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The problem of exploratory subgroup identification can be broken down into three
steps. The first step is to identify predictive features, the second is to identify the
interesting regions on those features, and the third is to estimate the properties of
the subgroup region, such as subgroup size and the predicted recovery outcome for
individuals belonging to this subgroup. While most work in this field analyses the
full subgroup identification procedure, we provide an in-depth examination of the first
step, predictive feature identification. A feature is defined as predictive if it interacts
with a treatment to affect the recovery outcome.

We compare three prominent methods for exploratory subgroup identification: Vir-
tual Twins (Foster et al. 2011), SIDES (Subgroup Identification based on Differential
Effect Search, Lipkovich et al. 2011) and GUIDE (Generalised, Unbiased Interaction
Detection and Estimation, Loh et al. 2015).

First, we provide a theoretical interpretation of the problem of predictive variable
selection and connect it with the three methods. We believe that bringing different
approaches under a common analytical framework facilitates a clearer comparison
of each. We show that Virtual Twins and SIDES select interesting features in a
theoretically similar way, so that the essential difference between the two is in the
way in which this selection mechanism is implemented in their respective subgroup
identification procedures.

Second, we undertake an experimental analysis of the three. In order to do this,
we apply each method to return a predictive variable importance measure (PVIMs),
which we use to rank features in order of their predictiveness. We then evaluate and
compare how well each method performs at this task.

Although each of Virtual Twins, SIDES and GUIDE either output a PVIM or
require minor adaptations to do so, their strengths and weaknesses as PVIMs had not
been explored prior to this work. We argue that a variable ranking approach is a
particularly good solution to the problem of subgroup identification. Because clinical
trials often lack the power to identify predictive features with statistical significance,
predictive variable scoring and ranking may be more appropriate than a full subgroup
identification procedure. PVIMs enable a clinician to visualise the relative importance
of each feature in a straightforward manner and to use clinical expertise to scrutinise
the findings of the algorithm.

Our conclusions are that Virtual Twins performs best in terms of predictive feature
selection, outperforming SIDES and GUIDE on every type of data set. However,
it appears to have weaknesses in distinguishing between predictive and prognostic
biomarkers.

Finally, we note that there is a need to provide common data sets on which new
methods can be evaluated. We show that there is a tendency towards testing new
subgroup identification methods on data sets that demonstrate the strengths of the
algorithm and hide its weaknesses.
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Chapter 1

Introduction

1.1 Background

Different patients will respond to a treatment in different ways. Factors to do with an

individual’s lifestyle, history and genetic make-up can all affect how well a patient will

receive the treatment [1]. For example, the presence of a certain genetic mutation could

mean that a medicine is metabolised particularly well. In this example, a biomarker

is a binary variable indicating whether the mutation is present or not. In general,

a biomarker is a molecule, gene, or characteristic by which a physiological process

can be identified [2]. A subgroup is then defined by the region on the variable that

corresponds to the presence of the mutation, so that a patient falls into the subgroup

if they have the mutation that makes them particularly responsive to the treatment.

The process of subgroup identification occurs in three main steps:

1. identify features that interact with the treatment to affect recovery outcome,

2. locate the relevant region on the feature, and

3. estimate properties of the subgroup region.

The first step is the focus of this study. If suboptimal features are found at this point,

true subgroups may be overlooked or poorly defined. Therefore, it is important to

understand how a subgroup identification algorithm performs in this task. The second

step is to identify the values of the feature that correspond to a better (or worse)

recovery outcome. In the example of the previous paragraph, the region of interest on

10



1.1. BACKGROUND 11

the binary feature is the indication that the mutation is present as this is associated

with a strong, positive response to the treatment. This step is often combined with

the first so that a feature is selected because the best split on that feature yields a

high importance score. The third and final step is to estimate properties, such as the

number of patients that we expect to have the characteristics of the subgroup and

the expected treatment effect for those patients, where treatment effect is the extent

to which receiving the treatment improves recovery prospects. Additional metrics

calculated at this stage can include standard deviation and bias of the estimated

treatment effect.

We are looking for predictive as opposed to prognostic biomarkers. Predictive

biomarkers are associated with a large treatment effect. Prognostic biomarkers are

associated with enhanced recovery prospects regardless of whether the treatment is

received or not [3]. In other words, predictive biomarkers are important for person-

alised medicine, while prognostic biomarkers provide insights for general patient care.

The nature of the search is exploratory, which means we are generating hypotheses

about predictive biomarkers [4], not testing hypotheses that have already been derived.

The latter is confirmatory subgroup analysis and its purpose is to verify the existence

of a small group of well-defined subgroups [5]; the important features are already

known and subgroups are defined before looking at the data. It is not the focus of

this study. In exploratory subgroup identification, we don’t predefine the subgroups,

because we do not yet know what they are and they are what we are looking for.

Instead, we predefine the method that will be used to search for them. Following

the same justification for requiring a predefinition of subgroups in the confirmatory

process, the predefinition of the method in the exploratory process mitigates against

a biased analysis of the data [6].

Exploratory subgroup analysis is commonly used in Phase III clinical trials [7], but

can be applied in Phase IV too [8]. Both of these stages of clinical trials are larger than

Phase I and II trials, the safety of the new treatment having been established in the

earlier phases. Phase III trials are carried out to compare a new drug against the best

currently available treatment, and Phase IV is for learning more about the side effects

and long-term risks associated with it [1]. Any compelling discoveries made during

exploratory analysis are examined by clinicians for their plausibility. They will need
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to be verified in the more statistically rigorous setting of confirmatory analysis where

the discovered subgroups become the well-defined subgroups that are to be tested.

This is a feature selection problem in so far as we wish to find a small subset of

important features in a potentially large feature set. However, it can also be descried

as an interaction detection problem, because a feature is defined as important if the

influence of both the feature and the treatment on the outcome is not additive but,

rather, the combination of the treatment with the patient characteristic is required for

there to be a differential treatment effect.

In this study we examine three methods of subgroup identification: the Virtual

Twins [9], SIDES [10], and GUIDE [11] methods. Each uses recursive partitioning to

model the data. The hierarchical tree structure of recursive partitioning, or, in other

words, models that are variations on the decision tree, are well suited to modelling

higher-order interactions because the process by which they add nodes to a tree im-

plicitly searches for interactions between features without first requiring that these

interactions are specified, as is the case in, say, linear or logistic regression models [6].

We evaluate and compare them in terms of their power to identify predictive features.

In Chapter 2 each of the methods is outlined in full.

We apply the subgroup identification methods to return predictive variable impor-

tance measures (PVIMs), which are used to rank features in terms of their predic-

tiveness. By shifting from a binary feature selection procedure to a ranking system,

we can then chooose a threshold on the PVIM with reference to clinical, practical or

business considerations. The relative importance of features in a data set can also be

visualised in a way that is easy for clinicians to interpret. We cover the ways in which

each method returns an importance score in a second literature review of Section 2.2.

In Chapter 3, we analyse each method from a theoretical standpoint, looking past

the particularities of each method to focus on the way by which each makes the

biomarker selection. Using a single theoretical framework, we compare how each iden-

tifies predictive biomarkers and distinguishes them from prognostic biomarkers. Then,

in Chapter 4, we compare the performance of each method experimentally, and ex-

amine how the theoretical conclusions play out in practice. Final discussions and

conclusions are provided in Chapter 5.

In each of the three works, [9], [10], [11], the authors propose a synthetic data
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set on which they test their method. The data sets are described in Section 4.1. We

perform a cross-comparison to assess the performance of each of the three methods on

each of the three synthetic data sets.

1.2 Contributions

• We re-express the three methods in a common analytical framework, which per-

mits a better understanding of how each method functions and facilitates a

comparison of the three. This approach brings additional clarity to our un-

derstanding of the mechanism by which each method is picking out predictive

features.

• We apply the Virtual Twins, SIDES and GUIDE methods to return predictive

feature importance scores and analyse the resultant feature rankings. Although

each method can be used as a PVIM, none had been evaluated in this capacity

before.

• We show that the Virtual Twins method outperforms SIDES and GUIDE in

identifying predictive features. However, it is weaker than the other two in dis-

tinguishing predictive from prognostic features, consistently scoring prognostic

features higher than irrelevant features. This indicates that the Virtual Twins

PVIM is not solely a detector of predictiveness and is also picking up prognos-

tiveness.

• We show that there is a need to provide data sets on which all subgroup identifi-

cation methods can be evaluated and benchmarked. We identify a trend of bias

in the choice of model on which a new method is evaluated. From our study of

Virtual Twins, SIDES and GUIDE, we notice that the data model that was se-

lected demonstrates each method in the best light, to the detriment of providing

insight on the weaknesses of each method.



Chapter 2

Literature Review

2.1 Subgroup Identification

The problem of subgroup identification has been approached in diverse ways. We give

a brief overview of the variety of approaches that have been used, and then describe

the Virtual Twins, SIDES and GUIDE methods in detail. In particular, we focus on

the mechanism by which each method identifies predictive features. We will show that

predictive feature identification is essentially a problem of feature selection based on

interaction detection. We focus on binary and continuous response variables in this

work, although there are also procedures for identifying subgroups with longitudinal

and censored data, for example censored survival data [12], [13] and longitudinal and

multiresponse features [14].

