
ODD POISSON SUPERMANIFOLDS,

COURANT ALGEBROIDS, HOMOTOPY

STRUCTURES, AND DIFFERENTIAL

OPERATORS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2017

Matthew T. Peddie

School of Mathematics



Contents

Abstract 4

Declaration 5

Copyright Statement 6

Acknowledgements 7

1 Poisson Structures 18

1.1 Poisson Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Derived Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Lie Algebroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 The Double Vector Bundle T ∗ΠA . . . . . . . . . . . . . . . . . 27

1.2.2 Lie Algebroids as Poisson Manifolds . . . . . . . . . . . . . . . . 28

1.2.3 Lie Bialgebroids . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 Homotopy Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Homotopy Courant Algebroids 41

2.1 Courant Algebroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.1 Graded Symplectic 2-Manifolds . . . . . . . . . . . . . . . . . . 42

2.2 The Double of an L∞-Bialgebroid . . . . . . . . . . . . . . . . . . . . . 46

2.3 Homotopy Courant Algebroids . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 The Higher Dorfman Brackets . . . . . . . . . . . . . . . . . . . 51

2.3.2 Homotopy Courant Algebroids . . . . . . . . . . . . . . . . . . . 55

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2



3 Weak Poisson Systems 64

3.1 Weak Poisson Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 A BRST Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.1 The Master Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 72

3.2.2 The Existence and Uniqueness of S . . . . . . . . . . . . . . . . 76

3.2.3 The Cohomology of Q . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Lifting the Weak Poisson Structure . . . . . . . . . . . . . . . . . . . . 80

3.3.1 The Cohomology of Q . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.2 A Generalised Poisson Bracket . . . . . . . . . . . . . . . . . . . 88

4 Odd Tensor Geometries 89

4.1 Symmetry of Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Cartan Prolongation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Odd Laplace Operators 96

5.1 The Algebra of Densities . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Laplace Operators and their Potential Fields . . . . . . . . . . . . . . . 100

5.2.1 The Potential Field . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 The Modular Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Nilpotency Conditions . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.2 Even Poisson Manifolds . . . . . . . . . . . . . . . . . . . . . . 110

5.3.3 A Local Description . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 The Symplectic Potential Field . . . . . . . . . . . . . . . . . . 112

5.4.2 Further Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6 Calculation of the Symplectic Potential . . . . . . . . . . . . . . . . . . 119

A Elements of Supermathematics 122

A.1 Super Algebra and Supermanifolds . . . . . . . . . . . . . . . . . . . . 122

A.2 Supermanifolds and the Berezin Integral . . . . . . . . . . . . . . . . . 124

Bibliography 128

Word count 32672

3



The University of Manchester

Matthew T. Peddie
Doctor of Philosophy
Odd Poisson Supermanifolds, Courant Algebroids, Homotopy Structures,
and Differential Operators
June 19, 2017

In this thesis we investigate the role of odd Poisson brackets in related areas of super-
geometry. In particular we study three different cases of their appearance: Courant
algebroids and their homotopy analogues, weak Poisson structures and their relation
to foliated manifolds, and the structure of odd Poisson manifolds and their modular
class.

In chapter 2 we introduce the notion of a homotopy Courant algebroid, a subclass
of which is suggested to stand as the double objects to L∞-bialgebroids. We provide
explicit formula for the higher homotopy Dorfman brackets introduced in this case,
and the higher relations between these and the anchor maps. The homotopy Loday
structure is investigated, and we begin a discussion of what other constructions in the
theory of Courant algebroids can be carried out in this homotopy setting.

Chapter 3 is devoted to lifting a weak Poisson structure corresponding to a local
foliation of a submanifold to a weak Koszul bracket, and interpreting the results in
terms of the cohomology of an associated differential. This bracket is shown to produce
a bracket on co-exact differential forms.

In chapter 5 studies classes of second order differential operators acting on semi-
densities on an arbitrary supermanifold. In particular, when the supermanifold is odd
Poisson, we given an explicit description of the modular class of the odd Poisson man-
ifold, and provide the first non-trivial examples of such a class. We also introduce the
potential field of a general odd Laplacian, and discuss its relation to the geometry of
the odd Poisson manifold and its status as a connection-like object.
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Introduction

Odd Poisson brackets first came into prominence with the publication of the seminal

paper [BV81], in which the authors first introduced the anti-bracket together with

its defining properties. The anti-bracket is in fact, the canonical odd Poisson bracket

arising from the structure of an odd symplectic supermanifold, which had been known

for several decades under a different guise. The Schouten bracket, first introduced

in the work [Sch40], extends the even commutator of vector fields to the algebra

of multivector fields, and only the observation that this algebra is isomorphic to the

algebra of functions of an associated odd symplectic supermanifold is required in order

to identify the Schouten bracket with the anti-bracket. The Schouten bracket however

predates the language of supermathematics, and so was not recognised as an odd

Poisson bracket until the first real studies of these structures began.

It should be noted however that the concept of odd brackets was already well

established prior to the anti-bracket. Nijenhuis, who proved the main properties of the

Schouten bracket [Nij55], together with Richardson introduced a pair (G, g) consisting

of a Lie group G and what is now a Lie superalgebra g, whose even component stands

as the Lie algebra of G [NR64]. The pair (G, g), known as a Harish-Chandra pair

in representation theory, acts closely to that of a Lie supergroup. Odd brackets also

appeared in the work of Gerstenhaber [Ger63] who introduced the structure of a graded

Lie ring on the cohomology of an associative ring. The motivation for the introduction

of this odd graded bracket lies in deformation theory, since such a graded cohomology

ring equipped with this odd Gerstenhaber bracket naturally controls the associative

deformations of the base ring. Despite the prior existence of these odd brackets, it was

the anti-bracket’s role in physics that served as the catalyst for the collective study

of these objects, uniting these isolated constructions under a single theory, and giving

rise to odd Poisson geometry.
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At a first glance odd Poisson geometry seems deceptively similar to its even cousin,

and one might initially presume that it is nothing but a trivial extension into the super

category. For instance, both odd and even Poisson geometries admit Darboux type

splitting theorems inducing symplectic foliations of the manifold, and the algebra of

symmetries preserving each structure through canonical transformations is infinite-

dimensional. However scratching at the surface begins to reveal the rather different

behaviour that odd Poisson geometry actually exhibits. An odd symplectic manifold

for example, admits no volume form which is preserved under canonical transforma-

tions, contrary to the even symplectic case which carries the distinguished Liouville

form. As a result of this, a volume form on an odd symplectic manifold will always

contain additional information to the odd symplectic structure, which is not the case

for any even tensor geometry which always grants a distinguished volume.

The root of many of these peculiarities of odd Poisson geometry lies in the fact that

the defining tensor field is symmetric, as opposed to the anti-symmetric even tensor

field we are accustomed to in even Poisson geometry. This symmetry accounts for the

unusual qualities that odd Poisson geometry actually shares with even Riemannian

geometry! The most notable of these is that an odd Poisson supermanifold defines a

distinguished class of odd Laplace-type operators, analogous to the Laplace-Beltrami

operator of a Riemannian manifold. This parallel with the Riemannian case runs

deeper still, where both second order operators are known to have intimate relations

with the scalar curvature of the manifold when equipped with a compatible connection

(see [BB09]).

This feature of odd Poisson geometry was exploited by the authors of [BV81] in

order to develop a canonical quantisation procedure for an arbitrary Lagrangian gauge

field theory. Their classical theory is developed over an odd symplectic supermanifold,

the space of fields and anti-fields, where the classical master action S is required to

satisfy the classical master equation

{S,S} = 0.

The bracket appearing in the classical master equation is the non-degenerate odd

Poisson bracket arising from the odd symplectic structure. The structure of the odd

symplectic supermanifold was not solely sufficient to develop a quantum formalism

however, where an additional piece of information was required. An independent
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choice of volume form ρ must be made in order to introduce the volume-dependent

quantum effective actionWρ, together with an odd second order operator ∆ρ known as

the BV-operator. These can then be used to formulate the quantum master equation

∆ρ exp

(
i

~
Wρ

)
= 0,

which the quantum action must satisfy to guarantee gauge invariance. This artificially

introduced volume form must be chosen under certain restrictions, and is not unique

in the sense that any volume satisfying these conditions may be chosen. The question

then arises as to whether the BV-formalism can be developed independently of this

artificial choice of volume.

The answer to this question is positive, and begins with Khudaverdian who pro-

vided an invariant definition of the BV-operator [Khu91] which was first defined in

local Darboux coordinates. Khudaverdian describes the BV-operator in terms of the

divergence of the associated Hamiltonian vector field with respect to the volume form:

∆ρf = divρgradf,

for a smooth function f . Such an interpretation identifies the BV-operator as an odd

Laplace type operator. At this point we should also mention the work of Kosmann-

Schwarzbach and Monterde [KSM02], who independently investigated such divergence

operators with regards to their properties as generating operators of odd Poisson brack-

ets.

It was through further investigation of these operators that Khudaverdian initi-

ated the important advancement to cast the BV-formalism in a new light. In the

work [Khu04], Khudaverdian defined an odd Laplacian ∆0 on an odd symplectic su-

permanifold, acting not on functions, but on semidensities. What is crucial about

Khudaverdian’s operator is that it requires no additional information to define, and

arises as a consequence of the geometry of the odd symplectic manifold. It was fur-

ther shown that with a choice of suitable volume form, Khudaverdian’s canonical odd

operator can be identified with the BV-operator on functions.

Around the same time as Khudaverdian’s work, the article of Schwarz [Sch93]

showed that the BV-formalism naturally leads to the consideration of integrals of

exp
(
i
~Wρ

)
over Lagrangian submanifolds of the odd symplectic superspace, the in-

tegrands of which correspond precisely to semidensities on the entire odd symplectic
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space. With this observation and the introduction of Khudaverdian’s operator, the

BV-formalism could be rephrased in the language of densities, essentially bypassing

the restrictions on the artificially introduced volume form. The importance of this

canonical odd Laplacian provoked much further study, in particular, the operator was

shown by Severa to arise naturally from the spectral sequence of the canonical associ-

ated bicomplex of the odd symplectic supermanifold [Sev06].

The use of densities of fixed weight is well-suited to the study of differential opera-

tors, having been particularly well exploited in low dimensional cases, see [OT05] and

references therein for instance. The idea of Khudaverdian and Voronov to utilise the

entire algebra of densities however provided much new insight into the geometry of

these odd second order operators. See the works [KV12, KV02, KV04]. The approach

via the whole algebra yielded interesting results entwining geometric constructions on

the algebra of densities with the geometry of the base manifold, culminating with the

definition of the KV-master groupoid determining how strongly a certain class of these

operators depends on an associated connection [KV12].

As well as their contribution in physical theories, odd Poisson structures are also

present in many areas of mathematics; the aforementioned Gerstenhaber bracket in de-

formation theory for example. They play a particularly useful role in the theory of Lie

algebroids, especially when considering the Lie bialgebroids introduced by Mackenzie

and Xu in [MX94] as linearisations of Poisson groupoids. Classically, Lie bialgebroids

were described as a pair of Lie algebroids (A,A∗) satisfying the compatibility condition

that the differential of one must act as a derivation over the bracket of the other. The

reformulation by Kosmann-Schwarzbach places this into a more general setting [KS95];

since the differential of A acts on the space of sections Γ(∧A∗), the definition should be

modified slightly since the bracket of A∗ acts only on Γ(A∗). Kosmann-Schwarzbach

showed that a Lie algebroid structure on A∗ is equivalent to an odd Poisson bracket in

the space Γ(∧A∗), equivalent to Vaintrob’s manifestation of a Lie algebroid A∗ as an

odd Poisson bracket in the algebra C∞(ΠA) under the natural identification [Vai97].

This improvement on the definition also provided a conceptually superior proof to

that given by Mackenzie and Xu for the symmetry of a Lie bialgebroid, which was not

immediately obvious.

With the introduction of Lie bialgebroids followed the question as to what should
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stand as the corresponding double object, analogous to the double introduced by Drin-

feld in [Dri83] for Lie bialgebras. For a Lie bialgebra, Drinfeld’s double construction

produces a unique quasi-triangular Lie algebra suitable for quantisation, which in turn

provides a valuable source of quantum groups. This same question for Lie bialgebroids

turned out to be highly non-trivial, with complications arising which were not present

in the Lie algebra setting. To answer this a variety of solutions have been proposed,

the first of which was suggested by Liu, Weinstein and Xu [LWX97], who introduced

the notion of a Courant algebroid to act as the analogue of the Drinfeld double.

For a Lie bialgebroid (A,A∗), the associated Courant algebroid is the direct sum

A ⊕ A∗ equipped with an anchor map, together with a skew-symmetric operation on

sections which satisfies a Jacobi identity up to some measurable defect. This skew-

symmetric operation is called the Courant bracket, originating from Courant who first

introduced this as an integrability condition in his work [Cou90]. However, since this

Courant bracket in not a Lie bracket, a Courant algebroid cannot be a Lie algebroid

unlike the Drinfeld double of a Lie algebra which is again a Lie algebra. Such a

discrepancy is unsatisfying, and shortly after the introduction of Courant algebroids

two further solutions were offered.

The second utilised the super-language and was suggested by Roytenberg in his

Ph.D. thesis [Roy99]. Roytenberg showed that a Lie bialgebroid (A,A∗) can be com-

pactly described in terms of two commuting homological vector fields on the cotangent

bundle T ∗ΠA. The sum of these vector fields was then defined to be the double, where

the nilpotency of the odd vector field is equivalent to the Lie bialgebroid structure.

Independently Mackenzie proposed a classical solution [Mac98, Mac11], defining the

double of a Lie bialgebroid as the double Lie algebroid T ∗A; a double vector bundle

equipped with compatible Lie algebroid structures along each edge of the double bun-

dle. A desirable property of these double Lie algebroids is that they can be thought as

Lie algebroids in the category of Lie algebroids, so fulfilling the double role in Ehres-

mann’s sense. Both Roytenberg’s and Mackenzie’s constructions reproduced Drinfeld’s

double when the Lie bialgebroid reduces to a Lie bialgebra, and further, the Courant

algebroid picture sits in both these constructions due to the natural projection maps

T ∗ΠA → Π(A ⊕ A∗) and T ∗A → A ⊕ A∗. In fact these two seemingly independent
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approaches are equivalent, as was shown by Voronov in [Vor12]. Paralleling the Q-

manifold manifestation of a Lie algebroid [Vai97], Voronov proved that the double

Lie algebroid structure of T ∗A is equivalent to a pair of commuting homological vec-

tor fields on the space of “double reversed parity” Π2T ∗ΠA ∼= T ∗ΠA. This pair of

commuting vector fields coincides precisely with the two defined by Roytenberg, thus

completely aligning the two constructions.

The detailed technicalities of the double Lie algebroid definition make the super

language very adequate to describe such double structures. This is the case for other

concepts, for example, the strongly homotopy Lie algebras of Lada and Stasheff [LS93].

A homotopy Lie algebra consists of a sequence of bracket operations of alternating

parity, which satisfy complicated higher Jacobi identity type expressions. The super

language encodes this entire structure into a single homological vector field on the

vector space of reversed parity, providing a simple and compact description. With the

introduction of homotopy Lie algebras, it was not long before this was advanced to Lie

algebroids and Lie bialgebroids homotopy analogues. In particular, an L∞-bialgebroid

(A,A∗) consists of a pair of L∞-algebroids in duality together with an extensive list

of compatibility conditions. The classical definition is extremely bulky, yet the super

description of Roytenberg for a Lie bialgebroid admits a straightforward generalisation

as a pair of commuting (formal) homological vector fields on the cotangent bundle

T ∗ΠA. These homotopy Lie bialgebroids should also admit suitable double objects,

which will be the beginning of the main work of this thesis.

Content Outline

The thesis is organised in the following way:

Chapter 1 The first chapter introduces the essential background material and nota-

tion for the remainder of the thesis. In particular, it deals with Lie algebroids

and their equivalent manifestations, together with the homotopy analogues of

these structures. The chapter ends with a first result regarding the induced

P∞-structure from an L∞-bialgebroid.

Chapter 2 The main focus of this chapter is to describe what geometrical object

should stand as the double of an L∞-bialgebroid. Double objects are introduced
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and their role as the double discussed, together with necessary conditions for

their existence. This leads to the introduction of homotopy Courant algebroids,

of which these double objects are examples. The structure of these homotopy

Courant algebroids is discussed and examples provided. We conclude this chap-

ter with a short discussion of what classical constructions appear in this new

homotopy setting.

Chapter 3 Chapter 3 is devoted to the extension of a geometrical construction called

a weak Poisson system. Such a system is introduced to describe arbitrary gauge

field theories, which we develop to include covariant tensor fields. We show that

all the information is encoded within a single homological vector field via its

cohomology, and that the obtained weak Koszul bracket extends the even Poisson

bracket introduced on co-exact differential forms for a generalised Hamiltonian

mechanics.

Chapter 4 This is included primarily for interest and contains no new material. We

discuss the symmetry of tensors in the super setting and the fundamental differ-

ences between even and odd tensor geometries on a supermanifold, a description

of which is provided in terms of the Cartan prolongation of the associated Lie

algebras of symmetries.

Chapter 5 The final chapter is devoted to the study of Laplace type operators acting

on semidensities. We introduce connection-like objects associated to classes of

these operators, which appear to possess a particularly deep connection to the

geometry of the manifold when equipped with an odd Poisson structure. We

also show for odd Poisson manifolds that the modular class can be described

via these operators, and using this description provide the first examples of odd

Poisson manifolds with a non-trivial modular class.

Notational Remarks

The language of supermanifolds will be consistently used throughout this work, and

as a consequence we will always drop the prefix “super” when it is not necessary to

distinguish from the “usual” non-super case. For example, a vector space will always be
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understood to be a super vector space, or when we specify a manifold we will always

mean a supermanifold. A key feature of the super category is that all objects and

morphisms carry a Z2-grading called parity. Homogeneous objects will be called even

if they have parity 0, or odd if they carry parity 1. The term odd Poisson bracket refers

then to a Poisson type bracket with Grassmann parity 1. We will denote the parity of

an object a by ã when we wish to be explicit, though in working the parity will simply

appear as the object itself to reduce notation. We also make the assumption that all

the signs appear as a result of the Grassmann grading, and not as a consequence of

any other gradings should they be present. For example, signs usually arising from the

degree of a differential form will not contribute to formula in the usual sense. This will

assist in keeping any additional gradings independent from the parity of the objects

which is more natural in the super setting.

Since this work deals mostly with multi-linear multi-derivations, or Poisson brack-

ets, there are a variety of different notations which will arise for these. It will be

beneficial to fix certain brackets for canonical structures to avoid confusion. These are

presented in the table:

Notation Bracket

[−,−] Commutator of vector fields

(−,−) Canonical even Poisson bracket on T ∗M

J−,−K Canonical odd Poisson bracket on ΠT ∗M

{−,−} Arbitrary Odd Poisson bracket

[−,−] Arbitrary Even Poisson/ Loday bracket

{−,−}S Odd bracket derived from Hamiltonian S

[−,−]P Even bracket derived from Hamiltonian P

〈−,−〉 Non-degenerate bilinear form

Accompanying the array of different brackets will be the associated manifolds where

they are set. We will always attempt to keep a consistent choice of local coordinates

16



on these manifolds, which again are listed here to avoid repetition:

Manifold Notation Local Coordinates

Smooth Manifold M xa

Cotangent Bundle T ∗M xa, pa

Odd Cotangent Bundle ΠT ∗M xa, x∗a

Odd Tangent Bundle ΠTM xa, ηa

Vector Bundle A,E xa, ui

“Odd” Vector Bundle ΠA xa, ξi

Cotangent Double of ΠA T ∗ΠA xa, ξi, pa, πi

Cotangent Double of ΠA∗ T ∗ΠA∗ xa, θi, pa, π
i
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Chapter 1

Poisson Manifolds and Lie

Algebroid Structures

The purpose of this chapter is to introduce the main geometrical objects which feature

throughout this work and to fix our notation for such structures. In particular, both

even and odd Poisson manifolds are defined via derived brackets [KS04, Vor02], and

those derived brackets which are linear in a precise sense are shown to be equivalent to

Lie algebroid structures. This equivalence is discussed, and the homotopy analogues

deriving from the L∞-algebras of Lada and Stasheff [LS93] are introduced. We end

by providing a first result in parallel with that found in [MX94] regarding the Poisson

bracket induced by a Lie bialgebroid.

1.1 Poisson Manifolds

Definition 1.1.1. An even Poisson algebra is an associative algebra A equipped with

an even bilinear operation [−,−] : A×A→ A, called the even Poisson bracket, which

satisfies:

1. [a, b] = −(−1)ab[b, a];

2. [a, [b, c]] = [[a, b], c] + (−1)ab[b, [a, c]];

3. [a, bc] = [a, b]c+ (−1)abb[a, c];

for homogeneous elements a, b, c ∈ A.
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CHAPTER 1. POISSON STRUCTURES

This definition corresponds to the usual definition of a Poisson algebra in the non-

super setting, though we will call this an even Poisson algebra to distinguish from the

odd version which will be of interest to us.

Definition 1.1.2. An odd Poisson algebra, or Schouten algebra, is an associative

algebra A together with an odd bilinear operation {−,−} : A × A → A, called the

odd Poisson bracket or the Schouten bracket, which satisfies:

1. {a, b} = (−1)ab{b, a};

2. {a, {b, c}} = (−1)a+1{{a, b}, c}+ (−1)(a+1)(b+1){b, {a, c}};

3. {a, bc} = {a, b}c+ (−1)(a+1)bb{a, c};

for homogeneous elements a, b, c ∈ A.

Remark 1.1.1. Our convention will be to sit the parity of the bracket at the front,

departing from the usual convention to sit the parity at the comma since this becomes

inappropriate when considering higher bracket operations. In particular, our definition

of an odd Poisson algebra differs in sign from the more classical definition, for example

the Gerstenhaber algebras of [KS96]. The introduction of the sign becomes clear when

considering the odd operation ada as a derivation of the odd bracket.

Remark 1.1.2. Even and odd Poisson algebras are even and odd Lie algebras where in

addition, the bracket is a derivation of the associative multiplication in each argument.

There are two equivalent manifestations of an even Lie algebra g: the algebra may be

viewed with an anti-symmetric even bracket on g, or an odd symmetric bracket on Πg.

These equivalent definitions are related by a shift in parity. If however the bracket

is required to be Poisson, only the anti-symmetric description of definition 1.1.1 is

compatible with the multiplication. Similarly, the symmetric definition 1.1.2 must be

used for a Schouten algebra.

A manifold M for which its algebra of smooth functions C∞(M) is an even or odd

Poisson algebra will be called an even or odd Poisson manifold respectively. We will

refer to both even and odd Poisson structures simply as Poisson structures when the

parity is understood.
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Canonical examples of even and odd Poisson structures arise naturally in physics.

The prototypical example of an even Poisson manifold is the cotangent bundle of a

smooth manifold; phase space in the Hamiltonian formalism where the bracket arises

naturally from the bundle structure. A canonical odd Poisson bracket is obtained from

the cotangent bundle’s super analogue, the odd cotangent bundle, where the bracket

again arises naturally from the structure of the manifold.

Example 1.1.1. Let M be a manifold and T ∗M its cotangent bundle. Assign to local

coordinates xa on M , the corresponding momenta coordinates pa which transform

according to the Jacobian matrix J : for a change of coordinates x = x(x′),

pa = Ja
′

a pa′ , Ja
′

a =
∂xa

′

∂xa
, p̃a = x̃a. (1.1)

The cotangent bundle carries a canonical even symplectic form, written locally as

ω0 = dpadx
a = d (padx

a) = (−1)a+1d (xadpa) , (1.2)

where xa, pa are Darboux coordinates for this symplectic structure. This gives rise to

a non-degenerate even Poisson bracket on C∞(T ∗M) with the local expression

(f, g) = (−1)a(f+1) ∂f

∂pa

∂g

∂xa
− (−1)af

∂f

∂xa
∂g

∂pa
, (1.3)

for functions f, g ∈ C∞(T ∗M).

Example 1.1.2. The odd cotangent bundle ΠT ∗M is the cotangent bundle to M

with reversed parity in the fibres. For local coordinates xa on M , introduce the odd

conjugate momenta x∗a in the fibres. These conjugate momenta transform as in eq.

(1.1), except now carry the parity x̃∗a = x̃a+1. There exists a canonical odd symplectic

form on ΠT ∗M ,

ω1 = dx∗adx
a = d (x∗adx

a) = d (xadx∗a) , (1.4)

which yields a non-degenerate odd Poisson bracket

Jf, gK = (−1)a(f+1) ∂f

∂x∗a

∂g

∂xa
− (−1)(a+1)(f+1) ∂f

∂xa
∂g

∂x∗a
. (1.5)

We will reserve the round brackets (−,−) for the canonical even bracket (1.3), and

the square bold brackets J−,−K for the canonical odd bracket (1.5).
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Remark 1.1.3. The algebra of functions C∞(ΠT ∗M) can be naturally identified with

the algebra of multivector fields X(M) on M via the odd C∞(M)-linear isomorphism

π : X(M)→ C∞(ΠT ∗M), ∂a 7→ x∗a. (1.6)

This takes the Schouten-Nijenhuis bracket of multivector fields [Nij55, Sch40] to the

canonical odd Poisson bracket (1.5): for multivector fields X, Y ∈ X(M) and their

Schouten-Nijenhuis bracket [X, Y ]SN ,

JπX, πY K = (−1)Xπ [X, Y ]SN .

As a consequence, the canonical odd bracket is often referred to as the Schouten

bracket, and we will often not distinguish between the two.

1.1.1 Derived Brackets

The derived bracket construction provides a description of bracket structures in terms

of a differential graded Lie algebra together with a suitable Maurer-Cartan element.

The construction, first formalised in [KS96] where the main properties were proved,

has become a crucial tool in working with bracket operations. In the super-setting

the construction was given by Voronov [Vor02], which was further extended to include

higher homotopy brackets [Vor05b, Vor05a]. See the article [KS04] for an excellent

survey on derived brackets.

In the case of Poisson manifolds the derived bracket method allows any Poisson

bracket to be expressed in terms of the canonical even and odd brackets of eqs. 1.3

and 1.5.

Let M be an even Poisson manifold, and let P ∈ X(M) be the even Poisson bivector

field defining the bracket. Under the isomorphism (1.6), P is identified with an even

fibre-wise quadratic function P ∈ C∞(ΠT ∗M), which defines the Poisson bracket by

the nested pair

[f, g]P := JJP, fK, gK, (1.7)

for functions f, g ∈ C∞(M). The skew-symmetry and bi-derivation properties are

inherited from the canonical odd bracket (1.5), whilst the Jacobi identity is equivalent

to the condition

JP, P K = 0. (1.8)
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In local coordinates, the Poisson Hamiltonian function P = P (x, x∗) is given by

P =
1

2
P ab(x)x∗bx

∗
a, P ab(x) = (−1)(a+1)(b+1)P ba(x), (1.9)

and describes the even Poisson bracket,

[f, g]P = −(−1)af∂afP
ab(x)∂bg, [xa, xb]P = −(−1)aP ab(x), (1.10)

for f, g ∈ C∞(M).

Remark 1.1.4. Equation (1.8) is at the heart of many geometrical and algebraic

constructions, and in the physics literature bears the name “the master equation”.

We shall adopt this name, and refer to P as the master Hamiltonian of the bracket

[−,−]P .

The case is analogous for an odd Poisson manifold, however the corresponding

Hamiltonian function does not correspond to an odd Poisson bivector as might be

assumed. An odd fibre-wise quadratic Hamiltonian function S ∈ C∞(T ∗M) is required

so that the commutation relation (S, S) = 0 remains non-trivial under the even bracket

(1.3). The odd master function S defines an odd Poisson bracket on M by

{f, g}S := ((S, f), g), (1.11)

for which the master equation (S, S) = 0 is equivalent to the Jacobi identity for the

derived odd bracket eq. (1.11). The Hamiltonian S = S(x, p) is locally expressed as

S =
1

2
Sab(x)pbpa, Sab(x) = (−1)abSba(x), (1.12)

and for functions f, g ∈ C∞(M), the odd bracket is given by

{f, g}S = (−1)f(a+1)∂afS
ab(x)∂bg, {xa, xb}S = Sab(x). (1.13)

Notice the difference in signs between the even and odd derived brackets which are

required for compatibility with the associative multiplication and linearity over odd

constants.

1.2 Lie Algebroids

Lie algebroids are the infinitesimal counterparts to Lie groupoids, and unify the tangent

bundle of a manifold and Lie algebras under one theory. These geometric structures
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admit useful interpretations in the super language as even and odd Poisson brackets

on corresponding “neighbouring” manifolds which we will recall. For a classical intro-

duction to the theory of Lie algebroids we point to the book by Mackenzie [Mac05].

Definition 1.2.1. A Lie algebroid is a vector bundle A→ M together with a vector

bundle map ρ : A → TM called the anchor, and an R-linear Lie bracket [−,−] =

[−,−]A on the C∞(M)-module of sections Γ(A) satisfying the Leibniz rule,

[u, fv] = ρ(u|f)v + (−1)uff [u, v], (1.14)

for sections u, v ∈ Γ(A) and a function f ∈ C∞(M).

The notation ρ(u|f) is used for ρ(u) ∈ Vect(M) applied as a derivation to a function

f ∈ C∞(M). The anchor is naturally a morphism of Lie algebras ρ : Γ(A)→ Vect(M),

taking the Lie bracket of sections to the commutator of vector fields on M ,

ρ([u, v]A) = [ρ(u), ρ(v)].

Example 1.2.1. The tangent bundle A = TM is a trivial example of a Lie algebroid.

The anchor is the identity map and the bracket is the commutator of vector fields.

