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Glossary	

Biological	function	–	in	the	context	of	this	thesis,	functions	are	processes	within	the	
cell	that	the	organism	must	fulfil	to	survive	and	show	a	normal	phenotype,	defined	by	
the	Gene	Ontology.	These	intra-cellular	processes	are	also	referred	to	as	cellular	
functions,	cellular	processes	and	biological	processes.	
	
Pathways	–	Sets	of	molecules	than	interact	under	a	specific	cellular	context,	here	
defined	by	ConsensusPathDB.	
	
Molecular	network	–	network	comprised	of	nodes	representing	biological	molecules	
such	as	proteins	and	genes.	Edges	represent	interactions	between	individual	molecules	
or	genes.	
	
Pathway	network	–	network	comprised	of	biological	pathways.	Edges	represent	
functional	similarity	between	pathways.	
	
Functional	module	–	sub-network	cluster	of	nodes	associated	with	a	particular	
biological	function	
	
Functional	pathway	module	–	sub-network	cluster	of	nodes	(biological	pathways)	
associated	with	a	particular	biological	function	
	
Disease	module	-	network	clusters	of	nodes	associated	with	similar	diseases	
	
Disease	pathway	modules	-	network	clusters	of	nodes	(biological	pathways)	with	
associated	shared	disease	
	
Dynamic	functional	network	–	networks	of	molecular	interactions	that	incorporates	
information	about	the	dynamic	nature	of	the	cell	by	mapping	active	modules,	or	
generating	sub-graphs	active	under	particular	conditions	
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Abstract	
Using	pathway	data	to	model	context	dependent	function	

Ruth	Alexandra	Stoney	
University	of	Manchester,	Doctor	of	Philosophy,	September	2017	

	
Molecular	networks	are	commonly	used	to	explore	cellular	organisation	and	disease	
mechanisms.	Function	is	studied	using	molecular	interaction	networks,	such	as	protein-
protein	networks.	Although	much	biological	insight	has	been	gained	using	these	models	of	
molecular	function,	they	are	hindered	by	their	reliance	on	available	experimental	data	and	
an	inability	to	capture	the	complexity	of	biological	processes.		
	
Functional	modules	can	be	identified	based	on	molecular	network	topology,	making	it	
essential	that	the	edges	accurately	depict	molecular	interactions.	However,	these	
networks	struggle	to	depict	the	temporal	nature	of	interactions,	giving	the	impression	that	
all	interactions	are	constant.	This	misrepresentation	can	result	in	functionally	
heterogeneous	clusters.	The	notoriously	inaccurate	nature	of	experimental	protein	
interaction	data,	along	with	variable	conformity	among	network	clusters	and	functional	
modules	further	impedes	functional	module	extraction.	Representation	of	genes	by	single	
nodes	artificially	merges	the	functions	of	pleiotropic	genes,	distorting	the	arrangement	of	
function	within	molecular	networks.	This	thesis	therefore	explores	a	more	suitable	model	
for	representing	function.	
	
Pathways	are	composed	of	sets	of	proteins	that	are	known	to	interact	within	a	particular	
cellular	context,	corresponding	to	a	discernible	biological	function.	Their	representation	of	
context	dependent	cellular	activity	makes	them	ideal	for	use	as	nodes	within	a	new	
pathway	level	model.	Using	combinatorial	algorithms	a	reduced	redundancy	pathway	set	
was	produced	to	represent	global	cellular	systems.	Enrichment	analysis	provides	reliable	
functional	annotations	for	each	pathway	node,	attributing	independent	functions	to	
pleiotropic	genes.	Edges	are	based	on	functional	semantic	similarity,	generating	a	network	
representation	of	functional	organisation.	
	
Both	yeast	and	human	biological	systems	are	presented	as	functionally	connected	
pathway	networks.	Pathway	annotation	and	experimentation	with	semantic	similarity	
measures	provides	insight	into	the	cross-talk	between	biological	processes.	Pathway	
functional	modules	elucidate	the	intracellular	implementation	of	processes.	Disease	
modules	highlight	the	effects	of	functional	perturbations	and	disease	mechanisms.	The	
pathway	model	provides	a	complementary,	high-level	functional	model	that	begins	to	
bridge	the	gap	between	molecular	data	and	phenotype.	The	utilisation	of	pathway	data	
provides	a	large,	well-validated	data	source,	avoiding	the	inaccuracies	inherent	with	
molecular	data.	Pathway	models	better	represent	components	of	biological	complexity	
such	as	pleiotropy	and	linear	implementation	of	functions.
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Chapter	1 		

Introduction	

Studying	the	intracellular	organisation	of	function	has	enhanced	our	understanding	of	

biology,	offering	insight	into	the	relationships	between	molecular	interactions	that	

make	up	complex	phenotypes.	We	show	that	molecular	interaction	models	have	

facilitated	great	progress	in	the	generation	of	functional	maps,	but	are	restricted	both	

by	limitations	within	the	interaction	data	and	the	ability	of	molecular	networks	to	

represent	biological	complexity.	We	therefore	propose	a	new	model,	using	pathways	

as	entities,	to	overcome	these	barriers	and	generate	more	representative	biological	

networks.	

		

1.1 Function	

In	order	to	fulfil	their	biological	roles,	cells	must	perform	a	multitude	of	highly	

interdependent	functions.	Some	processes	are	continuous,	such	as	glucose	

metabolism;	others	are	cyclic,	such	as	cell	cycle	division;	and	others	are	intermittent,	

such	as	responses	to	stimuli.	Biological	function	has	a	hierarchical	organisation,	

starting	with	very	general	functions	involving	large	numbers	of	genes,	which	are	sub-

divided	into	increasingly	specific	processes.	This	hierarchical	organisation	is	observed	

in	the	physical	organisation	of	function	in	the	cell	(Barabási	&	Oltvai	2004)	and	
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reflected	in	conceptual	formalisations	such	as	the	Gene	Ontology	(GO)	(Ashburner	et	

al.	2000).	

1.2 Systems	biology	approaches	to	modelling	function	using	

molecular	networks	

Systems	biology	is	a	holistic	approach,	which	aims	to	understand	the	complexity	of	

biological	systems.	It	is	based	on	the	understanding	that	biochemical	entities,	such	as	

proteins,	do	not	work	alone,	but	instead	collaborate	to	perform	synchronised	cellular	

functions.	Graphs	are	often	used	to	represent	the	interactions	and	relationships	

between	biological	molecules,	allowing	entire	cellular	systems	to	be	depicted	in	a	

single	model.	The	use	of	molecular	networks	to	decipher	the	organisation	of	cellular	

function	has	been	widely	adopted	(Barabási	&	Oltvai	2004;	Spirin	&	Mirny	2003;	

Sharan	et	al.	2007;	Ravasz	et	al.	2002),	with	functional	maps	being	generated	for	many	

organisms	including	Saccharomyces	cerevisiae	(Janjić	et	al.	2014;	Spirin	&	Mirny	2003;	

Zhu	et	al.	2008),	Mus	musculus	(Guan	et	al.	2008),	and	Homo	sapiens	(Wu	et	al.	2010;	

Huttlin	et	al.	2015).	These	networks	can	incorporate	interactions	between	many	types	

of	biological	entities	including	proteins,	DNA	and	metabolites.	Protein	interactions	are	

traditionally	viewed	as	forming	the	fundamental	infrastructure	of	cellular	function;	

correspondingly	the	data	for	protein-protein	interactions	is	extensive	and	widely	used.	

Functional	networks	based	on	protein-protein	interactions	have	improved	our	

understanding	of	disease	(Barabasi	et	al.	2011),	infection	(Vidal	et	al.	2011)	and	drug	

pharmacodynamics	(Suthram	et	al.	2010).	

	



CHAPTER	1:		INTRODUCTION	

16	

	

	

Traditional	network	representations	ignore	the	temporal	context-dependent	nature	of	

cellular	interactions.	The	shortcomings	of	this	approach	were	addressed	by	

the	development	of	dynamic	networks,	which	show	considerable	improvements	in	

their	representation	of	cellular	function.		However,	the	incorporation	of	biological	

complexity	into	molecular	models	is	hindered	by	problems	with	data	accuracy	and	

completeness	(Hart	et	al.	2006;	Sprinzak	et	al.	2003),	as	well	as	an	inability	to	

represent	context	dependent	interactions	(Ideker	&	Krogan	2012).	An	additional	

disadvantage	to	the	study	of	molecular	networks	is	their	inability	to	represent	

pleiotropic	gene	function.	By	representing	genes	using	single	nodes	the	multiple	

functions	of	pleiotropic	genes	cannot	be	independently	portrayed.	The	aim	of	this	

thesis	is	to	explore	an	alternative	approach	to	model	function,	based	on	biological	

pathways.	

	

1.3 Using	pathways	to	model	function		

Biological	pathways	are	sets	of	interacting	molecules,	whose	delineation	and	scope	are	

used	to	model	biomolecular	relationships	within	a	cellular	context	(Petri,	Jayaraman,	

et	al.	2014).	Pathways	are	active	under	particular	cellular	conditions	and	contribute	

towards	discernable	cellular	functions.	The	use	of	pathways	rather	than	molecules	as	

biological	units	overcomes	two	major	problems	of	molecular	networks.	The	first	issue	

faced	by	molecular	networks	is	the	effect	that	inaccuracy	within	interaction	data	has	

on	network	topology,	affecting	all	network	analysis.		Pathways	reliably	represent	sets	
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of	interacting	proteins,	which	are	robust	against	inaccuracies	within	individual	

molecular	interactions,	avoiding	this	issue.	The	second	problem	limiting	molecular	

networks	is	the	representation	of	context	dependent	interactions.	Within	molecular	

interaction	networks	all	interactions	appear	constant	and	static,	therefore	visualisation	

of	their	dynamic	nature	requires	the	generation	of	multiple	sub-networks.	Pathway	

data	naturally	incorporates	cellular	context,	since	interactions	that	occur	in	different	

contexts	are	partitioned	into	separate	pathways.	Molecular	networks	also	tend	to	

represent	genes	with	single	nodes;	therefore	the	multiple	functions	of	pleiotropic	

genes	cannot	be	easily	separated,	whereas	within	the	pathway	network	proteins	with	

pleiotropic	functions	are	present	in	multiple	pathways,	allowing	their	function	to	be	

judged	independently	in	each	instance.		Finally,	the	pathway	network	also	provides	a	

method	for	studying	function	at	a	higher	level,	which	has	the	potential	to	be	

developed	into	a	multilayer	approach	to	function.		
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1.4 Hypothesis	and	research	questions		

The	hypothesis	of	this	project	is	to	demonstrate	that	pathway	data	can	be	used	to	

create	an	alternative	model	of	biological	function	that	overcomes	the	existing	issues	of	

current	molecular	functional	networks.	

	

The	thesis	specifically	addresses	the	following	research	questions:	

1.	How	should	the	pathway	network	be	constructed?		The	pathway	network	is	

a	novel	model	therefore	the	best	method	of	preparing,	functionally	annotating	

and	linking	the	pathways	into	a	network	will	have	to	be	established.	

	

1.1	Can	a	set	of	pathways	appropriately	represent	each	biological	system?	The	

pathway	set	will	have	to	provide	maximised	coverage	of	the	organism’s	gene	

set,	with	minimal	redundancy.	Heavily	overlapping	pathways	are	likely	to	

complicate	the	interpretation	of	functional	modules.	The	size	of	pathways	

should	also	be	controlled,	since	excessively	large	pathways	lack	functional	

specificity.		

	

1.2	What	is	the	most	appropriate	metric	to	assess	functional	relatedness	for	

the	pathway	edges?	Many	methods	have	been	developed	for	calculating	the	

similarities	of	GO	term	sets	between	pairs	of	genes,	however	less	is	known	

about	linking	functionally	annotated	pathways.	Existing	methods	will	be	

assessed	on	their	suitability	to	form	edges	within	the	pathway	network.	

	



CHAPTER	1:		INTRODUCTION	

19	

2.	Is	the	organisation	of	function	portrayed	by	the	pathway	network	biologically	

meaningful?	Can	external	data	sources	be	used	to	support	the	validity	of	the	

network?		

	

3.	How	do	functional	boundaries	relate	to	pathway	boundaries?	What	

advantages	do	pathway	models	have	in	representing	function	compared	to	

molecular	models?	Does	the	literature	support	the	portrayal	of	function	within	

and	between	pathways?		

	

4.	Are	pathways	suited	to	capture	biological	complexity	such	as	context	

dependent	and	temporal	gene	function?	Can	the	presence	of	pleiotropic	genes	

be	demonstrated	within	the	network?		

	

5.	Does	the	pathway	network	provide	novel	insights	into	disease	mechanisms?	

Can	disease	pathways	be	linked	into	connected	modules?	Does	the	distribution	

of	disease	pathways	within	the	network	reflect	properties	of	the	disease	

pathology	or	phenotype?	
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1.5 Contributions	

The	main	contribution	of	this	thesis	is	an	alternative	functional	model	based	on	

pathways,	capable	of	overcoming	the	issues	faced	by	molecule-centric	functional	

networks	(see	Section	2.3).	The	presented	pathway	network	offers	a	more	

representative	portrayal	of	function	within	the	cell.	The	representation	of	gene	

pleiotropy	is	discussed	and	novel	insight	to	functional	cross	talk	is	presented	(see	

Section	4.4.8).	

	

Disease	pathway	modules	are	identified	within	the	network,	indicating	the	functional	

perturbations	that	give	rise	to	disease	phenotypes	(see	Section	6.4.5).	The	utility	of	the	

network	is	demonstrated	using	a	cancer	case	study,	in	which	the	distribution	of	nodes	

related	to	different	types	of	cancer	is	used	to	make	inferences	regarding	the	

characteristics	of	each	cancer	type.		All	data	regarding	the	human	network	and	disease	

modules	is	available	at	https://data.mendeley.com/datasets/3pbwkxjxg9/1.	

	

Additional	contributions	include	the	development	of	new	set	theory	methods	for	

reducing	redundancy	in	pathway	and	GO	enrichment	data	(see	Section	Chapter	5).	The	

methods	developed	are	available	for	use	at	https://github.com/RuthStoney/set-cover-

and-set-packing-to-reduce-redundancy-in-pathway-data.	The	thesis	also	contains	

analysis	of	semantic	similarity	measures	and	an	evaluation	of	their	suitability	for	

pathway	data.	
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1.6 Thesis	outline	

To	overcome	the	difficulties	faced	by	molecular	functional	networks,	a	model	using	

biological	pathways	rather	than	molecular	entities	as	network	nodes	is	proposed.	The	

network	edges	are	based	on	shared	functionality,	revealing	the	relationships	between	

pathways	and	creating	a	biologically	intuitive	network.	We	first	developed	the	project	

in	yeast,	since	it	presents	a	small,	well-studied	biological	system,	before	progressing	

onto	human	data.		Figure	1	shows	the	progression	of	network	development	through	

the	three	stages	of	the	project.	The	following	section	provides	a	summary	of	each	

chapter	of	the	thesis.	

	

Figure	1:	Outline	of	the	thesis	
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1.6.1 Literature	review	of	models	of	biological	complexity	-	Chapter	2	

Firstly,	we	review	the	use	of	molecular	interaction	networks	to	generate	functional	

modules	and	explore	functional	organisation,	with	a	focus	on	protein-protein	

interaction	(PPI)	networks.	The	issue	of	representing	dynamic	and	temporal	

interactions	within	static	networks	is	then	explained,	leading	to	an	evaluation	of	

dynamic	network	methods.	We	initially	focus	on	the	use	of	expression	data	to	provide	

cellular	interaction	context,	which	is	represented	using	active	sub-networks.	We	then	

review	the	range	of	molecular	interaction	data	types	available.	Next	we	evaluate	the	

limitations	of	molecular	data,	exploring	the	effects	that	data	incompleteness	and	

inaccuracy	can	have	on	network	topology,	which	in	turn	affects	the	identification	of	

functional	modules.	The	next	section	reviews	gene	pleiotropy	and	the	problem	of	

representing	multiple	gene	functions	in	molecular	networks	in	which	each	gene	is	

represented	by	a	single	node.	The	idea	that	pleiotropic	nodes	may	also	distort	the	

arrangement	of	function,	by	bringing	together	functions	which	are	separate	in	the	cell,	

is	presented.	A	further	section	introduces	disease	modules,	explaining	their	

relationship	to	functional	modules	and	how	functional	networks	can	be	useful	in	

exploring	disease	mechanisms.	Finally,	we	review	existing	pathway	networks,	showing	

how	the	Pathway	Ontology	and	VisaANT	organise	pathways	into	metagraphs	based	on	

shared	biological	concepts.		
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1.6.2 Review	of	methods	and	resources	–	Chapter	3	

This	chapter	provides	a	comprehensive	review	of	the	methods	and	resources	used	

within	this	thesis,	starting	with	an	explanation	of	the	data	used.	The	pathway	data	was	

retrieved	from	ConsensusPathDB	(CPDB)	and	the	functional	annotation	data	came	

from	the	Gene	Ontology		(GO).	The	disease	annotations	used	to	generate	disease	

pathways	and	modules	were	retrieved	from	the	Human	Phenotype	Ontology	and	the	

genetic	interactions	used	to	validate	the	yeast	network	were	taken	from	BioGrid.	

	

In	order	to	link	the	pathways	into	a	network	based	on	shared	functionality,	the	

function	of	each	pathway	was	ascertained.	We	explain	how	enrichment	analysis	can	be	

used	to	identify	pathways	associated	with	GO	terms,	as	well	as	disease	annotations.	

The	use	of	semantic	similarity	measures	to	indicate	the	similarity	of	GO	terms	is	

described.	We	describe	the	Resnik	and	Wang	methods	to	measure	distances	between	

individual	GO	terms,	along	with	the	best	match	average	and	pairwise	average	

approaches	to	measure	distances	between	sets	of	GO	terms.	These	semantic	

similarities	form	the	basis	of	the	network	edges.	

	

Next	we	address	the	issue	of	redundancy	within	the	pathway	data	set	and	the	

enriched	pathway	GO	terms.	We	look	at	existing	methods	that	use	pathway	merging	to	

reduce	overlap	between	pathways.	We	then	introduce	set	theory	algorithms	to	

develop	a	method	for	generating	a	pathway	subset	with	reduced	redundancy	and	

controlled	size	variability.	Finally,	we	describe	some	software	and	statistical	methods	

used	within	the	thesis.	
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1.6.3 Development	and	analysis	of	the	Yeast	Network	–	Chapter	4	

A	pathway	network	was	first	generated	in	yeast	to	determine:	whether	the	pathways	

formed	a	cohesive	network	of	function;	whether	the	independent	functions	of	

pleiotropic	genes	were	represented	within	multiple	pathways;	and	to	determine	the	

distribution	of	functions	within	and	between	pathways.		

	

To	determine	the	feasibility	of	the	thesis,	a	set	of	pathway	nodes	were	allocated	

enriched	GO	function.	Careful	allocation	of	functional	annotations	was	particularly	

important	in	the	yeast	model,	since	functional	links	between	pathways	were	

generated	using	set	methods.	We	developed	a	method	to	assign	the	most	specific	GO	

terms	available	to	annotate	pathways,	later	referred	to	as	the	enrichment	set	cover	

algorithm.	Network	edges	were	primarily	generated	using	the	Jaccard	coefficient	for	

shared	GO	terms.	In	the	yeast	model	the	need	to	link	functionally	similar	terms	was	

met	by	generating	edges	for	a	small	proportion	of	highly	similar	GO	terms.		

	

Following	construction	of	the	network,	its	topology	and	functional	organisation	were	

explored,	and	the	main	functional	modules	were	observed.	The	ability	of	the	network	

to	facilitate	the	multiple	functions	of	pleiotropic	genes	was	also	demonstrated.	

Functional	analysis	showed	that	GO	terms	within	pathways	are	more	similar	than	GO	

terms	between	pathways,	although	some	pathways	contained	semantically	diverse	

annotations.	Finally,	validation	was	performed	by	degrading	the	network	into	clusters	

and	establishing	the	high	prevalence	of	genetic	interactions	(GI)	within	these	clusters.		
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1.6.4 Reducing	pathway	redundancy	through	set	theory	algorithms	–	Chapter	5	

Direct	application	of	the	previous	method	to	human	data	was	hindered	by	the	high	

levels	of	redundancy	within	the	human	dataset.	The	requirement	for	a	minimally	

redundant		set	of	pathways	capable	of	covering	all	of	the	genes	within	the	data	set	

lead	to	the	exploration	of	the	combinatorial	algorithms	set	cover	and	set	packing.	

Neither	algorithm	was	suitable	in	its	original	form,	since	set	cover	preferentially	selects	

large	pathways	with	low	functional	specificity,	while	set	packing	tends	to	show	poor	

coverage	of	the	data	set.	Methods	capable	of	reducing	redundancy,	maximising	

coverage	of	the	dataset	and	reducing	pathway	size	variability	were	therefore	

developed.	

	

1.6.5 Exploring	semantic	similarity	and	disease	modules	within	the	human	network		

–	Chapter	6	

Application	of	the	modified	set	cover	algorithm	to	the	human	data	set	produced	a	

suitable	set	of	pathways,	with	reduced	redundancy	and	good	coverage	of	the	dataset.	

The	methods	developed	in	yeast	were	reapplied	to	identify	the	most	significantly	

enriched	set	of	GO	terms	capable	of	covering	the	genes	in	each	pathway.	Rather	than	

using	the	Jaccard	coefficient	to	generate	edges	between	pathways,	the	ability	of	the	

Resnik	and	Wang	methods	(Resnik	1999;	Wang	et	al.	2007),	in	conjunction	with	the	

pairwise	average	and	best-match	average,	was	explored.	Semantic	similarity	methods	

were	judged	on	their	ability	to	assign	shorter	semantic	distances	to	GO	terms	within	

pathways,	than	GO	terms	between	pathways,	based	on	the	distribution	of	function	in	

yeast	and	within	the	literature	(Guo	et	al.	2006).	The	superior	performance	of	the	



CHAPTER	1:		INTRODUCTION	

26	

Wang	best-match	average	approach	suggested	that	some	combinations	of	functionally	

diverse	GO	terms	might	appear	within	pathways.	

	

Following	generation	of	the	network,	functional	clusters	were	evaluated	and	then	

validated	using	disease	data.	Within	systems	biology,	diseases	are	modelled	as	

perturbed	functions	therefore,	a	relationship	is	expected	between	the	distribution	of	

disease	nodes	and	the	distribution	of	function.	The	tendency	for	diseases	to	cluster	

within	the	network	was	measured,	then	a	case	study	linked	different	types	of	

leukaemia	and	gastrointestinal	cancers	to	pathway	functions.	

	

1.6.6 Discussion	–	Chapter	7	

The	discussion	begins	by	outlining	the	main	findings	of	the	thesis,	focusing	on	the	

representation	of	function	within	pathways	and	network	topology.	We	first	

demonstrate	that	the	network	is	biologically	informative.	The	functional	cohesiveness	

of	the	functional	modules	within	the	networks	is	validated	by	significant	increases	in	

genetic	interactions	within	the	modules.	The	relationship	between	disease	modules	

and	functional	perturbations	is	examined	and	insights	into	cancer	mechanisms,	

inferred	from	the	distribution	of	cancer	nodes	within	the	network,	are	confirmed	

within	the	literature.	

	

Next	we	discuss	how	application	of	the	set	cover	algorithm	reduced	pathway	

redundancy	by	60%	and	controlled	pathway	size,	while	covering	99.95%	of	the	human	

gene	set.	We	then	explore	the	finding	that	functions	are	often	covered	by	multiple	
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pathways	and	pathways	often	cover	multiple	functions.	Literature	support	for	

multifunctional	pathways	is	reviewed,	supporting	our	assertion	that	multifunctional	

pathways	are	responsible	for	functional	cross-talk	and	co-regulation	across	the	cell.	

This	functional	cross	talk	is	captured	within	our	cohesive	functional	network.	We	

demonstrate	that	the	network	captures	further	biological	complexity	by	facilitating	

context	dependent	gene	function.	We	conclude	this	section	by	discussing	the	issues	

that	motivated	the	developments	which	occurred	in	the	method	between	the	yeast	

and	human	networks.	

	

Next,	we	illustrate	the	advantages	of	using	pathways	to	study	function.	Firstly,	we	

show	that	pathways	provide	a	source	of	context	dependent	interactions	capable	of	

capturing	gene	pleiotropy,	and	are	much	more	extensive	and	accessible	than	gene	

expression	data.	Next,	we	consider	how	functional	modules	within	molecular	networks	

are	determined	by	network	topology,	and	we	discuss	how	incompleteness	and	

inaccuracies	within	interaction	data	can	affect	these	modules.	We	offer	pathway	

networks	as	a	solution	to	this	problem	since	molecular	interaction	data	is	not	

incorporated	into	the	network.	In	addition,	we	consider	the	finding	that	molecular	

network	topology	is	most	heavily	influenced	by	cellular	components,	in	contrast	to	

pathways,	which	are	most	likely	to	be	connected	by	shared	biological	processes.	These	

findings	suggest	that	pathway	networks	may	be	more	capable	of	detecting	functional	

modules	than	molecular	networks.		
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The	finding	that	the	Wang	best	match	average	is	the	most	suitable	method	for	

generating	pathway	edges	contradicted	many	previous	studies,	which	suggested	that	

the	Resnik	method	showed	better	performance.	We	suggest	that	this	result	may	be	

related	to	pathway	multi-functionality,	as	well	as	the	inclusion	of	indirect	similarity	

comparisons	between	genes	in	the	same	pathway	that	may	not	directly	interact.		

	

The	following	section	addresses	the	application	of	the	pathway	network	to	the	study	

of	disease.	We	explore	the	benefits	that	linking	pathways	based	on	functionality	can	

have	for	exploring	disease	mechanisms.	Disease	modules	can	be	detected	as	closely	

linked	sets	of	pathways	affected	by	a	particular	disease.	By	visualising	the	functions	

connecting	disease	pathways	as	well	as	the	additional	functions	in	close	network	

proximity,	disease	mechanisms	can	be	uncovered.	This	process	is	impeded	in	

molecular	networks	by	difficulties	in	identifying	disease	modules.	The	understanding	of	

pleiotropic	disease	genes	could	also	benefit	from	the	use	of	pathway	networks,	since	

perturbed	functions	can	be	traced	to	individual	gene	instances	within	particular	

pathway	contexts.	Finally,	disease	gene	overlap	and	co-morbidity	is	discussed	as	the	

effect	of	functional	perturbations	spreading	in	different	directions	throughout	the	

network	to	generate	varying	disease	phenotypes.	

	

	The	final	sections	of	Chapter	8	outline	the	limitations	of	the	thesis	and	discuss	future	

work.	Issues	surrounding	the	variation	in	the	output	of	the	heuristic	methods	required	

to	reduce	redundancy	are	considered.	The	inclusion	of	‘part-of’	GO	edges	has	caused	

some	controversy	within	the	semantic	similarity	literature,	which	is	assessed,	along	
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with	issues	in	disease	pathway	detection.	For	future	work,	controllability	analysis	is	

suggested	to	analyse	the	flow	of	information	between	functions.	We	also	suggest	a	

metric	to	compare	the	molecular	interaction	networks’	and	the	pathway	networks’	

ability	to	predict	gene	functions.	A	second	metric	ascertains	whether	physical	

interactions	are	more	tightly	correlated	between	functionally	related	genes	in	the	

molecular	network	or	functionally	related	pathways	in	the	pathway	network.	In	

addition,	we	suggest	that	the	issues	in	disease	pathways	detection	could	be	resolved	

by	applying	genome-wide	association	studies	to	disease	SNP	data	to	enhance	the	

sensitivity	of	disease	pathway	identification.	

	

1.6.7 Conclusion	–	chapter	8	

We	conclude	the	thesis	by	stating	that	we	have	constructed	two	biologically	

informative,	validated	functional	networks,	using	yeast	and	human	data.	The	use	of	

functional	pathway	networks	overcomes	many	of	the	issues	of	molecular	networks,	

including	their	inability	to	represent	context	dependent	interactions	and	gene	

pleiotropy.	An	additional	advantage	is	that	functional	modules	are	not	affected	by	

inaccuracies	or	incompleteness	in	molecular	interaction	data.	As	a	result	we	suggest	

that	pathway	networks	provide	an	excellent	solution	in	many	situations	where	

molecular	interaction	networks	may	be	inadequate.	These	include	situations	where	

molecular	interaction	data	is	scarce	or	data	inaccuracy	is	suspected.	Pathway	networks	

can	resolve	situations	in	which	gene	pleiotropy	has	distorted	the	arrangement	of	

function	within	molecular	networks,	or	molecular	networks	have	failed	to	detect	

functional	modules	based	on	network	topology.	Additionally,	pathway	networks	may	
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be	used	to	provide	context	dependent	interactions	when	contextual	or	temporal	

molecular	data	is	not	available.	As	well	as	overcoming	the	problems	of	molecular	

networks,	pathway	networks	are	also	more	concise	and	provide	intuitive	

interpretation	of	functional	organisation.
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Chapter	2 	

Literature	review	of	models	of	biological	

complexity	

This	chapter	starts	by	describing	the	use	of	static	and	dynamic	molecular	interaction	

networks	to	study	function.	We	review	the	limitations	of	these	methods,	most	

importantly	Interaction	data	incompleteness	and	inaccuracy,	as	well	as	an	inability	to	

represent	gene	pleiotropy.	Next,	the	use	of	disease	modules	to	elucidate	disease	

mechanisms	is	reviewed.	Finally,	we	explore	existing	pathway	networks.		

	

2.1 Systems	Biology	

Molecular	biology	has	traditionally	focused	on	the	study	of	individual	biochemical	

entities;	however,	genes,	proteins	and	metabolites	do	not	work	alone	in	the	cell.	By	

examining	the	interactions	and	relationships	between	biological	entities,	systems	

approaches	are	able	to	provide	holistic	insights	into	the	inner	working	of	the	cell.	

Network	approaches	rely	on	biological	entities	being	represented	as	nodes	(Barabási	&	

Oltvai	2004).	Edges	represent	relationships	such	as	physical	interactions,	GIs,	or	

correlated	expression.	Networks	typically	have	a	scale-free	distribution,	meaning	that	

a	small	number	of	nodes	have	a	very	high	degree	distribution	(hubs)	compared	to	the	

majority	of	the	nodes	in	the	network	(Albert	2005;	Barabási	&	Oltvai	2004).	Scale-free	

topologies	result	in	short	paths	between	nodes,	known	as	the	small	world	property.	
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Network	topologies	also	tend	to	show	hierarchical	modularity	of	cellular	functions.	

Modularity	refers	to	groups	of	nodes	which	show	dense	intra-component	connectivity	

and	sparse	inter-component	connectivity	(Albert	2005).	By	studying	network	topology	

inferences	are	made	about	the	roles	of	genes	and	the	organisation	of	function	within	

the	cell.			

	

Network	edges	can	be	directed	or	undirected	depending	on	the	type	of	data	they	

represent.	Protein-protein	interaction	(PPI)	networks	and	genetic	networks	(I.	Lee	et	

al.	2004)	are	examples	of	undirected	networks.	Gene	regulatory	networks,	which	

represent	the	binding	of	transcription	factors	to	regulatory	element,	require	directed	

edges	to	show	the	flow	of	control	(Zhu	et	al.	2009).		The	pathway	network	presented	is	

a	new	type	of	undirected	network.		

	

2.2 Functional	Networks	

Function	is	often	studied	using	molecular	interaction	networks.	These	networks	can	be	

constructed	using	various	types	of	molecular	interaction	data,	however	in	this	section	

we	focus	on	PPI	networks,	with	gene	expression	data	used	to	indicate	temporal	or	

context	dependent	interactions.	

	

2.2.1 Static	protein-protein	interaction	functional	networks	

PPI	networks	have	been	extensively	used	to	study	the	mechanisms	by	which	proteins	

co-operate	to	perform	cellular	functions.	In	these	biological	models,	nodes	represent	
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genes	and	the	edges	represent	the	protein-protein	interactions	of	each	gene’s	

product.		Biological	functions	rely	on	the	combined	actions	of	multiple	proteins,	

therefore	it	is	initiative	that	PPI	networks	show	that	proteins	tend	to	interact	with	

other	functionally	related	proteins	(Spirin	&	Mirny	2003;	Albert	2005).	This	results	in	

the	appearance	of	functionally	related	sub-networks,	with	tight	clusters	representing	

protein	complexes	and	functional	modules.	The	arrangement	of	functionally	related	

proteins	into	a	modular	hierarchical	topology	has	been	shown	to	occur	across	species.	

Applications	of	functional	networks	include	predicting	gene	function	(Song	&	Singh	

2009;	Wang	et	al.	2011)	and	elucidating	disease	mechanisms	(Janjić	&	Pržulj	2012c;	

Barabasi	et	al.	2011).	

	

2.2.2 Functional	modules	and	protein	complexes	

Network	clustering	algorithms	search	for	communities,	which	are	defined	as	subgraphs	

with	a	higher	density	of	connections	than	the	surrounding	network	(Albert	2005;	

Sharan	et	al.	2007).	These	communities	represent	protein	complexes	and	functional	

modules.	Protein	complexes	occur	when	a	set	of	proteins	interact	simultaneously	to	

create	a	single	multi-molecular	entity	(Spirin	&	Mirny	2003).	This	is	subtly	different	to	

functional	modules,	which	are	also	sets	of	interacting	proteins	working	towards	a	

common	cellular	objective;	however	the	interactions	in	a	functional	module	may	occur	

separately	in	time	and	space	(Spirin	&	Mirny	2003;	Lu	et	al.	2006).	Functional	modules	

may	contain	protein	complexes	(Lu	et	al.	2006;	Li	et	al.	2012).	Both	functional	modules	

and	protein	complexes	have	a	similar	appearance	in	networks,	being	typically	detected	

as	highly	connected	clusters	and	both	are	considered	to	be	functionally	homogenous.	
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This	thesis	focuses	on	functional	modules;	however	both	functional	modules	and	

complexes	can	be	derived	from	the	same	networks	using	similar	techniques	and	many	

papers	do	not	distinguish	between	the	two	entities	types	(Li	et	al.	2012;	Chen	et	al.	

2014;	Lu	et	al.	2006).		

	

The	interactions	that	comprise	protein	complexes	are	considered	more	reliable	than	

other	protein-protein	interactions,	therefore	some	papers	utilise	protein	complex	

interactions	as	gold	standard	interaction	data	(Zhu	et	al.	2008;	Jianxin	Wang	et	al.	

2013).	Studies	may	also	specifically	investigate	the	functional	properties	of	protein	

complexes	(Gavin	et	al.	2006;	Tarassov	et	al.	2008).	Since	proteins	are	subcomponents	

of	functional	modules,	their	components	tend	to	be	highly	functionally	cohesive.		

	

2.2.3 PPI	networks	misrepresent	dynamic	cellular	interactions	

Sets	of	interacting	proteins	do	not	form	constant	static	entities	within	the	cell,	rather	

they	assemble	when	they	are	needed	to	perform	a	function,	then	disassemble	after	

use	(Srihari	&	Leong	2012).	The	dynamic	nature	of	these	interactions	is	not	shown	in	

static	maps,	where	these	interactions	appear	constant.	Moreover,	some	proteins	

participate	in	the	formation	of	multiple-context	dependent	complexes	(Li	et	al.	2012;	

Srihari	&	Leong	2012).	In	a	study	mapping	complex	formation	during	different	stages	of	

the	yeast	cell	cycle,	Srihari	and	Leong	(2012)	found	that	some	proteins	form	different	

complexes	at	various	stages	of	the	cell	cycle.	In	static	networks,	edges	are	assumed	to	

be	constant;	however,	if	a	protein	participates	in	multiple	separate	complexes	these	

transient	interactions	will	form	a	single	cluster.	
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This	relates	to	previous	work	which	uncovered	two	types	of	highly	connected	nodes	

(hubs)	within	PPI	networks:	“date”	hubs	and	“party”	hubs	(Han	et	al.	2004;	Wagner	et	

al.	2007).	Party	hubs	interact	with	all	of	their	partners	simultaneously,	whereas	date	

hubs	form	transient	interactions	with	different	neighbours	at	different	times.	These	

variable	interactions	are	demonstrated	by	measuring	the	correlation	between	the	

gene	expression	patterns	of	hub	nodes	with	the	gene	expression	patterns	of	their	

neighbours.	Party	hubs	show	highly	correlated	gene	expression	with	their	neighbours,	

whereas	date	hubs	show	a	low	correlation.	Date	hubs	interact	with	different	partners	

at	different	times;	therefore,	linking	all	partners	within	a	single	network	cluster	is	not	

biologically	representative.	Figure	2	(taken	from	Wagner	et	al.	2007)	shows	how	date	

and	party	hubs	link	biological	components.	

	

Figure	2:	The	functional	roles	of	‘date’	and	‘party’	hubs.	‘Party’	hubs	interact	simultaneously	with	many	partners	
linking	functional	modules,	whereas	‘date’	hubs	interact	with	their	partners	at	different	times	and/or	locations,	co-
ordinating	multiple	functions.	Colours	indicate	mRNA	expression	and	functional	similarity.	(Wagner	et	al.	2007)	
nature	publishing	group	
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Tsai	et	al	(2009)	suggested	that	it	is	a	misrepresentation	to	claim	that	a	single	hub	

protein	binds	with	tens	or	hundreds	of	other	proteins.	They	suggested	that	this	is	an	

artefact	that	arises	from	the	representation	of	genes	as	single	nodes,	rather	than	

multiple	nodes	representing	different	gene	products,	which	may	have	different	amino	

acid	sequences	and	3-D	structures	(Tsai	et	al.	2009).	Alternative	splicing	is	suggested	as	

the	dominant	means	of	creating	multiple	gene	products,	which	is	known	to	alter	

protein	function	and	binding	properties.	In	PPI	networks,	each	gene	is	represented	by	

a	single	node,	making	differentiating	between	the	interactions	of	splicing	subtypes	

impossible.	

	

When	proteins	are	involved	in	different	functions	as	a	result	of	these	different	

interactions,	this	multi-functionality	is	referred	to	as	pleiotropy	(see	Section	2.4).	This	

has	a	major	effect	on	the	mapping	on	functional	modules	(see	Section	2.2.2)	since	

these	pleiotropic	nodes	can	cluster	together	functionally	diverse	genes	that	would	not	

interact	in	the	cell.	

	

2.2.4 Co-expression	networks	represent	context	dependent	transcriptional	states	

A	common	approach	used	to	address	the	issue	of	dynamic	interactions	is	to	generate	

networks	using	co-expression	data	to	form	edges	between	genes	that	show	

corresponding	changes	in	expression	under	various	cellular	conditions	(Segal	et	al.	

2003;	Stuart	et	al.	2003;	Ihmels	et	al.	2002).	Methods,	such	as	the	Pearson’s	

correlation,	can	be	used	to	identify	pairs	of	genes	that	show	significantly	correlated	

changes	of	expression	across	the	microarray	datasets	(Stuart	et	al.	2003).	Microarray	
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analysis	provides	a	snapshot	of	the	transcriptional	responses	invoked	by	the	cellular	

condition	being	tested.	This	generates	context-dependent	data	showing	sets	of	genes	

transcribed	within	each	condition	tested.	This	enables	sets	of	genes,	transcribed	under	

a	particular	subset	of	cellular	conditions,	to	be	revealed	and	linked	within	the	

generated	network.		Network	modules	can	be	extracted,	corresponding	to	sets	of	

genes	that	are	co-regulated	in	response	to	cellular	conditions.	Modules	show	high	

levels	of	functional	coherence	and	conservation	across	species	(Stuart	et	al.	2003),	

making	the	use	of	gene	expression	data	highly	promising	in	the	search	for	context-

dependent	interactions.	Co-expression	networks	do	not,	however,	reveal	the	physical	

interactions	responsible	for	the	execution	of	function	in	the	cell.	

	

2.2.5 Generating	dynamic	interaction	networks	through	integration	of	PPI	and	gene	

expression	data		

Several	papers	have	attempted	to	address	the	issues	of	dynamic	PPI	interactions	by	

incorporating	additional	data	to	improve	functional	module	detection.	Protein	

interactions	are	assumed	to	be	associated	with	co-expression;	therefore,	microarray	

data	is	commonly	used.	

	

Ideker	et	al.	(2002)	used	gene	expression	data	in	conjunction	with	PPI	data	and	

protein-DNA	data	to	identify	sub-networks	that	showed	changes	in	response	to	various	

cellular	conditions.	These	were	identified	as	connected	regions	of	the	PPI	and	protein-

DNA	network	that	showed	altered	gene	expression	under	particular	conditions	(Ideker	

et	al.	2002).	They	demonstrated	the	validity	of	this	method	by	introducing	mutations	
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to	the	galactose-utilisation	(GAL)	pathway	and	identifying	co-regulated	networks	that	

were	affected	by	the	perturbations.	The	differentially	expressed	genes	were	associated	

with	seven	sub-networks	that	showed	altered	expression	under	the	conditions	

examined	(Figure	3).	Note	that	the	sub-networks	shown	in	Figure	3	(taken	from	Ideker	

et	al	2002)	do	not	correspond	directly	with	obvious	topological	network	clusters.	The	

clusters	are	based	on	the	differential	expression	of	genes,	allowing	them	to	exclude	

many	genes	within	topological	clusters	that	showed	unaltered	gene	expression.		
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Figure	3:	Altered	sub-networks	within	a	protein-protein	and	protein-DNA	network.	Directed	edges	protein-DNA	
interactions,	indicating	that	the	source	node	influences	the	transcription	of	the	target	node.	Undirected	edges	
represent	protein-protein	interactions.	The	node	colours	indicate	differential	expression	in	response	to	one	or	more	
gene-perturbations.	(Ideker	et	al.	2002)	nature	publishing	group	

This	demonstrates	the	complexity	and	cross	talk	of	cellular	responses.	These	sub-

networks	showed	strong	links	to	known	regulatory	mechanisms	in	the	literature,	for	

Also	note	that	multiple	sub-network	clusters,	which	are	mostly	connected,	form	rather	
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than	a	single	module.	example	a	detected	linear	sub-network	was	found	to	correspond	

to	the	core	of	the	galactose-induction	circuit.	

	

The	concept	of	dynamic	and	static	network	communities	was	formalised	by		Komurov	

and	White	(2007).	Using	data	from	272	microarray	experiments	they	identified	static	

modules	and	dynamic	modules	in	the	yeast	PPI	network.		In	this	modular	network,	

communities	of	dynamically	co-regulated	interactions	allow	the	cell	to	carry	out	

condition-related	processes,	while	static	modules	provide	sets	of	interactions	that	are	

always	present	and	act	as	a	structural	core.	This	implies	that	some	functions,	such	as	

general	mRNA	transcription	and	splicing,	may	be	accurately	within	static	PPI	networks,	

while	other	functions,	such	as	translation	initiation,	are	represented	poorly	because	

their	components	are	dynamic.	

	

A	set	of	time	series	networks	have	been	constructed	for	several	points	in	the	cell	cycle,	

composed	using	only	highly	expressed	genes	(Tang	et	al.	2011).	Expression	data	from	

the	yeast	cell	cycle	was	mapped	onto	a	PPI	network	and	sets	of	functional	modules	

were	generated,	which	were	then	compared	to	a	manually	curated	protein	complex	

set.	The	time	series	networks	consistently	showed	greater	overlap	between	the	

functional	modules	produced	and	the	known	complexes	than	comparative	static	

networks.	The	biological	significance	of	the	functional	modules	generated	was	also	

assessed	using	GO	enrichment	analysis.	Modules	generated	using	time	series	data	

consistently	showed	higher	numbers	of	significantly	enriched	GO	terms,	suggesting	

increased	functional	cohesiveness.	Similar	results	have	been	produced	using	time	
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series	data	focusing	on	yeast	metabolism.	Complexes	and	functional	modules	retrieved	

following	the	integration	of	expression	data	were	shown	to	be	more	significantly	

enriched	with	GO	terms,	indicating	biological	validity	(Li	et	al.	2012).	These	results	

were	confirmed	in	a	later	study	demonstrating	the	ability	of	metabolic	time	series	data	

to	improve	the	sensitivity	and	specificity	of	protein	complex	prediction	(J	Wang	et	al.	

2013).	A	set	of	networks	showing	PPI	interactions	between	genes	expressed	under	

various	UV	irradiation	conditions	has	also	been	produced	(Hegde	et	al.	2008).	

Approximately	40-60%	of	cellular	genes	were	expressed	in	each	condition,	with	

variation	between	networks	implicating	different	cellular	response	mechanisms.	This	

example	indicates	that	around	half	of	the	nodes	in	a	comparative	static	network,	

would	be	present	despite	not	being	transcriptionally	expressed.	Similarly	Komurov	and	

White	(2007)	found	that	only	16.5%	of	genes	where	present	within	their	static	network	

and	21.2%	were	highly	dynamic.	These	finding	undermine	the	ability	of	static	networks	

to	generate	functional	modules.	

	

2.2.6 Enhancing	functional	representation	through	integration	of	multiple	data	types	

Further	improvements	to	functional	networks	have	been	generated	by	combining	

multiple	types	of	molecular	data	including:	GI	data;	subcellular	localisation	data;	and	

genetic	control	factors	such	as	transcription	factor	binding	sites	and	expression	

quantitative	trait	loci.	The	following	sections	review	examples	of	each	approach.	

2.2.6.1 Genetic	interaction	data	

GIs	provide	an	additional	approach	to	the	generation	of	functional	networks.	A	

genome-scale	GI	map	generated	in	yeast	showed	that	genes	with	similar	biological	
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processes	clustered	into	coherent	modules	(Costanzo	et	al.	2010).	GIs	are	known	to	

occur	frequently	between	pairs	or	genes	with	similar	functions	within	network	

modules,	as	a	result	of	the	cells’	inability	to	cope	with	multiple	perturbations	to	a	

single	biological	process	(Kelley	&	Ideker	2005).		

	

Significant	overlap	was	found	between	modules	extracted	from	PPI	networks,	co-

expression	networks	and	GI	networks	(Ames	et	al.	2013).	Combining	these	modules	

into	a	single	network,	generated	modules	that	were	more	functionally	cohesive	than	

those	extracted	from	networks	produced	using	single	data	types.	Figure	4	(taken	from	

Ames	et	al	2013)	shows	how	the	combination	of	a	PPI	network	(blue	nodes	and	edges)	

with	a	GI	network	(red	nodes	and	edges)	gives	a	more	complete	portrayal	of	the	genes	

involved	in	DNA	replication	control,	either	individual	network.	Coverage	of	the	Gene	

Ontology	was	also	found	to	be	more	complete	in	modules	extracted	from	the	

combined	data	network	compared	to	modules	from	the	individual	networks.		The	

improvements	gained	by	combining	data	types	demonstrates	that	none	of	the	

previous	methods	is	capable	of	individually	providing	a	complete	biological	

representation	of	cellular	function.		
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Figure	4:	Consolidating	functional	clusters	by	combining	PPI	and	GI	data.		DNA	replication	module	in	which	the	blue	
nodes	represent	genes	from	a	PPI	network	cluster,	the	red	nodes	represent	genes	for	a	GI	network	cluster	and	the	
purple	node	are	present	in	both	PPI	and	GI	network	clusters.	By	merging	the	networks	a	more	extensive	portrayal	of	
DNA	replication	is	presented	than	possible	using	either	network	individually	(Ames	et	al.	2013).	

	

2.2.6.2 Subcellular	localisation	data	

Subcellular	localisation	data	can	be	used	with	PPI	and	expression	data	to	assist	in	the	

identification	of	functional	modules	(Lu	et	al.	2006).	Network	clusters	which	included	

subcellular	localisation	data	were	found	to	be	more	robust	to	false	positive	

interactions	and	better	highlight	known	protein	complexes.	As	well	as	demonstrating	

the	importance	of	combining	multiple	sources	of	biological	data,	Lu	et	al.	(2006)	

illustrates	the	difference	between	protein	complexes	and	functional	modules	by	
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stating	that	protein	complexes	must	be	co-localised	and	co-expressed,	but	neither	of	

these	restrictions	apply	to	functional	modules.	An	example	of	a	mitochondrial	module	

is	given,	which	includes	proteins	found	within	the	mitochondrial	ribosome	and	as	well	

as	the	mitochondrial	membranes.	The	membrane	protein	acts	as	a	functional	

facilitator	allowing	transport	into	the	mitochondria.	Therefore	although	co-localisation	

data	can	be	used	to	assist	in	the	detection	of	protein	complexes	and	ensure	that	co-

localised	protein	groups	are	clustered	within	networks,	its	ability	to	detect	functional	

modules	is	limited.	

	

2.2.6.3 Genetic	control	factors	

Genetic	control	factors	are	another	data	source	that	can	be	integrated	into	molecular	

interaction	databases.		A	yeast	co-expression	network	was	enhanced	through	the	

addition	of	PPI,	transcription	factor	binding	site	and	expression	quantitative	trait	loci	

(eQTL)	hot	spot	data	(Zhu	et	al.	2008).	By	integrating	different	data	types,	the	

generated	network	showed	an	increased	ability	to	predict	the	effects	of	gene	knock	

out	perturbations.	The	transcription	factor	binding	site	and	eQTL	data	were	also	used	

to	make	inferences	about	the	functional	control	of	the	network.	

	

Interestingly	a	low	correlation	was	detected	between	the	co-expression	and	protein-

interaction	data	(Zhu	et	al.	2008).	This	may	genuinely	reflect	the	different	information	

being	represented	by	these	datasets	or	it	may	be	due	to	high	levels	of	false	positive	

results	in	the	PPI	data.	A	low	correlation	between	mRNA	levels	and	protein	levels	has	

reported	in	many	papers	(see	section	2.3.2)	indicating	that	these	networks	reflect	
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different	data.	However,	a	high	confidence	set	of	protein	interactions	generated	from	

protein	complex	data	showed	increased	correlation	with	the	co-expression	data,	

suggesting	that	inaccuracy	in	the	PPI	data	may	be	a	contributing	factor.	This	increased	

correlation	may	also	reflect	the	tendency	for	components	of	complexes	to	be	co-

expressed,	while	interacting	protein	molecules	are	less	likely	to	be	co-expressed.		

	

2.2.7 Genome	wide	proteomics	assays	detect	context	dependent	protein	

interactions	

Genome	wide	protein-fragment	complementation	assays	provide	an	opportunity	to	

view	in	vivo	protein	interactions	and	may	provide	a	more	reliable	data	source	of	

context	dependent	protein	interactions	(Tarassov	et	al.	2008).	This	method	allows	

detection	of	context	dependent	interactions,	presenting	a	faithful	representation	of	

gene	expression	timing	and	subcellular	localisation.	Protein	complexes	with	similar	

functional	annotations	interacted	more	often	than	would	be	expected	to	occur	by	

chance,	although	interactions	between	proteins	with	different	GO	annotations	were	

not	uncommon.	Interactions	between	proteins	from	different	subcellular	

compartments	were	also	common,	reflecting	the	complex	organisation	of	cellular	

function.	Further	use	of	protein-fragment	complementation	assays	in	a	range	of	

cellular	conditions	will	eventually	lead	to	highly	detailed	accurate	functional	maps,	

however	its	use	is	currently	limited.	This	may	be	because	probe	instability	makes	large-

scale	screening	difficult	(Ohmuro-Matsuyama	et	al.	2013).	Additionally	false	positives	

may	occur	due	to	the	florescent	intensity	of	the	reconstituted	reporter	fragments	used	

(Snider	et	al.	2015).	
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Networks	constructed	using	protein	profiling	data	from	mass-spectrometry	based	

technologies	were	compared	to	mRNA	co-expression	networks	(Wang	et	al.	2017)	for	

three	types	of	cancer.	The	networks	showed	a	marked	difference	in	topology	with	

protein	co-expression	being	primarily	driven	by	functional	similarity,	while	mRNA	co-

expression	was	largely	determined	by	chromosomal	co-localisation	resulting	in	less	

functionally	coherent	modules.	Network-based	gene	function	prediction	showed	that	

the	protein	co-expression	network	had	better	predictive	performance	for	up	to	92%	of	

GO	terms.	This	demonstrates	the	ability	of	this	approach	to	significantly	enhance	

molecular	networks,	however,	it	is	limited	by	the	availability	of	data.	Data	sets	must	be	

produced	for	each	cellular	condition	studied,	for	example	breast	cancer,	colorectal	

cancer	and	ovarian	cancer	in	this	study.	

	

2.3 Limitations	of	molecular	networks	

PPI	networks	and	network	generated	from	combined	molecular	data	types	are	the	

standard	models	used	for	studying	the	organisation	of	function	within	cells.	However,	

data	inaccuracy	and	incompleteness,	as	well	as	the	weak	correlation	between	protein	

interactions	and	protein	expression	undermines	the	used	of	molecular	interaction	

models.	The	following	sections	explore	these	shortcomings	motivating	the	

development	of	a	new	model	structure.	
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2.3.1 PPI	data	inaccuracy,	incompleteness	and	bias	

The	accuracy	of	PPI	networks	is	often	criticised	due	to	the	high	number	of	false	

positives	and	data	incompleteness	(Karagoz	&	Arga	2013;	Hakes	et	al.	2008;	Hart	et	al.	

2006;	Snider	et	al.	2015;	Sprinzak	et	al.	2003).		This	inaccuracy	stems	from	issues	in	the	

experimental	procedures	used	to	acquire	the	interaction	data.	Protein-protein	

interactions	can	be	mapped	in	small	studies,	focusing	on	a	single	protein	of	interest,	a	

panel	of	proteins	or	in	an	unbiased	global	fashion	(Brückner	et	al.	2009)(Brückner	et	al.	

2009).	Two	commonly	used	experimental	approaches	are	yeast-2-hybrid	(Y2H)	

screening	and	mass	spectrometry	approaches,	such	as	affinity	purification	mass	

spectrometry	(AP-MS).		

	

In	the	Y2H	system	the	gene	on	interest	(the	bait)	is	fused	to	the	DNA	binding	domain	

of	a	transcription	factor	for	a	reporter	gene	(Brückner	et	al.	2009).	Proteins	suspected	

to	be	interaction	partners	(the	prey)	are	fused	to	the	transcription	factor’s	activation	

domain.	Yeast	cells	are	transformed	with	vectors	containing	the	modified	bait	and	prey	

genes	under	the	control	of	yeast	promoters.	If	the	two	proteins	interact,	then	the	

reporter	gene	is	expressed.		

	

Classic	Y2H	systems	only	detect	interacting	proteins	within	the	nucleus	and	are	

therefore	unsuitable	for	membrane	associated	proteins,	integral	membrane	proteins,	

cytosolic	proteins	or	proteins	localised	in	other	cellular	compartments	(Brückner	et	al.	

2009).	Truncated	proteins	have	previously	been	used	to	circumvent	this	issue,	

however,	such	proteins	are	prone	to	misfolding,	leading	to	high	rates	of	false	
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negatives.	Modified	systems	such	as	the	split-ubiquitin	system	(Johnsson	&	Varshavsky	

1994),	are	able	to	detect	interactions	outside	of	the	nucleus.	False	negatives	may	also	

arise	if	the	fused	yeast	reporter	proteins	or	anchors	impede	protein	interactions	

(Brückner	et	al.	2009).		Additionally,	yeast	may	lack	the	ability	to	add	

posttranscriptional	modifications	to	eukaryotic	genes	that	are	required	for	protein	

interaction.	Transient	interactions	are	also	often	missed.	False	positives	also	arise	in	

Y2H	screens	and	may	be	caused	by	high	expression	of	bait	and	prey	proteins	within	

cellular	compartments	that	do	not	correspond	to	their	natural	environment.		

	

AP-MS	is	another	popular	method	used	to	detect	interactions.	Proteins	are	purified,	

along	with	their	binding	partners	during	affinity	purification,	then	identified	using	mass	

spectrometry.	Affinity	purification	describes	the	capture	of	biological	material	using	a	

ligand	attached	to	a	solid	support	(Dunham	et	al.	2012).	There	are	two	commonly	used	

methods	of	affinity	purification,	using	antibodies	or	epitopes.		Antibodies	are	

generated	to	bind	to	a	protein	of	interest	(the	bait)	and	then	attached	to	beads.	The	

soluble	fraction	of	the	cell	lysate	is	then	run	past	the	beads,	binding	the	protein	of	

interest	along	with	any	interacting	partners.	Alternatively	an	epitope-tag	may	be	fused	

to	the	C	or	N	terminal	of	the	protein.	The	tagged	protein	is	then	purified	using	an	

affinity	matrix	that	recognises	the	epitope.		This	method	of	epitope	tagging	allows	

highly	efficient	protein	purification	and	since	multiple	proteins	can	be	tagged	with	the	

same	epitope,	background	contaminants	should	be	consistent	across	all	purifications.	

Identification	of	the	purified	proteins	is	carried	out	using	a	mass	spectrometer,	which	

measures	the	mass	to	charge	(m/z)	ratio	of	charged	molecules.	In	tandem	MS	the	m/z	
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ratio	intact	ionized	protein	is	first	measured,	then	the	protein	is	fragmented	and	the	

m/z	ratio	of	the	fragments	is	determined.	This	process	allows	the	amino	acid	sequence	

of	the	peptide	to	be	deduced.		

	

An	advantage	of	immunoprecipitation,	compared	to	epitope	tagging	and	Y2H,	is	that	it	

avoids	modifying	cellular	proteins,	which	can	disrupt	protein	binding.	However,	false	

negatives	may	still	occur	due	to	antibodies	disrupting	protein-protein	interactions	or	

proteins	losing	affinity	for	their	target	protein	following	posttranslational	modifications	

(Dunham	et	al.	2012).	False	positives	may	also	arise	due	to	cross-reactivity	of	specific	

antibodies.	If	the	epitope	tagging	method	is	used,	the	fusion	of	the	tag	onto	the	

protein	may	interrupt	protein-protein	interactions,	resulting	in	false	negatives.	False	

positives	and	false	negatives	may	also	arise	as	a	result	of	the	overexpressed	or	

problematically	tagged	proteins	misfolding,	or	being	misregulated	or	mislocalised.	In	

both	immunoprecipitation	and	epitope	tagging	approaches	cell	lysis	may	bring	

proteins	from	different	cellular	compartments	into	proximity,	causing	false	positives	if	

the	proteins	bind.	An	advantage	of	the	Y2H	system	is	that	it	avoids	these	issues,	since	

the	method	does	not	involve	cell	lysis.	Although	MS	is	a	highly	effective	method	of	

identifying	proteins	false	positives	can	arise,	particularly	in	situations	where	proteins	

are	identified	by	low	numbers	of	peptides	and	the	confidence	scores	generated	for	

these	peptides	are	low.	

	

To	control	inaccuracies	from	high	throughput	data,	Gene	Ontology	data	has	been	used	

to	assess	the	reliability	of	PPIs	(Karagoz	&	Arga	2013).	A	high	confidence	PPI	network	
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was	generated	by	scoring	interactions	based	on	the	GO	semantic	similarity	(see	

Section	3.4)	of	their	components	using	the	biological	process,	cellular	component	and	

molecular	function	ontologies.	The	resulting	network	had	a	sensitivity	of	86%	and	

specificity	of	68%	and	coverage	of	72%,	based	on	a	positive	gold	standard	data	set	

consisting	on	very	high	confidence	STRING	interactions,	the	MIPS	dataset	which	is	

acquired	through	small	scale	experiments,	and	the	core	network	of	DIP.	The	gold	

standard	negative	dataset	consisted	of	proteins	from	different	subcellular	

compartments	under	the	assumption	that	they	could	not	interact,	however,	as	

demonstrated	by	Lu	et	al.	2006	there	are	exceptions	to	this	rule.	As	the	specificity	of	

Karagoz	and	Arga	2013’s	network	is	68%,	even	within	this	high	confidence	dataset	

almost	one	third	of	the	interactions	are	expected	to	be	false	positives.	Techniques	

incorporating	graph	topology	(Kuchaiev	et	al.	2009)	have	also	been	applied	to	estimate	

the	confidence	of	interactions,	which	show	promising	results	predicting	interactions	

based	on	older	datasets,	which	have	since	been	added	to	updated	versions.	However,	

lack	of	a	gold	standard	PPI	network	to	compare	the	predicted	confidence	scores	to	

makes	interpretation	of	results.			

	

To	counteract	the	effects	of	false	positive	PPIs,	studies	may	restrict	interactions	to	

those	reported	in	small	literature-curated	studies	(Cusick	et	al.	2009;	Karagoz	&	Arga	

2013).		A	weakness	of	this	approach	is	the	inherent	selective	bias	regarding	the	genes	

that	biologists	choose	to	study,	which	shows	a	large	preference	for	essential	genes	and	

disease	genes	(Hakes	et	al.	2008).	The	reliability	of	literature	curated	studies	is	further	

undermined	by	the	finding	that	only	25%	of	interactions	are	found	in	multiple	studies	
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(Cusick	et	al.	2009).	Comparisons	between	databases	that	collect	literature	curated	

interactions	show	low	levels	of	overlap	implying	that	individual	databases	are	far	from	

comprehensive.		

	

	

Estimates	regarding	the	completeness	of	PPI	networks	have	reported	that	yeast	maps	

are	50%	complete	and	human	networks	are	only	10%	complete	(Hart	et	al.	2006).		The	

effect	of	sampling	bias	in	the	data	is	also	considered	to	have	a	highly	distorting	effect	

on	networks;	for	example	resulting	in	the	apparent	repression	of	hub-hub	interactions,	

which	are	present	when	data	bias	is	controlled	(Hakes	et	al.	2008).	These	findings	carry	

serious	implications	for	the	current	utilisation	of	PPI	network	topology.	

	

2.3.2 Gene	co-expression	is	a	poor	predictor	of	protein	interactions	

Expression	data	has	been	used	to	indicate	whether	pairs	of	proteins	are	present	under	

particular	conditions	allowing	them	to	interact.	However,	the	low	correlation	between	

gene	expression	and	protein	abundance	is	well	documented	(Ghaemmaghami	et	al.	

2003;	Gygi	et	al.	1999).	Cellular	protein	levels	are	controlled	through	processing	and	

degradation	of	mRNAs,	followed	by	translation,	localisation,	post-translational	

modifications	and	degradation	(Vogel	&	Marcotte	2012).		Recent	reviews	have	

suggested	that	post-transcriptional,	translational	and	degradation	regulation	are	at	

least	as	important	in	determining	protein	concentration	as	transcriptional	control	

(Maier	et	al.	2009a;	Vogel	&	Marcotte	2012).		
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Reported	correlations	between	mRNA	and	protein	levels	are	widely	variable,	ranging	

from	0.35	to	0.75	(Vogel	&	Marcotte	2012;	Schwanhausser	2011;	Maier	et	al.	2009b;	

Ideker	et	al.	2001)	and	even	r	=	0.01	when	the	correlation	is	measured	within	single	

cells.	The	relationship	between	mRNA	levels	and	protein	levels	varies	widely	

depending	on	the	organism	and	biological	properties	of	the	proteins	(Vogel	&	

Marcotte	2012).		Some	genes	show	highly	variable	mRNA	levels,	such	as	genes	

involved	in	transcriptional	regulation	and	chromatin	organisation;	while	others,	such	

as	ribosomal	genes	show	very	stable	mRNA	levels.	In	yeast,	mRNAs	with	highly	variable	

expression	were	found	to	be	tightly	correlated	with	protein	levels	(r=0.89),	while	genes	

with	stable	mRNA	levels	showed	little	or	no	correlation	with	protein	levels	

(Greenbaum	et	al.	2003).		

