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Abstract

This thesis entitled “Deformation of 113Cs from Proton-emission and Electro-
magnetic Transition Rates” was submitted by Mr Duncan Hodge on the 5th
of December 2016 to the University of Manchester for the degree of Doctor of
Philosophy.

Studying nuclei beyond the proton dripline can provide valuable information on
the structure of nuclei at the limits of stability, where the strong nuclear force
starts to be overcome by Coulomb repulsion between protons. Simple experi-
mental observables, such as excitation energies and lifetimes of excited states in
these proton-unbound nuclei can provide information on the nuclear wavefunc-
tion. Experimental data, such as that presented in this work, can then be used
to improve models of nuclear structure at the proton dripline.

This thesis presents data from a recoil-decay tagged differential plunger experi-
ment undertaken at the University of Jyväskylä in 2014. A fusion-evaporation
reaction was used to populate excited states in the deformed ground-state proton
emitter 113Cs. The JUROGAM-RITU-GREAT experimental setup was used to
correlate γ rays emitted from these excited states with protons emitted from 113Cs
and the differential plunger for unbound nuclear states (DPUNS) was placed at
the target position to measure the excited state lifetimes.

The lifetime of the (11/2+) state in the most intense rotational band of 113Cs was
measured to be τ = 24(6) ps, while a limit of τ ≤ 5 ps was found for the lifetime
of the higher energy (15/2+) state. The lifetime of proton emission was measured
to be τ = 24.2(2) µs.

The experimental data were used to test the predictions of a nonadiabatic quasi-
particle model for proton-emitting nuclei, which was employed to deduce the
deformation of the states in 113Cs. Wavefunctions from the nonadiabatic quasi-
particle model were used to independently calculate proton-emission rates, γ-ray
transition rates and excited state energies as functions of deformation. The de-
formation of 113Cs could then be extracted from the intersection of the different
theoretical values and experimental observables. A deformation of β2 = 0.22(6)
was extracted from the (11/2+) excitation energy and lifetime. The deforma-
tion values taken from the proton-emission rate and the lifetime limit of the
(15/2+) state were also consistent with this value. The consistency of the different
deformations calculated shows the effectiveness of the nonadiabatic quasiparticle
method when used to calculate the properties of deformed ground-state proton-
emitters.
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Chapter 1

Introduction

This thesis presents data on the ground-state proton-emitting nucleus 113Cs.

Ground-state single-proton emission occurs in odd-Z nuclei where the valence

proton is no longer bound by the nuclear potential [1, 2]. Such nuclei are said to

lie beyond the proton drip-line, where the Q value for proton emission becomes

positive and the nuclear force starts to be overcome by the Coulomb repulsion

between protons. Therefore, by studying nuclei at the proton-dripline the limits

to the strength of the nuclear force can be deduced. Also of great importance

in studying proton-emitting nuclei, is the fact that simple experimental observ-

ables, such as the energy and half-life of proton decay may be used to provide

information on components of the nuclear wave function [3].

The rate of proton-emission is subject to the width of the centrifugal barrier,

which, along with the Coulomb barrier must be tunneled through before the

proton can leave the nucleus. As the height of the centrifugal barrier is propor-

tional to the orbital angular momentum of the proton, the nuclear structure of

the parent can be inferred from the emission-rate and energy of the proton [4].

The coupling of weakly bound and unbound nuclear states to the continuum may

then also be examined. In order for the nuclear wave function to be correctly ex-

tracted, a well-developed theoretical model is needed. Experimental data is also

needed to refine and test these models to see if the observed nuclear properties

can be consistently reproduced.

Ground-state proton emitters have been experimentally identified in several areas

of the nuclear chart with masses of A = 109-185 [6], as shown in Fig. 1.1.

Different models then have to be developed for these different regions where

17



Introduction 18

Figure 1.1: The chart of the nuclides, focused on the proton drip-line, where
ground-state proton emission has been observed to occur. Proton-emitting
isotopes are denoted by the red squares and the location of 113Cs, the nucleus
studied in this work, is marked with respect to the major shell closures [5].

nuclei may have different shapes. Nuclei with numbers of neutrons or protons

that are close to magic numbers, denoted by the black lines in Fig. 1.1 will

assume a more spherical shape. Various proton-emission models, which consider

the proton as tunneling from a spherically symmetric potential, may then be

successfully used to predict proton-decay rates and the excitation energies and

spins of states in the decaying nucleus [1, 2, 7]. However, these models do not

successfully replicate proton-emission rates of nuclei, which lie away from closed

shells. For example, the spherical Wentzel-Kramers-Brillouin (WKB) calculations

of Åberg et al. [1, 2], predicted a proton-emission half-life from the d5/2 state

in 113Cs of ∼0.9 µs, when the spectroscopic factor for the d5/2 state is included.

This is a factor of ∼19 times shorter than the established experimental value

[8–12]. This result indicates that 113Cs is deformed, which is in agreement with

the global deformation calculations of Möller and Nix [13]. These calculations

predict that neutron-deficient caesium isotopes are deformed, even as the N=50

shell closure is approached, as shown in Fig. 1.2, and that 113Cs itself has a

quadrupole deformation of β2 = 0.21. Therefore, proton-emission models which

assume a spherical shape for the nucleus are no longer adequate to interpret
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Figure 1.2: Ground-state deformations of the neutron-deficient odd-mass Cs
isotopes taken from Ref. [13]. All isotopes are shown to be deformed, even
those which lie closer to the N=50 shell closure.

the experimental energies and half-lives from 113Cs. It is then important to

develop a model of proton emission which considers the proton decaying through

a deformed potential and accounts for the collective excitations that result from

the deformation.

A model of proton-emission from a deformed nucleus was provided by Maglione

et al. [14], who introduced an exact expression for the decay width of the proton-

emitting state in a deformed potential. This adiabatic approach considered the

proton as occupying a single-particle orbit coupled to a rigid core with a frozen

rotational spectrum and an infinite moment of inertia. Although this model suc-

cessfully replicated the experimental half-lives of many nuclei [15], it did not allow

for cases where the core was less rigid and did not account for the strong mixing

of states due to the Coriolis interaction. For this scenario where nucleons in the

core and the unbound proton may influence each other, the pairing interaction

becomes increasingly important. Improved calculations within a nonadiabatic
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Figure 1.3: The different approaches that may be used to model a deformed
proton-emitting nucleus. (a) An adiabatic view of a proton-emitting nucleus,
in which the unbound proton occupies a single-particle state coupled to a
rigid rotational core. (b) A nonadiabatic view in which the unbound proton is
considered a quasiparticle which may interact with nucleons in the core through
the pairing and Coriolis interactions. The core, in this case, is treated as less
rigid.

quasiparticle approach have since been made that take into account the Coriolis

and pairing interactions [16]. The rotational spectrum of the daughter nucleus

is also included to provide a more accurate structure for the nuclear core. A

summary of the adiabatic and nonadiabatic approaches is shown in Fig. 1.3.
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In order to validate the nonadiabatic framework, experimental data from de-

formed, proton-emitting nuclei, such as 113Cs [13, 14, 17], are needed. Addition-

ally, 113Cs is predicted to have two candidate proton-emitting Nilsson orbits of

K = 1/2+ and K = 3/2+ which lie very close in energy to each other [15] and are

strongly affected by the Coriolis interaction. These strongly mixed orbits pro-

vide a good test for the inclusion of the Coriolis interaction in the nonadiabatic

quasiparticle model.

Proton emission from 113Cs was first discovered in 1984 by Faestermann et al.

[8]. In that work the production cross section of 113Cs was established to be

∼30 µb from the 58Ni(58Ni,p2n) reaction at 230 MeV [9–11]. This production

cross-section provided enough prompt γ rays from 113Cs to make the nucleus

viable for study using the recoil-decay tagging differential plunger setup of the

University of Jyväskylä [18–21]. The nucleus 113Cs has previously been studied

using this setup without the plunger in an experiment, described in Ref. [12].

This experiment was undertaken to extend and more firmly characterise the level

scheme above the proton emitting state first observed in Ref. [22]. Two rotational

bands had configurations assigned from aligned angular momentum behaviour,

observed band crossings and blocking arguments. The more intense band, band

1, was assigned to be based upon a g7/2 [422]3/2 proton configuration while the

second rotational band, band 2, was assigned to be based upon a d5/2 [420]1/2

proton configuration.

The data presented in this work were collected using the University of Jyväskylä

recoil-decay-tagged differential plunger setup in an experiment undertaken in

2014. The objectives of the experiment were to measure the deformation of 113Cs

from the excitation energy and lifetime of the (11/2+) state in band 1 and the

lifetime of proton emission, in order to test the predictions of the nonadiabatic

quasiparticle method. The presence of the Differential Plunger for Unbound Nu-

clear States (DPUNS) [21] at the target position of the recoil-decay tagging setup

allowed for the measurement of promptly decaying excited states in 113Cs. The

lifetime of the (11/2+) state in band 1 was measured using DPUNS, while an

upper limit was found for the lifetime of the (15/2+) state. The experimental

(11/2+) state lifetime was compared to theoretical lifetime values, which were cal-

culated as a function of deformation using wave functions extracted within the

framework of the nonadiabatic quasiparticle approach developed for the proton-

emission. By observing the deformation at which the theoretical and experimental



Introduction 22

half-lives of the (11/2+) state intersected, the deformation of the nucleus could

be inferred. Experimental proton-emission rates and excited state energies were

also compared with theoretical values from the model, calculated for different

nuclear deformations. The advantage of using the lifetime of the excited state

in (11/2+) to attempt to infer the deformation of the nucleus lies in the greater

sensitivity of the electromagnetic transition rate calculation to the deformation

of the nucleus than the proton-emission rate and excitation energy calculations.

Furthermore, the excited state lifetime provides an additional means of calculat-

ing the deformation from a common set of nonadiabatic quasiparticle model wave

functions within a consistent approach which provides another means of testing

the predictive power of the model [16].

The lifetime of the (11/2+) state in band 1 of 113Cs was measured to be τ =24(6)

ps and the limit on the lifetime of the (15/2+) state was found to be τ ≤ 5 ps.

Using the lifetime and excitation energy of the (11/2+) state, a deformation of

β2 = 0.22(6) was found for 113Cs. Consistent deformations of β2 > 0.19 and

β ∼ 0.22 were also found from the lifetime limit of the (15/2+) state and the

proton emission rate of 113Cs, respectively.

In subsequent chapters, this thesis will present the evolution of proton-emission

theory, as well as the properties of γ-ray decay and the effects and causes of

nuclear deformation. The experimental setup and technique, including the mea-

surement of prompt excited state lifetimes, are also discussed in more detail. A

comprehensive discussion of the results is presented along with a discussion of

the possibility of future experiments which may be undertaken to provide a more

accurate value for the deformation of 113Cs.



Chapter 2

Theory

In this work, data on the proton-emitting nucleus 113Cs is presented. In order to

successfully interpret this data a framework is needed to coherently describe the

observed properties of the nucleus, such as its half-life and level structure. Such

a framework is provided by the nonadiabatic quasiparticle model [16], which was

used to extract the wave functions of the proton-emitting state in 113Cs. These

wave functions could then be used to interpret the observed excitation energies

and lifetimes of the excited (11/2+) and (15/2+) states in 113Cs, as well as its

proton-emission lifetime, in terms of the deformation of the nucleus. By using

the same wave functions to predict the different properties of the nucleus, a

consistent method of measuring the nuclear deformation from proton-emission

rates, electromagnetic transition rates and excited state energies was achieved.

This Chapter will cover the need for the development of the nonadiabatic quasi-

particle model with reference to other proton-emission models. The factors that

cause protonemission and the associated nuclear structure concepts are also dis-

cussed. Additionally, the properties of γ-ray decay of excited nuclear states and

how it may provide information on nuclear deformation is also covered.

23
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2.1 Proton Emission

If the binding energy per nucleon increases by emitting a given particle, then a

nucleus will generally be unstable and will eventually decay through the emission

of that particle. TheQ value defines the amount of energy released in such a decay

and will be greater than 0 for these unstable nuclei. In very neutron-deficient

nuclei the Q value for proton emission will be high enough, that proton emission

can compete with the α and β+ decay modes. These nuclei at the “proton drip-

line” possess protons that occupy unbound states with energies greater than the

depth of the nuclear potential. However, due to the presence of Coulomb and

centrifugal barriers the protons are still confined to the nucleus for a period of

time before being emitted. The Q value of proton decay consists of a nuclear

component and an electronic component in the form,

−Sp = Qp = Qnuc
p + ES, (2.1)

where, Sp is the proton separation energy, describing the amount of energy that

is needed to separate a proton from the nucleus,

Qnuc
p =Mnuc(N,Z)−Mnuc(N,Z − 1)−mp (2.2)

and

ES = Be(N,Z)−Be(N,Z − 1). (2.3)

The electron screening component, ES, reduces the height of the Coulomb bar-

rier and is given by the difference between the total electron binding energy of

the atomic electrons in the parent nucleus, Be(N,Z) and the daughter nucleus,
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Be(N,Z − 1). It can be calculated using tabulated electron binding energies [23]

or from the approximation

ES = 0.49 + 0.0144Z1.6 keV, (2.4)

which gives an accuracy of <0.5% for 42 < Z < 75 and drops to 1.6% at Z = 83

[3].

Proton-emitting nuclei have been observed in several mass regions of the nuclear

chart but are hard to access experimentally due to their short half-lives. Proton-

emission was first observed in 1970 from a I=19− isomeric state in 53Co [24],

while ground-state proton emission was first observed in the nucleus 151Lu in

1982 [25]. Over forty proton emitters have since been observed [3]. The data

presented in this work provides information on the ground-state proton emitter
113Cs which was first observed in 1984 by Faestermann et al. [8]. The area of

the nuclear chart including 113Cs is shown in Fig. 2.1. This figure shows how
113Cs is one of the most neutron-deficient nuclei that can currently be produced

and studied. The special importance of studying proton-emitting nuclei lies in

the fact that properties of the nuclear wave function can be extracted from the

relatively simple observables of the half-life and energy of the proton decay [3].

Various different theoretical approaches have been used to model the emission

of protons from nuclei. The proton is commonly treated as tunneling from a

central nuclear potential through a potential barrier, consisting of Coulomb and

centrifugal components [3]. An example potential experienced by a proton in a

nucleus, including the Coulomb and centrifugal barriers, is shown in Fig. 2.2

In Fig. 2.2 the nuclear potential takes the form of a Woods-Saxon potential,

subsequently described in section 2.2. The Coulomb potential behaves differently

within and beyond the nuclear radius. For a spherical nucleus the potential takes

the form of

VCou =
ZpZnuc

4πϵ0RCou

(
3

2
− 1

2

(
r2

R2
Cou

))
for r < RCou (2.5)
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Figure 2.1: The neutron-deficient mass A ∼ 110 area of the nuclear chart
including the drip-line nucleus 113Cs which was studied in this work [5].

and

VCou =
ZpZnuc

4πϵ0r
for r > RCou, (2.6)

where Zp is the charge on the single proton, Znuc is the charge on the nuclear

core, r is the distance from the proton to the centre of the nucleus and Rcou is

where the nuclear potential becomes infinitesimal. The centrifugal force acts to

push nucleons away from the centre of the core [26]. The corresponding potential

barrier takes the form of

Vcent =
~2

2µ

l(l + 1)

r2
, (2.7)

where µ is the reduced mass of the proton and core.

Early proton-emission calculations assumed a spherical shape for the nucleus to

theoretically reproduce experimental half-lives and energies [1, 2, 27]. These ap-

proaches were based on the consideration of the proton occupying single-particle
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Figure 2.2: An example potential experienced by a proton occupying an
unbound state in 113Cs with energy, Ep = 969 keV [12]. The potential consists
of a strong nuclear potential as well as Coulomb and centrifugal components.
The radius at which the nuclear contribution drops to zero and the potential felt
by the proton is due only to the Coulomb and centrifugal forces is denoted by
Rcou. The region that the proton is classically forbidden to occupy is denoted
by r1 and r2.

states defined by a mean potential similar to that shown in Fig. 2.2. In order

to explain these models, the predictive power and evolution of the single-particle

shell model is first described in the next section.

2.2 The Single-Particle Shell Model

The single-particle shell model accounts for many properties of the nucleus that

were not well described by earlier nuclear structure models [28]. For example,
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Figure 2.3: The variation of binding energy per nucleon for a series of nuclei
of different mass numbers A. Taken from Refs. [29, 30].

earlier models were unable to explain the sharp decreases in the binding energy

per nucleon for nuclei with certain numbers of protons or neutrons, as shown in

Fig. 2.3. These sudden changes in binding energy have been found at N and

Z values of 2, 8, 20, 28, 50, 82, 126, which are known as the ‘magic numbers’.

Similar dramatic changes in binding energy are seen at the closures of atomic

electron shells. The single-particle shell model then draws on similarities with

atomic electron structures by treating nucleons as occupying discrete states within

a mean potential [26].

A key difference between the atomic and the nuclear potential is that the atomic

potential arises from the Coulomb interaction between the nuclear protons and

the atomic electrons, while the nuclear potential arises from the strong force be-

tween individual nucleons. A nuclear mean field is then needed as the calculation

of the nuclear force acting on an individual nucleon from a many-body calculation

is only possible for the lightest nuclei [31]. Orbits within the nuclear potential

are sequentially filled by the nucleons according to the energy of each level. In

the simplest version of the shell model, the different energy levels are described in
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terms of their orbital angular momentum, l and the index n, which simply states

the number of states with that particular angular momentum. Each l state is de-

generate, with the occupancy of each n, l level being (2l+1). Nucleons within each

l orbit occupy sub-orbitals defined by the eigenvalues of the z component of l, ml.

Nucleons will occupy ml sub-orbitals with values of ml = ±1,±2,±3, ...,±l for
each l orbit. There is no energy dependance on which ml sub-orbital is occupied

within a given l orbit [26].

The theoretical spacing of the energy levels within the nucleus is largely governed

by the form of the chosen nuclear potential. The observed increases in binding

energy at the magic numbers should be reflected by large energy gaps after closed

shells. The simple harmonic potential is a reasonable starting potential to use

as it describes the n and l orbits falling into degenerate multiplets, resulting in

a shell structure rather than evenly spaced energy levels [31]. Using a simple

harmonic potential the nuclear magic numbers are seen to be replicated at the

closed shells at N,Z = 2, 8, 20 but higher energy levels do not show the correct

shell closures in line with experimental data.

The Woods-Saxon potential may be a more realistic approximation of the mean

potential experienced by individual nucleons. The potential provides a finite

depth of the well and smooth variation to zero at the well edges, which closely

mirrors the charge and mass distribution of the nucleus [26]. The Woods-Saxon

potential takes the form of

V (r) =
−V0

1 + exp[(r −R)/a]
, (2.8)

where V0 is the depth of the potential, r is the radial distance from the centre of

the nucleus, R is the mean radius of the nucleus and a is the skin thickness, de-

scribing the change in the nuclear density, within which the value of the potential

changes from 0.1V0 to 0.9V0. A visual comparison between the Simple Harmonic

and Woods-Saxon potentials is shown in Fig. 2.4.

Neither the Woods-Saxon or Simple Harmonic potentials reproduce the magic

numbers observed experimentally, when the energy levels are described in terms

of their l quantum numbers. However, by describing the states in terms of their

total angular momentum, j, the spacing of energy levels is to agree more succes-

fully with those observed experimentally. The total angular momentum number
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Figure 2.4: Comparison between the different behaviours of the simple har-
monic oscillator, HO, and Woods-Saxon, WS, potentials as a function of dis-
tance, r, from the centre of the nucleus. Taken from Ref. [32].

accounts for the fact that the intrinsic spin of nucleons, s = ±1
2
couples to the

angular momentum, l, of the nucleon in the energy level it occupies. This gives

total angular momentum, j, values of l ± 1
2
. The spin-orbit interaction causes

the splitting of the l energy levels, the magnitude of which is proportional to the

angular momentum, l, of the unsplit state. This is given by equation 2.9,

l.sj=l−1/2 − l.sj=l+1/2 =
1

2
(2l − 1)~. (2.9)

Parallel coupling of the angular momentum and intrinsic spin is favoured, so the

energy of the higher-spin state is less than the lower-spin state. The inclusion

of the spin-orbit term now results in the accurate replication of the experimen-

tally observed magic numbers for both the Simple Harmonic and Woods-Saxon

potentials. However, the ordering and spacing of single-particle orbits may vary

depending on the mass of the nucleus considered as well as the strength of cer-

tain interactions between individual nucleons, which are discussed later in the

Chapter.

The j and l values are used to identify individual shell model orbits with the

l values described using the spectroscopic notation where, l = s, p, d, f, g, h...

corresponds to l = 0, 1, 2, 3, 4, 5.... The evolution of the produced magic numbers

when a simple harmonic potential, Woods-Saxon potential and Woods-Saxon



Theory 31

potential with a spin-orbit term are used to predict the nuclear structure are

shown in Fig. 2.5.

Excitation of the nucleus may cause nucleons to be raised to higher-energy states

within the potential. As the nucleus will naturally tend to its lowest energy state,

these states are unstable and the nucleus will eventually decay to its ground state.

This decay may proceed via intermediate excited states. The most common

means of de-excitation from excited nuclear states is through the emission of γ

rays. Examining the properties of these γ rays can then tell us about the internal

structure of the nucleus. The rules governing γ-ray transitions are described in

the next section.

2.3 Gamma-ray Decay

Transitions between excited states in the nucleus are largely mediated by γ-ray

decays. When a nucleus decays from an excited state, Ii, to a lower energy state,

If , a photon will commonly be emitted with a certain energy, parity and angular

momentum, which is dependent on the properties of Ii and If . By characteris-

ing the γ-ray emission from a certain nucleus, initial and final properties of the

changing nucleus can be inferred [34].

