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multiple ᾱ1,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.10 Joint Default Probability against reversion speed κ . . . . . . . . . . . 154

4.11 Joint Default Probability against Default Contagion Strength ᾱ1,2. . . . 154
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CVA(ᾱ1,2 = 0.05)-CVA(ᾱ1,2 = 0) . . . . . . . . . . . . . . . . . . . . . . 170

5.1 Compare extrapolation solutions with ordinary solutions . . . . . . . . 189

5.2 Compare CDS extrapolation solutions with ordinary solutions . . . . . 192

9



5.3 Compare errors of with different boundary . . . . . . . . . . . . . . . . 193

5.4 An illustration of available solutions for approximating the integral term

in two-dimensional PIDE . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.5 Firm A survival probability decrement with default contagion SA(ᾱA,B =
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6.11 The calibration errors in β̄, ᾱref,cp and ᾱref,inv . . . . . . . . . . . . . . 259

10



6.12 The CVA of the fair 5-year CDS contract (S∗ = 300 bps) with different
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This thesis introduces models for pricing credit default swaps (CDS) and evaluating
the counterparty risk when buying a CDS in the over-the-counter (OTC) market from
a counterpart subjected to default risk. Rather than assuming that the default of
the referencing firm of the CDS is independent of the trading parties in the CDS,
this thesis proposes models that capture the default correlation amongst the three
parties involved in the trade, namely the referencing firm, the buyer and the seller.
We investigate how the counterparty risk that CDS buyers face can be affected by
default correlation and how their balance sheet could be influenced by the changes in
counterparty risk.

The correlation of corporate default events has been frequently observed in credit
markets due to the close business relationships of certain firms in the economy. One
of the many mathematical approaches to model that correlation is default contagion.
We propose an innovative model of default contagion which provides more flexibility
by allowing the affected firm to recover from a default contagion event.

We give a detailed derivation of the partial differential equations (PDE) for valu-
ing both the CDS and the credit value adjustment (CVA). Numerical techniques are
exploited to solve these PDEs. We compare our model against other models from
the literature when measuring the CVA of an OTC CDS when the default risk of the
referencing firm and the CDS seller is correlated.

Further, the model is extended to incorporate economy-wide events that will dam-
age all firms’ credit at the same time-this is another kind of default correlation. Ad-
vanced numerical techniques are proposed to solve the resulting partial-integro dif-
ferential equations (PIDE). We focus on investigating the different role of default
contagion and economy-wide events have in terms of shaping the default correlation
and counterparty risk.

We complete the study by extending the model to include bilateral counterparty
risk, which considers the default of the buyer and the correlation among the three
parties. Again, our extension leads to a higher-dimensional problem that we must
tackle with hybrid numerical schemes. The CVA and debit value adjustment (DVA) are
analysed in detail and we are able to value the profit and loss to the investor’s balance
sheet due to CVA and DVA profit and loss under different market circumstances
including default contagion.
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Chapter 1

Background

1.1 Introduction

Credit risk measurement and credit derivatives pricing is today one of the most in-

tensely studied areas in quantitative finance. The popularity of credit derivatives is

due to the fact that they allow market participants to easily trade and manage credit

risk. However, some exotic products are very difficult to price and it is also difficult

to manage their risk. For instance, the complexity of pricing a Collaterallized Debit

Obligation (CDO) tranche is that it involves a risk of multiple defaults during the

same time period, which is known as default correlation. Correctly modelling mul-

tiple defaults is vitally important in the aftermath of the 2008 crisis. Not only are

credit derivatives like a credit default swap (CDS) and CDO at risk from default, but

also other derivatives, such as forwards and variety swaps that are traded over-the-

counter (OTC) are at risk in the form of counterparty credit risk. This is the risk

that the counterparty fails to fulfil their obligation. According to a report from the

International Swaps and Derivatives Association (ISDA), the losses incurred in the

US banking system due to counterparty defaults on OTC derivatives is reported to be

$2.7 billion from 2007 through the first quarter of 2011, see ISDA (2011a) for more

details, while the losses are as much as $50 billion to non-deposit-taking institutions

such as investment banks, ISDA (2011b). Even without defaults, the deterioration of

credit quality is enough to cause losses to the credit-adjusted value of trades. Dur-

ing the crisis of 2008, the downward trend of financial markets was accompanied by

extensive credit deterioration of financial institutions, which in turn caused damage

16



CHAPTER 1. BACKGROUND 17

to credit markets. Following the bankruptcy of Lehman Brothers, massive financial

institutions, including Merrill Lynch, AIG, Freddie Mac, Fannie Mae, all came within

a whisker of bankruptcy and had to be rescued. This phenomenon has led to further

debate about the correlation between companies’ default risk and the correlation be-

tween default risk and financial asset prices, such as interest rates and equities. From

the prospective of OTC trades, correlations may lead to the exposure of a counter-

party that is adversely correlated with the credit quality of that counterparty. For

instance, imagine if an investor held bonds issued by Washington Mutual and decided

to hedge its credit risk by buying CDS protection from Lehman Brothers and then

2008 comes. The panic during the 2008 crisis reminded investors, as well as regulators,

of the importance of properly modelling, pricing and managing credit risk, especially

when credit correlation exists. The example of buying a CDS referencing to Wash-

ington Mutual from Lehman Brothers is a typical example of how default correlation

exaggerates the counterparty risk faced by the CDS buyer. The default correlation

between Lehman Brothers and Washington Mutual makes the risk-adjusted CDS held

by the investor nearly worthless. This is because at the time when the CDS becomes

valuable, when Washington Mutual is more likely to default, this is also the time that

the CDS seller tends to not fulfil his obligations. The phenomenon of an increase in

the derivative’s value accompanied by higher default probability of the counterparty

is of concern in the financial industry and is frequently referred to as wrong-way risk.

Developing models to capture wrong-way risk while measuring counterparty risk has

become the main challenge in credit-risk modelling.

The remainder of this chapter is organised as follows. We will first introduce the

concepts of counterparty credit risk and its measures. The measurements of counter-

party credit risk are generic and model independent. Next, we review two kinds of

credit risk model, namely structural models and reduced-form models. The review of

reduced-form models will be looked at in more details, because the majority of research

in this thesis is based on this approach.
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1.2 Counterparty Risk

Counterparty credit risk arises in OTC derivatives trades, where the counterparty, from

whom we buy the derivative contract, may not fulfil its obligations. Counterparty risk

is the risk of losses due to the default of a counterparty, which is an aspect of credit

risk. If the counterparty defaults at time τ before the portfolio/product expires at

time T , the loss to the surviving party is everything but the recovery associated with

the portfolio/product if the portfolio/product has positive value to the surviving party.

However, if the portfolio has negative value to the surviving party, a liability in other

words, then the surviving party does not suffer extra losses. Indeed, the surviving

party will have to pay back his liability to the defaulted party in order to close out the

transaction. Let (Ω,Gt≥0,Q) represent a filtered space with a finite horizon t, which

is the space containing all random events that underlie the stochastic evolution of a

financial market. So all our random variables will be G = (G)t∈R+
measurable and

random times are R+-valued G-stopping times. Let us denote Π(t, T ) as a position at

time t ≤ T with final maturity T , which gives the position holder discounted random

cash flows. The credit exposure, according to Brigo et al. (2013), is defined as

max{EQ
s [Π(s, T )|Gs] , 0} for ∀s ∈ [t, T ], (1.1)

which is the expected value of the portfolio at time s under the risk-neutral measure

EQ conditional on the filtration Gs. If we assume the counterparty is able to recovery

a constant fraction between 0 and 1 of his liability, namely the recovery rate, the loss

due to counterparty default associated with the portfolio is

(1−R(τ))×max{EQ
τ [Π(τ, T )|Gτ ] , 0} for ∀τ ∈ [t, T ], (1.2)

where R(τ) is the recovery rate of the defaulting party at the default time.

Credit Value Adjustment (CVA) is the quantitative measurement of counterparty

risk. This is defined in Crépey et al. (2014) and Gregory (2012) as the difference

between the value of a position traded with a default-free counterparty and the value

of the same product when traded with a defaultable party. We denote the investor as

I and the counterparty as C and assume the investor themselves is default-free, the

CVA associated with a single default-free counterparty is written as

CVA(t, T ) = 1{τ>t}EQ
t

[
D(t, τ) (1−R(τ)) 1{τ<T}max{Π(τ, T ), 0}|Gt

]
, (1.3)
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where D(t, τ) is the discount factor from default time to present time t. The credit

value adjustment is essentially the expected loss if the counterparty defaults prior to

the trade ending at T . It is only when the contract has positive value to the investor

that the investor suffers from counterparty default loss. Therefore, CVA has some

similarity to financial options and could be hedged in terms of options. The similarity

between CVA and the price of a contingent credit default swap (CCDS), which pays

exposure at default, is discussed by Crépey et al. (2014); Brigo and Pallavicini (2008).

The CVA above assumed that the investor is default-free, which is also referred to

as the unilateral CVA (UCVA). However, if two firms are doing a trade, each side will

consider the default risk of the other. When considering the default risk of both the

counterparty and the investor, the investor only suffers counterparty default risk when

the investor’s default time is later than that of the counterparty. The CVA computed

by the investor should be lower than the UCVA because the set {τC < T, τC < τI} ⊆

{τC < T}. The difference between the two sets is the probability that the investor

defaults before the counterparty, where the investor will not have the counterparty

default loss. Therefore, the CVA with bilateral default risk is formulated as

CVA(t, T ) = 1{τC>t}E
Q
t

[
D(t, τC) (1−RC (τC)) 1{τC<T,τC<τI}max{Π(τC , T ), 0}|Gt

]
.

(1.4)

If the investor can default, the investor may benefit from their own default because

he only pays back a fraction of his liability rather than in full. The benefits or gains to

the investor associated with a portfolio or a product when these are liabilities (negative

value) to the investor. Consistent with the definition of CVA, debit value adjustment

(DVA) measures the gains due to the investor’s own default, which is

DVA(t, T ) = −1{τI>t}E
Q
t

[
D(t, τI) (1−RI (τI)) 1{τI<T,τI<τC}min{Π(τI , T ), 0}|Gt

]
.

(1.5)

The gains to the investor due to the investor’s own default is equivalent to the losses

to the counterparty.

The value of a derivative without considering the counterparty party credit risk

is usually referred to as the clean price of the derivative, for example, options’ prices

in the Black-Scholes world. However, if we consider the fair value of the derivative
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adjusted by the counterparty credit risk, the risk-adjusted value is expressed as

Π̃(t, T ) = Π(t, T )− CVA(t, T ) + DVA(t, T ), (1.6)

where Π̃(t, T ) is the credit risk adjusted price and Π(t, T ) is the clean price without

counterparty credit risk.

DVA is a controversial quantity as discussed in Brigo et al. (2013). First of all,

a firm can benefit from being more risky. All things being equal, increases in the

investor’s default probability of the investor would make the default indicator

1{τI<T,τI<τC}

in the DVA increase as well and therefore make the DVA term larger. Recall that

in equation (1.6) the DVA term can increase the risk-adjusted value of the portfolio.

Consequently, the firm can gain in the risk-adjusted-portfolio value as the result of

being more likely to default. Secondly, the investor might need to sell protection

against themselves in order to hedge the DVA. However, no market participants will

buy the CDS with the referencing and the seller being the same firm, because no

payments are available to the buyer if the referencing firm defaults. Alternatively, the

investor could buy back their own bonds but the corporate bond market is not very

liquid.

In above definitions, CVA and DVA are evaluated under the assumption that there

exists a single risk-free interest rate and all firms can borrow and lend funds at the

risk-free rate. In other words, the funding cost of firms does not account for their

individual credit risk. Consequently, cash flows from derivative contracts and cash

flows conditional on counterparty’s credit event are discounted by the risk-free rate.

However, the cost of funding is tightly linked to one’s credit risk, which is also known

as the funding constraint. For example, a firm who has lower credit worthiness has

to borrow money at a higher rate. This implies the firm has to hedge and fund their

position at a higher cost. The value of cash flows will not be symmetric relative to two

parties with different credit risk because cash flows are discounted at different rates.

How to measure counterparty risk under the funding constraint is another important

area of counterparty risk research. This is also referred by Crépey et al. (2014) as

the multi-curve setup, where the price of a product will be different from the buyer
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and the seller’s prospective. The analysis of counterparty risk and the evaluation

of value adjustments under funding constraint are extensively discussed by Crépey

(2011); Crépey et al. (2013, 2014); Crépey (2015a,b). Crépey (2011) proves that the

value process of a hedged counterparty risky contract with funding constraints can be

described in terms of a nonstandard backward stochastic differential equation (BSDE).

The position under consideration consists of the OTC derivative contract, the hedging

portfolio and the funding portfolio. The BSDE is not driven by Brownian motions

and/or Poisson processes but the dividend processes of the derivative contract, funding

assets and default close-out. It is nonstandard due to the randomness of default

time and the dependence of terminal condition on the portfolio. Crépey et al. (2013)

show the value adjustments pricing problems, including CVA, DVA, liquidity value

adjustments and replacements cost, can be reduced to Markovian BSDEs. Burgard

and Kjaer (2011) also incorporate funding constraint by assuming a bank can fund

its derivative position from an internal funding desk. They derive the PDE for an

option’s value with counterparty risk and funding constraint under the Black-Scholes

complete market and the PDE for CVA is obtained. A comparison study is carried out

by Crépey (2015a) against the approaches of Burgard and Kjaer (2011) and Crépey

(2011). Compared with Burgard and Kjaer (2011), Crépey (2011) allow a firm to

default on its funding portfolio, which is implicitly disregarded by Burgard and Kjaer

(2011). When a bank is able to default on the funding asset, the nonlinearity of the

funding close-out cash-flow leads to extra complexity in the replication strategy thus

making the problem more difficult to solve. Using the BSDE approach, Crépey (2015b)

analyse the CVA under funding constraint. Given they interpret the CVA as the price

of the contingent credit default swap (CCDS), the dynamic of the CVA can also be

described by a BSDE and thus the solution of the CVA can be characterised as the

unique solution of a semilinear PDE.

In this thesis, we will assume that firms are able to obtain funds at the risk-

free interest rate and focus on measuring the CVA and DVA with default correlation

models. The concepts of counterparty credit risk is model independent. In order to

quantify CVA and DVA, one has to specify what derivative transactions are being

traded between the investor and the counterparty as well as the default model being

used. In the following sections, we have a literature review of the two commonly used



CHAPTER 1. BACKGROUND 22

default models, namely structural and reduced-form models.

1.3 Literature Review

1.3.1 Structural models

The philosophy underlying structural models is to assume there is a fundamental

process that drives the total value of the firm, which determines the event of default.

Merton (1974) assumes that the firm defaults only at maturity when the firm value is

lower than the bond principle. Merton’s model is extended by Black and Cox (1976),

Leland (1994), Longstaff and Schwartz (1995) and Zhou (1997) to allow for more

realistic assumptions such as early default, optimal capital structure and jump in firm

value.

In Merton’s model, the firm’s value is composed of equity and liability (i.e. Vt =

Et + Ct). By assuming that a firm’s liability is composed of a single maturity zero-

coupon liability, default happens if the terminal firm value VT is lower than the lia-

bility’s face value FT . At maturity, equity holders can choose to either pay back the

principle FT and receive the remaining firm value VT−FT or leave the firm to creditors.

Clearly, the equity holder will choose to default when the firm value VT is less than

debt face value FT . The right to choose makes the equity effectively a European call

option and therefore it can be priced as such. We can then define corporation debt as

a long position of default-free debt and short a put option to equity holders.

ET = max{VT − FT , 0} (1.7)

and the liability’s value CT at time T is

CT = min{VT , FT} = FT −max{FT − VT , 0}. (1.8)

It is assumed that the firm’s value follows a Geometric Brownian Motion (GBM),

dVt = rVtdt+ σvVtdWt. (1.9)

where r is the risk-free interest rate, σv is the volatility of the firm’s value and Wt is

a standard Brownian motion.
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Given these simplifying assumptions, both equity and debt can be priced using the

formula derived by Black and Scholes (1973), although the GBM here represents the

dynamics of asset value rather than equity. Therefore, Vt and σv must to be estimated

as Vt cannot be directly observed. However, the model of Merton (1974) is based

on weak assumptions including a much simplified capital structure and default time.

Empirical tests carried out by Delianedis and Geske (2001) found that Merton’s model

can only explain a small fraction of credit yield spread when compared to market data;

the price of bearing default risk is underestimated within Merton’s framework.

Based on Merton’s framework, Black and Cox (1976) argued creditors can force

the firm into liquidation before maturity if the firm value drops below a certain level,

namely a safety threshold. Safety thresholds work as a floor value for a bond to

guarantee earlier cash flows to bond holders, avoiding receiving too low recovery at

maturity. In this case, the default can happen not only at maturity, but also at any

time prior to debt maturity. In other words, the default time τ is the first time when

the firm value Vt is less than the threshold Lt, which is

τ = min{t > 0|Vt < Lt}.

By assuming the threshold to be a time-varying function of exponential form related

to the debt face value namely, Lt = ρFe−r(T−t), then the safety threshold is a constant

fraction of the present value of the promised final payment. This is also known as a

first passage model. Here ρ is the recovery rate if the debt defaults at maturity. The

exponential form makes the threshold relatively lower if the time to repayment is long,

which allows the firm to possibly recover from bad performance.

Introducing a safety threshold does complicate the model somewhat, since the time

at which the firm defaults will not be known a priori. The way to derive an analytical

price of equity (and any derivative) in this model is similar to the methods we use to

solve for barrier options. The probability of default is equivalent to the probability of

GBM touching the threshold.

The resulting default probability is always higher than or equal to Merton’s model,

and we can see that this model will be retrieved as a special case with Lt = 0. The

result of including the barrier into the option valuation is that it will no longer be

monotone with respect to the volatility σv. The model directly prices the bond by
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dividing it into three parts, namely

CT = FT1{τ>T} + VT1{τ=T} + VT1{τ<T}

= FT −max{FT − VT , 0}1{τ=T} + VT1{τ<T}.
(1.10)

Clearly, (1.10) is the final payoff of a portfolio comprising a default-free loan with

face value FT maturating at T , a short European put on the firm with strike FT and

a long position of a European down-and-in call on the firm value with zero strike

price. Therefore, valuation of the corporate debt Ct is equivalent to valuation of this

portfolio. Compared to Merton’s model, the first passage model tends to produce

lower credit yield spreads. As safety thresholds work as a protection mechanism,

bonds with a default barrier have higher values than those without. However, a firm’s

default probability is higher than Merton’s model. The Black and Cox model is the

foundation for many extensions, since it is more realistic in terms of default time.

We see that the default threshold feature is popular in the literature and there

are many extensions, such as stochastic interest rates (Longstaff and Schwartz, 1995),

jump processes (Zhou, 1997, 2001), equity maximization and optimal capital structures

(Leland, 1994, 2004) and stochastic volatility (Fouque et al., 2006). All these models

are much more complex than the original Merton model and sometimes they may

require numerical techniques for solution.

The first passage models come with some desirable features, but they also raise the

problem of how to accurately designate a safety threshold. There are several ways in

which academics have sought to deal with this. Safety thresholds can be exogenously

fixed, as proposed by Black and Cox (1976) who used a time-dependent deterministic

function. Alternatively, to make models even simpler, Longstaff and Schwartz (1995)

set the barrier as constant and equal to the firm’s liability. Longstaff and Schwartz

argue that discounting introduces complexity without improving performance, since

only the ratio Vt/F is important to credit default. Briys and De Varenne (1997)

generalised the safety threshold as a fraction of the firm’s liability. Another approach

is for the barrier to be modelled as a random process when incorporating incomplete

information, as proposed by Duffie and Lando (2001). Without the ability to assess

default barriers, investors are uncertain about the distance to default, resulting in high

credit yield spreads.

Longstaff and Schwartz (1995) extend the problem to include two types of debt
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in a simplified maturity structure, by assuming that the firm issues multiple bonds

with different maturities. All existing bonds default simultaneously when the firm

defaults the bond with the earliest maturity. Longstaff and Schwartz also extend the

constant interest rate assumption in Black and Cox (1976) to consider a Gaussian-type

stochastic interest rate. This paper derived closed-form solutions for fixed-rate and

floating-rate risky bonds. More importantly, the correlation of interest rate and firm

value was explored. The relationship between initial short rate and risky bond price

is negatively correlated in general. The risk-free rate plays two roles in the value of a

risky bond. An increasing risk-free rate will push down the bond price and increase

the growth rate of the firm in a risk-neutral world (i.e. the drift in firm value process).

Both effects narrow down the risky bond price while the latter lowers the credit yield

spread. There is an exception that, for extremely risky bonds, the price can be an

increasing function of risk-free rate. Longstaff and Schwartz (1995) also showed that

the value of a risky bond depends on the ratio of the firm value to debt face value

rather than their absolute values and argued this ratio is sufficient for risky-bond

valuation. This property has some important implications for the model. Firstly, the

price of a coupon bearing corporate bond can be priced as the sum of corporate zero-

coupon bonds conditioning on the ratio Vt/F . In other words, the default status of

earlier coupons does not affect the valuation of the latter coupons. On the contrary,

in Merton’s model, a coupon bond can only be priced as a compound option since

the value of the latter coupon payment depends on the default status of the former

coupon. This means if the firm defaults at its first coupon, the rest of the coupons

are valueless. Secondly, it is sufficient to set the safety threshold to be constant rather

than time dependent.

There is a common drawback shared by all of the above first-passage models,

namely they produce close to zero credit yield spread for short maturity bonds. How-

ever, market bond prices have consistently been shown to give a significant yield spread

even for short-term bonds. This phenomenon results from the unpredictability of de-

fault. When assuming that the asset process follows a diffusion process, or geometric

Brownian motion to be precise, the asset process moves along a continuous path that

is gradually approaching the critical value before default. This means that investors

are able to predict default with increasing precision. As a result, the price for bearing
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default risk in the near future can be relatively low with known distance to default.

In Zhou (1997) and later Zhou (2001) the authors try to avoid default predictability

by introducing a jump process. A firm’s default, it is argued, is not only driven by a

firm’s value continuously going down and crossing a barrier, but it is also affected by

unpredicted sudden events. In this model, the firm’s value can jump below the barrier

causing default without approaching. The firm-value process is given by

dVt = Vt(µ− λπν)dt+ VtσvdWt + (π − 1) dYt (1.11)

where dYt is a Poisson process with intensity λπ and π is the log-normally distributed

jump amplitude with expected value ν + 1

ln(π) ∼ N(µπ, σπ), E[π] = ν + 1⇒ ν = eµπ+ 1
2
σ2
π − 1 (1.12)

This type of stochastic process is a compound Poisson process such that jump time

and jump size are random. Adding the jump will avoid predictability since a Poisson

jump is an unpredictable event even in the near future. Under a jump process, default

can happen instantaneously because of a sudden drop in firm value. Consequently, this

model results in higher credit yield spreads for short-term bonds whilst maintaining

appropriate levels for the longer terms. This model shows that the short-term spread is

mostly influenced by the jump size volatility σπ, while diffusion volatility σv has more

impacts on long-term bonds. Zhou (2001) explains this phenomenon from the property

of jump diffusion. For a long-maturity bond, the effect on default probability from

jump size volatility σπ is largely limited by the jump intensity λπ which is usually small.

Consequently, jump size volatility has limited effect on default probability. However,

short-term credit-yield spread is increased as a result of recovery value. Jump size

volatility determines the firm value after a jump across a default barrier, which is the

recoverable value for the creditors. The larger the jump size volatility, the further the

firm value may be below the default barrier on average. Consequently, bond holders

are expected to receive less after default when the jump size is large. The increased

credit yield spread works as compensation for the possibility of a lower recovery.

On the other hand, Leland (1994) presents a model with a totally new default

mechanism. He assumes the firm is holding a perpetual debt, which requires continuous

coupon payments. This model links the bond value and optimal leverage ratio to not
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only asset value, asset volatility and risk-free rate, but also tax benefit, bankruptcy

cost and leverage ratio. The firm must finance the coupon by issuing new equities.

Assuming a firm’s asset value as a GBM, Leland derived the corporate bond price,

followed by the total firm value, whose difference is the equity’s value. In order to set

the default threshold VB to be consistent with positive equity value for any asset value

greater than the threshold, the lowest possible value for threshold is

∂E(Vt, VB, T )

∂Vt

∣∣∣∣
Vt=VB

= 0. (1.13)

Intuitively, at the time of default, any movement in the firm’s asset value is not related

to the equity value. The default condition (1.13) is also known as the endogenous

default threshold as compared to previous models, where the threshold is exogenously

determined. According to this argument, the default threshold is derived, and is a

time-function of coupons but not of the current value of firm’s asset.

Leland and Toft (1996) extend Leland (1994) to a much richer debt structure and

allow the optimal maturity of debt as well as the optimal amount of debt. The firm

can continuously sell new debt to repay old debts and maintain the optimal capital

structure. Therefore, the firm defaults when issuing new bonds, in order to raise the

firm’s value, cannot increase the value of equity. In other words, issuing new bonds

does not benefit the shareholders. Therefore, it is optimal not to issue new bonds to

repay old ones and close the firm. Leland and Toft show that longer maturity bonds

have more tax advantages, but also higher agency costs, which could be substantial.

Leland and Toft also show optimal capital structure reflects a trade-off between tax

advantages, bankruptcy costs and agent costs. They derived the optimal leverage ratio

and corporate bond prices for any maturity. Bankruptcy is determined endogenously

and will depend on the maturity of debt as well as its face value. The default condition

implies a time-independent default barrier similar to Longstaff and Schwartz (1995).

However, the difference here is that the boundary VB depends on bond maturity,

tax advantages and bankruptcy costs. For a capital structure with long-term bonds,

the barrier can be less than face value of the liabilities. In contrast, if the bond

maturity is extremely short, the default barrier will be greater than the face value due

to bankruptcy cost.

In the research of Leland and Toft (1996), their model is compared with that

of Longstaff and Schwartz (1995) in terms of default probability prediction. Leland



CHAPTER 1. BACKGROUND 28

and Toft found both exogenous and endogenous models have underestimated default

probability in the short run, which remains an important research subject.

Leland (1994) can be considered to be a breakthrough for structural models. He

considered the dynamics of capital structure as a result of shareholders’ behaviour

and provides a framework with more business insight than had previously been used.

Based on his model, there are many extensions, including but not limited to, Anderson

and Sundaresan (1996), Collin-Dufresne and Goldstein (2001), Fouque et al. (2006)

and McQuade (2013).

1.3.2 Reduced-form models

Compared to structural models, the default mechanism in reduced-form modelling

is chosen to be totally different in order to make the default time is unpredictable.

Reduced-form modelling is analogous to term-structure modelling of the risk-free rate.

The similarity between term-structure modelling and credit spread modelling is first

discussed by Jarrow and Turnbull (1995). Beginning with a single-step discrete time

set up, Jarrow and Turnbull show a defaultable zero-coupon bond can be viewed

as a default-free zero-coupon bond denominated by a foreign currency, whose value is

transformed into the domestic currency by a forward exchange rate. The exchange rate,

in this sense, is actually the combination of default probability and default payment.

Their approach is then extended to a two-step set up to show how a defaultable

zero-coupon bond could be viewed as a fraction of a default-free zero-coupon bonds

with some amount of coupons before maturity. They argue that a default bond can

be analysed as if it is a default-free bond. The value of coupons and the fraction

of principle is determined by the probability of going into the default state and the

payment at that state, which is again the default probability and default payment.

After generalising their analysis to continuous time, they show there exists a term-

structure, in addition to risk-free term-structure, for the return of default bonds with

a different maturity from a single issuer. A vulnerable option whose issuer may default

can be priced and hedged using bonds, which have the same credit risk. Their work

reveals that credit risk can be represented as an additional yield spreads in default

bonds and we can bootstrap a firm’s credit-yield spreads from the bonds issued by this

firm. Following on from their previous work, Jarrow et al. (1997) propose a Markov
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Chain model for credit ratings. In the model a firm has some probability of jumping

between different credit ratings until finally being absorbed by the default state. The

form of the survival probabilities derived from this continuous time model becomes

similar to the current reduced-form models. Jarrow et al. (1997) also discuss the

estimation of the transition matrix, which may be estimated implicitly from defaultable

zero-coupon bonds data or historical data. One drawback of the above Markov Chain

model is requiring the independence of default process and interest rate, and there is a

strong empirical evidence that default probability of corporate bonds varies with the

business cycle. The number of defaulting companies is higher during recessions and

is therefore usually accompanied by lower recovery rate and interest rates lower than

their long-term mean, see Altman and Kishore (1996).

Lando (1998) present a more coherent framework, which generalises previous method-

ologies and propose that the credit spread can be modelled using the process from the

Cox (1955). Also known as the doubly stochastic process, the Cox process is a Pois-

son process, where both Poisson arrivals events and arrival intensity are stochastic.

Defining the first jump as a default event, Lando derived the three building blocks

for pricing credit claims, which are payment contingent on default event, payments

contingent on survival and continuous payments conditional on survival. Under the

Cox process formulation, defaultable bonds can be priced as if pricing non-defaultable

bonds, so that previous term-structure models can be applied to the default intensity.

More importantly, this framework allows a correlation between default spread and

the interest rate. As long as the non-negative condition is met, the default intensity

process can be generic. For example, the default intensity can be a linear function

of other market variables, such as the interest rate, volatility, equity price and so on.

Lando showed how the Markov Chains model of Jarrow et al. (1997) can be gener-

alised into his framework. We will use default intensity, default process and credit

spread interchangeably to represent the stochastic process driving the jump of the

Cox process.

Since term-structure models of interest rate can be directly used for modelling

default intensity, Duffie (1998) proved the affine jump-diffusion (AJD) term-structure

model can also be applied for pricing credit derivatives. The correlation of credit
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spread and interest rate is achieved by sharing the same AJD process. For instance,

r(t) = ar(t) + br(t)Xt,

λ(t) = aλ(t) + bλ(t)Xt,

where Xt is a k-dimensional independent AJD process. Duffie showed that pricing the

defaultable bond reduces to the computation of a one-dimensional integral of a known

function. Further, under a multi-firm economy, Duffie proved the default intensity

of the first default event is the sum of all firms’ default intensities and provided an

algorithm for simulating the first default time. However, one condition in a Cox

process is that the jumps arrival intensity must be non-negative. Due to the non-

negative condition, not all term-structure models are applicable to credit spread, such

as the Vasicek (1977) model.

Apart from the correlation of default intensities and interest rates, correlations are

observed also among the default times of companies. Default correlation or dependency

is the phenomenon that the number of default companies cluster around a period of

time, which is usually during an economic crisis, see Das et al. (2007). Duffie and

Singleton (1998) first consider correlated defaults in reduced-form modelling. After

reviewing several term-structure models applicable to default intensities, Duffie and

Singleton consider the losses in a portfolio of 100 corporate bonds, where default

correlation may lead to substantial losses. Duffie and Singleton use a mean-reverting

log-normal process for default intensities with correlated Brownian Motions. In their

numerical examples, correlating the Brownian Motions in obligers’ default intensity

processes does not make significant changes in the portfolio loss. After discussing

the techniques for credit spread modelling in an AJD process and the algorithms for

simulating multi-company defaults, Duffie and Garleanu (2001) analysed the systemic

and idiosyncratic risk of Collateralized Debt Obligations (CDO) in a multi-factor AJD

model, i.e.

λi(t) = Xc(t) +Xi(t),

where Xc(t) and Xi(t) are independent AJD processes with exponential jump sizes.

The Xc(t) is the common factor shared by all companies’ intensity to represents sys-

temic risk. Therefore, this model allows common jump times for all intensities, which

shows one can have a simple but useful model for simulating correlated defaults with
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a relatively high degree of default-time correlation. They found that raising the per-

centage of common factors, or higher default correlations, causes the senior tranche

price to reduce in value and the junior tranche to become more expensive.

They also study the distribution of the number of defaults of 100 companies within

10 years. Comparing four cases, where firms are subject to similar default risk but

with different jumps arrival frequency, volatilities and jump sizes, they show that if

there is low systemic risk, all situations have similar distributions implying defaults

are independent. But if the common factor Xc(t) is large, jump volatility and diffu-

sion volatility lead to the similar probability that the number of default firms above

60. However, increases in jump volatility tends to cause a higher probability of a

small number of defaults, from 10 to 30, than diffusion volatility. On the other hand,

increases in diffusion volatility leads to a higher probability that 30 to 60 firms de-

fault than the jump volatility. Compared with large jump sizes, higher jump arrival

frequency leads to higher degrees of default dependence.

In reduced-form modelling, the payment at default time, default recovery, has to

be specified exogenously, which leaves room for different modelling approaches. In

previous research, including Jarrow and Turnbull (1995); Jarrow et al. (1997), when a

company defaults at its bonds, the firm recovers an exogenously specified fraction of

the treasury bond at its default time, namely recovery of treasury. On the other hand,

in the Duffie (1998) models the creditor can receive a fraction of the face value, namely

recovery face value. The choice as to whether to use recovery of treasury or recovery

face value is mainly influenced by the computational burden attributed to recovery of

treasury, because not only default time but also other market information, such as risk-

free interest rate and equity prices, up to default time matter. Duffie and Singleton

(1999) propose recovery market value such that the recovery is in terms of a fraction

of market value. Compared to recovery of treasury, if the default asset is a corporate

bond, the difference is whether the credit risk of the bond should be taken into the

valuation of the defaulted bond. Using recovery of treasury, the debtor is expected to

recover an amount higher than the current defaultable bond. Recovery market value

has legal and computational advantages. As argued in Duffie and Singleton (1999), it

matches the legal structure of OTC derivatives when considering counterparty credit

risk. More importantly, they prove that, when assuming recovery market value, it is
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possible to combine the default payment and non-default payment of a defaultable

bond. The valuation of a corporate bond with recovery market value reduces to evalu-

ating a non-defaultable bond with risk-adjusted discount rate, Rt = rt+λtLt, where Lt

is the loss ratio. Consequently, the payment conditional on the corporate defaults can

be eliminated. Numerical experiments are carried out to show the difference between

using recovery face value and recovery market value. They correlate interest rate and

the mean loss process ht = λtLt in a multi-factor CIR model, i.e.

rt = a+ Y 1
t + Y 2

t − Y 0
t

ht = bY 0
t + Y 3

t ,

where Y 0
t , Y 1

t , Y 2
t and Y 3

t are independent CIR processes and a and b are constants.

They show that the corporate bond price is similar using the recovery market value and

recovery face value if the term structure of credit spread is upward slopping. Otherwise,

the bond price with recovery market value will be higher because the default event

is more likely to occur earlier than later than the default loss with recovery market

value lower. Guo et al. (2009) propose a new method to model the recovery process.

In their models, default works as a trigger for the recovery process. After a firm

defaults, its bonds become bonds with random maturities, representing the time to

overcome financial distress, and the recovery process starts to affect its value. There

are two states after default, the firm may either keeps its solvency and pays a higher

fraction K of their debt, like debt reorganization, or go into bankruptcy paying a

lower fraction R. The recovery rate depends on the firm’s value process (modelled as

a regime switching model) after default, using the firm’s asset and liability as variables

and taking advantage of a structural model.

Since Duffie and Singleton (1998) found correlating Brownian Motions among firms’

default intensities cannot produce default correlations that match empirical studies, a

branch of research in reduced-form modelling has centred around default correlation

modelling and its applications. Default dependence is important; because multi-firms

credit derivatives, such as CDO tranches and kth-to-default swaps, the joint distri-

bution of a collection of default times is important. Moreover, in terms of counter-

party credit risk, the probability that one party defaults prior to others determines
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the amount of counterparty risk. As shown by Duffie and Garleanu (2001), correla-

tion can be achieved by modelling intensity processes sharing common state variables,

which are also known as conditional independent models. Intuitively, the arrivals of

firms’ Poisson processes are independent, conditional on individual’s intensity process,

although intensity processes are correlated.

Moreover, some researchers seek other approaches to model default correlation.

Copula functions have been used in multivariate statistics for modelling correlated

random variables. Li (1999) is the first attempt to use copula functions to model

the correlation of default times and to price credit derivatives. Copula functions are

multi-variate functions, which are able to transform the marginal default/survival

probabilities into a joint distribution. Essentially, a copula is a function that links

univariate distribution to joint multivariate distribution. The dependence between

the marginal distributions linked by a copula is characterized entirely by the choice

of the copula. The joint survival probability of multiple-firms is given by the result of

a differentiable copula function, which takes each firm’s marginal survival probability

as inputs, namely

PQ(τ1 < t1, ..., τk < tk, ...τn < tn) = C(PQ(τ1 < t1), ...,PQ(τk < tk), ...PQ(τk < tk)),

(1.14)

where C() is a copula function. Li (1999) estimates marginal survival probabilities

implied by the market using the approach of Jarrow and Turnbull (1995) and shows

how the Bivariate Gaussian copula produces joint one-year survival probability. The

one parameter in the Bivariate Gaussian copula describes the degree of correlation is

estimated from asset prices. Li (1999) also proposes the default simulation algorithm,

which draws a vector of random variables (u1, ..., uk, ...un) from a (0, 1) correlated uni-

form distribution to represent survival probabilities of the n firms and are correlated

by a copula function. Then, default times can be constructed, accordingly given the

market implied survival probabilities. This simulation algorithm is very general and

can work with any specification of the default intensities. Using the above algorithm

and assuming a flat credit spread, Li evaluates the CDS spread where the seller of the

CDS and its referencing firm are correlated. Applying a similar approach, Frey et al.

(2001) use different copula functions to produce the loss distribution of a loan portfolio.

However, none of the above literature considers the dynamics of default intensities.
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Schönbucher and Schubert (2001) extend the above approaches by allowing the de-

fault intensity to be stochastic and individually calibrated to their market implied

survival term-structure. They show the use of copula functions can be incorporated

into the reduced-form modelling framework by Lando (1998) and point out that the

advantage of using a copula is being able to independently estimate parameters of the

copula function and the firms’ default intensities. This independence makes the cop-

ula approach especially flexible for modelling. Consequently, it is possible to simulate

joint defaults using the algorithm from Duffie and Garleanu (2001) with the vector of

uniform variables drawn from copula functions in Li (1999). Rogge and Schönbucher

(2003) use Archimedean copulas, which admits an explicit formula, to price multi-name

products and argue that the Gaussian and student-t copula do not imply a realistic

dynamic process for default intensities. The effects of using copula functions to price

multi-name credit derivatives such as Basket Default Swap (BDS) and CDO tranches

is considered by Galiani (2003). Galiani presents an analysis of the use of Gaussian

and student-t copula functions to price CDO tranches and find the price for the equity

tranche is lower and the price is higher for the senior tranche when using student-t

copula. Because the student-t copula is characterised by fatter left and right tails,

which is a higher probability of joint survive and default, it can efficiently capture the

risk that a large number of firms default that the Gaussian copula cannot. In terms

of the copula correlation parameter, both equity and the Mezzanine tranche prices

decrease with higher correlation because the probability of the loss is less than 14%

of the portfolio is less. On the contrary, the senior tranche, which covers loss beyond

15%, is monotone, increasing with correlation. After the pricing problem of single and

multi-name credit derivatives with copula functions as discussed above, some research

has investigated the application of copula functions to counterparty credit risk. Brigo

and Chourdakis (2009) considered the unilateral counterparty risk of a CDS contract

when the referencing firm and the CDS seller’s default probabilities are correlated by

a bivariate Gaussian copula. They derived the semi-analytical solution to the CDS

contract conditional on the CDS seller have defaulting, which is used for evaluating

the loss due to the seller defaults. They show that both credit spread and default

correlation in the copula have a considerable impact on the counterparty risk. One

problem raised by using copula functions, as pointed out by Brigo and Chourdakis
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(2009), is that, when default intensity volatilities are low, the CVA drops significantly

if the Gaussian copula correlation parameter is above 80% while it was previously

monotonically increasing. The reason is that when default processes are not volatile

and have high default correlation, the scenarios in simulation are likely to be either

joint default or no defaults at all. Therefore, the number of sample paths that count

for counterparty risk is lower, leading to a drop in the CVA. This means that, although

the default losses are higher, they very rarely happen and therefore the expected value

is reduced. Brigo and Capponi (2010) and Brigo et al. (2014) extend the previous

model to consider the defaults of both CDS buyer and seller with a multivariate Gaus-

sian copula function and collateral. Crépey et al. (2014) present a dynamic Gaussian

copula model to evaluate CDS and CDO tranches and the unilateral CVA without

funding constraint.

Apart from using exogenously specified multivariate functions, some approaches fo-

cus on modelling the Cox processes. Lindskog and McNeil (2003) introduce a common

Poisson shock model. A firm’s default time is no longer be driven by a single Pois-

son processes but multiple Poisson processes representing the arrival of firm-specific

as well as economy-wide events. Shocks from an economy-wide Poisson process may

cause joint default whenever jumps occur. Further, the economy-wide shocks are not

necessarily fatal. Even if the Poisson event, which represents economy-wide events,

arrives, it only possibly causes the firm to default with a pre-determined probability.

For example, for firm i, its Poisson process is

Ni(t) =
m∑
k=1

γi,kNk(t),

where γi,k is the probability the kth Poisson event leads to firm i’s default. Lindskog

and McNeil prove that the total default intensity to a firm is

λi(t) =
m∑
k=1

γi,kλk(t),

where λk(t) is the Poisson jump intensity of Poisson process Nk(t). Applying pre-

determined probabilities that make the Poisson events fatal is equivalent to lowering

the rates that the Poisson events arrive. The degree of default dependence relies on

the probabilities that a specific shock leads to those firms’ default. For instance, if a

Poisson process Nk(t) is shared by all firms and its event arrival is with probability one
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to make firms default γi,k = 1 for all i, then all firms’ default time will be exactly the

same. However, Lindskog and McNeil (2003) did not model the dynamics of default

intensity processes but Liang and Wang (2012) extend the model of Lindskog and

McNeil to allow jump intensities to be depend on a stochastic process, namely the

common shock model with regime-switching. In this model, there is a Markov Chain

driving the changes of economic states. Default intensities remain unchanged until

the economy switches from good to bad or the other way round. Regime switches

are interpreted as changes in macro-economic conditions and were previously used for

other aspects of financial modelling, such as Buffington and Elliott (2002); Elliott et al.

(2005). Liang and Wang derived the joint distribution of firms’ default times using

their proposed model and price basket default swaps with a closed-form solution.

Around the same time, Dong et al. (2014a) use the common shock model with a

regime switching framework to study the counterparty risk of a CDS contract. They

measure the CVA and investigate the parameter sensitivity. Compared to common

shock models without regime switching between a good and a bad economy, this

model produces a much higher swap rate. Dong et al. found that the initial state,

transit rate between regimes as well as correlation level all have a strong impact on

CVA. The netting and margining impact on the CVA relative to a portfolio of CDSs

under common shock model is considered by Crépey et al. (2014). Since common

shock model allow joint defaults to be driven by the Poisson process that are shared

by all firms, the unilateral CVA increases significantly. Although netting the long and

short CDS positions with the counterparty can greatly reduces CVA, counterparty risk

is not likely to be migrated by margining due to joint default events.

The common shock approach models the default of a firm that is driven by multiple

Cox processes whose event arrivals are not necessarily leading to a default. On the

other hand, as a Cox process is a Poisson process with a stochastic intensity, we

can also model the stochastic default intensities of the firms’. Jarrow and Yu (2001)

was the first paper to introduce a default contagion model based on reduced-form

modelling framework of Lando (1998). In Jarrow and Yu’s model, default correlation

is incorporated by constructing a direct impact from defaulted firms to the surviving

firms. One’s default intensity is characterised as the sum of one idiosyncratic factor and

the factors that only become a component of the firm’s default intensity after others’
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default events. For instance, the default intensities of firms A and B are modelled as

λA(t) = a1 + a21{t>τB}, (1.15)

λB(t) = b2 + b21{t>τA}, (1.16)

where a1, a2, b1, b2 are assumed to be positive constants in their work. This is attempt-

ing to capture the case where firm A’s defaults on its bond held by firm B, then firm

B’s default probability may jump higher due to the loss in the firm A’s bond, and vice

versa. However, deriving firm A’s marginal survival probability requires knowledge of

B’s default times, which in turn depends on A’s default time. This leads to a recur-

sive problem also known as looping default. We can see the probability of τA > T is

depending on τA itself

P (τA > T |Ft) =1τA>tE
Q
[
e−

∫ T
t a1+a21{s>τB}ds

∣∣Ft]
=1τA>tE

Q
[
e−

∫ T
t a1ds

∫ T

t

e−
∫ s
t b1+1{τA>u}dub1e

−
∫ T
s a2duds

∣∣Ft]. (1.17)

Jarrow and Yu (2001) do not solve this problem in full but present solutions by defining

two categories of firm, namely primary and secondary. Default contagion spreads

from primary firms to secondary firms but not the other way round. This assumption

will remove the dependence of firm B’s default time on A’s. Therefore, A’s survival

probability can be solved after knowing B’s default time distribution. However, the

restriction to one-way dependency is not sufficient to model the dependence among

firms of similar size. Collin-Dufresne et al. (2004) suggested a measure change which

eliminates the default indicator in order to solve the looping default problem. This

absolutely continuous probability measure is defined by

dP̄
dQ

∣∣∣∣
Ft

= Zt :=
1{τ>t∧T}

e−
∫ T
t λ(s)ds

. (1.18)

This changes of probability measure is equivalent to attaching zero probability to all

events in which a default occurs before maturity. The default indicator in the pricing

formula can be absorbed into the Randon-Nikodym density process using a measure

change. It is also called survival measure for the reason that it concentrates on the

event that a firm survives until maturity. Collin-Dufresne et al. (2004) showed that the

marginal survival probabilities can be expressed as simple analytic solutions. Equation
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(1.17) can be solved as

P (τA > T |τA > t) = EQ[1τA>T ∣∣Ft]
=EPA,B

[
e−

∫ T
t a1(s)+b1(s)ds

∣∣∣∣Ft]+ EPA
[
e−

∫ T
t a2(s)ds

∫ T

t

e−
∫ s
t b1(u)dub(s)e−

∫ T
s a2(u)duds

∣∣∣∣Ft],
(1.19)

where the first part is expectation under the survival measure of both firms PA,B and

the second term is under firm A’s survival measure PA.

Using the framework of Lando (1998) and survival measure, Leung and Kwok

(2005) investigate the counterparty risk of CDS contracts with the default contagion

model of Jarrow and Yu (2001). Leung and Kwok analysed the excess swap premium

required for buying a new CDS after the CDS seller defaults. Apart from CVA, the

excess swap premium is another measure of losses to the CDS buyer due to the CDS

seller defaults. The results from Leung and Kwok (2005) illustrate that the level of

counterparty risk has significant impact on the excess swap premium, which means the

CDS buyer has to pay considerable extract amount for buying the same CDS after the

seller defaults. Bao et al. (2010) use the survival measure approach to give an analytic

solution to survival probabilities and guaranteed debt with CIR-type stochastic default

intensities and constant default contagion jumps. In this model, two firms’ default

intensities are two independent CIR processes before any firm defaults. After a firm

has defaulted, the surviving firms’ default intensities are the sum of their individual

default intensity process plus the defaulting firm’s intensity process. For example,

λA(t) = a(t) + 1{τB<t}ηBb(t)

λB(t) = b(t) + 1{τA<t}ηAa(t),

where a(t), b(t) are CIR processes, τA, τB are default times of firm A and B and ηA

and ηB are constants. However, the existence of the default firm’s default intensity

after the default event is questionable. Bao et al. (2012) extend the model of Bao

et al. (2010) to consider stochastic interest rate and the correlation between interest

rate and default intensities. Positive correlation is accounted for by formulating in-

terest rates as a linear combination of the intensity processes. Due to the tractability

of the model, the market value of counterparty default-free CDS can be derived with

the help of the survival measure, leading to a semi-analytic solution for the CVA. Also

the bilateral counterparty risk of a CDS contract is studied by Wang and Ye (2013).
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In order to study the correlation between interest rate and default intensities, Wang

and Ye specify the default intensities of three firms as simple functions of the interest

rate process r(t), which is a jump-Vasicek process with constant default contagions.

Under a three-firms framework, Wang and Ye study the fair price of CDS contracts

under defaultable CDS buyer and seller instead calculating CVA and DVA. Due to the

closed-form solution for jump-Vasicek process being available, the fair CDS spread can

be derived in closed-form and they found the impact from correlation between interest

rate and default risk is significant in CDS pricing. However, the model of Wang and

Ye violates the non-negative constraint of default intensity modelling, which we will

discuss in the following chapter. Leung and Kwok (2009) model default dependency

in terms of sharing external events. In this model, default intensities are modelled

as time-varying functions, which switch to a higher level after external events. The

arrival of external events are modelled as a Poisson process with affine jump-diffusion

arrival intensity, which is the only state-variable in their model. The model restricts

the number of external events to be 1, which allows the calibration of the time-varying

intensity functions to be matched to the implied survival probabilities exactly. Dong

et al. (2014c) combine the model of Leung and Kwok (2009) and the default contagion

models of Jarrow and Yu (2001) to allow both the default contagion between firms and

an external shock. The arrival intensity of external events is modelled as a Markov

chain with finite states. The CDS value process is derived as a semi-analytic solution

with or without counterparty risk. Dong and Wang (2014) consider a contagion model

with regime-switching. The default intensities are driven by both economic states,

which are modelled as a homogeneous Markov Chain, as well as the default state of

other firms. Using the survival measure, they derived a closed-form formula for the

survival probabilities and the CDS swap rate is obtained by means of Laplace trans-

forms of the integrated intensity process. Wang and Ye (2013) extend the contagion

model of Leung and Kwok (2005) to a three-firm framework. Rather than includ-

ing other firms’ default indicator functions in each firms’ default intensity process as

Jarrow and Yu (2001), these default intensities are described in three different states

where all three firms alive, one of them defaulted and two of them defaulted. When a

firm defaults, the surviving firms’ default intensity jumps to the corresponding state.

The technique of survival measure can still be applied and the survival probabilities
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as well as the fair CDS spread are still tractable.

1.4 Summary and Thesis Layout

In this chapter, we have introduced the concept of counterparty credit risk and its

measures CVA and DVA, which are the possible loss due to counterparty default and

possible gain due to the default of the investor itself on an OTC transaction. Then

we reviewed two credit risk models, the structural and reduced-form models. We are

particularly interested in reduced-form modelling due to its ability to match observable

market data or market implied survival probability. The calibration problem under

reduced-form framework will be no more than a least square minimisation with the set

of parameters. As long as market implied survival probabilities are matched, exotic

products can be priced with no-arbitrage. On the other hand, the capital structure,

a firm’s asset value as well as volatility are essential elements to structural models.

Unfortunately, all of these are non-observable and the estimation of those inputs is

itself a challenging topic.

Default correlation modelling is currently under much discussion, especially their

application to counterparty risk. We reviewed four kinds of correlation model, con-

ditional independent default, the Copula method, common shocks and default conta-

gions. Among these models, the mechanism of default contagion modelling is the most

intuitive and easy to interpret. However, contagion models commonly have calibra-

tion problems because how much damage a firm’s default can bring to others is not

observable in market. In addition, current contagion models have made many sim-

plifications in modelling default intensities as well as the form of default contagions

in order to maintain traceability. In this thesis, we will abandon traceability while

introduce a more realistic formulation of default contagion and incorporate another

source of default correlation in addition to default contagion.

The layout of this thesis is given as follows. In Chapter 2, we give the back-

ground theories of reduced-form modelling, and we show the derivation of Partial

Differential Equations (PDE) for pricing default bonds, pricing CDS with and with-

out counterparty risk and measuring the CVA due to buying a CDS protection. Then

the numerical schemes for solving the PDEs will be discussed in Chapter 3 including
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their efficiency and convergence. Then we propose a new default contagion model in

Chapter 4. We solve the corresponding PDEs and investigate the properties of a firm’s

marginal survival probabilities, joint survival probabilities, CDS spread and CVA un-

der the proposed new model. In Chapter 5, the proposed default contagion model is

extended to consider the impacts from the arrival of economy-wide events, which we

also refer to as external shocks or external events, on firms’ default intensities. Under

the new model, we extend numerical schemes for solving two-dimensional PDEs to

Partial-Integro Differential Equations (PIDEs) to solve the resulting two-dimensional

PIDEs in the new model. Further, we propose an extrapolation method to accommo-

date the boundary problem when solving PIDEs. Our new numerical scheme is shown

to be effective and efficient in solving our problems, especially combined with our

extrapolation techniques. Bilateral counterparty risk is studied in Chapter 6, where

the deafult contagion model in Chapter 5 is extended to a three-firm framework. We

propose a hybrid numerical scheme, which combines Monte-Carlo simulation with

finite-difference to price CDS spread and solving CVA and DVA under the default

contagion model. The behaviour of the CDS spread, CVA and DVA will be studied

under our model. Finally, the conclusions for the thesis are given in Chapter 7.



Chapter 2

Reduced-Form Modelling and

Pricing Derivatives

In Chapter 1, we gave an introduction to credit risk, counterparty credit risk and

structural models, reduced-form models. In this chapter, we first give some key theo-

rems in stochastic calculus that will be used frequently in this thesis. Then we explain

the foundations of reduced-form modelling for pricing credit claims in Section 2.2. In

Section 2.3, we discuss the PDEs, which we must solve to price defaultable bonds,

buyer CDS, buyer CDS with counterparty risk and the CVA due to holding a buyer

CDS.

2.1 Preliminary of Stochastic Process

In this thesis, we model stochastic processes of default time in order to capture our

desired features. However, there are certain conditions that a stochastic process must

satisfy in order to emit a solution, which will put constraints on our model. More

importantly, the existence and uniqueness of a stochastic process are essential for the

validation of some theorems. In this section, we outline the conditions for a stochastic

differential equation to have a solution as well as the Feynman-Kac Theorem, which

is frequently used in the derivation of partial differential equations in the rest of this

thesis.

42
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2.1.1 Existence and Uniqueness of stochastic differential equa-

tion

Suppose we are in the probability space (Ω,F ,Q), a n-dimensional stochastic differ-

ential equation is an equation of the form

dXt = α(Xt, t)dt+ β(Xt, t)dWt,with X0 = x0 and 0 ≤ t ≤ T (2.1)

where α(Xt, t) : [0, T ] × Rn → Rn, β(Xt, t) : [0, t] × Rn → Rn×n are given functions

called the drift function vector and the diffusion function matrix respectively. Wt is

an n-dimensional vector of standard Brownian motions.

In addition to equation (2.1), we must provide an initial condition X0 = x. The

filtration Ft is generated by the sample path of the Brownian motions 0 ≤ t and the

initial position of the process X0. The problem then is to find, at time t, the solution

Xt satisfies,

Xt = x0 +

∫ t

0

α(Xs, s)ds+

∫ t

0

β(Xs, s)dWs. (2.2)

The existence and uniqueness of a solution Xt satisfying (2.2) requires the drift and

volatility functions to satisfy conditions, for which we refer to Steele (2001) Theorem

9.1 and the main outline of the analysis is repeated below.

Theorem 2.1.1 (existence and uniqueness). If the coefficients of the stochastic differ-

ential equation (2.1) α(, ) : [0, T ]×Rn → Rn, β(, ) : [0, T ]×Rn → Rn×n be measurable

functions satisfying the linear growth condition

||α(x, t)||2 + ||β(x, t)||2 ≤ D(1 + ||x||2), x ∈ Rn, t ∈ [0, T ] (2.3)

for some constant C and the Lipschitz condition

||α(x, t)− α(y, t)||2 + ||β(x, t)− β(y, t)||2 ≤ C||x− y||2, x, y ∈ Rn, t ∈ [0, T ] (2.4)

for some constant D. Then the stochastic differential equation (2.1) exists a unique

continuous solution Xt adapted to the filtration Ft and is uniformly bounded in L2:

sup
0≤t≤T

E[X2
t ] <∞. (2.5)

The first condition (2.3) ensures the process Xt does not tend to infinity so that

a solution may exist for any t. Next, the second condition (2.4) will ensure that the

solution is unique.
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2.1.2 The Cauchy Problem and Feynman-Kac representation

Consider a n-dimensional Markov process Xt and functions f(x) : Rn → R, g(x, t) :

[0, T ] × Rn → R and k(x, t) : [0, T ] × Rn → [0,∞) be Borel-measurable bounded

functions and satisfy

|f(x)| ≤ L(1 + ||x||2P ) or f(x) ≥ 0, for ∀x ∈ Rn (2.6)

and

|g(x, t)| ≤ L(1 + ||x||2P ) or g(x, t) ≥ 0, for ∀0 ≤ t ≤ T,∀x ∈ Rn, (2.7)

for some L > 0, P ≥ 1.

Theorem 2.1.2 (Feynman-Kac theorem). Under the assumptions the linear growth

condition (2.3), suppose that v(x, t) : [0, T ] × Rn is C1,2([0, T ] × Rn) continuous and

satisfies the Cauchy problem

∂v

∂t
+A(v) + g(X, t)− k(X, t)v = 0, in [0, T )× Rn, (2.8)

with terminal condition

v(XT , T ) = f(XT ). (2.9)

If v(x, t) also satisfies the polynomial growth condition

max
0≤t≤T

|v(x, t)| ≤M(1 + ||x||2ν),

for some M > 0 and ν ≥ 1. Then v(X, t) admits the stochastic representation

v(Xt, t) = E
[
f(XT )e−

∫ T
t k(Xs,s)ds +

∫ T

t

g(Xs, s)e
−

∫ T
0 k(Xu,u)duds

∣∣∣∣Ft] (2.10)

on [0, T ]× Rn and such solution is unique.

The notation A() is the infinitesimal generator of Xt, which is defined to operate

on compactly-supported C2 functions h : Rm → R by

lim
t→0

1

t
(E[h(Xt)]− h(X0)) .

If the process Xt is defined as n-dimensional Markov process of the form (2.1), the

infinitesimal generator of acted on function v(Xt, t) is

A(v) =
∑
i

α(Xi, t)
∂v

∂Xi

+
∑
i,j

(ββT )i,j(Xi, t)
1

2

∂2v

∂Xi∂Xj

.
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The Feynman-Kac Theorem relates the expectation (2.10), which depends on the

stochastic process (2.2), and a partial differential equation (2.8). In this thesis, the

Feynman-Kac theorem is used for obtaining the partial differential equation from an

expectation so that the partial differential equation can be solved numerically to obtain

v(Xt, t). For a more detailed proof and discussion of the Feynman-Kac Theorem, we

refer to Shreve and Karatzas (1998) Chapter 5, Section B.

2.2 Pricing Credit Claims in Reduced-Form Mod-

els

Reduced form models were originally introduced by Jarrow and Turnbull (1992), who

first illustrate that Cox processes, also known as doubly stochastic Poisson processes,

provide a framework for pricing credit derivatives and these are now known as reduced-

form models. This paper was followed up by Jarrow and Turnbull (1995) and Lando

(1998), who went on to provide a coherent reduced-form modelling framework. This

section gives the introduction to reduced-form framework following Bielecki et al.

(2009).

In reduced-form or hazard process approach, there are two kinds of information.

One is the information regarding to the assets prices and other economic factors, which

is denoted as F = (Ft)t∈R+ . This filtration F is generated by market uncertainties,

such as interest rate processes and share price processes, but without information on

default times. The filtration Ft is also referred to as the market filtration in this

thesis. The other information contains the occurrence of default times. We assume

the default time τ a non-negative random variable on a probability space (Ω,G,Q),

satisfying Q (τ = 0) = 0 and Q (τ > t) > 0 for t ∈ R+. We introduce the right-

continuous default indicator process H by setting H(t) = 1{τ≤t} and H to denote the

filtration generated by the default process H, so that H = σ({τ ≤ u : u ≤ t}) for

any t ∈ R+. The total information available at time t is captured by the filtration

G = F ∨H, which is Gt = Ft ∨Ht for any time t ∈ R+. All filtrations are assumed to

satisfy conditions of right-continuous and completeness. The process H is G-adapted

but not F-adapted. In other words, the random time τ is G-stopping time but not an

F-stopping time.
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For any time t ∈ R+, we define Ft = Q (τ ≤ t|Ft), which satisfies F0 = 0 and

limt→∞ Ft = 1. On the other hand, we have a survival process Gt = Q (τ > t|Ft),

satisfying

Gt = 1− Ft.

