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The problem of reconstructing an image from a set of tomographic data is not
new, nor is it lacking attention. However there is still a distinct gap between the
mathematicians and the experimental scientists working in the computed tomography
(CT) imaging community. One of the aims in this thesis is to bridge this gap with
mathematical reconstruction algorithms and analysis approaches applied to practical
CT problems.

The thesis begins with an extensive analysis for assessing the suitability of recon-
struction algorithms for a given problem. The paper presented examines the idea of
extracting physical information from a reconstructed sample and comparing against
the known sample characteristics to determine the accuracy of a reconstructed vol-
ume. Various test cases are studied, which are relevant to both mathematicians and
experimental scientists. These include the variance in quality of reconstructed volume
as the dose is reduced or the implementation of the level set evolution method, used
as part of a simultaneous reconstruction and segmentation technique. The work shows
that the assessment of physical attributes results in more accurate conclusions. Fur-
thermore, this approach allows for further analysis into interesting questions in CT.
This theme is continued throughout the thesis.

Recent results in compressive sensing (CS) gained attention in the CT community
as they indicate the possibility of obtaining an accurate reconstruction of a sparse im-
age from severely limited or reduced amount of measured data. Literature produced so
far has not shown that CS directly guarantees a successful recovery in X-ray CT, and it
is still unclear under which conditions a successful sparsity regularized reconstruction
can be achieved. The work presented in the thesis aims to answer this question in
a practical setting, and seeks to establish a direct connection between the success of
sparsity regularization methods and the sparsity level of the image, which is similar to
CS. Using this connection, one can determine the sufficient amount of measurements
to collect from just the sparsity of an image. A link was found in a previous study
using simulated data, and the work is repeated here with experimental data, where the
sparsity level of the scanned object varies. The preliminary work presented here ver-
ifies the results from simulated data, showing an “almost-linear”relationship between
the sparsity of the image and the sufficient amount of data for a successful sparsity
regularized reconstruction.

Several unexplained artefacts are noted in the literature as the ‘partial volume’,
the ‘exponential edge gradient’ or the ‘penumbra’ effect, with no clear explanation
for their cause, or established techniques to remove them. The work presented in this
paper shows that these artefacts are due to a non-linearity in the measured data, which
comes from either the set up of the system, the scattering of rays or the dependency
of linear attenuation on wavelength in the polychromatic case. However, even in
monochromatic CT systems, the non-linearity effect can be detected. The paper shows
that in some cases, the non-linearity effect is too large to ignore, and the reconstruction
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problem should be adapted to solve a non-linear problem. We derive this non-linear
problem and solve it using a numerical optimization technique for both simulated
and real, γ-ray data. When compared to reconstructions obtained using the standard
linear model, the non-linear reconstructed images show clear improvements in that the
non-linear effect is largely eliminated.

The thesis is finished with a highlight article in the special issue of Solid Earth,
named “Pore-scale tomography & imaging - applications, techniques and recommended
practice”. The paper presents a major technical advancement in a dynamic 3D CT
data acquisition, where the latest hardware and optimal data acquisition plan are
applied and as a result, ultra fast 3D volume acquisition was made possible. The
experiment comprised of fast, free-falling water-saline drops traveling through a pack
of rock grains with varying porosities. The imaging work was enhanced by the use of
iterative methods and physical quantification analysis performed. The data acquisition
and imaging work is the first in the field to capture a free falling drop and the imaging
work clearly shows the fluid interaction with speed, gravity and more importantly, the
inter- and intra-grain fluid transfers.
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Chapter 1

Introduction

Computed tomography (CT), an important tool particularly in medicine and material

science, is a non-invasive technique that produces reliable information via a set of mea-

surements (projections or radiographs). This information is then used to reconstruct

a cross-sectional (2D) or a volumetric (3D) image in order to study the interior of

a domain. The tomographic imaging problem (henceforth the CT problem) can be

described as the recovery of information, and is therefore an inverse problem.

Inverse problems are often described as ill-posed problems, namely a problem that

fails one or more of Hadamard’s conditions for a well-posed problem [17]. These are

1. A solution to the problem must exist;

2. The solution to the problem must be unique;

3. The solution depends continuously on the data.

We consider the continuum and discrete CT problem separately. In the continuum

case, we can have a unique solution given the right data, but the problem can still be

unstable in a reasonable norm, meaning a severely ill-posed problem. The discrete case

however cannot produce a unique solution due the finite set of data yet with infinite

number of unknowns, but it can be stable and therefore mildly ill-conditioned. In this

thesis, we focus on discrete CT problems. In addition we know that small changes

in the measured data can lead to big changes in the reconstructed image, even in the

case of sufficient data in circular geometry [15]. This implies that the discrete CT

problem does not satisfy Hadamard’s uniqueness and stability conditions (here, we
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CHAPTER 1. INTRODUCTION 13

refer to the CT problem without the use of regularization). We note here that there

needs to be a shift in our tradition of working with inverse problems in the way that

once we establish a problem is ill-posed, we must then consider the golden rules of

inverse problems [30] before attempting the solve the problem. The golden rules of

inverse problems are as follows. Before solving any inverse problem we must

I. first, assess the data to be measured;

II. include any prior information about the problem, and

III. finally, assess various methods for solving the problem with a clear solution

assessment defined.

It is worth mentioning that these rules are often ignored or forgotten, while they are

extremely important when solving real world problems.

Despite being an ill-posed problem, the discrete CT problem is considered to be

mildly ill-conditioned, and many convex optimization and algebraic methods for well-

posed problems are still viable through the use of regularization. We introduce regu-

larization in CT later in this chapter, as well as providing a preface for each chapter

in the thesis. We begin by introducing the problem itself, and common image recon-

struction techniques used in practical CT today. We now continue with the underlying

physics and the derivation of the CT model.

1.1 The X-ray CT Problem

Consider the simple apparatus geometry given in Figure 1.1a. In this set up, we

have a point source that produces and projects X-rays onto an object with a specified

energy level (total photon count or intensity). These X-rays travel through the object,

and while interacting with the material, lose intensity due to scattering or absorption

of photons. In technical terms, the rays get attenuated. The weakened rays reach

the detector panel (consisting of many detector elements spread over a square or a

rectangular grid), which records the intensity of the arriving X-ray beams. Our aim

is to recover the attenuation coefficient, which is related to the material density or

densities within the object in order to create a density map of the interior. During a

typical scan, this process is repeated over many source positions relative to the object;
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and each set of data collected at particular source position is called a projection (or

radiograph in medical CT).

(a) 3D illustration of a simple apparatus set up for cone beam.

(b) 2D (xz-)view of a single ray from a point source with the intensities
I0 at the source and I at the detector.

Figure 1.1: Simple illustration of a cone beam geometry in a typical CT scanner.

The mathematical model of the CT problem is fairly straightforward. Consider the

same set up, except this time we focus on a single point in a monochromatic (single

energy) X-ray beam, as shown in Figure 1.1b. Let L(x) be the length of the X-ray

beam travelling through the object, dI be the intensity value at the point dxL. We

know that at this point dxL, the beam has lost some intensity proportional to its initial

intensity, I0,
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dI = −µ(x)I0dxL.

Here, µ(x) is the attenuation coefficient at location x, i.e. the rate at which the photons

are absorbed or scattered. This is rearranged to get

dI

I0
= −µ(x)dxL.

Recall that this equation gives the intensity value only at one location in the X-ray

beam. To account for the full beam, we have to take the sum of all the points on the

line, i.e. integrate over L. This is given by

∫
L(x)

dI

I0
= −

∫
L(x)

µdxL =⇒ ln
I

I0
= −

∫
L(x)

µ(x)dxL,

which implies

I = I0e
− R

L(x) µ(x) dxL . (1.1)

In physical terms, (1.1) describes that the monochromatic beam is attenuated

exponentially as it travels through an object. This is the result found by Lambert [29]

and later independently by Beer [3]. In optics and signal processing, this is commonly

referred to as the Beer-Lambert Law.

Most X-ray sources produce a polychromatic beam (beam with a range of energies),

which means the attenuation coefficient depends on energy, E at beam position x,

I =

∫
L(x)

I0(E)e−
R

L(x) µ(x,E) dxL dE. (1.2)

Mathematically, the goal of X-ray CT problem is to recover the attenuation coef-

ficient, µ, from the information at detectors, I.

1.2 Tomographic image reconstruction

The tomographic reconstruction methods used in the CT community can be separated

into two groups: analytic reconstruction via direct methods, and algebraic reconstruc-

tion via iterative and statistical methods. We must note here that this does not mean
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algebraic reconstruction only implies iterative or statistical methods and in theory, one

can use direct methods for algebraic reconstruction given the required computational

power. However with the amount of data produced in real life experiments for the

type of CT problems we look at, direct methods are not suitable for algebraic recon-

struction. Therefore we focus on iterative and statistical methods. We briefly explain

the formulation for both analytical and algebraic reconstruction, and summarize the

popular direct and iterative methods.

Note that the work presented in this thesis does not include any statistical methods

and therefore are not introduced in this chapter. However we refer the readers to the

excellent review and analysis of statistical reconstruction methods in [14].

1.2.1 Analytic reconstruction

In his 1917 paper [37], Johann Radon invented a transform that takes a function f(x),

x = (x, y), defined on a plane to a function Rf(s, θ) defined on a two-dimensional

space of lines, which are parameterized by distance to the origin, s and the angle θ

of the normal. This is called the classical Radon transform. In the context of tomo-

graphic imaging, if a function f represents an unknown density in the pixel (image)

domain, then the Radon transform is the projection data collected as the output of

the tomographic scan, illustrated in Figure 1.2. Recall from (1.1) that at any point x

in a monochromatic beam with length L, we have

− log

(
I

I0

)
=

∫
L(x)

µ(x) dxL,

the right-hand side of which is the definition of a Radon transform:

Rf(s, θ) :=

∫
L

f(x)dx.

Johann Radon also provided the inversion of the transform in the same paper.

This work, seen as the very backbone of image reconstruction, was first produced

for pure mathematics and did not get any attention from the applied mathematics

community. Allan Cormack reinvented the Radon transform in 1963, [11] to be used

in reconstruction of a density of a body from a collection of X-ray images taken from

different directions. In 1979, Cormack won the Nobel Prize in Medicine in conjunction

with George Hounsfield, who independently derived a reconstruction method and built
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Figure 1.2: A diagram to illustrate the Radon transform. Note that a single ray in
the image domain is a point in the sinogram domain.

the first medical scanner [23] a few years after Cormack’s reinvention. The derivation

of the reconstruction algorithm is given in cited work by Cormack, which we briefly

introduce now.

Filtered back projection

In a nutshell, the filtered back projection (FBP) is a 2D image (cross-sectional slice)

reconstruction method from a set of discrete projections (line integrals). The method

involves two important steps: Applying a filter Λ (often ramp filter) on the sinogram

(measured data, where the filter is applied independently for each angle), ΛRµ; and

backproject using the adjoint of Radon transform, R?(ΛRµ). The formula for FBP is

given by

µ(x) =
1

4π
R?(ΛRµ)(x). (1.3)

We refer the interested reader to [34, 21] for the detailed derivation of the filtered back

projection.

The FBP algorithm in theory should give a perfect reconstruction in the case

of infinite number of one-dimensional projections of an object taken at an infinite

number of angles. This is however impossible in practice and so the standard protocol

applied in laboratory and synchrotron CT systems is to take as many projections as

the system possibly can store in order to have a ‘sufficiently noiseless’ image (often

determined by eye). This is because the inverse Radon transform can be extremely
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unstable when applied to noisy data. In addition, FDK is not an exact inverse of

the Radon transform, thus inviting more room for unstable reconstruction. Despite

this, the FBP method and its 3D implementation for circular cone-beam, given by

Feldkamp-Davis-Kress (FDK) [13], are arguably the most popular methods in practical

CT, still implemented in many modern commercial CT scanners, and the resulting

reconstructions are commonly taken as the ‘gold standard’.

1.2.2 Algebraic reconstruction

The problem of image reconstruction can also be considered as a set of linear equations,

which then can be solved iteratively. We emphasize here again that this does not imply

a set of linear equations cannot be solved directly. However due to the computational

demand to store collected measurements and the set of equations for them, direct

methods are not an option for algebraic reconstruction and thus we focus on iterative

methods.

Consider a single ray leaving the source and arriving at the detector in Figure 1.1b,

which travels in a single line. Let bi be the log-transformed projection data (the line

integral or the ray-sum of the ith ray). Also consider the image space discretized into

N number of pixels (voxels in 3D), xj, j = 1, . . . , N . Then the algebraic expression of

bi is given by the weighted sum of the pixels the ith ray has travelled through, i.e.

bi =
N∑
j=1

aijxj, where, (1.4)

aij =

 β(i, j), if the ray i intersects with the pixel j,

0, otherwise.

Here, the value of β(i, j) is the intersection length of ray i in each pixel j, which is

calculated by tracing the ray i through the image space, as demonstrated in Figure 1.3.

If we let M be the total number of rays, then (1.4) can be written in matrix form as

Ax = b, (1.5)

where b ∈ RM×1 is the negative log of the normalized projection data, x ∈ RN×1 the

vector of unknown pixel values and A ∈ RM×N the sparse geometry or weight matrix

of the system. In practice M > N , meaning (1.5) is an overdetermined system with
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Figure 1.3: A diagram illustrating the discretization of the pixels and the projected
rays in the image space.

no unique solution, and so the objective is to find an optimal set of parameters that

satisfy a normal equation,

ATAx = AT b. (1.6)

This is done by minimizing the sum of square differences between the measured data

b, and the predicted data Ax. This approach is referred to as least squares or data

fitting in mathematics and statistics.

Often, M and N are too large that we are not able to store the geometry matrix

A and must consider the computational cost of an algorithm when implementing new

methods. Generally we are able to reduce the computational costs by performing

matrix-vector calculations. Below we summarize the popular iterative methods used

in practical CT.

Iterative methods

One of the oldest and most well-known iterative methods in CT is the Landweber

iteration, which in its basic form is

xk = xk−1 + ωAT (b− Axk−1), k = 1, 2, . . . , (1.7)

where xk denotes the approximated solution vector at the kth iteration and 0 < ω <

2‖ATA‖−1
2 . Iterations continue until a stopping criterion is satisfied. We should note

that the Landweber iteration is a special case of the gradient descent when the update

is written in terms of the gradient, xk = xk−1 − ω∇f(xk−1), where ∇f(xk) = ‖b −
Axk‖22/2.
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Another method that is similar to (1.7) is the simultaneous iterative reconstruction

technique (SIRT), which has the iteration update defined as

xk = xk−1 + C AT D(b− Axk−1), k = 1, 2, . . . ,

where C and D are diagonal matrices with cjj = 1/
∑

i aij and dii = 1/
∑

j aij. In

other words, these are the inverses of the sum of the columns (C) and the sum of the

rows (D) of matrix A.

Another noteworthy method is the Kaczmarz method, better known in the CT

community as the algebraic reconstruction technique (ART) [27, 21]. This method

takes a “sweep” through the rows of A and updates the kth iterated solution using

xk = xk−1 + λk
bi − aTi xk
‖ai‖22

ai, k = 1, 2, . . . ,

where ai is the ith row of A, bi is the ith component of b, λk is a relaxation parameter,

and ‖ai‖22 is precomputed.

An improved version of the ART is the simulatenous-ART (SART) [2], which is

often used for limited data reconstructions. The difference between the classic and

simultaneous-ART is that after all sweeps have been performed in the regular way, the

iterated solution is further corrected by the average value of sweeps applied on each

pixel.

The methods above (not including SART) exhibit semi-convergence when applied

to ill-conditioned systems, meaning that after a certain point the methods fit the

image to the noise rather than the measured data. The convergence of these methods

is initially fast but becomes very slow in later iterations [28, 19]. We now introduce

a type of iterative methods that are fast-converging and computationally inexpensive

to implement for large systems, Krylov subspace methods.

Krylov subspace methods

For the purpose of introducing the Krylov subspace methods, let us first consider a

square system with sparse geometry matrix, A. An order k Krylov subspace, Kk(A, b),
is the linear subspace spanned by the image of b under the transformation matrix Ap,

p = 0, 1, . . . , k − 1 (where A0 = In),

Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b}. (1.8)
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In numerical linear algebra, Krylov subspace methods are a class of iterative meth-

ods derived from (1.8), and are popularly used for their convergence properties, ro-

bustness and efficiency. These methods are particularly preferred for when A is large

and sparse since the product of Ab is a vector, and A2b = A(Ab) is another matrix-

vector operation. This avoids filling in the zero elements in the matrix and preserves

the sparsity of A. A Krylov subspace method finds an approximate solution by solving

xk ∈ x0 +Kk(A, r0),

where x0 is the initial vector and r0 is the initial residual vector, r0 = b− Ax0.

Perhaps the most commonly known Krylov subspace methods is the conjugate

gradient (CG) method [22]. The link between CG and the Krylov subspaces is when

rk = b−Axk is orthogonal to Kk, i.e. Kk ⊥ rk ∈ Kk+1. CG is applied to systems that

are symmetric and positive definite, which (1.5) is not. However, CG is still applicable

to the CT problem by solving the normal equation (1.6), otherwise known as the

conjugate gradient least squares (CGLS) method [36]. CGLS is a popular method

amongst those working in signal and image processing.

Another noteworthy but lesser known Krylov subspace method is the generalized

minimum residual (GMRES) method [39]. The link between GMRES and (1.8) is that

the residual rk has the minimum norm for xk in Kk. When compared to CGLS, exam-

ples show that the residual is much smaller and GMRES requires less computational

work for ill-posed problems, [4].

Image regularization techniques

When the coefficient matrix A is ill-conditioned, a slight perturbation in the collected

data can lead to inaccurate results. In practice, it is often the case that b contains

some levels of random noise, making the computation of an approximate solution even

harder. Various approaches are available to solve this problem. The most popular

and effective of those is the Tikhonov regularization [42, 19]. Tikhonov regularization

transforms the problem (1.5) to

(ATA+ α2L)x = AT b,
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or equivalently, the minimization problem minx∈RN×1 ‖b− Ax‖2 to

min
x∈RN×1

‖b− Ax‖22 + α2‖Lx‖22. (1.9)

Here, α is the regularization parameter and L is the Tikhonov matrix. In the simplest

case, the Tikhonov matrix is taken to be an identity matrix with size N ×N in order

to obtain results with smaller norms, i.e. penalizing the solution domain to enforce

smoothness. The regularization parameter determines how severe this penalization is.

In more ill-conditioned cases, the Tikhonov matrix can be chosen as a stronger lowpass

operator, such as a difference operator. It is interesting to note that the solutions to

(1.9) are identical to the least squares solutions of the augmented linear equation, A

αL

x =

 b

0

 .
Another popular regularization technique is the total variation model introduced

in 1992 [38]. For this technique, instead of minimizing (1.9), we minimize

min
x∈RN×1

‖b− Ax‖22 + α2‖Lx‖1. (1.10)

Solving (1.10) allows larger jumps in the image domain, leading to a more piecewise

smoothness, as opposed to an overall smoothness achieved with (1.9). This is a power-

ful model, however more difficult to implement than Tikhonov regularization because

the function is no longer quadratic, or even differentiable [33].

Throughout the thesis, we employ Tikhonov and total variation regularization tech-

niques. We invite the reader to explore the thesis chapters for notes on the algorithm

and implementation details, and the references therein.

1.3 Format and Outline of the Thesis

The thesis consists of four research papers either published or in draft format. We

introduce each paper here with the emphasis on the work produced by the student. In

addition, we mention any work made public prior to the papers presented in the main

body. These are included in the appendices of the thesis and act as the preliminary

or supplementary work to those that are published.
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The outline of the thesis is as follows. The first paper is a tool for laboratory ex-

perimentalists working in imaging to understand and examine reconstruction methods

and plan in advance the data acquisition experiments. It invites experimentalists to

consider multiple methods of reconstructing an image, as well as mathematicians to

understand the difficulties in practical CT. In contrast, the following paper looks at

exciting theoretical results in mathematics, and applies them to practical CT with

a strong analysis undertone. The third paper is the application of a novel idea that

could help eliminate a poorly-defined artefact in CT and possibly revolutionize the CT

reconstruction for certain systems. The final paper explores the limits of latest data

acquisition hardware, and with the application of an iterative reconstruction method

tailored for the problem, what analysis can be extracted from the collected data. This

paper in particular is an excellent evidence of multidisciplinary work that geoscientists,

laboratory experimentalists and mathematicians can produce when in direct contact.

There is a distinct gap in the CT community that we believe is due to the lack

of inter-disciplinary communication. This trend is due to researchers prioritizing and

focusing on their specialized fields, which is not wrong, but neither does it allow for

multi-disciplinary work to be carried out. One of the aims of this thesis is to bridge this

gap by reporting the strengths and shortcomings of the mathematical, computational

and the practical sides of the CT problem, essentially transferring information between

fields within the CT community. Each work included in this thesis can be seen as an

evidence of advancing the science in CT when researchers from different backgrounds

work together on the same problem.

1.3.1 Image analysis for practical CT

In numerical analysis when introducing a concept, it is common to simulate an event

with a pre-determined outcome, apply the concept and compare the numerical (math-

ematical) difference of the result to the pre-determined outcome. In image (and signal)

processing, the similarities between two images are often measured by the Euclidian

distance (l2) norm or the signal-to-noise ratio. The simulations are often performed

with a small, simple phantom image where some amount of Gaussian noise is included.

A novel method is then tested and the resulting image is compared to the simple phan-

tom previously established. This does not apply to practical CT, and studies with
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simulated results greatly downplay many factors of data acquisition, memory man-

agement done by hardware, and the fact that a true solution is not available. This is

compensated by obtaining a filtered back-projection reconstruction using a very high

quality data, which is then taken as the ground truth. In cases where a high quality

data is not available, this becomes a major issue. Therefore the traditional approach

to analysing reconstructed images work well in simulations, but does not offer the

same utility in practical CT. As argued in [43] (and many others by Prof. K. Myers), a

better suited merit of establishing an accurate reconstruction is needed. Cited work by

Vaishnav et al. focuses on a task-based approach more appropriate for clinical studies,

whereas we aim to introduce a broader technique for image analysis and processing.

The paper included in Chapter 1 [9] introduces the idea of using specially-collected

data sets (data collected using optimal and goal-specific experiment plan) where the

characteristics of the sample are known. This work aims to shift the traditional look

on the practical CT, and encourages readers to explore a reconstructed image beyond

a grey scale. This technique of analysis also allows further look into more difficult

questions in practical CT, such as “when does it become redundant to collect more

data?”or “is the level of exposure or dose appropriate, or can it be reduced while the

quality of extracted information remains the same?”. A short discussion is included

in the paper as an example to reflect this benefit, which aims to answer the question:

“when do the iterative reconstruction methods become worth the effort?”. This was

also the topic of the preliminary work, which was published in the extended abstract,

[10].

In order for this work to be possible, CT data had to be collected in a specific

fashion. The acquisition plan used in the paper, here given in [10, Fig.1], was created

so that no external factors or additional artefacts could affect the analysis. A pack of

simple, smooth, Soda-Lime glass beads were chosen as the scanned object because we

know the size, the shape and the texture of the sample and beads are representative

of many imaging problems in material science and mathematics. The data set are re-

leased as part of the SophiaBeads Dataset Project, which aims to provide researchers

with a real, raw CT data for developing, implementing or testing reconstruction algo-

rithms. The data acquisition for the SophiaBeads Dataset Project were performed in

March 2015. The data sets are made available to public via a data repository (Zenodo)
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[8], along with MATLAB and C codes for users to load, pre-process and reconstruct

[1]. The student has also prepared and published a technical report to act as docu-

mentation for the project codes and tutorial for applying the physical quantification

techniques using an image processing suite [7]. The dataset project and preliminary

work produced for quantifying reconstructions were published in the extended abstract

[10]. The report and the extended abstract are included as supplementary materials

in Appendices A and B.

1.3.2 Compressive sensing in practical sparse tomography

Compressive sensing is the study of recovery of a signal, image or a statistical model

from fewer measurements than suggested by the Shannon–Nyquist sampling theorem

[40]. The theoretical result suggests that the number of measurements needed for a

sufficient recovery can be up to a logarithmic factor linear in the sparsity. The pioneer-

ing work by [5] shows that an object can be reconstructed exactly from incomplete set

of information on the two conditions that the object we wish to recover is sparse, and

the system matrix has low coherence (the column vectors of the system matrix have

low similarity). This subsequently generated much interest from the CT community,

with many working to recover a sparse image from few projections using total varia-

tion regularization in various algorithms [41, 16, 6], and in other imaging modalities

[32, 44]. The possibility that we can reconstruct an image from a severely reduced

amount of data is particularly important in medical CT where the ultimate aim is to

reduce radiation dose a patient is exposed to, or in non-destructive material testing

where acquisition is often limited in time (fast changes in scanned sample) or due to

the particular experimental set up (limited angle availability).

Our initial work with real X-ray CT data for sparse tomography, and its results,

are presented in the conference paper [26] (also included in Appendix C), which we had

obtained using the SophiaBeads data sets. In the conference paper, we proposed two

questions: The first question was “does TV reconstruction compensate better for high-

exposure few projections data set, or low-exposure many projections data set?”This

is related to a study case in the first chapter in this thesis [9, Section 5.3], except this

time the focus was on sparse-regularized solutions.

The second question proposed in the conference paper was related to finding the
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critical number of projections given the sparsity of the image in the gradient domain.

The results for this was inconclusive, mainly due to the limited number of sparsity

levels that were available through the SophiaBeads Dataset Project, of which there

were two (a single-sized sample was made public through the project, and a second

set of data with smaller sized bead sample were provided by the student).

The paper presented in Chapter 3 [25] is the continuation of this work where we

focus on the second question proposed in the conference paper. In addition, we attempt

to predict the sufficient amount of information needed to recover a sparse image with

real X-ray CT data. This is an extremely important contribution for the CT imaging

community, especially for scientists working on image acquisition, which ultimately

means a quick analysis such as this can help maximize the output of useful CT data

collected in a single experiment, which is often limited by time, dose or circumstances

of in-situ experiments. The paper reports our findings, which are that there is an

almost-linear relationship between the sparsity of an image and the critical number of

projections needed to successfully reconstruct the image. We also performed a phase

diagram analysis to deduce an agreeing number of projections, however the results

were inconclusive: only a few of the predictions agreed with the critical number of

projections suggested by the first analysis.

1.3.3 Reconstructing a non-linear CT problem

In many realistic settings in CT, the forward problem is a non-linear function. The

effect of non-linearity can be detected in the measured data from certain systems, in

particular from those with large source-detector distance that leads to a wider range of

ray paths and thus wider range of linear attenuation. This non-linearity effect appears

more dominantly in the polychromatic CT systems (where linear attenuation depends

on a spectrum of energies), or as a result of scattering of the rays. The paper presented

in Chapter 4 [31], shows that it can even appear in monochromatic CT systems where

the source and detector are sufficiently far.

Very little literature is available on the non-linearity effect, with cited papers re-

ferring to it with different names such as ‘partial volume’, ‘exponential edge gradient’

or the ‘penumbra’ effect (see references in [31]). However to our knowledge, there

are no established methods that can eliminate this effect. The aim of the work is to
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demonstrate a systematic way for detecting non-linearity in measured data. Further-

more, we derive a non-linear problem that takes into account the non-linear nature of

the measured data, and using numerical optimization methods, reconstruct and thus

eliminate this effect in the reconstructed image.

We implement the trust region reflective method to reconstruct the derived non-

linear model, CGLS with Tikhonov regularization and Chambolle-Pock with TV regu-

larization to compare the non-linearity effect in linear and non-linear reconstructions.

A real γ-ray data were obtained using the Bergen γ-ray tomography system, and sim-

ulated data were obtained using a ray tracing algorithm that imitated the Bergen

γ-ray system geometry. The paper reports our preliminary results in the sense that no

extensive analysis of more sophisticated methods, or fine-tuning of parameters were

performed. Nevertheless, the preliminary results showed stark differences between the

CGLS and trust-region reconstructions, with the non-linearity being pronounced in the

CGLS reconstructions and completely eliminated in the trust-region reconstructions.

On the other hand the Chambolle-Pock with TV regularization returned much clearer

reconstructions seemingly without the non-linearity effect, however the reconstructions

themselves contained inaccuracies, such as the reconstructed tube wall thickness was

larger than the actual thickness.

1.3.4 Fast data acquisition and dynamic 3D reconstruction in

synchrotron X-ray CT

The final chapter [12] in the thesis is a methodology paper published by Solid Earth

in the special issue “Pore-scale tomography & imaging - applications, techniques and

recommended practice”. The paper is prepared for geoscientists whose work depends

heavily on data acquisition, image reconstruction and analysis techniques. The imag-

ing challenges in this field vary from detailed reconstructions of rock decompositions in

pore-scales to evolution of the solidification of volcanic lava into igneous rock in high

temperatures. The published work reports the data set acquisition and our findings

using the Vision Research Phantom MiroTM 310 M camera, installed at the I12 Beam-

line in Diamond Synchrotron, Harwell Research Facility, Oxfordshire, UK. The paper

shows the impressive capabilities of the latest hardware for in-situ synchrotron X-ray
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CT, when coupled with optimal data acquisition design and flexible, model-based re-

construction techniques. For this reason, the paper was chosen as one of the highlight

articles of the special issue [18]. The paper also displays the use of quantifying the

reconstructed volumes in order to extract relevant information (in this case, tracking

the volume of inter- and intra-grain fluid transfers as the time increases, see [12, Fig.

5]).

The reconstruction, post-processing and quantification aspects involved were not

emphasised in the paper due to its target audience. Therefore we will expand on these

aspects here. We performed over 50 data acquisition experiments with each collected

data containing between 53 to 107 frames (3D volumetric data), and each frame rep-

resenting events as quick as 0.07s. These were either 360, 180 or 90 projection scans

with scaled exposure time. In addition, for each experiment, a high quality data was

collected (of the dry sample, prior to any wetting). An in-house FBP implementation

was used during and immediately after the scans in order to determine any artefacts

that could come to play in the experiments such as major sample movement, low sat-

uration in liquid and the rocks, or a drop not being caught (the internal memory of

the camera would be full before any important events happened in the acquisition).

The quantifications in [12, Section 4.1] were performed using Avizo Fire 9.1. The

workflow used is very similar to the one described in [7]. Avizo was used for the

visualisations for other figures, where similar workflow was reproduced.

For the images used in the paper, we obtained reconstructions from 180 projections

using the total variation (TV) regularization as part of gradient projection algorithm

with Barzilai-Borwein acceleration (GPBB). Details of the implementation are given

in [24]. Originally this implementation took 9 hours to produce a volumetric recon-

struction from a single frame. By rearranging the matrices to limit hardware memory

transfer, parallelizing the process and trimming the input data where possible, the

reconstruction time for each volume was reduced to between 40 minutes to an hour.

Difference reconstruction in practical CT

In addition, we experimented with difference image reconstructions by either using

a high quality dry scan (initial state, if available) or the previous state. Difference

image reconstruction is essentially taking the difference in projections for two separate
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(a) Difference sinogram. (b) 2D reconstruction (Slice 50).

Figure 1.4: Difference reconstruction using a sample of mixed sized beads. Here
the difference between the current state (arrival of first drop) and the dry-sample
measurements (no drop) is reconstructed.

states, and reconstructing the resulting data. This is not a new idea but fairly novel

in practice, however no practical examples are available in the CT imaging literature.