2.3.1 Selection Rules

The properties of γ rays emitted from the nucleus are largely dictated by a set

of selection rules. Due to the possible vector sums of angular momenta, a γ ray

effecting a nuclear transition, between two states with angular momenta Ii and

If , may have angular momentum in the range,

|Ii + If | > Lγ > |Ii − If |, (2.10)

where Lγ is the angular momentum of the γ ray, which may have any integer

value between these limits [26].
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Figure 2.5: The effect of different nuclear potentials and the inclusion of the
spin-orbit term on the ordering of single-particle energy levels and predicted
magic numbers, as adapted from Ref. [33].
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The γ rays emitted from the nucleus can be described as either “electric” or

“magnetic”. Electric γ rays change the electric moment of the nucleus while

magnetic transitions change the magnetic moment of the nucleus [35]. The γ

rays are also described by their angular momentum, so that they are labelled as

EL or ML.

Depending on whether the transition is electric or magnetic, the parity of the

radiation field can be calculated by

π(ML) = (−1)Lγ+1 (2.11)

or

π(EL) = (−1)Lγ , (2.12)

where π(ML) and π(EL) indicate the parity change for a magnetic or electric

transition, respectively. As shown by equation 2.10, γ-ray decays can proceed

with various different angular momenta between the same initial and final states,

forming mixed multipolarity transitions. As parity between initial and final states

is conserved and the transition rates are dependent on the angular momentum of

the emitted γ ray (see next section), the most common mixed transitions have

multipolarities of E2-M1 [36].

2.3.2 Gamma-ray Transition Rates

Transition rates between excited nuclear states can provide valuable nuclear struc-

ture information. For example, excited state lifetimes can provide information

on the shape of nuclei [37], changes in nuclear structure at certain excitation en-

ergies [38] and the amount of collective versus single-particle behaviour in nuclei

[39, 40]. The lifetime of a decay from one nuclear state to another can be mea-

sured experimentally and compared to theoretical estimates to access this nuclear

structure information [41]. The transition probability, λ, between two states, Ii

and If , can be described in terms of reduced matrix elements between the two

states [42], such that,



Theory 34

λ(σL) =
8π(L+ 1)

~L((2L+ 1)!!)2

(
Eγ

~c

)2L+1

B(σL : Ii → If ), (2.13)

where L and Eγ are the angular momentum and energy of the γ-ray transition, σ

denotes either an E orM transition and B(σL : Ii → If ) is the reduced transition

probability, given by [43]

B(σL : Ii → If ) =
1

2Ii + 1

∣∣∣⟨If ∣∣∣Ô∣∣∣ Ii⟩∣∣∣2 , (2.14)

where Ô is either Q̂, the electric, or M̂ , the magnetic, multipole operator depend-

ing on whether σ is E orM ,
⟨
If

∣∣∣Ô∣∣∣ Ii⟩ is the reduced matrix element, governing

the decay between states Ii and If by the γ ray of angular momentum L. The

dominance of the double factorial L term in equation 2.13 means that higher

multipole γ ray decays will have severely hindered decay probabilities compared

to lower multipole decays.

The Weisskopf estimates provide lifetime estimates for a single-particle γ-ray de-

cay by considering the transition to proceed with a single unmixed multipolarity

equivalent to |Ii − If | (known as a “stretched” transition) [44]. For single-particle

transitions the rate of decay is inversely proportional to the multipolarity of the

emitted γ ray, therefore only the stretched transition needs to be considered [33].

The transition probability as stated in 2.13 is used to give the single-particle tran-

sition rate with the inclusion of the Weisskopf reduced matrix elements [45, 46],

given by

B(Wu : EL) =
1.22L

4π

(
3

L+ 3

)2

A
2L
3 e2fm2L, (2.15)

for electric transitions and

B(Wu :ML) =
10

π
1.22L−2

(
3

L+ 3

)2

A
2L−2

3 2

(
e~
2Mc

)2

fm2L−2, (2.16)

for magnetic transitions. In these equations, A is the mass of the nucleus and L is

the multipolarity of the γ-ray transition. The magnetic reduced matrix elements

are given in units of
(

e~
2Mc

)2
fm2L−2, whereM is the mass of the nucleon, while the
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electric reduced matrix elements are given in units of e2fm2L. Using equations

2.15, 2.16 and 2.13 gives the simple reduced transition probabilities listed in Table

2.1. If the lifetimes of excited nuclear states are seen to significantly differ from

these values then a single-particle, spherical picture of the nucleus may not be

accurate, as is discussed further in Subsection 2.5.3.

Multipolarity T1/2 (s)

E1 6.76× 10−6E−3
γ A− 2

3

E2 9.52× 106E−5
γ A− 4

3

E3 2.04× 1019E−7
γ A−2

E4 6.50× 1031E−9
γ A− 8

3

M1 2.20× 10−5E−3
γ

M2 3.10× 107E−5
γ A− 2

3

M3 6.66× 1019E−7
γ A− 4

3

E1 2.12× 1032E−9
γ A−2

Table 2.1: Weisskopf single-particle half-life estimates for different γ-ray mul-
tipolarities, Eγ is the transition energy in units of keV and A is the mass of
the nucleus.

Proton-emission rates can also provide information on nuclear structure, such as

angular momentum assignments of proton-emitting states. In a similar manner to

γ-ray decay, accurate theoretical models are needed to interpret the experimental

data. The next section examines the predictive power of three such models that

are based on proton-emission in spherical nuclei.

2.4 Spherical Models of Proton Emission

Models of proton-emitting nuclei commonly consider the proton occupying a qua-

sistationary state [1, 2], characterised as a long-lived out-of-equilibrium state

which is affected by a long-range interaction [47]. Quasistationary states are also

defined as having a finite decay width, Γ, where the decay-width is linked to the

half-life, T1/2, of the state by

T1/2 =
~ln(2)
Γ

. (2.17)



Theory 36

For the case of spherical proton-emitting nuclei, the exact decay width of the

quasistationary state can be calculated.

The wave function of the outgoing proton, ψout
lj , with total and orbital angular

momenta of j and l, respectively, is given by

ψout
lj = Nlj[Glj + iFlj], (2.18)

where Nlj is a normalisation constant and Glj and Flj are, respectively, the ir-

regular and regular Coulomb wave functions. These wave functions are solutions

to the Laplacian in the Coulomb wave equation, which is itself given by the

Schrödinger equation including a Coulomb potential. The regular and irregular

Coulomb functions give the solutions to the Coulomb equation in the classically

allowed and classically forbidden regions, respectively. The normalisation con-

stant, Nlj is found by matching the wave function of the outgoing proton, ψout
lj ,

to the solution of the Schrödinger equation of the un-emitted proton, ψlj, which

obeys the condition ψlj(r = 0) = 0 and has outgoing boundary conditions at

the point, R, where the nuclear potential ceases to have an effect on the proton.

This wave function defines the proton as occupying a Gamow state, which is the

natural wave function of a resonant quasibound state [48, 49]. The decay width

of the state is given by the solution for the decay width of a Gamow state which

can be solved using several different approaches [50–52]. The expression for the

decay width of a proton-emitting state in a spherical nucleus is then

Γ(R) =
~2k
µ

R2 |ψlj(R)|2

F 2
lj(R) +G2

lj(R)
, (2.19)

where µ is the reduced mass of the proton orbiting the nucleus and k =
√
2µE/~

is the wave number of the proton. In Ref. [51] the Schrödinger equation is solved

for the Gamow state, leading to solutions with complex energies, E = E0 + iΓ,

where E0 is the energy of the resonance and Γ is its decay width. Rather than

solving the Schrödinger equation in this way, a variety of approximate methods

may be successfully used. Three of these approximate approaches, which treat the

proton as occupying a quasistationary state in a spherically symmetric potential

are compared below.
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2.4.1 Distorted Wave Born Approximation (DWBA)

The distorted wave Born approximation (DWBA) provides a rigorous method

of calculating the decay width of a proton emitting state if the initial and final

wave functions of the proton and core are known. The DWBA considers the

emitted proton as undergoing a low-amplitude interaction between a quasibound

and unbound channel, with both channels subject to a common potential. The

transition amplitude has to be sufficiently small, so transitions with larger decay

widths may not be well modelled by the approximation [53].

The parent nucleus wave function,ΨA+1, is taken to be the product of the indi-

vidual wave functions of the quasibound proton and nuclear core, while ΨAp is a

product of the daughter nucleus, similarly treated as the inert core of the parent

nucleus, and the intrinsic wave function of the emitted proton [1, 2].

The radial wave function of the quasibound proton is found by numerically inte-

grating the Schrödinger equation with the one body potential. The quasibound

wave function should have a form such that the interior wave function is smoothly

joined to the irregular part of the Coulomb function, G(r), which describes the

proton wave function as r → ∞. The depth of the nuclear potential and strength

of the spin-orbit interaction can then be altered so that the the quasibound wave

function follows this condition.

Using the forms of wave function described the decay width of the proton reso-

nance is

Γ =
4µ

~2k

∣∣∣∣∫ ∞

0

Fl(r)(VN + δV C)ϕnljdr

∣∣∣∣2 , (2.20)

where VN is the nuclear potential, δV C is a factor that accounts for the Coulomb

interaction from the finite charge distribution of the nucleus, µ is the reduced

mass of the core and proton and ϕnlj is the wave function of the outgoing proton.

2.4.2 Two Potential Approach (TPA)

The Two Potential Approach considers the proton as initially occupying a bound

state within a potential U(r). A distorting potential, W (r), is then introduced at
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Figure 2.6: Figure taken from Ref. [7] showing the different forms of potential
used in the two potential approach: (a) the total potential, V (r), with the
proton occupying a state with energy E, (b) the stable part of the potential,
U(r) with a stationary state of energy E0, (c) the deforming potential, W (r),
introduced at time t = 0 and (d) the form of W (r) which tends to zero as
r → ∞. The labels r1 and r2 denote the classical turning points of the potential
and rb indicates the radius at which the potential barrier is at a maximum
[1, 2, 7].

t = 0, at which point the proton occupies a quasistable state within the potential,

V (r) = U(r) +W (r), and eventually decays to the continuum. The forms of the

potentials U(r), V (r) and W (r) are shown in Fig. 2.6 [7].

The barrier consists of both Coulomb and centrifugal parts so the barrier height

is dependent on the single-particle angular momentum [1, 2]. The potential U(r)

commonly takes the form of a simple harmonic potential [7].

The particle will initially occupy the bound eigenstate of the Hamiltonian, H0

with potential U(r), therefore,
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H0Φ0 =

(
p2r
2µ

+ U(r)

)
Φ0 = E0Φ0, (2.21)

where Φ0 is the initial wave function of the proton contained within the potential

U(r) with energy E0. Once the perturbing potential W (r) is introduced the

particle then occupies a resonant state of energy E which is an eigenstate of the

full Hamiltonian H = p2r
2µ
+V (r). As can be seen from Fig. 2.6, the potentialW (r)

does not disappear at large values of r, instead tending to −VB. The potential is
then slightly altered to the form W̃ (r) = W (r)+VB, which is substituted into the

Hamiltonian to provide the more realistic behaviour desired. The Fermi Golden

Rule [26] can be used to extract the decay width of the quasistable state, which

is found to be

Γ =
4µ

~2k

∣∣∣∣∫ ∞

rB

ϕnlj(r)W (r)χl(r)dr

∣∣∣∣2 , (2.22)

where µ is the reduced mass of the nucleus and proton, k =
√
2µE/~, ϕnlj is the

radial component of the wave function Φ0 and χl(r) is the radial wave function

of the Hamiltonian with the perturbing potential W̃ (r) added. The integral in

equation 2.22 can be solved analytically to give a final expression for the decay

width of the quasistationary state of

Γ =
~2

µk

∣∣∣ϕnlj(rb)
[
αχl(rb) + χ

′

l(rb)
]∣∣∣2 , (2.23)

where α =
√
2µ(VB − E)/~ and rb is the barrier radius shown in Fig. 2.6.

2.4.3 Wentzel-Kramers-Brillouin (WKB) Approximation

The Wentzel-Kramers-Brillouin (WKB) approximation to proton emission is a

quasi-classical approach that considers a proton tunneling through a potential

barrier. The WKB approach uses two different wave functions, a propagating

form before the potential barrier and a decaying form after the barrier, which are

given in terms of plane waves, ψ ∼ e−ikr. The WKB terms for the decay energy

and decay width of the proton decay can be calculated using the quasiclassical
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limit of the two-potential approach [1, 2, 27]. The decay energy, ∆, and decay

width, Γ, are given as

∆ =
NV

′
(rb)

16α3
exp

[
−2

∫ rb

r1

|k(r)|dr
]

(2.24)

and

Γ = N
~2

4µ
exp

[
−2

∫ r2

r1

|k(r)|dr
]
, (2.25)

where,

k(r) =

√
2µ

~2
[E − V (r)], (2.26)

r1 and r2 are the classical turning points of the potential barrier as shown in

Fig. 2.2 and V
′
(rb) = dV (r)|r→rb+0 where rb is the distance from the centre

of the nucleus at which the potential barrier height is at a maximum. N is a

normalisation factor given by

N−1 =

∫ r1

r0

dr

k(r)
cos2

(∫ r1

r0

k(r
′
)dr

′ − π

4

)
, (2.27)

where the limits r0 and r1 denote the classical region of the potential and the

index
′
indicates the treatment of the proton as being subject to the perturbing

potential, W̃ (r). This normalisation factor only considers the proton as occupying

the classically allowed region. The simplicity of the WKB method means that it

has been widely used to study proton emitters [54].

2.4.4 Comparison of Spherical Models and the Effects of

the Pairing Interaction

The models described in the last three subsections have all been evaluated using

the same parameters by Åberg et al. [1, 2] to predict the lifetime of various
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proton-emitting nuclei. The Qp values of proton emission were taken from ex-

periment and the proton is considered as occupying a single-particle level in the

parent nucleus. The half-lives predicted for various nuclei, using the different

approaches are detailed in Table 2.2 below.

Nucleus Ground State Proton ang. T1/2
or Isomeric Decay momentum DWBA TPA WKB Experiment

112
55 Cs Ground State l = 2 68 µs 67 µs 64 µs 470(50) µs [55]
113
55 Cs Ground State l = 2 540 ns 540 ns 510 ns 17.1(2) µs [12]
146
69 Tm Isomeric l = 5 350 ms 340 ms 370 ms 200(10) ms [56]
156
73 Ta Ground State l = 2 97 ms 96 ms 96 ms 106(4) ms [57]
161
75 Re Ground State l = 0 220 ms 220 ms 210 ms 440(10) ms [58]
167
77 Ir Isomeric l = 5 2.0 s 2.0 s 2.2 s 7.5(19) s [59]

Table 2.2: Proton emission lifetimes predicted for various nuclei as calculated
by Åberg [1, 2] using the DWBA, TPA and WKB approaches with experimen-
tal results also listed for comparison, see text for details.

As can be seen from Table 2.2 the various different approaches all give similar

lifetimes when the same parameters are used for the calculations. Addition-

ally, reasonable order-of-magnitude estimates of experimental values are made

for some odd-even and odd-odd nuclei as well as for nuclei decaying from the

ground state or a low-lying isomeric state. However, some of the experimental

half-lives are found to lie far from the theoretical values. As the models con-

sider the the proton moving in a spherical mean field in a single-particle orbit,

deviation from this behaviour can explain the discrepancies between theory and

experiment.

Although the approach of considering a single particle subject to a mean field

leads to the successful prediction of many nuclear properties, the effects of inter-

actions between individual nucleons may alter the spacing of excitation energies

of the single-particle orbits. The residual interaction causes the mixing of the

wave functions defining individual single-particle orbits so that a nucleon will of-

ten have to be described by an admixture of many single-particle wave functions

[31]. If there are significant components of several single-particle wave functions

then it may be necessary to treat the single particles as quasiparticles, which par-

tially occupy many different single-particle orbits. For proton decay, this mixing

may effect the half-life of proton emission as there are different probabilities that

a single-particle state is occupied or unoccupied in the daughter nucleus after the

decay of the parent [14].
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The pairing residual interaction strongly contributes to the mixing of different

states and has to be treated in proton-emission models. The effect of the pairing

interaction is to attempt to situate paired nucleons as close as spatially possible

together while not violating the Pauli exclusion principle [31]. One quality of

the pairing interaction is that pairs of nucleons in orbits near the Fermi surface

can be scattered to higher orbits. There is then a certain probability of valence

nucleons occupying several orbits near the Fermi surface. The gap parameter, ∆,

describes the occupation probabilities of excited states, i and j, near the Fermi

surface as,

∆ = G
∑
i,j

UiVj, (2.28)

where G is the strength of the pairing interaction, U is the emptiness factor given

by

Ui =
1√
2

[
1 +

(ϵi − λ)√
(ϵi − λ)2 +∆2

] 1
2

(2.29)

and V is the fullness factor given by

Vi =
1√
2

[
1− (ϵi − λ)√

(ϵi − λ)2 +∆2

] 1
2

, (2.30)

ϵi are the single-particle energies of states near the Fermi surface and λ is the

Fermi energy. The factors V and U give the probability that an orbit i is occupied

or unoccupied, respectively. The levels about the Fermi surface are occupied over

a range of approximately ∆. The level of occupancy of energy levels around the

Fermi surface is shown schematically in Fig. 2.7.

Rather than describing single-particle or hole excitations it then becomes easier

to describe excitations in terms of quasi-particles, which have a probability of

occupying several nuclear states. The energy of a quasi-particle, Ei, is given in

terms of the single-particle energies and range of occupied levels as,
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Figure 2.7: Schematic diagram showing the partial occupancy of idealised
energy levels about the Fermi surface, denoted by the fullness factor V 2

i , due
to pairing [31]. The Fermi surface energy is denoted by λ.

Ei =
√

(ϵi − λ)2 +∆2. (2.31)

Spectroscopic factors can be introduced to account for the pairing interaction in

the spherical proton-emission models discussed in this section. The theoretical

spectroscopic factor,

Sth
p = u2j , (2.32)

can be introduced from a single quasiparticle approach [60, 61], where u2j is the

probability that the spherical orbit occupied by the proton in the parent nucleus

will be unoccupied in the daughter nucleus. The value of u2j should, thus, lie

between 0 and 1. The experimental spectroscopic factor can also be calculated

from,

Sexp
p = T th

1/2/T
exp
1/2 , (2.33)
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where, T th
1/2 and T

exp
1/2 are the theoretical and experimental half-lives, respectively.

If the experimental and theoretical spectroscopic factors agree then the fragmen-

tation of the single-particle strength can be said to cause the observed differences

in the proton-emission half-life seen for some nuclei in Table 2.2. This comparison

is shown with theoretical half-lives taken from the DWBA approach in Table 2.3.

Nucleus Sexp
p Sth

p
112
55 Cs 0.145(39) 0.59
113
55 Cs 0.032(3) 0.59
146
69 Tm 1.77(25) 0.64
156
73 Ta 0.915(164) 0.67
161
75 Re 0.514(98) 0.59
167
77 Ir 0.267(86) 0.23

Table 2.3: Comparison between experimental and theoretical spectroscopic
factors for the proton-emitters listed in Table 2.2. Experimental spectroscopic
factors were calculated using half-lives taken from Refs. [12, 55–59] and theo-
retical half-lives calculated using the DWBA method in Refs. [1, 2]. Theoret-
ical spectroscopic factors are also taken from Refs. [1, 2]. The inconsistency
between theory and experiment for the top three results indicates that the
DWBA assumption of a spherically symmetric nucleus is not valid.

Table 2.3 shows that only some of the nuclei have consistent experimental and

theoretical spectroscopic factors. These nuclei will have lifetimes accurately pre-

dicted by the spherical models when the spectroscopic factor takes into account

the non-single-particle properties of the proton decay. However, there are some

nuclei with inconsistent theoretical and experimental spectroscopic factors, no-

tably 113Cs. In these cases the single-particle strength is very strongly fragmented

and the tunneling probability is strongly enhanced compared to the spherical po-

tential used in the three approaches detailed in the previous subsections [1, 2].

This is indicative of the parent nucleus deviating from a spherical shape. There-

fore, a new theoretical approach encompassing proton emission from a deformed

potential is needed to make accurate predictions on the properties of deformed

nuclei. Before addressing the models which consider proton emission from a de-

formed nucleus, the characteristics of deformed nuclei will be described as well

as the Nilsson model, which provides a single-particle model for deformed nuclei.
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2.5 Nuclear Deformation

Nuclei with numbers of protons and neutrons which are significantly different to

the magic numbers, will deviate from a spherical shape and have less binding

energy per nucleon. This is due to the increased residual interaction between the

large number of valence nucleons lying outside of a closed shell. The change in

nuclear shape can be represented as a perturbation to the spherical nuclear shape

expressed as the series of spherical harmonics, given by equation 2.34:

R(θ, ϕ) = Rav

(
1 +

∞∑
λ=0

λ∑
µ=−λ

αλ,µYλ,µ(θ, ϕ)

)
, (2.34)

where λ describes the mode of the resonance, α describes the contribution of

each mode to the total shape, Rav is the average nuclear radius and Yλ,µ(θ, ϕ)

are the series of spherical harmonics [26]. The dominant mode of deformation

is the quadrupole (λ = 2) mode with a smaller contribution from the octupole

deformation mode, (λ = 3), in some cases (Ref [62] predicts that for 113Cs, the

quadrupole deformation mode has more than twice the magnitude of the octupole

deformation mode) [63, 64]. For a predominantly quadrupole deformation, the

number of α terms is reduced. The terms α2,1 = α2,−1 = 0, as these terms do

not conserve spatial symmetry and due to axial symmetry α2,2 = α2,−2. The

applicable α coefficients are then reduced to α2,0 and α2,2. These can be simply

expressed in terms of the quadrupole deformation, β, and the deviation from

axial symmetry, γ, as,

α2,0 = β2 cos(γ) (2.35)

and

α2,2 =
1√
2
β2 sin(γ). (2.36)

The β and γ parameters form the basis of the Lund convention of measuring

shape changes due to quadrupole deformation [31]. Figure 2.8 shows the shapes

associated with the changing of these two parameters.
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Figure 2.8: The quadrupole deformation from a spherical shape described
by the Lund convention, as taken from Ref. [33]. β is the magnitude of
quadrupole deformation and γ is the deviation from axial symmetry. The
different alignments of the rotational and symmetry axis are shown for their
associated values of γ as well as the changes between prolate and oblate shapes.