To take a traditional, parametric statistical approach to subgroup identification,

a global regression model is fitted to the data. Then, in order to test a variable-

treatment interaction, it must be explicitly specified in the model along with the main

effects of the treatment and the variable in question. Pocock [15] notes that these tests

are likely to be underpowered because most clinical trials tend to only have sufficient

statistical power to detect main effects alone. Another drawback of having to specify

each interaction to be tested is that in data sets with many features a large number of

interaction terms will need to be tested. Multiple significance tests increases the risk of

multiplicity: the more interaction terms that are tested, the greater the probability that

one term will look significant by chance. One way to reduce the risk of false positives is

to use a family-wise error rate control such as the Bonferroni correction. However, this

14



2.1. SUBGROUP IDENTIFICATION 15

is not ideal. Although this reduces the risk of false positives, it necessarily increases

the risk of false negatives. In this setting, penalisation methods such as LASSO [16]

and elastic net [17] can be employed to handle the unwieldy number of features that

may be present in a data set.

A Bayesian model averaging approach is proposed by [18] as an alternative means

of reducing the burden of multiplicity by assigning prior probabilities to the models.

It is possible to incorporate expert knowledge into the modelling process via the pri-

ors with this approach. A drawback of this approach is that it is computationally

intense to construct all possible models in the model space for large data sets. This is

further complicated when dealing with continuous data - only binary predictors were

considered in [18]. Berger uses tree-based methods to construct main-effects models

and subgroup models following the procedure described by Wang [19], limiting tree

depth to one split only. Thus, it is a partitioning method, but it is computationally

expensive to split recursively for a tree depth greater than one.

Recursive partitioning in general has become a popular approach to detecting sub-

groups. Tree structured models are well-suited to detecting interactions, including

non-linear interactions, between features without first having to be specified. They

are nonparametric and can readily handle any variable type.

Interaction Trees [6], implement the CART regression tree with a new splitting

criterion. The criterion proposed by Su et al. separates the data based on the split

that yields the greatest heterogeneity in treatment effect. An integration of paramet-

ric models within tree-structured models is developed in the Model-based Recursive

Partitioning method [20]. At each node in a tree, the model must be specified (eg: a

logistic or linear regression model) along with the variables to be used in the parti-

tioning. The QUalitative INteraction Trees (QUINT) method [21] is motivated by the

idea that it is important to identify patients for which treatment A is better than B,

those for which B is better than A, and those for which there is no great difference

in outcome regardless of whether they receive A or B. The authors use a splitting

criterion that maximises the conjunction of two criteria. The first criterion is that in

the two subgroups where one treatment is more effective than the other, the difference

in outcome between treatments A and B is maximised. The second criterion is that
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membership size in both of these groups should be maximised. This method has ap-

plication in an area that is closely related to subgroup identification, namely, optimal

treatment allocation.

The three methods that are the focus of this study are Virtual Twins [9], SIDES

[22] and GUIDE [11]. They are chosen because they are prominent, recently proposed

methods, and because they have a diversity strengths and weaknesses in their ap-

proaches which can be compared and contrasted. Each method is fully detailed in the

next three sections.

The notation that will be used is outlined now. Let N be the total number of

patients in a clinical trial and X = X1, ..., Xm be the measurements that have been

recorded for each patient. These are potential ‘biomarkers’ or, in statistical terminol-

ogy, they are the ‘features’ or ‘variables’ that will be used to model the outcome. The

recovery outcome, Y , may be binary or continuous. The treatment indicator T indi-

cates whether the new treatment was received, T = 1, or not, T = 0. The treatment

effect, Z, is the difference in recovery outcome when the treatment is received versus

when it is not received. We are looking for regions of the biomarker space, Sx ∈ X,

where there is a large treatment effect.

We use a toy data set to illustrate the differing ways in which Virtual Twins, SIDES

and GUIDE operate when selecting a predictive feature. The simulation is based on

the example used by Loh et. al [11].

Y = 1.9− 1.8I(X1 > 0) + 0.2T + 3.6TI(X1 > 0) + ε, (2.1)

where I(X1 > 0) is the indicator function that takes the value 1 if x1 > 0 and 0

otherwise. There are twenty features in total, X = X1, ..., X20, each following a normal

distribution, N(0, 1). The Gaussian noise in the data set is represented by ε. There

is one predictive feature, X1, and the rest are irrelevant. The subgroup signal in this

example is strong for illustrative purposes. The methods are demonstrated in the best-

case scenario. In reality, and in the data sets that are used for the cross-comparison

of Chapter 4, the subgroup signal is weaker and disguised by a larger amount of noise.



2.1. SUBGROUP IDENTIFICATION 17

2.1.1 Virtual Twins

The Virtual Twins method, as outlined by the authors, proceeds in three main steps.

First, the treatment effect for each individual is estimated. Second, the data subspaces

associated with large treatment effect are identified. At this point, the first and second

steps of subgroup identification, as outlined in the introduction, are performed, so

that both the predictive features and the interesting regions on those features are

selected. Third, in subgroups that look promising, the treatment effect is evaluated

and subgroup size estimated. The details of the Virtual Twins method [9] are now set

out.

In calculating the individual treatment effect zi, the authors focus on a binary

outcome and calculate zi as the difference in recovery prospects for individual i with

biomarker characteristics Xi = x1
i , ..., x

m
i , given they receive the new treatment versus

their prospects of recovery given they receive the control treatment instead,

zi = p̂1Xi
(yi = 1)− p̂0Xi

(yi = 1), (2.2)

where p̂1Xi
(yi = 1) is the estimated probability of recovery given that the new treat-

ment is received and the patient has characteristics Xi. Similarly, p̂0Xi
(yi = 1) is the

probability of recovery given the reference treatment is received. We only observe the

outcome for individual i under one treatment setting, because a patient can receive

either the new or reference treatment, but not both. The Virtual Twins method over-

comes this problem using counterfactual modelling. So if, say, a patient receives the

new treatment, T = 1, then p1Xi
(yi = 1) is estimated from the data, while p0Xi

(yi = 1)

is the counterfactual outcome that is predicted from the data. The authors use a

random forest for this step.

If, the outcome is not binary but, rather, on the continuous scale, for example, if

we are measuring the impact of a new treatment on insulin levels where the outcome

is measured in microunits per millilitre, then individual treatment effect is

zi = y1i − y0i,

the difference between the outcome when the new treatment is received, y0i, and the

outcome when the reference treatment or placebo is received, y0i.

The next step is to determine whether any of the features, X = X1, ..., Xm, are
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predictive of heterogeneities in the newly created latent feature, Z, where such het-

erogeneities exist. A decision tree is used for this step. The tree is grown with two

stopping conditions, the minimal terminal node size and complexity parameter. The

minimal node size parameter ensures that there are enough observations to calculate

reliable statistics and also ensures that we only look for subgroups that are big enough

to be worthwhile from a commercial perspective. The complexity parameter ensures

that a new split on a branch is only added to the tree if the decrease in model lack-of-fit

by doing so is enough of an improvement on the previous split on that branch.

If the predicted treatment effect, Ẑ, in a terminal node of a fully grown tree is

greater than some threshold c, then it is determined to be an interesting subgroup S∗x:

S∗x = {Sx : Ẑterminalnode > c}

Threshold c is a hyperparameter that needs to be specified. The authors suggest

setting it as c = δ + 0.05 or c = δ + 0.1, where δ is the overall treatment effect. Thus

terminal nodes are selected where the predicted treatment effect exceeds the overall

treatment effect by either 0.05 or 0.1 The predictive features are then identified as the

variables that define the path down the tree to the terminal nodes corresponding to

the interesting subgroups.

We use the toy data described by Equation 2.1 to illustrate the workings of the

Virtual Twins method. In Figure 2.1, plot a), we plot predictive feature X1 against

the recovery outcome Y . There is a clear difference in treatment outcome depending

on whether a patient has X1 > 0 or not. A random forest is used to model the

counterfactual outcome and then the individual treatment effect Zi is calculated for

each patient. The resultant Zi is significantly different for patients having X1 > 0

as can be seen from plot b). The Virtual Twins algorithm identifies this interesting

region by minimising the mean squared error in two child nodes that are created by

splitting on X1, which would be somewhere close to 0 in this clearcut example. As a

comparison, similar plots are also provided for an irrelevant feature, X2, in c) and d)

of Figure 2.1. We can see that the individual treatment effect is distributed randomly

with respect to X2 in plot d).