We refer the readers to [20, 35] for the general idea and simulated results. For our

experiments, the reconstructions initially gave poor results due to the axis shift and

the odd-even reflection in collected projections (the initial or previous states did not

exactly match the current state in voxels), so minor pre-reconstruction corrections had

to be applied (either by shifting the indexing of voxels or applying reflection on the

odd volumes to match the even ones). Reconstructions following the pre-processing

are included in Figure 1.4 and Figure 1.5 where we can see the difference sinogram and

slice reconstruction (Figure 1.4a and 1.4b), and evolving fluid volumes reconstructed

using differences between the dry sinogram and saturated sample data for the first

drip (Figure 1.5a, t = 0.00s), the sample at t = 1.47s (Figure 1.5b) and at t = 3.71s

(Figure 1.5c).

1.4 Suggested further work

Note that each paper in the thesis has suggestions for further work relevant to its

topic. In addition, we propose the following ideas to be studied in future.

First idea involves the entropy theory, which can be used to find an expression

for the information content in a given CT data set. This expression can then be

maximized to extract the most useful sections of the data.
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(a) Frame 0, t = 0.00s (b) Frame 21, t = 1.47s (c) Frame 53, t = 3.71s

Figure 1.5: 3D renderings of difference reconstruction results where the water-saline
drop is isolated. On left is the first arrival of the drop in the mixed beads pack. Second
is the mid point in the flow experiment. On right is the phase where the beads pack
is completely saturated and the fluid has established a path (end of experiment).

Another idea is to identify the properties of matched and unmatched forward-back

projector pairs, in particular, understand how close a back projector, B must be to

an exact back projector, AT in order to obtain acceptable reconstructions but still be

computationally cheap to implement. When such a back projector is implemented, we

believe a Krylov subspace method, specifically GMRES, could be a suitable iterative

method for solving the reconstruction problem.

Finally, we can suggest using the Low-rank and sparse matrix decomposition tech-

nique to separate a 4D reconstruction (by which we mean a series of 3D volumes

changing with time) into two volumes, each representing either the foreground or the

background. The next time step can then be calculated with the background volume

taken away, leaving only the foreground volume to be reconstructed with the same

amount of data. This would significantly reduce the computational costs of a recon-

struction, and reduce the inaccuracies in the image for the next time step. This is not

a new method, and the separation of foreground from background is popularly used

by security software companies to track objects in a moving scene. However to our

knowledge, this has never been implemented for a real 4D (3D+time) CT data.
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Abstract

Coventionally the efficacy of different computed tomography reconstruction algorithms is as-
sessed a voxel to voxel comparison between the object and the recostructed volume. Here
we quantify features of interest for the test object and use these as measures of the efficacy
of the reconstructions. The technique, which we refer to as physical quantification, is used
here to determine the sphericity, contacts and size of beads for a test dataset made available
via the SophiaBeads Dataset Project. Using this image analysis approach a number of re-
construction methods are evaluated including FDK, CGLS, TV regularization and level set
evolution methods. Our work shows that it is important to choose the optimal reconstruction
strategy based on the features you want to quantify from the scan. In our case we found that
the shape of the beads could be measured using TV regularisations with 8x fewer projections
than the other methods.

Keywords: Computed tomography, reconstruction methods, physical quantification

1. Introduction

In computed tomography (CT) imaging there is a continuous demand for iterative recon-
struction (IR) methods, adapted to specific circumstances, with the common goal of producing
high quality images. For many, a high quality reconstruction means a noiseless image with
clear contrast, a solution that satisfies a ‘best trade-off’ in convergence, and is close to the ap-
proximate but robust and widely-used Feldkamp-Davis-Kress (FDK) filtered back-projection
algorithm [14]. The analysis techniques in image processing (signal-to-noise, contrast-to-
noise) and in numerical analysis (l2-norm error in the residual or consecutive iterations) are
commonly used to assess the quality of reconstructed images and thus the suitability of the
iterative methods. However, these are poor indicators of image quality since an iteratively
reconstructed solution would have spatially-dependent noise, and resolution dependent on
image contrast [34]. In addition, FDK and IR methods produce different artefacts which are
inaccuracies in a reconstructed image, and thus comparing these solutions with each other is
not a fair comparison. As argued in [37], the assessment of image quality is challenged by
these traditional techniques, and an established measure of merit for evaluating the quality of
reconstruction; independent of the noise and the contrast, or its similarity to an approximate
FDK solution, is necessary. An alternative, task-based method is introduced in [37] how-
ever this is designed for clinical studies, whereas our aim here is to establish a more general
measure of quality for tomographic imaging.

The real aim in the CT imaging community is not to develop a reconstruction algorithm to
obtain the best-looking images, but one that allows us to extract the relevant information from

1
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a reconstruction to a desired accuracy. In this paper, we examine a strategy for extracting
appropriate physical information in order to evaluate the quality of a reconstructed solution,
and thus the suitability of reconstruction methods, for a given problem. The technique, which
we refer to as ‘physical quantification’, is performed on reconstructions from a set of CT data,
where some of the characteristics of the scanned object are known. This data, collected for
the purpose of developing and testing image reconstruction techniques, was first introduced in
[9]. We reintroduce the project for the sake of completeness in §2. Similar strategies are often
used in medical, geophysical and non-destructive material studies to build or verify a physical
model. Numerous examples are given in [35, 12, 10], which experiment with the idea of using
features in a CT reconstruction to extract information relevant to the study. In the same
spirit, we consider four problems to showcase the use of a physical quantification technique,
and how it could differ from traditional ways of assessing the suitability and performance
of a reconstruction method. These are typical problems in the imaging community, and are
included to offer perspectives relevant to both mathematicians and experimental scientists
working in the field. The results of these case studies are presented in §5, and their brief
descriptions are as follows.

The first case study involves comparing three important types of reconstruction methods.
These are the filtered back projection (FDK, an approximate direct method); the conjugate
gradient least squares (CGLS, an iterative method with no explicit prior information) [26],
and the total variation image reconstruction (henceforth TV Prior, an iterative method with
strong prior information) [16]. The study focuses on making fair comparisons of these methods
while physically quantifying the accuracy of the reconstructed results.

The following case study looks at the convergence of CGLS in the absence of prior informa-
tion, and highlights how the conclusions we can draw from the traditional and our technique
of assessing convergence may differ.

The third case study is an example of a more practical problem where we look at the
effect of varying the signal quality (can also be thought as exposure or dose) in tomographic
acquisition on the quality of reconstructed solutions. This involves studying the affect of
increased noise as the amount of signal (or dose) is reduced, posing the question whether
there are any advantages to higher exposure scans.

The final case study is an example of testing a novel idea against more standard methods.
In this study, we explore the idea of simultaneously reconstructing and segmenting images
with the means of a 2-step discrete-CGLS algorithm (DCGLS, our modification to the DART
algorithm) [3]. We compare a variation of the level set evolution formulation (the distance
regularized level set evolution or DRLSE) [19], here adapted as a segmentation method, with
simpler techniques such as basic, Otsu’s [25] and locally adaptive [4] thresholding methods.

We finish with more discussions and further analysis of the first case study, and concluding
remarks for the work presented.

2. Establishing a reference CT dataset

2.1. Description of the test data
The SophiaBeads Dataset Project [8] is a collection of cone-beam X-ray CT data sets where

the number of projections are varied while the total photon count (or the total exposure
time) is kept constant [9]. These data sets enable a wide range of algorithm comparisons
and information content optimizations to be examined. They are also suitable for testing
segmentation methods since the sample comprises just two phases (glass and air). The project

2

CHAPTER 2. PHYSICAL QUANTIFICATION TECHNIQUES 38



also contains scripts to read and pre-process the data prior to reconstruction, [6], which are
essential in order to use the data set.

The data sets are available to download individually, with the largest one containing 2048
projections. The number of projections is reduced by a factor of 2 for the subsequent data
sets, with the smallest one containing 64 projections. For the case studies in §5, we made use
of all data sets available.

2.2. Scanner and sample details
The SophiaBeads data set were collected using the 320/225 kV Nikon XTEK Bay located

at the Henry Moseley X-ray Imaging Facility (HMXIF), the University of Manchester.
The apparatus consists of a cone-beam microfocus X-ray source that projects polychro-

matic X-rays onto a 2000 × 2000 pixel-length and width, 16-bit, flat detector panel. The
optimal window size for the SophiaBeads reconstructions is 1564 × 1564, which was deter-
mined prior to the data acquisition, see [6]. The data sets were taken using the stop/start
acquisition technique to reduce angular blurring, and a 0.1mm copper filter was used through-
out to eliminate beam hardening artefacts.

The sample comprised a 25mm diameter plastic tube, filled with uniform Soda-Lime Glass
(SiO2-Na2O) beads size in range 2.3mm-2.6mm, with a mean value of 2.5mm. The beads in
the plastic tube are packed tightly and do not move during data acquisition.

A pack of glass beads were chosen because they are representatives of many physical
problems in non-destructive testing, such as a porous medium to study the flow through
porous media [13, 23, 11] and granular flow of particles [36, 1].

3. Quantification Strategies

3.1. Physical assessment of the beads
Our motivation for using the SophiaBeads data sets in particular is that we know the

main features of the sample: We know the sizes of the beads so we can physically quantify
the quality of reconstructions and make fair conclusions. In §5 where we solve typical questions
in imaging, we quantify our results using physical measures, which we define below:

I. Shape of the beads – Shape3D or Shape2D: We can parameterize how close (in
shape) a reconstructed bead is to a perfect sphere.

II. Aspect ratio of the beads – AspectRatio3D or AspectRatio2D: The ratio of the
smallest and the largest (orthogonal) width of the bead in 2D (circle) and 3D (sphere).

III. Sphericity of the beads: The percentage of the reconstructed bead that fits to a
perfect sphere, similar to Shape3D.

Most of these measures are available within the image-visualization and measuring software,
Avizo Fire (versions 7 to 9) [2]. The Sphericity measure is not native to Avizo and was defined
prior to the quantifications. To obtain a percentage for the sphericity, we used

Sphericity = 100
π1/3(6V )2/3

S
, (1)

where V is the volume and S is the surface area of a bead [38, 15]. Despite knowing some
important properties of the beads (uniform, spherical beads; in contact but not connected),

3

CHAPTER 2. PHYSICAL QUANTIFICATION TECHNIQUES 39



the fact that they vary in size and proportion means that we cannot use a perfect physical
measure. In order to establish a physical reference that is representative of the sample, we
evaluated the mean and the standard deviation of physical quantification measures for the
full 2048-projection FDK reconstruction (size: 1564 × 1564 × 2000). These reference values,
given in Table 1, are based on 500 reconstructed and segmented beads, thus are illustrative of
the sample characteristics. For the planar (2D) quantification measures, we used the central
horizontal slice (henceforth Slice 1000; size: 1564 × 1564) to obtain the reference values. A
summary of this process is explained in Appendix C.

Quantification
Measure

Idealized
Ground Truth

Reference Physical Values
Minimum Maximum Mean Standard Deviation

Shape3D 1 1.0832 1.9776 1.3274 0.00226
Shape2D 1 1.1248 2.3614 1.2143 0.00750

AspectRatio3D 1 0.7142 0.9719 0.9112 0.00172
AspectRatio2D 1 0.7948 0.9937 0.9319 0.00320

Sphericity 100 79.177 97.372 87.164 0.0132

Table 1: Listing of the idealized ground truth of perfectly spherical beads and the evaluated reference values for
the given physical measures. Reference values were obtained using the full 2048-projection FDK reconstruction.

Although not used in this paper, one can also use the volume and the curvature of indi-
vidual beads to determine how ‘correct’ a solution is. These were not used as quantification
measures since they were used in the process of separating and filtering the reconstructed
beads in Avizo, therefore are left out in order to avoid influencing the final quantification
values. Instead, the independent measures listed above were chosen. For a detailed tutorial
on using Avizo to segment, separate and quantify the SophiaBeads reconstructions, as well as
using the released project codes, we refer the reader to [7]. We emphasize here that there are
other open-source image-measuring software such as Blob3D [17], Drishti [20] or VTK [33],
which can be used to apply physical measures to reconstructions.

3.2. Traditional image analysis techniques
In addition to physical measures, we also include traditional, pixel-based image analysis

techniques (where applicable). These are standard measures used in mathematics to show the
grey value differences between two images (the L2 error relative to the ground truth image,
E2norm), or to observe changes in consecutive solutions or in estimated and measured data,
at each iteration (iterative error relative to the current iterate, Eiter and the residual error
relative to the measured data, Eres, respectively). These are defined by

E2norm =
‖x∗ − x‖2
‖x∗‖2 , (2)

Eiter =
‖xk − xk−1‖2
‖xk‖2 , (3)

Eres =
‖b− bk‖2
‖b‖2 , (4)
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where ‖ · ‖2 denotes the (Euclidian) 2-norm, x∗ denotes the ground truth image, b denotes
the log of the measured data and bk is the estimated data by the kth iterated solution xk,
defined by bk = Axk. In cases where Equation 2 is used, the 2048-projection reconstruction
(of size 1564× 1564× 500) is taken as the ‘ground truth image’.

4. Reconstruction Algorithms

4.1. Implementation notes
The reconstruction methods mentioned in this section (except FDK) are implemented in

MATLAB 2014b, with the forward and back projectors written in C [6]. Readers will notice
that the CGLS is used in all subsections. Other methods used in the case studies are FDK
using the in-house software, CTPro; a formulation of total variation as a regularizer with a
MAP estimate (TV Prior), and our modified version of the discrete algebraic reconstruction
technique (DART) with segmentation methods such as the basic thresholding, Otsu’s thresh-
olding, locally adaptive thresholding and a variation of the level set methods (DRLSE). All
formulation and algorithm implementation details are listed in Appendix A.

4.2. Presentation of results
For the 3D results, we reconstruct the central subvolume of 1564×1564×500 and display

the images of the central horizontal slice (Slice 1000 in the full volume, Slice 250 within the
subvolume). We focus on a central region of interest (ROI) of size 440px× 440px or smaller
ROIs of size 100px × 100px of a bead in the centre or 130px × 130px near the edge (see
Figure 1).

The quantification plots are obtained using the loglog, semilogx (log-linear) or plot
(linear) functions in MATLAB, where the plotted results are the mean physical quantifica-
tion values of 25 reconstructed beads, contained fully within the reconstructed volume (see
Appendix C for more information).

5. Case Studies

5.1. Determining the appropriate reconstruction method via fair comparison
In this study, the aim is not to get the best results for the implemented algorithms, but

rather comparable results for three important types of reconstruction methods used today:
a popular approximate direct method, with an implicit prior incorporated in a filter applied
to the data (FDK); an iterative method with no explicit1 prior information (CGLS), and an
iterative method with a strong prior (TV Prior). There were no optimal parameter searches
done for the iterative methods. Also worth noting here that there is no data fitting error
for FDK. For the CGLS reconstructions, we performed 12 iterations and for the TV Prior,
2000 iterations (chosen as the limit). These numbers were determined by how long each
method took to diverge (or stall in convergence) for the 512-projection data set. This was
done to achieve comparable results however, running the iterative methods until they stalled

1An implicit prior information is provided for this method by the stopping criterion, which often is Eiter

or Eres. However, this is replaced by a user-defined number of projections in this paper, in order to eliminate
their effect on physical quantification.
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Figure 1: 2D CGLS central slice reconstruction of 512-projection dataset (4 frames), along with 3 regions of
interest, namely, a central window of the sample (ROI1; of size 440px×400px or 704µm×704µm), a bead near
the centre (ROI2; size: 100px×100px or 160µm×160µm) and a bead near the edge (ROI3; size: 130px×130px
or 208µm× 208µm).

or diverged meant that the computation time of TV Prior increased drastically, with 2048-
projection results taking approximately 4 weeks; 1024-projection results taking 2 weeks, and
so on. The timings are displayed in the quantification plot, Figure 3. Other parameters for
TV Prior, listed in Appendix A, were determined for 512-projection data set, and remained
unchanged for the rest of the reconstructions. The central window (Figure 1, ROI1) of Slice
1000 are given below for reconstructions based on 64-, 256- and 1024-projection data sets.

Traditional image analysis methods are not suitable here as we do not have a high-quality
result, with which to compare these reconstructions. Therefore we use the physical measure,
Shape3D, to quantify the quality of the results. It is not surprising that the TV Prior does
better than the others for all reconstructions; the TV Prior takes into account the sparsity in
the gradient reconstructions, enhancing the edges of the beads. Since the gradient image of
SophiaBeads reconstructions is very sparse, the TV Prior works really well. The striking ob-
servation here is how long it takes to obtain a high quality result using this method. However,
this is also expected since a more sophisticated formulation requires more computation – and
in the case of TV Prior, this means multiple computations of the gradient and many iterations
until a level of convergence is achieved. In our case, the results for 1024- and 2048-projection
data set stalled and were run until the limit of 2000 iterations was reached. The results did
not show further improvements, as indicated both in the Shape3D quantification plot and the
reconstructed results in Figure 2.

An important conclusion we can draw from the Shape3D quantification is that one can
achieve the quality of 2048-projection FDK result with a 512-projection, or even 256-projection
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Figure 2: Central window of Slice 1000 for (top to bottom) 64-, 256- and 1024-projection data sets, recon-
structed using (left to right) FDK, CGLS and TV Prior.

CGLS result. With a simple prior, the CGLS result can be improved with small increase to
the run time, thus the method can be seen as a good replacement for FDK in the case of
a low-dose or few-projections problem. Conversely, when we collect data with many projec-
tions (e.g. 2048-projection), we obtain reconstructions in 10 minutes using FDK, which would
otherwise take days with CGLS and weeks with TV Prior.

5.2. A fresh take on the convergence study of an iterative method
In numerical analysis, a small test matrix (often with special properties or obtained via

simulations) is used and the iterated solutions are compared to a true solution (a predeter-
mined phantom) to study the behaviour of a method. Here, we have real CT data sets of
varying sizes and a number of iterative methods, meaning we can study the behaviour of an
iterative method in a practical setting. We choose CGLS for this study because it is a fast
iterative method where one 3D iteration (x ∈ R1564×1564×500) of 64-projection data set takes
(on average) 90s; 128-projection takes 180s; 256-projection data set takes 360s, and so on.
Note that we exclude the 2048-projection data set in this set up due to the run time and
small contributions to analysis (similar results to 1024-projection are observed).

Two questions are considered in this study: How does CGLS converge in the case of real
CT data, and how would this behaviour change as the amount of data is reduced and thus
becomes insufficient?
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Figure 3: The results of the Shape3D analysis applied to each reconstruction. The graph also includes the
computational run times for each reconstruction, annotated above each result in matching colours.

We performed 50 iterations of CGLS, saving every 5th iterated volume to be analysed using
a physical measure, which is chosen to be AspectRatio3D. Also evaluated at each iteration,
k, are Eiter and Eres (Equations 3 and 4), where xk=0 is a zero (all black) image, taken as
the starting point. The following figures show the bead near the centre (Figure 1, ROI2)
reconstructions for 64-, 128- and 256-projection data sets at iterations 5 to 45 (Figure 4); the
linear plots of the pixel-based error measures (Figure 5), and the linear plot of AspectRatio3D
values (Figure 6).
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Figure 5: The relative iterative error, Eiter (on left), and relative residual error, Eres (on right), for the CGLS
reconstructions based on 64- to 1024-projection data sets. The error norms are calculated at each iteration, k.
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Figure 4: Reconstructions of the bead near the centre, at iteration 5 to 45 for 64-, 128- and 256-projection
data sets.
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Figure 6: A linear plot of physical quantification measure, AspectRatio3D. The quantification was performed
for every 5th iterated volume. The rectangle (blue dashed edges) indicate the acceptable solutions.

It is difficult to draw any conclusions from the traditional analysis techniques in Figure 5.
The relative iterative error, Eiter (on left), plot indicates that as the iteration number, k,
increases, the changes between consecutive iterated solutions decrease. However, this does
not mean that the method converges to a ‘better’ solution (better in the sense that the
reconstructed image has less noise or the beads are accurately segmentable). This simply
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means that the difference between the current and previous solution is decreasing, which
could be a noisy image at iteration 50. The relative residual error plot, Eres (on right), shows
that as k increases, the difference between the estimated (b) and predicted (bk) data decreases
initially, but later increases rapidly. The minimum value of this error for all data sets is at
iteration 4, suggesting that the ‘best’ approximation to a sensible solution is achieved at this
point. However, upon visual inspection of the reconstructed beads in Figure 4, we see that at
iteration 5, the image is still too blurry for a computer to be able to automatically segment,
and in the few-projection case, deceptive even for visual perception of a human being. This
shows how inaccurate standard practices can be when working with real data sets and iterative
methods. Figure 6 on the other hand shows the iterated values for which the reconstructed
volumes resemble more defined beads. The rectangle with blue dashed edges show the area for
acceptable AspectRatio3D solutions, meaning the beads are segmentable at those locations.
The graph shows that the reconstructions quickly converge to an acceptable solution but
later diverge. In the case of many-projections (512-projection and above), the convergence
happens very quickly and results are stable for a while, whereas in the case of insufficient data
(128-projection and below), the convergence is slower and results diverge shortly after, albeit
at a slower speed than 256-, 512- and 1024-projection. The interesting note is the results
for the 256-projection, which are of acceptable quality as the many-projection data sets, and
reach the same level of quality as the 512- and 1024-projection results in 20 iterations (3hr20m
runtime).

A note we make here is that, in contrast to the error plots, the AspectRatio3D analysis
agrees with the visual inspection that the solutions in the middle are acceptable solutions, and
for data sets with many projections, the iterated solutions become more acceptable sooner.

5.3. The effect of varying signal in acquisition on the quality of reconstruction
In this study, we attempt to answer an interesting question from an experimental point

of view: The noise is undoubtedly reduced when we collect multiple frames of a projection
and average over the number of frames. However, is it worth collecting multiple frames at
conservative exposure levels in few-projection problems?

The acquisition plan of SophiaBeads data sets was described in [9, Figure 1], where line B
consisted of the data sets taken at decreasing signal (the conventional way, i.e. single frame)
whereas line A are acquired at a constant signal (constant photon count while the number of
projections is reduced, i.e. multiple frames). Line A data sets were released for the purpose
of comparing algorithms, whereas line B data sets are not publicly available. However we can
still obtain the line B data sets from line A by downsampling appropriately. For example,
if we wanted to obtain 128-projection data set with 1 frame (line B), we would have to look
up the data set with 1 frame on line A, which is 2048-projection, and downsample it by 16
(i.e. take every 16th projection). This is equivalent to the 128-projection data set taken
at a single frame. In fact, we can obtain data set for any number of frames (i.e. dose)
using the line A data sets: if we wanted to obtain 64-projection data set with 4 frames, we
would downsample 512-projection by 8 (32/4). This does not convolute the analysis since the
SophiaBeads projections are not taken continuously but rather the rotation pauses to take
one projection at a time (stop-start scan).

The reconstructions were obtained using the same numerical set up as the previous case
studies: by performing 12 CGLS iterations for each data set lying on lines A and B. The
central subvolume (of size 1564× 1564× 500) was reconstructed and Figure 7 shows the bead
near the edge of the reconstructed images (Figure 1, ROI3).
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We are able to use a traditional image analysis technique here and include the E2norm

measure, where the 2048 FDK result is taken as the ‘ground truth image’ (Figure 8). For
the physical quantification, we calculate the Sphericity percentage of each reconstruction.
The results are given in Figure 9, which also include the Sphericity reference value, which is
87.16% (mean value from Table 1).

Figure 7: Reconstructions of the bead near the edge for all data set in Line B (single frame, top row) and Line
A (multiple frames, bottom row).
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Figure 8: A log-linear plot of relative 2-norm error for all data sets. Each reconstruction is compared to the
2048-projection result obtained using the same numerical setup.

We observe that the traditional and the physical quantification measures agree, both
suggesting that collecting multiple frames is giving better results (as expected due to decrease
in noise) however, when closely inspected, the trade off is not as big as the intuition suggests,
and collecting a single frame often gives results with comparable quality. This is observed in
two locations. Firstly, compare the line A 512-projection (4 frames) and 1024-projection (2
frames) results in either graphs: Here, the total exposure is the same but the exposure-per-
projection is different. However, the level of reconstruction quality at these points is almost
the same, meaning 2 frames of 1024 projections does not have any benefit over collecting 4
frames of 512. Secondly, observe the difference between line B 512-projection (1 frame) and
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Figure 9: Sphericity of the reconstructed beads as a function of the number of projections. Reference ground
truth (2048-projection FDK result) is denoted by the purple line with cross markers.

line A 256-projection (8 frames) results in the Sphericity plot. The line B solution with a single
frame gives a closer quantification value to the reference value (≈ 6% difference in Sphericity)
than the line A solution with 8 frames (≈ 11% difference). So despite having 4 times as much
exposure-per-projection, the single frame data set still gives a better solution. This suggests
that the SophiaBeads data sets were collected at too high an exposure level, reflecting a
conservative tendency of CT practitioners to over-count per frame. A suggestion for future
work could be looking at the limitations of iterative schemes where signal is conventionally
deemed too short.

5.4. Simultaneous model-based reconstruction and segmentation – benchmarking implementa-
tions

This is an example for implementing a novel idea and benchmarking against more standard
techniques to assess the accuracy and performance using a physical quantification measure.
The idea implemented here is to use segmentation as part of the reconstruction algorithm.
Although fairly new in practice, the idea was considered in a more theoretical sense in [21, 22].
This recently gained attention and is applied in more variations in the imaging community,
namely to produce both continuous images using a Bayesian framework [32] or discrete images
with a 2-step algorithm [3]. Also related is the idea of simultaneously obtaining both a
reconstructed and a segmented image directly from the measured data [27], or using prior
information about the phases in the sample [28].

The implementation in this study was inspired by the simple, 2-step discrete iterative
reconstruction method detailed in [3], where a number of SART iterations are performed; the
solution is segmented, boundary elements are determined; and SART iterations are continued
for these boundary elements. Since the SophiaBeads sample only consists of uniform glass
beads and air, the data sets are suitable for this study, in which we replace the SART method
with CGLS (henceforth referred to as discrete-CGLS or DCGLS). This modification results
in a large decrease in computational time. In [3], basic global thresholding is used, which
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is a simple method that classifies pixels in an image as ‘black’ (zero) or ‘white’ (above a
user-defined threshold). To benchmark this aspect of the algorithm, we replace this step with
other segmentation methods. Namely, the Otsu’s thresholding algorithm, locally adaptive
thresholding algorithm and the distance regularised level set evolution (DRLSE) method.

It is important to note that there were no ‘parameter fine-tuning’ tests done for these
segmentation algorithms, except for DRLSE. Of all the methods implemented, DRLSE was
the most unstable as the quality depended heavily on a number of parameters. As it is outside
the scope of presented work, we do not go into the details of DRLSE but instead refer the
reader to [19] for the derivation of the method (a summary is given in Appendix B along with
the implementation details of this and other segmentation methods).

Initially 5 CGLS iterations were performed and the 5th iterated solution was used as the
starting point for DCGLS. We chose a small number of initial iterations to challenge the
segmentation methods, which were shown to return acceptable solutions for 256-projection
data set and above (see §5.2). The DCGLS algorithm was applied to the 2D image (horizontal
central slice) to reduce the computation time but the implementations are easily expendable
to 3D volumes. The central windows of the reconstructions for 64- to 512-projection are given
in Figure 10.

Figure 10: The central window of reconstructions for 64- to 512-projections data sets using (left to right) basic
global thresholding (Basic), Otsu’s thresholding (Otsu’s), locally adaptive thresholding (Adaptive) and the
distance regularised level set method (Level Set).
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Traditional image analysis techniques are not feasible in this study since there is no seg-
mented ground truth. We chose Shape2D as the physical quantification measure, which was
applied to the horizontal central slice (Slice 1000). The results are given in Figure 11. The ref-
erence value is the mean Shape2D value of 2048-projection FDK reconstruction (see Table 1),
denoted by a purple dashed line with cross markers.

64 128 256 512 1024 2048
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Number of Projections

S
h
a
p
e
2
D

 

 

Basic Otsu’s Adaptive Level Set Reference Physical Value  

Figure 11: The log-linear plot of Shape2D quantification values for all segmentation methods for each data
set, and of the full 2048-projection FDK reconstruction, included here as the reference value.

As seen in both the reconstructions and the Shape2D quantification, DCGLS with the
Level Set (DRLSE) at 64-projection returns relatively poor results. This may be due to
the initial reconstructed volume (CGLS, 5 iterations, recall first column in Figure 4) is not
iterated long enough for the DRLSE to return a successful reconstruction. It could also be
due to the DRLSE parameters being too strict for the few-projection case. Interestingly, for
the same starting point, the most basic segmentation method returns better results, closely
followed by the locally adaptive method. As the number of projections increase, the level set
method takes over in quality, and appears to perform better than others.

Basic, locally adaptive and level set methods reach the same level of quality as the reference
value at 256-projection, while Otsu’s thresholding reaches this level with the 512-projection
reconstruction. However, despite showing comparable Shape2D results to basic and locally
adaptive methods, the level set method produces more accurate reconstructions. This conclu-
sion is drawn from the observation that the level set segmentations show the beads as almost
touching or completely separate, which is more accurate than what the others produce (beads
reconstructed with other methods show merged or sintered beads for all cases, even at 2048-
projection). We could of course have a stricter threshold value for the basic thresholding
method, however this means more unstable results for the data sets with few projections.

6. Discussions and Further Analysis

The work presented here is applicable to various scenarios in imaging. As an example of
this, as well as utilizing the SophiaBeads data sets, we tried to answer typical questions that
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are of interest both to the mathematicians and the experimental scientists working in CT. In
this section, we include our summary and conclusions for each problem, and further analysis
into comparison of algorithms.

The first case study is a comparison of three types of reconstruction algorithms, namely
a direct method (FDK), an iterative method with no explicit prior (CGLS) and an iterative
method with a strong prior (TV Prior). The results were unsurprising in that the iterative
methods clearly gave better quality reconstructions, where the prior information had enhanced
the quality and thus gave the best result. However, the results also highlighted an aspect
often ignored, which is the computational time for reconstructions. It is expected that a
more sophisticated algorithm would require longer time to reconstruct an image, however,
the difference in run time should question the trade-off of achieving a higher quality result.
An interesting study could be the computational time or complexity of algorithms (in flops)
versus the reconstruction quality for various reconstruction methods.

The following problem was studying the convergence behaviour of a method in an alterna-
tive way, and comparing this to the standard practice of convergence analysis in mathematics.
Results obtained via the standard error norms did not yield conclusive results, demonstrating
that the standard convergence analysis may be appropriate for simulations but they are not
applicable in practical cases. Studying the physical characteristics of a reconstructed vol-
ume to determine the convergence behaviour returns more trustworthy results, which can be
verified by visual inspection.

The third case study was focused on the levels of photon count (in signal or dose) and their
effects on the reconstruction quality. We questioned the benefit of collecting data at constant
exposure (total dose or photon count) as opposed to varying exposure (decreasing photon
count). The results highlighted the conventional practice in CT, which is that even the data
set with least amount of information was collected with ‘comfortable’ exposure level in order
to collect the ‘best projections’. This provided unsuitable setting for this case study, which
showed that collecting at high exposure did not have much benefit over collecting at lower
exposure. An interesting study would be to repeat this assessment with data sets collected
in more challenging settings.

The final case study was an example of benchmarking an idea, which was combining the
reconstruction and segmentation steps together. The strategies we introduced in this pa-
per helped compare various segmentation strategies used in the 2-step algorithm, DCGLS.
The results highlighted the importance of choosing parameters, which determined how un-
stable a method can be (especially in cases with few-projection data) and the accuracy of the
reconstructed solutions.

Since the SophiaBeads data sets were collected specifically for comparing reconstruction
algorithms, we include further analysis into the comparison presented in §5.1.