Example 1.2.2. If M = {pt} is a point, then a Lie algebra g is a Lie algebroid when

considered as a vector bundle over M . The anchor map is trivial whilst the bracket of

sections is the Lie bracket of the Lie algebra g.

Example 1.2.3. Let M be a manifold with an integrable distribution D ⊂ TM . Then

D → M is a Lie algebroid, and specifically is a Lie subalgebroid of the tangent Lie

algebroid of example 1.2.1.

Notice that for any Lie algebroid A→M , the image of the anchor im(ρ) is always

an integrable distribution on M .

Example 1.2.4. Let G be a Lie group and M a G-manifold; a manifold with a smooth

G-action G ×M → M . The infinitesimal action g ×M → TM is used to define a

Lie algebroid g ×M → M called the action Lie algebroid. The anchor is the action

of g on M , (X, x) 7→ Xx ∈ TxM for x ∈ M , and the bracket of sections is defined by

extending the bracket of constant sections of g via the Leibniz rule.
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Example 1.2.5. Suppose that M is an even Poisson manifold with bracket specified

by a Poisson bivector P . Such a bivector generates a map ΦP : T ∗M → TM , raising

indices with the Poisson tensor. This map forms the anchor of the cotangent Lie

algebroid T ∗M , whose Koszul bracket of 1-forms is

[σ, τ ]KP = LΦP (σ)τ − LΦP (τ)σ − dP (σ, τ), (1.15)

for 1-forms σ, τ ∈ Γ(T ∗M), and where LΦP (σ)τ is the Lie derivative of the form τ over

the vector field ΦP (σ).

Example 1.2.6. Let ω be a closed 2-form on a manifold M , and set Aω = TM ⊕ L

where L→M is a trivial line bundle over M . A Lie algebroid structure can be defined

on Aω by taking the anchor of Aω as the projection onto the first component, and the

bracket as

[(X, f), (Y, g)] = ([X, Y ],LXg − LY f + ω(X, Y )) ,

where the space of sections Γ(Aω) is identified with Vect(M) × C∞(M). The Jacobi

identity of the bracket is equivalent to the closed condition on ω. (If L is non-trivial

simply replace the Lie derivative by some flat connection.)

Associated to any Lie algebroid A is the Lie algebroid differential dA on the space of

sections of the exterior product of the dual bundle Γ(∧A∗). Considering examples 1.2.1

and 1.2.2, this differential is seen to unify the de Rham differential and the Chevalley-

Eilenberg differential of a manifold and a Lie algebra respectively. The cohomology of

the complex (Γ(∧A∗), dA) computes the cohomology of the Lie algebroid A.

Definition 1.2.1 is just one of four equivalent definitions of a Lie algebroid structure

on A, with the other three described on the so called neighbours of A. It was first

shown in [Vai97] that a Lie algebroid structure on A is equivalent to a certain odd

vector field QA on the manifold ΠA, satisfying a non-trivial integrability condition

2Q2
A = [QA, QA] = 0.

Such an odd vector field is called a homological vector field, and a manifold equipped

with a homological vector field will be called a Q-manifold. Let us make this precise.

Any vector bundle A → M is naturally a graded manifold [Vor02]. This grading is

called the weight, where for base coordinates xa and fibre coordinates ui, the weights
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are assigned as

w(xa) = 0, w(ui) = +1. (1.16)

Coordinates ui of the dual bundle A∗ are assigned weight so that the natural pairing

uiui maintains zero weight: given coordinates xa, ui of A∗, let w(xa) = 0 and w(ui) =

−1. Since the coordinate changes of a vector bundle are linear in fibre variables, all

coordinate changes are automatically weight preserving.

Let u = ui(x)ei be a section of A for a local frame {ei}. Define a canonical odd

isomorphism ı : Γ(A)→ Vect−1(ΠA) from sections of A to weight −1 vector fields on

ΠA by

ı(u) 7→ ıu = (−1)uui
∂

∂ξi
. (1.17)

Let QA ∈ Vect+1(ΠA) be an odd, weight +1 vector field on ΠA. An arbitrary such

vector field has the form

QA = ξiQa
i (x)

∂

∂xa
+

1

2
ξiξjQk

ji(x)
∂

∂ξk
. (1.18)

Then for sections u, v ∈ Γ(A) and a function f ∈ C∞(M), the anchor and bracket of

a Lie algebroid structure on A can be expressed as

ρ(u|f) = [[QA, ıu], f ], ρ(u|f) = uiQa
i

∂f

∂xa
, (1.19)

and

ı([u, v]A) = (−1)u[[QA, ıu], ıv], (1.20)

[u, v]A =
(
uiQa

i ∂av
k − (−1)uvviQa

i ∂au
k − (−1)i(v+1)uivjQk

ji

)
ek.

The formula for the local frame {ei} are

ρ(ei) = Qa
i

∂

∂xa
, [ei, ej] = (−1)iQk

ijek.

The Jacobi identity for the bracket, together with the Leibniz condition (1.14) for the

Lie algebroid A are compactly expressed in the integrability condition

[QA, QA] = 0. (1.21)

As mentioned previously, this is a non-trivial condition for an odd vector field, since

[QA, QA] = 2Q2
A is not necessarily zero. We will call the vector field QA the vector
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field associated to the Lie algebroid A. Notice that under the identification Γ(∧A∗) ∼=

C∞(ΠA), QA coincides with the Lie algebroid differential dA, and the cohomology

of the Lie algebroid is calculated via the complex QA : C∞k (ΠA) → C∞k+1(ΠA), now

graded by weight.

Remark 1.2.1. More precisely, the space of sections Γ(∧A∗) identifies with the subal-

gebra of functions on ΠA which are polynomial in the fibre variables. This distinction is

often overlooked however, and the full identification allows to speak of pseudo-sections

of A and so on. When M is a bosonic (purely even) manifold, the identification

Γ(∧A∗) ∼= C∞(ΠA) is a genuine isomorphism.

Example 1.2.7. Consider the tangent Lie algebroid TM → M as in example 1.2.1.

The associated homological vector field on ΠTM equipped with canonical coordinates

xa, ηa is the weight +1 vector field

d = ηa
∂

∂xa
,

which coincides with the de Rham differential when functions on ΠTM are identified

with (pseudo-)differential forms on M .

Example 1.2.8. Let g be a Lie algebra viewed as a Lie algebroid over a point. The

associated homological vector field on Πg is

Qg =
1

2
ξiξjckji

∂

∂ξk
, (1.22)

where the ckji are structure constants of the Lie algebra. The condition Q2
g = 0 is

non-trivial and highlights the Jacobi identity for the bracket in terms of the structure

constants.

Example 1.2.9. The action Lie algebroid g × M → M of example 1.2.4 has the

associated homological vector field,

Qg×M = ξiXa
i (x)

∂

∂xa
+

1

2
ξiξjckji

∂

∂ξk

on Πg×M , where the first term encodes the action g×M →M and the second term

corresponds to the Lie bracket of g eq. (1.22).

Together with homological vector fields, Lie algebroids also manifest themselves as

even and odd Poisson structures. In order to describe these however, we must first

recall some facts concerning the double vector bundle structure of T ∗ΠA, together

with some associated canonical isomorphisms.
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1.2.1 The Double Vector Bundle T ∗ΠA

Given a vector bundle ΠA, the manifold T ∗ΠA carries the structure of a double vector

bundle,

T ∗ΠA ΠA∗

ΠA M,

//

�� ��
//

where both the horizontal and vertical arrows possess the structure of a vector bundle.

Introduce coordinates xa, ξi, pa, πi on T ∗ΠA. Together with the weight grading (1.16)

carried by ΠA and ΠA∗, the bundle T ∗ΠA carries a bi-grading: assign the grades

(0, 1, 2, 1) to the local coordinates respectively, and define the (ε1, ε2)-bi-grading by

ε1 = #p+ #ξ, ε2 = #p+ #π. (1.23)

From this bi-grading, a total grading ε may be defined as

ε = ε1 + ε2, (1.24)

corresponding to the Euler vector field

ε = 2pa
∂

∂pa
+ ξi

∂

∂ξi
+ πi

∂

∂πi
,

on T ∗ΠA.

The definition of T ∗ΠA as a double vector bundle is naturally symmetric, and is

equivalent to that of T ∗ΠA∗. Introducing local coordinates ya, θi, qa, π
i on T ∗ΠA∗,

there is a canonical isomorphism

κ : T ∗ΠA→ T ∗ΠA∗, (1.25)

(xa, ξi, pa, πi) 7→ (ya, θi, qa, π
i) = (xa, πi,−pa, (−1)i+1ξi).

Mackenxie and Xu gave a global, coordinate independent proof of this for arbitrary

even vector bundles in [MX94] using methods of Tulczyjew [Tul77] who proved the

isomorphism earlier in the case of tangent bundles. For a summary of double vector

bundle isomorphisms we refer to the book [Mac05]. The Mackenzie-Xu isomorphism

was extended to the super case by Voronov [Vor02], who also proved the existence for

odd cotangent bundles.
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Our conventions take κ as an anti-symplectomorphism, introducing the minus sign

on T ∗M , the core of the double vector bundle. Other conventions take κ as a sym-

plectomorphism where the minus is introduced on one side of the diagram. For the

canonical symplectic form ω0 (1.2),

(
κ−1
)∗

(dπidξ
i + dpadx

a) = −dπidθi − dqadya.

It is very illuminating to view this isomorphism acting locally. Consider a change of

coordinates x = x(x′) on M . The coordinate transformations induced in T ∗ΠA are

ξi = ξi
′
T ii′ , pa = Ja

′

a pa′ + (−1)a(j+1)ξj
′
T jj′∂aT

i′

j πi′ , πi = T i
′

i πi′ .

For the coordinates on T ∗ΠA∗,

θi = T i
′

i θi′ , qa = Ja
′

a qa′ − (−1)a(j+1)+i′πi
′
T ji′∂aT

j′

j θj′ , πi = (−1)i+i
′
πi
′
T ii′ .

The isomorphism can be readily written down by comparing these coordinate changes.

The odd super analogue described in [Vor02] is

κΠ : ΠT ∗A→ ΠT ∗ΠA∗, (1.26)

(xa, ui, x∗a, u
∗
i ) 7→ (ya, θi, y

∗
a, θ

i
∗) = (xa, u∗i ,−x∗a, ui),

for an arbitrary vector bundle A with local coordinates xa, ui. Notice the sign difference

between the even and odd versions.

Of course, since both κ and κΠ are (anti-)symplectomorphisms, they both have in-

terpretations via Lagrangian submanifolds, and are sometimes referred to as Legendre

transformations. See [Roy99] for example.

1.2.2 Lie Algebroids as Poisson Manifolds

The two other neighbouring structures to a Lie algebroid structure on A present them-

selves as even and odd Poisson structures on the algebras C∞(A∗) and C∞(ΠA∗) re-

spectively. That a Lie algebroid is equivalent to an even Poisson structure on A∗

is classical. For example, for a Lie algebra g with coordinates ui, the even linear

Lie-Poisson bracket on C∞(g∗) is given locally by

[ui, uj] = (−1)ickijuk,
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where ckij are the structure constants of the Lie algebra, and ui are dual coordinates

to ui. (Notice that this can be defined via the homological vector field Qg (1.22)

together with the odd Mackenzie-Xu isomorphism (1.26).) Due to the nature of the

super language however, it is the odd Poisson structure on C∞(ΠA∗) also introduced by

Vaintrob [Vai97] that will prove to be more versatile. Let QA be the homological vector

field associated to A (eq. (1.18)), and let HA ∈ C∞(T ∗ΠA) be the odd Hamiltonian

function such that (HA,−)
∣∣
ΠA

= QA under the canonical bracket (1.3). In particular,

HA must satisfy the master equation (HA, HA) = 0, which ensures the integrability

condition (1.21) of QA. Locally, HA has the form

HA = ξiQa
i pa +

1

2
ξiξjQk

jiπk. (1.27)

Let SA = (κ−1)∗HA ∈ C∞(T ∗ΠA∗), where κ is the Mackenzie-Xu isomorphism (1.25),

which satisfies its own master equation (SA, SA) = 0 since κ takes brackets to brackets.

The odd Poisson bracket on C∞(ΠA∗) is then expressed via a derived bracket (1.11):

for functions f, g ∈ C∞(ΠA∗),

{f, g}A = (−1)i(f+1) ∂f

∂θi
Sai

∂g

∂xa

+(−1)fg
∂g

∂θi
Sai

∂f

∂xa
+ (−1)i(f+1)+j ∂f

∂θi
Skijθk

∂g

∂θi
,

where xa, θi are local coordinates on ΠA∗. In terms of these coordinates,

{θi, xa}A = (−1)iSai , {θi, θj}A = (−1)i+jSkijθk, (1.28)

which is the odd fibre-wise linear bracket associated to a Lie algebroid A. A conse-

quence of the four equivalent definitions of a Lie algebroid is that each definition may

be used when most appropriate, which becomes particularly useful when dealing with

their morphisms. For simplicity, we will only describe morphisms of Lie algebroids

over the same base manifold. A description of those over different base manifolds is

more involved and we refer [Mac05].

Let A1 and A2 be Lie algebroids over the same manifold M . A Lie algebroid

morphism Φ is a morphism of vector bundles Φ : A1 → A2 such that:

1. [Φ(u),Φ(v)]A2
= Φ ([u, v]A1);

2. ρA2 (Φ(u)) = ρA1(u);
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for sections u, v ∈ Γ(A1). The morphism Φ is equivalent to three other neighbouring

morphisms for each equivalent manifestation:

1. For the associated homological vector fields QA1 and QA2 there is a map ΦΠ :

ΠA1 → ΠA2 of Q-manifolds. A map of Q-manifolds, or a Q-map, is such that

the vector fields QA1 and QA2 are ΦΠ-related: for f ∈ C∞(ΠA2),

QA1 (Φ∗Πf) = Φ∗ΠQA2(f). (1.29)

2. For the even Poisson structure on the manifolds A∗1 and A∗2, the map Φ∗ :

C∞(A∗2)→ C∞(A∗1) is a Poisson map: for f, g ∈ C∞(A∗2),

[Φ∗f,Φ∗g]A1 = Φ∗[f, g]A2 . (1.30)

3. As in the even case, for the odd Poisson structure on the manifolds ΠA∗1 and

ΠA∗2, the map Φ∗Π : C∞(ΠA∗2) → C∞(ΠA∗1) is a Poisson map of the odd linear

Poisson structures,

{Φ∗Πf,Φ∗Πg}A1 = Φ∗Π{f, g}A2 , (1.31)

for functions f, g ∈ C∞(ΠA∗2).

Corollary 1.2.1. For a Lie algebroid A with associated vector field QA, there is a map

ρΠ : ΠA→ ΠTM such that QA and the de Rham differential d (1.2.7) are ρΠ-related.

Equivalently, there is a map ρ∗Π : C∞(ΠT ∗M) → C∞(ΠA∗) taking the canonical odd

Poisson bracket of multivector fields (1.5) to the odd linear Schouten bracket (1.28) on

ΠA∗.

1.2.3 Lie Bialgebroids

A Lie bialgebroid generalises the concept of a Lie bialgebra, and consists of a pair of

Lie algebroids in duality. They are understood as the infinitesimal versions of Poisson

Lie groupoids and were introduced in the article [MX94].

Let A be a vector bundle and A∗ its dual, and suppose that both A and A∗ carry

the structure of a Lie algebroid. Let HA ∈ C∞(T ∗ΠA) be the Hamiltonian function of

the homological vector field QA associated to A (eq. (1.27)), and let SA∗ ∈ C∞(T ∗ΠA)

be the master Hamiltonian function generating the odd Poisson bracket on C∞(ΠA),

equivalent to the Lie algebroid structure on A∗.
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Definition 1.2.2. The pair A = (A,A∗) is a Lie bialgebroid if, for Θ = HA + SA∗ ,

(Θ,Θ) = 0, (1.32)

under the canonical Poisson bracket (1.3) on T ∗ΠA.

This compact form contains all the information about the structure on A and A∗,

together with their compatibility. This is a consequence of the double vector bundle

structure on T ∗ΠA and the induced bi-grading of eq. (1.23). Observe that ε(Θ) = 3,

and the gradings of the Hamiltonian functions HA and SA∗ are

ε1(HA) = 2, ε2(HA) = 1, ε(HA) = 3,

ε1(SA∗) = 1, ε2(SA∗) = 2, ε(SA∗) = 3.

Condition (1.32) decomposes by the bi-grading into the three separate conditions

(HA, HA) = 0, (HA, SA∗) = 0, (SA∗ , SA∗) = 0.

In particular, the first and third equations carry the Lie algebroid relations for the Lie

algebroids A and A∗ respectively, whilst the second condition translates that ΠA be

a QS-manifold in the sense of [Vor02], i.e. an odd Poisson manifold equipped with a

homological vector field such that the vector field is a derivation over the odd bracket.

In this case, ΠA is equipped with QA and the odd Poisson bracket induced from the

structure of A∗; that QA is a derivation follows from the fact that QA preserves the

Hamiltonian, LQASA∗ = 0.

Remark 1.2.2. In the works [ASZK97, Sch93] the term QS-manifold is used to de-

scribe a Q-manifold equipped with an invariant volume element, whilst QP -manifold

is used to describe a manifold with a homological vector field and a compatible, odd

(non-degenerate) Poisson structure. We prefer to follow [Vor02], and reserve QP -

manifold for a manifold equipped with a homological vector field and compatible even

Poisson bracket.

Remark 1.2.3. Lie bialgebroids were classically described by the condition that

dA∗ [X, Y ]A = [dA∗X, Y ]A + [X, dA∗Y ]A, where [−,−]A is the brackets of sections X, Y

of A and dA∗ is the differential of A∗ [MX94]. Immediately afterwards [KS95] showed

that this implies that each differential must be a derivation of the opposing bracket.
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That this definition is equivalent to definition 1.2.2 was shown in [Roy99], and indeed,

can be seen by identifying the differential dA with the vector field QA. The definition

of a Lie bialgebroid is symmetric, which was first shown in [MX94] using the non-super

description. The proof of this was rather involved, and because of this the super lan-

guage is very natural for such structures since this result is evident from the double

vector bundle structure of T ∗ΠA.

Example 1.2.10. Let g and g∗ be Lie algebras. Then (g, g∗) is a Lie bialgebra if Πg

is a QS-manifold. Equivalently

Qg{u, v}g∗ = −{Qgu, v}g∗ + (−1)u+1{u,Qgv}g∗ ,

for functions u, v ∈ C∞(Πg), the homological vector field Qg associated to g, and the

Schouten bracket induced by g∗.

Example 1.2.11. The tangent bundle and the cotangent bundle of a Poisson man-

ifold provide a natural example of a Lie bialgebroid. Given a Poisson bivector P ∈

C∞(ΠT ∗M), an odd binary bracket can be introduced in the algebra of differential

forms C∞(ΠTM) (see example 1.2.5) as follows. Let Υ ∈ C∞(T ∗ΠT ∗M) be the

canonical odd Hamiltonian function generating the odd Schouten bracket on ΠT ∗M ,

Υ : ((Υ,−),−)
∣∣
ΠT ∗M

= J−,−K, Υ = (−1)apa∗pa. (1.33)

Using Υ, the Poisson Hamiltonian P can be lifted to a fibre-wise linear function on

T ∗ΠT ∗M . Define ΥP ∈ C∞(T ∗ΠT ∗M) as

ΥP = (Υ, P ), (1.34)

which Poisson commutes as a consequence of the Jacobi identity for P and since

(Υ,Υ) = 0 is trivially satisfied. Under the canonical isomorphism (1.25), write

KP = κ∗ΥP = −(κ∗Υ, κ∗P ), (1.35)

where the last equality follows since κ is an anti-symplectomorphism. The Hamiltonian

function KP is an odd fibre-wise quadratic function on T ∗ΠTM such that (KP , KP ) =

0, and hence defines an odd derived bracket on ΠTM by formula (1.11). In canonical

local coordinates xa, ηa on ΠTM , the bracket has the expression

{xa, ηb}KP = −P ab, {ηa, ηb}KP = −ηc∂cP ab. (1.36)
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When functions on ΠTM are identified with differential forms, ηa ↔ dxa, this bracket

coincides with the classical Koszul bracket (compare with example 1.2.5).

Notice that the homological vector field d (eq. (1.2.7)) defining the structure of

the Lie algebroid TM is generated by the function κ∗Υ,

d = (κ∗Υ,−)
∣∣
ΠTM

.

It is easily checked that d is a derivation of the Koszul bracket by applications of the

Jacobi identity for the canonical bracket (−,−), and by observing that (κ∗Υ,ΥP ) = 0

by the Poisson-nilpotency of Υ. Hence the pair (TM, T ∗M) forms a Lie bialgebroid

called the cotangent Lie bialgebroid, where the cotangent bundle is equipped with the

Koszul bracket of 1-forms.

The cotangent Lie bialgebroid is an example of a triangulated Lie bialgebroid. For

a Lie algebroid A, let Λ ∈ C∞(ΠA∗) be an even fibre-wise quadratic function, an even

A-bivector. If Λ satisfies the master equation {Λ,Λ}A = 0, then Γ(∧A∗) ∼= C∞(ΠA)

inherits an odd binary bracket which is compatible with the structure on A, precisely

in the sense that A = (A,A∗) is a Lie bialgebroid. In the case A = TM and M is an

even Poisson manifold, Λ is taken to be the Poisson bivector P and the odd binary

bracket is the Koszul bracket of differential forms.

Example 1.2.12. A well-known example of a triangulated Lie bialgebroid is a trian-

gulated Lie algebra. Let g be a Lie algebra and choose an even quadratic function

R ∈ C∞(Πg∗) which can be identified with an even element r ∈ ∧2g. Classically, this is

known as a triangulated r-matrix, and is required to satisfy the classical Yang-Baxter

equation (see [KS95, KS97] for example). The element r satisfies the Yang-Baxter

equation precisely when R satisfies the master equation {R,R}g = 0 in C∞(Πg∗).

A Lie bialgebroid A = (A,A∗) induces a Poisson structure on the base manifold

M . Let dA and dA∗ be the differentials associated to A and A∗ respectively. Then the

Poisson bracket on M is classically described by

[f, g]A = (−1)f〈dAf, dA∗g〉,

for the canonical pairing 〈−,−〉 of A and A∗ and functions f, g ∈ C∞(M). In terms

of the structure of the QS-manifold ΠA, the bracket is expressed as

[f, g]A = {QAf, g}A∗ . (1.37)
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That these coincide can be seen by translating the first into the language of homological

vector fields. The Jacobi identity and skew-symmetry properties follow from those of

the canonical bracket (−,−).

Remark 1.2.4. A choice of Poisson structure on M breaks the symmetry of the

Lie bialgebroid discussed in remark 1.2.3. One could equivalently define the Poisson

bracket (1.37) using the QS-manifold structure on ΠA∗. This differs by a minus sign

however, since the identification (1.25) is an anti-symplectomorphism.

1.3 Homotopy Structures

Homotopy analogues of the structures discussed so far appear naturally when consider-

ing deformation theory or when dealing with gauge theories for example. These higher

structures are the L∞-algebra structures of Lada and Stasheff [LS93], their Poisson

counterparts the P∞ and S∞-structures, and the higher Lie algebroid structures asso-

ciated to these. This section extends the previous sections to include these definitions,

with almost all carrying over mutatis mutandis.

Definition 1.3.1. An L∞-algebra is a vector space V equipped with a sequence of

R-multilinear anti-symmetric operations [· · · ] : V ×k → V called the k-brackets, such

that these operations have parity kmod 2 and satisfy the higher k-Jacobi identities

∑
i+j=k+1

∑
σ∈Sh(i,k−i)

χ(σ)(−1)i(j−1)[[vσ(1), . . . , vσ(i)], vσ(i+1), . . . , vσ(k)] = 0, (1.38)

where Sh(i, k − i) is the set of (i, k − i)-unshuffles, permutations preserving the order

of the first i elements and the last k − i elements, and χ(σ) is the sign given by the

anti-symmetric permutation by σ.

We use the notation V ×k to mean V × . . . × V k times. Interesting examples of

L∞-algebra structures may be found in [BL09] or [RW98] for example.

Remark 1.3.1. Analogous to remark 1.1.2, there are two conventions that can be

taken in defining an L∞-algebra. The first, and the one we shall adopt, is to follow

definition 1.3.1 as given in [LS93], where the brackets are of alternating parity and anti-

symmetric. The second is to require symmetric brackets {· · · }, all of which now carry
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parity +1. This equivalent notion of an L∞-algebra is known as an L∞-anti-algebra, or

a L∞[1]-algebra, since it is defined on the space of reversed parity ΠV ≡ V [1]. These

conventions differ by a shift in parity given by the isomorphism

{Πv1, . . . ,Πvk} = (−1)(k−1)v1+(k−2)v2+···+vk−1Π[v1, . . . , vk]. (1.39)

However, if compatibility with an associative multiplication is imposed then this choice

of convention is lost. Anti-symmetric brackets must be adopted for an even homotopy

Poisson algebra, whilst symmetric operations must be used for a homotopy Schouten

algebra.

Definition 1.3.2. An even homotopy Poisson algebra, or a P∞-algebra, is an algebra

A equipped with an anti-symmetric L∞-algebra structure in the sense of definition

1.3.1 such that each bracket is a derivation of the associative multiplication in each

argument.

Definition 1.3.3. An odd homotopy Poisson algebra, a homotopy Schouten algebra,

or an S∞-algebra, is an algebra equipped with a symmetric L∞-algebra structure,

or an L∞[1]-structure of remark 1.3.1, such that each bracket is a derivation of the

associative multiplication in each argument.

The complicated Jacobi identities (1.38) can be compactly rephrased in terms of for-

mal homological vector fields. Such a description is due to Voronov [Vor05b, Vor05a],

where a higher derived bracket construction was introduced in order to describe such

homotopy structures.

Let V be an L∞-algebra. Considering V as a vector bundle over a point, the odd

isomorphism (1.17) identifies an element v ∈ V with an odd weight −1 vector field ıv

on ΠV . Introduce a formal homological vector field QV ∈ Vect(ΠV ), with the local

description

QV = ξiQk
i

∂

∂ξk
+

1

2
ξiξjQk

ji

∂

∂ξk
+

1

3!
ξiξjξlQk

lji

∂

∂ξk
+ · · · , (1.40)

(compare with eq. (1.18)), which decomposes by weight, QV = Q0 + Q1 + Q2 + · · · .

The brackets on V may then be defined in terms of the nested commutators of vector

fields,

ı[v1,...,vk] := (−1)(k−1)v1+(k−2)v2+···+vk−1 [· · · [QV , ıv1 ], · · · , ıvk ](0), (1.41)
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where the commutators are evaluated at 0 in ΠV after the kth bracket. For a basis

{ei} of V , the first three brackets on V are calculated to be

[ei] = Qk
i ek, [ei, ej] = (−1)iQk

ijek,

[ei, ej, ek] = (−1)jQl
ijkel.

Remark 1.3.2. When speaking about L∞-algebras, we will always assume that the

L∞-algebras are strict, or without background. This means that there is no term of

weight −1 appearing in QV which would give rise to a 0-bracket or a distinguished

non-zero element of the vector space V .

Definition 1.3.4. An L∞-algebra will be called minimal if the homological vector

field (1.40) has no term of weight 0. That is, Q0 ≡ 0 and there is no 1-bracket present.

Notice that if an L∞-algebra V is minimal, then the binary bracket is a genuine

Lie bracket on V since Q2
1 = 0.

Definition 1.3.5. A morphism Φ : V  W of homotopy Lie algebras is a collection

of maps Φk : V ×k → W which assemble as the Taylor coefficients of a map ΦΠ : ΠV →

ΠW , where ΦΠ is a Q-map (see eq. (1.29)) relating the homological vector fields QV

and QW generating the two L∞-structures.

We must make an important observation: there is no single map V → W which

represents the L∞-morphism, hence the notation V  W . An L∞-morphism is a

collection of maps, which assemble into a single map of vector spaces of reversed

parity. See [Kon03] for details.

Recall that for a Lie algebroid A, a weight +1 homological vector field on ΠA

encodes the algebroid structure. The Lie bracket is recovered from the formula (1.20).

Compare then with the higher derived brackets (1.41); we can define a sequence of

brackets on the sections of A by lifting the weight restriction on the homological vector

field, obtaining an L∞-algebroid.

Definition 1.3.6. Let A → M be a vector bundle. Then A is an L∞-algebroid if

there is a sequence of maps ρk : A×(k−1) → TM called the k-anchors, and a sequence

of R-linear brackets [· · · ]k : Γ(A)×k → Γ(A) called the k-brackets, such that the

C∞(M)-module Γ(A) has the structure of an L∞-algebra, and

[u1, . . . , uk−1, fuk]k = ρk(u1, . . . , uk−1|f)uk + (−1)f(u1+···+uk−1+k)f [u1, . . . , uk]k,
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for sections u1, . . . , uk ∈ Γ(A) and a function f ∈ C∞(M).

Remark 1.3.3. Algebraically, these are described as homotopy Lie-Rinehart alge-

bras, homotopy analogues of classical Lie-Rinehart algebras which stand as the alge-

braic counterpart to Lie algebroids. Homotopy Lie-Rinehart algebras are L∞-algebras

possessing a C∞(M)-module structure such that C∞(M) is an L∞-module over the

algebra. See [Kje01, Vit15] for details and references therein.