Obviously, the process Ft and Gt follow a bounded and non-negative F-adapted sub-

martingale and super-martingale under Q measure respectively.

Definition 2.2.1. Assume that Ft < 1 for t ∈ R+. The F-hazard process of τ

under Q, denote by Λ, is defined through the formula 1 − Ft = e−Λt . Equivalently,

Λt = − ln(Gt) = − ln(1− Ft) for every t ∈ R+.

Throughout this thesis, the inequality Ft < 1 is assumed for every t ∈ R+ so that

the hazard process Λt is well defined.

Lemma 2.2.1. For any G−measurable and Q-integrable random variable X, we have

for any t ∈ R+,

EQ[1{t<τ}X|Gt] = 1{t<τ}EQ[X|Gt] = 1{t<τ}
EQ[1{t<τ}X|Ft]
Q(t < τ |Ft)

. (2.11)

For X = 1{τ≤T}, we have

Q(t < τ ≤ T |Gt) = 1{t<τ}
Q(t < τ ≤ T |Ft)

Q(t < τ |Ft)
= 1{t<τ}EQ [1− eΛt−ΛT |Ft

]
, (2.12)

where (2.12) is the default probability before time T .

For the complete proof of above Lemma 2.2.1, we refer to Bielecki et al. (2009).

Then the corollary to Lemma 2.2.1 follows

Corollary 1. Let X be a FT -measurable and Q-integrable random variable. Then for

every t ≤ T ,

EQ[1{T<τ}X|Gt] = 1{t<τ}
EQ[X1{T<τ}|Ft]
EQ[1{t<τ}|Ft]

= 1{t<τ}EQ[XeΛt−ΛT |Ft]. (2.13)

For the case in which the variable X = 1, (2.13) becomes

EQ [1{T<τ}|Gt] = 1{t<τ}EQ[eΛt−ΛT |Ft], (2.14)

which gives the survival probability up to time T . Lemma 2.2.1 and Corollary 1

are crucial important in reduced-form modelling. Because they enable the valuation
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of G-measurable random variables to be measured conditioning only on filtration F,

which implies credit claims can be evaluated with only the asset prices information

without default time information. Alternatively, Corollary 1 can be interpreted as

how a payment at time T conditional on no prior default can be measured. Then we

introduce the following lemmas to be used for the valuation of a recovery payment

occurs at default and the continuous payments At conditional on no default.

Lemma 2.2.2. Assume F is a continuous, increasing process so that the equality

dFt = e−ΛtdΛt is valid and Z is an F-predictable process such that the random variable

Zτ1{τ≤T} is Q-integrable. Then we have, for every t ≤ T ,

1{t<τ}EQ[Zτ1{τ≤T}|Gt] = 1{t<τ}EQ
[ ∫ T

t

ZudHu

∣∣∣∣Gt] = 1{t<τ}EQ
[ ∫ T

t

Zue
Λt−ΛudΛu

∣∣∣∣Ft]
(2.15)

Lemma 2.2.3. Assume that A is a bounded, F-predictable process of finite variation.

Then for every t ≤ T ,

EQ
[ ∫ T

t

(1−Hu)dAu

∣∣∣∣Gt] = 1{t<τ}EQ
[ ∫ T

t

eΛt−ΛudAu

∣∣∣∣Ft] (2.16)

We begin with defining the zero-coupon bonds, which are driven by the F-adapted

interest rate process rt for every t ∈ R+. The price at time t of a zero-coupon bond

with maturity T equals

D(t, T ) = EQ[e−
∫ T
t r(s)ds|Ft]. (2.17)

Every defaultable claim can be characterised by three kinds of payment, which is

the continuous payments At conditional on survival, the recovery payment at default

Zt, the one time payment conditional on survival at maturity XT . A generic default

claim can be represented as

V (t, T ) = EQ
[ ∫ T

t

D(t, s)(1−Hs)dAs +

∫ T

t

D(t, s)ZsdHs +D(t, T )(1−HT )XT

∣∣∣∣Gt].
(2.18)

Using Corollary 1, Lemma 2.2.2 and Lemma 2.2.3, (2.18) can be further derived as

V (t, T ) = 1{τ>t}EQ
[ ∫ T

t

D(t, s)eΛt−Λs(dAs + ZsdΛs) +D(t, T )eΛt−ΛTXT

∣∣∣∣Ft]. (2.19)

It is important to note default time τ and default process Ht are not involved in (2.19)

and the expectation is only conditional on filtration Ft which contains no default

information.
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If the process F is absolutely continuous so that Ft =
∫ t

0
fudu is valid for some

F-progressively measurable non-negative process f . Then the process Λ is also an

absolutely continuous and increasing process. Consequently, Λ admits a F-hazard rate

λ satisfying

Λt =

∫ t

0

λudu, (2.20)

which we refer λ as the F-intensity or stochastic intensity of default time τ . Finally,

we can further develop (2.19) into

V (t, T ) = 1{τ>t}EQ
[ ∫ T

t

D(t, s)e−
∫ s
t λudu(dAs + λsZsds) +D(t, T )e−

∫ T
t λsdsXT

∣∣∣∣Ft].
(2.21)

In terms of counterparty credit risk, we remind ourself of the definition of CVA

and DVA as equations (1.3), (1.4) and (1.5). These definitions can be extended under

the reduced-form framework. Incorporating the Corollary 1, Lemma 2.2.2 and Lemma

2.2.3 into equation (1.3), we obtain

CVA(t, T ) = EQ
[ ∫ T

t

e−
∫ s
t r(u)+λC(u)duλC(s)(1−RC(s)) max{Π(s, T ), 0}ds

∣∣∣∣Ft].
(2.22)

Similarly, we can evaluate the CVA of equation (1.4) as

CVA(t, T ) = EQ
[ ∫ T

t

e−
∫ s
t r(u)+λI(u)+λC(u)duλC(s)(1−RC(s)) max{Π(s, T ), 0}ds

∣∣∣∣Ft].
(2.23)

Finally, the DVA can be written as

DVA(t, T ) = −EQ
[ ∫ T

t

e−
∫ s
t r(u)+λI(u)+λC(u)duλI(s)(1−RI(s)) min{Π(s, T ), 0}ds

∣∣∣∣Ft].
(2.24)

2.2.1 Default times simulation

Here we briefly describe the most commonly-used algorithm for the construction of

a default time associated with the default intensity λ(t). First discussed by Norros

(1986), the algorithm is used for simulating Poisson processes to represent the life

times of technical systems. The algorithm is widely used for simulating default times

in reduced-form models for pricing credit claims in Monte Carlo simulation.

We assume that we are given an F -adapted, right-continuous process λ(t) defined

on a filtered probability space (Ω̃, F̃ , Q̃). After simulating the process up to time T ,
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we have the filtered probability space (Ω̃, F̃T , Q̃), which contains information up to

time T . Conditional on F̃T , the probability of survival is given by

Q(τ > T |F̃T ) = EQ
[
e−

∫ T
0 λ(s)ds

∣∣∣∣F̃T] .
However, as mentioned earlier, a probability does not explicitly give us a default

time. To construct a default time, we have to enlarge the probability space Ω̃ with a

probability space (Ω̂, F̂ , Q̂) defined by a (0, 1) uniform distributed random variable ξ.

The uniform variable ξ represents a simulated survival probability, which is compared

to Q(τ > T |F̃T ). Under the enlarged probability space (Ω,F ,Q), we define the default

time as

τ = inf{t ∈ R+ : e−Λt ≤ ξ} = inf{t ∈ R+ : Λt ≥ η}, (2.25)

where the random variable η = −ln(ξ) has a unit exponential law under Q. Intu-

itively, we compare the survival probability conditional on F̃T and a simulated survival

probability. If the survival probability conditional on F̃T is smaller than the one we

simulated, the default time is less than T . Specifically, the default time is the first

time at which the survival probability calculated by the sample path λ(t) is less than

the survival probability. For instance, If the sample path of default intensity λ(t)

simulated increases, this leads to a small survival probability and is more likely to be

less than a uniform (0, 1) random variable at an earlier time.

2.2.2 Recovery methods

Let the value Zt be the payment at the time of default. When the credit claim is a

bond, Zt will be the recovery value R(t) from the default corporate. There are some

ways to model recovery value R(t), which are discussed by Jarrow et al. (1997), Duffie

(1998) and Duffie and Singleton (1999), which consider recovery treasury, recovery of

face value and recovery market value respectively.

When the credit claim is a defaultable bond, we have X(T ) = 1. If the recovery

rate is 0, we have Z(τ) = 0. Therefore, defaultable bonds have the value of

V (t, T ) = 1{τ>t}EQ
[
e−

∫ T
t λ(u)+r(u)du

∣∣∣∣Ft] (2.26)

In this way the bond price is simply the default-free bond multiplied by the probability

of the entity surviving beyond maturity.
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The simplest case is assuming the default recovery in terms of a fraction of the

face value and is payable at the bond’s maturity. The valuation of a default bond is

straight forward as

V (t, T ) = 1{τ>t}EQ
[
e−

∫ T
t r(s)+λ(s)ds +

(
1− e−

∫ T
t λ(s)ds

)
Re−

∫ T
t r(s)ds

∣∣∣∣Ft]
= 1{τ>t}EQ

[
e−

∫ T
t r(s)ds − (1−R)e−

∫ T
t r(s)ds

(
1− e−

∫ T
t λ(s)ds

) ∣∣∣∣Ft]. (2.27)

Intuitively, a default bond with recovery R payable at maturity equals to a default

default-free bond minus the present value of loss given default times the probability

of default prior bond maturity.

If the amount of recovery is seen to be a fraction of the face value paid at the

default time, we have Z(τ) = R, which is a number between 0 and 1. As shown by

Duffie and Singleton (1999), the bond price becomes

V (t, T ) =1{τ>t}EQ
[ ∫ T

t

e−
∫ s
t λ(u)+r(u)duλ(s)Rds+ e−

∫ T
t r(s)+λ(s)ds

∣∣∣∣Ft].
Recovery can be a fraction of the contract value without default-risk. If the claim

is a default bond, Z(τ) = Re−
∫ T
τ r(s)ds, which is also referred recovery of treasury bond,

which is a risk-free bond, and the bond price is,

V (t, T ) =1{τ>t}EQ
[ ∫ T

t

e−
∫ s
t λ(u)+r(u)duλ(s)Re−

∫ T
τ r(s)dsds+ e−

∫ T
t λ(u)+r(u)du

∣∣∣∣Ft]
= 1{τ>t}EQ

[
Re−

∫ T
t r(u)du

∫ T

t

e−
∫ s
t λ(u)duλ(s)ds+ e−

∫ T
t r(u)due−

∫ T
t λ(u)du

∣∣∣∣Ft].
(2.28)

If the interest rate r(t) is independent of λ(t), (2.28) becomes

V (t, T ) = 1{τ>t}D(t, T ) (RQ(t < τ ≤ T |Ft) + Q(τ > T |Ft)) , (2.29)

which can be seem as the discounted value of a payment R at time T if the firm

defaults prior maturity T and a payment 1 at time T without defaults.

The recovery market value approach is to set the recovery amount to that of the

equivalent market value. Following Duffie and Singleton (1999), we assume Z(τ) =

R(τ)V (τ, T ), where R(τ) is a given F -predictable recovery process. Since V (t, T ) is

the market value of the defaultable claim and R(t) is the recovery rate, so this recovery

method is referred to as recovery market value. It can be shown that the default bond
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value is

V (t, T ) =1{τ>t}EQ
[
e−

∫ T
t r(u)+(1−R(u))λ(u)du

∣∣∣∣Ft].
Note that, a crucial distinction between the structural model and the reduced form

model is that the recovery rate process is pre-specified by the knowledge of the liability

structure in the structural approach, while it is exogenously supplied in reduced-form

models. Because in reduced-form models, the liability structure of a firm is usually

assumed to not be observable therefore the recovery rate is not observable either.

2.3 The Pricing of Credit Derivatives and PDEs

Bielecki and Rutkowski (2004) argue that within the framework of the intensity-based

approach, a default claim typically cannot be replicated by trading default-free claims.

Consequently the standard pricing argument based on replicating strategy does not

apply to this setting. However, the market is still arbitrage-free after introducing the

credit claim evaluated as (2.18). Since credit claims cannot be replicated or hedged by

trading default-free claims, then a partial differential equation cannot be derived by

arguing that a hedged credit claim yields a risk-free return. However, we are able to

assume the existence of some credit claims without breaking the arbitrage-free market

as long as prices are given by (2.18), according to Bielecki and Rutkowski (2004). Since

credit claims could be priced in the risk-neutral measure without breaking the no-

arbitrage condition, the valuation of credit derivatives under the risk-neutral measure

as (2.21) can be directly linked to PDEs through the Feynman-Kac theorem. For

example, Duffie and Singleton (1999) and Duffie (2005) use this idea to present the

PDE of a defaultable bond with AJD stochastic default intensity. Alternatively, a

differential equation for a product can be derived by constructing a risk-free portfolio,

which has risk-free return, such as Black and Scholes (1973). The resulting PDEs

that are constructed from a risk-free portfolio must align with the one derived from

applying the Feynman-Kac theorem to the expectation under the risk-neutral measure.

Due to increasing popularity in counterparty risk research, Burgard and Kjaer

(2011) derived a PDE representation for an option contract with counterparty risk and

funding cost, which enables them to obtain a PDE for CVA pricing. They describe a
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replicating strategy for a counterparty risky option using a zero recovery bond issued

by the counterparty itself in order to derive an extension to the Black-Scholes PDE,

with the presence of bilateral counterparty risk. Burgard and Kjaer (2011) show that

counterparty’s default risk leads to an extra term in the original PDE for the option’s

value, which is the default pay-off multiplied by the counterparty’s default intensity.

They demonstrate how the Feynman-Kac representation for this PDE aligns with the

valuation framework described in Section 1.2 when the contract value at default is

taken as the counterparty risk-free value. The approach of Burgard and Kjaer (2011)

is further discussed by Kromer et al. (2015), who show that the Feynman-Kac theorem

can be applied to the CVA with jump-diffusion.

We are interested in PDEs for valuing default bonds, CDS as well as CVA. Because

the model we propose does not allow for closed-form solutions of the survival proba-

bility, neither CDS nor CVA valuations can be evaluated with semi-analytic solutions.

Consequently, we must evaluate these by numerically solving the differential equations

in Chapter 3, 4, 5. In this chapter, we consider defaultable bonds and CDS with and

without counterparty credit risk. In additional to applying the Feynman-Kac theo-

rem to expectations to obtain these PDEs, we also attempt to derive those PDEs by

constructing risk-free portfolios if by assuming that specific products are available for

hedging. This is distinct from the work of Burgard and Kjaer (2011), where default

intensities are constant, since we also consider stochastic default intensities. Next, we

show that the PDE for the CVA from holding a counterparty risky CDS contract can

be found following the method of Burgard and Kjaer (2011). This PDE representation

of a CVA aligns with the expectation form of CVA as defined by the Feynman-Kac

theorem.

2.3.1 Default bonds

Consider an economy with a risk-free bond, which is equivalent to the discount fac-

tor D(t, T ) that is defined by (2.17). To simplify, we assume there is a flat term-

structure for the risk-free rate. This economy is described by a filtered probability

space
(
Ω,Gt≥0,Q

)
, where Q is an equivalent martingale measure under which the dis-

counted asset value processes are all martingale. The filtration Gt satisfies Gt = Ft∨Ht,
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where Ht is generated by the default process H(t) = 1{τ≤t}. Ft is the market filtra-

tion generated by any market uncertainties except the information of default times.

Assume Ft = Q(τ ≤ t|Ft) is absolutely continuous so that the default time τ has a F-

adapted non-negative stochastic intensity λ(t). We assume λ(t) satisfies the stochastic

differential equation

dλQ(t) = αQ(λt, t)dt+ βQ(λt, t)dW
Q
t , (2.30)

whereWQ
t is a Ft-measurable one-dimensional Brownian motion. αQ(λt, t) and βQ(λt, t)

are Lipschitz real value functions satisfying (2.3) and (2.4) so that the solution to (2.30)

exist and unique.

Bonds are the fundamental products in financial markets. Investors of bonds pay an

initial payment to the bond issuer and are guaranteed by the issuer that the principle

will be paid back at the maturity plus interest. However, if the issuer of a bond is a

corporation, it may go into liquidation before the bond maturity and may not have

enough assets to pay back its liability. In this case, the investor can only receive

a fraction, if any, of the guaranteed value. Denote a defaultable bond at time t

that matures at time T as B̃(λt, t, T ), its value under the risk-neutral measure using

reduced-form modelling is

B̃(t, T ) = 1{τ>t}EQ
[ ∫ T

t

e−
∫ s
t r+λuduλsRsds+ e−

∫ T
t r+λsds

∣∣∣∣Ft], (2.31)

which is a special case of (2.21) with XT = 1, As = 0, Zs = Rs and flat interest rate.

It is obvious that the terminal condition is f(λT , T ) = XT = 1 and g(λt, t) =

λ(t)R(t) satisfies conditions (2.6) and (2.7) respectively given R(t) ∈ [0, 1]. Besides,

since λ(t) is assumed to satisfy (2.3) and (2.4), then r + λ(t) is bounded. Assume the

bond value function B̃(λtt, T ) is C1,2 with respect to time and λt, then we know from

the Feynman-Kac Theorem that (2.31) implies that B̃(λt, t, T ) solves the backward

Kolmogorov partial differential equation

∂B̃

∂t
+ αQ(λ, t)

∂B̃

∂λ
+

1

2
β2Q(λ, t)

∂2B̃

∂λ2
+ λRt − (r + λ)B̃ = 0. (2.32)

In order to have a better interpretation of pricing derivatives with stochastic default

intensity, we show how the risk of credit derivatives can be hedged and lead to a PDE

under the risk-neutral measure. Similar to Black and Scholes (1973), we begin with
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the dynamics of a non-negative default intensity process under physical measure P

dλPt = αP(λt, t)dt+ βP(λt, t)dW
P
t , (2.33)

where W P
t is a one-dimensional Brownian motion under physical measure P, αP(λt, t)

and βP(λt, t) are Lipschitz real value functions satisfying usual conditions.

The relationship between the process under physical measure (2.33) and the one

under the risk-neutral measure (2.30) lies on changing the Brownian motion’s proba-

bility measure, which is described by Girsanov’s Theorem.

Theorem 2.3.1 (Girsanov’s Theorem). Begin with a probability space (Ω,F ,P) and a

non-negative random variable Z satisfying EP[Z] = 1, We can define a new probability

measure Q by the formula

Q(A) =

∫
A

Z(ω)dP (ω), ∀A ∈ F .

Then any random variable has two expectations under measure P and Q given by the

formula

EQ[X] = EP[ZX].

If P(Z > 0) = 1 then P and Q agree which sets have 0 probability, which we call Q a

probability measure equivalent to P. We say Z is the Radon-Nikodým derivative of Q

with respect to P, which is written as

Z =
dQ
dP

. (2.34)

In particular, if W P
t , 0 ≤ t ≤ T , is a Brownian motion under measure P and let

Ft, 0 ≤ t ≤ T , be a filtration for this Brownian motion. let Θt, 0 ≤ t ≤ T , be an

adapted process, we can define the Radon-Nikodým derivative as

Zt = exp

(
−
∫ t

0

ΘsdWs −
1

2

∫ t

0

Θ2
sds

)
(2.35)

and assume that

EP[

∫ T

0

Θ2
sZ

2
sds] <∞. (2.36)

Then EP[ZT ] = 1 and the process

WQ
t = Wt +

∫ t

0

Θsds (2.37)

is a Brownian motion under the probability measure Q.
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The hedging strategy of defaultable bonds with stochastic default intensity is anal-

ogous to the hedging strategy of risk-free bonds discussed in Wilmott et al. (1995).

Since there are no other products depending on the intensity process, a defaultable

bond needs to be hedged by another defaultable bond with the same issuer but differ-

ent maturity. Denote B̃1 and B̃2 as two defaultable bonds with different maturities.

The change in value when holding the two defaultable bonds are

dB̃1 =

(
∂B̃1

∂t
+ αP(λt, t)

∂B̃1

∂λ
+

1

2
β2P(λt, t)

∂B̃2
1

∂λ2

)
dt

+ βP(λt, t)
∂B̃1

∂λ
dW P

t + (R(t)− B̃1)dHt

dB̃2 =

(
∂B̃2

∂t
+ αP(λt, t)

∂B̃2

∂λ
+

1

2
β2P(λt, t)

∂B̃2
2

∂λ2

)
dt

+ βP(λt, t)
∂B̃2

∂λ
dW P

t + (R(t)− B̃2)dHt.

(2.38)

The problem is that there are two kinds of risk in these bonds, namely the risk of the

default intensity changing and the risk of a jump-to-default. The value process of a

default bond changes according the changes in the stochastic process, which lead to

the Itô’s formula term, and the cash flow due to the default process H(t) jumps.

Consider a portfolio which comprises a long position in B̃1 and ∆ amounts of B̃2

Π = B̃1 −∆B̃2,

then the change in value over a small instant in time can be written as

dΠ =
(
(∂t+ L)B̃1 −∆(∂t+ L)B̃2

)
dt+ β

(
∂B̃1

∂λ
−∆

∂B̃2

∂λ

)
dWt

+
(
R(t)− B̃1 + ∆(R(t)− B̃2)

)
dHt,

(2.39)

where

L = αP(λt, t)
∂

∂λ
+

1

2
β2P(λt, t)

∂2

∂λ2
.

In order to hedge risk of default intensity moves, the amount ∆ should be chosen as

∆ =
∂B̃1

∂λ

/
∂B̃2

∂λ
, (2.40)

which is a ratio of the sensitivities of two default bonds’ value to the default intensity.

However, a hedging portfolio, which is composed of two risky bonds with different

maturities, can hedge the intensity risk but unfortunately the jump risk will still
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remain. The portfolio is still subject to jump risk which we can see from the following

dΠ =

(
(∂t+ L)B̃1 −

∂B̃1

∂λ

/
∂B̃2

∂λ
(∂t+ L)B̃2

)
dt

+

(
R(t)− B̃1 −

∂B̃1

∂λ

/
∂B̃2

∂λ
(R(t)− B̃2)

)
dHt.

(2.41)

The jump risk therefore remains in the portfolio and cannot be hedged away only

with bonds. In order to hedge jump risk while avoiding the risk from stochastic

intensity, a product that is exposed purely to jump risk is required. Here, we assume

that there exists an insurance contract I(t) traded on the market. The insurance

contract matures in the next infinite small time dt and a unit amount is paid to the

investor if the company defaults. In exchange for the protection, the buyer pays a

variable rate as insurance premium. The probability of a jump in the limit of small

time dt is λdt. So the insurance product is fair and both parties can enter the contract

without requiring compensation from the other if the expected insurance payment is a

value that is equal to the expected default payment. Therefore, the fair rate at which

the protection buyer should pay the seller is λ(t)dt. The return from the product is

then

dIt = rItdt− λtdt+ dHt. (2.42)

We know that E[−λtdt + dHt|G0] = 0 for any t > 0 and it follows that the value of

the product It will stay at 0 if no up-front payment is required such that It=0 = 0.

Because the contract matures in a very short time, it is safe to argue this product is

not subject to intensity risk. However, whether this product exists in the market is

under question.

Simple algebra tells us that the amount of this insurance product we need to hold

in order to hedge the jump risk in our portfolio is B1 + ∆B2. Therefore, the hedging

portfolio now becomes

Π′ = B̃1 −∆B̃2 +
(
R(t)− B̃1 −∆(R(t)− B̃2)

)
I, (2.43)

and (2.41) becomes

dΠ′ =

(
(∂t+ L)B̃1 −

∂B̃1

∂λ

/
∂B̃2

∂λ
(∂t+ L)B̃2

)
dt

+ λt

(
R(t)− B̃1 −

∂B̃1

∂λ

/
∂B̃2

∂λ
(R(t)− B̃2)

)
dt = rΠ′dt.

(2.44)
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After arranging the terms with B1 on the left-hand-side and B2 on the right-hand-

side, there follows

(∂t+ L − λ)B̃1 + λtR(t)− (r + λt)B̃1

∂B̃1/∂λ
=

(∂t+ L − λ)B̃2 + λtR(t)− (r + λt)B̃2

∂B̃2/∂λ
.

(2.45)

Because both sides of (2.45) are a function of their corresponding maturity, the value

they are equal to must be a function independent of maturity. Similar to the approach

in Wilmott et al. (1995) to derive PDE for risk-free bonds, we assume the function

that both sides of (2.45) equal to is (αQ(λ(t), t)−ωβQ(λ(t), t)). From this, it is simple

to show that

∂B̃

∂t
+ (αQ(λ(t), t)− ωβP(λ(t), t))

∂B̃

∂λ
+

1

2
β2P(λ(t), t)

∂2B̃

∂λ2
+ λ(t)R(t)− (r+ λ(t))B̃ = 0

where ω represents the return for bearing the risk of intensity moves, namely the

market price of risk. Hence, we are assuming that the intensity process is under the

risk-neutral measure where the market price of risk is 0 and discounted value process

is a martingale. The dynamics of the default intensity under Q−measure are (2.30)

and the relationship

ω =
αP(λ(t), t)− αQ(λ(t), t)

βP(λ(t), t)
(2.46)

βQ(λ(t), t) = βP(λ(t), t) (2.47)

holds.

Defining the market price of risk as (2.46), it is essentially to assume

Θt =
αP(λ(t), t)− αQ(λ(t), t)

βP(λ(t), t)
. (2.48)

Then the relation between the Brownian motion under Q measure and physical mea-

sure P is described as

WQ
t = W P

t +

∫ t

0

Θsds. (2.49)

It is easy to clarify that by substituting dW P
t = dWQ

t − Θt into (2.33) then (2.30)

follows.

Assuming we are under the risk-neutral measure and discarding the superscripts,

the pricing PDE of the default bond is

∂B̃

∂t
+ αQ(λt, t)

∂B̃

∂λ
+

1

2
β2Q(λt, t)

∂2B̃

∂λ2
+ λ(t)R(t)− (r + λ(t))B̃ = 0, (2.50)
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with terminal condition B̃(T, T ) = 1 for any maturity, which is equivalent to saying

that the value process of a default bond is

dB̃

B̃
=
(
r(t) + λ(t)

)
dt− (1−R(t))dH(t).

If H(t) changes from 0 to 1, the bond jumps to 0 and stays unchanged. It is easy to

show the discounted price process B̂ = B̃/B is also a martingale.

2.3.2 Credit default swaps

In this section, we look at CDSs and their valuation, and then a PDE representation

of the CDS is derived. A credit default swap is an agreement between two parties,

namely the protection buyer and the protection seller. The protection seller is required

to make a payment to cover the loss of the protection buyer when a particular default

event happens to a third party, called the referencing entity. In return, the protection

buyer has to make a periodic payment at times T1, ..., TN , until a credit event happens

or the maturity of the contract, whichever comes first. This payment is quoted as an

annual rate against the value or notional under protection, namely the swap premium

or spread. For simplification, a unit notional amount is used. If the default event

happens between two payment dates, an accrual payment is paid to the protection

seller. The amount is a fraction of the swap premium representing the protection fee

from the last payment date to default time.

Credit Default Swap valuation

We denote the default time of the referencing firm by τ , the swap premium as S, t is

the contract initial time and T = TN is the maturity. The value of a CDS contract

has two components, namely default value and premium value. The protection buyer

promises to cover the losses of the bond issued by the referencing firm at the time the

firm defaults. The present value of the default value is

EQ
[
LGD(τ)×D(t, τ)1{t<τ<T}

∣∣∣∣Gt], (2.51)

where LGD(τ) is the loss given default at time τ .

On the other hand, the premium value is

EQ

[
N∑
n=1

1{τ>Tn}S(Tn − Tn−1)D(t, Tn) +D(t, τ)
τ − Tn−1

Tn − Tn−1

S

∣∣∣∣Gt
]
. (2.52)
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From the prospective of a protection buyer, who is paying premium value and receiving

default value, the value of the CDS contract is

CDS(t, T ) =EQ
[
LGD(τ)×D(t, τ)1{t<τ<T}

∣∣∣∣Gt]
−EQ

[
N∑
n=1

1{τ>Tn}S(Tn − Tn−1)D(t, Tn) +D(t, τ)
τ − Tn−1

Tn − Tn−1

S

∣∣∣∣Gt
]
.

(2.53)

To be aligned with the notations from Section 2.2, we denote

A(t) = −
N∑
n=1

1{t>Tn}S(Tn − Tn−1)

X(T ) = 0

Z(t) = LGD(t)− τ − Tn−1

Tn − Tn−1

S

(2.54)

from rhe prospective of the CDS protection buyer.

Combined with the results on valuation credit claims with the reduced-form model

from Section 2.2, (2.53) can be written as

CDS(t, T ) =EQ
[∫ T

t

D(t, s)e−
∫ s
t λuduλ(s)

(
LGD(s)− s− Tn−1

Tn − Tn−1

S

)
ds

∣∣∣∣Ft]
−EQ

[
N∑
n=1

e−
∫ Tn
t λuduS(Tn − Tn−1)D(t, Tn)

∣∣∣∣Ft
]
.

(2.55)

If we assume the mutual independence between interest rate, default time, loss

given default as well as assuming that the survival probability has a closed-form solu-

tion, the CDS value as (2.55) has a semi-analytic solution,

CDS(t, T ) =

∫ T

t

D(t, s)Q(τ > s)fQ
λ (t, s)

(
LGD(s)− s− Tn−1

Tn − Tn−1

S

)
ds

−
N∑
n=1

Q(τ > Tn)S(Tn − Tn−1)D(t, Tn),

(2.56)

where fQ
λ (t, s) is time s forward default intensity measured at time t. In the remainder

of this thesis, (2.56) is used for pricing CDS whenever analytic solutions to survival

probability are available.

CDSs are quoted as a spread S∗ and are chosen so as to make both the default value

and the premium value equal, and as such it is called the fair spread. Once the spread

is fixed after initial agreement, the CDS’s value can change due to the fluctuation of
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credit intensity and default events. After rearranging the terms in equation (2.55)

with CDS(t, T ) = 0, the fair spread becomes

S∗ =
EQ
[
LGD(τ)D(τ, T )1{t<τ<T}|Gt

]
EQ

[
N∑
n=1

1{τ>Tn}(Tn − Tn−1)D(t, Tn) +D(t, τ)
τ − Tn−1

Tn − Tn−1

∣∣∣∣Gt
] , (2.57)

or equivalently,

S∗ =

EQ
[∫ T

t
D(t, s)e−

∫ s
t λuduλ(s)LGD(s)ds

∣∣∣∣Ft]
EQ

[∑N
n=1 e

−
∫ Tn
t λudu(Tn − Tn−1)D(t, Tn)

∫ T
t
D(t, s)e−

∫ s
t λuduλ(s) s−Tn−1

Tn−Tn−1
ds

∣∣∣∣Ft] .
(2.58)

With (2.58), it becomes convenient to numerically evaluate the fair spread. The fair

spread can be evaluated from solving (2.55) twice with different parameters. Setting

the LGD(t) to be zero solves the denominator of (2.58) and S = 1 solves the numerator.

The fair spread is obtained by dividing the two numerical solutions to the denominator

and numerator. In the later chapters, this method is used for evaluating fair spread

when analytic solutions are not available for the survival probability.

Differential Equation for CDS

In the last section, we showed that the CDS value can be expressed as the expectation

of the present value of the default leg and the premium leg in (2.55). In a constant

interest rate environment, as assumed here, (2.55) further reduces to

CDS(t, T ) =EQ
[ ∫ T

t

e−
∫ s
t r+λuduλ(s)

(
LGD(s)− s− Tn−1

Tn − Tn−1

S

)
ds

∣∣∣∣Ft]
−EQ

[ N∑
n=1

e−
∫ Tn
t r+λuduS(Tn − Tn−1)

∣∣∣∣Ft], (2.59)

on which we can apply Feynman-Kac Theorem.

It is easy to verify that the functions λ(s)
(
LGD(s)− t−Tn−1

Tn−Tn−1
S
)

and S(Tn−Tn−1)

satisfy the conditions (2.7) given the LGD(t) is finite. In a CDS contract, no cash

flow occurs due to the expiry of the contract thus the terminal condition is 0, which

must satisfy (2.6). However, the value function CDS(t, T ) is not continuous in time

everywhere. The value jumps at the time the protection buyer pays the premium. As
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the Feynman-Kac theorem requires the value process to be C1,2, it only applies to the

time intervals between two successive payment times, which are t = T0, T1, ..., Tn, ...,

TN = T . Let us denote the CDS value as V whose value is driven by the stochastic

process (2.30), by the Feynman-Kac theorem we have the PDE for a CDS contract as

∂V

∂t
+ αQ(λ, t)

∂V

∂λ
+

1

2
β2Q(λ, t)

∂2V

∂λ2
+ λ

(
LGD(t)− S t− Tn−1

Tn − Tn−1

)
− (r + λ)V = 0

(2.60)

for t ∈ (Tn−1, T
−
n ) and n = 1, 2, ....N with jump conditions

V (T−n , T ) = V (Tn, T )− S(Tn − Tn−1) for n = 1, 2, ....N. (2.61)

The jump condition appearing here is analogous to that of the PDE of coupon-bearing

bonds derived in Wilmott et al. (1995).

Apart from using the Feynman-Kac to obtain the PDE directly, we attempt to

derive the PDE using a hedging strategy. For the same reason, Itô’s formula only

applies to each time intervals (Tn−1, Tn). The changes in value due to holding a CDS

contract in the limit of small time dt is

dV =
∂V

∂t
dt+

∂V

∂λ(t)
dλP(t) +

1

2
β2P(λ(t), t)

∂V 2

∂λ2
dt

+

(
LGD(t)− S t− Tn−1

Tn − Tn−1

− V
)
dHt

(2.62)

for t ∈ (Tn−1, Tn) and n = 1, 2, ....N .

Note that (2.62) is still under physical measure, but it is shown later in this section

that the drift in physical measure will be replaced by the drift under the risk-neutral

measure. The changes in CDS value also according to two factors. One is the value

change due to the stochastic behaviour of the default intensity, where Itô’s formula

applies, and the default cash flows may receive from holding the contract. If the

reference firm defaults, the CDS buyer will receive LGD(t) amount from the seller and

the CDS contract ends. There is a jump condition V (T−n , T ) = V (Tn, T )−S(Tn−Tn−1)

at Tn for n = 1, ..., N .

When holding a CDS, the investor is in a short position to the referencing firm’s

credit risk. In order to hedge, the strategy is to long a portion of a default bond to

hedge the intensity risk and some of the insurance products, which we assumed to

exist in Section 2.3.1, to hedge the jump risk.
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Π = V + ∆1B̃ + ∆2I.

Differentiating the portfolio we have

dΠ =

(
∂V

∂λ
+ ∆1

∂B̃

∂λ

)
dλP(t)

+ (LV ) dt+ ∆1

(
LB̃
)
dt−∆2λdt

+

((
LGD(t)− S∗ t− Tn−1

Tn − Tn−1

− V
)

+ ∆1(R(t)− B̃) + ∆2

)
dHt,

for t ∈ (Tn−1, Tn) and n = 1, 2, ....N , where the operator

L ≡ ∂

∂t
+

1

2
β2P(λ(t), t)

∂2

∂λ2
.

The risk of jump to default and changing default intensity can be hedged out if

∆1 = −∂V
∂λ

/∂B̃
∂λ

∆2 = −∆1(R(t)− B̃)−
(
LGD(t)− S t− Tn−1

Tn − Tn−1

− V
)
.

Then the portfolio should have risk-free return r,(
LV + λ(t)

(
LGD(t)− S t− Tn−1

Tn − Tn−1

− V
))
− ∂V

∂λ

/
∂B̃

∂λ

(
LB̃ − λ(t)B̃

)
= r

(
V − ∂V

∂λ

/
∂B̃

∂λ
B̃ + ∆2I(t)

)
,

for t ∈ (Tn−1, Tn), and n = 1, 2, ....N . Because I(t) is shown to have zero value any

time, arranging the above equation leads to(
∂V

∂t
+

1

2
β2P(λ(t), t)

∂2V

∂λ2
+ λ(t)(LGD(t)− S t− Tn−1

Tn − Tn−1

− V )− rV
)

− ∂V

∂λ

/
∂B̃

∂λ

(
∂B̃

∂t
+

1

2
β2P(λ(t), t)

∂2B̃

∂λ2
+ λ(t)R(t)− (r + λ(t)B̃)

)
= 0,

(2.63)

for t ∈ (Tn−1, Tn), and n = 1, 2, ....N . The last important step is to remove terms

including the defaultable bond B̃. From Section 2.3.1, we know that default bonds

should satisfy (2.50) under the risk-neutral measure. Given the relationship βP(λt, t) =

βQ(λt, t), we are able to replace βP(λt, t) with βQ(λt, t). After substituting (2.50) into
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the above PDE, we have(
∂V

∂t
+

1

2
β2Q(λ(t), t)

∂2V

∂λ2
+ λ(t)

(
LGD(t)− S t− Tn−1

Tn − Tn−1

− V
)
− rV

)
− ∂V

∂λ

/
∂B̃

∂λ

(
αQ(λt, t)

∂B̃

∂λ

)
= 0

(2.64)

for t ∈ (Tn−1, Tn) and n = 1, 2, ....N . The risk-neutral drift of default intensity αQ(λt, t)

is introduced into (2.64) by the hedging strategy and it is equivalent to (2.60), which

is obtained by directly applying the Feynman-Kac theorem.

Comparing (2.50) and (2.60), it is noticeable that the difference lies in the cash

flows when default occurs. Since both CDSs and default bonds depend on the default

intensities, their first three terms are identical given a risk-neutral dynamic of a default

intensity. The term λV can be interpreted the extra rate of return λ for bearing default

risk.

2.3.3 Credit default swaps with unilateral counterparty credit

risk

In this section we study the PDE of the CDS contract with counterparty risk. This

arises when buyers and/or sellers involved in the trade may default. Suppose there

are three entities in the economy, namely A, B and C. To begin with, we shall only

consider the default risk of the referencing firm and the CDS seller, which are firms B

and C. Suppose we have a filtered probability space
(
Ω,Gt≥0,Q

)
with two G-stopping

times τB and τC . The filtration Gt satisfies Gt = Ft ∨ Ht, where Ft represents all

default free information available in the market. The filtration Ht is defined by the

combination of two sub-filtrations

Ht = HB
t ∨HC

t ,

where HB
t and HC

t are generated by the firm B and C’s default process HB
t = 1{τB≤t}

and HC
t = 1{τC≤t} respectively. Suppose the Q(τB ≤ t|Ft) and Q(τC ≤ t|Ft) are

absolutely continuous so that admit F-adapted stochastic intensities λQB(t) and λQC(t),
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we modelled the intensities as

dλQB(t) = αQ
B(λQB(t), t)dt+ βQ

B(λQB(t), t)dWQ
B (t),

dλQC(t) = αQ
C(λQC(t), t)dt+ βQ

C(λQC(t), t)dWQ
C (t),

d < WQ
B (t),WQ

C (t) >= ρdt.

(2.65)

Suppose there are default bonds of firm B and C, BB(t, T ) and BC(t, T ), and

insurance products, IB(t) and IC(t), traded in the market. Assuming that the default-

free parties A trade a credit default swap written on the entity B’s credit risk. The

entity A is buying protection reference to the entity B from the entity C. Since entity

C can default, the value of CDS depends not only on market variable λQB(t), but λQC(t)

as well. In a constant interest rate environment, the value of a CDS contract with

counterparty default risk, denoted as V̂ , is

V̂ (t, T ) =1{τB>t,τC>t}

×
(
EQ
[∫ T

t

e−
∫ s
t r+λ

Q
B(u)+λQC(u)duλQB(s)

(
LGD(s)− s− Tn−1

Tn − Tn−1

S

)
ds

∣∣∣∣Ft]
−EQ

[
N∑
n=1

e−
∫ Tn
t r+λQB(u)+λQC(u)duS(Tn − Tn−1)

∣∣∣∣Ft
]

+EQ
[∫ T

t

e−
∫ s
t r+λ

Q
B(u)+λQC(u)duλQC(s)

(
RCM

+(s, T ) +M−(s, T )
)
ds

∣∣∣∣Ft]),
(2.66)

where M(t, T ) denotes the CDS’s close-out value at the counterparty’s default time.

Close-out is what happens when one party defaults on a trade then the residual value

of the contract should be determined under the regulation of ISDA (2009). Because it

depends on the sign of the contract value, the cash flow at different default times will be

different. The legal document ISDA (2009) specifies that the surviving entity receives

a recovery value of the contract if the contract has positive value i.e. M(t, T ) > 0

from the perspective of the alive entity. Otherwise, the full contract value should be

paid to the defaulting entity if the value is negative i.e. M(t, T ) < 0.

The methodology to determine the close-out value M(t, T ) is itself a research area

studied by Brigo and Morini (2010), Brigo and Morini (2011), Gregory and German

(2013) and Burgard and Kjaer (2011). Under the regulation of ISDA (2009), market

participants are able to choose whether to take counterparty credit risk into account

when determining the close-out value, namely risk-free close-out and risky close-out
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(or replacement close-out). In other words, M(t, T ) could be specified as the CDS

value without or without counterparty default risk. In this section, we do not specify

the close-out convention to keep the formulation to be general.

As we have previously discussed in Section 2.3.2, the cash flows of a CDS must

satisfy the condition (2.7). Now, the cash flow at counterparty’s default time

λQC(s)
(
RCM

+(s, T ) +M−(s, T )
)

is just a function of a CDS’s value at counterparty’s default time, which is bounded by

the default payoff. Therefore, it must satisfies (2.7). After assuming the value function

V̂ to be C1,2, we can apply the Feynman-Kac Theorem periodically to (2.66), which

leads to

∂V̂

∂t
+ αQ

B(λB, t)
∂V̂

∂λB
+ αQ

C(λC , t)
∂V̂

∂λB

+
1

2
β2Q
B (λB, t)

∂2V̂

∂λ2
B

+
1

2
β2Q
C (λC , t)

∂2V̂

∂λ2
C

+ ρβQ
B(λB, t)β

Q
C(λC , t)

∂2V̂

λBλC

+ λQB

(
LGD(t)− S t− Tn−1

Tn − Tn−1

)
+ λC(RCM(t, T )+ +M(t, T )−)

− (r + λQB + λQC)V̂ = 0

(2.67)

for t ∈ (Tn−1, Tn) with n = 1, 2, ....N and the jump condition

V̂ (T−n , T ) = V̂ (Tn, T )− S(Tn − Tn−1) for n = 1, 2, ....N, (2.68)

applies to (2.67).

In addition to the CDS contract without counterparty risk, the value changes due

to holding a CDS contract sold by a defaultable seller will have an extra cash-flow in

the case of a counterparty default, which is

dV̂ =

(
∂V̂

∂t
+ αP

B(λB, t)
∂V̂

∂λB
+ αP

C(λC , t)
∂V̂

∂λC
+

1

2
β2P
B (λB, t)

∂2V̂

∂λ2
B

+
1

2
β2P
C (λC , t)

∂2V̂

∂λ2
C

+ βP
B(λB, t)

∂V̂

∂λB
dW P

B(t) + βP
C(λC , t)

∂V̂

∂λC
dW P

C(t) + ρβP
B(λB, t)β

P
C(λC , t)

∂2V̂

∂λBλC

)
dt

+

(
LGD(t)− S s− Tn−1

Tn − Tn−1

− V̂
)
dHB

t + (RCM(t, T )+ +M(t, T )− − V̂ )dHC
t

for t ∈ (Tn−1, Tn) with n = 1, 2, ....N .

We now construct a portfolio, which is composed of five instruments

Π = V̂ + ∆1B̃B + ∆2B̃C + ∆3IB + ∆4IC , (2.69)
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where two bonds are used to hedge out the intensity risk of party B and C and jump

risks are hedged by the insurance products on firm B and C. Following a similar

procedure as before when deriving the PDE for a counterparty default-free CDS, we

find that in order to eliminate risk we must choose

∆1 = − ∂V̂

∂λB

/
∂B̃B

∂λB
,

∆2 = − ∂V̂

∂λC

/
∂B̃C

∂λC
,

∆3 = ∆1(B̃B −RB(t))− (LGD(t)− V̂ ),

∆4 = ∆2(B̃C −RC(t))− (RCM(t, T )+ +M(t, T )− − V̂ ).

So, if we look at the values changes from holding the entire portfolio, we have

dΠ =
(
LBC V̂ + ∆1LBB̃B + ∆2LCB̃C −∆3λ

Q
B −∆4λ

Q
C

)
dt = rΠdt, (2.70)

for t ∈ (Tn−1, Tn) with n = 1, 2, ....N , where

LBC =
∂

∂t
+

1

2
β2P
B (λB, t)

∂2

∂λ2
B

+
1

2
β2P
C (λC , t)

∂2

∂λ2
C

+ ρβP
B(λB, t)β

P
C(λC , t)

∂2

λBλC
,

LB =
∂

∂t
+

1

2
β2P
B (λB, t)

∂2

∂λ2
B

,

LC =
∂

∂t
+

1

2
β2P
C (λC , t)

∂2

∂λ2
C

.

Now since both the risk of changing default intensities and the risk of jump to

default are hedged, this portfolio Π must have risk-free return. Note that (2.70) is a

PDE containing three products B̃B, B̃C and V̂ then because B̃B and B̃C both satisfy

(2.50), the following relationships will hold.

LBB̃B + αQ∂B̃B

∂λB
− (r + λQB)B̃B = 0,

LCB̃C + αQ∂B̃C

∂λC
− (r + λQC)B̃C = 0.

(2.71)
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Obviously, substituting (2.71) into (2.70) leads to

∂V̂

∂t
+

1

2
β2P
B (λB, t)

∂2V̂

∂λ2
B

+
1

2
β2P
C (λC , t)

∂2V̂

∂λ2
C

+ ρβP
B(λB, t)β

P
C(λC , t)

∂2V̂

λBλC

+
∂V̂

∂λB

/
∂B̃B

∂λB

(
αQ
B(λB, t)

∂B̃B

∂λB

)
+
∂V̂

∂λC

/
∂B̃C

∂λC

(
αQ
C(λC , t)

∂B̃C

∂λC

)

+ λQB

(
LGD(t)− S t− Tn−1

Tn − Tn−1

− V̂
)

+ λQC(RCM(t, T )+ +M(t, T )− − V )− rV̂ = 0,

for t ∈ [T+
n−1, T

−
n ], and n = 1, 2, ....N.

We may note that (2.67) follows after the volatility terms in physical measure βP
B(λB(t), t)

and βP
C(λC(t), t) are replaced by those under the risk-neutral measure βQ

B(λB(t), t),

βQ
C(λC(t), t) respectively.

2.3.4 The PDE of unilateral CVA

In Section 1.2, we gave a generic definition of the CVA as presented in equation (1.3).

However, the CVA is specific to a particular product, which means, that given the

nature of a derivative, there may be slight differences in the definition of the CVA. For

example, in a CDS contract, the counterparty risk occurs only when the first default

event is the counterparty rather than the referencing firm. Therefore, (1.3) for a CDS

contract should be rewritten as

CVA(t, T ) = EQ [D(t, τC)(1−R(τC))1{τC<T,τC<τB}max{M(τC , T ), 0}|Gt
]
, (2.72)

where τC is the default time of counterparty, τB is the default time of the reference

firm as to whom the CDS is written on and M(τC , T ) is the CDS’s value, using either

the risky or risk-free close-out convention, at counterparty’s default time. According

to Lemma 2.2.2, (2.72) can be further rewritten as

CVA(t, T ) = EQ
[∫ T

t

e−
∫ s
t r(u)+λB(u)+λC(u)du(1−R(τC))λC(s) max{M(τC , T ), 0}|Ft

]
.

(2.73)

In the previous sections, we have shown how the PDE for a payer CDS can be

derived with and without counterparty risk. In this section, the PDE for the unilateral

CVA of a the CDS contract is constructed following a similar method to Burgard and

Kjaer (2011).
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If we denote the CDS contract with counterparty risk as V̂ and the one without

counterparty risk as V then PDE (2.67) holds for V̂ . We know that the CVA is a

value adjustment to the counterparty default-free contract, adjusted by the expected

loss due to counterparty defaults. The relationship between the contract value with

counterparty risk V̂ , the contract value without counterparty risk V and the CVA U

is, by definition, V −U = V̂ where U represents the CVA. By substituting V −U = V̂

into PDE (2.67) we have

∂V

∂t
+ αB(λB, t)

∂V

∂λB
+ αC(λC , t)

∂V

∂λC
+

1

2
β2
B(λB, t)

∂2V

∂λ2
B

+
1

2
β2
C(λC , t)

∂2V

∂λ2
C

+ ρβB(λB, t)βC(λC , t)
∂2V

λBλC
+ λB

(
LGD(t)− S t− Tn−1

Tn − Tn−1

)
− (r + λB + λC)V

=
∂U

∂t
+ αB(λB, t)

∂U

∂λB
+ αC(λC , t)

∂U

∂λC
+

1

2
β2
B(λB, t)

∂2U

∂λ2
B

+
1

2
β2
C(λC , t)

∂2U

∂λ2
C

+ ρβB(λB, t)βC(λC , t)
∂2U

λBλC
− λC(RCM(t, T )+ +M(t, T )−)

− (r + λB + λC)U,

(2.74)

for t ∈ (Tn−1, Tn) with n = 1, 2, ....N .

The value of V is independent of party C’s default intensity since it is assumed

that C is to be default free and so partial derivative terms of V with respect to λC are

zero. Then PDE (2.74) changes to

∂V

∂t
+ αB(λB, t)

∂V

∂λB
+

1

2
β2
B(λB, t)

∂2V

∂λ2
B

+ λB

(
LGD(t)− S t− Tn−1

Tn − Tn−1

)
− (r + λB + λC)V

=
∂U

∂t
+ αB(λB, t)

∂U

∂λB
+ αC(λC , t)

∂U

∂λC
+

1

2
β2
B(λB, t)

∂2U

∂λ2
B

+
1

2
β2
C(λC , t)

∂2U

∂λ2
C

+ ρβB(λB, t)βC(λC , t)
∂2U

λBλC
− λC(RCM(t, T )+ +M(t, T )−)

− (r + λB + λC)U,

(2.75)

for t ∈ (Tn−1, Tn), and n = 1, 2, ....N . Because V satisfies the PDE (2.60), then
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substituting PDE (2.60) into the left hand side of equation (2.75), we obtain

− λCV =

∂U

∂t
+ αB(λB, t)

∂U

∂λB
+ αC(λC , t)

∂U

∂λC
+

1

2
β2
B(λB, t)

∂2U

∂λ2
B

+
1

2
β2
C(λC , t)

∂2U

∂λ2
C

+ ρβB(λB, t)βC(λC , t)
∂2U

λBλC
− λC(RCM(t, T )+ +M(t, T )−)

− (r + λB + λC)U = −λCV,

(2.76)

for t ∈ (Tn−1, Tn), and n = 1, 2, ....N . In (2.76), there are two terms not associated

with U , therefore, combining those terms yields

∂U

∂t
+ αB(λB, t)

∂U

∂λB
+ αC(λC , t)

∂U

∂λB

+
1

2
β2
B(λB, t)

∂2U

∂λ2
B

+
1

2
β2
C(λC , t)

∂2U

∂λ2
C

+ ρβB(λB, t)βC(λC , t)
∂2U

λBλC

+ λC
(
V −RCM(t, T )+ −M(t, T )−

)
− (r + λB + λC)U = 0.

(2.77)

Unlike (2.60) and (2.67), where discrete payments lead to jump conditions at pay-

ment time, (2.77) applies during the entire time span. When performing the subtrac-

tion U = V − V̂ , the discrete payments are cancelled.

Equation (2.77) is still an extremely generic equation since M(t, T ) has not been

specified. In this thesis, risk-free close-out will be used for two reasons. First of all,

the opinions that show support to a risky close-out, such as Brigo and Morini (2011);

Gregory and German (2013), argue that when acquiring enquiring quotes for the con-

tract value from other institutions, their quotes will reflect the creditworthiness of the

firm, which is the DVA. However, DVA is not included in here since we assume the

CDS buyer is default-free. More importantly, as shown by Burgard and Kjaer (2011),

using risky close-out leads to a PDE for the CVA whose Feynman-Kac representation

becomes a recursive formula, different from the classical definition of CVA in (1.3) and

(1.4), which has appeared in the majority of the literature such as Gregory (2012) and

Brigo et al. (2013).

If the contract close-out value at counterparty default has no reference to counter-

party risk, we should specify that

M(t, T ) = V (t, T ), (2.78)

where V (t, T ) satisfies PDE (2.60). Substituting equation (2.78) into the second to
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the last term of PDE (2.77), we have

λC
(
V −RCM(t, T )+ −M(t, T )−

)
=λC

(
V −RCV

+ − V −
)

=λC
(
V + + V − −RCV

+ − V −
)

=λC
(
V + −RCV

+
)

=λC(1−RC)V +.

Then (2.77) becomes,

∂U

∂t
+ αB(λB, t)

∂U

∂λB
+ αC(λC , t)

∂U

∂λB

+
1

2
β2
B(λB, t)

∂2U

∂λ2
B

+
1

2
β2
C(λC , t)

∂2U

∂λ2
C

+ ρβB(λB, t)βC(λC , t)
∂2U

λBλC

+ λC(1−RC)V + − (r + λB + λC)V = 0.

(2.79)

Finally, if we use the risk-free close-out, M(t, T ) = V (t, T ), and apply to equation

(2.73), the equation becomes

U(t, T, λC , λB) = EQ
[
(1−RC)

∫ T

t

e−
∫ s
t r(s)+λB(s)+λC(s)λC(s)V (s, T, λB(s))+ds

∣∣∣∣Ft] .
(2.80)

Obviously, the terminal condition U(T, T, λC(t), λB(t)) = 0 satisfies condition (2.6)

and λC(s)V (s, T, λB(s))+ satisfies condition (2.7) because a CDS’s value V (t, T, λB(t))

is bounded by the default payoff. After assuming the value function U to be C1,2, we

can apply Feynman-Kac Theorem to (2.80) and arrive at the exact same PDE as

(2.79).

2.4 Summary

In this chapter we discuss and give detailed derivations of the PDEs for the valuation

of default bonds, CDS with or without counterparty risk and the CVA under reduced-

form modelling with counterparty risk. We show the PDEs for credit claims as well

as CVA can be constructed using a risk-free portfolio, which are identical to the ones

constructed by applying Feynman-Kac theorem. However, these PDEs are still generic

because particular stochastic processes are not specified for the default intensities.
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In the next chapter, we will specify a popular stochastic processes for firms’ default

intensity and the PDEs are ready to be solved. The numerical issues, such as the finite-

difference schemes, boundary conditions and the rate of convergence, will be discussed.



Chapter 3

Pricing CDS and CVA Numerically

3.1 Introduction

The pricing of financial derivatives forms the majority of problems in mathematical

finance. Most of the time, with no fully analytic solutions available, academics and

participants have to resort to approximations or alternatively efficient numerical meth-

ods. Here, we know that the CDS could be priced in a semi-analytical form with some

conditions satisfied according to Section 2.3.2. However, it is not normally the case

that an analytic solution can be found for derivative pricing problems, especially when

the model specification is more complicated or the problem itself is complex, for exam-

ple the CVA. So in order that we will be able to solve more complex models and gain

insight into the solutions, we will be generally required to use a numerical method.

One common approach to solving numerically complex PDEs in applied mathe-

matics is that of finite differences. All of the relevant derivatives pricing problems in

this thesis can be shown to be described by a PDE with relevant boundary conditions,

for example (2.60) for a CDS contract. One advantage of finite-difference methods

is that they can be very flexible for pricing certain types of exotic derivatives such

as those with early exercise options. The fact that solving a PDE stores the values

of the derivative of the underlying asset’s all possible levels is a big advantage which

can help us to identify the exposure at default (1.1) and the valuation of CVA. For

example, pricing a simple European vanilla option with finite differences will give us

a matrix of the option’s values corresponding to different stock price level and time to

maturity. Therefore, it is easy for us to quantify the option buyer’s losses due to the

72
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option seller defaults at any time before the option’s maturity. Once we have decided

to apply finite differences there are a number of different schemes such as explicit,

implicit, Crank-Nicolson and alternating direction implicit (ADI) whose convergence

rates, stability conditions and behaviours are well studied, see Wilmott et al. (1995)

and Duffy (2006). Here we choose to use the Crank-Nicolson scheme for solving the

one-dimensional PDEs and an ADI scheme for two-dimensional PDEs because they

are second-order accurate in time and space. In addition, the Crank-Nicolson scheme

is unconditionally stable and the ADI scheme (without correlation) is also uncondi-

tionally stable.

The value of a derivative is a function of time to maturity and underlying assets’

level. The PDEs will describe how value changes according to movements in time

and asset level. If the conditions at boundaries are given, the derivative value can be

known at any time and asset level according to the PDE. Typically finite-difference

methods require a truncation of the domain and discretisation in both space and

time. Truncating the domain fixes a finite region to approximate an infinite domain.

The discretisation usually divides the domain into an equally spaced grid in spatial

dimension, although it is possible to apply non-standard grids for special cases such

as In’t Hout and Foulon (2010).

In this chapter, we begin with a background introduction of finite-difference meth-

ods. As a benchmark to check the accuracy of the schemes a simple CDS contract

will be valued using a finite-difference scheme. We will show that the numerical so-

lution converges to the semi-analytical solution if appropriate boundary conditions

are applied. Later, we will introduce the second firm, who is selling the CDS and

defaultable, and solving the CVA. This requires a finite-difference method for two-

dimensional PDEs; in this particular case we implement an ADI scheme. The details

for implementing ADI scheme and numerical solutions for CVAs are given.

3.2 Preliminaries of the Finite-Difference Method

Let us consider a generic differential equation generated by SDE (2.30) which takes

the form,
∂V

∂t
+ α(λ, t)

∂V

∂λ
+

1

2
β2(λ, t)

∂2V

∂λ2
+ f(λ, t)− g(λ, t)V = 0, (3.1)
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defined in t ∈ [0, T ]× λ ∈ [λmin, λmax].

Typically, the solution space is discretised with M + 1 points in asset level, or

space, and N + 1 points in time. We may write

∆t =
T

N
, t = n∆t

∆λ =
λmax − λmin

M
, λ = m∆λ

and then

V (λ, t) = V n
m.

3.2.1 Crank-Nicolson method for one-dimensional PDEs

The Crank-Nicolson method has been discussed in many finance literature of its effi-

ciency and stability for solving PDEs for evaluating derivatives, such as Wilmott et al.

(1995) and Duffy (2006). Thus it will be used throughout this thesis for solving PDE

with one asset and here we take some time to discuss it in detail. The advantage

of a Crank-Nicolson scheme is that it is both unconditionally stable and exhibits a

second-order rate of convergence in space and time for sufficiently smooth boundary

conditions. The approximations for V and its derivatives are as follows,

∂V

∂t
≈ V n

m − V n+1
m

∆t
∂V

∂λ
≈ 1

2

(
V n+1
m+1 − V n+1

m−1

2∆λ
+
V n
m+1 − V n

m−1

2∆λ

)
∂2V

∂λ2
≈ 1

2

(
V n+1
m+1 − 2V n+1

m + V n+1
m−1

∆λ2
+
V n
m+1 − 2V n

m + V n
m−1

∆λ2

)
V (λ, t) ≈ 1

2

(
V n+1
m + V n

m

)
.

After substituting into (3.1) and performing simple algebra, collecting terms we

can write

amV
n
m−1 + bmV

n
m + cmV

n+1
m+1 = dm,
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where

am = −αm
1

4∆λ
+

1

4∆λ2
β2
m

bm = − 1

∆t
− β2

m

1

2∆λ2
− 1

2
gnm

cm = +αm
1

4∆λ
+

1

4∆λ2
β2
m

dm = −amV n+1
m−1 +

(
1

∆t
+ β2

m

1

2∆λ2
+

1

2
gn+1
m

)
V n+1
m − cmV n+1

m+1 −
1

2
(fnm + fn+1

m ).