	

Translation,	rather	than	transcription,	was	found	to	have	dominant	control	over	

protein	levels	in	mouse	cells,	with	wide	variations	in	the	number	of	proteins	produced	

by	each	mRNA	per	hour	(Schwanhausser	2011).	Transcription	did	have	some	influence	

with	the	correlations	between	mRNA	levels	and	protein	levels	reported	as	R2	=	0.41,	

however	considering	the	translation	rate	boosts	the	correlation	to	R2	=	0.95.		The	

variability	of	protein	half-life	was	also	found	to	be	a	controlling	factor.		Biological	

processes	involving	fast	response	to	stimulus,	such	as	transcription	factors	and	

chromatin	modifying	enzymes,	require	proteins	with	short	half-lives.	Housekeeping	

genes	such	as	those	involved	in	central	metabolism	produced	stable	proteins,	with	

some	half-lives	exceeding	200	hours.	The	finding	that	some	functions	require	

consistent	protein	levels	while	others	require	variable	protein	levels	is	in	agreement	



CHAPTER	2:		REVIEW	OF	MODELS	OF	BIOLOGICAL	COMPLEXITY	

53	

with	Komurov	and	White’s	proposal	of	static	and	dynamic	modules	(Komurov	&	White	

2007).		

	

2.4 Pleiotropy	

The	ability	of	a	gene	to	affect	multiple	phenotypic	traits	is	referred	to	as	pleiotropy	(He	

&	Zhang	2006a).	Over	50%	of	the	genes	in	yeast	been	suggested	to	be	pleiotropic	

(Dudley	et	al.	2005).	Pleiotropy	can	result	from	genes	having	more	than	one	molecular	

function	or	a	single	function	having	more	than	one	cellular	effect.	Pleiotropy	has	been	

correlated	with	the	number	of	interactions	a	gene	participates	in	(Promislow	2004;	He	

&	Zhang	2006a).	Structural	flexibility	is	known	to	be	a	factor	by	allowing	proteins	to	

bind	to	multiple	partners,	for	example	p53	achieves	this	using	disordered	domains	

(Oldfield	et	al.	2008).	The	representation	of	pleiotropic	genes	within	GI	networks	is	

problematic,	since	genes	are	only	represented	by	a	single	node.	

	

The	ability	of	proteins	to	have	multiple	catalytic	functions	is	referred	to	as	protein	

promiscuity.	Promiscuous	proteins	participate	in	secondary	reactions	while	retaining	

the	ability	to	perform	their	primary	function	(Nobeli	et	al.	2009).	This	gain	of	additional	

functions	may	stem	from	proteins	binding	to	additional	partners,	or	enzymes	

performing	multiple	chemical	reactions.		

	

Various	factors	within	the	cellular	environment	may	determine	which	functional	role	a	

protein	adopts.	Protein	function	may	be	controlled	through	gene	expression	at	

different	times	or	in	different	cellular	locations.	Differential	expression	is	commonly	
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used	by	viruses	to	generate	multiple	functions	from	their	limited	gene	set.	For	

example,	the	Epstein-Barr	virus	only	has	one	serine/theonine	protein	kinase	which	

assumes	various	roles,	phosphorylating	different	proteins,	during	the	different	stages	

of	virus	replication	(Wang	et	al.	2005).			

	

Proteins	may	also	switch	functionality	depending	on	the	presence	of	ligands	within	the	

cell.	For	example,	mammalian	cytosolic	aconitase	acts	as	an	enzyme	that	interconverts	

citrate	and	isocitrate	in	the	absence	of	iron,	but	acts	as	an	RNA	binding	protein	when	

iron	is	present	(Philpott	et	al.	1994).	Protein	function	can	also	be	affected	by	factors	

such	as	pH	and	temperature.		An	example	is	thymidine	kinase	from	Thermotoga	

maritima	which	shows	high	substrate	specificity	at	82°C,	but	gains	the	ability	to	bind	to	

different	partners	37°C,	due	to	a	conformational	changes	(Lutz	et	al.	2007).	

	

Proteins	are	described	as	moonlighting	if,	as	well	as	performing	their	primary	

enzymatic	role,	they	also	have	a	secondary	non-enzymatic	function,	which	may	be	

structural	or	regulatory	(Copley	2003).		The	first	moonlighting	proteins	to	be	described	

were	crystallins,	which	have	enzymatic	capabilities	and	are	also	structural	proteins	in	

the	vertebrate	eye	(Piatigorsky	&	Wistow	1989).	It	is	possible	for	a	protein	to	have	

several	moonlighting	functions	(Copley	2012).	For	example,	GAPDH's	primary	

enzymatic	role	is	in	energy	metabolism,	however,	it	is	also	involved	in	apoptosis,	

vesicular	transport,	nuclear	tRNA	transport	and	as	a	crystanllin	in	eye	lenses.		
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Previous	sections	(2.2.3)	of	the	thesis	have	discussed	context	dependent	interactions,	

and	the	dependency	between	network	topology	and	functional	module	identification.	

Gene	pleiotropy	builds	on	this	issue	by	stating	that	the	function	of	some	genes	(which	

are	represented	by	a	single	node)	varies	depending	on	the	interactions	they	engage	in.	

The	function	of	the	gene’s	interaction	partners	will,	therefore,	also	be	different.	This	

can	distort	the	distribution	of	functions	within	the	network,	since	functions	that	are	

independent	in	the	cell,	separated	by	the	cellular	conditions	mentioned,	are	artificially	

brought	together	in	the	network	by	the	pleiotropic	node.	Therefore,	if	a	pleiotropic	

node	performs	different	functions	by	binding	to	different	partners	at	different	cellular	

time	points,	all	of	these	functionally	diverse	partners	will	be	brought	into	close	

proximity	in	the	network.	This	is	particularly	problematic	since	one	of	the	major	

principles	guiding	functional	networks	is	“guilt-by-association”,	meaning	that	proteins	

are	likely	to	be	involved	in	the	same	functions	as	their	interaction	partners	(Oliver	

2000).	Gene	pleiotropy	can	lead	to	false	positives	since	a	partnering	gene	may	have	

multiple	pleiotropic	functions,	which	will	not	all	be	applicable	(Gillis	&	Pavlidis	2011).		

	

2.5 Disease	modules	

Proteins	associated	with	similar	disorders	are	likely	to	physically	interact,	leading	to	

the	formation	of	disease	modules	within	interaction	networks	(Goh	et	al.	2007;	Janjić	

&	Pržulj	2012a;	Vidal	et	al.	2011).		Disease	modules	may	overlap	with	functional	

modules	indicating	that	disease	phenotypes	result	from	perturbed	cellular	functions.	

For	example,	the	Fanconi	anaemia	module	overlaps	with	the	DNA	repair	module,	

indicating	a	causative	relationship	(Goh	et	al.	2007).	Modelling	disorders	as	perturbed	



CHAPTER	2:		REVIEW	OF	MODELS	OF	BIOLOGICAL	COMPLEXITY	

56	

cellular	functions	offers	insight	into	complex	and	polygenic	diseases	(Mitra	et	al.	2013;	

del	Sol	et	al.	2010).		The	multiple	genes	associated	with	polygenic	diseases	reflect	the	

sets	of	genes	within	a	functional	module,	which	if	disrupted	will	result	in	perturbed	

module	functionality.	Complex	diseases	may	involve	perturbations	within	multiple	

functional	modules.	This	is	well	documented	in	complex	diseases	such	as	cancer,	in	

which	many	different	mutations	can	result	in	a	similar	disease	phenotype.	Generation	

disease	modules	along	with	functional	modules	on	molecular	interaction	networks	can	

therefore	be	useful	in	elucidating	disease	mechanics	(Barabasi	et	al.	2011).	

	

The	formation	of	disease	modules	allows	identification	of	candidate	disease	genes	by	

the	‘guilt-by-association’	principle	which	states	that	if	a	gene	product	interacts	with	

many	known	disease	genes	it	is	likely	to	also	be	implicated	in	the	disease	(Barabasi	et	

al.	2011).	This	approach	can	assist	in	the	identification	of	candidate	disease	genes.	For	

example,	sickle	cell	anaemia	is	characterised	by	a	single	point	mutation	but	patients	

can	present	with	a	range	of	phenotypes.	This	implies	that	other	additional	disease	

modifying	genes	are	affecting	the	phenotypes,	in	the	surrounding	disease	module.	

Highly	informative	disease	modules	can	be	generated	by	combining	related	disease	

phenotypes.	For	example,	by	generating	a	PPI	sub-network	of	proteins	involved	in	

multiple	types	of	inherited	cerebellar	ataxia	and	their	adjacent	interaction	partners,	a	

disease	module	was	generated	in	which	the	18	of	the	23	disease	genes	interacted	(Lim	

et	al.	2006).	Many	of	the	shared	interaction	partners	of	the	ataxia	genes	have	been	

found	to	modify	neurodegeneration	in	animal	models,	providing	direct	support	for	the	

guilt-by-association	hypothesis.	The	data	used	by	Barabasi	et	al.	(2011)	was	specially	
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generated	using	yeast	two-hybrid	screens	targeted	towards	the	ataxia	causing	genes.	

Of	the	interactions	identified,	96%	were	novel,	indicating	the	incompleteness	of	PPI	

data.	

Proteins	can	be	involved	in	multiple	disease	modules	meaning	that	disease	modules	can	overlap	(Goh	et	al.	2007).		
Relationships	between	diseases	have	been	made	particularly	explicit	in	studies	linking	diseases	by	shared	genes	
(human	disease	network)	and	genes	by	shared	diseases	(disease	gene	network).		In	each	network	diseases	and	
disease	genes	cluster	into	disorder	groups	such	as	cancers,	renal	disorders,	neurological	disorders	and	
haematological	disorders	(see	Figure	5	taken	from	Goh	et	al	2007).	The	disease	gene	network	highlights	the	
tendency	for	common	disorders	to	be	polygenic,	supporting	the	hypothesis	that	different	combinations	of	genes	
from	a	disease	module	may	give	rise	to	a	single	disorder.	The	ability	of	genes	to	cause	multiple	disorders	is	
illustrated	by	the	human	disease	network,	suggesting	that	cellular	context	and	the	actions	of	multiple	genes	are	
important	for	determining	the	phenotype.	Diseases	with	shared	genes	were	found	to	have	increased	comorbidities	
in	many	cases,	particularly	in	causes	where	diseases	share	multiple	genes	(Park	et	al.	2009).	Co-morbidities	are	
more	likely	if	the	mutations	occur	in	the	same	functional	domain	in	each	disease	case,	supporting	the	idea	that	the	
proteins	ability	to	fulfil	a	particular	cellular	role	is	being	disrupted.	Examining	the	multiple	disease	phenotypes	
caused	by	genes	gives	insight	into	their	functions	and	helps	to	develop	understanding	of	disease	mechanisms.	
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Figure	5:	The	human	disease	network	and	the	disease	gene	network		(Goh	et	al.	2007)	"Copyright	2007	National	
Academy	of	Sciences."		a)	In	the	human	disease	network	nodes	represent	diseases	and	edges	represent	shared	
genes.	Node	colours	indicate	disease	classes	and	node	sizes	reflect	the	number	of	genes	involved	in	the	disease.	b)	
In	the	disease	gene	network	each	node	represents	a	disease	gene	and	nodes	are	linked	if	they	are	associated	with	a	
shared	disease.	The	size	of	each	node	indicates	the	number	of	disorders	the	gene	is	associated	with	(Goh	et	al.	
2007).	
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2.6 Existing	pathway	networks	

Previous	studies	have	arranged	pathways	based	on	shared	function	and	molecular	

interactions.	These	studies	use	nested	network	structures	to	identify	pathways	that	

are	subsets	of	larger	pathways,	as	well	as	enabling	the	user	to	identify	closely	related	

sets	of	pathways.	They	do	not,	however,	reduce	and	flatten	hierarchical	pathway	

redundancy	or	attribute	full	sets	of	function	to	each	pathway	gene	set.	The	

relationships	between	pathways	are	therefore	restricted.		

	

2.6.1 Pathway	Ontology	

The	pathway	ontology	uses	a	directed	acyclic	graph	to	capture	relationships	between	

pathways	(Petri,	Jayaraman,	et	al.	2014).	The	ontology	contains	five	types	of	nodes,	

representing	different	types	of	pathways	are	present	within	the	ontology:	metabolic	

nodes,	regulatory	nodes,	signalling	nodes,	disease	nodes	and	drug	nodes.	The	

structure	of	the	Pathway	Ontology	is	based	on	the	Gene	Ontology	with	“is_a”	and	

“part_of”	relationships	forming	directed	edges	pathways	to	increasingly	general	

pathway	concepts.	For	example,	Figure	6	shows	a	screenshot	from	the	Pathway	

Ontology	(hosted	by	the	Rat	Genome	Database),	visualising	the	parent	nodes	of	

chromatin	remodelling.	The	chromatin-remodelling	pathway	is	connected	to	eight	

parent	nodes,	each	containing	more	general	pathway	concepts	linking	to	increasing	

numbers	of	pathways.	The	database	includes	pathways	from	the	PID	and	KEGG,	

providing	pathway	annotations	for	over	49,000	genes	and	has	a	depth	of	up	to	10	

nodes	(Petri,	Jayaraman,	et	al.	2014).	Pathway	nodes	are	not	disjoint,	allowing	

pathway	overlap,	which	is	particularly	likely	between	closely	related	pathways.	Many	
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pathway	names	link	closely	to	GO	terms	for	example	the	‘fatty	acid	biosynthetic	

process’	in	the	Gene	Ontology	and	the	‘fatty	acid	biosynthesic	pathway’.	Pathway	

suites	are	also	generated	linking	pathways	by	common	concepts,	for	example	the	

‘Glucose	Homeostatis	Pathway	Suite	Network’	brings	together	pathways	involved	in	

glucose	metabolism	with	regulatory	and	signalling	pathways	(Figure	7).	

		

Figure	6:	Pathway	Ontology	diagram	Screenshot	taken	from	
http://rgd.mcw.edu/rgdweb/pathway/pathwayRecord.html?acc_id=PW:0001339	on	02/08/2017	showing	the	
parent	nodes	of	‘chromatin	remodelling	pathway’		
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Figure	7:	Pathway	Ontology	glucose	homeostatis		pathway	suite.	Taken	from	
http://rgd.mcw.edu/wg/pathway/glucose-homeostasis-pathway-suite	on	22nd	August	2017	

	

A	disease	pathway	is	a	pathway	in	which	defects	in	one	or	more	components	affect	its	

normal	functioning,	contributing	towards	a	disease	phenotype.	The	Pathway	Ontology	

provides	an	alternative	system	through	which	known	disease	pathways	can	be	

visualised	in	their	altered	state	(Petri,	Jayaraman,	et	al.	2014).	By	linking	pathways	that	

are	functionally	similar,	the	Pathway	Ontology	is	able	to	decipher	disease	mechanisms	

and	view	pathway	cross	talk.	Connections	between	risk	factors,	pathway	perturbation	

and	drug	treatments	can	also	be	observed	(Petri,	Hayman,	et	al.	2014).	For	example	

the	connections	between	Bisphenol	A,	cancer,	the	anti-estrogen	drug	tamoxifen	and	

aromatase	inhibitors	were	mapped	using	the	‘Estrogen	Pathway	suite’.	This	collection	
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of	estrogen	related	pathways	brings	together	estrogen	signalling,	estradiol	

biosynthesis,	biosynthesis	of	cholesterol,	and	lipid	homeostasis,	mapping	the	biological	

connections	between	the	risk	factor,	disease	and	drug.	The	pathway	ontology	differs	

from	the	approach	used	in	this	project	in	that	it	uses	known	molecular	connections	to	

link	pathways,	making	it	more	reliant	on	detailed	molecular	knowledge.	Pathways	

were	also	clustered	on	a	small	number	of	disease	related	concepts	however;	the	list	is	

largely	limited	to	cancer	processes	and	does	not	provide	extensive	insight	into	disease.	

	

2.6.2 VisaANT	pathway	metagraph	

Another	approach	to	represent	the	hierarchical	nature	of	proteins,	pathways	and	

modules	is	by	utilising	graphs	that	allow	the	nesting	of	nodes	within	nodes	(Hu,	Mellor,	

et	al.	2007).	Compound	graphs	gain	this	capability	using	metanodes.	Metanodes	may	

be	represented	in	two	states,	an	expanded	state	in	which	reveals	the	sub-graph	inside	

the	metanode	and	a	contracted	state	in	which	the	metanode	can	be	treated	as	a	

simple	node	(Hu,	Ng,	et	al.	2007).	The	subgraphs	within	metanodes	are	connected	by	

standard	edges	(which	could	represent	protein	interactions	for	example).	If	two	nodes	

that	were	components	of	different	metanodes	were	linked	by	an	edge,	then	a	

metaedge	could	be	generate	to	link	the	two	metanodes.	Metagraphs	are	similar	to	

compound	graphs,	with	the	additional	function	of	allowing	nodes	to	exist	in	multiple	

metanodes,	which	may	or	may	not	be	hierarchically	nested.	This	is	particularly	useful	

for	pathway	data	since	it	allows	the	representation	of	genes	in	multiple	pathways,	as	

well	as	functional	modules	and	expression	clusters.	
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VisANT	is	a	multidimentional	map,	which	represents	metabolic	pathways	within	a	

metagraph,	to	allow	exploratory	pathway	analysis	and	multi-scale	visualisation	of	

multiple	pathways	(Hu,	Mellor,	et	al.	2007).	Within	the	generated	metagraph	

‘semantic	zooming’,	allows	the	user	to	zoom	into	large	pathways,	viewing	smaller	sub-

pathways,	protein	complexes	and	individual	genes.		Figure	8	shows	three	depictions	of	

the	same	events	within	G1	phase	of	the	yeast	cell	cycle,	at	different	levels	of	the	

metagraph.	In	the	top	left	image	all	metanodes	are	expanded,	to	show	proteins	(pink)	

nested	within	protein	complexes.	The	orange	complexes	are	also	nested	within	larger	

turquoise	complexes.		Note	that	the	genes	SWI6	and	CDC28	are	both	present	within	

multiple	turquoise	complexes.	Physical	interactions	between	nodes	are	represented	as	

edges.	In	the	top	right	image	the	orange	complexes	and	in	the	bottom	right	images	all	

metanodes	have	been	contracted.	Each	time	a	metanode	is	contracted,	edges	that	had	

linked	it’s	components	to	nodes	within	other	metanodes	must	be	generalised	to	

metaedges.	Each	metaedge	inferers	a	relationships	between	the	complete	metanode	

and	the	node	or	metanode	adjacent	to	it.	Metanodes	were	also	generated	to	show	the	

shared	components	between	the	protein	complexes.The	development	of	metaedges	

allows	the	generation	of	new	networks,	for	example	the	cellular	network	of	yeast	

complexes	has	been	mapped	based	on	protein	interactions	between	the	components	

of	yeast	complexes.	A	similar	map	has	also	been	generated	based	on	shared	

components	between	complexes.		
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Figure	8:	Metagraphs	represent	multiple	network	levels.	All	three	depictions	show	the	same	graph.	All	of	the	
metanodes	are	full	expanded	in	the	top	left	image.	The	orange	protein	compound	metanodes	have	been	contracted	
in	the	top	right	image.	In	the	bottom	image	the	larger	turquoise	protein	complex	metanodes	have	also	been	
contracted.	When	metanodes	are	contracted,	metaedges	are	constructed	to	replace	the	previous	edges.	Links	
depicting	physical	interactions	between	simple	nodes	are	replaced	with	metaedges	linking	the	metanodes.	
Additional	edges	can	be	constructed	to	indicate	that	metanodes	contain	a	shared	component	(Hu,	Mellor,	et	al.	
2007).		

	

Gene	Ontology	structure	can	also	be	visualised	within	the	zoomable	multiscale	

visualisation	(Hu	et	al.	2009).	GO	functions	can	in	integrated	into	the	metagraph	

(Figure	9a),	by	using	GO	terms	as	nested	metanodes.	VisANT	is	capable	of	generating	

clusters	from	molecular	interaction	networks	(see	Section	2.2.2)	and	representing	the	

generating	modules	as	metanotes.	The	generation	of	metaedges	also	provides	some	

new	analysis	options	(Hu,	Mellor,	et	al.	2007).	Edges	representing	physical	interactions	

between	proteins	(Figure	9b),	are	used	to	generate	metaedges	between	GO	terms.	

This	provides	a	useful	tool	for	clustering	functions	based	on	known	interactions	and	
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showing	functional	crosstalk.	For	example	Figure	9	shows	that	genes	involved	most	of	

the	sub-processes	of	sequence-specific	DNA	binding	physically	interact,	excepts	for	

genes	involved	in	ribosomal	DNA	binding.	The	inverse	graph	could	be	produced,	where	

the	nodes	were	pathways	and	metanodes	connect	pairs	of	pathways	if	any	of	their	

component	genes	share	a	GO	term.	

	

	

Figure	9:	Integrating	GO	data	and	PPIs	in	a	metagraph.	hierarchy	of	GO	terms	covering	34	genes	B)	PPI	interactions	
between	the	34	genes	(green	circles)	C)	PPIs	of	the	genes	clustered	into	GO	terms,	represented	
hierarchically	within	the	grey	boxes	D)	graph	with	the	metanodes	compacted	(Hu,	Mellor,	et	al.	2007)	

	

The	zoomable	nature	of	metagraphs	provides	interesting	options	for	representing	

context	dependent	interactions	within	pathways	and	generating	hierarchical	functional	

modules	(Hu,	Mellor,	et	al.	2007).	Generating	functional	metaedges	between	pathway	

metanodes	based	on	overlapping	gene	annotations,	provides	an	approach	superficially	
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similar	to	the	method	presented	in	this	thesis,	however	without	the	use	of	enrichment	

analysis	the	pathway	context	of	gene	function	is	lost.	Positioning	a	gene	within	a	

pathway	will	ensure	that	its	physical	interactions	are	context	dependent	(since	physical	

interactions	are	used	to	generate	the	pathways	incorporated	into	VisANT),	however	it	

will	not	effect	the	gene’s	GO	annotations.		For	gene	annotations	to	be	context	

dependent,	enrichment	analysis	is	required.	The	use	of	enrichment	analysis	assigns	a	

set	of	GO	terms	to	a	pathway	that	is	different	to	the	combined	annotations	of	its’	

component	gene.	The	generation	of	this	new	pathway	property	violates	the	standard	

metagraph	structure,	which	was	why	it	was	not	used	in	this	project.		In	addition,	

linking	functions	by	shared	gene	interactions,	while	interesting,	is	limited	by	the	

accuracy	and	completeness	of	molecular	data	(see	Section	2.3).	Allowing	nodes	to	exist	

in	multiple	functional	metanodes	facilitates	pleiotropy	within	the	nodes,	however,	

without	knowledge	of	context	dependent	interactions,	the	metaedges	linking	nodes	

would	also	struggle	to	facilitate	context	dependent	interactions.
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Chapter	3 	

Review	of	methods	and	resources	

This	chapter	first	reviews	the	pathway	data	and	gene	annotation	sources	used,	then	

describes	the	enrichment	methods	used	to	assign	properties	such	as	function	to	the	

pathways.	Next,	methods	to	deal	with	redundancy	in	the	pathway	datasets	and	

enrichment	results	are	discussed.	Finally,	additional	software	and	network	analysis	

methods	are	outlined.	

	

3.1 Pathway	databases		

Biological	pathways	represent	collections	of	genes	and	interactions	depicting	a	

physical	component	of	a	biological	function.	They	can	include	metabolic	pathways,	

genetic	regulatory	pathways	and	signalling	pathways	(Chowbina	et	al.	2009).		Pathway	

data	is	distributed	across	many	databases,	each	with	its	own	biological	focus.	For	

example,	the	Reactome	database	primarily	focuses	on	signalling	pathways	(Fabregat	et	

al.	2016),	while	KEGG	is	known	for	metabolic	pathways	(Kanehisa	et	al.	2014).	The	

fragmentation	of	data	across	multiple	sources	impedes	researchers	from	performing	

comprehensive	searches	utilising	all	known	data	(Belinky	et	al.	2015).	Several	

metadatabases	consolidate	existing	databases	into	a	more	comprehensive	resource,	

providing	a	single	searchable	format	which	overcomes	many	incompatibility	issues	

(Chowbina	et	al.	2009;	Kamburov	et	al.	2009;	Cerami	et	al.	2011).	For	example,	the	

range	of	gene	identifiers	in	current	use	(HGNC	symbols,	SwissProt	IDs	and	KEGG	IDs).	
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In	addition,	different	databases	may	contain	pathways	with	same	name	but	different	

gene	content,	due	to	variable	pathway	boundaries	(Belinky	et	al.	2015).	Databases	may	

also	contain	pathways	with	identical	content	and	different	names.	

	

Existing	resources	have	so	far	struggled	to	overcome	the	issue	of	pathway	redundancy,	

which	largely	arises	from	the	arbitrary	nature	of	pathway	boundaries.	Overlap	

between	pathways	is	common,	in	addition	to	large	pathways	subsuming	smaller	

pathways.	Vivar	et	al.	(2013)	showed	that	pathway	redundancy	was	present	within	

KEGG,	Biocarta,	PID,	Reactome	and	the	Chemical	and	Genomic	Perturbation	database	

which	is	a	component	of	the	molecular	signatures	database	(Liberzon	et	al.	2011).	This	

problem	increases	when	databases	are	combined.	The	hierarchical	redundancy	of	

pathways	is	visualised	within	the	Pathway	Ontology,	a	directed	acyclic	graph	mapping	

the	tendency	of	large	pathways	to	subsume	smaller	pathways	(see	Section	2.6.1).		

	

ConsensusPathDB	(CPDB)	is	an	example	of	a	metadatabase,	as	it	integrates	humans,	

mouse	and	yeast	data	from	30	heterogeneous	data	sources,	including	KEGG	(Kanehisa	

et	al.	2017),	WikiPathways	(Kutmon	et	al.	2016),	Pathway	Interaction	Database	(PID)	

(Schaefer	et	al.	2009),	Reactome	(Croft	et	al.	2014)	and	Biogrid	(Chatr-Aryamontri	et	al.	

2015).	A	recent	report	showed	that	of	the	161,396	interactions	covered	by	CPDB,	75%	

were	only	present	in	one	of	the	source	databases	(Kamburov	et	al.	2013).	The	number	

of	pathways	present	in	multiple	databases	decreased	rapidly,	with	very	few	pathways	

appearing	in	more	than	five	databases	(see	Figure	10).	This	highlights	the	highly	
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complementary	nature	of	the	databases	used.	However,	the	appearance	of	25%	of	

interactions	in	multiple	databases	still	indicates	a	high	level	of	redundancy.		

	

These	findings	were	confirmed	in	another	study,	which	examined	gene	overlap	

between	four	large	databases:	QIAGEN	(http://www.qiagen.com/geneglobe/),	KEGG,	

Reactome	and		Wikipathways	(Belinky	et	al.	2015).	Of	the	10,770	genes	contained	

within	these	sources,	more	than	4,000	were	unique	to	a	single	database	and	1,413	

were	found	in	all	four	databases.	Again,	these	findings	show	that	integrating	databases	

is	essential	to	generate	a	comprehensive	view	of	cellular	pathways;	however,	overlap	

merging	resources	results	in	high	levels	of	redundancy.	Pathway	redundancy	still	

remains	a	major	obstacle	to	database	integration.	

	

Figure	10:	Histogram	showing	the	number	of	source	databases	per	interaction	in	ConsensusPathDB	(Kamburov	et	al.	
2013)	
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The	Human	Pathway	Database	(HPD)	integrates	pathway	data	from	the	PID,	Reactome,	

Biocarter	(Nishimura	2001),	KEGG	and	the	Protein	Lounge	

(http://www.proteinlounge.com).	Within	999	human	pathways	this	data	base	covers	

over	59,000	human	molecular	entities	(Chowbina	et	al.	2009).	Users	are	able	to	search	

for	pathways	related	to	protein	names	or	search	terms,	using	a	maximum	overlap	

threshold	to	limit	redundancy	within	the	results.	Overlap	between	pathway	results	

may	also	be	visualised	as	a	network,	representing	pathways	as	nodes	and	overlapping	

biological	entities	as	edges.		

	

Figure	11	(taken	from	Chowbina	et	al	2009)	shows	overlap	between	breast	cancer	

pathways.	Some	pathways	show	high	levels	of	redundancy,	for	example,	the	‘DNA	

Repair	Mechanism’	pathway	shares	49	biological	entities	with	‘Chks	in	Checkpoint	

Regulation’,	as	well	as	38	biological	entities	with	‘p53	signalling’.	The	‘Molecular	

Mechanisms	of	Cancer’	pathway	shares	196	biological	entities	with	‘JAK/STAT	

Pathway’.	A	second	network	may	be	constructed	showing	regulatory	relationships	are	

present	between	biological	entities	in	different	pathways.	
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Figure	11:	Pathway	overlap	in	the	Human	Pathway	Database		(Chowbina	et	al.	2009).	Pathway	similarity	network	
showing	25	breast	cancer	pathways.	The	node	colours	indicate	the	pathway	source.	Edges	indicate	overlap,	with	the	
number	of	shared	biological	entities	indicated	by	the	red	numbers.	

	

Human	integrated	Pathway	DataBase	(hiPathDB)	collated	data	from	PID,	Reactome,	

BioCarta	and	KEGG,	to	generate	1661	pathways	covering	8,976	biological	entities.	

Pathways	were	intergrated	into	a	single	non-redundant	superpathway,	onto	which	

individual	pathway	boundaries	are	mapped	(N.	Yu	et	al.	2012).	To	facilitate	the	

construction	of	the	superpathway,	all	interactions	were	reduced	to	binary	pairwise	

interactions	and	molecular	details	of	different	gene	products	were	lost,	resulting	in	the	

loss	of	some	contextual	data.	Reformatted	pathways	were	then	mapped	into	this	

network.	
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3.1.1 ConsensusPathDB	

In	this	study,	CPDB	was	used	to	provide	an	extensive	set	of	pathways	covering	a	

diverse	range	of	biological	functions.	CPDB	was	selected	as	it	covers	both	yeast	and	

human	pathways,	and	includes	a	wider	range	of	resources	than	the	other	meta-

databases.	Despite	the	wide	coverage	of	this	resource,	a	disadvantage	to	it’s	use	is	the	

limited	gene	coverage,	with	the	CPDB	including	2,114	yeast	genes	and	11,196	human	

genes	within	pathways	at	the	time	of	download	(see	Section	4.3.1).		A	complication	in	

the	use	of	metadatabases	is	the	high	levels	of	redundancy	through	pathway	overlap,	

especially	when	pathway	resources	are	merged	(see	previous	section).	This	

complication	is	addressed	in	Section	3.5.1.	

	

3.2 Annotation	Databases	

This	section	reviews	the	Gene	Ontology,	which	was	used	to	assign	function	to	

pathways,	and	the	Human	Phenotype	Ontology	which	provided	disease	annotations.	

We	also	discuss	Biogrid,	which	provides	the	genetic	interactions	used	to	validate	

disease	clusters.	

	

3.2.1 The	Gene	Ontology	

The	Gene	Ontology	is	a	widely	used	controlled	vocabulary	to	describe	the	properties	of	

genes	(Ashburner	et	al.	2000).	Of	the	three	independent	ontologies	describing	the	

biological	processes,	molecular	functions	and	cellular	components	of	genes,	the	

biological	process	ontology	was	the	most	appropriate	for	this	study.	The	biological	
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processes	ontology	is	the	larges	ontology	containing	27,284	terms	(Blake	et	al.	2015).		

By	performing	enrichment	analysis	each	pathway,	the	pathway’s	function	was	

ascertained.		

	

The	Gene	Ontology	is	a	directed	acyclic	graph,	in	which	parent	nodes	represent	

general	terms	and	child	nodes	give	more	specific	information	(see	Figure	12).	Within	

the	biological	function	ontology,	relationships	between	terms	can	be	describes	as	‘is	a’	

or	‘part	of’.	Both	of	these	relationships	are	transitive;	therefore,	for	an	annotation	to	

be	assigned	to	a	gene	all	of	the	annotation’s	parent	terms	must	also	be	applicable	(Yon	

Rhee	et	al.	2008),	a	standard	sometimes	described	as	the	‘true	path	rule’	(Pesquita	et	

al.	2009).	The	‘is	a’	relationship	is	intuitive,	describing	general	terms	in	increasing	

levels	of	detail	(for	example	a	mitochondrion	is	an	intracellular	organelle	is	an	

organelle).	The	‘part	of’	relationships	describe	situations	where	the	specific	term	

describes	a	subcomponent	of	the	general	term	(for	example	a	replication	fork	is	part	of	

a	chromosome).	A	chromosome	can	exist	without	a	replication	fork,	but	a	replication	

fork	cannot	exist	without	a	chromosome.	

	

The	Gene	Ontology	provides	evidence	codes	for	each	annotation	indicating	the	type	of	

evidence	used	to	generate	the	annotation	(Yon	Rhee	et	al.	2008).	These	annotations	

disclose	whether	the	annotation	is	based	on	experimental	or	computational	

information,	and	whether	it	was	manually	curated.	Annotations	‘inferred	from	

electronic	annotation’	(IEA)	are	computationally	derived,	usually	through	inference	

from	sequence	similarity	to	model	organisms	(Pesquita	et	al.	2009),	and	are	not	
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manually	curated.	The	use	of	IEA	can	increase	the	rate	of	false	positives	(Mathur	&	

Dinakarpandian	2012).	However,	removing	them	reduces	coverage	as	they	comprise	

the	majority	of	annotations	(du	Plessis	et	al.	2011).	Studies	that	use	the	same	data	

sources	as	those	used	to	generate	IEA	annotations	should	omit	IEA	annotations	to	

avoid	circularity	(Pesquita	et	al.	2009).	Since	physical	interactions	are	the	basis	of	

pathways,	IEA	terms	were	omitted	from	the	thesis	(as	described	in	Section	6.3.1.2).	

The	effects	of	removing	IAE	GO	terms	had	little	effect	on	the	ability	of	various	

semantic	similarity	measures	to	distinguish	between	true	and	negative	PPIs	(Jain	&	

Bader	2010),	therefore,	suggesting	that	removal	of	these	terms	will	not	effect	later	

methods	(see	Section	3.4).	

	
	

Figure	12	Gene	Ontology	hierarchy.	Nodes	represent	the	parent	terms	for	mismatch	repair	and	edges	represent	
relationships	between	terms.	Figure	taken	from	http://amigo.geneontology.org/amigo/term/GO:0006298	on	
18/08/2017.	
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3.2.2 Human	Phenotype	Ontology		

The	Human	Phenotype	Ontology	(HPO)	is	a	widely	used	resource	for	describing	

phenotypic	abnormalities	(Köhler	et	al.	2017).	It	contains	>10,000	phenotypic	terms	

(such	as	‘abnormality	of	the	nervous	system’)	which	are	linked	to	123,724	rare	

diseases	and	132,620	common	diseases.	The	disease	annotations	are	retrieved	from	

Online	Mendelian	Inheritance	in	Man	(McKusic	2009),	Orphanet	(Rath	et	al.	2012)	and	

DECIPHER	(Firth	et	al.	2009).	HPO	has	extremely	broad	coverage	of	phenotypes,	

compared	to	the	Unified	Medical	Language	System	which	only	covers	54%	of	the	

concepts	included	in	the	HPO,	while	SNOMED	only	covers	30%.	HPO	was	used	to	

assign	disease	annotations	to	pathways.	

	

3.2.3 BioGrid	

The	Biological	General	Repository	for	Interaction	Datasets	(BioGRID)	is	an	extensive	

open-source	resource	for	GI	and	PPI	data	(Stark	et	al.	2006).	BioGRID	collects	and	

annotates	GI	data	from	the	published	literature	for	all	major	model	organisms	and	

humans,	through	text	mining	and	manual	annotation.	BioGRID	releases	updated	

interaction	data	from	yeast	on	a	monthly	basis	(Chatr-Aryamontri	et	al.	2015).	This	

thesis	used	the	yeast	GI	dataset,	containing	207,188,	interactions	covering	5,674	

genes.	GIs	reveal	functional	relationships	between	and	within	regulatory	modules.	

Within	this	thesis,	GIs	were	used	to	provide	an	independent	dataset	to	validate	the	

functional	relatedness	of	genes.	
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3.3 Annotating	pathways	through	enrichment	analysis	

This	section	describes	enrichment	analysis	which	is	a	statistical	approach	used	to	

identify	pathways	associated	with	particular	GO	terms	or	diseases.	

	

3.3.1 Functional	pathway	enrichment	

Different	biological	concepts	are	used	to	interpret	and	describe	the	unifying	concepts	

of	large	gene	lists	(Khatri	et	al.	2012).		Statistical	enrichment	is	used	to	identify	the	

characteristics	common	across	the	gene	set	that	provide	functional	insight	into	the	list.	

Over-Representation	Analysis	(ORA)	can	be	used	with	biological	pathways,	the	Gene	

Ontology,	or	other	gene	set	collections	(Tarca	et	al.	2013).	Each	concept	must	have	a	

predefined	list	of	genes,	which	is	compared	to	the	experimenter’s	gene	list.	If	more	

genes	from	the	experimenter’s	gene	list	are	found	in	the	predefined	gene	list	than	

expected	at	random,	the	experimenter’s	gene	list	is	enriched	for	the	particular	concept	

(Doderer	et	al.	2012).	The	significance	of	the	enrichment	is	quantifiably	measured	

using	a	p-value.	Various	algorithms	can	be	used	including	Chi-square,	Fisher’s	exact	

test,	Binomial	probability	and	Hypergeometric	distribution	(Huang,	Sherman,	et	al.	

2009).	It	is	common	for	ORA	analysis	to	produce	highly	redundant	results,	for	example	

large	numbers	of	closely	related	GO	terms,	hindering	interpretation	by	researchers.	

Therefore,	several	studies	have	proposed	methods	to	reduce	redundancy	in	

enrichment	analysis	results	(see	Sections	3.5.2).		

	

	This	thesis	uses	ORA	to	assign	function	to	pathways	and	to	identify	pathways	enriched	

with	disease	terms.	The	size	of	pathways	is	important	for	ORA,	as	pathways	that	are	
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too	large	lack	functional	specificity	(Belinky	et	al.	2015).	Also	large	pathways	may	have	

disproportionately	high	statistical	power,	resulting	in	spurious	annotations	(Glass	&	

Girvan	2014).	In	addition	pathways	with	fewer	than	four	genes	are	too	small	for	

enrichment	analysis	(Kamburov	et	al.	2013)	and	were	not	included	in	the	study	

presented	in	this	thesis	(see	Sections	4.3.5	and	6.3.1.3).		In	order	to	reduce	pathway	

size	variability	a	modified	set	cover	algorithm	was	used	to	reduce	pathway	redundancy	

(see	Section	3.6.2).		

	

3.3.2 Pathway	disease	enrichment		

Analysis	of	the	gene	mutations	that	give	rise	to	disease	phenotypes	is	an	essential	

method	for	elucidating	gene	functionality	(Robinson	et	al.	2008).	Mutations	in	

functionally	similar	genes	give	rise	to	phenotypically	similar	diseases	which	can	be	

mapped	to	disease	families.		Phenotypic	analysis	offers	insights	into	the	

pathophysiology	of	cellular	networks,	by	revealing	pathways	or	modules	in	which	

perturbation	produces	similar	phenotypic	consequences.	Information	regarding	the	

mechanisms	of	disease	progression	can	inferred	from	affected	pathways	and	genes	

within	these	pathways	can	be	identified	as	potential	drug	targets	(Yu	et	al.	2007).	

Section	2.5	discusses	the	mapping	of	diseases	onto	interaction	networks.	Enrichment	

analysis	can	also	be	used	to	map	diseases	onto	pathways.	ORA	can	also	be	used	to	

map	diseases	onto	pathways,	since	diseases	cluster	within	pathways	as	they	interact	

with	partners	with	similar	functions	(Liu	&	Chance	2013).	
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An	alternative	approach	to	the	application	of	ORA	to	gene	lists	is	to	assess	which	

functions	are	being	disrupted	to	produce	a	gene	phenotype.	In	these	instances,	lists	of	

disease-associated	genes	are	compared	to	genes	associated	with	GO	terms.	For	

example,	expression	data	extracted	from	different	brain	regions	of	Alzheimer’s	

patients	showed	differences	in	enriched	GO	terms,	corresponding	to	different	

pathways	(Miller	et	al.	2013).		Similarly	expression	data	extracted	from	breast	cancer	

samples	was	also	used	to	identify	GO	processes	associated	with	tumour	metastasis	(Yu	

et	al.	2007).	The	most	enriched	terms	were	shown	to	be	different	for	oestrogen	

receptor-positive	and	oestrogen	receptor-negative	cancers,	demonstrating	the	ability	

of	the	method	to	detect	different	mechanistic	processes.	This	method	provides	an	

interesting	alternative	to	the	methods	based	of	molecular	data	(ORA	and	network	

disease	modules),	however,	since	it	excludes	physical	cellular	components	form	the	

analysis,	it	does	not	provide	direct	insight	into	disease	mechanisms.	It	is	therefore	less	

suitable	for	evaluating	the	pathway	network,	which	is	concerned	with	organising	

physical	biological	pathways	in	a	meaningful	way.	

	

3.4 Semantic	similarities	between	GO	terms		

To	measure	the	functional	relatedness	of	each	pair	of	pathways,	the	semantic	

similarity	of	the	GO	terms	assigned	to	them	must	be	quantified.	This	requires	the	

similarity	of	GO	term	pairs	to	be	calculated	first	(see	Section	3.4.1),	before	the	

similarity	of	GO	terms	sets	is	assessed	(see	Section	3.4.2).		
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3.4.1 Semantic	similarities	between	pairs	of	GO	terms		

There	are	various	methods	available	to	measure	the	semantic	similarity	between	GO	

terms	(Resnik	1999;	Lin	1998;	Wang	et	al.	2007).	The	methods	available	to	measure	

the	similarity	between	a	pair	of	GO	terms	can	be	grouped	into	node-based	methods	

and	edge-based	methods	(Pesquita	et	al.	2009).	Node-based	methods	consider	the	

properties	of	the	nodes	such	as	the	information	content.	This	is	a	measure	of	how	

specific	a	term	is,	based	on	the	number	of	genes	it	applies	to.	General	terms	apply	to	

large	numbers	of	genes,	while	more	specific	terms	will	apply	to	fewer	genes.	The	

information	content	of	the	most	informative	common	ancestor	is	indicative	of	the	

similarity	of	two	terms.	This	common	approach	is	used	in	methods	such	as	Resnik	

(Resnik	1999)	and	Lin	(Lin	1998).	A	similar	approach	was	used	to	generate	semantic	

distances	by	subtracting	the	information	content	of	each	test	term	from	the	doubled	

information	content	of	the	most	informative	common	ancestor	(Hakes	et	al.	2007).	In	

situations	where	test	terms	are	semantically	close,	a	semantic	distance	of	around	zero	

would	be	produced,	providing	a	defined	reference	point.	An	alternative	to	the	most	

informative	common	ancestor	is	the	disjoint	common	ancestors	used	in	GraSM	(Couto	

et	al.	2005).	This	measure	considers	all	disjoint	common	ancestors	(the	set	of	common	

ancestors	in	which	no	terms	subsume	other	terms).	

	

Edge-based	methods	use	the	structure	of	the	gene	ontology	to	measure	the	distance	

between	a	pair	of	GO	terms	on	the	GO	graph	(Pesquita	et	al.	2009).	Distance	can	either	

be	measured	as	the	shortest	path	between	two	nodes	or	the	average	of	all	paths,	if	
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multiple	paths	exist.	The	Wang	method	is	a	commonly	used	edge	based	method,	since	

it	takes	the	types	of	edges	in	the	Gene	Ontology	into	consideration	(Wang	et	al.	2007)	

	

Semantic	similarities	between	pathways	are	not	commonly	measured.	The	contrast	in	

the	methodological	approaches	of	the	Wang	and	Resnik	methods,	along	with	their	

high	performance	in	other	studies	(Sevilla	et	al.	2005;	Guo	et	al.	2006;	Mistry	&	Pavlidis	

2008;	Guzzi	et	al.	2012;	Jain	&	Bader	2010;	Wang	et	al.	2007),	makes	them	a	good	

choice	to	explore	the	range	of	available	techniques.	

3.4.1.1 Resnik	method	

The	Resnik	method	is	an	node	based	approach	based	on	methods	based	on	WordNet	

(Resnik	1999).	It	has	been	found	to	outperform	other	approaches	in	several	studies	

(Sevilla	et	al.	2005;	Guo	et	al.	2006;	Mistry	&	Pavlidis	2008;	Guzzi	et	al.	2012;	Jain	&	

Bader	2010).	In	this	method,	similarity	is	calculated	using	the	information	content	of	

the	lowest	common	ancestor	(see	Equation	1).	This	measure	indicates	the	probability	

of	two	terms	sharing	a	particular	parent	term	(Pesquita	et	al.	2009;	Lord	et	al.	2003b).	

For	a	pair	of	GO	terms	(A,	B),	all	parent	terms	common	to	both	are	identified,	denoted	

as	TA∩TB.		The	proportion	of	available	genes	attributed	to	each	parent	term	is	then	

calculated,	shown	as	p(t).	The	parent	term	with	the	fewest	genes	attributed	to	it	is	

selected	as	the	most	informative	common	ancestor.	The	proportion	of	available	genes	

annotated	with	the	most	informative	common	ancestor	is	denoted	as	Pms	(probability	

of	the	minimum	subsumer).	

	

	 𝑃!" 𝐴,𝐵 =   {𝑝 𝑡 }!∈!!∩!!
!"# 	 (	1	) 	
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The	information	content	of	the	most	informative	common	ancestor	is	generated	as	the	

negative	log	of	the	probability	of	the	minimum	subsumer	(Equation	2).	This	is	the	score	

used	to	describe	the	similarity	between	test	nodes	A	and	B	(sim(A,B)).	

	

	 𝑠𝑖𝑚 𝐴,𝐵 =  −log (𝑃!" 𝐴,𝐵 )	 (	2	) 	

3.4.1.2 Wang	method	

The	Wang	method	is	a	commonly	used	edge-based	approach	(Wang	et	al.	2007).	It	

uses	the	directed	acyclic	graph	structure	of	the	Gene	Ontology	to	measure	the	overlap	

between	the	parent	nodes	of	GO	test	terms	(A,	B).	Parent	nodes	that	are	closer	to	a	

given	term	in	the	graph	are	considered	to	contribute	more	towards	the	test	terms	

semantics.	To	illustrate	this,	Figure	13	shows	the	calculation	of	semantic	distance	

between	the	terms	‘Intracellular	organelle’	and	‘Intracellular	membrane-bound	

organelle’.	The	term	‘organelle’	contributes	more	to	the	meaning	of	both	terms	than	

the	term	‘cellular	component’	and	is	therefore	given	greater	weight	when	calculating	

similarity	between	the	two	terms.	

	

To	calculate	the	semantic	similarity	between	the	terms	‘Intracellular	organelle’	and	

‘Intracellular	membrane-bound	organelle’	(Figure	13A)	sub-graphs	containing	each	

term	and	the	term’s	parents	are	generated	(Figure	13B	and	Figure	13C).		Each	GO	term	

is	assigned	an	S-score,	independently	within	each	sub-graph,	indicating	the	extent	of	

the	parent	term’s	contribution	towards	the	semantics	of	the	test	term.	Each	test	term	

gets	an	S-score	of	1.	The	S-score	of	each	parent	term	is	calculated,	moving	from	the	

bottom	of	the	graph	to	the	top,	by	multiplying	the	previous	term’s	S-score	by	0.8	for	
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an	‘is-a’	relationship	and	0.6	of	a	‘part-of’	relationship	(see	Figure	13B).	In	this	way,	the	

S-scores	become	smaller	as	parent	terms	become	more	distant	from	each	test	term.	

To	calculate	the	semantic	similarity,	the	product	of	the	S-scores	from	all	nodes	present	

in	the	intersection	of	both	sub-graphs	is	calculated	(Figure	13D).	This	shared	score	is	

divided	by	the	total	of	all	of	the	S-scores	in	both	sub-graphs.	

	

Figure	13:	Wang	semantic	similarity	example.		Example	of	semantic	similarities	between	GO	terms	taken	from	
(Wang	et	al.	2007).	The	dashed	arrows	indicate	a	‘part-of’	relationship	between	term	and	the	solid	arrows	indicate	
an	‘is-a’	relationship.	S	denotes	S-score,	signifying	how	much	each	term	contributes	to	the	test	term.	Table	D	gives	
the	S	score	calculation	of	each	term,	calculated	by	summing	the	scores	for	each	term	indicated	an	B	and	C.	

	

Note	that	in	Figure	13B	there	are	two	available	paths	to	generate	the	S-score	for	

‘cellular	component’.	The	highest	score	was	generated	using	the	path:	‘Intracellular	

membrane-bound	organelle’,	‘Intracellular	organelle’,	‘Organelle’.	A	lower	score	of	

0.23	could	have	been	generated	using	the	alternative	path:	‘Intracellular	membrane-
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bound	organelle’,	‘Intracellular	organelle’,	‘Intracellular’,	‘Cell’.	The	path	that	generates	

the	highest	score	will	be	selected,	to	contribute	to	the	overall	similarity.	

	

The	Wang	method	is	presented	in	Equation	3	in	which	TA	and	TB	are	once	again	the	

parent	terms	of	A	and	B	respectively.	SA(t)	and	SB(t)		are	the	S-scores	of	parent	terms	

related	to	A	and	B,	and	SV(A)	and	SV(B)	are	the	combined	scores	of	the	parent	

subgraphs	generated	for	A	and	B	respectively.	

	

	
𝑆!" 𝐴,𝐵 =  

(𝑆! 𝑡 + 𝑆! 𝑡 )!∈!!∩!!
𝑆𝑉 𝐴 + 𝑆𝑉(𝐵) 	

(	3	) 	

	

3.4.1.3 Comparison	of	semantic	similarity	approaches	

The	Resnik	method	has	been	shown	to	be	highly	effective;	however	it	does	have	some	

notable	limitations.	The	specificity	of	a	GO	term	is	determined	by	its	position	in	the	

graph	and	its	semantic	meaning	is	determined	by	all	of	its	ancestors	(Wang	et	al.	

2007).	If	two	test	terms	share	a	parent	term	close	to	the	ontology	root,	they	should	

have	a	greater	semantic	similarity	if	each	test	term	is	also	close	to	the	root	than	if	both	

test	terms	were	positioned	close	to	the	ontology	tips.	However,	in	both	described	

cases,	the	similarity	score	would	be	the	same,	since	the	distance	between	the	test	

terms	and	the	lowest	common	ancestor	is	not	considered.	In	addition,	test	terms	close	

to	the	root	of	the	ontology	will	always	receive	a	low	similarity	score,	since	the	

information	content	of	the	most	informative	common	ancestor	will	always	be	low.	

Solutions	to	these	limitation	are	presented	by	the	Jiang	method	(Jiang	&	Conrath	1997)	

and	Lin	method	(Lin	1998),	both	of	which	consider	the	information	content	of	the	
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minimum	subsumer	and	the	information	content	of	the	test	terms.	However,	because	

these	methods	consider	either	absolute	difference	or	the	ratio	of	these	measures,	if	

the	test	terms	are	close	to	the	ontology	root	the	semantic	similarity	will	consistently	

appear	very	high.	This	is	due	to	the	similar	information	content	of	shallow	annotations,	

which	are	less	meaningful	than	if	the	test	terms	and	shared	ancestor	had	been	closer	

to	the	root.	This	can	be	problematic	in	the	context	of	gene	similarity	as	poorly	

annotated	genes	which	are	associated	with	such	general	terms	can	be	very	

functionally	different	(Sevilla	et	al.	2005).	An	additional	limitation	of	using	information	

content	is	that	it	makes	the	output	highly	depend	on	the	data	set.	If	two	studies	use	

different	sets	of	annotated	genes,	they	will	generate	different	results,	undermining	the	

objectivity	of	the	method	(Wang	et	al.	2007).		

	

The	limitations	of	node	based	methods	provided	motivation	for	the	development	of	

the	Wang	method.	By	using	the	Gene	Ontology	topology	rather	than	information	

content,	topological	distance	between	the	test	terms	is	incorporated	into	the	similarity	

measures	(Wang	et	al.	2007).	The	output	is	also	unaffected	by	the	proximity	of	the	test	

terms	to	the	ontology	root.		

	

Limitations	of	edge-based	methods	are	that	they	tend	to	assume	that	nodes	and	edges	

in	the	Gene	Ontology	are	uniformly	distributed,	and	that	all	edges	imply	comparable	

differences	in	semantic	similarity	(Pesquita	et	al.	2009).	In	the	case	of	the	Gene	

Ontology,	this	assumption	is	undermined	by	the	tendency	of	study	bias	to	affect	the	

density	of	areas	of	the	ontology	graph.	Node-based	methods	are	not	affected	by	the	
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structure	of	the	Gene	Ontology,	however	higher	numbers	of	genes	are	likely	to	be	

assigned	GO	terms	in	heavily	studied	functional	areas	than	less	studied	functions,	

which	in	turn	will	affect	information	content	scoring.	

	

3.4.2 Semantic	similarity	between	groups	of	GO	terms	

The	methods	described	in	sections	3.4.1	to	3.4.1.3	measure	semantic	distance	

between	pairs	of	GO	terms.	However,	enrichment	analysis	produces	sets	of	GO	terms	

rather	than	single	terms.	Semantic	similarity	methods	are	most	commonly	measured	

between	sets	of	GO	terms	attributed	to	pairs	of	proteins	(Resnik	1999;	Wang	et	al.	

2007;	Xu	et	al.	2008)	,	however	they	can	be	applied	to	pairs	of	annotated	pathways	

(Mathur	&	Dinakarpandian	2012).	There	are	three	groups	of	methods	used	to	compare	

sets	of	GO	terms:	the	‘pairwise	average/maximum’,	the		‘best	match	average’	and	

groupwise	methods.		

3.4.2.1 Pairwise	average/maximum	

The	pairwise	average	calculates	the	mean	semantic	distance	between	every	pair	of	GO	

terms	across	two	sets	(Figure	14A).	The	first	step	in	the	calculation	is	to	measure	the	

semantic	distance	between	each	GO	term	in	the	first	set	and	every	GO	term	in	the	

second	set.	The	mean	of	all	the	semantic	distances	calculated	is	then	generated.	Lord	

et	al.	2003a	showed	that	the	pairwise	average	in	conjunction	with	the	Resnik	method	

produced	results	correlated	with	sequence	similarity.	

	

The	pairwise	maximum	approach	links	sets	of	GO	terms	by	their	most	similar	GO	term	

pair	(Figure	14B).		This	approach	has	been	used	with	several	semantic	similarity	
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measures,	including	the	Resnik	measure,	and	has	been	shown	to	correlate	the	

semantic	similarity	of	gene	pairs	and	shared	gene	expression	(Sevilla	et	al.	2005;	Jain	&	

Bader	2010).	

	

	
	

Figure	14:	Semantic	similarity	measures.	Arrows	show	the	similarity	measures	incorporated	into	each	metric		
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The	pairwise	average	and	the	pairwise	maximum	vary	in	the	way	they	facilitate	gene	

pleiotropy.	If	the	gene	sets	being	compared	only	contain	one	GO	term,	or	contain	

semantically	similar	GO	terms,	they	will	produce	similar	results.	However,	if	genes	

have	semantically	variable	terms,	these	methods	will	produce	different	results.	If	a	

protein	has	multiple	context-dependent	functions,	then	using	the	pairwise	maximum	

approach	can	be	beneficial,	if	only	the	most	similar	functions	are	relevant.	However,	

using	the	pairwise	maximum	approach	discards	information	since	GO	terms	that	are	

not	included	in	the	best	match	are	ignored.	Lord	et	al.	2003a	argued	that	the	function	

of	a	biological	entity	is	comprised	from	all	of	its	functions;	therefore	basing	semantic	

similarities	of	a	single	function	is	detrimental.	Using	the	pairwise	average,	all	GO	terms	

in	both	sets	are	considered	in	the	calculation.		Using	the	pairwise	maximum	genes	are	

linked	by	their	most	similar	pair	of	annotations	allowing	unrelated	pleiotropic	terms	to	

be	discarded.	Since	the	study	presented	in	this	thesis	utilises	enriched	GO	term	sets	

from	biological	pathways	the	pairwise	average	was	selected	as	most	appropriate.	

Functions	attributed	to	pathways	through	enrichment	analysis	are	by	their	nature	

context-dependent,	therefore,	any	pleiotropic	functions	their	proteins	may	have	had	

will	have	been	filtered	out.	However,	the	pathways	themselves	may	have	multiple	

functions	(Guo	et	al.	2006),	therefore	effectiveness	of	both	the	pairwise	average	and	

the	best	match	average	(see	below)	were	measured.	

	

3.4.2.2 Best	match	average	

The	best	match	average	calculates	the	average	semantic	distance	between	each	GO	term	in	one	set	and	the	closest	
GO	term	in	the	other	set	(Pesquita	et	al.	2009).	Therefore,	each	GO	each	term	will	be	matched	to	the	most	similar	
term	in	the	other	GO	set	(	
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Figure	14C).	The	approach	combines	properties	of	the	previous	two	techniques,	linking	

GO	terms	by	their	closest	partner	without	discarding	any	GO	terms	in	the	set.		This	

approach	is	especially	suited	to	situations	in	which	biological	entities,	such	as	proteins	

or	pathways,	are	attributed	with	pairs	of	semantically	diverse	GO	terms,	which	may	

cluster	within	the	cell.	If	a	pair	of	genes	each	had	an	identical	set	of	two	semantically	

distinct	annotations,	the	best	match	average	measure	would	assign	them	a	semantic	

similarity	of	one.	The	pairwise	average	would	assign	a	low	semantic	similarity	because	

it	would	include	distances	between	semantically	diverse	pairs.	The	pairwise	maximum	

would	also	assign	a	semantic	similarity	of	one,	however,	it	would	be	unable	to	

distinguish	between	two	identical	sets	of	semantically	diverse	GO	terms	and	two	sets	

of	GO	terms	with	one	matching	pair.	The	best	match	average	was	the	approach	

originally	suggested	for	use	with	the	Wang	method	(Wang	et	al.	2007).	The	best	match	

average	has	therefore	been	used	in	many	studies	(Jain	&	Bader	2010;	Couto	et	al.	

2005;	Lord	et	al.	2003b)	and	has	been	shown	to	outperform	the	pairwise	average	

(Pesquita	et	al.	2007).		

	

3.4.2.3 Groupwise	methods	

Groupwise	methods	do	not	consider	similarities	between	individual	GO	terms	but	

instead	look	at	the	proportion	of	shared	GO	terms	shared	between	biological	entities.	

These	approaches	have	different	implementation	to	the	previous	approaches	but	

show	conceptual	overlap.	Set	similarity	or	graph	techniques,	based	on	the	entire	sets	

of	gene	annotations	may	be	used	(Pesquita	et	al.	2009).	An	early	measure	was	term	

overlap,	which	simply	defined	the	similarity	between	two	gene	products	as	the	
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number	of	GO	terms	they	shared	(H.	K.	Lee	et	al.	2004).	The	Jaccard	coefficient	

provides	a	normalised	version	of	this	method	(Gentleman	2005).	In	this	approach,	the	

Jaccard	coefficient	J(A,B)	is	calculated	as	the	number	of	terms	shared	between	two	

sets	(A	and	B),	divided	by	the	total	set	of	terms	in	both	sets	(see	Equation	4).		

	 𝐽 𝐴,𝐵 =  
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|	

(	4	) 	

	

Other	approaches	such	as	simLP	measure	the	depth	of	the	longest	shared	path	from	

the	ontology	root	(Gentleman	2005),	sharing	base	concepts	with	edge	based	

techniques.	Information	content	can	also	be	incorporated	into	this	set	of	techniques,	

giving	similar	results	to	Resnik’s	measure	(Sheehan	et	al.	2008).	

	

The	disadvantage	of	these	methods	is	that	they	are	greatly	dependent	on	the	

annotation	density	of	the	Gene	Ontology.	Well-studied	areas	of	the	Gene	Ontology	

have	more	functionally	similar	terms	than	less	studied	areas.	Therefore,	two	

functionally	similar	genes	could	have	a	low	number	of	shared	terms	if	they	were	

positioned	in	an	understudied	area	of	the	Gene	Ontology.	In	contrast,	two	dissimilar	

genes	could	share	high	numbers	of	very	general	terms	from	a	better-studied	area	of	

the	ontology.	As	a	result	the	pathway	network	topology	could	be	shaped	by	current	

trends	in	research	rather	than	cellular	properties.	
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3.5 Existing	methods	to	reduce	pathway	data	redundancy		

The	arbitrary	nature	of	pathway	boundaries	results	in	high	levels	of	redundancy	within	

pathway	datasets,	particularly	when	multiple	databases	are	combined	(see	Section	

3.1).	To	address	this	issue	and	produce	a	non-redundant	set	of	pathways	capable	of	

representing	human	biological	function,	methods	for	reducing	redundancy	were	

explored.		We	also	discuss	methods	to	reduce	redundancy	within	pathway	and	GO	

enrichment	results.	

	

3.5.1 Reducing	pathway	redundancy	

Various	methods	to	reduce	pathway	redundancy	by	merging	pathways	have	been	

developed	(Vivar	et	al.	2013;	Belinky	et	al.	2015).	Pathways	are	treated	as	sets	and	

therefore	when	pathways	are	merged	overlapping	genes	are	only	represented	once	

within	the	new	pathway.		

	

A	simple	approach	to	reducing	pathway	redundancy	is	to	merge	pairs	of	pathways	if	

they	overlap	by	more	than	a	given	threshold.	This	approach	is	used	by	Redundancy	

Control	in	Pathway	Databases	(ReCiPa),	which	allows	users	to	define	the	‘max_overlap’	

threshold	(Vivar	et	al.	2013).	They	demonstrated	that	merging	pathways	reduced	

pathway	redundancy	and	made	the	refined	data	set	more	suitable	for	pathway	

enrichment	analysis.		

	

Pathway	distiller	(Doderer	et	al.	2012)	provides	a	hierarchical	clustering	approach	for	

merging	data	sets	based	on	gene	membership,	GO	similarity	or	shared	protein	
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interactions.	The	Jaccard	coefficient	is	used	to	map	similarity	between	each	pair	of	

pathways	based	on	shared	genes	or	interactions,	or	between	GoSlim	terms	assigned	to	

genes.	Hierarchical	clustering	is	used	to	generate	the	number	of	pathway	clusters	

defined	by	the	user	(see	Figure	15).	As	seen	in	Figure	15	hierarchical	clustering	can	

lead	to	large	numbers	of	pathways	being	clustered	into	a	single	group,	which	can	

result	in	detrimentally	large	superpathways.	