The homological vector field on ΠA describing an L∞-algebroid A admits a more

general expression similar to that in eq. (1.40),

QA = Q0 +Q1 +Q2 + · · · ,

decomposing by weight. The higher brackets and anchors can then be expressed by

the nested commutators,

ρk(u1, . . . , uk−1|f) = (−1)(k−1)u1+···+uk−2
[
[· · · [QA, ıu1 ], . . . , ıuk−1

], f
]
(0),

ı
(
[u1, . . . , uk]

)
= (−1)(k−1)u1+···+uk−1

[
· · · [QA, ıu1 ], . . . , ıuk

]
(0),

for sections u1, . . . , uk ∈ Γ(A) and a function f ∈ C∞(M). The entire structure of

the L∞-algebroid is compactly contained in the equation Q2
A = 0. Paralleling the Lie

algebroid case, any L∞-algebroid gives rise to even and odd homotopy Poisson algebras

by analogous higher derived bracket constructions.

Definition 1.3.7. An L∞-algebroid A is minimal if there is no weight 0 term present

in the homological vector field associated to A, QA = Q0 +Q1 + · · · and Q0 = 0.

In particular, there is no unary bracket or distinguished anchor associated to a

minimal L∞-algebroid, and the term Q1 generates a genuine Lie algebroid structure

on A since Q2
1 = 0.

Proposition 1.3.1 ([Vor14]). The higher k-anchors assemble into a morphism of

L∞-algebroids ρ : A  TM , where TM has the canonical Lie algebroid structure of

example 1.2.1.

Proof. For an arbitrary Q-manifold N with local coordinates xa, the homological vec-

tor field defines the map Q : N → ΠTN by Q∗(ηa) = Qa(x). Such a map is automati-

cally a map of Q-manifolds, and from the L∞-algebroid A with associated homological
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vector field QA, we define the map QA : ΠA → ΠT (ΠA) as a Q-morphism. Next

observe that the differential of any map of manifolds is a Q-morphism of odd tangent

bundles relating the de Rham differentials. Define the projection βΠA : ΠA → M ;

the odd tangent map ΠTβΠA : ΠT (ΠA) → ΠTM takes the de Rham differential on

ΠT (ΠA) to that on ΠTM . Finally, ρΠ is defined as the composition ρΠ = ΠTβΠA ◦QA

which is a morphism of Q-manifolds since it is a composition of Q-morphisms.

Definition 1.3.8. An L∞-bialgebroid A is a pair of L∞-algebroids (A,A∗) such that

the two associated Hamiltonian functions HA, SA∗ ∈ C∞(T ∗ΠA) generate the structure

of a homotopy QS-manifold on ΠA.

Notice that the strictness of the L∞-algebroid structure on A (resp. A∗) is equiv-

alent to the vanishing of the Hamiltonian function HA (resp. SA∗) on the zero section

ΠA of T ∗ΠA (resp. ΠA∗ of T ∗ΠA∗).

Remark 1.3.4. There are alternative understandings of what an L∞-bialgebroid

should be. Bashkirov and A.Voronov, [BV16], define an L∞-bialgebroid to be the

double vector bundle T ∗ΠE for some vector bundle E → M , equipped only with a

Poisson commuting function which is required to be linear in the base momenta pa.

This definition allows for operations with mixed inputs and outputs, and indeed such

a case should not be discounted. We will discuss later the reason for our choice of

definition 1.3.8 when speaking about the doubles of such structures, but note that

definition 1.3.8, though more restrictive than that in [BV16], still incorporates the

important class of examples of triangulated L∞-bialgebroids.

We also draw attention to the work of Kravchenko [Kra07], and Bashkirov and

A.Voronov [BV15], on L∞-bialgebras which allow for mixed operations, and also the

work of Mehta [Meh11], who defines a more restrictive L∞-bialgebra as a Lie algebra

equipped with a compatible homotopy Schouten structure arising from linearising a

Lie group equipped with homotopy Poisson structure.

Example 1.3.1. An L∞-bialgebra is a pair of L∞-algebras (g, g∗) whose associated

Hamiltonian functions Hg and Sg∗ satisfy (Hg, Sg∗) = 0 on T ∗Πg ∼= Π(g ⊕ g∗). With

local coordinates ξi, πi on Π(g⊕ g∗), the Hamiltonians are of the form

Hg = Qk(ξ)πk, Sg∗ = ξkSk(π).
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Example 1.3.2. LetA be a Lie algebroid, and Λ ∈ C∞(ΠA∗) be an evenA-multivector

such that {Λ,Λ}A = 0. Then AΛ = (A,A∗,Λ) is a triangulated L∞-bialgebroid. Let

SA be the odd fibrewise-linear Hamiltonian function in C∞(T ∗ΠA∗) generating the

Schouten structure corresponding to the Lie algebroid A. We define the odd function

ΥΛ ∈ C∞(T ∗ΠA) as

ΥΛ = (SA,Λ), (1.42)

which satisfies (ΥΛ,ΥΛ) = 0 since Λ satisfies the master equation. Then KΛ = κ∗ΥΛ =

−(HA, κ
∗Λ) is a Poisson-nilpotent function on C∞(T ∗ΠA), which defines the sequence

of odd Poisson brackets on C∞(ΠA) by the derived bracket formula

{f1, . . . , fk}KΛ
= (· · · (KΛ, f1), . . . , fk)

∣∣
ΠA
, (1.43)

for functions f1, . . . , fk ∈ C∞(ΠA). These brackets provide A∗ with an L∞-algebroid

structure, and since LQAKΛ = 0 by the nilpotency of HA, (A,A∗) is an L∞-bialgebroid.

Compare with example 1.2.11 in the case when A = TM and Λ is a generalised Poisson

structure. In this case we obtain the sequence of higher Koszul brackets on C∞(ΠTM)

constructed in the work [KV08].

Example 1.3.3. The triangulated L∞-bialgebra produced in [BV15] provides an ex-

ample of an L∞-bialgebroid. For an L∞-algebra g, an even element R ∈ C∞(Πg∗)

satisfies the generalised Maurer-Cartan equation if∑
k≥1

1

k!
{R, . . . , R}g = 0,

for the induced homotopy Schouten structure on C∞(Πg∗). Notice in the case k = 2,

i.e. g is a Lie algebra, the generalised Maurer-Cartan equation degenerates to the

master equation {R,R}g = 0. The even function R is identified with an “r∞-matrix”

in g, and defines a compatible L∞-bialgebra structure on g∗ via the same construction

as in example 1.3.2.

Though this is will be known to experts, the author does not know of any literature

where this is stated, so we will detail the following proposition.

Proposition 1.3.2. Let A be an L∞-bialgebroid. Then M is a homotopy Poisson

manifold, or a P∞-manifold, with the brackets defined as

[f1, . . . , fk]A = (−1)(k−2)f1+···+fk−2{QAf1, . . . , QAfk−1, fk}A∗ ,
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for functions f1, . . . , fk ∈ C∞(M), and where QA and {· · · }A∗ generate the QS-

manifold structure of ΠA.

Proof. Skew-symmetry and the Leibniz rule are inherited from the Schouten brackets

and the derivation QA. The only condition to check are the Jacobi identities (1.38),∑
i+j=k+1

∑
σ∈Sh(i,k−i)

χ(σ)(−1)i(j−1)[[fσ(1), . . . , fσ(i)]A, fσ(i+1), . . . , fσ(k)]A = 0.

Consider the Jacobi identity for the homotopy Schouten structure on ΠA, where χ′(σ)

is the (symmetric) sign acquired from the shuffle σ, and we split about the final

argument,∑
σ∈Sh(i,k−1−i)

χ′(σ){{QAfσ(1), . . . , QAfσ(i)}A∗ , QAfσ(i+1), . . . , QAfσ(k−1), fk}A∗

+
∑

σ∈Sh(i−1,k−1−i)

χ′(σ){{QAfσ(1), . . . , QAfσ(i−1), fk}A∗ , QAfσ(i), . . . , QAfσ(k)}A∗ = 0.

Bringing QA out of the first term, switching the position of the nested bracket in the

second, and inserting the correct signs brings us to∑
σ∈Sh(i,k−1−i)

χ′(σ)(−1)ε[[fσ(1), . . . , fσ(i)]A, fσ(i+1), . . . , fσ(k−1), fk]A

+
∑

σ∈Sh(i,k−1−i)

χ′(σ)(−1)δ[[fσ(1), . . . , fσ(i−1), fk]A, fσ(i), . . . , fσ(k)]A = 0,

where ε and δ are the signs

ε = i(j − 1) + (k − 2)fσ(1) + · · ·+ (k − i+ 1)fσ(i−2)

+(k − i)fσ(i−1) + (k − i− 1)fσ(i) + · · ·+ fσ(k−2),

δ = ε+ (j − 1)fk.

Observe that χ′(σ), the sign from the shuffle, is symmetric with respect to a shift in

parity. The sign we must obtain is anti-symmetric with respect to the original parity.

These differ precisely by a “parity shift” of the first k− 2 arguments analogous to the

isomorphism (1.39), and produces the sign ε− i(j− 1). It remains to observe that the

additional sign of (j − 1)fk in δ must be also incorporated into this shift, to remove

those terms created by the presence of the odd derivation QA. From this, we obtain

the Jacobi identity of the homotopy Poisson structure,∑
i+j=k+1

∑
σ∈Sh(i,k−i)

χ(σ)(−1)i(j−1)[[fσ(1), . . . , fσ(i)]A, fσ(i+1), . . . , fσ(k)]A = 0.
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Chapter 2

Homotopy Courant Algebroids, and

Doubles of L∞-Bialgebroids

Courant algebroids were introduced in the work [LWX97] in the search for the double

objects of Lie bialgebroids. Their interpretation in terms of a homological vector field

on a supermanifold was developed in [Roy99, Roy02], which is adapted in this chapter

in the investigation as to what should stand as the double of an L∞-bialgebroid. From

this investigation we are lead to the notion of a homotopy Courant algebroid.

2.1 Courant Algebroids

Definition 2.1.1. A Courant algebroid is a vector bundle E → M together with a

non-degenerate bilinear form 〈−,−〉 on sections, a map ρ : E → TM called the anchor,

and a bracket [−,−] on sections of E such that:

1. [u, [v, w]] = [[u, v], w] + (−1)uv[v, [u,w]];

2. [u, fv] = ρ(u|f)v + (−1)uff [u, v];

3. ρ([u, v]) = [ρ(u), ρ(v)];

4. ρ(u|〈v, w〉) = 〈[u, v], w〉+ (−1)uv〈v, [u,w]〉;

5. ρ(u|〈v, w〉) = 〈u, [v, w] + (−1)vw[w, v]〉,

for sections u, v, w ∈ Γ(E) and a function f ∈ C∞(M).

41



2.1. COURANT ALGEBROIDS

Properties (1), (2) and (4) can be rephrased by observing that a section u ∈ Γ(E)

generates a derivation of the C∞(M)-module Γ(E) by u 7→ adu = [u,−]. The three

properties (1), (2) and (4) are then equivalent to saying that the structure of the

Courant algebroid is preserved under the action of adu. It was noticed in [Uch02] that

the number of axioms for a Courant algebroid may be reduced, and in [KS05] it was

shown that it could in fact be reduced to properties (1), (4), and (5), with (2) and (3)

consequences of the others. A detailed history of the Courant algebroid can be found

in the survey [KS13].

Our choice of bracket is the Dorfman bracket, a bracket originally introduced in

[Dor93] for the study of integrable evolution equations. The bracket first defined by

Courant in [Cou90] is a particular case of the more general Courant bracket which also

bears Courant’s name, and which is a skew-symmetrisation of the Dorfman bracket.

Courant algebroids were originally defined using the Courant bracket [LWX97], how-

ever such a definition introduces defects in terms such as the Jacobi identity and the

Leibniz rules. It happens that it is more practical to work with the Dorfman bracket

for our purposes which removes the defects at the sacrifice of symmetry.

Remark 2.1.1. The Dorfman bracket is an example of a Loday bracket, a bilinear

operation satisfying a Jacobi identity of the form (1) in definition 2.1.1, which provides

the module Γ(E) with the structure of a Loday algebra. As such, a Courant algebroid

can be considered as a Loday algebroid equipped with a non-degenerate bilinear form

[GKP13]. Loday algebras are also referred to as Leibniz algebras [KW01] and appear

as derived brackets [KS04].

2.1.1 Graded Symplectic 2-Manifolds

An alternate description of Courant algebroids was developed by Roytenberg in terms

of non-negatively graded manifolds [Roy02]. Described originally for those Courant

algebroids arising as the suggested doubles of Lie bialgebroids [Roy99], Roytenberg

showed that any Courant algebroid can be realised as a degree 2 symplectic manifold

equipped with an appropriate degree 3 master function. The structure of the Courant

algebroid was then shown to be expressible via this master function and the non-

degenerate Poisson bracket by a derived bracket type formula.
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A symplectic 2-manifold is a non-negatively graded manifold M (see [Vor02]),

equipped with a symplectic form of degree 2. The degree of the symplectic form

constrains M to have degree at most 2, which therefore exhibits the fibred structure

M→ ΠE →M, (2.1)

where M is an arbitrary smooth manifold and ΠE is a vector bundle. Roytenberg

showed that symplectic 2-manifolds admit a one-to-one correspondence with pseudo-

Euclidean vector bundles E, where the total space of the bundle of reversed parity

ΠE inherits the structure of a Poisson manifold by the extension of the bilinear form

as a derivation in each argument. The additional structure of a Courant algebroid is

provided through a degree 3 function Θ ∈ C∞(M) via the non-degenerate Poisson

bracket on M. Let us recall this in detail.

Let E be a pseudo-Euclidean vector bundle. The cotangent bundle T ∗ΠE carries

the structure of a symplectic 2-manifold by considering the total ε-grading given in eq.

(1.24) for the double vector bundle. The canonical even 2-form on T ∗ΠE is of ε-degree

2, giving rise to the canonical degree −2 Poisson bracket (eq. (1.3)) on C∞(T ∗ΠE).

Using the canonical double vector bundle isomorphism eq. (1.25), the two projection

maps

β : T ∗ΠE → ΠE, β′∗ = β∗ ◦ κ : T ∗ΠE → ΠE∗,

can be combined into a single canonical map

XE : T ∗ΠE → Π(E ⊕ E∗). (2.2)

The pull-back of XE is a Poisson map X ∗E : C∞(Π(E ⊕ E∗)) → C∞(T ∗ΠE), taking

the Poisson structure on C∞(Π(E ⊕ E∗)) obtained from the extension of the natural

pairing to the canonical non-degenerate bracket.

The isometric embedding E ↪→ E ⊕ E∗ given by u 7→ u + 1
2
〈u,−〉 then defines a

map ΠE → Π(E ⊕ E∗), over which the bundle T ∗ΠE may be pulled back producing

an affine bundle M→ ΠE,

M T ∗ΠE

ΠE Π(E ⊕ E∗).

//

�� ��
//
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The pull-back of the canonical symplectic form on T ∗ΠE provides a symplectic form

onM, whenceM is called the minimal symplectic realisation of the Poisson manifold

ΠE. The mapM→ ΠE is an affine fibration and induces the Poisson map C∞(ΠE)→

C∞(M); the affine structure of this fibration stems from the non-linear transformation

of the degree 2 local coordinates in the fibres. Consider the set of canonical local

coordinates xa, ξi, pa, πi on T ∗ΠE, where under a change of coordinates x = x(x′),

ξi = ξi
′
T ii′ , pa = Ja

′

a pa′ + (−1)a(j+1)ξj
′
T jj′∂aT

i′

j πi′ , πi = T i
′

i πi′ . (2.3)

Due to the affine transformation of the base momenta pa, it is beneficial to introduce

a connection ∇ in the vector bundle E, compatible with the metric g, in order to

redefine the coordinates. Such a connection is called a metric connection and satisfies

the condition ∇g = 0. Note that the existence of metric connections can always be

assumed, see [Rot91] for instance. Let ∇ be defined by the connection coefficients Aiaj,

and prescribe new base momenta coordinates

qa = pa − (−1)a(j+1)ξjAiajπi, (2.4)

which obey the transformation law qa = Ja
′

a qa′ with respect to the Jacobian matrix

J . Equipped with this connection, the cotangent bundle splits into the direct sum

E∇ = T ∗M ⊕ Π(E ⊕ E∗) via the symplectomorphism

ϕE∇ : E∇ → T ∗ΠE, (2.5)

twisting the canonical symplectic form on T ∗ΠE by the connection coefficients. Since

ϕE∇ is a symplectomorphism, the composition ϕ∗E∇ ◦ X
∗
E defines the Poisson map

X := ϕ∗E∇ ◦ X
∗
E : C∞(Π(E ⊕ E∗))→ C∞(E∇), (2.6)

which can be viewed as the inclusion of the Poisson subalgebra C∞(Π(E ⊕ E∗)) into

the algebra C∞(E∇).

The degree 2 coordinates on the symplectic realisation M obey a similar affine

transformation law to those on T ∗ΠE, and it is again beneficial to introduce a metric

connection in E in order to redefine these. Given local coordinates xa on M , natural

coordinates ξi on ΠE can be introduced such that, for a local frame {ei} of E, the

metric on E is described by constant functions

〈ei, ej〉 = (−1)igij.
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The symplectic realisationM can then be prescribed local coordinates xa, ξi, qa, where

the degree 2 coordinates qa depend on the metric connection coefficients Aiaj, but satisfy

the transformation law qa = Ja
′

a qa′ for a change of base coordinates x = x(x′). Again,

the choice of connection splits the symplectic manifoldM via the symplectomorphism

ϕM∇ :M∇ := T ∗M ⊕ ΠE →M,

which gives the corresponding Poisson map

X : C∞(ΠE)→ C∞(M∇). (2.7)

(We denote both Poisson maps in eqs. (2.6) and (2.7) by the symbol X , which should

not cause confusion in context.) The even symplectic form onM∇ now depends on the

connection coefficients, and coincides with the symplectic structure defined in [Rot91]

defined from a metric connection. The corresponding non-degenerate Poisson bracket

on M∇ is described by the local expressions

[qa, x
b]∇ = δba, [ξi, ξj]∇ = (−1)igij,

[qa, ξ
i]∇ = ξjAiaj, [qa, qb]∇ = (−1)iξiξjRabji,

(2.8)

where the coefficients gij are inverse to the metric coefficients gij, and Rabji are the

coefficients of the curvature tensor of the connection ∇ in E.

We must mention that although the split manifold M∇ depends on the choice

of connection, two different metric connections ∇ and ∇′ produce symplectomorphic

split manifoldsM∇ ∼=M∇′ . It therefore makes sense to fix a single metric connection

∇ on E throughout the remainder of the chapter.

Definition 2.1.2. Let E be a pseudo-Euclidean vector bundle equipped with a metric

connection ∇ on E. A Courant algebroid is the pair (M∇,Θ), where Θ ∈ C∞(M∇)

is a degree 3 function on the minimal symplectic realisation of ΠE such that

[Θ,Θ]∇ = 0. (2.9)

It was shown in the work [Roy02] that the master equation (2.9) for the function

Θ contains all the structural information of a Courant algebroid. The Poisson map in

eq. (2.7) can then be used to recover the anchor and bracket of the Courant algebroid

via derived brackets. Define the odd isomorphism

 : Γ(E)→ C∞+1(ΠE), (2.10)
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identifying sections of E with degree 1 (fibre-linear) functions on ΠE via the non-

degenerate metric g; for a section u ∈ Γ(E), write (u) = u ∈ C∞(ΠE). Then for

sections u, v ∈ Γ(E), the symmetric bilinear form on Γ(E) may be expressed as

〈u, v〉 = (−1)u[u, v]∇,

where the non-degeneracy follows from that of the bracket. The anchor and bracket

of E are given analogously to formula (1.19) and (1.20) for a Lie algebroid,

ρ(u|f) = [[Θ,X (u)]∇, f ]∇, (2.11)

X ([u,v]Θ) = (−1)u[[Θ,X (u)]∇,X (v)]∇.

We will introduce the notation ū = X (u) for the section u ∈ Γ(E) viewed as a degree

1 function on C∞(M∇) with shifted parity.

2.2 The Double of an L∞-Bialgebroid

In the work [Dri83], Drinfeld defined what is now known as the Drinfeld double of

a Lie bialgebra (g, g∗), producing a quasi-triangular Lie bialgebra which provides a

source of quantum groups. Classically a Lie bialgebra is described as a Lie algebra g

whose dual space g∗ is also a Lie algebra, such that the comultiplication δ : g→ g⊗ g

satisfies the cocycle condition

δ([u, v]) = (adu ⊗ 1 + 1⊗ adu)δ(v)− (adv ⊗ 1 + 1⊗ adv)δ(u),

for elements u, v ∈ g and the Lie bracket on g.

The Drinfeld double of a Lie bialgebra is defined as the unique Lie bialgebra struc-

ture on the direct sum g⊕g∗, such that both g and g∗ are Lie subalgebras, the natural

inner product is ad-invariant, and the cobracket of g⊕ g∗ is given by the coboundary

of an element r ∈ ∧2(g ⊕ g∗). This last fact means that the double is actually a

quasi-triangular Lie bialgebra since r satisfies (a modified version of) the Yang-Baxter

equation, see example 1.2.12.

This entire construction is conveniently described in the super language. For a pair

of Lie algebras (g, g∗), the corresponding Hamiltonian functions Hg and Sg∗ defining

the Q-structure and the odd Poisson structure of Πg commute under the canonical
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Poisson bracket on T ∗Πg if and only if (g, g∗) is a Lie bialgebra. That is, (g, g∗) is a

Lie bialgebra if and only if Πg is a QS-manifold.

It is this approach which is most adequate when defining the double of a Lie

bialgebroid. To answer this several solutions were offered, the most encompassing of

which were those given by Roytenberg [Roy99] and Mackenzie [Mac98, Mac11]. (These

two solutions were shown to be equivalent by Voronov [Vor12]). The advantage of

Roytenberg’s approach was that it utilised the super language, which simplifies the

complicated structures which were necessary in Mackenzie’s classical approach via

double Lie algebroids. (As is usually the case, for example in number theory, the

elementary proofs are often the hardest.)

Given a Lie bialgebroidA, we take as the double the pair of commuting homological

vector fields on the cotangent bundle T ∗ΠA defined by the pair of Hamiltonians HA

and SA∗ associated to A. The sum of these homological vector fields then provides

the manifold T ∗ΠA with Q-structure. In comparison with the construction of the

Drinfeld double, this sum provides the Lie algebra structure to the double g ⊕ g∗.

The cobracket structure obtained from the S-structure however remains undefined in

the Courant case, but which is expected to exist. It is in fact the Q-manifold T ∗ΠA

together with this unknown structure that should be the correct Drinfeld double of a

Lie bialgebroid.

Now let A be an L∞-bialgebroid (as defined in definition 1.3.8). It makes good

sense to begin to define a possible double in line with Roytenberg’s approach for a Lie

bialgebroid. Recall that an L∞-bialgebroid A defines the QS-manifold ΠA generated

by the odd Hamiltonians HA, SA∗ ∈ C∞(T ∗ΠA).

Definition 2.2.1. An L∞-bialgebroid is minimal if both A and A∗ are minimal L∞-

algebroids in the sense of definition 1.3.7.

Definition 2.2.2. The double of a minimal L∞-bialgebroid A is the cotangent bundle

D = T ∗ΠA equipped with the commuting homological vector fields

Q = (HA,−), K = (SA∗ ,−),

defined from the Hamiltonians generating the L∞-bialgebroid structure, together with

some additional unknown structure.
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Despite not defining this additional structure, the Q-structure on T ∗ΠA is itself

of interest, and must satisfy a non-trivial existence condition. This is the reason

for the requirement of minimality. The Drinfeld double of a Lie bialgebra has the

property that both the Lie algebra and its dual are Lie subalgebras of the structure.

Translating into the language of homological vector fields, we require that when the

two homological vector fields defining the structure of the Drinfeld double on T ∗Πg are

restricted to the zero sections Πg and Πg∗ in turn, they are both tangent to the zero

sections, and the structure of both Lie algebras is recoverable via derived brackets. For

an L∞-bialgebroid we will require the same condition, that the zero sections ΠA and

ΠA∗ (viewed as the zero section of T ∗ΠA∗ under the canonical double vector bundle

isomorphism,) should inherit the homological vector fields defining the L∞-structures

of both A and A∗ upon restriction.

Proposition 2.2.1. For an L∞-bialgebroid A, the homological vector field QD =

Q + K on the double D restricts to the vector fields QA and QA∗ associated to the

L∞-algebroids A and A∗ if and only if both L∞-algebroids are minimal.

Proof. Let HA, SA∗ ∈ C∞(D) be the Hamiltonian functions defining the structure of

A. In natural coordinates xa, ξi, pa, πi,

HA = Qa(x, ξ)pa +Qk(x, ξ)πk, SA∗ = Sa(x, π)pa + ξkSk(x, π). (2.12)

Then calculating:

QD = (Qa + Sa)
∂

∂xa
+

(
Qi +

∂Sa

∂πi
pa +

∂Sk
∂πi

ξk
)

∂

∂ξi

− (−1)a
(
∂Qb

∂xa
pb +

∂Qi

∂xa
πi +

∂Sb

∂xa
pb +

∂Sk
∂xa

ξk
)

∂

∂pa

+ (−1)i
(
∂Qa

∂ξi
pa +

∂Qk

∂ξi
πk + Si

)
∂

∂πi
.

On the restriction of QD to the zero section ΠA we obtain the tangent vector field

QD

∣∣
ΠA

= Qa(x, ξ)
∂

∂xa
+Qi(x, ξ)

∂

∂ξi
+ Sa(x)

∂

∂xa
+ ξkSik(x)

∂

∂ξi
,

where we make clear the dependence upon the variables x, ξ. Hence we obtain the

vector field QA associated to the L∞-algebroid A if and only if the lowest degree

components of S are zero. That is, A∗ is a minimal L∞-bialgebroid. The argument is

then symmetrical for A.
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Definition 2.2.2 is incomplete for an arbitrary L∞-bialgebroid, with the unknown

structure still to be defined. When the base manifold M is a single point however, i.e.

the L∞-bialgebroid reduces to an L∞-bialgebra, this structure can be described and

presents itself as a classical binary Schouten bracket on the manifold T ∗ΠA1.

Let (g, g∗) be an L∞-bialgebra, equivalent to the QS-manifold structure of Πg.

The Poisson-commuting Hamiltonian functions Hg, Sg∗ ∈ C∞(T ∗Πg) define a single

homological vector field

QD ∈ Vect(Π(g⊕ g)),

via the natural identification T ∗Πg ∼= Π(g⊕ g) =: D. Let ξi, ξi be natural coordinates

on D, in which QD takes the form

QD =

(
Qi +

∂Sk
∂ξi

ξk
)

∂

∂ξi
+ (−1)i

(
∂Qk

∂ξi
ξk + Si

)
∂

∂ξi
. (2.13)

Now introduce the iterated cotangent bundle T ∗D with conjugate momenta coordi-

nates πi, π
i. The odd Hamiltonian function HD ∈ C∞(T ∗D) corresponding to QD is

given locally by

HD = Qiπi +
∂Sk
∂ξi

ξkπi + (−1)iπiSi + (−1)iπi
∂Qk

∂ξi
ξk. (2.14)

The fact that ((HD, HD)) = 0, where we use the thickened double bracket ((−,−)) to

denote the canonical even Poisson bracket on T ∗D, is a consequence of the nilpotency

of QD.

There is a naturally defined element r = (−1)iξiξi in C∞(D) (more correctly, it is

defined in C∞(D∗) where we then map back to C∞(D) via the canonical identification),

which defines a canonical element R ∈ C∞(T ∗D), where R = (−1)iπiπi. Define the

odd Hamiltonian function SD ∈ C∞(T ∗D) by

SD :=
1

2
((R,HD)), SD = (−1)i+j

1

2
πiπj

∂2Qk

∂ξj∂ξi
ξk −

1

2
πiπj

∂2Sk
∂ξj∂ξi

ξk. (2.15)

In fact SD is the image under the canonical isomorphism of double vector bundles

of the element r lifted by the Hamiltonian HD viewed as generating the S-structure

corresponding to the L∞-algebra structure on g⊕ g. (Compare with the Hamiltonian

KΛ defined from the function (1.42) in example 1.3.2. In our setting R = κ∗Λ and

SD = KΛ.)

1The existence of this bracket was already known to A. Bruce, who considered the double con-
struction for L∞-bialgebras, unpublished.
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Theorem 2.2.1. The function SD defines a binary Schouten bracket on D which is

locally given by

{ξi, ξj}SD = − ∂2Sk
∂ξi∂ξj

ξk {ξi, ξj}SD = 0 {ξi, ξj}SD =
∂2Qk

∂ξi∂ξj
ξk.

This structure is further preserved by the vector field QD, i.e., QD acts as a derivation

over this bracket.

Proof. The local formula follow by direct calculation. What is remarkable is that the

cross terms vanish completely from the Hamiltonian SD. To check that the bracket

satisfies the Jacobi identity is to check the master equation ((SD, SD)) = 0 for the

Hamiltonian. Consider

((SD, SD)) = (( ((R,HD)), ((R,HD)) ))

= (( (( ((R,HD)), R)), HD)) + ((R, (( ((R,HD)), HD)) )).

The last term vanishes by the nilpotency of HD, and is equivalent to the condition

that QD be a derivation over the Schouten bracket. Hence we are left with the first

term ((HD, (( ((HD, R)), R)) )). The inner term (( ((HD, R)), R)) corresponds to the right hand

side of the generalised Maurer-Cartan equation GMC(r) =
∑
{r, . . . , r}g⊕g∗ = 0 in

example 1.3.3, which can be seen by local consideration, expanding both in terms

of fibre variables. This is a direct generalisation of the classical situation. In fact r

does not satisfy the generalised Maurer-Cartan equation, GMC(r) 6= 0, however it is

invariant under the flow of QD, and so ((HD, (( ((HD, R)), R)) )) = 0, and hence ((SD, SD)) = 0.

The fact that it is invariant follows from the Jacobi identities for Hg and Sg∗ .

