
AUTOMATED SEMANTIC

FORGETTING FOR EXPRESSIVE

DESCRIPTION LOGICS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2018

Yizheng Zhao

School of Computer Science

Contents

Abstract 6

Declaration 8

Copyright Statement 9

Acknowledgements 10

1 Introduction 11

1.1 Applications of Forgetting . 12

1.2 Challenges and Contributions . 13

1.3 Overview of the Thesis . 15

1.4 Published Results . 16

2 Basics of Description Logics 18

2.1 The Basic Description Logic ALC . 18

2.2 Extensions of the Basic ALC . 23

2.3 Relationships with Other Logics . 27

3 Basics of Forgetting 31

3.1 Forgetting in Classical Logics . 31

3.2 Second-Order Quantifier Elimination 33

3.3 Forgetting in Modal Logics . 38

3.4 Forgetting in Description Logics . 40

4 Concept Forgetting for ALCOI 44

4.1 The Description Logic ALCOI . 44

2

4.2 Generalised Ackermann’s Lemma . 47

4.3 The Normalisation . 54

4.4 The Calculus – AckC . 57

4.5 The Forgetting Method . 76

4.6 Examples . 87

5 Role Forgetting for ALCOIH(O,u) 91

5.1 The Description Logic ALCOIH(O,u) 92

5.2 Obstacles to Role Forgetting . 96

5.3 The Normalisation . 99

5.4 The Calculus – AckR . 104

5.5 The Forgetting Method . 119

5.6 Examples . 131

6 Implementation and Evaluation 134

6.1 The Implementation – Fame . 135

6.2 The Corpus . 140

6.3 Forgetting Concept Symbols . 142

6.4 Forgetting Role Symbols . 148

6.5 Forgetting Concept and Role Symbols 153

6.6 Comparison of Fame with Lethe . 155

7 Conclusions and Future Directions 156

7.1 Conclusions . 156

7.2 Future Directions . 159

Bibliography 162

Word Count: 54639

3

List of Tables

4.1 Frequency counts of Σ-symbols . 84

4.2 Frequency counts of Σ-symbols in Example 4.6.1 88

5.1 Interpretations of negative TBox premises 110

5.2 Interpretations of negative RBox premises 110

6.1 Statistics of ontologies selected from BioPortal 141

6.2 Results of forgetting 10% of concept symbols in the signature 144

6.3 Results of forgetting 40% of concept symbols in the signature 145

6.4 Results of forgetting 70% of concept symbols in the signature 146

6.5 Results of forgetting 100 concept symbols in the signature 148

6.6 Results of forgetting 10% of role symbols in the signature 149

6.7 Results of forgetting 40% of role symbols in the signature 150

6.8 Results of forgetting 70% of role symbols in the signature 151

6.9 Results of forgetting 20 role symbols in the signature 152

6.10 Results of forgetting 10% of concept symbols and 10% of role symbols . 153

6.11 Results of forgetting 40% of concept symbols and 10% of role symbols . 154

6.12 Results of forgetting 70% of concept symbols and 70% of role symbols . 154

4

List of Figures

4.1 Transformations of concepts into negation normal form 55

4.2 Transformation of concepts into clausal normal form 56

4.3 The AckermannC rules for eliminating A ∈ NC from a set of clauses . . 59

4.4 The SurfacingC rules for transforming A-clauses into A-reduced form . 62

4.5 The SkolemisationC rules for transforming A-clauses into A-reduced form 66

4.6 The PurifyC rules for eliminating A ∈ NC from a set of clauses 69

4.7 The PurifyC rules in the sense of the AckermannC rules 70

4.8 The simplification rules in AckC . 72

4.9 The main phases in concept forgetting process 77

4.10 Transformation of TBox axioms and ABox assertions into TBox clauses 77

4.11 Transformation of TBox clauses into TBox axioms and ABox assertions 79

5.1 Transformation of TBox clauses into normal form 101

5.2 The rewriteR rules for transforming r-clauses into r-reduced form . . . 106

5.3 The AckermannR rule for eliminating r ∈ NR from a set of clauses . . . 109

5.4 The PurifyR rules for eliminating r ∈ NR from a set of clauses 115

5.5 The PurifyR rules in the sense of the AckermannR rule 116

5.6 The main phases in role forgetting process 120

5.7 Transformation of RBox axioms into RBox clauses 121

5.8 The SkolemisationO rules for transforming A-clauses into A-reduced form123

5.9 Transformation of RBox clauses into RBox axioms 124

6.1 The framework of Fame . 136

5

The University of Manchester
Yizheng Zhao
Doctor of Philosophy
Automated Semantic Forgetting for Expressive Description Logics
March 21, 2018

Ontologies, exploiting Description Logics (DLs) as the representational underpin-
ning, provide a logic-based data model for knowledge processing thereby supporting
intelligent reasoning of domain knowledge for various applications, most evidently for
modern biomedical, life science and text mining applications. However, with their
growing utilisation, not only has the number of available ontologies increased consid-
erably, but they are also blowing up in size and becoming more complex to manage.
Moreover, capturing domain knowledge in the form of ontologies is labour-intensive
work which is expensive from an implementation perspective. There is a strong de-
mand for techniques and automated tools for creating restricted views of ontologies
while preserving complete information up to the restricted views.

Forgetting is a non-standard reasoning technique which provides such a service by
eliminating concept and role symbols from ontologies in a way such that all logical
consequences are preserved up to the remaining signature. It has turned out to be
very useful in ontology-based knowledge processing, as it allows users to focus on spe-
cific parts of (usually very large) ontologies for easy reuse, or to zoom in on (usually
very complex) ontologies for in-depth analysis. Other uses of forgetting are informa-
tion hiding, explanation generation, abduction, ontology debugging and repair, and
computing logical differences between ontology versions.

Despite its notable usefulness as described above, forgetting, on the other hand, is
an inherently difficult problem — it is much harder than standard reasoning (satisfi-
ability testing) — and very few logics are known to be complete for forgetting, there
has been insufficient research on the topic and few forgetting tools are available.

This thesis investigates practical methods for semantic forgetting in expressive de-
scription logics not considered before. In particular, we present a practical method for
forgetting concept symbols from ontologies expressible in the description logicALCOI,
i.e., the basic ALC extended with nominals and inverse roles. Being based on a gen-
eralisation of a monotonicity property called Ackermann’s Lemma, the method is the
first and only approach to concept forgetting in description logics with nominals. We
also present a practical method for forgetting role symbols from ontologies expressible
in the description logic ALCOIH(O,u), i.e., ALCOI extended with role hierarchies,
the universal role and role conjunction. The universal role and role conjunction enrich
our target language, making it expressive enough to represent the forgetting solution
which otherwise would have been lost. Being based on a non-trivial generalisation of
Ackermann’s Lemma, the method is the first and only approach so far that provides
support for role forgetting in description logics with nominals.

Both methods are goal-oriented and incremental. They are terminating, and are
sound in the sense that the forgetting solutions are equivalent to the original ontolo-
gies up to (the interpretations of) the symbols that have been forgotten, possibly with
(the interpretations of) the symbols that have been introduced. These two methods
can be used as a unifying method for forgetting both concept and role symbols from
ontologies expressible in the description logic ALCOIH(O,u). The method has been

6

implemented in Java using the OWL API and the prototypical implementation, called
Fame, has been evaluated on a corpus of real-world ontologies (in order to verify its
practicality). Performance results have shown that Fame was successful (i.e., elimi-
nated all specified concept and role symbols) in most of the test cases, and in most of
these cases the elimination was done within a very short period of time.

7

Declaration

No portion of the work referred to in the thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

8

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy

(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any rele-

vant Thesis restriction declarations deposited in the University Library, The Univer-

sity Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regul-

ations) and in The University’s Policy on Presentation of Theses.

9

Acknowledgements

First of all, I would like to express my sincere gratitude and thanks to my supervisor

Dr.-Ing. Renate A. Schmidt, you have been a tremendous mentor for me. I would like

to thank you for encouraging my research and for allowing me to grow as a research

scientist, for your patience, motivation and immense knowledge. Your guidance helped

me in all the time of research and writing up of this thesis. I could not have imagined

having a better supervisor and mentor for my Ph.D. study. I would also like to thank

Dr. David E. Rydeheard and Prof. Andrzej Szalas for being willing to participate in

my Ph.D. viva as respectively the internal examiner and external examiner.

I have to thank Dr. Zhanlin Ji, who encouraged me to undertake a Ph.D. and

helped me address the financial concerns over the past three years. I would also like

to thank all of my homeland friends who incented me to strive towards my goal.

I want to thank my office colleagues: Patrick Koopmann, Fabio Papacchini, Mo-

hammad Khodadadi, Reyadh Alluhaibi, Ayo Adeniyi, Warren Del-Pinto, Julio Cesar

Lopez Hernandez and Sen Zheng. These guys fertilised me with very insightful dis-

cussions on research and life matters.

Special thanks to my amazing family. Words cannot express how grateful I am to

my mother, my father, my sister and my grandma for all of the sacrifices that you

have made on my behalf. Your endless love was what sustained me thus far.

My time at The University of Manchester was made enjoyable in large part due to

the many friends that became a part of my life. I am grateful for the leisure time spent

with flatmates and the accompanying memories. I am also glad to have worked with

a bunch of wonderful undergraduate and master students. I value their friendships.

Last but not least, I want to thank Manchester, the city where I have been living

since August, 2011. The lifestyle the city influenced me has made me a real Mancunian.

10

Chapter 1

Introduction

Ontologies, exploiting description logics as the representational underpinning, are com-

monly used to model terminological domain knowledge using a set of appropriate con-

cept and role symbols. They define the meaning of concepts and roles, and specify the

relations between them. Being as one of the pillars of the Semantic Web, ontologies

have practical deployments in a broad range of areas, in particular, the knowledge-

intensive areas such as medicine, bioinformatics, software development, knowledge

processing and many others. Because of the size and the knowledge-intensive nature,

ontologies developed for applications in these areas can be monolithic and comprehen-

sive, and often make use of a large number of concept and role symbols. For example,

the SNOMED CT ontology, which plays a central role in health information system

in different countries, contains more than 300000 concepts, the National Cancer In-

stitute Thesaurus (NCI) contains more than 100000 concepts and the Gene Ontology

(GO) contains more than 40000 concepts. This leads to, however, the ontologies being

difficult to maintain and modify, and costly to reuse for later processing, where only

a specific part of an ontology is of interest. For example, the Gene Ontology describes

gene products across various kinds of species; a zoologist, meanwhile, is only interested

in information concerned with endangered animals for research use. It is obvious in

this case that working directly on the whole of the original ontology is not a sensible

option and neither is building a new ontology from scratch only for use of this time, as

both solutions are expensive from an implementation perspective. A wiser way, which

has turned out to be more practical to this situation, is to create restricted views of

the ontology, where the information appealing to the zoologist (i.e., the endangered

11

12 CHAPTER 1. INTRODUCTION

animals) has been well-preserved and those symbols not necessarily needed for the

representation of this information have been gotten rid of.

Forgetting is a non-standard reasoning service that seeks to create restricted views

of ontologies by eliminating concept and role symbols from description logic-based

ontologies while preserving all logical consequences up to the remaining symbols in the

ontologies. It allows users to focus on specific parts of (usually very large) ontologies

for easy reuse, or to zoom in on (usually very complex) ontologies for in-depth analysis.

1.1 Applications of Forgetting

The investigation into forgetting is motivated by the high demand for advanced tech-

niques for ontology-based knowledge processing. There are a multitude of real-world

applications where forgetting can be useful. we enumerate some of them.

Ontology Summarisation: Creating a summary of an ontology is helpful when

an ontology engineer wants to gain a quick understanding of the ontology, inexpen-

sively examining its content (to decide whether the ontology is suitable for use). The

summary may ignore more specific information and concentrate on more general terms

that are expressed using only concepts and relations of high level.

Ontology Reuse: Knowledge modeled in large ontologies is often rich, heteroge-

neous, and multi-topic related, and applications are however interested in (or relevant

to) specific parts. Compared to using existing ontologies or building new ontologies

from scratch, extracting fragments w.r.t. specific interest (or relevance) from the ex-

isting ontologies and reusing them in specialised contexts is simpler, cheaper, and thus

more useful to the ontology engineers.

Information Hiding: Ontologies for medical or military use may contain sensitive

information that must be kept confidential to the public or the correspondences when

the ontologies are published, shared, or disseminated. This is also relevant for uses in

industry to ensure that proprietary information is sufficiently protected. This can be

done by removing those concept and role symbols relative to sensitive information.

Logical Difference: In software engineering, the diff utility is a data comparison

tool that computes and shows the differences between two files. In ontology engineer-

ing, such a tool is still useful. This is because ontologies constantly evolve and they

1.2. CHALLENGES AND CONTRIBUTIONS 13

are regularly extended, updated, corrected and refined. An automated tool support

for detecting the differences between different versions of ontologies becomes impor-

tant. In particular, the syntactical difference is of little interest as same information

may have different representation and some imformation is implicitly expressed. The

semantic difference is however of greater interest. If different versions of ontologies

give the same answers to a set of queries relevant to an application domain, then they

may be of no difference, though they may syntactically look different. They are differ-

ent, otherwise. Logic-based semantic approaches are required to detect whether two

versions of ontologies are logically equivalent or different.

Forgetting is also useful for explanation generation, abduction, approximation, and

ontology analysis, debugging, and repair.

1.2 Challenges and Contributions

Forgetting is research topic that has been actively investigated within the community

over the last years. Foundational studies on its theoretical properties have shown that

it is an inherently difficult problem and is not always solvable. [KLWW13] has shown

that the solution of forgetting does not always exist for the description logic ALC and

EL, the existence of a solution of forgetting a concept or a role symbol is undecidable,

even for the basic ALC. For the solvable cases, the size of the forgetting solution can

be triple exponential w.r.t. the size of the input ontology [NR14, LW11].

Other challenges include, e.g., in some cases, forgetting solutions cannot be repre-

sented by finitely many formulas, and often requires more expressivity than is available

in the source logic. For example, the solution of semantically forgetting the role name r

from the ALC-ontology {A1 v ∃r.B,A2 v ∀r.¬B} is the set {A1 v ∃O.B,A1 u A2 v

⊥}, whereas the uniform interpolant is {A1 u A2 v ⊥}, which is weaker. Observe in

this case that the target language must include the universal role O to represent the

semantic forgetting solution.

Forgetting can be defined in two ways that are closely related; it can be defined on

the syntactic level as the dual of uniform interpolation [Vis96] (i.e., related notions in-

clude weak forgetting [ZZ10], consequence-based inseparability [LW10] and deductive

14 CHAPTER 1. INTRODUCTION

conservative extensions [GLW06]) and it can be defined model-theoretically as seman-

tic forgetting [WWT+14] (i.e., related notions include strong forgetting [LR94], model

inseparability [KLWW13], model conservative extensions [LWW07] and second-order

quantifier elimination [GSS08]). We explain the similarities and differences between

these two notions in Chapter 3 (or see [BKL+16] a survey for their interrelations). The

notion we take in this thesis is the semantic notion.

Practical methods such as Nui [LK13a, LK14] and Lethe [KS13d, KS14, Koo15,

KS15a, KS15b, KS15c] have been developed for forgetting in expressive description

logics, but both of them are focused on the syntactic notion (i.e., uniform interpola-

tion). Methods for forgetting in description logics that follows the semantic notion

include, e.g., [WWTP08, WWTP10, WWT+09]; however, these methods cannot be

used practically and can only compute approximations of forgetting solutions. More-

over, the methods can only handle description logics as expressive as ALC. For more

expressive languages, they are impotent. At present, there are no practical methods

for semantic forgetting in expressive description logics.

The main contributions of the thesis are summarised as follows:

• We present a practical method for forgetting concept symbols from ontologies

expressible in the description logic ALCOI. It is the first practical semantic

approach that performs concept forgetting in expressive description logics. It is

the first and only approach so far that provides support for forgetting concept

symbols from ontologies specified in description logics with nominals.

• We present a practical method for forgetting role symbols from ontologies ex-

pressible in the description logic ALCOIH(O,u). It is the first practical se-

mantic approach that performs role forgetting in expressive description logics.

It is the first and only approach so far that provides support for forgetting role

symbols from ontologies specified in description logics with nominals.

• The method for concept forgetting and the method for role forgetting can be used

as a unifying method for forgetting both concept and role symbols for ontologies

expressible in the description logic ALCOIH(O,u). It is the first practical

semantic approach that performs both concept and role forgetting in expressive

description logics. It is the first and only approach so far that provides support

1.3. OVERVIEW OF THE THESIS 15

for forgetting concept and role symbols from ontologies specified in description

logics with nominals.

• The practicality of these methods is verified by an evaluation of a prototype of

the methods on a large number of real-world biomedical ontologies.

• We also introduce a heuristic based on frequency analysis of the concept symbols

specified to be forgotten. The heuristic allows specified concept symbols to be

eliminated as quickly as possible.

1.3 Overview of the Thesis

Chapters 2 and 3 provide background material useful for the presentation of the re-

maining chapters. In Chapter 2, we introduce and explain the basics of description

logics. In particular, we will first briefly review the history of the development and

use of description logics, especially in the area of knowledge representation. Then,

we will introduce the syntax and semantics of the basic description logic ALC and its

extensions considered in this thesis. Next, we will look at the reasoning problems and

services commonly considered in the research community of description logics. Finally,

we will discuss the close relationship between description logics and other logics.

In Chapter 3, we introduce and explain the basics of forgetting. In particular, we

will review the history of the investigation into forgetting. We will present significant

(theoretical) results of the foundational studies of the properties of forgetting for de-

scription logics. We will describe existing methods and tools that have been developed

for computing solutions of forgetting in a variety of description logics. We will also

describe existing methods and tools developed for related problems, which have often

been considered in other logics.

The main contributions of this thesis are due to Chapters 4, 5 and 6. In Chap-

ter 4, we present a practical method for forgetting concept symbols from ontologies

expressible in the description logic ALCOI. We will describe the key ingredients of

the method, with a particular focus on the calculus on which the method is based

for eliminating a single concept symbol from a set of ALCOI-clauses. We will show

termination, soundness, and incompleteness of the method and we will demonstrate

16 CHAPTER 1. INTRODUCTION

the use of the method to solve concept forgetting problems.

In Chapter 5, we present a practical method for forgetting role symbols from on-

tologies expressible in the description logic ALCOIH(O,u). We describe the key in-

gredients of the method, with a particular focus on the calculus on which the method

is based for eliminating a single role symbol from a set of ALCOIH(O,u)-clauses. We

will show termination, soundness, and partialcompleteness of the method and we will

demonstrate the use of the method to solve role forgetting problems.

In order to make Chapter 4 and Chapter 5 a self-contained chapter and thus more

readable and accessible to the reader, we provide a preliminary section at the beginning

of each chapter (if necessary) where we introduce the source and target languages

considered in that chapter, with a particular focus on their syntax and semantics, and

in addition, we formalise the notion of forgetting w.r.t. the considered logics. Other

important notions needed to the chapter are also established in this section.

In Chapter 6, we describe a prototype of our methods for concept and role for-

getting. We evaluate the prototype on a corpus of real-world ontologies to verify the

usefulness of our methods for various real-world applications.

The thesis is concluded with a summary of the results achieved in this thesis and

an outlook on potential future research directions in Chapter 7.

1.4 Published Results

Most of the material presented in this thesis has been published at some conferences

and workshops.

In Chapter 4, we present a practical method of semantic concept forgetting for on-

tologies expressible in the description logic ALCOI. The work was first presented at

the 28th International Workshop on Description Logics (DL-15) and then formally pub-

lished at the 14th International Semantic Web Conference (ISWC-15) in 2015 [ZS15].

Chapter 4 is a significant extension of the work of [ZS15].

In Chapter 5, we present a practical method of semantic role forgetting for ontolo-

gies expressible in the description logic ALCOIH(O,u). The work was first presented

at the 29th International Workshop on Description Logics (DL-16) and then formally

1.4. PUBLISHED RESULTS 17

published at the 25th International Joint Conference on Artificial Intelligence (IJCAI-

16) in 2016 [ZS16]. Chapter 5 is a significant extension of the work of [ZS16].

Part of the experiment results presented in Chapter 6 was also included in the

work of [ZS15] and [ZS16], though the experiments were rerun with a later optimised

implementation.

Until recently we have developed another practical method for semantic role for-

getting in description logics with qualified number restrictions. The work was first

presented at the 30th International Workshop on Description Logics (DL-17) and then

formally published at the 26th International Joint Conference on Artificial Intelligence

(IJCAI-17) in 2017 [ZS17].

Chapter 2

Basics of Description Logics

Description logics (DLs) are a family of knowledge representation languages that can

be used to represent terminological knowledge of an application domain using a set

of appropriate concept symbols, role symbols, and individual symbols [BN03]. Mem-

bers of the DL family differ in expressivity as well as in computational complexity of

reasoning. The name “description logics” is motivated by the fact that terms in the

application domain are represented by (elementary and complex) descriptions. The

most notable use of description logics is providing logical formalisms for ontologies

and the Web Ontology Language (OWL). In this chapter, we introduce and explain

the basic notions of description logics. In particular, in Section 2.1, we introduce the

basic description logic ALC, with a particular focus on the definitions of its syntax

and semantics. In Section 2.2, we describe a number of important extensions of the

basic ALC. ALC with these extensions are the languages considered in this thesis. In

Section 2.3, we explain the close relationships between description logics with other

logics, namely, first-order logics and modal logics.

2.1 The Basic Description Logic ALC

In this section, we introduce the basic description logic ALC, the most important and

the most widely considered description logic in the area. The name ALC, standing for

“Attributive concept Languages with Complements”, was first introduced in [SS91]. A

naming scheme for description logics was also proposed in this work: starting from the

basic ALC, the addition of a constructor is indicated by appending a corresponding

18

2.1. THE BASIC DESCRIPTION LOGIC ALC 19

letter. For example, ALCO is obtained fromALC by allowing nominals in the language

and ALCOH is obtained from ALCO by allowing role hierarchies in the language.

Elementary descriptions in ALC are atomic concepts, interpreted as sets of ele-

ments, and atomic roles, interpreted as binary relations between elements. Complex

descriptions in ALC (i.e., concept expressions and role expressions) can be inductively

built from atomic concepts and atomic roles using appropriate concept constructors

and role constructors. The set a concept represents is referred to the extension of the

concept. For instance, suppose Student and Teacher are atomic concepts, Mary is a

student and John is a teacher. Then Mary is in the extension of Student and John is

in the extension of Teacher. We use “is a” as a shorthand for “is in the extension of”

to make the sentence rather shorter. A role r relates one element with another. The

latter element is called an r-filler of the former one. For instance, suppose teaches is

an atomic role and John teaches Mary. Then we say Mary is a teaches-filler of John.

In the remainder of this thesis, we use concept symbols to refer to atomic concepts

and role symbols to refer to atomic roles. We use concepts to refer to concept expres-

sions and roles to refer to role expressions. We use the symbols A and B to denote

concept symbols, and the symbols C and D to denote concepts. We use the symbols

r and s to denote role symbols, and the symbols R and S to denote roles. In each of

these cases, subscripts and prime symbols may be used.

2.1.1 ALC Syntax

Definition 2.1.1. Let NC and NR be countably infinite and pairwise disjoint sets of

concept symbols and role symbols. Roles in ALC (ALC-roles) can be any role symbol

r ∈ NR. Concepts in ALC (ALC-concepts) have one of the following forms:

A | (atomic concept)

> | (the top concept)

⊥ | (the bottom concept)

¬C | (concept negation)

C uD | (concept conjunction)

C tD | (concept disjunction)

∃r.C | (existential restriction)

20 CHAPTER 2. BASICS OF DESCRIPTION LOGICS

∀r.C | (universal restriction),

where A ∈ NC, r ∈ NR, C and D are arbitrary concepts. As usual, we use brackets to

clarify the structure of concepts.

Suppose Lion and Female are atomic concepts. Then Lion u Female and Lion u

¬Female are concepts describing lions who are female and lions who are not female,

respectively. Suppose further hasCub is an atomic role. Then Lion u ∃hasCub.Female

and Lionu ∀hasCub.Female are concepts describing lions who have some cubs that are

female and lions whose cubs are all female, respectively.

2.1.2 ALC Semantics

In order to define a formal semantics for concepts and roles in ALC (i.e., to fix the

meaning of them), we consider using an interpretation, which is a structure that:

• consists of a non-empty set called its interpretation domain. The elements of the

interpretation domain are simply called elements.

• fixes the extension for each concept symbol, that is, the interpretation tells us

which elements of the interpretation domain are (or are not) in the extension of

each concept symbol, and

• fixes the extension for each role symbol, that is, the interpretation tells us which

pairs of elements of the interpretation domain are (or are not) related to each

other by this role.

By making use of an interpretation, we formally define the semantics of concept

and roles in ALC as follows.

Definition 2.1.2. Let I = 〈∆I , ·I〉 be an interpretation, where ∆I is a non-empty set

(the domain of the interpretation), and ·I is the interpretation function, which assigns

to every concept symbol A ∈ NC a set AI ⊆ ∆I , and to every role symbol r ∈ NR a

binary relation rI ⊆ ∆I ×∆I . The interpretation function ·I is inductively extended

to concepts and roles as follows:

>I = ∆I

2.1. THE BASIC DESCRIPTION LOGIC ALC 21

⊥I = ∅

(¬C)I = ∆I\CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∃r.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ rI ∧ y ∈ CI}

(∀r.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ rI → y ∈ CI},

We say CI is the extension of C in I, and b ∈ ∆I an r-filler of a in I if (a, b) ∈ I ′.

Note that no restriction is imposed on the interpretation unless explicitly specified

otherwise, that is, the interpretation domain must be non-empty, but can be of any

cardinality, and in particular, the interpretation domain can be infinite; there can be

any number of elements from “none” to “all” in the extension of a concept, and any

number of pairs of elements from “none” to “all” can be related by a role.

2.1.3 ALC Knowledge Bases

Given an application domain, we use description logics to represent relevant notions

and knowledge from this application domain. For example, given a sports application,

we would build concepts describing football, tennis, Olympics etc., which would be

stored in the knowledge base of the application. For different notions and knowledge,

description logics build concepts in (at least) four different ways:

i. As in an encyclopedia, description logics define the meaning of a concept symbol

in terms of a concept (expression). For example, we can define the meaning of

Footballer and Olympian using the following DL expressions:

Footballer ≡ Person u ∃plays.Football

Olympian ≡ Person u ∃participatesIn.OlympicGames

Intuitively, the first expression says that footballers are persons who play football

and the second expression says that Olympians are persons who participate in

Olympic Games.

ii. Description logics capture background knowledge. For example, we can state

that a footballer is also a sportsperson, and that a person has sex either male or

22 CHAPTER 2. BASICS OF DESCRIPTION LOGICS

female, using the following DL expressions:

Footballer v Sportsperson

Person v ∃hasSex.(Male t Female)

iii. Description logics assert that individuals stand for instances of concepts. For

example, we can assert that COMP60332 stands for an instance of Course, and

that Phelps stands for an instance of person who participates in OlympicGames,

using the following DL expressions:

{COMP60332} v Course

{Phelps} v Person u ∃participatesIn.OlympicGames

iv. Description logics relates individuals by roles. For example, we can say that John

is a teacher who teaches COMP60332 using the following expressions:

{John} v ∃teaches.{COMP60332}.

Description logics separate domain knowledge into two components, i.e., a termi-

nological component, namely, the TBox, and an assertional component, namely, the

ABox. The TBox contains a set of statements of the form as described in Items (i) and

(ii), and the ABox contains a set of statements of the form as described in Items (iii)

and (iv). Together TBox statements and ABox statements make up a knowledge base.

One can think of a knowledge base as a database. TBox statements thus correspond

to the schema of the database and ABox statements thus correspond to the data of

the database. The statements in the TBox are referred to as TBox axioms and the

statements in the ABox are referred to as ABox axioms.

Next, we formally define ALC TBoxes, ALC ABoxes, and ALC knowledge bases.

Definition 2.1.3. An ALC TBox T is a finite set of concept inclusions of the form

C v D and concept equivalences of the form C ≡ D, where C and D are concepts.

Let NO be a countably infinite set of individual symbols disjoint from NC and NR. An

ALC ABox A is a finite set of concept assertions of the form C(a) and role assertions

of the form r(a, b), where a, b ∈ NO, C is a concept and r is a role symbol. An ALC

knowledge base K = (T ,A) is the union of an ALC TBox T and an ALC ABox A.

2.2. EXTENSIONS OF THE BASIC ALC 23

A concept inclusion C v D is true in an interpretation I, and we write I |= C v D,

iff CI ⊆ DI . A concept equivalence C ≡ D is true in an interpretation I, and we write

I |= C ≡ D, iff CI ≡ DI . I is a model of a TBox T iff every axiom in T is true in I. In

this case we write I |= T . A concept assertion C(a) is true, and we write I |= C(a),

iff aI ∈ CI . A role assertion r(a, b) is true in an interpretation I, and we write

I |= r(a, b), iff (aI , bI) ∈ rI . I is a model of an ABox A iff every axiom in A is true

in I. In this case we write I |= A. I is a model of a knowledge base K iff I is a model

of both the TBox T and the ABox A. In this case we write I |= K.

2.2 Extensions of the Basic ALC

Next, we introduce three important extensions of the basic description logic ALC,

namely, nominals, inverse roles and role hierarchies. The languages we considered in

this thesis are the description logic ALC with these extensions.

2.2.1 Nominals

In the previous section, we used individual symbols in ABox axioms, where the inter-

pretations of the individual symbols were constrained by concepts and roles. However,

there are situations where individual symbols need to occur inside concepts. For ex-

ample, if we want to define PhDStudentsofJohn as those PhD students supervised by

John, an intuitive way (of defining the notion) is the following:

PhDStudentsofJohn ≡ PhDStudents u ∃supervisedBy.John

However, there is a syntax error in this definition, i.e., John, as an individual symbol,

occurs inside a concept (we have in contrast clearly stated that individual symbols are

disjoint from concept symbols; hence John cannot occur both as an individual symbol

and as a concept symbol). On the other hand, even if John were allowed to occur in

place of a concept symbol in this definition, it is not clear how to interpret it. For an

interpretation I, JohnI is an element of the interpretation domain, whereas concepts

are interpreted as sets of elements. To facilitate the use of individual symbols inside

concepts, we introduce nominals [KSH12, KKS12]. Nominals are concepts that have

exactly one instance, e.g., {John} is a concept that has only the instance John.

24 CHAPTER 2. BASICS OF DESCRIPTION LOGICS

That a description logic incorporates nominals is indicated by the letter O in its

name. Thus, ALC with nominals is denoted by ALCO.

Definition 2.2.1. Let I be any interpretation. If a is an individual symbol in I, then

{a} is called a nominal. The interpretation function ·I is extended to nominals by

assigning to every nominal a ∈ NO a singleton aI ⊆ ∆I , i.e., ({a})I = {aI}.

Thus, we can define PhDStudentsofJohn using the following DL expression:

PhDStudentsofJohn ≡ PhDStudents u ∃supervisedBy.{John}

An alternative way to define PhDStudentsofJohn, besides defining it in the tradi-

tional way as shown above, is to enumerate all its instances. For example, suppose

there are five PhD students supervised by John, namely, Amy, Bruce, Carol, David and

Eason. Then we can define PhDStudentsofJohn as follows:

PhDStudentsofJohn ≡ {Amy} ∪ {Bruce} ∪ {Carol} ∪ {David} ∪ {Eason}

More specifically, we define the notion by combining nominals with union.

2.2.2 Inverse Roles

Besides providing a variety of concept constructors (i.e., negation, concept conjunc-

tion and concept disjunction), description logics also provide a few role constructors for

building complex roles. Inverse roles are (one of) the most important such construc-

tor. Intuitively, the relationship between the roles teaches and isTaughtBy is that, for

example, if John teaches the course COMP60332, then COMP60332 isTaughtBy John,

and if the course COMP60332 isTaughtBy John, then John teaches COMP60332. Such

a relationship can be captured by using the inverse operator (−):

teaches ≡ isTaughtBy−

Inverse roles allow binary relations (i.e. roles) to be used symmetrically. There are

situations where without inverse roles, a satisfactory knowledge base cannot be built

and the expected knowledge cannot be derived.

Example 2.2.2. Consider the following knowledge base K:

Teacher ≡ Person u ∃teaches.Course

2.2. EXTENSIONS OF THE BASIC ALC 25

Professor v Teacher

Course v ∀isTaughtBy.¬Professor

The second axiom states that professors are teachers, and the third axiom states that

Courses are not taught by professors. Intuitively, professors are unsatisfiable w.r.t. K,

because due to the first axiom in K, an element p in the extension of Professor should

also be in the extension of Teacher. This implies that p has a teaches-filler c that is a

Course. Normally (and intuitively), if p teachers c, then c isTaughtBy p. On the other

hand, the third axiom implies that p is not a Professor, which contradicts with our

initial assumption that p is a Professor. However, one may have neglected that there

is a critical flaw that the roles teaches and isTaughtBy are treated as arbitrary binary

relations in K, and they are not related in a way that facilitates the soundness of the

statement “if p teachers c, then c isTaughtBy p”. Thus, Professor is satisfiable w.r.t. K,

which is undesired. This can be solved by extending the source language with inverse

roles. In particular, the inverse roles allow teaches and isTaughtBy to be related (by

the inverse operator) in such a way that “if p teachers c, then c isTaughtBy p”.

That a description logic incorporates inverse roles is indicated by the letter I in

its name. Thus, ALCO with inverse roles is denoted by ALCOI. Roles in ALCOI

can be a role symbol r ∈ NR or the inverse r− of a role symbol r. We assume w.l.o.g.

that if R is already an inverse role, say S−, then the inverse of R is written as S,

rather than R−. We avoid double inverse operators in our language. The definition

of the semantics of ALCOI can be obtained from that of ALCO by extending the

interpretation function ·I to inverse roles as follows:

(R−)I = {(y, x) ∈ ∆I ×∆I | (x, y) ∈ RI}

It has been known that concept satisfiability of ALCOI is ExpTime-hard [ABM99,

ABM00]. Other logics allowing for inverse roles (or the converse operator) were inves-

tigated in the work of e.g. [Str82, Var85, DM96, De 96, Cal96, HS99, HST99].

2.2.3 Role Hierarchies

In many applications of knowledge representation, there are situations where two roles

on the same concept are related in the way that every filler of one role is also a filler

26 CHAPTER 2. BASICS OF DESCRIPTION LOGICS

of the other role. For example, in the university domain, the fillers of the role takesC-

SCourse, relating students to courses in computer science, are also fillers of the role

takesCourse, relating students to courses in any discipline. This can be captured by the

sub-role relationship between roles. Role hierarchies provide a mean to capture sub-

role relationship between roles [HS99], i.e., takesCSCourse is a sub-role of takesCourse.

Role hierarchies are also helpful when modeling sub-relations of the general part-whole

relation [Sat96]. As with in the case of inverse roles, there are situations where with-

out role hierarchies, a satisfactory knowledge base cannot be built and the expected

knowledge cannot be correctly derived.

Example 2.2.3. Consider the following knowledge base K:

OlympicMedalist ≡ person∃hasWonMedalIn.OlympicGames

Bolt : Person

(Bolt, men’s100MetresSprint) : hasWonGoldMedalIn

men’s100MetresSprint : OlympicGames

The first axiom states that Olympic medalists are persons who have won medals in

Olympic Games. The second axiom states that Bolt is an person. The third axiom

states that Bolt has won gold medal in men’s 100 metres sprint. The last axiom states

that men’s 100 metres sprint is an Olympic Game event. Then, we should derive that

“Bolt is an Olympic medalist” from the knowledge base. However, this is not the case

because the knowledge base did not capture the intended relatipnship between has-

WonGoldMedalIn and hasWonMedalIn, i.e., hasWonGoldMedalIn implies hasWonMedalIn.

In this case, we can use the following role inclusion to capture this relationship:

hasWonGoldMedalIn v hasWonMedalIn

That a description logic incorporates role hierarchies is indicated by the letter H

in its name. Thus, ALCOI with role hierarchies is denoted by ALCOIH. Description

logics with role hierarchies have additionally an RBox, defined as follows.

Definition 2.2.4. An RBox R is a finite set of role inclusions of the form R v S and

role equivalences of the form R ≡ S, where R and S are roles.

2.3. RELATIONSHIPS WITH OTHER LOGICS 27

We use R ≡ S as an abbreviation of the pair R v S and S v R. A role hierarchy

is a set of role inclusions. Note that, sometimes, role inclusions and equivalences are

considered as TBox axioms in some literature. We however distinguish TBox axioms

and RBox axioms in this thesis. RBox axioms refer to properties of roles. In more

expressive description logics (e.g., description logics with transitive property on roles),

the RBox also contains other axioms such as transitive axioms of the form trans(R),

where R is a role. The axiom trans(R) indicates that R is a transitive role [HG97].

A role inclusion S v S ′ is true in an interpretation I, and we write I |= S v S ′,

iff SI ⊆ S ′I . A role equivalence S ≡ S ′ is true in an interpretation I, and we write

I |= S ≡ S ′, iff SI ⊆ S ′I and S ′I ⊆ SI . I is a model of an RBox R iff every axiom

in R is true in I. In this case, we write I |= R.

Definition 2.2.5. An ontology O = (T ,A,R) is the union of an TBox T , an ABox

A and an RBox R.

2.3 Relationships with Other Logics

In this section, we explain the close relationship between description logics and other

interesting logics, in particular, with first-order logic and modal logic. The main

motivation for establishing the correspondence between these logics is to exploit results

of one logic to draw conclusions about another logic, and also to use existing methods

and tools of a logic to solve problems for another logic. For example, the main result of

this thesis is a practical method of semantic concept and role forgetting for expressive

description logics. The result can be adapted to a modal method for computing

correspondence properties for modal logics that correspond to the (description) logics

considered in this thesis, because of the close relationship between these two logics,

which we will discover in the sequel. Another motivation is to provide readers who are

familiar with first-order logic and modal logic yet new to description logics a deeper

understanding of the material and the field.

2.3.1 DLs as Decidable Fragments of First-Order Logics

Borgida [Bor96] presents a variety of results stating that most description logics are

decidable fragments of first-order logic, though some of them allow for constructors

28 CHAPTER 2. BASICS OF DESCRIPTION LOGICS

such as transitive closure of role or fixpoints which make them decidable fragments

of second-order logic. By simply mapping concept symbols as unary predicates, role

symbols as binary predicates and individual symbols as constants, TBox, ABox and

RBox axioms can be translated into first-order logic formulas.

Example 2.3.1. Consider the following ontology O:

Mother v ∃hasChild.>

Teacher ≡ Person u ∃teaches.Course

COMP60332 : Course

hasMother v hasAncestor

Using the mappings as mentioned above, O can be translated into the following first-

order logic formulas:

∀x.(Mother(x)→ ∃y.hasChild(x,y))

∀x.(Teacher(x)↔ Person(x) ∧ ∃y.(teaches(x,y) ∧ Course(y)))

Course(COMP60332)

∀x.∀y.(hasMother(x,y)→ hasAncestor(x,y))

Note that TBox and RBox axioms correspond to universally quantified (bi-)implications

without free variables, and ABox axioms correspond to ground facts.

The translation can be formalised using a translation function, π, which inductively

maps concepts and roles to first-order logic formulas with one or two free variables:

π(>) = true

π(⊥) = false

π(a) = x ≈ a

π(A) = A(x)

π(¬C) = ¬π(C)

π(C uD) = π(C) ∧ π(D)

π(C tD) = π(C) ∨ π(D)

π(∃R.C) = ∃y.R(x, y) ∧ π(C)

2.3. RELATIONSHIPS WITH OTHER LOGICS 29

π(∀R.C) = ∀y.R(x, y)→ π(C)

π(R) = R(x, y)

π(R−) = R(y, x)

π maps TBox, ABox and RBox axioms to first-order logic formulas as follows:

π(C v D) = ∀x.(π(C)→ π(D))

π(C ≡ D) = ∀x.(π(C)↔ π(D))

π(R v S) = ∀x.∀y.(π(R)→ π(S))

π(R ≡ S) = ∀x.∀y.(π(R)↔ π(S))

π(a : C) = a : π(C)

π((a, b) : R) = (a, b) : π(R)

It is clear to see that this translation preserves the semantics. Thus, it provides an

alternative way of defining the semantics of description logics (and vice versa).

The translation also indicates that all reasoning problems for ALC knowledge bases

are decidable, because the translation of a knowledge base uses only two free vari-

ables, which makes the resulting formulas in the two-variable fragment of first-order

logic. In addition, it is known that satisfiability is decidable for two-variable fragment

of first-order logic in nondeterministic exponential time [GKV97, GOR99]. Even in

the case of that the translation of a knowledge base uses quantification, it is used

only in a restricted way. The resulting formula is in guarded fragment of first-order

logic [ANvB98], for which satisfiability is known to be decidable in deterministic ex-

ponential time [Grä99].

2.3.2 DLs as Cousins of Modal Logics

Description logics are close relatives of modal logic, though they have been indepen-

dently developed. This close relationship was first discovered by Schild in [Sch91], and

transfer complexity and decidability result as well as reasoning techniques from one

logic to the other [Sch94, DL94a, HP98, AdRdN01]. The most well-known result is

that the correspondence between the description logic ALC and multi-modal logic K,

i.e., ALC can be viewed as syntactic variants of formulas of K.

