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Abstract

OleTse (CYP152L1) is a P450 peroxygenase that was first isolated from Jeotgalicoccus sp.
8456 in 2011. OleTueis primarily a fatty acid decarboxylase, converting mid-chain fatty acids
(C10:0 to C22:0) to terminal alkenes, which are industrially useful petrochemicals. Terminal
alkenes are hydrophobic with high energy density, and are compatible with existing
transportation infrastructure. Thus OleT e has attracted considerable interest due to potential
applications for generating “drop-in” biofuels. As a P450 peroxygenase, OleT e is able to utilise
H202 as a sole oxygen and hydrogen donor. This is atypical of P450s, which usually require
electron transfer from redox partners to perform substrate oxidation. Other P450
peroxygenases have previously been characterised, including fatty acid hydroxylases P450
Spa (CYP152B1) from Sphingomonas paucimobilis and P450 BSP (CYP152A1) from Bacillus
subtilis. In addition to decarboxylation, OleTJe also hydroxylates fatty acids, generating 2-OH
and 3-OH fatty acids as minor products. P450 BSP has also been reported to perform low
levels of decarboxylation. However, OleT,e has superior decarboxylase activity, posing

questions about the mechanism of OleT k.

This thesis describes initial structural and biochemical characterisation of OleTJe. These data
highlighted three amino acid residues thought to be key for effective catalysis: His85, Phe79
and Arg245. We hypothesised that the active site His85 could act as a proton donor to the
reactive ferryl-oxo species compound |, allowing homolytic scission of the substrate C-Ca
bond to form the alkene product. Phe79 sandwiches His85 between the heme, and Arg245
co-ordinates the fatty acid carboxylate moiety. | performed mutagenesis studies to probe the
roles of these residues, creating H85Q, F79A, F79W, F79Y, R245L and R245E OleTe
mutants, and characterised them by a combination of spectroscopic, analytical and structural
methods. | also developed a novel system, where OleT,e was fused to alditol oxidase (AldO)
from Streptomyces coelicolor, creating a fusion protein where addition of glycerol drives
hydrogen peroxide production and the decarboxylation of fatty acids. Finally, studies showed
that OleT.e is capable of performing secondary oxidation of hydroxylated products, which has
expanded our knowledge of OleT,e’s catalytic repertoire. This thesis also describes the initial
characterisation of the OleTe orthologue P450 KR from Kocuria rhizophila, which is also a
terminal alkene-forming fatty acid decarboxylase. The crystal structure of P450 KR revealed
an unusual dimeric state, with structural interactions unprecedented for a P450 enzyme.
These data thus provide characterisation of two P450 peroxygenases involved in the
production of terminal alkenes and which are of great interest as tools for the development of

alternative sources of advanced biofuels.
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1 Introduction

1.1.The Biofuels Industry

Due to rapidly increasing petroleum consumption and diminishing supplies, the production of
advanced biofuels from microorganisms has become attractive. First generation biofuels
generally form two groups: bioethanol and biodiesel. Bioethanol is be made by fermentation
of crops including maize, wheat, barley, rye, sugar cane, sweet sorghum and sugar beet, and
tends to be mixed with gasoline. First generation biodiesel is generally derived from vegetable
oils including soybean oil, rapeseed oil and palm oil (1). However, the production of first
generation biofuels does pose ethical issues such as land use change and deforestation, and
can have negative effects on the environment. In addition, production of these biofuels
requires resources that could be used for the production of food. This is particularly
questionable due to recent food crises and spikes in food prices. It has been estimated that
biofuels rely on 2-3% of global water and land used for agriculture, and these resources could
be used to feed around 30% of the malnourished population (1). Another option is to produce
advanced biofuels, which are derived from the cellulose in biomass, which cannot be used as

a food source This means that they do not pose the same issues as first generation biofuels

2).