	

	
Figure	15	Pathway	Distiller	hierarchical	clustering	of	pathways.	Semantic	similarities	were	generated	between	2,462	
pathways,	which	were	clustered	into	250	groups.	Colours	show	the	hierarchical	clustering	(Doderer	et	al.	2012).	

	

PathCards	used	a	multistep	procedure	to	reduce	pathway	redundancy,	while	

protecting	pathway	informativeness	by	preventing	pathways	from	becoming	too	large	

(Belinky	et	al.	2015).	Small	pathways	(<200	genes)	were	first	merged	with	larger	

pathways.	Two	thresholds	for	pathway	merging	were	generated:	a	high	threshold	for	
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the	initial	clustering,	then	a	lower	threshold	to	increase	network	cohesiveness.	

Hierarchical	clustering	was	performed	first,	merging	hierarchical	pathway	pairs	with	a	

Jaccard	coefficient	higher	than	the	first	threshold.	A	neighbour	joining	approach	was	

then	used	to	join	each	pathway	to	the	adjacent	pathway	with	the	highest	Jaccard	

coefficient,	provided	that	it	was	higher	than	the	lower	threshold.	Belinky	et	al	(2015)	

intergrated	twelve	pathway	sources	including	KEGG,	Reactome,	WikiPathways,	and	

PharmGKB	(Hewett	et	al.	2002)	into	3,215	pathways,	containing	11,478	genes.	This	

allowed	a	notable	reduction	in	redundancy	with	a	modest	increase	in	pathway	sizes.	

	

The	presented	methods	have	a	number	of	issues.	A	limitation	of	the	ReCiPa	is	that	

overlap	between	pathways	can	only	be	removed	if	it	exceeds	the	given	threshold.	The	

threshold	must	be	high	enough	to	remove	sufficient	overlap,	but	must	not	be	so	high	

that	pathway	merging	reduces	functional	specificity.		This	is	a	problem	if	pathway	

overlap	is	not	uniform	across	the	data	set.	Heavily	studied	areas	of	biology	may	have	

many	overlapping	pathways,	requiring	a	higher	threshold	to	prevent	high	numbers	of	

pathways	being	merged	into	a	“giant”	uninformative	set.	These	high	thresholds	would	

however	prevent	redundancy	from	being	removed	from	the	rest	of	the	data	set.	

PathCards	addressed	this	limitation	by	having	two	thresholds.	The	higher	threshold	

merges	pathway	pairs	with	very	high	overlap.	This	threshold	can	be	set	high	as	the	

second	threshold	is	available	to	reduce	lower	level	overlap.	The	second	threshold	is	

used	in	conjunction	with	neighbour	joining	allowing	each	pathway	to	merge	with	only	

one	other	pathway	(unless	two	pathway	pairs	show	equal	overlap).	This	avoids	large	

numbers	of	pathways	becoming	conjoined	into	giant	superpathways.	It	is,	however,	
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still	possible	for	giant	superpathways	to	form	if	multiple	pathways	are	to	merge	with	a	

single	pathway	or	if	pathways	merge	in	long	chains.	

	

A	further	limitation	is	that	merging	algorithms	can	only	account	for	redundancy	

between	pathway	pairs.	It	is	possible	for	all	of	the	genes	in	a	pathway	to	be	covered	by	

two	or	more	pathways;	however,	if	individual	pathway	pairs	do	not	exceed	the	

threshold(s),	this	redundancy	cannot	be	removed.		

	

Finally,	when	using	the	merged	pathways	produced	by	these	methods,	it	is	important	

to	consider	that	these	approaches	have	altered	the	original	data.	By	merging	pathways	

from	multiple	resources	into	superpathways,	PathCards	suggested	many	new	

molecular	interactions.	They	demonstrated	that	many	of	these	newly	generated	gene-

gene	connections	are	supported	by	high	numbers	of	literature	co-mentions	compared	

to	random	gene	pairs.	Gene	pairs	in	superpathways	were	also	significantly	more	likely	

to	be	associated	with	protein-protein	interactions	than	random	pairs.	However,	

literature	co-mentions	and	experimental	interaction	scores	did	not	support	the	

majority	of	the	new	interactions.	Furthermore	existing	knowledge	regarding	the	

unaltered	pathways	cannot	be	assumed	to	apply	to	the	merged	pathway.	Also,	gene	

overlap	between	pathways	does	not	guarantee	that	they	will	be	active	in	the	same	

cellular	context.	For	these	reasons	the	study	presented	in	this	thesis	chose	to	reduce	

redundancy	without	merging	pathways	(see	Section	3.6).	
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3.5.2 Reducing	redundancy	from	pathway	enrichment	results	

The	results	of	enrichment	analysis	are	also	prone	to	high	levels	of	redundancy,	if	gene	

sets	or	pathways	return	large	numbers	of	highly	similar	GO	terms.	Pathway	Distiller	

offers	two	algorithms	designed	to	merge	pathways	from	enrichment	analysis	output	

(Doderer	et	al.	2012).	The	first	algorithm	clusters	pathways	based	on	the	subset	of	

differentially	expressed/user	defined	genes	that	they	contain.	This	approach	uses	

iterative	rounds	of	enrichment	analysis,	removing	the	differentially	expressed	genes	in	

the	most	enriched	pathway	each	time.	The	pathways	that	drop	out	of	the	enrichment	

output	in	each	round	are	merged.	This	interesting	approach	avoids	the	use	of	

thresholds,	although	it	necessitates	repeated	enrichment	testing.	The	second	

approach	measures	gene	overlap	and	predicted	interactions	between	the	genes	of	a	

pathway	pair.		Clusters	are	formed	using	a	neighbour	joining	approach	to	link	each	

pathway	to	the	pathway	most	similar	to	it.	Again,	this	avoids	thresholds	but	does	not	

guarantee	comparable	levels	of	similarity	between	clusters,	since	even	highly	distinct	

pathways	must	be	linked	to	a	partner	pathway.	These	approaches	were	used	to	reduce	

the	number	of	pathways	retrieved	by	enrichment	analysis	from	over	1000	to	between	

12	and	318,	depending	on	the	methods	and	parameters	used.	This	makes	result	

analysis	significantly	easier.	The	merged	pathways	showed	large	increases	in	PPI	

interactions	between	gene	members	compared	to	randomised	gene	groupings.		

	

Pathway	Distiller	also	designed	an	algorithm	capable	of	removing	redundancy	from	

entire	pathway	sets	(see	Section	3.5.1).	The	advantage	of	removing	redundancy	prior	

to	enrichment	analysis	is	that	pathway	enrichment	methods	assume	independence	
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between	pathways.	Pathway	overlap	results	in	interdependency	and/or	redundancy	

capable	of	skewing	statistical	assessment	leading	to	incorrect	pathway	associations.	

ReCipa	also	demonstrated	that	reducing	pathway	redundancy	lead	to	enhanced	results	

within	enrichment	analysis	(Vivar	et	al.	2013).	They	used	pathway	merging	to	reduce	

redundancy	from	the	Molecular	Signatures	Database	(MSigDB)	and	demonstrated	that	

pathways	ranked	based	on	their	association	with	obesity	showed	higher	disease	

significance	and	less	overlap	when	the	reduced	redundancy	dataset	was	used.	

	

3.5.3 Reducing	redundancy	from	Gene	Ontology	enrichment	results	

Two	algorithms,	elim	and	weight,	have	previously	been	introduced	to	deal	with	the	

issue	of	redundancy	in	enrichment	results	(Alexa	et	al.	2006).	The	elim	method	acts	on	

the	principle	that	GO	terms	are	less	specific	than	their	children	and	more	specific	that	

their	ancestors.	The	most	specific	GO	terms	available	to	describe	the	genes	in	a	set	are	

preferentially	selected	based	on	their	position	within	the	GO	topology.	More	general	

ancestor	terms	are	only	selected	if	they	are	required	to	cover	all	the	enriched	genes	in	

the	set.	Alexa	et	al.	(2006)	acknowledged	that	in	some	instances	parent	terms	have	

higher	p-values	than	their	child	nodes	and	therefore	introduced	the	weight	method.	In	

this	method	if	an	ancestor	node	has	higher	significance	than	a	child	node,	then	the	

significance	of	the	child	nodes	will	be	decreased,	preventing	the	child	nodes	from	

being	reported.	

	

The	weight	method	is	likely	to	produce	results	similar	to	the	set	cover	for	enrichment	

algorithm.	Both	select	the	most	significant	terms	available	to	describe	the	enriched	
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genes,	however	the	set	cover	for	enrichment	algorithm	does	not	take	the	topology	of	

the	GO	into	account.	The	gene	sets	covered	by	each	term	serve	as	a	proxy	for	the	

ontology,	based	on	the	true	path	rule	(see	Section	3.2.1).	In	instances	were	gene	sets	

are	enriched	with	functionally	diverse	GO	terms	the	weight	method	would	apply	both	

terms	and	the	set	cover	enrichment	algorithm	would	only	apply	the	most	significantly	

enriched.	Therefore	the	weight	method	is	better	equipped	to	detect	multifunctionality	

but	is	also	more	likely	to	detect	spurious	results.	The	algorithm	used	in	the	elim	

method	is	similar	to	the	set	cover	for	enrichment	algorithm	however	they	rank	GO	

terms	based	on	GO	topology	and	enrichment	significance	respectively.	The	weight	

method	outperformed	the	elim	method,	since	the	elim	method	has	a	higher	risk	of	

discarding	relevant	terms.	Despite	this	finding	they	suggested	that	the	elim	method	

should	be	preferred	given	its	simplicity.		

	

3.6 Set	cover	and	set	packing		

In	this	section	an	explanation	of	the	algorithms	that	will	be	used	to	reduce	redundancy	

within	the	pathway	and	GO	enrichment	data	is	provided.	

	

3.6.1 Combinatorial	set	problems	

Set	cover	and	set	packing	algorithms	are	abstract,	combinatorial	optimisation	

problems	(Kordalewski	2013).		Sets	represent	groupings	of	unordered	items,	in	which	

items	may	only	be	represented	once.	Set	cover	and	set	packing	deal	with	sets	of	sets	

(I),	which	in	our	study	represent	the	pathway	datasets.	Each	set	(𝑠!)	contains	elements,	
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representing	genes	within	each	pathway.	The	set	of	all	of	the	elements	is	collectively	

known	as	the	universe,	defined	as	the	union	of	all	the	sets 𝕌 = ∪!∈! 𝑠!.	Each	set	has	an	

associated	value	vi.	The	aim	of	set	cover	and	set	packing	is	to	identify	the	selection	of	

sets	that	cover	the	all	the	elements	universe.	The	universe	has	been	covered	by	subset	

H	if	∪!∈!  = 𝕌.		

	

Another	way	to	describe	these	problem	is	the	following:	given	a	set	𝕌 of	n	elements	

and	a	collection	of	S1	…	Sm	of	subsets	of	𝕌,	find	the	minimal	collection	of	sets	whose	

union	is	equal	to	𝕌	(Klienberg	&	Tardos	2003).	In	some	instances,	there	may	be	a	

specified	maximum	number	of	sets,	within	which	it	is	required	to	cover	the	universe	or	

maximum	cost.		

	

Set	cover	and	set	packing	are	NP-hard	problems	and	therefore	they	are	typically	

approached	using	heuristic	algorithms.	This	means	that	rather	than	finding	the	exact	

solution,	which	is	not	possible	in	polynomial	time,	an	acceptable	solution	is	found	

within	a	reasonable	time	frame	(Kordalewski	2013).	This	is	often	done	using	greedy	

algorithms	which	generate	solutions	through	a	series	of	decisions,	making	each	

decision	by	selecting	the	lowest	cost	available	at	each	step	(Klienberg	&	Tardos	2003).	

The	solution	produced	may	not	be	unique	and	some	degree	of	randomness	is	

unavoidable,	as	explained	in	Section	3.6.6.	Each	method	is	described	in	more	detail	

within	the	following	sections.	
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3.6.2 Set	cover	

The	aim	of	set	cover	is	to	generate	the	smallest	subset	H,	that	covers	all	the	elements	

in	the	universe	∪!∈!  = 𝕌	(Kordalewski	2013).	Set	overlap	is	permitted	although	it	

should	ideally	be	minimal.	The	smallest	subset	is	typically	defined	as	the	smallest	

number	of	sets	(Skiena	2008),	but	could	refer	to	the	smallest	total	number	of	

elements.	A	commonly	applied	greedy	algorithm	is	to	iteratively	select	the	set	with	the	

largest	number	of	uncovered	elements	𝑣! = |𝑠! ∩ 𝑅|,	where	R	represents	elements	

that	have	not	already	been	covered	(Figure	16).	Weights	can	be	added,	as	costs	or	

values	for	each	set,	to	influence	set	selection	(see	Section	3.6.3).	

	

	
Figure	16:	Set	coverIs	a	simple	set	of	overlapping	sets	B)	The	red	set	with	8	uncovered	elements	is	selected	first	C)	

the	blue	set	with	3	elements	is	selected	second	D)	The	orange	set	covers	all	the	elements	in	the	universe.	
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Set	cover	was	used	in	other	biomedical	areas	such	as	the	assembly	of	RNA	splice	

variants	into	full	length	transcripts	(Song	&	Florea	2013).	The	tool	CLASS		(Constraint-

based	Local	Assembly	and	Selection	of	Splice	Variants)	assembles	transcripts	from	

short	RNA-seq	reads	to	a	reference	genome.	In	this	situation,	the	exons	are	the	sets	

and	the	transcripts	corresponding	to	each	exon	are	the	elements.	The	aim	is	to	find	the	

best	combination	of	exons	that	can	explain	all	of	the	splice	variants.	Set	cover	is	

suitable	for	this	problem	since	the	ability	of	sets	to	overlap	reflects	the	ability	of	

transcripts	to	cover	multiple	exons.		

	

3.6.3 Hitting	Set	

The	set	cover	problem	can	be	reformulated	into	a	bipartite	graph	problem,	known	as	

the	hitting	set,	in	which	the	sets	represent	one	class	of	nodes	and	the	elements	

represent	a	second	class	of	nodes	(Figure	17).	The	set	nodes	are	linked	to	all	the	

element	edges	that	they	contain.	The	aim	is	to	generate	the	smallest	subset	of	set	

nodes,	which	are	connected	to	all	element	nodes.		

	

	In	this	representation,	it	is	clear	that	some	elements	are	covered	by	many	sets,	while	

other	elements	are	covered	by	fewer	sets.	Since	all	the	elements	must	be	covered,	sets	

that	include	elements	that	are	not	covered	by	many	other	sets	should	be	assigned	a	

higher	value	and	preferentially	selected.	The	value	of	a	set	is	calculated	as	the	sum	of	

the	value	of	its’	elements.	Elements	in	fewer	pathways	have	more	value	and	elements	

in	more	pathways	have	less	value.	Once	an	element	has	been	covered	by	a	set,	there	is	
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nothing	to	be	gained	by	covering	it	again	in	additional	sets;	therefore,	the	value	of	

elements	that	have	been	covered	previously	is	not	added	to	the	set	value.		

	

The	hitting	set	algorithm	has	been	applied	to	find	a	minimum	number	of	transcription	

factors	capable	of	covering	a	set	of	differentially	expressed	genes	(Lu	&	Lu	2013).	A	

bipartite	graph	was	generated	linking	transcription	factors	to	the	set	of	genes	they	

control	and	the	minimum	number	of	transcription	factors	needed	to	control	each	gene	

was	varied	from	one	to	four,	revealing	cooperative	transcription	factor	sets.	

	

	
Figure	17:	Hitting	set	bipartite	graph	to	demonstrate	covering	gene	sets	using	pathway	

	

3.6.4 Set	packing	

Set	packing	aims	to	find	a	subset	of	disjoint	sets	that	cover	all	of	the	elements	in	𝕌.	Set	

packing	disallows	overlap	between	the	selected	sets,	making	it	distinct	from	set	cover	

(Klienberg	&	Tardos	2003).	As	a	result,	in	some	instances	it	may	not	be	possible	to	

generate	a	packing	that	includes	all	of	the	elements	in	the	universe,	especially	when	
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using	heuristic	methods.	A	heuristic	method	commonly	used	to	perform	set	packing	is	

explained	in	terms	of	an	equivalent	problem	maximum	independent	set	in	Section	

3.6.5.	

	

A	classic	application	of	set	packing	is	to	generate	schedules.	For	example,	in	a	hospital	

setting	set	packing	is	used	to	allocate	resources	such	as	operation	rooms	and	staff	

(Velásquez	&	Melo	2005).	Resource	use	should	be	maximised,	but	no	resources	

overlap	(staff	members	cannot	be	in	two	places	at	once,	rooms	cannot	be	booked	for	

two	operations).	In	this	situation,	surgeries	are	the	sets	and	resources	are	the	

elements.	

		

3.6.5 Maximum	independent	set	

The	set	packing	problem	is	equivalent	to	a	graph	theory	problem	of	maximum	

independent	set	(Kordalewski	2013).	Given	a	graph	G	=	(V,E),	nodes	(V)	are	equivalent	

to	sets.	Edges	are	formed	between	nodes	(i,j)	if	the	corresponding	sets	have	elements	

in	common	(𝑠! ∩ 𝑠! ≠  ∅).		An	independent	set	is	a	set	of	nodes	in	which	no	pair	of	

nodes	are	connected	by	an	edge	(Klienberg	&	Tardos	2003).	The	maximum	

independent	set	is	the	largest	independent	set	that	can	be	generated	from	the	graph.		

	

2. A	common	greedy	heuristic	for	weighted	maximum	independent	sets	is	to	select	

the	node	with	the	lowest	number	of	adjacent	edges	(Kordalewski	2013).	Figure	

18	shows	the	relationship	between	maximum	independent	sets	and	set	packing.	

In	weighted	maximum	independent	sets,	the	heuristic	is	adjusted	to	include	the	
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number	of	uncovered	elements	associated	with	each	node.	The	value	of	a	node	

would	be	calculated	as	

	 𝑣! =
1

{𝑗 ∈ 𝐼|𝑠! ∩ 𝑠! ≠ ∅}| |	
(	5	) 	

	

where	each	pathway’s	value	(vi)	is	calculated	as	the	inverse	of	the	number	of	

overlapping	pathways	it	has	in	the	dataset.	vi	is	the	value	of	pathway,	I	is	the	dataset,		

si	is	the	pathway	whose	score	you’re	calculating	and	sj	is	each	other	pathway	

(Kordalewski	2013).		Any	sets	that	have	elements	in	common	with	the	selected	set	are	

then	removed	from	the	possible	uncovered	sets	R,	since	overlap	is	not	permitted.	The	

value	of	all	remaining	sets	is	recalculated,	and	then	the	process	is	continued	until	only	

disjoint	sets	remain	(Figure	18).		
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Figure	18:	Relationship	between	maximum	independent	sets	and	set	packing.	Maximum	independent	set	shows	

how	removing	the	nodes	with	the	highest	degree	generates	an	independent	set	of	nodes.	Set	packing	A)	Is	an	

simple	set	of	overlapping	sets	B)	The	orange	set,	that	overlaps	with	one	other	set,	is	selected	first	C)	the	blue	set	is	

removed	because	it	overlapped	with	the	orange	set.	The	purple	set,	which	overlaps	with	one	other	set,	is	next	D)	

the	red	set	is	removed	because	it	overlapped	with	the	purple	set.	The	green	set	covers	all	remaining	available	

elements.	
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3.6.6 Randomness	within	set	cover/packing	solutions	

Greedy	algorithms	generate	solutions	through	a	series	of	decisions,	where	each	

decision	affects	the	input	of	the	next.	Weights	or	costs	are	used	as	the	basis	of	each	

decision,	however	it	is	possible	for	multiple	sets	to	have	equal	values.	In	these	

situations,	an	arbitrary	decision	is	made	that	may	affect	the	end	results.	Therefore,	it	is	

possible	that	multiple	solutions	for	a	given	data	set	may	be	possible.	In	these	

situations,	it	is	possible	to	use	randomisation	procedures	to	explore	the	variation	

possible	and	select	the	best	outcome	(Kordalewski	2013).		This	was	not	done	within	

this	thesis	due,	since	all	set	cover	and	set	packing	outputs	reduce	dataset	redundancy	

and	are	therefore	considered	acceptable	for	use.		

	

3.7 DAVID	gene	functional	classification	tool	

The	DAVID	Gene	Functional	Classification	Tool	clusters	genes	by	function	without	using	

networks	providing	and	alterative	method	for	generating	functional	models	(D.	W.	

Huang	et	al.	2007),	which	is	not	dependent	on	molecular	data.	Designed	to	handle	lists	

of	up	to	3,000	genes	from	high	throughput	genomic	or	proteomic	studies,	DAVID	

clusters	genes	into	functionally	related	groups	based	on	shared	GO	annotations.	A	

fuzzy	agglomeration	method	was	developed	to	allow	genes	to	participate	in	more	than	

one	functional	group,	allowing	the	method	to	incorporate	gene	pleiotropy.	Genes	

associated	with	multiple	terms	can	be	visualised.	Omitting	any	genes	that	do	not	fit	

easy	into	a	cluster,	such	as	orphan	genes,	enhances	the	functional	heterogeneity	of	

clusters.	The	algorithm	is	able	to	place	genes	from	well	defined	protein	families	into	
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appropriate	clusters	with	98-99%	sensitivity	and	95-99%	specificity.	Functional	groups	

are	ranked	base	on	the	group	members’	participation	in	the	enriched	term.		

	

DAVID	provides	a	valuable	resource	for	generating	functional	clusters,	however	it	is	

designed	to	deal	with	enriched	gene	lists	rather	than	global	gene	lists,	therefore	the	

number	of	genes	that	can	be	analysed	is	restricted(Huang,	Lempicki,	et	al.	2009).	In	

addition	it	assumes	that	all	genes	in	the	set	show	differential	transcription	or	

translation	under	a	particular	set	of	conditions,	which	is	not	the	case	in	global	gene	

sets.	

	

The	clustering	of	enrichment	output	results	is	enables	users	to	comprehensively	pool	

all	terms	related	to	a	single	biological	concept,	without	manually	summarizing	related	

terms.	This	prevents	the	functional	diversity	of	enriched	terms	being	lost,	due	to	large	

numbers	of	highly	significant	redundant	terms.	Since	most	tools	do	not	emphasise	the	

inter-relationships	between	biological	terms	approaches	to	deal	with	this	redundancy	

are	required.	In	a	study	examining	expression	changes	in	peripheral	blood	

mononuclear	cells	induced	by	the	introduction	of	an	HIV	envelope	protein,	identified	

16	functional	groups	from	hundreds	of	enriched	terms	(D.	W.	Huang	et	al.	2007).		

Clearer,	more	concise	results	are	produced	by	condensing	redundant	terms	and	

summarizing	interrelationships.		
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3.8 Network	statistics		

This	section	outlines	network	analysis	approaches	used	to	measure	distances	between	

nodes	and	describe	node	centrality	within	the	network.	We	also	review	neighbour	

joining,	which	is	used	to	show	the	relative	similarity	between	sets.	

	

3.8.1 Shortest	paths	

The	shortest	path	is	a	graph	measure	used	to	indicate	how	connected	node	pairs	are	

within	a	network	(Newman	2001).	The	length	of	the	shortest	possible	route	between	a	

pair	of	nodes	is	calculated.	In	a	weighted	network	the	edge	weights	are	summed	to	

calculate	the	distance	between	the	node	pairs.	Within	the	hypothesis	of	network	

medicine	the	network	parsimony	principle	states	that	the	molecular	pathway	

responsible	for	a	disease	phenotype	can	often	be	identified	as	the	shortest	molecular	

path	between	known	disease	components	(Barabasi	et	al.	2011).		

	

3.8.2 Betweenness	centrality	

Betweenness	centrality	is	a	related	measure	used	to	identify	nodes	that	are	influential	

in	controlling	the	flow	of	information	across	the	network	(Newman	2001).	The	

betweenness	centrality	of	a	node	indicates	the	number	of	shortest	paths	that	pass	

through	the	node.	In	protein	interaction	networks	nodes	with	high	betweenness	

centrality	may	be	refered	to	as	bottle	necks	and	correlated	with	essentiality	(Barabasi	

et	al.	2011).	
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3.8.3 Hierarchical	clustering	

Neighbour	joining	and	Unweighted	Pair	Group	Method	with	Arithmetic	mean	

(UPGMA)	are	distance-based	methods	for	tree	construction.	They	are	both	

agglomerative	hierarchical	clustering	methods	commonly	used	for	the	creation	of	

phylogenetic	trees	based	on	DNA	sequence	information.	Within	both	methods	a	node	

represents	each	biological	entity	and	distance	matrices	are	generated	to	determine	

the	relative	similarity	between	each	pair	of	nodes.	Nodes	are	sequentially	joined	into	

clusters	based	on	their	similarity.	Once	multiple	nodes	have	been	joined	into	a	cluster,	

they	are	treated	as	a	combined	entity	in	the	calculation	of	remaining	distances.	This	

process	continues	until	a	single	tree	has	been	generated.	

	

UPGMA	and	neighbour	joining	methods	differ	in	the	methods	used	to	calculate	

distances	between	clusters	and	nodes	or	pairs	of	clusters.	To	generate	the	distance	

between	a	single	node	and	a	cluster	the	UPGMA	approach	would	calculate	the	mean	

distance	between	the	node	and	each	item	contained	within	the	cluster	(Sokal	&	

Michener	1958).		In	contrast,	neighbour	joining	links	pairs	of	nodes	using	a	newly	

generated	ancestor	node	(Saitou	&	Nei	1987).	The	algorithm	then	calculates	distances	

based	on	the	ancestor	node	rather	than	it’s	component	entities.	The	following	

paragraph	describes	the	steps	implemented	within	the	neighbour	joining	algorithm.	

	

The	first	step	in	neighbour	joining	is	to	calculate	the	following	measure	of	each	node’s	

distance	to	all	other	nodes	in	the	dataset	(r)	(Isaev	2006):	

	 𝑟
!! !

!!! !!"!
!!!

	 (	6	) 	
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where	d	is	the	starting	distance	matrix	and	N	is	the	number	of	nodes	.	

	

Next	the	closest	pair	of	nodes	is	identified	by	selecting	the	smallest	value	generated	by	

the	following	algorithm	

	 𝐷!" =  𝑑!" − (𝑟! +  𝑟!)	 (	7	) 	

	

An	ancestor	node	(x)	is	then	generated	to	link	the	pair	of	nodes.	The	lengths	of	the	

vertices	linking	nodes	di	and	dj	to	x	are	calculated	as	follows	

	 𝑑!" =  
1
2  (𝑑!" +  𝑟! −  𝑟!)	

(	8	) 	

𝑑!" =  
1
2  (𝑑!" +  𝑟! −  𝑟!)	

The	distances	between	the	ancestral	node	(x)	and	the	other	nodes	are	then	calculated	

as	

	 𝑑!,! =  
1
2  (𝑑!" +  𝑑!" −  𝑑!")	

(	9	) 	

	

where	m	represents	any	node	other	than	i	and	j.	Having	updated	the	distance	matrix	

(d)	with	the	ancestor	term	(x)	the	process	can	be	repeated,	until	the	tree	is	fully	

generated.	

	

The	trees	generated	from	UPGMA	are	typically	rooted,	while	those	obtained	through	

neighbour	joining	are	not.	The	UPGMA	method	assumes	that	all	the	genes	in	the	
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network	are	ultrametric,	meaning	that	all	nodes	are	equally	distant	from	the	root,	

shown	by	the	equal	branch	lengths	(Roling	&	Head	2005).	This	assumption	is	often	not	

appropriate;	therefore,	the	neighbour	joining	method	is	preferred.	Similarly,	in	

UPGMA	neighbouring	leaf	nodes	are	considered	to	be	equidistant	from	the	branch	

joining	them.	In	contrast	neighbour	joining	is	able	to	represent	cases	where	nodes	are	

not	equidistant	from	the	ancestor	node	that	joins	them,	representing	variation	in	

evolutionary	speed.	Neighbour	joining	should	ideally	be	applied	to	additive	data	

matrices	that	satisfy	the	four-point	condition,	otherwise	anomalies	may	occur,	in	the	

form	of	multiple	trees	being	produced,	negative	branch	lengths	and	tree	distances	that	

do	not	coincide	with	the	original	distance	matrix.	UPGMA	are	not	useful	in	resolving	

these	issue	since	a	non-additive	tree	will	not	be	ultrametric.	Within	this	project	

proteins	were	linked	based	on	functional	similarity	using	the	QuickTree	Unweighted	

Pair	Group	Method	with	Arithmetic	Mean	joining	method	(Howe	et	al.	2002)
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Chapter	4 	

Disentangling	the	multigenic	and	

pleiotropic	nature	of	molecular	function	

	

This	chapter	is	directly	adapted	from	my	published	work;	full	citation:		

Stoney,	R.A.	et	al.,	2015.	Disentangling	the	multigenic	and	pleiotropic	nature	of	

molecular	function.	BMC	Systems	Biology,	9(Suppl	6),	p.S31	

	

4.1 Abstract	

4.1.1 Background	

Biological	processes	at	the	molecular	level	are	usually	represented	by	clusters	in	

molecular	interaction	networks.	Function	is	organised	and	modularity	identified	based	

on	network	topology,	however,	this	approach	often	fails	to	account	for	the	dynamic	

and	multifunctional	nature	of	molecular	components.	For	example,	a	molecule	

engaging	in	spatially	or	temporally	independent	functions	may	be	inappropriately	

clustered	into	a	single	functional	module.	To	capture	biologically	meaningful	sets	of	

																																																								

1	RA	provided	the	Semantic	similarity	data	and	produced	the	results	shown	in	Figure	

30.	RS	performed	the	rest	of	the	analysis	and	wrote	the	manuscript	
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interacting	molecules,	we	use	experimentally	defined	pathways	as	spatial/temporal	

units	of	molecular	activity.		

4.1.2 Results	

We	defined	functional	profiles	of	yeast,	Saccharomyces	cerevisiae,		pathways	based	on	

a	minimal	set	of	Gene	Ontology	terms	sufficient	to	represent	each	pathway’s	genes.	

The	Gene	Ontology	terms	were	used	to	annotate	271	pathways,	accounting	for	

pathway	multi-functionality	and	gene	pleiotropy.	Pathways	were	then	arranged	into	a	

network,	linked	by	shared	functionality.	Of	the	genes	in	our	data	set,	44%	appeared	in	

multiple	pathways	performing	a	diverse	set	of	functions.	Linking	pathways	by	

overlapping	functionality	revealed	a	modular	network	with	energy	metabolism	

forming	a	sparse	centre,	surrounded	by	several	denser	clusters	comprised	of	genetic	

and	metabolic	pathways.		Signalling	pathways	formed	a	relatively	discrete	cluster	

connected	to	the	centre	of	the	network.		GIs	were	enriched	within	the	clusters	of	

pathways	by	a	factor	of	5.5,	indicating	the	organisation	of	our	pathway	network	is	of	

biological	significance.		

	

4.1.3 Conclusions		

Our	representation	of	molecular	function	according	to	pathway	relationships	enables	

analysis	of	gene/protein	activity	in	the	context	of	specific	functional	roles,	as	an	

alternative	to	typical	molecule-centric	graph-based	methods.	The	pathway	network	

demonstrates	the	cooperation	of	multiple	pathways	to	perform	biological	processes	

and	organises	pathways	into	functionally	related	clusters	with	interdependent	

outcomes.		 	
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4.2 Introduction	

Biological	 functions	must	 be	 carried	out	 in	 a	 synchronised	manner	 to	 ensure	proper	

timing	of	processes	 like	cell	division	and	metabolism.	Molecular	 functions	arise	 from	

complicated	 sets	 of	 physical	 interactions	 between	 large	 numbers	 of	 proteins,	 RNAs	

and	 various	 regulatory	 pathways,	 which	 are	 extremely	 difficult	 to	 reconstruct,	

represent	 and	 analyse.	 In	 systems	 biology,	 molecular	 function	 is	 mapped	 using	

molecular	 interaction	 networks.	 Protein-protein	 interaction	 (PPI)	 networks	 are	

frequently	used	 to	map	protein	 functionality	 (Janjić	&	Pržulj	2012b;	 Lee	&	Lee	2013;	

Schwikowski	 et	 al.	 2000;	 Sharan	 et	 al.	 2007;	 Yook	 et	 al.	 2004).	 Within	 interaction	

networks,	 molecules	 are	 usually	 represented	 as	 single	 nodes	 connected	 by	 physical	

interactions.	 Functionally	 similar	 nodes	 tend	 to	 cluster	 together	 into	 dense	

subnetworks,	referred	to	as	functional	modules	(Vidal	et	al.	2011;	Chen	&	Yuan	2006;	

Sharan	et	al.	2007)	or	“pathways”	(Kelley	&	Ideker	2005),	forming	the	basis	of	network	

analysis	 to	 study	 function	 (Schwikowski	 et	 al.	 2000;	 Sharan	 et	 al.	 2007;	 Yook	 et	 al.	

2004).			

	

One	aim	of	identifying	sub-networks	is	to	illustrate	the	position	and	connectivity	that	

molecules	and	functional	modules	have	within	the	network	(Chen	&	Yuan	2006).	They	

are	 used	 to	 examine	 the	organisation	of	 different	 functions	within	 the	 cell,	 showing	

how	 information	 is	 passed	 through	 physical	 interactions	 to	 enable	 the	 system	 to	

function	 as	 a	 whole.	 Many	 studies	 have	 used	 Saccharomyces	 cerevisiae	 to	 model	

functionality	(Przulj	et	al.	2004;	Kelley	&	Ideker	2005;	Costanzo	et	al.	2010;	Dutkowski	

et	 al.	 2013)	 due	 to	 the	 availability	 of	 extensive	 PPI,	 GI	 and	 gene	 annotation	 data,	
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making	 it	 an	 ideal	 organism	 for	 developing	 alternative	 methods	 of	 functional	

organisation.		

	

A	 great	 deal	 of	 research	 has	 focused	 on	 computational	 methods	 used	 to	 identify	

clusters/sub-networks	based	on	topological	features	(Blondel	&	Guillaume	2008;	Song	

&	Singh	2009;	Wang	et	al.	2010).	However,	such	networks	tend	to	utilise	the	sum	of	a	

molecule’s	interactions,	without	accounting	for	the	temporal	and	spatial	nature	of	its	

interactions.	 Simply	because	 two	proteins	 can	 interact	does	not	mean	 that	 they	will	

interact	in	every	context	(Hyduke	&	Palsson	2010).	Clustering	approaches	tend	to	treat	

spatial/temporal	 edges	 as	 if	 they	 are	 constant.	 These	 subnetworks,	which	 represent	

functional	modules,	may	as	a	result	bring	together	functions	that	are	unrelated	in	the	

cell.	Evidence	for	 this	comes	from	discrepancies	 in	community	detection	 in	networks	

created	 from	 different	 data	 types	 (Ames	 et	 al.	 2013).	 The	 combination	 of	 different	

data	 types	 has	 been	 shown	 to	 improve	 the	 functional	 homogeneity	 of	 topological	

clusters.		

	

To	 deal	 with	 the	 issue	 of	 spatial/temporal	 edges	 we	 propose	 a	 method	 using	

experimentally	 validated	 pathways	 as	 the	 units	 of	 cellular	 processes.	 In	 this	 context	

pathways	represent	groups	of	proteins	shown	to	interact	under	specific	experimental	

conditions.	This	differs	from	the	definition	used	in	Kelley	(2005)	(Kelley	&	Ideker	2005),	

in	 which	 clusters	 in	 PPI	 networks	 were	 described	 as	 pathways.	 In	 our	 approach	

proteins	 that	 participate	 in	 multiple,	 context	 dependent,	 interactions	 appear	 in	

multiple	pathways,	rather	than	being	represented	by	a	single	highly	connected	node.	
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We	 use	 Gene	 Ontology	 (GO)	 annotations	 derived	 from	 experimental	 evidence	 or	

sequence	 homology	 to	 assign	 collective	 functionality	 to	 the	 pathways.	 Annotated	

pathways	were	 then	connected	according	 to	 functional	overlap.	Linking	pathways	by	

shared	 functionality	enables	us	 to	examine	 the	 flow	of	 information	among	biological	

functions,	giving	insight	into	the	organisation	of	function	within	the	cell.		

	

4.3 Methods	

Gene	annotation	data	was	integrated	with	pathway	data	to	produce	a	set	of	annotated	

pathways,	which	were	assembled	into	a	functional	network	and	analysed.	An	outline	

of	the	methods	is	given	in	Figure	19.	

	

Figure	19:	Outline	of	methods	used	in	the	construction	and	analysis	of	the	yeast	network		
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4.3.1 Pathway	data	

Saccharomyces	cerevisiae	pathway	names	and	their	constituent	genes/proteins	were	

downloaded	from	ConsensusPathDB	(CPDB)	(downloaded	17/01/2014)	(Kamburov	et	

al.	2009).		Pathways	were	represented	as	sets	of	genes.	The	original	data	set	consisted	

of	1050	pathways	with	2114	genes.		

	

CPBD	collects	pathway	data	from	multiple	databases,	which	results	in	a	large	degree	of	

data	duplication	that	needs	to	be	removed.	Three	types	of	data	duplication	were	

identified:	duplicated	pathway	names,	duplicated	gene	sets,	and	small	pathways	that	

were	subsets	of	larger	pathways.	Databases	resourced	by	CPDB	may	assign	slightly	

different	gene	sets	to	identical	pathway	names,	as	a	result	of	varying	pathway	

boundaries.	Repeated	pathway	names	were	identified	and	amalgamated	into	single	

entities	by	merging	the	gene	sets.	Pathways	with	differing	names	but	identical	

gene/protein	sets	were	also	present.	Pathways	with	identical	gene	sets	were	identified	

and	redundant	pathways	were	removed.	

	

Finally	the	gene/protein	sets	of	some	pathways	were	found	to	be	subsets	of	larger	

pathways.	Dealing	with	this	form	of	data	duplication	is	more	complex,	as	the	choice	of	

which	pathway	to	retain	affects	the	final	data	set.	The	pathways	retrieved	from	CPDB	

were	also	highly	variable	in	their	size	(see	Table	1).	To	reduce	this	variability	and	

ensure	pathways	with	high	functional	specificity	were	conserved,	the	pathway	whose	

size	was	closest	to	the	median	pathway	size	was	retained	(min	(|length	of	pathway	1|	

–	median,	|length	of	pathway	2|	–	median)).	
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Pathways	containing	less	than	three	genes/proteins	were	considered	too	small	for	

reliable	statistical	analysis	of	function	and	were	removed.	The	effect	that	processing	

had	on	the	data	set	is	documented	in	Table	1.		The	final	data	therefore	consisted	of	

271	pathways	and	1433	genes,	with	a	median	of	six	genes/proteins	per	pathway.	

	

Table	1:	Transformation	of	data	during	processing.	

	 Original	
data	

Duplicated		
names	
merged	

Short	(<3)	
pathways	
removed	

Duplicate	
gene	sets	
removed	

Pathway	
subsets	
removed	

Unannotated	
genes	
removed	

Total	
pathways	

1050	 990	 715	 553	 272	 271	

No.	unique	
genes	

2114	 2114	 2113	 2113	 1565	 1433	

Median	GPP2	 5	 5	 8	 8	 7	 6	

Mean	GPP	
	

11.9	 12.2	 16.3	 17.6	 11.4	 10.2	

SD	 23.2	 23.9	 27.0	 28.8	 16.5	 13.05	

	

4.3.2 Generation	of	full	set	of	GO	identifiers	for	each	gene	

Functional	gene	annotations	were	downloaded	from	the	Gene	Ontology	(release	date	

22/04/2014)	(Ashburner	et	al.	2000).	GO	terms	were	assigned	to	the	genes	within	each	

pathway.		Only	experimentally	derived	annotations	or	annotations	generated	using	

sequence	orthologs	were	used,	leaving	132	(9%)	genes	unannotated	(Table	1).	

Unannotated	genes	were	omitted	from	the	data	set.	To	increase	annotation	

																																																								

2	GPP	indicates	genes	per	pathway,	SD	indicates	standard	deviation	
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completeness,	the	GO	hierarchy	was	downloaded	and	parent	annotations	were	added	

to	genes.	

	

4.3.3 Removal	of	uninformative	GO	terms	

The	hierarchical	nature	of	the	Gene	Ontology	resulted	in	some	annotations	being	too	

general	and	frequent	to	be	considered	informative.	For	this	reason,	and	based	on	

assessment	of	the	GO	annotation	frequencies	across	the	genes	in	the	data	set,	

annotations	present	in	over	50%	of	genes	were	deleted;	deleted	annotations	are	listed	

in	Supplementary	Table	1	(Appendix	A).	These	annotations	are	highly	unlikely	to	be	

identified	as	enriched	within	a	single	pathway	during	later	processing	stages	and	

removing	them	at	this	point	reduces	repeated	testing.	

	

4.3.4 Annotation	of	pathways		

GO	annotations	associated	with	pathway	genes	were	used	to	infer	the	function	of	the	

CPDB	pathways.	Only	biological	process	annotations	were	used,	molecular	function	

and	cellular	component	information	was	not	incorporated.	The	Shapiro	test	(Shapiro	&	

Wilk	1965)	was	performed	to	ensure	that	none	of	the	GO	terms	were	randomly	

distributed	across	the	pathways	(p	<<	0.001).	Enrichment	profiles	were	created	to	

contain	all	the	GO	terms	enriched	within	a	pathway’s	genes.	Functional	profiles	were	

then	generated	to	show	the	most	specific	enriched	GO	terms	capable	of	describing	the	

gene	set.	Functional	profiles	should	therefore	be	considered	as	describing	the	main	

functional	roles	of	a	pathway,	at	the	highest	level	of	specificity	possible.	
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4.3.5 Enrichment	profiles		

Functional	enrichment	profiles	were	created	using	the	Fisher’s	exact	test	to	identify	all	

annotations	enriched	to	a	p-value	of	0.01,	within	the	pathway’s	gene	set.	The	

parameters	used	were:	instances	of	the	GO	annotation	within	the	pathway	(how	many	

genes	the	annotation	was	attributed	to),	instances	of	other	GO	terms	in	the	pathway,	

instances	of	the	annotation	outside	the	pathway,	instances	of	all	other	GO	terms	

outside	the	pathway.	Using	an	enrichment	score	of	0.01	as	the	threshold	for	allocating	

GO	terms,	annotations	are	assigned	at	99%	specificity.	Rather	than	correcting	for	

multiple	testing,	false	positive	annotations	are	removed	in	later	processing	stages,	

designed	to	be	flexible	to	the	varying	specificity	of	GO	term-pathway	relationships.	P-

values	gained	from	Fisher’s	exact	tests	are	therefore	referred	to	as	enrichment	scores.		

	

4.3.6 Functional	profiles		

The	functional	profile	of	a	pathway	is	defined	as	a	reduced	set	of	enriched	GO	

annotations	that	give	maximum	representation	of	a	pathway’s	genes.	Enriched	

annotations	that	were	only	present	in	one	gene/protein	within	the	pathway	were	

excluded,	as	they	are	likely	to	be	spurious	and	give	a	poor	representation	of	the	

pathway’s	function.		

	

The	remaining	annotations	in	each	pathway’s	enrichment	profile	were	considered	for	

inclusion	in	the	functional	profile,	in	rank	of	their	enrichment	score	(lowest	enrichment	

scores	first).	The	first	(most	highly	enriched)	GO	term	is	selected	and	checked	against	

the	annotations	of	each	gene/protein	in	the	pathway	(Figure	20).	Genes	associated	
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with	the	annotation	are	considered	represented.	If	all	genes	were	not	represented	by	

the	first	GO	term,	GO	terms	associated	with	the	remaining	genes	were	considered.	Any	

genes	connected	with	this	GO	term	were	then	considered	represented.	This	process	

was	continued	until	all	genes	were	represented	or	until	all	the	GO	terms	with	

significant	enrichment	scores	were	utilised.	This	resulted	in	a	set	of	functional	profiles	

with	a	median	of	two	annotations	per	pathway.	

	

	
	

Figure	20:	Yeast	functional	profile	creation.	(A)	The	figure	shows	one	pathway,	with	genes	represented	as	circles	

and	gene	annotations	shown	in	boxes	to	the	right	of	each	gene.	The	aim	of	the	algorithm	is	to	select	the	minimum	

number	of	GO	annotations	necessary	to	represent	all	the	genes	in	the	pathway,	preferentially	selecting	annotations	

with	low	enrichment	scores.	In	this	example	GO5	is	the	annotation	with	the	lowest	enrichment	score	and	is	

therefore	selected	first.	GO5	is	associated	with	genes	1	and	2,	therefore	GO5	is	sufficient	to	represent	these	genes.		

GO4	is	selected	next	and	represents	genes	2,	3,	and	4;	therefore	GO4	and	GO5	represent	all	the	genes	in	the	

pathway.	
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4.3.7 Pleiotropic	genes	within	pathways	

Pleiotropy	describes	situations	where	a	gene	contributes	to	more	than	one	phenotype,	

implying	that	the	gene/protein	is	involved	in	more	than	one	function.	This	may	be	due	

to	multiple	instances	of	the	gene/protein	in	different	pathways,	or	the	genes	within	a	

single	pathway	effecting	multiple	functions	(He	&	Zhang	2006a),	resulting	in	pathway	

multi-functionality.	These	additional	functions	may	be	missed	in	the	initial	formation	

of	functional	profiles,	as	only	the	most	enriched	annotations	for	each	gene	set	are	

included.	A	second	processing	stage	was	added	to	capture	pleiotropic	annotations.	

Semantic	distances	between	GO	terms	were	taken	from	Ames	et	al.	(2013).		Semantic	

distances	were	available	for	88%	of	GO	annotations	within	the	enriched	profiles.	

Defining	phenotypic	pleiotropy	is	complex,	as	the	distinction	between	different	

characters	and	multiple	attributes	of	a	single	character	is	often	unclear	(Wagner	&	

Zhang	2011).		To	ensure	that	the	terms	we	add	are	truly	pleiotropic	we	have	chosen	to	

use	only	terms	that	are	very	semantically	different	from	existing	terms	in	the	

functional	profile.	

	

Within	functional	profiles,	the	median	semantic	distance	between	pairs	of	GO	terms	

was	6	and	95%	of	GO	term	pairs	had	semantic	distances	above	11.2	3.	Therefore	a	

																																																								

3	Semantic	similarities	were	taken	from	(Ames	et	al.	2013)	using	a	method	described	in	

(Hakes	et	al.	2007).	The	method	subtracted	the	information	content	of	each	test	node	

from	the	the	doubled	information	of	the	lowest	common	ancestor,	resembling	the	

Jiang	&	Conrath	(1997)	approach.	This	generates	distances	rather	than	similarities,	
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semantic	distance	of	11.2	was	used	as	the	measure	of	pleiotropy.	To	avoid	false	

positive	annotations,	GO	terms	from	enriched	profiles	were	only	considered	for	

pleiotropy	if	they	had	an	enrichment	score	below	0.0005.		The	semantic	distance	

between	each	GO	term	in	each	pathway’s	enriched	profile	and	all	the	GO	terms	in	the	

functional	profile	was	measured.	Any	enriched	annotations	that	had	a	distance	greater	

than	11.2	from	all	of	the	GO	terms	in	the	functional	profile,	were	considered	

pleiotropic	and	added	to	the	functional	profile.	Using	these	parameters	32	terms	were	

added	to	25	pathways.		

	

A	concern	when	adding	pleiotropic	terms	was	that	large	semantic	distances	may	be	
more	likely	to	arise	in	larger	pathways	with	more	genes,	resulting	in	less	specific	
pathway	functions.		
	
Figure	21	shows	the	number	of	GO	annotations	and	the	maximum	semantic	distances	

between	annotations	in	enriched	profiles.	Examination	of	the	point	sizes,	indicating	

the	number	of	genes	in	a	pathway,	shows	that	although	pathway	size	is	linked	to	the	

number	of	enriched	GO	terms,	it	does	not	affect	the	maximum	semantic	distance	

between	the	terms.	Terms	in	several	small	pathways’	pass	the	threshold	distance	of	

11.2,	indicating	that	small	pathways	can	contain	semantically	diverse	enriched	terms,	

																																																																																																																																																																		

therefore	GO	terms	with	a	score	higher	than	11.2	must	by	be	two	highly	specific	GO	

terms	(low	information	content),	with	a	general	lowest	common	ancestor	(high	

information	content).	

	



CHAPTER	4:	MAPPING	BIOLOGICAL	PROCESS	RELATIONSHIPS	AND	DISEASE	PERTURBATIONS	WITHIN	A	PATHWAY	

NETWORK	

122	

which	if	omitted	from	the	functional	profile,	could	result	in	useful	information	being	

lost.		

	

	

	
	
Figure	21:	Annotation	variability	within	different	sized	pathways.	The	Y-axis	represents	the	maximum	semantic	
distance	between	GO	terms	in	each	pathway’s	enriched	profile.	The	X-axis	represents	the	number	of	GO	terms	in	
the	pathway’s	enriched	profile.	Circle	size	indicates	the	number	of	genes	in	the	pathway.	Pathways	with	low	
numbers	of	genes	and	annotations	can	be	seen	achieving	high	maximum	semantic	distances.	
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4.3.8 Network	generation	

The	annotated	pathways	were	used	as	nodes	and	linked	by	shared	functionality	into	a	

network.	Edges	were	created	using	the	Jaccard	coefficient	to	measure	proportional	

overlap	between	pairs	of	pathway	annotations	(Equation	4).		Jaccard	coefficient	scores	

were	used	to	weight	the	edges	in	an	undirected	network.4	The	degree	distribution	of	

the	network	structure	was	analysed	using	the	R	igraph	package	version	1.0.0	(Csardi	&	

Nepusz	2006).	

	

4.3.9 Linking	functionally	similar	annotations	

Due	to	the	size	and	hierarchical	nature	of	GO	it	is	possible	that	multiple	annotations	

may	describe	very	similar	cellular	functions.	Pathways	with	different	annotations	

describing	highly	similar	functions	would	not	be	linked,	therefore	the	network	would	

fail	to	represent	the	pathways’	functional	similarity.	To	overcome	this	issue,	links	have	

been	created	between	nodes	with	semantically	similar	annotations	below	a	threshold	

(T)	of	0.8	(Equation	6).		We	calculated	pairwise	similarity	scores	(Sab)	between	GO	

terms	(a	and	b)	of	pairs	of	pathways	(A	and	B),	retaining	only	scores	below	T.	The	

retained	similarities	were	normalised,	then	summed	to	give	a	value	(VAB)	expressing	

the	total	similarity	between	the	annotations	in	both	pathways	(if	a	GO	annotation	

																																																								

4	Cytoscape	2.8.3	was	used	to	visualise	the	network	(Shannon	et	al.	2003),	due	to	its	

compatibility	with	the	MultiColouredNodes	v.2.54	plugin	(Warsow	et	al.	2010).	The	

MultiColouredNodes	v.2.54	plugin	was	used	to	visualise	multiple	attributes	to	single	

nodes	with	pie	charts.		
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appeared	in	both	functional	profiles	it	was	not	compared	to	itself).	The	resulting	value	

was	then	divided	by	the	number	of	possible	pathway	pairs,	to	obtain	the	edge	weight	

(WAB).	GO	term	pairs	with	scores	below	the	threshold	of	0.8	represent	the	most	

extreme	cases	of	semantic	similarity	(<0.1%	of	semantic	distances),	ensuring	that	the	

majority	of	the	edges	in	the	network	represent	identical	shared	annotations	(74%).	

	

	
𝑉!" =  

𝑇 − 𝑆!"

𝑇
!∈!,!∈!

                𝑊!" =  
𝑉!"

𝐴 ∗ 𝐵 − |𝐴 ∩  𝐵|	
(	10	) 	

	

4.3.10 Genetic	interaction	analysis	

GIs	frequently	occur	between	genes/proteins	in	pathways	that	share	functions	

(Costanzo	et	al.	2010).	Based	on	this	knowledge	it	is	expected	that	topological	clusters5	

(see	supplementary	Figure	1,	in	Appendix	A)	in	the	network	will	be	enriched	for	GIs.	

This	was	tested	using	a	set	of	GIs	from	BIOGRID	(data	set	BIOGRID-ORGANISM-

Saccharomyces_cerevisiae-3.2.119,	downloaded	27/11/2014)	(Stark	et	al.	2006).	

Excluding	GIs	involving	genes	that	were	absent	from	the	data	set	resulted	in	a	list	of	

29309	GIs.	For	each	GI,	the	set	of	pathways	that	each	gene/protein	participates	in	was	

retrieved,	and	all	pathway	combinations	were	examined:	if	both	genes/proteins	

appeared	in	a	single	pathway,	a	within-pathway	GI	was	recorded;	if	each	gene/protein	

appeared	in	a	different	pathway	but	the	pathways	were	in	the	same	cluster,	a	within-

cluster	GI	was	recorded	(Figure	22).	GIs	linking	pathways	from	different	clusters	or	

involving	unclustered	pathways	were	recorded	as	uncharacterised.		
																																																								

5	Clusters	were	generated	using	the	Cytoscape	ClusterONE	plugin.	
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Figure	22:	Genetic	interactions	within	pathways	and	pathway	clusters.	GIs	are	classified	depending	on	whether	the	
genes	are	in	the	same	pathway,	within	two	pathways	in	the	same	network	cluster,	or	uncharacterised	(between	
two	pathways	in	different	clusters	or	involving	unclustered	pathways).	Genes	present	in	multiple	pathways	will	
result	in	GIs	appearing	in	many	pathway	pairs.	In	these	situations	all	pathway	pairs	are	classified	separately.	The	
yellow	nodes	show	3	pathways	in	a	single	cluster.	The	green	node	represents	a	pathway	in	a	separate	cluster.	All	
possible	ways	of	connecting	gene1	and	gene2	across	all	pathways	are	explored	

	

4.3.11 Characterising	the	profiles	of	multi-pathway	genes/proteins	

To	establish	whether	genes/proteins	acting	in	multiple	pathways	are	performing	

different	roles,	we	performed	pairwise	comparisons	of	semantic	distances	between	

the	annotations	in	multiple	functional	profiles.	The	sum	of	the	semantic	distances	was	

divided	by	the	number	of	genes	in	the	profiles’	union.		

	

4.3.12 Generation	of	the	gene/protein	overlap	heat	map	

Many	proteins	were	present	in	multiple	pathways.	To	examine	the	relatedness	of	

these	pathways’	functions,	a	heat	map	was	created	to	compare	gene/protein	overlap	

against	functional	similarity.	Pathways	were	arranged	into	a	tree	based	on	functional	
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similarity,	shown	in	both	axes.	This	was	calculated	by	carrying	out	pairwise	

comparisons	of	all	GO	terms	between	functional	profiles,	and	taking	the	mean	

semantic	distances.	The	tree	structure	was	created	by	QuickTree	using	the	Unweighted	

Pair	Group	Method	with	Arithmetic	Mean	joining	method	(Howe	et	al.	2002).	The	heat	

map	was	created	by	calculating	the	percentage	of	gene/protein	overlap	between	

pathways	and	colouring	cells	accordingly.		

	

4.4 Results	and	discussion	

We	produced	a	set	of	functionally	annotated	pathways,	which	were	assembled	into	a	

network	to	show	functional	organisation.	The	major	functional	subgraphs	are	

identified	and	the	relationship	between	functions	is	discussed.	The	functional	

variability	of	genes/proteins	that	participate	in	multiple	pathways	is	evaluated.		GI	

enrichment	within	network	clusters	was	measured.		

The	vast	majority	of	biological	functions	require	the	cooperation	of	multiple	genes	and	

proteins.	However,	functional	representations	associated	with	individual	

genes/proteins	are	derived	from	the	curation	of	scientific	papers	(Camon	et	al.	2004),	

making	them	highly	idiosyncratic	and	often	failing	to	capture	the	cooperative	aspect	of	

biological	function.	In	order	to	create	systems-wide	models	that	are	more	suitable	to	

biological	interpretation	and	understanding,	new	representations	are	needed	that	

better	reflect	the	cooperative	nature	of	function.	Biological	pathways	are	a	suitable	

candidate	for	higher-level	representation	of	biological	function,	since	they	group	genes	

and	proteins	that	interact	to	produce	a	specific	cellular	or	physiological	outcome.	
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4.4.1 Generation	of	a	functionally	representative	set	of	pathways	

A	set	of	1050	Saccharomyces	cerevisiae	pathways	was	obtained	from	CPDB	and	

processed	to	remove	data	duplication	and	reduce	pathway	size	variability	(pathway	

sizes	in	the	original	data	set	ranged	from	1	to	310).		Removal	of	duplicated	pathway	

names	and	gene	sets,	as	well	as	pathways	containing	fewer	than	3	genes,	reduced	the	

number	of	pathways	in	the	data	set	to	553		(Table	1).	Further	processing	of	duplicated	

data	selectively	removed	pathways	whose	size	deviated	from	the	median,	helping	to	

reduce	the	standard	deviation	from	23.2	in	the	original	data	set	to	13.1	in	the	final	

data	set.	The	largest	pathway	in	the	original	data	set	was	‘Metabolism’	containing	310	

genes,	which	would	have	dominated	much	of	the	network;	however	the	largest	

pathway	in	the	final	data	set	was	‘Protein	processing	in	endoplasmic	reticulum’	with	a	

more	comparable	78	genes.		

	

4.4.2 Assignment	of	Gene	Ontology	terms	to	genes	

Annotations	were	available	for	92%	of	genes	in	the	data.	Adding	parent	annotations	to	

the	GO	terms	initially	assigned	to	the	genes	increased	the	median	number	annotations	

from	two	to	38	and	the	maximum	from	eight	to	149.		

	

Removing	highly	frequent,	uninformative	annotations	from	the	data	set	reduced	the	

median	number	of	annotations	per	gene	from	38	to	31.	Within	this	final	data	set	the	

range	of	annotations	assigned	to	genes	was	large,	ranging	from	1	to	208;	75%	of	genes	

had	between	14	and	66	annotations.	This	variability	may	be	due	to	genes	being	
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attributed	GO	terms	with	large	numbers	of	parent	annotations	or	gene/protein	multi-

functionality.		

	

4.4.3 Generation	of	functional	profiles	of	pathways	

The	Fishers	exact	test	produced	large	numbers	of	overrepresented	GO	terms	for	each	

pathway	(median	26,	range	1-159).	This	is	in	part	related	to	the	hierarchical	nature	of	

the	Gene	Ontology,	implying	that	many	of	these	annotations	are	describing	a	small	

number	of	functions	at	various	levels	of	detail.	Functional	profiles	were	created	to	give	

a	succinct	representation	of	each	pathway’s	specific	functions,	by	selecting	a	reduced	

set	of	GO	terms	to	describe	the	maximum	number	of	genes/proteins	inside	each	

pathway	(median	2,	range	1-9).	Only	35%	of	pathways	were	described	by	a	single	GO	

term,	demonstrating	that	functions	defined	by	the	Gene	Ontology	cannot	be	directly	

mapped	onto	pathways,	as	the	relationship	is	more	complex.	A	moderate	correlation	

was	found	between	the	number	of	genes/proteins	in	a	pathway	and	the	number	of	GO	

terms	in	its	functional	profile	(coefficient	0.5).	The	majority	of	pathways	had	unique	

functional	profiles,	however	13%	of	functional	profiles	were	not	unique	to	a	pathway	

indicating	that	some	GO	functions	may	be	shared	by	discrete	groups	of	pathways.		

	

4.4.4 Improved	functional	profile	comprehensiveness	through	incorporation	of	gene	

pleiotropy	

The	functional	profile	algorithm	(see	Section	4.3.6)	selects	the	most	enriched	

annotations	for	genes/proteins	within	the	context	of	each	pathway;	however,	multiple	

functions	performed	by	genes/proteins	may	be	missed.	As	a	result	of	incorporating	



CHAPTER	4:	MAPPING	BIOLOGICAL	PROCESS	RELATIONSHIPS	AND	DISEASE	PERTURBATIONS	WITHIN	A	PATHWAY	

NETWORK	

129	

pleiotropic	terms,	32	additional	annotations	were	added	to	25	pathways,	with	each	

pathway	retrieving	between	1	and	3	terms.	Examples	of	the	information	added	by	

including	pleiotropic	terms	are	given	in	Table	2.	For	the	full	set	of	pleiotropic	and	non-

pleiotropic	GO	terms	associated	with	each	gene	within	the	pathway	dataset,	please	

see	Supplementary	Data	1.	

	
Table	2:	Examples	of	the	data	added	through	the	inclusion	of	pleiotropic	genes.	The	annotation	overlap	across	the	
pathways	illustrates	the	functional	overlap	of	these	pathways.		Sucrose	is	degraded	into	fructose	and	trehalose	is	
degraded	into	glucose,	prior	to	cellular	import	(Gagiano	et	al.	2002).		Mannose	and	fructose	are	both	transported	
into	the	cell	by	hexose	transporters	and	degraded	into	Fructose-6-phosphate.	

Pathway	 Original	Annotations	 Pleiotropic	Annotations	

sucrose	degradation	 cellular	carbohydrate	catabolic	process	 fructose	import	

trehalose	degradation	II	 cellular	carbohydrate	catabolic	process	 glucose	import	

mannose	degradation	 fructose	import	 fructose	metabolic	process	

	

	

We	analysed	the	semantic	distance	between	GO	terms	co-occurring	within	functional	

profiles	(Figure	23).	The	distribution	of	semantic	distances	indicates	that	functional	

profiles	have	a	much	higher	proportion	of	close	GO	terms	than	enriched	profiles.	The	

most	frequent	(mode)	semantic	distance	between	GO	terms	in	functional	profiles	is	4	

(median	6.1),	which	is	notably	lower	than	in	enriched	profiles	(mode	6,	median	6.2).	

Merging	the	GO	terms	from	within	functional	profiles	and	within	enriched	profiles	

gives	the	distribution	of	semantic	distances	between	random	pairs	of	annotations,	

accounting	for	annotation	frequency.	Both	functional	and	enriched	profile	sets	contain	

many	more	semantically	close	genes/proteins	than	expected	from	chance	(modes	9	
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and	7	respectively).	Although	most	functional	profiles	contain	semantically	similar	

annotations,	some	are	functionally	diverse,	as	shown	by	the	tail	of	the	functional	

profile	distribution	(Figure	23).		The	spike	in	frequency	seen	at	the	semantic	distance	

of	11-12,	is	due	to	the	addition	of	pleiotropic	annotations.	A	peak	is	also	seen	at	a	

semantic	distance	of	8-9,	corresponding	to	the	mode	distance	in	combined	enriched	

profiles.	This	indicates	that	the	pathways	may	incorporate	a	second	cellular	function,	

possibly	acting	as	functional	bridges,	facilitating	cellular	coordination.	