Consider expression (2.15) for SD, and write S(1) + S(2) = SD where

S(1) = (−1)i+j
1

2
πiπj

∂2Qk

∂ξj∂ξi
ξk,

and S(2) is defined as the remainder. Then ((SD, SD)) decomposes by S(1) and S(2).

Consider

((S(1), S(1))) = (−1)n+m+jπmπn
∂2Qi

∂ξn∂ξm
πj

∂2Qk

∂ξj∂ξi
ξk.

Then an expansion of Q coincides precisely with the Jacobi identity (Hg, Hg) with

certain variables ξi substituted with (−1)iπi, and hence ((S(1), S(1))) = 0 if and only

if (Hg, Hg) = 0. The result is the same with ((S(1), S(2))) depending on (Hg, Sg∗) and

((S(2), S(2))) depending on (Sg∗ , Sg∗). Hence ((SD, SD)) = 0 is a result of the QS-manifold

structure of Πg.
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Definition 2.2.3. The double of a minimal L∞-bialgebra (g, g∗) is the QS-manifold

D = T ∗Πg, where the QS-structure is generated by the two Hamiltonian functions

HD, SD ∈ C∞(T ∗D) defined in equations (2.14) and (2.15).

It would be ideal to obtain a classical L∞-algebra structure from D on the space

ΠD ∼= g⊕g∗ in complete analogy with Drinfeld. However, notice that the Hamiltonian

SD only generates a binary Schouten bracket on D which is in general non-linear in the

variables ξi, ξj. This non-linear Schouten structure cannot hope to correspond to any

linear Lie algebra structure as the bracket of eq. (1.28) describes. Hence the double of

an L∞-bialgebra is not an L∞-bialgebra unless all brackets except the binary brackets

vanish, in which case this reduces to the Drinfeld double of a Lie bialgebra.

2.3 Homotopy Courant Algebroids

The double of a Lie bialgebroid A produces a Courant algebroid structure due to the

natural projection T ∗ΠA → Π(A ⊕ A∗) and the derived bracket type formula (2.11).

This remains true for the homotopy case, and by direct analogy we can endow the

direct sum A ⊕ A∗ with a sequence of higher brackets and anchors, producing an

example of what will be a homotopy Courant algebroid.

2.3.1 The Higher Dorfman Brackets

Given an L∞-algebroidA with associated Hamiltonian functionsHA, SA∗ ∈ C∞(T ∗ΠA),

the symplectomorphism (2.5) allows us to define the pull-backs

h := ϕ∗E∇HA, s := ϕ∗E∇SA∗ , (2.16)

to the manifold E∇, which satisfy [h + s, h + s]∇ = 0 since ϕE∇ preserves the Poisson

brackets. Define the sum of these functions as ϑ = h+ s.

The graded algebra of functions C∞(E∇) can be equipped with the structure of a

homotopy Loday algebra as introduced in the work [Uch11], which endows E∇ with a

sequence of higher operations satisfying a Loday-Jacobi identity. Define the kth higher

Loday bracket Φk
ϑ as

Φk
ϑ(f1, . . . , fk) := (−1)(k−1)f1+···+fk−1

[
· · · [ϑ, f1]∇, . . . , fk

]
∇, (2.17)
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for functions f1, . . . , fk ∈ C∞(E∇). These operations satisfy higher homotopy Jacobi

identities written in a non-skew-symmetric form if and only if [ϑ, ϑ]∇ = 0; automati-

cally a consequence of the L∞-bialgebroid structure. We refer to [Uch11] for the details

of this construction. An important observation to make is that the Loday brackets

Φk
ϑ, k ≥ 1, are built from graded operations, and so each bracket inherits the natural

ε-grading from E∇. As such, the higher Jacobi identities satisfied by the brackets also

decompose by the ε-grading of the manifold E∇.

This homotopy Loday structure allows the definition of a sequence of higher Dorf-

man brackets and anchors on the space of sections of the vector bundle E = A⊕ A∗.

Recall that for a section u ∈ Γ(E), the function ū ∈ C∞(E∇) is the corresponding odd

degree 1 function on E∇. Then the kth Dorfman bracket on Γ(E) is defined by the

nested sequence

[u1, . . . , uk]ϑ = Φk
ϑ(ū1, . . . , ūk)

∣∣
ε=1
, (2.18)

and similarly, the kth higher anchor as

ρk(u1, . . . , uk−1|f) = Φk
ϑ(ū1, . . . , ūk−1, f)

∣∣
ε=0
, (2.19)

for sections u1, . . . , uk ∈ Γ(A⊕A∗), and a function f ∈ C∞(M) viewed as a degree zero

function on E∇. The notation
∣∣
ε=1

means to restrict to the ε-degree 1 terms and so on.

That these restrictions to the individual graded components actually specify higher

bracket operations is a consequence of the observation that the Jacobi identities also

decompose with respect to the ε-grading, and hence each graded piece of each operation

satisfies a Jacobi identity.

The structure of an L∞-bialgebroid A allows for a description of these higher

Dorfman brackets by adapting the operator representation of a Courant algebroid

introduced in [KS05]. For the functions h, s ∈ C∞(E∇), introduce the two operators

ĥ = [h,−]∇, ŝ = [s,−]∇,

in End(C∞(E∇)), together with the insertion and multiplication operators

ı̂X = [X̄,−]∇, mX = X̄, ı̂η = [η̄,−]∇, mη = η̄,

for sections X ∈ Γ(A) and η ∈ Γ(A∗). Cartan’s formula then defines the Lie derivative

operators by the commutators

L̂X = [ĥ, ı̂X ], L̂∗η = [ŝ, ı̂η].
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Notice that in general these Lie derivative operators are of inhomogeneous non-negative

degree, due to the inhomogeneity of the functions h and s. It is easy to see that when

the functions h and s define a Lie bialgebroid then these coincide with the usual Lie

derivatives defined in [KS05]. Manipulating the Jacobi identity for the commutator of

endomorphisms shows that these operators satisfy the following relations:

[ı̂X ,mη] = mıXη, [ĥ,mη] = mdη, [L̂X ,mη] = mLXη,

[ŝ, mX ] = md∗X , [L̂∗η,mX ] = mL∗ηX .

We use hat-operators ĥ, ı̂X , L̂X to denote endomorphisms of C∞(E∇) and non-hat op-

erators d, ıX ,LX to denote operations on sections of the L∞-algebroids. The algebroid

differentials d and d∗ are also inhomogeneous of arbitrary positive degree, for which

we will write dk for the component of d with degree k. In particular, d = d0 +d1 + · · · ,

where d1 corresponds to the differential of a Lie algebroid.

Proposition 2.3.1. Given an L∞-bialgebroid A, the following formula specify a se-

quence of higher Dorfman brackets [· · · ]ϑ on the vector bundle E = A⊕A∗: for sections

Xi, Yj ∈ Γ(A) and ηi, τj ∈ Γ(A∗),

[X]ϑ = [X]A + d0
∗X, [η]ϑ = [η]A∗ + d0η,

[X, η]ϑ = LXη − ıηd1
∗X, [η,X]ϑ = L∗ηX − ıXd1η,

and for brackets of 3 or more arguments, where l = i+ j,

[X1, . . . , Xi]ϑ = [X1, . . . , Xi]A, [η1, . . . , ηj]ϑ = [η1, . . . , ηj]A∗ ,

[X1, . . . , Xi, η, Y1, . . . , Yj]ϑ = (−1)j+
l(l−1)

2 ıYj · · · ıY1ıXi · · · ıX1d
lη

−(−1)j+
l(l−1)

2

i∑
m=1

(−1)mıYj · · · ıY1ıXi · · · ı̂Xm · · · ıX1d
l〈Xm, η〉,

[η1, . . . , ηi, X, τ1, . . . , τj]ϑ = (−1)j+
l(l−1)

2 ıτj · · · ıτ1ıηi · · · ıη1d
l
∗X

−(−1)j+
l(l−1)

2

i∑
m=1

(−1)mıτj · · · ıτ1ıηi · · · ı̂ηm · · · ıη1d
l
∗〈ηm, X〉,

whereˆdenotes omission, and all other brackets vanish.

In particular, notice that when the functions h and s define a Lie bialgebroid we

recover the well-known binary Dorfman bracket

[X + η, Y + τ ]ϑ = [X, Y ]A + LAXτ − ıY dAη + [η, τ ]A∗ + LA∗η Y − ıτdA∗X.
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Proof. First notice that the bi-gradings carried by the hamiltonian functions h and s

prohibit brackets of two or more mixed arguments: for example,

[[[[h(k,1), X̄]∇, Ȳ ]∇, η̄]∇, τ̄ ]∇ ≡ 0

since the term is of bi-degree (k − 2,−1). Hence only the expressions in the propo-

sition remain. The unary brackets follow straightforwardly from the investigation of

minimality, and the binary brackets coincide with the classical Dorfman bracket by

comparison of degree.

Consider then the expression [X1, . . . , Xi, η, Y1, . . . , Yj]ϑ for l = i + j ≥ 1. Manip-

ulations of the Jacobi identity for the Loday brackets give the following expression

Φl+1
ϑ (X̄1, . . . , X̄i, η̄, Ȳ1, . . . , Ȳj) = (−1)i

[
· · · [h, η̄], X̄1], . . . , Ȳj

]
−

i∑
m=1

(−1)i−m
[
· · · [h, [X̄m, η̄]], X̄1, . . . , Ȳj

]
= (−1)j+

l(l−1)
2

([
Ȳj, . . . , [X̄1, [h, η̄]] · · ·

]
−

i∑
m=1

(−1)m
[
Ȳj, . . . , [X̄1, [h, [X̄m, η̄]]] · · ·

])
.

We can then identify the terms in the bracket with the corresponding operators. The

term involving multiple 1-forms and a single vector field is symmetric (as in the binary

case).

Example 2.3.1. The motivating example for considering such double constructions

appears when M is a homotopy Poisson manifold, and the L∞-bialgebroid in question

is the cotangent L∞-bialgebroid (TM, T ∗M) of example 1.3.2.

Let [· · · ]KP be the sequence of higher Koszul brackets providing T ∗M with the

structure of an L∞-algebroid. Then the higher Dorfman brackets on the vector bundle

TM ⊕T ∗M are described by proposition 2.3.1. For vector fields X1, . . . , Xk ∈ Γ(TM)

and differential 1-forms η1, . . . , ηk ∈ Γ(T ∗M),

[X + η]ϑ = [η]KP ,

[X1 + η1, X2 + η2]ϑ = [X1, X2] + LX1η2 − ıX2dη1 + [η1, η2]KP + L∗η1
X2 − ıη2d

1
PX1,

and for k ≥ 3,

[X1 + η1, . . . , Xk + ηk]ϑ = [η1, . . . , ηk]KP +
k∑
i=1

[η1, . . . , ηi−1, Xi, ηi+1, . . . , ηk]ϑ,
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where, for the differential dP of multivector fields,

[η1, . . . , ηi−1, Xi, ηi+1, . . . , ηk]ϑ = (−1)i+
(k−2)(k+1)

2 ıηk · · · ıηi+1
ıηi−1
· · · ıη1d

l
PX

−(−1)i+
(k−2)(k+1)

2

i−1∑
m=1

(−1)mıηk · · · ıηi+1
ıηi−1
· · · ı̂ηm · · · ıη1d

l
P 〈ηm, Xi〉.

These can be seen as higher Dorfman operations on TM ⊕ T ∗M , the symmetrisation

of which will give rise to higher homotopy Courant brackets.

Notice that to define the higher Dorfman brackets we do not require the homotopy

Poisson structure to be minimal, since we do not in fact need to start from the double of

the L∞-bialgebroid. It is simply the manifold E∇ equipped with a Poisson-commuting

function of arbitrary degree which is needed to describe the Loday structure on E∇
and the Dorfman brackets on the direct sum.

2.3.2 Homotopy Courant Algebroids

As the doubles of Lie bialgebroids define a subset of Courant algebroids, the doubles of

L∞-bialgebroids provide examples of a Courant algebroid’s homotopy analogue. This

homotopy Courant algebroid is a pseudo-Euclidean vector bundle E equipped with a

sequence of higher Dorfman brackets and anchors, the structure of which is defined

analogously to the structure of a Courant algebroid via the symplectic realisationM∇.

Following [Uch11], we begin by defining a homotopy Loday structure on C∞(M∇):

let the kth Loday bracket be given by the nested sequence

Φk
Θ(f1, . . . , fk) := (−1)(k−1)f1+···+fk−1

[
· · · [Θ, f1]∇, . . . , fk

]
∇, (2.20)

for functions f1, . . . , fk ∈ C∞(M∇), and Θ ∈ C∞(M∇) such that [Θ,Θ]∇ = 0. The

kth anchor and kth Dorfman bracket may then be defined on the space of sections

Γ(E) by the derived brackets,

ρ(u1, . . . , uk−1|f) = Φk
Θ(ū1, . . . , ūk−1, f)

∣∣
ε=0
, (2.21)

[u1, . . . , uk]Θ = Φk
Θ(ū1, . . . , ūk)

∣∣
ε=1
, (2.22)

where we recall that ū ∈ C∞(M∇) is the degree 1 function corresponding to the

section u ∈ Γ(E).
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A priori there are no additional restrictions on the Loday master function Θ, which

is only required to satisfy the master equation [Θ,Θ]∇ = 0 to define the necessary

structure. However, notice that an arbitrary function Θ will possess nonlinear terms in

the fibre variables of the fibrationM→ ΠE, corresponding to a nonlinear dependence

on the base momenta qa in the manifoldM∇ = T ∗M ⊕ΠE. Terms linear in qa govern

the anchor maps ρk : Γ(E)k−1 → TM , whilst these nonlinear additions correspond

to “higher multi-anchors”, maps ρlk : Γ(E)×k−1 → SlΓ(TM) into the lth symmetric

power of the tangent bundle. In order to keep our construction “close enough” to

the homotopy Courant algebroid structure acquired from an L∞-bialgebroid, we will

assume that Θ is at most linear in the fibration M→ ΠE, and hence takes the local

form

Θ = Θa(x, ξ)qa + Θ0(x, ξ).

The homotopy Loday structure constructed in [Uch11] however incorporates this op-

tion for a nonlinear Θ, and it would be interesting to see what kind of structure is

present if we remove this assumption.

Remark 2.3.1. In general Θ should be allowed arbitrary positive degree, where the

degree 3 component contributes to a genuine Courant algebroid structure. The double

of an L∞-bialgebroid has no terms in Θ of degree less than 3, since the minimality

assumptions kills all terms of degree 2 and the assumption that our L∞-algebroids

are strict zeros terms of degree 1. Though a homotopy Courant algebroid may well

possess a unary bracket and anchor deriving from a degree 2 term, it is unnatural to

allow degree 1 components in Θ which would correspond to a distinguished section of

E, hence we will always assume that ε(Θ) ≥ 2.

Proposition 2.3.2. Given a pseudo-Euclidean vector bundle E with metric 〈−,−〉, the

higher Dorfman brackets and anchors defined from a suitable function Θ ∈ C∞(M∇)

satisfy the following relations:

ρk(u1, . . . , uk−1|〈v, w〉)

= 〈[u1, . . . , uk−1, v]k, w〉+ (−1)v(u1+···uk−1+k)〈v, [u1, . . . , uk−1, w]k〉;

(−1)(ui+ui+1)(ui+2+···+uk+1)ρk(u1, . . . , ûi, ûi+1, . . . , uk+1|〈ui, ui+1〉)

= 〈[u1, . . . , ui, ui+1, . . . , uk] + (−1)uiui+1 [u1, . . . , ui+1, ui, . . . , uk], uk+1〉,
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for sections u1, . . . , uk, v, w ∈ Γ(E), and where we denote the omission of a section ui

by ûi.

Proof. Either side of the expressions may be represented in terms of the Loday brackets

on C∞(M∇), for example:

ρ(u|〈v, w〉) = (−1)v
[
[Θ, ū]∇, [v̄, w̄]∇

]
∇ (2.23)

= (−1)v
[
[[Θ, ū]∇, v̄]∇, w̄

]
∇ + (−1)v+u(v+1)

[
v̄, [[Θ, ū]∇, w̄]∇

]
∇

= 〈[u, v], w〉+ (−1)uv〈v, [u,w]〉,

for sections u, v, w ∈ Γ(E). The proof then is directly analogous to this calculation,

keeping track of signs and the nested commutators.

Proposition 2.3.2 then allows us to state the definition of a homotopy Courant

algebroid.

Definition 2.3.1. A homotopy Courant algebroid is a pseudo-Euclidean vector bun-

dle E equipped with a sequence of higher Dorfman brackets [· · · ] forming a homotopy

Loday algebra Γ(E), together with higher anchors ρk : Ek → TM assembling into a

morphism of Loday structures, all of which satisfy the relations contained in proposi-

tion 2.3.2.

Note that there do exist notions of higher Courant algebroids already in the

literature, [Zam12] for example develops a Courant bracket on the vector bundle

TM ⊕ ∧T ∗M , yet such objects do not provide an adequate setting for homotopy

structures. Higher Courant and Dorfman brackets have also been considered indepen-

dently from Courant algebroids in a selection of works [KW15, Bor15, Ban15, Ber07],

most of which concern the construction of non-abelian higher derived brackets. These

works however offer no interpretation of these higher brackets in an algebroid setting.

Observe that by construction the definition of a homotopy Courant algebroid is

equivalent to the existence of a suitable master function Θ on the minimal symplectic

realisation of the Poisson manifold ΠE, in parallel with [Roy02]. When Θ is homoge-

neous of degree 3, it is clear that we recover the usual Courant algebroid structure.

Example 2.3.2. Let (g, g∗) be an L∞-bialgebra. Then g ⊕ g∗ inherits the structure

of a homotopy Courant algebroid with trivial anchor maps which is defined from the
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Q-structure on the double Π(g⊕ g∗) eq. (2.13). In this case the Dorfman brackets are

completely skew-symmetric, coinciding with the Lie brackets on g⊕ g∗.

Example 2.3.3. Similarly, let (A,A∗) be an L∞-bialgebroid. Analogous to example

2.3.2, the bundle E = A ⊕ A∗ is a homotopy Courant algebroid with the structure

generated by h + s in eq. (2.16). For an arbitrary L∞-bialgebroid we will obtain

non-trivial anchor maps in general, and the higher Dorfman brackets are given by

proposition 2.3.1.

Example 2.3.4. Consider an L∞-algebra g acting on a manifold M as in the work

[MZ12]. This infinitesimal action is described by the L∞-morphism g ×M  TM

which stands as the anchor morphism of the L∞-action algebroid g×M →M (compare

with example 1.2.4).

The L∞-action algebroid is defined by a homological vector field on Πg×M ,

Qg×M = X +Qg, Qg×M = Xa(x, ξ)
∂

∂xa
+Qi(ξ)

∂

∂ξi
,

where Qg defines the L∞-algebra structure on g, and X is an odd vector field on M

taking formal values in Πg. The anchor of the algebroid is governed by X which

specifies a curved L∞-morphism g  Vect(M) via the maps φkX : ∧kg → Vect(M),

defined by

φkX(e1 ∧ . . . ∧ ek) = [· · · [X, ıe1 ], . . . , ıek ](0)

for a basis {ei} of g, analogous to the derived bracket formula in eq. (1.41). That

X defines such a morphism is equivalent to the homological property of Qg×M . See

[MZ12] for details and examples of these L∞-algebra actions.

Let the bundle g∗ ×M be given the trivial L∞-structure. Then T ∗(Πg ×M) ∼=

T ∗M × Π(g× g∗) equipped with the Poisson-nilpotent function

Θ = Qi(ξ)ξi +Xa(x, ξ)pa,

for fibre coordinates pa, ξi on T ∗(Πg × M), defines a homotopy Courant algebroid

structure. The higher anchors are controlled by the vector field X, whilst the brackets

are specified by the L∞-algebra structure on g.

Example 2.3.5. Let A be a proto-bialgebroid in the sense of Kosmann-Schwarzbach

[KS05]; a Lie bialgebroid A equipped with a trivector X and 3-form φ acting as
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background. The proto-bialgebroid structure is encoded in the master equation of the

degree 3 master function Θ = X̄+HA+SA∗+ φ̄ ∈ C∞(T ∗ΠA). It was shown in [KS05]

that the operator method used in proposition 2.3.1 can extend the Dorfman bracket

associated to a Lie bialgebroid to incorporate these background elements.

The concept of a proto-bialgebroid gives rise to a proto-L∞-bialgebroid, which is

described by an L∞-bialgebroid A equipped with a sequence of multivector fields and

differential forms such that the degree k component of Θ carries a degree k multivector

field and k-form background. The brackets in proposition 2.3.1 can then be adjusted

to accommodate these background fields, providing examples of homotopy Courant

algebroids.

Homotopy Courant algebroids should in fact be examples of the more general

homotopy Loday algebroids in parallel with Courant algebroids and Loday algebroids.

There are varied definitions of a Loday algebroid found in the literature. The definition

we shall employ simply relaxes the symmetry of the bracket in a Lie algebroid. In this

case a Loday algebroid is to a Loday algebra as a Lie algebroid is to a Lie algebra.

Definition 2.3.2. A Loday algebroid is a vector bundle E → M together with a

Loday bracket on the space of sections, an anchor map ρ : E → TM , and a vector

bundle morphism

α : E → TM ⊗ End(E), (2.24)

such that the right and left Leibniz rules hold:

[u, fv] = (−1)fuf [u, v] + ρ(u|f)v;

[fu, v] = f [u, v]− (−1)v(f+u)ρ(v|f)u+ α(v)(df ⊗ u),

for a function f ∈ C∞(M) and sections u, v ∈ Γ(E).

The obvious difference between a Loday algebroid and a Lie algebroid is the lack

of skew-symmetry which forces us to consider C∞(M)-linearity in the left bracket

argument as well as in the right. We could equally as well require no such linearity,

though the structure of a Courant algebroid automatically generates the map (2.24)

providing us with the left Leibniz rule, which therefore makes it a natural condition

to require.
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Remark 2.3.2. The definition of a Loday algebroid as given in [SX08] requires the

vector bundle E to come equipped with a pseudo-metric which forces the map α to

take a particular form. Though this more closely resembles a Courant algebroid, there

seems no reason to ask for such specific conditions.

As mentioned, the structure of a Courant algebroid generates automatically the

left Leibniz rule. Define a map D : C∞(M) → Γ(E) by the formula 〈Df, u〉 =

(−1)ufρ(u|f), which satisfies the relations

D〈u, u〉 = 2[u, u], 〈D〈u, u〉, v〉 = 2〈advu, u〉.

The map D will be referred to as the defect map, since these formula show that D

measures the defect in the symmetry of the Dorfman bracket. The defect map was

originally introduced in [LWX97] to measure the discrepancy in the Jacobi identity

for the Courant bracket, the skew-symmetrisation of the Dorfman bracket. In terms

of derived brackets the map D is given by

Df = Φ1
Θ(f)

∣∣
ε=1
.

All the above relations are immediately deduced from the Jacobi identity via the

derived bracket formula. In particular, we see that the map (2.24) for a Courant

algebroid can be defined by

α(v)(df ⊗ u) = Df〈v, u〉, (2.25)

for sections u, v ∈ Γ(E), which provides us with the left Leibniz relation for the

Dorfman bracket,

[fu, v] = f [u, v]− (−1)v(u+f)ρ(v|f)u+Df〈u, v〉.

The structure of a homotopy Courant algebroid allows the definition of an infinite

sequence of defect maps Dk, together with “higher α-maps” defining the k-Leibniz

rules for each of the k-brackets.

From proposition 2.3.2 the higher defect maps Dk : Γ(E)×k−2 × C∞(M) → Γ(E)

may be defined by the homotopy Loday brackets

Dk(u1, . . . , uk−2; f) = (−1)(k−2)u1+···uk−3Φk
Θ(ū1, . . . , ūk−2, f)

∣∣
ε=1
, (2.26)
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which satisfy the relation

〈Dk(u1, . . . , uk−2; f), v〉 = (−1)fvρk(u1, . . . , uk−2, v|f), (2.27)

as an easy consequence of the Jacobi identity. Notice that these higher defect maps

measure the symmetry of the higher Dorfman brackets by proposition 2.3.2.

Proposition 2.3.3. The defect map Dk : Γ(E)×k−2×C∞(M)→ Γ(E) defined by for-

mula (2.26) is anti-symmetric in the arguments u1, . . . , uk−2, and acts as a derivation

of C∞(M) in the final argument.

Proof. This is evident from the definition in formula (2.26) or from formula (2.27).

One can then observe how these maps appear when considering linearity in each

of the arguments of the higher Dorfman brackets. Suppose that E is a homotopy

Courant algebroid equipped with a 3-bracket [−,−,−]Θ. For sections u, v, w ∈ Γ(E),

the following formula hold:

[u, v, fw]Θ = (−1)f(u+v+1)f [u, v, w]Θ − ρ3(u, v|f)w;

[u, fv, w]Θ = (−1)f(u+1)f [u, v, w]Θ + (−1)w(f+v)ρ3(u,w|f)v +D3(u; f)〈v, w〉;

[fu, v, w]Θ = (−1)ff [u, v, w]Θ − (−1)(f+u)(v+w)ρ3(v, w|f)u

+ (−1)v(u+f)D3(v; f)〈u,w〉 − (−1)w(u+v+f)D3(w; f)〈u, v〉.

These formula generalise immediately to any higher bracket.

Proposition 2.3.4. Let E be a homotopy Courant algebroid. The kth Dorfman bracket

satisfies the following formula considering linearity over C∞(M) in the ith position:

[u1, . . . , fui, . . . , uk] = (−1)f(u1+···+ui−1+k)f [u1, . . . , ui, . . . , uk] (2.28)

+ (−1)i+(ui+f)(ui+1+···+uk)ρ(u1, . . . , ûi, . . . , uk|f)ui

−
k∑

j=i+1

(−1)j−i+δDk(u1, . . . , ûi, . . . , ûj, . . . , uk; f)〈ui, uj〉,

where δ = (f + ui)(ui+1 + · · · + ûj + · · · + uk) + uj(uj+1 + · · · + uk), and ûi denotes

omission of the section ui.

Proof. The formula follows from repeated applications of the Jacobi identity and the

Leibniz rule for the even Poisson bracket [−,−]∇ on M∇. A useful observation in
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manipulating these formula is that

Φk
Θ(ū1, . . . , f, ūj, . . . , ūk) = (−1)f(uj+···+uk)Φk

Θ(ū1, . . . , ūk, f), (2.29)

since the bracket of a function f ∈ C∞(M) with any section ū is zero.

Definition 2.3.3. For a homotopy Courant algebroid E over a bosonic manifold M ,

define for each kth Dorfman bracket, the finite sequence of maps

αki : E × . . .× E︸ ︷︷ ︸
k−1 times

→ TM ⊗ End(E), i = 1, . . . , k, (2.30)

such that

[u1, . . . , fui, . . . , uk]Θ = f [u1, . . . , ui, . . . , uk]Θ

+ (−1)iρk(u1, . . . , ûi, . . . , uk|f)ui + αki (u1, . . . , ûi, . . . , uk)[df ⊗ ui].

The maps are defined for bosonic manifolds simply to reduce the signs present in

the formula. These can be inserted easily as necessary.

Proposition 2.3.5. For a bosonic manifold M , the map αki : E×k−1 → TM⊗End(E)

is given by the following:

αki (u1, . . . , uk−1)(df ⊗ v) = −
k∑

j=i+1

(−1)j−iDk(u1, . . . , ûi, . . . , ûj, . . . , uk; f)〈ui, uj〉,

as the anti-symmetrisation of the defect maps Dk around the final i arguments.

Remark 2.3.3. If we relax the condition that Θ be linear in the fibration M→ ΠE

then these expressions become considerably more complicated due to the presence of

the higher multi-anchors ρlk : Γ(Ek−1)→ SlΓ(TM). These multi-anchors appear in the

expressions as a consequence of the modification of observation (2.29) by additional

terms.

2.4 Discussion

Through investigating the double objects to L∞-bialgebroids, we have defined the Drin-

feld double for an L∞-bialgebra, and provided an explicit expression for the cobound-

ary structure on the double. The double of an L∞-bialgebroid should be similarly
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defined, combining the approaches of L∞-bialgebras and Lie bialgebroids to obtain

the Q-structure already defined in definition 2.2.2, together with the still undiscovered

compatible S-structure which is expected to exist.

These doubles also lead to the introduction of homotopy Courant algebroids. We

defined a sequence of higher Dorfman brackets and anchors compromising a homotopy

Loday algebra structure on a pseudo-Euclidean vector bundle, and have given explicit

formula for these when the homotopy Courant algebroid defined arises from an L∞-

bialgebroid structure. It would be interesting to see what kind of classical structures

transfer to this homotopy setting. Partial progress has been made here, for instance

we can say that there is no notion of a co-anchor for a homotopy Courant algebroid,

obscuring what exact homotopy Courant algebroids should be. The notion of a Dirac

structure however carries over, and null Dirac structures are possible to define and

examples to be found. The non-linearity present in the homotopy case however raises

issues with the isotropy of Dirac structures defined from Hamiltonian operators, a

problem which does not seem to be resolvable. It is this non-linearity which is the

root of many of the problems when working with these homotopy Courant algebroids.
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Chapter 3

Weak Poisson Systems and an

Extension to Differential Forms

The authors of [LS05] introduced a geometrical construction which may be adapted

as necessary in order to describe an arbitrary gauge field theory, possibly one which

is not Hamiltonian or Lagrangian. This construction, called a weak Poisson system,

defines on the leaf space of a possibly singular foliation “smooth” contravariant tensor

fields together with an even Poisson bracket.

In this chapter we review this set-up and show that it admits an extension to

covariant tensor fields. In so doing, the weak Poisson bracket is lifted to a weak

Koszul-type bracket via the approach detailed in [KV08] and example 1.2.11, which

extends the generalised Hamiltonian mechanics proposed in [Mic85] to any gauge field

theory. The majority of the material in this chapter appears in the article [LPS17].