The parameters ϵ and δ may also sometimes be used to describe axially symmetric

nuclear deformation, where δ is given by

δ =
∆R

Rr.m.s

, (2.37)

where ∆R is the difference between the semi-minor and semi-major axes of the

deformed nucleus and Rr.m.s is the root mean square radius of the nucleus [65].

The parameter ϵ is given in terms of an expansion of δ as,
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ϵ2 = δ +
1

6
δ2 +

5

18
δ3... (2.38)

and is, in turn, related to the β2 parameter by

β2 =

√
π

5

[
4

3
ϵ2 +

4

9
ϵ22 +

4

27
ϵ32...

]
. (2.39)

The ordering of single-particle levels will be changed in deformed nuclei and the

projection of single-particle angular momentum on the symmetry axis of the

axially deformed core becomes a good quantum number. These changes have to

be accounted for by a deformed model of the nucleus. The Nilsson model provides

this framework.

2.5.1 The Nilsson Model

The Nilsson model describes the movement of nucleons in a deformed potential

and accounts for the variation in energy of the single-particle levels of the spherical

shell model with changing nuclear deformation. A nucleon that occupies a single

orbit in a deformed nucleus will have a lower energy if the orbit lies closer to

the nuclear core. As such, the orientation of a single j orbit will have an effect

on its energy, in a way that is not significant when considering spherical nuclei.

Therefore, the degeneracy of a j orbital is affected by the deformation of the

nucleus [61]. Orbits within the Nilsson model are described by the quantum

number Ω, which is the projection of a single j orbit onto the symmetry axis of the

nucleus. For the case of there being more than one particle orbiting the nuclear

core there will be a total projection of angular momentum onto the symmetry axis

of K, where K =
∑
i

Ωi. A classical approximation of the angle of the different

K-projections may be given by

Θ = sin−1(K/j). (2.40)
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Figure 2.9: Schematic diagram showing the increased separation of Nilsson
single-particle energies with increased projection of the angular momentum of
the g7/2 orbital on the symmetry axis.

This indicates that the energy difference between orbits separated by the same

increment of K is greater for high K orbits than for low K orbits, as is shown

schematically in Fig. 2.9.

The change in single-particle excitation energy versus quadrupole deformation

parameter, ϵ2, is shown graphically in the Nilsson diagram in Fig. 2.10. This

shows the Nilsson levels calculated using a deformed simple harmonic potential

for protons between 50 ≤ Z ≤ 82. This is the area of the proton Nilsson diagram

corresponding to the proton number of 113Cs, the nucleus examined in this work.

A deformed Woods-Saxon potential may also be used to calculate the spacing of

the single-particle levels, as was the case for the theoretical model described in

Section 2.6.3 [16].

In Fig. 2.10, it can be seen that at ϵ2=0 the K-splitting of the spherical orbits

occurs and the individual K orbits diverge from each other. The diagram shows

how orbits will not cross other orbits with the same K value and parity. The

diagram also shows how the deflection and divergence of the orbits at larger

deformations leads to individual K orbits lying close in energy to each other,

which enhances the configuration mixing of the two states. States will mix more



Theory 49

strongly if they have similar K values. Additionally, the interaction that causes

configuration mixing in the Nilsson model is of quadrupole form so mixing tends

to occur strongly between configurations which differ by two units of angular

momentum [31].

The intruder orbitals, which are orbitals lowered by the spin-orbit interaction

into a different major shell will have a different parity to the natural-parity states

already present in this major shell. Due to having different parities the natural-

parity and intruder K orbits cannot mix so intruder orbitals tend to have pure

configurations as they are removed from orbitals with the same parity. By a

similar token, high-K states tend to be pure at small deformations as they are

rarer in major shells than the low-K states which may emerge from a greater

number of orbitals. The high-K states will then not mix strongly with the states

that differ by a large value of K.

Nilsson orbits are typically described in the following form,

Kπ[N,nz,Λ], (2.41)

where N is the principle quantum number of the major shell, nz is the number of

nodes of the orbit in the z direction and Λ is the projection of the orbital angular

momentum onto the symmetry axis z. By definition K = Λ + Σ where Σ is the

projection of the intrinsic spin of the nucleon onto the symmetry axis.

The Nilsson model provides a framework for single-particle motion in a deformed

potential. However, collective modes of excitation will also arise due to the motion

of many nucleons in a deformed potential. To describe the angular momentum of

a nucleus it then becomes necessary to consider these collective excitations as well

as the single-particle angular momentum. Nuclei can undergo both collective vi-

brations and rotations. The nucleus 113Cs which is studied in this work undergoes

nuclear rotation and this excitation mode is examined in the next section.

2.5.2 Nuclear Rotation

Excited nuclei with spherically asymmetric charge and mass distributions may

rotate. These rotations stem from collective, rather than individual, nucleon
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Figure 2.10: Example of the Nilsson diagram for protons 50 ≤ Z ≤ 82, which
shows the variation in energy of single-particle orbits versus deformation of the
nucleus, taken from Ref. [65].
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Figure 2.11: Schematic diagram of a deformed nucleus undergoing rotation
with frequency ω. The vector I represents the total angular momentum of the
nucleus, which can be split into core R and individual particle J components.
K is the projection of I onto the symmetry axis while Ix is the projection of
I onto the rotation axis.

excitations [26, 31]. The angular momentum of the individual and collective ex-

citations of the nucleus can be treated as separate excitations stemming from the

rotating nuclear core and the individual nucleons. The total angular momentum

of a rotational nucleus is then given by

I = R + J, (2.42)

where I is the total angular momentum of the nucleus, R is the contribution of

the rotation of the core and J is the angular momentum of valence nucleons. In

this approach the presence of the valence nucleons does not have any effect on the

behaviour of nucleons in the core and vice versa. This is due to the fact that the

motion of the valence nucleons and core take place on significantly different time-

scales [31]. The core is then described as a rigid rotor, as it will retain its shape

and rotational frequency regardless of the excitation of the valence nucleons. This

may be referred to as an adiabatic system. A schematic diagram of a rotating

deformed nucleus and the different angular momenta describing its behaviour are

shown in Fig. 2.11

The energy of rotational excited states in a nucleus is proportional to the angular

momentum of the rotating core. The excitation due to the rotation of the core,
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Erot can be, in the first instance, described classically by

Erot =
1

2
J ω2, (2.43)

where J is the moment of inertia of the core and ω is its angular frequency. This

can also be written semi-classically as,

Erot = ~2
I(I + 1)

2J
, (2.44)

which shows that an increase of angular momentum will result in a smooth in-

crease of the energy of the nucleus. This results in rotational band structures,

which have excited states with regular energy spacings and spin differences of 2~.
The lifetimes of the states in rotational bands can provide information on the

deformation of the nucleus.

2.5.3 Estimating Nuclear Deformation from γ-ray Tran-

sition Rates

If a nucleus is deformed then it will have a non-zero electric quadrupole moment.

The intrinsic quadrupole moment, Q0, is proportional to the reduced transition

probabilities of E2 transitions seen in rotational band structures. The quadrupole

moment of the state can then be related to the quadrupole deformation, β2, of

the nucleus by [31]

Q0 =
3√
5π
ZR2β2

(
1 +

1

8

√
5

π
β2..

)
, (2.45)

where R is the radius of the spherical nucleus of the same volume as the deformed

nucleus and Z is the atomic number of the nucleus. As such, the deformation

of a nucleus can be estimated from the measured B(E2) values. The reduced

transition probability of a stretched E2 transition is given by
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B(E2) =
5

16π
e2Q2

0 |⟨JiK20|JfK⟩|2 , (2.46)

where |⟨JiK20|JfK⟩|2 is a Clebsch-Gordon for a transition between states with

spins I and I − 2 [66].

Proton-emission rates may also provide a measure of nuclear deformation, when

deformation is included in the theoretical framework. Models, which describe

proton emission from a deformed potential are described in the following sections.

2.6 Deformed Models of Proton Emission

Introducing deformation into proton-emission models can remove some of the

discrepancies seen between theory and experiment in spherical models, as seen

in Subsection 2.4.4. The deformation can be taken into account by evaluating

the exact decay width of the proton-emitting state for a deformed potential in a

manner similar to that described for spherical models in Section 2.4 [14]. Two

different approaches that provide an exact expression for the decay width are de-

scribed in this section [14, 16]. The first considers an adiabatic approach where

the proton is considered to occupy a single-particle orbit within a deformed po-

tential and is coupled to a rigid nuclear core, with infinite moment of inertia [14].

The second considers a nonadiabatic approach where the core may be less rigid

and the pairing interaction and Coriolis interaction (subsequently described in

Subsection 2.6.2) may have a significant effect on the ordering of nuclear states

and the proton-emission half-life [16].

2.6.1 Deformed Adiabatic Single-Particle Approach

The adiabatic approach of Maglione et al. [14] evaluates the decay width of a

single nucleon from a single-particle level in a deformed potential. In this case

the single proton is coupled to the nuclear core which is treated as a rigid rotor

with infinite moment of inertia.
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One of the main differences between calculating decay widths in spherical and

deformed nuclei is that partial decay widths have to be inferred for different an-

gular momentum projected states [14]. This is due to the fact that the projected

angular momentum, K, becomes a good quantum number in these nuclei and can

be used to describe distinct excited states. Excitations of the nucleus stemming

from collective motion also have to be accounted for. Assuming an odd-even

nucleus with a single unpaired proton, the angular momentum projected wave

function of the parent is given by

ΨJiMi,Ki
m =

(
Ĵi

16π2

)1/2 {
DJi

MiKi
χKi

+ (−1)Ji+KiDJi
Mi−Ki

χKi

}
, (2.47)

where, Ĵi = 2Ji + 1, D are the rotation matrices and χ is the intrinsic single-

particle wave function, which can be expanded in spherical components to

χKi
(r⃗) =

∑
j≥Ki

αlj(r)
[
Yl(r̂)χ1/2

]
jKi

, (2.48)

where, Yl, are spherical harmonics, χ1/2 the spin functions and αlj describes the

contribution of different l and j orbits to the single-particle wave function.

The wave function of the exit channel will be the product of the daughter wave

function and the wave function of the proton’s movement relative to the daughter

nucleus. The daughter nucleus wave function is

ΨJdMdKd
d =

(
Ĵd
8π2

)1/2

DJd
MdKd

. (2.49)

For the case of the daughter nucleus being left in its ground state by the proton

emission, as is most likely, the relation Jd = Md = Kd = 0 can be assumed.

Angular momentum conservation then implies that the outgoing proton has an-

gular momentum jp = Ji = Ki. A spectroscopic factor of 1/(jp + 1/2) has to

be included to guarantee that the angular momentum of the daughter nucleus is

zero.
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At large values of r, where the nuclear potential vanishes and the Coulomb po-

tential is nearly spherically symmetric, the outgoing proton wave function will

adopt a form, similar to that seen in equation 2.18, of

Rχout
Ki

(R⃗) =
∑
lj

Nlj[Glj(R) + iFlj(R)][Yl(R̂)χ1/2]jKi
. (2.50)

Here Nlj are normalisation constants, which are found by matching the outgoing

wave function to the internal wave function given in equation 2.48. The probabil-

ity rate of decay to channel lj is Tlj =
1

N2
ljv
, where v is the velocity of the proton

in the potential.

Using these definitions of the parent, daughter and proton wave functions, the

partial decay width corresponding to the decay of the proton channel is found to

be

Γlpjp(R) =
~2k
µ

R2α2
lpjp

(R)

F 2
lpjp

(R) +G2
lpjp

(R)
. (2.51)

This expression assumes that the deformation of the parent and daughter nuclei

remains the same [14].

This model has been used to test the decay width of 113Cs [14] in order to try

and replicate the experimental half-life in a way which was not possible for the

spherical models discussed in Section 2.4 [1, 2, 7]. Three single-particle excitations

are predicted to lie near the Fermi surface for moderate deformations of 113Cs:

the K = 1/2+ orbital from the g7/2 shell and the K = 3/2+ and K = 5/2+

orbitals from the d5/2 shell. The half-life, T1/2 = ~ln2
Γlpjp

, of proton emission from

each of these orbits was calculated using the deformed adiabatic single-particle

method and the results are shown in Fig. 2.12.

As the adiabatic approach does not include the effect of the pairing interaction

a spectroscopic factor must be applied to the theoretical values in order to com-

pare with the experimental lifetime. When a spectroscopic factor of u2 ∼ 0.5 is

included in the calculation, doubling the theoretical values, Fig. 2.12 shows that

there is no orbit for which the experimental half-life, denoted by the dashed lines,

is replicated at zero deformation. When the same spectroscopic factor is included

in the calculation, the 5/2+ state can be discounted as the ground state as at
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Figure 2.12: Figure taken from Ref. [14] showing theoretical lifetimes of
proton emission from 113Cs calculated from equation 2.51 versus deformation.
The lifetime of the decay has been predicted for proton decays from the K =
3/2+, 5/2+ states from the d5/2 orbital and the K = 1/2+ state from the g7/2
orbital. The theoretical values are compared to the experimental lifetime value
of 16.7(7) µs from Ref. [11], the limits of which are denoted by the dashed
lines. The effects of the pairing interaction are not included in the model and
a spectroscopic factor of u2j=0.5, which doubles the theoretical values, must be
included to compare with the experimental lifetime.
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Figure 2.13: The different components of the wave functions making up the
K = 1/2+ state in 113Cs plotted as a function of deformation, taken from Ref.
[14]. The solid line corresponds to the j = K component, the dash-dotted
line to the j = K + 1 orbit, the dashed line to the j = K + 2 orbit and the
dotted line to the j = K + 3 orbit. The vertical red line marks β = 0.08 to
indicate the deformation at which the sharp increase in half-life is seen for the
K = 1/2+ state in Fig. 2.12. The horizontal red line indicates the point at
which the wave functions have greater amplitudes than zero.

the deformation of β2 ∼ 0.22 − 0.27, the state lies too far away from the Fermi

surface [14]. This indicates that either the 3/2+ or 1/2+ state is the ground state

of 113Cs.

The sharp increase in half-life for the K1/2 state at β = 0.08, seen in Fig. 2.12 is

due to the change in the amplitudes of the different components of the K = 1/2+

state at that deformation. This is shown graphically in Fig. 2.13.

The sign of the amplitude of the s1/2 orbital is seen to change at the value

of the lifetime increase at β = 0.08. Additionally, the g7/2 component is also



Theory 58

seen to decrease at this deformation. As the square of the half-life is inversely

proportional to the square of the wave function, the half-life increases sharply

at this point. Due to the sharp increase in the half-life of the decay of the

parent to the ground state of the daughter, decay to the first excited state of the

daughter may also emerge as an alternative decay path. In order to investigate

this further, information on the angular momenta of the daughter and mother

nuclei would be needed [14]. As small components of the wave function of the

proton-emitting state may have significant effects on its lifetime, it is important

to properly consider the mixing that may introduce these small components.

The adiabatic approach considers the proton as having a strong coupling to the

nuclear core, so that there is no perturbation to the orbit of the single proton

due to the Coriolis interaction. However, in nuclei such as 113Cs, the Coriolis

interaction is predicted to have a strong effect on the spacing of the different

excited states and the mixing of different state wave functions [16]. As such

it is important to develop a model that includes these effects. The mechanism

behind the Coriolis interaction is covered in the next section, before a model

which includes the interaction is introduced.

2.6.2 The Coriolis Interaction

The single-particle Nilsson wave function does not possess a fixed angular mo-

mentum J , but can be projected onto states of many different angular momenta.

Therefore, a given Nilsson orbital can be projected onto many different core ex-

citations to form a rotational band. For the case of an odd-even nucleus, the

total angular momentum corresponds to the vector sum of the core rotation and

odd-particle angular momentum. The Coriolis interaction arises as a result of

this coupling of the intrinsic and rotational motions and can be derived from the

rotational Hamiltonian,

H =
~2

2I
R2 =

~2

2I
(I − j)2 =

~2

2I
(I2 + j2 − 2I · j), (2.52)

where I is the moment of inertia of the nucleus, I is the total angular momentum

of the nucleus, R is the angular momentum of the nuclear core and j is the

single-particle angular momentum as shown in Fig. 2.11. Using the raising and
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lowering operators, I± = I1 ± ij2 and I∓ = I2 ± ij1 and replacing the operators

by eigenvalues where possible gives

E(J) =
~2

2I
[I(I + 1)− 2K2 +

⟨
j2
⟩
− (I+j− + I−j+)], (2.53)

where

VCoriolis =
~2

2I
(I+j− + I−j+). (2.54)

This Coriolis interaction term describes an effect similar to the classical Coriolis

effect, which applies to an object travelling with a velocity v on a body rotating

with angular velocity ω. When viewed from the rotational frame, the object will

appear to be subject to a force, deflecting it from its original path. For the case

of nuclei, the Coriolis interaction will alter the projection of the single-particle

angular momentum on the symmetry axis, admixing different K values. Due to

the properties of the raising and lowering operators, Coriolis mixing only acts

between states where K differs by 1. The Coriolis mixing can have significant

effects on the level structure of rotational nuclei. Low K levels from high j

spherical orbits have been observed in some rare earth nuclei to have energies

shifted by several hundred keV from unmixed energies [31].

For rotational bands based on a K = 1/2 orbit, the energies of the states forming

the band including the Coriolis term is given by

Erot(I) =
−~2

2I

[
I(I + 1) + δK1/2a(−1)I+1/2(I +

1

2
)

]
, (2.55)

where a is the decoupling parameter given by

a =
∑
j

(−1)j−1/2(j +
1

2
)C2

j (2.56)

and Cj denotes the Nilsson wave function describing a particular orbit [31].

The decoupling parameter provides a measure of how easy it is to decouple

the motion of the core and valence nucleons. For a = 1 the energy spacing
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of K = 1/2, 5/2, 9/2.. states will be exactly the same as those for 0+, 2+, 4+, ...

states of the even-even core. In this case the total angular momentum vector

is aligned with the rotation axis and the Coriolis force will not have a strong

effect on the projection of the single-particle orbit. This forms the basis of the

adiabatic strong-coupling limit where the coupling of the single-particle and ro-

tational motion is strong enough that the perturbation from the Coriolis effect

is not significant. However, for nuclei with K states which differ by one unit of

angular momentum and lie close in energy, the Coriolis mixing may be strong

and needs to be considered. 113Cs is such a nucleus.

2.6.3 Deformed Nonadiabatic Quasiparticle Approach

The deformed nonadiabatic quasiparticle approach was developed to include the

effect of the Coriolis interaction on proton-emitting nuclei and to account for

non-rigidity of the nuclear core [16]. Proton-emitting states in deformed nuclei

may be treated as admixtures of various different K states [14, 15]. As the

decay width of the proton emitting state is sensitive to small components of the

wave function, it becomes important to properly consider the Coriolis mixing in

nuclei where the Coriolis interaction is strong [16]. This is especially important

for nuclei where two Nilsson orbits with angular momenta differing by one unit

lie very close in energy. These are known as pseudo-spin doublets and may be

candidate proton-emitting states, if lying close to the Fermi energy, as is the case

for the K = 1/2+ and K = 3/2+ orbits in 113Cs [67].

Early attempts at including the Coriolis interaction lost the good agreement with

experimental data seen in the adiabatic approach [68–70]. The fact that the resid-

ual pairing interaction was not included was postulated to be the cause for these

discrepancies, as it also affects the mixing between states [16]. A nonadiabatic

approach, treating nucleons as quasiparticles rather than particles was then re-

quired to properly account for both the pairing residual interaction and Coriolis

interaction.

In a similar manner to the adiabatic approach for a nucleus with an even core and

odd proton, the total Hamiltonian of the system can be separated into intrinsic

and collective parts, H = Hin+Hcol. In this case Hin, the intrinsic part, includes

a deformed spin-orbit term as well as the residual interaction. The collective
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Hamiltonian for a core with axial symmetry takes a similar form to that described

in Section 2.6.2 of,

Hcol =
~2

2I
R⃗2 =

~2

2I
[I2 + j2 − 2I3j3 − (I+j− + I−j+)], (2.57)

where R is the angular momentum of the core, I is the moment of inertia of the

core, I is the total angular momentum of the nucleus and j the single-particle

angular momentum. Using the intrinsic frame, the wave function of the parent

nucleus, can be expressed in terms of a superposition of the Nilsson single-particle

and core wave functions using a basis of states, |IKM > as,

ΨIM =

(
2I + 1

16π2

)1/2∑
K>0

aIK [D
I
MKYK + (−1)I−KD I

M−KY
−
K ]

=
∑
K>0

aIK ⟨r⃗|IKM⟩ ,
(2.58)

where D I
MK are the rotational matrices and aIK are the coefficients governing the

superposition of the single-particle and core wave functions. The single-particle

Nilsson functions YK are given by

YK =
∑
lj

ϕK
lj (r)

r
[Yl × χS]

K
j , (2.59)

where Y and χS are the angular momentum and spin tensors, respectively and

ϕK
lj (r) is the radial wave function of the proton moving with respect to the core.

The Coriolis mixing between states differing by one unit of K can be taken into

account from a diagonalisation in the same |IKM > basis, giving,

⟨IK + 1M |Hcr|IKM⟩ =
~2

2I

∑
lj

[(I −K)(I +K + 1)(j −K)(j +K + 1)]1/2 ×
∫
drϕK+1∗

lj (r)ϕK
lj (r).

(2.60)
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The effect of the residual pairing interaction can be introduced by using the

Bogoliubov transformation [71] to change from single-particle Nilsson energies,

ϵK , to quasiparticle energies ϵ̃K = [∆2+(ϵK −λ)2]1/2 where λ is the Fermi energy

and ∆ is the pairing gap. After this transformation the Coriolis contribution has

to be multiplied by a factor of

fuv = (uK+1uK + vK+1vK), (2.61)

where u2 and v2 are emptiness and fullness factors describing the probability of a

single-particle state being occupied or unoccupied, respectively. The decay width

of a proton-emitting state can then be calculated from the probability that the

wave function of the form shown in equation 2.58 will decay to the exit channel

wave function given by the tensor product of the internal wave function of the

daughter nucleus ΦRMR
and the function describing the protons motion relative

to the daughter, ϕI
ljR. The expression for the decay width of a proton escaping

with angular momentum lpjp is then,

ΓR
lpJp(r) =

~2k
µ

2(2R + 1)

2I + 1
×∣∣∣∣∣∑

K>0

ufK ⟨jpKR0|IK⟩ × aIK
ϕK
lpjp

(r)

Glp(kr) + iFlp(kr)

∣∣∣∣∣
2

,

(2.62)

giving a more generalised form of the adiabatic formula shown in equation 2.51.