	
Figure	23:	Semantic	similarity	of	GO	annotations	within/between	functional	and	enriched	profiles.	The	solid	blue	
line	shows	the	frequency	of	distances	between	pairs	of	GO	terms	within	each	pathway’s	functional	profile.		The	
solid	green	line	shows	the	frequency	of	distances	between	pairs	of	GO	terms	within	each	pathway’s	enriched	
profile.	Annotations	in	functional	profiles	were	merged	and	distance	frequencies	are	shown	by	the	dashed	blue	line.	
This	process	was	repeated	for	the	enriched	profiles	to	create	the	dashed	green	line.	Merging	profiles	gives	the	
random	expected	distance	between	annotations,	controlling	for	annotation	frequencies.	When	merging	profiles	
annotations	appear	multiple	times,	however,	annotations	were	not	compared	to	themselves.	
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4.4.5 Functional	diversity	of	pathways	

Multiple	functions	can	be	distributed	across	the	genes/proteins	within	a	pathway	in	

three	ways.	Functional	profile	annotations	are	either	distributed	across	overlapping,	

disjoint	(discrete)	or	pleiotropic	sets	of	genes	within	the	pathway	(Figure	24	A,	B	&	C	

respectively).	The	majority	of	pathways	(84%)	had	all	of	their	functional	profile	

annotations	distributed	across	overlapping	gene/protein	sets.	This	overlap	of	functions	

illustrates	how	information	is	passed	from	one	function	to	the	next,	connecting	cellular	

functions.	Instances	where	a	pathway’s	genes	are	split	into	discrete	functional	groups,	

may	indicate	that	the	boundaries	of	pathway	are	in	discord	with	the	functional	

boundaries	presented	by	the	Gene	Ontology.	This	discrete	distribution	of	function	

occurs	in	26	pathways,	many	of	which	are	positioned	in	areas	of	the	network	involved	

with	energy	production	and	amino	acid	metabolism.	These	pathways	have	a	median	of	

three	GO	terms	and	semantic	distances	between	GO	terms	are	higher	than	those	

observed	within	other	pathways	(median	10).		Pleiotropic	annotation	distributions	

were	created	by	the	addition	of	pleotropic	terms	following	initial	functional	profile	

creation,	present	in	25	pathways.			

	

	
Figure	24:	Distribution	of	multiple	functions	across	genes	within	pathways.	Functionality	may	be	distributed	across	a	
pathway’s	genes	in	the	following	ways:	pathways	may	have	multiple	functions	distributed	across	overlapping	genes	
(A);	multiple	functions	may	be	divided	into	discrete	(disjoint)	sets	of	genes	(B);	or	pleiotropic	genes	may	have	
multiple	layers	of	functionality	(C).			

	



CHAPTER	4:	MAPPING	BIOLOGICAL	PROCESS	RELATIONSHIPS	AND	DISEASE	PERTURBATIONS	WITHIN	A	PATHWAY	

NETWORK	

132	

Pleiotropic	annotation	distributions	were	created	by	the	addition	of	pleotropic	terms	

following	initial	functional	profile	creation,	present	in	25	pathways.		Of	these	

pleiotropic	pathways	22	were	connected	within	the	network.	These	pathways	have	

been	labelled	in	Figure	25.	The	pathways	omitted	were	'Transport	to	the	Golgi	and	

subsequent	modification',	'Other	types	of	Oglycan	biosynthesis'	and	'Unwinding	of	

DNA'.	The	GO	terms	associated	with	the	'Transport	to	the	Golgi	and	subsequent	

modification'		pathway	were	'COPII-coated	vesicle	budding',	'regulation	of	vesicle	

targeting,	to,	from	or	within	Golgi'	and	'purine	ribonucleoside	triphosphate	catabolic	

process'	(pleiotropic),	which	were	not	found	within	any	other	pathways	and	were	not	

semantically	similar	enough	to	any	GO	terms	associated	with	other	pathways	to	

become	linked	(see	Section	4.3.9).	This	situation	also	applies	to	the		'Other	types	of	

Oglycan	biosynthesis'	pathway	which	was	associated	with	the	GO	terms	'protein	O-

linked	glycosylation',	'regulation	of	response	to	stress'	(pleiotropic)	and	'protein	exit	

from	endoplasmic	reticulum'	(pleiotropic);	and	to	the	‘Unwinding	of	DNA’	pathway	

which	has	the	GO	terms	'double-strand	break	repair	via	break-induced	replication'	and	

'DNA	duplex	unwinding'	(pleiotropic).	

	

The	addition	of	pleiotropic	terms	can	give	a	fuller	picture	of	the	processes	carried	out	

by	pathways.	The	pathway	‘synthesis	of	UDPNacetylglucosamine’	demonstrates	the	

ability	of	pleiotropic	terms	to	give	insight	into	the	function	of	pathways,	which	would	

otherwise	be	missed.	The	GO	term	‘amino	sugar	biosynthetic	process’	was	primarily	

selected	to	represent	the	‘synthesis	of	UDPNacetylglucosamine’	pathway	with	the	

terms	‘nucleotide-sugar	biosynthetic	process’	and	‘fungal-type	cell	wall	biogenesis’	
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added	as	pleiotropic	terms.	The	term	‘fungal-type	cell	wall	biogenesis’	reflects	the	

cell’s	ability	to	convert	of	UDPN	acetyl-glucosamine	to	UDP-GalNAc,	which	is	used	to	

generate	cell	walls	(Milewski	et	al.	2006).	The	pathway	'Other	types	of	Oglycan	

biosynthesis'	is	described	by	its	allocated	GO	term	'protein	O-linked	glycosylation',	but	

the	pleiotropic	term	'protein	exit	from	endoplasmic	reticulum'	highlights	the	location	

of	O-linked	glycosylation	within	the	Golgi	(Alberts	et	al.	2002).	Another	pleiotropic	

term	associated	with	this	process	is	‘regulation	of	response	to	stress’,	appropriate	

since	changes	in	glycosylation	can	induce	or	be	induced	by	endoplasmic	reticulum	

stress	(Gerlach	et	al.	2012).	A	further	example	is	the	pathway	'Transport	to	the	Golgi	

and	subsequent	modification',	which	has	the	terms	'COPII-coated	vesicle	budding'	and	

'regulation	of	vesicle	targeting	to	from	or	within	Golgi',	and	addition	to	the	pleiotropic	

term	'purine	ribonucleoside	triphosphate	catabolic	process',	which	captures	the	use	of	

ribonucleotides	for	glycosylation	within	the	Golgi	(Stanley	2011).		

	

The	cluster	of	pathways	‘thioredoxin	system’,		‘sulfur	relay	system’	and	

‘glutathioneglutaredoxin	system’	are	all	linked	by	the	GO	term	‘cellular	response	to	

oxidative	stress’.	Since	cellular	stress	can	induce	a	range	of	changes	within	the	cell	

different	pleiotropic	terms	are	seen	in	each	pathway.	The	‘glutathioneglutaredoxin	

system’	pathway	is	associated	with	the	highest	number	of	associated	pleiotropic	

terms;	‘transition	metal	ion	homeostasis’	is	implicated	since	glutathione	is	involved	in	

addressing	metal	induced	oxidative	stress	(Jozefczak	et	al.	2012)	‘negative	regulation	

of	binding’		may	correspond	to	glutaredoxin’s	negative	regulation	of	ASK1	in	oxidative	

stress	situations	(Song	et	al.	2002)	and		‘protein	glutathionylation’	which	is	a	well	
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established	response	to	oxidative	stress	(Niwa	2007).	In	contrast	the	‘thioredoxin	

system’	pathway	had	the	pleiotropic	term	‘protein	deglutathionylation’,	however	

glutathionylation	and	de	glutathionylation	are	both	used	to	regulate	mitochondrial	

NADP(+)-dependent	isocitrate	dehydrogenase	during	oxidative	stress	(Niwa	2007).	

Finally	the	‘sulfur	relay	system’	pathway	was	associated	with	the	pleiotropic	term	

‘adenosine	metabolic	process’,	which	may	be	because	adenosine	5’-phosphate	

reductase	has	been	found	to	differentially	control	sulphur	flux	during	stress	conditions	

(Scheerer	et	al.	2010).	

	

The	pathways	‘trehalose	degradation	II	trehalase’,	‘mannose	degradation’,	and	

‘sucrose	degradation’	are	linked	by	the	shared	term	‘frucose	import’	which	is	

pleiotropic	to	‘trehalose	degradation	II	trehalase’	and	‘sucrose	degradation’.	Although	

none	of	these	pathways	deal	directly	with	fructose,	sucrose	is	degraded	into	fructose	

prior	to	cellular	import	(Gagiano	et	al.	2002).		Mannose	and	fructose	are	both	

transported	into	the	cell	by	glucose	(hexose)	transporters	and	degraded	into	Fructose-

6-phosphate.	Trehalose	is	degraded	into	glucose	extracellularly,	then	imported	using	

the	same	transporter.	Similarly	the	‘glucose	transport‘	pathway	associated	with	the	

terms	‘glucose	import’	and	‘single	organism	transport’,	as	well	as	the	pleiotropic	term	

‘mannose	metabolic	process’	representing	the	ability	of	glucose	transporters	to	import	

mannose	into	the	cell	(Rodrıguez	et	al.	2005).	

		

The	‘xylose	monophosphate	cycle’	pathway	was	attributed	the	terms	‘single-organism	

carbohydrate	metabolic	process’,	‘single-organism	carbohydrate	catabolic	process’	and	
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‘glycerol	catabolic	process’	reflecting	it’s	general	role	is	sugar	metabolism,	while	the	

pathway’s	pleiotropic	term	‘response	to	toxin’	captures	the	pathway’s	ability	to	trap	

free	formaldehyde,	while	is	a	cytotoxic	compound	(Yurimoto	et	al.	2005).		

	

Other	pleiotropic	terms	add	additional	information	regarding	pathway	function,	for	

example	the	‘acetaldehyde	biosynthesis’	pathway	has	the	GO	term		‘amino	acid	

catabolic	process	to	alcohol	via	Ehrlich	pathway’	and	the	pleiotropic	term	

‘fermentation’.		The	‘methylglyoxal	catabolism’	pathway	has	the	pleiotropic	term	

‘methylglyoxal	metabolic	process’	which	gives	a	more	precise	description	of	function	

than	its	other	allocated	terms,	‘lactate	metabolic	process’	and	‘single-organism	

metabolic	process’.	Similarly,	the	pathway	‘Unwinding	of	DNA’	pathway	is	best	

described	by	the	pleiotropic	term	‘DNA	duplex	unwinding’,	compared	to	its	primary	

term	'double-strand	break	repair	via	break-induced	replication'.	The	pleiotropic	term	

associated	with	‘glycogen	breakdown	glycogenolysis’	is	‘glucose	1-phosphate	

metabolic	process’,	which	provides	additional	information	to	the	terms	‘single-

organism	catabolic	process’	and	‘energy	reserve	metabolic	process’.		

	

	The	addition	of	plieotropic	terms	may	be	essential	for	the	formation	clusters	within	

the	network,	such	as	the	‘lactose	degradation’,	‘trehalose	Anabolism’	and	‘dolichyl	

glucosyl	phosphate	biosynthesis’	cluster.	The	GO	terms	originally	allocated	to	these	

pathways	were	‘galactose	catabolic	process’	and	‘UDP-glucose	metabolic	process’;		

‘oligosaccharide	biosynthetic	process’;	and	‘UDP-glucose	metabolic	process’,	

respectively.	Based	on	these	initial	functional	allocations	the	‘lactose	degradation’	and	
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‘dolichyl	glucosyl	phosphate	biosynthesis’	pathways	would	be	linked	by	the	shared	

term	‘UDP-glucose	metabolic	process’.	However,	it	is	the	addition	of	the	pleiotropic	

term	‘nucleotide-sugar	metabolic	process’	to	each	pathway	that	generates	the	cluster.	

The	terms	is	appropriate	since	lactose	and	trehalose	are	degraded	into	glucose	

(Gagiano	et	al.	2002),	and	UDP-glucose	is	a	nucleotide	sugar	and	trehalose	is	

generated	using	NDP-glucose	(which	is	the	collective	term	for	nucleotide	sugars	

including	glucose)	(Jules	et	al.	2008).	

	

The	pleiotropic	pathways	‘fatty	acid	betaoxidation	I’	and	‘fatty	AcylCoA	Biosynthesis’	

are	linked	by	the	general	term	‘fatty	acid	metabolic	process’,	however,	the	pleiotropic	

terms	enhance	the	similarity	of	these	pathways.	The	pathways	‘fatty	acid	

betaoxidation	I’	and	‘fatty	AcylCoA	Biosynthesis’	were	also	assigned	the	terms	‘long-

chain	fatty	acid	transport’	and	‘fatty-acyl-CoA	metabolic	process’	(pleiotropic);	and	

‘organic	acid	transport’	and	‘long-chain	fatty-acyl-CoA	metabolic	process’	(pleiotropic),	

respectively.	Shared	details	regarding	the	length	of	the	fatty	acids	and	the	specific	

generation	of	AcylCoA	would	be	lost	without	the	inclusion	of	the	pleiotropic	terms.		

	

The	pathways	‘pyruvate	dehydrogenase	complex’	and	‘glutamate	degradation	III’	are	

linked	by	the	plieotropic	term	‘thioester	metabolic	process’.		The	pathways	also	

include	the	GO	terms	‘acetyl-CoA	biosynthetic	process	from	pyruvate’	and	‘succinyl-

CoA	metabolic	process’,	respectively,	referring	to	the	thioesters	of	coenzyme	A	

included	in	each	pathway	(Slenter	et	al.	2018;	Kutmon	et	al.	2016;	Kelder	et	al.	2018).	
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Figure	25:	Pathway	multi-functionality.	This	figure	shows	a	network	of	pathways	linked	by	shared	functionality.		Red	
nodes	represent	pathways	those	functional	annotations	are	divided	into	two	or	more	discrete	gene	sets.	Green	
nodes	represent	pathways	with	pleiotropic	genes.	Blue	Nodes	have	both	discrete	functionality	and	pleotropic	
genes.	Dark	grey	nodes	represent	pathways	with	overlapping	multifunctional	distributions	and	light	grey	nodes	
represent	pathways	with	a	single	function.	Node	sizes	indicate	the	number	of	GO	terms	attributed	to	pathways.	
Pathways	with	high	betweenness	centralities	are	shown	with	square	nodes.			
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Figure	25	shows	the	position	of	pathways	with	overlapping	functionality	(dark	grey),	

discrete	functionality	(red)	and	pleiotropic	genes	(green).		Nodes	showing	discrete	

functionality	and	pleiotropic	genes	tend	to	form	clusters,	and	are	particularly	frequent	

within	energy	metabolism.	Pathways	with	both	discrete	and	pleiotropic	function	(blue)	

are	seen	linking	discrete	and	pleiotropic	pathways.	The	size	of	the	nodes	indicates	the	

number	of	GO	annotations	attributed	to	each	pathway.		Pathways	with	as	few	as	2	

annotations	have	discretely	distributed	functionality	or	pleotropic	genes.	

	

Square	nodes	(Figure	25)	show	the	five	pathways	with	the	highest	betweenness	

centrality	(range	0.33	to	0.19),	indicating	that	these	pathways	are	important	for	the	

transfer	of	information	across	the	cell.	Betweenness	centrality	was	highest	in:	

endocytosis;	glyoxylate	and	carboxylate	metabolism;	mitochondrial	protein	import;	

toll-like	receptor	cascades;	and	adenosine	ribonucleotides	ide	novo	biosynthesis.	

Endocytosis	is	the	process	by	which	the	cell	imports	proteins	and	lipids	from	the	cell	

surface	and	can	be	seen	linking	the	cell	membrane	and	signalling	pathways	to	the	

metabolic	pathways	(Carroll	et	al.	2012).	Glyoxylate	and	carboxylate	metabolism	is	

necessary	for	the	cell	to	grow	on	fatty	acids	and	C2-compounds	such	as	ethanol	and	

can	be	seen	in	centre	of	the	network	between	lipid	metabolism	and	energy	

metabolism	(Kunze	et	al.	2006).	Mitochondria	participate	in	several	metabolic	

processes,	however	the	majority	of	their	proteins	must	be	imported.	The	proteins	

required	depend	on	the	metabolic	process	taking	place,	therefore	mitochondrial	

protein	import	connects	many	cellular	functions	and	can	be	seen	in	the	centre	of	the	

network	(Dudek	et	al.	2013).		Toll-like	receptor	cascades	are	essential	for	the	cell	to	
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respond	to	pathogens	(Akira	&	Takeda	2004).	Within	the	network	this	pathway	

connects	cell	membrane	and	signalling	pathways	to	the	main	body	of	the	network.	

Adenosine	ribonucleotides	ide	novo	biosynthesis	is	necessary	for	transcription,	DNA	

repair	and	replication.	This	pathway	can	be	seen	linking	gene	expression	to	nucleotide	

biosynthesis.	

	

4.4.6 Functional	network	subgraphs	

By	mapping	the	most	frequent	GO	terms	onto	the	network	of	pathways,	functional	

groups	of	pathways	are	clearly	observed.	Groups	of	pathways	are	formed	involving	

genetic	processes,	metabolic	processes	and	signalling	(Figure	26).	Energy	metabolism	

appears	in	the	centre	of	the	network,	reflecting	its	necessity	of	energy	to	all	biological	

functions.	Transcription	and	nucleotide	processes	dominate	one	side	of	the	network,	

with	protein	and	lipid	metabolism	at	the	other.		
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Figure	26:	Frequent	GO	terms	in	yeast	functional	profiles.	This	figure	depicts	the	same	network	as	shown	in	Figure	
25,	portraying	the	major	functional	groups.	Colours	represent	frequent	GO	terms	within	the	network.	Pathways	
with	less	frequent	GO	annotations	are	shown	in	grey.	GO	similar	terms	have	been	attributed	the	same	colour.	
Labels	show	the	major	functional	communities.	

	

	Cell	signalling	forms	a	highly	detached	branch	attached	to	the	main	body	of	the	

network	by	cellular	transport	processes.	Functional	maps	created	using	yeast	PPI	data	

also	found	that	cellular	communication	and	signal	transduction	were	highly	segregated	

from	the	rest	of	the	network	(Yook	et	al.	2004).	However,	several	differences	in	

functional	organisation	are	also	observed.	The	network	constructed	by	Yook	et	al.	
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(2004)	placed	cellular	organisation	and	transcription	rather	than	energy	metabolism	at	

the	network	core.	Protein	synthesis	was	found	to	be	the	least	connected	functional	

module,	whereas	in	our	network	protein	synthesis	pathways	are	found	within	the	main	

body	of	the	network.		

	

A	further	difference	between	our	network	and	PPI	networks,	is	that	PPI	networks	tend	

to	be	hub-based	networks,	meaning	that	the	network	topology	is	dominated	by	small	

number	of	highly	connected	hub	proteins	with	scale-free	properties	(Yook	et	al.	2004;	

Albert	2005;	Winterbach	et	al.	2013).	Scale	free	distributions,	characterised	as	having	a	

power	law	degree	distribution	of	P(k)		~	k-γ	where		γ	is	typically	between	2	and	3	are	

common	in	both	biological	and	non-biological	contexts(Barabási	&	Oltvai	2004).	Within	

our	network	hub	nodes	would	be	expected	to	appear	as	highly	multifunctional	

pathways.	However,	application	of	the	Kolmogorov-Smirnov	test	revealed	that	the	

degree	distribution	did	not	follow	a	power	law	distribution	(p<<0.05).	

4.4.7 Co-occurrence	with	genetic	interactions	

It	is	known	that	GIs	tend	to	occur	within	pathways	and	between	functionally	similar	

genes	(Kelley	&	Ideker	2005;	Costanzo	et	al.	2010).	It	is	therefore	expected	that	the	

pathway-clusters	identified	here	will	be	enriched	for	GIs.	To	test	this	he	proportion	of	

GIs	that	occurred	within	pathways	and	within	clusters	(Figure	22)	was	compared	to	

output	from	randomised	GI	data	(Table	3).	GIs	within	pathways	were	increased	by	a	

factor	of	6.5	compared	to	randomised	data	and	within-cluster	GIs	were	enriched	by	a	

factor	of	5.5.	The	topological	network	clusters	are	shown	in	supplementary	figure	1	

(Appendix	A).		
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Table	3:	Enrichment	of	GIs	within	pathways	and	network	clusters.	Percentages	of	within-pathway	or	within-cluster	
GIs,	compared	to	randomised	interactions.	

	 Genetic	interaction	data	 Randomised	data	

Within-pathway	 5.45%	 0.840%	

Within-cluster	 4.37%	 0.800%	

	

	

	
Figure	27:	Frequency	of	gene	participation	in	multiple	pathways.	Of	the	1433	genes	in	the	network,	797	(56%)	of	
genes	were	found	in	1	pathway,	304	(21%)	of	genes	were	found	in	2	pathways,	332(23%)	genes	were	found	in	3	or	
more	pathways.		
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Figure	28:	Functional	variability	of	multi-pathway	genes.	Bars	indicate	the	number	of	pathways	that	multi-pathway	
genes	participate	in.	Bar	colours	indicate	the	number	of	disjoint	functional	profiles	associated	with	genes’	pathways	

4.4.8 Pathway	dependent	gene/protein	multi-functionality	

Of	the	1433	genes/proteins	in	the	data	set,	44%	were	found	in	multiple	pathways,	with	

the	maximum	number	of	pathways	a	gene/protein	appeared	in	being	11	(gene	

AAT2)(Figure	27).	If	genes/proteins	perform	different	functions	in	the	context	of	

different	pathways	then	the	functional	profiles	of	these	pathways	will	be	different.	

Within	our	dataset,	83%	of	multi-pathway	genes	have	a	distinct	functional	profiles	for	

each	pathway	they	participate	in.	Pathway	profiles	were	considered	distinct	if	they	did	

not	contain	identical	sets	of	GO	terms,	however	overlapping	annotations	were	

allowed.	Annotation	overlap	between	functional	profiles	is	expected	to	be	partially	

due	to	physical	overlap	between	the	pathways.	Figure	28	shows	the	number	of	disjoint	

(non-overlapping)	sets	of	functional	annotations	found	in	genes	participating	in	

multiple	pathways.	Two	or	more	disjoint	gene	sets	are	frequently	observed	indicting	

that	the	genes	are	participating	in	distinct,	context	dependent	pathways.		
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To	further	explore	the	possibility	that	genes/proteins	acting	in	different	pathways	have	

different	functions,	we	measured	semantic	distances	between	the	functional	profiles	

of	multi-pathway	genes/proteins	(Figure	29	orange	line).		The	mode	distance	between	

functional	profiles	is	4	showing	that	many	of	these	pathways	have	highly	similar	

profiles.	These	are	likely	to	represent	physically	overlapping	pathways.	However,	

semantically	distant	GO	terms	(scoring	between	5	and	11)	were	much	more	common	

between	functional	profiles	than	within	functional	profiles	(blue	line).		This	indicates	

that	the	pathway	dependent	functions	of	multi-pathway	genes/proteins	are	frequently	

very	different	and	the	peak	in	frequency	at	a	semantic	distance	of	8	indicates	that	

these	pathways	may	be	as	functionally	unrelated	as	two	pathways	selected	at	chance.		
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Figure	29:	Semantic	distance	between	multi-pathway	genes’	functional	profiles.	The	solid	blue	and	green	lines	show	
the	frequency	of	distances	between	pairs	of	GO	terms,	within	each	of	the	pathway	profiles.	The	dashed	lines	show	
the	frequency	of	semantic	distances	between	random	annotation	pairs.	The	orange	line	shows	pairwise	GO	
annotation	distances	between	functional	profiles	of	pathways	sharing	a	multi-pathway	gene.		Comparison	to	the	
solid	blue	line	shows	increased	semantic	distances	between	the	functional	profiles	of	multi-pathway	genes	

	

Figure	30:	Relationship	between	pathway	functionality	and	gene/protein	overlap.	Trees	show	pathways	clustered	
by	functional	similarity.		The	heatmap	shows	gene/protein	overlap.	Dark	cells	along	diagonal	show	that	similar	
pathways	are	likely	to	share	genes,	showing	some	degree	of	pathway	overlap	in	the	data	set.	Dark	cells	positioned	
away	from	the	diagonal	show	functionally	unrelated	pathways	sharing	genes.	

	

Finally	we	examined	the	relationship	between	gene/protein	overlap	and	pathway	

function	by	organizing	pathways	based	on	functionality	then	considering	gene/protein	
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overlap	(Figure	30).	Functionally	divergent	pathways	can	be	seen	sharing	genes,	

indicating	genes	performing	different	roles	depending	on	pathway	context.		

	

4.4.9 Comparison	to	Over	Representation	Analysis	

To	validate	our	results	we	compared	them	to	DAVID	(Huang,	Sherman,	et	al.	2009;	D.	

W.	Huang	et	al.	2007),	a	tool	commonly	used	for	over	representation	analysis	(ORA).	

We	used	DAVID	to	group	genes	based	on	GO	annotation	similarity.	We	then	measured	

the	number	of	shared	annotations	within	each	gene’s	functional	profile,	from	pairs	of	

genes	in	the	same	or	different	ORA	groups.	Gene	pairs	within	the	same	DAVID	

groupings	shared	a	mean	of	3.9	annotations	(variance	56.6,	n	63,143)	while	genes	in	

different	DAVID	clusters	shared	a	mean	of	0.6	(variance	4.7,	n	764,398),	indicating	that	

the	edges	within	our	network	are	supported	by	DAVID	functional	groupings	(T-test	

p=0.0).	This	result	may,	however	be	effected	by	a	small	number	of	gene	pairs	in	the	

same	DAVID	group	sharing	large	numbers	of	GO	terms.	A	phi	correlation	of	0.23	was	

discovered	between	gene	pairs	that	share	at	least	one	GO	term	and	gene	pairs	in	the	

same	DAVID	cluster	(Table	4).	This	indicates	a	moderate	to	weak	relationship	between	

gene	pairs	sharing	at	least	one	GO	term	and	being	in	the	same	DAVD	cluster.	This	

demonstrates	that	the	use	pathways	to	incorporate	gene	context,	produces	different	

results	to	assigning	functional	annotations	without	context.		

	

Table	4:	Gene	pairs	with	common	GO	terms	and	DAVID	groupings	

	 Shared	annotation	 No	shared	annotations	

Shared	DAVID	group	 32,544	 30,599	
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No	shared	DAVID	groups	 131,141	 633,257	

	

	

When	shared	pathways,	rather	than	annotations,	were	compared	to	DAVID	groupings	

the	correlation	decreases	down	to	0.05	(see	Table	5).	This	reflects	the	complex	

relationship	between	gene	functions	and	pathway	boundaries	(functions	are	

comprised	of	many	pathways,	pathways	can	participate	in	multiple	pathways).	Both	

tables	produced	significant	results	using	the	chi-squared	test	(p<<0.01)	6.	

	

Table	5:	Gene	pairs	with	common	pathways	and	DAVID	groupings	

	 Shared	pathway	 No	shared	pathways	

Shared	DAVID	group	 1,498	 48,745	

No	shared	DAVID	groups	 6,873	 757,525	

	

4.4.10 Limitations		

This	method	produces	pathway	annotations	from	GO	data	and	organises	pathways	

into	a	network	representation	of	cellular	function.	The	network	contains	271	

pathways,	coving	a	wide	range	of	functions	including	metabolism,	signal	transduction,	

gene	expression	and	DNA	maintenance.	Yeast	contains	6604	genes	of	which	5151	are	

characterised	(Cherry	et	al.	2012),	therefore	the	1433	annotated	genes	analysed	within	

																																																								

6	The	t-test,	phi	correlation	and	chi-squared	were	calculated	in	R.	The	phi	correlation	

was	calculated	using	the	“psych”	package	(Revelle	2017)	



CHAPTER	4:	MAPPING	BIOLOGICAL	PROCESS	RELATIONSHIPS	AND	DISEASE	PERTURBATIONS	WITHIN	A	PATHWAY	

NETWORK	

148	

the	pathways	of	this	network	should	not	be	considered	complete	coverage.	This	

method	can	however	be	adjusted	to	allow	more	genes	and	pathways	into	the	final	

data	set,	or	to	study	specific	sets	of	pathways.	The	highly	frequent	GO	terms	in	

supplementary	table	1	(Appendix	A)	highlights	the	bias	towards	metabolic	pathways	

within	this	network.	

	

4.5 Conclusion		

We	have	developed	a	method	for	organising	cellular	processes	based	on	function,	

which	accounts	for	temporal	interactions	modelled	through	pathways	and	allows	

multifunctional	genes	to	be	portrayed	independently	in	their	different	biological	

contexts.	The	network	illustrates	the	physical	structure	of	function,	as	multiple	

pathways	co-operate	to	ensure	cellular	processes	are	coordinated.	Pathway	multi-

functionality	was	examined,	determining	that	pathways	vary	greatly	in	the	number	and	

diversity	of	GO	functions	they	facilitate.		The	functional	variability	of	genes	within	

multiple	pathways	was	also	demonstrated.	Appreciation	of	multi-functionality	at	the	

level	of	both	genes	and	pathways	is	critical	for	understanding	pleiotropic	genes	and	

their	relationship	to	multiple	phenotypes,	interpreting	GIs	and	considering	the	transfer	

of	information	within	the	cell.	Our	representation	of	cellular	function	will	enable	

analysis	of	gene/protein	activity	in	the	context	of	their	functional	roles,	instead	of	the	

typical	molecule-centric	approach.		This	method	can	be	adapted	to	incorporate	

different	data	types	into	the	network,	such	as	expression	data	and	GI	data.	Future	

work	will	include	incorporation	of	expression	data	to	create	directed	edges	showing	

the	information	flow	between	nodes.		
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Chapter	5 	

Reducing	pathway	redundancy	using	set	

theory	algorithms	

A	shortened	version	of	this	chapter	was	submitted	to	BMC	Bioinformatics	on	13th	

September	20177.	All	tools	and	data	are	available	at		

https://github.com/RuthStoney/set-cover-and-set-packing-to-reduce-redundancy-in-

pathway-data.		

5.1 Abstract	

5.1.1 Background	

Pathway	databases,	such	as	KEGG,	Reactome	and	ConsensusPathDB,	contain	high	

levels	of	overlap	which	can	create	redundancy	in	pathway	enrichment	analysis.	

Attempts	to	reduce	this	redundancy	have	focused	on	merging	pathways,	allowing	

neater	data	representation	and	aiding	the	interpretation	of	enrichment	results.	

Previous	methods	have	approached	this	problem	using	pathway	merging,	however	

merging	pathways	reduces	functional	specificity.	In	addition	these	methods	often	

																																																								

7	The	submitted	manuscript	contained	all	of	the	methods	and	results	regarding	set	

cover,	but	omitted	set	packing	for	simplicity.	RS	performed	all	analysis	and	wrote	the	

manuscript.	
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require	a	‘maximum	overlap’	threshold,	and	redundancy	below	this	threshold	cannot	

be	addressed.		

5.1.2 Results	

We	propose	an	alternative	method	using	the	set	cover	algorithm,	to	reduce	pathway	

redundancy	without	merging	pathways.	The	proposed	approach	considers	three	

objectives:	removal	of	pathway	redundancy;	controlling	pathway	size;	and	coverage	of	

the	gene	set.	By	applying	set	cover	to	the	ConsensusPathDB	we	were	able	to	produce	a	

reduced	set	of	pathways,	representing	100%	of	the	genes	in	the	original	data	set	with	

74%	less	redundancy,	or	95%	of	the	genes	with	88%	less	redundancy.	We	also	analyzed	

a	set	of	enriched	osteoarthritis	pathways,	revealing	that	within	the	top	ten	pathways,	

five	were	redundant	subsets	of	more	enriched	pathways.	Applying	set	cover	to	the	

enrichment	results	removed	these	redundant	pathways	allowing	more	informative	

pathways	to	take	their	place.		

	

5.1.3 Conclusion	

Our	method	provides	an	improved	approach	for	handling	pathway	redundancy,	while	

ensuring	that	the	pathways	are	of	homogeneous	size	and	gene	coverage	is	maximised.	

Pathways	are	not	altered	from	their	original	form,	allowing	knowledge	regarding	the	

data	set	to	be	directly	applicable.		The	ability	of	the	presented	algorithms	and	

parameters	to	meet	the	objectives	are	discussed,	enabling	users	to	prioritise	

redundancy	reduction,	pathway	size	control	or	gene	set	coverage.	The	application	of	

set	cover	to	upregulated	gene	sets	selects	the	most	informative	pathways	for	

biological	interpretation.		
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5.2 Background	

Pathways	are	sets	of	genes	corresponding	to	functionally	related	interacting	proteins.	

Pathway	data	is	available	from	many	databases	dependent	on	biological	focus.	It	is	

commonly	used	for	pathways	analysis,	a	method	of	reducing	large	sets	of	over-

expressed	genes	into	sets	of	enriched	pathways	(Khatri	et	al.	2012).	Pathways	can	be	

used	to	study	disease	and	drug	interactions	(Kanehisa	et	al.	2008)	and	have	uses	in	

systems	biology	(Stoney	et	al.	2015).	

		

The	fragmented	nature	of	pathways	across	multiple	databases	makes	it	difficult	to	

perform	inclusive	analysis	of	all	known	data.	To	address	this	issue,	many	attempts	have	

been	made	to	consolidate	pathway	databases	such	as	ConsensusPathDB	(CPDB)	

(Kamburov	et	al.	2009),	PathwayCommons	(Cerami	et	al.	2011),	The	Human	Pathway	

Database	(HPD)	(Chowbina	et	al.	2009),	Pathway	Interaction	Database	(PID)	(Schaefer	

et	al.	2009),	HiPath	(N.	Yu	et	al.	2012)	and	NCBI	Biosystems	(Geer	et	al.	2009).	They	

consolidate	pathways	from	different	databases	into	a	consistent	searchable	format,	

however	the	arbitrary	nature	of	pathway	boundaries	results	in	overlap	and	

redundancy.	This	redundancy	forms	an	obstacle	to	the	use	and	interpretation	of	

pathway	data.	The	HPD	addresses	the	redundancy	between	pathways	by	visualizing	

overlap	to	the	user	(Chowbina	et	al.	2009).		

	

Redundancy	Control	in	Pathway	Databases	(ReCiPa)	(Vivar	et	al.	2013)	uses	a	pathway	

merging	algorithm,	to	combine	pathways	with	high	levels	of	overlap.	Pathways	are	

treated	as	sets,	therefore	when	pathways	are	merged,	overlapping	genes	are	only	
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represented	once	within	the	new	pathway.	Users	select	a	maximum	overlap	threshold	

and	pathways	pairs	displaying	greater	levels	of	overlap	are	merged.	Vivar	et	al.	(2013)	

reduced	overlap	across	five	large	databases	(KEGG,	Biocarta,	CGP,	NCI-PID,	and	

Reactome),	finding	redundancy	in	all	of	them.	They	proceeded	to	merge	pathways	

from	the	Molecular	Signatures	Database	(MSigDB)	whose	overlap	exceeded	75%,	then	

demonstrated	improved	success	performing	enrichment	analysis	on	the	new	dataset.	

Pathways	ranked	based	on	their	association	with	obesity	showed	less	overlap	and	

genes	within	the	pathways	showed	higher	significance	towards	the	disease.		

	

Pathcards	described	a	multistep	procedure	to	reduce	pathway	redundancy,	again	by	

merging	pathways	(Belinky	et	al.	2015).	Two	thresholds	were	calculated	with	the	aims	

of	minimizing	pathway	overlap	and	preventing	pathways	from	becoming	too	large	to	

be	informative.	Pathway	pairs	with	overlap	greater	than	the	first	threshold	were	

merged	using	hierarchical	clustering,	then	remaining	pathway	pairs	with	overlap	

greater	than	the	second	threshold	were	merged	using	nearest	neighbor	joining.	By	

merging	pathways	into	super-pathways,	Pathcards	suggested	many	new	molecular	

interactions.	They	demonstrated	that	many	of	these	newly	generated	interactions	are	

supported	by	high	numbers	of	literature	co-mentions	and	high	experimental	

interactions	scores	according	to	STRING.	However,	the	majority	of	the	new	

interactions	were	not	supported	by	literature	co-mentions	and	experimental	

interaction	scores,	reducing	the	confidence	of	the	super-pathway	data.		
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A	disadvantage	to	the	threshold	merging	approach	that	Pathcards	and	ReCiPa	use	is	

that	redundancy	between	pathway	pairs	can	only	be	removed	if	the	overlap	exceeds	

the	threshold.	The	threshold	is	restricted	by	the	need	to	preserve	the	informativeness	

of	the	pathways	and	to	prevent	the	data	set	from	being	consolidated	into	a	small	

number	of	large	pathways.	Applying	uniform	thresholds	to	a	data	set	with	unequal	

coverage	can	be	problematic.	Heavily	studied	areas	with	many	overlapping	pathways	

require	a	higher	threshold	to	prevent	large	numbers	of	pathways	being	merged	into	a	

giant	uninformative	set.	Pathway	Distiller	avoids	thresholds	by	merging	each	pathway	

to	the	pathway	it	overlaps	with	the	most	(Doderer	et	al.	2012),	allowing	varying	levels	

of	similarity	within	clusters,	since	even	pathways	with	very	little	overlap	must	be	linked	

to	a	partner	pathway.		

	

Pathway	enrichment	analysis	and	functional	enrichment	analysis	are	major	

applications	of	pathway	data.	The	impeding	effect	that	similar,	hierarchical	and	

redundant	terms	have	on	interpretation	of	enrichment	analysis	results	is	well	

documented,	with	tools	such	as	DAVID	clustering	terms	into	related	groups	to	simplify	

results	for	the	user	(D.	W.	Huang	et	al.	2007).	Alexa	et	al.	(2006)	introduced	two	

algorithms,	elim	and	weight,	which	use	the	Gene	Ontology	topology	to	deal	with	the	

issue	of	redundancy	in	enrichment	results	(Alexa	et	al.	2006).	The	elim	method	

preferentially	selects	the	most	specific	enriched	GO	terms,	by	selecting	the	terms	

closest	to	the	ontology	tips.	More	general	ancestor	terms	are	only	selected	if	they	are	

required	to	cover	all	of	the	enriched	genes	in	the	set.	They	acknowledged	that	in	some	

instances	parent	terms	have	higher	p-values	than	their	child	nodes	and	therefore	the	
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weight	method	was	introduced.	In	this	method,	if	an	ancestor	node	has	higher	

significance	than	a	child	node,	then	the	significance	of	the	child	nodes	will	be	

decreased,	preventing	the	child	nodes	from	being	reported.		

We	propose	an	approach	using	set	theory	algorithms	to	identify	the	minimum	subset	

of	pathways	required	to	cover	the	dataset,	rather	than	merging	pathways.	Since	

pathways	are	not	merged,	database	and	literature	information	on	existing	pathways	

remains	directly	applicable	and	functional	specificity	is	not	lost	through	pathway	size	

expansion.	The	proposed	method	also	removes	the	risk	of	biologically	distinct	

pathways	being	merged.	The	algorithm’s	ability	to	remove	overlap	is	not	limited	by	a	

minimum	overlap	threshold	and	it	can	consider	redundancy	between	more	than	two	

pathways.	We	propose	a	collection	of	simple	efficient	algorithms	suitable	for	use	on	

large	datasets.		

	

We	implemented	a	version	of	our	algorithm	capable	of	handling	ranked	pathway	

enrichment	data	and	applied	it	to	a	set	of	enriched	osteoarthritis	pathways	(Dunn	et	

al.	2016).	By	selecting	GO	terms	based	on	p-values,	the	weight	method	(Alexa	et	al.	

2006)	shares	some	conceptual	similarity	with	the	set	cover	method	introduced.	

However,	the	set	cover	method	relies	on	shared	gene	membership	across	pathways	to	

indicate	redundancy,	rather	than	looking	for	related	annotations	within	the	gene	

ontology	topology.		
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5.3 Approach	

We	downloaded	pathway	data	from	ConsensusPathDB	(CPDB),	an	open	source	online	

collection	of	pathways,	that	incorporates	32	sources	including	KEGG,	Wikipathways,	

PDB,	Reactome.	CPDB	makes	these	resources	available	as	a	single	download,	which	we	

acquired	on	24/09/2015	containing	4,011	pathways.	We	applied	set	theory	algorithms	

to	the	CPDB	data	set,	analyzing	their	effectiveness	at:	reducing	pathway	overlap;	

reducing	pathway	size	variability;	and	preserving	the	maximum	number	of	genes	in	the	

data	set.	We	considered	two	algorithms	set	packing	and	set	cover.	Set	packing	reduces	

redundancy	by	selecting	the	pathways	that	show	minimal	overlap	and	deleting	

overlapping	pathways.	In	contrast	set	cover	algorithms	select	the	pathways	with	the	

most	uncovered	genes.	This	can	lead	to	set	cover	algorithms	selecting	the	largest	

pathways	in	the	data	set.	The	selection	of	large	pathways	is	detrimental	to	pathway	

specificity	and	since	set	cover	does	not	directly	limit	overlap,	set	packing	appeared	to	

be	the	most	promising	alternative.	

	

Set	packing	is	a	well-defined	algorithm	in	computer	science	for	handling	overlapping	

sets	of	sets,	which	is	useful	when	overlap	between	the	selected	sets	is	not	allowed	

(Kordalewski	2013).	It	was	therefore	used	to	schedule	surgical	procedures	given	a	set	

of	finite	resources,	where	no	resource	may	be	simultaneously	used	in	two	procedures	

(Velásquez	&	Melo	2005).	Set	packing	has	also	been	used	to	examine	genomic	

rearrangements	between	genomes	(Chen	et	al.	2011).		
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Set	cover	is	a	related	algorithm	which	has	been	used	by	CLASS,	a	bioinformatics	

program	that	maps	RNA	sequence	data	to	transcripts	(Song	&	Florea	2013).	Set	cover	

has	also	been	used	to	predict	protein-protein	interactions	based	on	binding	domains	

(C.	Huang	et	al.	2007),	to	reduce	the	complexity	of	single	nucleotide	polymorphism	

(SNP)	sets	(Ao	et	al.	2005)	and	to	minimize	the	number	of	probes	needed	to	analyze	

DNA	(Borneman	et	al.	2001).		

	

Both	algorithms	deal	with	elements	and	sets,	which	relate	to	genes	and	pathways	

respectively.	All	the	unique	genes	in	the	data	set	are	collectively	referred	to	as	the	

universe.	The	aim	is	to	produce	a	reduced	selection	of	sets	(pathways),	which	

collectively	cover	all	the	elements	(genes)	in	the	universe	(dataset).	The	subset	of	the	

original	data	generated	by	set	cover	is	called	the	cover	set	and	the	subset	generated	

by	set	packing	is	called	a	packing	(Kordalewski	2013).	Each	time	a	pathway	is	added	to	

the	cover	set	or	packing	the	genes	in	the	pathway	become	covered.		

	

Application	of	the	set	packing	algorithm	lead	to	unacceptable	gene	loss	and	the	set	

cover	algorithm	lead	to	large	highly	general	pathways	dominating	the	cover	set.	

Therefore,	modifications	of	both	algorithms	were	implemented	to	better	covering	the	

dataset	and	control	pathway	size,	while	reducing	redundancy.		

	

When	dealing	with	enrichment	analysis	data	the	aim	is	to	reduce	redundancy	between	

pathways,	while	preserving	the	order	of	enrichment	significance	denoted	by	the	p-

values.	We	designed	an	algorithm	that	would	select	the	set	of	enriched	pathways	with	
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the	lowest	p-values	capable	of	covering	all	the	genes	in	the	data-set.	This	helps	ensure	

that	the	most	enriched	pathways	represent	as	many	over-expressed	genes	as	possible.	

The	filtered	results	will	also	return	the	most	enriched	pathways	available	for	each	

gene.		

	

5.4 Methods	

5.4.1 Overlap	score	

To	measure	overlap	across	different	algorithms	we	measured	the	mean	number	of	

pathways	that	each	gene	appears	in.	Within	the	raw	data	genes	appeared	in	a	mean	of	

12.4	pathways.	We	refer	to	this	metric	as	the	overlap	score.	

	

5.4.2 Set	packing	

Set	packing	generates	a	selection	of	sets	(a	packing)	in	which	none	of	the	sets	overlap,	

which	makes	it	an	obvious	starting	point	for	reducing	redundancy.	It	generates	this	

discrete	output	by	selecting	pathways	that	overlap	with	the	minimum	number	of	other	

pathways,	then	deleting	any	pathways	that	overlap	with	the	selected	pathways	

(Supplementary	Figure	2	in	Appendix	B).	First,	set	packing	values	must	be	calculated	

for	each	pathway,	corresponding	to	the	number	of	pathways	each	pathway	overlaps	

with	(Equation	7).		

	 𝑣! =
1

| 𝑗 ∈ 𝐼  𝒔𝒊 ∩ 𝒔𝒋 ≠ ∅ |
	 (	11	) 	
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where	each	pathway’s	value	(vi)	is	calculated	as	the	inverse	of	the	number	of	

overlapping	pathways	it	has	in	the	dataset.	vi	is	the	value	of	pathway,	I	is	the	dataset,		

si	is	the	pathway	whose	score	you’re	calculating	and	sj	is	each	other	pathway	

(Kordalewski	2013).		

	

The	pathway	with	the	highest	value	is	selected	first,	then	any	overlapping	pathways	

are	deleted.	Deleting	pathways	makes	it	necessary	to	recalculate	the	set	packing	

values,	before	the	next	highest	scoring	pathway	is	selected.	This	process	continues	

until	all	of	the	pathways	have	been	added	to	the	packing	or	discarded.	Algorithm	1	

shows	a	pseudocode	depiction	of	the	algorithm.		

	

Algorithm	1:	Set	packing	

where	D	is	the	full	set	of	pathways,	C	in	the	covered	genes,	SP	is	the	set	packing	

output,	and	si	and	sj	are	pathways.		

	

greedy set cover

ruth.stoney

February 2017

Set Cover

Start with R = U, C = ; and SC = ;
while |C|/|U| ⇤ 100 < GC do

Select set si that maximizes vi

Add si to SC
Add the elements in si to C
Delete the elements in si from R

end

Return SC

Set Packing

Start with D = data set, C = ; and SP = ;
while D 6= ; do

Select set si from D that maximises vi

Add the elements in si to C
for sj in D do

if |si \ sj | / |si [ sj | > Max O then

delete sj from D
end

end

Delete set si from D
end

Return the SP

1
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We	found	that	the	unmodified	application	of	this	algorithm	successfully	removed	all	

overlap	and	did	not	inflate	size	variability,	however	74%	of	the	genes	in	the	dataset	

were	lost.	To	preserve	a	larger	proportion	of	the	data	set,	we	modified	the	algorithm	

to	allow	pathways	that	overlapped	extensively	with	the	selected	pathway	to	be	

removed,	while	pathways	with	only	a	slight	overlap	were	retained.	It	was	necessary	to	

introduce	a	maximum	overlap	(Max_O)	threshold,	to	allow	overlapping	pathways	to	be	

retained	if	the	proportion	of	overlapping	genes	was	less	than	the	threshold.	In	the	

standard	set	packing	algorithm,	the	Max_O	is	set	to	0,	indicating	that	0%	overlap	is	

permitted.	We	experimented	setting	Max_O	to	10,	20,	30,	40	and	60%,	using	the	

Jaccard	cocoefficient	to	measure	overlap.	The	Jaccard	coefficient	measures	the	

number	of	overlapping	genes,	divided	by	the	total	number	of	genes	in	both	pathways.	

In	the	resulting	packing,	no	two	pathways	can	overlap	by	more	than	the	Max_O	

Increasing	Max_O	successfully	increased	the	proportion	of	the	data	set	conserved.		

	

5.4.3 Set	cover	

We	applied	the	set	cover	algorithm	to	the	data	set,	which	generates	a	selection	of	

pathways	called	a	cover	set,	in	which	all	the	genes	in	the	data	set	are	present	or	

"covered".	Set	cover	begins	by	first	assigning	values	to	each	pathway	(vi).	Set	cover	

values	correspond	to	the	number	of	uncovered	genes	each	pathway	contains	

(Equation	8).		

	 𝑣! = | 𝒔𝒊  ∩ 𝑹 |	 (	12	) 	

	

where	(si)	is	the	pathway’s	gene	set	and	R	is	the	set	of	all	uncovered	genes.	
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At	the	beginning	of	the	algorithm	all	the	genes	in	the	dataset	are	uncovered	so	the	

algorithm	selects	the	largest	pathway.	The	genes	from	the	selected	pathway	are	then	

covered,	so	it	is	unnecessary	to	cover	them	again	using	additional	pathways.	The	

algorithm	then	recalculates	how	many	uncovered	genes	each	pathway	contains	and	

continues	to	add	the	pathway	with	the	maximum	value	to	the	set	cover	until	all	genes	

in	the	data	set	are	covered	(Supplementary	Figure	3).		

	

Algorithm	2:	Set	cover	

where	R	is	the	uncovered	genes,	U	is	all	the	genes	in	the	dataset,	C	is	the	covered	

genes,	SC	is	the	set	cover	result,	GC	is	the	gene	coverage	(see	Section	5.4.4)	and	si	is	a	

pathway.		

	

Application	of	the	set	cover	algorithm	was	effective	in	reducing	overlap	between	the	

pathways;	however,	it	selected	very	large	pathways	with	reduced	informativeness	

(maximum	size	2320,	standard	deviation	160.1,	almost	double	the	standard	deviation	

on	the	original	dataset	86.9).	We	therefore	explored	methods	that	avoid	preferential	

selection	of	large	pathways.		

greedy set cover

ruth.stoney

February 2017

Set Cover

Start with R = U, C = ; and SC = ;
while |C|/|U| ⇤ 100 < GC do

Select set si that maximizes vi

Add si to SC
Add the elements in si to C
Delete the elements in si from R

end

Return SC

Set Packing

Start with D = data set, C = ; and SP = ;
while D 6= ; do

Select set si from D that maximises vi

Add the elements in si to C
for sj in D do

if |si \ sj | / |si [ sj | > Max O then

delete sj from D
end

end

Delete set si from D
end

Return the SP

1
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5.4.4 Gene	Set	Coverage	

As	the	set	cover	algorithm	approaches	completion	and	the	final	sets	are	added	to	the	

cover	set,	increases	in	data	coverage	are	gained	at	the	expense	of	redundancy	

reduction.	This	is	because	the	final	sets	required	to	cover	the	few	remaining	genes	

tend	to	have	the	most	overlap	with	other	pathways	already	in	the	set	cover.	In	

addition,	fewer	pathways	are	available	to	cover	the	final	few	genes,	restricting	options	

to	control	pathway	size.	To	allow	a	user-defined	compromise	between	the	gene	

coverage,	pathway	redundancy	and	pathway	size	we	introduce	the	Gene	Coverage	

(GC)	parameter.	Setting	GC	below	100%	allows	the	algorithm	to	finish	before	the	final	

elements	have	been	covered.	We	experimented	setting	GC	to	90,	95,	99	and	100%	of	

the	number	of	genes	in	the	data	set.		

	

5.4.5 Proportional	set	cover	

When	reducing	pathway	redundancy	there	are	three	competing	aims:	reducing	

redundancy;	controlling	pathway	size;	and	covering	the	entire	gene	set.	The	

proportional	set	cover	algorithm	was	generated	to	focus	on	controlling	pathway	size.	

	

To	control	the	size	of	the	pathways	we	altered	the	scoring	mechanism	to	rank	

pathways	based	on	the	proportion	of	uncovered	genes	they	contained,	rather	than	the	

absolute	number	(Equation	9).	This	works	because	larger	pathways	are	more	likely	to	

have	a	proportion	of	their	genes	covered	when	other	pathways	are	selected.	

Additionally	this	mechanism	directly	penalizes	overlap,	which	the	standard	algorithm	

does	not.	At	the	beginning	of	the	proportional	set	cover	algorithm	none	of	the	genes	
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are	covered	so	the	proportion	of	uncovered	genes	in	every	pathway	is	1.	This	would	

result	in	the	starting	pathway	being	selected	at	random.	To	ensure	that	pathway	size	

variability	is	controlled	as	strictly	as	possible,	we	implemented	the	second	part	of	

Equation	9,	which	ensures	that	pathways	of	mean	pathway	size	are	preferentially	

selected	when	multiple	pathways	with	the	same	proportion	of	uncovered	genes	are	

available.		

	 𝑣! =
| 𝒔𝒊  ∩ 𝑹 |
|𝒔𝒊|

+  
1

𝑎𝑏𝑠  𝒔𝒊 −  𝒔!  ∗ 𝑘
	 (	13	) 	

	

where	si	is	the	pathway’s	gene	set,	|𝒔!|	is	the	mean	pathway	length,	R	is	the	uncovered	

genes	set	and	k	is	a	large	constant	to	limit	the	influence	of	the	second	term	(taken	

equal	to	10,000).		

	

5.4.6 Hitting	set	cover	

The	set-covering	problem	can	be	reformulated	into	the	equivalent	set-hitting	problem.	

In	this	formulation	genes	and	pathways	are	visualized	as	bi-partite	graph	in	which	the	

pathways	are	connected	to	the	genes	that	they	contain.	In	this	depiction	it	is	clear	that	

some	genes	are	only	linked	to	a	single	pathway,	which	must	be	selected	if	the	gene	is	

to	be	covered.	The	importance	of	pathways	can	therefore	be	considered	as	a	factor	of	

how	infrequent	their	genes	are.	The	hitting	set	cover	is	therefore	designed	to	reduce	

redundancy	as	much	as	possible	without	directly	selecting	for	pathway	size.		
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We	calculated	the	frequency	of	each	gene	in	the	data	set	(F),	then	assigned	the	gene’s	

value	gv(j)	as	1/F.	We	then	assigned	a	value	vi	to	each	pathway	defined	as	the	sum	of	

each	uncovered	gene’s	scores	divided	by	the	number	of	genes	in	the	pathway	

(Equation	10).		

	 𝑔𝑣 𝑗 =  1 /𝐹(𝑗)	

𝑣! =  
 𝑔𝑣(𝑗) !"𝒔𝒊  ∩ 𝑹

| 𝒔𝒊 |
	

(	14	) 	

	

where	gv(j)	is	the	value	of	a	gene,	F(j)	is	the	number	of	pathways	a	gene	is	in,	

	𝑗𝜖𝒔𝒊  ∩ 𝑹 means	for	each	uncovered	gene	in	the	pathway	and	|si|	is	the	length	of	the	

pathway.		

	

5.4.7 Set	cover	for	pathway	enrichment	analysis	

Pathway	analysis	is	a	frequently	used	method;	therefore	a	modified	set	cover	

algorithm	to	address	this	situation	could	be	highly	useful.	The	universe	represents	up-

regulated	genes	and	the	sets	are	enriched	pathways.	Enrichment	analysis	output	

provides	a	unique	circumstance	in	which	the	sets	are	already	scored	(p-values).	We	

wish	to	reduce	redundancy	(gene	overlap)	between	enriched	pathways	and	it	is	

essential	that	the	pathways	with	the	lowest	possible	p-values	are	selected.	Equation	

11	allows	pathways	with	the	lowest	p-values	to	be	selected,	unless	all	of	their	genes	

are	covered	by	pathways	with	even	lower	p-values.		

	

	 𝒔𝒊 ∩ 𝑹 =  𝜃 → 𝑏 =  0,           𝒔𝒊 ∩ 𝑹 ≠  𝜃 → 𝑏 =  1         	 (	15	) 	
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𝑣! = 1− 𝑝𝑣𝑎𝑙𝑢𝑒! ∗  𝑏          	

where	si	is	the	pathway’s	gene	set,	R	is	the	uncovered	gene	set,	b	is	a	binomial	

operator,	pvaluei	is	the	pathway’s	p-value	and	vi	is	the	pathway’s	set	cover	value.		

	

5.5 Results	

We	started	with	the	large,	extensively	redundant	CPDB	data	set	and	used	set	theory	

algorithms	to	reduce	pathway	overlap,	while	controlling	pathway	size	and	seeking	to	

cover	as	much	of	the	data	set	as	possible.		The	unmodified	set	packing	algorithm	only	

covered	25%	of	the	gene	set,	rendering	it	unusable,	therefore	the	Max_O	parameter	

was	implemented.	The	ability	of	this	modified	algorithm	to	meet	the	three	objectives	

is	first	described.	Next	we	describe	the	ability	of	the	standard	set	cover	algorithm	and	

two	modified	set	cover	algorithms,	in	conjunction	with	the	GC	parameter,	to	meet	the	

above	objectives.	

	

Set	packing	algorithm		

Figure	31	shows	the	effectiveness	of	various	Max_O	values	at	reducing	overlap	and	

maximizing	coverage	of	genes	in	the	pathway	set.	When	no	overlap	was	allowed	

between	pathways	(Max_O	=	0)	each	gene	only	appeared	in	one	pathway;	however,	

only	26%	of	genes	were	recovered	from	the	data	set.	As	the	permitted	overlap	was	

increased,	the	proportion	of	the	genes	returned	in	the	packing	set	also	increased.	This	

is	expected	as	the	Max_O	dictates	the	maximum	amount	of	overlap	permitted	

between	2	pathways;	for	example,	the	threshold	of	0.3	produced	a	set	of	pathways	

covering	97.1%	of	the	data	set,	in	which	no	two	pathways	could	overlap	by	more	than	
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30%.	The	overall	overlap	score	was	reduced	to	5.8,	less	than	half	of	the	original	overlap	

score	(12.4).	When	Max_O	was	increased	to	0.6,	99.7%	of	the	genes	in	the	data	set	

were	covered	by	the	packing	but	the	overlap	score	increased	to	9.2.		

	
	

Figure	31:	Set	packing	Gene	Cover.	Overlap	score	(mean	pathways	per	gene)	in	the	output	of	the	set	packing	
algorithm	with	Max_O	set	to	a	range	of	thresholds	(0,	0.1,	0.2,	0.3,	0.4,	0.6).	The	Y-axis	shows	the	overlap	score,	the	
X-axis	shows	the	proportion	of	the	gene	set	covered	and	the	scatter	points	show	different	Max_O	thresholds.		

	

	

Pathways	cannot	overlap	by	more	than	the	Max_O	preventing	high	levels	of	overlap	

between	pathways,	however	it’s	ability	to	reduce	redundancy	between	pathway	pairs	

that	overlap	by	less	than	Max_O	is	limited.	The	algorithm	will	stop	once	all	genes	have	

been	covered	or	deleted,	preventing	unnecessary	pathways	from	being	added,	

however	the	Max_O	parameter	shares	disadvantages	to	the	thresholds	present	in	
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ReCiPa	and	PathCards	(Vivar	et	al.	2013;	Belinky	et	al.	2015).	To	find	a	more	

satisfactory	solution	we	moved	onto	the	set	cover	algorithm.		

	

5.5.1 Pathway	redundancy	varies	between	different	set	cover	algorithms	

The	original	pathway	data	set	contained	11,196	genes	and	3,305	pathways;	the	

starting	overlap	score	(see	Section	5.4.1)	was	12.4.	The	standard	set	cover	algorithm	

reduced	overall	redundancy	from	12.4	to	4.1,	a	73%	reduction	(since	the	minimal	

possible	overlap	is	1).	The	overlap	score	for	proportional	set	cover	was	4.36,	slightly	

higher	than	the	standard	set	cover	algorithm,	but	still	representing	a	70%	reduction	in	

overlap	from	the	original	data.	The	hitting	set	cover	algorithm	was	designed	to	select	

pathways	that	contained	rare	genes	within	the	data	set,	resulting	in	the	greatest	

reduction	in	overlap	(overlap	score	of	3.95	equivalent	to	a	74%	reduction).	

	

After	application	of	the	set	cover	algorithms	the	distribution	of	the	remaining	overlap	

varied	greatly.	Figure	32	shows	the	Jaccard	coefficient	between	pairs	of	pathways,	in	

the	outputs	produced	by	each	of	the	three	algorithms.	The	standard	set	cover	

algorithm	produced	the	lowest	maximum	overlap	(0.68)	between	the	pathway	pairs.	

However,	compared	to	the	original	data,	a	higher	proportion	of	pathway	pairs	in	the	

set	cover	output	showed	between	10-30%	overlap.	Proportional	set	cover	had	the	

greatest	maximum	overlap	at	0.93,	out	of	all	of	the	algorithms.	The	hitting	set	cover	

algorithm	produced	a	maximum	overlap	between	two	pathways	of	0.82,	despite	

having	the	lowest	overlap	score.		
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Figure	32:	Jaccard	coefficient	between	pathway	pairs	in	the	cover	sets	produced	by	each	algorithm	

	

5.5.2 Gene	Coverage	can	be	lowered	to	reduce	redundancy	

For	each	of	the	algorithms	it	is	possible	to	use	the	GC	parameter	to	prioritize	

reductions	in	redundancy	over	gene	coverage	by	stopping	any	algorithm	before	all	of	

the	genes	in	the	dataset	have	been	covered.	Figure	33	shows	improved	ability	of	the	

set	cover	algorithms	to	reduce	pathway	overlap	for	different	values	of	GC.	If	99%	of	

the	genes	are	required	then	the	hitting	set	algorithm	achieves	the	lowest	overlap	score	

of	3.24,	equivalent	to	an	80%	reduction	in	overlap.	Redundancy	can	be	further	reduced	

if	only	95%	of	the	genes	are	covered,	with	the	proportional	and	hitting	set	algorithms	

producing	an	overlap	score	of	2.41,	equivalent	to	a	88%	reduction	in	redundancy.	Both	

the	proportional	set	cover	and	the	hitting	set	cover	are	more	effective	at	reducing	

redundancy	than	the	standard	set	cover	if	GC	is	set	to	less	than	100%.	
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Figure	33:	Redundancy	in	set	cover	outputs	given	different	GC	values	

	

5.5.3 Pathway	size	is	affected	by	the	set	cover	algorithm	and	Gene	Coverage	setting	

When	GC	was	set	to	100%	the	standard	set	cover	algorithm	represented	all	of	the	
genes	in	the	dataset	using	only	524	pathways	(16%	of	the	original	pathway	set).	
However,	many	of	these	were	very	large	increasing	the	mean	size	to	87.2	(standard	
deviation	160).	These	pathways	have	reduced	informativeness	since	functional	
specificity	is	lost.		
	
Figure	34A	illustrates	the	tendency	of	this	algorithm	to	select	extremely	large	

pathways.		
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Figure	34:	Affect	of	Gene	Cover	on	pathway	size.	Pathway	sizes	in	cover	set	when	GC	is	set	to	A)	100%,	B)	99%,	C)	
95%	and	D)	90%.	The	boxes	indicate	the	25th	and	75th	percentiles	and	the	whiskers	indicate	the	5th	and	95th	
percentiles.	

	

The	proportional	set	cover	algorithm	was	designed	to	preferentially	select	moderately	
sized	pathways.	This	returned	a	cover	set	of	1,336	pathways	with	controlled	size	
variation	(mean	of	36.5,	standard	deviation	55.1)	shown	in		
	
Figure	34A.	The	hitting	set	cover	algorithm	was	less	able	to	control	pathway	size	than	

the	proportional	set	cover	algorithm,	returning	957	pathways	with	a	mean	size	of	46.2	

(standard	deviation	61.7).		

	
	
Figure	34B	–	D	show	that	as	GC	is	reduced	the	tendency	of	the	standard	set	cover	to	

select	very	large	pathways	becomes	more	exaggerated.	Decreasing	GC	also	improves	
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the	ability	of	the	proportional	set	cover	algorithm	to	select	moderately	sized	pathways.	