Once the potentially important subgroups have been identified, the properties of

each are estimated, including the differential treatment effect, Q(S∗x), which is the
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Figure 2.1: a) plots the outcome Y against the predictive feature X1 of Equation
2.1; b) plots Z against X1, where Z is the latent feature that has been induced by
taking the difference between the counterfactual outcomes (the virtual twins) for each
individual.
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magnitude of the difference in treatment effect between the subgroup and the full

group

Q(S∗x) =
[
p1S∗

x
(yi = 1)− p0S∗

x
(yi = 1)

]︸ ︷︷ ︸
subgroup S∗ treatment effect

−
[
p1(yi = 1)− p0(yi = 1)

]︸ ︷︷ ︸
overall treatment effect

. (2.3)

The number of individuals falling into the subgroups and therefore experiencing an

enhanced treatment effect is also estimated. A bootstrap bias corrected approach was

observed to yield the most accurate results [9]. These properties are only estimated

for the subgroups of interest and not the whole sample. It is in this sense that the

Virtual Twins method can be considered a local modelling method.

For the variable importance score used in this study, we implement the first step in

its original form and use a random forest instead of a decision tree in the second step,

in order to obtain a PVIM. This is outlined fully in Subsection 2.2.1 on the Virtual

Twins predictive variable importance score.

2.1.2 SIDES

SIDES is a recursive partitioning method that also uses a local modelling approach.

At each step in the search, it identifies potentially interesting regions of the data,

discontinuing the subgroup search in the data falling outside of these regions. SIDES is

based on the idea of bump-hunting in high-dimensional data as proposed by Friedman

and Fisher [23] and developed by Kehl and Ulm [24]. The bump-hunting method is

applicable where we are only interested in local features of the variable space, such

as regions with strong treatment effect [23], and we are not interested in modelling

the outcome for every individual. The ‘uninteresting’ subspaces of the data are peeled

away, and excluded from the rest of the modelling procedure.

SIDES searches directly for predictive biomarkers by choosing the split in the data

to maximise the differential treatment effect between the left and the right child nodes.

If a feature is categorical, all ways of dividing the data in two must be considered. For

example, a categorical feature with three levels, A, B, C, can be grouped in 3 ways:

{A, BC}, {AB, C}, {AC, B}. If the feature is continuous, we limit the split search

space by choosing ten evenly spaced split-points for evaluation. The authors use a

Šidák-based multiplicity adjustment to reduce the selection bias between features that

arises from the fact that some features can be split in more ways than others. For
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ȳ0,rhs
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Identifying Predictive Features with SIDES

Figure 2.2: a) plots the outcome Y against the predictive feature X1 of Equation 2.1;
b) displays the treatment effect of both child nodes; c) and d) display similar plots for
irrelevant feature X2.

example, a categorical feature taking three or more different values can be split in more

ways than a binary variable can. This makes it more likely to be selected for spurious

reasons only, because with more ways to split a feature comes an increased risk that

a feature will look significant by chance alone. Multiplicity adjustment reduces this

false-positive risk.

There are three hyperparameters that need to be set. First, the maximum depth

of the branches is set by L. This has the effect of limiting the maximum number of

variables that are permitted to define a single subgroup to L. Second, is the minimum

subgroup size, S. Similar to the Virtual Twins minimum node size parameter, this

can be determined based on clinical trial or marketing considerations. Third, the

maximum number of split-feature candidates considered at each node M is limited, so

that the algorithm runs more quickly.

A splitting criterion is used to select the M best split-feature combinations, subject
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to the condition that the size of the better subgroup is greater than S. The authors

list three examples of criterion that can be used at this point. We focus on the

first criterion [22] because it utilises a search strategy that maximises the differential

treatment effect between two child nodes of the parent node k. The splitting criterion

is a p-value pk which represents the difference in test statistics of the left and right

arms,

pk = 2

[
1− Φ

(
|tkSx − tkSc

x
|√

2

)]
. (2.4)

Each test statistic, tk, is a one-sided significance test for treatment effect, calculated

in each of the child node subpopulations represented by Sx and Sxc . The data subsets

do not overlap, Sx ∩ Sc
x = ∅, and Sx ∪ Sc

x encompasses the full space of a variable. An

individual i is allocated to the left arm if the value of biomarker xi ∈ Sx and to the

right otherwise. The test statistic represents treatment effect magnitude (the larger the

treatment effect, the larger the test statistic), so that a significant difference between

the statistics of the two child nodes is indicative of a large differential treatment effect.

In this way, the SIDES algorithm directly searches for biomarkers that are predictive.

The best M split-feature combinations are identified using this criterion. Then, for

each of these, the child node data corresponding to the largest test statistic is selected

and the split-feature selection process is repeated in this subset unless maximum depth,

L, has been reached. If a feature is already used in the definition of the node, it cannot

be used again as a splitting variable.

Referring back to the toy example outlined by Equation 2.1, we illustrate how

SIDES operates to identify predictive feature X1 in Figure 2.2. Plot a) reveals that

the subgroup experiencing a large differential treatment effect is distinct from the rest

of the sample. The data subsets of the child nodes are defined by Sx : x1 > −0.02 and

Sc
x : x1 ≤ −0.02, where the threshold of −0.02 is chosen because, as said, a split at

this point yields the largest splitting criterion p-value. We can see from plot b) that

ȳ1,rhs− ȳ0,rhs is much larger in magnitude than ȳ1,lhs− ȳ0,lhs. Plots c) and d) illustrate

that, for irrelevant feature X2, a similar split on the feature does not yield a subgroup

with a large differential treatment effect.

A continuation criterion is applied to splits, which compares the treatment effect

p-value of the parent group, pP , with that of the child node, pC . The child is only kept

if it provides enough of an improvement on the parent: pC < γpP , where γ ∈ [0, 1]
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defines the extent of improvement (reduction) on the parents p-value that the child

node must achieve in order to be retained.

The finalised set of subgroups is defined by the selection criterion. The nature

of the SIDES subgroup search procedure is such that where multiple subgroups are

identified in a data set, they may be overlapping. A candidate subgroup is selected if it

has a p-value smaller than α. A resampling-based method is used to set the adjusted

significance level α. It controls the false-positive rate in the weak sense, in that it

ensures the probability of incorrectly selecting a promising subgroup is no greater

than the nominal level, say 0.05, when no differential treatment benefit is present in

any of the subgroups.

2.1.3 GUIDE

While Virtual Twins and SIDES couple together the variable selection step with the

split selection step, choosing the variable if a split on it maximises an objective func-

tion, GUIDE [11] separates these out. The splitting variable is chosen first and then

best split on that variable is found. The authors show that this prevents selection bias

that arises when there are a variety of variable types in a data set. It has the same

penalising function as the Šidák-based multiplicity adjustment of the SIDES method.

For each biomarker X, predict Y with a simple linear model, Y ∼ T + X. Then

obtain the residuals from the model, R = Y − Ŷ . These residuals can be interpreted

as the variance in outcome Y that is not explained by the main effects of either the

treatment or the biomarker. The authors then binarise the residual values Rb = δ(R >

0). If a biomarker X is categorical, it is unchanged, and, if it is ordinal, it is binarised

as Xb = δ(X > x̄), where x̄ is the mean value of the observations for that biomarker.

Then, at each treatment level, the v degrees of freedom (df) chi-square test statistic

for testing the independence between the residuals and the biomarker is calculated,

Wt(X) = χ(Rb;Xb|T = t), t ∈ (0, 1), (2.5)

where v df are calculated as (Rb − 1)∗(X − 1), R is the number of levels of the

binarised residuals, which will always be two, and X is the number of levels of feature

X. Equation 2.5 is for the case when X is ordinal. When X is binary, we instead

calculate χ(Rb;X|T ).
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Identifying Predictive Features with GUIDE

Figure 2.3: a) plots the outcome Y against the predictive feature X1 of Equation 2.1;
b) plots the residuals against X1; c) and d) split out the points of plot b) according to
whether the treatment is received or not; e) and f) plot irrelevant feature X2 against
residuals, split out by treatment level.
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To combine the chi-square statistics for a feature across each treatment level, the

v-df statistic Wt(X) is first converted to a one-df chi-square quantile using the Wilson-

Hilferty approximation [25]:

y ≈ µ
[
1− 2/(9µ) +

√
(v/µ)

{
(x/v)1/3 − 1 + 2/(9v)

}]3

. (2.6)

Here, x with v-df is converted into a µ-df quantile y. We set µ = 1 to achieve the

one-df chi-square quantile, so we calculate

rt(X) = max

(
0,
[
7/9 +

√
(vt)
{

(Wt(X)/vt)
1/3 − 1 + 2/(9vt)

}]3
)
. (2.7)

Then we sum over the treatment levels,
∑1

t=0 rt(X). This sum is a chi-squared

variable with L-df, where L is 2 in our case. We use the Wilson-Hilferty approximation

a second time to convert it to a one-df chi-square quantile

q(X) = max

(
(0,
[
7/9 +

√
(L)
{

(L−1

1∑
t=0

rt(X))1/3 − 1 + 2/(9L)
}]3
)

(2.8)

This provides a ranking of the biomarkers in terms of their relative predictiveness.

However, this only works when Y is continuous. If Y is a binary outcome, we use

logistic regression instead and calculate the chi-square test statistic via the likelihood

ratio test, comparing the models with and without the interaction term, Y ∼ T +X+

TX and Y ∼ T +X respectively.

The next step is to select the feature with the largest chi-square test statistic and

search for the best split on it. If X∗ is ordinal, choose the split on X∗ that minimises

the sum of squared residuals in the model Y ∼ T . If X∗ is categorical search over all

possible splits in the same way that we do for SIDES.