6.1. Exploring the limits of reconstruction algorithms
The SophiaBeads data sets are collected with varying number of projections while keeping

the total dose (or photon count) for each data constant. This was done to ensure fair com-
parison in the way that no other artefacts are introduced in the data as not to convolute the
solution and influence our conclusions. In §5.1 where we compare three types of reconstruc-
tion algorithms, the resulting reconstructions were tested against a shape criterion, in this
case Shape3D, to determine how close the reconstructed volumes were to a ‘perfect solution’.
Another thing that could be tested here is the time it takes to obtain these reconstructions.
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Figure 3 has been annotated to include the reconstruction times, but these can also be pre-
sented in a graph in a similar manner. An example is given in Figure 12. This presentation of
results highlights the amount of time it takes to obtain a reconstruction, and raises important
questions such as when does it make sense to implement more sophisticated methods and
thus run longer reconstructions? Because it will take longer to reconstruct an image if there
is more information, when does it become unnecessary to collect more information?
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Figure 12: A log-log plot of the Shape3D results against the computational run time for the reconstruction of
each SophiaBeads data set.

It is clear from Figure 12 that if we were to lower the dose, we can achieve improved
results collecting 128 projections and reconstructing using TV Prior (in comparison to FDK).
A similar degree of quality can be achieved with 512 projections, using CGLS, which would
lead to a runtime that is approximately 10 times shorter than to obtain the TV Prior 128-
projection reconstruction.

It is important to remind the reader that the CGLS reconstruction results may be improved
with simple or model-based regularization, and that the TV Prior reconstruction run time
can be reduced by fine-tuning the parameters to avoid stalling in convergence. We observed
stalling occurred more often with larger amounts of data, but in order to ensure that the TV
Prior results were comparable with one another, we have used the same parameters for all
TV Prior reconstructions. Similarly with CGLS, we chose not to include regularization in
order to make a comparison between an iterative method with no prior information and one
with model-based prior information (CGLS vs TV Prior).
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7. Conclusions

Image analysis is crucial in assessing the suitability of a reconstruction method and the ac-
curacy of information from a reconstructed solution. Traditional techniques in image analysis
(signal-to-noise ratio, l2 norm, etc) were not adequate or able to give unbiased conclusions,
and an established measure of merit was needed.

In this paper we introduced the idea of analysing a reconstructed solution using its charac-
teristics such as shape, size and texture, referred to as physical quantification technique. We
applied the measures to typical problems in CT, where we reconstructed real experimental
data sets, made available via the SophiaBeads Dataset Project. This project, released for
the purpose of developing and testing reconstruction methods, contains data sets taken at
varying signals (or levels of dose), and the scanned sample comprises of a simple plastic tube
packed with soda-lime glass beads.

We demonstrated the uses of physical quantification techniques through a number of case
studies. These were chosen to be typical problems in CT in order to offer perspectives of math-
ematicians and experimentalists. Each study contained an example of physical characteristics
being analysed, and a traditional analysis method is also included (where appropriate). This
was done to highlight any possible discrepancies in conclusions drawn from both physical and
traditional quantification techniques.

Presented results for each case showed that the physical quantification techniques are
applicable to a wide range of problems, and offer clear results when a successful reconstruction
is defined. In our case this was a full (unbroken), segmentable bead that is not connected to
its neighbours.

The results also showed that the introduced techniques allowed further analysis into the
comparison of methods and analysis of various levels of dose in the acquisition. With these
techniques we were able to conclude that the established beads data set were collected at
a conservative exposure level, which is the standard practice amongst the scientific exper-
imentalists working in CT. A future task could be to collect a reference data set in more
challenging settings, for example, when the projection view is severely limited or when the
exposure-per-projection is decreased.

In addition, the results underlined the difference in computation times for a reconstruction,
which was that the more sophisticated an algorithm gets, the longer the reconstruction takes.
Another future task can be to limit the reconstruction time to assess the quality of results, with
the goal of developing a sophisticated algorithm (correct forward model, appropriate stopping
criterion, explicit prior and sensible optimization solver) that returns a reconstruction in
relatively shorter amounts of time.
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Appendix A. Iterative Reconstruction Techniques

Conjugate Gradient Least Squares
The Conjugate Gradient Least Squares (CGLS) method is the modification of the well-

known Conjugate Gradient [31] where the CG method is applied to solve the least squares
problem ATAx = AT b. Here, A ∈ Rm×n is the geometry matrix, b ∈ Rm×1 is the measured
data and x ∈ Rn×1 is the reconstruction. CGLS is a popular method amongst those working
in signal and image processing for its simple and computationally inexpensive implementation
and fast convergence. The method is given in Algorithm 1.

Our implementation also includes a non-negativity step (negative pixel values equal to
zero), applied to the final iterated solution. There is no parameter-tuning done for this
implementation since the only user-defined parameter is the maximum number of iterations,
kmax.

Algorithm 1. Conjugate Gradient Least Squares (CGLS)
Given a geometry matrix, A, a data vector b and a zero solution vector x0 = 0 (a black
image) as the starting point, the algorithm below gives the solution at kth iteration.
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1 Initialise the direction vector as d0 = AT b.
2 for k = 1: kmax
3 qk−1 = Adk−1, α = ‖dk−1‖22/‖qk−1‖22
4 Update: x = x+ αdk−1, b = b− αqk−1

5 Reinitialise: qk = AT qk−1, β = ‖qk‖22/‖dk−1‖22, dk = qk + βdk−1

6 end

Total Variation Regularization
The Total Variation Regularization (TV Prior) [30, 29] solves the optimization problem

x = arg min
x

1
2
‖b−Ax‖22 + αTτ (x), x ≥ 0. (A.1)

Here, Tτ (x) is the standard Huber-smoothed total variation, defined as

Tτ (x) =
∑

Φτ (‖Djx‖2), where,

Φτ (u) =
{ |u| − 1

2τ if |u| ≥ τ,
1
2τ u

2 otherwise,

and α is the TV regularization parameter, τ is the Huber-smoothing parameter (penalizing
the non-smoothness of Equation A.1), Dj is the finite difference approximation of the image
gradient at pixel j, and ‖ · ‖2 is the (Euclidian) 2-norm.

The implementation uses the TVReg toolbox [16], where we used the Gradient Projection
Barzilai-Borwein (GPBB) method. Using TVReg toolbox to reconstruct SophiaBeads data
sets required a short script (a wrapper for the toolbox to use the forward and back-projectors
provided by the SophiaBeads project), written by the authors. This script is available upon
request.

For the results presented in this paper, the TV Prior iterations were run until results stalled
(small changes in the gradient) or diverged for one data set (512-projection) to determine the
maximum iteration number and the regularization parameter, α. These were 2000 iterations
and α = 1e− 2. The Huber-smoothing parameter τ was chosen to be sufficiently small for all
runs, τ = 1e − 6. The parameters remained unchanged for other reconstructions in order to
obtain comparable results.

Discrete Algebraic Reconstruction Technique (DART)
Discrete Algebraic Reconstruction Technique (DART) is introduced by [3] as a discrete

iterative algorithm that takes a number of SART (Simultaneous Algebraic Reconstruction
Technique) sweeps as its initial solution, segment and extract the location of the boundary;
iterate for those boundary pixels whilst keeping the rest of the image fixed, thus reducing
the number of unknowns to the number of boundary pixels. This reduces the computational
costs and the amount of uncertainty in reconstruction, making DART a suitable method for
limited angle/projection experiments.

In addition, DART algorithm influences the convergence of the reconstructions by applying
the threshold and thus pushing the solution towards a more educated image [3]. So coupling
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this algorithm with SART (or any ART invariants) work well as SART within DART converges
quicker than a regular SART run. However we note here that the convergence and the
quality of the final reconstructed image depend heavily on the quality of the initial image
reconstructed by SART, as well as the prior information used about the number of phases in
the sample and the threshold values for separating those phases.

For our runs, we replace SART with CGLS to reduce time and computational cost, thus
referring to the method as Discrete-CGLS or DCGSL throughout the paper. The initial
CGLS is performed 5 times, and the 5th iterated solution is used as the starting point for the
segmentation stage. The segmentation method here is the basic global thresholding algorithm,
see Appendix B for details. The segmentation part was run for 3 iterations, imax = 3 with
intermediate CGLS algorithm running for 5 iterations each. DCGLS algorithm is outlined
below.

Algorithm 2. Discrete-CGLS (DCGLS)

1 Run Algorithm 1 for kmax = 5 to obtain xki=0.
2 Declare threshold values, t.
3 for i = 1: imax,
4 Segment xi−1 to obtain the binary image, si, using the threshold values;
5 Extract boundary pixels of si; Bi, and the non-boundary pixels; Fi.
6 Create image yi:
7 if j ∈ Bi,
8 yi(j) = xi−1(j);
9 else,

10 yi(j) = si(j).
11 end
12 Run Algorithm 1 with y

(k=0)
i as the starting point, keeping the pixels in Fi fixed.

13 Combine the final solution y
(k=5)
i with the segmented image, si;

14 Smooth over the pixels.
15 end

Appendix B. Segmentation Methods

Distance Regularized Level Set Evolution Method for Segmentation
The level set methods capture dynamic changes in topology of a function (called the

level set function) that evolves from a basic shape. The idea was first proposed by [24] to
track propagation in fluid dynamics, though the method has been applied to many other
applications. One that gained recent popularity is the image segmentation: The biggest
advantage of level set methods is that they can represent contours of complex geometries and
are able to track changes in the shape such as splitting or merging, making this a suitable
method for image segmentation.

A drawback of this type of methods is that the level set functional (LSF) can invite
numerical errors during evolution, if not reinitialized periodically or penalized within the
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energy function. The version of the level set methods we implement in this paper is called the
Distance Regularized Level Set Evolution (DRLSE); a variational level set formulation with a
penalty on the deviation of the LSF from a signed distance function, explained in great detail
in [19, 18]. A script for the implementation is available (see [18]). The level set evolution
is derived from an energy functional to drive the shape of function (while penalizing it for
stable evolution), and uses an edge-based active contour model for image segmentation.

Let φ : Ω→ R be the LSF on a domain Ω. The DRLSE energy functional, derived in [19]
is

E(φ) =
δφ

δt
= µRp(φ) + λLg(φ) + αAg(φ). (B.1)

Here, Rp(φ) is the level set regularization term with the potential function p : [0,∞) → R;
Lg(φ) is the energy functional which is minimized when the zero level contour is at the object
boundaries, and Ag(φ) is the energy functional that computes the weighted area of the region
inside the level set. The edge indicator function, g, is

g =
1

1 + |∇Gσ ∗ I|2 ,

where Gσ is a Gaussian kernel with standard deviation, σ; I is the image in domain Ω, and ∗
is the convolution operator. The function, g, takes smaller values at object boundaries than
at other locations. The parameters µ > 0, λ > 0 and α ∈ R are the penalty parameters acting
on the energy functionals, Rp(φ), Lg(φ) and Ag(φ), respectively. The energy functionals are
defined by

Rp(φ) =
∫

Ω
p(|∇φ|)dx,

Lg(φ) =
∫

Ω
gδ(φ)|∇φ|dx,

Ag(φ) =
∫

Ω
gH(−φ)dx,

where δ and H are the Dirac delta and Heaviside functions, respectively.
For the results in the paper, the function p is taken as the double-well potential, defined

by

p(u) =

{
1

(2π)2
(1− cos(2πu)) if u ≤ 1,
1
2(u− 1)2 if u ≥ 1.

The initial zero level, φ0, is chosen as a binary step function for efficiency, which is

φ0(x) =
{ −c0 if x ∈ R0,

c0 otherwise,

where c0 > 0, and R0 is a region in domain Ω. The initial zero level set contour used in this
paper is a rectangle of size 300px × 300px, shown in Figure B.1 (top left), with the evolved
level set contour (top right) providing the boundaries of the segmented image for line 5 in
Algorithm 2.
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The quality of the segmented image with this formulation depends on the set of parameters
chosen. For the results presented in §5.4, the parameters were determined by trial and error.
For those runs, we let µ = 2, λ = 1, α = 0.1, σ = 4 and c0 = 0.1.

Figure B.1: The initial (top left) and final contour (top right) of the DRLS method at 2048-projection, with
insets (100% zoom-in) in the bottom row. The initial contour is defined by the user.

Other Segmentation Techniques
Three more segmentation methods were used in the paper, one of which is used in the

original DART algorithm. These are

• Basic global thresholding method
In its simplest form, this method replaces each voxel with 0 if vi < t, or with the value
of 1 if vi > t (binarization), where t is a user-defined thresholding value, often picked
as the minimum between peaks in the histogram of the image. This method was taken
as the standard in §5.4.

• Otsu’s thresholding method
This is a more sophisticated global thresholding method, which fits each peak in a
histogram to a Gaussian distribution, and (assuming there are multiple curves) finds
the grey value at which the Gaussian curves intersect.
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• Locally adaptive thresholding method
This technique is used for cases where a global threshold does not apply everywhere
in the image as it fails to distinguish between the background and the foreground (i.e.
when there is a continuous change in the gradient of an image). So an estimation of
an optimal threshold is done in subsections of the image, and later applied to segment
between the background and the sample.

The parameter-tuning was minimal for these techniques: The threshold parameter, t, in
basic global thresholding was chosen as t = 0.11 (this is the same value used to segment in the
Avizo visualisations, [7]). The locally adaptive thresholding method calculates a thresholding
parameter locally, given a window size, which for these runs was chosen to be 10px × 10px.
Otsu’s thresholding automatically calculates a thresholding parameter depending on the his-
togram in the image, hence required no user input.

Appendix C. Quantification

A Summary of the Avizo Routine
The quantification and 3D visualization presented in this paper are done using the com-

mercial software Avizo Fire, popularly used in materials science for interactive data and image
visualization and analysis. Note that material given here is a short summary of [7], which
also includes a tutorial for the project codes [6].

The project codes are programmed so after each reconstruction, the reconstructed image
is saved as 32-bit single volume, which can be imported to Avizo as a 3D volume. The
volume then goes through a number of operations in order for the beads to be segmented
and separated using the watershed algorithm. Figure C.2 shows the outcome of stages of the
Avizo workflow. The threshold value for the segmented image on left is taken as t = 0.11.

Figure C.2: The outputs of segmentation, watershed and separation of the reconstructed volume, displaying
the Slice 1000 (xy-axis).

The watershed algorithm is a popular segmentation and separation tool used in image
analysis. The algorithm attempts to find local minima in the image with the use of heightmaps
and morphological operations, which help determine locations of markers in order to segment
and separate objects in an image [5].
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The Quantification and Reference Values
Since our reconstructions were performed on the central subvolume of size 1564× 1564×

500, this meant that there were some beads not fully within the region of interest. Figure C.3
shows the reconstructed subvolume (CGLS 1024-projection, on left) where it is clear that
applying the image measures on the entire subvolume would affect the analysis. To work
around this, we used Filter by Measure module, along with the Volume3D quantification
measure, to choose 25 biggest beads (in volume). By applying Label Analysis to these 25
beads, Avizo outputs the quantification values for the volume measures (Shape3D, Aspec-
tRatio3D, Sphericity) for each bead, along with the mean, standard deviation, minimum and
maximum values of the distribution. For the planar (2D) quantification measures, we used
the Area measure for filtering on the central horizontal slice to obtain a reference value.

Figure C.3 also shows a 3D rendering of the full FDK 2048-projection volume, which has
500+ beads and was used to obtain the reference values given in Table 1.

Figure C.3: The 3D renderings of the CGLS 1024-projection subvolume (centre 1564 × 1564 × 500, on left
with xz-axis and tilted view) and the full FDK 2048-projection volume (on right) used as a reference in the
comparison studies.
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Abstract

Sparsity regularization such as total-variation (TV) minimization has been demonstrated
to allow accurate image reconstruction in X-ray Computed Tomography (CT) from fewer
projections than standard analytical reconstruction methods. Exactly how few projections
suffice and how this number may depend on the image remain poorly understood. While
theoretical guarantees from Compressive Sensing (CS) connect the admissible reduction in
number of projections directly to the image sparsity for certain imaging methods, this does not
hold for CT, however empirical simulation work suggests a similar connection. The present
work establishes for the first time for real CT data a connection between gradient sparsity
and sufficient number of projections for accurate TV-regularized reconstruction.

Glass beads of 5 sizes (hence of different gradient sparsity levels) were scanned in a micro-
CT scanner at increasing number of projections. The reconstruction quality was assessed as
function of number of projections and gradient sparsity. The critical number of projections
to obtain a satisfactory TV-regularized reconstruction was found to increase almost-linearly
with the gradient sparsity. This establishes a quantitative guideline from which one may
predict how few projections will be sufficient based on an expected sparsity level of a sample
to be scanned. As a result, samples having a sparse gradient may benefit from an order of
magnitude or more reduction in number of projections required, with clear benefits in reduced
X-ray exposure or data acquisition time enabling fast time-resolved imaging.

Keywords: Computed tomography, inverse problems, sparsity, total variation, sampling

1. Introduction

X-ray Computed Tomography (CT) still predominantly uses image reconstruction meth-
ods of the analytical type, i.e., Filtered Backprojection (FBP) for parallel-beam geometry and
Feldkamp-Davis-Kress algorithm for cone-beam geometry [1]. In recent years novel sparsity-
regularized reconstruction methods based on an algebraic imaging model have been subject
to extensive research, motivated by their ability to preserve or improve image quality from
reduced data such as substantially fewer projections [2, 3, 4, 5, 6, 7]. Reconstruction from few
projections is of high interest due to its potential to reduce patient X-ray exposure in medical
imaging and shorter acquisition times to capture rapid material changes in non-destructive
testing. The prototypical sparsity-regularized reconstruction method is Total Variation (TV)
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regularization [8], which has the ability to reduce noise and subsampling artefacts while pre-
serving sharp edges in the reconstruction. TV regularization can be interpreted as sparsity-
regularization method because it encourages a sparse gradient image of the reconstruction.

Research in sparsity-regularized reconstruction has in part been motivated by new math-
ematical results in the field of Compressive Sensing (CS). In a nutshell, CS establishes that
accurate image reconstruction is possible from a substantially reduced number of measure-
ments. This is tied to the sparsity of the image, under certain assumptions on the imaging
process such as incoherence and the restricted isometry property [9, 10]. Unfortunately the
recovery guarantees of CS do not extend to cover X-ray CT [11, 12] and the success of spar-
sity regularization in CT therefore remains somewhat heuristic. In particular, little is known
about conditions under which sparsity regularization will succeed for tomographic data. In
CS the sufficient number of measurements for accurate image reconstruction using sparsity
regularization methods depends directly on the the sparsity level of the image, i.e., the number
of signal nonzero values or coefficients in some representation. It remains to be established
whether a similar dependence holds in X-ray CT.

Previous work by one of the authors has addressed precisely this question in comprehensive
studies with simulated data [13, 14, 15, 16]. Among other conclusions the results indicate
that under some circumstances an almost identical relation between the sparsity level and
the critical number of measurements can be observed in X-ray CT.

The goal of the present work is to test whether the same result can be verified with real
X-ray CT data. Specifically, we target two questions:

Q1 Can a relation between the critical number of projections for TV-regularized reconstruc-
tion and the image sparsity level be observed for real X-ray CT data?

Q2 If yes, can the critical number of projections be predicted from the image sparsity level
using the empirical phase-transition established in previous simulation work [13]?

In the conference contribution [17] we attempted to answer Q1 using the SophiaBeads
data set [18], which is a collection of micro-CT data sets of glass beads. While appropriate
for its stated purpose of comparing reconstruction algorithms in a fixed-exposure trade-off
study and in principle also interesting for sparsity regularization, we found the data set to be
of limited use for addressing Q1 due to too few sparsity and sampling levels available. This
prompted us to acquire a new and more extensive glass bead data specifically designed for
addressing this question. The current paper presents this data set and employs it to address
Q1 and Q2.

This paper is organized as follows. In Sec. 2 we outline the experimental setup for acquiring
the new extensive glass bead data set. Sec. 3 gives details the computational setup we employ
including TV-regularized reconstruction and the optimization algorithm to solve it as well as
image quality measures and determination of reference images and sparsity levels. Sec. 4
presents the results of our studies and Sec. 5 offers a discussion of results before concluding
the work in Sec. 6.

2. Experimental setup

2.1. Previous work with SophiaBeads
The SophiaBeads Dataset Project [18] is a collection of cone-beam X-ray CT data sets

where the number of projections is varied while the total photon count (or the total exposure
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Sample Code B1 B2 B3 B4 B5
Glass bead

diameters (mm)
5 3 1

0.600 –
0.425

0.300 –
0.212

Sparsity measure 1 (%)
(without segmentation)

1.29 2.21 4.58 8.34 11.60

Sparsity measure 2 (%)
(with segmentation)

0.48 0.85 2.25 4.56 7.90

Table 1: Listing of sample information and the corresponding sparsity levels (percentage of nonzero pixels in
2000× 2000 reconstructed images).

time) is kept constant. For each acquisition, the number of projections was reduced by a factor
of 2 to preserve the equiangular projections, starting with 2048, down to 64 projections. The
total exposure time was kept constant for each acquisition to reduce the experimental noise
and its effects on the analysis of reconstruction techniques [19].

The sample comprised of glass beads and air, packed in a plastic container. The simplicity
and the fact that any cross section through the sample will be piecewise constant makes this
suitable for examining the capabilities of sparse-regularization techniques, in particular TV-
regularization.

While the data set is appropriate for performing a wide range of algorithm comparisons,
results presented in [17] proved to be a limitation of the data sets as we achieved unclear results
for the SophiaBeads data sets with 128 and 64 projections. The study was inconclusive due
to the nature of the data sets, namely the inflexibility of subsampling projections to analyse
for data content higher than 64 projections but lower than 128 projections.

Another shortcoming of the SophiaBeads data sets was that there were only two distinct
sample sizes available (1mm and 2.5mm diameters), meaning we were limited to two sparsity
levels (5.1% and 2.2%, respectively).

Therefore, using our experiences and the acquisition plan of SophiaBeads data sets as
our template, we designed and performed a new set of experiments, which we refer to as
SparseBeads, specifically targeted at assessing sparsity-regularized reconstruction at reduced
number of projections.

2.2. Design of SparseBeads experiments and acquisition details
The preservation of the equiangular projections and flexible subsampling motivated the

use of a highly composite number, which refers to a positive integer that has more divisors
than any smaller number. A realistic highly composite number for the purpose of our study
was 2520, which was chosen to be the maximum number of projections collected over 360◦.

Similar to the SophiaBeads experiments, the SparseBeads samples consisted of a simple
plastic tube packed with uniform Soda-Lime glass (SiO2-Na2O) beads1, of which there were
5 different sizes. The diameters of these bead samples, along with the assigned experimental
code for each sample, are given in Table 1. Each sample was scanned at 3 separate vertical
positions. The table also specifies 2 sets of estimates of the gradient sparsity levels, i.e.,
the fraction of nonzero values in the gradient image of each bead. The gradient sparsity

1Lead-free Soda-Lime glass beads distributed by BioSpec Products, Inc. Address: PO Box 788, Bartlesville,
OK 74005. Website: www.biospec.com
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estimation procedures are described in Sec. 3.2. At this point it suffices to notice that – as
intended – both sets of gradient sparsity levels increase when the bead diameter is decreased.

The SparseBeads data sets were collected using the 320/225 kV Nikon XTEK Bay, lo-
cated at the Manchester X-ray Imaging Facility (MXIF), the University of Manchester. The
apparatus consists of a cone-beam microfocus X-ray source that projects polychromatic X-
rays onto a 2000 × 2000 pixel-length and width, 16-bit, flat detector panel. All experiments
were performed with 1000ms exposure. The projections were collected as part of a batch
scan, where the stop-start technique was used to reduce the angular blurring. To minimize
possible beam hardening artefacts, a 0.1mm copper filter was used during data acquisition.

3. Computational setup

3.1. Image quality assessment
Meaningful image quality assessment is a complex task. In principle, there is no general

notion of image quality. As noted by Barrett [20] it is most meaningful to assess the quality
of an image in relation to a particular task that it is intended to solve. A large body of
this work addresses task-based image quality assessment in medical imaging (see [20] and
references therein), where scans are generally performed with a specific purpose in mind,
such as detection of certain features of interest, and the task is thus well-defined. In addition,
[21] makes the same argument applied to a more general context.

The present work is not motivated by a specific practical imaging task but from trying
to establish theoretical connections observed in the recent work based on simulation studies
[13, 14, 15, 16, 17]. As image quality metric this previous work used the relative 2-norm error
(closely related to the root-mean-square error) defined as

E2(x) =
‖x− xref‖2
‖xref‖2 ,

which is a generic and widely used quality metric and in particular appropriate for measuring
if an image exactly matches the reference image, which was the question of interest. While
recognizing that exactly matching the reference image is not possible for real data we employ
this metric here in order to keep the connection to the previous work. Note that only pixels
within the disc-shaped field of view are included in the computation.

The relative 2-norm error may however not always capture fully if important features have
been faithfully reconstructed. We therefore also employ additional quality measures which
directly quantify whether certain geometric properties are preserved, as demonstrated in [21].
We do this by selecting a number of glass beads from the segmented reconstruction and do a
quantification of the relevant properties using the software Avizo. We then compare with the
same property measured on the same beads in the reference image and define the associated
quality measure to be

EQ =
|M(x)−M(xref)|

M(xref)
,

where M here indicates the chosen geometry measure. In the present case of approximately
spherical glass beads we will assess the following three geometric properties:

• Aspect ratio: The ratio of the shortest to longest measured diameters of a bead.
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Figure 1: Reference images for layer L2 of bead sizes B1–B5 obtained as 40 CGLS iterations followed by
median filtering. 1st row: Full image. 2nd row: zoom to 450×450 pixel region. 3rd row: Thresholded gradient
magnitude images, threshold value 2 × 10−4, basis for sparsity measure 1. 4th row: Manually segmented
images. 5th row: Gradient magnitude of manually segmented images, basis for sparsity measure 2.

• Shape: The ratio of the surface area of the object to the volume of a sphere. This can
also be thought as the cubic-root of the sphericity measure defined in [22].

• Volume: The bead volume determined from the number of pixels belonging to a bead.

The resulting quality measures will be referred to as EA, ES and EV. As a qualitative
supplement to the quantitative measures, visual inspection will also be employed.
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3.2. Reference image and gradient sparsity level determination
A reference image is required to quantitatively assess reconstruction errors. In this study

the reference image is obtained as the 40-iteration CGLS reconstruction using all 2520 projec-
tions, followed by the application of a 5-by-5 median filter. The filtering is used to reduce the
noise present in the reconstruction in order to have a reference image that is more piecewise
constant, as expected from a sample consisting of glass beads, plastic and air. The filter size
was chosen empirically by determining the best trade-off between noise reduction and preser-
vation of spatial resolution across all bead samples and test filter sizes 3, 5, 7, 9, 11. While the
larger beads allow large filters, the smaller ones are subject to extensive oversmoothing/loss
of spatial resolution with filter sizes 7 and above, prompting the use of filter size 5× 5 pixels.
In Fig. 1 the selected reference images are shown along with gradient images.

Two methods are used for determining the gradient sparsity level of the reference images.
Measure 1 computes the gradient magnitude at each pixel using forward differencing in each
direction followed by squaring, summing directions and taking the square root. Since the
images are obtained as reconstructions from real data some noise is present, which yields
small nonzero values that should not be counted as part of the bead edges. For this reason
only values larger than an empirically determined threshold are counted, and the threshold
value was set to 2.0× 10−4. The thresholded gradient magnitude images capture exactly the
edges between beads and air in all cases. The edge between the plastic container and air is
below the threshold and thus corresponding pixels are not counted towards the sparsity level.
This method may have a tendency to overestimate the number of gradient nonzeros, since
several pixels across any given boundary will be counted due the transition from background
to bead stretchingover a few pixels. In principle the transition is sharp and to better capture
this Measure 2 introduces a segmentation of the reference image before forward differencing.
In this way a single band of pixels will have nonzero gradient and estimated sparsity values
be lower and possibly more representative of the actual beads. The sparsity level values in
Table 1 are given as the percentage of nonzeros relative to the total number of pixels, 20002.

3.3. Total variation regularization and algorithm
We denote the log-transformed projection data by b, the 2D fan-beam system matrix by

A, a reconstructed image by x, and the number of projections by Nθ.
To determine a TV-regularized reconstruction (which can be seen as the maximum a

posteriori estimate in a Bayesian formulation) of the discrete imaging model Ax = b we solve
the optimization problem

xTV = arg min
x

1
2Nθ
‖b−Ax‖22 + αTτ (x), (1)

where xTV is the TV-regularized solution, α is the TV regularization parameter and Tτ (x) is
the standard Huber-smoothed total variation, defined as

Tτ (x) =
∑
j

Φτ (‖Djx‖2), where

Φτ (u) =
{ |u| − 1

2τ, if |u| ≥ τ,
1
2τ u

2, otherwise.

Here, τ is the Huber-smoothing parameter, Dj is the finite difference approximation of the
image gradient at pixel j, and ‖ · ‖2 is the (Euclidean) 2-norm.
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Smoothing is used to ensure a solution by smooth optimization techniques, which are
generally faster than their non-smooth counterparts. However, depending on the choice of
smoothing parameter, τ , this might modify the reconstruction. In our implementation, we
use a sufficiently small value of τ relative to the image values that the smoothing effects are
negligible. This is discussed in more detail in next section.

The normalization by Nθ helps to compare reconstructions obtained at different Nθ by
compensating the magnitude of the first term. As a result, a fixed α value yields the same
balance between the two terms at different Nθ, which reduces the range of relevant α values,
making it more practical to find the optimal value.

A disc shaped masking (covering the beads and the walls of the sample holder) was used
to ensure a reconstruction of the relevant field of view, and to reduce the number of unknown
pixel values and thus the computation time. The pixels outside the field of view were set to
zero since there are no other objects but air outside the sample holder. The masking was
applied by determining the pixel indices within the sample holder, and passing only those
pixels to the forward and back-projector.

3.4. TV regularization parameter selection
When it comes to parameters, CGLS only requires a number for iterations to be performed,

and FDK requires a choice for filter. However for TV regularization, we need to determine a
number of parameters. These can be divided into two categories as also pointed out by [23]:
problem-specific parameters and algorithm parameters. The problem-specific parameters are
chosen to refine the mathematical solution in the optimization problem. In the present case
the problem-specific parameters are the regularization parameter α and the Huber-smoothing
parameter τ , as they occur in (1). The algorithm parameters specify the behaviour of the
optimization algorithm used to solve the mathematically defined problem. In our case, we
use the GPBB (Gradient Projection with Barzilai-Borwein acceleration) method from the
TVReg [24] MATLAB c© package and the noteworthy algorithm parameters are the maximum
numbers of iterations to perform and the threshold value used in the convergence criterion; in
addition a number of internal algorithm parameters, for example regarding step-size selection
can also be chosen.

For problem-specific parameters, the Huber-smoothing parameter is fixed at τ = 10−5 in
all studies. A smaller value of τ means less smoothing and thus a better approximation to
the ideal non-smoothed TV-regularization problem (which corresponds to τ = 0). On the
other hand, convergence speed of the algorithm decays as τ is decreased [24], so in practice
a trade-off must be used. To obtain a good approximation to the non-smoothed TV, it is
sufficient that τ is small relative to the smallest difference between pixel values, which in the
present study was of the order of 10−4–10−3. Further, we empirically assessed the effect of
τ by comparing reconstructions at τ = 10−2, 10−3, 10−4, 10−5, 10−6, 10−7. Large differences
(much smoother images) were evident at higher τ values, while at τ = 10−5 extremely small
differences could be observed compared to the smaller values.