Here |ufk |2 gives the probability of single-particle proton level being unoccupied

in the daughter nucleus.

By using experimental excitation energies of states in the daughter nucleus, its

internal wave function can be better defined and the proton decay width can be

more accurately evaluated. Using the level scheme of the daughter also accounts

for any structures in the daughter nucleus that are not caused by rigid rotation.

The nonadiabatic quasiparticle model removes the disagreement with the strong-

coupling limit introduced in the earlier nonadiabatic approaches. For example,

the proton decay of the nucleus 141Ho, with an experimental lifetime of T1/2 =

4.1(1) ms [72], was predicted to have a lifetime of T1/2 = 12.5 ms in the method of
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Ref. [69], which did not consider the effect of the pairing interaction. By contrast,

a more accurate lifetime of T1/2 = 2.6 ms was predicted by the adiabatic model

and the same value was replicated by the nonadiabatic model. The results of

this model, when used to calculate energies of excited states and the half-life of

proton emission from 113Cs, are discussed later in this work.

The correct deformation of the proton-emitting nucleus can be found by changing

the level of deformation present in the potential and finding the intersection of the

theoretical and experimental half-lives. Similarly, by using the wave functions ex-

tracted from the nonadiabatic model to calculate γ-ray transition rates between

excited states of the proton-emitting nucleus, using the approach described in

Subsection 2.5.3 [66], the deformation of the nucleus may again be found. There-

fore a consistent approach using the same wave functions from the nonadiabatic

quasiparticle model can be undertaken to provide the deformation of the nucleus

from comparison with both experimental proton-emission and γ-ray transition

rates, in order to test the predictive power of the model.
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Chapter 3

Experimental Equipment and

Techniques

This chapter provides an overview of the experimental setup used to obtain the

data presented in this work. Data were collected at the Accelerator Laboratory of

the University of Jyväskylä using the JUROGAM-RITU-GREAT nuclear spec-

troscopy apparatus, shown in Fig. 3.1. This setup was originally designed for

the identification and analysis of heavy nuclei far from stability [18–20], but has

also been widely and successfully used for measurements of nuclei in the mass

A∼110 region [12, 39, 73, 74]. This chapter describes the constituent arrays of

the experimental setup as well as the processing of detector signals for analysis.

3.1 The K-130 Cyclotron

The K-130 Cyclotron was installed at the University of Jyväskylä in 1993 and

provides heavy-ion beams to the JUROGAM-RITU-GREAT experimental setup

[76]. Cyclotrons, such as the K-130, make use of the fact that a charged particle

travelling in a circular orbit in a uniform magnetic field has a constant orbital

period. The radius of the orbit increases as the particle is accelerated, while the

65
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GREAT

JUROGAM-II

RITU

Beam from

K-130 Cyclotron

Figure 3.1: Technical drawing of the JUROGAM-RITU-GREAT spec-
troscopy setup used at the University of Jyväskylä during the experiment
described in the present work [75]. The beam from the K-130 Cyclotron im-
pinges on a target surrounded by the JUROGAM-II HPGe array. Recoiling
nuclei from the target position will then be transported through RITU, to sepa-
rate reactants from scattered beam products, before implanting in the GREAT
focal plane array.

frequency of the orbit remains the same. As such, a sinusoidal oscillating voltage,

with a frequency equal to the orbital frequency of the particles in the cyclotron,

can be applied to the accelerating cavities, or dees [77], within the cyclotron. This

has the effect of accelerating the charged particles twice within one orbit. The

charged particles then take a spiral path of increasing radius as they are further

accelerated by the oscillating voltage until they reach the edge of the cyclotron

and are ejected as a beam.

Electron-Cyclotron Resonance Ion Sources (ECRIS) are used with the K-130

cyclotron to generate heavy-ion beams in the required charge state. This type of

source consists of a plasma, which is contained in a magnetic bottle structure,

through which injected ions pass. The electrons in the plasma are resonantly

accelerated by a signal applied by a radio-frequency (RF) unit, with frequency

ωRF , which is equal to the electron-cyclotron resonance frequency, ωECR, of the

form given in equation 3.1
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ωECR =
qB

m
, (3.1)

where q is the charge on the ions in the plasma, B is the magnetic field experienced

by these ions and m is the mass of the ion [78]. The resonantly excited electrons

then strip atomic electrons from the injected ions, which are extracted from the

ion source and are accelerated by the dees [79]. The constant application of the

resonant frequency to the electrons in the plasma enables electrons to undergo

multiple collisions with the transiting injected ions and also reduces the chance

of recombination or electron capture.

The maximum energy per nucleon of accelerated ions is determined by both the

bending limit and focussing limit of the cyclotron [78]. The bending limit, Kb,

depends on the magnetic rigidity of the accelerated ions such that,

T

A
=
e2γ2B2

0R
2
0

(γ + 1)mu

(
Z

A

)2

= Kb

(
Z

A

)2

, (3.2)

where γ is the Lorentz factor, e is the electronic charge, mu is the atomic mass

unit and B0R0 is the magnetic rigidity of a particle with charge number Z and

mass number A [80]. The focussing limit, Kf , depends on the saturation density

of the vertical focussing magnets. This limiting factor is given as

T

A
= Kf

(
Z

A

)2

. (3.3)

The K-130 cyclotron has a bending limit of 130 MeV and a focussing limit of 90

keV/u allowing the production of heavy ion beams with energies of 5-10 MeV/u.

These beam energies are high enough to allow fusion-evaporation reactions to

take place at the target position, such as that used to gather the experimental

data described in this work.
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3.2 Fusion-Evaporation Reactions

Fusion-evaporation reactions utilise a high energy ion beam which is accelerated

onto a target foil. This process will form a compound nucleus if the incident ion

has enough kinetic energy to overcome the Coulomb repulsion between the two

nuclei. Fusion evaporation dominates at energies that are just enough to overcome

the Coulomb barrier, while spallation will dominate at higher energies. The

incident energy of the beam will be shared between the nucleons of the compound

system. While the average energy is not great enough to result in a nucleon

being emitted from the compound system, due to the statistical distribution

of the energies among the different nucleons there is a small probability of an

individual nucleon being “evaporated”. The remaining nuclear core will then be

left in a highly excited state, in which it rotates rapidly. Thermal equilibrium

of the nucleus is achieved as a result of these nucleons being emitted or high

energy γ-ray decays, with the process taking a time of the order of ∼ 10−22 s [81].

The excited nucleus will then undergo statistical γ-ray decay before de-exciting

through the yrast levels to its ground state. This process is shown in Fig. 3.2.

From conservation of energy, the excitation energy of the compound nucleus, Eex,

is given by the expression:

Eex = Ecm +Q, (3.4)

where Q is the energy required for the compound nucleus to form and Ecm is the

kinetic energy passed to the compound nucleus from the reaction. The value of

Ecm depends on the centre of mass of the reaction between the beam and target

nuclei and can be calculated from the difference between the energy of the beam,

EB and energy of the recoiling compound nuclei, ER, such that,

Ecm = EB − ER. (3.5)

The kinetic energy transferred to the compound nucleus can then be more simply

calculated from the mass of the beam and target and the energy of the beam, as

Ecm = EB − 1

2
(MT +MB)v

2
r , (3.6)
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Figure 3.2: Schematic, adapted from Ref. [82] of the different stages of the
formation and de-excitation of a compound nucleus through a fusion evapora-
tion reaction.
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whereMB andMT are the masses of the beam and target nuclei, respectively. As,

the kinetic energy of the beam, EB = 1
2
MBv

2
B the velocity term can be removed

from equation 3.6 which can then be rearranged to

Ecm = EB(1−
MB

MT +MB

). (3.7)

The angular momentum of the compound nucleus again depends on the centre of

mass of the beam and target nuclei involved in the fusion-evaporation reaction.

The maximum angular momentum transfer to the compound nucleus occurs when

the beam and target nucleus just touch during the reaction, as if the beam and

target nuclei were hard spheres. This is known as the sharp-cutoff approximation.

Using this classical approximation the maximum angular momentum transfer,

lmax, can be described as

~lmax = µvR, (3.8)

where µ is the reduced mass of the compound system given by

µ =
ATAB

AT + AB

(3.9)

and AT and AB are the mass numbers of the target and beam nuclei, respectively.

The value v is the velocity of the compound nucleus, which can be related to the

kinetic energy of the compound nucleus through the difference between the energy

transferred to the nucleus in the reaction and the Coulomb barrier of the target

nucleus, Vc, by

1

2
µv2 = Ecm − Vc. (3.10)

R is the sharp cut-off radius and is given empirically by

R = 1.36(A
1
3
T + A

1
3
B) + 0.5. (3.11)
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By substituting the value of v in equation 3.8 using equation 3.10, an expression

for lmax can be obtained:

l2max =
2µR2

~2
(Ecm − Vc). (3.12)

Equation 3.12 shows how the maximum angular momentum transfer for a certain

centre of mass energy depends strongly on the reduced mass of the compound

system. From equation 3.9 this further shows that reactions with symmetric

beam and target nuclei masses will result in higher angular momentum transfer

[81].

As the recoiling compound nuclei will promptly de-excite by means of γ-ray

emission, a means of detecting γ rays at the target position of the University

of Jyväskylä setup is needed to measure these decays. This is provided by the

JUROGAM-II array.

3.3 JUROGAM-II

JUROGAM-II is a high-purity germanium detector array arranged in a 4π config-

uration [18] with a total detection efficiency of ∼6% at 1.3 MeV [12]. The array

is located at the target position of the JUROGAM-RITU-GREAT setup at the

accelerator laboratory of the University of Jyväskylä, as shown in Fig. 3.3. In the

experiment described in this work JUROGAM-II is used to detect γ rays emit-

ted by recoiling nuclei at the target position before they enter into the gas-filled

separator RITU. The 39 constituent detectors of the array are arranged into four

rings, which have discrete angles to the beam axis of 157.6◦, 133.6◦, 104.5◦ and

75.5◦. There are two separate types of germanium detector: 15 Euroball phase 1

detectors [83] and 24 segmented clover germanium detectors [84]. All detectors

are surrounded by bismuth-germanate (BGO) Compton-suppression shields to

help reduce background from Compton-scattered events. If a signal is detected

in the BGO shield then the coincident scattered γ ray detected in the germanium

crystal can be vetoed.

The phase-1 detectors are large, coaxial n-type germanium detectors and are

tapered, being narrower at the front than back. This ensures that the maximum
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Figure 3.3: Photograph of the JUROGAM-II array at the target position
of the JUROGAM-RITU-GREAT setup at the University of Jyväskylä. The
down-beam end of RITU is shown behind the array [75].

proportion of the total 4π solid angle of the array is covered by the phase-1

detectors. The clover detectors consist of four individual, coaxial, germanium

diodes contained within a shared cryostat, configured as shown in Fig. 3.4. The

acceptance angle of the individual germanium crystals is smaller than that of

the detector as a whole. This reduces the Doppler broadening of incident γ-ray

signals, as discussed in subsection 4.4.5. The Doppler broadening effect is greatest

at angles to the beam axis of θ = 90◦, so the clover detectors are used for Rings

3 and 4, which are situated at angles of θ = 75.5◦ and θ = 104.5◦, respectively.

The clover detector setup also allows a detector to have a large active volume by

overcoming some of the difficulty and cost of creating large hyper-pure germanium

crystals. By using the signals from each crystal, software processing can reduce

the Compton background in the γ-ray spectra produced by each detector. If a γ

ray is scattered out of a crystal into an adjacent crystal in the same detector, the

total energy of the original incident γ-ray can be reconstructed from the energy

sum of coincident events detected separately in the detector crystals. This process

is known as add-back and is described in more detail in Subsection 4.4.3.
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Figure 3.4: The configuration of individual Ge crystals in the JUROGAM-II
clover detectors [84].

3.4 RITU

The Recoil Ion Transportation Unit (RITU) is a gas-filled recoil separator that

transports nuclei of interest from the target position to focal plane of the JUROGAM-

RITU-GREAT setup, while removing scattered beam products [19]. The path

that ions take through RITU is determined by the equation

Bρ =
mv

eqav
, (3.13)

where, B is the strength of the magnetic field in the separator, ρ is the radius

of curvature of the ions path, m and v are the mass and velocity of the ion

respectively, qav is the average charge state of the ions and e is the charge of an

electron [19].

RITU is filled with helium gas, with which recoiling nuclei undergo charge ex-

change reactions. An average charge state of the nuclei will result from the bal-

ance of probabilities between the recoils losing and gaining electrons in collisions

with the gas molecules [85]. The fact that the majority of recoils occupy the av-

erage charge state increases the transmission efficiency of the separator compared

to vacuum mode separators, in which certain charge states are separated before

the focal plane. Although the mass separation of RITU as a gas-filled separator

is far inferior to the vacuum mode resolution of A/∆A ∼ 100 [19], the resolution

is sufficient to separate the majority of scattered and primary beam nuclei from

the fusion-evaporation recoils.
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The value of qav is dependent on both the pressure of helium inside RITU and the

velocity of the ions moving through the separator. The effect of different velocities

and pressures on the average charge state of ions moving through helium are well

known from previous experiments [86]. Using this data the optimum pressure

and magnetic fields can be chosen to ensure the best transmission of fusion-

evaporation recoils and separation of primary and scattered beam products.

The path of ions through RITU is governed by the magnetic fields produced by

three quadrupole (Q) and one dipole (D) magnets, which are arranged in a QDQQ

configuration, as shown in Fig. 3.5. The quadrupole magnets ensure that the

beam remains focussed while passing through RITU. The dipole magnet bends

the path of the ions, with the new direction of the ions dependent on equation

3.13. The scattered beam nuclei, having lower mass, will be deflected more by

the magnetic field, giving them a distinct path to that of the fusion-evaporation

recoils. This allows much of the scattered beam to be directed away from the

focal plane while allowing the transport of the desired nuclei. A movable beam

stopper can also be inserted into RITU after the dipole magnet to further impede

the scattered beam nuclei, as not all of the beam will be deflected away from the

focal plane by the dipole magnet alone. The distance from the target position

to the focal plane is 5.1 m and RITU can be operated with a maximum beam

rigidity of 2.2 Tm [19].

The transmission efficiency through RITU during the commissioning experiment

was ∼ 25% for reaction products from the 40Ar+175Lu →210,211Ac + xn reaction

[19]. As the tuning of the beam and magnet fields was not optimised at the com-

missioning stage, this efficiency should be treated as a lower limit. The optimum

pressure of the helium gas in the separator in the commissioning experiment was

found to be 1.5 mbar, while the pressure used in the experiment described in

Chapter 5 was 1.2 mbar.

3.5 GREAT

The GREAT spectrometer is positioned at the focal plane of RITU to detect

recoiling reaction products that have passed through the separator and their sub-

sequent decays. The arrangement of the various detectors that are subsequently
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GREAT

at the centre of JUROGAM - II
fills RITU from target

chamber to GREAT chamber 

Pressure ~ 1 mbar

Figure 3.5: Schematic birds-eye view of the gas-filled recoil separator RITU
adapted from Ref. [19]. Recoiling nuclei will be transported from the target
chamber at the centre of JUROGAM-II to the detector chamber of GREAT.
The quadrupole magnets Q1, Q2 and Q3 keep the path of the recoiling nuclei
focussed, while the dipole magnet D separates recoiling target nuclei from
beam products, see text for details.

described is shown in Fig. 3.6. Nuclei exiting RITU initially pass through a

multi-wire proportional counter (MWPC). The MWPC is filled with isobutane,

which is ionised by incident recoils, and is separated from the low pressure en-

vironment of RITU by an aluminised mylar window [20]. The MWPC detects

the energy loss of recoils and can be used in tandem with the silicon detectors,

described later, to provide information on the time of flight of recoils between

RITU and the focal plane [87]. These properties can be used to differentiate

recoil events from scattered beam and decay events at the focal plane.

After passing through the MWPC, a nucleus will implant in one of a pair of

double-sided silicon strip detectors (DSSDs). The DSSDs provide information

on the energy of the implanted recoil as well as its implantation position in the

detector. The DSSDs have dimensions of 60 × 40 mm and are placed side by side

giving a total active area of 4800 mm2. Each detector is split into 60 horizontal

strips of width 1 mm on the back side and 40 vertical strips on the front side.

This gives each detector 2400 separate pixels to provide positional information.

The DSSDs will also provide energy, position and timing information for α-, β-

or proton decays of the implanted recoils.
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Figure 3.6: Schematic diagram of the GREAT detector setup with views
from (a) the down-beam face and (b) the side.

Surrounding the DSSDs is a box of silicon pin diodes. Recoils implanting in the

DSSDs will typically implant at depths between ∼1-10 µm [20]. At these depths

there is a significant probability that internal conversion electrons will be able

to escape backwards (relative to the recoil direction) from the DSSDs. The pin

diodes are placed in a box configuration backwards to the DSSDs as shown in

Fig. 3.6. There are 28 separate pins, providing a total geometric efficiency of

∼30%.

A planar germanium detector is placed 10 mm behind the DSSDs in the same

vacuum chamber. This detector is primarily used for the detection of low-energy

γ rays and x-rays, as it has an absolute efficiency of ∼ 30% at ∼ 100 keV [20].
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Figure 3.7: The simulated absolute efficiencies of the largest GREAT clover
detector and the GREAT planar germanium detector [20].

The detector has an active area of 120 × 60 mm detector, a depth of 15mm, and

is segmented into 24 horizontal strips on the front side and 12 vertical strips with

widths of 5 mm each. This segmentation allows information on the position of

γ-ray decays to be extracted.

Three clover detectors are placed around the DSSDs at angles of 90 degrees to

both the beam axis and each other, as shown in Fig. 3.6. These allow the

detection of higher energy γ rays with greater efficiency than the planar detector.

The clover detector placed vertically above the focal plane has a larger area

than the two detectors placed at the sides of GREAT and, as such, has a higher

efficiency of ∼ 5%. The simulated absolute efficiencies of the planar detector

and the large clover detector are shown in Fig. 3.7, showing the relative detector

performances at different energies.

3.6 Total Data Readout

Recoil-decay tagging (RDT) is a powerful tool for observing specific nuclear de-

cays by correlating detector events resulting from recoiling nuclei and their asso-

ciated decay events [88]. In conventional RDT experiments, data is only recorded
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when specific trigger conditions are met [89]. The trigger in RDT experiments is

typically the implantation of a recoil at the focal plane. Traditionally, in order

to detect subsequent decays of the implanted nucleus, a fixed time period (or

“time gate”) is started by the trigger, in which the decay events are subsequently

detected. This time gate will typically be based on the half-life of the desired

decays. This conventional setup suffers from the fact that only one event can be

recorded at a time, as once the time gate is open any subsequent recoils arriving

at the focal plane will not be detected. This large “dead-time” then results in

many events being discarded [88].

The Total Data Readout system overcomes these issues by recording and time-

stamping all detector signals with the use of a 100 MHz global clock. Events are

subsequently constructed in the software [90]. This both reduces the dead-time

of the setup and allows subsequent optimisation and resorting of the data under

different conditions.

Signals from the detectors are initially passed through Constant Fraction Dis-

criminators and shaping amplifiers before being passed into the VXI-D Analogue-

to-Digital (ADC) cards. These cards associate a timestamp with each detector

output. The ADC conversion and readout time is less than that of the shaping

time of the amplifiers. This means that the only losses of detector signals are

from pile-up, which is caused by a second detector signal being generated before

the first signal is processed and recorded. A module known as the metronome

keeps all ADC signals synchronous. The time-stamped data is then passed to the

event-builder, which time-orders all events and constructs the events in line with

applied software gates [91]. A schematic of the TDR electronics is shown in Fig.

3.8.

3.7 Event Construction

The use of the TDR system allows a wide range of detector outputs to be grouped

together to form the desired detection events. Raw data from all detectors is

formed in to a single stream, which is initially processed by the event builder

and time-ordered. A specific set of detector outputs will be used as a trigger. In

the case of the work presented here the trigger corresponds to the detection of
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Figure 3.8: The electronics in Jyväskylä that comprise the TDR system
which converts detector signals into time-stamped events. The signals are
passed through the shaping amplifiers and CFDs before being digitised by the
ADC and passed to the Event Builder with their associated time-stamps.

an event in any of the DSSD strips. An event time-delay and width is defined in

the software. The event width defines a time window, within which any detector

signal will have to occur to be included in the event. This width is optimised such

that the desired decay events at the focal plane are correlated with prompt decays

at the target position, while ensuring that the random correlation rate is kept low

to ensure a good event-to-background ratio. The event delay specifies how much

earlier timestamped events may be than the trigger to still be included within

the event. The delay is usually set so that it corresponds to the time difference

between recoils leaving the target position and arriving at the focal plane. This

reduces the inclusion of background JUROGAM-II events at the target position

resulting from long-lived β-decays and other random events. Eliminating as much

JUROGAM-II background as possible also significantly reduces the amount of

data storage required. Figure 3.9 shows typical times at which events at the target

position and focal plane happen relative to each other, as well as an example
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Figure 3.9: Diagram taken from Ref. [33] showing the time differences be-
tween the different detector signals in the JUROGAM-RITU-GREAT setup.
The trigger width and delay are displayed to show the typical time scales
chosen for both of these quantities.

trigger width and delay.

3.8 Data Sorting

The grain software package was used to sort the TDR data collected during

the experiment presented in this work [90]. grain allows both online and offline

sorting of data into histograms using time and distance correlations between the

individual time and detector stamped TDR events. These correlations are defined

in a user-created sortcode. A configuration file was used in conjunction with the

sortcode to define the trigger conditions for the histogram event construction.

The package allows the real-time display of the data being sorted. This allowed
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the optimisation of tagging or coincidence conditions included in the sortcode

(described in more detail in Chapter 5) to be changed if necessary based on the

histogram output.