We demonstrate these principles by applying the GUIDE method to the toy data

set. The results are plotted in Figure 2.3. After modelling the main effects of predictive

feature X1, the residuals are not distributed randomly with respect to X1 and T , as can

be observed in plots c) and d), indicting that there is an interaction between X1 and

T that is affecting the outcome. This will yield a large chi-square statistic. Plotting

the irrelevant feature of the toy data set, X2, against residuals in plots e) and f), we

can see that there is no discernible pattern in the distribution of the residuals with

respect to either X2 or T . The chi-square statistic of this feature will be lower than

that of feature X1. Feature X1 would be selected and the next step is to find the best

split on it.
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The data is recursively split in this way until some stopping conditions are met. The

authors do not specify these conditions but maximum tree depth, minimal terminal

node size or chi-square p-value threshold settings could be used. In [26] the maximum

depth is set to 4.

Treatment means and differences are estimated using bootstrap confidence inter-

vals. The naive point and interval estimates are calculated from the training data and

then the bootstrap method is applied to estimate standard deviations on these point

estimates.

2.2 Predictive Variable Importance Scores

The Virtual Twins, SIDES and GUIDE methods are proposed as full subgroup iden-

tification procedures in so far as they provide solutions for the three steps as outlined

in section 1.1. The first step is to identify predictive features, the second is to find the

interesting regions on those features and the third is to estimate the characteristics of

the subgroup. For this work, we have used them as predictive feature selection meth-

ods, making minor adaptations where necessary. In this section, the predictive variable

importance measures (PVIMs) that are used in the empirical analysis of Chapter 4

are outlined and discussed. A PVIM should identify predictive features and it should

not differentiate between prognostic or irrelevant features.

2.2.1 Virtual Twins

The original Virtual Twins method estimates individual treatment effect by modelling

counterfactuals using random forests and then using a decision tree to identify the

subgroups. To obtain a PVIM, the decision tree is replaced by a second random

forest. The random forest will output a variable importance measure for each feature

X = X1, ..., Xm that can be used to rank the features in terms of their subgroup

predictiveness.

Every tree in the forest is built using a bootstrap sample of the data and the variable

importance score is computed using the out-of-bag (OOB) data. The OOB error is

recorded for each tree. As treatment effect Z is continuous, the error is calculated as

the mean squared error in the prediction of Z. Then, one at a time, each feature is
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permuted and the OOB error recalculated. The difference between the error rate of

the non-permuted data and that of the data with permuted feature X is an indication

of the extent to which X is important for predicting Z. This is done for each feature

in every tree of the random forest, and the average score of each feature across all

trees is taken, normalised by the standard deviation of the differences. So a predictive

feature should have a PVIM value, whereas prognostic and irrelevant features should

have lower values.

2.2.2 SIDES

The authors provide a variable importance score as part of the SIDESscreen method

[10]. To calculate the score, grow the SIDES branches by recursively partitioning the

data, as specified by the original SIDES algorithm [22]. The output is a selection of

branches, each of which represents a subspace of the data that has a large predicted

treatment effect.

The more important a feature, the more final subgroups we expect it to appear

in. Another indicator of importance is the splitting criterion p-value, D. A smaller

p-value is indicative of a larger differential treatment effect. Both of these factors are

accounted for by finding the average contribution of each variable across the total

number of final subgroups. For each of the final subgroups, if variable Xj appears in

a subgroup, then its contribution for that branch is −log(Dj). If it does not appear,

its contribution to that subgroup is set to 0.

In the current study we use bagging with the variable importance scoring algorithm.

For each bootstrap, the SIDES model is built on the bootstrap sample and the variable

importance score is then calculated from the OOB sample, much like the process that

is used to calculate the variable importance score in the Virtual Twins method. This

reduces the false positive rate. An additional benefit is that this approach aligns

more closely to the variable importance score calculation of Virtual Twins, making

the important differences between the two methods more easily comparable.
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2.2.3 GUIDE

A variable importance score for the GUIDE method is described in [11] with further

details provided in [26]. The recursive model is built by following the process that is

described in Subsection 2.1.3. At each node k of the fully grown tree we then calculate

q(X) for each feature. The variable importance measure (VIM) for feature X∗ is then

calculated by summing up the q(X∗) scores at each of the nodes weighted by the node

size:

VG(X∗) =
K∑
k=1

nkχ
2
1,k(X∗) (2.9)

Note that here k represents the node, not a non-centrality parameter of a chi-

square distribution. In this study we take a simpler approach and rank the features

based on one-df chi-square quantiles on the full sample only. We do not use recursive

partitioning. In experiments, this approach worked as well for the purpose of ranking

predictive features. This aligns with the observations of Hooker [27] that a d-way in-

teraction need only be checked for if all the (d−1)-interactions of which it is comprised

are significant.

GUIDE could be improved by allowing for non-linear main effects. However, the

data sets on which it will be tested have linear main effects, so it suffices to use the

simple approach of modelling the main effects as linear for now. The results can be

interpreted as being attained in the optimum setting as far as the main effects are

concerned.
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2.3 Subgroup Identification Algorithms

Virtual Twins, Subsection 2.1.1

1. Estimate the true and counterfactual outcomes for each individual under the

treatment received and the alternative treatment respectively (random forest).

2. Calculate individual treatment effect Z as the difference between the outcome

when the treatment is received and when it is not received.

3. Predict Z using the X features (decision tree) and select terminal with a predic-

tion Ẑ > c.

4. Estimate the differential treatment effect and subgroup membership in the se-

lected subgroups.

SIDES, Subsection 2.1.2

1. Select the best M split-feature combinations with splitting criterion, Eq. 2.4.

2. For each split-feature combination, select the child node data with the larger

treatment effect test statistic.

3. Recursively split the data in this way until max depth of branch is reached or

another split does not provide sufficient improvement on the p-value of the parent

node.

4. The final set of subgroups is identified by the selection criterion. A candidate

subgroup is selected in this way if p < α where α is set using a resampling-based

method.

GUIDE, Subsection 2.1.3

1. For each feature Xi, i ∈ 1, ...,m, model the main effects of Xi and T on Y .

Extract the residuals from this model and binarise as rb = 1 if r > 0 else 0.

2. Calculate the one-df chi-square statistic testing for independence between Xi

and Rb with Eqs. 2.7 and 2.8.

3. Select feature with the largest chi-squared statistic and find the best split on it

that minimises the sum of squared residuals of the model Y ∼ T .

4. Repeat the process in each child node, recursively splitting the data until stop-

ping conditions are met.

5. Estimate subgroup treatment effect using bootstrap confidence intervals.
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2.4 PVIM Algorithms

Virtual Twins, Subsection 2.2.1

1. Estimate the true and counterfactual outcomes for each individual under the

treatment received and the alternative treatment respectively (random forest).

2. Calculate individual treatment effect Z as the difference between the outcome

when the treatment is received and when it is not received.

3. Predict Z using the X features (random forest) and extract random forest vari-

able importance measure as the Virtual Twins PVIM.

SIDES, Subsection 2.2.2

1. Select the best M split-feature combinations by using the splitting criterion of

Eq. 2.4.

2. For each split-feature combination, select the child node data with the larger

treatment effect test statistic.

3. Recursively split the data in this way until max depth of branch is reached or

another split does not provide sufficient improvement on the p-value of the parent

node.

4. Once all stopping conditions are met, calculate the SIDES PVIM for each feature

as the average contribution of that variable across the total number of final

subgroups. If variable Xj appears in a subgroup, then its contribution for that

branch is −log(Dj), where Dj is the p-value of that feature for that branch.

GUIDE, Subsection 2.2.3

1. For each feature Xi, i ∈ 1, ...,m, model the main effects of Xi and T on Y .

Extract the residuals from this model and binarise as rb = 1 if r > 0 else 0.

2. Calculate the one-df chi-square statistic testing for independence between Xi

and Rb with Eqs. 2.7 and 2.8. This statistic is the GUIDE PVIM.



Chapter 3

Theoretical Analysis

In Subsections 2.1.1, 2.1.2, and 2.1.3 of the previous chapter, it was shown that Vir-

tual Twins, SIDES, and GUIDE are algorithmically complex, making it difficult to

compare them. We strip back the modelling idiosyncrasies of each method to isolate

the particular mechanism by which each identifies predictive features. Our strategy is

to represent the key dependency measures employed by each in abstract terms in order

to understand the fundamental similarities and differences between the methods. We

choose notation D to represent the conditional dependencies used by each method in

detecting predictive biomarkers. For example, we express the conditional relationship

between A and B given C as D(A;B|C).

3.1 Subgroup Identification Methods

3.1.1 Virtual Twins

In Subsection 2.1.1 we saw that the treatment effect for individual i having feature

characteristics Xi = x1
i , ..., x

m
i is described as zi = p1Xi

(yi = 1) − p0Xi
(yi = 1), where

p1Xi
(yi = 1) is the probability of recovery given that the new treatment is received

and p0Xi
(yi = 1) is the probability of recovery given that the alternative treatment is

received. One of these probabilities is estimated from the data and the other must be

predicted. If, say, a patient receives the new treatment, Ti = 1, we estimate p̂1Xi
; and

then we flip the treatment indicator and predict the counterfactual outcome, p̃0Xi
, for

patient i from the same model that is used to estimate p̂1Xi
.

