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The central theme of this thesis is the design of optimal balanced black-box stopping
criteria in iterative solvers of symmetric positive-definite, symmetric indefinite, and
nonsymmetric linear systems arising from finite element approximation of stochastic
(parametric) partial differential equations.

For a given stochastic and spatial approximation, it is known that iteratively
solving the corresponding linear(ized) system(s) of equations to too tight algebraic
error tolerance results in a wastage of computational resources without decreasing
the usually unknown approximation error. In order to stop optimally—by avoiding
unnecessary computations and premature stopping—algebraic error and a posteriori
approximation error estimate must be balanced at the optimal stopping iteration.
Efficient and reliable a posteriori error estimators do exist for close estimation of the
approximation error in a finite element setting. But the algebraic error is generally
unknown since the exact algebraic solution is not usually available. Obtaining tractable
upper and lower bounds on the algebraic error in terms of a readily computable
and monotonically decreasing quantity (if any) of the chosen iterative solver is the
distinctive feature of the designed optimal balanced stopping strategy. Moreover,
this work states the exact constants, that is, there are no user-defined parameters
in the optimal balanced stopping tests. Hence, an iterative solver incorporating the
optimal balanced stopping methodology that is presented here will be a black-box
iterative solver. Typically, employing such a stopping methodology would lead to huge
computational savings and in any case would definitely rule out premature stopping.

The constants in the devised optimal balanced black-box stopping tests in MINRES
solver for solving symmetric positive-definite and symmetric indefinite linear systems
can be estimated cheaply on-the-fly. The contribution of this thesis goes one step
further for the nonsymmetric case in the sense that it not only provides an optimal
balanced black-box stopping test in a memory-expensive Krylov solver like GMRES
but it also presents an optimal balanced black-box stopping test in memory-inexpensive
Krylov solvers such as BICGSTAB(`), TFQMR etc. Currently, little convergence
theory exists for the memory-inexpensive Krylov solvers and hence devising stopping
criteria for them is an active field of research. Also, an optimal balanced black-box
stopping criterion is proposed for nonlinear (Picard or Newton) iterative method that
is used for solving the finite dimensional Navier–Stokes equations.

The optimal balanced black-box stopping methodology presented in this thesis can
be generalized for any iterative solver of a linear(ized) system arising from numerical
approximation of a partial differential equation. The only prerequisites for this purpose
are the existence of a cheap and tight a posteriori error estimator for the approximation
error along with cheap and tractable bounds on the algebraic error.
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A Researcher’s Dilemma

To write

Or to let it ripe?

Thoughtless and thoughtful

Both surprise

Ignorance and Knowledge

Liberating to play

Dreams ponder to wonder

To curiously stroll away

A fact to expand

Or a truth to pen and understand

Deeper I seek

To unravel the in-finite

Searching on a mystic verse

I re-wander into Ze’s realm divine

Sipping in momentarily peace

The trickling harmony of a truthful piece

Yet is the rationality real

or the sip surreal?

Ever a bemusing note

In Nature’s tune

And the heart does sway

Between hope and dismay

Where truths continuously insist

But the dilemma too discretely persists:

To write

Or to let it ripe? Pranjal
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Chapter 1

Introduction

Our universe encompasses innumerable complicated phenomena throughout its being.

Understanding its underlying structure, at least up to the level of human consciousness

has been the goal from the dawn of human civilization. To this end, the diverse fields

of physics, chemistry, biology, engineering, economics etc., have been developed. The

tools and the ideas evolved therein are expressed concisely with the aid of the language

of mathematics.

Mathematical models of many real-world phenomena are often formulated in the

form of partial differential equations (PDEs) with initial/boundary conditions. Most

of these arise in fluid flow and transport phenomena [Strauss, 2008, chapter 1]; a few

relevant examples of which are given below.

• Heat conduction is modelled by the diffusion equations.

• Transfer and diffusion of materials is modelled by the convection-diffusion

equations.

• Low velocity flows/confined flows are modelled by the Stokes equations.

• Flow of an incompressible fluid in general is modelled by the Navier–Stokes

equations.

An elementary discussion about fluid flows can be found in [Acheson, 1990]. For a

general introduction, motivation, and discussion about PDEs, one can refer to [Strauss,

2008].

1.1 PDE models
Realistic PDE models have the following characteristics.

20
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• Uncertainty/randomness in parameters/coefficients.

• The solution space is infinite dimensional.

• Nonlinearity.

Thus, with appropriate initial/boundary conditions and a given (scalar) source term

f , a scalar stochastic1 PDE model can be represented generally in the following form.

Find u(~x,y) : D × Γ → R such that

L(~x,y)u(~x,y) = f(~x), ∀ (~x,y) ∈ D × Γ, (1.1)

where Γ, D ⊂ Rd (d = 1, 2, 3, . . .) denote parameter and spatial domain respectively.

Here the (nonlinear) PDE operator L and the solution u depend upon a finite number

m of possibly random parameters y = [y1, y2, . . . , ym]T ∈ Γ.

Uncertainty in a model of a practical situation is inevitable. It may be aleatory, that

is, inherent to the phenomenon being modelled or may be epistemic, arising due to a

lack of knowledge about the modelled phenomenon. Uncertainty in the coefficients of a

PDE model translates into randomness in the solution as well and hence a qualification

of the uncertainty in a model is essential for obtaining a meaningful solution. This

qualification is the central topic of study in the field of uncertainty quantification;

see [Smith, 2014]. The nonlinearity and the infinite dimensionality of the solution

space make it impossible to find analytical, closed form solutions. Hence, numerical

methods like finite difference methods, finite volume methods, finite element methods

(FEM) etc., are essential for solving PDE models in practice. A brief survey of the

popular numerical methods that are used for solving PDEs can be found in [Sloan

et al., 2001, preface, p. ix ff.]. Due to the widespread use and the ever-increasing

popularity of FEM in industry and engineering applications, this thesis will focus

entirely on FEM for solving the various PDEs encountered in later chapters. One can

refer to [Brenner and Scott, 2008] for a detailed discussion on finite element methods.

Errors play an important role in numerical approximations. The next section gives

a brief summary of the primary errors associated with numerical approximations.

1Such a PDE is called a random PDE [Smith, 2014, p. 97], but the terminology stochastic PDE
is used in this thesis in accordance with its wide prevalence in the existing literature on this topic.
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1.2 Errors in numerical approximation

Obtaining a true solution u to the PDE model (1.1) is fraught with difficulties. Apart

from errors arising due to quantification of uncertainties (stochastic discretization),

solving a PDE numerically results in various other types of errors. The first is the

discretization or the approximation error which arises due to approximating the infinite

dimensional solution u with a finite dimensional solution uh. Note that h denotes the

mesh parameter associated with discretizing (finite number of domain points) the

spatial domain D. The second source of error arises in solving iteratively the discrete

linear(ized) system(s) arising from the numerical approximation. This is known as

the linear algebra error or the algebraic error. Another source of error albeit small

are the roundoff errors that arise when the PDE (1.1) is solved numerically on a

computer. However, roundoff errors can be neglected if stable algorithms are used

for computing quantities on a computer. A detailed discussion of roundoff errors and

stable algorithms can be found in [Higham, 2002]. Typically, errors play a vital role

in assessing the accuracy of a numerical method employed to solve (1.1). Thus, errors

need to be quantified, which is achieved through norms.

Definition 1.2.1 (Norm). [Brenner and Scott, 2008, p. 24]

Let V be a vector space over a field F . Norm is a function ‖ ·‖V : V → R that satisfies

the following axioms.

(i) ‖v‖V ≥ 0, ∀ v ∈ V,

(ii) ‖v‖V = 0 ⇐⇒ v = 0, ∀ v ∈ V,

(iii) ‖cv‖V = |c| ‖v‖V , ∀ c ∈ F, v ∈ V,

(iv) ‖v + w‖V ≤ ‖v‖V + ‖w‖V , ∀ v, w ∈ V, (the triangle inequality).

Norms are innately related to vector spaces, inner products, and orthonormality of

vectors; see Appendix A for their respective definitions. These concepts are central

to finite element methods. Also, note that for any vector x = (x1, x2, . . . , xd)
T ∈ Rd,

its Euclidean norm ‖x‖2 := (
∑d

i=1 x
2
i )

1
2 will be denoted by ‖x‖ throughout this thesis.

Two other concepts that will be employed throughout this thesis will be that of

gradient and divergence.

Definition 1.2.2 (Gradient and Divergence). [Strauss, 2008, p. 178]

Suppose that F = [F1, F2, F3]T and f are a vector valued and a scalar valued function
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respectively of (x, y, z) in R3. Then the gradient (∇f) of f and the divergence (∇·F )

of F are defined as follows.

∇f =

[
∂f

∂x
,
∂f

∂y
,
∂f

∂z

]T
.

∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
.

A brief overview of finite element methods is presented next.

1.3 Finite element methods

Finite element methods compute the solution of a PDE in essentially two steps. Firstly,

they relax the regularity restrictions on the original solution by formulating the PDE

into a weak form. Secondly, the solution of the weak form is approximated in a finite

dimensional subspace of the infinite dimensional solution space. Note that the finite

dimensional approximation makes sense only if the weak form has a unique solution.

This is verified using the Lax–Milgram theorem; see [Brenner and Scott, 2008, p. 62

ff.] for a detailed discussion.

In a nutshell, finite element methods compute uh ∈ Uh ⊂ U such that∫
D

{fh(~x) − Lh(~x,y)uh(~x,y)} vh(~x,y) = 0, ∀ vh ∈ Vh ⊂ V. (1.2)

Here Lh and fh are the FEM analogues of L and f in (1.1) respectively. The space U is

the solution space of the weak form while the vector space V is called the space of test

functions in the weak form. The spaces Uh and Vh are finite dimensional subspaces of

U and V respectively. Some popular choices for U , V are the Sobolev spaces and the

Lp spaces.

Definition 1.3.1 (Lp spaces). [Oden and Demkowicz, 1996, p. 285]

For a given domain (Lebesgue-measurable and nonempty interior) D ⊂ Rd

Lp(D) := {f : D → R measurable | ‖f‖p <∞},

where ‖f‖p :=

(∫
D

|f |p
) 1

p

for p ∈ [1,∞).2 The L2 norm ‖ · ‖2, which corresponds to

the L2(D) space will be used frequently in this exposition.

2Note that the above definition also holds (here and in the subsequent definitions) for p =∞. The
only difference then is in the definition of the norm associated with p =∞.
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Definition 1.3.2 (Distributional derivatives). [Oden and Demkowicz, 1996, p.

434] Let D ⊂ Rd be an open set, u ∈ Lp(D) be arbitrary and α = (α1, α2, . . . , αd) be

a multiindex with |α| =
∑d

i=1 αi. A function uα defined on D is called distributional

derivative of u, denoted by Dαu, iff∫
D

uDαφ = (−1)|α|
∫
D

uαφ, ∀φ ∈ C∞0 (D),

where C∞0 (D) := {f ∈ C∞(D) : supp f ⊂ D, supp f compact}, C∞(D) is the set

of continuous functions defined on D whose derivatives of all orders exist and are

continuous on D, and the support of f is defined as supp f := {x ∈ D : f(x) 6= 0};

see [Oden and Demkowicz, 1996, p. 393].

Definition 1.3.3 (Sobolev spaces). [Oden and Demkowicz, 1996, p. 436 ff.]

Let D ⊂ Rd be an open set, m an integer, and p ∈ [1,∞]. Then the Sobolev space of

order m, denoted by Wm,p is

Wm,p(D) := {u ∈ Lp(D) : Dαu ∈ Lp(D), ∀ |α| ≤ m}.

It is a normed space with the norm ‖ · ‖Wm,p(D); for any u ∈ Wm,p(D)

‖u‖Wm,p(D) :=

∑
|α|≤m

‖Dαu‖pp

 1
p

for p ∈ [1,∞).

The Hilbert space

Hm(D) := Wm,2 = {u ∈ L2(D) : Dαu ∈ L2(D), ∀ |α| ≤ m},

is quite prevalent in FEM setting. In particular, the space H1(D) will be used

frequently throughout this thesis.

Piecewise bilinear or piecewise linear basis functions that are defined (locally) on

a grid composed of rectangles or triangles respectively in two dimensions (or on a

grid composed of bricks or tetrahedra respectively in three dimensions) are some

of the typical choices for constructing a finite element approximation; see [Brenner

and Scott, 2008, chapter 3] for more details. Depending on whether the test space

Vh is chosen to be essentially the same or different from the solution space Uh,
3

finite element methods can be classified as the Bubnov–Galerkin approximation or

the Petrov–Galerkin approximation respectively.

3This statement is made more precise in later chapters.
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A clever choice of FEM basis functions ensures that the FEM matrices are sparse.

Direct methods for solving linear systems, which employ sparse elimination strategies

based on Gaussian elimination do exist. These include reordering strategies, frontal

methods etc. A survey of direct methods can be found in [Davies et al., 2016].

Although these direct methods are competitive with iterative methods (in terms of

computational memory and time) for solving linear systems with a few thousand

degrees of freedom, direct methods become increasingly infeasible for linear systems

of higher dimensions. On the other hand, solving a linear system using an iterative

method requires storage of only the nonzeros of the coefficient matrix. Thus, iterative

methods take complete advantage of the sparsity of a matrix. Moreover, iterative

methods specially tailored for specific classes of matrices have been studied in detail;

for example see [Axelsson, 1994, chapter 5], [Greenbaum, 1997, chapter 2].

Finite element matrices are usually ill-conditioned with respect to discretization

parameters. This implies slow convergence of a chosen iterative method. In order

to accelerate convergence, preconditioning is required; see [Wathen, 2015]. Thus,

iterative solution strategies like Krylov subspace methods (see [Liesen and Strakoš,

2012]) together with preconditioning can be quite effective for solving linear systems

arising from FEM approximation of a PDE. The choice of an iterative solver for solving

a linear system depends on the structure of the coefficient matrix. The coefficient

matrices that are usually encountered in practice are described in [Saad, 2003, p.

4, 24]. Bubnov–Galerkin FEM approximation often results in a symmetric positive-

definite linear system while Petrov–Galerkin FEM approximation always leads to a

nonsymmetric linear system. Symmetric indefinite system of linear equations usually

arise in mixed finite element approximations, that is, when the solution space is a

Cartesian product of two or more approximation spaces; a more detailed discussion

on this topic can be found in chapter 3.

Although the conjugate gradient (CG) method [Hestenes and Stiefel, 1952] is

popular for solving symmetric positive-definite linear systems, the minimal residual

(MINRES) method [Paige and Saunders, 1975] will be employed in this thesis to solve

them (the reason for using MINRES instead of CG is explained in chapter 2, section

2.7). This algorithm will also be used for solving symmetric indefinite linear systems.

For solving nonsymmetric linear systems, the generalized minimal residual (GMRES)
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method [Saad and Schultz, 1986], the biconjugate gradient stabilized (BICGSTAB(`))

method [Sleijpen and Fokkema, 1993], and the transpose free quasi-minimal residual

(TFQMR) method [Freund, 1993] will be used.

The next section will provide a general summary of the problem statement, the

solution methodology, and the research contribution of the material presented in this

thesis.

1.4 Thesis objective

1.4.1 Problem statement

Numerical solution of a PDE with initial/boundary conditions essentially involves

two types of errors—approximation error and algebraic error. The approximation

error is fixed for chosen stochastic and spatial discretization parameters. Solving

iteratively the corresponding discrete linear(ized) system(s) to a very high accuracy

is not desirable. This is because a highly accurate iterative solution may require too

many iterations and simply waste computational resources without decreasing the

approximation error. On the other hand, if the iterations are stopped too early the

iterative solution will not be a good approximation to the exact solution. This thesis

attempts to handle these issues by presenting optimal balanced black-box stopping tests

in Krylov solvers for solving linear systems with (stochastic) PDE origins.

1.4.2 Solution methodology

In order to stop optimally, that is, by avoiding premature stopping and unnecessary

computations, it is important to use the fundamental relation between the algebraic

error and the approximation error (for a given approximation): the total error at any

iteration step is essentially the sum of the approximation error and the algebraic error;

all the errors are measured in some natural norm (this issue is addressed in detail in

later chapters). By balancing the algebraic error and the total error (which is the

approximation error obtained from the solution computed at that iteration step), a

balanced stopping test is obtained.

The approximation error can be measured a priori or/and a posteriori. A priori
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approximation error estimation usually requires the solution to satisfy some regularity

conditions which may not hold or/and may not be easily verifiable a priori. On the

other hand, robust a posteriori approximation error estimation techniques are generally

readily available. Moreover, a posteriori error estimation can be used for driving

the FEM procedure adaptively. Hence, a posteriori approximation error estimation

approach is used throughout this thesis.

Generally, the algebraic error is unknown since the exact algebraic solution is not

usually available. Obtaining tractable upper and lower bounds on the algebraic error

in terms of a readily computable and monotonically decreasing quantity (if any) of the

chosen iterative solver is the novel feature of the devised stopping strategy. Moreover,

there are no user-defined constants in the optimal balanced stopping tests presented

in this thesis. Thus, iterative solvers incorporating such optimal balanced stopping

strategies will be black-box solvers.

This thesis investigates the design of optimal balanced black-box stopping tests

in iterative solvers for solving symmetric positive-definite, symmetric indefinite, and

nonsymmetric linear systems arising from FEM approximation of (stochastic) PDEs.

This is an active research field; see [Jiránek et al., 2010; Pietro et al., 2014a,b]. For

the sake of brevity, the term balanced stopping test will usually be used in place of

optimal balanced black-box stopping test throughout this thesis.

1.4.3 Contribution to existing literature

The contribution of this thesis to the existing literature lies in the fact that it states the

exact constants, that is, there are no user-defined parameters in the balanced stopping

tests. Hence, a solver based on the balanced stopping methodology will be a black-box

solver. Moreover, for the symmetric positive-definite and symmetric indefinite linear

systems, the constants in the stopping test for MINRES can be estimated cheaply on-

the-fly. In the nonsymmetric case, the contribution of this thesis goes one step further

in the sense that it presents a balanced stopping test for suboptimal Krylov solvers such

as BICGSTAB(`), TFQMR etc. Currently, little convergence theory exists for such

solvers. The work on nonsymmetric systems and symmetric indefinite linear systems

will soon be submitted for publication. The work on symmetric positive-definite linear

systems has already been published [Silvester and Pranjal, 2016].
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Parameterized partial differential equations are ubiquitous; see [Butler et al., 2012;

Constantine et al., 2010]. For both symmetric and nonsymmetric linear systems arising

from FEM discretization of a PDE, parametric PDEs have been considered here as the

underlying PDEs in order to demonstrate the effectiveness of the balanced stopping

tests. Stochastic Galerkin FEM [Babuška et al., 2004] and stochastic collocation

methods [Babuška et al., 2007] are the popular choices for solving parametric PDEs.

At the linear algebra level, these methods involve solving a single huge linear system

and many smaller linear systems respectively. Since the existing storage requirements

and computational flops increase with the size and the number of linear systems, a

balanced stopping test will help to save significant computational work of an iterative

solver. Note that the balanced stopping methodology remains applicable for solving

the corresponding deterministic PDE too.

1.5 Thesis organization

This thesis has 7 chapters. Chapter 2 contains a balanced stopping test in MINRES for

solving symmetric positive-definite linear systems arising from FEM approximation of

the (stochastic) diffusion equations. In chapter 3, MINRES incorporating a balanced

stopping criterion is used for solving symmetric indefinite linear systems that arise from

mixed FEM approximation of the Stokes equations. Chapters 4 and 5 use a balanced

stopping test in GMRES, BICGSTAB(`), and TFQMR for solving nonsymmetric linear

systems. The linear systems considered therein arise from FEM approximation of the

convection-diffusion equations and the Navier–Stokes equations respectively. Chapter

6 contains open research questions arising from the material presented in this thesis.

Research undertaken apart from designing balanced stopping tests is presented in

chapter 7. Appendix A contains the basic definitions, concepts, and theorems that are

used frequently in this thesis, while the appendix B contains sample runs of iterative

solvers (MINRES, GMRES, BICGSTAB(2), TFQMR) with optimal balanced black-

box stopping tests for some of the test problems presented in this thesis.

All computational results presented in this work have been produced using the

software MATLAB and this thesis has been typeset in LATEX 2ε; see [Higham and

Higham, 2017] for MATLAB fundamentals and [Griffiths and Higham, 2016] for a

basic introduction to LATEX 2ε.



Chapter 2

Balanced MINRES stopping for

symmetric positive-definite systems

Publication

• The material presented in this chapter is an expanded discussion based on

the paper: David Silvester and Pranjal. An optimal solver for linear systems

arising from stochastic FEM approximation of diffusion equations with random

coefficients. SIAM/ASA J. Uncertainty Quantification, 4(1):298–311, 2016.

https://doi.org/10.1137/15M1017740

• The devised balanced stopping test in MINRES solver for solving symmetric

positive-definite linear systems arising from stochastic FEM approximation of

parametric diffusion equations has resulted in the function SPD MINRES in the

toolbox S-IFISS [Silvester et al., 2015] in MATLAB. Note that this function was

called EST-MINRES in [Silvester and Pranjal, 2016].

29
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An optimal balanced black-box stopping test in preconditioned MINRES for solving

symmetric positive-definite linear systems will be developed in this chapter. The

underlying diffusion PDE with parametric coefficients will be discretized using the

stochastic Galerkin finite element method, which is a combination of Galerkin FEM

discretization in the spatial dimension and a discretization of the stochastic dimension.

The corresponding linear system will be solved by a preconditioned MINRES solver

with a balanced stopping test. This modified MINRES solver is an extension of the

EST MINRES solver of [Silvester and Simoncini, 2011], which has been developed for

solving discrete saddle point problems. The algorithm has two main ingredients.

First, a block preconditioner is used to ensure fast MINRES convergence independent

of the problem parameters. Second, an optimal balanced black-box stopping test

is incorporated to maximize efficiency. As mentioned in section 1.4, a balanced

stopping test requires tractable bounds on the unobservable algebraic error and an

a posteriori measure of the approximation error and the total errors. The a posteriori

error estimator devised by [Bespalov et al., 2014] for the parametric diffusion problem

will be employed here. Alternatively, a posteriori error estimation techniques such as

residual based a posteriori error estimation strategies of [Eigel et al., 2014] can also be

used, but these will not be considered here. Also, tractable bounds on the algebraic

error will be obtained in terms of the norm of the iteration residual involving the

preconditioner. This readily computable residual norm is monotonically decreasing

with iteration index in preconditioned MINRES, which makes it an ideal candidate

for estimating the usually unknown algebraic error.

This chapter is organized as follows. A discussion about parametric PDEs in

general and parameterized diffusion PDE in particular is done in sections 2.1 and 2.2

respectively. An overview of MINRES is presented in section 2.3. The description of

the block preconditioner that is used for accelerating MINRES convergence is presented

in section 2.4. Section 2.5 has the balanced stopping test. Some computational results

with discussions illustrating the effectiveness of the balanced stopping test in MINRES

are presented in section 2.6. These results are compared with those obtained from the

CG method with a balanced stopping test in section 2.7. The reason for using MINRES

instead of CG is presented therein. A summary of the chapter is in section 2.8.
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2.1 Parameter dependent PDEs

Popular numerical methods for solving a PDE dependent on a finite number (m) of

parameters (say equation (1.1)) are: stochastic Galerkin FEM, Monte-Carlo methods,

and stochastic collocation methods. Stochastic collocation methods have been studied

in some detail over the past ten years; see [Babuška et al., 2007] and [Gordon, 2013].

These methods compute an approximation of the exact solution using interpolation

techniques. It is difficult to implement such methods efficiently on a computer in

general owing to the curse of dimensionality that is typically associated with them.

Monte-Carlo methods are the most popular method among the practitioners in the

field of uncertainty quantification. These involve sampling using large number of

independent realizations of the parameter input. In case of a PDE this implies

solving a large number of small deterministic linear systems. Although Monte-Carlo

methods are robust and easily parallelizable, these become inefficient and infeasible

especially for large-scale models where single deterministic linear system (and hence

many linear systems) solve is computationally expensive. Instead of solving millions

of small deterministic linear systems, an efficient alternative is to use a stochastic

Galerkin finite element method which results in a single-coupled and huge deterministic

linear system. Although this linear system is orders of magnitude larger than the

subproblems of the Monte-Carlo methods, it is highly structured which can be utilized

in the construction of fast and efficient solvers. Introduced by Ghanem (see [Ghanem

and Spanos, 1991], [Ghanem and Kruger, 1996]) in the early 1990s, efficient and fast

linear algebra for such systems have been studied extensively in the last two decades;

for example see [Deb et al., 2001], [Babuška et al., 2004], and [Eiermann et al., 2007].

For a more detailed review of the research done in the field of stochastic finite elements,

one can refer to [Gunzburger et al., 2014].

The stochastic Galerkin finite element method is a combination of discretization

of the stochastic dimension coupled with a Galerkin finite element discretization of

the spatial dimension. There are two popular strategies for the approximation of

the stochastic dimension using global multivariate polynomials in the m parameters

y1, y2, . . . , ym. The parameter approximation space Sp = span{ξj}
nξ
j=1 might be the

span of one of the following two classes of global multivariate polynomials:
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a) global multivariate polynomials of total degree ≤ p.

b) global multivariate polynomials of total degree ≤ p in each of the m parameters.

Legendre polynomials are suitable candidates when uniform random variables are used

for modelling the parameters, while Hermite polynomials are used when Gaussian

random variables are employed. The importance of the particular choice of polynomial

based on the chosen random variables for modelling the parameters will be discussed

later. The dimension nξ of the space Sp is greater when it is spanned by global

multivariate polynomials of total degree ≤ p in each of the m parameters rather when

it is spanned by global multivariate polynomials of total degree ≤ p. For example,

suppose m = 2 and p = 2. If Legendre polynomials are used, then

• Sp =: Sap := span{1, y1, y2, y
2
1, y

2
2, y1y2}.

• Sp =: Sbp := span{y2
1y2, y1y

2
2, y

2
1y

2
2} ∪ Sap .

For large m, the dimension of Sap grows algebraically as
(m+ p)!

m! p!
while that of Sbp grows

exponentially as (p+ 1)m. Hence from the point of optimizing storage constraints in a

computer’s memory, global multivariate polynomials of total degree less than or equal

to p for the parameter approximation space will be used. Each coefficient ui of the

solution u is then written as a linear combination of the polynomial basis functions

ui = u1
i ξ1 + u2

i ξ2 + . . .+ u
nξ
i ξnξ , (2.1)

and the system is projected (in a least-squares sense) to give the best approximation to

the solution from the finite-dimensional subspace Sp = span{ξj}
nξ
j=1. This (Galerkin)

projection leads to the linear system (see [Powell et al., 2017, p. A143] for derivation)

A0XG
T
0 + σ

m∑
k=1

AkXG
T
k = F, (2.2)

where X is the n × nξ matrix of the unknown coefficients uji and Gk is the weighted

symmetric Gram matrix associated with the kth parameter. Here n is the dimension of

the spatial approximation space, σ > 0 might represent the standard deviation of the

parameter variation, and Ak are matrices associated with the spatial discretization.

Notice that writing x = vec(X) results in an equivalent high dimensional linear

system of dimension n · nξ with a characteristic Kronecker product (⊗) structure

Ax = f ⇐⇒
(
G0 ⊗ A0 + σ

∑m
k=1 Gk ⊗ Ak

)
x = f . (2.3)
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In this chapter, G0 ⊗ A0 will be a positive-definite matrix. The matrices Gk ⊗ Ak

may be indefinite and A will be guaranteed to be invertible only when σ is sufficiently

small. This issue will be addressed later in this chapter. More details on the structure

of these matrices will be presented later.

2.2 Stochastic steady-state diffusion PDE

Stochastic diffusion process, which is used for modelling groundwater flow, conduction

of heat in a medium etc., is a model that falls under the above framework. Suppose

that the diffusion PDE is defined on a spatial domain D ⊂ Rd with an isotropic

permeability tensor1 K = κI where κ : D × Γ → R is a random field (that is

parameterized by m independent and identically distributed random variables). Also,

assume that κ can be written as

κ(~x, y1, . . . , ym) := µ(~x) +
m∑
k=1

ψk(~x) yk, (2.4)

where µ(~x) is the mean value of the permeability coefficient at ~x ∈ D. Here yk ∈ Γk

is the image of the kth random variable, Γ := Γ1 × · · · × Γm, Γk ⊂ R, and {ψk}mk=1

are given functions defined on D. The expression (2.4) might be a Karhunen–Loève

expansion [Lord et al., 2014, p. 201] or a polynomial chaos expansion [Wiener, 1938]

of κ.

The stochastic steady-state diffusion problem requires solving for a random field

u(~x,y) : D × Γ → R that satisfies

−∇ · K(~x,y)∇u(~x,y) = f(~x), ∀ ~x ∈ D ⊂ Rd, (d = 2, 3), y ∈ Γ, (2.5a)

u(~x,y) = g(~x), ∀ ~x ∈ ∂DD, y ∈ Γ, (2.5b)

K(~x,y)∇u(~x,y) · ~n = 0, ∀ ~x ∈ ∂DN = ∂D\∂DD, y ∈ Γ, (2.5c)

almost surely. Here ∂DD, ∂DN are the Dirichlet and the Neumann parts respectively

of the boundary ∂D with an outward normal vector ~n. The source term f and the

boundary data g are given deterministic functions. The treatment of uncertainty in

the source term f can be done easily; see [Deb et al., 2001] and [Elman et al., 2005].

1The isotropic permeability tensor is known by alternative names depending on the phenomenon
being modelled by the diffusion PDE. It is known as the conductivity coefficient in a heat flow model,
diffusion coefficient in a fluid flow model etc.
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However, here it will be assumed to be a given deterministic function. Also, without

any loss of generality zero Neumann boundary conditions are assumed.

In order to cast (2.5) in the weak form it is essential that K(~x,y) is strictly positive

and bounded, that is, there exists k1, k2 ∈ R such that

0 < k1 ≤ K(~x,y) ≤ k2 < ∞, almost everywhere in D × Γ,

so that the existence and uniqueness of the weak form solution is guaranteed in the

separable solution space W := {u : ‖u‖E <∞, u|∂DD×Γ = 0} = H1
0 (D)⊗L2(Γ) by the

Lax–Milgram lemma. The weak form of (2.5) is to find u such that u− ĝ ∈ W satisfies〈∫
D

K(~x,y)∇u(~x,y) · ∇w(~x,y) d~x

〉
=

〈∫
D

f(~x)w(~x,y) d~x

〉
, ∀w ∈ W. (2.6)

The function ĝ is a smooth extension of g into the domain. The symbol 〈·〉 denotes

the expected value of a multivariate random variable that is defined on a probability

space (Γ,B(Γ), π) with joint probability density function2 ρ(y) defined on the product

set Γ. In terms of the joint probability density function ρ(y), (2.6) can be rewritten

as, find u− ĝ ∈ W such that∫
Γ

ρ(y)

∫
D

K(~x,y)∇u(~x,y) · ∇w(~x,y) d~x dy =

∫
Γ

ρ(y)

∫
D

f(~x)w(~x,y) d~x dy, (2.7)

∀w ∈ W . The natural energy norm ‖ · ‖E from (2.7) can be defined as

‖w‖2
E :=

∫
Γ

ρ(y)

∫
D

K(~x,y) |∇w(~x,y)|2 d~x dy. (2.8)

For a posteriori error estimate computations, another equally important norm

‖ · ‖E0 (called the mean energy norm henceforth) based on the mean field µ(~x) of

the permeability coefficient is required

‖w‖2
E0

:=

∫
Γ

ρ(y)

∫
D

µ(~x) |∇w(~x,y)|2 d~x dy. (2.9)

A more detailed discussion about these norms is done in the section on a posteriori

error estimation. A crucial point here is that the two norms are equivalent whenever

the formulation (2.6) is well-posed [Bespalov et al., 2014], that is, there exist positive

constants λ and Λ such that

λ‖w‖2
E0
≤ ‖w‖2

E ≤ Λ‖w‖2
E0
, ∀w ∈ W. (2.10)

2Note that the conventional assumption of using identical and independent random variables makes
the evaluation of ρ(y) easier.
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Galerkin finite dimensional approximation of (2.7) is associated with choosing a finite

dimensional subspace Wh,p of W . This is achieved by choosing subspaces of the

component spaces, that is, Xh ⊂ H1
0 (D), Sp ⊂ L2(Γ) and setting Wh,p := Xh ⊗ Sp;

see [Lord et al., 2014, section 9.5].

For the test problems generated using the S-IFISS toolbox [Silvester et al., 2015],

the spatial domain D is two-dimensional and piecewise bilinear (Q1) or biquadratic

(Q2) finite elements on a uniform rectangular grid are employed. This results in sparse

stiffness matrices A0 and Ak in (2.3). For the parameter approximation space Sp,

choosing a basis set {ξj}
nξ
j=1 of global multivariate polynomials that is orthonormal with

respect to the probability measure π will result in sparse stochastic matricesGk (G0 = I

and at most two nonzeros in any row otherwise). This orthogonality correspondence is

the precise reason for choosing Legendre polynomials with uniform random variables

and Hermite polynomials with Gaussian random variables; see [Gautschi, 2004] for a

discussion on orthogonal polynomials.

The huge matrix A is never assembled in a practical implementation. Only the

entries ofGk and the (m+1) stiffness matrices each of size n×n are stored; see [Ghanem

and Kruger, 1996]. The sparsity of the stiffness and the stochastic matrices implies

that the matrix-vector products with the coefficient matrix A in (2.3) are cheap

to compute—an essential ingredient for a computationally effective iterative solver.