The result is a tridiagonal system of linear equations to solve at each time step from

maturity T backwards to the present. The system is simple to solve and we use the

popular Thomas algorithm when coding the problems in this thesis.

3.2.2 Numerical schemes for multi-dimensional PDEs

The main difficulty when it comes to evaluating the CVA is coping with the extra

dimension. Finite-difference solutions for high dimensional PDE are frequently men-

tioned in the option-pricing literature, which has been well developed. There is however

a dearth of literature in finance on lattice based numerical schemes when evaluating

counterparty risk, as most authors choose simulation and semi-analytic solution with

simplified model. If we consider a standard option-pricing problem, there are two

situations that can lead to a high dimensional problem. Options could be written on

multi-assets such as maxi-minimum options, exchange options and convertible bonds.

Alternatively, complicated models may occur in option pricing with stochastic volatil-

ity and interest rates, see In’t Hout and Foulon (2010) and Haentjens and In’t Hout

(2012) for more details. Johnson (2008) discussed extensively finite-difference schemes

for pricing multi-asset options and improves the numerical efficiency with knowledge

of the solution topology, using advanced matrix solvers and an appropriate transfor-

mation of the PDE.

Before solving the PDE, we have a choice such as between the alternating direction

implicit scheme and the Crank-Nicolson scheme. In the two dimensional case, a general

PDE discretised by Crank-Nicolson scheme can be written in the following form,

αi,ju
k
i−1,j +

(
1

∆t
+ βi,j

)
uki,j + γi,ju

k
i+1,j + δi,ju

k
i,j−1 + εi,ju

k
i,j+1

+ζki,j
(
uki−1,j−1 − uki−1,j+1 − uki+1,j−1 + uki+1,j+1

)
= ηk+1

i,j .

(3.2)
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For the one-dimensional case, we have already discussed how the PDE discretised

by Crank-Nicolson can be solved directly by Thomas algorithm. However, in the two-

dimensional case, the above equation leads to a problem of solving a sparse matrix

system of the form,

Auk = Bk+1, (3.3)

where A is the sparse matrix. Johnson (2008) compares the direct and iteration solvers

for the sparse system in European option pricing problems. The direct solver is more

difficult to code, which involves inverting a large matrix, using a Big-Banded Solver

(BBS). Alternatively, the system might be solved by iteration schemes such as point

SOR or line SOR. However, there are circumstances where the rate of convergence can

be slow such as at high volatilities. The solution matrix is a I by J matrix, where

I, J are the number of nodes in each dimension. Instead of solving the I × J matrix

simultaneously like BBS, point SOR solves

uk,q+1
i,j =

1
1

∆t
+ βi,j

(
ηk+1
i,j − αi,ju

k,q+1
i−1,j + γi,ju

k,q
i+1,j + δi,ju

k,q+1
i,j−1 + εi,ju

k,q
i,j+1

+ ζki,j

(
uk,q+1
i−1,j−1 − u

k,q
i−1,j+1 − u

k,q+1
i+1,j−1 + uk,qi+1,j+1

))
,

(3.4)

where q denotes the number of the iteration. Alternatively, line SOR solves

αi,ju
k,q+1
i−1,j +

(
1

∆t
+ βi,j

)
uk,q+1
i,j + γi,ju

k,q+1
i+1,j =

ηk+1
i,j − δi,ju

k,q+1
i,j−1 − εi,ju

k,q
i,j+1 − ζki,j

(
uk,q+1
i−1,j−1 − u

k,q
i−1,j+1 − u

k,q+1
i+1,j−1 + uk,qi+1,j+1

)
,

(3.5)

Note that, (3.5) suggests, that beginning with j = 0, we find the values over all i in the

line with a fixed j using LU decomposition or Gaussian elimination. Then we can go

through all values of j to solve the entire matrix. This procedure is repeated until the

change in the solution at the next iteration is lower than a given tolerance. We may

interchange the directions for better accuracy. In addition, Saad and Schultz (1986)

also propose an iteration method named GMRES for solving non-symmetric linear

systems. This algorithm approximates the solution uk using the order-dth Krylov

subspace generated by the sparse matrix A and Bk+1 in linear system (3.3). The

solution uk will converge to the exact solution after the number of iteration equals

to the dimension of A but the algorithm may stop when the error is lower than

tolerance. If the sparse matrix A is not too far from normality, the GMRES algorithm
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has fast convergence. This means after a small number of iteration the order-dth Krylov

subspace is a good approximation to the exact solution.

When a two or higher dimensional PDE is discretised according to Crank-Nicolson,

it inevitably leads to a large sparse matrix equation requiring iteration schemes or a

direct solver. There are alternative way to discretise the problem and Peaceman and

Rachford (1955) propose the Alternating Direction Implicit (ADI) scheme to avoid

solving a complicated system while maintaining both fast convergence in time and

(asset level) spaces and is unconditional stability. The ADI scheme works particularly

well when solving two-dimensional diffusion equations. Douglas and Rachford (1956)

extend the original ADI scheme to solve two-dimensional PDEs with a correlation term.

The scheme shows unconditional stability with first order rate of convergence whenever

the correlation term is not zero. Craig and Sneyd (1988) improve the previous scheme

to arrive at second order convergence in space even with the correlation term, namely

the CS scheme. In’t Hout and Welfert (2009) generalise the scheme from Craig and

Sneyd (1988) to allow a free choice for step size parameter θ, which is similar to how

the Crank-Nicolson scheme is a special case of a θ-scheme with θ = 1
2
.

Lipton (2001) applies an ADI scheme for solving a two-dimensional PDE arising

from pricing foreign exchange options. In’t Hout and Foulon (2010) compare three

different ADI schemes with the two-dimensional PDEs derived from option pricing

with Hestons stochastic volatility model. The unconditional stability and convergence

properties are observed in an experiment involving pricing European options and also

down-and-out options. In addition, they also introduce a non-uniform grid. More grid

nodes are placed to the region where the stock price and the volatility will likely to be.

Consequently, accuracy increases in those regions and we can save on computational

effort. Haentjens and In’t Hout (2012) extend the pricing problem to a Hull-White

stochastic interest rate and Heston volatility, where the resulting PDE is now extended

to three dimensions. They test a variety of scenarios including a full range of corre-

lation, time-dependent interest and satisfaction of the Feller condition. Their tests

have shown that all ADI schemes perform very well in terms of stability, accuracy and

efficiency. In particular they always maintain an unconditionally stable behaviour.

In the original ADI scheme, one backward step in time is split into two steps. At

the first step, one dimension, such as λ1, is discretised with an implicit scheme while
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the other dimension is discretised with an explicit scheme. At the next time step, we

treat λ2 as implicit and λ1 as explicit. In the two-dimensional case, a general PDE

discretised as an ADI scheme can be written into the following form,

αi,jūi−1,j +

(
1

1
2
∆t

+ βi,j

)
ūi,j + γi,jūi+1,j = ηk+1

i,j (3.6a)

δi,ju
k
i,j−1 +

(
1

1
2
∆t

+ εi,j

)
uki,j + εi,ju

k
i,j+1 = η̄k+1

i,j , (3.6b)

for all i with a fixed j, where ū are intermediate solutions and

ηk+1
i,j =− δi,juk+1

i,j−1 +

(
1

1
2
∆t
− εi,j

)
uk+1
i,j − ζi,juk+1

i,j+1

− µ(uk+1
i−1,j−1 − uk+1

i−1,j+1 − uk+1
i+1,j−1 + uk+1

i+1,j+1)

η̄k+1
i,j =− αi,jūi−1,j +

(
1

1
2
∆t
− βi,j

)
ūi,j − γi,jūi,j+1

− µ (ūi−1,j−1 − ūi−1,j+1 − ūi+1,j−1 + ūi+1,j+1) .

(3.7)

When discretising in the ADI scheme, the problem of solving a I ×J matrix is broken

down into solving I vectors, each with J elements, at one step and J vectors, each with

I elements, at the other step. For each column or row, the problem can be written in

matrix form as,

Auk = Bk+1,

where A is a tridiagonal matrix and can be solved directly. Details of solving equation

system (3.20) are shown in Section 3.4.2.

Throughout this thesis, we choose the ADI scheme from Douglas and Rachford

(1956) for two-dimensional problems. We believe that this is the best suited to our

problem. Johnson (2008) shows by use of the dual-strike European option that the

computational times of the SOR solver and the Big-Banded solver are similar. At the

same time, the ADI scheme does not require the inversion of a large sparse matrix and

the times of solution estimation at each time step is less than iterative solvers. For

example it has been demonstrated by Villeneuve and Zanette (2002) that solving for

an American option with a modified ADI scheme is around five times faster than the

corresponding iterative solver PSOR.

We note that the development of ADI schemes has been driven by the approach

to accommodate mixed spatial derivatives due to correlation, such as Douglas and
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Rachford (1956), Craig and Sneyd (1988) and In’t Hout and Welfert (2009). These

all introduce more intermediate steps when solving each step backward in time, which

require more computational effort and can be difficult to implement. Since the latter

chapters in this thesis focus on modelling default correlation in terms of default con-

tagions, correlating the Brownian motions of default intensities is not necessary so we

need not worry about accommodating the correlation term. The most efficient way for

us to proceed is to apply the finite-difference scheme of Douglas and Rachford (1956),

which always treat the spatial derivative term explicitly. This scheme is efficient and

accurate for almost all of the important scenarios of our research in this thesis, where

the correlation between Brownian motions is not considered.

3.3 Solving CDS Using Finite Differences

In Section 2.3.2, we derived the PDE for a CDS contract which also has analytic solu-

tions. In order to benchmark the numerical scheme and check on the appropriateness

of our boundary conditions we will present numerical solutions for this problem, and

show how it converges to the analytic solution. It is common in the literature on

new reduced-form models for the authors to put much of their emphasis on deriving

the default-time distribution and pricing credit claims analytically. To the best of

my knowledge, there is little research on the numerical issues of solving this type of

derivative contract under the reduced-form framework. However, we will see that the

finite-difference method has the advantage of providing exposures at default, which

is defined by (1.1), for the computation of CVA, where it may be computationally

expensive to recalculate the analytic solution repeatedly. Moreover, later on in this

thesis we propose complex models for which numerical solutions are required for pric-

ing CDSs and evaluating CVAs. Thus, the limitation and effectiveness in solving the

PDE (2.60) is important and is therefore discussed in detail here and improvements

are considered in chapters 5, 6.

3.3.1 Model specification

In the original derivation of PDE (2.60) for evaluating CDS, we gave a general model,

where α(λ, t) and β(λ, t) are not specified. In order to obtain some meaningful results,
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we employ CIR process for (2.30) as is standard in the literature including but not

limited to Duffie and Singleton (1999), Duffie (2005) and Brigo and Chourdakis (2009),

dλ(t) = κ(θ − λ(t))dt+ σ
√
λ(t)dW (t). (3.8)

Equation (3.8) is a mean-revering process or mean-reverting square-root process, where

θ is the mean rate of default, κ is the speed of mean reversion, σ is the volatility

of default intensity and W (t) is a standard Brownian Motion. When the intensity

λ(t) is above/below its mean rate θ, the deterministic term will push the intensity

down towards the mean at the rate of κ. It is the Brownian motion component that

introduces the stochastic feature into the process. In addition, it is very easy to verify

(3.8) satisfies (2.3), which is essential for apply Feynman-Kac theorem. Due to the

fact that the variance of the process is related to the square-root of asset level, the

process is non-negative and its distribution follows a non-central χ2 distribution.

The popularity of using this process to model rates is because of its strictly positive

property, which is a requirement in reduced-form models for the non-decreasing con-

dition of the hazard process Λ(t) =
∫ t

0
λ(s)ds. Intuitively, the process λ(t) represents

the rate of an event happening, which should not be negative. Although for conve-

nience when deriving a closed form solution, some previous research uses Gaussian

type default intensities, which violate the non-negative condition, for example Höcht

and Zagst (2010), Filipović and Trolle (2013) and Wang and Ye (2013).

Modelling default intensity as a CIR process omits close-form solutions to survival

probability, see Lando (1998) for more details, therefore a semi-analytic solution exists

to CDS, which we will benchmark against. In terms of the PDE, (2.60) changes to

∂V

∂t
+ κ(θ − λ)

∂V

∂λ
+

1

2
σλ
∂2V

∂λ2
+ λ

(
(1−R)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
− (r + λ)V = 0,

(3.9)

for t ∈ (Tn−1, Tn) with n = 1, ..., N and subject to the terminal condition

V (T ) = 0,

and jump conditions

V (T−n ) = V (Tn)− S(Tn − Tn−1) for n = 1, 2, ..., N.
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Unlike options where just the terminal condition provides the payoff, the CDS contract

has no cash flows at maturity; hence the condition at maturity is zero. However, we

can see from the PDE that the cash flows that occur in the CDS are represented as both

jump conditions at pre-specified times and the term λ

(
(1−R)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
in the PDE rather than a terminal condition as they include both the swap premium

and the default payoff.

3.3.2 Boundary conditions

Boundary conditions specify either the value or the behaviour of the value when the

independent variable goes to its lower limit and upper limit. In our case, the lower limit

is λ→ 0 and the upper limit is λ→∞. The infinite domain of [0,∞]×[0, T ] should be

truncated into a finite domain [0, λmax]× [0, T ], where λmax should be sufficiently large

so as not to disturb the valuation in the region of interest. Although the CIR process

does not allow the intensity to be zero, a condition has to be specified at λmin = 0.

There are three common types of boundary conditions, namely Dirichlet, Neumann or

mixed (Robin) type conditions. A boundary condition that specifies the value of the

function itself is a Dirichlet boundary condition, or a first-type boundary condition.

A boundary condition, which specifies the value of the derivative of the function, is a

Neumann boundary condition, or a second-type boundary condition. Finally, we have

mixed or Robin-type conditions which contain both the value and its first derivative.

In this section, we test a Dirichlet, a Robin and a heuristic Robin condition, which we

will numerically justify.

The determination of lower boundary condition at λ → 0 is straightforward. By

substituting λ = 0 to the PDE (3.9) directly, this give us a Robin-type boundary

condition at λ→ 0, which is

∂V

∂t
+ κθ

∂V

∂λ
− rV = 0, for λ→ 0. (3.10)

This boundary condition shows the CDS value changes over time depend not only on

the risk-free interest rate but also the fact that the default intensity returns to its

mean value θ at the mean-reverting speed κ. This boundary condition at λ → 0 is

applied the PDE (3.9) no matter which upper boundary condition will be applied at

λ→∞.
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For the upper boundary at λ → ∞, on the other hand, a condition cannot be so

easily obtained and we are required to further analyse the PDE (3.9). When λ→∞,

the referencing firm is very likely to default shortly so the CDS value V is less sensitive

to the time to maturity, so we should find that
∂V

∂t
is relatively small compared to other

terms. If we ignore the time derivative term, PDE (3.9) reduces to an inhomogeneous

ordinary differential equation (ODE),

κ(θ− λ)
∂V

∂λ
+

1

2
σλ
∂2V

∂λ2
+ λ

(
(1−R)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
− (r+ λ)V = 0. (3.11)

However, solution of (3.11) is still very complicated with a Hyper-geometric function

and a Laguerre function, which makes it quite difficult to analyse its behaviour when

λ→∞. More simplifications have to be made to (3.11) in order to derive a Dirichlet

or Neumann condition for the upper boundary. If we look at the limit when λ→∞,

(3.11) will be dominated by the terms associated with λ, so we consider only those

terms leading to an inhomogeneous ODE

1

2
σ2∂

2V

∂λ2
− κ∂V

∂λ
+

(
(1−R)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
− V = 0, (3.12)

whose solution V has the form V = A1e
αλ + A2e

−αλ + f(t), where

α =
κ−
√
κ2 + 2σ2

σ2
.

Dirichlet condition

If we only consider the solution to be a time function f(t), it is easy to verify that

Vp = f(t) = (1−R)e−r(T−t) − S t− Tn−1

Tn − Tn−1

(3.13)

can be a particular solution to (3.12). Clearly, in the limit λ→∞, then it implies we

have an instant default and the protection’s value is then the default payoff equals the

Z(t) in (2.54).

Robin condition

As mentioned earlier, the ODE (3.12) has a solution of the form V = A1e
αλ +

A2e
−αλ + f(t) and we only look for the solution with exponential decay, which is the

part V = A1e
αλ + f(t). The former part A1e

αλ can be viewed as the general solution

Vg and the latter part f(t) can be viewed as the particular solution Vp to the ODE

(3.12). Therefore, we are able to apply the Robin-type condition

∂V

∂λ
= α(V − Vp) (3.14)
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Figure 3.1
The ratio of the dominate components of PDE (3.9) at λ→∞
The left panel shows the ratio of −κλ∂Vg

∂λ to 1
2σ

2λ
∂2Vg

∂λ2
2

. The right panel shows the ratio of −λVg to

−κλ∂Vg

∂λ . Both subject to different volatilities and mean-reverting rate.

for λ→∞.

Heuristic Robin Condition

We apply a heuristic Robin-type condition commonly used in finance which is for

discarding the second derivative.

∂V

∂t
+ κ(θ− λ)

∂V

∂λ
+ λ

(
(1−R)e−r(T−t)− S t− Tn−1

Tn − Tn−1

)
− (r+ λ)V = 0, for λ→∞.

(3.15)

Although this is not rigorous, we can present some numerical justification. At the

upper bound λ → ∞, we notice that the second derivative term is far less than the

first derivative term, which is

κ(θ − λ)
∂V

∂λ
>>

1

2
σ2λ

∂2V

∂λ2
. (3.16)

As discussed earlier, the CDS solution V can be viewed as the sum of general solu-

tion Vg and the particular solution Vp, which is a time function irrelevant to λ(t). The

CDS value decays to the particular solution exponentially when λ → ∞. Therefore,

the behaviour of the solution V with λ(t) is driven by the general solution, which

satisfies
∂Vg
∂t

+ κ(θ − λ)
∂Vg
∂λ

+
1

2
σ2λ

∂2Vg
∂λ2

2

− (r + λ)Vg = 0, (3.17)

which solves the difference between the CDS value V and the default payoff Vp.

Figure (3.1) shows the ratios among the three terms associated with λ(t) in (3.17),
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which are −κλ∂Vg
∂λ

,
1

2
σ2λ

∂2Vg
∂λ2

2

and −λVg. The left panel of 3.1 plots

1
2
σ2λ∂

2Vg
∂λ2

2

−κλ∂Vg
∂λ

and

the right panel plots
−λVg
−κλ∂Vg

∂λ

. Clearly, the second derivative term
1

2
σ2λ

∂2Vg
∂λ2

2

is far less

than the first derivative term −κλ∂Vg
∂λ

as the ratio is always in two decimal places.

Because the second derivative term is scaled down by
1

2
σ2λ, which will be far less than

the scale −λκ given the Feller condition is satisfied. In addition, the first derivative

term is far less than the term −λVg as the ratio much greater than 1. Consequently,

(3.16) can be satisfied with large enough λ if the Feller condition holds. Therefore, the

second derivative term can be omitted and the PDE (3.9) reduces to (3.15). Imposing

the heuristic Robin conditions (3.15) is seeking a solution with exponential decay

behaviour at the boundaries.

3.3.3 Numerical results

First we will present results for the semi-analytic solution of CDS (2.56), which is an

integral over the time to maturity of the CDS. We choose to solve the integral with

a trapezoidal rule. Figure 3.2 shows the convergence of the CDS value with reducing

the step-size. The semi-analytic result converges to −0.0244470233253265 or 224.47

basis points (bps) with the error lower than 10−9. This result is used as the benchmark

solution to compare against fully numeric results.

The PDE (2.60) contains jump-style conditions, which are due to the swap premi-

ums are paid at discrete times. When the time period [t, T ] is equally divided into

N + 1 nodes, N must be divided by the premium payment period Ti − Ti−1 to en-

sure we can implement the jump conditions at the correct swap premium settlement

times. Figure 3.3 presents a set of CDS contract values solved with finite-difference

over varying time to maturity. After the settlement dates, the CDS value exhibits

an upward jump because a payment is made and the future payments the buyer is

expected to pay lessen, which leads to the saw shape of the solution. Between two

settlement times, the value will decrease because of discounting.

There are two reasons why the value to the CDS buyer increases as time approaches

maturity. As the number of future payments decreases, the protection is more valuable.

In addition, since we apply recovery of treasury, the default payoff will be higher with



CHAPTER 3. PRICING CDS AND CVA NUMERICALLY 85

10^−1 10^−2 10^−3 10^−4 10^−5 10^−6 10^−7
−245.4

−245.3

−245.2

−245.1

−245

−244.9

−244.8

−244.7

−244.6

−244.5

−244.4

∆t

C
D
S
v
a
lu
e
(b

p
s)

Figure 3.2
The Convergence of CDS’s semi-analytic solution implemented with Trapezoidal rule

Convergence of a CDS protection w.r.t the size of time step ∆t = T
N . Parameter choose are T = 10

, S = 0.03, R = 0.4, κ = 0.5, θ = 0.05, σ = 0.1, λ(0) = 0.05 and swap premiums are paid quarterly,
which is Ti − Ti−1 = 0.25 for all i.

a shorter time to maturity. On the other hand, the value of a protection also depends

on the probability that the entity defaults before maturity. This causes the value to

slump if there is little time before the protection ends. For instance, the light blue

curve in figure 3.3 remains at a high level when the maturity is less than three years

because the intensity of default is high and default within 10 years is very likely. But

the value slumps when there are three years to maturity remaining. The reduction in

default probability is so significant that it dominates other effects that make the CDS

value increases.

In addition to the variations in τ space, the solutions in λ space are shown in figure

3.4, which gives a graphical representation of how the Dirichlet, Robin and heuristic

Robin conditions affects the numerical solution in λ space. The values of ∆λ and

∆t and all other parameters are the same, apart from the three boundary conditions

suggesting that the difference can be solely attributed to these. Due to the nature of

reduced-form modelling, although the intensity is infinity high, this does not imply

that the firm will default instantly. Consequently, since the infinite domain has to be

truncated into a finite one, the Dirichlet condition will only provide satisfactory results

with a sufficiently large λmax, which in turn requires extra computational time if we
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Figure 3.3
The finite-difference solution of CDS at τ space
The finite-difference solution of CDS with different time to maturity and default intensity. Parameter
choose are T = 10 , S = 0.03, R = 0.4, κ = 0.5, θ = 0.05, σ = 0.1, λ(0) = 0.05 and swap premiums
are paid quarterly, which is Ti − Ti−1 = 0.25 for all i. ∆t = 0.0025, ∆λ = 0.001.

choose sufficiently small ∆λ to maintain accuracy. If λmax is not wide enough, the

solutions are not accurate near the upper boundary and it can even effect the solution

in the centre. The numerical solution we obtain with a Dirichlet boundary condition

will be lifted up to the default payoff, according to the left panel of figure 3.4.

According to figure 3.4, the Robin and heuristic Robin conditions have better

performance at the upper boundary, as their solutions are much closer to the semi-

analytic one. The analytic solution tends to the default payoff asymptotically with

the speed of that increase tending to zero. The Robin type condition and the heuristic

Robin condition, which enable exponential decays at the boundaries, yields solutions

that align with the analytic solutions at λ → ∞. At the lower boundary, where

λ → 0, the different choice of boundary conditions at λ → 0 has no influence on

the solutions around λ(0) = 0 and the numerical solutions are identical to 16 decimal

places. The numerical solutions with different boundary conditions have no observable

difference for λ < 0.9. The indifference of numerical solution to the choice of upper

boundary condition can attribute to using mean-reverting default intensity. When we

solve the CDS value backward from time step t to time step t − ∆t, the CDS value

V (λ(t−∆t), t−∆t) depends on V (λ(t), t), which in turn depends on the dynamic of

λ(t) from t to t−∆t. Because λ(t) is a mean-reverting process we can show that the

drift of λ from t to t−∆t is

λ(t−∆t) = λ(t)− κ(θ − λ(t))∆t. (3.18)
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Figure 3.4
The finite-difference CDS solution at λ space compare upper boundary conditions
The finite-difference solution of CDS with different time to maturity and default intensity. Parameter
choose are T = 10 , S = 0.03, R = 0.4, κ = 0.5, θ = 0.05, σ = 0.1, λ(0) = 0.05, r = 0.02 and swap
premiums are paid quarterly, which is Ti − Ti−1 = 0.25 for all i. ∆t = 0.0025, ∆λ = 0.001

It is well known that a mean-reverting process’s movement, if we are to only con-

sider drift, will at the next time step forward return towards the mean value, which

means that λ is moving from outside to inside. When we consider the dynamics

going backwards in time, λ will move from inside to outside. Therefore, the value

of CDS V (λ(t − ∆t), t − ∆t) relies more heavily on the values V (λ(t), t) such that

λ(t−∆t) > λ(t) if λ(t−∆t) > θ or λ(t−∆t) < λ(t) if λ(t−∆t) < θ. Therefore, the

impacts from boundary conditions at λ→∞ decays as λ(t) is far from the boundaries.

In addition, the numerical errors are sensitive to the width of the finite domain

[0, λmax], given ∆t and ∆λ the same, which is shown in figure 3.5. When λmax = 1,

in figure 3.5, the error using heuristic Robin condition is around 10−5 and the Robin

condition is around 10−4. On the other hand, the Dirichlet boundary leads to errors

of around 10−1. While with λmax = 10, we observe a reduction in numerical errors

because the assumptions that underlie the different types of conditions will be less

satisfactory. But as discussed earlier, the influence of different boundary conditions

decays very fast.

Although the choice of different upper boundary conditions make no significant

difference to the solutions, we choose the heuristic Robin boundary condition (3.15) at

λ→∞ because it apparently leads to the smallest error around the upper boundary.

Figure 3.6 shows the pattern of the CDS value convergence at λ(0) = 0.05 using the

heuristic Robin boundary conditions. Obviously, both ∆t and ∆λ have to be small
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Figure 3.5
The finite difference CDS numerical errors at λ space compare boundary conditions
The finite-difference numerical errors in CDS value with three types of upper boundary conditions
and larger λmax. Parameter choose are T = 10 , S = 0.03, R = 0.4, κ = 0.5, θ = 0.05, σ = 0.1,
λ(0) = 0.05, r = 0.02 and swap premiums are paid quarterly, which is Ti − Ti−1 = 0.25 for all i.
∆t = 0.0025, ∆λ = 0.001

enough for the numerical error to reduce towards zero. Otherwise, the numerical

solution converges than a value different to the exact solution. Also we notice that the

Crank-Nicolson scheme is stable even with large time step size ∆t = 1
4
, which is just

one step between two swap payment dates.

Table 3.1 summarises the convergence and computational time of the semi-analytic

solution evaluated using the trapezoidal rule. Clearly, the semi-analytic formula re-

quires a numerical implementation and therefore bears numerical errors. Since we

have no real analytic solution to compare with, we take the difference of two numeri-

cal solutions in order to see to which decimal place the numerical solution would stop

changing with even smaller step size in time. For example, in table 3.1, the numerical

solution with ∆t = 10−7 only differ from the solution with ∆t = 10−6 at the 9th digit.

The fourth column of table 3.1 shows the numerical solution difference when ∆t is ten

times lower. The most accurate solution we obtained is stable to the 8th digits and

this requires 119 seconds for computing in a 2GHz Intel Core i7 machine.

To compare with the computational time and accuracy using semi-analytic so-

lution, tables 3.2 and 3.3 summarises the convergence and computational time, in

bracket, using finite-difference with the Robin condition. The finite difference method

shows convergences in both time and space dimension, table 3.3 to show the difference
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Figure 3.6
The convergence of numerical error using the heuristic Robin boundary condition at
λ→∞
Convergence of finite-difference numerical errors of CDS value using heuristic Robin conditions. Pa-
rameter choose are T = 10 , S = 0.03, R = 0.4, κ = 0.5, θ = 0.05, σ = 0.1, λ(0) = 0.05 and
swap premiums are paid quarterly, which is Ti − Ti−1 = 0.25 for all i. The semi-analytic solution
−0.0244470233253265 or 244.470233253265 (bps).

∆t Value Computation Time (Sec) Successive Differ
10−1 -0.024536235448 0.0002
10−2 -0.024452637972 0.0014 8.359×10−5

10−3 -0.024446933941 0.0131 5.704×10−6

10−4 -0.024447014396 0.1254 8.045×10−8

10−5 -0.024447022440 1.4059 8.044×10−9

10−6 -0.024447025259 12.755 2.818×10−9

10−7 -0.024447023325 119.55 1.934×10−9

Table 3.1
The convergence and computational time of semi-analytic solution
Semi-analytic formula is implemented using Trapezoidal rule. Parameter choose are T = 10 , S =
0.03, R = 0.4, κ = 0.5, θ = 0.05, σ = 0.1, λ(0) = 0.05 and swap premiums are paid quarterly, which
is Ti − Ti−1 = 0.25 for all i.

between solutions with reduced ∆t or ∆x. According to table 3.3, the most accu-

rate solution obtained from finite difference is −0.024447023304 with ∆t = 1
6400

and

∆λ = 1
6400

and computational time 104 seconds. This solution has stabilised number

to the 10th decimal place compared to the solutions with ∆t = 1
3200

and ∆λ = 1
6400

and ∆t = 1
6400

and ∆λ = 1
3200

.

Given the computational times of the most accurate semi-analytic and finite differ-

ence solution are similar, the finite difference method out-perform the semi-analytical

solution with two more digits stabilised number.
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3.4 Solving the CVA Using Finite Differences

The previous section discusses the finite-difference solution to CDS with the CIR

model comparing with the semi-analytic solution. In this section, we present the

PDE and boundary conditions used for valuing the CVA. Pricing a CDS contract is

a preliminary step before pricing the CVA, where the value of the CDS will be used

as a known source of loss given default. The specification of the close-out convention

affects the numerical procedure that we use to solve for the CVA valuation. Recall

that the close-out value M(t, T ) in (2.77) can be specified as the CDS value with or

without counterparty risk. If we assume the counterparty recovery is a fraction of

the CDS value with counterparty risk, we may solve PDE (2.67) for the CDS value

with counterparty risk and subtract it from the solution of PDE (2.60) to obtain the

CVA. This comes directly from the definition of the CVA as the gap between the

contract value with defaultable and default-free counterparty. Alternatively, Section

2.3.4 gives a PDE representation for the CVA given the close-out value M(t, T ) as

the CDS value without counterparty risk, which can be solved by the PDE (2.60).

Then the PDE (2.79) will be solved directly to obtain the CVA with the CDS values

V in (2.79) from the solutions of (2.60). From the numerical aspect, both approaches

involve solving a two-dimensional PDE. Close-out is similar to the recovery methods

discussed in Section 2.2 when pricing default bonds. In our previous pricing of CDS,

recovery of treasury is used where the recovery amount is in terms of a bond without

default risk. In addition, as we discussed in Section 2.3.3, the close-out value as the

CDS value without counterparty risk is closer to the conventional definition of a CVA.

Therefore, we use the CDS value without counterparty risk, which is the risk-free

close-out method, in valuing CVAs throughout this thesis.

In this section, we use the simplest CIR model and discuss the numerical scheme

for pricing the CVA, which will be used in later chapters when we propose new models.

Let us assume that we are a default-free CDS buyer, and then the value adjustment

will only consider the default risk of the counterparty, or unilateral CVA. Let the
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default intensities of the reference firm and the counterparty follow the SDEs

dλ1(t) = κ1(θ1 − λ1(t))dt+ σ1

√
λ1(t)dW1(t) referencing firm

dλ2(t) = κ2(θ2 − λ2(t))dt+ σ2

√
λ2(t)dW2(t) counterparty firm

d < W1(t),W2(t) >= ρdt.

(3.19)

It is shown in Section 2.3.4 that in order to calculate the value of the CVA we must

solve

∂U

∂t
+ κ1(θ1 − λ1)

∂U

∂λ1

+ κ2(θ2 − λ2)
∂U

∂λ2

+
1

2
σ2

1λ1
∂2U

∂λ2
1

+
1

2
σ2

2λ2
∂2U

∂λ2
2

+ ρσ1σ2

√
λ1λ2

∂2U

λ1λ2

+ λ2(1−R2)V + − (r + λ1 + λ2)U = 0,

(3.20a)

with

∂V

∂t
+ κ1(θ1 − λ1)

∂V

∂λ1

+
1

2
σ2

1λ1
∂2V

∂λ1

+ λ1

(
(1−R1)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
− (r + λ1)V = 0.

(3.20b)

3.4.1 Boundary conditions

The PDE system (3.20) involves a one-dimension PDE and a two-dimension PDE.

The numerical scheme for the one-dimensional PDE has been discussed with numerical

results in Section 3.3. In the two-dimension case, boundary conditions are imposed

along edges rather than points. The PDE must be solved subject to one terminal and

four boundary conditions in which the two default intensities go to zero and infinity.

When the CDS expires, the CVA will no longer exist. Therefore, we have the

following terminal condition,

U(λ1, λ2, T ) = 0.

The boundary conditions are rather more subtle for CVA. On the λ1 = 0 boundary,

the referencing firm’s default risk is the lowest and the CDS value is the lowest as a

consequence. If the protection buyer pays a reasonable premium, the CDS may have

negative value, where the CDS buyer will not suffer losses if the counterparty defaults

then the CVA should be zero. However, as discussed in Section 3.3, λ = 0 does not

imply default-free. Therefore, it is still possible that the counterparty defaults when
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the CDS has positive value. Thus, it is inappropriate to apply zero value at λ1 because

the λ1 will return back to normal level. Therefore, we use the similar heuristic Robin

condition and substitute λ1 = 0 or λ2 = 0 into the PDE (3.20a) at the boundaries

where λ1 or λ2 = 0, namely (3.25a).

We still require boundary conditions as the intensities become large. However, this

is not straightforward due to the nature of CVAs. Clearly, the CVA is an increasing

function of both the referencing firm’s and the counterparty’s default intensities. If

the referencing firm is very likely to default, λ1 →∞, one may think the CVA should

be zero because the probability that the counterparty defaults earlier is not likely.

However, this always underestimates the CVA no matter how large λ1 is. One feature

in reduced-form modelling is that a large default intensity does not imply instant

default. Although we have λ1 →∞, there is still counterparty default risk due to the

fact that we are under reduced-form modelling. On the other hand, if the counterparty

has defaulted, the loss given default will be very large because the referencing firm is

very risky. This is a situation where the probability of loss occurring is very small but

the loss will be substantial if the counterparty defaults. Therefore, the CVA should

have a positive value. On the other hand, consider λ1 >> λ2, the probability that

the counterparty default first will be a small value compared to the loss given default.

Therefore, the behaviour of CVA will be dominated by the loss given default, which is

just a linear function of the CDS’s value (1−RC) max{V, 0} given the CDS is positive

and this is true for large λ1. As a result, we are able to safely apply the same heuristic

Robin condition as we did for the CDS to the CVA.

Now for the other boundary as λ2 → ∞, the CVA should be bounded by the

counterparty default loss, which is again (1 − RC) max{V, 0}. However, as discussed

above, it is difficult to apply default payoff in reduced-form modelling. Unlike λ1, λ2

only influences the CVA in terms of the probability that the counterparty defaults

earlier than the referencing, for which we have an analytic solution. Therefore, we

investigate the behaviour of this probability in the limit λ2 →∞ in order to infer the

CVA’s behaviour at λ2 →∞.

Denote the probability that the counterparty defaults earlier than the referencing

firm as P (τ1 > τ2, τ2 < T ), which is the expectation

E
[∫ T

t

e−
∫ s
t λ1+λ2λ2ds

∣∣∣∣Ft] . (3.21)
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If we set ρ = 0, the expectation (3.21), according to Brigo and Mercurio (2006), has

an analytic solution, which is∫ T

t

P (λ1(t), t, s)P (λ2(t), t, s)f(λ2(s), s, T )ds. (3.22)

The probabilities P (λ1(t), t, s) and P (λ2(t), ts) are calculated as

P (λ(t), t, T )) = A(t, T )e−B(t,T )λ(t), (3.23)

where

A(t, T ) =

[
2h exp((κ+ h)(T − t)/2)

2h+ (κ+ h)(exp(h(T − t))− 1)

] 2θκ
σ2

B(t, T ) =
2(exp((κ+ h)(T − t))− 1)

2h+ (κ+ h)(exp(h(T − t))− 1)

h =
√
κ2 + 2σ2.

Then the term f(λ2(s), s, T ) is the forward default intensity, which is calculated by

f(λ(t), t, T ) =
2κθ(exp((T − t)h)− 1)

2h+ (κ+ h)(exp((T − t)h)− 1)

+ λ(t)
4h2 exp((T − t)h)

[2h+ (κ+ h)(exp((T − t)h)− 1)]2
.

(3.24)

Figure 3.7 shows the first derivative term and the second derivative term of this

probability with different positions of λ1 and λ2. Similar to Section 3.3.2, we observe

the second derivative term is far less than the first derivative term at all values of λ1

since the Feller condition is satisfied. Therefore, we can safely eliminate the second

derivative term
∂2U

∂λ2
2

in order to obtain a condition for the upper boundary of the CVA

at λ2 →∞. The boundary conditions of the CVA are summarised in (3.25).

(
∂

∂t
+ Lλ2 + κ1θ1

∂

∂λ1

)
U + λ2(1−R2)V + − (r + λ2)U = 0 for λ1 → 0,(

∂

∂t
+ Lλ1 + κ2θ2

∂

∂λ2

)
U − (r + λ1)U = 0 for λ2 → 0.

(3.25a)

(
∂

∂t
+ Lλ2 + κ1(θ1 − λ1)

∂

∂λ1

)
U + λ2(1−R2)V + − (r + λ2 + λ1)U = 0 for λ1 →∞,(

∂

∂t
+ Lλ1 + κ2(θ2 − λ2)

∂

∂λ2

)
U + λ2(1−R2)V + − (r + λ1 + λ2)U = 0 for λ2 →∞.

(3.25b)



CHAPTER 3. PRICING CDS AND CVA NUMERICALLY 96

0.5 1 1.5 2 2.5 3
−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

λ2

κ
2
(θ

2
−

λ
2
)
∂
P
(
τ
1
>
τ
2
,
τ
2
<
T
)

∂
λ

2

λ1 = 0 .05 , λ2 = 0 .05
λ1 = 0 .05 , λ2 = 0 .1
λ1 = 0 .05 , λ2 = 0 .5
λ1 = 0 .1 , λ2 = 0 .05
λ1 = 0 .1 , λ2 = 0 .05

0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−4

λ2

1 2
σ
2
∂

2
P
(
τ
1
>
τ
2
,
τ
2
<
T
)

∂
λ

2 2

λ1 = 0 .05 , λ2 = 0 .05
λ1 = 0 .05 , λ2 = 0 .1
λ1 = 0 .05 , λ2 = 0 .5
λ1 = 0 .1 , λ2 = 0 .05
λ1 = 0 .1 , λ2 = 0 .05

Figure 3.7
The first and second derivative with respect to λ2 of P (τ2 < τ1, τ2 < 5) at large λ2
The first and second derivative terms are shown with small and large λ1. Other parameters κ1 =

κ2 = 0.5, σ1 = σ2 =
√
κ2θ2
2 and θ1 = θ2 = 0.05, T = 5.

Because both firms’ default intensity processes are mean-reverting processes, we can

expect the boundary conditions have small influence on the numerical solutions. Im-

posing the boundary conditions (3.25a) and (3.25b), we end up with reduced PDEs at

the corners, which are

λ1 → 0 λ2 → 0 :(
∂

∂t
+ κ2θ2

∂

∂λ2

+ κ1θ1
∂

∂λ1

)
U − rU = 0,

λ1 →∞ λ2 →∞ :(
∂

∂t
+ κ2(θ2 − λ2)

∂

∂λ2

+ κ1(θ1 − λ1)
∂

∂λ1

)
U + λ2(1−R2)V + − (r + λ1 + λ2)U = 0,

λ1 →∞ λ2 → 0 :(
∂

∂t
+ κ2θ2

∂

∂λ2

+ κ1(θ1 − λ1)
∂

∂λ1

)
U − (r + λ1)U = 0,

λ1 → 0 λ2 →∞ :(
∂

∂t
+ κ2(θ2 − λ2)

∂

∂λ2

+ κ1θ1
∂

∂λ1

)
U + λ2(1−R2)V + − (r + λ2)U = 0.

3.4.2 Discretisation in the ADI scheme

In this section we present a detailed implementation of the ADI scheme as mentioned

earlier. As a preliminary step towards the numerical solution, we truncate the infinite
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region to a finite domain of [0, λ1max]× [0, λ2max] and we apply a uniform grid in space

and time, where ∆t = T
N

, ∆λ1 = λ1max

I
and ∆λ2 = λ2max

J
. Because the ADI introduces

an intermediate step when time moves backward from n + 1 to n, we use notation

n+ 0.5 as the time index to the middle step.

At the first step, we have the time discretisation

∂U

∂t
≈ −

Un+0.5
i,j − Un+1

i,j

0.5∆t
for ∀i, j ∈ [0, I]× [0, J ]. (3.26)

To approximate the first derivative ∂U
∂λ1

and ∂U
∂λ2

at the first step, we consider three

approximations,

∂U

∂λ1

≈
Un+0.5
i+1 − Un+0.5

i−1

2∆λ1

for i ∈ [1, I − 1],

∂U

∂λ1

≈ Un+0.5
1 − Un+0.5

0

∆λ1

for i = 0,

∂U

∂λ1

≈
Un+0.5
I − Un+0.5

I−1

∆λ1

for i = I

∂U

∂λ2

≈
Un+1
j+1 − Un+1

j−1

2∆λ2

for j ∈ [1, J − 1],

∂U

∂λ2

≈ Un+1
1 − Un+1

0

∆λ2

for j = 0,

∂U

∂λ2

≈
Un+1
J − Un+1

J−1

∆λ2

for j = J.

(3.27)

At the boundary where one of the intensities is zero or infinite, we use one-sided

difference for the first derivatives. To approximate the second derivative, we deal with

the finite-difference approximation,

∂2U

∂λ2
1

≈
Un+0.5
i+1 − 2Un+0.5

i + Un+0.5
i−1

∆λ2
1

for ∀j and i ∈ [1, I − 1]

∂2U

∂λ2
2

≈
Un+1
j+1 − 2Un+1

j + Un+1
j−1

∆λ2
2

for ∀i and j ∈ [1, J − 1].

(3.28)

At the first step, we treat the terms associated with λ1 at the intermediate time

step n + 0.5 and the terms associated with λ2 at the (known) time step n + 1. So

at the second step, we treat the terms associated with λ1 at the (known) time step

n + 0.5 and the terms associated with λ1 at the next time step n. Similarly, at the

second step, we have the time discretisation

∂U

∂t
≈ −

Un
i,j − Un+0.5

i,j

0.5∆t
for ∀i, j ∈ [0, I]× [0, J ]. (3.29)
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The approximations to the first derivative terms are

∂U

∂λ1

≈
Un+0.5
i+1 − Un+0.5

i−1

2∆λ1

for i ∈ [1, I − 1],

∂U

∂λ1

≈ Un+0.5
1 − Un+0.5

0

∆λ1

for i = 0,

∂U

∂λ1

≈
Un+0.5
I − Un+0.5

I−1

∆λ1

for i = I

∂U

∂λ2

≈
Un
j+1 − Un

j−1

2∆λ2

for j ∈ [1, J − 1],

∂U

∂λ2

≈ Un
1 − Un

0

∆λ2

for j = 0,

∂U

∂λ2

≈
Un
J − Un

J−1

∆λ2

for j = J

(3.30)

and the approximations to the second derivative terms are

∂2U

∂λ2
1

≈
Un+0.5
i+1 − 2Un+0.5

i + Un+0.5
i−1

∆λ2
1

for ∀j and i ∈ [1, I − 1]

∂2U

∂λ2
2

≈
Un
j+1 − 2Un

j + Un
j−1

∆λ2
2

for ∀i and j ∈ [1, J − 1].

(3.31)

As mentioned earlier, ADI schemes were proposed to solve the heat equation thus the

mixed spatial derivative term was not considered. The ADI schemes such as In’t Hout

and Foulon (2010) and Haentjens and In’t Hout (2012) are able to deal with these

by adding in more intermediate steps in order to achieve second-order convergence in

space with the mixed spatial derivative term.

In In’t Hout and Foulon (2010), the mixed spatial derivative term is taking central

difference to both direction and one-sided difference at boundaries. However, due to

different boundary conditions (3.25b) that are applied in our case, the cross-derivatives

at the upper boundaries does not vanish. To approximate the cross derivative, we deal

with the four finite-difference approximations

∂2U

∂λ1λ2

≈
Ud
i+1,j+1 − Ud

i+1,j−1 − Ud
i−1,j+1 + Ud

i−1,j−1

4∆λ1∆λ2

for i, j ∈ [1, I − 1]× [1, J − 1],

∂2U

∂λ1λ2

≈
Ud
I,j+1 − Ud

I,j−1 − Ud
I−1,j+1 + Ud

I−1,j−1

2∆λ1∆λ2

for i = I, j ∈ [1, J − 1],

∂2U

∂λ1λ2

≈
Ud
i+1,J − Ud

i+1,J−1 − Ud
i−1,J−1 + Ud

i−1,J−1

2∆λ1∆λ2

for j = J, i ∈ [1, I − 1],

∂2U

∂λ1λ2

≈
Ud
I,J − Ud

I−1,J − Ud
I,J−1 + Ud

I−1,J−1

∆λ1∆λ2

for i = I, j = J,

(3.32)
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for d = n + 1 and n + 0.5, depending on where we may be in the grid. Clearly,

the approximation (3.32) can be obtained by an application of approximation (3.27)

successively in the λ1 and λ2 directions. In the interior of the grid, the first equation of

(3.32) is used because solutions for i± 1 and j± 1 are available. The second and third

approximations of (3.32) are used when either i or j reaches the upper boundaries and

the last one is used if both reach boundaries. There are no concerns if i or j reaches

lower boundaries since the cross derivatives term vanishes.

Applying the approximations (3.27), (3.28) and (3.32) to a two-dimensional PDE

leads to a linear-algebra system (3.6) that must be solved, which is no more than solv-

ing tridiagonal systems. In order to solve the CVA, we apply these approximations to

the first equation of the PDE system (3.20) and the details of the resulting parameters

in (3.6) are listed in Appendix A.

3.4.3 Numerical results

In this section we begin with a discussion of the choice of CIR intensity parameters.

The fair CDS spread and default probability generated by the set of parameters we

choose will be compared to the market CDS spread of sovereign bonds and Standard &

Poor’s credit rating in order to show what degree of default risk the model represents

in the market. In the second part, we present the convergence of the ADI scheme to

show its effectiveness and efficiency. We choose an example of joint survival probability

with zero correlation, which enables us to use a closed-form solution for comparison.

The second part of this section analyses the solution of PDE system (3.20) for the

CVA. We will focus on some properties of the CVA solution such as the behaviour for

different λ1 and λ2 and the impacts from correlation and volatilities.

CIR intensity parameters

The default risk of a CIR type default intensity is characterised by the quadruple of

parameters (θ, κ, σ, λ(0)). Here θ determines the long-term or mean default risk. The

mean-reverting speed κ and volatility σ jointly determine the variance of default risk.

Finally, the initial position λ(0) tells us the current instantaneous risk of default. Since

this thesis focuses on modelling default contagion and proposing numerical solutions

rather than calibrating the model to market data, the parameter we choose will reflect
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to which category of default firm that we would like our parameters to represent. In

Brigo and Chourdakis (2009), θ and κ are chosen to be 0.05 and 0.5 respectively as

representative of a risky referencing firm in the long term and we will use the same θ

and κ in this thesis. We set the volatility level σ to be 0.1 rather than the 0.5 in Brigo

and Chourdakis (2009) for two reasons. Given θ = 0.05 and κ = 0.5, the maximum

volatility satisfies feller condition is
√

0.05 ≈ 0.22 so σ = 0.5 cannot guarantee positive

intensity. Secondly, since we will later vary the volatility to investigate the volatility

impact on counterparty risk, choosing σ = 0.1 gives us more flexibility to change

volatility. Similarly, because we have to change the initial default rate to be higher and

lower than the benchmark so that we can study the impacts from intensity movements,

we set the initial default rate λ(0) = 0.05, which equal to the long-term default rate

θ.

Given the parameters as described above (θ = 0.05, κ = 0.5, σ = 0.1, λ(0) = 0.05)

to the CIR default intensity, we compare the term-structure of CDS spread S∗ given

by the model and some selected sovereign CDS market quotes in Europe, the Middle

East and Africa (EMEA) in figure 3.8.

Before comparing the CDS spread term-structure between the model we use and

the market, we give a discussion about the market term-structure of CDS spreads.

Similar to the term-structure of yield-curve, the term-structure of CDS spread has

three typical shapes as shown in the top panel in figure 3.8, which are upward-sloping,

downward-sloping and hump shape. The term-structure of CDS spread reflects the

market expectation of default risk during each period of time. For example, if the

annualised CDS spread for a two year protection is higher than the one year protection,

this may imply that the default probability in the second year conditional on no default

in the first year is higher than its one year default probability. In other words, an

upward-sloping structure implies a firm/country’s default probability increases more

slowly in the near future than in the longer time horizon. Upward-sloping structure is

the most common term-structure, which is observed from high rating sovereign CDSs

such as UK, France and Germany. For some of the higher risk sovereign CDSs, such as

Egypt and Cyprus, we observed steeper upward-sloping term-structures, which implies

a significantly faster increase in default probability in the long term. Downward-sloping

and hump shape term-structure are observed for Ukraine and Greece CDS, which are



CHAPTER 3. PRICING CDS AND CVA NUMERICALLY 101

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Maturi ty

B
p
s

EMEA

UK
Franc e
Ge rmany

Portugal

Turkey

Russia
Egy pt

C ypru s

Gre e c e

Uk raine

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

Maturi ty

B
p
s

Model

(θ = 0 .05,κ = 0 .5,σ = 0 .1,λ(0) = 0 .05)

(θ = 0 .05,κ = 0 .5,σ = 0 .1,λ(0) = 0 .01)

(θ = 0 .05,κ = 0 .5,σ = 0 .1,λ(0) = 0 .1)

Figure 3.8
A comparison of CDS spreads given the model with a selection of sovereign CDS spreads
up to 5 years in EMEA at 6th of July 2016.
Model CDS spread is calculated with assumed 0 interest rate and spread is paid semi-annually.
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Time horizon
Rating 1 2 3 4 5 6 7 8 9 10
AAA 0 0.03 0.14 0.24 0.36 0.47 0.53 0.61 0.67 0.74
AA 0.02 0.07 0.13 0.24 0.35 0.46 0.56 0.65 0.73 0.82
A 0.07 0.16 0.27 0.41 0.57 0.75 0.95 1.13 1.32 1.51

BBB 0.2 0.57 0.96 1.46 1.95 2.43 2.84 3.26 3.66 4.06
BB 0.76 2.35 4.23 6.06 7.71 9.28 10.59 11.75 12.8 13.74
B 3.88 8.8 12.97 16.22 18.7 20.72 22.37 23.69 24.82 25.91

CCC/C 26.38 35.58 40.67 43.77 46.28 47.24 48.27 49.06 50.03 50.73
Model 4.87 9.49 13.86 18.00 21.94 25.69 29.25 32.64 35.86 38.93

Table 3.4
Global Corporate Average Cumulative Default Rates (%) from 1981 to 2014 and default
probabilities given by the CIR intensity given parameters
Source: S& Ps 2014 Annual Global Corporate Default Study And Rating Transitions report, page
56.

very high risk entities. Ukraine’s decreasing CDS term-structure means it is currently

very likely to default shortly. However, if it does not default in half year, the market

expected that its credit quality will recover and its default probability in the second

half year is lower. In other words, the default probability during the second half year

conditional on the survive the first half year is lower. Finally, the observed ”hump

shape” is a situation in between the previous two cases, which indicates its default

probability grows faster in a particular period. For example, the default probability

of Greece in the second half of the first one year.

According to the lower panel in figure 3.8, the term-structure of CDS spread com-

puted with our parameters (θ = 0.05, κ = 0.5, σ = 0.1, λ(0) = 0.05) has a flat

term-structure. While raising or reducing the initial default rate λ(0) to 0.1 or 0.01

can lead to upward- or downward-sloping structure. In terms of the level of the CDS

spread, the spreads produced by this set of parameter are around 299bps, which are

closer to Cyprus’s and Portugal’s spreads level. In figure 3.9, we compare the selected

countries’ survival term-structure of implied from their CDS spread with the term-

structure produced by a CIR intensity with selected parameters and it suggests that

the default term-structure we produced has a similar credit quality to Portugal and

Cyprus.

Apart from comparing with market CDS spreads and implied survival term-structure

of sovereign CDSs, we also justify to which category of firms that our parametrised
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A comparison of survival term-structure given the model parameters with the market
implied survival term-structure of a selection of sovereign CDS in EMEA at 6th of July
2016.
The market implied survival term-structure is bootstrapped with assumptions of 0 flat interest rate,
recovery rate 0.4 and default can happen in the middle of each period. The assumption of 0 interest
rate is valid given current low or negative interest rate environment in US and Europe.
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CIR intensity represents by investigating the historical rate of defaults. Table 3.4 sum-

marises the global corporate default rate break down by Standard and Poor’s credit

rating and time to default from 1981 to 2014. In addition, the default term-structure

using the CIR intensity is listed in the last column. According to Table 3.4, using a

CIR intensity with (θ = 0.05, κ = 0.5, σ = 0.1, λ(0) = 0.05) leads to default probabili-

ties higher than the B rate corporates but lower than CCC rate companies. Therefore,

our benchmarking default intensity, which is a CIR process with (θ = 0.05, κ = 0.5,

σ = 0.1, λ(0) = 0.05), can be seem as a representative of a B− rating firm.

Convergence of the scheme

Setting the correlation ρ and the interest rate r to be zero and the recovery rate R2

to be unity, the PDE (3.20a) describes the joint survival probability of the two firms

if we apply the terminal condition U(λ1(T ), λ2(T ), T ) = 1. If there is no correlation,

the analytic solution to the joint survival probability must be the product of the two

individual’s marginal survival probability, which is calculated by (3.23).

Assuming the numerical errors follow a functional form of grid sizes, the rate of

convergence can be estimated by three successive numerical solutions. Here, we assume

the difference between the exact solution and numerical solutions, which is subjected

to numerical error, is of the following form

A

Ixi
+

B

Jxj
+

C

Nxn
+ o(∆λ1,∆λ2,∆t), (3.33)

where A,B,C are constants and xi, xj and xn are the rates of convergence in λ1, λ2

and time direction. xi = 1 implies if the grid size in the I-dimension increases from

I to 2I, the errors in this direction reduces by half. The rate of convergence can

be approximated with three successive numerical solutions doubling grid sizes. For

example, xn is approximated by

xn = log2(
U(4N)− U(2N)

U(2N)− U(N)
). (3.34)

We choose the parameters λ1(0) = λ2(0) = 0.05, θ = 0.05, σ = 0.2 and κ = 0.5 for

default intensities, the joint survival probability in one year is 0.9052564, which is the

product of the two firm’s one year survival probability given by (3.23). Defining our

grid on the three dimensional cube [0, I]× [0, J ]× [0, N ] and taking I and J sufficiently
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∆t Numerical Solution Error xn
1× 10−01 0.905255872 −6.26× 10−07

5× 10−02 0.905256342 −1.56× 10−08

2.5× 10−02 0.905256459 −3.81× 10−08 2.00
1.25× 10−02 0.905256489 −8.73× 10−09 2.00
6.25× 10−03 0.905256496 −1.39× 10−09 2.00

Table 3.5
Convergence of ADI scheme at time space
Convergence of joint survival probability numerical solution at τ spaces with ADI scheme. Parameter
choose are T = 1, κ = 0.5, θ = 0.05, σ = 0.2, λ1(0) = λ2(0) = 0.05. ∆λ1 = ∆λ2 = 10−4, which is
sufficiently large. The analytical solution is taken out from the solutions to transform into errors.

∆λ2 Numerical Solution Error xj
1× 10−1 0.90526793485 1.14× 10−5

5× 10−2 0.905258001066 1.50× 10−7

2.5× 10−2 0.905256684760 1.87× 10−7 2.92
1.3× 10−2 0.905256524634 2.71× 10−8 3.04
6.3× 10−3 0.905256502373 4.87× 10−9 2.85
3.1× 10−3 0.905256498649 1.15× 10−9 2.58
1.6× 10−3 0.905256497941 4.38× 10−10 2.39
7.8× 10−4 0.905256497796 2.94× 10−10 2.30
3.9× 10−4 0.905256497766 2.64× 10−10 2.27

Table 3.6
Convergence of ADI scheme at λ space
Convergence of joint survival probability numerical solution at λ spaces with ADI scheme. Parameter
choose are T = 1, κ = 0.5, θ = 0.05, σ = 0.2, λ1(0) = λ2(0) = 0.05. ∆λ1 = ∆t = 10−4, which is
sufficiently large. The analytical solution is taken out from the solutions to transform into errors.

large at 1000, the numerical solutions, errors and rate of convergence at time space

are displayed in table 3.5. Following in a similar manner, we fix N and I to show the

convergence in λ2 space and the results are presented in table 3.6. Due to symmetries

in the λ1 and λ2 directions, we would expect the same pattern of convergence in

λ2-direction as we see in the λ1-direction.

We can see now that the ADI scheme appears to be unconditionally stable. A

solution with 5 digits error is obtained with ∆t = 10−1 while the step size at both λ1

and λ2-direction is very small at 10−4. The rate of convergence at time xn is 2 and

the most accurate solution is to the 9th decimal place. The convergence rate at space

xj is higher than 2 with large ∆λ2 and the convergence rate tends to around 2 as the

∆λ2 getting smaller.
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∆t Solution ρ = 1 xn Solution ρ = 0.5 xn Solution ρ = 0 xn
1× 10−1 0.905667872 NA 0.905458153 NA 0.905256521 NA
5× 10−2 0.905669252 NA 0.905458812 NA 0.905256526 NA

2.5× 10−2 0.905669941 1.00 0.90545914 1.00 0.905256527 2.00
1.3× 10−2 0.905670285 1.00 0.905459304 1.00 0.905256527 2.00
6.3× 10−3 0.905670457 1.00 0.905459386 1.00 0.905256527 2.00

Solution ρ = −0.5 xn Solution ρ = −1 xn
1× 10−1 0.90506296 NA 0.904877463 NA
5× 10−2 0.905062378 NA 0.904876362 NA

2.5× 10−2 0.905062086 0.99 0.90487581 1.00
1.3× 10−2 0.90506194 1.00 0.904875534 1.00
6.3× 10−3 0.905061867 1.00 0.904875396 1.00

Table 3.7
Convergence of ADI scheme at time space with correlation
Convergence of joint survival probability numerical solution at τ spaces with correlation and ADI
scheme. Parameter choose are T = 1, κ = 0.5, θ = 0.05, σ = 0.2, λ1(0) = λ2(0) = 0.05. ∆λ1 =
∆λ2 = 10−2. Correlation takes value −1, −0.5, 0, 0.5 and 1.

The correlation effects are shown in table 3.7. Since the correlation term is discre-

tised in a fully explicit manner, the rate of convergence at τ space reduces to first-order

whenever correlation is non-zero as mentioned by Douglas and Rachford (1956).

CVA numerical results

After solving the PDE system (3.20), the behaviour of the CVA in both time and the

two firms’ default intensity are detailed in tables 3.10-3.14. Here we are evaluating the

CVAs due to holding a five-year CDS. The buyer pays 3%, or 300bps, swap premium of

the notional quarterly, i.e. ti− ti−1 = 0.25, for a five-year protection period. Recovery

rates, R1 and R2, are assumed to be always 0.4 and the risk-free interest rate is

r = 0.02. We assume that the referencing firm and the counterparty are equally risky

such that the intensity parameters of reference and counterparty are identical, and are

κ1 = κ2 = 0.5, θ1 = θ2 = 0.05, σ1 = σ2 = 0.1 and λ1(0) = λ2(0) = 0.05.