3.9 The Differential Plunger for Unbound States

The differential plunger for unbound nuclear states (DPUNS) was created to per-

form lifetime measurements on the excited states of exotic nuclei in tandem with

recoil-decay tagging [21]. The plunger was primarily designed to measure excited

state lifetimes in proton-emitting nuclei with the JUROGAM-RITU-GREAT ap-

paratus [92]. When used with this setup the plunger is placed at the centre of

the JUROGAM-II array. The plunger uses a degrader foil, slowing recoiling nu-

clei from the target but still allowing them to pass from the target position into

RITU. Decays from the recoils can then be detected by GREAT and used to tag

prompt γ rays detected at the target position, as is described in Subsection 4.3.1.

The target and degrader foils are stretched over their respective frames and opti-

cally aligned. The process of optical alignment consists of shining a bright light

through the gap between the target and degrader foils at different angles and

reducing the distance between the two foils. If the foils are aligned then the light

will be seen to disappear from the centre of the gap. If the light first disappears

from the top, bottom, left or right of the gap then the screws attaching the foil

frames to the plunger will have to be tightened or loosened. The minimum target-

to-degrader distance is determined by the uniformity of surface and alignment

of the two foils [93]. If the foil surfaces are sufficiently smooth and parallel then

target-to-degrader distances as low as ∼2 µm may be used in DPUNS [21]. Con-

versely, the longest distances that can be used is determined by the maximum

travelling range of the plunger, which is 30 mm. In order to ensure a constant

distance between the target and degrader during the experiment, a low-voltage

feed back pulse is applied to the degrader foil and the induced voltage on the tar-

get foil continually recorded. The voltage is calibrated using a TESA GT43 axial

probe with a TT20 electronic micrometer. By measuring the change of distance

between the the two foils using the micrometer and reading off the corresponding

change in induced voltage using the axial probe, the voltage corresponding to

each distance between foils can be recorded. The induced signal is passed via a
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Figure 3.10: Technical drawing of DPUNS taken from Ref. [21] showing the
locations of the constituent components within the housing of the device. The
stepper motor is used to change the distance between the target and degrader
foils, while the axial probe provides feedback to ensure that the target-to-
degrader distance remains constant throughout the experiment.

data acquisition card to a PC using the Köln Plunger control software, developed

under the National Instruments Labview framework [94], which continuously ad-

justs the distance between the target and degrader foils, while an experiment

is running, in accordance with the induced signal and the measured calibration.

The movement of the foils is achieved through the use of a 45 V high-precision

stepping motor. A technical diagram of DPUNS is shown in Fig. 3.10.

The low voltage of the stopper motor allows it to be used in the low-pressure gas

environment of RITU. The helium in RITU has the benefit of countering some

of the heating effects caused by the impinging of the beam on the target and

degrader foils, which could alter the distance between the two foils. To ensure

that the beam line is kept at vacuum, a differential pumping system (roots pump)

is placed between DPUNS and the beam line at the target position. The roots

pump removes approximately 1000 m3/hr of helium from its position between

the beamline and JUROGAM-II [95]. This removes the need for carbon isolation

foils between the beam pipe and RITU. For the 98Mo(40Ar,4n) reaction at 165
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MeV with a 0.1 µg/cm2 carbon isolation foil, reactions with the carbon foil are

seen to constitute ∼30% of the total reaction products. As such, operation with

the roots pump is preferred to reduce contamination during the analysis [21].
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Chapter 4

Analysis Techniques

The raw data collected by the JUROGAM-RITU-GREAT experimental setup

had to be processed using a variety of techniques to ensure coherent and accurate

detector outputs. These outputs were affected by corresponding detector efficien-

cies and individual electronic settings. The γ rays emitted from recoiling nuclei

were detected with an associated Doppler shift which also needed to be corrected.

This chapter describes the techniques used to calibrate the raw detector outputs

as well as the tagging techniques utilised to produce the clean spectra used for

the lifetime analysis of 113Cs. The premise of the Recoil Distance Doppler Shift

(RDDS) method of measuring promptly decaying nuclear excited state lifetimes

is first discussed as well as the related Differential Decay Curve Method (DDCM)

which is used to accurately extract the lifetime information.

4.1 The Recoil Distance Doppler Shift Method

The extraction of excited nuclear state lifetimes can provide useful information

on many aspects of the nucleus [96], as covered in subsections 2.3.2 and 2.5.3.

Nuclear lifetimes between the picosecond and nanosecond range can be measured

through the use of differential plunger devices utilising the RDDS method [93].

A schematic of a simple plunger device is shown in Fig. 4.1.

85
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Figure 4.1: A schematic diagram of a plunger device taken from Ref. [93].
A beam is seen to strike a target on the left side of the figure, from which
recoiling fusion-evaporation reaction nuclei leave the target with velocity, v.
The fusion-evaporation recoils de-excite via the emission of γ rays, which are
detected with an energy that is Doppler-shifted according to the value of v and
θ, the angle of the γ-ray detector with respect to the beam axis. The recoils
implant in a stopper foil at a distance, x, from the target foil. The γ rays
emitted from the excited nuclei in the stopper are detected without a Doppler-
shift to their energy. For a certain γ-ray decay from an excited state, the
variation with x of the ratio of the intensities of the fully shifted and stopped
photopeaks can be used to infer the lifetime of the state.

A beam impinges on a target foil, from which recoiling nuclei are emitted. Typ-

ically fusion-evaporation reactions are used for plunger experiments, although

deep inelastic scattering or Coulomb-excitation reactions can also be used [93,

97, 98]. The excited recoiling nuclei de-excite through γ-ray emission. These

γ-rays, denoted by γ
′
in Fig. 4.1, are detected with a Doppler shift, the magni-

tude of which is dependent on the velocity of the de-exciting recoil and the angle

of the detector to the axis along which the recoil is travelling. The recoils are

then conventionally stopped in a second foil placed close to the target foil. The

γ rays emitted from nuclei which have implanted and stopped in the “stopper”

foil, denoted by γ0 in Fig. 4.1, are detected without a Doppler shift. For a γ-ray

transition depopulating a state with a lifetime in the 10−12-10−9 s range, there

will be target-to-stopper distances at which there exists fully shifted and stopped

photopeaks with different Doppler-shifted energies and intensities. These peaks
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Figure 4.2: Schematic adapted from Ref. [33] showing the change of intensity
of the stopped (blue) and fully shifted (green) photopeaks of a γ-ray transition
as the target-to-stopper distance of a plunger is increased. The stopped peak
is shown at a higher energy than the fully shifted peak as the γ rays are
considered to be detected at a backwards angle to the beam axis.

correspond, respectively, to the detection of γ rays emitted by recoils before and

after implantation in the stopper foil. Increasing the target-to-stopper distance

will result in a longer time-of-flight between the foils, so more decays of the state

of interest will occur while the recoils are still in flight. Conversely, decreasing

the target-to-stopper distance will result in more decays from recoils that have

reached the stopper foil. Therefore, the intensities of the two photo-peaks can be

varied by changing the distance between the target and stopper foils, as is shown

by the schematic in Fig. 4.2.

Instead of a stopper foil, a degrader foil may sometimes be used, as was the case

with the plunger device used to collect the data detailed in this work. A degrader

foil slows, rather than stops nuclei, recoiling from the target foil, but still results

in two distinct recoil velocity regimes and, hence, two different Doppler-shifted

γ-ray energies per transition.
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Levels k

Level i

Figure 4.3: Schematic example of a level scheme. If the lifetime of the state
i is to be extracted, then the lifetimes of the states k have to be considered.

For an idealised case, the variation in intensity of the shifted and degraded pho-

topeaks of a transition takes the form of a simple exponential decay

IS = (IS + ID)

[
1− exp

(
−x
vτ

)]
(4.1)

and

ID = (IS + ID)exp

(
−x
vτ

)
, (4.2)

where IS is the intensity of the shifted photopeak, ID is the intensity of the

stopped or degraded photopeak, x is the distance between the two foils of the

plunger, v is the velocity of recoils leaving the target foil and τ is the lifetime of the

state being depopulated. By fitting the corresponding function to the variation

in the shifted or degraded intensity as a function of distance, the lifetime, τ ,

of the excited state being depopulated by the detected γ-ray transition can be

extracted.

4.1.1 Treatment of Feeding

Although the idealised case for extracting the lifetime of an excited state, as given

in equations 4.1 and 4.2 can sometimes be used experimentally, the feeding of the

state of interest, i, frequently has to be considered. The states, k, that feed i, as

shown in the schematic in Fig. 4.3, often have non-zero lifetimes relative to the
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lifetime of i. For this more general case the lifetime of i is extracted by solving

the set of differential equations which also govern the decay of all of the feeding

states, k. These are known as the Bateman equations and are given by

d

dt
n(t) = −λi · ni(t) +

N∑
k=i+1

λk · nk(t) · bki, (4.3)

where, ni(t) and nk(t) are the number of nuclei in states i and k at time t, λk and

λi are the decay constants of levels k and i, respectively and bki are the branching

ratios of the levels k. The branching ratios are weighting factors used to reflect

the greater intensity of some of the transitions that populate level i compared to

others. The values of the branching ratios are normalised to fulfill the condition

that
∑

k bki = 1. Substituting in experimental intensities, the solution of the

differential equation is then

ID = (IS + ID)e
−tλ +

N∑
k=i+1

Mki[(λi/λk)e
−tλk − e−tλi ], (4.4)

where

Mki(λi/λk − 1) = bkiITK − bki

N∑
m=k+1

Mmk +
k−1∑

m=i+1

Mkmbmi(λm/λk), (4.5)

the subscript m denotes the levels, which feed the states k, Mmk and Mki are the

initial population of the states m and k, respectively and ITK is the total feeding

intensity of the levels k.

For structures such as rigid rotational bands the lifetimes of states in the band

often reduce quickly at higher angular momenta and energies. For a case where

the lifetimes are sufficiently short in the higher energy levels, the feeding can be

simply considered as a single populating exponential of the form,

ID = (IS + ID)exp

(
−t
τi

)
− (ISk + IDk)exp

(
−t
τk

)
(4.6)
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where ISk and IDk are the intensities of the shifted and degraded components

and τk is the lifetime of the transition which depopulates the state above i.

By separately fitting the intensity of the component peaks of the transitions

depopulating levels i and k as a function of distance, the lifetime of i can be

calculated.

4.2 The Differential Decay Curve Method

The differential decay curve method (DDCM) is an approach of extracting plunger

lifetime measurements which has many advantages over the solving of equation

4.4 shown in the previous section [99]. These include the facts that:

• Only experimentally accessible values of IS, ID, v and d are used.

• No assumption is made on the shape of the decay curve, R(t).

• Systematic errors in the consideration of the feeding behaviour of state i

can be more easily identified as detailed later in the chapter.

The derivation of the DDCM, for the case of the feeding levels being well known,

begins with the simple differential equation detailing the population and depopu-

lation of the state of interest shown in equation 4.3. By integrating this equation,

the following is obtained

− ni(t) = −Ni(t) +
∑
k

bkiNk(t) (4.7)

from the identities

Nj(t) =

∫ ∞

t

λj · nj(t
′
)dt

′
(4.8)

and

− ni(t) =

∫ ∞

t

d

dt′
ni(t

′
)dt

′
. (4.9)
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The index j = i or k depending on whether the state depopulates or populates

the state of interest, respectively. The differential of N(i) can be substituted for

ni(t) in equation 4.7 to obtain a value of λ for the state of interest using the

following identities

d

dt
Ni(t) = λi[ni(∞)− ni(t)] (4.10)

and

ni(∞) = 0, (4.11)

as −ni(t) is then equivalent to d
dt
Ni(t)/λi. The term Ni can be related to the

experimentally measurable decay curve, Ri, through the introduction of α coef-

ficients such that Ri = Ni/αki, where αki is defined as,

αki =
ωk(Θ) · ϵ(Eγk)

ωi(Θ) · ϵ(Eγi)
(4.12)

and ωj(Θ) and ϵ(Eγj) give the angular distribution and detection efficiency of

transitions k and i, respectively. This gives the final form of the DDCM lifetime

formulae,

τi(t) = 1/λi =
−Ri(t) +

∑
k αkibkiRk(t)

d
dt
Ri(t)

, (4.13)

or in terms of target-to-degrader distance

τi(x) =
−Ri(x) +

∑
k αkibkiRk(x)

d
dx
Ri(x)

· 1

⟨v⟩
(4.14)

where ⟨v⟩ is the velocity of the fully shifted recoils.

All values in the numerator of equation 4.14 are experimentally accessible. How-

ever, the differential of the decay curve d
dt
Ri(x) cannot be directly measured using

a two foil plunger. The standard procedure is then to fit an analytical function
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Figure 4.4: A schematic of the quantities δRi(x) = −Ri(x)+
∑

k αkibkiRk(x)
and d/dtRi(x) from equation 4.14, based on Ref [99]. The red dashed lines
mark the region of sensitivity (R.O.S) where the percentage error on δRi(x)
and d/dtRi(x) is smallest.

to the experimental values Ri(x) found at several target-to-stopper distances and

to take the derivative of the fitted function as the denominator. The same re-

lationship in equation 4.14 holds whether intensities of fully shifted or degraded

peaks are used to construct the decay curve.

The lifetime of state i can be calculated at any distance where Ri and Rk are

calculated from the values δRi(x) = −Ri(x)+
∑

k αkibkiRk(x) and d/dtRi(x). The

error on τ(i) will then result from the percentage error on δRi(x) and d/dtRi(x).

As the absolute error on the experimental measurement is approximately constant

across all distances, values of τ measured in the range of distances over which

there is both a maximum value of Ri(x) and d/dtRi(x) will have smaller errors.

This range of distances is known as the region of sensitivity, and is shown in the

schematic diagram in Fig. 4.4
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Figure 4.5: The mean lifetime τ(i) of state i calculated using the DDCM.
The lines denoted by (i) shows a case where feeding from a state is not included
among actual feeding levels while case (iii) shows the incorrect inclusion of a
feeding state with a longer lifetime than the average feeding timing of state i.
Case (ii) shows the ideal case when τ(i) is constant and all feeding is correctly
considered. Panels (a) and (b) show the cases where the feeding lifetime is
considered, respectively, to be longer and shorter than the lifetime of the state
i. Based on a Figure in Ref. [99].

The differential decay curve method also allows the easy identification of system-

atic errors in the assumed behaviour of the transitions populating i. Figure 4.5

shows different relationships between the lifetime of the state of interest i and

target-to-degrader distance. As τi should be independent of target-to-degrader

distance the ideal case is that displayed for case (ii) in the figure. Curve (i)

indicates that there is an additional feeding level which has not been properly

considered in the analysis, so the value of δRi(x) is constantly higher than the

correct value of τ . Conversely, curve (iii) indicates that a feeding level with a life-

time greater than the actual mean lifetime of the feeding states has been wrongly

included in the analysis.

The presence of unobserved side-feeding can be identified in the first instance
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from a difference in intensity of the populating and depopulating transitions of

the state of interest. The timing behaviour of any unobserved side-feeding can

be estimated by fitting a function F c
ij to the variation of τi with distance where

F c
ij =

τi − (bij
∑

k ckexp(−t/τ
f
k )

d
dt
Rij

, (4.15)

where ck and τ fk are the intensities and lifetimes of the unobserved side-feeding,

which can be extracted using this fit.

Alternatively, if there is no sensitivity of τ(i) to target-to-degrader distance, x,

or flight time, τ , it is commonly assumed that the timing behaviour of any side-

feeding is the same as the average timing behaviour of the population or depop-

ulation of the state of interest. This assumption is likely to be valid if there

are no observed significant structural changes of the nucleus above the level of

interest [99]. In this case, the side-feeding may be treated by multiplying the

decay curve of the populating transitions Rk by a coefficient C = Ik/Ii in the

numerator of equation 4.14, where Ik and Ii are the total intensities of the states

which populate and depopulate the state of interest.

4.3 Tagging Techniques

The TDR system allows the correlation of events detected in GREAT with those

detected in JUROGAM-II. Due to the high level of background events at the

target position, the correlation of events detected in JUROGAM-II with recoils

and recoil decays at the focal plane is needed to produce clean prompt γ-ray

spectra. The production of both recoil-tagged and recoil-proton-tagged spectra

is discussed below.

4.3.1 Recoil Tagging

In the experiment described in this work, the 58Ni(58Ni,p2n) fusion-evaporation

reaction was used to produce 113Cs along with other reaction products with sim-

ilar masses. As well as the desired fusion-evaporation products, some of the
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beam impinging on the target was scattered without forming compound nuclei

and some beam particles formed fusion-evaporation products through reactions

with the degrader foil of DPUNS. In order to provide clean prompt γ-ray spectra,

recoil-tagging was implemented to ensure that all γ-ray events were correlated

with the recoiling beam-on-target reaction products. The time of flight through

RITU can be calculated from the recoil velocity measured from the Doppler shift

of γ rays detected at the target position and the known length of RITU. As indi-

vidual detector events are time-stamped and the time of flight through RITU is

known, prompt γ rays can then be correlated with the subsequent implantation

of the γ-ray emitting nuclei in one of the DSSDs of GREAT.

The target recoils detected in GREAT were differentiated from scattered beam

and recoils from beam and degrader reaction products that had transited RITU,

through the imposition of a two-dimensional gating condition on both the time of

flight of particles between the MWPC and the DSSDs and the energy loss in the

MWPC. Beam nuclei have a higher velocity than the fusion-evaporation recoils,

so a time of flight condition can be used to differentiate the scattered beam that

has transited through RITU from the fusion-evaporation recoils. As the degrader

foil has a lower Z number than the target foil, a similar condition can also be

used to eliminate the degrader fusion-evaporation recoils from the recoil tag.

The energy loss of the reaction products in the MWPC can be approximated

using the Bethe-Bloch formula [26]

− dE

dx
=

4π

mec2
.
nZ2

β2
.(
e2

4πϵ0
)2.

[
ln

(
2mec

2β2

I.(1− β2)

)
− β2

]
, (4.16)

where Z is the charge of the reaction product, β = v
c
where v is the velocity

of the recoils entering the MWPC, ϵ0 is the permittivity of free space, n is the

electron density of the gas and I describes a mean ionisation potential of the gas.

From this formula it can be seen that the energy loss of a particle in the MWPC

is strongly dependent on its velocity, while all other terms are constant. The

energy loss of a reaction product is then found to be inversely proportional to its

velocity. As such, the energy loss of the fusion-evaporation recoils from the beam

on target reactions will be higher than that from the beam on degrader reaction

products, which in turn will have a higher energy loss than the scattered beam.
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Using these facts, a polygonal 2-D coincidence condition or “gate” could be placed

over the distinct area corresponding to the higher energy loss and longer time of

flight in the histogram shown in Fig. 4.6. All prompt γ rays included in recoil-

tagged spectra had to be detected in coincidence with these events. Note that in

Fig. 4.6 the time of flight decreases versus channel number.
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Figure 4.6: The two-dimensional histogram of energy loss in the MWPC
versus time of flight between the MWPC and DSSDs used to impose the recoil-
tagging gate used during the analysis. Events included in the recoil gate are
surrounded by the green line in the figure. The sharper peak to the right of
the highlighted area corresponds to reaction products from beam-on-degrader
reactions as well as scattered beam products. The time of flight decreases with
increasing channel number.

4.3.2 Proton Tagging

113Cs has a very low production cross section of ∼ 30 µb compared to the main

channels of the fusion-evaporation reaction listed in Section 5.2. Therefore, a

higher degree of selectivity than recoil-tagging was needed to observe its prompt

γ rays over those of the main channels in the reaction. This selectivity was

provided by a two-dimensional energy and decay time gate on the proton-decay

of 113Cs. Decay events were defined as an event which was in anti-coincidence
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with an MWPC signal, detected in a pixel of the DSSD, subsequent to a recoil

implant in the same pixel. The recoil in this case was defined by a DSSD signal

in delayed coincidence with a JUROGAM-II signal. A 2-D histogram of energy

versus decay time was created in order to identify decay products in the DSSD.

The decay time was defined as the difference in time between the detection of a

recoil and a subsequent decay event, while the energy simply corresponds to the

energy of the decay event detected in the DSSD. The two-dimensional histogram

is shown in Fig. 4.7 and shows the two-dimensional gate on the protons emitted

by 113Cs. This encompasses a time range of 10-200 µs and an energy range of

850-1030 keV, comprehensively covering the established decay properties of 113Cs

of 969(8) keV and 17.1(2) µs [12].

0 1000 2000 3000 4000 5000

0

200

400

T
im

e
(µ
s)

0

100

200

300

400

500

600

700

Counts

Energy (keV)

Figure 4.7: The two-dimensional histogram of energy vs decay time of DSSD
events detected in anti-coincidence with an MWPC signal. The area corre-
sponding to 113Cs protons is shown enclosed by the red line and corresponds
to an energy range of 850-1030 keV and a time range of 10-200 µs.

4.4 Data Correction

In order to form the accurate recoil-tagged and proton-tagged γ-ray spectra used

to analyse the collected data, it was first necessary to apply a number of correc-

tions to the different detector events. These corrections are detailed below.
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4.4.1 Energy Calibration

In the experiment described in this work, a variety of different sources were used

to calibrate each individual detector to ensure a well defined relationship between

the channel number recorded by the ADCs and the actual energy of the detected

decays. Accurate calibrations were also required in order to gain match individual

detectors to ensure well defined peaks in spectra formed from the output of more

than one detector. Germanium detectors were calibrated using mixed 133Ba and
152Eu sources while conversion electrons from 133Ba and a triple-α, mixed 239Pu-
241Am-244Cm source was used to calibrate the individual strips of the DSSD and

the pin diodes. Calibration spectra were formed for each individual detector

output. The centroids and intensities of the observed γ-ray, electron and α-

particle peaks were then extracted using Gaussian fits. To identify the peaks in

each spectrum, the channel number and intensity of the fitted peaks were then

compared with peak energies and relative intensities from Refs. [100–102]. A

calibration relating channel number to energy could then be made, taking the

form of a quadratic polynomial

E = a+ bx+ cx2, (4.17)

where x is the channel number, E the correct peak energy and a, b and c the

calibration coefficients. The c coefficient was found to be small for the germanium

detectors (of the order 10−8) but there was found to be significant non-linearity

in the lower energy regions of the DSSD strips, as is discussed in Section 5.3.