If (2.6) is well-posed, then A is a symmetric positive-definite matrix. However, it is

ill-conditioned with respect to the discretization parameters. Thus, preconditioning is

required with MINRES to solve the huge linear system (2.3) with coefficient matrix

A. An overview of MINRES is presented in the next section.

2.3 An overview of MINRES

2.3.1 MINRES strategy

Iteratively solving Ax = f using MINRES [Elman et al., 2014a, chapter 4] involves

constructing a sequence of iterates x(k) (k = 1, 2, . . .) from the shifted Krylov space

x(0) + span {r(0), Ar(0), . . . ,Ak− 1r(0)}, (2.11)

where x(0) is the initial solution vector, r(0) = f − Ax(0) is the initial residual and the

spanning space Kk(A, r(0)) := span {r(0), Ar(0), . . . ,Ak− 1r(0)} is the Krylov subspace
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of order k generated by the matrix A and the vector r(0). The residual r(k) at the kth

iterative step is

r(k) = f − Ax(k)

= f − A(x(0) + span {r(0), Ar(0), . . . ,Ak− 1r(0)})

= r(0) + span {Ar(0), A2r(0), . . . ,Akr(0)}.

(2.12)

The MINRES method chooses the iterate x(k) from the space (2.11) such that it

minimizes the Euclidean norm ‖ · ‖ of the corresponding residual r(k) over the shifted

space in the right-hand-side of (2.12).

A basis of orthonormal vectors {w(1), . . . ,w(k)} is constructed for the k-dimensional

Krylov space, where w(1) := f/‖f‖. This construction process is known as the Lanczos

method [Lanczos, 1950] where the basis vectors are generated iteratively using the

recurrence

AWk = WkTk + tk+1,k w(k+1)eTk=:Wk+1 T k, (2.13)

where Wk := [w(1), . . . ,w(k)] and ek is the kth vector of the canonical basis. The

tridiagonal symmetric matrix Tk contains the orthogonalization coefficients and T k is

the tridiagonal matrix Tk with an additional final row [0, . . . , 0, tk+1,k]; for complete

details see [Greenbaum, 1997, section 2.5]. The constant tk+1,k is chosen such that

‖w(k+1)‖ = 1. The Lanczos step (2.13) provides the following characterization of the

iterate x(k) and the residual r(k)

x(k) = x(0) +Wky
(k), (2.14a)

r(k) = f −Ax(k) = Wk+1

(
e1‖r(0)‖ − T ky(k)

)
. (2.14b)

By solving the least squares problem miny(e1‖r(0)‖ − T ky), the minimizing solution

x(k) is computed. Here e1 is the first canonical basis vector in (k + 1) dimensions.

In order to solve the least squares problem, a QR factorization (see [Golub and Van

Loan, 2013, p. 246]) of T k is performed using k Givens rotations. The advantage of

this approach is that only one new rotation is needed to update the QR factorization

from the previous iteration; see [Fischer, 2011, p. 179].

The eigenvalues of Tk = W T
k AWk are known as the Ritz values ; see [Golub and

Van Loan, 2013, p. 551]. These can be computed cheaply and readily in the Lanczos
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method at each iterative step of the MINRES solver. As the iteration progresses, the

extremal Ritz values provide an increasingly better approximation to the corresponding

extremal eigenvalues of A or ofM−1A if the matrix is preconditioned with matrixM.

This holds true for even small iteration index k, and has been discussed extensively

in [Parlett, 1998, chapter 13]. This aspect will be crucial for devising the balanced

stopping criterion in section 2.4 since one may stop prematurely if the devised stopping

test is applied before the relevant (here extremal) Ritz values have converged.

2.3.2 Convergence estimate for MINRES

In order to obtain a convergence estimate for MINRES [Elman et al., 2014a, chapter

4], (2.12) can be rewritten as

r(k) = pk(A)r(0), (2.15)

where pk(A) ∈ Πk—set of real polynomials of degree less than or equal to k—and by

construction pk(0) = 1. Since A is a symmetric matrix, therefore, there exists a basis

of mutually orthogonal eigenvectors of A for the corresponding solution space (2.11).

Let {wj}
n·nξ
j=1 be an orthogonal basis (for the solution space) of eigenvectors of A with

corresponding eigenvalues {λj} and

r(0) =
∑
j

αj wj, Awj = λjwj, (2.16)

where αj are scalars. Using (2.15)

r(k) = pk(A)
∑
j

αj wj

=
∑
j

αj pk(λj) wj.

In the last equality the following fact has been used, that is, if a linear operator A

has eigenvalue λ, then any polynomial p(A) has the same eigenvector with eigenvalue

p(λ). From the minimal residual criterion, it follows that

‖r(k)‖ = min
pk ∈Πk, pk(0) = 1

‖
∑
j

αj pk(λj) wj‖

≤ min
pk ∈Πk, pk(0) = 1

max
j
|pk(λj)| ‖r(0)‖.

(2.17)

The convergence estimate (2.17) for the unpreconditioned MINRES implies that it

converges in exact arithmetic in a finite number of iterations k ≤ n · nξ.
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Let M be a preconditioner for (2.3). Then the corresponding preconditioned linear

system is

M−1Ax = M−1 f . (2.18)

In order to apply the MINRES method to the preconditioned system it is essential

that the preconditioned coefficient matrix is symmetric. This is achieved by using a

symmetric positive-definite preconditioner M = HHT . From (2.18) it follows that

(HT )− 1H− 1Ax = (HT )− 1H− 1 f ⇐⇒ H− 1Ax = H− 1 f ,

which leads to the symmetric system

H− 1AH−Ty = H− 1 f , y = HTx. (2.19)

Any solution to (2.19) is also a solution to (2.18). The residual at iteration k is

H− 1 (f − Ax(k)) = H− 1r(k).

If MINRES is applied to (2.19), then at iteration k the Euclidean norm ‖H− 1r(k)‖ is

minimized over

H− 1 r(0) + span {H− 1AH−T (H− 1r(0)), (H− 1AH−T )
2
(H− 1r(0)), . . . ,

(H− 1AH−T )
k
(H− 1r(0))}

= H− 1 (r(0) + span {AM−1r(0), (AM−1)
2
r(0), . . . , (AM−1)

k
r(0)}).

In fact, it follows that

‖H− 1r(k)‖2 = (r(k))T (H T )−1H− 1 r(k) = ‖r(k)‖2
M−1 := (r(k))TM−1 r(k). (2.20)

Thus, for preconditioned MINRES the convergence estimate analogous to (2.17) is

‖r(k)‖M−1

‖r(0)‖M−1

≤ min
pk ∈Πk, pk(0) = 1

max
j
|pk(λj)|, (2.21)

where λj are the eigenvalues of the matrix H− 1AH−T . However, because of the

similarity transformation, M−1A = H−T (H− 1AH−T )HT it follows that λj are

also the eigenvalues ofM−1A. Since H− 1AH−T is a symmetric matrix, therefore all

the eigenvalues of M−1A are real. But H− 1AH−T is also a positive-definite matrix

if (2.6) is well-posed. Hence, all the eigenvalues of M−1A are positive. This aspect
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is important since it ensures that the relevant (smallest and/or largest) eigenvalue

involved in the balanced stopping test is (are) real and greater than zero.

In actual computations one needs to know only the action ofM−1 on a vector and

the matrix H is not needed. Also, the above analysis holds only when the matrix

M−1 is positive-definite because only then ‖ · ‖M−1 defines a norm. Since, the residual

reduction for the preconditioned MINRES is in a norm based on the preconditioner

(see (2.21)), the choice of preconditioner is crucial for accelerating the convergence of

the MINRES method.

2.4 A fast iterative solver

From the structure of the matrix A in (2.3) it follows that when σ is small relative to

‖A0‖, the matrixM := I ⊗A0 will be a close approximation to A. Also, since I ⊗A0

is a block diagonal (with the symmetric stiffness matrix A0 as the diagonal blocks)

positive-definite matrix, it is cheaply and readily invertible. The action of the inverse

of I ⊗ A0 can be computed through a single sparse factorization (of A0) followed by

nξ forward and backward substitutions. This preconditioning is known as the mean-

based preconditioning and a detailed discussion of the spectral properties of it can be

found in [Powell and Elman, 2009]. Besides accelerating convergence of MINRES, the

preconditioner I ⊗A0 is also spectrally equivalent to A. Mathematically, this leads to

Rayleigh quotient (see [Golub and Van Loan, 2013, p. 453]) bounds θ, Θ—the smallest

and the largest eigenvalues of M−1A respectively—independent of the discretization

parameters, that is

θ ≤ xTAx

xTMx
≤ Θ, ∀x ∈ Rn·nξ . (2.22)

The expression (2.22) is equivalent to computing the extremal eigenvalues of the

generalized eigenvalue problem for A and M. The optimal convergence bound (2.21)

can be weakened to hold over the finite interval [θ,Θ]. Thus, the following convergence

estimate is obtained

‖r(k)‖M−1

‖r(0)‖M−1

≤ min
pk ∈Πk, pk(0) = 1

max
z∈[θ,Θ]

|pk(z)|. (2.23)

The independence of θ,Θ from the discretization parameters implies that the number of

iterations for the convergence of (preconditioned) MINRES is bounded independently

of the discretization parameters.
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2.5 A balanced stopping test

2.5.1 Error equation

For devising a balanced stopping criterion, it is stipulated on the premise that the

algebraic error at a given iteration step cannot be worse than the approximation

error at that step. To describe this in detail, suppose that uhp − ĝ ∈ Wh,p be the

stochastic Galerkin finite element approximation to the true solution u. Then x (the

true algebraic solution) is the coordinate vector of uhp with respect to a chosen ordered

basis. Let x(k) be the coordinate vector at the iteration step k of the linear solver.

Corresponding to this iterate, the approximation u
(k)
hp can be formed. The Galerkin

orthogonality [Elman et al., 2014a, p. 36] at iteration k decomposes the total error as

the sum of the Galerkin approximation error and the algebraic error

‖u− u(k)
hp ‖

2
E︸ ︷︷ ︸

total error

= ‖u− uhp‖2
E︸ ︷︷ ︸

approximation error

+ ‖uhp − u(k)
hp ‖

2
E︸ ︷︷ ︸

algebraic error

, k = 0, 1, 2, . . . . (2.24)

where ‖uhp − u(k)
hp ‖2

E = ‖e(k)‖2
A := (e(k))

TA e(k). Here e(k) := x − x(k) denotes the

kth iteration error. Also, note that the total error at iteration k is the approximation

error at that iteration.

For obtaining a posteriori error estimate η to the approximation error ‖u− uhp‖E,

the mean-based local error estimation strategy of [Bespalov et al., 2014] is used. In this

strategy, a posteriori error estimator is constructed in the mean-based ‖ · ‖E0 energy

norm [Bespalov et al., 2014, Lemma 4.1]3

1√
5
η ≤ ‖u− uhp‖E0 ≤

1√
1 − γ2

η, γ ∈ [0, 1). (2.25)

Using (2.10), the equation (2.25) can be expressed as

c1 η ≤ ‖u− uhp‖E ≤ C1η, with
C1

c1

∼ O(1). (2.26)

Assuming that the a posteriori error estimators η and η(k) are close estimates of the

approximation error and the total error (at the kth iteration step) respectively, then

from (2.24) it follows that

(η(k))2 ' η2 + ‖e(k)‖2
A, k = 0, 1, 2, . . . . (2.27)

3A tighter a posteriori error bound has been derived in [Bespalov and Silvester, 2016]. But the
computations were carried out more than a year before this new result was published. Moreover, the
balanced stopping methodology remains applicable for the improved error bounds as well.
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The relation ' follows directly from (2.26). In practice for chosen (fixed) stochastic

and spatial parameters, the approximation error (and hence η) is fixed but unknown.

Thus, the iterative strategy can be looked upon as constructing a sequence {η(k)}

which converges to η and hence the MINRES iteration should be stopped when the

contribution of the algebraic error in (2.27) is insignificant, that is, stop at the first

iteration k∗ such that

‖e(k∗)‖A ≤ η(k∗), (2.28)

which implies that the total error cannot be reduced significantly any further and

{η(k)} has converged with some accuracy to the approximation error estimate η.

2.5.2 Tractable bounds on algebraic error

Computing ‖e(k)‖A is anything but straightforward; see [Arioli, 2004]. The alternative

is to obtain tractable bounds on ‖e(k)‖A. At iteration k

r(k) = f − Ax(k) ⇐⇒ r(k) = A e(k), (2.29)

Thus, from (2.29)

‖e(k)‖2
A = (e(k))T A e(k) ⇐⇒ ‖e(k)‖2

A = (r(k))T A− 1 r(k) =: ‖r(k)‖2
A− 1 . (2.30)

Equation (2.30) expresses the usually unknown energy error in terms of the iteration

residual in the A− 1 norm. Thus, in order to bound the algebraic error by the norm

‖ · ‖M−1 of the iteration residual, computation of scalars δ and ∆ is required such that

δ ≤ xTA− 1 x

xTM−1 x
≤ ∆, ∀x ∈ Rn·nξ . (2.31)

The expression (2.31) is equivalent to computing the extremal eigenvalues of the

generalized eigenvalue problem for A− 1 and M−1. Thus, the extremal generalized

eigenvalue problem is to find (δ∗,∆∗) ∈ R2 such that

A− 1x1 = δ∗M−1x1, A− 1x2 = ∆∗M−1x2, (2.32)

where δ∗,∆∗ are the smallest and the largest eigenvalue respectively and x1, x2 ∈ Rn·nξ

are the corresponding eigenvectors. Let A− 1x1 = y1 and A− 1x2 = y2. Then (2.32)

can be rewritten as

Ay1 =
1

δ∗
My1, Ay2 =

1

∆∗
My2, (2.33)
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Equation (2.33) shows that the extremal generalized eigenvalues of A− 1 andM−1 are

the reciprocal of the extremal generalized eigenvalues of A andM (that is the extremal

eigenvalues ofM−1A). Thus, from (2.22) it follows that in (2.31), δ = 1
Θ
,∆ = 1

θ
, which

together with (2.30) implies that for k = 0, 1, . . .

1

Θ
≤ (r(0))

TA− 1 r(0)

(r(0))
TM−1 r(0)

=
‖e(0)‖2

A
‖r(0)‖2

M−1

,
‖e(k)‖2

A
‖r(k)‖2

M−1

=
(r(k))

TA− 1 r(k)

(r(k))
TM−1 r(k)

≤ 1

θ
.

(2.34)

Equation (2.34) leads to the following upper bounds on ‖e(k)‖A, that is

‖e(k)‖A
‖e(0)‖A

≤
√

Θ

θ

‖r(k)‖M−1

‖r(0)‖M−1

⇐⇒ ‖e(k)‖A ≤
√

Θ

θ

‖r(k)‖M−1

‖r(0)‖M−1

‖e(0)‖A

⇐⇒ ‖e(k)‖A ≤
√

Θ

θ
‖r(k)‖M−1 , (2.35a)

‖e(k)‖A ≤
1√
θ
‖r(k)‖M−1 . (2.35b)

The tighter bound (2.35b) will be used in the presence of tight a posteriori error

estimators (discussion in the next subsection) and the quantity 1√
θ
‖r(k)‖M−1 will be

called the algebraic error bound in the rest of the chapter. Note that since (2.22) is

the finite dimensional analogue of (2.10), so λ ≤ θ and Θ ≤ Λ. But a priori estimates

of λ and Λ are pessimistic and/or difficult to find. So, θ is estimated on-the-fly as the

smallest Ritz value in the Lanczos process of MINRES.4

2.5.3 Stopping criterion

In light of (2.35b) an optimal balanced black-box stopping criterion in MINRES is

1√
θ
‖r(k∗)‖M−1 ≤ η(k∗). (2.36)

Here k∗ is the smallest value of iteration index k such that (2.36) is satisfied.

The resulting MINRES algorithm with the balanced stopping test (2.36) is called

SPD MINRES and is given in Figure 2.1. The external functions matvecA, precM compute

the action of the matricesA andM−1 on a vector respectively. The function error est

computes the a posteriori error estimate.

2.5.4 A posteriori error estimation

The computation in S-IFISS of the a posteriori error estimate η(k) at the iteration step

k requires the solution of two local (element level) problems having a block diagonal

4[Silvester and Simoncini, 2011] exploited the Lanczos connection for saddle point problems. Since
estimates of interior eigenvalues were required, harmonic Ritz value estimates were computed there.
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Algorithm: SPD MINRES

given vectors f , x(0) and functions matvecA, precM, param est, error est

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

set r(0) = f − matvecA (x(0)), r̂(0) = precM (r(0)), ρ0 =
√

(r(0))T r̂(0)

initialize basis vectors: w = r̂(0)/ρ0, p(−1) = 0, p(0) = r(0)/ρ0

initialize auxiliary vectors: d(−1) = 0, d(0) = 0
initialize projected right-hand side: f = ρ0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
for k = 1, 2, . . . until convergence do

generate new basis and auxiliary vectors: p(k) = matvecA (w), d(k) = w
if k>1, tk−1,k = tk,k−1, p(k) = p(k) − p(k−1)tk−1,k

tk,k = wTp(k), p(k) = p(k) − p(k−1)tk,k
compute preconditioned basis vector: w = precM (p(k))

tk+1,k =
√

wTp(k), p(k) = p(k)/tk+1,k , w = w/tk+1,k

compute parameter for stopping test: coef = param est (Tk)
apply previous rotations:

if k>2, ρ1:2 = Sk−2tk−2:k−1,k, ρ2:3 = Sk−1[ρ2; tk,k]
elseif k=2, ρ2:3 = Sk−1t1:2,2

elseif k = 1, ρ3 = t1,1
compute new rotations:

δ =
√
ρ2

3 + t2k+1,k, c = |ρ3|/δ, s = sign(ρ3)tk+1,k/δ

apply new rotations: ρ3 = cρ3 + stk+1,k, f̂ = −sf , f = cf , Sk = [c s;−s c]
update auxiliary vector: d(k) = (d(k) − d(k−1)ρ1 − d(k−2)ρ2)/ρ3

update solution: x(k) = x(k−1) + d(k)f̂
compute discretization error estimate : η(k) = error est (x(k))
stopping test: if coef·|f̂ | ≤ η(k), convergence
update residual norm: f = f̂

enddo

function coef = param est (Tk)
compute the smallest eigenvalue λ1 of Tk
set θ(k) = λ1

if θ(k) ≤ 0 output ‘indefinite system’ error message
else set coef = 1/

√
θ(k)

endfunction

Figure 2.1: The SPD MINRES algorithm expressed in pseudo-code.

(essentially with 5×5 stiffness matrices as the blocks) structure which differ overall only

in the total number of blocks. It also requires the solution of one nonlocal sparse block

diagonal system with each block representing the (already assembled) sparse stiffness

matrix corresponding to the mean permeability coefficient. Thus, the computation of

η(k) is relatively cheap and fast.
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Computational results strongly suggest that the a posteriori error estimator that

is employed here is a close estimate of the approximation error. To demonstrate this,

some results are presented for the test problem 1; see section 2.6. The a posteriori error

estimate η and the corresponding actual energy error ‖uref − uhp‖E using a reference

solution are tabulated in Tables 2.1, 2.2, 2.3, and 2.4. Since the exact solution to the

model problem is not available, a reference solution uref is computed on a fine spatial

mesh h = 2−7 with m = 3 random variables of total polynomial degree p = 7.

Table 2.1: Energy errors, a posteriori errors, and effectivity indices for diffusion test
problem 1 with m = 3, p = 2, and σ = 0.2.

h η ‖uref − uhp‖E βeff

1/4 1.8411e-2 1.8873e-2 0.98
1/8 8.7125e-3 9.4331e-3 0.92
1/16 4.3394e-3 4.7411e-3 0.92
1/32 2.3500e-3 2.4229e-3 0.97
1/64 1.5192e-3 1.3114e-3 1.16

Table 2.2: Energy errors, a posteriori errors, and effectivity indices for diffusion test
problem 1 with m = 3, h = 1/32, and σ = 0.2.

p η ‖uref − uhp‖E βeff

1 6.2228e-3 4.8648e-3 1.28
2 2.3500e-3 2.4229e-3 0.97
3 2.0770e-3 2.2840e-3 0.91
4 2.0650e-3 2.2781e-3 0.91
5 2.0645e-3 2.2778e-3 0.91

Table 2.3: Energy errors, a posteriori errors, and effectivity indices for diffusion test
problem 1 with m = 3, p = 2, and σ = 0.4.

h η ‖uref − uhp‖E βeff

1/4 2.2711e-2 2.2000e-2 1.03
1/8 1.4637e-2 1.4018e-2 1.04
1/16 1.2047e-2 1.1179e-2 1.08
1/32 1.1341e-2 1.0349e-2 1.09
1/64 1.1161e-2 1.01314e-2 1.10

This reference solution is then compared with the computed stochastic Galerkin

FEM solution uhp, which is linearly interpolated using MATLAB interp2 function



Computational results 45

Table 2.4: Energy errors, a posteriori errors, and effectivity indices for diffusion test
problem 1 with m = 3, h = 1/32, and σ = 0.4.

p η ‖uref − uhp‖E βeff

1 2.5555e-2 2.2042e-2 1.16
2 1.1341e-2 1.0349e-2 1.10
3 5.8487e-3 5.6422e-3 1.07
4 3.6488e-3 3.6656e-3 1.00
5 2.8008e-3 2.8459e-3 0.98

for compatible comparison with the reference solution. This was done for varying

problem parameters. The remaining problem logistics are the same as in [Silvester and

Pranjal, 2016]. The corresponding effectivity index βeff = η
‖uref−uhp‖E

is also presented.

From Tables 2.1, 2.2, 2.3, and 2.4, it follows that the effectivity index is very close

to 1 thereby indicating that the a posteriori error estimate is a close estimate of the

approximation error.

2.5.5 Computational logistics

The computational cost of the SPD MINRES algorithm is similar to the computational

cost of the MINRES algorithm apart from the computation of the quantities in the

balanced stopping test (2.36). The ‖r(k)‖M−1 norm of the iteration residual is readily

available as a byproduct at each preconditioned MINRES step. As mentioned earlier,

the smallest eigenvalue θ of M−1A can be estimated cheaply and readily by the

smallest Ritz value θ(k) at iteration k. In the case when the call to the a posteriori error

estimator function is computationally expensive, one could compute η(k) periodically

at every 4–5 iterations (say) to have a minor impact on the overall algorithmic cost.

2.6 Computational results

To provide a proof-of-concept, results of some computational experiments are presented

here when the (preconditioned) MINRES stopping test (2.36) is applied to solve

symmetric positive-definite linear systems arising from the stochastic Galerkin FEM

approximation of (2.5).
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2.6.1 Test problem 1

Following [Deb et al., 2001], the PDE (2.5) is defined on D = (−1, 1)×(−1, 1) with zero

Dirichlet boundary conditions everywhere on the boundary and the source function

f(x1, x2) = 1
8
(2 − x2

1 − x2
2),∀ (x1, x2) ∈ D. Rectangular Q1 (piecewise bilinear) finite

elements are used on a uniform grid with mesh step size h. Uniform random variables

defined on Γk = [−1, 1] are used for parameterizing the diffusion coefficient κ in (2.4).

Multivariate Legendre polynomials of total polynomial degree p = 3 are used as basis

for the parameter approximation space Sp and the mean field µ(~x) = 1,∀ ~x ∈ D in

the expansion (2.4). The spatial functions ψk =
√

3λk ϕk in (2.4) are associated with

eigenpairs {(λk, ϕk)}mk=1 of the covariance operator C(~x, ~x′) = σ2 exp
(
−1

2
‖~x− ~x′‖`1

)
,

∀ ~x, ~x′ ∈ D. The correlation length is set to two in each coordinate direction. This

problem can be generated in S-IFISS by choosing example 2 when running the driver

stoch diff testproblem.

Results are presented for different number of random variablesm, different standard

deviation σ, and various mesh parameter h in order to show the robustness of the

balanced stopping test. A reference algebraic solution x can be computed in each case

by solving the preconditioned discrete system with an absolute residual (‖r(k)‖M−1)

reduction tolerance of 1e-14. Corresponding to this reference solution x, a reference a

posteriori error estimate η can also be generated. The initial vector x(0) for the solver

is generated using MATLAB function rand. The same initial guess is used for a given

discrete system to generate the reference solution and the algebraic solution based on

the stopping test (2.36).

Representative results are presented in Figure 2.2 and Figure 2.3. Each subplot

shows the evolution of ‖r(k)‖M−1 , a posterior error estimator η(k), and the algebraic

error bound 1√
θ
‖r(k)‖M−1 at each iteration step k; with θ estimated on-the-fly as the

smallest Ritz value θ(k) of the tridiagonal Lanczos matrix in the Lanczos process of

preconditioned MINRES. It can be seen that the sequence {η(k)} converges to the

reference a posteriori error η on each plot. Note that on each plot there are 9 more

extra iterations after convergence to exhibit stopping at the correct place, that is,

{η(k)} converges with some accuracy to η. Here η(k) is computed at each iterative step

to illustrate the stopping methodology; in practice it should be computed periodically.
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Figure 2.2: Errors vs iteration number for preconditioned MINRES for diffusion test
problem 1 with h = 1/32, m = 5, p = 3 | σ = 0.3 (left), σ = 0.5 (right).
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Figure 2.3: Errors vs iteration number for preconditioned MINRES for diffusion test
problem 1 with m = 7, p = 3, σ = 0.5 | h = 1/16 (left), h = 1/32 (right).

Notice that the curves for ‖r(k)‖M−1 and 1√
θ(k)
‖r(k)‖M−1 are not parallel initially

but soon become parallel as θ(k) converges to θ (which also eliminates the possibility of

premature stopping). The plots in Figure 2.4 further confirm this convergence. In fact

the computational experiments suggest no sign of the problematic ghost (spurious)

Ritz values [Golub and Van Loan, 2013, p. 566] in any of the computations; for

example see Figure 2.4. Note that on these plots, the actual extremal eigenvalues of

the preconditioned matrix were computed using MATLAB eigs; this approach would

be impractical in general owing to the huge size of the coefficient matrix.



48 SPD MINRES optimal stopping

0 5 10 15 20
0.4

0.6

0.8

1  

1.2

1.4

1.6

iteration number

R
it
z
 v

a
lu

e
s

 

 

Actual extremal eigenvalues 

Ritz values

0 5 10 15 20 25
0  

0.3

0.6

0.9

1.2

1.5

1.8

2.1

iteration number
R

it
z
 v

a
lu

e
s

 

 

Actual extremal eigenvalues

Ritz values

Figure 2.4: Computed Ritz values for diffusion test problem 1 with m = 5, p = 3 |
h = 1/16 and σ = 0.3 (left), h = 1/8 and σ = 0.5 (right).

Table 2.5: Iteration counts and Rayleigh quotients estimates for diffusion test problem
1 with σ = 0.3, m = 5, and p = 3.

h ktol1 ktol2 k∗ e∗η θ∗ Θ∗ #dof

1/4 14 19 6 7.2e-5 0.5276 1.5044 2744
1/8 14 20 7 2.1e-5 0.4833 1.5257 12600
1/16 15 20 8 1.5e-5 0.4734 1.5283 53816
1/32 16 21 9 7.2e-6 0.4708 1.5311 222264

Table 2.6: Iteration counts and Rayleigh quotients estimates for diffusion test problem
1 with σ = 0.5, m = 5, and p = 3.

h ktol1 ktol2 k∗ e∗η θ∗ Θ∗ #dof

1/4 30 43 11 2.2e-3 0.1358 1.8789 2744
1/8 34 49 14 5.5e-5 0.1110 1.8941 12600
1/16 36 52 16 2.5e-4 0.1042 1.9032 53816
1/32 38 53 17 7.3e-4 0.1029 1.9045 222264

To show the effectiveness of the balanced stopping test for various parameters, the

iteration counts k∗ needed to satisfy the stopping test (2.36) have been compared in

Tables 2.5, 2.6, and 2.7 with iteration counts ktol1, ktol2 needed to satisfy a fixed

absolute residual ‖r(k)‖M−1 reduction tolerance of 1e-6 and 1e-9 respectively. These

tolerance values are a realistic user-input tolerance choices in the absence of a balanced

stopping test (2.36). The user will not know in general the stopping point k∗ a priori
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Table 2.7: Iteration counts and Rayleigh quotients estimates for diffusion test problem
1 with σ = 0.5, m = 7, and p = 3.

h ktol1 ktol2 k∗ e∗η θ∗ Θ∗ #dof

1/4 38 53 13 7.8e-4 0.0908 1.9315 5880
1/8 50 74 18 8.9e-4 0.0558 1.9590 27000
1/16 58 85 22 1.2e-3 0.0413 1.9649 115320
1/32 62 89 26 2.5e-4 0.0353 1.9678 476280

and is likely to provide a tighter tolerance than actually required. This would lead to

wastage of computational work and time. The Tables 2.5, 2.6, and 2.7 indicate that for

chosen (fixed) stochastic parameters the number of iterations for convergence remains

bounded even as the spatial grid is refined. This is clearly indicated by the tabulated

extremal Ritz value estimates (θ∗,Θ∗) corresponding to iteration k∗. This reconfirms

that the mean-based preconditioner M is spectrally equivalent to A. Also when σ

is increased, θ becomes increasingly smaller (close to zero).5 This slower convergence

with increasing σ can be also gauged from Figure 2.3 too. The number of iterations

for convergence based on (2.36) in the Table 2.5 is at least twice less as compared

to those in Tables 2.6 and 2.7. In fact from heuristics it has been observed that for

σ > 0.5, the problem is not well-posed.

Let η(k∗) be the corresponding a posteriori error estimate at the optimal stopping

iteration k and e∗η := |η− η(k∗)|. The e∗η columns in Tables 2.5, 2.6, and 2.7 show that

{η(k)} has converged with an acceptable accuracy to the reference a posteriori error

estimate η at the balanced stopping iteration k∗. A comparison of the corresponding

entries for iteration counts ktol1, ktol2, and k∗ shows that for the same approximation

error, a significant number of iterations is saved by using the balanced stopping

test. This would result in significant savings in computational work of the solver

(as compared to using fixed absolute residual ‖r(k)‖M−1 reduction tolerance of 1e-6 or

tighter) if one were to solve the (preconditioned) linear systems arising from (spatial)

adaptive finite element for the chosen stochastic parameters. The number of (internal

nodes) degrees of freedom (#dof) of the resulting finite dimensional space which is

equal to
(m+ p)!

m! p!
(2h−1−1)2 is also tabulated. The savings in the computational work

5Sharp bounds [1− τ, 1 + τ ] for the Rayleigh quotient (2.22) are established in [Powell and Elman,
2009, theorem 3.8], where the factor τ is the sum of the norms ‖ψk‖∞ of the functions in (2.4). These
bounds suggest that convergence will also be affected if m is increased with σ kept fixed.
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of the iterative solver becomes further significant in light of the huge size of these

linear systems.

2.6.2 Test problem 2

The second test problem is taken from [Eigel et al., 2014, section 11]. The PDE problem

(2.5) is defined on a square domain D = (0, 1) × (0, 1) with zero Dirichlet boundary

conditions and a constant source function f = 1. The diffusion coefficient κ in (2.4)

is parameterized by uniform random variables that are defined on Γk = [−1, 1]. The

parameter approximation space Sp is spanned by complete polynomials of degree p.

The mean field µ(~x) = 1,∀ ~x ∈ D and the spatial functions ψk denote planar Fourier

modes of increasing total order, so that

ψk(~x) := αk cos(2πβ1(k)x1) cos(2πβ2(k)x2), ~x = (x1, x2) ∈ D, (2.37)

where for any k ∈ N, β1(k) = k − `(k)(`(k) + 1)/2 and β2(k) = `(k) − β1(k) with

`(k) = b−1/2 +
√

1/4 + 2kc. The amplitude coefficients in (2.37) satisfy αk = ᾱk−σ̃

with some σ̃ > 1 and 0 < ᾱ < 1/ζ(σ̃), where ζ is the Riemann zeta function. This

example can be generated in S-IFISS by choosing example 5 when running the driver

stoch diff testproblem. As in [Eigel et al., 2014], expansion (2.4) with slow (σ̃ = 2)

and fast (σ̃ = 4) decay of the amplitudes αk in (2.37) are considered. In each case, ᾱ is

chosen such that τ = ᾱζ(σ̃) = 0.9, which results in ᾱ ≈ 0.547 for σ̃ = 2 and ᾱ ≈ 0.832

for σ̃ = 4. Piecewise bilinear approximation on uniform rectangular grids is employed.

Representative results similar to test problem 1 are presented in Figure 2.5 for this

test problem. The balanced MINRES solver takes more iterations (12 as opposed to

9) when the rate of decay of the coefficients is increased, all other parameters being

kept constant. This occurs because the ratio Λ/λ is bigger in the case of the fast decay

problem.

The convergence of Ritz values at balanced stopping iteration for this test problem

for h = 1/8 is illustrated in Figure 2.6. Note that at the balanced stopping iteration

k∗ the extremal Ritz values have converged to the corresponding actual extremal

eigenvalues. Thus, there is no danger of premature stopping here because of the

nonconvergence of the Ritz estimate(s) at the balanced stopping iteration.

Results analogous to Tables 2.5, 2.6, and 2.7 are presented in Tables 2.8 and 2.9.
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Figure 2.5: Errors vs iteration number for preconditioned MINRES for diffusion test
problem 2 with m = 5, p = 3, h = 1/32 | slow decay (left), fast decay (right).
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Figure 2.6: Computed Ritz values for diffusion test problem 2 with m = 5, p = 3,
h = 1/8 | slow decay (left), fast decay (right).