The CVA, in general, is an increasing function of time to maturity because there

is a higher probability that the counterparty credit event will occur and cause a loss

to the CDS buyer. However, the CVA is very sensitive to changes in the CDS value

since this determines the loss when the counterparty defaults. Therefore, we observe

there to be a saw shape behaviour for CVA (which is more obvious in the black curve)

due to the saw shape behaviour for the CDS value at premium settle dates, which
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Figure 3.10
The finite-difference solution to CVA with respect to time to maturity (T − t)
An illustration of the CVA from time 0 to maturity, with different positions of both firms default
intensities. CVA is more sensitive to the increments in reference firm’s default risk than the counter-
party. CVA tends to have saw shape as time proceeds, given other factors unchanged. Parameters
are S = 0.03, ti − ti−1 = 0.25, R1 = R2 = 0.4, r = 0.02, κ = 0.5, θ = 0.05, σ = 0.1, λ(0) = 0.05.

was shown earlier in figure 3.3 for the saw shape of CDS value. Compared with

the counterparty, the CVA is more sensitive to the referencing firm’s credit, or λ1

equivalently. If the CDS protection has very low value, or the referencing firm has

low default risk, doubling the counterparty’s credit risk hardly raises the CVA at all.

However, a deterioration in the referencing firm’s credit leads to significant changes in

the CVA. In addition, a more risky referencing firm also leads to a situation where the

CVA is sensitive to the counterparty’s credit because when the loss at default is higher,

a rise in the counterparty’s default probability will increase the CVA considerably.

Although deteriorations in the referencing firm’s credit will have the effect of in-

creasing the loss given default, this does not necessarily correspond to higher CVA.

Apart from the loss given default, the CVA will also depend on the relative credit

risk between the two firms, or, more precisely, the probability that the counterparty

defaults earlier than the referencing firm. Therefore, CVA is not a monotone function

of referencing firm’s default intensity, but rather it has a hump shape, for which we

see the evidence in figure 3.11. Further in figure 3.11, we see that, when λ1 is small,

the CVA is close to zero no matter how risky the counterparty is because the CDS has
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Figure 3.11
The finite-difference solution to CVA at λ1-dimension
The CVA at λ1 space with different value of λ2 at time 0. Parameters are S = 0.03, ti − ti−1 = 0.25,
R1 = R2 = 0.4, r = 0.02, κ = 0.5, θ = 0.05, σ = 0.1, λ(0) = 0.05.

negative value with low λ1. In this region close to λ1 = 0, the CVA increases rapidly

with the referencing firm’s default intensity because the underlying protection’s value

changes from negative to positive, which means that a counterparty’s default triggers

a loss to the investor. However, if the referencing firm is extremely risky compared to

the counterparty, it is very likely that the referencing firm will default shortly so the

CVA declines. Under these circumstances, CVA is also decreasing to zero meaning

a counterparty default event is rare. From a numerical prospective, as discussed in

Section 3.4.1, applying the Dirichlet condition U(λ1, λ2, t) = 0 for λ1 → ∞ is only

satisfied when λ1 is considerably greater than λ2. Figure 3.11 also suggests, when λ2

is higher, there is considerable CVA even for large λ1.

Figure 3.12 shows the sensitivity of the CVA with respect to referencing firm’s

credit λ1. At first, the CVA grows increasingly fast and is followed by slowing down

and becomes decreasing against λ1. This situation implies the difficulty in dynamically

hedging the CVA from the prospective of a holder of the payer CDS, especially when

the referencing firm is very risky. Since the CVA’s movements with respect to the

reference firm’s credit may change sign when λ1 large, the direction of trading hedging
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Figure 3.12
The derivative of CVA with respect to λ1
An approximation of the CVA sensitivity to referencing firm’s default intensity. The derivatives are
approximated by central difference. Parameters are S = 0.03, ti − ti−1 = 0.25, R1 = R2 = 0.4,
r = 0.02, κ = 0.5, θ = 0.05, σ = 0.1.

securities can be different and could be expensive because the reference firm’s credit

risk is high. In addition, a risky counterparty will enlarge the CVA sensitivity to

the referencing firm’s credit, because this means the loss is more likely to happen.

Therefore, any increments in the CDS’s value imply higher losses to the investor.

CVA has a very diversified behaviour corresponding to the counterparty’s default

intensity, depending on the value of the underlying CDS. Figure 3.13 shows the CVA

can be a hump shape or monotonically increasing with the counterparty’s credit. If

the CDS is expensive, or has high positive value, the CVA is always increasing with

the counterparty’s default intensity λ2. The CVA will grow very fast when the coun-

terparty’s default probability changes from negligible to moderate. Then the speed at

which it rises will slow down and the CVA convergences to a value lower than the CDS

value. The reason for the CVA does not converges to the CDS value is that a high

CDS value also implies a non-negligible probability that the referencing firm defaults

earlier. In addition, the CVA is a concave function of λ2, which is also evidenced by

the CVA sensitivity of λ2 in figure 3.14. On the other hand, if the CDS protection has
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Figure 3.13
The finite-difference solution to CVA at λ2-dimension
The CVA at λ2 space with different value of λ1 at time 0. Parameters are S = 0.03, ti − ti−1 = 0.25,
R1 = R2 = 0.4, r = 0.02, κ = 0.5, θ = 0.05, σ = 0.1, λ(0) = 0.05.

a very low value, the protection buyer is subject to smaller counterparty risk when

the counterparty is too risky or too safe. Even if the counterparty is very likely to

default soon but the CDS has negative value, then there is no loss to the investor.

The CVA will be higher if the counterparty is very likely to default before maturity,

whilst still allowing enough time for the CDS value to revert to a normal level. Under

this situation, when the CDS has a low value, the CVA sensitivity to λ2 changes sign

indicating a potential difficulty in the hedging strategies. But since the magnitude of

the changes in CVA with respect to the changes in λ2 is significantly lower than the

case where the CDS is expensive, this implies there will not be huge gain/loss due to

a mistake in hedging CVA against λ2.

Impacts from correlation

In order to understand how default correlation can affect the CVA of a CDS contract,

we will now carry out a detailed analysis on the CVA for a simple correlation model

whose referencing firm and protection seller (the counterparty) are specified by (3.19).

It is commonly believed that positive correlations of the referencing and counterparty

will lead to a higher CVA, the reason being that it implies the CDS will be more
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Figure 3.14
The derivative of CVA with respect to λ2
An approximation of the CVA sensitivity to referencing firm’s default intensity. The derivatives are
approximated by central difference. Parameters are S = 0.03, ti − ti−1 = 0.25, R1 = R2 = 0.4,
r = 0.02, κ = 0.5, θ = 0.05, σ = 0.1.

valuable while the counterparty is more likely to default, which is also referred to as

wrong-way risk. This argument holds for the most situations, however, our numerical

results show that this is not true in extreme situations.

Defined by (2.72), CVA is a combination of two key components, the probability of

the counterparty defaulting earlier than the referencing firm (and the maturity of the

CDS) and that the CDS value which determines the loss given a counterparty default.

The correlation between default intensities λ1 and λ2 affects on CVA by increasing the

probability that the CDS value and the counterparty default probability are both high

at the same time. The CDS value itself is not affected by the correlation, because it is

solely dependent on the marginal default probability of the referencing firm so it can

be described by the PDE (2.60). The probability Q(τ2 < T, τ2 < τ1|Ft), on the other

hand, is dependent on both of the entities, as well as the correlation between the two

entities.
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We define P (λ1, λ2, t, T, ρ) := Q(τ2 < T, τ2 < τ1|Ft). Under reduced-form frame-

work, this probability is given by the expectation

EQ
[ ∫ T

t

e−
∫ s
t λ1(s)+λ2(s)λ2(s)ds

∣∣∣∣Ft]. (3.35)

which is the expectation at time t of the probability that the counterparty defaults be-

fore time T and earlier than the referencing firm’s default time. According to Feynman-

Kac theorem, (3.35) satisfies the PDE

∂P

∂t
+ κ1(θ1 − λ1)
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∂λ2
1

+
1

2
σ2

2λ2
∂2P

∂λ2
2

+ ρσ1σ2

√
λ1λ2

∂2P

λ1λ2

+ λ2 − (λ1 + λ2)P = 0,

(3.36)

subject to the terminal condition P (λ1, λ2, T, T ) = 0 and we will use boundary condi-

tions (3.25a) and (3.25b) to solve PDE (3.36) numerically.

In figure 3.15 we show how the probability, Q(τ2 < T, τ2 < τ1|Ft) is affected by

different values for the correlation parameter ρ = 0.5 and ρ = 0 by plotting the

change in value P (λ1, λ2, t, T, ρ = 0.5)−P (λ1, λ2, t, T, ρ = 0). The probability behaves

differently in each of the two directions, λ1 and λ2. In part (a) of the figure we see

that the correlation pushes down the probability that the counterparty defaults earlier

and the reduction in the probability becomes deeper when λ2 increases from 0 to 0.1.

On the other hand, the probability tends to be insensitive to the correlation when

the reference firm’s intensity λ1 becomes extremely large. The behaviour however

changes when the counterparty’s intensity λ2 is very large, which is shown in part (b),

in the region where λ2 is between 3 and 5. At first, when the reference’s intensity is

relatively low, the probability is raised by correlation. Again, when λ1 is large enough,

the probability will be lowered by the correlation. In the other direction, which is

shown in parts (c) and (d), the probability is lower with smaller λ2 compared to λ1

and the probability becomes raised by correlation when λ2 is greater than λ1. The

amount that the probability increases slows down when λ2 becomes extremely large

but it is still higher than the probability without positive correlation as long as λ1 is

far less than λ2. When λ2 is very large or the referencing firm is very risky in part (d),

we observe similar behaviour as that which was seen in part (c) but the difference is

that it converges to be slightly lower than zero when both firms’ intensity approaches

5.
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We now attempt to explain the behaviour of the probability seen in figure 3.15.

The probability that the counterparty defaults first can be viewed as the sum of two

probabilities. One is the probability that the counterparty defaults before time T while

the referencing firm survives. The other probability is that both firms default before

time T with the counterparty’s default time is the earlier one. In other words,

Q(τ2 < T, τ2 < τ1|Ft) = Q(τ2 < T, τ1 > T |Ft) + Q(τ2 < τ1 < T |Ft). (3.37)

The first term on the right-hand-side represents the probability of only one firm (the

counterparty) defaults and the second term is the probability that of both firms de-

fault. Clearly, the probability that only one firm defaults will be lower with a positive

correlation. For the other probability, however, the response to a change in corre-

lation is highly dependent on the relative riskiness of the two firms. First of all,

Q(τ1 < T, τ2 < T |Ft) grows with correlation, which is the sum of Q(τ2 < τ1 < T |Ft)

and Q(τ1 < τ2 < T |Ft). When the referencing firm and the counterparty are just as

risky as each other, we can expect that they both grow by the same amount due to

symmetric arguments. However, if one firm’s intensity is significantly greater than the

other, for instance the counterparty’s intensity is far beyond the referencing firm’s,

then Q(τ2 < τ1 < T |Ft) will be raised by correlation greatly. This is because the

probability that the referencing firm defaults before T is raised by the correlation to

the counterparty’s default, which is very likely with large λ2. Consequently, we see

the probability is lower with correlation when λ1 and λ2 are comparable mainly due

to the smaller probability of just one of the firms defaulting. While one firm’s default

intensity is much higher than the other’s, we observe that the probability is raised by

correlation and we can see it in both parts (b) and (c) of figure 3.15, which is due

to the rise in Q(τ2 < τ1 < T |Ft) overcoming the reduction in Q(τ2 < T, τ1 > T |Ft).

At the right hand side of part (a), where the referencing firm’s intensity is far beyond

the counterparty, both Q(τ2 < T, τ1 > T |Ft) and Q(τ2 < τ1 < T |Ft) are less sensitive

to correlation. The right hand side of part (b) is crossing the zero point when λ2

increases from 3 to 5. It shows that the reduction in Q(τ2 < T, τ1 > T |Ft) cannot be

compensated by increases in Q(τ2 < τ1 < T |Ft) when λ1 = λ2 ≈ 5. The right hand

side of part (d) shows the same effect but in the opposite direction.

Figure 3.16 demonstrates the CVA change in basis points due to the introduction

of a positive correlation of 0.5 over a range of values in λ1 and λ2. Apart from the
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Figure 3.15
The impact of correlation on the probability that the counterparty to be the first to
default in five years. P(ρ = 0.5)-P(ρ = 0)
A illustration of the probability changes due to raising the correlation coefficient between counterparty
and referencing firm with parameters are κ = 0.5, θ = 0.05, σ = 0.1. (a) The probability change
against λ1 and λ2 raises from 0 to 0.1. (b) The probability change against λ1 and λ2 raises from 3
to 5. (c) The probability change against λ2 and λ1 raises from 0 to 0.1. (d) The probability change
against λ2 and λ1 raises from 3 to 5. The pointer points out the direction of moving when λ1 or λ2
raises.
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probability (3.37), the value of the CDS also has very strong impacts on the CVA,

which are strongly linked to λ1. Positive correlation usually leads to higher CVA as

shown in most regions in parts (a), (b), (c) and (d). Although the positive correlation

rarely results in a higher probability of counterparty’s early default, the CDS value or

the loss given default is more likely to be high, which leads to a larger CVA. Since we

know that only when there is a positive CDS value will there be a loss to the protection

buyer, CVA is especially sensitive to the correlation when λ1 is around the break-even

point of the CDS contract, which is shown by the peak in value in parts (a) and (b)

of figure 3.16. However, it is found that the CVA could be lower due to a positive

correlation if λ1 is far greater than λ2. The value of the CDS, as shown in figure 3.4, is

a concave function and converges to its upper bound as λ1 →∞. When the referencing

firm is already very risky and the CDS value is high enough such that the increments

in λ1 will not increase the CDS value, the positive correlation can no longer lead to

higher loss given default. On the other hand, as discussed, the probability of having

a counterparty credit event is lower when λ1 >> λ2. As a result, CVA is decreasing

against positive correlation, although it should be noted here that the actual changes

are incredibly small (fractions of a basis point).

Lastly, we analyse the way that CVA changes against correlations from a perfectly

negative to a perfectly positive one at current default intensities’ level λ1 = λ2 = 0.05

in figure 3.17. Taking our base parameters, we see that the CVA is increasing against

correlation. Part (a) of figure 3.17 shows the CVA of three different CDS contracts

whose swap premium are paid at 250 bps, 282 bps and 300 bps, which are currently

have a positive value, break-even and one has a negative value and part (b) shows the

relative percentage changes as compared to the case where ρ = 0. Although the CDS

is paying low spreads it has higher CVA, the one contract that pays the high spread

has a higher percentage change due to correlation changes. However, in terms of the

CVA changes in basis points, the CDS, which has positive value, increases more with

the correlation. Although it is well documented that correlated Brownian motions in

reduced-form modelling leads to a low degree of default correlation, the percentage

change in CVA due to correlated Brownian motions is considerably large. But it is

worth noticing that the absolute changes in CVA are not significant, namely within a

few basis points.
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Figure 3.16
The change of the CVA of a 5 years CDS protection with 0.5 correlation. CVA(ρ = 0.5)-
CVA(ρ = 0)
A illustration of the CVA changes due to raising the correlation coefficient between counterparty and
referencing firm with parameters are κ = 0.5, θ = 0.05, σ = 0.1. (a) The CVA change against λ1
and λ2 raises from 0 to 0.1. (b) The CVA change against λ1 and λ2 raises from 3 to 5. (c) The CVA
change against λ2 and λ1 raises from 0 to 0.1. (d) The CVA change against λ2 and λ1 raises from 3
to 5.
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Figure 3.17
CVA of a CDS with correlated default intensities
A illustration of the CVA due to holding a CDS protection when referencing and counterparty firms’
default intensities are correlated, with spreads equal 250 bps(solid), 282 bps(dash) and 300 bps(dash-
dot), where 282 bps is the fair swap spread. The CVA increases as correlation coefficient raises from
−1 to 1 (left). And the figure on the rights shows the percentage of CVA changes compared with
non-correlated intensities. Parameters are ti − ti−1 = 0.25, R1 = R2 = 0.4, r = 0.02, κ = 0.5,
θ = 0.05, σ = 0.1, λ1(0) = λ2(0) = 0.05

Impacts from volatilities

Brigo and Chourdakis (2009) were one of the first to investigate the impacts of stochas-

tic default intensities’ volatilities on the CVA for a CDS with a Gaussian copula func-

tion. They found perfect correlation in Gaussian copula with small volatilities lead

to strange behaviour in CVA, which will disappear with high volatilities. However, in

Brigo and Chourdakis (2009), the volatility impact on CVA is only investigated under

the influence of a specific copula function and the volatility impacts on the CVA is

not discussed thoroughly.

In this section, we do not specify a correlation method and discuss the volatility

impact on the CVA in terms of the probability that the counterparty to be the first

default firm and the loss given default, which are the two components of the CVA. Due

to the advantage of finite-difference methods, CVA solutions are available at a wide

range of the two firms’ default intensities’ position λ1 and λ2. So we attempt to give

a more detailed investigation into the impact of volatility on CVA and in particular

the different impacts given a range of the two firms’ possible intensity positions.

Table 3.8 shows the CVA due to holding a 5-year CDS whose counterparty and

the referencing firm’s volatility increases from 0.01, which is almost deterministic, up

to and including 0.25, which is almost the maximum volatility for which the Feller
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σ1

σ2 0.01 0.05 0.1 0.15 0.2 0.25
0.01 0.282 2.205 4.639 6.787 8.563 9.944
0.05 0.281 2.201 4.630 6.775 8.547 9.926
0.10 0.280 2.189 4.605 6.738 8.501 9.872
0.15 0.277 2.170 4.565 6.679 8.426 9.785
0.20 0.274 2.144 4.509 6.598 8.324 9.667
0.25 0.270 2.112 4.442 6.498 8.198 9.521

Table 3.8
Volatility effects on CVA (Bps)
An illustration of how the CVA for CDS changes due to counterparty and referencing firm’s spread
volatility. σ1 is the volatility parameter of referencing firm and σ2 is the one of the counterparty.
Parameters are ti − ti−1 = 0.25, S = 282 bps, R1 = R2 = 0.4, r = 0.02, κ = 0.5, θ = 0.05,
λ1(0) = λ2(0) = 0.05.

condition will hold, given other parameters in the model. It is well known that, when

modelling default intensity as a CIR process, the probability of survival is a decreasing

function of its volatility. If the counterparty has higher volatility, the probability

of having a counterparty credit event is lowered which should therefore lead to a

lower CVA. This pattern applies regardless of the referencing firm’s volatility. On the

other hand, CVA can be raised significantly by the volatility of the referencing firm’s

default intensity. Since only when the CDS value is positive then the default of the

counterparty will cause a loss to the CDS buyer, CVA is in some sense analogous to

options that are more expensive with higher volatility in general. A higher volatility of

the referencing firm’s credit intensity means that the value distribution of the CDS has

fatter tails. In other words, the CDS value is more likely to be high or low. However,

since only a positive value will trigger a loss to the investor, the CVA is raised by the

volatility of the referencing firm’s default intensity. However, we will show later in this

section this does not always hold for the CIR-type default intensity.

Figures 3.18 and 3.19 illustrate the results of CVA when raising the volatility of

the counterparty and the referencing firm separately. We undertook this by doubling

the volatility parameter σ1 or σ2 in turn and then taking the difference to the original

CVA solution at λ1 × λ2 ∈ [0, 10]× [0, 10].

According to figure 3.18, since we see that all sections in the figure are negative

this implies that higher counterparty’s spread volatility will always lower the CVA by

reducing the probability that the counterparty credit event occurs. On the other hand,
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CVA has a very disjointed behaviour against the referencing firm’s volatility depending

on the position of its own default intensity λ1, as well as the relative position of two

firms’ default intensities. In other words, both the riskiness of the referencing firm and

the relative riskiness of the referencing and the counterparty changes CVA’s behaviour

with the volatility of the referencing firm’s default intensity.

Part (a) in figure 3.19 plots the CVA changes in the λ1-direction. We see that when

λ1 is relatively low, the CVA is increased by the referencing firm’s default intensity

volatility. However, we also see that the CVA could be lower with the referencing

firm’s higher volatility when the referencing firm’s default intensity is very high. Sim-

ilar to options that are more expensive with higher volatility, CVA can be raised by

the referencing firm’s spread volatility as well. The reason lies in the fatter tailed dis-

tribution of the CDS at the positive side. However, unlike an option whose underlying

is a stock with unbounded value, a CDS’s value is bounded by the instant default pay-

off. Therefore, if λ1 is large, this means the CDS is already expensive and the CDS’s

value distribution in the future will be centralised near the upper bound. Therefore,

higher volatility σ1 will not make the value distribution of the CDS even fatter. In

contrast, since we model the credit intensity as a CIR process, higher volatility always

corresponds to lower probability of default, which corresponds to lower CDS values

than before. Therefore, we can see the CVA is lowered by the referencing firm’s spread

volatility. Further, we can see that when λ1 is extremely high then it is very unlikely

that the counterparty will default earlier, volatility does not have effect on CVA, which

tends to zero.

The CVA changes in the λ2-direction is apparently more interesting depending on

the relative value of λ1 and λ2, which we can see in parts (b), (c) and (d) of figure

3.19. We know that the CVA is dependent on the probability that the counterparty

defaults first and also what the loss given default is, which in this case is the CDS

value. As discussed earlier, raising the referencing firm’s volatility has two effects.

One is to fatten the tails of the CDS’s value distribution and the other is to reduce

the referencing firm’s default probability, which is equivalent to lowering the CDS

value. Also, the probability that the counterparty defaults before the referencing firm

is higher due to the fact that the referencing firm is less likely to default. The red curve

in part (b) of figure 3.19 indicates the case that CVA changes given λ1 = 0.04. This
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shows how the CVA is raised by the referencing firm’s volatility when λ2 is low, which

is the combination of both higher probability of the counterparty credit events and the

CDS value distribution becoming fatter in the tails. However, when the counterparty

is very risky with λ2 = 10, the volatility effects on the counterparty default probability

will not be significant as the counterparty is very likely to default first compared to

the referencing firm, who is with λ1 = 0.04. Therefore, the effect of an increase in the

referencing firm’s volatility is reduced. The green line in part (b) represents the case

where the volatility effect on fatter tailed the CDS’s value distribution is not sufficient

to compensate the effect which lowers the CDS value. Therefore, the CVA increases

with low λ2 here, is mainly due to the counterparty default probability being higher.

However, the CVA reduces when the increment in the probability that the counterparty

defaults earlier than reference is negligible and the loss given default is lowered by the

increment of the referencing firm’s volatility σ1. Finally, the blue curve in part (b)

shows the case that λ1 = 0.2 where higher referencing firm’s volatility can only reduces

loss given default significantly. In this case, the increase in the counterparty defaults

first probability is not sufficient to compensate the lower loss given default, so the

CVA only reduces against the volatility for all values of λ2.

Although increasing the referencing firm’s volatility σ1 can reduce the referencing

firm’s default probability and the corresponding CDS value, the difference between the

CDS values tend to zero as λ1 →∞. In other words, if λ1 is high enough, increasing

volatility will have negligible effect on the loss given default. In figure 3.19 part (c),

λ1 increases from 3 to 5 and the reduction of CVA narrows down because the higher

referencing firm’s volatility σ1 has negligible effect on loss given default with large λ1.

Finally the CVA slightly increases when λ1 = 5 and λ2 is around 1. This is due to the

increase in the probability that the counterparty defaults first.

Finally, in part (d) of figure 3.19 shows that the impacts from the higher volatility

σ1 on the CVA is slowing down to slightly above 0 when λ1 rises from 6 to 10. The

changes in CVA seen in part (d) of this figure are solely due to the fact that the

probability of the counterparty defaults earlier than the referencing firm is higher

given that the referencing firm’s default intensity is more volatile. The actual amount

that higher the referencing firm’s volatility will increase this probability is dependent

on the relative riskiness of the two firms. The increment will be negligible when λ2
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Figure 3.18
Changes to CVA from raising counterparty’s volatility. CVA(σ2 = 0.2)-CVA(σ2 = 0.1)
A illustration of the CVA difference due to raising counterparty’s volatility from 0.1 to 0.2. Parameters
are κ = 0.5, θ = 0.05. (a) The CVA change against λ1 with λ2 raises from 0 to 0.1. (b) The CVA
change against λ1 with λ2 raises from 3 to 5. (c) The CVA change against λ2 with λ1 raises from 0
to 0.1. (d) The CVA change against λ2 with λ1 raises from 3 to 5.
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Figure 3.19
Changes to CVA from raising referencing firm’s volatility. CVA(σ1 = 0.2)-CVA(σ1 = 0.1)
A illustration of the CVA difference due to raising referencing firm’s volatility from 0.1 to 0.2. Pa-
rameters are κ = 0.5, θ = 0.05. (a) The CVA change against λ1 with λ2 raises from 0 to 10. (b) The
CVA change against λ2 with λ2 raises from 0 to 0.6. (c) The CVA change against λ2 with λ1 raises
from 3 to 5. (d) The CVA change against λ2 with λ1 raises from 6 to 10.

is small because the counterparty’s default probability very low so that whether the

referencing firm’s default probability will be lowered by the referencing firm’s higher

volatility or not does not matter. Another situation is when λ1 << λ2, because it is

almost surely that the first firm to default will be the referencing firm. For the same

reason, the volatility effect is the most significant when λ2 is not small and is similar

to λ1. This is evidenced by the red curve in the plot of part (d) whose λ1 = 3 and

the CVA has the maximum increment of 0.3 bps at λ2 around 2. As λ1 increases to

10, we observe that the increases in CVA is dropping slowly with λ2. We observe this

because it is more difficult to achieve λ1 << λ2 with a large λ1 in a finite domain.
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3.5 Conclusions

This chapter discusses the boundary conditions for pricing CDS contracts and the

CVA using a finite-difference approximation. In reduced-form modelling, we discuss

the difficulties we face in setting boundary conditions due to credit events that are not

guaranteed even with very large intensity levels. We investigate the effect of applying

a Dirichlet, Robin and heuristic Robin type conditions when pricing a CDS contract.

Numerical solutions with these three types of condition are compared against the

CDS’s semi-analytical solution. We found that the heuristic Robin conditions are the

most suitable among the Dirichlet and Robin conditions for describing the boundary

behaviour and it is both fast and accurate. Using Crank-Nicolson scheme with Robin

conditions, our numerical solution achieve 8th digit accuracy with computational time

four times lower than the semi-analytic solution with numerical integration. In terms

of the CVA, we address the difficulty in imposing boundary conditions for solving

the PDE of CVA as the behaviour at boundaries depend on the relative riskiness

of each of the counterparty and the referencing firm. We also explore the finite-

difference approach for solving the CVA of a CDS using the similar heuristic Robin

type conditions. Compared to previous simulation based numerical schemes, the finite-

difference scheme enables us to observe the CVA’s behaviour over a larger range of

default intensities’ position and to estimate the CVA sensitivities to default intensities

of the referencing firm and the counterparty. We also investigate how the correlation

between the two firms’ intensities and their volatilities can change the CVA. It is

found that CVA can have very different behaviours with volatilities and correlation

depending on the firms’ default intensity or the relative riskiness between the two

firms.



Chapter 4

A New Default Contagion Model

One major concern in credit risk management is the presence of default correlation.

It has frequently been observed that the bankruptcy of a large company is likely to

cause difficulties for other firms who have a close business relationship with them,

such as their partners, suppliers or customers but sometimes just being part of the

same sector can cause problems. Another possibility is that a creditor suffers a loss

when its debtor defaults which introduces financial instability to the creditor or, in the

worst scenario, bankruptcy. We call the situation in which the default events of some

firms cause losses and potentially defaults to other firms as default-contagion. Default

contagion modelling is firstly considered by Jarrow and Yu (2001) as the mechanism

of default dependency between firms. This default dependence is crucially important

when analysing a portfolio of credit derivatives or a product that involves more than

one firm, such as CDO and CDS with counterparty risk.

In this chapter we adapt the idea of default contagion as described by Yu (2007), in

which the default of one firm triggers a jump in the other alive firms’ default intensities,

in order to propose our own new default contagion model. Combined with existing

numerical techniques, we show how the problem of solving for the survival probabilities,

pricing a CDS and its CVA can be solved efficiently with finite-difference schemes, as

we have discussed in Chapter 3.

124
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4.1 Introduction

The term correlation in financial markets is usually used to describe the co-movement

in the market price of assets, and this means that it is a key element in financial

modelling. Tracing back to portfolio theory, a higher correlation of assets in a portfolio

raises the risk that the investors face whilst a negative correlation will lower the risk

to the investor. The same argument will also apply to credit-risk management and

measurement. The importance of capturing default correlation was brought to light

in the aftermath of the crisis of 2008. In credit risk modelling as opposed to fund

management, the correlations are more complicated to model because credit correlation

includes not just small movements in the default intensity, but also the CDS spread

return and the arrival of default times.

Default dependence modelling is a major research area of credit-risk modelling as

we have previously reviewed in Section 1.3. Many models have been developed in order

to produce an appropriate level of default clustering that matches empirical studies,

one such example of an empirical study is that Altman et al. (2005) who study the

number of defaults of companies throughout history. Their research found the num-

ber of defaulting firms will be substantially higher in some period than others, which

indicates default events are correlated. In addition, the amount of recoverable from

defaulting firms are negatively correlated to the number of default firms during the

same period. In other words, higher default probability is coupled with low default

recovery. The simplest correlation approach is to add in correlation between the Brow-

nian motions of default intensities. This has been used for some time, for in example

Duffie and Singleton (1998), they study the losses distribution in a bond portfolio using

stochastic default intensities with correlated Brownian motions. But unfortunately as

they showed the portfolio loss is not sensitive to the correlation in Brownian motions.

In addition, Meissner et al. (2013) apply a Libor Market Model (LMM) for the refer-

encing firm and the counterparty’s intensities and include correlation in the Brownian

motions. Rather than computing CVA, they investigate the impact on the fair CDS

spread with probability that the counterparty defaults. Tested via simulation, they

find that just correlating the intensity processes leads to a rather low impact on the

CDS spread. As reviewed in Section 1.3, there have been four approaches developed



CHAPTER 4. A NEW DEFAULT CONTAGION MODEL 126

for modelling default dependency, namely conditional-independent defaults, Copula,

common-shock and default contagion. Among these default dependence models, we

believe that the default contagion model is the most intuitive in terms of describing

the interaction among companies’ defaults. As such, we attempt to extend default

contagion model and propose our new default contagion model in this chapter.

We build out model upon the general structure of a default contagion model first

proposed by Jarrow and Yu (2001), in that model, the default intensity of the ith firm

can be generalised as

λi(t) = ai(t) +
∑
j 6=i

bi,j1{τj<t}, for i = 1, 2, ... (4.1)

where bi,j ∀i 6= j are the processes that determine the ith firm’s default intensity

process after the jth firm defaults and ai(t) for all i are the processes of a firm’s

idiosyncratic factor, which determine both pre-contagion and post-contagion default

intensities. Different default contagion models distinguish themselves by the speci-

fication of processes ai(t) and bi,j(t). For example, the parameters ai(t) and bi,j(t)

are constants in Jarrow and Yu (2001); Leung and Kwok (2005); Herbertsson and

Rootzén (2007); Yu (2007); Collin-Dufresne et al. (2004). Extensions to the default

contagion modelling attempt to introduce stochastic behaviour to default intensities

whilst maintaining tractability. Leung and Kwok (2007) use Markov Chain formula-

tions to study the default contagion modelling and the counterparty risk in CDS with

constant ai(t) and bi,j(t). They discard the default contagions between the referencing

firm and the counterparty but let both the counterparty’s and the referencing firm’s

default intensity depends on an external firm’s default. In other words, the external

firm’s default triggers default contagion to the counterparty and the referencing firm.

In the later work by the same authors, Leung and Kwok (2009) extend the Leung

and Kwok (2007) model to allow the external firm’s intensity process to be stochas-

tic. Because the default contagion is only from the external firm to the referencing

firm and the counterparty in Leung and Kwok (2007) and Leung and Kwok (2009),

the problem of looping default, which is faced by most default contagion models, is

avoided. In order to study the pricing of basket default swaps (BDS) under contagion

model, Zheng and Jiang (2009) extend the model of Yu (2007) to allow for stochastic

idiosyncratic factors ai(t). The new contagion model is with ai = x(t) for all i, where
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x(t) is AJD process and the bi,j are identical constants. However, in order to have a

closed-form solution to the joint default time distribution for pricing BDS, constant

bj,i are necessary. Gu et al. (2013) extend the model of Zheng and Jiang (2009) to

separate the obliger into two groups, where default events in different groups have

different strength of default contagion to others. To put it simply, this means that the

bi,j are different for each group of firms. However, this extension introduces complex-

ities into the solution of the default time distribution. Bao et al. (2010) use CIR type

stochastic intensities for a firm’s idiosyncratic factor ai(t) and let the default contagion

factor bi,j be related to the defaulting firm’s intensity, which is written in the paper

as bi,j = $aj(t) with $ a constant. With the help of survival measure developed by

Collin-Dufresne et al. (2004), a firm’s marginal survival probabilities can be derived in

closed-form. Therefore, the CDS can be priced with semi-analytic solutions and the

unilateral CVA can be approximated with further assumptions made, see Bao et al.

(2012) for more details. However, in order to have analytic solutions for marginal

survival probabilities, $ must be a simple function, which highly restricts the form

that default contagion effects may take. In addition, as mentioned in Section 1.3, it

is difficult to assume the default intensity process aj(t) still exists after the default of

firm j. In Wang and Ye (2013), the idiosyncratic part of firms’ default intensity is

specified as ai(t) = ci + dir(t), where the interest rate process r(t) is a Vasicek process

with deterministic jumps and ci, di are constants and the contagion part bi(t) is also

constant as well. Although closed-form solutions to marginal survival probability and

default times distribution are available, the model made very strong assumptions that

all firms’ credit risks are based on one factor, which is the interest rate. Moreover, the

Vasicek-type process violates the non-negative requirement for default intensities.

The core idea underlies default contagion models is the upward shifts to the sur-

viving firms’ default intensity at other firms’ default times. In order to gain flexibility

in modelling default contagions, we propose an alternative formulation for the default

contagion effect rather than as (4.1). Instead of insisting on deriving analytic solu-

tions at the cost of a simplified model, we seek efficient numerical solutions to survival

probabilities, pricing CDS as well as measuring CVA.
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4.2 The Proposed Contagion Model

In previous models, such as those of Jarrow and Yu (2001), Leung and Kwok (2005),

Bao et al. (2012) and Wang and Ye (2013), the default contagion is included as an

additional part of the default intensity. This means that the dynamics of the default

intensity changes forever after default contagion events. This property adds complexity

to the dynamic of firms’ credit risk after credit events and is somehow counter intuitive.

We believe that although a firm’s credit risk may be undermined by others’ default

in the near future, as long as the firm manages to keep a stable cash-flow and remain

profitable, the firm is likely to recover from default contagions. In the longer term,

the firm’s credit risk should rely on its idiosyncratic factors rather than that from a

default contagion. Therefore, the conventional formulation of default contagion may

exaggerate a firm’s default risk over a longer time horizon. In this section, we shall

introduce a new formulation of default contagion following the framework described

by Jarrow and Yu (2001), Yu (2007), Bao et al. (2010) and Bao et al. (2012).

Consider now a filtered probability space
(
ΩW ,FWt ,QW

)
up to the finite time

horizon t, satisfying the conditions of right continuous and completeness. On this

probability space, there are Brownian motions (W i
t )
I
i=0 representing the uncertainties

in the economy. A filtration FWt is defined as

FWt = σ
(
(W i

s)
I
i=0, 0 ≤ s ≤ t

)
,

which is a Brownian filtration. In order to construct stochastic default contagion,

we enlarge the probability space ΩW with a probability space (Ωα,Fα,Qα) defined

by I × (I − 1) non-negative bounded real-value random variables αi,j with a known

joint density function η̄() for i ∈ I, j 6= i. We denote the enlarged filtration as

Ft = FWt ∨ Fαt , which is the filtration contains all market information except the

default information.

Further, we assume there are I non-negative random variables (τi)
I
i=0 defined on

the filtered probability space (Ω,Gt,Q), satisfying Q(τ i = 0) = 0 and Q(τ i > t) > 0

for t ∈ R+ and i ∈ I. Let the right-continuous default indicator processes H i
t =

1{τ i≤t} and Hi denote the filtration generated by the default process H i
t , so that Hi

t =

σ({τ i ≤ u : u ≤ t}) for any t ∈ R+. The total default information is captured by the

filtration Ht = ∨i∈IHi
t. Then the total information, including market information and
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default information, is captured by the filtration G = F ∨H, where F = (Ft)t∈R+
and

H = (Ht)t∈R+
. All filtrations are assumed to satisfy conditions of right-continuous and

completeness.

In the reduced-form model discussed in Section 2.2, the existence of a default

intensity process λt associated with the default time τ relies on the F-adapted default

process Ft = Q(τ ≤ t|Ft) being an absolutely continuous submartingale under Q.

However, in a multiple default framework, assuming the default process F i
t of a default

time τ i for all i ∈ I to be F-adapted excludes the dependence between default times

and the intensity process, which is desired in default contagion models. Similar to Bao

et al. (2010), Bao et al. (2012) and Yu (2007), we define F i
t = Q(τ i ≤ t|G−it ) to be a

G−i =
(
G−it
)
t∈R+

-adapted default process, where G−it = ∨j∈I,j 6=iHj
t ∨Ft. The filtration

G−it contains all information except the ith default time τ i. With this definition of G−it ,

the filtration Gt can be construct by any two filtrations G−it and G−jt as long as i 6= j.

Let us assume that F i
t is an absolutely continuous submartingale under Q for all

i ∈ I. Then the G−i-hazard process Γit of τ i under Q, defined as 1−F i
t = e−Γit , admits

the G−i-adapted intensity λQi (t) of default time τ i under Q. In this Chapter, we model

the non-negative Markovian default intensity processes as

dλQi (t) = µQ(λi(t), t)dt+ σQ(λ(t), t)dW i
t +

I∑
j∈I,j 6=i

αQ
i,jdH

j
t ,∀j ∈ I (4.2)

where µQ(λi(t), t) and σQ(λi(t), t) being F-adapted Lipschitz real value functions satis-

fying (2.3) and (2.4). The processes λQi (t) are assumed to be non-negative for all i ∈ I

and are supposed to be the G−i-adapted stochastic intensity process. The stochastic

jump αi,j has a marginal probability density function ηi,j(αi,j).

The αQ
i,j represents the default contagion effect on the ith firm, which is caused

by the default of the jth firm for all j ∈ I and j 6= i. The summation term in (4.2)

indicates that every firm can be affected by the defaults of any of the other firms and

every default event will trigger default contagion jumps in all other firms that haven’t

yet defaulted. Therefore, all firms are interacting with each other.

Similar to previous contagion models, in this new model, a default event triggers a

contagion to all alive firms, which is represented by a random upward movement αQ
i,j

in their default intensities. It is summation term of default processes Hj
t in (4.2) that

makes each firm’s default intensity process depend on the default times of all other
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firms. Therefore, all firms are interdependent. We note here that there are some clear

advantages of our default contagion modelling approach. First of all, pricing problems

can be solved by solving a system of two simple PDEs. Next, as we will see latter,

there are some desirable properties that arise when we model the default intensities

as mean-reverting processes. Finally, there is a lot of flexibility when it comes to

modelling the random contagion jump size αQ, which we will now discuss in the next

section.

4.2.1 Distributions for αQ

A major contribution of this thesis is to model default contagion in a new approach

and to propose the corresponding numerical schemes for measuring counterparty risk,

which we discuss in later chapters. In previous default contagion models, such as Yu

(2007), Bao et al. (2010) and Zheng and Jiang (2009), the default contagion jumps are

modelled to be constant because there is no analytical method available for solving

if the jumps are random. However, due to the fact that we are able to solve our

model numerically, we do not have to place as many restrictions on our way to model

contagions and choice of random default contagion jumps.

For modelling the default contagion jump αQ
i,j, for all i ∈ I and j 6= i, we al-

ways have to ensure that the size of jump is non-negative. Mathematically, this

guarantees the default intensity process to be non-negative. Besides, the economic

meaning of αQ
i,j is the credit deterioration to firm i due to firm j’s default thus αQ

i,j

must be non-negative, which means that firm i cannot have a better credit stan-

dard after another firms’ default. More importantly, the random jump αQ
i,j has to be∫

R+
αQ
i,jη(αQ

i,j)dα
Q
i,j < ∞, which means the expected jump size cannot be unbounded.

This condition makes sure intensity processes are still bounded after default contagion

jumps occurs. Fortunately, there are plenty of well-known distributions satisfy these

conditions and are thus available for modelling the default contagion jumps.

We will first discuss univariate distribution used for model each αQ
i,j individually.

Then we will discuss the possibility of modelling αQ with multivariate distribution to

introduce correlation among αQ
i,js. In order to avoid notational ambiguity, we remind

reader that the µ and σ represent the mean and standard derivation of the distributions

discussed in this section. But µ and σ may represent other parameters in the rest of
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the thesis.

Univariate distributions

The easiest non-negative random variable one may think of is exponential variable. An

exponential distribution describes the time to the next event arrival of a homogeneous

Poisson process, whose events happen independently at a constant rate 1/β. Exponen-

tially distributed random variables have memoryless property. This means the waiting

time for next event arrival conditional on the time past over the last event occurrence

is the same as the unconditional distribution. The probability density function (pdf )

is defined as

y(x) =


1
β
e−x/β x ≥ 0,

0 x < 0.

So the cumulative distribution function is

Y (x) =

1− e−x/β x ≥ 0,

0 x < 0.

The mean and standard derivation of an exponential variable equal to β. β is also called

the scale parameter of the distribution, which controls the shape of distribution. Figure

4.1 gives examples of the density function with a different mean or scale parameter

β. Obviously, the probability density function is exponentially monotone decreasing

to 0. When x approaches 0 from above, the probability tends to 1/β. We also notice

that, the higher the values of β, the higher the probability that the random variable

x takes large values.

Defined as E
[
((X −mean) /standard derivation)3], skewness is the measure of the

symmetry of the distribution between its mean. A normal distribution has 0 skewness

because the normal distribution is symmetric about its mean value. On the other

hand, exponential variable has a positive skewness equal to 2. Having a skewness of

2 implies that the exponential distribution is concentrated on the right tail. But we

cannot tell from skewness whether a distribution has a long and thin or fat or a short

tail in general.

The exceeds kurtosis of exponential variables is equal to 6. Kurtosis is defined

as E
[
((X −mean) /standard derivation)4]. On the other hand, Exceeds kurtosis is
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Figure 4.1
Example of exponential distributions

Mean Standard Derivation Skewness Exceed kurtosis Median Mode
β̄ β̄ 2 6 β̄ln(2) 0

Table 4.1
Statistics of exponential random variable

defined as kurtosis minus 3, which is the kurtosis of normal distribution. Having

exceed kurtosis over 0 means the distribution has a heavier tail and is more likely

to produce outliers than a normal distribution. The key statistics are summarised in

Table 4.1. It is worth noting that if modelling default contagion shocks αQ
i,j by i.i.d.

exponentially distributed jumps, we can only control the jump mean and standard

derivation by a single scale parameter β. However, we can not control the jump size

skewness and kurtosis.

Another choice for modelling default contagion shocks αQ
i,j is the two-parameter

Weibull distribution. Weibull distribution is a continuous probability distribution

whose density function is defined as

y(x) =


γ
β

(
x
β

)γ−1

e−( xβ )
γ

x ≥ 0,

0 x < 0.

So the cumulative distribution function is

Y (x) =

1− e−(x/β)γ x ≥ 0,

0 x < 0.

Compared with exponential distribution, Weibull distribution has another parameter

γ defined on (0,+∞), which is called the shape parameter. It is easy to see that
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Figure 4.2
Example of Weibull distributions

exponential distribution is a special case of Weibull distribution with γ = 1. The

mean and standard derivation of Weibull distribution are

βΓ(1 +
1

γ
)

and

β

√
Γ

(
1 +

2

γ

)
− Γ2

(
1 +

1

γ

)
respectively, where Γ() is gamma function. With the additional shape parameter, we

can control the shape of the density function, see figure 4.2.

When γ < 1, the density function tends to positive infinity as x approaches 0 from

above and the probability is monotone decreasing. When γ = 1, Weibull distribution

is identical to exponential distribution with scale parameter β. Finally, when γ > 1,

Weibull distribution has 0 probability density at x = 0 and is increasing until its mode

β

(
γ − 1

γ

)1/γ

. Especially, when γ →∞, Weibull distribution is concentrating at β.

The advantage of modelling default contagion shocks with Weibull distributions

over exponential distribution is being able to control the skewness and exceed kurtosis.

The skewness of Weibull distribution in Rinne (2008) is computed as

Skewness =
Γ3 − 3Γ1Γ2 + 2Γ3

1

(Γ2 − Γ2
1)

3/2
,

where Γi = Γ

(
1 +

i

γ

)
. The two-parameter Weibull distribution is positively skewed

or right-tailed when γ is less than γ0, where γ0 ≈ 3.60. On the other hand, the



CHAPTER 4. A NEW DEFAULT CONTAGION MODEL 134

distribution is negatively skewed or left-tailed when γ > γ0 and the skewness tends to

−1.139 when γ →∞ according to Rinne (2008).

Apart from skewness, the kurtosis can be computed as

Kurtosis =
Γ4 − 4Γ3Γ1 + 6Γ2Γ2

1 − 3Γ4
1

(Γ2 − Γ2
1)

2 .

The kurtosis is decreasing until its minimum approximately to 2.71 at γ ≈ 3.36. After

that, the kurtosis is increasing to 5.4 with increasing γ. Compared with the normal

distribution, the Weibull distribution has kurtosis lower than 3 with 2.25 < γ < 5.75

and greater kurtosis when γ is outside this interval.

Note that the skewness and kurtosis rely only on the shape parameter γ but not β.

If we model default contagion jumps αQ
i,j with two-parameter Weibull distribution, we

can control the expected strength of default contagion and the probability of having

unexpected weak or strong shocks separately. More precisely, we can calibrate β and

γ in the Weibull distribution to achieve the desired default contagion jumps’ expected

size, skewness and kurtosis. As a result of having high Kurtosis, default contagion

jumps to alive firms’ default intensity are more likely to be unexpectedly strong or

weak.

Another possible statistical distribution for the jumps is the Gamma distribution,

whose probability density function is defined as

y(x) =


1

βΓ(ε)

(
x
β

)ε−1

e−
1
β
x x ≥ 0,

0 x < 0,

(4.3)

where ε ∈ R+ is known as the shape parameter and β ∈ R+ the scale parameter of

Gamma distributions. The cumulative distribution function is

Y (x) =


ΓL(ε, x

β
)

Γ(ε)
x ≥ 0,

0 x < 0,

where ΓL(ε, x
β
) is the lower incomplete Gamma function defined as

ΓL(ε,
x

β
) =

∫ x
β

0

tε−1e−tdt.

It is easy to see that a Gamma distribution reduces to an exponential distribution

with ε = 1. Figure 4.3 gives an example of Gamma distributions with different shape
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Figure 4.3
Example of gamma distributions

Mean Standard Derivation Skewness Exceed kurtosis
βε β

√
ε 2√

ε
6
ε

Table 4.2
Statistics of gamma random variable

parameters. Table 4.2 summarise the key statistics of Gamma distributions. Gamma

distributions have statistics similar to exponential distribution but it is scaled by the

shape parameter ε, whose intuition is the number of events.

Modelling default contagion shocks αQ
i,j with a Gamma distribution would allow us

to control the skewness and kurtosis by shape parameter ε. However, the disadvantage

of Gamma distribution compared with Weibull is that its skewness cannot be negative.

In other words, we cannot model default contagion jumps to be left-tailed since both

skewness and exceed kurtosis of Gamma distribution are monotone decreasing with

ε. The default contagion jumps can only become more even and thin tailed with

increasing ε. It is less likely to produce jumps far away from its expected value and

therefore not likely to see unexpected weak/strong jumps.

An even more flexible version of Gamma distribution is created by adding a third

parameter to give the generalized Gamma distribution, whose density function is de-

fined as

y(x) =


1

(β)εγΓ(ε)
ψ
(
x
β

)εγ−1

e−( 1
β
x)
γ

x ≥ 0,

0 x < 0,



CHAPTER 4. A NEW DEFAULT CONTAGION MODEL 136

where γ ∈ R+ is the shape parameter in addition to Gamma distribution. The cumu-

lative distribution function is

Y (x) =


ΓL(ε,( xβ )

γ
)

Γ(ε)
x ≥ 0,

0 x < 0.

The generalised Gamma distribution has a close relationship with other distribu-

tions. For example, with ψ = 1 and ε = 1, a generalised Gamma distribution reduces

to an exponential distribution. It also include Weibull distributions with ε = 1 and

Gamma distributions with γ = 1. In addition, generalised Gamma distributions can

represent half-normal, log-normal and χ2 distribution, Johnson et al. (1995). The

mean and variance of a generalised Gamma distribution are

E[x] = β
Γ(ε+ 1

γ
)

Γ(ε)

V ar[x] = β2

Γ(ε+ 2
γ
)

Γ(ε)
−

(
Γ(ε+ 1

γ
)

Γ(ε)

)2
 .

Further, Johnson et al. (1995) provide the rth moment can be computed as

βr
Γ(ε+ r

γ
)

Γ(ε)
,

then its skewness and kurtosis can be computed according to their definitions.

The two parameters γ and ε define the shape of the distribution, which at least

combines the properties of both Weibull and Gamma distribution, see figure 4.4. Con-

sequently, the generalised Gamma distribution provide more flexibility to model the

default contagion jumps.

Figures 4.5 and 4.6 provide more details on the skewness and kurtosis of Weibull,

Gamma and generalised Gamma distribution. These figures tell us how the default

contagion jumps are distributed if they are modelled by the distributions discussed.

Compared with Gamma distributed jumps, generalised Gamma distributed jumps can

be more left-skewed and more tailed or right-skewed and less tailed than Gamma dis-

tributed jumps. For example, according to the left panel of figure 4.5 and 4.6, the

default contagion jumps are more likely to be stronger/weaker than expected than

a Gamma distribution when with γ < 1 and vice versa. In addition, a generalised



CHAPTER 4. A NEW DEFAULT CONTAGION MODEL 137

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

x

p
d
f

ǫ = 1 , γ = 1 (Exponential β = 1)

ǫ = 1 , γ = 2 (Weibul l γ = 2)

ǫ = 1 , γ = 5 (Weibul l γ = 5)

ǫ = 2 , γ = 1 (Gamma ǫ = 2)

ǫ = 2 , γ = 2
ǫ = 2 , γ = 5

ǫ = 5 , γ = 1 (Gamma ǫ = 5)

ǫ = 5 , γ = 2
ǫ = 5 , γ = 5

Figure 4.4
Example of generalised gamma distributions

Gamma distribution can be negative skewed, which is not possible for Gamma distri-

butions. With a very large ψ and small ψ, the default contagion jumps are more likely

to be strong and less likely to have unexpected jump sizes.

Similarly, a generalised Gamma distributed default contagion jumps can be more

left/right skewed and more/less tailed than Weibull distributed jumps. However, the

cases are more complicated when compared with Weibull distributed jumps. When γ

is smaller than approximately 3.60, both Weibull and generalised Gamma distributed

jumps are right-skewed. In this case, if the shape parameter ε in the generalised

Gamma distribution is less than 1, the jump sizes are more right-skewed. In other

words, the probability density is more heavily concentrated on the left. At the same

time, the kurtosis of generalised Gamma distributed jumps can also be less or more

tailed than Weibull distributed jumps. Because the kurtosis of generalised Gamma

distribution with ε < 1 can be more or less tailed than Weibull depending on whether

the other shape parameter γ exceeds a threshold. The opposite behaviour is observed

in the right panel of figures 4.5 and 4.6, where γ is approximately greater than around 8

and less than 14. In this region, generalised Gamma jumps are less tailed with ε < 1 but

more skewed to the left than Weibull jumps. However, if γ greater than approximately

14, the generalised Gamma distributed jumps become more tailed and left-skewed.

Consequently, it is more likely to have unexpected small jump sizes although the

probability density concentrates on having strong jumps. Also, this means the impacts

from a firm’s default to another firm is usually expected to be strong but there can be

small impacts occasionally.
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Figure 4.5
Example of skewness of distributions

Gamma, Weibull and generalised Gamma distributions provide flexibility to control

the skewness and kurtosis of default contagion jumps’ distributions. If we model de-

fault intensities (4.2) to be mean-reverting processes, the distribution choice of default

contagion jumps αQ may affect the importance of mean-reverting speed. We will see

in the subsequent chapters, where we model default intensities (4.2) as mean-reverting

processes, that the capacity of alive firms’ recovery, which is modelled as the speed of

mean-reverting, is critical to the survival probability of a firm after the impacts from

other defaulted firms. The speed of mean-reverting and the strength of default con-

tagion jointly determine how severe alive firms’ credit could be damaged by another

firm’s default. For example, if default contagions have weak impacts, whether a firm

can recover fast is not so important compared to the situation where default conta-

gions have strong impacts. Consequently, whether default contagion jump sizes are

more likely to be large/small and whether the jump sizes are likely to be unexpectedly

weak/strong also influence the importance of fast mean-reverting. For example, when

the distribution of default contagion shocks is right-skewed with high kurtosis, the

default contagion jumps are more likely to be stronger than expected. Consequently,

we should be able to see the survival probability of a firm and the value of its credit

derivatives become more sensitive to the capacity of recovery or mean-reverting speed

of the firm.
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Example of kurtosis of distributions

Multivariate distributions

Apart from the unilateral distributions discussed, it is also possible to model jointly

dependent default contagion jumps αQ
i,j for all i, j ∈ I and i 6= j utilising multivari-

ate distributions. The majority of distributions discussed in Section 4.2.1 have their

multivariate extensions and could be used for modelling dependent default contagion

jumps. Since the main focus of this thesis is the default contagion mechanism and

numerical methods, we only give the multivariate Gamma distribution of Mathai and

Moschopoulos (1991) as an example. Mathai and Moschopoulos (1991) introduce a

multivariate Gamma distribution using univariate Gamma distributions as building

blocks. Consider the d + 1 dimensional random variables gk, k = 0, 1, ..., d, be mutu-

ally independent and Gamma distributed with density function (4.3), shape parameter

εk and scale parameter βk. Multivariate Gamma distribution can be constructed by

xk =
εk
ε0
g0 + gk.

The random variable X = (x1, ..., xd)
T is a multivariate Gamma distribution. Mathai

and Moschopoulos (1991) show that xk are Gamma distributions with scale parameter

β0 + βk and shape parameter εk, k = 1, ..., d. As a result, the mean and variance are

E[xk] = (β0 + βk)εk,

V ar[xi] = (β0 + βk)ε
2
k.



CHAPTER 4. A NEW DEFAULT CONTAGION MODEL 140

More importantly, the covariance of xk and xm for m 6= k is

Cov(xk, xm) = β0εkεm > 0.

With the approach of Mathai and Moschopoulos (1991), we can construct posi-

tively correlated Gamma distributed default contagion jumps by independent Gamma

distributed random variables. Although we could model any collections of αQ
i,j for all

i and j ∈ I, i 6= j, to be jointly dependent, it is more intuitive to model the joint

behaviour of αQ
i,j for all i 6= j with a given j. That is to say, the default contagion

impacts on alive firms, due to a particular firm’s default, are positively correlated.

Apart from the benefits of modelling default contagion jumps as Gamma distributed

variables, positively correlated jumps introduce another source of default correlation

among the I firms in the economy. Default dependence among firms are due to both

the default contagion mechanism introduced by our model and the size of default con-

tagion jumps. For example, when default contagion jumps applied to all alive firms are

jointly large, we are more likely to observe multiple defaults compared to independent

default contagion jumps.

4.3 A Two-Firm Model

First, we shall study the properties of the new default contagion model in a two firm

framework, since it is simple to carry out mathematical analysis. In this section, we

show the valuation of survival/default probabilities and credit derivatives under this

model. In addition, when the two firms are the referencing firm and the seller of a CDS

contract, we are able to measure the unilateral CVA (2.22) under the default contagion

model with two firms. Finally, PDEs are derived using Feynman-Kac theorem and

solved numerically.

Under the framework introduced in Section 4.2, we further assume that there are

two firms, indexed by 1 and 2, in the economy, whose default intensities are,

dλ1(t) = µ1(λ1(t), t)dt+ σ1(λ1(t), t)dW1(t) + α1,2dH
2
t ,

dλ2(t) = µ2(λ2(t), t)dt+ σ2(λ2(t), t)dW2(t) + α2,1dH
1
t ,

d < W1(t),W2(t) >= ρdt.

(4.4)
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In order to simplify notations, we drop the superscript Q in the parameters. Then the

default status of two firms implies that we must take account of 4 states in order to

capture all possibilities. We denote these states as:

A = {H1(t) = 0, H2(t) = 0}, B = {H1(t) = 0, H2(t) = 1}

C = {H1(t) = 1, H2(t) = 0}, D = {H1(t) = 1, H2(t) = 1},

whereHi(t) = 1 indicates that the ith firm has defaulted. Since µQ
1 (λ1(t), t), µQ

2 (λ2(t), t),

σQ
1 (λ1(t), t) and σQ

2 (λ2(t), t) are assumed to be F-adapted processes, both intensity pro-

cesses λ1(t) and λ2(t) are Ft-measurable in state A. While in state B, λ1(t) will be

G−1
t -measurable and λ2(t) does not exist since firm 2 has defaulted. Similarly, λ2(t)

is G−2
t -measurable in state C and both intensities do not exist in state D. Note that,

when separating the economy into four states, the default processes H1(t) and H2(t)

are constants in a specific state, either 1 or 0. So the dynamic of the two default

intensities dλi(t) are only driven by µi(λi(t), t)dt and σi(λi(t), t)dWi(t) for i ∈ {1, 2}.

The value change of Hi(t) happens at the time of state change.

Any credit claims can be characterised by three building blocks, which are the

present values of the payment conditional on the firm survive to time T , denoted

by XT , the payment conditional on the firm defaults before T , denoted by Zt and a

continuous payment At conditional on the firm survive. In order to price a generic

credit claim, we assume an Ft-adapted stochastic interest rate r(t) and we introduce

the following lemmas.

Lemma 4.3.1. Consider an bounded F-predictable process of finite variation At, Gt−

measurable and Q-integrable random variable XT and F-predictable process Zt such

that the random variable Zτ11{τ1≤T} is Q-integrable, which represent the continuous

dividend payment conditional on firm 1 survive, the payment conditional on survive

up to time T and the recovery payment at time tau1 conditional on firm 1 defaults at

time tau1 respectively. The present value uA of any default claims referencing to firm
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1 under the default contagion model at state A can be evaluated as

uA(λ1(t), λ2(t), t, T )

= E
[
1{τ1>t,τ2>t}1{τ1>T}XT + 1{t<τ1≤T}Zτ1 +

∫ T

t

1{τ1>s}dAs

∣∣∣∣Gt]
= 1{τ1>t,τ2>t}E

[
e−

∫ T
t r(u)+λ1(u)+λ2(u)duXT +

∫ T

t

e−
∫ s
t r(u)+λ1(u)+λ2(u)du(λ1(s)Zsds+ dAs)

+

∫ T

t

e−
∫ s−
t r(u)+λ1(u)+λ2(u)duλ2(s−)

∫ ∞
0

uB(λ1(s−) + α1,2, s, T )η(α1,2)dα1,2ds
−
∣∣∣∣Ft],

(4.5)

where

uB(λ1(t), t, T )

=E
[
1{τ1>t,τ2≤t}1{τ1>T}XT + 1{t<τ1≤T}Zτ1 +

∫ T

t

1{τ1>s}dAs|Gt
]

=1{τ1>t,τ2≤t}E
[
e−

∫ T
t r(u)+λ1(u)duXT +

∫ T

t

e−
∫ s
t r(u)+λ1(u)duλ1(s) (Zsds+ dAs) |G−1

t

]
.

(4.6)

Equation (4.5) is a combination of Corollary 3, Lemmas B.0.4 and B.0.6 with

interest rate r(t) in addition. Equation (4.6) is the combination of Corollary 2, Lemmas

B.0.3 and B.0.5 with interest rate as well. More details are provided in Appendix B.