Examples of germanium detector and DSSD strip calibration spectra are shown

in Fig. 4.8.

4.4.2 Efficiency Correction

The measured intensities of the 113Cs γ-ray transitions had to be corrected to

compensate for the efficiencies of the JUROGAM-II detectors at different ener-

gies. Data were collected at the start and end of the experiment detailed in this

work using a mixed 152Eu and 133Ba source. Efficiency corrections were under-

taken for the individual JUROGAM-II rings as well as the entirety of the array.
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Figure 4.8: (a) Example germanium detector calibration spectrum of a
JUROGAM-II clover detector crystal exposed to a mixed 152Eu and 133Ba
source. Also shown is a DSSD strip calibration spectrum focussed on (b) the
low-energy range showing internal conversion electrons from a 133Ba source
and (c) the high-energy range showing alpha particles from a 239Pu, 241Am
and 244Cm.

The γ-ray intensities of the photopeaks from the 152Eu and 133Ba sources were

recorded and compared to the known intensities from Refs. [100, 103]. The varia-

tion of the ratio of the measured and reference intensities versus energy was then

fitted with a function of the form

η = exp[((A+Bx+ Cx2)−G + (D + Ey + Fy2)−G)]−
1
G , (4.18)

where η is the relative efficiency at energy E, which is in keV, x = log(E/100)

and y = log(E/1000). The A, B and C coefficients describe the detector response

at low energies while the D, E and F coefficients describe the detector behaviour

at high energies. The G coefficient defines the gradual turning point between the

two regions. The efficiency of Ring 2 (θ = 133.6◦) of JUROGAM-II versus energy

is shown in Fig. 4.9, fitted by the function in equation 4.18.
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Figure 4.9: The relative efficiency versus energy of the EUROGAM phase-1
type detectors in Ring 2 of the JUROGAM-II array.

4.4.3 Add-back

Add-back is the process of reconstructing γ-ray decays which have been Compton

scattered between more than one crystal of a segmented detector. Add-back

was applied to the JUROGAM-II Clover detector signals in this work. If two

signals were detected within 10 ns in adjacent crystals then a single event was

constructed consisting of the summed energies of the individual signals. Due to

the geometry of the four crystals diagonal correlations were not used, as there is

a low probability of a γ ray scattering directly between diagonal crystals. These

events also fall under the veto of the BGO shields surrounding each detector. For

cases where γ rays were detected in a crystal but simultaneously detected in the

BGO shield, the event was vetoed. This reduced the Compton background in

the germanium detector spectra. The common outcomes for a γ ray entering a

clover germanium detector are shown schematically in Fig. 4.10.
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(a) (b)

(c)

Figure 4.10: Schematic diagram of the four crystals of a clover germanium
detector surrounded by a BGO shield and the most common γ-ray interactions
with the detector. (a) The γ-ray incident on the detector is totally absorbed
in the first crystal it enters. (b) The add-back case where the γ-ray Compton
scatters from the first crystal into an adjacent crystal where the scattered γ
ray is absorbed, the energy signals from the adjacent crystals are summed to
provide the correct energy for the incident γ ray. (c) The BGO veto case, where
the incident γ ray is scattered out of the detector and is then detected in the
BGO shield. The BGO signal vetoes coincident signals from the germanium
detector.

4.4.4 Doppler Correction and Recoil Velocity

The energies of γ rays emitted by nuclei recoiling from the target foil are shifted

by an amount dependent on the recoil velocity. The velocity of the recoiling

nuclei must be known in order to correct for the Doppler-shift and create γ-ray

spectra with peaks at the correct energies. Additionally, the velocity must be

well known to accurately calculate the lifetime of excited nuclear states using the

DDCM. The velocity of the recoils is calculated from the observed Doppler Shift

of known γ-ray energies given by

E = E0(1 + β cos θ), (4.19)

where E is the Doppler-shifted energy of the γ ray, E0 is the true energy of the

emitted γ ray, β is the velocity of the recoils as a fraction of the speed of light

and θ is the angle to the direction of travel at which the γ ray is emitted. This
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relationship holds for recoil velocities which are a small fraction of the speed of

light.

The different rings of JUROGAM-II have well-defined angles, θ, relative to the

beam axis. As such, the shift in observed γ-ray energy as a function of θ can be

used to extract the velocity of the recoils using equation 4.19, if the unshifted γ-

ray energies are known. In this work different 113Cs proton-tagged, JUROGAM-II

ring spectra were created with no Doppler correction applied. The data in these

spectra were taken at a long target-to-degrader distance of 3000 µm to ensure

that each transition had only a fully shifted component. The 166-, 384-, 596-,

658- and 719 keV transitions were identified from their relative intensities [12]

and the variation in position of the transition centroids in each of the rings were

then separately plotted as a function of cos(θ). Linear fits to the variation of

centroid position were then used to extract the velocity of the fully shifted recoils

for each transition as shown in Fig. 4.19. The final velocity of β=0.038 (2) was

then taken from an average of the individual velocities listed in Table 4.1. This

velocity was subsequently used to apply a Doppler correction to all γ-ray spectra

shown in Chapter 5 used during the analysis.

Transition Energy (keV) χ2 v/c
166.3(2) 0.22 0.0334(11)
383.9(2) 2.32 0.0392(15)
596.2(2) 3.09 0.0393(22)
658.4(4) 0.10 0.0375(6)
718.7(4) 4.50 0.0427(20)

Weighted Average 0.0384(24)

Table 4.1: Recoil velocities calculated from the variation of energy versus
detector angle for Doppler-shifted 113Cs transitions. The velocity used to apply
a Doppler correction to the proton-tagged γ-ray spectra was taken from a
weighted average of these values.

4.4.5 Doppler Broadening

The widths of observed γ rays emitted from recoils are affected by the recoil

velocity. This is due to the finite opening angle of the detectors, with respect

to the beam axis. This finite angle effectively allows a range of Doppler shifted

energies to be detected in the same detector, resulting in a broader final energy
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Figure 4.11: The linear fits to Doppler-shifted energy versus cos(θ), where θ
is the angle of the different JUROGAM-II detectors to the beam axis, for the
(a) 166-, (b) 384- , (c) 596-, (d) 658- and (e) 719-keV 113Cs transitions used
to extract the fully shifted recoil velocities listed in Table 4.1.

signal. The amount of Doppler broadening can be derived from the differential

of equation 4.19 with respect to the angle to the beam axis

∆E = ∆θβsinθ, (4.20)

where all symbols are the same as in equation 4.19, ∆E is the amount of Doppler

broadening and ∆θ is the opening angle of the detector. Detectors at θ=90◦ to

the beam axis are affected more by Doppler broadening. In JUROGAM-II this

is offset somewhat by having the segmented clover detectors at the angles about

90◦. The greater granularity of the clover detectors means that the acceptance

angle is reduced to the acceptance angle of one crystal, while the detector as a

whole still covers a large area [104]. This is shown schematically in Fig. 4.12.

The acceptance angle of the individual clover detector crystals at angles to the
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Figure 4.12: Schematic diagram adapted from Ref. [106] showing the
Doppler broadening effect on γ rays detected by a clover germanium detec-
tor at an angle, θ, to the beam axis. The acceptance angle of the individual
crystals, dθ, is shown to be smaller than would be expected for an unsegmented
detector.

beam axis of 75◦ and 105◦ is then ∆θ ∼ 5◦ while the acceptance angle for the

phase 1 detectors at angles of 158◦ and 134◦ is ∆θ ∼ 9◦.

In some γ-ray spectra used during the work presented in this thesis, the width of

γ-ray peaks could not be directly measured due to the low statistics present in the

spectra. As the inherent resolution of the germanium detector is approximately

constant in the hundreds of keV range [105], the difference in width between two

γ-ray peaks was dominated by the difference in Doppler broadening. Knowing

the difference in Doppler broadening at different energies allows the width of low

statistics peaks to be calculated using a peak of measurable width and similar

energy. This process is described further in Section 5.6.



Chapter 5

Results

The lifetime of the (11/2+) state in 113Cs was measured using the DPUNS plunger

device [21] in a fusion-evaporation experiment at the University of Jyväskylä.

Recoil-decay tagging was used to create prompt 113Cs proton-tagged γ-ray spec-

tra, for each plunger target-to-degrader distance. The γ rays in these spectra were

correlated with fusion-evaporation recoils arriving at the focal plane and protons

emitted from 113Cs, which were identified from their distinct decay energies and

half-lives. The spectra showed the changing relative intensity of the decay of the

(11/2+) state before and after the degrader foil of the plunger, as a function of

target-to-degrader distance. Gaussian fits were used to extract the intensities of

the two photopeaks, corresponding to the decay of the (11/2+) state before and

after the degrader foil. The extracted intensities were normalised and used to cal-

culate the lifetime of the (11/2+) state within the framework of the Differential

Decay Curve Method [99]. The conditions used to construct the proton-tagged

spectra, the extraction and subsequent normalisation of the photopeak intensities

and the calculation of the lifetime of the (11/2+) state lifetime are described in

more detail in this chapter. The identification of other decay products created

by the fusion-evaporation reaction is also covered, as well as the calculation of a

limit on the lifetime of the (15/2+) state and the energy and half-life of proton

emission from 113Cs.

105
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5.1 Experimental Setup

This section details the specific experimental setup used for the 113Cs experiment

at the Accelerator Laboratory of the University of Jyväskylä. The synthesis and

excitation of 113Cs was achieved by means of a fusion-evaporation reaction. A

4-pnA beam of 58Ni with charge state 8+ was accelerated by the K-130 cyclotron

to an energy of 230-MeV and impinged on a 1.1 µg/cm2 58Ni target mounted

on the DPUNS plunger device. The beam energy was chosen based on Refs.

[8, 9] to provide the maximum cross section for the creation of 113Cs from the
58Ni(58Ni, p2n) reaction. Estimates for the cross section varied from 5-30 µb

[12, 22]. In order to provide the two different recoil velocity regimes needed for

the analysis, a 1.5 µg/cm2 natural degrader foil was also mounted on DPUNS to

slow down the compound nuclei recoiling from the target.

The JUROGAM-II HPGe array surrounded the target position. During the ex-

periment the array consisted of 14 phase 1 detectors, with 5 placed in Ring 1 and

9 placed in Ring 2, while there were also 12 clover detectors in each of Rings 3 and

4. The target chamber shared the same helium gas environment of RITU. The

gas pressure was adjusted in tandem with the fields generated by the magnets

of RITU in order to provide the maximum transmission of the recoiling nuclei

and minimum transmission of beam products to the GREAT focal plane. The

optimum helium pressure used during the experiment was found to be 1.2 mbar,

while the field of the first quadrupole magnet was set at 449 mT, the first dipole

magnet at 492 mT and the final two quadrupole magnets at 362 mT and 392 mT,

respectively. The GREAT array consisted of the full complement of detectors,

as described in Section 3.5. The rate at which recoils implanted in the DSSDs

throughout the experiment was approximately ∼8.5 kHz, while the rate at which

protons from 113Cs were detected was ∼0.13 Hz. Typical rates for each detector

are listed in Table 5.1.

5.2 Reaction Products at the Target Position

The main channels from the fusion-evaporation reaction used during the experi-

ment were identified using a recoil-tagged prompt γ−γ matrix. This matrix was

created in grain, with the condition that all events had to be correlated with a
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Detector Rate (kHz)
JUROGAM-II Phase-1 13
JUROGAM-II Clovers 27

GREAT planar detector strips 1.5
Top-down oriented GREAT clover detector 5
Side-ward oriented GREAT clover detectors 1.6

MWPC 230
Pins 6

DSSD y-strips 9
DSSD x-strips 11.5

Recoils 8.5

Table 5.1: The event rates for the different detectors in the JUROGAM-
RITU-GREAT setup used during the experiment.

recoil implant in the DSSDs. The recoils were differentiated from scattered beam

products through the imposition of a two-dimensional gate on the energy-loss of

events in the MWPC and the time of flight between the MWPC and DSSD, as de-

scribed in Subsection 4.3.1. Prompt γ-ray events included in the matrix also had

to be detected within 10 ns of at least one other prompt γ ray. By setting gates

on γ-ray energies in this matrix and observing which other transition energies

were detected in coincidence, cascades of coincident γ-rays could be identified.

The vast majority of these γ-ray cascades have been previously observed and

attributed to the de-excitation of a particular nucleus. The efficiency-corrected

γ-ray intensities were then used to give an estimate of the relative intensity of

each reaction product.

The chosen beam energy was important to ensure the maximum cross section for

the production of 113Cs nuclei in the 58Ni+58Ni fusion evaporation reaction. The

main channels of the 58Ni+58Ni reaction for different beam energies are shown

in the spectra below to demonstrate the differences in relative production cross-

section of the main reaction products with changing beam energy. The main

reaction channels for beam energies of 210-, 230- and 250-MeV are shown in Fig.

5.2. A more comprehensive list of the different reaction products is shown in

Table 5.2.

Projections from the JUROGAM II recoil-tagged γ− γ matrices used to identify

the main reaction products for each beam energy are shown in Fig. 5.1. The 210-

and 250-MeV beam-energy reactions were taken from an experiment undertaken

in 2012 using the same experimental setup as that used for the 230-MeV data.
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Figure 5.1: Projections from the Doppler-corrected recoil-tagged γ-γ matri-
ces used to identify the main reaction products from the 58Ni+58Ni fusion-
evaporation reaction at energies of (a) 210 MeV, (b) 230 MeV and (c) 250
MeV. Due to de-focussing of the beam for the 210- and 250-MeV beam en-
ergies, a number of reaction products are present from beam on target frame
reactions. These 58Ni+Al, A ∼ 80 reaction products are also marked in panels
(a) and (c) of the figure.

During this experiment the beam was unfocused or misaligned for a period, re-

sulting in reactions between the aluminium frame of the plunger and the 58Ni

beam. This resulted in many reaction products with masses of A ∼ 80. The

γ rays emitted by these lower-mass fusion evaporation recoils were much more

intense than those from the beam-on-target recoils, as shown in Fig. 5.1. Due

to these high intensities, the mass A ∼ 80 reaction products could not all be re-

moved before reaching the focal plane or entirely excluded from the recoil-tagging

gate.
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Figure 5.2: The main reaction products from the 58Ni+58Ni fusion-
evaporation reaction at beam energies of (a) 210 MeV, (b) 230 MeV and (c)
250 MeV.
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Beam Energy Exit Channel Relative Intensity (%)
210 MeV 113I 71

112Te 12
110Te 8
114Xe 8
113Xe 2

230 MeV 113I 54
112Te 35
110Te 7
114Xe 4
112I 1

250 MeV 112Te 63
113I 20
112I 6

111Te 4
114Xe 3
109Sb 3
110Te 1

Table 5.2: The main reaction channels from the 58Ni+58Ni reaction at dif-
ferent beam energies of 210-, 230- and 250-MeV.

5.3 Reaction Products at the Focal Plane

The different decay products detected in the DSSDs, as shown in Fig. 5.3 were

variously identified from their energies, decay times, prompt γ-ray coincidences

and predicted cross sections. The protons emitted by the decay of 113Cs were

identified in Fig. 5.3 (a) from both the known decay energy of Ep = 969(8)

keV and half-life T1/2 = 17.1(2) µs [12]. The 113Cs proton-tagging gate is shown

enclosed by the red line in Fig. 5.3 and covers an energy range of 850-1030 keV

and a time range of 10-200µs, encompassing the known energy and decay lifetime.

These ranges were used to not only visually encompass all events corresponding to
113Cs decay shown in Fig. 5.3 (a), but to also ensure that no other decay products

were erroneously included in the gate. The low background in the DSSD at ∼ 1

MeV meant that events detected within the correct energy range at several half-

lives were still most likely to have come from the decay of 113Cs. Proton-tagged

prompt γ-ray spectra were subsequently created, as shown in Section 5.5, and

were found to only contain γ-ray transitions from 113Cs [12], showing that the

proton-tagging gate used did not contain any contaminants.

Approximately 500 protons emitted by 109I and 112Cs were detected in the DSSDs.

From a Gaussian fit, the energy of the peak to the left of the 113Cs peak in the
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Figure 5.3: (a) Energy versus decay time of decay products detected in the
same pixel as a prior recoil implant in the DSSDs of GREAT. (b) The energy
projection of the two-dimensional histogram shown in (a). Identified decay
products are also listed.

spectrum shown in Fig. 5.3 (b) was found to have an energy of 813(4) keV. This

value is consistent with the 813(3) keV proton energy of 109I [107] and also the

810(5) keV proton energy of 112Cs [55]. Setting a gate on the energy of the 813-

keV peak in Fig. 5.3 (a) and projecting the resultant timing spectrum allowed the

half-life of the decays in the peak to be measured. Fitting a decay curve to the

timing spectrum shown in Fig. 5.4 returns a half-life value for the 813-keV decay

of 158(10) µs. This value is neither consistent with the known 103-µs half-life of
109I [108] or with the 490 µs half-life of 112Cs [55], suggesting that the 813-keV

peak results from the decay of both nuclei. However, due to the low statistics

available and the consistent energies of protons emitted from 112Cs and 109I, the

relative quantity of each nuclei cannot be determined.

The two broad peaks at the lower end of the energy spectrum in Fig. 5.3 (b)
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Figure 5.4: The timing spectrum of the 813-keV decays detected in the DSSD
in anti-coincidence with an MWPC signal. Using this figure a half-life value
for the decays of 158(10) µs was extracted. This value is within 5σ of the 103µs
half-life of the 813-keV protons emitted by 109I and is over 6σ away from the
490 µs half-life of the 810-keV protons emitted by 112Cs. This indicates that
the decays observed at 813-keV in the DSSD originate from protons emitted
by both 109I and 112Cs.

were identified as internal conversion electrons from the decay of the low-lying

(11/2−) isomeric state in 113Xe and the (7/2+) state between the isomer and

the ground state [73]. Due to the high statistics of the broad peaks, recoil-

decay-tagged prompt γ-ray spectra could be created to identify the decay events

from the corresponding characteristic prompt γ-ray spectra. Four separate RDT

gates with the same time ranges of ∼10-40 µs and energy gates of similar ∼ 40

keV widths but incrementally higher energies were initially used to create four

different prompt γ-ray spectra. These spectra were used to deduce whether all

decay products in the broad peaks were from the same nucleus or whether there

was more than one decay product, which would be evidenced by individual peaks

in the separate spectra having different relative intensities. All four gates returned

spectra containing the same energy γ-ray events with the same relative intensities,

despite some differences in the statistics between each spectrum. All identified

prompt γ-rays were from 113Xe [109], the different decay-tagged spectra are shown

in Fig. 5.5.

The fact that all prompt γ-ray transitions in the decay-tagged spectra come from
113Xe strongly indicates that the decay products in the two broad peaks also result

from 113Xe. The decay of 113Xe proceeds by means of β+-decay, which can be de-

tected by the DSSDs. Additionally, 113Xe also has an isomeric state depopulated
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Figure 5.5: Individual Doppler-corrected recoil-decay tagged prompt γ-ray
spectra with the same time gating condition but different energy gates of sim-
ilar widths encompassing the whole range of the two broad, low energy peaks
shown in Fig. 5.3 (a). Panels (a) to (d) show energy tagging gates of increas-
ing energy. All spectra show only 113Xe transitions, indicating the two broad
peaks are due to internal conversion decay of excited states below the low-lying
10-µs isomer in 113Xe [73].

by low energy transitions, which may decay by the emission of internal-conversion

electrons, which can also be detected in the DSSDs. The β+ particles and inter-

nal conversion electrons can be differentiated by their vastly different half-lives

of 2.8 s [110] and 10 µs [73], respectively. Timing spectra for both low-energy

peaks in Fig. 5.3 were formed by setting gates on the energy of each peak and

projecting the resultant timing spectra. These spectra were then converted into

a logarithmic format and the half-lives of each decay were extracted from linear

fits to the variation of the intensity of each peak with time. The timing spectra

and associated fits are shown in Fig. 5.6.

The half-lives extracted from both spectra are consistent with the measured

10(4) µs half-life of the isomeric (11/2+) state in 113Xe as measured in Ref. [73].
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the 10(4) µs isomeric decay of the 11/2− state in 113Xe, indicating that these
features result from the internal conversion decay of the isomeric state and
7/2+ state in 113Xe.

This indicates that the two broad peaks result from internal conversion electrons

from decays from the (11/2+) or lower-energy states. The fact that there are two

transitions between the isomer and the ground state of 113Xe, which can account

for the fact that there are two broad peaks, also lends weight to the assignment

of these decays. The fact that there are counts visible over a large timing range

at the energy of the two peaks indicates that the β+ decays may also be detected

in the DSSDs within this energy range. It should be noted that the 113Xe peaks

have a much broader profile than the internal conversion electron peaks in the

source spectrum shown in Fig. 4.8. Additionally, the energy of the two peaks

does not correspond to the known γ-ray energies of the transitions depopulating

the (7/2+) state or the x-ray energies of 113Xe. This indicates that the DSSDs

may be very non-linear at low energies. It should be noted that the 133Ba energies

were found to be accurate in the calibrated DSSD and that the higher energies
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of all other decay products were found to be consistent with known values.

The broad peak in the spectrum around ∼3 MeV has the characteristic shape

and typical energy range of β-delayed proton decays [111]. The nuclei 112I and
113Xe are tentatively assigned to the β-delayed proton events, as the limits of the

distribution in Fig. 5.3 are consistent with proton energies detected from these

nuclei of ∼2.5 MeV-5 MeV [111]. Additionally, 112I is the only β-delayed proton

emitter for which γ-ray transitions have been observed at the target position,

while 113Xe is the only nucleus that has γ-ray transitions detected at the focal

plane. This indicates that 112I and 113Xe are the most intensely populated reaction

channels, which may yield β-delayed proton emission and that detected β-delayed

protons are from these nuclei. The 112I and 113Xe half-lives of 3.4 s and 2.7s,

respectively, are too long to be measured to aid the identification of the decays.

This time encompasses several beam pulses from the cyclotron [76] so there is a

strong likelihood that a decay event may be correlated with the wrong recoil and

hence an incorrect lifetime may be measured. Clean recoil-decay-tagged spectra

could then not be created to identify decay products from their prompt γ rays

as was done for the internal conversion decays of 113Xe.