The regularization parameter α balances how strongly TV regularization is enforced com-
pared to minimizing the data fidelity term alone. Larger values of α yield a smoother image
while smaller values yield images exhibit no regularization, see Fig. 2. The optimal regular-
ization parameter α, i.e., the value that yields in some sense the best reconstructed image,
depends on many non-trivial factors including noise, number of projections, and scaling of
the image pixel values. In the present study the optimal parameter was selected as the one
yielding the smallest relative 2-norm error of TV reconstructions across a range of α-values.
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Figure 2: Effect of TV regularization parameter α on B3L2 image at 252 projections (ds = 10). Top, left to
right: α = 3.16 × 10−2, 1.0 × 10−2, 3.16 × 10−2, 1.0 × 10−3. Bottom: α = 3.16 × 10−4, 1.0 × 10−4, reference
image (ds = 1), CGLS reconstruction (ds = 10) for comparison.

The reconstruction corresponding to the optimal value will simply be referred to as the TV-
regularized reconstruction.

Algorithm parameters were chosen to ensure an accurate solution to the TV-regularization
problem, while preventing excessive computing times. In practice we observed negligible
changes to the image beyond 10,000 iterations and therefore used this number as the maximum
number of iterations to run. In addition we found it useful to limit unnecessary iterations to
save time by terminating if the norm of the gradient of the objective function in (1) became
sufficiently small. In practice we used the epsb rel input of TVReg to 10−7, as no noticeable
changes were observed in tests beyond this value.

4. Results

4.1. Visual inspection of reconstructions at reduced numbers of projections
In total 2520 equiangular projections were acquired during each tomographic scan. This

number is a highly composite number, meaning it has a large number of divisors, implying that
a large number of perfectly equiangular subsets of projections can be extracted. Specifically
2520 has 48 divisors: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40,
42, 45, 56, 60, 63, 70, 72, 84, 90, 105, 120, 126, 140, 168, 180, 210, 252, 280, 315, 360, 420,
504, 630, 840, 1260, 2520. It is intuitively convenient to express the number of projections Nθ

used along with the corresponding downsampling factor fds, i.e., Nθ = 2520/fds, for example,
252 projections corresponds to a downsampling factor of 10, ds = 10.

All bead sizes B1–B5 each with three layers L1–L3 are TV-reconstructed from projection
data at the downsampling factors listed above. Fig. 3 shows a representative selection of
(zoomed-in) reconstructed images. Our previous simulation work showed that the undersam-
pling factor at which accurate TV-reconstruction is admitted grows when images become more
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Figure 3: TV reconstructions. Left to right: B1L2 – B5L2. Top to bottom: 2520 (1), 504 (5), 126 (20), 63
(40), 30 (84) projections (downsampling factor, i.e. 2520 divided by number of projections).

sparse (have more zero pixels). Thus we expect larger beads (which have a more sparse gra-
dient image) to allow accurate reconstruction at greater undersampling factors than smaller
beads. Looking down columns of Fig. 3 this expectation appears to be confirmed visually:
reconstructions of the largest bead B1L2 appear sharp and clean even at undersampling level
20–40. With decreasing bead size, we observe that smaller undersampling factors yield rea-
sonable reconstructions, roughly along the SW-NE diagonal, with the smallest beads, B5 only
admitting reconstruction at undersampling factors between 1 and 5.
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4.2. Reconstruction error vs. number of projections and image sparsity
To substantiate the visually observed connection between bead size and admitted under-

sampling level we compute the relative 2-norm errors at all 48 undersampling factors for all
5 bead sizes, see Fig. 4. To allow for a more detailed interpretation of the results we display
the resulting error curves both in linear and double-logarithmic plots.
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Figure 4: TV reconstruction errors vs numbers of projections for single images (layer L2) at the five bead sizes
(B1–B5). Left: linear scale. Right: double-log scale.
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Figure 5: Relation between gradient sparsity level s/N , where s is the number of nonzero gradient values
and N the total number of pixels, and the critical number of projections for a satisfactory TV-regularized
reconstruction. Left: Sparsity levels determined determined using measure 1. Right: Using measure 2. The
critical number of projections grows almost linearly with the sparsity level.

In the linear plot, different decay of reconstruction error as function of numbers of projec-
tions is observed among the bead sizes. In agreement with the visual inspection, the recon-
struction error of the largest B1L2 decays rapidly to an almost constant level after a couple of
hundred projections. B2L2 shows a similar decay but reconstruction errors are slightly larger.
For B3L2, B4L2, B5L2 as beads become smaller, the error decays become more gradual and
error values larger. This confirms the expectation that smaller beads, which are less sparse
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in their gradient image, require more projections to achieve the same level of reconstruction
accuracy than larger beads.

In the double-logarithmic plot a systematic decay trend is even more pronounced: All
reconstruction error curves have a similar decay shape and the number of projections to reach
the same reconstruction error increases systematically with decreasing bead size. Again, this
supports our hypothesis of a simple link between sparsity level and critical sampling level.

To quantify the observed connection between sparsity and critical sampling level we will
declare a reconstruction satisfactory if the relative error is below a given threshold. Clearly
the choice of threshold is somewhat arbitrary and we thus compare three different threshold
values (E2 = 0.20, 0.15 and 0.10), as illustrated in Fig. 4. The smallest threshold is chosen
at the point after which all error curves are settling at an almost constant level; the largest
at the point where all curves have started their steep decay; and the third threshold values
as the average of the two. We determine the critical number of projections for each bead
size (and each threshold) as the smallest number of projection that produce a satisfactory
reconstruction. The critical number of projections are plotted against the gradient sparsity
levels in Fig. 5 (left and right: sparsity measures 1 and 2). The double-logarithmic plots
reveal in all cases an approximate linear appearance, which is supported by best linear (in
the double-logarithmic scale) models, corresponding to power functions Ncrit ≈ b (s/N)a,
where obtained a and b coefficients along with R2 coefficients of determination are reported
in Table 2. All R2 values are close to 1, especially for thresholds 0.15 and 0.20, indicating that

Sparsity measure Threshold a b/103 R2

0.20 1.0771 3.5623 0.9968
1 0.15 1.2266 7.9794 0.9938

0.10 1.2231 14.3665 0.9758
0.20 0.8487 3.1985 0.9970

2 0.15 0.9686 7.1175 0.9985
0.10 0.9693 12.9925 0.9874

Table 2: Linear regression results on logarithm-transformed data, yielding relation Ncrit ≈ b (s/N)a, which
due to all a coefficients being close to 1 can be approximated by Ncrit ≈ b (s/N).

the linear model (power function after exponentiation) is appropriate. With the a-coefficient
(exponent) being close to 1 in all cases it is reasonable to approximate the relation by a direct
linear relationship

Ncrit ≈ b s
N
. (2)

In other words, from the presented data we observe an approximate linear relation between
the gradient image sparsity and the critical number of projections using TV-regularized re-
construction. This establishes a positive answer to our targeted question Q1.

Note from Table 2 that the linear coefficient b, which determines how quickly the critical
number of projection grows with sparsity level, depends on the sparsity determination method.
This is also observed in and can be explained by Fig. 5. The critical numbers of projections
are the same in the left and right plots, only the sparsity values differ. Since sparsity method
1 yields more nonzeros than sparsity method 2, the curves are shifted to the right and are
steeper, which corresponds to larger b-values.
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4.3. Phase diagram analysis
Having established a positive answer to Q1, we now focus on Q2, which is to assess

whether the found relation agrees with the empirical phase transition established in previous
simulation work [13].

Figure 6: Empirical phase diagrams for sparsity measures 1 (left) and 2 (right). The empirical phase-transition
(PT) curve sharply separates a full-recovery region (in white) from a no-recovery region (in black) and specifies
the expected critical number of projections for a satisfactory reconstruction. Observed critical numbers of
projections for each bead size are plotted as points based on the sparsity level and connected using lines with
line styles indicating the threshold used. Auxiliary iso-sparsity hyperbolas (ISHs) shown trace out curves of
constant sparsity levels of each bead size.

In [13] it was found empirically that a sharp phase transition as in CS could be observed
for TV-regularized reconstruction of a class of images with sparse gradient magnitude. This
phase transition occurs in the (δ, ρ) ∈ [0, 1]2 phase space, where δ = m/N is the number
of measurements relative to the total number of pixels and ρ = s/m is the sparsity level
relative to the number of measurements. A combination of an image of a given sparsity and a
given number of measurements acquired determine a position in the phase diagram. If below,
the phase-transition curve essentially all such combinations were found to yield a satisfactory
reconstruction using TV-regularization, while above implies failed reconstructions. The phase-
transition curve specifies the expected critical sets of (δ, ρ) values separating the full-recovery
and no-recovery regions of the (δ, ρ) phase space. The empirically determined phase-transition
curve found in [13] is shown in Fig. 6.

If one knows the (gradient) sparsity s of an image with N pixels, then the phase transition
curve specifies the critical number of measurements needed for TV-regularized reconstruction
to produce a satisfactory reconstruction. By combining the expressions of δ and ρ we obtain

ρ =
( s
N

) 1
δ
,

from which it is seen that this image lies on a hyperbola in phase space, henceforth referred to
as an iso-sparsity hyperbola (ISH). The point at which the ISH and the phase-transition curve
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intersect is the critical number of measurements, m that suggests a satisfactory reconstruction
at the given sparsity level. In [13] this approach predicted that 69.3 projections would suffice
to recover a digitized phantom image of a walnut, which was almost perfectly correct, since
the walnut was found empirically to be recovered at 68 projections.

In the present study instead of computing predicted critical numbers of projections we
will compare the observed critical number of projections for all bead sizes directly with the
phase-diagram predictions by plotting each one into the phase diagram. If the phase transition
can predict the critical number of projections, each point should lie on or close to the phase-
transition curve. This is done in Fig. 6 for both sparsity measures and all three satisfactory
reconstruction thresholds. ISHs at the sparsity level of each bead size are added to visually
connect each fixed sparsity and illustrate the transition across the phase diagram.

We observe that only few of the points are close to the phase-transition curves, and in
particular for sparsity measure 1, most points are situated too high above the curve, which
may again indicate that this method overestimates the true sparsity value. The points for
sparsity measure 2 occur closer to the phase transition but do not appear to follow it at any
of the chosen thresholds. From the presented data we must therefore conclude that the phase
transition does not provide a useful method for predicting the critical number of projections
from the (gradient) sparsity level. In other words, a negative answer to Q2.

Based on the almost-linear relationship between sparsity and critical sampling level (2),
the lack of agreement with the phase transition should not be a surprise. We can convert (2)
into the phase space variables to see what the relation corresponds to in the phase diagram.
Given that each projection consists of

√
N = 2000 we find the critical number of measurements

mcrit = Ncrit

√
N and the critical value of ρ to be

ρcrit =
s

mcrit
=
√
N

b
, (3)

which is a constant independent of δ. For example for sparsity measure 2 and threshold value
0.15, this yield a constant of 0.2810. This matches quite well with the observed, almost-
horizontal, dashed curve in Fig. 6, which lies at ρ ≈ 0.25.

In other words the observed almost-linear relationship providing a positive answer to Q1
is incompatible with the non-linear phase transition and thus results in a negative answer to
Q2.

4.4. Bead quantification error measures
To assess whether the simple choice of the relative 2-norm error as the quality measure

affects the obtained results we repeat the experiment using the quantification measures of
aspect ratio, shape and volume of the selected beads. As the process of determining the
measures is rather laborious we only provide values for 13 selected downsampling factors across
the range of the 48 divisors of 2520. Fig. 8 shows the error measures as function of numbers of
projections. While the behaviour is less defined than for the relative 2-norm error, the overall
behaviour is very similar for the four largest bead sizes: from approximately constant errors
the bead sizes curves decay rapidly at different numbers of projections in the same order as
before until a quite steady level is reached. The errors determined for the smallest bead size
B5 have been omitted as it was not possible to segment and separate enough beads to provide
a meaningful error measure. A single threshold for a satisfactory reconstruction is chosen as
0.1 for all three quality measures and the critical number of projections are computed and
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Figure 7: Critical number of projections for a satisfactory TV-regularized reconstruction as measured by the
aspect ratio, shape and volume quantification errors. To help compare with the relative 2-norm error measure
results in Fig. 5, the obtained linear models for threshold 0.15 are also included.
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Figure 8: Aspect ratio, shape and volume quantification errors of TV-regularized reconstructions as function
of numbers of projections. Compare Fig. 4.

plotted as function of the two sparsity levels in Fig. 7. In both cases a linear trend is again
observed but no linear regression is performed. Instead to allow comparison with the relative
2-norm error results in Fig. 5 we display the previously obtained linear fits corresponding to
the threshold of 0.15. In both cases the slope matches closely with the quantification results.
We thus conclude that the quantification measures support the same positive answer to Q1
as we obtained for the relative 2-norm error measure. This strengthens the conclusion as the
quantification measures may be more representative of reconstruction quality, as they more
physically reflect geometric properties of the glass beads.

For completeness we also compare the quantification measure results with the phase di-
agram in Fig. 9. Similar to the relative 2-norm results, the observed critical number of
projections do not consistently occur close to the phase-transition curve. We conclude again
that the results of the conducted study are not consistent with a positive answer to Q2 which
questioned whether there is a connection between the critical sampling levels and the sparsity
level as given by the phase transition.
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Figure 9: Comparison of observed critical number of projections by aspect ratio, shape and volume quantifi-
cation errors with the phase diagram prediction of critical sampling level.

5. Discussion

Upon close inspection Fig. 3 shows some artefacts, mostly clearly seen for B3L2 and B4L2
and take the form of mainly smaller beads having a double appearance with two almost
identical copies slightly offset. The same artefacts are present in the CGLS reconstructions in
Fig. 1, which means that it is not an artefact of TV regularization but rather inherent to the
data. We believe this artefact arises from bead movement during the scan, as beads were not
fixed and had some freedom to move, despite best efforts to firmly pack the bead containers.
We used a stop-start scan procedure to obtain projections at fixed angles rather than over
a small angular range as is the case in a continuous scan mode. We believe the constant
stopping and starting resulted in a periodic jerking of the container which may have caused
bead movement. The movement artefacts may be removed by filling voids for example by
epoxy to fix beads, however this would require ensuring that no air bubbles are trapped inside
to preserve the simple object composition of just beads and background. Another option may
be to subject the packed beads to sintering, which would attach all beads thus fix into a
rigid structure, while preserving the spherical shape of beads apart from at interfaces and
avoid issues of trapped air. A third option to avoid movement artefacts may be to use 3D-
printing to produce a test phantom of varying sparsity. One may also argue that in any real
data acquisition some inconsistencies will be present and the particular movement artefacts
encountered in the present data set is just one realization of inconsistencies and therefore
something that is simply part of carrying out a real-data study. The micro-CT scanner used
to acquire the present data had been conditioned daily following local laboratory procedures to
ensure the instrument was ready, notably that the X-ray source was stable during acquisition.
No further calibration or optimization such as source focusing immediately prior to data
collection was done; doing so may further improve the quality of data to help strengthen the
achievable conclusions.

Other possible sources of errors compared to a simpler ideal synthetic data scenario include
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computational aspects in the numerical solution of the TV-regularized reconstruction problem
for large-scale data. We used the ASTRA Tomography Toolbox [25] for GPU-acceleration
of the forward and back-projection operations, which are the most expensive steps involved.
For efficiency reasons this uses only single precision and involves an unmatched forward-
backprojector pair implementation, i.e., the back-projection operation is not equivalent to
applying the conjugate of the forward projection operation represented by the matrix A.
This may lead to inaccuracies and convergence issues [26], but the effect may be kept at bay
by the additional regularity enforced by TV regularization. Furthermore a larger number
of iterations may yield slightly different reconstructions, but as we observed essentially no
change in the image after 10,000 iterations in a range of inspected cases, we believe the
reported observations will remain unchanged. Finally, any minor effect of using the Huber-
smoothed TV may be removed by using an algorithm for non-smooth optimization such as the
Chambolle-Pock algorithm, but as explained in Sec. 3.4 we believe to have already reduced the
smoothing effect to be negligible. In the present work we chose to use the TVReg algorithm
because we have found it to work very robustly when applied to real data and interfacing
to the ASTRA Tomography Toolbox across a range of parameter regimes. This is in our
experience not always the case with implementations of advanced reconstruction methods.

6. Conclusion

The presented data suggest that in the range of sparsity levels considered the critical num-
ber of projections for satisfactory reconstruction by TV-regularization grows approximately
linearly with the image gradient sparsity. To our knowledge this is first empirical evidence and
quantification of a link between gradient image sparsity and the number of projections suffi-
cient for accurate reconstruction by TV-regularization. Such a connection was demonstrated
in previous simulation work by one of the authors and might have been anticipated from
compressive sensing, but prior to the present work it was an unaddressed question whether
this was also the case in practice.

We believe that under similar conditions the empirically established relation may be used
as a guideline for determining the minimum number of projections to acquire for a satisfactory
TV-regularized reconstruction based on the expected sparsity of the sample. For relatively
sparse samples this may lead to a large reduction in scanning efforts (time, X-ray exposure,
etc.) of an order of magnitude or more, as opposed to standard practice of dense angular
sampling employed at present. An important question for future work is how general the
observed relation is when changing the scan conditions and the type of sample scanned.

Other future work include to address limitations described in the previous section such
as bead movement to design and acquire a more optimized data set. This may further
corroborate the link between sparsity and critical sampling level and possibly reveal a closer
relation with the phase-transition behaviour observed for simulated data.
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Abstract

While it is well known that X-ray tomography using a polychromatic source is non-linear,
as the linear attenuation coefficient depends on the wavelength of the X-rays, tomography
using near monochromatic sources are usually assumed to be a linear inverse problem. When
sources and detectors are not treated as points the measurements are the integrals of the ex-
ponentials of line integrals and hence non-linear. In this paper we show that this non-linearity
can be observed in realistic situations using both experimental measurements in a γ-ray to-
mography system and simulations. We exhibit the Jacobian matrix of the non-linear forward
problem and show that it can be solved iteratively. Applying this algorithm to experimental
data we show that improved reconstructions can be obtained.

Keywords: Exponential edge effect, non-linear partial volume effect, penumbra, gamma ray
tomography, x-ray tomography, non-linear reconstruction

1 Introduction

X-ray or γ-ray transmission tomography (CT) is generally taken to be a linear method in that
the vector of the logarithm of the measurements on each detector, for each source, is a linear
function of the linear attenuation in the region being imaged. Under this assumption the problem
of recovering the linear attenuation in each pixel (or voxel) in the image reduces to one of linear
algebra. The matrix of the resulting linear system will be mildly ill-conditioned (at least for
fairly complete data) and standard regularized inversion methods or discrete approximations to
explicit reconstruction algorithms for the continuum case work reasonably well [14]. There are
several reasons for a linear model not to fit CT data. In the polychromatic case the dependence
of the linear attenuation on wavelength is often the largest effect and is important in medical,
dental, non-destructive testing and security screening applications. Scattering also results in non-
linearity [6], as well as a forward problem that more highly coupled as material out of the direct
beam path between a source and detector can affect the measurement. This has been identified
as the penumbra effect [12, 11]. This can be counteracted by collimation of the detectors using a
‘scatter grid’ but in some systems such as the fast switched sourced RTT security screening CT
system this is not possible [19, 20]. However even nearly monochromatic CT systems using for
example a γ-ray or synchrotron source, and even without scatter, can exhibit non-linearity.

For simplicity we will consider a two dimensional problem (generalization to three dimensions
is straightforward). Consider a fixed source and detector pair both represented by a line segment.
Let S(s) be a point on the source point parametrized by arc length s and D(s) similarly a point
on the detector. From Beer-Lambert’s law [1], flux density I measured at a point in the detector
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due to a point in the source with flux density I0 is

I(D(s)) = I0 (S(s′)) exp

− ∫
L(S(s′),D(s))

µd`

 , (1)

where the integral is taken over the line L (S(s′), D(s)) between source and detector points, and
d` is the measure on that line. The total flux for this source-detector pair is thus

I =
∫∫

I0 (S(s′)) exp

− ∫
L(S(s′),D(s))

µd`

 ds′ ds, (2)

and we see the problem: the sum of exponentials is not the exponential of the sum. This non-
linearity is clearly bigger for larger sources and detectors giving a wider range of ray paths, and
also increases as the variation in µ is such that the ray paths in a source and detector pair
encounter a wider range of linear attenuation. The non-linearity has been described as a “non-
linear partial volume effect”[6], the volume here referring to the region defined by all the rays
between a source and detector pair and the fact that part of that volume has a different attenuation
from another part and the exponentials of the integrals are combined. It has also been described
in the literature as “exponential edge-gradient effect” [10, 5]. For essentially two dimensional
problems the phenomena has been noticed in the out of plane direction when the attenuation
varies on the length scale of the slice width. According to one review paper “Hopefully, this effect
on the variance is small because accounting for it seems to be challenging” [16].

When using large sources and detectors it has been noticed that the non uniform density of
rays across the volume needs to be accounted for [21, 12] and that this can improve reconstruction
under some circumstances even without taking account of the non-linearity.

2 Mathematical formulation

The starting point of this work is to consider a finite set of positions of sources and detectors
of finite size. Although we can consider the continuous case of the Radon or X-ray transform
where there are infinitely many point sources and detectors, there is no obvious candidate for
a limiting continuum case with infinitely many measurements with finite sources and detectors.
Our investigation will therefore concern finitely many measurements. We can only recover a
finite number of parameters in the the image space so we suppose for simplicity that the linear
attenuation coefficient can be represented as

µ(x) =
K2∑
k=1

µkχk(x), (3)

where χk are the characteristic functions of some partition of the region of interest in to K2 picture
elements, such as square pixels. We will denote by m the vector of non-negative coefficients µi.
We will assume that measurements are taken on K2 pairs of line segments SkDk thought of as a
source, detector pair.

Our data vector d is given by the non-linear forward problem

d = F(m), (4)

where

Fk(m) = log

∫∫ I0 (Sk(s′)) exp

− ∫
L(Sk(s′),Dk(s))

µd`

 ds′ ds

 . (5)
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Figure 1: The normalized linearized sensitivity for a simple case where source and detector are
parallel and opposite. In this case the dimensions in mm are W1 = 18,W2 = 10, L = 200. The
lower plot shows a cross section for y = 3 illustrating that the function is continuous but not
differentiable.

The Jacobian matrix, ∂Fk/∂µl is

− 1
expFk(m)

∫∫
I0 (Sk(s′)) exp

− ∫
L(Sk(s′),Dk(s))

µd`


 ∫
L(Sk(s′),Dk(s))

χl

 ds′ ds. (6)

In the simple case I0 = 1, the derivative at m = 0 is simply

∂Fk(0)
∂µl

= − 1
expFk(0)

∫∫ ∫
L(Sk(s′),Dk(s))

χl d`ds′ ds, (7)

which coincides with the usual linearized problem for CT taking account of non-zero source and
detector size [21, 12].

In the limiting case, as the pixels tend to points, the integral reduces to the point sensitivity,
which is the density of lines at a point in the image. The point sensitivity for a simple case where
source and detector are parallel and opposite with source width W1, detector width W2 separated
by L and I0 = 1 is

S(x, y) =
1

2W1W2
r1,2 r2,1, (8)

where

ri,j =
(
−Wi/2,Wi/2, y − dj(L+ 2x)

2(L− 2x)
, y +

dj(L+ 2x)
2(L− 2x)

)
and r(a, b, c, d) is the length of the intersection of the intervals (a, b) and (c, d) (see Appendix
A). This rather complicated formula that simply expresses the product of the lengths of the line
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Figure 2: A simple diagram illustrating NLPVE.

segments that are subsets of the source and detector that can be connected by straight lines to
the point(x, y) in question. While this is continuous the function is only piece-wise differentiable,
and as can be seen from the example in fig.1 markedly inhomogeneous. Perhaps the most notable
feature is that a ‘small’ object is not detected close to the source or detector or at the edges of the
‘beam’ joining the source and detector. Even for systems where the non-linearity is not especially
pronounced this non-uniform sensitivity might still be sufficient to have a substantial effect on the
accuracy of reconstructed images.

The non-linear effect can be illustrated nicely with a source and detector parallel and the same
width. First consider an object which occupies half width of the rectangle between the source
and detector. As a very crude approximation to illustrate the effect, consider only rays entirely
inside the object (linear attenuation µ) or entirely missing the object (linear attenuation 0) and
assume that the distance L between source and detector is sufficiently larger than the width W
that we can ignore the variation in the path lengths. We have approximately the measurement as
a function of µ

F (µ) = log
1
2
W (1 + exp(−µL)) .

In this case we have, by taking series expansions,

F (µ)− F (0) = −µL
2

+
µ2L2

8
+O(µL)3,

which gives us a ‘rule of thumb’ that the magnitude of the non-linear partial volume effect in this
case is around half the square of the linear approximation to the difference in the logarithmic data.

A simple approximation to the integral over lines joining source and detector can be achieved
by choosing uniformly spaced quadrature points on each source and detector, and summing the
intersection length with each pixel over all the lines joining quadrature points on each source and
detector pair. Suppose there are N pairs of quadrature points for each source-detector pair. Let
R be the NK ×K matrix of line intersection lengths of pixels of lines joining quadrature points.
Let P be the K ×NK matrix that performs the (weighted) sum over the all the lines in a source
detector pair. In the linear approximation to CT the matrix PR would be the matrix of the
system we seek to solve. Instead, using this approximation, we solve

d = F̃ (m) := logP exp(Rm), (9)

where the log and exp applied to vectors are taken to act component-wise. The Fréchet derivative
is

DF̃ (m)δm = (diagP exp(Rm))−1
Pdiag (exp(Rm))Rδm. (10)
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3 Reconstruction algorithms

Let p be the number of projections, r be the number of rays per projection, M = p r, and K be the
length (and width) of the image domain in pixels. For both linear and non-linear reconstructions,
the image m is reconstructed over a square grid of K × K. To approximate the integrals over
the source and detector we choose NS and ND quadrature points on the source and detector
respectively and N = NDNS . We denote by R the geometry matrix of size NM ×K2. Each row
of R is obtained using Jacob’s ray tracing algorithm [18] to find the intersection length of a point
between a quadrature point on the source and detector. The matrix P is the M × NM matrix
that simply takes a weighted sum of rows corresponding to each ray within a given source-detector
pair. We denote by d the (vectorized) measured data with size M × 1. We found by numerical
experiment that for our geometry using numbers of quadrature points larger than NS = ND = 5
did not change the results to three decimal places.

For the linear model, we need to solve PRm = d, although it will be overdetermined if we
choose K2 < M so we require a least squares solution

arg min
m
‖PRm− d‖22

using a straightforward implementation of conjugate gradient method adapted to least squares
problems (henceforth CGLS) [17]. The CGLS method is essentially the conjugate gradient method
applied to solve the normal equation ATAx = AT b. CGLS is a popular method amongst those
working in signal and image processing for its simple and computationally inexpensive implemen-
tation and fast convergence. For our reconstructions, the CGLS iterations were performed until
a tolerance value, ε, was reached or a maximum number of iterations, imax, was performed. The
tolerance value is defined as the 2-norm of the residual vector calculated at each iteration. The
algorithm was also applied to the generalized Tikhonov regularization problem [8]

arg min
m
‖PRm− d‖22 + α2‖Lm‖22,

where L is the regularization matrix and 0 < α is the regularization factor. For our runs for both
numerically simulated and real γ-ray data reconstructions, the regularization matrix L was chosen
to be the identity matrix, and α = 0.01. Another obvious choice of L would be a finite difference
gradient which would penalize less smooth images. In that case a larger K could be used as the
regularized system, formed by appending L beneath PR, would still be over determined.

In addition we include total variation regularized (TV) reconstructions to compare with the
CGLS and non-linear optimization methods. The method employed here is based on the primal-
dual algorithm outlined by Chambolle and Pock in [3], which solves the following optimization
problem

arg min
m

1
2
‖PRm− b‖22 + α‖Dm‖1,2.

Here, the mixed l1 − l2 norm ‖ · ‖1,2 is defined as

‖Dm‖1,2 =
K2∑
i=1

‖Dim‖2,

where Dim is the forward-difference approximation of the gradient at voxel i. The implementation
of the primal-dual algorithm also requires four additional parameters that define the primal and
dual step-sizes, ρ, τ > 0, and upper and lower bounds for the image domain. The lower bound
is known in our case since we cannot have a negative attenuation coefficient, meaning we have
three parameters and the regularization factor α to fine-tune for best reconstructions. Despite the
required number of parameters and longer runtime due to increased demand for computational
power, TV is expected to give more accurate images where objects have distinct boundaries and
homogeneous interiors. For this reason TV regularization is often used as a deblurring or denoising
method in image processing.
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Figure 3: Cross section of Bergen γ-tomography system. The lead collimator plates at the midline
of the detector elements are shown but they were removed in the detector array used for our
experiments leaving only the plates between each element.

The non-linear reconstructions are obtained using the trust region method [2] with the reflective
transform [4] applied at each iteration. The trust region methods minimize a quadratic model
function, Q(p) given by

min
p
Q(p) = fk + JTk p+

1
2
pTHkp, s.t. ‖p‖ ≤ ∆k,

where fk = f(pk) is the objective function, Jk = ∇f(pk) is the Jacobian, Hk = ∇2f(pk) is
the Hessian matrix, and ∆k is the radius of the trust region, over which the function Q(p) is
minimized. In our implementation, we use Hk = JTk Jk (trust region Newton’s method). ∆k is
calculated at each iteration, which is based on the agreement between the quadratic function Q and
the objective function f at the previous iteration. See cited literature and [15] for implementation
details. We chose to implement a trust region method as these methods are more robust than line
search methods for solving ill-conditioned systems.

4 Description of apparatus

The Bergen γ-ray tomography system described in [9] was used for this experimental study, see
fig.3. The system was designed for fast imaging of oil, gas and water cross sectional distributions
within a pipe. The system is made up of a total of 5 241Am radioisotopes with an activity of 500
mCi and 5 detector modules each containing a total of 17 CdZnTe detectors. The relatively large
source (18mm diameter) and detector size (10mm across) separated by 440mm was large enough
to expect an observable non-linearity. The 241Am source with a 59.5 keV principal emission peak
is a good approximation to monochromatic radiation.

The CdZnTe detector elements are 10 × 10 mm2 in cross section and 2mm thick, chosen to
effectively stop any low-energy γ-ray from being transmitted through an element. Lead plates are
fitted between each element to reduce the detection of scattered photons: a ‘scatter grid’. In its
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normal operation there are similar lead plates bisecting each element but these were removed as
we wanted to measure the effect of all the ray paths between source and detector element. These
collimation plates would be expected to reduce the non-linearity at the expense of also reducing
the counts measured. Each detector array is positioned opposite a source. The source aperture is
designed to collimate the radiation in a fan beam that coincides with the 80mm diameter circular
aperture where the phantoms are placed. This aperture is itself surrounded by a tube of Perspex
5mm thick. The system has five nominally identical source and detector array pairs distributed
equiangularly. The counting threshold of each detector is set to 48 keV, effectively screening out
the lower emission peaks of the source as well as minimizing the effects of scattered radiation,
e.g. those photons that undergo Compton scattering and lose a certain fraction of their initial
energy. Before inserting a phantom a background reading was obtained, averaging the counts on
the detector array in use until the ratios of the number of counts in each element to the total
counts was constant to three decimal places. Each measurement of the phantom used the total
number of counts over the same time. In practice we averaged over 30s for each measurement.

5 Monte Carlo simulation

It is a well-known fact that scattered radiation affects the accuracy of reconstructed images. This
is also the case in the Bergen γ-ray tomography system with fixed source and detector modules
as illustrated in fig.3. The question that arises then is the following: What is the contribution
from scattered radiation to the overall non-linearity as compared to radiation directly transmitted
through the phantom and onto the detector module? This question cannot be answered easily by
experiments as it is not an easy task to separate scattered (i.e. collided) and uncollided compo-
nents. Monte Carlo (MC) simulations, on the other hand, provide a means to numerically track
individual photons in the geometry of the γ-ray tomography system, and provide the possibility
of identifying these as collided and uncollided photons. Thus, in order to study the relative im-
portance of the non-linear effects as compared to scattered radiation, a simple Monte Carlo (MC)
model of the Bergen γ-ray tomography system has been implemented using the general purpose
MC code, MCNP6.1 [7].