30 CHAPTER 2. BASICS OF DESCRIPTION LOGICS

In particular, to connect ALC with multi-modal logic, all we need to do is the fol-

lowing. Semantically, from ALC to multi-modal logic, we correspond interpretations

of description logics to Kripke structures and vice versa. We correspond interpreta-

tions of concept symbols to values of propositional variables, role symbols to binary

relations used as interpretations for the modal operators. Syntactically, as with the

correspondence from description logics to first-order logic, the correspondence from

description logics to modal logic is realised via a function π as follows:

π(A) = pA, for concept symbol A

π(¬C) = ¬π(C)

π(C uD) = π(C) ∧ π(D)

π(C tD) = π(C) ∨ π(D)

π(∃r.C) = 〈r〉π(C)

π(∀r.C) = [r]π(C)

The translation of more expressive description logics is straightforward as well.

For example, Schild [Sch94] and De Giacomo and Lenzerini [DL94b] identified a corre-

spondence between description logics and the modal µ-calculus. Van der Hoek and De

Rijke [vdHdR95] considered correspondence between description logics with qualified

number restrictions and modal logic with counting expressions.

Chapter 3

Basics of Forgetting

The origins of interest in forgetting can be traced back to the work of Boole on proposi-

tional variable elimination and the seminal work of Ackermann [Ack35] who recognised

that the problem amounts to the elimination of existential second-order quantifiers.

In this chapter, we review the provenance and history of the forgetting problem and

see how forgetting has been studied for various logics. For a deeper understanding of

the origins and initial development of forgetting, we refer the reader to [Bro03].

3.1 Forgetting in Classical Logics

In propositional logic, forgetting has often been studied under the name of variable

elimination. In particular, forgetting a propositional variable p from a set S of formulas

is essentially the operation of checking satisfiability of S by assigning a truth value to p

(i.e., the idea of the DPLL algorithm [DP60] and [DLL62]). The solution of forgetting

a propositional variable p from a set S of formulas is simply the disjunction Sp> ∨ S
p
⊥,

where Sp> denotes the set obtained from S by substituting > for every occurrence of

p in S. Literature on forgetting/variable elimination for propositional logics include

e.g. [KHM99, LM02, LLM03, BLM06]. It has been found that the size of the solution

of forgetting in propositional logic can be exponential w.r.t. the size of the input in

the worst cases [EW08], which is an undesirable property for forgetting. Zhou [Zho14]

proposed a restricted notion of bounded forgetting, referred to as polynomially bounded

forgetting, where the size of the forgetting solution is manageable for propositional logic

and can be expressed polynomially.

31

32 CHAPTER 3. BASICS OF FORGETTING

In first-order logic, forgetting has often been studied as an instance of the second-

order quantifier elimination (SOQE) problem. Since the problem is a research topic

closely related to the material presented in this thesis, we introduce the problem in

detail in the next section. The name “forgetting” was first proposed in the context

of first-order logic in [LR94] to denote the operation of eliminating predicate symbols

from first-order logic formulas. A formal definition of this forgetting is formulised as

follows, which is also referred to as strong forgetting or semantic forgetting in other lit-

erature [ZFW05, EW08, WWT+09, ZZ10, WWTP10, PGJ11, WWT+14, FZ16, Lei17].

Definition 3.1.1 (Strong/Semantic Forgetting). Let F be a first-order logic for-

mula and let P be a predicate symbol. F ′ is a solution of strongly forgetting P from

F iff for any interpretation M , M |= F ′ iff there is some interpretation M ′ |= F such

that M ′ and M coincide but differ possibly on the truth value of P .

We say that the solution of strong/semantic forgetting is equivalent to the original

formula up the truth value of P . Observe from the definition that forgetting does not

require the given formula F to contain P and the forgetting solution F ′ to not contain

P , though this is assumed in most of the work on forgetting (also in this thesis).

It is noted in [LR94] that the solution of strong/semantic forgetting a predicate

symbol P from a first-order logic formula F is equivalent to the second-order formula

∃X.F P
X , where F P

X is our notation for substituting every occurrence of P in F by X.

The task of forgetting in first-order logic, as a computational problem, is to find a first-

order formula F ′ (without second-order quantification) that is equivalent to ∃X.F P
X .

Finding such a formula F ′ equivalent to ∃X.F P
X is an instance of the second-order

quantifier elimination problem.

It is however observed that the solution of strong/semantic forgetting is not always

expressible in first-order logic (i.e., the solution of strong/semantic forgetting does

not always exist). Motivated by this observation, Zhang and Zhou [ZZ10] proposed

an alternative notion of forgetting, referred to as weak forgetting in the work, where

the forgetting solution is always expressible in first-order logic. The notion of weak

forgetting can be formalised as follows.

Definition 3.1.2 (Weak Forgetting). Let F be a first-order logic formula and let

P be a predicate symbol. F ′ is a solution of weakly forgetting P iff for every formula

3.2. SECOND-ORDER QUANTIFIER ELIMINATION 33

G that does not contain P , F ′ |= G iff F |= G.

Intuitively, this means that if a formula G (not containing P) is a consequence of

the solution F ′ of weakly forgetting P from the given formula F , then it is a conse-

quence of F , and vice versa. We say that the strong/semantic forgetting preserves

equivalence (up to certain signature), whereas the weak forgetting preserves only log-

ical consequences (up to certain signature).

The solution of weak forgetting is always expressible in first-order logic, though

there are cases the forgetting solution can only be represented by an infinite set of

first-order logic formulas.

It is noted in [ZZ10] that the solution of strong/semantic forgetting is not always

equivalent to that of weak forgetting, but if the solution of strong/semantic forgetting

is first-order expressible, then the two notions coincide. We have also found that the

solution of strong/semantic forgetting often requires more expressivity than is avail-

able in the source logic. Hence, the solution of strong/semantic forgetting (possibly

expressed in an extended language) is often stronger than that of weak forgetting.

Because the solution of weak forgetting cannot always be represented by a finite

set of first-order logic formulas, Zhang and Zhou [ZZ11] proposed a restricted notion of

forgetting, referred to as bounded forgetting, where the solution only preserves logical

consequences up to certain so-called quantifier rank (i.e., for the details of this notion

we refer the reader to [ZZ11]). By making use of quantifier rank, the solution of

bounded forgetting can always be represented by a finite set of formulas.

We apply the strong/semantic notion of forgetting in this thesis. In the remainder

of the thesis, we will use the name “semantic forgetting” to refer to the notion.

3.2 Second-Order Quantifier Elimination

‘ Second-order quantifier elimination refers to a non-standard reasoning problem con-

cerned with transforming second-order logic formulas into equivalent first-order logic

formulas. The transformation is achieved by eliminating existentially quantified pred-

icate symbols (universally quantified predicate symbols can be eliminated due to the

equivalence ∀X.F ≡ ¬∃X.¬F). Therefore, the task of second-order quantifier elimina-

tion is to transform a (second-order logic) formula of the form ∃X.F into an equivalent

34 CHAPTER 3. BASICS OF FORGETTING

(first-order logic) formula F ′ without existentially quantified second-order quantifiers.

It is observed that in this sense second-order quantifier elimination amounts to

semantic forgetting. The result of eliminating existential second-order quantifiers is

equivalent to the original formula up to the symbols that have been eliminated. This

is consistent with the notion of semantic forgetting where the forgetting solution is

equivalent to the original formula up to the symbols that have been forgotten. It is

known that second-order quantifier elimination is undecidable [Ack35, GSS08] and very

few logics are known to be complete for the problem. Nevertheless, this does not mean

there is no need for the development of practical methods. Successful techniques from

the area have shown very good results, even though these methods are not complete.

In particular, these methods can directly be used for forgetting predicate symbols from

first-order logic formulas.

Several second-order quantifier elimination methods have been proposed in the

context of various logics and these methods can be generalised into two categories:

(i) saturation approach based on exhausitive deduction of consequences, and

(ii) substitution-rewrite approach based on monotonicity properties.

Methods following the saturation approach include the Scan algorithm [GO92] and

hierarchical resolution [BGW94a], and methods following the substitution-rewrite ap-

proach include the Dls algorithm [DLS97], the Dls∗ algorithm [NS98], the Sqema al-

gorithm [CGV06a], the Msqel algorithm [Sch12], the Sahlqvist-van Benthem method

for modal logic [Sza93, Hen75] and the method of simmons [Sim94]. In the sequel, we

enumerate some of these methods, which are closely related to our method.

3.2.1 SOQE Based on Resolution

The Scan algorithm, due to Gabbay and Ohlbach [GO92], is a saturation method for

eliminating existential second-order quantifiers from a set of formulas. The method

is based on the resolution calculus [Rob63] and works with formulas in clausal form.

The idea of Scan is to generate all possible logical consequences from the given for-

mulas containing second-order variables and from the resulting formulas preserve only

those non-redundant formulas in which no second-order variables occur [GSS08]. The

method has been extended and implemented by Ohlbach [Ohl96] and Engel [Eng96].

3.2. SECOND-ORDER QUANTIFIER ELIMINATION 35

The input of Scan is a (second-order logic) formula of the following form:

∃P1∃P2 . . . ∃Pn.F,

where the Pi (1 ≤ i ≤ n) are predicate variables and F is a set of quantifier-free

first-order logic formula. We apply the Scan algorithm to this set to eliminate all

occurrences of Pi in this set, thereby yielding a set of (first-order logic) formulas

equivalent to the original set up to the Pi.

Scan was the first approach for forgetting in first-order logic. It is known that

Scan is complete for all Sahlqvist formulas in multi-modal logic [Hen75, GHSV04].

An alternative method based on resolution is the hierarchical resolution [BGW94b].

3.2.2 SOQE Based on Ackermann’s Lemma

Second-order quantifier elimination methods following the substitution-rewrite ap-

proach are based on a monotonicity property found in [Ack35], referred to as Ack-

ermann’s lemma, whose main idea is captured by the following theorem.

Theorem 3.2.1 (Ackermann’s Lemma). Let P be a predicate variable and α(x, z),

β(P) be first-order formulas (without second-order quantification), where the number

of distinct variables in x is equal to the arity of P and α(x, z) does not contain P .

If β(P) is positive w.r.t. P , then

∃P{∀x[P (x)→ α(x, z)] ∧ β(P)} ≡ β(P)P (x)
α(x,z).

If β(P) is negative w.r.t. P , then

∃P{∀x[α(x, z)→ P (x)] ∧ β(P)} ≡ β(P)P (x)
α(x,z).

By β(P)P (x)
α(x,z), we denote the expression obtained from β(P) by replacing all occurrences

of P (x) by α(x, z).

Compared to those (second-order quantifier elimination) methods based on reso-

lution, which work directly on the given clauses, Ackermann-based methods require

all relevant clauses to be transformed into a certain form suitable for application of

Ackermann’s Lemma. In particular, Ackermann’s Lemma requires the positive and

negative occurrences of the eliminated second-order variable to be properly separated.

36 CHAPTER 3. BASICS OF FORGETTING

On the other hand, Ackermann-based methods do not generate as many clauses as

the resolution-based methods do during the elimination process.

The Dls algorithm is a method based on Ackermann’s Lemma for eliminating

second-order quantifiers from first-order logic formulas. The method was developed

by [DLS97], as an extension of the algorithm given by [Sza93].

The input of Dls is exactly the same with that of Scan. Once a derivation (of

Dls) is done, Dls either returns a set of formulas not containing any existential

second-order quantifiers (if the derivation is successful), or reports failure (if the result

still contains existential second-order quantifiers; in this case we say the derivation is

unsuccessful or fails). The failure of a derivation does not mean that the second-order

logic formulas are not reducible to first-order logic formulas, because as we mentioned

earlier, this problem is undecidable.

Conradie has generalised a set of necessary and sufficient syntactic conditions on

the formulas for the success of Dls [Con06]. It is shown that Dls is complete for all

modal Sahlqvist formulas and inductive formulas. The class of inductive formulas is

a large syntactic class defined by Goranko and Vakarelov [GV06], which extends the

class of Sahlqvist formulas and subsumes the class of the polyadic Sahlqvist formulas

found by Rijke and Venema [dRV95].

In [NS98], Dls has been extended to Dls∗ which is based on a generalisation of

Ackermann’s Lemma, referred to as generalised Ackermann’s Lemma. This generalised

Ackermann’s Lemma has been formulated as the following theorem.

Theorem 3.2.2 (Generalised Ackermann’s Lemma). Let P be a predicate variable

and α(x, z), β(P) be first-order formulas (without second-order quantification), where

the number of distinct variables in x is equal to the arity of P and α(P, x, z) is positive

w.r.t. P .

If β(P) is positive w.r.t. P , then

∃P{∀x[P (x)→ α(P, x, z)] ∧ β(P)} ≡ β(P)P (x)
GfpP (x).α(P,x,z)

If β(P) is negative w.r.t. P , then

∃P{∀x[α(P, x, z)→ P (x)] ∧ β(P)} ≡ β(P)P (x)
LfpP (x).α(P,x,z).

By β(P)P (x)
α(P,x,z), we denote the expression obtained from β(P) by replacing all occur-

rences of P (x) by α(P, x, z).

3.2. SECOND-ORDER QUANTIFIER ELIMINATION 37

The generalised Ackermann’s Lemma allows α(P, x, z) to contain the symbol to

be eliminated, which is P in the theorem. As a consequence, the resulting formulas

are not expressible in first-order logic but are expressible in fixpoint logics. The Dls∗

algorithm allows existential second-order variables to be eliminated in cases where

positive and negative occurrences of the variable are not properly separated.

Scan and Dls can be used in the area of correspondence theory for modal logics. In

particular, they can be used to compute first-order correspondence properties for modal

axioms. The area of correspondence theory was initiated by Sahlqvist [Hen75] and then

by van Benthem [vB75, vB76, vB89, vBDMP97]. Sahlqvist has (syntactically) defined

a class of modal formulas which are reducible to first-order logic. This class is called

the Sahlqvist Class and the formulas of this class are called Sahlqvist formulas. The

idea is to translate the given modal axioms to first-order formulas (with second-order

quantification). The translation is based on the close relationship between modal

logics and first-order logic, as discussed in the previous chapter. Then we apply Scan

or Dls to the second-order formulas to eliminate existential second-order quantifiers.

The results reflect the first-order correspondence properties of the given modal axioms.

The Dls∗ algorithm can be used for modal fixpoint correspondence theory.

Based on Dls, Conradie et al. [CGV06a] developed a method called Sqema for

computing first-order correspondence properties for modal axioms. Unlike Scan, Dls

and Dls∗, which work with first-order translations of modal axioms, Sqema works

directly with modal formulas. This is due to a modal version of Ackermann’s Lemma

developed in this work. It is known that the Sqema algorithm is complete for Sahlqvist

formulas and monadic inductive formulas and any formulas for which Sqema is com-

plete are canonical [CGV06a, CGV06b, CG08, CGV09, Con09, CGV10].

Based on Sqema, Schmidt [Sch12] developed an alternative method called Msqel

for computing first-order correspondence properties for modal axioms. Unlike Sqema

which uses negation normal form as the normal form, Msqel uses a special normal

form which makes the detection of potential simplifications (i.e., syntactic contradic-

tions, redundancies, and tautologies etc.) much easier. Another difference is that

Msqel exploits orderings, which are compatible with the elimination order, to re-

strict the inference process. This provides more control and reduces non-determinism

in derivations, thereby improving the efficiency and success rates of the method. It is

38 CHAPTER 3. BASICS OF FORGETTING

known that Msqel is complete for two syntactically well-defined classes C and C� of

modal formulas, which subsume the Sahlqvist class and the monadic inductive class.

3.3 Forgetting in Modal Logics

Because of the close relationship between modal logics and description logics, research

on forgetting in modal logics can be of interest to the material presented in this thesis.

Direct correspondences between the two logics include, e.g. correspondence between

the multi-modal logic K and the description logic ALC, correspondence between hy-

brid logics and description logics with nominals, and correspondence between the

modal µ-calculus and description logics with fixpoint operators.

In modal logics, forgetting has often been studied under the name of uniform

interpolation [Vis96, DH00, HM08], a notion related to the Craig interpolation [Cra57],

but stronger. The definition of Craig interpolation can be formalised as follows.

Definition 3.3.1 (Craig Interpolation). Given two first-order logic formulas F1

and F2, there is always a first-order logic formula F that only uses predicate symbols

occurring both in F1 and F2 such that F1 |= F and F |= F2. F is then referred to as

the Craig interpolant of F1 and F2.

Based on Craig interpolation, Henkin [Hen63] proposed a stronger property, which

is the notion nowadays commonly known as uniform interpolation.

Definition 3.3.2 (Uniform Interpolation). A logic L has has the uniform inter-

polation property iff for any formula F in L and any set S of symbols, there exists a

formula F S such that for every L formula G containing only symbols in S we have

F S |= G iff F |= G. F S is then referred to as the uniform interpolant of F for S.

It it observed that the notion of uniform interpolation coincides with that of weak

forgetting in the sense that the uniform interpolant of F for S is equivalent to the

solution of weakly forgetting the symbols not in S from F . Therefore, these two notions

are often considered as dual notions. Following Definition 3.3.2 and the correspondence

between uniform interpolation and weak forgetting, we can infer that if a logic has the

uniform interpolation property, then the solution of weak forgetting for this logic is

always finite. Since the solution of weak forgetting for first-order logic cannot always

3.3. FORGETTING IN MODAL LOGICS 39

be represented finitely, it is easy to conclude that first-order logic does not have the

uniform interpolation property.

Early work on uniform interpolation in modal logics has been primarily focused on

checking if a modal logic has the uniform interpolation property. Known results are

listed below in chronological order:

• Pitts [Pit92] proved that IPC has the uniform interpolation property.

• Shavrukov [Sha03] proved that GL has the uniform interpolation property.

• Ghilardi and Zawadowski [GZ95] proved that K has uniform interpolation prop-

erty and S4 does not.

• Visser [Vis96] proved indepedently that K has uniform interpolation property,

and so does S4GRz.

• D’Agostino and Hollenberg [DH96] proved that the µ-calculus has uniform in-

terpolation property.

• Bilkova [B́ıl07] proved that KT has uniform interpolation and K4 does not.

• Based on the results above, there are seven intermediate logics which have the

uniform interpolation property, including IPC, Sm, GSc, KC, LC, Bd2 and CPC.

Recent work on uniform interpolation in modal logics has been primarily focused on

developing practical methods for computing uniform interpolants. B́ılková [B́ıl07] has

developed a method based on a sequent-calculus for computing uniform interpolant in

the modal logic K and T. Kracht [Kra07] has developed an alternative method based

on a tableaux algorithm for computing uniform interpolant in the modal logic K and

T. D’Agostino and Lenzi [DL06] has developed a method for computing uniform inter-

polants in the µ-calculus. The first two methods are based on implicit transformations

of the input into the standard disjunctive normal form, whereas the last method is

based on explicit transformations of the input into a special form of disjunctive normal

form. Pointed out by Herzig and Mengin [HM08] that disjunctive normal form is not

natural representation for most applications, methods based on transformations of the

input into conjunctive normal form have been developed as well. An example of these

methods is the one developed by Herzig and Mengin in the same work for computing

40 CHAPTER 3. BASICS OF FORGETTING

uniform interpolants in the modal logic K. The method is based on a clausal resolution

calculus presented in [EdC89].

Second-order quantifier elimination techniques can also be used to compute uni-

form interpolants for various modal logics. For example, Szalas [Sza02] has presented

techniques that allow one to eliminate second-order quantifiers from second-order for-

mulas formulated in the modal logic K and its first-order extension Q1K. The tech-

niques are purely syntactical and independent of any particular underlying seman-

tics of modal logics, and thus can be easily implemented. Two Ackermann-based

techniques [CGV06a] and [Sch12] performs second-order quantifier elimination for the

modal hybrid logic.

3.4 Forgetting in Description Logics

In description logics, forgetting has been investigated under the names of forgetting,

e.g. [WWTP10, ZS15, ZS16, ZS17], uniform interpolation, e.g., [LW11, KS13d, Koo15,

LK14], inseparability, e.g. [LW10, KLWW13, BKL+16, BLR+16], and conservative

extensisons, e.g. [GLW06, LW07, JLM+17].

Early work on forgetting in description logics has been primarily focused on on-

tologies specified in some lightweight description logics such as EL and ALC. The first

method for forgetting in ontologies and knowledge bases was presented in [WWTP08,

WWTP10]. The method is based on the resolution calculus and handles ontologies

specified in the description logic EL, which is a lightweight description logic that ad-

mits sound and complete reasoning in polynomial time. Compared to other description

logics, EL does not allow concepts to occur under quantifiers. For this reason, forget-

ting in the description logic EL can be easily solved as in propositional logics. While

most of the subsequent work was focused on forgetting only in TBoxes, forgetting in

RBoxes was also considered in this work.

An alternative method for forgetting and uniform interpolation in the description

logic EL was presented in [KWW09]. Unlike the method of [WWTP08, WWTP10],

this method extends the source language with role inclusions and domain & range

restrictions [BLB08], which can help formulate sufficient (acyclicity) conditions for

computing the uniform interpolants. This is because, as we discussed in the previous

3.4. FORGETTING IN DESCRIPTION LOGICS 41

section, not all logics have the uniform interpolation property. It is known that EL

does not have the uniform interpolation property [KWW08]. By imposing acyclicity

conditions on the input, the uniform interpolants can always be computed and repre-

sented by a finite set of axioms. The uniform interpolants computed by this method,

in the worst case, are of exponential size w.r.t. the size of the input. This has veri-

fied that forgetting is indeed an inherently difficult problem, even for the lightweight

description logic EL. The method was evaluated with a prototypical implementation

on two large benchmark EL ontologies. The evaluation showed that the method could

forget large sets of symbols from ontologies. This can be expected because EL is a

Horn logic, and the method has imposed acyclicity conditions on the input to ensure

that the input contains no cyclic definitions. Both these make the problem expectedly

much easier than forgetting in more expressive and more general ontologies.

Another method that handles EL with extensions was presented in [Nik11]. The

method computes uniform interpolants for general EL ontologies with greatest fixpoint

operators. A method with the same ability but without using fixpoints was presented

in [NR12, NR14]. In particular, the former method is based on computing most specific

superconcepts and most general subconcepts of the concepts in the signature and the

latter method is based on proof-theory and regular tree grammars. It is also known

from the latter work that uniform interpolants can be of triple exponential size w.r.t.

the size of the input for EL ontologies.

Lutz et al. [LSW12] studied uniform interpolation in EL-TBoxes. In particular,

they developed an algorithm based on tree automata representations of EL-TBoxes

for deciding the existence of uniform interpolants in EL-TBoxes. In this way, they

proved that deciding the existence of uniform interpolants of EL-TBoxes is ExpTime-

complete. This work also provided a simpler proof for the known result that deciding

conservative extensions of EL-TBoxes is in ExpTime [LW10].

Methods for forgetting in the description logic ALC has also been developed. For

example, a second-order quantifier elimination method for forgetting in ALC has been

developed in [Sza06]. The method uses a generalisation of Ackermann’s Lemma to

description logics and allows for the elimination of both concept and role names. Two

applications, namely, circumscribing concepts in description logics and approximating

42 CHAPTER 3. BASICS OF FORGETTING

terminological axioms are also described in this work. Wang et al. [WWT+09] devel-

oped a method for computing uniform interpolants in ALC knowledge bases, which

under certain circumstances can also handle ABoxes. The method is comparable to

the method of [DL06] which computes uniform interpolants in the µ-calculus, except

that the latter requires the input ontology to be transformed into a specialised dis-

junctive normal form and the former incrementally transforms the input ontology into

disjunctive normal form during the process of computing the uniform interpolants.

In the latter way, the input TBox is represented as a single concept in disjunctive

normal form, which can make the elimination of concept and role symbols rather eas-

ier. However, such an unusual representation can be an infinite representation, and if

this has been the case, the method incrementally approximates the representation and

checking if the uniform interpolant has been computed using equivalence tests between

increments. The method of [WWT+09] has been optimised in [WWTZ10, WWT+14]

by exploiting a tableau-based reasoning [MH09].

These two methods have however a disadvantage that they represent the input

ontology in disjunctive normal form, which, as we mentioned above, is an unusual way

to represent ontologies. Ontologies are naturally represented in conjunctive normal

form (i.e., as a set of small axioms), rather than a large single axiom in disjunctive

normal form. This disadvantage makes the methods not practical enough for real-world

use. For this reason, Wang et al. [WWT+14] developed another method for uniform

interpolation in ALC, which preserves the natural representation of ontologies.

Disproving the claim made in [WWT+09, WWTZ10, WWT+14] that a uniform in-

terpolant is at most of double exponential size w.r.t. to size of the input ontology, Lutz

and Wolter [LW11] claimed that this can be triple exponential for a family of ontolo-

gies. Based on this finding, in the same work they modified the method of [WWT+09]

to accommodate the cases where the size of the uniform interpolants are triple expo-

nential in the size of the input ontology. In addition, they proved that deciding the

existence of uniform interpolant in ALC can be 2ExpTime-complete.

A major drawback of the methods of [WWT+09, WWTZ10, WWT+14] and the

method of [LW11] is that they are not goal-oriented method, which means that they

cannot eliminate symbols in a flexible way as the user wishes.

3.4. FORGETTING IN DESCRIPTION LOGICS 43

The first goal-oriented method for forgetting and uniform interpolation was pre-

sented in [LK13b, LK14]. The method is based on a clausal resolution algorithm and

computes uniform interpolants in ALC-TBoxes. Since ALC does not have the uniform

interpolation property, the authors introduced a depth-bounded version of their core

algorithm to guarantee the termination on all input ontologies. The method has been

implemented as a tool which has been evaluated on a corpus of real-world ontologies.

The experimental results suggest that despite a high cimputational complexity, unform

interpolants can be computed in many practical cases.

More recently, Koopmann and Schmidt [KS13d, KS13c] developed a practical

method for computing uniform interpolants in the description logic ALC. The method

is a saturation approach based on the resolution calculus and can eliminate concept

symbols from ALC-TBoxes. The method introduces fixpoint operators in the target

language to ensure that uniform interpolants can be finitely represented. Based on

this method, Koopmann and Schmidt [KS13b] presented an improved method that

can eliminate both concept and role symbols from ontologies specified in the descrip-

tion logic ALCH with fixpoint operators. This method has then been significantly

extended to SIF , SHI and SHQ for uniform interpolation [KS15c, Koo15, KS14],

though in SHQ the method can only eliminate concept symbols. While most of this

work has been focused on TBox and RBox uniform interpolation, practical methods

for computing uniform interpolants for description logics ALC and SHI with ABoxes

are described in [KS15a, Koo15]. All these methods have been collectively imple-

mented as a tool called Lethe [KS15b], which performs uniform interpolation and

related tasks for OWL ontologies using the description logics mentioned above. A

thorough evaluation of Lethe has been conducted with a large number of real-world

ontologies from different sources, and performance results have shown that Lethe can

compute the uniform interpolants in most of the test cases within a reasonable period

of time [Koo15].

Chapter 4

Concept Forgetting for ALCOI

In this chapter, we introduced a practical method for forgetting concept symbols from

ontologies expressible in the description logic ALCOI, i.e., the basic description logic

ALC extended with nominals and inverse roles. The method is based on a calculus,

namely, AckC, which exploits a generalisation of Ackermann’s Lemma for description

logics as the fundamental rules to eliminate single concept symbols. Being based on

AckC, the method is the only approach so far that provides support for forgetting

concept symbols in description logics with nominals. The method is goal-oriented

and incremental. It always terminates and is sound in the sense that the forgetting

solution is equivalent to the original ontology up to the interpretations of the symbols

that have been forgotten, possibly with the interpretations of the nominals that have

been introduced during the forgetting process.

This chapter is an extension of our published work of [ZS15].

4.1 The Description Logic ALCOI

In this section, we introduce the description logic ALCOI, which is the language

considered in this chapter. Let NC, NR and NO be countably infinite and pairwise

disjoint sets of concept symbols, role symbols and individual symbols (aka nominals),

respectively. Roles in ALCOI can be a role symbol r ∈ NR or the inverse r− of a role

symbol r (an inverted role). Concepts in ALCOI have one of the following forms:

a | > | ⊥ | A | ¬C | C uD | C tD | ∃R.C | ∀R.C,

44

4.1. THE DESCRIPTION LOGIC ALCOI 45

where a ∈ NO, A ∈ NC, C and D are arbitrary concepts and R is an arbitrary role.

We assume w.l.o.g. that concepts and roles are equivalent relative to associativity and

commutativity of u and t, ¬ and − are involutions, and > is a unit w.r.t. u.

An ALCOI-ontology is mostly assumed to be comprised of a TBox and an ABox.

A TBox T is a finite set of concept axioms of the form C v D (concept inclusion) and

the form C ≡ D (concept equivalence), where C and D are concepts. We use C ≡ D

as an abbreviation of the pair C v D and D v C. An ABox A is a finite set of concept

assertions of the form C(a) and role assertions of the form R(a, b), where a, b ∈ NO,

C is a concept and R is a role. In a description logic with nominals, ABox assertions

can be equivalently expressed as TBox axioms, namely, C(a) as a v C and R(a, b)

as a v ∃R.b. Hence, in this chapter, we assume w.l.o.g. that an ALCOI-ontology

contains only TBox axioms.

The semantics of ALCOI is defined in terms of an interpretation I = 〈∆I , ·I〉,

where ∆I is a non-empty set (the domain of the interpretation), and ·I is the inter-

pretation function, which assigns to every nominal a ∈ NO a singleton aI ⊆ ∆I , to

every concept symbol A ∈ NC a set AI ⊆ ∆I , and to every role symbol r ∈ NR a

binary relation rI ⊆ ∆I ×∆I . The interpretation function ·I is inductively extended

to concepts and roles as follows:

>I = ∆I ⊥I = ∅ (¬C)I = ∆I\CI

(C uD)I = CI ∩DI (C tD)I = CI ∪DI

(∃R.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ RI ∧ y ∈ CI}

(∀R.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ RI → y ∈ CI}

(R−)I = {(y, x) ∈ ∆I ×∆I | (x, y) ∈ RI},

A concept inclusion C v D is true in an interpretation I, and we write I |= C v D,

iff CI ⊆ DI . A concept equivalence C ≡ D is true in an interpretation I, and we write

I |= C ≡ D, iff CI ≡ DI . I is a model of an ontology O iff every axiom in O is true

in I. In this case we write I |= O.

Let A ∈ NC be a designated concept symbol. An axiom (clause) that contains an

occurrence of A is called an A-axiom (A-clause). An occurrence of A is assumed to

be positive (negative) in an A-axiom (A-clause) if it is under an even (odd) number

of explicit and implicit negations. For instance, A is assumed to be positive in ∃r.A

46 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

and C v A, and negative in ¬∀r.A and A v C. An axiom (clause) C is assumed to

be positive (negative) w.r.t. A is every occurrence of A in C is positive (negative). An

ontology O of axioms is assumed to be positive (negative) w.r.t. A if every A-axiom

in O is positive (negative). A set N of clauses is assumed to be positive (negative)

w.r.t. A if every A-clause inN is positive (negative). An axiom (clause) that contains a

positive occurrence of A is referred to as an A+-axiom (A+-clause). An axiom (clause)

that contains a negative occurrence of A is referred to as an A−-axiom (A−-clause).

Next, we formalise our notion of concept forgetting for ALCOI. By sigC(X) we

denote the set of the concept symbols occurring in X (excluding nominals), where X

ranges over concepts, axioms, clauses, sets of axioms, and sets of clauses. Let A ∈ NC

be any concept symbol, and let I and I ′ be any interpretations. We say I and I ′

are equivalent up to A, or A-equivalent, if I and I ′ coincide but differ possibly in the

interpretations of A. More generally, I and I ′ are equivalent up to a set Σ of concept

symbols, or Σ-equivalent, if I and I ′ coincide but differ possibly in the interpretations

of the symbols in Σ. This can be understood as follows: (i) I and I ′ have the same

domain, i.e., ∆I = ∆I′ , and interpret every role symbol and every individual symbol

identically, i.e., rI = rI
′ for every r ∈ NR and aI = aI

′ for every a ∈ NO; (ii) for every

concept symbol A ∈ NC not in Σ, AI = AI
′ .

Definition 4.1.1 (Concept Forgetting for ALCOI). LetO be anALCOI-ontology

and let Σ be a subset of sigC(O). An ontology O′ is a solution of forgetting Σ from O,

iff the following conditions hold:

(i) sigC(O′) ⊆ sigC(O)\Σ, and

(ii) for any interpretation I: I |= O′ iff I ′ |= O, for some interpretation I ′ Σ-

equivalent to I.

It follows from Definition 4.1.1 that: (i) the original ontology O and the forgetting

solution O′ are equivalent up to (the interpretations of) the symbols in Σ. Also (ii)

forgetting solutions are unique up to logical equivalence, that is, if both O′ and O′′

are solutions of forgetting Σ from O, then they are logically equivalent.

In this chapter, Σ is always assumed to be a set of concept symbols to be forgotten.

The symbol in Σ under current consideration for forgetting is referred to as the pivot

4.2. GENERALISED ACKERMANN’S LEMMA 47

in our method. An axiom (clause) that contains an occurrence of the symbols in Σ is

referred to as a Σ-axiom (Σ-clause). An axiom (clause) that contains an occurrence

of the pivot is referred to as a pivot-axiom (pivot-clause). An axiom (clause) that

contains a positive occurrence of the pivot is referred to as a pivot+-axiom (pivot+-

clause). An axiom (clause) that contains a negative occurrence of the pivot is referred

to as a pivot−-axiom (pivot−-clause).

4.2 Generalised Ackermann’s Lemma

Given an ontology O and a set Σ ⊆ sigC(O) of concept symbols, computing a solution

of forgetting Σ from O can be reduced to the problem of eliminating single symbols

in Σ. For example, forgetting Σ = {A,B} from the ontology {A v ∃r.B,B v ∀r.C}

can be reduced to the problem of first eliminating {A} from {A v ∃r.B,B v ∀r.C},

and then eliminating {B} from the intermediate solution obtained from the preceding

elimination (or the other way around, i.e., first eliminating {B} from {A v ∃r.B,B v

∀r.C}, and then eliminating {A} from the intermediate solution). Thus, an approach

to eliminating single concept symbols from ontologies is required for concept forgetting.

Such an approach can be based on the use of a monotonicity property found

in [Ack35], referred to as Ackermann’s Lemma. The original Ackermann’s Lemma has

been used in the context of the second-order quantifier elimination problem and the

modal correspondence theory problem for eliminating single predicate symbols from

first-order logic formulas. For generic description logic-based ontologies, Ackermann’s

Lemma can be generalised as the following theorem.

Theorem 4.2.1 (Generalised Ackermann’s Lemma). Let O be an ontology that

contains the axioms C1 v A, ..., Cn v A, where A ∈ sigC(O) is a concept symbol, and

the Ci (1 ≤ i ≤ n) are concepts that do not contain A. If O\{C1 v A, ..., Cn v A}

is negative w.r.t. A, then O\{C1 v A, ..., Cn v A}AC1t...tCn
is a solution of forget-

ting {A} fromO (i.e., Conditions (i) and (ii) of Definition 4.1.1 hold), where O\{C1 v

A, ..., Cn v A} denotes the ontology O excluding the axioms C1 v A, ..., Cn v A, and

O\{C1 v A, ..., Cn v A}AC1t...tCn
denotes the ontology obtained from O by substituting

C1 t ... t Cn for every occurrence of A in O\{C1 v A, ..., Cn v A}.

This theorem can be formulated as the following rule in mathematical presentation,

48 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

referred to as the Ackermann rule:

O\{C1 v A, ..., Cn v A}, C1 v A, ..., Cn v A

O\{C1 v A, ..., Cn v A}AC1t...tCn

(4.1)

Ackermann’s Lemma has a dual form generalised as the following (dual) theorem.

Theorem 4.2.2 (Generalised Ackermann’s Lemma Dual). Let O be an ontology

that contains the axioms A v C1, ..., A v Cn, where A ∈ sigC(O) is a concept symbol,

and the Ci (1 ≤ i ≤ n) are concepts that do not contain A. If O\{A v C1, ..., A v Cn}

is positive w.r.t. A, then O\{A v C1, ..., A v Cn}AC1u...uCn
is a solution of forget-

ting {A} from O (i.e., Conditions (i) and (ii) of Definition 4.1.1 hold), where O\{A v

C1, ..., A v Cn} denotes the ontology O excluding the axioms A v C1, ..., A v Cn, and

O\{A v C1, ..., A v Cn}AC1u...uCn
denotes the ontology obtained from O by substituting

C1 u ... u Cn for every occurrence of A in O\{A v C1, ..., A v Cn}.

The Ackermann rule corresponding to this dual theorem is the following:

O\{A v C1, ..., A v Cn}, A v C1, ..., A v Cn

O\{A v C1, ..., A v Cn}AC1u...uCn

(4.2)

In order to distinguish the two Ackermann rules, we refer to the rule in (4.1) as

the Ackermann+ rule, and the rule in (4.2) as the Ackermann− rule.

In these Ackermann rules (and any other transformation rules, rewrite rules and

simplification rules represented in line-dividing form), the expressions above the line

are referred to as the premises of the rule and those under the line as the conclusion.

In particular, in the Ackermann+ rule, we refer to the axioms C1 v A, ..., Cn v A

as the positive premises of the rule, and the axioms in O\{C1 v A, ..., Cn v A} as

the negative premises of the rule. In the Ackermann− rule, we refer to the axioms

A v C1, ..., A v Cn as the negative premises of the rule, and the axioms in O\{C1 v

A, ..., Cn v A} as the positive premises of the rule.

In the sequel, we show that the Ackermann rules are sound in the sense that the

premises of the rules are equivalent to their conclusion up to the interpretation of the

symbol that has been eliminated (i.e., up to the interpretation of the pivot).

Theorem 4.2.3. The Ackermann rules preserve equivalence up to the interpretation

of the pivot.

4.2. GENERALISED ACKERMANN’S LEMMA 49

Proof. In order to show that the Ackermann rules preserve equivalence up to the in-

terpretation of the pivot, we have to show that for any interpretation I, the conclusion

of the Ackermann rules is true in I iff for some interpretation I ′ pivot-equivalent to I,

the premises of the rules are true in I ′.

We prove the Ackermann+ rule. First, we prove the “⇒” direction. Let I be an

arbitrary interpretation. Assume

I |= O\{C1 v A, ..., Cn v A}AC1t...tCn
.

Let I ′ be an interpretation extending I by additionally assigning A a subset of ∆I

such that AI′ = (C1 t . . . t Cn)I′ . Directly, we have

I ′ |= O\{C1 v A, ..., Cn v A}.

It is obvious that CI′1 ⊆ (C1 t . . . t Cn)I′ , . . . , CI′1 ⊆ (C1 t . . . t Cn)I′ , which implies

CI
′

1 ⊆ AI
′ , . . . , CI′n ⊆ AI

′ . This implies I ′ |= C1 v A, . . . , I ′ |= Cn v A.

Next, we prove the “⇐” direction. Assume

I ′ |= O\{C1 v A, ..., Cn v A}, C1 v A, ..., Cn v A.

Directly, we have (C1 t . . . t Cn)I′ ⊆ AI
′ . Since O\{C1 v A, ..., Cn v A}AC1t...tCn

is

negative w.r.t. A, in order to show

I |= O\{C1 v A, ..., Cn v A}AC1t...tCn
,

we have to show

(O\{C1 v A, ..., Cn v A})I′ ⊆ (O\{C1 v A, ..., Cn v A}AC1t...tCn
)I′ .

Equivalently, we show that for every axiom α in O\{C1 v A, ..., Cn v A}, we have

αI
′ ⊆ (αAC1t...tCn

)I′ .

For cases where A 6∈ sigC(α), this always holds. For cases where A ∈ sigC(α), we do

the proof by induction.

Base Case: If α = ¬A, then αAC1t...tCn
= ¬(C1 t ... t Cn). Because

(C1 t . . . t Cn)I′ ⊆ AI
′
,

50 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

we have

∆I′\AI′ ⊆ ∆I′\(C1 t . . . t Cn)I′ .

Thus, we have

(¬A)I′ ⊆ (¬(C1 t . . . t Cn))I′ ,

which implies that

αI
′ ⊆ αAC1t...tCn

I′
.

Induction Hypothesis: (α u β) Suppose the statement holds for α and β, i.e.,

αI
′ ⊆ αAC1t...tCn

I′ and βI
′ ⊆ βAC1t...tCn

I′
.

We show

(α u β)I′ ⊆ (α u β)AC1t...tCn

I′
.

Because

αI
′ ⊆ αAC1t...tCn

I′ and βI
′ ⊆ βAC1t...tCn

I′
,

we have

αI
′ ∩ βI′ ⊆ αAC1t...tCn

I′ ∩ βAC1t...tCn

I′
.

Therefore, we have

(α u β)I′ ⊆ (α u β)AC1t...tCn

I′
.

(α t β) We show (α t β)I′ ⊆ (α t β)AC1t...tCn

I′ . Because

αI
′ ⊆ αAC1t...tCn

I′ and βI
′ ⊆ βAC1t...tCn

I′
,

we have

αI
′ ∪ βI′ ⊆ αAC1t...tCn

I′ ∪ βAC1t...tCn

I′
.

Therefore, we have

(α t β)I′ ⊆ (α t β)AC1t...tCn

I′
.

