip.  The extent of the plasticity is accounted in the TCZM by the two parameters 

𝛿1 and 𝛿2.  The toughness (fracture energy) 𝐺𝑐 is represented by the area under the traction 

separation curve and is represented mathematically as 

𝐺𝑐 = ∫ 𝜎(𝛿)𝑑𝛿
𝛿𝑐

0
                  (3-46) 

which for the trapezoidal traction-separation law shown in Fig. 3.9 gives 

𝐺𝑐 = (∫ 𝜎(𝛿)𝑑𝛿

𝛿1

0

+ ∫ 𝜎(𝛿)𝑑𝛿

𝛿𝑐

𝛿2

) + ∫ 𝜎(𝛿)𝑑𝛿

𝛿2

𝛿1

= (𝐴1 + 𝐴3) + 𝐴2 = Γ𝑜 + 𝐺
p = 

(
𝜎𝑐

2
𝛿1 +

𝜎𝑐

2
(𝛿𝑐 − 𝛿2)) + 𝜎𝑐(𝛿2 − 𝛿1) =

𝜎𝑐

2
(𝛿2 − 𝛿1 + 𝛿𝑐)             (3-47) 

where toughness 𝐺𝑐 is the total dissipated energy (i.e. energy dissipated per unit area), 

𝐺p  is the plastic dissipated energy (accounting for local plasticity), 𝛤𝑜  is the critical 

cohesive energy (accounting for surface formation), 𝜎 is the cohesive traction, 𝜎𝑐 is the 

critical cohesive traction, 𝛿1  is the separation at which 𝜎 first reaches  𝜎𝑐, 𝛿2 is the 

displacement at which damage is formally assumed to start, and finally 𝛿𝑐 is the critical 

cohesive separation, at which separation occurs. 

It is important to appreciate that although this relationship provides the fracture-energy 

(per unit area)  

𝛤𝑜 =
𝜎𝑐

2
(𝛿1 − 𝛿2 + 𝛿𝑐)                 (3-48) 
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and the plastic-energy (per unit area)  

𝐺p = 𝜎𝑐(𝛿2 − 𝛿1)                  (3-49) 

Identified with particular areas under the traction separation curve (see Fig. 3.9), this 

association is essentially a matter of choice.  The association of particular dissipation 

mechanisms with particular features of the traction separation curve is nothing more than 

a contrivance.  Note also that the region [0, 𝛿1] is primarily included to avoid an abrupt 

change in behaviour which can be problematic for some numerical solvers, however, this 

region is not strictly necessary and does not affect the analysis results. If the model 

undergoes unloading before reaching the critical stress, then the unloading-path taken is 

identical to the loading path. Beyond the cohesive critical stress however damage is 

permanent and consequently the element stiffness decreases. The new stiffness value 

is 𝐾 = 𝜎𝑚𝑎𝑥 𝛿𝑚𝑎𝑥 ⁄ , where 𝜎𝑚𝑎𝑥 and 𝛿𝑚𝑎𝑥 are the stress and separation at the onset of 

unloading, respectively.  The stress at unloading and reloading is evaluated from 𝜎(𝛿) =

𝐾𝛿 as depicted in Fig. 3.9. 

The traction separation law depicted in Fig. 3.9is represented mathematically as 

𝜎(𝛿) = 𝐾𝑐𝑜ℎ 𝛿 {

1                                              𝑖𝑓  0 < 𝛿 < 𝛿1  
(1 − 𝐷(𝛿))                             𝑖𝑓  𝛿1 < 𝛿 < 𝛿𝑐
0                                              𝑖𝑓  𝛿 ≥ 𝛿𝑐          

                            (3-50) 

where 𝜎(𝛿) is the cohesive traction, 𝐾𝑐𝑜ℎ represents the cohesive stiffness, the value of 𝛿1 

should be very small and 𝛿2 should be close to 𝛿𝑐  as advised by Scheider et al. [56] and 

they set as. 

𝛿1 =
𝜎𝑐

𝐾𝑐𝑜ℎ
                     (3.51) 

𝛿2 = 0.75 ×  𝛿𝑐                    (3.52) 

In the cohesive model, the mechanism of crack propagation in ductile material as the one 

used in this work is void nucleation, growth and coalescence. The damage variable 𝐷(𝛿) 

is a damage parameter that represent the ratio between the damage area 𝐴𝑑 to the original 

reference area 𝐴𝑒 [71]. In the present configuration damage can be represented by the 

relationship 

𝐷(𝛿) =
𝐴𝑑

𝐴𝑒
= {

1 −
𝛿1

𝛿
                        𝑖𝑓  𝛿1 ≤ 𝛿 < 𝛿2

1 −
𝛿1(δc−𝛿)

𝛿(δc−δ2) 
             𝑖𝑓  𝛿2 ≤ 𝛿 ≤ 𝛿𝑐

     (3.53) 
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If 𝛿1 = 𝛿2 = 𝛿𝑜 we will get the bilinear cohesive model, Hence 

𝛤0 =
1

2
𝜎𝑐𝛿𝑐                    (3.54) 

𝐷(𝛿) =
𝐴𝑑

𝐴𝑒
= 1 −

𝛿𝑜(𝛿𝑐−𝛿)

𝛿(𝛿𝑐−𝛿𝑜) 
            (3.55)

  

 

3.7  Fatigue mechanism 

 

3.7.1 Introduction 

Fatigue is the phenomenon of accumulated damage, which is caused by repeated cyclic 

loading. When mechanical parts are subjected to a cyclic loading, an accumulation of 

material dislocations will occur at the surface that leads to the initiation of micro cracks. 

One of these micro cracks will propagate to a macro crack which will propagate to reach 

a critical length, then the final fracture happens. It is well known that a fatigue crack 

grows only in a plastically deformed region. A deep understanding of the fatigue crack 

process is required to identify the material parameters that affect the fatigue life. In 

general, fatigue crack processes could be divided into three parts: crack initiation, crack 

propagation (short and long crack propagation) and final fracture. 

 

3.7.2 Fatigue crack initiation 

Fatigue cracks generally initiate at the surface or at the grain boundaries along the 

localised maximum shear direction. Fatigue cracks initiate when the material is subjected 

to cyclic loads as a result of dislocation movement. For instance, if slip occurs in the 

loading part of the load cycle, this slip will lead to strain hardening in the slip band with 

increasing the load as a result, when the material goes under the unloading part of the 

load cycle this slip band will face a greater shear stress but in the opposite direction. A 

similar process will happen in the next load cycles, and the accumulation of these slip 

bands will lead to a stress concentration point (initial crack that could propagate later on) 

as shown in Fig. 3.10(a to d). This is the ideal process since the material is not always 

homogeneous and in fact, could include defects such as voids and/or notches which lead 
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to stress concentrations. In addition, the material surface roughness could play a similar 

role and lead to crack initiation [106, 107].   

 

3.7.3 Fatigue crack propagation 

Once a micro-crack initiates, and with continuous cyclic loading, the crack starts to 

propagate through a grain boundary and in the maximum shear plane. As shown in Fig. 

3.10 the crack growth period can be divided into two stages. The first stage is the 

propagation of the micro-cracks (short crack), in this stage, the cracks propagate in the 

local shear stress direction for a specific short length approximately two grains. The slip 

characteristics, the grain size, the direction and the load level have a significant effect on 

the crack tip plasticity at this stage because the crack length is relatively small compared 

to the microstructure of the material. In general, when a crack tip reaches a grain boundary 

the growth rate decreases, however, it will speed up again as soon as the crack passes 

through the boundary as shown in Fig. 3.11. The second stage is the propagation of the 

macro-cracks (long crack), in this stage, the crack tends to propagate in a direction normal 

to the global tensile stress direction as shown in Fig. 3.10. At this stage, the plastic zone 

ahead of the crack tip is much larger than the material grain size, which makes the crack 

growth at this stage less sensitive to the material microstructure than the first stage [106, 

107].  

In many engineering structures, fatigue crack growth in both the first and second stage 

represents the largest part of the total material life. Fig. 3.12 shows a diagram for the 

crack length versus the number of cycles, the crack propagation stages are represented by 

the useful life of the mechanical part, which is about 70% of the total life. Therefore, it is 

important to accurately predict the fatigue crack growth rate in these stages to get a good 

estimation of the total fatigue life. In the diagram 𝑎𝑖 denotes a very small crack that is 

difficult to find experimentally, but it is large enough to apply fracture-mechanics 

methods. Cracks with this magnitude of length (𝑎𝑖) usually exists in mechanical parts as 

a result of surface roughness or defects during the production process, while 𝑎1 denotes 

the minimum length that can be detected experimentally 
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 Fig. 3.11.  The effect of grain boundary on crack growth rate 

[106]. 

Fig. 3.10.  Fatigue crack initiation and propagation process [45]. 
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A large effort has been done to understand the behaviour of fatigue crack growth 

involving a remarkably large number of fatigue experiments to study fatigue crack growth 

of pre-cracked standard test specimens. From the results of these experiments, a 

relationship between the crack extension and the number of loading cycles required for 

this extension is obtained.  In this relation, the change in the number of cycles is related 

to change in crack length through the change in the stress intensity factor (∆𝐾). Usually 

from the experimental results a diagram between the natural log of the crack growth rate 

(𝑑𝑎/𝑑𝑁) and the natural log of ∆𝐾 is plotted. A typical (𝑑𝑎/𝑑𝑁) − ∆𝐾 diagram is shown 

in Fig. 3.13, where the curve can be divided into three parts. Region I represents the near 

threshold region for long cracks, in this region the crack growth rate decreases sharply 

with reducing ∆𝐾  to reach a threshold value ∆𝐾𝑡ℎ below which no crack propagation is 

observed. 

Region II is the steady crack growth region, or so-called Paris region, in which a linear 

relation between log (𝑑𝑎/𝑑𝑁) and 𝑙𝑜𝑔(∆𝐾) is observed. Reference [4] suggested a 

formula to represent the crack growth rate in this region, i.e. 

𝑑𝑎

𝑑𝑁
= 𝐴(∆𝐾)𝑛                     (3.56) 

Fig. 3.12.  Ideal 𝑎 − 𝑁 curve for constant amplitude loading [91]. 
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where A is a constant that is obtained experimentally and assumed to be a material 

property, n is a constant representing the slope of the curve.   

Finally region III, is an unstable crack growth region. In this region the microstructure, 

mean stress and the thickness have a large influence on the crack growth. The dominant 

fracture mode in this region is ductile tearing and is essentially governed by the maximum 

stress intensity factor which should be equal to the critical stress intensity factor 𝐾𝑐. A 

transition curve was introduced by Forman et al. [36] to account for the material 

behaviour in this region: 

 
𝑑𝑎

𝑑𝑁
=

𝐵∆𝐾𝑚

[(1−𝑅)𝐾𝑐−∆𝐾]
 

where 𝐵 and 𝑚 are constants that are obtained experimentally. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13.  Log-log scale for 𝑑𝑎/𝑑𝑁 -∆𝐾 curve [45]. 
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Chapter 4: Frequency-dependence of fatigue crack growth in 

304 stainless-steel 
 

4.1  Introduction 

Austenitic stainless-steel 304 is widely used in many structural and mechanical 

applications, where toughness and resistance to corrosion are required, such as 

automotive industries, power plants and pressure vessels [85]. The austenite phase in this 

austenitic stainless-steel is unstable and easily transforms to martensite under plastic 

deformation. Although this feature makes this type of stainless-steel a very good 

candidate for many applications, engineers need to be aware that in the case of cyclic-

loading applications the rate at which fatigue cracks grow can vary significantly with the 

applied load frequency. 

The martensite content affects the strength of the austenitic stainless-steel, the formation 

of this martensite depends on the strain amplitude, temperature, grain size and the number 

of loading cycles for the case of fatigue [82, 83]. As the austenitic-martensitic phase 

transformation depends on the plastic deformation, which in turn is dependent on strain 

rate, it follows that the frequency at which the cyclic load is applied can have an effect 

on the martensitic content and consequentially on fatigue crack-growth rates. Although 

the meta-stable austenitic stainless-steel type 304 is widely used in many applications, 

there is limited work on the effect of frequency on the fatigue crack growth in this 

material. Exceptions are references [89] and [90], where the influence of temperature is 

discussed.   

This chapter is addressing the effect of frequency on fatigue crack growth in stainless-

steel type 304 in air environment at room temperature. The details about the material used 

for this work is presented in Section 4.2 along with the specimen preparation and the test 

procedure. Section 4.3 is focusing on the results and the discussion. Finally, the key point 

of the finding of this study is summarised in Section 4.4. 

 

4.2   Experimental details 

A meta-stable austenitic stainless-steel (AISI type 304) with the chemical composition 

and the mechanical properties shown in Table 4.1 and 
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Table 4.2 as provided from the supplier has been used for the investigation of the 

frequency effect on the fatigue crack growth rate. 

Table 4.1 Chemical composition (wt%). 

 

 

Table 4.2  Mechanical properties. 
 

 

 

 

 

The true stress-plastic strain curve done by a tension test is tabulated in Table 4.3. 

Table 4.3 True stress, true strain data 
 

C Si Mn Ni Cr N S P 

0.021 0.35 1.48 8.03 18.13 0.072 0.004 0.033 

Yield 

strength 

(MPa) 

Tensile 

strength 

(MPa) 

Elongation 

after 

fracture 

(%) 

Hardness 

Rp 

0.2% 

Rp 

0.1% 

HRB 

305 340 637 58 85 

N True stress (Pa) Plastic strain N True stress (Pa) Plastic strain 

1 3.4e+08 0 23 8.37367e+08   0.323344 

2 3.41387e+08  0.0380824 24 8.63451e+08   0.340508 

3 3.63185e+08 0.0450476 25 8.87491e+08   0.356932 

4 3.90833e+08   0.056557 26 9.16494e+08    0.37553 

5 4.10383e+08  0.0656893 26 9.37995e+08   0.389663 

6 4.24421e+08  0.0727229 28 9.56103e+08   0.401527 

7 4.44926e+08  0.0837219 29 9.833e+08   0.418983 

8 4.7178e+08   0.098244 30 1.01079e+09   0.436213 

9 4.91104e+08   0.109111 31 1.04513e+09   0.456581 

10 5.08784e+08    0.11944 32 1.07733e+09   0.476538 

11 5.27553e+08   0.130156 33 1.09613e+09   0.488773 

12 5.57215e+08   0.145581 34 1.13266e+09   0.510135 

13 5.83168e+08   0.160956 35 1.17747e+09   0.536967 

14 6.11187e+08   0.178188 36 1.22055e+09   0.562212 

15 6.30968e+08   0.190282 37 1.25305e+09   0.582094 

16 6.58568e+08   0.207225 38 1.28787e+09   0.603288 

17 6.79015e+08   0.219638 39 1.31635e+09   0.620892 

18 7.01064e+08    0.23378 40 1.34472e+09   0.640303 

19 7.33421e+08   0.254575 41 1.365e+09   0.661843 

20 7.60731e+08   0.272635 42 1.32432e+09   0.679986 

21 7.89419e+08   0.291441 43 1.26808e+09   0.692747 

22 8.11416e+08   0.306511 44 1.18279e+09   0.697458 
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An electrical discharge machine (EDM) was used to cut the specimens from a stainless-

steel bar (0.003×0.04×4 m). The shape and the dimensions of the specimen are shown in 

Fig. 4.1(a). The specimens were finished by using different wet silicon carbide papers 

(320, 600, 1200, 2500, and 4000) and then polished with a diamond solution (9µm). The 

specimens were marked with 1mm spacing marks by using a laser marker machine as 

shown in Fig. 4.2. After that, stress relieving process (heating to 400±5ºC for 20 minute 

and left to cool in the oven) has been done to remove residual stress. The specimens were 

then polished with a diamond solution (6µm) to remove any oxide and to achieve a very 

fine surface as shown in Fig. 4.1(b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1. Fatigue test specimen. 

3.00 

1 mm spacing 

marks 

 

(a) Specimen dimensions (mm) 

(b) Specimen after Polishing 

Fig. 4.2. The laser marker. 
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Fatigue tests were performed using an Instron 8801 servo-hydraulic fatigue testing 

machine rated with a maximum load capacity of 100 kN as shown in Fig. 4.3.  Five 

loading frequencies with a loading ratio 𝑅 = 0 {50, 30, 5, 0.1, 0.05Hz} and three with 

loading ratio 𝑅 = −1 {30, 0.1, 0.05Hz} were tested with a sigmoidal cyclic load that 

applied with 10 kN maximum load. The fatigue specimens include an edge crack that was 

manufactured to ASTM standard E647. It should be mentioned that the fatigue tests have 

been interrupted from time to time to take a picture at each side of the specimen and write 

down the number of cycles associated with these pictures. To get a clear Image of the 

crack, a special light illuminator as shown in Fig. 4.4 was used to illuminate any reflection 

from the reflective surface of the specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.4. The light illuminator. 

Fig. 4.3. Fatigue test machine. 
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The crack length was measured using a high-resolution camera (see Fig. 4.5) and analysed 

using an image processing program. By correlating the number of pixels in the fatigue 

crack with the number of pixels in the 1mm spacing marks as shown in Fig. 4.6, the crack 

length was measured at each side of the specimen, and the average was used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3  Results and discussion 

The results of testing 20 specimens (14 at 𝑅 = 0 three specimens at loading frequencies 

of (0.05, 0.1, 5, 30Hz) and one specimen at (0.5 and 50Hz) in addition to 6 at 𝑅 = −1 

two at each loading frequency) demonstrate that the loading frequency has an effect on 

the crack-growth rate of the austenitic stainless-steel 304 at room temperature. It is clear 

from Fig. 4.7 and 4.8 that the crack growth rate decreases and the fatigue life increases 

with increasing the frequency.  This effect is only observed at frequencies lower than 

around 5Hz. Although it is recognised that cracks can grow faster at lower frequencies 

Fig. 4.5. High resolution camera. 

 

Fig. 4.6. Crack length measurement. 
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due to microstructural effects or other damage mechanisms such as creep or corrosion 

[89, 90], creep and corrosion are unlikely to occur in air at room temperature for the 

material under consideration. It is conjectured therefore that the phase transformation 

from austenite to martensite could be the key factor influencing this behaviour. For the 

stainless steel 304, the Austenite is unstable and easily undergoes a phase transformation 

to martensite with plastic deformation (strain induced martensite). This transformation 

depends not only on the plastic strain but also on the temperature, see Fig. 4.9. 

Furthermore, it can be concluded from the figure that the lower the temperature, the 

higher the transformation is. It is known that for each temperature there is a specific 

critical plastic strain, below which no phase transformation occurs [84]. 

Fig. 4.8 and Table 4.4 to 4.17 shows the crack length-number of cycle curves and data 

for different loading frequencies at 𝑅 = 0. From the result one can see that at lower 

frequency the crack grows faster and with increasing the frequency the crack growth 

slows down, this behaviour has been noticed up to a frequency of 5Hz after which the 

effect of the frequency on the crack growth rate will be almost constant.  This behaviour 

can be explained as with the very low frequency there is no phase transformation to 

martensite or it is very small. But with increasing the frequency the applied strain rate 

increases, which lead to an increase in the plastic deformation and as a result an increase 

in the martensite percentage, hence an increase in the material strength and a greater 

resistance to the crack growth. The reason why the frequency effect is not seen above 5Hz 

is down to the martensitic content reaching its saturation limit for the specific temperature 

despite plastic strain increasing (e.g. from Fig. 4.9). One can see that the maximum 

percentage of martensite at 23 °C is about 30% so after this point increasing the frequency 

will not cause any change or a negligible change in the martensite percentage even if the 

plastic strain is increasing. In this study, the temperature at the tip area (measured by 

using the Fluke 53 Series II contact thermometers) was 25-28°C for the steady crack 

growth period when the load applied at 𝑅 = 0 (see Fig. 4.10) 

The result of this study is in agreement with the result in reference [87], where no 

noticeable difference was observed in the fatigue behaviour between a frequency of 90Hz 

and 20KHz.  However, it is not completely in agreement with the result of reference [90], 

since they contend the crack growth decreases with increasing the frequency only if an 

isothermal process is applied because otherwise, the self-heating inhibit the phase 

transformation process. 
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This study shows that the crack growth decreases with increasing the loading frequency 

as a result of the increase in the martensitic content. It is clear from Fig. 4.10 that for the 

case of loading at 𝑅 = 0 and 𝑅 = −0.33 the increase in temperature is negligible for a 

crack length up to 8 mm and after this length the temperature starts to increase slightly. 

Although, at 𝑅 = −1 the temperature is higher and increased gradually up to a length of 

5mm followed by a large increase in temperature up to 160°C at the point of failure, the 

crack still grows at a faster rate at a lower frequency as shown in Fig. 4.11 and Table 4.18 

to 4.23.  The self-heating process will not lead to a faster crack growth at a higher 

frequency since even if the martensitic content is constant, the crack will grow slower at 

a higher frequency because of the strain rate effect. The result of this study has proven 

that the self-heating of the specimen happens only in the case of a reversed loading 

leading to an increase in the temperature, which is not significant but it could inhibit the 

martensitic transformation as mentioned in  [90]. However, this process will not lead to a 

faster crack growth at a higher frequency, since even if the martensite content is constant, 

the crack will grow slower at a higher frequency as a result of the strain rate effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7. Frequency effect on the fatigue life. 
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Fig. 4.9. Martensite percentage as a function of temperature and plastic strain [87].   

 

 

   

 

Fig. 4.8. Crack length-number of cycle curve as a function of frequency 

at 𝑅 = 0. 
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Fig. 4.10. The crack tip temperature as a function of the crack 

length. 

Fig. 4.11. Crack length - number of cycles curve at 𝑅 = −1. 
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Table 4.4  Experimental data at 𝑅 = 0 and frequency 0.05Hz for specimen A. 

 

 

 

 

 

 

 

 

 

 

Table 4.5  Experimental data at 𝑅 = 0 and frequency 0.05Hz for specimen B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 

cycles 

Crack extension 

(mm) 

Displacement 

Amp. (mm) 

3000 0.2092 0.0565 

4000 0.42157 0.056 

6752 0.90695 0.0565 

7706 1.11941 0.0588 

8430 1.294 0.059 

11133 1.9884 0.0604 

14508 2.78534 0.062 

15735 3.12243 0.064 

   

   

26030 failed  

Number of 

cycles 

Crack extension 

(mm) 

Displacement 

Amp. (mm) 

1329 0.04366 0.056 

4194 0.47185  

5584 0.72645 0.0565 

8503 1.309835 0.0589 

9881 1.60325 0.0592 

12781 2.410357 0.0605 

14124 2.85778 0.0615 

17068 4.064168 0.0648 

18272 4.74512 0.065 

19672 5.31893 0.0665 

22583 6.618 0.07 

24139 7.7795 0.075 

26743 12.2319 0.082 

27142 failed  
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Table 4.6  Experimental data at 𝑅 = 0 and frequency 0.05Hz for specimen C. 

 

 

 

 

 

 

 

 

 

 

Table 4.7  Experimental data at 𝑅 = 0 and frequency 0.1Hz for specimen A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 

cycles 

Crack extension 

(mm) 

Displacement 

Amp. (mm) 

3165 0.04366 0.0565 

6830 0.47185 0.0565 

9080 0.72645 0.0589 

11942 1.309835 0.0604 

16188 1.60325 0.643 

19915 2.410357 0.067 

21878 2.85778 0.069 

23815 4.064168 0.075 

25600 4.74512 0.079 

26367 failed  

Number of 

cycles 

Crack extension 

(mm) 

Displacement 

Amp. (mm) 

2138 0.0372 0.0565 

3309 0.18724 0.0565 

5449 0.41764 0.056 

8000 0.75769 0.0565 

10750 1.15784 0.0568 

13260 1.5044 0.057 

15875 1.901525 0.0586 

18650 2.32902 0.059 

24175 3.1676 0.062 

27106 3.77452 0.0643 

29700 4.4889 0.066 

35515 6.6006 0.0774 

38250 8.8097 0.081 

40766 failed  
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Table 4.8  Experimental data at 𝑅 = 0 and frequency 0.1Hz for specimen B. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.9  Experimental data at 𝑅 = 0 and frequency 0.1Hz for specimen C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 

cycles 

Crack extension 

(mm) 

Displacement 

Amp. (mm) 

2255 0.03422 0.0565 

4760 0.2898 0.056 

7165 0.5602 0.0566 

13110 1.18776 0.0569 

15800 1.5805 0.0583 

21810 2.5564 0.060 

24162 3.051 0.0623 

27000 3.69015 0.065 

32775 5.5463 0.07 

35550 6.9287 0.077 

38382 8.6583 0.0805 

40870 11.9626 0.09 

41539 failed  

Number of 

cycles 

Crack extension 

(mm) 

Displacement 

Amp. (mm) 

2145 0 0.056 

3747 0.17394 0.0565 

8025 0.5635 0.0565 

10612 0.89108  

12255 1.0684 0.0568 

16610 1.61475 0.058 

18865 1.90198 0.0588 

21440 2.32596 0.059 

23675 2.83581 0.062 

25600 3.2985 0.0645 

29990 4.39026 0.066 

33650 5.7854 0.075 

38945 10.8735 0.085 

40129 failed  
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Table 4.10  Experimental data at 𝑅 = 0 and frequency 0.5Hz for specimen B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 

cycles 

Crack extension 

(mm) 

Displacement 

Amp. (mm) 

3000 0.07134 0.0565 

4000 0.1247 0.056 

5000 0.1841 0.0345 

6000 0.25724 0.0565 

8700 0.465 0.0576 

10000 0.5661 0.0577 

12002 0.87263 0.0588 

13842 1.0933 0.0365 

16465 1.4384 0.0595 

19000 1.7989 0.06 

22056 2.2798 0.0604 

23000 2.45903 0.0619 

25000 2.8453 0.0628 

26320 3.0935 0.0634 

28770 3.5655 0.064 

30750 3.9877 0.0643 

32850 4.50913 0.065 

34210 4.8931 0.0658 

37580 5.88915 0.07 

40280 6.8598 0.074 

43000 8.451 0.0776 

45000 10.6607 0.09 

45989 12.6759 0.104 

46789 failed  
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Table 4.11  Experimental data at 𝑅 = 0 and frequency 5Hz for specimen A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 

cycles 

Crack extension 

(mm) 

Displacement Amp. 