Here, the first task was to benchmark the MC modeling against experimental data. Since
the focus was on determining the overall non-linear effects in the pertinent γ-ray tomography
system, a detailed implementation of entire system geometry was deemed unnecessary. This is
because the non-linear effects stem from the partial coverage of an object spanned by the rays
between a source and the corresponding detector. A portion of these rays may undergo different
amounts of attenuation. Thus, the non-linear effects are not related to the finer details of the
measurement geometry with the exception of collimation grid. Therefore, only a single detector
module, containing a total of 17 CdZnTe semiconductor detectors, was implemented. In addition,
the lead collimator blades placed in front of each detector module were implemented. In order
to replicate the experimental conditions, every second collimator, the ones in the middle of each
element, was removed from the geometry. Thus, the final geometry implemented in MCNP6.1
contains 17 lead collimator blades. As the main purpose of the MC simulations has been the
separation of collided and uncollided fluxes incident upon the detectors, no other details such
as the detector and source housing were implemented. In accordance with the geometry of the
experimental setup the source-to-detector distance was set to 440 mm. The source was defined as
a disk source with a diameter of 18 mm emitting 59.5 keV photons whereas the pipe inner and
outer diameters were set to 80 mm and 90mm, respectively. In table 1, a list of materials used in
the MC simulations is provided.

At the energy of interest, the CdZnTe detectors exhibit nearly 100.0% detection efficiency.
Thus, secondary electron transport could be safely neglected. The secondary electron transport
was turned off in the entire problem geometry and the simulations were run as a “photon-only”
problem using detailed photon transport physics. Furthermore, the transport cut-off energy for
photons was set to 48 keV in the entire geometry. This is in line with the experiments as the
counting threshold of all detectors is set to 48 keV. For all 17 detectors in the geometry, so-called
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Table 1: Listing of materials used in the MC simulations.
Component Elements Weight fractions Density

[g/cm3]
Pipewall (PMMA) H, C, O 0.08, 0.6, 0.32 1.19
Phantom(polypropylene) H, C 0.14, 0.86 0.92
Air N, O, Ar, C 0.755, 0.232, 0.012, 0.001 0.0012
Detectors(CdZnTe) Cd, Zn, Te 0.4, 0.1, 0.5 5.78
Collimators Pb 1.0 11.35

f4 tallies giving the flux averaged over a cell were defined. For the purpose of benchmarking the
MC model, simulations were run with the pipe filled with air and polypropylene (see table 1)
representing empty and full pipe measurements, respectively.

Moreover, the above mentioned f4 tallies were divided into collided and uncollided contribu-
tions using the so-called uncollided secondaries card in conjunction with special tally treatment [7].
The purpose was to identify the number of collisions source particles suffer prior to reaching the
cells defining the detectors and also, to identify secondary particles such as characteristic X-rays
that may reach the detectors without suffering collisions. The uncollided secondaries card thus
was used to label these secondaries as collided particles. In this way, it was possible to separate
the uncollided source particles from the collided in addition to any secondaries that may reach the
detectors. Everything other than uncollided source particles were treated as collided.

Using the above mentioned settings, the effects of scattered radiation could be studied and
compared to the case of “no scatter”. The results obtained are given in Sec.7.1.

6 Phantoms and experimental protocol

The biggest observable non-linear effect is expected when the rays between a source-detector pair
encounter the largest contrast in the line integral of the linear attenuation. One simple way in
which this happens is a plane interface between air and a more attenuating substance with the plane
aligned with the source detector pair but only partly in the path. Such a phantom was already
available and had been used with the Bergen system. It consist of half of a solid, 80mm diameter
cylinder of polypropylene truncated by an axial plane through its mid-line. This was designed to
emulate a pipe half full of oil and locating such an interface accurately within the intended use of
the system. In each of the five detector arrays the 9th of the 17 detector elements diametrically
opposite the centre of a source and we thus expect this to show the largest non-linearity. For
comparison a full solid cylinder of the same polypropylene was used. The protocol used was to
collect a set of data with the half-cylinder phantom aligned with one source and the opposite
detector element 9. The phantom was then turned through half a turn and the measurement
repeated. Finally the same measurement was repeated with the solid cylinder phantom. To avoid
statistical fluctuations due to the arrival time statistics of the photons data was collected over a
30s period in three blocks of 10s.

Denote the array of normalized logarithmic counts for a each detector element and and a given
source for the half-cylinder in the two positions by L1 and L2 and the full cylinder by L12. The
normalization is taken with all phantoms removed and compensates for variations in the sensitivity
of the detector elements. If the logarithmic counts were linear in the linear attenuation we would
satisfy the superposition principle L1 + L2 = L12. We thus consider L1 + L2 − L12 as a measure
of the non-linearity.

The second phantom used consists of an 80mm diameter polypropylene cylinder with cylindrical
holes of diameter 26mm bored so that the axis of the cylinder and the hole are parallel and
separated by 20mm. See fig.4b. Two solid plugs machined to be a tight fit in the hole were made
from the same batch of polypropylene. A solid cylinder would have served the same purpose as
the two hole cylinder with both plugs fitted, but experiments showed a difference between the
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Phantom Image

(a) Numerical phantom used for simulated data. (b) Diagram of the real phantom used in γ-ray
experiments.

Figure 4: Phantom images used in the simulations (left) and the diagram of the phantom object
used for collecting real data (right).

linear attenuation factor of our solid cylinder and the polypropylene available to construct the
new phantom. The design and dimensions of this phantom were typical of those used to test the
Bergen combined γ-ray and capacitance dual sensor system. Of course we could explore non-
linearity using just the plugs suspended in air, but as the apparatus is arranged for a vertical
imaging plane it would be more difficult to ensure the plugs were positioned accurately. Let L0

denote the logarithmic counts for the two hole phantom and L1 and L2 the logarithmic counts
with one of the plugs in a hole and L12 for both plugs. If the system was linear we would expect
L1−L0 to be equivalent to the normalized counts for just one plug in air. So superposition would
give L1−L0 +L2−L0 = L12−L0 so we have L1 +L2−L12−L0 as a measure of the non-linearity.

We also collected data suitable for comparing linear and non-linear reconstruction from multiple
projection. The Bergen system is intended to be used for fast imaging using data from only five
projections, collected simultaneously from five sources. To remove the limited data effect of only
five projections and to eliminate variation caused by differences in the sources and detector arrays
we collected imaging data by rotating the half cylinder and two hole phantom in angular increments
to collect a fully sampled fan-beam projection data set. Again, the measurement time for each
projection was 30s and thus, the statistical fluctuations in the data were negligible.

Finally our initial numerical experiments used a numerical phantom, see fig.4a. This consisted
of a square pixel grid with a background of µ = 1 with circular contrasting objects with µ = 2.
The dimensions of the square were taken so that the diagonal was contained in the 80mm region
of interest. To avoid ‘inverse crimes’ the simulated data was generated using a grid with 2K× 2K
pixels Gaussian pseudo random noise was added to the data.

7 Results

7.1 Results of MC simulations

In the following, the results of MC simulations will be presented. Firstly, the MC implementation
of the measurement geometry was benchmarked with experimental data. All simulations were run
for a total of 108 primary photon histories, ensuring a relative statistical error of less than 2% for
all tallies in the problem, i.e. collided and uncollided fluxes incident on the detectors for empty
pipe, full pipe and phantom measurements. Each simulation was run on a six-core Intel Xeon 2.4
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GHz CPU and took about 25 minutes to complete.

Figure 5: The normalized intensities recorded by each detector for empty and full pipes. The open
legends show the results of MC simulations whereas the full legends show the experimental results.
The normalization of the intensities is performed by dividing the intensities in each detector by
the largest intensity obtained in the empty pipe measurements.

As can be seen in fig.5, the results of MC simulations showing the total flux of photons inci-
dent on the detectors agree reasonably well with the experimental data, especially for the central
detectors in both full and empty pipe measurements. The MC simulations and experiments does,
however, show a divergent behaviour for the side detectors. For the side detectors, as fig.5 reveals,
the MC simulations predict higher intensities. This may be explained by considering the following
factors; finer details of the measurement geometry are ignored in the MC modeling, only nominal
values of the pipe dimensions are considered and positioning of the lead collimators. MC simula-
tions do confirm this, as e.g., using slightly larger pipe diameter improves the agreement between
MC simulations and experiments. As given in the following, altering these dimensions does not
change the results significantly with respect to the non-linear partial volume effects vs. scattered
radiation. Thus, for the purposes of this work, it was concluded that the MC simulations, given
the results shown in fig.5, gave a reasonably well approximation of the experimental apparatus.

The non-linear effect was studied using a half-circular phantom simulating a pipe half oil filled
and half empty (i.e., air). As given in Sec.7.2, the experiments show a significant non-linear effect
at the interface between phantom and air whereas the largest non-linearity is seen for the center-
most detector, i.e. detector 9, which spans this interface. It would therefore be interesting to
see whether this effect would be equally pronounced when there is no scattered radiation. The
MC predicted photon flux incident on the detectors were separated into collided and uncollided
components. As mentioned earlier, collided component includes contributions from both scattered
primary photons as well as any secondary photons from atomic relaxations. The non-linearity was
calculated for the uncollided flux as outlined in Sec.6.

As expected, and as shown in fig.6, non-linearity turns out to be largest for the centre-most
detector, i.e. detector 9, in this detector module. More importantly, the benchmarked MC results
show that the non-linearity will be substantial, even when scattered radiation is entirely eliminated.

The above observation partially confirms the statement that the non-linear partial volume
effects are present even when the scattered radiation is eliminated entirely and that the non-
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Figure 6: The MC generated non-linearity plotted against the detector number in a given detector
module obtained for the half-circular phantom using only the uncollided photon flux. The results
show that the non-linearity will be substantial (for the center-most detector, i.e. detector 9) even
in case of no scattered photons.

linearity in the transmitted radiation is the dominant cause of errors in reconstructed images. A
direct comparison based on the use of logarithms of collided and uncollided intensities is, however,
difficult as the normalization of intensities is not straightforward. In addition, the overall intensity
of scattered radiation is, in the given geometry, an order of magnitude less than the uncollided
intensity. An indirect approach is therefore based upon reconstructing the phantom images using
uncollided and total fluxes. Utilizing the reconstructed pixel densities, the gas volume fraction
(GVF) can then be calculated for these two cases. The half-circular phantom represents a case
with 50% GVF. The error in the calculated GVF can then be used as an indicator of the magnitude
of the non-linear effects stemming from scattered radiation as well as that of transmitted radiation.

As only one source-detector module pair was implemented, full and empty pipe simulations
were repeated five times using different random number seeds to obtain all five projections. The
same procedure was utilized for the simulation of the phantom whereas the phantom was rotated
at intervals of 72◦. The tallied photon fluxes were separated as total (i.e., sum of collided and
uncollided fluxes) and uncollided. The images of the phantom were reconstructed using the MC
simulated data through a simultaneous multiplicative algebraic reconstruction technique (SMART)
[13]. The GVF was calculated as an average weighted sum of the reconstructed pixel densities,
α = 1/A

∑
αiAi where A is the pipe cross-section area, αi are the reconstructed pixel densities

and Ai are the pixel areas.
In fig.7, the MC simulated, normalized intensities obtained for the two cases, i.e. total and

uncollided fluxes, are shown along with the rotation of the half-circular phantom. It should be
kept in mind that, to accelerate the simulations, a photon transport cut-off energy of 48 keV
was applied in all of the simulations. Thus the results reflect the intensities obtained for photons
arriving at the detectors with energy greater than 48 keV. As mentioned earlier, this is in line
with the experiments as a counting threshold of 48 keV is applied to each detector in the γ-ray
tomography system.

The images reconstructed using the data plotted in fig.7 are given in fig.8. The reconstructed
images were obtained for a total of 20 iterations on a 32×32 square grid. Using the reconstructed
pixel densities without scatter rejection, a GVF of 36.7% was obtained whereas that obtained
using pixel densities with scatter rejection, i.e. the uncollided flux, was calculated to be 37.5%
giving an absolute deviation of 26.6% and 25% from the true GVF, respectively. These results
support the statement that scattered radiation only has a marginal effect as compared to the
non-linear effects in the transmitted intensity.
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Figure 7: The MC generated, normalized intensities shown for both total (i.e., sum of collided
and uncollided) and uncollided fluxes. Open legends and dashed lines show the intensities for the
uncollided fluxes whereas the full legends and solid lines show those of total fluxes.

(a) Total. (b) Uncollided. (c) Difference.

Figure 8: Reconstructed images of the half-circular phantom using MC generated projection data
(a) without scatter rejection, (b) with scatter rejection and (c) the absolute difference between
the two images. Images are reconstructed over a 32×32 square grid. The colour legend shows the
GVF in each pixel.

It should, however, be emphasized that effects of scattered radiation will be dependent on
the measurement geometry, more specifically on the source-detector separation as well as the
collimation grid used to reduce the effects of scattered radiation. The geometry of the Bergen
γ-ray tomography system is optimized to minimize the flux of scattered radiation incident on the
detectors. The source-detector module separation is large compared to the pipe dimensions, the
detectors are heavily collimated using lead blade collimators and a counting threshold of 48 keV
is applied in order to further eliminate the influence of scattered radiation. These are factors
that contribute to the fact that scattered radiation intensity in the given geometry is greatly
suppressed. Thus, a new set of MC simulations were run where all of the lead collimators were
removed and the source-detector module separation was reduced to half the initial value of 440
mm. This increases the flux of scattered radiation incident on the detectors by about a factor of
5. Here, the corresponding intensity profiles and reconstructed images will not be shown explicitly
as these are essentially similar to the ones obtained for the original system shown in fig.7 and
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fig.8. However, it is noteworthy that removing the collimators and reducing the source-detector
module separation produces a GVF of 36.9% when the total fluxes are used. On the other hand,
the calculated GVF equals 39.5% for the uncollided fluxes where the contribution of scattered
radiation is simply rejected. This gives, respectively, an absolute deviation of 26.2% and 21%
from the true GVF, representing a non-negligible change in the calculated GVF.

7.2 Results of experiments

Our initial experiment on the half circular phantom was to determine if there was a significant
non-linear effect. The non-linearity was calculated as described in Sec.6 and the results are given
in fig.9.

Figure 9: The experimental non-linearity plotted against the detector number in a given detector
module obtained for the half-circular phantom. The results show that the non-linearity will be
highest for the centre-most detector, i.e. detector 9, that spans the interface between air and
plastic.

The figure show a graph of non-linearity in the logarithmic data from this experiment. As
expected the non-linearity is highest for the source detector pair that spans the interface between
air and plastic. As the phantom simulates a half full pipe of oil it was interesting that the non-
linearity is significant for this important case.

We then tested the algorithms described in Sec.3 on the data from the numerical phantom
with 2◦ rotations, giving 180 projections, and real γ-ray data with the Bergen γ-tomography
system, also with 2◦ rotations. Fig.10 shows the reconstructions obtained via CGLS with Tikhonov
regularization, primal-dual with TV regularization and the trust region reflective methods. For the
CGLS runs, we chose the tolerance value ε = 1e−4, and maximum number of iterations to perform
to be imax = 104 for both numerically simulated and real γ-ray data reconstructions. The same
tolerance value was also used in the trust region reflective method. In addition, TV parameters
were fine-tuned separately for simulated and real data experiments: ρ, τ = 1.5, α = 1e − 5,
upper bound chosen as 1 for simulated; ρ, τ = 1.9, α = 1e − 3, upper bound 5 for real γ-ray
data reconstructions. The simulated geometry for these runs was set up to imitate the Bergen
γ-tomography system, namely with 17 rays projected onto a flat array of detectors from a single
source. The data was generated using the non-linear forward model applied to the phantom image
in fig.4a, and 10% white Gaussian noise was added to the simulated γ-ray data. Of course this level
of noise would represent a much shorter averaging time, in practice closer to how the apparatus
is typically used for in-situ measurements. Except that of course in its standard use only five
projections would be taken simultaneously.

The numerical experiment was repeated with simulated data collected over 60 equiangular
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projections. The results are shown in fig.11. The same reconstruction parameters were used as
the previous case with 180 projection angles.

Linear (CGLS + Tikhonov regularization)

(a) CGLS with Tikhonov regulariza-
tion.

TVRegPD 

(b) Primal-dual with TV regulariza-
tion.

Trust region reflective

(c) Trust region reflective method.

Figure 10: Simulation results for linear and non-linear reconstructions. Simulated data is generated
with 17 rays per projection, 180 projections. Images are reconstructed over a 50× 50 square grid.

Linear model, CGLS + Tikhonov reconstruction

 

 

(a) CGLS with Tikhonov regulariza-
tion.

TVRegPD 

(b) Primal-dual with TV regulariza-
tion.

Nonlinear Trust Region Reflective (with regularization, b nonlinear)

(c) Trust region reflective method.

Figure 11: Simulations are repeated with fewer angles (60 projections).

Finally we present reconstructions from the experimental γ-ray data collected with the Bergen
γ-tomography system using the linear and non-linear models from the two hole phantom, illus-
trated in fig.4b. The results are shown in fig.12. In all reconstructions the perspex ring is clearly
shown and the holes are visible. The CGLS method with Tikhonov regularization produces the
poorest image (in quality) while primal-dual with TV and the trust region reflective reconstruc-
tions are very close in accuracy. However it should be noted that the over-smoothing with TV
regularization is clear within the holes and the perspex ring, and further, over-estimating the thick-
ness of the ring in comparison to CGLS with Tikhonov and trust region reflective methods. This
is also demonstrated in the simulated results where the two hexagonal shapes are over-smoothed
into more circular discs.

8 Discussion and Conclusions

Computed tomography problem is generally taken as a linear problem in the sense that the loga-
rithm of the collected data on each detector, from each source, is a linear function of the attenuation
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CGLS with Regu

(a) CGLS with Tikhonov regulariza-
tion.

TVRegPD

 

 

(b) Primal-dual with TV regulariza-
tion.

Nonlinear (no regularization)

(c) Trust region reflective method.

Figure 12: Real data reconstructions using the linear and non-linear models. Provided data
contains 17 rays per projection, 180 projections. Images are reconstructed over a 50 × 50 square
grid.

coefficient. However, as we demonstrated by considering the Beer-Lambert law, the sum of expo-
nential does not imply the exponential of the sum. This effect, (rarely) noted in the literature as
the “exponential edge-gradient”or “non-linear partial volume”effect, is magnified for systems with
large sources and detectors producing a wider range of ray paths.

In this paper, we demonstrate that this non-linearity is clearly present in a monochromatic
tomography system. For what we believe to be the first time in literature, we perform a non-linear
reconstruction taking account of this effect using regularized non-linear optimization methods.

For the reconstructed results presented in this paper, we used the trust region reflective method
to numerically optimize the derived non-linear model. The results were compared with the re-
constructions obtained with a popular reconstruction method, CGLS. The stark differences in the
CGLS and the trust region reflective reconstructions highlight the dominance of the non-linearity
effect around the edges of the objects in the phantoms. This effect is also highlighted in simulated
primal-dual TV regularized reconstructions where two hexagonal discs are close to one another.

These initial reconstruction results show that for sufficiently large sources and detectors taking
account of the non-linearity can produce dramatic improvements. However there is still much work
to be done. We have solved a non-linear problem where the linearization about the background
case is well explored and clearly invertible under the right conditions on the pixel grid. Detailed
analysis is required to show that our regularized non-linear optimization problem does not suffer
from local minima. Also we used a standard optimization algorithm and a more customized
algorithm for this problem is likely to be more efficient. We chose the simplest regularization
that imposes a smoothness condition on the image. We also implemented a more sophisticated
algorithm for objects with distinct boundaries and relatively homogeneous interiors, for which
total variation regularization gave better images, as did the imposition of strict upper and lower
bounds using constrained optimization methods.

In the specific case of the Bergen γ-ray tomography system, the lead collimators were expected
to reduce counts registered due to scattering so we are confident that the non-linearity we ob-
served is largely due to the mechanism we describe. The results of MC simulations of the system
confirm this statement. The MC simulations predict that the intensity of the scattered radiation
is about an order of magnitude less than the transmitted radiation intensities for the given system.
This is not surprising as the system has been designed and optimized to minimize the effects of
scattered radiation. The reconstructed images of the MC simulated half circular phantom show
also that the error in the calculated GVF based on the reconstructed pixel densities has the same
order of magnitude even for scatter-free data. Most importantly, for the half circular phantom,
the non-linearity in the center-most detector is substantial even in case of full scatter rejection,
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indicating the predominance of non-linear partial volume effects. Through MC simulations, it was
also demonstrated that, by removing the collimation grid entirely and reducing source-detector
separation, scattered radiation has a more pronounced effect on the reconstruction accuracy. How-
ever, the non-linear reconstruction on experimental data as well as absolute deviations from the
true GVF calculated for the MC generated total and scatter-free data reveal that it would be
necessary to take into account also the non-linearity for a substantial improvement in the recon-
struction accuracy. For polychromatic tomography systems, MC simulations would also be able
to predict how much of the non-linearity in a polychromatic system is due to the size of the source
and detectors as opposed to the variation of attenuation with energy (beam hardening). In X-ray
systems the source would be expected to be much less uniform. In [11] a Gaussian was used to
model the source intensity of the focal spot in a micro-focus laboratory CT system. Such variation
of I0 is easily incorporated in our algorithm if it is known.
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A Point sensitivity

Consider a two dimensional example where (see figure 13) The source is a line segment S′S and the
detector is a parallel line segment DD′ placed opposite the source at a distance L. Let X be the
point under consideration. Consider the lines XS and XS′ from the ends of the source meeting
the detector line DD′ at Q and Q′ which may or may not be within the detector. Similarly extend
lines DX and D′X from either end of the detector to meet the source line SS′ at P and P ′.
The only rays passing through X that result in a measurement are those between points in the
intersection of line segments DD′ ∩ QQ′ and SS′′ ∩ PP ′′ so the point sensitivity is proportional
to the product of the lengths of those intervals.

The length of the intersection of the intervals (a, b) and (c, d) is

r(a, b, c, d) = max{0,min{b− a, b− c, d− c, d− a}}

as can be seen from consideration of all the possible cases. Introducing coordinates with the origin
in the centre of the region between source and detector andX = (x, y) we have S± = (L/2,±WS/2)
D± = (L/2,±WD/2)
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Figure 13: Simple two-dimensional case of point sensitivity.
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Abstract. A variable volume flow cell has been integrated
with state-of-the-art ultra-high-speed synchrotron X-ray to-
mography imaging. The combination allows the first real-
time (sub-second) capture of dynamic pore (micron)-scale
fluid transport processes in 4-D (3-D+ time). With 3-D data
volumes acquired at up to 20 Hz, we perform in situ exper-
iments that capture high-frequency pore-scale dynamics in
5–25 mm diameter samples with voxel (3-D equivalent of a
pixel) resolutions of 2.5 to 3.8 µm. The data are free from
motion artefacts and can be spatially registered or collected
in the same orientation, making them suitable for detailed
quantitative analysis of the dynamic fluid distribution path-
ways and processes. The methods presented here are capable
of capturing a wide range of high-frequency nonequilibrium
pore-scale processes including wetting, dilution, mixing, and
reaction phenomena, without sacrificing significant spatial
resolution. As well as fast streaming (continuous acquisition)
at 20 Hz, they also allow larger-scale and longer-term exper-
imental runs to be sampled intermittently at lower frequency
(time-lapse imaging), benefiting from fast image acquisition
rates to prevent motion blur in highly dynamic systems. This
marks a major technical breakthrough for quantification of
high-frequency pore-scale processes: processes that are crit-
ical for developing and validating more accurate multiscale
flow models through spatially and temporally heterogeneous
pore networks.

1 Introduction

Porosity, permeability, and flow in geological systems
are all highly dynamic. Changes in the confining condi-
tions (e.g. pressure, temperature), flow volume, fluid chem-
istry/viscosity, or suspension composition can drive mass
transport (through processes such as precipitation, dissolu-
tion, deposition, or erosion) and change the connectivity and
tortuosity of the pore network. The evolving porosity and
permeability then cause further changes in both micro- and
macro-scale flow. These mass transport processes and the
passage of fluid–fluid and fluid–rock reaction fronts through
heterogeneous geological systems occur at the pore scale.
Developing a detailed appreciation of macroscopic processes
as diverse as pollutant transport, hydrocarbon recovery, CO2
sequestration, storage of nuclear waste, aquifer management,
nutrient bio-accessibility, building stone preservation, and
hydrothermal deposit formation requires a quantitative un-
derstanding of the multiscale effect of pore-scale processes.

Synchrotron imaging for dynamic geoscience
applications

Laboratory and synchrotron X-ray computed micro tomog-
raphy (usually XCT and sXCT respectively) are ideal ap-
proaches for imaging these processes as they allow in situ ob-
servation in a high-resolution, non-destructive way. The gen-
eral principles of X-ray tomography, reconstruction, and data
processing as related to geoscience applications are covered
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in a series of recent reviews (Bultreys et al., 2016; Cnudde
and Boone, 2013; Hess et al., 2011; Maire and Withers, 2014;
Wildenschild and Sheppard, 2013). For the specific applica-
tion of understanding pore-scale processes, XCT and sXCT
are now becoming widely used for both qualitative and quan-
titative imaging of complex natural pore networks and the
distribution of liquid(s) within them (Al-Raoush et al., 2011;
Al-Raoush and Willson, 2005; Berg et al., 2013; Bhreasail et
al., 2012; Boone et al., 2014; Bultreys et al., 2015a; Cnudde
and Boone, 2013; Dewanckele et al., 2012; Geraud et al.,
2003; Herring et al., 2013; Iglauer et al., 2011; Katuwal et
al., 2015; Ma et al., 2016; Naveed et al., 2013b; Olafuyi et al.,
2010; Sakellariou et al., 2003; Sok et al., 2010; Wildenschild
et al., 2002; Wildenschild and Sheppard, 2013). The data are
also being used as a basis of, and validation, for numerical
simulations (Al-Raoush and Papadopoulos, 2010; Alhashmi
et al., 2015; Bultreys et al., 2015b, 2016; Degruyter et al.,
2010; Menke et al., 2015; Naveed et al., 2013a; Raeini et al.,
2014, 2015; Fourie et al., 2007).

Standard operation is to collect a set of 2-D “projections”
or “radiographs” at constant angular spacing (hereafter angu-
lar density) while the sample is rotated through 180◦ or 360◦.
Standard 3-D tomographic image datasets require seconds
(synchrotron), minutes (synchrotron and laboratory), or even
hours (laboratory) to acquire (Maire and Withers, 2014). Un-
til recently this has limited 3-D experimental investigations
of dynamic processes because the critical pore-scale pro-
cesses occur over much shorter durations. Many key fluid–
rock and fluid–fluid interactions therefore remain poorly con-
strained. Furthermore, while numerical simulations can now
consider multiple mass and thermal transport processes si-
multaneously and can incorporate realistic pore geometries
(see Bultreys et al., 2016, for in depth review), many gener-
ally still lack validation from experimental data from natural
systems where observations are needed with a range of tem-
poral and spatial resolutions.

In recent years, careful alignment of 3-D datasets col-
lected at fixed time points over moderate duration experi-
ments has enabled “time-integrated” tomography as a tool
for quantification of fluid dynamics and porosity evolution
(Andrew et al., 2014, 2015; Armstrong et al., 2014a; Berg et
al., 2013; Blunt et al., 2013; Herring et al., 2013, 2014; Lin
et al., 2016; Menke et al., 2015; Wildenschild and Sheppard,
2013). The increased image acquisition rates now available
at third-generation synchrotron facilities have driven devel-
opment of faster “continuous” imaging. In this mode, sam-
ple rotation is not stopped for each projection; instead data
are acquired over a narrow arc (typically 0.1–0.5◦). For most
geological materials, collection of the projection data can be
just a few seconds (Andrew et al., 2015; Berg et al., 2013;
Bhreasail et al., 2012; Pistone et al., 2013, 2015; Youssef
et al., 2014). However, 2-D imaging (the same projection
acquisition rates but without rotation) is still needed to ob-
serve processes occurring on a timescales of milliseconds to
a few seconds, such as individual Haynes jumps and the sub-

sequent relaxation dynamics (Armstrong et al., 2014b; Berg
et al., 2013). Two-dimensional imaging cannot capture pore
and pore–fluid interface morphology, pore throat orientation
and size, or the location of the events within the fluid volume.

Advances in temporal resolution through camera and
beamline technology have been followed by highly paral-
lelised iterative reconstruction methods which require far
fewer projections yet still achieve adequate reconstructed
image quality (Batenburg and Sijbers, 2011; Brabant et al.,
2014; Kaestner et al., 2015; Kazantsev et al., 2015a, b; Van
Eyndhoven et al., 2015). However, direct in situ observation
of sub-second events and processes, as well as those that
cause rapid change over longer durations, still remain chal-
lenging. Pushing time-integrated tomography towards true
long duration 4-D imaging would therefore have high impact
on our understanding of pore-scale processes.

Here we present a state-of-the-art 4-D (3-D+ real time)
imaging methodology that enables visualisation and quanti-
tative assessment of dynamic pore-scale processes in real-
time (3-D acquisition rates of up to 20 Hz) over variable ex-
perimental durations. We present two key methodology de-
velopments: sub-second real-time imaging of fluid transport
up to an order of magnitude faster than previously presented
and the extension of that imaging protocol to allow slower
or variable flow dynamics to be quantitatively assessed over
longer time periods. We illustrate the potential of these de-
velopments for providing insight into pore-scale processes
using three case studies showing preliminary data from ex-
periments that quantify initial wetting, the evolution from dy-
namic to steady state flow, and the evolution of the reaction
front during chemical dilution or fluid mixing.

2 Experimental set-up

Disaggregated sandstone gravels (1–2 or 2–4 mm size frac-
tion) were loaded into a reusable cylindrical gravity-fed flow
cell and mounted on the JEEP i12 beamline (Diamond Light
Source, Harwell, UK) (Fig. 1). Full beam specification can
be found in Drakopoulos et al. (2015). The cell diameter for
this system can be varied (up to 50 mm diameter) accord-
ing to experimental need and X-ray transmission through the
sample. Perspex sample chambers of 6 and 25 mm internal
diameter were used here. A circular piece of fine mesh was
placed at the bottom of the cell above the outlet feed to pre-
vent fine material being washed through to the outflow reser-
voir (maximum volume 125 mL in the configuration used).
Particles were added to a minimum depth of 15 mm to ensure
no effects from basal flow were observed in the imaging field
of view. Particle diameters were sufficiently small that the
influence of the cell geometry on particle packing was mini-
mal. The random nature of the packing structure was checked
before each experiment through the collection of a single to-
mography dataset (Fig. 2). In the well-cemented host sand-
stones (prior to disaggregation) grain sizes ranged from 200
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mounting to
reservoir

125ml outflow
reservoir (height can
be varied to increase
volume)

Reservoir mounted
on rotation stage

Optional inlet for
pressurised
upward flow

Figure 1. A schematic showing the simple peristaltic pump drip-fed
gravity-driven flow cell. The system was designed to be modifiable
to incorporate laminar and multiphase flow and to be suitable for use
with confining pressure and variable temperatures. All key dimen-
sion (sample cell diameter, height, and material; reservoir volume;
feed) can be adjusted to fit experimental parameters and beamline
imaging conditions.

to 500 µm, with pore diameters of 10–150 µm. Mercury and
helium porosimetry and water absorption measurements on
the disaggregated samples were 13–18, 15–23, and ∼ 19 %
respectively, and the measured permeabilities ranged from
250 to 600 md. In the configuration used here, fluid was sup-
plied at a constant flow rate by a 12-channel peristaltic pump
operated from the beamline control room (outside the X-ray
enclosure or “hutch”) so that flow rates and compositions
could be adjusted in real time, i.e. while 3-D data are being
acquired. The inlet tube was attached centrally to the top of
the cell using a slip ring to ensure a fixed drip point (approx.
5 mm above the centre of the rotating sample). Flow rates
were varied from 40 to 200 µL min−1, which corresponded
to a drip every 2 and 10 s. The majority of experimental runs
were performed using a 6 M KI solution to ensure high con-
trast between air, fluid, and rock particles. Pilot scans showed
un-doped H2O and some oils could be observed under the
hard X-rays of the JEEP white beam (50–150 kV), although
low contrast would make post-processing challenging.