Microbial engineering offers a valuable approach to producing fuel sources including butanol,
alkanes, and alkenes (2). Alkanes and alkenes (C8 to C21) have high energy density and
hydrophobicity, which would be compatible with existing fuel infrastructures, i.e. fuel engines,
refinery equipment and transportation pipelines (3). Longer chain alkenes can also be used in
plastics, lubricants and synthetic lubricants. Alkenes can also serve as a feedstock for other
compounds including plasticisers, surfactants, enhanced oil recovery agents, fuel additives

and drag reducing agents (4).
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Figure 1.1. Pathways for fatty acid-based alkene production. The native E. coli fatty acid
pathway is coloured in black. Components of this native pathway include acetyl-CoA carboxylase
(ACC), malonyl-CoA:ACP transacylase (FabD), B-keto-acyl ACP synthase Il (FabH), B-keto-acyl-
ACP synthase | (FabB), B-keto-acyl-ACP reductase (FabG), B-hydroxyacyl-ACP dehydratase
(FabZ), enoyl-acyl-ACP-reductase (Fabl), acyl-ACP thioesterase (TesA), acyl-CoA synthase
(FadD), and acyl-ACP thioesterase (TesA). The green/purple pathways represent acyl-ACP
reductase (AAR)/aldehyde deformylating oxygenase (ADO) and carboxylic acid reductase
(CAR)/fatty acid reductase (FAR)/ADO systems, respectively, which produce alkenes and alkanes
depending on the nature of the fatty aldehyde substrate. Red and blue pathways show terminal
alkene production by the cytochrome P450 fatty acid decarboxylase OleTe and the type | polyketide
synthase Ols, respectively. This figure is based on pathways published by Zhang et al and Wang et
al (2,3).

1.2.Hydrocarbon Biosynthesis in Microorganisms

Hydrocarbon biosynthesis in sulfate-reducing bacteria (5) and marine bacteria (6) was first
reported in the 1940s and 1950s. Specifically, alkene-producing microorganisms have been
identified in Kocuria rhizophila (formerly known as Sarcina lutea), a gram-positive bacterium
belonging to the Micrococcaceae family (7) (1), which was found to produce iso- and anteiso-
branched chain long chain alkenes (8). Alkene biosynthesis was studied in Micrococcus luteus
ATTC 4698 (a close relative of Kocuria rhizophila) (9). Here it was identified that heterologous
expression of a three-gene cluster (Mlut_1320-13250) (known as ole) in a fatty acid
overproducing strain of Escherichia coli yielded 40 ng/L alkenes composed of 27:2, 27:3, 29:2
and 29:3 (carbon chain length: double bond position). Similarly, deletion of this gene cluster
in Shewanella oneidensis led to the absence of the polyunsaturated hydrocarbon
3,6,9,12,15,19,22,25,28-hentriacontanonaene that was previously identified in cell extracts
(10). These alkenes are thought to be the product of head-to-head condensation of fatty acid

derivatives, and produced by the OleABCD proteins. In a bioinformatic genome analysis of
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3558 bacterial, eukaryotic and archaic strains, 69 of the bacterial genomes (corresponding to
5.2 % of bacterial genomes and 1.9% of total genomes) were shown to contain putative ole
genes (11). The first step in the pathway involves condensation of fatty acid derivatives to
form B-ketoacids (12). This reaction is carried out by OleA, which was first crystalised from
Xanthomonas campestris in 2012 (13). OleA alsobelongs to the thiolase superfamily, which
are a group of enzymes that typically carry out similar condensation reactions (14) . . The B-
ketoacid intermediate is then converted to the alkene product by OleC and OleD, and studies

have shown that this reaction cannot be completed by OleC alone (12).

Medium chain length terminal alkene production has also been reported in the marine
cyanobacterium Synechococcus sp. PCC 7002. The gene responsible for this activity was
identified and termed ols (the name derived from olefin synthase). The ols gene encodes a
large multidomain protein that shows homology to type | polyketide synthases (15), which also
tend to be large with multiple domains that are capable of solely producing the polyketide
product (16) (3). This enzyme was hypothesised to use an elongation-decarboxylation
mechanism, converting fatty acyl-acyl carrier proteins (fatty acyl-ACPs) to terminal alkenes.
In this mechanism, the fatty acyl-ACP is loaded onto the ACP-1 domain by the loading domain
(LD). The central extension module is comprised of ketosynthase (KS), acyltransferase (AT),
ketoreductase (KR) and ACP protein domains. This central extension module transfers two
carbons from malonyl-coenzyme A (CoA)