(mm) 

3329 0.0598 0.056 

6361 0.30583 0.0565 

9383 0.4613 0.0569 

12434 0.64735 0.0573 

17465 0.9668 0.058 

20500 1.2369 0.0588 

24500 1.6252 0.0592 

28500 2.1383 0.0605 

32500 2.71557 0.0619 

36500 3.3448 0.0623 

40500 4.1092 0.065 

42500 4.57207 0.0666 

44000 4.9858 0.0675 

45500 5.44015 0.0685 

47000 5.9332 0.07 

48500 6.5395 0.0723 

49500 7.0833 0.0728 

50500 7.5795 0.0755 

51500 8.19283 0.079 

52500 8.92488 0.0835 

53500 9.9854 0.09 

54500 11.5408 0.1 

55500 14.449 0.1146 

55507 failed  



Chapter Four             Frequency-Dependence of Fatigue Crack Growth in 304 Stainless-Steel 

 
   82 

Table 4.12  Experimental data at 𝑅 = 0 and frequency 5Hz for specimen B. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 

cycles 

Crack extension 

(mm) 

Displacement 

Amp. (mm) 

3000 0.0539 0.0565 

5000 0.17823 0.0565 

7000 0.31956 0.0585 

9000 0.45248 0.057 

11000 0.59755 0.057 

14000 0.85074 0.06 

17000 1.0743 0.0585 

20000 1.32173 0.0586 

23000 1.57541 0.0595 

26000 1.87623 0.0597 

29000 2.30175 0.0605 

32000 2.69462 0.062 

34000 2.99497 0.0619 

36000 3.32591 0.063 

38000 3.6834 0.063 

40000 4.09493 0.0635 

42000 4.56811 0.0665 

45000 5.42303 0.0687 

47000 6.1398 0.069 

48000 6.5404 0.07 

49000 6.98793 0.072 

51000 8.09685 0.0775 

52000 8.86163 0.08 

53000 9.96283 0.0895 

54000 11.71904 0.1058 

54803 Failed  
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Table 4.13  Experimental data at 𝑅 = 0 and frequency 5Hz for specimen C. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.14  Experimental data at 𝑅 = 0 and frequency 30Hz for specimen A. 

Number of 

cycles 

Crack extension 

(mm) 

Displacement 

Amp. (mm) 

3000 0.08 0.0565 

6000 0.2796 0.057 

9000 0.45447 0.057 

12000 0.655 0.0575 

15000 0.9185 0.058 

18000 1.1682 0.0585 

21000 1.4531 0.0595 

24000 1.7699 0.06 

33000 2.866 0.0621 

38000 3.697 0.0625 

43000 4.425 0.0666 

48000 5.6331 0.069 

53000 7.9327 0.0885 

56558 Failed  

Number of 

cycles 

Crack extension 

(mm) 

Displacement 

Amp. (mm) 

1823 0.0379 0.0555 

3105 0.133676 0.0565 

4598 0.25525 0.056 

6656 0.40233 0.0565 

8794 0.5818 0.0586 

10886 0.74837 0.057 

13027 0.94003 0.058 

15203 1.118464 0.0585 

16771 1.26513 0.0584 

18808 1.45702 0.0585 

20978 1.6868 0.0587 

24034 2.01194 0.0595 

27103 2.3895 0.0595 

30130 2.80326 0.06 

33204 3.2393 0.0623 

36274 3.74035 0.0635 
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Table 4.15  Experimental data at 𝑅 = 0 and frequency 30Hz for specimen B. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39388 4.3858 0.0645 

42376 5.0895 0.0667 

43943 5.57483 0.069 

45900 6.3186 0.07 

47969 7.2779 0.0712 

49521 8.18106 0.072 

51116 9.625 0.085 

52935 13.763 0.124 

53046 failed  

Number of 

cycles 

Crack extension 

(mm) 

Displacement Amp. 

(mm) 

2199 0.06377 0.0565 

3464 0.16289 0.0565 

5019 0.27327 0.0565 

7218 0.44984 0.0566 

9311 0.62155 0.0567 

10357 0.7049 0.057 

11405 0.7899 0.0575 

12461 0.87735 0.0579 

14604 1.07687 0.0582 

16247 1.22128 0.0585 

18283 1.41219 0.0585 

20443 1.63856 0.0588 

23010 1.9129 0.059 

26073 2.27186 0.0595 

29150 2.64886 0.0595 

32179 3.08721 0.0618 

37330 3.95739 0.064 

41348 4.8246 0.0668 

43422 5.40082 0.069 

45473 6.12872 0.071 

47458 7 0.0715 

48981 7.8252 0.072 

50582 9.0609 0.0815 

52200 11.51901 0.0995 

52951 failed  
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Table 4.16  Experimental data at 𝑅 = 0 and frequency 30Hz for specimen C. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.17  Experimental data at 𝑅 = 0 and frequency 50Hz for specimen A. 

Number of 

cycles 

Crack extension 

(mm) 

Displacement Amp. 

(mm) 

2762 0.0511 0.056 

4305 0.18129 0.056 

6397 0.34497 0.0565 

8515 0.524668 0.0567 

11016 0.70742 0.0571 

15016 1.06744 0.058 

19113 1.484538 0.0585 

23170 1.972566 0.059 

27271 2.49484 0.0595 

31370 3.13588 0.0625 

35491 3.86002 0.0642 

39579 4.69489 0.0655 

43737 5.72191 0.0689 

45943 6.45776 0.07 

47498 7.00005 0.0715 

49137 7.746132 0.0725 

50722 8.72715 0.0795 

51762 9.69082 0.082 

52806 11.2682 0.093 

53742 Failed  

Number of 

cycles 

Crack extension 

(mm) 

Displacement Amp. 

(mm) 

3203 0.0386 0.0565 

4453 0.0938 0.0545 

6644 0.183 0.0565 

8755 0.3298 0.0567 

11216 0.5037 0.057 

14123 0.70274 0.0577 

17181 0.9459 0.058 

21335 1.34357 0.0589 

25477 1.84724 0.096 

29578 2.41653 0.0597 
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Table 4.18  Experimental data at 𝑅 = −1 and frequency 0.05Hz for specimen A. 

 

 

 

 

 

 

 

 

Table 4.19  Experimental data at 𝑅 = −1 and frequency 0.05Hz for specimen B. 

 

 

 

 

 

 

 

 

 

33692 3.11952 0.0622 

36803 3.6904 0.0625 

39952 4.3405 0.0649 

43087 5.17528 0.069 

46339 6.259 0.07 

49542 7.7126 0.073 

52790 10.566 0.0885 

54039 13.19965 0.109 

54364 failed  

Number of 

cycles 

Crack extension 

(mm) 

Displacement Amp. 

(mm) 

1000 0.828135 0.11710 

1950 1.629635 0.11906 

2950 2.43111 0.12073 

3850 3.28342 0.12342 

4827 4.418485 0.1285 

6500 6.747445 0.14766 

7627 9.784707 0.17625 

7831 failed  

Number of 

cycles 

Crack extension 

(mm) 

Displacement 

Amp. (mm) 

625 0.559715 0.11559 

1625 1.459025 0.1200 

2890 2.52184 0.12028 

4035 3.47285 0.12508 

5106 4.7094 0.12989 

6035 6.122635 0.1376 

6845 7.6163 0.14829 

7883 failed  
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Table 4.20  Experimental data at 𝑅 = −1 and frequency 0.1Hz for specimen A. 

 

 

 

 

 

 

 

 

 

Table 4.21  Experimental data at 𝑅 = −1 and frequency 0.1Hz for specimen B. 

 

 

 

 

 

 

 

 

Table 4.22  Experimental data at 𝑅 = −1 and frequency 30Hz for specimen A. 

 

 

 

 

 

 

 

 

Number of 

cycles 

Crack extension 

(mm) 

Displacement Amp. 

(mm) 

1000 0.837165 0.11737 

2000 1.657805 0.11878 

2705 2.204065 0.12048 

3590 2.943435 0.12249 

3925 3.204615 0.1245 

5000 4.081805 0.12698 

6011 5.53055 0.1331 

7011 7.14705 0.1353 

8011 9.83814 0.1653 

9011 failed  

Number of 

cycles 

Crack extension 

(mm) 

Displacement Amp. 

(mm) 

1000 0.89893 0.11842 

2000 1.77788 0.11976 

2960 2.62379 0.12189 

4090 3.62021 0.12536 

5555 4.932815 0.12897 

6510 5.881319 0.13352 

7510 7.01639 0.14011 

8510 8.762278 0.15923 

9050 failed  

Number of 

cycles 

Crack extension 

(mm) 

Displacement 

Amp. (mm) 

2000 1.350663 0.1157 

4000 2.507538 0.11739 

6000 3.73666 0.12093 

8000 5.167515 0.12585 

10000 7.038468 0.13517 

11660 failed  
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Table 4.23  Experimental data at 𝑅 = −1 and frequency 30Hz for specimen B. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12 and Fig. 4.14 depict the relation between the crack growth rate and the stress 

intensity factor range ∆K at different loading frequencies for the tests when 𝑅 = 0 and 

𝑅 = −1, respectively. The value of ∆𝐾  was evaluated as recomended in the ASTM E 

647 - 05 [108]from 

∆𝐾 = [∆𝑃/𝐵√𝑤]𝐹(𝑎 𝑤⁄ )                      (4.1) 

where ∆𝐾 and ∆𝑃 are the stress intensity factor range and the load range respectively, 𝐵, 

𝑤 and a are the specimen thickness, the specimen width and the crack length.  𝐹(𝑎 𝑤⁄ ) is 

a shape function evaluated according to ASTM E 647 - 05 [108] and is of the form 

𝐹(𝑎 𝑤⁄ ) = 𝛼1 2⁄ [1.4 + 𝛼][1 − 𝛼]−3 2⁄ 𝐺                       (4.2)   

𝐺 = 3.97 − 10.88𝛼 + 26.25𝛼2 − 38.9𝛼3 + 30.15𝛼4 − 9.27𝛼5    4.3) 

𝛼 = 𝑎 𝑤⁄            4.4) 

For the case when 𝑅 = −1 only the positive part of the load is used in the evaluation of 

∆𝐾 as recommended in the literature. 

The result shows that the loading frequency have an effect on the crack growth rate. From 

Fig. 4.12, it is clear that any frequency higher than 5 Hz have a very close crack growth 

Number of 

cycles 

Crack extension 

(mm) 

Displacement 

Amp. (mm) 

1000 0.692085 0.11454 

2000 1.36655 0.11529 

3000 1.942845 0.11603 

4000 2.52971 0.117545 

5000 3.109167 0.11842 

6000 3.696779 0.11955 

7000 4.303335 0.12177 

8000 4.963045 0.12376 

9000 5.6716 0.12597 

10000 6.475985 0.13048 

11000 7.48935 0.13533 

12000 9.08901 0.15959 

12555 failed  
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rate while the growth rate increases with decreasing the frequency below 5 Hz. The 

frequency dependent crack growth rate can be estimated through a power law such as the 

power law used in [89] and takes the form 

𝑑𝑎

𝑑𝑁
= 𝐴(𝑓) × [∆𝐾 ]𝑛                   (4.5) 

where 𝐴(𝑓) is a function of the frequency and 𝑛 is a material constant for a specific 

environmental and loading condition. 

From the best fit power law of the crack growth data of stainless-steel 304 at 𝑅 = 0 and 

room temperature between 24-26°C, the slope n can be seen to have a very close value at 

any frequency (𝑛 = 0.8032), while 𝐴(𝑓) is changing with the frequency. The function 

𝐴(𝑓) can be obtained from the best fit of the result in Fig. 4.12 and is shown in Fig. 4.13 

as a function of the frequency for any frequency higher than 0.05Hz. 

From the result on Fig. 4.14, it is clear that for the test at 𝑅 = −1 the fatigue crack growth 

cannot be captured by Eq. (4.5) possibly because the experimental data is insufficient and 

the specimens are subjected to low cycle fatigue and possibly all the data points are in the 

unstable crack growth region. This issue has not investigated further because it is outside 

the scope of this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12. Crack growth rate-∆𝐾 curve as a function of the frequency at 𝑅 = 0. 
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Fig. 4.13. The value of 𝐴(𝑓) as a function of the frequency. 

 

 

Fig. 4.14. Crack growth rate-∆𝐾 curve as a function of the frequency at 𝑅 = −1. 
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Based on the finding of this study it can be concluded that loading frequency has an effect 

on the crack-growth in austenitic stainless-steel 304 at room temperature. The fatigue 

crack grows faster at lower frequency and slower at higher frequency in the austenitic 

stainless-steel 304 as a result of the increase in the martensitic content.  The crack will 

grow almost at the same rate for all frequencies above 5Hz. A frequency dependent power 

law has been suggested to evaluate the crack growth rate at any frequency and effective 

stress intensity factor. 

 

4.4 Summary  

Based on the finding of this study the following can be concluded: 

• Loading frequency has an effect on the crack-growth rate in mechanical parts made of 

austenitic stainless-steel 304 even at room temperature especially if the load ratio 𝑅 is 

greater than zero. 

•  The fatigue crack grows faster at a lower frequency and slower at a higher frequency 

in the austenitic stainless-steel 304 as a result of the increase in the martensitic content. 

So this behaviour should be considered carefully at the design stage of any mechanical 

part made from an austenitic stainless-steel that will be subjected to LCF at low 

frequency, since most of the standard-fatigue data (such as fatigue limit) is obtained at 

a relatively high frequency. 

• After a frequency of 5Hz, the reduction in the crack growth rate will stop and the crack 

will grow almost at the same rate for all the higher frequencies. 

• A frequency-dependent power law has been suggested to evaluate the crack growth 

rate at any frequency and stress intensity factor range. 
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Chapter 5: Rate-dependent CZM for fracture 
 

5.1  Introduction 

Monotonic and fatigue crack growth can be modelled by using a method called the 

Cohesive-zone model (CZM), which has become one area of the research in the field of 

fracture mechanics because of its ability to overcome limitations of other methods 

founded on linear elastic fracture mechanics (LEFM). The traditional use of the rate-

independent CZM gives inaccurate results for dynamic fracture analysis because it 

assumes that all the energy is dissipated in a single main crack and that predicts unrealistic 

crack propagation speed [17]. To achieve a better representation of the physics, it is 

necessary to incorporate rate dependency either in the CZM or the bulk material or 

possibly both. Using a rate-independent CZM with a rate-dependent bulk material failed 

to represent the experimental evidence in many cases (see for example [22, 24–26]). 

Therefore the use of a rate-dependent CZM is recommended, where the cohesive traction 

𝜎 is related not just to the crack separation  𝛿, but also to separation rate 𝛿̇, i.e. 𝜎 =

𝑓(𝛿, δ̇); a relationship first pioneered by Glennie [27]. Glennie concluded that the reason 

behind the observed reduction in crack speed with increase in strain rate is an increase in 

stress levels in the vicinity of the crack tip. Further developments to Glennie’s work has 

been done by Freund et al. [62], Costanzo & Walton [24, 25] and Xu et al. [63].  A 

negative feature of these approaches however is unrealistically large values for the stress 

in the cohesive-zone and associated crack arrest. A related but alternative approach is 

adopted by Valoroso et al. [17] and Zhou et al. [22] who employed a CZM with critical 

traction independent of rate but involving temporal changes in fracture energy along with 

critical separation. It is demonstrated from the present work however that this approach 

can lead to unrealistic separation values and crack tearing ahead of the crack tip. 

The model proposed in this Chapter is designed to overcome these identified limitations 

since it is apparent from the literature that presently no optimum CZM exists that can 

simulate the range of crack growth physics met in practice.  The CZM used as a vehicle 

to investigate these issues is introduced in Section 5.2 and is the trapezoidal model as it 

is relatively straightforward and localised plastic behaviour is readily identified.  In 

Section 5.3, standard rate-independent CZMs are considered along with different bulk-

material models to highlight the limitations of this approach.  To achieve a proper 

understanding of how rate effects can be incorporated into the trapezoidal CZM, relatively 
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benign dashpot models are incorporated into the CZMs in various configurations in 

Section 5.4.  These models provide a relatively simple vehicle for problem visualisation 

and assessment of the different types of behaviours.  Focus here is on Mode I fracture as 

this is the most prevalent failure mode in fracture mechanics.  An added bonus with 

dashpot models is that they can facilitate analytical solutions, which can then be explored 

to great depth. In addition, combinations of bulk material responses with CZMs can 

readily be assessed.  The approach accommodates different localised responses, which is 

necessary as the behaviour in the cohesive-zone can be expected to depart significantly 

from the original virgin bulk material.  Arising out of the analysis in Section 5.4 is a new 

rate-dependent model, which is introduced in Section 5.5. The energy transfers invoked 

by the various dashpot models to provide greater insight into the behaviour of the 

cohesive-zone approach are illustrated in Section 5.6.  Discussed in Section 5.7 is the 

implementation of the new rate-dependent model arising out of the analysis in previous 

sections. The new model is incorporated into the commercial software package ABAQUS 

(via a bespoke UMAT subroutine as illustrated in Appendix B-1) and tested on a cracked 

specimen subject to different loading rates.  The difficulties experienced with existing 

approaches are shown to be overcome by the new approach. Finally, the key-point of the 

finding of the chapter is summarised in Section 5.8. 

 

5.2  Standard cohesive-zone models 

The cohesive concept is depicted in Fig. 5.1 which describes a cracked domain and a 

cohesive-zone representing the damage ahead of the crack tip.  Also depicted is a tensile 

element in the cohesive-zone whose behaviour is dictated by the trapezoidal traction 

separation law highlighted in the figure. The information about the standard TCZM is 

illustrated in Chapter 3 Section 3.6.  The standard TCZM takes no account of time or rate 

and possible mechanisms for introducing these aspects is discussed in Section 5.4, but 

before that, it is of interest to examine various bulk-material models incorporating a rate-

independent CZM. 
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5.3 Rate-independent CZMs 

Shown in Fig. 5.1 is a depiction of how the cohesive approach is organised and a particular 

feature worth highlighting is the material element depicted representing damaged material 

in the cohesive zone.  It is possible to represent the behaviour of this material element by 

a combination of one-dimensional springs, dashpots, sliders, and cohesive elements.  A 

number of such arrangements of interest in this study are depicted in Fig. 5.2.  These can 

be considered in tandem with 1-D representations of bulk-material responses using 

similar elements as depicted in Fig. 5.3.  Organising material behaviours in this manner 

provides insight and a certain degree of control and in addition allows for detailed 

analysis, which can highlight wanted and/or unwanted responses.  The cohesive elements 

depicted in Fig. 5.2 are all derivable from the trapezoidal traction separation law (TSL) 

on various settings of 𝛿1 and 𝛿2.  It is of interest to explore and investigate the deficiencies 

in these simple models to motivate the selection of the final model.  In the discussion that 

follows the bulk-material behaviour is identified by uppercase letters {A, B, C, D} and 

cohesive models by the lowercase letters {a, b, c, …, p} (see Fig. 5.2 and 5.3). For 

Fig. 5.1. Mode I cohesive-zone model [89]. 
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example (A-a) refers to a linear material with a linear cohesive element (LCE) (on setting 

 𝛿1 = 𝛿2 = 0) and (C-f) means an elastic, rigid-plastic bulk material and a rate-dependent 

trapezoidal cohesive element.  Analysis is restricted to subjecting a prismatic element to 

displacement 𝛿𝑜 for a range of material models and cohesive element combinations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although the main focus in this paper is on the inclusion of rate effects it is insightful also 

to explore quasi-static loading of rate-independent models to provide a base on which to 

construct more complex models.  The cohesive elements shown in Fig. 5.2 (a, b, c, and 

d), are rate-independent linear, bilinear, trapezoidal (with 𝛿1 = 0) and trapezoidal 

cohesive elements.  Recorded in the literature is the successful application of these 

elements to quasi-static fracture processes for bulk-material Models (A and C) depicted 

Fig. 5.2.  Elementary Material Elements in the Cohesive-Zone Zone.  
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in Fig. 5.3. Limited research [19, 23, 61] has been performed on the use of rate-

independent cohesive elements with rate-dependent bulk-material models of the type 

depicted in Fig. 5.3(B and D).  However, this approach has proven insufficient to 

represent the experimental dynamic crack results (see references [22, 24–26]) and a rate-

dependent cohesive model is a possible solution.  

 

 

 

 

 

 

 

 

5.3.1 Model (A-a) 

Combining elements from Fig. 5.3(A) and 5.2(a) provides the simplest cohesive model 

consisting of a linear bulk-material and a LCE. Fig. 5.4 shows the stress-displacement 

response. A particular feature of the model is that both the spring and the cohesive part 

experience the same stress, but strain is additive, i.e. 𝜎𝑜 = 𝜎
e = 𝜎coh and 𝜀𝑜 = 𝜀

e + 𝜀coh, 

where 𝜀e is the elastic strain (defined as 𝜀e = 𝛿e 𝑙𝑜⁄ ) and 𝜀coh is the strain in the cohesive 

part ( defined as 𝜀coh = 𝛿coh 𝑙𝑜⁄ ), where 𝑙𝑜 is the initial length of a piece of identified 

material local to and containing an element of the CZ. 

Consider an initial displacement 𝛿𝑜 applied to the system and let 𝜀𝑜 = 𝛿𝑜 𝑙𝑜⁄  and  𝜎𝑜 =

𝐸𝜀𝑜, where 𝐸 is Young’s Modulus of the bulk material.  If  𝜎𝑜 ≤ 𝜎𝑐, then 𝜀o = 𝜀
e ,   𝜎 =

𝐸𝜀e, 𝛿e = 𝛿𝑜 = 𝜀𝑜𝑙𝑜 and the material element behaves like an elastic spring.  However, 

if  𝜎𝑜 > 𝜎𝑐, then the cohesive element makes a contribution and since the total separation 

is additive (i.e. 𝛿𝑜 = 𝛿e + 𝛿coh), the stress can be represented as 

𝜎𝑒 = 𝜎𝑐 (1 −
𝛿𝑐𝑜ℎ

𝛿𝑐
) = 𝐸𝜀𝑒 = 𝐸

𝛿𝑒

𝑙𝑜
        (5.1) 

which can be solved for 𝛿e to give 

Fig. 5.3. Elementary Bulk-Material Models. 



Chapter Five                                                                           Rate-Dependent CZM for Fracture 

 
   97 

𝛿𝑒 = 𝛿𝑐 [
(1−

𝛿𝑜
𝛿𝑐
)

(−1+
𝐸𝛿𝑐
𝜎𝑐𝑙𝑜

)
]          (5.2) 

which is applicable provided  𝛿𝑜 ≤ 𝛿𝑐, otherwise the element will fail and the material 

will separate.  

In order to better understand the crack driving force, it is insightful to explore energy 

transfers that take place between the bulk material, cohesive element and the 

surroundings.  In this case 𝑈𝑒 = 0.5𝜎𝐴𝛿e  and 𝑊𝑒 = 𝑈𝑒 𝐴⁄ = A1 = 0.5𝜎𝛿e,  where 𝐴 is 

the cross-section area, A1 is the area under the stress separation curve shown in Fig. 5.4, 

𝑈𝑒 is the elastic strain energy, 𝑊𝑒 is the elastic strain energy (per unit area) and 𝛿e is 

elastic displacement. For 𝜎𝑜 ≤ 𝜎𝑐 the situation is trivial and the total work done by the 

applied load (per unit area) 𝑊d is equal to 𝑊e,which is equal to the area A1 shown in 

Fig. 5.4(a).  For  𝜎𝑜 > 𝜎𝑐 as the value of 𝛿e is calculated from Eq. (5.2) and 𝜎𝑒 from Eq. 

(5.1) and the elastic strain energy per unit area as shown in Fig. 5.4(b) is given by 𝑊𝑒 =

A1 = 0.5𝜎
e𝛿e and the energy diverted to material separation is 

𝑊𝛤 = A2 =
1

2
(𝜎𝑐 + 𝜎

𝑒)(𝛿𝑎 − 𝛿𝑒) +
1

2
(𝜎𝑐 + 𝜎

𝑒)(𝛿0 − 𝛿𝑎) =
1

2
((𝜎𝑐 + 𝜎

𝑒)(𝛿𝑜 − 𝛿𝑒))   

𝑊𝛤 =
1

2
(𝜎𝑐 + 𝜎

𝑒)𝛿coh         (5.3) 

 where 𝑊Γ is the cohesive energy per unit area, 𝛿coh is separation at the cohesive element 

and the total work done (per unit area) is 𝑊d = 𝑊e +𝑊Γ.  Energy dissipation is an 

important aspect in cohesive models as is apparent in this simple case which features non-

recoverable energy 𝑊Γ. 

 

 

 

 

 

 

 
Fig. 5.4. The energy represented by the area under the stress-

displacement curve 
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5.3.2  Model (B-a) 

The addition of a dashpot to the bulk-material model above gives rise to rate-dependent 

fracture behaviour. In this model stress is identical in the spring, dashpot and cohesive 

part, but strain is additive and temporal behaviour is a feature, i.e. 𝜎𝑜 = 𝜎
e = 𝜎D = 𝜎coh 

and 𝜀𝑜 = 𝜀𝑒(t) + 𝜀𝐷(t) + 𝜀coh, where  𝜀𝑒(t), 𝜀𝐷(t), and 𝜀coh are the elastic strain 

(𝜀𝑒(t) = 𝛿𝑒(t) 𝑙𝑜⁄ ), the strain in the dashpot at any time (𝜀𝐷(t) = 𝛿𝐷(t) 𝑙𝑜⁄ ), and the 

strain in the cohesive element (𝜀coh = 𝛿coh 𝑙𝑜⁄ ) that is irreversible (does not change for 

fixed 𝛿𝑜), respectively. 

If an initial instantaneous displacement 𝛿𝑜 is applied to this system, then this will result 

in an initial strain  𝜀𝑜 = 𝛿𝑜 𝑙𝑜⁄  and initial stress  𝜎𝑜 = 𝐸𝜀𝑜. The precise subsequent 

response of the system depends on the magnitude of the stress  𝜎𝑜.  If  𝜎𝑜 ≤ 𝜎𝑐, then the 

cohesive element is not involved and  𝜀𝑜̇ = 𝜀̇𝑒 + 𝜀̇𝐷 = 𝐸−1𝜎̇ + 𝜂−1𝜎, where 𝜂 is a 

material parameter akin to viscosity.  With a constant applied displacement 𝜀𝑜̇ = 0  so: 

𝐸−1𝜎̇ + 𝜂−1𝜎 = 0 

𝑑𝜎

𝑑𝑡
=
−𝐸

𝜂
𝜎 → ∫

𝑑𝜎

𝜎

𝜎

𝜎𝑜

= ∫
−𝐸

𝜂
𝑑𝑡

𝑡

0

 

which can be solved to provide temporal stress: 

 𝜎(𝑡) = 𝜎𝑜𝑒𝑥𝑝(−𝐸𝜂
−1𝑡)         (5.4) 

In this case 𝜎(𝑡) is always less than 𝜎𝑐 since  𝜎𝑜 ≤ 𝜎𝑐. If on the other hand  𝜎𝑜 > 𝜎𝑐, then 

the cohesive element is involved with displacement divided initially between the spring 

and the cohesive element, i.e. 𝛿𝑜 = 𝛿𝑒(0) + 𝛿coh, with the dashpot not initially involved.  