An additional narrower peak, which lies on the β-delayed proton spectrum, has

been measured to have an energy of 3898(3) keV. This energy is consistent within

4σ of the published value of 3862(10)-keV [112] for α particles emitted by the

decay of 107Te. The fusion evaporation code PACE [113] predicts that 107Te will

be produced with a cross section of 0.39 mb by the 58Ni+58Ni reaction at 230

MeV. As PACE gives a cross-section for 113Cs of 0.36 mb, which is abundant in

the DSSD spectrum it was considered to be possible for α-particles from similar

cross-section reaction products to also be detected. Therefore, the 3898-keV peak

is tentatively assigned to result from the α decay of 107Te. Similarly to the β-

delayed proton decays, it was not possible to further characterise the decay events

at 3898 keV through γ-ray coincidences and lifetime measurements, due to the

long half-life and low intensity of the decay.
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5.4 Lifetime and Energy of Proton Emission from

113Cs

The lifetime and energy of ground-state proton emission from 113Cs were mea-

sured from the 2D histogram shown in Fig. 5.3. The energy was measured by

applying a Gaussian fit to the peak corresponding to the 113Cs proton emission

in the energy projection as shown in Fig. 5.3 (b). The centroid of the peak

was found to be 950(8) keV. This energy is consistent within 3σ of the previous

measurements of the proton energy (in chronological order) of 980(80) keV [9],

974(4) keV [114], 959(6) keV [115] and 969(8) keV [12].

A gate was set on the 950-keV proton peak in the 2D histogram and the resultant

timing spectrum was projected. This energy gate on the 113Cs protons had a range

of 880-1010 keV based on the width of the peak in the energy spectrum seen in

Fig. 5.3. The timing spectrum from a background energy gate of 1050-1180

keV was also projected and subtracted from the timing spectrum resultant from

the energy gate on the 113Cs protons. This background subtraction reduced the

number of random timing correlations that were present within the proton energy

gate. A background gate with a higher energy than the proton gate was chosen

so that 113Cs, 112Cs and 109I protons, which escaped from the DSSD and only had

a portion of their energies detected by the DSSD were not favourably background

subtracted. By fitting a decaying exponential function to the number of counts

versus time in the background-subtracted proton-emission timing spectrum, the

lifetime of proton emission from the ground state of 113Cs was found to be τ =

24.4(2) µs. This value is consistent with the known lifetime of τ = 24.7(3) µs

previously measured in Ref. [12]. The variation of proton-emission intensity with

time and the fitted decay curve are shown in Fig. 5.7.

5.5 Construction of Proton-tagged Spectra

To extract the lifetime of an excited state using the DDCM, the variation with

target-to-degrader distance of the intensities of the fully shifted and degraded

components of a γ-ray transition depopulating the state of interest must be
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known. As such, individual γ-ray spectra corresponding to different target-to-

degrader distances were created to show the variation of these component inten-

sities for transitions between excited states in 113Cs.

The (11/2+) excited state was expected to have a measurable lifetime based on

Refs. [13, 116]. As such, the first target-to-degrader distance was chosen based on

a calculation of the (11/2+) state lifetime in 113Cs by Möller and Nix [13, 116] and

the expected fully shifted recoil velocity as calculated from the pace 4 code [113].

The subsequent distances were chosen based on the observed ratio of counts in the

two photopeaks of the 384-keV transition at the first target-to-degrader distance.

More particularly, these distances were chosen in order to provide a range of

target-to-degrader distances over which there is a large variation of intensities

of the fully shifted and degraded photopeaks as required to construct the decay

curve of the (11/2+) state.

Target-to-degrader distances of 135-, 210-, 300-, 590- and 3000-µm were chosen

to form the decay curve of the (11/2+) state. The 300 µm distance was initially

chosen based on the theoretical predictions so that the intensity of the 384-keV

(11/2+) to (7/2+) transition was evenly distributed between its fully shifted and

degraded components. The 135-, 210- and 590-µm distances were chosen to

provide different ratios of fully shifted and degraded intensities, with measurable

intensities in both components. The 3000-µm distance was chosen to provide a
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limit at which all intensity was present in the fully shifted component, to improve

the fit of the decay-curve, which is described in more detail later.

To ensure clean prompt γ-ray spectra for the measurement of the low cross section
113Cs transitions, proton-tagged spectra were created for each target-to-degrader

distance. To ensure the separation of the fully shifted and degraded components

of the 384-keV (11/2+) to (7/2+) transition, only events detected in Ring 2 of

JUROGAM-II were used to fill these spectra. By using detectors from a single

ring of the array with the same polar angle for each detector, the separation

and widths of the two components was constant making the extraction of the

component intensities easier. Ring 2 was chosen over Ring 1 as it contained nine

rather than five detectors. Rings 3 and 4 were not used as, with these rings sub-

tending 90◦, the separation of the fully shifted and degraded components was not

sufficient for simple fitting of the two component intensities. The proton-tagged

JUROGAM-II Ring 2 spectra for the individual target-to-degrader distances are

shown in Fig. 5.8, zoomed in on the (11/2+) to (7/2+) transition.

More target-to-degrader distances were not used due to the low cross-section

of the reaction which restricted the available statistics. Five distances was the

greatest number that could be used while ensuring that the photopeaks of the

384-keV transition had enough counts to be discernibly Gaussian and distinct

from background in the proton-tagged spectra used during the analysis.

In order to verify the cleanliness of the proton-tagged spectra and to observe

any instance of measurable lifetimes evidenced by more than one component per

transition, sum spectra corresponding to all target-to-degrader distances used

were examined. The 384-keV transition proved to be the only transition which

had two photopeaks over the range of target-to-degrader distances used. This

sum spectrum is shown in Fig. 5.9.

The intensities of all observed 113Cs spectra were measured from this spectrum

and are listed in Table 5.3. The intensities have previously been measured in Ref.

[12] and a level scheme constructed. The intensities measured in this work may

imply a different ordering of the transitions but the errors on intensities are all

consistent with those measured in Ref. [12]. The fact that a single projection had

to be used to measure the transitions means that resolving doublets was some-

times problematic. The level scheme of 113Cs built on the basis of the measured



Results 119

0

4

8

12

16

20

0

4

8

12

16

20

0

4

8

376 380 384 388 392 396
Energy (keV)

0

4

8

12

0

4

8

C
ou

nt
s/

ke
V

(b) 210 µm

(c) 300 µm

(d) 590 µm

(e) 3000 µm

384

384

389

384

389

384

389

384

389

(a) 135 µm

Figure 5.8: Doppler-corrected Proton-tagged JUROGAM-II Ring 2 spectra
for the (a) 135- (b) 210- (c) 300- (d) 590- and (e) 3000 µm target-to-degrader
distances focussed on the 384-keV (11/2)+ → (7/2)+ transition in 113Cs. The
fits used to extract the intensity of the fully shifted and degraded components
of the transition are shown by the green and red lines, respectively.



Results 120

200 400 600 800 1000 1200
Energy (keV)

0

10

20

30

40

50

60

C
ou

nt
s/

ke
V 372 376 380 384 388 392 396 400

0

20

40

60
74 92

384

50
8,

 5
11

59
6

61
0

61
6,

 6
18

65
8

73
5,

 7
37

71
7

81
1,

 8
14

89
7

74
5 81

9

16
7

389

384

389

Figure 5.9: Doppler-corrected Proton-tagged Ring 2 sum spectrum, consist-
ing of all target-to-degrader distances used, showing the different transitions
in 113Cs. The (11/2+) to (7/2+) transition proved to be the only transition
with two obviously measurable components. These are shown in the insert.

intensities has, therefore, not been reordered from that shown in Ref. [12]. The

level scheme is shown in Fig. 5.10

5.6 Extraction of Gamma-ray Transition Inten-

sities

As can be seen from Fig. 5.8 the Gaussian profile of the peaks is not obvious due

to the low number of counts in each photopeak. However, from the sum spectrum

shown in Fig. 5.9 and the shape of peaks in Fig. 5.1 it becomes apparent that the

photopeaks assume this profile when there are sufficient statistics available. As

such to extract the intensities of the two photopeaks in the individual distance

spectra, Gaussian fits were applied to the photopeaks using the Radware gf3

software [117]. The widths and centroids of the photopeaks were held constant

during these fits.
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Energy (keV) IS → ID Relative Intensity
73.7(1) (5/2+)1 → (3/2+) 35(4)
92.2(1) (7/2+) → (5/2+)1 52(4)
167.4(1) (5/2+)2 → (3/2+) 17(3)
384.1(1) (11/2+) → (7/2+) 100(7)
508.0(5) ∗ (27/2+) → (23/2+) 41(6)
510.7(3) ∗ (9/2+) → (5/2+)2 82(8)
595.9(1) (15/2+) → (11/2+) 76(7)
610.0(4) ∗ (13/2+) → (9/2+) 36(3)
616.0(4) ∗ (31/2+) → (27/2+) 24(6)
617.9(6) ∗ (29/2+) → (25/2+) 26(6)
657.6(1) (25/2+) → (21/2+) 41(5)
717.2(3) (17/2+) → (13/2+) 39(4)
735.1(6) ∗ (33/2+) → (29/2+) 23(5)
737.1(4) ∗ (19/2+) → (15/2+) 37(6)
744.9(6) (35/2+) → (31/2+) 19 (3)
811.2(4) ∗ (21/2+) → (17/2+) 36(4)
813.7(5) ∗ (23/2+) → (19/2+) 31(4)
819.2(9) ∗ (39/2+) → (35/2+) 19(5)
897.3(5) (43/2+) → (39/2+) 9(2)

Table 5.3: The fitted energies and relative intensities of the 113Cs transi-
tions seen in Fig. 5.9. The energies marked by stars were from transitions
which formed doublets and could not have centroids reliably extracted. These
energies are instead taken from Ref. [12].

In order to extract the width of the fully shifted photopeak of the (11/2+) to

(7/2+) 384-keV transition, a Gaussian fit was first applied to the fully shifted

component visible in the sum spectrum of the individual 590 µm and 3000 µm

spectra shown in Fig. 5.8 (d) and (e). At these distances the degraded component

remained small and did not interfere with the Gaussian fit to the fully shifted

component. The centroid of the fully shifted component could be fixed in this

fit, as the Doppler-corrected centroid is known to be 384 keV.

In order to extract the width of the degraded photopeak its centroid first had

to be extracted. The velocity of the degraded recoils could not be experimen-

tally measured using the same method as was used for the fully shifted recoils

due to the absence of a degraded component for the majority of 113Cs transi-

tions. Additionally, no short target-to-degrader distance was used, so there was

no proton-tagged plunger spectrum with all of the (11/2+) to (7/2+) transition

intensity contained within the degraded peak. A different technique was used

whereby the centroid and width of the degraded peak were extracted from a

Gaussian fit to the degraded component of the (11/2+) to (7/2+) transition in
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the spectrum shown in Fig. 5.9. As the fully shifted and degraded peaks are not

completely separated and slightly overlap, the previously extracted width and

centroid of the fully shifted photopeak were held constant during the fit.

The width and centroid of the fully shifted component of the (15/2+) to (11/2+)

596-keV transition were extracted using the same method as was used for the

fully shifted component of the (11/2+) to (7/2+) transition. The centroid and

width of the degraded component of the 596-keV transition could not be directly

fitted due to the low number of counts in the degraded components and the lack

of a well-defined Gaussian shape. The centroid shift between the fully shifted

and degraded components of the (15/2+) to (11/2+) transition is dependent on

the difference in velocities of the fully shifted and degraded recoils. The ratio

between the centroids of fully shifted and degraded components will be the same

for all transitions as shown by rearranging equation 4.19 to the form

E/E0 = (1 + βcos(θ)). (5.1)

For transitions detected in the same ring of detectors in JUROGAM-II the right-

hand side of equation 5.1 will be constant. The centroid of the degraded compo-

nent of the (15/2+) to (11/2+) transition was then deduced to be 604 keV using

the known centroid of the fully shifted 596-keV component and the ratio between

the fully shifted and degraded centroids of the (11/2+) to (7/2+) transition.

The width of the degraded component of the (15/2+) to (11/2+) transition was

calculated from the increased Doppler broadening relative to the (11/2+) to

(7/2+) transition. The Doppler broadening of 113Cs transition components can

be calculated using equation 4.20. The velocity of the degraded recoils was first

obtained using equation 4.19 and the shift between the degraded and fully shifted

centroids of the (11/2+) to (7/2+) transition . The velocity of the degraded recoils

was found to be βd = 0.018(2).

The Doppler broadening of the degraded components of the (11/2+) to (7/2+)

and (15/2+) to (11/2+) transitions were then calculated using equation 4.20 and

the increase in Doppler broadening between the two components was found from

the difference between the two transitions such that,

∆E604 −∆E389 = (E604 − E389)(βdsin(θ))∆θ, (5.2)
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where, ∆E389 and ∆E604 is the Doppler broadening of the γ rays at energies 389-

and 604-keV, respectively and all other symbols have the same meanings as in

equation 4.20. The inherent resolution of the JUROGAM-II detectors was as-

sumed to be constant between 384-keV and 596-keV, as the germanium detectors

do not typically lose resolution until much higher energies [105]. The inherent

widths of the degraded components of the (11/2+) to (7/2+) and (15/2+) to

(11/2+) transitions could then be thought to be the same and only the increased

Doppler broadening had an effect on the peak widths. Using the measured width

of the degraded component of the (11/2+) to (7/2+) transition and the calcu-

lated Doppler broadening, the width of the degraded component of the (15/2+)

to (11/2+) transition was found to be 5.3 keV using equation 5.2. The centroids

and widths of all components are listed in Table 5.4. By fixing these parame-

ters in the fits using gf3, more accurate intensities could be extracted for all

components.

Transition Component Centroid (keV) Width (keV)
(11/2+) → (7/2+) Fully Shifted 384.1(4) 5.0(6)
(11/2+) → (7/2+) Degraded 388.9(3) 5.0(6)
(15/2+) → (7/2+) Fully Shifted 596.3(5) 5.1(7)
(15/2+) → (11/2+) Degraded 604.2(9) 5.3(6)

Table 5.4: The centroids and widths of the fully shifted and degraded com-
ponents of both the (15/2+) → (11/2+) and (11/2+) → (7/2+) transitions.

5.7 Normalisation of Gamma-ray Transition In-

tensities

The measured component intensities had to be normalised to account for the

different times at which data was collected at each target-to-degrader distance.

There are three methods which may be used to normalise the component inten-

sities for the different distances:

• Normalise the number of counts in each component as a proportion of the

total number of counts in the transition at each target-to-degrader distance
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• Normalise the component intensities to the number of counts in a total

projection spectrum at each target-to-degrader distance

• Normalise the component intensities to the number of counts in one or more

transitions from a reaction product in a total projection spectrum at each

target-to-degrader distance.

The first method removes information on the timing behaviour of states popu-

lating the state of interest. The second method suffers from the fact that the

number of background events detected at the target position will increase as the

experiment progresses. The third method depends on the beam energy being

constant throughout the experiment, as reaction products will be created with

different cross sections for different beam energies. As the beam energy is gen-

erally constant at the University of Jyväskylä, the third method was used to

normalise peak intensities.

The 957-keV peak in the total projection spectrum was used for normalising

the 113Cs peak intensities. This peak corresponds to the transition between an

18+ and a 16+ state in 112Te [118] and was chosen due to its high intensity and

separation from other transitions in the recoil-tagged total projection spectrum

used to measure its intensity. The lifetime of the 957-keV transition is short

enough that its intensity is fully contained within the fully shifted component

at all target-to-degrader distances [74]. Only this single peak was used as it

contained sufficient statistics, such that the error on the intensity was negligible

on its own compared to the intensities of the 113Cs transitions as measured in

the proton-tagged spectra. The difficulty of choosing another clean transition in

the total-projection spectrum was also considered. The intensities of the 957-keV

peak are listed below in Table 5.5.

The 300-µm distance had fewer counts than all but the 3000-µm distance due to

the lower beam current at the start of the experiment of 1.5-3 pnA. Data was

collected at the 3000-µm distance for less time than the other target-to-degrader

distances as this distance was only used to provide an anchor point for the lifetime

fit and the reduction of statistical error was not as important as for the other

distances at which the lifetime of the (11/2+) state was calculated.
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Target-to-Degrader Distance (µm) Counts in the 112Te 957-keV Transition
135 69370(1353)
210 63197(1334)
300 54266(1220)
590 67283(1367)
3000 53299(1366)

Table 5.5: The variation in intensity of the 957-keV 18+ → 16+ transition in
112Te at different target-to-degrader distances. The intensities were extracted
from Recoil-tagged JUROGAM-II Ring 2 spectra at each target-to-degrader
distance and were used to normalise the intensities of 113Cs transitions at each
distance.

5.8 Lifetime of the (15/2+) State in 113Cs

The lifetime of the (15/2+) state could not be measured using the DDCM as the

normalised fully shifted and degraded component intensities of the (15/2+) to

(11/2+) transition did not vary with the target-to-degrader distances used in the

experiment. The (11/2+) state is part of a rotational band structure, the higher

spin levels of which are expected to have short lifetimes. Equation 2.46, which

can be used to estimate the lifetimes of states in Band 1, if 113Cs is treated as a

rigid rotor, gives estimated lifetime values for the (11/2+), (15/2+) and (19/2+)

states of 38.3 ps, 3.6 ps and 1.2 ps, respectively. This calculation used the ground-

state deformation of β2 = 0.21 from Möller and Nix [116] and demonstrates the

expected reduction of decay time with increasing spin in the band.

Fig. 5.11 shows the fits used to extract the intensities of the (15/2+) to (11/2+)

transition components at each target-to-degrader distance. It can be seen that

the 604-keV degraded component of the (15/2+) to (11/2+) transition has a

low intensity for all target-to-degrader distances. Additionally, the degraded

component intensity has no correlation to target-to-degrader distance, as is shown

in Table 5.6.

As the DDCM could not be used, the lifetime of the (15/2+) state was instead

estimated from the normalised fully shifted and degraded counts at the 135-µm

target-to-degrader distance. By treating the lifetimes higher up the rotational

band as being negligible compared to the lifetimes lower down the band, a simple

exponential decay can be used to extract the upper limit of the lifetime of the

(15/2+) state from,
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τ ≤ − x

vln(Id/(Is + Id))
, (5.3)

where Is and Id are the normalised intensities of the fully shifted and degraded

components of the 596-keV transition, v is the velocity of the fully shifted recoils,

x is the target-to-degrader distance and τ is the lifetime of the 15/2+ state.

The experimental number of counts seen in the degraded component of the

(15/2+) to (11/2+) transition at the shorter target-to-degrader distances is far

less than that expected if the (15/2+) state had the lifetime value calculated us-

ing equation 5.3 and the longer distance intensities shown in Table 5.6. However,

if the counts at the 135-µm distance are used to calculate the lifetime, then the

lifetime is short enough that no counts would be expected at the longer target-to-

degrader distances, which is consistent with the experimentally observed counts

within errors. The lifetime of the (15/2+) state calculated in this way is then

τ < 5 ps. This is treated as an upper limit, as longer lifetimes would result in

a number of counts at longer target-to-degrader distances, which are not experi-

mentally observed. Another reason for treating the lifetime as an upper limit is

the lack of treatment of the timing behaviour of the feeding of the (15/2+) state.

This could artificially inflate the lifetime value of the (15/2+) state, as calculated

from equation 5.3.

Target-to-Degrader Distance (µm) IS ID
135 43(7) 4(2)
210 35(6) 2(2)
300 36(7) 1(1)
590 37(6) 0(2)
3000 41(8) 4(2)

Table 5.6: The normalised fully shifted and degraded peak intensities, IS
and ID, of the 596-keV (15/2+) → (11/2+) transition in 113Cs at different
target-to-degrader distances.

5.9 Lifetime of the (11/2+) State in 113Cs

The intensities of the 384-keV transition components were extracted from the
113Cs proton-tagged Ring 2 spectra and normalised as described in Section 5.7.

The normalised component intensities are listed in Table 5.7.
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Figure 5.11: The fits used to extract the intensities of the fully shifted and
degraded components of the 596-keV, (15/2+) →(11/2+) transition in 113Cs.
The panels show proton-tagged JUROGAM-II Ring 2 spectra corresponding
to different target-to-degrader distances of (a) 135-, (b) 210-, (c) 300-, (d) 590-
and (e) 3000-µm. The green fit, corresponds to the fully shifted 596-keV peak,
while the red fit corresponds to the degraded 604-keV peak. The 610-keV
transition in band 2 of 113Cs is also marked.
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Target-to-Degrader Distance (µm) IS ID
135 13(5) 34(6)
210 18(6) 25(6)
300 24(7) 16(6)
590 46(7) 6(5)
3000 52(8) 5(5)

Table 5.7: The normalised fully shifted and degraded peak intensities, IS and
ID, of the 384-keV (11/2+) → (7/2+) transition in 113Cs at different target-
to-degrader distances.

The lifetime of the (11/2+) state was extracted using the Differential Decay Curve

Method (DDCM), described in Section 4.2. Due to the higher error on the in-

tensities of the degraded components of the (11/2+) to (7/2+) transition at the

longer target-to-degrader distances, the variation of the fully shifted component

intensities were used instead of the degraded component intensities. The fully

shifted component form of equation 4.14 was then

τi(x) =
−I384s (x) + αkiI

596
s (x)

d
dx
I384s (x)

· 1

⟨v⟩
(5.4)

where x is the target-to-degrader distance I384s is the intensity of the fully shifted

component of the (11/2+) to (7/2+) transition, I596s is the intensity of the fully

shifted component of the (15/2+) to (11/2+) transition, αki is the ratio of the

intensities of the (11/2+) to (7/2+) and (15/2+) to (11/2+) transitions and ⟨v⟩
is the velocity of the fully shifted recoils.

The α coefficient is a measure of the unobserved side-feeding populating the state

of interest. As the coefficient is a constant, the same value is used to calculate the

lifetime at all target-to-degrader distances. The α coefficient was then calculated

separately at each target-to-degrader distance and an average value was found

and used in equation 5.4. The individual α values are listed in Table 5.8. From

these, the average coefficient was found to be α = 1.17(23). This α coefficient is

consistent with the α = 1.00(6) value calculated from Ref. [12], which implies no

additional side-feeding.