Throughout this chapter we will assume that M is a usual (non-super) manifold simply

to reduce the signs in the formula, however all the results follow for any supermanifold

by inserting the signs as necessary.

3.1 Weak Poisson Systems

Let M be a usual (bosonic) manifold with local coordinates xa, and let Σ ⊂ M be

a smooth submanifold of codimension k < dimM specified by a system of equations

T i(x) = 0, for i = 1, . . . , k. Further, suppose that Rα, for α = 1, . . . , n, are a set of
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vector fields on M tangent to Σ, satisfying the integrability condition

[Rα, Rβ] = fγαβRγ + T iXiαβ, (3.1)

for smooth functions fγαβ and vector fields Xiαβ. The vector fields Rα define an in-

tegrable distribution over the submanifold Σ, but which is not necessarily integrable

over the whole of M . In order words, the vector fields form an open Lie algebra over

Σ.

Remark 3.1.1. For simplicity we will assume that the vector fields Rα are global,

linearly independent vector fields on M which are tangent to Σ. These assumptions are

not necessary however, and the construction needs only to be modified to incorporate

local vector fields which are functionally dependent.

The submanifold Σ is foliated by the integrable submanifolds of the distribution,

where we use N to represent the space of leaves of this foliation. In general N is far

from being a smooth manifold, though the independence of the vector fields forces

the foliation to be regular, this does not guarantee that N should even be Hausdorff.

Despite this, the concept of “smooth” tensor fields on N can be introduced as those

tensors on M which are constant along the leaves of the foliation. These tensors can

be seen to “descend” to the space of leaves and in fact hold physical importance.

A gauge field theory in the Hamiltonian formalism consists of a phase space with

a possible system of equations defining a constraint surface, together with a set of

gauge transformations; vector fields on the constraint surface defining an integrable

distribution. Those functions which are invariant under gauge transformation, i.e.

constant along the gauge orbits, define the physical observables of the system. The

phase space may be identified with the manifold M , the constraint surface with Σ,

and the gauge generators with the vector fields Rα. Notice that for a general gauge

system, the gauge generators are usually only locally defined, dependent vector fields

which are integrable only over the constraint surface [HT92]. We will sometimes use

terminology from the physics literature, referring to the equations T i(x) = 0 as the

constraint equations, the vector fields Rα as the gauge generators, and the integral

submanifolds as the gauge orbits.

Remark 3.1.2. When considering a gauge theory in the Lagrangian formalism, the
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manifold M is identified with the space of trajectories of the system, and the sub-

manifold Σ corresponds to the equations of motion which may or may not arise as

the stationary surface of an action functional. The vector fields Rα again correspond

to the generators of the gauge transformations. The interest in this geometrical con-

struction follows from the observation that not all gauge field theories are defined by a

Hamiltonian function or action functional (see [LS05] and references therein). A weak

Poisson system provides a method to consistently treat field theories possessing gauge

symmetries without reference to such data.

Since smooth functions on N correspond to the physical observables of a gauge

theory, it is of interest to introduce a Poisson structure in the algebra of functions

C∞(N) in order to quantise via deformation. To achieve this, the authors of [LS05]

introduced a weak Poisson bracket on M , a Poisson bracket which satisfies a Jacobi

identity up to terms proportional to the constraint equations and the gauge generators.

This bracket becomes a true Poisson bracket however if it is considered as a bracket

on the space C∞(N), and hence it makes sense to ask about bivector fields, and more

generally contravariant tensor fields, which can generate such structures.

A weak Poisson system is well described in terms of vector bundles, therefore we

will translate the above set-up into this language.

Let E →M be a vector bundle of rank k over M . The submanifold Σ is specified

by the zero locus of a section T ∈ Γ(E), given locally by

T = T i(x)ei, (3.2)

for a local frame {ei} over an open set U ⊂ M . To ensure that the zero locus of T

does indeed describe a smooth submanifold, it is sufficient to fix a connection ∇E in

E. Using this, we require that the bundle homomorphism defined by the covariant

derivative of T , ∇ET : TM → E, be of constant rank in a tubular neighbourhood of Σ.

This is an equivalent notion to the constant rank condition imposed on the Jacobian

matrix of the system of equations T i(x) = 0, since locally

∇ET = dxa∇E,aT
iei = dxa

(
∂aT

i + T jAiaj
)
ei,

for connection coefficients Aiaj, which is of constant rank over Σ if and only if ||∂aT i||

is. Note that if the functions T i are linearly independent then the section T intersects
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the base transversally, and the map ∇ET is required to be of constant rank only on

Σ.

The vector fields Rα also define a bundle homomorphism R : F → TM , from an

appropriate rank n vector bundle F into the tangent bundle of M . From the identifi-

cation Hom(F, TM) ∼= Γ(F ∗ ⊗ TM), the homomorphism R defines and is defined by

a section of F ∗ ⊗ TM ,

R = Ra
αf

α ⊗ ∂

∂xa
∈ Γ(F ∗ ⊗ TM), (3.3)

for a local frame {fα} of F ∗ dual to a frame {fα} of F . As with the map ∇ET , R is

also required to be of constant rank in a tubular neighbourhood of Σ. These constant

rank requirements on the morphisms ∇ET and R are referred to as the regularity

conditions in [KLS05]. When restricted to Σ the two maps define the exact sequence

of vector bundles

0→ F
R−→ TM

∇ET−→ E → 0, (3.4)

but which in general, do not form an exact sequence away from Σ. The assumption

that the vector fields are linearly independent is equivalent to the injectivity of the

vector bundle morphism R, the image of which is always an integrable distribution

over Σ.

Remark 3.1.3. With the assumption of linear independence of the functions T i and

the vector fields Rα, the short sequence terminates in eq. (3.4). However if there

is linear dependence present in the system, i.e. there is reducibility in the gauge

algebra or amongst the constraint equations, then the sequence must be extended

appropriately on either side to accommodate this dependence [KLS05].

Those functions and multivector fields which are constant along the integral sub-

manifolds defined by the foliation over Σ can intuitively be described as those tensor

fields T on M such that

LRαT = T αRα + T iTi,

for the Lie derivative LRα and smooth tensor fields T α and Ti on M . This is natu-

rally phrased in terms of the algebra C∞(ΠT ∗M). Define an ideal I ⊂ C∞(ΠT ∗M)

generated by the elements T i and Rα,

I = 〈T i, Rα〉, (3.5)
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where we identity the odd function Ra
αx
∗
a ∈ C∞(ΠT ∗M) with the even vector field

Rα ∈ X(M). That the ideal is closed under the Schouten bracket follows from the

assumption that the vector fields Rα are tangent to Σ, and the integrability condition

of eq. (3.1). In the language of sections, I is obtained from the image of the morphism

R defined from eq. (3.3), together with the image of the map Γ(E∗) → C∞(M)

obtained by fixing the section T and using the natural pairing of sections of E with

those on the dual.

Definition 3.1.1. A multivector field on M is said to be trivial if it is a linear

combination of the constraint functions T i and the vector fields Rα. Trivial multivector

fields denoted by XI are identified with functions in I under the isomorphism (1.6).

Definition 3.1.2. A multivector field U on M is projectible if

JU, IK ⊂ I, (3.6)

where U ∈ C∞(ΠT ∗M) is the corresponding function on the odd cotangent bundle

and the bracket is the Schouten bracket of multivector fields (1.5).

In particular, trivial multivector fields can be considered to be zero on the space

of leaves N , and projectible multivector fields are those multivector fields on M which

are tangent to Σ and constant over the integrable submanifolds defined by the foliation

over Σ. Projectible multivector fields form an equivalence relation in the algebra of

functions C∞(ΠT ∗M) given by

U ∼ V ⇔ U − V ∈ I. (3.7)

This is interpreted as two projectible multivector fields are equivalent if they differ by

a “zero” vector field on the leaf space.

Projectible multivector fields form a closed subalgebra XP (M) ⊂ X(M) defining

the Poisson normaliser of the ideal XI of trivial multivector fields under the Schouten

bracket. The space of smooth multivector fields on N is then expressed as the quotient

X(N) = XP (M)/XI(M), (3.8)

of the projectible multivector fields modulo the trivial ones. Some subspaces of interest

are X0(N), X1(N) and X2(N). The first coincides with the algebra of smooth functions
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on N , and when the construction is identified with a gauge system, corresponds to

the algebra of physical observables of the theory. The second is the space of vector

fields on N forming a Lie algebra under the Schouten bracket. The algebra of physical

observables X0(N) ∼= C∞(N) is a module over X1(N), where

ḟ = JU, fK, (3.9)

defines a function, the Lie derivative of f ∈ C∞(N) over U ∈ X1(N). The function ḟ

will remain projectible over the flow of U so long as U remains projectible.

Finally, X2(N) consists of all bivector fields on N . A Poisson structure on C∞(N)

is introduced in the article [LS05] by a choice of projectible bivector field P ∈ X2
P (M),

where P satisfies a weak Jacobi identity,

JP, P K ∈ I. (3.10)

Such a bivector field produces a weak Poisson bracket on C∞(M) by the derived

bracket construction,

[f, g]P := JJP, fK, gK,

a skew-symmetric bilinear operation satisfying a Leibniz rule in each argument, but

whose Jacobi identity is satisfied up to trivial terms. The bivector field P however

induces a genuine Poisson bracket on C∞(N) since the defects in the Jacobi identity

vanish on passage to the quotient. A projectible vector field U on M will be called

weakly Poisson if it preserves the Poisson structure up to trivial terms,

JU, P K ∈ I.

A weakly Poisson vector field on M , together with a weak Poisson bivector field P ,

defines a Hamiltonian structure on the space of functions C∞(N).

Example 3.1.1. Let M = R4 have global coordinates x, y, z, t, and consider the

Lorentz Lie algebra L generated by the following set of vector fields:

Rx = −z∂y + y∂z, Ry = −x∂z + z∂x, Rz = −y∂x + x∂y,

Bx = x∂t + t∂x, By = y∂t + t∂y, Bz = z∂t + t∂z,

subject to the relations

[Ra, Rb] = ±Rc, [Ra, Bb] = ±Bc,

[Ba, Bb] = ±Rc,
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for a, b, c ∈ {x, y, z, t}. The exact signs can be deduced from the expressions above.

The important observation is that the space spanned by the rotational vector fields

R = {Rx, Ry, Rz} is a Lie subalgebra of L, whilst the space spanned by the so called

boosts B = {Bx, By, Bz} is equipped with an R-action.

Define R to be a set of gauge generators on R4 (we specify no constraint equations),

and define a bivector field P on R4 by

P = zBx ∧By + xBy ∧Bz + yBz ∧Bx.

Then P is gauge invariant and satisfies a weak Jacobi identity. Indeed, the action of

the vector field Rx gives

JRx, P K = Rx(z)Bx ∧By + zBz ∧Bx +Rx(y)Bz ∧Bx + yBy ∧Bx

= y (Bx ∧By +By ∧Bx) = 0,

and similarly for Ry and Rz. The bivector P is constant under “spatial rotations”.

From calculations, the weak Jacobi identity is proportional to the trivector

JP, P K ∝ R ∧B ∧B.

Hence P defines a Poisson structure on the space of R-invariant functions (identified

with those functions with are invariant under “space-like” rotations in (1, 3)-Minkowski

space).

One could extend this example by adjoining to L the spatial translations ∂x, ∂y, ∂z, ∂t

in order to consider the full Poincaré Lie algebra.

Example 3.1.2. Consider the 3-dimensional Heisenberg group H3(R),

H3(R) =




1 a c

0 1 b

0 0 1


∣∣∣∣∣∣∣∣∣ a, b, c ∈ R

 .

The corresponding Lie algebra h3 is generated by the matrices

p =


0 1 0

0 0 0

0 0 0

 , q =


0 0 0

0 0 1

0 0 0

 , r =


0 0 1

0 0 0

0 0 0

 ,
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which satisfy the commutation relation

[p, q] = r.

Identify H3(R) with R3 equipped with local coordinates x, y, z. Under this identifica-

tion the generators p, q, r of h3 coincide with the vector fields

X = ∂x −
1

2
y∂z, Y = ∂y +

1

2
x∂z, Z = ∂z.

Consider Z as a gauge generator on R3. The bivector

P = X ∧ Y,

defines a weak Poisson bivector on R3 since it satisfies the weak Jacobi identity

JP, P K = 2X ∧ Y ∧ Z.

We can associate to this the weak Poisson vector field

V = y∂x − x∂y.

Therefore R2 as the quotient of R3 by the z-axial gauge orbits is equipped with the

Poisson structure P = ∂x ∧ ∂y, together with a subgroup of Poisson automorphisms

generated by V . Under the flow of V functions of the form f = f(x2+y2) are invariant,

which is clear since V generates rotations about the origin.

Example 3.1.3. A Jacobi manifold (M,P,R) is a manifold M equipped with a bivec-

tor field P and a distinguished vector field R such that

JP,RK = 0, JP, P K = 2P ∧R.

Considering R as a single gauge generator, a Jacobi manifold is an example of a weak

Poisson system where the weak Poisson bivector field is given by P . In the case when

M is a contact manifold of dimension 2n + 1 there exists a natural Jacobi structure

on M , and so a natural weak Poisson structure. Let σ be the 1-form on M defining

the contact structure: σ is such that σ ∧ (dσ)n is no-where vanishing, and there exist

coordinates (q1, . . . , qn, p1, . . . , pn, t) where

σ = dt−
n∑
i=1

pidqi.
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In these coordinates the multivector fields R and P have the expressions

R =
∂

∂t
, P =

n∑
i=1

(
∂

∂qi
+ pi

∂

∂t

)
∧ ∂

∂pi
,

defining the weak Poisson system with gauge generator R and weak Poisson bivector

P . The space of leaves of the foliation defined by R is a 2n-dimensional symplec-

tic manifold, where the coordinates qi, pi are Darboux coordinates for the induced

symplectic structure.

3.2 A BRST Embedding

In the work [LS05], it was shown that any weak Poisson system admitted, in the phys-

ical language, an embedding into the BRST framework. This embedding involves the

construction of an acyclic complex and the subsequent perturbation of the associated

differential, which plays the role of a Koszul-Tate type differential. For a weak Pois-

son system this complex is the graded algebra of multivector fields on some extended

manifold, from which a master function can be described, encoding all the information

about the constraint equations, the gauge generators, and their relations.

Geometrically this embedding involves extending the original manifold M by ad-

joining additional coordinates, and introducing a homological vector field on this ex-

tended manifold. This homological vector field is often referred to as the corresponding

BRST operator of the theory.

3.2.1 The Master Hamiltonian

To begin, define the extended manifold M as the total space of the vector bundle

ΠE ⊕ ΠF → M , the direct sum of the vector bundles E and F of the sequence (3.4)

with shifted parity in the fibres. This supplements the original bosonic coordinates

xa with additional Grassmann odd variables ηi, cα called ghosts. The conjugate odd

momenta are adjoined by extending to the odd cotangent bundle ΠT ∗M, providing

ΠT ∗M with the entire set of local coordinates xa, ηi, cα, y∗a, η
∗
i , c
∗
α. Notice that the

variables y∗a transform according to the expression

y∗a = Ja
′

a y
∗
a′ + (−1)aBzB

′
TBB′∂a

(
TA

′

B

)
z∗A′ ,
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where we write

zA = (ηi, cα), z∗A = (η∗i , c
∗
α), Ja

′

a (x) =
∂xa

′

∂xa
(x), and zA = zA

′
TAA′(x).

We wish to interpret the odd momenta y∗a in terms of multivector fields onM, and as

the set-up currently stands the coordinates do not transform correctly. To remedy this,

we split ΠT ∗M into a direct sum by introducing a linear connection ∇ = ∇ΠE ⊕∇ΠF

onM; the sum of connections on ΠE and ΠF respectively. The connection coefficients

ABaA obey the transformation law,

ABaA = ∂a

(
TA

′

A

)
TBA′ + (−1)a(A+A′)TA

′

A Ja
′

a A
B′

a′A′T
B
B′ .

Using∇, define new coordinates x∗a = y∗a−(−1)aBzBAAaBz
∗
A referred to as long momenta

in [Vor02] (also introduced similarly in eq. (2.4)). The new coordinates satisfy x∗a =

Ja
′

a x
∗
a′ , transforming with respect to the Jacobian matrix as multivector fields on M.

We will fix the connection ∇ such that the odd cotangent bundle decomposes into a

direct sum,

N = ΠE ⊕ ΠF ⊕ E∗ ⊕ F ∗ ⊕ ΠT ∗M.

The manifold N carries several gradings in addition to the Grassmann parity, some

of which artificially arise from the general theory of the BRST formalism. The first is

the natural N-grading called the momentum degree, which is the degree of a polynomial

function on N in the momenta coordinates. The second is a Z-grading called the ghost

grading, a name inherited from the physics literature. The assumption that the base

manifold M is bosonic couples the ghost grading to the Grassmann parity where the

parity equals the ghost degree modulo 2, though this does not hold for a general

supermanifold. The final grading is called the resolution degree. The following table

displays all the variables together with their respective gradings:

xa ηi cα x∗a η∗i c∗α

Parity (̃·) 0 1 1 1 0 0

Ghost (gh) 0 -1 1 1 2 0

Momentum (deg) 0 0 0 1 1 1

Resolution (res) 0 1 0 0 0 1

(3.11)

It will be convenient to introduce the collective notation φA = (xa, ηi, cα) and φ∗A =

(x∗a, η
∗
i , c
∗
α) from which it can be observed that

gh(φ∗) = 1− gh(φ).
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The manifold ΠT ∗M carries a canonical odd symplectic form defined by eq. (1.4),

which pulls back to N , twisting the form by the connection coefficients. The odd

symplectic form on N is exact with primitive 1-form

σ = dxax∗a +∇ΠEη
iη∗i +∇ΠF c

αc∗α,

where

∇ΠEη
i = dηi − ηjdxaAiaj, ∇ΠF c

α = dcα − cβdxaAαaβ.

The symplectic form then gives rise to the odd non-degenerate Poisson bracket of ghost

degree −1 which has the following local appearance:

{x∗a, cα}∇ = cβAαaβ, {x∗a, c∗α}∇ = Aβaαc
∗
β, {η∗i , ηj}∇ = δji ,

{x∗a, ηi}∇ = ηjAiaj, {x∗a, η∗i }∇ = Ajaiη
∗
j , {c∗α, cβ}∇ = δβα,

{x∗a, xb}∇ = δba, {x∗a, x∗b}∇ = cβRα
βabc

∗
α + ηiRj

iabη
∗
j ,

(3.12)

where all other brackets vanish identically, and the terms Rj
iab and Rα

βab are the com-

ponents of the curvatures of the connections ∇ΠE and ∇ΠF respectively. Notice that

when the bundles ΠE and ΠF are trivial, the connection and curvature components

vanish and we recover the usual canonical odd Poisson structure.

Using this odd Poisson bracket we can define an odd differential on the algebra

C∞(N ) by specifying a master Hamiltonian S ∈ C∞(N ) with the gradings

S̃ = 0, gh(S) = 2, deg(S) > 0,

together with the assumption that S satisfies the master equation

{S,S}∇ = 0. (3.13)

The function S is called the master function, and contains all the information about

the section T of the vector bundle E, the homomorphism R : F → TM , and the

compatibility conditions between them. It may also encode the structure of a weak

Poisson bracket, and hence S can completely describe a weak Poisson system. Grading

S by the resolution degree,

S =
∑
r≥0

Sr,
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local expressions for S0 and S1 can be obtained:

S0 = T iη∗i + cαRa
αx
∗
a + P abx∗bx

∗
a; (3.14)

S1 =
(
cβcαUγ

αβ + V γabx∗bx
∗
a + cαW γa

α x∗a + Y γiη∗i
)
c∗γ

+ηi
(
cβcαAaαβix

∗
a + cαBab

αix
∗
bx
∗
a +Dabc

i x∗cx
∗
bx
∗
a + cαEj

αiη
∗
j + F aj

i η
∗
jx
∗
a

)
,

where the coefficients T , R and P correspond to the section T , the homomorphism R

and a weak Poisson bivector P . The other coefficient functions are higher structure

functions, encoding higher relations between the ghost variables. (The term S0 is

referred to as the boundary condition for the master action S, see [HT92].)

To ensure the regularity conditions on T and R of eq. (3.4), we further require

that S satisfies the non-degeneracy condition

rank

(
∂2S
∂φAφ∗B

)∣∣∣∣
dS=0

= (n, k),

where k and n are the ranks of the bundles E and F respectively.

The master equation (3.13) ensures that

Q := {S,−}∇
∣∣
φ∗=0

, (3.15)

defines a homological vector field on the Lagrangian submanifoldM⊂ N . The vector

field Q is of ghost degree +1, and has the local expression

Q = T i
∂

∂ηi
+ cαRa

α

∂

∂xa
+ · · · .

In physics literature, Q is often called the BRST operator associated to the gauge

system [HT92]. Notice that it contains all the information about the constraints and

the gauge generators, but does not know about the artificially introduced Poisson

structure which is present in S in momentum degree +2.

Since S satisfies the master equation it defines a homotopy Poisson structure, or

a P∞-structure, on the base manifold M by a sequence of derived brackets. The

k-bracket is given by the nested odd Poisson brackets

[F1, . . . , Fk]S =
{
· · · {S, F1}∇, . . . , Fk

}
∇

∣∣
M, (3.16)

for functions F1, . . . , Fk ∈ C∞(M) on the extended manifold. In particular, the binary

bracket satisfies the homotopy Jacobi identity

[F, [G,H]S ]S − [[F,G]S , H]S − (−1)FG[G, [F,H]S ]S (3.17)

= [[F ]S , G,H]S − (−1)F [F, [G]S , H]S + (−1)F+G[F,G, [H]S ]S + [[F,G,H]S ]S .
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3.2.2 The Existence and Uniqueness of S

The existence of S is not guaranteed a priori, but follows from the construction of

an appropriate differential in an acyclic complex. Here we will briefly describe this

and provide a sketch of the existence of S. Details for the construction of a “BRST

charge” in the Hamiltonian formalism for both irreducible and reducible cases can be

found in [HT92] or [FHST89] for example.

To the algebra C∞(ΠT ∗M) of multivector fields on M , we introduce the odd ghost

variables ηi, c∗α for each constraint coefficient T i and gauge generator Rα. The variables

are assigned resolution degree +1, after which the algebra is further extended to the

whole of C∞(N ) by adjoining the resolution degree 0 variables η∗i , c
α. A differential δ

may be introduced which is required to act solely on the variables in positive resolution

degree,

δ = T i
∂

∂ηi
+Ra

αx
∗
a

∂

∂c∗α
, gh(δ) = +1, res(δ) = −1. (3.18)

The differential is such that the image im(δ) corresponds precisely to the (extended)

ideal of trivial multivector fields I. It is well known that such a differential is acyclic.

Indeed, either see the result in [HT92], or introduce a contracting homotopy as follows.

Let g be a metric in the fibres of the vector bundle E whose space of sections contain

the section T . Define an odd operator

ζT = ηigikT
k, gh(ζT ) = −1, res(ζT ) = +1. (3.19)

Then

[δ, ζT ] = T igikT
k ⇒ [δ,

1

〈T, T 〉g
ζT ] = 1,

providing a contracting homotopy for δ. Hence the differential δ is acyclic in positive

resolution degree,

Hk(δ) = 0, k > 0. (3.20)

Using δ we can construct a secondary derivation ∆0 with the properties and gradings:

[δ,∆0] = δ∆0 + ∆0δ = 0, ∆2
0 = −[δ,∆1], (3.21)

deg(∆0) = 0, gh(∆0) = 1, res(∆0) = 0,

where ∆1 is some derivation of resolution degree +1. This is constructed explicitly

using the projectibility conditions contained in (3.6).
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We can now sketch the existence of S. Grading S =
∑

r≥0 Sr by resolution degree,

where S0 is given by the expression (3.14), the master equation (3.13) generates the

chain of equations

δSr+1 = λr(S0, . . . ,Sr),

for a function λr of resolution degree r.

For r > 0, the acyclicity of δ ensures the existence of Sr+1, since by the Jacobi

identity {S, {S,S}∇}∇ = 0, the term λr(S0, . . . ,Sr) is δ-closed and hence δ-exact.

Therefore S exists if and only if the initial equation in resolution degree 0 has a

solution,

δS1 = λ0(S0) = {S,S}∇
∣∣
res=0

.

An analysis of the bracket (3.12) gives that this equation encodes precisely the com-

patibility conditions between the constraints T , the gauge generators R and the weak

Poisson bivector field P , and so is also automatically satisfied.

Notice that in each term Sr there is always the possibility to add any δ-exact term.

This ambiguity in S presents no issues however, since this can always be absorbed by

a canonical transformation of the odd Poisson manifold N [LS05].

3.2.3 The Cohomology of Q

The BRST operator Q of eq. (3.15) turns the algebra C∞(N ) into a bi-graded differ-

ential complex C(N ) with ghost degree l and the momentum degree k,

Q : Ckl (N )→ Ckl+1(N ).

It is evident that the cohomology of Q also decomposes with respect to the ghost and

momentum degrees,

H(Q) =
⊕
k, l

Hk
l (Q).

Lemma 3.2.1. For k > l, the cohomology groups Hk
l (Q) are trivial.

Proof. The differential Q can be expanded according to the resolution degree

Q = δ + ∆0 +
∑
i≥1

∆i,
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where δ and ∆0 are the differentials in eqs. (3.18) and (3.21) respectively. From table

(3.11) we make the following observation: for any variable φ or φ∗,

res(φ(∗)) ≥ deg(φ(∗))− gh(φ(∗)). (3.22)

So for any function F ∈ Ckl (N ) where k > l, res(F ) > 0. Grading F in terms of the

resolution degree

F =
∑
r>0

Fr,

we wish to show that there exists G ∈ Ckl−1(N ) such that QG = F when QF = 0.

Let r0 be the lowest resolution degree appearing in F . Then the resolution degree

r0 − 1 term of the cocycle condition QF = 0 is

δFr0 = 0,

which, by the acyclicity of δ and since res(Fr0) > 0, tells us that Fr0 = δGr0+1 for

some resolution degree r0 + 1 function Gr0+1 of ghost degree l − 1.

The resolution degree r0 component of QF = 0 reads,

δFr0+1 + ∆0Fr0 = 0 ⇒ δFr0+1 + ∆0δGr0+1 = 0.

The identity Q2F ≡ 0 in the lowest resolution degree gives the relation

δ∆0 + ∆0δ = 0,

which is also provided by the construction of ∆0 in eq. (3.21). Hence

δFr0+1 = −∆0δGr0+1 = δ∆0Gr0+1,

and again using the acyclicity of δ, we can write

δ(Fr0+1 −∆0Gr0+1) = 0 ⇒ Fr0+1 −∆0Gr0+1 = δGr0+2,

for some function Gr0+2. Hence we find Fr0+1 to be the resolution degree r0 + 1 term

Fr0+1 = ∆0Gr0+1 + δGr0+2.

Continuously solving with those equations in higher resolution degree allows a function

G to be constructed such that F = QG when F ∈ Hk
l (Q). Therefore the cohomology

groups Hk
l (Q) are trivial for k > l.
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The use of the BRST framework for a weak Poisson system is contained within the

next proposition.

Proposition 3.2.1 ([LS05]). Any projectible multivector field U on M can be lifted

to a Q-cocycle FU in C∞(N ), and further, the cohomology group Hk
k(Q) is isomorphic

to the algebra Xk(N), the projectible multivector fields of degree k on M modulo the

trivial ones.

Proof. Let U be a degree k multivector field on M considered as a function on N with

the properties:

U = U i1···ik(x)x∗ik . . . x
∗
i1
, gh(U) = k = deg(U), res(U) = 0.

Let F = FU denote a function extending U over N with the prescribed gradings

gh(F ) = k, deg(F ) = k, res(F ) ≥ 0.

Expanding F =
∑

r≥0 Fr in terms of resolution degree, notice that F0 = U due to

the restrictions on the ghost and momentum degrees. Suppose that F is a Q-cocycle,

then decomposing the condition QF = 0 by resolution degree, we obtain the system

of equations

δFr+1 = λr(F0, . . . , Fr), (3.23)

in resolution degree r ≥ 0. For r > 0, the acyclicity of δ guarantees the existence of

the term Fr, since the equation λr(F0, . . . , Fr) is δ closed by the identity Q2F ≡ 0.

The cocycle condition admits solutions in positive resolution degree, and only the case

r = 0 remains. Consider the equation

δF1 + ∆0F0 = 0 ⇔ {S, F}∇
∣∣

deg=k
res=0

= 0.

An analysis of the bracket eq. (3.12), together with the restrictions on the momentum

and resolution degrees returns precisely the projectibility relations for the multivector

field U . For example, let U = Uax∗a be a vector field considered as a degree 1, ghost 1

function on N . An arbitrary extension over N has the general expression

FU = Uax∗a + ηi
(
cαUa

αix
∗
a + U j

i η
∗
j

)
+ cβUα

β c
∗
α + · · · .

The resolution degree 0 term of the cocycle condition δF1 + ∆0F0 = 0 is satisfied

precisely when eq. (3.6) holds. Hence we can begin the induction on FU if and only if

U is projectible.
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Suppose now that FU , FV ∈ Ckk (N ) are Q-cocycles representing the same cohomol-

ogy class in Hk
k(Q), so there exists a function G ∈ Ckk−1(N ) such that FU = FV +QG.

In resolution degree 0 we obtain

U = V + δG1.

Notice that there is no term of resolution degree 0 in G, since observation (3.22) ensures

that res(G) > 0 since deg(G) = k > gh(G) = k − 1. Now the image of δ constructed

in eq. (3.18) is precisely the trivial multivector fields, and so δG1 represents a trivial

multivector field and therefore U ∼ V under the equivalence relation in eq. (3.7).