The subsequent response of the model is one of relaxation of stress, since 𝜎𝑒(𝑡) =

𝜎𝑒(0)𝑒𝑥𝑝(−𝐸𝜂−1𝑡) where 𝜎𝑒(0) is evaluated from Eq (5.1) by applying 𝛿𝑒(0) from Eq 

(5.2). The dashpot displacement is obtained from  𝜀̇𝐷(𝑡) = 𝛿̇𝐷(𝑡) 𝑙𝑜⁄ = 𝜎𝑒(𝑡) 𝜂⁄ , which 

gives  𝛿𝐷(𝑡) = 𝛿𝑒(0)(1 − 𝑒𝑥𝑝(−𝐸𝜂−1𝑡)). 

The energy dissipated by the dashpot is evaluated from the rate at which work is done 

(per unit area) by the stress field, i.e. 𝑈̇𝐷 = 𝑊̇𝑑
𝐷 = 𝑙𝑜𝜎

𝐷𝜀̇𝐷.  Substitution of 𝜎𝐷 = 𝜂𝜀̇𝐷 

and integration gives 

𝑑𝑈𝐷
𝑑𝑡

= 𝐴𝑙𝑜𝜂(𝜀̇
𝐷)2 
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𝑈𝐷 = ∫ 𝜂𝐴𝑙𝑜(𝜀̇
𝐷)2

𝑡

0
𝑑𝑡  

      = ∫ 𝜂𝐴𝑙𝑜 (
𝜎(0)
𝑒

𝜂
𝑒𝑥𝑝 (

−𝐸

𝜂
𝑡))

2
𝑡

0
𝑑𝑡  

      =
𝐴𝑙𝑜𝜎

𝑒(0)2

𝜂
∫ (𝑒𝑥𝑝 (

−𝐸

𝜂
𝑡))

2
𝑡

0
𝑑𝑡  

      =
𝐴𝑙𝑜𝜎

𝑒(0)2

𝜂

−𝜂

2𝐸
(𝑒𝑥𝑝 (

−𝐸

𝜂
𝑡))

2

|

0

𝑡

  

      =
1

2
𝐴𝑙𝑜𝜎

𝑒(0)
𝜎𝑒(0)

𝐸
(1 − (𝑒𝑥𝑝 (

−𝐸

𝜂
𝑡))

2

) =
1

2
𝐴𝑙𝑜𝜎

𝑒(0)𝜀𝑒(0)(1 − (𝑒𝑥𝑝 (
−𝐸

𝜂
𝑡))

2

)

  

      =
1

2
𝐴𝑙𝑜𝜎

𝑒(0)
𝛿𝑒(0)

𝑙𝑜
(1 − (𝑒𝑥𝑝 (

−𝐸

𝜂
𝑡))

2

)  

𝑈𝐷 =
1

2
𝐴𝜎𝑒(0)𝛿𝑒(0)(1 − (𝑒𝑥𝑝 (

−𝐸

𝜂
𝑡))

2

)  

𝑊𝐷(𝑡) =
𝑈𝐷

𝐴
=

1

2
𝜎𝑒(0)𝛿𝑒(0)(1 − (𝑒𝑥𝑝 (−

𝐸

𝜂
𝑡))

2

)                (5.5) 

The energy calculation of the model is as follows: 

for 𝜎𝑜 ≤ 𝜎𝑐 the instantaneous elastic displacement 𝛿𝑒(0) = 𝛿0 and the separation 𝛿 = 0. 

Hence, 𝛿𝑒(𝑡) = 𝛿0 − 𝛿
𝐷(𝑡). 

For 𝜎𝑜 > 𝜎𝑐 the instantaneous elastic displacement 𝛿𝑒(0) and stress 𝜎𝑒(0) are calculated 

from Eqs (5.2) and (5.1) respectively. The stress at any time 𝜎𝑒(𝑡) is calculated from Eq 

(5.4), while the value of 𝛿𝑒(𝑡) is evaluated as: 

𝛿𝑒(𝑡) = δo − δ − 𝛿
𝐷(𝑡) 

𝛿𝑒(𝑡) = 𝛿𝑒(0)𝑒𝑥𝑝 (
−𝐸

𝜂
𝑡)          (5.6) 

The cohesive element will be active for this case with cohesive separation evaluates by 

𝛿 = 𝛿𝑜 − 𝛿
𝑒(0). The energy transfers to the system, cohesive element, dashpot and 

spring are readily determinable with knowledge of the stress and strain rates with total 
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work done (per unit area) satisfying the equation  𝑊d(𝑡) = 𝑊e(𝑡) +𝑊D(𝑡) +𝑊Γ.  An 

important aspect of the relaxation process for this model is that 𝛿coh is invariant. 

 

5.3.3  Model (C-a) 

Elastic-plastic fracture mechanics is of industrial importance as plasticity provides a 

mechanism for energy dissipation and consequently increased toughness. One mechanism 

for incorporating plasticity is to assume an elastic-plastic bulk-material model like that 

depicted in Fig. 5.3(C).  Viscous behaviour is absent in this case and localised softening 

is achieved with the cohesive element shown in Fig. 5.2(a). The stress-displacement curve 

for the elastic-plastic material, with a LCE is shown in Fig. 5.5.  As with the previous 

serial models, stress is common to all elements, i.e.  𝜎𝑜 = 𝜎𝑒 = 𝜎𝑝 = 𝜎𝑐𝑜ℎ, and strain is 

additive, 𝜀𝑜 = 𝜀e + 𝜀𝑝 + 𝜀coh.  Note also that separation at fracture 𝛿𝑓 has contributions 

from bulk-material plasticity and the cohesive element, i.e. 𝛿𝑓 = 𝛿𝑝 + 𝛿𝑐.  The behaviour 

of this system depends on the magnitude of the stress 𝜎𝑜. If   𝜎𝑜 ≤  𝜎𝑌, 𝜎𝑐, then elastic 

behaviour is preponderant and the stress will be evaluated from 𝜎𝑜 = 𝜎𝑒, in this case 

  𝜀𝑒 = 𝜀𝑜 = 𝛿𝑜 𝑙𝑜⁄  with  𝛿𝑒 = 𝛿𝑜 and We = 0.5𝜎𝑜 𝛿
𝑒. If however  𝜎𝑜 >  𝜎𝑌, with plastic 

response approximated by the linear expression 𝜎̅ = 𝜎𝑌 + 𝐸𝑝𝜀̅
p, where for uniaxial 

tension effective stress 𝜎 = 𝜎 and effective plastic strain 𝜀̅p = 𝜀𝑝 (since at this instance 

it is assumed 𝜀coh = 0), then the strain 𝜀𝑜 = 𝜀𝑒 + 𝜀𝑝.  Consequently, the applied stress 𝜎  

to the element can be evaluated by solving this equation 𝛿𝑜 𝑙𝑜⁄ = 𝜎𝑦 𝐸⁄ + (𝜎 − 𝜎𝑦)/𝐸
𝑝, 

which is valid when 𝜎 ≤  𝜎𝑐, where 𝐸𝑝 is the plastic modulus. Energy is stored elastically 

but plastic dissipation takes place and is equal to 

𝑊𝑝 =
1

2
(𝜎𝑌 + 𝜎)𝛿

𝑝                     (5.7) 

where 𝛿𝑝 is the extent of plastic deformation and evaluated from  𝛿𝑝 = 𝛿𝑜 −  𝛿
𝑒. 

Finally if 𝜎 >  𝜎𝑐, the total strain 𝜀𝑜 = 𝜀
𝑒 + 𝜀𝑝 + 𝜀coh with 𝜀coh =  𝛿𝑐(1 − 𝜎

𝑒 𝜎𝑐)/𝑙0⁄ , 

𝜀𝑝 = (𝜎𝑐 − 𝜎𝑦)/𝐸
𝑝 and 𝜀𝑒 = 𝜎𝑒 𝐸⁄ .  From this the stress can be evaluated as  

𝛿𝑜

𝑙𝑜
=

𝜎𝑒

𝐸
+
𝜎𝑐−𝜎𝑦

𝐸𝑝
+
 𝛿𝑐(1−

𝜎𝑒

𝜎𝑐
)

𝑙0
                     (5.8) 

where it is assumed throughout this section that  𝜎𝑌 <  𝜎𝑐 because to do otherwise would 

mean no plastic deformation is possible. Energy is stored elastically but dissipated in 
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terms of plastic dissipation, as evaluated from Eq. (5.7) with 𝜎𝑐 replacing  𝜎, and energy 

dissipated in propagating the crack evaluated from Eq. (5.3). The total work done (per 

unit area) is 𝑊d = 𝑊e +𝑊p +𝑊Γ. The principal feature of this model is the protection 

offered to the crack through plastic-energy dissipation in the bulk material. 

 

 

 

 

 

 

 

 

5.4  Rate-Dependent CZMs 

A useful bulk-material model is that of a linear-elastic material depicted in Fig. 5.3(A) 

and is particularly pertinent if other non-linear behaviours are localised to the crack tip.  

It is thus of interest to explore the use of a linear-elastic bulk-material model combined 

with rate-dependent cohesive models suggested in the literature.  Combinations involving 

plastic behaviour in the bulk-material are also of some importance. 

 

5.4.1 Model (A-i) 

Model (A-i) provides rate dependency in the cohesive domain but linear-elastic behaviour 

in the bulk material.  A critical feature of this particular set-up is a critical stress that is a 

function of the separation rate.  An unwelcome aspect is the possible unboundedness of 

the critical stress.  In the parallel part of the model (see Fig. 5.2(i)) the strain is the same 

and the stress is additive, but between this portion and the elastic bulk element the stress 

is identical, and the strain is additive.  In mathematical terms  𝜎𝑜 = σe = σs, where σs is 

the stress applied to the parallel system and  σs = σD + σcoh, 𝜀𝑜 = 𝜀
s(∞) + 𝜀e and 

 𝜀coh = 𝜀D, where  𝜀s(∞) = lim
t→∞

𝜀s(t) , is the strain in the parallel system at stationary 

Fig. 5.5. The energy represented by the area under the stress-displacement curve. 
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equilibrium. Observe that for this model the strain 𝜀coh of the cohesive element is now a 

function of time. 

As with previous models if an initial instantaneous displacement 𝛿𝑜 is applied to the 

system, its response depends on the magnitude of  𝜎𝑜, where 𝜀𝑜 = 𝛿𝑜 𝑙𝑜⁄  and  𝜎𝑜 = 𝐸𝜀𝑜. 

If  𝜎𝑜 ≤ 𝜎𝑐, then 𝛿𝑒 = 𝛿𝑜 and 𝑊𝑑 = 𝑊𝑒 = 0.5σe𝛿𝑒. If on the other hand  𝜎𝑜 > 𝜎𝑐, then 

the elastic displacement 𝛿𝑒 is evaluated from Eq. (5.2) and material separation occurs at 

stationary equilibrium 𝛿(∞) = 𝛿𝑜 − 𝛿
𝑒 and the stress  𝜎𝑒 = 𝐸𝛿𝑒 𝑙𝑜⁄ . The material 

separation as a function of time is 

𝛿(𝑡) = 𝛿(∞) (1 − 𝑒𝑥𝑝 (−𝐸

𝜂
𝑡))                   (5.9) 

and the dissipated energy in the dashpot is obtained from 

𝑊𝐷(𝑡) =
1

2
𝜎𝑜𝛿(∞)(1 − (𝑒𝑥𝑝 (−

𝐸

𝜂
𝑡))

2

)                (5.10) 

where the total work done (per unit area) is 𝑊𝑑(𝑡) = 𝑊𝑒(𝑡) +𝑊𝐷(𝑡) + WΓ(𝑡).  

If the rate-dependent cohesive energy is defined to be equal to the rate-independent 

cohesive energy plus the dissipated energy in the dashpot, then the previous equation 

becomes 𝑊𝑑(𝑡) = 𝑊𝑒(𝑡) +𝑊
Γrate(𝑡), where 𝑊

Γrate  is the rate-dependent cohesive 

energy. Furthermore, critical traction can be viewed as a function of separation and 

separation rate, since σc
rate = 𝜎𝑐 + 𝜎

𝐷.  A further common assumption is the linear 

relationship 𝜎𝐷 = 𝐶𝜎𝑐, where 𝐶 is a parameter that is a function of separation rate.  This 

returns an expression similar to that which has been used in reference [21], i.e. the rate-

dependent stress relation can then be written as: 

 𝜎𝑐
𝑟𝑎𝑡𝑒(𝛿̇) = 𝜎𝑐(1 + 𝐵𝛿̇)                  (5.11) 

where B is a material parameter reflecting the strength of rate dependency. 

By using a similar procedure to the one used in Model (A-a) but with σc
rate instead of 𝜎𝑐 

for the critical cohesive stress the energy transfers in the model can be evaluated. 

5.4.2 Model (A-e) 

An alternative possibility for including a dashpot is to apply this in series rather that in 

parallel as in the model above.  In the case of Model (A-e) a linear rate-independent CE 

(i.e. the TCZM with 𝛿1 = 𝛿2 = 0) is selected in series with a dashpot Fig. 5.2(e) to form 
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a rate-dependent CE and this element is connected to a linear elastic bulk-material model 

Fig. 5.3(A). The response of the rate-dependent cohesive element can be viewed as a 

function of the separation speed, since 𝛿c
rate = δc + 𝛿

𝐷, where δc is the rate-independent 

cohesive separation and 𝛿𝐷 is the dashpot displacement. Setting 𝛿D = 𝐶δc and on letting 

𝐶 =  𝐵1𝛿̇ provides 

𝛿𝑐
𝑟𝑎𝑡𝑒(𝛿̇) = 𝛿𝑐(1 + 𝐵1𝛿̇)                  (5.12) 

which is identical to an expression applied in reference [22] and where 𝐵1 is a material 

parameter reflecting the strength of rate dependency. 

The stress-displacement curve of the rate-independent and the rate-dependent cohesive 

element is depicted in Fig. 5.6(a). The energy calculation of this model is exactly the same 

as Model (A-a) apart from using 𝛿c
rate instead of  𝛿c to identify the critical separation of 

the model.  An unwelcome feature of the model is the possible unboundedness of 𝛿c
rate. 

 

 

 

 

 

 

 

 

 

5.4.3 Model (A-g) 

Combining the cohesive element shown in Fig. 5.2(g) with the material element shown 

in Fig. 5.3(A), provides a rate-dependent trapezoidal CE (with 𝛿1 = 0) in an elastic bulk 

material. This model is similar to Model (A-e) although an important feature of this model 

is the incorporation of plastic energy dissipation. In this CE the process zone is separated 

into a plastic part (represented by the area under the traction separation curve between 𝛿1 

and  𝛿2) and damage part (represented by the area under the traction separation curve 

Fig. 5.6. Stress-displacement curve for the cohesive element in an elastic 

bulk material. 
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between 𝛿2 and 𝛿c
rate). For this model the values of 𝛿1 and 𝛿2 are selected to be zero and 

0.5𝛿c
rate, respectively. The critical rate-dependent separation 𝛿c

rate is assumed to satisfy 

Eq. (5.12), which means that when the separation speed increases, the value of the 

dissipated energy in plastic deformation and in the process of generating new surfaces 

increases. Fig. 5.6(b) shows the stress-displacement curve of the rate-independent and the 

rate-dependent cohesive element. 

To better understand the behaviour of this model it is prudent to examine what energy 

transfers take place. Applying displacement 𝛿𝑜 provides  𝜎𝑜 = 𝐸𝜀0 and as with the 

previous models the system’s response depends on the magnitude of this stress. If 𝜎𝑜 <

𝜎𝑐, then  𝛿𝑒 = 𝛿𝑜 and  𝑊𝑑 = 𝑊𝑒 = 0.5𝜎0 𝛿
𝑒  If however σo ≥ σc, then two possibilities 

arise depending on the magnitude of 𝛿𝑜.  If 𝛿𝑜 < 𝛿2 + 𝛿𝑚𝑎𝑥
e , with  𝛿𝑚𝑎𝑥

e = σc 𝐸⁄ , then 

elastic energy 𝑊e =
1

2
𝜎c𝛿𝑚𝑎𝑥

e  is constant and the local plastic dissipated energy is 

determined by 𝐺𝑃𝑟𝑎𝑡𝑒 = 𝜎𝑐(𝛿𝑜 − 𝛿𝑚𝑎𝑥 
𝑒 ) the total work done in this case evaluated as 

 𝑊𝑑 = 𝑊𝑒 + 𝐺𝑃𝑟𝑎𝑡𝑒 .  Finally, if 𝛿𝑜 ≥ 𝛿2 + 𝛿𝑚𝑎𝑥
e , then the crack propagates giving rise 

to an increase in surface energy and a decrease in the stored elastic energy and no further 

plastic dissipation, in the case the total work satisfies the relationship  𝑊𝑑 = 𝑊𝑒 +

𝐺𝑃𝑟𝑎𝑡𝑒 + Γ𝑟𝑎𝑡𝑒.  

 

5.4.4 Model (C-e) 

The model arises from the combination of the cohesive element shown in Fig. 5.2(e) with 

the material element shown in Fig. 5.3(C) is similar to Model (C-a), but in this model the 

cohesive element is rate-dependent. In this CE the value of the critical separation 𝛿𝑐 is 

assumed to be a function of the separation speed (𝛿c
𝑟𝑎𝑡𝑒), which means that as the 

separation speed is increased, the value of the dissipated energy in the fracture process 

increases. Fig. 5.7(a) shows the stress-displacement curve of the rate-independent and the 

rate-dependent cohesive element. The energy calculation for this model is similar to 

Model (C-a) but with 𝛿c
𝑟𝑎𝑡𝑒 from Eq. (5.12) in place of  𝛿c.  
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5.4.5 Model (C-g) 

This model is similar to Model (C-e), but in this model a rate-dependent trapezoidal 

cohesive element is used as shown in Fig. 5.2(g). In this CE the value of the critical 

separation 𝛿c
𝑟𝑎𝑡𝑒 is calculated from Eq. (5.12).  As regards the traction separation law, 𝛿1 

is assumed to be zero and 𝛿2 is set equal to 0.5𝛿c
𝑟𝑎𝑡𝑒.  A feature of this model is that with 

an increase in separation speed the dissipated energy increases due to plastic deformation 

and new surfaces formation. Shown in Fig. 5.7(b) is the stress-displacement curve of the 

rate-independent and the rate-dependent cohesive element. 

 

5.5  New Rate-Dependent Cohesive Model 

To overcome limitations with existing rate-dependent cohesive model a new model is 

introduced in this study.  A systematic approach has been adopted to better understand 

the behaviour and limitations of said models and it is expected that any new model should 

not suffer unrealistic behaviour typically observed with existing approaches. To keep 

things reasonably simple the bilinear and the trapezoidal cohesive model are incorporated 

into the new model to simulate the dynamic crack growth processes.  A feature of the new 

model is dashpots in both series and parallel to counter unrealistically high values of 𝛿𝑐 

and 𝜎𝑐 observed when dashpots are applied singularly. 

 

Fig. 5.7. Stress-displacement curve for the cohesive element in an 

elastic-plastic bulk material 
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5.5.1 Model (A-m) 

The proposed new rate-dependent LCE is shown in Fig. 5.8(m). The cohesive element 

consists of two parts one of which is a parallel combination of a rate-independent CE in 

parallel with a dashpot to provide a rate-dependent critical stress. This part is active when 

the rate-dependent cohesive stress is less than the identified stress limit  𝜎𝑙𝑖𝑚𝑖𝑡   thus 

providing a bounded critical stress.  The value of  𝜎𝑙𝑖𝑚𝑖𝑡   is set so that the area under the 

traction curve defined by 𝜎𝑙𝑖𝑚𝑖𝑡 is equal to an experimentally obtained upper limit on 

fracture energy.  Thus, for 𝜎𝑐
𝑟𝑎𝑡𝑒 <  𝜎𝑙𝑖𝑚𝑖𝑡  , Eq. (5.11) applies and the separation is held 

constant at the critical separation used for the rate-independent cohesive model. At the 

point when 𝜎𝑐
𝑟𝑎𝑡𝑒 reaches its limit  𝜎𝑙𝑖𝑚𝑖𝑡  this part of the cohesive element becomes 

inactive and the second part consisting of a series dashpot and rate-independent CE is 

activated.  In this CE the critical stress is equal to  𝜎𝑙𝑖𝑚𝑖𝑡 and the critical separation is 

again equal to that used in the rate-independent model.  This part of the cohesive model 

provides a rate-dependent CE in which the critical stress is constant at  𝜎𝑙𝑖𝑚𝑖𝑡 and a critical 

separation that increases with rate satisfying Eq. (5.12) with replacing 𝐵1 by 𝐵′1. The 

energetic behaviour of this model is similar to Model (A-a) but with using 𝜎c
rate instead 

of 𝜎𝑐 for  𝜎𝑜 <  𝜎𝑙𝑖𝑚𝑖𝑡 and if  𝜎𝑜 ≥  𝜎𝑙𝑖𝑚𝑖𝑡, then 𝛿c
rate is used instead of  𝛿𝑐.  To 

demonstrate this explicitly consider an initial displacement 𝛿𝑜 applied to this system, and 

set 𝜀𝑜 = 𝛿𝑜 𝑙𝑜⁄  and  𝜎𝑜 = 𝐸𝜀𝑜.  As with previous cases the behaviour of the system 

depends greatly on the magnitude of  𝜎𝑜. If  𝜎𝑜 ≤ 𝜎c
rate (where the inequality 

𝜎c
rate ≤ 𝜎𝑙𝑖𝑚𝑖𝑡  is enforced by design), then 𝜀𝑜 =  𝜀𝑒,  𝜎 = 𝐸 𝜀𝑒,  𝛿𝑒 = 𝛿𝑜 = 𝜀𝑜𝑙𝑜 and 

 𝑊𝑑 =  𝑊𝑒 = 0.5 𝜎 𝛿𝑒. If on the other hand  𝜎𝑜 > 𝜎c
rate, then two possibilities arise, i.e. 

Fig. 5.8. New Elementary Rate-dependent Material Element in the 

Cohesive Zone. 
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𝜎c
rate ≤  𝜎𝑙𝑖𝑚𝑖𝑡 or 𝜎c

rate >  𝜎𝑙𝑖𝑚𝑖𝑡, where in the latter case critical cohesive stress is set 

equal to 𝜎𝑙𝑖𝑚𝑖𝑡 and 𝛿c
rate is used in place of  𝛿𝑐 for energy calculations. The work done is 

evaluated by 𝑊𝑑 = 𝑊𝑒 +𝑊
Γrate, where 𝑊

Γrate = 𝐺𝑃𝑟𝑎𝑡𝑒 + Γ𝑟𝑎𝑡𝑒 . 

 

5.6  Energy calculations 

In this section, a numerical description of the energy transfers is presented to support the 

theoretical descriptions provided in Sections 5.3 to 5.5 and to visually highlight the 

important behaviours found with the different models considered.  The material properties 

and process parameters selected for the study can be found in Table 5.1.  

Table 5.1 Material properties and process parameters. 

 

Depicted in Fig. 5.9 and 5.10 are energy-displacement diagrams for a linear rate-

independent CE embedded in an elastic bulk material. From Fig. 5.10 it is evident that 

the stored elastic energy participates in the crack growth driving process [106].  This is 

reflected by a decrease in stored elastic energy originating at the point where material 

separates along with an increase in cohesive energy.  The behaviour of this model when 

a dashpot is added to the bulk material (Model (B-a)) to represent the rate dependency is 

shown in Fig. 5.11. It is evident from this figure that the response is one of material 

relaxation rather than a rate-dependent fracture model. This is reflected in the relaxation 

of stored elastic energy as opposed to driven crack propagation.  An alternative is a 

parallel combination of dashpots to produce a rate-dependent cohesive element as in 

Model (A-i).  In this case however, the dashpot is built into the cohesive element, which 

implicitly assumes rates local to the crack feature predominantly.  The local stress is 

dependent on the viscosity associated with the dashpot and the rate of separation.  This is 

reflected in the value of the parameter 𝐵 in Eq. (5.11), which represents the rate 

dependency of the local damaged material.  A particular feature of this model is a critical 

stress which is not temporally invariant and increases with the separation speed, which 

Length 𝑙𝑜 

(mm) 

𝜎𝑐  

(MPa) 

𝛿𝑐 

(mm) 

𝜎𝑌  

(MPa) 

𝛤0 

(N/mm) 

E 

(MPa) 

𝐸p 

(MPa) 

𝛿1 

(mm) 
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𝛿2 

(mm) 
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𝐵 

(s/m) 

𝐵1 
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𝐵′1 

(s/m) 
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(m/s) 
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could lead to an unrealistic crack arrest.  The behaviour of this model is shown in Fig. 

5.12, where it can be deduced from the rise in energy that the critical stress is increasing 

with rate.  Bearing in mind that critical stress is the damage initiation mechanism in the 

cohesive model an unrealistically high value can have negative connotations.  With this 

model, the critical stress can reach levels significantly greater than the yield stress of the 

bulk material leading to both crack arrest and unrealistic levels of plastic deformation in 

any finite element model. 

To avoid the possibility of a high critical stress a localised linear dashpot arrangement is 

an obvious possibility. Model (A-e) is one possibility consisting of a dashpot connected 

in series with a standard cohesive element, which leads to critical separation being a 

function to the separation rate of the form of Eq. (5.12). Although it is claimed in 

reference [22] that the model can provide more accurate results, it is demonstrated in 

Section 5.7 that the model has unrealistic behaviour at high strain rates. Fig. 5.13 shows 

the energy curves for Model (A-e), where it is apparent that the value of the critical 

separation is increasing with separation rate leading to high values at very high strain 

rates.   

It is evident that a new model is necessary to overcome the limitations of both of the 

previous models. The proposed models considered here for localised rate-sensitive 

behaviour combines the elastic-bulk material element shown in Fig. 5.3(A) with a rate-

dependent linear or trapezoidal cohesive element shown in Fig. 5.8.  