All quantities within equation 5.4 are experimentally measurable with the ex-

ception of the differential of the variation of the 384-keV fully shifted compo-

nent intensity with distance. By fitting a function to the 384-keV transition fully

shifted component intensity and taking its differential the lack of a corresponding
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Target-to-Degrader Distance (µm) α
135 1.01(24)
210 1.14(41)
300 1.05(41)
590 1.41(43)
3000 1.26(40)

Table 5.8: The α coefficients showing the different intensities of the 596- and
384-keV transitions which populate and depopulate the (11/2+) state of 113Cs.

experimental observable can be overcome. To obtain the value of the differential

equation 5.4 can also be rearranged to the form of,

t̃(x) ⟨v⟩ d

dx
I384s (x) = −I384s (x) + αkiI

596
s (x) (5.5)

where t̃ is an initial estimate for τ , known as the taufactor. By simultaneously

fitting a polynomial function f(x), with coefficients a0, a1, ....., an, to the variation

of the fully shifted component intensities and the differential of the same function

to the RHS of equation 5.5, an optimal function describing d
dx
I384s (x) can be found.

In this work the program snapa [119, 120] was used to apply the simultaneous fits.

The fit to the intensity of the fully shifted component of the 384-keV transition

versus distance took the form of two second-order polynomial fits, which were

fitted piecewise to the data. The differentials of the second order polynomials,

multiplied by t̃ and divided by v, were simultaneously used to fit the RHS of

equation 5.5. The χ2 value of the simultaneous fits can be extracted from

χ2 =
∑
i

[(
I384s − f (a0,a1,...,an)(x)

∆I384s

)2

+(
(−I384s (x) + αkiI

596
s (x))− t̃ d

dx
I384s (x)

∆(−I384s (x) + αkiI596s (x))

)2]
.

(5.6)

Assuming that t̃ is constant, equation 5.6 can be solved from the set of linear

equations
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δ

δan
χ2 =

∑
i

[(
I384s − δ

δan
f (a0,a1,...,an)(x)

∆I384s

)2

+(
(−I384s (x) + αkiI

596
s (x))− t̃ d

dx
δ

δan
I384s (x)

∆(−I384s (x) + αkiI596s (x))

)2]
= 0

(5.7)

Using equation 5.7, the parameters of the polynomial fits, a0, a1, ....., an, can be

extracted for a certain value of t̃. By varying t̃, optimum fit parameters may

be extracted which result in a minimum χ2 value, as found from equation 5.6.

The lifetime of the (11/2+) state at each target-to-degrader distance can then be

properly extracted from equation 5.8, which takes the form of

τi(x) =
−I384s (x) + αkiI

596
s (x)

d
dx
f (a0,a1,...,an)

· 1

⟨v⟩
. (5.8)

Using a weighted average of lifetimes measured at each target-to-degrader dis-

tance, a final value for the lifetime of the (11/2+) state could be obtained. The

individual lifetimes used were from the 135-, 210- and 300-µm target-to-degrader

distances. These distances all lay within the region-of-sensitivity, in which the

errors on individual lifetimes were smallest. The weighted average of these indi-

vidual lifetimes gave a final value for the lifetime of the (11/2+) state of 24(6)

ps. The fits used to extract the denominator of equation 5.4 and the individual

target-to-degrader distance lifetimes are shown in Fig. 5.12.

The lifetime values at all distances are approximately constant, as shown in Table

5.9. This behaviour indicates that the decay of the states which feed the (11/2+)

state has been correctly considered; any unobserved side-feeding either has the

same timing behaviour, or proceeds much faster than, the decay of the (15/2+)

state.
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Figure 5.12: Panel (a) shows the lifetimes of the (11/2+) state extracted at
the 135-, 210- and 300-µm target-to-degrader distances, from which a weighted
average was taken to provide the final lifetime value of τ = 24(6) ps. The fits
used to extract the lifetime are shown in panels (b) and (c), see text for details.
The combined χ2 value for both of the fits was found to be 0.242.

Target-to-Degrader Distance (µm) Lifetime, τ (ps)
135 28(9)
210 21(10)
300 21(13)

Weighted av. 24(6)

Table 5.9: The lifetimes of the (11/2+) state in 113Cs extracted for individual
target-to-degrader distances using the DDCM.



Chapter 6

Discussion

6.1 Calculation of the Deformation of 113Cs

Theoretical nonadiabatic quasiparticle model calculations, of the form described

in Subsection 2.6.3, were performed to extract the deformation of 113Cs from the

experimental results. In these calculations, the experimental rotational spectrum

of 112Xe [121] was used as the core to correctly account for any non-rigid rota-

tional behaviour of 113Cs [16, 67]. Wavefunctions extracted from this model were

then fixed and used consistently in both proton emission codes, based on the

approaches discussed in Ref. [16], and standard electromagnetic transition-rate

calculations, based on Ref. [66]. The half-lives for both proton emission and elec-

tromagnetic decays were then predicted using a common set of wavefunctions.

The same wavefunctions were also used to calculate the excitation energies of

excited states in bands 1 and 2 of 113Cs.

6.1.1 Deformation of 113Cs from Energies of Excited States

The excitation energies of band 1 in 113Cs were calculated using nonadiabatic

quasiparticle model wavefunctions and are shown in Fig. 6.1.

133



Discussion 134

0.1 0.15 0.2
Quadrupole Deformation, (β2)

-0.5

0

0.5

1

1.5

2

2.5

E
xc

ita
tio

n 
E

ne
rg

y 
[E

-E
(3

/2
+
)]

 (
M

eV
)

(7/2
+
)

(11/2
+
)

(15/2
+
)

(19/2
+
)

Figure 6.1: Excitation energy of the states in band 1 of 113Cs, relative to the
energy of the K = 3/2+ ground state, as a function of quadrupole deformation.
Solid lines represent the experimental values and dashed lines the theoretical
predictions.

As the K = 3/2+ state is the most likely candidate for the ground state of 113Cs

[12, 14], the excitation energies have been predicted relative to the energy of that

state. The deformation of 113Cs for the lower lying states in the band is shown

to agree with both the deformation predicted in the simpler adiabatic model of

β=0.15-0.2 [14] and the early configuration mixed calculations of Bugrov which

also predicted a deformation of β ∼ 0.2 [17]. However, the deformation appears

to reduce, based on the intersection of experimental and theoretical values as

the rotational frequency of the nucleus increases. A contrary behaviour is seen

for band 2, where the intersection between theory and experiment occurs at

increasing deformation as shown in Fig. 6.2.

These discrepancies may be justified based on Fig. 6.3, taken from Ref. [12],

which shows the aligned angular momentum of the states in band 1 and band 2
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Figure 6.2: Excitation energy of the states in band 2 of 113Cs, relative to the
energy of the K = 3/2+ ground state, as a function of quadrupole deformation.
Solid lines represent the experimental values and dashed lines the theoretical
predictions.

versus the rotational frequency of the nucleus. The back-bending effects in both

bands shown at ~ω ∼0.4 MeV are calculated to occur due to the breaking of

neutron pairs in the h11/2 shell [12]. The similarity of the alignment behaviour

of both bands lends weight to this assignment for both structures. This change

in the neutron configuration then changes the experimental excitation energies

relative to the theoretical values, which do not include the effect of the Coriolis

force on the neutrons.
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Figure 6.3: Figure taken from Ref. [12] showing the aligned angular momen-
tum versus rotational frequency of bands 1 and 2 in 113Cs. The back-bend seen
at 0.4 MeV/~ indicates the underlying configuration of the band is different to
that seen at lower excitation energies.

6.1.2 Deformation of 113Cs from Lifetimes of Excited States.

The same wavefunctions that were extracted from the nonadiabatic quasiparticle

method could also be used to predict electromagnetic reduced transition proba-

bilities [66]. These theoretical values were compared to the experimental lifetimes

extracted for the (11/2+) and (15/2+) states. Figures 6.4(a) and 6.4(b) show the

results of a standard electromagnetic reduced transition probability B(E2) cal-

culation, as described in Subsection 2.5.3, for the lifetimes of the (11/2+) and

(15/2+) states in 113Cs as a function of β2 deformation. Wavefunctions extracted

from the nonadiabatic quasiparticle model for the (11/2+) and (15/2+) states of
113Cs were used in these transition rate calculations. Also shown in Fig. 6.4(a) is

the 24(6) ps lifetime for the (11/2+) state from the experimental DDCM analysis,

denoted by the red and black dashed lines. From Fig. 6.4(a), it can be seen that

the theoretical lifetime for the (11/2+) state is only consistent with the experi-

mental τ = 24(6) ps RDDS experimental lifetime for a quadrupole deformation
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parameter, β2 ∼ 0.22− 0.25. Figure 6.4(b) shows the experimental τ <5 ps limit

on the (15/2+) state. In the Figure, the theoretical values are only seen to over-

lap with this <5 ps experimental limit for a quadrupole deformation β2 > 0.19,

which is consistent with the deformation extracted for the (11/2+) state. At de-

formations β2 > 0.25 in the calculation, Band 1 is crossed by the pure [404]9/2

configuration, beyond which the lifetime is no longer reflective of the underlying

configuration of Band 1.
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Figure 6.4: Predicted lifetimes of the (a) (11/2+) and (b) (15/2+) excited
states as a function of quadrupole deformation in 113Cs calculated using the
same quasiparticle wavefunctions used to calculate the proton-emission half-
life in Fig. 6.5 (see later). The experimental lifetime of the (11/2+) state and
its uncertainty are denoted by the red and dashed lines in (a). The τ <5 ps
limit for the (15/2+) state is denoted by the dashed line in (b), as discussed
in the text.
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6.1.3 Deformation of 113Cs from Proton-emission Rates

Employing the same nonadiabatic quasiparticle model wavefunctions used for the

γ-ray transition rates discussed above, the lifetimes for proton emission have been

calculated as a function of quadrupole deformation for the K =1/2+, 3/2+ and

5/2+ states which have been predicted to be candidates for proton emission [14].

Figure 6.5 shows the results of these calculations, along with the experimental

proton-emission half-life extracted in this work of 16.9(1) µs, which is denoted by

the solid black line. The theoretical and experimental proton emission half-lives

are seen to agree for the 3/2+ state at deformation β2 = 0.08 and also at β2 =

0.22. The smaller β2 value of 0.08 is discounted as it does not agree with the

deformations predicted from the excitation energies of the states of Band 1, shown

in Fig. 6.1, nor with the deformation predicted from the lifetime of the (11/2+)

or (15/2+) states discussed above. The higher β2 = 0.22 value is however, in good

agreement with the deformations extracted from the electromagnetic transition

rates and also from the excitation energies of the states.

6.1.4 Summary of Different Deformation Values

The results from the various methods used to extract deformations for the (11/2+),

(15/2+) and (3/2+) states in 113Cs are summarized in Table 6.1.

State Result from β2
(11/2+) Excitation energy ∼ 0.18
(11/2+) Lifetime measurement 0.22 – 0.26
(15/2+) Excitation energy ∼ 0.15
(15/2+) Lifetime measurement > 0.19
(3/2+) Proton Emission lifetime ∼ 0.22

Table 6.1: A summary of deformation estimates for the (11/2+), (15/2+)
and (3/2+) states from the various methods used in this work.

From Table 6.1 it can be seen that for the (11/2+) state, the range of defor-

mations for the excitation-energy calculation and the B(E2) calculation give an
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Figure 6.5: Theoretical proton emission half-lives as a function of quadrupole
deformation for low-spin states in 113Cs using nonadiabatic quasiparticle wave-
functions [122]. Also shown is the 16.9(1)-µs experimental value from this work
which only overlaps with the calculated half-life of the 3/2+ state.

average and standard deviation, β2 =0.22(6). This value is dominated by the

B(E2) calculation which is the experimental value with the most sensitivity to

the deformation of 113Cs. The deformation from the proton-emission half-life of

β2 = 0.22 is consistent with the deformation extracted for the (11/2+) state as is

the deformation of β2 > 0.19 given by the half-life of the (15/2+) state.

6.2 Reducing the Uncertainty of the Lifetime of

the (11/2+) State

The deformation of 113Cs extracted from this work confirms that the proton is

emitted from the (3/2+) ground state. However, the underlying nature of this



Discussion 140

K = (3/2+) state is not fully understood. The K = (3/2+) state is an admixture

of many individual states which lie close to the Fermi surface and contribute

significant components to the wavefunction. This is shown in Fig. 6.6 where the

radial component of the different wavefunctions which form the K = (1/2+) and

(3/2+) states have been calculated within the adiabatic approach described in

Section 2.6.1.

Figure 6.6: Figure taken from Ref. [15] showing the radial components, αl,j ,
of the wavefunctions, which form the K = 1/2 and K = 3/2 states, which lie
close to the Fermi surface in 113Cs. The wavefunctions have been calculated
based on a deformation of β2 = 0.16 using the single-particle adiabatic method
described in Section 2.6.1.

As discussed in Subsection 2.6.3, the lifetime of the proton-emitting state is

strongly influenced by even small components of the wavefunction. By reduc-

ing the error on the deformation of 113Cs, the relative strength of the different

components of the wavefunction can be better understood. As the deformation is

sensitive to the lifetime of the (11/2+) state, by reducing the error on the lifetime

of the (11/2+) state the error on the deformation can in turn be reduced.

The lifetime of the (11/2+) state in 113Cs was extracted within the framework

of the DDCM. The DDCM makes use of fully shifted and degraded component
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intensities of the transitions populating and depopulating the (11/2+) state, as

well as the velocity of the fully shifted recoils to extract the lifetime of the state.

By reducing the uncertainty on the component intensities and recoil velocity, the

uncertainty on the lifetime can be reduced accordingly.

The low cross section of the 58Ni+58Ni reaction used in the experiment detailed in

this work, meant that the fully shifted and degraded components had low inten-

sities and corresponding high statistical error. Additionally, due to the running

time of the experiment, only five target-to-degrader distances could be used with

only three of these distances being sensitive to the lifetime of the (11/2+) state.

The final lifetime value was taken from a weighted average of the (11/2+) state

lifetime calculated at each of these three distances as described in Section 4.2.

Running a similar experiment for a greater amount of time would reduce the

error on the final lifetime value, through one of two approaches. Firstly, by

increasing the amount of statistics available at each target-to-degrader distance,

the statistical error on component intensities could be decreased, reducing the

errors on the lifetimes used to calculate the final lifetime value. Secondly, by

increasing the number of distances in the region of sensitivity, more individual

distance lifetime values could be obtained providing a smaller error on the final

average lifetime.

The low statistics of the experiment dominated the error on the lifetime of the

state. As such, for an increase in the amount of statistics at each target-to-

degrader distance a reduction on the lifetime error of the same order of magni-

tude as the reduction of the statistical error would be expected. For the case of

doubling the statistics at each target-to-degrader distance, the statistical error

will be reduced by a factor of
√
2 corresponding to the change in the Poisson

statistical error. The error on the lifetime of the (11/2+) state would then be

reduced from 6 to 4 ps.

Instead of doubling the amount of statistics at each of the experimental target-

to-degrader distances, more data could instead be collected at additional target-

to-degrader distances in the region of sensitivity. The errors on each individual

lifetime calculated at the individual target-to-degrader distances, shown in Table

5.9, show a small deviation. Assuming a similar spread of errors on the lifetimes

for extra target-to-degrader distance in the region of sensitivity, hypothetical indi-

vidual lifetimes and errors can be included in the weighted average that provides



Discussion 142

the final lifetime value for the (11/2+) state. Both theoretical and experimen-

tal target-to-degrader distances and the associated individual lifetime values are

shown in Table 6.2.

Target-to-Degrader Distance (µm) Lifetime, τ (ps)
135 28(9)
210 21(10)
300 21(13)
96 28(9)
116 21(10)
162 21(13)
248 24(11)
375 24(11)

Weighted av. 24 (4)

Table 6.2: Experimental and hypothetical lifetimes of the (11/2+) state in
113Cs extracted at experimental and theoretical target-to-degrader distances
within the region-of-sensitivity.

The proposed additional distances were chosen, based on the lifetime of the

(11/2+) state, to include a significant number of counts in both the fully shifted

and degraded components of the 384-keV transition depopulating the state. As

such, all these target-to-degrader distances are expected to provide individual life-

time points within the region of sensitivity. The errors on these lifetimes would

then be the same as those seen for the experimental target-to-degrader distances

which lie in the region of sensitivity. The experimental lifetimes and errors have

been used for the new 96-,116- and 162-µm distances with the experimental aver-

age lifetime and error used for the remaining 248- and 375-µm target-to-degrader

distances. Increasing the number of distances in the region of sensitivity at which

data is collected gives a reduced error on the final lifetime value of 4 ps, the same

reduction in error seen for collecting more data at the existing target-to-degrader

distances.

Increasing the amount of target-to-degrader distances may have a greater appeal

than collecting more data at the previous experimental target-to-degrader dis-

tances, as including a distance shorter than 135-µm would provide a better limit

on the lifetime of the (15/2+) state. If the lifetime of the (15/2+) state were the

5 ps upper limit, then 20% of the intensity of the 596-keV transition depopulat-

ing the state would lie within the degraded component at a target-to-degrader

distance of 96 µm. This would be a measurable 8 counts based on the average

intensity of the 596-keV transition collected at each target-to-degrader distance.
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If a smaller number of counts were measured in the degraded component then the

limit on the lifetime of the (15/2+) state could be correspondingly lowered. This

target-to-degrader distance is also sensitive to the lifetime of the (11/2+) state, so

this method provides an opportunity to concurrently improve the measurement

of the lifetime of both the (11/2+) and (15/2+) states.

The amount of statistics that can be gathered in a fusion-evaporation experiment,

which lasts a realistic amount of time, using the two foil DPUNS plunger does

not provide a dramatic reduction in the error on the lifetime. A triple-foil plunger

is currently being developed at the University of Manchester and may provide

a better tool for reducing the lifetime error of excited states in such a low cross

section nucleus. The addition of a stopper foil means that only one distance

between each of the foils needs to be used throughout the experiment. The

statistical error is then reduced as the total number of counts does not have to be

divided between different target-to-degrader distances. The use of a stopper foil

in a triple-foil plunger means that recoil-tagging can no longer be undertaken as

recoils can no longer travel from the plunger to focal plane detectors. A higher

production cross section of 113Cs would then be needed, which may be provided

by radioactive beam facilities. As such, a facility capable of creating higher energy

beams and with a different detector setup than the University of Jyväskylä, such

as ISOLDE [123] may be needed for future experiments.
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Chapter 7

Summary and Conclusions

This thesis presents data from a recoil-decay tagged differential plunger exper-

iment, which was performed to measure lifetimes of excited states in 113Cs in

order to extract a value for the deformation of the nucleus. The experimental γ-

ray transition rates, as well as the energies of excited states and proton-emission

rates, were compared to theoretical values, which were calculated as a function

of deformation using wavefunctions from a nonadiabatic quasiparticle model [16].

By checking the consistency of the deformations, deduced from the intersection

of the theoretical and experimental values, the validity of the nonadiabatic quasi-

particle model could be tested while giving an accurate deformation for 113Cs.

The lifetime of the excited (11/2+) state in the most intense rotational band

of 113Cs was measured to be τ = 24(6) ps using the differential decay curve

method (DDCM). Due to the low production cross-section of 113Cs from the
58Ni+58Ni fusion-evaporation reaction, only five differential plunger target-to-

degrader distances could be used. These distances were optimised to measure

the lifetime of the (11/2+) state, so the DDCM could not be used to extract a

value for the significantly shorter lifetime of the (15/2+) state. However, the state

was found to have a lifetime limit of τ ≤5 ps from intensity matching arguments.

A deformation value of β2 = 0.22(6) was extracted for 113Cs from the lifetime and

excitation energy of the (11/2+) state. The lifetime limit of the (15/2+) state

gives a consistent deformation of β2 > 0.19, while the experimental proton emis-

sion lifetime, of τ= 24.2(2) µs, also gives a consistent deformation of β2 = 0.22
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when compared to the theoretical predictions. Aside from providing a measure for

the ground-state deformation of 113Cs, the comparison of theoretical and experi-

mental proton-emission rates has more firmly assigned the ground state of 113Cs

as having a value of K=3/2. This is the only state where the theoretical value

intersects with the experimental value at a deformation which is not near spher-

ical. This is in line with the other predictions of the nonadiabatic quasiparticle

method and earlier predictions of 113Cs as being deformed [13, 14, 17].

The consistency of all of the deformations, calculated using the same set of wave-

functions, underlines the validity of the predictions of the nonadiabatic quasi-

particle method. The consistency of the different deformations also shows that

the nonadiabatic quasiparticle model has successfully included the effects of the

Coriolis interaction, in a way which was not possible for earlier nonadiabatic

approaches [16, 68, 69]. The correct treatment of the Coriolis interaction is an

important development for predictions concerning 113Cs, due to the strong mix-

ing expected between the K=1/2 and K=3/2 orbits which lie close to its Fermi

surface. The inclusion of the rotational spectrum of the daughter nucleus to pro-

vide accurate information on the structure of the core of 113Cs and to account for

nonadiabatic behaviour is also seen to be successful.

The inclusion of an electromagnetic transition rate calculation of the excited

states provided an additional test for the predictions of the model. Additionally,

the sensitivity of γ-ray transition rates to the deformation of the nucleus provides

a more accurate measurement for the deformation of the nucleus than could be

extracted just from proton-emission rates and excited state energies.

By reducing the error on the lifetimes of the excited states in 113Cs, a smaller range

of deformations may be extracted from the nonadiabatic quasiparticle model.

This would allow the magnitude of small components of the nuclear wavefunction

to be more exactly known. More exact information on the nuclear structure of

deformed proton emitters would then be provided, giving greater insight into the

role of the residual and Coriolis interactions in mixing different components of

the nuclear wavefunction. The errors on the lifetime of the states in this work

are unlikely to be reduced using the same experimental setup as was described

here, so a new setup may be needed to provide more precise measurements. The

new triple foil plunger being developed at the University of Manchester and high-

energy fragmentation facilities may provide a means of reducing the experimental

lifetime errors.
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