(∃R.α) We show (∃R.α)I′ ⊆ (∃R.α)AC1t...tCn

I′ . We do the proof by contradiction.

Suppose there exists an element d ∈ ∆I′ such that

d 6∈ (∃R.α)AC1t...tCn

I′
.

This means that for every y ∈ ∆I′ , we have

(d, y) 6∈ RI′ or y 6∈ αAC1t...tCn

I′
.

4.2. GENERALISED ACKERMANN’S LEMMA 51

Since ∃R.α is true in I ′, for every x ∈ ∆I′ , there exists an element d′ ∈ ∆I′ such that

(x, d′) ∈ RI′ and d′ ∈ αI′ .

(x, d′) ∈ RI′ contradicts with (d, y) 6∈ RI′ . Since αI′ ⊆ αAC1t...tCn

I′ , we have

d′ ∈ αAC1t...tCn

I′
,

which contradicts with

y 6∈ αAC1t...tCn

I′
.

(∀R.α) We show (∀R.α)I′ ⊆ (∀R.α)AC1t...tCn

I′ . We do the proof by contradiction.

Suppose there exists an element d ∈ ∆I′ such that

d 6∈ (∀R.α)AC1t...tCn

I′
.

This means that there exists an element d′ ∈ ∆I′ such that

(d, d′) ∈ RI′ and d′ 6∈ αAC1t...tCn

I′
.

Since ∀R.α is true in I ′, for every x, y ∈ ∆I′ , we have

(x, y) 6∈ RI′ or y ∈ αI′ .

(x, y) 6∈ RI′ contradicts with (d, d′) ∈ RI′ . Since αI′ ⊆ αAC1t...tCn

I′ , we have

y ∈ αAC1t...tCn

I′
,

which contradicts with

d′ 6∈ αAC1t...tCn

I′
.

We prove the Ackermann− rule. First, we prove the “⇐” direction. Let I be an

arbitrary interpretation. Assume

I |= O\{A v C1, ..., A v Cn}AC1u...uCn
.

Let I ′ be an interpretation extending I by additionally assigning A a subset of ∆I

such that AI′ = (C1 u . . . u Cn)I′ . Directly, we have

I ′ |= O\{A v C1, ..., A v Cn}.

52 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

It is obvious that

(C1 u . . . u Cn)I′ ⊆ CI
′

1 , . . . , (C1 u . . . u Cn)I′ ⊆ CI
′

n .

Thus, we have

AI
′ ⊆ C1

I′ , . . . , AI
′ ⊆ Cn

I′ .

Equivalently, we have

I ′ |= A v C1, . . . , I ′ |= A v Cn.

Then, we prove the “⇒” direction. Assume

I ′ |= O\{A v C1, ..., A v Cn}, A v C1, ..., A v Cn.

Directly, we have

AI
′ ⊆ (C1 u . . . u Cn)I′ .

Since O\{A v C1, ..., A v Cn}AC1u...uCn
is positive w.r.t. A, in order to show

I |= O\{A v C1, ..., A v Cn}AC1u...uCn
,

we have to show

(O\{A v C1, ..., A v Cn})I
′ ⊆ (O\{A v C1, ..., A v Cn}AC1u...uCn

)I′ .

Equivalently, we show that for every axiom α in O\{A v C1, ..., A v Cn}, we have

αI
′ ⊆ αAC1u...uCn

I′
.

For cases where A 6∈ sigC(α), this always holds. For cases where A ∈ sigC(α), we do

the proof by induction.

Base Case: If α = A, then αAC1u...uCn
= C1 u ... u Cn. Because

AI
′ ⊆ (C1 u . . . u Cn)I′ ,

we have

αI
′ ⊆ αAC1u...uCn

I′
.

Induction Hypothesis: (αuβ) Suppose the statement holds for the concepts α and

β, i.e., αI′ ⊆ αAC1u...uCn

I′ and βI
′ ⊆ βAC1u...uCn

I′ . We show

(α u β)I′ ⊆ (α u β)AC1u...uCn

I′
.

4.2. GENERALISED ACKERMANN’S LEMMA 53

Because

αI
′ ⊆ αAC1u...uCn

I′ and βI
′ ⊆ βAC1u...uCn

I′
,

we have

αI
′ ∩ βI′ ⊆ αAC1u...uCn

I′ ∩ βAC1u...uCn

I′
.

Therefore, we have

(α u β)I′ ⊆ (α u β)AC1u...uCn

I′
.

(α t β) We show (α t β)I′ ⊆ (α t β)AC1u...uCn

I′ . Because

αI
′ ⊆ αAC1u...uCn

I′ and βI
′ ⊆ βAC1u...uCn

I′
,

we have

αI
′ ∪ βI′ ⊆ αAC1u...uCn

I′ ∪ βAC1u...uCn

I′
.

Therefore, we have

(α t β)I′ ⊆ (α t β)AC1u...uCn

I′
.

(∃R.α) We show (∃R.α)I′ ⊆ (∃R.α)AC1u...uCn

I′ . We do the proof by contradiction.

Suppose there exists an element d ∈ ∆I′ such that d 6∈ (∃R.α)AC1u...uCn

I′ . This means

that for every y ∈ ∆I′ , we have

(d, y) 6∈ RI′ or y 6∈ αAC1u...uCn

I′
.

Since ∃R.α is true in I ′, for every x ∈ ∆I′ , there exists an element d′ ∈ ∆I′ such that

(x, d′) ∈ RI′ and d′ ∈ αI′ .

(x, d′) ∈ RI′ contradicts with (d, y) 6∈ RI′ . Since

αI
′ ⊆ αAC1u...uCn

I′
,

we have

d′ ∈ αAC1u...uCn

I′
,

which contradicts with

y 6∈ αAC1u...uCn

I′
.

(∀R.α) We show (∀R.α)I′ ⊆ (∀R.α)AC1u...uCn

I′ . We do the proof by contradiction.

Suppose there exists an element d ∈ ∆I′ such that d 6∈ (∀R.α)AC1u...uCn

I′ . This means

that there exists an element d′ ∈ ∆I′ such that

(d, d′) ∈ RI′ and d′ 6∈ αAC1u...uCn

I′
.

54 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

Since ∀R.α is true in I ′, for every x, y ∈ ∆I′ , we have

(x, y) 6∈ RI′ or y ∈ αI′ .

(x, y) 6∈ RI′ contradicts with (d, d′) ∈ RI′ . Since

αI
′ ⊆ αAC1u...uCn

I′
,

we have

y ∈ αAC1u...uCn

I′
,

which contradicts with

d′ 6∈ αAC1u...uCn

I′
.

4.3 The Normalisation

Most reasoning methods require the input ontology to be normalised in some way, so

that further simplifications (i.e., syntactic equivalences, contradictions and tautologies)

can be detected, and moreover, the inference rules for forgetting can be generalised.

Our forgetting method requires the input ontology to be transformed into (clausal)

normal form (i.e., a set of clauses). In this section, we introduce the notion of clausal

normal form, and describe a number of transformation rules for transforming an ontol-

ogy into clausal normal form. Since an ALCOI-ontology is assumed to contain only

TBox axioms, the notions defined in this chapter are based on TBox axioms.

Definition 4.3.1. A literal in ALCOI is a concept of one of the following forms:

a | ¬a | A | ¬A | ∃R.C | ∀R.C,

where a ∈ NO, A ∈ NC, C is a concept in negation normal form and R is an arbitrary

role. A concept is in negation normal form, if the negation operator is only applied to

concept symbols and nominals.

A concept can be transformed into an equivalent one in negation normal form by

pushing the negation operators inwards using a combination of De Morgan’s laws, the

4.3. THE NORMALISATION 55

De Morgan’s laws:

¬(C uD) =⇒ ¬C t ¬D
¬(C tD) =⇒ ¬C u ¬D

Duality between ∃- and ∀-restrictions:

¬∃r.C =⇒ ∀r.¬C
¬∀r.C =⇒ ∃r.¬C

Duality between > and ⊥:

¬> =⇒ ⊥
¬⊥ =⇒ >

Double negation elimination:

¬¬C =⇒ C

Figure 4.1: Transformations of concepts into negation normal form

duality between existential and universal role restrictions, the duality between the top

and the bottom concepts, and the double negation elimination (see Figure 4.1).

De Morgan’s laws refer to a pair of transformation rules that allow the concepts

of conjunctions and disjunctions to be expressed purely in terms of each other via

negations. The duality between existential and universal role restrictions refers to a

pair of transformation rules that allow the concepts of existential and universal role

restrictions to be expressed purely in terms of each other via negations. The duality

between the top and the bottom concepts refers to a pair of transformation rules

that allow the top and the bottom concepts to be expressed purely in terms of each

other via negations. The double negation elimination refers to a transformation rule

that eliminates double negations. All these rules are standard negation normal form

transformation rules which preserve logical equivalence. They are general enough to

guarantee the success of the transformation of any ALCOI-concepts into negation

normal form. In addition, it is easy to check that the transformation of a concept into

negation normal form can be performed in linear time in the size of the concept.

Theorem 4.3.2. Using the transformation rules in Figures 4.1, any ALCOI-concept

can be transformed into a logically equivalent one in negation normal form.

56 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

Proof. Since each of these rules preserves logical equivalence. We prove this by show-

ing that there is no gap in the scope of the transformation rules for transform-

ing ALCOI-concepts into negation normal form. Due to the syntax restrictions of

ALCOI-concepts, the negation operator can be applied to a nominal, a concept sym-

bol, the top concept, the bottom concept, a concept of a negation, a concept of a

conjunction, a concept of a disjunction, a concept of an existential role restriction

and a concept of a universal role restriction. For the first two cases, the concepts are

already in negation normal form. For each of the other cases, we have a corresponding

transformation rule in Figure 4.1 that allows the concept to be transformed into an

equivalent one in negation normal form.

Definition 4.3.3. A clause in ALCOI is a concept of the following form:

L1 t . . . t Ln,

where the Li (1 ≤ i ≤ n) are arbitrary ALCOI-literals. In plain English, an ALCOI-

clause is a finite disjunction of ALCOI-literals. The empty clause is denoted by

⊥ and represents a contradiction. An axiom is in clausal normal form if it is an

ALCOI-clause. An ontology O is in clausal normal form if every axiom in O is an

ALCOI-clause.

Distributivity law:

C t (D1 uD2) =⇒ C tD1, C tD2

Figure 4.2: Transformation of concepts into clausal normal form

The distributivity law in Figure 4.2 distributes disjunctions over conjunctions. A

concept can be transformed into clausal normal form by applying the transformation

rules in Figure 4.1, as well as the distributivity law.

Given an ALCOI-ontology O, not all concepts in O are in clausal normal form.

Transforming concepts into clausal normal form is based on the use of the transfor-

mation rule in Figure 4.2, as well as the transformation rules in Figure 4.1. These

rules are standard clausal normal form transformation rules, which preserve logical

equivalence in the transformation, that is, the left-hand-side expression of the ‘=⇒’

relation is logically equivalent to the right-hand-side expression of this relation.

4.4. THE CALCULUS – ACKC 57

Theorem 4.3.4. Using the transformation rules in Figures 4.1 and 4.2, any ALCOI-

concept can be transformed into an logically equivalent one in clausal normal form.

Example 4.3.5. Consider the following ontology O:

1. ¬(A uB) t C

2. ¬∃r.B t A

3. ¬a t ¬∀s.¬B

4. ¬∀r.C t ∀r.A

5. ¬∃r.C v ∃r.A

Observe that Clauses 1 – 5 are not in clausal normal form. By applying the transfor-

mation rules in Figures 4.1 and 4.2, O is transformed into the following set of clauses

in clausal normal form:

6. ¬A t ¬B t C

7. ∀r.¬B t A

8. ¬a t ∃s.B

9. ∀r.¬C t ∀r.A

10. ∃r.¬C t ∃r.A

From this section onwards, we assume w.l.o.g. that an ALCOI-ontology O is a

set of axioms or a set of clauses. We sometimes use N to explicitly denote a set of

clauses.

4.4 The Calculus – AckC

In this section, we introduce a dedicated calculus, namely, AckC, for eliminating a

single concept symbol from a set of ALCOI-clauses. The calculus is based on a gener-

alisation of Ackermann’s Lemma, and works directly on description logic expressions.

In particular, the calculus has four key ingredients:

(i) transformation of the present clause set (in clausal normal form) into pivot-

reduced form,

58 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

(ii) a pair of AckermannC rules,

(iii) a pair of PurifyC rules, and

(iv) a set of simplification rules.

The AckermannC rules reflect the generalisation of Ackermann’s Lemma and allow

a single concept symbol to be eliminated from a clause set in different pivot-reduced

forms. The PurifyC rules are special cases of the AckermannC rules and allow a single

concept symbol to be eliminated from a clause set where the pivot occurs only posi-

tively or only negatively. The simplification rules, as their name indicates, transform

the current clauses into equivalent ones with simpler representation, so that the clause

set is more accessible to the method. This is done for the efficiency of the method.

We will describe these four ingredients in detail in the following subsections.

4.4.1 The AckermannC Rules

In the previous section, we have gained some insight into the generalised Ackermann’s

Lemma for generic description logic-based ontologies. We have proved that the gener-

alised Ackermann’s Lemma and the dual lemma can be used to compute the solution

of eliminating a single concept symbol from a set of TBox axioms (i.e., the premises

in 4.1 and 4.2). We incorporate these two lemmas in our calculus AckC as two infer-

ence rules, referred to as the AckermannC rules. In particular, the AckermannC rules

are used to eliminate a single concept symbol from a set of clauses in pivot-reduced

form. The rules are shown in Figure 4.3. They are represented in clausal form for

consistency in presentation, since AckC works with axioms in clausal form.

The fundamental idea of the AckermannC rules is based on a notion of “substitu-

tion”, which can informally yet intuitively be understood as follows: given a set N of

clauses with A ∈ sigC(N) being the pivot, if there exists a concept C such that C does

not contain A and C defines A w.r.t. N , then we can substitute this definition for

every occurrence of A in N (A is thus eliminated from N). In the AckermannC,+ rule,

the definition is the disjunctive concept ¬C1 t . . . t ¬Cn, and in the AckermannC,−

rule, the definition is the conjunctive concept C1 u . . . u Cn.

A crucial task in Ackermann-based methods, therefore, is to compute the definition

of the pivot w.r.t. the present clause set, that is, to reformulate all pivot+-clauses

4.4. THE CALCULUS – ACKC 59

AckermannC,+

N\{C1 t A, ..., Cn t A}, C1 t A, ..., Cn t A
N\{C1 t A, ..., Cn t A}A¬C1t...t¬Cn

provided: (i) A ∈ sigC(N) is the pivot,
(ii) A does not occur in the Ci (1 ≤ i ≤ n), and
(iii) N\{C1 t A, ..., Cn t A} is negative w.r.t. A.

AckermannC,−

N\{¬A t C1, ...,¬A t Cn},¬A t C1, ...,¬A t Cn
N\{¬A t C1, ...,¬A t Cn}AC1u...uCn

provided: (i) A ∈ sigC(N) is the pivot,
(ii) A does not occur in the Ci (1 ≤ i ≤ n), and
(iii) N\{¬A t C1, ...,¬A t Cn} is positive w.r.t. A.

Figure 4.3: The AckermannC rules for eliminating A ∈ NC from a set of clauses

with every positive occurrence of the pivot being in the form ¬C t A (or dually, to

reformulate all pivot−-clauses with every negative occurrence of the pivot being in

the form ¬A t C), where A 6∈ sig(C). More specifically, this means reformulating all

pivot+-clauses with (i) every pivot+-clause containing a single occurrence of the pivot,

and (ii) the pivot occurring at the top level of the clause (or dually, reformulating

all pivot−-clauses with (i) every pivot−-clause containing a single occurrence of the

negated pivot, and (ii) the negated pivot occurring at the top level of the clause).

Note that if one wants to apply the AckermannC,+ rule to eliminate the pivot, then

only the pivot+-clauses need to be reformulated into the required form, and the pivot−-

clauses remain unchanged. On the other hand, if one wants to apply the AckermannC,−

rule to eliminate the pivot, then only the pivot−-clauses need to be reformulated into

the required form, and the pivot+-clauses remain unchanged.

In the remainder of this chapter, we assume w.l.o.g. that any present concepts are

in negation normal form. We refer to a positive occurrence of the pivot as the pivot,

and a negative occurrence of the pivot as the negated pivot.

Given a set N of clauses with A ∈ sigC(N) being the pivot, the only cases where

60 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

the pivot (or the negated pivot) does not occur at the top level of a clause are the

cases where the pivot (or the negated pivot) occurs below an existential or universal

role restriction. For instance, in the concept ¬B t ∃r.A, the pivot A occurs below the

existential role restriction ∃r, and in the concept ∀r.¬A t B, the negated pivot ¬A

occurs below the universal role restriction ∀r. In these cases, the AckermannC rules

cannot be applied to the pivot-clauses (i.e., the premises) to eliminate the pivot.

An intuitive solution is to rewrite such pivot-clauses into equivalent ones with the

pivot (or the negated pivot) occurring at the top level, and in addition, not below

any role restrictions, that is, to move the pivot (or the negated pivot) outside of the

preceded role restrictions. In the next subsection, we introduce two pairs of rewriteC

rules for the “surfacing” of the pivot (or the negated pivot) from role restrictions.

4.4.2 Transformation into Pivot-Reduced Form

An obstacle to concept forgetting is that the pivot (or the negated pivot) may occur

below an existential or universal role restriction. This prevents the AckermannC rules

from being applicable. We address this obstacle in this subsection. In particular,

we present two pairs of rewriteC rules, namely, a pair of SurfacingC rules and a pair

of SkolemisationC rules. The SurfacingC rules allow the pivot (or the negated pivot)

to be moved outside the scope of a universal role restriction in any clauses. The

SkolemisationC rules allow the pivot (or the negated pivot) to be moved outside the

scope of an existential role restriction only in existential clauses.

Before describing these rules, we first introduce the notion of pivot-reduced form.

Definition 4.4.1 (Pivot+-Reduced Form). For A ∈ NC the pivot, a pivot+-clause

is in pivot+-reduced form if it has the form C tA, where C is a concept that does not

contain A. A set N of clauses is in pivot+-reduced form if A occurs both positively

and negatively in N and every pivot+-clause in N is in pivot+-reduced form.

Observe that pivot-clauses in pivot+-reduced form contain a single (positive) oc-

currence of the pivot and this pivot occurs at the top level of the clause.

Theorem 4.4.2. Let N be a set of clauses and let A ∈ sigC(N) be the pivot. The

AckermannC,+ rule is applicable to N (to eliminate A) iff N is in A+-reduced form.

4.4. THE CALCULUS – ACKC 61

Proof. The “⇒” direction is obvious. We only prove the “⇐” direction. Let N be

a set of clauses in A+-reduced form, i.e., A occurs both positively and negatively in

N and every A+-clause in N is in A+-reduced form. This means that every A+-

clause has the form C t A, where C is a concept that does not contain A. Since A

occurs only negatively in the A−-pivot clauses, according to the side conditions of the

AckermannC,+ rule, the AckermannC,+ rule is applicable to N to eliminate A.

Definition 4.4.3 (Pivot−-Reduced Form). For A ∈ NC the pivot, a pivot−-clause

is in pivot−-reduced form if it has the form ¬A t C, where C is a concept that does

not contain A. A set N of clauses is in pivot−-reduced form if A occurs both positively

and negatively in N and every A−-clause in N is in pivot−-reduced form.

Observe that pivot-clauses in pivot−-reduced form contain a single (negative) oc-

currence of the pivot and this negated pivot occurs at the top level of the clause.

Theorem 4.4.4. Let N be a set of clauses and let A ∈ sigC(N) be the pivot. The

AckermannC,− rule is applicable to N (to eliminate A), iff N is in A−-reduced form.

Proof. The “⇒” direction is obvious. We only prove the “⇐” direction. Let N be

a set of clauses in A−-reduced form, i.e., A occurs both positively and negatively in

N and every A−-clause in N is in A−-reduced form. This means that every A−-

clause has the form ¬A t C, where C is a concept that does not contain A. Since A

occurs only positively in the A−-pivot clauses, according to the side conditions of the

AckermannC,− rule, the AckermannC,− rule is applicable to N to eliminate A.

LetN be a set of clauses, and letA ∈ sigC(N) be the pivot occurring both positively

and negatively in N . In order for the AckermannC,+ rule to be applicable to N (to

eliminate A), N has to be transformed into A+-reduced form, i.e., every A+-clause in

N has to be transformed into A+-reduced form. In order for the AckermannC,− rule to

be applicable to N (to eliminate A), N has to be transformed into A−-reduced form,

i.e., every A−-clause in N has to be transformed into A−-reduced form. In the sequel,

we introduce two pairs of rewriteC rules for transforming pivot-clauses (not in reduced

form) into pivot-reduced form.

The first pair of the rewriteC rules are the SurfacingC rules, shown in Figure 4.4.

The intention of the SurfacingC rules is to move the pivot (or the negated pivot)

62 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

SurfacingC,+

N , C t ∀R.D
N , (∀R−.C) tD

provided: (i) A ∈ sigC(N) is the pivot,
(ii) A does not occur in C, and
(iii) A occurs positively in D.

SurfacingC,−

N , C t ∀R.D
N , (∀R−.C) tD

provided: (i) A ∈ sigC(N) is the pivot,
(ii) A does not occur in C, and
(iii) A occurs negatively in D.

Figure 4.4: The SurfacingC rules for transforming A-clauses into A-reduced form

occurring anywhere below a universal role restriction upwards in the clause tree and

“closer to the surface”. By applying the SurfacingC,+ rule, a concept symbol occurring

anywhere below a universal role restriction can be moved outside the scope of this role

restriction. By applying the SurfacingC,− rule, a negated concept symbol occurring

anywhere below a universal role restriction can be moved outside the scope of this role

restriction. Note that the SurfacingC rules can only be applied to axioms and cannot

be used for replacing subformulas inside of axioms.

Theorem 4.4.5. The SurfacingC rules in Figure 4.4 preserve equivalence.

Proof. First, we prove the “top-down” direction. We do the proof by contradiction.

Suppose there exists an element d ∈ ∆I such that dI 6∈ (∀R−.C tD)I .

dI 6∈ (∀R−.C tD)I

⇒ dI 6∈ (∀R−.C)I and dI 6∈ DI

⇒ dI 6∈ (∀R−.C)I

This means that there exists an element d′ ∈ ∆I such that:

(dI , d′I) ∈ (R−)I and d′
I 6∈ CI

4.4. THE CALCULUS – ACKC 63

⇒ (d′I , dI) ∈ RI and d′
I 6∈ CI

Since the premise of the SurfacingC rules is true in I, for every x ∈ ∆I , we have:

xI ∈ (C t ∀R.D)I

in particular, for xI = d′I , we have: d′I ∈ CI or d′I ∈ (∀R.D)I . However, d′I 6∈ CI

⇒ d′
I ∈ (∀R.D)I

⇒ ∀y[(d′I , yI) ∈ RI → yI ∈ DI],

in particular, this holds for yI = dI

⇒ (d′I , dI) ∈ RI → dI ∈ DI

⇒ dI ∈ DI

Contradiction. Then, we prove the “bottom-up” direction. Again we do the proof by

contradiction. Suppose there exists an element d ∈ ∆I such that dI 6∈ (C t ∀R.D)I .

dI 6∈ (C t ∀R.D)I

⇒ dI 6∈ CI and dI 6∈ (∀R.D)I

⇒ dI 6∈ (∀R.D)I

This means that there exists an element d′I ∈ ∆I such that:

(dI , d′I) ∈ RI and d′
I 6∈ DI

Since the premise is true in I, for every x ∈ ∆I , we have:

xI ∈ (∀R−.C tD)I

in particular, for xI = d′I , we have: d′I ∈ (∀R−.C)I or d′I ∈ DI . However, d′I 6∈ DI

⇒ d′
I ∈ (∀R−.C)I

⇒ ∀y[(yI , d′I) ∈ RI → yI ∈ CI],

in particular, this holds for yI = dI

⇒ (dI , d′I) ∈ RI → dI ∈ CI

64 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

⇒ dI ∈ CI

Contradiction. Thus, the SurfacingC rules preserve equivalence.

By repeatedly applying the SurfacingC,+ rule, a concept symbol occurring anywhere

below a sequence of universal role restrictions can be moved outside the scope of these

role restrictions. By repeatedly applying the SurfacingC,− rule, a negated concept

symbol occurring anywhere below a sequence of universal role restrictions can be moved

outside the scope of these role restrictions. This can be illustrated with an example.

Example 4.4.6. Consider the following ontology O:

1. B t ∀r.A

2. ∃r.¬A t C

3. ∀r.C t ∀r.∀s.A

Assume A is the pivot. We apply the SurfacingC,+ rule to Clauses 1 and 3, thereby

obtaining the following set:

4. ∀r−.B t A

5. ∃r.¬A t C

6. ∀r−.∀r.C t ∀s.A

Observe that A is still preceded by a universal role restriction in Clause 6. We apply

the SurfacingC,+ rule again to Clause 6, thereby obtaining the following set:

7. ∀r−.B t A

8. ∃r.¬A t C

9. ∀s−.∀r−.∀r.C t A

O is in A+-reduced form. We apply the AckermannC,+ rule to O to eliminate A.

As shown in the example above, inverse roles are playing a special role in the

SurfacingC,+ rules, because they allow the relationships between two concepts to be

4.4. THE CALCULUS – ACKC 65

represented in both directions. This would suggest that an Ackermann-based method

does not seem feasible in general for concept forgetting in description logics without

inverse roles, unless one is willing to extend the target language with inverse roles.

Although the SurfacingC rules are very helpful in our method, they cannot guar-

antee the success of surfacing the pivot (or the negated pivot) from a universal role

restriction. This can be illustrated with the following example.

Example 4.4.7. Consider the following ontology O:

1. ¬B t ∃r.¬A

2. ¬C t ∃s.∀r.A

Assume A is the pivot. Observe that A occurs below a universal role restriction in

Clause 2, but the SurfacingC,+ rule is not applicable to this clause, because A is also

preceded by an existential role restriction. Thus, the SurfacingC rules are applicable

to a clause only if the pivot is only preceded by universal restrictions in this clause.

Note that the SurfacingC rules are not applicable to “C t ∀R.D” if “C” contains

the pivot (or the negated pivot), though the rules are still sound.

Example 4.4.8. Consider the following ontology O:

1. ¬B t ∃r.¬A

2. ¬A t ∀r.A

Assume A is the pivot. Observe that the second occurrence of A in Clause 2 occurs

below a universal role restriction. We apply the SurfacingC,+ rule to Clause 2 to

transform it into A+-reduced form, thereby yielding the following set:

3. ¬B t ∃r.¬A

4. ∀r−.¬A t A

Although the second occurrence of A has been passed up to the top level of Clause 4,

the first occurrence of A is preceded by a universal role restriction. It is easy to see

that there is an infinite loop in the derivation. We avoid this infinite loop by imposing

a side condition that the pivot is not allowed in the concept “C”.

66 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

SkolemisationC,+

N ,¬a t ∃R.C
N ,¬a t ∃R.b,¬b t C

provided: (i) A ∈ sigC(N) is the pivot,
(ii) A occurs positively in C, and
(iii) b is a fresh nominal.

SkolemisationC,−

N ,¬a t ∃R.C
N ,¬a t ∃R.b,¬b t C

provided: (i) A ∈ sigC(N) is the pivot,
(ii) A occurs negatively in C, and
(iii) b is a fresh nominal.

Figure 4.5: The SkolemisationC rules for transforming A-clauses into A-reduced form

The other pair of the rewrite rules are the SkolemisationC rules, shown in Figure 4.5.

The intention of the SkolemisationC rules is to move the pivot (or the negated pivot)

occurring anywhere below an existential role restriction upwards in the clause tree

and “closer to the surface”. By applying the SkolemisationC,+ rule, a concept symbol

occurring anywhere below an existential role restriction can be moved outside the

scope of the restriction in an existential clause. By applying the SurfacingC,− rule, a

negated concept symbol occurring anywhere below a universal role restriction can be

moved outside the scope of the restriction in an existential clause. In particular, the

SkolemisationC rules replace an existential clause of the form ¬at∃R.C (i.e., a concept

assertion) by two new clauses. One is an existential clause (i.e., a role assertion) that

does not contain the pivot (or the negated pivot), i.e., ¬a t ∃r.b, and the other is an

existential clause (i.e., a concept assertion) that contains the pivot (or the negated

pivot), e.g., ¬btC, where C a concept that contains the pivot (or the negated pivot).

If C is a concept of an existential restriction, then we apply the SkolemisationC rule

again to ¬b tC to surface the pivot (or the negated pivot). The SkolemisationC rules

are repeatedly applied until “C” is no longer an existential restriction, or the pivot (or

4.4. THE CALCULUS – ACKC 67

the negated pivot) has been passed up to the top level of the clause.

In a sense, the SkolemisationC rules can be regarded as the SurfacingC rules for

existential role restrictions, but they are not as general as the SurfacingC rules for uni-

versal role restrictions. Specifically, the SkolemisationC rules allow for the surfacing of

the pivot (or the negated pivot) only in clauses of the form ¬at∃r.C where a ∈ NO is

a nominal, that is, the Skolemisation is only applied to existentially quantified clauses

(i.e., existential clauses). This is different from the SurfacingC rules, which, in con-

trast, allow for the surfacing of the pivot (or the negated pivot) in both existential and

universal clauses. This restriction makes the SkolemisationC rules less powerful than

the SurfacingC rules. Therefore, there is a gap in the scope of the SkolemisationC rules

for the surfacing of the pivot (or the negated pivot) occurring below an existential

role restriction, a gap in the scope of the rewriteC rules for transforming the clause

set into pivot-reduced form, a gap in the scope of AckC for eliminating a single con-

cept symbol from a set of ALCOI-clauses, and a gap in the scope of our forgetting

method for computing the solution of forgetting a set Σ of concept symbols from an

ALCOI-ontology. Another notable difference (between the SkolemisationC rules and

the SurfacingC rules) is that the SkolemisationC rules introduce new nominals, which

means that if we apply the SkolemisationC rules to existential pivot-clauses, then it is

very likely that the forgetting solution would be expressed in an extended language

with these introduced nominals. The SkolemisationC rules, therefore, do not preserve

logical equivalence. Instead, as with the AckermannC rules and the PurifyC rules, they

preserve equivalence up to the interpretation of a specific symbol.

Theorem 4.4.9. The SkolemisationC rules preserve equivalence up to the interpreta-

tion of the introduced nominal.

Proof. Observe that the SkolemisationC rules are essentially the AckermannC rules in

the reserved direction. The nominal introduced in the SkolemisationC rules corre-

sponds to the pivot in the AckermannC rules. Since the AckermannC rules preserve

equivalence up to the interpretation of the pivot, the SkolemisationC rules preserve

equivalence up to the interpretation of the introduced nominal.

The SkolemisationC rules introduce new nominals into the present clause set. This

seems to be away from our original purpose of “forgetting” symbols. Moreover, these

68 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

introduced nominals cannot be eliminated from the clause set, which means that the

introduced nominals would occur in the forgetting solution (if the forgetting is suc-

cessful). This is a weakness of the SkolemisationC rules. In this sense, frequent use

of the SkolemisationC rules should be avoided; we use the SkolemisationC rules in a

conservative manner (i.e., as less frequently as possible).

Example 4.4.10. Consider the following ontology O:

1. B1 t ∃r.A

2. B2 t ∀r.¬A

Assume A is the pivot. Observe that A is preceded by an existential role restriction

in Clause 1, and ¬A is preceded by a universal role restriction. We can either apply

the SkolemisationC,+ rule to Clause 1, or apply the SurfacingC,− rule to Clause 2, to

transform O into A+-reduced form or A−-reduced form. In this case, we should apply

the SurfacingC,− rule to avoid introducing new nominals. The following set is obtained

thereby:

3. B t ∃r.A

4. ∀r−.B2 t ¬A

We apply the AckermannC,− rule to O to eliminate A, thereby obtaining the following

clause, which is the solution of forgetting {A} from O:

5. B t ∃r.∀r−.B2

Despite this trivial weakness, the SkolemisationC rules are very important to our

calculus, because they allow concept symbols to be eliminated from ontologies with

ABox assertions (and nominals). Skolemisation requires only the introduction of nom-

inals, and not Skolem terms with dependencies on universally quantified variables. No

other form of Skolemisation is performed in AckC.

4.4.3 The PurifyC Rules

The AckermannC rules are used when the pivot occurs both positively and negatively

in the present clause set. For the cases where the pivot occurs only positively or only

4.4. THE CALCULUS – ACKC 69

negatively (in the present clause set), we apply the PurifyC rules (to the clause set)

to eliminate the pivot (i.e., in this case, we say that the pivot is purifiable w.r.t. the

present clause set). The PurifyC rules are shown in Figure 4.6.

PurifyC,+

N
NA
⊥

provided: (i) A ∈ sigC(N) is the pivot, and
(ii) N is negative w.r.t. A.

PurifyC,−

N
NA
>

provided: (i) A ∈ sigC(N) is the pivot, and
(ii) N is positive w.r.t. A.

Figure 4.6: The PurifyC rules for eliminating A ∈ NC from a set of clauses

Specifically, the PurifyC,+ rule says that if the pivot occurs only negatively in N ,

then we substitute the bottom concept for every occurrence of the pivot in N . The

PurifyC,− rule says that if the pivot occurs only positively in N , then we substitute

the top concept for every occurrence of the pivot in N . Note that the PurifyC rules do

not require the present clause set to be transformed into pivot-reduced form (i.e., the

PurifyC rules are form-independent). They can be applied at any time as long as the

pivot has been found purifiable in the present clause set (i.e., the pivot occurs only

positively or only negatively in the present clause set).

Observe that the PurifyC,+ rule is a special case of the AckermannC,+ rule in the

sense that the set of positive premises is empty. The PurifyC,- rule is a special case of

the AckermannC,- rule in the sense that the set of negative premises is empty. This

can be seen by adapting the AckermannC rules in the way as shown in Figure 4.7.

Theorem 4.4.11. The PurifyC rules preserve equivalence up to the interpretation of

the pivot.

70 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

PurifyC,+

N\{> t A, ...,> t A},> t A, ...,> t A
N\{> t A, ...,> t A}A¬>t...t¬>

provided: (i) A ∈ sigC(N) is the pivot, and
(ii) N\{> t A, ...,> t A} is negative w.r.t. A.

PurifyC,−

N\{¬A t >, ...,¬A t >},¬A t >, ...,¬A t >
N\{¬A t >, ...,¬A t >}A>u...u>

provided: (i) A ∈ sigC(N) is the pivot, and
(iii) N\{¬A t >, ...,¬A t >} is positive w.r.t. A.

Figure 4.7: The PurifyC rules in the sense of the AckermannC rules

Proof. The PurifyC rules are special cases of the AckermannC rules (see Figure 4.7).

In particular, the PurifyC,+ rule preserves equivalence up to the interpretation of the

pivot in the sense of the AckermannC,+ rule. The PurifyC,− rule preserves equivalence

up to the interpretation of the pivot in the sense of the AckermannC,− rule.

Because of the nature of the PurifyC rules, one may reasonably expect that the

result of the purification is a set of clauses that has been significantly reduced (com-

pared to the original set). Specifically, using the top concept or the bottom concept to

replace every occurrence of the pivot in the present clause set can lead to significant

redundancies, contradictions and tautologies in the resulting clause set, which can be

further simplified. Therefore, given a set of clauses and a set Σ of concept symbols

to be forgotten, it is justifiable to eliminate the purifiable Σ-symbols first, and then

the non-purifiable Σ-symbols. This can improve the efficiency and success rates of the

method, because eliminating non-purifiable Σ-symbols from a relatively small clause

set is easier than eliminating them from a relatively large clause set.

Example 4.4.12. Consider the following ontology O:

1. ¬A t ∀r.B

4.4. THE CALCULUS – ACKC 71

2. ¬A t ∃r.¬B

Assume Σ = {A,B}. Observe that A occurs only negatively in Clauses 1 and 2, and

B occurs positively in Clause 1 and negatively in Clause 2. If we eliminate A first,

then we apply the PurifyC,+ rule to O, thereby obtaining the clause set {>}. Observe

that B does not occur in {>}. {>} is thus the solution of forgetting {A,B} from O.

If we eliminate B first, we apply the SurfacingC,+ rule to Clause 1 to transform it into

B+-reduced form, and then apply the AckermannC,+ rule to O to eliminate A. We

apply the PurifyC,− rule to the intermediate result to eliminate A. It is obvious that

eliminating the purifiable symbols first makes the problem rather easier.

4.4.4 The Simplification Rules

To ensure that the current clauses are always simpler representation, AckC involves a

set of equivalence-preserving simplification rules, shown in Figure 4.8. The purpose of

the simplification rules is twofold. On the one hand, they are used to simplify clauses,

making the clause set more accessible to the forgetting method and thus improving

the efficiency of the method. On the other hand, they are used to transform the clause

set into a set of general clauses, which facilitates the transformation of the clause set

into pivot-reduced form. This improves the success rates of the method.

The purpose of seeking efficiency is self-explained by the rules. We show how the

simplification rules facilitate the transformation of the clause set into pivot-reduced

form, and how the simplification rules improve the success rates of the method.

Example 4.4.13. Consider the following ontology O:

1. ∃r.C t ∃r.A

2. ∀r.C t ∃r.¬A

3. ¬E t ∃r.(∀r.B t ∃r.¬D t ¬B)

4. ¬B tD

Assume Σ = {A,B,C,D}. First, we attempt to eliminate A. Observe that A occurs

positively below an existential role restriction in Clause 1 and occurs negatively below

an existential restriction in Clause 2. The SkolemisationC rules are not applicable to

Clauses 1 and 2 because these two clauses are not existential clauses.

72 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

Obvious Simplifications

C t C ≡ C C t ¬C ≡ >
C t > ≡ > C t ⊥ ≡ C

C u C ≡ C C u ¬C ≡ ⊥
C u > ≡ C C u ⊥ ≡ ⊥
∀R.> ≡ > ∃R.⊥ ≡ ⊥

Simplifications based on Absorption

C t (C uD) ≡ C C u (C tD) ≡ C

∃R1. . . .∃Rn.C t ∃R1. . . .∃Rn.(C uD) ≡ ∃R1. . . .∃Rn.C

∀R1. . . .∀Rn.C t ∀R1. . . .∀Rn.(C uD) ≡ ∀R1. . . .∀Rn.C

Simplifications based on Distributivity

∃R.C t ∃R.D ≡ ∃R.(C tD)
∀R.C u ∀R.D ≡ ∀R.(C uD)

Simplifications based on Surfacing

C t ∀R1. . . .∀Rn.(∀Rn
−. . . .∀R1

−.C tD) ≡ C t ∀R1. . . .∀Rn.D

Simplifications based on interaction between ∃ and ∀

∃R.C u ∀R.¬C ≡ ⊥ ∃R.¬C u ∀R.C ≡ ⊥
∃R.C t ∀R.¬C ≡ > ∃R.¬C t ∀R.C ≡ >

Simplifications based on double negation elimination

¬¬C ≡ C

Figure 4.8: The simplification rules in AckC

4.4. THE CALCULUS – ACKC 73

We attempt to eliminate B. Observe that B occurs both positively and negatively

in Clause 3, but there are no rules applicable to Clause 3 to transform it into B+-

reduced form or B−-reduced form.

We attempt to eliminate C. Observe that C occurs only positively in O. We apply

the PurifyC,− rule to O to eliminate C, thereby obtaining the following set:

5. ∃r.> t ∃r.A

6. ∀r.> t ∃r.¬A

7. ¬E t ∃r.(∀r.B t ∃r.¬D t ¬B)

8. ¬B tD

Due to the simplification rule ∀R.> ≡ >, Clause 6 is a tautology and thus can be

deleted. Then A occurs only positively in O. We apply the PurifyC,− rule to O to

eliminate A, thereby obtaining the following set:

9. ∃r.> t ∃r.>

10. ¬E t ∃r.(∀r.B t ∃r.¬D t ¬B)

11. ¬B tD

We attempt to eliminate D. Observe that O is already in D+-reduced form. We apply

the AckermannC,+ rule to O to eliminate D, thereby obtaining the following set:

12. ∃r.> t ∃r.>

13. ¬E t ∃r.(∀r.B t ∃r.¬B t ¬B)

Due to the simplification rule ∀R.C t∃R.¬C ≡ > and the simplification rule C t> ≡

>, Clause 13 can be simplified as ¬Et∃r.>. Due to the simplification rule CtC ≡ C,

Clause 12 can be simplified as ∃r.>, which subsumes Clause 13. Therefore, the solution

of forgetting {A,B,C,D} from O is {∃r.>}.

This example has also demonstrated the significance of the order of eliminating

Σ-symbols. we will discuss this in more detail in the next section.

The obvious simplification rules in Figure 4.8, which appear to be the simplest

and most intuitive rules, are most beneficial, because they can simplify clauses, they

can facilitate the transformation of the clause set into pivot-reduced form, and most

74 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

importantly, they are cheap to implement and they are used very often. The other

simplification rules in Figure 4.8 are also very useful (in simplifying clauses and trans-

forming the clause set into pivot-reduced form), but they are rarely used and they

are expensive to implement. Frequent use of them could harm the efficiency of our

forgetting method (in this sense, these rules are not worth their names). Therefore, we

are faced with a dilemma about whether we should use these functional yet expensive

simplification rules. The principle is that: (i) if we are pursuing good success rates of

the method, then we should switch on these rules, because, as the preceding example

shows, they can help transform the clause set into pivot-reduced form, which cannot be

computed using only the rewriteC rules. On the other hand, (ii) if we are pursuing the

efficiency of the method, then we should switch off these rules, though this may lower

the likelihood of the method successfully computing a solution of concept forgetting.