A concern, however, is the effect of plasticity both locally and in the bulk material and 

therefore it is of interest also to examine models involving elasto-plastic bulk material 

moedel depicted in Fig. 5.3(C). There are numerous approaches for simulating the 

fracture process in an elasto-plastic material. An example is an elastic-bulk material and 

plasticity captured locally in the cohesive element as in Model (A-g) by using the 

trapezoidal model. This trapezoidal model could be rate-independent or rate-dependent 

depending on the type of problem. The energy-displacement curve for this model is 

shown in Fig. 5.14.  Alternatively, the problem can be simulated by using the bilinear 

rate-dependent or rate-independent cohesive model with an elasto-plastic behaviour in 

the bulk material as in Models (C-a) and (C-e), which provide the results shown in Fig. 

5.15 and 5.16, respectively. Contrasting the results of Model (A-g) (shown in Fig. 5.14) 

with the result of Model (C-e) (shown in Fig. 5.16) highlights certain distinctive 
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similarities.  The advantage of analysis with plasticity captured locally in a CZM is a 

much-reduced analysis cost. However, accuracy is an issue, and the benefit of 

investigating the effect of the TSL and the choice of the TCZM is manifest.  In the case 

of large-plastic deformation taking place in the bulk material, then the advantages of 

localised plastic analysis are diminished.  However, with a view that plastic behaviour in 

the damaged zone is different from the virgin material then an appropriate cohesive model 

could be used to improve accuracy.  A model of this type is Model (C-g) and the 

associated energy-displacement curve is depicted in Fig. 5.17. 

The energy-displacement plots for the new rate-dependent cohesive element can be found 

in Fig. 5.18. Contrasting the results in Fig. 5.12, 5.13 and 5.18 demonstrates how the new 

model eliminates the unrealistic behaviour in existing rate-dependent cohesive models.  

To better demonstrate further the benefits of the new approach the three competing 

approaches are tested in fracture simulations applied to a compact tension (CT) specimen 

in the following section. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 5.9.  Model (A-a) energy-displacement curve of a rate-independent 

CE in an elastic bulk material. 
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Fig. 5.10. Model (A-a) normalized elastic and fracture energy diagram. 

 

Fig. 5.11. Model (B-a) material relaxation response. 
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Fig. 5.12. The increase in the value of energy at critical stress because of 

the unrealistic increasing critical cohesive stress in Model (A-i). 

 

Fig. 5.13. The unrealistic increasing critical cohesive separation in 

Model (A-e). 
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Fig. 5.14. Model (A-g) plasticity capture locally by using the 

trapezoidal rate-dependent CE.  

 

Fig. 5.15. Model (C-a) energy-displacement curve of a rate-independent 

CE in an elasto-plastic bulk material. 
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Fig. 5.16. Model (C-e) linear rate-dependent CE in an elasto-plastic 

material. 

Fig. 5.17. Model (C-g) trapezoidal rate-dependent CE in an elasto-

plastic material. 
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5.7  Monotonic fracture simulation in ABAQUS 

There are two methods for identifying cohesive behaviour in the commercial finite 

element solver ABAQUS; the first method is by specifying a cohesive traction between 

two adjacent surfaces; the main advantage of this approach is that ABAQUS will 

duplicate the nodes at the adjacent surfaces and connect them through cohesive forces. 

Hence, the thickness of the cohesive-zone is approximately zero. The second method is 

by inserting cohesive elements along the crack path between the bulk material elements, 

by default the separation width of the cohesive element defaults as unity in ABAQUS 

making the strain at the cohesive element equal to the separation. The cohesive behaviour 

in the second type is defined through a cohesive material. This facilitates a user-defined 

material subroutine, which can be used to specify new non-standard cohesive behaviour 

of the type considered here. 

The types of simulation performed in this study are shown in Table 5.2. Nine quasi-static 

simulations are performed on a CT specimen (see Fig. 5.19)  to check the effect of the 

TSL and the effect of plasticity. Of the nine, two make use of the BCZM and seven utilise 

Fig. 5.18. Model (A-m) effect of stress limit in the new linear rate-dependent CE 

in an elastic bulk material. 

 



Chapter Five                                                                           Rate-Dependent CZM for Fracture 

 
   115 

the TCZM with associated responses presented in Fig. 5.20 to 5.22. This is followed by 

an investigation into the behaviour and the limitations of methods (existing and new) used 

to capture rate-dependent behaviour. Numerous transient-dynamic simulations have been 

performed (see Table 5.2) and details are provided in Section 5.7.2.  

Table 5.2 Type of simulations applied to a standard CT specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Analysis type Bulk material 

response 

Cohesive-zone 

response 

TSL No. of 

An.  

QS-B Quasi-static Rate-independent Standard BCZM 2 

QS-T Quasi-static Rate-independent Standard TCZM 7 

DYN -B Transient dynamic Rate-independent Standard BCZM 4 

DYN -T Transient dynamic Rate-independent Standard TCZM 4 

DYN-𝜎𝑐
𝑟𝑎𝑡𝑒-B Transient dynamic Rate-independent Rate-dependent BCZM 7 

DYN-𝜎𝑐
𝑟𝑎𝑡𝑒-T Transient dynamic Rate-independent Rate-dependent TCZM 5 

DYN-𝛿𝑐
𝑟𝑎𝑡𝑒-B Transient dynamic Rate-independent Rate-dependent BCZM 4 

DYN-New-B Transient dynamic Rate-independent Rate-dependent BCZM 5 

DYN-New-T Transient dynamic Rate-independent Rate-dependent TCZM 5 

Fig. 5.19. CT specimen dimensions (mm). 
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5.7.1 Plasticity effects 

Fracture simulations of a CT specimen with dimensions shown in Fig. 5.19 have been 

performed in ABAQUS by using the BCZM and repeated using the TCZM; first with an 

elasto-plastic bulk material and second with an elastic-bulk material. The reason for using 

these two models is to study the effect of the TSL and to show the benefit of using a CZM 

to capture plasticity locally.  The numerical model consists of 7823 plane-strain elements 

(type CPE4R) and 100 cohesive elements (type COH2D4) [109]. A mesh sensitivity 

analysis has been performed which confirms that converged results are attained.  

Involving a full-integration plane-strain element (CPE4) or increasing the number of 

elements in the bulk material or the cohesive-zone, has little impact on the simulation 

results presented. The material properties used for the bulk material in the numerical 

simulations are {𝜎𝑦 = 280 MPa, 𝐸 = 193 GPa, 𝜗 = 0.29 and the plastic behaviour is set 

through the true stress-plastic strain shown in (Table 4.3 presented in Chapter 4)} with 

cohesive parameters shown in Table 5.3. 

Table 5.3 Cohesive model parameters. 

 

Shown in Fig. 5.20 and 5.21 are the plots relating load to load-line displacement (i.e. the 

reaction force as a function of the applied displacement measured at the loading point 

represented by the two circular holes shown in Fig. 5.19) for the first two cohesive 

parameter sets contained in Table 5.3.  It is clear from these plots that the shape of the 

traction separation curve has a noticeable effect on the load-line curves. This emphasises 

the importance and influence of the type of TSL and associated cohesive parameters on 

responses measured remotely from the cohesive-zone. The results obtained are for the 

Cohesive 

parameter 

set 

Cohesive 

law 

Γo 

(N/m) 

Ecoh
 

(GPa) 

𝜎𝑐 

(MPa) 

𝛿c 

(m) 

𝛿1 

(m) 

𝛿2 

(m) 

1 
BCZM 189000 15000 600 0.00063 0.00004 0.00004 

TCZM 189000 15000 600 0.00038286 0.00004 0.000287145 

2 
BCZM 189000 15000 600 0.00063 0.00004 0.00004 

TCZM 189000 15000 350 0.00063 0.000023 0.0004725 

3 
BCZM 189000 15000 600 0.00063 0.00004 0.00004 

TCZM 246500 15000 460 0.00063 0.0000307 0.0004725 

4 TCZM 222000 15000 310 0.00083 0.0000207 0.0006225 
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same specimen using either the BCZM or the TCZM with invariant fracture energy and 

either critical traction fixed or critical separation fixed.  This result is in agreement with 

the results obtained from many other authors [14–16]. Although the results confirm that 

the TSL can influence fracture behaviour the extent of this influence depends on the 

geometry and material of the test specimen.  If the specimen has high stiffness, then 

greater sensitivity to the shape of the TSL can be anticipated [16].  This point is made 

explicit in Fig. 5.22, where load-line displacement curves can be found for fracture 

simulations by using the cohesive parameter set number 3 and 4 (see Table 5.3) 

contrasting TSLs in an elasto-plastic bulk material against a purely elastic bulk material.  

From these curves, it is clear that the TCZM displays a clear elasto-plastic response 

making it more appropriate than the BCZM for simulating fracture for an elasto-plastic 

bulk material yet adopting only an elastic material for the analysis.  It is apparent from 

Fig. 5.22 that the TCZM gives a broad range of responses depending on the cohesive 

parameters used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.20. Load versus load line displacement for the BCZM & TCZM with equal 

fracture energy (189 N/mm) and critical stress (600MPa). 
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Fig. 5.21. Load versus load line displacement for the BCZM & TCZM with equal 

critical fracture energy (189 N/mm) and critical separation (0.00063m). 

 

Fig. 5.22. Load versus load-line displacement for the BCZM & TCZM. 
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5.7.2 Strain rate effect 

In this section, the rate-dependent CZM is used to simulate the fracture behaviour of a 

CT specimen (see Fig. 5.19) subjected to different applied loading speeds by using the 

cohesive parameter set 1 from Table 5.3. For each loading speed, a number of simulations 

are performed which are: 

(i) Rate-independent BCZM and TCZM. 

(ii) Stress rate-dependent BCZM and TCZM (i.e. critical stress is function of separation 

rate). 

(iii) Separation rate-dependent BCZM (i.e. critical separation is function of separation 

rate) and finally. 

(iv) The new rate-dependent BCZM and TCZM (i.e. new approach proposed in this 

study). 

The crack length measurement has been done manually by evaluating the displacement 

jump between all the adjacent nodes in the cohesive-zone at each time step. The crack tip 

will be at the nodes where the displacement jump is equal to the critical cohesive 

separation.  Shown in Fig. 5.23 to 5.26 are plots revealing the temporal response of crack 

length for the existing rate-dependent approaches with the BCZM at four loading speeds 

i.e. 0.1, 1.0, 10 and 100 m/s, respectively. At the lowest rate, it is apparent on examination 

of Fig. 5.23 that there is little difference between the rate-independent and rate-dependent 

models. Increasing the loading rate however reveals a decreasing rate of crack growth 

(see Fig. 5.24 to 5.26). Examination of Fig. 5.25 and 5.26 at respective loading speeds of 

10 m/s and 100 m/s reveals unexpected and somewhat unrealistic behaviour with crack 

initiating not at the crack tip but at a point inside the specimen and subsequently 

propagating in two directions (see Fig. 5.27 and 5.28).  This behaviour is as a consequence 

of the strain rate at elements in the location of the crack tip being much higher than 

elsewhere and consequently giving rise to a very high critical separation. A feature of the 

highest loading rate of 100 m/s, for the separation rate-dependent CZM is a delay in the 

initiation of the crack subsequently followed by rapid growth (see Fig. 5.26). This 

behaviour can be observed in brittle materials like the Polymethyl Methacrylate; see 

reference [22] for example. However both existing rate models lead to unrealistic crack 

stop at high loading rates and the separation rate-dependent model suffers greatest in this 

regard.  
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A feature of the new rate model described in Section 5.5 is a bounded critical stress which 

if correctly set should prevent unrealistic crack arrest (in this study this value was set to 

4 times the yield stress).  Moreover, following the reaching of this upper bound any 

further increase in fracture energy is as a consequence of increases in critical separation. 

The behaviour of the new rate-dependent model is outlined schematically in Fig. 5.29. 

Although there is insufficient experimental data in the literature to allow a direct 

comparison there is however evidence for an increase in the fracture energy with rate; see 

for example the experimentally-obtained curve for 𝐺ic from reference [65] and 

reproduced in Fig. 5.30.  It is evident that fracture energy does not increase without bound 

which is an unrealistic feature of existing models. The upper limit for fracture energy can 

be determined experimentally but in the absence of this data a limit of 2.5 times the rate-

independent fracture energy is applied. The results obtained from the simulation of the 

fracture process for the CT specimen depicted in Fig. 5.19 with the new model in 

comparison with existing models are shown in Fig. 5.31 and 5.32.  It is evident from these 

figures that the new model provides results close to the results obtained with the stress 

rate-dependent model but without a high critical-stress value.  The critical stress at the 

first element in the stress rate-dependent model reaches 2600 MPa at a 10 m/s loading 

speed as shown in Fig. 5.33 and 3000 MPa at 100 m/s as shown in Fig. 5.34. Although 

these incredibly high values are avoided with use of the separation rate-dependent 

cohesive model other problems occur as observed in Fig. 5.27 and 5.28. These unrealistic 

responses observed in both the stress and separation rate-dependent models are eliminated 

by the new model as shown in Fig. 5.35. The result of the simulation using the TCZM is 

different from the BCZM and provides further evidence that the type of TSL has an effect 

(see Fig. 5.31 and 5.32). Note that the same fracture energy and critical stress were used 

in the simulation. 

For all the rate-dependent models, the rate dependency is a function of the rate of 

separation and a constant parameter (𝐵 or 𝐵1) (and the parameter 𝐵′1 in addition to 𝐵 for 

the new model only) that affects the strength of rate dependency in the material. In 

practice, these parameters would be determined by curve fitting experimentally-obtained 

results. Fig. 5.36 shows the effect of the parameter 𝐵 on the crack growth speed for the 

stress rate-dependent and the new rate-dependent model for both BCZM and TCZM, 

since with increasing its value the crack growth speed is decreasing. The value of the 

parameter 𝐵′1 is observed to have a minor effect on the crack growth speed for reasonable 
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values of 𝜎𝑙𝑖𝑚𝑖𝑡.  Investigations for 𝐵′1 equated to any one of the values {0.126, 0.166, 

0.206, 0.246} reveals little effect at loading speeds of 10 m/s and 100 m/s. This is not too 

unexpected since increasing the value of 𝜎𝑙𝑖𝑚𝑖𝑡 for an invariant fracture energy has the 

effect of diminishing the influence of 𝛿c
rate. A parametric study has been carried out to 

check the sensitivity of the model to small changes in material properties, 𝜎𝑙𝑖𝑚𝑖𝑡 and the 

upper bound on fracture energy, i.e. 𝑊𝑙𝑖𝑚𝑖𝑡
Γrate . A range of values between 190 to 200GPa 

for elastic modulus and 0.29 to 0.33 for the Poisson’s ratio has negligible impact on the 

simulation results.  Although a value for 𝑊𝑙𝑖𝑚𝑖𝑡
Γrate  can be obtained experimentally and used 

to set 𝜎𝑙𝑖𝑚𝑖𝑡, it is of interest to explore the decoupling of this relationship. The response 

obtained for the situation where 𝜎𝑙𝑖𝑚𝑖𝑡 is relatively high compared to the value obtained 

from 𝑊𝑙𝑖𝑚𝑖𝑡
Γrate is shown in Fig. 5.37. In this case the model reduces to the behaviour 

observed in a rate-independent cohesive model with 𝜎𝑐  set by 𝑊𝑙𝑖𝑚𝑖𝑡
Γrate  and rate-

independent 𝛿𝑐 applied to all the cohesive elements.  Shown in Fig. 5.38 however is the 

behaviour, where 𝜎𝑙𝑖𝑚𝑖𝑡 is much less than the value obtained from 𝑊𝑙𝑖𝑚𝑖𝑡
Γrate, which is similar 

to that observed with the displacement rate-dependent cohesive model.  It is evident that 

coupling 𝜎𝑙𝑖𝑚𝑖𝑡 to 𝑊𝑙𝑖𝑚𝑖𝑡
Γrate  provides for a stable cohesive-zone model. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.23. Crack length-time curve for the 0.1 m/s loading speed under 

displacement control at (𝐵 =  𝐵1  = 0.7). 
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Fig. 5.24. Crack length-time curve for the 1 m/s loading speed under 

displacement control at (𝐵 =  𝐵1  = 0.7). 

Fig. 5.25. Crack length-time curve for the 10 m/s loading speed under 

displacement control at (𝐵 = 𝐵1  = 0.7). 
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Fig. 5.27. The crack initiation point of the separation rate-dependent model at 100 

m/s loading speed. 

Fig. 5.26. Crack length-time curve for the 100 m/s loading speed under 

displacement control at (𝐵 =  𝐵1  = 0.7). 
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Fig. 5.29. Stress-displacement curve of the new rate-dependent BCZM. 

 

Fig. 5.28. The crack initiation point of the separation rate-dependent model at 

10 m/s loading speed. 
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Fig. 5.31. Crack length as a function of the time (𝐵 = 0.7 and 𝐵′1 = 0.126) at 10m/s 

loading speed. 

Fig. 5.30. Experimental energy-strain rate curve[65]. 
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Fig. 5.33. The maximum stress reached by using the stress rate-dependent model at 10 

m/s loading speed. 

Fig. 5.32. Crack length as a function of the time at (𝐵 = 0.7 and 𝐵′1 = 0.126) at 

100m/s loading speed. 
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Fig. 5.34. The maximum stress reached by using the stress rate-dependent model at 100 

m/s loading speed. 

 

Fig. 5.35. The maximum stress and the point of crack initiation by using the new rate-

dependent model under at 100 m/s loading speed. 
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Fig. 5.36. Crack speed as a function of the parameter 𝐵 at 10m/s loading speed. 

 

Fig. 5.37. The effect of applying a high value for 𝜎𝑙𝑖𝑚𝑖𝑡 compared with the 

value evaluated from  𝑊𝑙𝑖𝑚𝑖𝑡
𝛤𝑟𝑎𝑡𝑒 . 
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5.8  Summary 

• The type of TSL can have a measurable effect on the results of any fracture simulation.  

• The TCZM is able to capture the effects of plasticity local to the CZ and can be used 

with an elastic or elasto-plastic bulk material. 

• Existing methods employed to account for rate-sensitivity in fracture processes have 

been shown to suffer from certain deficiencies including unrepresentative values of 

critical stress and separation. 

• To overcome these limitations a new rate-dependent CZM has been trialled, which 

connects the rate-dependent fracture energy to critical stress and separation in a 

manner that ensures critical cohesive stress remains bounded and critical separation 

attains lower values than with competing methods. 

• The new rate-dependent CZM model has been shown to provide acceptable results 

and provides for enhanced stability when contrasted against competing 

methodologies. 

• The rate-dependent behaviour of the new model is dependent on two parameters { 𝐵, 

𝐵1}.  It was found that an increase in 𝐵 decreases crack-growth speed with 𝐵1 having 

Fig. 5.38. The effect of applying a value for 𝜎𝑙𝑖𝑚𝑖𝑡 close to the value 

evaluated from 𝑊𝑙𝑖𝑚𝑖𝑡
𝛤𝑟𝑎𝑡𝑒 .



Chapter Five                                                                           Rate-Dependent CZM for Fracture 

 
   130 

only a minor influence on crack growth behaviour for typical values of bounds on 

critical cohesive stress. 
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Chapter 6: A computationally efficient CZM for fatigue 
 

6.1 Introduction 

Engineering structures such as bridges, power plants, aeroplanes, trains, cars and others 

have played a major role in human life since the beginning of the industrial revolution. 

However, these structures can suffer from mechanical failures caused by crack 

propagation leading potentially to catastrophic events, loss of human life and significant 

financial cost. Fatigue phenomena have been the subject of research for more than 150 

years. However, complete solutions for this issue have not yet been discovered [1]. Great 

effort has been made to understand and evaluate the crack growth behaviour under cyclic 

loading.  However, fatigue remains an area of active research with the development of 

new materials and physical models.  All current models used in the description of fatigue 

behaviour suffer from limitations, and none are able to capture the extensive experimental 

evidence available in the literature. 

It is apparent from the academic literature that the cohesive-zone model (CZM) is 

presently considered to be an attractive approach when combined with the finite element 

method to simulate fracture and fatigue problems.  Nevertheless, an optimum CZM able 

to simulate any form of crack growth problem remains elusive. For the case of fatigue 

crack-growth simulation, an irreversible and history-dependent cohesive law is required. 

There are two formats for identifying the irreversibility and the cyclic history dependence 

in the literature, i.e. the envelope load-damage model and the loading-unloading 

hysteresis damage model. 

In the envelope load damage method only the maximum load of the loading cycle is 

applied and a damage rate (𝑑𝐷 𝑑𝑁)⁄  relationship is required to be formulated. The current 

damage state is evaluated from the previous damage state and the integration of the 

damage rate equation, which can be a source of error in this method. Different 

formulations for the cyclic-damage rate, found in the literature, are reviewed in reference 

[76].  A particular concern with the appliction of a damage rate equation can be the 

number of material parameters involved; each requiring experimentation for their 

determination and for each loading mode (see references [68] and [69] for example).  To 

reduce the cost required for calibrating parameters, the damage evolution can be linked 

to a Paris-like model as in references [70–75].  Unfortunately, with this approach, 

predictive accuracy is affected since growth is confined by the particular growth law 
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assumed to apply.  Accuracy is also influenced by the integration scheme employed to 

integrate the damage rate equation. In addition, damage evolution is directly related to 

the cohesive-zone length (or at least to the fatigue part of the cohesive-zone length). in 

references [70–75] for instance, the cohesive-zone length is evaluated using  

𝑎𝑐𝑧 =
9𝜋𝐸3𝒢𝑐
32(𝜏𝜊)2

                                          (6.1) 

or a modified version of this equation, where 𝒢𝑐 is the critical energy release rate, 𝐸3 is 

Young’s modulus of the bulk material in the direction perpendicular to the crack plane 

and 𝜏𝜊 is the cohesive strength.  The linking to cohesive-zone length in this way is 

essentially non-physical and consequentially cannot be measured or quantified 

experimentally. 

Alternatively, in loading-unloading hysteresis damage models the entire cyclic loading is 

considered and represented. This feature permits the modelling of advanced behaviour 

(such as friction and plasticity) at the crack surface and surroundings [76]. Reduction of 

the interfacial stiffness is the base of loading-unloading hysteresis models, which is 

captured by means of an evolving cyclic-damage variable or a growing internal variable. 

The traction rate 𝑇̇ is assumed to be a function of incremental stiffness that evolves 

according to the evolving damage or internal variable (see references [31] and [78] for 

example). A farther development to the model can be found in reference [79] by adding 

two additional parameters σ𝑓 and 𝛿Σ to account for the fatigue stress limit. This followed 

by the work  in references [28, 29] which have adopted a similar approaches.  Although, 

the loading-unloading hysteresis damage model replicates to an extent fatigue behaviour 

over each and every time increment, it is rather costly in terms of computational time and 

from a practical viewpoint it is unfeasible for high-cycle fatigue simulation, where 

analysis can typically involve extremely large numbers of loading cycles. Although, to 

overcome the cost associated with hysteresis damage models, De-Andrés [77] introduced 

an extrapolation scheme to estimate the damage state after a specific number of cycles, 

his model required a step-by-step computation for a specific number of cycles to 

formulate a damage rate equation. A source of error in this model is assuming a constant 

damage behaviour for the entire propagation period.   

In general, the modelling of fatigue crack growth using the CZM looks very promising 

but is still in its infancy with no mature CZMs yet available for use in industrial 
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applications [76].  However, in an attempt to advance the approach, this Chapter 

introduces a loading-unloading hysteresis damage model containing a fast-track feature. 

The new CZM is introduced in Section 6.2 along with the fast-track feature and a 

mechanism for capturing irreversibility. The implementation of the new CZM model in 

the commercial software package ABAQUS (via a bespoke UMAT subroutine) is 

discussed in Section 6.3. In addition, the analysis model properties (geometry, material 

properties, and boundary conditions) along with the mesh sensitivity analysis are 

considered. Section 6.4 focuses on the validation of the new model by presenting, 

discussing and comparing results with experimental fatigue data. Finally, summary are 

presented in Section 6.5. 

 

6.2  Cohesive-zone model for fatigue 

The fracture process can be simplified as shown in Fig. 6.1, where the behaviour of the 

material element at the crack tip can be assumed to follow a predefined traction separation 

law (TSL). For a pre-defined TSL, two of the cohesive parameters (𝛤𝑜, 𝜎𝑐, and 𝛿𝑐) are 

usually sufficient for simulating the fracture process, where 𝛤𝑜 is the energy dissipated in 

the formation of new surfaces, 𝜎𝑐 is the critical cohesive traction and 𝛿𝑐 is the critical 

cohesive separation, at which the cohesive element fails. The trapezoidal cohesive-zone 

model (TCZM) on the other hand involves two additional shape parameters (𝛿1 and 𝛿2), 

which are required to be specified to simulate the complete fracture process. The addition 

of these two parameters is to account for local plasticity at the crack tip, so avoiding the 

need for a global elasto-plastic analysis in a situation where only localised plasticity is 

involved. This feature is advantageous computationally as it permits an elastic-bulk 

material to be assumed. In the case of cyclic loading, the application of the standard 

TCZM described in Chapter 3 Section 3.6 results in an infinite life. Therefore, it is 

necessary to use an irreversible and history dependent TCZM to capture a finite life. This 

can be done by identifying a cyclic damage mechanism, which is illustrated in the next 

section. 
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6.2.1 Fatigue cohesive model  

The damage mechanism used for the new TCZM consists of two parts.  First is the cyclic 

damage 𝐷𝑐, which itself is associated with two distinct effects: (i) an increase in local 

cyclic plasticity 𝛿𝑝 when 𝛿 ≤ δ2 and; (ii) for 𝛿 > δ2, a further increase in 𝛿𝑝 as 

consequence of void growth and coalescence.  Second is monotonic damage 𝐷𝑠 that 

results from material deterioration not attributed to cyclic loading in the CZM.  These two 

features are shown to be sufficient for the TCZM to capture fatigue crack growth.  