The	hitting	set	algorithm	also	tends	to	select	smaller	pathways	when	GC	is	reduced,	

since	larger	pathways	often	contain	more	frequent	genes.	Reducing	GC	affects	

pathway	size	since	in	the	later	stages	of	the	algorithm,	fewer	pathways	are	available	to	

cover	the	remaining	genes,	reducing	the	available	options.	Therefore	lowering	GC	has	

the	ability	to	help	control	pathway	size	when	the	proportional	set	cover	and	hitting	set	

cover	algorithms	are	used.	

	

5.5.4 Reducing	redundancy	in	pathway	enrichment	analysis		

To	demonstrate	the	ability	of	the	set	cover	algorithm	to	handle	enrichment	data,	we	applied	the	enrichment	set	
cover	algorithm	an	osteoarthritis	data	set,	retrieved	from	Dunn	et	al.	(2016)	(Dunn	et	al.	2016).	From	the	
osteoarthritis	data	set,	58.3%	of	the	upregulated	genes	could	be	mapped	to	a	CPDB	pathway,	which	was	a	17%	
improvement	on	the	GOseq	(Young	et	al.	2010)	implemented	data	set.	We	retrieved	42	enriched	pathways	with	a	p-
value	lower	than	0.05,	following	the	Benjamini-Hochberg	correction	for	multiple	testing.	Set	cover	for	enrichment	
analysis	reduced	the	number	of	pathways	required	to	cover	the	upregulated	genes	to	23	(Supplementary	Table	2).	
The	heat-map	in		

	

Figure	35A	shows	the	asymmetric	overlap	between	the	top	ten	pathways	before	

application	of	the	algorithm.	The	p-values	from	pathway	enrichment	determine	the	

order	in	which	pathways	were	considered	for	inclusion	in	the	cover	set.	Pathways	were	

omitted	if	all	of	their	genes	were	covered	by	more	enriched	pathways.	Note	that	

overlap	tends	to	be	higher	in	the	bottom	left	triangle	as	pathways	added	later	were	

often	smaller	subcomponents	of	larger	pathways.		
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Figure	35:	Pathway	redundancy	heat	maps	A)	Pathway	overlap	for	top	ten	enriched	pathways.	B)	Pathway	overlap	
for	top	ten	enriched	pathways	after	application	of	set	cover.	The	values	represent	asymmetric	overlap,	i.e.	for	each	
pathway	shown	on	the	left	axis	values	represent	the	proportion	of	genes	included	in	the	pathway	shown	on	the	
bottom	axis.		
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Some	pathways	in	the	enrichment	set	cover	do	still	show	significant	levels	of	overlap,	

for	example	’wnt	signalling	network’	is	included	despite	89%	of	its	genes	being	covered	

by	’signal	transduction’.	This	is	acceptable	because	’signal	transduction’	is	more	highly	

enriched	than	’wnt	signalling	network’,	yet	the	’wnt	signalling	network’	is	worth	

including	as	it	covers	enriched	genes	missed	by	’signal	transduction’.	The	unmodified	

top	ten	enriched	pathways	only	cover	78.0%	of	the	enriched	genes.	Using	the	set	cover	

enrichment	algorithm	increases	this	figure	to	85.2%	without	disrupting	the	pathway	

order	given	by	the	enrichment	p-values.		

	

We	can	see	that	’extracellular	matrix	organization’,	the	most	enriched	pathway,	was	placed	in	the	cover	set	first.	
Next	was	’collagen	biosynthesis	and	modifying	enzymes’;	however,	all	of	the	genes	in	this	pathway	are	contained	in	
the	larger	pathway	’extracellular	matrix	organization’,	as	indicated	by	the	red	cell	in	the	’collagen	biosynthesis	and	
modifying	enzymes’	row,	’extracellular	matrix	organization’	column.	The	corresponding	cell	in	the	’extracellular	
matrix	organization’	row	reveals	that	24%	of	the	genes	in	’extracellular	matrix	organization’	are	also	in	’collagen	
biosynthesis	and	modifying	enzymes’.	Figure	35B	shows	overlap	between	the	top	ten	pathways	after	application	of	
the	enrichment	set	cover	algorithm.	Because	’collagen	biosynthesis	and	modifying	enzymes’	is	a	subset	of	
’extracellular	matrix	organization’,	it	is	not	returned	in	the	cover	set	(	

	

Figure	35B).	The	second	item	in	this	list	then	becomes	’GPCR	signaling	g	alpha	q’.	In	the	

enrichment	set	cover,	’collagen	formation’	and	’class	b	2	secretin	family	receptors’	are	

removed	because	they	are	subsets	of	’extracellular	matrix	organization’	and	’signal	

transduction’	respectively.	Additionally,	’GPCR	signaling	pertussis	toxin’	and	’GPCR	

signaling	cholera	toxin’	are	absent	from	the	returned	list,	as	all	of	their	genes	are	

found	in	’GPCR	signaling	g	alpha	q’	or	’signal	transduction’.		
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5.6 Discussion	and	conclusion		

We	described	algorithms	suitable	for	reducing	overlap	in	large	pathway	data	sets	and	

enrichment	analysis	results.	Set	packing	reduced	redundancy	without	effecting	

pathway	size	and	removed	all	redundancy,	however	it	had	unacceptably	poor	gene	

coverage.	To	improve	coverage	we	implemented	the	Max_O	threshold,	however	this	

limited	the	algorithms	ability	to	reduce	redundancy	between	pathways	if	the	overlap	

was	less	than	Max_O.	These	issues	diminish	the	suitability	of	the	set	packing	algorithm	

to	reduce	redundancy	between	pathways.	

	

Implementation	of	the	standard	set	cover	significantly	increased	pathway	size,	

therefore	the	proportional	set	cover	and	hitting	set	cover	algorithms	were	developed	

to	overcome	this	issue.	The	proportional	set	cover	is	the	best	algorithm	for	controlling	

pathway	size	and	the	hitting	set	cover	is	the	preferred	choice	for	covering	all	of	the	

genes	in	the	dataset	with	minimal	pathway	redundancy.	We	showed	that	reducing	the	

GC	parameter	allows	further	reductions	in	pathway	redundancy;	for	example,	if	only	

95%	of	the	genes	in	the	CPDB	dataset	were	covered	redundancy	can	be	reduced	by	up	

to	88%.	In	addition	reducing	GC	increases	pathway	size	control	when	the	proportional	

set	cover	and	hitting	set	cover	algorithms	are	used.	

	

For	pathway	enrichment	analysis	we	aimed	to	reduce	redundancy	while	selecting	the	

most	significant	pathways	based	on	p-values.	As	an	application	we	used	the	modified	

set	cover	algorithm	to	reduce	the	results	of	enrichment	analysis	from	a	large	

osteoarthritis	data	set.	We	found	that	5	out	of	the	10	top	ranking	pathways	could	be	
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omitted	as	all	of	their	genes	were	covered	by	more	highly	enriched	pathways.	Overlap	

between	pathways	returned	from	enrichment	data	is	not	always	immediately	obvious	

and	requires	further	consideration.	By	reducing	this	redundancy,	data	interpretation	is	

made	more	intuitive.	Reducing	redundancy	also	allows	the	user	to	explore	

substantially	more	of	the	data	set	using	the	same	number	of	pathways.		

	

Set	cover	uses	greedy	heuristic	methods,	which	provide	good	approximations	of	the	

optimal	solution	in	a	time	effective	manner.	These	methods	are	extremely	efficient	

and	can	be	run	in	a	matter	of	minutes,	however	it	should	be	noted	that	they	do	not	

guarantee	an	optimal	solution.	This	is	particularly	true	for	the	proportional	set	cover	

algorithm	where	the	randomness	of	early	selections	influences	the	result.	However,	all	

possible	outcomes	result	in	reduced	redundancy.	The	enrichment	set	cover	algorithm	

is	exempt	from	these	considerations	unless	multiple	pathways	have	identical	p-values.		

	

We	have	provided	a	method	to	dramatically	reduce	redundancy	in	pathways	

facilitating	cleaner	analysis	of	cellular	processes,	while	avoiding	the	issues	introduced	

by	pathway	merging.	Our	algorithms	are	publicly	available	and	have	wide	applicability	

to	analysis	of	pathway	datasets	from	any	organism.	
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Chapter	6 	

Mapping	biological	process	relationships	

and	disease	perturbations	within	a	

pathway	network		

A	shortened	version	of	this	chapter	was	submitted	to	npj	Systems	Biology	on	the	4th	

September	20178.	All	generated	data	and	networks	are	available	at	

https://data.mendeley.com/datasets/3pbwkxjxg9/1	

	

6.1 Abstract		

Molecular	interaction	networks	are	routinely	used	to	map	the	organisation	of	cellular	

function.	Edges	represent	interactions	between	genes,	proteins	or	metabolites,	

however,	in	living	cells,	molecular	interactions	are	dynamic,	necessitating	context-

dependent	models.	Contextual	information	can	be	integrated	into	molecular	

interaction	networks	through	the	inclusion	of	additional	molecular	data,	however	

there	are	concerns	about	completeness	and	relevance	of	this	data.		

																																																								

8	The	submitted	manuscript	had	a	shortened	introduction,	omitted	Figure	36	and	

Figure	40,	and	did	not	include	a	detailed	discussion	of	the	positioning	of	

gastrointestinal	and	leukaemia	nodes	within	the	network	.	RS	performed	all	analysis	

and	wrote	the	manuscript.		
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We	developed	an	approach	for	representing	the	organisation	of	biological	processes	

using	pathways	as	the	nodes	of	a	network.	Pathways	represent	spatial	and	temporal	

sets	of	context-dependent	interactions,	generating	a	high	level	network,	which	

incorporates	contextual	information	without	the	need	for	molecular	interaction	data.	

Analysis		of	the	pathway	network	revealed	functionally	linked	communities,	

comparable	to	those	found	in	molecular	networks,	including	metabolism,	signalling,	

immunity,	and	the	cell	cycle.		

	

To	examine	the	network’s	applications	network	we	mapped	a	range	of	diseases	onto	

the	network.	Pathways	associated	with	diseases	tend	to	be	functionally	connected,	

highlighting	the	perturbed	functions	producing	disease	phenotypes.	Next	we	examined	

the	distribution	of	different	types	of	cancer.	Cancer	pathways	tended	to	localise	within	

the	signalling,	DNA	processes	and	immune	modules,	with	some	cancer-associated	

nodes	found	in	other	network	regions.	Many	pathways	were	common	to	multiple	

cancers,	while	pathways	specific	to	different	types	of	cancer	reflected	variations	in	

genetic	heterogeneity	and	risk	factors.		

	

By	limiting	our	data	sources	to	high	quality	pathway	data	and	experimentally	validated	

Gene	Ontology	annotations	we	generated	a	high	confidence	functional	network,	which	

avoids	the	shortcomings	faced	by	conventional	molecular	models.		
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6.2 Introduction	

Cellular	processes	are	carried	out	by	groups	of	interacting	proteins	(Barabási	&	Oltvai	

2004).		Understanding	how	these	spatially	and	temporally	organised	sets	of	

interactions	lead	to	biological	processes	is	fundamental	to	our	comprehension	of	the	

cell.	The	traditional	approach	used	to	study	function	has	been	based	on	molecular	

interaction	networks,	which	have	improved	our	understanding	of	disease	(Goh	et	al.	

2007;	Barabasi	et	al.	2011;	Janjić	&	Pržulj	2012c),	infection	(Jiang	et	al.	2015),	drug	

pharmacodynamics	(Suthram	et	al.	2010)	and	evolution	(Stuart	et	al.	2003).		In	this	

paper	we	describe	data	and	networks	as	‘molecular’	if	they	are	concerned	with	

interactions	between	individual	biological	molecules.	This	is	in	contrast	to	pathway-

level	representations,	which	represent	pathway	gene	sets,	with	interactions	between	

individual	molecules	omitted.	Pathways	are	considered	to	collectively	participate	in	

biological	process,	the	functions	of	individual	genes	or	gene	products	are	not	

considered.	

	

There	are	various	network	approaches	for	studying	biological	processes	using	

molecular	interaction	networks.	Protein-protein	interaction	(PPI)	data	is	frequently	

used	to	construct	networks,	in	which	proteins	tend	to	interact	with	functionally	related	

partners.	This	results	in	the	emergence	of	functionally	related	sub-networks	known	as	

‘functional	modules’	(Barabasi	et	al.	2011).	Modular	organisation	of	function	has	been	

shown	to	exist	across	species,	and	is	used	to	predict	gene	function	(Song	&	Singh	2009;	

Wang	et	al.	2011).	Similar	networks	have	been	generated	using	co-expression	data	
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(Stuart	et	al.	2003),	GI	data	(Costanzo	et	al.	2010),	and	by	combining	resources	(Ames	

et	al.	2013).	

	

In	PPI	networks	the	edges	link	each	protein	to	all	of	its	known	interacting	partners;	

however	this	presents	an	over	simplistic	model.	Protein	interactions	are	dynamic,	

assembling	when	needed	to	perform	a	function,	then	disassembling	(Srihari	&	Leong	

2012;	Przytycka	et	al.	2010;	Tang	et	al.	2011).	This	is	not	captured	in	static	networks,	

where	interactions	appear	permanent	in	time.	Clusters	in	static	network	often	

represent	protein	complexes,	however	some	proteins	participate	in	multiple	

temporally	and	spatially	independent	complexes	(Li	et	al.	2012;	Srihari	&	Leong	2012).	

In	static	networks	the	interactions	representing	these	separate	complexes	will	form	a	

single	cluster.		

	

To	capture	the	inherently	temporal	nature	of	molecular	interactions,	dynamic	models	

incorporating	additional	data	have	been	developed.	For	example,	gene	expression	

data	have	been	mapped	onto	PPI	networks	to	reflect	the	dynamic	nature	of	protein	

interactions.	Active	sub-networks,	defined	as	connected	regions	of	the	network	that	

show	altered	gene	expression	under	particular	conditions,	can	then	be	identified	

(Ideker	et	al.	2002;	Guo	et	al.	2007;	Komurov	&	White	2007).	Incorporation	of	

expression	data	reveals	a	modular	network,	in	which	groups	of	dynamically	co-

regulated	interactions	perform	condition-dependent	processes	(Ideker	et	al.	2002),	

while	static	modules	provide	the	structural	core	(Komurov	&	White	2007).			

	



CHAPTER	6:	MAPPING	BIOLOGICAL	PROCESS	RELATIONSHIPS	AND	DISEASE	PERTURBATIONS	WITHIN	A	PATHWAY	

NETWORK	

180	

Expression	data	have	also	been	overlaid	with	PPI	networks	to	study	topics	such	as	

metabolic	processes	(Ideker	et	al.	2002),	the	cell	cycle	(Srihari	&	Leong	2012;	Guo	et	al.	

2007)	and	disease	(Guo	et	al.	2007).	Sub-networks	of	specific,	condition-relevant	

interactions	were	constructed	by	limiting	edges	to	interactions	between	co-expressed	

proteins.	This	made	it	possible	to	observe	context	dependent	interactions	(Srihari	&	

Leong	2012)	and	the	generated	sub-networks	showed	increased	functional	coherence	

compared	to	static	networks	(Tang	et	al.	2011).	The	addition	of	intracellular	

localisation	data	can	further	refine	these	networks	(Sprinzak	et	al.	2003).		Additionally,	

longitudinally	sampled	data	can	be	represented	using	a	time	series	of	networks	(Srihari	

&	Leong	2012).	Refining	the	edges	to	those	present	at	each	time	point	produces	

modules	that	are	smaller	and	more	functionally	specific	(Tang	et	al.	2011).		

	

Molecular	interaction	networks	have	provided	great	biological	insight,	however,	they	

are	undermined	by	the	reliability	of	their	data	sources.	We	suggest	that	the	utilisation	

of	more	reliable	data	could	allow	functional	models	to	reach	their	full	potential.	The	

unreliability	of	PPI	data	has	been	well	documented	and	leads	to	false	positive	and	false	

negative	interactions	(Snider	et	al.	2015;	Ji	et	al.	2014;	Sprinzak	et	al.	2003).	High	

throughput	data	tends	to	contain	high	numbers	of	false	positives,	while	smaller	studies	

are	by	definition	limited	in	coverage.	Algorithms	have	been	developed	to	attempt	to	

handle	this	inaccuracy	within	the	data	by	including	functional	data,	however	this	can	

add	circularity	in	functional	studies	(Li	et	al.	2007).		
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Using	expression	data	to	filter	networks	can	be	undermined	by	interactions	known	to	

occur	between	proteins	that	do	not	have	correlated	expression	(Snider	et	al.	2015).	

Further	concern	about	the	use	of	expression	data	to	predict	protein	interactions	

comes	from	the	notoriously	weak	correlation	between	gene	expression	and	protein	

abundance	(Ghaemmaghami	et	al.	2003;	Gygi	et	al.	1999).	Recent	reviews	have	

suggested	that	post-transcriptional,	translational	and	degradation	regulation	is	at	least	

as	important	in	determining	protein	concentration	as	transcriptional	control	(Maier	et	

al.	2009a;	Vogel	&	Marcotte	2012).	Observed	correlations	between	mRNA	and	protein	

levels	have	shown	wide	variations	from	r	=	~0.35	to	~0.75	(Vogel	&	Marcotte	2012;	

Schwanhausser	2011;	Maier	et	al.	2009b)	and	even	as	low	as	r	=	0.01	when	the	

correlation	is	measured	within	single	cells.	This	variation	may	be	attributed	to	various	

biological	properties;	correlations	tend	to	be	higher	when	mRNA	expression	is	high	and	

shows	high	variability	(Gygi	et	al.	1999).	In	situations	where	expression	is	constant,	

protein	levels	may	vary	due	to	translational	and	post	translational	factors	(Greenbaum	

et	al.	2003).	Difficulties	in	predicting	protein	levels	using	expression	data	undermines	

the	assumption	that	co-expressed	genes	are	more	likely	to	interact,	reducing	the	

applicability	of	expression	data	to	the	generation	of	dynamic	networks.	The	use	of	

proteomic	analysis	can	help	identify	context	dependent	interactions	by	identifying	

protein	complexes	(Altelaar	et	al.	2012),	however	protein	complexes	only	constitute	

small	subsections	of	functional	modules	making	them	insufficient	for	generating	

comprehensive	functional	maps.	
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In	this	work,	we	address	these	problems	by	introducing	a	representation	of	cellular	

function,	which	uses	pathways,	rather	than	genes,	as	the	constitutive	elements.	

Pathways	are	comprised	of	sets	of	proteins	(and	complexes)	that	interact	with	each	

other	serially,	for	example,	to	form	signalling	or	metabolic	pathways.	This	allows	us	to	

group	sets	of	proteins,	known	to	interact	under	particular	conditions,	without	

requiring	knowledge	of	the	individual	protein-protein	interactions.	This	reduction	in	

network	complexity	bypasses	the	issues	of	false	positive	and	negative	PPIs,	since	

molecular	interactions	are	not	included	in	the	network.		

	

By	using	pathways	we	connect	individual	protein	instances	to	their	interaction	

partners	under	particular	conditions	(Stoney	et	al.	2015),	resolving	the	problem	of	

context	and	the	multiple	functions	that	a	single	protein	can	participate	in	(Ji	et	al.	

2014).	Proteins	may	be	present	in	multiple	pathways,	allowing	them	to	be	represented	

independently	in	as	many	molecular	instances	as	required.	Since	the	function	of	each	

pathway	is	separately	determined,	pleiotropic	gene	function	remains	separate	in	the	

network.	This	approach	also	avoids	gene	expression	data	and	the	assumption	that	

gene	expression	represents	protein	levels.	

	

Finally,	PPI	networks	are	extremely	large	and	complex,	therefore	reasonable	time	and	

computational	constraints	limit	algorithm	development	(Ji	et	al.	2014)	and	reduce	the	

accessibility	of	network	analysis.	By	simplifying	the	network	to	a	smaller	number	of	

pathways,	computational	analysis	becomes	less	demanding	and	more	accessible.	
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We	present	a	human	pathway	network	representing	global	biological	function.	By	

incorporating	pathways	from	multiple	data	sources	we	aim	to	maximise	functional	

coverage	while	minimising	the	overlap	between	pathways.	To	assess	the	ability	of	our	

network	to	interpret	disease	functions,	we	mapped	a	broad	range	of	disorders	onto	

the	network,	before	focusing	more	specifically	on	cancer.	Disease	pathway	‘modules’		

or	clusters	are	known	to	form	within	molecular	networks,	showing	overlap	with	

functional	modules	(Liu	et	al.	2015;	Barabasi	et	al.	2011;	Goh	et	al.	2007).	Cancer	genes	

have	been	found	to	be	especially	highly	connected	within	PPI	networks	(Goh	et	al.	

2007),	with	different	types	of	cancer	forming	highly	connected	overlapping	modules	

(Janjić	&	Pržulj	2012a).	Study	of	disease	modules	has	helped	elucidate	mechanisms	of	

complex	diseases	(Liu	et	al.	2015;	Taylor	et	al.	2009;	Wu	et	al.	2010).	Our	network	

provides	a	higher-level	view	of	the	pathways	and	functions	affected	by	disease,	

without	the	inaccuracies	inherent	in	molecular	data.	We	examine	the	pathways	and	

functions	common	to	multiple	cancer	types,	as	well	as	the	distinguishing	pathways	

responsible	for	the	phenotypic	variation	between	different	types	of	cancer.		
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6.3 Methods	

To	generate	the	data	for	the	network,	we	selected	a	non-redundant	set	of	pathways,	

representing	healthy	biological	processes.	We	assigned	function	to	the	pathway	nodes	

and	generated	edges	based	on	functional	similarity,	to	generate	a	model	shown	to	

biologically	representative	in	yeast	(Stoney	et	al.	2015).	Finally	we	looked	at	the	

biological	processes	attributed	to	each	area	of	the	network	and	investigated	the	

distribution	of	cancer	pathways	and	other	diseases.	Figure	36	represents	an	outline	for	

the	method.	

	

	

Figure	36:	Workflow	of	the	network	construction	

	

6.3.1 	Generation	of	pathway	nodes	

Pathways	were	downloaded	from	ConsensusPathDB		(CPDB)	on	24th	Sept	2015	

(Kamburov	et	al.	2009),	providing	a	dataset	of	4,011	unique	pathways	containing	

11,196	genes.	CPDB	collects	and	compiles	data	from	major	pathway	databases	such	as	

KEGG,	Reactome	and	WikiPathways.	Of	these	pathways,	706	were	exact	duplicates	and	
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were	removed.	To	be	included	in	the	network,	pathways	had	to	meet	the	following	

three	requirements,	they:	represent	the	cell	in	a	‘normal’	state	(so-called	‘disease	

pathways’	were	removed,	see	Section	6.3.1.1);	had	high	confidence	enriched	GO	

annotations	(see	Section	6.3.1.2);	and	belong	to	a	reduced	redundancy	subset	(see	

Section	6.3.1.4).	

	

6.3.1.1 	Removing	disease	pathway	nodes	

To	generate	the	functional	network,	we	identified	a	set	of	pathways	representing	

‘normal’	functions.	We	removed	diseases	by	searching	for	disease	terms	within	the	

pathway	names	(listed	in	Supplementary	Table	3	in	Appendix	C),	as	they	do	not	show	

the	cell	in	a	non-diseased	state.	This	was	considered	necessary	since	in	the	later	stages	

of	the	study,	we	mapped	diseases	onto	the	pathway	network,	to	reveal	function	

affected	by	particular	diseases.	The	inclusion	of	disease	pathway	nodes	would	distort	

this	distribution,	as	well	as	contributing	to	pathway	redundancy.		

	

6.3.1.2 Functional	annotation	of	pathway	nodes	

To	generate	the	network,	we	required	functional	profiles	for	each	pathway	node.	We	

assigned	high	confidence	GO	terms	to	each	gene,	before	using	enrichment	analysis	to	

annotate	pathways.	Any	pathway	node	that	could	not	be	functionally	annotated	was	

removed,	as	we	could	not	calculate	their	similarity	to	other	pathway	nodes	to	establish	

network	edges.		
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Functional	annotation	of	pathway	genes	

The	Gene	Ontology	provides	Biological	Process	annotations	for	individual	genes,	along	

with	information	specifying	how	annotations	are	generated	(Ashburner	et	al.	2000).	

We	assigned	high	confidence	Biological	Process	GO	annotations	to	genes	(downloaded	

24th	Sept	2016),	discarding	electronically	annotated	(IEA)	terms	as	they	are	of	lower	

confidence	than	experimentally	validated	terms.	In	addition,	IEA	terms	are	generated	

using	bioinformatics	techniques	with	similarities	to	those	employed	in	functional	

networks,	introducing	circularity	to	the	method	(Pesquita	et	al.	2009).		

	

We	were	able	to	assign	high	confidence,	curated	GO	annotations	to	88%	of	the	genes	

in	normal	cellular	pathways.	We	also	added	all	non-IEA	parent	terms	to	the	GO	terms	

allocated	to	each	gene,	since	for	every	GO	term	associated	with	a	gene,	all	of	the	GO	

term’s	ancestors	apply	(Yon	Rhee	et	al.	2008).	To	meet	the	minimum	criteria	for	

enrichment	analysis,	each	pathway	must	contain	at	least	four	genes	with	Biological	

Process	GO	annotations	(Kamburov	et	al.	2013).	Any	pathways	that	contained	less	

than	four	annotated	genes	were	removed.		

	

Functional	enrichment	of	pathway	nodes	

Functional	enrichment	analysis	was	carried	out	using	the	R	package	clusterProfiler	(G.	

Yu	et	al.	2012).		Enrichment	analysis	returned	large	sets	of	GO	terms	with	p-values	

below	0.01	for	pathway	nodes	(mean	of	412.0	GO	terms	per	pathway),	using	the	

Benjamini	and	Hochberg	correction	(Benjamini	&	Hochberg	1995)	for	multiple	testing.		
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6.3.1.3 Minimisation	of	pathway	functional	profiles	

We	generated	minimal	sets	of	enriched	high	confidence	GO	terms	to	represent	all	of	

the	genes	in	each	pathway	node.	Later	stages	generating	the	network	edges	required	

the	use	of	methods	capable	of	measuring	similarity	between	each	pathway	node’s	

enriched	GO	sets.	These	methods	are	well	established	(Pesquita	et	al.	2009;	Lord	et	al.	

2003b;	Resnik	1999;	Wang	et	al.	2007),	but	they	are	not	suitable	for	highly	redundant	

sets	of	enriched	GO	terms.	We	therefore	had	to	first	remove	similar	enriched	GO	

terms	within	each	pathway.	

	

We	have	previously	described	a	set	cover	algorithm	that	reduced	redundancy	from	

enrichment	analysis	data	(see	Section	5.4.7),	which	we	use	here	to	remove	redundancy	

from	each	pathway’s	enriched	GO	terms.	For	each	pathway,	the	enrichment	set	cover	

algorithm	selects	the	subset	of	the	most	enriched	GO	terms	covering	all	of	the	genes.	

In	this	way,	the	most	specific/enriched	GO	terms	that	describe	the	function	of	all	the	

genes	in	each	pathway	are	identified	and	retained.	GO	terms	describing	the	same	

genes	with	a	lower	level	of	significance	are	discarded,	resulting	in	a	reduced	functional	

profile.	Note	that	only	the	non-IEA	GO	terms	associated	with	each	pathway’s	genes	

will	be	selected	for	inclusion	in	the	minimal	profile.	The	set	cover	algorithm	used	is	a	

heuristic	method;	therefore	it	does	not	provide	a	unique	solution.	The	solution	

provided	reduces	redundancy	using	a	greedy	algorithm,	therefore	multiple	solutions	

are	possible	(see	Section	7.3.1).	
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6.3.1.4 Reduction	of	redundancy	between	pathways	

Following	the	removal	of	disease	and	functionally	unannotated	pathway	nodes,	all	

remaining	pathway	nodes	were	suitable	for	use	in	the	network.	However,	because	the	

data	source	used	was	highly	inclusive,	incorporating	pathways	from	all	areas	of	study,	

high	levels	of	pathway	overlap	were	present.	An	extensive	effort	was	made	to	remove	

as	much	data	duplication	as	possible,	while	preferentially	selecting	moderately	sized	

pathways.	Removal	of	redundancy	was	necessary	since	we	aimed	to	generate	a	

network	in	which	linked	nodes	represent	functional	cooperation	between	distinct	

pathways.	Otherwise	we	would	risk	generating	groups	of	overlapping	pathways,	whose	

mutual	function	stemmed	from	a	high	proportion	of	shared	genes.			

	

We	have	previously	described	methods	using	set	cover	theory	to	reduce	redundancy	in	

pathway	data	sets	(see	Sections	5.4.3	).	These	combinatorial	optimisation	algorithms	

identify	subsets	of	pathways	that	cover	all	the	genes	in	the	dataset.	The	pathway	set	

cover	algorithms	are	different	to	the	enrichment	set	cover	algorithm	(described	above	

Section	6.3.1.3),	as	they	are	based	on	fundamentally	different	data	types	(proportional	

pathway	overlap	and	enrichment	annotations	with	p-values).	As	the	data	set	contained	

pathways	with	up	to	2,154	genes,	controlling	the	pathway	size	was	critical	for	

preserving	functional	specificity.	We	therefore	selected	the	proportional	set	cover	

algorithm	(see	Section	5.4.5)	as	it	controls	pathway	size	variability	while	minimising	

pathway	overlap.			
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We	note	that	significant	improvements	in	the	algorithm’s	ability	to	control	pathway	

size	variability	have	been	observed	when	the	algorithm	was	allowed	to	cover	‘most’	

rather	than	all	of	the	genes	in	the	dataset	(see	Section	5.5.2).	We	found	that	allowing	

the	set	cover	method	to	cover	99.95%	rather	than	100%	of	the	genes	in	the	dataset	

reduced	the	maximum	pathway	size	from	2,154	to	426.	Large	reductions	in	pathway	

redundancy	were	also	observed	(see	Results	Section	6.4.1).	

	

6.3.2 Generation	of	edges	

To	generate	the	edges	in	the	network,	we	measured	the	semantic	similarity	of	each	

pair	of	pathway	nodes	based	on	their	associated	GO	terms	in	the	minimised	functional	

annotation	profile	(see	Section	6.3.1.3).	These	values,	between	zero	and	one,	formed	

the	basis	of	the	network	edges.	

6.3.2.1 Semantic	similarities	between	pathways		

To	calculate	the	semantic	similarity	between	pairs	of	pathways,	we	first	needed	to	

measure	the	similarity	between	pairs	of	GO	terms.	Since	pathways	are	enriched	with	

multiple	GO	terms,	we	established	the	most	suitable	method	for	comparing	GO	sets.	

Various	measures	are	available	for	measuring	the	distance	between	GO	terms	and	GO	

term	sets	(Resnik	1999;	Wang	et	al.	2007;	Lin	1998).	We	selected	our	method	based	on	

its	ability	to	comply	with	the	assumption	that	GO	terms	within	pathways	should	be	

more	closely	related	than	GO	terms	between	different	pathways.		
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6.3.2.1.1 Measuring	semantic	distances	between	individual	GO	terms	

Of	the	various	methods	available	to	measure	the	distance	between	two	GO	terms,	the	

Resnik	(Resnik	1999)	and	Wang	(Wang	et	al.	2007)	measures	have	been	shown	to	

outperform	other	methods	in	previous	studies	(Pesquita	et	al.	2009).	We	therefore	

implemented	these	methods	using	the	R	package	GOSemSim	(Yu	et	al.	2010).		

6.3.2.1.2 Measuring	the	semantic	distance	between	GO	sets	

To	calculate	the	similarity	between	pathways,	we	tested	two	approaches:	the	method	

and	the	best-match	average	(Pesquita	2009).	The	pairwise	method	measures	the	

similarity	between	every	pair	of	GO	terms	between	two	pathways	and	then	calculates	

the	mean.	The	best-match	average	records	the	similarity	between	each	GO	term	in	the	

first	pathway	and	the	closest	GO	term	in	the	second	pathway.	It	then	performs	the	

symmetric	calculation,	before	generating	a	mean	distance	based	on	both	sets	of	

scores.	This	produced	a	semantic	distance	between	every	pair	of	pathways	generating	

a	complete	network.	The	complete	network	was	impractical	for	global	analysis,	but	

useful	for	studying	subsets	of	nodes	within	the	network.	

6.3.2.2 Pruning	edges	between	pathway	nodes	 	

Our	network	links	pathway	nodes	using	weighted	edges	based	on	their	similarity.	

Linking	all	nodes	with	a	semantic	distance	greater	than	zero	resulted	in	a	highly	

connected	network,	limiting	its	suitability	for	network	analysis	and	obscuring	the	

network’s	main	structure.	We	aimed	to	reduce	the	number	of	edges	in	the	network	to	

show	only	the	most	significant	functional	links	between	the	pathways.	We	generated	a	

range	of	50	thresholds	between	zero	and	one	and	calculated	the	proportion	of	nodes	

and	edges	retained	by	each.	By	subtracting	the	proportion	of	nodes	retained	by	each	
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threshold	by	the	proportion	of	edges	retained,	we	identified	the	threshold	that	linked	

the	maximum	number	of	nodes	into	the	network	using	the	fewest	edges.			

6.3.3 Mapping	the	distribution	of	biological	function	and	disease	onto	the	network	

6.3.3.1 	Mapping	global	diseases	onto	the	network		

In	order	to	apply	the	pathway	network	to	the	study	of	disease	we	identified	pathway	

nodes	associated	with	a	comprehensive	range	of	diseases.	To	ensure	that	a	broad	

range	of	diseases	were	covered	we	used	the	Human	Phenotype	Ontology	(HPO)	

disease	dataset,	downloaded	on	the	30th	of	April	2016.	This	dataset	contained	293,556	

disease	gene	annotations	for	hereditary	and	non-hereditary	disorders.	This	dataset	

includes	both	OMIM	diseases	such	as	‘migraine,	familial	hemiplegic,	1;	FHM1’	and	

disease	phenotypes,	such	as	‘visual	hallucinations’.	We	used	enrichment	analysis	to	

generate	disease	pathways.	The	genes	(within	our	pathway	dataset)	associated	with	

each	disease	or	disease	phenotype	in	the	HPO	data	were	identified,	resulting	in	a	set	

of	1,061	disease	annotations	connected	to	at	least	four	genes	(annotations	with	fewer	

than	four	genes	were	considered	too	small	for	enrichment	analysis).	We	then	used	the	

Fisher’s	exact	test	to	identify	pathways	associated	with	the	disease	annotations	

6.3.3.2 Finding	the	shortest	paths	in	disease	sub-networks	

To	test	whether	diseases	tended	to	cluster	within	the	network,	we	measured	the	

shortest	paths	between	pathways	associated	with	each	disorder	using	NetworkX	

(Hagberg	et	al.	2008).	This	algorithm	calculates	the	shortest	path	between	two	nodes.	

This	measure	conventionally	uses	distance	rather	than	similarity.	The	shortest	path	is	

the	combined	weight	of	all	the	edges,	linking	the	shortest	route	between	two	nodes.	
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We	compared	these	results	to	sets	of	shortest	paths	generated	from	sets	of	random	

nodes.	We	selected	randomised	sets	of	nodes	of	equal	size	to	the	set	of	disease	nodes.	

We	repeated	this	method	100	times	for	each	disease.	

6.3.3.3 Measuring	the	largest	connected	component	of	disease-pathway	modules		

To	identify	whether	diseases	were	forming	linked	sub-networks	within	the	network,	

we	selected	subsets	of	edges	connecting	nodes	related	to	each	disease,	excluding	

edges	incident	to	non-disease	nodes.	We	then	measured	the	proportion	of	nodes,	

associated	with	each	disease,	that	were	connected	within	the	largest	single	

component.	Connected	components	were	generated	using	NetworkX	(Hagberg	et	al.	

2008).	Furthermore,	we	used	the	full	set	of	semantic	similarities	(prior	to	filtering	the	

edges	using	the	minimum	threshold,	see	Section	6.3.2.1.2)	to	measure	the	semantic	

similarities	between	‘disease	pathways'.	We	used	randomised	disease	sets	(see	Section	

6.3.3.2)	to	assess	the	validity	of	these	findings.	

6.3.3.4 Mapping	cancer	onto	the	network	

We	selected	cancers	by	searching	for	the	terms:	cancer,	tumour,	tumor,	melanoma,	

carcinoma,	leukemia,	lymphoma	and	sarcoma	in	the	set	of	HPO	phenotypes	enriched	

to	a	p-value	of	0.01.	We	mapped	the	locations	of	166	cancer	related	pathways	onto	

the	network	and	examined	associations	with	biological	processes.		To	measure	the	

tendency	of	cancers	to	cluster	within	the	network,	we	measured	the	shortest	paths	

between	pathway	nodes	with	the	same	phenotype	(see	Section	6.3.3.2).	

	

To	provide	a	more	in	depth	analysis,	we	focused	on	the	distribution	of	various	types	of	

gastrointestinal	cancer	and	leukaemia.	We	selected	all	cancers	within	these	groups	
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that	were	present	in	more	than	two	pathways	and	examined	how	the	network	

revealed	properties	of	the	cancer	types.	

	

6.4 Results	and	Discussion	

6.4.1 Global	functional	organisation	can	be	represented	by	a	non-redundant	set	of	

1,014	pathways	

	

In	order	to	generate	a	representation	of	biological	processes	based	on	pathways,	we	

first	selected	a	set	of	non-redundant,	functionally	annotated	pathways.	The	original	

dataset	contained	3,305	pathways	with	11,196	genes	(following	removal	of	identical	

pathways,	see	Section	6.3).	Figure	37shows	the	proportion	of	pathways	that	were	

removed	at	each	stage	of	pathway	preparation.	
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Figure	37:	Pathway	processing	stages.	Proportion	of	pathways	that	were	removed	from	the	initial	data	set	because	
they	had	identical	gene	sets,	were	disease	pathways,	could	not	be	functionally	annotated,	or	were	redundant	(not	
in	the	set	cover).		

	

	

Disease	pathways	such	as	colorectal	cancer,	asthma	and	HIV	infection	were	removed	

from	the	data	set;	as	well	as	drug	metabolic	pathways	such	as	doxorubicin	and	statin	

pathways;	and	addiction	pathways	such	as	cocaine	addiction.	Pathways	involving	

naturally	occurring	substances	such	as	vitamins	(iron)	and	medically	administered	

hormones	(folic	acid)	were	allowed	to	remain.	We	removed	484	disease	pathways	

reducing	the	number	of	genes	in	the	data	set	to	10,833.		

	

The	Gene	Ontology	(GO)	(Ashburner	et	al.	2000)	assigned	a	mean	of	8.2	terms	to	each	

gene	(median	5).		Addition	of	parent	terms	increased	the	mean	number	of	GO	terms	

per	gene	to	75.3	(median	52).		It	was	necessary	to	remove	1,263	genes,	as	they	did	not	

have	experimentally	validated	GO	annotations,	resulting	in	a	loss	of	two	pathways.	Of	

the	unannotated	genes,	4.0%	had	no	biological	process	annotations	and	7.6%	only	had	

Biological	Process	annotations	inferred	from	electronic	annotation	(IEA),	which	are	

considered	less	reliable.	We	removed	298	pathways	with	fewer	than	four	annotated	

genes,	as	they	were	too	small	for	enrichment	analysis.	Enrichment	analysis	returned	at	

least	one	high	confidence	enriched	biological	GO	term	(p-value	<0.01)	for	2,514	out	of	

the	2,521	remaining	pathways.	Pathways	without	enriched	GO	terms	were	removed,	

as	functional	annotations	were	required	to	create	edges	in	the	network.	
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Between	1	and	3,459	enriched	GO	terms	were	assigned	to	each	pathway	(mean	411.8),	

using	the	p-value	threshold	of	0.01.	These	enriched	GO	terms	varied	greatly	in	their	

significance	and	included	many	similar	terms	and	parent	terms.	We	aimed	to	generate	

a	network	that	linked	pathways	based	on	the	similarity	of	their	enriched	GO	terms;	

however,	GO	terms	assigned	with	low	significance	had	the	potential	to	make	spurious	

connections	or	link	pathways	based	on	highly	general	terms.	To	address	these	issues	

we	selected	the	most	specific	set	of	GO	terms	available	to	represent	the	genes	in	the	

pathway.		We	used	the	set	cover	for	enrichment	analysis	algorithm	(see	Section	5.4.7)	

to	select	the	most	significant	GO	terms	capable	of	covering	the	genes	in	each	pathway,	

reducing	the	mean	number	of	GO	terms	from	411.8	to	4.7.	These	reduced	functional	

profiles	provide	a	precise	representation	of	the	pathways’	function	without	large	

numbers	of	similar	GO	terms	or	parent	terms.	

	

The	remaining	data	set	still	contained	high	levels	of	overlap.	In	addition	to	reducing	

redundancy,	it	was	beneficial	to	reduce	pathway	size	variability,	with	pathway	sizes	

ranging	from	4	to	2,154;	the	standard	deviation	was	89.4,	approximately	twice	as	large	

as	the	mean	(46.0).	The	inclusion	of	such	large	pathways	is	unbeneficial,	since	they	lack	

functional	specificity	and	their	statistical	strength	in	enrichment	analysis	is	

disproportionately	high	(Khatri	et	al.	2012).	We	used	the	proportional	set	cover	

algorithm	(see	Section	5.4.5)	to	reduce	redundancy	while	preferentially	selecting	

pathways	with	sizes	close	to	the	median	size	of	23.	We	allowed	the	set	cover	algorithm	

to	finish	after	99.95%	of	the	genes	had	been	covered,	reducing	the	number	of	

pathways	required	from	2514	to	1014	(representing	a	60%	reduction).	The	only	
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difference	between	this	set	cover	and	the	set	cover	produced	to	cover	100%	of	genes	

was	the	absence	of	pathways	‘gene	expression’	and	‘metabolism’.	This	reduced	the	

maximum	pathway	size	from	1442	(metabolism)	to	426	(‘generic	transcription	

pathways’),	while	resulting	in	the	loss	of	only	4	genes.		

Figure	38	demonstrates	the	ability	of	the	set	cover	algorithm	to	reduce	redundancy,	by	

displaying	the	presence	of	genes	in	multiple	pathways.	Prior	to	redundancy	reduction,	

genes	appeared	in	a	mean	of	46.0	pathways,	with	many	genes	appearing	in	large	

numbers	of	pathways.	After	set	cover,	genes	appeared	in	a	mean	of	4.2	pathways.	

Genuine	cases	of	pleiotropy	are	preserved	in	the	remaining	overlap,	as	pathways	with	

minor	overlap	are	not	removed.	The	use	of	this	modified	set	cover	algorithm	enables	

us	to	use	the	combined	data	sources	collated	by	CPDB	without	being	undermined	by	

excessive	pathway	overlap.	
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Figure	38:	Genes	in	multiple	pathways	before	and	after	applying	the	set	cover	algorithm.		

Histogram	showing	the	proportion	of	the	genes	in	the	data	set	that	appear	in	multiple	pathways	(indicating	
redundancy),	before	and	after	set	cover.	

6.4.2 The	Wang	best-match	average	is	the	most	suitable	metric	to	measure	the	

functional	similarity	of	pathways	

Pathways	were	linked	to	form	a	network	based	on	the	similarity	of	their	shared	GO	

terms.	We	compared	the	Wang	and	Resnik	methods	for	measuring	distances	between	

GO	term	pairs	(see	Section	6.3.2.1.1).	We	then	compared	the	pairwise	and	best-match	

average	methods	for	measuring	distances	between	sets	of	GO	terms	(see	Section	

6.3.2.1.2).	To	assess	the	suitability	of	each	method,	we	identified	the	approach	that	

gave	the	greatest	difference	between	the	semantic	similarity	of	GO	term	pairs	within	

pathways,	compared	to	semantic	similarities	between	different	pathways.	Figure	39A	

and	B	show	the	semantic	distances	between	all	pairs	of	GO	terms	within	and	between	
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pathways,	using	the	Resnik	and	Wang	methods.	Semantically	similar	GO	pairs	are	

consistently	more	frequent	within	pathways	than	between	them,	although	the	

difference	is	small	especially	when	using	the	Resnik	method.	

	

To	generate	the	pairwise	average	measure,	we	calculated	the	mean	similarity	between	

GO	terms	within	each	pathway	and	between	each	pair	of	pathways.	This	increases	the	

distinction	between	semantic	similarities	observed	between	pathway	nodes	and	within	

pathways.	The	difference	is	clearer	when	distances	between	GO	terms	are	generated	

using	the	Wang	(Wang	et	al.	2007)	measure	(Figure	39D),	rather	than	the	Resnik	

measure	(	Figure	39C).		
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Figure	39:	Pathway	redundancy	across	cover	sets.	Semantic	similarities	between	GO	terms	in	the	same	pathway	
(red)	and	between	pathways	(blue).	The	y-axes	show	the	proportion	of	GO	term	allocated	different	semantic	
distances.	A	and	B	are	individual	semantic	similarity	measures	taken	using	the	Resnik	and	Wang	measures.	C	and	D	
are	pairwise	average	distances	using	the	Resnik	and	Wang	measures.		E	and	F	are	best-match	average	distances	
using	the	Resnik	and	Wang	measurements.	
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Figure	39E	and	F	show	the	best-match	average	similarities	between	and	within	

pathways.	This	enhances	the	distinction	between	semantic	similarities	within	and	

between	pathways,	particularly	when	the	Wang	method	is	used	to	measure	distances	

between	GO	terms.	

	

The	best-match	average	typically	out-performs	the	pairwise	method	when	unrelated	

annotations	are	allocated	to	the	same	pathway	or	gene	(Pesquita	et	al.	2009).		This	is	

because	rather	than	comparing	each	GO	term	to	all	available	terms	within	each	

pathway	or	pathway	pair,	the	best-match	average	is	generated	using	the	most	similar	

GO	term	pairs.		For	example	if	‘GO:1’	and	‘GO:2’	have	a	semantic	similarity	of	1,	and	

are	both	allocated	to	‘pathway	x’	and	‘pathway	y’,	the	pairwise	methods	will	assign	an	

average	similarity	of	0.5,	despite	the	pathways	having	identical	terms.	The	best-match	

average	would	assign	a	more	intuitive	score	of	1.	The	finding	that	the	Wang	method	

outperforms	Resnik	indicates	that	pathways	are	not	being	assigned	a	single	semantic	

function	but	instead	are	enriched	with	multiple	semantically	different	GO	terms.	

Clusters	of	pathways	are	formed	within	the	network	when	pathways	share	at	least	one	

function.	

	

The	Wang	method	demonstrably	out-performs	the	Resnik	measure,	in	each	recorded	

instance.	To	interpret	these	results,	we	note	that	the	Resnik	measure	is	based	on	the	

lowest	common	ancestor	in	the	GO	ontology	capable	of	covering	both	GO	terms.	The	

score	is	calculated	to	describe	the	specificity	of	the	lowest	common	ancestor,	based	on	

the	number	of	genes	associated	with	the	term.	A	disadvantage	of	this	approach	is	that	
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it	does	not	consider	how	far	removed	each	GO	term	is	from	the	common	ancestor	

(Wang	et	al.	2007).	Therefore	two	identical	generic	terms	would	receive	the	same	

score	as	two	highly	specific	child	terms	of	the	generic	ancestor,	despite	their	increased	

difference.	The	Wang	measure	considers	all	ancestral	terms	shared	by	two	GO	terms	

and	reduces	the	score	if	the	shared	ancestors	are	distantly	removed	from	the	terms	

being	compared	(Wang	et	al.	2007).	In	this	way	it	is	better	able	to	distinguish	between	

pairs	of	general	GO	terms	and	pairs	of	distantly	removed	GO	terms.	For	these	reasons	

we	generated	the	network	using	the	Wang	method	in	conjunction	with	the	best	match	

average	method	to	generate	the	network.	

	

6.4.3 Pathways	linked	by	shared	functionality	form	a	cohesive	network	

We	linked	the	pathways	into	a	network	based	on	shared	functionality,	represented	by	

semantic	similarity	between	GO	terms.	We	used	the	Wang	method	to	calculate	

functional	semantic	similarities	between	each	pair	of	pathways,	in	order	to	generate	a	

set	of	weighted	network	edges.	Inclusion	of	all	the	edges	generates	a	highly	dense	

network	reflecting	the	cross-talk	between	all	biological	processes,	which	impedes	

analysis	and	structural	visualisation	of	the	network.	

	

To	reduce	the	number	of	edges	while	preserving	the	topological	structure	of	the	

network,	we	removed	weaker	edges.	To	avoid	disconnecting	large	numbers	of	

pathway	nodes	from	the	network,	we	calculated	the	minimum	edge	weight	threshold	

for	reducing	edges	while	retaining	nodes.	Figure	40	shows	the	proportion	of	pathway	

nodes	and	edges	preserved	using	similarity	thresholds	between	zero	and	one.	Using	
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the	best-match	average	technique	the	optimum	threshold	to	provide	the	highest	

number	of	nodes	with	the	lowest	number	of	edges,	was	0.56,	which	conserved	987	

nodes	(97.1	%)	and	20,642	edges	(4.0%).	We	used	the	minimum	edge	threshold	to	

select	a	set	of	edges	to	construct	the	network,	with	a	density	of	4.2%.	

	

Figure	41shows	the	network	with	a	sample	of	GO	terms	highlighted	to	illustrate	some	

of	the	functions	represented.	Within	the	network	two	major	functional	pathway	

modules	relating	to	metabolism	and	signalling	can	be	observed.	A	DNA	metabolic	

process	module	links	transcription	processes,	chromatin	organisation	and	mitotic	cell	

cycle	to	metabolism.	Immune	responses	are	tightly	clustered	besides	signalling	and	

cellular	responses	to	stimuli.	Axon	guidance	has	nodes	in	the	immunity	network	

region,	reflecting	its	role	in	the	primary	immune	response	(Tordjman	et	al.	2002).		

	
Figure	40:	Minimum	edge	threshold.	Linking	all	nodes	with	a	semantic	similarity	>0	resulted	in	a	highly	dense	
network.	To	reduce	the	number	of	edges	in	the	network,	while	minimising	the	loss	of	nodes,	we	experimented	with	
thresholds	between	zero	and	one.	Blue	and	red	circles	show	the	proportion	of	nodes	and	edges	retained	at	each	
threshold.	The	optimum	threshold	is	calculated	as	producing	the	greatest	difference	between	the	proportion	of	
nodes	retained	and	the	proportion	of	edges	retained.	We	used	a	threshold	of	0.56	to	select	a	set	of	edges	to	
construct	the	network.	
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Figure	41	Major	functional	clusters	in	the	human	pathway	network.	Weighted	network	of	pathways,	linked	by	
shared	functionality.	Edges	were	generated	using	the	Wang	best	match	average	method	to	link	pathways	biased	on	
their	functional	profiles,	using	a	minimum	weight	cut	off	of	0.56.		
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6.4.4 The	functional	network	enables	identification	of	disease	pathway	modules.	

We	used	enrichment	analysis	to	assign	404	OMIM	diseases	to	219	pathways,	using	a	p-

value	threshold	of	0.019.	By	focusing	on	diseases	(e.g.	cystic	fibrosis)	rather	than	

phenotypes	(e.g.	chronic	lung	disease,	elevated	sweat	chloride,	hepatomegaly)	we	

capture	the	range	of	symptoms	induced	by	disorders.		

	

We	examined	whether	disease	pathway	nodes	could	form	connected	modules,	

excluding	edges	incident	to	non-disease	nodes.	The	proportion	of	disease	pathway	

nodes	linked	into	a	single	connected	component	was	higher	than	expected	at	random	

(Figure	42).	18%	of	disease	pathway	node	sets	could	be	linked	into	a	single	disease	

pathway	module	and	29%	of	disease	pathway	node	sets	have	at	least	two	connected	

nodes.		In	comparison	only	2%	of	randomised	pathway	node	sets	formed	a	single	

connected	module	and	6%	had	at	least	two	connected	nodes.	

	

The	majority	of	disease	pathways	did	not,	however,	form	a	single	disease	pathway	

module.	The	most	likely	explanation	is	that	the	subset	of	functional	links	selected	to	

generate	the	network	edges	do	not	closely	reflect	the	functional	relationship	between	

the	disease	pathway	nodes.		

																																																								

9	The	Benjamini	Hochburg	correction	was	tested,	using	a	threshold	of	p<0.05.	

Unfortunately	this	reduced	the	mean	number	of	pathways	per	disease	to	2.5	(median	

2,	range	1-7).	Disease	modules	are	less	meaningful	with	such	small	sets	of	pathway	

nodes,	therefore	multiple	testing	was	not	applied	(see	Section	7.3.4)	
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Figure	42:	Proportion	of	disease	nodes	forming	connected	components	

	

To	test	the	hypothesis	that	disease	nodes	have	close	proximity	within	the	network,	

generating	disease	pathway	modules	(despite	not	being	fully	connected),	we	

measured	the	shortest	paths	between	disease	nodes.	Figure	43A	shows	the	distances	

between	nodes	with	shared	diseases,	compared	to	an	equal	number	of	random	

pathways.	Shortest	paths	between	randomized	disease	nodes	formed	a	roughly	

normal	distribution,	whereas	shortest	paths	between	disease	nodes	tended	to	be	

shorter,	indicating	that	disease	nodes	are	close	within	the	network.	To	confirm	the	

significance	of	the	distributions	we	performed	a	one	sample	Kolmogorov-Smirnov	test,	

which	returned	a	p-value	of	<<	0.01.		
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Figure	43:	Disease	module	connectivity.	A)	Shortest	paths	between	nodes	enriched	for	the	same	disease	and	
randomised	disease	nodes.	B)	Semantic	distances	between	nodes	enriched	for	the	same	disease	and	randomised	
disease	nodes	

	

Biological	processes	are	known	to	be	hierarchical	with	general	functions	covering	

multiple	specific	functions	(Barabási	&	Oltvai	2004;	Albert	2005).	In	addition	cross-talk	

between	functions	co-ordinates	the	actions	of	the	cell.	To	generate	the	network	we	

selected	a	subset	of	high	scoring	edges	to	provide	the	main	structure	of	biological	

process	organisation,	while	controlling	the	density	of	the	network.	Selecting	a	higher	

number	of	edges	would	have	allowed	us	to	capture	more	detail	regarding	specific	

functions,	as	well	as	interactions	between	functions;	however	it	would	complicate	the	

network,	obscuring	the	major	functional	groupings.		

	

To	explore	the	idea	that	disease	nodes	may	be	linked	by	functions	that	are	not	

represented	as	edges	in	the	network,	we	looked	at	the	distances	between	nodes	in	the	

full	semantic	similarity	set	(before	filtering	using	the	minimum	edge	threshold,	see	

Section	6.3.2.1.2).	This	data	set	contains	the	direct	semantic	similarity	measures	

between	all	pairs	of	nodes.	We	found	that	semantic	similarity	between	the	disease		
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pathway	nodes	is	greater	than	semantic	similarity	between	randomised	nodes,	

demonstrating	that	diseases	cluster	within	this	dataset	(Figure	43B).	We	also	

confirmed	that	the	set	of	shortest	paths	generated	between	disease	nodes	using	the	

full	set	of	semantic	distances	produced	more	significant	results	(p=3.1e-134)	than	the	

set	of	shortest	paths	generated	using	only	network	edges	(Figure	43A,	p=1.1e-22).	This	

indicates	that	the	full	set	of	semantic	similarities	best	captures	disease	pathway	

modules.	These	links,	which	may	not	be	represented	by	edges,	should	be	considered	

when	observing	distribution	of	disease	nodes	on	the	network.	

	

6.4.5 Comparison	between	cancer	pathway	modules	

We	identified	166	pathways	enriched	with	cancer	genes	at	a	p-value	of	<0.01.	These	

were	comprised	of	39	types	of	cancer	affecting	a	range	of	cell	types.	Many	pathways	

were	enriched	for	multiple	cancer	phenotypes	(mean	3.3).	The	pathway	associated	

with	the	most	cancer	types	(17)	was	‘extracellular	vesicle	mediated	signalling	in	

recipient	cells’,	which	contains	cancer	causing	genes	including	WNT,	EGFR,	RAF,	NRAS	

and	KRAS,	and	is	upstream	of	pivotal	cancer	pathways	(Vader	et	al.	2014).	Other	

pathways	associated	with	high	numbers	of	cancers	were	the	‘RAC1	PAC1	P38	MMP	2	

pathway’	containing	MAPK,	ERK,	KRAS,	RAC,	RAS	genes	and	‘copper	homeostatis’	

which	has	been	found	to	be	relevant	to	multiple	tumour	types	and	is	being	trialled	as	a	

chemotherapy	target	(Denoyer	et	al.	2015).		

	

To	assess	the	claim	that	cancers	cluster	within	particular	network	regions,	we	

measured	the	shortest	paths	between	cancer	nodes	within	the	network	(Figure	44A).	
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The	Kolmogorov–Smirnov	test	was	applied	to	confirm	the	significance	of	the	observed	

cancer	clusters	(p-value	<<0.01).	We	also	compared	the	semantic	similarity	of	nodes	

within	the	cancer	module	Figure	44B	and	found	that	semantic	similarity	best	captures	

the	relationships	within	disease	modules.	

	

	

Figure	44:	Cancer	module	connectivity	A)	Shortest	paths	between	cancer	nodes	and	randomised	nodes.	B)	Semantic	
similarities	between	cancer	nodes	and	randomised	nodes.	

	

We	examined	the	distribution	of	cancer	within	the	network.	Figure	45	shows	the	

topological	position	of	a	sample	of	cancers	affecting	high	numbers	of	pathways	in	the	

dataset.	Cancer	pathways	can	be	seen	clustering	primarily	within	the	signalling,	

immune	response	and	DNA	process	network	regions.		

	

The	signalling	and	immune	network	region	is	the	most	densely	populated	with	cancer	

nodes,	including	sarcoma	pathways,	juvenile	leukaemia,	and	neurofibrosarcoma.	

Cancer	nodes	also	cluster	in	the	region	concerned	with	DNA	metabolism,	response	to	

stimulus	and	transcriptional	control.	Several	breast	cancer	and	nephroblastoma	

pathways	are	prevalent	in	this	region.	
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Figure	45:	Distribution	of	cancer	pathways.	Functional	pathway	network	showing	the	distribution	of	pathways	
associated	with	common	cancer	types	(in	the	data	set).			
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To	demonstrate	the	value	of	mapping	individual	diseases	within	the	network,	we	examined	the	distribution	of	
leukaemia	and	gastrointestinal	tumours.		

Figure	46A	shows	disease	nodes	associated	with	leukaemia	widely	distributed	across	

the	cell	cycle,	DNA	metabolism	and	signalling	regions	of	the	network,	while	juvenile	

myelomonocytic	leukaemia	nodes	are	restricted	to	the	signalling	area	of	the	network.	

Adult	chronic	leukaemia	is	a	highly	heterogeneous	disease	with	wide	variations	in	

disease	aggressiveness	and	most	gene	mutations	occurring	in	less	than	5%	of	patients	

(Ghamlouch	et	al.	2017).	Disease	mutations	are	most	commonly	linked	to	cell	cycle,	

DNA	repair,	immune	and	RNA	pathways.	Acute	leukaemia	is	also	highly	genetically	

diverse,	with	the	most	frequent	mutations	occurring	in	the	NPM1	gene,	a	

phosphoprotein	involved	in	a	range	of	functions	and	NOTCH1	gene,	which	regulates	

development	(Rowe	2016).	This	is	reflected	by	the	highly	distributed	arrangement	of	

most	types	of	leukaemia	within	the	network.	

	

In	contrast,	juvenile	myelomonocytic	leukaemia	is	largely	characterised	by	RAS	

signalling	pathway	mutations,	found	in	85%	of	patients	(Sethi	et	al.	2013).	The	RAS	

pathway	is	an	upstream	signalling	pathway	controlling	cell	proliferation,	survival	and	

phenotypic	transformation	(Downward	2003).	The	distribution	of	nodes	within	the	

network	neatly	illustrates	these	differences	in	disease	subtype	heterogeneity,	while	

highlighting	their	overlap.		

	

Additionally,	we	examined	the	distribution	of	gastrointestinal	cancers	within	the	network	(	

Figure	46B).	Gastrointestinal	stroma	tumour	nodes	appear	around	the	metabolic	

regions	of	the	network,	within	electron	transport	chain	and	tricarboxylic	acid	

pathways.	This	corresponds	to	alterations	in	the	SDH	gene	leading	to	electron	
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transport	chain	complex	II	dysfunction,	which	is	a	risk	factor	for	gastrointestinal	

stromal	cancer	(Janeway	et	al.	2011).	Tyrosine	metabolism	nodes	are	also	detected	in	

the	network,	reflecting	the	frequent	KIT	mutations	in	gastrointestinal	stromal	cancer	

and	the	subsequent	use	of	tyrosine	kinase	inhibitors	as	an	established	treatment	(Din	

&	Woll	2008).	
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Figure	46:	Leukaemia	and	gastrointestinal	cancers.	The	colon	cancer	and	acute	leukaemia	pathways	cluster	within	

the	ribosomal	pathway	nodes,	by	DNA	metabolism	and	genetic	processes.	Ribosomal	gene	mutations	are	relatively	

frequent	in	these	cancer	types	and	impaired	ribosome	biogenesis	is	a	risk	factor	for	initiation	of	these	cancers	

(Goudarzi	&	Lindström	2016).	

	

Some	pathway	overlap	between	gastrointestinal	stroma	tumour,	colon	cancer	and	

duodenal	adenocarcinoma	is	observed,	with	shared	pathways	corresponding	to	

common	cancer	processes	and	risk	factors.	The	common	risk	factors	of	duodenal	

adenocarcinoma	and	colon	cancer	are	gastrointestinal	polyps	and	chromic	

inflammatory	bowel	disease	(Amersi	et	al.	2005;	Raghav	&	Overman	2013).	

Correspondingly,	within	the	network	both	cancers	are	found	to	be	enriched	in	BMP	

signalling	pathways,	which	have	been	shown	to	affect	gastric	inflammation	

(Takabayashi	et	al.	2014).	DNA	repair,	cell	cycle,	extracellular	vascular	mediated	

signalling	and	RAF	activation	pathways	were	frequently	shared	by	gastrointestinal	and	

leukaemia	cancer	types.	