It can be seen from these tables that the balanced stopping test is more efficient

than using a fixed absolute residual ‖r(k)‖M−1 reduction tolerance of 1e-6 or tighter.

The tabulated extremal Ritz value estimates (θ∗,Θ∗) corresponding to iteration k∗

once again reconfirm that the mean-based preconditioner is spectrally equivalent to

A. Further insights from these tables are also similar to those from test problem 1.
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Table 2.8: Iteration counts and Rayleigh quotients estimates for diffusion test problem
2 with slow decay, m = 5, and p = 3.

h ktol1 ktol2 k∗ e∗η θ∗ Θ∗ #dof

1/4 13 18 5 1.5e-5 0.6382 1.3905 2744
1/8 14 20 6 3.5e-5 0.5670 1.4762 12600
1/16 15 21 8 4.9e-6 0.5029 1.5215 53816
1/32 16 21 9 3.7e-6 0.4857 1.5320 222264

Table 2.9: Iteration counts and Rayleigh quotients estimates for diffusion test problem
2 with fast decay, m = 5, and p = 3.

h ktol1 ktol2 k∗ e∗η θ∗ Θ∗ #dof

1/4 17 25 6 1.7e-4 0.4211 1.5932 2744
1/8 20 27 8 1.1e-4 0.3558 1.6649 12600
1/16 21 29 10 4.0e-5 0.3118 1.7064 53816
1/32 22 30 12 8.6e-6 0.2922 1.7157 222264

2.7 Balanced stopping in CG

A balanced stopping test in CG for solving symmetric positive-definite systems arising

from the FEM approximation of diffusion equations is proposed in [Arioli, 2004].

However, this stopping test is based on a priori approximation error bounds, and hence

it is difficult to employ it as a black-box solver. So, instead an optimal balanced black-

box stopping test in preconditioned MINRES for solving symmetric positive-definite

linear systems is devised here.

In the same paper, a method for computation of ‖e(k)‖A at any iteration step

k using quantities available at iteration k + de (de ≥ 1 is the delay in iterations in

computing ‖e(k)‖A) of preconditioned CG has been proposed; this approach has been

studied further in [Strakoš and Tichý, 2005]. The balanced stopping test

‖e(k∗)‖A ≤ η(k∗), (2.38)

based on a posteriori approximation error estimator can then be easily be utilized

for preconditioned CG. But an optimal choice of the delay iteration count de for a

generic problem is still an open question, which further makes CG with the balanced

stopping (2.38) a non black-box solver.
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For the sake of completeness, a comparison of the iteration counts of CG (with

stopping test (2.38)) and MINRES (with stopping test (2.36)) for the test problem 1

is presented in Table 2.10.

Table 2.10: Comparison of iteration counts for preconditioned MINRES and CG for
diffusion test problem 1 for p = 3.

h σ = 0.3, m = 3 σ = 0.5, m = 5 σ = 0.5, m = 7

k∗MINRES k∗CG k∗MINRES k∗CG k∗MINRES k∗CG

1/4 6 7 11 11 13 11
1/8 7 8 14 13 18 17
1/16 8 9 16 15 22 21
1/32 9 10 17 17 26 26

Table 2.11: Convergence of a posteriori approximation error at stopping point k∗CG in
preconditioned CG for diffusion test problem 1 for p = 3.

h σ = 0.3, m = 3 σ = 0.5, m = 5 σ = 0.5, m = 7

e∗ηCG
e∗ηCG

e∗ηCG

1/4 2.2e-7 8.7e-4 2.1e-3
1/8 1.7e-6 6.2e-4 5.6e-4
1/16 1.3e-8 3.9e-4 8.1e-4
1/32 6.8e-7 4.1e-4 9.4e-4

It follows that iteration counts k∗CG (with corresponding a posteriori error η∗CG)

of CG are similar to iteration counts k∗MINRES of MINRES. A comparison of e∗ηCG
:=

|η− η∗CG| values in Table 2.11 with corresponding e∗η values in Tables 2.5, 2.6, and 2.7

also indicate similar results. This is expected since CG is the ideal solver for solving

a symmetric positive-definite linear system, so it should not perform any worse than

MINRES. Note that iteration count k∗CG takes into account the delay iteration count

de in its counting. The minimum possible value of de = 1 is chosen here. However,

as mentioned above, an optimal choice of de for a generic problem is an open research

question. Thus, it will be better to employ preconditioned MINRES with an optimal

balanced stopping test as a black-box solver for solving symmetric positive-definite

linear systems arising from FEM approximation of PDEs.
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2.8 Summary

A new algorithm for solving symmetric positive-definite linear systems arising from the

(stochastic) Galerkin finite element approximation of PDEs with random coefficients

has been devised. The PDE origins of these systems have to be taken into account

when devising an optimal balanced black-box stopping test. In the presence of a

‘good’ preconditioner and an efficient a posteriori (energy-) error estimation routine,

a balanced stopping criterion can be constructed. An on-the-fly cheap method for

computing the constants involved in the stopping test has been also presented. Using

this balanced stopping test in preconditioned MINRES for solving symmetric positive-

definite linear systems will result in optimal use of computational resources. This

aspect becomes further significant when solving a PDE adaptively using FEM.



Chapter 3

Balanced MINRES stopping for

symmetric indefinite systems

Publication

• The material presented in this chapter will soon be submitted for publication.

• The devised balanced stopping test in MINRES for solving symmetric indefinite

linear systems arising from FEM approximation of (parametric) Stokes equations

has resulted in the function SADDLE MINRES in the software IFISS [Elman et al.,

2014b].

55
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Large linear systems in saddle point form are ubiquitous. They frequently arise in

optimization and in mixed finite element approximation of problems arising in fluid

and solid mechanics. In matrix form such systems usually have a 2× 2 block form A BT

B −C

  u

p

 =

 f

g

 , (3.1)

where A ∈ Rn×n is symmetric positive-definite, B ∈ Rm×n, C ∈ Rm×m is symmetric

positive semi-definite, u, f ∈ Rn and p,g ∈ Rm with n ≥ m. The coefficient matrix

in (3.1) is always symmetric indefinite and so (preconditioned) MINRES is used for

solving (3.1). An introduction about discrete saddle point systems and a detailed

discussion on numerical methods for solving them can be found in [Benzi et al., 2005].

An optimal balanced black-box stopping test in preconditioned MINRES for solving

(3.1) arising from mixed FEM approximation of PDEs has been devised by [Silvester

and Simoncini, 2011]. In their analysis the matrix C is taken to be the zero matrix. An

extension of their algorithm EST MINRES henceforth called SADDLE MINRES is presented

in this chapter. The solver SADDLE MINRES has essentially the same ingredients as

the EST MINRES solver: it employs a block preconditioner to accelerate MINRES

convergence with a rate that is independent of problem parameters and incorporates

a balanced stopping strategy to maximize efficiency. The balanced stopping test is

obtained by balancing the a posteriori approximation error estimate with the iteration

error in the natural norm associated with the underlying PDE. Similar to chapter 2

and [Silvester and Simoncini, 2011], tractable bounds on the usually unobservable

(natural) norm of the iteration error are obtained in terms of the monotonically

decreasing preconditioner norm of MINRES iteration residual.

Unlike EST MINRES, the balanced stopping test in SADDLE MINRES is catered for the

coefficient matrix in (3.1) with a nonzero matrix C. Moreover, the constant in the

balanced stopping test of [Silvester and Simoncini, 2011] has been ‘improved’ in this

chapter. The improvement is in the sense that one now stops optimally a ‘bit’ earlier

than using the balanced stopping test of [Silvester and Simoncini, 2011].

Balanced stopping criterion for symmetric indefinite linear systems arising from

mixed FEM approximation of PDEs have been studied in detail by [Arioli and Loghin,

2008]. Their stopping criterion is based on a priori approximation error bounds and

the constants involved in the balanced stopping test are also estimated a priori. This
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is in contrast to the material presented here and in [Silvester and Simoncini, 2011]

where the approximation error is estimated a posteriori and the constants involved in

the balanced stopping test are estimated on-the-fly.

The stochastic Stokes equations is the underlying PDE considered here whose

mixed FEM discretization gives rise to (3.1). ‘Tight’ a posteriori approximation

error estimators for stochastic Stokes equations have not yet been developed. Since

a posteriori error estimators play an important role in devising a balanced stopping

test, stochastic collocation followed by FEM will be used to solve the Stokes equations.

Thus, it is sufficient to focus on devising a balanced stopping test in MINRES for

solving the symmetric indefinite linear system arising from mixed FEM approximation

of deterministic Stokes equations.

This chapter has 6 sections. The weak form and the mixed FEM set up of the Stokes

equations is done in section 3.1 and the target linear system is formulated in section 3.2.

A discussion about block preconditioning for accelerating MINRES convergence in

solving the target linear system is presented in section 3.3. The balanced stopping

methodology is presented in section 3.4. Computational results that are produced

using the IFISS toolbox are discussed in section 3.5. A summary of the chapter is

presented in section 3.6.

3.1 Deterministic steady-state Stokes equations

Stokes equations are used for modelling flows at ‘low speed’. Examples include highly

viscous and confined flows such as flow of blood etc.; see [Elman et al., 2014a, p. 119].

Following the notation in [Elman et al., 2014a, p. 119], the steady-state Stokes solution

(~u, p) is defined on a spatial domain D ⊂ Rd, (d = 2, 3), where the vector valued

function ~u(~x) : D → Rd and the scalar valued function p(~x) : D → R satisfy

−∇ · ∇~u(~x) + ∇p(~x) = ~0, ∀ ~x ∈ D, (3.2a)

∇ · ~u(~x) = 0, ∀ ~x ∈ D, (3.2b)

~u(~x) = ~w(~x), ∀ ~x ∈ ∂DD, (3.2c)

∇~u(~x) · ~n − ~np(~x) = ~s(~x), ∀ ~x ∈ ∂DN . (3.2d)

Here ∂DD and ∂DN are the Dirichlet and Neumann parts respectively of the spatial

boundary ∂D. The functions ~w,~s are given and ~n denotes the outward normal to ∂D.
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3.1.1 Weak formulation

The weak formulation of (3.2) is to find ~u ∈ H1
E(D) and p ∈ L2(D) such that

a(~u,~v) + b(~v, p) = f(~v), ∀~v ∈ H1
E0

(D),

b(~u, q) = 0, ∀ q ∈ L2(D),
(3.3)

where

a(~u,~v) :=

∫
D

∇~u : ∇~v −
∫
D

p (∇ · ~v),

∇~u : ∇~v denotes componentwise dot product,

b(~u, q) :=

∫
D

q (∇ · ~u), f(~v) :=

∫
∂DN

~s · ~v,

H1
E(D) := {~v ∈ H1(D)d |~v = ~w on ∂DD},

H1
E0

(D) := {~v ∈ H1(D)d |~v = ~0 on ∂DD}.

Here H1(D)d is the d-fold Cartesian product of the H1(D) space.

3.1.2 Mixed FEM formulation

Choosing finite dimensional subspaces Xh
E ⊂ H1

E(D), Xh
E0
⊂ H1

E0
(D), Mh ⊂ L2(D)

leads to a mixed FEM formulation from (3.3); find ~uh ∈ Xh
E, ph ∈Mh such that

a(~uh, ~vh) + b(~vh, ph) = f(~vh), ∀~vh ∈ Xh
E0
,

b(~uh, qh) = 0, ∀ qh ∈Mh.
(3.4)

Let {~φj}nuj=1 be a basis for the finite dimensional space Xh
E0

. It can be extended

(loosely speaking)1 to form a basis {~φj}nu+n∂
j=1 for Xh

E, so that any ~uh ∈ Xh
E can be

written as

~uh =

nu +n∂∑
j=1

uj~φj, uj ∈ R, (3.5)

where the known term
∑nu +n∂

j=nu + 1 uj
~φj interpolates the boundary data on ∂DD.

Similarly, if {ψk}npk=1 be a basis for Mh, then any ph ∈Mh has an expansion

ph =

np∑
k=1

pkψk, pk ∈ R. (3.6)

1The space X1
E is not a vector space unless ~w = ~0.
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3.2 Block matrix form

Plugging the basis expansions from equations (3.5) and (3.6) in (3.4) results in the

following block matrix formulation2 A BT

B O

  u

p

 =

 f

g

 . (3.7)

The symmetric positive-definite matrix A (henceforth called vector-Laplacian matrix)

is a block diagonal matrix with the usual FEM stiffness matrix on its diagonals and the

matrix B is called the divergence matrix. Solution vectors u = [u1, . . . , unu ]T ∈ Rnu ,

p = [p1, . . . , pnp ]
T ∈ Rnp , and the entries of A, B, f , and g are given by [Elman et al.,

2014a, p. 130]

A = [aij] ∈ Rnu×nu , aij :=

∫
D

∇~φi : ∇~φj,

B = [bkj] ∈ Rnp×nu , bkj := −
∫
D

ψk (∇ · ~φj),

f = [fi] ∈ Rnu , fi :=

∫
∂DN

~s · ~φi −
nu +n∂∑
j=nu + 1

uj

∫
D

∇~φi : ∇~φj,

g = [gk] ∈ Rnp , gk :=

nu +n∂∑
j=nu + 1

uj

∫
D

ψk (∇ · ~φj).

(3.8)

For the Stokes equations (continuous and discrete) to be well-posed, a compatibility

condition needs to be satisfied at the inflow and outflow boundaries (if any). Moreover,

if the discrete system (3.7)–(3.8) is to be a faithful representation of the continuous

problem (3.2), then the mixed FEM velocity and pressure spaces need to be chosen

carefully such that they satisfy an inf-sup (or correspondingly a (discrete) uniform inf-

sup) stability condition; see [Elman et al., 2014a, p. 133 ff.] for more details. Typically,

choosing more pressure basis functions than velocity basis functions necessarily results

in a singular linear system.

Using the popular (piecewise quadratic) Q2-P− 1 (piecewise linear, discontinuous

across elemental boundaries) finite elements or the (Taylor–Hood) Q2-Q1 (piecewise

bilinear pressure) finite elements for velocity and pressure space combination leads to

inf-sup stable approximations on a rectangular grid. However, the use of higher order

2Some discretizations of the Stokes equations can lead to nonsymmetric linear systems. But such
discretizations are not considered here.
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finite elements might not always provide more accurate FEM solutions, especially if

the true solution is not very regular. Because of this reason and from the ease of

programming and computational efficiency, Q1-P0 (piecewise constant pressure) finite

elements or Q1-Q1 finite elements are attractive choices for velocity-pressure FEM

basis. But these approximations are not inf-sup stable on a rectangular grid. In

order to make these finite element methods stable, a symmetric positive semi-definite

stabilization matrix C is introduced in place of the zero block of the coefficient matrix

in (3.7). A detailed discussion about the stabilization rationale and strategy for the

discrete Stokes system can be found in [Elman et al., 2014a, pp. 139–149].

The symmetric coefficient matrix K :=

 A BT

B −C

 of stabilized discrete Stokes

system is always indefinite; this follows by applying Sylvester’s law of inertia on the

matrix K [Elman et al., 2014a, p. 189]. Moreover, it will be assumed that K is

nonsingular, that is, it has no zero eigenvalue. Since K is symmetric indefinite,

MINRES is the popular and robust iterative method of choice for solving discrete

linear systems with coefficient matrix K.

3.3 Block preconditioning

Typically, matrices arising from FEM approximation are ill-conditioned with respect to

discretization parameters. Thus, preconditioning is required to accelerate convergence.

[Mardal and Winther, 2011] advocate that block diagonal preconditioners are intrinsic

choices for symmetric linear systems (in saddle point problems), which arise from

numerical approximation of PDEs. Proceeding in this flavour, [Elman et al., 2014a,

p. 194 ff.] argue that the symmetric matrix

 A O

O BA− 1BT + C

 is the desired

but an impractical preconditioner (since BA− 1BT + C is a dense matrix and hence

computing its inverse and also of vector-Laplacian matrix is not cheap) for solving the

preconditioned linear system

M− 1K

 u

p

 = M− 1

 f

g

 , (3.9)

where M :=

 P O

O S

 is a preconditioner. A practical choice of P is a block diagonal

matrix with each block a preconditioner for the scalar Laplacian matrix (which is on
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the diagonal of A). It would be ideal to have P to be spectrally equivalent to A,

that is, there exist positive constants δ1 and ∆1 that are independent of discretization

parameters such that

δ1 ≤
uTAu

uTPu
≤ ∆1, ∀u ∈ Rnu . (3.10)

Indeed this is the case when a Laplacian multigrid preconditioner is used; see [Elman

et al., 2014a, lemma 4.2, p. 197]. For the block S of the preconditioner, a good choice is

the pressure mass matrix Q = [qkl], qkl :=

∫
D

ψkψl, ∀ k, l = 1, . . . , np [Elman et al.,

2014a, p. 172]. The matrix Q is spectrally equivalent to the matrix BA− 1BT + C,

that is, there exist positive constants γ and Γ that are independent of discretization

parameters [Elman et al., 2014a, p. 193–194] such that

γ2 ≤ qT (BA− 1BT + C)q

qTQq
≤ Γ2 ≤ d, ∀q ∈ Rnp and q 6= 1, (3.11)

where d is the dimension of the domain D. In fact the particular choice of S = diag(Q)

for continuous (P1 or Q1)3 makes S spectrally equivalent to Q, that is, there exist

positive constants δ2 and ∆2 that are independent of discretization parameters [Elman

et al., 2014a, pp. 198–199] such that

δ2
2 ≤

qTQq

qTSq
≤ ∆2

2, ∀q ∈ Rnp . (3.12)

Note that the constant γ in (3.11) is the uniform inf-sup constant when C = 0 and

δ2 = 2γ2, where δ is the uniform inf-sup constant for the case when C 6= 0.

Having formulated a mixed FEM matrix formulation of (3.2) and discussed briefly

about MINRES preconditioners to be used for solving the corresponding discrete linear

system, the balanced stopping strategy is presented in the next section.

3.4 A balanced stopping test

According to [Wathen, 2007], a natural norm for a function in the space of square

integrable functions is its L2 norm while the L2 norm of the gradient of the function

is a natural choice if the function is in H1
E0

. So, a natural choice of norm (‖ · ‖E) for

any (~u, p) ∈ H1
E0

(D)× L2(D) is4

‖(~u, p)‖E := ‖∇~u‖2 + ‖p‖2. (3.13)

3For P0 pressure approximation, Q is in fact diagonal.
4Note that ∇~u is to be interpreted componentwise.
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In terms of vectors, ‖ · ‖E translates into the norm ‖ · ‖E

‖e‖E :=
√

eTEe =
√

eT1 Ae1 + eT2Qe2, ∀ e = [eT1 , eT2 ]T ∈ Rnu +np , (3.14)

where e1 ∈ Rnu , e2 ∈ Rnp , and E :=

 A O

O Q

. Since the vector-Laplacian matrix A

and the pressure mass matrix Q are both symmetric positive-definite, the matrix E is

also symmetric positive-definite and hence ‖ · ‖E is indeed a norm on Rnu +np .

3.4.1 Error equation

For a given approximation, by the triangle inequality at iteration k

‖(~u − ~u
(k)
h , p − p

(k)
h )‖E︸ ︷︷ ︸

total error

≤ ‖(~u − ~uh, p − ph)‖E︸ ︷︷ ︸
approximation error

+ ‖(~uh − ~u
(k)
h , ph − p(k)

h )‖E︸ ︷︷ ︸
algebraic error

,

(3.15)

where (~u, p) is the true solution, (~uh, ph) is the true mixed FEM solution, and (~u
(k)
h , p

(k)
h )

is the FEM solution formed from the kth iterate of the chosen iterative solver. It follows

from the definition of ‖ · ‖E from (3.13) that

‖(~uh − ~u
(k)
h , ph − p

(k)
h )‖E = ‖∇(~uh − ~u

(k)
h )‖2 + ‖ph − p(k)

h ‖2. (3.16)

Note that

‖∇(~uh − ~u
(k)
h )‖2 =

√
(e

(k)
1 )TAe

(k)
1 , e

(k)
1 = [u1h − u

(k)
1h
, . . . , unuh − u

(k)
nuh

]T ,

‖ph − p
(k)
h ‖2 =

√
(e

(k)
2 )TQe

(k)
2 , e

(k)
2 = [p1h − p

(k)
1h
, . . . , pnph − p

(k)
nph

]T ,

(3.17)

where ~uh − ~u
(k)
h =

∑nu
i=1(uih − u

(k)
ih

)~φi, ph − p
(k)
h =

∑np
j=1(pjh − p

(k)
jh

)ψj. Also, for any

two nonnegative real numbers a and b [Elman et al., 2014a, p. 213]

√
a+ b ≤

√
a +
√
b ≤

√
2
√
a+ b. (3.18)

Putting a = ‖∇(~uh − ~u
(k)
h )‖2

2, b = ‖ph − p
(k)
h ‖2

2 in (3.18) and using (3.17), (3.14) gives

‖e(k)‖E ≤ ‖∇(~uh − ~u
(k)
h )‖2 + ‖ph − p(k)

h ‖2 ≤
√

2‖e(k)‖E. (3.19)

For enclosed flow problems, a slight variant of the L2 norm known as the quotient

space norm ‖ · ‖0,D is used for measuring pressure. Here ‖qh‖0,D = ‖qh − 1
|D|

∫
D
qh‖2,
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|D| =
∫
D

for any qh ∈Mh [Elman et al., 2014a, p. 128]. Note that

‖qh −
1

|D|

∫
D

qh‖2
2 =

∫
D

(
qh −

1

|D|

∫
D

qh

)2

=

∫
D

qh qh +

∫
D

(
1

|D|

∫
D

qh

)2

−
∫
D

2qh

(
1

|D|

∫
D

qh

)
= ‖qh‖2

2 +
1

|D|

(∫
D

qh

)2

− 2
1

|D|

(∫
D

qh

)2

= ‖qh‖2
2 −

1

|D|

(∫
D

qh

)2

≤ ‖qh‖2
2,

(3.20)

since 1
|D|

(∫
D
qh
)2 ≥ 0. So, ‖qh‖0,D ≤ ‖qh‖2, ∀ qh ∈ Mh. Thus, the (quotient space

norm) algebraic error ‖(~uh − ~u
(k)
h , ph − p

(k)
h )‖E = ‖∇(~uh − ~u

(k)
h )‖2 + ‖ph − p(k)

h ‖0,D

can be bounded from above by the usual L2 norm of the algebraic error, that is

‖∇(~uh − ~u
(k)
h )‖2 + ‖ph − p(k)

h ‖0,D ≤ ‖∇(~uh − ~u
(k)
h )‖2 + ‖ph − p(k)

h ‖2. (3.21)

Using (3.21) one can obtain the same bound (3.19) for the enclosed flow algebraic error

at kth iterative step in terms of ‖e(k)‖E norm of the kth iteration error.

A handle on the approximation error and the total error (approximation error at

the kth iteration) is obtained with a posteriori error estimators η and η(k) respectively.

The a posteriori error estimator η(k) is equivalent to the total error in the sense that

c1 η
(k) ≤ ‖∇(~u − ~u

(k)
h )‖2 + ‖p − p

(k)
h ‖2 ≤ C1 η

(k), with
C1

c1

∼ O(1), (3.22)

If the a posteriori error estimators η and η(k) are assumed to be ‘close’ estimates of

the approximation error and total error (at kth iteration step) respectively, then the

error equation (3.15) can be rewritten as

η(k) ' η + ‖e(k)‖E, k = 0, 1, 2, . . . . (3.23)

The relation ' is a result of (3.22) and (3.19). In fact it follows from (3.23) that

when the norm ‖e(k)‖E of the iteration error e(k) is ‘small’, then {η(k)} converges to η.

Thus, one would stop optimally when ‖e(k)‖E and the a posteriori error estimate η(k)

of the total error are balanced, that is, stop at the first iteration k∗ such that

‖e(k∗)‖E ≤ η(k∗). (3.24)

In the subsequent subsections, a brief discussion on the a posteriori error estimation

for the Stokes equations is done and tractable bounds on difficult to compute ‖e(k)‖E
are derived.
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3.4.2 Tractable bounds on algebraic error

In preconditioned MINRES with symmetric positive-definite preconditioner M , the

norm ‖r(k)‖M−1 :=
√

r(k)TM−1r(k) is monotonically decreasing with iteration count

k and hence a suitable surrogate norm for computations in place of ‖e(k)‖E. Here

r(k) := Ke(k) is the residual at iteration k. Thus, one obtains an expression for the

algebraic error at kth iterative step in terms of the iteration residual r(k), that is

‖e(k)‖2
E = (e(k))TEe(k) = (r(k))TK−TEK−1r(k). (3.25)

It follows from (3.25) that bounding ‖e(k)‖E by ‖r(k)‖M−1 requires computing constants

c2 and C2 such that

c2 ≤
(r(k))

T
K−TEK−1r(k)

(r(k))TM−1r(k)
≤ C2, (3.26)

This leads to computing extremal Rayleigh quotient bounds of K−TEK−1 and M−1,

that is, find λmin, λmax ∈ R such that

λmin ≤
vTK−TEK−1v

vTM−1v
≤ λmax, ∀v ∈ Rnu +np . (3.27)

Equation (3.27) implies that one needs to compute generalized extremal eigenvalues

for K−TEK−1 and M−1, that is, find the extremal eigenvalues λ such that

K−TEK−1y = λM−1y, y ∈ Rnu +np is an eigenvector. (3.28)

Note that the matrices K,E are symmetric so the matrix K−TEK−1 is also symmetric.

Also, since M is symmetric positive-definite, its inverse M−1 is also symmetric positive-

definite. So, the generalized eigenvalue problem (3.28) can be converted (theoretically)

into a symmetric algebraic eigenvalue problem through a Cholesky factorization of

M−1. Hence all λ’s in (3.28) are real. Let z = K−1y, then (3.28) becomes

K−TEz = λM−1Kz, z ∈ Rnu +np . (3.29)

It is clear from the discussions in section 3.3 that an ideal but an impractical choice for

the preconditioner M is the matrix E. A more practical choice is where the matrices

P and S satisfy (3.10) and (3.12) respectively and hence M is spectrally equivalent

to E. Thus, for ‘good’ choices of P and S, M will ‘behave like’ E after a ‘few’
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iterations. Therefore, the analysis presented here will be for the ideal preconditioner

E. Substituting E for M in (3.29), and using that K is symmetric gives

(E−1K)
−1

z = λE−1Kz, z ∈ Rnu +np . (3.30)

Let W := E−1K, then (3.30) can be rearranged as the following eigenvalue problem

W 2z = µz, z ∈ Rnu +np , (3.31)

where µ = 1/λ. Note that since W = E−1K is symmetric and nonsingular, all its

eigenvalues are real and nonzero. So, the eigenvalues µ’s of W 2 (which are the squares

of eigenvalues of W ) are all real and greater than zero. So, any λ cannot be zero; in

fact all λ’s are greater than zero.

In light of (3.29), (3.30), and (3.31) the eigenvalue problem (3.28) is transformed

into finding the largest (µmax) and smallest (µmin) eigenvalues of W 2 such that

W 2z = µz, z ∈ Rnu +np is an eigenvector. (3.32)

Since the eigenvalues of W 2 are just the square of the eigenvalues of W , it is sufficient

to compute the eigenvalues of W . In fact, one obtains

µmax = max{|θ+
max|2, |θ−min|2}, (3.33a)

µmin = min{|θ+
min|2, |θ−max|2}, (3.33b)

where θ’s are eigenvalues of W such that

θ+
max – maximum positive eigenvalue, θ+

min – minimum positive eigenvalue,

θ−max – maximum negative eigenvalue, θ−min – minimum negative eigenvalue.

3.4.3 Stopping criterion

Using λmin = 1
µmax

, λmax = 1
µmin

; (3.26), (3.27), and (3.33) can be combined into

1

max{|θ+
max|2, |θ−min|2}

≤ (r(k))
T
K−TEK−1r(k)

(r(k))TM−1r(k)
≤ 1

min{|θ+
min|2, |θ−max|2}

. (3.34)

It follows from (3.34) that

1√
max{|θ+

max|2, |θ−min|2}
≤ ‖e(0)‖E

‖r(0)‖M−1

,
‖e(k)‖E
‖r(k)‖M−1

≤ 1√
min{|θ+

min|2, |θ−max|2}
.

(3.35)
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Equation (3.35) leads to the following upper bounds on ‖e(k)‖E, that is

‖e(k)‖E ≤
1√

min{|θ−max|2, |θ+
min|2}

‖r(k)‖M−1 ,

‖e(k)‖E
‖e(0)‖E

≤

√
max{|θ+

max|2, |θ−min|2}
min{|θ−max|2, |θ+

min|2}
‖r(k)‖M−1

‖r(0)‖M−1

⇐⇒ ‖e(k)‖E ≤
√

max{|θ+
max|2, |θ−min|2}

min{|θ−max|2, |θ+
min|2}

‖r(k)‖M−1 .

(3.36)

Thus, from (3.24) it follows that an optimal stopping point is the first iteration k∗ at

which one of the following tests is satisfied√
max{|θ+

max|2, |θ−min|2}
min{|θ−max|2, |θ+

min|2}
‖r(k∗)‖M−1 ≤ η(k∗). (3.37)

1√
min{|θ−max|2, |θ+

min|2}
‖r(k∗)‖M−1 ≤ η(k∗). (3.38)

Henceforth, the stopping test (3.37) will be called the stronger stopping test while the

stopping test (3.38) will be called the weaker stopping test.

3.4.4 A posteriori error estimation

The a posteriori error estimation technique used in the software IFISS for Stokes

equations is due to [Ainsworth and Oden, 1997] and it essentially involves solving a

local Poisson problem for each velocity component; see [Elman et al., 2014a, section

3.4.2]. The a poseriori error estimator based on this strategy provides ‘acceptable’

close estimates of the true total (approximation) errors. In fact for Q1-P0 rectangular

finite elements, this a posteriori error estimator is both a global upper bound, (that

is, it is reliable) and a local elementwise bound (that is, it is efficient) on the actual

error; see [Kay and Silvester, 1999] for full details. A comparison of η [Elman et al.,

2014a, table 3.4, p. 169] and ‘actual’ approximation error ‖∇(~u− ~uh)‖2 + ‖p− ph‖0,2

[Elman et al., 2014a, table 3.3, p. 166] are tabulated in Table 3.1. The results presented

therein are for the Stokes test problem 1 [Elman et al., 2014a, p. 126] in section 3.5

with Q1-P0 rectangular finite elements on a uniform grid and mesh step size h.

The entries for corresponding effectivity index βeff =
η

‖∇(~u− ~uh)‖2 + ‖p− ph‖0,2

in Table 3.1 show that a posteriori approximation error estimator employed here is an

‘acceptable close’ estimate of the true error.
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Table 3.1: Actual approximation errors, a posteriori errors, and effectivity indices for
Q1-P0 rectangular finite elements on uniform grids for Stokes test problem 1.

h η ‖∇(~u− ~uh)‖2 + ‖p− ph‖0,2 βeff

1/4 9.501 18.729 0.51
1/8 5.307 8.853 0.59
1/16 2.761 4.290 0.64
1/32 1.399 2.116 0.66

3.4.5 Computational logistics

The M−1 norm of the iteration residual, that is, ‖r(k)‖M−1 is readily available in

preconditioned MINRES. Also, it is advisable in general to compute η(k) periodically

to minimize the overall algorithmic cost. The eigenvalues involved in the stopping

test (3.37) and (3.38) can be estimated cheaply on-the-fly, the strategy for which is

described in the next subsection.

3.4.6 Cheap estimation of eigenvalues in stopping test

Note that the extremal eigenvalues θ+
max, θ−min of the preconditioned matrix can cheaply

be estimated by the corresponding extremal Ritz values θk+max, θ
k−
min (the maximum

positive Ritz value and the minimum negative Ritz value respectively) of the Lanczos

matrix Tk in preconditioned MINRES; see section 2.3.1. But for the interior most

eigenvalues θ+
min and θ−max, the Ritz values usually provide a poor estimation. So, the

interior most eigenvalues are estimated here by computing the corresponding interior

most eigenvalues θ
k+
min, θk−max of the following generalized eigenvalue problem

T Tk T ky = θharTky, y is an eigenvector. (3.39)

where T k is the R(k+1)×k Lanczos matrix; see section 2.3.1 for more details. The

eigenvalues θhar in (3.39) are known as harmonic Ritz values; see [Bai et al., 2000,

section 3.2, p. 41–43]. Here θ
k+
min and θk−max denote the minimum positive harmonic

Ritz value and the maximum negative harmonic Ritz value respectively. Unlike the

Ritz values, which approximate first the extremal eigenvalues of the preconditioned

matrix, the harmonic Ritz values approximate first the interior most eigenvalues of

the preconditioned matrix. This is better than using Ritz values to estimate the actual

interior most eigenvalues since the interior most Ritz values might take a long time to
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provide a good approximation (if at all) to the interior most eigenvalues.

Further insight into the eigenvalues of the preconditioned matrix is obtained from

the following result in [Elman et al., 2014a, theorem 4.7, p. 201].

Theorem 3.4.1. The eigenvalues of M−1K satisfy

−∆2
2

(
Γ2 + Υ

)
≤ θ−min ≤ θ−max ≤

1

2

(
δ1 −

√
δ2

1 + 4δ1γ2δ2
2

)
,

δ1 ≤ θ+
min ≤ θ+

max ≤ ∆1 + Γ2∆2
2,

(3.40)

where δ1,∆1, δ2,∆2, γ, and Γ are the same as in (3.10), (3.12), and (3.11) respectively.