A schematic outline of the behaviour of the proposed model is presented in Fig. 6.2 with 

traction represented mathematically by 

𝜎(𝛿) =

{
 
 

 
 
𝐾𝑐𝑜ℎ𝛿                                                                                   𝑖𝑓   𝛿 <  0                 

(
𝜎𝑚𝑎𝑥

𝛿𝑚𝑎𝑥−𝛿(𝑁+∆𝑁)
𝑝 ) (𝛿 − 𝛿(𝑁+∆𝑁)

𝑝
)𝐻 (𝛿 − 𝛿(𝑁+∆𝑁)

𝑝
)         𝑖𝑓   0 ≤ 𝛿 ≤ 𝛿𝑚𝑎𝑥   

(1 − 𝐷(𝛿))𝐾𝑐𝑜ℎ𝛿                                                               𝑖𝑓   𝛿𝑚𝑎𝑥 <  𝛿 < 𝛿𝑐
0                                                                                            𝑖𝑓   𝛿 ≥  𝛿𝑐               

   (6.2) 

where 𝐾𝑐𝑜ℎ represents the cohesive stiffness, 𝛿𝑚𝑎𝑥 and 𝜎𝑚𝑎𝑥 are the separation and the 

stress at the point of unloading, respectively (see Fig. 6.2); In the figure, 𝜎max (1) and 

𝛿max (1) are the value of the maximum stress and separation after the first loading cycle 

and 𝜎max (2) and 𝛿max (2) after the second loading cycle. To ensure that the first part of the 

second relationship of Eq. (6.2) ( i. e. 𝜎𝑚𝑎𝑥 (𝛿𝑚𝑎𝑥 − 𝛿(𝑁+∆𝑁)
𝑝

)⁄ ) returns the cohesive 

Fig. 6.1. Mode I cohesive-zone model 

[111]. 
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stiffness 𝐾𝑐𝑜ℎ when there is no damage at 𝛿 ≤  δ1 𝑎𝑛𝑑 𝛿(𝑁+∆𝑁)
𝑝 = 0 the value of  𝜎𝑚𝑎𝑥 

and 𝛿𝑚𝑎𝑥 are set to be equal to 𝜎𝑐 and  𝛿1, respectively.  𝑁 is the number of cycles, ∆𝑁 is 

the number of cycles between updates in the damage state which equals 1 for the cycle 

by cycle analysis. The Heaviside function 𝐻 (δ − 𝛿(𝑁+∆𝑁)
𝑝 ) is defined to zero when 𝛿 is 

smaller than 𝛿(𝑁+∆𝑁)
𝑝

 and one in other cases. Finally, 𝐷(𝛿)  is the monotonic damage 

variable evaluated from 

 𝐷(𝛿) = {
1 −

𝛿1

𝛿
                        𝑖𝑓  𝛿1 ≤ 𝛿 < 𝛿2

1 −
𝛿1(δc−𝛿)

𝛿(δc−δ2) 
             𝑖𝑓  𝛿2 ≤ 𝛿 ≤ 𝛿𝑐

        (6.3) 

As advised by Scheider et al. [56] the value of 𝛿1 should be very small and the value of 

𝛿2 should be close to 𝛿𝑐. Therefore, in this study these values are set to 

𝛿1 = 
𝜎𝑐

𝐾𝑐𝑜ℎ
            (6.4) 

𝛿2 = 0.75 ×  𝛿𝑐           (6.5) 

The applied separation 𝛿 is determined by adding the applied cyclic displacement 𝛿𝑐𝑦𝑐 

to the remnant separation 𝛿(𝑁+1)
𝑝

, i.e. 

𝛿 = 𝛿(𝑁+1)
𝑝 + 𝛿𝑐𝑦𝑐          (6.6) 

where 𝛿𝑐𝑦𝑐 is the cyclic displacement as a result of the applied load at any time increment, 

with plastic damage 𝛿𝑝 updated by means of integration of a rate relationship, i.e. 

𝛿(𝑁+1)
𝑝

= 𝛿(𝑁)
𝑝
+ ∫ (𝑑𝛿(𝑁)

𝑝
𝑑𝑁⁄ )

𝑁+1
𝑁 𝑑𝑁′            (6.7) 

where 𝛿(𝑁)
𝑝

 is the stored plastic damage from the previous loading cycle, and 𝑑𝛿(𝑁)
𝑝

𝑑𝑁⁄  

is the plastic damage rate (represented here in the form of a derivative for convenience), 

i.e. the increase in the plastic separation 𝛿𝑝 per cycle.  

The integral in Eq. (6.7) can be approximated using the mean value theorem for 

integration.  If 𝑑𝛿(𝑁)
𝑝

𝑑𝑁⁄   is assumed to be defined and smooth on the interval (N, N+1), 

then 

∫ (𝑑𝛿(𝑁)
𝑝

𝑑𝑁)⁄
𝑁+1

𝑁
𝑑𝑁′ = (𝑁+ 1−𝑁)× (𝑑𝛿(𝑁)

𝑝
𝑑𝑁⁄ ) = (𝑑𝛿(𝑁)

𝑝
𝑑𝑁⁄ )

(𝛼)
   (6.8) 
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where 𝛼 belongs to the interval [N, N+1], (𝑑𝛿(𝑁)
𝑝

𝑑𝑁⁄ )
(𝛼)

 is an intermediate value of the 

rate 𝑑𝛿(𝑁)
𝑝

𝑑𝑁⁄  and a convenient approximation for this is  

(𝑑𝛿(𝑁)
𝑝

𝑑𝑁⁄ )
(𝛼)
≈

𝛿
 (𝑁)

𝑐𝑦𝑐(𝑚𝑎𝑥)

𝐶
         (6.9) 

where 𝐶 is a positive material parameter greater than unity and  𝛿
 (𝑁)

𝑐𝑦𝑐(𝑚𝑎𝑥)  is the 

maximum displacement reached at the end of a loading cycle. 

The approximation adopted in Eq. (6.9) is expedient since 𝛿
 (𝑁)

𝑐𝑦𝑐(𝑚𝑎𝑥)
 is dependent on the 

loading conditions with any material cyclic damage being readily captured by the material 

parameter 𝐶, which can be tuned to accommodate particular material behaviour on 

comparing analysis results with experimental data.  Substitution of Eq. (6.9) into Eq. (6.7) 

yields an extraordinarily simple increment rule for cyclic damage, i.e. 

𝛿(𝑁+1)
𝑝

≈ 𝛿(𝑁)
𝑝
+
𝛿
 (𝑁)

𝑐𝑦𝑐(𝑚𝑎𝑥)

𝐶
        (6.10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 6.2. New loading-unloading hysteresis model. 
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Fig. 6.3(a) shows the behaviour of the cohesive model under cyclic loading, and the 

accumulated dissipated energy ∆𝐺 is readily shown to be 

∆𝐺 = {

1

2
𝜎𝑐 (𝛿𝑚𝑎𝑥 + 𝛿(𝑁+1)

𝑝 − 𝛿1)                                                       𝑖𝑓   𝛿𝑚𝑎𝑥 ≤ 𝛿2 

1

2
[𝜎𝑐(𝛿𝑚𝑎𝑥 + 𝛿2 − 𝛿1) − 𝜎𝑚𝑎𝑥 (𝛿2 − 𝛿(𝑁+1)

𝑝 )]                   𝑖𝑓   𝛿𝑚𝑎𝑥 > 𝛿2 
 (6.11) 

represented by the area under the traction-separation curve in Fig. 6.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3. Cyclic stress-displacement curve. 
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6.2.2 Fast-track feature  

The model described in Section 6.2.1 can be shown to represent fatigue behaviour but 

suffers from a particular limitation.  In its present form (similar to the loading-unloading 

hysteresis damage model) it is practically unfeasible and computationally costly requiring 

excessively long computational time as a consequence of the large numbers of cycles 

typically involved in any realistic industrial application. In order to overcome this 

particular limitation, it is necessary to find an approach that limits the extent of the 

computational requirements. An observation of the behaviour of the existing model 

however, is that deviation in the cyclic behaviour tends to evolve extremely slowly. 

Cyclic damage is considered here to be a combination of cyclic plasticity and material 

deterioration and it is the cyclic plasticity that is observed to suffer low cyclic deviation. 

This suggests that a reasonable approximation is a linear growth rule for cyclic plasticity 

with constant plastic increment over a specific load envelope containing ∆𝑁 cycles. This 

simple observation provides the founding idea for the new fast-track procedure. 

Consider then the possibility that plastic damage evaluated in a loading cycle will remain 

constant for a specific load envelope containing ∆𝑁 number of cycles, the value of ∆𝑁 

should not be set at too a high value to allow damage to be updated to maintain accuracy. 

The cyclic plastic damage after (𝑁 + ∆𝑁) is evaluated in the usual way as 

𝛿(𝑁+∆𝑁)
𝑝

= 𝛿(𝑁)
𝑝
+ ∫ (𝑑𝛿(𝑁)

𝑝
𝑑𝑁⁄ )

𝑁+∆𝑁

𝑁
𝑑𝑁′      (6.12) 

Similar to Eq. (6.7), the mean value theorem for integration is used to approximated the 

integral in Eq. (6.12) and with applying the approximation in Eq. (6.9) the plastic damage 

after (𝑁 + ∆𝑁) cyclies is aproximated as 

𝛿(𝑁+∆𝑁)
𝑝

≈ 𝛿(𝑁)
𝑝
+
𝛿
 (𝑁)

𝑐𝑦𝑐(𝑚𝑎𝑥)

𝐶
∆𝑁         (6.13) 

where Eq. (6.10) is returned on setting ∆𝑁 = 1. 

The increment ∆𝑁  for computational expediency can be an integer value significantly 

greater than one but accuracy is a limiting consideration. It is important therefore to have 

some understanding about the effect ∆𝑁  has on the accuracy of the fast-track procedure.  

A simple procedure is adopted to provide a reasonable estimate for the value of ∆𝑁, which 

involves first the analysis of one cycle.  From this cycle information is recovered at the 

integration point (IP) at the crack tip, with ∆𝑁 being set by the relationship, 
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∆𝑁 = 𝑖𝑛𝑡 (
𝛿𝑐−𝛿 (1)

𝑐𝑦𝑐(𝑚𝑎𝑥)

𝑁𝑢×𝛿(1)
𝑝 )        (6.14) 

where 𝑖𝑛𝑡 is a function that returns the nearest integer to the argument, 𝑁𝑢 is a parameter 

that represents the number of required updates of the cyclic damage, 𝛿(1)
𝑝   is the cyclic 

plastic separation after the first loading cycle, and 𝛿
 (1)

𝑐𝑦𝑐(𝑚𝑎𝑥)
 and 𝛿𝑐 are the maximum 

cyclic displacement reached at the first loading cycle and the critical cohesive separation, 

respectively. The numerator 𝛿𝑐 − 𝛿 (1)
𝑐𝑦𝑐(𝑚𝑎𝑥)

 in Eq. (6.14) is a relatively crude 

approximation of the cyclic plastic separation to the point of failure. The ratio of 𝛿𝑐 −

𝛿
 (1)

𝑐𝑦𝑐(𝑚𝑎𝑥)
 and 𝛿(1)

𝑝
 gives an indication of the number of cycles that leads to the separation 

of the IP at the crack tip. The value for ∆𝑁 employed as a cyclic load envelope is obtained 

on dividing (𝛿𝑐 − 𝛿 (1)
𝑐𝑦𝑐(𝑚𝑎𝑥)  ) 𝛿(1)

𝑝  ⁄ with the integer 𝑁𝑢 (representing the number of cyclic 

updates deemed necessary for accuracy) and returning the nearest integer.  The greater 

the value of 𝑁𝑢 the lower the value of ∆𝑁 (with ∆𝑁 ≥ 1) but consequently the greater 

the computational cost. 

The predicted value of ∆𝑁 by Eq. (6.14) is applied as an input to the analysis along with 

(𝜎𝑐,  𝛿𝑐, 𝑎𝑛𝑑 𝐶) for all cohesive elements. The value of ∆𝑁 (with 𝑁𝑢 fixed) will 

automatically be higher if the problem under consideration involves high-cycle fatigue 

since both the maximum cyclic displacement and the cyclic plastic increment will be 

smaller. A detailed investigation on the effect of ∆𝑁 on the simulation results is provided 

in Section 6.3.3. 

The separation 𝛿𝑚𝑎𝑥 and the stress 𝜎𝑚𝑎𝑥 at the end of the 𝑁 + ∆𝑁 cycles are determined 

with 

𝛿𝑚𝑎𝑥 = 𝛿(𝑁+∆𝑁)
𝑝

+ 𝛿
 (𝑁)

𝑐𝑦𝑐(𝑚𝑎𝑥)
                  (6.15) 

and 

𝜎𝑚𝑎𝑥 = {
𝜎𝑐                                          𝑖𝑓 𝛿1 < 𝛿𝑚𝑎𝑥 ≤ 𝛿2
(1 − 𝐷(𝛿𝑚𝑎𝑥))× 𝜎𝑐             𝑖𝑓 𝛿2 < 𝛿𝑚𝑎𝑥 ≤ 𝛿𝑐

              (6.16) 

Thus, after 𝑁 + ∆𝑁 cycles Eq. (6.16) returns the maximum stress, which is equal to the 

cohesive critical stress if 𝛿𝑚𝑎𝑥 from Eq. (6.15) is less than 𝛿2. If however, 𝛿𝑚𝑎𝑥 is larger 

than 𝛿2, then the maximum stress 𝜎𝑚𝑎𝑥 is evaluated in a similar fashion to Eq. (6.2) by 
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using the monotonic damage variable 𝐷(𝛿𝑚𝑎𝑥) of Eq. (6.3) with 𝛿 replaced by 𝛿𝑚𝑎𝑥. The 

evaluated values from Eq. (6.15) and (6.16) are provided to the next loading cycle along 

with the new value of 𝛿 at 𝑁 + ∆𝑁, with 𝛿 determined using Eq. (6.6) and applied in Eq. 

(6.2).  

To keep things reasonably simple ∆𝑁 is assumed to remain invariant for the total process 

and at the end of a loading cycle the number of cycles satisfies the relationship 𝑁𝑖+1 =

𝑁𝑖 + ∆𝑁. To evaluate the exact number of cycles at which the cohesive element fails, it 

is necessary to compare the value of 𝛿𝑚𝑎𝑥 (evaluated by using Eq. (6.15)) with 𝛿𝑐 and if 

larger, then the number of cycles at which the element failed satisfies the relationship 

𝑁𝑓 = 𝑁𝑖+1 − 𝑖𝑛𝑡(
(𝛿𝑚𝑎𝑥−𝛿𝑐)

(𝛿
 (𝑁)

𝑐𝑦𝑐(𝑚𝑎𝑥)
𝑐⁄ )
)       (6.17) 

The second term on the right-hand side of Eq. (6.17) represents the unwanted number of 

cycles that do not contribute to the failure of the cohesive element. The numerator 𝛿𝑚𝑎𝑥 −

𝛿𝑐  represents the cyclic damage as a result of this unwanted number of cycles, with the 

denominator 𝛿
 (𝑁)

𝑐𝑦𝑐(𝑚𝑎𝑥) 𝐶⁄  being cyclic damage increment. The ratio of 𝛿𝑚𝑎𝑥 − 𝛿𝑐  and 

𝛿
 (𝑁)

𝑐𝑦𝑐(𝑚𝑎𝑥) 𝐶⁄  therefore provides an estimation the overshoot in the prediction of the number 

of cycles to failure and hence must be removed as shown in Eq. (6.17). 

 

6.3  Implementation of the new cohesive-zone model in ABAQUS 

The commercial finite element solver ABAQUS is used as a vehicle for the numerical 

analysis in this study. In ABAQUS, the fracture process using the cohesive model can be 

identified either by a cohesive surface or by cohesive elements that are situated along the 

crack path. In this study, cohesive elements are used, although existing elements in 

ABAQUS are somewhat constrained by TSLs that are history independent and not 

applicable for the simulation of fatigue crack growth. However, the TSL can be defined 

through their material behaviour and ABAQUS provides a facility to specify new material 

behaviour (as the new cohesive model introduced in this study) through a user-defined 

material subroutine. The UMAT subroutine for the new cohesive model can be found in 

Appendix B-2. 
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6.3.1 UMAT implementation and testing 

To test the UMAT subroutine, a three-element model (two material elements and one 

cohesive element connecting them) is used as shown in Fig. 6.4. The material properties 

in the bulk material and the cohesive element are shown in Table 6.1The parameter 𝐶 is 

set to have a small value (i.e. 40) to artificially reduce the number of cycles required for 

failure of the cohesive element.  The load is applied as a cyclic displacement with fixed 

maximum amplitude of 11.6 × 10−5 m and 𝑅 = 0. The analysis is performed initially on 

a cycle by cycle basis (i.e. ∆𝑁 = 1) and then with the new fast-track technique on setting 

∆𝑁 = 4. The cyclic stress of the new fatigue model (in a cycle by cycle manner first and 

by using the new technique with ∆𝑁 = 4) are shown with respect to the separation and 

time in Fig. 6.3 and 6.5, respectively. Note that the reason for the large amount of 

dissipated energy at the first cycle (as apparent in Fig. 6.3) is because the applied load is 

set relatively high to mimic the load used in the experimental fatigue test. Fig. 6.3 also 

shows the growth of the plastic separation with the number of cycles until the separation 

𝛿 reaches 𝛿2. At which point the cohesive stiffness decreases with increasing number of 

cycles because of material deterioration leading to failure of the cohesive element. Fig. 

6.5 shows the required analysis time for a typical element to fail using the cycle-by-cycle 

model (dashed curve) and the fast-track model (solid curve).  It reveals that the fast-track 

procedure provides a reduced number of cycles and hence computational effort, which of 

the order of ∆𝑁−1  of that required without its implementation. The figure shows that for 

an analysis involving 26 loading cycles the fast-track procedure takes some 140 s whilst 

the cycle-by-cycle analysis takes 560 s. 

Table 6.1 Material and cohesive element properties for the three-element model. 

 

 

 

Bulk 

material 

𝜎𝑦  

 (MPa) 

𝐸  

(GPa) 

𝜗     

340 193 0.29     

Cohesive 

elements 

Γo  

(N/m) 

𝐾𝑐𝑜ℎ  

(GPa/m) 

𝜎𝑐  

(MPa) 

𝛿𝑐  

(mm) 

𝛿1  

(mm) 

𝛿2  

(mm) 

C 

 

68500 19700 511 0.168 0.02594 0.126 40 
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6.3.2  Analysis model: geometry and boundary conditions 

conforms to the shape of the specimens used in the fatigue experimental trials. The 

numerical model consists of 23618 plane-stress elements of which 22988 (type CPS4), 

390 (type CPS3), and 240 cohesive elements (type COH2D4) [109]. The material 

properties for the bulk material element and the cohesive element are found in Table 6.2. 

The initial values of the cohesive parameters were set as follows: 𝛿𝑐 equals the crack tip 

opening displacement (CTOD) as measured experimentally in a CT specimen and equals 

0.000168 m; the value of the critical cohesive stress 𝜎𝑐 was set to equal the material yield 

stress and its value is 340 MPa. The analysis was run first using these initial values and 

subsequently adjusted by means of curve fitting analysis results and contrasting with 

Fig. 6.4. Implementation of the CE in the FE model. 

Fig. 6.5. Cyclic stress as function of time. 
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experimental fatigue data; the parameter set in Table 2 was found to give the best fit. The 

boundary conditions applied to the analysis model are shown in Fig. 6.6.  Loading is in 

the form of a uniform cyclic displacement in the y-direction applied at the top surface and 

fixed in all direction at the bottom surface. 

During the fatigue test the number of cycles is recorded along with the applied 

displacement at this number of cycles as presented in Chapter 4. However, these 

displacements do not represent the actual displacements in the fatigue specimen and when 

used in the finite element analysis these result in a loading level higher than 10 kN. To 

find the correct boundary condition that should be applied to the finite element analysis 

to ensure a loading condition similar to that applied during the fatigue test, a correction 

factor was applied to the measured displacement in Chapter 4. The value of the correction 

factor is 0.646 which is found by dividing the maximum displacement required to return 

a reaction force at the loading edge of 10 kN in a one cycle analysis (which is 0.073 mm), 

over the maximum applied displacement at the first cycle from the experimental data in 

Chapter 4 which is 0.113 mm. With this correction factor, the load is applied to the 

numerical analysis in eight steps: first a ramp load that increases from zero to 

3.65 × 10−5m followed by nineteen stage with sinusoidal load at 𝑅 = 0 and Maximum 

displacement of (7.3, 7.6, 7.8, 8, 8.2, 8.4, 8.5, 8.6, 8.7, 9, 9.2, 9.6, 10, 10.2, 10.4, 11.2, 

12, 15.2, 20.6) × 10−5m, respectively as shown in Fig. 6.7. The number of cycles in each 

stage is 6400, 3200, 2400, 1600, 1600, 1600, 1600, 1600, 1600, 800, 800, 800, 800, 800, 

800, 800, 800, 800, (the last step is run until failure), respectively.  The number of cycles 

at each stage is set to ensure that the loading conditions match to those of the fatigue 

experiment. The reaction force as a function of time is shown in Fig. 6.8. 

 

Table 6.2 Material and cohesive element properties for full model. 

 

Bulk 

material 

𝜎𝑦   

(MPa) 

𝐸  

(GPa) 

𝜗     

340 193 0.29     

Cohesive 

elements 

Γo  

(N/m) 

𝐾𝑐𝑜ℎ   

(GPa/m) 

𝜎𝑐 

 (MPa) 

𝛿𝑐  

(mm) 

𝛿1  

(mm) 

𝛿2  

(mm) 

C 

47039 19700 340 0.168 0.01726 0.126 775 



Chapter Six                                             A Computationally Efficient CZM for Fatigue 

 
   144 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6. Boundary conditions and loading for FE model. 

Fig. 6.7. Displacement as function of time. 
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Fig. 6.8. Reaction force as function of time. 
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6.3.3 Fast-track effect on accuracy of the result 

The effect of the updates-parameter 𝑁𝑢 (and consequently ∆𝑁) found in Eq. (6.14), on 

the dissipated energy as tested on the three-element model is shown in Table 6.3, Fig. 6.9 

and 6.10 and its effect on the crack growth on full model is shown in Fig. 6.11 and 6.12.  

In general, a decrease in the value of 𝑁𝑢  (increasing the value of ∆𝑁) gives rise to a 

predicted slower crack growth. From Table 6.3, the error in the estimated number of 

cycles at failure is found to be dependent on the value of 𝑁𝑢, since for ∆𝑁 = 2 (𝑖. 𝑒 𝑁𝑢 =

12) the error is 0% while for ∆𝑁 = 3 (𝑖. 𝑒 𝑁𝑢 = 8) the error in the predicted result is 4%. 

The error in the simulation result become significant when 𝑁𝑢 set to a small value, for 

examble the error in the case when ∆𝑁 = 10 (𝑖. 𝑒 𝑁𝑢 = 2) is 24%. The results indicate 

the expected behaviour that the greater the value of 𝑁𝑢 (and hence lower value of ∆𝑁) the 

reduction in observable differences. From Table 6.3, Fig. 6.9 and 6.10 it is observable 

that there is little dependence of the results on the value of ∆𝑁 in the virtual-plastic region 

(i.e. when  𝛿𝑚𝑎𝑥 ≤ 𝛿2). However, differences become more noticeable in the region of 

material deterioration (i.e. 𝛿𝑚𝑎𝑥 >  𝛿2).  However, revealed in Fig. 6.10 is that acceptable 

results are achievable if ∆𝑁 is such that the damage is updated reasonably regularly (i.e. 

𝑁𝑢 is not too low).   

From the results of the full model analysis shown in Fig. 6.11 and 6.12, it can be 

concluded that any value higher than 6 for the updates-parameter 𝑁𝑢 provides satisfactory 

results with a significant reduction in computational cost.  It is evident in Fig. 6.11, that 

the predicted results are reasonably close to each other for values of 𝑁𝑢  set to (56, 28, 

14, 7), which correspond to  ∆𝑁 ≈  (100, 200,400,800), respectively.  Differences are 

more noticeable however for values of 𝑁𝑢  lower than 6, where 𝑁𝑢 = 3  corresponds to 

∆𝑁 ≈ 2000 and 𝑁𝑢 = 1  corresponding to ∆𝑁 ≈ 5600, as shown in Fig. 6.12. In this 

study, a value of 𝑁𝑢 = 7  corresponding to ∆𝑁 ≈ 800, was found to be sufficient for good 

accuracy and a significant reduction in numerical analysis time. The motivation for a 

higher value of ∆𝑁 is clear, where for example a process taking 7 months in a cycle by 

cycle basis is reducible to around 6.3 hours with ∆𝑁 = 800.  The reduction in 

computational time (i.e. the ratio of CPU-time with the fast-track procedure over the 

CPU-time with the cycle by cycle analysis) is of the order of ∆𝑁−1.  
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Table 6.3 Local effect of ∆𝑁 on the dissipated energy ∆𝐺. 

  

 

 

 

 

 

 

 

 

 

 

 

 

𝑁 

∆𝑁 = 1 ∆𝑁 = 2 ∆𝑁 = 3 ∆𝑁 = 6 ∆𝑁 = 10 

𝛿𝑚𝑎𝑥 

(mm) 

∆𝐺 

(KN/m) 

𝛿𝑚𝑎𝑥 

 (mm) 

∆𝐺 

(KN/m) 

𝛿𝑚𝑎𝑥 

 (mm) 

∆𝐺 

(KN/m) 

𝛿𝑚𝑎𝑥 

 (mm) 

∆𝐺 

(KN/m) 

𝛿𝑚𝑎𝑥 

 (mm) 

∆𝐺 

(KN/m) 

1 0.0852 16.8 0.0852 16.8 0.0852 16.8 0.0852 16.8 0.0852 16.8 

3 0.0895 18.9   0.0895 18.9     

6 0.0959 22.1 0.0959 22.1 0.0959 22.1 0.0959 22.1   

9 0.102 25.3   0.102 25.3     

10 0.104 26.4 0.104 26.4     0.104 26.4 

12 0.109 28.5 0.109 28.5 0.109 28.5 0.109 28.5   

15 0.115 31.7   0.115 31.7     

18 0.121 34.9 0.121 34.9 0.121 34.9 0.121 34.9   

20 0.126 37.0 0.126 37.0     0.126 37.0 

24 0.160 63.0 0.160 57.7 0.146 53.1 0.134 45.0   

25 Failed 68.5 Failed 68.5       

26     Failed 68.5     

27       Failed 68.5   

30         0.153 59.4 

31         Failed 68.5 

Fig. 6.9. Dissipated energy with the number of cycles as a function of ∆𝑁. 
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Fig. 6.10. The value of  𝛿𝑚𝑎𝑥 with the number of cycles as a 

function of ∆𝑁. 

Fig. 6.11. Comparison of the model prediction with 𝑁𝑢 values higher than 

6 at 𝑅 = 0 and a frequency of 0.05Hz. 
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6.3.4  Mesh sensitivity analysis 

Converged results have been confirmed by running a mesh sensitivity analysis. Increasing 

the overall number of bulk-material elements or the cohesive-zone elements has been 

found to have little impact on the results presented.  However, it might well be anticipated 

that the number of elements in the cohesive-zone will be critical to a good outcome. The 

length of the cohesive-zone can be estimated through a similar formulation to the plastic 

zone estimated by von Mises yield criterion as  

𝑙𝑐𝑜ℎ =
𝐸

2𝜋

𝐺𝐼𝑐

𝜎𝑐
2                     (6.18) 

For the problem under consideration the length of the cohesive-zone is 12.5 mm, whereas 

the length of the ligament is 20 mm. It is possible to deduce from the plots shown in Fig. 