31
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Alternatively, treatment effect can be expressed on the logit scale instead of the

probability scale. This can be arranged as the log-odds ratio:

zi = logit
(
p̂1Xi

(yi = 1)
)
− logit

(
p̂0Xi

(yi = 1)
)

=
p̂1Xi

(yi = 1)p̂0Xi
(yi = 0)

p̂1Xi
(yi = 0)p̂0Xi

(yi = 1)

= L(Y ;T |Xi),

(3.1)

where L(Y ;T |Xi) is the log-odds ratio of Y and T given Xi.

Then, analogous with the original method of Subsection 2.1.1, we search for regions

of the data set where the new expression for Z exceeds some threshold c,

S∗x = {Sx : L(Y ;T |Sx) > c} ⇒ S∗x = {Sx : D(Y ;T |Sx) > c}. (3.2)

Here, we capture the essential operation of the log-odds ratio by using notation D

to represent the conditional relationship of Y and T in the predictive region Sx of

the biomarker. So we are looking for subspaces of the data, Sx, where the treatment

indicator is highly predictive of recovery outcome.

3.1.2 SIDES

The mechanism by which the SIDES algorithm determines the predictiveness of a fea-

ture is described in Equation 2.4. We use the D-notation to represent this functionality

as

S∗x = arg max
Sx

(
tSx − tSc

x

)
⇒ S∗x = arg max

Sx

(
D(Y ;T |Sx)−D(Y ;T |Sc

x)
)
, (3.3)

where Sx ∩ Sc
x = ∅ and Sx ∪ Sc

x encompasses the full space of a biomarker.

From this viewpoint, the approaches to predictive biomarker detection taken by

both Virtual Twins and SIDES are premised on similar rationales. The difference is

that SIDES implements this criterion at each node of the tree, whereas Virtual Twins

grows the decision tree in the typical way, by minimising the within node sum of

squared errors, SSE =
∑

i∈d(zi − z̄d)2, where z̄d is the maximum likelihood estimate

of the treatment effect in node d, and then identifies the predictive biomarkers using

the terminal node predictions of the finalised tree. This amounts to a less direct way

to search for biomarkers associated with a differential treatment effect, but it is still

calibrated to identify predictive and not prognostic biomarkers.



3.2. SUMMARY 33

Both the Virtual Twins and SIDES methods are local, but SIDES is more ex-

tensively so. The Virtual Twins method models individual treatment effect Z by

minimising the sum of squared errors in both child nodes, so that it is agnostic to the

magnitude of treatment effect in either node when choosing the best split on a feature.

It is only when the interesting subgroups are selected from the terminal nodes that a

local modelling technique is used. It is local in the sense that the properties such as

treatment effect and subgroup size are only estimated for the subgroups as defined by

the terminal nodes that have a predicted treatment effect in excess of a threshold, c.

In contrast, SIDES maximises the difference in treatment effect between two child

nodes, and, therefore, at each split point it is explicitly searching for predictive features.

Local modelling is applied at every node in the sense that only the subgroup of the

child node with the larger treatment effect is kept as a prospective subgroup of interest.

The other node is peeled away so that it is no longer included in the modelling task.

In this way, the SIDES algorithm searches for interesting subspaces and avoids the

burden of having to model the whole of the data set. Theoretically, this is well suited

to the task of subgroup identification, where we are not interested in the treatment

effect of the whole sample, but, rather, only a small portion of it.

3.1.3 GUIDE

The GUIDE variable importance score described in Equation 2.5 can be rewritten as

X∗ = max
X

D(R;X|T ). (3.4)

GUIDE relies on the conditional dependence of the whole space of the X feature on

the variation in Y that is unexplained by main effects.

3.2 Summary

We can see that each method is, in theory, calibrated to identify predictive biomark-

ers and exclude prognostic and irrelevant biomarkers from selection. However, each

method does it in a different way. Both Virtual Twins and SIDES partition variable

X then measure the conditional relationship of Y and T in the potentially predictive

subspace Sx. They differ in two important ways. The former uses a fixed threshold c
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(see Eq. 3.2) to identify important predictor variables and this is only applied to the

terminal nodes of the tree. On the other hand, the threshold of the latter, D(Y ;T |Sc
x)

(see Eq. 3.3), is data dependant, and it is implemented at each node in the tree.

In contrast to Virtual Twins and SIDES, GUIDE avoids selecting features based on

split-feature combinations. By doing this, GUIDE mitigates against the risk of false

positives inherent in selecting features based on feature splits. It is effectively ranking

the features and selecting the highest ranking result as the most promising feature. In

this way it is explicitly searching for predictive features, a characteristic that it shares

with SIDES.



Chapter 4

Empirical Analysis

The theoretic analysis of Chapter 3 reveals the central predictive feature search mech-

anism of each method. Beyond theoretical differences in their predictive feature selec-

tion strategies, there are also significant differences in implementation, as was outlined

in Chapter 2.2. In this section, we explore the behaviour of each method empirically,

making a cross-comparison of each. The data sets are described in Section 4.1. The ex-

perimental design and evaluation methods are outlined in Section 4.2. This is followed

by results in Section 4.3.

4.1 Data Sets

Each method was originally tested using simulated data sets. For this empirical study

we use the same simulation settings to generate three data sets, namely the Virtual

Twins, SIDES and GUIDE simulated data. We wish to compare the performance of

each method on each of these data sets.

The original Virtual Twins model has a binary response and is defined as

logit(P (Y = 1)) = −1 + 0.5(X1 +X2−X3 +X2X3) + 0.1T + 0.9TI(X1 > 0∩X2 < 0),

(4.1)

where the features, Xj, j = 1, ...,M are independent and normally distributed with

µ = 0 and σ2 = 1. The total number of features is denoted M . Both of the predictive

biomarkers are also prognostic. For our experiments we alter the model specification

so that only one feature, X1, is both predictive and prognostic, and the other, X2 is

predictive only. To make the comparison clearer, we also remove the X2X3 term.

35
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The new model is

logit(P (Y = 1)) = −1 + 0.5(X1 −X3) + 0.1T + 0.9TI(X1 > 0 ∩X2 < 0). (4.2)

With this model we test the ability of each method to find a three-way interaction,

T ×X1 ×X2.

For ease of reference, we define a feature that is both prognostic and predictive as

‘progpredictive’. A feature is described as ‘predictive’ if it is only predictive and not

prognostic also. The dataV T is the only data set that contains a progpredictive feature.

Both the predictive and progpredictive features are predictive in the same way. In other

words, both make identical contributions to the subgroup definition. As the features

are symmetrically distributed with a mean of 0, P (X1 > 0) = P (X2 < 0) = 0.5.

The SIDES model is the only model with a continuous response. It is

Y = 0.6T (−2f + (X1 = 1) + (X2 = 1)) + ε, (4.3)

where the random noise ε ∼ N(0, σ2) and f is set to simulate a subgroup that covers

f 2 = 0.5 of the observations [10]. There are no prognostic effects. Unlike the Virtual

Twins and GUIDE data models, there are two subgroups present and they overlap.

The subgroup effects are additive so that individuals that have the feature values

X1 = 1 and X2 = 1 are members of both subgroups, whereas individuals that have

either X1 = 1 or X2 = 1 are members of one subgroup only.

The GUIDE model is

P (Y = 1) = 0.3+0.2(I(X1 6= 0)+I(X2 6= 0))+0.2(2T −1)I(X3 6= 0∩X4 6= 0). (4.4)

It has three-level categorical features. These simulate genetic markers with genotypes

AA, Aa and aa. Features X1, ..., X4 follow the same distribution with P (X = AA) =

0.4, P (X = Aa) = 0.465 and P (X = aa) = 0.135. The remaining of the features,

X5, ..., XM , where M is the total number of features in the data, have the distribution

P (X = AA) = (1 − π)2, P (X = Aa) = 2π(1 − π) and P (X = aa) = π2. Thus,

π defines the distribution of genotype values for each of the features, and each πj,

j = (5, ...,M), is independent and simulated from a beta distribution with density

f(x) ∝ x(1− x)2. Similarly to the Virtual Twins data model, the GUIDE data model

will test the ability of each subgroup identification method to distinguish between
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Y X OTE subgroup size STE STE - OTE

dataV T binary continuous 0.07 0.25N 0.23 0.16
dataSIDES continuous binary 0 0.50N∗ 0.35∗ 0.35
dataGUIDE binary categorical 0.14 0.36N 0.40 0.26

Table 4.1: The three data models are summarised in terms of overall and subgroup
treatment effect (OTE and STE) and subgroup size as a proportion of total number of
observations, N . ∗In the SIDES data model, 0.50N of the observations have full sub-
group membership, but 0.91N have partial or full membership; full subgroup members
have a treatment effect of 0.35, while the average treatment effect across the group
that includes both partial and full members is 0.08.

predictive and prognostic features; and it also contains a three-way interaction, T ×

X3 ×X4.