The constant Υ satisfies
qTCq

qTQq
≤ Υ, ∀q ∈ Rnp . (3.41)

Proceeding along the lines of [Silvester and Simoncini, 2011] note that for M = E,

δ1 = ∆1 = 1. Also, for P0 pressure approximation δ2 = ∆2 = 1. In any case if

preconditioner blocks P and S ‘closely’ approximate A and Q respectively, then

δ1 ' 1,∆1 ' 1, δ2 ' 1, and ∆2 ' 1. (3.42)

Also, the asymptotic simplification (1 + x)
1
2 = 1 + 1

2
x gives

1

2

(
δ1 −

√
δ2

1 + 4δ1γ2δ2
2

)
' 1

2

(
1 −

√
1 + 4γ2

)
' −γ2. (3.43)

Combining (3.40), (3.42), and (3.43) leads to

θ−max ' − γ2 ≤ 1 ' θ+
min. (3.44)

The validity of the equivalence θ−max ' −γ2 for C = 0 case can be further confirmed

from the discussions in [Elman et al., 2014a, pp. 196–197]. If γ2 ≤ 1, which is usually

the case5 then from (3.44) it follows
1√

min{|θ−max|2, |θ+
min|2}

=
1√
|θ−max|2

' 1√
γ4

=
1

γ2
.

In light of this analysis, the weaker stopping test (3.38) can be transformed into

1

γ2
‖r(k∗)‖M−1 ≤ η(k∗) ⇐⇒ ‖r(k∗)‖M−1 ≤ γ2 η(k∗). (3.45)

An equivalence similar to (3.44) holds for maximum positive eigenvalue and minimum

negative eigenvalue

θ−min ' − (Γ2 + Υ) ≤ (1 + Γ2) ' θ+
max. (3.46)

5In fact γ2 ≤ Γ2 ≤ d, where d (equal to 2 or 3 here) denotes the dimensionality of the domain D.
But for C = 0 with Dirichlet boundary conditions in R2, γ2 ≤ 1; see [Elman et al., 2014a, theorem
3.22, p. 174]
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Since 0 ≤ Υ ≤ 1 [Elman et al., 2014a, p. 200], it follows from equation (3.46)

that
√

max{|θ+
max|2, |θ−min|2} =

√
|θ+

max|2 ' (1 + Γ2) ≤ 1 + d. Combining this with

min{|θ−max|2, |θ+
min|2} = |θ−max|2 ' γ4, the stronger stopping test (3.37) becomes

1 + d

γ4
‖r(k∗)‖M−1 ≤ η(k∗) ⇐⇒ ‖r(k∗)‖M−1 ≤

γ4

1 + d
η(k∗). (3.47)

In presence of ‘tight’ a posteriori error estimators and ‘good’ preconditioner blocks,

the stopping test (3.45) or (3.47) can be used and they hold for both C = 0 and C 6= 0.

Table 3.2: Comparison of literature and improved stopping tests for Q2-P1 finite
elements on rectangular uniform grids for Stokes test problem 1.

h k∗lit e∗lit k∗imp e∗imp

1/8 10 6.0e-2 8 5.4e-2
1/16 17 1.0e-5 15 5.6e-3
1/32 21 3.1e-4 19 1.7e-3
1/64 24 1.1e-4 24 1.1e-4

In fact for the case C = 0, using (3.45) one stops optimally a ‘bit’ earlier than

using the stopping test ‖r(k∗)‖M−1 ≤
γ2

√
2
η(k∗) of [Silvester and Simoncini, 2011]. This

is because
γ2

√
2
< γ2 and hence an ‘improvement’ of constants (over those in the existing

literature) involved in the stopping test for the case C = 0 has been obtained here.

Note that this improvement is only a theoretical result. Since
√

2 ≈ 1.41, in practice a

gain of only ‘very few’ (if any) iterations is obtained by using γ2 over
γ2

√
2

in balanced

stopping (3.45); see Table 3.2. The stopping iteration k∗lit and k∗imp corresponding

to the stopping test in [Silvester and Simoncini, 2011] and (3.45) respectively are

tabulated in Table 3.2. Also, at each grid level tabulated are e∗lit := |η − η(k∗lit)| and

e∗imp := |η−η(k∗imp)|. These denote the corresponding absolute differences in a posteriori

error estimates from the actual a posteriori estimate η obtained using the ‘true’ solution

(MATLAB backslash solution). It follows from Table 3.2 that savings of only a few

iterations is obtained on using the stopping test (3.45) over that in [Silvester and

Simoncini, 2011]. Also, at the stopping iteration for both these stopping tests, the

sequence {η(k)} has converged with some accuracy to the true η; see columns for e∗lit

and e∗imp. These numbers have been obtained by running itsolve stokes with default

options in IFISS toolbox of MATLAB after setting up the Stokes test problem 1 that
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is described in section 3.5. The constants involved in the stopping test can be modified

suitably in the function param est in IFISS.

3.4.7 Choice of stopping test

A drawback of using the stopping test (3.37) or (3.38) is that they might lead to

premature stopping because one or more of the computed extremal Ritz values or the

interior most harmonic Ritz values would have not yet converged to their corresponding

(discrete system) actual eigenvalue respectively. Although this convergence is usually

quite fast, it is generally difficult to determine beforehand the iteration count at which

they will converge. Hence, it is proposed here to store the required Ritz and harmonic

Ritz values of previous 4-5 consecutive iterations and apply the stopping test (3.37)

or (3.38) only when the absolute successive differences of these values for each of the

required quantities is below a prescribed tolerance of 10−2 (say).6

Substituting (3.45) for (3.38) and (3.47) for (3.37) overcomes this drawback. This is

because the constants in the stopping tests now depend on d, which is trivially known

and the discrete inf-sup constant γ, which in many practical applications is known

beforehand and depends only on the topology of the spatial domain; see [Chizhonkov

and Olshanskii, 2000]. However, the stopping tests (3.45) and (3.47) were derived

using many equivalences (') which may not be tight in general. Hence, in presence

of a preconditioner M which is spectrally equivalent to E, it will be better to employ

the weaker or the stronger stopping test based on interior most harmonic Ritz values

and extremal Ritz values.

The resulting algorithm known as SADDLE MINRES in the software IFISS is given

in the form of pseudo-code in Figure 3.1. Similar to chapter 2, the external functions

matvecK, precM compute the action of the matricesK andM−1 on a vector respectively

while the function Stokes error est computes the a posteriori error estimate. Also,

b = [fT ,gT ]T denotes the right-hand-side vector in Figure (3.1). This algorithm can

easily be modified for the weaker stopping test. A practical implementation of this

algorithm should incorporate periodic computations of the a posteriori error estimate.

Also, it should involve storage of previous 4-5 values from consecutive iterations for

each of the Ritz and the harmonic Ritz values involved in the balanced stopping test.

6For the weaker stopping test this procedure has to be done for only the harmonic Ritz values.
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Algorithm: SADDLE MINRES

given vectors b, x(0) and functions matvecK, precM, param intest, param extest

Stokes error est

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

set r(0) = b− matvecK (x(0)), r̂(0) = precM (r(0)), ρ0 =
√

(r(0))T r̂(0)

initialize basis vectors: w = r̂(0)/ρ0, p(−1) = 0, p(0) = r(0)/ρ0

initialize auxiliary vectors: d(−1) = 0, d(0) = 0
initialize projected right-hand side: f = ρ0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
for k = 1, 2, . . . until convergence do

generate new basis and auxiliary vectors: p(k) = matvecK (w), d(k) = w
if k>1, tk−1,k = tk,k−1, p(k) = p(k) − p(k−1)tk−1,k

tk,k = wTp(k), p(k) = p(k) − p(k−1)tk,k
compute preconditioned basis vector: w = precM (p(k))

tk+1,k =
√

wTp(k), p(k) = p(k)/tk+1,k , w = w/tk+1,k

compute parameters for stopping test:
coefext = param extest (Tk)
coefint = param intest (Tk, tk+1,k)
coef = coefext/(coefint)2

apply previous rotations:
if k>2, ρ1:2 = Sk−2tk−2:k−1,k, ρ2:3 = Sk−1[ρ2; tk,k]
elseif k=2, ρ2:3 = Sk−1t1:2,2

elseif k = 1, ρ3 = t1,1
compute new rotations:

δ̂ =
√
ρ2

3 + t2k+1,k, c = |ρ3|/δ̂, s = sign(ρ3)tk+1,k/δ̂

apply new rotations: ρ3 = cρ3 + stk+1,k, f̂ = −sf , f = cf , Sk = [c s;−s c]
update auxiliary vector: d(k) = (d(k) − d(k−1)ρ1 − d(k−2)ρ2)/ρ3

update solution: x(k) = x(k−1) + d(k)f̂
compute discretization error estimate : η(k) = Stokes error est (x(k))
stopping test: if coef·|f̂ | ≤ η(k), convergence
update residual norm: f = f̂

enddo

function coefext = param extest (Tk)

compute the smallest negative eigenvalue θ
k−
min and the largest positive eigenvalue

θk+max of Tk
if |θk−min|2 ≤ |θk+max|2 set coefext = θk+max

else set coefext = |θk−min|
endfunction

function coefint = param intest (Tk, tk+1,k)

compute the smallest positive eigenvalue θ
k+
min and the largest negative eigenvalue

θk−max of generalized eigenvalue problem T Tk T k and Tk
if |θk−max|2 ≤ |θ

k+
min|2 set coefint = |θk−max|

else set coefint = |θk+min|
endfunction

Figure 3.1: The SADDLE MINRES algorithm expressed in pseudo-code.
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3.5 Computational results

To provide a proof-of-concept, some computational results are presented in this section

for two test problems in IFISS. The stronger stopping test (3.37) is employed for both

the test problems in order to exhibit the nuances associated with using a stopping

test based on both interior most and exterior most eigenvalues of the preconditioned

matrix. It has also been observed from computations for the test problems considered

here that the relevant extremal Ritz values and the interior most harmonic Ritz values

have converged with some accuracy before optimal stopping has been reached. So,

one does not need to store previous 4-5 values from consecutive iterations for these

quantities. Also, instead of computing the a posteriori error estimator periodically, it

is computed here at each iteration to illustrate the balanced stopping methodology.

There are four preconditioners built in IFISS for the discrete Stokes problem.

They are: diagonal (DIAG) preconditioner—the diagonal matrix formed from the

diagonal elements of A and the diagonal entries of Q—the block ideal preconditioner

E, block geometric multigrid (GMG), and block algebraic multigrid (AMG) [Elman

et al., 2014a, chapter 4] preconditioners. Results are presented here for block ideal

and block AMG preconditioners for both the test problems. Note that the block

AMG preconditioner is employed with its specified default settings in IFISS.

Piecewise bilinear (Q1) finite elements are used for FEM velocity space and P0 finite

elements are employed for FEM pressure space on rectangular grids. The uniform mesh

step size h is used for the test problem 1 while 2l × (2l × 3) grids are employed for the

test problem 2. The inbuilt stabilization parameter value in IFISS is used for setting

up the matrix block C in K for both the test problems.

3.5.1 Test Problem 1

The Stokes PDE (3.2) is defined on a square domain D = (−1, 1)× (−1, 1) with

Dirichlet boundary condition specified everywhere on the boundary. This (enclosed

flow) problem [Elman et al., 2014a, p. 126] can be generated by choosing example

4 when running the driver stokes testproblem in IFISS. On a given grid, the

‘true’ algebraic solution x is obtained from (block ideal/block AMG) preconditioned

MINRES with a tight relative residual
‖r(k)‖M−1

‖r(0)‖M−1

reduction tolerance of 1e-14. From

x, the ‘exact’ a posteriori error estimate η is computed. The starting vector x(0) is
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Table 3.3: MINRES iteration counts and errors along with extremal Ritz values and
interior most harmonic Ritz values for block ideal preconditioning on uniform grids
for Stokes test problem 1.

h ktol1 ktol2 k∗ e∗η θ
k∗−
min θ

k∗−
max θ

k∗+
min θ

k∗+
max #dof

1/16 33 48 15 1.3e-2 -1.2994 -0.2911 1.000 1.6152 3202
1/32 33 48 24 5.3e-4 -1.3173 -0.1949 1.000 1.6170 12546
1/64 33 50 27 1.2e-4 -1.3184 -0.1841 1.000 1.6175 49666
1/128 33 50 30 2.8e-5 -1.3192 -0.1781 1.000 1.6177 197634

generated using the MATLAB function rand. Also, let η(k∗) denote the a posteriori

error estimate at the optimal stopping iteration k∗ and e∗η := |η − η(k∗)|. These values

are tabulated in Tables 3.3 and 3.4 for block ideal and block AMG preconditioner

respectively on various grids.

Table 3.4: MINRES iteration counts and errors along with extremal Ritz values and
interior most harmonic Ritz values for block AMG preconditioning on uniform grids
for Stokes test problem 1.

h ktol1 ktol2 k∗ e∗η θ
k∗−
min θ

k∗−
max θ

k∗+
min θ

k∗+
max #dof

1/16 37 54 18 1.1e-5 -1.3010 -0.2815 0.8676 1.5989 3202
1/32 39 55 27 5.2e-6 -1.3069 -0.2017 0.8375 1.6093 12546
1/64 41 58 31 8.4e-7 -1.3088 -0.1816 0.8159 1.6119 49666
1/128 41 58 35 1.7e-6 -1.3095 -0.1756 0.8070 1.6134 197634

The e∗η columns show that {η(k)} has converged with a good accuracy to the true

a posteriori error estimate η at the balanced stopping iteration. The effectiveness of

the balanced stopping test can be gauged by comparing the iteration counts k∗ needed

to satisfy the balanced stopping test with the iteration counts ktol1, ktol2 needed to

satisfy a fixed relative residual
‖r(k)‖M−1

‖r(0)‖M−1

reduction tolerance of 1e-6 (which is the

default tolerance in MATLAB solvers) and 1e-9 respectively. In the absence of a

balanced stopping test, these are realistic choices for algebraic error tolerance. It is

unlikely that the user will know the stopping point k∗ a priori and is likely to provide a

tighter tolerance than actually required. This would result in needless computations.

A quick glance at the columns for optimal iteration counts k∗ and those of ktol2 shows

that a significant number of iterations is wasted (without decreasing the approximation

error) by not using the balanced stopping test. Typically, employing the balanced

stopping test (3.37) or (3.38) would result in significant savings in computational
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work of the solver, especially if one were to solve the underlying PDE adaptively using

FEM. These computational savings are further significant in light of huge size of some

of these linear systems; see the last (#dof) column in Tables 3.3 and 3.4.

The stopping tests (3.47) and (3.45) suggest that the relevant eigenvalues involved

in the stopping tests (3.37) and (3.38) are independent of the discretization parameters.

Indeed this is the case, which can be seen from the column entries at balanced stopping

iteration for extremal Ritz values θ
k∗−
min, θ

k∗+
max and interior most harmonic Ritz values

θ
k∗−
max, θ

k∗+
min estimates of the corresponding eigenvalues of the discrete system. Also, a

comparison of the corresponding eigenvalue (Ritz and harmonic Ritz) estimates for

block AMG and block ideal preconditioners shows that block AMG approximates the

block ideal preconditioner quite closely.
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Figure 3.2: Errors vs iteration number for block ideal (left) and block AMG (right)
preconditioned MINRES on a uniform grid h = 1/128 for Stokes test problem 1.

Further insight into the intricacies associated with applying the stronger stopping

test (3.37) is provided by Figures 3.2, 3.3, and 3.4 for both block ideal and block AMG

preconditioning on a uniform grid with h =
1

128
. On both plots of Figure 3.2, note that

at the optimal stopping iteration k∗—the iteration where the red curve for η(k) is first

above the blue curve for ‖r(k)‖M−1—{η(k)} has converged with some accuracy to the

exact a posteriori error estimate η. The convergence is further illustrated by continuing

for 9 more iterations after balanced stopping where the red curve for η(k) always ‘stays’

on the black line for η. Note that on these plots C
(k)
s := max{|θk+max|2, |θ

k−
min|2} and

c
(k)
s := min{|θk−max|2, |θ

k+
min|2}.
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The convergence of extremal Ritz values and interior most harmonic Ritz values

at the balanced stopping iteration to the corresponding eigenvalues of the discrete

problem can be seen from Figures 3.3 and 3.4 respectively. The actual extremal and

interior most eigenvalues of the preconditioned (block ideal and block AMG) matrix

on these plots are estimated as the corresponding Ritz and harmonic Ritz values

respectively. Preconditioned MINRES is run ‘long enough’ here to ensure that these

estimates have ‘converged’ (this was ascertained by looking at the values of these

estimates). Note that the data plotted in Figures 3.3 and 3.4 corresponds to the entries

in the last row for block ideal and block AMG preconditioner respectively in Tables 3.3

and 3.4. Also, the plots continue for 9 more iterations after balanced stopping to

illustrate that the converged extremal Ritz values and interior most harmonic Ritz

values stay convergent to the corresponding discrete system eigenvalues.7
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Figure 3.3: Computed Ritz values for block ideal (left) and block AMG (right)
MINRES on a uniform grid h = 1/128 for Stokes test problem 1.

The Ritz value plots in Figure 3.3 further suggest that there are no ghost (spurious

copies) of extremal Ritz values. The same is suggested for interior most harmonic

Ritz values in Figure 3.4. In contrast there are ghost Ritz values for interior most

Ritz values rk−max (the maximum negative Ritz value at the kth step) and r
k+
min (the

minimum positive Ritz value at the kth step); see Figure 3.3. This is also the case for

the extremal harmonic Ritz values hk+max (the maximum positive harmonic Ritz value

7Lanczos method can lose orthogonalization after convergence of Ritz vectors and hence these
estimates might not remain converged. But implementing the Lanczos procedure in MINRES with
reorthogonalization solves this issue.
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Figure 3.4: Computed harmonic Ritz values for block ideal (left) and block AMG
(right) MINRES on a uniform grid h = 1/128 for Stokes test problem 1.

at the kth step) and h
k−
min (the minimum negative harmonic Ritz value at the kth step);

see Figure 3.4. Thus, θ+
max and θ−min should be estimated by the corresponding extremal

Ritz values while θ+
min and θ−max should be estimated by the corresponding interior most

harmonic Ritz values. This is consistent with the discussion in section 3.4.6.

The discrete inf-sup constant can also be estimated on-the-fly as suggested in the

work of [Silvester and Simoncini, 2011]. It follows from Theorem 3.4.1 that if the

bounds in (3.40) are tight then

γ2 =
(θ−max)2 − θ−maxθ

+
min

θ+
min

. (3.48)

In light of the Lanczos estimates for the extremal and interior most eigenvalues of

the preconditioned matrix, (3.48) can be rewritten as

(γ(k))2 =
(θk−max)2 − θk−maxθ

k+
min

θ
k+
min

. (3.49)

Thus, the balanced stopping strategy also provides a cheap estimate for γ on-the-

fly; see Figure 3.5. The ‘true’ γ in Figure 3.5 is computed by running (block ideal

and block AMG) preconditioned MINRES ‘long enough’ to ensure convergence (from

inspection of the estimate values).

A closer examination of Figure 3.2 shows that {η(k)} has converged to η much

before balanced stopping iteration on each plot. In fact if one were to apply the

weaker stopping test (3.38) then this is the iteration at which one would stop optimally.

However, there is always the pitfall of premature stopping due to nonconvergence of
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Figure 3.5: Computed discrete inf-sup constant for block ideal (left) and block AMG
(right) preconditioned MINRES on a uniform grid h = 1/128 for Stokes test problem 1.

the interior most harmonic Ritz values. A way to overcome this issue of premature

stopping has been discussed in section 3.4.7. To reiterate, the results are presented

here for the stronger stopping test (3.37) only to illustrate the nuances associated with

optimal stopping for symmetric indefinite systems. In general, the weaker stopping

test should be used in practice.

Note that the plots in Figure 3.2 merit a further investigation in devising an optimal

balanced black-box stopping test that is independent of the extremal and interior most

eigenvalues of the preconditioned matrix. If
√

min{|θ−max|2, |θ+
min|2} ≥ 1, then

1√
min{|θ−max|2, |θ+

min|2}
‖r(k)‖M−1 ≤ ‖r(k)‖M−1 . (3.50)

The weaker stopping test (3.38) in light of (3.50) can be transformed into the following.

Stop at the first iteration k∗ such that

‖r(k∗)‖M−1 ≤ η(k∗). (3.51)

However, application of the stopping test (3.51) depends on the assumption that√
min{|θ−max|2, |θ+

min|2} ≥ 1, which is not always true; see the corresponding entries

for θ+
min and θ−max in Tables 3.3 and 3.4.

3.5.2 Test Problem 2

The Stokes PDE (3.2) is defined on a L-shaped (‘flow over a backward-facing step’)
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domain D = (−1, 5)× (−1, 1) \ (−1, 0]× (−1, 0]. Poiseuille flow profile is imposed

on the inflow boundary (x1 = −1, 0 ≤ x2 ≤ 1) for ~x = (x1, x2) ∈ D, and zero

velocity condition is imposed on the walls. Neumann boundary conditions are defined

everywhere on the outflow boundary (x1 = 5,−1 < x2 < 1) [Elman et al., 2014a, p.

124]. This problem can be generated IFISS by choosing example 2 when running the

driver stokes testproblem.

Table 3.5: MINRES iteration counts and errors along with extremal Ritz values and
interior most harmonic Ritz values for block ideal preconditioning on 2l × (2l × 3)
grids for Stokes test problem 2.

l ktol1 ktol2 k∗ e∗η θ
k∗−
min θ

k∗−
max θ

k∗+
min θ

k∗+
max #dof

4 53 73 51 6.2e-6 -1.3632 -0.0242 1.000 1.7909 2242
5 55 73 54 3.5e-6 -1.3638 -0.0242 1.000 1.8109 8706
6 53 76 58 1.4e-6 -1.3669 -0.0242 1.000 1.8184 34306
7 53 77 61 3.1e-7 -1.3671 -0.0241 1.000 1.8214 136194

Table 3.6: MINRES iteration counts and errors along with extremal Ritz values and
interior most harmonic Ritz values for block AMG preconditioning on 2l × (2l × 3)
grids for Stokes test problem 2.

l ktol1 ktol2 k∗ e∗η θ
k∗−
min θ

k∗−
max θ

k∗+
min θ

k∗+
max #dof

4 59 80 55 1.1e-5 -1.3540 -0.0241 0.8025 1.7191 2242
5 63 84 61 5.2e-6 -1.3571 -0.0241 0.7865 1.7294 8706
6 63 86 65 8.4e-7 -1.3576 -0.0240 0.7606 1.7334 34306
7 63 88 69 1.7e-6 -1.3577 -0.0241 0.7290 1.7361 136194

Results are tabulated for block ideal and block AMG preconditioned MINRES in

Tables 3.5 and 3.6 for this test problem on various 2l × (2l × 3) grids. The quantities

in these tables are defined exactly in the same way as for the test problem 1.8

The insights from the results here is essentially similar to those for test problem 1.

As compared to the test problem 1, the slower convergence is due to a singularity in the

problem near the ‘step’ which is reflected in the largest negative eigenvalue estimate

(see the θ
k∗−
max column in Tables 3.5 and 3.6) of the preconditioned matrix, which is

more closer to zero than θ
k∗−
max of test problem 1 (where there was no singularity in the

problem).

8However, here the ‘true’ algebraic solution x is obtained from preconditioned MINRES with a
tight relative residual reduction tolerance of 1e-12 instead of 1e-14 since (preconditioned) MINRES
gives a warning that latter ‘input tolerance may not be achievable by MINRES’ on some grids.
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From Figure 3.6 note that it is possible that the curve of η(k) may fall below the

line of true a posteriori estimate η. However, as the iteration proceeds, ultimately the

sequence {η(k)} converges with some accuracy to η.
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Figure 3.6: Errors vs iteration number for block ideal (left) and block AMG (right)
preconditioned MINRES on a 128× 384 grid for Stokes test problem 2.

The results from both the test problems illustrate that employing an optimal

balanced black-box stopping strategy not only avoids unnecessary computations but

also rules out premature stopping of the preconditioned MINRES solver.

3.6 Summary

An optimal balanced black-box stopping test is devised in this chapter in MINRES

with preconditioning for solving (saddle point) symmetric indefinite linear systems

arising from FEM discretization of an underlying PDE (Stokes equations in particular).

The constants in the balanced stopping test are estimated cheaply on-the-fly. This is

achieved by exploiting the relationship between Ritz, harmonic Ritz values (obtained

from the Lanczos process in preconditioned MINRES) and the relevant eigenvalues of

the preconditioned matrix involved in the balanced stopping test. Typically, employing

such a balanced stopping strategy would avoid premature stopping and generally leads

to huge computational savings. The stopping strategy presented here has extended

the work done in this direction by [Silvester and Simoncini, 2011]. In particular, the

methodology presented here for deriving the balanced stopping test is different from



80 SADDLE MINRES optimal stopping

that in [Silvester and Simoncini, 2011]. Also, the constant involved their stopping test

has been ‘improved’ in the sense that one can now stop optimally a few iterations

earlier than using their stopping test.



Chapter 4

Balanced iterative stopping for

nonsymmetric systems I

Publication

• The material presented in this chapter will soon be submitted for publication.

• The devised balanced stopping test in GMRES, BICGSTAB(`), and TFQMR

solvers for solving nonsymmetric linear systems arising from FEM approximation

of (parametric) convection-diffusion equations has resulted in the functions:

CD GMRES, CD BICGSTAB(`), and CD TFQMR in the software IFISS [Elman et al.,

2014b].

81
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In the previous chapters an optimal balanced black-box stopping test was devised

in MINRES for solving symmetric positive-definite and symmetric indefinite linear

systems. An optimal balanced black-box stopping test in GMRES [Saad and Schultz,

1986] for solving nonsymmetric linear systems arising from FEM approximation of

a PDE is presented here. The same balanced stopping test is applied to optimally

stop BICG [Fletcher, 1976], its variants BICGSTAB(`) [Sleijpen and Fokkema, 1993],

and TFQMR [Freund, 1993] for solving nonsymmetric systems. The devised balanced

stopping test in BICGSTAB(`) and TFQMR resolves the issue of stopping optimally

for these solvers. These iterative methods do not satisfy any optimality conditions, that

is, there is no algebraic quantity that is always guaranteed to decrease monotonically

with respect to iteration count [Barret et al., 1987, section 2.3.8]. Hence, stopping

optimally is always an issue associated with these solvers.

Balanced stopping criterion for nonsymmetric linear systems arising from FEM

discretization of a PDE have been studied in detail in [Arioli et al., 2005] and [Wu,

2003, chapter 5]. In [Arioli et al., 2005] the stopping criterion is based on a priori

approximation error bounds, while in [Wu, 2003, chapter 5] although the stopping

test is based on a posteriori approximation error estimators, it involves user-defined

parameters for stopping. The contribution of the present work to the existing literature

is that it states the precise constants (and hence it is an optimal balanced black-box

stopping test) involved in the balanced stopping test. Computing these constants for

huge linear systems can be expensive. In order to compute these constants on-the-fly,

a balanced stopping test based on MINRES for solving the corresponding discrete

normal equations is also proposed in section 4.5.

In chapters 2 and 3, it was observed that a ‘tight’ a posteriori error estimator is

required for devising a balanced stopping test. Unlike stochastic diffusion equations,

tight a posteriori error estimators for parameterized convection-diffusion equations

have not yet been devised. Thus, stochastic collocation together with ‘appropriate’1

FEM discretization is employed to discretize this PDE. This results in solving a finite

number of linear systems. Devising a balanced stopping test for all these nonsymmetric

linear systems is no more or less general than devising a balanced stopping test for

1Appropriate here implies that the discrete linear system arising from FEM discretization should
be nonsymmetric, thereby mirroring the non self-adjoint nature of the continuous convection-diffusion
operator.
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a single nonsymmetric linear system arising from FEM discretization of deterministic

convection-diffusion equations.

This chapter consists of 6 sections. The target linear algebra problem is set

up in section 4.1 and the natural norm for measuring the errors is identified. An

overview of preconditioned GMRES, BICGSTAB(`), and TFQMR is presented in

section 4.2. The balanced stopping test is developed in section 4.3. In section 4.4

a set of computational results that can be reproduced using the IFISS toolbox [Elman

et al., 2014b] are presented. These results will confirm the effectiveness of the balanced

stopping strategy. A theoretical analysis towards cheap computation of the constants

involved in the devised stopping test is considered in section 4.5. A summary of the

chapter is presented in section 4.6.

4.1 Deterministic convection-diffusion equations

Convection-diffusion equations are used for modelling various phenomena in physical,

biological, and engineering sciences such as the transfer and diffusion of pollutants,

drift-diffusion equations in semi-conductor physics, temperature of a fluid moving

along a heated wall etc.; see [Eriksson et al., 1996, chapter 18].

To quote [Elman et al., 2014a, p. 282] “The discrete convection-diffusion equation

has been used as an “archetypical” nonsymmetric system, in much the same way

as the discrete Poisson equation is regarded as the “definitive” symmetric positive-

definite system.” Thus, the discrete linear systems arising from FEM discretization

of convection-diffusion equations are chosen as representatives for devising a balanced

stopping criterion in iterative solvers for nonsymmetric linear systems.

Following the notation in [Elman et al., 2014a, p. 234], the steady-state scalar

convection-diffusion solution u(~x) : D → R satisfies

−∇ · ε(~x)∇u(~x) + ~w(~x) · ∇u(~x) = f(~x), ∀ ~x ∈ D ⊂ Rd (d = 2, 3), (4.1a)

u(~x) = gD(~x), ∀ ~x ∈ ∂DD, (4.1b)

∇u(~x) · ~n = gN(~x), ∀ ~x ∈ ∂DN = ∂D \ ∂DD. (4.1c)

Here D is the spatial domain, ~w denotes the wind, and ε := κI is the isotropic

permeability tensor, κ : D → R. The quantities f, gD, gN are given functions and ~n
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denotes the normal to boundary ∂D, which is the union of the Dirichlet (∂DD) and

the Neumann (∂DN) spatial boundary.

For the simplicity of exposition, the diffusion coefficient ε > 0 will be assumed to

be independent of the spatial coordinates. Also, it will be assumed that ∇ · ~w = 0.

The presence of the convection term in (4.1) often results in the formation of

layers (exponential boundary layers/ shear layers) in the solution. Therefore, the

FEM approximation has to be constructed intelligently taking into account the relative

contributions of convection and diffusion in (4.1). The Peclet number P encapsulates

these contributions globally and is defined as

P :=
|~w|L
ε
, (4.2)

where L denotes a characteristic length scale for D and |·| is some appropriate measure.

If P ≤ 1, (4.1) is diffusion dominated otherwise convection is more relevant. In

fact the rth mesh element Peclet number

Prh :=
| ~wr|hr

2ε
, hr − rth element mesh parameter, wr − rth element wind, (4.3)

might be a better indicator of the relative contributions of convection and diffusion

locally in the FEM mesh.

4.1.1 Weak formulation

The variational formulation of (4.1) is to find u ∈ H1
E such that

a(u, v) = l(v), ∀ v ∈ H1
E0
, (4.4)

where

a(u, v) := ε

∫
D

(∇u · ∇v) +

∫
D

(~w · ∇u)v,

l(v) :=

∫
D

fv + ε

∫
∂DN

gNv,

H1
E := {v ∈ H1(D) | v = gD on ∂DD},

H1
E0

:= {v ∈ H1(D) | v = 0 on ∂DD}.

Notice that the bilinear form a(·, ·) is the sum of a self-adjoint operator (diffusion

operator) and an almost skew self-adjoint convection operator.2 It can be easily verified

2The convection operator is completely skew self-adjoint provided Neumann boundary conditions
are absent or they exist only at the characteristic boundary [Elman et al., 2014a, p. 241].
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that a(·, ·) and l(·) satisfy the conditions [Elman et al., 2014a, p. 243] of the Lax–

Milgram theorem. Thus, there exists a unique solution to the weak formulation (4.4).

The Galerkin FEM formulation of (4.4) is presented next and also the natural norm

for measuring errors will be identified.

4.1.2 Galerkin FEM formulation

Find uh ∈ ShE such that

a(uh, vh) = l(vh), ∀ vh ∈ Sh0 , (4.5)

where ShE and Sh0 are finite dimensional subspaces of H1
E and H1

E0
respectively.

[Wathen, 2007] advocates that a natural norm for a function u in the Sobolev space

H1
E0

is the L2 norm of its gradient, that is, ‖∇u‖2. However, this need not be the only

meaningful norm for measuring errors associated with (4.5). An alternative norm

known as the streamline diffusion norm is also discussed in [Elman et al., 2014a, p.

252]. This norm arises when the streamline diffusion method introduced by [Hughes

and Brooks, 1979] is used for overcoming the drawbacks associated with the Galerkin

discretization.3 This leads to a slightly different FEM formulation to (4.5).

4.1.3 Streamline diffusion FEM formulation

Find uh ∈ ShE such that

asd(uh, vh) = lsd(vh), ∀ vh ∈ Sh0 , (4.6)

where if δ denotes the stabilization parameter [Elman et al., 2014a, p. 253] and if

gN = 0, then

asd(uh, vh) := ε

∫
D

(∇uh · ∇vh) +

∫
D

(~w · ∇uh)vh + δ

∫
D

(~w · ∇uh) (~w · ∇vh)

− δε
∑
k

∫
Mk

(∇2uh) (~w · ∇vh), 4

lsd(vh) :=

∫
D

fvh + δ

∫
D

f(~w · ∇vh).