6.13 that the number of cohesive elements in the cohesive zone only has a minor influence 

on the crack growth and fatigue life. However, the number of element in the cohesive 

zone could affect the accuracy of the stress field at the crack tip as shown in Fig. 6.14 to 

6.19. According to these results if the focus is to accurately represent the stress field at 

the crack tip, the cohesive elements are required to share the same nodes with the bulk 

material elements (see Fig. 6.19). In this study, 150 elements are employed the cohesive-

Fig. 6.12. Comparison of the model prediction with different 𝑁𝑢 values at 

𝑅 = 0 and a frequency of 0.05Hz. 
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zone to ensure that the cohesive element share the same nodes with the bulk material 

elements and to ensure high accuracy and precise description of the crack growth 

behaviour local to the crack.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.14. The stress field when 13 cohesive elements used. 

 

 

 

 

Fig. 6.13. Importance of the number of cohesive element in the 

cohesive-zone (at ∆𝑁 = 800). 
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Fig. 6.15. The stress field when 25 cohesive elements used. 

 

 

 

 

Fig. 6.16. The stress field when 50 cohesive elements used. 

 

 

 

 

Fig. 6.17. The stress field when 75 cohesive elements used. 
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6.4  Results and discussion 

To overcome the inherent limitations of the loading-unloading hysteresis damage model, 

a new cohesive-zone model with fast track facility has been introduced. This model is 

founded on the basis of loading-unloading hysteresis but with the facility to “freeze in” 

damage for a loading cycle over a predefined number of cycles. The damage is updated 

in the next loading cycle to comply with the conditions at the new state at 𝑁 + ∆𝑁 cycles. 

The approach has been proven to be efficient in terms of time and computational cost 

Fig. 6.18. The stress field when 100 cohesive elements used. 

 

 

 

 

Fig. 6.19. The stress field when 150 cohesive elements used. 
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reduction.  Analysis that can require months or possibly years to be solved (depending of 

the computational platform) using a cycle by cycle approach can be resolved in just a few 

hours or a few days to a good accuracy with the fast-track feature. Shown in Fig. 6.20 is 

experimental (from the result of the test performed in Chapter 4) and predicted crack 

extension versus the number of cycles; the predicted crack growth by the new approach 

with ∆𝑁 ≈ 800 is in good agreement with the experimental data. 

One advantage of the new model over the previous models proposed in the literature [77, 

80, 81, 110] is its simplicity. The model does not require the establishment of a 

relationship that links the damage to the number of cycles as in previous work. The 

damage in this case is calculated for one cycle and applied over ∆𝑁 cycles and then 

updated automatically for the next loading cycle. Another advantage of the model is that 

∆𝑁  is automatically set according to the problem (low cycle fatigue or high cycle fatigue) 

and incorporates a technique to evaluate the accurate number of cycles at failure rather 

than simply assuming it is a multiple of ∆𝑁. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 6.20. Numerical prediction at (𝜎𝑐 = 340 𝑀𝑃𝑎, 𝐶 = 775, 𝑁𝑢 = 7 (∆𝑁 = 800),
𝑅 = 0 & 𝑓 = 0.05𝐻𝑧) versus experiment at (𝑅 = 0 & 𝑓 = 0.05𝐻𝑧). 
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6.5 Summary 

• A new trapezoidal cohesive-zone model for fatigue that can be applied to high and 

low-cycle fatigue simulations has been introduced.  

• Decreasing the value of 𝑁𝑢 is observed to lower crack growth.  If however, 𝑁𝑢  is set 

so that the damage variable is sufficiently updated (after 800 cycles proved sufficient 

in the tests), then the results can be expected to be in good agreement with the 

experimental data with significant reduction in computational costs. 

• The new CZM model has been shown to provide acceptable results with a significant 

reduction in the cost in term of the computational time of the order of ∆𝑁−1. 

• Although the number of elements in the cohesive-zone has an effect on the stress field 

at the crack tip, it has a minor effect on the crack growth prediction. 

• It is observed that the model tends to underestimate the crack extension for crack 

growth less than 1.2 mm but subsequently the predicted crack growth is in line with 

experimental data. 
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Chapter 7: Frequency-dependent CZM for fatigue 
 

7.1 Introduction  

The process of fatigue failure can be divided into three parts: crack initiation, crack 

propagation, and then fast fracture, which leads to the final failure [2, 106]. The fatigue 

behaviour of a part can be significantly affected by different factors such as mechanical, 

microstructural and environmental. As fatigue failure can result when the applied stress 

is much smaller than the yield stress of the material, it has become a point of interest for 

many researchers.  A significant number of experimental studies have been done to 

estimate the life of mechanical parts, but these can be costly and extremely time-

consuming giving rise to an urgent need for fatigue models with an ability to predict crack 

growth rates and fatigue life [106]. 

The academic literature reveals that the cohesive-zone model (CZM) is an attractive 

candidate for the modelling and simulation of fatigue problems. The CZM is founded on 

a traction-separation law (TSL), where traction is related to material separation through a 

constitutive equation. When the traction reaches its critical value 𝜎𝑐, material damage 

initiates and material softening occurs.  Following damage initiation, traction decreases 

until it finally reaches zero which is the point of material separation.  This point is also 

identified when the separation between the surfaces of the cracked-material reaches a 

critical value 𝛿𝑐, at which point the crack propagates with all cohesive energy 𝛤𝑜 

dissipated. The advantage of using the cohesive models over other models is its ability to 

predict the initiation and the propagation of the crack. Furthermore, it can also be applied 

to both monotonic and cyclic loads. The focus in this chapter is on frequency-dependent 

cohesive-zone models, which are designed to capture the frequency effect on the fatigue 

crack propagation at any frequency dependent material such as the austenitic stainless-

steel 304. 

A summary of the available cohesive model for fatigue along with a new model produced 

in this work was illustrated in Chapter 6. However, all of these models are rate-

independent and do not capture the frequency effect. In this work, the new rate-dependent 

trapezoidal CZM that introduced in Chapter 5 is modified and implemented in the new 

cohesive-zone for fatigue that introduced in Chapter 6 to produce a frequency-dependent 

CZM that can be used to capture the loading frequency effect on fatigue crack growth. In 

this fatigue model the fatigue crack growth is set to be controlled by the cohesive strength 
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which set to be equal to yield stress of the material at a proof strain equal to 0.1% and 

because the model under consideration is a trapezoidal model it captures local plastic 

deformation at the crack tip. 

 

7.2  Cohesive-zone model for fatigue 

Rate dependency can be introduced into a monotonic cohesive-zone model by means of 

a dashpot as shown in Chapter 5. The traction-separation curve for a frequency Dependent 

TCZM is shown in Fig. 7.1. It is of interest to observe that as loading frequency increases 

how the cohesive critical traction also increases until it reaches a specified limit and then 

subsequently takes on a constant value. 

  

 

 

 

 

 

 

 

 

 

 

The area under the traction separation curve represents the fracture energy  𝐺𝑐, which is 

defined mathematically to be 

𝐺𝑐 = ∫ 𝜎(𝛿)
𝛿𝑐

0
𝑑𝛿                         (7.1) 

In the case of a trapezoidal CZM the fracture energy can be considered to be formed in 

two parts, i.e. plastic 𝐺𝑝 and cohesive 𝛤𝑜 components to give 

 

Fig. 7.1. Mode I trapezoidal rate-dependent CZM. 
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𝐺𝑐 = 𝐺𝑝 + 𝛤𝑜           (7.2) 

The area under the curve(s) in Fig. 7.1 is equal to 

𝐺𝑐 =
1

2
𝜎(𝑓)
𝑐𝑟𝑎𝑡𝑒((𝛿2 − 𝛿1) + 𝛿𝑐)                    (7.3) 

The variable 𝜎(𝑓)
𝑐𝑟𝑎𝑡𝑒  is termed the frequency-dependent critical cohesive stress, its 

behaviour derived from the rate-dependent models presented in Chapter 5. The 

frequency-dependent critical stress 𝜎(𝑓)
𝑐𝑟𝑎𝑡𝑒  increases with the frequency up to a specific 

limit σ(𝑙𝑖𝑚𝑖𝑡)
𝑐 and is assumed to behave exponentially and is represented mathematically 

by 

σ(𝑓)
𝑐𝑟𝑎𝑡𝑒 = σ(𝑙𝑖𝑚𝑖𝑡)

𝑐 × 𝑒𝑥𝑝 (−
𝑓𝑜

𝑓
)                    (7.4) 

where σ(𝑙𝑖𝑚𝑖𝑡)
𝑐  is the maximum value for the increase in the frequency-dependent critical 

stress, its value evaluated from tuning with the experimental data at loading frequency of  

50 Hz. 

The value of the base frequency 𝑓𝑜 is set to ensure that at 0.05Hz the frequency-dependent 

critical stress equals the yield stress at a proof strain equal to 0.1%.  Note also that Eq. 

(7.4) arises out of a rheological model satisfying the differential equation 𝑑σ(𝑓)
𝑐𝑟𝑎𝑡𝑒 𝑑𝜏⁄ =

−σ(𝑓)
𝑐𝑟𝑎𝑡𝑒 , where 𝜏 represents a dimensionless time and for frequency loading is related to 

frequency by 𝜏 = 𝑓0 𝑓⁄ .  Although the particular form of Eq. (7.4) is not unique it provides 

a relatively simple model for the desired response of σ(𝑓)
𝑐𝑟𝑎𝑡𝑒 .  Note that as 𝑓 → ∞ the 

function σ(𝑓)
𝑐𝑟𝑎𝑡𝑒  asymptotically approaches the constant value σ(𝑙𝑖𝑚𝑖𝑡)

𝑐 , which is an effect 

observed experimentally as discussed in reference [111]. This behaviour arises from the 

saturation of fracture energy with rate and for austenitic stainless-steel 304 it can be linked 

to the saturation of the austenitic-martensitic phase transformation. In essence the 

frequency-dependent fatigue model consists of the model outlined in Chapter 6 apart from 

σ(𝑓)
𝑐𝑟𝑎𝑡𝑒  replacing 𝜎𝑐. The model is illustrated graphically in Fig. 7.2 and described 

mathematically as 
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𝜎(𝛿) =

{
 
 

 
 
𝐾𝑐𝑜ℎδ                                                                               𝑖𝑓   𝛿 <  0                 

(
𝜎𝑚𝑎𝑥

𝛿𝑚𝑎𝑥−𝛿(𝑁+∆𝑁)
𝑝 ) (𝛿 − 𝛿(𝑁+∆𝑁)

𝑝 )𝐻 (𝛿 − 𝛿(𝑁+∆𝑁)
𝑝 )     𝑖𝑓   0 ≤ 𝛿 ≤ 𝛿𝑚𝑎𝑥   

(1 − 𝐷(𝛿))𝐾𝑐𝑜ℎδ                                                           𝑖𝑓   𝛿𝑚𝑎𝑥 <  𝛿 < 𝛿𝑐
0                                                                                       𝑖𝑓   𝛿 ≥  𝛿𝑐               

  (7.5) 

where 𝐾𝑐𝑜ℎ represents the cohesive stiffness, 𝜎(𝛿), 𝜎𝑚𝑎𝑥 and 𝛿𝑚𝑎𝑥 are the cohesive 

traction, the stress and the separation at the point of unloading, respectively (see Fig. 7.2). 

These parameters take the values of  𝛿1 and 𝜎𝑐, respectively to insure that when there is 

no unloading or at the first cycle the first part of the second equation in Eq. (6.2)returns 

the cohesive stiffness 𝐾𝑐𝑜ℎ. Here 𝛿𝑐, 𝛿1, 𝛿2, 𝛿 and 𝛿𝑝 are the critical cohesive separation, 

the separation at which the permanent damage starts, the separation at which the material 

deterioration starts, the applied separation and the remnant separation after unloading, 

respectively. The Heaviside function 𝐻 (𝛿 − 𝛿(𝑁+∆𝑁)
𝑝 ) in Eq. (7.4) is defined to equal 

zero if 𝛿 is smaller than 𝛿𝑝 and one in any other condition. 𝑁 is the number of cycles, ∆𝑁 

is the number of cycles between updates in the damage state. Finally, 𝐷(𝛿) is a monotonic 

damage variable evaluated from 

𝐷(𝛿) = {
1 −

𝛿1

𝛿
                        𝑖𝑓  𝛿1 ≤ 𝛿 < 𝛿2

1 −
𝛿1(δc−𝛿)

𝛿(δc−δ2) 
             𝑖𝑓  𝛿2 ≤ 𝛿 ≤ 𝛿𝑐

      (7.6) 

 The choice of 𝛿1 and 𝛿2 is arbitrary (since there are no evidence of the right shape of the 

traction-separation law). The value of 𝛿1 is set to a relatively small value to ensure a very 

stiff connection in the undamaged cohesive elements, while 𝛿2 is set to be close to 𝛿𝑐 to 

capture the local dissipated energy at the crack tip as a result of local plastic deformation, 

since the focus of the model is crack propagation in ductile materials. These choices is 

similar to what is advised in reference[56], for definiteness 𝛿1 and 𝛿2 are set as 

𝛿1 =
σ(𝑓)
𝑐𝑟𝑎𝑡𝑒

𝐾𝑐𝑜ℎ
          (7.7) 

𝛿2 = 0.75 ×  𝛿𝑐         (7.8) 

The applied separation 𝛿 is determined by adding the applied cyclic displacement 𝛿𝑐𝑦𝑐 to 

the remnant separation 𝛿(𝑁+∆𝑁)
𝑝

, i.e. 

𝛿 = 𝛿(𝑁+∆𝑁)
𝑝 + δcyc         (7.9) 
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For a detailed information about the evaluation of𝛿(𝑁+∆𝑁)
𝑝

 and the fast-track feature see 

Chapter 6 Section 6.2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3 Implementation of the cohesive-zone model in ABAQUS 

In this study, the commercial finite element solver ABAQUS [109] is chosen to be the 

vehicle for performing the numerical analysis. In ABAQUS, the cohesive model can be 

identified either in the form of cohesive surface or by implementing cohesive elements in 

the numerical model along the crack path. Introducing a new cohesive model (such as the 

CZM described in Section 7.2) to ABAQUS is achieved with the cohesive element 

through a user-defined material (UMAT) subroutine. The UMAT subroutine for the new 

frequency-dependent CZM can be found in Appendix B-3. 

7.3.1 Implementing and testing the UMAT 

The new frequency-dependent CZM is implemented in ABAQUS by using a UMAT 

subroutine. To test the subroutine and to demonstrate the benefit of using the fast-track 

Fig. 7.2. New frequency-dependent loading-unloading hysteresis model. 
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feature, a three-element model (3-EM) (two material elements linked through a cohesive 

element) is initially used as shown in Fig. 7.3. Shown in Table 7.1 are the properties of 

the bulk material element and the cohesive element. The boundary conditions are 

displacement fixed in all directions at the bottom edge and a constant cyclic displacement 

applied at three loading frequencies (0.05, 0.1 and 30Hz) with 𝑅 = 0 and 7.3 mm 

maximum amplitude at the top edge (see Fig. 7.3). Fig. 7.4 to 7.6 shows the cyclic stress 

with the analysis time at different loading frequencies. From these curves, the behaviour 

of the new frequency-dependent model is illustrated. Increasing the frequency increases 

the critical stress of the cohesive model and at the same time the advantage of the fast-

track feature is illustrated by comparing the number of cycles required to finish the 

analysis. Application of the fast-track feature provides a reduction in CPU-time of the 

order of ∆𝑁−1. 

 

 

 

 

 

 

 

 

 

Table 7.1 Material and cohesive element properties for stainless steel 304. 
 

 

 

 

 

 

 

Bulk 

material 

Young’s modulus (𝐸)  
(GPa) 

Poisson’s ratio (𝜗)  

193 0.29  

Cohesive 

elements 

𝐺𝑐 
(N/m) 

𝐾𝑐𝑜ℎ 

(GPa/m) 

𝜎𝑐 
(MPa) 

𝛿𝑐  
(m) 

𝛿1  

(m) 

𝛿2  

(m) 

47039 19700 340 0.000168 0.0000173 0.000126 

∆𝑁 
σ(𝑙𝑖𝑚𝑖𝑡)
𝑐  

(MPa) 

𝑓𝑜 

(𝐻𝑧) 

𝐶 

3-EM 

𝐶 

Full-model 

1 4 400 0.008 40 775 

Fig. 7.3. Implementation of the cohesive element in the finite element model. 
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Fig. 7.4. Cyclic stress levels in the cohesive element with the time (real-time) 

at  𝑓 = 0.05𝐻𝑧. 

.. 

 

 

.. 

Fig. 7.5. Cyclic stress levels in the cohesive element with the time (real-time) at  

𝑓 = 0.1𝐻𝑧. 
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7.3.2 Analysis model: geometry and boundary conditions 

Shown in Fig. 7.7 is a finite element model for fatigue specimens used in the experimental 

trials. The model consists of 23618 plane-stress elements of which 22988 (type CPS4), 

390 (type CPS3), and 240 cohesive elements (type COH2D4). Details on material 

properties for both the cohesive element and the bulk material elements are presented in 

Table 7.1, the numerical analysis was done at six loading frequencies (0.05, 0.1, 0.5, 5, 

30, 50).  The critical cohesive stress 𝜎𝑐 for tests performed at the loading frequency 

0.05Hz is set to be equal to the yield stress of the material.  Likewise the value of the 

parameter 𝐶 is set by tuning the model with the experimental results at the same loading 

frequency of 0.05 Hz. This value is applied for all the analysis performed at different 

frequencies yielding good agreement with experimental results and thus provides good 

supporting evidence for the validity of the approximation in Eq. (7.4). 

 Fig. 7.7 shows the applied boundary conditions for the model, which consists of a 

uniform cyclic displacement in the y-direction applied at the top surface with the bottom 

surface fixed in all directions.  A number of stages are involved (see Table 7.2) in 

Fig. 7.6. Cyclic stress levels in the cohesive element with the time (real-time) at  

𝑓 = 30𝐻𝑧. 
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incrementing the applied displacement in order to accurately capture the experimental 

loading conditions.  The first stage involves the application of a ramp function to increase 

the displacement from zero to 3.65 × 10−5m.  This is followed by stages with a sinusoidal 

cyclic displacement at 𝑅 = 0, where the number of cycles at each stage is set to ensure a 

match with the loading conditions incurred in the fatigue experiment. A maximum load 

of 10 kN is set for the loading equipment during the experimental trial.  The loading 

conditions are tabulated in Table 7.2 and presented for each frequency in Fig. 7.8 to 7.11. 

The number of cycles at each stage is directly recorded from the fatigue experiment 

performed in Chapter 4, While the displacement amplitude is determined from the fatigue 

experiment performed in Chapter 4 but after it multiplied with a 0.646 correction factor. 

The reason for the correction factor is that the measured displacement amplitude from the 

machine does not represent the applied displacement to the specimen and represent a 

reference displacement that result in a 10 kN force at the specimen. From the test in 

Chapter 4 it is clear that the maximum displacement when there is no crack propagation 

is 0.113mm and from the FE analysis it was found to be 0.073 from these data the 

correction factor is evaluated by dividing the maximum displacement from FE analysis 

by the maximum displacement form the fatigue test, then this factor is applied on all the 

experimental data. Fig. 7.12 to 7.15 shows the reaction force at the loading edge at loading 

frequency of 0.05, 0.1, 0.5 and 30Hz, respectively. 

For the effect of the fast-track facility and the mesh sensitivity analysis check Chapter 6 

Sections 6.3.3 and 6.3.4 respectively. 

 

 

 

 

 

 

 

 

 

Fig. 7.7. Boundary conditions and loading for FE model. 
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Table 7.2 Cyclic amplitude with the number of cycles at that amplitude 

 

 

 

 

 

 

 

 

 

𝑓 = 0.05 𝐻𝑧 𝑓 = 0.1 𝐻𝑧 𝑓 = 0.5 𝐻𝑧 𝑓 = 5, 30 𝑎𝑛𝑑 50 𝐻𝑧 

Max 𝛿 

(mm) 

N  

(cycles) 

Max 𝛿 

(mm) 

N  

(cycles) 

Max 𝛿 

(mm) 

N  

(cycles) 

Max 𝛿 

(mm) 

N  

(cycles) 

Stage 2 0.073 6400 0.073 8000 0.073 5600 0.073 8000 

Stage 3 0.076 3200 0.0735 6400 0.0745 4800 0.0735 2400 

Stage 4 0.078 2400 0.076 4800 0.076 4800 0.074 4800 

Stage 5 0.08 1600 0.0795 3200 0.077 4000 0.075 4000 

Stage 6 0.082 1600 0.08 2400 0.078 3200 0.076 3200 

Stage 7 0.084 1600 0.083 2400 0.08 3200 0.0765 3200 

Stage 8 0.085 1600 0.085 2400 0.082 2400 0.078 2400 

Stage 9 0.86 1600 0.09 2400 0.083 2400 0.079 2400 

Stage 11 0.087 1600 0.096 1600 0.085 2400 0.08 2400 

Stage 12 0.09 800 0.10 1600 0.089 2400 0.081 2400 

Stage 13 0.092 800 0.102 1600 0.092 2400 0.083 2400 

Stage 14 0.096 800 0.104 800 0.096 2400 0.086 2400 

Stage 15 0.10 800 0.106 800 0.10 2400 0.088 2400 

Stage 16 0.102 800 0.108 800 0.108 2400 0.092 2400 

Stage 17 0.104 800 0.112 800 0.116 2400 0.094 2400 

Stage 18 0.112 800 0.116 800 0.132 800 0.098 1600 

Stage 19 0.12 800 0.12 800 0.144 800 0.102 1600 

Stage 14 0.152 800 0.124 800 0.176 800 0.108 1600 

Stage 16 0.206 
until 

failure 
0.13 800 0.206 until failure 0.12 1600 

   0.206 
until 

failure 
  0.132 800 

       0.148 800 

       0.206 until failure 

Fig. 7.8. Displacement as function of time at 𝑓 = 0.05Hz. 
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Fig. 7.9. Displacement as function of time at 𝑓 = 0.1Hz. 

 

 

 

 

Fig. 7.10. Displacement as function of time at 𝑓 = 0.5Hz. 

 

 

 

 

Fig. 7.11. Displacement as function of time at 𝑓 = 5,30 𝑎𝑛𝑑 50Hz. 
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Fig. 7.12. Reaction force as function of time at 𝑓 = 0.05Hz. 

 

 

 

 

Fig. 7.13. Reaction force as function of time at 𝑓 = 0.1Hz. 

 

 

 

 

Fig. 7.14. Reaction force as function of time at 𝑓 = 0.5Hz. 
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7.4 Results and discussion 

The cohesive-zone model introduced in Section 7.2 is used to simulate the fatigue tests 

performed in Chapter 4 and the numerical results show that the new cohesive model can 

predict the crack growth behaviour at different loading frequencies with good accuracy 

and a significant reduction in the required CPU-time. A fast-track facility has been 

introduced to the new cohesive-zone model (see Chapter 6 Section 6.2.2) to overcome 

the essential limitations of the loading-unloading hysteresis damage model. The fast-track 

facility has the ability to “freeze in” the damage for a specific loading cycle over a 

predefined number of cycles ∆𝑁. In the next loading cycle the damage updates to fulfil 

the new state at 𝑁 + ∆𝑁 cycles. The new fast-track approach has been proven to be 

effective in term of accuracy and time reduction. 

The advantages of the new frequency-dependent CZM over the available models in the 

literature (e.g. [77, 80, 81, 110]) are the ability to capture the frequency effect and its 

simplicity. It does not require the formation of a relationship to link the damage to the 

number of cycles as in previous work. Another advantage of the model is that it can be 

applied to both low and high-cycle fatigue analysis, since the number of cycles in the load 

envelope ∆𝑁 that used for the fast-track procedure is automatically set according to the 

problem under consideration. 

The numerical predicted curves for crack growth with the number of cycles along with 

experimental curves for different loading frequencies are shown in Fig. 7.16 to 7.13.  Fig. 

Fig. 7.15. Reaction force as function of time at 𝑓 = 30Hz. 
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7.16 presents the result at loading frequency 𝑓 = 0.05 Hz which is used to tune the 

cohesive parameters (i.e.  𝑓𝑜 𝑎𝑛𝑑 𝐶) for the new model since σ(𝑓)
𝑐𝑟𝑎𝑡𝑒  for this loading 

frequency set to be equal to the material yield stress at 0.1% strain and 𝛿𝑐 set to be equal 

to the crack tip opening displacement measured on a CT specimen. By using these 

cohesive properties, the fixed parameter 𝐶 was determined first by tuning the analysis 

result with the experimental data at 0.05 Hz. The value of critical stress limit σ(𝑙𝑖𝑚𝑖𝑡)
𝑐  is 

evaluated by tuning with the experimental result at loading frequency (50 Hz). Finally, 

the value of the base frequency 𝑓𝑜 was found using Eq. (7.4) by applying the value of 

σ(𝑙𝑖𝑚𝑖𝑡)
𝑐  and the cohesive parameters at 0.05Hz.  Predictions obtained with these settings 

when compared with data at other frequencies (i.e. 0.1, 0.5, 5 and 30Hz) provide good 

support for the form of Eq. (7.4) and the new model. The predicted and experimentally 

obtained crack growth at loading frequencies of 0.1Hz and 0.5Hz are shown in Fig. 7.17 

and 7.12 respectively, with the results at 5, 30, and 50Hz are shown in Fig. 7.19. It is clear 

from the results that the predicted growth rate by the new model at different loading 

frequencies is in good agreement with the experimental results. The percentage of error 

in the estimated crack length [(estimated length-measured length)/measured length) 

*100%] is shown in Table 7.3, where the minus sign signifies that the model is under 

estimating the crack length. From the results in Table 7.3. it is clear that the predicted 

crack length is in an acceptable level of accuracy.   

 

Table 7.3 Percentage difference in predicted and experimentally measured crack lengths. 