Theorem 4.4.14. The simplification rules in Figure 4.8 preserve logical equivalence.

Proof. The simplification rules in Figure 4.8 are standard transformations.

So far, we have introduced all the key ingredients of the calculus AckC. These

ingredients include two pairs of rewriteC rules for transforming a set of clauses into

pivot-reduced form, a pair of AckermannC rules for eliminating a single concept symbol

from a set of clauses in pivot-reduced form, a pair of PurifyC rules for eliminating a

single concept symbol from a set of clauses positive or negative w.r.t. this symbol,

and a set of simplification rules for improving the efficiency and success rates of the

method. In the next subsection, we investigate several important properties of AckC.

4.4.5 Properties of AckC

AckC is a calculus for eliminating a single concept symbol from a set of clauses ex-

pressible in ALCOI. Let N be a set of clauses expressible in ALCOI and let A be a

concept symbol in N . We say a derivation in AckC is successful w.r.t. A, if A does not

occur in the result N ′ of the derivation. We say a derivation in AckC is unsuccessful

(or fails) w.r.t. A, otherwise.

In this subsection, we show termination, soundness, and incompleteness of AckC.

In particular, we show that: (i) AckC is terminating, i.e. any AckC-derivation termi-

nates, (ii) AckC is sound, i.e., the resulting set N ′ of any successful AckC-derivation

4.4. THE CALCULUS – ACKC 75

is equivalent to the original set N up to the interpretation of the pivot in the current

derivation, possibly with the interpretations of the introduced nominals (iii) AckC is

(concept forgetting) incomplete for ALCOI-ontologies.

Theorem 4.4.15. AckC is terminating and sound.

Proof. In order to show termination of AckC, we have to show that there is no in-

finite loop in each step of the AckC-derivation. If the pivot does not occur in the

present clause set, then the current AckC-derivation terminates directly and returns

the present clause set. If the pivot occurs only positively or only negatively in the

present clause set (in normal form), then one of the PurifyC rules of AckC can be ap-

plied to eliminate the pivot. The current AckC-derivation terminates and returns the

resulting clause set. If the pivot occurs both positively and negatively in the present

clause set (in normal form), the clause set is first transformed into pivot-reduced form

using the SurfacingC rules in Figure 4.4 and the SkolemisationC rules in Figure 4.5.

Observe that no rules could be applicable to the conclusion of the SurfacingC rules

or the SkolemisationC rules except for the AckermannC rules. This means that there

is no infinite loop in the transformation of the present clause set into pivot-reduced

form. If the present clause set cannot be transformed into pivot-reduced form, then

the current AckC-derivation terminates and returns the present clause set, which still

contains the pivot. If the present clause set has been transformed into pivot-reduced

form, then the AckermannC rule can be applied to the clause set to eliminate the

pivot. The current AckC-derivation terminates and returns the resulting ontology.

The simplification rules in Figure 4.8 are standard transformations.

We show the soundness of AckC. AckC is defined in terms of a pair of SurfacingC

rules, a pair of SkolemisationC rules, a pair of AckermannC rules, a pair of PurifyC rules

and a set of simplification rules. We have shown that the SurfacingC rules preserve

logical equivalence, the SkolemisationC rules preserve equivalence up to the interpreta-

tions of the introduced nominals, and the AckermannC and PurifyC rules preserve the

equivalence up to the interpretations of the pivot. The simplification rules are standard

transformation rules which preserve logical equivalence. Thus, the result of any suc-

cessful AckC-derivation is equivalent to the original ontology up to the interpretation

of the pivot, possibly with the interpretations of the introduced nominals.

76 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

Theorem 4.4.16. AckC is (concept forgetting) incomplete for ALCOI-ontologies.

Proof. AckC is incomplete for ALCOI-ontologies, because there is a gap in the scope

of the rewriteC rules for transforming pivot-clauses into pivot-reduced form.

4.5 The Forgetting Method

In the previous section, we introduced a dedicated calculus AckC for eliminating a

single concept symbol from a set of clauses expressible in ALCOI. In this section,

we present a practical method based on AckC for forgetting a set Σ of concept sym-

bols from ALCOI-ontologies. Following AckC, the method is (concept forgetting)

incomplete for ALCOI-ontologies.

The method is not simply the process of one by one eliminating the symbols in Σ

(using AckC as we described in the previous section). It also involves improvement

of the efficiency and success rates of the method. This is because the most critical

requirement for the method is its practical applicability, that is, we expect the method

to be able to compute a solution of forgetting in as many cases as possible, and if the

method is successful, we expect the forgetting is done in as short a time duration as

possible. To this end, we have to adopt a global perspective to develop the method.

4.5.1 The Forgetting Process

Given an ALCOI-ontology O of axioms and a set Σ ⊆ sigC(O) of concept symbols to

be forgotten, the forgetting process in our method consists of three main phases (see

Figure 5.6): the conversion of O into a set N of clauses (the clausification phase),

the conversion of Σ-clauses into normal form (the normalisation phase), the Σ-

symbol elimination phase (the central phase), and the conversion of the resulting

set N ′ into an ontology O′ of axioms (the declausification phase). It is assumed

that as soon as a forgetting solution has been computed, then the remaining phases

are skipped. Our method is equipped with a frequency counter, dedicated to counting

the frequencies of positive and negative occurrences of each Σ-symbol in N .

Input: Given as input to the method are an ALCOI-ontology O of TBox and

ABox axioms and a set Σ ⊆ sigC(O) of concept symbols to be forgotten. An important

feature of the method is that Σ-symbols can be flexibly specified.

4.5. THE FORGETTING METHOD 77

Convert O into
set N of clauses

Normalisation of
Σ-clauses in N

Transform N into
Ai-reduced form

Apply AckermannC

rule to eliminate Ai

Convert N into
set O′ of axioms

Ontology O

Forgetting
solution O′

Σ = {A1, ..., An} (1 ≤ i ≤ n)

Figure 4.9: The main phases in concept forgetting process

TBox axioms into TBox clauses:

C v D =⇒ ¬C tD
C ≡ D =⇒ ¬C tD,¬D t C

ABox assertions into TBox clauses:

C(a) =⇒ ¬a t C
r(a, b) =⇒ ¬a t ∃r.b

Figure 4.10: Transformation of TBox axioms and ABox assertions into TBox clauses

The clausification phase: The initial phase of the forgetting process in the

method is the clausification phase, where the method transforms O into a set N of

clauses. The transformation is based on the use of the rules in Figure 4.10.

The first two rules in Figure 4.10 transform TBox axioms into TBox clauses and

the last two rules in Figure 4.10 transform ABox assertions into TBox clauses. The last

two transformations reflect the internalisation of ABox assertions into TBox axioms.

Theorem 4.5.1. The transformation rules in Figure 4.2 preserve logical equivalence.

Proof. The transformation rules in Figure 4.2 are standard transformation rules.

The normalisation phase: The normalisation phase of the forgetting process

transforms all Σ-clauses in N into normal form using the rules in Figures 4.1 and 4.2.

The normalisation is not applied to the other clauses because they are not involved

78 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

in the elimination of the Σ-symbols. As a result, for the efficiency of our method,

non-Σ-clauses will not be processed during the forgetting process.

The central phase: Central to the forgetting process is the Σ-symbol elimination

phase, which is an iteration of several rounds (i.e., AckC-derivations) in which the

elimination of Σ-symbols is attempted. More specifically, the method attempts to

eliminate the symbols in Σ one by one using the calculus AckC as described in the

previous section. In each elimination round, the method (normally) performs two

steps. The first step attempts to transform every (TBox) pivot-clause (not in pivot-

reduced form) into pivot-reduced form using the SurfacingC rules in Figure 4.4 and the

SkolemisationC rules in Figure 4.5, so that one of the AckermannC rules can be applied.

If the transformation is successful, then the second step applies the AckermannC rule

to the pivot-clauses (i.e., the premises) to eliminate the pivot. If the transformation

is not successful, then the method skips the current round and attempts to eliminate

another symbol in Σ (using AckC). Upon the intermediate result being returned

at the end of each round, the method repeats the same steps in the next round for

the elimination of the remaining symbols in Σ (if necessary). If the pivot is found

purifiable w.r.t. the present clause set (i.e., the pivot occurs only positively or only

negatively in the present clause set), then the method performs only one single step

in the elimination round. In particular, the method applies one of the PurifyC rules

to the present clause set to eliminate the pivot.

The declausification phase: The final phase of the forgetting process is the

declausification phase, where the method transforms N ′ into an ontology O′ of axioms.

The transformation is based on the use of the rules in Figure 4.11.

The first two rules in Figure 4.11 transform TBox clauses into TBox axioms and

the last two rules in Figure 4.11 transform TBox clauses into ABox assertions. The last

two transformations reflect the internalisation of TBox axioms into ABox assertions.

Theorem 4.5.2. The transformation rules in Figure 4.2 preserve logical equivalence.

Proof. The transformation rules in Figure 4.2 are standard transformation rules.

In order to ensure that the present clauses are always simpler representations and

thus more accessible to the method, a number of equivalence-preserving simplification

rules are applied throughout the forgetting process.

4.5. THE FORGETTING METHOD 79

TBox clauses into TBox axioms:

¬C1 t . . . t ¬Cm tD1 t . . . tDn =⇒ (C1 u . . . u Cm) v (D1 t . . . tDn)
¬C1 t . . . t ¬Cm =⇒ (C1 u . . . u Cm) v ⊥

D1 t . . . tDn =⇒ > v (D1 t . . . tDn)

ABox clauses into ABox assertions:

¬a t C =⇒ C(a)
¬a t ∃R.C =⇒ R(a, C)

provided: (i) C, the Ci (1 ≤ i ≤ m) and the Dj (1 ≤ j ≤ n)
are arbitrary positive literals excluding nominals,
(ii) R is an arbitrary role, and
(iii) a ∈ NO is an arbitrary nominal.

Figure 4.11: Transformation of TBox clauses into TBox axioms and ABox assertions

Output: What the method returns as output at the end of the forgetting process

is an ontology O′ of axioms. If O′ does not contain any symbols in Σ, then the method

is successful (in computing a solution of forgetting Σ from O). If O′ still contains some

symbols in Σ, then the method is unsuccessful (or the method fails).

The frequency counter: The applicability of the rules in AckC depends greatly

on the polarity of the pivot w.r.t. the present clause set. For example, the PurifyC rules

are applicable when the pivot occurs only positively or only negatively in the present

clause set, and the SurfacingC,+ rules are applicable to the clause C t ∀R.D when the

pivot occurs positively in the concept D. The polarity of the pivot can be found by

counting the frequencies of positive occurrence and negative occurrence of the pivot

in the present clause set. Specifically, if both the frequencies of positive occurrence

and negative occurrence of the pivot in the present clause (or the present clause set)

counted by the method are zero, then the pivot does not occur in the present clause

(or the present clause set). If the frequency of positive occurrence of the pivot counted

by the method is zero and the frequency of negative occurrence of the pivot counted

by the method is non-zero in the present clause (or the present clause set), then the

pivot occurs only negatively in the present clause (or the present clause set). If the

frequency of positive occurrence of the pivot counted by the method is non-zero and

80 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

the frequency of negative occurrence of the pivot counted by the method is zero in

the present clause (or the present clause set), then the pivot occurs only positively

in the present clause (or the present clause set). If both the frequencies of positive

occurrence and negative occurrence of the pivot in the present clause (or the present

clause set) counted by the method are non-zero, then the pivot occurs both positively

and negatively in the present clause (or the present clause set).

4.5.2 The Elimination Order

The elimination order refers to the order in which the Σ-symbols are eliminated. Pre-

vious work has shown that, in concept forgetting, changing the order of eliminating

Σ-symbols could affect the efficiency and success of the method [CGV06a, Sch12, ZS15,

ZS16]. In particular, Example 4.4.12 has shown that changing the elimination order

affects the efficiency of the method. Now we show that changing the elimination order

affects the success of the method.

Example 4.5.3. Consider the following ontology O:

1. ¬a t ∀r.(∃r.¬A tB)

2. ¬a t ∀r.(∀r.A t ¬B)

3. ¬a t ∀r.∃r.A

Assume Σ = {A,B} and A is the pivot. Observe that A occurs negatively in Clause 1

and positively in Clauses 2 and 3. This means that the PurifyC rules are not applicable.

We attempt to transform O into A−-reduced form and then apply the AckermannC,−

rule toO to eliminate A. We apply the SurfacingC,− rule to Clause 1, thereby obtaining

the clause ∀r−.¬at∃r.¬AtB. Observe that ¬A is still preceded by an existential role

restriction, but the Skolemisation+ rule cannot be applied to this clause because it is

not an existential clause. No other rules are applicable to the present O. Alternatively,

we attempt to transform O into A+-reduced form and then apply the AckermannC,+

rule to O to eliminate A. We apply the SurfacingC,+ rule to Clauses 2 and 3, thereby

obtaining the following clauses:

4. ∀r−.¬a t ∃r.¬A tB

5. ∀r−.¬a t ∀r.A t ¬B

4.5. THE FORGETTING METHOD 81

6. ∀r−.¬a t ∃r.A

The SurfacingC,+ rule is applicable to Clause 5, but no rules are applicable to Clause 6.

This means that O cannot be transformed into A+-reduced form either.

Assume B is the pivot. Observe that the present O is in both B+-reduced form

and B−-reduced form. We apply the AckermannC,+ rule (or the AckermannC,− rule)

to O to eliminate B, thereby obtaining the following clauses:

7. ∀r−.¬a t ∃r.¬A t ∀r−.¬a t ∀r.A

8. ¬a t ∀r.∃r.A

Observe that Clause 7 is a tautology because ∃r.¬A t ∀r.A ≡ >, and thus can be

deleted. Then A occurs only positively in Clause 8, which is the only clause remaining

in O. We apply the PurifyC,+ rule to O to eliminate A, thereby yielding the clause

¬a t ∀r.∃r.>, which is the solution of forgetting {A,B} from the ontology O.

Thus, finding a good elimination order for the method to follow to eliminate Σ-

symbols is crucial to the efficiency and success rates of the method.

Definition 4.5.4. An ordering on a set Σ (of concept symbols) is a transitive and

irreflexive binary relation on Σ, denoted by �. A symbol A of Σ is (strictly) maximal

w.r.t. �, if for all B ∈ Σ different from A, A � B.

In the sequel, we introduce a heuristic for computing orderings � on Σ, which is

compatible with the order of eliminating Σ-symbols. The ordering � provides local

guidance to the elimination of Σ-symbols. In particular, a good ordering on Σ allows

all Σ-symbols to be eliminated from the present clause set and allows the Σ-symbols

to be eliminated as quickly as possible.

Lemma 4.5.5. For any non-empty set Σ of concept symbols, in the worst case there

are n! possible orderings, where n = #Σ and n! denotes the factorial of n.

Proof. The following is an inductive method of generating all possible orderings on a

set of n concept symbols.

Base Case: There is clearly one way to place one symbol in order.

Induction Hypothesis: Assume that there are n! ways to place n symbols in order.

82 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

Inductive Step: Without loss of generality, we assume that Σ = {A1, A2, . . . , An}.

A permutation of Σ is the following: A1 � A2 � . . . � An. Next, we take the number

n + 1. We can construct n + 1 permutations from this one by placing An+1 in all

possible positions: An+1 � A1 � . . . � An, A1 � An+1 � A2 � . . . � An, . . .,

A1 � . . . � An � An+1.

It is clear that all permutations of n+1 symbols can be obtained in this manner and

no permutations are obtained more than once. Assume that there are Pn permutations

on n symbols. Then there are (n+ 1)× Pn permutations on n+ 1 symbols. Hence by

induction, and the recursive definition of the factorial: Pn = n!

The maximal symbol of � is assumed to be eliminated first. The heuristic is based

on a frequency analysis of positive occurrence and negative occurrence of all Σ-symbols.

Specifically, let N be a set of clauses and let Σ = {A1, . . . , An}. The heuristic first

counts the frequency fp(Ai) of positive occurrence and the frequency fn(Ai) of negative

occurrence of each Ai (1 ≤ i ≤ n) in N . Then the heuristic compares fp(Ai) and fn(Ai)

and assigns the smaller one to Ai as its actual count. In this way, every Ai is assigned

an actual count. Finally, the heuristic sorts the actual counts of the Σ-symbols in an

ascending order. A heuristic ordering � is thus generated. Following � and starting

with the maximal symbol, the method eliminates the Σ-symbols one by one.

A justification of this heuristic is twofold: (i) the heuristic ensures that the purifi-

able symbols in Σ are eliminated first (i.e., there is a good chance that the intermediate

solution after purification is a clause set much smaller than the original set), and (ii)

one can reasonably expect that the Σ-symbols occurring less frequently in the present

clause set should be eliminated more easily (i.e., because if a Σ-symbol occurs less

frequently in the clause set, then there will be fewer pivot-clauses needing to be trans-

formed into pivot-reduced form. This reduces the risk of failure in the transformation).

An optimisation that can be made to the heuristic is checking the existence of

Σ-symbols occurring in cases where AckC is impotent. More specifically, it is clear

that AckC cannot handle the cases where the pivot and the negated pivot both occur

below existential role restrictions; see the following example.

Example 4.5.6. Consider the following ontology O:

1. ¬B t ∃r.A

4.5. THE FORGETTING METHOD 83

2. ¬B t ∀r.¬A

Assume A is the pivot. Observe that A occurs positively below an existential role

restriction in Clause 1. The SkolemisationC,+ rule is not applicable in this case because

Clause 1 is not an existential clause. Nevertheless, we can apply the SurfacingC,− rule

to Clause 2 to transform it into A−-reduced form, and then apply the AckermannC,-

rule to O to eliminate A. In contrast, consider the following ontology O:

1. ¬B t ∃r.A

2. ¬B t ∃r.¬A

Assume A is the pivot. Observe that A occurs positively below an existential role

restriction in Clause 1 and occurs negatively below an existential role restriction in

Clause 2. The SkolemisationC,+ rule is not applicable in this case because Clause 1

is not an existential clause and the SkolemisationC,- rule is not applicable in this case

because Clause 2 is not an existential clause. Hence, O cannot be transformed into

pivot-reduced form, and this problem cannot be solved by AckC.

As a by-product of the frequency count of each Σ-symbol, the heuristic also checks

if the symbol occurs both positively and negatively below existential role restrictions in

non-existential clauses. If it does, then the symbol is flagged as a presently-ineliminable

symbol and is moved to the tail end of the ordering (and the sequence of the other

symbols in the ordering remains unchanged). Once those eliminable Σ-symbols have

been eliminated, the flagged symbols may become eliminable (i.e., we have shown that

in concept forgetting, the elimination of a concept symbol may affect the success of

the elimination of another concept symbol). For this reason, (following the current

ordering) our method will make another attempt to eliminate these symbols.

Example 4.5.7. Consider the following ontology O:

1. ¬A t ∀r.B

2. ∀r.¬B t ∀r.∃r.C

3. ¬A t ∃r.B

4. ¬B t ∃r.¬C

5. ¬D t ∀r.C

84 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

6. ¬B t ∃r.D

Assume Σ = {A,B,C,D}. The heuristic first counts the frequencies of positive occur-

rence and negative occurrence of A, B, C and D. The results are shown in Table 4.1.

fp(A) 0 fp(B) 2 fp(C) 2 fp(D) 1
fn(A) 2 fn(B) 3 fn(C) 1 fn(D) 1

Table 4.1: Frequency counts of Σ-symbols

Based on the frequency counts of the Σ-symbols, the heuristic assigns actual count

values to A, B, C and D, which are 0, 2, 1 and 1, respectively. The heuristic compares

these values and sorts them in an ascending order: 0 � 1 � 1 � 2. In line with this

order, the ordering � is A � C � D � B.

While counting the frequencies of positive occurrence and negative occurrence of

the Σ-symbols, the heuristic also checks the eliminability of them. It is easily observed

that C occurs both positively and negatively below existential role restrictions in two

non-existential clauses. Hence, C should be flagged as a presently-ineliminable symbol

and moved to the tail end of the ordering �, which has become A � D � B � C.

Following � (and starting with A), the method eliminates the Σ-symbols one by one.

If a symbol is successfully eliminated from O, then the method attempts to eliminate

the next symbol in �. If not, then the method skips the current elimination round and

attempts to eliminate the next symbol in �. The symbol in the current elimination

round is then moved to the tail end of �.

Observe that A occurs only negatively in O. We apply the PurifyC,+ rule to O to

eliminate A, thereby obtaining the following clauses:

7. ∀r.¬B t ∀r.∃r.C

8. ¬B t ∃r.¬C

9. ¬D t ∀r.C

10. ¬B t ∃r.D

Then the method attempts to eliminate D. Observe that the present clause set is

already in D−-reduced form, we apply the AckermannC,− rule to O to eliminate D,

thereby obtaining the following clauses:

11. ∀r.¬B t ∀r.∃r.C

4.5. THE FORGETTING METHOD 85

12. ¬B t ∃r.¬C

13. ¬B t ∃r.∀r.C

Next, the method attempts to eliminate B. Observe that B occurs only negatively

in the present clause set, we apply the PurifyC,− rule to O to eliminate B, thereby

obtaining the following clause set:

14. ∀r.> t ∀r.∃r.C

Clause 14 is a tautology because ∀R.> ≡ >. Thus, the forgetting solution computed

by the method is {>}.

This example has shown the significance of the order of eliminating concept sym-

bols. In particular, if the method started with C, then the method would skip the

current elimination round, because C was ineliminable. If the method started with B,

although B was eliminable, the intermediate result would contain clauses of complex

forms, which might increase the difficulty of the subsequent elimination. Note that the

elimination order generated by the heuristic is not guaranteed the optimal solution.

There might be other orders leading to better performance of the method.

Using the heuristic (based on frequency counts of Σ-symbols) as described above, Σ-

symbols occurring only positively or only negatively in the given clause set will always

be eliminated first (by applying the PurifyC rules). One may reasonably expect that

the purification result is a clause set that is much simpler than the original one, from

which eliminating other symbols in Σ becomes fairly easier.

4.5.3 Termination, Soundness and Incompleteness

In the previous subsections, we have presented a practical method for forgetting con-

cept symbols from ontologies expressible in the description logic ALCOIH(O,u). In

this subsection, we show a number of important properties of the method. In partic-

ular, we show that: (i) the method is terminating, i.e., for any ALCOI-ontologies O

of axioms and any set Σ ⊆ sigC(O) of concept symbols to be forgotten, the method

always terminates and returns an ontology O′ of axioms, (ii) the method is sound, i.e.,

if the method is successful, then the forgetting solution O′ computed by the method

is equivalent to the original ontology O up to the interpretations of the symbols in

86 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

Σ, possibly with the interpretations of the newly-introduced nominals, and (iii) the

method is not concept forgetting complete for ALCOI-ontologies.

Theorem 4.5.8. For any ALCOI-ontology O and any set Σ ⊆ sigC(O) of concept

symbols to be forgotten, the method always terminates and returns an ontology O′. (i)

If O′ does not contain any symbols in Σ or any introduced nominals, then O′ is a

solution of forgetting Σ from O (i.e., O′ is equivalent to the original ontology O up to

the interpretations of the symbols in Σ). (ii) If O′ does not contain any symbols in Σ

but it contains introduced nominals, then O′ is a solution of forgetting Σ from O in

an extended language (and O and O′ are equivalent up to the interpretations of the

symbols in Σ, as well as the interpretations of the introduced nominals present in O′).

Proof. In order to show our method is terminating, we have to show that there is no

infinite loop in each phase of the forgetting process in our method. The forgetting pro-

cess in our method comprises four main phases. The initial phase of the method is the

clausification phase, which is a standard transformation, i.e., any ALCOI-ontology

of axioms can be transformed into a set of clauses using the transformation rules in

Figure 4.10. The second phase of the method is the normalisation phase. We have

shown that any ALCOI-ontologies can be transformed into a set of clauses in normal

form using the rules in Figures 4.1 and 4.2. The third phase of the method is the

Σ-symbol elimination phase, which is iteration of AckC-derivations in each of which

a single Σ-symbol is eliminated. Thus the termination of this phase follows the termi-

nation of AckC. The final phase of the method is the declausification phase, which is

a standard transformation, i.e., any set of clauses in ALCOI can be transformed into

an ALCOI-ontology by using the transformation rules in Figure 4.11.

Next, we show that our method is sound. The clausification, normalisation and

declausification are standard equivalence-preserving transformations. The soundness

of the Σ-symbol elimination phase follows the soundness of AckC. Therefore, our

method for concept forgetting is sound in the sense that the forgetting solution is

equivalent to the original ontology up to the interpretations of the symbols in Σ,

possibly with the interpretations of the introduced nominals.

The incompleteness of the method for ALCOI-ontologies follows the incomplete-

ness of AckC for ALCOI-ontologies. Given an ALCOI-ontology O of axioms and

4.6. EXAMPLES 87

a set Σ ⊆ sigC(O) of concept symbols to be forgotten (as input to the method), the

method may return an ontology O′ that still contains some symbols in Σ. In this case,

the method was unsuccessful (or the method fails). This is because there is a gap in

the scope of the rewrite rules for handling existential role restrictions, and for handling

cases where a Σ-symbol occurs multiple times in a clause.

4.6 Examples

We conclude this chapter with an example illustrating the usage of our method to

forget concept symbols from ontologies expressible in the description logic ALCOI.

Example 4.6.1. Consider the following ontology O:

1. A v (¬C uD)

2. B v ∀r.∀r−.¬B

3. A v ∃r.B

4. a v ∃s.∃r.D

5. E v ∀t.C

6. ∀s.D v ∃s.B

Assume Σ = {A,B,C,D}. The method transforms O into the following set of clauses:

7. ¬A t (¬C uD)

8. ¬B t ∀r.∀r−.¬B

9. ¬A t ∃t.B

10. ¬a t ∃s.∃r.D

11. ¬E t ∃t.C

12. ¬∀s.D t ∃r.B

Observe that Clauses 7 and 12 are not in normal form. The methods transforms them

into normal form, thereby yielding the following set:

13. ¬A t ¬C

14. ¬A tD

88 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

15. ¬B t ∀r.∀r−.¬B

16. ¬A t ∃t.B

17. ¬a t ∃s.∃r.D

18. ¬E t ∃t.C

19. ∃s.¬D t ∃r.B

Then the frequency counter of our method counts the frequencies of positive occurrence

and negative occurrence of each Σ-symbol, thereby yielding the following statistics:

fp(A) 0 fp(B) 2 fp(C) 1 fp(D) 2
fn(A) 3 fn(B) 2 fn(C) 1 fn(D) 1

Table 4.2: Frequency counts of Σ-symbols in Example 4.6.1

Based on the results in Table 4.2 (i.e., in particular, based on the actual counts of

the Σ-symbols), the heuristic computes the ordering �: A � C � D � B. Following

� and starting with the maximal symbol of �, the methods attemps to eliminate the

Σ-symbols one by one. Hence, A becomes the pivot. Observa that A occurs only

negatively in O. The method applies the PurifyC,− rule to O to eliminate A, thereby

yielding the following set (after simplification):

20. ¬B t ∀r.∀r−.¬B

21. ¬a t ∃s.∃r.D

22. ¬E t ∃t.C

23. ∃s.¬D t ∃r.B

Then C becomes the pivot. Observe that C occurs only positively in O. The method

applies the PurifyC,+ rule to O to eliminate C, thereby yielding the following set:

24. ¬B t ∀r.∀r−.¬B

25. ¬a t ∃s.∃r.D

26. ¬E t ∃t.>

27. ∃s.¬D t ∃r.B

Then D becomes the pivot. Observe that D occurs positively below two consecutive

existential role restrictions in an existential clause, and occurs negatively below an

4.6. EXAMPLES 89

existential role restriction in a non-existential caluse. Clause 23 cannot be transformed

into D−-reduced form. By repeated application of the SkolemisationC,+ rule, Clause

24 can be transformed into D+-reduced form, where b, c ∈ NO are fresh nominals.

28. ¬B t ∀r.∀r−.¬B

39. ¬a t ∃s.b

30. ¬b t ∃r.c

31. ¬c tD

32. ¬E t ∃t.>

33. ∃s.¬D t ∃r.B

The method applies the AckermannC,+ rule to O to eliminate D, thereby yielding the

following set:

34. ¬B t ∀r.∀r−.¬B

35. ¬a t ∃s.b

36. ¬b t ∃r.c

37. ¬E t ∃t.>

38. ∃s.¬c t ∃r.B

Now B is the only symbol that needs to be forgotten. Observe that B occurs negatively

in Clause 34, and occurs positively below an existential role restriction in a non-

existential clause. Clause 38 cannot be transformed into B+-reduced form because the

SkolemisationC,+ rule is not applicable to a non-existential clause. Clause 34 cannot

be transformed into B−-reduced form using the SurfacingC,− rule, because ire contains

two occurrences of the pivot. Nevertheless, the method can apply the simplification

rule based on Surfacing to Clause 34 to transform it into D−-reduced form.

39. ¬B t ∀r.⊥

40. ¬a t ∃s.b

41. ¬b t ∃r.c

42. ¬E t ∃t.>

43. ∃s.¬c t ∃r.B

90 CHAPTER 4. CONCEPT FORGETTING FOR ALCOI

Then the method applies the AckermannC,− rule to O to eliminate B, thereby yielding

the following set:

44. ¬a t ∃s.b

45. ¬b t ∃r.c

46. ¬E t ∃t.>

47. ∃s.¬c t ∃r.∀t.⊥

The clause set above does not contain any symbols in Σ, and is thus the solution of

forgetting Σ from the given ontology.

Chapter 5

Role Forgetting for ALCOIH(O,u)

In the previous chapter, we introduced a practical method of semantic concept for-

getting for ontologies expressible in the description logic ALCOI. The method is

goal-oriented, incremental and is based on a calculus, namely, AckC, which exploits a

generalisation of Ackermann’s Lemma for description logics. Despite its practical ap-

plicability, a limitation of the method is that it does not support the forgetting of role

symbols, which is also an important part of the forgetting problem. We fill this gap in

this chapter. In particular, we present a practical method for (semantically) forgetting

role symbols from ontologies expressible in the description logic ALCOIH(O,u), the

description logic ALCOI extended with role hierarchies H, role conjunctions u and

the universal role O. Whereas ALCOI-ontologies have only a TBox and an ABox,

ALCOIH(O,u)-ontologies have additionally an RBox that contains axioms of role

inclusions (r v s) and role equivalences (r ≡ s).

We incorporate role hierarchies in the language because role symbols occur largely

in them, and it would be interesting to see how role hierarchies interact with other

expressivity in role forgetting problems. The other two added expressivity, the univer-

sal role and role conjunctions, play an indispensable role in our method, because they

enrich our target language, making it expressive enough to represent the forgetting

solution, which otherwise would have been lost. This will be explained in detail in a

subsequent section.

The method is based on a calculus, namely, AckR, which exploits a non-trivial

generalisation of Ackermann’s Lemma, namely, the AckermannR rule, as the funda-

mental rule to eliminate single role symbols. Being based on AckR, the method is one

91

92 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

of the only few approaches that can forget role symbols, while also handling inverse

roles and ABox axioms (via nominals), and the only approach so far providing support

for role forgetting in description logics with nominals. The method is goal-oriented

and incremental. It always terminates and is sound in the sense that the forgetting

solution is equivalent to the original ontology up to the symbols that have been for-

gotten, possibly with introduced definer symbols and nominals. Definer symbols are

auxiliary concept symbols which play a special role in the transformation of ontologies

into normal form, i.e., that an ontology is in normal form is a necessary condition for

application of the AckermannR rule.

Our method of concept forgetting forALCOI can directly be used as a (incomplete)

method for forgetting concept symbols from ALCOIH-ontologies. This is because

concept symbols do not occur in role inclusions and no additional rules are needed for

RBox axioms. Also, it is easy to verify that the rules of AckC are sound for clauses

incorporating role conjunctions and the universal role. Thus, the method is also a

(incomplete) method for forgetting concept symbols in ALCOIH(O,u). We use this

method (for concept forgetting), as well as the method introduced in this chapter (for

role forgetting), as a unifying method for forgetting concept and role symbols from

ontologies expressible in the description logic ALCOIH(O,u).

This chapter is an extension of our published work of [ZS16].

5.1 The Description Logic ALCOIH(O,u)

In this section, we introduce the description logic ALCOIH(O,u), the language con-

sidered in this chapter, and formalise the notion of role forgetting for ALCOIH(O,u).

Let NC, NR and NO be countably infinite and pairwise disjoint sets of concept symbols,

role symbols and individual symbols (nominals), respectively. Roles in ALCOIH(O,u)

can be any role symbol r ∈ NR, the inverse r− of any role symbol r (i.e., an inverted

role symbol), the universal role O or formed with conjunction. The universal role re-

lates any two individuals in the domain and also every individual with itself. Concepts

in ALCOIH(O,u) have one of the following forms:

a | > | ⊥ | A | ¬C | C uD | C tD | ∃R.C | ∀S.C,

5.1. THE DESCRIPTION LOGIC ALCOIH(O,u) 93

where a ∈ NO, A ∈ NC, C and D are arbitrary concepts, R is an arbitrary role, and

S is an arbitrary role symbol or the inverse of an arbitrary role symbol. Additional

concepts and roles are defined as abbreviations: M= ¬O. We assume w.l.o.g. that

concepts and roles are equivalent relative to associativity and commutativity of u and

t, > and O are units w.r.t. u, and ¬ is an involution.

One may have noticed that there is a difference in the roles between an existential

role restriction (∃R.C) and a universal role restriction (∀S.C), i.e., the role in an

existential role restriction can be an arbitrary role in ALCOIH(O,u), whereas the

role in a universal role restriction is restricted to be a role symbol or an inverted

role symbol. This is because: (i) the given ontology is always an ALCOIH-ontology,

which means the roles in our source logic can only be a role symbol or an inverted

role symbol; (ii) the universal role and role conjunction only occur in the forgetting

solution or in some intermediate results, and more importantly, (when they occur in

the forgetting solution or in the intermediate results) they only occur in existential

role restrictions. This will be explained in detail in a subsequent section.

An ALCOIH(O,u)-ontology is mostly assumed to be comprised of a TBox, an

RBox and an ABox. A TBox T is a finite set of concept axioms of the form C v D

(concept inclusion) and C ≡ D (concept equivalence), where C and D are arbitrary

concepts. An RBox R is a finite set of role axioms of the form S v S ′ (role inclusion)

and S ≡ S ′ (role equivalence), where S and S ′ are arbitrary role symbols or the inverses

of arbitrary role symbols. We define C ≡ D and S ≡ S ′ as abbreviations for the pair

of C v D and D v C and the pair of S v S ′ and S v S ′, respectively. An ABox A

is a finite set of concept assertions of the form C(a) and role assertions of the form

R(a, b), where a, b ∈ NO, C is an arbitrary concept and R is an arbitrary role. In

a description logic with nominals, ABox assertions can be equivalently expressed as

TBox axioms, namely, C(a) as a v C and R(a, b) as a v ∃R.b. Hence, in this chapter,

we assume w.l.o.g. that an ontology contains only TBox and RBox axioms.

The semantics of ALCOQH(O,u) is defined in terms of an interpretation I =

〈∆I , ·I〉, where ∆I is a non-empty set (the domain of the interpretation), and ·I is the

interpretation function, which assigns to every nominal a ∈ NO a singleton aI ⊆ ∆I ,

to every concept symbol A ∈ NC a set AI ⊆ ∆I , and to every role symbol r ∈ NR a

binary relation rI ⊆ ∆I ×∆I . The interpretation function ·I is inductively extended

94 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

to concepts and roles as follows:

>I = ∆I ⊥I = ∅ OI = ∆I ×∆I

(¬C)I = ∆I\CI (R u S)I = RI ∩ SI

(C uD)I = CI ∩DI (C tD)I = CI ∪DI

(∃R.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ RI ∧ y ∈ CI}

(∀S.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ SI → y ∈ CI}

(R−)I = {(y, x) ∈ ∆I ×∆I | (x, y) ∈ RI},

where C and D denote concepts, R and S denote roles, S denotes a role symbol or

the inverse of a role symbol, and x and y denote variables.

A concept inclusion C v D is true in an interpretation I, and we write I |= C v D,

iff CI ⊆ DI . A concept equivalence C ≡ D is true in an interpretation I, and we

write I |= C ≡ D, iff CI ⊆ DI and DI ⊆ CI . A role inclusion S v S ′ is true in an

interpretation I, and we write I |= S v S ′, iff SI ⊆ S ′I . A role equivalence S ≡ S ′ is

true in an interpretation I, and we write I |= S ≡ S ′, iff SI ⊆ S ′I and S ′I ⊆ SI . I

is a model of an ontology O, and we write I |= O, iff every axiom in O is true in I.

Our method works with TBox and RBox axioms in clausal normal form. We

assume w.l.o.g. that a TBox literal in ALCOIH(O,u) is a concept of the form a,

¬a, A, ¬A, ∃R.C or ∀S.C, where a ∈ NO, A ∈ NC, C is an arbitrary concept, R is

an arbitrary role and S is an arbitrary role symbol or the inverse of an arbitrary role

symbol. A TBox clause in ALCOIH(O,u) is a disjunction of a finite number of TBox

literals. An RBox clause in ALCOIH(O,u) is a disjunction of a role symbol and a

negated role symbol. TBox and RBox clauses are obtained by clausification of TBox

and RBox axioms, where in the case of RBox axioms role negation is introduced. This

is done for consistency in presentation, replacing role inclusion by disjunction as the

main operator. Nominals are used as regular concept symbols in our method, because

the method is only concerned with role forgetting in this chapter.

Let r ∈ NR be a designated role symbol. An axiom (clause) that contains an

occurrence of r is called an r-axiom (r-clause). An occurrence of r is assumed to be

positive (negative) in an r-axiom (r-clause) if it is under an even (odd) number of

explicit and implicit negations. For instance, r is assumed to be positive in ∃r.A and

s v r, and negative in ∀r.A and r v s. An ontology O of axioms is assumed to be

5.1. THE DESCRIPTION LOGIC ALCOIH(O,u) 95

positive (negative) w.r.t. r if every occurrence of r in O is positive (negative). A set

N of clauses is assumed to be positive (negative) w.r.t. r if every occurrence of r in

N is positive (negative). An axiom (clause) that contains a positive occurrence of r is

called an r+-axiom (r+-clause). An axiom (clause) that contains a negative occurrence

of r is called an r−-axiom (r−-clause).

We now formalise our notion of role forgetting for ALCOIH(O,u). By sigC(X) we

denote the set of the concept symbols occurring in X and by sigR(X) we denote the

set of the role symbols occurring in X, where X ranges over concepts, roles, axioms,

clauses, sets of axioms and sets of clauses. Let r ∈ NR be any role symbol, and let I

and I ′ be any interpretations. We say I and I ′ are equivalent up to r, or r-equivalent, if

I and I ′ coincide but differ possibly in the interpretations of r. More generally, I and

I ′ are equivalent up to a set Σ of role symbols, or Σ-equivalent, if I and I ′ coincide but

differ possibly in the interpretations of the symbols in Σ. This can be understood as

follows: (i) I and I ′ have the same domain, i.e., ∆I = ∆I′ , and interpret every concept

symbol and every individual symbol identically, i.e., AI = AI
′ for every A ∈ NC and

aI = aI
′ for every a ∈ NO; (ii) for every role symbol r ∈ NR not in Σ, rI = rI

′ .

Definition 5.1.1 (Role Forgetting forALCOIH(O,u)). LetO be anALCOIH(O,u)-

ontology and let Σ be a subset of sigR(O). An ontology O′ is a solution of forgetting

Σ from O, iff the following conditions hold:

(i) sigR(O′) ⊆ sigR(O)\Σ, and

(ii) for any interpretation I: I |= O′ iff I ′ |= O, for some interpretation I ′ Σ-

equivalent to I.

It follows from Definition 5.1.1 that: (i) the original ontology O and the forgetting

solution O′ are equivalent up to (the interpretations of) the symbols in Σ. Also (ii)

forgetting solutions are unique up to logical equivalence, that is, if both O′ and O′′

are solutions of forgetting Σ from O, then they are logically equivalent.

In this chapter, Σ is always assumed to be a set of symbols to be forgotten. The

symbol in Σ under current consideration for forgetting is referred to as the pivot in our

method. An axiom (clause) that contains an occurrence of the symbols in Σ is called

a Σ-axiom (Σ-clause). An axiom (clause) that contains an occurrence of the pivot is

called a pivot-axiom (pivot-clause).

96 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

5.2 Obstacles to Role Forgetting

Unlike concept symbols which represent unary elements, role symbols are binary re-

lations that represent relationships between unary elements. This makes the problem

of forgetting role symbols even more challenging. In this section, we point out the

inherent obstacles to role forgetting and the obstacles we encountered when using an

Ackermann-based method to solve role forgetting problems.

Previous work has been primarily focused on forgetting concept symbols, as role

forgetting was realised to be significantly harder than concept forgetting [WWTP10].