Data generated from these models will be referred to as dataV T , dataSIDES, and

dataGUIDE respectively. Within each data set, the X-features are all of the same type:

dataV T features are all continuous, in dataSIDES they are all binary and they are all

categorical in dataGUIDE. While this means that we are not testing the ability of each

method to identify predictive features in the presence of a variety of data types, it

permits the observation that some methods are better suited to a particular class of

features than others. This is discussed further in Section 4.3.

The data sets are summarised in Table 4.1. They are highly dissimilar in several

ways. Rather than making them more alike, they are left in this form in order to

preserve the data generation methods as they were used in the original papers [28],

[22], [11].

4.2 Experimental Method

For ethical, financial, and practical reasons, clinical trials are limited in the number

of patients they include. We compare the performance of each method on each of the

Virtual Twins, SIDES and GUIDE data sets, varying the number of observations, N ,

between 200 and 1000 to understand the relationship of model performance to clinical

trial size. The number of features is fixed at M = 20.

As more patient data becomes available, for example, there may be thousands

of genetic features of unknown importance, subgroup identification models will need
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to have the power to detect important features while also minimising the risks of

multiplicity. To test each method in this respect, we vary the number of features M

from 20 to 100, while keeping the number of observations fixed at N = 500. Note that,

as M increases, the number of predictive and prognostic features stays the same. It is

only the number of irrelevant features, those that have no bearing on the outcome Y ,

that increase with M . For example, dataV T has one each of predictive, progpredictive

and prognostic features. So if M = 20, then there are M − 3 = 17 irrelevant features

in the data set.

Each method is, in theory, tuned to rank predictive over prognostic features. We

compare the performance of each method on dataV T and dataGUIDE. As dataSIDES

does not contain prognostic features, it is excluded from this part of the analysis.

For dataV T we split the analysis of the progpredictive feature out from that of the

predictive feature. Thus, for each of the methods, we make three comparisons in all:

on dataV T , we compare the ranking of the progpredictive to the prognostic feature,

we also compare the solely predictive feature to the prognostic one, and on dataGUIDE

we compare the ranking of the predictive features against the prognostic ones.

Subgroup identification in clinical trial data is challenging. It is often the case that

just enough individuals are recruited to a trial to test the main effects on the outcome,

whereas predictive feature identification involves the detection of treatment-variable

interactions. Thus, many clinical trials are not powered for interaction detection. This

leads to a high rate of false positives and false negatives when detecting important

features.

Due to this inability to arrive at strong statistical conclusions, these methods should

be used in conjunction with the insight of medical experts. Converting a subgroup

method to a variable importance score gives clinicians the flexibility to set the sig-

nificance threshold on how many features they are willing to examine manually. We

examine the performance of each method on the Receiver Operating Characteristic

(ROC) curve [29] and explore means of making the final selection of important fea-

tures using the Virtual Twins PVIM.

The Virtual Twins method has one hyperparameter, the number of trees in each

random forest. This is set to 1000. SIDES has several hyperparameters: the maximum

depth of the branches, L = 3, limits the complexity of the subgroup definition; the
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minimum subgroup size, S = 40, ensures that the calculation of the one-sided test

statistic is based on an adequate sample size; the maximum number of candidate

splits considered at each node, M = 5, limits the search space so that the algorithm

runs efficiently; and the continuation criterion γ = 0.5 ensures that a subgroup defined

by a child node has a splitting criterion p-value that is, at most, 0.5 times the p-value

of the parent subgroup. There are no parameters that need to be set for the GUIDE

method.

For Virtual Twins and SIDES, the models are built on bootstrapped samples and

the variable importance scores are calculated on the out-of-bag samples. This happens

by default in the random forest of the Virtual Twins method. We implement this

approach in SIDES in order to make the two methods more comparable. Bootstrapping

also mitigates against the risk of multiplicity. The GUIDE method is not improved

with bootstrapping because calculating the chi-square statistics is a high bias, low

variance approach.

All experimental results are based on 500 iterations of each data set. In one itera-

tion of one data model, we generate a data set and apply each of the Virtual Twins,

SIDES and GUIDE methods to it. For that same data model, we repeat this pro-

cess of sampling a data set and applying the subgroup identification methods for 500

iterations.

4.3 Results

4.3.1 ROC curves

We use ROC curves to evaluate the ranking performance of each method on each of

the data sets. The methods return a PVIM for each feature and the ROC curves plot

the true positive false positive trade-off for every possible threshold setting. The true

positive rate, or sensitivity, for a given PVIM threshold represents the proportion of

predictive features that are identified out of the total number of predictive features for

all iterations. Conversely, the false positive rate, or (1− sensitivity), is the proportion

of unimportant features that were incorrectly identified as being significant out of the

total number of unimportant features. The further a curve is into the top left corner,

the better the method, because it indicates that a high true positive rate and low
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ROC Curves for Predictive Feature Ranking
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Figure 4.1: ROC curves compare the true/false positive trade-off for different thresh-
olds of the variable importance score. Results are based on 1000 observations and 20
features in each of the data sets.
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false positive rate has been achieved. The best case scenario is if a method ranks all

the predictive features higher than all the rest every time. In that case, the curve is

composed of a straight line from 0 to 1 on the y-axis and a straight line from 0 to 1

on the x-axis. The true positive rate in that case would be 1 and the false positive

rate 0. An example of this in Figure 4.1 is the Virtual Twins method when applied

to dataSIDES - it achieves almost perfect ranking of the predictive features. If, on the

other hand, the curve is close to the diagonal from the bottom left to the top right,

this indicates that the model is no better than random in the binary classification

setting. We can see from Figure 4.1 that this is the case for the SIDES and GUIDE

methods when applied to dataV T .

The subgroups in dataSIDES and dataGUIDE are easiest to find, as can be seen in

Figure 4.1. Recalling the data set summary of Table 4.1, the subgroup population in

dataSIDES is the largest, with ∼ 50% of the population having full subgroup mem-

bership and a further ∼ 41% having partial membership, and this makes it easier to

identify the predictive features. The only data set with additive subgroup effects is

dataSIDES. Partial subgroup membership is not possible for either of the dataV T or

dataGUIDE.

The Virtual Twins method is the best of the three. Even though it performs

worse than GUIDE on dataGUIDE, it has the best overall performance across the three

varieties of data. In particular, on the data set with the weakest subgroup signal,

dataV T , it outperforms SIDES and GUIDE by a long way for all levels of threshold

setting.

The ROC curve results are based on data sets with M = 20 features and N = 1000

individuals. In the following three subsections, we examine the performance of each

method as M and N change.

4.3.2 Varying the number of samples

The less data there is available, the more difficult it is to detect the subgroup signal.

We compare each method in terms of its ability to rank both of the true predictive

features in the top K, K ∈ 2, 5 as N varies. For all levels of N the Virtual Twins

method outperforms SIDES and GUIDE on dataV T and dataSIDES but performs worse

than GUIDE on dataGUIDE. From Figure 4.2 it seems that, to achieve good results
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K ∈ (2, 5), is evaluated for each model as sample size, N , varies. The dashed lines
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with this method, data sets of at least 500 observations are required and performance

degrades significantly on smaller data sets.

The dashed lines in the top two plots of Figure 4.2 corresponding to dataV T repre-

sent the results for each method when the original dataV T simulation of Equation 4.1

is used. The Virtual Twins method performs better on this data set than it does on

the altered specification that is described in Equation 4.2. The key difference between

these two is that, in the former, bother the predictive features are also prognostic,

whereas, in the latter, only one feature is progpredictive and the other is solely pre-

dictive. This indicates that the Virtual Twins method is not only detecting predictive

signal, but also prognostic signal. In other words, its success at detecting a predictive

feature is affected by the extent to which that feature is also prognostic. We explore

this further in Subsections 4.3.4 and 4.3.5. To a lesser extent, there is also an improve-

ment in the results of the SIDES and GUIDE methods when applied to the original

dataV T .

The dataGUIDE has the largest subgroup treatment effect of the three methods,

which also makes the subgroup signal more easily detectable. The Virtual Twins data

has the smallest subgroup membership and subgroup treatment effect of the three

data sets. For N = 1000, the Virtual Twins method ranks both predictive features

the highest 27.8% of the time.

The SIDES and GUIDE methods are not agnostic to data type. There is a qual-

itative variance in each method’s performance across the data sets which differ in

outcome type (binary or continuous) and predictor feature type (binary, continuous

or categorical). Both the Virtual Twin and GUIDE data simulations use a binary

outcome, but the features of the former are continuous whereas they are categorical

for the latter. GUIDE outperforms the Virtual Twins method on its own data set

but underperforms relative to Virtual Twins on dataV T . This suggests that both the

Virtual Twins and GUIDE methods are sensitive to feature type. Similarly, dataSIDES

and dataGUIDE have comparable features, binary and three-level categorical, yet the

SIDES method outperforms GUIDE on its own data set but performs significantly

worse than GUIDE on dataGUIDE.