N 

(cycles) 

𝑓 = 0.05 𝐻𝑧 𝑓 = 0.1 𝐻𝑧 𝑓 = 0.5 𝐻𝑧 𝑓 = 50 𝐻𝑧 

a (mm) Error % a (mm) Error % a (mm) Error % a (mm) Error % 

8000 0.98 -19.30 0.50 -19.80 0.38 -6.62 0.30 7.64 

12000 2.18 -0.40 1.04 -7.60 0.79 -10.00 0.56 -2.15 

17000 3.96 -1.94 1.77 0.09 1.36 -10.00 0.89 -4.40 

20000 5.586 2.20 2.25 -6.25 1.75 -10.00 1.15 -5.66 

24000 7.75 0.96 3.10 2.10 2.42 -8.80 1.50 -9.58 

28000   4.19 4.24 3.25 -4.40 2.00 -8.51 

32000   5.60 -5.86 4.25 -1.16 2.60 -7.80 

36000   8.17 0.27 5.50 -1.44 3.29 -7.00 

40000     7.40 8.82 4.22 -3.00 

44000       5.50 0.60 

48000       7.25 4.10 

52000       9.50 -1.32 
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Fig. 7.17. Crack length as function of loading cycles at 𝑅 = 0,  𝑓 = 0.1𝐻𝑧 

& ∆𝑁 = 800. 

Fig. 7.16. Crack length as function of loading cycles at 𝑅 = 0,  𝑓 = 0.05𝐻𝑧 

& ∆𝑁 = 800. 
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Fig. 7.19. Crack length as function of loading cycles at 𝑅 = 0,  𝑓 =
50, 30, 𝑎𝑛𝑑 5𝐻𝑧 & ∆𝑁 = 800. 

. 

 

 

 

 

Fig. 7.18. Crack length as function of loading cycles at 𝑅 = 0,  𝑓 = 0.5𝐻𝑧 

& ∆𝑁 = 800. 
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7.5  Summary 

Based on the finding of this study the following can be concluded: 

• A new frequency-dependent trapezoidal cohesive-zone model with fast-track facility 

for fatigue that can be used for low and high-cycle fatigue simulation has been 

developed.  

• The new rate-dependent CZM has been implemented in the finite element solver 

ABAQUS (via a bespoke UMAT subroutine) and has been tested at different applied 

frequencies (0.05, 0.1, 0.5, 5, 30, and 50 Hz). 

• The rate-dependent critical stress is increasing with the loading frequency up to 5 Hz 

and turn to be nearly constant at frequencies higher than 5 Hz. 

• The new frequency-dependent CZM model has been shown to give an acceptable 

prediction with a significant reduction in the computational time of the order of ∆𝑁−1. 
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Chapter 8: Conclusions and future work 
 

The main aim of this PhD thesis is to improve the cohesive-zone model for both fatigue 

and fracture modelling. Searching the academic literature revealed that the effect of strain 

rate on fatigue and fracture is not fully covered by the cohesive-zone modelling approach. 

The process of developing the frequency-dependent TCZM can be divided into Three 

steps. 

 

8.1 Monotonic rate-dependent model  

First, because the modelling of monotonic fracture tends to be relatively easier than 

fatigue, the initial focus of the research was on the development of a monotonic rate-

dependent CZM along with testing the implantation of such a model in the finite element 

solver ABAQUS. The development of the rate-dependent model was achieved by means 

of an analysis of different combinations of springs, dashpots, sliders, and cohesive 

elements in an one-dimensional model. The existing rate-dependent methodologies in the 

literature were discussed and tested, which led to a new model that overcame their 

limitations. From the findings of the investigation in Chapter 5 the following conclusions 

can be drawn: 

 

1- Conclusions: 

• The ABAQUS finite element solver has shwon itself to be an ideal vehicle for all the 

numerical analysis, and all the new models have been implemented in the solver 

through a user material UMAT subroutine.  

• The choice of the TSL should be made according to the material under consideration. 

In this regards, it has been found that the TCZM adequately captures elasto-plastic 

material behaviour. 

• Existing rate-dependent methodologies currently employed for dynamic fracture 

analysis have been demonstrated to suffer unrealistic behaviour such as unbounded 

critical stress and separation. 

• A new rate-dependent TCZM, which overcomes the limitation of the previous 

models, has been trialled. A feature of this model is a bounded rate-dependent critical 

stress and control of the increase in fracture energy as a consequence of strain-rate. 
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2- Future works recommendations: 

• The rate-dependent CZM is presently limited to Mode I and 2D fracture analysis, so 

it would be beneficial to develop the model to be applicable for mixed mode and 3D 

fracture analysis. 

• An experimental investigation of the fracture energy limit and its relationship to the 

limiting value of the critical stress is necessary. 

• A comprehensive experimental study of the strain-rate effect on crack growth is 

required to further validate the new model. 

 

8.2 A computationally efficient cohesive-zone model for fatigue 

The second step of the research involved the development of a new CZM for fatigue that 

overcame the cost associated with the loading-unloading hysteresis model. A feature of 

the new model is a damage mechanism that combines cyclic plasticity with material 

deterioration. Although the accumulation of the damage is based on the concept of 

loading-unloading hysteresis, the model has the benefit of incorporating a fast-track 

feature. The observation that fatigue cracks tend to grow extremely slowly with a near 

invariant cyclic response raised the possibility of applying a linear growth rule to 

approximate cyclic damage. This approximation involves “freezing in” the damage state 

for one loading cycle over a predefined load envelope of ∆𝑁 cycles. From testing the new 

fatigue model presented in Chapter 6, the following conclusions can be outlined: 

  

1- Conclusions: 

• A feature of the new fatigue model is that it can be directly applied for high and low-

cycle fatigue analysis. 

• The predicted crack growth by the new model is affected by the value of the damage 

update parameter 𝑁𝑢, however a good agreement with the experimental results can be 

achieved if 𝑁𝑢 is set so that the cyclic damage is allowed to be adequately updated.  

• The application of the fast-track feature has been proven to return satisfactory results 

with a significant reduction in the computational cost in the order of ∆𝑁−1.  
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2- Future works recommendations: 

• An experimental fatigue investigation at different loading conditions and different 

specimen type is required to standardise the cohesive parameters {𝜎𝑐, 𝛿𝑐,  𝛿1,  𝛿2, 𝐶} 

of the new model. 

• Investigate the sensitivity of the model to the loading ratio 𝑅.  

• Extended the model to 3D analysis and different loading conditions.  

 

8.3 Frequency-dependent CZM for fatigue 

The third step in the research was the combining of the new cohesive-zone model with a 

rate mechanism to capture the frequency effect associated with fatigue for some materials. 

In order to test and validate the new model an experimental fatigue test at different 

frequencies was performed on austenitic stainless-steel 304. The test results confirmed 

that crack growth in this material is sensitive to the loading frequency with the crack 

growing faster at a lower frequency. However, this sensitivity to the loading frequency 

dissappeared above a frequency of 5Hz. The new frequency-dependent model was used 

to simulate the fatigue tests, and the following conclusions can be outlined from the 

investigation presented in in Chapter 7: 

 

1- Conclusions: 

• The new frequency-dependent TCZM can be applied for high and low-cycle fatigue. 

• The new frequency-dependent CZM has been implemented in ABAQUS by means of 

a UMAT subroutine and has proven to give satisfactory results when tested at 

different loading frequencies, i.e. {0.05, 0.1, 5, 30, and 50 Hz}. 

• With increasing loading frequency, the frequency-dependent cohesive stress σ(𝑓)
𝑐𝑟𝑎𝑡𝑒  

increases. This behaviour is noticeable up to a frequency of 5 Hz and then is nearly 

constant at higher frequencies. 

• A comparison of the predicted results with the experimental ones shows that the new 

frequency-dependent TCZM gives a satisfactory prediction with a reduction in CPU-

time of the order of ∆𝑁−1. 

• The mesh sensitivity analysis shows that the number of elements occupying the 

cohesive-zone has a minor effect on the predicted crack growth rate even though it 

influences the crack tip stress field. 
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2- Future works recommendations: 

• It is required to perform further experimentation on different specimen shapes and 

boundary condition to standardise the model parameters {𝑎, 𝑏, 𝑑, 𝑛}. 

• Since the austenitic-martensitic phase transformation depends on the strain level, it is 

required to investigate the frequency effect at different loading levels and different 

loading ratios 𝑅 and validate the model with these results. 

• Extend the model for application to mixed-mode and 3D fatigue analysis. 
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Appendix B: UMAT subroutines 

B-1 New rate-dependent TCZM for fracture  

C*********************************************************************** 

C     UMAT FOR THE NEW RATE-DEPENDENT COHESIVE MODEL 

C     CAN BE USED FOR MODE ONE ONLY 

C     WRITEN BY SARMED A. SALIH 

C===================================================================

==== 

C  HEADER OF THE SUBROUTINE 

C       

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

C       

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 

     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 

C===================================================================

==== 

C     THIS PART IS THE USER CODING TO DEFINE DDSDDE, STRESS, STATEV,  

C     SSE, SPD, SCD AND,IF NECESSARY, RPL, DDSDDT, DRPLDE, DRPLDT,PNEWDT  

C----------------------------------------------------------------------- 

      DIMENSION UPSTRAN(NTENS),UPDSTRAN(NTENS),STRANRAT(NTENS), 

     1          CYCSTRAN(NTENS),UPCYCSTRAN(NTENS) 

      PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.D0) 

      REAL*8 Ecoh,S,Sc,Sf,dc,Scr,BETA1,BETA,d1,EG,K,Smax,dmax,de,X,XX 

      INTEGER N,UNLOADING,FAILED 



Appendix-B                  User defined Material Subroutines 

 
   188 

C       

      IF (NDI.NE.1) THEN 

         WRITE(7,*) 'THIS UMAT MAY ONLY BE USED WITH MODE ONE FRACTURE'                  

         CALL XIT 

      END IF 

C                 *************************************** 

C     PROPS(1)IS THE CRITICAL COHESIVE STRESS 

C     PROPS(2)IS THE CRITICAL COHESIVE SEPARATION  

C     PROPS(3)IS COHESIVE ELASTIC STEFNESS 

C     PROPS(4)IS THE VALUE OF THE FIRST RATE-DEPENDETN PARAMETER 

C     PROPS(5)IS THE VALUE OF THE SECOND RATE-DEPENDETN PARAMETER 

C     PROPS(6)IS THE VALUE OF THE RATE-DEPENDENT CRITCAL STRESS LIMIT 

C                                ****** 

C     STATEV(1)IS THE SEPARATION AT THE END OF THE LOADING CYCLE 

C     STATEV(2)IS TEH STRESS AT THE END OF THE LOADING CYCLE  

C     STATEV(3)IS A VARIABLE TO INDICATE THE FAILUR OF THE ELMENT  

C     STATEV(4)IS A VARIABLE TO INDICATE THE ONSET OF UNLOADING IN THE  

C              MONOTONIC LOADING CASE 

C     STATEV(5)IS AN  INTERNAL CONTROL VARIABLE 

C     STATEV(6)IS THE VALUE OF THE RATE-DEPENDENT CRITICAL STRESS 

C     STATEV(7)IS THE VALUE OF THE RATE-DEPENDENT CRITICAL SEPARATION 

C     STATEV(8)IS THE VALUE OF THE RATE-DEPENDENT CRITICAL ENERGY 

C                 *************************************** 

C     DEFINING ELATIC CONSTANTS   

      Sc=PROPS(1) 

      dc=PROPS(2) 

      Ecoh=PROPS(3)       

      BETA=PROPS(4) 

      BETA1=PROPS(5)       

      Sy=PROPS(6) 

      SLIMIT=FOUR*Sy 

C 

      IF(STATEV(6).EQ.ZERO)THEN 

      Scr=Sc 
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      ELSE 

      Scr=STATEV(6) 

      ENDIF 

C       

      IF(STATEV(7).EQ.ZERO)THEN 

      dcr=dc 

      ELSE 

      dcr=STATEV(7) 

      ENDIF       

      FAILED=STATEV(3) 

      gamarate=STATEV(8)  

      d1=Scr/Ecoh                                            

C 

      DO K1=1, NTENS  

      UPSTRAN(K1)=STRAN(K1)+DSTRAN(K1) 

C =================================================================       

C                  CASE ONE IF THERE IS NO UNLOADING 

C =================================================================        

1     IF(FAILED.EQ.ZERO)GOTO 3 

      GOTO 170 

C 

C     CONDITION TO CHECK IF THE MODEL REACH THE SOFTING PART 

C        

3     IF ((K1.EQ.1).AND.(STATEV(4).EQ.ZERO).AND.(DSTRAN(K1).GT.ZERO).AND 

     1 .(STRAN(K1).GE.ZERO).AND.(UPSTRAN(K1).GT.(0.15*(Sc/Ecoh))))GOTO 4 

      GOTO 100 

C 

C     CALCULAT THE RATE DEPENDENT COHESIVE STRESS 

C                 

4     UPTIME=TIME(1)+DTIME 

      STRANRAT(K1)=UPSTRAN(K1)/UPTIME 

      Srate=(ONE+BETA*STRANRAT(K1))*Sc 

      IF(Srate.LE.SLIMIT)GOTO 5 

      GOTO 6 
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5     gamarate=((0.875*Srate*dcr)-(0.5*Srate*d1)) 

      gama=((0.875*Sc*dc)-(0.5*Sc*Sc/Ecoh)) 

      Scr=Srate 

      dcr=dc 

      d1=Scr/Ecoh 

      IF(gamarate.GE.(2.5*gama))THEN 

      gamarate=(2.5*gama) 

      Scr=(gamarate)/(0.875*dcr-0.5*d1) 

      ENDIF       

      STATEV(6)=Scr 

      STATEV(7)=dcr       

      GOTO 100 

C       

6     IF((Srate.GT.SLIMIT))GOTO 7 

      GOTO 100 

7     Scr=SLIMIT 

      STATEV(6)=Scr 

      d1=Scr/Ecoh 

      dcr=(ONE+BETA1*STRANRAT(K1))*dc  

      STATEV(7)=dcr 

      gamarate=((0.875*SLIMIT*dcr)-(0.5*SLIMIT*d1)) 

      gama=((0.875*Sc*dc)-(0.5*Sc*Sc/Ecoh))             

      IF(gamarate.GE.(2.5*gama))THEN 

      gamarate=(2.5*gama) 

      dcr=(gamarate+(0.5*d1*SLIMIT))/(0.875*SLIMIT) 

      STATEV(7)=dcr 

      ENDIF 

      STATEV(8)=gamarate           

C 

100   d1=Scr/Ecoh 

      d2=0.75*dcr 

      S2=Ecoh*d2  

C 

      IF(STATEV(2).EQ.ZERO)THEN 
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      Smax=Scr 

      ELSE 

      Smax=STATEV(2) 

      ENDIF 

C             

      IF(STATEV(1).EQ.ZERO)THEN 

      dmax=d1 

      ELSE 

      dmax=STATEV(1) 

      ENDIF  

C 

      K=Smax/dmax 

      S=K*STRAN(K1)            

      Sf=Ecoh*dcr                       

C                  ************************************** 

C                       THE CASE OF CYCLIC LOADING 

C                  ************************************** 

C         

105   IF((UPSTRAN(K1).LT.dmax).AND.(S.LE.Smax))GOTO 110        

      GOTO 115   

C     COMPUTE THE STIFFNESS MATRIX 

110             DO K2=1, NTENS 

                    DDSDDE(K2, K1)=ZERO 

                END DO 

                    DDSDDE(K1, K1)=K   

C       

C             UPDATE THE STRESS 

C 

                  DO K2=1, NTENS 

                       STRESS(K1)=STRESS(K1)+DDSDDE(K2,K1)*DSTRAN(K1) 

                  END DO 

C                                              

C             PRINT THE VALUE OF THE STRESS AND THE STRAN         

      IF (K1.EQ.1)THEN 
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      STATEV(5)=ONE 

      STATEV(9)=ONE  

      STATEV(10)=ZERO      

      WRITE(7,*) NOEL,'LOADING',stress(K1),UPSTRAN(K1),DSTRAN(K1),dcr 

     1           ,Scr,Srate,SLIMIT,STRANRAT(K1),gamarate,gama,BETA,BETA1 

          ENDIF 

      GOTO 220            

C     .AND.(S.GT.Scr) 

115   IF((UPSTRAN(K1).GE.d1).AND.(UPSTRAN(K1).LE.d2).AND.(DSTRAN(K1) 

     1   .GE.ZERO))GOTO 120 

      GOTO 121 

C      

120       STRESS(K1)=Scr 

C     COMPUTE THE STIFFNESS MATRIX 

          DO K2=1, NTENS 

          DDSDDE(K2, K1)=ZERO 

          END DO 

          DDSDDE(K1, K1)=ZERO 

c 

      IF (K1.EQ.1)THEN           

      WRITE(7,*)  NOEL,'PLASTIC',stress(K1),UPSTRAN(K1),Scr,dcr,gamarate 

     1                    ,STRANRAT(K1),Srate 

c      STATEV(1)=UPSTRAN(K1) 

c      STATEV(2)=STRESS(K1) 

      STATEV(5)=ZERO 

      STATEV(9)=ZERO 

      STATEV(10)=ONE  

      STATEV(11)=UPSTRAN(K1) 

      STATEV(12)=STRESS(K1)             

      ENDIF 

      GOTO 220           

C 

121   IF((UPSTRAN(K1).GT.d2).AND.(UPSTRAN(K1).LT.dcr).AND.(STATEV(10) 

     1       .EQ.ONE).AND.(DSTRAN(K1).GE.ZERO)) GOTO 122 
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      GOTO 125 

C 

122        EG=(-Scr)/(dcr-d2) 

C      

C     COMPUTE THE STIFFNESS MATRIX 

          DO K2=1, NTENS 

          DDSDDE(K2, K1)=ZERO 

          END DO 

          DDSDDE(K1, K1)=EG 

C     CONDITION FOR PENETRATION         

C       

C     UPDATE THE STRESS 

          DO K2=1, NTENS 

             STRESS(K1)=STRESS(K1)+DDSDDE(K2,K1)*DSTRAN(K1) 

          END DO 

          if(STRESS(K1).LT.ZERO)then 

            STRESS(K1)=ZERO 

          endif             

C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

      IF (K1.EQ.1)THEN  

C      STATEV(1)=UPSTRAN(K1) 

C      STATEV(2)=STRESS(K1) 

      STATEV(4)=ONE 

      STATEV(5)=ZERO  

      STATEV(9)=ZERO  

      STATEV(11)=UPSTRAN(K1) 

      STATEV(12)=STRESS(K1)                       

      WRITE(7,*) 'SOFTENING',stress(K1),UPSTRAN(K1),Scr,dcr,gamarate, 

     1                    STRANRAT(K1) 

      ENDIF 

      GOTO 220 

C       

c 

125   IF(DSTRAN(K1).GT.ZERO)GOTO 130 
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      GOTO 190 

130   IF((S.LE.Smax).AND.(UPSTRAN(K1).GT.dmax).AND.(dmax.GE.d2).AND. 

     1   (DSTRAN(K1).GE.ZERO).AND.(STATEV(9).EQ.ONE))GOTO 140 

      GOTO 150                

C 

140           STRESS(K1)=Smax 

              UPDSTRAN(K1)=UPSTRAN(K1)- dmax 

              EG=(-Smax)/(dcr-dmax) 

C     COMPUTE THE STIFFNESS MATRIX 

              DO K2=1, NTENS 

              DDSDDE(K2, K1)=ZERO 

              END DO 

              DDSDDE(K1, K1)=EG      

C     UPDATE THE STRESS 

              DO K2=1, NTENS 

                 STRESS(K1)=STRESS(K1)+DDSDDE(K2,K1)*UPDSTRAN(K1) 

              END DO 

              if(STRESS(K1).LT.ONE)GOTO 142 

              GOTO 143 

142               STRESS(K1)=ZERO 

              GOTO 220                              

C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

143   IF (K1.EQ.1)THEN 

      STATEV(1)=UPSTRAN(K1) 

      STATEV(2)=STRESS(K1) 

      STATEV(4)=ONE 

      STATEV(5)=ZERO 

      STATEV(11)=UPSTRAN(K1) 

      STATEV(12)=STRESS(K1)                    

      WRITE(7,*) NOEL,'SOFTENING1',stress(K1),UPSTRAN(K1),Smax,dmax, 

     1           STRAN(K1),DSTRAN(K1),Scr,dcr 

       ENDIF 

      GOTO 220             

C  
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150   IF((S.GT.Smax).AND.(UPSTRAN(K1).GT.dmax).AND.(UPSTRAN(K1).LE.dcr 

     1  ).AND.(dmax.GT.d2).AND.(STATEV(9).EQ.ONE).AND.(DSTRAN(K1).GE. 

     2  ZERO))GOTO 160                                    

C 

      GOTO 164 

160   IF((K1.EQ.1).AND.(STRESS(K1).LT.Smax).AND.(STATEV(5).EQ.ONE))THEN 

      STRESS(K1)=Smax 

      UPDSTRAN(K1)=UPSTRAN(K1)- dmax 

      ELSE 

      UPDSTRAN(K1)=DSTRAN(K1) 

      ENDIF 

              EG=(-Smax)/(dcr-dmax) 

C     COMPUTE THE STIFFNESS MATRIX 

              DO K2=1, NTENS 

              DDSDDE(K2, K1)=ZERO 

              END DO 

              DDSDDE(K1, K1)=EG      

C     UPDATE THE STRESS 

              DO K2=1, NTENS 

                 STRESS(K1)=STRESS(K1)+DDSDDE(K2,K1)*UPDSTRAN(K1) 

              END DO 

              IF(STRESS(K1).LT.ONE)GOTO 162 

              GOTO 163 

162               STRESS(K1)=ZERO 

              GOTO 220                              

C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

163   IF (K1.EQ.1)THEN 

      STATEV(1)=UPSTRAN(K1) 

      STATEV(2)=STRESS(K1) 

      STATEV(4)=ONE 

      STATEV(5)=ZERO 

      STATEV(11)=UPSTRAN(K1) 

      STATEV(12)=STRESS(K1)                   

      WRITE(7,*) NOEL,'SOFTENING2',stress(K1),UPSTRAN(K1),Smax,dmax, 
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     1           STRAN(K1),DSTRAN(K1),Scr,dcr 

      ENDIF 

      GOTO 220                                                                   

164   IF(((UPSTRAN(K1).GE.dcr)).AND. 

     1   (DSTRAN(K1).GE.ZERO))GOTO 165 

      GOTO 170 

165             STRESS(K1)=ZERO                                           

C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

         if (K1.EQ.1)THEN 

          STATEV(3)= ONE 

          WRITE(7,*) NOEL,'FAILED',stress(K1),UPSTRAN(K1),dcr,Scr,Srate 

     1               ,STRANRAT(K1),BETA,BETA1      

         ENDIF 

      GOTO 220               

C                                                                       

C                           CONDITION FOR PENTRATION 

C     

================================================================== 

170   IF ((FAILED.EQ.ONE).AND.(STRAN(K1).GT.ZERO)) GOTO 180       

      GOTO 190 

180           STRESS(K1)=ZERO 

          if (K1.EQ.1)THEN  

           WRITE(7,*) NOEL,'FAILED1',stress(K1),UPSTRAN(K1),dcr 

          ENDIF  

      GOTO 220                                        

190   IF ((FAILED.EQ.ONE).AND.(UPSTRAN(K1).LE.ZERO)) GOTO 200 

      GOTO 220 

C 

200       DO K2=1, NTENS 

          DDSDDE(K2, K1)=ZERO 

          END DO 

          DDSDDE(K1, K1)=Ecoh       

C       

C     UPDATE THE STRESS 
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C 

          DO K2=1, NTENS 

          STRESS(K1)=STRESS(K1)+DDSDDE(K2,K1)*DSTRAN(K1) 

          END DO 

C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

          IF (K1.EQ.1)THEN       

          WRITE(7,*) NOEL,'COMPRESTION',stress(K1),UPSTRAN(K1),UPSTRAN 

     1(K1),STRAN(K1),DSTRAN(K1),X,dmax,Smax 

          ENDIF                              

220   END DO 

C      

      RETURN 

      END 
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B-2 New TCZM with fast-track feature for fatigue 

C*********************************************************************** 

C     UMAT FOR Fast-frack fagigue TCZM 

C     CAN BE USED FOR cyclic load in MODE ONE ONLY 

C     WRITEN BY SARMED A. SALIH 

C ================================================================== 

C     HEADER OF THE SUBROUTINE 

C       

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

C       

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 

     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 

C  ================================================================== 

C     THIS PART IS THE USER CODING TO DEFINE DDSDDE, STRESS, STATEV,  

C     SSE, SPD, SCD AND, IF NECESSARY, RPL, DDSDDT, DRPLDE, DRPLDT,PNEWDT  

C----------------------------------------------------------------------- 

      DIMENSION UPSTRAN(NTENS),UPDSTRAN(NTENS),STRANRAT(NTENS), 

     1          CYCSTRAN(NTENS),UPCYCSTRAN(NTENS) 

      PARAMETER (ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0) 

      REAL*8 Ecoh,S,Sc,Sf,dc,ETA,d1,d2,EG,Q,Smax,dmax,de,X,Z,C 

      INTEGER N, UNLOADING, FAILED, NOFPT, DN, Ncycles, Nu 

C       

      IF (NDI.NE.1) THEN 

         WRITE(7,*) 'THIS UMAT MAY ONLY BE USED WITH MODE ONE FRACTURE'                  



Appendix-B                  User defined Material Subroutines 

 
   199 

         CALL XIT 

      END IF 

C   ==================================================================       

C                 **************REQUIRED INPUT*************** 

C   ================================================================== 

C     PROPS(1)IS THE CRITICAL COHESIVE STRESS 

C     PROPS(2)IS THE CRITICAL COHESIVE SEPARATION  

C     PROPS(3)IS THE NUMER OF CYCLES IN THE LOAD ENVELOPE 

C     PROPS(4)IS THE MATERIAL PARAMETER C THAT CAOTURES THE CYCLIC  

C             PLASTICITY 

C   ================================================================== 

C                ****** STATE DEPENDENT VARIABLES ********* 

C   ================================================================== 

C     STATEV(1)IS THE DAMAGE PARAMETER 

C     STATEV(2)IS THE SEPARATION AT THE END OF THE LOADING CYCLE 

C     STATEV(3)IS TEH STRESS AT THE END OF THE LOADING CYCLE 

C     STATEV(4)IS THE STORED PLASTIC DISPLACEMENT   

C     STATEV(5)IS THE MAXIMUM CYCLIC DISPLACEMENT  

C     STATEV(6)IS A VARIABLE TO INDICATE THE ONSET OF UNLOADING AND  

C              CONTROLING WHEN THE PLASTIC DISPLACEMENT X STORED 

C     STATEV(7)IS A VARIABLE TO INDICATE ThE FAILER OF THE ELEMENT 

C     STATEV(8)IS THE NUMBER OF LOADING CYCLES 

C     STATEV(9)IS THE SEPARATION AT EACH TIME INCREMENT 

C     STATEV(10)IS  THE STRESS AT EACH TIME INCREMENT 

C     STATEV(11)IS AN  INTERNAL CONTROL VARIABLE  

C     STATEV(12)IS AN  INTERNAL CONTROL VARIABLE 

C     STATEV(13)IS AN  INTERNAL CONTROL VARIABLE  

C     STATEV(14)IS AN  INTERNAL CONTROL VARIABLE 

C   ================================================================== 

C 

C     DEFINING INPUTS   

      Sc=PROPS(1) 

      dc=PROPS(2) 

      Ncycles=PROPS(3) 
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      C=PROPS(4)    

       Ecoh=PROPS(5)    

C  

      D=STATEV(1) 

      X=STATEV(4) 

      FAILED=STATEV(7)  

      N=STATEV(8)                                             

C 

      d1= Sc/Ecoh 

      d2=0.75*dc       

      IF(STATEV(2).EQ.ZERO)THEN 

      dmax=d1 

      Smax=Sc 

      ELSE 

      dmax=STATEV(2) 

      Smax=STATEV(3) 

      ENDIF       

C  

      DO K1=1, NTENS  

C 

      UPSTRAN(K1)=STRAN(K1)+DSTRAN(K1) 

      CYCSTRAN(K1)=X+UPSTRAN(K1)  

C 

CC    EVALUTATING THE VALUE OF THE MAXIMUM UPPLIED CYCLIC LOAD  

C      

      If(UPSTRAN(K1).GT.STATEV(5))THEN 

      STATEV(5)=UPSTRAN(K1)  

      ENDIF 

C 

CC    CALCULATING THE VALUE OF X 

C   

      IF((K1.EQ.1).AND.(UPSTRAN(K1).GT.ZERO).AND.(DSTRAN(K1).LT.ZERO)) 

     1      THEN 

            STATEV(11)=ONE             
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      ENDIF 

C     UPDATING TEH CYCLIC STRAIN   

C             

      IF ((FAILED.EQ.ONE).AND.(UPSTRAN(K1).GT.ZERO).AND.(DSTRAN(K1).GT. 