The flow cell was designed to be easily modified and
can accommodate base fed laminar flows, simultaneous flow

XY(c) XY(d)

XY(a) YZ(b)

XY(e) XY(f)

XY

Figure 2. Two-dimensional reconstructed slices through a typical
gravel sample. High-resolution (1800 projection data) perpendic-
ular (a; XY) and parallel to flow direction (b; YZ) reconstructed
using filtered back projection. (c) A 2-D slice (XY) through a sim-
ple spherical bead pack containing a small volume for KI solution
reconstructed from 360 projections (2/◦) using filtered back projec-
tion; (d) the same 2-D slice reconstructed from 180 projections (1/◦)
using filtered back projection; (e, f) comparison of the segmentation
of the rock possible from the 1800 and 180 projection data. All scale
bars are 200 µm.

of multiple fluids (variable composition or temperature),
or multiphase suspensions. Thin-walled (1 mm) aluminium
sample chambers can be used for both variable thermal and
pressure experiments. The cell can be loaded with disaggre-
gated material (e.g. soil, sand, gravel, glass beads) or with
more coherent cored soil/rock samples of any diameter. How-
ever, when designing ultra-high-speed experiments or pro-
cesses that cause subtle changes in attenuation/composition,
some higher density or large volume solid samples will in-
crease the minimum exposure time and may also cause arte-
facts that reduce the ability to resolve features of interest.
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3 Ultra-fast image acquisition

The maximum rotation speed of the JEEP tomography stage
is 10 Hz (continuous rotation). As synchrotron tomography
datasets are acquired over 180◦, 3-D volumes can be ac-
quired at up to 20 Hz. The actual operational rotation speed
for the given experiment will be controlled by the exposure
time for each projection and the total number of projections
collected per 3-D dataset. Exposure time is controlled by
X-ray flux and sample density. Imaging at the JEEP beam-
line can be performed using a polychromatic (white, higher
flux) or monochromatic X-ray beam (selectable energy range
53–150 kV). Images were acquired using a Vision Research
Phantom Miro™ 310 M camera (up to 5000 images per sec-
ond). In monochromatic beam mode, the exposure time for
the large diameter cell was 200 µs (3.8 µm pixel resolution),
which dropped to 90 µs for the smaller diameter system
(2.5 µm pixel resolution). The system can be in continuous
rotation at this speed, in one direction, for as long as required.
Beam hardening can occur under white beam in response to
the energy dependence of the attenuation, but none was seen
in our test data. While white beam would allow shorter expo-
sure times (between 30 and 50 % reduction in the test scans),
there would be lower contrast between the low density phases
and more X-ray scattering and associated noise in the images.
Imaging in monochromatic beam gave increased contrast be-
tween air and water in a three phase system, without requir-
ing long exposures. The diameter of the samples used here
exceeds the field of view of the highest magnification mod-
ule available at JEEP (1.25 µm pixel resolution), but region-
of-interest images could be obtained with a 200 µs exposure.
Qualitative analysis of the images at different rotation speeds
showed no visible dependence of liquid distribution on ac-
quisition (rotation) speed, suggesting the centrifugal effect
on this sample and fluid was negligible.

In most “traditional” tomography experiments, over 1000
projections are collected for each 3-D volume. We collected
high-resolution data (1800 projections, 0.2 and 0.5 s per 3-D
data acquisition) for each dry sample prior to flow initiation
to characterise the inter- and intra-grain porosity of each sam-
ple (Fig. 2a, b). This dataset can also be used as a structural
prior for iterative reconstruction methods (e.g.; Kazantsev et
al., 2015a, b; Van Eyndhoven et al., 2015). Reducing the
angular density of the projections will shorten overall scan
time. The reconstructed image quality does reduce as the
projection density drops, but a significant increase in tem-
poral resolution can be achieved. To achieve the maximum
20 Hz 3-D image acquisition rate, it is necessary to reduce
the number of projections to 250 (200 µs exposure) and 550
(90 µs exposure) per scan.

Under-sampling (using fewer projections) to this degree
does cause image quality to degrade, making differences be-
tween phases of similar attenuation difficult to observe and
reducing the precision with which phase boundaries and vol-
umes can be defined. When features of interest are relatively

small, or have complex geometries, then under-sampling can
prevent quantitative analysis. However, here the contrast be-
tween the saline solution, rock, and air is high, and the pri-
mary target is the sub-second distribution of the fluid phase.
Using the routine filtered back-projection reconstruction al-
gorithms, testing with as few as 360 (Fig. 2c) and 180 pro-
jections (Fig. 2d) gave adequate images for basic quantifica-
tion (Fig. 2e). Comparison of the two under-sampled datasets
shows little increase in quality and little overall change be-
tween the 360 and 180 projection scans. For the smaller cells,
it is possible to collect 360 projections at maximum image
acquisition frequency.

The Miro camera has fixed on-board data storage, which
allowed a maximum of approximately 20 000 projections to
be collected for the field of view needed in this experiment
(in this set-up, the number of projections is dependent on the
field of view needed). The under-sampling allowed between
53 and 141 3-D datasets to be acquired in a single experi-
mental run (2.5–7 s of acquisition at maximum frequency).
Capturing a specific event with this short a duration of col-
lection is challenging, especially as the high rotation speeds
prevent observation of small volume changes in the live view
radiographs. During collection the camera is armed and then
triggered. Arming the camera starts projection acquisition,
but those data are automatically overwritten until the trigger
signal is received. The user can define the trigger to mark
(a) the last image (all existing projections on the card are
saved), (b) the first image (projections are collected until the
card volume is full), or (c) an event (a user-defined number
of projections before and after the trigger is saved). The lat-
ter option allows a small amount of buffer time for the user
to capture a specific event, such as a drip entering the sample
or a flow volume/composition change. Automatic triggering
mechanisms such as light gates can be incorporated although
in this experiment a webcam was used to observe the delivery
of each drip.

To clarify the real-time nature of the data, the following
terminology is used in all subsequent discussion: one or more
scans are collected during each experiment, and each scan
contains a number of 3-D “frames” which were acquired at a
known speed and with a given frequency (defined by the time
between the first projections of sequential frames). Data are
offloaded from the camera between scans (download takes
between 5 and 7 min). Several scans can be collected dur-
ing an experiment. To highlight specific processes and fea-
tures, most figures presented below show only 2-D slices (ei-
ther perpendicular or parallel to flow) or a sub-volume of the
reconstructed dataset. The post-processing and image seg-
mentation are the same for all examples and were performed
in Avizo™ and MATLAB. The methods are outlined in Ap-
pendix A.
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Case study: observing sub-second dynamics using
ultra-fast imaging

Wetting processes and the formation of rivulet networks are
poorly understood in heterogeneous media. The processes
operate on short timescales and are strongly influenced by
sample morphology. Non-invasive 4-D tomography is ideal
for capturing the dynamics of these behaviours. Figure 3
shows the evolution of the fluid distribution in a sub-volume
of the sample immediately below the drip point. The data
were collected under continuous acquisition mode, with a
3-D frame acquisition frequency of 0.07 s (system operating
at 7 Hz rotation speed).

The first drip of KI solution (shown in blue) enters the dry
sandstone bed (rendered in translucent grey) between frames
F0 and F1 (Fig. 3). Initially (t = 0.07 s) the KI solution fills
the inter-grain pore space to the front of the sub-volume (A)
and then immediately begins lateral transport into the intra-
grain porosity in the neighbouring grains (Fig. 3b). By the
second frame (t = 0.14 s) the inter-grain volume has largely
emptied, and the majority of the fluid is now within the
grains. Intra-grain transport has also occurred with capillary-
driven wetting of grains not in direct contact with inter-grain
fluid (e.g. C), and drainage of previously saturated intra-grain
pores can also be observed from other viewing angles. Be-
tween F1 and F2 most grains in contact with the inter-grain
fluid have become partially or fully saturated. The remain-
ing intra-grain fluid is generally limited to a few small pores
and surface films (D). The figure only shows the relaxation
after the first drip. As the experiment continues (F3 to F5),
the fluid moves away from the initial location, with grain sat-
uration increasing by radial and vertical redistribution, with
oblique upward propagation of the saturation front in some
instances (E). Most grains show an expansion and coales-
cence of grain-surface fluid films after initial intra-grain satu-
ration (F), although grain surface wetting does occur with no,
or prior to, intra-grain saturation (G). Capillary forces con-
tinue to redistribute the intra-grain pore fluid over the remain-
der of the experiment, with saturation of many grains de-
creasing as the system moves towards equilibrium. Grains at
both the upper and lower extent of the wetted region (H) are
almost completely saturated and then drained again within
1.54 s.

Vertical slices taken through the same sub-volume of the
sample in the second scan of the experiment show the ar-
rival of the third drip (Fig. 4). In this experiment the fluid
feed was stopped during data download. When the pump was
restarted, the first drip was used as the trigger for the scan ac-
quisition. The initial frames of the second scan were before
the arrival of the drip and act as a wet reference. Differences
in the fluid volume across the download period result from
the fall of a drip at the very end of the experiment, immedi-
ately after fluid feed was stopped. Figure 4 captures the ma-
jor changes in the fluid distribution in the inter-grain porosity
(blue). At this time, the intra-grain fluid distribution (grey)

has become largely stable, although a few grains still show
some variability (Fig. 4b).

Passage of the drip causes transient fluid bridging
(Fig. 4a). Most bridging connections are maintained through-
out the drip cycle, but some transient connections are formed
with every drip, and others form only occasionally. Tempo-
rary isolation of fluid (enhanced by capillary-driven draw in
of the surface film during equilibration as observed at A;
Fig. 4) could control chemical reaction rates in reactive sys-
tems. Upon reconnection the relatively small volume of this
fluid would be rapidly diluted, but rates of dissolution would
be locally reduced by limited fluid supply. A later part of the
experiment is shown in Movie 1 (see Supplement).

Although the focus of this contribution is on method de-
velopment, we include a limited selection of the quantita-
tive analysis performed on these samples, as an illustration
of the adequacy of the data quality. Quantitative analysis of
inter- and intra-grain fluid volume shows the strong fluctu-
ation over the course of two drips (Fig. 5) and the general
instability of the fluid volume as it is redistributed. After the
first drip, the saturation of the intra-grain porosity becomes
more gradual, with significant increases on the arrival of sub-
sequent drips. The inter-grain distribution equilibrates more
slowly.

4 Ultra-high-speed imaging for longer-duration
experiments

The experiments presented above allow capture of the high-
speed dynamics but have very short overall durations (< 10 s).
Capturing longer duration processes with the same 3-D frame
acquisition rates requires lower frame acquisition frequen-
cies. The Miro camera allows frames to be acquired either
continuously (as above) or at user-defined intervals (hereafter
called gapped acquisition). Gapped acquisition decreases
frame acquisition frequency, while maintaining frame acqui-
sition speeds and the resultant data therefore benefit from a
lack of motion induced blurring in the reconstructed data.

Although any time or angular gap can be defined, in these
experiments they were limited to odd multiples of 180◦. This
ensures that the initial projection of every frame was col-
lected at the same angle. Registration of the data in this
manner saves significant time aligning datasets during post-
processing. A gapped acquisition with a spacing of 1 (G1)
collects projections over the 0–180◦ sector of every rotation
(one full rotation between acquisition start points); a gapped
acquisition with spacing of 5 (G5) acquires projections from
0 to 180◦ on every third rotation (three full rotations between
acquisition start points).

Although not used in this experiment, the camera mem-
ory can also be partitioned, allowing for a fixed and con-
stant number of projections/frames in each partition. This
could enable more efficient imaging across different tempo-
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Figure 3. Time series showing the wetting of the sandstone gravel under the first drip. Three-dimensional frame acquisition fre-
quency= 0.07/3-D volume (14 Hz). The first frame shows the dry sample with the sandstone grains rendered in semi-transparent grey. From
the second frame the KI solution is shown in blue. Note the rapid changes in both the inter- and intra-grain fluid distribution (see text for
discussion). The rendered volume is a small sub-volume of the larger dataset and shows a volume approximately 3.5 mm× 3.5 mm× 2 mm.
Data are from sample LH_9, scan 1.

ral scales in one scan or the inclusion of much longer delays
between high speed frame acquisitions.

4.1 Case study: capturing multiscale dynamics in
pore-scale processes

To show the suitability of this method for capturing the
variability of pore-scale flow dynamics, wetting experiments
were scanned repeatedly at different gap lengths (continuous
through to G25). Between 53 and 106 frames were collected
in each scan. High-frequency data acquisition (continuous
or G1) was used to capture the first few drips, with longer
acquisition intervals (G3–G25) used to capture the slower

processes as the flow network evolved towards steady state
through time (Fig. 6). In some experimental runs, variability
in the high-speed processes through time was also assessed
by repeating continuous G1 or G3 acquisitions at intervals
among G5 or G7 acquisitions.

The larger fluid volume in these images for longer dura-
tions experiments makes visualisation of the 3-D fluid distri-
bution challenging to show on the page (as in Fig. 3), and so
a semi-transparent render of a distance map is used to show
the variability in the local fluid volume (Fig. 6). Areas of
inter-grain fluid appear as red regions, while the majority of
the intra-grain fluid is shown in blue and green. In all scans
at all frame acquisition frequencies, we see significant vari-
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Figure 4. A single vertical 2-D slice through the second frame. The
frames shown cover the passage of the through the sample. The
inter-grain fluid is shown in blue and the intra-grain fluid in grey.
Wet rocks are grey; KI solution outside the rocks is blue; air and
dry rocks are in the background. Field of view is 3.5 mm× 2 mm.
Data are from sample LH_9, scan 3.

ability in the distribution of the KI solution (Fig. 6) over the
35–60 min experiments.

From the same data it is possible to track the local changes
in saturation at the grain scale. Well-established network
analysis and morphological quantification algorithms can be
applied to extract details of saturation on the pore scale
(Fig. 7) or on the geometry of individual phase interfaces
and contact angles (Andrew et al., 2014, 2015). For under-
sampled data, higher levels of image noise in filtered back-
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Figure 5. The change in fluid volume within the inter- (red) and
intra-grain (blue) porosity over the experiment showing the arrival
and subsequent equilibration of two drips. After the first drip the
system equilibrates to very low inter-grain saturation. Data are from
sample LH_9, scans 1 to 3.

projection reconstructions may limit quantitative surface cur-
vature and contact angle analysis, but optimised iterative
reconstruction methods may give more suitable data (see
Sect. 5 below).

4.2 Case Study: in situ observation of mixing dynamics

One key application for ultra-high-speed in situ imaging is
to track the interaction between multiple phases: capturing
both spatial and temporal heterogeneity of replacement, dilu-
tion, and chemical reactions. After 30 min under a 6M saline
feed the system was flushed with H2O. Scanning was per-
formed at G1 (0.07 s scan acquisition time, 7 Hz acquisi-
tion frequency); the scan started on arrival of the first H2O
drip. Other experimental runs tested replacing H2O with KI
solution and replacing oil with KI solution. The need for
ultra-high-speed imaging to capture the complex and spa-
tially variable mixing and dilution processes can be seen in
Fig. 8. Dilution of the uppermost part of the local inter-grain
network is instantaneous (Fig. 8a), but percolation of the di-
lution/replacement front through the image volume takes ap-
proximately 5 s (Fig. 8a–f). After this time there is little ma-
jor change in the local greyscale values (Fig. 8g, h), imply-
ing a shift in mixing mechanisms. The 2-D slices through the
same sub-volume perpendicular to the flow direction (Fig. 8)
show the dilution is extremely heterogeneous and can occur
on a range of timescales in neighbouring regions. The central
pore volume (orange box, F30) is diluted over 10–15 scans,
whereas a neighbouring region (connected in 3-D) is re-
placed in under five frames (yellow box F35). Some grains
show variability in the KI concentration within the porosity,
implying that, although the bulk porosity of this sandstone is
approx. 20 % and the connectivity is high, individual grains
have discrete pore networks within them (blue boxes F45).
Using slower data acquisition methods would not capture the
dynamics of replacement.
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Figure 6. Three-dimensional renders of a gapped experimental run. For each scan series the first, middle, and last frame of each acquisition
period is shown. Only the fluid volume has been rendered, with the colour representing the distance to the fluid interface. Cool colours rep-
resent small fluid volumes; warm colours represent fluid more than 20 µm from the interface. The field of view is 1.5 mm× 1.5 mm× 3 mm.
Data from sample LD_1, scans 1 to 5.
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200 µm

t=0 (a)

(c)(b)

Figure 7. A 3-D render of a single grain showing the progression
of saturation. The images show the evolution from first contact with
the fluid to a steady saturated state over three scans. The colours and
the size of tubes representing the pore network correspond to the lo-
cal volume of the fluid within the pores: thick red tubes represent
the higher local volume; thin blue tubes represent lower local sat-
uration. Data are from sample LD_1, showing the dry scan (t = 0)
and the final frames of (a) scan 1 (continuous), (b) scan 2 (G1), and
(c) scan 3 (G1).

5 Moving beyond the state of the art

The ultra-high-speed imaging presented here allows cap-
ture of wetting and transport behaviour at the moderate-to-
high spatial resolution necessary for quantitative understand-
ing of the processes involved. The 3-D frame acquisition
speed and frequency are substantially faster that has been
previously achieved. Events such as Hayne jumps (millisec-
ond timescale) and the subsequent relaxation (a few sec-
onds) have been observed in 2-D imaging (acquisition of
projections without rotation) (Armstrong et al., 2014b). The
method presented here can provide data on the 3-D nature
of those changes, at comparable timescales. Such quantita-
tive data can be used to develop or validate larger-scale flow
models and to better incorporate pore-scale processes.

The data presented here are reconstructed using standard
filtered back-projection reconstruction algorithms. However,
these methods are not optimal for under-sampled data. Re-
cent advances in iterative reconstruction algorithms use in-
formation about the different phases contained within the
data to enhance the quality of the reconstruction, with great

effect (Fig. 9). Visual comparison of this type of method
(Fig. 9b, d) with reconstructions using filtered back projec-
tion (Fig. 9a, c) shows the improvement in phase resolution
that can be achieved on fewer projection data. This exam-
ple applies an iterative optimisation solver, and along total
variation penalisation is incorporated as a regularisation step
(Rudin et al.,1992; Little and Jones, 2010) that takes the sam-
ple porosity into account (i.e. uses the dataset themselves as
prior information), with refinement at each iteration. The it-
erative data have fewer line artefacts and lower noise and per-
mit accurate phase segmentation from fewer than 45 projec-
tions.

Iterative methods have significant potential to develop
imaging dynamic pore-scale processes further still. Of spe-
cific interest are those methods that use high-quality dry scan
data as a structural prior (Kazantsev et al., 2014, 2015a, b;
Van Eyndhoven et al., 2015) and those that divide the data
volume into static and dynamic regions using the static infor-
mation from sequential scans to better define the reconstruc-
tion volume Kazantsev et al., 2014, 2015a, b; Van Eyndhoven
et al., 2015). Both allow reconstruction of better-quality im-
ages from under-sampled data (data with fewer projections)
and also allow data of comparable or better quality to those
displayed here to be produced from datasets with as few as
18 projections (Van Eyndhoven et al., 2015). These meth-
ods can improve the quality of the quantitative data, espe-
cially on the key phase interfaces; however, the key advance
is likely to come from working with still higher degrees of
under-sampling. However, iterative methods are computa-
tionally expensive and can take an order of magnitude longer
to reconstruct. The methods applied here took between 15
(Fig. 9d) and 45 (Fig. 9b) min per volume, depending on the
number of projections in being used. As such, their use in
processing every frame of long-duration high-frame-rate data
for near-real-time assessment remains unrealistic at present.
This may change as computational efficiency increases, but
we envisage that iterative methods are more practically ap-
plied retrospectively to achieve higher spatial resolution over
short periods of critical interest.

At the 3-D volume acquisition rates achieved here, the pro-
jection exposure times and mechanical limit of the rotation
stage means that imaging faster is not currently possible for
the current samples. For higher-density materials, or higher
resolution cameras where longer exposure times mean slower
overall volume acquisition, iterative methods may improve
temporal resolution. However, on the JEEP experimental set-
up, the main advantage of iterative methods is the ability to
acquire fewer projections per scan and so collect more scans
per experiment without sacrificing image quality. This could
enable experimental run times to be extended by up to an
order of magnitude.

The methods presented here provide a workflow for vi-
sualisation and quantification of sub-second dynamics in
porous media (Fig. 10). We used the disaggregated sample
to capture two spatial scales of fluid–pore interaction, but
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Figure 8. In situ observation of dilution. The 6 M saline solution feed is replaced by H2O at t = 0. (a–h) Three-dimensional renders of
the differential density (greyscale) between the initial saline fluid volume and the saline+water mixture at the times shown. The frame
acquisition rate was 0.07 s and acquisition frequency was 7 Hz (g). Data are from sample LD_3, scan 1. Yellow represents complete replace-
ment with H2O. Cooler colours represent volumes that are undergoing dilution. Volumes remaining at 6M KI are not shown, as they have
undergone no change.

the overall experimental set-up can equally be used for solid
core samples at the same spatial and temporal resolution.
This experiment was performed at below maximum resolu-
tion, and imaging finer structures (grains or pores) at resolu-

tions of 1.2 µm is possible. For higher-resolution or higher-
density samples slightly slower projection acquisition times
may be needed, and in extreme circumstances this will re-
duce overall frame acquisition frequency. The ability of the
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Figure 9. Two-dimensional reconstructed slices through a gravel
sample using filtered back projection (a, c) and an iterative opti-
misation method with the total variation regularisation incorporated
as prior information (b, d). Reconstructions are obtained using 180
projections (a, b) and 90 projections (c, d). The cropped area shown
is approximately 3.5 mm× 3.5 mm. Note the increased definition
of both the inter- and intra-grain porosity that can be achieved for
a given number of projections. Data are from sample LD_3, first
frame, scan 1. The optimised iterative methods took approximately
45 min (b, 180 projections) and 15 min (d, 90 projections) per 3-D
frame, making them a viable element of the post-processing work-
flow for key datasets.

experimental set-up to acquire large numbers of projections
at constant angular density means that even higher tempo-
ral resolution could be achieved. Reconstruction of volumes
from datasets with small rotational offsets (typically about
10–20◦, i.e. scan 1 reconstruction from 0 to 180◦, scan 2 re-
construction from 10 to 190◦, etc.) could increase temporal
resolution by over an order of magnitude (Van Eyndhoven et
al., 2015), especially when coupled to iterative methods that
can reduce image noise and enhance phase boundary defini-
tion in the reconstructed data.

Complex multiphase, spatially heterogeneous micro- and
pore-scale processes control many key macro-scale geolog-
ical system responses. However, the method is not limited
to the simple drip-fed experiments on geological materials
presented here and can as be easily applied to high-speed
processes operating in any material (metals, ceramics, plas-
tics, biological materials, foodstuffs, etc.) suitable for syn-
chrotron X-ray tomography at JEEP/i12. It can also be ap-
plied in other dynamic systems for samples and materials
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Figure 10. A schematic showing the current state-of-the-art imag-
ing capabilities for synchrotron and laboratory XCT scanning (mod-
ified after Bultreys et al., 2016; Maire and Withers, 2014).

undergoing modification through treatment at extreme tem-
perature (hot or cold) or experiencing deformation (tension,
compression, cyclic fatigue, fracture, or shear). The devel-
opment of the real-time 4-D imaging methods we have pre-
sented means that quantitative understanding of all of these
processes is now possible, in porous media and beyond.

6 Data availability

The projection data and the reconstructed volumes of these
experiments are available from the authors.
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Appendix A: Post-processing and image analysis

Visualisation and quantification was performed using
Avizo™ and MATLAB. The greyscale volumes were cropped
to the sample boundaries to reduce all subsequent process-
ing times. When processing continuous acquisition data the
frames were first aligned to allow direct comparison and
quantitative analysis. For the gapped scans, all data are ac-
quired over the same angle and no additional alignment is
required. The italicised steps in the following refer to built-in
algorithms in Avizo™, and the reader is directed to the asso-
ciated documentation for further details of the implementa-
tion.

The edge-preserving Bilateral Filter was applied to the
greyscale-filtered back-projection reconstructions to reduce
image noise. Water, air, and rock phases were segmented us-
ing the Interactive Thresholding tool, and the resultant binary
data volumes were used in subsequent analysis. The inter-
and intra-grain porosity was defined by creating two sepa-
rate binary masks: one by segmentation of the wet and dry
grains and one by segmentation of the fluid (inter-and intra-
granular). Logical combination of these allows calculation
of the inter- and intra-granular fluid volumes. Fluid volumes
were calculated using in-built image measures (Volume3-D).

Additional quantitative analysis of the intra-grain poros-
ity was performed on single grains isolated using the MAT-
LAB command imfill followed by Watershed segmentation.
The pore network within the grain was displayed using the
Centerline Tree module, which applies the TEASAR algo-
rithm (Sato et al., 2000) defining local Euclidian distance to
the nearest object boundary. Fluid thickness was calculated
by applying a Chamfer 3-D distance map to the fluid label
volume to calculate the distance to the nearest surface. The
exchange of KI for H2O was tracked by calculating a dif-
ferential image between the initial scan and each subsequent
frame.
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Author contributions. The study was designed by Katherine J.
Dobson and Sam A. McDonald; reconstruction and visualisation
was led by Sophia B. Coban and Katherine J. Dobson with assis-
tance from Samuel A. McDonald. Robert C. Atwood led camera
integration at Diamond Light Source. Katherine J. Dobson, Sophia
B. Coban, Sam A. McDonald, Joanna N. Walsh, and Robert C.
Atwood performed the experiments at i12/JEEP. The lead author
was Katherine J. Dobson, with all other authors contributing to the
manuscript.

Acknowledgements. Katherine J. Dobson was supported in this
work by EVOKES ERC247076 and NERC NE/M018678/1;
Sophia B. Coban is supported by EPSRC EP/J010456/1, the
School of Mathematics, and the BP International Centre for
Advanced Materials. Philip J. Withers wishes to acknowledge the
BP International Centre for Advanced Materials for funding under
ICAM 03. Samuel A. McDonald is grateful to Zeiss for funding his
fellowship. We thank Diamond Light Source for access to beamline
I12 (beam time award EE10500-1).

Edited by: M. Halisch

References

Alhashmi, Z., Blunt, M. J., and Bijeljic, B.: Predictions of dynamic
changes in reaction rates as a consequence of incomplete mixing
using pore scale reactive transport modeling on images of porous
media, J. Contam. Hydrol., 179, 171–181, 2015.

Al-Raoush, R. and Papadopoulos, A.: Representative elementary
volume analysis of porous media using X-ray computed tomog-
raphy, Powder Technol., 200, 69–77, 2010.

Al-Raoush, R. I. and Willson, C. S.: Extraction of physically realis-
tic pore network properties from three-dimensional synchrotron
X-ray microtomography images of unconsolidated porous media
systems, J. Hydrol., 300, 44–64, 2005.

Al-Raoush, R., Gordon, C., Robins, S., and Richardson, J.: Charac-
terization of immiscible non-wetting fluids in porous media sys-
tems using synchrotron tomography, Abstracts of Papers of the
American Chemical Society, 241, 1, 2011.

Andrew, M., Bijeljic, B., and Blunt, M. J.: Pore-by-pore capillary
pressure measurements using X-ray microtomography at reser-
voir conditions: Curvature, snap-off, and remobilization of resid-
ual CO2, Water Resour. Res., 50, 8760–8774, 2014.

Andrew, M., Menke, H., Blunt, M. J., and Bijeljic, B.: The Imag-
ing of Dynamic Multiphase Fluid Flow Using Synchrotron-
Based X-ray Microtomography at Reservoir Conditions, Trans-
port Porous Med., 110, 1–24, 2015.

Armstrong, R. T., Georgiadis, A., Ott, H., Klemin, D., and Berg, S.:
Critical capillary number: desaturation studied with fast X-ray
computed microtomography, Geophys. Res. Lett., 41, 55–60,
2014a.

Armstrong, R. T., Ott, H., Georgiadis, A., Rucker, M., Schwing, A.,
and Berg, S.: Subsecond pore-scale displacement processes and
relaxation dynamics in multiphase flow, Water Resour. Res., 50,
9162–9176, 2014b.

Batenburg, K. J. and Sijbers, J.: DART: A Practical Reconstruction
Algorithm for Discrete Tomography, IEEE T. Image Process., 20,
2542–2553, 2011.

Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee,
N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.-O., Kersten,
M., Irvine, S., and Stampanoni, M.: Real-time 3-D imaging of
Haines jumps in porous media flow, P. Natl. Acad. Sci., 110,
3755–3759, 2013.

Bhreasail, Á. N., Lee, P. D., O’Sullivan, C., Fenton, C. H., Hamil-
ton, R., Rockett, P., and Connolley, T.: In-Situ Observation
of Cracks in Frozen Soil using Synchrotron Tomography, Per-
mafrost Periglac., 23, 170–176, 2012.

Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S.,
Mostaghimi, P., Paluszny, A., and Pentland, C.: Pore-scale imag-
ing and modelling, Adv. Water Resour., 51, 197–216, 2013.

Boone, M. A., De Kock, T., Bultreys, T., De Schutter, G., Vontobel,
P., Van Hoorebeke, L., and Cnudde, V.: 3-D mapping of water in
oolithic limestone at atmospheric and vacuum saturation using
X-ray micro-CT differential imaging, Mater. Charact., 97, 150–
160, 2014.

Brabant, L., Dierick, M., Pauwels, E., Boone, M. N., and Van
Hoorebeke, L.: EDART, a discrete algebraic reconstructing tech-
nique for experimental data obtained with high resolution com-
puted tomography, J. X-Ray Sci. Technol., 22, 47–61, 2014.

Bultreys, T., Boone, M. A., Boone, M. N., De Schryver, T., Mass-
chaele, B., Van Hoorebeke, L., and Cnudde, V.: Fast laboratory
based micro-computed tomography for pore-scale research: Il-
lustrative experiments and perspectives on the future, Adv. Water
Resour., in press, 2015a.

Bultreys, T., Van Hoorebeke, L., and Cnudde, V.: Multi-scale,
micro-computed tomography-based pore network models to sim-
ulate drainage in heterogeneous rocks, Adv. Water Resour., 78,
36–49, 2015b.

Bultreys, T., De Boever, W., and Cnudde, V.: Imaging and image
based fluid transport modeling at the pore scale in geological
materials: A practical introduction to the current state-of-the-art,
Earth-Sci. Rev., 155, 93–128, 2016

Cnudde, V. and Boone, M. N.: High-resolution X-ray computed to-
mography in geosciences: A review of the current technology
and applications, Earth-Sci. Rev., 123, 1–17, 2013.

Degruyter, W., Burgisser, A., Bachmann, O., and Malaspinas, O.:
Synchrotron X-ray microtomography and lattice Boltzmann sim-
ulations of gas flow through volcanic pumices, Geosphere, 6,
470–481, 2010.

Dewanckele, J., De Kock, T., Boone, M. A., Cnudde, V., Brabant,
L., Boone, M. N., Fronteau, G., Van Hoorebeke, L., and Jacobs,
P.: 4-D imaging and quantification of pore structure modifica-
tions inside natural building stones by means of high resolution
X-ray CT, Sci. Total Environ., 416, 436–448, 2012.