There is a general remark to be made about benchmarking methods which will be-

come increasingly important as the subgroup identification literature expands. Each
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method performs best on its own data set which suggests that there is a biased ap-

proach to method evaluation. It indicates that there is a need to provide benchmark

data sets against which subgroup identification methods can be compared, a point

that has already been raised by Shen et al. [30]. The best results from the SIDES

method are when it is applied to dataSIDES. Similarly, GUIDE outperforms the other

two on its own data set. However, it is ineffective on the Virtual Twins data set and

falls far short of the Virtual Twins and SIDES methods on the dataSIDES set. The

original Virtual Twins data model, as specified by [28] and described in Equation 4.1,

only contains progpredictive features, which disguises the aforementioned weakness of

the Virtual Twins method in identifying features that are solely predictive.

4.3.3 Varying the number of irrelevant features

Similarly to the previous subsection, we compare the ability of each method to rank

the predictive features in the top 2 and top 5, this time varying the total number of

features, M . The simulated data model specifications remain the same, so that, by

increasing the number of features, we increase the number of irrelevant features only.

Thus, in Figure 4.3 we are evaluating the false positive rate of each subgroup identi-

fication method as more irrelevant features are added. The number of observations is

fixed at N = 500.

The trends in performance decay as M increases is linear in most cases. The

GUIDE method has a slower rate of diminishing performance on its own data set

as we add more irrelevant features. Similarly, the performance of the Virtual Twins

method degrades more slowly that SIDES and GUIDE when applied to dataSIDES,

however, it is badly affected by the addition of features on dataV T .

4.3.4 Distinguishing predictive from prognostic features

Although prognostic features provide useful insights for general patient care, at times

we are exclusively interested in finding predictive features. We evaluate each method

in terms of its ability to specifically identify features that interact with the treatment

to affect recovery outcome as opposed to identifying features that directly affect the

outcome.
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The Virtual Twins data set contains two predictive features. Feature X1 is prog-

predictive, whereas X2 is predictive only. Both are equivalent in terms of their predic-

tiveness in so far as they follow the same distribution, ∼ N(0, 1), and have identically

sized regions of X1 > 0 and X2 < 0 that define the subgroup membership. Feature X3

is prognostic only. The analyses of both predictive features are split out so that we

compare the performance of each method, first, in ranking feature X1 over X3, and,

second, in ranking X2 over X3. In Figure 4.4 we can see that each method performs

similarly when ranking the predictive feature that is progpredictive, X1, over the prog-

nostic feature X3. The Virtual Twins method consistently outperforms the other two

by a narrow margin. However, Virtual Twins performs much worse in ranking X2,

a solely predictive feature, above X3. Interestingly, the more observations there are,

the worse it becomes at ranking the predictive over prognostic feature. This indicates

that what the Virtual Twins method is really detecting is prognostic feature signal.

SIDES and GUIDE perform very consistently across both predictive and progpre-

dictive feature ranking. Although both methods perform weakly on the Virtual Twins

data set in terms of ranking both the predictive features in the top K (for example,

the best performance in either when M = 20 and N = 1000 is 2.6%, whereas the

probability of selecting the two predictive features in a random sampling of the Xj,

j = 1, ..., 20 is 0.53%) the fact that they nevertheless perform strongly in ranking the

predictive over prognostic suggests that their poor performances overall are due to un-

usually high scores on the irrelevant features rather than low scores on the predictive

features. In other words, despite the multiplicity controls, there is a high false positive

rate associated with these methods.
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4.3.5 PVIM Distributions of Each Feature Type

For each method we compare the distributions of the PVIMs for predictive and irrel-

evant features in each of the data sets. Where prognostic or progpredictive features

are also present, we examine these distributions too. In Figures 4.5 and 4.6 we plot

the square root of the PVIM distributions. These are based on dataV T , dataSIDES,

and dataGUIDE, each of size N = 1000 with M = 20 features. The distributions are

obtained by calculating the PVIMs for each feature on 500 data sets resampled from

each of the Virtual Twins, SIDES, and GUIDE simulation models. So, for example,

the PVIM on the progpredictive feature in dataV T is based on 500 PVIM values of

feature X2.

Where a PVIM value is less than 0 it is set to 0 before taking the square root. The

negative values occur when the results obtained on the permuted feature are better

than those obtained on that feature when it is not permuted. This occurs for features

that have no bearing on the outcome, nor any correlations with the other features, so

that, when they appear in a tree, it is because noise has erroneously been modelled as

signal. There is a chance that, when the irrelevant feature is permuted, it will yield

a better result than the unpermuted version. As we don’t expect the difference in

predictibility between the permuted and unpermuted feature to be large, one will only

be better than the other by a narrow margin.

Where there are multiple instances of a feature type, for example, there is always

more than one irrelevant feature in a data set, we plot the distribution of one irrelevant

feature only, say X9. As these features are drawn from the same distribution, X9 is

representative of the rest.

The dataV T has the weakest signal and each method performs poorly on it, Figure

4.5. The Virtual Twins method consistently gives the prognostic and progpredictive

features higher PVIMs, as can be deduced from the fact that the distributions for

these two feature types are shifted to the right of the predictive feature distribution. A

further indication that it’s mostly detecting the prognostiveness of the progpredictive

feature.

There is much stronger subgroup signal in dataGUIDE than there is in dataV T (see

Table 4.1) and the Virtual Twins method performs well in identifying the predictive

feature in this setting. However, when a method is successfully callibrated to search for
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predictiveness only, we expect the PVIM distributions of the irrelevant and prognostic

features to be the same, as neither are predictive. Both SIDES and GUIDE do this very

well, as can be deduced from comparing performances across irrelevant and prognostic

features on dataGUIDE in Figure 4.6. When irrelevant and prognostic features are

present in a data set, the PVIM distributions of each are near identical. On the other

hand, the distribution of the dataGUIDE prognostic feature is shifted to the right of the

irrelevant feature when the Virtual Twins method is used. It is erroneously detecting

predictiveness in a feature that has no predictive properties.

One caveat in the evaluation of GUIDE is that it uses a linear model to account for

prognostic effects of a feature, and it is only tested on data sets with linear prognostic

effects. Further analysis of GUIDE could evaluate its performance on a non-linear

prognostic feature. Since the Virtual Twins and SIDES methods use partitioning,

they should perform similarly in the non-linear setting.

4.3.6 Interpreting the Output of Virtual Twins

Although the Virtual Twins method is prone to detecting subgroup predictiveness

where it shouldn’t, in prognostic features, it is the best method overall. In particular,

on the data set with the weakest subgroup signal, dataV T , it outperforms SIDES and

GUIDE by a significant margin. Thus, we conclude that it is the best method for

the purpose of ranking features in order of subgroup predictiveness. The final set

of experiments focus on the Virtual Twins method only and demonstrates how the

method can be used in practice. We use plots of the PVIMs, Figure 4.7, and partial

dependence plots, Figures 4.8 and 4.8. Although results are based on data sets with

M = 20 features and N = 1000 observations, only the results for the first 8 features

are displayed.

Plots of the PVIMs for each feature provide an easily interpretable visualisation of

the features that have been found to be important by Virtual Twins. Following the

approach of Genuer et al. [31], the Virtual Twins method is rerun 50 times on the

same data set. Because the random forest algorithm is not deterministic, the results

vary a little each time, and this enables us to obtain a mean and variance on the PVIM

of each feature. The upper plot in Figure 4.7 demonstrates what these look like in the

case where the ranking is successful and the lower plot provides an example of what
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Figure 4.7: PVIM plots for two data sets, both of which have been sampled from
dataV T model, Eq. 4.2. The top is an example of a successful ranking, as both
predictive features, X1 and X2 rank highest. The bottom plot is an example of an
unsuccessful predictive feature ranking because feature X2 has been ranked lower than
irrelevant features X4 and X5, and prognostic feature X7.
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these plots looks like when the Virtual Twins method does not rank the predictive

features highest.

The PVIM plots are useful for understanding the relative magnitude of PVIM rank-

ing across the features and for picking out interesting features for closer examination.

However, these do not provide an understanding about how a feature relates to the

differential treatment effect, Z. For this we use partial dependence plots [32]. The

partial dependence plots visualise the marginal effects of a variable on an outcome.

We demonstrate how they are applied on dataV T only, and look at the clear cut case

in Figure 4.8 first, where the variable importance plots conclusively identify the pre-

dictive features, examining the partial dependence plots for the predictive, prognostic,

and a selection of the irrelevant features. For completeness, we compare this with a

case where the predictive features are not found and false positives are present, Figure

4.9. The data for both sets of plots correspond to the successful and unsuccessful

examples of dataV T that are used in Figure 4.7.

In Figure 4.8 we can see that the partial dependence plots correctly represent the

nature of the effect of X1 and X2 on treatment effect Z, although the results are more

pronounced for the progpredictive feature X1. The ticks at the bottom of each plot

represent the density of Xi for i ∈ 1, ..., 8. We can see that the important trends in

the plots of X1 and X2 are based on regions of each feature where there are plenty

of observations, making them more reliable than would be the case if we made the

observation in sparser regions.