3Galerkin approximation for (4.1) is inaccurate if the mesh is not fine enough to resolve the layers
in the solution and these inaccuracies may also propagate and pollute the approximated solution in
regions where the exact solution is well behaved. An alternative way to handle boundary layers is by
using Shishkin grids; see [Shishkin, 1992].
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The corresponding streamline diffusion norm is

‖uh‖sd := (ε ‖∇uh‖2
2 + δ ‖~w · ∇uh‖2

2)1/2. (4.7)

For convection dominated problems, that is, for large Peclet numbers (small ε), the

solution uh is dominated by its behaviour along the streamlines, and hence ‖uh‖sd

which involves the streamline derivative ‖~w · ∇uh‖2 is a more meaningful measure

than ‖∇uh‖2.

The streamline diffusion method is closely related to the methodology of [Brezzi

et al., 1998], which employs interior finite element basis functions to gather information

interior to elements. This enhances the quality of the corresponding discrete solution.

For a more detailed discussion; see [Elman et al., 2014a, p. 247 ff.].

The IFISS toolbox employs streamline diffusion stabilization for solving (4.1), but

measures errors in the L2 norm of the gradient. The balanced stopping test will be

based on this norm. However, the stopping methodology can easily be modified to

cater to the streamline diffusion norm.

Having formulated the streamline diffusion FEM formulation, the target linear

system is set up in the next subsection.

4.1.4 Matrix formulation

Let {φi}ni=1 be a basis for Sh0 . The basis functions could be the piecewise linear (P1)

finite elements, or the piecewise bilinear (Q1) finite elements etc. By augmenting this

basis with {φi}n+n∂
j=n+1, an arbitrary uh ∈ ShE can be expressed (loosely defined) as a

basis5 expansion

uh =

n+n∂∑
j=1

xjφj.

The function
∑n+n∂

j=n+1 xjφj interpolates the boundary data gD on ∂DD. Plugging this

expansion in (4.6), and enforcing the condition vh = φi, the discrete problem is to find

{xj}nj=1 such that [Elman et al., 2014a, p. 272]

n∑
j=1

asd(φj, φi)xj = l̂sd(φi), i = 1, 2, . . . , n,

4The elementwise sum makes sense if it is assumed that the functions in Sh0 lie in H2(Mk) when
restricted to Mk.

5The space H1
E is not a vector space unless gD = 0.
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where

l̂sd(φi) :=

∫
D

fφi +

∫
∂DN

gNφi −
n+n∂∑
j=n+1

(
ε

∫
D

(∇φj · ∇φi) +

∫
D

(~w · ∇φj)φi
)
xj

−
n+n∂∑
j=n+1

(∑
k′

δk′

∫
Mk′

(~w · ∇φj)(~w · ∇φi)

)
xj.

(4.8)

The second sum in (4.8) is over those elements Mk′ that have boundaries that intersect

with the Dirichlet boundary ∂DD. In matrix form, one needs to find x ∈ Rn such that

Fx = b ⇐⇒M−1Fx = M−1b,

where

F = [fij] ∈ Rn×n, fij := asd(φj, φi),

b = [bi] ∈ Rn, bi := l̂sd(φi),

M is a preconditioner.

(4.9)

When lower order (piecewise linear or piecewise bilinear) finite elements along with

stabilization are employed, the coefficient matrix F has the form

F = εA + N + S,

where

A = [aij] ∈ Rn×n, aij :=

∫
D

∇φj · ∇φi,

N = [nij] ∈ Rn×n, nij :=

∫
D

(~w · ∇φj)φi,

S = [sij] ∈ Rn×n, sij :=
∑
k

δk

∫
Mk

(~w · ∇φj)(~w · ∇φi).

(4.10)

For FEM discretization without streamline diffusion stabilization, F = εA+N for

finite elements of any order.

The matrices under consideration are quite structured. The matrix A is symmetric

and positive-definite provided Dirichlet boundary conditions exist over an interval

(
∫
∂DD

6= 0), however small. The stabilization matrix S is symmetric and positive-

semidefinite. The matrix N is a skew-symmetric matrix [Elman et al., 2014a, p. 241,

pp. 271–272]. Thus, F is a nonsymmetric matrix that will be assumed to be invertible

throughout this chapter. Iterative solvers like GMRES, BICGSTAB(`), and TFQMR

are popular for solving nonsymmetric linear systems. A discussion on these methods

is presented in the following section.
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4.2 Fast Krylov solvers for nonsymmetric systems

Krylov methods for solving nonsymmetric linear systems can essentially be classified

into two categories. These solvers either satisfy some optimality condition or they are

inexpensive in the sense that the number of arithmetic operations does not depend on

the iteration count, that is, there is only a fixed amount of work per iteration. The

latter category Krylov methods are characterized for having short-term recurrences

of fixed length. The GMRES method falls in the optimality satisfying category while

BICG, BICGSTAB(`), and TFQMR methods come under the suboptimal class. [Faber

and Manteuffel, 1984, 1987] have shown that for general nonsymmetric linear systems,

there is no Krylov subspace method which is both inexpensive and optimal in some

sense. However, a common feature of all these iterative methods is their connection to

the Lanczos [Lanczos, 1950] or the Arnoldi [Arnoldi, 1951] methods for estimating the

eigenvalues of matrices. This relation is perhaps because the asymptotic convergence

behaviour of iterative methods is dependent on the spectrum of the coefficient matrix.

4.2.1 An overview of GMRES

Suppose that r(0) = b−Fx(0) is the initial residual with starting vector x(0). The kth

GMRES iterate x(k) is in the translated Krylov space

x(0) + span{r(0), Fr(0), F 2r(0), . . . , F k−1r(0)}.

This implies that the kth residual r(k) lies in the translated Krylov space

r(0) + span{Fr(0), F 2r(0), . . . , F kr(0)}. (4.11)

Choosing the residual with the minimal Euclidean norm is the defining characteristic

of the GMRES method. Also, since Krylov spaces form an ascending chain, ‖r(k)‖

is monotonically decreasing.6 From (4.11), it follows that if Πk denotes the set of

real polynomials of degree less than or equal to k, then r(k) = pk(F )r(0), where

pk(0) = 1, pk ∈ Πk. The polynomial pk is chosen such that

‖r(k)‖ = min
pk ∈Πk, pk(0) = 1

‖pk(F )r(0)‖. (4.12)

In order to derive convergence bounds, some additional assumptions are required.

Suppose that F is diagonalizable, then F = V DV −1 where V is the matrix whose

6There might be stagnation of ‖r(k)‖ for some iteration counts; see [Meurant, 2014].
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columns are the eigenvectors of F and D is the diagonal matrix of eigenvalues λj’s

of F . Also, pk(F ) = V pk(D)V −1. It follows that ‖r(k)‖ = min
pk ∈Πk, pk(0) = 1

‖pk(F )r(0)‖

implies

min
pk ∈Πk, pk(0) = 1

‖pk(F )r(0)‖ = ‖V pk(D)V −1r(0)‖

≤ ‖V ‖ ‖V −1‖ ‖pk(D)‖ ‖r(0)‖

= ‖V ‖ ‖V −1‖max
λj
|pk(λj)| ‖r(0)‖,

(4.13)

where in the penultimate step the subadditive property and the consistency of matrix-

vector norms has been utilized. From (4.12) and (4.13), the following convergence

bound is obtained [Elman et al., 2014a, p. 289].

‖r(k)‖
‖r(0)‖

≤ κ(V ) min
pk ∈Πk, pk(0) = 1

max
λj
|pk(λj)|, (4.14)

where κ(V ) denotes the condition number of the matrix V . Equation (4.14) implies

that the GMRES convergence is quite fast when eigenvalues of F are clustered away

from the origin and F is nearly normal. In practice, F arising from FEM approximation

is ill-conditioned. Theoretically, bound (4.14) indicates that preconditioning strategies

for (4.9) should focus on clustering the eigenvalues of the preconditioned coefficient

matrix away from the origin. Also, the bounds for κ(V ) and min
pk ∈Πk, pk(0) = 1

max
λj
|pk(λj)|

are anything but straightforward to compute [Elman et al., 2014a, p. 290]. Further

discussions on GMRES convergence analysis and computable convergence bounds can

be found in [Elman et al., 2014a, proposition 7.3, p. 291], [Liesen, 2000], [Liesen

and Strakos, 2005]. Closely associated with GMRES convergence is the notion of the

asymptotic convergence factor

ρ := lim
k→∞

(
min

pk ∈Πk, pk(0) = 1
max
λj
|pk(λj)|

)1/k

. (4.15)

This is the factor roughly by which ‖r(k)‖ can be expected to decrease for large enough

iteration count k. In practice, k is typically not too large. An upper bound on ρ can

be found under certain conditions [Elman et al., 2014a, theorem 7.2, p. 291].

It was mentioned earlier that iterative methods and popular methods for estimating

eigenvalues are closely related. This relationship between the GMRES and the Arnoldi

methods is explored next.
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Relation between Arnoldi and GMRES methods

The Arnoldi method computes a unitary similar transform of F , that is,

FVk = VkHk + hk+1,k [0, . . . , 0,v(k+1)] = Vk+1Ĥk,

Hk = V T
k FVk, if hk+1,k = 0,

where Hk is an upper-Hessenberg matrix and Ĥk ∈ R(k+1)×k is the matrix Hk with an

additional final row [0, . . . , 0, hk+1,k]. The columns of the matrix Vk := [v(1), . . . ,v(k)]

form an orthonormal basis for Kk(F,v
(1)). Notice that this method requires all

the vectors {v(i)}ki=1 for constructing v(k+1). This storage requirement may become

prohibitive for large k.

The GMRES method seeks the kth iterate x(k) ∈ x(0) + Kk(F, r
(0)). Choosing

v(1) = r(0)

‖r(0)‖ in the Arnoldi method generates an orthonormal basis {v(1), . . . ,v(k)} for

Kk(F, r
(0)). Thus,

x(k) = x(0) + Vky
(k), for some y(k) ∈ Rk. (4.16)

Then the kth residual is

r(k) = b − Fx(k)

= r(0) − FVky
(k)

= Vk+1

(
‖r(0)‖e1 − Ĥky

(k)
)
,

(4.17)

where e1 = (1, 0, . . . , 0)T ∈ Rk+1. Since Vk+1 is orthonormal,

‖r(k)‖ =
∥∥∥‖r(0)‖e1 − Ĥky

(k)
∥∥∥ . (4.18)

The choice of y(k) that minimizes (in the least-squares sense) the right-hand-side

expression in (4.18) gives the residual with the minimal Euclidean norm.

The classic trade-off between optimality and storage of all k previous orthonormal

basis vectors (for constructing an orthonormal basis of dimension k + 1) implies that

the work and storage costs of GMRES scale like O(kn). When k is ‘large’, these storage

costs become prohibitive. In order to minimize the storage costs, the GMRES process

is restarted and this method is known as restarted GMRES; see [Saad, 2003, chapter

6, section 6.5.5], [Embree, 2003]. Sometimes restarts are done to ensure orthogonality

of the basis vectors, which due to accumulation of rounding errors might become
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nonorthogonal. A detailed discussion on GMRES can be found in [Saad, 2003, section

6.1–6.5].

For the symmetric positive-definite linear systems, the Arnoldi method reduces to

the Lanczos method. This will be the focus of discussion in the next section.

4.2.2 An overview of suboptimal Krylov solvers

When the memory storage requirements are prohibitive, an alternative is to employ

suboptimal Krylov methods like BICG, BICGSTAB(`), TFQMR, conjugate gradient

squared (CGS) [Sonneveld, 1989], and quasi-minimum residual (QMR) [Freund and

Nachtigal, 1991], [Freund and Nachtigal, 1994] that utilize short-term recurrences of

fixed length. This implies that the storage requirements and overhead (the work

per iteration k) for such methods is independent of the dimension k of the Krylov

space. As a result these methods are quite popular; see [Amritkar et al., 2015], [Ahuja

et al., 2015]. The downside in employing these methods is the fact that they do not

satisfy any optimality condition. Their convergence behaviour is quite irregular and

precious little convergence theory is available to explain the erratic behaviour. Indeed,

there is no guarantee that they would converge and a breakdown may occur before

convergence. These breakdowns are in turn due to the breakdown in the underlying

Lanczos biorthogonalization process upon which these methods are constructed; see

[Saad, 1982], [Day, 1997].

Lanczos biorthogonalization method

The Lanczos biorthogonalization method for nonsymmetric matrices constructs a pair

of orthogonal bases {v(1), . . . , v(k)}, {w(1), . . . , w(k)} for the Krylov spaces Kk(F,v
(1))

and Kk(F
T ,w(1)) respectively. The biorthogonal Lanczos algorithm for nonsymmetric

matrices [Saad, 2003, section 7.1–7.2] is given as follows. Let w(0) = v(0) = 0. Choose

v(1),w(1) such that (v(1))
T
w(1) = 1. Also, β1 = δ1 = 0. For j = 1, 2, . . .

v̂(j+1) = Fv(j) − αjv
(j) − βjv

(j−1),

ŵ(j+1) = F Tw(j) − αjw
(j) − δjw

(j−1),
(4.19)

where αj = (w(j))
T
Fv(j). The scalars δj+1, βj+1 are chosen such that

ŵ(j+1)T v̂(j+1)

δj+1βj+1

= 1.
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There are several choices for βj+1, δj+1 that enforce this condition; for more details

see [Saad, 2003, section 7.1]. The crucial point to note here is that this condition may

be violated if either of the vectors v̂(j), ŵ(j) are zero or if they are (nearly) orthogonal.

This would lead to breakdown of the Lanczos biorthogonalization algorithm; see [Saad,

2003, section 7.1.2]. If the algorithm is applied for solving a linear system Fx = b

then the breakdown due to zero vector(s) implies that a solution to either Fx = b or

F Tx = b has been found. The breakdown due to orthogonality is more problematic

since then the algorithm stops without converging. To overcome this breakdown,

few ‘look-ahead’ strategies like QMR etc., have been devised; see [Parlett et al.,

1985], [Freund et al., 1993].

Utilization of the Lanczos biorthogonalization algorithm for solving linear systems

leads to BICG algorithms and its variants like BICGSTAB(`) etc.

BICG, BICGSTAB(`), and TFQMR

To solve Fx = b, let r(0) = b−Fx(0) be the initial residual for any starting vector x(0).

Let r̂(0) be a nonzero vector which is not orthogonal to r(0) and choose v(1) =
r(0)

‖r(0)‖
,

w(1) =
r̂(0)

‖r̂(0)‖
. Using the Lanczos biorthogonalization method, BICG constructs a pair

of orthogonal bases {v(1), . . . ,v(k)}, {w(1), . . . ,w(k)} for the Krylov spaces Kk(F, r
(0)),

Kk(F
T , r̂(0)) respectively. In matrix form [Saad, 2003, section 7.1]

FVk = VkTk + δk+1[0, . . . , 0,v(k+1)] = Vk+1T̂k,

W T
k FVk = Tk,

W T
k Vk = I, I − Identity matrix,

(4.20)

where Tk := tridiag
1≤j≤k

[δj, αj, βj+1] is a tridiagonal matrix, Vk := [v(1), . . . ,v(k)] and

Wk := [w(1), . . . ,w(k)]. The matrix T̂k ∈ R(k+1)×k is the tridiagonal matrix Tk with an

additional final row [0, . . . , 0, δk+1]. The iterate x(k) ∈ Kk(F, r
(0)) can be expressed as

x(k) = x(0) + Vky
(k), for some y(k) ∈ Rk,

⇐⇒ r(k) = r(0) − FVky
(k).

(4.21)

The BICG method seeks the residual r(k) such that W T
k r(k) = 0, that is, r(k) is

orthogonal to the auxiliary set of vectors {w(j)}kj=1.
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Enforcing the orthogonality condition in (4.21) and applying (4.20) gives

Tky
(k) = W Tv(1)‖r(0)‖ ⇐⇒ Tky

(k) = ‖r(0)‖e1, (4.22)

where e1 = (1, . . . , 0)T ∈ Rk. The iterate x(k) is obtained by solving (4.22) for y(k)

and using (4.21).

The suboptimal Krylov solvers [Saad, 2003, section 7.4.2] are quite sensitive to

rounding errors. Also, the Euclidean norm of the BICG residuals do not have a global

monotonic decrease with iteration count. This is a characteristic of all the suboptimal

Krylov methods used for solving nonsymmetric linear systems. However, a ‘more’

smoother convergence of the residual Euclidean norm is achieved through variants of

BICG like BICGSTAB(`), TFQMR etc. These methods differ from BICG in as much

that they do not employ the transpose of the coefficient matrix in their computations

and incorporate ‘look-ahead’ strategies to overcome the breakdown of the underlying

Lanczos biorthogonalization method. BICGSTAB(`) in particular employs ` GMRES

steps with each BICG iteration to smooth out to some extent the irregular behaviour

of the iteration residual. For a detailed discussion see [Saad, 2003, section 7.3–7.5].

After surveying the state-of-art iterative solvers that can be employed for solving

nonsymmetric linear systems, the balanced stopping methodology is presented in the

next section.

4.3 A balanced stopping test

The methodology for the devised balanced stopping test in this section follows the

flavour of chapters 2 and 3.

4.3.1 Error equation

Let x = (x1, . . . , xn)T denote the exact solution of Fx = b and e(k) := x− x(k) be the

iteration error corresponding to the kth iterate x(k) = (xk1, . . . , x
k
n)T . From the triangle

inequality at iteration k

‖u− u(k)
h ‖E︸ ︷︷ ︸

total error

≤ ‖u− uh‖E︸ ︷︷ ︸
approximation error

+ ‖uh − u(k)
h ‖E︸ ︷︷ ︸

algebraic error

, (4.23)

where uh is the exact FEM approximation and u
(k)
h denotes FEM approximation

corresponding to iterate x(k). Also, u is the exact solution and ‖ · ‖E denotes the L2
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norm of the gradient. Expressing uh and u
(k)
h in terms of the (interior) basis functions,

the algebraic error evaluates to

‖uh − u
(k)
h ‖

2
E = ‖∇(uh − u

(k)
h )‖2

2

=

∫
D

∇(uh − u
(k)
h ) · ∇(uh − u

(k)
h )

=

∫
D

(
∇

n∑
j=1

(xj − xkj )φj

)
·

(
∇

n∑
i=1

(xi − xki )φi

)

= (e(k))TAe(k) =: ‖e(k)‖2
A,

(4.24)

where e(k) := (x1 − xk1, . . . , xn − xkn)T . The matrix A by construction (see (4.10))

is symmetric positive-definite. Hence, ‖ · ‖A defines a norm. Note that the natural

norm for the continuous problem here translates into the natural norm—involving the

matrix formed from symmetric positive-definite part of the coefficient matrix—for the

corresponding discrete problem. This norm is a popular choice for measuring errors

associated with the solution of nonsymmetric linear systems.

Verfürth pioneered the a posteriori error estimation techniques for the convection-

diffusion equations [Verfürth, 1998]. For the current discussion, the local problem error

estimation strategy estimator developed in [Elman et al., 2014a, pp. 264–265] will be

used. That is, one can compute an error estimate η(k) that is equivalent to the total

error (approximation error at the kth iteration) in the sense that

c1 η
(k) ≤ ‖u − u

(k)
h ‖E ≤ C1 η

(k), with
C1

c1

∼ O(1). (4.25)

If a posteriori error estimator η corresponds to the exact FEM approximation uh then

analogous to chapters 2 and 3, assuming the a posteriori error estimates η and η(k) to

be close estimates of the (exact) approximation error and the total error at the kth

iteration step respectively, (4.23) can be rewritten as

η(k) ' η + ‖e(k)‖A, k = 0, 1, 2, . . . (4.26)

where ‖uh − u(k)
h ‖E = ‖e(k)‖A from (4.24). The relation ' is a direct consequence of

(4.25). Balancing the total error and algebraic error, the iteration will be stopped at

iteration k∗, which is the smallest value of k such that

‖e(k∗)‖A ≤ η(k∗). (4.27)

Since the iteration error e(k) is difficult to compute, in order to utilize (4.27) it is

necessary to obtain bounds on ‖e(k)‖A which is the focus of the next section.
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4.3.2 Tractable bounds on algebraic error

The goal in this section is to obtain upper (C) and lower bounds (c) on ‖e(k)‖A which

will be called the norm-equivalence bounds henceforth. Ideally, ‖e(k)‖A should be

bounded by a readily computable and monotonically decreasing quantity (if any) of

the employed iterative solver. The reason being that as the iteration progresses, the

accuracy of the discrete solution (and hence the FEM solution) keeps on improving.7

This will be reflected in the balanced stopping test based on a monotonically decreasing

quantity (if any) of the iterative solver. The Euclidean norm of the residual, which

is readily computable for all Krylov iterative methods is monotonically decreasing in

GMRES. So, bounds on ‖e(k)‖A in terms of the surrogate norm ‖r(k)‖ are obtained

here, that is

c ≤ ‖e(k)‖A
‖r(k)‖

≤ C. (4.28)

Since e(k) = F−1r(k), it follows that

‖e(k)‖2
A = (r(k))TF−TAF−1r(k). (4.29)

From (4.28) and (4.29), it follows that the norm-equivalence bounds are obtained by

calculating the extremal Rayleigh quotient bounds of F−TAF−1.

Rayleigh quotient

Computing the extremal Rayleigh quotient bounds is equivalent to finding the extremal

eigenvalues of F−TAF−1, that is

θ ≤ vTF−TAF−1v

vTv
≤ Θ, ∀v ∈ Rn, (4.30)

where θ, Θ are the smallest and the largest eigenvalues F−TAF−1 respectively. The

extremal eigenvalue calculation of F−TAF−1 is equivalent to solving a generalized

extremal eigenvalue problem for A and F TF .

Find the extremal eigenvalues λ such that

Ay = λF TFy, y ∈ Rn is an eigenvector. (4.31)

This is a symmetric positive-definite eigenvalue problem. The matrices F TF and A

are both symmetric positive-definite. Thus, (4.31) can be converted to a symmetric

7Assuming a non-divergent iterative method is used for solving the linear system.
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positive-definite eigenvalue problem through a Cholesky factorization of F TF . Hence,

all the eigenvalues in (4.31) are real and greater than zero. If this was not the case,

then obtaining a balanced stopping test based on norm-equivalence bounds might not

be straightforward.

Using (4.28), (4.29), and (4.30) it follows that for k = 0, 1, . . .

√
θ ≤ ‖e(0)‖A

‖r(0)‖
,

‖e(k)‖A
‖r(k)‖

≤
√

Θ. (4.32)

Equation (4.32) leads to the following upper bounds on ‖e(k)‖A, that is

‖e(k)‖A
‖e(0)‖A

≤
√

Θ

θ

‖r(k)‖
‖r(0)‖

⇐⇒ ‖e(k)‖A ≤
√

Θ

θ

‖r(k)‖
‖r(0)‖

‖e(0)‖A ⇐⇒‖e(k)‖A ≤
Θ√
θ
‖r(k)‖,

(4.33a)

‖e(k)‖A ≤
√

Θ ‖r(k)‖. (4.33b)

The quantities
√

Θ‖r(k)‖, Θ√
θ
‖r(k)‖ will be called weaker and stronger algebraic error

bounds respectively for the rest of this chapter. The quantities
√

Θ, Θ√
θ

will henceforth

will be called weaker and stronger norm-equivalence constants respectively.8

The choice of norm-equivalence constants to be used in the employed balanced

stopping test will be discussed next.

4.3.3 Stopping criterion

Based on the choice of the norm-equivalence constant, the following weaker and

stronger balanced stopping criteria are obtained from (4.27) and (4.33) respectively.

That is, we stop at iteration k∗, which is the smallest value of k such that

√
Θ‖r(k∗)‖ ≤ η(k∗) ⇐⇒ ‖r(k∗)‖ ≤ 1√

Θ
η(k∗). (4.34)

Henceforth, this will be called the weaker stopping test and the following will be known

as the stronger stopping test

Θ√
θ
‖r(k∗)‖ ≤ η(k∗) ⇐⇒ ‖r(k∗)‖ ≤

√
θ

Θ
η(k∗). (4.35)

Note that the stopping criteria derived here can be used in iterative solvers for solving

preconditioned nonsymmetric linear systems as well. The only difference from the

8This seemingly ‘reciprocal’ terminology is chosen because for balanced stopping the reciprocal of

these constants are of primary interest. The above terminology has been adapted because
√
θ

Θ ≤
1√
Θ

.
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balanced stopping methodology of chapters 2 and 3 is the use of the Euclidean norm

as the surrogate norm instead of using the preconditioner norm of the residual.

In terms of the number of iterations (and hence computational work and time)

for convergence, the stronger stopping test cannot perform better than the weaker

stopping test since
√
θ

Θ
≤ 1√

Θ
. Moreover, the stronger stopping test involves an

additional overhead of computing the smallest eigenvalue. Thus, it would be prudent

to employ the weaker stopping test whenever possible. A crucial point to observe is

that if a posteriori error estimator overestimates the approximation error, it will be

better to employ the stronger stopping test for otherwise the use of weaker stopping

test might lead to premature stopping.

4.3.4 A posteriori error estimation

The a posteriori approximation error estimator employed here for the deterministic

convection-diffusion equations (with piecewise bilinear rectangular finite elements) is

reliable but need not always be efficient. It is reliable in the sense that the global

upper bound on the true error does not depend on the mesh parameter h and the

diffusion parameter ε. However, it might not always be possible that the a posteriori

error estimate is a lower bound on the local (elemental) approximation error [Elman

et al., 2014a, theorem 6.9, proposition 6.11, pp. 264–265]. According to [Elman

et al., 2014a, p. 265], efficiency issue is generic for any local error estimator whenever

boundary layers are not resolved by the FEM approximation. Hence, streamline

diffusion stabilization is necessary for dealing adequately (but not completely!) with

such situations.

To demonstrate that the employed a posteriori error estimator is a ‘close’ estimate

of the approximation error, some computational results are presented for the test

problem described in section 4.4. The a posteriori error η and the actual approximation

error ‖uref−uh‖E := ‖∇(uref−uh)‖2 using a reference solution are tabulated in Table

4.1 for 2l × 2l uniform and stretched grids respectively.

Since the exact solution to the model problem is not available, a reference solution

uref is computed on a fine (l = 9) spatial 512 × 512 uniform and stretched grid

respectively. This reference solution is then compared with the computed FEM solution

uh (which is linearly interpolated using MATLAB interp2 function for compatible



98 Nonsymmetric optimal stopping I

Table 4.1: Approximation errors, a posteriori errors, and effectivity indices for
convection-diffusion test problem on uniform (left) and stretched (right) grids.

l η ‖uref − uh‖E βeff Prmax
h

5 1.0562 4.1162 0.25 3.87
6 0.8556 2.6216 0.33 1.97
7 0.8018 1.5380 0.52 0.99
8 0.7855 0.7571 1.04 0.50

l η ‖uref − uh‖E βeff Prmax
h

5 0.8527 9.1846 0.09 9.86
6 0.8022 5.2547 0.15 5.97
7 0.7902 2.7423 0.29 3.49
8 0.7866 1.1563 0.68 2.00

comparison with the reference solution) for grids with l = 5, 6, 7, 8. The corresponding

effectivity index βeff = η
‖uref−uh‖E

is also presented. The columns for βeff in Table 4.1

indicate that the a posteriori error estimator is an ‘acceptably close’ estimate of the

approximation error. In fact as the mesh is refined and the layers in the solution

are resolved, that is, maximum mesh Peclet number (Prmax
h ) approaches ≤ 1, βeff → 1.

Note that the computation of a posteriori error estimator employed here is quite cheap

since it requires solving for a local 5× 5 linear system on each element.

4.3.5 Computational logistics

The computational work involved in the balanced stopping test involves computation

of eigenvalue(s) Θ and θ (for the stronger stopping test only), the Euclidean norm of the

residual ‖r(k)‖, and the a posteriori error estimator η(k). Among these, ‖r(k)‖ is cheaply

available in all Krylov solvers. Cheap, efficient, and reliable a posteriori estimators

are also available for the present problem. If the a posteriori error computation is

expensive, η(k) can be computed periodically (for example, every 4-5 iterations) to have

a minor impact on the overall algorithmic cost. The computation of eigenvalues for

systems of ‘moderate size’ (the cpu memory available) could be done easily through the

MATLAB function eigs utilizing the sparsity of FEM matrices for this purpose. This

eigenvalue computation for ‘huge’ matrices might be costly and alternative ‘cheaper’

methods for estimating these eigenvalues are therefore proposed in section 4.5.

4.4 Computational results

The computational results presented here are based only on the weaker stopping test

since the a posteriori error estimator is a close (underestimate) of the approximation

error; see Table 4.1. These results are presented for GMRES, BICGSTAB(2), and
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TFQMR. The choice ` = 2 is quite popular and widespread among practitioners;

see [Elman et al., 2014a, p. 296]. Roundoff errors might pollute the residual norm

computed from short-term recurrences for suboptimal Krylov solvers. In order to

avoid these inaccuracies, ‖r(k)‖ is computed here after forming the residual explicitly,

that is, r(k) = b − Fx(k). It is claimed here that in presence of tight a posteriori

approximation error estimators, the balanced stopping test can be employed optimally

for suboptimal iterative methods too provided breakdowns are handled adequately and

these algorithms ‘converge’ at least to the accuracy of the true approximation error.

The computational experiments are carried out in the IFISS software in MATLAB.

Four test problems based on (4.1) are present in IFISS. Computational results are

presented here for the fourth test problem, which is characterized by a recirculating

wind and has discontinuous Dirichlet boundary conditions leading to the formation

of boundary layers near the corners of the domain [Elman et al., 2014a, p. 240]; see

Figure 4.1.

• Recirculating wind

~w = (2x2(1− x2
1),−2x1(1− x2

2)), ∀ (x1, x2) ∈ D.

• Dirichlet discontinuous boundary conditions

u(x1,− 1) = 0 , u(x1, 1) = 0, u(− 1, x2) = 0, u(1, x2) = 1, ∀ (x1, x2) ∈ D.

Finite Element Solution

−1

0

1

−1

0

1

0

0.5

1

Figure 4.1: FEM solution surface and contour plots from the MATLAB backslash
solution on a uniform grid for l = 7.

The convection-diffusion (CD) problem (4.1) is defined on D = (−1, 1)× (−1, 1) with

the source function f(x1, x2) = 0, ∀ (x1, x2) ∈ D. Rectangular piecewise bilinear (Q1)

finite elements are used on 2l×2l uniform and stretched grids. The viscosity parameter

ε = 1/64 is fixed and the optimal inbuilt value of the stabilization parameter is used;
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see [Elman et al., 2014a, p. 253]. This problem can be set up by choosing test

problem 4 after running the driver cd testproblem in IFISS.

There are four preconditioners built in IFISS for the discrete convection-diffusion

problem. They are: diagonal (DIAG) preconditioner, that is, the diagonal matrix

formed from the diagonal elements of F , incomplete LU (ILU), geometric multigrid

(GMG), and algebraic multigrid (AMG) preconditioners; see [Elman et al., 2014a,

chapter 7]. Note that the ILU, GMG, and AMG preconditioners are employed with

their specified default settings in IFISS.

Let x denote the MATLAB backslash (Gaussian elimination) solution on each grid.

Henceforth, this will be regarded as the true algebraic solution. This will be used for

comparison with the result x(k∗) computed using the balanced stopping test. From

x, the ‘exact’ a posteriori error estimate η is computed. The starting vector x(0)

is generated using the MATLAB function rand. The balanced stopping test that is

used in preconditioned GMRES and BICGSTAB(`) is implemented in gmres r and

bicgstab ell in IFISS respectively, while the balanced stopping test in preconditioned

TFQMR is incorporated in the existing MATLAB function for this solver. Also, let

η(k∗) denote the a posteriori error estimate at the optimal stopping iteration k∗ and

e∗η := |η − η(k∗)|. These values are tabulated in Tables 4.2–4.7 for each preconditioner

on every grid level for both uniform and stretched grids. The insights from these

numbers are quite generic, which are summarised in the following paragraphs.

The e∗η columns show that {η(k)} has converged with a good accuracy to the true a

posteriori error estimate η at the balanced stopping iteration. To show the effectiveness

of the balanced stopping test, the iteration counts k∗ needed to satisfy the balanced

stopping test have been compared with iteration counts ktol1, ktol2 needed to satisfy a

fixed relative residual
‖r(k)‖
‖r(0)‖

reduction tolerance of 1e-6 (which is the default tolerance

in MATLAB solvers) and 1e-9 respectively. These tolerance values are a realistic user-

input tolerance choices in the absence of a balanced stopping test. The user will not

know in general the stopping point k∗ a priori and is more likely to provide a tighter

tolerance than actually required. This would lead to unnecessary computations. In

any case, using a balanced stopping strategy would rule out premature stopping of the

chosen iterative solver.

A comparison of the corresponding columns for iteration counts shows that for
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the same approximation error, a significant number of iterations is saved by using the

balanced stopping test. This would result in significant savings in computational work

of the solver (as compared to using fixed relative residual
‖r(k)‖
‖r(0)‖

reduction tolerance

1e-6 or tighter) if one were to solve the (preconditioned) linear systems arising from

adaptive finite element for the chosen problem parameters. The linear systems that

are solved are of size: 1089 × 1089, 4225 × 4225, 16641 × 16641, and 66049 × 66049.