Usually, a default claim referencing to firm 1 exists in state A and B, where firm 1

has not defaulted yet. So, the valuation of the credit claim in state A should reflect the

possibility of economic state changes to state B thus the claim’s value changes. This

is reflected by the last integral term in (4.5) when firm 2 defaults at time s−, economic

state changes to state B and the claim’s value changes to the value corresponding to

a higher firms 1′s default intensity λ1(s−) + α1,2.

Now, it is clear that the cash flows XT , At and Zτ specified in survival probabil-

ity, CDS and CVA satisfy the conditions (2.6) and (2.7) as discussed in Section 2.3.

Therefore, Feynman-Kac theorem mentioned in Section 2.1 will be applicable to (4.5)

and (4.6) with additional conditions on uA(λ1(t), λ2(t), t, T ) and uB(λ1(t), t, T ). In

the following sections, we will apply Feynman-Kac theorem to derive the PDEs for

survival probability, CDS and CVA under the contagion model.
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Survival probability

In default correlation modelling, it is important to investigate both the marginal as

well as the joint default probability. Studying these probabilities can give us an insight

into how the default model affects a firm’s default probability as well as the degree to

which default correlation is created. We now outline how to use our model to calculate

these probabilities.

Consider that we are in the state B after firm 2 defaulted and denote SB(λ1(t), t, T )

as the survival probability of firm 1 in the state B. Firm 1’s survival probability equals

(4.6) with XT = 1, At = 0, Zτ1 = 0 and r(t) = 0, which is

SB(λ1(t), t, T ) = E
[
e−

∫ T
t λ1(s)ds

∣∣∣∣G−1
t

]
. (4.7)

Assume SB(λ1(t), t, T ) to be C1,2 with respect to time t and λ1(t), apply Feynman-Kac

theorem to SB(λ1(t), t, T ) we will have

∂SB

∂t
+ µ1(λ1(t), t)

∂SB

∂λ1

+
1

2
σ2

1(λ1(t), t)
∂2SB

∂λ2
1

− λ1S
B = 0, (4.8)

subject to the terminal condition SB(λ1(T ), t, T ) = 1.

Now assume that we are in state A, then firm 1’s survival probability will be

affected by the possibility of firm 2’s default event. The survival probability of firm 1

at state A, denoted as SA(λ1(t), t, T ), is equation (4.5) with XT = 1, At = 0, Zτ1 = 0

and r(t) = 0, which is

SA(λ1(t), λ2(t), t, T ) = E
[
e−

∫ T
t λ1(u)+λ2(u)du

+

∫ T

t

e−
∫ s−
t λ1(u)+λ2(u)duλ2(s−)

(∫ ∞
0

SB(λ1(s−) + α1,2, s, T )η(α1,2)dα1,2

)
ds−
∣∣∣∣Ft].

(4.9)

According to Feynman-Kac theorem, assumed SA(λ1(t), λ2(t), t, T ) satisfies C1,2,2 with

respect to t, λ1(t) and λ2(t), equation (4.9) satisfies the differential equation

∂SA

∂t−
+ µ1(λ1, t)

∂SA

∂λ1

+ µ2(λ2, t)
∂SA

∂λ2

+
1

2
σ2

1(λ1, t)
∂2SA

∂λ2
1

+
1

2
σ2

2(λ2, t)
∂2SA

∂λ2
2

+ ρσ1(λ1, t)σ1(λ2, t)
∂2SA

λ1λ2

+ λ2

(∫ ∞
0

SB(λ1 + α1,2, t, T )η(α1,2)dα1,2

)
− (λ1 + λ2)SA = 0,

(4.10)

subject to terminal condition SA(λ1(T ), λ2(t), t, T ) = 1.
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Credit default swaps

Denoting V B(λ1(t), t, T ) as the CDS value in state B with swap settlement dates t = T0,

T1, ..., Tn, ..., TN = T for swap rate S. The CDS’s value can be expressed as (4.6) with

multiple payments Xn = S(Tn−Tn−1) at time Tn and Zt = (1−R)e−r(T−t)−S t−Tk−1

Tk−Tk−1

with Tk−1 ≤ t < Tk and At = 0, which is

V B(λ1(t), t, T )

=E
[ ∫ T

t

e−
∫ s
t r(u)+λ1(u)+λs(u)duλ1(s)

(
(1−R1) e−r(T−s) − s− Tn−1

Tn − Tn−1

S

)
ds

−
N∑
n=1

e−
∫ Tn
t r+λ1(s)dsS(Tn − Tn−1)

∣∣∣∣G−1
t

]
.

(4.11)

However, V B(λ1(t), t, T ) is not differentiable with respect to time at t = Tn for

n = 1, ..., N then Feynman-Kac must not apply directly to (4.11) everywhere at [t, T ].

Assuming V B(λ1(t), t, T ) satisfies smooth condition C1,2 between (Tn−1, Tn), then ac-

cording to Feynman-Kac theorem, the CDS value V B(λ1(t), t, T ) with swap premium

S satisfies the PDE

∂V B

∂t
+ µ1(λ1, t)

∂V B

∂λ1

+
1

2
σ2

1(λ1, t)
∂2V B

∂λ2
1

+ λ1

(
(1−R)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
− (r + λ1)V B = 0,

(4.12)

for t ∈ (Tn−1, Tn) and n = 1, 2, ....N . Further, (4.12) subjects to terminal condition

V B(λ1(T ), T, T ) = 0 and jump conditions

V B(T−n , T ) = V B(Tn, T )− S(Tn − Tn−1) for n = 1, 2, ....N,

at each payment date.

While in state A, the CDS has the same cash-flows but now the only difference

lies in the fact that firm 2’s default will cause firm 1’s default intensity to jump to a

higher value, which corresponds to higher CDS value and the brings the CDS value

from state A to B. Denoting the CDS value in this state A as V A(λ1(t), λ2(t), t, T ), it

satisfies (4.9) with Xn = S(Tn−Tn−1) at time Tn and Zt = (1−R)e−r(T−t)−S t−Tk−1

Tk−Tk−1
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with Tk−1 ≤ t < Tk and At = 0, which is

V A(λ1(t), λ2(t), t, T )

=E
[ ∫ T

t

e−
∫ s−
t r(u)+λ1(u)+λ2(u)du

(
λ1(s−)

(
(1−R1)e−r(T−s

−) − Ss
− − Tn−1

Tn − Tn−1

)
+λ2(s−)

(∫ ∞
0

V B(λ1(s−) + α1,2, s, T )η(α1,2)dα1,2

))
ds−

−
N∑
n=1

e−
∫ Tn
t r+λ1(s)+λ2(s)dsS(Tn − Tn−1)

∣∣∣∣Ft].
(4.13)

Similarly to V B(λ1(t), t, T ), we assume V A(λ1(t), λ2(t), t, T ) satisfies C1,2,2 with

respect to t, λ1(t) and λ2(t) between (Tn−1, Tn) for n = 1, ..., N , then according to

Feynman-Kac theorem, we have the following PDE

∂V A

∂t−
+ µ1(λ1, t)

∂V A

∂λ1

+ µ2(λ2, t)
∂V A

∂λ2

+
1

2
σ2

1(λ1, t)
∂2V A

∂λ2
1

+
1

2
σ2

2(λ2, t)
∂2V A

∂λ2
2

+ ρσ1(λ1, t)σ2(λ2, t)
∂2V A

λ1λ2

+ λ1

(
(1−R)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
+ λ2

(∫ ∞
0

V B(λ1 + α, t, T )η(α1,2)dα1,2

)
− (r + λ1 + λ2)V A = 0

(4.14)

for t ∈ (Tn−1, Tn) with n = 1, 2, ....N and it is subject to the same terminal condition

V A(λ1(T ), λ2(T ), T, T ) = 0 and jump conditions as before, namely

V A(Tn, T ) = V A(Tn, T )− S(Tn − Tn−1) for n = 1, 2, ....N. (4.15)

Credit value adjustment

In Section 2.3.4, we have shown that CVA can be derived as (2.73). However, in our

default contagion model, we also consider the situation in which the counterparty and

the referencing firm are correlated. The default of the counterparty will now instantly

raise the default intensity of the referencing firm λ1(τ2) at time τ2. Then the CVA,

denoted as UA(λ1(t), λ2(t), t, T ), becomes

UA(λ1(t), λ2(t), t, T ) = E
[ ∫ T

t

e−
∫ s−
t r+λ1(u)+λ2(u)du(1−R2)λ2(s−)×(∫ ∞

0

max{V B(λ1(s−) + α1,2, s, T ), 0}η(α1,2)dα1,2

)
ds−
∣∣∣∣Ft],

(4.16)

where V B(λ1(s−) + α1,2, s, T ) is the CDS’s value at time s after the counterparty

defaults at time s− and satisfies (4.12). Equation (4.16) is also a special case of (4.5)
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with XT = 0, At = 0 and Zt = 0 but with

uB(λ1(s−) + α1,2, s, T ) = max{V B(λ1(s−) + α1,2, s, T ), 0}, (4.17)

which is the a CDS buyer’s loss given the counterparty default.

Assume UA(λ1(t), λ2(t), t, T ) satisfies C1,2,2 with respect to t, λ1(t) and λ2(t). Ap-

plying Feynman-Kac theorem to (4.16) leads to PDE

∂UA

∂t
+ µ1(λ1(t), t)

∂UA

∂λ1

+ µ2(λ2(t), t)
∂UA

∂λ2

+
1

2
σ2

1(λ1(t), t)
∂2UA

∂λ2
1

+
1

2
σ2

2(λ2(t), t)
∂2UA

∂λ2
2

+ ρσ1(λ1(t), t)σ2(λ2(t), t)
∂2UA

λ1λ2

+ λ2

(
(1−R2)

∫ ∞
0

max{V B(λ1(t) + α1,2, t, T ), 0}η(α1,2)dα1,2

)
− (r + λ1 + λ2)UA = 0,

(4.18)

subject to the terminal condition UA(λ1(T ), λ2(T ), T, T ) = 0.

4.4 Numerical Results

In order that we can calculate the survival probabilities, price CDS contracts and

measure the CVA, we will need to solve the PDEs (4.10), (4.14) and (4.18). In order

to implement the model, we first specify the functions µi(λi(t), t) and σi(λi(t), t) for

i = 1, 2. We will use CIR processes for µi(λi(t), t) and σi(λi(t), t) which is

µ(λi(t), t) = κi(θi − λi(t))

σ(λ(t), t) = σi
√
λi(t).

(4.19)

Because CIR process can ensure default intensities to be non-negative and satisfy con-

ditions (2.3) and (2.4), which is essential for Feynman-Kac theorem to be applicable.

Further, we choose default contagion jump sizes αi,j ∀i 6= j and to be F-adapted

independent exponential variables whose density function is defined as,

η (αi,j) =
1

ᾱi,j
e
− 1
ᾱi,j

αi,j
,

where ᾱi,j is the mean value. We choose exponential random variables for the jump

sizes because these guarantee positive jumps and easy to implement so that we can

focus on studying the default contagion effects. However, there are variety distributions

applicable for modelling default contagion jumps as discussed in Section 4.2.1.
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When the jth firm defaults, this will trigger a jump in the default intensity of the

ith firm which we can write as λi(t) = λi(t
−) + αi,j. If one firm’s default intensity

process is characterised by a large value of the parameter κ, which is the speed that

the intensity level reverts back to its long-term mean θ, then the intensity variable is

able to recover faster after a default contagion event. The time horizon over which a

credit event stays relevant is therefore dependent on the mean reversion parameter.

The integral terms in the equations (4.10), (4.14) and (4.18) have limits over zero

to infinity. To implement this alongside a finite-difference scheme, these have to be

truncated over a finite domain and discretised accordingly. For instance, if we assume

the PDE in state B is truncated to [0, λB1,max] and the PDE in state A is truncated to

[0, λA1,max]× [0, λA2,max], then the integral term of equation (4.10) is discretised as∫ ∞
0

V B(λ(t) + α1,2, t, T )η(α1,2)dα1,2

≈
K∑
k=0

ωkV
B(i∆λ1 + k∆λ1, t, T )η(k∆λ1)∆λ1, for ∀i ∈ [0, I]

where ω0 = ωK = 1
2

and 1 otherwise, and K =
λB1,max−λ1(t)

∆λ1
. In this way we can discretise

the integral term to match the discretisation of λ1 in the normal finite difference scheme

for a PDE as described in Section 4.3.

In Chapter 3, we solve the two PDEs in system (3.20) with the same truncation

in both λ-dimensions or λA1,max = λB1,max = λA2,max. However, this decision makes it

difficult as we will have to estimate the value for large λ1 in state A because there

are insufficient available values in state B to approximate the post-contagion values.

Consider evaluating the integral term at the point (λA1 (t−), λA2 (t−)), then the integral

term is

λA2 (t−)

∫ ∞
0

uB(λA1 (t−) + α1,2, t, T )η(α1,2)dα1,2

=λA2 (t−)

(∫ λB1,max−λA1 (t−)

0

uB(λA(t−) + α1,2, t, T )η(α1,2)dα1,2︸ ︷︷ ︸
post-jump values available

+

∫ ∞
λB1,max−λA1 (t−)

uB(λA1 (t−) + α1,2, t, T )η(α1,2)dα1,2︸ ︷︷ ︸
post-jump values not available

)

=λA2 (t−)

∫ λB1,max−λA1 (t−)

0

uB(λA(t−) + α, t, T )η(α1,2)dα1,2 + error,
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where uA denotes the quantity we are solving for. We can see that the error here comes

from when the post-jump intensity, λB1 (t) = λA1 (t−) + α1,2, exceeds the upper bound

λB1,max, taking us into a region where solutions are not available for the computation of

the integral. As a result the largest error will occur when the pre-contagion intensity

is at its highest λA1 (t−) = λA1,max, where the number of the available solutions in state

B is at its least. So we can say that the error is increasing with the pre-jump firm 1’s

intensity λA1 (t−).

In order to limit numerical errors, we require the probability that the contagion

jump size is greater than λB1,max− λA1,max to be less than some small number ε. Conse-

quently, we impose the following condition

Highest Error =

∫ ∞
λB1,max−λA1,max

uB(λA1,max + α1,2, t)η(α1,2)dα1,2

<

∫ ∞
λB1,max−λA1,max

η(α1,2)dα1,2 < ε,

(4.20)

for some small enough ε. The first inequality comes from the fact that all of our

survival probabilities, CDS value and CVA solutions are less than 1 given that the

CDS notional is 1. For all of the numerical solutions that we present in this and the

later chapters of the thesis, ε will be set to be 10−5, which means the probability that

the post-contagion default intensity exceeds the limit will be less than 10−5. Since the

distribution function of an exponential random variable is known, we can compute the

range of λB1,max given λA1,max as∫ ∞
λB1,max−λA1,max

η(α1,2)dα1,2 < ε

e
− 1
ᾱ1,2

(λB1,max−λA1,max)
< ε

λB1,max − λA1,max > −ᾱ1,2ln(ε)

λB1,max > λA1,max − ᾱ1,2ln(ε).

(4.21)

Finally, we note that it is the best to impose the following condition in order to

avoid unnecessary interpolation

λB1,max
IB

=
λA1,max
IA

= ∆λ1, (4.22)

where λB1,max is set to be the smallest number satisfies both (4.21) and (4.22). Imposing

the condition 4.22 is to make sure that the grid sizes in the finite difference scheme in
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state A and B are the same, which makes it convenient to compute the integral terms

in the PDE in state A using the solutions from the PDE in state B.

4.4.1 Survival probability

In this section, a range of results to show how the survival probabilities of a firm

is effected by different strength of contagion. The insights gained here will help the

reader to understand the results of more complex contracts we price later on in the

chapter.

In order to solve (4.8) and (4.10) to find the survival probability of firm 1, we have

to specify the behaviour at the boundaries where λ1(t) and λ2(t) tends to either 0 or

infinity. While in state B, λ1(t) = 0 is substituted into (4.8) and the reduced PDE is

solved at the lower boundary.

At the upper boundary where λ1(t)→∞ or λ2(t)→∞, we refer to the analysis of

the heuristic Robin conditions in Section 3.3.2. A series of grid checks were performed

in Section 3.3.2 to convince ourselves that the second derivative is of secondary im-

portance in the calculations meaning that we can simply remove the second derivative

terms from our original PDEs leading to the heuristic Robin conditions. In addition,

according to Windcliff et al. (2004) and the analysis in Section 3.3.2, the solutions

of our PDEs are less sensitive to the choice of upper boundary because the processes

are with large negative drift when they go to infinity, which is always true when us-

ing (4.19). Therefore, the same argument is applied to derive the upper boundary

conditions for the PDEs of survival probability, CDS value and CVA.

As a result, the reduced PDEs (4.23) are satisfied at the lower and upper boundary.

∂SB

∂t
+ κ1θ1

∂SB

∂λ1

= 0 for λ1(t)→ 0

∂SB

∂t
+ κ1(θ1 − λ1)

∂SB

∂λ1

− λ1S
B = 0 for λ1(t)→∞.

(4.23)

While in state A, the same argument is applied to the boundaries of λ1 and λ2.

The only difference is the reduced PDE at boundaries has an extra term as the value
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changes if firm 2 defaults.

λ1 → 0 :(
∂

∂t
+ Lλ2 + κ1θ1

∂

∂λ1

)
SA − λ2S

A

+ λ2

(∫ ∞
0

SB(λ1 + α1,2, t, T )η(α1,2)dα1,2

)
= 0

λ1 →∞ :(
∂

∂t
+ Lλ2 + κ1θ1

∂

∂λ1

)
SA − (λ1 + λ2)SA

+ λ2

(∫ ∞
0

SB(λ1 + α1,2, t, T )η(α1,2)dα1,2

)
= 0

λ2 → 0 :(
∂

∂t
+ Lλ1 + κ2θ2

∂

∂λ2

)
SA − λ1S

A = 0,

λ2 →∞ :(
∂

∂t
+ Lλ1 + κ2θ2

∂

∂λ2

)
SA − (λ1 + λ2)SA

+ λ2

(∫ ∞
0

SB(λ1 + α1,2, t, T )η(α1,2)dα1,2

)
= 0.

(4.24)

Our model of contagion, now we call the temporary contagion model is compared

alongside two benchmark models, which we choose to be a model with no contagion

effects at all, which we call the independent default model, and the model of Zheng and

Jiang (2009), which we call permanent contagion model. Note that the independent

default model is essentially the CIR-intensity model used in Chapter 3. Therefore,

we can compare the numerical results produced by the default contagion model with

the previous chapter. To show the difference between the temporary and permanent

contagion models, we have coded up the model of Zheng and Jiang (2009) with ai(t)

to be a CIR process λi(t) and bi(t) as a constant equal to ᾱ1,2.

Under previous contagion model, an additional part is added to firm 1’s intensity

after firm 2 defaults, which is λB2 (t) = λA1 (t) + ᾱ1,2. Firm 1’s default intensity remains

ᾱ1,2 higher than its normal level for the rest of time. However our approach allows the

firm’s intensity to follow its own fixed dynamics, and it therefore allows the intensity to

revert back after the default contagion event. In order to demonstrate this effect figures

4.7 and 4.8 show the survival probabilities with different values of mean-reverting speed

for each of the three models. We see that the survival probability of firm 1 behaves
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Figure 4.7
Firm 1 Survival Probability under three models and ᾱ1,2 = 0.02
An illustration of 5 years survival probability under independent default model, permanent contagion
and temporary contagion. Parameters are θ1 = θ2 = 0.05, σ1 = σ2 = 0.1 and λ1(0) = λ2(0) = 0.05.

differently in different models with κ1. For the independent default model, survival

probability decreases with faster mean-reverting speed κ1, and this general trend is

also seen in the permanent contagion model. However, in our model, the size of default

contagion ᾱ1,2 leads to different behaviour for the survival probability with κ1. When

the default contagion effect is strong, a faster mean reversion speed can significantly

raise survival probability because it makes the firm’s default intensity return back

to normal faster. When the default contagion has only temporary impacts on its

default intensity, firm 1’s surviving probability lies in between the other two models,

depending on the reversion speed. Our model tends to the permanent contagion model

when reversion speed tends to zero and to the independent one when mean reversion

tends to infinity. Intuitively, one’s reversion speed represents its ability to recover

from default contagion shocks, so a faster mean reversion forces the intensity process

to drop quicker after a sudden jump leading to a smaller compensator or higher survival

probability equivalently.

In a temporary contagion model, the mean-reverting speed has two effects on a

firm’s survival probability. Firstly, faster mean reversion will reduce the total variance
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Figure 4.8
Firm 1 Survival Probability under three models and ᾱ1,2 = 0.05
An illustration of 5 years survival probability under independent default model, permanent contagion
and temporary contagion. Parameters are θ1 = θ2 = 0.05, σ1 = σ2 = 0.1 and λ1(0) = λ2(0) = 0.05.
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Figure 4.9
Firm 1 Survival Probability with different mean reversion speed κ1 and multiple ᾱ1,2
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of the process and thus have the effect on lowering survival probability. Secondly, the

default intensity can recover from default contagions quicker so survival probability is

higher. Therefore, the strength of default contagion makes survival probability behave

differently with reversion speed, and we see this in figure 4.9. When the size of default

contagion is relatively small, say ᾱ1,2 = 0.005, the variance reduction effect dominates

and the survival probability is a decreasing function of reversion speed similar to the

other two models. On the other hand, if the jump size is higher, the curve drops at

the beginning then increases. When default contagion strength is strong, for instance

ᾱ1,2 = 0.05, the latter effect dominates and survival probability is higher with faster

mean reversion. Intuitively, if the default events of other firms have significant impacts

on the surviving firms, their capacities to recover from default contagions are crucially

important to their survival in the future.

In default correlation modelling, the joint default probability, Q(τ1 < T, τ2 < T ),

indicates how the model creates correlated defaults. We can calculate the joint default

probability according to the relationship

Q(τ1 < T, τ2 < T ) = 1−
(
Q(τ1 > T ) + Q(τ2 > T )−Q(τ1 > T, τ2 > T )

)
, (4.25)

where Q(τ1 > T ) is solved numerically and Q(τ1 > T, τ2 > T ) has an analytic solution,

which is the product of individual’s survival probability conditional on that the other

firm is still alive.

We compare the joint default probability of two firms under our model and inde-

pendent default model of Chapter 3 in figure 4.10. As expected, there will be higher

joint default probability with slow mean-reverting speed since the alive firm’s default

intensity remains high after the other defaults. Intuitively, a firm that is weaker at

recovering from bad events is more susceptible to go bankrupt due to another’s default.

In addition, the effect of increasing the default contagion strength ᾱ1,2 and ᾱ2,1 on

joint default probability is shown in figure 4.11. The joint default probability increases

rapidly with stronger default contagion. Again, if two firms have slower mean-reverting

speed, the joint default probability increases faster with default contagion. We define

the joint default probability premium to be the joint default probability with default

correlation models minus the value from the independent default model.

In figure 4.13, we present the marginal default probability premium, which is firm

1’s marginal default probability with our temporary contagion model minus the default
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Figure 4.10
Joint Default Probability against reversion speed κ
An illustration of 5 years Joint Default Probability with Contagion Jump Size ᾱ1,2 of 0, 0.005, 0.02.
Parameters are θ1 = θ2 = 0.05, σ1 = σ2 = 0.1 and λ1(0) = λ2(0) = 0.05.
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Figure 4.11
Joint Default Probability against Default Contagion Strength ᾱ1,2.
Parameters are θ1 = θ2 = 0.05, σ1 = σ2 = 0.1 and λ1(0) = λ2(0) = 0.05.



CHAPTER 4. A NEW DEFAULT CONTAGION MODEL 155

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Maturity

J
o
in
tD

ef
a
u
lt
P
re
m
iu
m Reversion Speed=0.5

Reversion Speed=1

Reversion Speed=2

Figure 4.12
Joint Default Probability Premium against Maturity
The premium of joint default probability with default contagion over independent default. Parameters
are θ1 = θ2 = 0.05, σ1 = σ2 = 0.1, λ1(0) = λ2(0) = 0.05, κ1 = κ2 = 0.5 and ᾱ1,2 = ᾱ2,1 = 0.02.

probability with independent default model. The mean-reverting speeds κ1 and κ2 are

set to be 0.5, 1 and 2 and we see that, even with the same contagion jump size of

0.05, there can be large differences in firm 1’s default probabilities premium. The

increment to default probabilities with slow mean-reverting speed κ1 = 0.5 are around

three times in absolute term as much as a faster reversion of κ1 = 2. Also, we see

that the reversion speed determines the time-horizon to which the contagion has the

highest impact. If two firms both have a mean-reverting speed of κ1 = κ2 = 0.5, the

default probability premium takes its highest value at around 17 years time. In the

case of κ1 = κ2 = 2, the peak value takes at 14 years time. The reason is that the

mean-reverting speed κ1 determines firm 1’s capacity to recover from an abnormal

level to its mean value θ1. Therefore, with a smaller κ1 implies a weaker ability to

recover from the default contagion due to firm 2’s default. So firm 1’s default intensity

will stays at a high level for longer time. Consequently, we see the default contagion

will have its strongest impact on the longer-term default probability with small κ1.

Then with large κ1, which means strong recovery capacity, the default contagion has

its strongest impact on a shorter-term default probability.

The premium is shown in figure 4.14 with maturities up to 30 years. Over a short
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time horizon, there is little difference between the two models because the probability

that one firm defaults in one year is very limited. Even there is a default in one year, it

is not likely the other one also defaults due to contagion in such a short time. However,

over a very long time horizon, both firms are likely to default no matter what the value

of correlation, therefore the premium of both models drop to zero with maturity T .

Figure 4.14 also compare temporary contagion model and permanent contagion model.

Obviously, the permanent contagion model of Zheng and Jiang (2009) has a stronger

and longer-term impact on the default probability compared to our default contagion

model. The increment in default probability is higher with permanent contagion model

because the default contagion in previous models will not vanish but we allow the

affected firm to recover from contagions. Because we allow the alive firm to recover

from contagions, the time horizon to which a default contagion still have influence on

a firm’s default probability can be very different. In the permanent default contagion

model, the impact starts to decrease after 25 years. With our model, the impact starts

to vanish at around 15 years due to the fact that the firm is recovering, which is what

our model tries to capture. In other words, our model has short-term impact compared

with the permanent contagion model.

To conclude, we are able to obtain accurate numerical solutions of survival proba-

bilities under our proposed default contagion model by solving the corresponding PDE.

Given hypothetical parameters, we found that the temporary contagion model gives

rise to a different behaviour of the survival probability against mean-reverting speed

not seen in the other models. At first, temporary contagion model tends to the same

values as the independent default model when κ → 0 or alternatively the permanent

contagion model when κ → ∞. Secondly, the default probability could have a differ-

ent behaviour against reversion speed. The reason lies in the fact that the reversion

speed κ can reduce the intensity variance whilst at the same time increase the ability

to recover from contagion. When we calculate the joint default probabilities, we see

that the two effects from increasing κ that were observed in survival probability also

appear in the joint default probability. We observed that a firm’s ability to recover

is crucially important when determining joint default probability. With just 0.02 de-

fault contagion, the increment in joint default probability with κ1 = κ2 = 0.5 could

be more than three times compared to the one with κ2 = κ2 = 2. In terms of the



CHAPTER 4. A NEW DEFAULT CONTAGION MODEL 157

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

Maturity

P
D

P
re
m
iu
m

Reversion Speed=0.5

Reversion Speed=1

Reversion Speed=2

Figure 4.13
Increment default probability with default contagion ᾱ1,2
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term-structure of marginal default probabilities, reversion speed has two impacts on

the term-structure. The marginal default probability premium, which is additional

to default probability without default contagion, are influenced by reversion speed in

terms of the maximum value and the time horizon to which it reaches the maximum.

4.4.2 CDS spreads

In this section, we will compare the CDS spreads under the three different models and

we will further demonstrate how the mean-reverting speed and the default contagions

influence the CDS premium. We showed in Section 4.3 that we can evaluate a CDS’s

fair spread by solving PDEs (4.12) and (4.14) simultaneously. The CDS spread or the

swap rate is one of the input parameters for the PDE solver. According to (2.58),

CDS spread is the ratio of default value and the premium value. Intuitively, default

value is the CDS value when the protection buyer pays 0 swap rate, which is S = 0,

and the premium value is the CDS value with recovery R = 1. Therefore, we can solve

PDEs (4.12) and (4.14) with appropriate input parameters to evaluate the default and

the premium values separately then taking their ratio to obtain the fair swap rate S∗

according to (2.58).

Numerically solving (4.12) and (4.14) requires boundary conditions for both PDEs.

For the one-dimensional PDE (4.12), we apply the heuristic Robin boundary conditions

(3.15), which we have already shown to be the superior over other types of conditions.

Then for the two-dimensional PDE (4.14), the heuristic Robin conditions are used,
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which we refer our analysis to Section 3.3.2. The resulting PDEs are as follow

λ1 → 0 :(
∂

∂t
+ Lλ2 + κ1θ1

∂

∂λ1

)
V A + λ2

(∫ ∞
0

V B(λ1 + α1,2, t, T )η(α1,2)dα1,2

)
− (r + λ2)V A = 0,

λ1 →∞ :(
∂

∂t
+ Lλ2 + κ1θ1

∂

∂λ1

)
V A + λ2

(∫ ∞
0

V B(λ1 + α1,2, t, T )η(α1,2)dα1,2

)
+ λ1

(
(1−R)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
− (r + λ2 + λ1)V A = 0,

λ2 → 0 :(
∂

∂t
+ Lλ1 + κ2θ2

∂

∂λ2

)
V A + λ1

(
(1−R)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
− (r + λ1)V A = 0,

λ2 →∞ :(
∂

∂t
+ Lλ1 + κ2θ2

∂

∂λ2

)
V A + λ2

(∫ ∞
0

V B(λ1 + α1,2, t, T )η(α1,2)dα1,2

)
+ λ1

(
(1−R)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
− (r + λ2 + λ1)V A = 0.

(4.26)

Figure 4.15 shows the swap rates of CDS contracts up to 30 years maturity. Since

the amount of the protection buyer has to pay reflects the referencing firms’ default

probabilities, it has a similar behaviour to that we saw for the default probability.

Compared with the permanent contagion model, the rates are similar for a one year

CDS but the gap is widening with longer maturities due to our model allowing for

recovery from default contagion.

Taking the difference between swap rates using our temporary contagion model and

the independent defaults model, we can define the swap rate premium due to default

contagion, which is the extra fee due to introducing default contagion into the model.

Figures 4.17 and 4.16 show the extra fees that a protection buyer should pay for firm

1’s protection due to the amount that its default probability may be raised by the

possibility of contagion from firm 2’s default.

Given the results that were observed for firm 1’s default probabilities, we should

expect that stronger default contagion means the protection buyer has to pay more.
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Fair CDS swap rates of maturity up to 30 years
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We see again that the premiums for one and thirty years protections are less than

those for five to ten years. If we only raise the default contagion jump size ᾱ1,2, we

notice that the maturity where the default contagion has the highest impact will not

change. For instance, in figure 4.16, the eight-year protection has the highest premium

compared to all other maturities. On the other hand, if we slow down firm 1’s and

firm 2’s mean-reverting speeds κ1 and κ2, as we do in figure 4.17, then the premium

will be higher and the highest premium happens to longer maturity contracts. For

example, with κ1 = κ2 = 0.25, the 11 years protection has the highest increment,

which is 10.17 bps. When κ1 = κ2 = 1, the price increment is the highest at 6 years

protection. This can be explained by noticing that firm 2 becomes safer in state A so

the probability it defaults is lower. Consequently, default contagion to firm 1 is more

likely to occur later rather than earlier. In addition, lower κ1 also make firm 1 less

likely to recover thus higher default probability, which implies higher premium for the

protection.

4.4.3 Credit value adjustments

In this section, we let firms 1 and 2 be the referencing firm and the CDS protection

seller. We investigate the default contagion impact on the CVA defined when buying

a CDS contract from a counterparty whose default leads to a default contagion jump

in the referencing firm’s default intensity.

First of all, we specify the boundary conditions for solving (4.18). Note that the

boundary conditions for solving (4.12), which determines the loss given the counter-

party defaults, has been addressed in Section 4.4.2. Also, we demonstrated in Section

3.4.1 that the heuristic Robin boundary conditions (3.25) can be used for solving PDEs

to CVA. So we modify the heuristic Robin boundary conditions (3.25) to account for
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the default contagion effects for solving (4.18), which are

λ1 → 0 :(
∂

∂t
+ Lλ2 + κ1θ1

∂

∂λ1

)
U − (r + λ2)U

+ λ2

(
(1−R2)

∫ ∞
0

max{V B(λ1(t) + α1,2, t, T ), 0}η(α1,2)dα1,2

)
= 0,

λ1 →∞ :(
∂

∂t
+ Lλ2 + κ1θ1

∂

∂λ1

)
U − (r + λ1 + λ2)U

+ λ2

(
(1−R2)

∫ ∞
0

max{V B(λ1(t) + α1,2, t, T ), 0}η(α1,2)dα1,2

)
= 0,

λ2 → 0 :(
∂

∂t
+ Lλ1 + κ2θ2

∂

∂λ2

)
U − (r + λ1)U = 0,

λ2 →∞ :(
∂

∂t
+ Lλ1 + κ2θ2

∂

∂λ2

)
U − (r + λ1 + λ2)U

+ λ2

(
(1−R2)

∫ ∞
0

max{V B(λ1(t) + α1,2, t, T ), 0}η(α1,2)dα1,2

)
= 0.

(4.27)

The lower boundaries are simply substituting λ1 = 0 or λ2 = 0 into the PDE. The

reason for choosing these upper boundaries to be similar as we did for CDS and Survival

probabilities is that the analysis in Chapter 3 suggests the upper boundary conditions

have negligible effects on the solution when using mean-reverting type process and the

heuristic Robin boundary conditions have the best performance over other boundary

conditions.

We note that the probability that the counterparty defaults earlier than the ref-

erencing firm does not change after introducing the default contagion. Because both

firms’ default intensity are in no way different as compared to the independent default

model or permanent default model before a default event happens. A default conta-

gion jump only directly impacts on the distribution of the CDS’s value after contagion

and therefore the losses at default. Before the default contagion occurs, a referencing

firm’s default intensity follows a non-central χ2 distribution since we are using CIR

processes. But after the counterparty defaults, a default contagion jump, which is
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Post-contagion CDS value distribution
The one year CDS’s value distribution after default contagion. Assumed the counterparty defaults at
τ2 = 0.75. The default contagion size α1,2 ranges from 0 to 0.47. Parameters are T = 1, Ti−Ti−1 = 1,
S = 0.03.

exponentially distributed with mean ᾱ1,2, is added to the referencing firm’s default in-

tensity λ1(τ2) = λ1(τ−2 ) +α1,2. Consequently, the distribution of the referencing firm’s

default intensity λ1(τ2) is changed by default contagion and therefore so is the value

distribution of the CDS. We try to give insight to this by showing the post-contagion

value distribution V B(λ1(τ2)) of a one year CDS contract given that the counterparty

has defaulted at time τ2 = 0.75, in figure 4.18.

At each λ1 ∈ [0, λ1,max], we must compute the post-contagion CDS value as the loss

given default, if any, which is the integral term in PDE (4.18). Figure 4.19 compares

the CDS value distributions of a one year standard CDS contract with and without

default contagion, conditional that the counterparty defaults at t = 0.002, 0.25, 0.5

and 0.75 in the future. In the case of µ(α1,2) = 0, it means default contagion does

not exist thus this is the independent default model we discussed in previous two

section and in Chapter 3. The CDS value is a distribution depending on pre-contagion

intensity position λ1(τ−2 ). The black bar on each plot divides these distributions into

two areas, where on the right-hand-side the value of the CDS is positive and there

is a loss to the protection buyer if the counterparty defaults. The role of a default

contagion jump is to create a rightward shift to the CDS value distribution at time
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Expected post-contagion CDS value distribution
An illustration of a one year CDS value distribution assumed the counterparty defaults at t = 0.002,
0.25, 0.5 and 0.75. Default contagion strength are ᾱ1,2 = 0., ᾱ1,2 = 0.02 and ᾱ1,2 = 0.05.

τ−2 . Consequently, when compared to the independent default model, there is a higher

probability that the CDS buyer will suffer a loss from a counterparty default and the

losses are also likely to be higher. For instance, if the counterparty’s default time is

0.5 in panel (c), the CDS values are so low without contagion (blue dot-dash line)

that the CDS buyer will not suffer from a counterparty default loss in any but the

very worst case situations. However, with default contagion ᾱ1,2 = 0.05, there is a

sufficiently large probability that the buyer loses out and the CVA will be higher as a

consequence.
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Table 4.3 shows the CVA movements with default the contagion ᾱ1,2 of the CDS

contracts up to 10 year maturities and the corresponding computational time. We find

the CVA is very sensitive to default contagions and it is especially so for short-term

contracts at least if we look at the relative effects. However, the short-term contracts

are originally subject to very low CVA due to low counterparty default probability.

Although the relative increment in CVA is extremely high for short-term contracts,

the increases in absolute terms are very small. The long-term contracts are subject

to significantly higher counterparty default risk. For example, in a 10-year contract,

the CVA is 35.84 bps and it rises to 66.98 bps and 123.5 bps as the default contagion

strength increases from 0.025 to 0.1, which means it is almost doubled every time.

According to table 4.3, the amount of CVA that the investor will charge the CDS

seller due to default contagion is in general increasing with longer maturity contracts.

This is because counterparty is more likely to default when the time horizon is longer

thus the default contagion is more likely to influence CVA. In addition, we see the

computational time is increasing with the default contagion strength ᾱ1,2. Because

the conditions, which we discussed in Section 4.4, require the number of grid points

for λB2 to be sufficiently large in order to minimise the computational errors so the

computational time increases accordingly.

Introducing a default contagion from counterparty to the referencing firm will al-

ways increase the CVA charged to the CDS seller. However, the amount the CVA

changes due to default contagion varies significantly depending on, again, the relative

riskiness of the two firms. Figure 4.20 shows the difference in CVA resulting from the

inclusion of default contagion. We construct figure 4.20 by subtracting the CVA with

default contagion ᾱ1,2 = 0.05 to the CVA without default contagion. The amount

of the CVA changes is usually increasing with the counterparty’s default intensity

λ2, which can be seen in part (a). However, if the referencing firm is very safe and

the counterparty is risky, the CVA change due to default contagion could be small,

because when the referencing firm is very safe, the CDS’s value is so deeply out of

the money that whether counterparty’s default will deteriorate the referencing firm’s

credit does not change the CDS value from negative to positive therefore there may be

no counterparty default loss. In the situation that the referencing firm’s default risk is

lower than normal level, default contagion has greater impact when the counterparty
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is more risky than the referencing firm but the counterparty is not so extremely risky

that the counterparty’s default is going to happen instantly, which we can see from the

red curve in part (b). Because we model the intensities as mean-reverting processes,

we know that the firm’s intensity will return to its mean value. Therefore, having

a slightly more risky counterparty means it is more likely to default earlier than the

referencing firm whilst also allowing enough time for the CDS value to increase to a

normal level.

However, if the referencing firm λ1(t) is risky enough, so that the CDS value at the

counterparty’s default time is almost surely positive, then the default contagion could

have a significant impact on the CVA and the amount of change in the CVA is always

increasing with larger λ2, which is the more risky counterparty. The maximum CVA

increment is almost 250 bps when the counterparty is about to default. In parts (b)

and (c), we see that the CVA increment tends to the expected post-contagion CDS

value given λ1(τ2). When the referencing firm is very risky, whether there is default

contagion does not change the CVA a lot, see parts (a) and (c). There are two reasons

for this phenomenon. Firstly, a risky referencing firm reduces the probability that

counterparty defaults earlier so there will be no default contagion effects. Secondly,

CDS value is a concave function of λ1. Consequently, given ᾱ1,2 unchanged, the higher

λ1 implies that the amount of loss given default raised by default contagion is lower.

4.5 Conclusions

In this chapter, we propose a new approach for modelling default contagion, which

default contagion is modelled into the SDE of firms’ default intensity process. We

discuss valuation problems of survival probability, CDS and CVA under this model

and discuss the various approaches to model the random default contagion jumps.

While consider only two firms, indexed by 1 and 2, in the economy, we derive and

discuss the PDE systems to describe firm 1’s marginal survival probability, the CDS

value referencing to the firm 1 and the CVA due to buying the CDS from firm 2.

By further specifying the default intensity processes to be mean-reverting type,

our model allows firms to recover from default contagions depending on their own

mean-reverting speed. One advantage of this model over previous default contagion
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Figure 4.20
The change of the CVA of a 5 years CDS protection with ᾱ1,2 = 0.05, CVA(ᾱ1,2 = 0.05)-
CVA(ᾱ1,2 = 0)
A illustration of the CVA changes due to raising default contagion from counterparty to referencing
firm with parameters are κ = 0.5, θ = 0.05, σ = 0.1. (a) The CVA change against λ1 and λ2 raises
from 0 to 5. (b) The CVA change against λ2 and λ1 raises from 0 to 0.08. (c) The CVA change
against λ2 and λ1 raises from 0.1 to 2. (d) The CVA change against λ2 and λ1 raises from 3 to 5.



CHAPTER 4. A NEW DEFAULT CONTAGION MODEL 171

models is that we can easily to obtain numerical solutions for the PDE systems using

finite-difference and we discuss the corresponding finite-difference scheme in detail.

After solving the PDE systems, which contain a two-dimensional and a one-dimensional

PDE, we show the marginal and joint default probabilities with default contagion. We

see that firms’ mean-reverting parameter is critical important to one’s marginal de-

fault probability and joint default probability. While with the default contagion, firms

1’s as well as firm 2’s mean-reverting speed will determine the time when the de-

fault contagion has the strongest impact on the marginal and joint default probability.

Also, slow mean-reverting speed of the alive firm implies default contagion will have

stronger impacts on the firm because the firm is less likely to recover from the de-

fault contagion. In terms of fair CDS spreads, since they are directly linked to the

referencing firm’s default probability, similar behaviours are observed. As to the CVA,

the default contagion’s role is to create a random upward jump in the CDS value, or

the loss given default in other words, at the counterparty’s default time. But default

contagion does not changing the probability that the counterparty credit event occurs.

The CVA change due to default contagion is very significant for maturities with up to

10 year CDS contracts. It is found that the default contagion’s impacts on CVA vary

according to the CDS’s value and the relative riskiness of the referencing versus the

counterparty. The default contagion will have the strongest impact on CVA when the

CDS has positive value but far from its upper limit. Also, the counterparty is rela-

tively more risky than the referencing firm so that the probability of the counterparty

defaults earlier is higher.



Chapter 5

Default Contagion Model with

Jump-Diffusion process

In the previous chapter to this we described a novel default contagion framework in

which we model default contagion through a jump to the stochastic differential equa-

tion of surviving firms’ default intensity at other firms’ default times. Within that

framework, we have only considered the default correlations due to the interactions

among a closed set of firms. However, there are other external factors that may af-

fect all firms at the same time. For instance, the changing of macroeconomic factors,

such as the interest rate set by central banks or some new regulations, may lead to a

situation where all firms face financial difficulty or higher default risk. We would like

to take into account the impacts on firms’ default risk caused by changing macroeco-

nomic factors and we will refer to them as external or economy-wide shocks, which

are modelled as jump processes. For the motivations to model asset prices with jump

diffusion processes, we refer to Kou (2007).

In this chapter, we consider default correlation that are driven by both interactions

among companies and macroeconomic factors, namely default contagion shocks and

external shocks respectively. In a similar way to how we have modelled the impact from

default contagion events, the impacts from macroeconomic factors are modelled by an

inhomogeneous Poisson process added into the default intensities and this Poisson

process will be shared by all firms’ default intensities. In this way we can generalise

the occurrence of all the unexpected external shocks from a variety of economy-wide

sources into event arrivals of a single Poisson process. Because the Poisson process is

172
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shared by all the firms’ default intensity SDEs so that all the intensities jump up at

the same time. Under this framework, the default contagion from Chapter 4 is still

included so that the default event of a firm can trigger jumps to alive ones.

We are not the first to try and include a jump component into default intensity

processes, for example Duffie (1998) Duffie et al. (1999), Brigo and El-Bachir (2010).

Duffie (1998) is one of the first papers to mention how affine-jump-diffusion (AJD)

processes could be used for modelling the default intensity process and provide closed-

form solutions for default bonds. The application of AJD processes is further studied

by Duffie (2005), who derive closed-form solutions to the three building blocks for

pricing credit derivatives introduced by Lando (1998), which we discussed in Section

2.2. Consequently, closed-form solutions are available for pricing credit derivatives

including CDS and credit guarantees. The pricing of more complicated credit deriva-

tives with an AJD process, such as the credit default swaption, is discussed by Brigo

and El-Bachir (2006). Brigo and El-Bachir also describe how to calibrate their AJD

process to the implied swaption volatility. A semi-analytic solution of credit swaption

has now been provided by Brigo and El-Bachir (2010), which is based on a Fourier

transform. These papers have focused on pricing single name credit derivatives using

jump processes but did not treat the jump term as a shared component of multiple

firms. In our model the jump term is contributing as a source of default correlation

and we will therefore be able to analyse the impact on default correlation. The jump

component as a source of default risk shared by all companies, in order to represent

economy-wide risk, has been studied by Duffie and Garleanu (2001), who investigate

the pricing of CDO and the probability distribution of the number of defaulted firms.

Using the default contagion model of Yu (2007), Hao and Ye (2011) consider a model

where the CDS seller and the referencing firm’s default intensities share a Vasicek pro-

cess with exponential jumps. Due to the normality of the model, Hao and Ye manage

to derive the closed-form solution to the fair CDSs spreads. The model of Hao and

Ye (2011) is extended by Wang and Ye (2013) to derive the CDS spread when the

CDS buyer is also defaultable. However, neither Hao and Ye (2011) nor Wang and

Ye (2013) did quantitative analysis of the shared jump’s impact on default correlation

and CVA.

The main contribution we make here is the combination of jump diffusion default
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intensities with default contagion model as well as also presenting efficient numerical

schemes that can solve these complex derivatives. Unlike Hao and Ye (2011) and Wang

and Ye (2013), our model does not break the non-negative restriction for default inten-

sities. Moreover, we explore the shared jumps’ impact on joint default probabilities,

CDS spreads and CVA. We are able to compare the different roles of external shocks

and default contagion shocks play in the derivation of the CVA.

In this chapter, model specifications are discussed in Section 5.1, where we combine

external shocks into our proposed default contagion model. The extended model leads

us to a problem that involves solving one-dimensional and two-dimensional PIDEs, and

we will revisit the previous numerical scheme and show how to handle the extended

model in Section 5.3. Numerical results of survival probabilities, CDS prices and CVA

will be shown in Section 5.4 to illustrate the external shock effects as well as default

contagion on default correlation, CDS spread and CVA.

5.1 Model Specification

Consider a filtered probability space
(
ΩW ,FWt ,QW

)
up to the finite time horizon t,

satisfying the conditions of right continuous and completeness. On this probability

space, there are Brownian motions (W i
t )
I
i=0 representing the uncertainties in the econ-

omy. A filtration FWt is defined as

FWt = σ
(
(W i

s)
I
i=0, 0 ≤ s ≤ t

)
,

which is the filtration generated by Brownian motions. In order to construct stochastic

default contagion and external shocks, we enlarge the probability space ΩW with a

probability space
(
Ωα,β,Fα,β,Qα,β

)
defined by I × (I − 1) non-negative bounded real-

value random variables αi,j with a known joint density function η̄() for i ∈ I, j 6= i.

Compared to Chapter 4, we introduce an extra F-adapted homogeneous Poisson

process JQ(t) with a constant arrival rate λ̄ ∈ R+ and jump size as a random variable

β ∈ R+ with density function ν(β) such that
∫
R+
λ̄ν(β)dβ <∞. According to Tankov

(2003), the process JQ
t is of finite variate and has finite first moment, which is essential

for modelling default intensities using JQ(t). The homogeneous Poisson process JQ
t is

shared by all firms, hence it will not be indexed by i. Event arrivals of JQ
t represent the
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occurrence of external shocks that do harm to every firm’s credit quality. We denote

the filtration generated by the homogeneous Poisson process as

FJt = σ
(
(JQ
s ), 0 ≤ s ≤ t

)
.

Then the entire market filtration contain all market information except default is

defined as

Ft = FWt ∨ Fα,β ∨ FJt . (5.1)

Further, we assume there are I non-negative random variables (τi)
I
i=0 defined on

the filtered probability space (Ω,Gt,Q), satisfying Q(τ i = 0) = 0 and Q(τ i > t) > 0

for t ∈ R+ and i ∈ I. Let the right-continuous default indicator processes H i
t = 1{τ i≤t}

and Hi to denote the filtration generated by the default process H i
t , so that Hi

t =

σ({τ i ≤ u : u ≤ t}) for any t ∈ R+. The total default information is captured by the

filtration Ht = ∨i∈IHi
t. Then the total information, including market information and

default information, is captured by the filtration G = F ∨H, where F = (Ft)t∈R+
and

H = (Ht)t∈R+
. All filtrations are assumed to satisfy conditions of right-continuous and

completeness.

Due to the nature of default contagion modelling discussed in Section 4.2, we

define F i
t = Q(τ i ≤ t|G−it ) to be a G−i =

(
G−it
)
t∈R+

-adapted default process, where

G−it = ∨j∈I,j 6=iHj
t∨Ft. The filtration G−it contains all information except the ith default

time τ i.

Let us F i
t is an absolutely continuous submartingale under Q for all i ∈ I. Then

the G−i-hazard process Γit of τ i under Q, defined as 1 − F i
t = e−Γit , admits the G−i-

adapted intensity λQi (t) of default time τ i under Q. In this Chapter, we model the

non-negative default intensity processes as

dλQi (t) =µQ(λi(t), t)dt+ σQ(λ(t), t)dW i
t + βdJQ(t) +

I∑
j∈I,j 6=i

αQ
i,jdH

j
t

d < Wi,Wj >= ρi,jdt, for ∀i 6= j.

(5.2)

where µQ(λi(t), t) and σQ(λi(t), t) being F-adapted Lipschitz real value functions sat-

isfying (2.3) and (2.4). The processes λQi (t) are assumed to be non-negative and for

all i ∈ I and are supposed to be the G−i-adapted stochastic intensity process. The

stochastic jump αi,j has a marginal probability density function ηi,j(αi,j).
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When there is an arrival of the Poisson process JQ(t), the external shock β is

applied to all surviving firms’ credit intensities. In other words, all firms’ default risk

is driven up at the same time and by the same amount. Introducing the homogeneous

Poisson process JQ(t) will lead to the default intensity processes λQi (t), excluding

default contagion, to be a jump-diffusion process. We name this new type of default

intensity process as jump-diffusion-contagion process.

5.2 A Two Firm Model

In a similar way to Section 4.3, we will first present the new default contagion model

in a two-firm framework. In the two-firm framework, we present the derivation of the

partial integro-differential equations to survival probability, CDS price and the CVA.

Now, let us now consider a simple case where there are just two firms A and B and

we model the default intensities as

dλA(t) = µA(λA(t), t)dt+ σA(λA(t), t)dWA(t) + αA,BdHB(t) + βdJ(t),

dλB(t) = µB(λB(t), t)dt+ σB(λB(t), t)dWB(t) + αB,AdHA(t) + βdJ(t),

d < WA(t),WB(t) >= ρA,Bdt.

(5.3)

We drop the superscript Q in parameters for simplicity. Then the surviving or default

state of these two firms means that there are 4 states in the economy, and we will

denote them by the following,

A = {HA(t) = 0, HB(t) = 0}, B = {HA(t) = 0, HB(t) = 1}

C = {HA(t) = 1, HB(t) = 0}, D = {HA(t) = 1, HB(t) = 1}.

Note that, since µA(λA(t), t), µB(λB(t), t), σA(λA(t), t), σB(λB(t), t) and the process

Jt are F-adapted, then both intensity processes λA(t) and λB(t) are Ft-measurable in

state A. While in state B, λA(t) will be G−At -measurable and λB(t) does not exist since

firm B defaulted. Similarly, λB(t) is G−Bt -measurable in state C and both intensities

do not exist in state D. We remind readers that the default intensities remain to

be jump-diffusion processes in the corresponding states they exist. Default contagion

jumps happen at the time of state changes due to a firm defaults.
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The derivation of (4.5) and (4.6) does not rely on the specific dynamic of default

intensities. Therefore, (4.5) and (4.6) still valid under the jump-diffusion-contagion

processes. However, the Feynman-Kac theorem in Section 2.1 can be applied only

with the additional condition that
∫
R+
λ̄ν(β)dβ <∞ and the infinitesimal generators

below, which we refer to Tankov (2003). In addition, the infinitesimal generator in a

two-dimensional framework is

(A{uA})(λA, λB, t) =
∑

i∈{A,B}

µi(λi, t)
∂uA

∂λi
+

∑
i,j∈{A,B}

1

2
(σσT )i,j(λi, λi, t)

∂2uA

∂λi∂λj

+ λ̄

∫
R

(
uA(λA + β, λB + β, t)ν(β)dβ − uA(λA, λB, t

−)
) (5.4)

and for the one-dimensional case is(
A{uB}

)
(λi, t) = µi(λi, t)

∂uB

∂λi
+

1

2
σ2
i (λi, t)

∂2uB

∂λ2
i

+ λ̄

∫
R

(
uB(λi + β, t)ν(β)dβ − uB(λi, t

−)
)
, for i = A or B

(5.5)

where uA(λA, λB, t, T ) and uB(λA, t, T ) are the generic credit claims (4.5) and (4.6)

respectively. uA(λA(t−) + β, λB(t−) + β, t, T ) is the post-jump value after an arrival

of J(t) and the pre-jump value is uA(λA(t−), λB(t−), t−, T ). It is worth noting that

because we model the strength of external shocks to the firms’ default intensity as

identical then the post-jump value uses the same β for each firms’ default intensity.

In this situation, we have the greatest level of correlation because both the external

jump times and sizes are identical to all firm. For the validation of (5.4), (5.5) the

applicability of the Feynman-Kac theorem to credit derivatives with jump-diffusion

default intensities, we refer to Duffie and Singleton (1999), Duffie et al. (1999) and

Tankov (2003).

Here we follow a similar procedure as laid out in above literature and apply

it to our default contagion model. First, a credit claim in state A, denoted by

uA(λA(t), λB(t), t, T ), with default contagions can be expressed as (4.5) if cash flows

XT , At and ZτA satisfy the appropriate technical conditions. When the default inten-

sities are modelled as (5.3), applying the Feynman-Kac theorem to (4.5) leads to the

PIDE
∂uA

∂t−
+ L{uA}+ J {uA}+ fA(λA, λB, t)− gA(λA, λB, t)u

A = 0, (5.6)

subject to terminal condition ψ(λA, λB, T ) = X(T ), where

A{uA} = L{uA}+ J {uA} (5.7)
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and

J {uA} = λ̄

(∫ ∞
0

u(λA(t−) + β, λB(t−) + β, t)ν(β)dβ − u(λA(t−), λB(t−), t−)

)
.

(5.8)

In order to simplify notations and make it easy to introduce numerical methods

in Section 5.3, we use functions f(λA, λB, t) and g(λA, λB, t) to summarise the terms

after applying Feynman-Kac theorem to (4.5), which are

fA(λA, λB, t) = λAZ(t) + dA(t) + λB

∫ ∞
0

uB(λ1 + αA,B, t, T )η(αA,B)dαA,B

gA(λA, λB, t) = r(t) + λA + λB

ψA(λA, λB, T ) = XT ,

(5.9)

where r(t) is an F-adapted interest rate process and the function ψ(λA, λB, T ) repre-

sents the terminal condition at time T state A.

Similarly, for the credit claim referencing to firm A in state B, we apply Feynman-

Kac theorem to (4.6) and it leads to

∂uB

∂t−
+ L{uB}+ J {uB}+ fB(λA, t)− gB(λA, t)u

B = 0, (5.10)

subject to terminal condition ψ(λA, T ) = X(T ), where

fB(λA, t) = λAZ(t) + dA(t)

gB(λA, t) = r(t) + λA

ψB(λA, T ) = XT .

(5.11)

Similar to Section 4.3, the value of any default claim referencing to firm A with

the jump-diffusion-contagion model is the solution of the two PIDE system (5.6) and

(5.10) with specifications of XT , At and ZτA in (4.5) and (4.6). For the rest of this

section, we introduce the PIDEs to survival probability, CDS value and the CVA as

special cases of (5.6) and (5.10).

5.2.1 Survival probability

Similar to the survival probability in Chapter 4, the firm A’s marginal survival prob-

ability within our model should be considered in two states, A and B. If no firm

has defaulted, the default intensities are described as (5.3). On the other hand, if B
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firm has defaulted, in state B, the default intensity is simply a jump-diffusion process.

Denote firm A’s default probability from time t to T in state B as PB(λA(t), t, T ). As

discussed in Section 4.3, we know that it must satisfy (4.6) with X(T ) = 1, As = 0,

Zs = 0 and r(t) = 0 so we have the PIDE (5.10) with

fB(λA, t) = 0

gB(λA, t) = λA

ψB(λA, T ) = 1,

which is

∂PB
∂t−

+ µA(λA, t)
∂PB
∂λA

+
1

2
σ2
A(λA, t)

∂2PB
∂λ2

A

− λAPB

+ λ̄

(∫ ∞
0

PB(λA(t−) + β, t, T )ν(β)dβ − PB(λA(t−), t−, T )

)
= 0.

(5.12)

Similarly, in state A, the firm A’s survival probability PA(λA(t), λB(t), t, T ) is a

special case of (4.6) with X(T ) = 1, As = 0, Zs = 0 and r(t) = 0. Therefore,

PA(λA(t), λB(t), t, T ) satisfies the PIDE (5.6) with

fA(λA, λB, t) = λB

∫ ∞
0

PB(λA + αA,B, t, T )η(αA,B)dαA,B

gA(λA, λB, t) = λA + λB,

ψA(λA, λB, T ) = 1,

which gives us

∂PA
∂t−

+ L{PA}+ J {PA}+ λB

(∫ ∞
0

PB(λA + αA,B, t, T )η(αA,B)dαA,B

)
−
(
λA + λB

)
PA = 0.

(5.13)

5.2.2 Credit default swap

In Section 4.3, we show that the CDS’s value can be expressed as (4.6) with multiple

payments Xn = S(Tn− Tn−1) at time Tn and ZτA = (1−R)e−r(T−τA)− S τA−Tk−1

Tk−Tk−1
with

Tk−1 ≤ τ1 < Tk and At = 0. Denote VB(λA(t), t, T ) as the CDS value in state B and we

remind the reader here that S is the swap spreads to be paid at T1, T2, ..., TN , which we

treat as jump conditions on the PIDE at the end of each time period. Then we know

from Section 5.2 that applying Feynman-Kac theorem to (4.6) leads VB(λA(t), t, T ) to
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be the solution of PIDE

∂VB
∂t−

+ L{VB}+ J {VB}+ λA

(
(1−RA)e−r(T−t

−) − S t
− − Tn−1

Tn − Tn−1

)
− (r + λA)VB = 0

(5.14)

for t ∈ (Tn−1, Tn) with n = 1, 2, ....N . It is subject to the terminal condition VB(λA, T, T ) =

0 and jump conditions

VB(T−n , T ) = VB(Tn, T )− S(Tn − Tn−1) for n = 1, 2, ....N.

Or we could say that (5.14) satisfies (5.10) with

fB(λA, t) = λA

(
(1−RA)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
gB(λA, t) = r + λA,

ψB(λA, T ) = 0.

Similarly, we denote the CDS value in state A as VA(λA(t), λB(t), t, T ), then a CDS

referencing to firm A will satisfy the generic PIDE (5.6) with

fA(λA, λB, t) = λB

∫ ∞
0

VB(λA + αA,B, t
−)η(αA,B)dαA,B

+ λA

(
(1−RA)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
gA(λA, λB, t) = r + λA + λB

ψA(λA, λB, T ) = 0.