	

The	distribution	of	cancer	pathways	is	dependent	on	established	disease	gene	

annotations;	therefore	the	distribution	of	disease	pathways	within	the	network	is	

unlikely	to	uncover	novel	functions	affected	by	cancers.	It	does	however	present	an	

effective	way	of	organising	diseases	such	as	cancers,	based	on	affected	functions,	

rather	than	anatomical	sites,	pathogens	or	mutations.		
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6.5 Discussion	and	conclusion		

The	use	of	molecular	networks	to	study	biological	processes	has	been	highly	insightful;	

however,	limitations	within	molecular	data	and	issues	representing	multi-functional	

genes	make	the	development	of	alternative	methods	highly	desirable.	We	have	

constructed	a	functional	network	from	existing	pathway	data	and	biological	process	

annotations,	which	avoids	the	issues	faced	by	traditional	molecular	networks.	The	

pathway	network	portrays	a	high-level	representation	of	the	organisation	of	biological	

processes,	composed	of	functional	pathway	modules.	Clustering	methods	used	in	

molecular	networks	identify	specific	relationships	in	which	each	node	shows	a	high	

density	of	interactions	with	all	of	the	other	nodes	in	the	cluster.	These	methods	are	

less	suitable	for	identifying	linear	relationships,	captured	by	data	types	such	as	

pathways.	Other	studies	have	also	approached	the	issue	that	network	structures,	

other	than	clusters,	may	represent	functional	modules	(Pinkert	et	al.	2010).	Pathways	

are	sets	of	interactions,	which	were	manually	curated	to	adopt	the	most	appropriate	

shape	for	the	data,	therefore	they	represent	coherent	functions	independently	of	the	

molecular	topology.		

	

Mapping	diseases	onto	molecular	interaction	networks	has	contributed	towards	the	

elucidation	of	disease	mechanisms	(Janjić	&	Pržulj	2012c),	identification	of	new	

disease-associated	genes	(Barabasi	et	al.	2011)	and	indication	of	potential	drug	targets	

(Yu	et	al.	2007).	However,	gene	mutations	can	be	phenotypically	diverse,	such	as	AKT1,	

which	is	associated	with	schizophrenia,	colorectal	cancer,	ovarian	cancer	and	breast	

cancer	(Chavali	et	al.	2010).	Further	evidence	suggesting	that	diseases	may	act	
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independently	within	different	pathways	comes	from	the	finding	that	many	disease	

pairs	with	shared	genes	do	not	show	significant	co-morbidity	(Park	et	al.	2009).	

Phenotypically	diverse	genes	may	also	interact	with	different	partners	in	different	

tissues,	for	example	AKT1	participates	in	a	range	of	interactions	dependent	on	tissue	

type(Chavali	et	al.	2010),	further	supporting	the	hypothesis	that	the	results	arise	from	

the	gene	acting	in	different	pathways.	This	shows	that	pleiotropy	allows	genes	to	be	

involved	in	multiple	disorders	in	different	contexts,	demonstrating	that	pathways	are	

better	suited	than	molecular	networks	to	map	functional	perturbations	occurring	in	

diseases.	

	

By	mapping	cancer	pathways	we	were	able	to	visualise	the	functional	regions	known	

to	be	fundamental	to	cancer,	highlighting	the	similarities	and	differences	between	

cancer	types,	and	correlating	the	network	distribution	of	cancer	nodes	with	their	

genomic	and	phenotypic	heterogeneity.	This	method	can	be	generalised	to	facilitate	

understanding	of	any	group	of	disorders	or	phenotypes.	

	

Examining	the	similarities	and	differences	between	diseases	is	necessary	to	assess	the	

shared	applicability	of	knowledge	and	drugs.	Our	map	makes	these	relationships	

immediately	obvious.	This	method	can	be	generalised	to	facilitate	understanding	of	

any	group	of	disorders	or	phenotypes.
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Chapter	7 	

Discussion	

Within	this	chapter	the	main	findings	regarding	the	representation	of	function	within	

pathways	and	the	validation	of	the	network	topology	are	presented.	Next	we	discuss	

the	implications	of	this	work	for	existing	approaches	in	systems	biology,	emphasising	

the	advantages	gained	from	the	pathway	networks’	independence	from	molecular	

data	and	their	ability	to	capture	functional	modules	that	may	not	be	identifiable	using	

molecular	networks.	Next	we	discuss	the	application	of	pathway	networks	to	disease	

studies,	examining	the	ability	of	pathway	networks	to	elucidate	disease	mechanisms.	

Finally,	we	discuss	the	limitations	of	the	thesis	and	provide	suggestions	for	future	

work,	including	further	network	analysis,	improved	edge	construction	and	enhanced	

disease	pathway	detection.			

	

7.1 Summary	of	main	findings	

The	main	finding	of	this	project	is	that	functionally	annotated	pathways	can	be	used	as	

entities	within	a	biologically	informative,	validated	network.	We	first	discuss	the	

methods	used	to	validate	the	structure	of	the	network	and	demonstrate	its	utility.	We	

then	examine	the	portrayal	of	function	within	pathways	and	the	ability	of	the	methods	

developed	to	incorporate	pathway	multi-functionality	and	gene	pleiotropy.	Next	we	

discuss	how,	despite	the	modular	nature	of	biological	function,	the	arrangement	of	

functions	within	pathways	generates	a	large	interlinked	component.	Finally,	we	
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compare	the	methodological	differences	between	the	yeast	and	human	networks	and	

how	they	affect	the	final	topology.	

	

7.1.1 The	organisation	of	functional	pathway	maps	is	biologically	informative	

The	main	output	of	this	project	was	two	biologically	informative	networks	(yeast	and	

human	pathways)	with	network	regions	corresponding	to	major	cellular	functions	such	

as	metabolism	and	signalling	processes	(see	Figure	26	and	Figure	41).	External	data	

sources	were	used	to	validate	the	topology	of	each	network.	Genetic	interactions	

indicate	functional	relatedness	between	pairs	of	genes	and	therefore	occur	frequently	

within	pathways	(see	Section	4.4.7).	The	increase	in	GIs	found	within	the	yeast	

network	clusters	was	only	slightly	less	than	the	increase	in	interactions	observed	

within	pathways,	indicating	extremely	high	functional	cohesiveness	within	clusters	

(Table	3).	Disease	data	was	used	to	validate	the	human	network	(see	Section	6.4.4),	

since	mutations	in	functionally	related	genes	are	likely	to	generate	similar	phenotypes	

(Goh	et	al.	2007).	Pathways	enriched	for	disease	genes	were	shown	to	be	positioned	

within	close	proximity	within	the	network	Figure	43A.	Disease	pathways	were	also	

more	likely	to	be	directly	adjacent	within	the	network	Figure	42.	Highlighting	the	

pathways	affected	by	diseases,	as	well	as	the	biological	functions	connecting	them,	

could	be	applied	to	studying	the	mechanistic	processes	through	which	disease	

phenotypes	arise.	By	focusing	on	gastrointestinal	cancer	and	leukaemia	we	were	able	

to	explore	the	relationship	between	the	positioning	of	disease	pathways	and	disease	

pathogenesis,	which	was	supported	in	the	literature	(see	Section	6.4.5).	We	found	that	

the	distribution	of	the	diseases	studied	seemed	to	be	linked	to	their	genetic	
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heterogeneity;	for	example,	the	genetically	heterogeneous	adult	leukaemia’s	tended	

to	be	widely	distributed	across	the	network,	while	juvenile	leukaemia	which	is	less	

genetically	diverse	is	more	localised	within	the	network	(Figure	45).	We	also	found	an	

example	of	pathways	associated	with	multiple	disorders	indicating	common	disease	

mechanisms	(duodenal	adenocarcinoma	and	colon	cancer	share	the	BMP	signalling	

pathway,	implicated	in	gastric	inflammation	which	is	a	risk	factor	for	both	conditions).	

7.1.2 Minimally-redundant	pathway	nodes	can	portray	complex	arrangements	of	

biological	function	

Chapter	5	introduced	a	method	to	generate	a	minimally	redundant	set	of	pathways	

covering	global	biological	function.	This	set	of	pathways	provided	extensive	coverage	

of	the	human	dataset,	allowing	the	complexity	of	biological	function	to	be	represented	

within	a	framework	of	context	dependent	cellular	activity.	The	methods	presented	

avoid	pathway	merging	(Vivar	et	al.	2013;	Doderer	et	al.	2012;	Belinky	et	al.	2015),	

which	is	advantageous	since	the	merged	pathways	may	not	be	biologically	

representative.	Merging	also	increases	pathway	size,	reducing	functional	specificity,	

while	the	proposed	set	cover	method	controls	pathway	size	(see	Section	3.5.1).		

	

The	generated	pathway	set	represents	a	novel	resource	for	the	representation	of	

cellular	function.	Within	yeast,	1,443	genes	were	covered	representing	68%	of	the	

genes	in	the	dataset.	Development	of	set	cover	methods	allowed	the	genes	in	

annotated	human	pathways	to	be	represented,	with	minimal	redundancy.	The	refined	

dataset	represented	10,833	genes	within	a	set	of	1,014	pathways,	reducing	the	

number	of	pathways	in	the	original	dataset	by	60%.	This	demonstrates	notable	
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progress	in	the	development	of	methods	capable	of	preserving	the	scope	and	

inclusiveness	of	pathway	data.		

	

The	overlap	between	the	Gene	Ontology	functions	and	pathway	boundaries	was	

explored	(see	Sections	4.4.3	-	4.4.5).	Genes	within	pathways	have	been	shown	to	have	

more	related	with	the	biological	processes	ontology	than	expected	by	chance	(Guo	et	

al.	2006).	This	shows	that	pathways	tend	to	group	genes	based	on	their	biological	

process.	However,	despite	the	high	functional	homogeneity	found	within	pathways,	

GO	terms	did	not	conform	neatly	to	single	pathways.	Pathways	were	enriched	with	

multiple	GO	terms	and	GO	terms	were	frequently	allocated	to	multiple	pathways,	

suggesting	that	the	Gene	Ontology	and	pathways	datasets	represent	different	

dimensions	of	biology.	This	exemplifies	the	underlying	principle	of	systems	biology	that	

single	genes	and	pathways	should	not	be	studied	in	isolation,	since	physical	units	such	

as	pathways	collaborate	with	each	other	to	implement	function	and	encompass	

multiple	biological	processes	to	generate	broad	reaching	effects	on	the	cell.		

	

The	representation	of	pleiotropic	gene	function	is	also	an	important	requirement	for	

the	pathway	network.	The	use	of	pathways	to	represent	context-dependent	sets	of	

interactions	allows	the	multiple	functions	associated	with	some	genes	to	be	

independently	portrayed	within	in	separate	cellular	contexts.	In	Section	4.4.8	the	

tendancy	of	genes	to	be	assigned	different	GO	annotations	through	enrichment	

analysis	within	different	pathways,	represents	a	demonstration	of		context-dependent	

function.	
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7.1.3 Functional	pathway	networks	form	cohesive	maps	of	global	cellular	processes	

Following	the	allocation	of	GO	terms	to	pathways,	edges	were	generated	using	

semantic	similarities	to	construct	a	cohesive	functional	network	(see	Sections	4.3.8	

and	4.4.8).	Since	previous	literature	showed	that	function	is	highly	modular,	it	was	not	

clear	in	advance	that	the	construction	of	a	cohesive	network	would	be	possible	(Han	et	

al.	2004;	Wagner	et	al.	2007;	Mitra	et	al.	2013;	Ryan	et	al.	2012).	

The	human	network	generated	had	a	clustering	coefficient	of	0.59.	This	shows	that	

although	clusters	are	present	the	network	remains	connected,	at	a	density	of	only	

4.2%.	Many	methods	to	measure	semantic	similarity	were	available	to	generate	the	

network	edges	(see	Section	3.4).	Within	the	human	network	we	showed	that	the	Wang	

best-match	average	most	appropriately	linked	functionally	similar	pathways,	

accounting	for	pathway	multi-functionality	(see	Section	6.4.2).		The	majority	(79%)	of	

yeast	pathways	were	connected	to	at	least	one	other	pathway,	with	63%	being	

positioned	within	the	largest	connected	component.	These	numbers	increased	in	the	

human	network,	with	97%	of	pathways	being	linked	within	the	network	and	96%	

appearing	in	the	largest	connected	component.	This	demonstrates	that	the	majority	of	

pathways	participate	in	functions	that	are	identical	or	semantically	similar	to	a	

function	performed	within	one	or	more	other	pathways.	Multifunctional	pathways	

form	physical	links	between	diverse	cellular	processes,	generating	a	cohesive	network.	

These	pathways	represent	functional	cross	talk	within	the	cell,	which	is	visualised	

within	the	network.	The	interconnected	nature	of	the	Gene	Ontology,	which	supplies	

the	basis	for	all	edges	in	the	network,	also	helped	ensure	the	network	was	well	
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connected.	If	the	pathway	network	representation	of	function	had	been	more	modular	

then	multiple	smaller	sub-networks	would	have	been	formed,	generating	a	

disconnected	map.	

	

7.1.4 Development	of	methods	between	the	yeast	and	human	networks		

Comparison	of	the	yeast	and	human	networks	reveals	some	similarities	regarding	the	

major	clusters	including	metabolisms,	gene	expression,	immunity,	and	signalling.	There	

are	however,	differences.	For	example,	the	yeast	network	has	a	sparser,	more	modular	

structure.	This	reflects	the	original	aim	of	the	yeast	network,	which	was	to	show	the	

major	functional	clusters	through	a	modular	network.	Edges	were	primarily	generated	

using	the	Jaccard	coefficient	to	match	GO	terms	(see	Section	4.3.8),	which	does	not	

account	for	similarity	between	different	GO	terms.	In	a	second	processing	stage,	only	

the	minority	of	semantically	similar	GO	terms	were	linked	(0.1%)	(see	Section	4.3.9).	

The	semantic	similarity	data	used	was	generated	based	on	normalised	information	

content	(Hakes	et	al.	2007).	In	contrast,	within	the	human	dataset	semantic	similarity	

methods	were	used	to	generate	edges.	This	creates	a	more	inclusive	depiction	of	

functional	representation,	which	is	not	based	on	the	assumption	that	a	modular	

network	best	represents	function.	Instead,	the	human	network	was	generated	to	

create	greater	semantic	similarity	within	the	GO	terms	assigned	to	a	pathway	than	the	

GO	terms	between	pathways.	The	network	is	therefore	denser	and	less	modular	as	

cross	talk	between	functions	is	better	represented.		
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The	addition	of	multiple,	less	significant	functions	into	pathway	profiles	(see	Section	

4.3.7)	was	also	omitted	from	the	human	network.	This	is	because	the	additional	GO	

terms	added	an	extra	layer	of	complexity,	but	could	potentially	introduce	spurious	

annotations.	Although	pathways	may	have	multiple	diverse	functions,	we	decided	to	

omit	this	stage	from	the	processing	of	human	papers	following	discussion	of	the	yeast	

paper	(Stoney	et	al.	2015)	.		Removing	this	stage	make	the	process	simpler,	cleaner	

and	less	prone	to	error,	although	some	biological	complexity	is	lost.	

	

7.2 Implications	of	this	thesis	for	biological	networks	

This	Section	discusses	the	wider	implications	of	the	work	covered	within	this	thesis,	

starting	with	the	assertion	that	pathways	are	a	valuable,	underused	resource	for	

studying	function	and	that	functionally	enriched	pathways	may	be	better	suited	than	

molecular	interaction	networks	to	mapping	the	intracellular	organisation	of	function.	

We	attribute	the	high	performance	of	the	Wang	best	match	average	when	generating	

edges	to	the	multifunctional	nature	of	pathways.	Finally,	we	discuss	the	implications	

and	possibilities	generated	by	the	pathway	network	for	studying	disease.	The	clusters	

of	cellular	activity	captured	by	pathways	within	the	network	provide	new	

opportunities	to	examine	disease	mechanisms	and	identify	candidate	disease	genes.	

The	hypothesis	that	pleiotropic	genes	cause	multiple	diseases	by	acting	within	multiple	

pathways	is	compared	to	the	possibility	that	their	diverse	phenotypes	arise	from	

functional	crosstalk	within	the	cell.	
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7.2.1 Pathway	data	is	an	invaluable	but	neglected	resource	for	modelling	context	

dependent	function	

Within	Section	4.4.8	we	have	demonstrated	that	some	genes	have	different	functions	

within	the	context	of	different	pathways.	This	is	an	issue	that	molecular	functional	

networks	struggle	to	address.	Dynamic	networks	accept	that	different	interactions	are	

active	at	different	times	and	therefore	use	active	modules	(Guo	et	al.	2007;	Komurov	

&	White	2007;	Ideker	et	al.	2002)	or	multiple	instances	of	a	single	network	(Tang	et	al.	

2011)	to	express	this	dynamism.	Using	pathways	as	the	primary	units	of	biological	

activity	and	allowing	genes	to	be	included	independently	in	multiple	pathways	results	

in	a	more	concise,	intuitive	model.	Results	in	yeast	show	that	this	is	not	a	minor	issue,	

with	44%	of	genes	appearing	in	multiple	pathways,	and	83%	of	these	genes	having	

distinct	functional	profiles	for	each	pathway	they	participate	in	(Section	4.4.8).		

	

Molecular	models	must	resort	to	using	expression	data	(Ideker	et	al.	2002;	Tang	et	al.	

2011)	or	other	molecular	data	(Costanzo	et	al.	2010;	Ames	et	al.	2013)	to	capture	

these	important	contextual	distinctions,	while	the	knowledge	recorded	in	pathways	

remains	unused.	Separate	sets	of	expression	data	are	required	for	each	individual	

cellular	context,	such	as	multiple	data	points	for	each	stage	of	the	cell	cycle	(Tang	et	al.	

2011).	This	makes	generation	of	dynamic	models	expensive	and	time	consuming.	The	

use	of	pre-existing	expression	data	in	molecular	models	is	impeded	by	the	models’	

intrinsic	detail,	since	if	genes	within	the	network	are	not	included	in	the	microarray,	

then	the	status	of	nodes	is	unknown,	affecting	edges	and	the	local	network	topology.	

By	utilising	pathway	data	instead,	the	method	developed	in	this	thesis	takes	advantage	
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of	a	wealth	of	information	that	is	not	used	in	the	molecular	models	to	generate	more	

representative	functional	models.	

	

7.2.2 Functional	modules	may	not	conform	to	molecular	network	clusters	or	

pathways	

Evidence	suggests	that	of	the	three	branches	of	the	GO	ontology,	the	cellular	

component	ontology	conforms	more	closely	to	molecular	interaction	networks	than	

the	Biological	Process	and	Molecular	Function	ontologies	(Dutkowski	et	al.	2013).	They	

subjected	an	interaction	map	incorporating	multiple	types	of	interaction	data	to	

clustering	analysis	to	reveal	a	hierarchical	topology	structure,	referred	to	as	NeXO.	The	

NeXO	clusters	were	then	mapped	to	the	three	GO	ontologies,	with	greatest	similarity	

observed	with	the	Cellular	Component	ontology.	NeXO	captures	58%	of	terms	in	the	

Cellular	Component	ontology,	compared	to	only	25%	of	terms	in	the	Biological	Process	

and	Molecular	Function	ontologies.	While	this	supports	the	hypothesis	that	modules	

corresponding	to	biological	processes	are	present,	NeXO	indicates	cellular	

compartments	have	the	highest	influence	on	the	topology	of	interaction	networks	

(Figure	47).	If	traditional	clustering	approaches	have	a	tendency	to	identify	cellular	

compartments	rather	than	biological	processes,	this	may	obscure	attempts	to	extract	

functional	insight	from	molecular	models.		

	

In	contrast,	the	Biological	Process	ontology	has	been	shown	to	be	the	most	

representative	ontology	for	pathway	data	(Jain	&	Bader	2010;	Guo	et	al.	2006).	In	

these	examples,	the	Biological	Process	ontology	was	used	to	predict	PPI	interactions.	
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Proteins	from	different	cellular	components	interact	within	pathways,	reducing	the	

influence	of	the	Cellular	Component	ontology.	Pathways	were	not	found	to	be	

significantly	enriched	for	cellular	component	or	molecular	function	GO	terms,		

	

Figure	47:	NeXo	ontology.	Nodes	indicate	terms	and	the	node	size	indicates	the	number	of	genes	allocated	to	a	
term.	Node	colours	indicate	agreement	between	the	GO	terms	and	the	network	cluster.	Edges	indicate	hierarchical	
relationships	between	terms	(Dutkowski	et	al.	2013).	

	

demonstrating	the	low	influence	that	these	factors	have	on	pathway	data	(Guo	et	al.	

2006).	This	supports	the	claim	that	pathways	may	be	better	representations	of	

function	than	modules	from	molecular	networks.	
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The	clustering	methods	used	in	molecular	interaction	networks	identify	specific	

relationships,	in	which	each	node	shows	a	high	density	of	interactions	with	all	of	the	

other	nodes	in	the	cluster	(see	Section	2.2.1).	These	methods	are	less	suitable	for	

identifying	linear	relationships,	which	are	captured	by	pathways.	It	makes	intuitive	

sense	for	cellular	component	clusters	to	form	within	the	network.	However,	if	the	

implementation	of	a	function	is	generated	through	a	linear	set	of	interactions,	then	

network	clustering	may	not	be	the	best	approach	(Figure	48).	Pathways	are	sets	of	

interactions,	which	were	manually	curated	to	adopt	the	most	appropriate	shape	for	

the	data,	allowing	them	to	identify	linear	implementations	of	function	within	the	cell.	

	

	

Figure	48:	Network	functional	topologies	

	

These	issues	are	addressed	by	the	simulated	annealing	algorithms,	used	to	detect	

active	sub-networks	(Ideker	et	al.	2002;	Bryant	et	al.	2013;	Guo	et	al.	2007).	This	

method	scores	nodes,	often	based	on	altered	co-expression	(see	Section	2.2.5).	

Simulated	annealing	is	capable	of	detecting	linear	modules,	since	it	is	not	dependent	
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on	clustering	coefficients.	The	method	generates	sets	of	interconnected	high	scoring	

nodes	(Ideker	et	al.	2002)	or	edges	(Guo	et	al.	2007)	are	extracted	using	probabilistic	

techniques.	For	example	Ideker	et	al	(2002)	applied	the	approach	to	PPI	and	protein-

DNA	networks	and	was	able	to	extract	linear	modules	shown	in	Figure	3.	However,	this	

method	is	reliant	on	molecular	data	to	generate	the	network	topology	and	score	the	

nodes.	Linear	chains	of	molecular	interactions	are	particularly	sensitive	to	

incompleteness	within	interaction	data,	since	a	single	missed	link	would	break	these	

chains.	In	addition,	the	requirement	for	data	to	score	node	is	another	source	of	error,	

since	expression	data	can	be	undermined	by	post-transcriptional	modification	etc.	(see	

Section	2.3).	Pathways	bring	genes	into	close	proximity	clusters	without	the	specifics	

of	the	molecular	interactions	being	known.	They	also	allow	the	allocation	of	function	

without	expression	data	which	is	limited	and	is	only	applicable	to	the	conditions	

tested.	

	

Other	studies	have	also	approached	the	issue	that	functional	modules	may	not	be	

connected	within	molecular	interaction	networks.	For	example,	proteins	can	be	

grouped	based	on	their	tendency	to	interact	with	other	groups	of	proteins	(Pinkert	et	

al.	2010).	Figure	49	shows	four	groups	of	proteins	in	which	the	defining	characteristic	

of	groups	‘b’	and	‘d’	is	the	nodes’	tendency	to	interact	with	groups	‘a’	and	‘c’.	

Application	of	this	method	to	a	human	PPI	network	revealed	grouping	such	as	

transmembrane	proteins,	which	cannot	be	identified	by	searching	for	cohesive	group	

of	nodes	(Pinkert	et	al.	2010).	
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Figure	49:	Node	function	identified	by	structural	network	position.	Nodes	in	groups	‘a’	and	‘c’	form	tight	clusters,	
but	groups	‘b’	and	‘d’	do	not.	Group	‘b’	is	identified	based	on	each	nodes’	shared	tendancy	to	interact	with	nodes	in	
groups	‘a’	and	‘c’	(Pinkert	et	al.	2010)	

	

By	applying	enriched	GO	terms	to	pathways,	functions	can	be	captured	even	if	they	

span	multiple	pathways	or	do	not	apply	to	all	the	genes	within	a	pathway.	Within	the	

yeast	network,	many	processes	including	cellular	respiration,	ribosome	biogenesis,	and	

cellular	response	to	oxidative	stress	were	covered	by	multiple	pathways	(see	Section	

4.4.6).	Ames	et	al.	(2013)	showed	that	the	functional	modules	generated	using	single	

molecular	interaction	networks,	such	as	PPI	networks,	may	not	give	comprehensive	

network	clusters	(see	Section	2.2.6.1,	Figure	4).	This	disjointed	distribution	of	function	

within	molecular	data	may	make	extraction	of	functional	modules	more	difficult.		

Within	the	pathway	network,	knowledge	of	the	physical	interactions	between	

functionally	related	gene	sets	is	not	required,	as	pathways	are	connected	by	functional	

links.	As	a	result,	rather	than	functional	modules	being	defined	by	network	clusters	

that	may	not	provide	an	accurate	representation	of	their	structure,	shared	function	

defines	the	topology	of	the	network.		
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The	finding	that	functions	span	multiple	pathway	is	supported	by	the	Pathway	

Ontology,	in	which	multiple	pathways	are	gathered	into	functional	groupings.	The	

hierarchical	nature	of	the	ontology	illustrates	how	multiple	pathways	collude	to	

perform	high-level	tasks	(see	Section	2.6.1,	Figure	6)	Pathway	suites	are	also	generated	

by	linking	pathways	by	common	concepts:	for	example	the	‘Glucose	Homeostasis	

Pathway	Suite	Network’	brings	together	pathways	involved	in	glucose	metabolism	with	

related	regulatory	and	signalling	pathways		(see	Section	2.6.1).	

	

Another	example	of	the	disparity	between	the	borders	of	functional	modules	and	

pathways	came	from	the	multiple	functions	associated	with	each	pathway.	In	the	yeast	

network,	65%	of	pathways	required	multiple	GO	terms	to	represent	their	function	(see	

Section	4.4.3),	indicating	that	the	GO	term	most	significantly	enriched	to	each	pathway	

did	not	apply	to	every	gene.	Figure	23	in	Section	4.4.4	shows	that	the	functions	

covered	within	pathways	may	not	be	similar	terms	or	parent/child	nodes	within	the	

Gene	Ontology,	but	reflect	diverse	functions.	By	allowing	pathways	to	correspond	to	

multiple	functions,	pathway	enrichment	is	better	able	to	represent	this	level	of	

biological	complexity.		

	

Fuzzy	clustering	methods	have	been	suggested	to	allow	biological	entities	to	represent	

multiple	functions	(Zhang	et	al.	2007)	within	a	static	network.	Functional	cluster	are	

allowed	to	overlap	and	the	likelihood	that	genes	are	positioned	within	a	cluster	is	

calculated.	However,	such	methods	still	depend	on	functional	clusters	being	generated	



CHAPTER	7:	CONCLUSION	

229	

from	interaction	networks,	restricting	detectable	functions	to	those	that	form	

topological	clusters.	

	

7.2.3 The	Wang	best-match	average	best	reflects	the	functional	complexity	of	

pathways	

By	studying	the	semantic	links	between	pathway	pairs,	this	study	expands	the	current	

understanding	of	semantic	distances	between	sets	of	GO	terms	(see	Section	6.3.2.1).	

The	method	expands	on	previous	approaches	which	assessed	the	ability	of	different	

semantic	similarity	measures	to	predict	known	PPIs	(Guo	et	al.	2006;	Jain	&	Bader	

2010),	co-expression	patterns	(Jain	&	Bader	2010)	and	sequence	similarity	data	(Lord	

et	al.	2003b).	Our	study	was	based	on	the	premise	that	pathways	should	generally	

display	some	degree	of	functional	homogeneity.	This	is	intrinsic	to	the	general	

definition	of	pathways	and	was	confirmed	by	Guo	et	al	(2006)	and	Mathur	&	

Dinakarpandian	(2012),	with	both	papers	showing	that	pathways	have	more	similar	GO	

terms	than	expected	by	chance.		Comparing	the	ability	of	semantic	similarity	methods	

to	distinguish	semantic	similarities	between	and	within	pathways	allows	the	functional	

homogeneity	of	pathways	to	be	applied	to	the	validation	of	these	methods.	By	

measuring	the	distances	between	all	pathways	pairs,	we	generated	a	random	

distribution	of	semantic	similarities	against	which	the	similarity	of	GO	terms	inside	

pathways	could	be	compared	(see	Figure	39	in	Section	6.4.2)	

	

The	distribution	of	semantic	similarities	within	pathways	offers	insight	into	the	degree	

of	correlation	between	the	structure	of	the	Gene	Ontology	and	the	organisation	of	
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functions	into	pathways.	For	all	methods	tested,	GO	terms	within	pathways	were	more	

similar	than	GO	terms	between	pathways.	The	tendency	of	the	Wang	method	to	

outperform	the	Resnik	method	indicates	that	graph-based	semantic	similarity	methods	

may	present	a	more	accurate	depiction	of	cellular	organisation.	This	supports	the	

hypothesis	that	the	current	structure	of	the	Gene	Ontology	reflects	real	relationships	

in	the	cell,	information	which	is	lost	in	information	content-based	methods	(see	

Section	3.4.1).	

	

The	flexibility	of	the	proposed	methods	to	measure	general	patterns	of	similarity	both	

between	and	within	pathways	is	important,	since	the	boundaries	of	pathways	and	

functions	show	a	general	correlation,	but	do	not	directly	conform	to	each	other.	The	

functional	similarity	of	proteins	within	pathways	is	shown	to	decay	as	pathway	length	

increases	(Guo	et	al.	2006).	This	is	intuitively	explained	as	pathways	being	comprised	

as	a	series	of	different	functional	steps	towards	a	discernable	biological	outcome.	

Directly	interacting	proteins	show	close	functional	relationships,	possibly	generating	a	

gradient	of	function	across	the	pathway.	By	generating	pairwise	distributions	of	

semantic	function	between	and	within	GO	terms	attributed	to	pathways,	the	

frequency	of	divergent	terms	occurring	within	pathways	can	be	observed	(see	Section	

6.4.2).	

	

The	finding	that	the	Wang	method	outperformed	the	Resnik	method	contradicted	

previous	studies,	which	had	measured	similarity	between	gene	annotations,	as	

opposed	to	pathway	annotations.	Several	previous	studies	found	the	Resnik	measure	
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to	be	the	most	suitable	(Sevilla	et	al.	2005;	Guo	et	al.	2006;	Mistry	&	Pavlidis	2008;	

Guzzi	et	al.	2012;	Jain	&	Bader	2010).	This	may	be	because	the	use	of	information	

content	based	methods	is	not	suitable	with	pathway	data,	since	these	methods	count	

the	number	of	genes	allocated	to	each	GO	term,	allowing	equal	weighting	to	each	

gene.	However,	if	a	gene	appears	in	multiple	pathways,	the	frequency	of	the	GO	terms	

associated	with	the	gene	may	increase.	If	the	GO	term	does	not	apply	to	each	pathway	

instance,	a	problem	should	not	arise,	since	pathway	enrichment	analysis	is	unlikely	to	

return	the	extraneous	terms.	However,	if	the	GO	term	happened	to	be	applicable	in	

each	pathway	instance,	then	the	term	becomes	more	frequent	in	the	network	than	

accounted	for	by	its	information	content.		

	

It	is	worth	noting	that	both	Guo	et	al.	(2006)	and	Mathur	&	Dinakarpandian	(2012)	

found	that	Resnik	was	the	most	effective	measure	for	generating	semantic	distances	

between	genes	within	pathways.	Guo	et	al	(2006)	used	each	method’s	ability	to	

predict	PPIs	to	measure	efficacy.	This	method	therefore	only	dealt	with	direct	protein	

interactions	without	measuring	more	general,	indirect	relationships	such	as	shared	

pathways,	distinguishing	the	method	used	by	Guo	et	al	(2006)	from	the	approach	used	

in	this	thesis.	Proteins	that	interact	are	more	likely	to	have	GO	terms	with	a	highly	

informative	common	ancestor.		Mathur	&	Dinakarpandian	(2012)	tested	each	

method’s	robustness	to	alterations	in	the	lower	levels	of	the	Gene	Ontology,	therefore	

the	information	content	of	nodes	close	to	the	root	were	not	affected.	In	contrast,	

using	edges	based	methods,	all	measures	that	involved	the	perturbed	terms	would	

have	been	affected.	
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Studies	have	also	shown	the	pairwise	maximum	method	of	comparing	gene	sets	was	

more	effective	than	the	best	match	average	and	pairwise	average	(Jain	&	Bader	2010;	

Xu	et	al.	2008).	The	work	presented	in	this	thesis	compared	each	method’s	ability	to	

predict	PPIs,	concluding	that	the	pairwise	maximum	method	was	effective	because	

proteins	only	require	a	single	basis	of	similarity	to	interact.	If	proteins	have	multiple	

pleiotropic	functions,	the	existence	of	a	second	function	should	not	make	interactions	

connected	to	the	first	function	less	likely.		

	

However,	when	connecting	pathways	based	on	shared	functionality,	we	aimed	to	

generate	a	modular	network	linking	pathways	with	similar	functions	(see	Section	

6.3.2.1).	If	pathways	performed	random	combinations	of	functions,	then	a	modular	

network	would	not	have	been	formed.	The	co-implementation	of	multiple	functions	

within	pathways	is	likely	to	represent	some	link	between	the	functions,	since	pathways	

cannot	be	involved	in	independent	functions	in	the	same	way	genes	can.	This	is	

because	genes	can	be	involved	in	independent	functions	by	participating	in	different	

sets	of	interactions.	In	contrast,	all	the	edges	in	the	pathway	network	are	assumed	to	

be	present	whenever	the	incident	pathway	node	is	active.	The	co-occurrence	of	

functions	that	the	Gene	Ontology	regards	as	semantically	diverse	is	likely	to	represent	

real	biological	connections,	which	are	not	represented	with	the	Gene	Ontology.	This	is	

supported	by	the	finding	that	functionally	diverse	GO	terms	are	often	co-enriched	in	

sub-graphs	within	molecular	networks	(Ames	et	al.	2013).	This	study	found	that	

around	40%	of	co-enriched	GO	terms	within	molecular	networks	were	semantically	

diverse.	
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Based	on	the	finding	that	functional	diversity	within	pathways	way	common,	network	

edges	were	generated	using	the	best	match	average	and	pairwise	average	(see	Section	

4.4.8),	since	these	methods	allowed	the	entirety	of	each	pathway’s	functions	to	be	

considered.	The	best	match	average	measure	was	able	to	assign	strong	similarity	to	

pairs	of	pathways	with	matching	co-expressed	GO	terms,	whereas	the	pairwise	

average	method	would	reduce	the	score	if	the	co-enriched	terms	were	semantically	

diverse.		

	

7.2.4 Exploring	disease	mechanisms	through	the	functional	pathway	network	

This	chapter	describes	the	opportunities	provided	by	pathway	networks	to	explore	

disease	mechanisms.		

7.2.4.1 Deciphering	disease	mechanisms	and	potential	disease	genes		

The	idea	that	polygenic	diseases	arise	from	combinations	of	mutations	is	well	

established	(Goh	et	al.	2007).	Sets	of	disease	genes	can	be	mapped	onto	molecular	

interaction	networks,	indicating	the	location	of	the	perturbed	function.	Given	this	data	

the	disease	mechanism,	along	with	a	set	of	potential	disease	genes,	should	become	

apparent.	However,	gaining	this	insight	is	often	non-trivial.	Barabasi	et	al.	(2011)	noted	

that	functional	clusters	and	disease	clusters	overlap	but	are	not	equivalent.	This	could	

be	due	to	difficulties	in	mapping	functional	and	disease	modules	based	on	molecular	

network	topology	(see	Section	7.2.2).	In	addition,	disease	modules	incorporating	

multiple	functional	modules	could	add	to	this	divergence.	The	ability	of	diseases	to	

affect	multiple	functional	modules	is	intuitive	since	biological	processes	do	not	work	in	

isolation,	but	instead	involve	a	high	degree	of	crosstalk	and	co-regulation.	Therefore,	
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when	generating	disease	modules	it	is	not	sufficient	to	isolate	single	functional	

modules,	as	any	contributing	processes	in	the	functional	periphery	could	also	be	

involved	in	generating	the	disease	phenotype.		

	

Within	molecular	interaction	networks,	it	is	challenging	to	extract	single	functional	

modules	(see	Section	7.2.2),	making	identification	of	all	functional	modules	within	

close	proximity	to	a	set	of	disease	genes	problematic.	However,	the	pathway	network	

proposed	in	this	thesis	reliably	attributes	functions	to	nodes,	which	are	then	directly	

linked	to	other	functionally	related	pathways.		As	a	result	mapping	diseases	onto	the	

pathway	network	reveals	disease	modules	along	with	pathogenic	mechanisms	(see	

Section	6.3.3).	Even	if	the	disease	pathways	do	not	form	network	clusters,	examination	

of	enriched	pathway	functions	and	the	full	edge	set	(Section	6.3.2.2)	will	establish	the	

closest	functional	links	(see	Section	7.3.3).		Potential	disease	genes	may	then	be	

identified	within	affected	pathways	and	functions.	

7.2.4.2 Pathway	context	affects	the	disease	phenotypes	of	pleiotropic	genes		

Mapping	diseases	onto	molecular	interaction	networks	has	contributed	towards	the	

elucidation	of	disease	mechanisms	(Janjić	&	Pržulj	2012c),	identification	of	new	

disease-associated	genes	(Barabasi	et	al.	2011)	and	indication	of	potential	drug	targets	

(Yu	et	al.	2007).	Molecular	networks	show	the	sum	of	each	molecule’s	interactions	

without	distinguishing	between	cellular	contexts,	therefore	if	a	gene	has	multiple	

functions	they	may	form	a	single	cluster	on	the	network.	This	becomes	apparent	when	

considering	the	ability	of	genes	to	contribute	towards	multiple	disorders.	If	genes	are	

limited	to	a	single	consolidated	function,	and	diseases	are	considered	to	be	phenotypic	
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representations	of	a	disrupted	function,	then	a	disrupted	gene	should	result	in	a	single	

disorder.	If	different	mutations	disrupt	the	function	to	varying	degrees	then	this	may	

produce	a	range	of	phenotypically	similar	disorders.	However,	gene	mutations	can	be	

phenotypically	diverse,	such	as	AKT1,	which	is	associated	with	schizophrenia,	

colorectal	cancer,	ovarian	cancer	and	breast	cancer	(Chavali	et	al.	2010).	Further	

evidence	suggesting	that	diseases	may	act	independently	within	different	pathways	

comes	from	the	finding	that	many	disease	pairs	with	shared	genes	do	not	show	

significant	co-morbidity	(Park	et	al.	2009).	This	indicates	that	a	gene	may	be	

functionally	disrupted	in	one	cellular	context,	but	perform	normally	within	a	different	

cellular	context.	In	accordance	with	this	hypothesis,	comorbid	associations	are	less	

likely	if	the	causative	mutations	occur	on	different	protein	domains	in	each	disease	

instance.	

	

Molecular	interaction	data	provides	additional	evidence	that	genes’	ability	to	affect	

multiple	diverse	diseases	may	arise	from	their	ability	to	act	in	multiple	pathways.	

Genes	associated	with	multiple	disorders	typically	showed	low	clustering	coefficients	

in	molecular	interaction	networks,	indicating	that	the	nodes	adjacent	to	them	are	less	

likely	to	interact	than	expected	by	chance	(Chavali	et	al.	2010).		This	supports	the	

hypothesis	that	these	genes	are	acting	in	multiple	separate	pathways.	Chavali	et	al.	

(2010)	also	showed	that	genes	associated	with	multiple	disorders	have	lower	levels	of	

co-expression	with	their	interaction	partners	than	genes	associated	with	a	single	

disorder.	Co-expression	decreases	further	if	the	gene	is	associated	with	functionally	

diverse	diseases.	Phenotypically	diverse	genes	may	also	interact	with	different	
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partners	in	different	tissues:	for	example	AKT1	participates	in	a	range	of	interactions	

dependent	on	tissue	type,	further	supporting	the	hypothesis	that	the	results	arise	from	

the	gene	acting	in	different	pathways.	

	

	These	results	provided	compelling	evidence	that	pleiotropy	allows	genes	to	be	

involved	in	multiple	disorders,	as	well	as	demonstrating	that	molecular	networks	are	

poorly	suited	to	capture	multiple	functions	of	individual	molecules.	As	a	result,	there	is	

a	need	to	develop	methods,	which	are	more	suitable	than	molecular	networks	to	study	

this	occurrence.	The	pathway	network	provided	in	this	thesis	provides	an	established	

source	of	context	depended	interactions	in	which	multiple	functions	can	be	assigned	

to	genes	depending	on	their	pathway	context	(see	Section	4.4.8).	Therefore,	the	

function	of	the	perturbed	pathways	indicates	the	role	that	a	disease	gene	may	play	in	

each	disorder	(see	Sections	6.4.4	and	6.4.5).	

7.2.4.3 Overlapping	disease	modules	and	functional	cross	talk	

Co-morbidity	analysis	of	the	Human	Phenotype	Network	showed	that	diseases	that	

share	genes	tend	to	show	increased	levels	of	co-morbidity	(see	Section	2.5).	This	could	

be	another	effect	of	gene	pleiotropy	or	it	could	represent	crosstalk	between	functional	

modules.	Mutations	in	one	or	more	pleiotropic	genes	could	simultaneously	perturb	the	

pathways	corresponding	to	separate	diseases.	In	this	scenario,	each	disease	pathway	is	

independent	in	the	cell,	they	just	happen	to	share	one	or	more	pleiotropic	genes	with	

disease	causing	mutations.	

	



CHAPTER	7:	CONCLUSION	

237	

In	some	cases,	it	may	be	more	likely	that	pleiotropic	disease	genes	represent	overlap	

between	disease	pathways.	Each	disease	module	is	a	result	of	one	or	more	functional	

modules	and	since	functions	are	known	to	overlap	in	the	cell,	disease	modules	may	

also	overlap.	Highly	related	to	this	idea	is	the	concept	of	cross	talk	between	functional	

modules.	Biological	processes	are	highly	interconnected,	blurring	the	boundaries	

between	functions.	The	pathway	suites	generated	within	the	Pathway	Ontology	

illustrate	this	interconnectivity	(Petri,	Jayaraman,	et	al.	2014).	An	example	given	in	

their	recent	paper	is	the	‘Glucose	Homeostasis	Pathway	Suite	Network’,	which	

demonstrates	the	relationship	between	the	glucose	metabolic	pathways	and	the	

signalling	and	regulatory	pathways,	which	must	collaborate	to	maintain	suitable	

glucose	levels.		

	

Evidence	for	crosstalk	between	functions	occurs	from	co-morbidities	between	

seemingly	unrelated	diseases.	Co-morbidity	data	linking	seemingly	unrelated	disorders	

such	as	autism,	cerebral	palsy,	schizophrenia	and	Parkinson’s	disease	were	predicted	

to	resulting	from	genetic	changes	weakening	the	immune	system	(Rzhetsky	et	al.	

2007).	Of	interest	is	the	wide-ranging	age	of	onset	seen	in	these	diseases,	with	autism	

typically	manifesting	before	the	age	of	three,	schizophrenia	developing	during	the	

teenage	years	and	early	twenties,	and	Parkinson’s	disease	appearing	in	older	adults.	

The	diversity	of	these	disease	phenotypes	as	well	as	the	diverse	age	of	onset	implies	

that	these	disorders	have	highly	variable	biological	mechanisms	involving	a	range	of	

cellular	functions.	Female	breast	cancer	was	also	found	to	be	negatively	correlated	

with	bipolar	disorder	and	schizophrenia,	which	was	interpreted	as	corresponding	to	
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genes	involved	in	the	cell	cycle	and	cell	death,	since	female	breast	cancer	is	associated	

with	abnormal	cell	proliferation,	and	schizophrenia	and	bipolar	are	associated	with	

abnormal	cell	death	in	some	tissues.	This	shows	different	proliferative	effects	that	an	

affected	gene	can	have	on	diverse	biological	processes.	

	

In	these	instances	it	is	clear	that	these	disorders	arise	from	different	polygenic	gene	

sets	and	have	very	different	pathological	mechanisms.	To	study	the	divergence	of	

these	disease	phenotypes	from	their	shared	origins	the	relationship	between	cellular	

functions	must	be	understood.	Pathways	with	multiple	functions	provide	platforms	for	

crosstalk	and	co-regulation	between	the	biological	processes	in	the	cell.		

	

The	pathway	network	provides	a	tool	to	examine	the	physical	connectedness	of	

divergent	functions	affected	by	shared	gene	mutations.	If	the	functions	are	closer	than	

expected	within	the	network,	the	physical	interactions	linking	them	suggest	cross	talk	

and	co-regulation	through	the	shared	disease	mutations.	If	the	network	distance	

between	the	functions	is	great	and	the	disease	genes	are	present	in	multiple	

pathways,	then	pleiotropy	may	be	more	likely	(see	Section	6.3.3.2).	

	

The	interesting	ambiguity	between	pleiotropy	and	disease	cross	talk	can	also	be	

observed	within	the	diverse	clinical	manifestations	associated	with	individual	diseases	

(Zhou	et	al.	2014).	Diseases	with	diverse	ranges	of	symptoms	were	found	to	be	

associated	with	genes	with	high	betweenness	centrality	in	the	PPI	network.	This	

indicates	that	these	genes	affect	diverse	cellular	mechanisms.	As	discussed	in	Section	



CHAPTER	7:	CONCLUSION	

239	

7.2.4.2	this	may	arise	from	pleiotropy	if	genes	are	in	multiple	pathways.	However,	if	

genes	are	restricted	to	a	single	pathway	then	functional	crosstalk	would	allow	local	

perturbations	to	extend	their	influence,	giving	rise	to	a	range	of	diverse	symptom	

phenotypes.	

	

7.3 Limitations	of	the	current	research		

The	generation	of	the	novel	network	structure	presented	in	this	thesis	required	the	

innovative	re-evaluation	of	existing	methods	as	well	as	the	development	of	new	

approaches.	Some	shortcomings	within	the	methods	used	are	explored	within	this	

Section,	along	with	their	potential	influence	on	the	resulting	networks.	

	

7.3.1 Issues	with	heuristic	methods	

A	heuristic	set	cover	method	was	used	in	section	Chapter	5	to	successfully	reduce	

redundancy	between	the	human	pathways.	However,	the	set	of	pathways	returned	is	

dependent	on	the	selection	of	early	pathways.	Within	the	first	stage	of	this	algorithm,	

all	uncovered	sets	are	assigned	a	score	of	one,	plus	a	small	modifier	indicating	how	

close	each	set	is	to	a	desired	set	size	(such	as	the	median	size).	The	purpose	of	the	

modifier	is	to	ensure	that	if	two	sets	have	the	same	proportion	of	uncovered	elements,	

the	set	whose	size	conforms	most	closely	to	the	median	is	selected.	At	the	beginning	

of	the	algorithm,	every	median	sized	set	will	have	exactly	the	same	score,	therefore	a	

set	will	be	selected	at	random	from	this	subset.	For	example	in	Figure	50A,	sets	a	and	b	

both	match	the	median	size	(4)	and	will	therefore	have	the	same	score.	Set	selection	
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will	continue	until	all	of	the	sets	with	the	median	number	of	elements	have	at	least	

one	element	covered.	The	process	is	then	repeated	on	the	sets	whose	size	differs	from	

the	median	by	one,	and	so	on.	As	a	result,	substantial	numbers	of	sets	are	selected	

randomly	at	the	beginning	of	the	algorithm.		

	

This	may	result	in	the	algorithm	producing	different	results	when	run	multiple	times.	

For	example,	Figure	50B	and	Figure	50C	show	the	different	outputs	generated	

depending	on	whether	set	‘a’	or	set	‘b’	is	selected	first.	If	set	‘a’	is	selected	first,	the	

result	shown	in	Figure	50B	will	be	produced.	The	next	set	to	be	selected	will	be	set	‘e’	

since	it	is	the	only	set	remaining	with	all	of	its	elements	uncovered.	Finally,	set	‘d’	will	

be	selected	as	all	of	the	genes	in	set	‘c’	are	covered.	In	contrast,	if	set	‘b’	is	selected	

first,	set	‘c’	will	replace	set	‘d’	in	the	final	output	(Figure	50C).		

	

	

Figure	50:	Heuristic	effects	of	set	cover	output.	A)	Contains	five	sets	with	a	median	size	of	four.	Pathways	a	and	b	
are	exactly	median	sized	(green),	sets	‘c’	and	‘d’	deviate	from	the	median	size	by	1	(orange),	and	pathway	‘e’	
deviates	from	the	median	size	by	2	(red).	Pathways	are	selected	primarily	on	the	proportion	of	uncovered	genes	
they	contain.	If	two	sets	have	an	equal	score,	a	decision	is	based	on	the	size,	preferentially	selecting	pathways	close	
to	the	median	size	of	four.	At	the	beginning	of	the	algorithm,	pathways	‘a’	and	‘b’	have	the	same	proportion	of	
uncovered	elements	and	the	size	therefore	a	decision	is	made	at	random.	B)	and	C)	show	the	different	outputs	
generated	by	this	decision.		
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Each	application	of	the	algorithm	to	the	pathway	dataset	results	in	a	set	of	pathways	

with	reduced	redundancy	and	a	similar	size	distribution,	suitable	for	use	within	the	

network.	Each	pathway	subset	also	covers	exactly	the	same	set	of	genes	so	the	only	

difference	is	in	the	position	of	the	pathway	boundaries.	There	is	a	chance	that	some	of	

the	functions	present	within	the	pathways	will	change,	since	the	results	of	enrichment	

are	dependent	on	the	gene	sets	subjected	to	analysis.	The	thesis	presents	a	network	

based	on	a	single	output	from	the	set	cover	algorithm.	It	represents	a	set	of	pathways	

that	provide	gene	coverage	of	the	entire	dataset	and	extensive	GO	coverage.	The	

network	generated	portrays	the	organisation	of	function	across	these	pathways.	

Future	work	could	explore	the	network	variations	provided	by	different	pathway	set	

covers.	However,	since	all	sets	of	pathways	share	have	reduced	redundancy	and	equal	

biological	validity,	there	is	little	reason	to	select	one	set	cover	other	another.		

	

7.3.2 Conflicting	current	opinions	over	inclusion	of	‘part-of’	GO	edges	

There	is	debate	in	the	literature	about	whether	both	‘is-a’	and	‘part-of’	GO	links	should	

be	included	in	GO	graphs	when	calculating	semantic	similarities	(Sheehan	et	al.	2008;	

Jain	&	Bader	2010;	Guo	et	al.	2006;	Yu	et	al.	2007;	Resnik	1999).	The	Wang	method	

resolves	the	problem	by	including	both	but	denoting	a	higher	weighting	to	‘is-a’	links	

than	‘part-of’	links	(Wang	et	al.	2007).	Since	the	Wang	method	required	integration	of	

both	types	of	edges,	both	edge	types	were	used	throughout	the	project	for	

consistency.	The	Resnik	method,	however,	classically	excludes	‘part-of’	links	since	they	

denote	less	specific	information	(Resnik	1999).	Guo	et	al.	(2006)	included	both	types	of	

edges,	but	stated	that	inclusion	of	‘part-of’	links,	which	are	particularly	prevalent	in	the	
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Cellular	Compartment	ontology	may	have	resulted	in	poorer	predictive	power	

between	pairs	of	interacting	proteins.	It	is	possible	that	if	‘part-of’	edges	had	been	

excluded	a	different	network	may	have	been	produced.	This	network	may	have	had	

fewer	spurious	connections,	in	cases	where	‘part-of’	relationships	had	low	biological	

validity,	however	the	loss	of	information	may	have	resulted	in	a	less	complete	

portrayal	of	function.	

	

7.3.3 Discarded	functional	edges	may	have	biological	significance		

This	project	was	ambitious	with	its	goal	to	map	the	functional	connectivity	of	all	

pathways	and	functions	within	humans	and	yeast.	This	is	a	complex	task	since	within	

cells	functions	are	highly	interconnected	and	interdependent.	This	was	reflected	by	the	

dense	network	edges	representing	pairwise	semantic	similarities	(see	Section	

6.3.2.1.2).	Unfortunately,	the	density	of	this	network	obscured	the	major	functional	

groupings	and	made	analysis	extremely	computationally	slow.	We	therefore	omitted	

some	of	the	weaker	links	within	the	network,	using	a	threshold	optimised	to	maximise	

network	cohesiveness	while	minimising	density	(see	Section	6.3.2.2).	The	threshold	

used	effectively	satisfied	both	criteria,	however	many	edges	below	the	threshold	may	

have	been	biologically	relevant.	We	succeeded	in	producing	networks	representing	

comprehensive	gene	cover	and	extensive	representation	of	global	functions	for	each	

organism.	Although	the	major	functional	connections	have	been	mapped,	due	to	the	

scale	of	the	project	some	detail	has	been	lost.	Details	of	all	functional	connections	are	

retrievable	through	examination	of	the	full	set	of	semantic	distances	between	

pathways.	The	semantic	annotations	of	each	pathway	are	also	available,	so	that	the	
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functional	links	can	also	be	retrieved	for	any	pathway	within	the	dataset	

(https://data.mendeley.com/datasets/3pbwkxjxg9/1).	

	

A	related	issue	is	that	the	structure	of	the	network	produced	reflects	the	structure	of	

the	GO.	While	this	is	largely	advantageous	since	the	GO	represents	a	well-established	

model	of	biological	function,	there	are	instances	where	it	may	not	closely	represent	

the	inner-workings	of	the	cell.	The	clusters	of	signalling	and	regulatory	pathways	are	

examples	of	this,	since	their	position	within	the	network	is	dominated	by	their	

functional	similarity	to	each	other,	rather	than	the	processes	they	control.	Their	

influence	could	be	inferred	by	examining	weaker	links	to	other	pathways;	however	it	

may	be	preferable	if	these	relationships	were	apparent	from	the	network	topology.	It	

could	be	possible	to	link	signalling	pathways	more	directly	to	the	processes	they	

control	by	excluding	GO	terms	relating	to	signalling	and	information	transfer	when	

calculating	the	network	edges.	

	

7.3.4 Multiple	testing	within	disease	pathway	detection	

To	detect	disease	pathways	(see	Section	6.3.3.1)	we	used	the	Fisher’s	exact	test	

without	correcting	for	multiple	testing.		This	decision	was	made	because	

implementation	of	the	correction	reduced	the	number	of	pathways	per	disease	from	a	

mean	of	18.9	to	2.4,	representing	a	large	reduction	in	the	number	of	pathways	

detected.	This	would	make	exploratory	network	analysis	to	identify	regions	associated	

with	disease	impossible,	since	it	is	not	meaningful	to	search	for	disease	modules	with	
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less	than	3	nodes.	Methods	that	could	be	used	to	resolve	this	issue	are	discussed	in	

Section	3.3.2.	

	

An	alternative	approach	would	have	been	to	simply	refer	to	all	pathways	containing	a	

disease	gene	as	disease	pathways,	however,	this	would	be	contradictory	to	the	

project’s	primary	premise,	which	is	to	explore	and	distinguish	the	effects	of	pathway	

context	on	genes.	Assigning	a	pathway	disease	status	as	a	result	of	a	single	gene,	

which	may	not	be	affected	by	disease	perturbations	within	the	context	of	this	

pathway,	would	reintroduce	the	problems	of	molecular	networks	that	this	project	

seeks	to	avoid.	Using	enrichment	analysis	without	correcting	for	multiple	testing	

provides	a	compromise,	since	it	detects	pathways	that	contain	proportionally	high	

levels	of	disease	genes.	The	p-values	used	to	generate	the	disease	pathways	cannot	be	

considered	an	accurate	indication	of	probability;	instead	they	should	be	used	as	an	

indication	that	the	pathways	selected	using	the	Fisher’s	exact	test	are	more	likely	to	be	

associated	with	disease	than	pathways	that	were	not	selected.	It	is	known	that	disease	

genes	cluster	into	pathways	rather	than	being	randomly	distributed,	minimising	the	

concern	that	high	numbers	of	false	positives	will	arise	through	the	selection	of	random	

pathways.(Peng	et	al.	2010;	Koutsogiannouli	et	al.	2013;	Furlong	2013;	Ghamlouch	et	

al.	2017;	Barabasi	et	al.	2011).	All	of	the	disease	pathways	examined	within	this	project	

have	strong	literature	support,	affirming	the	validity	of	this	approach.	
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7.4 Future	research	

Within	this	final	section	we	suggest	some	future	work	that	could	follow	from	this	

thesis.	We	suggest	applying	controllability	analysis	to	the	network,	to	uncover	

pathways	responsible	for	controlling	the	flow	of	information	between	cellular	

processes.	This	would	further	elucidate	the	physical	mechanisms	responsible	for	

cellular	organisation	and	disease	phenotypes.	In	addition,	future	work	could	assess	the	

suitability	of	the	full	range	of	available	semantic	similarity	methods	for	forming	

network	edges.	Finally,	the	generation	of	disease	modules	could	be	enhanced	through	

improved	development	of	disease	pathways.	We	suggest	the	application	of	genome-

wide	association	studies	to	disease	SNPs	could	be	used	to	aid	identification	of	disease	

pathways.	

	

7.4.1 Creation	of	gene	panels	

Gene	panels	are	commonly	used	in	diagnostics	for	many	disorders	such	as	congenital	

muscular	dystrophy	(Valencia	et	al.	2013)	and	epilepsy	(Lemke	et	al.	2012).	In	these	

situations	genetic	locus	heterogeneity	makes	the	use	of	gene	panels	preferable	over	

single	gene	testing	(Xue	et	al.	2015).	Exome	sequencing	is	also	exceedingly	common,	

particularly	for	disorders	with	high	genetic	heterogeneity;	however,	assessing	the	

pathogenicity	of	the	high	numbers	of	sequencing	variants	detected	can	be	

problematic.	Gene	panels	can	provide	a	more	targeted	approach	and	offer	four	to	five	

fold	greater	coverage	than	exome	sequencing.	Genetic	panels	are	able	to	provide	

differential	diagnosis	between	disorders	with	overlapping	phenotypes.	For	example,	

Fanconi-Bickel	syndrome	and	glycogen	storage	disease	both	present	with	fasting	
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hypoglycaemia,	therefore	genetic	markers	for	Fanconi-Bickel	syndrome	can	be	

included	in	panels	for	glycogen	storage	disease.		

	

There	is,	however,	poor	consensus	between	the	sets	of	genes	selected	for	different	

disorders,	for	example,	the	number	of	genes	provided	in	an	epilepsy	gene	panel	can	

vary	from	70	to	377	(Xue	et	al.	2015).	Some	laboratories	may	choose	to	include	all	

genes	remotely	associated	with	a	phenotypes,	hoping	to	give	a	better	diagnostic,	

however,	genes	selected	based	on	association	studies	or	single	reports	are	frequently	

found	to	be	non-causative.	This	may	complicate	interpretation	of	the	panel	results.	By	

highlighting	sets	of	pathways	involved	with	disorders	the	pathway	network	could	assist	

in	the	generation	of	effective	gene	panels.	Firstly	the	method	generates	enriched	

pathway	gene	sets	for	diseases,	a	method	known	to	indicate	likely	disease	genes	(Yu	et	

al.	2007;	Liu	&	Chance	2013).	By	linking	pathways	with	similar	functions,	the	network	

assembles	pathways	relevant	to	a	particular	disease	aspect.	This	approach	may	

identify	the	genes	likely	to	contribute	towards	particular	disease	characteristics,	

enabling	the	generation	of	gene	panels	appropriate	to	patient	symptoms.	

	

In	addition,	the	networks	ability	to	represent	a	comprehensive	range	of	diseases	could	

contribute	towards	the	development	of	differential	gene	panels.	The	screening	of	

pathways	associated	with	multiple	disorders,	as	well	as	pathways	capable	of	

distinguishing	between	disorders	could	give	insight	into	the	relationship	between	

these	diseases.	This	could	lead	to	better	diagnostics	as	well	as	increased	understanding	

of	disease	mechanics.	
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7.4.2 Controllability	analysis	

The	pathway	networks	show	the	arrangement	of	functional	modules	within	the	cell,	

therefore	it	was	of	interest	to	identify	the	pathway	nodes	responsible	for	conveying	

information	between	these	modules.	To	examine	the	possibility	of	controlling	the	flow	

of	information	within	the	cell	network	controllability	analysis	was	applied	to	to	the	

human	pathway	network.	Controllability	analysis	aims	to	find	minimum	dominating	

sets	capable	of	controlling	all	nodes	within	the	network	(Nacher	&	Akutsu	2012;	Liu	et	

al.	2011).	The	minimum	dominating	set	(MDS)	is	the	minimum	subset	of	nodes	capable	

of	determining	the	state	of	any	of	the	nodes	in	the	network.		

	

Liu	et	al.	(2011)	proposed	a	model	in	which	‘driver	nodes’	within	a	directed	network	control	all	of	the	nodes	down-
stream	of	them.	In	this	model,	it	is	possible	for	a	driver	node	to	control	a	chain	of	downstream	nodes,	without	
restriction	on	the	length	of	the	chain	(	

Figure	51a).	However,	driver	nodes	with	multiple	outgoing	edges	can	only	control	a	single	down-stream	node		

Figure	51).	The	reasoning	behind	this	rule	is	that	it	is	impossible	to	generate	the	full	

range	of	network	states	if	a	driver	node	influences	all	of	its	outgoing	edges	collectively.	

Multiple	MDS	are	often	possible	for	a	single	network,	meaning	that	different,	equally	

sized	sets	of	driver	nodes	can	be	used	to	control	the	network.	Therefore,	the	edges	are	

categorised	based	on	the	frequency	of	their	presence	within	the	minimum	dominating	

sets.	An	edge	is	critical	if	it	is	used	in	every	MDS	to	confer	control	between	a	driver	

node	and	its	downstream	counterpart.		Redundant	edges	never	have	negative	

incidence	to	a	driver	node	in	a	MDS	and	ordinary	edges	are	required	by	some	of	the	

MDS.	
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Figure	51:		Model	of	controllability,	taken	from	Liu	et	al.	(2011)	‘a’,	‘d’	and	‘g’	show	three	directed	networks	to	be	
controlled.	‘b’,	‘e’,	‘h’		show	possible	minimum	dominating	sets	for	each	network.	The	white	nodes	are	the	
controlled	nodes,	with	the	blue	arrows	indicating	input.	The	multiple	networks	in	‘e’	and	‘h’	show	all	available	
control	models.	The	purple	arrows	indicate	edges	being	used	by	driver	nodes	to	control	down	stream	nodes	(green).	
‘c’,	‘f’	and	‘i’	show	whether	the	edges	in	each	model	are	critical,	redundant	or	ordinary,	based	on	whether	they	are	
in	all,	none	or	some	of	the	above	minimum	dominating	sets.	