These computational savings are even more striking in light of the huge size of some

of these systems.

Among the employed iterative methods, BICGSTAB(2) performs the best with

each preconditioner. Between GMRES and TFQMR, GMRES converges slightly

faster. However, using GMRES over TFQMR could be memory extensive in terms

of storage. In any case, the balanced stopping test provides an optimal stopping point

for suboptimal Krylov solvers like TFQMR etc. Indeed this is crucially dependent on

the fact that these suboptimal solvers do not break down prematurely.

The iteration counts for the diagonal and the ILU preconditioner almost double

with each grid refinement. On stretched grids, the convergence of the ILU and the

diagonal preconditioner (in particular) improves drastically from their convergence on

uniform grids. The iteration counts for these preconditioners on the stretched grids

is in general almost halved or better from their iteration count on the corresponding

uniform grid. This happens because grid stretch leads to a better handle on the

boundary layers present in this problem. Thus, in some sense the diagonal matrix and

the LU factors carry more information about the problem and hence converge faster

than on the corresponding uniform grid.

Among the preconditioners, the rate of convergence in terms of iterations is similar

for all the methods in the sense that GMG and AMG are the best preconditioners,

while diagonal preconditioning is the worst with ILU somewhere in between. In fact

the iteration counts k∗ for GMG and AMG preconditioners indicate that their rate of

convergence on uniform grids is mesh-independent [Elman et al., 2014a, p. 326] but

rate of convergence of AMG on stretched grids is not mesh-independent; see iteration

counts for AMG on stretched grids.

In order to gain further insight from the numerical experiments, the evolution of

the following quantities—η(k) (red curve), ‖e(k)‖A (cyan curve), ‖r(k)‖ (green curve),

and the weak algebraic error bound
√

Θ‖r(k)‖ (blue curve) is also plotted.
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Figure 4.2: Errors vs iteration number for GMRES with DIAG (top) and ILU (bottom)
preconditioning on a uniform (left) and stretched (right) grid for l = 7.

Table 4.2: GMRES iteration counts & errors for DIAG (top) & ILU (bottom)
preconditioning on uniform (left) & stretched (right) grids for discrete CD system.

l ktol1 ktol2 k∗ e∗η
5 177 218 77 2.1e-3
6 381 476 172 5.3e-4
7 797 1001 383 1.2e-4
8 1501 1942 776 2.8e-5

l ktol1 ktol2 k∗ e∗η
5 97 127 42 8.8e-3
6 177 245 88 3.0e-3
7 349 518 190 1.4e-3
8 627 996 404 5.9e-4

l ktol1 ktol2 k∗ e∗η
5 19 24 7 1.9e-3
6 43 54 19 4.4e-4
7 113 144 54 1.4e-4
8 288 374 148 2.9e-5

l ktol1 ktol2 k∗ e∗η
5 16 21 7 4.4e-3
6 28 38 14 1.8e-3
7 52 73 27 7.9e-4
8 102 148 061 2.5e-4
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Figure 4.3: Errors vs iteration number for GMRES with GMG (top) and AMG
(bottom) preconditioning on a uniform (left) and stretched (right) grid for l = 8.

Table 4.3: GMRES iteration counts & errors for GMG (top) & AMG (bottom)
preconditioning on uniform (left) & stretched (right) grids for discrete CD system.

l ktol1 ktol2 k∗ e∗η
5 4 6 2 6.4e-5
6 3 6 2 3.4e-4
7 3 6 2 9.3e-5
8 3 5 2 1.0e-5

l ktol1 ktol2 k∗ e∗η
5 5 7 2 9.1e-4
6 4 8 3 2.6e-4
7 5 12 4 9.1e-4
8 4 15 7 3.9e-4

l ktol1 ktol2 k∗ e∗η
5 6 10 3 1.4e-3
6 7 11 4 7.7e-5
7 8 14 4 4.4e-5
8 7 14 5 1.8e-6

l ktol1 ktol2 k∗ e∗η
5 6 10 3 1.2e-3
6 6 12 4 1.0e-3
7 9 17 6 6.9e-4
8 12 28 13 2.6e-4
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Figure 4.4: Errors vs iteration number for BICGSTAB(2) with DIAG (top) and ILU
(bottom) preconditioning on a uniform (left) and stretched (right) grid for l = 7.

Table 4.4: BICGSTAB(2) iteration counts & errors for DIAG (top) & ILU (bottom)
preconditioning on uniform (left) & stretched (right) grids for discrete CD system.

l ktol1 ktol2 k∗ e∗η
5 126 164 62 7.6e-4
6 286 376 136 5.3e-4
7 598 790 260 1.3e-4
8 1224 1488 544 5.7e-5

l ktol1 ktol2 k∗ e∗η
5 68 86 25 8.3e-3
6 118 170 41 8.7e-4
7 228 362 89 5.1e-4
8 502 918 192 2.9e-4

l ktol1 ktol2 k∗ e∗η
5 12 16 6 4.1e-5
6 30 38 15 1.7e-4
7 86 114 48 2.8e-5
8 236 290 124 3.5e-5

l ktol1 ktol2 k∗ e∗η
5 10 14 5 4.9e-5
6 18 24 9 5.1e-4
7 32 52 18 1.6e-5
8 58 96 036 1.2e-4
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Figure 4.5: Errors vs iteration number for BICGSTAB(2) with GMG (top) and AMG
(bottom) preconditioning on a uniform (left) and stretched (right) grid for l = 8.

Table 4.5: BICGSTAB(2) iteration counts & errors for GMG (top) & AMG (bottom)
preconditioning on uniform (left) & stretched (right) grids for discrete CD system.

l ktol1 ktol2 k∗ e∗η
5 2 4 1 1.4e-4
6 2 4 2 2.2e-8
7 2 4 2 1.7e-8
8 2 4 2 1.1e-8

l ktol1 ktol2 k∗ e∗η
5 4 4 2 7.0e-7
6 4 4 2 5.7e-8
7 4 8 3 2.6e-6
8 2 8 5 3.6e-5

l ktol1 ktol2 k∗ e∗η
5 4 6 2 2.0e-4
6 4 6 3 3.7e-6
7 4 8 4 8.0e-6
8 4 8 4 3.4e-6

l ktol1 ktol2 k∗ e∗η
5 4 6 2 1.1e-5
6 4 6 2 6.6e-4
7 6 10 4 6.0e-6
8 8 18 7 1.7e-4
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Figure 4.6: Errors vs iteration number for TFQMR with DIAG (top) and ILU (bottom)
preconditioning on a uniform (left) and stretched (right) grid for l = 7.

Table 4.6: TFQMR iteration counts & errors for DIAG (top) & ILU (bottom)
preconditioning on uniform (left) & stretched (right) grids for discrete CD system.

l ktol1 ktol2 k∗ e∗η
5 298 365 231 6.5e-3
6 707 806 334 1.3e-3
7 1521 1767 793 3.6e-4
8 3066 3516 2304 9.9e-5

l ktol1 ktol2 k∗ e∗η
5 163 209 107 7.0e-3
6 309 376 209 2.8e-3
7 574 871 496 6.1e-4
8 1209 1699 952 1.1e-4

l ktol1 ktol2 k∗ e∗η
5 32 37 15 7.5e-4
6 73 84 36 8.3e-5
7 193 234 105 4.4e-5
8 534 684 0345 4.8e-5

l ktol1 ktol2 k∗ e∗η
5 26 28 11 4.3e-3
6 43 56 21 2.5e-3
7 87 110 41 4.1e-4
8 173 218 112 2.5e-4
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Figure 4.7: Errors vs iteration number for TFQMR with GMG (top) and AMG
(bottom) preconditioning on a uniform (left) and stretched (right) grid for l = 8.

Table 4.7: TFQMR iteration counts & errors for GMG (top) & AMG (bottom)
preconditioning on uniform (left) & stretched (right) grids for discrete CD system.

l ktol1 ktol2 k∗ e∗η
5 4 7 2 1.8e-4
6 5 8 2 1.8e-4
7 4 7 2 8.5e-5
8 3 6 2 1.2e-5

l ktol1 ktol2 k∗ e∗η
5 6 9 2 6.8e-4
6 6 10 3 4.9e-4
7 11 18 5 3.7e-4
8 15 29 7 5.6e-4

l ktol1 ktol2 k∗ e∗η
5 9 12 4 4.1e-5
6 7 14 4 4.4e-4
7 9 19 4 1.9e-5
8 8 17 5 4.3e-5

l ktol1 ktol2 k∗ e∗η
5 8 13 3 8.7e-4
6 9 14 5 1.5e-4
7 16 21 7 3.5e-4
8 26 43 12 5.8e-4
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The balanced stopping test stops optimally when the blue curve is below the red curve.

From (4.27) it follows that when the contribution of ‖e(k)‖A to the sum η + ‖e(k)‖A
is insignificant,9 {η(k)} (red curve) converges to η (black line). Indeed this is the

case in all plots of Figures 4.2–4.7. In order to illustrate convergence, iterations have

been continued for nine more steps after optimal stopping in each plot. This also

illustrates optimal stopping at the correct iteration, that is {η(k)} converges to η on

each plot. In Figures 4.2 and 4.3, it is noticed that after a initial burn in period, the

rate of convergence of ‖r(k)‖ is constant and is in fact the asymptotic convergence factor

defined in (4.15). This burn in period for the ‘bad’ diagonal preconditioner is very large

while for the ‘best’ preconditioners GMG and AMG the burn in period is negligible.

Also, in Figures 4.2 and 4.3, Euclidean norm of the residual ‖r(k)‖ is monotonically

decreasing in GMRES while it exhibits irregular behaviour for BICGSTAB(2) and

TFQMR; see Figures 4.4 and 4.6. However, a ‘good’ preconditioner smooths out the

irregular behaviour to a large extent; see Figures 4.5, 4.7 for multigrid preconditioned

BICGSTAB(2) and TFQMR respectively. These observations are consistent with the

discussions in section 4.2.2.
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Figure 4.8: Computed and recurrence residuals 2-norm vs iteration number for GMG
(left) and AMG (right) preconditioned BICGSTAB(2) on a uniform grid for l = 8.

Note that the plots for GMG and AMG preconditioned BICGSTAB(2) on uniform

grid l = 8 in Figure 4.5 indicate that the computed residual (r(k) = b − Fx(k))

9From visual inspection this seems to occur soon after ‖e(k)‖A ≤ η. But in most cases both these
quantities are unknown. So a priori knowledge of optimal stopping iterative step is generally difficult.
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norm ‖r(k)‖ stagnates after a few iterations. An investigation of the 2 norm of the

residual obtained from BICGSTAB(2) recurrences suggests a possible cause for the

stagnation behaviour of the computed residual. With respect to iteration count k,

the evolution of ‖r(k)‖ and 2-norm of the BICGSTAB(2) recurrence residual for both

GMG and AMG preconditioning on the uniform grid l = 8 is plotted in Figure 4.8.

From the plots, observe that the stagnation of ‖r(k)‖ begins when the 2-norm of the

corresponding residual obtained from BICGSTAB(2) recurrence is ‘close’ to machine

epsilon (2.2204e-16 here) and ‖r(k)‖ completely stagnates when the 2-norm of the

corresponding BICGSTAB(2) recurrence residual crosses machine epsilon. When the

2 norm of the corresponding BICGSTAB(2) recurrence residual is ‘near’ and crosses

machine epsilon it implies that the numbers computed in the BICGSTAB(2) iterations

have become quite ‘small’ in size and thus ‖r(k)‖ which is computed using x(k) of

BICGSTAB(2) does not reduce further but stagnates.

The most important observation from the plots for BICGSTAB(2) and TFQMR is

the following. After balanced stopping, the blue curve for algebraic error bound can

jump above the red curve for η(k) (see plot of diagonal preconditioned BICGSTAB(2)

on stretched grid in Figure 4.4); but this is not an issue since the solver has already

stopped optimally. The main aim of these computational results is not to compare

the convergence rates of various suboptimal Krylov solvers but to illustrate that an

optimal balanced black-box stopping test can be devised for such solvers.

4.5 Cheap eigenvalue estimation in stopping test

As explained earlier, the computation of the extremal eigenvalues θ,Θ through the

MATLAB command eigs could be expensive for huge linear systems. Some alternative

approaches are suggested in this section to address this issue.

4.5.1 Solve the corresponding normal equations

One approach could be to solve F TFx = F Tb—a symmetric positive-definite system–

instead of solving the nonsymmetric system (4.9) and measure all the errors in the

natural vector norm F TF . Using preconditioned MINRES and balanced stopping

methodology developed in chapter 2, the eigenvalues of interest can then be estimated

on-the-fly by the corresponding Ritz values. However, the continuous analogue of the
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vector norm F TF might not be a physically meaningful norm for (4.4) and also the

product of a vector with F T might not be cheaply available. Interestingly, notice that

choosing a preconditioner M such that M−1F is a symmetric positive-definite matrix

is another alternative.

4.5.2 Information from spectrum of F

Suppose that F is a normal matrix. Then it admits an orthonormal decomposition

F = V ∗DV ⇐⇒ F ∗ = V ∗D∗V , where V is an orthonormal matrix and D = (djj)
n
j=1

is a diagonal matrix with (complex) eigenvalues of F on its diagonal. Also, by (4.10)

A =
F + F ∗

2ε
;10 note that the matrices under discussion are real valued and hence

symmetric and self-adjoint matrices are the same here.

Now consider the characteristic polynomial of A and F ∗F , and let λ be its arbitrary

eigenvalue

det

(
F + F ∗

2ε
− λF ∗F

)
= det

(
D + D∗

2ε
− λD∗D

)
. (4.36)

Here det(.) denotes determinant and the fact that the determinant of a matrix is

independent under similarity transforms has been used in (4.36). For j = 1, 2, . . . , n,

if djj = pj + iqj ⇐⇒ d∗jj = pj − iqj, where i =
√
−1, pj and qj ∈ R. Also, note that

the matrix
D +D∗

2ε
− λD∗D is diagonal and its determinant is just the product of

its diagonal entries. From the underlying discussion, and the characteristic equation

associated with (4.36)

λ =
pj

ε(p2
j + q2

j )
. (4.37)

Thus, a knowledge of spectrum of F will help to compute the eigenvalues involved

in the stopping test cheaply. However, this analysis is based on the assumption that

F is normal, which is not always true. Also, the spectrum of F might not be easily

available.

4.5.3 Information from parameters of the problem

A more practical approach that is still under research is obtain an estimate on the

eigenvalues using the parameters of the problem, that is, ε, ‖~w‖, and h (mesh step size

10When no stabilization is employed.
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for uniform grids). Note that only an upper bound (estimate) for
√

Θ is required to

use the weaker stopping test (4.34).

From Table 4.8 observe that Θ is essentially four times its value on previous grid.

If such behaviour is known beforehand then one needs to compute Θ using MATLAB

eigs on a coarse grid only. However, such information is rarely available in advance.

The 2 fold increase for
√

Θ on successive grids (keeping ε, ‖~w‖ fixed) suggests that
√

Θ varies as 1/h. Also, computations suggest that
√

Θ is also dependent on ε (keeping

h, ‖~w‖ fixed); see Table 4.8. Based on heuristics, it seems here that for a given h and

ε, 1/2εh will be an upper bound on
√

Θ. This is indeed the case as confirmed by our

computations; see last two columns of each table in Table 4.8.

Table 4.8: Computed Θ from MATLAB eigs and its upper bound estimate for CD
test problem on uniform grids for ε = 1/64 (left) and ε = 1/200 (right).

h Θ
√

Θ 1/2εh

1/16 2.1279e+5 461.2917 512
1/32 8.5019e+5 922.0575 1024
1/64 3.3993e+6 1843.7190 2048
1/128 1.3596e+7 3686.4617 4096

h Θ
√

Θ 1/2εh

1/16 2.0717e+6 1439.3401 1600
1/32 8.2995e+6 2880.8853 3200
1/64 3.3195e+7 5761.5102 6400
1/128 1.3277e+8 11522.5865 12800

Note that the dependence of Θ on ‖~w‖ (keeping ε fixed) in still under investigation.

Thus, it seems prudent to obtain an upper bound for
√

Θ in terms of the maximum

mesh element Peclet number (since it incorporates the contribution of convection too).

Since
1

2εh
≤ 1

h2

h‖~w‖
2ε

, it follows from the definition of mesh element Peclet numbers

in (4.3) that
1

2εh
≤ 1

h2
Prmax
h , where Prmax

h denotes the maximum mesh element Peclet

number. The discussion presented here is based solely on heuristics/computations. A

rigorous mathematical discussion in this direction is still under research.

4.6 Summary

An optimal balanced black-box stopping tests for solving nonsymmetric linear systems

arising from (stochastic) FEM approximation of convection-diffusion equations has

been devised in GMRES, BICGSTAB(`), and TFQMR. In fact these algorithms can

be modified to cater for solving nonsymmetric linear systems arising from other PDEs

as well. The PDE origins of these systems have to be taken into account when devising

an optimal balanced black-box stopping test. A balanced stopping criterion can be
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constructed in the presence of a good preconditioner and a tight a posteriori error

estimation routine.

Some methods have also been suggested to cheaply estimate the constants involved

in the balanced stopping test. The balanced stopping test can result in significant

computational savings and this aspect becomes especially significant when solving

a (stochastic) PDE through collocation, adaptively, or in higher spatial dimensions

using FEM. A balanced stopping test for memory inexpensive Krylov solvers such

as BICGSTAB(`), TFQMR etc., has also been devised. Currently, little convergence

theory exists for such solvers and so the devised balanced stopping test is crucial to

rule out premature stopping of such solvers.



Chapter 5

Balanced iterative stopping for

nonsymmetric systems II

Publication

• The material presented in this chapter along with the work in chapter 4 will soon

be submitted for publication.

• The devised balanced stopping test in GMRES for solving nonsymmetric linear

systems arising (at every step of the nonlinear Picard or Newton iteration) from

FEM approximation of (parametric) Navier–Stokes equations has resulted in the

function NAVIER NEWTON GMRES in the software IFISS [Elman et al., 2014b].

113
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Balanced stopping tests in iterative solvers for solving a single linear system arising

from FEM approximation of a (stochastic) PDE has been devised in previous chapters.

It is observed therein that a balanced stopping test not only avoids premature stopping

of the employed iterative solver but also usually leads to huge computational savings.

This motivates the use of a balanced stopping strategy when iteratively solving huge

linear systems arising at every step from the associated linearized part of the employed

nonlinear iterative solver (such as the Newton or Picard method). In any case, it would

avoid premature stopping and hence provide a ‘good’ approximation to the linearized

part of the nonlinear iterative solver at each (nonlinear) iterative step. Otherwise,

the convergence (if at all) of the nonlinear iterative solver will be slow due to ‘not so

accurate’ linear solves of the associated linearized part.

The deterministic Navier–Stokes equations is the underlying PDE considered here

for illustrating the balanced stopping strategy since a posteriori approximation error

estimation is not yet fully developed for stochastic Navier–Stokes equations. The FEM

solution of Navier–Stokes equations involves solving a nonsymmetric linear system

at each iterative step of the employed nonlinear iterative solver. Thus, an optimal

balanced black-box stopping strategy in GMRES will be used here to solve these

linear systems. This balanced strategy will only be a slight variant of the balanced

stopping strategy developed in GMRES in chapter 4. Note that BICGSTAB(`) and

TFQMR could also be used for solving the nonsymmetric linear systems that arise

here. However, the results are presented only for the GMRES solver.

Stopping criterion for the linearized part of the nonlinear iteration for the solution

of Navier–Stokes equations has been devised by [Arioli and Loghin, 2008]. However,

the stopping test therein is based on a priori error estimators while the stopping test

presented in this chapter is based on a posteriori error estimation strategy.

This chapter consists of 5 sections. The Navier–Stokes PDE, its weak form, and

FEM form is set up in section 5.1. The target nonlinear system is formulated in

section 5.2 and the methods for solving it are discussed therein. The balanced stopping

strategy in GMRES is presented in section 5.3 and its effectiveness is illustrated

through some computational results in section 5.4. Section 5.5 contains a summary of

this chapter.
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5.1 Deterministic Navier–Stokes equations

Navier–Stokes equations form the fundamental model of an incompressible Newtonian

fluid such as air etc. Similar to the Stokes equations, the steady-state Navier–Stokes

solution (~u, p) is defined on a spatial domain D ⊂ Rd, (d = 2, 3), where the vector

valued velocity function ~u(~x) : D → Rd and the scalar valued pressure function

p(~x) : D → R satisfy [Elman et al., 2014a, p. 333 ff.]

− ν∇ · ∇~u(~x) + ~u(~x) · ∇~u(~x) + ∇p(~x) = ~f(~x), ∀ ~x ∈ D, (5.1a)

∇ · ~u(~x) = 0, ∀ ~x ∈ D, (5.1b)

~u(~x) = ~w(~x), ∀ ~x ∈ ∂DD, (5.1c)

ν∇~u(~x) · ~n − ~np(~x) = ~0, ∀ ~x ∈ ∂DN . (5.1d)

The functions ~f , ~w are given and ∂DD, ∂DN are the Dirichlet and Neumann parts

respectively of the spatial boundary ∂D. Kinematic velocity ν > 0 is given and ~n

denotes the outward normal to ∂D. Note that the presence of the convective term

gives the Navier–Stokes equations a nonlinear behaviour. Also, similar to convection-

diffusion equations, the Reynolds number R [Elman et al., 2014a, p. 334] encapsulates

here the relative contribution of convection and diffusion and is defined as

R :=
|~u|L
ν
, (5.2)

where L is a characteristic length scale associated with D and |·| denotes some measure.

5.1.1 Weak formulation

The weak form of (5.1) is to find ~u ∈ H1
E(D) and p ∈ L2(D) such that

ν

∫
D

∇~u : ∇~v +

∫
D

(~u · ∇~u) · ~v −
∫
D

p (∇ · ~v) =

∫
D

~f · ~v, ∀~v ∈ H1
E0

(D), (5.3a)∫
D

q (∇ · ~u) = 0, ∀ q ∈ L2(D), (5.3b)

where the spaces H1
E(D),H1

E0
(D) are defined as in chapter 3 and ∇~u : ∇~v denotes

componentwise dot product. The solution of the nonlinear equations (5.3) is obtained

through an iterative process where given (~u(0), p(0)) ∈ H1
E(D)× L2(D), a sequence

{(~u(l+1), p(l+1))}∞l=0 of iterates satisfying (5.3) is constructed such that

~u(l+1) = ~u(l) + δ~u(l), p(l+1) = p(l) + δp(l). (5.4)
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Choosing finite dimensional subspaces Xh
E ⊂ H1

E(D), Xh
E0
⊂ H1

E0
(D), and Mh ⊂

L2(D) leads to the mixed FEM formulation of (5.3).

5.1.2 Mixed FEM formulation

The mixed FEM formulation is to find ~uh ∈ X1
E and ph ∈Mh such that

ν

∫
D

∇~uh : ∇~vh +

∫
D

(~uh · ∇~uh) · ~vh −
∫
D

ph (∇ · ~vh) =

∫
D

~f · ~vh, ∀~vh ∈ Xh
E0
,

(5.5a)∫
D

qh (∇ · ~uh) = 0, ∀ qh ∈Mh.

(5.5b)

The solution of (5.5) and hence (5.3) involves nonlinear iterations that requires solving

a linearized problem at each iterative step. This aspect is discussed in the next section.

5.2 Nonlinear FEM iteration

Starting with an initial guess (~u
(0)
h , p

(0)
h ) ∈ X1

E ×Mh, the finite element analogue of

(5.4) is to construct a sequence {(~u(l+1)
h , p

(l+1)
h )}∞l=0 of iterates satisfying (5.5) such

that [Elman et al., 2014a, pp. 344, 341]

~u
(l+1)
h = ~u

(l)
h + δ~u

(l)
h , p

(l+1)
h = p

(l)
h + δp

(l)
h . (5.6)

Plugging (5.6) in (5.5) gives

D(~u
(l)
h , δ~u

(l)
h , ~vh) + ν

∫
D

∇δ~u(l)
h : ∇~vh −

∫
D

δp
(l)
h (∇ · ~vh) = R(l)(~vh), ∀~vh ∈ Xh

E0
,

(5.7a)∫
D

qh (∇ · ~u(l)
h ) = r(l)(~qh), ∀ qh ∈Mh,

(5.7b)

where

R(l)(~vh) =

∫
D

~f · ~vh −
∫
D

(~u
(l)
h · ∇~u

(l)
h ) · ~vh − ν

∫
D

∇~u(l)
h : ∇~vh +

∫
D

p
(l)
h (∇ · ~vh),

r(l)(~qh) = −
∫
D

qh (∇ · ~u(l)
h ),

D(~u
(l)
h , δ~u

(l)
h , ~vh) =

∫
D

(δ~u
(l)
h ·∇δ~u

(l)
h ) ·~vh +

∫
D

(δ~u
(l)
h ·∇~u

(l)
h ) ·~vh +

∫
D

(~u
(l)
h ·∇δ~u

(l)
h ) ·~vh.
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5.2.1 Newton iteration

Dropping the quadratic term

∫
D

(δ~u
(l)
h ·∇δ~u

(l)
h ) ·~vh of D and substituting in (5.7) leads

to solving a linear problem for the Newton correction (δ~u(l), δp(l)) at the lth iterative

step. That is, ∀ (~vh, qh) ∈ Xh
E0
×Mh, find (δ~u

(l)
h , δp

(l)
h ) ∈ Xh

E0
×Mh such that∫

D

(δ~u
(l)
h · ∇~u

(l)
h ) · ~vh +

∫
D

(~u
(l)
h · ∇δ~u

(l)
h ) · ~vh + ν

∫
D

∇δ~u(l)
h : ∇~vh

−
∫
D

δp
(l)
h (∇ · ~vh) = R(l)(~vh),∫

D

qh (∇ · ~u(l)
h ) = r(l)(~qh).

(5.8)

5.2.2 Picard iteration

Further linearization is achieved by dropping the linear term

∫
D

(δ~u
(l)
h ·∇~u

(l)
h )·~vh in (5.7).

This leads to solving a linear problem for the Picard correction (δ~u(l), δp(l)) at the lth

iterative step. That is, ∀ (~vh, qh) ∈ Xh
E0
×Mh, find (δ~u

(l)
h , δp

(l)
h ) ∈ Xh

E0
×Mh such that∫

D

(~u
(l)
h · ∇δ~u

(l)
h ) · ~vh + ν

∫
D

∇δ~u(l)
h : ∇~vh −

∫
D

δp
(l)
h (∇ · ~vh) = R(l)(~vh),∫

D

qh (∇ · ~u(l)
h ) = r(l)(~qh).

(5.9)

In both cases, the solution (δ~u
(l)
h , δp

(l)
h ) is used to update the next (nonlinear) solution

iterate (~u
(l+1)
h , p

(l+1)
h ) through (5.6).

5.2.3 Matrix formulation

Let { ~φj}nuj=1 be a basis for Xh
E0

. Then any δ~u
(l)
h ∈ Xh

E0
can be expressed as

δ~u
(l)
h =

nu∑
j=1

∆u
(l)
j
~φj, ∆u

(l)
j ∈ R. (5.10)

Also, { ~φj}nuj=1 can be extended (loosely speaking)1 to form a basis for Xh
E, so that any

~u
(l)
h ∈ Xh

E can be expanded as

~u
(l)
h =

nu +n∂∑
j=1

u
(l)
j
~φj, u

(l)
j ∈ R, (5.11)

where the term
∑nu +n∂

j=nu + 1 u
(l)
j
~φj interpolates the boundary data on ∂DD.

1Xh
E is not a vector space unless ~w = 0.
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Similarly, if {ψk}npk=1 be a basis for Mh, then any p
(l)
h , δp

(l)
h ∈Mh has an expression

p
(l)
h =

np∑
k=1

p
(l)
k ψk, δp

(l)
h =

np∑
k=1

∆p
(l)
k ψk, p

(l)
k ,∆p

(l)
k ∈ R. (5.12)

Since ~u
(l)
h , p

(l)
h are known from the previous iterative step, their basis coefficients

in (5.11), and (5.12) are known too.

Using (5.10), (5.11), and (5.12) in (5.8) leads to the following discrete (Newton)

system of linear equations at the lth nonlinear iterative step. νA + N(l) + W(l) BT

B O

  ∆u(l)

∆p(l)

 =

 f (l)

g(l)

 . (5.13)

The matrices A and B were encountered in chapter 3. The symmetric positive-definite

matrix A (vector-Laplacian matrix) is the block diagonal matrix with the usual FEM

stiffness matrix on its diagonals and the matrix B is the divergence matrix. The

matrix N(l) is the vector convection matrix, the scalar version of which was introduced

in chapter 4. Also, W is known as the Newton derivative matrix. Solution vectors

∆u(l) = [∆u
(l)
1 , . . . ,∆u

(l)
nu ]T ∈ Rnu , ∆p(l) = [∆p

(l)
1 , . . . ,∆p

(l)
np ]

T ∈ Rnp and the entries of

A, B, N(l), W(l), f (l), and g(l) are given by [Elman et al., 2014a, p. 348]

A = [aij] ∈ Rnu×nu , aij :=

∫
D

∇~φi : ∇~φj,

B = [bkj] ∈ Rnp×nu , bkj := −
∫
D

ψk (∇ · ~φj),

N(l) = [nij] ∈ Rnu×nu , nij :=

∫
D

(~u
(l)
h · ∇~φj) · ~φi,

W(l) = [wij] ∈ Rnu×nu , wij :=

∫
D

(~φj · ∇~u(l)
h ) · ~φi,

f (l) = [fi] ∈ Rnu ,

fi :=

∫
D

~f · ~φi −
∫
D

(~u
(l)
h · ∇~u

(l)
h ) · ~φi

− ν

∫
D

∇~u(l)
h : ∇~φi +

∫
D

p
(l)
h (∇ · ~φi),

g(l) = [gk] ∈ Rnp , gk :=

∫
D

ψk (∇ · ~u(l)
h ).

(5.14)

Note the dependence of vector convection matrix, Newton derivative matrix, and right-

hand-side vectors on the nonlinear iterative step.

Dropping the Newton derivative matrix in (5.13) results in the linear system arising

from Picard iteration νA + N(l) BT

B O

  ∆u(l)

∆p(l)

 =

 f (l)

g(l)

 . (5.15)
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In any case, the coefficient matrix in (5.13) or (5.15) is nonsymmetric.2 Thus, Krylov

solvers like GMRES, BIGSTAB(`) etc., will be used for solving the associated linear

systems (5.13) or (5.15). In the next section, a balanced stopping criterion is presented

in GMRES for solving (5.13) or (5.15).

5.3 A balanced stopping test

Similar to chapter 3, a natural norm for measuring the errors arising from weak (and

mixed FEM approximation (5.5)) approximation (5.3) is

‖(~u, p)‖E := ‖∇~u‖2 + ‖p‖2, ∀ (~u, p) ∈ H1
E0

(D)× L2(D). (5.16)

The associated vector norm ‖ · ‖E is defined as

‖e‖E :=
√

eTEe =
√

eT1 Ae1 + eT2Qe2, ∀ e = [eT1 , e
T
2 ]T ∈ Rnu +np , (5.17)

where E :=

 A O

O Q

. Here E is a symmetric positive-definite matrix and therefore

‖ · ‖E is a norm on Rnu +np . Also, Q = [qkj], qkj :=

∫
D

ψkψj, ∀ k, j = 1, . . . , np is

the pressure mass matrix defined in chapter 3.

For any (~vh, qh) ∈ Xh
E0
×Mh, ‖ · ‖E is equivalent to ‖ · ‖E in the sense that√

vTAv + qTQq ≤ ‖(~vh, qh)‖E ≤
√

2
√

vTAv + qTQq, (5.18)

where v, q are the coordinates of ~vh, qh with respect to velocity and pressure basis

respectively. The case of ‖ · ‖0,2 norm can be handled in exactly the same manner as

in chapter 3.

5.3.1 Error equation

At the lth nonlinear iteration, in presence of ‘tight’ a posteriori error estimators η(lk),

it follows from the triangle inequality at linear iteration k that

η(lk) ' η(l) + ‖e(lk)‖E, k = 0, 1, 2, . . . . (5.19)

If the norm ‖e(lk)‖E of the iteration error e(lk) is ‘small’, then it follows from (5.19) that

{η(lk)} converges to η(l). Here e(lk) = [(∆u(l))T , (∆p(l))T ]T − [(∆u(lk))T , (∆p(lk))T ]T .

2A stabilization matrix similar to the Stokes equations is employed (for lower order finite elements)
in place of the zero block of the coefficient matrix [Elman et al., 2014a, p. 349].
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So, one would stop optimally when the algebraic error balances the total error, that

is, stop at the first iteration lk∗ such that

‖e(lk∗ )‖E ≤ η(lk∗ ). (5.20)

The a posteriori error estimator η(lk) is equivalent to the total error (approximation

error at the kth iteration) in the sense that

c1 η
(lk) ≤ ‖∇(δ~u(l) − δ~u

(lk)
h )‖2 + ‖δp(l) − δp

(lk)
h ‖2 ≤ C1 η

(lk), with
C1

c1

∼ O(1).

(5.21)

At the lth iterative step ~u
(l)
h , p

(l)
h is known. It follows from (5.6) that δ~u

(l)
h = ~u

(l+1)
h − ~u(l)

h

and δp
(l)
h = p

(l+1)
h − p

(l)
h . This implies that (5.13) or (5.15) essentially solves for

the basis coefficients of (~u
(l+1)
h , p

(l+1)
h ). Thus, essentially one can use the same a

posteriori approximation error estimators to estimate approximation errors a posteriori

for (δ~u
(l)
h , δp

(l)
h ) as those for (~u

(l+1)
h , p

(l+1)
h ).3

Obtaining tractable bounds on the quantity ‖e(lk)‖E is the goal of the next section.