From the dataV T PVIM distributions of Figure 4.7 corresponding to the case when

the ranking is not successful, we can see that features X4 and X5 received a higher

PVIM than predictive feature X2. A clinician can look at the results of the partial

dependence plots for these features in Figure 4.9 and evaluate whether the discovered

relationship makes biological sense and warrants further experimentation, perhaps in

another clinical trial which would test for these effects in a more rigorous, rather than

exploratory, statistical setting.
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Conclusion

We have studied three methods of subgroup identification that use recursive parti-

tioning, Virtual Twins, SIDES, and GUIDE. Recursive partitioning-based methods

are popular in this area because they are non-parametric, so that they readily handle

different types of variables (binary, continuous, etc) that are frequently encountered

in complex medical data sets. We analyse and compare the three methods from a

theoretical, and then an empirical, point of view.

The theoretical analysis of Virtual Twins, SIDES, and GUIDE reveals that each

method has a different mechanism for selecting predictive features, but that Virtual

Twins and SIDES are closely related:

D(Y ;T |Sx) > c︸ ︷︷ ︸
Virtual Twins

versus
(
D(Y ;T |Sx)−D(Y ;T |Sc

x)
)︸ ︷︷ ︸

SIDES

.

Yet empirical analysis reveals that the former consistently outperforms the latter. This

implies that the more important difference between the two is in the implementation

of the feature selection mechanism. The Virtual Twins method identifies interesting

features as those associated with terminal node predictions of treatment effect that

exceed a certain threshold. On the other hand, SIDES applies the predictive variable

selection mechanism at every node split in the tree. SIDES explicitly searches for

predictive features at each node split whereas Virtual Twins implicitly does so by

minimising the mean squared error in predicting latent variable Z at each node split.

A theoretical analysis of GUIDE demonstrates that it uses the different strategy

of selecting features X that are conditionally informative about the outcome Y given

treatment T . Unlike Virtual Twins and SIDES, it does not choose features based on

56
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the best feature-split combination. Instead, it looks at the full space of a feature. By

taking this approach the authors endeavour to avoid predictive feature selection bias

that occurs when there are different types of features in a data set, such as categorical

and continuous features (see Subsection 2.1.2 for further description of this type of

bias). However, GUIDE had a poor performance on dataV T and dataSIDES, and this

may be attributable to the fact that it is examining all of the feature D(Y ;X|T )

as opposed to an interesting region of it. Thus, honing in on an interesting feature

subspace and then testing the relationship between the outcome and treatment in that

subspace D(Y ;T |Sx), as Virtual Twins and SIDES do, may be a better strategy for

detecting subgroup signal that may be too weak to detect on the full variable space

[23].

Empirical analysis shows that the Virtual Twins method outperforms SIDES and

GUIDE in ranking predictive features. It performs well on all three data sets, unlike

SIDES and GUIDE which appear not to be agnostic to data type. SIDES performs

better on dataSIDES with a continuous outcome and binary features, whereas GUIDE

works better on dataGUIDE, which is comprised of a binary outcome and three-level

categorical features. One drawback of Virtual Twins is that it struggles to differentiate

between predictive and prognostic features. Although the algorithm is calibrated to

find variables associated with a differential treatment effect, i.e. predictive variables,

it nevertheless gives a high score to prognostic variables too.

An opportunity for future work could involve looking at using the Virtual Twins

method as a predictive and prognostic feature detector instead, as opposed to a solely

predictive feature identifier. However, it should not yet be relied upon in this additional

capacity. Restraint in this respect is particularly important because it is not clear

how the detection of prognostic variables is occurring. The method is callibrated to

identify predictive variables to the exclusion of prognostics, as is made clear, both in

the author’s statement of purpose [9], and by examining the mathematics that describe

the calibration of the model for identifying predictive features only, Eq. 2.2. Although

there is evidence that it is capable of detecting prognosticness in Normally distributed

and three-level categorical variables when the outcome is binary, it would need to be

tested on other types of variable-outcome combinations before concluding that it is

suitable for this additional task.
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We evaluate the strategy of using each method as a predictive variable importance

score. This approach has advantages over implementing full subgroup identification

algorithms in that it provides a variable ranking. We envision that this can be used

by clinicians to filter out unimportant features, and subject the remaining few to

medical expertise and scrutiny. Given the fact that clinical trials are often too small

to test for variable-treatment interactions in a rigorous statistical setting, and given

the risk of false positives that is associated with multiple hypothesis testing, we believe

that a variable scoring and ranking approach, combined with clinician judgment, is a

more sensible approach to conducting exploratory subgroup identification than a full

subgroup identification procedure is. Thus, this pertains to another point on results

interpretation which is to emphasise that, although Virtual Twins outperforms SIDES

and GUIDE, it nevertheless is prone to inaccuracies in predictive feature ranking.

Where the Virtual Twins method identifies predictive features, this on its own can

only lead to tentative conclusions that they are actually present. Further validation is

required to reliably conclude that the variables in question are predictive.

We have conducted this comparative study in an artificial environment. The Vir-

tual Twins method was only evaluated on data sets with homogeneous features: contin-

uous, binary and three-level categorical features in dataV T , dataSIDES and dataGUIDE

respectively. In the clinical trial setting, there will typically be a variety of predictor

variable types in the data set. Loh et al. [11] establish that the Virtual Twins method

has substantial selection bias towards selecting variables with fewer possible splits,

so that, for example, it favours binary over continuous features. Strobl et al. [33]

confirm the existence of this bias more generally in the random forest algorithm that

is influenced by the number of categories and scale of measurement of the predictive

features. They propose an unbiased variable selection method to be implemented in

each of the individual trees that make up the forest. Bias is overcome by using condi-

tional inference trees [34] and sampling without replacement instead of bootstrapping.

Conditional inference trees use separate criterion to select the feature and the split on

that feature, which would amount to using a key idea of the GUIDE algorithm in the

Virtual Twins method.

An additional artificiality is that we use simulated, not real, clinical trial data sets

because the latter were unobtainable for the study. Foster et al. [9] did test the Virtual
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Twins method on a real data set, but found no subgroups present. A better validation

of the model would be to test predictive feature ranking performance on a real data

set with known subgroups present. Thus, results must be interpreted in light of this

restriction.

The critique of not having an adequate real data set is not only applicable to the

Virtual Twins method. This is a problem for most exploratory subgroup identification

algorithms: they can’t be benchmarked on a common, easily obtainable data set.

There are hurdles involved in making a clinical trial data set available. However, it is

worth overcoming these in order to encourage more robust algorithm testing. It was

observed that for each method, the data set on which it was evaluated in the original

paper may have been chosen to show off the best parts of the algorithm and mask its

weaknesses. The only two predictive features of the Virtual Twins data set were also

prognostic. And both SIDES and GUIDE performed much better on their respective

simulated data sets than they did on the others. It signifies the need for a systematic

approach to method evaluation, which would involve analysing all proposed methods

on benchmark data sets, much like the widespread practice in the machine learning

community of evaluating new image processing methods on the MNIST data set.

Since Su et al. [6] first proposed Interaction Trees, there has been a steadily increas-

ing amount of research conducted in the area of exploratory subgroup identification.

Yet widespread adaptation of these methods in clinical trials has not followed in the

wake of these developments. One probable reason for this is a fear that subgroup iden-

tification will be used to misrepresent the therapeutic capabilities of a new treatment.

This might explain the reluctance amongst practitioners to switch from traditional

subgroup analysis, which requires subgroups of interest to be specified before looking

at the data, to exploratory post-hoc analysis. Critics cite the increased risk of false

positives as a reason to avoid testing for many subgroups. However, because there

are many ways of mitigating against the increased risk of multiplicity, these objec-

tions seem unreasonable. It is possible that attitudes will shift as policy in this area

modernises to incorporate the new goals of personalised medicine.

The guidelines on statistical principals for clinical trials that were recommended

by the ICH (International Conference on Harmonisation of Technical Requirements

for Registration of Pharmaceuticals for Human Use) working group for adoption by
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the regulatory bodies of the EU, USA, and Japan [35] state that exploratory analyses

“should be interpreted cautiously; any conclusion of treatment efficacy (or lack thereof)

or safety based solely on exploratory subgroup analayses are unlikely to be accepted.”

This conservative attitude may have disincentivised exploratory analysis.

However, recent guidelines give greater consideration to exploratory subgroup iden-

tification and the language is couched in less reluctant terms. The European Medicines

Agency recommends a cautious use of post-hoc subgroup investigation, particularly

when there is a significant degree of heterogeneity in the study population [7]. “There

is a tension therefore between the widely appreciated statistical phenomenon related

to multiplicity and the issues [...] relating to the potential heterogeneity of a target

population and potential heterogeneity of response to treatment. Despite the statis-

tical limitations, not investigating, or ignoring results of subgroups could also lead to

incorrect decisions.” Now that computers have the power to implement exploratory

subgroup identification procedures in a way that was not conceivable for much of the

history of randomised controlled clinical trials, there is a moral imperative to try to

extract more insight from the data.
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