Drakopoulos, M., Connolley, T., Reinhard, C., Atwood, R.,
Magdysyuk, O., Vo, N., Hart, M., Connor, L., Humphreys, B.,
Howell, G., Davies, S., Hill, T., Wilkin, G., Pedersen, U., Foster,
A., De Maio, N., Basham, M., Yuan, F., and Wanelik, K.: I12: the
Joint Engineering, Environment and Processing (JEEP) beamline

www.solid-earth.net/7/1059/2016/ Solid Earth, 7, 1059–1073, 2016

CHAPTER 5. 4-D IMAGING OF SUB-SECOND DYNAMICS 114



1072 K. J. Dobson et al.: Real-time 4-D imaging of sub-second pore-scale process dynamics

at Diamond Light Source, J. Synchrotron Radiat., 22, 828–838,
2015.

Fourie, W., Said, R., Young, P., and Barnes, D. L.: The Simulation
of Pore Scale Fluid Flow with Real World Geometries Obtained
from X-Ray Computed Tomography, Proceedings of the Boston
COMSOL Conference, 2007.

Geraud, Y., Surma, F., and Mazerolle, F.: Porosity and fluid flow
characterization of granite by capillary wetting using X-ray com-
puted tomography. Geological Society, London, Special Publica-
tions, 215, 95–105, 2003.

Herring, A. L., Harper, E. J., Andersson, L., Sheppard, A., Bay, B.
K., and Wildenschild, D.: Effect of fluid topology on residual
nonwetting phase trapping: Implications for geologic CO2 se-
questration, Adv. Water Resour., 62, 47–58, 2013.

Herring, A. L., Andersson, L., Newell, D. L., Carey, J. W., and
Wildenschild, D.: Pore-scale observations of supercritical CO2
drainage in Bentheimer sandstone by synchrotron X-ray imag-
ing, Int. J. Greenh. Gas Con., 25, 93–101, 2014.

Hess, K. U., Flaws, A., Muehlbauer, M. J., Schillinger, B., Franz,
A., Schulz, M., Calzada, E., Dingwell, D. B., and Bente, K.:
Advances in high-resolution neutron computed tomography:
Adapted to the earth sciences, Geosphere, 7, 1294–1302, 2011.

Iglauer, S., Paluszny, A., Pentland, C. H., and Blunt, M. J.: Residual
CO2 imaged with X-ray micro-tomography, Geophys. Res. Lett.,
38, L21403, doi:10.1029/2011GL049680, 2011.

Kaestner, A. P., Trtik, P., Zarebandkouki, M., Kazantsev, D., Sne-
hota, M., Dobson, K. J., and Lehmann, E. H.: Recent develop-
ments in neutron imaging with applications for porous media
research, Solid Earth Discuss., 7, 3481–3510, doi:10.5194/sed-
7-3481-2015, 2015.

Katuwal, S., Norgaard, T., Moldrup, P., Lamande, M., Wildenschild,
D., and de Jonge, L. W.: Linking air and water transport in intact
soils to macropore characteristics inferred from X-ray computed
tomography, Geoderma, 237, 9–20, 2015.

Kazantsev, D., S., O., Hutton, B. F., Dobson, K. J., Kaestner, A.
P., Lionheart, W. R. B., J., W. P., Lee, P. D., and Arridge, S.
R.: A novel technique to incorporate structural prior information
into multi-modal tomographic reconstruction, Inverse Probl., 30,
065004, doi:10.1088/0266-5611/30/6/06500, 2014.

Kazantsev, D., Thompson, W. M., Van Eyndhoven, G., Dobson, K.,
Kaestner, A.P., Lionheart, W., Withers, P. J., and Lee, P. D.: 4-D-
CT reconstruction with unified spatial-temporal patch-based reg-
ularization, Inverse Probl. Imag., 9, 447–467, 2015a.

Kazantsev, D., Van Eyndhoven, G., Lionheart, W., Withers, P., Dob-
son, K., McDonald, S., Atwood, R., and Lee, P.: Employing tem-
poral self-similarity across the entire time domain in computed
tomography reconstruction, Philos. T. R. Soc. A, 373, 20140389,
doi:10.1098/rsta.2014.0389, 2015b.

Lin, Q., Barker, D. J., Dobson, K. J., Lee, P. D., and Neethling, S. J.:
Modelling particle scale leach kinetics based on X-ray computed
micro-tomography images, Hydrometallurgy, 162, 25–36, 2016.

Little, M. A. and Jones, N. S.: Sparse Bayesian step-filtering for
high-throughput analysis of molecular machine dynamics, IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP 2010 Proceedings Dallas, Texas, USA, 4162–
4165, 2010.

Ma, L., Taylor, K. G., Lee, P. D., Dobson, K. J., Dowey, P. J., and
Courtois, L.: Novel 3-D centimetre-to nano-scale quantification

of an organic-rich mudstone: The Carboniferous Bowland Shale,
Northern England, Mar. Petrol. Geol., 72, 193–205, 2016.

Maire, E. and Withers, P. J.: Quantitative X-ray tomography, Int.
Mater. Rev., 59, 1–43, 2014.

Menke, H. P., Bijeljic, B., Andrew, M. G., and Blunt, M. J.: Dy-
namic Three-Dimensional Pore-Scale Imaging of Reaction in a
Carbonate at Reservoir Conditions, Environ. Sci. Technol., 49,
4407–4414, 2015.

Naveed, M., Hamamoto, S., Kawamoto, K., Sakaki, T., Takahashi,
M., Komatsu, T., Moldrup, P., Lamande, M., Wildenschild, D.,
Prodanovic, M., and de Jonge, L. W.: Correlating Gas Transport
Parameters and X-Ray Computed Tomography Measurements in
Porous Media, Soil Sci., 178, 60–68, 2013a.

Naveed, M., Moldrup, P., Arthur, E., Wildenschild, D., Eden, M.,
Lamand, M., Vogel, H. J., and de Jonge, L. W.: Revealing Soil
Structure and Functional Macroporosity along a Clay Gradient
Using X-ray Computed Tomography, Soil Sci. Soc. Am. J., 77,
403–411, 2013b.

Olafuyi, O. A., Sheppard, A. P., Arns, C. H., Sok, R. M., Cinar,
Y., Knackstedt, M. A., and Pinczewski, W. V.: Experimental
Verification of Effect of Size on Drainage Capillary Pressure
Computed from Digitized Tomographic Images, Int. J. Eng. Res.
Africa, 1, 1–10, 2010.

Pistone, M., Caricchi, L., Ulmer, P., Reusser, E., and Ardia, P.: Rhe-
ology of volatile-bearing crystal mushes: Mobilization vs. vis-
cous death, Chem. Geol., 345, 16–39, 2013.

Pistone, M., Arzilli, F., Dobson, K. J., Cordonnier, B., Reusser, E.,
Ulmer, P., Marone, F., Whittington, A. G., Mancini, L., Fife, J. L.,
and Blundy, J. D.: Gas-driven filter pressing in magmas: Insights
into in-situ melt segregation from crystal mushes, Geology, 43,
699–702, 2015.

Raeini, A. Q., Blunt, M. J., and Bijeljic, B.: Direct simulations of
two-phase flow on micro-CT images of porous media and up-
scaling of pore-scale forces, Adv. Water Resour., 74, 116–126,
2014.

Raeini, A. Q., Bijeljic, B., and Blunt, M. J.: Modelling capillary
trapping using finite-volume simulation of two-phase flow di-
rectly on micro-CT images, Adv. Water Resour., 83, 102–110,
2015.

Rudin, L. I., Osher, S., and Fatemi, E.: Nonlinear total variation
based noise removal algorithms, Physica D, 60, 259–268, 1992.

Sakellariou, A., Sawkins, T. J., Senden, T. J., Arns, C. H., Limaye,
A., Sheppard, A. P., Sok, R. M., Knackstedt, M. A., Pinczewski,
W. V., Berge, L. I., and Øren, P.-E.: Micro-CT Facility For Imag-
ing Reservoir Rocks At Pore Scales, SEG Technical Program Ex-
panded Abstracts, 22, 1664–1667, 2003.

Sato, M., Bitter, I., Bender, M. A., Kaufman, A. E., and Nakajima,
M.: TEASAR: tree-structure extraction algorithm for accurate
and robust skeletons, Proceedings of the Eighth Pacific Confer-
ence on Computer Graphics and Applications, 281–449, 2000.

Sok, R. M., Varslot, T., Ghous, A., Latham, S., Sheppard, A. P., and
Knackstedt, M. A.: Pore Scale Characterization of Carbonates
at Multiple Scales: Integration of Micro-CT, BSEM, FIBSEM,
PetroPhysics, 51, 379–387, 2010.

Van Eyndhoven, G., Batenburg, K. J., Kazantsev, D., Van Nieuwen-
hove, V., Lee, P. D., Dobson, K. J., and Sijbers, J.: An Iterative
CT Reconstruction Algorithm for Fast Fluid Flow Imaging, Im-
age Processing, IEEE Trans., 24, 4446–4458, 2015.

Solid Earth, 7, 1059–1073, 2016 www.solid-earth.net/7/1059/2016/

CHAPTER 5. 4-D IMAGING OF SUB-SECOND DYNAMICS 115



K. J. Dobson et al.: Real-time 4-D imaging of sub-second pore-scale process dynamics 1073

Wildenschild, D. and Sheppard, A. P.: X-ray imaging and analy-
sis techniques for quantifying pore-scale structure and processes
in subsurface porous medium systems, Adv. Water Resour., 51,
217–246, 2013.

Wildenschild, D., Hopmans, J. W., Vaz, C. M. P., Rivers, M. L.,
Rikard, D., and Christensen, B. S. B.: Using X-ray computed
tomography in hydrology: systems, resolutions, and limitations,
J. Hydrol., 267, 285–297, 2002.

Youssef, S., Oughanem, R., Rosenberg, E., Maire, E., and Mokso,
R.: 4-D Imaging of Fluid Flow Dynamic in Natural Porous Media
by Ultra-fast X-ray Microtomography, International Congress on
3-D Materials Science 2014, 2014.

www.solid-earth.net/7/1059/2016/ Solid Earth, 7, 1059–1073, 2016

CHAPTER 5. 4-D IMAGING OF SUB-SECOND DYNAMICS 116



Appendix A

SophiaBeads Datasets Project

Documentation and Tutorials

117



SophiaBeads Datasets Project Documentation and Tutorials

Sophia Bethany Coban
School of Mathematics, University of Manchester

e-mail: sophia.coban@manchester.ac.uk
website: www.maths.manchester.ac.uk/~scoban

April 1, 2015

The SophiaBeads Datasets [4] are real microCT datasets, acquired specifically for imple-
menting, testing and comparing iterative reconstruction algorithms. The main motivations for
the SophiaBeads Datasets Project are providing real datasets for researchers, and introducing
a framework for designing experiments and choosing appropriate reconstruction methods via
fair comparisons. This aspect of our work is studied in great detail in [5, 6]. The reason we
use the SophiaBeads Datasets is because we know what the reconstructions should look like:
We know the insides of the sample and its characteristics, so we can quantify the reconstruc-
tions and find out how close we are to an ‘exact solution’. The details of the sample and the
experiment plan are listed in the next section.

As part of this project, we have also released SophiaBeads Datasets project codes [3]. Our aim
with this report is to provide the reader with enough information to work with these codes
so the reader can reconstruct the datasets. Additionally, we include a tutorial for quantifying
the reconstructions so the readers are able to reproduce our results presented in [5, 6]. In §3,
we document the project codes and explain the main script (sophiaBeads.m), followed by
documentation for the quantification stage using Avizo. §5.1 and §5.2 are the detailed, step-
by-step tutorials for the project codes and the Avizo work, where we reproduce our results
for SophiaBeads 512 averaged as an example. For accessing the contents of this project
(datasets and the source codes) and guidance on referencing, we refer the reader to §2. It is
also recommended to read the additional notes and the licenses under which the project is
distributed, which are explained in §6.

1 Sample Information and Experiment Plan

For the SophiaBeads experiments, we have set up a basic sample with specific measurements
so we are able to quantify the reconstructions. The sample is a plastic tube with a diameter
of 25mm, filled with uniform soda-lime glass (SiO2−Na2O) beads of diameters 2.5 mm (with
standard deviation 0.1 mm). The sample has been scanned in the same conditions for each
dataset, where the number of projections is halved after each batch scan (starting from 2048,
down to 64 projections, see Table 1 for more information). This follows the set up explained
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in [5, 6]. This design allows us to understand the effects of fewer projections, and develop
algorithms that deliver quality results when the information content is low (e.g. patient scans
with lower dose or rapid data acquisitions for 3D+time experiments).

Number of
Projections

bla

Number of
Frames

(scans per batch)

Acquisition Time
(per frame)

Size of Dataset

2048 1 24 mins and 10 secs 15.7 GB
1024 2 12 mins and 5 secs 7.8 GB
512 4 6 mins and 3 secs 3.9 GB
256 8 3 mins and 2 secs 1.9 GB
128 16 1 min and 30 secs 953.6 MB
64 32 45 secs 474.9 MB

Table 1: The experiment plan and information about the SophiaBeads Datasets.

The datasets are acquired using the Nikon Custom Bay X-ray CT machine located in the
Manchester X-ray Imaging Facility. The reader can visit [8] to find out more about this
equipment.

2 Download and Referencing Guide

The SophiaBeads Datasets are accessible via Zenodo, which is an open digital repository
aimed at preserving and sharing academic/scientific results (these mainly include datasets or
software used in a particular study, or supporting texts for a thesis). The reader can download
each dataset as a zipped folder from [4]. When extracting the zipped folders, make a note of
the path the folder is extracted to (this becomes important later).

Zenodo provides exportation of various citation formats. To cite the datasets, the reader
may export the BibTex record by clicking on the link on the right hand side of the Sophi-
aBeads Datasets Zenodo page. It is not necessary to refer to each dataset separately; citing
(using the DOI) for any of the datasets once is sufficient.

The SophiaBeads Datasets project codes are released on GitHub [9] and published on Zen-
odo [3]. The project codes can be downloaded by visiting either the GitHub repository page
(download as zip or tar.gz files), or the Zenodo page (available only as a zip file). By default,
Zenodo takes an archive of the SophiaBeads GitHub repository every time there is a new
release. However, we recommend direct downloads from the GitHub repository for the most
recent changes applied in-between major releases. The reader will still need to export the
BibTex record from the Zenodo page (to get the complete citation including the correct DOI).

The reader will need to download the source project codes in order to work with SophiaBeads
Datasets. However, we ask that the reader cites both the datasets and the project codes
separately, using the relevant DOI.

2

APPENDIX A. SOPHIABEADS DATASETS PROJECT 119



3 SophiaBeads Datasets Project Codes

As we mentioned earlier, to be able to work with the SophiaBeads Datasets, we have also
released project codes for the pre-reconstruction stage. In this section, we introduce these
codes, and give detailed descriptions of each script or function1. The main script in particular,
named sophiaBeads.m, contains the relevant functions for all the stages up to (and excluding)
the quantification. A visual description of this script is given in the figure below, followed by
a list of all scripts and functions, and their definitions.

Figure 1: This is the process tree for the script sophiaBeads.m.

1In this report, we assume the reader has some experience using MATLAB, including knowing the difference
between a regular script and a function. Nevertheless, we adapt a certain behaviour in the report to distinguish
between the two: If the name of a script is mentioned, the name will always be followed by the .m extension,
e.g. scriptname.m; whereas a function will just be functionname.
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Script/Function Description
• Main

sophiaBeads.m A script with all the commands to carry out the reconstruc-
tions. We will be going through this script step by step in
the tutorial, in §5.1.

• Pre-reconstruction

pre recon This function is a collection of commands that return the
outputs data (the dataset stored in MATLAB) and geom
(the cone beam geometry parameters required for forward
and back projectors).

load nikon Loads the data taken by Nikon XTek CT machine.

cutDown data
Cuts the dataset down from 2000× 2000× 2000 to
1564× 1564× 2000. This is the size of the images during the
data acquisition for all the SophiaBeads experiments.

centre geom and
find centre.m

Functions to find the centre of rotation and apply this as a
correction to data and geom before the reconstruction stage.
See [7] for the correction algorithm implemented.

• C codes

CBproject c.c
CBbackproject c.c
project single.c
backproject single.c
jacobs rays.h

These are essentially the forward and back projectors
provided by our colleagues W. Thompson [12] and
D. Szotten [11]. These codes adapt Jacob’s ray
tracing algorithm as explained in [10].

• Interface for the mex files

CBproject, CBbackproject Interfaces written to connect a reconstruction script with the
forward and back projectors.

• mex files

CBproject c.mexa64
CBbackproject c.mexa64
CBproject c.mexmaci64
CBbackproject c.mexmaci64
CBproject c.mexw64
CBbackproject c.mexw64

These are the outputs of setup.m, and are used for calculat-
ing Ax (forward projector) or AT b (back projector).

4

APPENDIX A. SOPHIABEADS DATASETS PROJECT 121



• Templates

setup.m This script outputs the mex files for forward and back pro-
jectors. This and the next function are provided to us by our
colleague N. Wadeson [13].

cgls XTek An example reconstruction script included as a template for
the reader. The CGLS algorithm is given in [2].

• Reading/Writing

read vol.m
write vol.m
write tiff.m

Writing and reading reconstructed volumes. We
include write tiff.m as an extra file, which we do not
use in the tutorial.

The reader is reminded that using the doc or the help command in MATLAB for a particular
script/function will output more details. For example:

>> help write tiff

will output

write_tiff
Function to write the reconstructed volume as a set of tiff images.
Each tiff image is a slice in the z-direction.

INPUT:
vol: Reconstructed volume.
pathname: Name of the folder where the volume is to be stored.
filename: Name of file to store the volume as.
experiment_name: Name of the experiment for reconstructing this volume.

This is to help distinguish between volumes, avoids
overwriting. NOTE: This can be an emptry string.

voxels: Size of the volume.
type: ’uint8’ or ’uint16’. NOTE: This has to be a string.

DEFAULT VALUES:
experiment_name = ’’; (empty string)
voxels = [1564 1564 2000]; (2000 slices)
type = ’uint16’;

OUTPUT:
foldername: Name of folder the tiff files are saved in.

Copyright (c) 2015 Sophia Bethany Coban
Code is available via the SophiaBeads Datasets project.
University of Manchester.
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This is useful for seeing the inputs required by the function and the default values set in the
codes.

As mentioned earlier, we have collected all the commands in one script for an easy and
quick run (sophiaBeads.m) but the readers are encouraged to experiment by running these
functions individually.

4 The Quantification Stage

The quantification of the reconstructed results was done using a commercial software, named
Avizo. This application is developed by FEI Visualization Sciences Group, and is popularly
used in materials science for interactive data visualization and analysis. Avizo is convenient
for working on the SophiaBeads Datasets as it includes a list of measures we can apply to
quantify our results. Here, we give a list of actions to be used in the tutorial and their
descriptions; and a list of measures that can be used to quantify our results. The results
presented in [5] are obtained using Avizo Fire 8, but the tutorial is valid for Avizo Fire 7
and Avizo 9. The workflow we used is outlined in Figure 2. In the quantification tutorial, we
assume the reader has no experience using Avizo.

Figure 2: This is the Avizo workflow used in the quantification tutorial. This particular
version is Avizo 9. However, the tutorial in §5.2 is valid for Avizo Fire 7 and 8.

The quantification tutorial is essentially the Watershed Tutorial given in [1, pages 271–293],
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modified specifically for the SophiaBeads Datasets. We note here that we do not apply any
noise reduction or ‘filling in the holes’ during the segmentation stages, as this would influence
the analysis of the reconstructed volume. Below is the list of actions we apply, and their
descriptions.

Action Description

Interactive
Thresholding

Creates a binary image using a defined thresholding range of intensity
values. The thresholding range we used for all the SophiaBeads re-
constructed volumes is (0.11,0.35). This was enough to separate the
exterior and the beads, even for SophiaBeads 64 averaged.

Chamfer Distance
Map

Distance maps are applied to binary images (.thresholded). They out-
put grey level images where each intensity value represents the minimal
distance from the object boundary, in voxels. We use the Chamfer Dis-
tance Map, which is a discrete map. This cuts down the computation time
whilst giving reliable results for this type of sample.

H-Maxima Takes the distance map (.distmap) as an input, calculates the regional
maxima, and outputs the most inner regions within the objects. This is
necessary for labeling individual objects in the image.

Labeling This is used to index all of the disconnected/segmented objects within
the image. We repeat this action twice during the quantification stage:
First time is to distinguish between the exterior and the objects of interest
(our reconstructed volume). Second is to label the separated objects (as
individual beads).

NOT Inverts a grey level image (in our case, the input is .distmap).

Marker-Based Wa-
tershed

Watershed is the main tool used in the quantification tutorial. The al-
gorithm automatically separates the beads, which are then labeled as in-
dividual objects. We use the Marker-Based Watershed algorithm in the
tutorials.

AND NOT This takes two inputs: .thresholded and .watershed, and outputs an
image where the separation lines are subtracted from the binary image.

Filter by Measure Measures individual objects and ranks them according to the chosen mea-
sure (see below for the list of measures we believe are suitable for the
datasets).

Generate Surface Generates a 3D surface from a label image (the output for this is .surf).
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Surface View Allows us to visualize the .surf output on the screen.

Ortho Slice Views the current image as a slice (the horizontal, xy, slice by default, but
the user can change this to view vertical slices, xz or yz).

Volumized Ren-
dering

Renders a 3D visualization of the selected volume.

Below is the list of available measures in Avizo Fire, which we can use to quantify the quality
of our reconstructed results.

Measure Description SophiaBeads Expected Result

Shape VA3D Outputs a shape factor de-
pending on how spherical
the object is. For a perfect
sphere, the answer is 1.

SophiaBeads are not all perfect spheres (there
is a fraction of the beads that are egg-shaped,
which would influence the outcome) so we ac-
cept a range between 1 to 1.5 as the “perfect”
spherical solution.

EqDiameter Inspects the diametres of
the spherical objects.

This should output the diametres of the beads,
which (in the perfect case) would be 2.5 mm.

Volume3D Calculates the spherical
volume the objects; uses
4πr3/3 to calculate the
volume of a sphere.

We expect the answer for a “perfect” recon-
struction of a sphere to be 8.18 mm3 (or
8.18 × 109µm3), with a standard deviation of
1.02 mm (or 1.02× 109µm3 ).

Area3D Outputs the surface area of
a 3D object.

The surface area of a “perfect bead” in Sophi-
aBeads experiments should be 19.63 mm2 (or
1.9×107µm2), with a standard deviation of
3.27 mm (or 0.33×107µm).

Symmetry Outputs a factor on how
symmetric the objects are.

This should be 1 as we expect the recon-
structed beads to be symmetric (egg-shaped
beads would also influence this analysis but not
by a huge factor, similar to Shape VA3D).

Eccentricity Similar to the measure
above, outputs a factor on
how eccentric the shapes of
the objects are.

A very low number would mean the shape is
not at all eccentric, which is what we would
expect for the beads.
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There are more ideas listed for quantifying the SophiaBeads datasets in [5, 6], which are
not available as measures in Avizo. The readers are welcomed to use these but are also invited
to consider new ideas for quantifying own reconstructions.

5 Reconstruction and Quantification Tutorials

This section aids the readers through the process of reproducing our results, as presented
in [5], and more importantly helps the reader understand the exact steps taken in our
codes. In this section, we will be repeating our reconstruction experiments for the Sophi-
aBeads 512 averaged dataset, and present the messages, results, and the Avizo work
involved.

Previously, we have mentioned a main script, where all the relevant commands are used to
prepare the dataset for reconstructing and then saving in a format appropriate for Avizo (see
Figure 1 for the process tree of sophiaBeads.m). We will now go through each command,
but also print the outputs of sophiaBeads.m.

5.1 Reconstruction Using the Project Codes

The scripts are written in a way that everything up to the Avizo stage are automated.
However, there are some variables the user will have to manually enter in sophiaBeads.m
before running the script. These are:

• pathname: Declare the path to folder where the dataset is saved.

• filename: Declare the name of the dataset. For these runs, this is declared as Sophi-
aBeads 512 averaged.

• geom type: Declare whether to perform a 2D or a 3D reconstruction. Please note
that the variable is case-sensitive, and will not work if, e.g., the variable is declared as
geom type = ‘2d’.

• experiment name: This is for naming purposes only. The reconstructed volume will
take the name <filename> <experiment name>.vol. This variable will help distin-
guish between the reconstruction experiments, and avoid overwriting a previous result.

• slices: This variable is only valid if geom type = ‘3D’, and will be ignored otherwise.
This is to allow the reader to work on a certain number of slices instead of reconstructing
the full volume (2000 slices), essentially cutting down the computation time. For our
results and quantification in [5], 200 slices were adequate.

• iterations: This is an optional variable, and only used in the code we have written for
CGLS. When implementing own reconstruction method, reader is free to replace/remove
this variable as they see fit.

For this particular run, the variables above are declared as the following:

pathname = ‘/media/SophiaBeads Datasets/SophiaBeads 512 averaged/’;
filename = ‘SophiaBeads 512 averaged’;
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geom type = ‘3D’;
experiment name = ‘CGLS 200slices’;
slices = 200;
iterations = 12;

Running sophiaBeads.m will trigger the process outlined in Figure 1. We will now go through
this by explaining the commands step by step. The first on our list is setup. Note that this is
commented out and is only intended to be a template for those wishing to test projector/back
projector techniques. If this line is uncommented, the program will output the following:

setup;

>> Creating the folder mex/...
>> Building with ‘gcc’.
>> MEX completed successfully.
>> Building with ‘gcc’.
>> MEX completed successfully.

Take caution as this will overwrite the existing projector and back projector mex files. Please
read §6 for more information.

Pre–Reconstruction

Next is a function that runs scripts only for the pre-reconstruction phase. This is where the
data gets loaded onto MATLAB, the cone beam geometry is set up, and relevant corrections
are applied. Below is the list of functions in pre recon.m, followed by how the function is
called within sophiaBeads.m and their outputs in the command window. Please refer to §3
for the descriptions of these functions.

[data,geom] = pre recon(pathname, filename, geom type, slices);

>> Loading the SophiaBeads dataset (3D)...
>> Dataset is cut down to 1564 x 1564 x 200...
>> Applying centre of rotation correction...
>> Pre-reconstruction stage is complete!

Reconstruction and Saving

We are now ready to reconstruct the SophiaBeads dataset. To encourage readers to imple-
ment their own techniques, we include a short CGLS script in the project codes release, named
cgls XTek. The readers are free to use this code to obtain the SophiaBeads dataset result
in these tutorials, or as a template to implement own techniques. The CGLS algorithm is
implemented as described in [2], and run for 12 iterations (this was picked by trial and error,
as explained in [5]). The program command and the outputs are

xcgls = cgls XTek(data, geom, iterations);
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>> Reconstructing the SophiaBeads dataset (3D)...
>> Iteration 1 -- Elapsed time is ---- seconds.
>> ...
>> Reconstruction is complete!

The code then plots the reconstructed image (for 3D, this is just the central slice).

Figure 3: This is the central slice of the reconstructed volume.

The SophiaBeads 512 averaged dataset is now reconstructed. The volume is saved as
single floats, using the script write vol.m:

volname = write vol(xcgls, pathname, filename, experiment name, ‘single’);

which outputs

>> The reconstructed volume is written in folder
/media/SophiaBeads Datasets/SophiaBeads 512 averaged/.

>> The volume is saved as SophiaBeads 512 averaged CGLS 200slices.vol.

The reconstructed result for this dataset is now ready to be exported to Avizo for the quan-
tification stage.

5.2 Quantification using Avizo

For this section of the tutorials, we have divided the content into three sections:

I. Loading the Dataset,

II. Image Segmentation and Separation, and

III. Quantification and Saving Results.
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I. Loading the Dataset

Start the Avizo Fire application and, from the top of the page, select File → Open Data →
Navigate to the folder where write vol.m has saved the dataset. The window in Figure 4(a)
will appear. Select “Read complete volume into memory”, and press OK. The reader will
then be prompted to pick the file format. Pick “Raw Data” from the list (as highlighted in
Figure 4(b)) and press OK.

(a) Data load warning win-
dow.

(b) Data for-
mat selection
window.

(c) Default data parame-
ters.

(d) Updated data param-
eters.

(e) The setup of Avizo.

Figure 4: Data loading in Avizo.

The reader will then be asked to enter a set of dataset parameters (see Figure 4(c) for the
default values, and Figure 4(d) for the changes applied for the SophiaBeads Datasets). Apply
the changes below:

• Data type: Select 32-bit float from the drop-down menu.

• Dimensions: This should be the size of the reconstructed volume, which in this case
is 1564× 1564× 200.
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• Voxel size: This should be as defined in the .xtekct files, which (for all SophiaBeads
Datasets) is [16, 16, 16]µm (this can be left as [1, 1, 1] but in doing so, the results obtained
during the analysis stage would have to be scaled).

Note that after these changes are applied, the Header should read 0 (zero). After loading
the dataset, one can attach Ortho Slices to view the horizontal (default orientation) and
vertical slices (choose xz and yz as the Orientation option in the Properties window below
the Project View, on the left hand size of the application). The current setup should now
match the one given in Figure 4(e).

II. Image Segmentation and Separation

The first step is to get the binary image (this is to separate the objects from the background).
For this, we apply the action Interactive Thresholding : Right click on the dataset (.vol)
→ Image Segmentation → Binarization → Interactive Thresholding → Create. See
Figure 5(a) as a reference. A red (action) box will appear below .vol with options to modify.
The only modification needed here is the Intensity Range, which should be from 0.11 to 0.35
(in fact, anything above 0.35 will not effect the analysis results). This range must be the
same for all the reconstructed results of SophiaBeads Datasets. Figures below are
of the option window and an ortho slice attached to the output of this action.

(a) Choosing Interactive Thresholding. (b) Options.

(c) Resulting ortho slice of the binary im-
age (blue = objects of interest, black =
exterior).

Figure 5: Interactive Thresholding steps for a binary image of the volume.
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Next, we apply the Chamfer Distance Map to the binary image. To do this, right click
on .thresholded → Image Processing → Distance Maps → Chamfer Distance Map →
Create (Figure 6(a)). Note that in the Properties window, the reader must choose 3D
for the Interpretation option and select Apply. Attaching an ortho slice to the output gives
Figure 6(b). This is followed by the H-Maxima action: Right click on the Distance Map
output, .distmap → Image Processing → Morphological → H-Maxima → Create. No
changes needed to make in the properties, so click Apply. It might take a few minutes to
complete the iterations. Finally, we need to attach Labeling to the H-Maxima output. As
before, right click on .hmaxima → Image Segmentation → Labeling → Create and then
Apply.

(a) Choosing Chamfer Distance Map.

(b) Distance Map Output.

(c) H-Maxima.
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(d) Labeling.

Figure 6: Steps for detecting individual objects.

Now, we must go back to the distance map and invert it: Right click .distmap → Compute
→ Logical Operations → NOT → Create. Nothing to change in the Properties window
so click Apply. We are now ready to apply the Watershed algorithm on the inverted image:
Right click on the output .not → Image Segmentation → Marker-Based Watershed →
Create. On the Properties window, for the Input Label Image, select the .labels output.
See Figure 7(c) for the Properties window changes, and Figures 7(d) and 7(e) for the results
of .not and .watershed.

(a) Choosing the NOT option.

(b) Choosing the Watershed algorithm.

(c) Watershed options: Choose Input Label
Image.

15
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(d) NOT output. (e) Marker-Based Watershed output.

Figure 7: Steps for the Watershed algorithm application.