Hence the spaces Hk
k(Q) and Xk(N) are isomorphic.

Consider the binary bracket onM given by the derived brackets of eq. (3.16). Due

to the homotopy Jacobi identity in eq. (3.17), we see that the bracket

[F,G]S =
{
{S, F}∇, G

}
∇

∣∣
φ∗=0

, (3.24)

induces a genuine even Poisson bracket on the cohomology group H0(Q) =
⊕

lH0
l (Q).

This bracket is of ghost degree 0, and hence the algebra of projectible functions

H0
0(Q) ∼= C∞(N) forms a Poisson subalgebra of H0(Q). This induced Poisson bracket

on H0
0(Q) coincides with the Poisson bracket on C∞(N) obtained from the weak Pois-

son structure on M . As such, a BRST embedding of a weak Poisson system gives a

complete cohomological description of the system in terms of the BRST operator Q.

3.3 Lifting the Weak Poisson Structure

Detailed in [KV08], any homotopy Poisson structure on a manifold M has a canon-

ical lift to a homotopy Schouten structure on the odd tangent bundle ΠTM – a

higher Koszul bracket hierarchy. Using this idea, the Poisson bracket (3.24) on the

Q-cohomology C∞(N) ∼= H0
0(Q) can be lifted to a Koszul bracket on the space

C∞(ΠTN), corresponding to differential forms on the leaf space N . This is achieved

by lifting the extended Poisson structure of eq. (3.16) on M to the space of ghost

extended differential forms C∞(ΠTM), and using the cohomology of a corresponding

differential to describe those which descend to the space N .
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Introduce the odd tangent bundle ΠTN to the manifold N , equipped with the odd

velocities as expressed in the table:

xa ηi cα x∗a η∗i c∗α ξa ui να ξ∗a u∗i ν∗α

Parity (̃·) 0 1 1 1 0 0 1 0 0 0 1 1

Ghost (gh) 0 -1 1 1 2 0 -1 -2 0 0 1 -1

Momentum (deg) 0 0 0 1 1 1 0 0 0 0 0 0

Res (res) 0 1 0 0 0 1 0 1 0 0 0 1

Form (Deg) 0 0 0 0 0 0 1 1 1 1 1 1

The form degree Deg will be the natural grading in the vector bundle ΠTN , where

the fibre coordinates are assigned degree +1, and the base coordinates are assigned

degree 0. Collectively, write ψA = (ξa, ui, να) and ψ∗A = (ξ∗a, u
∗
i , ν
∗
α). We also draw

attention to the resolution degree held by the coordinates ui.

This manifold carries a natural even symplectic form; since ΠTN may be canoni-

cally identified with T ∗N ∗ by the composition of the two identifications

ΠTN ∼= T ∗N and T ∗N ∼= T ∗N ∗,

the canonical 2-form on T ∗N ∗ can be pulled back under the symplectomorphism

χ : ΠTN → T ∗N ∗, (3.25)

(φA, φ∗A, ψ
A, ψ∗A) 7→ (φA, (−1)AψA,−ψ∗A, φ∗A).

The pull back of the canonical form equips ΠTN with an even non-degenerate Poisson

bracket, written as [−,−], which is of ghost degree 0. The manifold N ∗ ∼= ΠTM

defines a Lagrangian surface in the cotangent bundle T ∗N ∗, which in turn defines a

Lagrangian surface L ⊂ ΠTN under the (anti-)symplectomorphism χ. Locally this is

described by setting the “conjugate momenta” equal to zero,

L =
{

(φ, φ∗, ψ, ψ∗) ∈ ΠTN
∣∣∣φ∗ = 0 = ψ∗

}
. (3.26)

Since the functions on N ∗ are identified with differential forms onM, under the map

(3.25) a function Γ ∈ C∞(L) is identified with a differential form on M.

Let Ψ = ψAψ∗A be the canonical ghost −1 odd function of the velocity variables.

Simply by construction we have that Ψ is Poisson-nilpotent,

[Ψ,Ψ] = 0. (3.27)
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3.3. LIFTING THE WEAK POISSON STRUCTURE

Now consider S as a function in C∞(ΠTN ), and define the odd function

ΨS = [Ψ,S], gh(ΨS) = +1. (3.28)

In particular, this function is of form degree +1 and carries the information of the

weak Poisson system. (Notice the similarity to the function (1.34) defined in example

1.2.11.)

Lemma 3.3.1. The function ΨS satisfies [ΨS ,ΨS ] = 0 if S satisfies the master equa-

tion {S,S}∇ = 0.

Proof. By applications of the Jacobi identity,

[ΨS ,ΨS ] = [[Ψ,S], [Ψ,S]] = −[[Ψ, [Ψ,S]],S] + [Ψ, [[Ψ,S],S]].

Observe then that Ψ generates the bracket in eq. (3.12) on N by

[[Ψ,S],S] = {S,S}∇, (3.29)

and hence [ΨS,ΨS] = 0 if {S,S}∇ = 0. (Notice in fact that [ΨS ,ΨS ] = 0 if and only

if {S,S}∇ is a de Rham cocycle on N .)

Since S satisfies the master equation (3.13), lemma 3.3.1 ensures that ΨS defines

a homological vector field

Q = [ΨS ,−]
∣∣
L, (3.30)

on the Lagrangian submanifold L. Some explicit terms in Q are

Q = T i
∂

∂ηi
+ ξa∂aT

i ∂

∂ui
+ cαRa

α

∂

∂xa
+
(
cαξb∂bR

a
α + ναRa

α

) ∂

∂ξa
+ · · · ,

where we see terms involving the constraints, the gauge generators and their differen-

tials appearing.

Further, ΨS generates a sequence of higher derived Schouten brackets on L by the

formula

{Γ1, . . . ,Γk}ΨS =
[
· · · [ΨS ,Γ1], . . . ,Γk

]∣∣
L, (3.31)

for functions Γ1, . . . ,Γk ∈ C∞(L). This sequence of odd Poisson brackets is precisely

the lift of the homotopy Poisson structure on M given in eq. (3.16), and coincides

exactly with the higher Koszul brackets introduced in [KV08] under the image of the

map χ∗ : C∞(ΠTM)→ C∞(L).
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3.3.1 The Cohomology of Q

Consider the algebra of functions C∞(L). The operator Q turns this algebra into a

complex which is graded by the ghost degree l and the form degree m,

Q : Cml (L)→ Cml+1(L). (3.32)

Let σ be a differential k-form on M expressed as a function on the Lagrangian sub-

manifold L,

σ = ξa1 · · · ξakσak···a1(x), gh(σ) = −k, Deg(σ) = k.

As in the case of multivector fields on M , we can extend σ to a homogeneous function

Γσ over the entire of L, subject to the degree restrictions

gh(Γσ) = −k, Deg(Γσ) = k, res(Γσ) ≥ 0.

For example, a 1-form σ = ξaσa extends to a function Γσ such that in resolution degree

0 and 1,

Γσ
∣∣
res=0

= ξaσa,

Γσ
∣∣
res=1

= ξaηicασαia + uicασαi + ναηiσiα.

In light of proposition 3.2.1, we make the following definition.

Definition 3.3.1. Let σ be a differential k-form on M , and Γσ the homogeneous

extension of σ viewed as a function on L. Then σ is a projectible differential form if

Γσ is a Q-cocycle,

QΓσ = 0.

Intuitively, a projectible differential form should be one that acts trivially on the

gauge generators, and whose Lie derivative over the vector fields Rα is also trivial:

ıRασ ∝ T, LRασ ∝ T + dT.

That this is a correct definition follows as a result of the next proposition.

Proposition 3.3.1. The cohomology group Hk
−k(Q) is isomorphic to the algebra of

projectible differential k-forms over M .
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Proof. For the simplicity of local expressions we will assume that both E and F admit

flat connections. In particular, N = ΠT ∗M and the canonical odd bracket (1.5)

coincides with the bracket of eq. (3.12). This then implies that the bracket on ΠTN

is given locally by

[ψ∗A, φ
B] = δBA , [ψA, φ∗B] = δAB.

By the Cartan formula for the Lie derivative we see that the vector field Q coincides

with the Lie derivative on L over the vector field Q,

Q = [[Ψ,S],−]
∣∣
L := LQ, (3.33)

from which it is now evident that Q2 = L[Q,Q] = 0. The expansion of Q by the

resolution degree provides an expansion of Q also, and in resolution degree −1 Q

takes the form

Q−1 = Lδ = T i
∂

∂ηi
+ ξa∂aT

i ∂

∂ui
. (3.34)

In resolution degree 0 we find a more complicated expression,

Q0 = cαRa
α

∂

∂xa
+ cβcαUγ

αβ

∂

∂cγ
+ ηicαEj

αi

∂

∂ηj
+ να

(
Ra
α

∂

∂ξa
+ cβUγ

βα

∂

∂νγ
+ ηiEj

iα

∂

∂uj

)
+ξb∂b

(
cαRa

α

∂

∂ξa
+ cβcαUγ

αβ

∂

∂νγ
+ ηicαEj

αi

∂

∂uj

)
+ uicαEj

αi

∂

∂uj
.

Now let σ be a differential k-form on M viewed as a function on L; σ is such that

σ = ξa1 . . . ξakσak···a1(x), gh(σ) = −k, Deg(σ) = k, res(σ) = 0.

Let Γ = Γσ be a function extending σ over L. Decomposing Γ by resolution degree,

the restriction on the other gradings shows that

Γ0 = ξa1 . . . ξakσak···a1 ,

Γ1 = ξa1 . . . ξak−1
(
uicαIαia1···ak−1

+ ναηiJiαa1···ak−1

)
+ ναuiξa1 . . . ξak−2Ka1···ak−2iα.

The cocycle condition QΓ = 0 can also be decomposed by resolution degree in order

to obtain a system of equations as in eq. (3.23). In resolution degree 0 we find

Q−1Γ1 +Q0Γ0 = 0,

which recovers precisely the intuitive projectibility conditions

ıRασ ∝ T, LRασ ∝ T + dT,
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when comparing the local expressions. The higher degree equations

Q−1Γr+1 = λr(Γ0, . . . ,Γr),

are satisfied by the acyclicity of the differential Q−1 = Lδ, which follows from the

acyclicity of the differential δ in eq. (3.18). The operator

ζ ′T = ηigikT
k + uigikξ

a∂aT
i,

allows the definition of a contracting homotopy for the differential Lδ, analogous to

the operator in eq. (3.19).

Suppose now that Γ ∈ Hk
−k is Q-cocycle. Then Γ = QΞ for some function Ξ ∈

C∞(L), such that

res(Ξ) ≥ 0, Deg(Ξ) = k, gh(Ξ) = −(k + 1).

With these degree restrictions we observe that there must be no resolution degree 0

term present in Ξ, and in resolution degree +1,

Ξ1 = ηiξa1 . . . ξakΞak···a1i + uiξa1 . . . ξak−1Ξak−1···a1i.

The function QΞ does contain resolution degree 0 terms however, where

Γ0 = LδΞ1 = T iξa1 . . . ξakΞak···a1i + ξa∂aT
iξa1 . . . ξak−1Ξak−1···a1i.

On the surface Σ, this is a differential k-form proportional to the differentials of the

constraint equations. Therefore, if Γσ = Γτ in the cohomology group Hk
−k, the corre-

sponding differential forms σ and τ on M differ by a trivial differential form.

Analogous to the bracket described in eq. (3.24), the odd binary bracket given

by eq. (3.31) satisfies the Jacobi identity up to Q-coboundaries. Therefore when

passing to the cohomology of the complex (3.32), the binary bracket realises a true

odd Poisson bracket on the Q-cohomology H(Q). Notice that unlike the even Poisson

bracket which was introduced only on the momentum degree 0 functions H0(Q), this

odd bracket is defined on the entire cohomology H(Q) with arbitrary form degree. It

can be seen that this is the odd, ghost +1 lift of the even Poisson bracket on projectible

functions. Indeed, since the de Rham differential d = [Ψ,−]
∣∣
L commutes with Q as a

consequence of the Jacobi identity, d acts on the cohomology d : Hm
l (Q)→ Hm+1

l−1 (Q).
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For functions F ∈ H0
l (Q) and G ∈ H0

k(Q), the odd bracket {dF,G}ΨS ∈ H0
k+l(Q),

where

{dF,G}ΨS =
[
[ΨS , [Ψ, F ]], G

]∣∣
L = −

[
[Ψ, [ΨS , F ]], G

]∣∣
L,

by the Jacobi identity. Using observation (3.29) it can be seen that

−
[
[Ψ, [ΨS , F ]], G

]∣∣
L = −

{
{S, F}∇, G

}
∇ = −[F,G]S .

Similarly,

d[F,G]S = −(−1)F{dF, dG}ΨS ,

and we obtain the Koszul bracket of formula (1.36).

Proposition 3.3.2. The cohomology group H(Q) is an odd Poisson algebra equipped

with the odd binary bracket, which is closed under the exterior derivative.

Proof. For Γ,Ξ ∈ H(Q), the fact that Q{Γ,Ξ}ΨS = 0 follows from an application of

the Jacobi identity, where [
ΨS , [[ΨS ,Γ],Ξ]

]
= 0,

under the conditions that QΓ = 0, QΞ = 0 and [ΨS ,ΨS ] = 0. That the algebra is

closed under the de Rham differential follows from its commutativity with Q.

Proposition 3.3.3. The algebra H(Q) is a H1(Q)-module under the interior product.

Proof. Given F ∈ H1(Q), the interior product of F with a function Γ on L is given by

ıFΓ = (−1)F [F,Γ]
∣∣
L. (3.35)

Then for an element Ξ ∈ H(Q),

Q(ıFΞ) = (−1)F
[
ΨS , [F,Ξ]

]∣∣
L

= (−1)F
[
[ΨS , F ],Ξ

]∣∣
L +

[
F, [ΨS ,Ξ]

]∣∣
L.

The term [ΨS , F ] vanishes due to observation (3.29) which corresponds to the pro-

jectibility of F . The second term vanishes since Ξ is a Q-cocycle. Hence ıFΞ is also

Q-closed.

Notice that when F = FU and Γ = Γσ for a vector field U and a differential form

σ, we recover the interior product ıUσ on the space of leaves N in the lowest resolution

degree.
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From the Cartan formula LF = [d, ıF ], the Lie derivative of a Q-cocycle Γ over a

Q-cocycle F is given by

LFΓ = (−1)F
[
[Ψ, F ],Γ

]∣∣
L. (3.36)

Defining the function ΨF = (−1)F [Ψ, F ] with gh(ΨF ) = gh(F ) + 1, the Lie derivative

can be written as the bracket LFΓ = [ΨF ,Γ]. Notice that the operations have the

following degrees:

d : Hm
l (Q)→ Hm+1

l−1 (Q), ıF : Hm
l (Q)→ Hm−1

l+1 (Q),

LF : Hm
l (Q)→ Hm

l (Q),

if F is homogeneous of degree deg(F ) = 1. It is clear that if F and Γ are both

appropriate cocycles, then so is the Lie derivative.

Proposition 3.3.4. For functions F,G ∈ H1(Q), the following formula hold:

[LF ,LG] = L{F,G}∇ , [ıF , ıG] = 0,

[LF , ıG] = ı{F,G}∇ .

Proof. All follow from applications of the Jacobi identity.

Proposition 3.3.5. Let Γσ,Γτ ∈ Hk
−k(Q) correspond to projectible differential k-forms

on M , and let FU ∈ H1
1(Q) correspond to a projectible vector field which preserves these

differential forms, LFUΓσ = LFUΓτ = 0. Then the Koszul bracket is also preserved,

LFU{Γσ,Γτ}ΨS = 0. (3.37)

Proof. By the Jacobi identity,

[ΨFU , [[ΨS ,Γσ],Γτ ]] = [[ΨFU , [ΨS ,Γσ]],Γτ ] + [[ΨS ,Γσ], [ΨFU ,Γτ ]]

= [[[ΨFU ,ΨS ],Γσ]],Γτ ] + [[ΨS , [ΨFU ,Γσ]],Γτ ] + [[ΨS ,Γσ], [ΨFU ,Γτ ]].

The first term vanishes due to the projectibility of U and the nilpotency of Ψ; the

second follows from proposition 3.3.3, and the third vanishes from the projectibility of

σ.

Corollary 3.3.1. Let F ∈ H0
0(Q) be a Q-cocycle on M and U a projectible vector

field such that LFUF = 0. Then for a projectible 1-form σ, {Γσ, F}ΨS corresponds

to a projectible function invariant over the flow of U on N . That is, if U describes

dynamics on the leaf space N , then an integral of this motion can be used to produce

further integrals from projectible 1-forms.
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3.3.2 A Generalised Poisson Bracket

For an even Poisson manifold M , the article [Mic85] introduced a generalised even

Poisson bracket on the space of differential forms modulo exact forms – the coexact

differential forms. Unlike the Koszul bracket which is an odd lift of the even Poisson

bracket, this generalised Poisson bracket is seen to be a direct even lift of the base

structure. A consequence of the existence of this even lift is that the space of differential

forms must be restricted to ensure all the conditions of the Poisson bracket are fulfilled.

It was shown in [CV92] that the de Rham differential d provides a homomorphism of

Lie algebras in such a way that we may define the generalised even Poisson bracket on

coexact forms as the bracket [−,−]co such that

d[σ, τ ]co = (−1)σ{dσ, dτ}KP ,

for coexact differential forms σ and τ and the Koszul bracket (1.36).

The higher Koszul bracket hierarchy defined in [KV08] allows a generalised homo-

topy Poisson structure to be introduced on the algebra of coexact differential forms in

precisely the same way. Define the kth bracket [· · · ]co by

d[σ1, . . . , σk]co = (−1)(k−1)σ1+···+σk−1{dσ1, . . . , dσk}KP ,

for coexact differential forms on M and the kth Koszul bracket. These brackets form

a homotopy Poisson algebra which can be checked by the manipulation of signs to

obtain the Jacobi identity as in the proof of proposition 1.3.2.

The space of projectible coexact forms

H(Q)/dH(Q),

can thus be equipped with an even generalised Poisson bracket, corresponding to the

binary Koszul bracket introduced on H(Q). Therefore, the generalised Hamiltonian

mechanics introduced in [Mic85] can be naturally extended to include systems with

gauge symmetries using the idea of projectible differential forms.
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Chapter 4

Odd Tensor Geometries

On a supermanifold there are four types of tensor controlled geometries that arise, each

corresponding to one of the four different types of rank 2 tensor fields; those tensors

that are even or odd, and symmetric or anti-symmetric. When the tensors in question

are even, the super Riemannian or super symplectic geometries that are obtained can

be seen as trivial extensions of those on a non-super manifold by accommodating the

odd variables. Such even structures have been extensively studied, and results transfer

mutatis mutandis to the super category. The case of odd tensors however generates

two geometries which have no classical analogue: the odd symplectic geometry of the

BV-formalism [BV81], and the mysterious odd Riemannian geometry.

In the usual case, even Riemannian and even symplectic geometries possess a sharp

contrast in the symmetry of the defining tensor fields which properly distinguishes

these geometries. The objective of this chapter is to discuss the odd case where

this dichotomy of symmetry no longer exists, and we suggest that the Lie algebra of

infinitesimal isometries of the structures should be the correct objects to consider in

order to properly distinguish between these.

The majority of the material in this chapter is text-book knowledge, and is solely

included for discussion and interest, though the discussion between the differences of

the odd geometries appears in the short article [KP16].
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4.1 Symmetry of Tensors

Even Riemannian geometry is defined by a Riemannian metric, a non-degenerate rank

2 symmetric covariant tensor field G. This metric determines a very rigid structure

with the space of infinitesimal isometries, the Killing vector fields, possessing finite

dimension. On the other hand, a Riemannian structure offers a very rich set of in-

variants, for example the Levi-Civita connection allows the definition of the curvature

tensor together with its covariant derivatives which completely define the Riemannian

structure.

Even symplectic geometry offers a polar contrast to the Riemannian case, where

the symplectic structure is now defined by an anti-symmetric, non-degenerate rank

2 covariant tensor field ω. The space of infinitesimal isometries of this geometry is

infinite-dimensional, since each isometry is given by a Hamiltonian vector field gen-

erated by a function on the manifold. The flexibility of the 2-form is now offset by

the lack of local invariants; Darboux’s theorem implies that all symplectic manifolds

are locally equivalent, and only the dimension of the manifold can offer any kind of

distinguishing local feature.

In both of these cases the symmetry of the defining tensor fields can be used to

properly distinguish between the two structures.

Consider then what can be obtained for the odd analogues. Odd Riemannian

geometry still remains obscured, since there lacks a detailed study of even its basic

properties. Much more is known however in the case of odd symplectic geometry,

which has gained popularity since the advent of the BV-formalism for Lagrangian

gauge field theories [BV81]. There is for example, a Darboux theorem for an odd

symplectic structure which again tells us that the dimension of the manifold is the only

local invariant. What is perhaps peculiar is that odd symplectic geometry shares many

features with even Riemannian geometry. For instance, both admit a canonical Laplace

operator which is deeply related to the scalar curvature of the manifold [BB09]. It is

this unique blend of features from both symmetric and anti-symmetric backgrounds

which suggests that the symmetry of an odd tensor may not be such of a defining

feature of the corresponding geometry.

Below is a table listing the 4 types of tensor geometries on a supermanifold together
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with their inverse tensors and transformation laws:

Even Riemannian Odd Riemannian Even Symplectic Odd Symplectic

gab = −gba
(a+1)(b+1)

χab = χba
ab

ωab = −ωba
ab

Eab = Eba
(a+1)(b+1)

gab = gba
ab

χab = χba
(a+1)(b+1)

P ab = P ba

(a+1)(b+1)
Sab = Sba

ab

gab = xiagikx
k
b

b(k+1)

χab = xiaχikx
k
b

b(k+1)

ωab = xiaωikx
k
b

k(b+1)

Eab = xiaEikx
k
b

k(b+1)

Shorthand notation is used here such that −gba
(a+1)(b+1)

= −(−1)(a+1)(b+1)gba and so on. In

the super case there is a convention of which sign rules to adopt, and we will require

the symmetry of the components gab and Eab as above so as to write their inverse

tensors as symbols of second order differential operators without introducing extra

signs.

Let V be a vector space. From the table we see that for a rank 2 contravariant

tensor T with inverse t such that T abtbc = δac , it obeys the symmetry rule

T ab = ±(−1)abT ba ⇒ tab = ∓(−1)(a+1)(b+1)+ttba.

If T (and hence t,) is even, then a symmetric tensor on V has an anti-symmetric inverse

on the space with reversed parity ΠV , and similarly, an anti-symmetric tensor on V

has a symmetric inverse on ΠV . This apparent change in symmetry is purely cosmetic

however. The parity reversal functor Π : V 7→ ΠV defines a canonical isomorphism

V ⊗ V ∼= ΠV ⊗ ΠV , which locally maps tensors

T ab 7→ T̂ ab = (−1)aT ab.

This isomorphism induces another canonical isomorphism S2(V ) ∼=
∧2(ΠV ) from the

symmetric square of V to the wedge square of ΠV . Hence in the even case, the inverse

of a symmetric/anti-symmetric tensor is again symmetric/anti-symmetric.

The contrast appears in the odd case where the inverse of a symmetric odd tensor

on V is a symmetric odd tensor on ΠV , isomorphic to an anti-symmetric tensor on

V . There is a shift in symmetry, since the inverse of a symmetric tensor must be anti-

symmetric to negate the sign introduced by the parity of the odd elements. Similarly,
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the inverse of an anti-symmetric odd tensor must now be symmetric. Because of

this, both symmetric and anti-symmetric tensor fields lead to odd Riemannian and

odd symplectic geometries, which suggests that the symmetry of the defining tensors

should not be such a strongly distinguishing feature as in the even cases. For further

details on the symmetry properties of tensors, we refer to the book [Man97], or the

appendix of [Vor16].

4.2 Cartan Prolongation

Let V be a vector space and g ⊂ gl(V ) be a Lie subalgebra of the Lie algebra gl(V ).

One defines the Lie algebra of formal vector fields on V as

Vect(V ) :=
⊕
k≥0

SkV ∗ ⊗ V,

where SkV ∗ is the space of rank k symmetric covariant tensors on V . The natural Lie

bracket on Vect(V ) lowers the polynomial degree by 1, and hence

gl(V ) ∼= V ∗ ⊗ V ↪→ Vect(V ),

is a Lie subalgebra of Vect(V ). The space V acts naturally on Vect(V ) by insertion;

for u ∈ V and g ∈ Vect(V ), define the map ıu : SkV ∗ ⊗ V → Sk−1V ∗ ⊗ V by

ıug = [g, u].

Definition 4.2.1. [RU12] The Cartan prolongation of the Lie algebra g is the space

g(∞) = V ⊕ g(0) ⊕ g(1) ⊕ · · · , where g(0) = g, and the kth Cartan prolongation g(k) is

defined inductively as

g(k) =
{
g ∈ SkV ∗ ⊗ V

∣∣∣ ∀u ∈ V, ıug ∈ g(k−1)
}
.

In particular, elements of the kth Cartan prolongation of a Lie algebra g ⊂ gl(V )

are tensors T ijm1···mk , which are symmetric over all lower indices, and for fixed values

of m1, · · · ,mk, the tensor T ijm1···mk belongs to g.

Example 4.2.1. Consider the Lie algebra consisting of all rotations and dilations of

Rn,

co(n) =
{
X ∈ Vect(Rn)

∣∣∣LXG = λG
}
,
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dilating the standard Euclidean metric G by λ = λ(x) 6= 0. From the condition

LXG = λG, we obtain the equation

∂Xk

∂xi
Ikj + Iik

∂Xk

∂xj
= λδij,

and writing T ji = ∂iX
j we come to

T ij + T ji = λδij, (4.1)

in the individual matrix entries. Differentiating (4.1) by any fixed coordinate xk we

obtain

T ikj + T jki = ∂kλδij = λkδij. (4.2)

The tensors T ikj are certainly symmetric with respect to the lower indices, and belong

to the first Cartan prolongation co(1)(n) of co(n). Rearranging (4.2) as T ikj = λkδij−T jki
and observing the symmetry of the lower indices gives

T ikj =
1

2
(λkδij − λiδkj + λjδik) .

The first Cartan prolongation of co(n) is seen to be spanned by tensors of this form,

and so co(n) admits an n-dimensional first Cartan prolongation co(1)(n). Consider

repeating this for the second prolongation:

T ilkj + T jlki = λlkδij, T ilkj =
1

2
(λlkδij − λliδkj + λljδik) . (4.3)

Comparing the symmetry of the lower indices we come to the conclusion that λlk = 0.

Therefore the second Cartan prolongation of co(n) is trivial, and hence

co(∞)(n) = Rn ⊕ co(n)⊕ co(1)(n),

which is of dimension n+n(n−1)/2+1+n = (n+1)(n+2)/2. The Cartan prolongation

of the conformal Lie algebra on Rn therefore consists of n generators of translations,

n(n− 1)/2 generators of rotations, 1 dilation, and n special conformal transformation

generators. We mention that during the calculation of (4.3) we find that n 6= 2. In

dimension 2 there is an infinite-dimensional group of local conformal transformations,

and indeed, the calculations blow up in this case reflecting this.

Now consider the case of the Lie algebras preserving even Riemannian and even

symplectic structure on a 2n-dimensional space R2n.
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Let G be the standard Euclidean metric, and let K be a Killing vector field;

LKG = 0. Then locally,
∂Ki

∂xj
+
∂Kj

∂xi
= 0.

Write T ij = ∂jK
i, and differentiate this with respect to any coordinate xk,

T ikj =
∂Ki

∂xk∂xj
.

Since the tensor is symmetric in indices k and j, and anti-symmetric with respect to

indices i and j, it must vanish identically:

T ikj = −T kij = −T kji = T jki = T jik = −T ijk = −T ikj.

Since T ijk ≡ 0, we see that Ki = xjAij +Bi, showing that all infinitesimal isometries of

a Euclidean metric are infinitesimal translations and rotations. Since each T ijk belongs

to the first Cartan prolongation of the Lie algebra so(2n), the first Cartan prolongation

of so(2n) vanishes identically, and so the rigidity of a Riemannian metric is encoded

in the vanishing of the first prolongation of its Lie algebra of infinitesimal symmetries.

One can consider a symplectic structure on R2n given in standard Darboux coor-

dinates. An infinitesimal canonical transformation L gives the equation

∂Li

∂xj
− ∂Lj

∂xi
= 0. (4.4)

Then analogous to the Riemannian case, one can calculate the first Cartan prolon-

gation of the symplectic Lie algebra sp(n). Since the tensor arising from equation

(4.4) is symmetric in all indices, there is an infinite dimensional space of solutions for

this. Indeed, let J be the matrix defining the standard even symplectic structure in

Darboux coordinates. Then we have

Li = J ij∂jf, f ∈ C∞(R2n),

for all functions f . This coincides with the well-known fact that all Hamiltonian vector

fields preserve the symplectic structure. Observe that all higher Cartan prolongations

are also non-trivial. Any arbitrary rank k + 2 symmetric tensor Lkjm1···mk defines a

tensor Lijm1···mk = J ikLkjm1···mk belonging to the kth Cartan prolongation.

The conclusions are analogous in the super case for the odd structures, only the

signs must be inserted in the calculations. This suggests that the distinguishing feature
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of odd Riemannian and odd symplectic geometry should not be in the symmetry of the

defining tensors, but in the differences in the Cartan prolongation of the corresponding

Lie algebras of infinitesimal symmetries.
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Chapter 5

Odd Laplace Operators, their

Potential Fields, and the Modular

Class of an Odd Poisson Manifold

The goal of this chapter is to introduce and study a class of odd Laplace type differ-

ential operators associated to an odd Poisson manifold. In the odd symplectic case,

this class will incorporate the famous BV-operator introduced in [BV81], or more pre-

cisely, Khudaverdian’s extension of the BV-operator to semidensities [Khu04]. To any

operator in this class we assign a geometrical object called the potential field, whose

properties suggest a deep connection to the geometry of an odd Poisson manifold. We

then show that such a class of operators may be used to describe the modular class of

an odd Poisson manifold introduced in [KV02], and we use this operator description

to provide the first examples of an odd Poisson manifold with a non-trivial modular

class. The majority of the material in this chapter appears in the two articles [KP17]

and [KP16].