A known reason is that the solution of forgetting role symbols is not expressible in

the source logic in general and often requires more expressivity than is available in the

source logic [ZS16]. For example, the solution of forgetting the role symbols {r, s} from

theALCH-ontology {A1 v ∃r.B1,∃r.B1 v B1, r v t1, r v t2, A2 v ∃s.B2, ∃s.B2 v B2}

in quantifier-free first-order logic is the set (i.e., the solution is computed by the Dls

algorithm [DLS97]):

{∀x(A1(x) v B1(f(x))),∀x(A1(x) v t1(x, f(x)))

∀x(A1(x) v t2(x, f(x))), ∀x(A1(x) v B1(x))

∀x(A2(x) v B2(g(x))),∀x(A2(x) v B2(x))}

where f(x) and g(x) are Skolem terms. Because of the Skolem terms, this first-order

logic solution is not expressible in purely the description logic ALCH.

Nevertheless, it has been noticed that often such a solution can be expressed in a

language extending the source logic with the universal role O and role conjunction u.

For example, the first-order logic solutions of the example above can be expressed as

the following description logic expressions:

{A1 v ∃(t1 u t2).B1, A1 v B1,

A2 v ∃O.B2, A2 v B2}

In particular, we have found that representing the solution of forgetting role sym-

bols from ALCOI-ontologies often requires the universal role to be in the target logic,

and when role hierarchies are involved in the source logic (i.e., forgetting role symbols

from ALCOIH-ontologies), role conjunctions are additionally needed. Thus, we in-

corporate the universal role and role conjunctions in our target language, making it

5.2. OBSTACLES TO ROLE FORGETTING 97

expressive enough to represent the forgetting solution.

Given an ontology O and a set Σ of role symbols to be forgotten, computing a

solution of forgetting Σ from O can be reduced to the problem of eliminating single

symbols in Σ. As with in concept forgetting, this should be based on the use of the

generalised Ackermann’s Lemma for description logics (i.e., the AckermannC rules).

Recall that a sufficient condition for applying the AckermannC rules is that all

pivot-clauses must be transformed into pivot-reduced form, that is, every positive

occurrence of the pivot (i.e., every pivot symbol) or every negative occurrence of the

pivot (i.e., every negated pivot symbol) must occur at the top level of the clause.

In the case of concept forgetting, a concept symbol (or a negated concept symbol)

deep inside a universal role restriction could be moved outwards using the SurfacingC

rules, and a concept symbol (or a negated concept symbol) deep inside an existential

role restriction could be moved outwards using the SkolemisationC rules when the

existential role restriction is disjunctively connected with a negated nominal. These

rules have been explained with details in the previous chapter.

Whereas in the case of role forgetting, since every role symbol that occurs in a

TBox clause is always preceded by a universal or existential role restriction operator,

it is not obvious how to rewrite TBox pivot-clauses (with every occurrence of the

pivot being at the top level of the clause). Thus a direct method based on the gen-

eralised Ackermann’s Lemma does not seem feasible for role forgetting in ontologies

with TBoxes. The only cases where this direct method is feasible are the cases where

the pivot occurs positively (or negatively) only in RBox axioms, in particular, role

inclusions, where (negated) role symbols always occur at the top level.

An alternative approach to role forgetting is to exploit the translation of ontologies

in first-order logic, where concept symbols and role symbols are treated equally (i.e.,

as with concept symbols, role symbols always occur at the top level of a flat clause,

and are not preceded by role restrictions in first order logic formulas), and then apply

Ackermann’s Lemma for first-order logic (e.g., as in the Dls algorithm of [DLS97])

to eliminate single role symbols (i.e., binary predicate symbols). Such an indirect

approach requires suitable back-translation however, which is absent at present for

expressive description logics. Moreover, translating first-order logic formulas back

into equivalent description logic expressions is not straightforward, especially when

98 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

Skolem terms are present in the first-order logic formulas. For example, the solution

of forgetting the role symbol {r} from the ALC-ontology {A1 v ∃r.B1, A2 v ∀r.B2}

in quantifier-free first-order logic is the set:

{∀x(¬A1(x) ∨B1(f(x))),∀x(¬A1(x) ∨ ¬A2(x) ∨ ¬B2(f(x)))},

where f(x) is a Skolem term. Because of the presence of the Skolem term (i.e., f(x)

occurs in both clauses, which can make the back-translation even harder), it is not

obvious whether this first-order logic solution can be expressed in a description logic.

Another major obstacle that blocks our way to solving role forgetting problems

(using a conventional Ackermann-based method) is that the pivot-clauses in the given

ontology may contain multiple occurrences of the pivot. For instance, the pivot r

occurs twice in the TBox clauses ∃r.At∀r.B and At∃r.∀r.B, and occurs twice in the

RBox clauses ¬rtr− and ¬r−tr. The presence of such clauses makes role forgetting a

seemingly unsolvable problem (when using a conventional Ackermann-based method)

because a conventional Ackermann-based method requires the present ontology O to

be transformed into one of the following forms:

O\{α1 t S, ..., αn t S}, α1 t S, ..., αn t S (5.1)

where S ∈ NC (S ∈ NR) is the pivot, every αi (1 ≤ i ≤ n) is a concept that does not

contain S, and O\{α1 t S, ..., αn t S} is negative w.r.t. S, or

O\{¬S t α1, ...,¬S t αn},¬S t α1, ...,¬S t αn (5.2)

where S ∈ NC (S ∈ NR) is the pivot, every αi (1 ≤ i ≤ n) is a concept that does not

contain S, and O\{¬S t α1, ...,¬S t αn} is positive w.r.t. S.

It can be observed from (5.1) and (5.2) that: (i) every αi t S contains a single

occurrence of S and every ¬S t αi contains a single occurrence of S (1 ≤ i ≤ n),

and (ii) positive occurrences and negative occurrences of S are properly separated,

i.e., in (5.1), S occurs only positively in α1 t S, ..., αn t S, and only negatively in

the remainder of O; in (5.2), S occurs only negatively in ¬S t α1, ...,¬S t αn and

only positively in the remainder of O. Therefore, an approach that transforms pivot-

clauses into simpler forms with only a single occurrence of the pivot is desired.

In this section, we have described an inherent obstacle to role forgetting, as well

as two obstacles we encountered in developing our Ackermann-based method for role

5.3. THE NORMALISATION 99

forgetting. We have addressed the first one by incorporating the universal role and role

conjunction in our target language. They have enriched our target language, making it

expressive enough to represent the forgetting solution, and thus avoiding information

loss in the forgetting solution. We address the other two obstacles in the next sections.

In the remainder of this chapter, we assume w.l.o.g that an ontology is a set of (TBox

and RBox) clauses.

5.3 The Normalisation

One of the major obstacles to role forgetting (when using an Ackermann-based method

to solve role forgetting problems), as noted in the previous section, is that the pivot-

clauses in the given ontology may contain multiple occurrences of the pivot. In TBox

pivot-clauses, the pivot may occur multiple times in a single role restriction because

role conjunction is incorporated in our language (e.g., ¬A t ∃(r u r−).B, for r ∈ NR

the pivot), or in a number of different role restrictions (e.g., ∀r.A t ∃r.B, for r ∈ NR

the pivot). In RBox pivot-clauses, the pivot may occur multiple times only in cases

such as ¬r t r− and ¬r− t r, for r ∈ NR the pivot, i.e., the pivot and the inverse

pivot occur simultaneously in an RBox pivot-clause. In contrast, an Ackermann-based

method requires every “αi t S” (i.e., every positive premise) or every “¬S t αi” (i.e.,

every negative premise) to contain a single occurrence of the pivot. Given an ontology

O of clauses and a set Σ of role symbols to be forgotten, in order to transform the

pivot-clauses in O into a form with a single occurrence of the pivot, first, we need to

transform the given ontology into normal form (i.e., ontology normalisation).

Definition 5.3.1 (Normal Form). A TBox clause is in normal form if it does not

contain role restrictions or it has the form C t ∃R.D or C t ∀S.D, where R is an

arbitrary role, S is an arbitrary role symbol or inverted role symbol, and C and D are

concepts that do not contain role restrictions. An RBox clause is in normal form if it

has the form ¬StS ′ or ¬S ′tS, where S and S ′ are arbitrary role symbols or inverted

role symbols. An ontology O is in normal form if every clause in O is in normal form.

We refer to such an ontology as an normalised ontology. Let Σ ⊆ sigR(O) be a set of

role symbols. An ontology O is in normal form w.r.t. Σ if every Σ-clause in O is in

normal form. We refer to such an ontology as a normalised ontology w.r.t. Σ.

100 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

By definition, a TBox clause in normal form contains at most one role restriction.

However, since role conjunction is incorporated in our language, a role restriction

may contain multiple role symbols. Thus, a TBox pivot-clause in normal form may

contain multiple occurrences of the pivot. For example, for r ∈ NR the pivot, the

clause ¬A t ∃(r u r−).B is in normal form, but it contains two occurrences of the

pivot. An RBox pivot-clause in normal form may contain multiple occurrences (more

precisely, two occurrences) of the pivot. For example, for r ∈ NR the pivot, the clauses

¬rtr− and ¬r−tr contain two occurrences of the pivot. Because of the incorporation

of inverse roles in our language, a pivot-clause in normal form may contain multiple

occurrences of the pivot.

Observe that an RBox clause is always in normal form, but this is not true for a

TBox clause. TBox clauses not in normal form have one of the following forms:

C t ∃R.D or C t ∀S.D

where R is an arbitrary role, S is an arbitrary role symbol or inverted role symbol,

and C and D are concepts with at least one of them containing a (or a number of) role

restriction(s). In some cases, TBox clauses not in normal form could be transformed

into normal form by exploiting the SurfacingC and SkolemisationC rules.

Example 5.3.2. Consider the following ontology O:

1. ∀r−.(∀r.A t ¬B) t A

2. ¬a t ∃s.∃r.C

3. ¬r t s

Observe that Clauses 1 and 2 are not in normal form. We apply the SurfacingC rule

to Clause 1, thereby yielding the clause ¬B t∀r.A. We apply the SkolemisationC rule

to Clause 2, thereby yielding the clauses ¬a t ∃s.b and ¬b t ∃r.C, where b is a fresh

nominal. In this way, Clauses 1 and 2 are transformed into normal form, and the

ontology O is transformed into a normalised ontology.

However, the SurfacingC and SkolemisationC rules are helpful only in a limited

number of cases, i.e., the SurfacingC rules are helpful in the cases where the result of

Surfacing can be further simplified, and the SkolemisationC rules are helpful only in

5.3. THE NORMALISATION 101

the existential clauses where there exists a sequence of existential role restrictions. In

cases such as ¬At ∃s.∀r.B, where there exists a sequence of universal and existential

role restrictions, or cases such as ∀r.At∀r.B, where there exist a number of separated

role restrictions, they are impotent.

Substitution of C with a definer symbol

N , C t ∃R.D
N ,Dd t ∃R.D,¬Dd t C

N , C t ∀S.D
N ,Dd t ∀S.D,¬Dd t C

provided: (i) R is a role,
(ii) S is a role symbol or an inverted role symbol,
(iii) C is a concept that contains role restrictions, and
(iv) Dd ∈ ND is a fresh definer symbol.

Substitution of D with a definer symbol

N , C t ∃R.D
N , C t ∃R.Dd,¬Dd tD

NC t ∀S.D
NC t ∀S.Dd,¬Dd tD

provided: (i) R is a role,
(ii) S is a role symbol or an inverted role symbol,
(iii) D is a concept that contains role restrictions, and
(iv) Dd ∈ ND is a fresh definer symbol.

Figure 5.1: Transformation of TBox clauses into normal form

In the sequel, we introduce an approach that can transform any TBox clause into

normal form. The approach is based on the use of a countably infinite set of auxiliary

symbols, namely, definer symbols (or definers for short). In particular, definer symbols

are specialised concept symbols that do not occur in the present ontology [KS13a].

Playing a special role in our method, definer symbols are introduced as follows (to

facilitate the transformation of TBox clauses into normal form): let O be a non-

normalised ALCOIH(O,u)-ontology (i.e., O contains clauses of the form C t ∃R.D

or C t ∀S.D, where R is an arbitrary role, S is an arbitrary role symbol or inverted

role symbol, and C and D are concepts with at least one of them containing role

restrictions), and let ND ⊂ NC be a set of definer symbols disjoint with sigC(O). Definer

102 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

symbols are used as substitutes, incrementally replacing “C” and “D” for every TBox

clause not in normal form until neither “C” nor “D” contain role restrictions. A

new clause ¬D1 t C is added to O for each replaced subconcept C and a new clause

¬D2 tD is added to O for each replaced subconcept D, where D1,D2 ∈ ND are fresh

definer symbols. O is thus transformed into a set of clauses in normal form. The

transformation can be simulated by the rules in Figure 5.1.

Theorem 5.3.3. The transformation rules in Figure 5.1 preserve equivalence up to

the interpretations of the introduced definer symbols.

Proof. Observe that these transformation rules are essentially the AckermannC rules

in the reserved direction. The definer symbol introduced in the transformation rules

corresponds to the pivot in the AckermannC rules. Since the AckermannC rules preserve

equivalence up to the interpretation of the pivot, these transformation rules preserve

equivalence up to the interpretations of the introduced definer symbols.

Example 5.3.4. Consider the following ontology O:

1. ¬A t ∀s.∃r.B

2. ∀r.A t ∃r−.B

3. ¬r t s

Observe that Clauses 1 and 2 are not in normal form. In this case, two fresh definer

symbols D1 ∈ NC and D2 ∈ NC are introduced into the ontology to replace the concept

∃r.B in Clause 1 and the concept ∀r.A in Clause 2, respectively. Two additional clauses

¬D1 t ∃r.B and ¬D2 t ∀r.A are added to O:

1. ¬A t ∀s.D1

2. ¬D1 t ∃r.B

3. D2 t ∃r−.B

4. ¬D2 t ∀r.A

5. ¬r t s

In this way O is transformed into a set of clauses in normal form.

5.3. THE NORMALISATION 103

Normal form transformation is only applied to TBox clauses. If a TBox clause does

not contain role restrictions or contains only a single role restriction, then it is already

in normal form. If a TBox clause contains two role restrictions, then one definer

symbol needs to be introduced to replace one of the two role restrictions. If a TBox

clause contains three role restrictions, then two definer symbols need to be introduced

to replace two of the three role restrictions. Likewise, if a TBox clause contains n role

restrictions, then n− 1 definer symbols need to be introduced to replace n− 1 of the

n role restrictions. Let O be an ALCOIH(O,u)-ontology that contains TBox clauses

α1, α2,. . . , αn. By |αi|∃∀ we denote the number of role restrictions occurring in αi (1 ≤

i ≤ n). Then (|αi|∃∀−1)+. . .+(|αn|∃∀−1) (i.e., |αi|∃∀+. . .+|αn|∃∀−n) definer symbols

need to be introduced for the transformation of O into normal form. It is easy to see

that introducing a fresh definer symbol leads to an additional clause in the present

ontology. Thus, transforming O into normal form will lead to |αi|∃∀ + . . .+ |αn|∃∀− n

additional clauses in O.

Theorem 5.3.5. Using definer introduction as described above, any ALCOIH(O,u)-

ontology can be transformed into a set of clauses in normal form in finite steps.

Proof. For any ALCOIH(O,u)-ontology that contains a finite number of clauses (and

thus contains a finite number of role restrictions), the result of the transformation (of

the ontology into normal form using definer introduction) is a finite set of clauses.

Thus, the normal form transformation can be done in finite steps.

Given an ontology O and a set Σ ∈ sigR(O) of role symbols to be forgotten, there

is no need for every clause in O to be transformed into normal form, because in

the process of eliminating the pivot, only the pivot-clauses will be (and need to be)

processed. Therefore, only the Σ-clauses in O need to be transformed into normal form

for the elimination of the symbols in Σ. If all Σ-clauses inO have been transformed into

normal form, then we say O is a normalised ontology w.r.t. Σ. In the next section, we

present a dedicated calculus for eliminating a single role symbol from ALCOIH(O,u)-

ontologies. The calculus works with TBox and RBox clauses in normal form.

104 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

5.4 The Calculus – AckR

In this section, we introduce a dedicated calculus, namely, AckR, for eliminating a

single role symbol from a set of ALCOIH(O,u)-clauses. The calculus is based on a

non-trivial generalisation of Ackermann’s Lemma and works directly with description

logic expressions. In particular, the calculus has three key ingredients: (i) transfor-

mation of the present clause set (in normal form) into pivot-reduced form, (ii) an

Ackermann-based rule, namely, the AckermannR rule, and (iii) a pair of PurifyR rules.

The AckermannR rule reflects the generalisation of Ackermann’s Lemma and allows

a single role symbol to be eliminated from a clause set in pivot-reduced form. The

PurifyR rules are special cases of the AckermannR rule and allow a single role sym-

bol to be eliminated from a clause set where the pivot occurs only positively or only

negatively.

5.4.1 Transformation into Pivot-Reduced Form

Given an ontology O and a set Σ ∈ sigR(O) of role symbols to be forgotten, once O

has been transformed into normal form (using definer introduction), we obtain a new

ontology with every pivot-clause in the ontology being in normal form. However, since

a pivot-clause in normal form may still contain multiple occurrences of the pivot or

contain the inverse pivot (i.e., because of the presence of role conjunctions and inverse

roles), that every pivot-clause in O is in normal form is not a sufficient condition for

the application of the AckermannR rule (to O to eliminate the pivot). It is only a

necessary condition because the AckermannR rule requires further that every pivot-

clause contains only a single occurrence of the pivot, and does not contain the inverse

pivot. There are cases where the pivot-clauses are in normal form, but the AckermannR

rule is not applicable. For example, all r-clauses in {A t ∃r.B,B t ∀r−.B,¬r− t s}

are in normal form, but the AckermannR rule is not applicable (to this ontology to

eliminate the pivot r) because r is preceded by an inverse operator in the last two

clauses. In order for the AckermannR rule to be applied, we need to transform the

present ontology into pivot-reduced form, i.e., a restriction of the normal form by

ruling out multiple occurrences of the pivot and occurrences of the inverse pivot.

5.4. THE CALCULUS – ACKR 105

Definition 5.4.1 (Pivot-Reduced Form). For r ∈ NR the pivot, a TBox pivot-

clause is in pivot-reduced form if it has the form

C t ∃(r uQ).D or C t ∀r.D,

where C and D are concepts that do not contain any role restrictions and Q is a role

that does not contain r. An RBox clause is in pivot-reduced form if it has the form

¬S t r or ¬r t S,

where S 6= r is a role symbol or S 6= r− is an inverted role symbol. An ontology O is

in pivot-reduced form if every pivot-clause in O is in pivot-reduced form.

Pivot-clauses in pivot-reduced form contain a single occurrence of the pivot and

does not contain any occurrences of the inverse pivot. The AckermannR rule is applica-

ble to the pivot-clauses to eliminate the pivot iff all pivot-clauses are in pivot-reduced

form. In the sequel, we present three rewrite rules to transform pivot-clauses (in nor-

mal form) with an inverse pivot into equivalent clauses with the inverse pivot being

inverted back to a role symbol. Note that the rewrite rules are applied (to appropriate

pivot-clauses) only when the pivot-clauses have been transformed into normal form.

The rules are shown in Figure 5.2.

The first rule in Figure 5.2 is an instance of the SurfacingC rules of AckC for

concept forgetting. It turns out to be useful for role forgetting as well. We incorporate

this rule in AckR and refer to it as the SurfacingR rule. In particular, it is used to

transform a TBox clause with an inverted role symbol below a universal role restriction

into an equivalent clause with the inverted role symbol being inverted back into a role

symbol. In the context of AckR, this allows a TBox pivot-clause of the form Ct∀r−.D

to be transformed into a form suitable for application of the AckermannR rule. Since

the intention of these rewrite rules is to invert an inverse role back into a role symbol,

we refer to the other two rules as the InvertingR rules in our calculus. In particular,

the InvertingR rules are used to transform an RBox clause with an inverse role into an

equivalent clause with the inverse role being inverted back into a role symbol. In the

context of AckR, they allow an RBox pivot-clause of the form ¬S t r− or ¬r− t S to

be transformed into a form suitable for application of the AckermannR rule.

Theorem 5.4.2. The rewrite rules in Figure 5.2 preserve equivalence.

106 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

SurfacingR

N , C t ∀r−.D
N , (∀r.C) tD

provided: (i) r ∈ NR is the pivot, and
(ii) C t ∀r−.D is in normal form.

InvertingR

N ,¬S t r−

N ,¬S− t r
N ,¬r− t S
N ,¬r t S−

provided: (i) r ∈ NR is the pivot,
(ii) ¬S t r− and ¬r− t S are in normal form, and
(iii) S 6= r.

Figure 5.2: The rewriteR rules for transforming r-clauses into r-reduced form

Proof. We have proved in the previous chapter that the SurfacingR rule preserves

equivalence. For the InvertingR rules, we do the proof by contradiction. We first prove

the “top-down” direction for the first InvertingR rule. Suppose there exists an element

d ∈ ∆I and an element d′ ∈ ∆I such that (d, d′) 6∈ (¬S− t r)I .

(d, d′) 6∈ (¬S− t r)I

⇒ (d, d′) 6∈ (¬S−)I and (d, d′) 6∈ rI

⇒ (d, d′) ∈ (S−)I and (d, d′) 6∈ rI

⇒ (d′, d) ∈ SI and (d, d′) 6∈ rI

Since the premise of the rule is true in I, then for every x and y:

(x, y) ∈ (¬S t r−)I

⇒ (x, y) ∈ (¬S)I or (x, y) ∈ (r−)I

⇒ (x, y) 6∈ SI or (y, x) ∈ rI

5.4. THE CALCULUS – ACKR 107

This contradicts with (d′, d) ∈ SI and (d, d′) 6∈ rI . Next, we prove the “bottom-up”

direction. Suppose there exists an element d ∈ ∆I and an element d′ ∈ ∆I such that

(d, d′) 6∈ (¬S t r−)I .

(d, d′) 6∈ (¬S t r−)I

⇒ (d, d′) 6∈ (¬S)I and (d, d′) 6∈ (r−)I

⇒ (d, d′) ∈ SI and (d′, d) 6∈ rI

Since the conclusion of the rule is true in I, then for every x and y:

(x, y) ∈ (¬S− t r)I

⇒ (x, y) ∈ (¬S−)I or (x, y) ∈ rI

⇒ (x, y) 6∈ S−I or (x, y) ∈ rI

⇒ (y, x) 6∈ SI or (x, y) ∈ rI

This contradicts with (d, d′) ∈ SI and (d′, d) 6∈ rI . The other InvertingR rule in

Figure 5.2 can be proved similarly.

One may have noticed that there is a gap in the scope of the rewrite rules, i.e.,

there are no rules available for inverting an inverse role occurring in TBox clauses of

the form C t ∃(r− uQ).D and there are no rules available for handling cases such as

¬r t r− and ¬r− t r. The InvertingR rules cannot be applied to the latter two cases

because otherwise, the other occurrence of “r” in the clause will be inverted. This leads

to an infinite loop in the derivation. We avoid this by imposing a side condition S 6= r

on the InvertingR rules. The gap leads to the incompleteness of AckR (in eliminating

a single role symbol from an ALCOIH(O,u)-ontology) and the incompleteness of our

method (in forgetting a set of role symbols from an ALCOIH(O,u)-ontology).

Theorem 5.4.3. Any normalised ALCOH(O,u)-ontology is in pivot-reduced form.

Proof. A TBox pivot-clause in ALCOH(O,u) in normal form has the form C t∃R.D

or C t ∀S.D, where R is an arbitrary role in ALCOIH(O,u) excluding inverse roles,

S is an arbitrary role symbol, and C and D are concepts that do not contain any

role restrictions. If the pivot occurs multiple times in R, then we can remove multiple

occurrences of the pivot in R by repeatedly applying the simplification rule r u r ≡ r,

108 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

for r ∈ NR an arbitrary role symbol. Thus, a TBox pivot-clause in ALCOH(O,u)

in normal form is also in r-reduced form. An RBox pivot-clause in ALCOH(O,u) in

normal form has the form ¬S t r and ¬r t S, where S is an arbitrary role symbol.

If S = r, then this clause can be simplified to > by applying the simplification rule

¬r t r ≡ r, for r ∈ NR an arbitrary role symbol. Thus, an RBox pivot-clause in

ALCOH(O,u) in normal form is also in pivot-reduced form.

We have shown that any ALCOH(O,u)-ontology can be transformed into normal

form using definer introduction. In this sense, any ALCOH(O,u)-ontology can be

transformed into pivot-reduced form using definer introduction.

In this subsection, we introduced the notion of pivot-reduced form. Pivot-clauses

in pivot-reduced form contain a single occurrence of the pivot and do not contain

any occurrences of the inverse pivot. An ontology O is in pivot-reduced form if every

pivot-clause in O is in pivot-reduced form. The AckermannR rule is applicable to

O to eliminate the pivot iff O is in pivot-reduced form. We presented three rewrite

rules to transform pivot-clauses into pivot-reduced form. The rules are applied only

when the pivot-clauses have been transformed into normal form. Note that not every

pivot-clause in ALCOIH(O,u) can be transformed into pivot-reduced form. This is

because there is a gap in the scope of the rewrite rules. Nevertheless, we have found

that using definer introduction, any ALCOH(O,u)-ontologies can be transformed into

pivot-reduced form. In the next subsection, we describe the AckermannR rule.

5.4.2 The AckermannR Rule

The AckermannR rule is the most important rule in AckR. It leads to the elimination

of a role symbol from a set of clauses. Unlike the AckermannC rules for concept for-

getting, the AckermannR rule is not an obvious generalisation of Ackermann’s Lemma

for description logics. It has a different flavour which makes the rule not easy to un-

derstand. Before we describe the AckermannR rule, we first introduce the notion of

premises, useful for the presentation of the AckermannR rule.

Let N be a set of (TBox and RBox) clauses exhibiting all different forms of r-

reduced form, where r ∈ sigR(N) is the pivot. We refer to the clauses of the form

C t ∃(r u Q).D and clauses of the form C t ∀r.D as positive TBox premises and

5.4. THE CALCULUS – ACKR 109

negative TBox premises of the AckermannR rule, respectively. We refer to the clauses

of the form ¬S t r and clauses of the form S t ¬r as positive RBox premises and

negative RBox premises of the AckermannR rule, respectively. By P+
T (r) and P−T (r)

we denote the set of positive TBox premises and the set of negative TBox premises,

respectively. By P+
R(r) and P−R(r) we denote the set of positive RBox premises and

the set of negative RBox premises, respectively. By P+(r) and P−(r) we denote the

union of the set of positive TBox premises and the set of positive RBox premises, and

the union of the set of negative TBox premises and the set of negative RBox premises,

respectively, i.e., P+(r) = P+
T (r) ∪ P+

R(r) and P−(r) = P−T (r) ∪ P−R(r).

AckermannR

N ,
P+
T (r)︷ ︸︸ ︷

C1 t ∃(r uQ1).D1, . . . , Cm t ∃(r uQm).Dm,

P+
R(r)︷ ︸︸ ︷

¬s1 t r, . . . ,¬sv t r,
P−T (r)︷ ︸︸ ︷

E1 t ∀r.F1, . . . , En t ∀r.Fn,
P−R(r)︷ ︸︸ ︷

¬r t t1, . . . ,¬r t tw
N ,Block(P−(r), C1 t ∃(r uQ1).D1), ...,Block(P−(r), Cm t ∃(r uQm).Dm),

Block(P−(r),¬s1 t r), ...,Block(P−(r),¬sv t r)

provided: (i) r ∈ NR is the pivot,
(ii) r does not occur in N , and
(iii) the premises are in r-reduced form.

Notation in the AckermannR rule (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ v, 1 ≤ l ≤ w):
1. Block(P−(r), Ci t ∃(r uQi).Di) denotes the union of the following sets:
3. Ground-tier: {Ci t ∃(t1 u . . . u tw uQi).Di}
3. 1st-tier:

⋃
1≤j≤n

{Ci t Ej t ∃(t1 u . . . u tw uQi).(Di u Fj)}

3. 2nd-tier:
⋃

1≤j1≤j2≤n
{Ci t Ej1 t Ej2 t ∃(t1 u . . . u tw uQi).(Di u Fj1 u Fj2)}

3. . . .
3. nth-tier: {Ci t E1 t . . . t En t ∃(t1 u . . . u tw uQi).(Di u F1 u . . . u Fn)}.
2. Block(P−(r),¬sk t r) denotes the following set:
3. {E1 t ∀sk.F1, . . . , En t ∀sk.Fn,¬sk t t1, . . . ,¬sk t tw}.

? Ej =

⊥ if P−T = ∅
Ej otherwise,

Fj =

> if P−T = ∅
Fj otherwise, and

tl =

O if P−R = ∅
tl otherwise.

Figure 5.3: The AckermannR rule for eliminating r ∈ NR from a set of clauses

The AckermannR rule, shown in Figure 5.3, is based on an idea of “combination”.

110 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

Specifically, the idea is to combine all negative premises P−(r) with every positive

premise α(r) in P+(r). The combination result is a finite set of ALCOIH(O,u)-

clauses in normal form, denoted by Block(P−(r), α(r)). Recall that the AckermannC

rules (for concept forgetting) are based on an idea of “substitution”, where we derive

a definition of the pivot from all positive premises and substitute the definition for

every negative occurrence of the pivot (or dually, we derive a definition of the pivot

from all negative premises and substitute the definition for every positive occurrence

of the pivot). In this way, the pivot is eliminated from the clause set. However, in the

context of role forgetting, since a role symbol is always preceded by a role restriction

operator, it is not obvious how to reformulate the pivot-clauses so that the pivot (role

symbol) occurs at the top level of the clause. Thus, a definition of the pivot cannot be

derived. To this end, we propose the notion “combination”, where the substitution is

performed in an implicit way. More specifically, combining all negative premises with

every positive premise amounts to deriving a definition of the pivot from all negative

premises and then substituting the definition for every positive occurrence of the pivot.

Since the negative TBox premises cannot be transformed into the form suitable for

deriving the definition of the pivot, we derive the definition via the interpretations of

the negative TBox and RBox premises, shown in Table 5.1 and Table 5.2, respectively.

Negative TBox premises Interpretations of negative TBox premises
E1 t ∀r.F1 ∀x, y : (x, y) ∈ rI → x ∈ EI1 ∨ y ∈ F I1
E2 t ∀r.F2 ∀x, y : (x, y) ∈ rI → x ∈ EI2 ∨ y ∈ F I2

.
En t ∀r.Fn ∀x, y : (x, y) ∈ rI → x ∈ EIn ∨ y ∈ F In

Table 5.1: Interpretations of negative TBox premises

Negative RBox premises Interpretations of negative RBox premises
¬r t t1 ∀x, y : (x, y) ∈ rI → (x, y) ∈ t1I
¬r t t2 ∀x, y : (x, y) ∈ rI → (x, y) ∈ t2I

.
¬r t tw ∀x, y : (x, y) ∈ rI → (x, y) ∈ twI

Table 5.2: Interpretations of negative RBox premises

In particular, the definition of the pivot can be derived as follows:

∀x, y : (x, y) ∈ rI → (x ∈ EI1 ∨ y ∈ F I1) ∧

5.4. THE CALCULUS – ACKR 111

(x ∈ EI2 ∨ y ∈ F I2) ∧

. . .

(x ∈ EIn ∨ y ∈ F In) ∧

(x, y) ∈ t1I ∧

(x, y) ∈ t2I ∧

. . .

(x, y) ∈ twI

We substitute this definition, derived from the interpretations of the negative premises,

for the interpretation of every positive occurrence of the pivot. We first substitute this

definition for the interpretation of the pivot in every ¬sk t r (1 ≤ k ≤ v).

∀x, y : (x, y) ∈ skI → (x ∈ EI1 ∨ y ∈ F I1) ∧

(x ∈ EI2 ∨ y ∈ F I2) ∧

. . .

(x ∈ EIn ∨ y ∈ F In) ∧

(x, y) ∈ t1I ∧

(x, y) ∈ t2I ∧

. . .

(x, y) ∈ twI

Decoding the interpretation above into description logic expressions, we obtain:

{E1 t ∀sk.F1, . . . , En t ∀sk.Fn,¬sk t t1, . . . ,¬sk t tw}.

The substitution of the interpretation of the pivot in every Cit∃(ruQi).Di (1 ≤ i ≤

m) with the definition derived above is not as intuitive as in every ¬sktr (1 ≤ k ≤ v).

We show the AckermannR rule is sound in the sense that the conclusion of the rule is

equivalent to the premises of the rule up to the interpretation of the pivot.

Theorem 5.4.4. The AckermannR rule preserves equivalence up to the interpretation

of the pivot.

Proof. In order to prove the AckermannR rule preserves equivalence up to the pivot,

we need to prove that for any ALCOIH(O,u)-interpretation I, the conclusion of the

112 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

AckermannR rule is true in I iff for some interpretation I ′ pivot-equivalent to I, the

premises are true in I ′. We first prove the “if” direction, namely, the conclusion of

the AckermannR rule is true in I if for some interpretation I ′ pivot-equivalent to I,

the premises are true in I ′. Let I be an ALCOIH(O,u)-interpretation. Assume

the conclusion of the rule is true in I. Let I ′ be an interpretation extending I by

additionally assigning r a binary relation of ∆I′ ×∆I′ such that

∀x, y : (x, y) ∈ rI′ = (x ∈ E1
I′∨y ∈ F1

I′)∧. . .∧(x ∈ EnI
′∨y ∈ FnI

′)∧(x, y) ∈ t1I
′∧. . .∧(x, y) ∈ twI

′
.

Directly, we have I ′ |= E1 t ∀r.F1, . . . , En t ∀r.Fn,¬r t t1, . . . ,¬r t tw. Because

I |= E1 t ∀sk.F1, . . . , En t ∀sk.Fn,¬sk t t1, . . . ,¬sk t tw,

we have

I ′ |= E1 t ∀sk.F1, . . . , En t ∀sk.Fn,¬sk t t1, . . . ,¬sk t tw.

Then we have:

∀x, y : (x, y) ∈ skI
′ → (x ∈ EI′1 ∨ y ∈ F I

′

1) ∧

(x ∈ EI′2 ∨ y ∈ F I
′

2) ∧

. . .

(x ∈ EI′n ∨ y ∈ F I
′

n) ∧

(x, y) ∈ t1I
′ ∧

(x, y) ∈ t2I
′ ∧

. . .

(x, y) ∈ twI
′
,

which implies ∀x, y : (x, y) ∈ skI
′ → (x, y) ∈ rI′ . Similarly, we have

∀x, y : (x, y) ∈ s1
I′ → (x, y) ∈ rI′ , . . . , (x, y) ∈ svI

′ → (x, y) ∈ rI′ .

Therefore, we have I ′ |= ¬s1 t r, . . . ,¬sv t r. Next, we need to prove

I ′ |= C1 t ∃r.D1, . . . , Cm t ∃r.Dm.

We prove this using SPASS,1 an automated theorem prover for first-order logic with

equality. In particular, we prove this as follows.
1https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/

5.4. THE CALCULUS – ACKR 113

1. Translating the premises and the conclusion of the AckermannR rule into first-

order logic, denoted by Fol(premises) and Fol(Conclusion), respectively.

2. Encoding the assignment of the pivot into first-order logic:

∀x∀y(r(x, y) ≡ (E1(x)∨F1(y))∧ . . .∧ (En(x)∨Fn(y))∧ t1(x, y)∧ . . .∧ tw(x, y)),

denoted by Fol(assignment).

3. Using SPASS to show: (Fol(assignment) ∧ Fol(conclusion)) → Fol(premises).

Since I |= N and the pivot r does not occur in N , we have I ′ |= N . Therefore, the

premises of the AckermannR rule are true in I ′.

Then we prove the “only-if” direction. Assume the premises are true in I ′. Directly,

we have

I ′ |= E1 t ∀r.F1, . . . , En t ∀r.Fn and I ′ |= ¬r t t1, . . . ,¬r t tw.

Since I ′ |= ¬sk t r (1 ≤ k ≤ v), we have

I ′ |= E1 t ∀sk.F1, . . . , En t ∀sk.Fn and I ′ |= ¬sk t t1, . . . ,¬sk t tw.

Since r does not occur in the conclusion of the AckermannR rule, we have

I |= E1 t ∀sk.F1, . . . , En t ∀sk.Fn and I |= ¬sk t t1, . . . ,¬sk t tw.

Therefore, we have

I |= Block(P−(r),¬sk t r)(1 ≤ k ≤ v).

Next, we show I |= Block(P−(r), Ci t ∃(r uQi).Di) (1 ≤ i ≤ m). We first show the

ground tier of Block(P−(r), Ci t ∃(r uQi).Di) is true in I. Since

I ′ |= Ci t ∃(r uQi).Di and I ′ |= ¬r t t1, . . . ,¬r t tw,

we have

I ′ |= Ci t ∃(t1 u . . . u tw uQi).Di.

Since r does not occur in Ci t ∃(t1 u . . . u tw uQi).Di, we have

I |= Ci t ∃(t1 u . . . u tw uQi).Di.

114 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

Next, we show the first tier is true in I. We do the proof by contradiction. Suppose

there exists an element d ∈ ∆I such that

d 6∈ (Ci t Ej t ∃(t1 u . . . u tw uQi).(Di u Fj))I(1 ≤ j ≤ n).

Since the premises are true in I ′, we have

I ′ |= Ci t ∃(r uQi).Di and I ′ |= Ej t ∀r.Fj.

This means for every element x ∈ ∆I′ , we have

x ∈ (Ci t ∃(r uQi).Di)I
′ and x ∈ (Ej t ∀r.Fj)I

′
,

which implies

x ∈ (Ci t Ej t ∃(r uQi).(Di u Fj))I
′
.

Since I ′ |= r v (t1 u . . . u tw), we have

x ∈ (Ci t Ej t ∃(t1 u . . . u tw uQi).(Di u Fj))I
′
.

Since r does not occur in Ci t Ej t ∃(t1 u . . . u tw uQi).(Di u Fj)I
′ , we have

x ∈ (Ci t Ej t ∃(t1 u . . . u tw uQi).(Di u Fj)I .

Contradiction. The other tiers can be proved similarly.

The conclusion of the AckermannR rule is the solution of forgetting the pivot from

the premises of the rule. Let O be an ALCOIH(O,u)-ontology in pivot-reduced form

without the universal role and role conjunctions (i.e. an ALCOIH-ontology), applying

the AckermannR rule to O (to eliminate the pivot) could lead to the universal role and

role conjunctions occurring in the conclusion. Specifically, applying the AckermannR

rule to O lead to the universal role occurring in the conclusion if P+
T 6= ∅, P−T 6= ∅

and P−R = ∅. Applying the AckermannR rule to O lead to role conjunctions occurring

in the conclusion if P+
T 6= ∅ and |P−R| ≥ 2. Because of the nature of the AckermannR

rule, role conjunctions only occur below the existential role restriction operator (i.e.,

they could never occur below the universal role restriction operator). The conclusion

of the AckermannR rule is always expressible in ALCOIH(O,u).

Given a set of clauses in pivot-reduced form with n negative TBox premises (|P−T | =

n), w negative RBox premises (|P−R| = w), m positive TBox premises (|P+
T | = m) and

5.4. THE CALCULUS – ACKR 115

v positive RBox premises (|P+
R| = v), combining P− with every positive TBox premise

yields m×2n clauses (exponential growth); combining P− with every positive RBox

premise yields vn + vw clauses (polynomial growth). The size of the forgetting

solution, therefore, depends largely on the number n of negative TBox premises.

5.4.3 The PurifyR Rules

The AckermannR rule is used when the pivot occurs both positively and negatively in

the present clause set. For the cases where the pivot occurs only positively or only

negatively (in the present clause set), we apply the PurifyR rules (to the present clause

set) to eliminate the pivot. The PurifyR rules are shown in Figure 5.4.

PurifyR,+

N
N r

O

provided: (i) r ∈ sigR(N) is the pivot, and
(ii) N is positive w.r.t. r.

PurifyR,- (dual)

N
N r
¬O

provided: (i) r ∈ sigR(N) is the pivot, and
(ii) N is negative w.r.t. r.

Figure 5.4: The PurifyR rules for eliminating r ∈ NR from a set of clauses

The PurifyR rules do not require the present ontology to be transformed into pivot-

reduced form (i.e., the PurifyR rules are form-independent). They can be applied at

any time as long as the pivot has been found purifiable w.r.t. the present ontology

(i.e., the present ontology is positive or negative w.r.t. the pivot). In particular, if the

pivot occurs only positively in N , we substitute the universal role for every occurrence

of the pivot in N . If the pivot occurs only negatively in N , we substitute the negated

universal role for every occurrence of the pivot in N .

116 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

The PurifyR rules are special cases of the AckermannR rule in the sense that the

sets of negative premises are empty (or the sets of positive premises are empty). This

can be seen by adapting the AckermannR rule in the way as shown in Figure 5.5.