(5.15)

Then we can write the equation for the CDS as

∂VA
∂t−

+ L{VA}+ J {VA}+ λA

(
(1−RA)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
+ λB

∫ ∞
0

VB
(
λA + αA,B, t

−)η(αA,B)dαA,B −
(
r + λA + λB

)
VA = 0

(5.16)

for t ∈ (Tn−1, Tn) with n = 1, 2, ....N with terminal condition VA(λA, λB, T, T ) = 0

and jump conditions

VA(T−n , T ) = VA(Tn, T )− S(Tn − Tn−1) for n = 1, 2, ....N.

5.2.3 Credit value adjustment

We measure the CVA here of buying a CDS protection from a CDS seller whose default

has a default contagion effect on the referencing firm. In addition to default contagion

shocks, we are interested in how the CVA will also be affected by external shocks.
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Introducing a jump process J(t) into our model makes the default intensity model

falls into the class of jump-diffusion process. Duffie (2005) shows the PIDE for pricing

credit claims in jump-diffusion process and Burgard and Kjaer (2011) show the PDE

representation of the CVA when the underlying asset process is a diffusion process. It

is not until recently that the PIDE representation of the CVA when the underlying

asset process is a jump-diffusion was proven by Kromer et al. (2015). Kromer et al.

(2015) prove the PIDE for CVA in very generic settings such that the conclusion holds

for a wide range of jump-diffusion processes with random jump sizes. Therefore, we

can use their results to obtain the PIDE for the CVA in our model.

Unlike a CDS written on firm A, which exists in both states A and B, the CVA

due to buying a CDS contract referencing to firm A from firm B only exists in state A.

This is because if either firm A or B defaults, this implies the termination of the CDS

contract and the CVA does not exist either. By definition, when the contract expires,

there is no counterparty risk therefore the CVA at terminal time equals 0. If the coun-

terparty defaults earlier than the referencing firm, the values from PIDE (5.14), which

is the CDS’s value in the counterparty’s default state, will determine whether or not

the CDS buyer suffers from a loss. The losses, as discussed in Chapters 3 and 4, is the

non-recoverable amount of the CDS’s price if it is positive, (1−RB) max{VB(τB, T ), 0}.

The difference between the CVA in this chapter and the one in Section 4.18 is that for

this jump-diffusion contagion model the CVA will jump to the CVA associated with

a higher referencing firm’s and the counterparty’s default intensities after external

shocks.

As discussed in Section 4.3, the CVA to a default-free entity due to buying a CDS,

referencing to firm A, from firm B is a special case of (4.5) with At = 0, XT = 0

and ZτB = (1 − RB)

∫ ∞
0

max{V B(λA(τ−B ) + αA,B, τB, T ), 0}η(αA,B)dαA,B. Applying

Feynman-Kac theorem to (4.5) with the infinitesimal generator (5.4), the CVA, de-

noted as U(λA(t), λB(t), t, T ), with our jump-diffusion-contagion model satisfies PIDE

∂U

∂t−
+ L{U}+ J {U} − (r + λA + λB)U

+ λB

∫ ∞
0

(1−RB) max{VB(λA + αA,B, t
−, T )}η(αA,B)dαA,B = 0,

(5.17)

subject to the terminal condition U(λA, λB, T, T ) = 0, which is a special case of (5.6)
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with

fA(λA, λB, t) = λB

∫ ∞
0

(1−RB) max{VB(λA + αA,B, t, T )}η(αA,B)dαA,B,

ψA(λA, λB, T ) = 0

gA(λA, λB, t) = r + λA + λB.

(5.18)

5.3 Numerical Schemes

In order to study the numerical implementation of our jump-diffusion-contagion model,

we cannot avoid explicitly specify the functions of drift µ(), volatility σ() and the

distribution of jumps αA,B, αB,A and β, which are ηA,B(), ηB,A() and ν().

In order to make our numerical result comparable with previous chapters, we still

choose the drift and volatility functions µ() and σ() to be mean-reverting square-root

type, which are

µ(λi(t), t) = κi(θi − λi(t))

σ(λi(t), t) = σi
√
λi(t),

(5.19)

for i ∈ {A,B}. The reason to choose (5.19) is to ensure non-negative and satisfy con-

ditions (2.3) and (2.4), which is essential for Feynman-Kac theorem to be applicable.

Further, we choose αA,B, αB,A and β to be F-adapted independent exponential

random variables with density functions,

η (αA,B) =
1

ᾱA,B
e
− 1
ᾱA,B

αA,B

η (αB,A) =
1

ᾱB,A
e
− 1
ᾱB,A

αB,A
,

(5.20)

and

ν (β) =
1

β̄
e
− 1
β̄
β
. (5.21)

Although variety of random jumps are available for modelling as discussed in Section

4.2.1, there are a couple of reasons to choose independent exponential random variables

for jump sizes β, αA,B and αB,A. As discussed in Section 4.4, it is easy to implement

without influencing the analysis the impacts from default contagion. Besides, letting

β, αA,B and αB,A to have same distribution helps to identify the different impacts from

external shocks and default contagion shocks on survival probability, CDS value and

the CVA. Finally, our numerical results are comparable with previous chapters.
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Solving the PIDE in our model requires numerical schemes for both one- and two-

dimensional PIDEs. Given the fact that we are solving a problem with a jump process

we must be careful how the truncation of the grid is affecting our solutions. We

propose that using approximate solutions outside the truncated domain can reduce

the localisation error due to computing the integral term in a truncated domain. In

this section, we specify the finite difference scheme for the one-dimensional PIDE and

the way we deal with a truncated grid for both the survival probability and the CDS,

our results will highlight the efficiency of our methods. Later on, the scheme for the

two-dimensional PIDE is both described and analysed.

5.3.1 Numerical scheme for 1D-PIDE

In Section 3.3, we discussed the Crank-Nicolson scheme for solving one-dimensional

PDEs. However, in this chapter, because we model external shocks into the default

intensity processes which leads to PIDEs even in the one dimensional case that must

be solved and therefore we need a different approach for our finite difference schemes.

We propose some improvements on the existing finite-difference scheme, which are

specifically suitable for solving survival probabilities and pricing CDS.

PIDEs are discussed in much of the option pricing literature where the stock return

is modelled as a jump-diffusion process, such as Merton (1976); Kou (2002). Andersen

and Andreasen (2000) indicate that, when solving a PIDE, standard implicit or semi-

implicit discretisations of the PIDE will result in a dense matrix system, which requires

a O(N3) algorithm to be solved at every time step. Due to this unusually difficult

matrix problem, the standard second-order in time unconditionally stable implicit

schemes are not in any way feasible. Some paper have sought improvements in the

computation of this dense matrix system, for example see Almendra and Oosterlee

(2005) who suggest that an ADI algorithm can be used if the implicit integral term is

solved by fast Fourier transform. Alternatively, to avoid these complications, one can

abandon any hopes of second order convergence altogether and use an implicit-explicit

(IMEX) scheme or an operator splitting (OS) scheme, which are discussed by Duffy

(2006). In order to avoid solving a dense matrix system, which leads to computational

burden, we choose to adapt the IMEX and OS schemes to our problem and we will

present the numerical results showing their accuracy for solving our particular PIDEs.
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The IMEX method treats the differential terms as implicit while the integral term is

always treated explicitly, whereas the OS method splits the differential equation into

two parts, where one contains only the differential term and the other contains only

the integral term. At each step then, with the IMEX scheme we solve in one shot

where the OS will require us to solve two reduced problems separately.

Remain that (5.10) is a generic form of one-dimensional PIDE, which we can solve

it for the credit claim referencing to firm A in state B. We drop the super-script B as

we only interest in the numerical aspect of solving a PIDE of the form

∂u

∂t−
+ L{u}+ J {u}+ f(λ, t)− g(λ, t)u = 0, (5.22)

where λ represents the state variable.

For the IMEX method, if we apply the so called θ-scheme to the differential terms

and an explicit scheme to integral terms, then equation (5.22) can be discretised as

un − un+1

∆τ−
= θL{un+1}+(1−θ)L{un}+J {un+1}+f(λ, t)−g(λ, t)(θun+1 +(1−θ)un).

(5.23)

The integral term J {u}, as we can see, is always treated at time step n + 1. This

scheme itself has been studied many times and as such many improvements have been

made to adapt it to a particular option pricing problem, for examples of this we refer

to Cont and Voltchkova (2005b); Feng and Linetsky (2008); Pindza et al. (2014).

The OS scheme, as discussed by Duffy (2006), will tackle the problem in a slightly

different way. Here the idea is to split the equation into two,

∂u

∂τ−
= L{u}+ f(λ, t)− g(λ, t)u and

∂u

∂τ−
= J {u}. (5.24)

If we now discretise those two equations, we have a system of two equations

un − Y
∆τ−

= L{un}+ f(λ, t)− g(λ, t)un (5.25a)

Y − un+1

∆τ−
= J {un+1}, (5.25b)

where Y is the intermediate solution when we solve (5.25a) and (5.25b) one by one.

Next we present some results of our implementation of these two schemes in order

to solve the survival probability of firm A in state B, which is (5.12). We choose

this simple problem for the fact that it has an analytic solution available that we can
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λmax = 0.5 OS IMEX λmax = 1 OS IMEX

dx = 1
2000 1.37× 10−4 1.42× 10−4 dx = 1

2000 1.69× 10−4 1.74× 10−4

dx = 1
4000 9.24× 10−6 1.40× 10−5 dx = 1

4000 4.18× 10−5 4.65× 10−5

dx = 1
8000 −2.27× 10−5 −1.80× 10−5 dx = 1

8000 9.85× 10−6 1.46× 10−5

Table 5.1
Numerical error of OS and IMEX scheme
one year survival probability with JCIR process. Parameters are (κ = 0.5, θ = 0.05, σ = 0.1, λ(0) =
0.05, λ̄ = 0.2, β ∼ exp(0.05))

benchmark against. We will use the notation u(λ, t) rather than PB(λA(t), t, T ) in

order to align with (5.22) when analysing numerical schemes.

The state variable λ is restricted to a bounded domain λ ∈ [0, λmax] with λmax

taken sufficiently large. Similarly, the integral term is also truncated to [0, λmax]. The

issue of localization error is addressed in the next section. For the boundary conditions

in IMEX scheme, we use the heuristic Robin conditions

∂u

∂t−
+ κθ

∂u

∂λ
+ λ̄

(∫ ∞
0

u(λ+ β, t−, T )ν(β)dβ − u(λ, t−, T )

)
= 0 for λ→ 0

∂u

∂t−
+ κ(θ − λ)

∂u

∂λ
− λu = 0 for λ→∞.

(5.26)

to solve this problem. For the OS scheme, boundary conditions (4.23) can be used

directly. This set of boundary conditions have already been tested and found to be

superior than other conditions in Section 3.3. Equation (5.12) is discretised on [0, λmax]

with a uniform mesh 0 = λ0 < λ1... < λi < ... < λI = λmax. The integral term is

implemented using the trapezoidal numerical integration scheme.

Table 5.1 shows the relative error of the one year probability with both IMEX

and OS schemes. When the infinite domain is bounded to a relative low value, say

λmax = 0.5, both schemes converge to a value lower than the analytic solution. This

phenomenon is due to the computational error from the integral term, which will be

discussed in the next section. This problem is not observed when λmax is taken larger,

such as λmax = 1. We observed that two schemes show no real advantage over each

other when solving for the survival probability, although the OS scheme has slightly

smaller errors.

However, in the later sections and chapters of this thesis we will favour the use

of the OS scheme when solving our PIDEs. This is because the OS scheme is much

easier to be adapted into the ADI scheme for solving two-dimensional PIDEs, which

is a requirement for solving survival probabilities, CDSs and CVA in state A. The
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OS scheme split the PIDE into a PDE term and an integral term, which are solved

individually at each step backward. This feature enables us to only solve the two-

dimensional PDE part using the ADI scheme, which is a well known stable and efficient

method. However, given that the IMEX scheme will solve the entire PIDE in a single

step then how incorporate ADI scheme with IMEX is not straightforward.

5.3.2 Improved numerical scheme: Extrapolation

Models that include jump processes with exponentially distributed jump size will yield

to a PIDE with an integral term over zero to infinity. When solving the PIDE, this

integral term has to be truncated to a finite domain, which we term here as the upper

limit λmax. For example,

λ̄

∫ ∞
0

u(λ+ β, t−)ν(β)dβ = λ̄

∫ λmax−λ

0

u(λ+ β, t−)ν(β)dβ + error

> λ̄

∫ λmax−λ

0

u(λ+ β, t−)ν(β)dβ

= λ̄

∫ λmax−i∆λ

0

u(i∆λ+ β, t−)ν(β)dβ

≈
I∑
k=i

wkuk
1

β̄
e
− 1
β̄

(k−i)∆λ
∆λ, for 0 ≤ i ≤ I

(5.27)

where ∆λ =
λmax
I

and wk = 0.5, 1, ...1, 0.5 defines the trapezoidal rule. As we can see

from (5.27), the integral term is always be underestimated given solutions are positive,

which leads to the results in table 5.1. In general, a wide enough lower and/or upper

bounds can be fixed so that the default intensity process λ(t) has very low probability

of reaching the bounds even with jumps then the difference between infinite integral

and its truncated approximation can be ignored. However, the result is a scheme,

which is not very efficient. More importantly, the error in calculating the integral

term will increase with large λ. Since we have assumed that the upper limit is fixed

at λmax, evaluating the integration at a large i means there is less available solutions

to approximate the post-jump values u(λ+ β, t) for larger sizes of jump β.

Solving the one-dimensional PIDE both accurately and efficiently is important in

our model. As our default contagion modelling yields to a PIDE system that combines

both a two-dimensional PIDE and a one-dimensional PIDE, we need accurate values

from the one-dimensional PIDE to feed into the two-dimensional one. As we draw
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values from the one-dimensional PIDE to estimate the values after a default contagion,

errors from the one-dimensional PIDE have the potential to contaminate the two-

dimensional PIDE solutions. This is especially true for the CVA, as the post-contagion

CDS value plays a crucial role in determining the loss given the counterparty defaults.

In this section, we propose a new approximation method for values outside the grid,

u(λ, t) with λ > λmax, in order to improve the accuracy of the numerical integration

term in the differential equations. The method used will have to be tailored to the

problem and we show how to do it for survival probabilities and CDS prices. This

technique can yield remarkable accuracy without hardly any extra computational bur-

den. This is based on the properties of the solution when the default intensity tends

to infinity.

First, we must define another term y(λ, t) that adds into the approximation for

the integral term as an adjustment so that the approximation to the integral term

becomes

λ̄

∫ ∞
0

u(λ+ β, t−)ν(β)dβ ≈ λ̄

(∫ λmax−λ

0

u(λ+ β, t−)ν(β)dβ + y(λ, t−)

)
. (5.28)

Now we can discuss how to derive the appropriate form of y(λ, t) for survival proba-

bilities and CDS prices separately in the following two sections.

Survival Probability

At each time step n, we know the survival probability under AJD processes is an affine

function tending towards zero with default intensity λ. When the heuristic Robin

type boundary conditions (4.23) are applied, the solutions decay exponentially with

large λ. Therefore, assuming its solution declines exponentially seems appropriate.

Denoting λi, i = 0, 1, ..., I where I ×∆λ = λmax as the default intensity level and tn,

n = 0, 1, ..., N where N ×∆t = T as the time level. Let uni be u(i∆λ, n∆t), then we

assume

u(λ, t) = A(t)e−B(t)λ, ∀λ ∈ [λmax,∞) (5.29)

The two time-varying parameters A(t) and B(t) must be estimated at each time tn.

It follows that the value at the boundary and its slope must satisfy:

u(λmax, t) = A(t)e−B(t)λmax

∂u

∂λ
(λmax, t) = −B(t)A(t)e−B(t)λmax , for ∀t ∈ [0, T ],

(5.30)
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We approximate the derivative term in (5.30) using first-order one sided difference.

The solution of A(t) and B(t) can be obtained by solving the following equations at

the boundary

A(t) =
u(λmax, t)

e−B(t)λmax

B(t) = −u
′(λmax, t)

u(λmax, t)
≈ −

unI − unI−1

unI∆λ
for ∀t.

Now we can extrapolate to find solutions for λ > λmax according to (5.29). Further,

given (5.28), an analytic expression for the term y(λ, t) can be derived as

y(λ, t) =

∫ ∞
λmax−λ

u(λ+ β, t)ν(β)dβ

=

∫ ∞
λmax−λ

A(t)e−B(t)(λ+β) 1

β̄
e
− 1
β̄
β
dβ

=
unI

1− β̄ u
n
I−u

n
I−1

unI ∆λ

e−β̄(λmax−λ), for ∀n (5.31)

Intuitively, the error term in (5.27), which due to truncating the infinite domain of

the integral term to a finite domain, is compensated by y(λ, t), which is obtained by

assuming the solutions behaves as (5.29) outside the boundary. Although the method

here has not be formally analysed, there are some properties of the method which lead

us to think that it performance should be stable. For instance, so long as B(t) > 0

the result

y(λ, t) < u(λ, t)

∫ ∞
λmax−λ

ν(β)dβ

will hold so that y(λ, t) is always bounded and finite.

Figure 5.1 shows the solution of the five year survival probability. Here the results

with and without the extrapolation method are compared with the analytic solution.

Without using the approximation method, which is given by the green line, there is

an obvious slump near the upper boundary and we can see the survival probability is

underestimated. This is because when we compute the integration part in the PIDE

(5.12) with large λA, the integration ends at λA + β = λmax. That is equivalent to as-

suming those solutions with λA > λmax are zeros. Therefore, the survival probabilities

in this region are underestimated. This problem could be solved by taking the domain

[0, λmax] large enough so that the probability that λA reaches the upper bound is very

tiny then whether or not the integration has been computed accurately at large λA has

negligible impact on the solution. However, in order to maintain small ∆λA, taking a
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Figure 5.1
Compare extrapolation solutions with ordinary solutions
An illustration the effectiveness of extrapolation approximation. Here is the five year survival prob-
ability solutions of firm A with λA ∈ [0, 0.5]. The green line is the solution without extrapolation
method with λA ∈ [0, 0.5]. The red line is the solution with extrapolation method with λA ∈ [0, 0.5].
The blue line is the analytic solutions.

larger λmax implies that there will be a longer computational time. On the other hand,

the red line is the solution using the extrapolation method. The slump that appeared

before now disappears in our improved scheme as it becomes aligned with the analytic

solution. This implies that, without taking λmax very large, the integration term in

PIDE (5.12) can be approximated accurately using our extrapolation method outside

the grid. The capacity to reduce the truncation domain [0, λmax] means the scheme

can be more efficient without loss of accuracy.

To further analyse the results, in table 5.2 we compare the errors in the numerical

results when using extrapolation compared to the original scheme for the one year

survival probability. We then increase the λmax gradually from 0.5 to 0.8 to show the

effect of changing the domain size. When the domain is taken to be large enough so

that the default intensity λA(t) is never likely to reach the λmax given the starting

point, then the values outside this region will not matter. However, it is at the cost of

computational power as we must use more points to remain accurate. We can see from

the results in table 5.2 that the scheme without extrapolation approximation tends

to underestimate the survival probability. This problem disappears when the infinite
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λA ∈ [0, 0.5]
N Original Error Extension Error

100 0.947468052 1.25E-04 0.947498735 1.58E-04
200 0.94735296 3.81E-06 0.94738371 3.63E-05
400 0.947325662 -2.50E-05 0.947356445 7.49E-06
800 0.947319575 -3.14E-05 0.947350374 1.08E-06
1600 0.947318421 -3.26E-05 0.947349228 -1.24E-07

λA ∈ [0, 0.6]
N Original Error Extension Error

100 0.947565343 2.28E-04 0.947569634 2.33E-04
200 0.947397117 5.04E-05 0.947401421 5.50E-05
400 0.947356555 7.61E-06 0.947360865 1.22E-05
800 0.947347163 -2.30E-06 0.947351476 2.25E-06
1600 0.947345189 -4.39E-06 0.947349504 1.66E-07

λA ∈ [0, 0.7]
N Original Error Extension Error

100 0.947652873 3.20E-04 0.947653469 3.21E-04
200 0.947421782 7.65E-05 0.94742238 7.71E-05
400 0.947365506 1.71E-05 0.947366104 1.77E-05
800 0.947352186 3.00E-06 0.947352785 3.63E-06
1600 0.947349232 -1.21E-07 0.947349831 5.12E-07

λA ∈ [0, 0.8]
N Original Error Extension Error

100 0.947750114 4.23E-04 0.947750196 4.23E-04
200 0.947446485 1.03E-04 0.947446568 1.03E-04
400 0.947372068 2.40E-05 0.947372151 2.41E-05
800 0.947354214 5.14E-06 0.947354297 5.23E-06
1600 0.947350126 8.23E-07 0.947350209 9.11E-07

Table 5.2
Numerical solutions and errors of and without approximations to the integral term
The 1-year survival probability of firm A with original OS scheme and the extended scheme with
extrapolation. The limit of λmax is increasing 0.5 to 0.8 and N is the number of grids in time
direction.
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domain is truncated with a sufficiently wide finite domain, but for smaller domains the

extrapolation has achieved obvious improvement. With a finite domain of λmax = 0.5,

the original errors are around 10−5 whereas we are able to achieve results that are

around a hundred times more accurate using the approximation. The advantage we

gain from using the extrapolation vanishes as λmax grows since the region outside the

boundary has less influence on the solution. Clearly the performance will be problem

specific but since the computational cost is minimal it seems unwise not to implement

the scheme in all cases.

Credit Default Swaps

The solution of a CDS is a concave function with default intensity. It is an increasing

function and should be bounded by the default pay-off (1 − RA)e−r(T−t) − S t−Tn−1

Tn−Tn−1

when default intensity tends to infinity. We remind the reader of the analysis in Section

3.3 that the solution of a CDS can be viewed as the sum of a particular solution and

a general solution, V = Vp + Vg. The particular solution is the default pay-off and the

general solution is a function with exponential decay behaviour against large default

intensity. Therefore, we assume a functional form,

u(λA, t) = C(t)− A(t)e−B(t)λA , for ∀λA ≥ λmax. (5.32)

This function is concave and bounded by A(t) when λA tends to infinity if B(t) > 0.

Now, given the specification of a CDS contract we know that

C(t) = (1−R)e−r(T−t) − S t− Tn−1

Tn − Tn−1

, (5.33)

which is the default payoff. Proceeding as in the previous section, parameters A(t) and

B(t) can be estimated using a first order one-sided finite difference approximation at

the boundary λmax. The analytic expression for the term y(λA, t) can then be written

as

y(λA, t) =

∫ ∞
λmax−λA

u(λA + β, t)ν(β)dβ

=

∫ ∞
λmax−λA

(
C(t)− A(t)e−B(t)(λA+β)

)
1

β̄
e
− 1
β̄
β
dβ

= e
− 1
β̄

(λmax−λA)

(
C(t)−

1
β̄

(C(t)− u(λmax, t))
1
β̄

+B(t)

)
, for ∀t. (5.34)
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Figure 5.2
Compare CDS extrapolation solutions with ordinary solutions
Parameters are κA = 0.5, θA = 0.05, σA = 0.1, Tn − Tn−1 = 0.25, S = S∗,r = 0.02,λ̄ = 0.2, β̄ = 0.1.
Numerical Scheme Parameters are ∆t = 1

100 , ∆λ = 1
1000 , λmax = 0.5.

Now we demonstrate this by solving PIDE (5.14) for some CDS contracts using

the OS scheme with extrapolations. The boundary conditions for solving (5.14) are

described in (3.15). Solutions are compared with ordinary OS scheme without extrap-

olation and the semi-analytic solution. The fair swap spread S∗ is paid quarterly.

Figure 5.2 shows the CDS solutions against intensity with maturities 1, 3, 5 and

10 year. Similar to what we saw in the survival probability, the solution without

extrapolation will suffer from a slump near the upper boundary and the slump will be

deeper for the longer maturity contracts. This problem is especially severe for CDS

contracts as compared to those seen for the survival probability in figure 5.1. As default

intensity tends to infinity, survival probability tends to 0 while the CDS value tends

to the default payoff, which is a value significantly above zero. Therefore, ignoring the

post-jump values above λmax is going to underestimate by a greater amount in the case
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Figure 5.3
Compare errors of with different boundary
An illustration of numerical error with and without extrapolation with different maturities and xmax.
Triangle lines are numerical solutions without extrapolation and circles are the ones with. Parameters
are κA = 0.5, θA = 0.05, σA = 0.1, Tn − Tn−1 = 0.25, S = S∗,r = 0.02,λ̄ = 0.2, β̄ = 0.1. Numerical
Scheme Parameters are ∆t = 1

100 , ∆λ = 1
1000 , λmax = 0.5, T = 10.
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of pricing CDSs. Again though, we see that this problem can be fixed by using our

extrapolation method, giving a result where the improved numerical solutions more

closely align with the semi-analytic solutions.

In order to further analyse the extrapolation method for CDSs, we look at the

numerical errors with different contract maturities and λmax, which are shown in figure

5.3. We observed that without the extrapolation, the original OS scheme always

underestimates the CDS value for the reason mentioned earlier, and those errors are

increasing with maturity. It is obvious that this will happen because when the time

horizon is longer, there is higher probability the default intensity will reach a higher

level and more numerical errors will be made to the integral term. On the other hand,

if we implement the extrapolation method, the numerical errors are significantly lower

for all maturities in the cases of λmax = 0.5 and λmax = 1. The numerical errors

are around 5 decimal places compared to the original one giving only 3 decimals with

λmax = 0.5. In the case of λmax = 2, the advantage vanishes now as the post-jump

intensity greater than 2 is too tiny to make any real difference to the solutions. Finally,

table 5.3 compares the computational times and the numerical errors at λA = 0.05 with

and without our extrapolation method for solving CDSs up to 10 year maturity. Using

our extrapolation method does not lead to computational burden as the computational

times do not show any obvious differences. We find that the computational time grows

linearly with maturity because the same time step size is maintained. In terms of the

numerical errors, the extrapolation method leads to results that are around 100 times

more accurate especially for long maturity contracts.

5.3.3 Numerical scheme for 2D-PIDE

Solving for the survival probability, CDS price and CVA with our default contagion

model requires us to keep track of the values in two different states A and B. In

the state A, the stochastic variables (λA(t), λB(t)) must be restricted to a bounded

domain [0, λAA,max][0, λ
A
B,max]. Whilst in the state B, the only variable left is λBA(t)

which must be bounded in [0, λBA,max] determined by the approach discussed in Section

4.4. Let (IA, JA, N) denote the grid size of the three variables (λA(t), λB(t), t) in state

A. Lastly, we use (IB, N) grid points for the (λA(t), t) space in state B.

In the last section, we discussed the numerical solution to a one-dimensional PIDEs
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Numerical Error and Computational Time (Mini-Sec)

Maturity With Extrapolation No Extrapolation

1 1.67× 10−5 515.165 −2.74× 10−4 495.497
2 7.07× 10−6 985.38 −9.51× 10−4 979.585
3 −5.30× 10−6 1467.974 −1.78× 10−3 1417.914
4 −1.50× 10−6 1906.661 −2.65× 10−3 1914.639
5 −2.14× 10−6 2412.062 −3.48× 10−3 2423.837
6 −2.50× 10−6 2812.037 −4.25× 10−3 2856.451
7 −2.67× 10−6 3393.944 −4.95× 10−3 3316.693
8 −2.73× 10−6 3741.818 −5.57× 10−3 3855.703
9 −2.70× 10−6 4176.838 −6.12× 10−3 4312.418
10 −2.65× 10−6 4749.687 −6.60× 10−3 4736.573

Table 5.3
Computational times and numerical errors for CDS with and without extrapolation
method
Parameters are κA = 0.5, θA = 0.05, σA = 0.1, Tn − Tn−1 = 0.25, S = S∗,r = 0.02,λ̄ = 0.2, β̄ = 0.1.
Numerical Scheme Parameters are ∆t = 1

100 , ∆λ = 1
1000 , λmax = 0.5.

and how the extrapolation technique can be used to improve accuracy. In this section,

the finite difference scheme for the two-dimensional PIDE problem for survival prob-

ability, CDS value and CVA will be discussed. We apply the ADI scheme, a detailed

discussion of which is presented in Section 3.2.2.

The ADI scheme and its variations has been applied to various multi-dimensional

problems, such as In’t Hout and Foulon (2010); In’t Hout and Welfert (2009); Haent-

jens and In’t Hout (2012). However, it is not originally designed for high-dimensional

PDEs that include integral terms, which is what we want to solve in this section. In-

spired by the OS scheme, here we propose a scheme which will combine the ADI and

the OS for our two-dimensional PIDEs, which we term the ADIOS scheme.

The general problem that we wish to solve in this section is described in (5.6), and to

solve it we are going to use the following three-step procedure. We denote u(λA, λB, t)

as the solution to the PIDE (5.6), which can be determined by the specification of

functions f(λA, λB, t), g(λA, λB, t) and the terminal condition ψ(λA, λB, t). Again, we

drop the super-script A because we only analyse the numerical schemes. The ADIOS
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scheme on this equation is given by,

Y1 − un+1

1
2
∆t

= LλA{Y1}+ LλB{un+1}+ f(λA, λB, t)− g(λA, λB, t)Y1

Y2 − Y1

1
2
∆t

= LλA{Y1}+ LλB{Y2}+ f(λA, λB, t)− g(λA, λB, t)Y1

un − Y2

∆t
= J {Y2},

(5.35)

where Y1 and Y2 are both intermediate solutions. The PIDE is split into a pure PDE

part and the integral part in a similar way a standard OS scheme in one-dimension.

The bit we add in here is to solve the PDE part in the first two steps like a typical

ADI scheme. After the PDE terms have been taken care of, the last step is to solve

the integral term.

When solving (5.13), (5.16) and (5.17) with the ADIOS scheme, boundary con-

ditions are required for solving the PDE terms. Because the integral term J {u} is

temporarily ignored, we only consider boundary conditions for the PDE term. In

other words, the heuristic Robin boundary conditions (4.24), (4.26) and (4.27) can be

applied for survival probability, CDS price and CVA respectively.

In PIDEs (5.13), (5.16) and (5.17), the integral term associated with λB can be

generalised by including in the term f(λA, λB, t) in (5.6). There are now two integral

terms J {u} and f(λA, λB, t) in our PIDEs as oppose to just one in the models from

Chapter 4. The former one J {u} comes from the external shocks and the latter

one f(λA, λB, t) is due to the default contagion jumps. The numerical issues that

we must consider when computing the integral f(λA, λB, t) have been discussed in

detail in Section 4.4 and the same methodology applies here. Note that the default

contagion can be included in the PDE term and be solved by the ADI scheme because

this integral term uses solutions that come from other equations. In other words,

computing the integral term f(λA, λB, t) does not use u(λA, λB, t). The last step in

(5.35) is to compute the integral term, which is

J {Y2} = λ̄

∫ ∞
0

Y2

(
i∆λA + β, j∆λB + β, (n+ 1)∆τ

)
ν(β)dβ

= λ̄

∫ (λAA,max−i∆λA)∧(λAB,max−j∆λB)

0

Y2

(
i∆λA + β, j∆λB + β, (n+ 1)∆τ

)
ν(β)dβ︸ ︷︷ ︸

Available

+ λ̄

∫ ∞
(λAA,max−i∆λA)∧(λAB,max−j∆λB)

Y2

(
i∆λA + β, j∆λB + β, (n+ 1)∆τ

)
ν(β)dβ︸ ︷︷ ︸

Not available

.

(5.36)
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Figure 5.4
An illustration of available solutions for approximating the integral term in two-
dimensional PIDE

The upper limit of (5.36), (λAA,max − i∆λA) ∧ (λAB,max − j∆λB), is an expression

which tells us where the integral term will be truncated given the current position

(i, j) in the grid according to the domain of available solutions in Y2. We illustrates

this point in figure 5.4 with an example, where I = 9 and J = 9 are the number of

nodes in the grids in the λA and λB directions. Assume we are going to calculate the

final solution at time t = n∆t with current location (i = 4, j = 2), which is un(i, j)

shown as the red dot in the left panel of figure 5.4. When computing un(i, j) by the

last step in (5.35), because we assume the jump sizes β are identical to both firms A

and B then we only have the solutions in the Y2 grid to compute J{Y2} term, which

are circled in the right panel. The furthest available temporary solution in Y2 grid is

Y2(i = 9, j = 6) because the current A firm’s default intensity λA is standing at i = 4,

which is closer to its upper bound I = 9 than the other direction, where λB is standing

at j = 2.

Previously, when computing the integral term J {u} in the one-dimensional PIDE

in Section 5.3.1, we meet the same problem of an increasing error when we evaluate

the integral for large default intensities λA and/or λB. In Section 5.3.2, we solved

this problem by assuming a functional form for the solution outside the boundary.

However, this approach cannot be so easily applied on the integral term J {u} in the

two-dimensional PIDEs. Our previous approach relies on knowing a particular form

of the solution for the survival probabilities and the CDS value, which is that the
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solutions have exponentially decaying behaviour. However, in the two-dimensional

case, particular solutions are not clear so we cannot know the behaviour of survival

probabilities, CDS value or CVA outside the grid. This is because the solutions outside

the grid rely on both λA(t) and λB(t). Consequently, our only option is to take λAA,max

and λAB,max to be sufficiently large to capture all effects.

Therefore, equation (5.36) is approximated by

J {Y2} ≈ λ̄
K∑
k=0

Y2

(
i+ k, j + k, n+ 1

)
ν(k∆β)∆β, for ∀i, j ∈ [0, λAA,max]× [0, λAB,max]

(5.37)

where

K =
(λAA,max − i∆λA) ∧ (λAB,max − j∆λB)

∆β
.

5.4 Numerical Results

Now that we have described the numerical schemes and the approaches to accom-

modate the integral term, we are ready to solve the PIDEs. This section performs

some numerical analysis of the survival probabilities, the fair prices of CDSs as well

as the CVAs. Firstly, we will look at how external shocks β changes A firm’s survival

probability compared with the default contagion αA,B at different time horizons and

default risk of the two firms. We will show how the survival probabilities can be af-

fected different by the two different kinds of shock. Then we will price CDS contracts

referencing to the firm A in five different situations. From the fair CDS spreads, we

will discuss the role of external shocks and default contagion shocks on CDS protec-

tions with maturities ranging from one to ten years. In addition, the counterparty risk

from buying those CDS from firm B will be measured. We attempt to manipulate the

strength of external shocks β̄ and the default contagion ᾱA,B so that the price of the

CDS stays constant. This result will show us the trade-off between two kinds of risk

and the corresponding CVA will be shown to illustrate their influences on CVA for a

variety of different values of β̄ and ᾱA,B.
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5.4.1 Survival probability

Note that, in Section 5.3, we have specified the drift µ() and volatility σ() functions to

be (5.19) for the default intensities (5.3). Then the generic PIDE system (5.12) and

(5.13) becomes

∂PA
∂t−

+
∑

i∈{A,B}

κi(θi − λi)
∂PA
∂λi

+
1

2
σ2
AλA

∂2PA
∂λ2

A

+
1

2
σ2
BλB

∂2PA
∂λ2

B

+ ρA,BσAσB
√
λAλB

∂2PA
∂λAλB

+ J {PA}+ λB

(∫ ∞
0

PB(λA + αA,B, t, T )η(αA,B)dαA,B

)
−
(
λA + λB

)
PA = 0,

(5.38a)

∂PB
∂t−

+ κA(θA − λA)
∂PB
∂λA

+
1

2
σ2
AλA

∂2PB
∂λ2

A

+ J {PB} − λAPB = 0. (5.38b)

The distributions of external shocks β and default contagion jumps αA,B and αB,A are

modelled as (5.20) and (5.21).

The numerical scheme and corresponding boundary conditions for solving (5.38b)

are discussed in Section 5.3.2 with an extrapolation method to improve numerical ac-

curacy. For solving the PIDE (5.38a), we use the ADIOS scheme introduced in Section

5.3.3. As mentioned in Section 5.3.3, ADIOS scheme solves a PIDE by solving PDE

part and integral part separately, this enable us to apply the boundary conditions used

for the PDE of survival probability in Section 4.4.1, which is (4.24). After adjusting
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the notations in (4.24), we have the following boundary conditions for (5.38a).

λA → 0 :(
∂

∂t−
+ LλB + κAθA

∂

∂λ1

)
PA − λBPA

+ λB

(∫ ∞
0

PB(λA + αA,B, t, T )η(αA,B)dαA,B

)
= 0

λA →∞ :(
∂

∂t−
+ LλB + κAθA

∂PA
∂λA

)
PA − (λA + λB)PA

+ λB

(∫ ∞
0

PB(λA + αA,B, t, T )η(αA,B)dαA,B

)
= 0

λB → 0 :(
∂

∂t−
+ LλA + κBθB

∂PA
∂λB

)
PA − λAPA = 0,

λB →∞ :(
∂

∂t−
+ LλA + κBθB

∂PA
∂λ2

)
PA − (λA + λB)PA

+ λB

(∫ ∞
0

PB(λA + αA,B, t, T )η(αA,B)dαA,B

)
= 0.

(5.39)

In our model, default correlation among firms come from two different sources.

One is the external shocks driven by J(t), which affects both firms A and B with the

same random size β. The other is the default contagion between firms A and B with

strength αA,B and αB,A. If we raises the expected strength of default contagion ᾱA,B,

or the external shocks through its shock arrival frequency λ̄ or the strength β̄, firm A

must be less likely to survive. Figure 5.5 shows how default contagion ᾱA,B and the

external shocks reduce firm A’s survival probability. The reduction in firm A’s survival

probability is shown against its intensity λAA and firm B’s intensity λAB. According to

figure 5.5, how much amount of firm A’s default probability will be influenced by the

default contagion or the external shocks is depending on how risky firm A is. If firm

A is very risky, this implies neither the default contagion nor the external shocks are

likely to happen before it defaults. Therefore, when firm A’s intensity is increasing,

both shocks make no difference at all to A’s survival probability, which shown in left

panel of figure 5.5. Clearly, whether there is an occurrence of external shock relies

on λ̄ but not firm B’s credit. So the red line in the right panel is independent of λAB.

On the other hand, if firm B is more risky it will obviously make it more likely for
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Figure 5.5
Firm A survival probability decrement with default contagion SA(ᾱA,B = 0.1)−SB(ᾱA,B =
0) (black) and exogenous jumps SA(β̄ = 0.1)− SB(β̄ = 0) (red)
An illustration of how survival probability decreases with only either default contagion (black lines)
or exogenous jumps (red). The left panel shows solutions in λAA-direction with λAB raising from 0 to 3
(dashed) and the right panel is λAB-direction with λAA raising from 0 to 3 (dashed). Default correlation
parameters are ᾱA,B = 0.1, β̄ = 0, λ̄ = 0 or ᾱA,B = 0, β̄ = 0.1, λ̄ = 0.05. Other parameters are
κA = κB = 0.5, θA = θB = 0.05, σA = σB = 0.1.

the default contagion to affect firm A so that firm A is more likely to default. In our

numerical example, although the likelihood of external shock and default contagion

could happen is similar, which is θB equals to λ̄, firm A’s survival probability reduces

more due to default contagion than to external shocks when firm B is currently more

risky.

In our model, there is a similarity between the default contagion and external

shocks which is that their jump sizes are both modelled to be exponentially distributed.

One question to ask is whether simply increasing the pure jump intensity in a jump-

CIR model, ᾱA,B = 0, can achieve the same effects on one’s default term structure as

we see by including default contagion. If so, it may not be worth the computational

effort to incorporate the default contagion at least for survival probabilities. Figure 5.6

shows the trade-off between of both kinds of jump on firm A’s default term-structure.

Compared to the benchmark, where ᾱA,B = 0, β̄ = 0.05, λ̄ = 0.5, we either raise

default contagion strength ᾱA,B from 0 to 0.05 or the external shocks arrival rate

λ̄ from 0.5 to 0.55, which are two comparable cases since the increment of external
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Figure 5.6
Increment in default probability term-structure in four cases.
Increment of firm A’s default probability term structure against benchmark case ᾱA,B = 0, β̄ = 0.05,
λ̄ = 0.5. Case 1: λ̄ = 0.5 ᾱA,B = 0.05 (Solid line). Case 2: λ̄ = 0.55, ᾱA,B = 0 (Solid line). Case 3:
λ̄ = 0.54 ᾱA,B = 0. Case 4: λ̄ = 0.53 ᾱA,B = 0

jump’s arrival rate equals to firm B’s long-term default rate θB = 0.05. Besides this,

we also show more cases for different external shocks arrival rate to fully develop the

picture. Obviously, in the long term, the firm A is more likely to default with higher

external shocks arrival rate than with a single default contagion even if we choose a

lower arrival rate λ̄ = 0.53. This phenomenon can be explained by the fact that the

external shock can occur multiple times whilst there is only one chance that firm B can

default and cause a default contagion to firm A. Therefore, in the long run, external

shocks have stronger influences on firm A than the default contagion.

On the other hand, from 1 to 12 years horizon, having default contagion risk is dif-

ferent from simply raising the external shocks arrival rate λ̄. Incorporating the default

contagion makes firm A to be more risky in the in 12 years horizon compared to more

frequent external shock arrivals. The reason is the probability, which firm B defaults

earlier than firm A, is rising faster against maturity with external shocks. External

shocks make both firms A and B more likely to default and so is the probability that B

defaults earlier than A. For all three cases with only external shocks we see that their
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maximum impact are all on the 12 year horizon. However, to which time horizon that

default contagions have the strongest effect is depending on both firms’ risk profile as

well as the external shocks. This characteristic also implies the effects from default

contagion cannot be simply replicated by more frequent external shocks rate.

5.4.2 Fair swap spread

When specifying the drift µ() and volatility σ() functions as (5.19), the PIDE system

(5.14) and (5.16) becomes

∂VA
∂t−

+
∑

i∈{A,B}

κi(θi − λi)
∂VA
∂λi

+
1

2
σ2
AλA

∂2VA
∂λ2

A

+
1

2
σ2
BλB

∂2VA
∂λ2

B

+ ρA,BσAσB
√
λAλB

∂2VA
∂λAλB

+ λA

(
(1−RA)e−r(T−t

−) − S t
− − Tn−1

Tn − Tn−1

)
+ λB

∫ ∞
0

VB
(
λA + αA,B, t

−)η(αA,B)dαA,B

+ J {VA} −
(
r + λA + λB

)
VA = 0

(5.40a)

∂VB
∂t−

+ κA(θA − λA)
∂VB
∂λA

+
1

2
σ2
AλA

∂2VB
∂λ2

A

+ λA

(
(1−RA)e−r(T−t

−) − S t
− − Tn−1

Tn − Tn−1

)
+ J {VB} − (r + λA)VB = 0

(5.40b)

for t ∈ (Tn−1, Tn) with n = 1, 2, ....N and terminal condition VA(λA, λB, T, T ) = 0,

VB(λA, T, T ) = 0 and jump conditions

VA(T−n , T ) = VA(T+
n , T )− S(Tn − Tn−1)

VB(T−n , T ) = VB(T+
n , T )− S(Tn − Tn−1),

at n = 1, 2, ....N . The distributions of external jumps β and default contagion jumps

αA,B and αB,A are modelled as (5.20) and (5.21).

The numerical scheme and corresponding boundary conditions for solving (5.40b) is

illustrated in Section 5.3.2. The two-dimensional PIDE (5.40a) is solved using ADIOS
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scheme with the heuristic Robin boundary conditions

λA → 0 :(
∂

∂t
+ LλB + κAθA

∂

∂λA

)
V A + λB

(∫ ∞
0

V B(λA + αA,B, t, T )η(αA,B)dαA,B

)
− (r + λB)V A = 0,

λA →∞ :(
∂

∂t
+ LλB + κAθA

∂

∂λA

)
V A + λB

(∫ ∞
0

V B(λA + αA,B, t, T )η(αA,B)dαA,B

)
+ λA

(
(1−RA)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
− (r + λB + λA)V A = 0,

λB → 0 :(
∂

∂t
+ LλA + κBθB

∂

∂λB

)
V A + λA

(
(1−RA)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
− (r + λA)V A = 0,

λB →∞ :(
∂

∂t
+ LλA + κBθB

∂

∂λB

)
V A + λB

(∫ ∞
0

V B(λA + αA,B, t, T )η(αA,B)dαA,B

)
+ λA

(
(1−RA)e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
− (r + λB + λA)V A = 0.

(5.41)

The condition (5.41) is the same as (4.26) except the notation difference because the

ADIOS scheme enable us to use the (4.26) as boundary conditions for the PDE part

component of the PIDE. For the validation of using the heuristic type Robin boundary

conditions we refer to Section 3.3.2.

Remind that the value of a payer CDS contract under our jump-diffusion-contagion

model is the solution to the PIDE system (5.14) and (5.16). The fair swap rate or

spread can be obtained according to (2.58), which is the ratio of the default payment’s

and swap premiums’ present value. This requires us to solve the PIDE system with

S = 0 and (RA = 1, S = 1) respectively then taking the ratio. The fair swap spread

S∗ is computed following this procedure.

In this section, we compare the default correlation effects from external shocks and

default contagion on the fair CDS spread S∗. Due to the default contagion effects

among companies, the price of the CDS protection not only relies solely on referencing

firm’s default risk, but also on other interacting firms, which is the firm B in our case.
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Cases λ̄ β̄ ᾱA,B, ᾱB,A
1 0.05 0.1 0
2 0.05 0.05 0.05
3 0 0 0.1
4 0.05 0.1 0.05
5 0 0 0

Table 5.4
Parameters of five cases

We specify five cases as in table 5.4 that have been chosen to highlight the different

effects.

We have chosen case 1 to be without default contagion but it has a higher external

shocks strength β̄. For case 2, the external shock strength is reduced to 0.05 but we

introduce the default contagion shocks as 0.05. In case 3, we eliminate external shocks

but increase the strength of default contagion shocks. These three cases each have a

relatively similar strength of jumps but they come from different sources, so they are

able to show the different effects of external shocks and default contagion have on the

CDS prices. In addition, case 4 has stronger default contagion shock ᾱA,B than case 1

and stronger external shocks β̄ than case 2, which shows the impact from only raising

default contagion shock or external shocks. Finally, the case 5, there are no external

shocks or default contagion shocks, which is the simplest model. Note that, case 5 is

equivalent to the model we implemented in Chapter 3 and the case 3 is the default

contagion model in Chapter 4. By comparing the difference cases, we are enable to

identify the difference between default contagion and external shocks on CDS spread

and CVA.

Figure 5.7 displays the fair CDS spread S∗ of the five cases in table 5.4. The CDS

spreads in case 5 are significantly lower than other cases because the firm A is with

the lowest default risk in this case. The difference between case 5 and others are the

most significant for the long-term contracts because both external shocks and default

contagion shocks are more likely to occur with longer time. The CDS spreads in cases

1 and 2 are similar for short maturities but the spread is higher in case 1 than case 2

for the long-term contracts. This phenomenon coincides with our observation in figure

5.6 that default contagions have much weaker impacts on long-term default probability

than external shocks. At last, case 4 has the highest CDS spreads due to the fact its
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Figure 5.7
The fair CDS spreads S∗ of five cases in table 5.4
Other parameters are κA = 0.5, θA = 0.05, λA(0) = 0.05, Tn − Tn−1 = 0.25, r = 0.02.

external shocks and default contagion shocks are stronger than the others.

In our model, the default risk of a company can be represented by the different

jump sizes ᾱ and β̄. So a CDS referencing to the firm A may have the same price but it

could be due to different risk components. In figure 5.8, we show the trade-off between

the two kinds of jump risk using a five-year contract as an example. By reducing β̄

while raising ᾱ at the same time, the default of firm A becomes more likely due to

default contagions rather than external shocks. In the two extreme cases where only

one kind of jump is used, we notice that the expected size of default contagion jump

ᾱA,B has to be higher than the external shock strength β̄ in order to achieve the same

CDS spread. This is due to the fact that the default contagion is a one-time only

event in our two-firm model, but there could be many more than one external shocks

arriving.

5.4.3 Credit value adjustment

In the previous section, we priced CDS contracts referencing to the firm A whose

credit risk could be affected by firm B’s default. The CDS contracts are priced without

consideration of the CDS seller’s default risk. We now consider the default risk of the

CDS seller, which is also the firm B, and compute the CVAs of those CDSs. Note that
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Trade-off between β̄ and ᾱA,B with same CDS protection spread.
This figure shows the combinations of external shocks β̄ and default contagion ᾱA,B such that a 5
year CDS contract is fair at the annual spread of 300bps, 312.5bps and 325bps. Other parameters are
κA = κB = 0.5, θA = θB = 0.05, λA(0) = λB(0) = 0.05, σA = σB = 0.1, Tn−Tn−1 = 0.25, r = 0.02.

we calculate CVA based on the spreads given in the last section.

With the jump-diffusion-contagion model, we showed the CVA is a solution of the

generic PIDE (5.17). With the specifications of (5.19), (5.17) becomes

∂U

∂t−
+

∑
i∈{A,B}

κi(θi − λi)
∂VA
∂λi

+
1

2
σ2
AλA

∂2VA
∂λ2

A

+
1

2
σ2
BλB

∂2VA
∂λ2

B

+ ρA,BσAσB
√
λAλB

∂2VA
∂λAλB

+ λB

∫ ∞
0

(1−RB) max{VB(λA + αA,B, t, T )} 1

ᾱA,B
e−(αA,B/ᾱA,B)dαA,B

+ J {U} − (r + λA + λB)U = 0,

(5.42)

where VB(λA + αA,B, t, T ) is the solution of (5.40b) and the external shocks β and

contagion shocks αA,B and αB,A are described as (5.20) and (5.21).

We solve (5.42) for the CVAs using ADIOS scheme with the five cases in Table 5.4.

Following the same reason as survival probability and CDS value in Sections 5.4.1 and



CHAPTER 5. DEFAULT CONTAGION WITH JUMPS 208

5.4.2, we have the boundary conditions for PIDE (5.42) as

λA → 0 :(
∂

∂t
+ LλB + κAθA

∂

∂λA

)
U − (r + λB)U

+ λB

(
(1−RB)

∫ ∞
0

max{V B(λA(t) + α, t, T ), 0}η(αA,B)dαA,B

)
= 0,

λA →∞ :(
∂

∂t
+ LλB + κAθA

∂

∂λA

)
U − (r + λA + λB)U

+ λB

(
(1−RB)

∫ ∞
0

max{V B(λA(t) + αA,B, t, T ), 0}η(αA,B)dαA,B

)
= 0,

λB → 0 :(
∂

∂t
+ LλA + κBθB

∂

∂λB

)
U − (r + λA)U = 0,

λB →∞ :(
∂

∂t
+ LλA + κBθB

∂

∂λB

)
U − (r + λA + λB)U

+ λB

(
(1−RB)

∫ ∞
0

max{V B(λA(t) + αA,B, t, T ), 0}η(αA,B)dαA,B

)
= 0.

(5.43)

Figure 5.9 displays the CVA of the five cases in table 5.4. The CVA is computed

based on the protection buyer is paying the spreads in figure 5.7. Compared to external

shocks, default contagion shocks have significantly stronger impacts on the CVA in all

five cases. The CDS buyer will have to pay higher CDS spreads when the external

shocks are stronger but the counterparty risk faced by the buyer is far less sensitive to

external shocks compared with default contagion shocks. In the last section, figure 5.7

shows that the CDS prices S∗ are very close in case 1 and 2 for short-term CDSs and

the difference are tiny in long-term CDSs. However, the CVA in case 2, which is with

the default contagion shock, is two times higher than in case 1, which is without default

contagion shock. Although the CDS spreads are lower in the case 3 than cases 1 and

2, the CVA in the case 3 is the highest among all cases. These results indicate that

CVA is dominated by the default contagions rather than external shocks. Remember

that the CVA considers both the probability of counterparty defaults earlier than

the referencing firm and the loss given the counterparty defaulted. We discussed in

Section 4.4.3 how the default contagion shocks only influence CVA in terms of loss
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Figure 5.9
The CVA of five cases in table 5.4
The CVA are evaluated using CDS spreads in figure 5.7. Other parameters are κA = 0.5, θA = 0.05,
λA(0) = 0.05, Tn − Tn−1 = 0.25, r = 0.02.

given counterparty defaults, which is raising the CDS value at the CDS seller’s default

time. External shocks have no impacts on the CDS value at the default time because

external shocks are not necessarily happen at the time of counterparty defaults. On

the other hand, the stronger external shocks leads to all firms more likely to default

so they only effect the probability that the counterparty credit event will happen. In

case 4 we have increase β̄ by 0.05 compared to that in case 2, which implies there will

be higher probability of counterparty default event. However, the CVA to the longest

maturity contract in case 4 only has around 6 bps higher than in the case 2. In other

words, of the five cases, cases 1 and 4 have the same probability that the counterparty

defaults, which is the highest among the five cases, and the case 3 has the lowest

probability. But our numerical results suggest that the CVA is mainly driven by the

losses given default, which will be affected by default contagion risk, rather than the

counterparty default probability, which is controlled by the external shocks.

In order to further illustrate the difference effects between default contagion shocks

and external shocks on CVA, figure 5.10 displays the CVAs of some 5 year CDS

contracts, where the prices are identical but subject to different strength of external

shocks β̄ and default contagion shocks ᾱA,B, the relationship between them is shown
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ᾱ

C
V
A

(B
p
s)

Spread=300 (Bps)

Spread=312.5 (Bps)

Spread=325 (Bps)

Figure 5.10
CVA under combinations of external shocks β̄ and default contagions ᾱ as shown previ-
ously in figure 5.8

in figure 5.8. According to figure 5.10, even though the all of the protections along the

line have the same CDS prices, the amount of the counterparty risk the buyer faces

varies a lot according to its source of default risk. In our examples, if the referencing

firm’s 5-year CDS is selling for 325 bps (paid quarterly) and the referencing firm’s

default risk is largely due to the default contagion from the CDS seller, the amount

of CVA is around 93 bps, compared to just 20 bps when the referencing firm’s default

risk is mainly due to external shocks. The reason for this is that when the referencing

firm’s credit worthiness is deteriorated by the counterparty’s default, the referencing

firm’s default intensity surges to a very high level at that moment. The consequence

is to make the cost of replacing the protection very high. In other words, there is an

enormous amount of loss for the protection buyer if the protection seller defaults.

5.5 Conclusion

We propose a reduced-form framework with default contagion and exogenous shocks in

order to model firms that are shocked by other firms’ credit events and economy-wide

events. The model is applied to the valuation of default probabilities, CDS and CVA.
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By modelling in this way we end up with one- and two-dimensional PIDEs to solve

for the valuation problems. The two-dimensional PIDEs are tackled using a combi-

nation of ADI and the operator splitting finite-difference scheme, which we term the

ADIOS scheme. In addition, extrapolation methods are invented when solving the

one-dimensional PIDEs for survival probabilities and CDS values. The underestima-

tion problems in computing the integral terms are resolved efficiently leading to results

that are up to 100 times more accurate with the extrapolation method with hardly

any additional computational burden.

In term of a firm’s default/survival term-structure, modelling default contagions

is different from simply including external shocks. The default contagion shocks have

stronger impacts on the short-term survival probability and their effects depend on

the relative riskiness of the firm itself and the firms whose defaults have contagion

effects on the firm. On the other hand, how likely it is that external shocks arrive

is steady at rate λ̄. Given that the external shocks can arrive at multiple times, this

will have a stronger impact on a firm’s long-term survival probability. Consequently,

the variations to one’s default term-structure could be more diverse by including both

default contagion and external shocks.

We price CDSs referencing to firm A whose default risk may be deteriorated by

firm B’s default. Comparing five cases with a variety of default contagion shocks and

external shocks, we show that the protection prices are more sensitive to changes in

external shocks, especially for the longer maturity contracts. External shocks make

all the firms more likely to default thus enhance the probability of default contagion

happening. Consequently, the CDS prices become more sensitive to default contagions

as well if there are stronger and more frequent external shocks. The CVA of the

five different cases show that the CVA is dominated by default contagion risk, which

determines losses given default at counterparty’s default time, rather than external

shocks.

A comparison study is carried out on the CVA of three different 5-year CDS protec-

tions where each has the same fair spread but the referencing firm’s default intensity

is subject to different strengths of default contagion and external shocks. Given the

tremendous difference in the CVA under our scenarios, numerical results suggest that
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appropriately modelling default contagions between the referencing firm and the coun-

terparty is crucial important in the calculation of CVA. Even though the default risk

of the referencing firm is identical, the CDS buyer is facing substantially more coun-

terparty risk if the default risk of the referencing firm is mainly attributed to the

default contagion from the counterparty. Although the external shocks shared by the

two firms also create default correlations between them, the CVA with only default

correlations created by external shocks can be up to five times less than the case that

with only default contagion.



Chapter 6

Bilateral Counterparty Risk with

Default Contagion Model

In Chapters 4 and 5 we discussed the counterparty risk that a CDS investor will face

when buying a CDS protection from a seller who can default and whose default will

increase the CDS value. However, those investigations were based on the assumption

that the investor to be default-free. This assumption may not be appropriate when

the CDS buyer has a similar credit rating compared to the seller so that the scenario

where the buyer defaults earlier than the seller cannot be ignored. When the two

companies are negotiating an OTC trade, it is essential that both sides consider the

counterparty’s default probability as well as their own. Otherwise, it is difficult to

arrive at a price that both sides will agree on.

In this chapter, the default of the CDS buyer is allowed and our default contagion

model is extended to consider the interactions amongst the three firms, namely the

referencing firm, the CDS seller and the CDS buyer. We are able to analyse the fair

spread of a CDS in this new environment as well as the corresponding counterparty

credit risk measures, which are CVA and DVA. The cost of introducing another default

party is to increase the dimensionality of our problem to three dimensions. For exam-

ple, the value of a CDS is now dependent on three stochastic processes, so a numerical

scheme for a high-dimensional problem is required. Although finite-difference has the

advantage of higher order convergence, the computational time grows exponentially

with the dimension of the problem. So in order to overcome this numerical obstacle,

we propose a novel scheme in which we break down the CVA and DVA valuation

213
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problem into two components, which can be solved by simulation and finite-difference

respectively. The resulting scheme will be a hybrid simulation and finite-difference

scheme that is shown to be particularly useful for the valuation problems presented in

this chapter.

The chapter will be arranged as follows. First, we address the preliminary princi-

ples of Monte-Carlo simulation in Section 6.1 including the methodology to simulate

multi-company default times and the stochastic intensity process. A formal model

formulation is given in Section 6.2 followed by the descriptions of pricing algorithms

in Section 6.3. Finally, we present a full set of numerical results in order to analyse

the CDS spreads, CVA and DVA. We also discuss the convergence of the numerical

scheme as well as the impacts on counterparty risk by introducing CDS buyer’s default

event and parameter sensitivities of the CVA and DVA.

6.1 Principle of Monte-Carlo

Before we move onto describing the full hybrid scheme, we present some fundamen-

tal theorems of Monte-Carlo to illustrate the principles that support the numerical

method.

6.1.1 Law of large numbers

Consider a random variable X with unknown expectation E[X] = µ and variance

V ar[X] = σ2. If we have a sequence of samples X1, X1,..., Xn, which are independent

variables with the same distribution as X, then we expect the estimator µ̂

µ̂ :=
1

n

n∑
i=1

Xi (6.1)

to be the unbiased estimator of mean, that is, its expectation aligns with the original

mean value, which is

E[µ̂] =
1

n
{E[X1] + E[X2]+, ...,+E[Xn]}

=
1

n
{µ+ µ+, ...,+µ}

= µ.
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Because the average of a list i.i.d. random variables is an unbiased estimator of

the unknown expectation, an accurate estimation of the mean with a required error

tolerance can be computed by drawing an increasing number of samples.

Let X1,..., Xi,..., Xn be an independent trials process, with finite expectation value

µ = E[Xi] and finite variance σ2 = V ar[Xi]. Now, let Sn =
∑n

i=1 Xi, then for any ε >

0,

P
(∣∣∣∣Snn

∣∣∣∣ ≤ ε

)
→ 1 as n→∞. (6.2)

In other words, this will ensure that the estimator µ̂ converges to the correct value µ, as

the number of random variables n increase. The idea of a Monte-Carlo approximation

is based on the fact that true expectation is the average of each sample generated by

simulations. As long as the number of simulation is taken large enough, the difference

between the estimated mean and the true mean can be lower than any small given

tolerance.