This will lead to a balanced stopping test for linear iteration which is discussed next.

5.3.2 Tractable bounds on algebraic error

Let N
(l)
S denote the coefficient matrix of the (linearized) discrete Navier–Stokes system

in (5.13) or (5.15) at the lth iterative step. The Euclidean norm ‖r(lk)‖ of the iteration

residual r(lk) = [(f (l))T , (g(l))T ]T − NS
(l)[(∆u(lk))T , (∆p(lk))T ]T is readily available and

monotonically decreasing with iteration count k in (preconditioned) GMRES. So,

upper and lower bounds on the usually unobservable quantity, that is, the error

‖e(lk)‖2
E = (r(lk))T (NS

(l))−TE(NS
(l))−1r(lk) are obtained in terms of the surrogate norm

‖r(lk)‖.

Similar to chapter 4, this involves solving for extremal Rayleigh quotient bounds for

(NS
(l))−TENS

(l)−1
. This in turn leads to solving for extremal eigenvalues θ, Θ, which

are the minimum and the maximum eigenvalues respectively of the generalized eigen-

value problem for E and (NS
(l))TNS

(l). Note that E is a symmetric positive-definite

matrix. So, a Cholesky decomposition (theoretically) of the symmetric positive-

definite matrix (NS
(l))TNS

(l) converts the generalized eigenvalue problem for E and

3This is not a rigorous mathematical statement. A proof for this statement is an ongoing research.
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(NS
(l))TNS

(l) into a symmetric positive-definite algebraic eigenvalue problem. Thus, θ

and Θ are both real and greater than zero.

Since θ ≤ (r(lk))T (NS
(l))−TE(NS

(l))−1r(lk)

(r(lk))T r(lk)
≤ Θ , k = 0, 1, 2, . . ., it follows that

√
θ ≤ ‖e(0)‖E

‖r(0)‖
,

‖e(lk)‖E
‖r(lk)‖

≤
√

Θ. (5.22)

Equation (5.22) leads to the following upper bounds on ‖e(k)‖E, that is

‖e(lk)‖E
‖e(0)‖E

≤
√

Θ

θ

‖r(lk)‖
‖r(0)‖

⇐⇒ ‖e(lk)‖E ≤
√

Θ

θ

‖r(lk)‖
‖r(0)‖

‖e(0)‖E ⇐⇒‖e(lk)‖E ≤
Θ√
θ
‖r(lk)‖,

(5.23a)

‖e(lk)‖E ≤
√

Θ ‖r(lk)‖. (5.23b)

5.3.3 Stopping criterion for linearized iteration

In light of (5.23a) and (5.23b), the stopping test (5.20) becomes: stop at the first

iteration lk∗ such that

√
Θ‖r(lk∗ )‖ ≤ η(lk∗ ) ⇐⇒ ‖r(lk∗ )‖ ≤ 1√

Θ
η(lk∗ ). (5.24)

Θ√
θ
‖r(lk∗ )‖ ≤ η(lk∗ ) ⇐⇒ ‖r(lk∗ )‖ ≤

√
θ

Θ
η(lk∗ ). (5.25)

Stopping test (5.24) will be called the stronger stopping test and (5.25) will be known

as the weaker stopping test. Similar to chapter 4, note that the stopping criteria

derived here can be used in iterative solvers for solving preconditioned nonsymmetric

linear systems as well. Also, as in chapter 4, a crucial point to note here is that the

weaker stopping test can be used as long as the a posteriori error estimator provides a

‘tight’ underestimation of the true error. In case of ‘tight’ overestimation, the stronger

stopping test should be employed.

An optimal balanced black-box stopping test can also be devised for nonlinear

iteration (5.6). This is discussed in the next subsection.

5.3.4 Stopping criterion for nonlinear iteration

It follows from (5.6) that

(~u
(l+1)
h − ~u(l)

h , p
(l+1)
h − p(l)

h ) = (δ~u
(l)
h , δp

(l)
h )

⇐⇒ ‖(~u(l+1)
h − ~u(l)

h , p
(l+1)
h − p(l)

h )‖E = ‖(δ~u(l)
h , δp

(l)
h )‖E

⇐⇒ ‖∇(~u
(l+1)
h − ~u(l)

h )‖2 + ‖p(l+1)
h − p(l)

h ‖2 = ‖∇δ~u(l)
h ‖2 + ‖δp(l)

h ‖2.

(5.26)
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Note that

‖∇(~u
(l+1)
h − ~u(l)

h )‖2 = ‖∇(~u
(l+1)
h − ~u)−∇(~u

(l)
h − ~u)‖2,

‖p(l+1)
h − p(l)

h ‖2 = ‖(p(l+1)
h − p)− (p

(l)
h − p)‖2.

(5.27)

Here (~u, p) is the true solution. Since norm of difference is greater than or equal to

the difference of norms, it follows from (5.27) that

‖∇(~u
(l+1)
h − ~u(l)

h )‖2 ≥ ‖∇(~u
(l+1)
h − ~u)‖2 − ‖∇(~u− ~u(l)

h )‖2,

‖p(l+1)
h − p(l)

h ‖2 ≥ ‖(p(l+1)
h − p)‖2 − ‖(p− p(l)

h )‖2.
(5.28)

Plugging (5.28) in (5.26) leads to

‖∇(~u
(l+1)
h − ~u)‖2 + ‖(p(l+1)

h − p)‖2 ≤ (‖∇(~u
(l)
h − ~u)‖2 + ‖p(l)

h − p‖2) + ‖∇δ~u(l)
h ‖2 + ‖δp(l)

h ‖2.

(5.29)

From (5.17) and (5.18) it follows that

‖∇δ~u(l)
h ‖2 + ‖δp(l)

h ‖2 '
√

(∆u(l))TA∆u(l) + (∆p(l))TQ∆p(l). (5.30)

In presence of ‘tight’ a posteriori error estimator η
(l)
sol, which is equivalent to the

approximation error at the lth nonlinear iteration in the sense that

c1 η
(l)
sol ≤ ‖∇(~u

(l)
h − ~u)‖2 + ‖p(l)

h − p‖2 ≤ C1 η
(l)
sol, with

C1

c1

∼ O(1), (5.31)

using (5.30) and (5.31) in (5.29) leads to

η
(l+1)
sol ' η

(l)
sol +

√
(∆u(l))TA∆u(l) + (∆p(l))TQ∆p(l). (5.32)

Using the balanced stopping criterion (5.24) or (5.25) for linear iteration, (∆u(l),∆p(l))

is replaced by (∆u(lk∗ ),∆p(lk∗ ))4 in (5.32) which becomes

η
(l+1)
sol ' η

(l)
sol +

√
(∆u(lk∗ ))TA∆u(lk∗ ) + (∆p(lk∗ ))TQ∆p(lk∗ ). (5.33)

Note that {η(l)
sol} ultimately converges to true a posteriori approximation error estimate

ηsol. So ∀ l ≥ l̂ (say), η
(l)
sol are η

(l+1)
sol are essentially the same. Using this idea, one can

optimally stop the nonlinear iteration when the contribution from linearized part (that

is
√

(∆u(lk∗ ))TA∆u(lk∗ ) + (∆p(lk∗ ))TQ∆p(lk∗ )) in (5.33) is insignificant. Thus, stop the

nonlinear iteration at l∗ which is the smallest value of (l + 1) such that√
(∆u(l∗

k∗ ))TA∆u(l∗
k∗ ) + (∆p(l∗

k∗ ))TQ∆p(l∗
k∗ ) ≤ η

(l∗+1)
sol . (5.34)

4This k∗ will in general be different for different l.
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The resulting algorithm NAVIER NEWTON GMRES is presented in Figure 5.1. Note that

the coefficient matrix N
(l)
S of (5.13) is never assembled for GMRES Navier balanced.

Instead intelligent matrix-vector products are carried out using the structure of N
(l)
S

(see the coefficient matrix structure in (5.13)). The same is true for any choice of

a preconditioner M
(l)
S . Also, a random initial guess can be used for each call of

GMRES Navier balanced. Note that in practice, the a posteriori error estimate η
(l+1)
sol

should be computed (and hence the stopping test (5.34) be tested) periodically. The

algorithm in Figure 5.1 can easily be modified to cater to this situation. The same

holds true for the (linearized) balanced stopping inside GMRES Navier balanced.

Algorithm: NAVIER NEWTON GMRES

given functions GMRES Navier balanced, matvecA, matvecQ, Navier error est

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
solve the corresponding Stokes problem to obtain starting guess: (~u

(0)
h , p

(0)
h )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
for l = 0, 1, 2, . . . until convergence do

Inner iteration (GMRES solver)
% GMRES Navier balanced: solves (5.13) using preconditioned GMRES with

balanced stopping (5.24) or (5.25)

% Coefficient matrix NS
(l), right-hand-side [f (l)T ,g(l)T ]T , preconditioner MS

(l)

compute the vector of basis coefficients for δ~u
(l)
h and p

(l)
h :

[∆u(l)T ,∆p(l)T ]T = GMRES Navier balanced(NS
(l), [f (l)T ,g(l)T ]T , MS

(l))

Outer iteration (Nonlinear solver)

update solution: ~u
(l+1)
h = ~u

(l)
h + δ~u

(l)
h , p

(l+1)
h = p

(l)
h + δp

(l)
h

% Navier error est computes the a posteriori error estimate
compute a posteriori error estimate: η

(l+1)
sol = Navier error est (~u

(l+1)
h , p

(l+1)
h )

% matvecA(·), matvecQ(·) compute the action of A and Q on a vector respectively.
stopping test:
if
√

(∆u(l))TmatvecA(∆u(l)) + (∆p(l))TmatvecQ(∆p(l)) ≤ η
(l+1)
sol , convergence

enddo

Figure 5.1: The NAVIER NEWTON GMRES algorithm expressed in pseudo-code.
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5.3.5 A posteriori error estimation

Similar to the Stokes equations in chapter 3, computation of a posteriori error estimates

for the Navier–Stokes mixed FEM formulation entails solving local Poisson problems

for each component of velocity [Elman et al., 2014a, p. 352 ff.]. In fact it has been

stated in [Elman et al., 2014a, proposition 8.9, p. 354] that a posteriori error estimators

for stabilized Q1-P0 rectangular finite elements are reliable in the sense that the global

upper bound on the approximation error does not depend on the parameters of the

continuous problem. Thus, results presented in the section 5.4 are based on stabilized

Q1-P0 rectangular finite elements.

5.3.6 Computational logistics

At the lth nonlinear iteration, ‖r(lk)‖ is readily available as a by-product of GMRES

iteration. The eigenvalues Θ and θ involved in the (linear) stopping test (5.25)

are computed using MATLAB eigs. The a posteriori error estimators should be

computed periodically for both the linear and nonlinear stopping test to minimize

overall algorithmic cost. Also, a cheap but an additional cost arises in computing the

matrix-vector products in the left-hand-side of the nonlinear balanced stopping test.

5.4 Computational results

Results of some computational experiments in IFISS are presented in this section as

a proof-of-concept. The test problem for this purpose is the flow over a backward-

facing step problem; see [Gresho et al., 1993], [Powell and Silvester, 2012]. In order to

illustrate the robustness of the linear and the nonlinear balanced stopping test (5.25)

and (5.34) respectively, results are presented here for various values of viscosity (hence

varying Reynolds number) and grid levels (g) for Q1-P0 rectangular finite elements on

2g × (2g × 3) grids.

Since no stabilization for the convection term is inbuilt in IFISS for the Navier–

Stokes equations, the a posteriori error estimator is expected to overestimate the true

error. Thus, employing the weaker stopping test (5.24) for linear iterations might

lead to premature stopping. Hence, the stronger stopping test (5.25) will be used
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here. The modified pressure convection-diffusion preconditioner [Elman et al., 2014a,

chapter 9] is employed as a preconditioner for all cases in the GMRES solver for solving

the linear(ized) system arising at each nonlinear iterative step. Moreover, results

are presented here only for the Newton iterations. However, the balanced stopping

criterion for both linear and nonlinear iterations is applicable to Picard iterations as

well. Also, note that the initial guess for the Newton iteration in each case is the

(inbuilt) solution of the corresponding Stokes problem.

At each grid level and for various values of viscosity, a reference ‘true’ solution

is computed. This is done by solving the test problem using Newton iteration to a

tight nonlinear relative residual tolerance of 1e-12. From this true solution, ‘true’ a

posteriori error estimate ηsol is computed. Also, let the difference between the true a

posteriori error estimate and the computed a posteriori error estimate at the nonlinear

iteration l be denoted by e
(lk∗ )
ηsol := |η(lk∗ )

sol − ηsol|.

Similarly, on each grid level, a ‘true’ MATLAB backslash solution is computed for

linear system arising at each step of the nonlinear iteration. From this true solution,

‘true’ a posteriori error estimate η(l) is also computed. Also, let the difference between

the true a posteriori error estimate and the computed a posteriori error estimate5 at

linear stopping iteration k be denoted by e
(lk∗ )
η := |η(lk∗ )−η(l)|. Each linear system was

also solved using GMRES to a (iteration) relative residual tolerance of 1e-6 and 1e-9

for a comparison with balanced stopping GMRES solver. The same preconditioner and

the same initial random vector is used in all these solvers for solving any particular

linear system. Also, let lktol1
, lktol2

denote the number of iterations needed to satisfy

GMRES relative residual tolerance of 1e-6 and 1e-9 respectively.

The Navier–Stokes PDE (5.1) is defined on a L-shaped (flow over a backward-

facing step) domain D = (−1, 5)× (−1, 1) \ (−1, 0]× (−1, 0]. Poiseuille flow profile is

imposed on the inflow boundary (x1 = −1, 0 ≤ x2 ≤ 1), ~x = (x1, x2) ∈ D and zero

velocity condition is imposed on the walls. Neumann boundary conditions are defined

everywhere on the outflow boundary (x1 = 5,−1 < x2 < 1). The forcing term ~f is

zero. This problem can be generated in IFISS by choosing example 2 when running the

driver navier testproblem [Elman et al., 2014a, p. 335]. The balanced stopping test

in GMRES is implemented in IFISS function gmres r while the nonlinear balanced

5This a posteriori approximation error estimate is for the linearized part (δ~u
(lk)
k , δp

(lk)
h ).
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stopping test is incorporated in the function solve step navier in IFISS.

Table 5.1: Navier–Stokes test problem solved using Newton iteration on a 16×64 grid
with ν = 1/50.

l lktol1
lktol2

lk∗ e
(lk∗ )
η e

(lk∗ )
ηsol Θ θ

1 35 45 26 4.0e-04 1.5e-01 1.6e+04 2.4e-02
2 47 59 38 3.0e-06 1.5e-04 2.7e+04 2.4e-02

Table 5.2: Navier–Stokes test problem solved using Newton iteration on a 32×96 grid
with ν = 1/50.

l lktol1
lktol2

lk∗ e
(lk∗ )
η e

(lk∗ )
ηsol Θ θ

1 31 42 23 2.0e-04 7.2e-02 6.4e+04 8.5e-02
2 41 52 34 2.3e-07 4.5e-04 1.0e+05 8.5e-02
3 45 56 37 5.0e-09 9.1e-07 1.0e+05 8.5e-02

Table 5.3: Navier–Stokes test problem solved using Newton iteration on a 64 × 192
grid with ν = 1/50.

l lktol1
lktol2

lk∗ e
(lk∗ )
η e

(lk∗ )
ηsol Θ θ

1 29 39 23 3.6e-05 3.1e-02 2.6e+05 2.2e-01
2 38 48 33 7.1e-08 3.3e-04 4.4e+05 2.2e-01
3 42 53 36 1.3e-09 5.2e-07 4.0e+05 2.1e-01

From Tables 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6, a comparison of lktol1
, lktol2

numbers

with the corresponding lk∗ values shows that employing the linear stopping test (5.25)

leads to savings in iteration counts. In each table at the lth Newton iteration and at

the linear balanced stopping iteration lk∗ , e
(lk∗ )
η columns show that the preconditioned

GMRES solution of the linearized part has converged with some accuracy to the true

linearized solution. In other words, {η(lk)} has converged with some accuracy to true

η(l). At the nonlinear balanced stopping iteration l∗, e
(lk∗ )
ηsol columns exhibit convergence

with some accuracy of {η(lk∗ )
sol } to the true a posteriori approximation error estimate

ηsol.

The eigenvalues Θ, θ used in the linear stopping criterion are also tabulated in

these tables. These numbers exhibit some structure thereby suggesting that there

might be an expression for these quantities in terms of the parameters of the problem.

However, this aspect has not been investigated in this thesis.
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Table 5.4: Navier–Stokes test problem solved using Newton iteration on a 16×64 grid
with ν = 1/100.

l lktol1
lktol2

lk∗ e
(lk∗ )
η e

(lk∗ )
ηsol Θ θ

1 48 62 40 4.5e-04 1.1e+00 5.5e+04 6.3e-03
2 79 96 73 8.4e-07 3.8e-02 2.6e+05 6.3e-03

Table 5.5: Navier–Stokes test problem solved using Newton iteration on a 32×96 grid
with ν = 1/100.

l lktol1
lktol2

lk∗ e
(lk∗ )
η e

(lk∗ )
ηsol Θ θ

1 40 54 33 8.3e-05 5.8e-01 2.2e+05 2.4e-02
2 62 77 59 3.8e-08 1.4e-02 1.2e+06 2.4e-02
3 66 81 62 4.0e-08 5.6e-04 7.4e+05 2.4e-02

Table 5.6: Navier–Stokes test problem solved using Newton iteration on a 64 × 192
grid with ν = 1/100.

l lktol1
lktol2

lk∗ e
(lk∗ )
η e

(lk∗ )
ηsol Θ θ

1 35 46 46 2.0e-05 2.9e-01 9.0e+05 8.5e-02
2 53 66 52 2.0e-08 7.1e-03 4.9e+06 8.5e-02
3 55 68 52 1.8e-08 2.2e-04 3.0e+06 8.5e-02
4 59 73 55 8.2e-10 8.4e-07 2.6e+06 8.5e-02

Evolution of errors with iteration number are plotted in Figure 5.2 at 4th Newton

iteration on 64× 192 grid for ν = 1/100. On the plot for linear iteration observe that

at the balanced linear stopping iteration lk∗ , the red curve for η(lk) converges with some

accuracy to the black line for η(l). This convergence is further illustrated by continuing

for 9 more iterations after balanced linear stopping. Note that {η(lk)} converges to η(l)

when ‖e(lk)‖E (cyan) curve goes below the (black) line for η(l). However, as mentioned

in previous chapters, iteration error e(lk) is rarely known a priori. Also, on the plot

for Newton iteration (right) notice that at the balanced stopping nonlinear iteration

number four, the curve for η
(lk∗ )
sol converges with some accuracy to the black line for

the true a posteriori approximation error estimate ηsol. This convergence is further

illustrated by continuing for 2 more iterations after balanced nonlinear stopping.
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Figure 5.2: Errors vs iteration number for Navier–Stokes test problem on a 64 × 192
grid with ν = 1/100 for Newton iteration (right) and linear (GMRES) iteration (left)
at l = 4th Newton iteration.

5.5 Summary

An optimal balanced black-box stopping criterion for linear (GMRES, BICGSTAB(`),

TFQMR etc.) iterations associated with Newton or Picard nonlinear iterations have

been devised for solving Navier–Stokes equations. Moreover, an optimal balanced

black-box stopping criterion for nonlinear (Newton or Picard) iterations has also been

formulated; see [Syamsudhuha and Silvester, 2003] for alternative nonlinear iteration

stopping strategies. Using such balanced stopping tests may not only save unnecessary

computational work of the employed linear and nonlinear iterative solver but also rules

out premature stopping.

The balanced stopping strategies presented here are quite generic. They can be

suitably modified to cater for varied linear and nonlinear iterative procedures arising

from FEM approximation of a (stochastic) PDE provided cheap and tight a posteriori

approximation error estimators are available along with cheap tractable bounds on the

relevant unobservable errors.



Chapter 6

Open questions

Every solution strategy in science gives rise to new queries. Following are some of the

questions arising from the research material presented in this thesis.

• How to obtain a cheap and tight a priori or posteriori FEM approximation error

estimate for the various PDEs considered in this thesis?

Note that computing the a posteriori error estimates is the major additional cost in

employing an iterative method with an optimal balanced black-box stopping strategy.

Thus, a procedure for obtaining a cheap and tight a priori or a posteriori approximation

error estimates will help to reduce this algorithmic cost.

• How to obtain a cheap and tight posteriori FEM approximation error estimate for

stochastic convection-diffusion equations, stochastic Stokes equations, stochastic

Navier–Stokes equations?

Using an iterative solver with an optimal balanced black-box stopping strategy is

advantageous in practice when it is applied for solving discrete systems arising from

stochastic PDEs.

• How to obtain cheaply the eigenvalues involved in the balanced stopping tests

in iterative solvers for solving nonsymmetric linear systems?

By investigating the relationship between the eigenvalues of the discrete problem and

the eigenvalues of the continuous problem it must be possible in some way to obtain

an estimate of the eigenvalues of the discrete problem cheaply.

• Is it possible to extend the idea of error balancing and tractable bounds for

the unobservable errors to obtain an optimal balanced black-box strategy for

129
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multilevel Monte-Carlo methods, optimization problems involving solution of a

linear system at each iterative step (PDE constrained optimization) etc.?
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J. Liesen and Z. Strakoš. Krylov Subspace Methods, Principles and Analysis. Oxford

University Press, UK, 2012. First Edition.

G. J. Lord, C. E. Powell, and T. Shardlow. An Introduction to Computational

Stochastic PDEs. Cambridge University Press, UK, 2014. First Edition.

K. Mardal and R. Winther. Preconditioning discretizations of systems of partial

differential equations. Numerical Linear Algebra with Applications, 18(1):1–40,

2011. https://doi.org/10.1002/nla.716.

G. Meurant. Necessary and sufficient conditions for GMRES complete and partial

stagnation. Applied Numerical Mathematics, 75:100–107, 2014.

https://doi.org/10.1016/j.apnum.2013.02.008.

J. T. Oden and L. F. Demkowicz. Applied Functional Analysis. CRC Press, USA,

1996. First Edition.

C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear

equations. SIAM J. Numer. Anal., 12(4):617–629, 1975.

https://doi.org/10.1137/0712047.

B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, USA, 1998.

B. N. Parlett, D. R. Taylor, and Z. A. Liu. A look-ahead Lanczos algorithm for

unsymmetric matrices. Mathematics of Computation, 44(169):105–124, 1985.

https://doi.org/10.1090/S0025-5718-1985-0771034-2.

D. A. Di Pietro, E. Flauraud, M. Vohraĺık, and S. Yousef. A posteriori error
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Appendix A

Some definitions and theorems

A.1 Linear algebra concepts

Definition A.1.1 (Vector space). [Horn and Johnson, 2013, p. 1–2]

Let V be a nonempty set and F be a field. Then V is called a vector space over

F—denoted by V (F )—if ∀x, y, z ∈ V and ∀ a, b ∈ F , the following conditions are

satisfied.

(i) x+ y ∈ V .

(ii) x+ y = y + x.

(iii) (x+ y) + z = x+ (y + z).

(iv) x+ 0 = x. The element 0 is called the additive identity.

(v) x + (−x) = 0. That is for every element x ∈ V, ∃ an element −x ∈ V known as

the inverse of x.

(vi) a� x ∈ F .

(vii) (a+ b)� x = a� x+ b� x.

(viii) a� (x+ y) = a� x+ a� y.

(ix) (a� b)� x = a� (b� x).

(x) e� x = x. The element e ∈ F is known as the multiplicative identity.

The binary operation + : V × V → V is known as vector addition and the binary

operation � : F × V → V is known as scalar multiplication and is usually denoted
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multiplicatively, that is, a � b by ab. Common examples of vector spaces are Rd(R)

and Cd(R), d = 1, 2, 3, . . . .

Definition A.1.2 (Vector subspace). [Horn and Johnson, 2013, p. 2]

A subset W of vector space V (F ) is called a (vector) subspace of V if W itself is a

vector space over F with respect to the vector addition and scalar multiplication as

defined on V .

Definition A.1.3 (Basis and dimension). [Horn and Johnson, 2013, p. 2–3]

A linearly independent set B ⊂ V is called a basis for vector space V (F ) if it also spans

V , that is, L(B) = V . Here L(B) is the set of all possible finite linear combinations

of the elements of B.

The number of elements in any basis of V (F ) is known as the dimension of vector

space V (F ). If dimension is finite then V (F ) is called finite dimensional else V (F ) is

called infinite dimensional.

Definition A.1.4 (Inner-product). [Horn and Johnson, 2013, p. 315]

Let V (F ) be a vector space. A function 〈·, ·〉 : V × V → F is an inner-product if

∀x, y, z ∈ V and ∀ c ∈ F , the following properties are satisfied.

(i) 〈x, x〉 ≥ 0,

(ii) 〈x, x〉 = 0 iff x = 0,

(iii) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉,

(iv) 〈cx, y〉 = c〈x, y〉,

(v) 〈x, y〉 = 〈y, x〉.

Note that 〈·, ·〉 represents the complex conjugate of 〈·, ·〉.

Inner-products essentially define a rule for multiplication of elements of V with

each other which is not provided by the axioms of vector space.

An Inner-product induces a norm ‖ · ‖ on V (F ), that is, ‖x‖ :=
√
〈x, x〉, for any

x ∈ V . Thus, inner-product spaces are always endowed with at least one candidate

for measuring size of vectors. Also, the space (V, ‖ · ‖) is the associated normed linear

space.
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Definition A.1.5 (Orthogonality). [Horn and Johnson, 2013, p. 15]

Any two vectors x, y ∈ V (F ) are called orthogonal with respect to an inner product

〈·, ·〉 defined on V iff 〈x, y〉 = 0. In addition if 〈x, x〉 = 1 and 〈y, y〉 = 1, then the

vectors x, y are called orthonormal.

Note that there exists a basis of orthonormal vectors for every finite dimensional

vector space. This concept is very useful in practice where the entries of FEM matrices

are usually the inner products of orthonormal basis functions of the underlying FEM

trial and test spaces. This results in sparse FEM matrices whose structure can be

utilized efficiently by iterative solvers.

Definition A.1.6 (Hilbert space). [Brenner and Scott, 2008, p. 51]

Let (V, 〈·, ·〉) be an inner-product space. If the associated normed linear space (V, ‖ ·‖)

is complete, that is, every Cauchy sequence in V converges with respect to the norm

‖ · ‖ in V , then (V, 〈·, ·〉) is called a Hilbert space.

Definition A.1.7 (Boundedness and coerciveness). [Brenner and Scott, 2008, p. 57]

A bilinear form a(·, ·) on a normed vector space (V, ‖ · ‖V ) is said to be bounded or

continuous iff ∃ C < ∞ such that |a(u, v)| ≤ C‖u‖V ‖v‖V ,∀u, v ∈ V and coercive on

V iff ∃α > 0 such that a(v, v) ≥ α‖v‖2
V ,∀ v ∈ V .

A.2 Some special types of matrices

Let Mm,n (m,n are positive integers) denote the space of all m×n matrices with entries

over the field of complex numbers C. Then with respect to matrix addition as vector

addition and scalar matrix multiplication as scalar multiplication, Mm,n(C) is a vector

space.

Definition A.2.1 (Symmetric matrix). [Horn and Johnson, 2013, p. 7]

A matrix H ∈ Mn,n(C) is symmetric iff H = HT . Here HT denotes the transpose of

matrix H.

Definition A.2.2 (Nonsymmetric matrix). A matrix H ∈ Mn,n(C) is nonsymmetric

iff H is not symmetric.

Definition A.2.3 (Skew-symmetric matrix). [Horn and Johnson, 2013, p. 7]

A matrix H ∈Mn,n(C) is skew-symmetric iff H = −HT .
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Definition A.2.4 (Hermitian matrix). [Horn and Johnson, 2013, p. 7]

A matrix H ∈ Mn,n(C) is Hermitian iff H = H∗. Here H∗ denotes the conjugate

transpose of matrix H.

Note that for matrices with real entries, the Hermitian property is the same as the

symmetric property.

Definition A.2.5 (Positive-(semi)definite matrix). [Horn and Johnson, 2013, p. 429]

A Hermitian matrix H ∈Mn,n(C) is positive-semidefinite iff x∗Hx ≥ 0, ∀x 6= 0 ∈ Cn.

A Hermitian matrix H ∈Mn,n(C) is positive-definite iff x∗Hx > 0, ∀x 6= 0 ∈ Cn.

Definition A.2.6 (Negative-(semi)definite matrix). [Horn and Johnson, 2013, p. 429]

A Hermitian matrix H ∈Mn,n(C) is negative-semidefinite iff x∗Hx ≤ 0, ∀x 6= 0 ∈ Cn.

A Hermitian matrix H ∈Mn,n(C) is negative-definite iff x∗Hx < 0, ∀x 6= 0 ∈ Cn.

Definition A.2.7 (Indefinite matrix). [Horn and Johnson, 2013, p. 429]

A matrix H ∈Mn,n(C) is indefinite iff H is neither positive-semidefinite nor negative-

semidefinite.

Definition A.2.8 (Eigenvalues and eigenvectors). [Horn and Johnson, 2013, p. 44]

Let H ∈ Mn,n(C). A scalar λ ∈ C and a nonzero vector x ∈ Cn is called a eigenvalue

and eigenvector respectively of H if it satisfies Hx = λx.

Definition A.2.9 (Similarity). [Horn and Johnson, 2013, p. 58]

Two matrices H1, H2 ∈ Mn,n(C) are similar iff ∃ a nonsingular matrix S ∈ Mn,n(C)

such that H2 = S−1H1S.

Definition A.2.10 (Congruency). [Horn and Johnson, 2013, p. 281]

Two matrices H1, H2 ∈Mn,n(C) are congruent iff ∃ a nonsingular matrix S ∈Mn,n(C)

such that H2 = S∗H1S.

A.3 Relevant theorems

Theorem A.3.1 (Cholesky factorization). Let A ∈ Mn,n be Hermitian. Then A is

positive-definite iff ∃ a (unique) lower triangular matrix with positive diagonal entries

such that A = LL∗ [Horn and Johnson, 2013, corollary 7.2.9, p. 441].
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Theorem A.3.2 (Eigenvalues of similar matrices). Similar matrices have same

eigenvalues [Horn and Johnson, 2013, corollary 1.3.4, p. 58].

Theorem A.3.3 (Eigenvalues of Hermitian (symmetric) matrix). All eigenvalues of

a Hermitian (symmetric) matrix are real [Horn and Johnson, 2013, theorem 2.5.6, p.

135].

Theorem A.3.4 (Eigenvalues of Hermitian (symmetric) positive-definite matrix). All

eigenvalues of a Hermitian (symmetric) positive-definite matrix are real and greater

than zero [Horn and Johnson, 2013, theorem 7.2.1, p. 438].

Theorem A.3.5 (Sylvester’s law of inertia). Hermitian matrices H1, H2 ∈ Mn,n(C)

are congruent iff they have the same number of positive eigenvalues and the same

number of negative eigenvalues [Horn and Johnson, 2013, theorem 4.5.8, p. 282].

Theorem A.3.6 (Lax–Milgram). For a continuous, coercive bilinear form a(·, ·) and

a continuous linear functional F ∈ V ′ defined on a Hilbert space (V, 〈·, ·〉), ∃ a unique

u ∈ V such that a(u, v) = F (v), ∀ v ∈ V [Brenner and Scott, 2008, theorem 2.7.7, p.

62]. Here V ′ denotes the dual space of V .



Appendix B

Sample MATLAB runs of test

problems in thesis

Some sample runs of the test problems presented in this thesis are given here. Note

that all these sample runs have been formatted for better understanding. So, they

differ in display from their actual runs in IFISS and S-IFISS toolbox in MATLAB.

B.1 Stochastic diffusion test problem 1

This sample run is produced using S-IFISS toolbox version 1.01 in MATLAB since the

results in chapter 2 of this thesis correspond to computations carried out in this version;

the current version of this toolbox used in MATLAB is 1.03. Also, SPD MINRES is not

yet incorporated in S-IFISS to be called internally from the script stoch square diff

which sets up the FEM and linear algebra logistics. In fact SPD MINRES is currently

called externally, that is, from the MATLAB prompt. However, the sample run that is

presented below has been formatted to reflect the final version where SPD MINRES will

be called internally. Also, in an actual implementation, a posteriori error estimates

will be computed periodically, unlike here, where it is computed at each iteration. So,

the time taken by the MINRES solver for computing the final solution is not included

here. The data generated by the run here corresponds to the diffusion test problem 1 in

chapter 2 with mean-based MINRES preconditioning on a uniform grid with h = 1/32,

p = 3, m = 5, and σ = 0.5.

>> stoch_diff_testproblem

specification of reference stochastic diffusion problem.

choose specific example

1 L-shaped domain, synthetic random coefficient, constant source

2 Square domain, analytic KL expansion, non-constant source

3 channel domain, analytic KL expansion, trivial mean solution
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4 channel domain, analytic KL expansion, nontrivial mean solution

5 Square domain, Eigel synthetic random coefficient, constant source

6 Square domain, Powell synthetic random coefficient, constant source

: 2

1 file(s) copied.

1 file(s) copied.

1 file(s) copied.

1 file(s) copied.