PurifyR,+

N ,
P+
T (r)︷ ︸︸ ︷

C1 t ∃(r uQ1).D1, . . . , Cm t ∃(r uQm).Dm,

P+
R(r)︷ ︸︸ ︷

¬s1 t r, . . . ,¬sv t r,
P−T (r)︷ ︸︸ ︷

⊥ t ∀r.>, . . . ,⊥ t ∀r.>,
P−R(r)︷ ︸︸ ︷

¬r t O, . . . ,¬r t O
N ,Block(P−(r), C1 t ∃(r uQ1).D1), ...,Block(P−(r), Cm t ∃(r uQm).Dm),

Block(P−(r),¬s1 t r), ...,Block(P−(r),¬sv t r)

PurifyR,- (dual)

N ,
P+
T (r)︷ ︸︸ ︷

> t ∃(r uQ1).D1, . . . ,> t ∃(r uQm).Dm,

P+
R(r)︷ ︸︸ ︷

O t r, . . . ,O t r,
P−T (r)︷ ︸︸ ︷

E1 t ∀r.F1, . . . , En t ∀r.Fn,
P−R(r)︷ ︸︸ ︷

¬r t t1, . . . ,¬r t tw
N ,Block(P−(r),> t ∃(r uQ1).D1), ...,Block(P−(r),> t ∃(r uQm).Dm),

Block(P−(r),O t r), ...,Block(P−(r),O t r)

Figure 5.5: The PurifyR rules in the sense of the AckermannR rule

Note that the pivot occurs negatively only in negative TBox and RBox premises.

In particular, if the pivot occurs in negative TBox premises, then every occurrence

of the pivot in them is replaced by the negated universal role. This yields the clause

set {E1 t ∀¬O.F1, . . . , En t ∀¬O.Fn}, where every Ej t ∀¬O.Fj (1 ≤ j ≤ n) is a

tautology. If the pivot occurs in negative RBox premises, then every occurrence of

the pivot in them is replaced by the negated universal role. This yields the clause set

{O t t1, . . . ,O t tw}, where every O t tk (1 ≤ k ≤ w) is a tautology. This means that

the negated universal role will never occur in the conclusion of the PurifyR rules. The

conclusion of the PurifyR rules is always expressible in ALCOIH(O,u).

Theorem 5.4.5. The PurifyR rules preserve equivalence up to the interpretation of

the pivot.

Proof. The PurifyR rules are special cases of the AckermannR rule (see Figure 5.5).

They preserve equivalence up to the interpretation of the pivot in the sense of the

5.4. THE CALCULUS – ACKR 117

AckermannR rule. They preserve equivalence up to the interpretation of the pivot also

in the sense of the AckermannC rules.

So far, we have described all the key ingredients of the calculus AckR. These in-

gredients include three rewrite rules for transforming normalised ontologies into pivot-

reduced form, an AckermannR rule for eliminating a single role symbol from ontologies

in pivot-reduced form, and a pair of PurifyR rules for eliminating a single role symbol

from ontologies that are positive or negative w.r.t. this symbol. The conclusions of

these rules are always in normal form. This means that ontology normalisation can be

performed only once. In particular, given an ALCOIH(O,u)-ontology O (i.e., usu-

ally the given ontology is an ALCOIH-ontology, because most real-world ontologies

do not include the universal role and role conjunctions), once O has been clausified

into a set of clauses, the immediate next step is to normalise O w.r.t. Σ using definer

introduction. The result is a finite set N of clauses with Σ-clauses being in normal

form. Since definer symbols might have been introduced during the normalisation

process, the input to AckR is a set N of clauses possibly with definer symbols. From

N , we eliminate the symbols in Σ using the rules in AckR. Since the conclusions of

the rules in AckR are always normalised ontologies expressible in ALCOIH(O,u),

Σ-symbols can be eliminated by repeated use of AckR. In the next subsection, we

investigate several important properties of AckR.

5.4.4 Properties of AckR

AckR is a calculus for eliminating a single role symbol from a normalised set of clauses

expressible in ALCOIH(O,u). Let N be a normalised set of clauses expressible in

ALCOIH(O,u) and let r be a role symbol in N . We say a derivation in AckR is

successful w.r.t. r, if r does not occur in the result N ′ of the derivation. We say a

derivation in AckR is unsuccessful (or fails) w.r.t. r, otherwise.

In this subsection, we show termination, soundness and partialcompleteness of

AckR. In particular, we show that: (i) AckR is terminating, i.e. any AckR-derivation

terminates, (ii) AckR is sound, i.e., the resulting set N ′ of any successful AckR-

derivation is equivalent to the original setN up to the interpretation of the pivot in the

derivation, and (iii) AckR is partially complete forALCOIH(O,u)-ontologies, namely,

118 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

AckR is complete forALCO(O)-ontologies and incomplete forALCOIH(O,u)-ontologies.

Theorem 5.4.6. AckR is terminating and sound.

Proof. In order to show AckR is terminating, we need to show there is no infinite

loop in each step of the AckR-derivation. If the pivot does not occur in the present

ontology, then the current AckR-derivation terminates immediately and returns the

present ontology. If the pivot occurs only positively or only negatively in the present

ontology (in normal form), then one of the PurifyR rules of AckR can be applied to

eliminate the pivot. The current AckR-derivation terminates and returns the resulting

ontology. If the pivot occurs both positively and negatively in the present ontology

(in normal form), the ontology is first transformed into pivot-reduced form using the

rewrite rules in Figure 5.2. Observe that no rules are applicable to the conclusions

of these rewrite rules except for the AckermannR rule. This means that there is no

infinite loop in the transformation of the present ontology into pivot-reduced form. If

the present ontology cannot be transformed into pivot-reduced form, then the current

AckR-derivation terminates and returns the present ontology, which still contains the

pivot. If the present ontology has been transformed into pivot-reduced form, then the

AckermannR rule can be applied to the ontology to eliminate the pivot. The current

AckR-derivation terminates and returns the resulting ontology.

We show AckR is sound. AckR is defined in terms of three rewrite rules, the

AckermannR rule and a pair of PurifyR rules. We have shown that the rewrite rules

preserve logical equivalence, the AckermannR rule preserves equivalence up to the

interpretation of the pivot, and the PurifyR rules preserve equivalence up to the inter-

pretation of the pivot. Thus, the result of any successful AckR-derivation is equivalent

to the original ontology up to the interpretation of the pivot.

Theorem 5.4.7. AckR is (role forgetting) complete for ALCO(O)-ontologies.

Proof. Let O be any ALCO(O)-ontology and let r be any role symbol in O. If r

occurs only positively or only negatively in O, then the PurifyR rules can be applied

to O to eliminate r. If r occurs both positively and negatively in O, then O needs

to be transformed into r-reduced form first. We have shown in Section 5.4 that any

ALCO(O)-ontologies can be transformed into pivot-reduced form (using definer intro-

duction). Thus, the transformation always succeeds. The AckermannR rule can be

5.5. THE FORGETTING METHOD 119

applied to O (in r-reduced form) to eliminate r.

AckR is (role forgetting) incomplete for ALCOIH(O,u)-ontologies due to the

presence of inverse roles and role inclusions. In particular, cases where AckR will

definitely fail include:

(i) if the present ontology contains TBox clauses of the form C t ∃(r− u Q).D,

where r is the pivot and occurs both positively and negatively in the ontology,

and r− u Q is a role that cannot be further simplified (i.e., the inverse pivot

occurs below an existential role restriction and cannot be eliminated via the use

of simplification rules);

(ii) if the present ontology contains RBox clauses of the form ¬rtr− or ¬r−tr (i.e., r

is a symmetric role), where the pivot and the inverse pivot occur simultaneously

in an RBox clause.

A justification of this is the following: the pivot r in these cases occurs both

positively and positively in the present ontology, which means only the AckermannR

rule can be applied to eliminate the pivot (i.e., the PurifyR rules are not applicable).

Applying the AckermannR rule requires the present ontology to be transformed into

pivot-reduced form, but there are no rules in AckR allowing clauses of the form C t

∃(r− uQ).D, r t r− or ¬r− t r to be transformed into pivot-reduced form.

5.5 The Forgetting Method

In the previous section, we introduced a dedicated calculus AckR for eliminating a

single role symbol from a normalised set of clauses expressible in ALCOIH(O,u).

In this section, we present a practical method based on AckR for forgetting a set

of role symbols from an ontology expressible in ALCOIH(O,u). Following AckR,

the method is (role forgetting) complete for ALCOH(O,u)-ontologies and is (role

forgetting) incomplete for ALCOIH(O,u)-ontologies.

5.5.1 The Forgetting Process

Given an ALCOIH(O,u)-ontology O of axioms and a set Σ ⊆ sigR(O) of role symbols

to be forgotten, the forgetting process in our method consists of five main phases (see

120 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

Figure 5.6): the conversion of O into a set N of clauses (the clausification phase),

the conversion of Σ-clauses into normal form (the normalisation phase), the Σ-

symbol elimination phase (the central phase), the definer elimination phase,

and the conversion of the resulting clause set N ′ into an ontology O′ of axioms (the

declausification phase). It is assumed that as soon as a forgetting solution has been

computed, then the remaining phases are skipped.

Convert O into
set N of clauses

Normalisation of
Σ-clauses in N

Transform N into
ri-reduced form

Apply AckermannR

rule to eliminate ri

Elimination of
definer symbols

Convert N into
set O′ of axioms

Ontology O

Forgetting
solution O′

Σ = {r1, ..., rn} (1 ≤ i ≤ n)

Figure 5.6: The main phases in role forgetting process

Input: Given as input to the method are an ALCOIH(O,u)-ontology O of TBox,

ABox and RBox axioms and a set Σ ⊆ sigR(O) of role symbols to be forgotten. An

important feature of the method is that Σ-symbols can be flexibly specified.

The clausification phase: The initial phase of the forgetting process is the

clausification phase, where the method internalises all ABox assertions in O (if they

are present in O) into TBox axioms, and then transforms O into a set N of clauses

using the standard (clausal form) transformation rules in Figures 4.1 and 4.2, as well

as the rules in Figure 5.7, which are used to transform RBox axioms into RBox clauses

(i.e., because ALCOIH(O,u)-ontologies additionally have an RBox).

The normalisation phase: The normalisation phase of the forgetting process

5.5. THE FORGETTING METHOD 121

RBox axioms into clauses:

S v S ′ =⇒ ¬S ′ t S
S ≡ S ′ =⇒ ¬S t S ′,¬S ′ t S

Figure 5.7: Transformation of RBox axioms into RBox clauses

transforms all Σ-clauses in N into normal form using definer introduction. The nor-

malisation is not applied to the other clauses because they are not involved in the

elimination of Σ-symbols. As a result, for efficiency of our method, non-Σ-clauses

will not be processed. We have shown in the previous section that the result of an

AckR-derivation is always a set of clauses in normal form. This means that the nor-

malisation does not need to be repeatedly performed during the Σ-symbol elimination

process. Our method performs the normalisation immediately after the clausification.

This ensures that AckR works with a normalised clause set when eliminating symbols

in Σ. By normalisation, TBox Σ-clauses are transformed into a specialised form that

contains a single role restriction (i.e., the pivot occurs in this role restriction). RBox

Σ-clauses remain unchanged (i.e., because they are always in normal form).

The central phase: Central to the forgetting process is the Σ-symbol elimination

phase, which is an iteration of several rounds (i.e., AckR-derivations) in which the

elimination of Σ-symbols is attempted. Specifically, the method attempts to eliminate

the symbols in Σ one by one using the calculus AckR as described in the previous

section. In each elimination round, the method (normally) performs two steps. The

first step attempts to transform every (TBox and RBox) pivot-clause (not in pivot-

reduced form) into pivot-reduced form using the rewriteR rules in Figure 5.2, so that

the AckermannR rule can be applied. If the transformation is successful, then the

second step applies the AckermannR rule to the pivot-clauses (i.e., the premises) to

eliminate the pivot. If the transformation is not successful, then the method skips the

current round and attempts to eliminate another symbol in Σ (using AckR). On the

intermediate result being returned at the end of each round, the method repeats the

same steps in the next round for the elimination of the remaining symbols in Σ (if

necessary). If the pivot is found purifiable w.r.t. the present clause set (i.e., the pivot

occurs only positively or only negatively in the present clause set), then the method

122 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

performs only one single step in the elimination round. In particular, the method

applies one of the PurifyR rules to the present clause set to eliminate the pivot.

As with our method for concept forgetting, the method for role forgetting is addi-

tionally equipped with a frequency counter, which is used to count the frequency of

positive and negative occurrences of the pivot. In particular, that both the frequencies

of positive and negative occurrences of the pivot are zero means that the pivot does

not occur in the present clause set. That the frequency of negative occurrence of the

pivot is zero and the frequency of positive occurrence of the pivot is non-zero means

that the pivot occurs only positively in the present clause set. That the frequency of

positive occurrence of the pivot is zero and the frequency of negative occurrence of

the pivot is non-zero means that the pivot occurs only negatively in the present clause

set. That both the frequencies of positive and negative occurrences of the pivot are

non-zero means that the pivot occurs both positively and negatively in the present

ontology. Based on the frequency counts of the pivot, the method determines which

elimination rule is to be applied (to eliminate the pivot).

The definer elimination phase: To facilitate the transformation of TBox pivot-

clauses (not in normal form) into normal form, definer symbols might have been intro-

duced during the normalisation process. However, the forgetting solution is supposed

not to contain these definer symbols, because they are not part of the desired signa-

ture. This phase attempts to eliminate these definer symbols using our method for

concept forgetting as described in the previous chapter, which can directly be used

for forgetting concept definer symbols from ALCOIH(O,u)-ontologies. For improved

success rates of the method, a new pair of rewrite rules, namely, the SkolemisationO

rules, are added to AckC to handle the universal role. They are shown in Figure 5.8.

Theorem 5.5.1. The SkolemisationO rules equivalence up to the interpretation of the

introduced nominal.

Proof. We do the proof by contradiction. We first prove the “top-down” direction.

Let I be any ALCOIH(O,u)-interpretation such that I |= C t ∃O.D. Suppose for

every element x ∈ ∆I we have x 6∈ (D t ∃O.C)I

x 6∈ (D t ∃O.C)I

⇒ x 6∈ DI and x 6∈ (∃O.C)I

5.5. THE FORGETTING METHOD 123

SkolemisationO,+

N , C t ∃O.D
N ,¬a tD t ∀O.C

provided: (i) A ∈ sigC(N) is the pivot,
(ii) A does not occur in C,
(iii) A occurs positively in D, and
(iv) a ∈ NO is a fresh nominal.

SkolemisationO,−

N , C t ∃O.D
N¬a tD t ∀O.C

provided: (i) A ∈ sigC(N) is the pivot,
(ii) A does not occur in C,
(iii) A occurs negatively in D, and
(iv) a ∈ NO is a fresh nominal.

Figure 5.8: The SkolemisationO rules for transforming A-clauses into A-reduced form

This means there exists an element d ∈ ∆I such that d 6∈ CI . Since the premise of

the rule is true in I, for every element x′ ∈ ∆I , we have x′ ∈ (C t ∃O.D)I .

x′ ∈ (C t ∃O.D)I

⇒ x′ ∈ CI or x′ ∈ (∃O.D)I

This means that there exists an element d′ ∈ ∆′ such that d′ ∈ DI . Observe that

d′ ∈ DI contradicts with x ∈ D′, and x′ ∈ CI contradicts with d 6∈ CI . Contra-

diction. Next, we prove the “bottom-up” direction (by contradiction). Let I be any

ALCOIH(O,u)-interpretation such that I |= ¬a t D t ∀O.C. Suppose there exists

an element d ∈ ∆I such that d 6∈ (C t ∃O.D).

d 6∈ (C t ∃O.D)

⇒ d 6∈ CI and d 6∈ (∃O.D)I

This means that for every y ∈ ∆I , we have y 6∈ DI . Since the conclusion of the rule

is true in I, for every element x′ ∈ ∆I , we have x′ ∈ (¬a tD t ∀O.C)I .

x ∈ (¬a tD t ∀O.C)I

124 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

⇒ a ∈ (D t ∀O.C)I

⇒ a ∈ DI or a ∈ (∀O.C)I

This means that for every y′ ∈ ∆I , we have y′ ∈ CI . Observe that y′ ∈ CI contradicts

with d 6∈ CI , and y ∈ DI contradicts with a 6∈ CI . Contradiction.

The method, based on AckC extended with the SkolemisationO rules, allows definer

symbols to be eliminated in many cases, but there is no guarantee that definer symbols

can be eliminated in all cases. This is because our method (for concept forgetting)

is an incomplete method. Nevertheless, in practice, most real-world ontologies are

normalised ontologies where the Σ-clauses are already in normal form. This means for

most real-world ontologies definer introduction and elimination are obsolete.

The declausification phase: The declausification phase of the forgetting process

transforms the clause set obtained from the previous phase into ALCOIH(O,u)-

ontology axioms. The transformation is based on the use of the rules in Figures 4.11,

as well as the rules in Figure 5.9.

RBox clauses into axioms:

¬S ′ t S =⇒ S v S ′

¬S t S ′,¬S ′ t S =⇒ S ≡ S ′

Figure 5.9: Transformation of RBox clauses into RBox axioms

Output: What the method returns as output at the end of the forgetting process is

an ontology O′ of axioms. If O′ does not contain any symbols in Σ, then the method

has been successful (in computing a solution of forgetting Σ from O). If O′ still

contains some symbols in Σ, then the method has been unsuccessful (or has failed).

5.5.2 The Elimination Order

The elimination order refers to the order in which the Σ-symbols are eliminated. We

have shown that the elimination order is crucial to our method for concept forgetting

because changing the order of eliminating Σ-symbols may affect the efficiency and

success rates of the method. While in role forgetting, changing the order of eliminating

5.5. THE FORGETTING METHOD 125

Σ-symbols does not affect the efficiency and success rates of our method too much.

An important reason is that when using our Ackermann-based method to solve a role

forgetting problem, in most cases, the elimination of a Σ-symbol is independent with

the elimination of another Σ-symbol in the forgetting process. Thus, the elimination

of a Σ-symbol will not affect (the efficiency and success of) the elimination of another

Σ-symbol. This is different for concept forgetting, where the elimination of a concept

Σ-symbol may significantly affect (the efficiency and success of) the elimination of the

another concept Σ-symbol; see Examples 4.5.3 and 4.5.7. In this sense, no heuristic

analysis is needed for role forgetting.

Why is the elimination of two role symbols mutually independent in role forgetting?

In order to justify this, we consider two cases, i.e., the case of eliminating role symbols

from ALCOI-ontologies and the case of eliminating role symbols from ALCOIH-

ontologies (i.e., most given ontologies are real-world ontologies which do not include

the universal role and role conjunctions).

In the case of ALCOI-ontologies, when the given ontology has been transformed

into a set of clauses in normal form, each Σ-clause in the clause set contains a single

role restriction with a single role symbol. In this case, the clause set can be split into

several clause subsets with one of them not containing any symbols in Σ, and with

each of the other subsets containing only a specific symbol in Σ. For example, let N

be a set of ALCOI-clauses in normal form, and let Σ = {r1, . . . rn} be any subset of

sigR(N). Then N can be split into several clause subsets as follows:

N = N−Σ ∪N (r1) ∪ . . . ∪N (rn),

where N−Σ denotes the clause set that does not contain any symbols in Σ, and each

N (ri) (1 ≤ i ≤ n) denotes the clause set that contains only the role symbol ri. Thus

the elimination of a Σ-symbol is performed on each N (ri), rather than the entire clause

set N (i.e., the elimination of ri is locally performed). The forgetting solution is the

union of the results obtained from each elimination of ri. In this way, it is easy to see

that eliminating a role symbol is independent with eliminating another role symbol

from an ALCOI-ontology. This can also be illustrated with the following example.

Example 5.5.2. Consider the following set of ALCOI-clauses N :

1. A t ∀s.∃r.B

126 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

2. ∀r.B t ∃r.¬C

3. ∀s.C t ∃s.A

Assume Σ = {r, s}. Observe that Clauses 1, 2 and 3 are not in normal form. Using

definer introduction, N is transformed into the following clause set:

1. A t ∀s.D1

2. ¬D1 t ∃r.B

3. D2 t ∃r.¬C

4. ¬D2 t ∀r.B

5. D3 t ∃s.A

6. ¬D3 t ∀s.C

Then N can be splitted into two clause subsets N (r) and N (s) as follows:

2. ¬D1 t ∃r.B 1. A t ∀s.D1

3. D2 t ∃r.¬C 5. D3 t ∃s.A

4. ¬D2 t ∀r.B 6. ¬D3 t ∀s.C

We apply the AckermannR rule to N (r) to eliminate r and to N (s) to eliminate s. The

elimination of these two symbols is mutually independent. The forgetting solution is

the union of the results obtained from each elimination.

The only cases where the elimination of a Σ-symbol interacts with the elimination

of another Σ-symbol are the cases where the two Σ-symbols occur simultaneously in

RBox clauses (i.e., eliminating role symbols from ALCOIH-ontologies), because RBox

clauses in normal form contain two role symbols (i.e., whereas TBox clauses in normal

form contain only one role symbol and thus different Σ-symbols that occur in TBox

clauses can be isolated into different clause subsets).

Example 5.5.3. Consider the following set of ALCOIH-clauses N :

1. ¬A1 t ∃r.B1

2. ¬A2 t ∀r.B2

3. ¬C1 t ∃s.D1

5.5. THE FORGETTING METHOD 127

4. ¬C2 t ∀s.D2

5. ¬r t s

Assume Σ = {r, s}. Observe that the two Σ-symbols r and s occur simultaneously

in Clause 5. If r � s, we apply the AckermannR rule to N to eliminate r, thereby

yielding the following clause set:

1. ¬A1 t ∃s.B1

2. ¬A1 t ¬A2 t ∃s.(B1 uB2)

3. ¬C1 t ∃s.D1

4. ¬C2 t ∀s.D2

Then we apply the AckermannR rule to the clause set above to eliminate s, thereby

yielding the following forgetting solution N ′:

1. ¬A1 t ∃O.B1

2. ¬A1 t ¬C2 t ∃O.(B1 uD2)

3. ¬A1 t ¬A2 t ∃O.(B1 uB2)

4. ¬A1 t ¬A2 t ¬C2 t ∃O.(B1 uB2 uD2)

5. ¬C1 t ∃O.D1

6. ¬C1 t ¬C2 t ∃O.(D1 uD2)

If s � r, we apply the AckermannR rule to the original N to eliminate s, thereby

yielding the following clause set:

1. ¬A1 t ∃r.B1

2. ¬A2 t ∀r.B2

3. ¬C1 t ∃O.D1

4. ¬C1 t ¬C2 t ∃O.(D1 uD2)

5. ¬C2 t ∀r.D2

Then we apply the AckermannR rule to the clause set above to eliminate r, thereby

yielding the following forgetting solution N ′′:

1. ¬A1 t ∃O.B1

128 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

2. ¬A1 t ¬C2 t ∃O.(B1 uD2)

3. ¬A1 t ¬A2 t ∃O.(B1 uB2)

4. ¬A1 t ¬A2 t ¬C2 t ∃O.(B1 uB2 uD2)

5. ¬C1 t ∃O.D1

6. ¬C1 t ¬C2 t ∃O.(D1 uD2)

Observe that N ′ and N ′′ are identical. Thus, changing the elimination order has not

affected the efficiency and success of the method too much.

Although the elimination order in role forgetting is not as important as it is in

concept forgetting, there are still search heuristics worth implementing. For example,

Σ-symbols that are purifiable w.r.t. the present clause set should be eliminated first,

because there is a great chance that the clause set after purification is significantly

reduced. A justification of this is the following: recall that clauses in normal form

are of the form C t ∃R.D, C t ∀S.D, ¬S t S ′ or ¬S ′ t S. If the pivot occurs only

positively in the normalised clause set, and in particular, the pivot occurs in clauses

of the form C t∃R.D, then substituting the universal role for every occurrence of the

pivot in C t ∃R.D yields C t ∃O.D. In this way, the other role symbols occurring in

the role R are eliminated as well. If the pivot occurs in S of the clauses ¬S ′ tS, then

substituting the universal role for every occurrence of the pivot in ¬S ′ t S yields >.

On the other hand, if the pivot occurs only negatively in the normalised clause set,

and in particular, the pivot occurs in clauses of the form C t ∀S.D, then substituting

the negated universal role for every occurrence of the pivot in C t ∀S.D yields >.

If the pivot occurs in S in the clauses of the form ¬S t S ′, then substituting the

negated universal role for every occurrence of the pivot in ¬StS ′ yields >. Therefore,

eliminating the purifiable Σ-symbols first could improve the efficiency of the method.

5.5.3 Termination, Soundness and Partialcompleteness

In the previous subsections, we have presented a practical method for forgetting role

symbols from ontologies expressible in the description logic ALCOIH(O,u). In this

subsection, we show a number of important properties of the method. In particular,

we show that: (i) the method is terminating, i.e., for any ALCOIH(O,u)-ontology O

5.5. THE FORGETTING METHOD 129

and any set Σ ⊆ sigR(O) of role symbols to be forgotten, the method always terminates

and returns an ontology O′ of axioms, (ii) the method is sound, i.e., if the method is

successful, then the forgetting solution O′ computed by the method is equivalent to

the original ontology O up to the interpretations of the symbols in Σ, possibly with

the interpretations of the newly-introduced definer symbols and nominals, and (iii) the

method is (role forgetting) complete for ALCO(O)-ontologies and is (role forgetting)

incomplete for ALCOIH(O,u)-ontologies.

Theorem 5.5.4. For any ALCOIH(O,u)-ontology O and any set Σ ⊆ sigR(O) of

role symbols to be forgotten, the method always terminates and returns an ontology O′.

(i) If O′ does not contain any symbols in Σ or any newly-introduced definer symbols

or nominals, then O′ is a solution of forgetting Σ from O (i.e., O′ is equivalent

to the original ontology O up to the interpretations of the symbols in Σ).

(ii) If O′ does not contain any symbols in Σ but it contains newly-introduced definer

symbols or nominals, then O′ is a solution of forgetting Σ from O in an extended

language (and O and O′ are equivalent up to the interpretations of the symbols

in Σ, as well as the interpretations of the newly-introduced definer symbols and

nominals present in O′).

Proof. In order to show our method is terminating, we have to show that there is no

infinite loop in each phase of the forgetting process in our method. The forgetting

process in our method comprises five main phases. The initial phase of the method is

the clausification phase, which is a standard transformation, i.e., any ALCOIH(O,u)-

ontology of axioms can be transformed into a set of clauses using the transformation

rules in Figures 4.1, 4.2 and 5.7. The second phase of the method is the normalisation

phase. We have shown that any ALCOIH(O,u)-ontologies can be transformed into

a set of clauses in normal form in finite steps (using definer introduction). The third

phase of the method is the Σ-symbol elimination phase, which is an iteration of AckR-

derivations in each of which one single Σ-symbol is eliminated. Thus the termination

of this phase follows the termination of AckR. The fourth phase of the method is

the definer elimination phase, where the method attempts to eliminate the definer

symbols introduced during the normalisation process (if they were introduced) using

our method for concept forgetting. The termination of this phase thus follows the

130 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

termination of our method for concept forgetting. The last phase of the method is

the declausification phase, which is a standard transformation, i.e., any set of clauses

in ALCOIH(O,u) can be transformed into an ALCOIH(O,u)-ontology by using the

transformation rules in Figures 4.11 and 5.9.

Next, we show that our method is sound. The clausification and declausification are

standard equivalence-preserving trasformations. The normalisation preserves equiva-

lence up to the interpretations of the introduced definer symbols. The soundness of

the Σ-symbol elimination phase follows the soundness of AckR. The definer symbols

elimination preserves equivalence up to the interpretations of the definer symbols that

have been eliminated, possibly with new-introduced nominals. Therefore, our method

for role forgetting is sound in the sense that the forgetting solution is equivalent to

the original ontology up to the interpretations of the symbols in Σ, possibly with the

interpretations of the newly-introduced definer symbols and nominals.

Theorem 5.5.5. The method is (role forgetting) complete for ALCO(O)-ontologies.

Proof. We have shown that any ALCO(O)-ontologies can be transformed into a set

of clauses in normal form, and any set of clauses in ALCO(O) can be transformed

back into an ALCO(O)-ontology of axioms. We have also shown that AckR is (role

forgetting) complete for ALCO(O)-ontologies.

Note that the completeness of the method for ALCO(O)-ontologies is based on the

assumption that definer symbols are allowed to occur in the forgetting solutions. If

definer symbols are disallowed in the forgetting solutions, then our method is (role for-

getting) complete only for normalised ALCO(O)-ontologies. Since most real-world on-

tologies are normalised ontologies, this gives us best benefits of using our Ackermann-

based method to solve role forgetting problems on real-world ontologies.

The incompleteness of the method for ALCOIH(O,u)-ontologies follows the in-

completeness of AckR for ALCOIH(O,u)-ontologies. Given an ALCOIH(O,u)-

ontology O and a set Σ ⊆ sigR(O) of role symbols to be forgotten (as input to the

method), the method may return an ontology O′ that still contains some symbols in Σ.

In this case, the method was unsuccessful (or failed). This is because there is a gap in

the scope of the rewrite rules for handling inverse pivots.

5.6. EXAMPLES 131

5.6 Examples

We conclude the chapter with an example illustrating the usage of our method to forget

role symbols from ontologies expressible in the description logic ALCOIH(O,u).

Example 5.6.1. Consider the following ALCOIH-ontology O:

1. A v ∃s.∃r.B

2. B v ∀r−.¬C

3. a v ∀s.∀r.B

4. s v t1

5. s v t2

Assume Σ = {r, s}. The method first transforms O into the following set N of clauses:

6. ¬A t ∃s.∃r.B

7. ¬B t ∀r−.¬C

8. ¬a t ∀s.∀r.B

9. ¬s t t1

10. ¬s t t2

Observe that Clauses 6 and 8 are not in normal form. Thus two fresh definer symbols

D1 ∈ ND and D2 ∈ ND are introduced by the method to replace respectively ∃r.B and

∀r.B, and two clauses ¬D1 t ∃s.B and ¬D2 t ∀r.B are accordingly added to N .

11. ¬A t ∃s.D1

12. ¬D1 t ∃r.B

13. ¬B t ∀r−.¬C

14. ¬a t ∀s.D2

15. ¬D2 t ∀r.B

16. ¬s t t1

17. ¬s t t2

Assume r is the pivot. The method attempts to transform the set into pivot-reduced

form. Observe that Clause 13 is not in r-reduced form because of the inverse r. The

132 CHAPTER 5. ROLE FORGETTING FOR ALCOIH(O,u)

method applies the SurfacingR rule to Clause 13 to transform it into r-reduced form:

18. ¬A t ∃s.D1

19. ¬D1 t ∃r.B

20. ¬C t ∀r.¬B

21. ¬a t ∀s.D2

22. ¬D2 t ∀r.B

23. ¬s t t1

24. ¬s t t2

The method applies the AckermannR rule to Clauses 19, 20 and 22 to eliminate r,

thereby yielding the following set:

25. ¬A t ∃s.D1

26. ¬a t ∀s.D2

27. ¬D1 t ∃O.B

28. ¬D1 t ¬C t ∃O.(B u ¬B)

29. ¬D1 t ¬D2 t ∃O.(B uB)

30. ¬D1 t ¬C t ¬D2 t ∃O.(B u ¬B uB)

31. ¬s t t1

32. ¬s t t2

The pivot r has been eliminated from N . Observe that Clauses 28, 29 and 30 can

be further simplified. In particular, Clause 27 subsumes Clause 29, and Clause 28

subsumes Clause 30. By simplification, the following clauses are obtained:

33. ¬A t ∃s.D1

34. ¬a t ∀s.D2

35. ¬D1 t ∃O.B

36. ¬D1 t ¬C

37. ¬s t t1

38. ¬s t t2

5.6. EXAMPLES 133

Now s becomes the pivot. Since the set is already in s-reduced form, the AckermannR

rule can be applied to eliminate s, thereby yielding the following set:

39. ¬D1 t ∃O.B

40. ¬D1 t ¬C

41. ¬A t ∃(t1 u t2).D1

42. ¬A t ¬a t ∃(t1 u t2).(D1 u D2)

The definer symbols D1 and D2 were introduced during the normalisation process. The

method attempts to eliminate them using the method for concept forgetting. Observe

that D2 occurs only positively in N . Then the method applies the PurifyR,+ rule to

eliminate D2, thereby yielding the following clauses:

43. ¬D1 t ∃O.B

44. ¬D1 t ¬C

45. ¬A t ∃(t1 u t2).D1

46. ¬A t ¬a t ∃(t1 u t2).(D1 u >)

Clause 46 is subsumed by Clause 45, and thus can be deleted. The method attempts

to eliminate the other introduced definer symbol D1. Since the set is already in D−1 -

reduced form, the method applies the AckermannC,- rule to eliminate D1. In particular,

the method substitutes ∃O.B u ¬C for the D1 in Clause 45:

47. ¬A t ∃(t1 u t2).(∃O.B u ¬C)

The method declausifies the clause above into the following ontology O′, which is the

solution of forgetting {s} from the given ontology.

O′ = {A v ∃(t1 u t2).(∃O.B u ¬C)}

The forgetting solution O′ is not expressible in the source logic ALCOIH, but it can

be expressed in ALCOIH with the universal role and role conjunction as shown above.

Chapter 6

Implementation and Evaluation

The main topic of this thesis is the development of practical methods for forgetting

concept and role symbols from ontologies specified in expressive description logics.

In Chapter 4, we presented a method for forgetting concept symbols from ontolo-

gies expressible in the description logic ALCOI. The method is based on the calculus

AckC for eliminating a single concept symbol from a set of ALCOI-clauses. The elim-

ination is based on the use of two direct generalisations of Ackermann’s Lemma for

description logics, referred to as the AckermannC rules. The method is terminating,

and is sound in the sense that the forgetting solution is equivalent to the original on-

tology up to the interpretations of the symbols that have been forgotten, possibly with

the interpretations of the nominals that have been introduced during the forgetting

process.

In chapter 5, we presented a method for forgetting role symbols from ontologies ex-

pressible in the description logic ALCOIH(O,u). The method is based on the calculus

AckR for eliminating a single role symbol from a set of ALCOIH(O,u)-clauses. The

elimination is based on the use of a non-trivial generalisation of Ackermann’s Lemma

for description logics, referred to as the AckermannR rule. The method is terminat-

ing, and is sound in the sense that the forgetting solution is equivalent to the original

ontology up to the interpretations of the symbols that have been forgotten, possibly

with the interpretations of the concept definer symbols and nominals that have been

introduced during the forgetting process. The method is role forgetting complete for

ALCO(O)-ontologies.

Collectively, these two methods can be used as a (incomplete) unifying method for

134

6.1. THE IMPLEMENTATION – FAME 135

forgetting concept and role symbols from ontologies expressible in the description logic

ALCOIH(O,u). Being based on AckC and AckR, the method is goal-oriented and

incremental. It is terminating, and is sound in the sense that the forgetting solution

is equivalent to the original ontology up to the interpretations of the symbols that

have been forgotten, possibly with the interpretations of the concept definer symbols

and nominals that have been introduced in the forgetting process (i.e., specifically,

definer symbols are introduced in role forgetting, during the process of transforming

the ontology into normal form, and nominals are introduced in concept forgetting,

during the process of transforming the ontology into pivot-reduced form).

To gain insight into the practicality of the method, we implemented a prototype

Fame and evaluated Fame on a corpus of real-world ontologies. Fame, which stands

for Forgetting using an Ackermann-based MEthod, fully realises AckC and AckR.

The experiments were run on a desktop computer with an Intelr Coretm i7-4790

processor, four cores running at up to 3.60 GHz and 8 GB of DDR3-1600 MHz RAM.

6.1 The Implementation – Fame

Fame was implemented in Java – a platform-independent and object-oriented pro-

gramming language. It can be used as a standalone tool useful for tasks such as the

performance evaluation of the method presented in this chapter, and it can also be used

as a library for platform-independent Java applications. In this section, we describe

the general design of Fame and discuss several notable features of Fame.

The framework of Fame is shown in Figure 6.1, where it can be seen that Fame

has two major components, i.e., Role forgetting and Concept forgetting, and four minor

components, i.e., Load ontology, Parse into own data structure, Unparse into Owl/Xml

document and Save ontology. We employed the OWL API Version 3.5.21 for the tasks

of loading, parsing, unparsing and saving OWL ontologies. The ontology to be loaded

must be specified as an OWL file or as a URL pointing to the ontology, though own

data structure was used in the main forgetting life cycle. This was done for the

convenience of programming and also for efficiency of Fame. When the forgetting

process is finished, the result will be transformed back into an Owl/Xml document,

1http://owlapi.sourceforge.net/

136 CHAPTER 6. IMPLEMENTATION AND EVALUATION

Parse into own
data structure

Role forgetting

Concept forgetting
Unparse into
Owl/Xml

Load ontology

Save ontology

Figure 6.1: The framework of Fame

which can be used as a standard OWL ontology for further processing.

Fame can perform purely concept forgetting, purely role forgetting, and both con-

cept and role forgetting for ontologies expressible in ALCOIH(O,u). In particular, if

one wants to forget only concept symbols from the ontology, then the functionalities

for role forgetting are switched off and only the functionalities for concept forgetting

are switched on. If one wants to forget only role symbols from the ontology, then the

functionalities for concept forgetting are switched off and only the functionalities for

role forgetting are switched on. If one wants to forget both concept and role sym-

bols from the ontology, then both the functionalities for concept forgetting and the

functionalities for role forgetting are switched on.

In the case of forgetting only concept symbols, a heuristic is used to compute good

elimination orders, which facilitate successful and quick elimination of Σ-symbols. The

heuristic was implemented in Fame to guide the elimination process.

In the case of forgetting only role symbols, no heuristic is used to compute good

elimination orders and Σ-symbols are eliminated in the order as returned by an OWL

API method that gets role symbols in the signature of an ontology. This is because a

good elimination order is not crucial in role forgetting, i.e., the elimination of a role

symbol is independent of the elimination of another role symbol.

6.1. THE IMPLEMENTATION – FAME 137

In the case of forgetting both concept and role symbols, an important problem

is how these concept and role symbols are eliminated from the ontology, or more

precisely, what elimination order should be used when eliminating both concept and

role symbols. Our method allows the concept and role symbols in Σ to be eliminated

in any order, but as shown in Chapter 4, a good elimination order can improve the

efficiency and success rates of the method.

Given an ontology O of axioms and a set Σ ∈ sig(O) of concept and role symbols

to be forgotten, Fame implements the following strategy to eliminate Σ-symbols:

1. First, Fame counts the frequencies of positive occurrence and negative occur-

rence of each symbol in Σ, and flags up those symbols that occur only positively

or only negatively in O (i.e., the purifiable symbols).

2. Then, Fame eliminates all purifiable (concept and role) symbols in Σ from O.

After purification, it is very likely that the result would contain massive syntactic

redundancies, contradictions and tautologies, which can be further simplified.

Therefore, one can reasonably expect that after simplification the purification

result is a significantly reduced ontology with fewer symbols and clauses. This

makes the subsequent elimination rather easier.

3. Next, Fame eliminates all role symbols in the current Σ. During the role forget-

ting process, concept definer symbols might be introduced in the present clause

set to facilitate the transformation of the set into normal form, which are however

not in the desired signature. This means that they should be eliminated at some

point during the entire forgetting process. Fame places them in Σ and treats

them as regular concept Σ-symbols, which will be eliminated in the subsequent

concept forgetting. No heuristic is used in the role forgetting process.

4. Last, Fame eliminates all concept symbols (including the concept definer sym-

bols) in the current Σ. A heuristic based on frequency analysis of concept Σ-

symbols is used in the concept forgetting process, leading to successful and faster

elimination of concept Σ-symbols.

This is the most effective strategy we have found to eliminate Σ-symbols when both

concept and role symbols are in Σ. Other strategies include: (i) Fame first eliminates

138 CHAPTER 6. IMPLEMENTATION AND EVALUATION

all concept symbols in Σ, and then eliminates all role symbols in Σ, and (ii) Fame

randomly selects (concept and role) symbols in Σ to eliminate. In the former case,

Fame may have to perform concept forgetting again when role forgetting is finished,

because concept definer symbols might have been introduced during the role forgetting

process. While in the latter case, the heuristic used in concept forgetting cannot be

used well because new concept definer symbols may be introduced at any time, whereas

the heuristic is based on the frequency analysis of the original Σ-symbols.

In the case of role forgetting, the rewriteR rules can be flexibly applied to the pivot-

clauses (to transform them into pivot-reduced form), because it makes no difference

to the forgetting solution; see the following example.

Example 6.1.1. Consider the following ontology O:

1. ¬A1 t ∃r.B1

2. ¬B2 t ∀r−.A2

3. ¬r− t s

Assume Σ = {r}. Observe r is preceded by an inverse operator in Clauses 2 and 3.

We can first apply the SurfacingR rule to Clause 2, and then apply the InvertingR,−

rule to Clause 3 to transform them into r-reduced form. Alternatively, we can first

apply the InvertingR,− rule to Clause 3, and then apply the SurfacingR rule to Clause

2 to transform them into r-reduced form. We obtain the same clauses:

1. ¬A1 t ∃r.B1

2. ¬A2 t ∀r.B2

3. ¬r t s−

We apply the AckermannR rule to O to eliminate r, thereby obtaining the following

clause set, which is solution of forgetting {r} from O.