	

Nacher	&	Akutsu	(2013)	developed	an	alternative	model	in	which	driver	nodes	could	

control	all	of	their	outgoing	edges	independently,	allowing	driver	nodes	to	control	

multiple	nodes.	Control	could	only	be	passed	from	driver	nodes	to	nodes	directly	

adjacent	to	them,	disallowing	chains	controlled	by	a	single	driver	node.	By	allowing	

nodes	to	utilise	all	of	their	edges	independently,	the	focus	was	shifted	from	edges	to	

nodes.	Therefore,	nodes	were	classified	as	critical	if	they	were	present	in	all	MDS,	

redundant	if	they	were	absent	from	all	MDS	and	intermittent	if	they	were	present	in	

some	MDS	(Ishitsuka	et	al.	2016).	The	method	was	also	expanded	to	incorporate	

undirected	graphs.	This	approach	generated	very	different	results	from	the	previous	
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methods.	In	Liu	et	al.	(2011)	driver	nodes	tend	to	avoid	hubs	and	the	number	of	driver	

nodes	required	to	control	sparse	networks	is	high.	This	is	particularly	true	if	the	

network	has	a	scale	free	distribution,	seen	in	most	biological	networks.	In	contrast,	

when	the	method	described	in	Nacher	and	Akutsu	(2013)	was	applied	to	PPI	networks	

from	many	organisms	including	yeast	and	human,	hub	nodes	were	significantly	more	

likely	to	be	critical	across	all	networks.	The	idea	that	hub	nodes	have	special	

importance	within	biology	is	well	established,	since	hubs	are	more	likely	to	be	essential	

genes	(He	&	Zhang	2006b),	have	higher	evolutionary	conservation	(Barabási	&	Oltvai	

2004)	and	frequently	act	as	global	connectors	between	functional	modules	in	the	cell	

(Han	et	al.	2004).	Nodes	with	high	betweenness	centrality	are	also	enriched	within	

minimum	dominating	sets	(Wuchty	2014)	supporting	the	hypothesis	that	these	nodes	

are	involved	in	global	cellular	connectiveness.	For	these	reasons,	the	approach	

suggested	by	Nacher	and	Akutsu	(2013)	was	considered	more	suitable	for	biological	

network	analysis.		

	

Controllability	analysis	was	applied	to	the	human	pathway	network,	to	establish	if	

disease	pathways,	cancer	pathways	and	pathways	enriched	with	essential	genes	

(essential	pathways)	were	more	or	less	likely	to	be	critical	nodes,	however	no	

significant	relationships	were	observed	using	the	Fishers	Exact	test.	Preliminary	results	

suggested	that	in	the	pathway	network	the	node	degree	was	less	important	than	node	

betweenness	centrality.	This	is	most	likely	due	to	the	pathway	network	not	having	a	

scale-free	topology,	reducing	degree	inequality.	Therefore	pathway	nodes	between	

connecting	pathway	clusters	were	most	likely	to	be	critical	or	intermittent	pathway	
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nodes.	Pathways	enriched	with	disease	genes,	cancer	genes	and	essential	genes	did	

not	significantly	correspond	to	these	pathways.	

	

Future	work	should	take	a	more	targeted	approach,	identifying	pathways	involved	in	

multiple	types	of	cancer	(or	other	diseases),	which	are	expected	to	have	enhanced	

control	within	disease	sub-networks.	Cancer	genes	are	known	to	form	interconnected	

clusters	(Wu	et	al.	2010)	and	are	therefore	likely	to	localise	to	cancer	pathway	

modules	within	the	network.	However,	the	prevalence	of	genes	such	as	P53	which	are	

involved	in	a	large	number	of	cancers	made	us	question	whether	some	pathways	could	

be	central	to	the	control	of	the	cancer	sub-network.	Pathways	associated	with	many	

types	of	cancer	should	be	tested	to	see	if	they	are	control	nodes	in	the	cancer	sub-

network,	since	they	should	link	modules	associated	with	different	cancer	types.		

	

7.4.3 Comprehensive	exploration	of	semantic	similarity	measures	

Through	analysis	of	semantic	similarity,	insight	into	the	relationship	between	pathways	

and	biological	processes	has	been	gained.	We	used	the	Wang	and	Resnik	methods	

since	they	have	been	shown	to	perform	well	in	previous	studies,	and	they	cover	both	

information	content	and	topology	based	approaches,	respectively	(see	Section	3.4).	

More	semantic	similarity	methods	are	available	and	a	more	thorough	examination	of	

the	options	could	deepen	insight	into	the	distribution	of	function	within	pathways.	

	

Many	papers	reported	that	the	Resnik	method	exceeded	the	Wang	method,	however,	

in	our	study	the	Resnik	method	performed	poorly.	Possible	reasons	include	the	Resnik	
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method’s	failure	to	consider	the	proximity	of	the	test	terms	to	the	most	informative	

ancestor,	or	the	multiple	instances	of	genes	in	pathways,	or	the	inclusion	of	‘is_a’	

terms.	

	

Lin	(1998)	proposed	a	method	capable	of	calculating	biological	process	similarities	that	

show	strong	agreement	with	sequence	similarity	(Lord	et	al.	2003b;	Guo	et	al.	2006).	

The	Lin	method	is	similar	to	the	Resnik	method	in	that	it	uses	the	doubled	information	

content	of	the	lowest	common	ancestor,	divided	by	the	summed	information	content	

of	the	two	test	terms.	The	Lin	method	is	designed	to	overcome	the	failure	of	the	

Resnik	method	to	consider	the	distance	between	the	test	terms	and	the	most	

informative	common	ancestor.	This	would	provide	insight	into	the	cause	of	the	Resnik	

method’s	poor	performance	in	this	study.	The	Lin	method	could	potentially	exceed	

both	the	Wang	and	Resnik	approaches,	if	the	Resnik	method’s	effectiveness	is	reduced	

by	the	distance	between	test	terms	and	ancestors.	Jiang	&	Conrath	(1997)	produced	a	

similar	method	in	which	the	information	content	of	the	test	terms	is	subtracted	from	

the	doubled	information	content	of	the	most	informative	ancestor,	which	could	also	

produce	promising	results.	Additionally	the	Resnik	method	could	be	reapplied	with	the	

‘is_a’	links	removed.	

	

To	join	sets	of	GO	terms	within	the	links	we	used	the	best	match	average	and	pairwise	

average	methods,	since	these	approaches	incorporated	all	of	the	functions	of	each	

pathway	(see	Section	3.4.2).	However,	some	studies	have	shown	that	the	maximum	

distance	approach	outperforms	other	methods	in	predicting	protein	interactions,	
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making	it	an	interesting	option	for	generating	network	edges	(Jain	&	Bader	2010;	Xu	et	

al.	2008).	Testing	all	semantic	similarity	measures	using	the	maximum	semantic	

similarity	would	be	ideal.	

	

7.4.4 Using	GWAS	to	generate	a	more	complete	set	of	disease	pathways	

In	this	thesis,	established	disease	genes	from	the	human	phenotype	database	(HPD)	

were	used.	However,	more	detailed	SNP	data	is	available.	Methods	such	as	Genome-

wide	association	studies	(GWAS)	are	able	to	identify	pathways	significantly	enriched	

for	disease	genes	in	situations	where	very	low	numbers	of	individual	genes	were	

statistically	significant	(Torkamani	et	al.	2008).	This	is	thought	to	occur	in	many	

common	diseases,	which	arise	from	large	numbers	of	low	risk	genetic	factors,	referred	

to	as	polygenes	(Peng	et	al.	2010;	Torkamani	et	al.	2008).	Polygenic	disease	mutations	

at	multiple	loci	make	small	contributions	to	disease	susceptibility.	For	example,	a	large	

study	into	seven	common	disorders	(bipolar	disorder,	coronary	artery	disease,	Crohn’s	

disease,	hypertension,	rheumatoid	arthritis,	type	1	diabetes	and	type	2	diabetes)	

demonstrated	that	pathways	significantly	enriched	for	disease	SNPs	were	able	to	

explain	disease	phenotypes	(Torkamani	et	al.	2008).	GWAS	is	also	capable	of	

identifying	disease	pathways	in	situations	where	very	low	numbers	of	disease	genes	

are	statistically	significant.	In	another	example,	hypertension	was	associated	with	low	

numbers	of	individual	genes,	however	a	long	list	of	interconnected	enriched	pathways	

were	identified	spanning	processes	such	as	dopamine	signalling,	calcium	signalling,	

glucose	metabolism,	cell-cell	interactions	and	cytoskeletal	remodelling	(Torkamani	et	

al.	2008).		Gene	expression	studies	have	also	been	used	to	identify	KEGG	pathways	



CHAPTER	7:	CONCLUSION	

253	

with	varying	expression	in	Alzheimer’s	patients	(Miller	et	al.	2013).	Different	pathways	

were	enriched	in	different	brain	regions	demonstrating	that	this	method	is	capable	of	

detecting	cell	type	specific	disease	mechanisms.	

	

GWAS	has	the	potential	to	provide	inclusive,	accurate	sets	of	disease	pathway	data,	

which	could	improve	the	mapping	of	disease	modules.	The	application	of	GWAS	to	SNP	

data	covering	all	diseases	is	a	non-trivial	undertaking	that	was	beyond	the	scope	of	this	

thesis,	however	the	development	of	pathway	networks	facilitates	development	in	this	

direction.	
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Chapter	8 	

Conclusion		

In	this	thesis,	we	have	presented	a	new	approach	to	modelling	biological	function,	

which	addressess	many	of	the	issues	affecting	current	used	molecular	functional	

networks.	We	showed	that	networks	generated	using	functionally	annotated	nodes	

can	generate	an	alternative	model	of	cellular	function	and	demonstrated	the	validity	

of	this	method	using	genetic	interaction	and	disease	data.	

	

The	use	of	pathway	networks	to	organise	cellular	processes	based	on	function,	was	

first	developed	in	yeast.	A	network	model	of	functional	pathways	was	generated	and	

major	functional	modules	were	examined,	taking	advantage	of	the	simplified	single	cell	

system.	The	general	structure	of	the	network	made	intuitive	biological	sense	(Section	

4.4.6)	and	genetic	interaction	data	was	used	to	confirm	the	biological	validity	of	the	

network	clusters	generated	(Section	4.4.7).	Application	of	the	pathway	network	to	

model	function	could	be	particularly	applicable	in	situations	where	molecular	

interaction	data	is	sparse	or	uncertain,	or	gene	pleiotropy	is	suspected.	In	addition,	the	

pathway	network	provides	a	solution	in	situations	where	clusters	in	molecular	

networks	have	shown	a	poor	correlation	with	function.	

	

Pathway	multi-functionality	was	examined,	revealing	high	variation	in	the	number	and	

variety	of	functions	that	pathways	facilitate	(Section	4.4.5).	The	ability	of	pathway	

nodes	to	represent	multiple	functions	demonstrated	the	system’s	capability	to	handle	
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biological	complexity.	The	presence	of	pleiotropic	genes	was	confirmed	within	the	

network,	demonstrating	the	ability	of	the	model	to	capture	independent	functional	

instances.	

	

Expansion	of	the	model	into	more	complex	human	data	required	additional	pre-

processing	to	avoid	excessive	pathway	redundancy.	Combinatorial	algorithms	were	

developed	to	facilitate	to	the	competing	aims	of	maximising	coverage,	minimising	

redundancy	and	controlling	size.	Size	homogeneity	is	essential	to	obtain	comparable	

pathway	nodes	and	maintain	functional	specificity.	Three	set	theory	algorithms	are	

presented	to	allow	varying	compromises	between	reducing	pathway	redundancy,	

controlling	pathway	size	and	maximising	coverage.	

	

Using	the	new	pathway	set,	a	network	covering	global	human	function	was	generated.	

Multiple	methods	for	measuring	semantic	similarity	between	pathways	were	explored	

in	order	to	determine	the	optimal	solution	for	generating	edges	in	the	pathway	

network.	The	major	functional	clusters	were	examined	and	validated	using	disease	

data.	Diseases	pathways	were	shown	to	be	more	closely	connected	within	the	network	

than	random	pathways	(Figure	43).	I	addition,	GO	terms	assigned	to	disease	pathways	

reflected	disease	mechanisms	and	phenotypes	found	in	the	literature	(Section	6.4.5).	

The	generation	of	disease	modules	demonstrated	the	potential	of	the	pathway	

network	to	study	disease	mechanisms.	Mapping	disease	genes	into	disease	modules	

provides	new	insights	into	disease	mechanisms,	forming	an	intermediate	between	

molecular	data	and	histological	data.		
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An	advantage	of	pathway	networks	compared	to	molecular	networks,	is	that	they	do	

not	depend	on	the	graph	topology	of	molecular	interactions	to	attribute	function,	

allowing	them	be	used	in	cases	where	clustering	methods	are	ineffective	or	molecular	

interactions	are	poorly	understood.	Additionally,	pathway	networks	do	not	allow	

pleiotropic	genes	and	temporal	interactions	to	distort	the	distribution	of	function	

within	the	network.	They	could	therefore	clarify	situations	where	molecular	networks	

bring	unlikely	pairs	of	functions	into	close	proximity.	The	disadvantage	of	the	pathway	

network	topology	is	that	the	Gene	Ontology	may	not	always	reflect	the	intracellular	

organisation	of	function;	for	example,	regulatory	pathways	cluster	together	rather	

than	clustering	with	the	processes	that	they	control.	Molecular	networks	also	provide	

more	biological	detail,	showing	the	physical	interactions	that	comprise	each	function.	

	

Pathway	networks	and	molecular	networks	have	different	advantages	and	

disadvantages,	making	the	combined	use	of	both	methods	promising.	Although	

developing	the	methods	to	generate	pathway	models	required	intensive	innovation,	

running	analyses	on	an	existing	pathway	network	is	relatively	straightforward	given	

the	small	size	of	the	network.	The	incorporation	of	pathway	network	analysis	with	

molecular	network	analysis	is	therefore	highly	promising	for	functional	studies.	The	

combined	use	of	pathway	and	molecular	networks	is	expected	to	be	more	efficient	

that	generating	co-expression	or	protein	expression/interaction	data	for	individual	

cellular	conditions.
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Appendix	A	

	

Supplementary	materials	for	Disentangling	the	multigenic	and	pleiotropic	nature	of	

function	

	

Supplementary	Table	1	GO	annotations	considered	too	frequent	to	be	informative	(>50%	of	annotations)	and	
removed	from	the	data	set.	

GO	term	 %	Genes		

Biological	process	 100	

cellular	process	 93	

metabolic	process	 80	

cellular	metabolic	process	 77	

primary	metabolic	process	 77	

organic	substance	metabolic	process	 76	
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single	organism	process	 73	

single-organism	cellular	process	 66	

	

Supplementary	Data	1	The	GO	terms	and	associated	genes	within	each	pathway.	The	pathways	are	separated	into	
those	with	pleiotropic	terms,	listed	first,	and	those	without	pleiotropic	terms,	listed	second.	Pleiotropic	GO	terms	
are	listed	following	the	header	“PLEIOTROPIC	FUNCTIONS”,	other	GO	terms	are	listed	after	the	header	“ORIGINAL	
FUNCTIONS”.	If	there	are	any	genes	within	a	pathway	that	are	not	covered	by	GO	terms	those	are	also	listed	
following	the	header	“UNCOVERED	GENES”	

pleiotropic	pathways	

acetaldehyde	biosynthesis	 ORIGINAL	FUNCTIONS	amino	acid	catabolic	process	to	

alcohol	via	Ehrlich	pathway:ADH3,ADH2,ADH1,ADH5,ADH4,PDC1,PDC5,PDC6

	 PLIEOTROPIC	FUNCTIONS

	 fermentation:ADH3,ADH1,ADH5,ADH4,PDC1,PDC5	

dolichyl	glucosyl	phosphate	biosynthesis	 ORIGINAL	FUNCTIONS	UDP-glucose	

metabolic	process:UGP1,PGM2,PGM1	 PLIEOTROPIC	FUNCTIONS	 nucleotide-

sugar	metabolic	process:UGP1,PGM2,PGM1	

ethanol	degradation	IV	 ORIGINAL	FUNCTIONS	acetate	metabolic	

process:ALD6,ALD4,ACS1	 thioester	biosynthetic	process:ACS1,ACS2

	 response	to	reactive	oxygen	species:CTT1,CTA1	 PLIEOTROPIC	FUNCTIONS

	 acetyl-CoA	biosynthetic	process:ACS1,ACS2	 internal	protein	amino	acid	

acetylation:ACS1,ACS2	 UNCOVERED	GENES	 ALD3	

fatty	AcylCoA	Biosynthesis	 ORIGINAL	FUNCTIONS	fatty	acid	metabolic	

process:ACC1,FAA3,HFA1,TSC13	 organic	acid	transport:CTP1,FAA4,FAA1

	 PLIEOTROPIC	FUNCTIONS	 long-chain	fatty-acyl-CoA	metabolic	

process:FAA4,FAA1	

fatty	acid	betaoxidation	I	 ORIGINAL	FUNCTIONS	fatty	acid	metabolic	
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process:FAT1,POT1,ECI1,FOX2,FAA2,FAA3	 long-chain	fatty	acid	

transport:FAA4,FAT1,FAA1	 PLIEOTROPIC	FUNCTIONS	 fatty-acyl-CoA	

metabolic	process:FAA4,FAA1	

glucose	transport	 ORIGINAL	FUNCTIONS	glucose	import:HXK1,GLK1,HXK2

	 single-organism	transport:YBR241C,HXK1,GLK1,VPS73,HXK2	 PLIEOTROPIC	

FUNCTIONS	 mannose	metabolic	process:HXK1,GLK1,HXK2	 UNCOVERED	

GENES	 EMI2	

glutamate	degradation	III	 ORIGINAL	FUNCTIONS	succinyl-CoA	metabolic	

process:LSC2,LSC1	 PLIEOTROPIC	FUNCTIONS	 thioester	metabolic	

process:LSC2,LSC1	 UNCOVERED	GENES	 KGD2,GDH2	

glutathioneglutaredoxin	system	 ORIGINAL	FUNCTIONS	cellular	response	to	

oxidative	stress:GRX3,GRX2,GRX1,GRX5,GRX4,GLR1	 PLIEOTROPIC	FUNCTIONS

	 protein	glutathionylation:GRX1,GLR1	transition	metal	ion	

homeostasis:GRX3,GRX4	 negative	regulation	of	binding:GRX3,GRX4	

glycogen	breakdown	glycogenolysis	 ORIGINAL	FUNCTIONS	single-organism	catabolic	

process:GPH1,PGM2,PGM1,GDB1,PGM3	 energy	reserve	metabolic	

process:GPH1,GDB1,PGM1,PGM2,GLG1,GLG2	 PLIEOTROPIC	FUNCTIONS

	 glucose	1-phosphate	metabolic	process:PGM1,PGM2	

lactose	degradation	 ORIGINAL	FUNCTIONS	galactose	catabolic	

process:GAL10,GAL7,GAL1,PGM2,PGM1	 UDP-glucose	metabolic	

process:PGM1,PGM2,UGP1	 PLIEOTROPIC	FUNCTIONS	 nucleotide-sugar	

metabolic	process:PGM1,PGM2,UGP1	

mannose	degradation	ORIGINAL	FUNCTIONS	fructose	import:HXK1,HXK2	 PLIEOTROPIC	
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FUNCTIONS	 fructose	metabolic	process:HXK1,HXK2	 UNCOVERED	GENES

	 PMI40	

methylglyoxal	catabolism	 ORIGINAL	FUNCTIONS	lactate	metabolic	

process:GLO1,GLO2,DLD3,GLO4	single-organism	metabolic	

process:GLO1,GLO2,DLD3,GLO4,DLD1	 PLIEOTROPIC	FUNCTIONS

	 methylglyoxal	metabolic	process:GLO1,GLO2,GLO4	cellular	aldehyde	metabolic	

process:GLO1,GLO2,GLO4	

other	types	of	Oglycan	biosynthesis	 ORIGINAL	FUNCTIONS	protein	O-linked	

glycosylation:KRE2,PMT6,MNN1,KTR3,KTR1,PMT5,PMT4,MNT3,MNT2,PMT1,PMT

3,PMT2	 PLIEOTROPIC	FUNCTIONS	 regulation	of	response	to	

stress:PMT4,PMT1,PMT2	 protein	exit	from	endoplasmic	

reticulum:PMT1,PMT2	

phase	1		Functionalization	of	compounds	 ORIGINAL	FUNCTIONS	acetate	metabolic	

process:ALD6,ALD5,ALD4,ACS1	 thioester	biosynthetic	process:ACS1,ACS2

	 PLIEOTROPIC	FUNCTIONS	 acetyl-CoA	biosynthetic	process:ACS1,ACS2

	 internal	protein	amino	acid	acetylation:ACS1,ACS2	 UNCOVERED	GENES

	 ERG11	

pyruvate	dehydrogenase	complex	 ORIGINAL	FUNCTIONS	acetyl-CoA	biosynthetic	

process	from	pyruvate:PDA1,LAT1,PDB1	 pyruvate	metabolic	

process:PDA1,LAT1,LPD1,PDB1	 PLIEOTROPIC	FUNCTIONS	 thioester	metabolic	

process:PDA1,LAT1,PDB1	

sucrose	degradation	 ORIGINAL	FUNCTIONS	cellular	carbohydrate	catabolic	

process:SUC2,HXK1,HXK2	 PLIEOTROPIC	FUNCTIONS	 fructose	
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import:HXK1,HXK2	

sulfur	relay	system	 ORIGINAL	FUNCTIONS	tRNA	thio-

modification:SLM3,NCS6,URM1,NCS2,NFS1,UBA4,TUM1	 cellular	response	to	

oxidative	stress:UBA4,URM1,AHP1	 PLIEOTROPIC	FUNCTIONS	 adenosine	

metabolic	process:NFS1,SLM3	

superoxide	radicals	degradation	 ORIGINAL	FUNCTIONS	response	to	reactive	

oxygen	species:CTT1,SOD1,SOD2,CTA1	PLIEOTROPIC	FUNCTIONS	 age-

dependent	general	metabolic	decline:SOD1,SOD2,CTA1	

synthesis	of	UDPNacetylglucosamine	ORIGINAL	FUNCTIONS	amino	sugar	biosynthetic	

process:PCM1,QRI1,GNA1,GFA1	 PLIEOTROPIC	FUNCTIONS	 nucleotide-

sugar	biosynthetic	process:QRI1,GNA1	 fungal-type	cell	wall	

biogenesis:PCM1,GFA1	

thioredoxin	system	 ORIGINAL	FUNCTIONS	cellular	response	to	oxidative	

stress:TRX2,TRX3,TRX1,TRR1,TRR2	 PLIEOTROPIC	FUNCTIONS	 protein	

deglutathionylation:TRX2,TRX1	

transport	to	the	Golgi	and	subsequent	modification	ORIGINAL	FUNCTIONS	COPII-coated	

vesicle	budding:SEC13,SFB2,SEC24,SFB3,SEC31	regulation	of	vesicle	targeting,	to,	

from	or	within	Golgi:SAR1,SEC23	 PLIEOTROPIC	FUNCTIONS	 purine	

ribonucleoside	triphosphate	catabolic	process:SAR1,SEC23	

trehalose	Anabolism	 ORIGINAL	FUNCTIONS	oligosaccharide	biosynthetic	

process:PGM1,PGM2,TPS1,TPS3,TPS2,TSL1,UGP1	 PLIEOTROPIC	FUNCTIONS

	 nucleotide-sugar	metabolic	process:PGM1,PGM2,UGP1	

trehalose	degradation	II	trehalase	 ORIGINAL	FUNCTIONS	cellular	carbohydrate	
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catabolic	process:NTH2,NTH1,ATH1,HXK1,GLK1,HXK2	 PLIEOTROPIC	FUNCTIONS

	 fructose	import:HXK1,HXK2	 UNCOVERED	GENES	 EMI2	

unwinding	of	DNA	 ORIGINAL	FUNCTIONS	double-strand	break	repair	via	break-

induced	

replication:SLD5,CDC45,MCM7,MCM6,MCM5,MCM4,MCM3,MCM2,PSF1,PSF2

	 PLIEOTROPIC	FUNCTIONS	 DNA	duplex	unwinding:MCM7,MCM6,MCM4	

xylulosemonophosphate	cycle	 ORIGINAL	FUNCTIONS	single-organism	

carbohydrate	metabolic	process:DAK1,DAK2,FBP1,TKL1,FBA1	single-organism	

carbohydrate	catabolic	process:DAK1,DAK2,FBA1,TKL1	 glycerol	catabolic	

process:DAK1,DAK2	 PLIEOTROPIC	FUNCTIONS	 response	to	

toxin:DAK1,DAK2	

	

all	other	pathways	

2ketoglutarate	dehydrogenase	complex	 ORIGINAL	FUNCTIONS

	 GO:0000949:PDC1,PDC5,PDC6	 GO:0006103:KGD2,LPD1

	 GO:1901606:PDC1,PDC5,LPD1,PDC6	

5aminoimidazole	ribonucleotide	biosynthesis	I	 ORIGINAL	FUNCTIONS

	 GO:0006164:ADE4,ADE6,ADE8	

aBC	transporters	 ORIGINAL	FUNCTIONS	GO:0065008:STE6,ATM1

	 GO:0015718:PXA2,PXA1	 GO:0071702:STE6,PXA2,PXA1	 UNCOVERED	

GENES	 PDR5	

aBCfamily	proteins	mediated	transport	 ORIGINAL	FUNCTIONS

	 GO:0015849:YCF1,PXA2,BPT1	 GO:0055085:ADP1,PXA2,YCF1
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	 UNCOVERED	GENES	 ATM1	

adaptive	Immune	System	 ORIGINAL	FUNCTIONS

	 GO:0006468:PKC1,SKM1,STE20,CLA4,PKH3,PKH2,PKH1

	 GO:0023052:PKC1,STE20,PKH3,PKH2,PKH1,CDC42	

adenosine	deoxyribonucleotides	ide	novoi	biosynthesis	I	 ORIGINAL	FUNCTIONS

	 GO:0080058:TRX2,TRX1	 GO:0009263:RNR2,RNR1,RNR4

	 GO:0009165:RNR2,YNK1,RNR1,RNR4	GO:0034599:TRX2,TRX3,TRX1	

adenosine	ribonucleotides	ide	novoi	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0033615:ATP14,ATP11,ATP12,ATP19,ATP10

	 GO:0015992:TIM11,ATP8,ATP3,ATP2,ATP1,OLI1,ATP7,ATP6,ATP5,VPH1,ATP20,

ATP14,ATP19,ATP17,ATP16,ATP15,ATP4	 GO:0044260:VMA9,TFP1,ADK1

	 GO:0009206:TIM11,ATP8,ATP3,ATP2,ATP1,OLI1,ATP7,ATP6,ATP5,ATP4,ATP20,

ATP19,ATP17,ATP16,ATP15,ATP14

	 GO:0009127:TIM11,ATP8,ATP3,ATP2,ATP1,OLI1,ATP7,ATP6,ATP5,ADK1,ATP20,

ATP14,ADE13,ATP19,ATP17,ATP16,ATP15,ATP4

	 GO:0044765:TIM11,ATP8,VMA6,ATP4,ATP3,ATP2,ATP1,OLI1,ATP7,ATP6,ATP5,V

PH1,ATP20,VMA2,ATP19,VMA9,ATP17,ATP16,ATP15,ATP14,CUP5

	 GO:0009117:TIM11,ATP8,ATP4,ATP3,ATP2,ATP1,OLI1,ADK2,ATP6,ATP5,ADK1,A

TP7,ATP20,ADE12,ADE13,ATP19,ATP17,ATP16,ATP15,ATP14

	 GO:0006164:TIM11,ATP8,ATP4,ATP3,ATP2,ATP1,OLI1,ATP7,ATP6,ATP5,ADK1,A

TP20,ADE12,ADE13,ATP19,ATP17,ATP16,ATP15,ATP14

	 GO:0055085:TIM11,ATP8,VMA2,ATP3,ATP2,ATP1,OLI1,ATP7,ATP6,ATP5,ATP4,A

TP20,ATP19,VMA9,ATP17,ATP16,ATP15,ATP14	
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aerobic	respiration	linear	view	 ORIGINAL	FUNCTIONS

	 GO:0033108:COX20,COX23,COX12,COX16,COX19

	 GO:0044710:COX8,COX9,YJL045W,COX5A,COX5B,COX20,SDH1,COX3,SDH3,SDH

2,COX6,SDH4,COX4,COX7,COX2,COX15,COX10,COX11,COX13,NDI1,COX1

	 GO:0045333:COX8,COX9,YJL045W,COX5A,COX5B,COX20,SDH1,COX3,SDH3,SDH

2,COX6,SDH4,COX4,COX7,COX2,COX11,COX13,NDI1,COX1

	 GO:0007005:COX19,SDH3,COX18,COX20,COX23,COX12,COX13,COX16	

alphaLinolenic	acid	metabolism	 ORIGINAL	FUNCTIONS

	 GO:0016042:POX1,POT1,TGL4	

amino	acid	and	oligopeptide	SLC	transporters	 ORIGINAL	FUNCTIONS

	 GO:0006810:ESBP6,PTR2,DIC1,AVT1,MCH2,MCH4,MCH5	

amino	acid	synthesis	and	interconversion	transamination	 ORIGINAL	FUNCTIONS

	 GO:0046394:AAT2,SER2,SER1,PRO3,PRO2,GLN1,BNA3,ALT1

	 GO:1901605:AAT2,SER2,SER1,CAR2,PRO3,PRO2,GLN1,ALT1	

apoptosis	 ORIGINAL	FUNCTIONS	GO:0048308:STE20,CLA4,DNM1

	 GO:0006122:CYC7,CYC1	 GO:0035376:STE20,CLA4,SKM1	

arachidonic	acid	metabolism	ORIGINAL	FUNCTIONS

	 GO:0042221:ECM38,HYR1,GRE3,YCF1,GPX1,GPX2	 GO:0015723:YCF1,BPT1

	 UNCOVERED	GENES	 LAP2,SBA1,TGL4	

arginine	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:1901605:CPA1,URA2,CPA2,ARG1,ARG2,ARG3,ARG4,ARG7

	 GO:0006526:CPA2,ARG1,CPA1,ARG4,ARG3

	 GO:0009064:CPA1,URA2,CPA2,ARG1,ARG3,ARG4	 UNCOVERED	GENES
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	 ARG5,6	

arginine	degradation	 ORIGINAL	FUNCTIONS	GO:0006591:CAR2,CAR1

	 GO:0009064:PUT1,CAR1,PRO3	

arginine	degradation	I	arginase	pathway	 ORIGINAL	FUNCTIONS

	 GO:0006591:CAR2,CAR1	 GO:0009065:CAR1,PUT2	

asparagine	biosynthesis	 ORIGINAL	FUNCTIONS	GO:0006529:ASN2,ASN1

	 GO:0009067:AAT2,AAT1,ASN2,ASN1	

asparagine	degradation	 ORIGINAL	FUNCTIONS

	 GO:0009066:AAT2,AAT1,ASP1,ASP3-4	

aspartate	Biosynthesis	 ORIGINAL	FUNCTIONS	GO:0019319:PYC1,PYC2

	 GO:0006532:AAT2,AAT1	

aspartate	degradation	II	 ORIGINAL	FUNCTIONS	GO:0006531:AAT2,AAT1

	 GO:0001300:AAT1,MDH1	 UNCOVERED	GENES	 MDH3,MDH2	

assembly	of	the	ORC	complex	at	the	origin	of	replication	 ORIGINAL	FUNCTIONS

	 GO:0030466:ORC4,ORC5,ORC2,ORC1	

basal	transcription	factors	 ORIGINAL	FUNCTIONS

	 GO:0016070:CCL1,FAP7,TAF13,TAF12,TAF11,TAF10,RAD3,TAF14,TFA1,TFA2,TA

F7,SPT15,TFG2,TFG1,KIN28,SSL2,TAF6,TAF5,SSL1,TAF3,TAF2,TAF1,TAF9,TAF8,TFB

1,TFB2,TFB3,TFB4,TFB5,SUA7,TOA1,TOA2

	 GO:0006366:CCL1,TAF13,TAF12,TAF11,TAF10,RAD3,TAF14,TFA1,TFA2,TAF7,SPT

15,TFG2,TFG1,KIN28,SSL2,TAF6,TAF5,SSL1,TAF3,TAF2,TAF1,TAF9,TAF8,TFB1,TFB2,

TFB3,TFB4,TFB5,SUA7,TOA1,TOA2	

baseExcision	Repair	AP	Site	Formation	 ORIGINAL	FUNCTIONS
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	 GO:0006285:NTG2,NTG1,OGG1	

betaAlanine	metabolism	 ORIGINAL	FUNCTIONS

	 GO:0015939:SPE4,FMS1,PAN6,SPE3

	 GO:0019752:EHD3,PAN6,ALD6,ALD5,ALD4,ALD3,SPE3,UGA1,ALD2,GAD1,SPE4,F

MS1	 GO:0006595:SPE4,FMS1,ALD3,SPE3,ALD2	

bile	acid	and	bile	salt	metabolism	 ORIGINAL	FUNCTIONS

	 GO:0044712:FOX2,TES1,GRE3	 GO:0006631:FAT1,FOX2,TES1

	 GO:0044255:FAT1,FOX2,SUR2,TES1	

bile	salt	and	organic	anion	SLC	transporters	 ORIGINAL	FUNCTIONS

	 GO:0006810:ESBP6,MCH5,YHR032W,MCH2,MCH4,YDR338C	

biosynthesis	of	unsaturated	fatty	acids	 ORIGINAL	FUNCTIONS

	 GO:0006631:TSC13,ELO1,IFA38,SUR4,FEN1,POX1,TES1,OLE1

	 GO:0044255:PHS1,ELO1,OLE1,IFA38,SUR4,FEN1,TSC13,POX1,TES1	

biotin	metabolism	 ORIGINAL	FUNCTIONS	GO:0006768:BIO2,BIO3,BIO4

	 GO:0072330:BIO2,BIO3,CEM1,BIO4	 UNCOVERED	GENES	 BPL1	

biotin	transport	and	metabolism	 ORIGINAL	FUNCTIONS	GO:0006633:ACC1,HFA1

	 GO:0019319:PYC1,PYC2	 UNCOVERED	GENES	 BPL1	

carnitine	shuttle	 ORIGINAL	FUNCTIONS	GO:0006577:YAT2,CAT2,YAT1	

cell	Cycle	Checkpoints	ORIGINAL	FUNCTIONS

	 GO:0065007:TEL1,CDC28,CHK1,CLB3,CLB2,CLB1,CLB6,CLB5,CLB4

	 GO:0000079:CLB3,CLB2,CLB1,CLB6,CLB5,CLB4

	 GO:0022402:CDC28,CHK1,CLB3,CLB2,CLB1,CLB6,CLB5,CLB4

	 GO:0010696:CDC28,CLB3,CLB2,CLB1,CLB5,CLB4	
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chaperoninmediated	protein	folding	ORIGINAL	FUNCTIONS

	 GO:0006457:CCT8,CCT2,CCT3,CCT6,CCT7,CCT4,CCT5,TCP1	

choline	biosynthesis	 ORIGINAL	FUNCTIONS	GO:0006644:CPT1,PCT1,SPO14,EPT1

	 GO:0006656:CPT1,PCT1,EPT1	

citric	acid	cycle	TCA	cycle	 ORIGINAL	FUNCTIONS	GO:0006104:LSC2,LSC1

	 GO:0045333:YJL045W,SDH1,SDH3,SDH2,ACO1,FUM1

	 GO:0006103:KGD2,LPD1	

citrulline	biosynthesis	ORIGINAL	FUNCTIONS

	 GO:1901605:ARG3,PUT1,CAR2,CAR1,PRO2,PRO1

	 GO:0009064:CAR1,ARG3,PUT1,PRO2,PRO1	

coenzyme	A	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0015936:VHS3,CAB2,CAB3,SIS2,CAB4,CAB5	 UNCOVERED	GENES	 LEU5	

colanic	Acid	Building	Blocks	Biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0044723:GAL7,PMI40,GAL1,GAL10,UGP1

	 GO:0033499:GAL7,GAL1,GAL10	 UNCOVERED	GENES	 SEC53	

cyanoamino	acid	metabolism	ORIGINAL	FUNCTIONS	GO:0006730:SHM2,SHM1

	 GO:0006530:ASP1,ASP3-4	 GO:0043603:ECM38,ASP3-4,ASP1	

cysteine	biosynthesis	IV	fungi	ORIGINAL	FUNCTIONS

	 GO:0000096:MET2,MET17,STR3,CYS4,IRC7,CYS3	

cytoplasmic	Ribosomal	Proteins	 ORIGINAL	FUNCTIONS

	 GO:0002181:RPL9A,RPL9B,RPL7A,RPL29,RPL15B,RPL22A,RPL22B,RPL15A,RPS0A

,RPS0B,RPL36A,RPL36B,RPL17A,RPL17B,RPL26A,RPL26B,RPP0,RPL41A,RPL2A,RPL6

A,RPL6B,RPL31A,RPL33B,RPL33A
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	 GO:0042254:RPS13,RPS21A,RPS17A,RPS10B,RPS15,RPS17B,RPS27B,RPL40A,RP

S9A,RPL5,RPL3,RPL35B,RPS11B,RPS5,RPS3,RPS2,RPS31,RPS18B,RPL7B,RPL7A,RPL2

5,RPS19B,RPS19A,RPL8A,RPL11B,RPS9B,RPS6A,RPS0A,RPS0B,RPL8B,RPS14B,RPS2

7A,RPS16B,RPS20,RPS26A,RLP7,RPL34A,RPS26B,RPS24B,RPP0,RPL10,RPS10A,RPS

8B,RPL6A,RPL6B,RPS28B,RPL30,RPS1B,RPS1A,RPS7A,RPS23B,RPS7B,RPL12B,RPS1

4A

	 GO:0006412:RPP1A,RPP1B,RPL9A,RPL9B,RPL7A,RPL29,RPL15B,RPL22A,RPL22B,

RPP2B,RPS0A,RPS0B,RPL36A,RPL36B,RPL17A,RPL17B,RPL26A,RPL26B,RPP2A,RPP0

,RPL10,RPL41A,RPL2A,RPL6A,RPL6B,RPL31A,RPL33B,RPL15A,RPL33A	

cytoplasmic	tRNA	Synthetases	 ORIGINAL	FUNCTIONS

	 GO:0043038:DPS1,TYS1,CDC60,GRS2,YDR341C,GUS1,MES1,KRS1,FRS1,SES1,FRS

2,ALA1,YNL247W,ILS1,THS1,DED81,GLN4	

cytosolic	tRNA	aminoacylation	 ORIGINAL	FUNCTIONS

	 GO:0043038:SES1,DED81,GRS2,GRS1,FRS1,FRS2,ALA1,THS1,VAS1,YNL247W

	 UNCOVERED	GENES	 PPA2	

dAP12	signaling	 ORIGINAL	FUNCTIONS

	 GO:0023052:PKC1,FUS3,TPK3,TPK1,KSS1,TPK2,PKH3,PKH2,PKH1

	 GO:0050794:PKC1,FUS3,TPK3,BCY1,TPK1,KSS1,TPK2,PKH3,PKH2,PKH1	

dTMP	ide	novoi	biosynthesis	mitochondrial	 ORIGINAL	FUNCTIONS

	 GO:0006730:SHM2,SHM1	 UNCOVERED	GENES	 DFR1,CDC21	

de	Novo	Biosyn	of	Pyrimidine	Deoxyribonucleotides	 ORIGINAL	FUNCTIONS

	 GO:0009165:CDC21,CDC8,YNK1,RNR2,RNR3,RNR1,RNR4

	 GO:0009262:DUT1,CDC21,CDC8,RNR2,RNR3,RNR1,RNR4	
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de	Novo	NAD	Biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0009435:NMA1,NMA2,BNA6,QNS1,BNA5,BNA4,BNA2,BNA1

	 GO:0019438:NMA1,NMA2,BNA6,QNS1,BNA5,BNA4,BNA3,BNA2,BNA1	

deadenylationdependent	mRNA	decay	 ORIGINAL	FUNCTIONS

	 GO:0016071:LSM5,LSM6,LSM7,DCS2,LSM1,LSM2,DCS1,KEM1,LSM3	

dehydroDarabinono14lactone	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0070485:ARA2,ALO1	 UNCOVERED	GENES	 ARA1	

dimyoiinositol	134trisphosphate	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0046488:INP54,ARG82,INP53,INP52	

dimyoiinositol	145trisphosphate	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0006644:LSB6,STT4,MSS4,PLC1,PIK1,PIS1

	 GO:0046488:PIS1,STT4,MSS4,PIK1,LSB6	 GO:0046854:STT4,MSS4,PIK1,LSB6	

diphthamide	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0017183:YLR143W,DPH2,DPH1,DPH5,KTI11	

dolichyl	phosphate	Dmannose	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0043413:DPM1,PMI40	 UNCOVERED	GENES	 SEC53	

dolichyldiphosphooligosaccharide	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:1901137:ALG8,ALG9,ALG2,ALG3,ALG1,ALG6,KRE2,ALG7,KTR3,KTR2,KTR1,DI

E2,KTR7,KTR6,KTR4,ALG11,ALG12,ALG13,ALG14,YUR1,DPM1

	 GO:0070085:ALG8,ALG9,DIE2,ALG3,ALG1,ALG6,KRE2,ALG7,KTR3,KTR2,KTR1,KT

R7,KTR6,KTR4,ALG11,ALG12,YUR1,DPM1	

dual	incision	reaction	in	GGNER	 ORIGINAL	FUNCTIONS

	 GO:0090304:SSL2,SSL1,TFB4,RFA1,RAD14,RSE1,KIN28,TFB3,RAD10,TFB1,TFB2,R
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AD4,CCL1,RAD2,RAD1,RAD3,RFA2

	 GO:0036211:SSL2,SSL1,RAD23,RFA1,KIN28,TFB1,TFB2,TFB3,CCL1,TFB4,RAD3,RF

A2	 GO:0070816:SSL2,RAD3,SSL1,KIN28,TFB1,TFB2,TFB3,CCL1,TFB4

	 GO:0006289:SSL2,SSL1,RFA2,RFA1,RAD14,TFB3,RAD10,TFB1,TFB2,RAD4,RAD3,

RAD2,RAD1,TFB4	

endocytosis	 ORIGINAL	FUNCTIONS

	 GO:0016197:VPS20,YPT32,VPS27,VPS24,VTA1,HSE1,RSP5,DID4,STP22,DID2,YPT

52,SNF7,YPT7,VPS60,VPS4	 GO:0044710:YPT7,MSS4,SPO14,VPS4

	 GO:0016192:VPS20,YPT32,VPS24,GCS1,DOA4,RSP5,AGE2,DID4,ENT2,CHC1,SPO

14,YPT52,SNF7,GLO3,YPT7,VPS4

	 GO:0007034:VPS20,VPS27,VPS24,VPS25,HSE1,VPS36,RSP5,DID4,MVB12,STP22,

SNF8,DID2,YPT52,SNF7,VTA1,VPS28,VPS60,VPS4

	 GO:0000122:RME1,VPS36,SNF8,VPS25

	 GO:0043170:SSB2,SSA1,SSA3,SSA2,RSP5,SSA4,DOA4,RIM20

	 GO:0044087:MVB12,RHO1,VTA1,RSP5,CDC42

	 GO:0051649:YPT32,GCS1,SSA1,SSA3,SSA2,RSP5,SSA4,STP22,YPT52,VPS4,VPS20,

VPS27,VPS24,VPS25,DOA4,VPS28,MVB12,GLO3,YPT7,VPS60,SSB2,DID4,SNF8,DID2

,HSE1,SNF7,VPS36,VTA1,AGE2,SPO14	

endosomal	Sorting	Complex	Required	For	Transport	ESCRT	ORIGINAL	FUNCTIONS

	 GO:0007034:VPS20,VPS24,VPS36,VPS25,DID4,SNF8,SNF7	 UNCOVERED	GENES

	 RPS31	

ergosterol	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0016126:ERG4,ERG5,ERG6,ERG7,ERG1,ERG2,ERG3,ERG24,ERG8,ERG9,MVD
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1,ERG20,ERG12,ERG13,ERG10,ERG11,HMG1,HMG2

	 GO:0008610:ERG4,ERG5,ERG6,ERG7,ERG1,ERG2,ERG3,IDI1,ERG24,ERG8,ERG9,

MVD1,ERG20,ERG12,ERG13,ERG10,ERG11,HMG1,HMG2	

ethanol	degradation	I	ORIGINAL	FUNCTIONS

	 GO:0000947:ADH3,ADH2,ADH1,ADH5,ADH4

	 GO:0046496:ADH3,ADH2,ADH1,ADH5,ALD6,ALD4	

ether	lipid	metabolism	 ORIGINAL	FUNCTIONS

	 GO:0006644:AYR1,TGL4,CPT1,ALE1,EPT1,SPO14	 UNCOVERED	GENES	 PAC1	

ethylene	biosynthesis	ORIGINAL	FUNCTIONS	GO:0001320:SOD2,SOD1

	 GO:0015891:FRE3,FRE4	 GO:0035434:FRE2,FRE1,FRE7

	 GO:0055076:FRE3,FRE4,SOD1	 UNCOVERED	GENES	 ARO9	

eukaryotic	Translation	Elongation	 ORIGINAL	FUNCTIONS

	 GO:0002181:RPL9A,RPL9B,RPL7A,RPL29,RPL15B,RPL22A,RPL22B,RPL15A,RPS0A

,RPS0B,RPL36A,RPL36B,RPL17A,RPL17B,RPL26A,RPL26B,RPP0,RPL2A,RPL6A,RPL6B

,RPL31A,RPL31B,RPL33B,RPL33A

	 GO:0042254:RPS13,RPS21A,RPS21B,RPS17A,RPS10B,RPS15,RPS17B,RPS27B,RP

S9B,RPS9A,RPS27A,RPL3,RPS11B,RPS5,RPS3,RPS2,RPS31,RPS18B,RPL7B,RPL7A,RP

L25,RPS19B,RPS19A,RPL11B,RPL11A,RPS6A,RPS0A,RPS0B,RPL8B,RPL8A,RPL5,RPS1

6B,RPS20,RPS26A,RPL34A,RPS26B,RPS24B,RPP0,RPL10,RPS10A,RPS8B,RPL6A,RPL

6B,RPS28B,RPS28A,RPL30,RPS1B,RPS1A,RPS7A,RPS23B,RPS7B,RPL12B

	 GO:0006412:RPL9A,RPL9B,EFT2,RPL7A,RPL29,RPL15B,RPL22A,RPL22B,RPL15A,

RPS0A,RPS0B,RPL36A,RPL36B,RPL17A,RPL17B,RPL26A,RPL26B,RPP0,RPL10,RPL2A,

RPL6A,RPL6B,RPL31A,RPL31B,RPL33B,RPL33A	
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fatty	Acid	Biosynthesis	Initial	Steps	 ORIGINAL	FUNCTIONS

	 GO:0006631:HFA1,FAS2,FAS1,CEM1,OAR1,ACC1,MCT1	

fatty	acid	elongation	 ORIGINAL	FUNCTIONS

	 GO:0006631:ELO1,FAS2,FAS1,CEM1,SUR4,FEN1,IFA38,OAR1,TSC13,ETR1,TES1

	 GO:0044255:PHS1,TSC13,FAS2,FAS1,CEM1,SUR4,ELO1,FEN1,IFA38,OAR1,ETR1,

TES1	

fc	epsilon	receptor	FCERI	signaling	 ORIGINAL	FUNCTIONS

	 GO:0023052:PKC1,FUS3,HOG1,PBS2,KSS1,PKH3,PKH2,PKH1	

fcgamma	receptor	FCGR	dependent	phagocytosis	 ORIGINAL	FUNCTIONS

	 GO:0035382:STE20,CLA4,SKM1	 GO:0007010:CLA4,PKC1,LAS17,CDC42

	 GO:0019236:STE20,CLA4,SPO14,CDC42	 UNCOVERED	GENES	 DPP1	

folate	biosynthesis	 ORIGINAL	FUNCTIONS	GO:0006732:PHO8,DFR1,FOL1,FOL3,FOL2

	 GO:0009396:DFR1,FOL1,FOL3,FOL2

	 GO:0044281:FOL1,MET7,FOL3,FOL2,PHO8,DFR1,ABZ1

	 GO:0008652:DFR1,FOL1,ABZ1,FOL3,FOL2	

folate	polyglutamylation	 ORIGINAL	FUNCTIONS	GO:0006730:SHM2,MET7,SHM1

	 GO:1901605:MET13,FOL3,ADE3,SHM1,DFR1,MIS1

	 GO:0042558:DFR1,MIS1,FOL3,ADE3	

folate	transformations	 ORIGINAL	FUNCTIONS

	 GO:0006730:MTD1,GCV1,GCV2,GCV3,SHM2,SHM1

	 GO:1901605:MTD1,MET13,ADE3,GCV1,GCV2,GCV3,SHM1,FAU1,LPD1,MIS1	

folic	acid	biosynthesis	ORIGINAL	FUNCTIONS

	 GO:0008652:FOL1,FOL3,FOL2,SHM1,MIS1,ABZ2,ABZ1
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	 GO:0006730:SHM2,MET7,SHM1

	 GO:0042558:FOL1,FOL3,ADE3,FOL2,ABZ2,MIS1	

formation	of	the	ternary	complex	and	subsequently	the	43S	complex	 ORIGINAL	

FUNCTIONS

	 GO:0022613:RPS13,RPS21A,RPS21B,RPS17A,RPS8B,RPS15,RPS17B,RPS27B,RPS

9B,RPS9A,RPS27A,RPS11B,RPS5,RPS3,RPS2,RPS31,RPS19B,RPS19A,RPS6A,HCR1,R

PS0A,RPS0B,RPS16B,RPS20,RPS26A,RPS26B,SUI3,SUI2,RPS10A,RPS10B,GCD11,RPS

28B,RPS28A,RPS24B,RPS18B,RPS1B,RPS1A,RPS7A,RPS23B,RPS7B

	 GO:0006413:PRT1,SUI3,SUI2,TIF35,TIF34,GCD11,NIP1	

formation	of	transcriptioncoupled	NER	TCNER	repair	complex	 ORIGINAL	

FUNCTIONS

	 GO:0090304:RAD10,RPB10,SYF1,CCL1,RAD3,RAD2,RAD1,RPB11,RPB4,RPB5,RPB

7,RPB2,RPB3,RPB8,RPB9,DST1,RPO21,RPO26,RAD26,KIN28,RAD28,SSL2,SSL1,TFB1

,TFB2,TFB3,TFB4

	 GO:0006289:RAD26,SSL2,RAD10,TFB3,RPB9,TFB1,TFB2,SSL1,RAD3,RAD2,RAD1,

TFB4

	 GO:0006366:CCL1,RAD3,RAD2,RPB10,RPB11,RPB4,RPB5,RPB7,RPB2,RPB3,RPB8

,RPB9,DST1,RPO21,RPO26,KIN28,SSL2,SSL1,TFB1,TFB2,TFB3,TFB4

	 GO:0006281:RAD26,SSL2,RAD10,TFB3,RPB9,RAD28,TFB1,TFB2,SSL1,RAD3,RAD2

,RAD1,TFB4,RPO21	

gDPmannose	biosynthesis	 ORIGINAL	FUNCTIONS	GO:0019673:PSA1,PMI40

	 GO:0009117:PGI1,PSA1,PMI40	 UNCOVERED	GENES	 SEC53	

gPCR	downstream	signaling	 ORIGINAL	FUNCTIONS
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	 GO:0035556:RHO1,PKC1,ROM2,PDE2,ROM1

	 GO:0051128:RHO1,PKC1,ROM2,CDC24	 UNCOVERED	GENES	 YJU3	

gTP	hydrolysis	and	joining	of	the	60S	ribosomal	subunit	 ORIGINAL	FUNCTIONS

	 GO:0002181:RPL9A,RPL9B,RPL7A,RPL29,RPL15B,RPL22A,RPL22B,RPL15A,RPS0A

,RPS0B,RPL36A,RPL36B,RPL17A,RPL17B,RPL26A,RPL26B,RPP0,RPL2A,RPL6A,RPL6B

,RPL31A,RPL31B,RPL33B,RPL33A

	 GO:0042254:RPS13,RPS21A,RPS21B,RPS17A,RPS10B,RPS15,RPS17B,RPS27B,RP

S9B,RPS9A,RPS27A,RPL3,RPS11B,RPS5,RPS3,RPS2,RPS31,RPS18B,RPL7B,RPL7A,RP

L25,RPS19B,RPS19A,RPL11B,RPL11A,RPS6A,RPS0A,RPS0B,RPL8B,RPL8A,RPL5,RPS1

6B,RPS20,RPS26A,RPL34A,RPS26B,RPS24B,RPP0,RPL10,RPS10A,RPS8B,FUN12,RPL

6A,RPL6B,RPS28B,RPS28A,RPL30,RPS1B,RPS1A,RPS7A,RPS23B,RPS7B,RPL12B	

galactose	catabolism	 ORIGINAL	FUNCTIONS

	 GO:0044712:PGM2,GAL7,PGM1,GAL10,PGM3

	 GO:0019388:PGM2,GAL7,PGM1,GAL10	

gammaglutamyl	cycle	ORIGINAL	FUNCTIONS

	 GO:0006749:GSH2,DUG1,YKL215C,GSH1,ECM38	

gastrinCREB	signalling	pathway	via	PKC	and	MAPK	 ORIGINAL	FUNCTIONS

	 GO:0044700:KSS1,PKC1,FUS3	GO:0007166:KSS1,FUS3	 UNCOVERED	GENES

	 YJU3	

genes	of	Meiotic	Recombination	 ORIGINAL	FUNCTIONS

	 GO:0007126:XRS2,RED1,RAD51,MRE11,HOP1,RAD55,RAD57,MEK1,SPO11,REC1

04,REC114,RAD50,REC107,MEI4,REC102,RAD52	

gluconeogenesis	 ORIGINAL	FUNCTIONS
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	 GO:0044712:FBA1,ENO1,ENO2,PGI1,TPI1,GPM1,MDH3,TDH1,TDH2,TDH3,PGK1

	 GO:0044710:AAT2,PCK1,MDH1,FBA1,ENO1,ENO2,MAE1,PGI1,TPI1,GPM1,MDH

3,MDH2,TDH2,TDH3,PGK1,TDH1,PYC1,PYC2,FBP1

	 GO:0044711:AAT2,PCK1,FBA1,ENO1,PGI1,ENO2,GPM1,MDH2,TDH2,TDH3,PGK

1,TDH1,PYC1,PYC2,FBP1	GO:0015849:CTP1,DIC1,AGC1

	 GO:0006091:TDH2,FBA1,ENO1,ENO2,PGI1,TPI1,GPM1,TDH1,MDH1,TDH3,PGK1

	 GO:0006096:FBA1,ENO1,ENO2,PGI1,TPI1,GPM1,TDH1,TDH2,TDH3,PGK1

	 GO:0006094:PCK1,FBA1,ENO1,FBP1,PGI1,ENO2,GPM1,MDH2,TDH2,TDH3,PGK1

,PYC1,PYC2,TDH1	 UNCOVERED	GENES	 DET1,YOR283W	

glutamate	degradation	I	 ORIGINAL	FUNCTIONS	GO:0043649:GAD1,UGA2

	 GO:0009448:UGA2,UGA1	 UNCOVERED	GENES	 GDH2	

glutamate	degradation	VII	 ORIGINAL	FUNCTIONS	GO:0006104:LSC2,LSC1

	 GO:0045333:SDH1,SDH3,SDH2,SDH4,FUM1	GO:0043648:AAT2,AAT1,FUM1	

glutathioneGlutaredoxin	Redox	Reaction	 ORIGINAL	FUNCTIONS

	 GO:0034599:GPX1,GPX2,GLR1,HYR1	GO:0006749:GTT1,GTT2	

glycerol	biosynthesis	 ORIGINAL	FUNCTIONS	GO:0006116:GPD1,GPD2

	 GO:0006071:HOR2,RHR2,GPD2	

glycerol3phosphate	shuttle	 ORIGINAL	FUNCTIONS	GO:0006116:GUT2,GPD1,GPD2	

glycine	biosynthesis	 ORIGINAL	FUNCTIONS	GO:0006545:AGX1,GLY1

	 GO:0006730:SHM2,SHM1	 GO:0009070:AGX1,GLY1,SHM1	

glycogen	biosynthesis	ORIGINAL	FUNCTIONS

	 GO:0005978:GLC3,GLG1,GLG2,GSY1,GSY2,UGP1	

glycolysis	 ORIGINAL	FUNCTIONS	GO:0016311:DET1,YOR283W
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	 GO:0044710:PYK2,FBA1,PGI1,CDC19,PFK2,PFK1,ENO1,TPI1,GPM1,TDH1,TDH2,T

DH3,ENO2,PGK1

	 GO:0006096:FBA1,PGI1,CDC19,PFK2,PFK1,ENO1,TPI1,GPM1,TDH1,TDH2,TDH3,

ENO2,PGK1	

glycosphingolipid	metabolism	 ORIGINAL	FUNCTIONS	GO:0009141:NPP2,NPP1

	 UNCOVERED	GENES	 ISC1	

glyoxylate	and	dicarboxylate	metabolism	 ORIGINAL	FUNCTIONS

	 GO:0044710:CIT3,MDH1,AGX1,FDH1,SHM2,SHM1,ACO1,MLS1,MDH3,MDH2,ER

G10,CTA1,BNA7,GCV3,GLN1,ICL2	 GO:0006730:GCV3,SHM2,SHM1

	 GO:0032787:FDH1,ICL2,CIT3,MDH3,MLS1

	 GO:0044248:CIT3,CIT1,FDH1,DAL7,MDH3,CTA1,GCV3,ICL2

	 GO:0006099:ACO1,CIT3,MDH1

	 GO:0044281:CIT3,GLN1,AGX1,FDH1,SHM2,SHM1,MLS1,MDH3,ERG10,BNA7,GC

V3,ICL2	 GO:0072329:FDH1,ICL2,CIT3,MDH3	 GO:0000302:CTT1,CTA1	

glyoxylate	cycle	 ORIGINAL	FUNCTIONS	GO:0044248:CIT1,DAL7,CIT3,MDH3

	 GO:0006099:ACO1,CIT3,MDH1	 GO:0055114:ACO1,CIT3,MDH3,MDH1

	 GO:0032787:MDH3,MLS1,CIT3	 UNCOVERED	GENES	 MDH2	

golgi	to	ER	Retrograde	Transport	 ORIGINAL	FUNCTIONS

	 GO:0016236:ARF2,ARF1,GEA2,GEA1	

guanosine	ribonucleotides	ide	novoi	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0009165:YNK1,GUA1	

hexaprenyl	Diphosphate	Biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0045337:IDI1,ERG20	 UNCOVERED	GENES	 COQ1,ARG5,6	



	

310	

histidine	Biosynthesis	ORIGINAL	FUNCTIONS

	 GO:0000105:HIS4,HIS5,HIS6,HIS7,HIS1,HIS2,HIS3	

homocysteine	and	Cysteine	Interconversion	ORIGINAL	FUNCTIONS

	 GO:0006534:STR3,STR2,IRC7,CYS3,CYS4	

homologous	recombination	 ORIGINAL	FUNCTIONS

	 GO:0006310:XRS2,RFA2,RFA1,MRE11,POL32,TOP3,SGS1,RAD57,MUS81,RAD55,

RAD54,RAD52,RAD51,RAD50,RDH54,RAD59

	 GO:0065007:XRS2,RFA2,RFA1,MRE11,TOP3,SGS1,RAD57,RAD54,RAD52,RAD51,

RAD50,RAD59,SEM1

	 GO:0006259:XRS2,POL3,RFA2,RFA1,MRE11,POL32,TOP3,SGS1,RAD57,MUS81,R

AD55,RAD54,POL31,RAD52,RAD51,RAD50,RDH54,RAD59	

homologous	recombination	repair	of	replicationindependent	doublestrand	breaks

	 ORIGINAL	FUNCTIONS

	 GO:0006281:TEL1,MRE11,CDC9,RAD52,RAD51,RAD50,HTA2,HTA1	

hypusine	synthesis	from	eIF5Alysine	ORIGINAL	FUNCTIONS	GO:0045905:ANB1,HYP2

	 GO:0008612:DYS1,LIA1	

import	of	palmitoylCoA	into	the	mitochondrial	matrix	 ORIGINAL	FUNCTIONS

	 GO:0006631:HFA1,CRC1,ACC1	

inosine5phosphate	biosynthesis	II	 ORIGINAL	FUNCTIONS

	 GO:0072521:ADE16,ADE17,ADE1,ADE2,ADE13

	 GO:0006189:ADE16,ADE17,ADE1,ADE13	

inositol	phosphate	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0043647:VIP1,KCS1,IPK1,DDP1,PLC1,ARG82	



	

311	

integration	of	energy	metabolism	 ORIGINAL	FUNCTIONS

	 GO:0006796:TPK1,TPK2,TPK3,PKC1,TAL1	 GO:0010737:TPK1,TPK3,TPK2

	 GO:0035556:TPK1,TPK3,PKC1,TPK2	 GO:0050794:TPK1,TPK3,PKC1,TPK2,BCY1

	 UNCOVERED	GENES	 YBR241C,VPS73	

interconversion	of	2oxoglutarate	and	2hydroxyglutarate	 ORIGINAL	FUNCTIONS

	 GO:1901615:DLD3,ADH4	

ion	transport	by	Ptype	ATPases	 ORIGINAL	FUNCTIONS

	 GO:0006811:PMR1,DRS2,DNF2,DNF1	 GO:0045332:DNF1,DNF2,DRS2	

iron	uptake	and	transport	 ORIGINAL	FUNCTIONS

	 GO:0051453:VMA2,TFP1,STV1,VPH1	GO:0030003:VMA2,TFP1,CUP5,STV1,VPH1

	 GO:0007034:CUP5,VMA6	

isoleucine	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0006520:ILV5,ILV6,ILV1,ILV3,ILV2,CHA1,BAT2,BAT1

	 GO:0009082:ILV5,ILV6,ILV1,ILV3,ILV2,BAT2,BAT1	

kinesins	 ORIGINAL	FUNCTIONS	GO:0007067:KAR3,KIP1,KIP2,KIP3

	 GO:0090307:KIP1,KIP2,KIP3	 UNCOVERED	GENES	 SMY1	

leucine	Degradation	 ORIGINAL	FUNCTIONS

	 GO:0009063:ADH3,ADH2,ADH1,ADH5,ADH4,BAT2,BAT1,ARO10

	 GO:0000947:ADH3,ADH2,ADH1,ADH5,ADH4,ARO10	 UNCOVERED	GENES

	 THI3	

leucine	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0009082:LEU4,LEU2,BAT2,BAT1,LEU1,LEU9	

linoleic	acid	metabolism	 ORIGINAL	FUNCTIONS
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	 GO:0044710:GCY1,TGL4,AAD10,AAD3,AAD6,AAD4,AAD14,YPR1

	 GO:0019568:YPR1,GCY1	 GO:0006081:AAD10,AAD3,AAD6,AAD14,AAD4	

lipases	biosynthesis	 ORIGINAL	FUNCTIONS	GO:0044242:PLC1,ISC1	 UNCOVERED	

GENES	 SPO22,SPO14	

lipid	digestion	mobilization	and	transport	 ORIGINAL	FUNCTIONS

	 GO:0044255:YJU3,NCR1	 UNCOVERED	GENES	 ADP1	

lipidLinked	Oligosaccharide	Biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0006488:ALG2,ALG11,ALG8,ALG6,ALG12