5.1 The Algebra of Densities

To begin, we recall some necessary facts concerning the algebra of densities F(M); a

commutative algebra associated to any manifold M which provides a natural setting

to study differential operators (see for example [OT05, KV13] and references therein).

Definition 5.1.1. A density of weight λ ∈ R on a manifold M is a geometric object
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with the appearance s = s(x)|Dx|λ, such that, under a change of local coordinates

x = x(x′), the density transforms as

s = s(x(x′))Ber

(
∂x

∂x′

)λ
|Dx′|λ. (5.1)

Densities of weight λ transform according to the λth power of the Berezinian of

the Jacobian matrix associated to the coordinate change. There exist densities on a

manifold with certain distinguished weights: those of weight zero are identified with

smooth functions on M , whilst those of weight 1 correspond to volume elements. Our

interest will primarily be in densities of weight 1/2; half-densities or semidensities.

Note that bold face will be used to distinguish densities and geometric objects acting

on densities from those acting on the algebra of functions C∞(M).

The vector space of all homogeneous densities of weight λ on M is written Fλ =

Fλ(M). Together these spaces form a natural R-graded algebra F(M) = ⊕λ∈RFλ(M),

where the multiplication of two homogeneous densities s ∈ Fλ, t ∈ Fµ is defined by

st = s(x)t(x)|Dx|λ+µ ∈ Fλ+µ.

An arbitrary inhomogeneous density on M is a finite linear combination of homo-

geneous densities of arbitrary weights. Such a finite linear combination under an

R-grading is called a pseudo-polynomial [KV14].

Remark 5.1.1. Densities of weight λ on a manifold can equivalently be described as

sections of the determinant line bundle |Vol(M)|⊗λ = |Ber(T ∗M)\M |⊗λ, for which a

local frame is provided by the element |Dx|λ. Multiplication of densities then corre-

sponds to the natural identification |Vol(M)|⊗λ⊗|Vol(M)|⊗µ ∼= |Vol(M)|⊗(λ+µ) [KV14].

The algebra of densities can be interpreted as a subalgebra of the function space

of an extended manifold M̂ . Introducing a formal variable t to replace |Dx|, which

is assumed to be positive, invertible and of even Grassmann parity, the variables xa, t

may be viewed as local coordinates on a line bundle M̂ → M . This line bundle is

the positive half of the bundle Ber(TM), where the positive section t of Ber(T ∗M) is

seen as a function on the dual bundle. Under a change of coordinates x = x(x′), the

variable t transforms as

t = Ber

(
∂x

∂x′

)
t′.
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The algebra of densities F(M) can then be identified with a subalgebra of the algebra

of functions C∞(M̂), consisting of all pseudo-polynomial functions in t under the R-

grading.

Remark 5.1.2. The distinction of the subalgebra is important. In particular, the R-

grading does not extend to the whole algebra C∞(M̂). As a consequence it is beneficial

to assume that M̂ is an R-graded manifold, and so the algebra of densities becomes

the entire algebra of functions on the now R-graded M̂ . Assuming this, we will be

able to interpret derivations of F(M) as vector fields on M̂ and so on.

For densities s, t ∈ F(M), a derivation X of F(M) satisfies

X(st) = X(s)t + (−1)XssX(t).

The R-grading extends to derivations, and it can be seen that a homogeneous vector

field X of weight λ on M̂ has the local expression

X(x, t) = tλXa(x)∂a + tλ+1X0(x)∂t.

The algebra of densities also comes equipped with a natural scalar product. For

two compactly supported densities s ∈ Fλ and t ∈ Fµ, define

(s, t) =


∫
M
s(x)t(x)|Dx| if λ+ µ = 1,

0 otherwise .
(5.2)

This canonical scalar product is non-degenerate due to the non-degeneracy of the

Berezin integral.

Remark 5.1.3. We will always assume that the integral exists, in particular, that any

orientation conditions are satisfied if necessary. For details on orientation conditions

on supermanifolds we refer to the book [Vor91].

It is known that any unital algebra possessing a non-degenerate scalar product

admits a canonical divergence operator [KV04]. Recall that for such an algebra A, a

divergence operator is an even linear map div : DerA → A such that, for D ∈ DerA

and a ∈ A,

div(aD) = adivD + (−1)aDD(a).

For details on divergence operators see [KSM02]. Therefore when equipped with the

canonical scalar product (5.2), the algebra of densities admits a canonical divergence

operator defined as follows.
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Definition 5.1.2. The divergence of a graded vector field X on M̂ is given by

divX = −
(
X + X+

)
, (5.3)

where X+ is the adjoint of X regarded as a differential operator on F(M), defined by

(Xs, t) = (−1)Xs(s,X+t) for densities s, t ∈ F(M).

Corollary 5.1.1. A vector field X on M̂ is divergenceless if and only if X is anti-

self-adjoint.

Now let X be a divergenceless homogeneous derivation of F(M) of weight zero,

X(x, t) = Xa(x)∂a + tX0(x)∂t.

Then

divX = 0 ⇔ X = −X+ ⇒ ∂aX
a −X0 = 0.

Therefore any divergenceless derivation of weight zero takes the local form

X(x, t) = Xa(x)∂a + t∂aX
a(x)∂t.

Proposition 5.1.1. Let X be a homogeneous derivation of weight zero. If X is anti-

self-adjoint, that is, X has zero divergence, then X acts on densities by the Lie deriva-

tive of the associated vector field X = Xa(x)∂a on the manifold M : for a homogeneous

density s of weight λ,

Xs = Xa∂as + λ∂aX
as = LXs.

Remark 5.1.4. The relationship between divergence operators, connections and vol-

ume forms on a manifold is well-studied in the article [KSM02]. Consider a volume

form ρ = ρ(x)|Dx| on M . This defines a non-degenerate scaler product in the alge-

bra of functions C∞(M) by (f, g)ρ =
∫
M
fgρ, and as such, an associated canonical

divergence operator: for X ∈ Vect(M),

(divρX)ρ = LXρ, divρX = (−1)a(X+1) 1

ρ
∂a (ρXa) . (5.4)

A choice of volume form on M further allows the identification of semidensities

with functions. For a semidensity s = s(x)
√
|Dx| on M , define the function fs by

fs = sρ−
1
2 =

s(x)√
ρ(x)

(5.5)
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since ρ(x) is assumed to be a Grassmann even, invertible function. This one to one

correspondence identifies the canonical divergence operator (5.3) with that depending

on the volume form (5.4).

The notion of a divergence operator is equivalent to the existence of a connection

in the bundle Vol(M). This induces a covariant derivative of volume forms over vector

fields on M , locally given by

∇Xρ = (Xa∂aρ+Xaγaρ) |Dx|,

where γa are connection coefficients that transform according to

γa = xa
′

a

(
γa′ + ∂a′ log Ber

(
∂x

∂x′

))
. (5.6)

(Recall the notation xa
′
a = ∂xa

′
/∂xa.) Conversely, to any connection in the line bundle

Vol(M), one can associate a divergence operator on M by

div∇X = (−1)a(X+1) (∂a − γa)Xa. (5.7)

A choice of volume form specifies a canonical flat connection in Vol(M) by defining

γa = −∂a log ρ. (5.8)

With this choice, the two induced divergence operators (5.4) and (5.7) coincide. An-

other important example comes from an affine connection ∇ on M whose connection

coefficients are given by the Christoffel symbols Γcab. A connection in Vol(M) may

then be defined by setting γa = −sTrΓcab = −Γbab(−1)b.

5.2 Laplace Operators and their Potential Fields

An arbitrary odd second order differential operator ∆ of weight zero acting on densities

on a manifold M has the local expression

∆ =
1

2

(
Sab(x)∂b∂a + tT a(x)∂a∂t + t2R(x)∂2

t + Aa(x)∂a + tB(x)∂t + C(x)
)
.

Since the algebra of densities comes equipped with a canonical scalar product eq.

(5.2), one can speak naturally about adjoint operators without the need to introduce
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further data such as a volume form. For an arbitrary weight zero operator ∆ acting

on densities, the adjoint operator ∆+ is an odd operator defined by

(∆s, t) = (−1)s
(
s,∆+t

)
, (5.9)

for densities s, t ∈ F(M). It will be of interest to restrict these operators to the

subspace of semidensities, where an arbitrary operator ∆ takes the local form

∆ =
1

2

(
Sab(x)∂b∂a + V a(x)∂a + U(x)

)
.

A special class of operators acting on semidensities are those which are self-adjoint,

∆ = ∆+. In this case, the local form of a self-adjoint operator has a particularly

simple expression:

∆ =
1

2

(
∂b
(
Sba∂a

)
+ U

)
, (5.10)

where U is some odd term of order zero.

Under a change of coordinates x = x(x′), the expression for a semidensity s = s(x)

in the new coordinates x′ is

s(x′) = s(x(x′)), s(x′) = s(x(x′))
√
J
√
|Dx′|,

where J is the Berezinian of the Jacobian matrix of the coordinate transformation.

The second order terms of a self-adjoint operator ∆ acting on semidensities are then

seen to satisfy the transformation law

Sab = (−1)a(a′+1)xaa′S
a′b′xbb′ ,

coinciding with the transformation law of an odd rank 2 symmetric contravariant

tensor field S.

Recall that there is a natural even identification between symmetric contravariant

tensor fields on M and functions on the cotangent bundle T ∗M which are polynomial in

the fibre variables. Under this identification, an odd rank 2 tensor field S corresponds

to an odd fibre-wise quadratic function S ∈ C∞(T ∗M),

S =
1

2
Sab∂b ⊗ ∂a ↔ S =

1

2
Sabpbpa.

This identification between symmetric polynomial functions on T ∗M and symmetric

contravariant tensor fields on M will be implicit throughout the rest of this chapter.
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We will refer to the function S as the principal symbol of the self-adjoint operator ∆

with the local form (5.10), though this is an abuse of language, since the principal

symbol of such an operator is actually a function in the extended space of functions

C∞(T ∗M̂).

Definition 5.2.1. Fix an odd rank 2 symmetric contravariant tensor field S on M .

Define the class DS of odd second order differential operators acting on semidensities

on M such that:

1. An operator ∆ ∈ DS is self-adjoint;

2. The principal symbol of any operator in DS is given by the odd fibre-wise

quadratic function S ∈ C∞(T ∗M) corresponding to the odd tensor field S.

In other words, ∆ ∈ DS has the local appearance (5.10), where Sab are components of

the tensor field S.

Proposition 5.2.1. The class DS is non-empty, and any two operators ∆,∆′ ∈ DS
differ by a scalar function,

∆′ −∆ = F (x). (5.11)

One can say that DS is an affine space of second order operators associated to the

space of functions on M .

Proof. First suppose that ∆,∆′ ∈ DS. Since both ∆ and ∆′ have the same principal

symbol, their difference ∆′ − ∆ is an operator of order at most 1. Suppose that

∆′ −∆ = La∂a + F is a first order operator. Since the difference is self-adjoint,

La∂a + F = −∂a (La) + F = −La∂a − ∂aLa + F,

and so La ≡ 0. Therefore their difference is an odd scalar function F .

To show that the class is non-empty we shall construct such an operator (using

a partition of unity argument). Let ρ = ρ(x)|Dx| be a volume form on M and

S = 1
2
Sab∂b ⊗ ∂a be an odd rank 2 symmetric contravariant tensor field.

Given a semidensity s ∈ F1/2 we can construct a function fs = sρ−1/2 by eq. (5.5),

and via the tensor field S, a gradient Hamiltonian vector field Xfs = S(dfs). Now
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consider the divergence of Xfs with respect to the volume form ρ as an odd second

order operator on semidensities. Define ∆ρ as

∆ρs =
1

2

√
ρ divρXfs . (5.12)

In local coordinates,

∆ρs =
1

2

(
∂b
(
Sba∂a

)
s− 1

2
∂a
(
Sab∂b log ρ

)
s− 1

4
∂a log ρSab∂b log ρs

)√
|Dx|.

That the operator is self-adjoint follows from that of the corresponding operator ∆ρ

on functions. Define the operator ∆ρ by

∆ρf = ρ−1/2∆ρ(fρ1/2), (5.13)

for a function f ∈ C∞(M). The operator ∆ρ is self-adjoint due to the Green’s integral

identity ∫
M

∆ρ(f)gρ =

∫
M

Xfgρ = (−1)fg
∫
M

Xgfρ = (−1)f
∫
M

f∆ρ(g)ρ,

(see [KV02]), and the self-adjoint property of ∆ρ follows.

Example 5.2.1. Consider a pair of vector fields X and Y on M of different Grassmann

parity. As the Lie derivative LX of semidensities on M is a first order anti-self-adjoint

differential operator of parity X̃ by proposition 5.1.1, we can define an odd self-adjoint

operator ∆ on semidensities by

∆ =
1

2
(LXLY + LYLX) , (5.14)

where the odd rank 2 contravariant tensor field S is defined as the symmetric product

S = X � Y of the vector fields X and Y .

Notice that any symmetric rank 2 tensor field defines such an operator, since there

exists a (non-unique) decomposition S =
∑

λXλ�Yλ of S into the symmetric product

of vector fields. In general, each different decomposition will correspond to a different

operator in the same class DS.

Proposition 5.2.2. Let ∆ ∈ DS be an odd self-adjoint second order differential oper-

ator on semidensities. Given a function f ∈ C∞(M),

∆(fs) = (−1)ff∆s + LXfs, (5.15)

where Xf is the associated gradient vector field Xf = S(df).

103



5.2. LAPLACE OPERATORS AND THEIR POTENTIAL FIELDS

Proof. Write ∆(fs) = (−1)ff∆s + [∆, f ]s. Then [∆, f ] is a first order operator on

semidensities, and is shown to be anti-self-adjoint directly from the definition (5.9).

Hence, with principal symbol Xf = S(df), the operator coincides with the Lie deriva-

tive over the vector field Xf by proposition 5.1.1.

5.2.1 The Potential Field

Together with the odd symmetric tensor field S, an odd object of order zero is required

to full describe an operator ∆ ∈ DS. This is clear from expression (5.10). In fact

this object is geometrical, and later we see that some of its properties suggest close

connections with the geometry of the manifold when equipped with an odd Poisson

structure.

Definition 5.2.2. Given a manifold M and an odd rank 2 symmetric contravariant

tensor field S, the geometrical object U in expression (5.10) is called the potential field

of the operator ∆ ∈ DS, or a second order compensating field of the operator ∆.

The name “second order compensating field” is a consequence of its action under

diffeomorphisms on M . In the same way that connection coefficients compensate local

coordinate changes for a covariant derivative in the first derivatives, the potential

field compensates those in the operator ∆ in second derivatives. We will see that the

potential field U has many similarities with that of a connection.

Under a change of coordinates x = x(x′), the compensating field transforms as

U = U ′ +
1

2
∂a′
(
Sa
′b′∂′b logJ

)
+

1

4

(
∂a′ logJ Sa′b′∂b′ logJ

)
, (5.16)

where J is the Berezinian of the Jacobian matrix of the coordinate transformation.

Proposition 5.2.3. An operator ∆ ∈ DS is well defined by two geometrical objects:

1. The odd rank 2 symmetric contravariant tensor field S defining the principal

symbol of the operator;

2. A potential field U which transforms according to equation (5.16).

The space of compensating fields is an affine space associated to the space of functions

over M .
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Consider some examples of potential fields. Throughout these we will assume that

we fix an odd tensor field S = 1
2
Sab∂b ⊗ ∂a on a manifold M .

Example 5.2.2. Let M be equipped with a volume form ρ = ρ(x)|Dx|. Then we can

consider the operator ∆ρ on semidensities defined in eq. (5.12). The expression of this

operator in coordinates shows that the potential field is locally given by

Uρ = −1

2
∂a
(
Sab∂b log ρ

)
− 1

4
∂a log ρSab∂b log ρ. (5.17)

Example 5.2.3. A volume form ρ defines the divergence operator (5.12) with poten-

tial Uρ as above. It also induces a connection in the bundle of volume forms defined

by the symbols

γa = −∂a log ρ.

Expressing the potential Uρ in terms of γa,

Uρ = Uγ =
1

2
∂aγ

a − 1

4
γaγa, (5.18)

where γa = Sabγb defines an upper connection, or a contravariant connection, in the

bundle Vol(M). Formula (5.18) for the potential field holds for any connection in the

space of volume forms, for example, when M is equipped with an affine connection.

In this case the corresponding second order operator is defined by the divergence with

respect to the connection as in eq. (5.7) as opposed to a volume form.

Both of the previous examples rely on the introduction of extra information,

whether it be a volume form or a connection in the bundle Vol(M). The potential

field may arise as a primary object however, as the next example describes.

Example 5.2.4. The odd tangent bundle ΠTM is equipped with a natural volume

form. For canonical local coordinates xa, ηa, this is written as

ρ = |D(x, η)|. (5.19)

This form remains invariant under a change of coordinates: for x = x(x′), ηa = ηa
′
Jaa′ ,

we see that

|D(x, η)| = Ber

 ∂x
∂x′

0

η′ ∂2x
∂x′∂x′

∂x
∂x′

 |D(x′, η′)| = |D(x′, η′)|.

Hence, considering the potential field (5.17), we obtain a canonical potential field given

by U = Uρ ≡ 0 in coordinates adapted to the structure of the bundle ΠTM .
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Remark 5.2.1. An important example of a potential field occurs when one considers

operators of non-zero weights. Consider the real line R and a symmetric tensor density

∂x ⊗ ∂x|Dx|2. Such a density gives rise to an operator

∆ =
(
∂2
x + U

)
|Dx|2,

where U = U(x)|Dx|2 is the potential density called a projective connection [KV12,

OT05]. Under a change of coordinates y = y(x), U transforms by the Schwartzian

derivative

U(y)|Dy|2 = U(x)|Dx|2 − 1

2

(
yxxx
yx
− 3

2

y2
xx

y2
x

)
|Dx|2.

In particular, it was shown that the existence of a projective connection on the base

manifold M gives rise to a canonical connection in the bundle of volume forms, and

hence to a canonical second order operator [Geo08].

5.3 The Modular Class of an Odd Poisson Manifold

In the previous section we considered the class of operators DS depending on an

arbitrary odd rank 2 symmetric tensor field S. A desirable property of such Laplace

type operators is nilpotency; for example, the BV-operator introduced in [BV81] is

required to be nilpotent.

5.3.1 Nilpotency Conditions

Proposition 5.3.1. Let S be an odd rank 2 symmetric contravariant tensor field on M

and let DS be the associated class of differential operators. For any operator ∆ ∈ DS,

the operator ∆2 is an even anti-self-adjoint operator of order at most 3. Further:

1. The order of the operator ∆2 is less than 3 if and only if the principal symbol S

defines an odd Poisson structure on the manifold M ;

2. If the order of ∆2 is less than 3, then it is at most 1. In this case,

∆2 = LX , (5.20)

for some even vector field X on M ;
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3. The operator ∆2 = 0 if and only if the principal symbol S defines an odd Poisson

structure and the vector field X in equation (5.20) vanishes.

Proof. Given semidensities s, t ∈ F1/2,(
∆2s, t

)
= (−1)∆(∆+s) (∆s,∆t) = (−1)∆(∆+s)+∆s

(
s,∆2t

)
,

and so (∆2s, t) = − (s,∆2t). Hence the square of ∆ is an anti-self-adjoint even

operator. Since ∆ is odd, the square may be expressed as a commutator

∆2 =
1

2
[∆,∆],

and so it must have order at most 3.

Considering the operator ∆2 in local coordinates,

∆2 =
1

2
(−1)aSai∂iS

bc∂c∂b∂a + lower order terms.

The third order terms coincide precisely with the local expression of the Jacobi identity

for the odd Hamiltonian function S ∈ C∞(T ∗M). It can be seen that the symbol of

∆2 defines the cubic Hamiltonian function (S, S) ∈ C∞(T ∗M), the vanishing of which

is precisely the master equation for the master Hamiltonian S of an odd Poisson

structure.

If S ∈ C∞(T ∗M) defines an odd Poisson structure on M then the third order

terms vanish and the operator ∆2 is at most second order. However, since ∆2 is anti-

self-adjoint, the second order terms must also vanish. Therefore, if S defines an odd

Poisson bracket, then ∆2 is a first order anti-self-adjoint operator and so by proposition

5.1.1 must be the Lie derivative of some vector field X on M . It is clear then that

∆2 = 0 if and only if the vector field X vanishes.

From now we will assume that M is an odd Poisson manifold with fixed master

Hamiltonian function S, to which we associate the canonical class of second order

differential operators DS acting on semidensities on M .

Definition 5.3.1. For an odd Poisson manifold M with master Hamiltonian S ∈

C∞(T ∗M) and an operator ∆ ∈ DS, the vector field X = X∆ such that

∆2 = LX∆

is called the modular vector field associated to the operator ∆.
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Proposition 5.3.2. For an odd Poisson manifold M and an operator ∆ ∈ DS, the

modular vector field X∆ associated to ∆ is a Poisson vector field. Further, if ∆′ =

∆ + F is another operator in DS, the associated modular vector field X∆ changes by

the Hamiltonian vector field XF ,

X∆′ = X∆ +XF .

Proof. The vector field X∆ preserves the operator since, for any semidensity s ∈ F1/2,

LX∆
∆s = ∆2 ◦∆s = ∆ ◦∆2s = ∆ ◦ LX∆

s.

It therefore preserves the odd Poisson bracket since it preserves the principal symbol

of the operator. Considering a second operator ∆′ = ∆ + F ,

(∆′)
2

= (∆ + F )2 = ∆2 + [∆, F ],

since F is an odd function. The operator [∆, F ] is a first order operator with principal

symbol that of the Hamiltonian vector field XF = {F,−}S. It is anti-self-adjoint and

hence is given by the Lie derivative over XF . Therefore

LX∆′
= LX∆

+ LXF .

Recall that the Poisson-Lichnerowicz cohomology of an odd Poisson manifold is

obtained from the complex dS : C∞(T ∗M) → C∞(T ∗M), where dS = (S,−) is the

odd super-analogue of the Lichnerowicz differential. Intuitively, the first Poisson-

Lichnerowicz cohomology group H1
dS

(M) is interpreted as the space of Poisson vector

fields on M modulo those which are Hamiltonian. Therefore the modular vector field

X∆ associated to any operator ∆ ∈ DS is a representative of a cohomology class in the

first Poisson-Lichnerowicz cohomology, which moreover is independent of the choice of

∆ since the modular vector field X∆′ associated to any other operator ∆′ ∈ DS differs

only by a Hamiltonian vector field. We come to the following definition.

Definition 5.3.2. For an odd Poisson manifold M with master Hamiltonian S and

associated class of operators DS, the modular class of the odd Poisson manifold is the

cohomological class in the first Poisson-Lichnerowicz cohomology represented by the

modular vector field associated to any operator ∆ ∈ DS.
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This class was first introduced in [KV02] in consideration of the operator ∆ρ acting

on functions (eq. (5.13)). In the same paper many properties of the odd operator ∆ρ

were proved, some of which will be beneficial to recall.

Proposition 5.3.3. For functions f, g ∈ C∞(M), the operator ∆ρ defined by

∆ρf =
1

2
divρXf ,

satisfies the following together with the odd Poisson bracket {−,−} on M :

∆ρ(fg) = ∆ρ(f)g + (−1)ff∆ρ(g) + 2{f, g}; (5.21)

∆ρ{f, g} = −{∆ρf, g} − (−1)f{f,∆ρg}; (5.22)

L∆2
ρ
ρ = 0. (5.23)

In particular, property (5.21) implies that, up to a factor of 2, the odd Laplacian

generates the odd Poisson bracket on M . Odd Poisson algebras whose generating

operators are of square zero are called Batalin-Vilkovisky algebras, or BV-algebras

[KS00, Xu99]. In this case the first order operator ∆2
ρ is a vector field, and further is a

Hamiltonian vector field if and only if the modular class of the odd Poisson manifold

vanishes. It is then seen that the modular class is an obstruction to finding a square

zero generator of the odd bracket: if the modular class vanishes, then ∆2
ρ = Xf for

some function f ∈ C∞(M). Define then a new volume form ρ′ where

ρ′ = egρ ⇒ ∆2
ρ′ = ∆2

ρ +X∆ρg+
1
2
{g,g},

for g ∈ C∞(M). In particular, if Xf = −X∆ρ+ 1
2
{g,g} then the new operator ∆ρ′ is

nilpotent. Notice that if we suppose that ∆2
ρ = 0, then redefining ρ by ρ′ again

provides a nilpotent operator if g satisfies a Maurer-Cartan type equation

∆ρg +
1

2
{g, g} = 0.

(Notice that this Maurer-Cartan equation is the quantum master equation when g

describes a quantum effective action on an odd symplectic supermanifold.)

The derivation property (5.22) is equivalent to the condition that the operator be

self-adjoint. The proof of this relies on the fact that the curvature of the divergence

operator with respect to the volume form is precisely zero (see [KSM02]), which is

equivalent to the flatness of the induced connection in Vol(M). The flatness of this

connection is equivalent to the self-adjoint property of the operator ∆ρ acting on

semidensities, which is self-adjoint if and only if ∆ρ is.
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5.3.2 Even Poisson Manifolds

Recall that in [ELW99, Wei97], the modular class of an even Poisson manifold (which

readily extends to even Poisson supermanifolds,) was constructed as follows. Let M

be an even Poisson manifold with corresponding Poisson tensor P , and let ρ be a

volume form on M . Then an operator directly analogous to the operator (5.13) may

be defined on functions by

∆ρf = divρXf =
1

ρ
(−1)a(Xf+1)∂a

(
ρP ab∂bf

)
. (5.24)

In the even case, the anti-symmetry of the Poisson bivector P reduces the operator

(5.24) to a first order differential operator on functions. The operator is therefore

a vector field, and further, it is a Poisson vector field preserving the even Poisson

bracket on M . Changing the volume form ρ′ = eσρ alters the vector field ∆ρ by

the Hamiltonian vector field Xσ. Therefore the Poisson vector field ∆ρ defines a

cohomology class in the first Poisson-Lichnerowicz cohomology, the modular class of

the even Poisson manifold.

By definition, the modular class of an even Poisson manifold has an intimate rela-

tion with volume forms on the manifold. Recall that the operator ∆ρ is equivalently

defined by

∆ρfρ = LXfρ,

as the coefficient of the volume form when acted upon by the Lie derivative of a

Hamiltonian vector field. A volume form ρ is said to be invariant if it remains invariant

over the flow of all Hamiltonian vector fields on M , in which case the Poisson manifold

is said to be unimodular. This occurs if and only if the modular vector field ∆ρ

vanishes.

For example, for any even symplectic manifold the Liouville form is a natural

volume form invariant over the flow of every Hamiltonian vector field. The operator

associated to this form vanishes, and so does the modular class of any even symplectic

manifold. An example of an even Poisson manifold with non-vanishing modular class

is given by g∗ for a Lie algebra g. The modular class of g∗ is represented by the

infinitesimal modular character of the Lie algebra, a vector field with constant value

x 7→ sTr(adx).

110



CHAPTER 5. ODD LAPLACE OPERATORS

As well as for even Poisson manifolds, modular vector fields are well-defined for Lie

algebroids, which are connected to generating operators of the corresponding Schouten

structure [KS00, KS08, Xu99]. The definition of these however rely on the notion of

a top exterior bundle of the corresponding Lie algebroid, employing connections and

representations of the Lie algebroid. In the super case this should be replaced by the

determinant line bundle, since there is no notion of a top exterior bundle. It would

be interesting to interpret the modular class of a Lie algebroid equipped with an odd

bracket in the space of sections in terms of the determinant line bundle, and whether

any relation exists between the modular class of a Lie algebroid A and the modular

class of the equivalent odd Poisson manifold ΠA∗.

5.3.3 A Local Description

It is interesting to provide a local description of the modular vector field associated

to an operator ∆. For an arbitrary operator ∆ ∈ DS with local description (5.10), an

expression for ∆2 is obtained, equal to the Lie derivative of the associated modular

vector field,

X∆ =
1

4
∂c
(
Scd∂d∂bS

ba
)
∂a +

1

2
(−1)aSab∂bU∂a. (5.25)

For ease, write χa∂a = 1
4
∂c
(
Scd∂d∂bS

ba
)
∂a. Then the Lie derivative

LX∆
= χa∂a +

1

2
(−1)aSab∂bU∂a +

1

2
(−1)a∂a

(
χa +

1

2
(−1)aSab∂bU

)
= X∆ +

1

4
∂a
(
Sab∂bU

)
,

comparing with local calculations for ∆2. Notice that the naive divergence of χ,

(−1)a∂aχ
a, is identically zero. Since χ depends solely on the odd Poisson structure

this fact must have a geometrical meaning. Secondly, observe that the term χa∂a is

not a vector field alone, but depends on terms from the potential field U to transform

as a vector field under an arbitrary change of coordinates.

Proposition 5.3.4. The term χ in the modular vector field X∆ associated to an

operator ∆ transforms in the following way for a change of coordinates x = x(x′),

χa
′
= ∂c

(
Scd∂d

(
∂bS

ba + ∂b logJ Sba
))
xa
′

a

+ ∂c logJ Scd∂d
(
∂bS

ba + ∂b logJ Sba
)
xa
′

a .
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Recall that for a connection in the bundle of volume forms, the symbols γa trans-

form according to eq. (5.6), which is strikingly similar to components of the term χ.