4. ¬A1 t ∃s−.B1

5. ¬A1 t ¬A2 t ∃s−.(B1 uB2)

In the case of concept forgetting, there are three pairs of rewriteC rules for trans-

forming pivot-clauses into pivot-reduced form, i.e., a pair of SurfacingC rules, a pair of

6.1. THE IMPLEMENTATION – FAME 139

SkolemisationC rules and a pair of SkolemisationO rules. Applying the SkolemisationC

rules or the SkolemisationO rules (i.e., the Skolemisation rules) introduces new nomi-

nals in the result and these nominals are not in the desired signature however. There-

fore, we should avoid introducing nominals during the forgetting process, which means

that we should avoid applying the Skolemisation rules (if possible) to facilitate the

transformation of pivot-clauses into pivot-reduced form. There are cases where both

the SurfacingC rules and the Skolemisation rules are capable of transforming pivot-

clauses into pivot-reduced form. This can be illustrated with the following example.

Example 6.1.2. Consider the following ontology O:

1. A t ∀r.¬B

2. ¬a t ∃r.B

Assume Σ = {B}. Observe that ¬B occurs below purely a universal role restriction in

Clause 1, which means that the SurfacingC,− rule can be applied to Clause 1 to trans-

form O into B−-reduced form. B occurs below purely an existential role restriction

Clause 2, which means that the SkolemisationC,+ rule can be applied to Clause 2 to

transform O into B+-reduced form. In particular, applying the SurfacingC,− rule to

Clause 1 and then applying the AckermannC,− rule to O yields the following solution:

3. ¬a t ∃r.∀r−.A

In contrast, applying the SkolemisationC,+ rule to Clause 2 and then applying the

AckermannC,+ rule to O yields the following solution:

4. A t ∀r.¬b

5. ¬a t ∃r.b

where b is a fresh nominal. The two solutions are logically equivalent, but the second

one contains a fresh nominal, which is not in the desired signature.

It is obvious in this case that using the SurfacingC,− rule to transform the present

ontology into pivot-reduced form is more appropriate, because it avoided the intro-

duction of new nominals. Fame implements a strategy that applying the SurfacingC

rules takes precedence over applying the Skolemisation rules when transforming the

present ontology into pivot-reduced form in concept forgetting.

140 CHAPTER 6. IMPLEMENTATION AND EVALUATION

More specifically, when transforming the present ontology into pivot-reduced form,

there are in general three different cases: (i) the transformation involves the use of only

the SurfacingC rules, (ii) the transformation involves the use of only the Skolemisation

rules, and (iii) the transformation involves the use of both the SurfacingC rules and

the Skolemisation rules. Let O be an ALCOIH(O,u)-ontology, and suppose O can

be transformed into either the pivot+-reduced form or the pivot--reduced form. If

transforming O into the pivot+-reduced form involves the use of only the SurfacingC

rules (i.e., Case (i)), whereas transforming O into the pivot--reduced form involves

the use of the Skolemisation rules (i.e., Case (ii) or Case (iii)), then Fame will apply

the SurfacingC rules to transform O into the pivot+-reduced form. If transforming O

into the pivot+-reduced form involves the use of both the SurfacingC rules and the

SkolemisationC rules (i.e., Case (ii)), whereas transforming O into the pivot--reduced

form involves the use of only the Skolemisation rules (i.e., Case (iii)), then Fame will

apply the SurfacingC rules and the Skolemisation rules to transform O into the pivot+-

reduced form. In this way, the Skolemisation rules can be applied as infrequently as

possible, and new nominals can be introduced as few as possible.

6.2 The Corpus

We evaluated the performance of Fame on a corpus of real-world ontologies from the

NCBO BioPortal repository [WNS+11, MNS+12]. The NCBO BioPortal repository is a

resource that includes more than 500 biomedical ontologies originally developed for use

in clinical and translational research. In particular, they cover a wide range of topics in

biomedicine such as gene, cancer, organology, and anatomy. Differing in size, structure,

and expressivity, the BioPortal ontologies offer a rich, diverse and realistic test data

set for the evaluation of Fame. In addition, the NCBO BioPortal repository is the

most widely used resource for evaluation of automated tools in ontology engineering.

Nevertheless, not all ontologies in the NCBO BioPortal repository are suitable for

use in the evaluation. For example, some of the ontologies in the repository were not

compatible with the OWL API (i.e., they could not be parsed using the corresponding

methods in the OWL API), and some of the ontologies in the repository provided

corrupted files of ontologies. The corpus used for the evaluation of Fame was based

6.2. THE CORPUS 141

on a snapshot of the repository taken in March 2017, containing 422 ontologies. In

particular, we selected ontologies from the snapshot based on the following criteria:

1. They were compatible with the OWL API,

2. They contained at most 100000 axioms, and

3. They contained at least 100 axioms.

The first criterion is necessary because otherwise, we could have selected ontologies

that are unparsable with the OWL API. Running Fame on unparsable ontologies will

lead to the program being interrupted with an UnparsableOntologyException.

The second criterion is justified by an observation that running Fame on ontologies

with more than 100000 axioms has always led to a timeout or space explosion. From

time to time, this could happen even in the process of loading, parsing and convert-

ing the ontologies into our internal representation. In order to make the evaluation

manageable, we should get rid of ontologies that are too large.

The third criterion is justified by an observation that ontologies with less than 100

axioms often contain only a few symbols. We have found that Fame always computes

a solution of forgetting (concept and role) symbol for such ontologies. Thus, running

Fame on very small ontologies is neither interesting nor challenging. In order to obtain

statistically significant results, we should get rid of ontologies that are too small.

Item Mean Median 90th percentile
logical axioms per ontology 4651 1096 12570
concept symbols per ontology 2110 502 5598
role symbols per ontology 54 12 144
individual symbols per ontology 216 0 206
average axiom size 3.72 3.54 4.82

Table 6.1: Statistics of ontologies selected from BioPortal

Following these three criteria, we selected ontologies (i.e., Owl/Xml files) from

the snapshot, thereby obtaining a corpus of 396 Owl/Xml files of various sizes, rang-

ing from 10 KB up to 60000 KB. Table 6.1 shows the statistical information about

these ontologies, where “logical axioms per ontology” represents the number of logical

axioms occurring in each test ontology, “concept symbols per ontology” represents the

number of concept symbols occurring in each test ontology, “role symbols per ontol-

ogy” represents the number of role symbols occurring in each test ontology, “individual

142 CHAPTER 6. IMPLEMENTATION AND EVALUATION

symbols per ontology” represents the number of individual symbols occurring in each

test ontology, “average axiom size” represents the number of occurrences of concept

symbols, role symbols, individual symbols and operators in each axiom, “mean” is the

most commonly used measure of average, which is calculated by adding all values to-

gether and dividing the sum by the number of values, “median” (i.e., the middle value)

is a measure of statistical distribution, which is calculated by ordering all values and

picking out the one in the middle (i.e., if there are two middle values, then the median

is the mean of those two values), and the 90th percentile is an alternative measure of

statistical distribution. The median is the value for which 50% of the values are larger

and 50% are smaller. The 90th percentile is the value for which 90% of the values are

smaller, and 10% are larger.

The ontologies selected from the snapshot have the DL expressivity ranging from

EL and ALC to SHOIN and SROIQ. On the other hand, Fame handles ontolo-

gies as expressive as ALCOIH(O,u). Hence, we adjusted these selected ontologies

to the language of ALCOIH(O,u). The adjustment was done using simple simu-

lations and simple replacement. Specifically, if the concepts not in ALCOIH(O,u)

can be simulated in ALCOIH(O,u), then they are replaced by their simulations

in ALCOIH(O,u). If the concepts not in ALCOIH(O,u) cannot be simulated in

ALCOIH(O,u), then they are replaced by the top concept. For example, the dis-

jointness between the concepts C and D can be simulated by C v ¬D, and the

symmetry of the role R can be simulated by R v R−.

6.3 Forgetting Concept Symbols

In this subsection, we evaluate the performance of Fame for forgetting only concept

symbols from ontologies expressible in the description logic ALCOIH(O,u).

To fit in with real-world applications, we evaluate the performance of Fame on

forgetting different numbers of concept symbols from each test ontology. In particular,

we forgot 10% (a relatively small number), 40% (a relatively moderate number) and

70% (a relatively large number) of concept symbols in the signature of each ontology

whereby we consider how different numbers of Σ-concept symbols affect the results of

concept forgetting, in particular, the time duration and the success rates.

6.3. FORGETTING CONCEPT SYMBOLS 143

We also evaluate the performance of Fame on forgetting concept symbols of differ-

ent importance from each test ontology. The importance of a concept (or role) symbol

is defined in the sense that if a concept (or role) symbol S occurs more frequently

than another concept (or role) symbol S ′ in an ontology O, then we say that S is

more important than S ′ w.r.t. O. We refer to the symbols of relatively high impor-

tance as central symbols to the ontologies. We hypothesise that it is generally harder

to eliminate a central symbol from an ontology than eliminate a non-central symbol.

In order to verify this, we set up a series of experiments where the Σ-symbols are

randomly selected (from the signature of each ontology), and we set up another series

of experiments where the Σ-symbols based on their importance. For example, in the

case of forgetting 10% of concept symbols, we randomly selected 10% of the concept

symbols from each test ontology as the Σ-symbols to be forgotten, and we also selected

the central 10% of concept symbols from each test ontology as the Σ-symbols to be

forgotten. If our hypothesis turns out to be true, then the result would be insightful to

applications such as ontology reuse, information hiding and ontology analysis where

it may always be necessary to eliminate non-central symbols.

In addition, we evaluate the performance of Fame on forgetting a fixed number of

concept symbols from each test ontology. Since the ontologies used for the evaluation

contain different numbers of axioms, the evaluation is intended to see how the number

of axioms affects the results of concept forgetting, in particular, the duration of time

and the frequency of timeout.

Since a heuristic based on frequency analysis for computing good elimination orders

is implemented and used in Fame, finally, we evaluate the performance of Fame on

forgetting concept symbols from each ontology with and without the heuristic being

used. We consider how this heuristic improves the efficiency and success rates of Fame

in concept forgetting.

We ran the experiments 100 times on each test ontology and averaged the results

to verify the accuracy of our findings. A timeout of 1000 seconds was imposed on each

run of the experiment.

First, we evaluate the performance of Fame on forgetting 10% of concept symbols

in the signature of each test ontology. The results shed light on the usefulness of

Fame for real-world applications such as ontology debugging and computing logical

144 CHAPTER 6. IMPLEMENTATION AND EVALUATION

differences of different ontology versions where the expected task is to forget a small

number of symbols (i.e., from one version to another usually only a small number of

symbols will be added or removed).

Settings Results
Σ (10%) � ! Timeouts Duration Success Rate New Nominals Clause ↑

7 7 1.5% 3.509 sec. 93.2% 1.26 -9.3%
211 3 7 1.3% 2.614 sec. 93.4% 1.25 -9.4%

(Avg.) 7 3 2.8% 4.576 sec. 90.4% 1.49 -8.7%
3 3 2.3% 3.679 sec. 91.0% 1.49 -8.9%

Table 6.2: Results of forgetting 10% of concept symbols in the signature

The results are shown in Table 6.2, which are rather revealing in several ways. The

most encouraging result is that Fame was successful (i.e., forgot all symbols in Σ) in

more than 90% test cases within a short period of time (see the Duration Column).

It is evident from the table that using the heuristic based on frequency analysis of

Σ-symbols (see the � Column) led to a modest decrease in the average duration of the

runs of every experiment, which means that it took less time to complete the same

task than when the heuristic was not used. Also, it can be seen from the Success Rate

Column and the Timeouts Column that basing the elimination order to the frequency

analysis has brought a positive effect on the overall success rates (i.e., increased by

0.2%) and the frequency of timeouts (i.e., decreased by 0.2%). Because of the presence

of the clauses of the form ¬at∃R.C and the application of the Skolemisation rules, new

nominals were introduced in the ontologies. These nominals are however not expected

to occur in the signatures of the resulting ontologies (i.e., the forgetting solutions).

The New Nominals Column has shown that only a small number of new nominals were

introduced into each ontology during the forgetting process. In addition, we compared

the number of clauses in the forgetting solutions with that in the given ontologies (see

the Clause ↑ column). Compared to the given ontologies, there was a modest decrease

in the number of clauses in the forgetting solutions. This is quite different from the

resolution-based methods, where there is always an obvious increase in the number of

clauses in the forgetting solutions. The 7 symbol in the ! Column indicates that the

Σ-symbols were randomly selected from the signature of each test ontology, and the

3 symbol in the ! Column indicates that only the central 10% of concept symbols

were selected as the Σ-symbols to be forgotten. The comparison results have verified

6.3. FORGETTING CONCEPT SYMBOLS 145

that, in general, eliminating central symbols takes longer time than eliminating the

same number of randomly selected symbols.

Then, we evaluate the performance of Fame on forgetting 40% of concept symbols

in the signature of each ontology. The results shed light on the usefulness of Fame for

real-world applications such as ontology analysis and explanation generation (abduc-

tion), where the expected task is to forget a moderate number of symbols.

Settings Results
Σ (40%) � ! Timeouts Duration Success Rate New Nominals Clause ↑

7 7 6.2% 6.295 sec. 84.0% 5.29 -39.4%
844 3 7 5.6% 4.931 sec. 85.1% 5.28 -39.7%

(Avg.) 7 3 8.7% 9.028 sec. 80.8% 5.55 -32.9%
3 3 7.9% 7.187 sec. 82.3% 5.53 -34.8%

Table 6.3: Results of forgetting 40% of concept symbols in the signature

The results are shown in Table 6.3, from which it can be seen that eliminating

a larger number of concept symbols is (expectedly) harder. The success rates were

not as good as in the case of forgetting 10% of concept symbols, i.e., there was, on

average, a 10% reduction in the success rates, where half of the additional failures

were due to timeout and the other half failures were due to the non-existence of the

forgetting solutions and the incompleteness of our forgetting method. A 10% reduction

in success rates was not as substantial as expected, i.e., we expected that there would

be an approximately 30% reduction in the success rates because we eliminated four

times as many concept symbols as in the preceding experiments. The reasons might

be multifold, but an important reason that has been found is that many presently

ineliminable symbols might become eliminable as the elimination of other symbols;

see the following example.

Example 6.3.1. Consider the following ontology O:

1. ¬A t ∃r.B

2. ¬C t ∃r.¬B

Assume Σ = {B}. Observe that O cannot be transformed into pivot-reduced form by

using the (rewriteC) rules in AckC because the pivot and the negated pivot both occur

below existential role restrictions in Clauses 1 and 2, which are not existential clauses

146 CHAPTER 6. IMPLEMENTATION AND EVALUATION

however (i.e., hence the SkolemisationC rules are not applicable to Clauses 1 and 2 to

transform them into pivot-reduced form). Thus B is ineliminable w.r.t. O. Assume

Σ = {A,B}. We apply the PurifyC,+ rule to Clause 1 to eliminate A whereby Clause 1

becomes a tautology. Then B occurs only negatively in O (i.e., B is purifiable w.r.t.

O), and thus B is eliminable w.r.t. O.

One might also expect that eliminating 40% of concept symbols in the signature

should take four times as long as eliminating 10% of concept symbols in the signature.

Our experimental results have shown that this is not exactly true (see the Duration

Column) i.e., in practice, eliminating 40% of concept symbols in the signature took

approximately two times as long as eliminating 10% of concept symbols. This is

because as the elimination of Σ-symbols, the ontology became decreasingly smaller

(i.e., containing decreasingly fewer clauses), and the subsequent elimination might

thus become easier and take less time. What was as expected was that more nominals

were introduced in the ontologies when more symbols were selected as the Σ-symbols

to be forgotten. Another important observation is that there was a notable reduction

(i.e., an approximately 40% reduction) in the number of clauses in the forgetting

solutions (see the Clause ↑ Column). This is because usually when the forgetting was

finished, most Σ-clauses became tautologies and were removed from the ontologies.

Next, we evaluate the performance of Fame on forgetting 70% of concept symbols

from the signature of each ontology. The results shed light on the usefulness of Fame

for real-world applications such as ontology summary and reuse, where the expected

task is to forget a large number of symbols.

Settings Results
Σ (70%) � ! Timeouts Duration Success Rate New Nominals Clause ↑

7 7 16.7% 12.893 sec. 68.3% 7.06 -70.1%
1477 3 7 15.2% 9.827 sec. 70.7% 7.04 -70.3%

(Avg.) 7 3 20.2% 13.684 sec. 63.1% 7.49 -67.9%
3 3 19.2% 10.075 sec. 64.9% 7.47 -68.3%

Table 6.4: Results of forgetting 70% of concept symbols in the signature

The results are shown in Figure 6.4, from which it can be observed that as more

(concept) symbols were selected as the Σ-symbols to be forgotten, the (averaged) suc-

cess rates dropped to approximately 70% for the cases where Σ-symbols were randomly

6.3. FORGETTING CONCEPT SYMBOLS 147

selected and dropped to approximately 64% for the cases where only the central 70%

of concept symbols were selected, the (averaged) frequency of timeout rose to ap-

proximately 16% for the cases where Σ-symbols were randomly selected and rose to

approximately 20% for the cases where only the central 70% of concept symbols were

selected, and the (averaged) time duration rose to approximately three times as long

as in the case of eliminating 10% of concept symbols. This was expected because

eliminating 70% of concept symbols in the signature of each ontology was obviously

an extremely challenging task. For example, in the case of forgetting 70% of concept

symbols in the signature of the HUGO ontology, this means eliminating 23041 concept

symbols from 32917 (TBox and RBox) axioms. The number of nominals introduced

in each ontology rose to between 7 and 7.5, nearly six times as many as in the case of

forgetting 10% of concept symbols. As in Table 6.3, there was a notable reduction (i.e.,

an approximately 70% reduction) in the number of clauses in the forgetting solutions

(see the Clause ↑ Column). From Tables 6.2, 6.3 and 6.4, we have noticed that the

reduction rate of the clauses in the forgetting solutions was almost identical to the

percentage of concept symbols selected as the Σ-symbols to be forgotten.

Finally, we evaluate the performance of Fame on forgetting a fixed number (i.e.,

100) of concept symbols from the signature of each ontology. The results shed light on

how different numbers of axioms affect the performance (i.e., in particular, the time

duration) of Fame on forgetting the same number of concept symbols. Considering

that not all test ontologies contained at least 100 concept symbols, we filtered out

those containing less than 100 concept symbols. As a result, 326 ontologies stood out

from the corpus. Then we split these ontologies into three (sub)corpora with each of

them containing ontologies with the number of axioms ranging from 100 to 1000, 1001

to 5000, and more than 5000, respectively. In this way, we obtained a corpus (Corpus

I) of 190 ontologies with the number of axioms ranging from 100 to 1000, a corpus

(Corpus II) of 120 ontologies with the number of axioms ranging from 1001 to 5000,

and a corpus (Corpus III) of 86 ontologies with more than 5000 axioms.

The results are shown in Figure 6.5, from which it can be seen that forgetting 100

concept symbols from the ontologies with more axioms took much longer than forget-

ting the same number of concept symbols from the ontologies with fewer axioms. This

148 CHAPTER 6. IMPLEMENTATION AND EVALUATION

Settings Results
Corpora � ! Timeouts Duration Success Rate New Nominals Clause ↑

7 7 0.0% 0.839 sec. 97.9% 0.73 -5.1%
3 7 0.0% 0.827 sec. 97.9% 0.72 -5.3%I
7 3 0.5% 1.195 sec. 96.8% 1.03 -4.9%
3 3 0.5% 1.183 sec. 96.8% 1.02 -5.0%
7 7 0.8% 1.356 sec. 96.7% 1.13 -5.2%
3 7 0.8% 1.327 sec. 96.7% 1.12 -5.1%II
7 3 1.7% 2.183 sec. 95.8% 1.44 -5.1%
3 3 1.7% 2.095 sec. 95.8% 1.43 -5.0%
7 7 1.2% 2.204 sec. 93.0% 1.53 -4.9%
3 7 1.2% 2.010 sec. 93.0% 1.52 -4.8%III
7 3 2.3% 3.356 sec. 91.9% 1.70 -4.7%
3 3 2.3% 3.094 sec. 91.9% 1.69 -4.6%

Table 6.5: Results of forgetting 100 concept symbols in the signature

is because (i) processing ontologies with more axioms usually takes longer than pro-

cessing ontologies with fewer axioms, and (ii) in general, there were more occurrences

of Σ-symbols in the ontologies with more axioms, which means that the rewriteC rules

needed to be applied more often than in the ontologies with fewer axioms.

6.4 Forgetting Role Symbols

In this subsection, we evaluate the performance of Fame for forgetting only role sym-

bols from ontologies expressible in the description logic ALCOIH(O,u).

We implement the following strategy for the evaluation of Fame for role forgetting:

(i) we evaluate the performance of Fame for forgetting different numbers of role sym-

bols from each ontology. The results shed light on the usefulness of Fame for different

real-world applications as discussed in Section 1.1. In particular, we forgot 10% (a

relatively small number), 40% (a relatively moderate number) and 70% (a relatively

large number) of role symbols in the signature of each ontology whereby we consider

how different numbers of role symbols selected as Σ-symbols to be forgotten affect

the results of role forgetting, (ii) we evaluate the performance of Fame for forgetting

central role symbols from each ontology whereby we consider how different frequen-

cies of Σ-symbols occurring in the ontologies affect the results of role forgetting, (iii)

we evaluate the performance of Fame for forgetting a fixed number of role symbols

6.4. FORGETTING ROLE SYMBOLS 149

from each ontology whereby we consider how different numbers of axioms contained

in the ontologies affect the results of role forgetting, and (iv) we compare the perfor-

mance results of role forgetting to those of concept forgetting. This is to verify our

consideration that forgetting role symbols is a harder than forgetting concept symbols.

Out of the 396 ontologies in the corpus, only 333 ontologies contain role symbols.

We filtered out those ontologies not containing role symbols. We ran the experiments

100 times on each test ontology and averaged the results to verify the accuracy of our

findings. A timeout of 1000 seconds was imposed on each run of the experiment.

Settings Results
Σ (10%) � ! Timeouts Duration Success Rate D. In D. Left Clause ↑

7 7 0.0% 2.129 sec. 100.0% 1.25 0.0 4.2%
5 3 7 0.0% 2.127 sec. 100.0% 1.25 0.0 4.2%

(Avg.) 7 3 0.0% 10.491 sec. 85.0% 5.02 0.0 13.7%
3 3 0.0% 10.488 sec. 85.0% 5.02 0.0 13.7%

Table 6.6: Results of forgetting 10% of role symbols in the signature

First, we evaluate the performance of Fame for forgetting 10% of role symbols in

the signature of each test ontology. The results are shown in Table 6.6, which is rather

revealing in several ways. The most encouraging result is that Fame was successful

(i.e., forgot all symbols in Σ) in all test cases when the Σ-symbols were randomly

selected. In the cases where only the central 10% of role symbols were selected as

the Σ-symbols to be forgotten, the success rates were 85%. The failures were due to

space explosion caused by the high frequency of some role symbols in Σ. Without

these symbols in Σ, the success rates were 100%. It can be observed from Table 6.6

that only a small number of concept definer symbols were introduced in the ontolo-

gies to facilitate the transformation of pivot-clauses into pivot-reduced form (see the

D. In Column). This indicates that most clauses in the test ontologies were flat (i.e.,

most test ontologies were normalised ontologies). The introduced definer symbols were

eliminated from the ontologies by using our method for concept forgetting (see the D.

Left Column). Because of the nature of the AckermannR rule, role forgetting may lead

to growth of clauses in the forgetting solutions, which was modest compared to the

theoretical worst case (i.e., 4.2% and 13.7%, respectively). It is apparent from Ta-

ble 6.6 that eliminating central role symbols was significantly harder than eliminating

the same number of randomly selected role symbols. For example, eliminating the

150 CHAPTER 6. IMPLEMENTATION AND EVALUATION

randomly selected 10% of role symbols in the signature of each test ontology took ap-

proximately 2 seconds (averaged), whereas eliminating the central 10% of role symbols

in the signature of each test ontology took approximately 10 seconds (averaged), five

times as long as in the “randomly selected” cases. This means that the more frequently

the role symbols occur in an ontology, the more difficult (i.e., the more time used and

the lower success rates achieved) the symbols are eliminated from the ontology. This

is because of the nature of the AckermannR rule (recall the complexity analysis of the

AckermannR rule discussed in Subsection 5.4.2).

Settings Results
Σ (40%) � ! Timeouts Duration Success Rate D. In D. Left Clause ↑

7 7 0.0% 9.913 sec. 90.1% 5.43 0.0 18.5%
22 3 7 0.0% 9.866 sec. 90.1% 5.43 0.0 18.5%

(Avg.) 7 3 0.0% 38.683 sec. 73.0% 14.52 0.0 40.7%
3 3 0.0% 38.556 sec. 73.0% 14.52 0.0 40.7%

Table 6.7: Results of forgetting 40% of role symbols in the signature

Then, we evaluate the performance of Fame for forgetting 40% of role symbols in

the signature of each test ontology. The results are shown in Table 6.7, from which

we can conclude that eliminating a larger number of role symbols can significantly

affect the efficiency and success rates of Fame. In particular, eliminating 40% of role

symbols in the signature of each ontology took approximately four times as long as

eliminating 10% of role symbols in the signature of each ontology. The success rates

decreased by approximately 10% for the cases where the Σ-symbols were randomly

selected and by approximately 12% for the cases where only the central 40% of role

symbols were selected as the Σ-symbols to be forgotten. As in the cases of forgetting

10% of role symbols in the signature of each ontology, the failures were due to space

explosion caused by the high frequency of some role symbols in Σ. Without these

symbols in Σ, the success rates were 100%. With more role symbols being selected as

the Σ-symbols to be forgotten, more concept definer symbols were introduced in the

ontologies to facilitate the transformation of pivot-clauses into pivot-reduced form. As

in the cases of forgetting 10% of role symbols in the signature of each ontology, these

definer symbols were eliminated from the resulting ontologies using our method for

concept forgetting. It can be observed that there was a notable growth in the number

of clauses in the forgetting solutions, in particular in the cases where only the central

6.4. FORGETTING ROLE SYMBOLS 151

70% of role symbols were selected as the Σ-symbols to be forgotten.

Settings Results
Σ (10%) � ! Timeouts Duration Success Rate D. In D. Left Clause ↑

7 7 0.0% 16.385 sec. 81.1% 8.54 0.0 30.2%
38 3 7 0.0% 16.375 sec. 81.1% 8.54 0.0 30.2%

(Avg.) 7 3 0.0% 52.491 sec. 63.1% 24.68 0.0 76.7%
3 3 0.0% 52.428 sec. 63.1% 24.68 0.0 76.7%

Table 6.8: Results of forgetting 70% of role symbols in the signature

Next, we evaluate the performance of Fame for forgetting 70% of role symbols in

the signature of each test ontology. The results are shown in Table 6.8, from which it

can be seen that eliminating randomly selected 70% of role symbols (in the signature

of each ontology) took more than seven times as long as eliminating randomly selected

10% of role symbols (in the signature of each ontology), and eliminating the central 70%

of role symbols (in the signature of each ontology) took five times as long as eliminating

the central 10% of role symbols (in the signature of each ontology). With further more

role symbols being selected as the Σ-symbols to be forgotten, the success rates dropped

to 81.1% for the cases where the Σ-symbols were randomly selected, and 63.1% for

the cases where the central 70% of role symbols were selected as the Σ-symbols to be

forgotten, and the number of the definer symbols introduced in each ontology rose to

8.54 for the randomly selected cases and 24.68 for the central cases. Although more

definer symbols were introduced in the ontologies, they were all eliminated using our

method for concept forgetting (once the Σ-symbols had been eliminated). A significant

growth of clauses in the forgetting solutions is observed (see the Clauses ↑ column).

Results from Table 6.8 can be compared with the results in Tables 6.6 and 6.7

which shows that:

1. forgetting role symbols is, in general, a harder task than forgetting concept sym-

bols (i.e., longer time duration was used and lower success rates were obtained

when forgetting same numbers of symbols),

2. the performance of Fame depends greatly on the number of the symbols in Σ

(more precisely, the frequency of Σ-symbols occurring in the ontologies),

3. the more the role symbols are selected as the Σ-symbols to be forgotten, the

lower the likelihood of Fame successfully computing the forgetting solutions,

152 CHAPTER 6. IMPLEMENTATION AND EVALUATION

the more the concept definer symbols are introduced in the ontologies and the

more the clauses are generated in the forgetting solutions, and

4. the order of eliminating Σ-symbols is not important for role forgetting.

Settings Results
Corpora � ! Timeouts Duration Success Rate D. In D. Left Clause ↑

7 7 0.0% 5.746 sec. 94.9% 1.37 0 18.36%
3 7 0.0% 5.745 sec. 94.9% 1.37 0 18.36%I
7 3 0.0% 19.474 sec. 79.7% 3.47 0 40.02%
3 3 0.0% 19.473 sec. 79.7% 3.47 0 40.02%
7 7 0.0% 9.336 sec. 90.0% 5.58 0 18.64%
3 7 0.0% 9.332 sec. 90.0% 5.58 0 18.64%II
7 3 0.0% 36.375 sec. 73.3% 13.98 0 39.28%
3 3 0.0% 36.374 sec. 73.3% 13.98 0 39.28%
7 7 0.0% 14.725 sec. 85.1% 11.31 0 18.48%
3 7 0.0% 14.723 sec. 85.1% 11.31 0 18.48%III
7 3 0.0% 57.583 sec. 66.0% 22.57 0 40.26%
3 3 0.0% 57.582 sec. 66.0% 22.57 0 40.26%

Table 6.9: Results of forgetting 20 role symbols in the signature

Finally, we evaluate the performance of Fame for forgetting a fixed number (i.e.,

20) of role symbols from the signature of each ontology. Considering that not all

test ontologies contained at least 20 role symbols, we filtered out those ontologies

containing less than 20 role symbols. As a result, 166 ontologies stood out from the

current corpus. Then we split these ontologies into three (sub)corpora with each of

them containing ontologies with the number of axioms ranging from 100 to 1000,

1001 to 5000, and more than 5000, respectively. In this way, we obtained a corpus

(Corpus I) of 59 ontologies with the number of axioms ranging from 100 to 1000, a

corpus (Corpus II) of 60 ontologies with the number of axioms ranging from 1001 to

5000, and a corpus (Corpus III) of 47 ontologies with more than 5000 axioms.

The results are shown in Figure 6.9, from which it can be seen that forgetting 20

role symbols from the ontologies with more axioms took much longer than forgetting

the same number of role symbols from the ontologies with fewer axioms. This is for

the same reasons as we found in concept forgetting.

6.5. FORGETTING CONCEPT AND ROLE SYMBOLS 153

6.5 Forgetting Concept and Role Symbols

In this subsection, we evaluate the performance of Fame for forgetting both concept

and role symbols from ontologies expressible in the description logic ALCOIH(O,u).

This is motivated by the fact that in most real-world applications, usually concept

and role symbols are required to be eliminated together. Given an ontology O and

a set Σ ∈ sig(O) of concept and role symbols to be forgotten, Fame defaults to first

eliminating all role symbols in Σ, and then all concept symbols in Σ. In this way,

the possibly introduced definer symbols can be eliminated as part of the subsequent

concept forgetting. The aim of the experiments is to investigate how concept forgetting

and role forgetting affect each other.

We implement the same strategy for this evaluation. In particular, we evaluate

the performance of Fame for forgetting 10%, 40% and 70% of concept symbols and

10%, 40% and 70% of role symbols in the signature of each test ontology. Unlike

the experiments conducted in the previous two sections where concept symbols and

role symbols were eliminated separately, in this section, we conducted a series of

experiments where concept symbols and role symbols are eliminated together. All

other settings remain unchanged.

The ontologies used for this evaluation are the ontologies used for the evaluation

of Fame for forgetting only concept symbols. We ran the experiments 100 times on

each test ontology and averaged the results to verify the accuracy of our findings. A

timeout of 1000 seconds was imposed on each run of the experiment.

Settings Results
Σ (10%) � ! Timeouts Duration Success Rate New Nominals Clause ↑

7 7 1.5% 3.489 sec. 95.0% 1.24 -9.4%
211 3 7 1.3% 2.601 sec. 95.2% 1.24 -9.4%

(Avg.) 7 3 2.8% 4.487 sec. 92.2% 1.47 -8.9%
3 3 2.3% 3.598 sec. 92.7% 1.47 -9.0%

Σ (10%) � ! Timeouts Duration Success Rate Definers Left Clause ↑
7 7 0.0% 2.089 sec. 100.0% 0.0 4.3%

5 3 7 0.0% 2.088 sec. 100.0% 0.0 4.3%
(Avg.) 7 3 0.0% 10.278 sec. 85.0% 0.0 13.8%

3 3 0.0% 10.273 sec. 85.0% 0.0 13.8%

Table 6.10: Results of forgetting 10% of concept symbols and 10% of role symbols

154 CHAPTER 6. IMPLEMENTATION AND EVALUATION

Settings Results
Σ (40%) � ! Timeouts Duration Success Rate New Nominals Clause ↑

7 7 5.8% 6.145 sec. 86.4% 5.34 -39.7%
844 3 7 5.6% 4.903 sec. 87.1% 5.33 -40.1%

(Avg.) 7 3 7.3% 8.892 sec. 80.8% 5.59 -34.1%
3 3 6.8% 7.012 sec. 82.3% 5.58 -34.4%

Σ (40%) � ! Timeouts Duration Success Rate Definers Left Clause ↑
7 7 0.0% 9.487 sec. 90.1% 0.0 18.8%

22 3 7 0.0% 9.485 sec. 90.1% 0.0 18.8%
(Avg.) 7 3 0.0% 37.983 sec. 73.0% 0.0 41.2%

3 3 0.0% 37.975 sec. 73.0% 0.0 41.2%

Table 6.11: Results of forgetting 40% of concept symbols and 10% of role symbols

Settings Results
Σ (70%) � ! Timeouts Duration Success Rate New Nominals Clause ↑

7 7 15.2% 12.786 sec. 70.7% 7.13 -70.9%
1477 3 7 13.9% 9.743 sec. 72.2% 7.12 -71.1%

(Avg.) 7 3 18.9% 13.102 sec. 64.9% 7.53 -68.6%
3 3 17.4% 10.002 sec. 67.2% 7.52 -68.9%

Σ (10%) � ! Timeouts Duration Success Rate Definers Left Clause ↑
7 7 0.0% 15.873 sec. 81.1% 0.0 31.0%

38 3 7 0.0% 15.487 sec. 81.1% 0.0 31.0%
(Avg.) 7 3 0.0% 51.304 sec. 63.1% 0.0 77.9%

3 3 0.0% 51.302 sec. 63.1% 0.0 77.9%

Table 6.12: Results of forgetting 70% of concept symbols and 70% of role symbols

The results obtained from forgetting 10% of concept symbols and forgetting 10% of

role symbols in the signature of each test ontology are shown in Table 6.10. The results

obtained from forgetting 40% of concept symbols and forgetting 40% of role symbols in

the signature of each test ontology are shown in Table 6.11. The results obtained from

forgetting 70% of concept symbols and forgetting 70% of role symbols in the signature

of each test ontology are shown in Table 6.12. We compare the results from these

tables with those in Tables 6.2, 6.3 and 6.4 (i.e., the results for concept forgetting) and

the results in Tables 6.7, 6.8 and 6.9 (i.e., the results for role forgetting), respectively.

Careful inspection of all relevant tables shows that there was a slight increase in the

success rates of Fame for forgetting concept symbols. The most likely cause of this

is that the preceding role forgetting could have eliminated some concept symbols in

Σ which could not be eliminated by our method for concept forgetting. This justifies

Fame of eliminating role symbols first and then concept symbols.

6.6. COMPARISON OF FAME WITH LETHE 155

Example 6.5.1. Consider the following set of clauses N :

1. ∀s.A t ∃r.B

2. ¬C t ∃r.¬B

Assume Σ = {B}. Observe that N cannot be transformed into pivot-reduced form

by using the (rewriteC) rules in AckC because the pivot and the negated pivot both

occur below existential role restrictions in Clauses 1 and 2, which are not existential

clauses however (i.e., hence the SkolemisationC rules are not applicable to Clauses 1

and 2 to transform them into pivot-reduced form). Assume Σ = {s, B} and s is the

pivot. Observe that s occurs only negatively in N . We apply the PurifyR,- rule to N

to eliminate s, thereby leading to Clause 1 a tautology. Then B occurs only negatively

in Clause 2. We apply the PurifyC,- rule to Clause 2 to eliminate B, thereby yielding

the set {¬C t ∃r.>}, which is the solution of forgetting {s, B} from N .

6.6 Comparison of Fame with Lethe

To verify the correctness of Fame, we have conducted a preliminary comparison of

Fame with the verified tool Lethe on the ALC-fragments of ontologies taken from

the Oxford Ontology Repository 2 and the results have shown that:

1. If Fame successfully forgot all the symbols in the forgetting signature and com-

putes a solution that is expressible in ALC, rather than a more expressive de-

scription logic such as ALCI, then the solutions computed by Fame and Lethe

entail each other (i.e., they are logically equivalent).

2. If Fame successfully forgot all the symbols in the forgetting signature, but com-

putes a solution in a more expressive description logic, then the solutions com-

puted by Fame entail those computed by Lethe.

These results have verified the correctness of Fame. We have also compared the

two tools in terms of their speed. The result has shown that Fame was considerably

faster than Lethe, i.e., in average Fame was six times faster than Lethe for the

forgetting tasks with the test ontologies. This has shown the speed advantage of the

Ackermann-based forgetting approach over the resolution-based ones.
2https://www.cs.ox.ac.uk/isg/ontologies/

Chapter 7

Conclusions and Future Directions

Forgetting is a non-standard reasoning service that has a broad range of potential

applications such as ontology summarisation, ontology analysis and reuse, ontology

debugging and repair, information hiding, explanation generation (abduction) and

computing logical differences between different versions of ontologies. Basically, it al-

lows users to focus on specific parts of ontologies in order to create decompositions

and restricted views of ontologies and it allows implicit information to be inferred from

ontologies. Thus, forgetting can be used as a very useful tool in the area of (descrip-

tion logic-based) ontology engineering. However, on the other hand, forgetting is an

inherently difficult problem — it is much harder than standard reasoning (satisfiability

checking) — and very few logics are known to be complete for forgetting (or have the

uniform interpolation property). There has been insufficient research on the topic and

very few forgetting methods/tools are available at present.

Existing methods such as Nui and Lethe compute uniform interpolants for on-

tologies specified in a number of OWL language dialects ranging from the basic ALC to

more expressive ones such as ALCH, SHI, SIF and SHQ etc. These methods, which

are saturation approach based on resolution, do not provide support for forgetting in

description logics with nominals. We have filled this gap in this thesis.

7.1 Conclusions

In this thesis, we investigated practical methods of (semantic) concept and role forget-

ting for ontologies expressible in the description logic ALCOIH(O,u), i.e., the basic

156

7.1. CONCLUSIONS 157

description logic ALC extended with nominals, inverse roles, role hierarchies, the uni-

versal role and role conjunctions. In particular, we developed a practical method for

forgetting concept symbols from ontologies specified in description logics with inverse

roles, and we developed a practical method for forgetting role symbols from ontologies

specified in description logics with the universal role and role conjunctions. These two

methods can be used as an integrated method for forgetting both concept and role

symbols from ontologies specified in description logics with inverse roles, the universal

role and role conjunctions.

The method for concept forgetting is based on a dedicated calculus, namely, AckC,

which is based on generalisations of Ackermann’s Lemma for description logics and

allows a single concept symbol to be eliminated from a set of ALCOIH(O,u)-clauses.

The calculus is comprised of a pair of the AckermannC rules, a pair of the PurifyC

rules, a pair of the SurfacingC rules, a pair of SkolemisationC rules, a pair of the

SkolemisationO rules, and a set of simplification rules. The AckermannC rules reflect

the generalisations of Ackermann’s Lemma and allow a single concept symbol to be

eliminated from a set of clauses in pivot-reduced form. The PurifyC rules are special

cases of the AckermannC rules and allow a single concept symbol to be eliminated

from a set of clauses that is positive or negative w.r.t. this symbol (i.e., the pivot

occurs only positively or only negatively in the clause set). The SurfacingC rules, the

SkolemisationC rule and the SkolemisationO rules facilitate the transformation of the

clause set into pivot-reduced form. In particular, the SurfacingC rules allow the pivot

(or the negated pivot) to be moved outside the scope of a universal role restriction

in any clauses. The SkolemisationC rules allow the pivot (or the negated pivot) to be

moved outside the scope of an existential role restriction in an existential clause. The

SkolemisationO rules allow the pivot (or the negated pivot) to be moved outside the

scope of the universal role. The Skolemisation rules introduce new nominals in the

ontologies, which are not in the desired signatures. Practical methods for forgetting

nominals are not available at present, which means that we should avoid applying the

Skolemisation rules (if possible). Crucial to the method are the simplification rules,

which have a twofold purpose. On the one hand, the simplification rules are used to

simplify clauses, making the clause set more accessible to the forgetting method and

thus improving the efficiency of the method. On the other hand, the simplification

158 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

rules are used to transform the clause set into a set of general clauses, which facilitates

the transformation of the clause set into pivot-reduced form. This improves the success

rates of the method. We have shown that AckC is terminating and is sound in the

sense that the elimination result is equivalent to the original ontology up to the inter-

pretations of the symbol that has been eliminated, possibly with the interpretation of

the nominals that have been introduced during the elimination process.