WARNING: you must select the default [-1,1] x [-1,1] square domain!

Grid generation for unit square domain.

grid parameter: 3 for underlying 8x8 grid (default is 16x16) : 6

uniform/stretched grid (1/2) (default is uniform) : 1

[0,1] or [-1,1] square (enter 1/2) (default is [-1,1]) : 2

Number of random variables? (default is 5) : 5

Total polynomial degree? (default is 3) : 3

setting up KL expansion data

standard deviation? (default 0.3) : 0.5

correlation length in x-direction? (default 2.0) : 2

correlation length in y-direction? (default 2.0) : 2

Q1/Q2 approximation 1/2? (default Q1) : 1

save results for reference 1/0 (yes/no)? (default no) : 0

estimate error a posteriori 1/0 (yes/no)? (default yes) : 1

MINRES solution of the linear system ...

setting up stochastic Q1 diffusion matrices... done

Call to SPD_MINRES with error control...

discrete parametric diffusion system...

mean-based preconditioner is used

Bingo! optimal convergence in 17 iterations

final estimated error is 3.3338e-02

k Estimated-Error Algebraic-Bound Residual-Error

1 9.5210e+00 5.6148e+01 6.2904e+01

2 4.3453e+00 2.2306e+01 2.1291e+01

3 2.6261e+00 1.2357e+01 1.0044e+01

4 1.6513e+00 6.4619e+00 4.4699e+00

5 1.2752e+00 4.5724e+00 2.8116e+00

6 8.5125e-01 2.8425e+00 1.4687e+00

7 6.8418e-01 2.4265e+00 1.1109e+00

8 4.2364e-01 1.8590e+00 7.2594e-01

9 2.6503e-01 1.3266e+00 4.8434e-01

10 1.3325e-01 6.7028e-01 2.3518e-01

11 1.0274e-01 4.7473e-01 1.6424e-01

12 6.8965e-02 2.8906e-01 9.8153e-02

13 5.5823e-02 2.2256e-01 7.4401e-02

14 3.9996e-02 1.3254e-01 4.3340e-02

15 3.5562e-02 8.1927e-02 2.6521e-02
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16 3.3766e-02 4.3677e-02 1.4037e-02

17 3.3338e-02 3.2408e-02 1.0370e-02 Stop here!

k XQ-Error YQ-Error YP-Error

1 4.9115e+00 2.4532e+00 5.5107e+00

2 2.4767e+00 1.2384e+00 1.8833e+00

3 1.5622e+00 7.8086e-01 8.9226e-01

4 1.0134e+00 5.0633e-01 4.0025e-01

5 7.9041e-01 3.9496e-01 2.5401e-01

6 5.3163e-01 2.6587e-01 1.3414e-01

7 4.2783e-01 2.1405e-01 1.0199e-01

8 2.6462e-01 1.3235e-01 6.6278e-02

9 1.6536e-01 8.2476e-02 4.4115e-02

10 8.3592e-02 4.0671e-02 2.1725e-02

11 6.4905e-02 3.0726e-02 1.5571e-02

12 4.4246e-02 1.9262e-02 9.9368e-03

13 3.6313e-02 1.4399e-02 8.0253e-03

14 2.6940e-02 7.5688e-03 5.7895e-03

15 2.4430e-02 4.8565e-03 4.8876e-03

16 2.3434e-02 3.3194e-03 4.4548e-03

17 2.3193e-02 2.8646e-03 4.3790e-03

Eigenvalue convergence

k Smallest Largest

1 1.2551 1.2551

2 0.9111 1.5715

3 0.6607 1.7117

4 0.4785 1.8093

5 0.3781 1.8447

6 0.2670 1.8728

7 0.2096 1.8797

8 0.1525 1.8837

9 0.1333 1.8863

10 0.1231 1.8909

11 0.1197 1.8937

12 0.1153 1.8968

13 0.1117 1.8980

14 0.1069 1.8993

15 0.1048 1.9005

16 0.1033 1.9029

17 0.1024 1.9044

Linear solver statistics:

initial guess is random ndof is 236600

Stochastic parameters and computed statistics:

5 active random variables | polynomial degree is 3

standard deviation = 5.0000e-01

correlation x-length = 2 correlation y-length = 2

maximum mean value = 7.979e-02 maximum variance value = 1.741e-03



Appendix B 149

B.2 Stokes equations test problem 1

This sample run is produced using IFISS toolbox version 3.3 in MATLAB since the

results in chapter 3 of this thesis correspond to computations carried out in this version;

the current version of this toolbox used in MATLAB is 3.5. Also, SADDLE MINRES is not

yet incorporated in IFISS to be called internally from the script stokes square diff

which sets up the FEM and linear algebra logistics. In fact SADDLE MINRES is called

externally presently, that is, from the MATLAB prompt. However, the sample run

presented below has been formatted to reflect the final version where SADDLE MINRES

will be called internally. Also, in an actual implementation, a posteriori error estimates

will be computed periodically, unlike here, where it is computed at each iteration. So,

the time taken by the MINRES solver for computing the final solution is not included

here. The data generated by the run here corresponds to the Stokes test problem 1 in

chapter 3 with block AMG preconditioning on a uniform grid with h = 1/128.

>> stokes_testproblem

specification of reference Stokes problem.

choose specific example (default is cavity)

1 Channel domain

2 Flow over a backward facing step

3 Lid driven cavity

4 Colliding flow

: 4

1 file(s) copied.

1 file(s) copied.

Grid generation for cavity domain.

grid parameter: 3 for underlying 8x8 grid (default is 16x16) : 8

uniform/stretched grid (1/2) (default is uniform) : 1

Q1-Q1/Q1-P0/Q2-Q1/Q2-P1: 1/2/3/4? (default Q1-P0) : 2

setting up Q1-P0 matrices... done

system matrices saved in square_stokes_nobc.mat ...

imposing (enclosed flow) boundary conditions ...

stabilization parameter (default is 1/4) : 1/4

Call to SADDLE_MINRES with error control ...

discrete Stokes system ...

iterative solution with preconditioned MINRES

maximum number of iterations? (default 100) : 100

preconditioner:

0 none

1 diagonal

2 ideal block
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3 geometric multigrid block

4 AMG block

default is AMG : 4

AMG preconditioning...

AMG grid coarsening ... 6 grid levels constructed.

setup done.

PDJ/PGS smoother? 1/2 (point damped Jacobi) : 1

point damped Jacobi smoothing ..

Bingo! optimal convergence in 35 iterations

final estimated error is 3.0691e-01

k Estimated-Error Algebraic-Bound Residual-Error

0 1.0227e+02 5.4237e+02

1 8.9877e+01 1.9460e+02

2 9.0299e+01 1.5434e+02 1.9124e+02

3 2.3297e+01 8.8748e+01 5.6919e+01

4 2.0280e+01 8.2246e+01 5.1567e+01

5 1.0618e+01 5.8310e+01 2.7436e+01

6 8.7140e+00 5.4948e+01 2.0689e+01

7 5.4809e+00 3.8570e+01 9.1642e+00

8 4.4629e+00 3.5400e+01 8.1567e+00

9 2.8637e+00 2.6878e+01 5.6753e+00

10 2.4072e+00 2.4293e+01 4.7866e+00

11 2.1757e+00 2.4028e+01 3.9990e+00

12 1.6644e+00 2.9380e+01 3.0711e+00

13 1.5139e+00 3.2123e+01 2.6221e+00

14 9.3009e-01 3.3599e+01 1.6881e+00

15 9.2572e-01 3.3628e+01 1.6805e+00

16 5.4101e-01 2.6909e+01 8.8737e-01

17 5.4323e-01 2.6919e+01 8.8650e-01

18 3.8487e-01 1.8525e+01 5.2757e-01

19 3.8556e-01 1.8494e+01 5.2609e-01

20 3.4542e-01 1.3662e+01 3.6515e-01

21 3.4093e-01 1.2339e+01 3.2301e-01

22 3.2409e-01 8.7885e+00 2.1483e-01

23 3.1907e-01 7.2919e+00 1.7234e-01

24 3.1350e-01 5.8741e+00 1.3431e-01

25 3.1145e-01 4.5582e+00 1.0083e-01

26 3.1059e-01 3.9845e+00 8.6765e-02

27 3.0841e-01 2.4474e+00 5.0832e-02

28 3.0829e-01 2.3764e+00 4.9233e-02

29 3.0755e-01 1.4830e+00 2.9788e-02

30 3.0755e-01 1.4810e+00 2.9740e-02

31 3.0712e-01 8.3231e-01 1.6276e-02

32 3.0717e-01 8.2186e-01 1.6062e-02
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33 3.0697e-01 4.5011e-01 8.6641e-03

34 3.0696e-01 4.2203e-01 8.1141e-03

35 3.0691e-01 2.5398e-01 4.8521e-03 Stop here!

Eigenvalue convergence

k Smallest-Minus Largest-Minus Smallest-Plus Largest-Plus

1

2

3 -9.6579e-01 -1.0061e+00 9.7323e-01 1.4768e+00

4 -1.0341e+00 -9.9244e-01 9.6921e-01 1.4982e+00

5 -1.1299e+00 -8.4547e-01 9.4926e-01 1.5192e+00

6 -1.2194e+00 -7.6061e-01 9.4502e-01 1.5365e+00

7 -1.2624e+00 -6.0745e-01 9.3499e-01 1.5531e+00

8 -1.2697e+00 -5.9969e-01 9.3370e-01 1.5608e+00

9 -1.2748e+00 -5.7508e-01 9.2813e-01 1.5663e+00

10 -1.2812e+00 -5.5677e-01 9.2507e-01 1.5733e+00

11 -1.2850e+00 -5.1233e-01 9.2073e-01 1.5771e+00

12 -1.2902e+00 -4.0669e-01 9.0875e-01 1.5823e+00

13 -1.2925e+00 -3.5971e-01 8.9765e-01 1.5852e+00

14 -1.2955e+00 -2.8289e-01 8.6227e-01 1.5928e+00

15 -1.2971e+00 -2.8235e-01 8.6209e-01 1.5953e+00

16 -1.3001e+00 -2.2968e-01 8.4436e-01 1.5997e+00

17 -1.3010e+00 -2.2963e-01 8.4434e-01 1.6012e+00

18 -1.3023e+00 -2.1368e-01 8.3475e-01 1.6032e+00

19 -1.3032e+00 -2.1362e-01 8.3470e-01 1.6042e+00

20 -1.3040e+00 -2.0714e-01 8.2711e-01 1.6054e+00

21 -1.3048e+00 -2.0505e-01 8.2537e-01 1.6062e+00

22 -1.3054e+00 -1.9820e-01 8.2071e-01 1.6070e+00

23 -1.3059e+00 -1.9494e-01 8.1896e-01 1.6079e+00

24 -1.3064e+00 -1.9178e-01 8.1714e-01 1.6085e+00

25 -1.3069e+00 -1.8868e-01 8.1516e-01 1.6093e+00

26 -1.3072e+00 -1.8722e-01 8.1428e-01 1.6097e+00

27 -1.3077e+00 -1.8291e-01 8.1150e-01 1.6108e+00

28 -1.3080e+00 -1.8270e-01 8.1140e-01 1.6111e+00

29 -1.3083e+00 -1.7993e-01 8.0988e-01 1.6117e+00

30 -1.3085e+00 -1.7992e-01 8.0988e-01 1.6120e+00

31 -1.3088e+00 -1.7757e-01 8.0882e-01 1.6125e+00

32 -1.3090e+00 -1.7753e-01 8.0880e-01 1.6126e+00

33 -1.3092e+00 -1.7620e-01 8.0781e-01 1.6129e+00

34 -1.3094e+00 -1.7611e-01 8.0772e-01 1.6131e+00

35 -1.3095e+00 -1.7556e-01 8.0703e-01 1.6134e+00

Discrete inf-sup convergence

k Infsup-Estimate

1

2

3 1.4305e+00

4 1.4173e+00
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5 1.2643e+00

6 1.1717e+00

7 1.0011e+00

8 9.9239e-01

9 9.6510e-01

10 9.4439e-01

11 8.9298e-01

12 7.6726e-01

13 7.0983e-01

14 6.1294e-01

15 6.1224e-01

16 5.4051e-01

17 5.4045e-01

18 5.1805e-01

19 5.1797e-01

20 5.0893e-01

21 5.0596e-01

22 4.9605e-01

23 4.9127e-01

24 4.8661e-01

25 4.8203e-01

26 4.7987e-01

27 4.7343e-01

28 4.7311e-01

29 4.6893e-01

30 4.6892e-01

31 4.6535e-01

32 4.6529e-01

33 4.6329e-01

34 4.6315e-01

35 4.6233e-01

Linear solver statistics:

initial guess is random

ndof is 197634
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B.3 Convection-diffusion equations test problem

This sample run is produced using IFISS toolbox version 3.3 in MATLAB since the

results in chapter 4 of this thesis correspond to computations carried out in this version.

Also, CD GMRES, CD BICGSTAB(`), and CD TFQMR are not yet incorporated in IFISS to be

called internally from the script solve cd which sets up the FEM and linear algebra

logistics. In fact these functions are currently called externally, that is, from the

MATLAB prompt. However, the sample runs presented below have been formatted

to reflect the final version where these functions will be called internally. Also, in

an actual implementation, a posteriori error estimates will be computed periodically,

unlike here, where it is computed at each iteration. So, the time taken by the employed

solvers for computing the final solution is not included here. The data generated by

the runs here corresponds to the convection-diffusion test problem in chapter 4 with

AMG preconditioning on a uniform grid with h = 1/128.

>> cd_testproblem

specification of reference convection-diffusion problem.

choose specific example

1 Constant vertical wind

2 Vertical wind, characteristic layers

3 Constant wind @ 30 degree angle

4 Recirculating wind

: 4

1 file(s) copied.

1 file(s) copied.

Grid generation for unit square domain.

grid parameter: 3 for underlying 8x8 grid (default is 16x16) : 8

uniform/stretched grid (1/2) (default is uniform) : 1

[0,1] or [-1,1] square (enter 1/2) (default is [-1,1]) : 2

setting up Q1 convection-diffusion matrices... done

system matrices saved in square_cd_nobc.mat ...

viscosity parameter (default 1/64) : 1/64

plotting element data... done

maximum element Peclet number is 4.980393e-001

SUPG parameter (default is optimal) :

SUPG setting up Q1 SUPG stabilisation matrix... not needed!

system saved in square_cd.mat ...

% GMRES run

GMRES/Bicgstab(l)/TFQMR 1/2/3 (default GMRES) : 1

Call to GMRES_CD with error control ...

discrete convection-diffusion system ...
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maximum number of iterations? (default 100) : 100

preconditioner:

0 none

1 diagonal

2 incomplete LU

3 geometric multigrid

4 algebraic multigrid

default is AMG : 4

compute / load AMG data? 1/2 (default 1) : 1

AMG grid coarsening ... 24 grid levels constructed.

setup done.

plot AMG grid sequence? yes/no 1/2 (default no) : 2

PDJ/PGS/LGS/ILU smoother? 1/2/3/4 (point damped Jacobi) : 1

point damped Jacobi smoothing ..

GMRES iteration ...

Bingo! optimal convergence in 5 iterations

final estimated error is 7.8851e-001

maximum eigenvalue of generalized eigenvalue problem is = 1.3596e+07

k Estimated-Error Algebraic-Bound Residual-Error

0 7.7377e+01 1.2089e+04 3.2787e+00

1 4.7025e+00 6.6979e+04 1.8165e-01

2 8.3137e-01 3.2621e+02 8.8471e-03

3 7.8937e-01 3.8110e+00 1.0335e-03

4 7.8858e-01 1.0054e+00 2.7267e-04

5 7.8851e-01 3.2551e-01 8.8279e-05 Stop here!

% BICGSTAB(2) run

GMRES/Bicgstab(l)/TFQMR 1/2/3 (default GMRES) : 2

Ell (default 2) : 2

Call to BICGSTAB(l)_CD with error control ...

discrete convection-diffusion system ...

maximum number of iterations? (default 100) : 100

preconditioner:

0 none

1 diagonal

2 incomplete LU

3 geometric multigrid

4 algebraic multigrid

default is AMG : 4

compute / load AMG data? 1/2 (default 1) : 1

AMG grid coarsening ... 24 grid levels constructed.

setup done.

plot AMG grid sequence? yes/no 1/2 (default no) : 2

PDJ/PGS/LGS/ILU smoother? 1/2/3/4 (point damped Jacobi) : 1

point damped Jacobi smoothing ..
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BICGSTAB(l) iteration ...

Bingo! optimal convergence in 4 iterations

final estimated error is 7.8851e-001

maximum eigenvalue of generalized eigenvalue problem is = 1.3596e+07

k Estimated-Error Algebraic-Bound Residual-Error

0 9.5841e+03 1.0627e+06 2.8820e+02

1 4.2795e+02 4.6336e+04 1.2567e+01

2 5.1259e-00 5.4746e+02 1.4847e-01

3 8.1381e-01 2.1679e+01 5.8795e-03

4 7.8850e-01 1.6291e-01 4.4181e-05 Stop here!

% TFQMR run

GMRES/Bicgstab(l)/TFQMR 1/2/3 (default GMRES) : 3

Call to TFQMR_CD with error control ...

discrete convection-diffusion system ...

maximum number of iterations? (default 100) : 100

preconditioner:

0 none

1 diagonal

2 incomplete LU

3 geometric multigrid

4 algebraic multigrid

default is AMG : 4

compute / load AMG data? 1/2 (default 1) : 1

AMG grid coarsening ... 24 grid levels constructed.

setup done.

plot AMG grid sequence? yes/no 1/2 (default no) : 2

PDJ/PGS/LGS/ILU smoother? 1/2/3/4 (point damped Jacobi) : 1

point damped Jacobi smoothing ..

TFQMR iteration ...

Bingo! optimal convergence in 5 iterations

final estimated error is 7.8856e-001

maximum eigenvalue of generalized eigenvalue problem is = 1.3596e+07

k Estimated-Error Algebraic-Bound Residual-Error

0 7.7189e+01 1.2071e+04 3.2739e+00

1 4.6939e+00 6.6944e+02 1.8156e-01

2 8.4801e-01 4.2719e+01 1.1586e-02

3 7.8953e-01 4.2103e+00 1.1419e-03

4 7.8863e-01 1.1984e+00 3.2501e-04

5 7.8856e-01 6.9363e-01 1.8812e-04 Stop here!

Linear solver statistics:

initial guess is random ndof is 66049
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B.4 Navier–Stokes equations test problem

This sample run is produced using IFISS toolbox version 3.3 in MATLAB since the

results in chapter 5 of this thesis correspond to computations carried out in this version.

Also, Navier GMRES is not yet incorporated in IFISS to be called internally from the

script solve step navier which sets up the FEM and linear algebra logistics. In fact

Navier GMRES is currently called externally, that is, from the MATLAB prompt. But

the sample run presented below has been formatted to reflect the final version where

this function will be called internally. Also, in an actual implementation, a posteriori

error estimates will be computed periodically, unlike here, where it is computed at

each iteration. So, the time taken by the employed solvers for computing the final

solution is not included here. The data generated by the run here corresponds to the

Navier–Stokes test problem in chapter 5 on a 64× 192 grid.

>> navier_testproblem

specification of reference Navier-Stokes problem.

choose specific example (default is cavity)

1 Channel domain

2 Flow over a backward facing step

3 Lid driven cavity

4 Flow over a plate

5 Flow over an obstacle

: 2

1 file(s) copied.

1 file(s) copied.

horizontal dimensions [-1,L]: L? (default L=5) : 5

Grid generation for backward-facing step domain.

grid parameter: 3 for underlying 8x24 grid (default is 4) : 6

grid stretch factor (default is 1) : 1

Grid generation for x-channel ...done.

Grid generation for x-channel ...done.

Merger of two x-channel grids

zip distance is 0.0000e+000 ... it should be close to zero!

All done.

Q1-Q1/Q1-P0/Q2-Q1/Q2-P1: 1/2/3/4? (default Q1-P0) : 2

setting up Q1-P0 matrices... done

system matrices saved in step_stokes_nobc.mat ...

Incompressible flow problem on step domain ...

viscosity parameter (default 1/50) : 1/50

Picard/Newton/hybrid linearization 1/2/3 (default hybrid) : 2

number of Newton iterations (default 20) : 20

stokes system ...
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nubeta is set to 1.250000e+001

setting up Q1 convection matrix... done.

Newton iteration number 1

setting up Q1 Newton Jacobian matrices... done.

setting up Q1 convection matrix... done.

Linear iteration...

inflow/outflow (step) problem ...

solving Jacobian system generated by solution from last Newton step

setting up Q1 Newton Jacobian matrices... done.

GMRES/Bicgstab(l)/IDR(s) 1/2/3 (default GMRES) : 1

maximum number of iterations? (default 100) : 100

preconditioner:

0 none

1 unscaled least-squares commutator (BFBt)

2 pressure convection-diffusion (Fp)

3 least-squares commutator (LSC)

4 modified pressure convection-diffusion (Fp*)

5 boundary-adjusted least-squares commutator (LSC*)

default is modified pressure convection-diffusion : 4

ideal / AMG iterated preconditioning? 1/2 (default ideal) : 1

setting up modified Q0 pressure preconditioning matrices...

NonUniform grids are fine.

GMRES iteration ...

maximum eigenvalue of generalized eigenvalue problem = 2.5802e+05

minimum eigenvalue of generalized eigenvalue problem = 2.1691e-01

stronger bound = 5.5400e+05

Bingo!

optimal convergence in 23 iterations

nonlinear relative residual = 7.0434e-04

velocity change = 1.2286e+01

estimated error = 2.0564e-01

energy norm of linearized part = 1.5702e+01

Newton iteration number 2

setting up Q1 Newton Jacobian matrices... done.

setting up Q1 convection matrix... done.

Linear iteration...

inflow/outflow (step) problem ...

solving Jacobian system generated by solution from last Newton step
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setting up Q1 Newton Jacobian matrices... done.

GMRES/Bicgstab(l)/IDR(s) 1/2/3 (default GMRES) : 1

maximum number of iterations? (default 100) : 100

preconditioner:

0 none

1 unscaled least-squares commutator (BFBt)

2 pressure convection-diffusion (Fp)

3 least-squares commutator (LSC)

4 modified pressure convection-diffusion (Fp*)

5 boundary-adjusted least-squares commutator (LSC*)

default is modified pressure convection-diffusion : 4

ideal / AMG iterated preconditioning? 1/2 (default ideal) : 1

setting up modified Q0 pressure preconditioning matrices...

NonUniform grids are fine.

GMRES iteration ...

maximum eigenvalue of generalized eigenvalue problem = 4.400e+05

minimum eigenvalue of generalized eigenvalue problem = 2.1690e-01

stronger bound = 9.4470e+05

Bingo!

optimal convergence in 33 iterations

nonlinear relative residual = 3.1387e-05

velocity change = 2.404e+00

estimated error = 1.7400e-01

energy norm of linearized part = 3.5289e-01

Newton iteration number 3

setting up Q1 Newton Jacobian matrices... done.

setting up Q1 convection matrix... done.

Linear iteration...

inflow/outflow (step) problem ...

solving Jacobian system generated by solution from last Newton step

setting up Q1 Newton Jacobian matrices... done.

GMRES/Bicgstab(l)/IDR(s) 1/2/3 (default GMRES) : 1

maximum number of iterations? (default 100) : 100

preconditioner:

0 none

1 unscaled least-squares commutator (BFBt)

2 pressure convection-diffusion (Fp)

3 least-squares commutator (LSC)

4 modified pressure convection-diffusion (Fp*)

5 boundary-adjusted least-squares commutator (LSC*)

default is modified pressure convection-diffusion : 4
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ideal / AMG iterated preconditioning? 1/2 (default ideal) : 1

setting up modified Q0 pressure preconditioning matrices...

NonUniform grids are fine.

GMRES iteration ...

maximum eigenvalue of generalized eigenvalue problem = 4.0478e+05

minimum eigenvalue of generalized eigenvalue problem = 2.1691e-01

stronger bound = 8.6912e+05

Bingo!

optimal convergence in 36 iterations

nonlinear relative residual = 4.4474e-08

velocity change = 1.2167e-01

estimated error = 1.7432e-01

energy norm of linearized part = 1.5442e-02

finished!

nonlinear convergence test (energy norm <= estimated error) satisfied
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CPUTIME comparisons of some

test problems in chapter 2

A comparison of the cputimes when using preconditioned MINRES with the balanced

stopping test (as opposed to not using a balanced stopping test) for solving symmetric

positive-definite linear systems of chapter 2 are given here. Since the balanced stopping

methodology is more useful to employ when solving discrete systems with stochastic

PDE origins, comparisons of cputimes of the MINRES solver are presented here only

for discrete systems arising from stochastic diffusion equations (for which a ‘tight’ a

posteriori approximation error estimator is available).

The cputimes are listed in (·) along with the corresponding MINRES (with mean-

based preconditioning) iteration counts in Tables C.1 to C.4. As in chapter 2, ktol1,

ktol2 denote the MINRES iterations needed to satisfy a fixed absolute residual ‖r(k)‖M−1

reduction tolerance of 1e-6 and 1e-9 respectively. MINRES iterations needed to

satisfy the balanced stopping test are denoted by k∗.

Note that the cputime taken to satisfy the balanced stopping test (for any problem,

on any grid) is ‘far greater’ than the cputimes needed to satisfy the corresponding fixed

absolute residual ‖r(k)‖M−1 reduction tolerance of 1e-6 and 1e-9. This is the case

here because the a posteriori error estimate (which constitutes the bulk of cputime

in MINRES iteration with balanced stopping test) is computed at every iteration. In

practice, this would be computed periodically (say after every 5 or 10 iterations) and

the cputime corresponding to k∗ will be drastically reduced. However, it will still be

more (acceptably or unacceptably more depending upon a practitioners choice) than

the corresponding cputimes for ktol1, ktol2 MINRES iterations. In any case, the

balanced stopping test does rule out premature stopping of the MINRES solver.

160
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Table C.1: Iteration counts (cputimes in seconds) for diffusion test problem 1 with
σ = 0.3, m = 5, and p = 3.

h ktol1 ktol2 k∗ #dof

1/4 14 (0.296) 19 (0.561) 6 (66.940) 2744
1/8 14 (0.281) 20 (0.749) 7 (84.397) 12600
1/16 15 (0.998) 20 (1.997) 8 (143.75) 53816
1/32 16 (7.816) 21 (10.358) 9 (428.61) 222264

Table C.2: Iteration counts (cputimes in seconds) for diffusion test problem 1 with
σ = 0.5, m = 5, and p = 3.

h ktol1 ktol2 k∗ #dof

1/4 30 (0.546) 43 (0.655) 11 (116.49) 2744
1/8 34 (1.138) 49 (1.732) 14 (165.58) 12600
1/16 36 (3.650) 52 (4.992) 16 (286.29) 53816
1/32 38 (18.486) 53 (25.834) 17 (816.32) 222264

Table C.3: Iteration counts (cputimes in seconds) for diffusion test problem 2 with
slow decay, m = 5, and p = 3.

h ktol1 ktol2 k∗ #dof

1/4 13 (0.250) 18 (0.328) 5 (52.526) 2744
1/8 14 (0.452) 20 (0.686) 6 (72.696) 12600
1/16 15 (1.435) 21 (2.044) 8 (141.49) 53816
1/32 16 (8.128) 21 (10.280) 9 (420.25) 222264

Table C.4: Iteration counts (cputimes in seconds) for diffusion test problem 2 with
fast decay, m = 5, and p = 3.

h ktol1 ktol2 k∗ #dof

1/4 17 (0.328) 25 (0.343) 6 (63.461) 2744
1/8 20 (0.733) 27 (0.952) 8 (109.06) 12600
1/16 21 (2.044) 29 (2.496) 10 (177.01) 53816
1/32 22 (11.185) 30 (14.898) 12 (555.55) 222264
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Eigenvalue behaviour of perturbed

convection-diffusion operator

Apart from devising optimal balanced black-box stopping tests in iterative solvers,

some interesting computational experiments were carried out, which investigated the

behaviour of eigenvalues of the discrete convection-diffusion operator when the discrete

diffusion or/and convection operators are slightly perturbed. The motivation for such

an investigation stems from the recent work by [Elman and Silvester, 2017] where

the authors use stochastic collocation with perturbation analysis to provide insight

into stability issues associated with unsteady flow problems. The authors argue that

although their approach is similar to pseudo-spectral analysis, it is less expensive than

the pseudo-spectral approach.

The material presented here is based on deterministic steady-state convection-

diffusion equations. Although there are no ‘stability’ issues in general associated with

steady-state problems, nevertheless it is an important and interesting starting point

to begin an investigation of behaviour of eigenvalues to perturbations.

D.1 Convection-diffusion eigenvalue problem

The steady-state deterministic convection-diffusion eigenvalue problem is to find the

eigenvector, eigenvalue pairs u(~x) : D → R and λ ∈ R satisfying

−∇ · ε∇u(~x) + w(~x) · ∇u(~x) = λu(~x), ~x ∈ D ⊂ Rd (d = 2, 3),

u(~x) = 0, ~x ∈ ∂DD,

ε∇u(~x) · ~n = 0, ~x ∈ ∂DN = ∂D\∂DD.

(D.1)

Here ε is the diffusion coefficient, w is the wind, D is the spatial domain, and ∂DD, ∂DN

are the Dirichlet and Neumann parts respectively of the spatial boundary ∂D. The
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vector ~n denotes the outward normal to ∂D, and λ is an eigenvalue of the continuous

steady-state convection-diffusion operator.

Converting (D.1) into a weak form followed by Galerkin FEM formulation results

in the discrete eigenvalue problem

Fx = λdiscreteQx. (D.2)

Here F is the convection-diffusion matrix as in chapter 4, Q is the mass matrix formed

from the FEM basis functions and λdiscrete is an eigenvalue of the discrete convection-

diffusion operator F (scaled by the mass matrix) and x denotes the corresponding

eigenvector.

For the material presented here, F ∈ Rn×n will be assumed to be nonsingular and

the diffusion coefficient ε to be a constant. As seen in chapter 4, the linear system F

has the following form for lower order finite elements

F = εA + N + S. (D.3)

Here A is a symmetric (or the diffusion stiffness matrix) positive-definite matrix, N is

a skew symmetric (or the convection matrix) and S is the stabilization matrix.

Instead of considering (D.2), a slightly perturbed form of (D.2) is considered here,

that is

(εA+ (N +NE(ξ)) + S)x = λ̂discreteQx, (D.4)

where NE(ξ) is a perturbation in the convection matrix N and λ̂discrete is a perturbed

eigenvalue. Note that the entries of the perturbation matrix NE(ξ) are dependent on

a finite number of parameters (ξ1, . . . , ξn)T := ξ.

Following research investigations can be carried out from (D.4).

• Examine the perturbations in the eigenvalues when there is no diffusion.

• Examine the perturbations in the eigenvalues when there is no diffusion and no

stabilization.

• Examine the perturbations in the eigenvalues when there is no stabilization.

• Examine (D.4) itself.

Results for only the first case are presented here.
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D.2 Computational results

Results are presented here for the test problem considered in chapter 4 which can

be set up by selecting example 4 in the driver cd testproblem in IFISS. The FEM

matrices are set up using Q1 approximation on a 16× 16 uniform grid.

In order to observe the behaviour of a particular eigenvalue λ∗discrete (say) with

respect to perturbations, nearby eigenvalue problems (D.4) are solved using a finite

number (here 25) of ‘collocation’ points (using spinterp [Klimke and Wohlmuth, 2005]

package in MATLAB) ξ(1), ξ(2), . . . , ξ(25). The parameters ξi’s here are uniform random

variables defined on interval [−1, 1]. Next, a polynomial interpolation on 500 points

is carried out to obtain a polynomial interpolant for the eigenvalue λ∗discrete. Note

that different collocation points and varied random variables (Gaussian for example)

defined on different intervals can also be chosen but is not done here.

The above method for observing the behaviour to perturbations can be done for

each of the eigenvalues. However, the results for only a few of them are presented

here in Figures D.1 to D.5. Note that many eigenvalues show similar behaviour to

perturbations, so presented here are only the distinct behaviours.

Each pair of figures (from left to right) shows first the eigenvalue to shadow (which

is marked with a black cross on the left-hand-side plot) and then the ‘perturbation

surface’ of that eigenvalue is obtained (on the corresponding right-hand-side plot)

using the procedure discussed (in the second paragraph) above. Also, the red cross in

the ‘perturbation surface’ plot denotes the true computed eigenvalue.
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Figure D.1: Eigenvalue to shadow (left) and its perturbed values (right) for CD test
problem on a 16× 16 uniform grid.
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Figure D.2: Eigenvalue to shadow (left) and its perturbed values (right) for CD test
problem on a 16× 16 uniform grid.
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Figure D.3: Eigenvalue to shadow (left) and its perturbed values (right) for CD test
problem on a 16× 16 uniform grid.
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Figure D.4: Eigenvalue to shadow (left) and its perturbed values (right) for CD test
problem on a 16× 16 uniform grid.
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Figure D.5: Eigenvalue to shadow (left) and its perturbed values (right) for CD test
problem on a 16× 16 uniform grid.
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D.3 Computational insights

From the plots, it would be interesting to research the reasons for the following

observations from computations.

• Any perturbation in a real eigenvalue keeps it real.

• A complex eigenvalue with both nonzero real and imaginary parts shows a two

dimensional surface in the plots.

• The conjugate eigenvalues behave in a similar manner when they are perturbed

the only difference being the opposite orientation of their perturbed surfaces.