     1    ZERO))THEN 

          STATEV(11)= ZERO 

      ENDIF 

      IF ((FAILED.EQ.ONE).AND.(UPSTRAN(K1).GT.ZERO).AND.(DSTRAN(K1).LT. 

     1    ZERO))THEN 

          STATEV(11)= ONE 

      ENDIF       

C     EVALUATEE THE NUMBER OF LOADING CYCLE  

      IF((K1.EQ.1).AND.(STATEV(12).EQ.ZERO).AND.(UPSTRAN(K1).GT.ZERO). 

     1   AND.(DSTRAN(K1).GT.ZERO).AND.(STATEV(11).EQ.ZERO))THEN 

      STATEV(12)=one 

      ENDIF 

      IF((K1.EQ.1).AND.(STATEV(12).EQ.ONE).AND.(STATEV(11).EQ.ONE).AND. 

     1  (UPSTRAN(K1).GT.ZERO).AND.(DSTRAN(K1).LT.ZERO))THEN 

      STATEV(12)=ZERO 

C                   *********************************             

C     EVALUATE THE NUMBER OF APPLYED CYCLE 

      N=STATEV(8)+Ncycles  

      STATEV(8)= N 

      STATEV(13)=ONE 

      ENDIF             

C                                               

      IF(FAILED.EQ.ZERO)GOTO 10 

      GOTO 110       

C     EVALUATION OF THE JACOBAIN MATRIX AND UPDATING THE STRESS 

10    IF((CYCSTRAN(K1).LE.dmax))GOTO 15    

      GOTO 20  

C   

15    IF((STATEV(13).EQ.ONE).AND.(STATEV(14).EQ.ONE).AND.(DSTRAN(K1).LT. 

     1   ZERO))THEN 
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            X=STATEV(4)+(STATEV(5)/C) 

            IF(K1.EQ.1)THEN 

            STATEV(6)=ONE  

            ENDIF                 

      ENDIF 

C   

      IF((K1.EQ.1).AND.(STATEV(6).EQ.ONE).AND.(DSTRAN(K1).GT.ZERO)) 

     1    GOTO 16 

      GOTO 18 

16          X=STATEV(4)+(Ncycles*(STATEV(5)/C)) 

            STATEV(4)=X 

            STATEV(6)=ZERO  

C     ****UPDATING Smax AND dmax ACORDING TO UPDATED X**** 

            dmax=X+STATEV(5) 

            STATEV(2)=dmax 

            STATEV(17)=Smax 

C 

         IF ((dmax.GT.d2).AND.(dmax.LT.dc))THEN 

            Smax=((d1*(dc-dmax))/(dmax*(dc-d2)))*Ecoh*dmax 

            STATEV(3)=Smax  

         ENDIF 

C              

         IF ((K1.EQ.1).AND.(dmax.GT.dc))GOTO 17 

         GOTO 18 

17            DN=INT((dmax-dc)/(STATEV(5)/C)) 

              N=STATEV(8)-DN 

              STRESS(K1)=ZERO 

              STATEV(3)=Smax                                                   

              STATEV(7)= ONE 

              WRITE(7,*) NOEL,'FAILED',N 

      GOTO 200                                

C 

C     COMPUTE THE STIFFNESS MATRIX 

18              DO K2=1, NTENS 
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                    DDSDDE(K2,K1)=ZERO 

                END DO 

                    DDSDDE(K1,K1)=Smax/(dmax-X)       

C       

C             UPDATE THE STRESS 

C 

              IF(CYCSTRAN(K1).LT.ZERO)THEN 

                  DO K2=1, NTENS 

                       STRESS(K1)=STRESS(K1)+DDSDDE(K2,K1)*DSTRAN(K1) 

                  END DO 

              ELSEIF((CYCSTRAN(K1).LE.X).AND.(CYCSTRAN(K1).GE.ZERO))THEN 

                       STRESS(K1)=ZERO 

              ELSEIF((CYCSTRAN(K1).GT.X).AND.(CYCSTRAN(K1).GT.ZERO))THEN 

                  DO K2=1, NTENS 

                      STRESS(K1)=STRESS(K1)+DDSDDE(K2,K1)*DSTRAN(K1) 

                     IF (STRESS(K1).LT.ZERO)THEN 

                        STRESS(K1)=0 

                     ENDIF                 

                  END DO 

              ENDIF 

C                                              

C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

      IF (K1.EQ.1)THEN       

C      WRITE(7,*) NOEL,'LOADING',STRESS(K1),CYCSTRAN(K1),DDSDDE(K1,K1) 

C     1      ,DSTRAN(K1),Smax,dmax,X,N 

            STATEV(9)=CYCSTRAN(K1) 

            STATEV(10)=STRESS(K1)  

         IF(DSTRAN(K1).GT.ZERO)THEN 

            STATEV(13)=ZERO 

            STATEV(11)=ZERO 

         ENDIF       

      ENDIF 

C 

      GOTO 200  
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C       

20    IF((CYCSTRAN(K1).GE.dmax).AND.(CYCSTRAN(K1).LT.d2).AND.(DSTRAN(K1 

     1   ).GT.ZERO))GOTO 30 

      GOTO 50 

C     EVALUATIONG THE VALUE OF TEH DAMAGE VARAIBLE 

C      

30      D=1-(d1/CYCSTRAN(K1)) 

      DO K2=1, NTENS 

            DDSDDE(K2, K1)=ZERO 

      END DO 

            DDSDDE(K1, K1)=ZERO 

      IF ((K1.EQ.1).AND.(D.GT.STATEV(1)))THEN       

          STATEV(1)=D 

      ENDIF  

      STRESS(K1)=(1-D)*Ecoh*CYCSTRAN(K1) 

C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

      IF (K1.EQ.1)THEN 

      STATEV(2)=CYCSTRAN(K1) 

      STATEV(3)=STRESS(K1) 

      STATEV(9)=CYCSTRAN(K1) 

      STATEV(10)=STRESS(K1) 

      STATEV(11)=ZERO 

      STATEV(13)=ZERO 

      STATEV(14)=ONE           

      WRITE(7,*) NOEL,'DAMAGE1',STATEV(3),STATEV(2),X,N 

      ENDIF 

      GOTO 200 

C      

50    IF((CYCSTRAN(K1).GT.d2).AND.(CYCSTRAN(K1).LT.dc).AND.(DSTRAN(K1 

     1   ).GT.ZERO))GOTO 60  

      GOTO 90 

60    D=1-((d1*(dc-CYCSTRAN(K1)))/(CYCSTRAN(K1)*(dc-d2))) 

      DO K2=1, NTENS 

            DDSDDE(K2, K1)=ZERO 
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      END DO 

            DDSDDE(K1, K1)=(-Sc)/(dc-d2) 

      IF ((K1.EQ.1).AND.(D.GT.STATEV(1)))THEN       

          STATEV(1)=D 

      ENDIF                         

C       

C     UPDATE THE STRESS 

C      

70    STRESS(K1)=(1-D)*Ecoh*CYCSTRAN(K1) 

              IF(STRESS(K1).LE.ZERO)GOTO 80 

              goto 85 

80               STRESS(K1)=ZERO 

              IF (K1.EQ.1)THEN 

                  WRITE(7,*) NOEL,'FAILEDx',N 

              ENDIF          

C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

85    IF (K1.EQ.1)THEN 

      STATEV(2)=CYCSTRAN(K1) 

      STATEV(3)=STRESS(K1) 

      STATEV(9)=CYCSTRAN(K1) 

      STATEV(10)=STRESS(K1) 

      STATEV(11)=ZERO 

      STATEV(13)=ZERO  

      STATEV(14)=ONE   

      STATEV(16)=ONE         

      WRITE(7,*) NOEL,'DAMAGE2',STRESS(K1),CYCSTRAN(K1),Smax,dmax,X,N, 

     1       STATEV(5) 

      ENDIF 

      GOTO 200 

C       

90    IF((((CYCSTRAN(K1).GE.dc)).OR.(D.GT.ONE)).AND.(DSTRAN(K1).GT.ZERO 

     1     ))GOTO 100 

      GOTO 110 

100             STRESS(K1)=ZERO                                        
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C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

          if (K1.EQ.1)THEN 

            STATEV(7)= ONE 

            STATEV(9)=CYCSTRAN(K1) 

            STATEV(10)=STRESS(K1) 

            WRITE(7,*) NOEL,'FAILED',N 

          ENDIF 

      GOTO 200  

C   ================================================================== 

C                           CONDITION FOR PENTRATION 

C   ================================================================== 

110   IF ((FAILED.EQ.ONE).AND.(STRAN(K1).GT.ZERO)) GOTO 120       

      GOTO 130 

120           STRESS(K1)=ZERO 

          if (K1.EQ.1)THEN  

            WRITE(7,*) NOEL,'FAILED ELEMENT',N 

            STATEV(9)=CYCSTRAN(K1) 

            STATEV(10)=STRESS(K1) 

          ENDIF  

      GOTO 200 

C     

130   IF ((FAILED.EQ.ONE).AND.(UPSTRAN(K1).LE.ZERO)) GOTO 140 

      GOTO 200 

C 

140       DO K2=1, NTENS 

          DDSDDE(K2, K1)=ZERO 

          END DO 

          DDSDDE(K1, K1)=Ecoh       

C       

C     UPDATE THE STRESS 

C 

          DO K2=1, NTENS 

          STRESS(K1)=STRESS(K1)+DDSDDE(K2,K1)*DSTRAN(K1) 

          END DO 
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C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

          IF (K1.EQ.1)THEN       

          WRITE(7,*) NOEL,'COMPRESTION' 

             STATEV(9)=CYCSTRAN(K1) 

             STATEV(10)=STRESS(K1) 

          ENDIF                                          

200   END DO 

C      

      RETURN 

      END                
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B-3 New frequency-dependent TCZM for fatigue 

C*********************************************************************** 

C     UMAT FOR FREQYEBCY-DEPENDENT TCZM 

C     CAN BE USED FOR cyclic load in MODE ONE ONLY 

C     WRITEN BY SARMED A. SALIH 

C  ================================================================= 

C  HEADER OF THE SUBROUTINE 

C       

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

C       

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 

     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 

C  ================================================================= 

C     THIS PART IS THE USER CODING TO DEFINE DDSDDE, STRESS, STATEV,  

C     SSE, SPD, SCD AND,IF NECESSARY, RPL, DDSDDT, DRPLDE, DRPLDT,PNEWDT  

C----------------------------------------------------------------------- 

      DIMENSION UPSTRAN(NTENS),UPDSTRAN(NTENS),STRANRAT(NTENS), 

     1          CYCSTRAN(NTENS),UPCYCSTRAN(NTENS) 

      PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0) 

      REAL*8 Ecoh,S,Sc,Scr,f,f_min,Sf,dc,ETA,d1,d2,EG,Q,Smax,dmax,de,X,Z 

     1       ,C 

      INTEGER N, UNLOADING, FAILED, NOFPT,DN, Ncycles, Nu 

C       

      IF (NDI.NE.1) THEN 
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         WRITE(7,*) 'THIS UMAT MAY ONLY BE USED WITH MODE ONE FRACTURE'                  

         CALL XIT 

      END IF 

C   ==================================================================       

C                 **************REQUIRED INPUT*************** 

C   ================================================================== 

C     PROPS(1)IS THE CRITICAL COHESIVE STRESS 

C     PROPS(2)IS THE CRITICAL COHESIVE SEPARATION  

C     PROPS(3)IS THE NUMER OF REQUIRED DAMAGE UPDATES 

C     PROPS(4)IS THE MATERIAL PARAMETER C THAT CAOTURES THE CYCLIC  

C             PLASTICITY 

C   ================================================================== 

C                ****** STATE DEPENDENT VARIABLES ********* 

C   ================================================================== 

C     STATEV(1)IS THE DAMAGE PARAMETER 

C     STATEV(2)IS THE SEPARATION AT THE END OF THE LOADING CYCLE 

C     STATEV(3)IS TEH STRESS AT THE END OF THE LOADING CYCLE 

C     STATEV(4)IS THE STORED PLASTIC DISPLACEMENT   

C     STATEV(5)IS THE MAXIMUM CYCLIC DISPLACEMENT  

C     STATEV(6)IS A VARIABLE TO INDICATE THE ONSET OF UNLOADING AND  

C              CONTROLING WHEN THE PLASTIC DISPLACEMENT X STORED 

C     STATEV(7)IS A VARIABLE TO INDICATE ThE FAILER OF THE ELEMENT 

C     STATEV(8)IS THE NUMBER OF LOADING CYCLES 

C     STATEV(9)IS THE SEPARATION AT EACH TIME INCREMENT 

C     STATEV(10)IS  THE STRESS AT EACH TIME INCREMENT 

C     STATEV(11)IS AN  INTERNAL CONTROL VARIABLE  

C     STATEV(12)IS AN  INTERNAL CONTROL VARIABLE 

C     STATEV(13)IS AN  INTERNAL CONTROL VARIABLE  

C     STATEV(14)IS AN  INTERNAL CONTROL VARIABLE 

C   ================================================================== 

C 

C     DEFINING INPUTS   

      Sc=PROPS(1) 

      dc=PROPS(2) 
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      Ncycles=PROPS(3) 

      C=PROPS(4) 

      f=PROPS(5) 

      f_o=PROPS(6) 

      Ecoh =PROPS(7) 

      IF(STATEV(15).EQ.ZERO)THEN 

      Scr=400E6*exp-(f_o/f ) 

      STATEV(15)=Scr 

      ENDIF           

C  

      D=STATEV(1) 

      X=STATEV(4) 

      FAILED=STATEV(7)  

      N=STATEV(8) 

      Scr=STATEV(15)                                             

C 

      d1= Scr/ Ecoh 

      d2=0.75*dc         

      IF(STATEV(2).EQ.ZERO)THEN 

      dmax=d1 

      Smax=Scr 

      ELSE 

      dmax=STATEV(2) 

      Smax=STATEV(3) 

      ENDIF       

C  

      DO K1=1, NTENS  

C 

      UPSTRAN(K1)=STRAN(K1)+DSTRAN(K1) 

      CYCSTRAN(K1)=X+UPSTRAN(K1)  

C 

C    EVALUTATING THE VALUE OF THE MAXIMUM APPLIED CYCLIC LOAD  

C      

      If(UPSTRAN(K1).GT.STATEV(5))THEN 
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      STATEV(5)=UPSTRAN(K1)  

      ENDIF 

C 

C    CALCULATING THE VALUE OF X 

C   

      IF((K1.EQ.1).AND.(UPSTRAN(K1).GT.ZERO).AND.(DSTRAN(K1).LT.ZERO)) 

     1      THEN 

            STATEV(11)=ONE             

      ENDIF 

C     UPDATING TEH CYCLIC STRAIN   

C             

      IF ((FAILED.EQ.ONE).AND.(UPSTRAN(K1).GT.ZERO).AND.(DSTRAN(K1).GT. 

     1    ZERO))THEN 

          STATEV(11)= ZERO 

      ENDIF 

      IF ((FAILED.EQ.ONE).AND.(UPSTRAN(K1).GT.ZERO).AND.(DSTRAN(K1).LT. 

     1    ZERO))THEN 

          STATEV(11)= ONE 

      ENDIF       

C     EVALUATEE THE NUMBER OF LOADING CYCLE  

      IF((K1.EQ.1).AND.(STATEV(12).EQ.ZERO).AND.(UPSTRAN(K1).GT.ZERO). 

     1   AND.(DSTRAN(K1).GT.ZERO).AND.(STATEV(11).EQ.ZERO))THEN 

      STATEV(12)=one 

      ENDIF 

      IF((K1.EQ.1).AND.(STATEV(12).EQ.ONE).AND.(STATEV(11).EQ.ONE).AND. 

     1  (UPSTRAN(K1).GT.ZERO).AND.(DSTRAN(K1).LT.ZERO))THEN 

      STATEV(12)=ZERO 

C                   *********************************             

C     EVALUATE THE NUMBER OF APPLYED CYCLE 

      N=STATEV(8)+Ncycles  

      STATEV(8)= N 

      STATEV(13)=ONE 

      ENDIF             

C                                               
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      IF(FAILED.EQ.ZERO)GOTO 10 

      GOTO 110       

C     EVALUATION OF THE JACOBAIN MATRIX AND UPDATING THE STRESS 

10    IF((CYCSTRAN(K1).LE.dmax))GOTO 15    

      GOTO 20  

C   

15    IF((STATEV(13).EQ.ONE).AND.(STATEV(14).EQ.ONE).AND.(DSTRAN(K1).LT. 

     1   ZERO))THEN 

            X=STATEV(4)+(STATEV(5)/C) 

            IF(K1.EQ.1)THEN 

            STATEV(6)=ONE  

            ENDIF                 

      ENDIF 

C   

      IF((K1.EQ.1).AND.(STATEV(6).EQ.ONE).AND.(DSTRAN(K1).GT.ZERO)) 

     1    GOTO 16 

      GOTO 18 

16          X=STATEV(4)+(Ncycles*(STATEV(5)/C)) 

            STATEV(4)=X 

            STATEV(6)=ZERO  

C     ****UPDATING Smax AND dmax ACORDING TO UPDATED X**** 

            dmax=X+STATEV(5) 

            STATEV(2)=dmax 

            STATEV(17)=Smax 

C 

         IF ((dmax.GT.d2).AND.(dmax.LT.dc))THEN 

            Smax=((d1*(dc-dmax))/(dmax*(dc-d2)))*Ecoh*dmax 

            STATEV(3)=Smax  

         ENDIF 

C 

         IF ((K1.EQ.1).AND.(dmax.GT.dc))GOTO 17 

         GOTO 18 

17            DN=INT((dmax-dc)/(STATEV(5)/C)) 

              N=STATEV(8)-DN 
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              STRESS(K1)=ZERO 

              STATEV(3)=Smax                                                   

              STATEV(7)= ONE 

              WRITE(7,*) NOEL,'FAILED',N 

      GOTO 200                                

C 

C     COMPUTE THE STIFFNESS MATRIX 

18              DO K2=1, NTENS 

                    DDSDDE(K2,K1)=ZERO 

                END DO 

                    DDSDDE(K1,K1)=Smax/(dmax-X)       

C       

C             UPDATE THE STRESS 

C 

              IF(CYCSTRAN(K1).LT.ZERO)THEN 

                  DO K2=1, NTENS 

                       STRESS(K1)=STRESS(K1)+DDSDDE(K2,K1)*DSTRAN(K1) 

                  END DO 

              ELSEIF((CYCSTRAN(K1).LE.X).AND.(CYCSTRAN(K1).GE.ZERO))THEN 

                       STRESS(K1)=ZERO 

              ELSEIF((CYCSTRAN(K1).GT.X).AND.(CYCSTRAN(K1).GT.ZERO))THEN 

                  DO K2=1, NTENS 

                      STRESS(K1)=STRESS(K1)+DDSDDE(K2,K1)*DSTRAN(K1) 

                     IF (STRESS(K1).LT.ZERO)THEN 

                        STRESS(K1)=0 

                     ENDIF                 

                  END DO 

              ENDIF 

C                                              

C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

      IF (K1.EQ.1)THEN       

C      WRITE(7,*) NOEL,'LOADING',STRESS(K1),CYCSTRAN(K1),DDSDDE(K1,K1) 

C     1      ,DSTRAN(K1),Smax,dmax,X,N 

            STATEV(9)=CYCSTRAN(K1) 
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            STATEV(10)=STRESS(K1)  

         IF(DSTRAN(K1).GT.ZERO)THEN 

            STATEV(13)=ZERO 

            STATEV(11)=ZERO 

         ENDIF       

      ENDIF 

C 

      GOTO 200  

C       

20    IF((CYCSTRAN(K1).GE.dmax).AND.(CYCSTRAN(K1).LT.d2).AND.(DSTRAN(K1 

     1   ).GT.ZERO))GOTO 30 

      GOTO 50 

C     EVALUATIONG THE VALUE OF TEH DAMAGE VARAIBLE 

C      

30      D=1-(d1/CYCSTRAN(K1)) 

      DO K2=1, NTENS 

            DDSDDE(K2, K1)=ZERO 

      END DO 

            DDSDDE(K1, K1)=ZERO 

      IF ((K1.EQ.1).AND.(D.GT.STATEV(1)))THEN       

          STATEV(1)=D 

      ENDIF  

      STRESS(K1)=(1-D)*Ecoh*CYCSTRAN(K1) 

C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

      IF (K1.EQ.1)THEN 

      STATEV(2)=CYCSTRAN(K1) 

      STATEV(3)=STRESS(K1) 

      STATEV(9)=CYCSTRAN(K1) 

      STATEV(10)=STRESS(K1) 

      STATEV(11)=ZERO 

      STATEV(13)=ZERO 

      STATEV(14)=ONE           

      WRITE(7,*) NOEL,'DAMAGE1',STATEV(3),STATEV(2),X,N 

      ENDIF 
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      GOTO 200 

c       

50    IF((CYCSTRAN(K1).GT.d2).AND.(CYCSTRAN(K1).LT.dc).AND.(DSTRAN(K1 

     1   ).GT.ZERO))GOTO 60  

      GOTO 90 

60    D=1-((d1*(dc-CYCSTRAN(K1)))/(CYCSTRAN(K1)*(dc-d2))) 

      DO K2=1, NTENS 

            DDSDDE(K2, K1)=ZERO 

      END DO 

            DDSDDE(K1, K1)=(-Scr)/(dc-d2) 

      IF ((K1.EQ.1).AND.(D.GT.STATEV(1)))THEN       

          STATEV(1)=D 

      ENDIF                         

C       

C     UPDATE THE STRESS 

C      

70    STRESS(K1)=(1-D)*Ecoh*CYCSTRAN(K1) 

              IF(STRESS(K1).LE.ZERO)GOTO 80 

              GOTO 85 

80               STRESS(K1)=ZERO 

              IF (K1.EQ.1)THEN 

                  WRITE(7,*) NOEL,'FAILEDx',N 

              ENDIF          

C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

85    IF (K1.EQ.1)THEN 

      STATEV(2)=CYCSTRAN(K1) 

      STATEV(3)=STRESS(K1) 

      STATEV(9)=CYCSTRAN(K1) 

      STATEV(10)=STRESS(K1) 

      STATEV(11)=ZERO 

      STATEV(13)=ZERO  

      STATEV(14)=ONE   

      STATEV(16)=ONE         

      WRITE(7,*) NOEL,'DAMAGE2',STRESS(K1),CYCSTRAN(K1),Smax,dmax,X,N, 
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     1       STATEV(5) 

      ENDIF 

      GOTO 200 

C       

90    IF((((CYCSTRAN(K1).GE.dc)).OR.(D.GT.ONE)).AND.(DSTRAN(K1).GT.ZERO 

     1     ))GOTO 100 

      GOTO 110 

100             STRESS(K1)=ZERO                                        

C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

          if (K1.EQ.1)THEN 

            STATEV(7)= ONE 

            STATEV(9)=CYCSTRAN(K1) 

            STATEV(10)=STRESS(K1) 

            WRITE(7,*) NOEL,'FAILED',N 

          ENDIF 

      GOTO 200  

C   ================================================================== 

C                           CONDITION FOR PENTRATION 

C   ================================================================== 

110   IF ((FAILED.EQ.ONE).AND.(STRAN(K1).GT.ZERO)) GOTO 120       

      GOTO 130 

120           STRESS(K1)=ZERO 

          if (K1.EQ.1)THEN  

            WRITE(7,*) NOEL,'FAILED ELEMENT',N 

            STATEV(9)=CYCSTRAN(K1) 

            STATEV(10)=STRESS(K1) 

          ENDIF  

      GOTO 200 

c     ((FAILED.EQ.ONE).OR.((UNLOADING.EQ.ONE).AND.(STRAN(K1).LE. ZERO)))                                        

130   IF ((FAILED.EQ.ONE).AND.(UPSTRAN(K1).LE.ZERO)) GOTO 140 

      GOTO 200 

C 

140       DO K2=1, NTENS 

          DDSDDE(K2, K1)=ZERO 
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          END DO 

          DDSDDE(K1, K1)=Ecoh       

C       

C     UPDATE THE STRESS 

C 

          DO K2=1, NTENS 

          STRESS(K1)=STRESS(K1)+DDSDDE(K2,K1)*DSTRAN(K1) 

          END DO 

C     PRINT THE VALUE OF THE STRESS AND THE STRAN         

          IF (K1.EQ.1)THEN       

          WRITE(7,*) NOEL,'COMPRESTION' 

             STATEV(9)=CYCSTRAN(K1) 

             STATEV(10)=STRESS(K1) 

          ENDIF                                          

200   END DO 

C      

      RETURN 

      END   