In order to gain an insight into the practicality of the method for concept forgetting,

we implemented a prototype of the method in Java using the OWL API and evaluated

the prototype on a corpus of 396 real-world ontologies. These ontologies are taken from

the NCBO BioPortal repository, a resource so far including more than 600 biomedical

ontologies developed for use in clinical and translational research. The evaluation

results have shown that our method (for concept forgetting) can compute a solution of

forgetting concept symbols from ALCOIH(O,u)-ontologies in most test cases within

a short period of time. Only a small number of nominals are introduced during the

elimination process. This verifies the practicality of our method for concept forgetting.

The method for role forgetting is based on a dedicated calculus, namely, AckR,

which is based on a non-trivial generalisation of Ackermann’s Lemma and allows a

single role symbol to be eliminated from a set of ALCOIH(O,u)-clauses. The calculus

is comprised of the AckermannR rule, a pair of the PurifyR rules, a pair of the InvertingR

rules and a set of simplification rules. The AckermannR rule reflects the generalisation

of Ackermann’s Lemma and allows a single role symbol to be eliminated from a set of

clauses in pivot-reduced form. The PurifyR rules are special cases of the AckermannR

rule and allow a single role symbol to be eliminated from a set of clauses that is

positive or negative w.r.t. this symbol (i.e., the pivot occurs only positively or only

negatively in the clause set). The InvertingR rules facilitate the transformation of the

clause set into pivot-reduced form. In particular, the InvertingR rules allow the pivot

(or the negated pivot) to be moved outside the scope of the inverse operator in an

RBox clause. The simplification rules in AckR are exactly the same as those in AckC

and thus have the same use and effect as in concept forgetting, i.e., they are used to

simplify the clauses and transform the pivot-clauses into pivot-reduced form, thereby

improving the efficiency and success rates of the method. We have shown that the

method is (role forgetting) complete for ALCOH(O,u)-ontologies.

7.2. FUTURE DIRECTIONS 159

In order to gain an insight into the practicality of the method for role forgetting,

we implemented a prototype of the method in Java using the OWL API and evaluated

the prototype on a corpus of 333 real-world ontologies taken from the NCBO BioPortal

repository. The evaluation results have shown that our method (for role forgetting)

can compute a solution of forgetting role symbols from ALCOIH(O,u)-ontologies in

most test cases within a reasonable period of time. Concept definer symbols may

be introduced in the ontologies during the forgetting process (to transform the Σ-

clauses into normal form), which are not in the desired signatures. We attempt to

eliminate them using our method for concept forgetting. Although, using this method,

there is no guarantee that all introduced definer symbols can be eliminated from the

ontologies, the evaluation results have shown that the introduced definer symbols have

been successfully eliminated from the ontologies in all test cases.

The method for concept forgetting and the method for role forgetting can be inte-

grated and used as a practical method for forgetting both concept and role symbols

from ALCOIH(O,u)-ontologies. This is because, in the method, concept and role

symbols are eliminated in a focused way, that is, the rules for concept forgetting and

those for role forgetting are mutually independent. The elimination of a (concept or

role) symbol in Σ can be followed by the elimination of any other (concept or role)

symbol in Σ. During the process of eliminating the role symbols in Σ, concept definer

symbols may be introduced in the ontologies when the Σ-clauses are transformed into

normal form. Our implementation Fame defaults to first forgetting all role symbols (in

Σ) and then all concept symbols (in Σ) so that the introduced definer symbols can be

eliminated as part of the subsequent concept forgetting. The evaluation results have

shown that in this way, the efficiency of the method can be significantly improved.

7.2 Future Directions

Forgetting for more expressive description logics. The description logics con-

sidered in this thesis are those expressible in ALCOIH(O,u). A natural next step

for future work is to extend the method to accommodate more expressivity such as

qualified number restrictions and transitive and functional properties on roles, i.e., a

practical method of concept and role forgetting for SHOIQ(O,u)-ontologies. The

160 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

obstacles to the extension of the method to SHOIQ(O,u) are due to (i) the inter-

action between nominals, inverse roles, and qualified number restrictions, which lead

to the almost complete loss of the tree model property [Tob00] (see [HS07] for this

interaction), and (ii) nominals, inverse roles, and qualified number restrictions to-

gether have a dramatic influence on complexity: satisfiability of ALCOIQ-concepts is

NExpTime-hard [Tob00]. It has also been realised that when forgetting role symbols,

the interaction between transitivity and role inclusions can lead to results where it is

not clear how to represent them finitely [Koo15]. Recently, we have developed a prac-

tical method for forgetting role symbols from ontologies expressible in the description

logic ALCOQH(O,u) [ZS17]. The method is terminating and is sound in the sense

that the forgetting solution is equivalent to the original ontology up to the interpre-

tations of the symbols that have been forgotten, possibly with the interpretations of

the definer symbols that have been introduced during the forgetting process. We have

shown that the method is (role forgetting) complete for ALCOQ(O)-ontologies. Only

problematic are the cases where forgetting a role symbol would require the combina-

tions of certain qualified number restrictions and role inclusions.

Selection of Σ-symbols. An important feature of our method is that Σ-symbols

can be flexibly specified. This means that the Σ-symbols are determined entirely by the

user and their application demands. Nevertheless, there are situations where it is not

clear which symbols should be selected as the Σ-symbols to be forgotten. For example,

the BBC Sports Ontology provides a set of hierarchical controlled vocabulary split into

many sports categories. However, one may be only interested in the information

relating to football. In this scenario, we can use forgetting to create a restricted view

of the ontology, where the information relating to football is fully preserved and those

symbols not necessarily needed for the representation of this information (i.e. symbols

not relating to football) are gotten rid of. However, it is not obvious in this case which

information is not relevant to football and which symbols should be selected as the

Σ-symbols to be forgotten. Even if we already know this, it is difficult to select them

purely by hand, especially in the cases where a large number of symbols need to be

forgotten. One may expect an easier and automatic way to do the selection.

Comparison of Fame with other systems. Fame is a prototypical implemen-

tation that fully realises the functions of our forgetting method. It would be of interest

7.2. FUTURE DIRECTIONS 161

to see how Fame is like compared to other forgetting tools such as Lethe [KS15b],

Scan [Ohl96] and Dls [Gus96]. For the comparison with Lethe, used as test data

are ontologies restricted to the expressivity that both Fame and Lethe can handle.

We have obtained preliminary results which show that Fame is faster than the current

version of Lethe in some cases where a corpus of ALC-ontologies were considered. For

the comparison with Scan and Dls, the strategy is first translating the test ontolo-

gies into first-order logic formulas, and then applying Scan and Dls to the formulas

to eliminate the (predicate) symbols in Σ. The results are first-order logic formulas

that do not contain any (predicate) symbols in Σ. Since Lethe can handle some DL

expressivity that Fame cannot handle, and Fame can handle some DL expressivity

that Lethe cannot handle, it would be beneficial from both the Lethe and Fame

perspective to integrate these two systems into one framework and use the integrated

system to solve forgetting problems in more expressive description logics.

Use of Fame in real-world applications. Evaluation results have shown that

Fame achieve good results in a lot of real-world use cases. The evaluation was however

conducted with the test data set being a corpus of adjusted ontologies from the NCBO

BioPortal repository where the ontologies are mainly used for system evaluation. It

would be of interest to see how Fame performs in real-world applications. This could

unfold the full potential of forgetting and Fame, especially in applications dealing with

large and monolithic ontologies. An open question is whether Ackermann-based for-

getting approaches can be used to approximate ontologies into new ontologies that are

less expressive, since saturation-approaches have been found feasible in approximating

ontologies [PT07, RPZ10, PRZ16, BCR10, LSW12, CFG+14].

Bibliography

[ABM99] Carlos Areces, Patrick Blackburn, and Maarten Marx. A Road-Map on

Complexity for Hybrid Logics. In Computer Science Logic, 13th Interna-

tional Workshop, 8th Annual Conference of the EACSL, volume 1683 of

Lecture Notes in Computer Science, pages 307–321. Springer, 1999.

[ABM00] Carlos Areces, Patrick Blackburn, and Maarten Marx. The Computa-

tional Complexity of Hybrid Temporal Logics. Logic Journal of the IGPL,

8(5):653–679, 2000.

[Ack35] Wilhelm Ackermann. Untersuchungen über das Eliminationsproblem der

mathematischen Logik. Mathematische Annalen, 110(1):390–413, 1935.

[AdRdN01] Carlos Areces, Maarten de Rijke, and Hans de Nivelle. Resolution in

Modal, Description and Hybrid Logic. Journal of Logic and Computation,

11(5):717–736, 2001.

[ANvB98] Hajnal Andréka, István Németi, and Johan van Benthem. Modal Lan-

guages and Bounded Fragments of Predicate Logic. Journal of Philosoph-

ical Logic, 27(3):217–274, 1998.

[BCR10] Elena Botoeva, Diego Calvanese, and Mariano Rodriguez-Muro. Expres-

sive Approximations in DL-Lite Ontologies. In Artificial Intelligence:

Methodology, Systems, and Applications, 14th International Conference,

AIMSA 2010, volume 6304 of Lecture Notes in Computer Science, pages

21–31. Springer, 2010.

[BGW94a] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational

theorem proving for hierarchic first-order theories. Applicable Algebra in

Engineering, Communication and Computing, 5(3-4):193–212, 1994.

162

BIBLIOGRAPHY 163

[BGW94b] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational

Theorem Proving for Hierarchic First-Order Theories. Applicable Algebra

in Engineering, Communication and Computing, 5:193–212, 1994.

[B́ıl07] Marta B́ılková. Uniform Interpolation and Propositional Quantifiers in

Modal Logics. Studia Logica, 85(1):1–31, 2007.

[BKL+16] Elena Botoeva, Boris Konev, Carsten Lutz, Vladislav Ryzhikov, Frank

Wolter, and Michael Zakharyaschev. Inseparability and Conservative Ex-

tensions of Description Logic Ontologies: A Survey. In Reasoning Web:

Logical Foundation of Knowledge Graph Construction and Query Answer-

ing - 12th International Summer School 2016, volume 9885 of Lecture

Notes in Computer Science, pages 27–89. Springer, 2016.

[BLB08] Franz Baader, Carsten Lutz, and Sebastian Brandt. Pushing the EL En-

velope Further. In Proceedings of the Fourth OWLED Workshop on OWL:

Experiences and Directions, volume 496 of CEUR Workshop Proceedings.

CEUR-WS.org, 2008.

[BLM06] Philippe Besnard, Jérôme Lang, and Pierre Marquis. Variable Forgetting

in Preference Relations over Propositional Domains. In ECAI 2006, 17th

European Conference on Artificial Intelligence, volume 141 of Frontiers in

Artificial Intelligence and Applications, pages 763–764. IOS Press, 2006.

[BLR+16] Elena Botoeva, Carsten Lutz, Vladislav Ryzhikov, Frank Wolter, and

Michael Zakharyaschev. Query-Based Entailment and Inseparability for

ALC Ontologies. In Proceedings of the Twenty-Fifth International Joint

Conference on Artificial Intelligence, IJCAI 2016 [DBL16], pages 1001–

1007.

[BN03] Franz Baader and Werner Nutt. Basic Description Logics. In The De-

scription Logic Handbook: Theory, Implementation, and Applications,

pages 43–95. Cambridge University Press, 2003.

[Bor96] Alexander Borgida. On the Relative Expressiveness of Description Logics

and Predicate Logics. Artificial Intelligence, 82(1-2):353–367, 1996.

164 BIBLIOGRAPHY

[Bro03] Frank Markham Brown. Boolean Reasoning: The Logic of Boolean Equa-

tions. Dover Publications, 2003.

[Cal96] Diego Calvanese. Finite Model Reasoning in Description Logics. In Pro-

ceedings of the Fifth International Conference on Principles of Knowledge

Representation and Reasoning (KR’96), 1996., pages 292–303. Morgan

Kaufmann, 1996.

[CFG+14] David Carral, Cristina Feier, Bernardo Cuenca Grau, Pascal Hitzler, and

Ian Horrocks. EL-ifying ontologies. In Automated Reasoning - 7th Inter-

national Joint Conference, IJCAR 2014 [DBL14], pages 464–479.

[CG08] Willem Conradie and Valentin Goranko. IV. Semantic extensions of

SQEMA. Journal of Applied Non-Classical Logics, 18(2-3):175–211, 2008.

[CGV06a] Willem Conradie, Valentin Goranko, and Dimiter Vakarelov. Algorithmic

correspondence and completeness in modal logic. I. The core algorithm

SQEMA. Logical Methods in Computer Science, 2(1), 2006.

[CGV06b] Willem Conradie, Valentin Goranko, and Dimiter Vakarelov. Algorith-

mic Correspondence and Completeness in Modal Logic. II. Polyadic and

Hybrid Extensions of the Algorithm SQEMA. Journal of Logic and Com-

putation, 16(5):579–612, 2006.

[CGV09] Willem Conradie, Valentin Goranko, and Dimiter Vakarelov. Algorithmic

Correspondence and Completeness in Modal Logic. III. Extensions of the

Algorithm SQEMA with Substitutions. Fundam. Inform., 92(4):307–343,

2009.

[CGV10] Willem Conradie, Valentin Goranko, and Dimiter Vakarelov. Algorithmic

correspondence and completeness in modal logic. V. Recursive extensions

of SQEMA. Journal of Applied Logic, 8(4):319–333, 2010.

[Con06] Willem Conradie. On the strength and scope of DLS. Journal of Applied

Non-Classical Logics, 16(3-4):279–296, 2006.

BIBLIOGRAPHY 165

[Con09] Willem Conradie. Completeness and Correspondence in Hybrid Logic

via an Extension of SQEMA. Electronic Notes in Theoretical Computer

Science, 231:175–190, 2009.

[Cra57] William Craig. Three uses of the herbrand-gentzen theorem in relating

model theory and proof theory. Journal of Symbolic Logic, 22(3):269–285,

1957.

[DBL14] Automated Reasoning - 7th International Joint Conference, IJCAR 2014,

Held as Part of the Vienna Summer of Logic, VSL 2014, volume 8562 of

Lecture Notes in Computer Science. Springer, 2014.

[DBL16] Proceedings of the Twenty-Fifth International Joint Conference on Arti-

ficial Intelligence, IJCAI 2016. IJCAI/AAAI Press, 2016.

[De 96] Giuseppe De Giacomo. Eliminating ”Converse” from Converse PDL.

Journal of Logic, Language and Information, 5(2):193–208, 1996.

[DH96] Giovanna D’Agostino and Marco Hollenberg. Uniform Interpolation,

Automata and the Modal µ-Calculus. In University of Utrecht, page

http://www.phil.ruu., 1996.

[DH00] Giovanna D’Agostino and Marco Hollenberg. Logical Questions Concern-

ing The mu-Calculus: Interpolation, Lyndon and Los-Tarski. Journal of

Symbolic Logic, 65(1):310–332, 2000.

[DL94a] Giuseppe De Giacomo and Maurizio Lenzerini. Boosting the correspon-

dence between description logics and propositional dynamic logics. In

Proceedings of the 12th National Conference on Artificial Intelligence,

Volume 1., volume 1, pages 205–212. AAAI Press, 1994.

[DL94b] Giuseppe De Giacomo and Maurizio Lenzerini. Concept Language with

Number Restrictions and Fixpoints, and its Relationship with µ-calculus.

In 11th European Conference on Artificial Intelligence, ECAI 1994, pages

411–415. John Wiley and Sons, 1994.

[DL06] Giovanna D’Agostino and Giacomo Lenzi. On modal µ-calculus with

explicit interpolants. Journal of Applied Logic, 4(3):256–278, 2006.

166 BIBLIOGRAPHY

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine

program for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[DLS97] Patrick Doherty, Witold Lukaszewicz, and Andrzej Szalas. Computing

Circumscription Revisited: A Reduction Algorithm. J. Autom. Reason-

ing, 18(3):297–336, 1997.

[DM96] Giuseppe De Giacomo and Fabio Massacci. Tableaux and Algorithms for

Propositional Dynamic Logic with Converse. In Automated Deduction -

CADE-13, 13th International Conference on Automated Deduction, 1996,

Proceedings, volume 1104 of Lecture Notes in Computer Science, pages

613–627. Springer, 1996.

[DP60] Martin Davis and Hilary Putnam. A Computing Procedure for Quantifi-

cation Theory. J. ACM, 7(3):201–215, 1960.

[dRV95] Maarten de Rijke and Yde Venema. Sahlqvist’s theorem for Boolean

algebras with operators with an application to cylindric algebras. Studia

Logica, 54(1):61–78, 1995.

[EdC89] Patrice Enjalbert and Luis Fariñas del Cerro. Modal Resolution in Clausal

Form. Theor. Comput. Sci., 65(1):1–33, 1989.

[Eng96] T. Engel. Quantifier elimination in second-order predicate logic. Diplo-

marbeit, Fachbereich Informatik, Univ. des Saarlandes, Saarbrücken,

Germany, October 1996.

[EW08] Thomas Eiter and Kewen Wang. Semantic forgetting in answer set pro-

gramming. Artificial Intelligence, 172(14):1644–1672, 2008.

[FZ16] Hong Fang and Xiaowang Zhang. A tableau-based forgetting in ALCQ. In

Knowledge Graph and Semantic Computing: Semantic, Knowledge, and

Linked Big Data - First China Conference, CCKS 2016, volume 650 of

Communications in Computer and Information Science, pages 110–116.

Springer, 2016.

BIBLIOGRAPHY 167

[GHSV04] V. Goranko, U. Hustadt, R. A. Schmidt, and D. Vakarelov. SCAN is

complete for all sahlqvist formulae. In Relational and Kleene-Algebraic

Methods in Computer Science, volume 3051 of LNCS, pages 149–162.

Springer, 2004.

[GKV97] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision

problem for two-variable first-order logic. Bulletin of Symbolic Logic,

3(1):53–69, 1997.

[GLW06] Silvio Ghilardi, Carsten Lutz, and Frank Wolter. Did I Damage My

Ontology? A Case for Conservative Extensions in Description Logics. In

Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors,

Proceedings, Tenth International Conference on Principles of Knowledge

Representation and Reasoning, pages 187–197. AAAI Press, 2006.

[GO92] Dov M. Gabbay and Hans Jürgen Ohlbach. Quantifier Elimination

in Second-Order Predicate Logic. In Bernhard Nebel, Charles Rich,

and William R. Swartout, editors, Proceedings of the 3rd International

Conference on Principles of Knowledge Representation and Reasoning

(KR’92). 1992., pages 425–435. Morgan Kaufmann, 1992.

[GOR99] Erich Grädel, Martin Otto, and Eric Rosen. Undecidability results on

two-variable logics. Arch. Math. Log., 38(4-5):313–354, 1999.

[Grä99] Erich Grädel. On The Restraining Power of Guards. Journal of Symbolic

Logic, 64(4):1719–1742, 1999.

[GSS08] D. M. Gabbay, R. A. Schmidt, and A. Sza las. Second-Order Quantifier

Elimination: Foundations, Computational Aspects and Applications, vol-

ume 12 of Studies in Logic: Mathematical Logic and Foundations. College

Publications, 2008.

[Gus96] Joakim Gustafson. An implementation and optimization of an algorithm

for reducing formulae in second-order logic. Technical report, University

of Linköping, Sweden, 1996.

168 BIBLIOGRAPHY

[GV06] Valentin Goranko and Dimiter Vakarelov. Elementary canonical formu-

lae: extending Sahlqvist’s theorem. Ann. Pure Appl. Logic, 141(1-2):180–

217, 2006.

[GZ95] Silvio Ghilardi and Marek W. Zawadowski. Undefinability of proposi-

tional quantifiers in the modal system S4. Studia Logica, 55(2):259–271,

1995.

[Hen63] Leon Henkin. An Extension of the Craig-Lyndon Interpolation Theorem.

Journal of Symbolic Logic, 28(3):201–216, 1963.

[Hen75] Sahlqvist Henrik. Completeness and correspondence in the first and sec-

ond order semantics for modal logic. Studies in Logic and the Foundations

of Mathematics, 82:110–143, 1975.

[HG97] Ian Horrocks and Graham Gough. Description Logics with Transitive

Roles. In Proceedings of the 1997 International Workshop on Description

Logics, volume 410 of URA-CNRS, 1997.

[HM08] Andreas Herzig and Jérôme Mengin. Uniform interpolation by resolution

in modal logic. In Logics in Artificial Intelligence, 11th European Confer-

ence, JELIA, volume 5293 of Lecture Notes in Computer Science, pages

219–231. Springer, 2008.

[HP98] Ian Horrocks and Peter F. Patel-Schneider. Optimising Propositional

Modal Satisfiability for Description Logic Subsumption. In Jacques Cal-

met and Jan A. Plaza, editors, Artificial Intelligence and Symbolic Com-

putation, International Conference AISC’98, Proceedings, volume 1476 of

Lecture Notes in Computer Science, pages 234–246. Springer, 1998.

[HS99] Ian Horrocks and Ulrike Sattler. A Description Logic with Transitive and

Inverse Roles and Role Hierarchies. Journal of Logic and Computation,

9(3):385–410, 1999.

[HS07] Ian Horrocks and Ulrike Sattler. A Tableau Decision Procedure for

SHOIQ. J. Autom. Reasoning, 39(3):249–276, 2007.

BIBLIOGRAPHY 169

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for

expressive description logics. In Logic Programming and Automated Rea-

soning, 6th International Conference, LPAR’99, 1999, Proceedings, vol-

ume 1705 of Lecture Notes in Computer Science, pages 161–180. Springer,

1999.

[JLM+17] Jean Christoph Jung, Carsten Lutz, Mauricio Martel, Thomas Schnei-

der, and Frank Wolter. Conservative Extensions in Guarded and Two-

Variable Fragments. In 44th International Colloquium on Automata,

Languages, and Programming, ICALP 2017, volume 80 of LIPIcs, pages

108:1–108:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[KHM99] Jürg Kohlas, Rolf Haenni, and Seraf́ın Moral. Propositional Information

Systems. Journal of Logic and Computation, 9(5):651–681, 1999.

[KKS12] Yevgeny Kazakov, Markus Kroetzsch, and Frantisek Simancik. Practical

Reasoning with Nominals in the EL Family of Description Logics. In

Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith, editors, Prin-

ciples of Knowledge Representation and Reasoning: Proceedings of the

Thirteenth International Conference, KR, 2012. AAAI Press, 2012.

[KLWW13] Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Model-

theoretic inseparability and modularity of description logic ontologies.

Artificial Intelligence, 203:66–103, 2013.

[Koo15] Patrick Koopmann. Practical Uniform Interpolation for Expressive De-

scription Logics. PhD thesis, The University of Manchester, UK, 2015.

[Kra07] Marcus Kracht. 8 modal consequence relations. Studies in Logic and

Practical Reasoning, 3:491–545, 2007.

[KS13a] P. Koopmann and R. A. Schmidt. Uniform Interpolation of ALC-

Ontologies Using Fixpoints. In Proc. FroCos’13, volume 8152 of LNCS,

pages 87–102. Springer, 2013.

[KS13b] Patrick Koopmann and Renate A. Schmidt. Forgetting concept and role

170 BIBLIOGRAPHY

symbols inALCH-ontologies. In Logic for Programming, Artificial Intelli-

gence, and Reasoning - 19th International Conference, LPAR-19, volume

8312 of Lecture Notes in Computer Science, pages 552–567. Springer,

2013.

[KS13c] Patrick Koopmann and Renate A. Schmidt. Implementation and Evalua-

tion of Forgetting in ALC-Ontologies. In Chiara Del Vescovo, Torsten

Hahmann, David Pearce, and Dirk Walther, editors, Proceedings of

the 7th International Workshop on Modular Ontologies co-located with

the 12th International Conference on Logic Programming and Non-

monotonic Reasoning (LPNMR 2013), volume 1081 of CEUR Workshop

Proceedings. CEUR-WS.org, 2013.

[KS13d] Patrick Koopmann and Renate A. Schmidt. Uniform Interpolation of

ALC-Ontologies Using Fixpoints. In Frontiers of Combining Systems -

9th International Symposium, FroCoS 2013, volume 8152 of Lecture Notes

in Computer Science, pages 87–102. Springer, 2013.

[KS14] Patrick Koopmann and Renate A. Schmidt. Count and Forget: Uniform

Interpolation of \mathcal{SHQ} -Ontologies. In Automated Reasoning

- 7th International Joint Conference, IJCAR 2014, Held as Part of the

Vienna Summer of Logic, VSL 2014 [DBL14], pages 434–448.

[KS15a] P. Koopmann and R. A. Schmidt. Uniform Interpolation and Forgetting

for ALC-Ontologies with ABoxes. In Proc. AAAI’15, pages 175–181.

AAAI Press, 2015.

[KS15b] Patrick Koopmann and Renate A. Schmidt. LETHE: Saturation-Based

Reasoning for Non-Standard Reasoning Tasks. In Informal Proceedings

of the 4th International Workshop on OWL Reasoner Evaluation (ORE-

2015), 2015., volume 1387 of CEUR Workshop Proceedings, pages 23–30.

CEUR-WS.org, 2015.

[KS15c] Patrick Koopmann and Renate A. Schmidt. Saturated-Based Forgetting

BIBLIOGRAPHY 171

in the Description Logic SIF. In Diego Calvanese and Boris Konev, edi-

tors, Proceedings of the 28th International Workshop on Description Log-

ics, Athens,Greece, June 7-10, 2015., volume 1350 of CEUR Workshop

Proceedings. CEUR-WS.org, 2015.

[KSH12] Markus Krötzsch, Frantisek Simancik, and Ian Horrocks. A Description

Logic Primer. CoRR, abs/1201.4089, 2012.

[KWW08] Boris Konev, Dirk Walther, and Frank Wolter. The Logical Difference

Problem for Description Logic Terminologies. In Alessandro Armando,

Peter Baumgartner, and Gilles Dowek, editors, Automated Reasoning,

4th International Joint Conference, IJCAR 2008, volume 5195 of Lecture

Notes in Computer Science, pages 259–274. Springer, 2008.

[KWW09] Boris Konev, Dirk Walther, and Frank Wolter. Forgetting and Uniform

Interpolation in Large-Scale Description Logic Terminologies. In IJCAI

2009, Proceedings of the 21st International Joint Conference on Artificial

Intelligence, pages 830–835, 2009.

[Lei17] João Leite. A Bird’s-Eye View of Forgetting in Answer-Set Programming.

In Marcello Balduccini and Tomi Janhunen, editors, Logic Programming

and Nonmonotonic Reasoning - 14th International Conference, LPNMR

2017, volume 10377 of Lecture Notes in Computer Science, pages 10–22.

Springer, 2017.

[LK13a] M. Ludwig and B. Konev. Towards practical uniform interpolation and

forgetting for ALC TBoxes. In Proc. DL’13, volume 1014 of CEUR Work-

shop Proceedings, pages 377–389. CEUR-WS.org, 2013.

[LK13b] Michel Ludwig and Boris Konev. Towards Practical Uniform Interpola-

tion and Forgetting for ALC TBoxes. In Informal Proceedings of the 26th

International Workshop on Description Logics, volume 1014 of CEUR

Workshop Proceedings, pages 377–389. CEUR-WS.org, 2013.

[LK14] Michel Ludwig and Boris Konev. Practical Uniform Interpolation and

Forgetting for ALC TBoxes with Applications to Logical Difference. In

172 BIBLIOGRAPHY

Principles of Knowledge Representation and Reasoning: Proceedings of

the Fourteenth International Conference, KR 2014. AAAI Press, 2014.

[LLM03] Jérôme Lang, Paolo Liberatore, and Pierre Marquis. Propositional In-

dependence: Formula-Variable Independence and Forgetting. Journal of

Artificial Intelligence Research, 18:391–443, 2003.

[LM02] Jérôme Lang and Pierre Marquis. Resolving inconsistencies by variable

forgetting. In Proceedings of the Eights International Conference on Prin-

ciples and Knowledge Representation and Reasoning (KR-02), pages 239–

250. Morgan Kaufmann, 2002.

[LR94] Fangzhen Lin and Ray Reiter. Forget It! In Proc. AAAI Fall Symposium

on Relevance, pages 154–159. AAAI Press, 1994.

[LSW12] Carsten Lutz, Inanç Seylan, and Frank Wolter. An Automata-Theoretic

Approach to Uniform Interpolation and Approximation in the Description

Logic EL. In Principles of Knowledge Representation and Reasoning:

Proceedings of the Thirteenth International Conference, KR 2012. AAAI

Press, 2012.

[LW07] Carsten Lutz and Frank Wolter. Conservative Extensions in the

Lightweight Description Logic EL. In Frank Pfenning, editor, Automated

Deduction - CADE-21, 21st International Conference on Automated De-

duction, volume 4603 of Lecture Notes in Computer Science, pages 84–99.

Springer, 2007.

[LW10] Carsten Lutz and Frank Wolter. Deciding inseparability and conservative

extensions in the description logic EL. Journal of Symbolic Computation,

45(2):194–228, 2010.

[LW11] Carsten Lutz and Frank Wolter. Foundations for uniform interpolation

and forgetting in expressive description logics. In IJCAI 2011, Proceed-

ings of the 22nd International Joint Conference on Artificial Intelligence,

pages 989–995. IJCAI/AAAI Press, 2011.

BIBLIOGRAPHY 173

[LWW07] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative Extensions

in Expressive Description Logics. In IJCAI 2007, Proceedings of the 20th

International Joint Conference on Artificial Intelligence, Hyderabad, In-

dia, January 6-12, 2007, pages 453–458, 2007.

[MH09] Ralf Möller and Volker Haarslev. Tableau-Based Reasoning. In Handbook

on Ontologies, International Handbooks on Information Systems, pages

509–528. Springer, 2009.

[MNS+12] Mark A. Musen, Natalya Fridman Noy, Nigam H. Shah, Patricia L. Whet-

zel, Christopher G. Chute, Margaret-Anne D. Storey, and Barry Smith.

The national center for biomedical ontology. JAMIA, 19(2):190–195,

2012.

[Nik11] Nadeschda Nikitina. Forgetting in General EL Terminologies. In Pro-

ceedings of the 24th International Workshop on Description Logics (DL

2011), volume 745 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

[NR12] Nadeschda Nikitina and Sebastian Rudolph. On the (Non-)Succinctness

of Uniform Interpolation in General ${\mathcal{EL}}$ Terminologies.

In Web Reasoning and Rule Systems - 6th International Conference, RR

2012, pages 246–249, 2012.

[NR14] Nadeschda Nikitina and Sebastian Rudolph. (Non-)Succinctness of uni-

form interpolants of general terminologies in the description logic EL.

Artificial Intelligence, 215:120–140, 2014.

[NS98] A. Nonnengart and A. Sza las. A Fixpoint Approach to Second-Order

Quantifier Elimination with Applications to Correspondence Theory. In

Logic at work: essays dedicated to the memory of Helena Rasiowa, vol-

ume 24, pages 307–328. Physica Verlag, 1998.

[Ohl96] Hans Jürgen Ohlbach. SCAN - Elimination of Predicate Quantifiers.

In Automated Deduction - CADE-13, 13th International Conference on

Automated Deduction, 1996, Proceedings, volume 1104 of Lecture Notes

in Computer Science, pages 161–165. Springer, 1996.

174 BIBLIOGRAPHY

[PGJ11] Heather S. Packer, Nicholas Gibbins, and Nicholas R. Jennings. An On-

Line Algorithm for Semantic Forgetting. In Proceedings of the 22nd Inter-

national Joint Conference on Artificial Intelligence, IJCAI 2011, pages

2704–2709. IJCAI/AAAI Press, 2011.

[Pit92] Andrew M. Pitts. On an Interpretation of Second Order Quantification in

First Order Intuitionistic Propositional Logic. Journal of Symbolic Logic,

57(1):33–52, 1992.

[PRZ16] Jeff Z. Pan, Yuan Ren, and Yuting Zhao. Tractable approximate deduc-

tion for OWL. Artificial Intelligence, 235:95–155, 2016.

[PT07] Jeff Z. Pan and Edward Thomas. Approximating OWL-DL Ontologies.

In Proceedings of the Twenty-Second AAAI Conference on Artificial In-

telligence, 2007, pages 1434–1439. AAAI Press, 2007.

[Rob63] John Alan Robinson. Theorem-Proving on the Computer. J. ACM,

10(2):163–174, 1963.

[RPZ10] Yuan Ren, Jeff Z. Pan, and Yuting Zhao. Soundness Preserving Approx-

imation for TBox Reasoning. In Proceedings of the Twenty-Fourth AAAI

Conference on Artificial Intelligence, AAAI 2010. AAAI Press, 2010.

[Sat96] Ulrike Sattler. A Concept Language Extended with Different Kinds of

Transitive Roles. In KI-96: Advances in Artificial Intelligence, 20th

Annual German Conference on Artificial Intelligence, 1996, Proceed-

ings, volume 1137 of Lecture Notes in Computer Science, pages 333–345.

Springer, 1996.

[Sch91] Klaus Schild. A Correspondence Theory for Terminological Logics: Pre-

liminary Report. In Proceedings of the 12th International Joint Confer-

ence on Artificial Intelligence. 1991, pages 466–471. Morgan Kaufmann,

1991.

[Sch94] Klaus Schild. Terminological cycles and the propositional µ-calculus. In

Proceedings of the 4th International Conference on Principles of Knowl-

edge Representation and Reasoning (KR’94). 1994., pages 509–520, 1994.

BIBLIOGRAPHY 175

[Sch12] Renate A. Schmidt. The Ackermann approach for modal logic, corre-

spondence theory and second-order reduction. Journal of Applied Logic,

10(1):52–74, 2012.

[Sha03] Vladimir Yurievich Shavrukov. Adventures in diagonalizable algebras.

ILLC Publications, 2003.

[Sim94] Harold Simmons. The Monotonous Elimination of Predicate Variables.

Journal of Logic and Computation, 4(1):23–68, 1994.

[SS91] Manfred Schmidt-Schauß and Gert Smolka. Attributive Concept Descrip-

tions with Complements. Artificial Intelligence, 48(1):1–26, 1991.

[Str82] Robert S. Streett. Propositional Dynamic Logic of Looping and Converse

Is Elementarily Decidable. Information and Control, 54(1/2):121–141,

1982.

[Sza93] Andrzej Szalas. On the Correspondence between Modal and Classical

Logic: An Automated Approach. Journal of Logic and Computation,

3(6):605–620, 1993.

[Sza02] Andrzej Szalas. Second-order quantifier elimination in modal contexts.

In Logics in Artificial Intelligence, European Conference, JELIA 2002,

Cosenza, Italy, September, 23-26, Proceedings, volume 2424 of Lecture

Notes in Computer Science, pages 223–232. Springer, 2002.

[Sza06] Andrzej Szalas. Second-order reasoning in description logics. Journal of

Applied Non-Classical Logics, 16(3-4):517–530, 2006.

[Tob00] Stephan Tobies. The Complexity of Reasoning with Cardinality Restric-

tions and Nominals in Expressive Description Logics. Journal of Artificial

Intelligence Research, 12:199–217, 2000.

[Var85] Moshe Y. Vardi. The Taming of Converse: Reasoning about Two-way

Computations. In Logics of Programs, Conference, Brooklyn College,

1985, Proceedings, volume 193 of Lecture Notes in Computer Science,

pages 413–423. Springer, 1985.

176 BIBLIOGRAPHY

[vB75] Johan van Benthem. A Note on Modal Formulae and Relational Proper-

ties. Journal of Symbolic Logic, 40(1):55–58, 1975.

[vB76] Johan van Benthem. Modal reduction principles. Journal of Symbolic

Logic, 41(2):301–312, 1976.

[vB89] Johan van Benthem. Notes on Modal Definability. Notre Dame Journal

of Formal Logic, 30(1):20–35, 1989.

[vBDMP97] Johan van Benthem, Giovanna D’Agostino, Angelo Montanari, and Al-

berto Policriti. Modal Deduction in Second-Order Logic and Set Theory

- I. Journal of Logic and Computation, 7(2):251–265, 1997.

[vdHdR95] Wiebe van der Hoek and Maarten de Rijke. Counting Objects. Journal

of Logic and Computation, 5(3):325–345, 1995.

[Vis96] Albert Visser. Bisimulations, Model Descriptions and Propositional

Quantifiers. Logic Group Preprint Series. Department of Philosophy,

Utrecht Univ., 1996.

[WNS+11] Patricia L. Whetzel, Natalya Fridman Noy, Nigam H. Shah, Paul R.

Alexander, Csongor Nyulas, Tania Tudorache, and Mark A. Musen. Bio-

portal: enhanced functionality via new web services from the national

center for biomedical ontology to access and use ontologies in software ap-

plications. Nucleic Acids Research, 39(Web-Server-Issue):541–545, 2011.

[WWT+09] Kewen Wang, Zhe Wang, Rodney W. Topor, Jeff Z. Pan, and Grigoris

Antoniou. Concept and role forgetting in ALC ontologies. In The Se-

mantic Web - ISWC 2009, 8th International Semantic Web Conference,

ISWC 2009, volume 5823 of Lecture Notes in Computer Science, pages

666–681. Springer, 2009.

[WWT+14] Kewen Wang, Zhe Wang, Rodney W. Topor, Jeff Z. Pan, and Grigoris

Antoniou. Eliminating concepts and roles from ontologies in expressive

descriptive logics. Computational Intelligence, 30(2):205–232, 2014.

BIBLIOGRAPHY 177

[WWTP08] Zhe Wang, Kewen Wang, Rodney W. Topor, and Jeff Z. Pan. Forgetting

Concepts in DL-Lite. In The Semantic Web: Research and Applications,

5th European Semantic Web Conference, ESWC 2008, volume 5021 of

Lecture Notes in Computer Science, pages 245–257. Springer, 2008.

[WWTP10] Zhe Wang, Kewen Wang, Rodney W. Topor, and Jeff Z. Pan. Forgetting

for knowledge bases in DL-Lite. Annals of Mathematics and Artificial

Intelligence, 58(1-2):117–151, 2010.

[WWTZ10] Zhe Wang, Kewen Wang, Rodney W. Topor, and Xiaowang Zhang.

Tableau-based forgetting in ALC ontologies. In ECAI 2010 - 19th Eu-

ropean Conference on Artificial Intelligence,, volume 215 of Frontiers in

Artificial Intelligence and Applications, pages 47–52. IOS Press, 2010.

[ZFW05] Yan Zhang, Norman Y. Foo, and Kewen Wang. Solving Logic Program

Conflict through Strong and Weak Forgettings. In IJCAI-05, Proceed-

ings of the Nineteenth International Joint Conference on Artificial Intel-

ligence, 2005, pages 627–634. Professional Book Center, 2005.

[Zho14] Yi Zhou. Polynomially Bounded Forgetting. In PRICAI 2014: Trends

in Artificial Intelligence - 13th Pacific Rim International Conference on

Artificial Intelligence, 2014, volume 8862 of Lecture Notes in Computer

Science, pages 422–434. Springer, 2014.

[ZS15] Yizheng Zhao and Renate A. Schmidt. Concept forgetting in ALCOI-

ontologies using an ackermann approach. In The Semantic Web - ISWC

2015 - 14th International Semantic Web Conference, volume 9366 of Lec-

ture Notes in Computer Science, pages 587–602. Springer, 2015.

[ZS16] Yizheng Zhao and Renate A. Schmidt. Forgetting concept and role sym-

bols in ALCOIHµ+(O,u)-ontologies. In Proceedings of the Twenty-Fifth

International Joint Conference on Artificial Intelligence, IJCAI 2016

[DBL16], pages 1345–1353.

[ZS17] Yizheng Zhao and Renate A. Schmidt. Role forgetting for ALCOQH(O)-

ontologies using an ackermann-based approach. In Proceedings of the

178 BIBLIOGRAPHY

Twenty-Sixth International Joint Conference on Artificial Intelligence,

IJCAI 2017, pages 1354–1361. AAAI/IJCAI Press, 2017.

[ZZ10] Yan Zhang and Yi Zhou. Forgetting revisited. In Principles of Knowledge

Representation and Reasoning: Proceedings of the Twelfth International

Conference, KR 2010. AAAI Press, 2010.

[ZZ11] Yi Zhou and Yan Zhang. Bounded Forgetting. In Proceedings of the

Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011.

AAAI Press, 2011.

	Abstract
	Declaration
	Copyright Statement
	Acknowledgements
	Introduction
	Applications of Forgetting
	Challenges and Contributions
	Overview of the Thesis
	Published Results

	Basics of Description Logics
	The Basic Description Logic ALC
	Extensions of the Basic ALC
	Relationships with Other Logics

	Basics of Forgetting
	Forgetting in Classical Logics
	Second-Order Quantifier Elimination
	Forgetting in Modal Logics
	Forgetting in Description Logics

	Concept Forgetting for ALCOI
	The Description Logic ALCOI
	Generalised Ackermann's Lemma
	The Normalisation
	The Calculus – AckC
	The Forgetting Method
	Examples

	Role Forgetting for ALCOIH(,)
	The Description Logic ALCOIH(,)
	Obstacles to Role Forgetting
	The Normalisation
	The Calculus – AckR
	The Forgetting Method
	Examples

	Implementation and Evaluation
	The Implementation – Fame
	The Corpus
	Forgetting Concept Symbols
	Forgetting Role Symbols
	Forgetting Concept and Role Symbols
	Comparison of Fame with Lethe

	Conclusions and Future Directions
	Conclusions
	Future Directions

	Bibliography