Additionally, the variance of the random variable σ can be estimated using the

sample variance σ̂, which is computed as

σ̂2 =
1

n− 1

n∑
i=1

(Xi − µ̂)2. (6.3)

Then σ̂ is also the unbiased estimator of σ, because we know that

E
[
σ̂2
]

= E

[
1

n− 1

n∑
i=1

(Xi − µ̂)2

]

=
1

n− 1
E

[
n∑
i=1

(
X2
i − 2Xiµ̂+ µ̂2

)]

=
1

n− 1

[(
E

[
n∑
i=1

X2
i

]
− E

[
n∑
i=1

2Xiµ̂

]
+ E

[
n∑
i=1

µ̂2

])]

=
1

n− 1

[(
E

[
n∑
i=1

X2
i

]
− E

[
nµ̂2
])]

=
1

n− 1

[(
n∑
i=1

E
[
X2
i

]
− nE

[
µ̂2
])]

,

since

E[µ̂2] =
σ2

n
+ µ2
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therefore,

E[σ̂2] =
1

n− 1

[
n
(
σ2 + µ2

)
− n

(
σ2

n
+ µ2

)]
= σ2.

6.1.2 Central limit theorem

Let X1,..., Xi,..., Xm be a sequence of i.i.d. random variables with expectation µ and

variance σ2, then the distribution of their sum

1

m

m∑
i=1

Xi ∼ N(µ, σ2) as m→∞. (6.4)

Equivalently,
µ̂− µ

σ√
m

∼ N(0, 1) as m→∞. (6.5)

The implication is that, whatever the distribution of Xi is, their average is a normal

distributed random variable centralised at µ with error O( 1√
m

). This will enable us

to make statistical inference on the simulation results using confidence levels. By

applying the unbiased estimators µ̂ in (6.1) and σ̂2 in (6.3), the confidence interval for

the estimate µ̂ with probability 0.95 can be gained from

P

(∣∣∣∣ µ̂− µσ√
m

∣∣∣∣
)

= 0.95

P
(
µ̂− 1.96σ√

m
≤ µ ≤ µ̂+

1.96σ√
m

)
= 0.95,

that is [
µ̂− 1.96σ√

m
, µ̂+

1.96σ√
m

]
. (6.6)

If the true solution, assuming that it is known, does not lie inside the 95% confidential

level, then the simulated result should be rejected as the correct estimator of the true

solution. In most cases where the true value is not known, then a statement could be

made that we are 95% confident that the true value is within a certain interval.

The point to note here is that the notation m is used to differentiate from n in

Section 6.1.1, which itself is the number of simulations to obtain one estimation of the

original variable. The variable m is the number of estimations where each one is the

average of n simulations. In order to obtain a confidence interval for a solution µ̂ with
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n simulations, we will have to simulate µ̂ for m times to estimate its variance. We

will see the confidence interval of µ̂ converges with increasing m. The central limit

theorem implies that to obtain one more digit accuracy, the number of simulation m

should be increased 100 times. Equivalently, the rate of convergence is a half or the

estimation error will be O
(

1√
m

)
.

6.1.3 Multi-companies default time simulation

Now that we have introduced some of the concepts of calculating expectations with

simulation, we are going to describe how we can pricing credit derivatives using Monte-

Carlo. In order to use Monte-Carlo for these derivative, it will require us to simulate the

default events of multiple companies. The algorithm for multiple defaults simulation

is developed by Duffie and Singleton (1998) and here we outline the algorithm in more

details.

Suppose that the default event times τ1, ..., τn of n firms each have a respective

intensity process λ1(t), ..., λn(t), which can be correlated. In order to simplify things

somewhat, we assume that there are no simultaneous defaults and so the probability

τi = τj is null for i 6= j. Duffie and Singleton (1998) have proven that we can simulate

the times τ1, ..., τn with the correct joint distribution using the Multi-Compensator

Simulation algorithm. If we let T be the time horizon of interest in which a default

time τ must fall to be of interest, then default time must be in the set (0, T ]. The

Multi-Compensator Simulation algorithm can be described as follows:

Algorithm 1 Multi-Compensator Simulation

1: Simulate λ1(t), ..., λn(t) up to time T
2: Compute compensator Λ1(T ),..., Λn(T ) according to (2.20)
3: Simulate n independent unit-mean exponential distributed random variables
Z1,...,Zn.

4: For each company i, if Λi(T ) < Zi, then τi > T
5: Otherwise τi = inf{t > 0,Λi(t) = Zi}.

When the intensity processes are stochastic, they are simulated through time T

at equally spaced discrete time points t0 = 0, ..., tm = m ∗ ∆t,...,tM = T . Then

we can compute the compensator Λ1(t),...,Λn(t) through simple numerical integration.

Now we will have a discrete sample path of the compensator Λi(t0),..Λi(tm),...Λi(tM).

However, the last step in Algorithm 1 cannot be done with discrete points of the
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compensator process. Instead we will need to locate a time slot such that

Λi(m∆t) < Z ≤ Λi((m+ 1)∆t).

Unless the above equality holds, the default time in which τi = inf{t > 0,Λi(t) = Zi}

lies betweenm∆ and (m+1)∆t. Once we have this region, we can linearly interpolation

between Λi(m∆t) and Λi((m+ 1)∆t) to allocate the correct default time, which is

τi = m∆t+ ∆t
Zi − Λi(m∆t)

Λi((m+ 1)∆t)− Λi(m∆t)
. (6.7)

6.1.4 Intensity Process Simulation

As we have discussed in the Algorithm 1, a sample path of default intensity λ(t) has

to be simulated. In the framework built up in chapters 4 and 5, we have to also

add in a Poisson process J(t) shared by two companies to model the external shocks

and default contagions among firms. This means that each firm’s default intensity is

composed of a CIR process, a Poisson process and jumps due to default contagion.

Then when it comes to simulating the default intensity sample paths it will be a three

step procedure as we must simulate the external shock arrival times throughout the

entire time horizon T at the same time as going through the CIR process step by

step. For those external shock arrival times, we must simultaneously check whether

the current time slot will be an external shock or if there is a firm defaults. If so,

an exponential random variable is simulated which can then be added to the alive

firms’ default intensity. In the next section we provide some more details on the exact

procedure.

Simulating CIR process

There are two approaches to simulate stochastic processes. When the distribution of

a process in a future time is known in closed-form, we can draw a random number

from the distribution to be a future position of the process. For instance, the return

of a Geometric Brownian motion (GBM) is known to be normally distributed under a

known transformation so that we can sample from the normal distribution to compute

the location of the GBM at the next time step. However, no easy closed-form solution

is available for the CIR process, and if we look to the literature there have been sev-

eral proposed discretisation schemes for a CIR stochastic differential equation, which
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maintain the distribution of the underlying process (non-central χ2) whilst making

sure that the process does not fall below zero during simulation.

We point the reader to the following papers for a detailed description of those

schemes: Deelstra and Delbaen (1998), Brigo and Alfonsi (2005), Glasserman (2003)

and Berkaoui et al. (2008). Here we are just going to give a short overview of those

simulation schemes and it is the implicit Milstein scheme from Brigo and Alfonsi (2005)

that we will use for simulating CIR process in this thesis. The implicit Milstein scheme

has higher order accuracy and it guarantees the sample path will be strictly positive

as long as the Feller condition is satisfied.

Assume the process is simulated up to time T in discrete time intervals t0 = 0,

..., tm = m ∗ ∆t,...,tM = T , then the simplest adaptation will be based on an Euler

method, where the value of the CIR process at the next step is computed from

y(t+ ∆t) = y(t) + κ (θ − y(t)) ∆t+ σ
√
y(t)∆tW1, (6.8)

where W1 is a standard normal distribution.

At each step forward, a single normal random variable is drawn before applying

(6.8). The problem in simulating the CIR process with (6.8) is that the process can fall

below zero. No matter how small ∆t is taken, there is non-zero probability that the

sample from normal distribution will be large and negative so that the random term

forces the process to go below zero. If this occurs, the process cannot be simulated

further due to the fact that the square-root term is undefined for negative numbers.

To deal with this problem, some modifications are proposed. Deelstra and Delbaen

(1998) provide a scheme in which they set the process to 0 if it is negative. We can

write this as

y(t+ ∆t) = y(t) + κ (θ −max{y(t), 0}) ∆t+ σ
√

max{y(t), 0}
√

∆t(W1).

Similarly, Berkaoui et al. (2008) proposed the reflection scheme, in which strict

positiveness is guaranteed. The process is simulated according to

y(t+ ∆t) = |y(t) + κ (θ − y(t)) ∆t+ σ
√
y(t)
√

∆t(W1)|.

Basically, the reflection scheme takes an absolute value to the simulated process at

each time step in order to avoid negative values.



CHAPTER 6. BILATERAL COUNTERPARTY RISK 220

Each of those schemes outlined above have first-order weak convergence, in the

sense that expectations of functions of y(t) will approach their true values as O(∆t). In

order to improve the order of accuracy, the Milstein scheme is described in Glasserman

(2003) for generic stochastic process, where the accuracy is increased by considering

higher order expansions of the drift and diffusion coefficient using Itô’s lemma. In this

case, the CIR process is simulated via

y(t+ ∆t) = y(t) + κ(θ − y(t))∆t+ σ
√
y(t)∆tW1 +

1

4
σ2∆t(W 2

1 − 1). (6.9)

This is similar to the Euler scheme (6.8), in that the Milstein scheme cannot avoid

having negative y(t). But the probability that the process falls below zero is greatly

reduced by the extra term. Kahl and Jäckel (2006) review some implicit Milstein

schemes and propose a scheme with even lower probability of dropping below zero,

which is written as

y(t+ ∆t) =
y(t) + κθ∆t+ σ

√
y(t)
√

∆t(W1) + 1
4
σ2∆t(W 2

1 − 1)

(1 + κ∆t)
. (6.10)

The idea of the implicit Milstein scheme is to treat the term −κy(t)∆t in the forward

time step t + ∆t as −κy(t + ∆t)∆t so that the numerator of (6.10) can be shown to

be strictly positive as long as Feller condition is satisfied.

Another implicit Milstein scheme is proposed by Brigo and Alfonsi (2005). In this

version not only is the drift term −κy(t)∆t but also the diffusion term
√
y(t) is treated

at the unknown time step t+ ∆t. Consequently,
√
y(t+ ∆t) is the positive root of a

second-degree polynomial when Feller condition is satisfied. It follows that

y(t+ ∆t) =

σ√∆tW1 +
√
σ2∆tW1

2 + 4(y(t) + (∆t)(κθ − σ2

2
))(1 + κ(∆t))

2(1 + κ∆t)

2

.

(6.11)

The advantage of this scheme that it is O(∆t2) as well as ensuring that the strictly

positive requirement of y(t) is guaranteed.

Apart from the approaches that use a discretisation in time, another branch of

research attempts to simulate the probability density function of the CIR process. It

is actually mentioned in Cox’s original paper Cox et al. (1985) that y(T ) given y(t)

follows a non-central chi-square distribution given by

y(τ) v c(τ)χ2
d(ncp(τ))
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where

c(τ) =
σ2(1− 4e−κτ))

4κ
, d =

4θκ

σ2
, ncp(τ) =

4κe−κτ

σ2(1− e−κτ )
, τ = T − t.

Here y(T ) exactly follows c(τ) times of a non-central χ2 distribution with non-central

parameter ncp(τ) and degree of freedom d. Although the distribution of CIR process

is known to have a non-central χ2 distribution, sampling from a non-central χ2 dis-

tribution is computationally intensive, mainly as a result of the need to evaluate Γ

functions. In this thesis, the implicit scheme (6.11) is chosen whilst at the same time

we make sure in our parameter choices that the Feller condition satisfied.

Simulating Exponential Variables

The exponential distribution with mean value β̄ is a probability distribution that

describes the waiting time between events in a homogeneous Poisson process and

whose density function is

f(x) =
1

β̄
e
− 1
β̄
x
. (6.12)

The cumulative distribution function is then given by

F (x) = 1− e−
1
β̄
x
. (6.13)

To simulate the exponential variable, Glasserman (2003) describes the inverse

transform method. Suppose we want to generate a random variable X with the prop-

erty that P(X ≤ x) = F (x) for all x, then the inverse transform method sets

X = F−1(u), u ∼ U(0, 1),

where F−1 is the inverse of the function F and U(0, 1) denotes the uniform distribution

on (0, 1).

Using Inverse Transform Method, an exponential variable is generated in the pro-

cedure Algorithm 2.

Algorithm 2 Generate Exponential Variable

1: u← U(0, 1)
2: x← β̄ × ln(1− u) return x
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Simulating Poisson Processes

Next we describe the way in which to generate the event times of a homogeneous

Poisson process with rate λ̄, which is based on the Inverse Transformation method.

One important property of homogeneous Poisson processes is that the waiting time

between events is exponentially distributed with rate λ̄. Therefore, the cumulative

distribution function of the time between two successive events is

F (t) =

∫ t

0

λ̄e−λ̄t = 1− e−λ̄t, (6.14)

and the inverse is

F−1(u) = − ln(1− u)

λ̄
, 0 ≤ u < 1. (6.15)

Therefore, if u ∼ U(0, 1) is a uniform random variable in [0, 1), the next event

occurs at time

t = − ln(1− u)

λ̄
. (6.16)

So Poisson event arrivals with homogeneous arrival rate λ̄ within a time horizon T can

be simulated by repeating the above procedure until the cumulative time exceeds T .

We describe such a the procedure in Algorithm 3.

Algorithm 3 Simulate Poisson Arrival Times

[This function take two arguments. The expire time T and the arrival intensity λ̄]

1: N ← 0 (The number of Jumps)
2: Jt← 0 (The time of jumps arrive)
3: CurrentT ime← 0
4: while CurrentT ime < T do
5: u← U(0, 1)
6: t← 1

λ̄
ln(1− u) (waiting time)

7: N+ = 1
8: Jt[N ] = CurrentT ime+ t
9: CurrentT ime+ = t

6.2 A Three Firm Model

The modelling framework is exactly the same as described in Section 5.1. For the

detailed model specifications such as the definition of filtrations, we refer to Section

5.1. The contribution in this chapter is to extend the two firm framework in Section

5.2 to include the default of the CDS buyer. So we have three mutually interacting
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firms. This will enable us to analyse the fair CDS spreads S∗ on multiple interacting

firms with external shocks and default contagions. More importantly, we can analyse

the CVA and DVA under our default contagion framework.

To provide more specifications to the model in Section 5.1, we assume that the

economy contains three companies, namely the investor, counterparty and referencing

firm. For simplicity, the referencing firm, the counterparty and the investor will be

indexed by 1, 2 and 3 or by using the abbreviations ref , cp and inv respectively. There

are 3 non-negative random variables (τi) for i ∈ {ref, cp, inv} defined on the filtered

probability space (Ω,Gt,Q), satisfying Q(τi = 0) = 0 and Q(τi > t) > 0 for t ∈ R+.

Then we have three right-continuous default indicator processes

Href (t) = 1{τref≤t},

Hcp(t) = 1{τcp≤t},

Hinv(t) = 1{τinv≤t}.

The filtration Ht is generated by the default processes, which is

H(t) = ∨Hi(t)

Hi(t) = σ({τi ≤ u : u ≤ t}), for i ∈ {ref, cp, inv}.

The filtration H(t) contains default information.

After assuming the G−i-adapted default processes Fi(t) = Q(τi ≤ t|G−it ) to be

absolutely continuous submartingale under Q for all i ∈ {ref, cp, inv}, there exists

G−i-adapted intensities of default times τi, which we specify as

dλref (t) = κref (θref − λref (t)) dt+ σref

√
λref (t)dWref (t)

+ αref,cpdHcp(t) + αref,invdHinv(t) + βdJ(t),

dλcp(t) = κcp (θcp − λcp (t)) dt+ σcp

√
λcp(t)dWcp(t)

+ αcp,refdHref (t) + αcp,invdHinv(t) + βdJ(t),

dλinv(t) = κinv (θinv − λinv (t)) dt+ σinv
√
λinv(t)dWinv(t)

+ αinv,refdHref (t) + αinv,cpdHcp(t) + βdJ(t),

(6.17)

for i ∈ {ref, cp, inv}. The definition of filtration G−i = (Gt)t∈R+
, where G−it =

∨j∈{ref,cp,inv},j 6=iHj(t) ∨ Ft. Also, the market filtration Ft is defined as (5.1). The

filtration G−i contains all information except the firm i’s default time τ i. (6.17) is a
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special case of (5.2) with the drift and volatility functions µ() and σ() to be (5.19).

The correlations of these Brownian motions are described by the correlation matrix

ΣW , which is

ΣW =


1 ρref,cp ρref,inv

ρcp,ref 1 ρcp,inv

ρinv,ref ρinv,cp 1

 .
Again, the J(t) term in (6.17) is the F-adapted homogeneous Poisson process as-

sumed to be shared by all firms’ default intensities that represents the external or

economy-wide shocks as outlined in Chapter 5. To keep consistent with previous

chapters, those external shocks β are again modelled as exponential random variables

defined by (5.21). Note that there are still other chooses for modelling β discussed in

Section 4.2.1.

When one of the companies defaults, its default process Hi(t), i ∈ {ref, cp, inv},

changes from 0 to 1, which triggers a jump to alive firms’ default intensities λj(t), such

that j ∈ {ref, cp, inv} and j 6= i. In order to describe the default contagion impacts

amongst multiple firms, a default contagion matrix α̃ is defined as

α̃ =


0 ᾱref,cp ᾱref,inv

ᾱcp,ref 0 ᾱcp,inv

ᾱinv,ref ᾱinv,cp 0

 .
In this matrix each entry ᾱi,j for a given i 6= j represents the expected size of jump

that firm j’s default will trigger on firm i’s default intensity. Again, we specify the

random jump size αi,j follows independent exponential distributions, which are

η(αi,j) =
1

ᾱi,j
e
−
αi,j
ᾱi,j .

In fact the default contagion matrix does not necessary need to be symmetric since

the impact the firm’s default has on a small firm is not necessarily going to be the

same as the effect a small firm’s default will have on a big firm. Later, we will denote

α̃ = A to represent a scenario where every entry in the matrix is the same constant A

except for the diagonals which are always zero.

Given that there are now three firms in the economy the survival and default

states of each firm divides the state space into 8 possibilities. We denote each of those
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possible states as:

A = {Href (t) = 0, Hcp(t) = 0, Hinv(t) = 0}, B = {Href (t) = 0, Hcp(t) = 0, Hinv(t) = 1}

C = {Href (t) = 0, Hcp(t) = 1, Hinv(t) = 0}, D = {Href (t) = 0, Hcp(t) = 1, Hinv(t) = 1}

E = {Href (t) = 1, Hcp(t) = 0, Hinv(t) = 0}, F = {Href (t) = 1, Hcp(t) = 0, Hinv(t) = 1}

G = {Href (t) = 1, Hcp(t) = 1, Hinv(t) = 0}, H = {Href (t) = 1, Hcp(t) = 1, Hinv(t) = 1}

The default risk of a firm in each of the different states will not be the same given

the different possible ways that default contagions could affect them. For instance,

the referencing firm in state A has higher default risk than in state D due to the fact

that the counterparty and investor are still alive and their defaults will cause default

contagions on the referencing firm. Therefore, a CDS written on the referencing firm

has different values or fair spread in different states. Similar to Chapters 4 and 5, we

will refer the contract value under a specific state.

6.3 Implementation

We remind the reader that we are primarily interested in evaluating the counterparty

risk for a situation in which a defaultable investor is buying a CDS contract from a

defaultable counterparty and there are default contagions amongst the investor, the

counterparty and the referencing firm. At the beginning of the trade, the investor

buys a CDS protection on the referencing firm’s default from the counterparty at the

cost of an annual fair swap rate S∗ paid quarterly according to (2.57). So the annual

fair swap rate S∗ is evaluated in state A, where all the firms are still alive. Similarly,

CVA and DVA, which are the value adjustments in (1.4) and (1.5), are evaluated

in state A. However, we need to price the CDS in state A, B as well as C. If the

counterparty/investor defaults, the economic state changes from A to C / B, the CDS

value in the new state can be the loss, if any, given default.

According to (1.4) and (1.5), there are three components which determine the CVA

and the DVA. They are: the discount factor; the event in which the counterparty or

the investor is the first to default; and the post-default contract value at default time.

In our model, the discount factor is assumed constant.

Taking account of the event in which the first firm to default is the counterparty
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or the investor is not in any way trivial. Because if we are in state A, there are

three firms whose default intensities are all stochastic and are all interacting with each

other. Therefore, Monte-Carlo simulation will be used to simulate those credit events

using the default times simulation Algorithm 1. And for the last part, as mentioned

earlier, when the counterparty or the investor defaults before the CDS expires, the

economic state changes from A to B or C, and the post-default value of the CDS must

be calculated in order to determine the loss due to the counterparty or the investor

defaulting. With default contagions in our model, the CDS value is dependent on

two state variables in both B and C. The two state variables are the referencing

firm’s default intensity and the default intensity of either the counterparty’s or the

investor’s. In Section 5.2.2, we showed that such a CDS with default contagion and

shared external shocks can be numerically evaluated by solving the two-dimensional

PIDE system (5.14) and (5.16). Consequently, we see that the three building blocks

of the CVA and DVA can be computed with different numerical schemes. In this

section, we first detail the approach required to simulate the three default intensities

λref (t), λcp(t) and λinv(t). Our approach will combine: the implicit Milstein scheme

(6.11); the multi-companies default times simulation; the default contagion jumps

Hi(t) for i = {ref, cp, inv} and external shocks J(t). This default intensities simulation

algorithm is then used later on to produce the fair CDS spread in state A. Finally, we

describe the hybrid numerical scheme, which combines Monte-Carlo simulation with

finite-difference in order to compute the CVA and DVA.

6.3.1 Default processes and default times simulation

If we were to have a model without default contagion, then the default times of mul-

tiple firms can be simulated following Algorithm 1, in which we identify the default

times after all of the default intensity processes have been simulated through matu-

rity. However, when there are default contagion events happening, identification of a

default event must be considered at each and every time step so the default intensity

process can only be moved on step by step. We cannot decouple the processes and

simulate all the way to maturity because each sample path of a firm’s default intensity

λ(t) is dependent on when one of other firms defaults. If a firm defaults at the current

time step, we must add in a jump to other alive firms’ default intensity.
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So to describe this approach we first divide the time horizon T into equally M

steps, i.e. t0 = t, ..., tm = m∆t, ..., tM = T as before. Then the simulation procedure

is described in Algorithm 4.

Algorithm 4 Contagion Model Processes Simulation

[This function take arguments, T , M ,λ̄, β̄, α̃ and Σw]

1: Simulating a vector of Jt arrival times with Algorithm 3.
2: K ← the number of Jt jump times.
3: k ← 1 (the counter of exogenous jumps)
4: ∆t← T

M

5: Simulate 3 independent unit-mean exponentially distributed random variables Z1,
Z2, Z3.

6: for m=1;m<=M;m++ do
7: Current time t← m×∆t
8: Simulate three standard Brownian motions

(
Wref ,Wcp,Winv

)
subject to Σw

9: Simulate
(
λref (t), λcp(t), λinv(t)

)
according to (6.11) using

(
Wref ,Wcp,Winv

)
10: if Jt[k] < t and k < K then
11: Simulate an exponential random variable β with mean β̄ according to Al-

gorithm 2
12:

(
λref (t)+ = β, λcp(t)+ = β, λinv(t)+ = β

)
13: k + +

14: for Every surviving firm i ∈ (ref, cp, inv) do
15: Calculate compensator Λi(t)+ = 0.5

(
λi(t) + λi(t−∆t)

)
∆t

16: for Every surviving firm i ∈ (ref, cp, inv) do
17: if Λi(t) ≥ Zi then
18: Determine default time τi according to (6.7)
19: for j ∈ {ref, cp, inv} and j 6= i do
20: Simulate αji with mean ᾱji
21: λj(t)+ = αji

22: Return
(
τref , τcp, τinv

)
and Sample Paths of λref , λcp and λinv

The arrivals of the homogeneous Poisson process J(t) represent external events

whose arrivals are independent of the sample paths of three firms’ default intensity.

As a result, J(t) can be simulated in advance independently of any default intensity

calculations. At the start, a vector of Poisson arrivals are simulated up to time T

with arrival intensity λ̄. Then, the intensity processes are simulated step by step

simultaneously. If there are external event arrivals between two successive time [(m−

1)∆t,m∆t], an exponential jump with mean β̄ is drawn and added to all of the alive

companies’ intensity at time m∆t. The compensator Λt(m∆t) of each firm is then

calculated in order to identify whether there are defaults at that time interval. Once

a firm defaults, its default time is determined by (6.7) and exponential jumps are
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calculated according to α̃ and then added to the surviving firms’ intensity processes

λi(m∆t) for ∀ i ∈ (ref, cp, inv).

6.3.2 Spread simulation

Every CDS contract is characterised by an annualised fair swap spread S∗ in (2.57),

where the CDS investor is required to pay the amount S∗∆T at successive time slots

T1 = ∆T , ..., Tk = k∆t, ..., TK = K∆T before the referencing firm defaults.

Measuring the fair swap spread S∗ requires us to evaluate the expectations in

(2.57). The numerator is the expected value of protection buyers’ receivable when the

referencing firm has defaulted before expiry, which is called the Default Payment. The

denominator is composed of two components. One is the present value of the quarterly

(Tk−Tk−1 = 1
4
) payment that the buyers have to pay until the referencing firm defaults

or the CDS expires, namely the Premium. The rest is the payment that the investor

should pay if the referencing firm defaults between two settlement dates Tk−1, Tk,

namely Accrual. Because the insurance payment is paid at the end of each time slot,

the insurance fee for the period (Tk−1, Tk] is not paid if the referencing defaults between

(Tk−1, Tk]. Instead, the Accrual should be paid for the protection period from the last

payment time, say Tk−1, to the default time. For each scenario of the referencing firm’s

default time, the value of those three payments can be determined. The expected

values of Default Payment, Premium and Accrual are computed by simulation and

their ratio is taken to obtain the fair swap spread S∗. It is important to be aware here

that the fair swap spread S∗ simulated reflects the default risk of the referencing firm

but not the counterparty risk from trading the CDS. This is because the defaults of

the counterparty and the investor will only trigger default contagion jumps αref,cp and

αref,inv to the referencing firm but are not regarded as a termination condition on the

CDS. This is similar to the situation that there is a regulator independent from the

three firms system and it is evaluating the fair price of the CDS on the referencing

firm.

In order to determine the values of Default Payment, Premium and Accrual, what

we need to do is to simulate the default time of the referencing company on whom the

CDS is written. In our default contagion model, everybody’s default time is linked to

the other two companies due to possible default contagions. So Algorithm 4 is used
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to simulate the referencing firm’s default time. The simulation procedure for the fair

swap spread S∗ is given by algorithm 5. Here the discount factor D(t, T ) is calculated

as e−r(T−t) with constant risk-free interest rate r.

Algorithm 5 CDS spread simulation

[This function take arguments: Maturity T , J(t) arrival rate λ̄, External jump’s ex-
pected value β̄, Number of steps M , Swap payment period ∆T , Default contagion
matrix α̃, Correlation matrix Σw, Number of Simulation N ]

1: Default Payment ← 0
2: Premium Payment ← 0
3: Accrual Payment ← 0
4: K ← T

∆T
the number of total payment

5: for n=1;n<=N;n++ do
6: Simulate the default times {τref , τcp, τinv} with Algorithm 4.
7: if τref ≤ T then
8: Default Payment+ = D(0, τref )LGD(τref )

9: Premium Payment+ =
∑K̄

k=1 ∆TD(0, k∆T ), such that K̄∆T < τref <
(K̄ + 1)∆T

10: Accrual Payment+ = D(0, τref )
τref−K̄∆t

∆T

11: else
12: Premium Payment+ =

∑K
k=1 ∆tD(0, k∆T )

13: return S∗ = Default Payment
Premium Payment+Accrual Payment

6.3.3 CVA and DVA Simulation

In this section, we describe the algorithm for simulating CVA and DVA, which in-

tegrates Algorithm 4 and the ADIOS finite-difference scheme proposed in Chapter 5.

CVA and DVA need to be calculated when the two parties trading the CDS are default-

able. In the situation that our defaultable investor buys the CDS from the defaultable

counterparty, any credit event from the investor, the counterparty or the referencing

firm can lead to the termination of the contract. But the investor /counterparty will

suffer losses only in the scenario that the counterparty/investor is the first to default

as this is the only way that losses/gains can occur.

As discussed in Section 6.2, CVA and DVA are computed in state A, where three

firms are still alive and CVA, DVA are simulated simultaneously in a two step proce-

dure. The first step is to simulate a scenario of the three firms’ default time through

Algorithm 4 and then identify whether this scenario is subject to a counterparty credit
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event, which can be evaluated as the cases when

{τinv < T, τinv < τref , τinv < τcp}, {τcp < T, τcp < τref , τcp<τinv}.

The second step is to quantify how much the CDS contract is worth after the

investor or the counterparty defaults. If the counterparty or the investor defaults,

the economic state changes from A to B or C, therefore the value of the CDS will be

taken from the appropriate state with the positions of the two default intensities at

the default time. We can evaluate the CDS in both states B and C.

While in states B and C, we are facing a two-firm model, which we discussed in

Chapter 5. In Chapter 5, we prove a CDS’s value with our model is the solution to

PIDE (5.40). A subtle difference is that the two firms are the referencing firm and the

counterparty in state B but the two firms are the referencing firm and the investor

when in state C. Applying the two-firm model in B and C to (5.40) leads to the

following PIDE system

∂VD
∂t−

+ LD{VD}+ J {VD} − (r + λref )VD

+ λref

(
(1−Rref ) e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
= 0,

(6.18a)

∂VB
∂t−

+ LB{VB}+ J {VB}+ λref

(
(1−Rref )e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
+ λcp

∫ ∞
0

VD
(
λref + αref,cp, t

−, T
)
η(αref,cp)dαref,cp − (r + λref + λcp)VB = 0,

(6.18b)

∂VC
∂t−

+ LC{VC}+ J {VC}+ λref

(
(1−Rref )e−r(T−t) − S t− Tn−1

Tn − Tn−1

)
+ λinv

∫ ∞
0

VD
(
λref + αref,inv, t

−, T
)
η(αref,inv)dαref,inv −

(
r + λref + λinv

)
VC = 0,

(6.18c)
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where

LD = κref (θref − λref )
∂

∂λref
+

1

2
σ2
refλref

∂2

∂λ2
ref

,

LB = κref (θref − λref )
∂

∂λref
+

1

2
σ2
refλref

∂2

∂λ2
ref

+ κcp(θcp − λcp)
∂

∂λcp
+

1

2
σ2
cpλcp

∂2

∂λ2
cp

+ ρref,cpσrefσcp
√
λrefλcp

∂2

∂λrefλcp
,

LC = κref (θref − λref )
∂

∂λref
+

1

2
σ2
refλref

∂2

∂λ2
ref

+ κinv(θinv − λinv)
∂

∂λinv
+

1

2
σ2
invλinv

∂2

∂λ2
inv

+ ρref,invσrefσinv
√
λrefλinv

∂2

∂λrefλinv
.

Due to the discontinuous swap spread payments that occur at T1, ..., Tk, ..., TK ,

there are jump conditions

VD(λref , T
−
k , T ) = VD(λref , Tk, T )− S(Tk − Tk−1)

VB(λref , λcp, T
−
k , T ) = VB(λref , λcp, Tk, T )− S(Tk − Tk−1)

VC(λref , λinv, T
−
k , T ) = VC(λref , λinv, Tk, T )− S(Tk − Tk−1)

for ∀k = 1, ..., K and terminal conditions given by

VD(λref , T, T ) = 0,

VB(λref , λcp, T, T ) = 0,

VC(λref , λinv, T, T ) = 0.

Equations (6.18b) and (6.18c) are same as (5.40a) except the notations of the state

and firms. (6.18a) is identical to (5.40b) except the notation of the state. Equation

(6.18a) solves the CDS value VD in state D, where only the referencing firm is left

alive so that there is no default contagion risk involved. The solutions of (6.18a)

can then be fed into (6.18b) and (6.18c) to solve for the CDS value in states B and

C, i.e. VB and VC. Due to the nature of solving PIDEs, our solutions VB and VC

contain the CDS values for VB at λref × λcp ∈ [0, λref,max] × [0, λcp,max] and VC at

λref × λinv ∈ [0, λref,max] × [0, λinv,max] for all t ∈ [0, T ], given λref,max, λcp,max and

λinv,max are the upper bounds of the truncated domains. For the details of solving

these PIDEs, we refer to Section 5.3.
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After simulating the default times using Algorithm 4, we are given the default

times and sample paths, and we can select the scenarios that the investor or the

counterparty is the first to default. Further, we have the positions of the default

intensities’
(
λref (τinv), λcp(τinv)

)
or
(
λref (τcp), λinv(τcp)

)
which are used to locate the

CDS value, V B or V C, in the PIDE solutions at the default time, τinv or τcp. It is

necessary to ensure that the maximum value of default intensity λref,max, λcp,max and

λinv,max in the finite-difference grid is not less than the simulated default intensities.

Failure to satisfy this condition will make us unable to determine losses given default

and will result in an underestimation of the CVA. Therefore, we will take the maximum

level of the finite-difference domains λref,max, λcp,max and λinv,max to be sufficiently

large when solving (6.18b) and (6.18c) in ADIOS scheme.

After determined the scenario in which the investor or the counterparty has de-

faulted and the corresponding CDS values at that time, we are now able to know

the losses/gains, if any, to the surviving party. Hence the discounted value of the

losses/gains is one simulation of the CVA or DVA and the average over a sufficiently

large number of simulations will give us the expected values of the CVA or DVA. The

entire procedure for simulating CVA and DVA is described in Algorithm 6.

6.4 Convergence Analysis

In Section 6.3 we describe our numerical implementations of the contagion model for

pricing CDS and measuring CVA, DVA. In this section, we demonstrate the effective-

ness of the numerical schemes by showing the convergence of CVA in terms of the

number of simulation N and the number of steps in time M .

Since there is no analytic solution to compare against our numerical solution, we

use the finite-difference solution of the CVA from Chapter 5 as a benchmark for the

Monte Carlo version. The CVA computed in this chapter with a defaultable investor,

counterparty and referencing is the CVA defined in (1.4). Compared with the CVA

computed in Chapter 5, which is defined as (1.3), the CVA we consider in this chapter

includes the possibility that the investor defaults. However, the difference between

the CVA in Chapter 5 and the one we will see in this chapter will narrow down if

there is an extremely safe investor, everything else being equal. In other words, given
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Algorithm 6 CVA and DVA Simulation

[This function take arguments. The expire time T , exogenous jump arrival intensity
λ̄, exogenous jump sizes mean value β̄, number of steps M , default contagion matrix
α̃ and the correlation matrix Σw]

1: Solve (6.18c) for the CDS value VC(λref , λinv, t, T ) in state C
2: Solve (6.18b) for the CDS value VB(λref , λcp, t, T ) in state B
3: CVA ← 0, DVA ← 0
4: for n=1;n<=N;n++ do
5: Simulate the default times (τref , τcp, τinv) and sample paths of (λref , λcp, λinv)

for t ∈ (0, T ] with Algorithm 4
6: if τcp ≤ T and τcp < τref and τcp < τinv then
7: Find the post-default intensities’ position λref (τ+

cp) and λinv(τ
+
cp) from sam-

ple paths.
8: Obtain post-default CDS value in state C by interpolating VC at the point(

λref (τ+
cp), λinv(τ

+
cp), τ

+
cp

)
9: CVA + = (1−Rcp)D(0, τcp) max{VC(λref (τ+

cp), λinv(τ
+
cp), τ

+
cp, T ), 0}

10: if τinv ≤ T and τinv < τref and τinv < τvp then
11: Find the post-default intensities’ position λref (τ+

inv) and λcp(τ
+
inv) from sam-

ple paths.
12: Obtain post-default CDS value in state B by interpolating VB at the point(

λref (τ+
inv), λcp(τ

+
inv), τ

+
inv

)
13: DVA− = (1−Rinv)D(0, τinv)min{CDS(λref (τinv), λcp(τinv), τinv), 0}
14: Return CVA=CVA

N
and DVA=DVA

N
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ref cp inv

κ 0.5 0.5 1010

θ 0.05 0.05 10−10

σ 0.1 0.1 10−10

λ(0) 0.05 0.05 10−10

λ̄ = 0.05 β̄ = 0.05

Table 6.1
Model Parameter for Convergence Test

∆t = 1
252 ∆t = 1

252×2 ∆t = 1
252×4

∆x = 1
100 30.454 30.4406 30.4339

∆x = 1
200 30.4243 30.411 30.4043

∆x = 1
400 30.4166 30.4033 30.3967

∆x = 1
800 30.4146 30.4013 30.3946

∆x = 1
1600 30.414 30.4007 30.394

Table 6.2
The CVA (bps) for a one year CDS protection computed by finite-difference scheme
Protection buyer is paying 0 bps spread quarterly in rear and interest rate is 0%. Recovery method is
recovering a risk-free bond and recovery rate is fixed in R = 0.4. ∆x is the step size of both reference
and counterparty’s default intensities

an extremely safe investor, the CVA computed by Algorithm 6 should align to the

CVA solved by finite difference in Chapter 5. We will now present some test results

calculated using Algorithm 6 with a base set of parameters as given in table 6.1, where

the investor is set to be extremely safe so that the results should be comparable with

Chapter 5.

The default contagion matrix α̃ is given as below

α̃ =


0 0.05 0

0.05 0 0

0 0 0

 ,
which implies there are only default contagions between the referencing firm and the

counterparty, which also coincides with Chapter 5.

Assume there is a one-year CDS and the investor is paying zero spread and the

risk-free interest rate is zero. The convergence of the CVA of this CDS, which is solved

by finite difference, with non-defaultable investor is given by table 6.2, where the CVA

converges to 30.394 bps

The simulation results in table 6.3, figures 6.1 and 6.2 are showing the convergence

of the Algorithm 6 with respect to the number of simulation N and the number of
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N µ̂ σ̂µ̄ µ̂95%

100 31.1751 15.76 (30.1969, 32.1533)
1000 30.4057 4.89 (30.1020, 30.7093)
10000 30.3328 1.52 (30.2380, 30.4276)
100000 30.3797 0.51 (30.3478, 30.4117)

Table 6.3
Convergence of CVA Simulation with 95% confidence levels
The convergence of the CVA (bps) for a one year CDS contract. Protection buyer is paying 0 bps
spread quarterly in rear and interest rate is 0%. Recovery method is recovering risk-free bond and
recovery rate is fixed in 0.4. The step number of the simulation path (M) is fixed at 4×252. Statistics
are estimated from a group of 1000 samples with each sample is the average of N simulations.

steps M . The number of steps in time M is chosen to be multiples of 252, which is

the number of trading days in a year. According to central limit theorem, simulation

results should converge to the accurate results and the variance of the result should

reduce against increasing number of simulations N . Table 6.3 and figure 6.1 show

the pattern of convergence in N with the corresponding estimated variance and 95%

confidence interval. With the number of steps in time is fixed at M = 4 × 252, each

estimation of CVA µ̂ is run for N scenarios. The variance is estimated from 1000 µ̂

with (6.3) and the 95% confidence interval is calculated according to (6.6).

In table 6.3, the volatility of our estimator reduces by three times when N increases

by ten times, which aligns with the theoretical value 10
1
2 ≈ 3.16. In addition, when

we visualise the solutions of table 6.3 in figure 6.1 and plot them alongside the best

finite-difference solution with ∆t = 1
4×252

and ∆x = 1
1600

, which is 30.394 shown by

the dotted red line. We can see that the finite-difference solution always lies within

the 95% confidential intervals (green bars) of the simulated solution. We can also see

how the confidence intervals narrow down with an increasing number of simulations

N .

On the other hand, figure 6.2 shows the pattern of convergence in M with a fixed

number of simulations N = 106. In the case of the sample paths of λ(t) have to be

simulated throughout time to obtain a solution, we cannot guarantee the accuracy

without small enough time step size T
M

. This problem is common in pricing path-

dependent derivatives, for example Asian options. When the number of steps in time

M = (1 or 2) × 252, the finite-difference solutions stand outside the 95% confidence

interval, by which we reject the Monte-Carlo results to be the unbiased estimator of

the finite-difference solution. If sufficiently small step size is taken, the finite-difference
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Figure 6.1
Convergence of CVA in Number of simulation
This figure shows the convergence of the CVA to the one-year CDS protection mentioned against
different N . The green dot is the sample mean and vertical lines showing the 95% confidence interval.
And the red dash is the finite-difference result with ∆t = 1

4×252 and ∆x = 1
1600 .
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Figure 6.2
The convergence of CVA in step size
This figure shows the convergence of the CVA to the one-year CDS protection mentioned against
different M . The green dot is the sample mean and vertical lines showing the 95% confidence interval.
And the red dash is the finite-difference result with ∆t = 1

4×252 and ∆x = 1
1600
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Figure 6.3
The convergence of fair spread S∗ against N
This figure shows the convergence of the CVA to the one-year CDS protection mentioned against
different M . The green dot is the sample mean and vertical lines showing the 95% confidence interval.
And the red dash is the finite-difference result with ∆t = 1

4×252 and ∆x = 1
1600

result starts to lies in between the 95% confidence interval, so we can confirm the

simulation is valid. This pattern is due to the accuracy in default times and arrivals

of external shock J(t). Remember that the default times are linearly interpolated by

(6.7), so when the default intensities are simulated with a large time step T
M

the default

times will be located very roughly in a time interval leading to large numerical errors.

In addition, there might be multiple external shocks that happen to arrive within one

time step ∆t. If we simulate two exogenous jumps βs to the intensity at one time

point using Algorithm 4, the exact timing of jump arrival times are ignored and the

accuracy of the sample path won’t be very good. Therefore, the wider that ∆t is, the

more errors that are made to the allocation of jump arrival times. The approach to

avoid these two problems is to take a small enough time step size in order to have an

accurate estimation of sample paths and default times.

The convergence of fair swap spreads S∗ can pose a problem, which is that shorter

maturity spreads require larger number of simulations N than the longer maturity
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contracts to obtain accurate solutions. Figure 6.3 shows the convergence of swap

spreads S∗ with three different maturities. Obviously, the spread with T = 1 is more

volatile than the cases with T = 3 and T = 7. This phenomenon is similar to pricing

deep out-of-money options with simulation. The scenarios that the simulated stock

value exceeds the strike price are very rare, so we find that simulating out-of-money

options requires higher numbers of simulation to converge. Similarly, the referencing

firm is more likely to default in longer rather than shorter time horizons. So simulating

a one years CDS spread S∗ requires sufficient scenarios that the firm defaults within

one year and this can be rare. Therefore, it is more difficult for the shorter maturity

spreads to converge.

6.5 CVA DVA and Fair CDS Spread Analysis

Traditionally, the CVA and DVA are charged on an upfront basis. In other words,

at the time just before the transaction takes place, the investor will have to measure

how much CVA should be charged to the counterparty and also the DVA amount

they should pay to the counterparty, which is simulated by Algorithm 6 under our

contagion framework. Ideally, both parties will have sufficient amount of money to

cover the possible losses due to the other party defaults. However, in the real world

the investor and the counterparty are still facing potential risk even after settling on

the CVA and DVA at the date the transaction begins.

The investors of OTC derivative transactions will not only have risk exposure to the

derivatives but also CVA and DVA. According to (1.6), the risk-adjusted derivative’s

value Π̃, held by the investor, could be higher or lower if market conditions change

suddenly. From the modelling prospective, this implies certain parameters in the model

have changed (or were under or over estimated initially), which will lead to losses and

gains to the investor even without actual defaults. From the investor’s prospective, if

there is a movement in either party’s credit risk and/or the derivative’s value after the

measurement day, the initial amount of CVA and DVA settled might be not enough

or it could be more than enough to cover the possible loss due to the counterparty or

the investor default. For example, if the counterparty’s default probability becomes

higher, then the probability that the counterparty defaults earlier than the investor is
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higher and the probability that the investor defaults earlier than the counterparty is

lower. Consequently, the CVA received is not enough to cover the possible loss due to

the counterparty’s default and the DVA paid is more than enough to cover the possible

gains due to the investor’s default, which imply losses in both CVA and DVA to the

investor.

More importantly, under the current accounting regulation International Financial

Reporting Standard (IFRS), firms are required to report their OTC transactions in

terms of the risk-adjusted value, which is defined in (1.6). In simple terms, the CVA

and DVA under current market circumstance will have to be reported as components

of the fair value of the investor’s derivative transaction. Any profits and losses in

CVA and DVA will directly reflect on the investor’s balance sheet, which should be

managed. During the financial crisis in 2008, roughly two-thirds losses attributed to

counterparty credit risk were due to CVA losses and only about one-third were due to

actual default, according to Brigo et al. (2013).

This section will be subdivided into three parts. In Section 6.5.1, we imagine

that the investor has bought the CDS contract from the counterparty, and we will

investigate the profit and losses in the CVA and the DVA under various changes in

market circumstances, including the default risk of firms are more correlated than

was first thought, the firms’ default intensities are more volatile and credit quality

deteriorates to the investor and the counterparty. Then in Section 6.5.2, we consider

an investor with full knowledge of default contagion on the day they are going to buy

a CDS contract from the counterparty. Therefore, the investor has to measure the fair

CDS spread S∗, CVA and DVA using the contagion model proposed. Again we will

investigate the sensitivities of the fair spreads, CVA and DVA to the changes of market

circumstances. Finally, in Section 6.5.3, we will investigate how the CVA and the DVA

may be different under different combinations of the external shocks’ strength β̄ and

default contagion strength α̃ while keeping the CDS with the same price S∗ or the

referencing firm has the same default risk in other words. Although the referencing

firm’s default risk remains the same, how much of the default risk attributes to the

idiosyncratic risk, external shocks and default contagions has different implications for

the counterparty risk.
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ref cp inv

κ 0.5 0.5 0.5
θ 0.05 0.05 0.05
σ 0.1 0.1 0.1
λ(0) 0.05 0.05 0.05

λ̄ = 0.05 β̄ = 0.05

Table 6.4
Intensity Parameters for CVA DVA gains and losses analysis

ᾱref,cp cva (bps) dva (bps) ᾱref,inv cva (bps) dva (bps)

0. 6.706 6.873 0. 6.706 6.873
0.01 11.019 6.559 0.01 6.940 4.026
0.02 16.707 6.240 0.02 7.362 2.749
0.03 23.262 5.844 0.03 7.495 2.038
0.04 29.241 5.598 0.04 8.083 1.652
0.05 35.396 5.314 0.05 8.207 1.469
0.06 42.159 4.922 0.06 8.585 1.224
0.07 48.213 4.642 0.07 9.222 1.048
0.08 54.142 4.401 0.08 9.142 0.949
0.09 60.458 4.253 0.09 9.548 0.855
0.1 64.916 4.032 0.1 10.179 0.809

Table 6.5
CVA DVA gains and losses with increasing default contagions ᾱref,cp and ᾱref,inv

6.5.1 CVA, DVA gains and losses

Assume the investor bought a 5-year CDS protection from the counterparty written on

the referencing firm. Initially, the CDS is traded at the fair rate S∗ = 299 bps, which

is an annual rate paid quarterly under the market environment with 2% interest rate

and external shocks are happening at the rate λ̄ = 0.05 with shock strength β̄ = 0.05.

At the initial time, no default contagion risk is considered by the investor and the

counterparty, i.e. α̃ = 0. All three firms have credit risk parameters listed in table

6.4.

When there is no consideration of default contagion risk among the three firms,

both the protection seller and buyer are facing very close counterparty credit risk,

which are CVA=6.706 bps and DVA=6.873 bps respectively. In this numerical example,

the probabilities of the investor or the counterparty being the first default firm are

identical due to the same risk parameters in table 6.4. Further, when there is no default

contagion, the CDS has identical value in states A, B, C and D because whether the
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counterparty or the investor has defaulted or not does not influence the credit risk of

the referencing firm.

However, if the market environment changes and we include a default contagion

from the counterparty to the referencing firm ᾱref,cp, the investor suffers from signifi-

cant CVA loss and relatively small amount of DVA loss, which are shown by the second

and third column in table 6.5. According to table 6.5, if the default contagion from

the counterparty to the referencing firm ᾱref,cp increases to 0.1, the CVA increases

from 6.706 bps to 64.9 bps, which implies a loss of 58 bps in the risk-adjust value Π̃

due to the CVA loss according to (1.6). On the other hand, the maximum DVA loss

is 2.89 bps, which is almost insignificant.

The reasons for the CVA and DVA losses are as follows. Since default contagions

only occurs when a firm defaults, the probability that the investor or the counterparty

is the first one to default remains unchanged, as discussed in Section 4.4.3. The

CVA and DVA changes are only due to the changes in loss given default. With an

increase in the default contagion ᾱref,cp, the referencing firm has higher default risk

than before. Therefore, the CDS values in states A and B will slightly increase and

they have positive value due to the possible default contagion from the counterparty.

As a result, the CDS is less likely to be a liability to the investor, from which the

investor can benefit from defaulting. Consequently, DVA is slightly lower than at the

measurement day given current market conditions. In terms of CVA, although the

referencing firm is no more risky in state C, the CDS value at counterparty’s default

time V C(τ+
cp) will be immediately driven up by the default contagion that has been

applied to the referencing firm’s intensity, which is V C(λref (τcp)) = V C(λref (τ
−
cp) +

αref,cp). Therefore, the loss given counterparty defaults is significantly greater than

the case without default contagion.

In addition, we look at the situation where the default contagion is from the investor

to the referencing firm ᾱref,inv. The investor also suffers losses in both CVA and DVA.

There is a less than 5 bps CVA losses and around 6 bps DVA losses to the investor

when ᾱref,inv is raised to 0.1. The CVA losses are attribute to the referencing firm

being more risky in state C, which gives slightly more counterparty default losses to

the investor. But the reason for DVA losses is that there is default contagion from

the investor to the referencing firm. At the investor’s default time, the CDS’s value
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α̃ 0 0 0.0175 0.0175 0.025 0.025 0.05 0.05 0.075 0.075
σ cva dva cva dva cva dva cva dva cva dva

0 3.106 2.699 14.817 0.368 20.963 0.255 40.541 0.142 58.508 0.095
0.05 4.749 4.394 15.362 1.102 21.898 0.761 40.589 0.345 59.239 0.177
0.1 6.706 6.873 16.099 2.627 21.841 1.917 39.668 0.849 57.907 0.480
0.15 8.612 9.783 17.025 4.474 21.659 3.376 39.360 1.66 56.890 0.897
0.2 9.945 12.733 17.483 6.429 21.373 5.103 37.219 2.563 55.486 1.552

Table 6.6
CVA and DVA with increasing volatility under raising degree of default contagion. σ is
applied to all firms’ default intensity.

V C(τinv) jumps to a higher value as a result of the default contagion jump αref,inv so

then the CDS value is unlikely to be negative. As a result the investor is not likely to

benefit from their default.

In summary, in our default contagion model, if the default risk of the referencing

firm becomes dependent on either the counterparty or the investor, the investor will

suffer losses in both CVA and DVA. But the CVA loss due to the default contagion

from the counterparty to the referencing firm is significantly greater than the other

situation. This is because the CDS will be very valuable after the default contagion

is applied to the referencing firm after the counterparty’s default, which leads to a

significant loss for the investor. The losses in DVA are limited by the DVA amount

that the investor has paid to the counterparty at the initial time, although we do find

that the DVA losses caused by default contagion from the investor αref,inv is greater

than the one caused by the counterparty αref,cp. We can explain this by noting that

in the former case, the default contagion jump occurred to the referencing firm at the

investor default time while in the latter case it only increases slightly the CDS value

by possible default contagion in the future. Therefore, the impacts on the CDS value

at the investor’s default time V B(τinv) are significantly different.

Now when the economy is in a recession, the tightening dependence of firms’ default

risk can be accompanied by a rise in default intensity, higher intensity volatility and

more frequently arrival of external shocks. The interactions among different market

variables may lead to a complex profit/loss profile for the CDS investor. Table 6.6

shows the profit and loss in CVA and DVA to the investor when there are default

contagions among all firms α̃ > 0 and high intensity volatilities σref , σcp, and σinv,

which we denote as σ.
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Unlike stronger default contagions α̃, which will make substantial DVA losses, the

investor will always have DVA profits with higher default intensity volatilities. On

the other hand, the profit/loss in CVA shows quite complicated behaviour against

volatilities, which is dependent on the strength of default contagions. If the strength

of default contagion α̃ is relatively small, such as α̃ = 0.0175, higher volatilities lead

to CVA losses of 1.4 bps. But the investor may have CVA gains with higher volatilities

when α̃ is larger than 0.025 in our numerical examples.

We discussed in Chapter 3, the first effect that higher volatilities have on counter-

party risk is to lower the probability that the investor or the counterparty to be the first

firm to default. Therefore, it is less likely that the counterparty credit event occurs.

The reason for this phenomenon is that we model default intensities as mean-reverting

square-root processes whose default probabilities will be lower with high volatilities.

In terms of the loss given default, higher volatilities are fattening the CDS value dis-

tribution at any time t > 0 but the CDS value for every λref (t) is lower than before.

In other words, the CDS is more likely to take extreme values with higher volatilities

but the mean value of the CDS will be lower because the referencing firm is safer. In

the case without default contagions α̃ = 0, which are the first two columns in table

6.6, there shows a CVA loss and DVA profit with higher volatilities. In terms of the

CVA, although the mean value of CDS is lower, the fattening of the CDS value distri-

bution leads to higher chance that a big loss occurs to the investor if the counterparty

defaults. On the other hand, both lower mean value of the CDS and the fatter value

distribution tend to make the CDS contract more likely to be a liability to the investor

therefore DVA increases against volatilities, which means a DVA gain to the investor.

Another interesting phenomenon is that the CVA decreases from 58.51 bps to

55.49 bps when volatility increases from 0 to 0.2 given the default contagion strength

α̃ = 0.075. The behaviour against volatility reverses while there are strong default

contagions among firms. We will illustrate this phenomenon in figure 6.4. We remind

ourselves that higher volatilities make the referencing firm’s default intensity λref (τ
−
cp)

have a higher probability that it will take large values, which results in greater CDS

values at the counterparty’s default time. However, if there is a strong default conta-

gion link from the counterparty to the referencing, the post-contagion default intensity
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Figure 6.4
CDS values V C against referencing firm’s intensity λref at counterparty’s default time
τcp = 5.

An illustration of the volatility effects on the CDS value V C(τ+cp) with low (blue line) and high (green
line) volatility. The left panel shows the CDS value against λref ∈ [0, 3]. The middle panel assumes
the post-contagion default intensity of referencing firm λref (τ+cp) is around 0.05 and shows the 95%
confidential interval of λref (τ+cp) in low (blue dash lines) and high (green dash lines) volatility. The
right panel assumes the post-contagion default intensity of referencing firm λref (τ+cp) is around 1.05
and shows the 95% confidential interval of λref (τ+cp) in low (blue dash lines) and high (green dash
lines) volatility.

of the referencing firm λref (τcp) will be large already due to the default contagion. Be-

sides, the value function of CDS against default intensity λref (t) is a concave function

so the CDS value will not increase a lot against λref (t) if λref (t) is already large, see

the left panel of figure 6.4. Consequently, if there is a strong default contagion applied

to the referencing firm, raising volatilities will not have as much of an effect on the

CDS value at the counterparty’s default time as it did when there were no default

contagions. But higher volatilities will still make the referencing firm safer so that

the CDS value should be lower than it will be with low volatilities. For example, in

the middle and right panels of figure 6.4, we plot the CDS value against λref (t) at

t = 0 with σ = 0.05 (blue) and σ = 0.2 (green) and assume the corresponding 95%

confidence level are given by the dash lines. We see the middle panel for the situation

without default contagion to the referencing firm. Although the CDS value function

is lower with σ = 0.2 than with σ = 0.05, there is higher probability the CDS can

take larger values. On the other hand, the right panel indicates the CDS value at the

counterparty’s default time will be significantly lower given αref,cp = 1. As a result,

higher volatilities lead to the CDS value being lower, which undermines the CVA.
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α̃ 0 0 0.0125 0.0125 0.025 0.025 0.0375 0.0375 0.05 0.05
λ̄ cva dva cva dva cva dva cva dva cva dva

0 2.859 9.832 7.670 4.883 15.431 2.943 24.114 1.917 33.617 1.268
0.05 6.706 6.873 12.959 3.304 21.481 1.918 30.976 1.218 39.746 0.852
0.1 11.437 4.842 18.835 2.224 28.012 1.258 37.302 0.859 47.518 0.560
0.15 16.641 3.327 25.497 1.476 35.643 0.871 45.468 0.608 55.825 0.396
0.2 23.178 2.257 32.136 0.964 42.262 0.605 52.770 0.412 61.405 0.288

Table 6.7
CVA and DVA (bps) with increasing λ̄ under raising degree of default contagion.

In addition to higher intensity volatilities, an economy in recession or a stressful

market can also mean bad news might happen more frequently and if it comes it will

do harm to all firms’ credit worthiness. In our model, the occurrence of economy-wide

events or what we call external shocks are represented by the Poisson process J(t)

with an arrival rate λ̄ and the Poisson arrivals cause exponential jumps β to all alive

firms simultaneously so we can model an increase in bad news by simply increasing λ̄.

The profits and losses to the investor, when external shocks are arriving more

frequently, are given in table 6.7. The investor will suffer from CVA and DVA losses

if the arrival rate of external shocks becomes more frequent. When there is no default

contagions and the external shock arrival rate raises from λ̄ = 0.05 to λ̄ = 0.1, CVA

raises from 6.7 bps to 11.4 bps and DVA reduces from 6.87 bps to 4.84 bps, which

corresponds to around 4.7 bps losses in CVA and 2 bps losses in DVA. There could

be slightly higher CVA losses with default contagions, where CVA increases from

39.668 bps to 49.325 leading to almost 10 bps CVA losses. But the DVA losses due to

an increasing external shock arrival rate are immaterial because the DVA is so tiny

when we include default contagion.

Compared to what we have seem when we change the volatility, the way that

external shocks affect the CVA/DVA profit and loss is very different. Firstly, a higher

external shock arrival rate will always deteriorate all firms’ credit risk whereas higher

volatilities make firms safer. Therefore, the CDS contract will be more valuable in any

economic states and the probabilities that the counterparty or the investor to be the

first to default firm will be higher. Secondly, in terms of the CDS value distribution,

higher volatilities makes the value distributions become fatter in both tails because the

default intensities are equally likely to take lower as well as higher values. However,
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since external shocks only cause positive jumps to default intensities, the CDS value

will have a thinner left tail and a fatter right tail. Consequently, the investor’s losses

at counterparty’s default time will be greater but the gains at its own default time will

be less. Clearly, both effects make the CVA higher in the current market environment

so the investor will see losses in CVA when the external shocks happen more often. It

is easy to notice that higher λ̄ has the opposite effect on DVA. On one hand, higher λ̄

increases the probability that the investor can be the first to default, and at the same

time higher λ̄ makes the CDS value V B(τinv) less likely to be a liability, or negative

value equivalently, to the investor. However, according to our numerical example table

6.7, the latter effect will overcome the former one causing the investor losses in DVA.

Next, we are going to see the profit/loss if either the counterparty or the investor

deteriorates or improves in their credit, which we show in tables 6.8 and 6.9. The firms’

default intensities λcp and λinv at time t = 0 are moved down or up to represent an

improvement or deterioration in credit risk. Clearly, the investor will have CVA losses

if the counterparty deteriorates in its credit risk, which improves the probability of

the counterparty is the first firm to default. On the other hand, the investor will have

profit in CVA if the investor becomes more risky as this will lower the probability that

the counterparty is the first firm to default. When we set default contagions α̃ > 0,

the CVA gains and losses are significantly more sensitive to the two firms’ credit

risk. This is because the loss given default will be higher with default contagions if the

counterparty defaults. Consequently, the CVA will be more sensitive to counterparty’s

default probability. For instance, the maximum CVA loss is 45 bps compared with

5.2 bps without any default contagion.