Finally, subtract the separation lines (.watershed) from the labeled binary image (.thresholded)
by right-clicking on .thresholded → Compute → Logical Operations → AND NOT Image
→ Create. On the Properties window, choose .watershed output from the drop-down
menu for the Input Image 2 (see Figure 8(b)). Clicking Apply produces the output .sub.
Repeat the steps for the Labeling process to index the separated objects. We can now quantify
these objects (reconstructions of the individual beads) using the measures listed in §4.

(a) Choosing the AND NOT Image.

(b) AND NOT Image option.
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(c) Visualization using Surface View of Labeling 2
(vertical view).

(d) Visualization using Surface View of Labeling 2
(tilted view).

(e) Labeling 2; Separated objects.

Figure 8: Final steps for separating the objects.

III. Quantification and Saving Results

We now have our reconstructed beads separated and individually labeled. The second label
lists that there are 4329 objects (this is visible in Figure 9(a)). However, this does not mean
that there are exactly 4329 beads: this number takes into account any objects of any size
within the image. These include any beads that are not fully in the 200 slices window, which
may or may not have been separated from other beads (see Figures 8(c) and 8(d) for the
Surface View of the reconstructed volume). To quantify our reconstruction appropriately,
we need to filter out the objects that are too small to be included in the analysis. This is
done by Filter by Measure: Right click on the second .labels → Measure and Analyze →
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Individual Measures → Filter by Measure → Create. We believe the most appropriate
measure for filtering out is the Volume3d option, which sorts the objects by the descending
order of their volume. See Figure 9(b) for the modified properties. Note that we pick the first
50 objects that have the highest volume. These are saved in the third output of .labels.

(a) Choosing Filter by Measure. (b) Properties window.

(c) Volumized Rendering of the resulting .labels.

Figure 9: Filtering out the objects that are small in volume.

The next stage involves some manual work. The third output of .labels contains 50 objects
and these are sorted by the magnitude of their volumes. What we are not taking into account
here is that some objects are not separated properly, or are mostly within the 200 slices range
so they are able to go through the filter (as seen in Figure 9(c)). We need to pick out the
beads within these 50 objects that are separated and are fully within the window. To do this,
we have to use the Segmentation Editor where all objects are listed as individual materials.
In Figure 10(a), we see the first 5 objects (viewed by toggling the 3D option). From this we
deduce that Material 3 is not separated properly, and Materials 1, 2 and 4 are not fully in
the window. For the quantification, we can only accept Material 5 so we delete the first four
materials off the list using the Delete key (they are simply added to the exterior and are no
longer part of the third .labels output). Using this method, we inspect all the materials
on the list. Our target is to keep around 10 materials for the Label Analysis stage (this can
be challenging as the quality of reconstructed volume decreases, in which case we would go
back to Filter by Measure, and increase the Number Of Objects option). See Figure 10(c)
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for another example, and Figure 10(d) for the resulting 10 materials we accept for the next
stage. Please note that the colours may be different but by following the exact steps, the
reader should be able to get the beads in the same locations.

(a) The first 5 materials on the list: Materials 1 to 4 are not suitable.

(b) Segmentation Editor window. (c) A second example of beads: Materials 5 and 9
are acceptable for the analysis.

(d) Final look of the appropriate beads in the Segmentation Editor.

Figure 10: Manually choosing beads that are separated and fully within the 200 slices.

The final stage is running the Label Analysis, which concludes the quantification. To perform
the Label Analysis, right click on the third .labels output → Measure and Analyze →
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Individual Measures → Label Analysis → Create (Figure 11(a)). In the Properties
window, choose .vol for the Intensity Image. For convenience, we created a measure group
for the SophiaBeads experiments. This is done by clicking next to Measures. This

prompts the window shown in Figure 11(c). To create a new measure group, press
on top of the page, next to the “Choose a measure group option”, and enter a name for a
new group. Then, browse the “Native measures” section and double click on the preferred
measures to include in the group. The measures picked should appear on the right, under the
section “Measures selected in the group”. Press OK when finished, and make sure the newly
created measure group is chosen as the Measures option in the Properties window (compare
with Figure 11(b)). Clicking Apply will prompt Avizo to measure the remaining objects in
.labels, and output results in a table for all the measures in the group. The resulting table
for our run is given in Figure 11(d). By inspecting these results, we can quantify how close
the reconstructed volume is to a perfect solution, and thus compare with different methods
applied to the same volume (see e.g. [6, Fig. 7]).

(a) Choosing Label Analysis. (b) The final Properties window of Label Analy-
sis.

(c) Creating measure groups in Avizo. (d) The final table with label analysis results listed.

Figure 11: Final steps of quantifying the quality of a reconstructed volume using Avizo.

It is possible to visualize the results in 3D by applying Volumized Rendering to the final
.labels output, or by applying Generate Surface to the same output, followed by Surface
View (the outputs will be similar to Figures 9(c) or 8(d)). The tree flow in the Project
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View window should match the one given in Figure 2. The reader can save the results on
the analysis table in a csv or xml format.

6 Additional Notes and Licensing Information

Due to the nature of the sample, the datasets are also suitable for developing and/or testing

• segmentation methods,

• image or data correction techniques,

• forward and back project implementations, and

• benchmarking own codes or method.

We include mex files suitable for Windows, Mac OSX and Linux operating systems. We also
include the Linux template of the script we have written to create these mex files (setup.m).
Please note that as this is a template script, it may not work with Windows, and may need
some tweaking to work for Mac OSX systems (this depends on the installed versions of MAT-
LAB and Xcode).

If the reader runs setup.m, the existing projector and back projector mex files will be over-
written. To avoid this, modify the names after the -output option in the setup.m:

Line 22: -output mex/CBbackproject c
Line 23: -output mex/CBproject c

Please note that in doing so, the reader will also have to modify the interface scripts for the
mex files (CBproject.m and CBbackproject.m) to update the lines with the new projector
and back projector mex file names.

Finally, the project codes are tested using the following MATLAB versions:

• Scientific Linux 6, Ubuntu 12.04 and 14.04: MATLAB R2010a, R2013a, 2014b.

• Mac OSX 10.9 (Mavericks) and 10.10 (Yosemite): MATLAB R2009b, R2013a,
R2014b.

• Windows 7 and 8.1: MATLAB R2012b, R2013a, R2014a, R2014b.

Licensing Information

The SophiaBeads Datasets are distributed under the Creative Commons Attribution
Share-Alike license. The project codes are distribted under the GPL v2 and MIT licenses.
Please read the documents LICENSE and LICENSE2 to learn more about using the project
codes. The reader may also find it useful to visit www.creativecommons.org/licenses/ and
www.choosealicense.com to learn about these licenses.
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When do the iterative reconstruction methods
become worth the effort?

S.B. Coban∗, P.J. Withers†, W.R.B. Lionheart∗, S.A. McDonald†

Abstract—A driving force for the development of new recon-
struction algorithms is to achieve better quality images using
less information (lower dose, fewer projections, in less time), but
under what circumstances do iterative methods become worth the
effort? In this paper we propose a framework that enables the
performance of reconstruction algorithms to be mapped. Such
a framework allows fair comparisons to be made, providing
insights into experimental acquisition strategies and methods of
quantifying the quality of reconstructions, and identifying the
sweet spot for different algorithms.

In the CT imaging community, the challenge is to be able
to produce the best quality images with the least amount of
information. Depending on the application, this information
could be a series of quickly acquired projections if we wish
to capture rapid changes in the sample, or low dose exposures
given to a patient during the scans; or it could be a limited
angles of illumination due to the constraints of the hardware,
the sample, or restrictions to minimize the computational
memory requirements.

The science of reconstructing a 3D volume from 2D pro-
jections is a problem with many possible solutions. Even
in the case of sufficient data, the solutions can be unstable.
Additionally, these solutions are sensitive to small changes in
the measured data (noise due to modeling or experimental
errors), which means that even a noisy image can qualify
as a feasible solution. This solution can be an image of
the location of a landmine in the ground, or detection of a
weapon in a bag, or used to diagnose cancerous cells. This
becomes an issue when the reconstruction techniques do not
converge to a better solution than a noisy image. Therefore
it is natural that we consider the data to be measured, any
prior information about the problem we can make use of, and
the methods for reconstructing high quality images. However
before thinking about the reconstruction algorithms, we must
first consider whether the information we have is useful. This
can be done by characterizing the cost of measure. This is
simply a variable specific to the application. In our case, this
could be the available acquisition time, or perhaps the level
of dose we use to scan a patient. It is clear that, whatever
the application is, we do not want a dataset comprising just
one projection acquired over a long period of time (strong
signal), or many projections in very short periods (weak

∗School of Mathematics, †School of Materials,
The University of Manchester, Manchester, M13 9PL, United Kingdom.
sophia.coban@manchester.ac.uk, www.maths.manchester.ac.uk/∼scoban;
sam.mcdonald@manchester.ac.uk;
p.j.withers@manchester.ac.uk;
bill.lionheart@manchester.ac.uk, www.maths.manchester.ac.uk/∼bl.

signal). We want to be able to determine what we need to
know, and plan experiments accordingly. Taking into account
the important variables in CT, we propose a map to guide the
reader when planning experiments. This map displays aspects
of the information content of the dataset with the abscissa
quantifying the number of projections and the ordinate the
number of photons collected (proportional to the number of
frames acquired per projection times the number of projec-
tions). In this space a given experimental strategy is a point
on the map. If the quality of the reconstructed image can
be expressed as a metric, then it can be used to map the
capability of a given algorithm highlight acquisition regimes
over which it maybe deemed acceptable. Similarly regimes
over which different algorithms are beneficial can be identified.
Conversely, acquisition strategies can be identified to achieve
a given performance in the least time or dose.

Fig. 1. The log-plot of number of projections vs photon count (number of
projections × number of frames). The numbers on the chart refer to the
number of frames for scans lying on LINES A and B.

From this map it is clear that if we want to identify the
performance of algorithms as a function of the number of
projections, it is fairer to keep the number of photons collected
constant while the number of projections is varied (LINE A
in Fig. 1). By contrast it is often the case that in practice the
comparison is made using one frame for each projection (LINE
B) which convolves the decreasing number of projections
with the decreasing signal, influencing our conclusions. The
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difference in reconstructed images for both LINES A and B is
illustrated in Fig. 2(c), where we have used the SophiaBeads
128 dataset with 1 frame (lying on LINE B) and 16 frames
(on LINE A). We introduce the SophiaBeads Datasets in the
next section.

(a) 128 projections, 1 frame. (b) 128 projections, 16 frames.

(c) Difference between the reconstructed results.

Fig. 2. Highlighting the difference in reconstructions with the traditional
approach following LINE B (top left), and keeping the cost of measure
constant by following LINE A (top right). The eliminated noise is shown
in the image (bottom). Reconstructions are obtained using CGLS.

Our ultimate aim is to introduce a framework for designing
experiments and choosing appropriate reconstruction methods
via fair comparisons. In this paper, we wish to discuss this
aspect of our work, and support our logic with reconstructed
results. Before concluding the paper, we explore ways of
quantifying results using a real dataset.

I. EXPERIMENTAL DESIGN AND QUANTIFICATION
METHODS

We have established an experimental glass bead pack
dataset, [5], based on the above framework acquiring 1 frame
for each of 2048 projections; 2 frames at 1024, 4 frames
at 512, 8 frames at 256, 16 frames at 128 and 32 frames
for 64 projections (see points lying on LINE A in Fig. 1).
This enables a wide range of algorithm comparisons and
information content optimizations to be examined. In this
paper we examine the performance of algorithms along LINE
A, namely we compare the performance of algorithms using
different numbers of frames but at a constant signal.

The experiment dataset is called SophiaBeads, available as
part of the SophiaBeads Datasets Project. More information

on the sample, data acquisition and quantitative analysis of the
reconstructions can be found in [6, 4]. We have chosen a beads
problem because it is easy to make the dimensions of the solid
spheres precisely known and the problem is representative
of many X-ray imaging problems [7]. A key element of the
beads problems is that the samples often consist of only beads
and air, making them suitable for studying ‘porous channels’
(bottlenecks) and ‘touching of beads’. These are important
characterizations for studying segmentation techniques or dis-
crete CT algorithms.

Our motivation for using SophiaBeads Datasets in particular
is that we know what the reconstructions should look like. We
know that the beads are of one size1, and thus the following
items can be considered when quantifying our results:

I. Volume of the beads2: The range of expected volume
of each bead is known.

II. Shape of the beads2: We can parameterize how close
(in shape) a reconstructed bead is to a perfect sphere.

III. Circular cross-section of the beads3: Because the
beads are (nearly) perfectly spherical, each bead should
have the same1 diameters or radii in all axes (i.e. a cross-
section of each bead should be a perfect circle).

VI. Smoothness of the beads3: boundary of each bead
should be smooth.

II. COMPARISON OF RECONSTRUCTION METHODS

In this section, we present the 2D reconstructions of the
SophiaBeads Datasets, using FDK [8], CGLS [3] and SART
[2]. To examine the reconstructions in detail, we focus on a
central window of the reconstructed slices (see Fig. 3).

Fig. 3. 2D CGLS reconstruction of 2048 projections, and its center window.

1The size of the beads is normally distributed with a mean of 2.5mm (in
diameter), and a standard deviation of 0.01mm (or 100µm). This means that
even though most beads in 2D will look like perfect circles, there will be a
proportion of them that are egg-shaped.

3Suitable for 2D and 3D reconstructions.
2Requires 3D reconstructions.
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FDK Results

FDK [8] is the standard approach employed by most com-
mercial scanners. Results below are obtained using the in-
house implementation of FDK.

(a) 2048. (b) 1024. (c) 512.

(d) 256. (e) 128. (f) 64.

Fig. 4. 2D FDK reconstructions of each SophiaBeads dataset.

One can observe line artefacts and loss of contrast in the
reconstructed images in scans with fewer projections. In
particular in Fig. 4(f), the bead is almost unidentifiable due
to loss of definition in shape.

CGLS Results

This is the Conjugate Gradient method modified for non-
square systems such as the CT problem, as explained in [3].

(a) 2048. (b) 1024. (c) 512.

(d) 256. (e) 128. (f) 64.

Fig. 5. CGLS reconstructions at iteration 12.

The method is implemented in MATLAB R2014b, with the
forward and back projector codes written in C. This method
is also used in the SophiaBeads tutorials [4]. The number of
iterations is fixed at 12. We observe increase in blur and loss
of definition of bead shape in scans with fewer projections.

SART Results

As the third example, we present results using a popular
method from the family of algebraic reconstruction techniques
[2]. For these runs, we performed 200 sweeps with a relaxation
factor chosen as 0.8. Just as with CGLS, we have implemented

and plotted results in MATLAB with forward and back pro-
jectors implemented in C.

(a) 2048. (b) 1024. (c) 512.

(d) 256. (e) 128. (f) 64.

Fig. 6. SART reconstructions with 200 sweeps, and relaxation factor ω = 0.8.

We observe relatively greater loss of definition in the
shape and contrast (compared to CGLS), as the number of
projections decrease.

Quantifying the SophiaBeads Reconstructions

To evaluate our results we use the quantification item II
(henceforth referred to as SHAPE3D). For the analysis, we
have used built-in image-measuring techniques in Avizo Fire
8, where the reconstructed volume is read by Avizo (see the
quantification tutorial in [4]).

Fig. 7. Results of the SHAPE3D analysis plotted with errorbars in MATLAB.

Fig. 7 is the log-plot of the mean and the standard deviation
of each reconstructed volume. The image-measuring technique
in Avizo attempts to fit the each bead to a unit sphere, and
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parameterizes how close that bead is to a perfect fit (more
details in the Avizo user manual [1]). If the reconstructed beads
fit the model sphere perfectly, then Avizo outputs 1, so this
is taken as the exact answer. Anything above the dashed line
can be dismissed as an infeasible solution. From this it is clear
that FDK at 64 iterations is a poor choice as a reconstruction
method. For datasets with 256 projections or more, we see
all three methods giving similar results with small standard
deviations.

III. CONCLUSIONS

As the CT community, we welcome novel ideas for iterative
reconstruction methods for better quality reconstructions. We
spend time on defining our problems, creating and testing
ideas, and developing algorithms. Yet we still struggle to an-
swer this simple question: When should we be using iterative
methods?

In this paper, we offered a strategy to help us answer this
question by introducing a map to plan trials and across which
the performance of various algorithms can be charted. Here
we examined the effect of altering the number of projections
whilst keeping the photon count constant. This has shown
that iterative methods deal better with datasets with fewer
projections, whereas the FDK method is adequate for scans
with 256 projections or higher.

The SophiaBeads Datasets [5] were acquired in such a
way that it allows a multi-faceted exploration of the effect
of decreasing the information content on the performance of
reconstruction algorithms as outlined in Fig. 1. Another key
advantage of the SophiaBeads Datasets was that many aspects
of the actual 3D object are precisely known, enabling us
to quantify algorithm performance. It is noteworthy that the
framework in Fig. 1 and the SophiaBeads Datasets allow a
wide range of experimental strategies to be simulated (mini-
mum time, dose, number of projections) and the limits of the
algorithms delineated or the most appropriate one identified.
We would like to note here that there was no prior information
used in these reconstructions, which is outside the scope
of this discussion. However, improvements in images and
changes in fewer projection artefacts when prior information
is used are interesting topics that deserve further discussion.
In addition, because the beads problem is amenable to discrete
tomography, an algorithm (with a suitable prior information)
may outperform the current algorithms in quality and speed.
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Effect of sparsity and exposure on total variation
regularized X-ray tomography from few projections

Jakob S. Jørgensen∗, Sophia B. Coban†, William R.B. Lionheart† and Philip J. Withers†

Abstract—We address effects of exposure and image gradient
sparsity for total variation-regularized reconstruction: is it better
to collect many low-quality or few high-quality projections,
and can gradient sparsity predict how many projections are
necessary? Preliminary results suggest collecting many low-
quality projections is favorable, and that a link may exist between
gradient sparsity level and successful reconstruction.

I. INTRODUCTION

Sparsity regularization for X-ray computed tomography
(CT) image reconstruction, for example total variation (TV)
regularization [1] for gradient-sparse images, has been seen
to allow drastically reduced numbers of projections compared
to conventional analytical methods, see, e.g. [2]. In medical
imaging and non-destructive testing this may allow reduced
X-ray exposure or data acquisition time. In today’s litera-
ture, there is little quantitative guidance on how much TV-
regularization allows us to reduce the number of projections.
In order for TV and other forms of sparsity regularization
to become appropriately used this lack of knowledge must be
filled. Our recent work [3] has indicated in simulations inspired
by compressed sensing [4] that sparsity of the image gradient
can predict how few projections will suffice for accurate TV-
regularized reconstruction. A main goal of the present work
is to investigate, for the first time, if the same argument holds
using real X-ray CT data.

In the present study we consider exposure as the measure-
ment cost, and – given a fixed total exposure – look at the trade
off between more information obtained at lower quality (more
projections at low exposure) and less information at higher
quality (fewer projections at high exposure). The sparsity-
regularization literature often takes number of projections as
the primary variable, however the total exposure of a CT scan
depends both on the number of projections and the exposure-
per-projection. [2], [4]. So one could also reduce the total
exposure by keeping the usual high number of projections but
decreasing the exposure time of each. It is not immediately
clear in which scenario TV-regularized reconstruction will
perform better. Addressing this issue is the other main goal
of this work.

In the present work we systematically study TV-regularized
reconstruction quality at reduced numbers of projections as a
function of both exposure time and gradient sparsity using real
CT data. Specifically we address:

∗Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
†The University of Manchester, Manchester, M13 9PL, United Kingdom.
Corresponding author contact: jakj@dtu.dk.

Q1: Does TV-regularized reconstruction compensate better
for reduced information from few high-exposure or
many low-exposure projections?

Q2: Is there a connection between gradient sparsity and how
few projections provide enough information that TV-
regularized reconstruction succeeds?

While Q1 considers a fixed total exposure with exposure-
per-projection inversely proportional to the number of projec-
tions, Q2 considers a constant exposure-per-projection and a
total exposure proportional to the number of projections.

We will use the recently published SophiaBeads data set,
which has been designed specifically for systematic studies
of advanced reconstruction algorithms. In addition to using
this data set to address the stated questions, we apply the
present work to examine how appropriately the SophiaBeads
data set can serve the purpose of testing sparsity-regularized
reconstruction methods.

An important note needs to be made here about our defini-
tion of an ‘adequate reconstruction’. In our earlier work [3],
we used a relative 2-norm measure to assess if reconstructions
perfectly recovered the ground truth. This was appropriate for
the idealized scenario and to stay consistent, we also report
2-norm errors in this work. However with real data, we wish
to assess how well important features can be quantified; in this
case known to be disk-shaped and we employ an aspect-ratio
quality measure as explained in §IV-B.

Fig. 1. Ground truths for SophiaBeads data sets S1 (top row) and S2 (bottom
row) obtained by 30 CGLS iterations from pooled projections, followed by
median filtering. Full 1564×1564 images (left), 350×350 region of interest
around the centre (centre), and sparse thresholded gradient magnitude region
of interests (right).
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II. TEST DATA

A. The SophiaBeads test data set

The SophiaBeads Dataset Project [5] is a collection of cone-
beam X-ray CT data sets where the number of projections
are varied while the total photon count (or the total exposure
time) is kept constant, i.e. the exposure-per-projection is
inversely proportional to the number of projections, as in
Q1. This enables a wide range of algorithm comparisons and
information content optimizations to be examined. For more
detailed information on this experimental framework and the
examples of such scenarios, we refer the reader to [6].

The SophiaBeads data set were collected using the 320/225
kV Nikon XTEK Bay at the Manchester X-ray Imaging Facility
(MXIF), the University of Manchester. The apparatus consists
of a cone-beam microfocus X-ray source that projects poly-
chromatic X-rays onto a 2000× 2000 pixel-length and width,
16-bit flat detector panel. The optimal window size for the
SophiaBeads reconstructions is 1564× 1564, see [7].

There are two samples (henceforth referred to as S1 and
S2) that were scanned using the framework described in [6],
and both samples comprised a plastic tube with a diameter
of 25mm, filled with uniform Soda-Lime Glass (SiO2-Na2O)
beads of diameters 2.5mm (S1) and 1.0mm (S2). S1 is publicly
available; S2 on request. Here, we use S1 and S2 to represent
different sparsity levels: the smaller beads of S2 have relatively
more boundary pixels, which equates to more non-zero pixels
in the gradient, and hence is less sparse than S1.

The present study uses a single central row of the 3D cone-
beam data, and a 2D fan-beam geometry. For the constant-
exposure series, the available data sets labelled 64-, 128-, 256-,
512- and 1024-projection are used. For the reduced-exposure
series the 1024-projection data set is downsampled by repeat-
edly halving the number of projections while keeping every
other one, thereby preserving the equiangular distribution.

B. Determining a ground truth image and its sparsity

The SophiaBeads data set is designed with fixed total expo-
sure ranging from few high-exposure projections to many low-
exposure projections. No high-quality data set (many high-
exposure projections) is provided for the construction of a
ground truth. However, each data set is recorded at slightly
offset angular positions and we obtain a ground truth by
pooling all projections for each of S1 and S2 and reconstruct
using 30 iterations of the Conjugate Gradient Least Squares
(CGLS) algorithm, followed by median filtering with a 5× 5
filter to reduce noise. The resulting S1 and S2 ground truths
are shown in full and close-up in Fig. 1.

To determine gradient sparsity of the ground truth images
we count only nonzero gradient magnitude values greater than
a threshold chosen empirically to preserve only bead edges and
not noise. Thresholded gradient magnitude images are shown
in Fig. 1. The S1 ground truth has 54543 nonzero values in
its gradient, corresponding to a sparsity level (relative to the
total number of pixels) of 54543/15642 = 2.2%. The same
numbers for S2 are 123870 and 5.1%. This quantifies the

Fig. 2. TV-regularized reconstructions using regularization parameters 10−3,
10−2 and 10−1 (left to right). Full 1564 × 1564 images (top row) and
350 × 350 region of interest around the center (bottom row).

intuition that S1 is more gradient-sparse than S2, though exact
numbers may vary depending on thresholds chosen.

III. RECONSTRUCTION PROBLEM AND ALGORITHM

A. Total variation optimization problem

We denote the log-transformed projection data by b, the
2D fan-beam system matrix by A, an image such as a
reconstruction by u, in particular a TV-regularized solution by
uTV, and the number of projections by Nθ. To determine a TV-
regularized reconstruction (which can be seen as the maximum
a posteriori estimate in a Bayesian formulation) of the discrete
imaging model Au = b we solve the optimization problem

uTV = arg min
u

1
2Nθ

‖Au− b‖22 + αTτ (u), u ≥ 0, (1)

where we employ a standard Huber-smoothed TV defined as

Tτ (u) =
∑

j

Φτ (‖Dju‖2), where (2)

Φτ (z) =
{ |z| − 1

2τ if |z| ≥ τ,
1
2τ z2 else. (3)

Here, α is the TV regularization parameter, Dj is a finite
difference approximation to the gradient at pixel j and ‖ · ‖2
denotes the vector 2-norm (or Euclidian norm).

Smoothing is used to make the problem solvable by smooth
optimization techniques which are generally faster than their
non-smooth counterparts. Depending on the choice of smooth-
ing parameter, τ , this might modify the reconstruction; how-
ever here we use a sufficiently small value of τ = 10−5 relative
to the image values that smoothing effects are negligible.

Non-negativity is enforced as the object’s attenuation co-
efficients are known to be non-negative and in general non-
negativity can lead to substantial reconstruction improvement.

The normalization by Nθ helps to compare reconstructions
obtained at different Nθ by compensating the magnitude of the
first term which is otherwise proportional to Nθ. As a result, a
fixed α value yields the same balance between the two terms
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Fig. 3. TV-regularized reconstructions of 64-, 128-, 256-, 512-, 1024-projection data sets and pooled-data ground truths (left to right), showing a 350×350-pixel
region of interest. S1 data set of fixed total exposure (top row), S1 and S2 data sets with fixed per-projection exposure (middle and bottom rows).

at different Nθ. This reduces the search for the optimal α to
a single initial sweep, the resulting α of which can be reused.
In practice we verified this through α sweeps at different Nθ

but for brevity have not included results here.

B. High-accuracy optimization algorithm

To solve (1) we used the toolbox TVReg [8], which offers
implementations (written in C with MATLAB interface) of
accelerated gradient projection methods; specifically we used
the provided GPBB (Gradient Projection Barzilai-Borwein)
method which among other techniques employ acceleration
in form of the Barzilai-Borwein step-size selection. To fur-
ther accelerate the reconstruction, we employed the ASTRA
Tomography Toolbox [9] for GPU-acceleration of the compu-
tationally expensive forward and back-projection operators.

We emphasize that our goal here is not necessarily to use
the fastest algorithm but one that can reliably solve (1) to
high accuracy in reasonable time in order that we indeed
assess the quality of the TV-regularized reconstruction and not
of an arbitrary early-termination result. TVReg is capable of
this through a non-heuristic termination criterion based on the
gradient norm magnitude, in contrast to, for example, running
a pre-set fixed number of iterations or terminating when a
small difference between iterates is encountered.

IV. RESULTS

A. Choosing the regularization parameter

Fig. 2 shows reconstructions for α = 10−3, 10−2 and 10−1

showing the well-known transition from an under-regularized
noisy/patchy TV-regularized reconstruction, through to an

over-regularized solution where separated beads appear con-
nected due to excessive smoothing. Among a range of values
we found α = 10−2 to provide the best trade-off and this fixed
value was reused in the remaining reconstructions.

B. Assessment of reconstruction image quality

We assess the reconstructions qualitatively through visual
inspection. For quantitative assessment we use two error
measures with respect to the constructed ground truth uGT:
First, the standard relative 2-norm of pixelwise differences:
E1(uTV) = ‖uTV − uGT‖2/‖uGT‖2, where ‖ · ‖2 denotes the
(Euclidian) 2-norm. The relative 2-norm provides a standard-
ized comparison but is not necessarily the most informative
about whether important features have been reliably recon-
structed. For the second error measure E2(uTV), we evaluate
the aspect ratio (width:height) of 25 reconstructed beads and
report the mean relative error with respect to determined aspect
ratios of the ground truth beads. This measure describes how
well bead reconstructions reproduce the known bead shapes.

C. Q1: Is it better to collect few high-exposure or many low-
exposure projections?

We first address Q1 by determining the TV-regularized
reconstruction of the fixed total exposure S1 data set for 64,
128, 256, 512 and 1024 projections. We visually compare a
350×350-pixel region of interest of all reconstructions with the
constructed ground truth in the top row of Fig. 3. Visual quality
clearly improves with increasing number of projections.

The error measures E1 and E2 are plotted in Fig. 4 using a
full line. Both error measures agree with visual assessment that
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Fig. 4. Relative 2-norm error (left) and mean aspect ratio error (right) for
data sets S1 and S2 with fixed total or per-projection exposure, Q1 and Q2.

the 64-projection reconstruction is substantially worse than the
others and that error decays with more projections.

D. Q2: What is the dependence on sparsity?

To address Q2 the middle and bottom rows of Fig. 3 show
reconstructions for the case of fixed exposure-per-projection
for data sets S1 and S2. Corresponding error measures are
plotted in Fig. 4 using dashed lines. First, again a clear
trend of improved TV-regularized reconstruction quality with
increasing number of projections is observed. This is less
surprising than in the previous case, since more projections
correspond to a higher X-ray exposure. However, for S2 the
mean aspect ratio error for 256 and 512 projections is larger
than the general trend. We also note that E1 for S1 in this
case almost coincides with the fixed total exposure case.

In case the gradient sparsity does in fact affect the number
of projections sufficient for accurate reconstruction, we would
expect to see clear differences between S1 and the more
gradient-sparse S2 data set. However, visually the S1 and S2
reconstructions show no clear difference in their dependence
on the number of projections. The error plots also do not reveal
clearly different behavior of S1 and S2 as function of numbers
of projections, apart from the previously mentioned E2 values
for S2 at 256 and 512 projections.

V. DISCUSSION AND CONCLUSIONS

In all considered cases the 64-projection reconstructions
stand out from the rest as substantially poorer. It seems
that artifacts caused by having only 64 projections cannot
be effectively removed by TV-regularized reconstruction, no
matter whether high- or low-exposure projections are used.
This is particularly interesting considering the highly gradient-
sparse and round, piece-wise flat regions, for which TV-
regularized reconstruction could be expected to excel.

For Q1, we conclude that given a fixed total exposure it
appears beneficial to distribute across the highest possible
number of projections. Even though each projection is of low
quality it appears intuitively sensible to aim for obtaining
in a loose sense more independent information about the
scanned sample through more projection angles, rather than
few high-quality ones. This is however in contrast to the
typical message from the sparsity-regularization literature,
namely that reconstruction from few projections is possible.

Regarding a possible connection to sparsity in Q2, present
results are inconclusive since no clear difference is observed
between S1 and S2. However for both S1 and S2 results, there
is a large error reduction between 64 and 128 projections.
This may hint that there is a number of projections, possibly
different for each of S1 and S2, below which TV-regularized
reconstruction will not be successful. The SophiaBeads data
set only allows subsampling by factors of 2 to preserve
equiangular projections. Relevant future work includes the
acquisition and analysis of data sets with finer increments of
numbers of projections, as well as more sparsity levels.

It should be mentioned that the presented preliminary con-
clusions may depend on several aspects of the study. For
example it is unclear if the pooling approach produces a
reliable enough ground truth, and in potential future work,
extra care should be taken to acquire ground truth data. Also
it is not certain that the error measures used here are the most
informative and other options could be considered.

Lastly, regarding how SophiaBeads data sets serve as
sparsity-regularization test data, we found TV-regularized re-
construction to work well on the piecewise constant bead
images. In that sense, SophiaBeads is quite useful. However
for assessing the influence of gradient sparsity we faced short-
comings which we have offered suggestions to address in
future work.
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