This local analysis suggests that a modular vector field, together with the potential

field, should possess close relations with the geometry of the odd Poisson manifold.

We finally observe that for a unimodular change of coordinates (volume preserving

coordinate changes such that J = Ber
(
∂x
∂x′

)
≡ 1,), we obtain

χa
′
= ∂c

(
Scd∂d∂bS

ba
)
xa
′

a , U = U ′ (5.26)

transforming as a vector field and a function.

5.4 Examples

5.4.1 The Symplectic Potential Field

Odd symplectic manifolds are the motivating example for the study of odd Laplace type

operators since their introduction in the BV-formalism [BV81] for gauge field theories.

Let M be an odd symplectic manifold with master Hamiltonian E ∈ C∞(T ∗M), and

let xa, θa be Darboux coordinates on M . An odd second order operator ∆0 acting on

semidensities can be naively written as

∆0s =
∂2s(x, θ)

∂θa∂xa

√
|D(x, θ)|, (5.27)

for a semidensity s ∈ F1/2(M). What is remarkable is that this operator remains

invariant under canonical transformations, and hence is a well-defined operator on M .

This is a consequence of the Batalin-Vilkovisky lemma [BV81, Khu04], which states

that

∆0Ber

(
∂(x, θ)

∂(x′, θ′)

)1/2

= 0,

for a coordinate change from one set of Darboux coordinates x, θ to another x′, θ′.

The canonical operator ∆0 acting on semidensities can be found under the name of

Khudaverdian’s ∆-operator or the canonical odd Laplacian [Khu04]. In order to relate

∆0 with the BV-operator on functions, we require a choice of volume form ρ on M

such that ρ can be expressed as |D(x, θ)| in some set of Darboux coordinates. Such

a volume form is called normal, and specifically has constant coefficient 1 in this
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Darboux coordinate chart. In this case, the BV-operator on functions ∆ρ is defined

by the conjugation

∆ρf =
1
√
ρ

∆0f
√
ρ =

∂2f

∂θa∂xa
, (5.28)

for a function f ∈ C∞(M). The benefit of the operator ∆0 acting on semidensities

is that no volume form is needed, lifting the restriction on the existence of a normal

volume form.

An interesting question as to what the canonical odd Laplacian looks like in arbi-

trary local coordinates was answered by Bering [Ber06]. In our notation the operator

∆0 is such that ∆0 = 1
2

(
∂a
(
Eab∂b

)
+ U0

)
, where

U0 =
1

4
∂b∂aE

ab − (−1)b(d+1) 1

12
∂aE

bcEcd∂bE
da (5.29)

is the canonical symplectic potential field of the operator ∆0, and the matrix ||Eab||

defines the odd symplectic form on M ; the calculation of this formula is found at

the end of this chapter. Notice that in Darboux coordinates the potential field U0

vanishes, and the operator ∆0 is clearly nilpotent. Hence the modular class of any

odd symplectic manifold is zero paralleling the even case, despite the absence of a

canonical volume form invariant under canonical transformations.

In the same article Bering introduced an odd scalar function associated to a volume

form ρ on an odd symplectic manifold. Recall the operator ∆ρ on semidensities given

by eq. (5.12), which has the associated potential field Uρ of eq. (5.17). An odd scalar

function νρ, depending on ρ, may be defined by

∆0s = ∆ρs + νρs. (5.30)

It can be seen that νρ is simply the odd function in eq. (5.11) obtained when consid-

ering the difference of the two ∆-operators. In particular, it was shown that if this

scalar function is adjoined to the canonical BV-operator (5.28) on functions,

∆′ρ = ∆ρ + νρ,

then the requirement that the volume form be normal can be removed completely

in the BV-formalism [BB08b]. The addition of this odd scalar however breaks the

nilpotency of the operator ∆ρ, which is recovered if and only if the scalar function is

an odd constant, i.e. a Casimir of the odd non-degenerate bracket. This construction
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has further implications in producing a modified quantum master equation of the

BV-formalism.

As a consequence of the choice of volume ρ, the determinant bundle Vol(M) comes

equipped with a canonical flat connection as given in eq. (5.8). Then given an affine

connection over M which is anti-symplectic, torsion free, and is such that the defining

Christoffel symbols Γbac satisfy γa = Γbab, it was shown by Bering that the odd scalar

function νρ is proportional to the scalar curvature of the manifold M . This remarkable

connection to the scalar curvature, together with the peculiar transformation laws

eqs. (5.16), (5.25) of the potential field and a modular vector field suggest that the

potential fields associated to odd Laplace operators should stand as some connection-

like objects. In particular, the uniqueness of the symplectic potential allows us to state

a Levi-Civita type statement for odd symplectic manifolds.

Proposition 5.4.1. For any odd symplectic manifold M , there exists a unique sym-

plectic potential U0 vanishing in Darboux coordinates and with local expression (5.29)

defining the canonical ∆0-operator (5.27).

The results of [Ber06] were extended to a more general setting when the odd Poisson

structure is now degenerate but admits a compatible 2-form field in a precise sense

[BB08a, Ber08]. In such a case, the odd scalar term νρ can still be defined and the

connection with the scalar curvature remains true. Degenerate odd Poisson structures

incorporate important examples such as Dirac brackets associated with second class

constraints [HT92], or when considering the boundary of odd symplectic superspaces

associated with physical theories.

5.4.2 Further Examples

Example 5.4.1. Let M be an even Poisson manifold with even Poisson tensor P ,

and consider ΠTM equipped with the Koszul bracket of differential forms. Since the

manifold ΠTM is provided with a natural volume element ρ = |D(x, η)| eq. (5.19),

we may define the operator ∆ρ on semidensities by eq. (5.12) such that Uρ = 0.

The operator ∆ρ can then be identified with the operator ∆ρ on functions (5.13)

by

∆ρf = ρ−1/2∆ρ(fρ1/2), (5.31)
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for a function f ∈ C∞(M).

Recall that the Koszul-Brylinski operator ∂P = [d, ıP ] is a generator of the Koszul

bracket on ΠTM , and that with the choice of canonical volume, the operator ∆ρ

defined on functions coincides with this operator (see [KSM02]). It follows from the

Jacobi identity for the Poisson tensor P that the operator ∂2
P = 0, and hence ∆2

ρ = 0

under the identification. Equivalently, the operator ∆ρ is nilpotent on semidensities,

and the associated modular vector field on the odd Poisson manifold ΠTM is seen to

vanish.

This can also be seen from local considerations. The Poisson tensor P is locally

of constant rank around any regular point x0 in the even Poisson manifold M , which

allows the introduction of Darboux-Lie coordinates pa, qa, y
i in the vicinity of x0 as

described in [Wei83], such that

[pa, qb]P = δab , (5.32)

and all other even brackets vanish. The entries of the matrix of the Poisson tensor

about x0 are constant, and hence so are the entries of the matrix defining the odd

Hamiltonian of the Koszul bracket in the corresponding local trivialisation of ΠTM .

From the local expression of the associated modular vector fieldX = 1
4
∂c
(
Scd∂d∂bS

ba
)
∂a,

we see that this vanishes at all regular points of M , and since regular points are dense

in M , the modular vector field must vanish at all points.

Example 5.4.2. Suppose that M is an n|n-dimensional supermanifold equipped with

a regular odd Poisson structure. That is, the odd symplectic leaves of the Poisson

manifold are of equal dimension m|m for m < n and admit no transverse Poisson

structure. Then there exist Darboux-Lie coordinates of the form (5.32) from which a

canonical operator ∆ can be defined on semidensities as

∆s =
∂2s(p, q, y)

∂pa∂qa

√
|D(p, q, y)|, (5.33)

analogous to eq. (5.27). The potential field of this operator is calculated in [BB08a]

(since any regular Poisson structure admits a compatible 2-form field), which is shown

to vanish in Darboux-Lie coordinates. The operator is of square zero, and again we

see that the modular class of this odd Poisson manifold vanishes.

The examples so far show that a wide class of odd Poisson manifolds have a vanish-

ing modular class. The following example however presents as the first known example
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of an odd Poisson manifold admitting a non-trivial modular class and is found in the

article [KP17].

Example 5.4.3. Define for a manifold M the product N = M × R0|1 equipped with

local coordinates xa on M supplemented by a single odd coordinate τ on R0|1. Let A

be an even vector field on N such that in local coordinates,

A = Aa(x, τ)
∂

∂xa
.

Analogous to example 5.2.1, an odd second order self-adjoint operator may be defined

on semidensities on N by

∆ =
1

2
(LAL∂τ + L∂τLA) ,

via the odd homological vector field ∂τ . The operator ∆ takes the local expression

∆ = Aa∂a∂τ +
1

2
∂τA

a∂a + (−1)a
1

2
∂aA

a∂τ + (−1)a
1

4
∂τ∂aA

a.

In order for the third order terms of ∆2 to vanish, the vector field A = A(x, τ) must

be chosen such that

∂τA
aAb + (−1)aAa∂τA

b = 0. (5.34)

Since τ 2 = 0, Aa(x, τ) = Ka(x) + τηa(x) for even and odd vector fields K and η. A

trivial solution to eq. (5.34) is given by ηa(x) = 0, though this results in ∆2 = 0 also.

A non-trivial solution however is provided by Aa(x, τ) = τηa(x), from which arises the

odd Poisson bracket on N given by

{τ, xa} = τηa(x) = Aa(x, τ).

A calculation of ∆2 shows that

∆2 =
1

4
ηb∂bη

a∂a +
1

8
ηb∂b∂aη

a = LX ,

where X is the modular vector field associated to ∆, and is given by

X =
1

4
ηb∂bη

a∂a =
1

8
[η, η].

The claim is that the vector field X is not Hamiltonian. Indeed, if X is Hamiltonian

then there exists f ∈ C∞(N) such that {f,−} = X. But for any other function
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g ∈ C∞(N), the bracket {f, g} belongs to the ideal generated by the odd variable τ ,

whereas the function X(g) does not for g = g(x). Thus the vector field cannot be

Hamiltonian, and so X represents a non-trivial cohomology class in the first Poisson-

Lichnerowicz cohomology of the odd Poisson manifold N . Such an example can be

thought of as an odd time parameterisation of the manifold M , and an adjoint con-

struction to the supermanifold ΠTM (see [KP17]).

Example 5.4.4. Example 5.4.3 fits into a larger class of examples. Let M and N

be manifolds with coordinates xa and yi respectively, and suppose that N is equipped

with a homological vector field Q = Qi(y)∂i. Define on the product manifold M ×N ,

an even vector field A = Aa(x, y)∂a depending on the variables yi. Then an odd second

order self-adjoint operator ∆ may be defined on semidensities on M ×N by

∆ =
1

2
(LALQ + LQLA) .

Calculating the square of the operator provides the necessary condition that the third

order terms vanish:

Qi∂iA
aAb + (−1)aAaQi∂iA

b = 0. (5.35)

A possible solution to eq. (5.35) is to choose A such that it separates variables,

Aa(x, y) = R(y)ηa(x), where R = R(y) is an odd function on N and η = ηa(x)∂a is an

odd vector field on M . The principal symbol of ∆ then defines an odd Poisson bracket

on M ×N by

{yi, xa} = Qi(y)R(y)ηa(x). (5.36)

Calculating ∆2 brings us to the associated modular vector field

X =
1

4

(
Qi∂iR

)2
ηb∂bη

a∂a =
1

8
[Q(R)η,Q(R)η],

which is not Hamiltonian since any Hamiltonian vector field is proportional to the odd

function R, whereas X is not in general.

A global construction can be provided in terms of Lie derivatives. For the operator

∆,

4∆2 = LALQLALQ + LQLALQLA + LQLALALQ,

since Q2 = 0. Observing that the associated modular vector field is given by X =

1
4
[Q,A]2 = 1

8
[[Q,A], [Q,A]], we can write

4LX =
1

2
L[[Q,A],[Q,A]] = L2

[Q,A] = (LQLA − LALQ)2.
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Therefore,

∆2 − LX =
1

2
LQLALALQ,

where the terms LQLALALQ depend on the Jacobi identity. Relatively simple, al-

beit tedious manipulations of well-known formula confirm that if A = Rη then the

expression LQLALALQ vanishes.

Proposition 5.4.2. Let M and N be manifolds and suppose that N is equipped with a

homological vector field Q. Then the product M×N can be endowed with an odd Pois-

son bracket defined by the principal symbol of the operator ∆ acting on semidensities,

where

∆ =
1

2
(LALQ + LQLA) ,

and A is an even vector field that separates variables A = R(y)η(x) for an odd function

R on N and an odd vector field η defined on M . The modular class of this odd Poisson

structure is non-trivial in general, and is represented by the modular vector field

X∆ =
1

8
[Q(R)η,Q(R)η].

Example 5.4.5. Proposition 5.4.2 has a relation with the Nijenhuis bracket, the

bracket defined on differential form-valued vector fields [FN56, Nij55]. Consider on

the manifold ΠTM vector fields of the form

X = Xa(x, η)
∂

∂xa
, (5.37)

which can be identified with form-valued vector fields on the base M . Every vector

field of the form (5.37) has a unique lift to a vector field X̂ on the manifold ΠTM such

that X̂ commutes with the de Rham differential d, and the restriction of X̂ to M is

given by X. The Nijenhuis bracket [X, Y ]N of two form-valued vector fields X and Y

is defined by the relation

̂[X, Y ]N = [X̂, Ŷ ].

In particular, if X is odd, the Nijenhuis bracket of [X,X]N is non-trivial in general.

Now let X be an arbitrary odd form-valued vector field on ΠTM . By proposition

5.4.2 in analogy with example 5.4.3, the pair (ΠTM, X̂) defines an odd Poisson super-

manifold ΠTM × R0|1 such that the modular class of the manifold is represented by

the vector field
1

8
[X̂, X̂] =

1

8
̂[X,X]N .
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5.5 Discussion

For an odd Poisson manifold M we have associated a class of second order differential

operators acting on semidensities on M which may be used to describe the modular

class of this odd Poisson manifold. Further, these operators allow for an easy descrip-

tion of examples of these, having provided both trivial and non-trivial cases. We have

also introduced the potential field associated to any one of these differential operators

and begun to analyse the properties it possesses. The peculiar transformation laws

that both itself and any associated modular vector field share suggest that it should

resemble some connection like object, which is further supported by the introduction

of Bering’s odd scalar function [Ber06] and its intimate relation to the scalar curva-

ture of the odd Poisson manifold [BB08a]. It is hoped that the introduction of the

potential field may have consequences in the BV-formalism, whose scalar counterpart

has already been investigated in the works [BB08b, Ber08, BB09].

Another interesting advance would be to define a set of higher cohomology classes

associated to an odd Poisson manifold; in the articles [LS04, LMS10], a series of char-

acteristic classes were produced for any Q-manifold, a certain class of which coincided

with the modular class of an even Poisson manifold. It is hoped that the modular class

described here will fit into one of these series, and its higher counterparts obtained to

parallel the even case. These higher classes could correspond to the case of homotopy

Poisson structures, of which an operator description has not yet been obtained due to

the complications of the transformation laws of densities.

5.6 Calculation of the Symplectic Potential

We give the details of the calculations involved in obtaining expression (5.29),

U(x) =
1

4
∂b∂aE

ab(x)− (−1)b(d+1) 1

12
∂aE

bc(x)Ecd(x)∂bE
da(x),

the potential of the canonical ∆-operator on a symplectic manifold.

Let zA be a system of Darboux coordinates on M and xa be an arbitrary coordinate

system. We will make use of the fact that infinitesimally,

δ logJ = sTr
(
J −1δJ

)
, J = Ber

(
∂x

∂z

)
.
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We see that

(
δzA
)
∂A logJ = sTr

(
J −1

(
δzA
)
∂AJ

)
= (−1)a

∂zB

∂xa
δzA

∂xa

∂zAzB
= (−1)a(A+1)

(
δzA
)
zBa x

a
BA,

from which we obtain

∂A logJ = (−1)a(A+1)zBa x
a
BA = ∂AJJ −1. (5.38)

It then follows that

∂B∂AJJ −1 = ∂B
(
∂AJJ −1

)
− (−1)AB∂AJ ∂BJ −1

= ∂B∂A logJ + (−1)AB∂AJJ −1∂BJJ −1

= ∂B∂A logJ + ∂B logJ ∂A logJ ,

where we use the matrix identity

∂

∂zA
∂zB

∂xa
= −(−1)Aa

∂zC

∂xa
∂xb

∂zC∂zA
∂zB

∂xb
.

Now let s = s(z)
√
|Dz| be a semidensity in Darboux coordinates zA. If one changed

from arbitrary coordinates xa to coordinates zA, then

s(z)
√
|Dz| = s(x(z))Ber

(
∂x

∂z

)1/2√
|Dz|

provides an expression of s in terms of the coordinates xa.

In Darboux coordinates zA the canonical symplectic potential (5.29) vanishes, and

we can write the canonical operator ∆0 as

∆0s = IAB∂B∂As(z)
√
|Dz| = IAB∂B∂A

(
s(x(z))Ber

(
∂x

∂z

)1/2
)√
|Dz|.

Then under a change of coordinates x = x(z),

IAB∂B∂A

(
s(x(z))Ber

(
∂x

∂z

)1/2
)√
|Dz|

=
(
IAB∂B∂As+ 2IAB∂Bs∂AJ 1/2 + IAB∂B∂AJ 1/2s

)
J −1/2

√
|Dx|

= IAB

∂B∂As+ ∂Bs
(
zCa x

a
CA

)
a(A+1)

+
1

2
∂B
(
zCa x

a
CA

)
s

a(A+1)

+
1

4
zDb x

b
DBz

C
a x

a
CAs

b(B+1)+a(A+1)

√|Dx|,
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making use of formula (5.38) and its consequences. In the zero order terms we get

U(x(z)) =
1

2
IAB∂B

(
zCa
)
xaCA

a(A+1)

+
1

2
IABzCa x

a
CBA

a(A+1)+aB

+
1

4
IABzDb x

b
DBz

C
a x

a
CA

b(B+1)+a(A+1)

. (5.39)

Now consider the expressions

∂b∂aE
ab, (−1)b(d+1)∂aE

bcEcd∂bE
da.

We shall change coordinates in each of these. Firstly,

∂b∂aE
ab = zCb ∂C

(
zDa ∂D

(
xaAI

ABxbB
))

a(A+1)

= zCb ∂C

(
zDa x

a
DAI

ABxbB
a(A+1)

+ IABxbBA

)
= −zCb zEa xcECzDc xaDAIABxbB

a(A+1)+Ca

+ zCb z
D
a x

a
DCAI

ABxbB
a(A+1)+Ca

+ zCb z
D
a x

a
DAI

ABxbBC
a(A+1)+C

+ zCb I
ABxbBAC
C

= −zEa xcEBzDc xaDAIAB
a(A+1)+Ba

+ zDa x
a
DBAI

AB

a(A+1)+Ba

+ zCb z
D
a x

a
DAI

ABxbBC
a(A+1)+C

+ zCb I
ABxbBAC
C

.

We come to

∂b∂aE
ab = 2IABzDa x

a
DBA

a(A+B+1)

+ zDa x
a
DAI

ABzCb x
b
CB

a(A+1)+b(B+1)

− zCa xbCBzDb xaDAIAB
a(A+B+1)

. (5.40)

The calculations for the second term are long but are performed in precisely the same

way. We obtain

(−1)b(d+1)∂aE
bcEcd∂bE

da = 3zCa x
b
CBz

D
b x

a
DAI

AB

a(A+B+1)

+ IABxaBDz
R
a IRSz

S
b x

b
ACI

CD

S(b+1)+b(C+1)+D(A+1)+A(b+1)

.

By symmetry about the component IRS, the last term vanishes, and so

(−1)b(d+1)∂aE
bcEcd∂bE

da = 3zCa x
b
CBz

D
b x

a
DAI

AB

a(A+B+1)

. (5.41)

Comparing eq. (5.39) with eqs. (5.40) and (5.41) we find that

U(x) =
1

4
∂b∂aE

ab − 1

12
(−1)b(d+1)∂aE

bcEcd∂bE
da.

Our calculations rely on the fact that the odd Poisson tensor E is non-degenerate. One

can repeat these calculations for the case when E is degenerate but admits a compatible

2-form field as in the work of Bering [Ber08]. In this case Bering obtained potential

fields for odd Laplace operators which could no doubt be obtained through similar

calculations as above. These cases considered by Bering incorporate an important

class of odd degenerate Poisson structures.
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Appendix A

Elements of Supermathematics

We present here some of the basics of the theory of supermanifolds to aid in the

understanding of the text. For a detailed introduction to the theory however, we point

to the books [Man97, Rog07, Vor91] or more classically [Ber83]. There are also many

articles containing a more limited, though often more “operational” exposition. See

for example [CS11].

A.1 Super Algebra and Supermanifolds

The main concept of supermathematics is to extend existing structures by anti-commuting

variables, corresponding to assigning a Z2-grading called parity. Most authors use p(v),

ṽ, |v| or ε(v) to denote the parity of an object, however we prefer to avoid the addi-

tional notation. The notation ã will be to used only when we wish to emphasise the

parity of a.

Definition A.1.1. A super vector space is a Z2-graded vector space V = V0 ⊕ V1.

Elements of V0 are called even, and elements of V1 are called odd.

Definition A.1.2. A super algebra A is a super vector space equipped with an even

associative product AiAj ⊂ Ai+j.

The parity reversal functor is a functor Π : V 7→ V on vector spaces such that

ΠV = (ΠV )0 ⊕ (ΠV )1 ,

where

(ΠV )0 := V1, (ΠV )1 := V0.
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The symbol Π should be treated as an odd symbol such that Π2 = 1. Hence any super

vector space can be viewed as a classical vector space together with a copy of a vector

space with reversed parity.

Example A.1.1. The real superspace Rn|m = Rn⊕ΠRm can be considered as a copy

of Rn together with a copy of Rm with reversed parity.

The majority of constructions carry through in the super case by a simple extension

of the Z2-grading. For example, a homogeneous derivation D of a super algebra A is

a map D : A→ A such that

D(ab) = D(a)b+ (−1)DaaD(b),

for a, b ∈ A. The symbol (−1)Da represents −1 raised to the parity of D multiplied

by that of a. The derivation D is even if D̃a = ã, and odd if D̃a = ã+ 1.

A basis {eA} = {ea, eα}, for a = 1, . . . n and α = 1, . . . ,m, can be chosen for a

super vector space V , where {ea} are basis vectors of the even space V0 and {eα} are

basis vectors of the odd space V1. The dimension of the super vector space V is then

a pair, dim(V ) = n|m, called the super dimension.

Supermathematics offers a distinction between left and right coordinates; for a

basis {eA} of a super vector space V , a vector v ∈ V may be expressed either by a row

such that v = vAeA, or by a column where v = eAv
A. These differ by a sign, however

we often choose to adopt left coordinates for a vector space and right coordinates for

its dual. In this way, the canonical pairing (v, η) = (vAeA, e
BηB) = vAηA remains

invariant for η ∈ V ∗.

An even linear transformation between two bases {eA} and {eA′} is represented by

a super matrix A, such that ea′

eα′

 = A

 ea

eα

 =

 A00 A01

A10 A11

 ea

eα

 ,

where A00 is an n×n matrix of even elements, A01 is an n×m matrix of odd elements,

A10 is an m×n matrix of odd elements, and A11 is an m×m matrix of even elements.

This is the standard form for an even super matrix.

Such a matrix is an invertible element of the more general matrix group Mat(n|m)

forming the space of all even super matrices. Matrices given by A form a linear
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subspace of invertible matrices GL(n|m). Notice that one could also consider odd

matrices given by a block decomposition similar to A, but with even and odd entries

interchanged.

The Berezinian is a function Ber : GL(n|m)→ R1|0 such that

Ber

 A00 A01

A10 A11

 =
det(A00 − A01A

−1
11 A10)

detA11

, (A.1)

and is the super analogue of the determinant. Notice the difference from the classical

determinant in that the Berezinian is not necessarily a polynomial, nor is it defined

on the whole space of matrices Mat(n|m) for which the fermi-fermi block A11 is not

necessarily invertible.

As in the usual case for the determinant, there is an associated supertrace defined

by

sTrA = TrA00 − TrA11,

which obeys a Liouville formula of the form

Ber(eA) = esTrA.

For details on super algebra and the Berezinian we refer specifically to the books

[Man97] and [Vor91].

A.2 Supermanifolds and the Berezin Integral

A Grassmann algebra of dimension m is an algebra generated by m odd elements

ξ1, . . . , ξm, such that

ξαξβ = −ξβξα.

A function of odd variables f(ξ) is defined as an element of such a Grassmann algebra.

Due to the nilpotency of the odd variables, the expansion of f always terminates,

f(ξ) = f0 + ξαfα +
1

2
ξαξβfβα + · · ·+ 1

m!
ξα1 . . . ξαmfαm···α1 . (A.2)

The odd variables ξα are called coordinates on the superspace R0|m. If the coeffi-

cients in expansion (A.2) depend on even variables xa defined on Un ⊂ Rn, we obtain

a function f = f(x, ξ) on the open super domain Un|m, a subset of real superspace

Rn|m.
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If Un|m and V n|m are two open domains with non-empty intersection equipped with

coordinates (xa, ξα) and (ya, θα) respectively, then the change of coordinates is given

by

xa = xa(y) + θαθβxaβα(y) + · · · , (A.3)

ξα = θβξαβ (y) + θβθγθδξαδγβ(y) + · · · .

A key feature in supermathematics is the ability to “mix” both even and odd variables

as in eq. (A.3), which considerably enlarges the class of morphisms of super structures.

The algebra of smooth functions C∞(Un|m) on Un|m defines a sheaf on Rn defined

as

C∞(Un|m) = C∞(Un)[ξ1, . . . , ξm],

of smooth functions on Un with values in the Grassmann algebra on m generators.

Definition A.2.1. A (real) supermanifold M = Mn|m is a locally ringed space which

is locally isomorphic to (Un, C∞(Un|m)).

Loosely speaking, a supermanifold is made from gluing copies of real superspace

Rn|m using the coordinate transformations (A.3). The carrier manifold, or the support

manifold, is the classical smooth manifold obtained by setting all the odd variables

equal to zero. For example, the carrier of the supermanifold Rn|m is n-dimensional

real space Rn.

Since the odd variables are generators of a Grassmann algebra however, it makes

no sense to assign numerical values other than zero, and so a function of odd variables

cannot take values at any other point. Because of this, the concept of Λ-points is

employed to obtain an intuitive description of what a “point” of a supermanifold is.

For an arbitrary Grassmann algebra Λ = Λ0⊕Λ1, a Λ-point of a supermanifold Mn|m is

a homomorphism C∞(M)→ Λ, or equivalently a map R0|p →M where Λ = C∞(R0|p).

The Λ-point has coordinates xa, ξα where xa ∈ Λ0 and ξα ∈ Λ1. Then any function

on M takes values in these Λ-points of M . Note that the set of all Λ-points forms a

smooth manifold.

The topology of a supermanifold is equivalent to that of its carrier manifold which

means that an “all or nothing” approach is needed when defining integration of odd

variables. Given an odd superspace R0|m with coordinates ξα, define the Berezin
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integral of a arbitrary function f ∈ C∞(R0|m) as∫
R0|m
Dξf(ξ) = fα1···αm ,

where fα1···αm is the top coefficient of the expansion (A.2). The symbol Dξ corresponds

to the integration element and will be explained later. When the coefficients of f now

depend on coordinates xa, the integral of a function f ∈ C∞(Rn|m) which is rapidly

decreasing or of compact support in x is defined by∫
Rn|m
D(x, ξ)f(x, ξ) = (−1)

m(m−1)
2

∫
Rn
dnxfα1···αm(x),

where the right hand side is the standard Lebesgue integral. The integral of a smooth

function on an arbitrary supermanifold is obtained by a partition of unity. See [Rog07,

Vor91].

The Berezin integral enjoys the following transformation under a change of coordi-

nates x = x(y, θ), ξ = ξ(y, θ): for a rapidly decreasing or compactly supported function

f ∈ C∞(Rn|m),∫
Rn|m
D(x, ξ)f(x, ξ) =

∫
Rn|m
D(y, θ)Ber

(
∂(x, ξ)

∂(y, θ)

)
f(x(y, θ), ξ(y, θ)).

It also obeys the integration by parts formula∫
Rn|m
Dx∂f(x)

∂xA
g(x) = −(−1)Af

∫
Rn|m
Dxf(x)

∂g(x)

∂xA
,

where the xA are collective variables on Rn|m.

Remark A.2.1. In order to properly define the integral over a supermanifold, some

notion of orientation is needed. In the super case orientation is more involved, and

relies on four manifestations of the Berezinian (A.1). We refer to [Vor91] for a detailed

discussion about orientation, and simply assume that we have the integrals defined as

required.

Finally, we return to the symbol D(x, ξ). This is shorthand notation, and refers to

the symbol

D(x, ξ) = [dx1, . . . , dxn | dξ1, . . . , dξm].

These stand as the integration elements of a supermanifold, and are as practical to

work with as with the common element dx1∧ . . .∧ dxn for an n-dimensional manifold.
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Under a change of coordinates (x, ξ) = (x(y, θ), ξ(y, θ)),

D(x, ξ) = Ber

(
∂(x, ξ)

∂(y, θ)

)
D(y, θ).

Changing to a collective notation, the elements Dx form a local frame for the line

bundle Vol(M) = Ber(T ∗M), the determinant bundle for any supermanifold M . (Note

that in Chapter 5 we use the notation |Dx| to refer to the positive half of this bundle.)

A generator of the space of sections of Vol(M) corresponds to a volume element ρ on

M , where ρ(x) is a Grassmann even, invertible function. See [KSM02] for a detailed

construction of Ber(T ∗M).
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