Similar to how they did with CVA, the investor can have profits in their DVA when

their credit deteriorates, according to table 6.9. The reason is that the investor is more

likely to be the first firm to default after λinv increased. So the DVA amount paid to the

counterparty at measurement day is lower in those market circumstances. Similarly,

the loss will be applied to the DVA if the counterparty is more risky. However, it is

clear that the DVA gain and losses are not significant with default contagion, which is

the opposite of what we found with the CVA. We knew that only when the CDS has

negative values to the investor is it possible for the investor to gain from their own

default, and this is where DVA occurs. However, with default contagions, whenever the
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CVA gain/loss α̃ = 0

λinv(0)
λcp(0)

0 0.05 0.1 0.15 0.2

0 0.882 -0.649 -2.362 -3.709 -5.240
0.05 1.469 0.000 -1.738 -3.504 -4.420
0.1 1.563 0.077 -1.638 -2.863 -4.162
0.15 2.065 0.284 -1.030 -2.349 -3.324
0.2 2.219 0.490 -0.593 -1.793 -3.188

CVA gain/loss α̃ = 0.05

0 16.066 -0.879 -16.657 -31.213 -45.384
0.05 17.055 0.000 -15.707 -29.470 -42.736
0.1 18.225 3.104 -13.543 -28.304 -41.441
0.15 19.367 2.974 -12.615 -26.860 -40.711
0.2 20.733 3.988 -11.828 -25.468 -38.632

Table 6.8
CVA profit and loss against changes in credit risk with and without default contagions

investor defaults, the CDS becomes more valuable since the referencing firm becomes

affected by the contagion from investor’s default. Therefore, the DVA is so tiny that

where there is a movement in both firms’ default risk it does not change the DVA by

a large amount. In other words, the DVA is less sensitive to firms’ credit status when

there is default contagion.

6.5.2 CDS spreads and CVA/DVA Charges

The previous section analyses the CVA and DVA profit and loss due to changing

market circumstance after the CDS transaction has been set up. In this section, we

analyse the fair swap spread S∗ and the corresponding CVA and DVA that the investor

has to compute before they buy the CDS from the counterparty. We analyse these

three measures, S∗, CVA and DVA, under a variety of market circumstances, especially

their response to the degree of default contagion α̃. We are primarily interested in

whether the referencing firm has weak capacity to recover from default contagion and

the impact from direct and indirect default contagion. We expect that the CVA and

DVA will have different behaviours compared with Section 6.5.1, because the credit

risk of the referencing firm under different market circumstances has already been

priced into S∗ by the investor. Therefore how the CVA and DVA respond to changing

market circumstances will be more complicated compared to the last section.

Initially we set the swap spread S∗ to be the fair spread in state A but it may no
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DVA gain/loss α̃ = 0

λinv(0)
λcp(0)

0 0.05 0.1 0.15 0.2

0 -2.307 -2.613 -2.975 -3.218 -3.383
0.05 0.547 0.000 -0.178 -0.720 -0.941
0.1 3.155 2.620 2.241 1.713 1.289
0.15 5.573 5.059 4.431 3.914 3.528
0.2 7.744 7.257 6.342 5.883 5.498

DVA gain/loss α̃ = 0.05

0 -0.176 -0.194 -0.292 -0.360 -0.413
0.05 0.111 0.000 -0.115 -0.215 -0.280
0.1 0.399 0.182 0.064 -0.092 -0.197
0.15 0.583 0.395 0.196 0.039 -0.086
0.2 0.744 0.526 0.279 0.158 -0.009

Table 6.9
DVA profit and loss against changes in credit risk with and without default contagions

longer be fair once we move into states B and C, after which either the investor or

the counterparty has defaulted. Therefore, this will have implications for evaluating

the loss given default in states B and C. In this section, the terms CVA or DVA gain

and loss are no longer appropriate since the investor is evaluating the position at the

initial time, so the contract has not been initiated. The spreads in this section state

the fair price the investor has to pay for the CDS protection and the CVA and DVA

are the value adjustment that the investor and the counterparty are going to charge

each other. So we will use the terms CVA charges and DVA costs where appropriate.

We construct table 6.10 in a similar way to table 6.5 to show the resulting CVA and

DVA when either the default contagion is from counterparty to the referencing firm

ᾱref,cp is strong or the default contagion from the investor to the referencing firm ᾱref,inv

is strong. Note that since there is now a strong default contagion, the referencing firm

is now more risky. Therefore, the investor will be asked by the counterparty for a

higher price to compensate this risk, and we see this in the corresponding fair spreads

S∗ that are shown in the first column of table 6.10. Again, the parameters of the

intensity processes are in table 6.4. When either the counterparty or the investor’s

default could cause a default contagion jump to the referencing firm, the fair spread

S∗ is increased from 299 bps to 330 bps which is around 10% increase in spread. This

must be considered against the fact that we have set the mean value of jump size to

0.1 which is around two times of referencing firm’s long-term default rate θref .
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S∗ (bps) ᾱref,cp CVA (bps) DVA (bps) ᾱref,inv CVA (bps) DVA (bps)

299 0 6.706 6.873 0 6.706 6.873
301 0.01 11.051 6.740 0.01 6.758 4.448
304 0.02 16.237 6.803 0.02 6.731 3.150
309 0.03 21.169 7.055 0.03 6.564 2.683
311 0.04 27.492 7.255 0.04 6.551 2.392
313 0.05 32.743 7.455 0.05 6.546 1.972
316 0.06 38.465 7.598 0.06 6.548 1.996
319 0.07 43.557 7.732 0.07 6.484 1.953
321 0.08 48.835 7.774 0.08 6.502 1.717
326 0.09 53.488 7.950 0.09 6.373 1.556
328 0.1 59.147 8.202 0.1 6.362 1.666

Table 6.10
Fair Spread S∗ and CVA DVA behaviours with ᾱref,cp and ᾱref,inv.

If the counterparty’s default event can cause a strong jump to the reference firm’s

default intensity, the investor should charge the counterparty a large amount of CVA

as expected because the CDS is very valuable thus high loss to the investor at the time

counterparty defaults. It is also noticed that the increment in CVA in the third column

of table 6.10 is slightly less than those in the second column of table 6.5, although

the increments in ᾱref,cp are the same. Because of the situation here, the investor is

paying the fair rate S∗, which is fair in state A. If the counterparty defaults, the fair

rate S∗ in state A is too expensive in state C and the losses to the investor are lower

because there is no default contagion in this state. However, in the cases of table 6.5,

the investor is paying on a lower fair rate at the measurement time when no default

contagion is added in. For the same reason, the DVA in table 6.10 is not decreasing

as fast as it is in table 6.5 against increasing ᾱref,inv. We can explain this because the

CDS in state B, V B, is more likely to be a liability to the investor so a higher spread

S∗ should be paid so that the investor can benefit more from their own default.

Compared to the previous cases in table 6.5, the CVA and DVA react very differ-

ently with respect to the default contagion from the investor to the referencing firm

ᾱref,cp and the contagion from the counterparty to the referencing firm respectively,

the results of which are shown in the 4th and 6th columns in table 6.10. In table

6.10, when the default contagion from the counterparty to the referencing firm ᾱref,cp

increases to 0.1, the amount of DVA cost for the investor is increasing to 8.2 bps.

However, in table 6.5, the DVA is decreasing to 4.032 bps. Similarly, in table 6.10,
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when the default contagion from the investor to the referencing firm ᾱref,inv increases

to 0.1, the amount of CVA charge to the investor is decreasing to 6.362 bps. However,

in table 6.5, the CVA is increasing to 10.179 bps. As we explained for table 6.5, the

changes in CVA and DVA due to the CDS will be more valuable in the investor’s or

the counterparty’s default state. The reasons for the reverse behaviour in table 6.10

are detailed as follows.

The above two cases have one thing in common and that is that neither the investor

nor the counterparty has any influence on the referencing firm’s default risk so the

CDS value in state B or C after the investor or the counterparty defaults might still

be deemed to be fair with the spread S∗ in state A. Given default contagions do not

change the probability of the counterparty or the investor to be the first default firm,

the DVA increases in the 4th column and the CVA decreases in the 6th column is solely

due to how the CDS value behaves differently after introducing a default contagion

from the counterparty or from the investor.

We first analyse why CVA will be decreasing with ᾱref,inv with figure 6.5, then the

reason for the DVA to be increasing with ᾱref,cp will follow. If the investor’s default

event can cause a default contagion to the referencing firm, the value of the CDS in

state C, denoted as V̂ C, is a function depending on both λref (t) and λinv(t). In terms

of CVA, we knew that the investor suffers a counterparty default loss only when the

CDS value is positive, which corresponds to a relatively more risky referencing firm.

The left panel of figure 6.5 tells us, the CDS value, with a very risky referencing firm,

tends to be the same regardless how risky the investor is. One way to explain this is

to say that when the referencing firm is very risky then the default contagion from the

investor’s default is less likely to happen. Besides, if the referencing firm is deemed

to be very risky, even if the investor defaults and causes the default contagion to the

referencing firm, the CDS will not become much more valuable since the CDS value is

a concave function of λref and the value of λref is already large. In addition, according

to the right panel of figure 6.5, if the referencing firm is very risky, the CDS becomes

more likely to have a lower value as compared to the case without default contagion,

which we denoted as V C. This is because the investor has to pay a higher spread

to compensate the default contagion, which is not likely to happen with a very risky

referencing firm. Consequently, the CVA will be lower as a result of the fact that the
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Figure 6.5
The changes in CDS value after adding default contagion and is traded at fair swap rate.

An illustration of the difference of two CDS value. One CDS V̂ C is with default contagion ᾱref,inv =
0.1 in state C traded at fair spread S∗ = 328 bps. The other V C is without default contagion in state
C traded at fair spread S∗ = 299 bps.

CDS value V̂ C is more likely to be lower with default contagion.

In the case of ᾱref,inv = 0 and ᾱref,cp = 0, the CDS value V̂ B in state B is symmetric

to the one value V̂ C in state C as shown in figure 6.5. We know that the DVA only

considers the situations in which the CDS has negative value to the investor, where

the referencing firm is safe at the investor’s default time. If the referencing firm

is safe, whether the default contagion can occur depends on the default risk of the

counterparty, so CDS value V̂ B may be higher or lower than V B depending on the how

risky the counterparty is. This is similar to the way that an increase in the volatility

of the CDS value cause the DVA to be higher in the 4th column of table 6.10.

Default dependence risk does not have to be just a direct influence on a firm, rather

it can happen in a roundabout way. For example, firm C is customer of firm A and it

is highly dependent on another firm B. Once firm B goes into bankruptcy, firm C will

be in a dangerous situation as well and if it defaults it will have implications for firm

A. So we see that the firm A is impacted by the firm B’s default even though there is

no direct link. Indirect contagion risk to the referencing firm can also be considered

in pricing the CDS spread S∗, CVA and DVA. In our model, the indirect contagion

effect to the referencing firm is characterised by setting high values in both ᾱcp,inv and

ᾱinv,cp, which are the default contagions between the counterparty and the investor.

As long as there is a default contagion from either the counterparty or the investor to

the referencing firm, there will be indirect default contagion to the referencing firm.
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ᾱref,cp = 0.1 ᾱref,inv = 0.1

S∗ (bps) ᾱcp,inv and ᾱinv,cp CVA (bps) DVA (bps) CVA (bps) DVA (bps)

328 0.00 59.147 8.202 6.362 1.666
329 0.02 59.276 7.157 6.818 1.663
330 0.04 59.259 6.656 7.251 1.714
330 0.06 58.470 6.279 7.786 1.709
329 0.08 58.963 5.745 8.615 1.672
330 0.10 59.260 5.335 9.186 1.733
330 0.12 58.872 5.140 9.832 1.725
331 0.14 59.059 4.897 10.185 1.778
332 0.16 58.593 4.713 10.854 1.791
331 0.18 58.373 4.368 11.454 1.765
332 0.20 58.215 4.332 12.152 1.771

Table 6.11
The impact of indirect default contagion on CVA and DVA
A table for illustrating the CDS spread S∗ CVA and DVA with increasing indirect default contagions
ᾱcp,inv and ᾱinv,cp from 0 to 0.2 in tow occasions. One is there exists default contagion from the
counterparty to the referencing ᾱref,cp = 0.1 and the other is from the investor to the referencing
ᾱref,inv = 0.1. The fair spreads are the identical to two cases as referencing firm’s default risk is the
same.

For example, if the investor’s default causes a default contagion jump αcp,inv to the

counterparty, this increases the chance of a default in the counterparty which can

trigger αref,cp to the referencing firm.

We show in table 6.11 that the fair spreads S∗ are only a few basis points more

expensive than before, so the default risk of the referencing firm is not really affected

in a significant way by the indirect default contagions as compared to direct default

contagions. The fair spread S∗ is only raised by a maximum 4 bps.

Table 6.11 shows, in the case with only ᾱref,cp = 0.1, CVA slightly reduces with

indirect default contagions. This is caused by the fact that only the counterparty’s

default can result in default contagion on the referencing firm. The indirect contagion

can only affect the referencing firm when the investor defaults earlier than the counter-

party. However, CVA measures the investor’s possible losses due to the counterparty

being the first to default. Therefore, in the state C, the referencing firm’s credit risk

is indifferent to the investor’s credit risk. Since the investor is required to pay slightly

higher spreads S∗, the CDS value at counterparty’s default time V C(τcp) will be slightly

lower meaning a lower CVA. On the other hand, the investor has to pay less DVA to

the counterparty and this decreasing DVA can be seen in the fourth column. Because
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at the time the investor defaults, a default contagion jump is triggered to the counter-

party λcp(τinv) = λcp(τ
−
inv) +αcp,inv. In state B, the CDS is more valuable with a more

risky counterparty because their default can directly impact on the referencing firm.

Therefore, the CDS value V B(τinv) is raised by the indirect default contagion ᾱcp,inv

so any gains to the investor are lessened.

In the other case with ᾱref,inv = 0.1, a similar reasoning as detailed above can be

applied but in a reverse way. We know that the indirect default contagion can only

influence the referencing firm if the counterparty is the first to default. Therefore,

we can see the CVA is increasing slightly by the indirect default contagion from the

counterparty to the investor, which raises the investor’s loss at the counterparty’s

default time. Also the DVA increases because the CDS value V B in state B has a

lower value, which is a larger gain to the investor.

In table 6.10, we observed that, when there are increasing default contagions from

the investor to the referencing firm ᾱref,inv, the CDS spread should be higher to com-

pensate the default contagion risk and the corresponding CVA charge to the coun-

terparty will be lower. On the other hand, the DVA charge to the investor will be

higher when we raise the default contagion from the counterparty to the referencing

firm ᾱref,cp. The above two phenomena are presented in figure 6.5. However, the

above patterns will revert after indirect contagions are considered, which is shown in

figure 6.6. At the time the counterparty defaults, the CDS value after the default

contagion V C(τcp) becomes more valuable because the investor will become more risky

when there are indirect contagions, thus the referencing firm will become more likely

to default. Therefore, the CVA we charge is higher due to the fact that the investor’s

loss given default will be higher. We also see that the strength of indirect default

contagion from the counterparty to the referencing firm will be stronger with greater

ᾱref,inv so CVA is increasing against ᾱref,inv. Similarly, with default contagion from

investor to counterparty ᾱcp,inv, the CDS value at investor’s default time V B(τinv) is

more valuable. However, this means the investor is less likely to benefit from their

own default, which leads to a decrease in the DVA.

In terms of the fair CDS spread S∗, we show it is very sensitive to the mean-

reverting speed, especially with default contagions. The mean reversion speed κref

measures how fast the referencing firm’s default intensity λref can return back to the
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Figure 6.6
The change of CVA/DVA behaviour against ᾱref,inv/ᾱref,cp with indirect default conta-
gions
The left panel illustrates of CVA changes from decreasing to increasing against ᾱref,inv after adding
indirect default contagions. The right panel illustrates of DVA changes from decreasing to increasing
against ᾱref,cp after adding indirect default contagions.

normal level θref . So, in our model, the mean-reverting speed also determines how

severely the referencing firm can be affected by default contagions or recover from

default contagions, which we discussed in Section 4.4.1. Figure 6.7 shows the fair

swap spreads S∗ of the 5-year CDS contract under increasing default contagion from

both parties to the referencing firm. Suppose the referencing firm has a different mean-

reverting speed κref , then the fair CDS spread that the investor has to pay can vary a

lot especially if we include default contagions. Even without default contagions, the fair

spread will be slightly higher with a slower mean-reverting speed. When the referencing

firm has slow mean-reverting speed, the referencing firm becomes much more likely

to be affected by default contagions. Consequently, the CDS spread becomes more

sensitive to default contagions. The spread increases from 303 bps to 550 bps with

κref = 0.1 compared to increases from 295 bps to 450 bps with κref = 0.9.

In figure 6.8 we show the CVA charge and DVA cost given the spreads in figure

6.7. Obviously, the CVA charge and DVA cost will be much higher with a slow mean-

reverting speed. The CVA with a slow mean-reverting speed shows faster growth

against default contagion regardless the fact that the investor has to a pay significantly

higher spread. On the other hand, the right panel of figure 6.8 also suggests that the

slower the mean-reverting speed is, the higher the DVA cost will be. This is because
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D
V
A

(b
p
s)

κre f= 0 .1
κre f= 0 .5
κre f= 0 .9

Figure 6.8
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This figure shows 5 years CDS protection’s value against reference firm’s default inten-
sity in default state D with different values of mean reversion speed κref . Three CDSs
are traded at corresponding fair rates as shown in the figure.

with slow mean reversion, the shape of the CDS value tends to be steeper against

referencing firm’s default intensity λref (t), for which we give an example of in figure

6.9. We know that if the intensity process is not likely to return to a normal level,

then the default risk of the firm will be much higher with a large λref (t) or lower with

a small λref (t). As a consequence, the corresponding CDS value will be much more

valuable or in the opposite case much less valuable. Although the probabilities that

the investor or the counterparty are the first to default is reduced by the more risky

referencing firm, the investor’s losses due to counterparty defaults or gains due to their

own default will be higher, which lead to higher CVA charge and DVA cost.

6.5.3 Counterparty risk with Combinations of α̃ and β̄

In our model, the default risk of the referencing firm comes from three components.

Apart from the referencing firm’s idiosyncratic default risk, which is characterised by

the CIR process, there is also systemic risk, which is modelled as external shocks with

strength β̄, and also default contagion risk. The total risk of default can be kept

the same with different combinations of systemic risk β̄ and default contagion risk

ᾱref,cp and ᾱref,inv. In this section, we investigate the CVA and DVA under different

combinations of default contagion risk and systemic risk while keeping the total default

risk of the referencing firm consistent. We will show that, even though the CDS has the

same price, the CVA and DVA can be very different depending on where the default
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Figure 6.10
The combinations of β̄, ᾱref,cp and ᾱref,inv with the identical CDS spread S∗ = 300

risk comes from.

Suppose the investor is going to buy a 5 year CDS from the counterparty at the

fair swap rate S∗ = 300 bps. At the time the investor measures the referencing firm’s

credit risk, only systemic risk is taken into consideration with external shocks arrival

rate λ̄ = 0.05 and shock strength β̄ = 0.053. Then we reduce the strength of external

shocks β̄ and search for the default contagion strengths ᾱref,cp and ᾱref,inv so that the

fair swap spread S∗ remains constant in state A. Therefore, the referencing firm has

the same default risk and the CDS has the same price but the risk components are

more weighted towards default contagion.

Figure 6.10 shows the combinations of external shock strength β̄ and default con-

tagion strengths ᾱref,cp and ᾱref,inv. Each line in figure 6.10 is the combination of

default contagion jumps ᾱref,cp and ᾱref,inv at a given β̄ level. External shocks and de-

fault contagions are similar in the sense that both jumps are exponentially distributed.

The difference lies on the exogenous jumps have a constant arrival rate with multi-

ple arrivals while the default contagions have stochastic arrival rate, which are the

counterparty’s and the investor’s default intensity. As the default contagion from the
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Figure 6.11
The calibration errors in β̄, ᾱref,cp and ᾱref,inv

investor or the counterparty can only occur one time, we find that reductions on β̄

requires a higher increment in default contagions to compensate. Foe example, the

case that with only external shocks has β̄ = 0.053 and the case that with only the

default contagion from the counterparty to the referencing firm is ᾱref,cp = 0.059.

While trying to find the set of parameters β̄, ᾱref,cp, ᾱref,inv shown in figure 6.10,

we minimise the target function, which is the difference between the fair CDS spread

S∗ given by β̄, ᾱref,cp, ᾱref,inv and the spread 300 bps we chose in the beginning. The

calibration errors are shown in figure 6.11. Each spread with the new set of parameters

is simulated with one million simulations so that the maximum error is just 1.11 bps.

Next we are able to measure the counterparty risk of the 5 year CDS contract given

the parameters in figure 6.13. The CVA and DVA are given in figures 6.12 and 6.13.

Each line in figures 6.12 and 6.13 is the CVA or DVA with the same external shocks

β̄ but different ᾱref,cp and ᾱref,inv. Apart from the referencing firm’s idiosyncratic

factors, if the default risk only comes from external shocks, the CVA and DVA are

around 7.02 bps and 6.89 bps respectively.

However, if the referencing firm’s default risk comes from default contagion, the

CVA charge raises significantly against ᾱref,cp. In the scenario, where the default risk

only due to the default contagion from the counterparty, β̄ = 0, ᾱref,inv = 0, the CVA

is significantly greater than 7.02 bps, reaching a maximum of 34 bps. This implies the
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investor has not charged enough CVA from the counterparty to cover the possible loss

due to a counterparty default.

On the other hand, it is obvious that if the investor underestimates the default con-

tagion from the investor to the referencing ᾱref,inv, then the investor will significantly

overestimate the possible gains from their own default and give the counterparty too

much DVA. Although the spread S∗ = 300bps is too high in state B in this case,

where the investor already defaulted, the default contagion from the investor to the

referencing firm ᾱref,inv will increase the CDS value significantly, which will not lead

to any gains for the investor.

Another important result that we notice is that the CVA charge decreases towards

a minimum for cases when ᾱref,cp = 0, as these are the cases where the reductions

in external shocks are only compensated by the default contagion from the investor’s

default. Similarly, the DVA decreases towards a minimum as we approach ᾱref,inv = 0,

as now the reductions in external shocks are only compensated by the default contagion

from the counterparty’s default. The reason is that all the three firms become safer

when we reduce β̄. Therefore, the probability that the counterparty or the investor

will be the first firm to default will be lower. As well as this, we know that the CDS

value will not be raised by a default contagion after the counterparty defaults with

ᾱref,cp = 0 or after the investor defaults with ᾱref,inv = 0. In other words, the loss

given default is not influenced by the default event but the probability that the default

event will happen is lower. The CVA and DVA decreases as a consequence.

6.6 Conclusion

In this chapter, we extend our proposed default contagion model in Chapter 5 to

include the default risk of the CDS buyer, namely the investor. The counterparty

credit risk faced by the CDS buyer is thus extended to bilateral counterparty risk,

including CVA and DVA.

The extension leads our valuation problem to have three stochastic default pro-

cesses, which means that we need high-dimensional numerical schemes for pricing. A

hybrid numerical scheme is proposed, in which we combine Monte-Carlo simulation

and finite-difference schemes in order to simulate the CVA and DVA with default
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contagions amongst the three firms. By solving the CVA in a special case, we can

demonstrate that our proposed numerical scheme to converge to the exact solutions

as expected given a small enough time step size in the default intensities’ sample path

simulation.

From the investor’s prospective, we analyse the profit and loss in the CVA and

the DVA due to changing market conditions, which are different from the initial time

at which the contract is agreed. Four scenarios are studied, where the counterparty’s

and the investor’s default events are able to cause default contagions to the referencing

firm, where the firms’ intensity volatilities are higher, the arrival rate of external shock

becomes more frequent and a case in which either of the counterparty or the investor

becomes more risky. Among those changing in market conditions, the investor needs

to be more wary of changes in default contagion because the investor will suffer sub-

stantially losses in the CDS’s risk-adjusted value from both the CVA and the DVA.

In particular, the CVA losses can be substantially more than those from the DVA.

Increase in intensity volatilities mostly lead to CVA loss and DVA gain, however, we

should notice the exceptions that the investor will have a CVA gain rather than loss

under higher volatilities when there is a strong default contagion from the counter-

party to the referencing firm. Unlike intensity volatilities, increasing the frequency

at which external shocks arrive leads to both CVA and DVA losses. Finally, if the

counterparty/investor deteriorates in their credit risk, the investor losses/gains in the

CVA and DVA due to the counterparty/investor being more likely to default earlier.

When there are default contagions, the CVA profit and losses are significantly more

sensitive to the changes in two firms’ credit risk but DVA will be less sensitive.

Next, we price the fair CDS spread and calculate the corresponding CVA and

DVA when the transaction is about to initiate, under various market circumstances.

Since the CDS spread has taken all components of the referencing firm’s default risk

into account, the differences we see in the CVA/DVA are much less pronounced as

compared to the previous case where the spread does not reflect the default contagion

risk. We found that the DVA can actually increase against increasing ᾱref,cp and the

CVA will reduce with increasing ᾱref,inv, which are opposite trends from the previous

experiment, where market circumstances change after the CDS be initiated. Although

indirect default contagions do not contribute significantly to a referencing firm’s default
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risk, the existence of indirect default contagions to the referencing firm, ᾱinv,cp and

ᾱcp,inv, reverses the behaviour of CVA and DVA against direct contagions ᾱref,cp and

ᾱref,inv. We found that the referencing firm’s low capacity to recover from default

contagion will lead to a situation in which the investor pays a higher spread and

charges the counterparty a higher CVA. Although the investor needs to pay a higher

DVA the increase in DVA is tiny while the increases in CDS spread and CVA are

significant.

Finally, we study the CVA and DVA under different contributions from the exter-

nal shock risk and default contagion risk given the 5 year default probability of the

referencing firm is fixed. Our numerical examples show the dangers if the investor ne-

glect default contagion risk. Although the CDS has the same price, the counterparty

risk faced by the investor can be substantially different. To the investor, ignoring the

default contagion risk from the counterparty to the referencing firm means that they

may undervalue the CVA charge by as little as a fifth of what it should be. On the

other hand, underestimating the default contagion risk from the investor to the refer-

encing firm leads to them paying too much DVA although the difference is relatively

small compared to the CVA.



Chapter 7

Summary and Future Research

7.1 Summary

This thesis proposes a new approach for modelling default contagions under a reduced-

form framework. Our approach provides us with added flexibility to model the form

of default contagion shocks and we are able to show that the valuation of credit claims

can be easily solved to finite-difference or hybrid numerical schemes, which have been

the restrictions of previous contagion models. Further, by specifying a mean-reverting

intensity process, we can enable firms to recover from default contagion according to

their capacity to recover. We develop fast and efficient numerical schemes for pricing

credit derivatives and measuring counterparty risk using our proposed model, which

tries to take into account both default contagion risk and systemic risk.

Before proposing the new model, we are able to derive the PDEs for corporate

bonds, CDS and the CVA using the techniques provided by Wilmott et al. (1995) and

Burgard and Kjaer (2011). Pricing credit derivatives and measuring CVA with finite-

difference methods has not been widely discussed in the literature, so we review the

one- and two-dimensional finite-difference schemes and boundary conditions to solve

the PDEs of a CDS and the CVA of a CDS. Testing different types of boundary condi-

tions for CDS contracts against the semi-analytic solution, we found that the heuristic

Robin condition is superior to other boundary conditions in terms of numerical errors

at boundaries. The resulting finite-difference scheme is surprisingly four times faster

than the benchmark numerical integration (Trapezoidal rule) of the semi-analytic for-

mula to reach the same level of accuracy. Due to the convenience of finite-difference

264
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method, we are able to examine the sensitivity of the CVA to changes in model pa-

rameters such as volatility of credit risk. We found there are extreme situations where

CVA can reduce with higher correlation between default intensities.

Next, we propose the new default contagion model and demonstrate how the val-

uation of a generic credit claim under our model can be linked to the solutions of a

system of PDEs. Further, we show a variety of uni- and multi-variate distributions for

modelling default contagion shocks. In order to obtain numerical solutions, we specify

the default intensities to be of mean-reverting type so that the firms can recover from

default contagion. Our numerical scheme is shown to be accurate and efficient for pric-

ing credit claims under the model. Since our default contagion model enables firms to

recover from default contagions, the marginal as well as joint default term structure

show high sensitivity to the capacity of recovering and lead to an unique default prob-

ability term-structure, which is very different from a previous default contagion model

and an independent default model. We also reveal the circumstances under which the

default contagion will have the strongest impact on the CVA.

The default contagion model proposed is extended to consider both default con-

tagions and systemic risk, which is represented by a jump process affecting all firms.

New approximation methods are proposed to improve the OS finite-difference method

for solving the PIDEs resulting from modelling systemic risk. Without additional com-

putational time, our improved boundary condition is able to achieve up to 100 times

more accurate solutions and the problem that solutions slump near the upper bound-

ary is resolved. Evaluating credit claims with our model requires two-dimensional

finite-difference scheme for PIDE, which we tackle by combining the ADI scheme and

the OS scheme. We show the difference between modelling systemic risk and default

contagion risk and their implications for pricing CDSs and CVAs. We found that the

default contagions have a much stronger impact on the CVA as compared to systemic

risk. However, the CDS spreads are more sensitive to systemic risk. This is because

the firms’ default probabilities are tied to systemic risk but default contagions directly

influence losses at the counterparty’s default time.

Finally, we extended the model to also consider the default risk of the CDS in-

vestor so that we may study the bilateral counterparty risk. This extension leads to

multi-dimensional problems and a hybrid Monte-Carlo and finite-difference scheme is
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proposed to simulate CDS spreads, CVAs and DVAs. The hybrid numerical scheme

shows convergence to the benchmark solution. We investigate the behaviours of the

CVA and DVA of a 5-year OTC CDS under two situations. In the first situation we

present the CVA, DVA gains and losses due to changing market circumstances, such

as increasing intensity volatilities, more frequent arrival of systemic shocks and credit

deterioration of either party, all this after the investor has agreed the price of the

CDS. We found that higher intensity volatilities usually lead to larger losses at default

thus higher CVA and DVA however this pattern reverts in CVA when there are strong

default contagions. It appears that default contagion raises the sensitivity of CVA and

DVA to changes in the systemic risk and default intensities. For the second situation

we price the fair CDS spread and the corresponding CVA charge and DVA cost under

different market conditions. We show how the CVA and DVA react very differently to

default contagions compared to the former case because the default risk of the refer-

encing firm has been priced into the CDS spread. Indirect default contagions are also

analysed and we show the CVA and DVA can have different behaviour compared to

direct default contagion with or without indirect default contagions. Finally, we show

that even if the referencing firm’s CDS has the same price, the different contribution

of systemic risk and default contagion risk can lead to the investor facing very different

counterparty risk. The investor may charge substantially lower CVA and pay higher

DVA as the result of underestimating the default contagion risk from the counterparty

and the investor itself to the referencing firm.

7.2 Future Research

In this thesis, we measure the counterparty risk of credit derivatives with simplifica-

tions to the features in the derivative transaction. In practice, a collateral provision

may apply to the derivative transaction, which requires both trading parties to post

collateral to each other according to the value movement of the trade. The collateral

requirement will partially reduce the counterparty risk because the collateral posted

may compensate the loss at the default time. With collateralisation, the counterparty

risk faced by the two parties, who trade CDS contracts, is related to how often the two

parties settle collateral, namely margining frequency, the minimum transfer amount
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and more importantly the default correlation, as indicated by Brigo et al. (2014). Us-

ing our proposed model, we would expect that the CVA and DVA will be reduced with

the collateral requirement but there will still be loss at the default due to default con-

tagion risk that can not be compensated by the collateral. It would be interesting to

investigate the CVA and DVA behaviour with both default contagions and collateral.

Future research could also incorporate our default contagion model into a frame-

work with funding constraints, such as Crépey (2015a). When entering into a deriva-

tive position, the investor may have to obtain funds for operations such as hedging

the position, posting collateral, paying coupons and so on. However, there is a cost

for obtaining funds, namely the funding cost, as it is unlikely even for big financial

institutions that they will be able to borrow and lend at the risk-free rate. Alterna-

tively, if the investor can receive funds from the derivative position, the investor may

use those funds for other activities, which is often called funding benefits. A firm’s

funding cost and benefit are, of course, related to its default risk, and this is where

our default contagion model can come into the picture. The funding cost or benefit,

as is argued frequently in the literature, for example Laughton and Vaisbrot (2012);

Castagna (2012); Burgard and Kjaer (2012); Crépey (2015a), should be considered in

the valuation of the derivative. It would be interesting to investigate what implications

does our default contagion framework have for the CVA and DVA after the funding

constraints are considered.

Incorporating a stochastic interest rate is another possible direction to complete

our model. It is important to investigate the correlation between the interest rate

and the default intensities and its implication for CVA and DVA because empirical

studies indicate the time period with large number of default events is likely to be

accompanied by a low interest rate environment. However, the extended model may

become computationally more difficult as we are under a four-dimensional framework.

Alternatively, we may pay attention to the efficiency of the Monte Carlo simulation.

The hybrid Monte-Carlo and finite-difference scheme has been shown to be a feasible

tool for measuring the CVA to CDS contracts under our default contagion framework.

In Section 6.4, we notice that default simulation in a short time-horizon is a small

probability event so we observe that the convergence will be slower. This problem is

similar to pricing deep out-of-money options by simulation, where the accuracy can
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be improved by importance sampling according to Glasserman (2003). Therefore, it

might be worth considering how to apply importance sampling when simulating default

times in order to improve the CVA and DVA computational efficiency.

Similar to probably every other default contagion model, the calibration problem

is a major challenge, which is neglected in this thesis. It is an open question as

to how we can quantify the impact to a firm’s default intensity from other firms’

default events, which are the expected default contagion jump sizes α̃. In addition,

the estimation of other parameters (e.g. external shock size, external shock arrival

frequency, etc.) must make the model produce survival probabilities which match the

market implied survival probabilities of a firm. We give numerical examples of how

we can lower the external shocks’ strength and raise default contagion shock strength

while maintaining the CDS price or the survival probability equivalently. This suggest

we may first calibrate two jump-CIR processes to two firms’ market implied survival

probabilities then incorporate default contagion between the two firms by the trade-off

between external shock strength and default contagion. We hope that by providing

the accurate and efficient methods in this thesis we have moved a step closer towards

a feasible calibration of our default contagion model.
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Schönbucher, P. J. and Schubert, D. “Copula-Dependent Default Risk in Intensity

Models.” Technical report, (2001).

Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models, volume 11.

Springer Science & Business Media, (2004).

Shreve, S. E. and Karatzas, I. Brownian Motion and Stochastic Calculus, volume 113.

Springer Science & Business Media, (1998).

Steele, J. M. Stochastic Calculus and Financial Applications, volume 45. Springer

Science & Business Media, (2001).

Tankov, P. Financial Modelling with Jump Processes, volume 2. CRC press, (2003).

Teng, L., Ehrhardt, M., and Günther, M. “Bilateral Counterparty Risk Valuation of

CDS Contracts with Simultaneous Defaults.” International Journal of Theoretical

and Applied Finance, 16(07):1350040, (2013).

Vasicek, O. “An Equilibrium Characterization of the Term Structure.” Journal of

Financial Economics, 5(2):177–188, (1977).

Villeneuve, S. and Zanette, A. “Parabolic ADI Methods for Pricing American Options

on Two Stocks.” Mathematics of Operations Research, 27(1):121–149, (2002).

Wang, A. and Ye, Z. “The Pricing of Credit Risky Securities under Stochastic Interest

Rate Model with Default Correlation.” Applications of Mathematics, 58(6):703–727,

(2013).



BIBLIOGRAPHY 282

Wilmott, P., Howison, S., and Dewynne, J. The Mathematics of Financial Derivatives.

Cambridge University Press, (1995). ISBN 9780511812545. URL http://dx.doi.

org/10.1017/CBO9780511812545. Cambridge Books Online.

Windcliff, H., Forsyth, P. A., and Vetzal, K. R. “Analysis of the Stability of the Linear

Boundary Condition for the Black-Scholes Equation.” Journal of Computational

Finance, 8:65–92, (2004).

Yu, F. “Correlated Defaults in Intensity-Based Models.” Mathematical Finance, 17

(2):155–173, (2007).

Zheng, H. and Jiang, L. “Basket CDS Pricing with Interacting Intensities.” Finance

and Stochastics, 13(3):445–469, (2009).

Zhou, C. “A Jump-Diffusion Approach to Modelling Credit Risk and Valuing Default-

able Securities.” Working paper, Federal Reserve Board, Washington, (1997).

Zhou, C. “The Term Structure of Credit Spreads with Jump Risk.” Journal of Banking

and Finance, (2001).

http://dx.doi.org/10.1017/CBO9780511812545
http://dx.doi.org/10.1017/CBO9780511812545


Appendix A

ADI scheme Parameters for CVA

− αi,jY n
i−1,j + (

1

0.5∆t
− βi,j)Y n

i,j − γi,jY n
i+1,j = Zi,j (A.1)

where

Zi,j = δjUi,j−1 +
1

0.5∆t
+ εjUi,j + εjUi,j+1 + ηi,j + fi,j.

Solutions Yi,j are the intermediate solutions. At the second half step, we estimate

J-direction at the unknown time step and I-direction at the known time step, which

leads to

− δi,jUn
i,j−1 + (

1

0.5∆t
− εi,j)Un

i,j − εi,jUn
i,j+1 = Z̃i,j, (A.2)

where

Z̃i,j = αiUi−1,j + (
1

0.5∆t
+ βj)Ui,j + γjUi+1,j + ηi,j + fi,j.

The coefficients given by

αi=0 = 0 , αi = −κ1(θ1 − i∆λ1)

2∆λ1

+
0.5σ2

1i∆λ1

∆λ2
1

, αi=I = −κ1(θ1 − i∆λ1)

2∆λ1

γi=0 =
κ1θ1

2∆λ1

, γi = −κ1(θ1 − i∆λ1)

2∆λ1

+
0.5σ2

1i∆λ1

∆λ2
1

, γi=I = 0

βi=0 = −κ1θ1

∆λ1

− (r + j∆λ2)

2
, εj=0 = −κ2θ2

∆λ2

− (r + i∆λ1)

2

βi = −2
0.5σ2

1i∆λ1

∆λ2
1

− (r + i∆λ1 + j∆λ2)

2
, εj = −2

0.5σ2
2j∆λ2

∆λ2
2

− (r + i∆λ1 + j∆λ2)

2

βI =
κ1(θ1 − i∆λ1)

∆λ1

− (r + i∆λ1 + j∆λ2)

2
, εj=J =

κ2(θ2 − j∆λ2)

∆λ2

− (r + i∆λ1 + j∆λ2)

2
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δj=0 = 0 , δj = −κ2(θ2 − j∆λ2)

2∆λ1

+
0.5σ2

2j∆λ2

∆λ2
1

, δj=J = −κ2(θ2 − j∆λ2)
1

2∆λ1

εj=0 = − κ2θ2

2∆λ2

, εj =
κ2(θ2 − j∆λ2)

2∆λ2

− 0.5σ2
2j∆λ2

∆λ2
2

, εj=J = 0,

ηi,j =
ρσ1σ2

√
λ1λ2

4∆λ1∆λ2

(Ui+1,j+1 − Ui−1,j+1 − Ui+1,j−1 + Ui−1,j−1)

ηi=I,j =
ρσ1σ2

√
λ1λ2

2∆λ1∆λ2

(UI,j+1 − Ui−1,j+1 − UI,j−1 + Ui−1,j−1)

ηi,j=J =
ρσ1σ2

√
λ1λ2

2∆λ1∆λ2

(Ui+1,J − Ui−1,J − Ui+1,J−1 + Ui−1,J−1)

ηi=I,j=J =
ρσ1σ2

√
λ1λ2

∆λ1∆λ2

(UI,J − UI−1,J − UI,J−1 + UI−1,J−1)

fi,j =j∆λ2 max{V
n+1
i + V n

i

2
, 0}.

The function fi,j corresponding to the CDS value solved by the second equation of

the PDE system 3.20, which is solved by Crank-Nicolson. In Crank-Nicolson scheme,

there is no intermediate steps between time n and n+1. Therefore, linear interpolation

is taken to approximate the CDS value at the middle. For a fixed j ∈ [0, J ] or i ∈ [0, I],

equation A.1 or A.2 is corresponding to a tridiagonal linear system, which we solves

by Gaussian elimination.



Appendix B

Lemmas in default contagion model

In default contagion modelling, pricing derivatives at time t referencing to firm 1 under

two events {τ1 > t, τ2 > t} and {τ1 > t, τ2 ≤ t}. Because when {τ1 > t, τ2 ≤ t}, we

have to price the derivatives with the possibility that firm 2 defaults prior to firm 1

and causes a default contagion to firm 1. Note that we model the default contagion

jump α1,2 as a non-negative random variable with density function η(α1,2). Therefore,

given firm 2’s default time t−, a well-behaved C1,2 value function L() of time t and λ1

satisfies

E
[
L(λ1(t−), t−, T )|G−1

t−

]
=

∫ ∞
0

E
[
L(λ1(t−) + α1,2, t, T )|G−1

t

]
η(α1,2)dα1,2. (B.1)

Given the default intensity processes (4.4), if τ2 ≤ t, then λ1(t) is G−1
t -measurable.

It means that the default time τ1 depends on the default time of firm 2, which is

H2
t -measurable. On the other hand, on the event {τ1 > t, τ2 > t}, both λ1(t) and

λ2(t) are Ft-measurable. The processes (4.4) are driven by Brownian motions, which

are Ft-measurable, in state A. In addition, µi(λi(t), t) and σi(λ(t), t) for i = 1, 2 are

assumed F-adapted Lipschitz real value functions.

Here we assumed the existence of default intensities λ1(t) and λ2(t) with respect to

default times τ1 and τ2, which implies the default processes F 1
t = Q(τ1 ≤ t|G−1

t ) and

F 2
t = Q(τ2 ≤ t|G−2

t ) are absolutely continuous. Consequently, dF i
t = e−

∫ t
0 λi(u)duλ1(t)

for i = 1, 2.

In order to prove Lemma 4.3.1, we prove the pricing formulas of cash flows XT

conditional on τ1 > T , Zτ1 at default time τ1 and continuous payments As conditional

on τ1 > s for t < s ≤ T using our default contagion model.

285
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At first, we will discuss how random variables 1{τ1>t,τ2>t}X and 1{τ1>t,τ2≤t}X are

measured using our default contagion model.

Lemma B.0.1. For any G − measurable and Q-integrable random variable X, we

have for any t ∈ R+,

E
[
1{τ1>t,τ2≤t}X|Gt

]
=1{τ1>t,τ2≤t}E [X|Gt]

=1{τ1>t,τ2≤t}E
[
X|Ft ∨H1

t ∨H2
t

]
=1{τ1>t,τ2≤t}

E
[
X1{τ1>t}|G−1

t

]
Q(τ1 > t|G−1

t )

(B.2)

Lemma (B.0.1 ) is a direct extension to Lemma (2.2.1), except we consider the event

{τ1 > t, τ2 ≤ t} in a two firms environment. In the forth equality, the expectation

must be conditional on G−1
t = Ft ∨ H2

t because the default time τ1 depends on the

default time tau2 on the event {τ1 > t, τ2 ≤ t} under our default contagion model.

Then the corollary to Lemma B.0.1 follows

Corollary 2. Let XT be a FT -measurable and Q-integrable random variable. Then

for every t ≤ T ,

E
[
1{τ1>T,τ2≤t}XT |Gt

]
=1{τ1>t,τ2≤t}E

[
XT1{τ1>T}|G−1

t

]
=1{τ1>t,τ2≤t}

E
[
XT1{τ1>T}|G−1

t

]
Q(τ1 > t|G−1

t )

=1{τ1>t,τ2≤t}

E
[
e−

∫ τ−2
0 λ1(u)due

−
∫ T
τ2
λ1(u)du

XT |G−1
t

]
e−

∫ τ−2
0 λ1(u)due

−
∫ t
τ2
λ1(u)du

=1{τ1>t,τ2≤t}E
[
e−

∫ T
t λ1(u)duXT |G−1

t

]

(B.3)

The third equality holds because we assumed the default process F 1
t to be ab-

solutely continuous thus default intensity exist. We remind ourselves that λ1(τ2) =

λ1(τ−2 ) +α1,2 at default time τ2, where α1,2 is a F -measurable variable. Therefore, the

integrals in the third equality should indicate the difference.

Corollary 2 tells how to evaluate a payment X conditional on firm 1 survive to

time T on the event that {τ1 > t, τ2 ≤ t}. The most important step is to show the

evaluation of this payment on the event that {τ1 > t, τ2 > t}.
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Lemma B.0.2. For any G − measurable and Q-integrable random variable X, we

have for any t ∈ R+,

E
[
1{τ1>t,τ2>t}X|Gt

]
=1{τ1>t,τ2>t}E [X|Gt]

=1{τ1>t,τ2>t}E
[
X|Ft ∨H1

t ∨H2
t

]
=1{τ1>t,τ2>t}

E
[
X1{τ1>t,τ2>t}|Ft

]
Q(τ1 > t, τ2 > t|Ft)

(B.4)

The last equality is conditional on filtration Ft because the default times of firm 1

and 2 depends only on the history of the Brownian motions, which are Ft-measurable.

The following corollary to Lemma B.0.1 tells us how a cash flow XT conditional on

firm 1 survival beyond time T in state A.

Corollary 3. Let XT be a FT -measurable and Q-integrable random variable. Then

for every t ≤ T ,

E
[
1{τ1>T,τ2>t}XT |Gt

]
= 1{τ1>t,τ2>t}

(
E
[
XT e

−
∫ T
t λ1(u)+λ2(u)du

∣∣Ft]
+E

[∫ T

t

e−
∫ s−
t λ1(u)+λ2(u)duλ2(s−)E

[
e−

∫ T
s λ1(u)duXT

∣∣∣∣G−1
s−

]
ds−
∣∣∣∣Ft]) (B.5)
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Proof.

E
[
1{τ1>T,τ2>t}XT |Gt

]
= 1{τ1>t,τ2>t}E

[
1{τ1>T}XT |Gt

]
=1{τ1>t,τ2>t}E

[
XT1{τ1>T,τ2>T} +XT1{τ1>T,t<τ2≤T}|Gt

]
=1{τ1>t,τ2>t}E

[
XT1{τ1>T,τ2>T}|Gt

]
+ 1{τ1>t,τ2>t}E

[
XT1{τ1>T,τ2≤T}|Gt

]
=1{τ1>t,τ2>t}

E
[
XT1{τ1>T,τ2>T}|Ft

]
Q(τ1 > t, τ2 > t|Ft)

+ 1{τ1>t,τ2>t}
E
[
XT1{τ1>T,t<τ2≤T}|Ft

]
Q(τ1 > t, τ2 > t|Ft)

=1{τ1>t,τ2>t}

(
E
[
XT1{τ1>T,τ2>T}|Ft

]
e−

∫ t
0 λ1(u)+λ2(u)du

+
E
[
XT1{τ1>T,t<τ2≤T}|Ft

]
e−

∫ t
0 λ1(u)+λ2(u)du

)

=1{τ1>t,τ2>t}

(
E
[
XT e

−
∫ T
t λ1(u)+λ2(u)du

∣∣Ft]
+E

[∫ T

t

e−
∫ s−
t λ2(u)duλ2(s−)e−

∫ s−
t λ1(u)du−

∫ T
s λ1(u)duXTds

−
∣∣∣∣Ft])

=1{τ1>t,τ2>t}

(
E
[
XT e

−
∫ T
t λ1(u)+λ2(u)du

∣∣Ft]
+E

[∫ T

t

e−
∫ s−
t λ1(u)+λ2(u)duλ2(s−)e−

∫ T
s λ1(u)duXTds

−
∣∣∣∣Ft])

=1{τ1>t,τ2>t}

(
E
[
XT e

−
∫ T
t λ1(u)+λ2(u)du

∣∣Ft]
+E

[∫ T

t

e−
∫ s−
t λ1(u)+λ2(u)duλ2(s−)E

[
e−

∫ T
s− λ1(u)duXT

∣∣∣∣G−1
s−

]
ds−
∣∣∣∣Ft])

The second part of the last equality due to the property of conditional expectation

given Ft ⊆ G−1
s for s ≥ t. The implication of Corollary 3 is as follow. When we

evaluate a payment XT conditional on firm 1 survive to time T at state A, where

{τ1 > t, τ2 > t} or H1
t = 0, H2

t = 0, the expected value of such a payment should

be measured in two different situations. One is the situation that the firm 2 survival

to time T , which means default contagion does not happen. This is the first part

of the last equality in Corollary 3. The other situation is that the default contagion

happened before T , or firm 2 defaults before T , which leads to the second part of the

last equation in Corollary 3. When firm 2 defaults at time s, the economy changes

from state A to B and the payment XT is therefore evaluated as E[1{τ1>T,τ2=s}XT |G−1
s ],

which is implied by Corollary 2.

Lemma B.0.3. Let Zt is an F-predictable process such that the random variable
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Zτ11{τ1≤T} is Q-integrable. Suppose at time t ≤ T with {τ1 > t, τ2 ≤ t}, we have

1{τ1>t,τ2≤t}E[Zτ11{τ1≤T}|Gt]

=1{τ1>t,τ2≤t}
E
[
Zτ11{t<τ1≤T}|G−1

t

]
Q(τ1 > t|G−1

t )

=1{τ1>t,τ2≤t}

E
[∫ T

t
e
−

∫ τ−2
0 λ1(u)du−

∫ s
τ2
λ1(u)du

λ1(s)Zsds|G−1
t

]
e
−

∫ τ−2
0 λ1(u)du−

∫ t
τ2
λ1(u)du

=1{τ1>t,τ2≤t}E
[∫ T

t

e−
∫ s
t λ1(u)duλ1(s)Zsds

∣∣∣∣G−1
t

]
(B.6)

The third equality of Lemma B.0.3 is similar to Lemma 2.2.2 but consider the

discontinuous of sample path λ1(t) at 0 < τ2 ≤ t.

Lemma B.0.4. Let Zt is an F-predictable process such that the random variable

Zτ11{τ1≤T} is Q-integrable. Suppose at time t ≤ T with {τ1 > t, τ2 > t}, we have

E[1{τ1>t,τ2>t}Zτ11{τ1≤T}|Gt] = 1{τ1>t,τ2>t}

(
E
[∫ T

t

e−
∫ s
t λ1(u)+λ2(u)duλ1(s)Zsds

∣∣∣∣Ft]
+E

[∫ T

t

e−
∫ s−
t λ1(u)+λ2(u)duλ2(s−)E

[∫ T

s−
e−

∫ r
s λ1(u)duZrdr

∣∣∣∣G−1
s−

]
ds−
∣∣∣∣Ft])

(B.7)

The proof of Lemma B.0.4 is as follow.
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Proof.

E[1{τ1>t,τ2>t}Zτ11{τ1≤T}|Gt] = 1{τ1>t,τ2>t}E[Zτ11{τ1≤T}|Gt]

=1{τ1>t,τ2>t}E
[
Zτ11{τ1<τ2,τ1≤T} + Zτ11{t<τ2<τ1≤T}|Gt

]
=1{τ1>t,τ2>t}

(
E
[
Zτ11{τ1<τ2,τ1≤T}|Gt

]
+ E

[
Zτ11{τ2<τ1≤T}|Gt

])
=1{τ1>t,τ2>t}

(
E
[
Zτ11{t<τ1<τ2,τ1≤T}|Ft

]
Q(τ1 > t, τ2 > t|Ft)

+
E
[
Zτ11{t<τ2<τ1≤T}|Ft

]
Q(τ1 > t, τ2 > t|Ft)

)

=1{τ1>t,τ2>t}

E
[∫ T

t
e−

∫ s
0 λ1(u)+λ2(u)duλ1(s)Zsds

∣∣Ft]
e−

∫ t
0 λ1(u)+λ2(u)du

+
E
[∫ T

t
Zτ11{s−<τ1≤T}dF

2
s−

∣∣Ft]
Q(τ1 > t, τ2 > t|Ft)


=1{τ1>t,τ2>t}

(E
[∫ T

t
e−

∫ s
0 λ1(u)+λ2(u)duλ1(s)Zsds

∣∣Ft]
e−

∫ t
0 λ1(u)+λ2(u)du

+
E
[∫ T

t
e−

∫ s−
0 λ2(u)duZτ11{s−<τ1≤T}ds

−
∣∣Ft]

Q(τ1 > t, τ2 > t|Ft)

)
=1{τ1>t,τ2>t}

(
E
[∫ T

t

e−
∫ s
t λ1(u)+λ2(u)duλ1(s)Zsds

∣∣∣∣Ft]

+
E
[∫ T

t
e−

∫ s−
0 λ2(u)du

∫ T
s−
e−

∫ s−
0 λ1(u)du−

∫ r
s λ1(u)duλ1(r)Zrdrds

−
∣∣Ft]

Q(τ1 > t, τ2 > t|Ft)

)
=1{τ1>t,τ2>t}

(
E
[∫ T

t

e−
∫ s
t λ1(u)+λ2(u)duλ1(s)Zsds

∣∣∣∣Ft]

+
E
[∫ T

t
e−

∫ s−
0 λ1(u)+λ2(u)du

∫ T
s−
e−

∫ r
s λ1(u)duλ1(r)Zrdrds

−
∣∣Ft]

Q(τ1 > t, τ2 > t|Ft)

)
=1{τ1>t,τ2>t}

(
E
[∫ T

t

e−
∫ s
t λ1(u)+λ2(u)duλ1(s)Zsds

∣∣∣∣Ft]
+E

[∫ T

t

e−
∫ s−
t λ1(u)+λ2(u)du

∫ T

s−
e−

∫ r
s λ1(u)duλ1(r)Zrdrds

−
∣∣∣∣Ft])

=1{τ1>t,τ2>t}

(
E
[∫ T

t

e−
∫ s
t λ1(u)+λ2(u)duλ1(s)Zsds

∣∣∣∣Ft]
+E

[∫ T

t

e−
∫ s−
t λ1(u)+λ2(u)duE

[∫ T

s−
e−

∫ r
s λ1(u)duλ1(r)Zrdr

∣∣∣∣G−1
s−

]
ds−
∣∣∣∣Ft])

The next results will be used for valuation dividend payments prior to default time.

Lemma B.0.5. Assume that At is a bounded, F-predictable process of finite variation.

Then for every t ≤ s ≤ T , the continuous dividend payment conditional on firm 1
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survive when {τ1 > t, τ2 ≤ t} is

EQ
[
1{τ1>t,τ2≤t}

∫ T

t

1{τ1>s}dAs

∣∣∣∣Gt]
=1{τ1>t,τ2≤t}EQ

[ ∫ T

t

1{τ1>s}dAs

∣∣∣∣Gt]

=1{τ1>t,τ2≤t}

EQ
[
1{τ1>t}

∫ T
t

1{τ1>s}dAs

∣∣∣∣G−1
t

]
Q(τ1 > t|G−1

t )

=1{τ1>t,τ2≤t}

EQ
[ ∫ T

t
e−

∫ τ−2
0 λ1(u)due

−
∫ s
τ2
λ1(u)du

dAs

∣∣∣∣G−1
t

]
e−

∫ τ−2
0 λ1(u)due

−
∫ t
τ2
λ1(u)du

=1{τ1>t,τ2≤t}EQ
[ ∫ T

t

e−
∫ s
t λ1(u)dudAs

∣∣∣∣G−1
t

]

(B.8)

Lemma B.0.6. Assume that At is a bounded, F-predictable process of finite variation.

Then for every t ≤ r ≤ T , the continuous dividend payment conditional on firm 1

survive when {τ1 > t, τ2 > t} is

EQ
[
1{τ1>t,τ2>t}

∫ T

t

1{τ1>r}dAr

∣∣∣∣Gt] = 1{τ1>t,τ2>t}

(
EQ
[ ∫ T

t

e−
∫ r
t λ1(u)+λ1(u)dudAr

∣∣∣∣Ft]
+EQ

[∫ T

t

e−
∫ s−
t λ1(u)+λ2(u)duλ2(s−)E

[∫ T

s−
e−

∫ r
s− λ1(u)dudAr

∣∣∣∣G−1
s−

]
ds−
∣∣∣∣Ft])

(B.9)

The proof of (B.0.6) is as follow
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Proof.

EQ
[
1{τ1>t,τ2>t}

∫ T

t

1{τ1>r}dAr

∣∣∣∣Gt] = 1{τ1>t,τ2>t}EQ
[ ∫ T

t

1{τ1>r}dAr

∣∣∣∣Gt]
=1{τ1>t,τ2>t}EQ

[ ∫ T

t

1{τ1>r,τ2>r} + 1{τ1>r,τ2≤r}dAr

∣∣∣∣Gt]
=1{τ1>t,τ2>t}

(
EQ
[ ∫ T

t

1{τ1>r,τ2>r}dAr

∣∣∣∣Gt]+ EQ
[∫ T

t

1{τ1>r,τ2≤r}dAr

∣∣∣∣Gt])

=1{τ1>t,τ2>t}

EQ
[ ∫ T

t
1{τ1>r,τ2>r}dAr

∣∣∣∣Ft]
Q(τ1 > t, τ2 > t|Ft)

+ EQ
[
1{τ2≤T}

∫ T

τ2

1{τ1>r}dAr

∣∣∣∣Gt]


=1{τ1>t,τ2>t}

EQ
[ ∫ T

t
e−

∫ r
0 λ1(u)+λ2(u)dudAr

∣∣∣∣Ft]
e−

∫ t
0 λ1(u)+λ2(u)du

+

EQ
[
1{t<τ2≤T}

∫ T
τ2

1{τ1>r}dAr

∣∣∣∣Ft]
Q(τ1 > t, τ2 > t|Ft)


=1{τ1>t,τ2>t}

(
EQ
[ ∫ T

t

e−
∫ r
t λ1(u)+λ2(u)dudAr

∣∣∣∣Ft]

+

EQ
[∫ T

t
e−

∫ s−
0 λ2(u)duλ2(s−)

∫ T
s−
e−

∫ s−
0 λ1(u)du−

∫ T
s λ1(u)dudArds

−
∣∣∣∣Ft]

e−
∫ t
0 λ1(u)+λ1(u)du

)
=1{τ1>t,τ2>t}

(
EQ
[ ∫ T

t

e−
∫ r
t λ1(u)+λ2(u)dudAr

∣∣∣∣Ft]
+EQ

[∫ T

t

e−
∫ s−
t λ1(u)+λ2(u)duλ2(s−)

∫ T

s−
e−

∫ T
s λ1(u)dudArds

−
∣∣∣∣Ft])

=1{τ1>t,τ2>t}

(
EQ
[ ∫ T

t

e−
∫ s
t λ1(u)+λ2(u)dudAs

∣∣∣∣Ft]
+EQ

[∫ T

t

e−
∫ s−
t λ1(u)+λ2(u)duλ2(s−)E

[∫ T

s−
e−

∫ T
s− λ1(u)dudAr

∣∣∣∣G−1
s−

]
ds−
∣∣∣∣Ft])

Corollary 3, Lemmas B.0.4 and B.0.6 are the three building blocks of any credit

claims, whose combination can represent any credit claims referencing to firm 1 with

specifications of XT , Zτ1 and At. Without consider simultaneous default, these three

lemmas suggest that pricing a credit claim at time t with our default contagion model,

under the event {τ1 > t, τ2 > t}, should be separated into two situations, which

are firm 2 defaults earlier and later than firm 1. In the latter case, any payment at

time t < s ≤ T should also conditional on firm 2 survive. In the former case, the

economy changes from state A to state B at firm 2’s default time and the value of the

remaining contract, from time s to maturity T , should be evaluated as Corollary 2,
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Lemmas B.0.3 and B.0.5, which evaluate credit claims with {τ1 > t, τ2 ≤ t}. In this

case, the valuation of credit claims with default contagion model is identical to the

reduced-form model discussed in Section 2.2 since only one firm left.

Finally, suppose a credit claim referencing to firm 1 in state A is denoted as uA,

Lemma 4.3.1 follows after combining Corollary 3, Lemmas B.0.4, B.0.6 and equation

(B.1).
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