	 GO:0006486:ALG8,ALG9,DIE2,ALG6,ALG11,ALG12

	 GO:1901576:ALG8,ALG9,ALG2,ALG6,ARG7,DIE2,ALG11,ALG12	

lipoic	acid	metabolism	 ORIGINAL	FUNCTIONS	GO:0009249:LIP2,LIP5,AIM22	

lysine	Biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0006520:ARO8,HOM6,HOM2,HOM3,LYS9,LYS21,LYS1,LYS2,LYS20,LYS4

	 GO:0009067:HOM6,HOM2,HOM3,LYS9,LYS21,LYS1,LYS2,LYS20,LYS4

	 GO:0006553:LYS21,LYS20,LYS9,LYS1,LYS2,LYS4	 UNCOVERED	GENES	 LYS5	

lysine	catabolism	 ORIGINAL	FUNCTIONS	GO:0006839:ODC1,ODC2

	 GO:0006103:KGD2,LPD1	 UNCOVERED	GENES	 LYS9	

lysine	degradation	 ORIGINAL	FUNCTIONS	GO:0019413:ALD6,ALD5,ALD4

	 GO:0016571:DOT1,SET1,SET2	 GO:0006553:LYS9,LYS2,LYS1	 UNCOVERED	

GENES	 KGD2,ERG10	

mRNA	Splicing	ORIGINAL	FUNCTIONS

	 GO:0016070:PRP6,RPB10,RPB11,PRP8,RPB4,RPB5,RPB7,RPB2,RPB3,RPB8,RPB9,

SMX2,RPO21,RPO26,SME1,CUS1,SNU114,TFG2,LSM2,HSH49,DIB1,SNU13,CBC2,S
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MX3,STO1,SMB1,HSH155,TFG1,BRR2,SMD1,SMD2,SMD3

	 GO:0000377:CUS1,CBC2,SNU114,BRR2,SMD2,STO1,LSM2,SMB1,PRP6,HSH49,DI

B1,SMD3,PRP8,SMX2,SMX3,HSH155,SMD1,SME1,SNU13

	 GO:0016071:RPB4,CUS1,RPB7,SNU114,CBC2,BRR2,SMD2,STO1,LSM2,SMB1,PR

P6,HSH49,DIB1,SMD3,PRP8,SMX2,SMX3,HSH155,SMD1,SME1,SNU13	

mcresol	degradation	 ORIGINAL	FUNCTIONS

	 GO:0006081:AAD10,AAD3,AAD14,AAD15,AAD4,AAD6	

metabolism	of	folate	and	pterines	 ORIGINAL	FUNCTIONS

	 GO:1901605:DFR1,MET13,MIS1,ADE3	 GO:0006760:DFR1,MIS1,ADE3

	 UNCOVERED	GENES	 FLX1,MET7	

metabolism	of	polyamines	 ORIGINAL	FUNCTIONS

	 GO:0019509:MDE1,MRI1,MEU1,ADI1,UTR4

	 GO:0009067:AAT2,ADI1,UTR4,MEU1,MDE1,MRI1

	 GO:0008652:AAT2,ADI1,SPE2,MRI1,MEU1,SPE3,SPE1,MDE1,UTR4	

methionine	Biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0000096:MET2,MET6,MET17,STR3,HOM6,HOM2,HOM3,IRC7,MHT1,SAM4

	 GO:0009066:MET2,MET6,MET17,STR3,HOM6,HOM2,HOM3,SAM4,THR1	

methionine	Degradation	 ORIGINAL	FUNCTIONS	GO:0006556:SAM2,SAM1

	 GO:0006575:CYS4,SAM1,SAH1,SAM2	

methionine	salvage	pathway	ORIGINAL	FUNCTIONS

	 GO:0019509:MDE1,MRI1,MEU1,ADI1,UTR4

	 GO:0006520:AAT2,ADI1,UTR4,MEU1,MDE1,MRI1,ARO9

	 GO:0009067:AAT2,ADI1,UTR4,MEU1,MDE1,MRI1	
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mevalonate	Pathway	 ORIGINAL	FUNCTIONS

	 GO:0016126:ERG8,MVD1,ERG12,ERG13,ERG10,HMG1,HMG2

	 GO:0008610:IDI1,ERG8,MVD1,ERG12,ERG13,ERG10,HMG1,HMG2	UNCOVERED	

GENES	 ARG5,6	

mismatch	repair	 ORIGINAL	FUNCTIONS

	 GO:0006259:SRS2,MSH6,MSH3,POL3,RFA2,RFA1,RFC5,RFC4,MSH2,EXO1,RFC1,

MLH1,RFC2,CDC9,POL31,RFC3,POL32,PMS1,MLH3,POL30	

mitochondrial	IronSulfur	Cluster	Biogenesis	 ORIGINAL	FUNCTIONS

	 GO:0055072:NFS1,ISU2,ISU1,ARH1,YFH1	 GO:0048250:MRS3,MRS4

	 GO:0016226:NFS1,ISU2,ISU1,YAH1,YFH1,ISD11	

mitochondrial	Protein	Import	ORIGINAL	FUNCTIONS

	 GO:1901576:ATP2,ATP1,OLI1,TAZ1,AAC1,COQ2

	 GO:0016043:SSC1,TIM8,TIM9,TOM5,TOM6,TOM7,TOM22,TOM20,TOM40,JAC1

,PAM16,PAM17,TIM44,TIM21,TIM23,TIM22,PAM18,MIA40,YFH1,POR1,TOM70,M

AS2,MAS1,ACO1,MGE1,TIM10,BCS1,TIM12,TIM13,SAM35,SAM37,TIM17,TIM18,

MDM35,HSP60,COX19,TAZ1,ERV1,TIM54,SAM50,TIM50,COX17

	 GO:0044765:SSC1,TIM8,TIM9,TOM5,TOM6,TOM7,TOM22,TOM20,TOM40,PAM

16,PAM17,TIM44,TIM21,TIM23,TIM22,PAM18,MIA40,ATP2,ATP1,OLI1,POR1,CCS1

,TOM70,MAS2,MAS1,MGE1,TIM10,TIM12,TIM13,SAM35,SAM37,TIM17,TIM18,HS

P60,COX19,ERV1,TIM54,AAC1,SAM50,TIM50,MIR1,COX17

	 GO:0045333:COX5A,MIC17,COX4,JAC1,TAZ1,CYT1,ACO1,DLD1,AAC1,MIC14

	 GO:0044281:CYB2,ATP2,ATP1,OLI1,YFH1,COQ2

	 GO:0072655:SSC1,TIM8,TIM9,TOM5,TOM6,TOM7,TOM22,TOM20,TOM40,PAM
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16,PAM17,TIM44,TIM21,TIM23,TIM22,PAM18,MIA40,TOM70,MAS2,MAS1,HSP60

,TIM10,BCS1,TIM12,TIM13,SAM35,SAM37,TIM17,TIM18,MGE1,ERV1,TIM54,SAM

50,TIM50

	 GO:0006839:SSC1,TIM8,TIM9,TOM5,TOM6,TOM7,TOM22,TOM20,TOM40,PAM

16,PAM17,TIM44,TIM21,TIM23,TIM22,PAM18,MIA40,TOM70,MAS2,MAS1,HSP60

,TIM10,TIM12,TIM13,SAM35,SAM37,TIM17,TIM18,MGE1,ERV1,TIM54,AAC1,SAM

50,TIM50

	 GO:0055085:SSC1,TIM8,TIM9,TOM6,TOM7,TOM22,TOM20,TOM40,PAM16,PA

M17,TIM44,TIM21,TIM23,TIM22,PAM18,MIA40,ATP2,ATP1,OLI1,TOM70,MGE1,TI

M10,TIM12,TIM13,SAM35,SAM37,TIM17,TIM18,HSP60,ERV1,TIM54,SAM50,TIM5

0,MIR1

	 GO:0007005:SSC1,TIM8,TIM9,TOM5,TOM6,TOM7,TOM22,TOM20,TOM40,PAM

16,PAM17,TIM44,TIM21,TIM23,TIM22,PAM18,MIA40,POR1,TOM70,MAS2,MAS1,

ACO1,MGE1,TIM10,BCS1,TIM12,TIM13,SAM35,SAM37,TIM17,TIM18,MDM35,HSP

60,COX19,TAZ1,ERV1,TIM54,SAM50,TIM50,COX17	 UNCOVERED	GENES	 CIT1	

mitochondrial	tRNA	Synthetases	 ORIGINAL	FUNCTIONS

	 GO:0043038:MSK1,VAS1,MSM1,SLM5,ISM1,MST1,HTS1,NAM2,MSW1,MSY1,M

SF1,MSD1,MSE1,MSR1

	 GO:0032543:MSK1,SLM5,ISM1,MST1,HTS1,NAM2,MSW1,MSY1,MSF1,MSD1,M

SE1,MSR1	

mitochondrial	tRNA	aminoacylation	 ORIGINAL	FUNCTIONS

	 GO:0043038:VAS1,GRS2,YDR341C,MSM1,SLM5,MSR1,ISM1,KRS1,DIA4,ALA1,N

AM2,MSW1,GRS1,THS1,MSY1,MSF1,MSD1,MSE1,GLN4	 UNCOVERED	GENES
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	 PPA2	

mitotic	Prophase	 ORIGINAL	FUNCTIONS

	 GO:0000079:CLB3,CLB2,CLB1,CLB6,CLB5,CLB4

	 GO:0010696:CDC28,CLB3,CLB2,CLB1,CLB5,CLB4

	 GO:0051726:CDC28,CLB3,CLB2,CLB1,RIM15,CLB6,CLB5,CLB4	

nAD	biosynthesis	II	from	tryptophan	ORIGINAL	FUNCTIONS

	 GO:0009435:NMA1,NMA2,BNA6,BNA7,QNS1,BNA5,BNA4,BNA2,BNA1	

nAD	salvage	pathway	ORIGINAL	FUNCTIONS	GO:0000183:SIR2,NPT1,PNC1

	 GO:0019363:NMA1,NMA2,NPT1,PNC1,QNS1

	 GO:0019362:NMA1,NMA2,NPY1,QNS1,NPT1,PNC1	

nGlycan	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:1901137:ALG8,ALG9,ALG2,ALG3,ALG1,ALG6,ALG7,STT3,DIE2,CAX4,OST6,OS

T4,OST5,OST2,OST3,DPM1,OST1,SEC59,ALG11,ALG12,ALG13,ALG14,CWH41,WBP

1,SWP1	 GO:0009272:CWH41,ROT2

	 GO:0009100:ALG8,ALG9,ALG3,ALG1,ALG6,ALG7,STT3,DIE2,CAX4,OST6,OST4,OS

T5,OST2,OST3,DPM1,OST1,SEC59,MNS1,ALG11,ALG12,CWH41,WBP1,SWP1

	 GO:0044267:ALG8,ALG9,ALG3,ALG1,ALG6,ALG7,STT3,DIE2,CAX4,OST6,OST4,YL

R057W,OST2,OST3,DPM1,OST1,SEC59,MNS1,ALG11,ALG12,OST5,CWH41,WBP1,S

WP1	 UNCOVERED	GENES	 RFT1	

nglycan	trimming	in	the	ER	and	CalnexinCalreticulin	cycle	 ORIGINAL	FUNCTIONS

	 GO:0009100:CWH41,MNS1	 GO:0030433:MNL1,MNS1	

nicotinamide	riboside	salvage	pathway	I	 ORIGINAL	FUNCTIONS

	 GO:0009435:NMA1,NMA2,NRK1	
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nitrogen	metabolism	 ORIGINAL	FUNCTIONS	GO:0006541:GLT1,GLN1,GDH1,GDH3

	 UNCOVERED	GENES	 GDH2	

nonOxidative	Branch	of	the	Pentose	Pathway	 ORIGINAL	FUNCTIONS

	 GO:0006098:TAL1,GND2,GND1,TKL2,TKL1,RKI1,RPE1,ZWF1	

nonhomologous	endjoining	 ORIGINAL	FUNCTIONS

	 GO:0006303:NEJ1,XRS2,POL4,RAD27,MRE11,YKU70,DNL4,LIF1,RAD50

	 GO:0006302:NEJ1,XRS2,POL4,YKU80,RAD27,MRE11,YKU70,DNL4,LIF1,RAD50	

nonsense	Mediated	Decay	Independent	of	the	Exon	Junction	Complex	 ORIGINAL	

FUNCTIONS

	 GO:0002181:RPL9A,RPL9B,RPL7A,RPL29,RPL15B,RPL22A,RPL22B,RPL15A,RPS0A

,RPS0B,RPL36A,RPL36B,RPL17A,RPL17B,RPL26A,RPL26B,RPP0,RPL2A,RPL6A,RPL6B

,RPL31A,RPL31B,RPL33B,RPL33A

	 GO:0010467:RPS13,RPS21A,RPS21B,RPS23B,RPS27B,RPS9B,RPS9A,RPS27A,RPL

9A,RPL9B,CBC2,RPS11B,RPS18B,NAM7,RPS31,RPL7B,RPL7A,RPL29,RPL17B,SUP45,

RPL15B,RPL22A,RPL22B,RPS6A,RPS0A,RPS0B,RPL36A,RPL8B,RPL8A,RPL36B,RPS16

B,RPL17A,RPS20,RPL26A,RPL26B,RPS24B,RPP0,RPL10,RPS8B,RPL2A,SUP35,RPL6A,

RPL6B,STO1,RPL30,RPS1B,RPS1A,RPL31A,RPL31B,RPL33B,RPL15A,RPL33A

	 GO:0042254:RPS13,RPS21A,RPS21B,RPS17A,RPS10B,RPS15,RPS17B,RPS27B,RP

S9B,RPS9A,RPS27A,RPL3,RPS11B,RPS5,RPS3,RPS2,RPS31,RPS18B,RPL7B,RPL7A,RP

L25,RPS19B,RPS19A,RPL11B,RPL11A,RPS6A,RPS0A,RPS0B,RPL8B,RPL8A,RPL5,RPS1

6B,RPS20,RPS26A,RPL34A,RPS26B,RPS24B,RPP0,RPL10,RPS10A,RPS8B,RPL6A,RPL

6B,RPS28B,RPS28A,RPL30,RPS1B,RPS1A,RPS7A,RPS23B,RPS7B,RPL12B

	 GO:0006412:RPL9A,RPL9B,NAM7,RPL7A,RPL29,SUP45,RPL15B,RPL22A,RPL22B,
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RPL15A,RPS0A,RPS0B,RPL36A,RPL36B,RPL17A,RPL17B,RPL26A,RPL26B,RPP0,RPL1

0,RPL2A,SUP35,RPL6A,RPL6B,RPL31A,RPL31B,RPL33B,RPL33A	

nucleotidebinding	domain	leucine	rich	repeat	containing	receptor	NLR	signaling	

pathways	ORIGINAL	FUNCTIONS	GO:0000491:HSC82,HSP82

	 GO:0071822:PBS2,HSC82,HSP82,SGT1

	 GO:0009628:PBS2,HOG1,HSC82,HSP82	

p75	NTR	receptormediated	signalling	 ORIGINAL	FUNCTIONS

	 GO:0044700:RHO1,HOG1,ROM2,ROM1	 GO:0007264:RHO1,ROM2,ROM1

	 GO:0006970:HOG1,ISC1	

pI3KAKT	activation	 ORIGINAL	FUNCTIONS	GO:0035556:RHO1,PKH3,PKH2,PKH1

	 GO:0000196:PKH3,PKH2,PKH1	

pKBmediated	events	 ORIGINAL	FUNCTIONS	GO:0035556:TOR2,TOR1,PDE2,LST8

	 GO:0001558:KOG1,TOR1,LST8	 GO:0031929:TOR2,TOR1,LST8

	 UNCOVERED	GENES	 RPS6A,RHB1	

pRPP	biosynthesis	 ORIGINAL	FUNCTIONS	GO:0046391:PRS3,PRS2,PRS1,PRS5,PRS4	

pentose	Phosphate	Pathway	2	 ORIGINAL	FUNCTIONS	GO:0006409:SOL2,SOL1

	 GO:0006098:GND2,ZWF1,TKL2,SOL3	

pentose	and	glucuronate	interconversions	 ORIGINAL	FUNCTIONS

	 GO:0005997:XYL2,XKS1	 GO:0019321:XKS1,XYL2,GRE3

	 GO:0005975:PGU1,GRE3,XYL2,RPE1,XKS1,UGP1

	 GO:0019413:ALD6,ALD5,ALD4	

pentose	phosphate	pathway	hexose	monophosphate	shunt	 ORIGINAL	

FUNCTIONS	 GO:0006409:SOL2,SOL1
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	 GO:0006098:TAL1,GND2,GND1,RKI1,RPE1,ZWF1,SOL3	

peroxisomal	lipid	metabolism	ORIGINAL	FUNCTIONS

	 GO:0034440:FOX2,ANT1,TES1,POT1	 GO:0006631:FAT1,FOX2,ANT1,TES1,POT1

	 GO:0015711:FAT1,ANT1,PXA2

	 GO:0032787:ANT1,FAT1,POT1,CAT2,FOX2,TES1	

phase	II	conjugation	 ORIGINAL	FUNCTIONS

	 GO:0006575:ECM38,DUG1,SAH1,GSH2,SAM2,SAM1	 UNCOVERED	GENES

	 UGP1	

phenylalanine	and	Tyrosine	Biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0009072:ARO8,ARO9,PHA2,ARO7	

phenylalanine	metabolism	 ORIGINAL	FUNCTIONS

	 GO:0006520:AAT2,AAT1,ARO8,ARO9,ALD3,ALD2,HIS5,ARO10	

phosphatidate	biosynthesis	I	the	dihydroxyacetone	pathway	 ORIGINAL	

FUNCTIONS	 GO:0008654:SLC1,SCT1,AYR1,GPT2	

phosphatidate	biosynthesis	II	the	glycerol3phosphate	pathway	 ORIGINAL	

FUNCTIONS	 GO:0019637:SLC1,SCT1,GPD1,GPD2,GPT2

	 GO:0008654:SLC1,SCT1,GPT2	

phosphatidylglycerol	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0008654:SLC1,CDS1,SCT1,GPT2,PGS1	

phosphatidylinositol	signaling	system	 ORIGINAL	FUNCTIONS

	 GO:0019637:INM2,INM1,FAB1,VPS34,STT4,CMD1,MSS4,PLC1,PIK1,CDS1,INP54,

PIS1,INP53,INP52

	 GO:0006644:FAB1,VPS34,STT4,CMD1,MSS4,PLC1,PIK1,CDS1,INP54,PIS1,INP53,I
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NP52

	 GO:0046488:FAB1,VPS34,STT4,CMD1,MSS4,PIK1,CDS1,INP54,PIS1,INP53,INP52

	 GO:0006796:INM2,PKC1,FAB1,VPS34,STT4,CMD1,MSS4,PLC1,INM1,PIK1,CDS1,I

NP54,PIS1,INP53,INP52	

phospholipid	Biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0046474:PSD2,CDS1,PSD1,OPI3,CHO1,CHO2,PGS1

	 GO:0008610:PSD2,CDS1,CRD1,OPI3,CHO2,CHO1,PSD1,PGS1	

phospholipid	biosynthesis	Kennedy	pathway	 ORIGINAL	FUNCTIONS

	 GO:0006656:CKI1,CPT1,PCT1,EPT1	

phosphopantothenate	biosynthesis	I	ORIGINAL	FUNCTIONS

	 GO:0015940:ECM31,PAN6,PAN5	 GO:0009108:CAB1,ECM31,PAN6,PAN5	

polyamine	Biosynthesis	 ORIGINAL	FUNCTIONS	GO:0006596:SPE4,SPE2,SPE3,SPE1	

polymerase	switching	on	the	Cstrand	of	the	telomere	 ORIGINAL	FUNCTIONS

	 GO:0006260:POL1,RFC5,RFC4,RFC1,RFC3,RFC2,POL12,POL30,PRI1	

postElongation	Processing	of	the	Transcript	 ORIGINAL	FUNCTIONS

	 GO:0043631:CFT2,CFT1,YSH1	GO:0006397:CBC2,YSH1,STO1,CFT1,CFT2	

proline	biosynthesis	 ORIGINAL	FUNCTIONS	GO:0006561:PRO3,PRO2,PRO1	

proteasome	 ORIGINAL	FUNCTIONS

	 GO:0044267:RPN2,RPN5,RPN6,PUP1,RPN9,PUP3,PUP2,PRE9,PRE8,PRE5,PRE4,P

RE7,PRE6,PRE1,PRE3,PRE2,UMP1,RPT6,RPT4,RPT5,RPT2,RPT3,RPT1,SCL1,SEM1,RP

N12,RPN13,RPN10,RPN11,PRE10

	 GO:0019941:RPN2,RPN6,PUP1,RPN9,PUP3,PUP2,PRE9,PRE8,PRE5,PRE4,PRE7,P

RE6,PRE1,PRE3,PRE2,UMP1,RPT6,RPT4,RPT5,RPT2,RPT3,RPT1,SCL1,SEM1,RPN12,
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RPN13,RPN10,RPN11,PRE10

	 GO:0043248:RPT6,RPN2,RPT5,RPT2,RPT3,RPN6,UMP1,RPN9,RPT1,RPT4,BLM10

,PRE9,PRE4,SEM1,PRE2	

protein	Modifications	ORIGINAL	FUNCTIONS

	 GO:0035268:PMT5,PMT4,PMT6,PMT1,PMT3,PMT2

	 GO:0018342:BET2,RAM2,RAM1,CDC43

	 GO:0006464:BET2,BPL1,RAM1,RAM2,CDC43,PMT5,PMT4,PMT6,PMT1,PMT3,P

MT2	

protein	export	ORIGINAL	FUNCTIONS

	 GO:0072599:SPC1,KAR2,SRP54,SEC11,SEC65,SBH1,SSH1,SEC61,SEC62,SEC63,SS

S1,SRP101,SRP102,SRP14,SRP72,SRP68,SBH2,SPC2,SPC3

	 GO:0006605:SEC65,SEC61,SEC62,SEC63,SRP101,SRP102,SPC1,SBH1,SPC3,SRP54

,OXA1,SSS1,SPC2,SRP14,SRP72,IMP2,IMP1,SEC11,SBH2,SSH1,KAR2,SRP68	

protein	processing	in	endoplasmic	reticulum	 ORIGINAL	FUNCTIONS

	 GO:0051603:YDJ1,UFD2,PNG1,CUE1,DFM1,SEC61,UBC6,NPL4,SCJ1,EPS1,JEM1,S

KP1,SSM4,DOA1,DSK2,CNE1,UFD1,HRD3,YLR057W,SHP1,CDC53,YOS9,RAD23,SEC

13,MNS1,HLJ1,UBX2,KAR2,HRD1,HRT1,UBC4,DER1,UBC7,CDC48,USA1

	 GO:0070972:YDJ1,KAR2,SIL1,SSA1,SSA3,SSA2,SSA4,SEC62,SEC63,LHS1,SSS1,SEC

61,SSH1,SBH2,SBH1,EPS1

	 GO:0006457:YDJ1,JEM1,SSB2,SSE1,CNE1,SSE2,SSA1,SSA3,SSA2,SSA4,EUG1,HSC

82,HSP26,MPD1,SNL1,HSP82,SCJ1,PDI1

	 GO:0044267:YDJ1,UFD2,PNG1,SSE1,CUE1,SSE2,SSA1,PDI1,SSA2,DFM1,SSA4,STT

3,HSC82,UBC6,NPL4,YLR057W,EPS1,JEM1,UFD1,SSM4,DOA1,EUG1,IRE1,DSK2,HSP
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82,OST6,HRD3,OST4,OST5,OST2,CDC53,OST1,YOS9,SSB2,RAD23,OST3,SEC13,MNS

1,SNL1,SEC61,HSP26,SUI2,GCN2,HRD1,MPD1,HLJ1,SCJ1,OTU1,WBP1,KAR2,UBX2,S

SA3,CNE1,SHP1,HRT1,UBC4,UBC5,DER1,UBC7,SKP1,CWH41,CDC48,USA1,SWP1

	 GO:0016043:YDJ1,CUE1,SSA1,SSA3,SSA2,SSA4,SEC62,SEC63,NPL4,SBH2,SBH1,JE

M1,SKP1,HSC82,IRE1,SSS1,DSK2,SEC31,OST6,UBX2,SHP1,OST3,HSP42,HSP82,SEC1

3,SNL1,SEC61,SUI2,SSH1,KAR2,SIL1,HRD1,UBC7,LHS1,SEC24,CDC48

	 GO:0061024:KAR2,SIL1,CUE1,SSA1,SEC13,SSA2,SSA4,SEC62,SEC63,SSA3,SSS1,S

EC24,SEC61,SEC31,SSH1,LHS1,SHP1,SBH2,SBH1,CDC48

	 GO:0006807:SSB2,DOA1,HSC82,GCN2,SEC23,CDC48,NPL4,UFD1,USA1,SAR1

	 GO:0030433:YDJ1,UFD2,CUE1,DFM1,SEC61,UBC6,NPL4,CNE1,JEM1,SSM4,DSK2

,UFD1,HRD3,YLR057W,SHP1,HRD1,YOS9,RAD23,SEC13,MNS1,HLJ1,SCJ1,KAR2,UBX

2,DER1,UBC7,EPS1,CDC48,USA1	GO:0071852:UBC7,HRD1,CWH41,ROT2,IRE1	

purine	Fermentation	 ORIGINAL	FUNCTIONS	GO:0009113:AAH1,ADE3

	 GO:0006760:MIS1,ADE3	 UNCOVERED	GENES	 FDH1	

purine	catabolism	 ORIGINAL	FUNCTIONS	GO:0072521:GUD1,PNP1

	 GO:0000302:CTT1,CTA1	

purine	ribonucleoside	monophosphate	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0006164:ADE4,ADE6,ADE16,ADE17,ADE12,ADE13,GUA1	

purine	ribonucleosides	degradation	to	ribose1phosphate	 ORIGINAL	FUNCTIONS

	 GO:0006400:TAD1,TAD2	 UNCOVERED	GENES	 PNP1	

purine	salvage	ORIGINAL	FUNCTIONS	GO:0072521:APT1,PNP1,ADO1	

pyrimidine	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0072527:URA2,URA3,URA1,DUT1,DCD1,CDC21	
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rNA	Polymerase	I	Transcription	Initiation	 ORIGINAL	FUNCTIONS

	 GO:0006360:RPC40,RPB8,RRN3,RPA135,RPA190,RPC19	

rNA	Polymerase	II	Promoter	Escape	 ORIGINAL	FUNCTIONS

	 GO:0006366:CCL1,RAD3,RPB10,RPB11,RPB4,RPB5,RPB7,RPB2,RPB3,RPB8,RPB9,

RPO21,RPO26,TFG2,TFG1,KIN28,SSL2,SSL1,TFB1,TFB2,TFB3,TFB4	

rNA	Polymerase	III	Transcription	Termination	 ORIGINAL	FUNCTIONS

	 GO:0009304:RPC40,RPB5,RPC53,RPB10,RPB8,RPC11,RPC34,RET1,RPC10,RPC31,

RPC82,RPC25,RPC17,RPC19,RPO31,RPO26	

rNA	polymerase	 ORIGINAL	FUNCTIONS

	 GO:0006351:RPC53,RPA14,RPA34,RPC34,RPC37,RPC10,RPC31,RPB10,RPB11,RP

C19,RPB4,RPB5,RPB7,RPB2,RPB3,RPB8,RPB9,RPA43,RPC82,RPA49,RPO26,RPC40,R

PA135,RET1,RPC25,RPA12,RPO21,RPC11,RPA190,RPO31	

recycling	of	eIF2GDP	 ORIGINAL	FUNCTIONS

	 GO:0006417:GCD6,GCD7,GCD2,GCD1,GCN3,GCD11

	 GO:0006446:GCD6,GCD7,GCN3,GCD2,GCD1	GO:0001731:SUI3,SUI2,GCD11	

regulation	of	APCC	activators	between	G1S	and	early	anaphase	 ORIGINAL	

FUNCTIONS	 GO:0000079:CLB3,CLB2,CLB1,CLB6,CLB5,CLB4

	 GO:0010695:CDC28,CLB3,CLB2,CLB1,CLB5,CLB4,CDH1	

regulation	of	Water	Balance	by	Renal	Aquaporins	 ORIGINAL	FUNCTIONS

	 GO:0007265:TPK1,TPK3,TPK2	GO:0050794:TPK1,TPK3,TPK2,BCY1	 UNCOVERED	

GENES	 YFL054C	

regulation	of	autophagy	 ORIGINAL	FUNCTIONS

	 GO:0032258:VPS30,VAC8,ATG4,ATG3,ATG1,ATG10,ATG11,ATG12,ATG13,ATG1
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4,ATG7,ATG16,ATG5,ATG8

	 GO:0016236:VPS30,VAC8,ATG16,ATG13,VPS15,ATG5,ATG10,ATG3,ATG12,ATG1

,ATG14,ATG7,ATG4,ATG17,ATG8

	 GO:0006914:VPS30,VAC8,ATG16,ATG13,ATG11,VPS15,ATG5,ATG10,ATG3,ATG1

2,ATG1,ATG14,ATG7,ATG4,ATG17,ATG8,VPS34

	 GO:0034727:VPS30,VAC8,ATG16,ATG13,ATG11,ATG5,ATG10,ATG3,ATG12,ATG

1,ATG14,ATG7,ATG4,ATG17,ATG8	

regulatory	RNA	pathways	 ORIGINAL	FUNCTIONS	GO:0006997:GSP2,GSP1

	 UNCOVERED	GENES	 MSN5	

respiratory	electron	transport	ATP	synthesis	by	chemiosmotic	coupling	and	heat	

production	by	uncoupling	proteins	 ORIGINAL	FUNCTIONS

	 GO:0045333:SDH1,SDH3,SDH2,YJL045W	

response	to	elevated	platelet	cytosolic	Ca2	 ORIGINAL	FUNCTIONS

	 GO:0007015:COF1,PKC1,AIP1	GO:0044703:KAR2,SSO2,SSO1

	 GO:0016192:SEC1,COF1,SSO1

	 GO:1902589:PKC1,SSO1,COF1,NTO1,STM1,AIP1	 GO:0030042:COF1,AIP1	

riboflavin	FMN	and	FAD	Biosynthesis	ORIGINAL	FUNCTIONS

	 GO:0042727:FAD1,RIB1,RIB5,RIB3,RIB2,FMN1,RIB4,RIB7	

ribose	and	Deoxyribose	Phosphate	Metabolism	 ORIGINAL	FUNCTIONS

	 GO:0005996:RBK1,TKL2,TKL1,RKI1	 GO:0006098:TKL2,TKL1,RKI1

	 GO:0055086:CDD1,TKL2,TKL1,RKI1	

ribosome	biogenesis	in	eukaryotes	 ORIGINAL	FUNCTIONS

	 GO:0016072:MDN1,UTP6,UTP5,UTP4,RRP7,NOP1,NOG1,UTP9,UTP8,NOP10,NH
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P2,RMP1,GSP1,POP7,NUG1,RIO2,UTP13,RIO1,NOP58,DIP2,NOP56,RNH70,FAP7,N

OB1,UTP10,UTP15,UTP14,TIF6,UTP18,REX2,RNT1,CBF5,POP5,POP4,RCL1,NOP4,RP

P1,SNU13,KEM1,NAN1,PWP2,SNM1,BMS1,RAT1,FCF1,POP3,POP1,UTP22,POP6,E

MG1,UTP21,MPP10

	 GO:0034470:MDN1,UTP6,UTP5,UTP4,RRP7,NOP1,NOG1,UTP9,UTP8,NOP10,NH

P2,RMP1,GSP1,POP7,NUG1,RIO2,UTP13,RIO1,NOP58,DIP2,NOP56,RNH70,FAP7,N

OB1,UTP10,UTP15,UTP14,TIF6,UTP18,REX2,RNT1,CBF5,POP5,MPP10,POP4,RCL1,

NOP4,RPP1,SNU13,NAN1,PWP2,HRR25,SNM1,BMS1,RAT1,FCF1,POP3,POP1,UTP2

2,POP6,EMG1,UTP21,POP8

	 GO:0042254:MDN1,RIA1,UTP5,UTP4,RRP7,NOP1,NOG1,UTP9,UTP8,NOP10,KRE

33,NHP2,RMP1,MTR2,GSP1,POP7,NUG1,RIX7,RIO2,UTP13,RIO1,NMD3,NOP58,DIP

2,NOP56,RNH70,FAP7,NOB1,UTP10,UTP15,UTP14,TIF6,UTP18,REX2,UTP6,RNT1,C

BF5,POP5,POP4,RCL1,NOP4,RPP1,NOG2,MEX67,NAN1,PWP2,HRR25,SDO1,CRM1,

SNM1,BMS1,RAT1,FCF1,AFG2,POP3,POP1,LSG1,UTP22,POP6,EMG1,UTP21,MPP10

,SNU13

	 GO:0006356:CKA1,UTP5,CKA2,UTP9,UTP8,UTP4,UTP15,CKB1,NAN1,UTP10,CKB

2

	 GO:0034660:MDN1,UTP6,UTP5,UTP4,RRP7,NOP1,NOG1,UTP9,UTP8,NOP10,NH

P2,RMP1,GSP1,POP7,NUG1,RIO2,UTP13,RIO1,NOP58,DIP2,NOP56,RNH70,FAP7,N

OB1,UTP10,UTP15,UTP14,TIF6,UTP18,GAR1,RNT1,CBF5,POP5,MPP10,POP4,RCL1,

NOP4,RPP1,SNU13,KEM1,NAN1,PWP2,HRR25,SNM1,BMS1,RAT1,REX2,FCF1,POP3

,POP1,UTP22,POP6,EMG1,UTP21,POP8

	 GO:0071840:MDN1,RIA1,UTP5,UTP4,RRP7,NOP1,NOG1,UTP9,UTP8,NOP10,KRE
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33,NHP2,RMP1,MTR2,GSP1,POP7,NUG1,RIX7,RIO2,GSP2,RIO1,NMD3,NOP58,DIP2

,NOP56,RNH70,FAP7,NOB1,UTP10,UTP15,UTP14,TIF6,UTP18,UTP13,UTP6,RNT1,C

BF5,POP5,POP4,RCL1,NOP4,RPP1,NOG2,MEX67,NAN1,PWP2,HRR25,SDO1,CRM1,

SNM1,BMS1,RAT1,REX2,FCF1,AFG2,POP3,POP1,LSG1,UTP22,POP6,EMG1,UTP21,

MPP10,SNU13	

ruMP	cycle	and	formaldehyde	assimilation	 ORIGINAL	FUNCTIONS

	 GO:0044712:PGI1,GND1,FDH1,GND2	 GO:0006098:PGI1,GND1,GND2	

sNARE	interactions	in	vesicular	transport	 ORIGINAL	FUNCTIONS

	 GO:0006906:SED5,BET1,SNC2,SSO1,SNC1,GOS1,SFT1,BOS1,TLG1,SEC22,TLG2,V

TI1,YKT6,SEC9,VAM3,VAM7

	 GO:0016192:SED5,BET1,PEP12,SNC2,SEC20,SSO1,SNC1,GOS1,BOS1,SFT1,TLG1,

SEC22,TLG2,VTI1,YKT6,USE1,VAM7,SEC9,VAM3,UFE1

	 GO:0006810:SED5,BET1,PEP12,SNC2,SEC20,SSO1,SNC1,GOS1,USE1,BOS1,SFT1,

TLG1,SEC22,TLG2,VTI1,YKT6,SYN8,VAM7,SEC9,VAM3,UFE1

	 GO:0016043:SED5,BET1,PEP12,SNC2,SSO2,SSO1,SNC1,VAM3,GOS1,BOS1,SFT1,

TLG1,SEC22,TLG2,VTI1,YKT6,VAM7,SEC9,UFE1,SPO20

	 GO:0044801:SED5,BET1,SNC2,SSO1,SNC1,GOS1,BOS1,SFT1,TLG1,SEC22,TLG2,V

TI1,YKT6,VAM7,SEC9,VAM3,UFE1	

sRPdependent	cotranslational	protein	targeting	to	membrane	 ORIGINAL	

FUNCTIONS

	 GO:0002181:RPL9A,RPL9B,RPL7A,RPL29,RPL15B,RPL22A,RPL22B,RPL15A,RPS0A

,RPS0B,RPL36A,RPL36B,RPL17A,RPL17B,RPL26A,RPL26B,RPP0,RPL2A,RPL6A,RPL6B

,RPL31A,RPL31B,RPL33B,RPL33A
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	 GO:0033036:RPS28A,SRP54,RPS10B,RPS15,RPS26A,SEC65,RPS19A,RPS26B,SRP

68,RPS18B,SRP101,RPS5,RPS3,RPS2,SRP102,RPS19B,RPS28B,SRP72,RPS0A,RPS0B,

RPS10A

	 GO:0042254:RPS13,RPS21A,RPS21B,RPS17A,RPS10B,RPS15,RPS17B,RPS27B,RP

S9B,RPS9A,RPS27A,RPL3,RPS11B,RPS5,RPS3,RPS2,RPS31,RPS18B,RPL7B,RPL7A,RP

L25,RPS19B,RPS19A,RPL11B,RPL11A,RPS6A,RPS0A,RPS0B,RPL8B,RPL8A,RPL5,RPS1

6B,RPS20,RPS26A,RPL34A,RPS26B,RPS24B,RPP0,RPL10,RPS10A,RPS8B,RPL6A,RPL

6B,RPS28B,RPS28A,RPL30,RPS1B,RPS1A,RPS7A,RPS23B,RPS7B,RPL12B

	 GO:0044085:RPS13,RPS21A,RPS21B,RPS17A,RPS10B,RPS15,RPS17B,RPS27B,SE

C65,RPS9A,RPS27A,RPL3,RPS11B,RPS5,RPS3,RPS2,RPS31,RPS18B,RPL7B,RPL7A,RP

L25,RPS19B,RPS19A,RPL11B,RPS9B,RPS6A,RPS0A,RPS0B,RPL8B,RPL8A,RPL5,RPS16

B,RPS20,RPS26A,RPL34A,RPL11A,RPS26B,RPS24B,RPP0,SRP54,RPL10,RPS10A,RPS

8B,RPL6A,RPL6B,RPS28B,RPS28A,RPL30,RPS1B,RPS1A,RPS7A,RPS23B,RPS7B,RPL1

2B	

sUMOylation	 ORIGINAL	FUNCTIONS	GO:0016925:AOS1,UBC9,UBA2,SMT3

	 GO:0070647:AOS1,UBC9,UBA2,ULP1,SMT3	

salvage	pathways	of	adenine	hypoxanthine	and	their	nucleosides	 ORIGINAL	

FUNCTIONS	 GO:0043094:XPT1,PNP1,HPT1,APT1,AMD1,AAH1

	 GO:0043101:AAH1,XPT1,APT1,AMD1,HPT1

	 GO:0006144:XPT1,APT1,ADO1,AMD1,AAH1	

salvage	pathways	of	pyrimidine	ribonucleotides	 ORIGINAL	FUNCTIONS

	 GO:0034654:FUR1,FCY1,URK1,URH1,YNK1,CDD1

	 GO:0008655:URH1,URK1,FCY1,CDD1,FUR1	
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selenocompound	metabolism	 ORIGINAL	FUNCTIONS

	 GO:0006520:MET3,MET6,MSM1,STR3,STR2,MES1,IRC7,CYS3

	 GO:0006790:MET3,MET6,STR3,STR2,YLL058W,YML082W,IRC7,CYS3

	 UNCOVERED	GENES	 TRR1,TRR2	

serineisocitrate	lyase	pathway	 ORIGINAL	FUNCTIONS

	 GO:0044712:ENO1,ENO2,CIT3,MDH3,GPM1

	 GO:0006091:CIT3,ENO1,ENO2,GPM1,MDH1,ACO1	 GO:0006730:SHM2,SHM1

	 GO:0006094:ENO1,ENO2,GPM1,MDH2	

sphingolipid	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0006665:LIP1,TSC10,AUR1,IPT1,CSG2,LAG1,LCB1,LAC1,LCB2,SUR2,SUR1,SC

S7	

sphingolipid	de	novo	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0006665:LAG1,LCB1,LAC1,LCB2,YSR3,DPL1	 GO:0019722:LCB3,DPL1	

sphingolipid	recycling	and	degradation	 ORIGINAL	FUNCTIONS

	 GO:0006665:YPC1,LCB5,LCB4,YSR3,DPL1,YDC1

	 GO:0019722:LCB3,LCB5,LCB4,DPL1	

spliceosome	 ORIGINAL	FUNCTIONS

	 GO:0016071:SNU66,SYF2,PRP22,RSE1,ECM2,THO2,SNU23,PRP4,LEA1,PRP2,PRP

3,LSM8,SLU7,YSF3,PRP8,PRP9,CUS1,SUB2,SNP1,YHC1,SYF1,HSH155,CLF1,SAD1,S

MD1,RDS3,BUD31,SMX2,SMX3,LSM6,SME1,PRP18,PRP19,PRP31,LSM4,LSM5,PRP

16,LSM7,PRP11,LSM2,LSM3,HSH49,DIB1,CEF1,SNU13,DBP2,PRP38,CWC15,CBC2,P

RP6,STO1,SMB1,PRP46,PRP45,PRP43,ISY1,PRP40,SNU114,BRR2,CDC40,SMD2,SM

D3
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	 GO:0044260:SNU66,SYF2,PRP22,SSA1,SSA3,RSE1,SSA4,THO2,SNU23,PRP4,LEA1

,PRP2,PRP3,LSM8,SLU7,YSF3,PRP8,PRP9,CUS1,SUB2,SNP1,YHC1,SYF1,HSH155,CLF

1,SAD1,SMD1,RDS3,BUD31,SMX2,SMX3,LSM6,SME1,SSB2,SSA2,PRP18,PRP19,PRP

31,LSM4,LSM5,PRP16,LSM7,PRP11,LSM2,ECM2,HSH49,DIB1,CEF1,SNU13,DBP2,LS

M3,PRP38,CWC15,CBC2,PRP6,FAL1,YRA1,STO1,SMB1,PRP46,PRP45,PRP43,ISY1,P

RP40,SNU114,BRR2,CDC40,SMD2,SMD3

	 GO:0090304:SNU66,SYF2,PRP22,RSE1,ECM2,THO2,SNU23,PRP4,LEA1,PRP2,PRP

3,LSM8,SLU7,YSF3,PRP8,PRP9,CUS1,SUB2,SNP1,YHC1,SYF1,HSH155,CLF1,SAD1,S

MD1,RDS3,BUD31,SMX2,SMX3,LSM6,SME1,SSB2,PRP18,PRP19,PRP31,LSM4,LSM5

,PRP16,LSM7,PRP11,LSM2,LSM3,HSH49,DIB1,CEF1,SNU13,DBP2,PRP38,CWC15,CB

C2,PRP6,FAL1,YRA1,STO1,SMB1,PRP46,PRP45,PRP43,ISY1,PRP40,SNU114,BRR2,C

DC40,SMD2,SMD3

	 GO:0010467:SNU66,SYF2,PRP22,SSA1,RSE1,ECM2,THO2,SNU23,PRP4,LEA1,PRP

2,PRP3,LSM8,SLU7,YSF3,PRP8,PRP9,CUS1,SUB2,SNP1,YHC1,SYF1,HSH155,CLF1,SA

D1,SMD1,RDS3,BUD31,SMX2,SMX3,LSM6,SME1,SSB2,PRP18,PRP19,PRP31,LSM4,L

SM5,PRP16,LSM7,PRP11,LSM2,LSM3,HSH49,DIB1,CEF1,SNU13,DBP2,PRP38,CWC1

5,CBC2,PRP6,FAL1,YRA1,STO1,SMB1,PRP46,PRP45,PRP43,ISY1,PRP40,SNU114,BR

R2,CDC40,SMD2,SMD3

	 GO:0000377:SNU66,SYF2,PRP22,RSE1,ECM2,SLU7,PRP6,PRP4,LEA1,PRP2,PRP3,

PRP18,YSF3,PRP8,PRP9,CUS1,LSM8,SUB2,SNP1,YHC1,SYF1,HSH155,CLF1,SAD1,SM

D1,RDS3,SMX2,SMX3,PRP16,SME1,SNU114,PRP19,PRP31,LSM4,LSM5,LSM6,LSM7

,PRP11,LSM2,LSM3,HSH49,DIB1,CEF1,SNU13,PRP38,CWC15,SNU23,STO1,SMB1,C

BC2,PRP46,PRP45,PRP43,ISY1,PRP40,BUD31,BRR2,CDC40,SMD2,SMD3
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	 GO:0006396:SNU66,SYF2,PRP22,RSE1,ECM2,THO2,SNU23,PRP4,LEA1,PRP2,PRP

3,LSM8,SLU7,YSF3,PRP8,PRP9,CUS1,SUB2,SNP1,YHC1,SYF1,HSH155,CLF1,SAD1,S

MD1,RDS3,BUD31,SMX2,SMX3,LSM6,SME1,SSB2,PRP18,PRP19,PRP31,LSM4,LSM5

,PRP16,LSM7,PRP11,LSM2,LSM3,HSH49,DIB1,CEF1,SNU13,DBP2,PRP38,CWC15,CB

C2,PRP6,FAL1,STO1,SMB1,PRP46,PRP45,PRP43,ISY1,PRP40,SNU114,BRR2,CDC40,

SMD2,SMD3

	 GO:0006397:SNU66,SYF2,PRP22,RSE1,ECM2,THO2,SNU23,PRP4,LEA1,PRP2,PRP

3,LSM8,SLU7,YSF3,PRP8,PRP9,CUS1,SUB2,SNP1,YHC1,SYF1,HSH155,CLF1,SAD1,S

MD1,RDS3,BUD31,SMX2,SMX3,LSM6,SME1,PRP18,PRP19,PRP31,LSM4,LSM5,PRP

16,LSM7,PRP11,LSM2,LSM3,HSH49,DIB1,CEF1,SNU13,PRP38,CWC15,CBC2,PRP6,S

TO1,SMB1,PRP46,PRP45,PRP43,ISY1,PRP40,SNU114,BRR2,CDC40,SMD2,SMD3	

sulfate	assimilation	pathway	II	 ORIGINAL	FUNCTIONS

	 GO:0000103:MET10,MET3,MET14,MET16,MET5

	 GO:0006790:MET10,MET3,MET14,MET16,MET17,MET5	

sulfate	reduction	I	assimilatory	 ORIGINAL	FUNCTIONS	GO:0080058:TRX2,TRX1

	 GO:0034599:TRX2,TRX3,TRX1

	 GO:0000103:TRX2,MET3,MET14,MET16,MET5,MET10	

sulfur	degradation	 ORIGINAL	FUNCTIONS	GO:0000096:STR3,MET3,MET6	

superpathway	of	Glutamate	Biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0009084:GLT1,IDP1,GDH1,GLN1,GDH3

	 GO:0006537:GLT1,IDP1,GDH1,GDH3

	 GO:0019752:GDH1,GDH3,GLT1,IDP3,IDP2,IDP1,GLN1	

superpathway	of	acetoin	and	butanediol	biosynthesis	 ORIGINAL	FUNCTIONS
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	 GO:0000949:PDC1,PDC5,PDC6	 GO:0046165:PDC1,BDH1,PDC5,PDC6

	 GO:0009082:ILV6,ILV2	

superpathway	of	allantoin	degradation	in	 ORIGINAL	FUNCTIONS

	 GO:0043605:DUR1,2,DAL1,DAL2	

superpathway	of	chorismate	metabolism	 ORIGINAL	FUNCTIONS

	 GO:0042181:COQ5,COQ6,CAT5,COQ3,COQ2

	 GO:0044283:ARO2,CAT5,COQ5,COQ6,COQ3,COQ2	

superpathway	of	geranylgeranyldiphosphate	biosynthesis	I	via	mevalonate

	 ORIGINAL	FUNCTIONS

	 GO:0006694:ERG8,MVD1,ERG20,ERG12,ERG13,ERG10,HMG1,HMG2

	 GO:0008610:IDI1,ERG8,MVD1,ERG20,ERG12,ERG13,ERG10,BTS1,HMG1,HMG2	

superpathway	of	heme	biosynthesis	ORIGINAL	FUNCTIONS

	 GO:0006778:HEM12,HEM13,HEM14,HEM15,HEM2,HEM3,HEM1,HEM4	

superpathway	of	serine	and	glycine	biosynthesis	I	 ORIGINAL	FUNCTIONS

	 GO:0006730:SHM2,SHM1	 GO:0009070:SER33,SHM1,SER2,SER3,SER1	

superpathway	of	tetrahydrofolate	biosynthesis	and	salvage	 ORIGINAL	

FUNCTIONS	 GO:0008652:FOL1,FOL3,FOL2,DFR1,MIS1,ABZ2,ABZ1

	 GO:0042559:FOL1,FOL3,FOL2,DFR1,ABZ2,MIS1

	 GO:0019438:FOL1,FOL3,FOL2,ADE8,DFR1,MIS1,ABZ2,ABZ1	

switching	of	origins	to	a	postreplicative	state	 ORIGINAL	FUNCTIONS

	 GO:0036388:ORC1,MCM7,MCM6,MCM5,MCM4,MCM3,MCM2,CDC6

	 GO:0022607:RPS31,CDC28,ORC1,MCM7,MCM6,MCM5,MCM4,MCM3,MCM2,C

DC6	 GO:0006302:CDC28,MCM7,MCM6,MCM5,MCM4,MCM3,MCM2	
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synthesis	and	interconversion	of	nucleotide	di	and	triphosphates	 ORIGINAL	

FUNCTIONS	 GO:0009148:CDC8,URA7,URA8

	 GO:0072528:URA6,URA7,CDC8,URA8	 GO:0009133:CDC8,ADK1

	 UNCOVERED	GENES	 GLR1	

synthesis	of	IP2	IP	and	Ins	in	the	cytosol	 ORIGINAL	FUNCTIONS

	 GO:0016311:INM2,INM1,INP51,INP53,INP52

	 GO:0019751:INM2,INM1,INO1	

synthesis	of	PC	 ORIGINAL	FUNCTIONS	GO:0045017:PCT1,PAH1,OPI3

	 GO:1901615:PCT1,CAT2,OPI3	

synthesis	of	PE	 ORIGINAL	FUNCTIONS	GO:0045017:MUQ1,PSD1,PAH1	

synthesis	of	PIPs	at	the	early	endosome	membrane	ORIGINAL	FUNCTIONS

	 GO:0046488:VAC14,FIG4,FAB1,VPS34,LSB6	 GO:0034243:VPS15,VPS34	

synthesis	of	PIPs	at	the	late	endosome	membrane	 ORIGINAL	FUNCTIONS

	 GO:0046488:VAC14,FIG4,FAB1,VPS34,YMR1	GO:0034243:VPS15,VPS34	

synthesis	of	PIPs	at	the	plasma	membrane	 ORIGINAL	FUNCTIONS

	 GO:0046488:LSB6,INP51,YMR1,INP53,INP52

	 GO:0046856:INP51,YMR1,INP53,INP52	

synthesis	of	glycosylphosphatidylinositol	GPI	 ORIGINAL	FUNCTIONS

	 GO:0006506:MCD4,GPI18,GWT1,GPI10,GPI12	

tCA	Cycle		biocyc	 ORIGINAL	FUNCTIONS	GO:0035383:CIT1,LSC2,LSC1

	 GO:0000002:ACO1,KGD2	 GO:0019319:MDH2,PYC2,PYC1

	 GO:0045333:CIT3,SDH1,SDH3,SDH2,SDH4,MDH1,ACO1,FUM1

	 GO:0055114:CIT3,SDH1,SDH3,SDH2,SDH4,MDH3,MDH1,ACO1,FUM1	
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tRNA	splicing	 ORIGINAL	FUNCTIONS	GO:0008033:SEN54,SEN1,TPT1

	 GO:0006388:SEN54,TPT1	 UNCOVERED	GENES	 CPD1	

taurine	and	hypotaurine	metabolism	ORIGINAL	FUNCTIONS	GO:0009063:ECM38,GAD1

	 UNCOVERED	GENES	 GDH2	

thiamin	diphosphate	biosynthesis	IV	eukaryotes	 ORIGINAL	FUNCTIONS

	 GO:0072527:THI80,PHO3,THI6	 UNCOVERED	GENES	 PHO5,DIA3	

thiamine	metabolism	ORIGINAL	FUNCTIONS	GO:0072528:THI80,THI20,THI21,THI6

	 UNCOVERED	GENES	 NFS1	

threonine	and	Methionine	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0009066:MET2,MET6,MET17,HOM6,HOM2,HOM3,THR4,THR1	

threonine	degradation	 ORIGINAL	FUNCTIONS	GO:0006567:CHA1,ILV1

	 GO:0009069:STR2,CHA1,CYS3	 GO:0006790:YML082W,STR2,CYS3	

threonine	degradation	IV	 ORIGINAL	FUNCTIONS	GO:0019413:ALD6,ALD4

	 GO:0046394:ALD6,ALD4,GLY1	

tollLike	Receptors	Cascades	 ORIGINAL	FUNCTIONS

	 GO:0023052:PBS2,KSS1,HOG1,FUS3	 GO:0006888:ERP2,ERP4

	 GO:0016192:ERP3,ERP2,ERP4	

transmission	across	Chemical	Synapses	 ORIGINAL	FUNCTIONS

	 GO:0019752:ALD6,ALD5,ALD4,UGA2,UGA1,CAT2,GLN1

	 GO:0032787:ALD6,ALD5,ALD4,UGA2,UGA1,CAT2	

transport	of	vitamins	nucleosides	and	related	molecules	 ORIGINAL	FUNCTIONS

	 GO:0015711:YEA4,FAT1	 GO:1901264:YEA4,FUN26	

trehalose	Degradation	Low	Osmolarity	 ORIGINAL	FUNCTIONS
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	 GO:0044275:NTH2,ATH1,NTH1,GLK1	GO:0005993:NTH2,ATH1,NTH1

	 GO:0005991:NTH2,ATH1,TPS2,NTH1	

tryptophan	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0000162:TRP2,TRP3,TRP1,TRP4,TRP5	

tyrosine	metabolism	 ORIGINAL	FUNCTIONS

	 GO:0006520:ADH3,ADH2,ADH1,AAT1,ADH5,ADH4,ARO8,ARO9,ALD3,ALD2,UGA

2,HIS5,SFA1,AAT2	 GO:0000947:ADH3,ADH2,ADH1,ADH5,SFA1,ADH4

	 GO:1901565:ADH3,ADH2,ADH1,ADH5,ADH4,ALD3,ALD2,UGA2,SFA1

	 UNCOVERED	GENES	 RMT2	

uDPGlucose	Conversion	 ORIGINAL	FUNCTIONS	GO:0015980:UGP1,PPA2

	 UNCOVERED	GENES	 GAL10	

uMP	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0006207:URA10,URA4,URA5,URA2,URA3

	 GO:1901566:URA4,URA5,URA2,URA3,CPA2,CPA1,URA10	

ubiquinone	Biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0044711:ERG20,CAT5,COQ5,BTS1,COQ6,COQ1,COQ3,COQ2

	 GO:1901663:CAT5,COQ5,COQ6,COQ1,COQ3,COQ2

	 GO:0044283:ERG20,CAT5,COQ5,COQ6,COQ1,COQ3,COQ2	

ubiquinone	and	other	terpenoidquinone	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:0042181:COQ5,COQ6,CAT5,COQ3,COQ2

	 GO:0044281:ARO8,CAT5,COQ5,COQ6,COQ3,COQ2	

urea	cycle	 ORIGINAL	FUNCTIONS	GO:0006591:ARG2,CAR1,ARG4

	 GO:0006525:CPA2,ARG1,CAR1,ARG4,ARG3	
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valine	leucine	and	isoleucine	degradation	 ORIGINAL	FUNCTIONS

	 GO:0046395:EHD3,UGA1,POT1,BAT1,LPD1,BAT2

	 GO:0032787:EHD3,ALD6,ALD5,ALD4,UGA1,POT1,LPD1

	 GO:0044283:ERG10,ALD6,ALD5,ALD4,BAT2,BAT1,LPD1,ERG13	 UNCOVERED	

GENES	 IRC15	

various	types	of	Nglycan	biosynthesis	 ORIGINAL	FUNCTIONS

	 GO:1901137:ALG9,ALG2,ALG3,ALG1,STT3,ANP1,KTR6,VAN1,OCH1,OST6,OST4,

OST5,OST2,OST3,OST1,ALG11,ALG12,ALG13,ALG14,MNN9,MNN2,MNN1,MNN5,

WBP1,SWP1,MNN11,MNN10

	 GO:0009100:ALG9,ALG3,ALG1,STT3,ANP1,KTR6,VAN1,OCH1,OST6,OST4,OST5,

OST2,OST3,OST1,MNS1,ALG11,ALG12,MNN9,MNN2,MNN1,MNN5,WBP1,SWP1,M

NN11,MNN10

	 GO:0044267:ALG9,ALG3,ALG1,STT3,ANP1,KTR6,VAN1,OCH1,OST6,OST4,YLR057

W,OST2,OST3,OST1,MNS1,ALG11,ALG12,MNN9,OST5,MNN2,MNN1,MNN5,WBP1

,SWP1,MNN11,MNN10	

vitamin	B2	riboflavin	metabolism	 ORIGINAL	FUNCTIONS	GO:0009141:NPP2,NPP1

	 GO:0006753:FMN1,NPP2,NPP1	

vitamin	B6	metabolism	 ORIGINAL	FUNCTIONS

	 GO:0008614:SNO2,SNO3,SNZ3,SNO1,SNZ1

	 GO:0072524:BUD16,SNZ1,SNO3,SNZ3,SNO1,SNO2

	 GO:1901566:BUD16,SER1,SNZ1,SNO3,SNZ3,SNO1,SNO2,THR4

	 GO:0007105:BUD17,BUD16	

zymosterol	biosynthesis	 ORIGINAL	FUNCTIONS
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	 GO:0006696:ERG24,ERG27,ERG26,ERG25,ERG11	

	

	

	

	

Supplementary	Figure	1	Network	clusters	created	using	ONECLUST.		
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Appendix	B	

Supplementary	materials	for	Reducing	pathway	redundancy	using	set	theory	

algorithms	

	

	

	Supplementary	Figure	2	A	Set	packing	visualisation	

	

Delete	pathways	that	
overlap	with	selected	
pathway	by	>	Max_O	

Select	highest	scoring	
pathway	

Score	pathways	
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Supplementary	Figure	3	Set	cover	visualisation		

	 	

≥	 GC?	
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Supplementary	Table	2:	Enriched	pathways	from	the	osteoarthritis	dataset	(p-value<0.05).	The	set	cover	column	
indicated	the	23	pathways	that	were	included	in	the	set	cover.	

p-value	 Set	cover	 pathway	

0.0000	 1	 extracellular	matrix	organization	
0.0000	 0	 collagen	biosynthesis	and	modifying	enzymes	
0.0000	 0	 collagen	formation	
0.0000	 1	 gpcr	signaling	g	alpha	q	
0.0000	 1	 signal	transduction	
0.0000	 1	 protein	digestion	and	absorption			homo	sapiens		human	
0.0000	 1	 pathways	in	cancer			homo	sapiens		human	
0.0000	 0	 gpcr	signaling	cholera	toxin	
0.0000	 0	 gpcr	signaling	pertussis	toxin	
0.0000	 0	 class	b	2		secretin	family	receptors	
0.0000	 0	 gpcr	ligand	binding	
0.0001	 0	 gpcr	signaling	g	alpha	s	epac	and	erk	
0.0001	 0	 gpcr	signaling	g	alpha	s	pka	and	erk	
0.0003	 0	 integrin	cell	surface	interactions	
0.0003	 1	 vitamin	d	receptor	pathway	
0.0004	 0	 signaling	by	gpcr	
0.0006	 1	 integrin	
0.0006	 0	 basal	cell	carcinoma			homo	sapiens		human	
0.0010	 0	 ecm	proteoglycans	
0.0015	 1	 wnt	signaling	network	
0.0016	 1	 o	linked	glycosylation	
0.0022	 1	 ecm	receptor	interaction			homo	sapiens		human	
0.0027	 1	 small	cell	lung	cancer			homo	sapiens		human	
0.0067	 1	 wnt	signaling	pathway	
0.0082	 0	 degradation	of	the	extracellular	matrix	
0.0115	 1	 signaling	pathways	regulating	pluripotency	of	stem	cells	homo	sapiens			
0.0136	 1	 beta1	integrin	cell	surface	interactions	
0.0142	 1	 complement	and	coagulation	cascades			homo	sapiens		human	
0.0146	 1	 cell	adhesion	molecules		cams				homo	sapiens		human	
0.0262	 1	 pi3k	akt	signaling	pathway			homo	sapiens		human	
0.0354	 0	 collagen	degradation	
0.0381	 0	 wnt5a	dependent	internalization	of	fzd2		fzd5	and	ror2	
0.0389	 1	 hippo	signaling	pathway			homo	sapiens		human	
0.0415	 0	 gpcr	downstream	signaling	
0.0415	 1	 benzo	a	pyrene	metabolism	
0.0430	 0	 o	linked	glycosylation	of	mucins	
0.0430	 1	 axon	guidance	
0.0430	 1	 prostaglandin	synthesis	and	regulation	
0.0436	 0	 activation	of	trka	receptors	
0.0436	 1	 neuroactive	ligand	receptor	interaction			homo	sapiens		human	
0.0445	 0	 small	ligand	gpcrs	
0.0453	 1	 wnt	signaling	pathway	and	pluripotency	
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	Appendix	C	

Supplementary	materials	for	Mapping	biological	process	relationships	and	disease	

perturbations	within	a	pathway	network	

	

Supplementary	Table	3:	disease	terms	used	to	remove	disease	pathways	from	the	dataset.	

	

action	pathway	 constitutive	 immunodeficiency	 salmonella	

addiction	 cystic	fibrosis	 infection	 schizophrenia	

aflatoxin	 cytoma	 infertility	 sclerosis	

alcohol	 deficiency	 influenza	 shigellosis	

allograft	rejection	 depression	 intolerance	 spinal	cord	injury	

amphetamine	 diabete	 legionellosis	 staphylococcus	

amyloids	 diphtheria	 leishmaniasis	 substance	abuse	

anaesthetic	 disease	 leukemia	 susceptibility	

anthrax	 disorder	 longterm	depression	 syndrome	

anxiety	 disulfiduria	 lupus	 tetanus	

argininemia	 drug	 malaria	 toma	

arsenate	 epsteinbarr	 measles	 toxin	

arthritis	 escherichia	 melanoma	 toxoplasmosis	

asthma	 ethanol	 morphine		cocaine	 trypanosomiasis	

bacterial	 fanconi	anemia	 mutant	 tuberculosis	

biotin	 glioma	 nicotine	 tumor	

bipolar	 hepatitis	 obesity	 tumour	

blastoma	 hereditary	 obsess	 uria	

botulinum	 heroin	 pathogenic	 vibrio	

cancer	 herpes	 pathological	 viral	

carcinoma	 hiv	 pertussis	 virion	

cardiomyopathy	 htlvi	 pharmacodynamics	 virus	

carnosinemia	 hypertrophy	 pharmacokinetics	 west	nile	

cholerae	 hypophosphatasia	 protection	 		

clostridium	 iasis	 resistance	 		

	


